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1. Einleitung

In zunehmendem Maße werden in den letzten Jahren in vielen Bereichen des gesell-
schaftlichen Lebens mathematische Verfahren angewandt, die in das Gebiet der Wahr-
scheinlichkeitsrechnung und mathematischen Statistik — gemeinsam mit ihren Anwen-
dungsgebieten werden sie heute auch unter dern Oberbegriff Stochastik zusammenge-
faßt — gehören. Die Ursache dafür ist nicht zuletzt in der raschen Entwicklung der
Naturwissenschaften, der Technik und der Gesellschaftswissenschaften zu suchen. Jedes
dieser Wissenschaftsgebiete stellt der Wahrscheinlichkeitsrechnung und mathematischen
Statistik ständig neue, zahlreichere und umfangreichere Aufgaben, die entweder mit den
schon vorhandenen Methoden gelöst werden können oder Anlaß zu neuen theoretischen
Untersuchungen geben. Begünstigt wird diese Tendenz auch durch die Entwicklung der
EDV; denn erst durch dieses Hilfsmittel wurde es möglich, viele Probleme bis zum nume-

rischen Resultat zu bearbeiten.
Die Bedürfnisse der Praxis sind schon immer wesentliche Triebkräfte der Entwicklung

der Wahrscheinlichkeitsrechnung und mathematischen Statistik gewesen,
Die Anfange der Entwicklung der Wahrscheinlichkeitsrechnung, die im 17. und

18.Jahrhunden liegen, entstanden aus der Bearbeitung von Aufgaben, die im Zusammen-
hang mit Glücksspielen gestellt wurden. Die Bearbeitung dieser Aufgaben führte zur Klä-
rung wichtiger Grundbegriffe der Wahrscheinlichkeitsrechnung und zu Untersuchungen
über eine Erweiterung der Anwendungsgebiete der erzielten Ergebnisse, Es wurde der Be-
griff des zufälligen Ereignisses geprägt und die klassische Definition der Wahrscheinlich-
keit gegeben, Der weitere Ausbau der Wahrscheinlichkeitsrechnung im 19. Jahrhundert
ist eng verbunden mit der Entwicklung der Naturwissenschaften. In dieser Zeit bildete
sich der Begriff der Zufallsgröße heraus. Eine der bekanntesten Verteilungen einer Zu-
fallsgröße, die Normalverteilung, leitete C.F.Gauß (1777—1855) im Zusammenhang mit
seiner Theorie der Beobachtungsfehler her. Erst Anfang der dreißiger Jahre dieses Jahr-
hunderts gelang es dann A. N. Kolmogorow (sowjetischer Mathematiker, geb. 1903), die
Wahrscheinlichkeitsrechnung axiomatisch zu begründen und dadurch einen entscheiden-
den Schritt im Hinblick auf die mathematischen Grundlagen der Wahrscheinlichkeits-
rechnung zu geben. Auch bei der Weiterentwicklung der Wahrscheinlichkeitsrechnung
und ihrer Anwendung in den letzten Jahrzehnten haben sowjetische Mathematiker einen
großen Beitrag geliefert. Es seien B.W. Gnedenko (geb. 1912), J. K. Beljajew (geb. 1932)
und J.J.Gichman (geb. 1918) genannt.

Die mathematische Statistik entwickelte sich im Ergebnis von Fragestellungen hin-
sichtlich der Auswertung von Versuchsergebnissen auf den Verfahren der beschreibenden
Statistik aufbauend unter Verwendung von Methoden der Wahrscheinlichkeitsrech-
nung.

Die Begründung für den Einsatz von Methoden der Wahrscheinlichkeitsrechnung und
mathematischen Statistik ergibt sich aus dem Charakter der untersuchten Erscheinungen.
Diese sind zwar unter wohldefinierten Bedingungen mehrfach reproduzierbar, werden
aber andererseits durch eine Vielzahl weiterer Einflüsse bestimmt, die entweder noch
nicht bekannt oder nicht erfaßbar sind. Solche Einflüsse werden als Zufallseinflüsse be-
zeichnet. Die erzielten Ergebnisse variieren in gewissen Grenzen. So wird z.B. die Quali-
tit Von Erzeugnissen auch unter möglichst stabilen Produktionsbedingungen und bei
weitgehend homogenem Rohstoff trotzdem in gewissen Grenzen variieren, Diese Schwan-
kung ist auf das Wirken von Zufallseinflüssen zurückzuführen.

Die Voraussetzungen für den Einsatz stochastischer Methoden sind bei Massenerschei-
nungen, wie sie z.B. in der modernen Industrieproduktion auftreten, gegeben. Unter Mas-
senerscheinungen werden Vorgänge verstanden, die unter dem Einwirken von zufälligen
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Einflüssen in Gesamtheiten stattfinden, die aus einer großen Anzahl von gleichberechtig-
ten Elementen bestehen. Aufgabe der Wahrscheinlichkeitsrechnung ist es, Gesetzmäßig-
keiten derartiger Massenerscheinungen zu untersuchen. Die Wahrscheinlichkeitsrech-
nung ist zugleich das theoretische Fundament der mathematischen Statistik. Diese liefert
Verfahren, um an Hand von Stichproben, d. h. von konkretem Zahlenmaterial, Auf-
schlüsse über betrachtete Zufallsgrößen zu erhalten.

Aussagen, die mit Methoden der Wahrscheinlichkeitsrechnung und mathematischen
Statistik gewonnen wurden, drücken objektive Eigenschaften der untersuchten Erschei-
nungen aus. Durch sie werden objektiv existierende Beziehungen zwischen Erscheinun-
gen der Wirklichkeit widergespiegelt. Mit anderen Worten: Die Gültigkeit des Kausalprin-
zips erstreckt sich auch auf zufällige Erscheinungen. Dabei können Wahrscheinlichkeits-
theoretische Aussagen die Vorstufe zur Aufdeckung von Kausalzusammenhängen sein.
Es wird so oft möglich, die Ursachen von Massenerscheinungen Schritt für Schritt nach-
zuweisen. Andererseits ist es häufig aus prinzipiellen Gründen sinnvoll — das ist z. B. in
der modernen Physik der Fall — ausschließlich wahrscheinlichkeitstheoretische Aussagen
zu treffen und mit ihrer Hilfe die jeweiligen Erscheinungen zu erkennen.

Es ist das Ziel des vorliegenden Buches, dem Anwender der Mathematik, insbesondere
dem Ingenieur, Naturwissenschaftler, Ökonomen und Landwirt, eine Einführung in die
Grundbegriffe der Wahrscheinlichkeitsrechnung und mathematischen Statistik zu geben,
Es soll ihm dadurch ermöglicht werden,

— einfache Fragestellungen der Praxis, zu deren Beantwortung die Methoden der Wahr-
scheinlichkeitsrechnung und mathematischen Statistik erforderlich sind, selbständig
bearbeiten zu können,

— seine Kenntnisse auf dem Gebiet der Wahrscheinlichkeitsrechnung und mathemati-
schen Statistik unter Verwendung von anderen Lehrbüchern und Monographien erwei-
tern und vertiefen zu können,

— sich notwendige Voraussetzungen zur sich ständig erweitemden interdisziplinären Zu-
sammenarbeit zu schaffen,

— eine Grundlage zum Verständnis wichtiger Anwendungsgebiete kennenzulemen.

Beweise werden nur dann gegeben, wenn sie der Vertiefung des Verständnisses dienen.
Durch Beispiele werden wesentliche Begriffe und Aussagen erläutert.
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In diesem Kapitel wollen wir uns mit Grundbegriffen der Wahrscheinlichkeitsrechnung
beschäftigen.

Mit den Begriffen „zufälliges Ereignis“ und „Wahrscheinlichkeit eines zufälligen Ereignisses"
werden wir uns in den Abschnitten 2.1. und 2.2. vertraut machen.

Neben ihrer Erklärung wollen wir vor allem darstellen, wie die gesuchte Wahrschein-
lichkeit berechnet wird. Dabei müssen wir erst entscheiden, ob Methoden der Wahr-
scheinlichkeitsrechnung zur Untersuchung des Problems aus der Praxis eingesetzt werden
müssen; bei Bejahung der Frage kommen wir von der Modellierung des entsprechenden
Versuchs, der Ermittlung und Verknüpfung der erforderlichen zufälligen Ereignisse zur

Berechnung der gesuchten Wahrscheinlichkeit. Um wichtige Seiten eines solchen mathe-
matischen Modells besser erkennen und aufdecken zu können, werden gern „Hilfsmodelle"
eingesetzt. Beispiele von Modellen dieser Art sind das „Werfen eines Würfels“, das „Wer-
fen einer Münze“, das „Ziehen einer Kugel aus einer Urne, in der Kugeln verschiedener
Farbe in einem bestimmten Verhältnis enthalten sind“. Nicht zuletzt weil der Leser von

diesen einfachen Modellen eine Vorstellung hat und die entsprechenden Versuche ohne
große Mühe selbst durchführen kann, wollen wir die neuen Begriffe dieses Abschnitts ~

soweit möglich auch anderer Abschnitte — mit ihrer Hilfe erläutern.
Der Abschnitt 2.3. dient dann der Erklärung des Begriffs „Zufallsgroße“ und der Darstel-

lung von Möglichkeiten zur Charakterisierung von Zufallsgrößen durch Wahrscheinlich-
keitsverteilungen und Momente. Außerdem wird auf spezielle Verteilungen eingegangen,
die für die Bearbeitung von Problemen der Praxis bedeutsam sind.

2.1. Zufällige Ereignisse

2.1.1. Zufällige Versuche

Zum besseren Verständnis wollen wir vorerst das Wesen des Begriffs „zufälliger Ver-
such“ an einigen Beispielen, die in der umstehenden Übersicht zusammengestellt sind,
erläutern.

Bei all diesen Beispielen ist das Ergebnis des jeweiligen Versuchs vor dessen Durchfuh-
rung unbekannt. Da von den Bedingungen, unter denen dieser Versuch abläuft, nur ein
gewisser Teil bekannt ist — wir wollen ihn als festen Komplex von Bedingungen bezeich-
nen -, kann das Ergebnis nicht mit Sicherheit vorausgesagt werden. Demzufolge können
bei einer mehrmaligen Wiederholung des Versuchs, d.h. bei einer mehnnaligen Realisie-
rung des festen Komplexes von Bedingungen, verschiedene Ergebnisse auftreten.

Definition 2.1: Ein Versuch, der unter Beibehaltung eines festen Komplexes von Bedingungen
beliebig oft wiederholbar ist und dessen Ergebnis im Bereich gewisser Möglichkeiten ungewiß ist,

wird als zufälliger Versuch bezeichnet.

Wir wollen nochmals festhalten: 1. Durch den festen Komplex von Bedingungen wer-

den nicht alle Einflüsse erfaßt — häufig ist das gar nicht möglich oder nicht erforder-
lich —, die auf das Ergebnis des Versuchs Auswirkungen haben. Daraus resultieren dann
aber auch die verschiedenen Versuchsergebnisse. Überlegen Sie selbst, welche erfaßbaren
oder nichterfaßbaren Einflüsse u.a. auf das Ergebnis der in den Beispielen charakterisier-
ten Versuche Auswirkungen haben.

2. Aus der Forderung der Wiederholbarkeit der Versuche ergibt sich erst die Möglich-
keit zur Untersuchung der Gesetzmäßigkeiten von zufälligen Erscheinungen.

D.2.1
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Beispiel zufälliger Versuch mögliche Ergebnisse

2.1 Werfen eines Würfels Augenzahl k (k = 1, .„‚ 6)

2.2 Werfen einer Münze „Zahl“; „Wappen“

2.3 dreimaliges Werfen einer Münze ,,ZZZ“, .ZZW", ...,

„ ”‘‚ „WWW“
(wenn mit Z bzw. W der Wurf von

„Zahl“ bzw. „Wappen“ angegeben
wird)

2.4 Erfassung der Anzahl der Telephonan- Anzahl k
rufe, die während einer Zeiteinheit auf (k = 0, 1, 2, ...)
einer bestimmten Leitung eintreffen

2.5 Ermittlung der Laufzeit eines Typs von Laufzeit t
PKW-Reifen unter vorgegebenen Bedin- (t E (0, 00))

gungen

2.6 Erfassung der Anzahl der Ausschußteile, Anzahl k
die auf einer bestimmten Maschine wäh- (k = 0, 1, 2, ...)
rend einer Schicht produziert werden

2.7 Ermittlung der CO-Konzentration in Ab- Konzentration c [%]

gasen einer industriellen Anlage zu (O ä c ä 100)
einem bestimmten Zeitpunkt

2.1.2.

Definition 2.2: Ein Ergebnis eines zufälligen Versuchs wird als zufälliges Ereignis bezeich-
net.‘)

Zufällige Ereignisse

Ein zufälliges Ereignis ist also gekennzeichnet durch die Möglichkeit — nicht die Not-
wendigkeit! — seines Eintritts im Ergebnis eines gewissen zufälligen Versuchs.

Zufällige Ereignisse werden wir in der Regel mit großen lateinischen Buchstaben (z.B.
A, B, C, ...) kennzeichnen, die bei Erfordernis noch mit einem Index versehen werden. Zu
ihrer Veranschaulichung werden wir Punktmengen z. B. auf der Zahlengeraden oder in
der Zahlenebene heranziehen, wobei die konkrete Bedeutung des jeweiligen zufälligen
Ereignisses unberücksichtigt bleibt. Schließlich werden wir im folgenden an Stelle von
einem „zufälligen Ereignis“ kurz von einem „Ereignis“ sprechen, wenn keine Mißver-
ständnisse auftreten können.

Entsprechend der Aufgabenstellung werden die erforderlichen Ereignisse zusammenge-
stellt. So könnten z.B. bei den obigen Beispielen folgende Ereignisse von Interesse sein:

Beispiel 2.1:
Ak „Die Augenzahl k wurde geworfen“ (k = 1, 2, ...‚ 6);
B „Eine gerade Augenzahl wurde geworfen“;
C „Es wurde mindestens die Augenzahl 3 geworfen“.

‘) Vgl. Abschnitt 2.1.5.
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Beispiel 2.2:
A „Zahl liegt oben“;
B „Wappen liegt oben“.

Beispiel 2.4:
Ak ,,In der Zeiteinheit erfolgten k Anrufe“ (k = 0, 1, ...);
B „In der Zeiteinheit erfolgten nicht mehr als 3 Anrufe“;
C „In der Zeiteinheit erfolgten mindestens 5 Anrufe“.

Beispiel 2.5:
A, „Die Laufzeit eines PKW<Reifens ist gleich t“;
B, „Die Laufzeit eines PKW-Reifens ist mindestens gleich t“.

Beispiel 2.6:
Ak „In der Schicht traten k Ausschußteile auf“ (k = 0, 1, ...);
B5 „In der Schicht traten nicht mehr als s Ausschußteile auf“ (s = l, 2, ...).

Beispiel 2.7:
A, „Die Konzentration x wurde gemessen“;
B, „Die gemessene Konzentration ist kleiner als der maximal zulässige Wert

y“;
Cxm „Die gemessene Konzentration ist größer oder gleich x1 und kleiner als

x2“.

Wie wir später (Abschnitt 2.1.5.) sehen werden, kann ein Ereignis immer als Menge
aufgefaßt werden. Dementsprechend können wir neben der oben angewandten verbalen
Darstellung zur Beschreibung der Ereignisse auch die Symbolik der Mengenlehre heran<
ziehen. Dazu einige Beispiele:

Beispiel 2.1:

Beispiel 2.7:

A. = {x};
By = {xJ0§x<y}=[0,y);
CXHQ : {x ‘X1 ä x < x2} =IX1‚ Xz)«

Abschließend wollen wir zwei Ereignisse betrachten, die als Grenzfälle von zufälligen
Ereignissen aufgefaßt werden können. Es sind dies das sichere und das unmögliche
Ereignis.

Definition 2.3: Ein Ereignis, das im Ergebnis jeder Wiederholung eines zufälligen Versuchs ein— D.2.3
tritt, wird als sicheres Ereignis bezeichnet.

Ein Ereignis, das im Ergebnis jeder Wiederholung eines zufälligen Versuchs niemals eintritt,
wird als unmögliches Ereignis bezeichnet.

Das sichere Ereignis kennzeichnen wir mit dem Symbol 0 und das unmögliche mit
dem Symbol lZl.

Beispiel 2.8: Beim Würfeln mit einem Würfel ist z.B.
— das Werfen irgendeiner der möglichen Augenzahlen ein sicheres Ereignis:

.0 „Werfen einer der 6 möglichen Augenzahlen“.
oder
.O= {1, 2, 3, 4, 5, 6}
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(dieses Ereignis tritt also bei der Realisierung jedes der Ereignisse Ak (k = 1, ...‚ 6) im
Beispiel 2.1 ein);

— das Werfen der Augenzahl 8 ein unmögliches Ereignis:
ß „Werfen der Augenzahl 8“;

— das gleichzeitige Werfen zweier Augenzahlen ein unmögliches Ereignis:
{ö „Gleichzeitiges Werfen zweier Augenzahlen“.

Beispiel 2.9: Beim Ermitteln der Anzahl von Ausschußteilen in einer Serie von n Erzeug-
nissen ist es ein sicheres Ereignis, höchstens n fehlerhafte Teile zu zählen. Mehr als
n Ausschußteile festzustellen ist dagegen ein unmögliches Ereignis.

2.1.3.

Dieser Abschnitt wird uns mit wichtigen Relationen zwischen zufälligen Ereignissen
vertraut machen. Für das Verständnis der Wahrscheinlichkeitsrechnung ist es wichtig,
daß sich der Leser mit den neuen Begriffen und Operationen eingehend auseinandersetzt.

Definition 2.4: Tritt mit dem Ereignis A stets auch das Ereignis B ein, dann zieht das Ereig-
nis A das Ereignis B nach sich. Schreibweise: A g B (Bild 2.1).

Relationen zwischen zufälligen Ereignissen

v’? 52

CD

Bild 2.2. Summe der Ereignisse
A, B: A u B

Bild 2.1, Ereignis A zieht Ereignis B
nach sich: A E B

Im Beispiel 2.1 zieht z.B. das Ereignis A4 das Ereignis B nach sich: A, E B.

Definition 2.5: Zieht das Ereignis A das Ereignis B und das Ereignis B das Ereignis A nach
sich, dann werden die beiden Ereignisse als gleich bezeichnet.

Wir können also schreiben:

A = B genau dann, wenn A <== B und B g A gilt.

Definition 2.6: Tritt ein Ereignis C genau dann ein, wenn mindestens eines der beiden Ereignisse
A oder B eintritt, dann wird das Ereignis C als die Summe der Ereignisse A, B bezeichnet.

Schreibweise: C = A u B (Bild 2.2).

Beispiel 2.8a: Beim Würfeln mit einem Würfel betrachten wir die Ereignisse:

A „Es wird entweder die Augenzahl 2 oder die Augenzahl 4 geworfen“;
B „Es wird entweder die Augenzahl 2 oder die Augenzahl 6 geworfen“;
C „Es wird eine gerade Augenzahl geworfen“,

die unter Verwendung der Schreibweise der Mengenlehre auch so festgehalten werden
können:

A = {2‚ 4};

Dann gilt:

C = A U B.

B={2,6}; c={2,4,5}.
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Die Definition der Summe von zwei Ereignissen können wir auf mehr als zwei Ereig-
nisse erweitern:

Definition 2.6’: Tritt ein Ereignis C bzw. D genau dann ein, wenn mindestens eines der endlich
vielen Ereignisse A, (i = 1, 2, ..., n) bzw. abzählbar unendlich vielen Ereignisse B, (i = 1, 2, ...)
eintritt, dann heißt das Ereignis C bzw. D Summe der Ereignisse A, (i = 1, 2, „., n) bzw. B,-

(i = 1, 2, ...).
‚. „

Schreibweise: c = U A, bzw. D = U 13,.

i: l i = l

Überzeugen Sie sich selbst, daß fiir beliebige Ereignisse A, B und C folgende Relatio-
nen gelten:

AuA=A; Au.(2=.(2; Auß=A;
A u B = B u A;
Au(BuC)=(AuB)uC.

Definition 2.7: Tritt ein Ereignis C genau dann ein, wenn sowohl das Ereignis A als auch das
Ereignis B eintritt, dann wird das Ereignis C als das Produkt der Ereignisse A, B bezeichnet.

Schreibweise: C = A n B (Bild 2.3).

Beispiel 2.10: Beim Würfeln mit 2 unterscheidbaren Würfeln werden die folgenden Ereig-
nisse betrachtet:

A „Mit dem einen Würfel wird die Augenzahl 6 geworfen“;
B „Mit dem anderen Würfel wird die Augenzahl 6 geworfen“;
C „Mit beiden Würfeln wird die Augenzahl 6 geworfen“.

Dann gilt: C = A n B.

Bild 2.3. Produkt der Ereignisse
A, B: A n B

Bild 2.4. Die Ereignisse A und B
schließen einander aus: A n B = ß

Die Definition des Produktes von zwei Ereignissen können wir ebenfalls auf mehr als
zwei Ereignisse erweitern:

Definition 2.7’: Tritt ein Ereignis C bzw. D genau dann ein, wenn alle der endlich vielen Ereig-
nisse A, (i = l, 2, ..., n) bzw. abzählbar unendlich vielen Ereignisse B, (i = 1, 2, ...) eintreten,
dann heißt das Ereignis C bzw. D Produkt der Eeignisse A, (i = 1, 2, ..., n) bzw. B,
(i = 1, 2, ...).

„ .„

Schreibweise: C = f] A,- bzw. D = fl B...
i: l i: l

Überzeugen Sie sich auch hier selbst, daß fur beliebige Ereignisse A, B und C folgende
Relationen gelten:

D.2.6'

D.2.7

D.2.7’
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AnA=A; An.()=A; Ant/l=l3;
AnB=BnA;
An(BnC)=(AnB)nC;
An(BuC)=(AnB)u(AnC);
Au(BnC)=(AuB)n(AuC).

D.2.8 Definition 2.8: Zwei Ereignisse A und B werden als einander ausschließend (auch: als un-
vereinbar) bezeichnet, wenn ihr gleichzeitiges Eintreten unmöglich ist.

In Formeln: A n B = 0 (Bild 2.4).

Beispiel 2.11: Beim Würfeln mit einem Würfel werden folgende Ereignisse betrachtet:

A = {2}, B = {L 4, 6}, C: {1. 3, 5}~

Sowohl die Ereignisse A und C als auch die Ereignisse B und C sind unvereinbar:

AnC=fl; BnC=fl.
Demgegenüber sind die Ereignisse A und B vereinbar:

AnB=A.

D.2.9 Definition 2.9: Tritt ein Ereignis C genau dann ein, wenn ein Ereignis A, aber nicht gleichzeitig
ein Ereignis B eintritt, dann wird es als die Differenz von A zu B bezeichnet (Bild 2.5).

Schreibweise: C = A \ B.

Überprüfen Sie, daß A = A\B, falls A n B = 0 gilt.

D.2.10 Definition 2.10: Das Ereigm's_.Q\A wird als das zu dem Ereignis A komplementäre (auch:
entgegengesetzte) Ereignis A bezeichnet.

Schreibweise: Ä_= .O\A (Bild 2.6).
Das Ereignis A tritt also genau dann ein, wenn das Ereignis A nicht eintritt.

‚ /‚"_ä i /

Bild 2.5. Differenz der Ereignisse Bild 2.6. Ereignis Ä komplementär
A, B: A\B zu Ereignis A: Ä = !2\A

Überprüfen Sie die Beziehung

A \B = A n E!

Beispiel 2.12: Aus einer Menge von Erzeugnissen wird ein Element entnommen. Dieses
kann entweder einwandfrei oder mit Fehlern behaftet sein. Die beiden Ereignisse

A „Das Erzeugnis ist einwandfrei“,
B „Das Erzeugnis ist fehlerhaft“

sind zueinander entgegengesetzt. Es gilt A n B = 1J und A U B=I2.
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Definition 2.11: Die Ereignisse A, (i = 1, ..., n) bilden ein vollständiges System von Ereig- D.2.11
nissen, wenn im Ergebnis eines Versuchs genau eines von ihnen eintreten mußfl)

Diese Ereignisse erfüllen also folgende Relationen:
II

_UA,=r2; AinA,=0; 1+1, i,j=1,...,n.
l : 1

Beispiel 2.13: Wir betrachten beim Würfeln mit einem Würfel die Ereignisse

Ak „Augenzah1 k wird geworfen“ (k = 1, ‚.„ 6).

Diese bilden ein vollständiges System von Ereignissen; denn es gilt:

6

{2 = U A, „Eine der Augenzahlen wird geworfen“;
i= 1

B = Am Aj, i=#j, i,j= 1, 4A») 6 „Gleichzeitiges Werfen zweier Augen-
zahlen“.

Beispiel 2.14: In einer Betriebsabteilung arbeiten 3 gleiche Maschinen. Zu einem belie-
bigen Zeitpunkt t wird ermittelt, wie viele dieser Maschinen in Betrieb sind. Von Inter»
esse sind die Ereignisse

A, ,,Zum Zeitpunkt t arbeiten genau i Maschinen“, i= O, 1, 2, 3.

Die Ereignisse A, bilden ein vollständiges System von Ereignissen.
Durch die Gegenüberstellung entsprechender Eigenschaften der Summe und des Pro-

dukts von beliebigen Ereignissen A, B, C, und unter Hinzunahme der entgegengesetz-
ten Ereignisse Ä, E, Ö, wollen wir uns abschließend nochmals einen Überblick ver-
schaffen:

Summe |Produkt
AUA=A AnA=A (21) (2.2)
AUB=.BUA AnB=BnA (2.3) (2.4)

AU(BUC)=(AUB)UC An(BnC)=(AnB)nC (2.5) (2.6)
Au(BnC)_=(AuB)n(AUC) An(BUC)_=(AnB)U(AnC) (2.7) (2.8)

AUA=.O AnA=0 (2.9) (2.10)
Au0=A Anr2=A (2.11) (2.12)
AU.O=.Q An0=0 (2.13) (2.14)

Außerdem wollen wir einige weitere Beziehungen angeben, die für das Rechnen mit Er-
eignissen sehr zweckmäßig sind:

1. Sind A„ A2, zufällige Ereignisse, dann gelten die de Morganschen’) Formeln:

8

A.-
1 i

Ä„ (2.15)
1

3

II

E
D

F
‘

E
m

A.-
1

(2.16)

‚i.

1) Der Begriff des vollständigen Systems von Ereignissen ist auf abzählbar unendlich viele Ereig-
nisse übertragbar.

2) Augustus de Morgan (1806-1873), englischer Mathematiker.
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2. Für die Ereignisse A, B gilt:

A \ B = A n E.

Veranschaulichen Sie sich diese Formeln!

(2.17)

2.1.4.

Beim Münzenwurf werden wir uns nicht nur für die im Beispiel 2.2 genannten Ereig-
nisse

Das Ereignisfeld

A „Zahl liegt oben“,
B „Wappen liegt oben“,

interessieren, sondern auch die Ereignisse

0... „Entweder Zahl oder Wappen liegt oben“,
0 „Weder Zahl noch Wappen liegt oben“

hinzufügen. Wenden wir nun auf die Menge dieser vier Ereignisse die im Abschnitt 2.1.3.
angegebenen Relationen an, so werden wir erkennen, daß wir dabei immer wieder eines
dieser vier Ereignisse erhalten, z. B.

AuB=.O, .()uA=.(2, AnB=0.

Diese kurze Betrachtung erlaubt es uns, den Begriff „Ereignisfeld“ einzuführen.

Definition 2.12: Enthält ein „System von Ereignissen eines zufälligen Versuchs alle in Verbin-
dung mit diesem Versuch interessierenden Ereignisse undführt die Anwendung der im Abschnitt
2.1.3. angegebenen Relationen auf diese Ereignisse immer wieder auf ein zufälliges Ereignis die-
ses Systems, dann wird dieses System Ereignisfeld genannt und mit G bezeichnet, (Vgl. Ab-
schnitt 2.1.5.)

Das System der beim oben betrachteten Münzenwurf interessierenden Ereignisse
(A, B, 0, IZI) bildet offensichtlich ein Ereignisfeld.

Beispiel 2.15: Interessieren wir uns beim Würfeln mit einem Würfel nur für die Ereignisse

B „Würfeln einer geraden Augenzahl“,
A „Würfeln einer ungeraden Augenzahl“,

dann bilden diese beiden Ereignisse unter Hinzunahme des sicheren und des unmög-
lichen Ereignisses

.0... „Würfeln einer der 6 möglichen Augenzahlen“,
ß „Würfeln keiner der 6 möglichen Augenzahlen“

ein Ereignisfeld G. Überprüfen Sie diese Aussage an Hand der in Abschnitt 2.1.3. angege-
benen Relationen.

Im folgenden wollen wir nun wichtige Eigenschaften eines Ereignisfeldes zusammen-
stellen:

1. Das Ereignisfeld Q? enthält als Element das sichere Ereignis .0 und das unmögliche
Ereignis ß: O E (E, 0 E (E.

2. Sind die Ereignisse A und B Elemente des Ereignisfeldes G, dann sind es auch de-
ren Summe A u B und deren Produkt A n B:

A26, BEG‘ —> AUBEG, AnBE@.

3. Mit dem Ereignis A ist auch dessen Komplement Ä Element des Ereignisfeldes (53:
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Ae@—>Äe(E.

4. Mit den Ereignissen A, (i = 1, 2, ...) sind auch deren Summe und Produkt Elemente
des Ereignisfeldes (E:

‚gee (i= 1,2, ...) e UA,—e(¥, flA,e£‘3.
i=l r=l

Zur Darstellung der Ereignisse eines Ereignisfeldes (E hat sich die Einführung der Be-
griffe „atomares Ereignis“ und „zusammengesetztes Ereignis“ bewährt.

Definition 2.13: Ein Ereignis A e G wird als atomares Ereignis bezeichnet, wenn kein Ereig- D.2.l3
nis B E (E mit den Eigenschaften B i; 6 und B =# A existiert, so daß das Ereignis B das Ereignis A
nach sich zieht.

Es ist offensichtlich, daß ein Ereignis A e G genau dann atomar ist, wenn es sich nicht
als Summe von Ereignissen des Ereignisfeldes (i darstellen läßt, die vom unmöglichen Er-
eignis ß und vom Ereignis A verschieden sind.

Diese Erläuterung führt uns sofort zum Begriff „zusammengesetztes Ereignis“:

Definition 2.14: Ein Ereignis A E (53 wird als zusammengesetztes Ereignis bezeichnet, wenn D.2.l4
es sich als Summe von atomaren Ereignissen des betrachteten Ereignisfeldes darstellen laßt.

Beispiel 2.16: Interessieren wir uns beim Würfeln mit einem Würfel im Gegensatz zum
Beispiel 2.15 für alle möglichen Versuchsergebnisse, so sind die Ereignisse

A, ,,Werfen der Augenzahl i“ (i = 1; 2, ...‚ 6),
A, = {i},

atomare Ereignisse des in diesem Fall betrachteten Ereignisfeldes. Demgegenüber ist z.B.
das Ereignis

B „Werfen einer geraden Augenzahl“,
B = {Z 4, 6},

in diesem Ereignisfeld ein zusammengesetztes Ereignis; denn: B=Az UA4UA5. Da-
gegen ist in dem im Beispiel 2.15 betrachteten Ereignisfeld das Ereignis B ein atomares
Ereignis.

2.1.5. Ergänzende Betrachtungen in Verbindung mit dem Begriff
des zufälligen Ereignisses

Wie wir oben schon andeuteten, besteht zwischen den Begriffen „zufälliges Ereignis“ und
.Menge“ und auch zwischen den entsprechenden Relationen ein enger Zusammenhang,

Wir verwenden den Mengenbegriff als mathematisches Modell zufälliger Ereignisse.
Die zur Charakterisierung des sicheren Ereignisses benutzte Menge bezeichnen wir als Menge

aller „Elementarereignisse“ des zufälligen Versuchs. Damit deuten wir an, daß in dieser „Grund-
rnenge“ alle denkbaren „Elementarausgänge“ des zufälligen Versuchs zusammengefaßt sind. Jedes
zufällige Ereignis wird damit als eine gewisse Untermenge von I) interpretiert‘

Einem Ereignisfeld (E entspricht dann ein gewisses System von Untermengen, das die Struktur
einer sog. v-Algebra besitzt.

Weitere Ausführungen finden Sie z. B. in [l2;3].
Beispiel 2417: Beim Würfeln mit einem Würfel ist

.0 = {1, 2, 3, 4, 5, 6}

die Menge der Elementarereignisse. Wir betrachten dazu zwei mögliche Systeme von Untermengen,
die die Eigenschaften einer a-Algebra besitzen:

2 Beyer. Wahrscheinlichkeitsrechnung
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1. Das System von Unterrnengen von I)

m, A, B, .0} mit B = (2, 4, 6} und

A = (1. 3. 5}

entspricht als a-Algehra einem Ereignisfeld, wobei A und B atomare Ereignisse dieses Ereignisfeldes
sind.

2. Die Potenzmenge SMD) der Menge der Elementarereignisse entspricht als 0'-Algebra einem Er-
eignisfeld, wobei hier die sechs einelementigen Untermengen [1},{2],...,{6) atomare Ereignisse
sind.

Überprüfen Sie, daß SMD) 2‘ Ereignisse enthält!

2.1.6. Beispiele und Aufgaben

Wenn wir uns entschieden haben, ein praktisches Problem mit Methoden der Wahr-
scheinlichkeitsrechnung zu bearbeiten, kommt es darauf an, nach der Festlegung des ent-
sprechenden zufälligen Versuchs die notwendigen zufälligen Ereignisse zu definieren und
anschließend unter Verwendung der in Abschnitt 2.1.3. angegebenen Relationen die er-

forderlichen Verknüpfungen der Ereignisse durchzuführen. An zwei Beispielen wollen wir
das Vorgehen zeigen.

Beispiel 2.18: Die störungsfreie Arbeit eines Systems S während der Zeit t wird wesentlich
beeinflußt durch die störungsfreie Arbeit der Komponenten i (i = 1, 2, n), aus denen
das System zusammengesetzt ist, während der Zeit t, Diese sollen unabhängig voneinan-
der arbeiten. Die störungsfreie Arbeit des Systems ist durch die der Komponenten auszu-

drücken, und zwar dafür, daß

a) der Ausfall einer Komponente den Ausfall des Systems nach sich zieht,
b) erst der Ausfall aller Komponenten den Ausfall des Systems nach sich zieht.

Die Lösung dieser Aufgabe werden wir in 2 Schritten vornehmen. Während wir beim
1. Schritt die interessierenden Ereignisse erfassen, werden wir beim 2. Schritt — er ist fiir
die Teilaufgaben getrennt durchzuführen - die Ereignisse entsprechend der Aufgaben-
stellung verknüpfen.

I . Schritl:

A „Das System arbeitet während der Zeit t“,
A, ,,Die i-te Komponente arbeitet während der Zeit I“ (i = 1, 2, ..., n).

2. Schritt: Den Tatbestand erfassen wir bei der Teilaufgabe a) bzw. Teilaufgabe b) sym-
bolisch durch eine Reihenschaltung (Bild 2.7) bzw, Parallelschaltung (Bild 2.8) der n

Komponenten und erhalten dann bei

Bild 2.8. Parallelschaltung
Bild 2.7. Reihenschaltung von Komponenten von Komponenten
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— Teilaufgabe a)
n

A=A‚nA,n ...nA„= flA,

und mit Hilfe von (2.15)

— Teilaufgabe b)

A=A,uA,u...uA„=UA‚

und mit Hilfe von (2.16)
:

Ä=Ä,nÄ,n...nÄ„= Ä‚—.

l = l

Drücken Sie das Ergebnis in Worten aus!

Beispiel 2.19: In einem Kraftwerk wird die Havarie einer Anlage von drei unabhängig von-

einander arbeitenden Kontrollsignalen angezeigt. Diese unterliegen einer gewissen Stör
anfälligkeit. Es sollen Aussagen über die Sicherheit des Signalsystems in einer bestimm-
ten Zeit t gemacht werden.

Lösung: 1. Schritt: Folgende Ereignisse sind von Interesse:

.. „Das i-te Signal funktioniert“ (i = 1, 2, 3);

.. „Alle 3 Signale funktionieren“;

.. „Kein Signal funktioniert“;

.. „Mindestens ein Signal funktioniert“;

.. „Genau ein Signal funktioniert“.

Die Angaben beziehen sich dabei auf die o.g. Zeit.
2. Schritt: Die Ereignisse A, B, C, D werden durch die Verknüpfung der Ereignisse

5„ S„ S, ausgedrückt:

A = S, n S, n S3,

B = S, n S, n S3,

C = S, u S, u S, oder auch

C = E: S,_n S,_n S, =_S, u S, u_S3 (nach 2.15),
D=(S,n S,n S,)u(S‚n S,n S‚)u(S,n S,nS,).

0
0
m

in
.?

Lösen Sie nun die folgenden Aufgaben:

Aufgabe 2.1: Auf 20 Kärtchen stehtjeweils eine der Zahlen l bis 20. Nach der sorgfältigen *

Mischung dieser Karten wird eine willkürlich gewählt. Wir betrachten folgende zufälligen
Ereignisse:

A „Die gezogene Zahl ist höchstens gleich l2“;
B „Die gezogene Zahl ist mindestens gleich 8“;
C „Die gezogene Zahl ist gerade“;
D „Die gezogene Zahl ist ein Vielfaches von 3“.

_a) Beschreiben Sie die Ereignisse A n C, B n C n D, B u D, (A u B) n D, Fn C und
(A u B) n Cn D mit Worten!

z.
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b) Drücken Sie die folgenden zufälligen Ereignisse durch die Ereignisse A, B, C, D
(und ihre Komplemente) aus:

F „Die gezogene Zahl ist eine aus der Menge {1, 3, 5, 7}“;
G „Die gezogene Zahl ist gerade und größer als 12“;
H ,,Die gezogene Zahl ist gerade und kleiner als 8, oder sie ist ungerade und

größer als l2“.

Aufgabe 2.2: Zeigen Sie, daß die zufälligen Ereignisse A n B, Ä n B, A n E und A u B ein
vollständiges System von Ereignissen bilden!

Aufgabe 2.3: Eine Anlage besteht aus 4 Kesseln, 2 Turbinen und einem Generator. Ist der
Generator arbeitsfähig, dann liegt das Ereignis A vor. Bk (k =1, ..., 4) bzw. C,-(i= l, 2)
seien die Ereignisse, daß der k-te Kessel bzw. die i-te Turbine arbeitsfähig sind. Die Ar-
beitsfähigkeit der Anlage (Ereignis D) ist gewährleistet, wenn der Generator, mindestens
ein Kessel und mindestens eine Turbine arbeitsfähig sind. Drücken Sie die Ereignisse D
und 15 durch die Ereignisse A, Bk und C,- aus!

2.2. Relative Häufigkeit und Wahrscheinlichkeit

Bei der Untersuchung von Massenerscheinungen mit Methoden der Wahrscheinlich-
keitsrechnung ist es nicht ausreichend, wenn wir die im Ergebnis eines Versuches auftre-
tenden interessierenden Ereignisse angeben. Wir werden die Zufälligkeit ihres Auftretens
außerdem noch in irgendeiner Art quantifizieren müssen, um Aussagen über Gesetzmä-
ßigkeiten der betrachteten Massenerscheinung machen zu können. Intuitiv wird sich
dazu die absolute oder die relative Häufigkeit des Auftretens der interessierenden Ereig-
nisse anbieten. Da sie aber immer auf der Basis einer endlichen Anzahl von Versuchen
ermittelt werden und außerdem mit deren Anzahl stark schwanken, sind sie kein „idealer“
Quantifizierungsmaßstab. Wir werden zu einem allgemeineren Begriff der Quantifizie-
rung kommen, dem der Wahrscheinlichkeit eines zufälligen Ereignisses. Der Wahrschein-
lichkeitsbegriff und die Eigenschaften der Wahrscheinlichkeit eines Ereignisses sind Ab-
straktionen vom Begriff der relativen Häufigkeit, den wir deshalb an die Spitze unserer

Betrachtungen stellen.

2.2.1.

Wir wollen ein Ereignis A eines Ereignisfeldes (53 betrachten und den Grad der Be-
stimmtheit seines Eintretens quantifizieren. Dazu werden wir den entsprechenden Ver-
such mehrmals wiederholen und feststellen, wie häufig das Ereignis A dabei eingetreten
ist.

Relative Häufigkeit

Definition 2.15: Ist bei n unabhängigen Wiederholungen eines zufälligen Versuchs ein Ereignis
A eines Ereignisfeldes (S h„(A)-mal eingetreten, dann wird h,,(A) als absolute Häufigkeit des

h..(A)
Ereignisses A und der Quotient H„ (A) =T als relative Häufigkeit des Ereignisses A
in n Versuchen bezeichnet.

Anmerkung: Zufällige Versuche, die sich gegenseitig nicht beeinflussen, werden als unab-
hängig bezeichnet.

Beispiel 2.20: Beim Schießen auf eine Scheibe beobachten wir das Ereignis A „Treffen
der Scheibe“. Werden 35 Schüsse auf das Ziel abgegeben (n = 35) und dabei 21 Treffer er-
zielt (h„(A) = 21), dann beträgt die relative Häufigkeit für das Ereignis A
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21
H,,(/1) =‘3§=0,6.

Es ist offensichtlich, daß bei n Wiederholungen eines Versuches die relative Häufigkeit
. . . . 1 2 - 1

eines Ereignisses A die Werte 0, I, I, ..., LT, 1 annehmen kann. Welcher Wert

sich in einer konkreten Versuchsreihe ergibt, kann aus den in Abschnitt 2.1.2. angegebe—

nen Gründen nicht mit Bestimmtheit vorausgesagt werden. Er ist vom Zufall abhängig
und schwankt dementsprechend, wenn mehrere Versuchsreihen zu je n Versuchen durch-
geführt werden.

Nun wollen wir uns den Eigenschaften der relativen Häufigkeit, ihrer Stabilität und der
bedingten relativen Häufigkeit zuwenden.

Eigenschaften der relativen Häufigkeit

1. Wir sehen sofort, daß für jedes Ereignis A e G gilt:

0§H,,(A)§l. (2.18)

Dabei wird H, (A) = 0 sein, wenn A = 0, also bei diesen n Versuchen nicht eintreten kann.
Andererseits ist H„(A) = 1, wenn A = ü, also bei diesen n Versuchen stets eintritt. Wir
können als 2. Eigenschaft angeben:

2. H„(.(2) = 1. (2.19)

3. Wir betrachten die Ereignisse A, B e (E, für die A n B = 0 gilt, d.h., sie sind unver-

einbar. Ist nun bei n Versuchen das Ereignis A kl-mal und das Ereignis B kz-mal eingetre-
ten, so ergibt sich:

k k k k
H„<A>=5‚ H„<B>=—’‚ H,(AuB>=i=—‘+£

‚l n n n n

folglich als 3. Eigenschaft:

H„(A U B) = H,,(A) + H,,(B). (2.20)

Folgerungen: 1. Für die relative Häufigkeit H„(Ä) des zu dem Ereignis A e (E entgegenge-
setzten Ereignisses A e (53 gilt:

Hn(A-):1_Hn(A); (2-21)

denn aus (2.19), (2.20), (2.9) und (2.10) ergibt sich

1= H„(.O) = H„(A U Ä) = H„(A) + H„(Ä)

und damit

H,,(;i)=1~ H,,(A).

2. Für die relative Häufigkeit H, (A u B) mit A, B e (5: gilt:

H,,(A UB)=H,,(A)+H,,(B)—H,,(A nB). (2.22)

Versuchen Sie selbst, unter Anwendung der Beziehungen A U B = A U (B \A) und
B = (A n B) u (B \A) diese Aussage zu beweisen!

Anmerkungen: 1. Aus H„(A) = 1 bzw. H„(A) : 0 darf niemals geschlossen werden, daß A
sicheres bzw. unmögliches Ereignis ist; denn wir müssen immer bedenken, daß H„(A) auf
der Basis von n Versuchen berechnet wurde. Bei einer (n + 1)-ten Wiederholung des Ver-
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suches besteht die Möglichkeit, daß in dessen Ergebnis das Ereignis A nicht eintritt bzw.
eintritt,

2. Mit Hilfe der relativen Häufigkeit wird jedem Ereignis A e (5; eine Zahl H„ (A) zuge-
ordnet. Wir können also sagen, daß mit der Zuordnung A —> H„ (A) auf G eine Funktion
definiert wird, die die genannten Eigenschaften besitzt.

Stabilität der relativen Häufigkeit

Wie wir schon oben andeuteten, ist H„(A) eine Größe, die vom Zufall abhängt. Ist die
Anzahl n der Wiederholungen eines Versuchs klein, dann kann sich H„ (A) von Versuchs-
reihe zu Versuchsreihe stark ändern. Es zeigt sich aber, daß H„(A) für hinreichend großes
n „in der Nähe“ einer für das Ereignis A konstanten Zahl zwischen 0 und 1 bleibt, d,h.,
daß H,,(A) fiir das Ereignis A eine gewisse Stabilität aufweist (Bild 2.9), Wir können also

H„(A) X

Bild 2.9, Zur Stabilität der relativen Häufigkeit

vermuten, daß es fiir das Ereignis A tatsächlich eine Konstante gibt, die unabhängig von
der Versuchsreihe eine Quantifizierung seiner „Zufälligkeit“ gestattet. Wir werden diese
später als die Wahrscheinlichkeit P(A) des Ereignisses A erklären. Die relative Häufigkeit
H„(A) können wir als Näherungswert der Wahrscheinlichkeit P(A) des Ereignisses A auf-
fassen‚ der um so besser ist, je häufiger der Versuch wiederholt wird, Die folgende Ta-
belle [4], die Ergebnisse von Münzwürfen enthält, verschafft uns eine Vorstellung von der
Stabilität der relativen Häufigkeit.

Anzahl Anzahl des relative
der Würfe Auftretens des Häufigkeit

Ereignisses
„Wappen“

Buffon‘) 4 040 2 048 0,506 9

K.Pearson’) 12 000 6019 0,5016
K. Pearson 24 000 12 012 0,500 5

Bedingte relative Häufigkeit

In diesem Zusammenhang wollen wir noch kurz auf den Begriff „bedingte relative Häu—

figkeit“ eingehen.

‘) Compte de Buffon (1707-1788), französischer Mathematiker,
7) Karl Pearson (1857-1936), englischer Mathematiker.



2.2. Relative Häufigkeit und Wahrscheinlichkeit 23

Zu seiner Erläuterung gehen wir von der in Beispiel 2.1 (in 2.1.2.) geschilderten Situa-
tion aus und interessieren uns für die relative Häufigkeit des Ereignisses A2 unter der Be-
dingung, daß das Ereignis B eingetreten ist. Dazu fuhren wir n Wiederholungen des Wür-
felversuchs durch und nehmen an, daß in der Versuchsserie (k, + k‚)-rnal das Ereignis B
und kz-mal die Ereignisse A, und B gleichzeitig beobachtet wurden. Für die relative Häu-
figkeit des Ereignisses A2 unter der Bedingung B — Schreibweise: H,,(A2/ B) — ergibt sich
dann:

k:
Hn(A2/3)=k—1;72;

denn es spielen ja nur die Ergebnisse eine Rolle, bei denen das Ereignis B eingetreten
ist.

Durch Erweiterung erhalten wir:

k.
_ k2 _ T _ H.<A.nB>H„(A‚/B)— k1+kZ ———k1+k: ——Hnw) (2.23)

n

H„(A‚/ B) wird bedingte relative Häufigkeit genannt. Sie errechnet sich als Quotient aus

den relativen Häufigkeiten H„(A‚ n B) und H„(B), wobei H„(B) > 0 vorausgesetzt wird.
Sie besitzt dieselben Eigenschaften wie die relative Häufigkeit des Ereignisses A2, H„(A‚)‚
die auch als unbedingte relative Häufigkeit bezeichnet wird. Versuchen Sie, diese Eigen-
schaften nachzuweisen!

2.2.2. Der Wahrscheinlichkeitsbegriff

Im vorangegangenen Abschnitt wiesen wir in Verbindung mit der Stabilität der relati-
ven Häufigkeit darauf hin, daß einem Ereignis A eine Konstante zugeordnet werden
kann, die wir später als Wahrscheinlichkeit P(A) des Ereignisses A bezeichnen werden.
In diesem Abschnitt wollen wir nun diesen Begriff der Wahrscheinlichkeit eines zufälli-
gen Ereignisses näher charakterisieren. Dabei werden uns die bei der Erklärung des Be-
griffs der relativen Häufigkeit eines Ereignisses gewonnenen Erkenntnisse wertvoll sein.

2.2.2.1. Axiomatischer Aufbau der Wahrscheinlichkeitsrechnung

Beim axiomatischen Aufbau der Wahrscheinlichkeitsrechnung gehen wir von einem
Ereignisfeld G aus und definieren eine Funktion P, die jedem Ereignis A e (S eine reelle
Zahl P(A) zuordnet. Wir bezeichnen P(A) als die Wahrscheinlichkeit des Ereignisses A. Sie
wird im einzelnen durch die folgenden Axiome charakterisiert:

Axiom 1: Für jedes Ereignis A e G gilt:

0§P(A)§1. (2.24)

Der Definitionsbereich der Funktion P ist also das Ereignisfeld G, während der Werte-
bereich das abgeschlossene Intervall [0, 1] oder eine Teilmenge dieses Intervalls reeller
Zahlen ist.

Axiom 2: Es gilt:

P(.O) = 1. (2.25)

Axiom 3: Schließen die Ereignisse A e (E und B e (F: einander aus (A n B = 0), dann gilt:

P(A u B) = P(A) + P(B). (2.26)

A.l

A.2

A.3



A.4

S.2.1

S.2.2

S.2.3

S.2.4

24 2. Wahrscheinlichkeitsrechnung

Mit Hilfe des Prinzips der vollständigen Induktion läßt sich die Aussage des Axioms 3

auf endlich viele Ereignisse A,- e Q3 (i = l, 2, .‚., n), die paarweise einander ausschließen,
übertragen. Das ist aber nicht für abzählbar unendlich viele Ereignisse möglich. Deshalb
ist es sinnvoll, dies in einem vierten Axiom zu tun.

Axiom 4: Schließen die Ereignisse A‚-E(S (i= 1,2, ...) paarweise einander aus (AinAj
=ß, i#=j, i,j= 1, 2, ...), dann gilt:

Während die Axiome 1-3 direkte Abstraktionen der Eigenschaften der relativen Häu-
figkeit von Ereignissen darstellen, ist das Axiom 4 eine sinnvolle Ergänzung; denn auf
Grund der Erklärung des Ereignisfeldes (E ist mit den Ereignissen A,—e (E (i= 1, 2, ...)

(2.2 7)

auch das Ereignis U A, Element des Ereignisfeldes (S. Dementsprechend ist fiir dieses
i’ 1

Ereignis nach Axiom 1 eine Wahrscheinlichkeit erklärt, deren Berechnung durch
Axiom 4 festgelegt ist.

Warum treten dabei keine Konvergenzprobleme auf?
Betrachten wir nun einige Folgerungen aus obigen Axiomen. Wir wollen sie als Sätze

formulieren und auch die Beweise angeben, da sie geeignet sind, das Rechnen mit Wahr-
scheinlichkeiten zu üben.

Satz 2.1: Die Wahrscheinlichkeit des unmöglichen Ereignisses ist null:

P(0) = 0. (2.28)

Beweis: Da ß e (S, existiert P(B). Mit A ¢ 0 und A e (S ist auch A u 0 = A e (S. Wegen
A n ß = ß gilt dann nach Axiom 3: P(A u 0) = P(A) + P(B) = P(A). Daraus folgt
P(B) = 0. I

Satz 2.2: Mit A e G ist auch Ä e (53, und es gilt:

P(Ä)=1-P(A)‚ (2.29)

Beweis: Auf Gmnd der Eigenschaften v_on (5; ist mit A e (S auch Ä e (E. Demzufolge exi-
stiert nach Axiom 1 P(A). Wegen A u A = .0 und A n Ä = ß ergibt sich aus den Axiomen
2 und 3:

P(A u Ä) = P(A) + P(Ä) = P({2) =1

und damit

P(Ä) = 1 - P(A). I

Satz 2.3: Fiir beliebige Ereignisse A e G und B e G gilt:

P(A u B) = P(A) + P(B) - P(A n B). (2.30)

Versuchen Sie selbst, unter Verwendung der im Abschnitt 2.2.1. gegebenen Hilfsmittel
diesen Satz zu beweisen! Falls die Ereignisse A und B unvereinbar sind, ist (2.30) iden-
tisch mit Axiom 3.

Satz 2.4: Bilden die Ereignisse A, e (S (i = 1, 2, , n) ein vollständiges System von Ereignissen,

dann gilt:

i P(A‚-) = 1. (2.31)
[=1
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Beweis": Für die Ereignisse A,- (i = 1, 2, ...‚ n) gilt:

n

UA,=a mit A,nA,=0 (i¢j, i,j=1,2, n).
I = l

Demzufolge ergibt sich mit Axiom 2:

P(Ü A.) = P<a)=1,
i=l

und weiterhin mit Axiom 3:

P(Ü A.) = P(A‚») =1
i=l i=l

und damit die Aussage. I

Satz 2.5: Zieht das Ereignis A e (2 das Ereignis B e (S nach sich, dann gilt: 5.2.5

P(A) g P(B). (2.32)

Beweis: Wird das Ereignis B als Summe zweier unvereinbarer Ereignisse dargestellt:

B = A U (B \A ),

wobei mit A E (E und B E (S auch (B \A) e E ist, dann folgt aus Axiom 3:

P(B) = P(A) + P(B \A).

Da nach Axiom 1 P(B \A) g 0 ist, folgt die Aussage des Satzes. I
Dem Leser wird geraten, sich schon an dieser Stelle mit den ersten Beispielen in Ab-

schnitt 2.2.4. zu beschäftigen.

2.2.2.2. Der klassische Wahrscheinlichkeitsbegriff

Den klassischen Wahrscheinlichkeitsbegriff werden wir dann zur Berechnung von

Wahrscheinlichkeiten heranziehen, wenn ein Versuch nur endlich viele gleichmögliche
atomare Ereignisse hat. Das ist z.B. beim Würfeln mit einem idealen Würfel — ein Würfel
homogen im Material mit gleichen Kantenlängen - der Fall. Wir wollen den klassischen
Wahrscheinlichkeitsbegriff — eine Folgerung aus dem axiomatischen Aufbau der Wahr-
scheinlichkeitsrechnung — etwas ausführlicher darstellen.

Als Ausgangspunkt zu seiner Erklärung dient uns das Laplacesche Ereignisfeld.

Definition 2.16: Erfüllt ein Ereignisfeld G‘ folgende zusätzliche Forderungen: D.2.16
1. Das Ereignisfeld G ist endlich, d. h., seine Grundlage bilden endlich viele atomare Ereignisse

A.- (i= 1‚ 2. n);
2. das Auftreten der atomaren Ereignisse A, (i = l, 2, ...‚ n) ist gleichmöglich,

dann wird es als Laplacesches‘) Ereignisfeld bezeichnet.

Jedes Ereignis A (A d; (J) des Laplaceschen Ereignisfeldes können wir also als Summe
der atomaren Ereignisse darstellen, die das Ereignis A nach sich ziehen.

Erfolgt z.B. im Beispiel 2.16 das Würfeln mit einem idealen Würfel, dann sind die Er-
eignisse A, atomare Ereignisse, und es gilt:

B=A‚uA„uA6.

‘) Pierre Simon Laplace (1749-1827), französischer Mathematiker.
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Um nach der Charakterisierung des Laplaceschen Ereignisfeldes den klassischen Wahr—

scheinlichkeitsbegriff erklären zu können, suchen wir zuerst auf der Grundlage des axio-
matischen Aufbaus der Wahrscheinlichkeitsrechnung die Wahrscheinlichkeit eines ato-
maren Ereignisses, die ja für alle atomaren Ereignisse gleich ist. Wir wollen sie mit p
bezeichnen, also

P(A‚-)=p (i= 1, 2, n).

Aus den Axiomen 2 und 3 ergibt sich (Warum?)

P< A) = ZP(A,)=1.
l i=l

Mit P(A,) = p i= 1, 2, ..., n) erhalten wir np =1 und daraus

„C
,

l

‚
a

p:

:.l
~

—
-

Wir können sagen: Die Wahrscheinlichkeit fir das Eintreten eines jeden atomaren Ereig-
nisses A‚ (i = 1, 2, ‚ n) ist gleich dem Kehrwert der Anzahl der atomaren Ereignisse:

1 v _

P(A.-) - n (I - 1, 2, (2.33)m).

Betrachten wir nun ein beliebiges Ereignis A des Laplaceschen Ereignisfeldes (S, dann
läßt es sich in folgender Art darstellen:

(2.34)

wobei über alle atomaren Ereignisse A,» (i = 1, ..., k) summiert wird, die das Ereignis A
nach sich ziehen. Damit ergibt sich fiir die Wahrscheinlichkeit P(A) des Ereignisses A
nach Axiom 3:

k k k
P(A)=P<U/1,) = Z P(A,-) =7.

i=1 i=1

Wir sind nun in der Lage, die klassische Definition der Wahrscheinlichkeit anzuge-
ben:

(2.35)

Definition 2.17: Die Wahrscheinlichkeit P(A) des Ereignisses A e G, wobei (E ein Laplacesches
Ereignis/e] ’ ist, errechnet sich zu

P A _ Ä _ Anzahl der atomaren Ereignisse A, e G, für die A‚- E A

( ) _ n _ Anzahl der atomaren Ereignisse A, e (E '

In der Literatur werden die atomaren Ereignisse A,e 6 auch als mögliche und diejeni-
gen, die das Ereignis A nach sich ziehen, als günstige Ereignisse bezeichnet, so daß die
obige Definition häufig auch wie folgt gegeben wird:

_ Anzahl derfür das Eintreten von A E. ’

Anzahl der möglichen Ereignisse
P(A)=%

Beispiel 2.21: Ein Femsprechteilnehmer will eine Telefonnummer wählen. Er vergaß je-
doch die letzte Ziffer und wählte sie „auf gut Glück“ aus. Gesucht wird die Wahrschein-
lichkeit dafür, daß er die richtige Nummer gewählt hat.

Lösung: A sei das zufällige Ereignis, daß die richtige Ziffer gewählt wurde. Der Teilneh-
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mer kann beliebig aus 10 Ziffern auswählen; daher ist die Anzahl der atomaren Ereignisse
gleich 10. Diese Ereignisse sind gleichmöglich. Für das Eintreten des Ereignisses A er-

weist sich eines dieser Ereignisse als günstig. Die gesuchte Wahrscheinlichkeit ist damit
gleich P(A) = 1/10.

Die Berechnung der Anzahl der günstigen und die der möglichen Ereignisse erfolgt
häufig mit Methoden der Kombinatorik (vgl. Bd. 1 dieser Reihe).

Die Maxwell-Boltzmann-‚ die Bose-Einstein- und die Fermi-Dirac-Statistik sind physi-
kalische Beispiele fiir die Anwendung der klassischen Definition der Wahrscheinlichkeit.
Da auf sie hier nicht näher eingegangen werden kann, sei z.B. auf [4] verwiesen.

Wir hatten gesehen, daß die klassische Definition der Wahrscheinlichkeit dann an-

wendbar ist, wenn der Versuch endlich viele atomare Ereignisse hat. Nicht selten tritt
aber der Fall auf, daß im Ergebnis eines Versuchs unendlich viele gleichmögliche Ergeb-
nisse eintreten können. In diesem Fall kann in gleicher Weise wie beim Laplaceschen Er-
eignisfeld ein Wahrscheinlichkeitsbegriff, der Begriff der geometrischen Wahrscheinlichkeit,
aufgebaut werden:

Beispiel 2.22: Bei dem Kinderspiel „Schweinestechen“ wird zuerst ein Schwein S (Flä-
cheninhalt F5) aufgezeichnet. Dann versucht ein Kind, dessen Augen verbunden wurden,
mit einem Bleistift einen Körperteil des Schweines, z. B. das Ohr s, zu treffen. Wir neh-
men an, daß das Schwein in jedem Fall getroffen wird, und zwar jedes Teilstück gleichen
Flächeninhalts mit derselben Wahrscheinlichkeit, d.h., das Treffen jedes Punktes von S
ist gleichmöglich. Gefragt wird nach der Wahrscheinlichkeit, daß das Ohr des Schweines
tFlächeninhalt F,) getroffen wird. Wenn wir das Ereignis „Treffen des Ohres“ mit A be-
zeichnen, dann liegt es nahe, seine Wahrscheinlichkeit P(A) mit Hilfe des Quotienten
aus F, und F5 zu erklären. Damit können wir — entsprechend der klassischen Definition
der Wahrscheinlichkeit — die Definition der geometrischen Wahrscheinlichkeit ange-
ben.

Definition 2.18: Die Wahrscheinlichkeit P(A), daß ein zufällig aus einem Gebiet S (Flächenin- D.2.l8
halt F5) ausgewählter Punkt in einem Gebiet s g S (Flc'1'cheninhaltF,) Iiegt (Ereignis A), ist gege-

ben durch

F
P(A) = (2.36)

Sie wird geometrische Wahrscheinlichkeit genannt.

2.2.2.3. Ergänzende Betrachtungen in Verbindung mit dem Begriff
der Wahrscheinlichkeit eines zufälligen Ereignisses

Im Abschnitt 2.1.5. gingen wir von der Menge der Elementarereignisse n aus und erklärten Unter-
mengen als zufällige Ereignisse. Wir bezeichneten weiter jedes System (‘Z von Untermengen von .0,
das die Eigenschaften des Ereignisfeldes besitzt, als a-Algebra. Die Wahrscheinlichkeit P(A) eines
Ereignisses A E G wird durch eine Mengenfunktion P auf G erklärt. Sie hat folgende Eigenschaften,
wobei A, B, A, (i z 1, 2, ...)e€ gilt:

1. 0§P(A)§1;
2. P(.())=1;
3. P(AuB)=P(A)+P(B), AnB=ra;

4. P(UA,->=ZP(A,), A,-nA,=fl, i*j, i,j=1,2,...
rxl i=l

Im Sinne der Maßtheorie (vgl. Band 2) werden das Tupel [.O, (SI als meßbarerRaum, die Mengenfunk-
tion P als Wahrschetnlichkeitsmaß und das Tupel [0, G, P] als Wahrscheinlichkeitsraum bezeichnet.
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Damit kann das Axiomensystem von A. N. Kolrnogorow, das die Grundlage des axiomatischen
Aufbaus der Wahrscheinlichkeitsrechnung bildet, wie folgt angegeben werden:

1. Die Elemente einer gegebenen Menge .0 werden als ” ” " „Elementarausgänge“ eines zufälligen
Versuchs aufgefaßt. Jedes Element wird als Elementarereignis und .0 als Menge der Elementarereignirse be-

zeichnet.
2. Die Elemente eines Systems von Untermengen 8 von .0, das die Struktur einer 0'-Algebra besitzt, wer-

den als zufällige Ereignisse l ’ hnet.
3. Filrjedes ElementA e 6 ist durch ein aufi!’ ‘

keit P(A) gegeben.

Dem Leser, der sich eingehender mit diesen Fragen beschäftigen will, seien u.a. [3; 12] empfohlen.

y-y»‘i'm/u " i " " ' "seinew ' h.

2.2.3. Bedingte Wahrscheinlichkeiten, unabhängige Ereignisse

2.2.3.1. Bedingte Wahrscheinlichkeiten

Die in (2.23) angegebene Beziehung wollen wir in folgender Art für Wahrscheinlichkei-
ten übertragen:

Definition 2.19: Gegeben seien die Ereignisse A, B e G, und es gelte P(A) > O. Dann wird

P(B/A)= (2.37)

alsdie“ =' „ w..+.. L -

bezeichnet.

Die bedingte Wahrscheinlichkeit P(B/A) wird also als Quotient zweier bekannter
Wahrscheinlichkeiten definiert.

Anmerkung I: Im allgemeinen sind die bedingten Wahrscheinlichkeiten P(B/A) und
P(A / B) voneinander verschieden. Auf Grund der Definition der bedingten Wahrschein-
lichkeit besteht zwischen ihnen die Beziehung

P(B/A)P(A)=P(A /B) P(B). (2.38)

Anmerkung 2: Für die bedingte Wahrscheinlichkeit P(B/A) fiir festes A e (5 und belie-
biges Be 6 gelten dieselben Rechenregeln wie fiir die unbedingte Wahrscheinlichkeit
P(B). Versuchen Sie selbst, diese Eigenschaften nachzuweisen!

" "‘ F“ des E. ' B unter der Bedingung des Ereignisses A

Beispiel 2.23: In einer Urne befinden sich 4 weiße und 4 rote Kugeln. Aus der Urne wird
zweimal „auf gut Glück“ je eine Kugel entnommen, die nicht wieder zurückgelegt wird.
Gesucht wird die Wahrscheinlichkeit für das Auftreten einer weißen Kugel beim 2.Ver-
such (Ereignis B), wenn beim 1.Versuch eine rote Kugel gezogen wurde (Ereignis A). Wir
haben also die bedingte Wahrscheinlichkeit P(B/A) zu bestimmen. Sie ergibt sich mit
(2.35) zu P(B/A) = 4/7.

Im folgenden wollen wir nun auf die Multiplikationsregel für Wahrscheinlichkeiten,
auf die Formel der totalen Wahrscheinlichkeit und auf die Bayessche Formel eingehen.

Multiplik ionsregel für Wahrscheinlichkeiten

Die Formel (2.37) gibt uns die Möglichkeit, die Wahrscheinlichkeit P(A n B) des Er-
eignisses A n B zu berechnen.

Durch Auflösen erhalten wir:

P(A n B)=P(B/A)P(A). (2.39)

In Definition 2.19 war P(A) > 0 vorausgesetzt worden. Nehmen wir P(A) = 0 an, so ergibt
sich wegen A n B g A und der daraus resultierenden Relation P(A n B) g P(A) die Aus-



242. Relative Häufigkeit und Wahrscheinlichkeit 29

sage: P(A n B) = 0. Für diesen speziellen Fall ist das Aufstellen einer gesonderten Be-
rechnungsformel fiir die Wahrscheinlichkeiten P(A n B) demzufolge nicht erforder-
lich.

Auf Grund der Vertauschbarkeit der Ereignisse A und B können wir zur Berechnung
der Wahrscheinlichkeit auch folgende Formel angeben:

P(A n B) = P(A/B) P(B). (2.40)

(2.39) bzw. (2.40) wollen wir als Multiplikationsregel fiir Wahrscheinlichkeiten bezeich-
nen.

Für die in Beispiel 2.23 erklärten Ereignisse A und B ergibt sich fiir die Wahrschein-
lichkeit P(A n B) ihres gleichzeitigen Eintretens nach (2438):

P(A nB)=%-%=%.

Die Multiplikationsregel für zwei Ereignisse gibt uns die Möglichkeit, die Wahrschein-
lichkeit des Produktes von mehr als zwei Ereignissen zu berechnen. Wir wollen uns auf
den Fall von drei Ereignissen A, B, C eines Ereignisfeldes (S beschränken, wobei wir im-
mer voraussetzen wollen, daß auftretende bedingte Wahrscheinlichkeiten erklärt sind:

P(AnBnC)=P(A/BnC)P(Bn c)
= P(A /B n C) P(B/C) P(C). (2.41)

Versuchen Sie, diese Multiplikationsregel auf das Produkt von n zufälligen Ereignissen
A], A2, , A,, eines Ereignisfeldes G zu übertragen und anschließend mit Hilfe des Prin-
zips der vollständigen Induktion zu beweisen.

Formel für die totale Wahrscheinlichkeit

Die Formel der totalen Wahrscheinlichkeit wollen wir an folgendem Beispiel kennen-
lernen:

Beispiel 224: In einem Betrieb wird ein bestimmtes Erzeugnis auf vier Maschinen herge-
stellt. Die Tabelle gibt den Anteil jeder Maschine an der Gesamtproduktion und den da-
bei auftretenden Ausschußanteil an. Das Fertigprodukt der vier Maschinen wird in einem
Lager erfaßt, in dem eine Unterscheidung der Erzeugnisse hinsichtlich ihrer Fertigung
auf den einzelnen Maschinen nicht möglich ist. Wir wollen die Wahrscheinlichkeit dafür
berechnen, daß ein dem Lager entnommenes Erzeugnis nicht den Qualitätsanforderun-
gen entspricht.

Maschine Anteil (%) Ausschuß (%)

40
30
20
l0J
>

U
-|

l\
)b

—
I

L
h

ö
lu

u
-
A

Zur Beantwortung dieser Fragestellung führen wir folgende Ereignisse ein:

A, „Das Erzeugnis wurde auf Maschine i(i = l, 2, 3, 4) gefertigt“;
B „Das dem Lager entnommene Erzeugnis entspricht nicht den Qualitätsan-

forderungen“.

Die Ereignisse A, (i = l, 2, 3, 4) bilden ein vollständiges System von Ereignissen, d.h.‚
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4

UA‚.=r2 und A‚-nA‚-=IZl, w)", i,j=1,2‚ 3,4.
i=l

Es gilt weiterhin:

B=BnO=Bn(A‚uA,uA3uA,)
=(BnA1)U(Br1A2)u(BrvA,)u(Br\A4).

Diese Beziehung wird in Bild 2.10 veranschaulicht.

Bild 2.10. Veranschaulichung
.‚„. von B=Bn(A1uA;uA;uA.)

Da die Ereignisse A,- (i = 1, 2, 3, 4) paarweise einander ausschließen, gilt dasselbe auch
für die Ereignisse B n A, (i = 1, 2, 3, 4). Damit erhalten wir für die Wahrscheinlichkeit
P(B) des gesuchten Ereignisses B:

4 4

P(B) = P<U (B n Ag) = Z P(B n A,).
[=1 i=1

Mit (2.39) formen wir um:

A

P(B) = E‘ P(B n A‚) = i:P(B/A,-) P(A,).
i= i=1

Nun können wir die Wahrscheinlichkeit P(B) aus den Wahrscheinlichkeiten P(A‚-) und
P(B/A,) (i = l, 2, 3, 4), die sich aus der Aufgabenstellung ergeben, berechnen:

P(A,) = 0,4; P(B/A1) = 0,01; 1=(/1,) = 0,2; P(B/A,) = 0,04;
P(A,) = 0,3; P(B/A2) = 0,02; P(A,.) = 0,1; P(B/A.) = 0,05;
P(B) = 0,01 ~ 0,4 + 0,02 - 0,3 + 0,04 - 0,2 + 0,05 - 0,1 = 0,023.

Im obigen Beispiel lernten wir einen typischen Fall für die Anwendung der Formel für die
totale Wahrscheinlichkeit kennen, die wir nun allgemein formulieren wollen:

Bilden die Ereignisse A, (i = 1, 2, ..., n) eines Ereignisfeldes (S ein vollständiges Sy-
stem von Ereignissen und gilt P(A‚) > 0 (i = 1, 2, ..., n), dann ergibt sich für ein Ereignis
B desselben Ereignisfeldes Ci die (totale bzw. unbedingte) Wahrscheinlichkeit P(B) mit
den bedingten Wahrscheinlichkeiten P(B/A‚) (i = 1, 2, ...‚ n) zu:

P(B) = Z P(B/A,) P(A,) (2.42)
i= ‘l

(Formel für die totale Wahrscheinlichkeit).
Der Beweis dieser Formel erfolgt in gleicher Weise wie im Beispiel 2.24. Versuchen Sie,

diesen Beweis zu fuhren!
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Die Bayessche Formel

Auch die Bayessche Formel wollen wir an einem Beispiel kennenlernen.

Beispiel 2.25: Als Ausgangspunkt nehmen wir die in Beispiel 2.24 geschilderte Situation.
Wir wollen jedoch jetzt die Wahrscheinlichkeit dafür ermitteln, daß ein dem Lager ent-
nommenes und nicht den Qualitätsanforderungen entsprechendes Erzeugnis auf der i-ten
Maschine (i = 1, 2, 3, 4) gefertigt wurde, d. h.‚ wir suchen die Wahrscheinlichkeiten
P(A,-/B) (i = 1, 2, 3, 4).

Dazu gehen wir von der Relation (2.38)

P(B/A,-) P(A,-) = P(A,-/B) P(B), i= 1, 2, 3, 4,

aus und lösen diese nach der gesuchten Wahrscheinlichkeit P(A,/ B) auf :

P(A‚-/B)= , i: 1, 2, 3, 4.

Setzen wir für P(B) nun (2.42) ein, so erhalten wir:

P(A,-/B)= , i: 1,2, 3, 4.

g;1P(13/Ak) P(A‚„)

Mit den Werten aus Beispiel 2.24 berechnen wir schließlich:

P(A‚/B) = = 0,174,

P(A,/B) = = 0,261,

P(A‚/B) = = 0,348,

P(A.,/B) = = 0,217.

Mit Hilfe dieses Beispiels wird der Leser das Wesen der folgenden Bayesschen Formel
verstehen:

Bilden die Ereignisse A, (i = 1, 2, ..., n) eines Ereignisfeldes (S ein vollständiges System
von Ereignissen, gilt P(A‚—) > 0 (i = 1, 2, ..., n) und ist das Ereignis B ein weiteres Ele-
ment des Ereignisfeldes (S, dann errechnen sich die bedingten Wahrscheinlichkeiten
P(A‚/B) (i = 1, 2, ..., n) nach der Bayesschen‘) Formel:

P(A‚«/B)=„L)—€(—AL, i= 1,2, n. (2.43)

Z Puma P(Ak)
k = 1

Der Beweis dieser Formel wird entsprechend dem Vorgehen im Beispiel 2.24 geführt. Ver-
suchen Sie, diesen Beweis zu erbringen!

Im Zusammenhang mit der Bayesschen Formel werden die Wahrscheinlichkeiten
P(A‚-) (i = 1, 2, ..., n) auch als a-priori-Wahrscheinlichkeiten und die Wahrscheinlichkeiten
P(A,-/B) (i = 1, 2, ..., n) als a-posteriori—Wahrscheinlichkeiten bezeichnet.

‘) Thomas Bayes (1702-1763), englischer Mathematiker.
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2.2.3.2. Unabhängige Ereignisse

Im allgemeinen unterscheiden sich die unbedingte Wahrscheinlichkeit P(A) eines Er-
eignisses A und die bedingte Wahrscheinlichkeit P(A / B) desselben Ereignisses A unter
der Bedingung eines Ereignisses B. Wir wollen nun den Fall betrachten, daß beide Wahr-
scheinlichkeiten gleich sind und keines der beiden Ereignisse das unmögliche Ereignis
ist, d. h. P(A/B) = P(A). Die Wahrscheinlichkeit fiir das Eintreten des Ereignisses A "ein-

dert sich also nicht unter der Bedingung des Ereignisses B. Mit anderen Worten: Das Ein-
treten des Ereignisses A wird nicht von dem des Ereignisses B beeinflußt, d. h„ das Ein-
treten des Ereignisses A ist unabhängig vom Eintreten des Ereignisses B.

Definition 2.20: Ist für die Elemente A und B eines Ereignisfeldes (‘ä die Relation

P(A /B) = P(A)

erfüllt, dann heißt das Ereignis A unabhängig vom Ereignis B,

(2.44)

Beispiel 2.26: Eine Münze wird zweimal geworfen. Das Auftreten von „Wappen“ im zwei-
ten Versuch (Ereignis A) ist unabhängig davon, ob im l. Versuch „Zahl“ auftrat (Ereig-
nis B), d. h.

P(A): P(A/B).

Versuchen Sie unter Verwendung von (2.39) zu beweisen, daß aus der Unabhängigkeit
des Ereignisses A vom Ereignis B auch die Unabhängigkeit des Ereignisses B vom Ereig-
nis A folgt. Diese Symmetrieeigenschaft kommt auch zum Ausdruck in der Multiplika-
tionsregel für unabhängige Ereignisse: Die Wahrscheinlichkeit des Produktes zweier unab-
hängiger Ereignisse A und B eines Ereignisfeldes (E ist gleich dem Produkt der
Wahrscheinlichkeiten dieser Ereignisse:

P(A n B) = P(A) P(B). (2.45)

Anmerkungen: l. Mit (2.45) wird oft die Unabhängigkeit der Ereignisse A und B definiert.
Es besteht Äquivalenz zur Definition 2.20, falls P(B) > O gilt.

2. Vor der Anwendung von (2.45) müssen wir uns vergewissern, ob die auftretenden Er-
eignisse unabhängig sind. Das geschieht häufig durch Betrachtungen, die von der Bedeu-
tung des Begriffs der Unabhängigkeit ausgehen. l

3. Die Aussage der Multiplikationsregel ist nicht nur — wie bisher vorausgesetzt — für
den Fall gültig, daß die Wahrscheinlichkeiten der Ereignisse A und B von null verschie-
den sind, sondern auch dann, wenn eines von ihnen die Wahrscheinlichkeit Null hat.
Warum?

Wir wollen nun den Begriff der Unabhängigkeit von Ereignissen zuerst auf drei und
dann auf endlich viele Ereignisse erweitern.

Definition 2.21: Die Ereignisse A, B, C eines Ereignisfeldes Ci heißen unabhängig (auch
vollständig unabhängig), wenn die folgenden Relationen erfüllt sind:

P(A n B n C) = P(A) P(B) P(C), (2.46)
P(A n B) = P(A) P(B), (2.47)
P(A n C) = P(A) P(C), (2.48)
P(B n C) = P(B) P(C). (2.49)

Gelten nur die Relationen (2.47)—(2.49)‚ dann werden die Ereignisse A, B, C paarweise unab-
hängig genannt.

Aus der paarweisen Unabhängigkeit der Ereignisse A, B, C dürfen wir also nicht auf de-
ren vollständige Unabhängigkeit schließen.
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Ganz analog wird die vollständige Unabhängigkeit von n Ereignissen definiert:

Definition 2.22: Die Ereignisse A, (i = 1, 2, ..., n) eines Ereignisfeldes (E heißen unabhän- D.2.22
gig (auch vollständig unabhängig), wenn fiir jedes k e {2, 3, ..., n} und beliebige natürliche
Zahlen 1 g i1 < < ik g n die Relation gilt:

P( [k] A,.,> = f] P (A‚.,). (2.50)
s=1 S='l

Auch hier dürfen wir nicht aus der paarweisen Unabhängigkeit der Ereignisse A,
(i = 1, 2, ..., n) auf deren vollständige Unabhängigkeit schließen.

Überlegen Sie, wieviele Bedingungen erfüllt sein müssen, daß n Ereignisse eines Ereig-
nisfeldes vollständig unabhängig sind!

2.2.4. Beispiele und Aufgaben

Wie im Abschnitt 21.6. wollen wir wieder einige ausführliche Beispiele angeben.

Beispiel 2.27: Zwei Schützen schießen unbeeinflußt voneinander auf eine Zielscheibe. Es
ist bekannt, daß der erste mit einer Wahrscheinlichkeit von 0,7 und der zweite mit einer
Wahrscheinlichkeit von 0,8 trifft. Wie groß ist die Wahrscheinlichkeit, daß wenigstens
einer der Schützen die Zielscheibe trifft?

Die Lösung der Aufgabe fuhren wir in vier Schritten durch. Im 1. Schritt werden zu-

nächst die interessierenden Ereignisse aufgeschrieben:

A... „Der 1. Schütze trifft die Scheibe“;
B... „Der 2. Schütze trifft die Scheibe“;
C... „Mindestens ein Schütze trifft die Scheibe“.

Aus der Aufgabe sind die Wahrscheinlichkeiten P(A) = 0,7 und P(B) = 0,8 bekannt; ge-
sucht ist die Wahrscheinlichkeit P(C).

Im 2. Schritt gilt es, das Ereignis C durch die Ereignisse A und B auszudrücken:

C=ALJB.

Wir halten außerdem fest, daß A n B =# 0.
Im 3. Schritt ermitteln wir nun P(C). Es gilt

P(C) = P(A) + P(B) — P(A n B).

Die Ereignisse A und B sind offensichtlich unabhängig. Damit ergibt sich mit (2.38)

P(C) = P(A) + P(B) — P(A) P(B).

Im 4. Schritt ergibt sich schließlich durch Einsetzen der Zahlenwerte die gesuchte
Wahrscheinlichkeit:

P(C) = 0,94.

Beispiel 2.28: In einer Urne befinden sich 76 weiße und 4 schwarze Kugeln. Ohne Zurück-
legen werden 5 Kugeln gezogen. Wie groß ist die Wahrscheinlichkeit, daß mindestens
l schwarze Kugel gezogen wird?

Wie im vorigen Beispiel werden wir die Lösung in 4 Schritten durchführen.
1. Schritt:

AI ,,Die i-te gezogene Kugel ist schwarz“ (i = 1, 2, 3, 4, 5);
A „Unter den 5 gezogenen Kugeln ist mindestens eine schwarze“.

2. Schritt: Es gilt:

3 Beyer, Wahrscheinlichkeitsrechnung
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A=A,uA1uA,uA.uA5.
Da aber A, n A!‘ ¢ El, i,j = 1, 2, 3, 4, 5, ist es günstiger, von Ä auszugehen:

Ä=Ä,nÄ‚nÄ3nÄ4nÄ5.
Außerdem sind die Ereignisse A,- (i = 1, 2, ..., 5) nicht unabhängig.

3. Schritt:

P(A)=P(A,nAgnA,nA_4n_A5) _ _

=P(A1_) P§A,/A,) P(>A3/A_, n A2) P(A,,/A1 n A, n A3)»

-P(A5/A, n A1 n A, n A4).

Diese bedingten Wahrscheinlichkeiten sind zu bestimmen.
4. Schritt:

— 76
P(/41) = E;

— . 75
P(A2/Ai) = F;

— — — 74
P(A,/A1 n A2) = w;

P(Ä/Ä nÄ nA)=~71-4 1 2 3 x

- - - . . 72
P(A5/A1flA1F1A3f'\/1,,)=%;

. 76 7 74P(A) =._._5._.7_3.lg._0’769y

P(A)= 1- P(Ä) = 0,231.

Beispiel 2.29: Ein Schütze gibt auf eine Zielscheibe vier unabhängige Schüsse ab. Die
Treffwahrscheinlichkeit betrage für jeden Schuß 1/2.

Gesucht wird die Wahrscheinlichkeit dafür, daß der Schütze bei vier Schüssen k Treffer
erzielt (k = O, 1,2, 3,4).

Lösung:

1. Wir definieren folgende Ereignisse:

A,- „Der i-te Schuß ist ein Treffer“ (i = 1, 2, 3, 4);
B, „Unter 4 Schüssen werden genau k Treffer erzielt“ (k = 0, 1, 2, 3, 4).

Laut Aufgabenstellung sind die Ereignisse A„ A1, A3, A. unabhängig, und es gilt

P(A,-) = 1/2 für i= 1,2, 3,4.

2. Wir drücken die Ereignisse B„ mit Hilfe der A,- aus:

B„=Ä1nÄgnÄ3nÄ.3‚ _ _ _

B1=(A,nAznA§nA.,)u(A1nAZr\A§nA.3)
u(A1nA2n._A,nA.)u(A,nA1nA3nA.),

B2=(A,nA1nA§nA.) _ _ _

u(A,nA1nA,nA,)u...u(A1nA2nA3nA.),
B,=(A1nAznA3nA,,)u ...u(A1r\A2nA3nA..),
B,.=A1nA1nA3nA..
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3. Unter Anwendung von (2.46) und (2.26) erhalten wir

P(Bo) = P(Äl n Äz n Ä: Ü Äa) = P(/i1) P(A-2) P(/ia) P(/it)

_L‘A;_
‘ 2 ‘i6’

P(B1)=P(A1nÄ2nÄ3nÄ„)+...+P(Ä,nÄ‚nÄ‚nA4)

1 13 1

'4'7'(7) 7‘
P(B2)=P(A,nA2rwi,nA',,)+...+P(,«i,n/{2nA,nA.,)

= 4 .3. 3:6. i’. i
2 2 2 2 2

P(B3)=P(A,nA‚nA3nÄ„)+..‚+P(Ä‚nA‚nA3nA„)

1 3 1 1-4-(7) ~3—7—o,25,

1
14

P(B4)=P(A1f1A1flA3flA4)'—‘(?) =F=

0,062 5 ,

0,25 ,

2 3)=?=o,37s,

0,062 5.

Anmerkung: Wir benutzten hier die Tatsache, daß bei Unabhängigkeit der Ereignisse A,-

(i = 1, 2,_3, 4) auch deren Komplemente bzw. beliebige Kombinationen von Ereignissen
A, und A, (i,j = l, 2, 3, 4; i*j) unabhängig sind (siehe Aufg.2.6).

Lösen Sie folgende Aufgaben:

2.4: Zwölf verschiedene Bücher werden auf gut Glück in ein Regal gestellt. Bestimmen
Sie die Wahrscheinlichkeit, daß drei bestimmte Bücher
a) in einer vorgegebenen Reihenfolge
b) in beliebiger Reihenfolge
nebeneinander stehen!

2.5: In einem Betrieb trifft eine Sendung von n elektronischen Bauelementen ein, von
denen a defekt sind. Aus dieser Sendung werden k Bauelemente zufällig ausgewählt und
überprüft.
a) Wie groß ist die Wahrscheinlichkeit dafür, daß alle k Bauelemente brauchbar sind?
b) Wie groß ist die Wahrscheinlichkeit dafür, daß ein oder mehrere Bauelemente brauch-

bar sind?

2.6: Es ist zu zeigen, daß aus_de_r Unabhängigkeit der Ereignisse A und B die Unabhän-
gigkeit der Ereignisse A und B, A und B, A und B folgt!

2.7: Zeigen Sie die Richtigkeit folgender Aussage:
Sind die zufälligen Ereignisse A und B mit P(A) > 0 und P(B) > 0 unvereinbar, dann
sind sie nicht voneinander unabhängig!

2.8: Drei Kisten enthalten jeweils 10 Teile. In der ersten Kiste sind 8, in der zweiten
Kiste 7 und in der dritten Kiste 9 standardisierte Teile. Aus jeder Kiste wird auf gut Glück
ein Teil ausgewählt. Gesucht ist die Wahrscheinlichkeit dafür, daß alle drei ausgewählten
Teile standardisiert sind.

lt

er
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2.9: In einem Kasten befinden sich zwei brauchbare und zwei defekte Transistoren.
Diese werden nacheinander getestet. Wie groß ist die Wahrscheinlichkeit dafür, daß der
zweite defekte Transistor
a) der zweite
b) der dritte
c) der vierte getestete Transistor ist?

2.10: Nach statistischen Angaben einer Werkstatt entfallen von 30 Stillständen einer
Drehmaschine 15 auf das Auswechseln des Meißels, 6 auf den Defekt des Antriebes und 2

auf die nicht rechtzeitige Lieferung der Werkstücke. Die übrigen Stillstände haben andere
Ursachen, Gesucht ist die Wahrscheinlichkeit für den Ausfall der Drehmaschinen auf
Grund anderer Ursachen!

2.11: In einer Druckerei befinden sich 4 unabhängig voneinander arbeitende Maschi-
nen, die mit den Wahrscheinlichkeiten 0,9; 0,95; 0,7 bzw. 0,85 in einem bestimmten Mo-
ment nicht ausfallen. Gesucht sind die Wahrscheinlichkeiten dafür, daß in einem be-
stimmten Moment
a) wenigstens eine Maschine arbeitet,
b) genau eine Maschine,
c) genau zwei Maschinen,
d) genau drei Maschinen,
e) alle vier Maschinen arbeiten.

2.3. Zufallsgrößen

2.3.1. Begriff der Zufallsgröße

2.3.1.1. Erklärung des Begriffs der Zufallsgröße

In den vorhergehenden Abschnitten haben wir zufällige Ereignisse als Ergebnisse zufäl-
liger Versuche untersucht. Hierbei mußten wir die zufälligen Ereignisse in der Regel ver-

bal charakterisieren. Für die meisten Belange der Praxis ist es zweckmäßiger, die Vorteile,
die im Umgang mit reellen Zahlen liegen, für die Beschreibung der Ergebnisse zufälliger
Versuche nutzbar zu machen. Indirekt haben wir diese Möglichkeit u. a. schon im Bei-
spiel 2.5 bei der Charakterisierung des Ereignisses „Die Laufzeit eines Typs von PKW-
Reifen beträgt t Zeiteinheiten“ — hier durch die reelle Zahl t — genutzt. Eine derartige
zahlenmäßige Beschreibung der Ergebnisse eines zufälligen Versuches, die wir als eine
Abbildung des Sachverhaltes in den Bereich der reellen Zahlen ansehen können, führt
uns auf den Begriff der Zufallsgröße.

Zur Erläuterung wollen wir uns zunächst einige einfache Beispiele ansehen.

Beispiel 2.30: Zufälliger Versuch: Werfen einer Münze:

zufällige Ereignisse zahlenmäßige Beschreibung

A „Wappen liegt oben“ H 1

B ...„Zahl liegt oben“ -> 0

Beispiel 2.31: Zufälliger Versuch: Feststellung der Anzahl der Ausschußteile unter n Tei-
len:

zufällige Ereignisse zahlenmäßige Beschreibung

A0 . .. „Unter n Teilen kein Ausschußteil“ —> O

A1 „Unter n Teilen genau l Ausschußteil“ -> l
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A, „Unter n Teilen genau 2 Ausschußteile“ —> 2

2.1„ „Unter n Teilen genau n Ausschußteile“ —>

B „Unter n Teilen mindestens 1 Ausschußteil“ -> {l, 2, ...‚ n}
C „Unter n Teilen höchstens 3 Ausschußteile“ -> {0, 1, 2, 3}

Beispiel 2.32: Zufälliger Versuch: Feststellung der in einem Zählrohr während eines be-
stimmten Zeitabschnittes registrierten Teilchen der kosmischen Strahlung:

zufällige Ereignisse zahlenmäßige Beschreibung

A.‚ „Kein Teilchen wurde registriert“ —> 0

A, „Genau 1 Teilchen wurde registriert“ —> l

A, „Genau n Teilchen wurden registriert“ —> n

B „Mindestens 2 Teilchen wurden registriert“ —> {2, 3, ...}

Kehren wir nochmals zum Beispiel 2.31 zurück. Mit Hilfe der Festlegung

„X := zufällige Anzahl der Ausschußteile unter n Teilen“

erhalten wir eine Größe X, die die im Beispiel angedeutete Abbildung u. a. folgenderma-
ßen charakterisiert:

1. Die Größe X nimmt den Wert i an (X = i) genau dann, wenn das Ereignis A, eintritt.
Dabei kann i die Werte 0, 1, ...‚ n durchlaufen,
2. Die Größe X nimmt einen Wert der Menge {l, 2, 3, ...‚ n} an (X e {1‚ 2, ...‚ n}) genau

dann, wenn das Ereignis B eintritt.
Die Größe X nimmt folglich bei der Durchführung des betrachteten zufälligen Versu-

ches in Abhängigkeit von dessen Ergebnis jeweils einen bestimmten Wert an.
Eine derartige Größe bezeichnen wir — der am Ende des Abschnitts folgenden Erklä-

rung teilweise vorgreifend — als Zufallsgröße. Als Symbole für Zufallsgrößen verwenden
wir die großen lateinischen Buchstaben X, Y, Z, die wir gegebenenfalls indizieren.

Zur Charakterisierung einer Zufallsgröße X benötigen wir die Kenntnis aller möglichen
Werte, die diese Zufallsgröße annehmen kann. Diese bezeichnen wir mit dem entspre-
chenden kleinen lateinischen Buchstaben x.

Im Beispiel 2.31 erhalten wir also die Werte x, = 0, x, = 1, ..., x„„ = n.

In den letzten drei Beispielen haben wir Zufallsgrößen behandelt, bei denen die Menge
der möglichen Werte (Wertebereich der Zufallsgröße) — {x„ ...‚ x„} bzw. im Beispiel 2.32
{x„ x2, ...} — endlich bzw. abzählbar unendlich ist und deren Werte demzufolge mit den
natürlichen Zahlen indiziert werden können. Derartige Zufallsgrößen nennen wir diskrete
Zufallsgrößen, Wir werden sie im Abschnitt 2.3.2.2. näher untersuchen.

Daß daneben auch Zufallsgrößen mit überabzählbar vielen Werten von Bedeutung
sind, wollen wir uns am Beispiel 2.7 (vgl. S. 10) klarmachen.

Beispiel 2. 7: Zufälliger Versuch: Bestimmung der C0-Konzentration in den Abgasen einer
industriellen Anlage zu einem bestimmten Zeitpunkt:

zufällige Ereignisse zahlenmäßige Beschreibung X := zufällige CO-Konzentration

A, -> x X= x

B, —> [0, y) 0 _S_ X <y
Cx,» x, ‘T’ [Xia x2) Xi ä X < X2

In diesem Beispiel charakterisieren wir die möglichen Versuchsergebnisse durch eine Zu-
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fallsgröße X, deren Wertebereich ein Intervall auf der positiven l-Ialbachse ist. Wie wir
aber wissen, enthält ein derartiges Intervall überahzählbar viele reelle Zahlen.

Nach der Behandlung dieser einführenden Beispiele kommen wir zur Erklärung des Be-
griffs Zufallsgröße.

Erklärung 2.1‘): Wir betrachten einen zufälligen Versuch mit einem entsprechenden Ereignis-
feld (E.

Mit Hilfe einer Zufallsgröße beschreiben wir jedes zufällige Ereignis aus (i durch eine reelle
Zahl bzw. durch ein Intervall reeller Zahlen bzw. durch eine geeignete Menge reeller Zahlen.

2.3.1.2. Weiterführende Betrachtungen

Wie wir im Abschnitt 2.2.2.3, gesehen haben, können wir einen zufälligen Versuch durch das Paar
(D, G) charakterisieren. Dabei ist I) die Menge der Elementarereignisse des Versuches und G ein zu-

gehöriges Ereignisfeld (System der zu betrachtenden zufälligen Ereignisse).
Mit einer Zufallsgröße X ordnen wirjedem Elementarereignis w e J2 eine reelle Zahl zu.

Dadurch erreichen wir, daß jedes zufällige Ereignis A aus dem Ereignisfeld (Z im Bereich der reel-
len Zahlen durch eine gewisse Menge der reellen Zahlen repräsentiert wird. Einschränkend müssen
wir fordem‚ daß diese Zuordnung so beschaffen ist, daß jedes Intervall der Form (—°°, t) (t bel.
reell) — und damit jede „interessierende“ Zahlenmenge — bei dieser Zuordnung aus einem zufälligen
Ereignis aus G hervorgeht.

Die für praktische Belange in der Regel „interessierenden“ Zahlenmengen sind die sogenannten

Barel-Mengen, die durch die Verknüpfungen U, n, \‚ ' aus Intervallen der Form (-00, t) (t bei.
I= 1 i= l

reell) erzeugt werden. Hierzu gehören u.a. alle offenen, halboffenen und abgeschlossenen Intervalle.
Wir kommen damit zu folgender Definition einer Zufallsgröße:

Definition 2.23: Unter einer ZufalLrgröße X verstehen wir eine Funktion

X= X(w) =!2—>R‘,

die jedem Elementarereignir w e I2 eine reelle Zahl zuordnet, Dabei fordern wir, daß jedes Intervall der Fonn
(- m, i) (t bel, reell) aus einem zufälligen Ereignis aus G hervorgeht, d. h„ das Urbild einesjeden Intervalls
(— 0°, I) ist ein zufälliges Ereignis aus G.

Anmerkung: Der Definitionsbereich der Funktion X(w) ist die Menge .(2; ihr Wertebereich ist die
Menge der Werte der Zufallsgröße X.

Das System aller Borel-Mengen des R‘ bildet - wie wir es ebenfalls vom Ereignisfeld 6 gefordert
hatten — eine a-Algebra, die wir mit 5B bezeichnen. Somit ist eine Zufallsgröße X = X(w) eine Funk-
tion, die eine gewisse Beziehung zwischen den beiden rr-Algebren G und ß herstellt.

Derartige Funktionen werden in der Mathematik als (G, §8)-meflbare Funktionen bezeichnet. Für
weitergehende Studien in dieser Richtung verweisen wir auf [3; 12].

2.3.2. Die Wahrscheinlichkeitsverteilung einer Zufallsgröße

2.3.2.1. Begriff der Wahrscheinlichkeitsverteilung

Zur vollständigen Beschreibung eines zufälligen Versuches hatten wir im Abschnitt 2.1.
nach der Festlegung des Ereignisfeldes jedem zufälligen Ereignis A aus G? dessen Wahr-
scheinlichkeit P(A) zugeordnet.

Entsprechend werden wir jetzt verfahren und zu jeder interessierenden Menge reeller
Zahlen die Wahrscheinlichkeit dafür bestimmen, daß die zur zahlenmäßigen Beschrei-

‘) Dem Anliegen dieses Buches entsprechend halten wir hier das Wesentliche dieser neuen Be-
griffsbildung in Form einer Erklärung fest. Die im Abschnitt 2.3.1.2. folgende Präzisierung trägt für
unsere Belange weiterführenden Charakter und ist für das Verstehen der übrigen Abschnitte nicht
unbedingt erforderlich.



2,3. Zufallsgrößen 39

bung des Versuches eingeführte Zufallsgröße einen Wert aus dieser Menge annimmt. Die
Gesamtheit dieser Wahrscheinlichkeiten bezeichnen wir als die Wahrscheinlichkeitsvertei-
lung (oder Verteilung) der Zufallsgröße. Durch die genannten Wahrscheinlichkeiten wird
festgelegt, wie die gesamte „Wahrscheinlichkeitsmasse“ 1 auf der Zahlengeraden verteilt
ist.

Von zentraler Bedeutung sind hierunter Wahrscheinlichkeiten der Form

P(X < t) (t beliebig reell).

Definition 2.24: Die Funktion D-2-24

FX(t) == P(X <1) (2.51)

der reellen Variablen t bezeichnen wir als Verteilungsfunktion der Zufallsgröße X.

Zur Bestimmung dieser Wahrscheinlichkeiten P(X < t) gehen wir folgendermaßen vor:
Für ein beliebiges festes reelles 2., wählen wir aus dem Ereignisfeld (S das zufällige Er-

eignis A aus mit der Eigenschaft, daß die Zufallsgröße X genau dann einen Wert aus dem
Intervall (V00, tn) annimmt (X < to), wenn das zufällige Ereignis A eintritt. Nach dem
Axiom 1 haben wir aber diesem Ereignis A die Wahrscheinlichkeit P(A) zugeordnet‘)
Wir setzen schließlich

P(X< 19):: P(A). (2.52)

Zur Verdeutlichung betrachten wir die im Beispiel 2.30 eingeführte Zufallsgröße

X: 1, falls das Ereignis A eintritt,
" 0, falls das Ereignis B eintritt.

Wir erhalten z.B. für to = 0,5

Fx(0,5) i: P(X < 0,5) == P(B) = 1/2

oder für to = 2

FX(2) == P(X< 2) := P(A u B) = P(.()) = 1.

Entsprechend setzen wir

P(X= 0) = P(B) = 1/2

und
P(X= 1) = P(A) = 1/2.

Damit erhalten wir andererseits

F„(0,5) = P(X < 0,5) = P(X = 0)
und

FX(2) = P(X<2) = P(X= 0) + P(X= 1).

Daß wir mit Hilfe der Verteilungsfunktion alle uns interessierenden Wahrscheinlich-
keiten berechnen können, wollen wir uns verdeutlichen, indem wir Wahrscheinlichkeiten
der Form

P(t‚ g X < :1)

bestimmen. Für zwei beliebige feste reelle Zahlen t1 < t1 betrachten wir folgende zufällige
Ereignisse:

1) Durch die im Abschnitt 2.3.1.2. getroffene Festlegung ist gesichert, daß ein solches Ereignis A
und damit die Wahrscheinlichkeitsverteilung der Zufallsgröße stets existiert.
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Ereignis A „X < 1,“,
Ereignis B „X< t1“,
Ereignis C... „t, _S_ X< t2“.

f: I; ’ Bild 2.11. Zur Berechnuug
von P(t1§ X< t2)

Wie wir Bild 2.11 entnehmen, gilt

A=BuC mit BnC=0.
Unter Anwendung des Axioms 3 erhalten wir

P(A) = P(B) + P(C)

und damit

P(C) = P(A) — P(B).

Im Ergebnis kommen wir somit zu der Beziehung

P(t1§ X< t2) = P(X< t2) — P(X< 1,) = F„(t‚) — Fx(t,). (2.53)

Wir sehen hieran, daß die gesuchte Wahrscheinlichkeit eindeutig durch die Verteilungs-
funktion F,,(t) bestimmt ist.

2.3.2.2. Diskrete Zufallsgrößen

Wie wir schon im Abschnitt 2.3.1.1. angedeutet hatten, gehen wir aus von folgender

Definition 2.25: Eine Zufallsgröße nennen wir diskret, wenn ihr Wertebereich eine endliche
oder höchstens abzählbare Menge ist.

Am Beispiel 2.29 (vgl. S. 34) werden wir auf dem im Abschnitt 2.3.2.1. angegebenen
Weg die Verteilungsfunktion einer diskreten Zufallsgröße bestimmen.

Beispiel 2.29: Auf eine Zielscheibe werden unabhängig voneinander 4 Schüsse abgegeben.
Die Treffwahrscheinlichkeit betrage für jeden Schuß 1/2. Es sei X die zufällige Anzahl
der Treffer bei 4 unabhängigen Schüssen.

Als Werte der Zufallsgröße X erhalten wir

x‚=0‚ x‚=1‚ x‚=2‚
Zur Bestimmung von F„(t) greifen wir einige spezielle Werte von t heraus und erhalten:

FX(—-1)= P(X< —1)= 0,

F,,(0) = P(X< 0) = 0,

x.,=3 und x5=4.

Fx(0,5) = P(X< 0,5) = P(X= 0) = 117,

F,,(1) =1>(x< 1)= P(X=0)=%,
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5
FX(1,5) = P(X< 1,5) = P(X= 0) + P(X= 1) = Ü,

FX(2) =P(X<2)=P(X=0)+P(X=1)=T5é-,

>
->

-1
O

x
»
-t

Fx(2,5) = P(X< 2,5) = P(X= 0) + P(X= l) + P(X= 2) =

ms) = P(X< 3)= P(X=0) + P(X=1)+P(X=2)=%‚
F,,(3,5) = P(X< 3,5) = P(X = o) + P(X =1)

+P(X=2)+P(X=3)=%‚

F,,(4) = P(X< 4) = P(X=0) + P(X= 1)

+P(X=2)+P(X=3)=-1-3:

Fx(4,1) = P(X< 4,1) = P(X= 0) + P(X= l) + P(X= 2) + P(X= 3)

1 4 6 4 1

*P‘X=4)=fi+fi+F+F+fi=1'
Schließlich kommen wir für beliebige t zu der in Bild 2.12 dargestellten Funktion
F„(t) = P(X < t) in der Form

an»

„F
.

l
I
\
I
‘
l
\
¥

l
|

Bild 212. Verteilungsfunktion
2 3 A r FX(t) aus Beispiel 2.29„i
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‘o für t§0,

für 0<t§1,

für 1<t§2,
FX(1)=<

für 2<t§3,

für 3<t§4,

für t>4.

Aus Bild 2.12 erkennen wir folgende Eigenschaften der Verteilungsfunktion einer diskre-
ten Zufallsgröße:

r
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1. Fx(t) ist für alle reellen t definiert, d. h., der Definitionsbereich ist das Intervall (- 0°,
+ co).

2. Der Wertebereich liegt im Intervall [0, l], d.h.‚ es gilt

0 g Fx(t) § 1. (2.54)

3. Es gilt

lim Fx(t) = 0 (2.55)

und H“:

(2.56)lim FX(t) = 1.
!*+m

4. F,,(t) ist eine monoton nichtfallende (aus t1<t, folgt FX(t1) ä Fg(t‚)) Treppenfunk-
tion.

5. F,(t) ist linksseitig stetig, d.h.‚ es gilt

lim F,,(t - h) = Fx(t) (2.57)
haio

für alle reellen t.

Bei der Bestimmung von FX(t) im Beispiel 2.29 haben wir die Wahrscheinlichkeiten
P(X = 0), P(X =1), ..., P(X= 4) benutzt.

Definition 2.26: IstX eine diskrete Zufallsgrbße mit den Werten x1, x1, ..., so bezeichnen wir

p.>= P(X= X1) (i = 1, 2, ---)

als Einzelwahrscheinlichk " der Zufallsgrbße X.
(P(X = x) wird auch als Wahrscheinlichkeitsfimktion der Zufallsgröße X bezeichnet.)

Einen Eindruck von der Wahrscheinlichkeitsverteilung einer diskreten Zufallsgröße ge-
winnen wir, indem wir die Einzelwahrscheinlichkeiten in einer Verteilungstabelle wie in
Tab.2.1 oder graphisch wie in Bild 2.13 für das Beispiel 2.29 darstellen.

I71"

S
ilo

,

Bild 2.13. G L’ L Darstellung
der Einzelwahrscheinlichkeiten der

x, Zufallsgröße X aus Beispiel 2,29

P
A

IN

Tabelle 2.1: Verteilungstabelle der Zufallsgröße X aus Beispiel 2429

x,io|1|2|3|4

P" 1—51e151616|1\i\~6~l=‘~\i
Prüfen Sie unter Anwendung der Axiome der Wahrscheinlichkeitsrechnung folgende

Eigenschaften der Einzelwahrscheinlichkeiten nach:

1. Oäpräl, (2-53)
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2. iäp‚-=1.

Schließlich haben wir am Beispiel folgenden Zusammenhang zwischen der Vertei-
lungsfunktion und den Einzelwahrscheinlichkeiten verifiziert:

1. Durch Vorgabe der Einzelwahrscheinlichkeiten ist die Verteilungsfunktion einer dis-
kreten Zufallsgröße eindeutig bestimmt:

m) = Z P<X= Xi)
r

x.<z

(2.59)

(2.60)

(hierbei summieren wir über alle i mit der Eigenschaft x, < t).
2. Die Unstetigkeitsstellen der Verteilungsfunktion einer diskreten Zufallsgröße sind

die Werte x1, x2, An der Stelle x, (i = 1, 2, ...) erfährt Fx(t) einen Sprung der Höhe
p,- = P(X =x,-). Wir bezeichnen deshalb die Werte x1, x1, auch als Sprungstellen und
die entsprechenden Einzelwahrscheinlichkeiten pl, pl, als Sprunghöhen.

Damit erhalten wir bei vorgegebener Verteilungsfunktion die Einzelwahrscheinlichkei-
ten eindeutig aus der Beziehung

p,- = P(X = x‚-) = hlimo FX(x,- + h) — Fx(x,-) für i 1,2,

Wir seheu hier, daß ein Wert einer diskreten Zufallsgröße dadurch gekennzeichnet ist,
daß die Verteilungsfunktion an dieser Stelle einen positiven Zuwachs erfahrt.

Anmerkung: Die Werte der Verteilungsfunktion einer diskreten Zufallsgröße an den
Sprungstellen lassen sich rekursiv aus

FX(x1) z 0; FX(Xr) : FX(xi- 1)+ Pi-i (2-61)

berechnen. Diese Rekursionsforrnel ist Ausgangspunkt für die rechentechnische Behand-
lung von (2.60).

m; i=2, 3,...

2.3.2.3. Stetige Zufallsgrößen

Wir wenden uns nun der Behandlung von Zufallsgrößen mit überabzählbar vielen Wer~
ten zu. Dieser Fall liegt z. B. dann vor, wenn der Wertebereich ein Intervall der reellen
Zahlengeraden oder die gesamte Zahlengerade ist.

Unter diesen nichtdiskreten Zufallsgrößen interessieren wir uns besonders fiir die
Klasse der stetigen Zufallsgrößen.

Definition 2.27: Eine Zufallsgröße X nennen wir stetig, wenn es eine integrierbare Funktion

fx(x) ä 0, (2.62)

derart gibt, daß sich die Veneilungsfunktion FX(t) = P(X < t) für alle reellen t in der Form

—oo<x<+oo‚

I

F,,(t) = ff,,(x)dx (2.63)

darstellen läßt.
Die Funktion f‚(x)‚ von der wir fordern, daß

I f„(x)dx = 1 (2.64)

ist, bezeichnen wir als Dichtefunktion von X.

D.2.27
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Ausgehend von der geometrischen Deutung des Integralbegriffs erhalten wir F,,(t) als
Flächeninhalt der Fläche zwischen der Kurve fx(x) und der Abszissenachse in den Gren-
zen —m und t (s.Bild 2.14).

254x)

&(f)=P(X<f)

Bild 2.14. Geometrische Deutung
des Zusammenhangs zwischen Dichte-
und Verteilungsfunktion

f

Überzeugen Sie sich selbst, daß die durch die Darstellungsformel (2.63) gegebene Ver-
teilungsfunktion einer stetigen Zufallsgröße folgende Eigenschaften besitzt:

l. Der Definitionsbereich von FX(t) ist das Intervall (— w, + w).
2. Der Wertebereich ist das Intervall [0, 1], d.h.‚ es gilt

0 g Fx(t) ‚S. 1. (2.65)

3. Es ist
lim Fx(t) = 0 (2.66)

‚.. ‚a,

und
lim F,,(t) = 1. (2.67)

„a...

4. FX(t) ist eine monoton nichtfallende Funktion

(aus t1<tz folgt F,,(t1) g I-‘X(t2)).

5. FX(t) ist stetig, d.h., für alle reellen t gilt

F„(t + h) = F„(t). (2.68)

Da FX(t) gemäß (2.63) eine Stammfunktion der Dichte fX(x) ist, erhalten wir nach dem
Hauptsatz der Differential- und Integralrechnung aus Formel (2.53) für t, < t2

Pm g X < t2) = mo — Fx(t1)= J”/x<x> ax. (2.69)

Somit können wir gemäß Bild 2.15 die Wahrscheinlichkeit dafiir, daß die Zufallsgröße X
einen Wert aus dem Intervall [t„ t2) annimmt, als Fläche zwischen Dichtefunktion und
Abszissenachse in den Grenzen t, und t, interpretieren. Wir setzen nun t, = t und t2 = t

+ At und betrachten den Grenzübergang At—>0. Dabei erhalten wir

P(X=t)=1im P(t§X< H-At)
Az~>+0

I+A!

= lim (F,,(t+At)—F,((t))= lim f f,(x)dx=0.
At—>+-0 Az—>+0 ‚

Für eine stetige Zufallsgröße X verschwinden folglich alle Wahrscheinlichkeiten der Form
P(X = t), obwohl die Ereignisse „X = t“ nicht mit dem unmöglichen Ereignis zusammen-

fallen müssen.
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Bild2.15.Geometrische Deutung
der Wahrscheinlichkeit
P(t, g X < t2)

und des Wahrscheinlichkeits-
elementes

| r, z mit r? x

Ist t eine Stetigkeitsstelle der Dichtefunktion, so gilt nach dem Hauptsatz der Differen-
tial- und Integralrechnung:

t+AI

3,13% fi<x>dx=fx<o.

Daraus erhalten wir
H-AI

_ 1 „ F(t+At)—F(t)
mt) = A133); fl’(x)dx= L\1;g(,—’_A,—”

_dFx(t) _ ‚ _‚ P(t§X<t+At)
"F‘F*")‘.‘,‘T. LA;v ‘m’

Bei vorgegebener Verteilungsfunktion ist die Dichtefunktion einer stetigen Zufallsgröße
somit eindeutig in ihren Stetigkeitsstellen bestimmt und dort gleich der ersten Ableitung
der Verteilungsfunktion.

Wir wollen hier hervorheben, daß fX(t) selbst keine Wahrscheinlichkeit darstellt.
Erst durch formale Umstellung der Beziehung (2.70) erhalten wir das sog. Wahrschein-

lichkeitselement der Stelle t

P(t g X < 2+ dt) = dFX(t) =fX(t) dt, (2.71)

womit wir die Wahrscheinlichkeit dafur bezeichnen wollen, daß die Zufallsgröße X einen
Wert aus der infinitesimalen Umgebung [1, t+dt) der Stelle t annimmt (vgl. auch
Bild 2.15).

2.3.2.4. Beispiele

Beispiel 2.33: Eine automatische Anlage produziert nacheinander bestimmte Teile. Die
Wahrscheinlichkeit dafür, daß ein beliebiges produziertes Teil brauchbar ist, sei
p (0 < p < l). 1 — p = q ist dann die Wahrscheinlichkeit dafür, daß ein Teil Ausschuß ist.
Die einzelnen Teile sollen unabhängig voneinander produziert werden. Nach der Produk-
tion eines unbrauchbaren Teils wird die Arbeit unterbrochen. Zu untersuchen ist die Zu—

{allsgröße X I: zufällige Anzahl der bis zur ersten Unterbrechung produzierten Teile,
Zu bestimmen sind die Verteilungstabelle und die Verteilungsfunktion F,,(t).

Lösung: l. Wir betrachten folgende Ereignisse:

A, „Das erste Produkt ist Ausschuß“,
A; „Das zweite Produkt ist Ausschuß“,

A,‘ „Das k-te Produkt ist Ausschuß“.
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Laut Aufgabenstellung sind die Ereignisse Ak (k = 1, 2, ...) unabhängig, und es gilt

P(A,,)=1—p und P(Ä„) =p für k= 1, 2,

2. X besitzt die Werte 1, 2, 3, Gemäß Abschnitt 2.3.2.1. erhalten wir

P(X= 1) ‘= P(A_1) = II.

I:(X= 2) == P(A1 n A1) = qp, (2.72)

P(X= k):= P(/i, n nÄ‚„‚ nAk)= qp"'1.

Damit kommen wir zu folgender Verteilungstabelle:

k |1|2I3 |...Ik I...
pk=_P(X=k) I q I qp I qp’ I I qp*“ I

mit pk = P(X= k) = qpk“ > 0 für k = 1,2, Damit ist die Beziehung (2.58) erfüllt,
Zur Bestätigung der Eigenschaft (2.59) benutzen wir die Formel für die unendliche geo-

metrische Reihe und erhalten:

a

L
k 1 ‘ P

3. Gemäß Formel (2.60) bestimmen wir die Verteilungsfunktion:

F,,(1) = P(X< z) = Z qpk".
k

k<r

P<X=k>= Zqp***=qZp**'=q =1.
1 k=1 k=l1|

Beispiel 2.34: Für welchen Wert der Konstanten a ist

f,,(x)=L —°°<X<+oo
1 + x’ ’ ’

die Dichtefunktion einer stetigen Zufallsgröße X‘.7 Gesucht ist außerdem

FX(t) = P(X< t).

Lösung: 1. Aus der Eigenschaft (2.62) folgt a > 0.
2. Wir betrachten die Forderung (2.64) und erhalten

+oo

=if fx(x)dx=iJ- a dx‚.
.

1+x7

¢—vau
= a lim (arctan x|i„) = a [lim arctan c - lim arctan(-b)]

b-vm bvbnn
can

_ 1+1 -—a 2 2 -l1Tl'.

Hieraus folgt:

a=—.
TT

3. Nach Formel (2.63) berechnen wir FXU):

I

Fx(t)=%_[ dx =%+%arctant‚ -°°<t<+oo.1+x’
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Beispiel 2.35: Es ist zu zeigen, daß

_ l.e“" für x > o,
M") ‘ {o für x g o

die Dichtefunktion einer stetigen Zufallsgröße X ist. Gesucht sind außerdem die Vertei-
lungsfunktion F,,(t) und die Wahrscheinlichkeit P(1 g X < 2).

Lösung: 1. (2.62) ist erfi.'Illt.
2. Wir überprüfen (2.64):

(Ä > O) (2.73)

+0“ 0 +°7

_[f,,(x)dx= j'odx+j /1e"‘dx= m? (vewag)
_,„ W o ‚a m

=- lim e”‘+e"°=0+l=1.
c—w+w

3. Bei der Bestimmung der Verteilungsfunktion gemäß (2.63) müssen wir eine Fall-
unterscheidung vornehmen:

1. Fall: I; 0:

mp) = i_[£fX(x)dx = Odx = o.

2.Fa11:t>0
x 0 z

am = f/„mdx = Jodx+ I1e'“dx = —e'*"|3 = 1 — e“‘.
_¢n ._u} o

Damit erhalten wir

_ 1-e"‘ für t>O‚
F"(')'{0 für tgo.

4. Nach der Formel (2.53) bekommen wir

P(1; X< 2) = F,,(2) — FX(1)= 1- e‘“ - (1 - e") = e" - e’“.

In Bild 2.16 sind Dichtefunktion und Verteilungsfunktion der in diesem Beispiel behan-
delten Zufallsgrößen dargestellt.

fxlx}

A

X

am

1 ———————————————— —— ———

Bild 2.16. Dichte- und Verteilungs—
funktion der Zufallsgröße X
aus “ '‚' ' 2.35
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2.3.2.5. Zusammenfassung

Die bisherigen Ergebnisse über die Wahrscheinlichkeitsverteilung einer Zufallsgröße
wollen wir in Tabelle 2.2 zusammenfassend darstellen.

Tabelle 2.2

diskrete Zufallsgröße stetige Zufallsgröße

höchstens abzählbar viele Werte überabzählbar viele Werte

Einzelwahrscheinlichkeiten p, Dichtefunktion f„(x)

p.= P<X=x.> <i= 1,2, ...>, fx(x)dx=P(x§X<.x+dx),

0§P.‘§1, A0020,

12!!’/-1 jf,,(x)dx=1

Verteilungsfunktion

Fx(t) = Z p. F,,(t) = P(X< z) mo = ff,(x) dx
„L. -°°<t<+°°‚ "‘

0 g F„(r) g 1,

lim Fx(t) = 0,
H-..

lim F,,(t) = 1,
Hm

Fx(t) — monoton nichtfallend,
F„(t) — wenigstens links- Fx(t) — wenigstens FX(t) — stetig
seitig stetige linksseitig stetig
Treppenfunktion

P(t1§ X< u) P(t1§ X< t2)

‘ED:
u

x.§x.<:,

P01 ä X< l2)

: F102) ' FX(tl) '7

= Jim ax

P: = hlimo Fx(Xi + h) ‘ Fx(Xi)

2.3.3.

fx(X) = F}(x)

Kennwerte der Wahrscheinlichkeitsverteilung einer Zufallsgröße

In den vorhergehenden Abschnitten haben wir gesehen, daß die Verteilung einer Zu-
fallsgröße durch ihre Verteilungsfunktion oder die Dichtefunktion bzw. die Einzelwahr-
scheinlichkeiten im stetigen bzw. diskreten Fall vollständig bestimmt ist.

Wichtige Informationen über eine Verteilung — wenn auch in der Regel keine vollstän-
dige Beschreibung — liefern uns bestimmte Kennwerte (Parameter).

2.3.3.1. Der Erwartungswert

Häufig begegnen uns Größen folgender Art:
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„Das monatliche Durchschnittseinkommen einer Familie“
„Die mittlere Laufzeit eines PKW-Reifens“

Von unseren Vorstellungen über derartige „Mittelwerte“ abstrahierend gelangen wir zum

Begriff des Erwartungswertes einer Zufallsgröße, mit dem wir ein gewisses Zentrum be-
zeichnen, um das sich die Werte der betrachteten Zufallsgröße gruppieren.

Dazu gehen wir von folgenden Überlegungen aus:
Bei n Messungen seien s verschiedene Meßwerte x, (i=1‚ ...‚ s) mit den absoluten

Häufigkeiten h, (i = l, ...‚ s; Z h, = n) aufgetreten:
i=1

Meßwerte x.- I X1 I X2 I I X;

absolute Häufigkeiten h‚- I h, I h, I I h;

Zur Auswertung einer solchen Meßreihe berechnen wir häufig als Kennwert das arithme-
tische Mittel

1
:E=7(x,h1+ + x,h,) = x1H, + + x,H,,

h.-
wobei H, = —n— (i = 1, ...‚ s) die relative Häufigkeit‘) des Meßwertes x,- ist.

Unter Berücksichtigung des im Abschnitt 2.2.1. angedeuteten Zusammenhangs zwi-
schen relativer Häufigkeit und Wahrscheinlichkeit kommen wir zu folgender

Definition 2.28: Ist X eine diskrete Zufallsgroße mit den Werten x,- und den Einzelwahrschein- D-2-28
lichkeiten p,- = P(X= x,) (i = 1, 2, ...), so nennen wir

E<X> == x.—p.— (2.74)

den Erwartungswert (oder die mathematische Erwartung) der Zufallsgräße X, falls

ZIxiIpi< °°
i=l

ist. Ist diese Bedingung der absoluten Konvergenz der Reihe (2.74) nicht erfüllt, so existiert kein
EI wartungswert.

Hinweis: Welche Analogien zum Begriff des Massenschwerpunktes eines Systems von

Punktmassen lassen sich erkennen?
Wir setzen die Behandlung der Beispiele 2.29 (vgl. S. 40) und 2.33 (vgl. S. 45) mit der

Berechnung der entsprechenden Erwartungswerte fort.

Beispiel 2.29:
4 6 4 11E(X)=0‘T6+1'Tg+2'R-+3"fi+4'fi=

Schießt also ein Schütze in Serien von je 4 Schuß auf eine Zielscheibe, so wird er im Mit-
tel in jeder Serie 2 Treffer verzeichnen können.

2.

‘) Gemäß der im Abschnitt 2.2.1. eingeführten Symbolik entspricht H, der relativen Häufigkeit
H. ({X= x,)) des zuf. Ereignisses {X= x,} „Die Zufallsgröße X nimmt den Wert x, an“ in n Versu-
:hen. Zur Vereinfachung wurde von dieser Symbolik abgewichen.

A Beyer. Wahrscheinlichkeitsrechnung
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Beispiel 2.33:

P(X = k) =1J""<I (k =1,2,.~)

E(X)=lq+2pq+3p1q+...+kp"“q+...=

= q Z kpk—1 = q Z kpk—1_

k = l k = 0

Zur weiteren Berechnung differenzieren wir die Potenzreihe

Z x“=(1—x)“‘ für |x|< 1:
k:0

i w k‘- m k-l_i _ -1_ _ —zdx (Ä); l kgokx dx (1 x) (1 x) .

Daraus erhalten wir

°‘ 1 .

E(X>= qkgokp*"= q<1—p)*=;, da 1—p= q 1st.

Für p = 1/4 ist E(X) = 4/3, d. h., der Erwartungswert einer diskreten Zufallsgröße muß
nicht mit einem Wert dieser Zufallsgröße zusammenfallen.

Der im Abschnitt 2.3.2.4. angedeutete Zusammenhang zwischen diskreten und stetigen
Zufallsgrößen bildet die Grundlage für die folgende Definition.

Definition 2.29: Ist X eine stetige Zufallsgrüße mit der Dichtefunktion f,,(x), so bezeichnen wir
+ an

E(X) := f xfX(x) dx
-—a:

(2.75)

als Erwartungswert (oder mathematische Erwartung) von X, falls das uneigentliche Integral
(2.75) absolut konvergent ist:

_] |x|fX(x)dx< m.

Ist diese Bedingung nicht erfiillt, so existiert kein Erwartungswert.

Wir berechnen den Erwartungswert der im Beispiel 2.35 (vgl. S. 47) betrachteten Zu-
fallsgröße X:

Beispiel 2.35:
‚i e ‘L‘fiY(X)={0 x>0,

x50.
fiir
fiir (Ä > Ü)

+1»

Eur) = I
‚m

o w»

xfi‚(x)dx= _I'x-Odx+_I‘x1e“"dx
_.„ o

+6:

=Äf xe”-"dx
0

>
.]»

—
-



2.3. Zufallsgrößen 51

2.3.3.2. Die Varianz

Mit dem Erwartungswert haben wir ein gewisses Zentrum der Verteilung einer Zufalls-
größe eingeführt. Wir wollen nun mit einem weiteren Kennwert charakterisieren, wie
stark die Werte der Zufallsgröße um den Erwartungswert streuen. Das gebräuchlichste
Streuungsmaß ist die mittlere quadratische Abweichung vom Erwartungswert, die sogenannte
Varianz.

Definition 2.30: Ist X eine Zufallsgraße, so nennen wir D.2.30

D’(X) == E [(X r E (X))’] (2.76)

die Varianz (oder Dispersion) von X.

Die Größe 1/D1(X) bezeichnen wir als Standardabweichung und den Quotienten

VD1(X)V(X) =W als Variationskoeffizienten von X. Hierbei setzen wir voraus, daß der Er-

wartungswert auf der rechten Seite von (2.76) existiert und E (X) ä= 0 ist.

Im diskreten Fall berechnen wir D’(X) = E [(X — E (X))1] gemäß (2.74) nach der Formel

D200 = Z <x.- — mozp.-. (2.77)
i= 1

Im stetigen Fall erhalten wir entsprechend nach (2.75)
..„

Dior) = I (x— m1)’fx(x)dX- (2.78)

Dabei haben wir zur Abkürzung m, == E(X) gesetzt. Eine nähere Begründung dieser For-
meln werden wir im Abschnitt 2.3.3.3. geben.

Betrachten wir nun einige Beispiele zur Berechnung der Varianz.
Nach der Aufgabenstellung im Beispiel 2.29 (vgl. S. 40 und 49) erhalten wir:

D1(X)=kZ::o(k—2)1 P(X=k)=(o—2)1-1—16+(1—2)1-7“6~

+(2—2)2-%+(3—2)1~%+(4—2)1-%g=1.

Wir bestimmen D2(X) fir das Beispiel 2.33 (vgl. S. 45 und 49):

°= z

D1(X)=Z(k__1.)qpk—1
k=1 <1

m k 1
= k2_2_+;) I:~1

EX ‘I ‘I2 qp

m k 1
= kk—1 +k—2—+—— k“I;1[( ) ‘I qziqp

=qpZ k(k_.1)pk—2+<1_%)qZ kph-1+_1.Zpk—l
k-l k=\ qk=l

= qp2<1—p>"+(1 -3q)q<1—p>*+%(1—p>*
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2 1

—z+—z L2-
41 q 41

ll k
)

aa
N

lu
g 1+__

q

Hierbei benutzten wir die l. und 2. Ableitung der Potenzreihe Z x"=(1—x)“
für [x| < 1 ’<=°

d °° °° _ _ d _ _ _Eäxk —;:1kx" 1-50-20 ‘—(1-x)’
und

iix“=ik(k—1)x"”= dz (1—x)-1=2(1—x)-3.
Z 1dx F.) „,1 dx

Schließlich ergibt sich im Beispiel 2.35 (vgl. S. 47 und 50):

„. 2

D100 =f (x — /1e""dx
D

= 1J‘ x7e""dx - 2 T xe"*dx + %Te“’dx.
0 0 0

Durch partielle Integration erhalten wir hieraus

DZ(X)=% und V(X)=,/% <%>_1=l.

Im Abschnitt 2.3.3.4. werden wir Erwartungswert und Varianz in eine umfassendere
Klasse von Kennwerten einordnen und Regeln für das Rechnen mit diesen Kennwerten
zusammenstellen. Dafür schaffen wir mit der folgenden Behandlung von Funktionen von
Zufallsgrößen die nötigen Voraussetzungen.

2.3.3.3. Der Erwartungswert von Funktionen einer Zufallsgröße

Häufig begegnen uns Zufallsgrößen Y, die vermöge einer gegebenen Funktion g aus

einer anderen (im allg. leichter zugänglichen) Zufallsgröße X hervorgehen:

Y= g(X).

Welche Informationen über Y können wir aus der Wahrscheinlichkeitsverteilung von X
erhalten? Dazu betrachten wir das folgende einfache

Beispiel 2.36: X sei die zufällige Wegstrecke, die ein Gabelstapler bei der Erledigung eines
Transportauftrages zurücklegen muß. Zum Durchlaufen einer Wegeinheit werden 4 Zeit—

einheiten benötigt. Dann ist Y= 4X die zufällige benötigte Zeit.
Nun sei X eine diskrete Zufallsgröße mit der Verteilungstabelle

und der Verteilungsfunktion

0 fiir t; 2 ‚

F,,(t)= ä für 2<t§4,
1 für 4<t.
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Mit Hilfe der einfachen Umforrnungen

P(X: x‚) = P(4X= 4x‚-) = P(Y= 4x‚-) = P(Y=y‚-)

(i = 1, 2) bzw,

tim) = P(Y< z) = P(4X< t) = P<X< T) = F,,(~4'—)

erhalten wir für Y= 4X die Verteilungstabelle

y‚- 8 16

l 3
P(Y=.}’:) T 7

und die Verteilungsfunktion

0 für t; 8 ,

für 8 < t; 16 ‚

für 16 < t.

Gemäß Formel (2.74) berechnen wir den Erwartungswert von Y:

E(Y) =y1P(Y=y1) +y2P(Y=)’2) = 8P(Y= 8) + 16P(Y= 16)

=8P(X=2)+16P(X=4)= 8-%+ 16-%= 14.

An diesem Beispiel können wir folgende Berechnungsformeln für den Erwartungswert
E[g(X)] einer Funktion Y= g(X) einer Zufallsgröße X verifizieren:

Ist X eine diskrete Zufallsgröße, so erhalten wir

1

F2/(1): T
1

EU’) = E[s(X)] = ä g(x.)P(X= x:)- (Z79)
i=1

Analog gilt im stetigen Fall

Em = E[g<X>1= I g<x>/max. (2.80)

Hierbei setzen wir voraus, daß dieser Erwartungswert existiert.
Beide Formeln zeigen, daß wir zur Berechnung des Erwartungswertes der Zufallsgröße

Y= g(X) nur die Kenntnis der Wahrscheinlichkeitsverteilung von X (hier in Form der
Größen P(X = x,-) bzw. f,,(x)) benötigen.

Es sei noch darauf hingewiesen, daß im allgemeinen die Beziehung E(g(X)) = g(E(X))
nicht gilt, Für die Zufallsgröße X mit der Dichtefunktion

f (X) = x/12e"“ für x > 0, Ä > 0,
X 0 für x g 0

gilt z.B.

E(X) = J-xxA1e'*‘dx = Ä’ J-x1e“-‘dx =%
0 O

und für Y= g(X) =iX
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= f~1-x11e""dx = A’ fe'*"dx = Ä.
X o X o

Auf die Möglichkeiten zur Bestimmung der Wahrscheinlichkeitsverteilung der Zufalls-
größe Y= g(X)‚ die über die im Beispiel 2.36 angedeutete Vorgehensweise hinausgehen,
können wir in diesem Rahmen nicht eingehen. Informieren Sie sich darüber in [3].

Auf einige wichtige Regeln für das Rechnen mit Erwartungswerten führen uns die fol-
genden Beispiele zu (2.79) und (2.80).

Beispiel 2.37: Bei der Definition der Varianz gemäß (2.76) benutzten wir die Funktion
Y= (X— m1)’ mit m‚== E(X). (2.77) bzw. (2.78) ist also eine Anwendung der Formel
(2.79) bzw. (2.80).

Beispiel 2.38: Wir betrachten die diskreten Zufallsgrößen X und Y= aX + b (a, b kon-
stant). Hat X die Werte x„ x1, und die Einzelwahrscheinlichkeiten pl, p1, ...‚ so erhal-
ten wir nach (2.79)

Em= Z<ax.+b)p‚=aZx.-p.-+I>Zp‚
i=l ixl i2]

=aix,-p,-+b-1 (wegen S111,-=1)
I'=1 i=1

und damit (falls E(X) existiert)

E(aX+b)=aE(X)+b. (2,81)

Für a = O entsteht hieraus

E(b) = b. (2.82)

Führen Sie selbständig den Beweis der wichtigen Beziehung (2.81) für den stetigen Fall
durch!

Beispiel 2.39: Es sei Y= [(aX+ b) - E(aX+ b)]2 (a, b konstant).
Dann ist E(Y) = D’(aX+ b) gemäß (2.76). Unter Anwendung von (2.81) erhalten wir

Y= [aX+ b — (aE(X) + b)]1 = [aX- aE(X)]“ = a’[X— E(X)]1

= a1[X- m,]’ mit m1== E(X).

Damit wird nach (2.81) und (2.76)

E(Y) = E[a’(X— m,)Z] = a1E[(X~ m1)2] = a1D1(X)

und somit

D’(aX+ b) = a’D2(X) (2.83)

(vorausgesetzt, daß D’(X) existiert). Für a = 1 erhalten wir

D’(X+ b) = D1(X). (2.84)

Der Fall a = 0 liefert die Beziehung

D2(b) = 0,

d.h., die Varianz einer Konstanten ist null.

Beispiel 2.40: X sei eine Zufallsgröße, für die

E(X) = ml und D’(X) = o" (a1 $0)
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existieren. Wir betrachten die Funktion

Y= gm = XI"? (2.85)

Die Formeln (2,81) und (2.83) mit a =la und b = — g liefern

Em =%,E<X) —%,m1 =%,(m1— m1>=o

und

L’ -
d2

Hiermit haben wir die Möglichkeit, einer Zufallsgröße X eine zugehörige in gewissem
Sinne standardisierte Zufallsgröße Y zuzuordnen.

D’(Y) =%D’(X) = 1.

Definition 2.31: Eine Zufallsgroße Y nennen wir standardisierte Zufallsgröße, falls D.2.3l

E = 0

und
D20’) = 1

gilt. Die durch die Fonnel (2.85) definierte Transformation bezeichnen wir als Standardisie-
rung der ZufalLrgroße X.

2.3.3.4. Momente einer Zufallsgröße

Erwartungswert und Varianz sind Vertreter einer umfassenderen Klasse von Kenn-
werten, der sog. Momente.

Definition 2.32: Ist X eine beliebige Zufallsgroße, so bezeichnen wir D'2'32

m,‘ = E (X*)

als das (gewöhnliche) Moment k-ter Ordnung (k = 1, 2, ...).‘)

Nach (2.79) und (2.80) erhalten wir folgende Berechnungsformel:

Z x§p,., falls Xdiskret ist;

m,,= ‘f; (2.35)

j x"fy(x) dx, falls Xstetig ist.
-n=

Wie wir sehen, ist der Erwartungswert E(X) einer Zufallsgröße X das Moment 1. Ord-
nung.

Definition 2.33: pk I= E[(X— m1)“] nennen wir das zentrale (aufdas Zentrum m] = E(X) be- D.2.33
zogene) Moment k-ter Ordnung (k = 1, 2, ...).‘)

Stellen Sie selbständig die zu (2.86) analogen Berechnungsformeln auf!
Das zentrale Moment 2. Ordnung einer Zufallsgröße X ist die Varianz D1(X).

Die zentralen Momente lassen sich durch die gewöhnlichen Momente ausdrücken und
umgekehrt. Wir zeigen dies für die Ordnung k = 2:

D’(X) = aux — man

‘) Wir setzen hierbei voraus, daß die angeführten Erwartungswerte existieren.
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= EIX’ - 2m,X+ mf]

= E(X’) — 2m1E(X) + m,’

= m; - 2m,’ + m?

= m, -

Die hier erhaltene Beziehung

D1(X)= m2 ‘ "112: EH") * [E(X)]’ (2-37)

können wir oft vorteilhaft bei der Berechnung der Varianz benutzen, Bestätigen Sie selbst
unter Benutzung von (2.79) und (2.80) die hier verwendete Relation:

E(X’ + aX+ b) = E(X1) + aE(X) + b.

A‘ hließend wollen wir noch folgendes anmerken:
In den Abschnitten 2.3.3.1. bis 2.33.4. spielte der Begriff des Erwartungswertes eine zentrale Rolle.
Diesen Begriff führten wir gesondert für diskrete und stetige Zufallsgrößen ein. Mit Hilfe des Stielt-
jes-Integrals (s. Band 2) können wir den Erwartungswert einer beliebigen Zufallsgröße X mit der Ver-
teilungsfunktion F„(t) = P(X < t) definieren:

w

E(X) := f rdF„(t).

Dabei setzen wir voraus, daß

n»

f|r| dF„(t) < on

ist.

2.3.3.5. Zusammenfassung

Wir wollen die wichtigsten in den vorangehenden Abschnitten erhaltenen Ergebnisse
über die Momente in Form einer Tabelle zusammenfassend darstellen. Damit setzen wir
die Tabelle 2.2 aus 2.3.2.5. (S. 48) fort und benutzen die dort verwendete Symbolik.

Voraussetzungen:
— Die angeführten Momente existieren, d.h., die entsprechenden Reihen bzw. Integrale

sind absolut konvergent.
— a und b sind beliebige reelle Konstanten.

Tabelle 2.2 (Fortsetzung)

diskrete Zufallsgröße K stetige Zufallsgröße

Erwartungswert
+a:

E(X) z: f xf‚(x) dxE<X> := Z x.p.
i=l

Erwartungswert einer
Funktion g(X)

E<g<X>>= i g<x.)p. I E(s(X)) = I g<x>/max
i=1 —en
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Tabelle 2.2 (Fortsetzung)

diskrete Zufallsgröße stetige Zufallsgröße

E(aX+ b) = aE(X) + b

E (b) z b

Moment k-ter Ordnung
(k = 1, 2, ...)

“° Mr ‘= EO"); w

m. _ z m. m, = E(X) m. = I x*rx<x>dx
i= l ’“’

zentrales Moment k-ter
Ordnung (k = 1, 2, ...)
m == E[<X — 500m

E[(X- E(X))*] = Z (x. — mm2. EKX — E<X»*1 = I (x — m1)kfx(X) dx
n= l -w

Varianz

D100 == E[(X — E<X>>11

MK) = m: — m? = Ear’) — [E<X>11

D’(aX+ b) = a’D’(X)
D’(b) = 0

|

Standardisierung der
Zufallsgröße X
(m, = E(X)‚ v’ = D’(X) $ 0]

X - mlY = __

a

[E(Y) = Ü. D’(Y) =1]

2.3.3.6. Einige weitere Kennwerte

Neben den bisher behandelten Momenten einer Zufallsgröße werden (vor allem in der
mathematischen Statistik) häufig folgende Kennwerte angewandt:

1. Quantile

Definition 2.34: Ist p eine beliebig reelle Zahl (0 < p < l), so heißt eine Zahl Q, mit den Eigen-
schuften

Fx(Q‚) = P(X< (2,) ä p
und

P(X> Qp)§1—I>

Quantil der Ordnung p (oder p-Quantil) der Zufallsgröße X. Das Quantil der Ordnung 1/2
wird als Median der Zufallsgröße X bezeichnet.

Bei gegebenem p ist Q, durch die angeführten Ungleichungen nicht in jedem Fall ein—

deutig bestimmt (vgl. Aufg.2.19). Ist FX(t) streng monoton wachsend, so ist Q, bei beliebi-
gem p eindeutig bestimmt. In diesem Fall existiert also zu vorgegebenem Funktionswert
der Verteilungsfunktion FX(Q‚) = p eindeutig der zugehörige Wert Q, des Argumentes
dieser Funktion. Veranschaulichen Sie diesen Sachverhalt durch eine Skizze!

Der Median QM ist neben dem Erwartungswert ein weiterer Kennwert zur Charakteri-

D.2.34
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sierung des Zentrums einer Zufallsgröße. Im Fall symmetrisch verteilter Zufallsgrößen
(P(X< m, - x) = P(X> m1+ x) für 0 g x< w) gilt ml = QM.

2. Absolutes zentrales Moment I. Ordnung

Als Kennwert für die Streuung der Werte einer Zufallsgröße X um ihren Erwartungs-
wert hatten wir das zentrale Moment 2. Ordnung benutzt. Das zentrale Moment 1. Ord-
nung liefert — wie in Aufgabe 2.17 zu zeigen ist — keine Information über die Eigenschaf-
ten einer Zufallsgröße. Demgegenüber stellt das absolute zentrale Moment l. Ordnung
einen weiteren Kennwert für die Streuung einer Zufallsgröße dar.

Definition 2.35: Der Erwartungswert der Zufallsgrüße Y= |X — m‚| wird als absolutes zentra-
les Moment l.Ordnung bezeichnet:

E (|X — m1|).

Wir setzen voraus, daß dieser Erwartungswert existiert.

3. Schiefe

Wie in der Aufgabe 2.18 am Beispiel einer stetigen Zufallsgröße nachzuweisen ist,
nimmt das zentrale Moment 3. Ordnung für symmetrisch verteilte Zufallsgrößen den
Wert 0 an. Es kann deshalb zur Charakterisierung der Asymmetrie oder Schiefe der Ver-
teilung einer Zufallsgröße herangezogen werden.

I a l ’:....., LDefinition 2.36: Das auf die dritte Potenz der “ zentrale "

3. Ordnung wird als Schiefe der ZufalLsgräße X bezeichnet:

I43
as und a’ = E[(X — m1)2].mi’ I43 = E[(X‘ M03]

Wir setzen voraus, daß diese Momente existieren.

4. Exzeß

Definition 2.37: Ist X eine ZufaILsgroße mit den Momenten a’ = E [(X - m1)’] und
u. = E [(X - m‚)"], deren Existenz vorausgeset l wird, so heißt

M4U43

Exzeß der ZufaILrgröße X.

Für die Normalverteilung, die wir im Abschnitt 2.3.6.3. behandeln werden, verschwin-
det der Exzeß. Wir können ihn deshalb als Maß für die Abweichung der Verteilung von X
gegenüber der Normalverteilung (mit gleichem Erwartungswert und gleicher Varianz) an-

sehen.

2.3.4. Aufgaben

2.12: In einer Werkstatt arbeiten unabhängig voneinander zwei gleichartige Maschinen.
Jede dieser beiden Maschinen kann im Zeitintervall [0, T) mit der Wahrscheinlichkeit p
ausfallen. Man bestimme die Veneilungstabelle der Zufallsgröße X mit

X == Differenz zwischen der Anzahl der arbeitenden und ausgefallenen Maschinen
und überprüfe die Eigenschaft (2.59).
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2.13: Gegeben sei *

0 für x<O‚
fi,(x)= a für 02x52,

0 fiir x>2.

a) Welchen Wert muß die Konstante a annehmen, damit fX(x) Dichtefunktion einer
stetigen Zufallsgröße ist‘?

b) Gesucht ist die Verteilungsfunktion von X.

2.14: Es sei X eine stetige Zufallsgröße mit der Dichtefunktion *

mac) = txIe‘*’-

Gesucht sind F„(t) und P(0 _S_ X< 1).

2.15: Berechnen Sie den Erwartungswert der diskreten Zufallsgröße X mit den Werten a

x, = 0, x, = 1, x3 = 2, und den Einzelwahrscheinlichkeiten

k

P(X= k) =%e’1 (k=0, 1,2, ...).

2.16: Die Dichtefunktion einer stetigen Zufallsgröße X sei durch a

0 für x_S_1,

M"): % für x>1

gegeben. Bestimmen Sie
a) die Verteilungsfunktion Fx(t),
b) P(1 g X < 2),
C) E (X)‚
d) D201’),
e) P(X: E(X)).

2.17: Die Zufallsgröße X besitze den Erwartungswert ml = E (X). Zeigen Sie, daß stets a:

!41=E(X—m1)=0
ist!

2.18: Es sei X eine stetige Zufallsgröße mit dem Erwartungswert m, = E (X). Die Dichte- *

funktion sei symmetrisch bzgl. ml:

fx(m1 " x)=fX(m1+ x) (V0 ä X< °°)-

Zeigen Sie:
1. P(X< m1) = P(X> m‚) = 1/2;

2» M: = E[(X- m1)’] =0-
2.19: Die diskrete Zufallsgröße X besitze die Verteilungstabelle: *

x, | ~3 i 0 1 1 j 2 1

P(X= x,) I 0,1 f 0,15 1 0,1 I 0,25 I 0,4

Bestimmen Sie
a) die Verteilungsfunktion Fx(t),
b) P(X > 0),
C) E(X)‚
d) D’(X).
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2.3.5. Einige spezielle diskrete Wahrscheinlichkeitsverteilungen

In diesem Abschnitt werden wir einige spezielle diskrete Wahrscheinlichkeitsverteilum
gen untersuchen, die fir die Beschreibung zahlreicher Problemstellungen von Bedeutung
Sind.

2.3.5.1. Die Null-Eins-Verteilung

Zufallsgrößen mit einer Null-Eins-Verteilung benutzen wir zur Beschreibung zufälliger
Versuche, bei denen uns nur zwei Versuchsausgänge — das Eintreten eines zufälligen Er-
eignisses A oder des komplementären Ereignisses A — interessieren.
Beispiele hierfür sind
— das Werfen einer Münze (A... „Zahl liegt oben“)
— das Prüfen eines Produkts aus einem vorgegebenen Warenposten

(A... „Das Produkt genügt den Ansprüchen“)
— die Inspektion einer technischen Anlage

(A... „Die Anlage ist funktionsfähig“)
— das Ziehen einer Kugel aus einer Urne mit M weißen und N — M schwarzen Kugeln

(A... „Die gezogene Kugel ist weiß“).

Zur zahlenmäßigen Beschreibung eines derartigen Versuchsschemas benutzen wir die
diskrete Zufallsgröße

i: {L falls xi eintritt,
0, falls A eintritt,

mit den Werten 0 und l.
Hat das zufällige Ereignis A die Wahrscheinlichkeit p, so erhalten wir

P(X=l)=p und P(X=0)=1—p. (2.88)

Definition 2.38: Eine Zufallsgröße X unterliegt einer Null-Eins-Verteilung mit dem Para-
meter p, wenn sie die Einzelwahrscheinlichkeiten (2.88) besitzt.

Die Verteilungstabelle der Null-Eins-Verteilung mit dem Parameter p hat damit fol-
gende Gestalt:

x,- 0 1

p.- 1 - p p

Anstelle der beiden Werte 0; l, die in der Regel aus Zweckmäßigkeitsgründen bevorzugt
werden, könnten zwei beliebige reelle Zahlen gewählt werden. In diesem Sinne ist die
Null-Eins-Verteilung Spezialfall der sog. Zweipunktverteilung.

Als wichtigste Kennwerte berechnen wir Erwartungswert und Varianz.

E(X) =0'(1—p)+1'p=p‚ (2-89)
D’(X)=E(X’)-lE(X)]Z=p*p’=p(1-11)- (2.90)

Beispiel 2.41: Aus einem Posten von insgesamt 500 Teilen, unter denen sich 5 Ausschuß-
teile befinden, wird auf gut Glück ein Teil entnommen und geprüft. Wir setzen

X == zufällige Anzahl der Ausschußteile bei Entnahme eines Teils

und erhalten nach der klassischen Definition der Wahrscheinlichkeit die Einzelwahr-
scheinlichkeiten

495
z ‚L- h _„__P(X—1)—5O0—0‚01 und P(X—0)—500—0‚99.
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Weiterhin ist

0 für t; 0,
Fx(t)=P(X<t)= 0,99 für 0<t§1,

1 für l<t

die Verteilungsfunktion von X und

E(X) = 0,01,
D’(X) = 0,0099.

2.3.5.2. Die Binomialverteilung

Typische Beispiele für die hier zu behandelnden Zufallsgrößen sind
— die zufällige Anzahl der in einem bestimmten Zeitabschnitt ausfallenden Maschinen

von insgesamt 15 voneinander unabhängig arbeitenden Maschinen gleicher Bauart un-

ter der Annahme gleicher Einsatzbedingungen für alle 15 Maschinen;
— die zufällige Anzahl der Treffer bei 20 voneinander unabhängigen Schüssen gleicher

Treffwahrscheinlichkeit;
— die zufällige Anzahl der Ausschußteile unter 100 voneinander unabhängig produzier-

ten Teilen, wenn jedes produzierte Teil mit der Wahrscheinlichkeit 0,03 Ausschuß ist.

Allen diesen Beispielen liegt das sog. Bemoullische‘) Versuchsschema zugrunde:
— Wir führen n (n = 1, 2, ...) voneinander unabhängige Versuche durch. In jedem dieser

Versuche interessieren uns nur zwei Versuchsausgänge (das Eintreten eines zufälligen
Ereignisses A bzw. des komplementären Ereignisses A).

— Wir setzen voraus, daß die Wahrscheinlichkeit von A in jedem Versuch die gleiche
ist:

P(A)=p (0<p<l).
Ausgehend von diesem Versuchsschema untersuchen wir die Zufallsgröße

X„ I= zufällige Anzahl der Versuche (von insgesamt n Versuchen), in denen A
eintritt.

X„ besitzt die Werte 0, 1, ...‚ n. Für n = 1 unterliegt X1 einer Null-Eins-Verteilung.
Zur Bestimmung der Einzelwahrscheinlichkeiten von X„

P(X‚. = k) (k = 0, 1. n)

gehen wir zunächst auf das Beispiel 2.29 im Abschnitt 2.2.4. zurück.

Beispiel 2.29: Es sei

X4 == zufällige Anzahl der Treffer bei 4 unabhängigen Schüssen.

Laut Voraussetzung liegt das Bemoullische Versuchsschema mit n=4 und p= 1/2
(Treffwahrscheinlichkeit für jeden einzelnen Schuß) vor.

Mit Hilfe der im Abschnitt 2.2.4. (vgl. S. 34) bei der Behandlung des Beispiels einge-
führten Ereignisse B9, B], ...‚ B, ergeben sich die Einzelwahrscheinlichkeiten (Bild 2.17)

P(X. = 0) = P(Bo) = (1 — ä)‘ = 0,062 5,

P(X„ = 1) = P(B1) = (1—%>H= 0,25,

‘) Jacob Bemoulli (1654-1705), Schweizer Mathematiker.
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P(X.. = 2) = P(B;) = > (1 — ä)” = 0,375,

P(X4 = 3) = P(B3) = (1 — i)“: = 0,25,

1

2

4 4 1 4*‘

P<X.=4>=P<B..)=(4) (—) (1-7) =o,o625.
2

H M

i /7-4 i

75 P-21 75 n=4

m’
.1 7

Ii | 7'5 |

D 7 2 3 4 x, ä 7 2 3 4 x,

Bild 2.17. Gegenüberstellung der Einzelwahrscheinli ‘ ' ' der
Binomialverteilung mit den Parametern n = 4, p = 1/2 und der
Binomialverteilung mit den Parametern n = 4, p = l/4

Für beliebige n (n = 1, 2, ...) und p (0<p < 1) erhalten wir die Einzelwahrscheinlichkei-
ten

P(X„=k)=(‚:)p‘(1‘p)"'* (k=0‚1‚---‚n)- (2-91)

Leiten Sie selbständig in Anlehnung an die im Beispiel 2.29 demonstrierte Vorgehens-
weise die Einzelwahrscheinlichkeiten (2.91) her, und zeigen Sie unter Verwendung des bi-
nomischen Lehrsatzes, daß

Z P(X„ = k) = 1
k=0

ist.

Definition 2.39: Eine diskrete Zufallsgräße X„ unterliegt einer Binomialverteilung mit den
Parametern n und p, falls sie die Einzelwahrsc‘ ' " "eiten (2.91) besitzt.

X„ besitzt die Verteilungstabelle

x,- | 0 l 1 l

P(X.. = x.~) (1 -17)" np(1-p)”"

und die Verteilungsfunktion

m» = P<X. < r) = Z (2)1241 — p)”. (2.92)

0§:<:

Für Erwartungswert und Varianz erhalten wir

Ear.) = Z k(;)p*<1 —p>~-*= up. <2-93)
k=0
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D’(X‚.) = E(X§) - [E(X„)]’

= Z k1(;)p*<1—p>"**—n1p2=np(1—p). (2.94)
k = 0

Beispiel 2.42: Auf ein Ziel werden unabhängig voneinander 20 Schüsse abgegeben. Jeder
einzelne Schuß trifft das Ziel mit der Wahrscheinlichkeit 0,8.

Gesucht ist die Wahrscheinlichkeit dafür, daß

a) genau 5 Treffer zu verzeichnen sind,
b) wenigstens ein Treffer gelingt,
c) höchstens l0 Treffer erzielt werden;
d) außerdem ist die mittlere Anzahl der Treffer zu berechnen.

Wir setzen

Xm == zufällige Anzahl der erzielten Treffer bei 20 unabhängigen Schüssen.

Diese Zufallsgröße unterliegt einer Binomialverteilung mit den Parametern n = 20 und
p = 0,8.

a) 1>(x‚„= 5) = (25°)o,s5~o,215;

Z0 20

b) Pm. :1>= Z Par... = k) = kZ ( k )o‚s*o‚21°-*
k=l =

oder

Form g 1>= 1- P(Xzo = o)= 1- 0,2m;

l0 l0

c) P(X2o§10)= Z P<X... = k) = Z( k )o.8*-0,22“;
k=0 k=0

d) E(X,o) = 20- 0,8 = 16.

Anmerkung: Die Einzelwahrscheinlichkeiten pk = P(X,, = k) gemäß (2.91) genügen den
Rekursionsbeziehungen

po=(1-p)"‚
-k+l _p„="—k— lfp p,,_1 fur k=1,2,...,n

bzw.

Pn=P",

1- k+1 ‚

pk= IJÜpkH fur k=n—1,n—2,...,0,
P

die die Grundlage für ein Rechnerprogramm bilden können. (Zur Berechnung der Vertei-
lungsfunktion s. Anmerkung S. 43)

2.3.5.3. Die Poissonverteilung‘)

Typische Beispiele für Zufallsgrößen, die wir — zumindest näherungsweise — als pois-
sonverteilt ansehen können, sind

‘) Simeon Denis Poisson (1781-1840), französischer Mathematiker,
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— die zufällige Anzahl von nichtkeimenden Samenkömern aus einer Packung von

1000 Körnern, wenn von diesem Saatgut durchschnittlich 1 % nicht keimt;
— die zufällige Anzahl der Telefonanrufe, die in einem bestimmten Zeitabschnitt in

einer Telefonzentrale einlaufen;
— die zufällige Anzahl der a-Teilchen, die von einer radioaktiven Substanz in einem be—

stimmten Zeitintervall emittiert werden.
Zwar könnten wir diese Zufallsgrößen mit Hilfe der Binomialverteilung beschreiben, je-

doch wird die Bestimmung ihrer Einzelwahrscheinlichkeiten hier durch folgende Beson-
derheiten des der Binomialverteilung zugrunde liegenden Bemoullischen Versuchssche-
mas erschwert:
— Die Anzahl n der durchgeführten unabhängigen Versuche ist sehr groß (im 3.Beispiel

die Anzahl der am Zerfallsprozeß beteiligten Atomkerne);
- Die Wahrscheinlichkeit p„ = P(A) des interessierenden Ereignisses A in jedem einzel-

nen Versuch (bei einer Serie von n Versuchen) ist sehr klein‘) (im 3.Beispiel die Wahr-
scheinlichkeit für den Zerfall eines einzelnen Kerns im betrachteten Zeitintervall).

Wir setzen

X I= zufällige Anzahl der Versuche, in denen das Ereignis A eintritt.

Unter den Voraussetzungen

n —> co‘

pa -> 0,
np,,—> ‚i > 0

lassen sich für X die Einzelwahrscheinlichkeiten

11k

P(X=k):Fe“‘ (k=0,1,2, ...) (2.95)

als Grenzwerte der Einzelwahrscheinlichkeiten der Binomialverteilung herleiten?)

Definition 2.40: Eine diskrete Zufallsgrüße X unterliegt einer Poissonverteilung mit dem
Parameter A > 0, wenn sie die Einzelwahrscheiulithkeiten (2.95) besitzt.

Verteilungstabelle und Verteilungsfunktion lauten:

x, |0 [1 |2 |...|k |...
2 k

P(X=x‚-) e“ Ac" ~12-—e”‘ %e“
Äk

F„(t)=P(X<t)= g We". (2.96)

0§k<A

Die Einzelwahrscheinlichkeiten der Poissonverteilung sind in der Tafel 6 des Anhangs für
ausgewählte Parameterwerte tabelliert.

Bestätigen Sie selbständig die folgenden Ergebnisse fir Erwartungswert und Varianz:
..‚ M

E(X) = Z kFe"=/1‚ (2.97)
k=0 -

‘) Die Poissonverteilung wird aus diesem Grund häufig auch als Gesetz der „seltenen“ Ereignisse
bezeichnet‘

1) Den hier angedeuteten Zusammenhang zwischen Binomial- und Poissonverteilung präzisieren
wir im Abschnitt 2.3.10.3. bei der Behandlung des sog. Poissonschen Grenzwertsatzes.
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man = E(X’) — [E(X)]’ = kin k2:—:e—4 A /1’ = ‚a. (2.98)

Beispiel 2.43: Eine Femsprechverrnittlung erhalte während der Spitzenbelastungszeit
durchschnittlich 300 Anrufe pro Stunde. Entsprechend ihrer Kapazität können maximal
10 Verbindungen pro Minute hergestellt werden. Gesucht ist die Wahrscheinlichkeit da-
fiir, daß in der Spitzenbelastungszeit die Anzahl der Anrufe die Kapazität übersteigt.

Lösung:
X == zufällige Anzahl der Anrufe pro Minute.

Wir können diese Zufallsgröße als poissonverteilt mit dem Parameter

300
,1 = =T =E (X) 60 5

ansehen (Bild 2.18).

E.

(7,2

Ä=5

0-7 Bild 2.18. Einzelwahrschein-
lichkeiten einer Poisson-
Verteilung mit dem

i i I Parameter ‚l = 5

q7Z34:'57«797(J777Z

P(X>10)=1-P(X§10)
10

=1— ZP(X=k)
k=0

10

~0,014.

Anmerkung: Die Einzelwahrscheinlichkeiten pk=P(X= k) gemäß (2.95) genügen der
Rekursionsbeziehung

Po = 971,

/1 .

pk =7p,._1 fur k = 1, 2,

(Zur Berechnung der Verteilungsfunktion s. Anmerkung S. 43)

2.3.5.4. Die hypergeometrische Verteilung

Wir betrachten ein Beispiel aus der Qualitätskontrolle,

Beispiel 2.44: Eine Lieferung von 100 Erzeugnissen wird einer Qualitätskontrolle unter-
zogen. Dabei werden auf gut Glück 5 der 100 Erzeugnisse herausgegriffen und überprüft.
Es sei X die zufällige Anzahl der dabei festgestellten fehlerhaften Erzeugnisse.

f Beyer. Wahrscheinlichkeitsrechnung
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Gesucht ist P(X= k) (k = 0, l, ...‚ 5) unter der Voraussetzung, daß die gesamte Liefe-
rung l0 fehlerhafte Teile enthält.

Bevor wir uns der Lösung dieses Problems zuwenden, formulieren wir die hier vorlie-
gende Aufgabenstellung in Form eines Urnenschemas:

In einer Urne befinden sich M schwarze und N — M weiße Kugeln. Ohne zurücklegen
werden n Kugeln auf gut Glück der Urne entnommen.

Zu untersuchen ist die Zufallsgröße

X == zufällige Anzahl der dabei gezogenen schwarzen Kugeln.

X unterliegt einer Verteilung, deren Einzelwahrscheinlichkeiten wir nach der klassischen
Definition der Wahrscheinlichkeit (unter Benutzung von Ergebnissen aus der Kombina-
torik) bestimmen:

...-‚„-„d<’f><’i?i’l
(i?)

k durchläuft dabei alle ganzen Zahlen, die die Ungleichungen

(2.99)

Ogkgn.
k;M‚

n-k;N—M
erfüllen.

Anmerkung: Wenden wir das gleiche Versuchsschema mit Zurücklegen an, so erhalten wir
eine binomialverteilte Zufallsgröße mit den Parametern n und p = M/N.

Definition 2.41: Eine diskrete Zufallsgröße X unterliegt einer hypergeometrischen Vertei-
lung, wenn ihre EinzelwahrscheinIiehkeiten durch (2.99) gegeben sind.

Verteilungstabelle (hier fir den Fall n g M, n g N — M), Verteilungsfunktion, Erwar-
tungswert und Varianz der hypergeometrischen Verteilung sind:

<"3M>i<i><5::t> iiii'<r><i‚z:r> ' '<%>
m < mi?)

k)(’::i‘>‘EFX(1)= g (N) ‚ (2.100)

0§k<: n

(M)("’M)E(X)=k:0k k (A:')_k =n%, (2.101)

n
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D’(X) = E(X’) - [E(X)]’ flink’ N W
n

M M N - n
— nW<1 —W> N_1. (2.102)

Wir kehren nun zum Beispiel 2.44 zurück. Hier ist

N: 100,
M: 10,
n: 5.

Für die hier eingeführte Zufallsgröße stellen wir die Verteilungstabelle auf (Bild 2.19):

Bild 2.19. Einzelwahrscheinlichkeiten
der hypergeometrischen Verteilung aus

Beispiel 2.44 (N = 100, M : 10,
n = 5)

x, | o | 1 | 2 | 3 | 4 | 5

P(X= x,) l 0,5837 I 0,3394 l 0,0694 I 0,0054 I 0,0002 | 0,0000

Nehmen wir an, daß vereinbart wurde, die Lieferung anzunehmen, wenn unter den 5 ge-
prüften Erzeugnissen höchstens ein fehlerhaftes Erzeugnis gefunden wird, so ist die
Wahrscheinlichkeit für die Annahme

P(X§1)=P(X=0)+P(X=1)
(10)<90) (10)<90)

=;+~——1——-L=05837+03394=09231.
(100) (100) ’ ’ ’

5 5

2.3.5.5. Zusammenfa ug

In Form einer Übersicht wollen wir in Tabelle 23a die wichtigsten Charakteristiken
einiger diskreter Zufallsgrößen zusammenstellen (s. S. 68).

2.3.6. Einige spezielle stetige Wahrscheinlichkeitsverteilungen

Im folgenden sollen einige spezielle stetige Wahrscheinlichkeitsverteilungen betrachtet
werden, die häufig in der Praxis Anwendung finden.
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2.3.6.1. Die gleichmäßige stetige Verteilung

Wir gehen von folgendem Beispiel aus.

Beispiel 2.45: Die Effektivität eines Produktionsprozesses werde u.a. durch einen Einfluß-
faktor X (z.B. Umwelteinfluß, Merkmal der verwendeten Rohstoffe usw.) beeinfiußt. Von
diesem Einflußfaktor sei lediglich bekannt, daß er im Intervall [a‚ b] variiert. Stehen keine
weiteren Informationen zur Verfügung, so werden wir für eine erste Untersuchung von der
Hypothese ausgehen, daß keiner der Werte aus dem Intervall [a‚ b] bevorzugt wäre. So-
bald weitere Informationen verfügbar sind, ist diese Ausgangshypothese natürlich zu

überprüfen.
Als einfaches mathematisches Modell dieses Sachverhaltes betrachten wir folgenden

zufälligen Versuch:
Aus dem Intervall [a‚ b] wählen wir zufällig einen Punkt, wobei kein Punkt aus [a‚ b]

vom Zufall begünstigt werde. Mit X bezeichnen wir die Koordinate dieses zufällig gewähl-
ten Punktes. Für die Berechnung der Verteilungsfunktion

Fx(t) = P(X< t)

betrachten wir zunächst den Fall a < t; b. In diesem Fall gibt F„(t) die Wahrscheinlich-
keit dafür an, daß der zufällig gewählte Punkt im Intervall [a‚ t] liegt. Nach der geometri-
schen Definition der Wahrscheinlichkeit erhalten wir für a < t; b

Fx(t)=P(X<t)=P(a§X<t)=11:2

Für beliebige t ist damit

o m: rga,
2- .mt): b_“ fur a<t§b, (2.103)

1 für b<t.

Die zugehörige Dichtefunktion bestimmen wir nach Formel (2.63) bzw. (2.70):

1 .

fX(’)= b-a fi" "951" (2.104)
O sonst.

Definition 2.42: Eine stetige Zufallsgräße X mit der Dichtefunktion (2.104) bezeichnen wir als D.2.42
gleichmäßig stetig auf [a‚ b] verteilt (Bild 2.20).

5m

gm

L
o-a

. . .

u z: r ' a z; r

Bild 2.20. Dichte- und Verteilungsfunktion einer auf [a‚ b] gleichmäßig stetig verteilten Zufalls-
größe X
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Wegen_der Form der Dichte (vgl. Bild 2.20) ist auch die Bezeichnung „Rechteckvertei-
lung“ gebräuchlich.

Erwartungswert und Varianz berechnen wir nach Formel (2.75) bzw. (2.87)

+°° b

E(X) = j tfX(t)dt=Itb+adz= “ä”, (2.105)

" 2 _

D2(X) =E(X’)— [E(X)]7 = I t’édt—((1—J:‘I1=%. (2.106)
a

2.3.6.2. Die Exponentialverteilung

Die Bedeutung der Exponentialverteilung liegt u.a. darin, daß ihre Anwendung die Be-
schreibung einer Reihe anwendungsbezogener mathematischer Modelle wesentlich ver-

einfacht. Die Darlegung der Gründe hierfür übersteigt den Rahmen dieses Bandes (Nähe-
res finden Sie im Band 19/1.).

Erfolgreiche Anwendungen der Exponentialverteilung finden wir u, a. bei folgenden
Problemen:
- zufällige Zeitdauer eines Telefongespräches;
— zufällige Zeit bis zum ersten Ausfall von Bauelementen, bei denen Alterungserschei-

nungen vernachlässigt werden können (z.B. gewisse elektronische Bauelemente);
— zufällige Zeitdauer für die Durchführung bestimmter Instandhaltungsmaßnahmen an

technischen Anlagen;
— zufällige Zeitdauer für gewisse Dienstleistungen;
— zufällige Zeitdauer zwischen zwei aufeinanderfolgenden Anrufen in einer Telefonzen-

trale.

D.2,43 Definition 2.43: Eine stetige Zufallsgrbße X unterliegt einer Exponentialverteilung (mit dem
Parameter Ä > 0), wenn sie die Dichtefunktion

_ Aer“ für t>0,
f"(’)'{o für 150

besitzt (Bild 2.21).

(2.107)

gm

Bild 2.21. Dichte- und Verteilungsfunktion der Exponentialverteilung

Diese Verteilung haben wir schon als Musterbeispiel 2.35 in den Abschnitten 2.3.2.4.
und 2.3.3. benutzt, so daß wir uns hier auf die Zusammenstellung der Ergebnisse be-
schränken:

1—e'“ für t>0‚
F"(’)=P(X<’)={o fiir t§0, (2.108a)
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+m

E(X) =1 t,1e"’dt =%, (2.10%)
O

17. (2.108c)DZ(X) = E(X’) — [E(X)]‘ = J t’1e"‘dt— % =

Beispiel 2.46: Die zufällige Zeit (gemessen in h), die zur Reparatur eines Femsehgerätes
aufgewendet werden muß, unterliege einer Exponentialverteilung mit dem Parameter
‚t = 0,5. Gesucht ist die Wahrscheinlichkeit dafur, daß zur Reparatur eines beliebigen Ge-
rätes mindestens 3 Stunden aufgewendet werden müssen.

Wieviel Stunden werden im Durchschnitt zur Reparatur eines Gerätes benötigt?

Lösung:
X == zufällige Reparaturzeit in h,

P(X;3)=1—P(X<3)

=1‘ FX(3)

= 1 — [1 - e'°'5'3]

: e-1,5

= 0,2231,

lE(X)=fi=2.

2.3.6.3. Die Normalverteilung

Mit der Normalverteilung lernen wir eine der grundlegenden Verteilungen der Wahr-
scheinlichkeitstheorie und mathematischen Statistik kennen. Sie findet darüber hinaus
Anwendung bei zahlreichen praktischen Problemen.

Als normalverteilt können wir Zufallsgrößen ansehen, die durch Überlagerung einer
großen Zahl von Einflüssen entstehen, wobei jede einzelne Einflußgröße nur einen im
Verhältnis zur Gesamtsumme unbedeutenden Beitrag liefert. Wir werden diese Problema-
tik im Abschnitt 2.3.10.4. in Form des zentralen Grenzwertsatzes präzisieren.

Beispiele für norrnalverteilte Zufallsgrößen sind:
— zufällige Beobachtungs- oder Meßfehler;
— zufällige Abweichungen vom Nennmaß bei der Fertigung von Werkstücken;
- zufällige Flugweite eines Geschosses;
- Effekte beim Prozeß der Brownschen Molekularbewegung.

Definition 2.44: Eine stetige Zufallsgröße X unterliegt einer Normalverteilung (mit den Para- D.2.44
metem u und 0 >0), wenn ihre Dichtefunktion durch

1 ( — 2

fx(t)= d; exp[- ‘h’?

gegeben ist.

J (—o°<t<+oo) (2.109)

Wir schreiben abkürzend: X ist N (‚u; a)-verteilt.
Gemäß Formel (2.63) erhalten wir die zugehörige Verteilungsfunktion

Fx(t) =

1 ’ — 2am __[expdx. (2.110)
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w)

l I l

im? p #417 t

am

7 ————————————— ——

Bild 2.22. Dichte- und Ver-
g - teilungsfunktion der Nor-

malverteilung mit den
1 Parametern /4 = 1, 17 = 1,5

I‘ r

In Bild 2.22 sind Dichte- und Verteilungsfunktion der Normalverteilung skizziert.
Aufschluß über die Bedeutung der Verteilungsparameter ‚u und a gewinnen wir bei der

Bestimmung von Erwartungswert und Varianz:

E(X) = N12? yxexp|:- ]dx=u, (2.111)

D201) = N12? (x — /4)1exp dx = a’. (2.112)

Um die Abhängigkeit der durch (2.109) und (2.110) gegebenen Dichte- und Verteilungs-
funktion von den Parametern ;4 und a hervorzuheben, verwenden wir die Symbolik

fx(t) = ¢(I; M, U),
Fx(t) = <1>(t; u, U).

In Bild 2.23 ist der Einfluß von ‚u und a auf die Gestalt der Dichtefunktion qz(t; u, a) dargestellt:

l

Bild 2.23. Einfluß der Parameter a und u auf die Gestalt der Dichtefunktion der Normal-
Verteilung
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1
¢(t; u, a) hat im Punkt u, ihr Maximum;

(N211
1p(t; u, a) ist symmetrisch bezüglich der Geraden t= u;
die Abszissen der Wendepunkte sind im = u i a;
eine Veränderung des Erwartungswertes u ergibt eine entsprechende Verschiebung der Dichte ent-
lang der t-Achse;
eine Veränderung der Standardabweichung a bewirkt eine Streckung bzw. Stauchung der Dichte-
funktion; je kleiner die Standardabweichung a ist, desto stärker ist die Konzentration der „Wahr-
scheinlichkeitsmasse“ in der Umgebung des Erwanungswertes u, d.h.‚ desto kleiner ist die Streu-
uug der Zufallsgröße um den Erwartungswert /4 (wir finden hier die Tatsache bestätigt, daß

a= 1/D’(X) ein sinnvolles Streuungsmaß ist).

Zur Vereinfachung des Arbeitens mit normalverteilten Zufallsgrößen ist in Tafel 1 bzw.
2 des Anhangs die Dichtefunktion (p(t; 0, 1) bzw. die Verteilungsfunktion <Z>(t; 0, 1) der
standardisierten Normalverteilung (u = 0, d = 1) tabelliertfl) In diesen Tafeln ist nur der
Bereich der nichtnegativen Argumente (t g 0) erfaßt.

Wegen der Symmetrie der Dichtefunktion erhalten wir die Funktionswerte für negative
Argumente aus den Beziehungen

<p(-t;0‚ 1) =rp(t;0, 1), (2-113)
<15(—t;0,1)=l— <D(t;0,1).

Für die rechentechnische Behandlung eignet sich folgende Approximation (nach Abra-
mowitz/Stegun):

5

1- <D(t;0, 1) = q2(t;0,1)Z b,~x‘+ 5(t) (t Z 0)
i=l

l

mit

x =ä, a = 02316419,

b, = 0,319 381 530,
b, = —0,356 563782,
b, = 1,781 477 937,
b, = —1,82l255 978,
b5=1‚330274429.

Dabei ist | 5(t)| < 7‚5-10‘“.
Die Verteilungsfunktion einer normalverteilten Zufallsgröße X mit E(X) = u und

D’(X) = a’ läßt sich mit Hilfe von (2,85) und (2.113) ermitteln. Die Vorgehensweise ist
folgendermaßen:

1. Gemäß (2.85) bilden wir die standardisierte Zufallsgröße

Y= X-ß;
a

1) Für Anwendungen in der mathematischen Statistik ist häufig der Einsatz von Tabellen fiir die
Funktionen

_ _ 1 l X’<1-"o(!,0,1)—‘/27Jexp[ 2]dx
und

1 .. X,
¢,(:;0,1)=—‘/2:”): exp[—T]dx (1:0)

günstig,
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Y unterliegt einer Normalverteilung mit

E(Y)=0 und D’(Y)= 1.

Damit können wir Werte der Funktion

Fy(t) = P(Y< t) = <D(t;0, 1)

aus Tafel 2 entnehmen.
2. Zur Bestimmung der gesuchten Verteilungsfunktion nehmen wir folgende Umfor-

mungen vor:

F,,(z)=P(X<:)=P(X;" < i")
=P(Y<t%>

=<1>(’"";0‚1).
0'

3. Weiterhin soll die Berechnung der Wahrscheinlichkeit dafür, daß die Zufallsgröße X
einen Wert aus dem Intervall [a‚ b] annimmt (a < b), angegeben werden.

p(,,§X§b)=p<£__l§fl§fl)
(T

i A 1

=P(“ ”gY<b ").)
U (7

Nach Formel (2.69) erhalten wir hieraus

P(a§X§b)=Fy(b;”)—Fy<¥)

=<1>("_";o,1)—<1>("_";o,1).
a a

Beispiel 2.47: Wir betrachten den Fall u = 6, o’ = 2.

1. Für t: 7 erhalten wir

F,,(7)=1=(X<7)=P(Y<%)= ¢(l§£;o, 1)

= <D(0,5; 0,1)
= 0,691462.

2. Für t = 3 ergibt sich

F,,(3) = P(X< 3) = P<Y<3%6)

= <I>(-1,5; 0, l)

‘) Hier benutzen wir die Eigenschaft der stetigen Zufallsgröße Y, daß für alle reellen t
P(Y= t) = 0 ist (vgl. Abschnitt 23.23.).
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=1— <1>(1,s;o, 1)

=1—o,933193
=0,066807.

3. P(6,2§X§8)=P<6’2+6§ Y: s?)
8~6 6,2—6_—<z><T,0,1)—<1>(T,o,1>

= <1>(1;o,1)— <1>(o,1;o, 1)

= 0,841345 — 0,539 828
:o,301517.

4. P(4‚6;X;7)=P(4%gY; 7;’)
= <I>(0,5;0,1)- <I>(‘-0,7;0, 1)

= <Z>(0‚5; 0, 1) - [1 - <D(O,7;0,1)]
<I>(0,5;0,1)+ <15(0,7;0, 1) - 1

O,691462 + 0,758 O36 -1
= 0,449 498.

Die Bedeutung des Parameters a einer Normalverteilung wird bei der Berechnung der
Wahrscheinlichkeiten dafür, daß diese Zufallsgröße Werte aus den Intervallen [‚u — ka,
,4 + ka] (k = 1, 2, 3) annimmt, verdeutlicht:

P(,u—kzr§X§;4+ka)=P(|X-uléka)

~<1X+1sc>
=P(|YI:k)
= <z>(k;o, 1)— <I>(—k;0, 1)

= qbac; 0, 1) — [1 — <1>(k; 0, 1)]
=2z15(k;0,1)—1,

P(|X-;4|§ (r) =2v0,841345 A1=0,682690,
P(|X'M|§2U)=2-O,977250-1=0,954500,
P(|X/I4|§3¢7) =2'O,998650 -1=0,997300.

Diese Wahrscheinlichkeiten dafür, daß eine norrnalverteilte Zufallsgröße X einen Wert
innerhalb der „ku-Grenzen“ (k = 1, 2, 3) annimmt, stellen wir in der folgenden Tabelle
zusammen:

k|P(|X*;t|§k0)=P(,u—kO'§X§/4+kt!)
1 0,682690
2 o,9545oo
3 o,9973oo

Das fiir k = 3 erhaltene Ergebnis wird auch als 30'-Regel bezeichnet.

Beispiel 2.48: Ein Werkstück besitzt die gewünschte Qualität, wenn die Abweichung eines
bestimmten Maßes vom entsprechenden Nennmaß dem Betrage nach nicht größer als
3,6 mm ist. Der Herstellungsprozeß sei so beschaffen, daß dieses Maß als eine normalver-
teilte Zufallsgröße angesehen werden kann, deren Erwartungswert mit dem Nennmaß
übereinstimmt. Weiterhin sei 17 = 3 mm bekannt.

Wieviel Prozent der Werkstücke einer Serie werden durchschnittlich mit gewünschter
Qualität produziert?
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Lésungi
X == zufällige Abweichung vom Nennmaß,

X ist normalverteilt mit

E(X)=u =0 und D’(X)= a’=9.

Y= é = f; ist die zugehörige standardisierte Zufallsgröße.

1=(|X|;3,s)=1=(’§I;33i

= P(lY|§1,2)
= qb(1‚2; o, 1) — <r>(—1‚2; o, 1)

= <1>(1,2;o, 1) —{1 — <1>(1,2;o,1)]
=2<1>(1,2; o, 1) -1
=2-o,s8493+1
= 0,769 86.

Etwa 77 % aller Werkstücke genügen durchschnittlich den Qualitätsansprüchen.

2.3.6.4. Zusammenfassung

In Form einer Übersicht wollen wir in Tabelle 2.3.b die wichtigsten Charakteristika
einiger stetiger Zufallsgrößen zusammenstellen (s. S. 77).

Auf Grund der großen Bedeutung fiir die Anwendung nehmen wir in diese Übersicht
die Erlang-, Weibull-Verteilung und die logarithmische Normalverteilung mit auf.

2.3.7. Mehrdimensionale Zufallsgrößen

2.3.7.1. Einleitung

Bisher haben wir bei zufälligen Versuchen das Verhalten einer Größe untersucht. In
der Praxis ist es aber oft notwendig, mehrere Größen gleichzeitig zu beobachten. Wir wer-

den so zur Problematik der mehrdimensionalen Zufallsgrößen geführt, die wir auch als Zu-
fallsvektoren 1) bezeichnen.

Im folgenden werden wir uns auf zweidimensionale Zufallsgrößen beschränken; die bei
ihnen geltenden Beziehungen lassen sich leicht auf n-dimensionale Zufallsgrößen (n > 2)
verallgemeinern.

Die Einführung mehrdimensionaler Zufallsgrößen wollen wir in den folgenden beiden
Beispielen motivieren:

Beispiel 2.49: Ein System besteht aus zwei gleichartigen parallel geschalteten Elementen.
Bei Ausfall eines der beiden Elemente arbeitet das System weiter, und es wird sofort mit
der Reparatur des fehlerhaften Elements begonnen. Eine ausfallfreie Arbeit des Systems
ist dann gegeben, wenn die Reparatur vor dem Ausfall des anderen Elementes beendet ist.
Es ist daher notwendig, neben der zufälligen Reparaturzeit auch die ausfallfreie Arbeits-
zeit des zweiten Elementes zu untersuchen.

Dieses Problem können wir in folgender Weise behandeln. Es sei
X == zufällige Reparaturzeit des zur Zeit t ausgefallenen Elementes,
Y== zufällige Zeit, die das zum Zeitpunkt t arbeitende Element nach t noch

ausfallfrei arbeitet.

‘) Diese Bezeichnung wird im Band 19/2 dieser Reihe verwendet.
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Durch Zusammenfassung der Zufallsgrößen X und Y zum geordneten Paar (X, Y) erhalten
wir eine zweidimensionale Zufallsgröße, mit deren Hilfe die Arbeitsweise des Systems un-

tersucht werden kann.

Beispiel 2.50: In einem Produktionsprozeß werden während eines bestimmten Zeitinter-
valles n gleiche Teile gefertigt. Hiervon gehört eine zufällige Zahl der einwandfreien Teile
zur Sorte 1 und die anderen einwandfreien Teile zur Sorte 2. Der Rest entspricht nicht
den Qualitätsanforderungen. Durch die Festlegungen

XI: zufällige Zahl der Teile, die zur Sorte l gehören,
Y1: zufällige Zahl der Teile, die zur Sorte 2 gehören,

ist mit der zweidimensionalen Zufallsgröße (X, Y) die Qualitätsbeschreibung des Produk-
tionsprozesses möglich.

Im eindimensionalen Fall unterscheiden wir zwischen stetigen und diskreten Zufalls-
größen. Auch bei mehrdimensionalen Zufallsgrößen sind derartige Unterscheidungen
möglich. Im Beispiel 2.49 sind X und Y stetige Zufallsgrößen. Entsprechend bezeichnen
wir (X, Y) als stetige zweidimensionale Zufallsgräße. Im Beispiel 2.50 ist durch (X, Y) eine
diskrete zweidimensionale Zufallsgroße gegeben. Natürlich treten auch solche zweidimensio-
nalen Zufallsgrößen (X, Y) auf, bei welchen die eine Zufallsgröße, z. B. X, diskret und die
andere, z.B. Y, stetig ist.

2.3.7.2. Wamscheinli " ' verteilung einer mehrdimensionalen Zufallsgröße

Einzelwahrscheinlichkeiten im diskreten Fall:
Bei einer diskreten eindimensionalen Zufallsgröße X haben wir durch Angabe der

Werte x‚- (i = 1,2, ...) und der Einze[Wahrscheinlichkeiten P(X= x‚) = p, die Verteilungs-
tabelle gewonnen.

Betrachten wir im Falle einer zweidimensionalen diskreten Zufallsgröße (X, Y) ihre
Wertepaare (x,-, y,,) (i, k = 1,2, ...) und die entsprechenden Einzelwahrscheinlichkeiten
P(X = x‚—, Y= yk) = p,-,(, so hat die Verteilungstabelle von (X, Y) die in Tab.2.4 angegebene
Form.

Tabelle 2.4. Verteilungstabelle einer zweidimensionalen
diskreten Zufallsgröße (X, Y)

Y yi y; ya ya y. Z
X

1711 F12 P13 P14 P1; P1

x." "';;,"'14;"';;;'";;;“'::."";.;;"’ i.’

Z p. pi; p; 12.. p r 1

In Tab.2.4 wurde zur Vereinfachung angenommen, daß die Zufallsgrößen X und Y je-
weils eine endliche Anzahl von Werten besitzen. In ihr sind neben den Einzelwahrschein-
lichkeiten p„, auch die Größen p,- (i = l, 2, „., n) und p.‚„ (k = 1, 2, ..., s) angegeben. Sie
werden wie folgt eingeführt:

p‚. ==2P(X=x‚.,1'=y„) (i=1‚2‚...,n) (2.114)
k = l

und

p_„:=ZP(X=x„Y=y„) (k=1,2,...,s); (2.115)
[=1
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p‚. =P(X = x,) ist die Wahrscheinlichkeit dafür, daß X den Wert x, und Y einen belie-
bigen Wert annimmt. Geben Sie entsprechend p.„ = P(Y=y„) verbal an!

Definition 2.45: Die Gesamtheit der Wahrscheinlichkeiten

p.» =P(X= xi), i: 1, 2, n,
bzw.

p-t = P(Y=yk)‚ k = 1, 2‚

wird als Randverteilung der Zufallsgröße X bzw. Y (in der zweidimensionalen Zufallsgrbße
(X, Y)) bezeichnet.

Für diese gilt:

n

Z17»:
.=1 k

Beispiel 2.50: Präzisieren wir die Fragestellung des Beispiels 2.50 durch die Annahme, daß
unabhängig voneinander 5 Teile produziert werden und mit den Wahrscheinlichkeiten
0,85 bzw. 0,1 ein Teil zur Sorte 1 bzw. Sorte 2 gehört, so erhalten wir die in Tab.2.5 ange-
gebene Veneilungstabelle.

p.„=1.
1

Tabelle 2,5. Verteilungstabelle der zweidimensionalen Zufallsgröße (X Y) aus Beispiel
2.50

Y 0 1 2 3 4 5 z
X

0 0,00000 0,00000 0,00001 0,00003 0,00003 0,00001 0,00008
1 0,00003 0,00021 0,00064 0,00085 0,00043 0 0,00216
2 0,00090 0,00542 0,01034 0,00722 0 0 0,02438
3 0,01535 0,06141 0,06141 0 0 0 0,13317
4 0,13050 0,26100 0 0 0 0 0,39150
5 0,44371 0 0 0 0 0 0,44371

z 0,59049 0,32304 0,07290 0,00310 0,00046 0,00001 1,00000

Bei diesem Problem hat der einzelne Versuch (Qualitätsprüfung eines Teils) im Ver-
gleich zum Bemoullischen Versuchsschema 3 Ausgänge. Die Einzelwahrscheinlichkeiten
werden wie bei der Binomialverteilung berechnet. Es sei

A, „Das geprüfte Teil gehört zur Sorte r“ (r = 1, 2),
A, „Das geprüfte Teil ist Ausschuß“.

Bekannt sind: P(A,) = p, = 0,85, P(A‚) =pz = 0,10 und P(A3) = p; = 0,05. Nimmt bei
5 unabhängigen Versuchen X den Wert i und Yden Wert k an, so bedeutet dies, daß A,

i-mal, A, k-mal und A, (5 — i — k)-mal beobachtet wird. Dafür gibt es

verschiedene Möglichkeiten. Deshalb ergibt sich für die Einzelwahrscheinlichkeiten

P(X = i, Y= k) =

für (2.116)

Die Verteilung dieser Zufallsgröße (X, Y) ist ein Beispiel für eine Poiynomialverteilung
[3]-

5! .

0,85 o,1o*(1A 0,35 — o,1o)5 k

1+ k g 5.

D.2.45
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Entsprechend der Definition der Randverteilung beschreibt die Zufallsgröße X in (X, Y)
die zufällige Anzahl der Teile, die zur Sorte 1 gehören, und unterliegt einer Binomialver-
teilung mit den Parametern n = 5 und p = 0,85, Die Einzelwahrscheinlichkeiten sind in
der letzten Spalte von Tabelle 2.5 eingetragen.

Die Randverteilung von Y in (X, Y) ist eine Binomialverteilung mit den Parametern
n = 5 und p = O, 1. Die Einzelwahrscheinlichkeiten sind der letzten Zeile der Tabelle 2.5
zu entnehmen.

Analog zum Begriff der bedingten Wahrscheinlichkeit, den wir im Abschnitt 2.2.3.1.
kennengelernt haben, wollen wir uns jetzt mit den bedingten Verteilungen bei diskreten
zweidimensionalen Zufallsgrößen befassen.

Definition 2.46: Ist X eine diskrete Zufallsgroße mit den Werten x„ i = 1, 2, ‚.., n, und Yeine
diskrete Zufallsgröße mit den Werten y), k = 1, 2, , s, so werden die Größen

P(X = .-‚ Y= ) .P(X=x,-/Y=yk)== (1=1,2,...,n) (2.117)

als bedingte E’ ‘n hrscheinlic“eiteu der Zufallsgröße X unter der Bedingung
{Y=yk}, k= 1,2, ...‚ s, und die Großen

P(X= x„ Y=yk)
P (X = xi)

als bedingte Einze1wahrschein].ic" ' der Zufallsgröße Y unter der “edingung
{X= xi}, i= 1,2, ..., n, bezeichnet, wobei P(Y=y„) > 0 bzw. P(X= x,-) > 0 vorausgesetzt

wird.

Unter Verwendung der Bezeichnungen P(X= x‚-, Y=yk) = p‚-‚„ P(Y=y„) = 1).,‘ und
P(X = x,) = p,-. können wir (2.117) bzw, (2.118) in der Form

P(Y=yk/X=x,-)I= (k=1,2,...,s) (2.118)

P(X= Xr/Y=yk) =fl
P-k

bzw.

P(Y=yk/X= x,) = —

Pr

schreiben.
Zeigen Sie unter Berücksichtigung von (2.114) bzw. (2.115), daß

Pik

Z P(X= x,-/Y=y,.) =1
i=1

Z P(Y=y„/X= x,-) =1
k:l

gilt!

Beispiel 2.50: Im Beispiel 2.50 erhalten wir für die Bedingung {Y= 0} folgende Vertei-
lungstabelle der bedingten Einzelwahrscheinlichkeiten:

x‚- l 0 | 1 | 2 l 3 | 4 | 5

P(X = x,»/

Y: 0)

Die Größen P(X = x,-/Y= 0) sind Einzelwahrscheinlichkeiten einer Binomialverteilung

0,000 00 0,02600 l 0,22101 l 0,751420,00004 l 0,00153
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mit n = 5 und p = P(A1/Ä‚) =0+95‚ da

_ P A n(A UA) P(A)
P=”W"2>=”‘*‘”*‘1“"3>=%‘%

gilt.

Dichtefunktion im stetigen Fall

Zur Charakterisierung einer stetigen Zufallsgröße X verwenden wir die Dichtefunktion
f„(t). Die stetige zweidimensionale Zufallsgröße (X, Y) läßt sich entsprechend durch die
Dichtefunktion f“ „m, t1) beschreiben. So können wir z. B. die Verteilung einer Zufalls-
größe (X, Y), bei der die Zufallsgrößen X und Y normalverteilt sind — sie wird als zwei-
dimensionale Normalverteilung bezeichnet — durch die Dichtefunktion

(r z)- L—fun n 1‚ 2 r 27mm) 1_ Q1

1 1 (11 ‘ #02 ('2 ‘ l42)Z (t1 ’ #1) (12 ’ M2)
>< expl: 2 1_ Q2 ( U? + 0% 2g um? (2.119)

mit den Parametern u] = E(X)‚ u; = E(Y), a} = D’(X), a; = B’(Y) und g beschreiben.
Über die Bedeutung des Parameters g werden wir später etwas sagen.

In Bild 2.24 ist die Dichtefunktion einer zweidimensionalen Normalverteilung gra-
phisch dargestellt.

Bild 214. Dichtefunktion einer
zweidimensionalen Normalver-
teilung

Analog zum diskreten Fall läßt sich die Randverteilung der Zufallsgröße X bzw. Y
durch die Sogenannte Randdichte

w

1,0,) := I fa „m, t,)d12 (2.120)

bzw. ‚m

„.

fy(t1) z: If“ y,(t1,z,)dt, (2.121)

charakterisieren. ‘m

Für den Fall einer zweidimensionalen Normalverteilung gemäß Formel (2.119) erhal-
ten wir unter Benutzung der Beziehung

6 Bayer, Wahrscheinlichkeitsrechnuns
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01‘ fix); + (l1 ‘ M2): _ 31 ’ H1 t2 — I42

cf a; u, a;

(t1 ‘ I11): (t2 ‘ I12 11- ‚ul 2
=e. 1 - 2 + j_ m.„ä < 9 ) „z g „l )

für (2.120) nach Substitution

u: 1 (tz‘llz_ tl-Mi)
1 _ Q1 (T2 g (71

1 1 (11 ” /4122f(1)=T,— “*2 = I; J’)-X 1 U1 27! BXPI: 2 0% ‘W 1 #1 1

Damit ist die Randverteilung von X in (X, Y) eine Normalverteilung mit den Parametern
n1 und 6,.

Zur Beschreibung der bedingten Verteilungen verwenden wir die bedingten Dichte-
funktionen

_ nÜiy 32)f.«(t1/Y= tz) 5’ fY(,1) (2.122)

bzw.

mt:/X= r1>==e’”"" ") ‚

frÜi) (2,123)

wobei f‚(t2) > O bzw. fX(t,) > 0 vorausgesetzt wird.
Zeigen Sie, daß die Größen fX(t1),fy(tz),fX(t1/Y: t2) und fy(t2/X: 1,) die Eigenschaf-

ten einer Dichtefunktion erfüllen!
' Unterliegt (X, Y) einer zweidimensionalen Normalverteilung, so gilt für die bedingte

Dichtefunktion f„(t,/Y= t2)

(T1 1

1 1 11‘ fl1+Q72(t2‘#2)
f(t/Y=t)= exp ——

x 1 2 011/1 — 92 ./2n 2 am — 92)

fX(t,/Y= 1,) ist Dichtefunktion einer Normalverteilung mit dem Erwartungswert

U .

141 + g 7: (t; - m) und der Varianz a"? (1 - g’).

Verteilungsflnzaktion im diskreten und stetigen Fall

Definition 2.47: Ist (X, Y) eine beliebige zweidimensionale Zufallsgröße, so ist durch

F(X_ y)(t1, tz) == P(X< t,, Y< t2)

ihre Verteilungsfunktion definiert.

F“ y,(t1, t2) ist die Wahrscheinlichkeit dafür, daß (X, Y) ein Wertepaar aus dem in
Bild 2.25 schraffierten Gebiet annimmt.

(2.124)

Wegen (2.124) können wir die Verteilungsfunktion durch die Beziehungen
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„V
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Z Ä P(X = xi, Y= yk), wenn (X, Y) diskret, (2.125)

F(x.n(’1—’2)= hr?” ff”
j’ I fa, ,,(x,y) dx dy, wenn (x, Y)stetig‚ (2.126)

q» Am

berechnen.

2.3.7.3. Unabhängigkeit von Zufallsgrößen,
Korrelationskoeffizient, Kovarianzmatrix, bedingter Erwartungswert

1. Im Abschnitt 2.2.3.2. haben wir die Unabhängigkeit von zufälligen Ereignissen ken-
nengelernt. Entsprechend läßt sich auch die Unabhängigkeit von Zufallsgrößen definie-
ren.

Definition 2.48: Zwei Zufallsgrbßen X, Y heißen unabhängig, wenn die Bedingungen D.2.48

P(X= x„ Y=y„) = P(X= xi) P(Y=yk) füralle i, k =1, 2, (2.127)
bzw.

f(x‚ nÜis t2) :fX(’1)fY(t2) fa’ alle ‘°° <t1at1< +°° (2-128)

im diskreten bzw. stetigen Fall erfüllt sind.

Anmerkung: Unter Verwendung der Verteilungsfunktion läßt sich die Def.2.48 ergänzen:
Zwei beliebige Zufallsgrößen X, Y heißen unabhängig, wenn

F(X. 1001» l2) = FxUi) FY02)

fiir alle -00 < t,, t2 < +oo gilt. (2.127) und (2.128) sind Spezialfalle dieser Relation.

Beispiel 2.51: (2.119) liefert für g = 0 folgende Dichtefunktion:

1 1 (t-M)’ (t-M)’
"

Die Randverteilung bezüglich X ergibt sich wie folgt:

+m

fXUl) = I 1001; t2) dtz



D.2.49

84 2. Wahrscheinlichkeitsrechnung

e _ i <11‘ M1):
X 2 0%= -;L’]d‚2_

2T[¢71

1

]H2?«.°"”[ 2 a;

Der als Faktor auftretende Integrationsausdruck ist gerade das Integral über die Dichte-
funktion einer normalverteilten Zufallsgröße (siehe 2.3.6.3.) und hat nach Eigenschaft
(2.64) den Wert 1.

Damit erhalten wir
_ 1 _ 1 U1‘ I102

Mir) f5”! exp i 2 U? .

Analog können wir fy(t,) berechnen. Es gilt

1 exp _ l (12 ‘ M01

V/£172 2 “i ‘

Damit ergibt sich:

für. Y)(t1»t2)=fx('1)fY(t1)-

Hieraus können wir wegen Def.2.48 folgern, daß bei einer zweidimensionalen Normalver-
teilung im Falle g = 0 die beiden Zufallsgrößen X und Y unabhängig sind.

Mit Hilfe des Begriffs der zweidimensionalen Zufallsgröße und der zum Abschnitt
2.3.3.3. analogen Beziehung zur Berechnung des Erwartungswertes von Funktionen einer
zweidimensionalen Zufallsgröße (hier nur für den stetigen Fall aufgeschrieben),

fyÜ2) =

+eo+oo

E<g<x‚ Y» =_I if E01,12)fix.Y)(’1,?z)dl1dt2,

ist es möglich, einige weitere Eigenschaften des Erwartungswertes und der Varianz anzu-

geben:
— Zwischen den Erwartungswerten der Zufallsgrößen X, Y und X i Ybesteht folgende Be-

ziehung:

E(XiY)=E(X)iE(Y)‚ (2.129)

falls die entsprechenden Erwartungswerte existieren.
— Sind die Zufallsgrößen X und Y unabhängig, dann gilt:

E<X- Y>=E(X>-E(Y>‚ (mo)
D’(Xi Y) = D1(X) + D’(Y),

falls die entsprechenden Erwartungswerte und Varianzen existieren.
Versuchen Sie, den Beweis dieser Eigenschaften — auch für n unabhängige Zufallsgrö-

ßen — selbständig unter Beachtung der Definition des Erwartungswertes durchzufüh-
ren!

2. Wir wollen uns nun der näheren Betrachtung des in (2.119) erstmalig auftretenden
Parameters g zuwenden.

Definition 2.49: Sind X und Yzwei beliebige Zufallsgrößen, so wird die Größe

E[(X— E(X)) (Y- E(Y))]
vD’(X) D’(Y)

als Korrelationskoeffizient van X und Y bezeichnet (auch 9x y).

“X, y): (2.131)

Berechnen wir fiir die zweidimensionale Normalverteilung den Korrelationskoeffizien-
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ten (2.131) mit Hilfe der Berechnungsformeln fur Momente, so erhalten wir den in der
Dichtefunktion (2.119) auftretenden Parameter g.

Für X= Y gilt g(X, Y) = l, und fiir X= - Y erhalten wir Q(X, Y) = ’1- Allgemein
gilt |a(X, Y)|§1-

Sind die Zufallsgrößen X und Y unabhängig, dann folgt aus (2.130), daß Q(X, Y) = 0
ist. Warum?

Die Umkehrung dieser Aussage gilt im allgemeinen nicht, d. h., falls g(.X‚ Y) = 0 ist,
dann brauchen die Zufallsgrößen X und Ynicht unabhängig zu sein, Im Beispiel 2.51vha-
ben wir jedoch zwei Zufallsgrößen betrachtet, für die diese Umkehrung der Aussage mög-
lich ist.

Nicht zuletzt wegen der angeführten Eigenschaften ist der Korrelationskoeffizient
g(X, Y) ein Kennwert fiir den linearen algebraischen Zusammenhang zwischen X
und Y.

Neben dem Begriff des Korrelationskoeffizienten wird zur Beschreibung des Zusam-
menhangs zwischen den Zufallsgrößen X und Y häufig der Begriff der Kovarianz einge-
führt.

Definition 2.50: Sind X und Yzwei beliebige Zufallsgrbßen, so wird die Große

b(X‚ Y) ‘= E[(X‘ E(X)) (Y- E(.Y))]‘)

als Kovarianz von X und Y bezeichnet.

Aus (2.132) und (2.76) folgt b(X, X) = D2(X) und b(Y‚ Y) = D’(Y). Die in Verbindung
mit der zweidimensionalen Zufallsgröße (X, Y) auftretenden Kovarianzen fassen wir zu

einer Matrix B(X, D, der Kovarianzmatrix, zusammen:

.1 b<X,X> b<X,Y>

‘w’ Y)'_(b<Y, X) b(Y, n)‘

(2.132)

(2.133)

Entsprechend bilden wir die Kovarianzmatrix B(X1, X2, ..., X.) der n-dimensionalen Zufallsgröße
(X1, X2, X„) für n > 2:

b(XlaXl) b(XlxXZ) b(Xl:Xn)
B(XHXDHWX_),= b<X.‚X.) b(X‚.X2) b<xz.x„) m34)

b(X„‚ X1) b(X.„ X2) b(X., X»)

3. Zur Charakterisierung einer zweidimensionalen Zufallsgröße (X, Y) mit Hilfe von

Kennwerten der Verteilung werden außer den Erwartungswerten E (X), E (Y) und den Va-
rianzen D2(X), D1(Y) und dem Korrelationskoeffizienten g(X, Y) häufig die bedingten Er-
wartungswerte und die bedingten Varianzen herangezogen. Wir wollen im folgenden die
Definition der bedingten Erwartungswerte angeben.

Definition 2.5l: Ist (X, Y) eine diskrete zweidimensionale Zufallsgröße mit den Wertepaaren

(x1: yl): > (xmy:)2)a S0 wird

n PikEX/Y= := ,.— 2.135m < y.) 12x1” < )

E(Y/X= x,-)1= Z W? (2.136)
k=1 l"

l) Der in (2.131) eingeführte Korrelationskoeffizient g(X‚ Y) ist damit die auf das Produkt der
Standardabweichungen von X und Y bezogene Kovarianz.

z) Wir beschränken uns hier auf diskrete Zufallsgrößen mit endlich vielen Wertepaaren,

D.2.50

D.2.51
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als bedingter Erwartungswert von X unter der Bedingung {Y= yk} (k = 1, 2, ‚ s) bzw.

als bedingter Erwartungswert von Y unter der Bedingung {X = xi} (i = 1,2, ..., n) be-

zeichnet.

Beixpiel 2.50: Da die Zufallsgröße X unter der Bedingung {Y= 0} einer Binomialvertei-
lung unterliegt, gilt

_ _ 0,85
E(X/Y— 0) — 5 T9

Definition 2.52: Ist (X, Y) eine stetige zweidimensionale Zufallsgröße, so wird

z 4,72 ‚

+m

E(X/Y= n) z: f t1f,,(t1/Y=t1)dt1
-0:

(2.137)

bzw.
m

E(Y/X = t,) == I t; fy(t2/X = t1) dt, (2.138)

als bedingter Erwartungswert von X unter der Bedingung {Y = t1} bzw. als bedingter Er-
wartungswert von Y unter der Bedingung {X = t1} bezeichnet.

Unterliegt (X, Y) einer zweidimensionalen Normalverteilung, so gilt

E<X/Y= 2.) = u. + eäm — m)
2

bzw.
D’(X/Y= t2) = o'{(1 — gl).

Als besondere Eigenschaft der Normalverteilung erkennen wir hier den in t2 linearen be-
dingten Erwartungswert und die konstante bedingte Varianz.

Versuchen Sie in gleicher Art, die bedingten Varianzen zu definieren.
Zeigen Sie, daß im Fall der Unabhängigkeit der Zufallsgrößen X und Y

E(X/Y=y:.) = E(X),
E(Y/X= x.) = E(Y),
E(X/Y= t1) = E(X),
E(Y/X= t1) = E(Y)

gilt! Berücksichtigen Sie dabei die Beziehungen (2.127) und (2.128)!

2.3.8. Funktionen von mehrdimensionalen Zufallsgrößen

2.3.8.1. Problemstellung

Analog zum Problem der Funktionen von eindimensionalen Zufallsgrößen (vgl.
Abschn. 2.3.3.3.) treten sehr häufig auch solche von mehrdimensionalen Zufallsgrößen
auf. Wir wollen ein Beispiel behandeln.

Beispiel 2.52: Die Reparaturdauer eines Gerätes eines bestimmten Typs ist eine stetige
Zufallsgröße; sie unterliege einer Exponentialverteilung mit dem Parameter /1. Es sind
10 Geräte dieses Typs ausgefallen, die nun zu reparieren sind. Es ist die Verteilung der
Gesamtreparaturdauer zu bestimmen.

Wir definieren:

X,- == zufällige Reparaturdauer des i-ten Gerätes (i = 1, 2, l0),
Z == Gesamtreparaturdauer.
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Auf Grund der Aufgabenstellung gilt:
l0

z=g(X.‚ „X119 = ZX.-.
i=l

In diesem Beispiel tritt als spezielle Funktion der zehndimensionalen Zufallsgröße
(X1, ...‚ X111) die Summe der einzelnen Größen X1, ‚ X11, auf.

Bei einer zweidimensionalen Zufallsgröße (X, Y) können außer der Summe Z = X + Y
u. a. die folgenden Funktionen auftreten:

X
Z1=X— Y, z‚=xy‚ z,=7.

2.3.8.2. Summen von unabhängigen Zufallsgrößen

Wir wollen uns auf zweidimensionale Zufallsgrößen (X, Y) beschränken und uns mit
der Verteilung der Zufallsgröße Z = X + Y beschäftigen. Dabei setzen wir die Unabhän-
gigkeit der Zufallsgrößen X und Y voraus.

Im Fall diskreter ganzzahliger Zufallsgrößen X und Ymit den Werten ..., -2, -1, 0, 1,

2, können wir die Einzelwahrscheinlichkeiten von Z mit den Werten ...‚ —2, -1, 0, 1,

2, wie folgt berechnen:

P(Z=k)= Z P(X=i‚Y=j) (k=0,il‚i2‚...).
L1"

l'+J'=k

Wegen der Unabhängigkeit von X und Y gilt

P(Z=k)= Z P(X=i)P(Y=j)
1J};

und damit für k= 0, i1, i2,

P(Z=k) =ZP(X=i)P(Y=k—i). (2.139)

Beispiel 2.53: X und Y seien zwei binomialverteilte unabhängige Zufallsgrößen mit den
Parametern n1 und p bzw. n, und p.

Wegen (2.139) können wir die Einzelwahrscheinlichkeiten der Zufallsgröße Z = X + Y
mit den Werten 2,, = k (k = 0, 1, n1 + n1) wie folgt berechnen:

P(Z= k): ä [("i1>pi(1_p)n1~v':| i)pk—:'(1 _p)n;~k+i:|
i=0

=("‘:"’)p*<1—p)~+"2-* <k=o,1,...,n.+n.>.

Wir erhalten wieder eine binomialverteilte Zufallsgröße. Diese hat die Parameter n1 + n1

und p.
Mit diesem Ergebnis läßt sich induktiv nachweisen, daß die Summe von n unabhängi-

gen Zufallsgrößen X,~(i= 1,2, ..., n), die alle mit dem Parameter p Null-Eins-verteilt
sind, einer Binomialverteilung mit den Parametern n und p unterliegt.

Im Falle stetiger Zufallsgrößen X und Y mit den Dichtefunktionen f1(t1) und f1‚(t1) kön-
nen wir die Verteilungsfunktion Fz(t) von Z mit Hilfe der Beziehung
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Fz(t> = P(Z < t) = ff f“ y,(t1,t,)dt,dtZ
I, + I; < I

bestimmen. Da X und Y unabhängig sind, erhalten wir mit Hilfe von (2.128) und nach
Umformung der Integrationsgrenzen:

+m K’ K.

m) = I I fy(12)dt2fx(t1)‘-"1 .

»eo —u:

Die Integration bezüglich t2 liefert dann

m) = I mt — t1)f3{(’1)d’1- (2.140)

Aus (2.140) erhalten wir durch Differentiation nach t die Dichtefunktion der Verteilung
von Z. Es gilt:

m) = Im: — t1)fX(t1)dt1- (2.141)

Beispiel 2.54: Es seien X und Y zwei unabhängige im Intervall [0, 1] gleichmäßig verteilte
Zufallsgrößen. Unter Verwendung der Formel (2.141) und unter Berücksichtigung, daß Z
Werte aus dem Intervall [0, 2] annehmen kann, erhalten wir

o für t§O,
_ z für 0<t§1,

fzm‘ 2-: für 1<z§2,
0 für 2<t.

In Bild 2,26 ist die Dichtefunktion der Zufallsgröße Z graphisch dargestellt.

Bild 2.26. Dichtefunktion der dreieckver-
teilten Zufallsgrößen Z aus Beispiel 2.54

Anmerkung: Eine Zufallsgröße, deren Dichtefunktion die in Bild 2.26 dargestellte Form
besitzt, wird als dreieckverteilt bezeichnet.

Während wir im Beispiel 2.53 als Summe zweier binomialverteilter Zufallsgrößen wie-
der eine binomialverteilte Zufallsgröße erhalten haben, ist im Beispiel 2.54 der Vertei-
lungstyp nicht erhalten geblieben. Es zeigt sich also, daß bei der Summation von Zufalls-
größen nur in speziellen Fällen der Verteilungstyp erhalten bleibt. Dies ist häufig von
großer Bedeutung. Verteilungen, bei denen der Verteilungstyp bei Summation erhalten
bleibt, sind neben der Binomialverteilung (unter den im Beispiel 2.53 angeführten Vor-
aussetzungen) zum Beispiel die Poissonverteilung und die Normalverteilung.

Anmerkung: Die Verteilungsfunktion der Zufallsgröße Z = X + Yberechnet sich im Falle
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der Unabhängigkeit der Zufallsgrößen X und Y aus den Verteilungsfunktionen FXm) und
Fy(t‚) durch die Sogenannte Faltung. (2.140) ist ein entsprechendes Beispiel.

Wird die Verteilung der Summe von n unabhängigen Zufallsgrößen X, i = 1, ..., n, mit
identischer Verteilung

Fx,(l)EFx(t)‚ i=1,~-~.n,

gesucht, so sprechen wir von der n-fachen Faltung der Verteilung von X. Diese wird schritt-
weise unter Anwendung der Formeln (2.139), (2.140) bzw. (2.141) berechnet.

Wir setzen die Behandlung des Beispiels 2.52 fort.

Beispiel 2.52: Die zufälligen Reparaturzeiten X,- (i = 1, ...‚ 10) sind identisch exponential-
verteilt:

- e"’ für t>0
_ 1 ._FXl,(t)—{0 fur téo (‚1>0, r—1‚...,10).

l0

Um die Verteilung der Gesamtreparaturdauer Z = Z X,- zu bestimmen, haben wir also die
' i=l

lOfache Faltung der Exponentialverteilung vorzunehmen. Wir erhalten eine sog. Erlang-
verteilung‘) der Ordnung 10 mit der Verteilungsfunktion

9 k1-2 (M) e"’ fiir t>0‚
F20) = k=o k!

0 fiir t; O

und der Dichtefunktion

110,9 d _

flu): 9! e 1 fur t>0‚
0 fur t§0.

2.3.8.3. Grundverteilungen der mathematischen Statistik

Wir behandeln in diesem Abschnitt einige Funktionen einer n-dimensionalen Zufalls-
größe (X1, , X,,) (n = 1, 2, ...)‚ die große Bedeutung für die mathematische Statistik ha-
ben. Dabei gehen wir stets von folgenden Voraussetzungen aus:

Die Zufallsgrößen X‚(i = l, ..., n) sind unabhängig und identisch normalverteilt mit
den Parametern u und 0'.

Verteilung des arithmetischen Mittels I7 van rmrmalverteilten Zufallsgréfien

Unter den o. g. Voraussetzungen unterliegt die Zufallsgröße

Z X.-
i= 1

einer Normalverteilung mit den Parametern nu und m/I . Diese Aussage läßt sich durch
Bestimmung der n-fachen Faltung der Normalverteilung mit den Parametern ‚u und a‘ be-
stätigen. Im Abschnitt 2.3.9.3. werden wir nochmals auf dieses Problem zurückkommen.
Eine für die mathematische Statistik grundlegende Folgerung formulieren wir im folgen-
den Satz:

l) Vgl. Abschnitt 2.3.6.4.
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Satz 2.6: Das arithmetische Mittel

___l "

X-— n 2X,
i=l

(2.142)

der unabhängigen und identisch nonnalverteilten Zufallsgrüßen X,» (i = 1, „., n) mit den Para-
metern

=;t und = U (i=1,..., n)

ist eine narmalverteilte Zufallsgröße mit den Parametern EO?) = ‚u und V D2017) = %.
n

Chi-Quadrat(x1)-Verteilung

Wir gehen von den o. g. Voraussetzungen mit u = 0 und a= 1 aus und betrachten die
Zufallsgröße

Y, = Z Xf. (2.143)
i: l

Y„ ist eine stetige Zufallsgröße mit der Dichtefunktion

ll I

T‘ 7
tn e für t> O,

fy„(t) 2; 1(1) (2.144)

2
0 für t; 0.

+<o

Hierbei ist F(x) = I t“‘ e“ dt (x > 0) die Gammafunktion (vgl, Band 12).
0

Y„ besitzt die Kennwerte

E(Y„) = n

und
D1(Y,,)= 2n.

Der Parameter n ist hierbei die Anzahl der in die Summe Y„ eingehenden unabhängigen
Summanden, die sog. Anzahl der Freiheitsgrade.

Definition 2.53: Eine Zufallsgröße Y„ mit der Dichtefunktion (2.144) unterliegt einer Chi-
Quadrat-Verteilung (kurz 12- Verteilung) mit n Freiheitsgraden.

In der mathematischen Statistik werden wir häufig folgende Aussage benutzen:

Satz 2.7: Sind X„ ...,X„ unabhängige und identisch normalverteilte Zufallsgräßen mit den

Parametern ‚u und o’, so unterliegt die Zufallsgrbße

1 " _

Y;_, == 7 Z (X, — X)’ (2.145)
i=1

einer Chi-Quadrat-Verteilung mit (n - 1) Freiheitsgraden.

Anmerkungen: 1. Wir wollen uns hier auf eine heuristische Deutung der Tatsache be-
schränken, daß sich in (2.145) die Anzahl der Freiheitsgrade um 1 vermindert: Durch die
Bildung von Y gemäß (2.142) wird eine Abhängigkeit zwischen den n Summanden in
(2.145) hergestellt, d. h., es wird ein Freiheitsgrad gebunden.
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2. Für die numerische Behandlung der Chi-Quadrat-Verteilung mit der Dichte

fy„(t) gemäß (2.144)

und der Verteilungsfunktion

Fy„(t) = P(Y,, < t)

können folgende Rekursionsformeln genutzt werden:

r

1 r -1fy,(t)=fie 2;fy2(t)—2e ,

„q
-

Im) =—„f 2 /‚„_‚<z> fur n = 3, 4.

Fy,<z)=2<z>(fi;0,1)—1,

„|
„

F,2(t)=1—e‘ ‚

F„„(t)=F‚„_‚(t)—2fy„(t) rm n=3,4,...

Student-Verteilung (t-Verteilung) 1)

Wir gehen von folgenden Voraussetzungen aus:
— X sei eine normalverteilte Zufallsgröße mit den Parametern u = 0 und U= 1;
— Y, unterliege einer Chi-Quadrat-Verteilung mit n Freiheitsgraden;
— X und Y„ seien unabhängige Zufallsgrößen.
Unter diesen Voraussetzungen betrachten wir die stetige Zufallsgröße

Z„ r- (2.146)
Y..

H

Sie hat die Dichtefunktion

r<"T+1) ‚m2 ‚z 2

fzn(t)=——— <1+7) (-00 <t< +00). (2.147)

vim F
Definition 2.54: Eine stetige Zufallsgroße Z„ mit der Dichtefunktion (2.147) unterliegt einer D.2.54
Student-Verteilung (t-Verteilung) mit n Freiheitsgraden.

Die Anwendung der Student-Verteilung in der mathematischen Statistik basiert auf fol-
genden Überlegungen:

Für unabhängige und identisch normalverteilte Zufallsgrößen X,- (i = 1, ...‚ n) mit den
Parametern ‚u und a gilt:

. . . — 1 " . . .

— Das arithmetische Mittel X =7: X ist normalverteilt mit den Parametern u und
i=1

‘) Student — Pseudonym fiir W. S. Gosset (1876-1937), englischer Naturforscher.
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_"_
J?

. Dann ist die Zufallsgröße

=Y—‘u

if
ebenfalls normalverteilt mit den Parametern 0 und 1.

Z:

— Y:_, = ä Z (X,- - A7)’ unterliegt einer Chi-Quadrat-Verteilung mit (n - 1) Freiheits-

graden.
— Es läßt sich weiter zeigen, daß Z und Y,’,“_, unabhängige Zufallsgrößen sind.
Damit erhalten wir folgendes Ergebnis:

5.2.8 Satz 2.8: Sind X1, ..‘,X,, unabhängige und identisch normalverteilte Zufallsgrößen mit den
Parametern ‚u und o‘, so unterliegt die stetige Zufallsgröße

z;_, := (2.148)

einer Student-Verteilung mit (n - 1) Freiheitsgraden.

Fishersche F-Verteilung

Wir betrachten den Quotienten

"zyn,
„I, ‚

"z

wobei Y,‘ und Y,,2 unabhängige Chi-Quadrat-verteilte Zufallsgrößen mit den Freiheitsgra-
den n1 bzw. n; sind.

VVMV „2 ist eine stetige Zufallsgröße mit der Dichtefunktion

„. m

fW (z) = (1+ Ä z) 2 rm t> 0 (2149)
"" "1 "i "2 n; ’ '

<7» v)
0 für t; 0.

l

Dabei ist B(p‚ q) = I t"“(1 — l)""dt die Betafunktion (vgl. Band 12).
0

])_2_55 Definition 2.55: Eine stetige Zufallsgröße VV,,1V „z unterliegt einer Fisherschenl) F-Verteilung
mit (n1, n2) Freiheitsgraden, wenn sie die Dichtefunktian (2.149) besitzt.

Die Anwendung der F-Verteilung in der mathematischen Statistik wird durch die Aus-
sage des folgenden Satzes ermöglicht.

‘) Ronald A.Fisher (1890-1962), englischer Statistiker.
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Satz 2.9: Sind

X9’, ...,Xf,‘l’

und
X§”, ...,Xf,’2’

unabhängige normalverteilte Zufallsgrößen mit den Parametern

E(Xih)=/‘1s 1/D’(XE")=«n (i=1‚...‚n.)
und

E(X‚‘?’)=/tz‚ V0104“) zu, (i=1‚„.,n2)
und gilt

01 = U; = <7 (/41,142 beliebig),

so unterliegt die Zufallsgrbße

<n.—1>2<X:"— im)!
W 1:1

* :=n,—1,n,—1 n} (2.150)
(n1_1)Z(X;2)_ in):

j=1

einer Fisherschen F-Verteilung mit (n1 — 1, n; - 1) Freiheitsgraden.
Dabei ist

n‚ n,

im =i Z Xi" und im =i Z X9‘.
"l 5:1 l "1 j=1 J

Anmerkung 1: Wir haben uns hier auf die Angabe der wichtigsten Ergebnisse zu den be-
handelten Verteilungen beschränkt. Eine ausführlichere Darstellung dieser Problematik
finden Sie z.B. in [3; l4].

Anmerkung 2: Im Anhang finden Sie graphische Darstellungen der hier aufgetretenen
Dichtefunktionen. Die wichtigsten Werte der entsprechenden Verteilungsfunktion-im sind
im Anhang in Tafeln zusammengefaßt. In Verbindung mit Fragen der mathematischen
Statistik werden wir den Gebrauch dieser Tafeln kennenlernen.

2.3.9. Charakteristische Funktionen

In diesem Abschnitt werden wir ein in der Wahrscheinlichkeitsrechnung sehr ge-
bräuchliches und wichtiges analytisches Hilfsmittel betrachten. Dabei werden komplex-
wertige Zufallsgrößen der Form e“ untersucht, wobei i die imaginäre Einheit ist. Da die
imaginäre Einheit eine Konstante ist, sind nachfolgend die Gesetzmäßigkeiten für Erwar-
tungswerte von Funktionen von Zufallsgrößen benutzt worden (siehe Abschn.2.3.3.3. und
2.3.7.3.)

2.3.9.1. Definition und Beispiele

Definition 2.56: Für eine Zufallsgraße X wird

rp„(s) I: E (em) (s bei. reell)

als charakteristische Funktion der Zufallsgrbße X bezeichnet.

(2.151)

Aus der Definition folgt wegen (2.79) bzw. (2.80) die Berechnungsformel für m„(s) so-

wohl fiir diskrete als auch fiir stetige Zufallsgrößen. Es gilt:

S.2.9

D.2.56
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ms) = Z e‘”*P(X = xi), (2.152)
kil

wenn X eine diskrete Zufallsgröße mit den Werten xk (k = 1,2, ...) ist, bzw.

ms) = I€mfx(x)dX. (2.153)

wenn X eine stetige Zufallsgröße mit der Dichtefunktion }}(x) ist.‘)

Da |e“"| :1 ist, läßt sich zeigen, daß zu jeder Zufallsgröße X eine charakteristische
Funktion q2x(s) existiert. Auch die Umkehrung ist gültig. Im Abschnitt 2.3.9.5. werden wir
näher darauf eingehen.

Wir wollen nun für spezielle Verteilungen die charakteristische Funktion berechnen.

Beispiel 2.55: Die Zufallsgröße X unterliege einer Poissonverteilung mit den Einzelwahr-
scheinlichkeiten

k

P(X=k)=%e“ (k=O,1,2,...;A>O).

Die zugehörige charakteristische Funktion ergibt sich nach (2.152) wie folgt:
+0,

ms) = Z emx = k)
k=0
+-on +m -

' ll: (Ä ens)!‘
= Z euk__e~z = ea Zj

- k! _ k!k—0 k—0

z e-/161:‘:

ms) = e“‘""’. (2.154)

Dieses Ergebnis folgt aus der Tatsache, daß für |x| < 0°

k=0 k!
gilt.

Beispiel 2.56: Die Zufallsgröße X sei normalverteilt mit E (X) = 0 und D’(X) = 1. Damit
gilt nach (2.153) für die entsprechende charakteristische Funktion 4p„(s):

‚m

aIx(s) = Ie*m(x)dx
t... _x_,

=L I e“‘e 2 dx
(i?

-—m

l) Die Berechnungsformel (2.153) für stetige Zufallsgrößen zeigt uns, daß q1X(S) die aus der Analy-
sis bekannte Fouriertransfonnierte der Dichtefunktion f, (x) ist. Natürlich gilt unter Verwendung des
Stieltjes-Integrals für beliebige Zufallsgrößen

n:

ms): I em arm).
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‘m ‚(x-is)’ _‚:_*

=-—21—— J e e 1 dx.
1/ n

—m

Unter Berücksichtigung der Beziehung

M“ _(x—isy

[E 2 dx=m
gilt:

„|
1

am) = e’ (2.155)

Beispiel 2.5 7: Die Zufallsgröße Y sei normalverteilt mit E (Y) = u und D’(Y) = U’. Zur Be‘
rechnung der charakteristischen Funktion :p‚(s) verwenden wir die zwischen der Zufa]1s—

größe X aus Beispiel 2.56 und der Zufallsgröße Y bestehende Beziehung

Y= o’X + u.

Aus (2.151) folgt

Ms) = E (e““”‘*”’)
= E(eiwXeiw)

= ein: E(eimX)

= e““wx(zrs)
_ Q

= e“"e 2 .

Begründen Sie die einzelnen Schritte! Verwenden Sie dazu die Eigenschaft (2.81) aus Ab-
schnitt 2.3‚3.3. und das Ergebnis von Beispiel 2.56!

Damit ergibt sich als charakteristische Funktion einer norrnalverteilten Zufallsgröße Y
mit den Parametern u und LT

417:‘

"Tms) = am (2.156)

2.3.9.2. Berechnung von Momenten

Mit Hilfe der charakteristischen Funktionen lassen sich die existierenden Momente
einer Zufallsgröße ermitteln. Wir wollen die Formel zur Berechnung des Erwartungswer-
tes hier lediglich fiir eine stetige Zufallsgröße X herleiten. Nach (2.153) gilt für die cha-
rakteristische Funktion:

+.„

wx(s)= I e‘=v;<x)dx.

Wir bilden die erste Ableitung von q2,,(s), die dann existiert, wenn E (X) existiert. Es ist

qz;,(s) = fix e""f,,(x)dx.
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Für s = 0 gilt:

mo) = if x/x<x> ax.

Damit erhalten wir aber fiir den Erwartungswert E (X):

’ 0E00 =

Zeigen Sie, daß bei entsprechendem Vorgehen für die existierenden gewöhnlichen Mo-
mente E (X") beliebiger Zufallsgrößen X die Beziehung

(k) 0
E(X")=m+() (k=1‚2‚ ...) (2.157)

gilt!

Anmerkung: Wegen (2.87) läßt sich die Varianz D’(X) der Zufallsgröße X mit Hilfe der
Beziehung

D’(X) =

Ü) ’

— = «nur» + (<p;<0>)’ (2.158)

berechnen.
Die Anwendung des Zusammenhangs zwischen der charakteristischen Funktion <p,,(s)

und den gewöhnlichen Momenten E (X“) einer Zufallsgröße X wollen wir an zwei Beispie-
len verdeutlichen.

Beispiel 2.58: Die Zufailsgröße X unterliege einer Poissonverteilung mit dem Parameter A.

Die charakteristische Funktion von X errechneten wir im Beispiel 2.55

¢x(s) = e“°""’-
Daraus folgt

qJ}(s) = Me“ e”: ‘ 1’

und
zp},(0) = }.ie°e‘“"’ = ‚ii.

Damit erhalten wir

‚ O .

w’: ) = = 2 [vgl. (2.97)].

Berechnen Sie die Varianz D’(X) nach (2.158).

Beispiel 2.59: Die Zufallsgröße X unterliege einer Normalverteilung mit den Parametern ‚u

und a. Damit gilt nach (2.156) für die charakteristische Funktion:

E(X) =

1 Z

<z2x(s) = exp [ills - 0%] ‚

2 2

<12’x(s) = (i/4 - a’s) exp [ins 7.
Aus der Ableitung dieser Funktion erhalten wir fur s = 0:

Wim) = 1/4

und daraus
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E<X> = = u

(vgl. (2.111)). Mit (2.158) kann entsprechend die Varianz D’(X) berechnet werden.

2.3.9.3. Der Multiplikationssatz

Die charakteristischen Funktionen haben außer für die Berechnung der Momente von

Zufallsgrößen auch fiir die Problematik der Faltung von Wahrscheinlichkeitsverteilungen
(vgl. 2.3.8.) wesentliche Bedeutung.

Grundlage hierfür ist der folgende Multiplikationssatz:

Satz 2.10: Es seien X und Yzwei beliebige unabhängige Zufallsgrbßen mit den charakteristi-
schen Funktionen ¢pX(s) und qzy(s). Die charakteristische Funktion qaz(s) der Zufallsgräße
Z = X + Y ist das Produkt der charakteristischen Funktionen der Zufallsgroßen X und Y:

¢7z(S) = ¢7x(-V) wy(s). (1159)

Der Beweis dieses Satzes beruht darauf, daß bei unabhängigen Zufallsgrößen X und Y
auch deren Funktionen e“ und e“ unabhängig sind und damit

E-(enun n) = E(ei:X) E-(em)

gilt. Mit Hilfe dieses Multiplikationssatzes können wir also die Faltung von Verteilungen
auf die Multiplikation der entsprechenden charakteristischen Funktionen transformie-
ren. Der Satz 2.10 läßt sich auch auf die Summe endlich vieler unabhängiger Zufallsgrö-
ßen erweitern.

Beispiel 2.60: X und Y seien unabhängige norrnalverteilte Zufallsgrößen mit den Para-
metem u, und ax bzw. uy und ay. Wir wollen die charakteristische Funktion 4pz(s) der
Zufallsgröße Z = X + Y berechnen.

Für die charakteristischen Funktionen q2,,(s) bzw. opy(s) von X und Y ergibt sich nach
Beispiel 2.57:

. dis’
ms) = exp mxs -7

und

. vis’
wy(s) =exp Iuys- 2

und mit Hilfe des Multiplikationssatzes für die gesuchte charakteristische Funktion:
_ _ a},s’ 05s’

<rz(s) = exp wxs + Iuys - 2 - 2

Setzen wir ‚u, + u, = u, und ¢1§,+ d2}! = a}, so ergibt sich schließlich:

. väs’
07z(5)=eXP mzs- 2 -

Der Vergleich dieses Ergebnisses mit der charakteristischen Funktion einer normalverteil-
ten Zufallsgröße zeigt uns, daß die zu :pz(s) gehörende Zufallsgröße Z ebenfalls normal-

verteilt ist und die Parameter u; = u, + u, und a, = ‘/63, + a}, besitzt. Hieraus können wir
die wichtige Folgerung ziehen, daß die Summe zweier unabhängiger normalverteilter Zu-
fallsgrößen wieder eine normalverteilte Zufallsgröße ist, deren Erwartungswert die
Summe der einzelnen Erwartungswerte und deren Varianz die Summe der einzelnen Va-
rianzen ist.

7 Beyer, Wahrscheinlichkeitsrechnung

S.2.10
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2.3.9.4. Erzeugende Funktionen

Bei diskreten Zufallsgrößen mit nichtnegativeri ganzzahligen Werten ist die charakteri-
stische Funktion eine Potenzreihe in z = e“:

ms) = Z <e‘=>*P<X = k).
k=0

Derartige Potenzreihen bezeichnen wir in der Wahrscheinlichkeitsrechnung als erzeu-

gende Funktionen.

Definition 2.57: Ist X eine Zufallsgröße mit nichtnegativen ganzzahligen Werten k (k = O, 1,

2, ...), so heißt

gX(z) z: EU") = E z"P(X= k) (|z| g 1) (2.160)
k=0

die erzeugeude Funktion von X.

Durch die Einzelwahrscheinlichkeiten P(X = k) (k = 0, 1, 2, ...) ist gX(z) eindeutig be-
stimmt.

Beispiel 2.61: Die Zufallsgröße X sei binomialverteilt mit den Parametern n und p. Dann
errechnet sich die erzeugende Funktion wie folgt:

w) = z*(:)p*<1— p>~—*

„ n h

k;fl(k)<pz>*<1—p) k

=(1-12+ zp)",

gx(z) = (1 + p(z - 1))"

Analog zu den charakteristischen Funktionen lassen sich mit Hilfe von g„(z) die exi-
stierenden Momente der Zufallsgröße X berechnen. Es gilt beispielsweise

E (X) = 83:0)

(2.161)

(2.162)
und

E(X’) = 832(1) + 8341). (2-163)
Warum?

Bei gegebener erzeugender Funktion einer Zufallsgröße X lassen sich die Einzelwahr-
scheinlichkeiten P(X = k) durch Koeffizientenvergleich der Potenzreihe

Z z"P(X= k)
k=0

mit der Taylorreihenentwicklung von g„(z) im Punkt z = 0 bestimmen. Wir erhalten:

(2.164)

Überprüfen Sie die Richtigkeit von (2.164)!

Beispiel 2.62: Die Zufallsgröße X sei binomialverteilt mit den Parametern n und p. Mit
ihrer erzeugenden Funktion
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gx(z) = (1 + p(z - 1))"

erhalten wir

SSAZ) = "170 + I7(Z ‘ 1))" ’ ‘.

332(2) = n(n -1)p’(1 +p(z- 1))”"’,

g§}"(z)= n(n - 1) (n - k-1)p"(1+p(z-1))""‘
und

n!
g§}"(0)=U—_—,;)~.p"(1—p)”"‘ (k=0, 1, rt).

Damit gilt nach (2.164)

P(X= k) = (2)1141 -p)"”‘, k=0, 1, n.

Anmerkung: Das Bestimmen der Einzelwahrscheinlichkeiten der Zufallsgröße X bei gege-
bener erzeugender Funktion g„(z) ist nach (2.164) eindeutig möglich.

2.3.9.5. Weiterfiihrende Betrachtungen

Wir kommen nun auf die im Anschluß an die Definition der charakteristischen Funk-
tion gemachte Bemerkung über die Existenz und Eindeutigkeit der Wahrscheinlichkeits-
verteilung bei gegebener charakteristischer Funktion zurück. Folgender Satz ist von
grundlegender Bedeutung:

Satz 2.11: Ist qzX(s) bzw. FX(t) die charakteristische Funktion bzw. die Verteilungsfunktion einer S.2.ll
Zufallsgröße X, und sind t, und t2 Stetigkeitsstellen van FX(t), so gilt

+1’
1 . e—i::, _. e~i:r2

Fx(tz) - FxOi) =grltrfi gmflüds. (2.165)

-T

Bilden wir in (2.165) den Grenzwert t1—> —<>°‚ wobei t1 die Stetigkeitsstellen von FX(t)
durchläuft, und setzen wir t2 = t, so ergibt sich

+ T

1 1' 1' em _ w‘ d 2166FXÜ) -Fh_1fl1w T13: is lPx(S) S. ( « )

— T

Damit gilt folgender Satz:

Satz 2.12: Durch die charakteristische Funktion ist die Verteilungsfunktion eindeutig be- S.2.l2
stimmt.

Auf Grund der Zusammenhänge zwischen Verteilungsfunktion und Dichtefunktion
bzw. Einzelwahrscheinlichkeiten ergibt sich aus (2.166)

f(t)=—1~ me""qJ (s)ds (2.167)X 27T X

und
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1 " .P(X=k)=F J e“"‘q2,,(s)ds (k=0, 1, ...). (2.168)

—1r

(2.167) gilt für stetige und (2.168) für diskrete Zufallsgrößen mit ganzzahligen Werten.
Die Beziehungen (2.165), (2.166), (2.167) und (2.168) bezeichnen wir als Umkehrformeln,
die es prinzipiell gestatten, aus der charakteristischen Funktion die Wahrscheinlichkeits-
verteilung zu bestimmen.

Sie finden weiterführende Betrachtungen beispielsweise in [3; 4; 12].

2.3.10. Grenzwertsiitze

2.3.10.1. Einleitung

Aus der Physik ist bekannt, daß die von einem Gas ausgeübte Druckkraft durch die
Stöße der Gasmoleküle gegen eine begrenzende Wand hervorgerufen wird und daß bei
konstanter Temperatur für ein sog. ideales Gas das Gesetz von Boyle-Mariotte pV= const
gilt, wobei mit p der Druck und mit V das Volumen des Gases bezeichnet wird. Weiter ist
bekannt, daß die Bewegung der Gasmoleküle zufällig erfolgt. Demzufolge müßten wir an-
nehmen, daß auch der daraus resultierende Druck einen zufälligen Wert annimmt. Die
angegebene Zustandsgleichung fiir Gase sagt aber aus, daß bei konstanter Temperatur
und bei konstantem Volumen ein bestimmter konstanter Druck herrscht. Ursache hierfiir
ist die sehr große Zahl der sich bewegenden Gasmoleküle.

Mit ähnlichen Problemen, d.h. mit der Untersuchung des Verhaltens einer großen Zahl
von zufällig wirkenden Einflüssen, werden wir uns im folgenden beschäftigen.

Zur Behandlung dieser Fragen benötigen wir die in der Wahrscheinlichkeitsrechnung
häufig verwendete Tschebyscheffsche‘) Ungleichung. Sie lautet für eine Zufallsgröße X
mit E(X) = m, < 0° und D’(X) < 0°

D’(X)
P(|X— E(X)| :6) ä e, (5 > 0 bel.). (2.169)

Mit Hilfe dieser Ungleichung können wir also unter Verwendung der existierenden ersten
beiden Momente die Wahrscheinlichkeit dafür abschätzen, daß die Zufallsgröße X Werte
in gewissen Intervallen der reellen Achse annimmt, ohne die Verteilung von X zu ken-
nen.

Wenden wir uns nun einer Anwendungsmöglichkeit der Ungleichung (2.169) zu.

Beispiel 2.63: Eine Anlage besteht aus l0 unabhängig voneinander arbeitenden Elemen-
ten. Jedes dieser l0 Elemente fallt in der Zeit T mit der Wahrscheinlichkeit 0,05 aus. Mit
Hilfe der Ungleichung von Tschebyscheff soll die Wahrscheinlichkeit dafiir abgeschätzt
werden, daß der absolute Betrag der Differenz zwischen der zufälligen Zahl der ausgefal-
lenen Elemente und dem Erwartungswert dieser Zufallsgröße mindestens 2 beträgt.

Mit „X == zufällige Zahl der ausgefallenen Elemente“ definieren wir eine Zufallsgröße,
die nach der Aufgabenstellung einer Binomialverteilung mit den Parametern p = 0,05
und n = l0 unterliegt. Für diese gilt

E(X) = np = 0,5
und

D’(X) = np(1— p) = 10 - 0,05 - 0,95 = 0,475.

1) Pafnuti Lwowitsch Tschebyscheff (1821-1894), nrssischer Mathematiker.
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Unter Verwendung der Ungleichung (2.169) erhalten wir

0,475 = 0,475 N

22 4 ~ 0,12,

d. h.‚ die Wahrscheinlichkeit des gesuchten Ereignisses ist kleiner als 0,12.

Anmerkung: Die Tschebyscheffsche Ungleichung liefert im allgemeinen grobe Abschät-
zungen. So erhalten wir irn Beispiel 2.63 als exakten Wert

P(|X— 0,5l ä 2) = 0,01.

Schätzen Sie mit Hilfe der Tschebyschelfschen Ungleichung die am Ende von Beispiel
2.47 für die Normalverteilung berechneten Wahrscheinlichkeiten ab und vergleichen Sie
mit den dort erzielten Ergebnissen!

P(|X- 0,5| ä 2) ä

2.3.10.2. Das Gesetz der großen Zahlen von Bemoulli

In 2.2. haben wir die relative Häufigkeit eines Ereignisses als einen Näherungswert für
die entsprechende Wahrscheinlichkeit kennengelernt. Wir wollen nun den Zusammen-
hang zwischen Wahrscheinlichkeit und relativer Häufigkeit näher untersuchen. Dazu ge-
hen wir von einer beliebigen Anzahl von Versuchen aus, die nach dem Bernoullischen
Versuchsschema (siehe 2.3.5.2.) durchgeführt werden. In jedem einzelnen Versuch kann
dann also entweder das zufällige Ereignis A mit der Wahrscheinlichkeit p (0 < p < 1) bzw.
das Ereignis Ä mit der Wahrscheinlichkeit 1 — p eintreten.

Durch die Zuordnung P(X‚ = 1) = p und P(X‚- = 0) = 1 - p wollen wir die Versuche mit
Hilfe der unabhängigen Zufallsgrößen X,- (i = 1, , n), die einer Null-Eins-Verteilung un-

terliegen, beschreiben. Die Zufallsgröße

genügt dann einer Binomialverteilung mit E (S,,) = np und D’(S„) = np(1 — p) (vgl.
2.3.8.2).

Dividieren wir S„ durch n, so ergibt sich eine Zufallsgröße, die gerade die relative Häu-
figkeit des zufälligen Ereignisses A bei n Versuchen charakterisiert, d. h.

H,,(A)=%. (2.170)

Nach (2.81) und (2.83) gilt

E(H..(A)) = p
und

D1(H.<A»=%p<1—p>.

Wenden wir auf (2.170) die Tschebyscheffsche Ungleichung an, so ergibt sich

1 _

P(|H,,(A) -pl 2 e) §”—(;”—) (e>Obel.).

Durch Grenzübergang (n—> +00) erhalten wir das im folgenden Satz zusammengefaßte
Ergebnis:

Satz 2.13 (Gesetz der großen Zahlen von Bemoulli): Ist {IL},--1, „m eine Folge unabhängiger 5.2.13
identisch verteilter Zufallsgrößen mit



S.2.l4

102 2. Wahrscheinlichkeitsrechnung

P(X.-=1)=p
und

P(X.-=0)=1-p (0<p<1),
sogilt 1 n

limP<—n—ZX,--17;:-r)=0 (£>0bel.). (2.171)
n-m :=1

Dieser Satz sagt aus, daß die Wahrscheinlichkeit dafür, daß die relative Häufigkeit und
die Wahrscheinlichkeit eines zufälligen Ereignisses A dem Betrage nach um mehr als e

voneinander abweichen, mit n -> 0° gegen null strebt. Damit ist die Stabilität der relati-
ven Häufigkeit, auf die wir schon in 2.2.1. hingewiesen haben, präzisiert worden.

Wesentlich hierbei ist, daß die Wahrscheinlichkeit eines zufälligen Ereignisses nicht
der Grenzwert der relativen Häufigkeit im Sinne der „klassischen“ Analysis ist, sondern
die Wahrscheinlichkeit des Ereignisses

,,|Hn(A)—p1:e“

konvergiert gegen null. Wir sagen, daß H„(A) in Wahrscheinlichkeit gegen p konver-
giert.

Da im Satz 2.13 mit S„/n das Verhalten einer großen Zahl von Zufallsgrößen unter-
sucht wird

n

S5214; n->°°.
i=1

wird auch häufig gesagt, daß die Folge {X,-},= H, dem Gesetz der großen Zahlen unter-
liegt (hier in der Form von Bernoulli),

Satz 2.13 läßt sich in folgender Weise verallgemeinern:

Satz 2.14 (Gesetz der großen Zahlen von Chintschin‘)): Ist {X',},v=1‘1, eine Folge von unabhän-
gigen und identisch verteilten Zufallsgroßen mit E (X,-) = m1 < 00, so gilt:

1imP(%ZX,.—m1
i= 1

Neben der Untersuchung des Stabilitätsverhaltens von Summen von Zufallsgrößen ist
es notwendig, das Grenzverhalten der Folgen von Wahrscheinlichkeitsverteilungen zu un-
tersuchen. In 2.3.5.3. wurde ein solches Problem schon angedeutet. Wir wollen im folgen-
den noch einmal näher darauf eingehen.

(2.172);e>=0 (s>0bel.).

2.3.10.3. Der Satz von Poisson

Der Satz von Poisson hat den Zusammenhang von Binomial- und Poissonverteilung
zum Inhalt. Diese Fragestellung ist nicht nur von theoretischem Interesse, sondern hat
auch die Verringerung des fiir große n bei der Binomialverteilung recht erheblichen nu-

merischen Aufwands bei der Berechnung der Einzelwahrscheinlichkeiten durch Grenz-
betrachtungen für n -> 0° zum Ziel.

Bei diesen Grenzbetrachtungen verändern wir das der Binomialverteilung zugrunde lie»
gende Bemoullische Versuchsschema in nachstehender Weise. Bei einer gegebenen Zahl
von n unabhängigen Versuchen ist die Wahrscheinlichkeit für das Eintreten des Ereignis-
ses A in jedem einzelnen Versuch dieser Versuchsserie durch P(A) = p„ gegeben. Wir

‘) Alexander Jakowlewitsch Chintschin (1894-1959), sowjetischer Mathematiker.
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wollen weiter annehmen, daß durch die Vergrößerung des Umfanges n der Versuchsserie
p„ sehr klein wird. Für n —> 0° gelte p,.—>0. Außerdem sei

limnp,,=,1>0.

Die einzelnen Versuche der Versuchsserie von n unabhängigen Versuchen können wir
mit Hilfe der unabhängigen Null-Eins—verteilten Zufallsgrößen

XE") (i= 1, 2, ..., n; n= 1,2, ...)

beschreiben. Es gilt

P(X§"’ = 1) = pa

und
P(X§"’ = 0) = 1 —p„.

Die Zufallsgröße

n

S„ = Z Xf” := Anzahl des Eintretens von A bei einer Versuchsserie von n Ver-
ix 1

suchen

unterliegt einer Binomialverteilung rnit den Einzelwahrscheinlichkeiten

P<s„ = k>=(;)p:<1—p,>"'*, k= o, 1, 2, n.

Der folgende Satz, den wir ohne Beweis angeben, enthält eine Aussage über das Grenz-
verhalten von P(S„=k) für n —> w:

Satz 2.15 (Satz von Poisson): Es sei für gegebenes n S.2.l5

{X§n)}i=1,2,...,n

eine Falge unabhängiger Zufallsgräßen mit P(X§"’ = 1) = p,, und P(X§"’ = 0) = 1 — p,,

(i=1, .„, n). Dann Lrt die Folge {S„}„„‚z‚___ mit

S" = 2 X?)
I: l

eine Folge von binomialverteilten Zufallsgrößen mit den Parametern {p„}„= L ‚_ und {n}„ : 1, L ‚_ .

Für

lirn np„ = ‚l > 0
„am

gilt dann

. 1" -111mP(S,,=k)=We , k=0,1,...
"am

In Tabelle 2.6 sind zum Vergleich die Werte der Einzelwahrscheinlichkeiten einer Bi-
nomialverteilung mit den Parametern n = 10 und p = 0,05 und einer Poissonverteilung
mit dem Parameter ‚i = np = 10 - 0,05 = 0,5 gegenübergestellt.

Es zeigt sich, daß schon bei n = 10 und einem entsprechend kleinen Wert von p die
Poissonverteilung eine recht gute Näherung für die Einzelwahrscheinlichkeiten der
Binomialverteilung liefert.
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Tabelle 2.6: Gegenüberstellung der Einzelwahrscheinlich-
keiten einer Binomialverteilung mit den Parametern
n = 10, p = 0,05 und einer Poissonverteilung mit dem Pa-
rameter ‚1 = 0,5

10 "
k (k) o,o5*(1 —o,05)‘°‘* 0—,’c5!—e‘°5

0 0,598 7 0,606 5

1 0,315 1 0,303 3

2 0,074 6 0,075 8

3 0,010 5 0,012 6

ä 4 0,0011 0,0018

Z 1,000 0 1,000 0

2.3.10.4. Der zentrale Grenzwertsatz

Neben dem sehr speziellen Grenzwertsatz von Poisson ist es interessant, die Konver-
genz der Folgen von Verteilungen von Summen von Zufallsgrößen gegen eine Grenzver-
teilung zu untersuchen. Hierbei zeigt es sich, daß bei geeigneter Transformation von
Summen von Zufallsgrößen die Folge ihrer Verteilungen in bestimmten Fällen gegen die
Normalverteilung konvergiert. Eine Aussage hierüber liefert folgender Satz:

Satz 2.16 (Zentraler Grenzwertsatz): Ist {X,-},-, 1_,_ eine Folge von unabhängigen und identisch

verteilten Zufallsgrbßen mit E (Xi) = ml < 0° und D’(X,~) = d’ < w, so gilt flit jedes reelle tmit

S, —0t) = am oY1)=L

S.=iX.-
l‘1 l I

"Td.m «E "

Mit anderen Worten heißt dies, daß die Folge der Verteilungen der standardisierten
Zufallsgrößen

S„—nm,

„G4

gegen die Normalverteilung mit den Parametern u = 0 und a = 1 konvergiert.
Wir nennen S, (n = 1, 2, ...) in diesem Fall auch usymptotisch normalverteilt mit dem

Erwartungswert nm, und der Standardabweichung 1/; d (asymptotisch N(nm1; J7d)-
verteilt).

Den Beweis des Satzes 2.16 wollen wir hier nicht fiihren. Der Leser findet ihn und wei-
tere Grenzwertsätze z.B. in [3; 4; 12].

Wir wollen nun als Spezialfall des Satzes 2.16 den Satz von Moivre-Laplace kennenler-
nen. Ausgangspunkt ist das Bemoullische Versuchsschema‚ bei dem jeder einzelne Ver-
such analog zu 2.3.10.2. durch die Null-Eins-verteilten Zufallsgrößen X, (i = 1, 2, ...) be-
schrieben wird und

(2.173)
p,—>an

lim P(

(2.174)

S.= :30
1-1
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einer Binomialverteilung mit den Parametern n und p unterliegt. Wir wenden den zentra-
len Grenzwertsatz an und erhalten den folgenden Satz:

Satz 2.17 (Satz von Maivre‘)—Laplace): Is! S„ eine binomialverteilte Zufallsgröße mit den Pam- 5.2.17
metem n und p, so gilt für beliebige t

S„ —

1imP(—————L<z)= am; o, 1). (2.175)
n“ «lnp (1 - p)

Das heißt, wenn bei dem der Binomialverteilung zugrunde liegenden Bernoullischen
Versuchsschema die Anzahl der unabhängigen Versuche gegen unendlich strebt, dann
konvergiert die Verteilungsfunktion der standardisierten binomialverteilten Zufallsgröße
gegen die Verteilungsfunktion einer normalverteilten Zufallsgröße mit den Parametern 0

und 1.

Die Bedeutung des Satzes 2.17 wollen wir an einem Beispiel verdeutlichen.

Beispiel 2.64: Mit Hilfe unabhängiger Versuche ist die Wahrscheinlichkeit eines zufälli-
gen Ereignisses näherungsweise durch die relative Häufigkeit zu bestimmen. Mit Hilfe
des Satzes von Moivre-Laplace soll nun untersucht werden, wie groß die Anzahl der unab-
hängigen Versuche sein muß, damit mit einer Wahrscheinlichkeit von mindestens 0,99
das Ergebnis mit einem Fehler kleiner 0,0l behaftet ist.

Die Lösung dieser Aufgabe beruht auf der Tatsache, daß die relative Häufigkeit eines
Ereignisses A wegen

S.
H. (A) - T

mit Hilfe der binomialverteilten Zufallsgröße S„ beschrieben wird. Davon ausgehend ist
die o. g. Fragestellung wie folgt zu behandeln:

Die Anzahl n der durchzuführenden unabhängigen Versuche ist dann aus der Bezie-
hung

S.
P T — P(A) < 0,01 2 0,99

zu bestimmen. Mit P(A) = p führen wir folgende Umformungen durch:

P
( S

S. - up

T"-p|<0,01)=P(|S,—np|<0,01-n)

=p(__
Jr-p(1-p)

P( fi«o,o1 < S„-np 541,01)
w/np(1-p)

' «/p<1—p) Jr-p<1—p) <1/p<1—p)

J?-001 ) < ,/I-0,01 >eo m’; ‚ —q> ————;o‚1 1.s 2.17)
(WO-p) 01 w’p(1-p) (vs m

JE-om >
=2q> ————;o,1 —

(V/p(1'p)

1) Abraham de Moivre (1667-1754), französischer Mathematiker.
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ä2<b(m;ß‚l>—l.
0,25

Da p in der Regel unbekannt ist, benutzten wir hier die Abschätzung p(1 ' p) ä 0,25.
Wir kommen der Aufgabenstellung nach, indem wir nun

2<I>(i;o.1>—1; 0,99
0,25

bzw.

<I>(—‘-/:—'—(-)£i;0, 1) 2 0,995
1/0,25

fordern.
Mit Hilfe der Tafel 2 des Anhangs ergibt sich für <D(to;0,1) = 0,995 der Wert to = 2,576.

Die gesuchte Anzahl der Versuche ist die kleinste natürliche Zahl n rnit

JI-oni
g 2,576

J0,25

und damit

n = 16 590.

Wir müssen also etwa l6 590 Versuche durchführen, um die gesuchte Wahrscheinlichkeit
in durchschnittlich 99% aller derartigen Versuchsserien mit der geforderten Genauigkeit
zu ermitteln.

Das gesuchte n im Beispiel 2.64 können wir auch mit Hilfe der Ungleichung von
Tschebyscheff abschätzen. Als Ergebnis erhalten wir n = 250 000. Ein Vergleich mit dem
mit Hilfe des Satzes von Moivre-Laplace gewonnenen Ergebnis zeigt, daß die Unglei-
chung von Tschebyscheff ungenauere Abschätzungen liefert.

2.3.10.5. Weiterführende Bemerkungen

In 2.3.10.2. haben wir das Verhalten der Zufallsgröße H,, (A) untersucht und die Bezie-
hung (2.171) hergeleitet. Hierbei erkannten wir, daß P(A) nicht der Grenzwert von H,, (A)
im Sinne der „klassischen“ Analysis ist. Wir erhielten nur eine Aussage über das Konver-
genzverhalten der Wahrscheinlichkeit des Ereignisses

„|H..(A) - P(A)| ä e“

und nannten dieses Konvergenzverhalten Konvergenz in Wahrscheinlichkeit. Diesen Be-
griff können wir allgemein wie folgt definieren:

Definition 2.58: Eine Folge von Zufallrgrößen {X„}„ = ,_ z‘ A _ heißt konvergent in Wahrschein-
lichkeit gegen a, wenn

lim P(|X„ - 11|; s) = 0 (e>0 bei.)

gilt.

Neben der Konvergenz in Wahrscheinlichkeit wird in der Wahrscheinlichkeitsrech-
nung noch eine andere Art des Konvergenzverhaltens behandelt.



2.3, Zufallsgrößen 107

Definition 2.59: Eine Folge von Zufallsgrößen {X„}„:L‚_„_ heißt konvergent mit Wahr- D.2.59
scheinlichkeit 1 gegen a, wenn

X„ a) l

gilt.

Vergleichen wir Definition 2.58 und 2.59, so ist zu erkennen, daß in 2.59 nicht die
Konvergenz der Wahrscheinlichkeit, sondern die Wahrscheinlichkeit für die Existenz
eines Grenzwertes untersucht wird. Zwischen beiden Konvergenzarten besteht folgender
Zusammenhang:

Wenn eine Folge {X„}„‚„‚ von Zufallsgrößen mit Wahrscheinlichkeit 1 gegen eine
Größe a konvergiert, so konvergiert sie auch in Wahrscheinlichkeit gegen a. Die Umkeh-
rung dieser Aussage gilt nicht. '

Hieraus erkennen wir, daß die Konvergenz mit Wahrscheinlichkeit 1 ein „stärkeres“
Konvergenzverhalten als die Konvergenz in Wahrscheinlichkeit ausdrückt. Deshalb sagen
wir auch, daß eine Folge von Zufallsgrößen, deren arithmetische Mittel mit Wahrschein-
lichkeit l gegen eine Größe a konvergieren, dem starken Gesetz der großen Zahlen un-
terliegt. Entsprechend wird von einer Folge von Zufallsgrößen, deren arithmetische Mittel
in Wahrscheinlichkeit gegen eine Größe a konvergieren, gesagt, daß sie dem schwachen
Gesetz der großen Zahlen unterliegt.

Mit den Sätzen 2.13 und 2.14 haben wir also zwei Formen des schwachen Gesetzes der
großen Zahlen kennengelernt. Wir wollen abschließend das starke Gesetz der großen Zah-
len in der Form von Kolmcgorow angeben:

Satz 2.18 (Starkes Gesetz der großen Zahlen von Kolmogorow). Eine Folge i: LL von un- S.2.l8
abhängigen und identisch verteilten Zufallsgrößen unterliegt genau dann dem starken Gesetz der
großen Zahlen, wenn ml = E(X,-) existiert. Es gilt in diesem Fall:

P(1imiZ)r‚=m‚>=1.
n-bm I! [=1

In [12] finden Sie hierzu ausführliche Untersuchungen.

2.3.11. Aufgaben

2.20: Ein Arbeiter bedient drei voneinander unabhängig arbeitende Maschinen. Jede at

einzelne Maschine verlangt innerhalb eines bestimmten Zeitintervalls T die Aufmerk-
samkeit des Arbeiters mit der Wahrscheinlichkeit 0,4. Es sei X die zufällige Anzahl der
Maschinen, die im Zeitintervall T die Aufmerksamkeit des Arbeiters verlangen.

Bestimmen Sie
a) die Verteilungstabelle von X,

b) P(X ä 1)‚
c) die Verteilungsfunktion FX(t),
d) E(X),
e) DZ(X).

2.21: Bestimmen Sie die Quantile Q, (p = 0,1; 0,2; 0,3; 0,4; 0,5) der binomialverteilten
Zufallsgröße X4 aus Beispiel 2.29!

-x
-

2.22: Einer Lieferung von 30 Teilen, die 5 Ausschußteile enthält, werden zufällig
4 Teile entnommen und überprüft. X sei die zufällige Anzahl der dabei festgestellten Aus-
schußteile. Bestimmen Sie die Wahrscheinlichkeit dafir, daß die Anzahl der festgestell-
ten Ausschußteile kleiner als zwei ist.

an
»
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2.23: Stellen Sie in einer Tabelle die Quantile

Q, für p = 0,01; 0,05; 0,1; 0,2

der standardisierten norrnalverteilten Zufallsgröße Y (E (Y) = 0; D’(Y) = 1) zusammen!
Benutzen Sie dazu die Tafel 2 des Anhangs!

Lösen Sie die gleiche Aufgabenstellung fiir eine normalverteilte Zufallsgröße X mit den
Parametern u = 2 und o'= 3.

2.24: Der Durchmesser einer auf einer automatischen Anlage gefertigten Kugel kann
als norrnalverteilte Zufallsgröße X mit den Parametern u = 20 mm und (T = 0,5 mm ange-
sehen werden. Eine derartige Kugel genügt den Qualitätsansprüchen, wenn ihr Durchmes-
ser im Intervall [19,5; 22] liegt.
a) Wie groß ist die Wahrscheinlichkeit dafür, daß eine Kugel den Qualitätsansprüchen
genügt?
b) Wie groß ist die Wahrscheinlichkeit dafür, daß unter 1000 produzierten Kugeln genau
2 zu finden sind, deren Durchmesser kleiner als 18,5 mm ist?

2.25: Ein Arbeiter stellt mit Wahrscheinlichkeit 0,9 ein Erzeugnis her, für das ein Jahr
Garantie übernommen werden kann. Mit der Wahrscheinlichkeit 0,09 wird ein beschädig-
tes Erzeugnis, das sich jedoch ausbessern läßt, und mit der Wahrscheinlichkeit 0,0l ein
total unbrauchbares Stück hergestellt.

Es sei X == Anzahl der Erzeugnisse, für die ein Jahr Garantie übernommen wird, und
Y== Anzahl der beschädigten Stücke, wenn insgesamt 3 Erzeugnisse unabhängig vonein-
ander produziert wurden.
a) Bestimmen Sie die Verteilungstabelle der zweidimensionalen Zufallsgröße (X, Y).
b) Berechnen Sie die Einzelwahrscheinlichkeiten der Randverteilung von X bzw. Y.

c) Wie lautet die Verteilungstabelle der bedingten Einzelwahrscheinlichkeiten von X un-

ter der Bedingung {Y= l}?

2.26: Die Verteilung der stetigen zweidimensionalen Zufallsgröße (X, Y) ist durch die
Dichtefunktion

l
—— f‘ t’ + n’ g l,

f(x‚ Y)(tl>12)= 7T u‘ l 2

0 sonst

gegeben. Untersuchen Sie, ob die Zufallsgrößen X und Y unabhängig sind!

2.27: Zeigen Sie, daß die Summe Z zweier unabhängiger Zufallsgrößen X, und X2, die
jeweils einer Poissonverteilung mit den Parametern ‚i, bzw. ‚i; unterliegen, ebenfalls pois-
sonverteilt mit dem Parameter i, + ‚i, ist
a) mit Hilfe der Beziehung (2.139);
b) mit Hilfe charakteristischer Funktionen.

2.28: Berechnen sie mit Hilfe erzeugender Funktionen Erwartungswert und Varianz
einer binornialverteilten Zufallsgröße mit den Parametern n und p.

2.29: Die zufällige Zeit X bis zum ersten Ausfall eines Bauelementes unterliege einer
Exponentialverteilung mit der Verteilungsfunktion

F‚<r>={}‚‘ '

Beweisen Sie folgende Beziehung für die bedingte Wahrsch
Bauelement vor der Zeit 5+ s ausfällt, wenn bei einer lnsp ‘

wurde, daß das Element bis zu dieser Zeit ausfallfrei gearbeitet hat:

iniichkeit dafür
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1—e‘*‘ für s>0‚P(X<t+s/X;t)={0 für 5:0

Interpretieren Sie diese Eigenschaft der Exponentialverteilung und ordnen Sie sie in die
in 2.3.6.6. angegebenen Anwendungsmöglichkeiten ein!

2.30: Ein System bestehe aus zwei im Sinne der Zuverlässigkeit in Reihe geschalteten
Elementen (vgl. Bsp.2.l8). Die zufälligen Zeiten X, bzw. X, bis zum ersten Ausfall der
Elemente unterliegen einer Exponentialverteilung mit den Parametern A1 bzw. A1. Zeigen
Sie, daß im Fall der Unabhängigkeit beider Elemente die zufällige Zeit S bis zum ersten
Systemausfall ebenfalls einer Exponentialverteilung mit dem Parameter /11 + A, unterliegt.
Verallgemeinern Sie das Ergebnis auf Reihenschaltungen aus einer beliebigen Anzahl un-
abhängiger Elemente! u

Hinweis: Bestimmen Sie zunächst die sog. Uberlebenswahrscheinlichkeit P(S 2 t)!
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Im folgenden Kapitel werden wir Methoden zur Auswertung von Meßergebnissen ken-
nenlernen. Als wichtige Vorarbeit wird in Abschnitt 3.1. erläutert, wie diese Ergebnisse
geordnet, verdichtet und dargestellt werden, um sie einerseits überschaubar zu machen
und um andererseits die Voraussetzungen zur Anwendung der Methoden der mathemati-
schen Statistik zu schaffen. Aufbauend auf den Begriffen „Grundgesamtheit“ und „Stich-
probe“ (Abschnitt 3.2.) lemen wir die Grundbegriffe der Schätz- und Testtheorie (Ab-
schnitte 3.3. und 3.4.) und der Varianzanalyse (Abschnitt 3.5.) kennen, In den
Abschnitten 3.6. bzw. 3.7. wird schließlich ein kurzer Überblick zur Regressions- und
Korrelationsanalyse bzw. zu verteilungsunabhängigen Verfahren gegeben.

3.1. Beschreibende Statistik

3.1.1. Beschreibende Statistik bei einem Merkmal

3.1.1.1. Urliste, Häufigkeitstabellen, Häufigkeitsverteilungen

Wir wollen mit einem Beispiel beginnen und daran einige Begriffe erklären:

Beispiel 3.1: Gewisse Charakteristika einer Betonsorte, u.a. Druckfestigkeit, Zugfestigkeit,
sollen ermittelt werden. Um nun z. B. Aussagen über die Druckfestigkeit [10" MPa], auf
dieses Charakteristikum wollen wir uns hier beschränken, machen zu können, wird unter
gleichen Bedingungen eine gewisse Anzahl von Probewürfeln gefertigt und von jedem die
Druckfestigkeit festgestellt. So erbrachte z.B. die Messung der Druckfestigkeit [10" MPa]
bei 20 Probewürfeln folgende Ergebnisse:

183 181 183 180 182 182 185 182 184 179
182 184 180 181 179 180 182 180 181 183.

Wie im Beispiel 3.1 gehen wir in der beschreibenden Statistik bei der Ermittlung gewis-
ser Eigenschaften (im Beispiel: Druckfestigkeit, Zugfestigkeit) eines Untersuchungsobjek-
tes (im Beispiel: Betonsorte) von den für diese Eigenschaften an einer Menge von Ele-
menten (Einheiten) des betrachteten Untersuchungsobjektes (im Beispiel: 20 Betonwür-
fel) ermittelten Meßergebnisse aus (im Beispiel: 20 Meßergebnisse für die Druckfestig-
keit).

Dabei bezeichnen wir die einzelnen Eigenschaften des Untersuchungsobjektes als
Merkmale und kennzeichnen sie durch große lateinische Buchstaben: X, Y, Die Merk-
male, die wir als meßbar annehmen wollen, können diskret oder stetig sein. Die für die
einzelnen Merkmale ermittelten Meßergebnisse nennen wir Merkmalswerte (Meßwerte)
und kennzeichnen sie durch indizierte kleine lateinische Buchstaben: x‚.,y‚„ Die
Menge der unbearbeiteten Meßergebnisse bezeichnen wir schließlich als Urliste (Proto-
koll).

In den weiteren Ausführungen dieses Abschnittes wollen wir uns nun auf die Betrach-
tung eines Merkmals X eines Untersuchungsobjektes beschränken, für das die Meßwerte
x‚-‚ i = 1, 2, ..., n, ermittelt wurden. Die Urliste enthält diese Meßwerte ungeordnet. Es
kommt jetzt darauf an, dieses Zahlenmaterial zu ordnen, gegebenenfalls zu verdichten
und damit überschaubar zu machen.

Ein erster Schritt in dieser Richtung besteht darin, die Meßwerte der Urliste der Größe
nach zu ordnen. Wir erhalten so die Sogenannte Variationsreihe, deren Werte wir mit x}
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(i = 1, 2, ..., n) bezeichnen und bei der wir

xf = xm (kleinster Wert der Urliste)
und

x: = xm, (größter Wert der Urliste)

setzen. Für die Variationsreihe gilt dann folglich:

xfgxfg 5x}.
Die Differenz zwischen dem größten und dem kleinsten Meßwert wird Spannweite oder
Variatiansbreite (Symbol: R) genannt:

R == xmx — xmm = x: - x2‘.

Irn Beispiel 3.1 lautet die Variationsreihe

179 179 180 180 180 180 181 181 181 182
182 182 182 182 183 183 183 184 184 185.

Sehr häufig tritt der bei dem Beispiel 3.1 vorliegende Fall ein, daß in der Urliste ein-
zelne Meßwerte mehrmals auftreten. Für das Ordnen des Materials ist es in diesem Fall
günstig, eine (primäre) Häufigkeitstabelle (Verteilungtafel) aufzustellen. In ihr halten wir ne-

ben den in der Urliste enthaltenen möglichen Meßwerten xj‘,,, m = 1, 2, ...‚ k, und den

mit Hilfe einer Strichliste gewonnenen zugehörigen absoluten Häufigkeiten h„‚ meist
noch die entsprechenden relativen Häufigkeiten

hmH,,,=—
n

und die relativen Summenhäufigkeiten

m h_ m

Z -’ = Z H,-
j=1 " jxl

fest, wobei sich die Summation jeweils bis zum Index des Meßwertes xf„ m = l, 2, ..., k,
erstreckt.

Die relative Häufigkeit und die relative Summenhäufigkeit werden oft in Prozenten an—

gegeben. Die Verteilungstafel gibt einen guten Überblick über die Häufigkeitsverteilung
des betrachteten Merkmals. Für das Beispiel 3.1 ist die Verteilungstafel in Tabelle 3.1 an-
gegeben.

Die Verteilungstafel zeigt u. a.‚ daß der Meßwert 182 die größte Häufigkeit besitzt und
daß 70% aller Meßwerte kleiner oder gleich 182 sind.

Enthält die Urliste eine große Anzahl unterschiedlicher Meßwerte, so können wir das
Material weiter verdichten, indem wir die vorliegenden Meßwerte in Klassen einteilen,
und eine (sekundäre oder reduzierte) Häufigkeitstabelle (Verteilungstafel) aufstellen. Dazu
zerlegen wir ein Intervall der reellen Achse, in dem alle Meßwerte der Urliste liegen, in
Teilintervalle, die wir als Klassen bezeichnen. Diese werden durch ihre obere und untere
Klassengrenze, durch ihre Klassenbreite und durch ihre Klassenmitte charakterisiert.

Für die Festlegung der Anzahl der zu bildenden Klassen — wir wollen diese Anzahl mit
k bezeichnen — gibt es keine feste Vorschrift. Es sind lediglich Erfahrungswerte bekannt.
So wird z. B. empfohlen, k g 5 log n oder auch k wenigstens 6 und höchstens 20 zu wäh-
len. Wird k zu klein gewählt, so verwischt häufig das Typische des Merkmals, und ein gro-
ßer Informationsverlust tritt ein. Auf der anderen Seite bringt ein zu großes k wenig Über
sichtlichkeit.
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Tabelle 3.1. Va: eilungstafel zum Beispiel 3.1

absolute relative relative
I-Iii " ‘ ' Hi “ ' ' “ “' "mini.

X:
Strichliste h„‚ H„‚ 100 % "‘2 H, 100 %

j= l

179 II 2 10 10

180 IIII 4 20 30
181 III 3 15 45

182 IIIII 5 25 70
183 III 3 15 85

184 II 2 10 95
185 I 1 5 100

n = 20 100

Die Festlegung der Klassenbreiten, das sind die Differenzen der jeweiligen oberen und
unteren Klassengrenzen, richtet sich nach dem Umfang n der in der Urliste erfaßten Mell-
werte und nach der Spannweite R. Es empfiehlt sich, die Klassenbreite d fiir alle Klassen
konstant zu halten. Dadurch lassen sich spätere Berechnungen sehr vereinfachen.

Durch die Klassenmitten u„„ m = I, 2, , k, werden bei weiteren Berechnungen all die
Meßwerte repräsentiert, die in die betreffende Klasse fallen. Dabei ergibt sich bei einem
stetigen Merkmal die Klassenmitte als arithmetisches Mittel der zugehörigen Klassen-
grenzen. Demgegenüber ist bei einem diskreten Merkmal die Klassenmitte das arithmeti-
sche Mittel der möglichen Meßwene‚ die in diese Klasse fallen. Nach der Klasseneintei-
lung stellen wir mit Hilfe einer Strichliste die Anzahl der Meßwerte fest, die in die
einzelnen Klassen fallen. Meßwerte, die auf Klassengrenzen liegen, ordnen wirjeweils der
„nächsthöheren“ Klasse zu. Auf diese eine Möglichkeit der Zuordnung wollen wir uns im
folgenden beschränken. Die Anzahl der in der Klasse m liegenden Meßwerte bezeichnen

k

wir mit h„„ m = 1, 2, ..., k, wobei Z h,,, = n gilt. Für die relative Häufigkeit H„‚ erhalten
m - 1

wir dann H„, = h„‚/n, m = l, 2, ..., k, und fiir die relative Summenhäufigkeit Z H,-,

m=1,2,...,k. F‘
Die Häufigkeitstabelle gibt einen guten Überblick über die I-Iäufigkeitsverteilung des

betrachteten Merkmals.
Beispiel 3.2: Bei 120 Wellen, die der laufenden Produktion eines Präzisionsdrehautoma-
ten entnommen wurden, ist die Maßabweichung des Durchmesse s vom Nennmaß emit-
telt Worden. Diese Abweichung ist ein stetiges Merkmal.

Die Urliste (Tabelle 3.2) enthält die Meßwerte der Abweichungen in um. Eine Häufig-
keitstabelle ist aufzustellen.

Aus der Urliste entnehmen wir die Meßwerte xm, = 28 und xm = -17. Daraus folgt
die Spannweite R = xm — xm = 45. Wählen wir die Klassenbreite d = 6, die Klsssenan-
zahl k = 8 und - 18 als untere Klassengrenze der ersten Klasse, so erhalten wir die in Ta-
belle 3.3 angegebene Häufigkeitstabelle.

Wählen wir bei gleicher Klassenbreite d = 6 und der Klassenanzahl k = 9 als untere
Klassengrenze der ersten Klasse —20‚ dann ergibt sich die in Tabelle 3.4 angegebene
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Tabelle 3.2. Urliste zum Beispiel 3.2

+ 2,5 +16,0 + 1,0 -17,0 — 1,0 — 6,5

— 1,0 +15,0 + 5,0 +11,0 + 3,0 + 3,0
+ 8,0 + 6,5 +13,0 — 8,0 + 8,0 + 4,0
+18,5 + 1,5 +12,0 +11,0 +17,0 + 8,5
+ 3,5 + 2,0 + 6,0 ~ 2,0 +12,0 +18,0
— 4,5 +13,0 0,0 ~ 0,5 + 5,5 + 9,0
— 5,5 — 1,5 —12,0 +14,0 + 1,0 -12,0

0,0 + 0,5 — 8,5 + 8,0 + 0,5 — 3,0
+ 7,5 — 2,5 +24,0 + 1,5 —13,0 + 8,5
+16,0 + 4,5 + 9,0 + 1,0 + 1,5 +11,0
+10,0 + 9,5 + 4,5 *13,5 +19,0 ~16,0
- 0,5 4-26,0 e 1,5 + 7,5 +10,5 +13,0
— 4,0 + 6,5 — 2,0 0,0 + 3,0 — 7,5
+ 2,0 +14,0 + 6,0 + 4,5 — 4,0 —15,5

+18,0 + 7,0 +22,0 — 3,5 + 6,5 +17,0
+28,0 + 2,5 +19,0 + 4,0 +14,0 +21,0
—10,5 A 6,0 +10,0 +20,0 +16,0 + 9,0
- 5,0 + 2,0 +13,0 — 7,5 + 8,0 -15,0
+ 2,0 — 7,0 +11,0 + 9,5 + 3,0 —14,5

+ 7,0 -11,0 + 6,0 + 4,0 — 4,0 —11,5

Tabelle 3.3. Häufigkeitstabelle zum Beispiel 3.2

Klassengrenzen Klassen- absolute relative relative
mitte Häufigkeit Häufigkeit Summen

häufigkeit

u„, h„, H„, 100 % Z H, 100 °/‚

I‘!

'18 bis unter ~12 *15 7 5,83 5,83
—12 bis unter’ 6 — 9 11 9,17 15,00
- 6bis unter 0 - 3 18 15,00 30,00

0 bis unter 6 3 30 25,00 55,00
6 bis unter 12 9 28 23,33 78,33

12 bis unter 18 15 15 12,50 90,83
18 bis unter 24 21 8 6,67 97,50
24 bis unter 30 27 3 2,50 100,00

120 100

Häufigkeitstabelle. Die unterschiedliche Festlegung der unteren Klassengrenze der ersten
Klasse wollen wir als unterschiedliche Reduktionslage der Häufigkeitstabellen bezeichnen.
Die Festlegung der Reduktionslage hat auf Berechnungen, die unter Verwendung des mit
Hilfe einer Häuflgkeitstabelle geordneten und verdichteten Materials durchgeführt wer-

den, kaum Einfluß.

3.1.1.2. Graphische Darstellungen von Häuflgkeitsverteilungen

Zur weiteren Veranschaulichung der mit Hilfe einer Häufigkeitstabelle geordneten und
verdichteten Meßwene und damit der Häufigkeitsverteilung des betrachteten Merkmals
dienen graphische Darstellungen.

8 Beyer,Wahrscheinlichkeilsrechnung
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Tabelle 3.4. Häufigkeitstahelle zum Beispiel 3.2 mit gegenüber der Häufigkeitstabelle in
Tab. 3.3 geände ten Klassengrenzen

Klassengrenzen Klassen- absolute relative relative
mitte Häufigkeit Häufigkeit Summen-

häufigkeit

u„‚ h„‚ H„‚ 100 v. Z H, 100 %

i-l

-20 bis unter -14 -—17 5 4,17 4,17
—l4 bis unter — 8 -11 8 6,67 10,84
- 8 bis unter - 2 - 5 15 12,50 23,34
— 2 bis unter + 4 1 30 25,00 48,34

4 bis unter 10 7 29 24,17 72,51
10 bis unter 16 13 17 14,17 86,68
16 bis unter 22 19 12 10,00 96,68
22 bis unter 28 25 3 2,50 99,18
28 bis unter 34 31 1 0,83 100,01

120 100,01

Bei diesen verwenden wir im allgemeinen ein rechtwinkliges Koordinatensystem, bei
dem auf der Abszissenachse, die auch Merkmalsachre genannt wird, je nach der Darstel-
lung entweder die vorliegenden Meßwerte oder die Klassengrenzen oder die Klassenmit-
ten und auf der Ordinatenachse die zugehörigen absoluten oder relativen Häufigkeiten
abgetragen werden.

Die graphische Darstellung von Häufigkeitsverteilungen stetiger Merkmale können wir
durch Histogramme, Häufigkeitspolygone oder auch Summenpolygone vornehmen. Bei
ihrer Erklärung wollen wir von einer (sekundären) Häufigkeitstabelle ausgehen, da eine
primäre Häufigkeitstabelle als Spezialfall einer sekundären Häufigkeitstabelle (Klassen-
breite 1) aufgefaßt werden kann.

Von einem Histogmmm sprechen wir dann, wenn über jeder Klasse ein Rechteck mit
einer der absoluten bzw. relativen Häufigkeit (evtl. in Prozenten) der jeweiligen Klasse
cllloplcChenden Höhe errichtet wird. Die Rechteckflächen sind dann der absoluten bzw.
relativen Häufigkeit der einzelnen Klassen proportional. Die Histogramme der in den Ta-
bellen 3.1 und 3.3 erfaßten Häufigkeitstabellen zeigen die Bilder 3.1 und 3.2.

Fertigen Sie selbständig das Histogramm zu der in der Tabelle 3.4 erfaßten Häufig-
keitstabelle an!

hm

.5

h
x
:

L l n l u l n Bild 3.1. Histogramm
F 77.9 750 7477 7.72 7.73 704 785 x‚„ fiirBeispiel3.l (Tabelle 3.1)
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Ein Hfiuflgkeitspolygon (Linienpolygon) erhalten wir, wenn über den Klassenmitten
(Abszisse) die zugehörigen absoluten bzw. relativen Häufigkeiten (evtl. in Prozenten) (Or-
dinate) als Prmkte abgetragen und benachbarte Punkte miteinander verbunden werden.
Es soll dann auf der Merkmalsachse in der Klassenmitte der den Randklassen benachbar-
ten Klassen beginnen bzw. enden, falls das Auftreten von Meßwerten in diesen Klassen
theoretisch möglich ist. In den Bildern 3.3 und 3.4 sind die zu den in den Tabellen 3.1
und 3.4 erfaßten Häufigkeitstabellen gehörenden Häufigkeitspolygone angegeben. Ferti-
gen Sie wieder selbständig das Häufigkeitspolygon zu der in Tabelle 3.3 erfaßten Häufig-
keitstabelle an!

Durch ein SummenpoLvgon wird es nun möglich, absolute bzw. relative Summenhäufig-
keiten graphisch darzustellen. Wir erhalten es, wenn über den oberen Klassengrenzen
(Abszisse) die zugehörigen absoluten bzw. relativen Summenhäufigkeiten (evtl. in Pro-
zenten) (Ordinate) als Punkte abgetragen und benachbarte Punkte miteinander verbun-
den werden. Die Bilder 3.5 und 3.6 zeigen die zu den in den Tabellen 3.1 und 3.3 erfaßten
Häufigkeitstabellen gehörenden Summenpolygone.

Fertigen Sie selbständig das Summenpolygon zu der in Tabelle 3.4 erfaßten Häufig-
keitstabelle an!

Bei diskreten Merkmalen werden zur graphischen Darstellung von Häufigkeitsvertei-
lungen Streckendiagramme und Treppenpolygone angewandt. Wir wollen hier nur den
Weg zur Herstellung solcher Diagramme bzw. Polygone angeben und aus demselben
Grund wie oben von einer (sekundären) Häufigkeitstabelle ausgehen.

Ein Streckendiagramm erhalten wir, wenn in den Klassenmitten Senkrechte errichtet
werden, deren Längen den absoluten bzw. relativen Häufigkeiten der jeweiligen Klassen
entsprechen. Endpunkte benachbarter senkrechter werden nicht verbunden.

Von einem Treppenpolygon sprechen wir dann, wenn in den oberen Klasseng euzen

hm

-15 ~72 -5 5 12 15 24 5o B?“ 3;2-„Hi5‘°8‘amm
K/gmngrgnggn fur Beispiel 3.2 (Tabelle 3.3)

| l l n I I . Bild 3.3. Häufigkeitspolygon
I 179 730 7:97 762 7&3 764 1675 7495 xm fiirBeispie13.1 (Tabelle 3.1)
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/’/rz

J0

70

x u | l | I . Bild 3.4. Häufigkeitspolygon
-75 -9 '3 I .7 i 75 II 27 ‚„ für Beispiel3.2(Tabelle 3.4)t
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* ‚ ‚ , . . . . Bild 3.5. Surnmenpolygon
179 7.70 7.97 782 783 784 785 x,,, fiirBeispie13.1 (Tabelle 3.1)

r I r 1 ‘

.75 .72 -5 | 5 7g 73 24 31s Blld 3.6. Summenpolygon
K/amngrenzen fiir Beispiel 3.2 (Tabelle 3.3)

=:krechte mit einer der absoluten bzw. relativen Summenhäufigkeit (evtl. in Prozenten)
eweiligen Klasse entsprechenden Höhe errichtet werden und von den einzelnen End-
‘ten ausgehend in positiver Richtung Parallele zur Merkmalsachse bis zur nächsten

mechten gezogen werden,
Nähere Ausführungen zur graphischen Darstellung von Häufigkeitsverteilungen finden

S1: z.B. in [5].

. l .1 .3. Statistische Maßzahlen„
a

im folgenden werden wir uns mit Möglichkeiten beschäftigen, eine Menge von Meß-
tartan eines meßbaren Merkmals durch gewisse Kennwerte, die statistische Maßzahlen ge-
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nannt werden, zu charakterisieren‘) Sie sind vorteilhaft zur Beschreibung von Häufig-
keitsverteilungen. Aus der Vielzahl von statistischen Maßzahlen beschränken wir uns auf
solche zur Erfassung des Mittelwertes und der Streuung.

Mittelwertmaße

Durch den Mittelwert einer Menge von Meßwerten erhalten wir Aufschluß über die
Lage des Zentrums dieser Meßwerte. Für ihn sind folgende statistische Maßzahlen ge-
bräuchlich: das arithmetische Mittel, der Median oder Zentralwert, der Modalwert oder das
Dichteminel und das geometrische Mittel.

Das arithmetische Mittel i: Das arithmetische Mittel i ist eine häufig in vielen Gebieten
von Forschung und Praxis angewandte statistische Maßzahl. Es ist für eine Menge von
Meßwerten x‚-, i= 1, 2, ..„ n, wie folgt erklärt:

b4
;_,_;

x-— n x‚-. (3.1)
i 1

Treten k mögliche Meßwerte x„„ m = 1,2, ..., k, mit den Häufigkeiten h,,,(
auf, so geht (3.1) über in: m 1

_ 1 *
x =— Z x,,,h,,,. (3.2)

n m :i

Für das Beispiel 3.1 ergibt sich:

)‘c=%[179~2+ 180-4+ + 185-1]=%'3633 = 181,7.

Liegt eine Klasseneinteilung vor, so berechnen wir das arithmetische Mittel nach der For-
mel k

2=—1— Z u„‚h„„ (3.3)
n m = 1

wobei k die Anzahl der Klassen, u„„ m = 1, 2, „., k, die Klassenmitte und h„, die Anzahl
der Meßwerte der Klasse m bezeichnen. Da die Meßwerte einer Klasse also durch Klas-
senmitten repräsentiert werden, können sich Unterschiede zwischen den nach (3.1) und
(3.3) errechneten numerischen Werten von maximal d/2 ergeben.

Am Ende des Abschnittes wird in Verbindung mit anderen statistischen Maßzahlen für
das Beispiel 3.2 das arithmetische Mittel angegeben.

Der Median JE: Bei stark asymmetrischen Häufigkeitsverteilungen und bei nur wenigen
Meßwerten wird oft der Median als Mittelwertsmaß angewandt. Für eine Menge von Meß-
werten x,-, i = 1, 2, n, ist der Median bei ungeradzahligem n gleich dem mittleren
Wert und bei geradzahligem n gleich dem arithmetischen Mittel aus den beiden in der
Mitte liegenden Werten der zugehörigen Variationsreihe Jg‘, j = 1, 2, ‚.., n:

xi“, falls n=2k+1,

k: j":+x;*‘ falls n=2k (3.4)
2 ’ '

Für Beispiel 3.1 ist i = %(xf,, + x{,) = %(182 + 182) = 182.

‘) lm Unterschied zu den Kennwerten einer Wahrscheinlichkeitsverteilung gemäß Ab-
schnitt 2.3.3. sprechen wir auch von empirischen Kennwerten,
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Ist die Anzahl der Meßwerte groß, können wir den Median näherungsweise aus der
Häufigkeitstabelle ablesen. Dazu summieren wir die Häufigkeiten der Meßwerte in den
einzelnen Klassen schrittweise auf, bis zu der Klasse, für die diese Summe gleich n/2
oder „wenig“ kleiner als n/2 ist. Als Näherungswert für den Median wird dann die Mitte
der folgenden Klasse gewählt. Die genaue Berechnung des Medians können Sie in [l8]
nachlesen.

Der Modalwert D: Bei Häufigkeitsverteilungen wird oft der Modalwert (das Dichtemit-
tel) als Mittelwertmaß herangezogen. Er ist der Meßwert, der in einer Menge von Meßwer-
ten am häufigsten auftritt.

Der Modalwert kann sofort aus der primären Verteilungstafel abgelesen werden. Im
Beispiel 3.1 ist D = 182. Beim Vorliegen einer sekundären Häufigkeitstabelle können wir
näherungsweise nur die Klasse angeben, in der der Modalwert zu suchen ist. Die Klassen-
mitte der Klasse mit der größten absoluten Häufigkeit ist dann ein Näherungswert für D.
Zur genauen Berechnung von D sei wieder auf [18] verwiesen.
Anmerkung: Bei symmetrischen Häufigkeitsverteilungen fallen die Werte des arithmeti-
schen Mittels, des Medians und des Modalwertes zusammen:

f = i = D.

Das geometrische Mittel G: Bei Untersuchungen in der Ökonomie, z. B. bei der Berech-
nung von Wachstumsraten, wird als Mittelwertmaß häufig das geometrische Mittel ange-
wandt. Liegt eine Menge von positiven Meßwerten x‚-, i= 1,2, ..., n, vor, dann können
wir es wie folgt bestimmen:

G:= w" (3.5)

Seine Berechnung erfolgt zweckmäßig auf logarithmischem Wege:

logG=%Z 1ogx‚-.
i=l

Streuungsmqße

Zur Beschreibung einer Häufigkeitsverteilung ist die Angabe des Mittelwertes noch
nicht ausreichend. Es ist weiterhin erforderlich, zu bestimmen, in welchem Maße die
Meßwerte streuen. So haben z.B. die beiden Reihen von Meßwerten: 2,1; 3,2; 5,4; 6,1 und
3,9; 4,1; 4,5; 4,3 das gleiche arithmetische Mittel 2? = 4,2, unterscheiden sich aber wesent-
lich voneinander. Die Werte der ersten Reihe streuen insgesamt, aber auch um das
arithmetische Mittel stärker als die der zweiten Reihe.

Für die Charakterisierung der Streuung einer Menge von Meßwerten sind folgende sta-
tistische Maßzahlen gebräuchlich: die mittlere quadratische Abweichung, die Variationsbreite
und der empirische Variationskoeffizient.

Die mittlere quadratische Abweichung (empirische Varianz) s’: Die mittlere quadratische
Abweichung s’ ist eine statistische Maßzahl, die auf den Abweichungen der einzelnen
Meßwerte x‚-‚ i= 1, 2, ..., n, einer Menge von Meßwerten vom arithmetischen Mittel a?

dieser Meßwerte aufbaut. Sie ist wie folgt erklärt:

1 n

2 (x, — w. (3.6)57::
n~1,=1

Die positive Quadratwurzel von s’ nennen wir empirische Standardabweichung.
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Anmerkung: Im Abschnitt 3.3. werden wir begründen. warum in Formel (3.6) die Division
durch (n — 1) und nicht durch n erfolgt, wie es auf Grund der Erklärung des arithmeti-
schen Mittels zu erwarten wäre.

Begründen Sie, warum es nicht sinnvoll ist, in der Formel (3.6) die Summe der Abwei-
chungsquadrate durch die Summe der Abweichungen zu ersetzen!

Für Berechnungen wird die Formel (3.6) meist in folgender Form angewandt:

„= 1 i „L j ’ 3,"_1 i=lXr n ‘=13: r (n)

Führen Sie diese Umrechnung selbst durch und bedenken Sie dabei, daß Z x.- = n)? ist!
i= l

k

Treten k mögliche Meßwerte x„„ m = l, 2, ..., k, mit den Häufigkeiten h„‚( Z h„‚ = n)
m=1

auf, so gehen (3.6) und (3.7) in die Ausdrücke

k

s'= „i, Z<x.—2)1h. (3.8)
m=1

und
1 k 1 k 2

s1= n_1 m;x;hm—7 MZ=1x,,,h,,, (3.9)

über.
Für das “ ' ‚' ' 3.1 ist das R “ L --a zur Ber L "m7 von s’ mit ;?= 181,7 nach

(3.8) in Tabelle 3.5 und nach (3.9) in Tabelle 3.6 angegeben.

Tabelle 3.5. Schema zur Berechnung von s’ nach (3.8)

x„ hm x... - J? (xm - f)‘ (xm - f)’ h...

179 2 ~2,7 7,29 14,58
180 4 ~1,7 2,89 11,56
181 3 -0,7 0,49 1,47
182 5 0,3 0,09 0,45
183 3 1,3 1,69 5,07
184 2 2,3 5,29 10,58
185 1 3,3 10,89 10,89

20 54,60

Wir erhalten:

s1=-1—-5460=2 8719 ‚ ‚ ‚

s = 1,7.

Nach Tab. 3.6 (S. 120) erhalten wir:

s’ = 1% [659989 — 36332] = 54,55 = 2,87,

s=1,7.
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Tabelle 3.6. Schema zur Berechnung von s’
nach (3.9)

X». hm Xrnhrn x.’.h..

179 2 358 64082
180 4 720 129600
18l 3 543 98 283
182 5 910 165 620
183 3 549 100 467
184 2 368 67712
185 1 185 34 225

20 3 633 659 989

Sind die Meßwerte in Klassen eingeteilt, so berechnen wir die empirische Varianz wie
folgt:

k

s2= 1 Z (um—f)2hms (3.10)
" ' 1 m=l

wobei k die Anzahl der Klassen, um, m = 1, 2, ..., k, die Klassenmitte und h„‚ die Anzahl
der Meßwerte der Klasse m bezeichnen. Durch einfaches Umrechnen geht (3.10) über in

s’=—1— iuzh -i in}: 2 (311)
n—1m=lmm nm=1mm- A

Aus dem schon bei der Erklärung des arithmetischen Mittels genannten Grund können
sich zwischen den mit Formel (3.6) und den mit Formel (3.10) ermittelten numerischen
Werten gewisse Unterschiede ergeben.

Zur rechentechnischen Bearbeitung bieten sich die Formeln (3.9) bzw. (3.11) an.

Für das Beispiel 3.2 wird am Ende dieses Abschnittes die Berechnung der mittleren
quadratischen Abweichung angegeben.

Die Variationsbreite (Spannweite) R: Ein einfaches Streuungsmaß, das sich besonders
beim Vorliegen von nur wenigen Meßwerten bewährt hat, ist die schon in Abschnitt
3.1.1.1. eingeführte Variationsbreite R.

Für eine Menge von Meßwerten x‚-‚ i = 1, 2, ..., n, ist sie die Differenz aus dem größten
(xm) und dem kleinsten (xm) Meßwert bzw. des letzten (x‘„’) und des ersten (xf Wertes
der zugehörigen Variationsreihe:

R== xmrx...a.,=x:-X?» (3112)

Im Beispiel 3.1 beträgt die Spannweite

R=185—179=6.

Der empirische Variationskoeffizient u: Bei praktischen Untersuchungen wird in zuneh-
mendem Umfang beim Vergleich der Streuungen zweier Häufigkeitsverteilungen der em-

pirische Variationskoeffizient herangezogen. Sein Vorteil liegt darin, daß er die Größe s

in Prozenten des arithmetischen Mittels ausdrückt:

v ==i_— 100%. (3.13)
X
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Für das Beispiel 3.1 erhalten wir folgenden empirischen Variationskoeffizient:

_ 1,7

”” 181,7
-100% = 0,94%.

Zum Abschluß dieses Abschnittes wollen wir für das Beispiel 3.2 bis auf das geometri-
sche Mittel die oben erläuterten Maßzahlen berechnen.

In Tabelle 3.7 ist das Rechenschema zur Bestimmung von a? und s’ angegeben.

Tabelle 3.7. Schema zur Berechnung von a? nach (3.3) und s7 nach (3.11)

Klassengrenzen um h„‚ u„‚h„‚ u‚7„h„‚

-18 bis unter -12 -15 7 -105 1575
-12 bis unter - 6 - 9 11 - 99 891
- 6 bis unter 0 — 3 18 i 54 162

0 bis unter 6 3 30 90 270
6 bis unter 12 9 28 252 2 268

12 bis unter 18 15 15 225 3 375
18 bis unter 24 21 8 168 3528
24 bis unter 30 27 3 81 2 187

120 558 14 256

Mit den in Tabelle 3.7 erfaßten Ergebnissen ergibt sich unter Verwendung der Formeln
(3.3) und (3.11):

f=T10-558=4,65‚

s2 =~1— 14256 ——1--558’ =—1——-11661 =98
119 120 119 ’

s=9,9.

Schließlich sind in Tabelle 3.8 die für das Beispiel 3.2 ermittelten statistischen Maß-
zahlen zusammengestellt.

Tabelle 3.8. Zusammenstellung statisti-
scher Maßzahlen für Beispiel 3.2

Mittelwertmaße Streuungsmaße

J?=4,65 s’ = 98,s= 9,9
i=4 R=45
D~3 v=213%

3.1.2. Beschreibende Statistik bei zwei Merkmalen

3.1.2.1. Urliste, Korrelationstabelle, Häufigkeitsverteilung

Wir wollen jetzt die Ausführungen in Abschnitt 3.1.1. dahingehend erweitern, daß bei
einem Untersuchungsobjekt gleichzeitig zwei meßbare Merkmale X und Y betrachtet wer-



122 3. Mathematische Statistik

den. Bei " Herangehen interessiert uns weniger die Beschreibung eines dieser Merk-
male isoliert vom anderen, als vielmehr die der Abhängigkeit zwischen diesen Merkma-
len.

Die fiir die beiden Merkmale X und Y ermittelten Meßwerte fassen wir fiir jedes Ele-
ment des Untersuchungsobjekts zu einem Meßwertpaar (x‚-; y,-), i= l, 2, ..., n, zusam—

men. Diese werden wiederum in einer Urliste festgehalten.

Beispiel 3.3: In einem Stahlwerk wird bei einer Stahlsorte der Siliziumgehalt [%] (Merkmal
X) und die Druckfestigkeit [10 MPa] (Merkmal Y) untersucht. Die Urliste

Tabelle 3.9. Urliste zum Beispiel 3.3

(XI; M) (X1; Y1) (XI; yr)

0,34 66,0 0,30 63,3 0,27 63,7
0,27 59,3 0,32 62,9 0,32 68,0
0,26 59,3 0,2l 55,3 0,22 52,2
0,31 61,9 0,24 64,2 0,23 58,9
0,29 60,2 0,24 60,2 0,23 62,0

mit den Wertepaaren (x‚-‚ y‚-), i = 1,2, ...‚ 15, ist in Tabelle 3.9 angegebe . Besteht zwi-
schen den beiden Merkmalen eine Abhängigkeit?

Das Ordnen der Meßwertpaare der Urliste geschieht dann, wenn bei keinem der beiden
Merkmale eine Klasseneinteiluug erforderlich ist, durch Eintragen dieser Meßwertpaare
in ein rechtwinkliges Koordinatensystem. Die so entstehende Punktwolke vermittelt nur

einen ersten Eindruck von dem vorliegenden Zahlenmaterial. Bild 3.7 zeigt die von den
Meßwertpaaren des Beispiels 3.3 erzeugte Punktwolke.

.V1

70

x l | l| I | l

| 0,77 0J] 0,25 0,27 0,29 031 0,33 0,35 X,’

Bild 3.7. Punktwolke für Beispiel 3.3

Aus ihr ersehen wir, daß für größere Werte des Merkmals X größere Werte des Merk-
mals Y zu erwarten sind, also eine Abhängigkeit zwischen beiden Merkmalen besteht,
und daß andererseits diese Abhängigkeit nicht durch eine Funktionsgleichung erfaßt wer-
den kann.
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Erweist es sich für wenigstens eines der beiden Merkmale als günstig, die Meßwerte in
Klassen einzuteilen, dann besteht der erste Schritt beim Ordnen des Zahlenmaterials
darin, die Meßwertpaare (x„ y,-), i = 1, 2, ..., n, ebenfalls durch eine Punktwolke zu veran-

schaulichen. Läßt die Gestalt der Punktwolke eine Abhängigkeit zwischen den beiden
Merkmalen erwarten, dann wird zusätzlich zu der graphischen Darstellung der Meßwert-
paare meist noch eine Häufigkeitstabelle angefertigt. Sie wird in diesem Zusammenhang
als Kunelationstabelle bezeichnet und ist die Grundlage für die Berechnung statistischer
Maßzahlen.

Bei einer Korrelationstabelle unterteilen wir die vorliegenden Meßwerte des Merkmales
X bzw. Y in k bzw. I Klassen der Breite d, bzw. dy mit den Klassenmitten u„
i = l, 2, k, bzw. 12,-, j = 1, 2, ..., l, und ordnen die Meßwertpaare in das so entstehende
Raster ein, wodurch wir die absoluten Häufigkeiten h,-,-‚ i = 1,2 ..., k; j = 1, 2, ..., I, er-

I

halten. Wir erfassen weiterhin die Randsummen h,~.=Zh,~,,i=1,2,...,k,
/-1

k k I

und h.,-= Z h„-,j= 1,2, L und die Gesamtsumme n = Z 2 hill
i=1 i-li=l

Durch eine Korrelationstabelle wird eine zweidimensionale Häufigkeitsverteilung ver-
anschaulicht.

Wir wollen das Vorgehen an einem Beispiel erläutern:

Beispiel 3.4: Von 86 Chargen einer Stahlsorte wurden der Kohlenstoffgehalt C [%] (Merk-
mal X) und die Zugfestigkeit a, [10 MPa] (Merkmal Y) in der Urliste (Tabelle 3.10) festge-
halten.

Die Punktwolke, die die Meßwertpaare (x„ y,), i= 1,2, ..., 86, veranschaulicht, läßt
eine Abhängigkeit zwischen den beiden Merkmalen erkennen (Bild 3.8).

.Vi

l

17,37 0,3! U47 0,43 0,45 0,47 0,49 X,-

Bild 3.8. Punktwolke fiir Beispiel 3.4
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Tabelle 3.10. Urliste für Beispiel 3.4

(x.-; y.-) (x.-; y.) (x.-; y.)

0,42 68,6 0,41 69,6 0,42 72,5
0,42 72,5 0,39 68,1 0,41 71,7
0,46 75,2 0,42 70,8 0,40 70,3
0,46 82,3 0,45 73,0 0,38 62,9
0,41 69,4 0,40 68,1 0,44 75,2
0,45 71,7 0,42 73,4 0,40 73,4
0,43 73,4 0,39 71,7 0,38 66,4
0,45 68,6 0,41 75,2 0,40 66,4
0,43 75,2 0,39 66,4 0,42 75,2
0,45 79,6 0,42 66,4 0,39 69,0
0,42 73,9 0,43 62,9 0,44 79,6
0,40 62,9 0,41 63,7 0,44 77,9
0,40 62,9 0,36 63,3 0,43 75,2
0,42 74,4 0,39 69,4 0,42 66,4
0,42 67,2 0,40 64,2 0,41 66,8
0,41 73,4 0,38 66,4 0,42 69,4
0,42 68,1 0,39 64,6 0,38 69,9
0,45 72,5 0,36 66,4 0,44 67,2
0,43 72,5 0,43 69,0 0,41 68,1
0,40 75,2 0,43 70,8 0,41 78,7
0,42 72,5 0,45 71,7 0,42 73,4
0,47 79,6 0,42 73,0 0,43 73,9
0,42 73,9 0,41 71,7 0,45 70,8
0,43 75,2 0,47 77,4 0,48 77,4
0,43 76,5 0,41 70,8 0,44 76,1
0,38 70,8 0,45 77,0 0,41 70,8
0,43 71,7 0,38 73,4 0,40 73,0
0,45 77,9 0,46 78,7 0,45 77,0
0,43 77,4 0,39 69,0

Tabelle 3.11. Korrelationstabelle für Beispiel 3.4

Zugfestigkeit (Merkmal Y)

Kohlenstoffgehalt 60...64 64...68 68...72 72...76 76...80 80... h,.

(MerkmalX)

v, 62 66 70 74 78 82

"i

0,35...0,37 0,36 1 1 2

0,37...O,39 0,38 1 3 2 1 7

0,39,..0,41 0,40 2 3 7 3 15

0,4l...0,43 0,42 1 4 ll 12 1 29
0,43...0,45 0,44 1 1 3 7 5 17

0,45...0,47 0,46 4 3 5 1 13

0,47...0,49 0,48 3 3

h.,- 6 12 27 26 14 1 86
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Wir werden nun eine Korrelationstabelle anfertigen. Dazu teilen wir die Meßwerte des
Merkmals X bzw. Y in k = 7 bzw. I = 6 Klassen der Breite d, = 0,02 bzw. dy = 4 ein und
verfahren weiter wie oben beschrieben. Tabelle 3.11 zeigt die Korrelationstabelle.

Abschließend wollen wir bemerken, daß die graphische Darstellung einer zweidimen-
sionalen Häufigkeitsverteilung bei stetigen Merkmalen durch Häufigkeitsgebirge bzw.
Häufigkeitsflächen und bei diskreten Merkmalen durch Streckendiagramme erfolgt. Da
in diesem Rahmen nicht näher darauf eingegangen werden kann, verweisen wir auf
[5; 15].

3.1.2.2. Statistische Maßzahlen

Möglichkeiten zur quantitativen Erfassung der für die Merkmale X und Y vorliegenden
Meßwertpaare (x‚-, y‚-)‚ i = l, 2, ..., n‚'durch statistische Maßzahlen wollen wir in diesem
Abschnitt kennenlernen.

Betrachten wir die beiden Merkmale getrennt, dann kann dies durch die in Abschnitt
3.1.1.3. angegebenen statistischen Maßzahlen erfolgen, von denen in diesem Zusammen-
hang besonders das arithmetische Mittel und die empirische Varianz bevorzugt werden.

Durch die Angabe des arithmetischen Mittels J? bzw. ‚V [Formel (3.1)] und der empiri-
schen Varianz s} bzw. s}, [Formel (3.6)] für das Merkmal X bzw. Y erfassen wir noch nicht
den Grad der Abhängigkeit zwischen den Merkmalen. Dies gelingt mit der empirischen
Kovarianz s”:

1 ..

Sn‘: „_12<x.—aoo.-—r>‚ (3.14)
i=1 V

1 n z;XgZ£y
5x17’: n _1 I;xiyi-T - (115)

Sie ist positiv oder negativ, je nachdem, ob mit wachsendem x,- auch die y,-

(i = 1, 2, ‚.., n) wachsen (direkter Zusammenhang) oder fallen (indirekter Zusammen-
hang).

Liegt für die beiden Merkmale eine Klasseneinteilung vor, dann ergeben sich für s”
die Formeln:

b4
» I

„z: "fl Zh,.,(u,.—2?)(v-y‘), <3-16>
' 1,=1u

1 k z 1 k l

s” := fl jg h,-I-u,-vi - h,-.u,-IE1 km]. (317)

Dabei wurden die in 3.1.2.1. erklärten Symbole verwandt.
Für die rechentechnischen Belange sind die Formeln (3.15) bzw. (3.17) heranzuziehen.
Durch Normierung der empirischen Kovarianz s” erhalten wir den empirischen Korrela—

tionskoeffizien ten :

__ Sxy
rxy w T”. (3.18)

Er ist ein Maß für den linearen algebraischen Zusammenhang zwischen den Merkma-
len X und Y. Dabei sind xx bzw. sy die empirischen Standardabweichungen der Merkmale
X bzw. Y (vgl. S. 118).
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Tabelle 3.12. Schema zur Berechnung der Maßzahlen fiir
Beispiel 3.3

X1 J’: x1’ X111

0,34 66,0 0,1156 4356 22,44
0,27 59,3 0,072 9 3516 16,01
0,26 59,3 0,067 6 3 516 15,42
0,31 61,9 0,0961 3832 19,19
0,29 60,2 0,0841 3 624 17,46
0,30 63,3 0,090 0 4 007 18,99
0,32 62,9 0,102 4 3956 20,13
0,21 55,3 0,0441 3058 11,61
0,24 64,2 0,057 6 4 122 15,41
0,24 60,2 0,057 6 3 624 14,45
0,27 63,7 0,072 9 4 058 17,20
0,32 68,0 0,1024 4624 21,76
0,22 52,2 0,048 4 2 725 11,48
0,23 58,9 0,052 9 3469 13,55
0,23 62,0 0,052 9 3 844 14,26

4,05 917,4 1,1175 56 331 249,36

Tabelle 3.13. Schema zur Berechnung von statistischen Maßzahlen bei Vorliegen einer Korrelations-
tabelle

I

vi v, u, v, Z u,-v,-hi,‘ h,. h,.u,- h,,u‘?
"1- j=l

I

141 1411111111 1111121112 1411111111 11111j111j 111- 111-111 111.11g
1=1

I

u, uzmhz, u,u‚h„ u‚u‚h„ Z uzu,-hi, h2. 112.14, 11,11;
/=1

l

u, u„v,h„, mvzhk; u„v,h„‚ u„v,-h„‚» 11,. h„.u„ 11,41,}
i=1

k k k k l k k k

Z u,u‚h„ Z u,u,h„ u,v‚h„ Z u,u,h„ Z Z u,-v,h,, Z h, = n Z h,-.u‚ Z h, uf
1:1 (Kl i=1 i-l j‘1i=1 l=l i=1 l=l

I

11., 11., IL; h, 211.511
i=1

I

11,11, 11,11, 11,11, 11,11, Z h.,-v,-
i=1

I

2 1 1 2h.,-v h.,u, 11,11, 11,11} 2111,11,
„
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Für ihn gilt:

‘1§l'xy§1- (3.19)

Für die Beispiele 3.3 und 3.4 soll abschließend der empirische Korrelationskoeffizient
bestimmt werden. Tabelle 3.12 zeigt uns ein Schema, mit dessen Hilfe für das Beispiel 3.3
der empirische Korrelationskoeffizient berechnet wird.

Es ergibt sich:

s} = 0,0017, xx = 0,041,

s} =15,92, Sr = 3‚99‚
S”: 0,119 rxy=O,726.

Schließlich ist in Tabelle 3.13 ein Schema enthalten, mit dessen Hilfe die Errechnung
von statistischen Maßzahlen beim Vorliegen einer Korrelationstabelle erleichtert werden
kann.

In Tabelle 3.14 ist dieses Rechenscherna für das Beispiel 3.4 verdeutlicht.

Es ergibt sich:

s} = 0,00073, s)‘ =0‚027‚
s} =21‚52, sy =4‚64‚
s‚„= 0,074, r‚„=0,59.

3.2. Grundgesamtheit und Stichprobe

Im Abschnitt 3.1. gingen wir an die Betrachtung der fir die Merkmale eines Untersu-
chungsobjektes ermittelten Meßwerte ohne Berücksichtigung unserer in Kapitel 2. erwor-
benen Kenntnisse auf dern Gebiet der Wahrscheinlichkeitsrechnung heran. Das ist nicht
mehr möglich, sobald die statistischen Untersuchungen über den Rahmen dieses Ab-
schnitts hinausgehen. Da die einzelnen Meßwerte außer durch die auf Grund gleichblei-
bender Versuchsbedingungen erfaßbaren durch eine Vielzahl zufälliger, nicht erfaßbarer
Einflüsse bestimmt werden, können die Merkmale als Zufallsgrößen und die Meßwerte
als mögliche Werte dieser Zufallsgrößen aufgefaßt werden. So ist es möglich, daß im Bei-
spiel 3.2 auf die Meßwerte für die Maßabweichung (Merkmal X) u. a. folgende zufälligen
Einflüsse wirken: Ablesefehler, Temperaturschwankungen, Erschütterungen der Werk-
bank, Schwankungen in der Qualität der Werkstoffe.

Wir wollen zur Erfassung dieses Sachverhaltes die Begriffe Grundgesamtheit und Stich-
probe im Sinne der mathematischen Statistik einführen.

Definition 3.1: Eine Zufallsgröße X mit der zugehörigen WahrscheinIichkeitsveneilung bezeich-
nen wir als Grundgesamtheit.

In der Wahrscheinlichkeitsrechnung gehen wir von der vollständigen Information über
die Wahrscheinlichkeitsverteilung der betrachteten Zufallsgröße aus. Für diese liegt bei
den jetzt zu betrachtenden Fragestellungen keine oder nur unvollständige Information
vor. Wir wollen deshalb durch sich gegenseitig nicht beeinflussende Wiederholungen des
der Zufallsgröße zugrunde liegenden zufälligen Versuches Aufschluß über Kennwerte
und Verteilungsfunktion der Zufallsgröße gewinnen. Dabei liefert jede einzelne Wieder-
holung einen der möglichen Werte der Zufallsgröße. Wir sprechen in diesem Zusammen-
hang von einer Realisierung der Zufallsgröße.
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Definition 3.2: Eine Menge von n Realisierungen {x,, X1, ..., x,,}‘) einer Grundgesamtheit X D.3.2
bezeichnen wir als konkrete Stichprobe vom Umfang n. Jede einzelne Realisierung nennen wir
Element der Stichprobe.

Mit den beiden Definitionen werden nun die häufig benutzten Sprechweisen: „Die
Grundgesamtheit unterliegt einer Normalverteilung“; „Aus einer normalverteilten Grund-
gesamtheit wird eine Stichprobe vom Umfang n gezogen.“ verständlich.

Die in den Tabellen 3.1, 3.3 und 3.11 erfaßten Urlisten der Beispiele 3.1, 3.2 und 3.3
stellen konkrete Stichproben dar. charakterisieren Sie nochmals die entsprechenden
Grundgesamtheiten! Geben Sie weitere Beispiele von Grundgesamtheiten und Stichpro-
ben an!

Kommen wir nun zur Kennzeichnung der Gesamtheit aller konkreten Stichproben vom

Umfang n. Dazu beschreiben wir die i-te Wiederholung des zugrunde liegenden Versu-
ches durch eine Zufallsgröße X„ i = 1, 2, ..., n, die derselben Verteilung wie die Grund-
gesamtheit unterliegt. Das Element x, der konkreten Stichprobe ist dann eine Realisie-
rung von X,-.

Definition 3.3: Als mathematische Stichprobe bezeichnen wir die n-dimensianale Zufalls-
größe (X1, X1, ..., X,,) mit den untereinander unabhängigen und identisch entsprechend der
Grundgesamtheit X verteilten Komponenten X„ i = 1, 2, ..., n.

Die konkrete Stichprobe x,, x2, ..., x„ ist dann eine Realisierung dieser n-dimensiona-
len Zufallsgröße.

Wichtigste Aufgabe der mathematischen Statistik ist es, aus der in einer Stichprobe
enthaltenen Information Aussagen über die Grundgesamtheit zu gewinnen. Es treten da-
bei folgende wesentlichen Probleme auf:

l . Schätzen der Parameter der Grundgesamtheit: Ist nur der Verteilungstyp der Grundge-
samtheit bekannt, dann sind die unbekannten Kennwerte (Parameter) dieser Verteilung
zu schätzen. So sind z.B. aus der aus einer norrnalverteilten Grundgesamtheit gezogenen
konkreten Stichprobe im Beispiel 3.2 -— Maßabweichungen können als normalverteilt an-

gesehen werden — Schätzwerte für den Erwartungswert und die Varianz der Grundgesamt-
heit zu gewinnen.

2. Prüfen von Hypothesen: Nicht selten werden Annahmen über die Grundgesamtheit
gemacht, z. B. über den Typ oder die Kennwerte (Parameter) der Verteilung. Diese An-
nahmen (Hypothesen) sind mit der der Stichprobe entnommenen Information derart in
Beziehung zu bringen, daß entschieden werden kann, ob sie mit dieser Information ver-

einbar sind.
Im Beispiel 3.1 ermittelten wir für eine bestimmte Betonsorte aus der konkreten Stich-

probe (Urliste) das arithmetische Mittel der Druckfestigkeit (Merkmal X) in 10"MPa
)?= 181,7. An einer anderen konkreten Stichprobe wurde für dieselbe Betonsorte das
arithmetische Mittel der Druckfestigkeit f = 183,2 festgestellt. Es ist die Hypothese, daß
die Erwartungswerte der entsprechenden Grundgesamtheiten gleich sind, zu prüfen.

Ausgangspunkt aller Auswertungen mit Methoden der mathematischen Statistik ist
eine konkrete Stichprobe, ist das mit Hilfe der beschreibenden Statistik aufbereitete Zah-
lenmaterial,

Die Art und Weise der Entnahme einer konkreten Stichprobe aus der Grundgesamtheit
ist vom Ziel der Untersuchung ausgehend festzulegen. In diesem Zusammenhang sei auf
die wichtige Problematik der Versuchsplanung, die im Band 19/2 dieser Reihe behandelt
wird, hingewiesen.

1) Im allgemeinen wird für die konkrete Stichprobe x1, x1, .„, x„ geschrieben,

9 Bayer, Wahrscheinlichkeitsrechnung

D.3.3
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Wir wollen hier lediglich folgendes festhalten: Da aus der in einer konkreten Stich-
probe enthaltenen Information Schlüsse hinsichtlich der Grundgesamtheit gezogen wer-
den sollen, müssen wir sichern, daß diese repräsentativ für die Grundgesamtheit ist. Wir
haben uns also zu überlegen, wie die Einheiten des Untersuchungsobjektes auszuwählen
sind, daß diese eine „ZufalLsstichprobe“ bilden. Das ist dann der Fall, wenn jede Einheit
des Untersuchungsobjektes die gleiche Chance hat, ausgewählt zu werden und die Aus-
wahl der nachfolgenden Einheit nicht von den vorangehenden beeinflußt wird. Die an
diesen Einheiten für das betrachtete Merkmal X ermittelten Meßwerte bilden eine kon-
krete Stichprobe aus der Grundgesamtheit. So sind im Beispiel 3.1 die Betonwürfel Ein-
heiten des Untersuchungsobjektes „Betonsorte“ und die an den Probewürfeln für das
Merkmal Druckfestigkeit festgestellten Werte Elemente der entsprechenden konkreten
Stichprobe. Zur Veranschaulichung der „chancengleichen“ Auswahl von Einheiten eines
Untersuchungsobjektes, bei dem nur endlich viele Einheiten möglich sind, wollen wir ver-
schiedene Vorgehensweisen darstellen.

Eine besteht darin, wie in einer Lotterie alle Einheiten des Untersuchungsobjektes gut
durchzumischen und unter Wahrung des Zufalls die einzelnen Einheiten der Stichprobe
zu ziehen. Falls dieses Vorgehen nicht möglich ist, z.B. bei gestapeltem Material, kann je-
der Einheit eine natürliche Zahl zugeordnet werden. Aus diesen werden diejenigen ausge-
wählt, deren entsprechende Einheiten in die Stichprobe aufgenommen werden. Da aber
oft unbewußt gewisse Zahlen und deren Vielfaches bevorzugt werden (z. B. 9, 7, l3, 25,
39), sollten wir diese Zahlen durch Auslosen oder mit Hilfe von Tafeln von Zufallszahlen
ermitteln. Einen Auszug aus einer Tafel mit vierstelligen Zufallszahlen gibt Tafel 7 im
Anhang wieder. Das Verfahren, nach dem solche Tafeln aufgestellt werden, sichert, daß

. die Ziffern 0, l, ..., 9 an jeder Stelle der vierstelligen Zahlen gleichwahrscheinlich sind.
Den Gebrauch der Tafel wollen wir an einem Beispiel erläutern.

Beispiel 3.5: Von N = 480 Einheiten eines Untersuchungsobjektes sollen n = l8 zufällig
entnommen werden, Dazu werden die Einheiten von 000 bis 479 durchnumeriert. Nun
wählen wir in der vorliegenden Tafel von vierstelligen Zufallszahlen (für unser Beispiel ist
eine Tafel mit dreistelligen Zufallszahlen ausreichend) willkürlich in irgendeiner Spalte
eine Zahl und legen eine Vorschrift fest, nach der wir die übrigen Zufallszahlen ermitteln
wollen (z. B. horizontales, vertikales oder diagonales Fortschreiten). Von den Zufallszah-
len beachten wir nur die drei ersten Ziffern und notieren die, die kleiner als 479 sind. Ge-
hen wir z.B. in der Tafel von der zweiten Zahl in der siebenten Spalte aus und gehen ver-

tikal weiter, so erhalten wir für unsere Stichprobe die Elemente mit den Nummern:

227 477 033 459 115 202
188 227 015 394 361 216
164 019 384 008 282 327

Durch die Verwendung von Zufallszahlen ist die zufällige Auswahl gesichert.

Wie wir oben darstellten, ist die Grundgesamtheit eines Merkmales X eine Zufalls-
größe. Diese wird durch ihre Verteilungsfunktion FX(t) = F(t), -°o < t< +oo, die wir in
diesem Zusammenhang auch als theoretische Verteilungsfunktion bezeichnen werden, voll-
ständig charakterisiert. Sie ist allerdings im allgemeinen unbekannt. Wir werden deshalb
versuchen, über sie mit Hilfe einer aus dieser Grundgesamtheit gezogenen konkreten
Stichprobe gewisse Informationen zu erhalten. Dazu erklären wir die von der Variations-
reihe x1; x1‘; g x‘; einer konkreten Stichprobe x1, x2, ..., x, vom Umfang n ausge-
hende konkrete empirische Verteilungsfunktion
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o für tgxf,
F„(t): m=1,2,...

— für x;‚<igxt‘„„‚ (3.20)

1 für t> x},

mit -00 < t< +00.

Die konkrete empirische Verteilungsfunktion F„(t) ist einer bestimmten konkreten
Stichprobe vom Umfang n zugeordnet.

Wir betrachten nun die zugehörige mathematische Stichprobe (X1, X1, ..

Komponente X, (i = l, ..., n) ordnen wir durch die Vorschrift

_ 1, falls das Ereignis {X‚- < I} eintritt,
i 0, falls das Ereignis {IQ g t} eintritt,

.‚ X„). Jeder

wobei t eine beliebige fest vorgegebene reelle Zahl ist, die Zufallsgröße Y, (i = 1, ...‚ n)

2xi: fiir jedes beliebige feste t eine Zufallsgröße. Wir bezeich-

nen die Funktion F„(t) (-00 < t < 00) als empirische Verteilungsfunktion. Jede konkrete em-

pirische Verteilungsfunktion F’„(t) derselben Grundgesamtheit ist demzufolge eine Reali-
sierung von F„(t).

Einen wichtigen Zusammenhang zwischen der empirischen Verteilungsfunktion F„(t)
und der theoretischen Verteilungsfunktion F„(t) der Grundgesamtheit X gibt der Satz von
Gliwenko, der häufig auch Hauptsatz der mathematischen Statistik genannt wird. Er
lautet:

zu. Dann ist auch F„(t) ==

Satz 3.1 (Satz von Gliwenka‘)): Ist F„(t) die empirische Verteilungsfunktion der mathematischen
Stichprobe (X1, ..., X,,) vom Umfang n und F„(t) die Verteilungsfunktion der Grundgesamtheit
X, dann konvergiert F„(t) für n-> 00 mit Wahrscheinlichkeit 1 gleichmäßig in tgegen die Vertei-
lungsfunktion F„(t).

Mit anderen Worten: Mit wachsendem Stichprobenumfang kommt F,,(t) der unbekann-
ten Verteilungsfunktion der Grundgesamtheit F„(t) beliebig nahe (mit Wahrscheinlich-
keit 1).

Den Beweis dieses Satzes finden Sie in [3; l2].
Aus den bisherigen Ausführungen ist offensichtlich, daß die in 3.1. eingeführten stati-

stischen Maßzahlen ebenfalls als Realisierungen von Zufallsgrößen aufzufassen sind und
außerdem von den Elementen der konkreten Stichprobe abhängig sind. Durch die mathe-
matische Stichprobe werden die entsprechenden Zufallsgrößen erklärt, die Funktionen
der Zufallsgrößen X1, X1, ..., X, sind und als Stichprobenfunktionen bezeichnet werden. Ist
z. B. T’ = T’ (X„ ..., X,,) eine Stichprobenfunktion der mathematischen Stichprobe
(X1, X2, X„), so bezeichnen wir mit t’ = t'(x1, ..., x,,) die Realisierung dieser Zufalls-
größe fiir die konkrete Stichprobe x1, x„..., x„.

Wichtige Beispiele von Stichprobenfunktionen sind

M
;

X = X„ das arithmetische Mittel; (3.21)=
[>

-
||i l

1 Z (X. — ‚W, die empirische Varianz.
=l

2:
S n-1, (3.22)

‘) Waleri lwanowitsch Gliwenko (1897-1940), sowjetischer Mathematiker.

S.3.l
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In 2.3.8.3. wurden weitere wichtige Stichprobenfunktionen angegeben. Unter der Voraus-
setzung, daß die Elemente X‚- der mathematischen Stichprobe (X1, X2, X„)
N(;4; rr)-verteilt sind, gilt:

1 " _

Yzt. = 7 Z (X. — X)’ (3.23)
i = i

unterliegt einer Chi-Quadrat-Verteilung mit (n -1) Freiheitsgraden (vgl. Satz 2.7);

Z:-.= Kg” W (3.24)

unterliegt einer Student-Verteilung mit (n -l) Freiheitsgraden (vgl. Satz 2.8). Wird vor-

ausgesetzt, daß die Elemente Xf“’ der mathematischen Stichproben (X‘‚"’‚ xg*>, ...‚ Xff’),
k = 1, 2, N(/4,‘; ak)-verteilt sind, so unterliegt

i712‘ 1) 2 m“ - IW
i=1W (3.25)tr =

n,—1.n,—1

(n. — 1) 2 (X?) — im):
j=1

einer F-Verteilung mit (n, e l, n, - 1) Freiheitsgraden (vgl. Satz 2.9).
In der mathematischen Statistik wird für die Stichprobenfunktion

— Y,',_1 auch das Symbol x§,_1,

— Z}, auch das Symbol t,,_1,

— W,’;l_,V,,z,1 auchdas Symbol F,,l_M2_,

verwandt.
Die zu diesen Verteilungen gehörenden Tafeln sind im Anhang zusammengestellt.

3.3. Statistische Schätzverfahren

3.3.1. Einleitung

In diesem Abschnitt werden wir uns mit statistischen Schätzfragen beschäftigen, Die
ihnen zugrunde liegende Fragestellung wollen wir mit Hilfe von zwei Beispielen erläu-
tern.

Beispiel 3.6: Bei der Produktion eines Maschinenteiles sind für ein Abmaß gewisse Tole-
ranzen zugelassen. Vor Aufnahme der Fertigung soll geprüft werden, ob von der Ma-
schine, auf der die Herstellung erfolgen soll, diese Toleranzen annähernd eingehalten
werden können. Dazu fassen wir die Maßabweichung vom Nennmaß als Zufallsgröße X
auf, die wir auf Grund früherer Betrachtungen als N( ‚u; a)-verteilt annehmen können. Die
Grundgesamtheit X ist durch ihre Verteilungsfunktion

Fx(t) = P(X< f) = ‘DU; u, (T)

vollständig beschrieben.
Bezeichnen wir mit to bzw. t„ die obere bzw. untere zulässige Maßabweichung, so ergibt

sich unter der Voraussetzung, daß die Maschineneinstellung dem Nennmaß entspricht,
d.h. unter der Voraussetzung ‚u = 0, die Wahrscheinlichkeit dafiir, daß unzulässige Maß-
abweichungen auftreten, zu:
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P(X< 21,) +P(X; 21,) = 1 —P(t„gX< lo) = l ~ [<D(t°; 0, a) — rD(t„;0, 11)].

Auf Grund der ermittelten Wahrscheinlichkeit ist eine Aussage über den auftretenden
Ausschußanteil möglich, und somit ist über die Aufnahme der Produktion auf der be-
trachteten Maschine zu entscheiden.

Zur Berechnung dieser Wahrscheinlichkeit benötigen wir den Kennwert (Parameter) o’.

Da er uns unbekannt ist, müssen wir ihn aus den Meßwerten, die wir auf der Grundlage
von n auf der Maschine gefertigten Probestücken gewonnen haben, d. h. auf der Basis
einer konkreten Stichprobe vom Umfang n, schätzen.

Beispiel 3.7: Die Grundgesamtheit des Merkmals „Anzahl der Atome, die in einer be-
stimmten Zeiteinheit zerfallen“, wird durch eine poissonverteilte Zufallsgröße X charak-
terisiert. Diese ist durch ihre Einzelwahrscheinlichkeiten

1k _,P(X=k)=Fe , k=0,l,2,...

vollständig beschrieben.
Wie im Beispiel 3.6 ist der unbekannte Kennwert (Parameter) Ä auf der Grundlage

einer konkreten Stichprobe zu schätzen.
Beide Beispiele haben gemeinsam, daß von der Zufallsgröße X, die die Grundgesamt-

heit beschreibt,
—— der Verteilungstyp als bekannt vorausgesetzt wird,
— wenigstens ein Kennwert (Parameter?) dieser Verteilung aber unbekannt ist.

Wir charakterisieren den Verteilungstyp einer stetigen bzw. diskreten Zufallsgröße X
durch ihre Dichtefunktion f(t; ('71, ..., Gm), - °° < t < +00, bzw. ihre Einzelwahrschein-
lichkeiten P(X= x1; 01, ..., 0,.) =p(x,, 91, ..., 6m), i= 1,2, ..., n,bzw. i= 1, 2, ..., mit
den Parametern 91, ..., 9m. Die statistischen Schätzverfahren dienen dazu, die Parameter
(91, ..., @,,,, von denen wir annehmen, daß sie unbekannt sind, auf der Basis einer aus der
Grundgesamtheit gezogenen Stichprobe zu schätzen. Diese Schätzungen, die Stichpro-
benfunktionen und dementsprechend Zufallsgrößen sind, werden Schätzfunktionen ge—

nannt. Diese bezeichnen wir für eine mathematische Stichprobe (X1, X1, ...,X„) vom
Umfang n mit 9,- = Ö1(X1, X1, ..., X„), i= 1, 2, ..., m. Ihre Realisierungen, die auf Grund
einer konkreten Stichprobe x1, x1, ..., x,, — einer Realisierung von (X1, gig, X,,) — ge-
wonnen werden und Schätzwerte heißen, kennzeichnen wir mit 91= z91(x1‚ x1, ..., x„),
i= 1,2, ..., m.

Im folgenden wollen wir zwei Arten von Schätzungen betrachten. Dies ist einmal die
Punkt- und zum anderen die Konfidenzschätzung.

3.3.2. Punktschätzungen

3.3.2.1. Begrifl der Punktschätzung

Von einer Punktschätzung eines unbekannten Parameters 6 sprechen wir dann, wenn

ein einziger aus einer Stichprobe gewonnener Wert mit dem unbekannten Parameter (9

identifiziert wird. In diesem Zusammenhang werden Ö = 9(X1, X1, , X„) Punktschätz-
funktion und ihre Realisierungen 5 = 9(x1‚ x1, ..., x,,) Punktschdtzwerte genannt. So sind
z.B. die Stichprobenfunktionen

91(X1yX2, m, Xn) =X(X1,X2, -~-1 Xn) = >
<

|

‘) In Verbindung mit statistischen Schätzverfahren wird im allg. von Parametern und seltener von

Kennwerten gesprochen. So soll es auch hier geschehen.
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und
9z(X1‚X2‚ -~-.Xn)=X(X1,X2, ---»Xn) =X

Punktschätzfunktionen des Parameters 8 = E (X) einer Grundgesamtheit X. Entspre-
chend stellen die Realisierungen dieser Zufallsgrößen

91951; x2: m; xn) =3?(X1; X1»-~, X») =3?
und

92(x., x2. x..)= i(x1, xz, x.)= i

Punktschätzwerte des Parameters 6 = E(X) dieser Grundgesamtheit dar (vgl. 3.1.1.3.).
Wie wir gerade sahen, können zur Schätzung eines Parameters einer Grundgesamtheit

mehrere Punktschätzfunktionen herangezogen werden. Es erhebt sich die Frage, welche
dieser Schätzfunkiionen uns die beste Information über den unbekannten Parameter lie-
fert, mit anderen Worten, welche dieser Schätzfunktionen wir wählen.

Zur Beantwortung dieser Frage stellte R. A. Fisher 1930 Kriterien für die Auswahl einer
Punktschätzfunktion auf. Er fordert, daß eine „gute Schätzung“ erwartungstreu, konsistent
und effizient sein soll. Wir wollen diese Kriterien erklären und durch entsprechende Bei-
spiele veranschaulichen, ohne in jedem Fall auf den Nachweis einzugehen.

Definition 3.4.: Eine Punktschätzfunktion 0(X1, , X,,) eines Parameters 6 nennen wir er-
wartungstreu (unvenerrt), wenn der Erwartungswert von 9 gleich dem Parameter 9 ist, d. h.,
wenn gilt: E(Ö) = 9. Eine Punktschätzfunktion Ö eines Parameters 9 bezeichnen wir als
asymptotisch erwammgstreu, falls fiir wachsenden Stichprobenumfang der Grenzwert des Er-
wartungswertes von Ö gleich dem Parameter 6 ist, d. h., wenn gilt: lim E (Ö(X„ ..., X..)) = 9.

‚H...

So sind beispielsweise
— die relative Häufigkeit 9 = H„ (A) eine erwartungstreue Punktschätzfunktion der Wahr-

scheinlichkeit 0 = p für das Eintreten des Ereignisses A im Ergebnis eines zufälligen
Versuchs;

— die empirische Verteilungsfunktion F„(t) für jedes feste t (-00 < t< +00) eine erwar-
tungstreue Punktschätzfunktion für die Verteilungsfunktion F„(t) der Grundgesamt-
heit X;

— das arithmetische Mittel 0 = Y eine erwartungstreue Punktschätzfunktion für den Er-
wartungswert 6 = E (X) der Grundgesamtheit X;

— der Median 9 = Y eine asymptotisch erwartungstreue Punktschätzfunktion fiir den Et-
wartungswert 6 = E(X) der norrnalverteilten Grundgesamtheit X;

n — 1 2
TS

eine asymptotisch erwartungstreue‘) und die Spannweite Ö3=R nicht einmal eine
asymptotisch erwartungstreue Punktschätzfunktion fiir die Varianz 6 = D’(X) der
Grundgesamtheit X;

- das arithmetische Mittel 9 = IT eine erwartungstreue Punktschätzfunktion für den Pa-
rameter 9 = ‚l einer poissonverteilten Grundgesamtheit X.

Für das arithmetische Mittel Y und die Größe Sf wollen wir diese Aussage nachweisen:
1. Mit 9 = 17 und 9 = E(X) ergibt sich E(X) = E(X) wie folgt:

— die empirische Varianz 91 = S’ eine erwartungstreue, die Größe Ö, = S} =

E(X)=E[lix] 4431,] =L:m=:.E(x)=m,.
"i=1 n 1x1 "i:1 n

‘) Das ist auch die Begründung für die Erklärung der empirischen Varianz in 3.1.1.3.
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2. Mit

6=Si=%Z<X.—X>1
i=l

und 9 = D’(X) ergibt sich lim E(S§) = D’(X) wie folgt:

E<s%>=E[%i (X’:“}7)’] =EHZ"LX.? -171] =E<X1>—Eo?*);
i=1 1'-1

E(1?1)=Iz[(

mi) = I~:<X2> — %E<X1> — "—;1E<X>’

" 1 —l
22mg =;E(X1) +"TE(X)2;:|>

—
-

n-

ll

lim E(s{) = D’(X).

n_

1 E<X2) — „ 1 E<X)2="—;1[E<X1>— E0011 = 1—;~1~D2<X>;

Definition 3.5: Eine Punktschtitzfunktion 9(X1, ..., X,,) eines Parameters 9 bezeichnen wir als D.3.5
(schwach) konsistent (passend), wenn 9 mit wachsendem n in Wahrscheinlichkeit gegen 6
konvergiert, d. h.‚ wenn fiir jedes beliebige e > 0 gilt:

1imP(|9(X1, ...,x,)— 8|<s)= 1.

Mit anderen Worten: Mit wachsendem Stichprobenumfang strebt die Wahrscheinlich-
keit des Ereignisses ,,|9 — 9l< e“ gegen 1. So sind z.B.
— die relative Häufigkeit 9 = H„(A) eine konsistente Punktschätzfunktion der Wahr-

scheinlichkeit 0 = p für das Eintreten des Ereignisses A im Ergebnis eines zufälligen
Versuchs (vgl. Gesetz der großen Zahlen von Bernoulli; Satz 2.13);

— die empirische Verteilungsfunktion F,,(t) für jedes feste t (— 0° < t< + m) eine konsi-
stente Punktschätzfunktion für die Verteilungsfunktion F„(t) der Grundgesamtheit X
(vgl. Aussage des Satzes von Gliwenko);

— das arithmetische Mittel 9 = Y eine konsistente Punktschätzfunktion für den Erwar<
tungswert der Grundgesamtheit X;

— der Median 9 = X’ eine konsistente Punktschätzfunktion für den Erwartungswert einer
normalverteilten Grundgesamtheit;

— die empirische Varianz 9 = S1 eine konsistente Punktschätzfunktion für die Varianz
6 = D1(X) der Grundgesamtheit X;

- das arithmetische Mittel Ö = Y eine konsistente Punktschätzfunktion des Parameters
6 = /1 einer poissonverteilten Grundgesamtheit X.

Die in Definition 3.5 für das Vorliegen der (schwachen) Konsistenz angegebene Forde-
rung ist im allgemeinen nicht einfach nachweisbar. Bei Kenntnis der Erwartungstreue
einer Punktschätzfunktion ist ihre (schwache) Konsistenz mit Hilfe des folgenden Satzes
oft einfacher zu untersuchen:

Satz 3.2: Ist eine Punktschätzfunktion Ö = 9(X1, X2, ..., X,,) eines Parameters 6 asymptotisch
erwartungstreu. d. h. lim E (Ö) = 9, so ist die Erfüllung von lim D’(9) = 0 eine hinreichende

Bedingung für ihre (schwache) Konsistenz.

S.3.2
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Der Beweis des Satzes ergibt sich aus Formel (2,69).
Für das arithmetische Mittel (9 = X, das eine erwartungstreue Punktschätzfunktion des

Erwartungswertes 0 = E (X) einer Grundgesamtheit X ist, ergibt sich die (schwache) Kon-
sistenz mit Hilfe dieses Satzes, da

_ D2 X
lim D’(X) = lim%= o

gilt.

Definition 3.6: Die erwartungstreue Punktschätzfunktion (7), des Parameters 9 einer Grundge-
samtheit nennen wir effizienter (wirksamer) als eine erwartungstreue Punktschätzfunktion Ö1

desselben Parameters, wenn für ihre Varianzen DZ(Ö1) = E(((9, - 9)’) und D1((92)

= E((92 - 0)’) gilt:

D’(91)< D‘(9z)-

Das Verhältnis

__ D2(91)

F D’(92)
bezeichnen wir als relative Wirksamkeit (Wirkungsgrad) von Ö2 in bezug auf Ö1 und die
für einen Parameter der Grundgesamtheit vorliegende Punktschätzfunktion mit der kleinsten Va-
rianz als die effektive (wirksamste) Schätzung.

77

Eine Aussage über eine untere Schranke der Varianz von Punktschätzfunktionen
Ö= Ö(X1‚X‚ ...,X,,) eines Parameters 0 der Grundgesamtheit X liefert der Satz von

Rao-Cramer: Wird eine Grundgesamtheit X durch eine Dichte f(t; Q) charakterisiert, die
von einem Parameter (9 abhängt, ist f(t‚ 0) fur jedes t zweimal nach (9 differenzierbar
und gelten weitere Regularitätsvoraussetzungen, dann ist fiir jede Punktschätzfunktion (~)

des Parameters 6 die Ungleichung

132(9) 2%
erfiillt, wobei I,,(0) = nD’ ist.

I,,(@) wird als Fishersche Information bezeichnet. Sie hängt im allgemeinen von (-) und
dem Stichprobenumfang n ab. Als Maßzahl macht sie eine Aussage über die in der Stich-
probe enthaltene Information hinsichtlich des zu schätzenden Parameters t9.

Beispiel 3.8: In einer N(u, do)-verteilten Grundgesamtheit sei der Parameter o1, bekannt.
Der unbekannte Parameter G) = ‚u soll geschätzt werden. Die Dichte

_ (t — Wexp [ 26%f(t;0,oo)= (—oo<2<+oo),
1

V/E00

der Zufallsgröße X erfüllt die o. g. Voraussetzungen. Dann ergibt sich für I,,(0):

d1nf(X;0)] d (X—6)Z
= z = 2 T _ _ I,,(0) nD[ d6 nD d6 lI1V21T(To 20%

'X—0 1 1 n=nD’[ G3 ]=n73D2(X)=nT3a3 7%
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Das arithmetische Mittel Ö = I? ist also die effektive Punktschätzfunktion des Parameters
6 = u der norrnalverteilten Grundgesamtheit X; denn sie ist erwartungstreu, und es gilt:

131(6) = 132(17):

3.3.2.2. Maximum—Likeli11ood-Methode

Zur Beurteilung, ob eine Punktschätzfunktion eine „gute Schätzung“ ist, werden die
o. g. Kriterien herangezogen. Es ist häufig nicht einfach, nachzuprüfen, ob eine Punkt-
schätzfunktion den einzelnen Kriterien gerecht wird. Es erhebt sich deshalb die Frage
nach praktikablen Methoden, mit deren Hilfe Punktschätzfunktionen gesucht werden, die
möglichst viele dieser Kriterien erfüllen.

Eine dieser Methoden ist die Maximum-Likelihood-Methode (MLM). Sie wurde von
R. A. Fisher entwickelt, nachdem sie C‚F. Gauß schon vorher in Spezialfallen angewandt
hatte. Bei ihr gehen wir von einer konkreten Stichprobe x1, x1, ..., x, vom Umfang n aus
einer Grundgesamtheit X aus. Der Verteilungstyp der Grundgesamtheit X sei bekannt.
Die Parameter (9,, i: 1,2, ..., m, dieser Verteilung seien unbekannt und sollen unter
Verwendung der in der konkreten Stichprobe über die Grundgesamtheit enthaltenen In-
formation geschätzt werden. Dazu erklären wir die Likelihood-Funktion
L(x1, x2, ..., x„; (9„ 92, ..., (~),,,). Wir wollen uns im folgenden auf den Fall eines Parame-
ters (9 beschränken.

Definition 3.7: Ist x1, x2, , x„ eine aus einer Grundgesamtheit X gezogene konkrete Stich- D.3.7
probe vom Umfang n und ist X eine diskrete bzw. stetige Zufallsgroße mit den Einzelwahrschein-
liehkeiten P(X= x,-; 6), i = 1,2, ..., bzw. der Dichte fx(t; (9), wobei der Parameter 6 unbe-
kannt ist, dann wird die Funktion

L(x1,x2,...,x„;0)=fiP(X=x,;0) (3.26)
i:l

bzw.

L(x1;X2y~~~:Xn§@)= Hfx(X1§9) (3.27)
I'=l

aLs Likeljhood-Funktion bezeichnet.

Die Likelihood-Funktion L(x1, x1, ..., x„; G) ist für jede konkrete Stichprobe eine
Funktion des unbekannten Parameters 6. Das Prinzip der MLM besteht nun darin, als

Punktschätzwert 5 für den unbekannten Parameter 0 denjenigen zu ermitteln, für den die
Likelihood-Funktion ein Maximum annimmt. Im diskreten Fall heißt das z.B., unter den
möglichen Punktschätzwerten fiir 6 denjenigen auszuwählen, fiir den das Ereignis
{X‚ = xi, X; = x1, ..., X„ = x„} die größte Wahrscheinlichkeit besitzt.

Unter der Voraussetzung der Differenzierbarkeit der Likelihood-Funktion nehmen wir
die Auswahl der gesuchten Punktschätzfunktion mit Hilfe der notwendigen Bedingung
fiir ein relatives Maximum vor:

ä; = 0. (3.28)

Oft ist es günstiger, den natürlichen Logarithmus der Likelihood-Funktion zu bilden und
von der Gleichung

dlnL
d6 "0 (3.29)
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an Stelle von (3.28) auszugehen. Begründen Sie diesen Schritt! Eine Lösung dieser Glei-
chung, die wir mit z9= 9(x,, x1, ..., x„) bezeichnen, ist eine Realisierung, ein Punkt-
schätzwert, der entsprechenden Punktschätzfunktionen 9 = 9(X,, X2, ..., X„). Ö wird als
Maximum-Likelihood-Sehätzung für 6 bezeichnet.

Übertragen Sie die eben angestellten Betrachtungen auf den Fall, daß die Wahrschein-
lichkeitsverteilung der Grundgesamtheit von zwei unbekannten Parametern 9, und 9, ab-
hängt!

Die Maximum-Likelihood-Schätzungen sind unter bestimmten Bedingungen konsi-
stent, wenigstens asymptotisch erwartungstreu und asymptotisch normalverteilt.

Beispiel 3.9: Die Wahrscheinlichkeit P(A) = p eines Ereignisses A soll auf der Grundlage
von 120 unabhängigen Versuchen, in deren Ergebnis 96ma1 das Ereignis A eintrat, ge-
schätzt werden.

Dazu führen wir eine Null-Eins-verteilte Zufallsgröße X ein, wobei dem Ereignis A der
Wert 1 und dem Ereignis Ä der Wert 0 zugeordnet wird:

P(X=l)=p; P(X=0)=1-p.
Der Parameter 9 = p dieser Verteilung ist zu schätzen. Der Serie von 120 Versuchen ent-
spricht dann eine konkrete Stichprobe vom Umfang 120, in der 96mal der Wert 1 und
24mal der Wert 0 auftritt. Die Likelihood-Funktion hat dann die Gestalt:

120

L<x„ x2. x„.‚;p> = [I P(X= x‚-;p)
I l

= = 1)]96 = 0)]110 — 96

= p“(1 - P)",
wobei von den x‚-, i = 1, 2, ..., 120, 96 den Wert 1 und 24 den Wert 0 haben. Um Formel
(3.29) anwenden zu können, bilden wir lnL = 96lnp + 24ln(1 - p) und erhalten damit:

dlnL = ä _ 24

dp p 1 - p

Die Lösung dieser Maxirnum-Likelihood-Gleichung ist eine Realisierung der Punkt-
schätzfunktion Ö = 13, die wir mit 9 = 13,, bezeichnen wollen. Für sie ergibt sich

.__ = 96

"P" 120

=0.

=0,8.

Allgemein erhalten wir: 9 = ß = kln, wobei wir mit k die Anzahl des Eintretens des Er-
eignisses A und mit n die Anzahl der Versuche kennzeichnen. Wir sehen also, daß die re-
lative Häufigkeit Ö = H„ (A) die Maximum-Likelihood-Schätzung für den Parameter
6 = p ist.

Beispiel 3.10: Von einer N(u; <7)-vetteilten Grundgesamtheit X sind die Parameter
B, = y und 6, = a’ unbekannt. Mit Hilfe der in einer konkreten Stichprobe x1, x2, ..., x„
vom Umfang n enthaltenen Information sollen diese beiden Parameter geschätzt werden.
Dazu bilden wir die Likelihood-Funktion der Stichprobe:

1 1 "

L(x1, X2, x..;u, rr’)= ex1>[-2—(72'v=Z:‘(x.--14)’]

und den natürlichen Logarithmus dieser Funktion:
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n n 1 "

lnL— --2-ln(2Tr)-3ln(t72)~E—;7g(x,-;1)2.

Durch Bildung der partiellen Ableitungen nach den Parametern 61 = u bzw. 6, = a’ er-
halten wir das Likelihood-Gleichungssystem:

a(1nL)__1_" _ _f!‘—„‚ m-o,

8(1nL) n 1 "

ea? =‘W*2—.,«§‘*«*"‘>‘=°~

Aus der ersten Gleichung errechnet sich

‚.

Z x,- — nu = 0
I'= l

und damit der Punktschätzwert

51=%2 x‚- = 3?. (3.30)
1'31

91 setzen wir für [4 in die zweite Gleichung ein und erhalten durch Umformung:
y.

2 (x, — i)’ = azn,
i= l

woraus sich weiter der zweite Punktschätzwert ergibt:

.9, =%Z (x,- — ml. (3.31)
[=1

Die entsprechenden Punktschätzfunktionen für die Formeln (3.30) und (3.31) lauten
dann:

e.=X=%Zx.
i=1

und

3.3.2.3. Momentenmethode

Neben der Maximum-Likelihood-Methode sind die Mnmentenmethode, die Methode der
kleinsten Quadrate und die Minimum-Chi-Quadrat-Methode weitere Methoden zur Kon-
struktion von Punktschätzungen. Im folgenden wollen wir auf die Momentenmethode
eingehen. Hinsichtlich der beiden anderen Methoden wird der Leser auf [l4; 15] verwie-
sen.

Bei der Momentenmethode wird von einer mathematischen Stichprobe (X1, X1, ...‚ X,,)
ausgegangen, die aus einer Grundgesamtheit X gezogen wurde. Die Wahrscheinlichkeits-
veneilung von X soll von den Parametern 9,-, i= 1,2, ..., k, abhängen, für die eine
Punktschätzfunktion gesucht wird. Weiterhin sollen die im allgemeinen von den Para-
metern 9,, i= 1,2, ..., k, abhängenden Momente m, von X mindestens bis zur k-ten
Ordnung, k = 1, existieren:
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m.=E(X')=g,(@1,C"h). r=1‚2‚
Zur Schätzung der unbekannten Parameter 0„ i= 1,2, ...‚ k, wird das Moment m,

durch die Stichprobenfunktion

A _ 1 " ‚

ersetzt. A

Die Lösungen 0„ i= 1, 2 ,..., k, des Gleichungssystems

79I‚=8‚(9i‚ez‚m.9t)‚ 7=1‚2‚m‚k‚ (3-33)

werden als Punktschätzfunktionen nach der Momentenmethode bezeichnet.

Beispiel 3.11: Die Parameter (91 = E(X) = [l und 62 = D2(X) = a1 einer N (‚u‚ «n-verteilten
Grundgesamtheit X sind zu schätzen. Unter Verwendung der Beziehung D’(X) = o"
= E(X’) — [E(X)]’ ergibt sich nach (3.33) folgendes Gleichungssystem:

lZXZ=E(X)=/t‚
"i=i

%ZXf = 02+ [E(X)]’.
[=1

_ 1 "

Mit X = 7 Z X ergeben sich als Lösungen:
[=1

@,=;2=Y; (9,=¢”7’=S§.

Auf Grund ihrer Einfachheit wird die Momentenmethode in zunehmendem Maß ange-
wandt. Allerdings sind die Eigenschaften der mit dieser Methode ermittelten Punkt-
schätzfunktionen noch nicht umfassend untersucht.

3.3.3. Konfidenzschätzungen

3.3.3.1. Begriff der Konfidenzschätzung

Mit einer Punktschätzung, bei der wir einen unbekannten Parameter 0 durch einen
einzigen aus einer Stichprobe ermittelten Wert schätzen, gewinnen wir keine Aussage
über die Genauigkeit einer solchen Schätzung. Die Abweichungen einzelner Punkt-
schätzwerte vom Wert des Parameters 6 können erheblich sein. Das ist besonders dann
der Fall, wenn der Stichprobenumfang klein ist. Um uns eine Vorstellung über die Ge-
nauigkeit einer Schätzung verschaffen zu können, wollen wir uns mit der Konfidenzschät-
zung, einer speziellen Form der Bereichsschätzung, beschäftigen.

Bei ihr wird für einen unbekannten Parameter 6 der Grundgesamtheit mit Hilfe einer
Stichprobe ein Intervall mit den Grenzen G, und G, (G, g G2) gesucht, das 0 mit einer
vorgegebenen großen Wahrscheinlichkeit 1 - or überdeckt:

P(G1< 9 < G1) = 1 - u. (3.34)

Wir bezeichnen G, und G; als Konfidenzgrenzen (Vertrauensgrenzen), (G1, G2) als Konfi-
denzintervall (Vertrauensintervall), 1 — u als Konfidenzniveau (Vertrauensniveau) und a:

als Irrtumswahrscheinlichkeit.
Die Konfidenzgrenzen sind Stichprobenfunktionen der mathematischen Stichprobe

(X1, X1, ...,X,,) vom Umfang n:
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Gi = G1(X17XZ7'-'1 Xn), G2: G2(X1,X2,---,X,.)»

Sie sind also Zufallsgrößen. Dementsprechend stellt das Konfidenzintervall (G1, G1) ein
Zufallsintervall dar. Für eine konkrete Stichprobe (x1, x1, ..., x,,), eine Realisierung von

(X1, X1, , X,,), erhalten wir dann mit den Realisierungen g1 und g1 der Konfidenzgren-
zen G1 und G1 eine Realisierung (g1, g1) des Konfidenzintervalls, die wir als konkrete Kon-
fidenzschätzung bezeichnen.

In einfachen Spezialfallen fuhrt die Ermittlung des Konfidenzintervalls (G1, G1) für
den Parameter 0 unter Verwendung einer Punktschätzfunktion Ö = @(X1, ‚ X,,) dieses
Parameters auf Konfidenzgrenzen der Form G1 = Ö — 61 und G1 = (7) + ö, bzw. G1 = 9- 61

und G1 = 6- 61. (3.34) geht dann über in

P(@-61<0<(9+61)=1-ac (3.35)
bzw.

P(@~61<6<@-61)=1-ac. (3.36)

Die Größen 61 und ö, werden wir für einige Spezialfalle in 3.3.3.2. bis 3.3.3.5. berechnen.
Wir wollen nochmals bemerken: Das Konfidenzniveau (1 — u) ist die Wahrscheinlich-

keit dafür, daß das Zufallsintervall (G1, G1) den unbekannten Parameter 9 überdeckt. An-
ders ausgedrückt: Die ermittelten konkreten Konfidenzintervalle werden durchschnittlich
in (1 - u) - 100% der Fälle (9 überdecken und in IX - 100% der Fälle 0 nicht überdecken.
Deshalb wird a: als Irrtumswahrscheinlichkeit bezeichnet; ac ist ein Ausdruck des Risikos,
das bei dieser Schätzung eingegangen wird. Die Irrtumswahrscheinlichkeit ist also vom
Bearbeiter vor Beginn der Schätzung entsprechend der Problemstellung festzulegen. In
der Praxis wird für u: im allgemeinen 0,05 bzw. 0,01 bzw. 0,001 gewählt.

3.3.3.2. Konfidenzschätzung fiir den Erwartungswert einer normalverteilten
Grundgesamtheit mit bekannter Varianz

Von einer Grundgesamtheit X sei bekannt, daß sie N (‚ug <1)-verteilt ist. Einer der bei-
den Parameter dieser Verteilung — Varianz a’ — soll uns bekannt sein. Der andere — der
Erwartungswert u — ist uns unbekannt. Für ihn suchen wir eine Konfidenzschätzung, d.h.
ein Intervall, das ‚u mit einer großen Wahrscheinlichkeit überdeckt.

Dazu gehen wir von einer mathematischen Stichprobe (X1, X1, ...‚ X„) vom Umfang n

aus und wählen als Punktschätzfunktion für den unbekannten Parameter @= u das

arithmetische Mittel Ö = Y= ä Z X1. Wie wir im Abschnitt 2.3.8.3. sahen, ist die Zu-
i = l

fallsgröße Y N(;4; >-verteilt. In (3.35) setzen wir (9 = I? und G) = ‚u und wegen derL
J?

Symmetrie der Dichtefunktion einer normalverteilten Zufallsgröße 6,=(51=(3. Damit er-
halten wir:

P(Y—6</¢<)7+z5)=P(|Y—;4-|<6)=1—oc, (3.37)

d. h., die Wahrscheinlichkeit dafür, daß der Betrag des Schätzfehlers kleiner als die
Schranke ö ist, wird mit l - u vorgegeben.

Zur Bestimmung der Größe ö standardisieren wir die Zufallsgröße J7:

z =1. (3.38)

Die Zufallsgröße Z ist N (0; 1)-verteilt. (3.37) geht damit über in
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P %<% =1—0cL (3.39)

J?
oder anders geschrieben in:

P(|Z|< 21) = 1 — a: mit 21 = alt/j; (3.40)
2 Z

(3.40) wird in Bild 3.9 veranschaulicht.

Bild 3.9. Konfidenzniveau
und Irrtumswahrschei lichkeit
im Fall der Relation (3,40)

Aus Tafel 4 des Anhangs können wir nun zu vorgegebener Irrtumswahrscheinlichkeit a

das zugehörige 21 entnehmen. Setzen wir (3.38) in die Ungleichung
2

|Z|< Z1
2

ein, so ergibt sich:

I7-/4la” < Z1 (3.41)
2

und durch entsprechende Umformung die für den Parameter 6 = u gesuchte Konfidenz-
Schätzung

0' — (T
X- a:T< <X+ „Ä. 3.42ZTJ-n- ‚u z?” ( )

Das Zufallsintervall 17- Zn: L, Y+ z.l überdeckt den Parameter 9 = ‚u mit der
7 J; 7 J;

Wahrscheinlichkeit (1 — a). Jede konkrete S_tichprobe aus der o. g. Grundgesamtheit lie-
fert uns eine Realisierung der Zufallsgröße X und damit eine Realisierung dieses Zufalls-
intervalls. Das Intervall

U 0
_- uT '+ „T 3.43x zffl<u<x 275 ( )

ist dann eine konkrete Konfidenzschätzung oder ein konkretes Konfidenzintervall für den
Parameter 6 = u.
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Die Länge des Konfrdenzintervalls

_."_
J?

ist von o: und n abhängig. Sie ist also bei festem a: und n konstant. Die Lage des konkre-
ten Konfrdenzintervalls wird durch die konkrete Stichprobe bestimmt. In Bild 3.10 wird
diese Aussage veranschaulicht.

2a = 2:5 (3.44)
1

>77 I

+-—:jo————o
I X1 Bild 3.10, Konkrete Konfidenzintervalle

für den Parameter (9 = u bei
I v’ verschiedenen konkreten Stichproben

v: =/¢ aus einer Grundgesamtheit

Bei festem n wird das Konfidenzintervall kleiner, falls die Irrtumswahrscheinlichkeit
größer wird. Die Länge des Konfidenzintervalls ist ein Maß für die Genauigkeit der An-
gabe von [4 und die Irrtumswahrscheinlichkeit ein Maß fiir das Risiko. Die Genauigkeit
können wir durch eine Vergrößerung des Stichprobenumfangs erhöhen.

Beispiel 3.12: An Erzeugnissen, die auf einem Drehautomaten hergestellt werden, werden
hinsichtlich eines Abmaßes Untersuchungen angestellt. Die dabei ermittelten Abwei-
chungen vorn Nennmaß (um) können als Realisierungen einer normalverteilten Zufalls-
größe X aufgefaßt werden.

Der Erwartungswert dieser Zufallsgröße ist von der jeweiligen Einstellung des Automa-
ten abhängig. Er ist uns deshalb nicht bekannt. Ihre Varianz a’ = 400 kennen wir aus vor-
angegangenen Funktionsgenauigkeitsprüfungen des Automaten. Für den Erwartungswert
‚u suchen wir eine konkrete Konfidenzschätzung zum Konfidenzniveau l — u = 0,95.

Wir wollen annehmen, daß wir aus einer konkreten Stichprobe vom Umfang l6, d. h.
aus 16 festgestellten Maßabweichungen, das arithmetische Mittel a? = 55 ermitteln konn-
ten. Wir lesen nun für die Irrtumswahrscheinlichkeit a = 0,05 in Tafel 4 des Anhanges
den Wert 21 = zms = 1,96 ab. Durch Einsetzen dieser Werte in (3.43) erhalten wir ein

2

konkretes Konfidenzintervall für u:

2o 2o
55 —1,96—< M < 55 +1,96—

JE w/Ü

und daraus

45,2 < u < 64,8.

Wählen wir einen kleineren Wert fir ac, so wird das Konfidenzintervall größer. So lesen
wir z.B. für n: = 0,01 in Tafel 4 des Anhangs z: = zms = 2,58 ab. Es ergibt sich als Konfi-

denzintervall 2

42,1 < u < 67,9.

Die höhere Sicherheit geht also zu Lasten der Genauigkeit der Schätzung.
Abschließend zu diesem Beispiel wollen wir zeigen, wie der fiir eine gewünschte Ge-

nauigkeit erforderliche Stichprobenumfang n ermittelt werden kann. Dazu haben wir die
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in (3.44) für die Länge des Konfidenzintervalls angegebene Relation nach n aufzulö-
sen:

Für ein vorgegebenes Konfidenzniveau 1 — a: = 0,95 und ein gewünschtes Konfldenz—
intervall von der Länge 10 um erhalten wir mit

z5=z„„,„=1‚96 und a=5
2

‚ Zn=(1,955 2o) x62.

Um die geforderte Genauigkeit zu erhalten, ist ein Stichprobenumfang von mindestens
n = 62 notwendig.

3.3.3.3. Konfidenzschätzung für den Erwartungswert einer normalverteilten
Grundgesamüheit mit unbekannter Varianz

Wir betrachten den Fall, daß beide Parameter einer N (u; a)-verteilten Grundgesamt-
heit X unbekannt sind. Wie im vorangehenden Abschnitt suchen wir für einen der beiden
Parameter — den Erwartungswert u — eine Konfidenzschätzung.

Wiederum gehen wir von einer mathematischen Stichprobe (X1, X2, ..., X,,) vom Um-
fang n aus und wählen ebenfalls als Punktschätzfunktion für den unbekannten Parameter

6 = u das arithmetische Mittel Ö = J7 = ä Z X, und als Punktschätzfunktion für die Va-
i = l

1 " -2 _n_1;(X, X).Wir
verwenden jetzt zur Berechnung der Größen Ö1 und ö; die Stichprobenfunktion

rianz a’, die ebenfalls unbekannt ist, die empirische Varianz S’ =

z:-.= „_.= XSNZ, (3.45)

die einer Student-Verteilung mit m = n e 1 Freiheitsgraden genügt. Auf Grund der Sym-
metrie der Dichtefunktion der Zufallsgröße Z; können wir Ö1 = ö, = ö setzen.

Aus der Tafel der Student-Verteilung (Tafel 4 des Anhangs) lesen wir zu vorgegebener
Irrtumswahrscheinlichkeit o: und fur den Freiheitsgrad m den Wert t_ m ab, für den die
Gleichung g’;

P(|Z;|< z%m)=1—a (3.46)

erfüllt ist, (3.46) wird in Bild 3.11 veranschaulicht.

r, m

Bild 3.11. Konfidenzniveau
und Irrtumswahrscheinlichkeit
im Fall der Relation (3.46) für m = 4

"am ' ä
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Durch Einsetzen von (3.45) in (3.46) erhalten wir

Y - u1=( S ‚I?

oder anders geschrieben

P +1.. <X"‘‚/I<:‚._ =1—ae.
7"" S 7-"

Durch einfache Umrechnung bekommen wir die gesuchte Konfidenzschätzung für den
Parameter 9 = u:

<t5_m)=1—cc
1.

1?—t.._ i<u<Y+t1_ i.7,». 1,...‘/;J?

Das Zufallsintervall X — n, i, I? + t.‚_ i überdeckt den Parameter 6 = u mit
7-" J3? 7-" „f;

der Wahrscheinlichkeit (1 — u). Jede konkretejtichprobe aus der o. g. Grundgesamtheit
liefert je eine Realisierung der Zufallsgrößen X und S und damit eine Realisierung des
Zufallsintervalls. Das Intervall

s s
‘—t.. ———-< <i+:„_ g (3.47)
" 7"" 5 " 7-"' ,/;

ist dann eine konkrete Konfidenzschätzung für den Parameter 0 = u.
Für gleichen Stichprobenumfang n und gleiche Irrtumswahrscheinlichkeit ist das Kon-

fidenzintervall (3.47) im allgemeinen größer als das Konfidenzintervall (3.43). Da die Stu-
dent-Verteilung fiir n —> w gegen die Normalverteilung strebt, wird der Unterschied in der
Länge der beiden Intervalle bei genügend großem n sehr klein werden.

Wir verwenden deshalb für hinreichend große m = n — 1 die Näherung

n. = ti N = 21,
’ 27"" 2

die erfahrungsgemäß schon für m > 120 eine in vielen Fällen zufriedenstellende Nähe-
rung liefert.

Beispiel 3.13: 12 Versuchsflächen wurden mit einer neuen Weizensorte bestellt. Diese
Versuchsflächen brachten folgende I-Iektarerträge [dt]: 35,6; 33,7; 37,8; 31,2; 37,2; 34,1;
35,8; 36,6; 37,1; 34,9; 35,6; 34,0.

Erfahrungen zeigen, daß die Grundgesamtheit „zufälliger Hektarertrag“ gewöhnlich als
normalverteilt angesehen werden kann. Für den Erwartungswert ‚u des Hektarertrags wol-
len wir mit der Irrtumswahrscheinlichkeit a: = 0,05 ein Konfidenzintervall ermitteln. Da
die Varianz a’ der Grundgesamtheit ebenfalls unbekannt ist, werden wir von der o. g. kon-
kreten Stichprobe ausgehend für die beiden Parameter 9] = uund 9, = v’ die Punkt-
schätzwerte f und s’ und mit ihnen unter Verwendung von (3.47) ein konkretes
Konfidenzintervall für den Parameter 81 = u ermitteln. Mit den errechneten 5:’ = 35,3 und
s = 1,86 und dem aus Tafel 4 für m = ll Freiheitsgrade und eine Irrtumswahrscheinlich-
keit ac = 0,05 abgelesenen Wert ti m = toms; „ = 2,20 lautet das konkrete Konfidenzinter-

1.

vall:

35,3 — MOE < u < 35,3 + 230L“-
JE «l5

l0 Beyer, Wahrscheinlichkeitsrechnung
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oder umgerechnet

34,12 < ‚u < 36,48.

3.3.3.4. Konfidenzschätzung für die Varianz einer normalverteilten Grundgesamtheit

Zur Ermittlung eines Konfidenzintervalls für die Varianz o" einer N (/4, a)-vertei1ten
Grundgesamtheit X gehen wir von einer mathematischen Stichprobe (X1, X1, , X,,) vom

Umfang n aus und wählen als Punktschätzfunktion für den unbekannten Parameter

1 " _

n _1 Z (X, — X)’. Als Grundlage für die Be-
i = 1

stimmung des gesuchten Konfldenzintervalls benutzen wir die Stichprobenfunktion

6 = a" die empirische Varianz Ö = S’ =

-1 1 " _

Y:-,=x:-.=”—.s1=—.Z<2r.~x>2, (3.48)
‘7 ‘7 i=l

die einer xÄVerteilung mit m = n —- 1 Freiheitsgraden genügt. Bei gegebener Irrtums-
wahrscheinlichkeit tx lassen sich aus der Tabelle der xZ-Verteilung für m Freiheitsgrade
zwei solche Werte c, und c;(c1 < C2) ablesen, für die die Relationen

P(Y;,;c1)= jf,z(x)dx= 1 —% (3.49)

und

P(Yf, g cl) = _I.f,2(x)dx = g (3.50)

gelten. Beide fassen wir zusammen zu

P(c1< Y:;<c,)= I/,2(x)dx=1—u. (3,51)

Bild 3.12 veranschaulicht diese Beziehung für die 1’-Verteilung mit m = 6 Freiheitsgra-
den.

Bild 3.12. Konfidenzniveau
und Irrtumswahrscheinlich-
keitimFa1lderRe1ation(3.5 l)

Für die Größen c, und c; als von der Irrtumswahrscheinlichkeit ac abhängige Realisie-
rungen einer 12-veneilten Zufallsgröße mit m Freiheitsgraden setzen wir:

c,= 1:} und c‚=x (3.52)
2

_. 1.2. 2."!

Mit (3.48) und (3.52) erhalten wir aus (3.51)
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( — 1 S’P<x:l_ <49/K =1—oc. (3.53)
v," 72"!

Durch Umformung ergibt sich die gesuchte Konfidenzschätzung für u" zum Konfidenz-
niveau 1 - or

_ 1 _

"2 s1<a2< '2' 1 s2. (3.54)
x x ,

1m 1*A;m„|
2

Jede konkrete Stichprobe aus der o. g. Grundgesamtheit liefert uns eine Realisierung s’
der Zufallsgröße S’ und damit eine Realisierung des Zufallsintervalls, d. h., das Intervall

"-1 2-1 s1 (3.55)s2<cfl<
x

"i
n

"
‘

m 1—%; m

ist eine konkrete Konfidenzschätzung fiir den Parameter (9 = a’.

Beispiel 3.14: Auf einer Maschine wird ein bestimmtes Einzelteil eines Erzeugnisses her-
gestellt. Der Durchmesser [mm] dieses Einzelteils kann als norrnalverteilte Zufallsgröße X
angesehen werden. Um eine Aussage über die Fertigungsgenauigkeit der Maschine hin-
sichtlich dieses Durchmessers zu erhalten, soll eine Konfidenzschätzung der unbekann-
ten Varianz (~) = :72 der Grundgesamtheit zum Konfidenzniveau 1 — o: = 0,98 vorgenom-
men werden. Dazu ziehen wir aus der Grundgesamtheit X eine konkrete Stichprobe, die
im vorliegenden Fall vom Umfang 25 sein soll. Aus dieser berechnen wir s’ = 0,1764.

%=o,o1 bzw. 1~-;‘—=0,99undm=n- 1 =24

Freiheitsgrade die Größen cl = 1399;“ = 10,9 und c2 = 353,0“, = 43 ab. Die konkreten
Konfidenzgrenzen sind dann nach (3.55)

Nun lesen wir in Tafel 3 des Anhangs für

A1
g1= "1 s1=~25--0,1764 =0,o9s4

43
7m

und

—1 24
g‚= x’; s’=T‚9-0‚1764=0‚3884.

14%»:

Ein konkretes Konfidenzintervall für a" zum Konfidenzniveau 0,98 ist somit

0,098 4 < d’ < 0,388 4.

Daraus ergibt sich zum gleichen Niveau ein Konfidenzintervall für GI

0,313 7 < a'< 0,623 2.

3.3.3.5. Konfidenzschätzung fiir den Parameter p einer Null-Eins-verteilten
Grundgesamtheit

Wir wollen eine Null-Eins-verteilte Grundgesamtheit X betrachten, die die Werte 1

und 0 mit den Wahrscheinlichkeiten P(X = 1) = p und P(X = 0) = 1 — p = q besitzt.

10‘
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Für den Parameter 9 = p dieser Grundgesamtheit, der im allgemeinen unbekannt ist,
soll auf der Grundlage einer mathematischen Stichprobe (X„ X1, , X,,) vom Umfang n

eine Konfidenzschätzung mit dem Niveau (l — a) ermittelt werden. Wir benutzen

9=X=—};2X, (3.56)
ix 1

als Punktschätzfunktion für den Parameter 6 = p.

Die Zufallsgröße n)? = Z X,- unterliegt einer Binomialverteilung mit den Parametern n
i= l

und p (vgl. Abschnitt 2.3.10.2).
Für kleinen Stichprobenumfang n läßt sich deshalb ein Konfidenzintervall für p mit

Hilfe der Binomialverteilung konstruieren. Wir verweisen auf [18]. _

Für hinreichend großen Stichprobenumfang ist die Zufallsgröße X annähernd

N (p; ‘[131-)-verteilt. Geben Sie eine Begründung dafür!

Dementsprechend ist die Zufallsgröße

Y - p

L95.
n

annähernd N (0; 1)-verteilt.
Zur Konstruktion des Konfide_nzintervalls für hinreichend großen Stichprobenumfang

setzen wir in (3.35) 9 = p, 9 = X, ö, = ö; = ö und erhalten

P(|}7-p|<ö)=1-0z. (3.57)

Durch Umformung von (3.57) ergibt sich

17-11 51/;

Z:

P < = 1- ac (3.58)
{g w/E

n

und daraus

P(|Z|<zg=1—u (3.59)
2

mit

Z11 = 6‘/;

Wenn wir nun zu der vorgegebenen Irrtumswahrscheinlichkeit a: in der Tafel 4 des An-
hangs 25 ablesen, erhalten wir aus

Z

f-

JE

ein Konfidenzintervall für den Parameter 9 = p mit einem Konfidenzniveau von anni-
hernd 1 - a:

< 21) = 1 — u (3-50)
1
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z: z„ 2

n _ 7 )T(1—)?) l
n+zi X+T1_z-”i n +( n) <p

w
:

z„ 2

n _ — X 1- X ’<n+Z£ X+2—:'+z£ . (351)
T 2

Beispiel 3.15: Der Ausschußprozentsatz p- 100% eines großen Lieferpostens von Schrau-
ben soll auf der Grundlage einer Stichprobe vom Umfang n = 200, in der 8 fehlerhafte
Schrauben festgestellt wurden, ermittelt werden. Mit anderen Worten: Der Parameter
0 = p einer Null-Eins-verteilten Grundgesamtheit X soll mit Hilfe einer konkreten Stich-
probe vom Umfang n = 200 geschätzt werden.

Ordnen wir dem Ereignis „Ziehen einer fehlerhaften Schraube“ den Wert x1 = l bzw.
dem Ereignis „Ziehen einer fehlerfreien Schraube“ den Wert x; = 0 der Zufallsgröße mit
P(X = l) = p bzw. P(X = 0)-= 1 — p = q zu, dann enthält die konkrete Stichprobe 8mal die
Realisierung x1 = 1 und 192mal die Realisierung x, = 0. Für die Zufallsgröße (9 = if er-

halten wir damit eine Realisierung

.§=2=«§~=o,o4.

Wir fragen nun nach konkreten Konfidenzgrenzen für den Ausschußprozentsatz des
Lieferpostens bei einem Konfidenzniveau von 0,99. Da der Stichprobenumfang hinrei-
chend groß ist, können wir fir die Angabe der konkreten Konfidenzgrenzen von (3.61)

4x
ausgehen. Mit 2 = 0,005 ermitteln wir z: = 2,58 und erhalten durch Einsetzen

2

_ 200 2,58’ _ 0,04-0,96 2,58 Z

g“ ‘ 200 + 2,58’ (Q04 + 400 * w‘ 200 J’ ( 400)

Daraus errechnen wir:

g, = 0,017 und g; = 0,093.

Das konkrete Konfidenzintervall ist dann

0,017 < p < 0,093

bzw. in der gesuchten Form

1,7% < p’ 100% < 9,3%.

3.3.3.6. Weiterfiihrende Betrachtungen

In den vorangegangenen Abschnitten haben wir stets die Verteilung der Grundgesamt-
heit als bekannt vorausgesetzt und hatten dadurch die Möglichkeit, Konfidenzschätzun-
gen für unbekannte Parameter der Grundgesamtheit anzugeben. Es erhebt sich nun die
Frage nach Möglichkeiten von Konfidenzschätzungen von unbekannten Parametern der
Grundgesamtheit, wenn deren Verteilung unbekannt ist. Da wir in diesem Rahmen nicht
ausführlich darauf eingehen können, wollen wir lediglich am Beispiel eine Möglichkeit
des Vorgehens andeuten.
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Für den Erwartungswert 6 = E (X) einer beliebig verteilten Grundgesamtheit wollen wir
eine Konfidenzschätzung näherungsweise angeben. Dazu ziehen wir aus dieser Grundge-
samtheit eine mathematische Stichprobe (X1, X2, ..„ X,,) vom Umfang n und wählen als

Punktschätzfunktion für 0 = E (X) das arithmetische Mittel Ö = }7= ä Z X}. Diese Zu-
x l

fallsgröße ist für hinreichend großes n annähernd N (G; —‘/q_-)-verteilt, wobei a’ = D2(X)
n

die Varianz der Grundgesamtheit ist. Daher können wir bei bekanntem u’ und hinrei-
chend großem n für das Konfidenzniveau (1 — u) nach (3.42) das Zufallsintervall

_ «r _ a
(GD G1) = (X- Igfi, X+ 2%?)

näherungsweise als Konfidenzschätzung für 0 = E (X) verwenden. Ist dagegen a’ unbe-
kannt, dann können wir bei hinreichend großem n für das Konfidenzniveau (l - u) nach
Abschnitt 3.3.3.3. das Zufallsintervall

_ S _ S
G‚G = X-tar —,X+t.x 4( l 2) ( 7:". J; T”.

als Konfidenzschätzung für 9= E (X) verwenden. In beiden Fällen wächst mit zuneh-
mendem Stichprobenumfang die Qualität der Schätzung.

Für weitergehende Betrachtungen wird auf [14, 18] verwiesen.

3.4. Statistische Prüfverfahren

3.4.1. Problemstellung und Grundbegriffe

Eine aus einer Grundgesamtheit gezogene Stichprobe enthält Informationen über die
Verteilung der Grundgesamtheit und über ihre Kennwerte. Diese Informationen sind in
der Regel nicht vollständig. Sie können aber genutzt werden, um Entscheidungen über
statistische Hypothesen, kurz Hypothesen, zu fallen. Dabei verstehen wir unter statistischen
Hypothesen Annahmen über interessierende unbekannte Charakteristika der Gmnd-
gesamtheit, z. B, über deren Kennwerte.

Wir wollen diesen Begriff durch einige Beispiele erläutern,

Beispiel 3.16: Es ist bekannt, daß ein gewisses Abmaß eines in großer Stückzahl gefertig-
ten Erzeugnisses durch eine normalverteilte Zufallsgröße X beschrieben werden kann.
Nun soll ermittelt werden, ob der unbekannte Erwartungswert dieser Zufallsgröße E (X)
= /4 mit dem Nennmaß m, übereinstimmt, d. h. also, die Hypothese H: E(X) = m, ist zu

prüfen.

Beispiel 3.17: Ein Betrieb hat einen großen Lieferposten vorn Umfang N erhalten, in dem
sich nach Angaben des Herstellers höchstens p - 100% = 3% Ausschuß befinden sollen.
Mit Hilfe einer Stichprobe soll ermittelt werden, ob diese Vereinbarung eingehalten wor-
den ist. Es ist also folgende Hypothese zu prüfen:

H: p = 0,03.

Beispiel 3.18: Ein bestimmter Gerätetyp wird in 2 Werken gefertigt. Es soll festgestellt wer-
den, ob die mittlere Lebensdauer der in beiden Werken gefertigten Geräte als gleich zu
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beurteilen ist. Wird die Lebensdauer der Geräte aus Werk I bzw. II durch die Zufallsgröße
X bzw. Y beschrieben, dann ist die Hypothese:

H: E(X) = E(Y)
zu prüfen.

Beispiel 3.19: Zur Prüfung der Frage, ob die Zugfestigkeit einer bestimmten Drahtsorte
durch eine norrnalverteilte Zufallsgröße X charakterisiert werden kann, wird folgende Hy-
pothese aufgestellt:

H: F,,(t)=<15(t;u,a), —oo<z<oo.

Beispiel 3.20: Zur Bestimmung einer physikalischen Größe stehen zwei unterschiedliche
Meßverfahren zur Auswahl. Auf der Grundlage zweier Probemeßreihen soll entschieden
werden, welche der beiden Methoden genauere Angaben liefert, wobei als Kriterium der
Genauigkeit die Streuung der Meßwerte in den Probereihen gewählt wird. Da die Meß-
werte als Realisierungen zweier normalverteilter Zufallsgrößen X und Y aufgefaßt werden
können, ist also folgende Hypothese H zu prüfen:

H: D’(X) = D1(Y).

Die Prüfung einer Hypothese H erfolgt mit statistischen Prüfverfahren, die auch statisti-
sche Tests, kurz Tests, genannt werden. Die Aufgabe besteht hierbei darin, auf der Grund-
lage einer konkreten Stichprobe, die aus der betrachteten Grundgesamtheit gezogen wird,
zu einer Entscheidung über die Hypothese H zu gelangen. Die Hypothese H wird als Null-
hypothese Ho bezeichnet, wenn neben ihr noch weitere Hypothesen aufgestellt werden kön-
nen, die dann Alternativhypothesen genannt werden.

Die Arbeitsweise eines statistischen Prüfverfahrens wollen wir mit Hilfe eines Beispiels
erläutern.

Beispiel 3.2l: Bei der Fertigung von Wellen ist für diese ein Nennmaß von 4mm vorge-
schrieben. Am Anfang der Schicht ist die Maschine, von der bekannt ist, daß sie mit einer
Standardabweichung von u: 0,003 mm arbeitet, auf diesen Wert eingerichtet worden.
Nach einer gewissen Zeit soll auf der Grundlage einer Stichprobe vom Umfang n = 25
aus der laufenden Produktion die Einstellung der Maschine überprüft werden. Aus den
25 Meßwerten ergibt sich für den Durchmesser der Wellen ein arithmetisches Mittel
a? = 4,0012 mm. Es erhebt sich die Frage, wie diese Abweichung des Stichprobenmittel-
wertes vom Nennmaß zu beurteilen ist‘)

Zur Beantwortung dieser Frage gehen wir davon aus, daß die der Produktion entspre-
chende Grundgesamtheit X N (4; 3- 10‘3)—verteilt ist (geben Sie eine Begründung dafür
an!) und daß die Nullhypothese

Ho? E(X) =#o=4
gegen die Altemativhypothese

Hit E(X)=u (MP4)

zu prüfen ist. Mit anderen Worten: Es ist zu testen, ob die obengenannte konkrete Stich-
probe aus der N(4; 3 - 10’3)-verteilten Grundgesamtheit stammen kann oder nicht. Dabei
gibt es für einen Entscheid zwei Möglichkeiten:

Ist die Abweichung des Stichprobenmittelwerts vom Nennmaß gering, so wird die Null-
hypothese nicht abgelehnt, Die Abweichung wird dann als zufällig bezeichnet.

‘) Bei den weiteren Betrachtungen dieses Abschnittes lassen wir die Angabe der Maßeinheit weg.
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Ist andererseits die Abweichung des Stichprobenmittelwerts vorn Nennmaß so groß,
daß die konkrete Stichprobe nicht aus der Grundgesamtheit X gezogen scheint, so wird
die Nullhypothese abgelehnt. Die aufgetretene Abweichung wird dann signifikant oder sta-
tistisch gesichert genannt. Das bedeutet, daß die Maschine bei der Fertigung das Nennmaß
nicht einzuhalten scheint und ein neues Einrichten erforderlich ist, um Ausschuß zu ver-
hindern.

Um die Frage nach der Schranke c zwischen kleinen (zufälligen) und größeren (signifi-
kanten) Abweichungen beantworten zu können, stellen wir folgende Überlegung an: Das
arithmetische Mittel i? der konkreten Stichprobe ist eine Realisierung der Punktschätz-
funktion J7.

Da wir vorausgesetzt haben, daß die Grundgesamtheit X N (4; 3- l0")-vertei1t ist, ist
. -3

die Zufallsgröße Y N (4; 3 150 )-verteilt.

. . . . 3 — 10” .. — .

Bild 3.13 zeigt die Dichtefunktion q: (t; 4, 5 > der Zufallsgroße X. An ihr veran-

3-70"
‘I’ (1 i‘, 5 )

E E‘ Bild 3.13. Dichtefunktion
9 3 w; 4, 6~10")

l der 7 ‘” ' "-nrX
I 5-: 4 4+: z‘

schaulichen wir uns die folgende Vorgehensweise:
— Wir wählen einen Wert a: (0 < a < 1);
— Wir bestimmen einen Wert c so, daß die Wahrscheinlichkeit für ein Abweichen der

Zufallsgröße J7 vom Nennmaß 4,00 dem Betrage nach um mindestens c gleich o: be-
trägt, wenn Ho als richtig vorausgesetzt wird:

Pq)? — 4| g c/Ho) = ac. (3.62)

Die Wahrscheinlichkeit a: wird als Irrtumswahrscheinlichkeit und 1 — at als Signifikanz-
niveau bezeichnet. Sie hängt von der Problemstellung ab; sie kann nicht errechnet wer-
den, sondern wird vorgegeben. In der Regel wird 0,05 oder 0,01 oder 0,001 gewählt, wobei
erfahrungsgemäß bei Routineuntersuchungen a: = 0,05 und bei wesentlichen Entschei-
dungen höchstens a: = 0,01 gewählt wird. Durch die Irrtumswahrscheinlichkeit wird die
Schranke c bestimmt und damit der Ablehnungsbereich (kritischer Bereich) K für die Null-
hypothese Ho festgelegt. Der kritische Bereich wird also so bestimmt, daß er Werte, die
vom Erwartungswert E (X) = 4 stark abweichen, überdeckt.

Ehe wir uns der Betrachtung gewisser Fehler zuwenden, die bei der Prüfung einer Hy-
pothese gemacht werden können, wollen wir für das Beispiel 3.21 den kritischen Bereich
K bestimmen. Aus (3.62) ergibt sich durch Standardisierung der Zufallsgröße X:

P( X-4

Die Zufallsgröße Z =

s’; ° _3 —5/H„) = a. (3.63)
3-10

K-40- 5 ist N(0; 1)-verteilt. Sie wird zur Entscheidung über die
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Nullhypothese angewandt und deshalb als Prüfgröße (Textgröße) bezeichnet‘) In Tafel 4

des Anhangs kann für die Prüfgröße Z der kritische Wert z: = 5 abgelesen wer-
2

den. Der kritische Bereich K für E? ergibt sich dann aus der Ungleichung

Y — 4
5 22%. (3.64)

Demzufolge wird die Nullhypothese Ho abgelehnt, wenn

. -3 . -3}T:4+flz.. oder 1724-310 z... (3.65)
5 7 5 7

Für die gesuchte Schranke c gilt somit:

c=—>3.'10-32....
5 7

Geben wir im Beispiel o: = 0,01 vor, so lesen wir in Tafel 4 des Anhangs z: = 2,58 ab. Da-
2

. - 3

mit errechnen wir c = 3 150 ~2,58 = 155 - 10 ‘5 und erhalten als kritischen Bereich

Y; 3,998 45, f; 4,00155.
Das aus der konkreten Stichprobe ermittelte arithmetische Mittel J? =4,0012 liegt

nicht in diesem Bereich, d. h., die aus der Grundgesamtheit gezogene Stichprobe steht
nicht im Widerspruch zu H0. Es besteht kein Grund dafür, die Nullhypothese zu verwer-

fen, die Abweichung 5c‘ — 4 ist als zufällig anzusehen.
Betrachten wir nun mögliche Fehlentscheidungen, die bei der Anwendung statistischer

Prüfverfahren auftreten können. Auf Grund der Tatsache, daß die Entscheidung auf der
in einer konkreten Stichprobe enthaltenen Information beruht, ist damit immer ein gewis-
ses Irrtumsrisiko verbunden; denn es können zwei Arten von Fehlentscheidungen auftre-
ten:

Wir machen einen Fehler
— 1. Art, wenn wir die Nullhypothese ablehnen, obwohl sie richtig ist;
— 2. Art, wenn wir die Nullhypothese nicht ablehnen, obwohl sie falsch ist.
Einen Fehler 1. Art begehen wir also dann, wenn wir aus der Grundgesamtheit, für die die
Nullhypothese H0 richtig ist, eine konkrete Stichprobe ziehen, aus der sich eine Realisie-
rung u der Prüfgröße U errechnet, die im kritischen Bereich K liegt. Auf Grund der Fest-
legung von K gilt:

P(Ue K/Ho) = u,

d. h., die Wahrscheinlichkeit, einen Fehler 1. Art zu begehen, beträgt a. Damit wird auch
die Bezeichnung „Irrtumswahrscheinlichkeit“ verständlich. Wird ein Test mehrmals
durchgeführt, so wird also im Mittel bei 100- u% der Entscheidungen ein Fehler 1. Art ge-
macht werden.

Wie wir oben ausfuhrten, ist die Irrtumswahrscheinlichkeit u der Problemstellung ent-
sprechend vorzugehen, Wählen wir o: möglichst klein, so bedeutet dies, daß die Wahr-
scheinlichkeit, die Nullhypothese H0 abzulehnen, obwohl sie richtig ist, klein ist. Aber je

‘) Allgemein werden wir U als Symbol für Prüfgrößen verwenden.
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kleiner tx ist, um so schwieriger wird es, die „Falschheit“ einer falschen Hypothese zu zei-
gen; denn der kritische Bereich für die Testgröße U wird kleiner. Dadurch kann die Wahr-
scheinlichkeit fiir einen Fehler 2. Art recht groß werden. Das Vorgehen der allgemeinen
Testtheorie (vgl. [10]) wollen wir am Beispiel 3.19 veranschaulichen. Der Nullhypothese
H0 I E (X) = ‚uo = 4 können wir jede Altemativhypothese H12 E (X) = ‚u (u # 4) gegenüber-
stellen. Davon ausgehend wird versucht, den kritischen Bereich K so zu bestimmen, daß
die Wahrscheinlichkeit fiir die Ablehnung einer „falschen“ Nullhypothese H0, d. h. fiir
Nichtablehnung der Altemativhypothese H1 unter der Bedingung, daß H1 richtig ist, mög-
lichst groß ist:

P(U e K/H1) = 1 - ß. (3.66)

Dabei ist fi die Wahrscheinlichkeit für das Begehen eines Fehlers 2.Art. (3.66) nennen wir
Güte oder auch Trennschärfe des statistischen Prüfverfahrens. Den kritischen Bereich K
sollten wir demzufolge so wählen, daß die Irrtumswahrscheinlichkeit a: möglichst klein
und die Trennschärfe (1 — ß) möglichst groß ist.

In Tabelle 3.15 sind zur Veranschaulichung die vier möglichen Entscheidungen, die
in Verbindung mit einem statistischen Test gefallt werden können, nochmals mit den ent-
sprechenden Wahrscheinlichkeiten p‚-‚ i= 1,2, ‚ 4, zusammengestellt.

Tabelle 3.15. Fehler 1. und 2.Art

nicht abgelehnt abgelehnt

Ho ist richtige Entscheidung Fehlentscheidung
richtig Fehler 1. Art

pi = 1 - u P2 = or

Ho ist Fehlentscheidung richtige Entscheidung
falsch Fehler 2.Art

173 = ß P4 = 1 ‘ ß

Wird lediglich die Irrtumswahrscheinlichkeit a vorgegeben und auf eine direkte Be-
rücksichtiguug des Fehlers 2.Art und der Altemativhypothese H1 verzichtet, so sprechen
wir von Signifikanztests. Wir sollten uns aber immer bewußt sein, daß ein Fehler 2. Art
trotzdem bei jeder Entscheidung auftreten kann.

Nach dem zuletzt Gesagten gibt es sehr viele Möglichkeiten zur Festlegung des kriti-
schen Bereiches K bei vorgegebener Irrtumswahrscheinlichkeit u. Von praktischem Inter-
esse sind davon nur zwei. Das ist einmal die zweiseitige und zum anderen die einseitige
Fragestellung.

Von einer zweiseitigen symmetrischen Fragestellung‘) sprechen wir dann, wenn fiir die
Prüfgröße U zur Irrtumswahrscheinlichkeit (X das Ereignis „|U| ä a5“ unter der Bedingung

2

Ho betrachtet wird. Bild 3.14 veranschaulicht dies für eine N (O; l)—verteilte Testgröße U,
wobei außerdem der kritische Bereich K angegeben ist. Im Beispiel 3.21‘ liegt eine zwei-
seitige symmetrische Fragestellung vor.

1) Häufig treten unsymmetrische zweiseitige Fragestellungen auf (vgl. z. B, 3.4.4.).
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V (f, Ü, 7}

at g Bild 3.14. Darstellung des kriti-
7 3 sehen Bereiches K bei zweiseitiger

F_ ..

~14, um z‘

7 Z-fi 34*? Ä

Bei einer einseitigen Fragestellung betrachten wir für eine symmetrisch verteilte Test-
größe U entweder das Ereignis „U g u,,,“ unter der Bedingung H0 oder das Ereig-
nis „U g — u,,,“ unter der Bedingung H0 für die Testgröße U bei einer Irrtumswahrschein-
lichkeit u. Dieser Fall ist für eine N(0; D-verteilte Testgröße U in Bild 3.15 zusammen

mit dem kritischen Bereich K dargestellt.

Wall?) ww)

ll N

-u„ I r l an f

K K

Bild 3.15. Darstellung des kritischen Bereiches K bei einseitiger Fragestellung

Überlegen Sie sich Beispiele für Prüfungen, bei denen einseitige bzw. zweiseitige Frage-
stellungen auftreten!

Abschließend zu diesem Abschnitt wollen wir das Vorgehen bei der Anwendung eines
Signifikanztests folgendermaßen schematisieren:

l. Aufstellen der Nullhypothese H0.
2. Vorgabe der Irrtumswahrscheinlichkeit a.

3. Wahl einer geeigneten Prüfgröße U= U(X1, X2, ...,X,,). Sie ist eine Stichproben-
funktion einer zur betrachteten Grundgesamtheit gehörenden mathematischen Stich-
probe (X,,X1, , X,,). Ihre Verteilungsfunktion sei bekannt.

4. Ermittlung eines kritischen Bereichs K aus der Beziehung P(U e K/H0) = u.

5. Berechnung einer Realisierung u der Prüfgröße U mit Hilfe einer konkreten Stich-
probe x0, x2, ...‚ x„ vom Umfang n.

6. Der Entscheid über die Nullhypothese Ho wird wie folgt vorgenommen:
Falls ue K, so wird H0 abgelehnt;
falls ue K, so wird H0 nicht abgelehnt.

Die Darstellung der in den Abschnitten 3.4.2., 3.4.3. und 3.4.9. angegebenen Prüfver-
fahren wird nach diesem Schema erfolgen. In den nachfolgenden Abschnitten 3.4.4. bis
3.4.7. sind dann nur noch die Schritte l. bis 4. angegeben.
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3.4.2. Prüfung des Erwartungswerts einer normalverteilten
Grundgesamtheit mit bekannter Varianz

In Verbindung mit Beispiel 3.2l haben wir ein statistisches Prüfverfahren angegeben,
das auf folgende Fragestellung angewandt werden kann:

Es soll geprüft werden, ob der unbekannte Erwartungswert E(X) = u einer N(u; a)-ver-
teilten Grundgesamtheit X mit bekannter Varianz D’(X) = o" einen bestimmten Wert u.)
besitzt. Beispielsweise kann über die Größe des Wertes no bereits eine Vermutung vorlie-
gen — an ist häufig der Sollwert des Merkmals X. Probleme dieser Art treten in der statisti-
schen Qualitätskontrolle auf. Wir wollen den für diese Fragestellung in Abschnitt 3.4.1.
entwickelten Test zusammenstellen.

1. H0: E(X) =u.,.
2. Vorgabe der Irrtumswahrscheinlichkeit cc.

3. Zu einer mathematischen Stichprobe (X„X„...,X„) vom Umfang n aus der
N (p; tr)-verteilten Grundgesamtheit X wird die N (0; l)—verteilte Prüfgröße

U= i‘ "° ,/I (3.57)
(Y

gewählt.
4. Der kritische Bereich K wird ermittelt bei

— zweiseitiger Fragestellung aus:

P(|U| g 25/110) = o:
2

zu

>
<

I
IIV

(7 — U
+ 1 a: d X: r ‚z 3.68M0 1/; 1T “U < I40 J; Z7 ( )

— einseitiger Fragestellung aus:

P(U; 2,/Ho) = or bzw. P(U§ -z,,,/Ho) = zx

zu

Y IIV IIA;4,,+%z,, bzw. J7 uo- z„,. (3.69)

‘a
ls

5. Aus einer konkreten Stichprobe x,, x2, ..., x„ der Grundgesamtheit wird das
arithmetische Mittel und mit diesem eine Realisierung der Testgröße U errechnet:

u ="%‚""„/I. (3.70)

6. Der Entscheid erfolgt bei
— zweiseitiger Fragestellung in folgender Art:

Falls |u1 g 21, so wird Ho abgelehnt;
1

falls |u| < 21, so wird Ho nicht abgelehnt;
1

— einseitiger Fragestellung in folgender Art:
Falls u g z, bzw. u g -z„„ so wird Ho abgelehnt;
falls u < 2„ bzw. u > —z„‚ so wird Ho nicht abgelehnt.
Nachdem wir in Beispiel 3.21 die zweiseitige Fragestellung betrachtet haben, wollen

wir noch ein Beispiel zur einseitigen Fragestellung bringen.
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Beispiel 3.22: Die Druckfestigkeit [MPa] X einer Betonsorte sei norrnalverteilt. Aus der Er-
fahrung kennen wir die Standardabweichung der Grundgesamtheit (a= 2,6). Aus einer
konkreten Stichprobe vom Umfang n = 10 ermitteln wir für die Druckfestigkeit das
arithmetische Mittel J? = 26,23. Wir wollen untersuchen, ob diese Stichprobe aus einer
Grundgesamtheit mit no = 28 (Sollwert) stammt. Im vorliegenden Fall ist eine Unter-
schreitung des Sollwerts kritisch. Deshalb prüfen wir die Hypothese Hg: E(X) = 28 für den
Fall einer einseitigen Fragestellung, wobei wir a: = 0,05 wählen wollen. Für die Realisie-
rung u der Testgröße U errechnen wir:

u=L%‚/,T= fl0—= _2‚15_

Aus Tafel 4 entnehmen wir bei dieser einseitigen Fragestellung -2,, = — 1,64 und erhalten
für den kritischen Bereich K das Intervall (- 0°, —1,645). Da u < -2, ist, lehnen wir die
Nullhypothese Ho ab, d. h.‚ die Abweichung der Druckfestigkeit vom Sollwert ist signifi-
kant.

3.4.3. Prüfung des Erwartungswerts einer normalverteilten
Grundgesamtheit mit unbekannter Varianz

Wir wollen prüfen, ob der unbekannte Erwartungswert E(X) = u einer N(;4; ¢7)—vertei1-

ten Grundgesamtheit X mit unbekannter Varianz D’(X) = a’ einen bestimmten Wert m,

besitzt. Der Unterschied gegenüber dem im letzten Abschnitt dargestellten statistischen
Prüfverfahren besteht also darin, daß außer dem Erwartungswert E(X) jetzt auch die Va-
rianz D’(X) der Grundgesamtheit unbekannt ist. Wir werden diese ebenfalls mit Hilfe
einer Stichprobe zu schätzen haben. Dadurch erhalten wir aber eine andere Prüfgröße als
im Abschnitt 3.4.2.

Betrachten wir das Schema dieses Prüfverfahrens:
1. H0: E(X) = „o.
2. Vorgabe der Irrtumswahrscheinlichkeit ac.

3. Zu einer mathematischen Stichprobe (X1, X2, ...‚ X„) vom Umfang n aus der
N(u; U)-verteilten Grundgesamtheit X wird die einer Student-Verteilung mit m = n — 1

Freiheitsgraden genügende Prüfgröße

f_
U= ._.= 3”" J? (3.71)

gewählt, wobei S’ die aus der mathematischen Stichprobe ermittelte empirische Varianz
darstellt,

4. Der kritische Bereich K wird mit Hilfe der Tafel 4 ermittelt bei
- zweiseitiger Fragestellung aus:

1>(|U| gt. /Ho)=uTIfl-l

ZU

igua-

=
1”

!

}?§#o+“/‘:—“?.x ; ta (3.72)T; n - I T;

(vgl. Bild 3.16);

— einseitiger Fragestellung aus:

P(U; :,.,,-,/Ho) =42: bzw. mu; ~t,,,;,,_,/H0) = a:
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zu

— S — S
Xäßo+—t‚z;„vi bzw. X:/to“-"t.z;.—1 (3.73)

n J7
(vgl. Bild 3.17).

am

Bild 3.16. Darstellung des kritischen
Bereiches K bei zweiseitiger
Fragestellung und Verwendung
der Prüfgröße U= „„

— —2—.'n-7 I 1%‘ ;n-I j

K K

f,(1) f} ( l‘)

I! oz

< 7W I z l im; r

7:’! F?
Bild 3.17. Darstellung des kritischen Bereiches K bei einseitiger Fragestellung
und Verwendung der Prüfgröße U = „„

5. Aus einer konkreten Stichprobe x1, x2, ..., x,, der Grundgesamtheit werden das
arithmetische Mittel i und die Standardabweichung s und mit diesen eine Realisierung
u der Testgröße U errechnet:

u =w‚[2. (3.74)

6. Der Entscheid erfolgt bei
— zweiseitiger Fragestellung in folgender Weise:

Falls |u| ä ti i, so wird Ho abgelehnt;
2 "' ’

falls |u[ < ti l, so wird H0 nicht abgelehnt.
2 *" ’

— einseitiger Fragestellung in folgender Weise:
Falls u ä t„„„‚1 bzw. u g -t„„,„‚ so wird Ho abgelehnt;
falls u < t„„„‚1 bzw. u > -t„„„1‚ so wird Ho nicht abgelehnt.

AnmeLkung: Bei hinreichend großem Stichprobenumfang kann die Priifgröße
U = X ‘ I40

0'

eingesetzt wird. Geben Sie eine Begründung für dieses Vorgehen an!

J; des Abschnittes 3.4.2. angewandt werden, wobei für o’ der Schätzwert s
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Beispiel 3.23: Der Fertigungsprozeß von Stahlringen, für deren äußeren Durchmesser ein
Nennmaß von 18,6 mm vorgegeben ist, soll hinsichtlich der Einhaltung dieses Nennma-
ßes überprüft werden. Der Durchmesser kann dabei als N(u; a)—ver1ei1te Zufallsgröße X
aufgefaßt werden. Aus einer konkreten Stichprobe vom Umfang n = 9 ergibt sich das
arithmetische Mittel 5c‘ = 18,3 und die empirische Standardabweichung s = 0,2. Mit Hilfe
dieser Stichprobe testen wir die Nullhypothese Ho: E(X) = 18,6 fiir eine vorgegebene Irr-
tumswahrscheinlichkeit 1x = 0.05. Wir entscheiden uns für eine zweiseitige Fragestellung.
Entsprechend dem Punkt 5 des Schemas errechnen wir eine Realisierung der Prüfgröße

u = 18,3 — 18,6 _

0,2

Für eine Irrtumswahrscheinlichkeit u = 0,05 und m = 8 Freiheitsgrade lesen wir in Ta-
fel 4 den kritischen Wert 109mg = 2,31 ab. Da nun |u| > 2,31 ist, lehnen wir die Nullhypo-
these Ho ab, d. 11., der Unterschied zwischen dem Nennmaß und dem aus der Stichprobe
ermittelten arithmetischen Mittel i ist signifikant. Es liegt also Veranlassung vor, in den
Produktionsprozeß einzugreifen.

3=—4‚5.

3.4.4. Prüfung der Varianz einer normalverteilten Grundgesamtheit

Als Maß für die Genauigkeit und Gleichmäßigkeit z. B. eines Produktionsprozesses
oder eines Meßgerätes kann die Varianz D’(X) der entsprechenden Grundgesamtheit X
betrachtet werden. Wir wollen in diesem Abschnitt deshalb ein Prüfverfahren für die Va-
rianz kennenlernen. Es soll geprüft werden, ob die unbekannte Varianz D’(X) = U’ einer
N(u; a)—verteilten Grundgesamtheit X einen bestimmten Wert uä besitzt.

Schematisch stellt sich das entsprechende Prüfverfahren wie folgt dar:
1. Ho: D’(X) = aä.
2. Vorgabe der Irrtumswahrscheinlichkeit 1x.

3. Zu einer mathematischen Stichprobe (X1, X2, ..., X„) vom Umfang n aus der
N(/4; 00)-verteilten Grundgesamtheit X wird die einer xl-Verteilung mit m = n — 1 Frei-
heitsgraden genügende Prüfgröße

_ 2Unix? (3.75)
0'o

gewählt, wobei S’ die aus der mathematischen Stichprobe ermittelte empirische Varianz
ist.

4. Der kritische Bereich K wird mit Hilfe der Tafel 3 bei
— zweiseitiger Fragestellung aus den Relationen

0C

P(U;x’%n_l/H„>——2»

und

P U<x’ /H =1
= 1—%;n—1 ° 2

oder

P U>x’ /H =1—5
i—%;n—i ° 2

errnitteltzu

U212“ und U§;(’_1V _

2.711 1 2,711 (3.76)
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(vgl. Bild 3.18);
— einseitiger Fragestellung aus

P(U;xir;n-1/H0) = 0‘

ermittelt zu

Ugxf‚„‚-, (3.77)

(vgl. Bild 3.19).

32m

Bild 3.18. Darstellung des kritischen
ß’ u Bereiches K bei zweiseitiger
Z 7 Fragestellung und Verwendung der

Prüfgröße U= 1L]
7(;»}—";n-1 72:05,-,,V7 t

T" '+'7"
(z; u)

Bild 3.19. Darstellung des kritischen
Bereiches K bei einseitiger

N Fragestellung und Verwendung
„—‚—‚- der Prüfgröße U= ;;f,_,

Zia-I f
l(

Beispiel 3.24: Ein Betrieb produziert Serien von Massenartikeln. Ein Merkmal X dieser
Erzeugnisse ist N(;4; a)-verteilt. Treten keine wesentlichen Störungen in diesem Ferti-
gungsprozeß auf, so behält die Varianz D’(X) = a’ ihren Wert. Ist nun als Erfahrungswert
an = 6 bekannt, und liefert eine konkrete Stichprobe vom Umfang n = 25 eine empirische
Standardabweichung s = 6,9, so erhebt sich die Frage, ob die aufgetretenen Abweichun-
gen vom hypothetischen Wert durch zufällige Schwankungen zu erklären sind.

Wir haben also die Nullhypothese Ho: D’(X) = 36 zu prüfen und geben uns dazu eine
Irrtumswahrscheinlichkeit zx=0,01 vor. Da in diesem Fall nur Abweichungen „nach
oben“ von Interesse sind, wird die einseitige Fragestellung herangezogen. Die konkrete
Stichprobe ergibt

24 - 6,9’
— 36 — 31,74.

Für den kritischen Wert z; „ „ lesen wir aus Tafel 3 für o: = 0,01 und m = 24 Freiheits-
grade

ll

X¢2),o1;24 = 43

ab. Da

1‘ < lg_o1;24

ist, besteht kein Grund zur Ablehnung der Nullhypothese. Die Abweichungen zwischen
D1(X) = 36 und s’ = 6,9’ = 47,61 sind als zufällig anzusehen.

Ist der Stichprobenumfang größer als 30, dann kann zum Testen von H0: D’(X) = a3 die
N(0; 1)-verteilte Prüfgröße
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(n — 1) 1
U= Z= S’—(n— 1% (3.78)

i Uä Jzn — 1

herangezogen werden, wobei S 1 die empirische Varianz ist. Der kritische Bereich wird bei
ihr entsprechend dem Vorgehen in Abschnitt 3.4.2. bestimmt.

3.4.5. Prüfung der Gleichheit der Erwartungswerte zweier unabhängiger
normalverteilter Grundgesamtheiten

Im Beispiel 3.18 wurde für zwei Zufallsgrößen X und Y die Hypothese H: E(X) = E(Y)
aufgestellt. Diese Problematik tritt sehr häufig bei Fragestellungen der Praxis auf, z. B.
beim Vergleich zweier Produktionsverfahren für ein bestimmtes Erzeugnis oder beim Ver-
gleich verschiedener Meßverfahren. Wir wollen jetzt ein entsprechendes Prüfverfahren
kennenlernen:

Es soll geprüft werden, ob der Erwartungswert E(X) = ‚u, einer N(‚u„; a',,)—verteilten
Grundgesamtheit X dem Erwartungswert E(Y) = fly einer N(My; (IQ-verteilten Grund-
gesamtheit Y gleich ist. Dabei wird vorausgesetzt, daß die beiden Zufallsgrößen X und Y
unabhängig sind und für die Varianzen D’(X) = D’(Y) = a’ gilt, wobei a’ nicht bekannt
sein muß.

Der Test soll wieder in schematischer Darstellung gebracht werden:
1.Ho: E(X) = E(Y).
2. Vorgabe der Irrtumswahrscheinlichkeit u.

3. Zu einer mathematischen Stichprobe (X1, X1, ..., X‚„) vom Umfang n1 aus der
Grundgesamtheit X und einer mathematischen Stichprobe (Yl, Y1, ...‚ Y‚„) vom Umfang
n; aus der Grundgesamtheit Y wird die einer Studentverteilung mit m = n, + n, - 2 Frei-
heitsgraden genügende Testgröße

= X-Y n1n2(n1+nz—2)

\/(n1~ 1) S§+(nz- 1) S2, "n":

gewählt, wobei X bzw. Ydas arithmetische Mittel und S} bzw. S2,. die empirische Varianz
der Zufallsgröße X bzw. Y sind.

4. Der kritische Bereich K wird mit Hilfe der Tafel 4 bei zweiseitiger Fragestellung aus
der Relation

P(|U|; 1%”/H0)=,;¢

U: tn. (3.79)

ermittelt zu

__ _ _ 2 _ 2 n1+n2
|X Y|§t%m1/(n, 1)S,(+(n2 1)S, W/-—jn1n2(”1+"2_2). (3.80)

Auf die Darstellung des kritischen Bereiches bei einseitiger Fragestellung wollen wir
hier nicht eingehen.

Wie vereinfacht sich die Testgröße bei gleichem Stichprobenumfang?
Haben die Varianzen der beiden Grundgesamtheiten D’(X) und D’(Y) nicht denselben

Wert, so läßt sich der Test nicht in der obigen Form anwenden. Wir verweisen den Leser
auf [18].

Beispiel 3.25: An zwei Fertigungsstraßen werden Widerstände hergestellt. Wir wollen prü»
fen, ob die an jeder der Fertigungsstraßen produzierten Widerstände im Mittel den glei-
chen Widerstandswert [Q] besitzen.

ll Beyer, Wahrscheinlichkeitsrechnung
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Die Widerstandswerte der an der Fertigungsstraße I bzw. II erzeugten Widerstände be-
schreiben wir durch die Grundgesamtheit X [Q] bzw. Y [Q]. Zur Prüfung entnehmen wir
den Grundgesamtheiten die konkreten Stichproben x„ x2, x15 bzw. yl, yz, y„ vom

Umfang n, = 15 bzw. n, = 12.
Die Nullhypothese Ho: E(X) = E(Y) wollen wir für eine Irrtumswahrscheinlichkeit

a: = 0,05 und zweiseitige Fragestellung prüfen. Aus den beiden Stichproben werden die
empirischen arithmetischen Mittel R = 152,5 und 7 = 159,9 und die empirischen Stan-
dardabweichungen sx = 1,6 und Sy = 1,2 und damit eine Realisierung der Prüfgröße er-
rechnet:

152,5 — 150,9 15- 12-25
u =T -——— = 2,87.

«/14-2,56 +11-1,44 27

Bei zweiseitiger Fragestellung lesen wir in Tafel 4 für as = 0,05 und m = n, + n; - 2 = 25
den kritischen Wert tomms = 2,06 ab.

Da u = 2,87 > 2,06 = 1005,25 ist, lehnen wir Ho ab.

3.4.6. Prüfung der Gleichheit der Varianzen zweier unabhängiger
normalverteilter Grundgesamtheiten

Wie wir oben feststellten, kann die Varianz als ein Maß für die Genauigkeit und
Gleichmäßigkeit z. B. eines Produktionsprozesses, der Arbeit von Maschinen oder Meß-
geräten angesehen werden. Sehr häufig tritt dabei auch die Frage nach dem Vergleich der
Genauigkeit zweier Prozesse, Maschinen oder Meßgeräte auf.

In diesem Abschnitt wollen wir ein entsprechendes Prüfverfahren darstellen. Es dient
außerdem dazu, die Voraussetzung (D2(X) = D2(Y)) für das in Abschnitt 3.4.5. angege-
bene Prüfverfahren zu testen.

Es soll geprüft werden, ob die Varianz D’(X) = a}, einer N(u„; (IQ-verteilten Grund-
gesamtheit X der Varianz DZ(Y) = a’, einer N( 14,; 0,)-verteilten Grundgesamtheit Ygleich
ist, Dabei wird vorausgesetzt, daß die beiden Zufallsgrößen X und Y unabhängig sind.

Es ist nicht erforderlich, daß die beiden Erwartungswerte E(X) und E(Y) bekannt sind.
Wir wenden folgenden Test an:
1. H0: D’(X) = D1(Y).
2. Vorgabe der Irrtumswahrscheinlichkeit u.

3. Zu einer mathematischen Stichprobe (X„ X2, X,,l) vom Umfang n, aus einer
N(/4X; ax)-verteilten Grundgesamtheit X und einer mathematischen Stichprobe (Y1,

Y}, ..„ Y‚„) vom Umfang n, aus einer N(;4y; try)-verteilten Grundgesamtheit Y wird die
einer F-Verteilung mit m] = n, - 1 und m, = n; - l Freiheitsgraden genügende Testgröße

S}U: Fmbmz = TY (3.81)

gewählt, wobei S} bzw. S’, die empirische Varianz der Zufallsgröße X bzw. Y ist. Wird die
größere der beiden empirischen Varianzen in den Zähler der Prüfgröße U geschrieben, so

sind die Realisierungen von U größer als 1. In diesem Fall ist nur die einseitige Fragestel-
lung von Interesse!)

M s,
1) Die Zufallsgröße F„„_„„ = 1% = ST: genügt einer F-Verteilung mit den Freiheitsgraden

(W12, ’"1)- mm] X
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4. Der kritische Bereich K wird mit Hilfe der Tafel 5 bei einseitiger Fragestellung aus

der Relation
P(l/gfin ,,,1\,,,,/H.,) = o:

(vgl. Bild 3.20) ermittelt.
f, (f)

Bild 3.20. Darstellung des
W kritischen Bereiches K bei

einseitiger Fragestellung und Ver-
wendung der Prüfgröße U = F,,,“,,,2

I fat,/n,,m1 r

1‘ 
Beispiel 3.26: Zur Prüfung der Genauigkeit zweier Drehautomaten, die gleichartige Werk-
Stücke fertigen, wird der laufenden Produktion des ersten bzw. zweiten Automaten eine
Stichprobe vom Umfang n, = 13 bzw. n; = 20 Stück entnommen. Der Durchmesser der
Werkstücke, das zu prüfende Merkmal, kann als N(;4X; ax)-verteilte bzw. N(;4y; (ry)-ver-
teilte Zufallsgröße X bzw. Y aufgefaßt werden. Aus den konkreten Stichproben der
Grundgesamtheiten X und Y werden die konkreten empirischen Varianzen s}: 10,2 um’
und sZ,= 6,2 um’ errechnet. Zur Beantwortung der Fragestellung ist die Nullhypothese Ho:
D’(X) = D1(Y) zu prüfen, wobei die Irrtumswahrscheinlichkeit o: = 0,05 betrageu soll, In
Tafel 5 lesen wir für o: = 0,05 und m, = n, - 1 = 12; m; = n; - 1 = 19 den Wert
f0I05;11\1g = 2,31 ab. Aus den konkreten Stichproben errechnen wir weiter die Realisie-
mng

‘i „Eu=s—§,— 6,2 = 1,65.

Da u < 2,31 ist, wird H0 nicht abgelehnt, d.h.‚ die Abweichungen in den Genauigkeiten
beider Automaten werden als zufällig angesehen.

3.4.7. Prüfung des Parameters p einer Null-Eins-verteilten Grundgesamtheit

Bei einer Null-Eins-verteilten Grundgesamtheit X sind im allgemeinen die Wahr-
scheinlichkeiten P(X = 1) = p und P(X = 0) = 1 — p = q unbekannt. Dementsprechend
wird eine Annahme über den Wert dieser Wahrscheinlichkeit gemacht. Es kommt nun

darauf an, diese Annahme zu prüfen, eine Fragestellung, die häufig, z. B, in der statisti-
schen Qualitätskontrolle, auftritt.

Es soll also geprüft werden, ob der Erwartungswert E(X) = p einer Null-Eins-verteilten
Zufallsgröße X dem Wert pg gleich ist.

Das Prüfverfahren lautet im Schema folgendermaßen:
1. H0: E(X) =po.
2. Vorgabe der Irrtumswahrscheinlichkeit a.

3. Bei großem Stichprobenumfang n wird zur mathematischen Stichprobe (X1, X1, ...‚

X„) aus der Grundgesamtheit X die auf Grund des Satzes von Moivre-Laplace annähernd
N(0; l)—verteilte Prüfgröße

U= Z =m (3.22)
1/"P040

gewählt.

X.--npo
=1

11‘
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Auf die Angabe einer Testgröße bei kleinem Stichprobenumfang können wir in diesem
Rahmen nicht eingehen. Wir verweisen den Leser auf [18].

4. Der kritische Bereich K wird wie in Abschnitt 3.4.2. angegeben errechnet.

Beispiel 3.27: Bei der Gütekontrolle eines Erzeugnisses wurde über einen längeren Zeit-
raum festgestellt, daß die Lieferungen im Mittel 5 % Ausschuß enthalten. Wir wollen prü-
fen, ob der Ausschußprozentsatz in einem weiteren Lieferposten wesentlich von diesem
Erfahrungswert abweicht, nachdem wir in einer Stichprobe vom Umfang n = 400 aus
einer Lieferung 28 fehlerbehaftete Teile festgestellt haben (die Stichprobe enthält also 7%
fehlerhafte Teile).

Wir gehen von einem p„=0,05 aus und prüfen für eine Irrtumswahrscheinlichkeit
1x= 0,01 die Nullhypothese Ho’: E(X) =0,05, wobei X eine Null-Eins-verteilte Grund-
gesamtheit ist. Da eine große Stichprobe vorliegt, wählen wir (3.82) als Prüfgröße. Dem-
entsprechend erhalten wir als Realisierung der Testgröße

u = 2s —4oo-o‚o5 = 1,835.

1/400 - 0,05 ~ 0,95

Da lediglich Abweichungen „nach oben“ von po = 0,05 interessieren, fallen wir die Ent-
Scheidung für eine einseitige Fragestellung. Wir entnehmen aus Tafel 4 2W = 2,33. Da
die Realisierung u = 1,835 kleiner als der Tafelwert 29,0, = 2,33 ist, wird die Nullhypo-
these nicht abgelehnt. Die Abweichung des Ausschußanteils wird als zufällig angese-
hen.

3.4.8. Prüfung, ob eine Grundgesamtheit einer Normalverteilung unterliegt
(mit Hilfe des Wahrscheinlichkeitsnetzes)

Bisher haben wir meist vorausgesetzt, daß die zur Beschreibung eines Merkmals heran-
gezogene Grundgesamtheit normalverteilt ist. Da es sich bei den betrachteten Merkmalen
vielfach um Maßabweichungen, Beobachtungs- oder Meßfehler handelte, die jeweils von
einer Vielzahl von zufälligen Einflüssen verursacht werden, konnte der zentrale Grenz-
wertsatz zur Rechtfertigung der Annahme einer Normalverteilung herangezogen werden.

Häufig besteht aber keine Klarheit darüber, ob eine Grundgesamtheit einer Normalver-
teilung unterliegt oder nicht. Es sind deshalb entsprechende Prüfverfahren erforderlich.
Wir werden in diesem Abschnitt ein graphisches Verfahren kennenlernen, das kein stati-
stischer Test im üblichen Sinne ist. Ein rechnerisches statistisches Prüfverfahren bringen
wir im nächsten Abschnitt. Seine Anwendbarkeit beschränkt sich nicht nur auf normal-
verteilte Grundgesamtheiten.

Bei dem graphischen Verfahren zur Prüfung, ob eine Grundgesamtheit X einer Nor-
malverteilung unterliegt, verwenden wir ein Wahrscheinlichkeitsnetz.‘) Das ist ein recht-
winkliges Koordinatensystem, bei dem die Abszisse linear und die Ordinate so unterteilt
ist, daß der Graph der Verteilungsfunktion der Normalverteilung zu einer Geraden ge-
streckt wird. Bild 3.2l zeigt die Verteilungsfunktion der Normalverteilung unverzerrt und
Bild 3.22 dieselbe Verteilungsfunktion im Wahrscheinlichkeitsnetz.

In diesem Rahmen wollen wir nicht auf die Herleitung des Wahrscheinlichkeitsnetzes
eingehen — vgl. dazu [18] —, sondern seine Anwendung darstellen.

Wollen wir also prüfen, ob eine Grundgesamtheit X durch eine Normalverteilung be-
schrieben werden kann, so ziehen wir aus dieser eine hinreichend große konkrete Stich-
probe. Die Elemente der Stichprobe werden in Klassen eingeteilt, und für jede Klasse wer-

1) Verlag Schäfer’s Feinpapier, Plauen/Vogtland.
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den die relative Häufigkeit und die relative Summenhäufigkeit [%] berechnet. Nun
werden auf der Abszissenachse des Wahrscheinlichkeitsnetzes die Klassengrenzen einge-
tragen und den oberen Klassengrenzen die entsprechenden relativen Summenhäufigkei-
ten zugeordnet. Die so erhaltenen Punkte liegen annähernd auf einer Geraden, falls die

firms)

4 l J l I l

/4-30‘ /4-.76 p»: ‚u. ‚um pm /nit I

Bild 3.2l. Verteilungsfunktion der Normalverteilung N(;4; o’)

m] an (am)

579,57 -

l I I I l l I

„a; /H5 ‚k; ‚u ‚um ‚m25 ‚um‘?

Bild 3.22. Verteilungsfunktion der Normalverteilung N (u; (T) im Wahrscheinlichkeitsnetz

Grundgesamtheit X durch eine Normalverteilung beschrieben werden kann. Für kleine
bzw. große Ordinatenwerte ist das Wahrscheinlichkeitsnetz stark verzerrt. Deshalb ist es

empfehlenswert, zur Beurteilung die Ordinatenwerte zwischen 10% und 90% heranzuzie-
hen.

Für viele praktische Untersuchungen ist dieses schnelle, aber auch „grobe“ Verfahren
oft ausreichend. Ist das nicht der Fall, so ist zusätzlich ein rechnerisches Verfahren heran-
zuziehen, z. B. das in Abschnitt 3.4.9. angegebene. Das ist dann nicht nötig, wenn die
Punkte im Wahrscheinlichkeitsnetz nicht annähernd auf einer Geraden liegen, sondern
stark streuen.

Können wir annehmen, daß die betrachtete Grundgesamtheit durch eine Normalvertei-
lung beschrieben werden kann, so ist es möglich, aus dem Wahrscheinlichkeitsnetz Nä-
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herungswerte für das konkrete arithmetische Mittel i‘: und die konkrete empirische Stan-
dardabweichung s der konkreten Stichprobe abzulesen. Die durch die Punkte
„bestmöglich“ gelegte Gerade wird mit der zur Abszissenachse parallelen durch die Ordi-
nate „50%“ gehenden Geraden — kurz 50%-Linie — zum Schnitt gebracht.

Die Abszisse des Schnittpunktes ist ein Näherungswert für das konkrete arithmetische
Mittel )7. Die eingezeichnete Gerade wird weiter mit der 15,87%—Linie bzw. 84,13 %—Linie
zum Schnitt gebracht. Die Abszissen der Schnittpunkte seien x, und x2. Dann gilt:

x1=3c'-s und xz=;‘c+s,

woraus folgt:

s = %(x1 — x1).

Beispiel 3.28: Mit Hilfe des Wahrscheinlichkeitsnetzes wollen wir prüfen, ob die 120 Meß-
werte in Beispiel 3.2, die eine konkrete Stichprobe vom Umfang n = 120 darstellen, aus

einer normalverteilten Grundgesamtheit X (X ist die Maßabweichung des Durchmessers
vom Nennmaß) gezogen sein können. Die aus Tabelle 3.3 entnommenen relativen Sum-
menhäufigkeiten (in %) wurden in Bild 3.23 als Ordinaten bei den jeweiligen oberen Klas-
sengrenzen eingetragen. Durch die so erhaltenen Punkte können wir näherungsweise eine
Gerade legen, d. h., die Grundgesamtheit, aus der diese Stichprobe stammt, kann als nor-

malverteilt angesehen werden. Aus Bild 3.23 können wir weiterhin das konkrete arithme-
tische Mittel Y z 4,6 und die konkrete Standardabweichung r == 10 ablesen.
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Bild 3.23. W L L ' " hkeitsnet ‚ Auswertung von Beispiel 3.2

3.4.9. Prüfung der Verteilungsfunktion einer Grundgesamtheit
(Anpassungstest)

Bei den bisher betrachteten Prüfverfahren wurde immer von einer normalverteilten
Grundgesamtheit ausgegangen. Mit dem jetzt zu betrachtenden Test werden wir eine Me-
thode kennenlernen, bei der diese Voraussetzung nicht gemacht wird. Wir sprechen in
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einem solchen Fall von einem verteilungsunabhängigen Prüfverfahren, Mit dem folgen-
den soll geprüft werden, ob die durch eine konkrete Stichprobe über die Verteilungsfunk-
tion einer Grundgesamtheit X gewonnene Information mit der für diese Grundgesamtheit
angenommenen Verteilungsfunktion verträglich ist. Wir versuchen also, einer Grundge-
samtheit mit unbekannter Verteilungsfunktion eine bekannte Verteilungsfunktion anzu-
passen. Das folgende Prüfverfahren wird deshalb auch Anpassungstest genannt.

Es soll geprüft werden, ob die unbekannte Verteilungsfunktion F„(t), - 0° < t< +oo,
einer Grundgesamtheit X die Form F0(t), — eo < t< +00, besitzt. Wir wollen den Test
wieder in schematisierter Form angeben:

1. Ho: Fx(t) 2 I-‘.,(t).
2. Vorgabe der Irrtumswahrscheinlichkeit u.

3. Zu einer mathematischen Stichprobe (X1, X2, ‚.., X„) vom Umfang n aus der Grund-
gesamtheit X wird die einer gfi-Verteilung mit (k- rv 1) Freiheitsgraden genügende
Priifgröße

k 2
_ z _ (Hm - npm)

U „w, mZ=“‘—————npm (3.83)

gewählt, Wobei
— die Elemente der Stichprobe in k Klassen eingeteilt wurden;
— die Zufallsgröße H„, die absolute Häufigkeit, die hier auch empirische Häufigkeit ge-

nannt wird, von Elementen der mathematischen Stichprobe in der m-ten Klasse
(m = l, 2, ..., k) charakterisiert;

— p„‚ die mit Hilfe der angenommenen Verteilungsfunktion Fo(t) errechnete Wahrschein-
lichkeit dafiir darstellt, daß ein Wert der Grundgesamtheit X in der m-ten Klasse
(m = 1, 2, ..., k) liegt;

— np„, die entsprechende absolute Häufigkeit, die hier auch theoretische Häufigkeit ge-
nannt wird, von n Elementen in der m-ten Klasse (m = l, 2, „., k) angibt und

— r die Anzahl der in der angenommenen Verteilungsfunktion F0(t) geschätzten Para-
meter ist.

Die theoretischen Häufigkeiten dürfen nicht zu klein sein. Im allgemeinen wird np„‚ g 5,

m = 1, 2, ..., k, gefordert. Kann diese Bedingung nicht erfüllt werden, so sind einige Klas-
sen zusammenzulegen.

4. Der kritische Bereich K, der bei diesem Prüfverfahren nur für die einseitige Frage-
stellung von Interesse ist, ergibt sich aus der Relation

P(Uäxi2z;kAr—I/H0)= W

In Bild 3.24 ist dieser Bereich veranschaulicht.

Q10}

Bild 3.24. Darstellung des
‘x kritischen Bereiches K

beim A

lfz;k~r~7 t

Loi-
K

5. Aus einer konkreten Stichprobe x1, x2, x„ vom Umfang n aus der Grundgesamt-
heit X errechnen wir eine Realisierung u der Prüfgröße U:
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k _

u: Z (hm m)’
„‚ = 1 WPMIN

(3.84)

wobei h„‚ eine Realisierung der Zufallsgröße H,,, (m = l, 2, ...‚ k) darstellt.
6. Der Entscheid erfolgt in folgender Weise:

Ist

u ä x121; k - r- 1 7

so wird H0 abgelehnt; ist

V < Xi; k’ r» l a

so wird Ho nicht abgelehnt.

Anmerkung: Die Prüfgröße (3.83) läßt sich in der Form

k 2
HmU= ——n (3.85)

angeben. Diese Darstellung bringt rechentechnische Vorteile.

Beispiel 3.29: Rutherford und Geiger veröffentlichten 1910 das folgende Versuchsergeb-
nis: In 2608 Zeitintervallen von je 7,5 s Länge wurden die emittierten ax-Teilchen einer
radioaktiven Substanz gezählt, In Tabelle 3.16 sind die Anzahlen h„‚ der Zeitintervalle er-

faßt, in denen m Teilchen gezählt wurden.
Mit einer Irrtumswahrscheinlichkeit ac = 0,05 soll geprüft werden, ob die entsprechende

Grundgesamtheit X (X ist die Anzahl der innerhalb von 7,5 s emittierten a-Teilchen)
durch eine Poissonverteilung beschrieben werden kann. Die Nullhypothese Ho lautet
also:

_ -13 w _Ho:P(X~m)——We , m—0,1,2,...

Tabelle 3.16. Anzahlen h„‚ der Zeitintervalle,
in denen m a-Teilchen im Versuch von

Ruthetford und Geiger emittiert wurden

m h„‚ m hm

0 57 Übertrag 2108
1 203 6 273
2 383 7 139
3 525 8 45

4 532 9 27

5 408 10 und mehr l6

2108 2608

Anmerkung: Bei Merkmalen, die durch eine diskrete Zufallsgröße beschrieben werden, ist
es zweckmäßig, die Nullhypothese nicht für die Verteilungsfunktion, sondern für die Ein-
zelwahrscheinlichkeiten aufzustellen.

Um die Nullhypothese prüfen zu können, benötigen wir die entsprechenden konkreten
empirischen Häufigkeiten h„‚ und die zugehörigen theoretischen Häufigkeiten np„‚. Er-
stere gewinnen wir aus den Versuchsergebnissen, letztere errechnen wir mit den Einzel-
Wahrscheinlichkeiten der Poissonverteilung. Bei dieser ist der Parameter lo aus der Stich-
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probe zu schätzen, wobei das arithmetische Mittel J1 eine Maximum-Likelihood-Schät-
zung für 1.0 darstellt. Im vorliegenden Fall erhalten wir als Realisierung dieser
Punktschätzfunktion

7 = 3,87.

Damit ergibt sich für die theoretischen Häufigkeiten

3,87"
np„‚ = nP(X= m) = 2608>Te”-", m = 0, 1,

Die xZ-verteilte Prüfgröße hat hier k - r - 1 = 11 - 1 - 1 = 9 Freiheitsgrade, da zur Be-
rechnung der theoretischen Häufigkeiten bei einer Poissonverteilung der Parameter ‚i0 aus

der konkreten Stichprobe geschätzt wurde. In Tabelle 3.17 ist ein Schema zur Berechnung
der Realisierung (3.84) der Prüfgröße (3.83) aus den Werten der konkreten Stichprobe
(Tabelle 3.16) angegeben.

Tabelle 3.17. Schema zur Berechnung der Realisierung (3.84) der Prüfgröße (3.83) aus

Tabelle 3.16

m h... pm "pm lhm - um (hm r npm)’ M]
up».

0 57 0,021 54,8 2,2 4,84 0,088
1 203 0,081 211,2 8,2 67,24 0,318
2 383 0,156 406,8 23,8 566,44 1,392
3 525 0,201 524,2 0,8 0,64 0,001
4 532 0,195 508,6 23,4 547,56 1,007
5 408 0,151 393,8 14,2 201,64 0,512
6 273 0,097 253,0 20,0 400,00 1,581
7 139 0,054 140,8 1,8 3,24 0,023
8 45 0,026 67,8 22,8 519,84 7,667
9 27 0,011 28,7 1,7 2,89 0,101

g 10 16 0,007 18,3 2,3 5,29 0,289

2608 1,000 u = 13,049

Für a: = 0,05 lesen wir in Tafel 3 einen kritischen Wert 13,0“ = 16,9 ab und erhalten fiir
den kritischen Bereich K das Intervall (16,9; w).

Da u = 13,05 < 16,9 = xäm, ist, wird die Nullhypothese nicht abgelehnt.

Beispiel 3.30: Mit einer Irrtumswahrscheinlichkeit a: = 0,05 wollen wir prüfen, ob die im
Beispiel 3.2 angegebene Urliste eine konkrete Stichprobe vom Umfang n = 120 aus einer
normalverteilten Grundgesamtheit X (X ist die Maßabweichung des Durchmessers vom

Nennmaß), die das betrachtete Merkmal beschreibt, sein kann. Wir stellen folgende Null-
hypothese auf:

Ho1Fx(?)E ‘DU? Ito, lTo)~

Die Kennwerte E(X) = u‘, und D1(X) = 03 der Normalverteilung sind unbekannt. Für
sie wählen wir als geeignete Punktschätzfunktionen das arithmetische Mittel X und die
empirische Varianz S’, Als konkrete Schätzungen erhalten wir aus der konkreten Stich-
probe

)"c= 4,65 und s’ = 98.
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Um zu einer Entscheidung über H9 zu kommen, werden die theoretischen Häufigkeiten
benötigt. In Beispiel 3.2 hatten wir die Meßwerte in k =8 Klassen eingeteilt (vgl. Ta-
belle 3.3) und erhielten so die konkreten empirischen Häufigkeiten h„„ m = l, 2, ..., 8.

Die entsprechenden theoretischen Häufigkeiten np,„, m = 1, 2, ..„ 8, ergeben sich in fol-
gender Weise:
— für m =2, ...‚ 7:

9,9 - < 9,9

=12o P(z,,,_1§ z < z‚„) = 120[¢D(z,,,;0, 1) — <D(z,,,_,;0,1)],

wobei a„„ m = 2, 3, ..., 7, die obere Klassengrenze der m-ten Klasse darstellt und die Zu-

fallsgröße z = TX"9365 N(0; 1)-verteilt ist;

— für m = 1:

M- - 4,65 M — 4,65
120p,,,=120P(a,,,-1§X< am)=120P(“+—~ 3"-———)

120p,=120P(X< -12) = 12oP(X_4'65T 9,9

= 120 P(Z < —1,68) = 120 ¢°(-1,68;0, 1)

=120-0,0465 = 5,58;

— fiir m = 8:

9,9 ’ 9,9

=120 P(Z g 1,95) = 120[1 ~ P(Z < 1,95)]

=120[1- <D(1,95;0,1)]=120-0,0256 = 3,07.

120pg=120P(X;24)=120P<w>fl)

Tabelle 3.18 enthält die erforderlichen Rechenschritte zur Bestimmung einer Realisie-
rung (3.84) der Prüfgröße (3.83) aus den Werten der konkreten Stichprobe (vgl. Ta-
belle 3.3). In ihr wurden auf Grund der Forderung npm ä 5 die letzten beiden Klassen zu-

sammengefaßt. Damit reduziert sich die Anzahl der Klassen auf 7. Die f-verteilte
Prüfgröße hat hier k- rA1= 4 Freiheitsgrade, da zur Berechnung der theoretischen
Häufigkeiten bei der Normalverteilung beide Parameter aus der konkreten Stichprobe ge-
schätzt wurden. Aus Tafel 3 lesen wir fiir n: = 0,05 den kritischen Wert 75395„ = 9,5 ab. Da
u = 1,44 < 9,5 = Zion, ist, wird die Nullhypothese Ho nicht abgelehnt, d.h., das Ergebnis
steht nicht im Widerspruch zu der Annahme, daß die konkrete Stichprobe aus einer nor-

malverteilten Grundgesamtheit gezogen wurde.

3.5. Einführung in die Varianzanalyse

3.5.1. Problemstellung

Die Varianzanalyse, die in Verbindung mit der Auswertung von Feldversuchen in der
Landwirtschaft entwickelt wurde, hat sich in den letzten Jahren zu einem sehr allgemei-
nen mathematisch-statistischen Verfahren entwickelt, das in Naturwissenschaft, Land-
wirtschaft und Technik sehr breite Anwendung bei der Auswertung von quantitativen
Versuchsergebnissen findet. Ihre Wirksamkeit erstreckt sich auf zwei Gruppen von Frage-
stellungen:
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1. In Erweitemng des in Abschnitt 3.4.5. angegebenen Verfahrens zur Prüfung der
Gleichheit der Erwartungswerte zweier unabhängiger normalverteilter Grundgesamthei-
ten wird sie zur gleichzeitigen Prüfung der Gleichheit der Erwartungswerte mehrerer un-

abhängiger norrnalverteilter Grundgesamtheiten angewandt. Dadurch wird es möglich,
den Einfluß eines in mehreren Stufen wirkenden Faktors auf ein meßbares Merkmal zu

ermitteln. So kann z. B. der Einfluß des Faktors „Stahlsorte“ auf das meßbare Merkmal
„Zugfestigkeit“ untersucht werden. Dabei werden die pro Stahlsorte ermittelten Ergeb-
nisse verglichen.

2. Kommt es darauf an, die Anteile an der Gesamtvariabilität (Gesamtvarianz) eines
meßbaren Merkmals zu ermitteln, die durch das Wirken bestimmter Faktoren oder Fakto-
rengruppen hervorgerufen werden, so wird ebenfalls die Varianzanalyse angewandt, Eine
solche Problematik tritt beispielsweise auf, wenn Aussagen über die Stabilität eines Pro-
duktionsprozesses zu machen sind.

Die Fragestellungen der ersten bzw. zweiten Gruppe werden als Problem 1. bzw. 2.Art
bezeichnet und durch das Modell I bzw. II beschrieben. Bei jedem der beiden Modelle
wird je nach der Anzahl der Faktoren, die berücksichtigt werden, zwischen einfacher,
zweifacher, ...‚ n-facher Klassifikation unterschieden.

In den folgenden Abschnitten werden wir jedes der beiden Modelle bei einfacher Klas-
sifikation und außerdem das allgemeine lineare Modell betrachten und so die Arbeits-
weise der Varianzanalyse kennenlernen, Für weitergehende Ausführungen verweisen wir
auf [1].

3.5.2. Modell I bei einfacher Klassifikation

Im Modell I bei einfacher Klassifikation untersuchen wir die Wirkung verschiedener fe-
ster Stufen eines Faktors auf ein meßbares Merkmal. Im Endergebnis vergleichen wir die
für die einzelnen Stufen erzielten Ergebnisse. Da bei diesem Modell die einzelnen Stufen
des Faktors fest vorgegeben sind, bezeichnen wir es auch als Modell mit festen Effekten,

Wir wollen dies an einigen Beispielen veranschaulichen:

Merkmal Faktor Stufen

Laufzeit von PKW-Reifen PKW-Reifen verschiedene Typen von PKW»
Reifen

Ertrag von Getreide Getreidesorte verschiedene Getreidesorten
Meßfehler Meßgerät verschied Meßgeräte
Kaloriengehalt von Butter Butter verschied Buttersorten

Zur Darstellung der Arbeitsweise der Varianzanalyse soll angenommen werden, daß der
betrachtete Faktor k (k g 2) Stufen besitzt. Für jede einzelne Stufe wird das untersuchte
meßbare Merkmal durch eine Grundgesamtheit X, (i = l, 2, k) beschrieben, die
N(p‚-; a‚)-verteilt ist. Wir setzen dabei voraus, daß die Standardabweichung für alle X,-

gleich ist, d.h. a, = a. Die X, sollen untereinander unabhängig sein. Aus jeder der Grund-
gesamtheiten ziehen wir nun eine konkrete Stichprobe. Zur Vereinfachung betrachten wir
hier nur Stichproben gleichen Umfangs l. Wir haben damit insgesamt k - I = n Realisie-
rungen: x‚-‚- (i = 1, 2, ..., k; j = 1, 2, ...‚ I). Diese werden im sogenannten Versuchsplan er-
faßt, der außerdem noch die Summen s‚;‚ der Realisierungen pro Stufe, die Summe s„
aller Realisierungen, die konkreten arithmetischen Mittel )'c‚-_. der einzelnen Stufen und
das konkrete Gesamtmittel in enthält.
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Tabelle 3.19. Balanciener Versuchsplan bei einfacher Klassifikation

Stufen Realisierungen je Stufe
des Faktors 1 2 j I n. 2,-.

1 x„ x1; x1, X“ S1 3E,

2 X21 X22 Xzi X21 52 X2

i x„ x,-2 xv» xi, s,_ )7,

k Xkx Xkz Xk/ Xkr 5k 3-5;

S 17..

Versuchspläne für den hier betrachteten Spezialfall (gleicher Stichprobenumfang für
alle Stufen) werden als balanciert oder orthogonal bezeichnet. Das Schema eines solchen
Versuchsplans ist in Tabelle 3.19 angegeben. Dabei gelten folgende Relationen:

l

s‚-‚ = Z x,,, i= 1,2, k, (3.86)
J=l -

k I k

5. =2 Zxij= Z31.» (3-87)

_ 1’ 1 .x,.=—l;x,.,=—ls,,, 1=1,2,...,k, (3.88)
„

_ 1 k I 1

(3.89)

Aufgabe der Varianzanalyse bei Modell I mit einfacher Klassifikation ist es, die Null-
hypothese

1105.141: I42 : = I‘): (390)

zu prüfen, um damit eine Aussage über die Wirkung der einzelnen Stufen des Faktors auf
das betrachtete Merkmal machen zu können.

Zur Herleitung einer Prüfgröße für die Nullhypothese (3.90) gehen wir von der konkre—

ten empirischen Varianz

1 k I

_ - 2
n _1 (x.-,- x.) (3.91)s’=

aus und zerlegen den Zähler dieses Ausdrucks wie folgt:

[\/
]»

<x„— z)? =

l I

k

‚=

1 l

Z(x.-,—:?.-.+r.v.—:‘c.>2
: lj=l11'

k I

=Z Z1<x.‚—>?.—)1+2
i=1j=

[\/
j» I

Z <x.-,-— z.) (z. — f.)
i=lI l

+ ti (z. — r_.>2. <3.92>
[:1
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Dieser Zähler ist die Summe der Abweichungsquadrate aller Realisierungen vom „Ge-
samtmittel“ Wir bezeichnen ihn als „" der Abweichungsquadrate total“ (Symbol:
SAQT).

Der erste Summand auf der rechten Seite von (3.92) ist die Summe der Abweichungs-
quadrate der Realisierungen einer Stufe vom jeweiligen „Stufenmittelwert“ 3c}, i=1,
2, „., k. Wir bezeichnen ihn als ‚Summe der Abweichungsquad um innerhalb der Stufe“
(Symbol: SAQI).

Der zweite Summand auf der rechten Seite von (3.92) hat den Wert Null. Begründen
Sie dies!

Der dritte Summand auf der rechten Seite von (3.92) ist die Summe der Abweichungs-
quadrate zwischen den „Stufenmittelwerten“ 2,-_, i = 1, 2, ‚.., k, und dem „Gesamtmittel-
wert“ i. Wir bezeichnen ihn als „Summe der Abweichungsquadrme zwischen den Stufen“
(Symbol: SAQZ).

Damit können wir fiir (3,92) schreiben:

SAQT = SAQ1+ SAQZ» (3.93)

Teilen wir diese Größen durch die jeweiligen Freiheitsgrade — auf eine Begründung fiir
die Aufteilung der n - l Freiheitsgrade in (3.93) soll hier verzichtet werden — erhalten wir
die entsprechenden konkreten empirischen Varianzen:

SAQ:MAQT: n_1 , (3.94)

SA
MAQ, = n _Q]:, (3.95)

SA
MAQz= k_Q1Z. (3.96)

In der Tabelle 3.20, der sog. Varianztabelle, sind die einzelnen Größen zusammengefaßt.

Tabelle 3.20. Varianztabelle bei einfacher Klassifikation und balanciertern Versuchsplan

Variabilität SAQ Freiheits- MAQ
grade

k I _ 2 SAQT
Total SAQ; = Z Z (x‚.‚ — x_) n -1 MAQ; = n _1

i= l 1 ä l

Zwischen " SAQ
den Stufen SAQZ : 1'207: ’ 7.); k "1 MAQZ = k _1Z

Innerhalb " ’ _ SAQ
der Stufen SAQ! = (xi; ’ "Ü: " ‘ k MAQ! S

v= I Z

Zur Berechnung der „SAQ“ werden vorteilhaft folgende Relationen herangezogen:
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k 1 k l 2

SAQ1= Z xf,-7(Z Z M.) ‚ (3.97)

1 k 1 k 2

SAQz=7 Z1183‘; (Z Z ‚ (3.98)

SAQ, = SAQT ~ SAQZ. (3.99)

Nun sind wir in der Lage, eine Prüfgröße für die Nullhypothese (3.90) anzugeben. Es läßt
sich nachweisen [1], daß sich bei zutretfender Nullhypothese H.) MAQZ und MAQ, nur

zufällig unterscheiden können und daß bei nichtzutreffender Nullhypothese Ho MAQZ
im allgemeinen einen größeren Wert als MAQ, annimmt.

Es läßt sich weiter begründen [1], daß beide Varianzen die Voraussetzung für die An-
wendung der in Abschnitt 3.4.6. angegebenen Prüfgröße (3.81) für m, = k - 1 und
m2 = n — k Freiheitsgrade erfüllen. Wir bilden mit (3.95) und (3.96) den Quotienten

_ MAQZ
‘ MAQ.'

(3.100) ist dann eine Realisierung der Prüfgröße (3.81). Da (3.100) im allgemeinen größer
als eins ist, wird in dem Fall, daß der Quotient f sehr stark von eins abweicht, die Null-
hypothese abgelehnt. Für Werte von (3.100) nahe eins gibt es keine Veranlassung, die
Nullhypothese abzulehnen. f ist demzufolge mit dem kritischen Wert f„, ‚„‚_„„ für die Irr-
tumswahrscheinlichkeit u zu vergleichen und über die Nullhypothese nach der in Ab-
schnitt 3.4.6. angegebenen Vorschrift zu entscheiden.

Wird die Nullhypothese Ho nicht abgelehnt, so beeinflußt der betrachtete Faktor das
untersuchte Merkmal nur zufällig, d.h.‚ die Menge der Meßwerte kann als homogen ange-
sehen werden. Wird im Gegensatz dazu die Nullhypothese Ho abgelehnt, so übt der be-
trachtete Faktor einen Einfiuß auf das untersuchte Merkmal aus. Es erhebt sich dann die
Frage, welche der Erwartungswerte E(X‚-) = ‚u‚-, i= 1, 2, ..., k, nicht gleich sind. Zur Un-
tersuchung dieses Problems stehen mehrere Prüfverfahren zur Verfügung, auf die wir je-
doch in diesem Rahmen nicht eingehen können. Wir verweisen auf [1].

(3.100)

Beispiel 3.31: Es soll untersucht werden, ob sich vier verschiedene Stahlsorten bezüglich
des Merkmals Zugfestigkeit [10 MPa] wesentlich unterscheiden; d. h., welchen Einfluß hat
der Faktor „Stahlsorte“ auf das betrachtete Merkmal „Zugfestigkeit“. Der Versuchsplan
mit k = 4 und l= 10 ist in der Tabelle 3.21 angegeben.

Tabelle 3.21. Balancierter Versuchsplan bei einfacher Klassifikation für das Beispiel 3.31

Stufen Realisierungen je Stufe
des Fak- Merkmal: Zugfestigkeit
tors
Stahlsorte 1 2 3 4 5 6 7 8 9 l0 s,- i,

61,9 60,2 63,3 55,3 59,3 64,2 61,9 68,1 59,3 67,7 621,2 62,12
68,6 72,5 71,7 73,4 68,6 75,2 79,6 62,9 67,2 72,5 712,2 71,22
67,2 82,3 75,2 79,6 80,5 74,8 90,2 73,4 84,1 79,6 786,9 78,69
58,4 58,9 63,7 59,3 60,2 62,9 64,2 62,4 65,5 57,5 613,0 61,304

x
w

~
>

-

2 733,3 68,33
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Wir können annehmen, daß die Zugfestigkeiten X, (i = 1, 2, 3, 4) der vier Stahlsorten
normalverteilte Zufallsgrößen mit gleicher Varianz d’ sind. Die Prüfung der Hypothese
H0: u, = u; = u; = a4 erfolgt mit der Irrtumswahrscheinlichkeit a = 0,01. Wir berechnen
zuerst die einzelnen Größen der Varianztabelle. Nach Formel (3.97) erhalten wir für

SAQT = 189578 — 186 773 = 2805,

nach Formel (3.98) für

SAQZ =1—1()(621,2’ + ,..) — 186773 =2037

und schließlich nach Formel (3.99) für

SAQ, = 2 805 — 2037 = 768.

Die Varianztabelle für dieses Beispiel lautet somit:

Variabilität SAQ Freiheitsgrade MAQ

Total SAQT = 2 805 n — 1 2 39 MAQ, = 71,9
Zwischen den Stufen SAQZ = 2 037 k — 1 = 3 MAQ; = 679
Innerhalb der Stufen SAQ, = 768 n — k = 36 MAQ, = 21,3

Die Prüfgröße (3.81) hat m, = k - 1 = 3 und m, = n - k = 36 Freiheitsgrade. Der kritische
Wert für u = 0,01 ist nach Tafel 5 f„_„,;3_ 36 = 4,39, und damit ist das Intervall (4,39; 0°) der
kritische Bereich. Die Realisierung der Prüfgröße ist nach (3.100)

_ MAQZ _ 679 _

’ MAQ, " 21,3 " 313"

Da der Wert 31,9 im kritischen Bereich liegt, wird die Hypothese Ho abgelehnt. Der Fak-
tor „Stahlsorte“ hat Einfluß auf das Merkmal „Zugfestigkeit“.

f

3.5.3. Modell II bei einfacher Klassifikation

Wie wir in Abschnitt 3.5.1. andeuteten‚ kommt es bei der Anwendung der Varianzana-
lyse bei Modell II darauf an, die Anteile zu ermitteln, die in mehreren Stufen wirkende
Faktoren an der Gesamtvariabilität der Grundgesamtheit eines meßbaren Merkmals ha-
ben, d.h.‚ die Variabilität des betrachteten Merkmals in der Grundgesamtheit zu untersu-
chen. Wir wollen die Betrachtungen wieder für den Fall des Wirkens eines Faktors, also
bei einfacher Klassifikation, bei balanciertem Versuchsplan durchführen. Die einzelnen
Stufen des Faktors werden als Zufallsstichproben aus der Grundgesamtheit des meßbaren
Merkmals X aufgefaßt, wobei die Realisierungen pro Stufe die Elemente der jeweiligen
Stichprobe sind. Wir wollen dies wieder an einigen Beispielen veranschaulichen:

Merkmal Faktor Stufen

Durchmesser von Einstellung der k Stichproben von je I Wellen, die dem Pro-
Wellen Maschine duktionsprozeß entnommen werden

Laufzeit von PKW- Straßenzustand k Stichproben von je I PKW-Reifen eines
Reifen eines Typs Typs

Zuckergehalt von Bodenart k Stichproben von je I Zuckerrüben an ver-

Zuckerrüben chiedenen Stellen des Anbaugebietes entA

nommen
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Bei jedem dieser Beispiele können die Realisierungen X”) j = 1, 2, I, der i—ten Stufe,
i = 1, 2, ...‚ k, in folgender Art dargestellt werden:

x,,- = ‚u + a, + e‚-‚-. (3.101)

Dabei kennzeichnet ‚u eine Konstante, a, den Einfluß des Faktors in der Hen Stufe und
e„ den Versuchsfehler, mit dem die j-te Realisierung der i-ten Stufe behaftet ist, wobei
vorausgesetzt wird, dal3

— die Größen a, (i = 1, 2, ..., k) Realisierungen der untereinander unabhängigen und
N(0; «IQ-verteilten Zufallsgrößen A, sind,

— die Größen 2,»,-, i= 1, 2, ..., k; j = 1, 2, ...‚ I, Realisierungen der untereinander unab-
hängigen und N(0; (IQ-verteilten Zufallsgrößen EU sind,

— die Zufallsgrößen A,-, i= 1, 2, ...‚ k, und EU, i: 1, 2, ..., k;j = 1, 2, ..., I, untereinan-
der unabhängig sind.

Da die Größen A,- (i = 1, ..., k) das zufällige Wirken eines Faktors (Effekts) kennzeich-
nen, wird das Modell II auch Modell mit zufälligen Effekten genannt.

Mit X}, bezeichnen wir die Zufallsgrößen mit den obengenannten Realisierungen x„-
(i= 1, k;j= 1, ...‚ I).

Wegen (3.101) gilt dann

x‚.‚. = ‚t + A, + 15.,. (3.102)

Nach den Ergebnissen der Beispiele 2.57 und 2.60 aus Abschnitt 2.3.9. ist X3,» nonnalver-
teilt. Aus (2.129) bzw. (2.130) erhalten wir die Kennwerte

E(Xij) = H + E(Ar) 1’ E(E:i) = /4 (3103)
und

d’ = D1(X,j) = D2(A,) + D1(E,-J) = 17i + 0'2. (3.104)

Es ist möglich, für die beiden Komponenten a; und U15 als Schätzwerte s5 und s}; die
Größen

_ MAQz — MAQ.
_11K

zu wählen. Damit können wir unter Berücksichtigung der Fragestellung des Modells II
den Versuchsplan (Tabelle 3.19) und die Varianztabelle 3.20 in Abschnitt 3.5.2. zur Be-
rechnung dieser Schätzwerte heranziehen. Eine Begründung für dieses Vorgehen finden
Sie in [1].

Um nun zu prüfen, ob die durch den Faktor bewirkte Variabilität einen signifikanten
Beitrag zur Gesamtvariabilität liefert, wird von der Nullhypothese

H0: a} = 0 (3.106)

ausgegangen und die in Abschnitt 3.4.6. angegebene Prüfgröße (3.81) mit m, = k — 1 und
m; = n - k Freiheitsgraden gewählt. Die Realisierung dieser Prüfgröße

_ MAQz
’ MAQ.

wird mit dem aus Tafel 5 entnommenen kritischen Wert f..;„.„„„ für die Irrtumswahr-
scheinlichkeit o: verglichen und über die Nullhypothese nach der in Abschnitt 3.4.6. an-

gegebenen Vorschrift entschieden,
Die Möglichkeit der Anwendung dieses Prüfverfahrens zur Prüfung der Nullhypothese

(3.106) wird in [1] begründet.

sf5=MAQ1 und sj (3.105)

f (3.107)

12 Beyer, Wahrscheinlichkeilsrechnung
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Anmerkung: Wenn auch bei Modell I und bei Modell II dasselbe Prüfverfahren angewandt
wird, so ist doch die Fragestellung und die Interpretation der Ergebnisse unterschied-
lich.

Beispiel 3.32: Dem Produktionsprozeß eines gewissen Erzeugnisses sind in größeren Zeit-
abständen 3 Stichproben von je 8 Einheiten entnommen worden. An jeder Einheit wurde
ein bestimmtes Abmaß [mm] gemessen. Es ist mit einer Irrtumswahrscheinlichkeit
o: = 0,05 zu prüfen, ob die im Laufe der Zeit eintretende Veränderung der Einstellung der
Maschinen einen wesentlichen Anteil an der Gesamtvariabilität der Fertigung hinsicht-
lich dieses Abmaßes ausmacht.

Wir haben hier eine dem oben beschriebenen Modell II entsprechende Fragestellung
vorliegen, wobei das untersuchte Abmaß das Merkmal, die im Laufe der Zeit eintretende
Veränderung der Maschineneinstellung den Faktor, die Stichproben die Stufen und die
Elemente der Stichproben die Realisierungen darstellen.

In Tabelle 3.22 ist der Versuchsplan und in Tabelle 3.23 die entsprechende Varianz-
tabelle festgehalten.

Tabelle 3.22. Versuchsplan zum Beispiel 3.32

Nummer der Realisierungen je Stufe
Stichprobe 1 2 3 4 5 6 7 8 5,; E,

l l 8 6 7 6 5 5 4 42 5,25
2 3 2 2 l 2 3 4 3 20 2,5
3 5 6 7 5 4 5 6 6 44 5,5

106 4,4

Tabelle 3,23. Varianztabelle zum Beispiel 3.32

Variabilität SAQ Freiheits- MAQ
grade

Total SAQ1 = 88 23 MAQT = 3,8
Innerhalb SAQ, = 44 21 MAQ, : 2,1
Zwischen SAQ, = 44 2 MAQ; = 22,2

Zur Beantwortung der Fragestellung des Beispiels ist die Nullhypothese

H0: aj = 0

mit der Irrtumswahrscheinlichkeit or = 0,05 zu prüfen, wobei o’; die durch den Faktor in
der Grundgesamtheit bewirkte Variabilität angibt.

Wir haben dazu die nach (3.107) berechnete Realisierung der Prüfgröße (3.81) für
m, = 2 und ml = 21 Freiheitsgrade

22,2

f’7= 1°,‘

mit dem aus der Tafel 5 für eine Irrtumswahrscheinlichkeit oc=0,05 entnommenen
Wert

fo,n5;2,21= 3:47

zu vergleichen. Da 10,6 > 3,47, wird die Nullhypothese abgelehnt.
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3.5.4. Das allgemeine lineare Modell

Die beiden in den Abschnitten 3,5.2. und 3.5.3. betrachteten Modelle sind Spezialfalle
des allgemeinen linearen Modells. Wir wollen die Grundgedanken dieses Modells kurz
charakterisieren. Dazu fassen wir die bei der Untersuchung eines meßbaren Merkmals X
gewonnenen Meßwerte als Realisierungen von n Zufallsgrößen XJ, j = 1, 2, ..., n, auf.
Läßt sichjede dieser Zufallsgrößen X,- als linearer Ausdruck von k Größen 13,-, i = l, 2, ...‚ k,
darstellen, so erhalten wir das allgemeine lineare Modell:

k

X,- Zy.—‚-ß.-+ j = 1. 2. n. (3.108)
i=1

wobei die Größen y‚-„ i = 1, 2, ..., k, noch näher zu charakterisierende reelle Zahlen und
die Zufallsgröße EI den Meßfehler des j-ten Meßwerts kennzeichnen.

Durch (3,108) werden im wesentlichen alle bekannten Modelle der Varianzanalyse er-

faßt, wenn die Größen y„, i= 1, 2, ..., k;j = 1, 2, ..., I, lediglich die Werte 1 — der Effekt
i ist vorhanden — und 0 — der Effekt i ist nicht vorhanden — annehmen können.

Die Unterscheidung zwischen Modell I und Modell II wird mit Hilfe der Parameter fl,-,

i = 1, 2, ..., k, vorgenommen. Sind diese feste Größen, so sprechen wir von einem Modell
mit festen Effekten (Modell I). Sind demgegenüber die fi„ i = 1, 2, ..., k, Zufallsgrößen,
so sprechen wir von einem Modell mit zufälligen Effekten (Modell II).

Können die Größen y,,, i=1, 2, ..., k;j = 1, 2, ..., I, nicht nur die Werte 0 und 1, son-
dern alle reellen Werte eines Intervalls annehmen — sie kennzeichnen dann z. B. Tempe-
ratur, Druck, Zugfestigkeit —, führt dies zu den Modellen der Regressions- und Korrela-
tionsanalyse‚ deren Grundzüge wir im Abschnitt 3.6, kennenlernen werden.

3.6. Einführung in die Regressions- und Korrelationsanalyse

3.6.1. Problemstellung

Im Abschnitt 3.1.2. betrachteten wir in den Beispielen 3.3 und 3.4 bei den jeweiligen
Untersuchungsobjekten gleichzeitig zwei meßbare Merkmale X und Y und lernten Mög-
lichkeiten kennen, wie die bei einer Untersuchung als Meßwertpaare (x‚-, y‚-), i = 1, 2, ..., n,
gewonnenen Meßergebnisse geordnet, verdichtet und dargestellt werden können. Wir leg-
ten dabei besonderes Gewicht auf die Beschreibung der zwischen diesen beiden Merkma-
len bestehenden Abhängigkeit. Die Betrachtungen führten uns zur empirischen Kova-
rianz Sxy (3.14) und zum empirischen Korrelationskoeffizienten r” (3.18). Der
Aufgabenstellung des Abschnittes 3.1. entsprechend kam es uns dabei darauf an, die in
der Menge der Meßwertpaare über die Merkmale X und Y enthaltenen Informationen zu

erfassen. Auf Grund unserer in Abschnitt 3.1. erworbenen Kenntnisse stellen wir unter
anderem die Frage nach der Schätzung und Prüfung der entsprechenden Kennwerte der
zugehörigen Grundgesamtheit (X, Y). Mit solchen Fragestellungen beschäftigt sich die
Regressions- und Korrelationsanalyse, wobei die in den Abschnitten 3.3. und 3.4. angege—

benen Methoden eingesetzt werden,
Während die Regressionsanalyse die Art des Zusammenhanges der betrachteten Merk-

male untersucht, ist es demgegenüber Aufgabe der Korrelationsanalyse, Aussagen über
die Stärke der Abhängigkeit zwischen den betrachteten Merkmalen zu machen. Im fol-
genden werden wir einige wichtige Methoden der Regressions- und Korrelationsanalyse
kennenlernen. Dabei wollen wir uns auf den Fall zweier meßbarer Merkmale und linearen
Zusammenhanges beschränken. Für weitergehende Betrachtungen verweisen wir u. a. auf
[18; 14].

12‘
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3.6.2. Regressionsanalyse

Im Abschnitt 3.2.1. trugen wir die bei den Beispielen 3.3 und 3.4 fiir die meßbaren
Merkmale X und Y in der Urliste enthaltenen Meßwertpaare (x„ y‚), i = 1, 2, ...‚ n, in ein
rechtwinkliges Koordinatensystem ein. Bei beiden Beispielen stellten wir fest, daß zwi-
schen den jeweiligen Merkmalen zwar kein Zusammenhang in Form einer Funktionsglei-
chung besteht, aber aus der Form der Punktwolke doch die Tendenz einer gewissen Ab-
hängigkeit zu erkennen ist. Wir konnten auch feststellen, daß für einen bestimmten
festen Wert des Merkmals X das Merkmal Y verschiedene Werte annehmen kann. Wir be-
zeichnen eine solche Abhängigkeit als stochastisch und das eine Merkmal als Einflußgroße
und das andere als Zielgröße.

In der Regressionsanalyse ist die Zielgröße in jedem Fall eine Zufallsgröße, während
die Einflußgröße eine Zufallsgröße sein kann, aber nicht sein muß.

Wie schon erwähnt, ist es die Aufgabe der Regressionsanalyse, die An des Zusammen-
hanges zwischen beiden Merkmalen zu untersuchen und entsprechende Prüf- und Schätz-
verfahren anzugeben.

Dazu wird von einer zweidimensionalen Grundgesamtheit (X, Y) ausgegangen. Weiter-
hin sollen folgende Voraussetzungen erfüllt sein, wobei o. B.d.A. das Merkmal X als Ein-
fluß- und das Merkmal Y als Zielgröße gewählt ist.

Unter der Bedingung, daß die Einflußgröße X eine beliebige, aber feste Realisierung x

angenommen hat, unterliegt die Zielgröße Y einer Normalverteilung mit dem bedingten
Erwartungswert

E(Y/X= x) = 17(x) = ß, + fl‚x (3.109)

und der bedingten Varianz

D2(Y/X = x) = a’ = const. (3.110)

Anmerkung: (3.109) bedeutet, daß zwischen der Einflußgröße X und der Zielgröße Y im
Mittel eine lineare Abhängigkeit besteht.

Die Gerade (3.109) bezeichnen wir als (theoretische) Regressionsgerade und ihren Anstieg
ß; als (theoretischen) Regressionskoefliziemm. Er gibt an, um wieviel die Zielgröße Y im
Mittel zunimmt, wenn die Einflußgröße X um eine Einheit wächst.

(3.110) nennen wir Varianz um die Regressionsgerade oder auch Restvarianz. Dieser
Kennwert gibt den Anteil der Gesamtvarianz der Zielgröße an, der nicht auf die Abhän-
gigkeit der beiden Merkmale zurückzufuhren ist. In Bild 3.25 sind die Voraussetzungen
der Regressionsanalyse veranschaulicht.

‘F
1x 91

«V9

bedingte fl/'5/we fy (‘y/xi)

Bild 3.25.Veranschaulichung
der Voraussetzungen der
Regressionsanalyse bei
zwei meßbaren Merkmalen

X, X2 X1‘ X
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3.6.2.1. Schätzung der Parameter ß„ ß, und a’

Die Schätzung der Parameter 19„ ß, und a’ erfolgt auf der Basis einer konkreten Stich-
probe (x‚-, y,-), i= 1, 2, ..., n, vom Umfang n aus der Grundgesamtheit (X, Y).

Schätzung der Parameter fl, und fiz: Mit einer konkreten Stichprobe (x„ y‚), i = 1, 2, ..., n,
erhalten wir Realisierungen b, und b, der aus einer mathematischen Stichprobe (X,-, Y,-),

i = 1, 2, ..., n, gewonnenen entsprechenden Punktschätzfunktionen 5, und B, der Parame-
ter ß, und 132. Wir bezeichnen B; als empirischen und b; als konkreten empirischen Regres-
sionskoeffizienten. Gleichzeitig damit ergibt sich eine Realisierung

y(x) = b, + b,x (3.111)

der Punktschätzung fi(x) = 51+ 13,): von (3.109). fi(x) nennen wir empirische und y(x)
konkrete empirische Regressiansgerade.

Die Ermittlung der Realisierungen b, und b2 mit Hilfe der konkreten Stichprobe (x„ y‚)‚
i = 1, 2, ..., n, soll nun so vorgenommen werden, daß sich die konkrete empirische Re-
gressionsgerade (3.111) der Punktwolke (vgl. Bild 3.7 und 3.8) möglichst gut anpaßt.

Dazu verwenden wir die Gaußsche Methode der kleinsten Quadrate (s. Band 18 dieser
Reihe), bei der diese Schätzwerte b, und b, aus der Forderung

Zu.- —y<x.->>2 = Z1<y.« — b. — b.x.>2~>Mm (3.112)
1:1 1'=

ermittelt werden. Die Größen b, und b, sind also so zu bestimmen, daß die Quadrat-
summe der Ordinatendifferenzen zwischen den Meßwertpaaren (x„ y,-), i=1, 2, ..., n,
und den entsprechenden Punkten (x„ y(x‚-)) der Geraden (3.111) zu einem Minimum ge-
macht wird.

Veranschaulichen Sie sich diese Forderung an einer Skizze!
Wir haben damit eine Extremwertaufgabe fiir eine Funktion der beiden unabhängigen

Variablen b, und b; zu lösen (vgl. Band 4 dieser Reihe). Durch partielle Ableitung von

(3.112) nach b, und b, und Nullsetzen der jeweiligen Ergebnisse erhalten wir folgendes li-
neare inhomogene Gleichungssystem:

80'1"‘ b1‘ 172x02]
i=1

a

= -2 (Y1 ‘ b1 — b1x1')= 0:
1ab ‚v;

H ‘ (3.113)

a [Z (y. — b. — 122x11] „

= —22 <y.-— b.~ b.x.->x.=o.
ab.

Durch einfache Umformungen ergeben sich aus (3.113) die Gaußschen Normalgleichun-
gen:

b1n+b2Z1x;= Zly.-. b,Z1x,+b2Zx§= Zx,y,. (3.114)
i=1 (=1

Mit

.[\
4.

ya‘
—_i n —_ix— nlglx, und y—- n

i 1

erhalten wir fir (3.114) die Lösung

b, =§- bzi, (3.115)
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:1x.y.~-%<_}5_‘,x.»>Zn‘,y.- Z(x.-‘J”c)(y.--i)
‘ = "‘ n (3.115)

Z(Xi_3_‘)1
[=1

Mit (3.14) und (3.18) können wir für (3.116) auch schreiben:

b‚=

b1=:i;= r„:—:. (3.117)

Setzen wir (3.115) in (3.111) ein, erhalten wir

y(x)=(_V—b,3:')+b2x=y+ b2(x-)7). (3.118)

Die konkrete empirische Regressionsgerade (3.118) wird häufig durch den Zusatz „von Y
in bezug auf X“ genauer erläutert.

Führen wir die obigen Betrachtungen nicht fiir eine konkrete, sondern für eine mathe-
matische Stichprobe vom Umfang n durch, so erhalten wir an Stelle der Schätzwerte bl
und b; die entsprechenden Punktschätzfunktionen ‚Ü, und B2. Sie besitzen die Eigenschaf-
ten von Maximum-Likelihood-Schätzungen, da sich die Methode der kleinsten Quadrate
als Sonderfall der Maximum-Likelihood-Methode darstellen läßt. Wir können in diesem
Rahmen nicht näher darauf eingehen und verweisen den Leser auf [14; 18].

Anmerkungen: 1. Wenn die entsprechenden Voraussetzungen erfüllt sind, kann in gleicher
Art die Regression von X in bezug auf Y ermittelt werden. In diesem Fall ist das Merkmal
X die Zielgröße und das Merkmal Y die Einflußgröße. Bei praktischen Problemen besteht
aber meist nur Interesse für eine der beiden möglichen Regressionsgeraden.

2. Wir haben hier zur Schätzung der Regressionsgeraden die Quadratsumme der Or-
dinatendifferenzen minimiert. Bei der sog. orthogonalen Regression wird die Quadrat—

summe der orthogonalen Abstände der Punkte (x„ y‚-), i = 1, 2, ...‚ n, von der gesuchten
Geraden minimiert.

Schätzung des Parameters a’: Aus einer konkreten Stichprobe (x‚-, y‚-)‚ i = 1, 2, ..., n, er-
halten wir eine Realisierung s}, der aus einer mathematischen Stichprobe (X„ Y,), i = 1,

2, ...‚ n, gewonnenen entsprechenden Punktschätzfunktion ä’ der Restvarianz a’. Wir be-
zeichnen ä’ als empirische und s}, als konkrete empirische Restvarianz.

Indem wir von den Differenzen (y,— v y(x‚))‚ i = 1, 2, ..., n, ausgehen, ist es sinnvoll, die
konkrete empirische Restvarianz s; folgendermaßen zu erklären:

s; =%2;<y.—y(x.>>ä (3.119)

Veranschaulichen Sie sich (3.119) mit Hilfe einer Skizze!
Wird die in (3.119) fiir die konkrete empirische Restvarianz s}, gegebene Erklärung auf

die aus einer mathematischen Stichprobe (X,-‚ Y‚-), i= 1, 2, ..., n, zu ermittelnde empiri-
sche Restvarianz ö" übertragen, so läßt sich zeigen (z.B. [14; 18]), daß diese eine erwar-

tungstreue Schätzung ist.
Da die Formel (3.119) zur Berechnung von s} aufwendig ist, ist es günstiger, sie in fol-

gender Form anzuwenden:

rl n 2 n n n

s§=fi[Zy? A-1n“<_Zy.-> - bz(_Zx.~y.v-%Zx.-Zy.)]. (3-120)
1:1 1:1 (=1 I=I l=X
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Beispiel 3.33: Im Abschnitt 3.1.2. war im Beispiel 3.4 für eine bestimmte Stahlsorte die
Abhängigkeit der Zugfestigkeit [10 MPa] (Zielgröße Y) vom Kohlenstoffgehalt [%] (Ein-
flußgrößeX) auf der Grundlage von n = 86 Meßwertpaaren zu untersuchen. Unter der An-
nahme, daß für einen bestimmten Kohlenstoffgehalt die zugeordneten Werte der Zugfe-
stigkeit normalverteilt sind, ist unter Verwendung der Urliste (Tabelle 3.12) und der mit
dem Rechenschema (Tabelle 3.16) errechneten Werte der konkrete empirische Regres-
sionskoeffizient b, nach (3.117), die konkrete empirische Regressionsgerade
y(x) = bl + blx nach (3.118) und die konkrete empirische Restvarianz sä nach (3.120) zu

ermitteln. Durch Einsetzen erhalten wir:

4,64

0,027

b, = 71,53 —101,4~0,42 = 28,94,

y(x) = (71,53 ~ 101,4~O,42)+101,4x = 71,53 + 101,4(x — 0,42),

y(x) = 28,94 + 101,4x.

In Bild 3.8 ist diese Regressionsgerade eingetragen.

s}, = 14,56; SR = 3,82.

b; = 0,59* = 101,4,

Durchdenken Sie die Aussage dieser Ergebnisse!
Führen Sie entsprechende Berechnungen für Beispiel 3.3 durch! Die zugehörige Re-

gressionsgerade ist in Bild 3.7 eingetragen.

3.6.2.2. Prüfung der Parameter ß; und ßz; Konfidenzbereich fiir die Regressionsgerade

Im folgenden werden wir einige in Verbindung mit Regressionsanalysen wichtige stati-
stische Prüfverfahren kennenlernen. Für die Darstellung wird wieder die im Ab-
schnitt 3.4. angewandte Form gewählt.

Prüfung des Regressionskaeffizienten: Häufig tritt bei der Untersuchung der Abhängigkeit
von zwei Merkmalen die Frage auf, ob der ermittelte konkrete empirische Regressions-
koeffizient b, mit einem vorgegebenen Wert fin vereinbar ist. Zur Prüfung dieser Frage
wird das folgende Prüfverfahren angewandt:

1- H01 .52 = 520-
2. Vorgabe der Irrtumswahrscheinlichkeit u.

3. Auf der Grundlage einer mathematischen Stichprobe (X‚-‚ Y‚-), i=1, 2, ...‚ n, vom

Umfang n aus einer zweidimensionalen Grundgesamtheit (X, Y) und unter den oben an-

gegebenen Voraussetzungen wählen wir die Prüfgröße

= 152 —ß20
U = t„‚ (3.121)

S171

die einer Student-Verteilung mit m = n - 2 Freiheitsgraden unterliegt, wobei

S’=L S’=Li(Xv-}7)’ (3122)
flz (""1)S)2r, X "_1i=1 I .

und
_ 1 "

X = 7 Z X.-
i=1

sind.
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4. Der kritische Bereich K für zweiseitige Fragestellung wird aus folgender Relation be-
stimmt:

P(|Ug g ti /H0) = 0c.
2 ‚ m

Er ergibt sich zu

52 ä 520 + '1, „Sh
z.

und _ (3.123)
I92 § I920 ’ 111155,-

2.

5. Mit Hilfe einer konkreten Stichprobe (x‚-‚ y‚-)‚ i = 1, 2, ...‚ n, vom Umfang n aus der
Grundgesamtheit (X, Y) wird eine Realisierung von (3.121) errechnet:

= b2 ’ flzo

S152

S”: (n —1>si’

6. Der Entscheid über die Nullhypothese Ho erfolgt in folgender Art:
Ist |u | < ti’ , so wird Hg nicht abgelehnt;

2 ‚„.

mit (3.124)

ist |u I ä ti , so wird H0 abgelehnt.
2 ‚m

Beispiel 3.34: In Fortführung von Beispiel 3.33 ist zu prüfen, ob der errechnete konkrete
empirische Regressionskoeffizient b; = 101,4 mit dem vorgegebenen Wert filo = O verein-
bar ist, wobei wieder eine Irrtumswahrscheinlichkeit u = 0,01 zugrunde gelegt wird. Von
der Nullhypothese H0: ß, = 0 ausgehend, können wir mit den Werten aus Tabelle 3.14
und den Ergebnissen aus Beispiel 3.33 eine Realisierung der Prüfgröße (3.121) berech-
nen:

4
u =% 85-0,00073 = 6,6.

Dieser Wert wird mit dem in Tafel 4 angegebenen kritischen Wert tw,5;8,, = 2,64 vergli-
Chen.

Da u = 6,6 > 2,64 = tovwsm ist, wird H0 abgelehnt, d. h., zwischen beiden Merkmalen
liegt eine Abhängigkeit vor.

Führen Sie fiir Beispiel 3.3 die entsprechenden Berechnungen durch!

Prüfung der Konstanten der Regressionsgeraden: Zur Prüfung der Frage, ob die bei der Un-
tersuchung der Abhängigkeit von zwei Merkmalen X und Y ermittelte konkrete empiri-
sche Konstante b, mit einem vorgegebenen Wert vereinbar ist, wird das folgende Prüfver-
fahren angewandt:

1- H03/31: ßin-
2. Vorgabe der Irrtumswahrscheinlichkeit oz.

3. Auf der Grundlage einer mathematischen Stichprobe (X,, Y,), i= 1, 2, ‚..‚ n, vom

Umfang n aus einer zweidimensionalen Grundgesamtheit (X, Y) und unter den oben an-

gegebenen Voraussetzungen, wählen wir die Prüfgröße

= E! —ßl0

U: t" S51 ’

(3.125)
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die einer StudenbVerteilung mit m = n - 2 Freiheitsgraden unterliegt, wobei

1 PS2 ___ A2 -

5- ” (n (n—1)s§,>
mit (3.125)

1 " _

1 = _

Sx „_1 12110:. X):
und

_ 1 "

X'7§*
ist

4. Der kritische Bereich K für zweiseitige Fragestellung wird aus folgender Relation be-
stimmt:

P(|U‘gt1. /H„)=oz.2„„

Er ergibt sich zu

fix ä fill) + t1 m55,
z.

und (3.127)

31 § I910 ‘ ti S19,-
1""

5. Mit Hilfe einer konkreten Stichprobe (x,, y,~), i= 1, 2, ...‚ n, vom Umfang n aus der
Grundgesamtheit (X, Y) wird eine Realisierung von (3.125) errechnet:

b _

u =‘S—fl‘°, (3.128)
3|

s2 =s’ i+—-————f1
‘I " n (n-nsä

ist
.6. Der Entscheid über die Nullhypothese H0 erfolgt in folgender Art:

Ist |u [ < ti , so wird Ho nicht abgelehnt;
1 ‚m

wobei

ist |u| g t„‚ , so wird Ho abgelehnt.
7""

Beispiel 3.35: In Weiterführung von Beispiel 3.33 ist zu prüfen, ob die errechnete empiri-
sche Konstante b, = 28,94 mit dem vorgegebenen Wert ß“, = 30 vertretbar ist, wobei wie-
der eine Irrtumswahrscheinlichkeit a: = 0,01 zugrundegelegt wird. Wir gehen dazu von
der Nullhypothese Ho: /31 = 30 aus und errechnen mit den Werten aus Tabelle 3.16 und
den Ergebnissen aus Beispiel 3.33 eine Realisierung (3.128) der Prüfgröße (3,125):

1 o 422
2 z j ’ =

‘l’: 14’56(86 + 35~0,o0073) 4156’

s,;I = 6,45,

= 28,94 — 30

5,45 ’

u= —0,16.

13 Beyer,Wnhxscheinlichkeilsrechnung



186 3. Mathematische Statistik

Dieser Wert wird mit dem in Tafel 4 abgelesenen kritischen Wert t0Yn05;g4 = 2,64 vergli-
chen.

Da [u | = 0,16 < 2,64 = tom; ,4 ist, wird H, nicht abgelehnt.

Konfldenzbereich für die Regressionsgerade: Die Betrachtungen des Abschnittes 3.6.2.1.
ermöglichten es uns, aus einer konkreten Stichprobe eine Realisierung y(x) = b, + bzx
der Punktschätzung f/(x) = ß, + 3,): der Regressionsgeraden n(x) = ß, + ßzx anzugeben.
Nicht zuletzt fur Untersuchungen der Praxis ist es günstig, für diese Gerade einen Konfi-
denzbereich anzugeben. Dies geschieht mit Hilfe der Konfidenzintervalle für die Para-
meter fl, und [92, die auf der Grundlage einer mathematischen Stichprobe (X,~, Y,-), i = 1,

2, ..., n, vom Umfang n aus einer zweidimensionalen Grundgesamtheit und unter den
oben angegebenen Voraussetzungen ermittelt werden.

Das Konfidenzintervall fiir den Parameter ‚B, zum Konfrdenzniveau (1 — u) wird be-
stimmt, indem wir in (3.121) 132„ durch ß, ersetzen:

„(anal
S52

und den in der Klammer stehenden Ausdruck nach ß, auflösen. Wir erhalten:

B‚—t1_mS„</i‚<ß2 + tl_mS,g,. (3.130)
2 ' 1 ‘

T
<z,_ )=1—a (3.129)

Für eine entsprechend konkrete Stichprobe (x„ y‚-)‚ i = 1, 2, ..., n, erhalten wir dann eine
Realisierung von (3.130), ein konkretes Konfidenzintervall für fizz

b, ~ :£_ms,,Z <0, < b, + 11mg, (3.131)
2' 1’

So errechnen wir von den Werten des Beispiels 3.4 ausgehend folgendes konkrete Konfi-
denzintervall für fig:

3 82 3 82
101,4 — 2,64% < 0 < 101,4 + 2,64%,

Jss ~ 0,000 73 2 1/85 - 0,000 73

60,9 < ß, < 141,9.

Ermitteln Sie in gleicher Weise aus den Werten des Beispiels 3.3 eine Realisierung des
Konfidenzintervalls für ßz!

Das Konfidenzintervall fur den Parameter ß, zum Konfidenzniveau (1 — u) wird in
gleicher Art bestimmt. Wir ersetzen in (3.125) flu, durch fl,:

S171

< 1.„ )= 1 - oz (3.132)
2.»:

und lösen den in der Klammer stehenden Ausdruck nach ß, auf. Wir erhalten:

5, — ti S,‘ < ß, < fi, + t„_ SA. (3.133)
2 '"' T“

Für eine entsprechende konkrete Stichprobe (x„ y,-), i = 1, 2, ..., n, erhalten wir dann
eine Realisierung von (3.133), ein konkretes Konfidenzintervall fiir 13,:

b, — ti S)‘ < ß, < b, + 1„ 53,. (3.134)
2"" 7""

So errechnen wir von den Werten des Beispieles-3.4 ausgehend folgendes konkrete Konfi-
denzintervall für fi,:
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28,94 — 2,64 ~ 6,45 < p. < 28,94 + 2,64 A 6,45,

11,91 < ,51< 45,97,

Ermitteln Sie wieder in gleicher Weise aus den Werten des Beispiels 3.3 eine Realisie-
rung des Konfidenzintervalls für 19,!

Für die Regressionsgerade (3.109) kann nun unter Verwendung von (3.130) uud (3.133)
ein Konfidenzbereich angegeben werden. Wir wollen nicht auf diese Herleitung eingehen
(siehe [18]), sondern lediglich das Ergebnis angeben:

r7(x)-ILMS,-<n(x)<fi(x)+ t£_mS,~,, (3.135)
2' 2'

wobei
„ 1 (x-I7)’2: 1 m

S” U1<n +(n—1)S,2(
mit

1 " _ _ 1 "s§,=:2()(,.—X)1 und X=7Z}(,-
1:1 I=l

ist und ti wieder aus Tafel 4 abzulesen ist.
2 ‚„.

Der Ausdruck (3.135) ist außer von cc, n, SX, X und ä‘ auch von x abhängig. Für jedes
feste x erhalten wir ein Konfidenzintervall fir n(x). Während für x = X das Kgnfidenz-
intervall mit den engsten Grenzen vorliegt, wird dieses mit wachsenden |x — | breiter.
Es läßt sich zeigen, daß die Grenzen des Konfidenzbereiches Hyperbeln sind. Uberlegen
Sie, welche Folgerungen sich daraus über die Genauigkeit der Aussage ergeben.

Für eine entsprechend konkrete Stichprobe (x„ y‚-)‚ i= 1, 2, ..., n, erhalten wir dann
eine Realisierung von (3.135), einen konkreten Konfidenzbereich für n(x):

y(x) ~ t£_ms,; < 1](x)<y(x) + tims"-. (3.136)
2 ' 2 ‘

Aus den Werten des Beispiels 3.4 errechnen wir folgenden konkreten Konfidenzbereich
fiir n(x):

_ _ L (x—0,42)1 _

28,94 101,4x 3,82 86 +j85_0,0O073 2,64<r/(x)

_ Z

<28,94+101,4x+3,82 i+ (x o“) 2,64.
86 85 — 0,000 73 '

Setzen Sie in diesen Ausdruck für x jeweils 0,42; 0,52 und 0,62 ein und errechnen Sie fir
diese die entsprechenden Werte der Grenzen des Konfidenzbereiches für r7(x)!

3.6.3. Korrelationsanalyse

Die Korrelationsanalyse, die sich mit der Stärke des Zusammenhanges von zwei meß-
baren Merkmalen X und Y, speziell mit entsprechenden statistischen Prüfverfahren be-
schäftigt, geht von der Voraussetzung aus, daß beide Merkmale Zufallsgrößen sind und
die Grundgesamtheit (X Y) durch eine zweidimensionale Normalverteilung beschrieben
wird. Aus Abschnitt 2.3.7. ist uns bekannt, daß diese durch die Erwartungswerte
E(X) = ‚ux, E(Y) = uy, die Varianzen D’(X) = U}, D’(Y) = tr}, und den Korrelationskoeffi-
zienten g” völlig bestimmt ist, Der Korrelationskoeffizient g” liefert eine Aussage über
den linearen Zusammenhang zwischen X und Y. Da wir uns auf eine normalverteilte

l3‘
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Grundgesamtheit (X, Y) beschränken, ist g‚„= 0 genau dann, wenn die Zufallsgrößen X
und Y unabhängig sind. Aus einer konkreten Stichprobe (x‚-‚ y‚-), i = 1, 2, ..., n, erhalten
wir für g” eine Realisierung r” (3.18), den konkreten empirischen Korrelationskoeffi-
zienten, seiner aus einer mathematischen Stichprobe (X„ Y,-), i = 1, 2, ..., n, gewonnenen
Punktschätzfunktion éxy, des empirischen Korrelationskoeffizienten.

Im folgenden werden wir ein Verfahren zur Prüfung der Unabhängigkeit der beiden
Merkmale und ein Verfahren zur Prüfung des linearen Zusammenhanges der beiden
Merkmale kennenlernen.

Prüfung der Unabhängigkeit von zwei Merkmalen. Bei vielen Untersuchungen der Praxis
wird die Frage gestellt, ob zwei Merkmale X und Y, die durch Zufallsgrößen charakteri-
siert sind, als unabhängig angesehen werden können. Zur Prüfung dieser Frage wird das
folgende Prüfverfahren angewandt:

1. Ho: Qxy = 0.
2. Vorgabe der Irrtumswahrscheinlichkeit u.

3. Zu einer mathematischen Stichprobe (X,, Y,-), i = 1, 2, n, vom Umfang n aus der
zweidimensionalen normalverteilten Grundgesamtheit (X, Y) wählen wir die Prüfgröße

= ÖxH/n ‘ 2

v1 - é§y

die einer Student—Verteilung mit m = n - 2 Freiheitsgraden unterliegt.
4. Von zweiseitiger Fragestellung ausgehend wird der kritische Bereich K aus folgender

Relation bestimmt:

U= t„‚ (3.137)

P(|U|; t1 /Ho)=u. (3.138)2„„

Wir erhalten:
A 1 „ 1

9x1’; ‘I1. J, Qxyi 75‘ ~

3'" n—2+t1„ 2'm‘[n—2+t2,,,
7;»: 7:”!

5. Mit Hilfe einer konkreten Stichprobe (x„ y,-), i= 1, 2, ...‚ n, vom Umfang n aus der
Grundgesamtheit (X, Y) wird eine Realisierung von (3.137) errechnet:

rxyVn-Z
u=i. (3.140)

V1‘ 7x21!

6. Die Entscheidung über die Nullhypothese H0 geschieht folgendermaßen:

(3.139)

Ist |u | < ti , so wird Ho nicht abgelehnt;
2 ‚m

ist |u I g ti , so wird H0 abgelehnt.
2 , m

Beispiel 3.36: Für eine bestimmte Stahlsorte war im Beispiel 3.4 des Abschnittes 3.1.2. die
Abhängigkeit der Zugfestigkeit (Zielgröße Y) vom Kohlenstofigehalt (Einllußgröße X) auf
der Grundlage von n = 86 Meßwertpaaren zu untersuchen. Unter der Annahme, daß die
zweidimensionale Zufallsgröße (X, Y) normalverteilt ist, soll unter Verwendung des mit
dem Rechenschema (Tabelle 3.14) errechneten konkreten empirischen Korrelationskoef-
flzienten In geprüft werden, ob die beiden Merkmale mit einer Irrtumswahrscheinlich-
keit at = 0,01 als unabhängig angesehen werden können. Dazu stellen wir wiederum die
Nullhypothese Ho: Qxy = 0 auf und errechnen mit (3.140) eine Realisierung von (3.137):
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= o‚s9‚/fi = 6 70

(/1—o,591

Dieser Wert wird mit dem aus Tafel 4 entnommenen kritischen Wert I090“. = 2,64 ver-
glichen. Da

u = 6,70 > 2,64 = toms; u

ist, wird die Nullhypothese abgelehnt, d. h., die Abweichung des konkreten empirischen
Korrelationskoeffizienten r„ = 0,59 vom hypothetischen Wert Q" = 0 ist signifikant.

Führen Sie die entsprechende Prüfung der Unabhängigkeit der beiden Merkmale des
Beispiels 3.3 im Abschnitt 3.1.2. durch!

Prüfung der Stärke des linearen Zusammenhanges van zwei Merkmalen. Neben der oben be-
handelten Fragestellung, ob überhaupt ein linearer Zusammenhang zwischen den Merk-
malen X und Y vorliegt, kommt es im Falle der Ablehnung der Nullhypothese häufig dar-
auf an, die Stärke des linearen Zusammenhanges zu untersuchen. Es ist also zu prüfen,
ob der Korrelationskoeffizient Q” einer normalverteilten zweidimensionalen Grundge-
samtheit (X, Y) den Wert g ¢ 0 besitzt.

Das entsprechende Prüfverfahren lautet folgendermaßen:
1- H03 9x1 = Q-
2. Vorgabe der Irrtumswahrscheinlichkeit a.

3. Zu einer mathematischen Stichprobe (X,-‚ Y‚), i = 1, 2, n, vom Umfang n aus der
zweidimensionalen normalverteilten Grundgesamtheit (X, Y) wählen wir unter Verwen-
dung der Transformation

_ 1 1 + ÖXY
W—- 2 1n1_ Li", (3.141)

die asymptotisch norrnalverteilt ist mit

1 1 + 1E(W)=;4W=?1n1_S+2(r+1) und DZ(W)=cr§,,=n_3, (3.142)

die asymptotisch N(0; 1)-verteilte Prüfgröße:

Wfi
u=z=—"’”. (3.143)

“W

4. Von zweiseitiger Fragestellung ausgehend wird der kritische Bereich K aus folgender
Relation bestimmt:

1=(|U| 2 25/H0) = or. (3.144)
1

Er lautet:
W; my + crwzfl

2

und (3.145)
Wg „W — awzl.

Z

5. Mit Hilfe einer konkreten Stichprobe (xi, y‚), i= 1, 2, ..., n, vorn Umfang n aus der
Grundgesamtheit (X, Y) wird eine Realisierung von (3.143) errechnet:

W-Ilw
aw (3.146)u:
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6. Die Entscheidung über die Nullhypothese H0 geschieht folgendermaßen:

Ist |u | < 21, so wird H0 nicht abgelehnt,
2

ist |u I ä 21, so wird H0 abgelehnt.
1

Beispiel 3.37: In Fortsetzung von Beispiel 3.36 ist mit einer Irrtumswahrscheinlichkeit
a = 0,01 zu prüfen, ob der Korrelationskoeffizient der Grundgesamtheit den Wert Q = 0,6
hat. Wir stellen dazu die Nullhypothese Ho: Q” = 0,6 auf und errechnen mit Hilfe von

(3.141) und (3.142) eine Realisierung der Prüfgröße (3.143):

1 1+o‚59_
W -?ln -Ü‚6777,

1 1+o,e 0,6 _„„—7mä+ 2.85 —0,6967,

aw =;=0,11,
J5

u = 0,677 7 - 0,696 7 =

0,11 -0,1727.

Dieser Wert wird mit dem aus Tafel 4 entnommenen kritischen Wert 20,025 = 1,96 vergli-
chen. Da |u| = 0,172 7 < 1,96 = 20'015 ist, wird die Nullhypothese nicht abgelehnt.

Führen Sie die entsprechende Prüfung über die Stärke des linearen Zusammenhanges
fiir das Beispiel 3.3 durch!

3.7. Einführung in verteilungsunabhängige Prüfverfahren

Im Abschnitt 3.4. lemten wir einige statistische Prüfverfahren kennen. Bis auf eine
Ausnahme (Abschnitt 3.4.9,) wurde bei ihnen von der Voraussetzung ausgegangen, daß
die erforderlichen Stichproben aus normalverteilten Grundgesamtheiten gezogen wurden,
Die Nullhypothese, die bei dem jeweiligen Prüfverfahren zu testen war, bezog sich auf un-

bekannte Kennwerte dieser normalverteilten Grundgesamtheit. Mit anderen Worten: Der
Typ der Verteilung der Grundgesamtheit wurde als bekannt angenommen, während dies
für alle oder auch gewisse Kennwerte dieser Grundgesamtheit nicht der Fall war.

Mit der verstärkten Anwendung mathematisch-statistischer Methoden in Naturwissen-
schaft und Technik zeigte sich aber immer mehr, daß viele auftretende Zufallsgrößen kei-
ner Normalverteilung unterliegen. In solchen Fällen war dann auch eine Anwendung der
bekannten Prüfverfahren nicht möglich. Deshalb machte es sich erforderlich, mathema-
tisch-statistische Prüfverfahren zu entwickeln, die nicht auf der Voraussetzung einer nor-

malverteilten Grundgesamtheit aufbauen. Es entstanden die sogenannten verteilungsunab-
hängigen Prüfiwezfahren, die in der Literatur auch als verteilungsfrei oder parameterfrei
bezeichnet werden. Sie sind anwendbar zur Prüfung von Häufigkeiten, von Rangdaten,
d.h. von Daten, fiir die lediglich eine Rangordnung gegeben ist, und von Meßdaten. Als
Beispiel eines solchen Prüfverfahrens lernten wir in Abschnitt 3.4.9. schon den xl-Anpas-
sungstest kennen, mit dem der Vergleich einer aus einer konkreten Stichprobe gewonne-
nen konkreten empirischen Verteilungsfunktion mit der angenommenen Verteilungs-
funktion der Grundgesamtheit möglich war.
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Gegenüber den „klassischen“ haben verteilungsunabhängige Prüfverfahren folgende
— Vorteile:

1. Sie sind unabhängig von der Voraussetzung einer norrnalverteilten Grundgesamt-
heit.
2. Sie sind bei kleinem Stichprobenumfang einfach in der Handhabung.

— Nachteile:
l. Ihre Güte (vgl. Abschnitt 3.4.1.) ist bei gleichem Signifikanzniveau kleiner als bei
einem entsprechenden „klassischen Prüfverfahren“. Mit anderen Worten: Der Nach-
weis vorhandener Unterschiede ist rnit einem verteilungsunabhängigen Verfahren
schwieriger.
2. Bei verteilungsunabhängigen Verfahren erhöht sich i. allg. mit wachsendem Stich-
probenumfang der Rechenaufwand erheblich.
3. Im Prinzip erfordert jedes einzelne verteilungsunabhängige Prüfverfahren eine Ta-
belle der Verteilungsfunktion der entsprechenden Prüfgröße.

Verteilungsunabhängige Prüfverfahren werden wir dann anwenden, wenn die Vorausset-
zungen der „klassischen Prüfverfahren“ nicht erfüllt sind.

Eine umfassende Darstellung verteilungsunabhängiger Prüfverfahren ist in diesem
Rahmen nicht möglich. Wir verweisen auf [18]. Die Arbeitsweise solcher Prüfverfahren
wollen wir am Beispiel des
— Vierfelder-x’-Prüfverfahrens‚
— U-Prüfverfahrens von Mann-Whitney
vermitteln.

Das Vierfelder-gfi-Prüfierfahren: Fragestellungen, bei denen die Unabhängigkeit von zwei
Versuchen zu prüfen ist, von denen jeder die Alternativausgänge A und Ä bzw. B und E
hat, werden mit dem Vierfelder-)5’-Priifverfahren untersucht. Beispiele hierfür sind:

Versuch I Versuch II

Auswahl des Produktionsverfahrens Qualität des Erzeugnisses
‚i: Neues Produktionsverfahren E: Erzeugnis ist qualitätsgerecht
A: Altes Produktionsverfahren B: Erzeugnis ist nicht qualitätsgerecht

Gewicht Futterart
4: Gewichtszunahme lg: Normalfutter
A: keine Cw‘ ‘ tszunahme B: Spezialfutter

Die Versuche beschreiben wir durch zwei Null-Eins-verteilte Zufallsgrößen

X = 0, falls Ä eintritt, Y: 0, falls F eintritt,
1, falls A eintritt; 1, falls B eintritt.

Es ist dann zu prüfen, ob die Zufallsgrößen X und Yunabhängig sind. Dazu sind folgende
Schritte notwendig:

l. Ho: Die Zufallsgrößen X und Y sind in der zweidimensionalen Grundgesamtheit
(X, Y) unabhängig.

2. Vorgabe der Irrtumswahrscheinlichkeit u.

3. Es wird eine mathematische Stichprobe (X,, Y,), i = 1, 2, ..., n, vom Umfang n aus
der zweidimensionalen Grundgesamtheit (X, Y) betrachtet.
Die absoluten Häufigkeiten Hk, (k, l = 1, 2) werden in einer Vierfelder- (oder auch
2 X 2—)Tafel zusamrnengefaßt (Tabelle 3.24).
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Tabelle 3.24. Vierfelder-Tafel

Y X l 0 Summe

1 H11 H12 H1.

0 H21 H22 H2.

Summe H, H, n

Es gilt:

H11 ‘l’ H12 = H11

H21 ‘l’ H22 = H2.‚
H11 + H21 = H1,
H12 ‘l’ H22 = H2,
H” + H” + H2, + H22 = n.

Als Prüfgröße U wählen wir:

"(H11 H22 ‘ H12 H21):

H1.H2.H1H2 ’

eine Größe, die annähernd zLverteilt ist mit dem Freiheitsgrad m = 1 [3, 18].
4. Den kritischen Bereich K bestimmen wir für die einseitige Fragestellung aus der Re-

lation

„H; = (3.147)

P(U:x§_1/Ho) = ü,

wobei wir den entsprechenden kritischen Wert xi‘, aus Tafel 3 entnehmen.
5. Mit einer konkreten Stichprobe (x„ y,), i= 1, 2, ..., n, vom Umfang n aus der zwei-

dimensionalen Grundgesamtheit (X, Y) ermitteln wir eine Realisierung der Prüfgröße
(3.147)

n (hm h22 — h12 h21)2
z —————— 3.148

" h1.h2.h.1h.2 ’ ( ’
wobei die Größen h‚-‚-, z’‚j = 1, 2, ..., h,_, h1, h_1, h1 Realisierungen der entsprechenden
Größen in (3.147) darstellen.

6. Der Entscheid über die Nullhypothese Ho wird in folgender Weise gefällt:
Ist u < xi“, so wird H0 nicht abgelehnt, d.h., beide Merkmale können als unabhängig an-
gesehen werden;
ist u ä 1,2,; 1, so wird Ho abgelehnt, d. h.‚ beide Merkmale können als abhängig angesehen

werden.

Anmerkungen: Die in (3.147) angegebene Prüfgröße ist für n > 60, H1 ä 5 und H2 ä 5 mit
guter Näherung xl-verteilt mit m = 1 Freiheitsgraden. Das ist auch noch für einen Stich-
probenumfang 20 g n g 60 der Fall, wenn (3.147) mit der Korrektur von Yates angewandt
wird:

= 2 = "(|H11H22 ‘ H12H21| ‘ 71/2):

U 7“ H1.H2.H1H2 ' m49’
Beispiel 3.38: Ein Erzeugnis wird nach einem neuen Verfahren gefertigt. Dabei wird eine
geringere Ausschußquote als bei Einsatz des alten Verfahrens beobachtet. Es erhebt sich
die Frage, ob mit einer Irrtumswahrscheinlichkeit u = 0,05 ein Zusammenhang zwischen
der Art der Fertigung und der erzielten Qualität nachzuweisen ist,
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Zu ihrer Beantwortung werden der nach dem alten und dem neuen Verfahren erfolgten
Produktion n = 360 Erzeugnisse entnommen und bei jedem geprüft, ob es qualitäts—
gerecht ist oder nicht. Die aufgetretenen Häufigkeiten sind in einer Vierfelder-Tafel
(Tabelle 3.25) festgehalten.

Tabelle 3,25. Vierfelder-Tafel für Beispiel 3.38

Altes Verfahren Neues Verfahren Summe

Qualitätsgerecht 142 188 330
Nicht qualitätsgerecht 18 12 30

Summe 160 200 360

Zur Prüfung stellen wir die Nullhypothese

H0: „Beide Merkmale sind unabhängig“

auf. Mit den in Tabelle 3.25 enthaltenen Werten errechnen wir eine Realisierung (3.148)
der Prüfgröße (3.147):

_ 360(142 - 12 — 188 - 18)1 A

" " 160-200-33030 " 3307‘

Für die Irrtumswahrscheinlichkeit oc=0‚05 lesen wir weiterhin den kritischen Wert
xäßm = 3,8 ab. Zum Entscheid werden beide Werte verglichen.

Da u = 3,207 < 3,8 =x§V(,5;, ist, wird die Nullhypothese nicht abgelehnt, d. h., beide
Merkmale sind als unabhängig zu betrachten. Zwischen der Art der Fertigung und der
Qualität der Erzeugnisse kann also keine Abhängigkeit nachgewiesen werden.

Das U—Pn2fverfahren von Mann-Whitney: Zur Untersuchung der Fragestellung, ob zwei
unabhängig voneinander gewonnene Stichproben, kurz zwei unabhängige Stichproben,
aus identisch verteilten Grundgesamtheiten gezogen sein können, ist es möglich, das
U-Prüfverfahren — es zählt zu den Rangprüfverfahren — einzusetzen. Das ist z. B. dann
der Fall, wenn ein Erzeugnis auf zwei Maschinen gefertigt wird und ermittelt werden soll,
ob sich die auf beiden Maschinen gefertigten Erzeugnisse hinsichtlich eines bestimmten
Qualitätsmerkmals unterscheiden. Es ist also zu prüfen, ob die beiden Grundgesamthei-
ten'X und Y mit den Verteilungsfunktionen F,,(t) =F(t) und Fy(t) = G(t) für alle t
(-°° < t < +00) gleich sind.

Wir wenden dazu folgendes Prüfverfahren an:

1. H0: F(t) 2 G(t).
2. Vorgabe der Irrtumswahrscheinlichkeit u.

3. Zu einer mathematischen Stichprobe (X1, X2, ..., X,,1) vom Umfang n1 aus der
Grundgesamtheit X mit der Verteilungsfunktion F(t), —oe < t < +oo, und einer mathe—

matischen Stichprobe (Y1, Y1, ..., Y,.2) vom Umfang n, aus der Grundgesamtheit Y mit
der Verteilungsfunktion G(t)‚ -°° < t<+oo, werden beide Stichproben zu einer vom

Umfang n = n1 + n; vereinigt. Nun wird die Prüfgröße U gewählt:
U = U, == Anzahl der Inversionen‘) in der vereinigten und mit einer Rangord—

nung versehenen Stichprobe vom Umfang n.

Dies ist eine diskrete Zufallsgröße, die ganzzahlige Werte zwischen 0 und n, n2 annimmt
und für n, + n; g 20 annähernd

1) Der Begriff Inversion wird in Verbindung mit der konkreten Stichprobe (Pkt. 5) erläutert.
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N(%n1n‚; %n1n1(n1 + n, + 1) )-verteilt ist.

In diesem Fall ist dann die N(0; 1)-veneilte Prüfgröße anwendbar

U, —%n1n2
Z=m. (3.150)

~11-2-n1n2(n,+ rt, + 1)

Im anderen Fall ist die Tafel der Prüfgröße U„ heranzuziehen, die z. B. in [18] enthalten ist,
4. Bei der Bestimmung des kritischen Bereiches K wollen wir uns auf den Fall der Prüf-

größe (3.150) beschränken. Er ist bei zweiseitiger Fragestellung aus der Relation

P(|z|;z,/H„)=u (3.151)
1

und bei einseitiger Fragestellung aus der Relation

P(Z g z„,/H11)= ac (3.152)

zu bestimmen. Wir verweisen hierzu auf die Ausführungen in Abschnitt 3.4.1.
5. Aus einer konkreten Stichprobe x1, i= 1, 2, ..., n1, vom Umfang n1 aus der Grund-

gesamtheit X und einer konkreten Stichprobe yk, k = 1, 2, ..., n1, aus der Grundgesamt-
heit Y bilden wir die vereinigte Stichprobe vom Umfang n1 + n2 = n. Die Elemente dieser
Stichprobe ordnen wir mit dem kleinsten beginnend der Größe nach, d‚h.‚ wir stellen eine
Rangordnung her und ermitteln die Gesamtanzahl der Inversionen dieser Stichprobe.
Dabei wird unter einer Inversion eines beliebigen Paares (x1,y„) die Erfüllung der Rela-
tion y„ < x,- verstanden. Eine Inversion liegt also dann vor, wenn in der Rangfolge y„ vor x,-

steht.

Anmerkung: Stehen alle x,-,1’ = 1,2, ..., n1, in der Rangfolge vor den yk, k = 1,2, n1, so

ist die Anzahl der Inversionen also 0. Begründen Sie, warum diese dann, wenn alle
yk, k =1,2, ..., n1, vor den x,~,i = 1,2, ..., n1, stehen, n1 - n, beträgt. In beiden Fällen wer-

den die Stichproben nicht aus derselben Grundgesamtheit stammen.
Die Gesamtanzahl der Inversionen in der aus den beiden konkreten Stichproben gebil-

deten Stichprobe stellt dann gleichzeitig eine Realisierung u, der Prüfgröße U„ dar:

n:

u,,= z
k=1

M I(yk — x,-), (3.153)
:1

wobei I

1 r" —‚ o,
’(V'<"‘9={o Svz:-:,-:0

ist. Treten bei den Stichproben gleiche Meßwerte, Sogenannte Bindungen auf, so wird die
Differenz zwischen beiden gleich null; entsprechend (3.154) soll ein solcher Fall nicht als
Inversion gezählt werden.

Bei unseren Betrachtungen wollen wir uns auf den Fall n1 + n1 g 20 beschränken. Wir
können deshalb für den Vergleich eine Realisierung der Prüfgröße (3.150) wählen:

(3.154)

_iu„ 2 run;

1[1—12 n1n1(n1 + n, +1)
(3.155)z:



3.7. Verteilungsunabhängige Prüfverfahren 195

Über die Nullhypothese Ho kann auf Grund unserer in 5. gegebenen Beschränkung
nach der in 3.4.1. angegebenen Weise entschieden werden.

Beispiel 3.39: Auf zwei Prüfgeräten sollen für ein bestimmtes Material gleichzeitig Deh-
nungsversuche durchgeführt werden. In einem Vorversuch soll mit einer Irrtumswahr-
scheinlichkeit or = 0,05 ermittelt werden, ob beide Geräte gleichmäßig arbeiten, d. h. ob
die an beiden Geräten ermittelten Meßwerte einer Grundgesamtheit entstammen können.
Dazu wurden die an Probestäben eines bestimmten Materials für eine feste Belastung er-

mittelten Dehnungen [mm] festgehalten.
Bei dem ersten Gerät wurden bei n1 = 10 Versuchen folgende Dehnungen festgestellt,

wobei mit X die entsprechende Grundgesamtheit gekennzeichnet wurde:

x, = 5,0, x5 =25,0‚ x9 =45,1,

x2 = 9,9, x, = 30,6, xw = 49,8.

x3 = 14,6, x7 = 36,0,

x. = 20,1, x, = 40,4,

Bei dem zweiten Gerät wurden bei n; = 10 Versuchen folgende Dehnungen ermittelt, wo-
bei mit Y die entsprechende Grundgesamtheit gekennzeichnet ist:

Y1: 5,2, ys = 24,8, Y9 = 45,8,

yz =10,1, ye = 26,9, yw = 50,0-

)’: = 14,5, Y7 = 35,8,

Y4 = 20,2, ‚Vs = 40,6:

Tabelle 3.26. Rangzahlen und Inversionen
für Beispiel 3.39

Meßwerte Rangzahlen Inversionen

X: Yk

5,0 — 1 — —

— 5,2 — 2 9

9,9 — 3 — —

— 10,1 — 4 8

— 14,5 — 5 8

14,6 — 6 — —

20,1 — 7 — —

— 20,2 — 8 6

— 24,8 — 9 6

25,0 — 10 -— —

— 26,9 — 11 5

30,6 — 12 — —

— 35,8 — 13 4

36,0 — 14 — —

40,4 — 15 — —

—— 40,6 — 16 2

45,1 — 17 — —

— 45,8 - 18 1

49,8 — 19 — —

— 50,0 — 20 0

49
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Zur Prüfung der aufgeworfenen Problematik stellen wir die Nullhypothese

H0: „Die Verteilungsfunktionen der beiden Grundgesamtheiten sind für alle t

gleich“

auf, vereinigen die beiden konkreten Stichproben zu einer vom Umfang n = n1 + n1, ord-
nen die Elemente dieser neuen Stichprobe nach der Größe und ermitteln die Gesamt-
anzahl der vorliegenden Inversionen.

In Tabelle 3.26 sind die entsprechenden Ergebnisse zusammengefaßt. Insgesamt treten
u, = 49 Inversionen auf. Damit kann die Realisierung (3.155) der Prüfgröße (3.150) be-
rechnet werden:

149-7‘10‘10
z= = -0,0756.

L.
12

Wir fuhren für die Irrtumswahrscheinlichkeit or = 0,05 den Entscheid bei zweiseitiger Fra-
gestellung durch, wobei 20,025 = 1,96 ist. Da nun |z | = 0,0756 < 1,96 = 20m5 ist, wird die
Nullhypothese H0 nicht abgelehnt, d.h.‚ die beiden Geräte unterscheiden sich nicht we-
sentlich voneinander.

10- 10(1o +10 +1)

3.8. Aufgaben

3.1: Die Zugfestigkeit [10 MPa] einer Sorte von Stahlblechen wird untersucht. 90 Meß-
wene enthält die folgende Urliste:

49,9 48,8 51,2 50,5 50,1 48,7 50,9 51,4 50,6 50,0
49,5 48,0 49,1 45,9 47,0 50,0 46,2 48,0 49,2 47,4
50,8 50,4 49,2 45,5 47,8 47,7 48,4 49,8 46,6 46,0
47,2 46,3 48,6 47,0 46,0 48,2 46,3 48,2 47,3 47,4
47,7 44,4 45,3 43,1 47,0 48,4 46,6 47,4 45,1 46,6
48,0 47,8 42,0 45,5 47,8 45,2 44,6 42,3 43,7 45,3
46,0 43,5 45,2 43,4 47,0 46,8 46,5 47,7 48,4 48,9
48,0 48,3 50,1 46,5 47,9 48,8 45,1 48,5 51,3 47,0
49,5 49,1 44,7 49,2 44,4 49,3 48,7 44,8 47,9 46,9

Stellen Sie eine sekundäre Häufigkeitstabelle auf und zeichnen Sie das zugehörige Histo-
gramm, das Häufigkeitspolygon und das Summenpolygon! Berechnen Sie 7 und s!

3.2: Zeigen Sie, daß das arithmethische Mittel Y eine erwartungstreue Schätzfunktion
für den Erwartungswert u einer Grundgesamtheit X ist!

3.3: In einer Werkhalle arbeiten 12 gleichartige Maschinen. Die Anzahl der durch Stö-
rungen in einer bestimmten Zeiteinheit ausgefallenen Maschinen kann als poissonver-
teilte Zufallsgröße X aufgefaßt werden. In n = 220 Zeiteinheiten wurden die Ausfälle ge-
zählt. Das Ergebnis dieser Beobachtungen enthält folgende Tabelle:

k|0123456789l01112
h,,I386656271874211000
(hk Anzahl der Zeiteinheiten mit k ausgefallenen Maschinen)

Unter Verwendung der Maximum-Likelihood-Methode ist der Parameter /1 = E (X) dieser
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Poisson-Verteilung zu schätzen. Berechnen Sie danach die Wahrscheinlichkeit
P(X § 2)!

3.4: Von einer exponentialverteilten Grundgesamtheit X ist der Parameter 0 = ‚l unbe-
kannt. Mit Hilfe einer konkreten Stichprobe x1,x„‚..,x„ ist nach der Maximum-Likeli-
hood-Methode für Ä ein Schätzwert zu ermitteln.

3.5: Eine konkrete Stichprobe vom Umfang 100 stamme aus einer norrnalverteilten
Grundgesamtheit mit dem Parameter a= 2. Die Stichprobe hat den Mittelwert S‘ = 6,4.
Bestimmen Sie zu dem Konfidenzniveau 0,95 ein konkretes Konfidenzintervall für den
Parameter ‚u!

3.6: Wie groß muß in Aufgabe 3.5 der Stichprobenumfang n gewählt werden, damit wir
zu dem Konfidenzniveau 0,95 ein konkretes Konfidenzintervall mit der Länge 0,5 erhal-
ten?

3.7: Welche konkreten Konfidenzintervalle ergäben sich in Aufgabe 3.5, wenn n = 400
bzw. n = 10 wäre?

3.8: Es wurden 5 unabhängige Messungen zur Bestimmung der Ladung eines Elektrons
durchgeführt. Die Versuche lieferten folgende Resultate (in absoluten elektrostatischen
Einheiten)

4,781 -10"”; 4,792-10“°;
4,795-10'1"; 4,779-10"“).

Es sind eine Schätzung für die Größe der Ladung des Elektrons und unter der Annahme,
daß die Stichprobe aus einer normalverteilten Grundgesamtheit stammt, ein konkretes
Konfidenzintervall mit o: = 0,01 anzugeben. (Entnommen [l6])

4,769-10“°;

3.9: Für die Zufallsgröße X (Zugfestigkeit) in Aufgabe 3.1 ist zu dem Konfidenzniveau
0,95 für den Parameter u der zugehörigen Grundgesamtheit ein konkretes Konfidenz-
intervall zu ermitteln.

3.10: Eine konkrete Stichprobe vom Umfang n = 25, die einer normalverteilten Grund-
gesamtheit entnommen wurde, ergibt s’ = 8,5. Mit a = 0,05 ist ein konkretes Konfidenz-
intervall für den Parameter a’ zu ermitteln.

3.1l: Die Lebensdauer X einer Glühlampenart wird geprüft. Eine konkrete Stichprobe
vom Umfang n = 25 ergab Y = 2 480 Stunden und s = 18 Stunden. Unter der Annahme,
daß X eine normalverteilte Zufallsgröße ist, sind für die Parameter u und (T mit at = 0,05
konkrete Konfidenzintervalle zu berechnen,

3.12: Aus der Produktion von Kugellagern wurden 150 Stück zufällig entnommen. In
dieser Stichprobe sind 6 unbrauchbare. Der AusschuBprozentsatz p - 100% der Gesamt-
produktion ist unbekannt. Mit Hilfe der Stichprobe ist ein konkretes Konfidenzintervall
für p mit ac = 0,05 zu berechnen.

3.13: An 40 Einzelteilen (Stichprobe aus einer Tagesproduktion) wird der Sollwert
eines Maßes geprüft. Die Stichprobe liefert einen Mittelwert der Abweichung vom Soll—

wert von Y = 22,95 um und die Standardabweichung s = 4,42 um. Unter der Vorausset-
zung, daß die zugehörige Grundgesamtheit norrnalverteilt ist, ist zu testen, ob diese Stich-
probe aus einer Grundgesamtheit mit /4., = 20 um stammen kann. Es sei a: = 0,01.

3.14: Eine konkrete Stichprobe vom Umfang n = l6 aus einer norrnalverteilten Grund-
gesamtheit X ergibt die Standardabweichung s = 3,9. Es ist mit a: = 0,05 bei einseitiger
Fragestellung zu testen, ob diese Stichprobe aus einer Grundgesamtheit mit a1 = <73 = 10
stammen kann,

ai
-

-1
-

an
»



198 3. Mathematische Statistik

3.15: Ein bestimmtes Erzeugnis wird nach 2 Verfahren hergestellt. Es wird untersucht,
ob bei beiden Verfahren der Rohstoffverbrauch pro Produkt der gleiche ist. X sei der Roh-
stoffverbrauch bei dem ersten Verfahren und Y bei dem zweiten Verfahren. Eine Stich-
probe aus X ist 3,6; 3,3; 3,9; 3,5; 3,7; 3,0; eine Stichprobe aus der Grundgesamtheit Y ist
4,5; 4,8; 4,5; 4,2; 3,5. Unter der Annahme, daß a bei beiden Grundgesamtheiten gleich
ist, ist mit a: = 0,05 die Hypothese Hot E(X) = E(Y) zu prüfen. Weiterhin sei vorausge-
setzt, daß X und Y normalverteilt sind.

3.16: In der Aufgabe 3.15 wurde die Annahme gemacht, daß D’(X) = D’(Y) = (T2 ist.
Testen Sie diese Annahme mit DC = 0,05.

3.17: Prüfen Sie, ob die konkrete Stichprobe vorn Umfang n = 150 in Aufgabe 3.12 aus

einer Null-Eins-verteilten Grundgesamtheit X mit E(X) = pa = 0,02 stammen kann! Die
Irrtumswahrscheinlichkeit sei 0,01.

3.18: Werten Sie mit Hilfe des Wahrscheinlichkeitsnetzes das Zahlenmaterial in Auf-
gabe 3.1 aus!

3.19: Prüfen Sie mit einer Irrtumswahrscheinlichkeit a: = 0,05, ob die in Aufgabe 3.1
angegebene Urliste eine konkrete Stichprobe aus einer normalverteilten Grundgesamtheit
sein kann!

3.20: Aus einer Grundgesamtheit (X, Y) wurde folgende konkrete Stichprobe vom Um-
fang n = 6 entnommen:

x.- | 2,4 3,3 4,4 5,7 7,7 9,6

y,- | 3,5 4,8 5,8 7,1 9,5 11,7

Für X und Y gelten die Voraussetzungen des Abschnittes 3.6.2. Mit Hilfe dieser kon-
kreten Stichprobe ist
a) eine Schätzung für die Regressionsgerade n(x) = ß] + ßzx,
b) mit der Irrtumswahrscheinlichkeit a=0,05 ein konkretes Konfldenzintervall für

den Regressionskoeffizienten ß, zu ermitteln.

3.21: Unter der Annahme, daß die Stichprobe
x, 2 4 5 7 8

y‚- 4 6 5 6 7

aus einer normalverteilten Grundgesamtheit stammt, ist für den Korrelationskoeffi-
zienten gxy ein Schätzwert zu bestimmen.

3.22: Ein Werk liefert Eisenplatten. Der Verwendungszweck dieser Platten erfordert,
daß sie eine gleichmäßige Dicke besitzen. Zur Untersuchung dieses Merkmales werden
der Lieferung 5 Platten entnommen. An jeder dieser Platten wird die Dicke [mm] an
vier verschiedenen Stellen gemessen. Die Meßergebnisse enthält folgende Tabelle:

Stellen-Nr. Platten-Nr.

1 2 3 4 5

9,3 9,3 9,1 9,3 9,2
9,6 9,5 9,6 9,5 9,5
9,1 9,1 9,0 9,0 9,0
9,7 9,7 9,5 9,6 9,5

Auf Grund dieser Stichprobe ist zu entscheiden, ob der Unterschied der Plattenstärke
zwischen den verschiedenen Meßstellen zufällig oder signifikant ist. Als Irrtumswahr-
scheinlichkeit wird at = 0,01 gewählt.
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2.1:

2.3:

2.4:

2.8:

2.10:

2.12:

2.13:

2.14:

2.15:

2.16:

2.19:

2.20:

Lösungen der Aufgaben

a) A n C... „Die gezogene Zahl ist höchstens gleich 12 und gerade“;
B n C n D „Die gezogene Zahl ist 12 oder l8“;
B U D „Die gezogene Zahl ist mindestens gleich 8 oder ein Vielfaches von 3“;
(A u B) n D „Die gezogene Zahl ist ein Vielfaches von 3“;
F n C ..„‚Die gezogene Zahl ist 2 oder 4 oder 6“;
(Z n B) n C n D . .. „Die gezogene Zahl ist 1 indeste I gleich 8, gerade und kein Vielfa-

ches von 3“;
b) F=FnÜ; G=ZnC; H=(FnC)u(ZnÖ.
D=An(B1uB,uB3uB,)n(C,uC2); D=Xu(§,nEnEnE)u(CnC).

(" Z “l , (i)10! 3110! 25. a) b)1-_,
a) —; w—. - - n ’ (n)12! 121 (k) k

4 7 9 1 1 1
5 WW. 2.9. 10?, 15)? 0?.

373 2.11: a) 0,9998; b) 0,0081; c) 0,0919; d) 0,3911; e) 0,508 7.

k —2 0 +2

P(X=k) 122 212(14)) 012)’

0 fiir !§0,
1

a) a=7; b) F„(t)= äfiir 0<t§2,
1 fiir 2<t.

1 .7e fur 2:0, 1

a) Fx<t)= 1 b) P(0§X<1)=7(1—e“)=0,3161.
——e"1 für t>0;

E(X):2.

0 rm 2:1, 15 4

a) Fx<t)= 1,% rm „I; b) P(1;X<2)=E=0‚9375; c) E(X)=;;

Z Z Z Z 2 4 _ _d) E(X)=2, D (X)=E(X)—(E(X)) =3; e) P X2? —3—5?—o,3154.

0 im zg~3,
0,1 für —3<t§0, b) P(X>0)=0‚75;
0,25 r’ 0<:g1‚

a) m‘): 0,35 1<r§2, °> E(X)=1a5%
0,6 für 2<t§3, d) D2(X)=3,35‘
1 für 3<t;

a) k l ° | 1 l 2 b) 0,648;



200

2.21:

2.22:

2.23:

2.25:

3.1:

3.4:

3.7:

3.8:

3.11:

3.13:

3.14:

3.15:

3.16:

3.17:

3.19:

3.20:

3.22:

Lösungen der Aufgaben

0 für
0,216 für
0,648 für
0,936 für 2<tg3,
1 für 3 < t;

Jede Zahl aus dem Intervall (0,1] ist Quantil der Ordnung 0,1; 0,2; 0,3.
Jede Zahl aus dem Intervall (1,2] ist Quantil der Ordnung 0,4; 0,5.

(ä) (35): (f) (25),

I20.
0<t§1,

c) F,,(t)= 1<r§2,

30
4

2.24: a) 0,841345;
p N(0; 1) N(2;3)

Z

Q.» b) e-H5 = 0,2362.

0,01 —2,33 ~4,99
0,05 A 1,64 —2,92

0,1 -1,28 —1,84
0,2 —0,84 —0,52

a), b)

X Y 0 1 2 3

0 0,000 001 0,000 027 0,000 243 0,000 729 0,001000
1 0,000270 0,004 B60 0,021870 0 0,027 000
2 0,024 300 0,218 700 0 0 0,243 000
3 0‚729000 0 0 0 0‚729000

0,753 571 0,223 587 0,022113 0,000 729 1,000 000

o) k | 0 | 1 | 2 l 3

P(X : w: 1) 1 0,000121 | 0,021737 I 0973143 i 0

x = 47,47; s : 2,14. 3.3; ‚i :1,91; P(X g 2) = 0,700.

=%. 3.5: 6.01<u<6.79. 3.6: n-~246.

6,2 < 14 < 6,6 bzw. 5,16 < u < 7,64. 3.9: 47,03 < 14 < 47,91.

Y = 4,783 - 10"“; 4,761 - 10"” < u < 4,805 > 10"“. 3.10: 5,2 < a’ <16,4.

2472‚6 < 14 < 2487,4; 14 < 0' < 25,2. 3.12: 0,018 < p < 0,085.

Die Hypothese H0: E(X) = 140 = 20 wird abgelehnt.

Die Hypothese H0: D’(X) = aä : 10 wird nicht abgelehnt.

Die Hypothese H0: E(X) = E(Y) wird abgelehnt.

Die Hypothese H0: D’(X) = D’(Y) wird nicht abgelehnt.

Die Hypothese H0: E(X) = p0 = 0,02 wird nicht abgelehnt.

Die Hypothese H0: Fx(t) = <I>(t;14o, a.,) wird nicht abgelehnt,

a) y : 0,89 +1,12 x; b) 1,05 < ß, <1,19. 3.21: fxy = 0,86.

Die Hypothese H0: 141 = u; = u, = 14.. wird abgelehnt.
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Anhang: Tafeln

Tafel 3. 1’-Verleilung: {im-Werte (s. Bild S. 210)

Anzahl der Irrtumswahrscheinlichkeit u

Freiheits-
grade m 0,99 0,975 0,95 0,05 0,025 0,01

1 0,00016 0,000 98 0,003 9 3,8 5,0 6,6
2 0,020 0,051 0,103 6,0 7,4 9,2
3 0,115 0,216 0,352 7,8 9,4 11,3

4 0,297 0,484 0,711 9,5 11,1 13,3

5 0,554 0,831 1,15 11,1 12,8 15,1
6 0,872 1,24 1,64 12,6 14,4 16,8
7 1,24 1,69 2,17 14,1 16,0 18,5

8 1,65 2,18 2,73 15,5 17,5 20,1
9 2,09 2,70 3,33 16,9 19,0 21,7

10 2,56 3,25 3,94 18,3 20,5 23,2
11 3,05 3,82 4,57 19,7 21,9 24,7
12 3,57 4,40 5,23 21,0 23,3 26,2
13 4,11 5,01 5,89 22,4 24,7 27,7
14 4,66 5,63 6,57 23,7 26,1 29,1
15 5,23 6,26 7,26 25,0 27,5 30,6
16 5,81 6,91 7,96 26,3 28,8 32,0
17 6,41 7,56 8,67 27,6 30,2 33,4
18 7,01 8,23 9,39 28,9 31,5 34,8
19 7,63 8,91 10,1 30,1 32,9 36,2
20 8,26 9,59 10,9 31,4 34,2 37,6
21 8,90 10,3 11,6 32,7 35,5 38,9
22 9,54 11,0 12,3 33,9 36,8 40,3
23 10,2 11,7 13,1 35,2 38,1 41,6
24 10,9 12,4 13,8 36,4 39,4 43,0
25 11,5 13,1 14,6 37,7 40,6 44,3
26 12,2 13,8 15,4 38,9 41,9 45,6
27 12,9 14,6 16,2 40,1 43,2 47,0
28 13,6 15,3 16,9 41,3 44,5 48,3
29 14,3 16,0 17,7 42,6 45,7 49,6
30 15,0 16,8 18,5 43,8 47,0 50,9

40 22,2 24,4 26,5 55,8 59,3 63,7
50 29,7 32,4 34,8 67,5 71,4 76,2
60 37,5 40,5 43,2 79,1 83,3 88,4
70 45,4 48,8 51,7 90,5 95,0 100,4
80 53,5 57,2 60,4 101,9 106,6 112,3
90 61,8 65,6 69,1 113,1 118,1 124,1

100 70,1 74,2 77,9 124,3 129,6 135,8

14‘

203



204 Anhang: Tafeln

Tafel 4. tvVerteilung: t„„„- und t, «Werte (s. Bilder S. 210)
T; m

Anzahl der Irrtumswahrscheinlichkeit o: für zweiseitige Fragestellung
Freiheits-
grade m 0,10 0,05 0,02 0,01 0,002 0,001

1 6,31 12,7 31,82 63,7 318,3 637,0
2 1,92 4,30 6,97 9,92 22,33 31,6
3 2,35 3,18 4,54 5,84 10,22 12,9
4 2,13 2,78 3,75 4,60 7,17 8,61
5 2,01 2,57 3,37 4,03 5,89 6,86
6 1,94 2,45 3,14 3,71 5,21 5,96
7 1,89 2,36 3,00 3,50 4,79 5,40
8 1,86 2,31 2,90 3,36 4,50 5,04
9 1,83 2,26 2,82 3,25 4,30 4,78

10 1,81 2,23 2,76 3,17 4,14 4,59
11 1,80 2,20 2,72 3,11 4,03 4,44
12 1,78 2,18 2,68 3,05 3,93 4,32
13 1,77 2,16 2,65 3,01 3,85 4,22
14 1,76 2,14 2,62 2,98 3,79 4,14
15 1,75 2,13 2,60 2,95 3,73 4,07
16 1,75 2,12 2,58 2,92 3,69 4,01
17 1,74 2,11 2,57 2,90 3,65 3,96
18 1,73 2,10 2,55 2,88 3,61 3,92
19 1,73 2,09 2,54 2,86 3,58 3,88
20 1,73 2,09 2,53 2,85 3,55 3,85
21 1,72 2,08 2,52 2,83 3,53 3,82
22 1,72 2,07 2,51 2,82 3,51 3,79
23 1,71 2,07 2,50 2,81 3,49 3,77
24 1,71 2,06 2,49 2,80 3,47 3,74
25 1,71 2,06 2,49 2,79 3,45 3,72
26 1,71 2,06 2,48 2,78 3,44 3,71
27 1,71 2,05 2,47 2,77 3,42 3,69
28 1,70 2,05 2,46 2,76 3,40 3,66
29 1,70 2,05 2,46 2,76 3,40 3,66
30 1,70 2,04 2,46 2,75 3,39 3,65

40 1,68 2,02 2,42 2,70 3,31 3,55
60 1,67 2,00 2,39 2,66 3,23 3,46

120 1,66 1,98 2,36 2,62 3,17 3,37
w‘) 1,64 1,96 2,33 2,58 3,09 3,29

0,05 0,025 0,01 0,005 0,001 0,0005

Irrtumswahrscheinlichkeit at fiir einseitige Fragestellung

‘) Für den Freiheitsgrad m—> 0° ist die Normalverteilung Grenzverteilung der t-Verteilung. Spe-
zielle Quantile der Normalverteilung, die i.allg. für statistische Untersuchungen von Interesse sind,
lassen sich in der Zeile m = w ablesen.
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Tafel 5.1. F~Veneilung: f,,_,,,,, m,-Werte für ac = 0,01 (s. Bild 5.210)

m1

"'2
1 2 3 4 5 6 8 12 24 30 40 m

1 4052 4999 5403 5625 5764 5859 5981 6106 6234 6261 6287 6366
2 98,49 99,00 99,17 99,25 99,30 99,33 99,36 99,42 99,46 99,47 99,47 99,50
3 34,12 30,81 29,46 28,71 28,24 27,91 27,49 27,05 26,60 26,50 26,41 26,12
4 21,20 18,00 16,69 15,98 15,52 15,21 14,80 14,37 13,93 13,84 13,74 13,46
5 16,26 13,27 12,06 11,39 10,97 10,67 10,27 9,89 9,47 9,38 9,29 9,02

6 13,74 10,92 9,78 9,15 8,75 8,47 8,10 7,72 7,31 7,23 7,14 6,88
7 12,25 9,55 8,45 7,85 7,46 7,19 6,84 6,47 6,07 5,99 5,91 5,65
8 11,26 8,65 7,59 7,01 6,63 6,37 6,03 5,67 5,28 5,20 5,12 4,86
9 10,56 8,02 6,99 6,42 6,06 5,80 5,47 5,11 4,73 4,65 4,57 4,31

10 10,04 7,56 6,55 5,99 5,64 5,39 5,06 4,71 4,33 4,25 4,17 3,91

11 9,65 7,20 6,22 5,67 5,32 5,07 4,74 4,40 4,02 3,94 3,86 3,60
12 9,33 6,93 5,95 5,41 5,06 4,82 4,50 4,16 3,78 3,70 3,62 3,36
13 9,07 6,70 5,74 5,20 4,86 4,62 4,30 3,96 3,59 3,51 3,43 3,16
14 8,86 6,51 5,56 5,03 4,69 4,46 4,14 3,80 3,43 3,35 3,27 3,00
15 8,68 6,36 5,42 4,89 4,56 4,32 4,00 3,67 3,29 3,21 3,13 2,87

16 8,53 6,23 5,29 4,77 4,44 4,20 3,89 3,55 3,18 3,10 3,02 2,75
17 8,40 6,11 5,18 4,67 4,34 4,10 3,79 3,45 3,08 3,00 2,92 2,65
18 8,28 6,01 5,09 4,58 4,25 4,01 3,71 3,37 3,00 2,92 2,84 2,57
19 8,18 5,93 5,01 4,50 4,17 3,94 3,63 3,30 2,92 2,84 2,76 2,49
20 8,10 5,85 4,94 4,43 4,10 3,87 3,56 3,23 2,86 2,78 2,69 2,42

21 8,02 5,78 4,87 4,37 4,04 3,81 3,51 3,17 2,80 2,72 2,64 2,36
22 7,94 5,72 4,82 4,31 3,99 3,76 3,45 3,12 2,75 2,67 2,58 2,31
23 7,88 5,66 4,76 4,26 3,94 3,71 3,41 3,07 2,70 2,62 2,54 2,26
24 7,82 5,61 4,72 4,22 3,90 3,67 3,36 3,03 2,66 2,58 2,49 2,21
25 7,77 5,57 4,68 4,18 3,86 3,63 3,32 2,99 2,62 2,54 2,45 2,17

26 7,72 5,53 4,64 4,14 3,82 3,59 3,29 2,96 2,58 2,50 2,42 2,13
27 7,68 5,49 4,60 4,11 3,78 3,56 3,26 2,93 2,55 2,47 2,38 2,10
28 7,64 5,45 4,57 4,07 3,75 3,53 3,23 2,90 2,52 2,44 2,35 2,06
29 7,60 5,42 4,54 4,04 3,73 3,50 3,20 2,87 2,49 2,41 2,33 2,03
30 7,56 5,39 4,51 4,02 3,70 3,47 3,17 2,84 2,47 2,38 2,30 2,01

40 7,31 5,18 4,31 3,83 3,51 3,29 2,99 2,66 2,29 2,20 2,11 1,80
60 7,08 4,98 4,13 3,65 3,34 3,12 2,82 2,50 2,12 2,03 1,94 1,60

120 6,85 4,79 3,95 3,48 3,17 2,96 2,66 2,34 1,95 1,86 1,76 1,38
eo 6,64 4,60 3,78 3,32 3,02 2,80 2,51 2,18 1,79 1,70 1,59 1,00
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Tafel 5.2, F-Veneilung: f,,,,,,,,,,,,-Werte für o: = 0,05

ml
m2

1 2 3 4 5 6 8 12 24 30 40 0°

1 161,4 199,5 215,7 224,6 230,2 234,0 238,9 243,9 249,0 250 251 254,3
2 18,51 19,00 19,16 19,25 19,30 19,33 19,37 19,41 19,45 19,46 19,47 19,50
3 10,13 9,55 9,28 9,12 9,01 8,94 8,84 8,74 8,64 8,62 8,60 8,53
4 7,71 6,94 6,59 6,39 6,26 6,16 6,04 5,91 5,77 5,74 5,71 5,63
5 6,61 5,79 5,41 5,19 5,05 4,95 4,82 4,68 4,53 4,50 4,46 4,36

6 5,99 5,14 4,76 4,53 4,39 4,28 4,15 4,00 3,84 3,81 3,77 3,67
7 5,59 4,74 4,35 4,12 3,97 3,87 3,73 3,57 3,41 3,38 3,34 3,23
8 5,32 4,46 4,07 3,84 3,69 3,58 3,44 3,28 3,12 3,08 3,05 2,93
9 5,12 4,26 3,86 3,63 3,48 3,37 3,23 3,07 2,90 2,86 2,82 2,71

10 4,96 4,10 3,71 3,48 3,33 3,22 3,07 2,91 2,74 2,70 2,67 2,54

11 4,84 3,98 3,59 3,36 3,20 3,09 2,95 2,79 2,61 2,57 2,53 2,40
12 4,75 3,88 3,49 3,26 3,11 3,00 2,85 2,69 2,50 2,46 2,42 2,30
13 4,67 3,80 3,41 3,18 3,02 2,92 2,77 2,60 2,42 2,38 2,34 2,21
14 4,60 3,74 3,34 3,11 2,96 2,85 2,70 2,53 2,35 2,31 2,27 2,13
15 4,54 3,68 3,29 3,06 2,90 2,79 2,64 2,48 2,29 2,25 2,21 2,07

16 4,49 3,63 3,24 3,01 2,85 2,74 2,59 2,42 2,24 2,20 2,16 2,01
17 4,45 3,59 3,20 2,96 2,81 2,70 2,55 2,38 2,19 2,15 2,11 1,96
18 4,41 3,55 3,16 2,93 2,77 2,66 2,51 2,34 2,15 2,11 2,07 1,92
19 4,38 3,52 3,13 2,90 2,74 2,63 2,48 2,31 2,11 2,07 2,02 1,88
20 4,35 3,49 3,10 2,87 2,71 2,60 2,45 2,28 2,08 2,04 1,99 1,84

21 4,32 3,47 3,07 2,84 2,68 2,57 2,42 2,25 2,05 2,00 1,96 1,81
22 4,30 3,44 3,05 2,82 2,66 2,55 2,40 2,23 2,03 1,98 1,93 1,78
23 4,28 3,42 3,03 2,80 2,64 2,53 2,38 2,20 2,00 1,96 1,91 1,76
24 4,26 3,40 3,01 2,78 2,62 2,51 2,36 2,18 1,98 1,94 1,89 1,73
25 4,24 3,38 2,99 2,76 2,60 2,49 2,34 2,16 1,96 1,92 1,87 1,71

26 4,22 3,37 2,98 2,74 2,59 2,47 2,32 2,15 1,95 1,90 1,85 1,69
27 4,21 3,35 2,96 2,73 2,57 2,46 2,30 2,13 1,93 1,88 1,84 1,67
28 4,20 3,34 2,95 2,71 2,56 2,44 2,29 2,12 1,91 1,87 1,81 1,65
29 4,18 3,33 2,93 2,70 2,54 2,43 2,28 2,10 1,90 1,85 1,80 1,64
30 4,17 3,32 2,92 2,69 2,53 2,42 2,27 2,09 1,89 1,84 1,79 1,62

40 4,08 3,23 2,84 2,61 2,45 2,34 2,18 2,00 1,79 1,74 1,69 1,51
60 4,00 3,15 2,76 2,52 2,37 2,25 2,10 1,92 1,70 1,63 1,59 1,39

120 3,92 3,07 2,68 2,45 2,29 2,17 2,02 1,83 1,61 1,55 1,46 1,25
0° 3,84 2,99 2,60 2,37 2,21 2,09 1,94 1,75 1,52 1,46 1,35 1,00
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Tafel 6. Einzelwahrscheinlichkeiten der Poisson-Verteilung:
AI:

P(X : k) 2 7J e"

k A

0,1 0,2 0,3 0,4 0,5 0,6

0 0,904 837 0,818 731 0,740818 0,670 320 0,606 531 0,548812
1 0,090484 0,163 746 0,222 245 0,268128 0,303 265 0,329 287
2 0,004 524 0,016 375 0,033 337 0,053 626 0,075 816 0,098 786
3 0,000151 0,001 091 0,003 334 0,007 150 0,012 636 0,019 757
4 0,000 004 0,000 055 0,000250 0,000715 0,001580 0,002 964
5 0,000 002 0‚000015 0,000 057 0,000158 0,000 356
6 0,000 001 0,000 004 0,000013 0,000 035
7 0,000 001 0,000 003

k A

0,7 0,8 0,9 1,0 2,0 3,0

0 0,496 585 0,449 329 0,406 570 0,367 879 0,135 335 0,049 787
1 0,347 610 0,359 463 0,365 913 0,367 879 0,270671 0,149 361
2 0,121663 0,143 785 0,164 661 0,183 940 0,270 671 0,224 042
3 0,028 388 0,038 343 0,049 398 0,061313 0,180 447 0,224 042
4 0,004968 0,007 669 0,011115 0,015 328 0,090 224 0,168 031
5 0,000 695 0,001227 0,002 001 0,003 066 0,036 089 0,100 819
6 0,000 081 0,000164 0,000 300 0,000511 0,012 030 0,050 409
7 0,000 008 0,000019 0,000 039 0,000073 0,003 437 0,021604
8 0,000 002 0,000 004 0,000 009 0,000 859 0,008101
9 0,000 001 0,000 191 0,002 701

10 0,000 038 0,000 810
11 0,000 007 0,000 221
12 0,000 001 0,000 055
13 0,000 013
14 0,000 003
15 0,000 001
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Tafel 6. (Fortsetzung)

k Ä

4,0 5,0 6,0 7,0 8,0 9,0

0 0,018 316 0,006 738 0,002 479 0,000 912 0,000 335 0,000123
1 0,073 263 0,033 690 0,014 873 0,006 383 0,002 684 0,00111]
2 0,146 525 0,084 224 0,044 618 0,022 341 0,010 735 0,004 998
3 0,195 367 0,140 374 0,089 235 0,052129 0,028 626 0,014 994
4 0,195 367 0,175 467 0,133 853 0,091126 0,057 252 0,033 737
5 0,156 293 0,175 467 0‚160623 0,127 717 0,091604 0,060 727

6 0,104194 0,146 223 0‚160623 0,149 003 0,122138 0,091090
7 0,059 540 0,104 445 0,137 677 0,149 003 0,139 587 0,117116
8 0,029770 0,065 278 0,103258 0,130 377 0,139587 0,131756
9 0,013 231 0,036 266 0,068 838 0,101405 0,124 077 0,131756

10 0,005 292 0,018133 0,041303 0,070 983 0,099 262 0,118580

11 0,001925 0,008 242 0,022 529 0,045 171 0,072 190 0,097 020
12 0,000 642 0,003 434 0,011262 0,026 350 0,048127 0,072 765
13 0,000197 0,001 321 0,005199 0,014188 0,029616 0,050 376
14 0,000 056 0,000 472 0,002 228 0,007 094 0,016 924 0,032 384
15 0,000 015 0,000 157 0,000 891 0,003 311 0,009 026 0,01943]

16 0,000 004 0,000 090 0,000334 0,001448 0,004 513 0,010 930
17 0,000 001 0,000014 0,000118 0,000 596 0,002124 0,005 786
18 0,000 004 0,000 039 0,000 232 0,000 944 0,002 893
19 0,000 001 0,000012 0,000 085 0,000 397 0,001370
20 0,000 004 0,000 030 0,000159 0,000 617

21 0,000 001 0,000010 0,000 061 _ 0,000264
22 0,000 003 0,000 022 0,000108
23 0,000 001 0,000 008 0,000 042
24 0,000 003 0,000 016
25 0,000 001 0,000 006

26 0,000 002
27 0,000 001
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Tafel 7. Zufallszahlen

4357
5339
6583
6564
4811

6931
8755
6742
6655
8514

8135
4414
3727
5434
7195

2705
1547
3424
8969
5225

6432
3085
0264
8710
5736

7529
5133
3170
3024
4398

0082
4351
3268
4391
7328

3835
8731
2995
5597
3081

7406
5969
4765
3219
6906

7993
2549
3672
2217
3162

4146
7325
8433
3526
1933

7236
3390
2260
3030
4806

5004
6855
7959
7342
8828

8245
8981
1435
7551
7820

9861
5903
1246
2419
9001

1339
7995
9915
0680
3121

5419
6516
0086
8487
0705

2938
4980
7868
9028
5876

4439
9442
9647
2532
8859

3141
3737
7033
0293
9968

8353

6862
0717
2171
3763

1230
6120
3443
9014
4124

7299
0127
5056
0314
9869

6251
4972
1354
3695
8898

1516
8319
3687
6065
3132

4802
8030
6960
1127
7749

7659
6814
7580
4884
0652

2671
8674
0683
5660
8150

5683
7696
4364
7577
5044

0103
7686
4844
3978
6369

9952
7584
0606
3809
6265

0441
7825
0190
6032
9286

8981
5489
5983
7252
2785

9611
1280
7631
4915
2478

2849
2744
9759
0036
4521

5751
7408
2621
8088
8191

2061
5898
1337
1488
9424

4691
4506
3768
5006
1360

6877
7510
1037
2815
8826

4528
0723
0149
5933
1258

8004
8634
9284
3428
8931

4013
9005
9278
7574
0449

4689
5157
8021
0067
3186

1077
4286
7260
7921
3342

2539
0814
6995
9650
9973

3785
2186
6718
0200
2087

2506
3973
3884
2249
7082

0559
7262
0625
8325
1868

2920
1620
4975
8696
6218

7988
4505
7412
1032
0416

[entnommen dem Tafelwerk Von Owen]

7945
3485
2719
5523
0649

1352
7012
1816
1685
5051

1950
6386
0204
2800
8375

0641
5678
7361
2913
9200

2208
7318
6565
2027
5070

7125
0725
4059
5868
8270

7573
8103
5679
6661
8579

8382
8127
9887
9677
9265

9588
4973
1998
9248
3206

4635
6841
6370
5192
4326

1530
2278
1888
9078
8085

6563
1643
7697
5258
4772

2271
7492
7616
6292
7414

0195
0338
0151
3840
8836

4595
8619
3949
6042
8078

4922
5554
9919
0084
5233

1157
3616
4830
5774
5647

2825
2022
7060
2169
3277

3002
1911
1359
9410
9034

8478
1379
1884
1732
7840

5207
5832
2889
0648
6177

1499
9934
7933
3100
4651

2201
3736
4325
4706
7232

7024
8096
8903
9031
7269

8616
7614
1012
5467
4150

8877
5664
1007
6362
3980

3979
2049
4509
7205
5571

4928
2178
0514
3196
8465

2869
1288
1346
9282
0843

9094
6460
0717
2137
6525

4730
0612
0285
7768
4450

7332
4044
0067
5358
0038

8344
7164
7454
3454
0401

6202
8284
9056
9747
2992

6170
3265
0179
1839
2276

9530
6791
6469
6808
6774

2309
7843
9587
2717
9667

5379
7463
0034
0357
7502

3746
6160
6125
6572
9832

9077
1869
5740
9357
2608

1967

8118
2765
3326
2139

3068
7022
2906
1929
1580

3852
0498
5039
6881
2483

3899
7010
8684
9735
6284

5865
5999
0059
5577
5059

6499
9677
5410
3727
8522

0811
0568
2184
0730
5855

8635
4842
8600
7811
6458

3690
9797
5078
3940
2703

5306
5700
8477
5941
5255
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Bild zu Tafel 1 Bild zu Tafel 2
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