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1. Einleitung

In zunehmendem MaBe werden in den letzten Jahren in vielen Bereichen des gesell-
schaftlichen Lebens mathematische Verfahren angewandt, die in das Gebiet der Wahr-
scheinlichkeitsrechnung und mathematischen Statistik — gemeinsam mit ihren Anwen-
dungsgebieten werden sie heute auch unter dem Oberbegriff Stochastik zusammenge-
faBt — gehoren. Die Ursache dafiir ist nicht zuletzt in der raschen Entwicklung der
Naturwissenschaften, der Technik und der Gesellschaftswissenschaften zu suchen. Jedes
dieser Wissenschaftsgebiete stellt der Wahrscheinlichkeitsrechnung und mathematischen
Statistik stindig neue, zahlreichere und umfangreichere Aufgaben, die entweder mit den
schon vorhandenen Methoden geldst werden konnen oder AnlaB zu neuen theoretischen
Untersuchungen geben. Begiinstigt wird diese Tendenz auch durch die Entwicklung der
EDV; denn erst durch dieses Hilfsmittel wurde es moglich, viele Probleme bis zum nume-
rischen Resultat zu bearbeiten.

Die Bediirfnisse der Praxis sind schon immer wesentliche Triebkrifte der Entwicklung
der Wahrscheinlichkeitsrechnung und mathematischen Statistik gewesen.

Die Anfinge der Entwicklung der Wahrscheinlichkeitsrechnung, die im 17. und
18.Jahrhundert liegen, entstanden aus der Bearbeitung von Aufgaben, die im Zusammen-
hang mit Gliicksspielen gestellt wurden. Die Bearbeitung dieser Aufgaben fiihrte zur Kld-
rung wichtiger Grundbegriffe der Wahrscheinlichkeitsrechnung und zu Untersuchungen
iber eine Erweiterung der Anwendungsgebiete der erzielten Ergebnisse. Es wurde der Be-
griff des zufdlligen Ereignisses geprégt und die klassische Definition der Wahrscheinlich-
keit gegeben. Der weitere Ausbau der Wahrscheinlichkeitsrechnung im 19. Jahrhundert
ist eng verbunden mit der Entwicklung der Naturwissenschaften. In dieser Zeit bildete
sich der Begriff der ZufallsgroBe heraus. Eine der bekanntesten Verteilungen einer Zu-
fallsgroBe, die Normalverteilung, leitete C. F. GauB3 (1777-1855) im Zusammenhang mit
seiner Theorie der Beobachtungsfehler her. Erst Anfang der dreiBiger Jahre dieses Jahr-
hunderts gelang es dann A. N. Kolmogorow (sowjetischer Mathematiker, geb. 1903), die
Wahrscheinlichkeitsrechnung axiomatisch zu begriinden und dadurch einen entscheiden-
den Schritt im Hinblick auf die mathematischen Grundlagen der Wahrscheinlichkeits-
rechnung zu geben. Auch bei der Weiterentwicklung der Wahrscheinlichkeitsrechnung
und ihrer Anwendung in den letzten Jahrzehnten haben sowjetische Mathematiker einen
groBen Beitrag geliefert. Es seien B. W. Gnedenko (geb. 1912), J. K. Beljajew (geb. 1932)
und J.J. Gichman (geb. 1918) genannt.

Die mathematische Statistik entwickelte sich im Ergebnis von Fragestellungen hin-
sichtlich der Auswertung von Versuchsergebnissen auf den Verfahren der beschreibenden
Statistik aufbauend unter Verwendung von Methoden der Wahrscheinlichkeitsrech-
nung.

Die Begriindung fiir den Einsatz von Methoden der Wahrscheinlichkeitsrechnung und
mathematischen Statistik ergibt sich aus dem Charakter der untersuchten Erscheinungen.
Diese sind zwar unter wohldefinierten Bedingungen mehrfach reproduzierbar, werden
aber andererseits durch eine Vielzahl weiterer Einfliisse bestimmt, die entweder noch
nicht bekannt oder nicht erfaBbar sind. Solche Einfliisse werden als Zufallseinfliisse be-
zeichnet. Die erzielten Ergebnisse variieren in gewissen Grenzen. So wird z.B. die Quali-
tit von Erzeugnissen auch unter moglichst stabilen Produktionsbedingungen und bei
weitgehend homogenem Rohstoff trotzdem in gewissen Grenzen variieren. Diese Schwan-
kung ist auf das Wirken von Zufallseinflissen zuriickzufiihren.

Die Voraussetzungen fiir den Einsatz stochastischer Methoden sind bei Massenerschei-
nungen, wie sie z.B. in der modernen Industrieproduktion auftreten, gegeben. Unter Mas-
senerscheinungen werden Vorgéinge verstanden, die unter dem Einwirken von zufdlligen
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Einfliissen in Gesamtheiten stattfinden, die aus einer groBen Anzahl von gleichberechtig-
ten Elementen bestehen. Aufgabe der Wahrscheinlichkeitsrechnung ist es, GesetzmaBig-
keiten derartiger Massenerscheinungen zu untersuchen. Die Wahrscheinlichkeitsrech-
nung ist zugleich das theoretische Fundament der mathematischen Statistik. Diese liefert
Verfahren, um an Hand von Stichproben, d. h. von konkretem Zahlenmaterial, Auf-
schliisse iiber betrachtete ZufallsgroBen zu erhalten.

Aussagen, die mit Methoden der Wahrscheinlichkeitsrechnung und mathematischen
Statistik gewonnen wurden, driicken objektive Eigenschaften der untersuchten Erschei-
nungen aus. Durch sie werden objektiv existierende Beziehungen zwischen Erscheinun-
gen der Wirklichkeit widergespiegelt. Mit anderen Worten: Die Giiltigkeit des Kausalprin-
zips erstreckt sich auch auf zufillige Erscheinungen. Dabei kénnen wahrscheinlichkeits-
theoretische Aussagen die Vorstufe zur Aufdeckung von Kausalzusammenhingen sein.
Es wird so oft moglich, die Ursachen von Massenerscheinungen Schritt fiir Schritt nach-
zuweisen. Andererseits ist es hdufig aus prinzipiellen Griinden sinnvoll — das ist z.B. in
der modernen Physik der Fall — ausschlieBlich wahrscheinlichkeitstheoretische Aussagen
zu treffen und mit ihrer Hilfe die jeweiligen Erscheinungen zu erkennen.

Es ist das Ziel des vorliegenden Buches, dem Anwender der Mathematik, insbesondere
dem Ingenieur, Naturwissenschaftler, Okonomen und Landwirt, eine Einfiihrung in die
Grundbegriffe der Wahrscheinlichkeitsrechnung und mathematischen Statistik zu geben.
Es soll ihm dadurch ermdglicht werden,

- einfache Fragestellungen der Praxis, zu deren Beantwortung die Methoden der Wahr-
scheinlichkeitsrechnung und mathematischen Statistik erforderlich sind, selbstdndig
bearbeiten zu konnen,

— seine Kenntnisse auf dem Gebiet der Wahrscheinlichkeitsrechnung und mathemati-
schen Statistik unter Verwendung von anderen Lehrbiichern und Monographien erwei-
tern und vertiefen zu konnen,

— sich notwendige Voraussetzungen zur sich stindig erweiternden interdisziplindren Zu-
sammenarbeit zu schaffen,

— eine Grundlage zum Verstindnis wichtiger Anwendungsgebiete kennenzulernen.

Beweise werden nur dann gegeben, wenn sie der Vertiefung des Verstindnisses dienen.
Durch Beispiele werden wesentliche Begriffe und Aussagen erldutert.
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In diesem Kapitel wollen wir uns mit Grundbegriffen der Wahrscheinlichkeitsrechnung
beschiftigen.

Mit den Begriffen ,zufdlliges Ereignis“ und , Wahrscheinlichkeit eines zufilligen Ereignisses“
werden wir uns in den Abschnitten 2.1. und 2.2. vertraut machen.

Neben ihrer Erkldrung wollen wir vor allem darstellen, wie die gesuchte Wahrschein-
lichkeit berechnet wird. Dabei miissen wir erst entscheiden, ob Methoden der Wahr-
scheinlichkeitsrechnung zur Untersuchung des Problems aus der Praxis eingesetzt werden
miissen; bei Bejahung der Frage kommen wir von der Modellierung des entsprechenden
Versuchs, der Ermittlung und Verkniipfung der erforderlichen zufilligen Ereignisse zur
Berechnung der gesuchten Wahrscheinlichkeit. Um wichtige Seiten eines solchen mathe-
matischen Modells besser erkennen und aufdecken zu konnen, werden gern , Hilfsmodelle“
eingesetzt. Beispiele von Modellen dieser Art sind das ,,Werfen eines Wiirfels“, das ,Wer-
fen einer Miinze“, das ,Ziehen einer Kugel aus einer Urne, in der Kugeln verschiedener
Farbe in einem bestimmten Verhiltnis enthalten sind“. Nicht zuletzt weil der Leser von
diesen einfachen Modellen eine Vorstellung hat und die entsprechenden Versuche ohne
groBe Miihe selbst durchfithren kann, wollen wir die neuen Begriffe dieses Abschnitts —
soweit moglich auch anderer Abschnitte — mit ihrer Hilfe erldutern.

Der Abschnitt 2.3. dient dann der Erkldrung des Begriffs , Zufallsgrifie“ und der Darstel-
lung von Moglichkeiten zur Charakterisierung von ZufallsgroBen durch Wahrscheinlich-
keitsverteilungen und Momente. AuBerdem wird auf spezielle Verteilungen eingegangen,
die fiir die Bearbeitung von Problemen der Praxis bedeutsam sind.

2.1. Zufillige Ereignisse

2.1.1. Zufillige Versuche

Zum besseren Verstdndnis wollen wir vorerst das Wesen des Begriffs ,zufilliger Ver-
such“ an einigen Beispielen, die in der umstehenden Ubersicht zusammengestellt sind,
erldutern.

Bei all diesen Beispielen ist das Ergebnis des jeweiligen Versuchs vor dessen Durchfiih-
rung unbekannt. Da von den Bedingungen, unter denen dieser Versuch ablduft, nur ein
gewisser Teil bekannt ist — wir wollen ihn als festen Komplex von Bedingungen bezeich-
nen —, kann das Ergebnis nicht mit Sicherheit vorausgesagt werden. Demzufolge konnen
bei einer mehrmaligen Wiederholung des Versuchs, d.h. bei einer mehrmaligen Realisie-
rung des festen Komplexes von Bedingungen, verschiedene Ergebnisse auftreten.

Definition 2.1: Ein Versuch, der unter Beibehaltung eines festen Komplexes von Bedingungen
beliebig oft wiederholbar ist und dessen Ergebnis im Bereich gewisser Moglichkeiten ungewif3 ist,
wird als zufilliger Versuch bezeichnet.

Wir wollen nochmals festhalten: 1. Durch den festen Komplex von Bedingungen wer-
den nicht alle Einfliisse erfaBt — hdufig ist das gar nicht moglich oder nicht erforder-
lich -, die auf das Ergebnis des Versuchs Auswirkungen haben. Daraus resultieren dann
aber auch die verschiedenen Versuchsergebnisse. Uberlegen Sie selbst, welche erfaBbaren
oder nichterfaBbaren Einfliisse u.a. auf das Ergebnis der in den Beispielen charakterisier-
ten Versuche Auswirkungen haben.

2. Aus der Forderung der Wiederholbarkeit der Versuche ergibt sich erst die Moglich-
keit zur Untersuchung der GesetzmiBigkeiten von zufdlligen Erscheinungen.

D.2.1
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Beispiel | zufdlliger Versuch mogliche Ergebnisse
2.1 Werfen eines Wiirfels Augenzahl k (k=1,...,6)
22 Werfen einer Miinze ,Zahl“; ;Wappen“
2.3 dreimaliges Werfen einer Miinze WZZZ“ ZZW" ...,
. “ SWWW*
(wenn mit Z bzw. W der Wurf von
»Zahl“ bzw. ;Wappen“ angegeben
wird)
24 Erfassung der Anzahl der Telephonan- Anzahl k
rufe, die wihrend einer Zeiteinheit auf (k=0,1,2,...)
einer bestimmten Leitung eintreffen
2.5 Ermittlung der Laufzeit eines Typs von Laufzeit ¢
PKW-Reifen unter vorgegebenen Bedin- | (7€ (0, «))
gungen
2.6 Erfassung der Anzahl der AusschuBteile, | Anzahl k
die auf einer bestimmten Maschine wih-| (k=0,1,2,...)
rend einer Schicht produziert werden
2.7 Ermittlung der CO-Konzentration in Ab-| Konzentration ¢ [%]
gasen einer industriellen Anlage zu (0= ¢ =100)
einem bestimmten Zeitpunkt

2.1.2. Zufillige Ereignisse

Definition 2.2: Ein Ergebnis eines zufdlligen Versuchs wird als zufilliges Ereignis bezeich-
net.!)

Ein zufilliges Ereignis ist also gekennzeichnet durch die Mdoglichkeit — nicht die Not-
wendigkeit! — seines Eintritts im Ergebnis eines gewissen zufdlligen Versuchs.

Zufillige Ereignisse werden wir in der Regel mit groBen lateinischen Buchstaben (z.B.
A, B, C, ...) kennzeichnen, die bei Erfordernis noch mit einem Index versehen werden. Zu
ihrer Veranschaulichung werden wir Punktmengen z. B. auf der Zahlengeraden oder in
der Zahlenebene heranziehen, wobei die konkrete Bedeutung des jeweiligen zufdlligen
Ereignisses unberiicksichtigt bleibt. SchlieBlich werden wir im folgenden an Stelle von
einem ,zufilligen Ereignis“ kurz von einem ,Ereignis“ sprechen, wenn keine MiBver-
stindnisse auftreten konnen.

Entsprechend der Aufgabenstellung werden die erforderlichen Ereignisse zusammenge-
stellt. So konnten z.B. bei den obigen Beispielen folgende Ereignisse von Interesse sein:

Beispiel 2.1:
Ay ... ,Die Augenzahl k wurde geworfen“ (k =1, 2, ..., 6);
B ... ,Eine gerade Augenzahl wurde geworfen;
C ... ,Es wurde mindestens die Augenzahl 3 geworfen“.

1) Vgl. Abschnitt 2.1.5.
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Beispiel 2.2:
A ... ,Zahl liegt oben*;
B ... ,Wappen liegt oben“.

Beispiel 2.4:
Ay ... ,In der Zeiteinheit erfolgten k Anrufe“ (k =0, 1, ...);
B ... ,In der Zeiteinheit erfolgten nicht mehr als 3 Anrufe®;
C ... ,In der Zeiteinheit erfolgten mindestens 5 Anrufe“.

Beispiel 2.5:

A, ... ,Die Laufzeit eines PKW-Reifens ist gleich t<;

B, ... ,Die Laufzeit eines PKW-Reifens ist mindestens gleich ¢*.
Beispiel 2.6:

Ay ... ,In der Schicht traten k AusschuBiteile auf“ (k =0, 1, ...);
B, ... ,In der Schicht traten nicht mehr als s AusschuBteile auf* (s =1, 2, ...).

Beispiel 2.7:
A, ... ,Die Konzentration x wurde gemessen;
B, ... ,Die gemessene Konzentration ist kleiner als der maximal zuldssige Wert
5
C, , --- »Die gemessene Konzentration ist groBer oder gleich x, und kleiner als
x“.

Wie wir spiter (Abschnitt 2.1.5.) sehen werden, kann ein Ereignis immer als Menge
aufgefaBt werden. Dementsprechend konnen wir neben der oben angewandten verbalen
Darstellung zur Beschreibung der Ereignisse auch die Symbolik der Mengenlehre heran-
ziehen. Dazu einige Beispiele:

Beispiel 2.1:
A ={k}, k=1,2,...,6;
B =1{2,4,6};
C ={3,4,5,6}.
Beispiel 2.7:
A, ={x}

B, ={x[0=x<y}=[0,y);
Cox = {x %= x <X} =[x1, X))

AbschlieBend wollen wir zwei Ereignisse betrachten, die als Grenzfille von zufilligen
Ereignissen aufgefaBt werden konnen. Es sind dies das sichere und das unmogliche
Ereignis.

Definition 2.3: Ein Ereignis, das im Ergebnis jeder Wiederholung eines zufilligen Versuchs ein- D.2.3
tritt, wird als sicheres Ereignis bezeichnet.

Ein Ereignis, das im Ergebnis jeder Wiederholung eines zufilligen Versuchs niemals eintritt,
wird als unmogliches Ereignis bezeichnet.

Das sichere Ereignis kennzeichnen wir mit dem Symbol Q2 und das unmdgliche mit
dem Symbol 0.

Beispiel 2.8: Beim Wiirfeln mit einem Wiirfel ist z. B.

— das Werfen irgendeiner der moglichen Augenzahlen ein sicheres Ereignis:
Q... ,Werfen einer der 6 moglichen Augenzahlen®.
oder
02=1{1,2,3,4,5, 6}
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(dieses Ereignis tritt also bei der Realisierung jedes der Ereignisse 4, (k =1, ..., 6) im
Beispiel 2.1 ein);
— das Werfen der Augenzahl 8 ein unmogliches Ereignis:
g ... ,Werfen der Augenzahl 8
— das gleichzeitige Werfen zweier Augenzahlen ein unmégliches Ereignis:
@ ... ,Gleichzeitiges Werfen zweier Augenzahlen®.

Beispiel 2.9: Beim Ermitteln der Anzahl von AusschuBteilen in einer Serie von n Erzeug-
nissen ist es ein sicheres Ereignis, hochstens n fehlerhafte Teile zu zdhlen. Mehr als
n AusschuBteile festzustellen ist dagegen ein unmogliches Ereignis.

2.1.3. Relationen zwischen zufilligen Ereignissen

Dieser Abschnitt wird uns mit wichtigen Relationen zwischen zufélligen Ereignissen
vertraut machen. Fiir das Verstindnis der Wahrscheinlichkeitsrechnung ist es wichtig,
daB sich der Leser mit den neuen Begriffen und Operationen eingehend auseinandersetzt.

Definition 2.4: Tritt mit dem Ereignis A stets auch das Ereignis B ein, dann zieht das Ereig-
nis A das Ereignis B nach sich. Schreibweise: A S B (Bild 2.1).

£ Q
8
Bild 2.1. Ereignis A zieht Ereignis B Bild 2.2. Summe der Ereignisse
nach sich: AS B A, B:AUB

Im Beispiel 2.1 zieht z. B. das Ereignis 4, das Ereignis B nach sich: 4, S B.

Definition 2.5: Zieht das Ereignis A das Ereignis B und das Ereignis B das Ereignis A nach
sich, dann werden die beiden Ereignisse als gleich bezeichnet.
Wir konnen also schreiben:

A = B genau dann, wenn AS B und BS A gilt.

Definition 2.6: Tritt ein Ereignis C genau dann ein, wenn mindestens eines der beiden Ereignisse
A oder B eintritt, dann wird das Ereignis C als die Summe der Ereignisse 4, B bezeichnet.
Schreibweise: C = A u B (Bild 2.2).

Beispiel 2.8a: Beim Wiirfeln mit einem Wiirfel betrachten wir die Ereignisse:

A ... ,Es wird entweder die Augenzahl 2 oder die Augenzahl 4 geworfen®;

B ... ,Es wird entweder die Augenzahl 2 oder die Augenzahl 6 geworfen®;

C ... ,Es wird eine gerade Augenzahl geworfen®,
die unter Verwendung der Schreibweise der Mengenlehre auch so festgehalten werden
konnen:

A=1{2,4}; B={2,6}; C={2,4,6}.
Dann gilt:

C=AuUB.
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Die Definition der Summe von zwei Ereignissen konnen wir auf mehr als zwei Ereig-
nisse erweitern:

Definition 2.6": Tritt ein Ereignis C bzw. D genau dann ein, wenn mindestens eines der endlich D.2.6’
vielen Ereignisse A; (i =1, 2, ..., n) bzw. abzihlbar unendlich vielen Ereignisse B; (i=1,2, ...)

eintritt, dann heif3t das Ereignis C bzw. D Summe der Ereignisse A; (i=1,2, ..., n) bzw. B;
(i=1,2,..).

n ©
Schreibweise: C=|_J 4, bzw. D=J B,
i=1 i=1
Uberzeugen Sie sich selbst, daB fiir beliebige Ereignisse 4, B und C folgende Relatio-

nen gelten:

AUA=4; AvQ=Q;, Aul=A4;

AUuB=BUA;

AuBulC)=(AuB)uC.
Definition 2.7: Tritt ein Ereignis C genau dann ein, wenn sowohl das Ereignis A als auch das D.2.7
Ereignis B eintritt, dann wird das Ereignis C als das Produkt der Ereignisse A, B bezeichnet.

Schreibweise: C = A n B (Bild 2.3).

Beispiel 2.10: Beim Wiirfeln mit 2 unterscheidbaren Wiirfeln werden die folgenden Ereig-
nisse betrachtet:

A ... Mit dem einen Wiirfel wird die Augenzahl 6 geworfen®;
B ... ,Mit dem anderen Wiirfel wird die Augenzahl 6 geworfen*;
C ... ,Mit beiden Wiirfeln wird die Augenzahl 6 geworfen“.

Dann gilt: C=A4 n B.

0 2
A 8
Bild 2.3. Produkt der Ereignisse Bild 2.4. Die Ereignisse A und B
A, B:AnB schlieBen einander aus: A N B=9

Die Definition des Produktes von zwei Ereignissen konnen wir ebenfalls auf mehr als
zwei Ereignisse erweitern:

Definition 2.7’: Tritt ein Ereignis C bzw. D genau dann ein, wenn alle der endlich vielen Ereig- 1D.2.7’
nisse A; (i=1,2, ..., n) bzw. abzdhlbar unendlich vielen Ereignisse B; (i=1, 2, ...) eintreten,

dann heifit das Ereignis C bzw. D Produkt der Ereignisse A; (i=1,2,...,n) bzw. B;
(i=1,2,..).

n -
Schreibweise: C= (| 4; bzw. D={)B.
i=1 i=1

Uberzeugen Sie sich auch hier selbst, daB fiir beliebige Ereignisse 4, B und C folgende
Relationen gelten:
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ANA=4; AnQ=A4; An0=0;
AnB=BnA4;
An(BNnC)=ANnB)nC;
An(BuC)=(ANnB)uAnC();
AuBnC)=(AUB)n(4u0).

D.2.8 Definition 2.8: Zwei Ereignisse A und B werden als einander ausschlieBend (auch: als un-
vereinbar) bezeichnet, wenn ihr gleichzeitiges Eintreten unmaglich ist.
In Formeln: A n B =9 (Bild 2.4).

Beispiel 2.11: Beim Wiirfeln mit einem Wiirfel werden folgende Ereignisse betrachtet:
A4={2}, B={2,4,6}, C={L,3,5}.

Sowohl die Ereignisse 4 und C als auch die Ereignisse B und C sind unvereinbar:

AnC=0; BnC=40.
Demgegeniiber sind die Ereignisse 4 und B vereinbar:

AnB=A4.

D.2.9 Definition 2.9: Tritt ein Ereignis C genau dann ein, wenn ein Ereignis A, aber nicht gleichzeitig
ein Ereignis B eintritt, dann wird es als die Differenz von A zu B bezeichnet (Bild 2.5).

Schreibweise: C= A\ B.
Uberpriifen Sie, daB 4 = 4\B, falls AnB=0 gilt.

D.2.10 Definition 2.10: Das Ereignis_.()\A wird als das zu dem Ereignis A komplementare (auch:
entgegengesetzte) Ereignis A4 bezeichnet.

Schreibweise: A__= 0\ 4 (Bild 2.6).
Das Ereignis A tritt also genau dann ein, wenn das Ereignis 4 nicht eintritt.

2
2 Z / :

Bild 2.5. Differenz der Ereignisse Bild 2.6. Ereignis 4 komplementir
A, B: A\B zu Ereignis 4: 4 = Q\4

Uberpriifen Sie die Beziehung
A\B=A4n B!

Beispiel 2.12: Aus einer Menge von Erzeugnissen wird ein Element entnommen. Dieses
kann entweder einwandfrei oder mit Fehlern behaftet sein. Die beiden Ereignisse

A ... ,Das Erzeugnis ist einwandfrei,
B ... ,Das Erzeugnis ist fehlerhaft“

sind zueinander entgegengesetzt. Es gilt A n B=0 und A U B=Q.
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Definition 2.11: Die Ereignisse A; (i =1, ..., n) bilden ein vollstindiges System von Ereig- D.2.11
nissen, wenn im Ergebnis eines Versuchs genau eines von ihnen eintreten muf3.")

Diese Ereignisse erfiillen also folgende Relationen:
n
UA=9Q; A4n4=0; i+j, ij=1,..,n.
i=1

Beispiel 2.13: Wir betrachten beim Wiirfeln mit einem Wiirfel die Ereignisse
Ay ... ,Augenzahl k wird geworfen“ (k=1, ..., 6).

Diese bilden ein vollstindiges System von Ereignissen; denn es gilt:

C-

Q=) 4;... ,Eine der Augenzahlen wird geworfen;

i=1
0 =A;n4;, i*j, ij=1,...,6... ,Gleichzeitiges Werfen zweier Augen-
zahlen®“.

Beispiel 2.14: In einer Betriebsabteilung arbeiten 3 gleiche Maschinen. Zu einem belie-
bigen Zeitpunkt ¢ wird ermittelt, wie viele dieser Maschinen in Betrieb sind. Von Inter-
esse sind die Ereignisse

A; ... ,Zum Zeitpunkt ¢ arbeiten genau i Maschinen®, i =0, 1, 2, 3.

Die Ereignisse 4; bilden ein vollstdndiges System von Ereignissen.
Durch die Gegeniiberstellung entsprechender Eigenschaften der Summe und des Pro-
dukts von beliebige_n I_Ereignissen A, B, C, ... und unter Hinzunahme der entgegengesetz-

ten Ereignisse 4, B, C, ... wollen wir uns abschlieBend nochmals einen Uberblick ver-
schaffen:

Summe | Produkt
AuvA=4 AnA=4 2.1 22
AUB=BUA AnB=Bn4A 2.3) 2.4)
AuBuC)=(AuB)uC An(BNnC)=(AnB)nC (2.5) (2.6)
AUBNC)=(AUB) N (AUC) | AN(BUC)=(ANB)UUNC) @.7) 2.8)
Aud=Q AnAd=0 2.9) (2.10)
Aub=4 AnQ=4 @.11) (2.12)
AuQ=Q AnB=0 (2.13) (2.14)

AuBerdem wollen wir einige weitere Beziehungen angeben, die fiir das Rechnen mit Er-
eignissen sehr zweckmiBig sind:
1. Sind A4,, 4,, ... zufillige Ereignisse, dann gelten die de Morganschen?) Formeln:

I
Cs

4; 4, (2.15)

[
[l

8

S
Il
e
=

(2.16)

[
[

1) Der Begriff des vollstindigen Systems von Ereignissen ist auf abzihlbar unendlich viele Ereig-
nisse tibertragbar.
2) Augustus de Morgan (1806—1873), englischer Mathematiker.
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2. Fiir die Ereignisse 4, B gilt:
A\B=ANB. (2.17)

Veranschaulichen Sie sich diese Formeln!

2.14. Das Ereignisfeld

Beim Miinzenwurf werden wir uns nicht nur fiir die im Beispiel 2.2 genannten Ereig-
nisse

A ... ,Zahl liegt oben“,
B ... ;\Wappen liegt oben*,

interessieren, sondern auch die Ereignisse

Q... ,Entweder Zahl oder Wappen liegt oben®,
@ ... ,Weder Zahl noch Wappen liegt oben“

hinzufiigen. Wenden wir nun auf die Menge dieser vier Ereignisse die im Abschnitt 2.1.3.
angegebenen Relationen an, so werden wir erkennen, daB wir dabei immer wieder eines
dieser vier Ereignisse erhalten, z.B.

AUB=Q, QUA=Q, AnB=40.
Diese kurze Betrachtung erlaubt es uns, den Begriff ,Ereignisfeld“ einzufithren.

Definition 2.12: Enthdlt ein System von Ereignissen eines zufilligen Versuchs alle in Verbin-
dung mit diesem Versuch interessierenden Ereignisse und fiihrt die Anwendung der im Abschnitt
2.1.3. angegebenen Relationen auf diese Ereignisse immer wieder auf ein zufdlliges Ereignis die-
ses Systems, dann wird dieses System Ereignisfeld genannt und mit € bezeichnet. (Vgl. Ab-
schnitt 2.1.5.)

Das System der beim oben betrachteten Miinzenwurf interessierenden Ereignisse
(4, B, , 0) bildet offensichtlich ein Ereignisfeld.

Beispiel 2.15: Interessieren wir uns beim Wiirfeln mit einem Wiirfel nur fiir die Ereignisse

B ... ,Wiirfeln einer geraden Augenzahl®,
A ... ,Wiirfeln einer ungeraden Augenzahl,

dann bilden diese beiden Ereignisse unter Hinzunahme des sicheren und des unmog-
lichen Ereignisses

Q... ,Wiirfeln einer der 6 moglichen Augenzahlen®,
9 ... ,Wiirfeln keiner der 6 moglichen Augenzahlen“

ein Ereignisfeld €. Uberpriifen Sie diese Aussage an Hand der in Abschnitt 2.1.3. angege-
benen Relationen.

Im folgenden wollen wir nun wichtige Eigenschaften eines Ereignisfeldes zusammen-
stellen:

1. Das Ereignisfeld € enthilt als Element das sichere Ereignis  und das unmogliche
Ereignis 0: Q €€, fe€.

2. Sind die Ereignisse 4 und B Elemente des Ereignisfeldes €, dann sind es auch de-
ren Summe A U B und deren Produkt 4 n B:

A€€, Be€ — AuBe€G, AnBeC.

3. Mit dem Ereignis 4 ist auch dessen Komplement 4 Element des Ereignisfeldes €:
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AecC—A4eG.

4. Mit den Ereignissen 4, (i=1, 2, ...) sind auch deren Summe und Produkt Elemente
des Ereignisfeldes €:

4€€ (i=1,2,..) = J4e€, (4ec6.
i=1 i=1
Zur Darstellung der Ereignisse eines Ereignisfeldes € hat sich die Einfithrung der Be-
griffe ,atomares Ereignis“ und ,zusammengesetztes Ereignis“ bewdhrt.

Definition 2.13: Ein Ereignis A € € wird als atomares Ereignis bezeichnet, wenn kein Ereig- 1D.2.13
nis B € € mit den Eigenschaften B + @ und B + A existiert, so da das Ereignis B das Ereignis A
nach sich zieht.

Es ist offensichtlich, daB ein Ereignis 4 € € genau dann atomar ist, wenn es sich nicht
als Summe von Ereignissen des Ereignisfeldes € darstellen 148t, die vom unmoglichen Er-
eignis @ und vom Ereignis A verschieden sind.

Diese Erlduterung fiihrt uns sofort zum Begriff ,zusammengesetztes Ereignis“:

Definition 2.14: Ein Ereignis A € € wird als zusammengesetztes Ereignis bezeichnet, wenn D.2.14
es sich als Summe von atomaren Ereignissen des betrachteten Ereignisfeldes darstellen ldft.

Beispiel 2.16: Interessieren wir uns beim Wiirfeln mit einem Wiirfel im Gegensatz zum
Beispiel 2.15 fiir alle moglichen Versuchsergebnisse, so sind die Ereignisse

A; ... ,Werfen der Augenzahl i“ (i=1,2,...,6),
4;={i},

atomare Ereignisse des in diesem Fall betrachteten Ereignisfeldes. Demgegeniiber ist z.B.
das Ereignis

B ... ,Werfen einer geraden Augenzahl®,
B=1{2,4,6},

in diesem Ereignisfeld ein zusammengesetztes Ereignis; denn: B = 4, U 4, U 4¢. Da-
gegen ist in dem im Beispiel 2.15 betrachteten Ereignisfeld das Ereignis B ein atomares
Ereignis.

2.1.5. Ergidnzende Betrachtungen in Verbindung mit dem Begriff
des zufilligen Ereignisses

Wie wir oben schon andeuteten, besteht zwischen den Begriffen ,zufilliges Ereignis“ und
~Menge“ und auch zwischen den entsprechenden Relationen ein enger Zusammenhang.

Wir verwenden den Mengenbegriff als mathematisches Modell zufilliger Ereignisse.

Die zur Charakterisierung des sicheren Ereignisses benutzte Menge bezeichnen wir als Menge
aller ,Elementarereignisse“ des zufilligen Versuchs. Damit deuten wir an, daB in dieser ,Grund-
menge“ alle denkbaren ,Elementarausgénge“ des zufilligen Versuchs zusammengefaBt sind. Jedes
zufillige Ereignis wird damit als eine gewisse Untermenge von  interpretiert.

Einem Ereignisfeld € entspricht dann ein gewisses System von Untermengen, das die Struktur
einer sog. o-Algebra besitzt.

Weitere Ausfiihrungen finden Sie z. B. in [12;3].

Beispiel 2.17: Beim Wiirfeln mit einem Wiirfel ist

0={1,2,3,4,5,6}
die Menge der Elementarereignisse. Wir betrachten dazu zwei mogliche Systeme von Untermengen,
die die Eigenschaften einer o-Algebra besitzen:

2 Beyer, Wahrscheinlichkeitsrechnung
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1. Das System von Untermengen von

0,4,B,0Q) mit B={2,4,6 und
A4=11,3,5}

entspricht als o-Algebra einem Ereignisfeld, wobei 4 und B atomare Ereignisse dieses Ereignisfeldes
sind.

2. Die Potenzmenge P (2) der Menge der Elementarereignisse entspricht als g-Algebra einem Er-
eignisfeld, wobei hier die sechs einel tigen Unter {1}, {2}, ..., {6} atomare Ereignisse
sind.

Uberpriifen Sie, daB % (2) 2° Ereignisse enthiilt!

2.1.6. Beispiele und Aufgaben

Wenn wir uns entschieden haben, ein praktisches Problem mit Methoden der Wahr-
scheinlichkeitsrechnung zu bearbeiten, kommt es darauf an, nach der Festlegung des ent-
sprechenden zufilligen Versuchs die notwendigen zufilligen Ereignisse zu definieren und
anschlieBend unter Verwendung der in Abschnitt 2.1.3. angegebenen Relationen die er-
forderlichen Verkniipfungen der Ereignisse durchzufiihren. An zwei Beispielen wollen wir
das Vorgehen zeigen.

Beispiel 2.18: Die stérungsfreie Arbeit eines Systems S wihrend der Zeit ¢ wird wesentlich
beeinfluBlt durch die stérungsfreie Arbeit der Komponenten i (i=1,2, ..., n), aus denen
das System zusammengesetzt ist, wihrend der Zeit ¢. Diese sollen unabhéngig voneinan-
der arbeiten. Die storungsfreie Arbeit des Systems ist durch die der Komponenten auszu-
driicken, und zwar dafiir, daB

a) der Ausfall einer Komponente den Ausfall des Systems nach sich zieht,
b) erst der Ausfall aller Komponenten den Ausfall des Systems nach sich zieht.

Die Losung dieser Aufgabe werden wir in 2 Schritten vornehmen. Wihrend wir beim
1. Schritt die interessierenden Ereignisse erfassen, werden wir beim 2. Schritt — er ist fur
die Teilaufgaben getrennt durchzufithren - die Ereignisse entsprechend der Aufgaben-
stellung verkniipfen.

1. Schritt:

A ... ,Das System arbeitet wihrend der Zeit ¢,
4; ... ,Die i-te Komponente arbeitet wahrend der Zeit t“ (i=1, 2, ..., n).

2. Schritt: Den Tatbestand erfassen wir bei der Teilaufgabe a) bzw. Teilaufgabe b) sym-
bolisch durch eine Reihenschaltung (Bild 2.7) bzw. Parallelschaltung (Bild 2.8) der n
Komponenten und erhalten dann bei

Il

Bild 2.8. Parallelschaltung
Bild 2.7. Reihenschaltung von Komponenten von Komponenten
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- Teilaufgabe a)
n
A=Ai0dyn .. 04, =4
i=1

und mit Hilfe von (2.15)

A=A VA u... 04, =4;

— Teilaufgabe b)
A=4u4vU...u4,= 4

und mit Hilfe von (2.16)

Driicken Sie das Ergebnis in Worten aus!

Beispiel 2.19: In einem Kraftwerk wird die Havarie einer Anlage von drei unabhingig von-
einander arbeitenden Kontrollsignalen angezeigt. Diese unterliegen einer gewissen Stor-
anfilligkeit. Es sollen Aussagen iiber die Sicherheit des Signalsystems in einer bestimm-
ten Zeit ¢t gemacht werden.

Losung: 1. Schritt: Folgende Ereignisse sind von Interesse:

.. yDas i-te Signal funktioniert® (i =1, 2, 3);
.. ,Alle 3 Signale funktionieren®;

.. ,Kein Signal funktioniert;

.. sMindestens ein Signal funktioniert*;

.. Genau ein Signal funktioniert“.

SAQmx

Die Angaben beziehen sich dabei auf die o.g. Zeit.
2. Schritt: Die Ereignisse 4, B, C, D werden durch die Verkniipfung der Ereignisse
S, S5, S; ausgedriickt:

A=8n8NnS;,

B=8n8§nS§,

C=8uUS8,uUS; oderauch
C=B=8n8n8=8uUSuUS; (nach2.15),
D=5 n85EN S U@ NnSnS)uSinSnsSy).

Losen Sie nun die folgenden Aufgaben:

Aufgabe 2.1: Auf 20 Kértchen steht jeweils eine der Zahlen 1 bis 20. Nach der sorgfiltigen *
Mischung dieser Karten wird eine willkiirlich gewéhlt. Wir betrachten folgende zufilligen
Ereignisse:

A ... ,Die gezogene Zahl ist hochstens gleich 12¢;
B ... ,Die gezogene Zahl ist mindestens gleich 8;
C ... ,Die gezogene Zahl ist gerade®;

D... ,Die gezogene Zahl ist ein Vielfaches von 3¢

~a) Beschreiben Sie die Ereignisse An C, Bn Cn D,Bu D,(Au B) n D, Bn Cund
(A u B) n Cn D mit Worten!

2+
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b) Driicken Sie die folgenden zufilligen Ereignisse durch die Ereignisse 4, B, C, D
(und ihre Komplemente) aus:

F ... ,Die gezogene Zahl ist eine aus der Menge {1, 3, 5, 7}*;

G ... ,Die gezogene Zahl ist gerade und groBer als 12

H ... ,Die gezogene Zahl ist gerade und kleiner als 8, oder sie ist ungerade und
groBer als 12¢.

Aufgabe 2.2: Zeigen Sie, daB die zufilligen Ereignisse A n B, An B, A n Bund 4 U B ein
vollstdndiges System von Ereignissen bilden!

Aufgabe 2.3: Eine Anlage besteht aus 4 Kesseln, 2 Turbinen und einem Generator. Ist der
Generator arbeitsfahig, dann liegt das Ereignis 4 vor. By (k=1,...,4) bzw. C(i=1,2)
seien die Ereignisse, daB der k-te Kessel bzw. die i-te Turbine arbeitsfdhig sind. Die Ar-
beitsfahigkeit der Anlage (Ereignis D) ist gewihrleistet, wenn der Generator, mindestens
ein Kessel und mindestens eine Turbine arbeitsfihig sind. Driicken Sie die Ereignisse D
und D durch die Ereignisse 4, B, und C; aus!

2.2. Relative Hiufigkeit und Wahrscheinlichkeit

Bei der Untersuchung von Massenerscheinungen mit Methoden der Wahrscheinlich-
keitsrechnung ist es nicht ausreichend, wenn wir die im Ergebnis eines Versuches auftre-
tenden interessierenden Ereignisse angeben. Wir werden die Zufilligkeit ihres Auftretens
auBerdem noch in irgendeiner Art quantifizieren miissen, um Aussagen iiber Gesetzma-
Bigkeiten der betrachteten Massenerscheinung machen zu konnen. Intuitiv wird sich
dazu die absolute oder die relative Hdufigkeit des Auftretens der interessierenden Ereig-
nisse anbieten. Da sie aber immer auf der Basis einer endlichen Anzahl von Versuchen
ermittelt werden und auBerdem mit deren Anzahl stark schwanken, sind sie kein ,idealer*
QuantifizierungsmaBstab. Wir werden zu einem allgemeineren Begriff der Quantifizie-
rung kommen, dem der Wahrscheinlichkeit eines zufélligen Ereignisses. Der Wahrschein-
lichkeitsbegriff und die Eigenschaften der Wahrscheinlichkeit eines Ereignisses sind Ab-
straktionen vom Begriff der relativen Héufigkeit, den wir deshalb an die Spitze unserer
Betrachtungen stellen.

2.2.1. Relative Hiufigkeit

Wir wollen ein Ereignis 4 eines Ereignisfeldes € betrachten und den Grad der Be-
stimmtheit seines Eintretens quantifizieren. Dazu werden wir den entsprechenden Ver-
such mehrmals wiederholen und feststellen, wie haufig das Ereignis A dabei eingetreten
ist.

Definition 2.15: Ist bei n unabhdngigen Wiederholungen eines zufélligen Versuchs ein Ereignis

A eines Ereignisfeldes € h,(A)-mal eingetreten, dann wird h,(A) als absolute Haufigkeit des

h,(4 X . -
Ereignisses A und der Quotient H,(4) = % als relative Héufigkeit des Ereignisses 4

in n Versuchen bezeichnet.

Anmerkung: Zufillige Versuche, die sich gegenseitig nicht beeinflussen, werden als unab-
hdngig bezeichnet.

Beispiel 2.20: Beim SchieBen auf eine Scheibe beobachten wir das Ereignis 4 ... , Treffen
der Scheibe“. Werden 35 Schiisse auf das Ziel abgegeben (n = 35) und dabei 21 Treffer er-
zielt (h,(4) = 21), dann betrégt die relative Haufigkeit fir das Ereignis 4
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H,(4) :R‘ZO,G.
Es ist offensichtlich, daB bei n Wiederholungen eines Versuches die relative Haufigkeit
eines Ereignisses 4 die Werte 0, %, % —"—%L 1 annehmen kann. Welcher Wert

sich in einer konkreten Versuchsreihe ergibt, kann aus den in Abschnitt 2.1.2. angegebe-
nen Griinden nicht mit Bestimmtheit vorausgesagt werden. Er ist vom Zufall abhéngig
und schwankt dementsprechend, wenn mehrere Versuchsreihen zu je n Versuchen durch-
gefiihrt werden.

Nun wollen wir uns den Eigenschaften der relativen Héufigkeit, ihrer Stabilitdt und der
bedingten relativen Héufigkeit zuwenden.

Eigenschaften der relativen Hdufigkeit
1. Wir sehen sofort, daB fiir jedes Ereignis 4 € € gilt:
0=sH,(A4)=1. (2.18)

Dabei wird H,(4) = 0 sein, wenn 4 = 0, also bei diesen n Versuchen nicht eintreten kann.
Andererseits ist H,(4) =1, wenn 4 =, also bei diesen n Versuchen stets eintritt. Wir
konnen als 2. Eigenschaft angeben:

2. H,(Q)=1. (2.19)

3. Wir betrachten die Ereignisse 4, B € €, fiir die A n B =0 gilt, d. h., sie sind unver-
einbar. Ist nun bei n Versuchen das Ereignis 4 k;-mal und das Ereignis B k,-mal eingetre-
ten, so ergibt sich:

H,(4) =*IS‘, H,(B) =ﬁ, H,(4u B)=

ktk _k , k
n n

T n n’
folglich als 3. Eigenschaft:
H,(Au B)=H,(4) + H,(B). (2.20)

Folgerungen: 1. Fiir die relative Haufigkeit H,(4) des zu dem Ereignis 4 € € entgegenge-
setzten Ereignisses 4 € € gilt:

H,(d)=1-H,(4); @.21)
denn aus (2.19), (2.20), (2.9) und (2.10) ergibt sich
1=H,(Q)=H,(4 v 4) = H,(4) + H(A)
und damit
H,(4)=1-H,(4).
2. Fiir die relative Haufigkeit H,(4 U B) mit 4, B € € gilt:
H,(Av B)=H,(A) + H,(B) — H,(An B). (2.22)

Versuchen Sie selbst, unter Anwendung der Beziehungen AU B= A4 uU (B\4) und
B=(4n B)u (B\A) diese Aussage zu beweisen!

Anmerkungen: 1. Aus H,(4) =1 bzw. H,(4) = 0 darf niemals geschlossen werden, dal 4
sicheres bzw. unmogliches Ereignis ist; denn wir miissen immer bedenken, daB H,(4) auf
der Basis von n Versuchen berechnet wurde. Bei einer (n + 1)-ten Wiederholung des Ver-
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suches besteht die Mdglichkeit, daB in dessen Ergebnis das Ereignis 4 nicht eintritt bzw.
eintritt.

2. Mit Hilfe der relativen Haufigkeit wird jedem Ereignis 4 € € eine Zahl H,(4) zuge-
ordnet. Wir kdnnen also sagen, daB mit der Zuordnung 4 — H,(4) auf € eine Funktion
definiert wird, die die genannten Eigenschaften besitzt.

Stabilitdt der relativen Hdufigkeit

Wie wir schon oben andeuteten, ist H,(4) eine GroBe, die vom Zufall abhingt. Ist die
Anzahl n der Wiederholungen eines Versuchs klein, dann kann sich H,(4) von Versuchs-
reihe zu Versuchsreihe stark dndern. Es zeigt sich aber, daB H,(4) fiir hinreichend groBes
n ,in der Ndhe“ einer fiir das Ereignis 4 konstanten Zahl zwischen 0 und 1 bleibt, d.h.,
daB H,(A) fir das Ereignis 4 eine gewisse Stabilitdt aufweist (Bild 2.9). Wir konnen also

A .

Bild 2.9. Zur Stabilitdt der relativen Haufigkeit

vermuten, daB es fiir das Ereignis A4 tatsdchlich eine Konstante gibt, die unabhéngig von
der Versuchsreihe eine Quantifizierung seiner , Zufélligkeit“ gestattet. Wir werden diese
spiter als die Wahrscheinlichkeit P(A) des Ereignisses A erkldren. Die relative Haufigkeit
H,(A) konnen wir als Nidherungswert der Wahrscheinlichkeit P(4) des Ereignisses 4 auf-
fassen, der um so besser ist, je hdufiger der Versuch wiederholt wird. Die folgende Ta-
belle [4], die Ergebnisse von Miinzwiirfen enthilt, verschafft uns eine Vorstellung von der
Stabilitdt der relativen Haufigkeit.

Anzahl Anzahl des relative
der Wiirfe Auftretens des  Héufigkeit
Ereignisses
»Wappen“
Buffon') 4040 2048 0,5069
K.Pearson?) 12000 6019 0,5016
K.Pearson 24000 12012 0,5005

Bedingte relative Haufigkeit

In diesem Zusammenhang wollen wir noch kurz auf den Begriff , bedingte relative Hau-
figkeit“ eingehen.

) Compte de Buffon (1707-1788), franzdsischer Mathematiker.
2) Karl Pearson (1857-1936), englischer Mathematiker.
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Zu seiner Erlduterung gehen wir von der in Beispiel 2.1 (in 2.1.2.) geschilderten Situa-
tion aus und interessieren uns fiir die relative Haufigkeit des Ereignisses 4, unter der Be-
dingung, daB das Ereignis B eingetreten ist. Dazu fithren wir n Wiederholungen des Wiir-
felversuchs durch und nehmen an, daB in der Versuchsserie (k; + k,)-mal das Ereignis B
und k,-mal die Ereignisse 4, und B gleichzeitig beobachtet wurden. Fiir die relative Hau-
figkeit des Ereignisses 4, unter der Bedingung B — Schreibweise: H,(4,/ B) — ergibt sich
dann:

k

Hn(AZ/B)=m;

denn es spielen ja nur die Ergebnisse eine Rolle, bei denen das Ereignis B eingetreten
ist.
Durch Erweiterung erhalten wir:

ka
_ k _n_HMnB)
H,(4,/B) = P A A ) (2.23)
n

H,(A4,/ B) wird bedingte relative Hdufigkeit genannt. Sie errechnet sich als Quotient aus
den relativen Haufigkeiten H,(4, n B) und H,(B), wobei H,(B) >0 vorausgesetzt wird.
Sie besitzt dieselben Eigenschaften wie die relative Haufigkeit des Ereignisses 4,, H,(4,),
die auch als unbedingte relative Hdufigkeit bezeichnet wird. Versuchen Sie, diese Eigen-
schaften nachzuweisen!

2.2.2. Der Wahrscheinlichkeitsbegriff

Im vorangegangenen Abschnitt wiesen wir in Verbindung mit der Stabilitédt der relati-
ven Hiaufigkeit darauf hin, daB einem Ereignis A eine Konstante zugeordnet werden
kann, die wir spiter als Wahrscheinlichkeit P(4) des Ereignisses 4 bezeichnen werden.
In diesem Abschnitt wollen wir nun diesen Begriff der Wahrscheinlichkeit eines zufalli-
gen Ereignisses ndher charakterisieren. Dabei werden uns die bei der Erkldrung des Be-
griffs der relativen Haufigkeit eines Ereignisses gewonnenen Erkenntnisse wertvoll sein.

2.2.2.1. Axiomatischer Aufbau der Wahrscheinlichkeitsrechnung

Beim axiomatischen Aufbau der Wahrscheinlichkeitsrechnung gehen wir von einem
Ereignisfeld € aus und definieren eine Funktion P, die jedem Ereignis 4 € € eine reelle
Zahl P(A) zuordnet. Wir bezeichnen P(A4) als die Wahrscheinlichkeit des Ereignisses A. Sie
wird im einzelnen durch die folgenden Axiome charakterisiert:

Axiom 1: Fiir jedes Ereignis A € € gilt:
0=sPA)=1. (2.24)

Der Definitionsbereich der Funktion P ist also das Ereignisfeld €, wihrend der Werte-
bereich das abgeschlossene Intervall [0, 1] oder eine Teilmenge dieses Intervalls reeller
Zahlen ist.

Axiom 2: Es gilt:
PQ2)=1. (2.25)
Axiom 3: Schliefen die Ereignisse A € € und B € € einander aus (A n B = 0), dann gilt:
P(AuB)=P(4)+ P(B). (2.26)

Al

A2

A3
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Mit Hilfe des Prinzips der vollstindigen Induktion 148t sich die Aussage des Axioms 3
auf endlich viele Ereignisse 4,€ € (i=1, 2, ..., n), die paarweise einander ausschlieBen,
iibertragen. Das ist aber nicht fiir abzdhlbar unendlich viele Ereignisse moglich. Deshalb
ist es sinnvoll, dies in einem vierten Axiom zu tun.

Axiom 4: Schliefen die Ereignisse A,€ € (i=1,2,...) paarweise einander aus (A4;n 4;
=0, i*j, i,j=1,2,...), dann gilt:

P (,.Q A,.> = Z} P(4). .27

Wihrend die Axiome 1-3 direkte Abstraktionen der Eigenschaften der relativen Hau-
figkeit von Ereignissen darstellen, ist das Axiom 4 eine sinnvolle Ergénzung; denn auf
Grund der Erkldrung des Ereignisfeldes € ist mit den Ereignissen 4,€€ (i=1,2,...)

auch das Ereignis U A; Element des Ereignisfeldes €. Dementsprechend ist fiir dieses
i=1

Ereignis nach Axiom 1 eine Wahrscheinlichkeit erkldrt, deren Berechnung durch
Axiom 4 festgelegt ist.

Warum treten dabei keine Konvergenzprobleme auf?

Betrachten wir nun einige Folgerungen aus obigen Axiomen. Wir wollen sie als Sitze
formulieren und auch die Beweise angeben, da sie geeignet sind, das Rechnen mit Wahr-
scheinlichkeiten zu iiben.

Satz 2.1: Die Wahrscheinlichkeit des unmaéglichen Ereignisses ist null:
P®=0. (2.28)

Beweis: Da 0 €€, existiert P(0). Mit A+ 0 und A€ € ist auch 4 Ul =4€cC. Wegen
An@=0 gilt dann nach Axiom 3: P(4u0)=P(4)+ P@®) = P(4). Daraus folgt
P@=0.m

Satz 2.2: Mit A € € ist auch A € €, und es gilt:
P(d)=1- P(A). 2.29)

Beweis: Auf Grund der Eigenschaften von € ist mit 4 € € auch A € G. Demzufolge exi-
stiert nach Axiom 1 P(4). Wegen A U A = Q und 4 n 4 = 0 ergibt sich aus den Axiomen
2 und 3:

P(AuAd)=P(A)+PA)=PQ)=1
und damit
P(A)=1-P4).m
Satz 2.3: Fiir beliebige Ereignisse A € € und B € € gilt:
P(4uUB)=P(4)+ P(B)—P(ANn B). (2.30)

Versuchen Sie selbst, unter Verwendung der im Abschnitt 2.2.1. gegebenen Hilfsmittel
diesen Satz zu beweisen! Falls die Ereignisse 4 und B unvereinbar sind, ist (2.30) iden-
tisch mit Axiom 3.

Satz 2.4: Bilden die Ereignisse A;€ € (i=1, 2, ..., n) ein vollstindiges System von Ereignissen,
dann gilt:

i P(4)=1. 2.31)
i=1
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Beweis: Fiir die Ereignisse 4;(i=1,2, ..., n) gilt:

QA,:Q mit 4n4;=0 (i+j ij=12,..,n).
Demzufolge ergibt sich mit Axiom 2:

P(QA,) =P(Q)=1,
und weiterhin mit Axiom 3:

P(L_’_,JlAi) = ilP(A,») =1

und damit die Aussage. B

Satz 2.5: Zieht das Ereignis A € € das Ereignis B € € nach sich, dann gilt: S.2.5
P(4) = P(B). (2.32)

Beweis: Wird das Ereignis B als Summe zweier unvereinbarer Ereignisse dargestellt:
B=A4uU(B\A4),

wobei mit 4 € € und B e € auch (B\4) € € ist, dann folgt aus Axiom 3:
P(B)=P(4)+ P(B\A).

Da nach Axiom 1 P(B\A4) =0 ist, folgt die Aussage des Satzes. ®
Dem Leser wird geraten, sich schon an dieser Stelle mit den ersten Beispielen in Ab-
schnitt 2.2.4. zu beschiftigen.

2.2.2.2. Der klassische Wahrscheinlichkeitsbegriff

Den klassischen Wahrscheinlichkeitsbegriff werden wir dann zur Berechnung von
Wahrscheinlichkeiten heranziehen, wenn ein Versuch nur endlich viele gleichmdgliche
atomare Ereignisse hat. Das ist z.B. beim Wiirfeln mit einem idealen Wiirfel — ein Wiirfel
homogen im Material mit gleichen Kantenldngen — der Fall. Wir wollen den klassischen
Wahrscheinlichkeitsbegriff — eine Folgerung aus dem axiomatischen Aufbau der Wahr-
scheinlichkeitsrechnung — etwas ausfiihrlicher darstellen.

Als Ausgangspunkt zu seiner Erkldrung dient uns das Laplacesche Ereignisfeld.

Definition 2.16: Erfiillt ein Ereignisfeld € folgende zusdtzliche Forderungen: D.2.16
1. Das Ereignisfeld € ist endlich, d.h., seine Grundlage bilden endlich viele atomare Ereignisse

A (i=1,2,...,n);
2. das Auftreten der atomaren Ereignisse A; (i =1, 2, ..., n) ist gleichmoglich,

dann wird es als Laplacesches') Ereignisfeld bezeichnet.

Jedes Ereignis 4 (4 + @) des Laplaceschen Ereignisfeldes konnen wir also als Summe
der atomaren Ereignisse darstellen, die das Ereignis 4 nach sich ziehen.

Erfolgt z.B. im Beispiel 2.16 das Wiirfeln mit einem idealen Wiirfel, dann sind die Er-
eignisse A4; atomare Ereignisse, und es gilt:

B=A4,U A, 4.

1) Pierre Simon Laplace (1749-1827), franzdsischer Mathematiker.
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Um nach der Charakterisierung des Laplaceschen Ereignisfeldes den klassischen Wahr-
scheinlichkeitsbegriff erkldren zu kénnen, suchen wir zuerst auf der Grundlage des axio-
matischen Aufbaus der Wahrscheinlichkeitsrechnung die Wahrscheinlichkeit eines ato-
maren Ereignisses, die ja fiir alle atomaren Ereignisse gleich ist. Wir wollen sie mit p
bezeichnen, also

PA)=p (=12, ..,n).
Aus den Axiomen 2 und 3 ergibt sich (Warum?)
P(U A,) =Y PU4)=1.
i=1 i=1

Mit P(4;)=p (i=1,2, ..., n) erhalten wir np =1 und daraus

=1
p e
Wir konnen sagen: Die Wahrscheinlichkeit fiir das Eintreten eines jeden atomaren Ereig-
nisses 4;(i=1,2, ..., n) ist gleich dem Kehrwert der Anzahl der atomaren Ereignisse:
1
PA)=— (@(=12,...n). (233)

Betrachten wir nun ein beliebiges Ereignis 4 des Laplaceschen Ereignisfeldes €, dann
148t es sich in folgender Art darstellen:

k
A= 4, (2.34)

wobei iiber alle atomaren Ereignisse 4; (i=1, ..., k) summiert wird, die das Ereignis 4
nach sich ziehen. Damit ergibt sich fiir die Wahrscheinlichkeit P(4) des Ereignisses 4
nach Axiom 3:

k k
P(A)=P<U A,) = ZP(A,.)=% (2.35)
i=1 i=1
Wir sind nun in der Lage, die klassische Definition der Wahrscheinlichkeit anzuge-
ben:

Definition 2.17: Die Wahrscheinlichkeit P(A) des Ereignisses A € €, wobei € ein Laplacesches
Ereignisfeld ist, errechnet sich zu
P(4) = _k _ Anzahl der atomaren Ereignisse 4; € G, firdie A,S A
“)= n Anzahl der atomaren Ereignisse A; € €

In der Literatur werden die atomaren Ereignisse 4; € € auch als mdgliche und diejeni-
gen, die das Ereignis 4 nach sich ziehen, als giinstige Ereignisse bezeichnet, so daB die
obige Definition hdufig auch wie folgt gegeben wird:

_ Anzahl der fiir das Ei von A giinstigen Ereij
Anzahl der moglichen Ereignisse

P(A)=%

Beispiel 2.21: Ein Fernsprechteilnehmer will eine Telefonnummer wihlen. Er vergaB je-
doch die letzte Ziffer und wihlte sie ,auf gut Gliick“ aus. Gesucht wird die Wahrschein-
lichkeit dafiir, daB er die richtige Nummer gewihlt hat.

Losung: A sei das zufillige Ereignis, daB die richtige Ziffer gewéhlt wurde. Der Teilneh-
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mer kann beliebig aus 10 Ziffern auswéhlen; daher ist die Anzahl der atomaren Ereignisse
gleich 10. Diese Ereignisse sind gleichmdglich. Fiir das Eintreten des Ereignisses 4 er-
weist sich eines dieser Ereignisse als giinstig. Die gesuchte Wahrscheinlichkeit ist damit
gleich P(4) =1/10.

Die Berechnung der Anzahl der giinstigen und die der moglichen Ereignisse erfolgt
haufig mit Methoden der Kombinatorik (vgl. Bd.1 dieser Reihe).

Die Maxwell-Boltzmann-, die Bose-Einstein- und die Fermi-Dirac-Statistik sind physi-
kalische Beispiele fiir die Anwendung der klassischen Definition der Wahrscheinlichkeit.
Da auf sie hier nicht naher eingegangen werden kann, sei z. B. auf [4] verwiesen.

Wir hatten gesehen, daB die klassische Definition der Wahrscheinlichkeit dann an-
wendbar ist, wenn der Versuch endlich viele atomare Ereignisse hat. Nicht selten tritt
aber der Fall auf, daB im Ergebnis eines Versuchs unendlich viele gleichmogliche Ergeb-
nisse eintreten konnen. In diesem Fall kann in gleicher Weise wie beim Laplaceschen Er-
eignisfeld ein Wahrscheinlichkeitsbegriff, der Begriff der geometrischen Wahrscheinlichkeit,
aufgebaut werden:

Beispiel 2.22: Bei dem Kinderspiel ,,Schweinestechen“ wird zuerst ein Schwein S (Fla-
cheninhalt Fs) aufgezeichnet. Dann versucht ein Kind, dessen Augen verbunden wurden,
mit einem Bleistift einen Korperteil des Schweines, z. B. das Ohr s, zu treffen. Wir neh-
men an, daB das Schwein in jedem Fall getroffen wird, und zwar jedes Teilstiick gleichen
Flicheninhalts mit derselben Wahrscheinlichkeit, d. h., das Treffen jedes Punktes von S
ist gleichmoglich. Gefragt wird nach der Wahrscheinlichkeit, daB das Ohr des Schweines
(Flacheninhalt F,) getroffen wird. Wenn wir das Ereignis , Treffen des Ohres“ mit 4 be-
zeichnen, dann liegt es nahe, seine Wahrscheinlichkeit P(4) mit Hilfe des Quotienten
aus F, und Fs zu erkldren. Damit konnen wir — entsprechend der klassischen Definition
der Wahrscheinlichkeit — die Definition der geometrischen Wahrscheinlichkeit ange-
ben.

Definition 2.18: Die Wahrscheinlichkeit P(A), dap ein zufillig aus einem Gebiet S (Flichenin- D.2.18
halt Fg) ausgewdhlter Punkt in einem Gebiet s < S (Fldcheninhalt F,) liegt (Ereignis A), ist gege-
ben durch

F,

P(4)= - (2.36)
Sie wird geometrische Wahrscheinlichkeit t.

2.2.2.3. Erginzende Betrachtungen in Verbindung mit dem Begriff
der Wahrscheinlichkeit eines zufilligen Ereignisses

Im Abschnitt 2.1.5. gingen wir von der Menge der Elementarereignisse £ aus und erklarten Unter-
mengen als zufillige Ereignisse. Wir bezeichneten weiter jedes System € von Untermengen von (2,
das die Eigenschaften des Ereignisfeldes besitzt, als o-Algebra. Die Wahrscheinlichkeit P(4) eines
Ereignisses 4 € € wird durch eine Mengenfunktion P auf € erklért. Sie hat folgende Eigenschaften,
wobei 4, B, 4; (i=1,2,...) € € gilt:

1 0=P)=1;
2. P@Q)=1;
3. P(4UB)=P(4)+P(B), AnB=0;

4. P(UA;>=ZP(A‘), AnA=0, i*j ij=12,..
i=1 i=1

Im Sinne der MaBtheorie (vgl. Band 2) werden das Tupel [, €] als mefBbarer Raum, die Mengenfunk-
tion P als Wahrscheinlichkeitsmaf8 und das Tupel [Q, €, P] als Wahrscheinlichkeitsraum bezeichnet.
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Damit kann das Axiomensystem von A. N. Kolmogorow, das die Grundlage des axiomatischen
Aufbaus der Wahrscheinlichkeitsrechnung bildet, wie folgt angegeben werden:

1. Die Elemente einer gegebenen Menge Q werden als magliche ,Elementarausginge” eines zufilligen
Versuchs aufgefapt. Jedes Element wird als Elementarereignis und Q als Menge der Elementarereignisse be-
zeichnet.

2. Die Elemente eines Systems von Untermengen € von Q, das die Struktur einer o-Algebra besitzt, wer-
den als zufillige Ereignisse bezeichnet.

3. Fiir jedes Element A € € ist durch ein auf € b Wahrscheinlichkeil j3 seine Wahrscheinlich-
keit P(A) gegeben.

Dem Leser, der sich eingehender mit diesen Fragen beschiftigen will, seien u.a. [3; 12] empfohlen.

2.2.3. Bedingte Wahrscheinlichkeiten, unabhéngige Ereignisse

2.2.3.1. Bedingte Wahrscheinlichl

Die in (2.23) angegebene Beziehung wollen wir in folgender Art fiir Wahrscheinlichkei-
ten iibertragen:

Definition 2.19: Gegeben seien die Ereignisse A, B € €, und es gelte P(A) > 0. Dann wird

P(B/A) =f%(2731 (2.37)

als die bedingte Wahrscheinlichkeit des Ereignisses B unter der Bedingung des Ereignisses A
bezeichnet.

Die bedingte Wahrscheinlichkeit P(B/A) wird also als Quotient zweier bekannter
Wahrscheinlichkeiten definiert.

Anmerkung 1: Im allgemeinen sind die bedingten Wahrscheinlichkeiten P(B/A) und
P(A/B) voneinander verschieden. Auf Grund der Definition der bedingten Wahrschein-
lichkeit besteht zwischen ihnen die Beziehung

P(B/A)P(A)=P(A/B) P(B). (2.38)

Anmerkung 2: Fiir die bedingte Wahrscheinlichkeit P(B/A) fiir festes 4 € € und belie-
biges B € € gelten dieselben Rechenregeln wie fiir die unbedingte Wahrscheinlichkeit
P(B). Versuchen Sie selbst, diese Eigenschaften nachzuweisen!

Beispiel 2.23: In einer Urne befinden sich 4 weiBe und 4 rote Kugeln. Aus der Urne wird
zweimal ,auf gut Gliick“ je eine Kugel entnommen, die nicht wieder zuriickgelegt wird.
Gesucht wird die Wahrscheinlichkeit fiir das Auftreten einer weiBen Kugel beim 2. Ver-
such (Ereignis B), wenn beim 1.Versuch eine rote Kugel gezogen wurde (Ereignis 4). Wir
haben also die bedingte Wahrscheinlichkeit P(B/A4) zu bestimmen. Sie ergibt sich mit
(2.35) zu P(B/A)=4/7.

Im folgenden wollen wir nun auf die Multiplikationsregel fiir Wahrscheinlichkeiten,
auf die Formel der totalen Wahrscheinlichkeit und auf die Bayessche Formel eingehen.

Multiplikationsregel fiir Wahrscheinlichkeiten

Die Formel (2.37) gibt uns die Moglichkeit, die Wahrscheinlichkeit P(4 n B) des Er-
eignisses 4 N B zu berechnen.
Durch Auflosen erhalten wir:
P(AnB)=P(B/A)P(A). (2.39)

In Definition 2.19 war P(4) > 0 vorausgesetzt worden. Nehmen wir P(4) = 0 an, so ergibt
sich wegen 4 N B S 4 und der daraus resultierenden Relation P(4 n B) = P(4) die Aus-
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sage: P(4 n B) =0. Fiir diesen speziellen Fall ist das Aufstellen einer gesonderten Be-
rechnungsformel fiir die Wahrscheinlichkeiten P(4 n B) demzufolge nicht erforder-
lich.

Auf Grund der Vertauschbarkeit der Ereignisse 4 und B konnen wir zur Berechnung
der Wahrscheinlichkeit auch folgende Formel angeben:

P(A4nB)=P(4/B) P(B). (2.40)

(2.39) bzw. (2.40) wollen wir als Multiplikationsregel fiir Wahrscheinlichkeiten bezeich-
nen.

Fiir die in Beispiel 2.23 erkldrten Ereignisse 4 und B ergibt sich fiir die Wahrschein-
lichkeit P(4 n B) ihres gleichzeitigen Eintretens nach (2.38):

4 1 2
P(AnB)= 7T

Die Multiplikationsregel fiir zwei Ereignisse gibt uns die Moglichkeit, die Wahrschein-
lichkeit des Produktes von mehr als zwei Ereignissen zu berechnen. Wir wollen uns auf
den Fall von drei Ereignissen 4, B, C eines Ereignisfeldes € beschrinken, wobei wir im-
mer voraussetzen wollen, daB auftretende bedingte Wahrscheinlichkeiten erkldrt sind:

P(AnBAC)=PA/BnC)P(BNC)

=P(A/BnC)P(B/C)P(C). (2.41)
Versuchen Sie, diese Multiplikationsregel auf das Produkt von n zufdlligen Ereignissen
Ay, A, ..., A, eines Ereignisfeldes € zu iibertragen und anschlieBend mit Hilfe des Prin-

zips der vollstindigen Induktion zu beweisen.

Formel fiir die totale Wahrscheinlichkeit

Die Formel der totalen Wahrscheinlichkeit wollen wir an folgendem Beispiel kennen-
lernen:

Beispiel 2.24: In einem Betrieb wird ein bestimmtes Erzeugnis auf vier Maschinen herge-
stellt. Die Tabelle gibt den Anteil jeder Maschine an der Gesamtproduktion und den da-
bei auftretenden AusschuBanteil an. Das Fertigprodukt der vier Maschinen wird in einem
Lager erfaBt, in dem eine Unterscheidung der Erzeugnisse hinsichtlich ihrer Fertigung
auf den einzelnen Maschinen nicht méglich ist. Wir wollen die Wahrscheinlichkeit dafiir
berechnen, daB ein dem Lager entnommenes Erzeugnis nicht den Qualitdtsanforderun-
gen entspricht.

Maschine Anteil (%) AusschuB (%)

40
30
20
10

FNEIN N
[VNF NN

Zur Beantwortung dieser Fragestellung fiihren wir folgende Ereignisse ein:

4; ... ,Das Erzeugnis wurde auf Maschine i (i =1, 2, 3, 4) gefertigt;
B ... ,Das dem Lager entnommene Erzeugnis entspricht nicht den Qualitdtsan-
forderungen*.

Die Ereignisse 4, (i =1, 2, 3, 4) bilden ein vollstindiges System von Ereignissen, d.h.,
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4
U4=0Q und 4n4=0, i+j, ij=1234.
i=1

Es gilt weiterhin:

B=BnQ=Bn(4,U4,UA4;U A4,
=(BnA)U(BnA)U(BnA)U(BNA,).

Diese Beziehung wird in Bild 2.10 veranschaulicht.

Bild 2.10. Veranschaulichung
von B=Bn(4,UA4,U d;U A4,

Da die Ereignisse 4; (i =1, 2, 3, 4) paarweise einander ausschlieBen, gilt dasselbe auch
fir die Ereignisse BN 4; (i =1, 2, 3, 4). Damit erhalten wir fiir die Wahrscheinlichkeit
P(B) des gesuchten Ereignisses B:

4 4
P(B) = P(U (Bn A,.)) =Y P(Bn4).
i=1 i=1
Mit (2.39) formen wir um:
4 4
P(B)=Y.P(Bn4)=), P(B/4)P(4).
i=1 i=1

Nun konnen wir die Wahrscheinlichkeit P(B) aus den Wahrscheinlichkeiten P(4;) und
P(B/4) (i=1,2,3,4), die sich aus der Aufgabenstellung ergeben, berechnen:

P(4)=04; P(B/A)=001; P(4;)=02; P(B/A;)=0,04;
P(4,)=03; P(B/A)=002; P(4)=01; P(B/A)=0,05;
P(B) =0,01-0,4 +0,02-0,3 +0,04-0,2 + 0,05-0,1 = 0,023.

Im obigen Beispiel lernten wir einen typischen Fall fiir die Anwendung der Formel fiir die
totale Wahrscheinlichkeit kennen, die wir nun allgemein formulieren wollen:

Bilden die Ereignisse 4; (i=1,2, ..., n) eines Ereignisfeldes € ein vollstindiges Sy-
stem von Ereignissen und gilt P(4,) >0 (i=1,2, ..., n), dann ergibt sich fiir ein Ereignis
B desselben Ereignisfeldes € die (totale bzw. unbedingte) Wahrscheinlichkeit P(B) mit
den bedingten Wahrscheinlichkeiten P(B/4;) (i=1,2, ..., n) zu:

P(B) =Y. P(B/4;) P(4) (2.42)
i=1

(Formel fiir die totale Wahrscheinlichkeit).
Der Beweis dieser Formel erfolgt in gleicher Weise wie im Beispiel 2.24. Versuchen Sie,
diesen Beweis zu flihren!
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Die Bayessche Formel
Auch die Bayessche Formel wollen wir an einem Beispiel kennenlernen.

Beispiel 2.25: Als Ausgangspunkt nehmen wir die in Beispiel 2.24 geschilderte Situation.
Wir wollen jedoch jetzt die Wahrscheinlichkeit dafiir ermitteln, daB ein dem Lager ent-
nommenes und nicht den Qualitdtsanforderungen entsprechendes Erzeugnis auf der i-ten
Maschine (i=1,2, 3,4) gefertigt wurde, d. h., wir suchen die Wahrscheinlichkeiten
P(4;/B) (i=1,2,3,4).

Dazu gehen wir von der Relation (2.38)

P(B/A;) P(4;)) = P(4;/B) P(B), i=1,2,3,4,

aus und 16sen diese nach der gesuchten Wahrscheinlichkeit P(4;/B) auf:

_ P(B/A)P(4) . _
P(4;/B) = 55) . i=1,2,3,4.
Setzen wir fiir P(B) nun (2.42) ein, so erhalten wir:
P(B/A;) P(4; .
P4/B)=—BAVPA) iy 534
> P(B/A,) P(4))
k=1

Mit den Werten aus Beispiel 2.24 berechnen wir schlieBlich:
0,01-0,4

P(4,/B)= 0023 =0,174,
P(4,/B)= 2%):26.2—2&= 0,261,
P(A;/B) = 9’—3‘:)—22’—2 =0,348,
P(4,/B) = Pl(%%i =0,217.

Mit Hilfe dieses Beispiels wird der Leser das Wesen der folgenden Bayesschen Formel
verstehen:

Bilden die Ereignisse 4; (i=1, 2, ..., n) eines Ereignisfeldes € ein vollstdndiges System
von Ereignissen, gilt P(4,)>0 (i=1,2, ..., n) und ist das Ereignis B ein weiteres Ele-
ment des Ereignisfeldes €, dann errechnen sich die bedingten Wahrscheinlichkeiten
P(A4;/B) (i=1,2, ..., n) nach der Bayesschen') Formel:

P(AE/B)=M, i=1,2,...,n. (2.43)

kzl P(B/Ay) P(4,)
Der Beweis dieser Formel wird entsprechend dem Vorgehen im Beispiel 2.24 gefihrt. Ver-
suchen Sie, diesen Beweis zu erbringen!
Im Zusammenhang mit der Bayesschen Formel werden die Wahrscheinlichkeiten
P(4,) (i=1,2, ..., n) auch als a-priori-Wahrscheinlichkeiten und die Wahrscheinlichkeiten
P(4;/B) (i=1, 2, ..., n) als a-posteriori-Wahrscheinlichkeiten bezeichnet.

) Thomas Bayes (1702-1763), englischer Mathematiker.



D.2.20

D.2.21

32 2. Wahrscheinlichkeitsrechnung

2.2.3.2. Unabhingige Ereignisse

Im allgemeinen unterscheiden sich die unbedingte Wahrscheinlichkeit P(4) eines Er-
eignisses 4 und die bedingte Wahrscheinlichkeit P(4/B) desselben Ereignisses 4 unter
der Bedingung eines Ereignisses B. Wir wollen nun den Fall betrachten, daB beide Wahr-
scheinlichkeiten gleich sind und keines der beiden Ereignisse das unmogliche Ereignis
ist, d.h. P(4/B) = P(A). Die Wahrscheinlichkeit fiir das Eintreten des Ereignisses 4 dn-
dert sich also nicht unter der Bedingung des Ereignisses B. Mit anderen Worten: Das Ein-
treten des Ereignisses 4 wird nicht von dem des Ereignisses B beeinfluBt, d.h., das Ein-
treten des Ereignisses 4 ist unabhingig vom Eintreten des Ereignisses B.

Definition 2.20: Ist fiir die Elemente A und B eines Ereignisfeldes € die Relation
P(A/B)=P(A4) (2.44)
erfiillt, dann heifit das Ereignis A unabhingig vom Ereignis B.

Beispiel 2.26: Eine Miinze wird zweimal geworfen. Das Auftreten von ,Wappen“ im zwei-
ten Versuch (Ereignis 4) ist unabhingig davon, ob im 1. Versuch ,Zahl“ auftrat (Ereig-
nis B), d.h.

P(A)=P(4/B).

Versuchen Sie unter Verwendung von (2.39) zu beweisen, daB aus der Unabhéngigkeit
des Ereignisses 4 vom Ereignis B auch die Unabhéngigkeit des Ereignisses B vom Ereig-
nis A4 folgt. Diese Symmetrieeigenschaft kommt auch zum Ausdruck in der Multiplika-
tionsregel fiir unabhingige Ereignisse: Die Wahrscheinlichkeit des Produktes zweier unab-
hingiger Ereignisse A und B eines Ereignisfeldes € ist gleich dem Produkt der
Wahrscheinlichkeiten dieser Ereignisse:

P(AnB)=P(4)P(B). (2.45)

Anmerkungen: 1. Mit (2.45) wird oft die Unabhingigkeit der Ereignisse 4 und B definiert.
Es besteht Aquivalenz zur Definition 2.20, falls P(B) > 0 gilt.

2. Vor der Anwendung von (2.45) miissen wir uns vergewissern, ob die auftretenden Er-
eignisse unabhingig sind. Das geschieht hiufig durch Betrachtungen, die von der Bedeu-
tung des Begriffs der Unabhiingigkeit ausgehen.

3. Die Aussage der Multiplikationsregel ist nicht nur — wie bisher vorausgesetzt — fiir
den Fall giiltig, daB die Wahrscheinlichkeiten der Ereignisse 4 und B von null verschie-
den sind, sondern auch dann, wenn eines von ihnen die Wahrscheinlichkeit Null hat.
Warum?

Wir wollen nun den Begriff der Unabhéngigkeit von Ereignissen zuerst auf drei und
dann auf endlich viele Ereignisse erweitern.

Definition 2.21: Die Ereignisse A4, B, C eines Ereignisfeldes € heien unabhingig (auch
vollstindig unabhingig), wenn die folgenden Relationen erfiillt sind:

P(AnBnC)=P(A)P(B) P(C), (2.46)
P(AnB) = P(4) P(B), (2.47)
P(4nC) =P(4) P(C), (2.48)
P(Bn () =P(B) P(C). (2.49)

Gelten nur die Relationen (2.47)-(2.49), dann werden die Ereignisse A, B, C paarweise unab-
héngig genannt.

Aus der paarweisen Unabhéngigkeit der Ereignisse 4, B, C diirfen wir also nicht auf de-
ren vollstandige Unabhéngigkeit schlieBen.
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Ganz analog wird die vollstindige Unabhéngigkeit von n Ereignissen definiert:

Definition 2.22: Die Ereignisse 4; (i=1,2, ..., n) eines Ereignisfeldes € heiflen unabhin- D.2.22
gig (auch vollstindig unabhiingig), wenn fiir jedes k € {2, 3, ..., n} und beliebige natiirliche
Zahlen 1 < iy < ... < iy < n die Relation gilt:

k k
P ( N Au) =JlPu. @.50)
s=1 s=1
Auch hier diirfen wir nicht aus der paarweisen Unabhingigkeit der Ereignisse 4;
(i=1,2, ..., n) auf deren vollstindige Unabhiéngigkeit schlieBen.
Uberlegen Sie, wieviele Bedingungen erfiillt sein miissen, daB n Ereignisse eines Ereig-
nisfeldes vollstdndig unabhingig sind!

2.2.4. Beispiele und Aufgaben
Wie im Abschnitt 2.1.6. wollen wir wieder einige ausfiihrliche Beispiele angeben.

Beispiel 2.27: Zwei Schiitzen schieBen unbeeinfluBit voneinander auf eine Zielscheibe. Es
ist bekannt, daB der erste mit einer Wahrscheinlichkeit von 0,7 und der zweite mit einer
Wahrscheinlichkeit von 0,8 trifft. Wie groB ist die Wahrscheinlichkeit, daB wenigstens
einer der Schiitzen die Zielscheibe trifft?

Die Losung der Aufgabe fiihren wir in vier Schritten durch. Im 1. Schritt werden zu-
nichst die interessierenden Ereignisse aufgeschrieben:

A... ,Der 1. Schiitze trifft die Scheibe®;
B... ,Der 2.Schiitze trifft die Scheibe“;
C... ,Mindestens ein Schiitze trifft die Scheibe“.

Aus der Aufgabe sind die Wahrscheinlichkeiten P(4) = 0,7 und P(B) = 0,8 bekannt; ge-
sucht ist die Wahrscheinlichkeit P(C).
Im 2. Schritt gilt es, das Ereignis C durch die Ereignisse 4 und B auszudriicken:

C=AUB.

Wir halten auBerdem fest, daB A n B+0.
Im 3. Schritt ermitteln wir nun P(C). Es gilt

P(C)=P(A)+ P(B)— P(An B).
Die Ereignisse 4 und B sind offensichtlich unabhingig. Damit ergibt sich mit (2.38)
P(C)=P(A)+ P(B)— P(4) P(B).
Im 4. Schritt ergibt sich schlieBlich durch Einsetzen der Zahlenwerte die gesuchte
Wahrscheinlichkeit:
P(C)=0,%4.

Beispiel 2.28: In einer Urne befinden sich 76 weiBie und 4 schwarze Kugeln. Ohne Zuriick-
legen werden 5 Kugeln gezogen. Wie groB ist die Wahrscheinlichkeit, daB mindestens
1 schwarze Kugel gezogen wird?
Wie im vorigen Beispiel werden wir die Losung in 4 Schritten durchfiihren.
1. Schritt:
A; ... ,Die i-te gezogene Kugel ist schwarz“ (i=1, 2, 3,4, 5);
A ... ,Unter den 5 gezogenen Kugeln ist mindestens eine schwarze“.

2. Schritt: Es gilt:

3 Beyer, Wahrscheinlichkeitsrechnung
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A=A4,0UA4,UA4;U AU 4.
Daaber 4,nA4;+0, i,j=1,2,3,4,5, ist es giinstiger, von A auszugehen:
A=A4,nAdyn Asn A, As.
AuBerdem sind die Ereignisse 4; (i=1, 2, ..., 5) nicht unabhéngig.
3. Schritt:

P(A)=P(A,n Ay n Ay Ay 4s)
=P(d) P(Ay/ Ay) P(dy/ A, 0 Ay) P(A4) Ay 0 Ay 0 Ay -
“P(As/A;n Ayn Ayn 4.

Diese bedingten Wahrscheinlichkeiten sind zu bestimmen.

4. Schritt:

- 76
P4) =0

_ 75
P4/ 4) = =53

N !
P(As/AlﬂAD:W;
PUAJA 0 Ay Ay =12

4/ Ay 2N 3)*77,
P(A/ Ay Ay Ay Ay = T2

- 76 75 74
P(A)=—'—5'—'L3'2=0,769,

P(4)=1-P(4)=0231.

Beispiel 2.29: Ein Schiitze gibt auf eine Zielscheibe vier unabhéngige Schiisse ab. Die
Treffwahrscheinlichkeit betrage fir jeden SchuB 1/2.

Gesucht wird die Wahrscheinlichkeit dafiir, daB der Schiitze bei vier Schiissen k Treffer
erzielt (k=0,1,2, 3, 4).

Lésung:
1. Wir definieren folgende Ereignisse:
4; ... ,Der i-te SchuB ist ein Treffer* (i=1, 2, 3, 4);
B, ... ,Unter 4 Schiissen werden genau k Treffer erzielt“ (k=0, 1,2, 3, 4).
Laut Aufgabenstellung sind die Ereignisse 4,, 4,, 43, 4, unabhingig, und es gilt
P4)=12 fur i=1,2,3,4.
2. Wir driicken die Ereignisse B, mit Hilfe der 4; aus:
By=A,n Ayn 4y 4, i
Bi=(A,n4dynAyn A)u (A0 A0 A3 Ay
UAindynAsnd)u A ndyndsn Ay,
B,=(A,nA,nA3n Ay) .
VAdindnAsnd)u...udindn 404y,
Bi=(A nA;nA3nA)u...u(A;nA;nA3n Ay,
B,=A,nA;n A3n Ay
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3. Unter Anwendung von (2.46) und (2.26) erhalten wir
P(By) = P(A-l n4d;n /{3 ndy)= P(/il) P(A-z) P(/ia) P(/io)

1\* 1
—(—2-) —3—0,0625,

P(B)=PA;nA,nAsnAd)+...+ P(A;n4,n 450 A4,)

(1) 1
~4-7-(7> =4 =02s,

P(B)=PA nAy;nAsnd)+...+ P(A;nAdyn 450 Ay)

4 1\2 (1Y 1\2 (1\*_3
() @) G o (z) () <50
P(B)=PA, NnA,nAsnA)+ ...+ P(A nAyn 450 Ay)

1V 1 1
—4-(—2> 377 =0,25,
1

4
P(B)=PA;NnA,NnA3NnA)= (%) T 0,0625.

Anmerkung: Wir benutzten hier die Tatsache, daB bei Unabhéngigkeit der Ereignisse 4;
(i=1,2,3,4) auch deren Komplemente bzw. beliebige Kombinationen von Ereignissen
A;und 4; (i,j=1,2,3,4; i + j) unabhingig sind (siehe Aufg.2.6).

Losen Sie folgende Aufgaben:

2.4: Zwolf verschiedene Biicher werden auf gut Gliick in ein Regal gestellt. Bestimmen
Sie die Wahrscheinlichkeit, daB drei bestimmte Biicher
a) in einer vorgegebenen Reihenfolge
b) in beliebiger Reihenfolge
nebeneinander stehen!

2.5: In einem Betrieb trifft eine Sendung von n elektronischen Bauelementen ein, von
denen a defekt sind. Aus dieser Sendung werden k Bauelemente zufillig ausgewahlt und
uberpriift.

a) Wie groB ist die Wahrscheinlichkeit dafiir, daB alle k Bauelemente brauchbar sind?
b) Wie groB ist die Wahrscheinlichkeit dafiir, daB ein oder mehrere Bauelemente brauch-
bar sind?

2.6: Es ist zu zeigen, daB aus der Unabhingigkeit der Ereignisse 4 und B die Unabhin-
gigkeit der Ereignisse 4 und B, 4 und B, 4 und B folgt!

2.7: Zeigen Sie die Richtigkeit folgender Aussage:
Sind die zufilligen Ereignisse 4 und B mit P(4) >0 und P(B) >0 unvereinbar, dann
sind sie nicht voneinander unabhingig!

2.8: Drei Kisten enthalten jeweils 10 Teile. In der ersten Kiste sind 8, in der zweiten
Kiste 7 und in der dritten Kiste 9 standardisierte Teile. Aus jeder Kiste wird auf gut Gliick
ein Teil ausgewdhlt. Gesucht ist die Wahrscheinlichkeit dafiir, daB alle drei ausgewdhlten
Teile standardisiert sind.

*
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2.9: In einem Kasten befinden sich zwei brauchbare und zwei defekte Transistoren.
Diese werden nacheinander getestet. Wie gro8 ist die Wahrscheinlichkeit dafiir, daB der
zweite defekte Transistor
a) der zweite
b) der dritte
c) der vierte getestete Transistor ist?

2.10: Nach statistischen Angaben einer Werkstatt entfallen von 30 Stillstinden einer
Drehmaschine 15 auf das Auswechseln des MeiBels, 6 auf den Defekt des Antriebes und 2
auf die nicht rechtzeitige Lieferung der Werkstiicke. Die iibrigen Stillstinde haben andere
Ursachen. Gesucht ist die Wahrscheinlichkeit fiir den Ausfall der Drehmaschinen auf
Grund anderer Ursachen!

2.11: In einer Druckerei befinden sich 4 unabhéngig voneinander arbeitende Maschi-
nen, die mit den Wahrscheinlichkeiten 0,9; 0,95; 0,7 bzw. 0,85 in einem bestimmten Mo-
ment nicht ausfallen. Gesucht sind die Wahrscheinlichkeiten dafiir, daB in einem be-
stimmten Moment
a) wenigstens eine Maschine arbeitet,

b) genau eine Maschine,

c) genau zwei Maschinen,

d) genau drei Maschinen,

e) alle vier Maschinen arbeiten.

2.3. ZufallsgroBen

2.3.1. Begriff der Zufallsgrofe

2.3.1.1. Erkldrung des Begriffs der ZufallsgroBe

In den vorhergehenden Abschnitten haben wir zuféllige Ereignisse als Ergebnisse zufil-
liger Versuche untersucht. Hierbei muBten wir die zufdlligen Ereignisse in der Regel ver-
bal charakterisieren. Fiir die meisten Belange der Praxis ist es zweckmaéBiger, die Vorteile,
die im Umgang mit reellen Zahlen liegen, fir die Beschreibung der Ergebnisse zufélliger
Versuche nutzbar zu machen. Indirekt haben wir diese Moglichkeit u. a. schon im Bei-
spiel 2.5 bei der Charakterisierung des Ereignisses ,Die Laufzeit eines Typs von PKW-
Reifen betrdgt ¢ Zeiteinheiten“ — hier durch die reelle Zahl ¢ — genutzt. Eine derartige
zahlenmiBige Beschreibung der Ergebnisse eines zufilligen Versuches, die wir als eine
Abbildung des Sachverhaltes in den Bereich der reellen Zahlen ansehen konnen, fithrt
uns auf den Begriff der Zufallsgrife.

Zur Erlduterung wollen wir uns zunichst einige einfache Beispiele ansehen.

Beispiel 2.30: Zufilliger Versuch: Werfen einer Miinze:

zufillige Ereignisse zahlenmaBige Beschreibung
A ...,Wappen liegt oben“ -1
B ...,Zahl liegt oben“ -0

Beispiel 2.31: Zufilliger Versuch: Feststellung der Anzahl der AusschuBteile unter n Tei-
len:
zufillige Ereignisse zahlenméBige Beschreibung
Aj... ,Unter n Teilen kein AusschuBteil“ -0
A; ... ,Unter n Teilen genau 1 AusschuBteil“ -1
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A, ... ,Unter n Teilen genau 2 AusschuBteile“ - 2
A, ...,Unter n Teilen genau n AusschuBteile“ —>n
B ..., Unter n Teilen mindestens 1 AusschuBteil“ —{1,2,...,n}

C ... ,Unter n Teilen hochstens 3 AusschuBteile“ —{0,1,2,3}

Beispiel 2.32: Zufdlliger Versuch: Feststellung der in einem Zahlrohr wihrend eines be-
stimmten Zeitabschnittes registrierten Teilchen der kosmischen Strahlung:

zufillige Ereignisse zahlenmaBige Beschreibung
Ay ... ,Kein Teilchen wurde registriert” - 0

A; ... ,Genau 1 Teilchen wurde registriert“ — 1

A, ... ,Genau n Teilchen wurden registriert“ —>n

B ... Mindestens 2 Teilchen wurden registriert” —{2,3,...}

Kehren wir nochmals zum Beispiel 2.31 zuriick. Mit Hilfe der Festlegung
»X := zufillige Anzahl der AusschuBteile unter n Teilen“

erhalten wir eine GroBe X, die die im Beispiel angedeutete Abbildung u. a. folgenderma-
Ben charakterisiert:

1. Die GroBe X nimmt den Wert i an (X = i) genau dann, wenn das Ereignis 4; eintritt.

Dabei kann i die Werte 0, 1, ..., n durchlaufen.

2. Die GroBe X nimmt einen Wert der Menge {1, 2, 3, ..., n} an (X € {1, 2, ..., n}) genau
dann, wenn das Ereignis B eintritt.

Die GroBe X nimmt folglich bei der Durchfithrung des betrachteten zufélligen Versu-
ches in Abhéngigkeit von dessen Ergebnis jeweils einen bestimmten Wert an.

Eine derartige GroBe bezeichnen wir — der am Ende des Abschnitts folgenden Erkla-
rung teilweise vorgreifend — als Zufallsgrdfe. Als Symbole fiir ZufallsgroBen verwenden
wir die groBen lateinischen Buchstaben X, Y, Z, die wir gegebenenfalls indizieren.

Zur Charakterisierung einer ZufallsgroBe X benotigen wir die Kenntnis aller moglichen
Werte, die diese ZufallsgroBe annehmen kann. Diese bezeichnen wir mit dem entspre-
chenden kleinen lateinischen Buchstaben x.

Im Beispiel 2.31 erhalten wir also die Werte x; =0, x,=1, ..., X,+;=n.

In den letzten drei Beispielen haben wir ZufallsgroBen behandelt, bei denen die Menge
der moglichen Werte (Wertebereich der ZufallsgroBe) — {x;, ..., x,} bzw. im Beispiel 2.32
{x1, X3, ...} — endlich bzw. abzdhlbar unendlich ist und deren Werte demzufolge mit den
natiirlichen Zahlen indiziert werden konnen. Derartige ZufallsgroBen nennen wir diskrete
Zufallsgrofen. Wir werden sie im Abschnitt 2.3.2.2. ndher untersuchen.

DaB daneben auch ZufallsgroBen mit iiberabzdhlbar vielen Werten von Bedeutung
sind, wollen wir uns am Beispiel 2.7 (vgl. S.10) klarmachen.

Beispiel 2.7: Zufalliger Versuch: Bestimmung der CO-Konzentration in den Abgasen einer
industriellen Anlage zu einem bestimmten Zeitpunkt:

zufillige Ereignisse zahlenmaBige Beschreibung X := zufillige CO-Konzentration
A, - x X=x

B, — [0,y) 0=sX<y

Cp x, - [x1, x2) x1=X<x,

In diesem Beispiel charakterisieren wir die moglichen Versuchsergebnisse durch eine Zu-
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fallsgroBe X, deren Wertebereich ein Intervall auf der positiven Halbachse ist. Wie wir
aber wissen, enthilt ein derartiges Intervall iiberabzihlbar viele reelle Zahlen.

Nach der Behandlung dieser einfithrenden Beispiele kommen wir zur Erkldrung des Be-
griffs ZufallsgroBe.

Erkldrung 2.1'): Wir betrachten einen zufilligen Versuch mit einem entsprechenden Ereignis-
feld €.

Mit Hilfe einer Zufallsgrife beschreiben wir jedes zuféllige Ereignis aus € durch eine reelle
Zahl bzw. durch ein Intervall reeller Zahlen bzw. durch eine geeignete Menge reeller Zahlen.

2.3.1.2. Weiterfithrende Betrachtungen

‘Wie wir im Abschnitt 2.2.2.3. gesehen haben, knnen wir einen zufdlligen Versuch durch das Paar
(£, €) charakterisieren. Dabei ist 2 die Menge der Elementarereignisse des Versuches und € ein zu-
gehoriges Ereignisfeld (System der zu betrachtenden zufilligen Ereignisse).

Mit einer ZufallsgroBe X ordnen wir jedem Elementarereignis w € 2 eine reelle Zahl zu.

Dadurch erreichen wir, daB jedes zufillige Ereignis A4 aus dem Ereignisfeld € im Bereich der reel-
len Zahlen durch eine gewisse Menge der reellen Zahlen représentiert wird. Einschrinkend miissen
wir fordern, daB diese Zuordnung so beschaffen ist, daB jedes Intervall der Form (—, 1) (¢ bel.
reell) — und damit jede ,interessierende“ Zahlenmenge — bei dieser Zuordnung aus einem zufilligen
Ereignis aus € hervorgeht.

Die fiir praktische Belange in der Regel ,,in i den“ Zahl sind die sogenannten

Borel-Mengen, die durch die Verkniipfungen U, ﬂ, \, ~ aus Intervallen der Form (—co, #) (¢ bel.
i=1 =1

reell) erzeugt werden. Hierzu gehoren u.a. alle offenen, halboffenen und abgeschlossenen Intervalle.
Wir kommen damit zu folgender Definition einer ZufallsgroBe:

Definition 2.23: Unter einer Zufallsgrife X verstehen wir eine Funktion

X=X(w):2—R",
die jedem Elementarereignis w € (2 eine reelle Zahl zuordnet. Dabei fordern wir, daf3 jedes Intervall der Form
(— oo, t) (t bel. reell) aus einem zufilligen Ereignis aus € hervorgeht, d. h., das Urbild eines jeden Intervalls
(=0, 1) ist ein zufilliges Ereignis aus €.
Anmerkung: Der Definitionsbereich der Funktion X(w) ist die Menge £2; ihr Wertebereich ist die
Menge der Werte der ZufallsgroBe X.

Das System aller Borel-Mengen des R! bildet — wie wir es ebenfalls vom Ereignisfeld € gefordert
hatten — eine g-Algebra, die wir mit B bezeichnen. Somit ist eine ZufallsgroBe X = X(w) eine Funk-
tion, die eine gewisse Beziehung zwischen den beiden o-Algebren € und 9 herstellt.

Derartige Funktionen werden in der Mathematik als (€, 8)-meBbare Funktionen bezeichnet. Fiir
weitergehende Studien in dieser Richtung verweisen wir auf [3; 12].

2.3.2. Die Wahrscheinlichkeitsverteilung einer ZufallsgroBe

2.3.2.1. Begriff der Wahrscheinlichkeitsverteilung

Zur volistindigen Beschreibung eines zufdlligen Versuches hatten wir im Abschnitt 2.1.
nach der Festlegung des Ereignisfeldes jedem zufilligen Ereignis A aus € dessen Wahr-
scheinlichkeit P(4) zugeordnet.

Entsprechend werden wir jetzt verfahren und zu jeder interessierenden Menge reeller
Zahlen die Wahrscheinlichkeit dafiir bestimmen, daB die zur zahlenméBigen Beschrei-

1) Dem Anliegen dieses Buches entsprechend halten wir hier das Wesentliche dieser neuen Be-
griffsbildung in Form einer Erkldrung fest. Die im Abschnitt 2.3.1.2. folgende Prizisierung trégt fiir
unsere Belange weiterfiihrenden Charakter und ist fiir das Verstehen der iibrigen Abschnitte nicht
unbedingt erforderlich.
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bung des Versuches eingefiihrte ZufallsgroBe einen Wert aus dieser Menge annimmt. Die
Gesamtheit dieser Wahrscheinlichkeiten bezeichnen wir als die Wahrscheinlichkeitsvertei-
lung (oder Verteilung) der ZufallsgroBe. Durch die genannten Wahrscheinlichkeiten wird
festgelegt, wie die gesamte ,Wahrscheinlichkeitsmasse“ 1 auf der Zahlengeraden verteilt
ist.
Von zentraler Bedeutung sind hierunter Wahrscheinlichkeiten der Form

P(X < 1) (¢ beliebig reell).
Definition 2.24: Die Funktion

Fy(t)=PX<1) (2.51)
der reellen Variablen t bezeichnen wir als Verteilungsfunktion der Zufallsgrifie X.

Zur Bestimmung dieser Wahrscheinlichkeiten P(X < t) gehen wir folgendermaBen vor:

Fiir ein beliebiges festes reelles ¢, wihlen wir aus dem Ereignisfeld € das zufillige Er-
eignis 4 aus mit der Eigenschaft, daB die ZufallsgroBe X genau dann einen Wert aus dem
Intervall (— o, t,) annimmt (X < t,), wenn das zufillige Ereignis 4 eintritt. Nach dem
Axiom 1 haben wir aber diesem Ereignis 4 die Wahrscheinlichkeit P(4) zugeordnet.!)
Wir setzen schlieBlich

P(X<t):=P(A4). (2.52)
Zur Verdeutlichung betrachten wir die im Beispiel 2.30 eingefiihrte ZufallsgroBe

Xi= 1, falls das Ereignis 4 eintritt,
"0, falls das Ereignis B eintritt.

Wir erhalten z.B. fur 7= 10,5
Fy(0,5):=P(X<0,5):=P(B)=1/2

oder fir t,=2
Fy(2)==P(X<2):=P(AUB)=P)=1.

Entsprechend setzen wir
P(X=0)=P(B)=1/2

und
P(X=1)=P(4)=1/2.

Damit erhalten wir andererseits
Fy(0,5) = P(X<0,5)=P(X=0)

und
Fr(2) =PX<2) =PX=0+PX=1).

DaB wir mit Hilfe der Verteilungsfunktion alle uns interessierenden Wahrscheinlich-
keiten berechnen konnen, wollen wir uns verdeutlichen, indem wir Wahrscheinlichkeiten
der Form

P(h=X<1)

bestimmen. Fiir zwei beliebige feste reelle Zahlen ¢, < t, betrachten wir folgende zufillige
Ereignisse:

1) Durch die im Abschnitt 2.3.1.2. getroffene Festlegung ist gesichert, daB ein solches Ereignis 4
und damit die Wahrscheinlichkeitsverteilung der ZufallsgroBe stets existiert.

D.2.24
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Ereignis 4 ... ,X < t,%,
Ereignis B ... , X < t;,
Ereignis C... ,t; = X < t,“.

3 3 ! Bild 2.11. Zur Berechnung
¢ ¢ von P(t, = X< t)

Wie wir Bild 2.11 entnehmen, gilt
A=BuC mit BnC=40.
Unter Anwendung des Axioms 3 erhalten wir
P(4)=P(B) + P(C)
und damit
P(C)=P(A) - P(B).
Im Ergebnis kommen wir somit zu der Beziehung
Ph=sX<t)=PX<t)-PX<t)=F(ty— F(t). (2.53)
Wir sehen hieran, daB die gesuchte Wahrscheinlichkeit eindeutig durch die Verteilungs-
funktion Fy(#) bestimmt ist.
2.3.2.2. Diskrete ZufallsgroSen
Wie wir schon im Abschnitt 2.3.1.1. angedeutet hatten, gehen wir aus von folgender

D.2.25 Definition 2.25: Eine ZufallsgroBe nennen wir diskret, wenn ihr Wertebereich eine endliche
oder hichstens abzdhlbare Menge ist.

Am Beispiel 2.29 (vgl. S. 34) werden wir auf dem im Abschnitt 2.3.2.1. angegebenen
Weg die Verteilungsfunktion einer diskreten ZufallsgroBe bestimmen.

Beispiel 2.29: Auf eine Zielscheibe werden unabhéngig voneinander 4 Schiisse abgegeben.
Die Treffwahrscheinlichkeit betrage fir jeden SchuB 1/2. Es sei X die zufdllige Anzahl
der Treffer bei 4 unabhédngigen Schiissen.

Als Werte der ZufallsgroBe X erhalten wir

x=0, %=1, x3=2, x4=3 und x5=4.

Zur Bestimmung von Fy(t) greifen wir einige spezielle Werte von t heraus und erhalten:
F(-1)=PX<-1)=0,
F(0) =PX<0)=0,

Fx(0,5) =P(X<0,5=PX=0)= 11_6’

F(1) =PX< 1)=P(X=O)=%,
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F(1,5) =PX<15)=

FQ2) =PX<2)=PX=0+PX=1=

PX=0)+PX=1)=

41

F(2,5) =P(X<25)=PX=0+PX=1)+PX=2)= 16’

F®) =P(X<3)=PX=0)+P(X=1)+PX=2)=1r,

Fx@3,5)

Fy(4) =PX<4=

Fr(4,1)

+PX=2)+PX=3)=

+PX=2)+PX=3)=

+PX= 4)—

=P(X<35)=

=P(X<4l)=

PX=0)+PX=1)

P(X=0)+ P(X= 1)

4.1
16

P(X=0)+P(X=1)+P(X=2)+P(X=3)

4

16 =1.

SchlieBlich kommen wir fiir beliebige ¢ zu der in Bild 2.12 dargestellten Funktion
Fy(t) = P(X < 1) in der Form

1)

[N

T T T T T T

Fx(t) =<

-

]

0
1

16

5

%
1

16
15

16

1

fur

fir

fuir

fiir

fir

fiir

t=0,

0<t=1,
1<t=s2,
2<t=3,

3<t=4,

t>4.

Bild 2.12. Verteilungsfunktion
Fx(t) aus Beispiel 2.29

Aus Bild 2.12 erkennen wir folgende Eigenschaften der Verteilungsfunktion einer diskre-

ten ZufallsgroBe:
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1. Fy(t) ist fiir alle reellen t definiert, d. h., der Definitionsbereich ist das Intervall (— o,
+ ),
2. Der Wertebereich liegt im Intervall [0, 1], d.h., es gilt

0= F(n=1. (2.54)
3. Es gilt
lim Fy(1)=0 (2.55)
und o
,ETm Fy()=1. (2.56)

4. Fy(t) ist eine monoton nichtfallende (aus t, < ¢, folgt Fy(,) < Fx(t;)) Treppenfunk-
tion.
5. Fy(?) ist linksseitig stetig, d.h., es gilt

lim Fx(t— h) = Fx(1) 2.57)
h—+0
fiir alle reellen .

Bei der Bestimmung von Fy(¢) im Beispiel 2.29 haben wir die Wahrscheinlichkeiten
P(X=0), PX=1), ..., P(X = 4) benutzt.

Definition 2.26: Ist X eine diskrete Zufallsgrifie mit den Werten x,, x,, ..., so bezeichnen wir
p=PX=x) (i=12,..)

als Einzelwahrscheinlichkeiten der Zufallsgrifie X.
(P(X = x) wird auch als Wahrscheinlichkeitsfunktion der Zufallsgrifie X bezeichnet.)

Einen Eindruck von der Wahrscheinlichkeitsverteilung einer diskreten ZufallsgroBe ge-
winnen wir, indem wir die Einzelwahrscheinlichkeiten in einer Verteilungstabelle wie in
Tab.2.1 oder graphisch wie in Bild 2.13 fiir das Beispiel 2.29 darstellen.

Pi

Bild 2.13. Graphische Darstellung
| der Einzelwahrscheinlichkeiten der
q 17 2 3 4 x; ZufallsgroBe X aus Beispiel 2.29

Tabelle 2.1: Verteilungstabelle der ZufallsgroBe X aus Beispiel 2.29

x | 0 | 1| 2 | 3 | 4
slslsl&]3
i 16 16 16 16 16

Priifen Sie unter Anwendung der Axiome der Wahrscheinlichkeitsrechnung folgende
Eigenschaften der Einzelwahrscheinlichkeiten nach:

1L ospsl, @58)
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™o

n=1. (2.59)

i

1

SchlieBlich haben wir am Beispiel folgenden Zusammenhang zwischen der Vertei-
lungsfunktion und den Einzelwahrscheinlichkeiten verifiziert:
1. Durch Vorgabe der Einzelwahrscheinlichkeiten ist die Verteilungsfunktion einer dis-
kreten ZufallsgroBe eindeutig bestimmt:
F()=Y P(X=x) (2.60)
xi<t

(hierbei summieren wir iiber alle i mit der Eigenschaft x; < ¢).

2. Die Unstetigkeitsstellen der Verteilungsfunktion einer diskreten ZufallsgroBe sind
die Werte x;, x,, ... An der Stelle x; (i=1, 2, ...) erfdhrt Fy(#) einen Sprung der Hohe
p; = P(X =x;). Wir bezeichnen deshalb die Werte x;, x,, ... auch als Sprungstellen und
die entsprechenden Einzelwahrscheinlichkeiten p;, p,, ... als SprunghShen.

Damit erhalten wir bei vorgegebener Verteilungsfunktion die Einzelwahrscheinlichkei-
ten eindeutig aus der Beziehung

pi=PX=x)= lim Fy(x;+h)— Fy(x;) fur i=12,...
h—+0
Wir sehen hier, daB ein Wert einer diskreten ZufallsgroBe dadurch gekennzeichnet ist,
daB die Verteilungsfunktion an dieser Stelle einen positiven Zuwachs erféhrt.

Anmerkung: Die Werte der Verteilungsfunktion einer diskreten ZufallsgroBe an den
Sprungstellen lassen sich rekursiv aus

Fx(x) =0, Fy(x;)=Fx(x;i-)) +pi-y fur i=2,3,... (2.61)

berechnen. Diese Rekursionsformel ist Ausgangspunkt fiir die rechentechnische Behand-
lung von (2.60).

2.3.2.3. Stetige ZufallsgroBen

Wir wenden uns nun der Behandlung von ZufallsgroBen mit iiberabzéhlbar vielen Wer-
ten zu. Dieser Fall liegt z. B. dann vor, wenn der Wertebereich ein Intervall der reellen
Zahlengeraden oder die gesamte Zahlengerade ist.

Unter diesen nichtdiskreten ZufallsgroBen interessieren wir uns besonders fiir die
Klasse der stetigen ZufallsgroBen.

Definition 2.27: Eine ZufallsgroBe X nennen wir stetig, wenn es eine integrierbare Funktion
fr(x)20, —wo<x<+tw, (2.62)
derart gibt, daf3 sich die Verteilungsfunktion Fy(t) = P(X < t) fiir alle reellen t in der Form

Fe(0) = [ fu(x)dx 2.63)

darstellen 1dft.
Die Funktion fx(x), von der wir fordern, daf

J AGydx=1 .64)

ist, bezeichnen wir als Dichtefunktion von X.

D.2.27
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Ausgehend von der geometrischen Deutung des Integralbegriffs erhalten wir Fy(¢) als
Flicheninhalt der Fldche zwischen der Kurve fy(x) und der Abszissenachse in den Gren-
zen —o und ¢ (s.Bild 2.14).

felx)

R(h=PX<t)

Bild 2.14. Geometrische Deutung
des Zusammenhangs zwischen Dichte-
und Verteilungsfunktion

Uberzeugen Sie sich selbst, daB die durch die Darstellungsformel (2.63) gegebene Ver-
teilungsfunktion einer stetigen ZufallsgroBe folgende Eigenschaften besitzt:

1. Der Definitionsbereich von Fy(t) ist das Intervall (— o, + ).

2. Der Wertebereich ist das Intervall [0, 1], d.h., es gilt

0=sFK@=1. (2.65)
3. Es ist
lim Fy(t)=0 (2.66)
(oo
und
lim Fy()=1. (2.67)
e

4. Fx(t) ist eine monoton nichtfallende Funktion
(aus t, < t, folgt Fy(t)) = Fx(,)).
5. Fy(?) ist stetig, d.h., fir alle reellen ¢ gilt
}'in‘lj Fy(t+ h)=Fy(t). (2.68)

Da Fy(t) gemaB (2.63) eine Stammfunktion der Dichte fy(x) ist, erhalten wir nach dem
Hauptsatz der Differential- und Integralrechnung aus Formel (2.53) fir t, < t,

P(tyS X< 1)) = Fy(ty) — Fy(ty) = [ fu(x) dx. 2.69)

Somit kénnen wir gemiB Bild 2.15 die Wahrscheinlichkeit dafiir, daB die ZufallsgroBe X
einen Wert aus dem Intervall [t,, t,) annimmt, als Fliche zwischen Dichtefunktion und
Abszissenachse in den Grenzen t; und ¢, interpretieren. Wir setzen nun ¢, =t und t, =t
+ At und betrachten den Grenziibergang At— 0. Dabei erhalten wir

P(X=1t)= lim Pt=X<t+At)
At—+0

t+At

= lim (Fy(t+ A0 - ()= lim [ fi(x)dx=0.
At—+0 At—>+0

Fiir eine stetige ZufallsgroBe X verschwinden folglich alle Wahrscheinlichkeiten der Form
P(X = t), obwohl die Ereignisse ,X = t“ nicht mit dem unmoglichen Ereignis zusammen-
fallen miissen.
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e x)

PltsX<t+dt)=df(t)=f () dt
|

Bild2.15. Geometrische Deutung
der Wahrscheinlichkeit
P(h=sX<t)

und des Wahrscheinlichkeits-

4 thdt t X
Ist ¢ eine Stetigkeitsstelle der Dichtefunktion, so gilt nach dem Hauptsatz der Differen-
tial- und Integralrechnung:

t+ AL

1
lim J frx)dx = f(0).

Daraus erhalten wir

t+ At

- lim L _ i XA~ (1)
S = lim - f frl)dx = lim v
CdR() . PUsX<t+An
BT T U S VR @7

Bei vorgegebener Verteilungsfunktion ist die Dichtefunktion einer stetigen ZufallsgroBe
somit eindeutig in ihren Stetigkeitsstellen bestimmt und dort gleich der ersten Ableitung
der Verteilungsfunktion.

Wir wollen hier hervorheben, daB fy(#) selbst keine Wahrscheinlichkeit darstellt.

Erst durch formale Umstellung der Beziehung (2.70) erhalten wir das sog. Wahrschein-
lichkeitselement der Stelle ¢

P(t=X<t+de)=dFy(t) = fx(t) dt, @.71)

womit wir die Wahrscheinlichkeit dafiir bezeichnen wollen, daB die ZufallsgréBe X einen
Wert aus der infinitesimalen Umgebung [¢, ¢ + df) der Stelle ¢ annimmt (vgl. auch
Bild 2.15).

2.3.2.4. Beispiele

Beispiel 2.33: Eine automatische Anlage produziert nacheinander bestimmte Teile. Die
Wabhrscheinlichkeit dafiir, daB ein beliebiges produziertes Teil brauchbar ist, sei
p(0<p<1).1-p=gqist dann die Wahrscheinlichkeit dafiir, daB ein Teil AusschuB ist.
Die einzelnen Teile sollen unabhingig voneinander produziert werden. Nach der Produk-
tion eines unbrauchbaren Teils wird die Arbeit unterbrochen. Zu untersuchen ist die Zu-
fallsgroBe X := zufillige Anzahl der bis zur ersten Unterbrechung produzierten Teile.

Zu bestimmen sind die Verteilungstabelle und die Verteilungsfunktion Fx(t).

Lisung: 1. Wir betrachten folgende Ereignisse:
A; ... ,Das erste Produkt ist AusschuB“,
A, ... ,Das zweite Produkt ist AusschuB,

Ay ... ,Das k-te Produkt ist AusschuB“.
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Laut Aufgabenstellung sind die Ereignisse 4, (k =1, 2, ...) unabhingig, und es gilt
P(4)=1-p und P(4)=p fir k=1,2,...
2. X besitzt die Werte 1, 2, 3, ... GemaB Abschnitt 2.3.2.1. erhalten wir
P(X=1):=P(4)=gq
{’(X= 2)=P(4,n 4,) = gp, 1)
}.’(X= k)=PA,n...0 A0 A)=qp* L.
Damit kommen wir zu folgender Verteilungstabelle:
k [1]2 |3 |..|k | ..
=PX=K|qla|w|. . [a ] .

mit p, = P(X=k) = gp* "' >0 fiir k =1, 2, ... Damit ist die Beziehung (2.58) erfiillt.
Zur Bestatigung der Eigenschaft (2.59) benutzen wir die Formel fiir die unendliche geo-
metrische Reihe und erhalten:

P(X=k)= qu =gy ""=ql+:l.

[\/]a

k

]
=S
[]

3. GemiB Formel (2.60) bestimmen wir die Verteilungsfunktion:
F()=P(X<1t)=) qp*~ 1.
k
k<t

Beispiel 2.34: Fiir welchen Wert der Konstanten a ist
K =—"—, —®<x<+e
X 1+x2° B

die Dichtefunktion einer stetigen ZufallsgroBe X? Gesucht ist auBerdem
F(t)=P(X<1).

Losung: 1. Aus der Eigenschaft (2.62) folgt a > 0.
2. Wir betrachten die Forderung (2.64) und erhalten

+o

re
1=.I fx(x)dx=7J- -rf;z—dx

=alim (arctan x|°,) = a [lim arctan ¢ — lim arctan (—b)]
b co® b

o

3. Nach Formel (2.63) berechnen wir Fy(t):

1 1
=+ —arctant, — <t too,
1+x2 2 ’

A

Eo=7 [ 15
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Beispiel 2.35: Es ist zu zeigen, daB

_[ie™* fir x>0,
Fulx) = {0 fir x=0

die Dichtefunktion einer stetigen ZufallsgroBe X ist. Gesucht sind auBerdem die Vertei-
lungsfunktion Fy(#) und die Wahrscheinlichkeit P(1 = X <2).

Losung: 1. (2.62) ist erfiillt.
2. Wir iiberpriifen (2.64):

@>0) 2.73)

+o 0 o
[ fxydx= [0dx+ [ de>dx= lim (—e~¥(g)
Bl —w 0 o tw

=—lime*+e=0+1=1.

e 4o

3. Bei der Bestimmung der Verteilungsfunktion gemédB (2.63) miissen wir eine Fall-
unterscheidung vornehmen:

1. Fall: 1= 0:

Fe()= [ fex)dx= [0dx=0.

2.Fall: t>0
t 0 t
()= [ fux)dx= [0dx+ [Ae™dx=—eb|j=1-¢".
"o B 0

Damit erhalten wir

_[1-e* fur t>0,
FX(1)7{0 fur ¢+=<0.
4. Nach der Formel (2.53) bekommen wir
PAl=sX<2)=FKQ-FKl=1-e¥%-(1-eH)=et-e

In Bild 2.16 sind Dichtefunktion und Verteilungsfunktion der in diesem Beispiel behan-
delten ZufallsgroBen dargestellt.

f(x)
A
X
Bl
] S
Bild 2.16. Dichte- und Verteilungs-
funktion der ZufallsgréBe X
aus Beispiel 2.35
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2.3.2.5. Zusammenfassung

Die bisherigen Ergebnisse iiber die Wahrscheinlichkeitsverteilung einer ZufallsgroBe
wollen wir in Tabelle 2.2 zusammenfassend darstellen.

Tabelle 2.2
diskrete ZufallsgroBe stetige ZufallsgroBe
hochstens abzihlbar viele Werte iiberabzihlbar viele Werte
Einzelwahrscheinlichkeiten p; Dichtefunktion fy(x)
pi=PX=x) (i=12,..), fr(x)dx=P(x=X<x+dx),
O=p=1, felx) 20,
Yo=1 J Anax=1
i=1 e
Verteilungsfunktion
E(W =Y pi Fx(t)=P(X< 1) Fe(0)= [ fi(x)dx
n<t —© < oo, o
0=F(ns=s1,
lim Fy(t)=0,
o>
lim Fy() =1,
(> te
Fx(t) — monoton nichtfallend,
Fx(t) — wenigstens links-  Fy(f) — wenigstens Fy(1) - stetig
seitig stetige linksseitig stetig
Treppenfunktion
P(h=X<t) P(h=X<t) Pti=X<t)
= Z X = Fx(t)) — Fx(t)) 2
D; X X
7 = I fr(x) dx
nsxi<t i
pi= hlimo Fy(x; + h) = Fx(x;) Si(x) = Fy(x)

2.3.3. Kennwerte der Wahrscheinlichkeitsverteilung einer ZufallsgroBe

In den vorhergehenden Abschnitten haben wir gesehen, daB die Verteilung einer Zu-
fallsgroBe durch ihre Verteilungsfunktion oder die Dichtefunktion bzw. die Einzelwahr-
scheinlichkeiten im stetigen bzw. diskreten Fall vollstindig bestimmt ist.

Wichtige Informationen iiber eine Verteilung — wenn auch in der Regel keine vollstin-
dige Beschreibung — liefern uns bestimmte Kennwerte (Parameter).

2.3.3.1. Der Erwartungswert
Hiufig begegnen uns GroBen folgender Art:
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»,Das monatliche Durchschnittseinkommen einer Familie“
,Die mittlere Laufzeit eines PKW-Reifens“

Von unseren Vorstellungen iiber derartige ,Mittelwerte“ abstrahierend gelangen wir zum
Begriff des Erwartungswertes einer ZufallsgroBe, mit dem wir ein gewisses Zentrum be-
zeichnen, um das sich die Werte der betrachteten ZufallsgroBe gruppieren.

Dazu gehen wir von folgenden Uberlegungen aus:

Bei n Messungen seien s verschiedene MeBwerte x; (i =1, ..., 5) mit den absoluten

Hiaufigkeiten A; <i =1,..,s; Z hi= n) aufgetreten:
i=1

MeBwerte X x| x| | %

absolute Haufigkeiten #&; | hy | hy | | h,

Zur Auswertung einer solchen MeBreihe berechnen wir héufig als Kennwert das arithme-
tische Mittel

:E=%(x1hl+ 4 ) = Hy + .+ xH,,

h; . . .
wobei H; = o (i=1, ..., s) die relative Hdufigkeit') des MeBwertes x; ist.

Unter Beriicksichtigung des im Abschnitt 2.2.1. angedeuteten Zusammenhangs zwi-
schen relativer Haufigkeit und Wahrscheinlichkeit kommen wir zu folgender

Definition 2.28: Ist X eine diskrete Zufallsgrifie mit den Werten x; und den Einzelwahrschein- 1D.2.28
lichkeiten p;=P(X=x;) (i=1,2,...), so nennen wir

E(X):= Z; xpi (2.74)

den Erwartungswert (oder die mathematische Erwartung) der ZufallsgraBe X, falls

Z‘xill’.‘< d
i=1

ist. Ist diese Bedingung der absoluten Konvergenz der Reihe (2.74) nicht erfiillt, so existiert kein
Erwartungswert.

Hinweis: Welche Analogien zum Begriff des Massenschwerpunktes eines Systems von
Punktmassen lassen sich erkennen?

Wir setzen die Behandlung der Beispiele 2.29 (vgl. S. 40) und 2.33 (vgl. S. 45) mit der
Berechnung der entsprechenden Erwartungswerte fort.

Beispiel 2.29:
4 6 4 1

1
E(X)—O‘E+I'TG‘+2'1—6*+3'~1—6'+4'F—

SchieBt also ein Schiitze in Serien von je 4 SchuB auf eine Zielscheibe, so wird er im Mit-
tel in jeder Serie 2 Treffer verzeichnen konnen.

2.

') GemiB der im Abschnitt 2.2.1. eingefiihrten Symbolik entspricht H; der relativen Haufigkeit
H, ({X = x;}) des zuf. Ereignisses {X = x;} ... ,Die ZufallsgroBe X nimmt den Wert x; an“ in n Versu-
chen. Zur Vereinfachung wurde von dieser Symbolik abgewichen.

4 Beyer, Wahrscheinlichkeitsrechnung
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Beispiel 2.33:
PX=k)y=p'qg (k=1,2,..)

E(X)=1q+2pqg+3pq+ ...+ kp*~'q+...= ) kp*"'q

=q) kp*Tl=g ) kptl.
k=1 k=0
Zur weiteren Berechnung differenzieren wir die Potenzreihe

Yoxk=(1-x)"" fir |x|<1:
k=0

d (< \ < d
- xk)= ) kxkl=—-(1-x)1=(1-x)"2
dx(kz'o / k;o dx
Daraus erhalten wir
E(X)=q2kp""=q(l—p)"=%, da 1-p=gq ist
k=0

Fiir p =1/4 ist E(X) =4/3, d. h., der Erwartungswert einer diskreten ZufallsgroBe muB
nicht mit einem Wert dieser ZufallsgroBe zusammenfallen.
Der im Abschnitt 2.3.2.4. angedeutete Zusammenhang zwischen diskreten und stetigen
ZufallsgroBen bildet die Grundlage fiir die folgende Definition.
Definition 2.29: Ist X eine stetige ZufallsgriPe mit der Dichtefunktion fy(x), so bezeichnen wir
+o

EX) = | xfy(x)dx 2.75)

—w

als Erwartungswert (oder mathematische Erwartung) von X, falls das uneigentliche Integral
(2.75) absolut konvergent ist:

I 1%l A dx < .

Ist diese Bedingung nicht erfiillt, so existiert kein Erwartungswert.

Wir berechnen den Erwartungswert der im Beispiel 2.35 (vgl. S. 47) betrachteten Zu-
fallsgroBe X:

Beispiel 2.35:

=37 T XZo >0

+o 0 to
EX) = [ xfe(x)dx= [x-0dx+ [ xie-dx
- -® 0

+o
= lf xe > dx
0

s
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2.3.3.2. Die Varianz

Mit dem Erwartungswert haben wir ein gewisses Zentrum der Verteilung einer Zufalls-
groBe eingefithrt. Wir wollen nun mit einem weiteren Kennwert charakterisieren, wie
stark die Werte der ZufallsgroBe um den Erwartungswert streuen. Das gebrduchlichste
StreuungsmaB ist die mittlere quadratische Abweichung vom Erwartungswert, die sogenannte
Varianz.

Definition 2.30: Ist X eine Zufallsgrofle, so nennen wir
D*(X) = E[(X — E(X))] (2.76)
die Varianz (oder Dispersion) von X.

Die Grifie yD*(X) bezeichnen wir als Standardabweichung und den Quotienten

_AD(X)
V(X)= ED
wartungswert auf der rechten Seite von (2.76) existiert und E(X) # 0 ist.

Im diskreten Fall berechnen wir D%(X) = E[(X — E(X))?] gemiB (2.74) nach der Formel

als Variationskoeffizienten von X. Hierbei setzen wir voraus, daf3 der Er-

DHX) =}, (x;— m)*p;. @7
i=1
Im stetigen Fall erhalten wir entsprechend nach (2.75)
+o
DXX) = [ (x—m) fy(x)dx. @.78)

Dabei haben wir zur Abkiirzung m; := E(X) gesetzt. Eine ndhere Begriindung dieser For-
meln werden wir im Abschnitt 2.3.3.3. geben.

Betrachten wir nun einige Beispiele zur Berechnung der Varianz.
Nach der Aufgabenstellung im Beispiel 2.29 (vgl. S. 40 und 49) erhalten wir:

DXX) = Z (k=2 PX=Kk)=(0-2 ¢+~ 2)2'745
Q-2 —+ @2 e+ @-2fe=1.
Wir bestimmen D*(X) fiir das Beispiel 2.33 (vgl. S. 45 und 49):
(-4 o
1

(-2 )‘,,,H

Ma

DX(x) =

k

]
M

k

- k, 1
k(k—1)+k—-2—+—|gp*!

Zpwvri-aged]e

=quk(k—l)p"'2+<1—£>qzkp"'1+l2p""
k=1 9/ k=1 q k=1

= @21-p) 3+ (1 —%) a-p)t+ 1 -p)"

D.2.30
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2 1
P

[
N
-:N|-§,

1
+=—
q

Hierbei benutzten wir die 1. und 2. Ableitung der Potenzreihe Z xk=(1-x)"!
fir |x|<1 £=0

i - k = S k-1 — i - -1= — -2
dx k;)x ,‘Z:l e dx I=x07=0-x)
und

2 2 hd 2
£ Y oxk= Y k(k- 1)x"’2=%(1 -x)1=2(1-x)"

SchlieBlich ergibt sich im Beispiel 2.35 (vgl. S. 47 und 50):
+o )
p(x) = [ (x - i) Je~*dx
1 i
+o

= /IJ' xle *dx -2 ]. xe #dx + %_[ e ™dx.
0 0 0

Durch partielle Integration erhalten wir hieraus

D’(X)=% und V(X)=1/% (%_1:1.

Im Abschnitt 2.3.3.4. werden wir Erwartungswert und Varianz in eine umfassendere
Klasse von Kennwerten einordnen und Regeln fiir das Rechnen mit diesen Kennwerten
zusammenstellen. Dafiir schaffen wir mit der folgenden Behandlung von Funktionen von
ZufallsgroBen die ndtigen Voraussetzungen.

2.3.3.3. Der Erwartungswert von Funktionen einer Zufallsgrofe

Hiufig begegnen uns ZufallsgroBen Y, die vermoge einer gegebenen Funktion g aus
einer anderen (im allg. leichter zugénglichen) ZufallsgroBe X hervorgehen:

Y=g(X).

Welche Informationen iiber Y konnen wir aus der Wahrscheinlichkeitsverteilung von X
erhalten? Dazu betrachten wir das folgende einfache

Beispiel 2.36: X sei die zufillige Wegstrecke, die ein Gabelstapler bei der Erledigung eines
Transportauftrages zuriicklegen muB. Zum Durchlaufen einer Wegeinheit werden 4 Zeit-
einheiten ben6tigt. Dann ist Y = 4X die zufillige benétigte Zeit.

Nun sei X eine diskrete ZufallsgroBe mit der Verteilungstabelle

und der Verteilungsfunktion
0 fur t<2,

Fy(t)= fir 2<r=4,

— A=

fur 4<zt.
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Mit Hilfe der einfachen Umformungen

P(X=x)=P@4X=4x)=P(Y=4x)=P(Y=y)
(i=1,2) bzw.

Fy(t)=P(Y<1)= P@X< 1) = P(X< 7’) - F,,(T')
erhalten wir fiir Y =4X die Verteilungstabelle

Vi 8 |16

11]3

P(Y=y) 7|7

und die Verteilungsfunktion

0 fur t= 8,

Fy(t)= fir 8<t=16,

1

4

1 fur 16<¢t.

GemiB Formel (2.74) berechnen wir den Erwartungswert von Y:
E(Y) =y P(Y=y) +y, P(Y=y)=8P(Y=8) + 16P(Y = 16)

=8P(X=2)+16P(X=4)= 8~%+ 16-%= 14.
An diesem Beispiel konnen wir folgende Berechnungsformeln fiir den Erwartungswert
E[g(X)] einer Funktion Y = g(X) einer ZufallsgroBe X verifizieren:
Ist X eine diskrete ZufallsgroBe, so erhalten wir

E(Y)=E[g(X)] =Y g(x) P(X=x). 2.79)
i=1

Analog gilt im stetigen Fall
b
E(Y)=E[g(X)]= f g(x) fx(x)dx. (2.80)

Hierbei setzen wir voraus, daB dieser Erwartungswert existiert.

Beide Formeln zeigen, daB wir zur Berechnung des Erwartungswertes der ZufallsgroBe
Y = g(X) nur die Kenntnis der Wahrscheinlichkeitsverteilung von X (hier in Form der
GroBen P(X = x;) bzw. fy(x)) bendtigen.

Es sei noch darauf hingewiesen, daBl im allgemeinen die Beziehung E(g(X)) = g(E(X))
nicht gilt. Fiir die ZufallsgroBe X mit der Dichtefunktion

folx) = xAte™™ fir x>0, 1>0,
¥ 0 fir x=0
gilt z. B.
E(X) = Jxxize’“dx =2 Oj xle~#dx =%

und fiir Y= g(X) =LX
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E ). j:lxlze""dx =2 j:e""dx =4A.
X) 7 x 0

Auf die Moglichkeiten zur Bestimmung der Wahrscheinlichkeitsverteilung der Zufalls-
groBe Y = g(X), die iiber die im Beispiel 2.36 angedeutete Vorgehensweise hinausgehen,
konnen wir in diesem Rahmen nicht eingehen. Informieren Sie sich dariiber in [3].

Auf einige wichtige Regeln fiir das Rechnen mit Erwartungswerten fithren uns die fol-
genden Beispiele zu (2.79) und (2.80).

Beispiel 2.37: Bei der Definition der Varianz gemiB (2.76) benutzten wir die Funktion
Y= (X - m)? mit m;:= E(X). (2.77) bzw. (2.78) ist also eine Anwendung der Formel
(2.79) bzw. (2.80).

Beispiel 2.38: Wir betrachten die diskreten ZufallsgroBen X und Y=aX + b (a, b kon-
stant). Hat X die Werte x;, x,, ... und die Einzelwahrscheinlichkeiten p,, p,, ..., so erhal-
ten wir nach (2.79)

E¥)=Y (ax+bp=a)y xp+b). p
i=1 i=1 i=1

=aZx,-p,-+ b-1 (wegen Zp,-=1)
i=1 i=1

und damit (falls E(X) existiert)

E(@X+b)=aE(X)+b. (2.81)
Fiir a = 0 entsteht hieraus
E(b)=b. (2.82)

Fiihren Sie selbstéindig den Beweis der wichtigen Beziehung (2.81) fiir den stetigen Fall
durch!

Beispiel 2.39: Es sei Y= [(aX + b) — E(aX + b)]* (a, b konstant).
Dann ist E(Y) = D*(aX + b) gemiB (2.76). Unter Anwendung von (2.81) erhalten wir

Y=[aX+b— (aE(X) + b)*=[aX — aE(X)]* = a’[X - EX)}
=a[X-m]P mit m:=EX).

Damit wird nach (2.81) und (2.76)

E(Y) = E[a*(X — m)’] = ’E[(X — m)"] = a’D*(X)
und somit

D*(aX + b) = a®’D*(X) (2.83)
(vorausgesetzt, daB D*(X) existiert). Fiir a = 1 erhalten wir

D¥(X + b) = D¥(X). (2.84)
Der Fall a =0 liefert die Beziehung

D*(b) =0,
d.h., die Varianz einer Konstanten ist null.
Beispiel 2.40: X sei eine ZufallsgroBe, fiir die

EX)=m; und D*X)=0d2 (a?%0)
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existieren. Wir betrachten die Funktion

=g =22 285

Die Formeln (2.81) und (2.83) mit a =% und b=- % liefern

1 1 1
E(Y) =;E(X) —gm =;(m1— my) =0
und
1 a’
DZ(Y)=7D2(X)=7= 1.

Hiermit haben wir die Moglichkeit, einer ZufallsgroBe X eine zugehorige in gewissem
Sinne standardisierte ZufallsgroBe Y zuzuordnen.

Definition 2.31: Eine ZufallsgriPe Y nennen wir standardisierte ZufallsgroBe, falls D.2.31
E(Y) =0

und
DX(Y)=1

gilt. Die durch die Formel (2.85) definierte Transformation bezeichnen wir als Standardisie-
rung der Zufallsgrofe X.
2.3.3.4. Momente einer ZufallsgroBe

Erwartungswert und Varianz sind Vertreter einer umfassenderen Klasse von Kenn-
werten, der sog. Momente.

Definition 2.32: Ist X eine beliebige Zufallsgrafe, so bezeichnen wir
my = E(X*)
als das (gewohnliche) Moment k-ter Ordnung (k =1, 2, ...).})
Nach (2.79) und (2.80) erhalten wir folgende Berechnungsformel:

D.2.32

> X, falls X diskret ist;
m = ': (2.86)
| xfu(x)dx, falls X stetig ist.

Wie wir sehen, ist der Erwartungswert E(X) einer ZufallsgroBe X das Moment 1. Ord-
nung.

Definition 2.33: y, := E[(X — m,)*] nennen wir das zentrale (auf das Zentrum m, = E(X) be- D.2.33
zogene) Moment k-ter Ordnung (k =1, 2, ...).})

Stellen Sie selbstindig die zu (2.86) analogen Berechnungsformeln auf!
Das zentrale Moment 2. Ordnung einer ZufallsgroBe X ist die Varianz D*(X).

Die zentralen Momente lassen sich durch die gewhnlichen Momente ausdriicken und
umgekehrt. Wir zeigen dies fiir die Ordnung k = 2:

D*(X) = E[(X — m))’]

') Wir setzen hierbei voraus, daB die angefiihrten Erwartungswerte existieren.
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=E[X?-2mX+ m}]
=E(X?» - 2mE(X) + m}
=my—2ml+ m?
=m,—m?.
Die hier erhaltene Beziehung
DXX) =m, — m{ = E(X?) - [EQDP (2.87)
konnen wir oft vorteilhaft bei der Berechnung der Varianz benutzen. Bestitigen Sie selbst
unter Benutzung von (2.79) und (2.80) die hier verwendete Relation:
E(X*+aX+b)=E(X?+aE(X)+b.

AbschlieBend wollen wir noch folgendes anmerken:
In den Abschnitten 2.3.3.1. bis 2.3.3.4. spielte der Begriff des Erwartungswertes eine zentrale Rolle.
Diesen Begriff flihrten wir gesondert fiir diskrete und stetige ZufallsgroBen ein. Mit Hilfe des Stielt-
jes-Integrals (s.Band 2) konnen wir den Erwartungswert einer beliebigen ZufallsgroBe X mit der Ver-
teilungsfunktion Fx(f) = P(X < t) definieren:
‘o

EX):= [ tdFy().

Dabei setzen wir voraus, da
Yo

[ 11 dF(n) <
ist.

2.3.3.5. Zusammenfassung

Wir wollen die wichtigsten in den vorangehenden Abschnitten erhaltenen Ergebnisse
iiber die Momente in Form einer Tabelle zusammenfassend darstellen. Damit setzen wir
die Tabelle 2.2 aus 2.3.2.5. (S. 48) fort und benutzen die dort verwendete Symbolik.

Voraussetzungen:

— Die angefiihrten Momente existieren, d. h., die entsprechenden Reihen bzw. Integrale
sind absolut konvergent.

— a und b sind beliebige reelle Konstanten.

Tabelle 2.2 (Fortsetzung)

diskrete ZufallsgroBe [ stetige ZufallsgroBe

Erwartungswert
o

EX) = [ xfy(x)dx

EX)= Y xp,
i=1

Erwartungswert einer
Funktion g(X)

E@X) =Y gx)pi | E(g(X) = f g(x) fx(x)dx
i=1
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Tabelle 2.2 (Fortsetzung)

diskrete ZufallsgroBe stetige ZufallsgroBe

E@X+b)=aEX)+b

E(b)=b
Moment k-ter Ordnung
(k=1,2,..)
® my = E(X%); +o
m=Y xp m = ECX) me= [ x*fx(xdx
i=1 o ! =

zentrales Moment k-ter
Ordnung (k=1,2, ...)
= El(X — E(X))

+o

El(X - EQ)H = Y (x,— m)*p, E[(X - EX)M= [ (x = m)*fy(x)dx
i=1 -

Varianz

D*(X):=E[(X - E(X))]

DX(X) = my— mi = E(X) - [E(DP
D*(aX + b) = a’D¥(X)

D¥b)=0

I

Standardisierung der
ZufallsgroBe X

[m, = E(X),* = D¥(X) +0]
Y= X-m

o
[E(M=0,D(V)=1]

2.3.3.6. Einige weitere Kennwerte

Neben den bisher behandelten Momenten einer ZufallsgroBe werden (vor allem in der
mathematischen Statistik) hdufig folgende Kennwerte angewandt:

1. Quantile

Definition 2.34: Ist p eine beliebig reelle Zahl (0 < p < 1), so heif}t eine Zahl Q, mit den Eigen- D.2.34
schaften

F(Q)=P(X<Q)=p

P(X>Q)=s1-p

Quantil der Ordnung p (oder p-Quantil) der Zufallsgriffe X. Das Quantil der Ordnung 1/2
wird als Median der Zufallsgrifie X bezeichnet.

Bei gegebenem p ist Q, durch die angefiihrten Ungleichungen nicht in jedem Fall ein-
deutig bestimmt (vgl. Aufg.2.19). Ist Fy(¢) streng monoton wachsend, so ist Q, bei beliebi-
gem p eindeutig bestimmt. In diesem Fall existiert also zu vorgegebenem Funktionswert
der Verteilungsfunktion Fy(Q,) = p eindeutig der zugehdrige Wert Q, des Argumentes
dieser Funktion. Veranschaulichen Sie diesen Sachverhalt durch eine Skizze!

Der Median Q,,; ist neben dem Erwartungswert ein weiterer Kennwert zur Charakteri-

und
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sierung des Zentrums einer ZufallsgroBe. Im Fall symmetrisch verteilter ZufallsgroBen
(P(X<m—x)=PX>m +x) fur 0= x < ) gilt m; = Q.

2. Absolutes zentrales Moment 1. Ordnung

Als Kennwert fiir die Streuung der Werte einer ZufallsgroBe X um ihren Erwartungs-
wert hatten wir das zentrale Moment 2. Ordnung benutzt. Das zentrale Moment 1. Ord-
nung liefert — wie in Aufgabe 2.17 zu zeigen ist — keine Information iiber die Eigenschaf-
ten einer ZufallsgroBe. Demgegeniiber stellt das absolute zentrale Moment 1. Ordnung
einen weiteren Kennwert fiir die Streuung einer ZufallsgroBe dar.

Definition 2.35: Der Erwartungswert der ZufallsgriBe Y =|X — m| wird als absolutes zentra-
les Moment 1. Ordnung bezeichnet:

E(|X - m)).
Wir setzen voraus, daB dieser Erwartungswert existiert.

3. Schiefe

Wie in der Aufgabe 2.18 am Beispiel einer stetigen ZufallsgroBe nachzuweisen ist,
nimmt das zentrale Moment 3. Ordnung fiir symmetrisch verteilte ZufallsgroBen den
Wert 0 an. Es kann deshalb zur Charakterisierung der Asymmetrie oder Schiefe der Ver-
teilung einer ZufallsgroBe herangezogen werden.

Definition 2.36: Das auf die dritte Potenz der Standardabweichung b zentrale M
3. Ordnung wird als Schiefe der Zufallsgrife X bezeichnet:
M3

3 mit py=E[(X—m)’] und o¢*=E[X-m)].

Wir setzen voraus, daB diese Momente existieren.

4. Exzef

Definition 2.37: Ist X eine Zufallsgrifie mit den Momenten o> = E[(X — m;)*] und
us= E[(X — my)*], deren Existenz vorausgesetzt wird, so heif3t

Ha
U43

ExzeB der Zufallsgrofe X.

Fiir die Normalverteilung, die wir im Abschnitt 2.3.6.3. behandeln werden, verschwin-
det der ExzeB. Wir kénnen ihn deshalb als MaB fiir die Abweichung der Verteilung von X
gegeniiber der Normalverteilung (mit gleichem Erwartungswert und gleicher Varianz) an-
sehen.

2.3.4. Aufgaben

2.12: In einer Werkstatt arbeiten unabhéngig voneinander zwei gleichartige Maschinen.
Jede dieser beiden Maschinen kann im Zeitintervall [0, 7) mit der Wahrscheinlichkeit p
ausfallen. Man bestimme die Verteilungstabelle der ZufallsgroBe X mit

X := Differenz zwischen der Anzahl der arbeitenden und ausgefallenen Maschinen
und iiberpriife die Eigenschaft (2.59).
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2.13: Gegeben sei *
0 fir x<0,
fri(x)=ja fir 0=sx=2,
0 fur x>2.

a) Welchen Wert muB die Konstante a annehmen, damit fy(x) Dichtefunktion einer
stetigen ZufallsgroBe ist?
b) Gesucht ist die Verteilungsfunktion von X.

2.14: Es sei X eine stetige ZufallsgroB8e mit der Dichtefunktion *

fe(x) =|x|e*.
Gesucht sind Fy(f) und PO X< 1).

2.15: Berechnen Sie den Erwartungswert der diskreten ZufallsgréBe X mit den Werten =
x;=0,x,=1, x3=2, ... und den Einzelwahrscheinlichkeiten

k
P(X=k) =%e‘2 (k=0,1,2,..).

2.16: Die Dichtefunktion einer stetigen ZufallsgroBe X sei durch *

0 fir x=1,
Sulx) = is fir x>1
X

gegeben. Bestimmen Sie
a) die Verteilungsfunktion Fy(t),
b) P1=X<2),
° EX),
d) D (X),
e) P(Xz E(X)).
2.17: Die ZufallsgroBe X besitze den Erwartungswert m, = E(X). Zeigen Sie, daB stets ~ *

m=EX-m)=0
ist!
2.18: Es sei X eine stetige ZufallsgroBe mit dem Erwartungswert m; = E(X). Die Dichte- *
funktion sei symmetrisch bzgl. m;:
fi(my = x) = fy(my+x) (VOsx< ).
Zeigen Sie:
1.P(X<m)=PX>m)=1/2;
2. 43 = E[(X - m)’1=0.

2.19: Die diskrete ZufallsgroBe X besitze die Verteilungstabelle: *
% [ -3 |0 [ 1 | 2 |
PX=x) | 01 | o015 | o1 | 025 | o4

Bestimmen Sie

a) die Verteilungsfunktion Fy(?),
b) P(X>0),

¢ E(X),

d) D¥(X).
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2.3.5. Einige spezielle diskrete Wahrscheinlichkeitsverteilungen

In diesem Abschnitt werden wir einige spezielle diskrete Wahrscheinlichkeitsverteilun-
gen untersuchen, die fiir die Beschreibung zahlreicher Problemstellungen von Bedeutung
sind.

2.3.5.1. Die Null-Eins-Verteilung

ZufallsgroBen mit einer Null-Eins-Verteilung benutzen wir zur Beschreibung zufilliger
Versuche, bei denen uns nur zwei Versuchsausginge — das Eintreten eines zufélligen Er-
eignisses A4 oder des komplementiren Ereignisses 4 — interessieren.

Beispiele hierfiir sind
— das Werfen einer Miinze (4... ,Zahl liegt oben“)
— das Priifen eines Produkts aus einem vorgegebenen Warenposten

(A... ,Das Produkt geniigt den Anspriichen®)

— die Inspektion einer technischen Anlage

(A4... ,Die Anlage ist funktionsfahig*)

- das Ziehen einer Kugel aus einer Urne mit M weiBen und N — M schwarzen Kugeln

(4... ,Die gezogene Kugel ist weiB“).

Zur zahlenmiBigen Beschreibung eines derartigen Versuchsschemas benutzen wir die
diskrete ZufallsgroBe
Xi= {1, falls A eintritt,
0, falls 4 eintritt,

mit den Werten 0 und 1.
Hat das zufillige Ereignis 4 die Wahrscheinlichkeit p, so erhalten wir
PX=1)=p und P(X=0)=1-p. (2.88)
Definition 2.38: Eine Zufallsgrifle X unterliegt einer Null-Eins-Verteilung mit dem Para-
meter p, wenn sie die Einzelwahrscheinlichkeiten (2.88) besitzt.
Die Verteilungstabelle der Null-Eins-Verteilung mit dem Parameter p hat damit fol-
gende Gestalt:
x| 0 1
pill-plp
Anstelle der beiden Werte 0; 1, die in der Regel aus ZweckmaBigkeitsgriinden bevorzugt
werden, konnten zwei beliebige reelle Zahlen gewdhlt werden. In diesem Sinne ist die

Null-Eins-Verteilung Spezialfall der sog. Zweipunktverteilung.
Als wichtigste Kennwerte berechnen wir Erwartungswert und Varianz.

E(X) =0-(1-p)+1-p=p, (2.89)
D¥X)=E(X) - [EX)P=p-p*=p(1-p). (2.90)

Beispiel 2.41: Aus einem Posten von insgesamt 500 Teilen, unter denen sich 5 AusschuB-
teile befinden, wird auf gut Gliick ein Teil entnommen und gepriift. Wir setzen

X := zufillige Anzahl der AusschuBteile bei Entnahme eines Teils

und erhalten nach der klassischen Definition der Wahrscheinlichkeit die Einzelwahr-
scheinlichkeiten

P(X=1)=%=0,01 und P(X=0)=%:0,99.
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Weiterhin ist

0 fur t=0,
Fy(t)=P(X<t)=140,99 fir 0<t=1,
1 fur 1<t

die Verteilungsfunktion von X und

E(X) =0,01,
D*(X) =0,0099.

2.3.5.2. Die Binomialverteil

Typische Beispiele fiir die hier zu behandelnden ZufallsgroBen sind

— die zufillige Anzahl der in einem bestimmten Zeitabschnitt ausfallenden Maschinen
von insgesamt 15 voneinander unabhingig arbeitenden Maschinen gleicher Bauart un-
ter der Annahme gleicher Einsatzbedingungen fiir alle 15 Maschinen;

— die zufdllige Anzahl der Treffer bei 20 voneinander unabhéngigen Schiissen gleicher
Treffwahrscheinlichkeit;

— die zufillige Anzahl der AusschuBiteile unter 100 voneinander unabhéngig produzier-
ten Teilen, wenn jedes produzierte Teil mit der Wahrscheinlichkeit 0,03 AusschuB ist.

Allen diesen Beispielen liegt das sog. Bernoullische') Versuchsschema zugrunde:

— Wir fihren n (n =1, 2, ...) voneinander unabhingige Versuche durch. In jedem dieser
Versuche interessieren uns nur zwei Versuchsausginge (das Eintreten eines zufdlligen
Ereignisses 4 bzw. des komplementdren Ereignisses A).

— Wir setzen voraus, daB die Wahrscheinlichkeit von 4 in jedem Versuch die gleiche
ist:

PA)=p (O0<p<l).
Ausgehend von diesem Versuchsschema untersuchen wir die ZufallsgroBe

X, = zufillige Anzahl der Versuche (von insgesamt n Versuchen), in denen 4
eintritt.

X, besitzt die Werte 0, 1, ..., n. Fiir n = 1 unterliegt X, einer Null-Eins-Verteilung.
Zur Bestimmung der Einzelwahrscheinlichkeiten von X,

P(X,=k) (k=0,1,...,n)
gehen wir zunéchst auf das Beispiel 2.29 im Abschnitt 2.2.4. zuriick.
Beispiel 2.29: Es sei

X,:=zufillige Anzahl der Treffer bei 4 unabhidngigen Schiissen.

Laut Voraussetzung liegt das Bernoullische Versuchsschema mit n =4 und p=1/2
(Treffwahrscheinlichkeit fiir jeden einzelnen SchuB) vor.

Mit Hilfe der im Abschnitt 2.2.4. (vgl. S.34) bei der Behandlung des Beispiels einge-
fiihrten Ereignisse By, By, ..., B, ergeben sich die Einzelwahrscheinlichkeiten (Bild 2.17)

0
P(X,=0)=P(By) = (3) (%) (1 - %)4 =0,0625,

P(X,=1)=P(B) = (‘;) (%)l (l - %)4Al =0,25,

1) Jacob Bernoulli (1654—1705), Schweizer Mathematiker.
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ra=0=r@=(3) (3) (1-3)  -oars

2
roenr-(() (1 (-3

1 1

2

P(X,=4)=P(B) = <:) (7)4 (1 - —) =0,0625.

b i

=0,25,

4-2
4-3
4-4

n=4

S~

1
0T 2 d 4 x g 1 23 4 ox
Bild 2.17. Gegeniiberstellung der Einzelwahrscheinlichkeiten der
Binomialverteilung mit den Parametern n =4, p = 1/2 und der
Binomialverteilung mit den Parametern n =4, p=1/4

Fiir beliebige n (n =1, 2, ...) und p (0<p < 1) erhalten wir die Einzelwahrscheinlichkei-
ten

P(Xn=k)=<;:>pk(1~p)""‘ (k=0,1,...,n). @91

Leiten Sie selbstindig in Anlehnung an die im Beispiel 2.29 demonstrierte Vorgehens-
weise die Einzelwahrscheinlichkeiten (2.91) her, und zeigen Sie unter Verwendung des bi-
nomischen Lehrsatzes, da

Y PX,=k)=1
k=0
ist.
Definition 2.39: Eine diskrete Zufallsgrofie X, unterliegt einer Binomialverteilung mit den
Parametern n und p, falls sie die Einzelwahrscheinlichkeiten (2.91) besitzt.
X, besitzt die Verteilungstabelle

x; |0 |1 |... |k |...|n

P(X,=x) | (1-p)"| npA-p)~* ‘ (:)pk(l -k "
und die Verteilungsfunktion
F(O)=PX,<n= Y, ( ;),,ka —prh @92)
k
Osk<t

Fiir Erwartungswert und Varianz erhalten wir

EX)=Y k(Z)pk(l ~p)*=nmp, @93
k=0
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DX(X,) = E(X}) — [E(X,)P

- Zkl(;>p"(1—p)"“"—nzp2=np(l—p). (2.94)
k=0
Beispiel 2.42: Auf ein Ziel werden unabhéngig voneinander 20 Schiisse abgegeben. Jeder
einzelne SchuB trifft das Ziel mit der Wahrscheinlichkeit 0,8.
Gesucht ist die Wahrscheinlichkeit dafiir, daB

a) genau 5 Treffer zu verzeichnen sind,

b) wenigstens ein Treffer gelingt,

c) hochstens 10 Treffer erzielt werden;

d) auBerdem ist die mittlere Anzahl der Treffer zu berechnen.

Wir setzen
X = zufdllige Anzahl der erzielten Treffer bei 20 unabhéngigen Schiissen.

Diese ZufallsgroBe unterliegt einer Binomialverteilung mit den Parametern n =20 und
p=08.

2) P(Xy=5)= (250)0,85~0,2‘5;
20 % 120
b) P(Xyzl)= Z P(Xy=k)= Z ( X )0’81(0’210—1(
k=1 k=1
oder
P(Xyz=1)=1-P(Xy=0)=1-10,2%;
10 10 20
0 PXyn=10)=Y P(Xp=k)= Y. ( )O,Sk.o,zzo,k;
k=0 o\ Kk
d) E(X5)=20-0,8 =16.

Anmerkung: Die Einzelwahrscheinlichkeiten p, = P(X, = k) gemaB (2.91) geniigen den
Rekursionsbeziehungen

po=@1-p),
n—k+1 .
P=— 1fp Doy fir k=1,2,...n
bzw.
Pn=D"
1-p k+1 .
Pk=T n—k pe+r fur k=n-1,n-2,..,0,

die die Grundlage fiir ein Rechnerprogramm bilden konnen. (Zur Berechnung der Vertei-
lungsfunktion s. Anmerkung S. 43)

2.3.5.3. Die Poissonverteilung')

Typische Beispiele fiir ZufallsgroBen, die wir — zumindest ndherungsweise — als pois-
sonverteilt ansehen konnen, sind

1) Simeon Denis Poisson (1781-1840), franzdsischer Mathematiker.
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— die zufidllige Anzahl von nichtkeimenden Samenkdrnern aus einer Packung von
1000 Kornern, wenn von diesem Saatgut durchschnittlich 1 % nicht keimt;

— die zufillige Anzahl der Telefonanrufe, die in einem bestimmten Zeitabschnitt in
einer Telefonzentrale einlaufen;

— die zufdllige Anzahl der a-Teilchen, die von einer radioaktiven Substanz in einem be-
stimmten Zeitintervall emittiert werden.

Zwar konnten wir diese ZufallsgroBen mit Hilfe der Binomialverteilung beschreiben, je-
doch wird die Bestimmung ihrer Einzelwahrscheinlichkeiten hier durch folgende Beson-
derheiten des der Binomialverteilung zugrunde liegenden Bernoullischen Versuchssche-
mas erschwert:

— Die Anzahl n der durchgefiihrten unabhiangigen Versuche ist sehr groB (im 3. Beispiel
die Anzahl der am ZerfallsprozeB beteiligten Atomkerne);

— Die Wahrscheinlichkeit p, = P(4) des interessierenden Ereignisses 4 in jedem einzel-
nen Versuch (bei einer Serie von n Versuchen) ist sehr klein') (im 3.Beispiel die Wahr-
scheinlichkeit fiir den Zerfall eines einzelnen Kerns im betrachteten Zeitintervall).

Wir setzen

X = zufillige Anzahl der Versuche, in denen das Ereignis 4 eintritt.
Unter den Voraussetzungen
n— 0),

20,
np,—A>0

lassen sich fiir X die Einzelwahrscheinlichkeiten
k
P(X=k)=%e“ (k=0,1,2,...) (2.95)

als Grenzwerte der Einzelwahrscheinlichkeiten der Binomialverteilung herleiten.?)

Definition 2.40: Eine diskrete Zufallsgrifie X unterliegt einer Poissonverteilung mit dem
Parameter A > 0, wenn sie die Einzelwahrscheinlichkeiten (2.95) besitzt.

Verteilungstabelle und Verteilungsfunktion lauten:

x; [0 |1 |2 | ... | k | ...
_ A A
PX=x)|e*| e —2—6" Fe‘
jk
F(=PX<1t)= Z:‘ et (2.96)
Osk<t

Die Einzelwahrscheinlichkeiten der Poissonverteilung sind in der Tafel 6 des Anhangs fiir
ausgewihlte Parameterwerte tabelliert.
Bestitigen Sie selbstindig die folgenden Ergebnisse fiir Erwartungswert und Varianz:

b k
EX) =Y k%e“=1, @97
K=o K:

1) Die Poissonverteilung wird aus diesem Grund héufig auch als Gesetz der ,seltenen® Ereignisse
bezeichnet.

2) Den hier anged Z h zwischen Binomial- und Poissonverteilung prézisieren
wir im Abschnitt 2.3.10.3. bei der Behandl des sog. Poissonschen Grenzwertsatzes.
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D¥X)=E(X) - [EQOP = Zok7i—:e" - A=A (2.98)
o

Beispiel 2.43: Eine Fernsprechvermittlung erhalte wahrend der Spitzenbelastungszeit
durchschnittlich 300 Anrufe pro Stunde. Entsprechend ihrer Kapazitit konnen maximal
10 Verbindungen pro Minute hergestellt werden. Gesucht ist die Wahrscheinlichkeit da-
fiir, daB in der Spitzenbelastungszeit die Anzahl der Anrufe die Kapazitit iibersteigt.

Losung:
X := zufillige Anzahl der Anrufe pro Minute.

Wir konnen diese ZufallsgroBe als poissonverteilt mit dem Parameter

300
A= ===
E(X) 50 5
ansehen (Bild 2.18).
5
02)
A=5
07 Bild 2.18. Einzelwahrschein-
lichkeiten einer Poisson-
verteilung mit dem
| | | 1 Parameter 4 =5
0.72.74557&797(]7772

P(X>10)=1- P(X =10)
10
=1-Y PX=k)
k=0
10 5k
-7 €
Ao k!
~0,014.

Anmerkung: Die Einzelwahrscheinlichkeiten p, = P(X = k) gemiB (2.95) geniigen der
Rekursionsbeziehung

=5

=1-

po=¢e’*,
A .
Pe= P fir k=1,2,...
(Zur Berechnung der Verteilungsfunktion s. Anmerkung S. 43)

2.3.5.4. Die hypergeometrische Verteilung
Wir betrachten ein Beispiel aus der Qualitdtskontrolle.

Beispiel 2.44: Eine Lieferung von 100 Erzeugnissen wird einer Qualitdtskontrolle unter-
zogen. Dabei werden auf gut Gliick 5 der 100 Erzeugnisse herausgegriffen und iiberpriift.
Es sei X die zufdllige Anzahl der dabei festgestellten fehlerhaften Erzeugnisse.

5 Beyer, Wahrscheinlichkeitsrechnung
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Gesucht ist P(X=k) (k=0, 1, ..., 5) unter der Voraussetzung, daB die gesamte Liefe-
rung 10 fehlerhafte Teile enthilt.

Bevor wir uns der Losung dieses Problems zuwenden, formulieren wir die hier vorlie-
gende Aufgabenstellung in Form eines Urnenschemas:

In einer Urne befinden sich M schwarze und N — M weiBe Kugeln. Ohne Zuriicklegen
werden n Kugeln auf gut Gliick der Urne entnommen.

Zu untersuchen ist die ZufallsgroBe

X := zufillige Anzahl der dabei gezogenen schwarzen Kugeln.

X unterliegt einer Verteilung, deren Einzelwahrscheinlichkeiten wir nach der klassischen
Definition der Wahrscheinlichkeit (unter Benutzung von Ergebnissen aus der Kombina-
torik) bestimmen:

P(X=k) :Q%;)i_fl; (2.99)
n

k durchlduft dabei alle ganzen Zahlen, die die Ungleichungen

O<k=n,
k=M,
n—k=N-M

erfiillen.

Anmerkung: Wenden wir das gleiche Versuchsschema mit Zuriicklegen an, so erhalten wir
eine binomialverteilte ZufallsgroBe mit den Parametern n und p = M/N.

D.2.41 Definition 2.41: Eine diskrete Zufallsgrife X unterliegt einer hypergeometrischen Vertei-
lung, wenn ihre Einzelwahrscheinlichkeiten durch (2.99) gegeben sind.

Verteilungstabelle (hier fiir den Fall n < M, n = N — M), Verteilungsfunktion, Erwar-
tungswert und Varianz der hypergeometrischen Verteilung sind:

BRI EREERE
< ¥

() (2=¥)
En=Y ALVAN LV (2.100)

(
-y _—(1;‘4><1::?‘4> =ar @.101)
(
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u k
DXX) = E(X) ~ [EX)F =), K ———F
k=0

M<1_£>N—n

=ny ¥ N-T (2.102)
Wir kehren nun zum Beispiel 2.44 zuriick. Hier ist

N=100,

M= 10,

n= 5.

Fiir die hier eingefiihrte ZufallsgroBe stellen wir die Verteilungstabelle auf (Bild 2.19):

P

U2

s

0

03F

ok Bild 2.19. Einzelwahrscheinlichkeiten
! der hypergeometrischen Verteilung aus
orr Beispiel 2.44 (N =100, M = 10,

n=25)
T2 3 45 %
X; | 0 | 1 | 2 | 3 | 4 | S

P(X=1x;)|0,5837]0,3394 | 0,0694 | 0,0064 | 0,0002 | 0,0000

Nehmen wir an, daB vereinbart wurde, die Lieferung anzunehmen, wenn unter den 5 ge-
priiften Erzeugnissen hochstens ein fehlerhaftes Erzeugnis gefunden wird, so ist die
Wahrscheinlichkeit fiir die Annahme

PX<1)=P(X=0)+P(X=1)
10 /90 10 90)
_AO0JAS LIS ] 5837403394 =09231
a (100) * (100) o ’ o :
5 5

2.3.5.5. Zusammenfassung

In Form einer Ubersicht wollen wir in Tabelle 2.3a die wichtigsten Charakteristiken
einiger diskreter ZufallsgroBen zusammenstellen (s. S. 68).
2.3.6. Einige spezielle stetige Wahrscheinlichkeitsverteilungen

Im folgenden sollen einige spezielle stetige Wahrscheinlichkeitsverteilungen betrachtet
werden, die hdufig in der Praxis Anwendung finden.
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2.3.6.1. Die gleichmiBige stetige Verteilung
Wir gehen von folgendem Beispiel aus.

Beispiel 2.45: Die Effektivitit eines Produktionsprozesses werde u.a. durch einen EinfluB-
faktor X (z.B. UmwelteinfluB, Merkmal der verwendeten Rohstoffe usw.) beeinflut. Von
diesem EinfluBfaktor sei lediglich bekannt, daB er im Intervall [q, b] variiert. Stehen keine
weiteren Informationen zur Verfiigung, so werden wir fiir eine erste Untersuchung von der
Hypothese ausgehen, daB keiner der Werte aus dem Intervall [a, b] bevorzugt wire. So-
bald weitere Informationen verfiigbar sind, ist diese Ausgangshypothese natiirlich zu
uberpriifen.

Als einfaches mathematisches Modell dieses Sachverhaltes betrachten wir folgenden
zufdlligen Versuch:

Aus dem Intervall [a, b] wihlen wir zufillig einen Punkt, wobei kein Punkt aus [a, ]
vom Zufall begiinstigt werde. Mit X bezeichnen wir die Koordinate dieses zufdllig gewdhl-
ten Punktes. Fiir die Berechnung der Verteilungsfunktion

Fy(t)=P(X<1)

betrachten wir zunichst den Fall a < ¢ = b. In diesem Fall gibt Fy(¢) die Wahrscheinlich-
keit dafiir an, daB der zufillig gewdhlte Punkt im Intervall [q, ] liegt. Nach der geometri-
schen Definition der Wahrscheinlichkeit erhalten wir flira<t=<b

Fe(f)=PX<1)=PlasX<t)=——2.

b—a
Fiir beliebige ¢ ist damit
0 fir t=a,
Fylt) = %:—‘; fir a<t=b, 2.103)
1 fir b<t.

Die zugehorige Dichtefunktion bestimmen wir nach Formel (2.63) bzw. (2.70):

1
fy={p—q fur astsb, 2.104)
0 sonst.

Definition 2.42: Eine stetige Zufallsgrifie X mit der Dichtefunktion (2.104) bezeichnen wir als 1D.2.42
gleichmiBig stetig auf [a, b] verteilt (Bild 2.20).

Elt)
£1t)

N ! |

a b t ' a [ t
Bild 2.20. Dichte- und Verteilungsfunktion einer auf [a, b] gleichmiBig stetig verteilten Zufalls-
groBe X
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Wegen, der Form der Dichte (vgl. Bild 2.20) ist auch die Bezeichnung ,Rechteckvertei-
lung“ gebrduchlich.

Erwartungswert und Varianz berechnen wir nach Formel (2.75) bzw. (2.87)

+o b
1

E(X) =7j; tfx(t)dt=!tb_adt= “;b, (2.105)
| (a+b? _(b—a)

DX) = E(X?) - [EQX)P = j pta- 82 Lo (2.106)

2.3.6.2. Die Exponentialverteilung

Die Bedeutung der Exponentialverteilung liegt u.a. darin, daB ihre Anwendung die Be-
schreibung einer Reihe anwendungsbezogener mathematischer Modelle wesentlich ver-
einfacht. Die Darlegung der Griinde hierfiir iibersteigt den Rahmen dieses Bandes (Nihe-
res finden Sie im Band 19/1.).

Erfolgreiche Anwendungen der Exponentialverteilung finden wir u. a. bei folgenden
Problemen:

— zufillige Zeitdauer eines Telefongespriches;

— zufillige Zeit bis zum ersten Ausfall von Bauelementen, bei denen Alterungserschei-
nungen vernachlissigt werden konnen (z.B. gewisse elektronische Bauelemente);

— zufillige Zeitdauer fiir die Durchfithrung bestimmter InstandhaltungsmaBnahmen an
technischen Anlagen;

— zufillige Zeitdauer fiir gewisse Dienstleistungen;

— zufillige Zeitdauer zwischen zwei aufeinanderfolgenden Anrufen in einer Telefonzen-
trale.

D.2.43 Definition 2.43: Eine stetige Zufallsgrifie X unterliegt einer Exponentialverteilung (mit dem
Parameter A > 0), wenn sie die Dichtefunktion

_[Ae™™ fir t>0,
f"(’)‘{o fir 1=0
besitzt (Bild 2.21).

(2.107)

(N

t t

Bild 2.21. Dichte- und Verteilungsfunktion der Exponentialverteilung

Diese Verteilung haben wir schon als Musterbeispiel 2.35 in den Abschnitten 2.3.2.4.
und 2.3.3. benutzt, so daB wir uns hier auf die Zusammenstellung der Ergebnisse be-
schrinken:

1—-e™* fir t>0,

Fx(’)zp(X“):{o fir 1=<0

(2.108a)
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o

EX)= oj the*dt =%, (2.108b)

1

SR (2.108c¢)

DAX) = E(X?) - [EX)P = Oj fPAe*dt — % =

Beispiel 2.46: Die zufdllige Zeit (gemessen in h), die zur Reparatur eines Fernsehgerites
aufgewendet werden muB, unterliege einer Exponentialverteilung mit dem Parameter
4=0,5. Gesucht ist die Wahrscheinlichkeit dafiir, daB zur Reparatur eines beliebigen Ge-
rites mindestens 3 Stunden aufgewendet werden miissen.

Wieviel Stunden werden im Durchschnitt zur Reparatur eines Gerétes benétigt?

Losung:
X = zufillige Reparaturzeit in h,

P(Xz3)=1-P(X<3)
=1-F0)
=1-[1-e%7

=g 1S

=0,2231,

1
EX)=455=2.

2.3.6.3. Die Normalverteilung

Mit der Normalverteilung lernen wir eine der grundlegenden Verteilungen der Wahr-
scheinlichkeitstheorie und mathematischen Statistik kennen. Sie findet dariiber hinaus
Anwendung bei zahlreichen praktischen Problemen.

Als normalverteilt kénnen wir ZufallsgroBen ansehen, die durch Uberlagerung einer
groBen Zahl von Einfliissen entstehen, wobei jede einzelne EinfluBgroBe nur einen im
Verhiltnis zur Gesamtsumme unbedeutenden Beitrag liefert. Wir werden diese Problema-
tik im Abschnitt 2.3.10.4. in Form des zentralen Grenzwertsatzes prézisieren.

Beispiele fiir normalverteilte ZufallsgroB8en sind:

— zufillige Beobachtungs- oder MeBfehler;

— zufillige Abweichungen vom NennmaB bei der Fertigung von Werkstiicken;
- zufillige Flugweite eines Geschosses;

— Effekte beim ProzeB der Brownschen Molekularbewegung.

Definition 2.44: Eine stetige Zufallsgrdfie X unterliegt einer Normalverteilung (mit den Para- D.2.44
metern u und o >0), wenn ihre Dichtefunktion durch

1 (t—u)
t)= exp| —

Sx(t) - y/E D[ 202

gegeben ist.

Wir schreiben abkiirzend: X ist N (u; o)-verteilt.
GemiB Formel (2.63) erhalten wir die zugehorige Verteilungsfunktion

] (—o@<t<+) (2.109)

S S U )
Fx(r)—dm_j;exp[ 5ot ]dx. (2.110)
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K
E 1 1
L6 pL pte t
0]
b
Bild 2.22. Dichte- und Ver-
57 o teilungsfunktion der Nor-
malverteilung mit den
L Parametern =1, 0=1,5
» t

In Bild 2.22 sind Dichte- und Verteilungsfunktion der Normalverteilung skizziert.
AufschluB iiber die Bedeutung der Verteilungsparameter 4 und ¢ gewinnen wir bei der
Bestimmung von Erwartungswert und Varianz:

_1 7 NCE) 5 P
EX) = a\/2? _{ xexp[ 207 ]dx u, (2.111)
DX = — T(x—/l)lexp[—(x_—'u)z dx = a?. (2.112)
o2m e 20?

Um die Abhéngigkeit der durch (2.109) und (2.110) gegebenen Dichte- und Verteilungs-
funktion von den Parametern x4 und ¢ hervorzuheben, verwenden wir die Symbolik

K@) =t u0),
Fx(t) = D(t; 4, 0).

In Bild 2.23 ist der EinfluB von x und o auf die Gestalt der Dichtefunktion ¢(t; x, o) dargestelit:

lfip0)

(00

t

Bild 2.23. EinfluB der Parameter o und x auf die Gestalt der Dichtefunktion der Normal-
verteilung
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1
@(t; u, o) hat im Punkt | 4, ———) ihr Maximum;
ay2n

@(t; u, 0) ist symmetrisch beziiglich der Geraden ¢ = u;

die Abszissen der Wendepunkte sind #, ,=u + 0;

eine Verdnderung des Erwartungswertes u ergibt eine entsprechende Verschiebung der Dichte ent-
lang der t-Achse;

eine Verinderung der Standardabweichung o bewirkt eine Streckung bzw. Stauchung der Dichte-
funktion; je kleiner die Standardabweichung o ist, desto stérker ist die Konzentration der ,Wahr-
scheinlichkeitsmasse“ in der Umgebung des Erwartungswertes u, d.h., desto kleiner ist die Streu-
ung der ZufallsgroBe um den Erwartungswert x (wir finden hier die Tatsache bestitigt, daB

= yDX(X) ein sinnvolles StreuungsmaB ist).

Zur Vereinfachung des Arbeitens mit normalverteilten ZufallsgroBen ist in Tafel 1 bzw.
2 des Anhangs die Dichtefunktion ¢(¢; 0, 1) bzw. die Verteilungsfunktion &(¢; 0, 1) der
standardisierten Normalverteilung (x = 0, o = 1) tabelliert.!) In diesen Tafeln ist nur der
Bereich der nichtnegativen Argumente (¢ = 0) erfaBt.

Wegen der Symmetrie der Dichtefunktion erhalten wir die Funktionswerte fiir negative
Argumente aus den Beziehungen

o(—=1;0,1) = 9(;0,1), (2.113)
D(—-t;0,1)=1-D(t;0,1).

Fiir die rechentechnische Behandlung eignet sich folgende Approximation (nach Abra-
mowitz/Stegun):

5
1-®(10,)=t0,1) Y bxi+e(t) (120)
i=1

mit
1
=Tz °° 0,2316419,
b, =0,319381530,
b,=-0,356563782,
by =1,781477937,
b,=-1,821255978,
bs=1,330274429.

Dabei ist | (1) <7,5-107%.
Die Verteilungsfunktion einer normalverteilten ZufallsgroBe X mit E(X) = und
D*(X) = o? 14Bt sich mit Hilfe von (2.85) und (2.113) ermitteln. Die Vorgehensweise ist

folgendermaBen:
1. GemaB (2.85) bilden wir die standardisierte ZufallsgroBe
X—u

>

') Fiir Anwendungen in der mathematischen Statistik ist hiufig der Einsatz von Tabellen fiir die
Funktionen

¢'0(t;0,1)=ﬁjexp[ XTI]
0
und
@, (1;0, l)—:/l:fexp[ xTz}dx (t20)

giinstig.
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Y unterliegt einer Normalverteilung mit
E(Y)=0 und D¥Y)=1.

Damit kénnen wir Werte der Funktion
Fy(t)=P(Y<t)=P(1;0,1)

aus Tafel 2 entnehmen.
2. Zur Bestimmung der gesuchten Verteilungsfunktion nehmen wir folgende Umfor-
mungen Vor:

F(t)=P(X < 1)= P(%<ﬂ)

a
=P(Y<t"_ﬂ)
a

) <'"_”; 0, 1>A
4
3. Weiterhin soll die Berechnung der Wahrscheinlichkeit dafiir, daB die ZufallsgroBe X
einen Wert aus dem Intervall [a, b] annimmt (a < b), angegeben werden.

X—u b—u)

1A

PlasXs b)=P(a—;”

_ — 1
=P(ugy< b ﬂ))
[ (4

Nach Formel (2.69) erhalten wir hieraus

PlasXsb)= Fy(b;a'u) - Fy(a—;”)

=¢(u;0,1)—¢(“_”;o, 1),
g g

Beispiel 2.47: Wir betrachten den Fall p =6, 0 =2.
1. Fiir ¢ =7 erhalten wir

F()=P(X<T7) =P(Y<%) = ¢(l;~£;o, 1)

=®(0,5;0,1)
=0,691462.

2. Fiir t = 3 ergibt sich

F(3)=P(X<3)= P<Y<3—;6—>

=®d(-1,50,1)

1) Hier benutzen wir die Eigenschaft der stetigen ZufallsgroBe Y, daB fir alle reellen ¢
P(Y=1)=0 ist (vgl. Abschnitt 2.3.2.3.).
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=1-0@1,50,1)
=1-0,933193
=0,066807.

3. P(6,2§X§8)=P(6’22—-6§Y§8;6>

86 62-6

—¢><T,0,1)—¢( ) ,o,1>
=®(1;0,1) - $(0,1;0, 1)
=0,841345 — 0,539 828
=0,301517.

4. P(4,6§X§7)=P(M+6§Y§%i)

= ®(0,5;0,1) - ®(=0,7;0, 1)
= ®(0,50,1) - [1 - ®(0,7; 0, 1)]
@(0,5;0,1) + ¢(0,7;0,1) — 1
0,691462 + 0,758 036 — 1
=0,449498 .

Die Bedeutung des Parameters ¢ einer Normalverteilung wird bei der Berechnung der
Wahrscheinlichkeiten dafiir, daB diese ZufallsgroBe Werte aus den Intervallen [u — ko,
u + kol (k=1, 2, 3) annimmt, verdeutlicht:

P(u—ko=X=sp+ko)=P(|X~-p|=ko)

(e

=P(|Y|=k)
=®(k;0,1) — D(—k;0,1)
=®(k;0,1) ~[1 - D(k;0, )]
=2P(k;0,1) -1,
P(|X—u|l=s0o) =2-0,841345-1=10,682690,
P(|X—pu|=20)=2-0,977250 —1=10,954500,
P(|X—pu|=30)=2-0,998650—1=0,997300.
Diese Wahrscheinlichkeiten dafiir, daB eine normalverteilte ZufallsgroBe X einen Wert
innerhalb der ,ko-Grenzen“ (k = 1, 2, 3) annimmt, stellen wir in der folgenden Tabelle
zZusammen:
k| P(|X—pu|sko)=Pu—ko=X=u+ ko)
10,682690

210,954500
310,997300

Das fiir k =3 erhaltene Ergebnis wird auch als 30-Regel bezeichnet.

Beispiel 2.48: Ein Werkstiick besitzt die gewiinschte Qualitdt, wenn die Abweichung eines
bestimmten MaBes vom entsprechenden NennmaB dem Betrage nach nicht groBer als
3,6 mm ist. Der HerstellungsprozeB sei so beschaffen, daB dieses MaB als eine normalver-
teilte ZufallsgroBe angesehen werden kann, deren Erwartungswert mit dem NennmaB
iibereinstimmt. Weiterhin sei ¢ = 3 mm bekannt.

Wieviel Prozent der Werkstiicke einer Serie werden durchschnittlich mit gewiinschter
Qualitdt produziert?
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Ldsung:
X := zufillige Abweichung vom NennmaB,

X ist normalverteilt mit
EX)=p=0 und D*X)=0%=9.

X X
Y= -3 ist die zugehorige standardisierte ZufallsgroBe.

_pflX|.36
P(|Xl§3,6)—1’(‘3'§ :

=P(|Y|=12)

=®(1,2;0,1) - (=120, 1)
=®(1,2;0,1) - [1 - &(1,2;0, 1)]
=20(1,2;0,1) -1
=2-0,88493-1

=0,76986.

Etwa 77 % aller Werkstiicke geniigen durchschnittlich den Qualititsanspriichen.

2.3.6.4. Zusammenfassung

In Form einer Ubersicht wollen wir in Tabelle 2.3.b die wichtigsten Charakteristika
einiger stetiger ZufallsgroBen zusammenstellen (s. S. 77).

Auf Grund der groBen Bedeutung fiir die Anwendung nehmen wir in diese Ubersicht
die Erlang-, Weibull-Verteilung und die logarithmische Normalverteilung mit auf.

2.3.7. Mehrdimensionale Zufallsgrofien
2.3.7.1. Einleitung

Bisher haben wir bei zufdlligen Versuchen das Verhalten einer GroBe untersucht. In
der Praxis ist es aber oft notwendig, mehrere GroBen gleichzeitig zu beobachten. Wir wer-
den so zur Problematik der mehrdimensionalen Zufallsgrofen gefiihrt, die wir auch als Zu-
fallsvektoren®) bezeichnen.

Im folgenden werden wir uns auf zweidimensionale ZufallsgroBen beschrinken; die bei
ihnen geltenden Beziehungen lassen sich leicht auf n-dimensionale ZufallsgroBen (n > 2)
verallgemeinern.

Die Einfithrung mehrdimensionaler ZufallsgroBen wollen wir in den folgenden beiden
Beispielen motivieren:

Beispiel 2.49: Ein System besteht aus zwei gleichartigen parallel geschalteten Elementen.
Bei Ausfall eines der beiden Elemente arbeitet das System weiter, und es wird sofort mit
der Reparatur des fehlerhaften Elements begonnen. Eine ausfallfreie Arbeit des Systems
ist dann gegeben, wenn die Reparatur vor dem Ausfall des anderen Elementes beendet ist.
Es ist daher notwendig, neben der zufilligen Reparaturzeit auch die ausfallfreie Arbeits-
zeit des zweiten Elementes zu untersuchen.
Dieses Problem konnen wir in folgender Weise behandeln. Es sei
X := zufillige Reparaturzeit des zur Zeit ¢ ausgefallenen Elementes,
Y := zufillige Zeit, die das zum Zeitpunkt ¢ arbeitende Element nach ¢ noch
ausfallfrei arbeitet.

1) Diese Bezeichnung wird im Band 19/2 dieser Reihe verwendet.
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Durch Zusammenfassung der ZufallsgroBen X und Y zum geordneten Paar (X, Y) erhalten
wir eine zweidimensionale ZufallsgroBe, mit deren Hilfe die Arbeitsweise des Systems un-
tersucht werden kann.

Beispiel 2.50: In einem ProduktionsprozeB werden wihrend eines bestimmten Zeitinter-
valles n gleiche Teile gefertigt. Hiervon gehort eine zufdllige Zahl der einwandfreien Teile
zur Sorte 1 und die anderen einwandfreien Teile zur Sorte 2. Der Rest entspricht nicht
den Qualitdtsanforderungen. Durch die Festlegungen

X := zufillige Zahl der Teile, die zur Sorte 1 gehoren,

Y := zufillige Zahl der Teile, die zur Sorte 2 gehoren,
ist mit der zweidimensionalen ZufallsgroBe (X, Y) die Qualitétsbeschreibung des Produk-
tionsprozesses moglich.

Im eindimensionalen Fall unterscheiden wir zwischen stetigen und diskreten Zufalls-
groBen. Auch bei mehrdimensionalen ZufallsgroBen sind derartige Unterscheidungen
moglich. Im Beispiel 2.49 sind X und Y stetige ZufallsgroBen. Entsprechend bezeichnen
wir (X, Y) als stetige zweidimensionale Zufallsgriffe. Im Beispiel 2.50 ist durch (X, Y) eine
diskrete zweidimensionale Zufallsgrifle gegeben. Natiirlich treten auch solche zweidimensio-
nalen ZufallsgréBen (X, Y) auf, bei welchen die eine ZufallsgroBe, z.B. X, diskret und die
andere, z.B. Y, stetig ist.

2.3.7.2. Wahrscheinlichkeitsverteilung einer mehrdimensionalen Zufallsgroe

Einzelwahrscheinlichkeiten im diskreten Fall:

Bei einer diskreten eindimensionalen ZufallsgroBe X haben wir durch Angabe der
Werte x; (i=1, 2, ...) und der Einzelwahrscheinlichkeiten P(X = x;) = p; die Verteilungs-
tabelle gewonnen.

Betrachten wir im Falle einer zweidimensionalen diskreten ZufallsgroBe (X, Y) ihre
Wertepaare (x;, y;) (i, k=1,2,...) und die entsprechenden Einzelwahrscheinlichkeiten
P(X = x;, Y=y) = pu, so hat die Verteilungstabelle von (X, Y) die in Tab.2.4 angegebene
Form.

Tabelle 2.4. Verteilungstabelle einer zweidimensionalen
diskreten ZufallsgroBe (X, Y)

Y noonoo»m oy e % z
X
X1 pu P J28 P Pis )28
z b P2 p3 D4 D 1

In Tab.2.4 wurde zur Vereinfachung angenommen, daB die Zufallsgrofen X und Y je-
weils eine endliche Anzahl von Werten besitzen. In ihr sind neben den Einzelwahrschein-
lichkeiten pj auch die GréBen p,. (i=1,2,...,n) und p., (k=1,2, ..., s) angegeben. Sie
werden wie folgt eingefiihrt:

P =) PX=x,Y=y) (i=1,2,..,n) @114
k=1
und

Pi= 2 PX=x,Y=y) (k=1,2,...,9); (2.115)
i=1
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pi. =P(X = x;) ist die Wahrscheinlichkeit dafiir, daB X den Wert x; und Y einen belie-
bigen Wert annimmt. Geben Sie entsprechend p., = P(Y = y,;) verbal an!

Definition 2.45: Die Gesamtheit der Wahrscheinlichkeiten

p. =P(X=x), i=12..,n
bzw.
px=PY=y), k=12, ..,s,

wird als Randverteilung der ZufallsgroBe X bzw. Y (in der zweidimensionalen Zufallsgrifie

(X, Y)) bezeichnet.
Fiir diese gilt:

n
Z[’i-:
i=1 k

Beispiel 2.50: Prizisieren wir die Fragestellung des Beispiels 2.50 durch die Annahme, da
unabhéngig voneinander 5 Teile produziert werden und mit den Wahrscheinlichkeiten
0,85 bzw. 0,1 ein Teil zur Sorte 1 bzw. Sorte 2 gehort, so erhalten wir die in Tab.2.5 ange-
gebene Verteilungstabelle.

pi=1.
1

Tabelle 2.5. Verteilungstabelle der zweidimensionalen ZufallsgroBe (X, Y) aus Beispiel

2.50
Y |o 1 2 3 4 5 ¥

X

0 0,00000 0,00000 0,00001 0,00003 0,00003 0,00001 | 0,00008
1 0,00003 0,00021 0,00064 0,00085 0,00043 0 0,00216
2 0,00090 0,00542 001084 0,00722 0 0 0,02438
3 001535 0,06141 0,06141 0 0 0 0,13817
4 0,13050 0,26100 0 0 0 0 0,39150
5 044371 0 0 0 0 0 0,44371
b 0,59049 0,32804 0,07290 0,00810 0,00046 0,00001 | 1,00000

Bei diesem Problem hat der einzelne Versuch (Qualititspriiffung eines Teils) im Ver-
gleich zum Bernoullischen Versuchsschema 3 Ausginge. Die Einzelwahrscheinlichkeiten
werden wie bei der Binomialverteilung berechnet. Es sei

A, ... ,Das gepriifte Teil gehort zur Sorte r“ (r =1, 2),
Aj; ... ,Das gepriifte Teil ist AusschuB“.
Bekannt sind: P(4,) = p; =0,85, P(4;) =p,=0,10 und P(4;) = p;=0,05. Nimmt bei

S unabhiéngigen Versuchen X den Wert i und Y den Wert k an, so bedeutet dies, daB 4,
]

5!
kIS —i—k)!
verschiedene Moglichkeiten. Deshalb ergibt sich fiir die Einzelwahrscheinlichkeiten

i-mal, 4, k-mal und 4; (5 — i — k)-mal beobachtet wird. Dafiir gibt es

i Y=k)=— i k(] — _ S—i-k
PX=iY=k) TG = =) 0,8570,10% (1 — 0,85 — 0,10)
fir i+k=S. (2.116)

Die Verteilung dieser ZufallsgroBe (X, Y) ist ein Beispiel fiir eine Polynomialverteilung
[3].

D.2.45



D.2.46

80 2. Wahrscheinlichkeitsrechnung

Entsprechend der Definition der Randverteilung beschreibt die ZufallsgroBe X in (X, Y)
die zufdllige Anzahl der Teile, die zur Sorte 1 gehoren, und unterliegt einer Binomialver-
teilung mit den Parametern n =S und p = 0,85. Die Einzelwahrscheinlichkeiten sind in
der letzten Spalte von Tabelle 2.5 eingetragen.

Die Randverteilung von Y in (X, Y) ist eine Binomialverteilung mit den Parametern
n=>5und p =0, 1. Die Einzelwahrscheinlichkeiten sind der letzten Zeile der Tabelle 2.5
zu entnehmen.

Analog zum Begriff der bedingten Wahrscheinlichkeit, den wir im Abschnitt 2.2.3.1.
kennengelernt haben, wollen wir uns jetzt mit den bedingten Verteilungen bei diskreten
zweidimensionalen ZufallsgroBen befassen.

Definition 2.46: Ist X eine diskrete Zufallsgrife mit den Werten x;, i =1,2, ..., n, und Y eine
diskrete Zufallsgrofe mit den Werten y,, k =1, 2, ..., s, so werden die Grifien

PX=x,Y=y)
P(Y=y)
als bedingte Einzelwahrscheinlichkeiten der ZufallsgroBe X unter der Bedingung
{Y=wn}, k=1,2, ..., 5 und die Grofien
PX=x,Y=y)
PX=x)
als bedingte Einzelwahrscheinlichkeiten der ZufallsgroBe Y unter der Bedingung
{X=x}, i=1,2,..., n, bezeichnet, wobei P(Y=y,) >0 bzw. P(X=x;)>0 vorausgesetzt
wird.
Unter Verwendung der Bezeichnungen P(X = x;, Y=y) =ps, P(Y=y)=p., und
P(X = x;) = p;. konnen wir (2.117) bzw. (2.118) in der Form

P(X=x/Y=y):= (i=1,2,...,n) (2.117)

P(Y=y/X=x)= (k=1,2,....9) (2.118)

P(X=x/Y=y) _ P
Dk
bzw.
Pix
P(Y=y/X=x;) =

schreiben.
Zeigen Sie unter Beriicksichtigung von (2.114) bzw. (2.115), daB

B

PX=x/Y=y)=1
i=1

i

[

bzw.

M-

P(Y=yp/X=x)=1

k

[

1
gilt!

Beispiel 2.50: Im Beispiel 2.50 erhalten wir fir die Bedingung {Y =0} folgende Vertei-
lungstabelle der bedingten Einzelwahrscheinlichkeiten:

X K |1 | 2 |3 |4 E

P(X=x/
Y=0)

0,00000

0,000 04 ‘ 0,00153

0,026 00 ‘ 0,22101 ‘ 0,75142

Die GroBen P(X = x;,/Y=0) sind Einzelwahrscheinlichkeiten einer Binomialverteilung
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mit n=5und p= P(4,/4,) =06—895, da
P(40 (4,0 4))  P(4)

P(4,UA4;)  P(4,U A4y

p=P(4,/4,) = P(4,/4, U 43) =
gilt.

Dichtefunktion im stetigen Fall

Zur Charakterisierung einer stetigen ZufallsgroBe X verwenden wir die Dichtefunktion
fx(t). Die stetige zweidimensionale ZufallsgroBe (X, Y) 1dBt sich entsprechend durch die
Dichtefunktion fy, y(t;, t;) beschreiben. So kénnen wir z.B. die Verteilung einer Zufalls-
groBe (X, Y), bei der die ZufallsgroBen X und Y normalverteilt sind — sie wird als zwei-
dimensionale Normalverteilung bezeichnet — durch die Dichtefunktion

1

fant, ) =———F——
e Mmoo, y1- 0*

1 1 (t—w)® | (= w) (L= w) (b= )
x = + _ .
exp[ 2 1-9? ( a? 7’ 20 0,0, @119

mit den Parametern u, = E(X), u, = E(Y), o2 = D*(X), 03 = D*(Y) und g beschreiben.
Uber die Bedeutung des Parameters ¢ werden wir spiter etwas sagen.

In Bild 2.24 ist die Dichtefunktion einer zweidimensionalen Normalverteilung gra-
phisch dargestellt.

Bild 2.24. Dichtefunktion einer
zweidimensionalen Normalver-
teilung

%

Analog zum diskreten Fall 148t sich die Randverteilung der ZufallsgroBe X bzw. Y
durch die sogenannte Randdichte

o

fet)= [ funt, n)dn (2.120)
bzw. -
.

)= [ fan(ts, b)dn (2.121)
charakterisieren. -

Fiir den Fall einer zweidimensionalen Normalverteilung gemdB8 Formel (2.119) erhal-
ten wir unter Benutzung der Beziehung

6 Beyer, Wahrscheinlichkeitsrechnung
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(t — m)? " (b — W)’ 5 h— L~
7’ a? A a0
(t = m)? b~ U Hh—u\?
LG SV e N b
p 1-0%) & e

fiir (2.120) nach Substitution

_ 1 <fz_!lz 11‘”1)
u= -e
J1-92 [ 4}

_ 1 _1 (O .
Sx(1) O'H/E exv[ 3 ‘—0§ :I—‘P(tl, 1, 01) .

Damit ist die Randverteilung von X in (X, Y) eine Normalverteilung mit den Parametern
uyund 0.

Zur Beschreibung der bedingten Verteilungen verwenden wir die bedingten Dichte-
funktionen

_ Jun(t, )
/Y =1¢)=2&D D 2
St b) Fit) (2.122)

bzw.
_ Jant, t)

M/ X=1t):= O (2.123)

wobei fy(t,) > 0 bzw. fy(#;) > 0 vorausgesetzt wird.

Zeigen Sie, daB die GroBen fy(ty), fy(t), fx(t,/Y=t,) und fy(t,/X = t,) die Eigenschaf-
ten einer Dichtefunktion erfiillen!
" Unterliegt (X,Y) einer zweidimensionalen Normalverteilung, so gilt fiir die bedingte

Dichtefunktion fy(t,/Y = t,)
A 2
1 1 - .111‘*'972(’2_#2)

exp| — =+
a1- o 21 2 ai(l-0?

fx(t,/Y=1) ist Dichtefunktion einer Normalverteilung mit dem Erwartungswert

H/Y=1)=

[4
mte 71 (t, — ) und der Varianz o3 (1 - 0?).
2

Verteilungsfunktion im diskreten und stetigen Fall

Definition 2.47: Ist (X, Y) eine beliebig idi ionale Zufallsgrofe, so ist durch
Fyp(t, ) :=PX<t,Y<t) (2.124)

ihre Verteilungsfunktion definiert.

Fy y(t1, ) ist die Wahrscheinlichkeit dafiir, daB (X, Y) ein Wertepaar aus dem in
Bild 2.25 schraffierten Gebiet annimmt.

Wegen (2.124) konnen wir die Verteilungsfunktion durch die Beziehungen
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Y

(4,5)

N

7

v,
7 / % 7 Bild 2.25
/ / / / 7/ /7 Z:..ll' Déu{ung der Verteilungsfunktion
%// /// /// // // einer zweidimensionalen ZufallsgroBe
Z Z P (X = x;, Y=y,), wenn (X, Y) diskret, (2.125)
i k
Fan(t, ) =1 5" 1"
I fan(x ) dxdy, wenn (X, ) stetig, (2.126)

berechnen.

2.3.7.3. Unabhingigkeit von ZufallsgroBen,
Korrelationskoeffizient, Kovarianzmatrix, bedingter Erwartungswert

1. Im Abschnitt 2.2.3.2. haben wir die Unabhéngigkeit von zufilligen Ereignissen ken-
nengelernt. Entsprechend 148t sich auch die Unabhéngigkeit von ZufallsgroBen definie-
ren.

Definition 2.48: Zwei Zufallsgrofien X, Y heifien bhingig, wenn die Bedi) D.2.48
PX=x,Y=y)=PX=x)P(Y=y) firaleik=1,2,... (2.127)

bzw.
S n(t, ) = fx(t) fy(t)  fiiralle —o <t, <+ (2.128)

im diskreten bzw. stetigen Fall erfiillt sind.

Anmerkung: Unter Verwendung der Verteilungsfunktion 1Bt sich die Def.2.48 ergénzen:
Zwei beliebige ZufallsgroBen X, Y heiflen unabhéngig, wenn

Fix v(t, t) = Fx(ty) Fy(t)
fiir alle — < #;, 1, < + gilt. (2.127) und (2.128) sind Spezialfille dieser Relation.
Beispiel 2.51: (2.119) liefert fiir ¢ = 0 folgende Dichtefunktion:

1 1/ (h—w) | (b~ w)
S vt t2)=m exp [_7(M+.(Z_fi)_):| .

a 7
Die Randverteilung beziiglich X ergibt sich wie folgt:

+o

hlt) = j oty ) dt,

6
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1 t— )’ t— )
_ ex [_i(l “y) _l(z h>:|dt2.

1
= ——— e&x
2n oy 2 o} ] I V2n oy p[ 2 o}

Der als Faktor auftretende Integrationsausdruck ist gerade das Integral iiber die Dichte-
funktion einer normalverteilten ZufallsgroBe (siehe 2.3.6.3.) und hat nach Eigenschaft
(2.64) den Wert 1.

Damit erhalten wir

1
fi(t) =—F—
V21 oy
Analog koénnen wir fy(t,) berechnen. Es gilt

_ 1 1 (W)
fr(t) = imon exp[ TT}‘

Damit ergibt sich:
S n(t, ) = fx(t) fr(t).

Hieraus konnen wir wegen Def.2.48 folgern, daB bei einer zweidimensionalen Normalver-
teilung im Falle ¢ = 0 die beiden ZufallsgroBen X und Y unabhingig sind.

Mit Hilfe des Begriffs der zweidimensionalen ZufallsgroBe und der zum Abschnitt
2.3.3.3. analogen Beziehung zur Berechnung des Erwartungswertes von Funktionen einer
zweidimensionalen ZufallsgroBe (hier nur fiir den stetigen Fall aufgeschrieben),

|:¥ 1 (lx_ﬂl)z]
exp | —-=———5—]1.

2
2 7’

+® too

EGX V)= [ [t 0) funt, dndn,

ist es moglich, einige weitere Eigenschaften des Erwartungswertes und der Varianz anzu-

geben:

— Zwischen den Erwartungswerten der ZufallsgroBen X, Y und X + Ybesteht folgende Be-
ziehung:

EX+Y)=EX)*E(Y), (2.129)
falls die entsprechenden Erwartungswerte existieren.
— Sind die ZufallsgréBen X und Y unabhingig, dann gilt:
E(XX-Y)=EX)-E(Y),
DX(X +Y) = D¥X) + DX(Y),

falls die entsprechenden Erwartungswerte und Varianzen existieren.

Versuchen Sie, den Beweis dieser Eigenschaften — auch fiir n unabhéngige Zufallsgro-
Ben - selbstindig unter Beachtung der Definition des Erwartungswertes durchzufiih-
ren!

2. Wir wollen uns nun der niheren Betrachtung des in (2.119) erstmalig auftretenden
Parameters ¢ zuwenden.

Definition 2.49: Sind X und Y zwei beliebige Zufallsgrifien, so wird die Grifle

E[(X = E(X) (¥ ~ E(Y))] ey
VD*(X) DY)

als Korrelationskoeffizient von X und Y bezeichnet (auch gy y) .

(2.130)

o(X, ¥)=

Berechnen wir fiir die zweidimensionale Normalverteilung den Korrelationskoeffizien-
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ten (2.131) mit Hilfe der Berechnungsformeln fiir Momente, so erhalten wir den in der
Dichtefunktion (2.119) auftretenden Parameter o.

Fiir X=1Y gilt o(X, Y)=1, und fir X= —Y erhalten wir 0(X, Y) = —1. Allgemein
gilt |o(X, V)| = 1.

Sind die ZufallsgroBen X und Y unabhingig, dann folgt aus (2.130), daB o(X, Y) =0
ist. Warum?

Die Umkehrung dieser Aussage gilt im allgemeinen nicht, d. h., falls (X, Y¥) =0 ist,
dann brauchen die ZufallsgroBen X und Y nicht unabhéngig zu sein. Im Beispiel 2.51-ha-
ben wir jedoch zwei ZufallsgroBen betrachtet, fir die diese Umkehrung der Aussage mog-
lich ist.

Nicht zuletzt wegen der angefiihrten Eigenschaften ist der Korrelationskoeffizient
o(X, Y) ein Kennwert fiir den linearen algebraischen Zusammenhang zwischen X
und Y.

Neben dem Begriff des Korrelationskoeffizienten wird zur Beschreibung des Zusam-
menhangs zwischen den ZufallsgroBen X und Y héufig der Begriff der Kovarianz einge-
fiihrt.

Definition 2.50: Sind X und Y zwei beliebige Zufallsgrofen, so wird die Grife
b(X, V):=E[(X— EX) (Y- EM)]) (2.132)
als Kovarianz von X und Y bezeichnet.

Aus (2.132) und (2.76) folgt b(X, X) = D*(X) und b(Y, Y) = D*(Y). Die in Verbindung
mit der zweidimensionalen ZufallsgroBe (X, Y) auftretenden Kovarianzen fassen wir zu
einer Matrix B(X, Y), der Kovarianzmatrix, zusammen:

b(X, X) b(X
B D= (bEY, 0 b g) @139
Entsprechend bilden wir die Kovarianzmatrix B(X, X,, ..., X,) der n-dimensionalen Zufallsgro8e
X1, X, ..., X,) fir n>2:
b(Xy, X)) b(X, X)) ... b(Xy, X))
B, X, ..., X = | PR D 00 K)o b, Xy) 2.134)
B XD b X . bk, X)

3. Zur Charakterisierung einer zweidimensionalen ZufallsgroBe (X, Y) mit Hilfe von
Kennwerten der Verteilung werden auBer den Erwartungswerten E (X), E(Y) und den Va-
rianzen D*(X), D*(Y) und dem Korrelationskoeffizienten ¢ (X, Y) hiufig die bedingten Er-
wartungswerte und die bedingten Varianzen herangezogen. Wir wollen im folgenden die
Definition der bedingten Erwartungswerte angeben.

Definition 2.51: Ist (X, Y) eine diskrete zweidimensionale Zufallsgrofle mit den Wertepaaren
(X1, 1), -+ (Xa, %)), S0 wird

< Dix
EX/Y=y)=Y x-2& 2.135
b ( ) i;"p.k (2.135)
E¥/X=x)=) yk% (2.136)

k=1 i

1) Der in (2.131) eingefiihrte Korrelationskoeffizient g (X, Y) ist damit die auf das Produkt der
Standardabweichungen von X und Y bezogene Kovarianz.
2) Wir beschrinken uns hier auf diskrete ZufallsgroBen mit endlich vielen Wertepaaren.

D.2.50

D.2.51
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als bedingter Erwartungswert von X unter der Bedingung {Y =y} (k=1,2, ..., s) bzw.

als bedingter Erwartungswert von Y unter der Bedingung {X=x} (i=1,2, ..., n) be-

zeichnet.

Beispiel 2.50: Da die ZufallsgroBe X unter der Bedingung {Y = 0} einer Binomialvertei-

lung unterliegt, gilt

085
0,9

Definition 2.52: Ist (X, Y) eine stetige zweidimensionale Zufallsgrife, so wird

EX/Y=0)=5 ~472.

+o

EX/Y=t)= [ 4, f(t/Y=1)d1, (2.137)

By

bzw.
+w

EY/X=1t):= I b fr(t/X =t)dt, (2.138)
als bedingter Erwartungswert von X unter der Bedingung {Y = 1,} bzw. als bedingter Er-
wartungswert von Y unter der Bedingung {X = t,} bezeichnet.

Unterliegt (X, Y) einer zweidimensionalen Normalverteilung, so gilt
4
EQX/Y=1)=m+ 0 (t= )

bzw.
D¥X/Y=1t)=d (1 -0?).
Als besondere Eigenschaft der Normalverteilung erkennen wir hier den in ¢, linearen be-
dingten Erwartungswert und die konstante bedingte Varianz.
Versuchen Sie in gleicher Art, die bedingten Varianzen zu definieren.
Zeigen Sie, daB im Fall der Unabhéngigkeit der ZufallsgroBen X und Y
EX/Y=y)=EX),
E(Y/X=x)=E(Y),
EX/Y=1t) =EX),
E(Y/X=1) =E(Y)
gilt! Beriicksichtigen Sie dabei die Beziehungen (2.127) und (2.128)!

2.3.8. Funktionen von mehrdimensionalen Zufallsgrofen

2.3.8.1. Problemstellung

Analog zum Problem der Funktionen von eindimensionalen ZufallsgroBen (vgl.
Abschn. 2.3.3.3.) treten sehr hdufig auch solche von mehrdimensionalen ZufallsgroBen
auf. Wir wollen ein Beispiel behandeln.

Beispiel 2.52: Die Reparaturdauer eines Gerites eines bestimmten Typs ist eine stetige
ZufallsgroBe; sie unterliege einer Exponentialverteilung mit dem Parameter 1. Es sind
10 Gerite dieses Typs ausgefallen, die nun zu reparieren sind. Es ist die Verteilung der
Gesamtreparaturdauer zu bestimmen.

Wir definieren:

X, = zufillige Reparaturdauer des i-ten Gerdtes (i=1, 2, ..., 10),
Z = Gesamtreparaturdauer.
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Auf Grund der Aufgabenstellung gilt:

10
Z=gX,, ..., Xp) = 2 X.
i=1

In diesem Beispiel tritt als spezielle Funktion der zehndimensionalen ZufallsgroBe
(Xy, ..., Xo) die Summe der einzelnen GroBen X, ..., X, auf.

Bei einer zweidimensionalen ZufallsgroBe (X, Y) konnen auBer der Summe Z=X+Y
u. a. die folgenden Funktionen auftreten:

X
Z=X-Y, Z,=XY, Z=%.

2382. S von bhingi ZufallsgroBen

Wir wollen uns auf zweidimensionale ZufallsgroBen (X, Y) beschrinken und uns mit
der Verteilung der ZufallsgroBe Z = X + Y beschiftigen. Dabei setzen wir die Unabhén-
gigkeit der ZufallsgroBen X und Y voraus.

Im Fall diskreter ganzzahliger ZufallsgroBen X und Y mit den Werten .. -1,0,1,
2, ... konnen wir die Einzelwahrscheinlichkeiten von Z mit den Werten . -1,0,1,
2, ... wie folgt berechnen:

P(Z=k)= Z PX=iY=j) (k=0,%1,+2,..).
i+l_}']= k
Wegen der Unabhingigkeit von X und Y gilt
P(Z=k)= ), PX=i)P(Y=))
IRy
und damit fir k=0, £1, £2, ...
P(Z=k) = ZP(X=i) P(Y=k—i). (2.139)

Beispiel 2.53: X und Y seien zwei binomialverteilte unabhingige ZufallsgroBen mit den
Parametern n, und p bzw. n, und p.

Wegen (2.139) konnen wir die Einzelwahrscheinlichkeiten der ZufallsgroBe Z=X+ Y
mit den Werten z, =k (k=0, 1, ..., n; + n,) wie folgt berechnen:

k
PZ=k)=) [(".‘)pf(l—pw"] [( " .)p**"(l—p)"rk“]
i=o L\ 7 k—i

= (nl : nz)?"(l —pyrtnTk (k=0,1,...,n+n).

Wir erhalten wieder eine binomialverteilte ZufallsgroBe. Diese hat die Parameter n, + n,
und p.

Mit diesem Ergebnis 148t sich induktiv nachweisen, daB die Summe von »n unabhingi-
gen ZufallsgroBen X;(i=1,2, ..., n), die alle mit dem Parameter p Null-Eins-verteilt
sind, einer Binomialverteilung mit den Parametern n und p unterliegt.

Im Falle stetiger ZufallsgroBen X und Y mit den Dichtefunktionen fy(#;) und fy(t,) kén-
nen wir die Verteilungsfunktion F(#) von Z mit Hilfe der Beziehung
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F()=PZ<t)= [ funlt,n)dnds

L+np<t
bestimmen. Da X und Y unabhingig sind, erhalten wir mit Hilfe von (2.128) und nach
Umformung der Integrationsgrenzen:
o -ty

F= [ | fo)dn fut)dy, .

—w -

Die Integration beziiglich ¢, liefert dann

Fy(t)= | Fylt = 1) fe(t) dty. (2.140)

Aus (2.140) erhalten wir durch Differentiation nach ¢ die Dichtefunktion der Verteilung
von Z. Es gilt:

f2(1) =7f St = 1) fx(t)dt. (2.141)

Beispiel 2.54: Es seien X und Y zwei unabhingige im Intervall [0, 1] gleichmiiBig verteilte
ZufallsgroBen. Unter Verwendung der Formel (2.141) und unter Beriicksichtigung, daB Z
Werte aus dem Intervall [0, 2] annehmen kann, erhalten wir

0 fur t=0,
_t fir 0<r=s1,
SO=12-¢ fir 1<1=2,
0 fir 2<t.
In Bild 2.26 ist die Dichtefunktion der ZufallsgréBe Z graphisch dargestellt.

0]

Bild 2.26. Dichtefunktion der dreieckver-

i L teilten ZufallsgroBen Z aus Beispiel 2.54
7 2 t

Anmerkung: Eine ZufallsgroBe, deren Dichtefunktion die in Bild 2.26 dargestellte Form
besitzt, wird als dreieckverteilt bezeichnet.

Wihrend wir im Beispiel 2.53 als Summe zweier binomialverteilter ZufallsgroBen wie-
der eine binomialverteilte ZufallsgroBe erhalten haben, ist im Beispiel 2.54 der Vertei-
lungstyp nicht erhalten geblieben. Es zeigt sich also, daB8 bei der Summation von Zufalls-
groBen nur in speziellen Fillen der Verteilungstyp erhalten bleibt. Dies ist hdufig von
groBer Bedeutung. Verteilungen, bei denen der Verteilungstyp bei Summation erhalten
bleibt, sind neben der Binomialverteilung (unter den im Beispiel 2.53 angefiihrten Vor-
aussetzungen) zum Beispiel die Poissonverteilung und die Normalverteilung.

Anmerkung: Die Verteilungsfunktion der ZufallsgroBe Z = X + Y berechnet sich im Falle
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der Unabhingigkeit der ZufallsgroBen X und Y aus den Verteilungsfunktionen Fy(¢;) und
Fy(t,) durch die sogenannte Faltung. (2.140) ist ein entsprechendes Beispiel.

Wird die Verteilung der Summe von n unabhingigen ZufallsgroBen X;, i =1, ..., n, mit
identischer Verteilung

Fr()=F(), i=1,..,n,

gesucht, so sprechen wir von der n-fachen Faltung der Verteilung von X. Diese wird schritt-
weise unter Anwendung der Formeln (2.139), (2.140) bzw. (2.141) berechnet.
Wir setzen die Behandlung des Beispiels 2.52 fort.

Beispiel 2.52: Die zufilligen Reparaturzeiten X; (i =1, ..., 10) sind identisch exponential-
verteilt:

_[1-e* fur t>0 .
in(t)—{o fir 1<0 “4>0, i=1,...,10).
10
Um die Verteilung der Gesamtreparaturdauer Z = Z X zu bestimmen, haben wir also die
’ i=1
10fache Faltung der Exponentialverteilung vorzunehmen. Wir erhalten eine sog. Erlang-
verteilung) der Ordnung 10 mit der Verteilungsfunktion

9 k
1- Zﬂe*' fir >0,

Fp(1)= &0 k!
0 fir t=0
und der Dichtefunktion
1049
£ = ig-'t—e“‘ fir >0,
VA - .

0 fur r=0.

2.3.8.3. Grundverteilungen der mathematischen Statistik

Wir behandeln in diesem Abschnitt einige Funktionen einer n-dimensionalen Zufalls-
groBe (Xi, ..., X,) (n=1,2,...), die groBe Bedeutung fiir die mathematische Statistik ha-
ben. Dabei gehen wir stets von folgenden Voraussetzungen aus:

Die ZufallsgroBen X; (i =1, ..., n) sind unabhingig und identisch normalverteilt mit
den Parametern x und o.

Verteilung des arithmetischen Mittels X von normalverteilten Zufallsgrifen

Unter den o.g. Voraussetzungen unterliegt die ZufallsgroBe
pIP:¢
i=1

einer Normalverteilung mit den Parametern ny und aﬁ . Diese Aussage 148t sich durch
Bestimmung der n-fachen Faltung der Normalverteilung mit den Parametern 4 und o be-
stitigen. Im Abschnitt 2.3.9.3. werden wir nochmals auf dieses Problem zuriickkommen.
Eine fiir die mathematische Statistik grundlegende Folgerung formulieren wir im folgen-
den Satz:

1) Vgl. Abschnitt 2.3.6.4.
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Satz 2.6: Das arithmetische Mittel

— 1<
r=13x (2.142)

i=1

der unabhdngigen und identisch normalverteilten Zufallsgrofien X;(i=1, ..., n) mit den Para-
metern

EX)=p und D¥X) =0 (i=1,...,n)
ist eine normalverteilte Zufallsgrifie mit den Parametern E(X) = u und {D*(X) = %.
n

Chi-Quadrat (x?)-Verteilung

Wir gehen von den o.g. Voraussetzungen mit 4 = 0 und o= 1 aus und betrachten die
ZufallsgroBe

Y= X2 (2.143)
i=1

Y, ist eine stetige ZufallsgroBe mit der Dichtefunktion

()= 27"' F(%) (2.144)

+ o

Hierbei ist I'(x) = I t*~le~tdt (x > 0) die Gammafunktion (vgl. Band 12).
0

Y, besitzt die Kennwerte

E,) =n
und
D*(Y,) =2n.

Der Parameter n ist hierbei die Anzahl der in die Summe Y, eingehenden unabhingigen
Summanden, die sog. Anzahl der Freiheitsgrade.

Definition 2.53: Eine Zufallsgrifie Y, mit der Dichtefunktion (2.144) unterliegt einer Chi-
Quadrat-Verteilung (kurz x?-Verteilung) mit n Freiheitsgraden.

In der mathematischen Statistik werden wir héufig folgende Aussage benutzen:

Satz 2.7: Sind X,, ..., X, unabhdingige und identisch normalverteilte Zufallsgrifien mit den
Parametern u und o, so unterliegt die Zufallsgrifle

Yi, ==%Z X, - X7 (2.145)
i=1

einer Chi-Quadrat-Verteilung mit (n — 1) Freiheitsgraden.

Anmerkungen: 1. Wir wollen uns hier auf eine heuristische Deutung der Tatsache be-
schrinken, daB sich in (2.145) die Anzahl der Freiheitsgrade um 1 vermindert: Durch die
Bildung von X gemiB (2.142) wird eine Abhingigkeit zwischen den n Summanden in
(2.145) hergestellt, d.h., es wird ein Freiheitsgrad gebunden.
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2. Fiir die numerische Behandlung der Chi-Quadrat-Verteilung mit der Dichte
Jy,(t)  gemiB (2.144)
und der Verteilungsfunktion
F,()=P(Y,<1)
konnen folgende Rekursionsformeln ggnutzt werden:

-4 1
B0 =p=e T 0= ge

o~

t .
fr, (1) =ﬁfy,ﬂ(t) fir n=3,4,...,

Fp() =20 ({1;0,1) -1,

o~

Fyy=1-¢ ’,
Fy(t)=Fy,_(t) = 2fy,(t) fir n=3,4,..

Student-Verteilung (t-Verteilung)*)

Wir gehen von folgenden Voraussetzungen aus:
— X sei eine normalverteilte ZufallsgroBe mit den Parametern =0 und o=1;
— Y, unterliege einer Chi-Quadrat-Verteilung mit n Freiheitsgraden;
— X und Y, seien unabhingige ZufallsgroBen.
Unter diesen Voraussetzungen betrachten wir die stetige ZufallsgroBe

X

Z,:= ) (2.146)
R
n
Sie hat die Dichtefunktion
I‘( n+1 ) mel
2 12 2
fay=—2 1L <1+7> (mw<t< ). @.147)

n
VHTI I (7)
Definition 2.54: Eine stetige Zufallsgrofie Z, mit der Dichtefunktion (2.147) unterliegt einer 1D.2.54
Student-Verteilung (t-Verteilung) mit n Freiheitsgraden.

Die Anwendung der Student-Verteilung in der mathematischen Statistik basiert auf fol-
genden Uberlegungen:

Fiir unabhingige und identisch normalverteilte ZufallsgroBen X; (i =1, ..., n) mit den
Parametern ¢ und o gilt:

. . D R R PR
- Das arithmetische Mittel X =72 X; ist normalverteilt mit den Parametern 4 und
i=1

!) Student — Pseudonym fiir W. S. Gosset (1876-1937), englischer Naturforscher.
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_a

n

. Dann ist die ZufallsgroBe
= X- 2

T

ebenfalls normalverteilt mit den Parametern 0 und 1.

Z:

-Yi, = % Z (X; — X)? unterliegt einer Chi-Quadrat-Verteilung mit (n — 1) Freiheits-

graden.
- Es 4Bt sich weiter zeigen, daB Z und Y}, unabhéngige ZufallsgroBen sind.

Damit erhalten wir folgendes Ergebnis:

S.2.8 Satz 2.8: Sind X,, ..., X, unabhdngige und identisch normalverteilte Zufallsgrifien mit den
Parametern u und o, so unterliegt die stetige Zufallsgrifle

Z* = (2.148)

einer Student-Verteilung mit (n — 1) Freiheitsgraden.

Fishersche F-Verteilung
Wir betrachten den Quotienten
B Y,

1M nlynz ’

wobei Y, und Y, unabhingige Chi-Quadrat-verteilte ZufallsgroBen mit den Freiheitsgra-
den n, bzw. n, sind.
W, », ist eine stetige ZufallsgréBe mit der Dichtefunktion

W,

(ﬂ)%,%“‘
" m 2 .
W=~ (141 fir >0, (2.149)
1 2 2
B<2’2>
0 fir t=<0.

1
Dabei ist B(p, q) = I - 1(1 - t)?-'d¢ die Betafunktion (vgl. Band 12).
0

D.2.55 Definition 2.55: Eine stetige Zufallsgrifie W, ,, unterliegt einer Fisherschen') F-Verteilung
mit (n,, n,) Freiheitsgraden, wenn sie die Dichtefunktion (2.149) besitzt.

Die Anwendung der F-Verteilung in der mathematischen Statistik wird durch die Aus-
sage des folgenden Satzes ermdoglicht.

1) Ronald A.Fisher (1890-1962), englischer Statistiker.
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Satz 2.9: Sind
x®, ...,Xf,‘l’
und
X9, .4.,XE,22’
unabhdngige normalverteilte Zufallsgrofien mit den Parametern

E(XP) =, yDX(XP) =0 (i=1,...,n)
E(X?) =, yDX(XP) =0, (i=1,...,m)

und gilt
0,=0,=0 (W, 4, beliebig),

und

so unterliegt die Zufallsgrifie

(= 1) Y, (X — X0y
Wi yori= 2.150)
(m =1 Y, XP - X0
i=1

einer Fisherschen F-Verteilung mit (n, — 1, n, — 1) Freiheitsgraden.
Dabei ist
1 o xm d Xo -1 i“ X0
Z & un = fu

n i 2 j=1

o=

Anmerkung 1: Wir haben uns hier auf die Angabe der wichtigsten Ergebnisse zu den be-
handelten Verteilungen beschridnkt. Eine ausfiihrlichere Darstellung dieser Problematik
finden Sie z.B. in [3; 14].

Anmerkung 2: Im Anhang finden Sie graphische Darstellungen der hier aufgetretenen
Dichtefunktionen. Die wichtigsten Werte der entsprechenden Verteilungsfunktionen sind
im Anhang in Tafeln zusammengefaBt. In Verbindung mit Fragen der mathematischen
Statistik werden wir den Gebrauch dieser Tafeln kennenlernen.

2.3.9. Charakteristische Funktionen

In diesem Abschnitt werden wir ein in der Wahrscheinlichkeitsrechnung sehr ge-
briauchliches und wichtiges analytisches Hilfsmittel betrachten. Dabei werden komplex-
wertige ZufallsgroBen der Form e'¥ untersucht, wobei i die imaginidre Einheit ist. Da die
imaginire Einheit eine Konstante ist, sind nachfolgend die GesetzméBigkeiten fiir Erwar-
tungswerte von Funktionen von ZufallsgroBen benutzt worden (sieche Abschn.2.3.3.3. und
2.3.7.3)

2.3.9.1. Definition und Beispiele
Definition 2.56: Fiir eine Zufallsgroffe X wird

@x(s) = E(e'*) (s bel. reell) (2.151)
als charakteristische Funktion der Zufallsgrife X bezeichnet.

Aus der Definition folgt wegen (2.79) bzw. (2.80) die Berechnungsformel fiir gx(s) so-
wohl fiir diskrete als auch fiir stetige ZufallsgroBen. Es gilt:

S.2.9

D.2.56
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ox(s) = kZ e P(X = xp), (2.152)
=1

wenn X eine diskrete ZufallsgroBe mit den Werten x; (k =1, 2, ...) ist, bzw.

ox(s) = [ e fy(x) dx, (2.153)

wenn X eine stetige ZufallsgroBe mit der Dichtefunktion fy(x) ist.)

Da |ei*| =1 ist, 1dBt sich zeigen, daB zu jeder ZufallsgroBe X eine charakteristische
Funktion @x(s) existiert. Auch die Umkehrung ist giiltig. Im Abschnitt 2.3.9.5. werden wir
ndher darauf eingehen.

Wir wollen nun fiir spezielle Verteilungen die charakteristische Funktion berechnen.

Beispiel 2.55: Die ZufallsgroBe X unterliege einer Poissonverteilung mit den Einzelwahr-
scheinlichkeiten

PX=k)y=—7e* (k=0,1,2,...;1>0).

Die zugehdrige charakteristische Funktion ergibt sich nach (2.152) wie folgt:
too

9x() = Y, P =)

=e4 elei”
@x(s) = XD, (2.154)

Dieses Ergebnis folgt aus der Tatsache, daB fiir |x| < ©

oo
Pt
gilt.

Beispiel 2.56: Die ZufallsgroBe X sei normalverteilt mit E(X) =0 und D*(X) = 1. Damit
gilt nach (2.153) fur die entsprechende charakteristische Funktion @g(s):
+eo
ox(s) = [ e fy(x) dx
+o X
L I e

Van

-

1) Die Berechnungsformel (2.153) fiir stetige ZufallsgroBen zeigt uns, daB @y (s) die aus der Analy-
sis bekannte Fouriertransformierte der Dichtefunktion fy (x) ist. Natiirlich gilt unter Verwendung des
Stieltjes-Integrals fir beliebige ZufallsgroBen

+o

ox(0)= [ e dF(x).
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+o

D S [ P
N3

—®

e (- 8

=—-l-— j e eerx
V2 '

—»

Unter Beriicksichtigung der Beziehung

e _x—isy?
IE : dx=1/_2;

gilt:

ox)=e °. (2.155)

Beispiel 2.57: Die ZufallsgroBe Y sei normalverteilt mit E(Y) = ¢ und D*(Y) = ¢?. Zur Be-
rechnung der charakteristischen Funktion @y(s) verwenden wir die zwischen der Zufalls-
groBe X aus Beispiel 2.56 und der ZufallsgroBe Y bestehende Beziehung

Y=0X+pu.
Aus (2.151) folgt

@y(s) = E(=** ")
= E(eiwxei:u)
= ei.wE(eimX)
= e y(as)

GO
=eive .

Begriinden Sie die einzelnen Schritte! Verwenden Sie dazu die Eigenschaft (2.81) aus Ab-

schnitt 2.3.3.3. und das Ergebnis von Beispiel 2.56!

Damit ergibt sich als charakteristische Funktion einer normalverteilten ZufallsgroBe Y
mit den Parametern 4 und ¢

a’s?

isu -5
oy(s)=¢e . (2.156)

2.3.9.2. Berech von Mc t

Mit Hilfe der charakteristischen Funktionen lassen sich die existierenden Momente
einer ZufallsgroBe ermitteln. Wir wollen die Formel zur Berechnung des Erwartungswer-
tes hier lediglich fur eine stetige ZufallsgroBe X herleiten. Nach (2.153) gilt fiir die cha-
rakteristische Funktion:

+o

ox(s) = [ = f(x) dx.

Wir bilden die erste Ableitung von @y(s), die dann existiert, wenn E(X) existiert. Es ist

+o

oi(s) = [ ixe™ fy(x)dx.
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Fiir s =0 gilt:

9%(0) =i [ xfi(x) dx.
Damit erhalten wir aber fiir den Erwartungswert E (X):
1
EX)= ¢+().

Zeigen Sie, daB bei entsprechendem Vorgehen fiir die existierenden gewdhnlichen Mo-
mente E(X*) beliebiger ZufallsgroBen X die Beziehung

(k)
E(X")=wxi—k(0) (k=1,2,..) (2.157)

gilt!
Anmerkung: Wegen (2.87) 148t sich die Varianz D*(X) der ZufallsgroBe X mit Hilfe der
Beziehung
@ 0 ) 2
D0 =250 (BOY - 000+ (gi0) @159

berechnen.

Die Anwendung des Zusammenhangs zwischen der charakteristischen Funktion gy(s)
und den gewShnlichen Momenten E (X*) einer ZufallsgroBe X wollen wir an zwei Beispie-
len verdeutlichen.

Beispiel 2.58: Die ZufallsgroBe X unterliege einer Poissonverteilung mit dem Parameter 4.
Die charakteristische Funktion von X errechneten wir im Beispiel 2.55

(PX(S) = el(e“ -,
Daraus folgt
@(s) = Aiel e~V

und
@y (0) = 1ie%e’t -V =i,

Damit erhalten wir

o) _ i
i i

Berechnen Sie die Varianz D?(X) nach (2.158).

Beispiel 2.59: Die ZufallsgroBe X unterliege einer Normalverteilung mit den Parametern u
und ¢. Damit gilt nach (2.156) fiir die charakteristische Funktion:

EX) =

=1 [vgl 2.97)].

. a’s?
@x(s) =exp {ms - T] s

i X X (TZSZ
@x(s) = (iu — o%s) exp [lus - ] .
Aus der Ableitung dieser Funktion erhalten wir fiir s = 0:
@x(0) = iu

und daraus
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EX) =%=u
(vgl. (2.111)). Mit (2.158) kann entsprechend die Varianz D*(X) berechnet werden.

2.3.9.3. Der Multiplikationssatz

Die charakteristischen Funktionen haben auBer fiir die Berechnung der Momente von
ZufallsgroBen auch fiir die Problematik der Faltung von Wahrscheinlichkeitsverteilungen
(vgl. 2.3.8.) wesentliche Bedeutung.

Grundlage hierfiir ist der folgende Multiplikationssatz:

Satz 2.10: Es seien X und Y zwei beliebige unabhdngige Zufallsgrofen mit den charakteristi-
schen Funktionen @x(s) und @y(s). Die charakteristische Funktion @;(s) der Zufallsgrife
Z = X + Y ist das Produkt der charakteristischen Funktionen der Zufallsgrofen X und Y:

@2(5) = @x(s) @y(s). (2.159)

Der Beweis dieses Satzes beruht darauf, daB bei unabhingigen ZufallsgréBen X und Y
auch deren Funktionen e und e®*Y unabhingig sind und damit

E(e“** D) = E(ei¥) E (i)

gilt. Mit Hilfe dieses Multiplikationssatzes konnen wir also die Faltung von Verteilungen
auf die Multiplikation der entsprechenden charakteristischen Funktionen transformie-
ren. Der Satz 2.10 148t sich auch auf die Summe endlich vieler unabhéngiger Zufallsgro-
Ben erweitern.

Beispiel 2.60: X und Y seien unabhdngige normalverteilte ZufallsgroBen mit den Para-
metern yy und oy bzw. uy und gy. Wir wollen die charakteristische Funktion @(s) der
ZufallsgroBe Z = X + Y berechnen.
Fiir die charakteristischen Funktionen gx(s) bzw. @y(s) von X und Y ergibt sich nach
Beispiel 2.57:
as?
@x(s) = exp [iuxs - ]

und

as?
@y(s) = exp [i;tys ) ]
und mit Hilfe des Multiplikationssatzes fir die gesuchte charakteristische Funktion:

st oys?
@z(s) = exp [iuxs+iuys- ) ]

Setzen wir uy + uy = pz und o% + 0% = 0%, so ergibt sich schlieBlich:

. a%s?
@z(s) = exp | iuzs = —5—|.

Der Vergleich dieses Ergebnisses mit der charakteristischen Funktion einer normalverteil-
ten ZufallsgroBe zeigt uns, daB die zu @,(s) gehorende ZufallsgroBe Z ebenfalls normal-

verteilt ist und die Parameter u; = uy + uyund o; = ,/ a% + d% besitzt. Hieraus kénnen wir
die wichtige Folgerung ziehen, daB die S zweier unabhéngiger normalverteilter Zu-
fallsgroBen wieder eine normalverteilte ZufallsgroBe ist, deren Erwartungswert die
Summe der einzelnen Erwartungswerte und deren Varianz die Summe der einzelnen Va-
rianzen ist.

7 Beyer, Wahrscheinlichkeitsrechnung

S.2.10
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2.3.9.4. Erzeugende Funktionen

Bei diskreten ZufallsgroBen mit nichtnegativen ganzzahligen Werten ist die charakteri-
stische Funktion eine Potenzreihe in z = e':

ox(s) = kzo (e*)*P(X = k).

Derartige Potenzreihen bezeichnen wir in der Wahrscheinlichkeitsrechnung als erzeu-
gende Funktionen.

Definition 2.57: Ist X eine Zufallsgrofle mit nicht iven ganzzahligen Werten k (k=0, 1,
2,...), so heift

a(@)=E@E@) =) 2*PX=k) (z]=1) (2.160)
k=0

die erzeugende Funktion von X.

Durch die Einzelwahrscheinlichkeiten P(X = k) (k=0, 1, 2, ...) ist gx(z) eindeutig be-
stimmt.

Beispiel 2.61: Die ZufallsgroBe X sei binomialverteilt mit den Parametern n und p. Dann
errechnet sich die erzeugende Funktion wie folgt:

= - n -— n-=
w@= Y2 () rta-prt

= > (n k(1 — p)yn-k
> (Jora-n
=(1-p+zp),
g(z)=(1+p(-1)~ (2.161)

Analog zu den charakteristischen Funktionen lassen sich mit Hilfe von gy(z) die exi-
stierenden Momente der ZufallsgroBe X berechnen. Es gilt beispielsweise
EX) =gy (2.162)
und
E(X?) =gx(1) + gx(D). (2.163)
Warum?
Bei gegebener erzeugender Funktion einer ZufallsgroBe X lassen sich die Einzelwahr-
scheinlichkeiten P(X = k) durch Koeffizientenvergleich der Potenzreihe

Y Z*P(X=k)
k=0
mit der Taylorreihenentwicklung von gyx(z) im Punkt z = 0 bestimmen. Wir erhalten:
g
k!

Uberpriifen Sie die Richtigkeit von (2.164)!

Beispiel 2.62: Die ZufallsgroBe X sei binomialverteilt mit den Parametern n und p. Mit
ihrer erzeugenden Funktion

P(X=k)= (2.164)
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g(z)=1+pz-D)"

erhalten wir

gx(z) =mp(1+p(z-1) 1,
gx(@) =n(n—-1)p*1+p@z-1) 72

gP@=n(n-1)...(n—k-Dp*Q+p-1)*
und

1
PO = TP A= p T (=01, ).
Damit gilt nach (2.164)
P(X=k)= (Z)p"(l —p) K, k=0,1,..,n.

Anmerkung: Das Bestimmen der Einzelwahrscheinlichkeiten der ZufallsgroBe X bei gege-
bener erzeugender Funktion gx(z) ist nach (2.164) eindeutig moglich.

2.3.9.5. Weiterfilhrende Betrachtungen

Wir kommen nun auf die im Anschlu an die Definition der charakteristischen Funk-
tion gemachte Bemerkung iiber die Existenz und Eindeutigkeit der Wahrscheinlichkeits-
verteilung bei gegebener charakteristischer Funktion zuriick. Folgender Satz ist von
grundlegender Bedeutung:

Satz 2.11: Ist gyx(s) bzw. Fy(t) die charakteristische Funktion bzw. die Verteilungsfunktion einer S.2.11
Zufallsgrife X, und sind t, und t, Stetigkeitsstellen von Fx(t), so gilt
+T

e ist; e isty

1 .
Fy(t) — Fx(t,) = Erllm J T @x(s)ds. (2.165)

-T
Bilden wir in (2.165) den Grenzwert ¢t,— —, wobei ¢, die Stetigkeitsstellen von Fy(t)
durchlduft, und setzen wir £, = ¢, so ergibt sich
LT _
1 egish — gist
=—1li i _— . 2.166
B =5- ,,1_‘.’1 }L“l J M ox(s)ds ( )

-T

Damit gilt folgender Satz:

Satz 2.12: Durch die charakteristische Funktion ist die Verteilungsfunktion eindeutig be- S.2.12
stimmt.

Auf Grund der Zusammenhinge zwischen Verteilungsfunktion und Dichtefunktion
bzw. Einzelwahrscheinlichkeiten ergibt sich aus (2.166)
f(t)=—-1— e py(s)ds (2.167)
X 27.[ X

und

7%
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1 [
P(X=k)=F J. e i*kgy(s)ds (k=0,1,...). (2.168)
-n

(2.167) gilt fur stetige und (2.168) fiir diskrete ZufallsgroBen mit ganzzahligen Werten.
Die Beziehungen (2.165), (2.166), (2.167) und (2.168) bezeichnen wir als Umkehrformeln,
die es prinzipiell gestatten, aus der charakteristischen Funktion die Wahrscheinlichkeits-
verteilung zu bestimmen.

Sie finden weiterfiithrende Betrachtungen beispielsweise in [3; 4; 12].

2.3.10. Grenzwertsitze

2.3.10.1. Einleitung

Aus der Physik ist bekannt, daB die von einem Gas ausgeiibte Druckkraft durch die
StoBe der Gasmolekiile gegen eine begrenzende Wand hervorgerufen wird und daB bei
konstanter Temperatur fiir ein sog. ideales Gas das Gesetz von Boyle-Mariotte p¥ = const
gilt, wobei mit p der Druck und mit ¥V das Volumen des Gases bezeichnet wird. Weiter ist
bekannt, daB die Bewegung der Gasmolekiile zufillig erfolgt. Demzufolge miiiten wir an-
nehmen, daB auch der daraus resultierende Druck einen zufdlligen Wert annimmt. Die

b Zustandsgleich fiir Gase sagt aber aus, daB bei konstanter Temperatur
und bei konstantem Volumen ein bestimmter konstanter Druck herrscht. Ursache hierfiir
ist die sehr groBe Zahl der sich bewegenden Gasmolekiile.

Mit dhnlichen Problemen, d.h. mit der Untersuchung des Verhaltens einer groBen Zahl
von zufillig wirkenden Einfliissen, werden wir uns im folgenden beschiftigen.

Zur Behandlung dieser Fragen benétigen wir die in der Wahrscheinlichkeitsrechnung
hiufig verwendete Tschebyscheffsche') Ungleichung. Sie lautet fiir eine ZufallsgréBe X
mit E(X) = m,; < © und D*(X) <

D(X)

6‘2

P(X-EX)|ze) =

(6>0bel). (2.169)

Mit Hilfe dieser Ungleichung k6nnen wir also unter Verwendung der existierenden ersten
beiden Momente die Wahrscheinlichkeit dafiir abschdtzen, daB die ZufallsgroBe X Werte
in gewissen Intervallen der reellen Achse annimmt, ohne die Verteilung von X zu ken-
nen.

Wenden wir uns nun einer Anwendungsmoglichkeit der Ungleichung (2.169) zu.

Beispiel 2.63: Eine Anlage besteht aus 10 unabhingig voneinander arbeitenden Elemen-
ten. Jedes dieser 10 Elemente fillt in der Zeit T mit der Wahrscheinlichkeit 0,05 aus. Mit
Hilfe der Ungleichung von Tschebyscheff soll die Wahrscheinlichkeit dafiir abgeschatzt
werden, daB der absolute Betrag der Differenz zwischen der zufilligen Zahl der ausgefal-
lenen Elemente und dem Erwartungswert dieser ZufallsgroBe mindestens 2 betrégt.

Mit , X := zufdllige Zahl der ausgefallenen Elemente“ definieren wir eine ZufallsgroBe,
die nach der Aufgabenstellung einer Binomialverteilung mit den Parametern p = 0,05
und n = 10 unterliegt. Fiir diese gilt

E(X) =np=0,5
und
D*(X)=np(1 - p)=10-0,05-0,95=0,475.

) Pafnuti Lwowitsch Tschebyscheff (1821-1894), russischer Mathematiker.
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Unter Verwendung der Ungleichung (2.169) erhalten wir

0 475 _ 0475
4

d.h., die Wahrscheinlichkeit des gesuchten Ereignisses ist kleiner als 0,12.

P(IX-05|2

Anmerkung: Die Tschebyscheffsche Ungleichung liefert im allgemeinen grobe Abschit-
zungen. So erhalten wir im Beispiel 2.63 als exakten Wert

P(]X-0,5/=22)=0,01.
Schitzen Sie mit Hilfe der Tschebyscheffschen Ungleichung die am Ende von Beispiel

2.47 fiir die Normalverteilung berechneten Wahrscheinlichkeiten ab und vergleichen Sie
mit den dort erzielten Ergebnissen!

2.3.10.2. Das Gesetz der groBen Zahlen von Bernoulli

In 2.2. haben wir die relative Haufigkeit eines Ereignisses als einen Nidherungswert fiir
die entsprechende Wahrscheinlichkeit kennengelernt. Wir wollen nun den Zusammen-
hang zwischen Wahrscheinlichkeit und relativer Haufigkeit nédher untersuchen. Dazu ge-
hen wir von einer beliebigen Anzahl von Versuchen aus, die nach dem Bernoullischen
Versuchsschema (siehe 2.3.5.2.) durchgefithrt werden. In jedem einzelnen Versuch kann
dann also entweder das zufillige Ereignis A mit der Wahrscheinlichkeit p (0 < p < 1) bzw.
das Ereignis 4 mit der Wahrscheinlichkeit 1 — p eintreten.

Durch die Zuordnung P(X;= 1) = pund P(X;=0) =1 — p wollen wir die Versuche mit
Hilfe der unabhéngigen ZufallsgroBen X; (i = 1, ..., n), die einer Null-Eins-Verteilung un-
terliegen, beschreiben. Die ZufallsgroBe

-3 x
i=1

geniigt dann einer Binomialverteilung mit E(S,) =np und D*(S,)=np(1 —p) (vgl
2.3.8.2).

Dividieren wir S, durch n, so ergibt sich eine ZufallsgroBe, die gerade die relative Héau-
figkeit des zufdlligen Ereignisses 4 bei n Versuchen charakterisiert, d. h.

H,(4) =—‘:i. (2.170)

Nach (2.81) und (2.83) gilt
E(H,(4)) =p
und
Di(H,(4) =2 p(1 - p).
Wenden wir auf (2.170) die Tschebyscheffsche Ungleichung an, so ergibt sich

P(l p)
e?

P(|H,(4) - p|ze)s——5— (e>0bel).

Durch Grenziibergang (n— + =) erhalten wir das im folgenden Satz zusammengefafite
Ergebnis:

Satz 2.13 (Gesetz der grofen Zahlen von Bernoulli): Ist {X};-, , . eine Folge unabhingiger S.2.13
identisch verteilter Zufallsgrofien mit
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PX;=1)=p
und
PX;=0)=1-p (0<p<1),

limP(%ZX,-—p
n—ow i=1

Dieser Satz sagt aus, daB die Wahrscheinlichkeit dafiir, daB die relative Haufigkeit und
die Wahrscheinlichkeit eines zufdlligen Ereignisses A dem Betrage nach um mehr als ¢
voneinander abweichen, mit n — o gegen null strebt. Damit ist die Stabilitdt der relati-
ven Héufigkeit, auf die wir schon in 2.2.1. hingewiesen haben, prézisiert worden.

Wesentlich hierbei ist, daB die Wahrscheinlichkeit eines zufilligen Ereignisses nicht
der Grenzwert der relativen Héufigkeit im Sinne der ,klassischen“ Analysis ist, sondern
die Wahrscheinlichkeit des Ereignisses

»|Hy(4) — p|z &“
konvergiert gegen null. Wir sagen, daB H,(4) in Wahrscheinlichkeit gegen p konver-
giert.
Da im Satz 2.13 mit S,/n das Verhalten einer groBen Zahl von ZufallsgroBen unter-
sucht wird

so gilt

z s) =0 (e>0 bel). (2.171)

\
S,=Y X; n—eo,
i=1

wird auch héufig gesagt, daB die Folge {X};-1 , .. dem Gesetz der groBen Zahlen unter-
liegt (hier in der Form von Bernoulli).
Satz 2.13 14Bt sich in folgender Weise verallgemeinern:

Satz 2.14 (Gesetz der grofien Zahlen von Chintschin®)): Ist {X;};- 1 ,, .. eine Folge von unabhdn-
gigen und identisch verteilten Zufallsgrofen mit E(X;) = m; < , so gilt:

limP(-l—ZX,-—ml
o L=t

Neben der Untersuchung des Stabilitdtsverhaltens von Summen von ZufallsgréBen ist
es notwendig, das Grenzverhalten der Folgen von Wahrscheinlichkeitsverteilungen zu un-
tersuchen. In 2.3.5.3. wurde ein solches Problem schon angedeutet. Wir wollen im folgen-
den noch einmal néher darauf eingehen.

z e) =0 (>0 bel). (2.172)

2.3.10.3. Der Satz von Poisson

Der Satz von Poisson hat den Zusammenhang von Binomial- und Poissonverteilung
zum Inhalt. Diese Fragestellung ist nicht nur von theoretischem Interesse, sondern hat
auch die Verringerung des fiir groBe n bei der Binomialverteilung recht erheblichen nu-
merischen Aufwands bei der Berechnung der Einzelwahrscheinlichkeiten durch Grenz-
betrachtungen fiir n — o zum Ziel.

Bei diesen Grenzbetrachtungen verdndern wir das der Binomialverteilung zugrunde lie-
gende Bernoullische Versuchsschema in nachstehender Weise. Bei einer gegebenen Zahl
von n unabhingigen Versuchen ist die Wahrscheinlichkeit fiir das Eintreten des Ereignis-
ses A in jedem einzelnen Versuch dieser Versuchsserie durch P(4) = p, gegeben. Wir

1) Alexander Jakowlewitsch Chintschin (1894-1959), sowjetischer Mathematiker.
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wollen weiter annehmen, daB durch die VergroBerung des Umfanges n der Versuchsserie
P, sehr klein wird. Fiir n — o gelte p,— 0. AuBerdem sei

lim np,=4>0.

o
Die einzelnen Versuche der Versuchsserie von n unabhéngigen Versuchen kdnnen wir
mit Hilfe der unabhédngigen Null-Eins-verteilten ZufallsgroBen

X" (i=1,2,...,n;,n=12,..)
beschreiben. Es gilt

PP =1)=p,
und
PP =0)=1-p,.

Die ZufallsgroBe

S,= Y X := Anzahl des Eintretens von A4 bei einer Versuchsserie von n Ver-
i=1
suchen

unterliegt einer Binomialverteilung mit den Einzelwahrscheinlichkeiten
Ps,= 0= ()P =pr 5 k=0.12.n

Der folgende Satz, den wir ohne Beweis angeben, enthilt eine Aussage iiber das Grenz-
verhalten von P(S,=k) fiur n — c:

Satz 2.15 (Satz von Poisson): Es sei fiir gegebenes n S.2.15
{X 5")}i=1,2

eine Folge unabhdngiger Zufallsgrifen mit P(X™ =1)=p, und P(X" =0)=1-p,
(i=1, ..., n). Dann ist die Folge {S,},-1,,, .. mit

.

5= X
i=1

eine Folge von binomialverteilten Zufallsgrofien mit den Parametern {p,},-1,,, .. und {n},-1,, . .
Fiir
lim np,=4>0

n—w

gilt dann

Ak
lim P(S, = k) =Fe"‘, k=0,1,...

n—o

In Tabelle 2.6 sind zum Vergleich die Werte der Einzelwahrscheinlichkeiten einer Bi-
nomialverteilung mit den Parametern n =10 und p = 0,05 und einer Poissonverteilung
mit dem Parameter 4 = np = 10-0,05 = 0,5 gegeniibergestellt.

Es zeigt sich, daB schon bei n =10 und einem entsprechend kleinen Wert von p die
Poissonverteilung eine recht gute Naherung fir die Einzelwahrscheinlichkeiten der
Binomialverteilung liefert.
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Tabelle 2.6: Gegeniib 1 der Einzelwahrscheinlich
keiten einer Binomialverteilung mit den Parametern
n =10, p=0,05 und einer Poissonverteilung mit dem Pa-
rameter 4 =10,5

10 k(] — 10-k 0,5% s

k ( X ) 0,05%(1 - 0,05) P

0 0,5987 0,606 5

1 0,3151 0,3033

2 0,0746 0,0758

3 0,0105 0,0126
z4 0,0011 0,0018
Y 1,0000 1,0000

2.3.10.4. Der zentrale Grenzwertsatz

Neben dem sehr speziellen Grenzwertsatz von Poisson ist es interessant, die Konver-
genz der Folgen von Verteilungen von Summen von ZufallsgroBen gegen eine Grenzver-
teilung zu untersuchen. Hierbei zeigt es sich, daB bei geeigneter Transformation von
Summen von ZufallsgroBen die Folge ihrer Verteilungen in bestimmten Fillen gegen die
Normalverteilung konvergiert. Eine Aussage hieriiber liefert folgender Satz:

Satz 2.16 (Zentraler Grenzwertsatz): Ist {X};-1,,, .. eine Folge von unabhdngigen und identisch
verteilten Zufallsgrofien mit E(X;) = m, < © und D*(X;) = d* < «, so gilt fiir jedes reelle t mit

5= X
i=1

t

. S, — nm, 1 7
limP([2——<t|=d( 0,1)=—— | e *dx. 2.173
e ( Ynd ) ( ) \an I @17

-

Mit anderen Worten heiBt dies, daB die Folge der Verteilungen der standardisierten
ZufallsgroBen

S, — nm,

Tnd (2.174)

gegen die Normalverteilung mit den Parametern x4 = 0 und o =1 konvergiert.

Wir nennen S, (n=1, 2, ...) in diesem Fall auch asymptotisch normalverteilt mit dem
Erwartungswert nm; und der Standardabweichung \/; d (asymptotisch N(nm,; 1/; d)-
verteilt).

Den Beweis des Satzes 2.16 wollen wir hier nicht fiihren. Der Leser findet ihn und wei-
tere Grenzwertsétze z. B. in [3; 4; 12].

Wir wollen nun als Spezialfall des Satzes 2.16 den Satz von Moivre-Laplace kennenler-
nen. Ausgangspunkt ist das Bernoullische Versuchsschema, bei dem jeder einzelne Ver-
such analog zu 2.3.10.2. durch die Null-Eins-verteilten ZufallsgroBen X; (i=1, 2, ...) be-
schrieben wird und
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einer Binomialverteilung mit den Parametern n und p unterliegt. Wir wenden den zentra-
len Grenzwertsatz an und erhalten den folgenden Satz:

Satz 2.17 (Satz von Moivre')-Laplace): Ist S, eine binomialverteilte ZufallsgriBe mit den Para- S.2.17
metern n und p, so gilt fiir beliebige t

S, — nj
1imP(—————L—<:> =®(1; 0,1). 2.175)
ne \ Ynp(l-p)

Das heiBt, wenn bei dem der Binomialverteilung zugrunde liegenden Bernoullischen
Versuchsschema die Anzahl der unabhingigen Versuche gegen unendlich strebt, dann
konvergiert die Verteilungsfunktion der standardisierten binomialverteilten ZufallsgroBe
gegen die Verteilungsfunktion einer normalverteilten ZufallsgroBe mit den Parametern 0
und 1.

Die Bedeutung des Satzes 2.17 wollen wir an einem Beispiel verdeutlichen.

Beispiel 2.64: Mit Hilfe unabhéngiger Versuche ist die Wahrscheinlichkeit eines zufdlli-
gen Ereignisses ndherungsweise durch die relative Héaufigkeit zu bestimmen. Mit Hilfe
des Satzes von Moivre-Laplace soll nun untersucht werden, wie groB die Anzahl der unab-
héngigen Versuche sein muB, damit mit einer Wahrscheinlichkeit von mindestens 0,99
das Ergebnis mit einem Fehler kleiner 0,01 behaftet ist.

Die Losung dieser Aufgabe beruht auf der Tatsache, daB die relative Haufigkeit eines
Ereignisses A wegen

s,
H(4)=""

mit Hilfe der binomialverteilten ZufallsgroBe S, beschrieben wird. Davon ausgehend ist
die o.g. Fragestellung wie folgt zu behandeln:

Die Anzahl n der durchzufiihrenden unabhingigen Versuche ist dann aus der Bezie-
hung

P( % - P(A)‘ < 0,01) =0,99
zu bestimmen. Mit P(4) = p fithren wir folgende Umformungen durch:
S,
P( f—pl <o,01) =P(|S, - np| <0,01-n)
=P(l S,—np ]< 0,01-n )
[ Vo =p) |~ Ymp(1-p)
P(_ Yn001 __ Si—m _ yn-001 )
p-p) mw(-p) Vp1-p)

Yn 0,01 ) ( Jn-0,01 )
~ ¢ t=—-;01)-®| -———=—;0,1) (vgl.Satz2.17)
(Vp(l—p) Yp(1—-p)

Yn-0,01 >
=2 L =0,1) -
(Jp(l—p)

1) Abraham de Moivre (1667-1754), franzésischer Mathematiker.
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;w(m;m)-x

0,25

Da p in der Regel unbekannt ist, benutzten wir hier die Abschitzung p(1 —p) <0,25.
Wir kommen der Aufgabenstellung nach, indem wir nun

20(I000 5 1) 12 00
0,25
bzw.
2] M;O,l 20,995
10,25
fordern.

Mit Hilfe der Tafel 2 des Anhangs ergibt sich fiirr @(ty;0,1) = 0,995 der Wert t, = 2,576.
Die gesuchte Anzahl der Versuche ist die kleinste natiirliche Zahl n mit

Yn -0,01

=2,576
10,25
und damit
n=~16590.

Wir miissen also etwa 16 590 Versuche durchfiihren, um die gesuchte Wahrscheinlichkeit
in durchschnittlich 99% aller derartigen Versuchsserien mit der geforderten Genauigkeit
zu ermitteln.

Das gesuchte n im Beispiel 2.64 konnen wir auch mit Hilfe der Ungleichung von
Tschebyscheff abschitzen. Als Ergebnis erhalten wir n =250 000. Ein Vergleich mit dem
mit Hilfe des Satzes von Moivre-Laplace gewonnenen Ergebnis zeigt, daB die Unglei-
chung von Tschebyscheff ungenauere Abschitzungen liefert.

2.3.10.5. Weiterfithrende Bemerkungen

In 2.3.10.2. haben wir das Verhalten der ZufallsgroBe H,(4) untersucht und die Bezie-
hung (2.171) hergeleitet. Hierbei erkannten wir, daB P(4) nicht der Grenzwert von H,(4)
im Sinne der ,klassischen Analysis ist. Wir erhielten nur eine Aussage {iber das Konver-
genzverhalten der Wahrscheinlichkeit des Ereignisses

S|H(4) = P(4)| z e

und nannten dieses Konvergenzverhalten Konvergenz in Wahrscheinlichkeit. Diesen Be-
griff konnen wir allgemein wie folgt definieren:

Definition 2.58: Eine Folge von Zufallsgrifen {X,},-,,, .. heilt konvergent in Wahrschein-
lichkeit gegen a, wenn

lim P(|X,—a|z€e)=0 (e>0 bel)
gilt.

Neben der Konvergenz in Wahrscheinlichkeit wird in der Wahrscheinlichkeitsrech-
nung noch eine andere Art des Konvergenzverhaltens behandelt.
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Definition 2.59: Eine Folge von Zufallsgrifen {X,},-1, . heit konvergent mit Wahr- D.2.59
scheinlichkeit 1 gegen a, wenn
P(lim X, = a) =1

gilt.

Vergleichen wir Definition 2.58 und 2.59, so ist zu erkennen, daB in 2.59 nicht die
Konvergenz der Wahrscheinlichkeit, sondern die Wahrscheinlichkeit fiir die Existenz
eines Grenzwertes untersucht wird. Zwischen beiden Konvergenzarten besteht folgender
Zusammenhang:

Wenn eine Folge {X,},-1,, .. von ZufallsgroBen mit Wahrscheinlichkeit 1 gegen eine
GroBe a konvergiert, so konverglert sie auch in Wahrschemllchkelt gegen a. Die Umkeh-
rung dieser Aussage gilt nicht.

Hieraus erkennen wir, daB die Konvergenz mit Wahrscheinlichkeit 1 ein ,stdrkeres“
Konvergenzverhalten als die Konvergenz in Wahrscheinlichkeit ausdriickt. Deshalb sagen
wir auch, daB eine Folge von ZufallsgroBen, deren arithmetische Mittel mit Wahrschein-
lichkeit 1 gegen eine GroBe a konvergieren, dem starken Gesetz der groen Zahlen un-
terliegt. Entsprechend wird von einer Folge von ZufallsgroBen, deren arithmetische Mittel
in Wahrscheinlichkeit gegen eine GroBe a konvergieren, gesagt, daB sie dem schwachen
Gesetz der groBen Zahlen unterliegt.

Mit den Sdtzen 2.13 und 2.14 haben wir also zwei Formen des schwachen Gesetzes der
groBen Zahlen kennengelernt. Wir wollen abschlieBend das starke Gesetz der groBen Zah-
len in der Form von Kolmogorow angeben:

Satz 2.18 (Starkes Gesetz der grofen Zahlen von Kolmogorow). Eine Folge {X};-, , . von un- S.2.18
abhdngigen und identisch verteilten Zufallsgrifien unterliegt genau dann dem starken Gesetz der
grofen Zahlen, wenn m; = E (X)) existiert. Es gilt in diesem Fall:

P(um ZX m) =1.

n—e N3

In [12] finden Sie hierzu ausfiihrliche Untersuchungen.

2.3.11. Aufgaben

2.20: Ein Arbeiter bedient drei voneinander unabhéingig arbeitende Maschinen. Jede *
einzelne Maschine verlangt innerhalb eines bestimmten Zeitintervalls 7 die Aufmerk-
samkeit des Arbeiters mit der Wahrscheinlichkeit 0,4. Es sei X die zufdllige Anzahl der
Maschinen, die im Zeitintervall T die Aufmerksamkeit des Arbeiters verlangen.

Bestimmen Sie
a) die Verteilungstabelle von X,

b) P(X=1),

c) die Verteilungsfunktion Fy(?),
d) E(X),

e) D¥(X).

2.21: Bestimmen Sie die Quantile Q, (»p =0,1;0,2; 0,3; 0,4; 0,5) der binomialverteilten
ZufallsgroBe X, aus Beispiel 2.29!

*

*

2.22: Einer Lieferung von 30 Teilen, die 5 AusschuBteile enthdlt, werden zufillig
4 Teile entnommen und tiberpriift. X sei die zufdllige Anzahl der dabei festgestellten Aus-
schuBteile. Bestimmen Sie die Wahrscheinlichkeit dafiir, daB die Anzahl der festgestell-
ten AusschuBteile kleiner als zwei ist.
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2.23: Stellen Sie in einer Tabelle die Quantile
Q, fir p=0,01;0,05;0,1;02

der standardisierten normalverteilten ZufallsgréBe Y (E(Y) =0; D*(Y) =1) zusammen!
Benutzen Sie dazu die Tafel 2 des Anhangs!

Losen Sie die gleiche Aufgabenstellung fiir eine normalverteilte ZufallsgroBe X mit den
Parametern £ =2 und o= 3.

2.24: Der Durchmesser einer auf einer automatischen Anlage gefertigten Kugel kann
als normalverteilte ZufallsgroBe X mit den Parametern x =20 mm und o = 0,5 mm ange-
sehen werden. Eine derartige Kugel geniigt den Qualitdtsanspriichen, wenn ihr Durchmes-
ser im Intervall [19,5; 22] liegt.

a) Wie groB ist die Wahrscheinlichkeit dafiir, daB eine Kugel den Qualitdtsanspriichen
geniigt?

b) Wie groB ist die Wahrscheinlichkeit dafiir, daB unter 1000 produzierten Kugeln genau
2 zu finden sind, deren Durchmesser kleiner als 18,5 mm ist?

2.25: Ein Arbeiter stellt mit Wahrscheinlichkeit 0,9 ein Erzeugnis her, fiir das ein Jahr
Garantie iibernommen werden kann. Mit der Wahrscheinlichkeit 0,09 wird ein beschidig-
tes Erzeugnis, das sich jedoch ausbessern 14Bt, und mit der Wahrscheinlichkeit 0,01 ein
total unbrauchbares Stiick hergestelit.

Es sei X := Anzahl der Erzeugnisse, fiir die ein Jahr Garantie iibernommen wird, und
Y:= Anzahl der beschddigten Stiicke, wenn insgesamt 3 Erzeugnisse unabhéngig vonein-
ander produziert wurden.

a) Bestimmen Sie die Verteilungstabelle der zweidimensionalen ZufallsgroBe (X, Y).

b) Berechnen Sie die Einzelwahrscheinlichkeiten der Randverteilung von X bzw. Y.

c) Wie lautet die Verteilungstabelle der bedingten Einzelwahrscheinlichkeiten von X un-
ter der Bedingung {Y =1}?

2.26: Die Verteilung der stetigen zweidimensionalen ZufallsgroBe (X, Y) ist durch die
Dichtefunktion
1
— fur A+=1,
fant,) =9 L
0 sonst

gegeben. Untersuchen Sie, ob die ZufallsgroBen X und Y unabhingig sind!

2.27: Zeigen Sie, daB die Summe Z zweier unabhingiger ZufallsgroBen X, und X,, die
jeweils einer Poissonverteilung mit den Parametern 4, bzw. 4, unterliegen, ebenfalls pois-
sonverteilt mit dem Parameter 4, + 4, ist
a) mit Hilfe der Beziehung (2.139);

b) mit Hilfe charakteristischer Funktionen.

2.28: Berechnen sie mit Hilfe erzeugender Funktionen Erwartungswert und Varianz

einer binomialverteilten ZufallsgroBe mit den Parametern n und p.

2.29: Die zufillige Zeit X bis zum ersten Ausfall eines Bauelementes unterliege einer
Exponentialverteilung mit der Verteilungsfunktion

1—e™# fir (>0,
F’(')Z{O fir r=0.

Beweisen Sie folgende Beziehung ﬁ.‘\r die bedingte Wahrscheinlichkeit daﬁ.’\r ﬂa& das

wurde, daB das Element bis zu dieser Zext ausfallfrei gearbex'.et .‘z t:
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1-e* fiur s>0,

P(X<t+s/th)={0 M 120

Interpretieren Sie diese Eigenschaft der Exponentialverteilung und ordnen Sie sie in die
in 2.3.6.6. angegebenen Anwendungsmoglichkeiten ein!

2.30: Ein System bestehe aus zwei im Sinne der Zuverldssigkeit in Reihe geschalteten
Elementen (vgl. Bsp. 2.18). Die zufdlligen Zeiten X, bzw. X, bis zum ersten Ausfall der
Elemente unterliegen einer Exponentialverteilung mit den Parametern 4, bzw. 4,. Zeigen
Sie, daB im Fall der Unabhéngigkeit beider Elemente die zufillige Zeit S bis zum ersten
Systemausfall ebenfalls einer Exponentialverteilung mit dem Parameter 4; + 4, unterliegt.
Verallgemeinern Sie das Ergebnis auf Reihenschaltungen aus einer beliebigen Anzahl un-
abhingiger Elemente! .

Hinweis: Bestimmen Sie zunéchst die sog. Uberlebenswahrscheinlichkeit P(S = t)!



3. Mathematische Statistik

Im folgenden Kapitel werden wir Methoden zur Auswertung von MeBergebnissen ken-
nenlernen. Als wichtige Vorarbeit wird in Abschnitt 3.1. erldutert, wie diese Ergebnisse
geordnet, verdichtet und dargestellt werden, um sie einerseits {iberschaubar zu machen
und um andererseits die Voraussetzungen zur Anwendung der Methoden der mathemati-
schen Statistik zu schaffen. Aufbauend auf den Begriffen ,,Grundgesamtheit“ und ,,Stich-
probe“ (Abschnitt 3.2.) lernen wir die Grundbegriffe der Schétz- und Testtheorie (Ab-
schnitte 3.3. und 3.4.) und der Varianzanalyse (Abschnitt 3.5.) kennen. In den
Abschnitten 3.6. bzw. 3.7. wird schlieBlich ein kurzer Uberblick zur Regressions- und
Korrelationsanalyse bzw. zu verteilungsunabhéngigen Verfahren gegeben.

3.1. Beschreibende Statistik

3.1.1. Beschreibende Statistik bei einem Merkmal

3.1.1.1. Urliste, Haufigkeitstabellen, Haufigkeitsverteilungen
Wir wollen mit einem Beispiel beginnen und daran einige Begriffe erkldren:

Beispiel 3.1: Gewisse Charakteristika einer Betonsorte, u.a. Druckfestigkeit, Zugfestigkeit,
sollen ermittelt werden. Um nun z.B. Aussagen iiber die Druckfestigkeit [10~! MPa], auf
dieses Charakteristikum wollen wir uns hier beschrianken, machen zu koénnen, wird unter
gleichen Bedingungen eine gewisse Anzahl von Probewiirfeln gefertigt und von jedem die
Druckfestigkeit festgestellt. So erbrachte z.B. die Messung der Druckfestigkeit [10~' MPa]
bei 20 Probewiirfeln folgende Ergebnisse:

183 181 183 180 182 182 185 182 184 179
182 184 180 181 179 180 182 180 181 183.

Wie im Beispiel 3.1 gehen wir in der beschreibenden Statistik bei der Ermittlung gewis-
ser Eigenschaften (im Beispiel: Druckfestigkeit, Zugfestigkeit) eines Untersuchungsobjek-
tes (im Beispiel: Betonsorte) von den fiir diese Eigenschaften an einer Menge von Ele-
menten (Einheiten) des betrachteten Untersuchungsobjektes (im Beispiel: 20 Betonwiir-
fel) ermittelten MeBergebnisse aus (im Beispiel: 20 MeBergebnisse fiir die Druckfestig-
keit).

Dabei bezeichnen wir die einzelnen Eigenschaften des Untersuchungsobjektes als
Merkmale und kennzeichnen sie durch groBe lateinische Buchstaben: X, Y, ... Die Merk-
male, die wir als mebar annehmen wollen, konnen diskret oder stetig sein. Die fiir die
einzelnen Merkmale ermittelten MeBergebnisse nennen wir Merkmalswerte (Mepwerte)
und kennzeichnen sie durch indizierte kleine lateinische Buchstaben: x;, yi, ... Die
Menge der unbearbeiteten MeBergebnisse bezeichnen wir schlieBlich als Urliste (Proto-
koll).

In den weiteren Ausfithrungen dieses Abschnittes wollen wir uns nun auf die Betrach-
tung eines Merkmals X eines Untersuchungsobjektes beschrinken, fiir das die MeBwerte
x;, i=1,2,..., n, ermittelt wurden. Die Urliste enthélt diese MeBwerte ungeordnet. Es
kommt jetzt darauf an, dieses Zahlenmaterial zu ordnen, gegebenenfalls zu verdichten
und damit iiberschaubar zu machen.

Ein erster Schritt in dieser Richtung besteht darin, die MeBwerte der Urliste der GroBe
nach zu ordnen. Wir erhalten so die sogenannte Variationsreihe, deren Werte wir mit x}
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(G=1,2,..., n) bezeichnen und bei der wir

X¥ = Xmin (kleinster Wert der Urliste)
und
X¥ = Xpax (groBter Wert der Urliste)

setzen. Fiir die Variationsreihe gilt dann folglich:
xfsxys... =x}.

Die Differenz zwischen dem groBten und dem kleinsten MeBwert wird Spannweite oder
Variationsbreite (Symbol: R) genannt:

R Xy = g = X7 = 51,
Im Beispiel 3.1 lautet die Variationsreihe

179 179 180 180 180 180 181 181 181 182
182 182 182 182 183 183 183 184 184  185.

Sehr héufig tritt der bei dem Beispiel 3.1 vorliegende Fall ein, daB in der Urliste ein-
zelne MeBwerte mehrmals auftreten. Fiir das Ordnen des Materials ist es in diesem Fall
glinstig, eine (primdre) Hdufigkeitstabelle (Verteil: fel) aufzustellen. In ihr halten wir ne-
ben den in der Urliste enthaltenen moglichen MeBwerten x%, m=1,2, ..., k, und den
mit Hilfe einer Strichliste gewonnenen zugehdrigen absoluten Hiufigkeiten h, meist
noch die entsprechenden relativen Haufigkeiten

h

H,=-—2
n

und die relativen Summenhéufigkeiten

h &
PIEE DN/
Jj=1 j=1
fest, wobei sich die Summation jeweils bis zum Index des MeBwertes x%, m=1,2, ..., k,
erstreckt.

Die relative Haufigkeit und die relative Summenhéufigkeit werden oft in Prozenten an-
gegeben. Die Verteilungstafel gibt einen guten Uberblick iiber die Hiufigkeitsverteilung
des betrachteten Merkmals. Fiir das Beispiel 3.1 ist die Verteilungstafel in Tabelle 3.1 an-
gegeben.

Die Verteilungstafel zeigt u.a., daB der MeBwert 182 die groBte Haufigkeit besitzt und
daB 70% aller MeBwerte kleiner oder gleich 182 sind.

Enthilt die Urliste eine groBe Anzahl unterschiedlicher MeBwerte, so konnen wir das
Material weiter verdichten, indem wir die vorliegenden MeBwerte in Klassen einteilen,
und eine (sekunddre oder reduzierte) Hdufigkeitstabelle (Verteilungstafel) aufstellen. Dazu
zerlegen wir ein Intervall der reellen Achse, in dem alle MeBwerte der Urliste liegen, in
Teilintervalle, die wir als Klassen bezeichnen. Diese werden durch ihre obere und untere
Klassengrenze, durch ihre Klassenbreite und durch ihre Klassenmitte charakterisiert.

Fiir die Festlegung der Anzahl der zu bildenden Klassen — wir wollen diese Anzahl mit
k bezeichnen — gibt es keine feste Vorschrift. Es sind lediglich Erfahrungswerte bekannt.
So wird z.B. empfohlen, k < 5 log n oder auch k wenigstens 6 und hochstens 20 zu wih-
len. Wird k zu klein gewihlt, so verwischt haufig das Typische des Merkmals, und ein gro-
Ber Informationsverlust tritt ein. Auf der anderen Seite bringt ein zu groBes k wenig Uber-
sichtlichkeit.
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Tabelle 3.1. Verteilungstafel zum Beispiel 3.1

absolute relative relative
Hiufigkei Hiufigkei S hiufigkeit
Xn
Strichliste| A, H, 100 % L]
Y H;100%
j=1
179 I 2 10 10
180 11 4 20 30
181 11 3 15 45
182 TIIII N 25 70
183 111 3 15 85
184 I 2 10 95
185 I 1 5 100
n=20 100

Die Festlegung der Klassenbreiten, das sind die Differenzen der jeweiligen oberen und
unteren Klassengrenzen, richtet sich nach dem Umfang n der in der Urliste erfaBten MeB-
werte und nach der Spannweite R. Es empfiehlt sich, die Klassenbreite d fiir alle Klassen
konstant zu halten. Dadurch lassen sich spitere Berechnungen sehr vereinfachen.

Durch die Klassenmitten u,,, m =1, 2, ..., k, werden bei weiteren Berechnungen all die
MeBwerte reprasentiert, die in die betreffende Klasse fallen. Dabei ergibt sich bei einem
stetigen Merkmal die Klassenmitte als arithmetisches Mittel der zugehorigen Klassen-
grenzen. Demgegeniiber ist bei einem diskreten Merkmal die Klassenmitte das arithmeti-
sche Mittel der moglichen MeBwerte, die in diese Klasse fallen. Nach der Klasseneintei-
lung stellen wir mit Hilfe einer Strichliste die Anzahl der MeBwerte fest, die in die
einzelnen Klassen fallen. MeBwerte, die auf Klassengrenzen liegen, ordnen wir jeweils der
,niachsthoheren“ Klasse zu. Auf diese eine Moglichkeit der Zuordnung wollen wir uns im
folgenden beschrianken. Die Anzahl der in der Klasse m liegenden MeBwerte bezeichnen

wir mit h,, m=1,2, ..., k, wobei Z h,, = n gilt. Fiir die relative Haufigkeit H,, erhalten

wir dann H, = h,/n, m=1,2,...,k, und fiir die relative Summenhdufigkeit Z H;,
m=12,..,k.

Die Hiufigkeitstabelle gibt einen guten Uberblick iiber die Haufigkeitsverteilung des
betrachteten Merkmals.

Beispiel 3.2: Bei 120 Wellen, die der laufenden Produktion eines Prizisionsdrehautoma-
ten entnommen wurden, ist die MaBabweich des Durct s vom NennmaB ermit-
telt worden. Diese Abweichung ist ein stetiges Merkmal.

Die Urliste (Tabelle 3.2) enthilt die MeBwerte der Abweichungen in um. Eine Haufig-
keitstabelle ist aufzustellen.

Aus der Urliste entnehmen wir die MeBwerte X, = 28 und Xy, = —17. Daraus folgt
die Spannweite R = Xy, — Xmin = 45. Wiihlen wir die Klassenbreite d = 6, die Klassenan-
zahl k = 8 und —18 als untere Klassengrenze der ersten Klasse, so erhalten wir die in Ta-
belle 3.3 angegebene Haufigkeitstabelle.

Wiihlen wir bei gleicher Klassenbreite d =6 und der Klassenanzahl k =9 als untere
Klassengrenze der ersten Klasse —20, dann ergibt sich die in Tabelle 3.4 angegebene
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Tabelle 3.2. Urliste zum Beispiel 3.2

+ 2,5 +16,0 + 1,0 -17,0 - 10 - 65
- 10 +15,0 + 50 +11,0 + 3,0 + 3,0
+ 8,0 + 6,5 +13,0 - 8,0 + 8,0 + 4,0
+18,5 + 1,5 +12,0 +11,0 +17,0 + 8,5
+ 35 + 2,0 + 6,0 - 20 +12,0 +18,0
- 45 +13,0 0,0 - 05 + 55 + 9,0
- 55 - 15 -12,0 +14,0 + 1,0 -12,0
0,0 + 0,5 -85 + 8,0 + 0,5 - 30
+ 75 - 25 +24,0 + 1,5 -13,0 + 8,5
+16,0 + 45 + 9,0 + 1,0 + 1,5 +11,0
+10,0 + 95 + 45 -13,5 +19,0 —-16,0
- 05 +26,0 - 15 + 75 +10,5 +13,0
- 40 + 6,5 - 20 0,0 + 3,0 - 15
+ 2,0 +14,0 + 6,0 + 45 - 40 -15,5
+18,0 + 7,0 +22,0 =35 + 6,5 +17,0
+28,0 + 25 +19,0 + 4,0 +14,0 +21,0
-10,5 - 6,0 +10,0 +20,0 +16,0 + 9,0
- 50 + 2,0 +13,0 - 15 + 8,0 -15,0
+ 2,0 - 10 +11,0 + 95 + 3,0 -14,5
+ 17,0 -11,0 + 6,0 + 4,0 - 4,0 -11,5
Tabelle 3.3. Hiufigkeitstabelle zum Beispiel 3.2
Klassengrenzen Klassen- absolute relative relative
mitte Hiufigkeit | Haufigkeit Summen-
héufigkeit
Uy, . H, 100 % > H;100%
i=1
—18 bis unter —12 -15 7 5,83 5,83
—12 bis unter — 6 -9 11 9,17 15,00
— 6bisunter 0 -3 18 15,00 30,00
O bisunter 6 3 30 25,00 55,00
6 bisunter 12 9 28 23,33 78,33
12 bis unter 18 15 15 12,50 90,83
18 bis unter 24 21 8 6,67 97,50
24 bis unter 30 27 3 2,50 100,00
120 100

Hiufigkeitstabelle. Die unterschiedliche Festlegung der unteren Klassengrenze der ersten
Klasse wollen wir als unterschiedliche Reduktionslage der Haufigkeitstabellen bezeichnen.
Die Festlegung der Reduktionslage hat auf Berechnungen, die unter Verwendung des mit
Hilfe einer Héufigkeitstabelle geordneten und verdichteten Materials durchgefiihrt wer-
den, kaum EinfluB.

3.1.1.2. Graphische Darstell von Hiufigkeitsver

Zur weiteren Veranschaulichung der mit Hilfe einer Héufigkeitstabelle geordneten und
verdichteten MeBwerte und damit der Haufigkeitsverteilung des betrachteten Merkmals
dienen graphische Darstellungen.

8 Beyer, Wahrscheinlichkeitsrechnung
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Tabelle 3.4. Haufigkeitstabelle zum Beispiel 3.2 mit gegeniiber der Héufigkeitstabelle in
Tab. 3.3 geéinderten Klassengrenzen
Klassengrenzen Klassen- absolute relative relative
mitte Haufigkeit | Haufigkeit Summen-
héufigkeit
Up b H, 100 % Y H;100%
i=1
—20 bis unter —14 -17 5 4,17 4,17
—14 bis unter — 8 -11 8 6,67 10,84
— 8bisunter — 2 -5 15 12,50 23,34
— 2bisunter + 4 1 30 25,00 48,34
4 bisunter 10 7 29 24,17 72,51
10 bis unter 16 13 17 14,17 86,68
16 bis unter 22 19 12 10,00 96,68
22 bisunter 28 25 3 2,50 99,18
28 bis unter 34 31 1 0,83 100,01
120 100,01

Bei diesen verwenden wir im allgemeinen ein rechtwinkliges Koordinatensystem, bei
dem auf der Abszissenachse, die auch Merkmalsachse genannt wird, je nach der Darstel-
lung entweder die vorliegenden MeBwerte oder die Klassengrenzen oder die Klassenmit-
ten und auf der Ordinatenachse die zugehorigen absoluten oder relativen Haufigkeiten
abgetragen werden.

Die graphische Darstellung von Héufigkeitsverteilungen stetiger Merkmale kdnnen wir
durch Histogramme, Héufigkeitspolygone oder auch Summenpolygone vornehmen. Bei
ihrer Erkldrung wollen wir von einer (sekunddren) Haufigkeitstabelle ausgehen, da eine
primdre Héufigkeitstabelle als Spezialfall einer sekundéren Haufigkeitstabelle (Klassen-
breite 1) aufgefaBt werden kann.

Von einem Histogramm sprechen wir dann, wenn iiber jeder Klasse ein Rechteck mit
einer der absoluten bzw. relativen Héufigkeit (evtl. in Prozenten) der jeweiligen Klasse
entsprechenden Hohe errichtet wird. Die Rechteckflidchen sind dann der absoluten bzw.
relativen Haufigkeit der einzelnen Klassen proportional. Die Histogramme der in den Ta-
bellen 3.1 und 3.3 erfaBten Haufigkeitstabellen zeigen die Bilder 3.1 und 3.2.

Fertigen Sie selbstindig das Histogramm zu der in der Tabelle 3.4 erfaBten Haufig-
keitstabelle an!

hm
5+
4 -
E1s
2k
1L
L 1 I L I ! I Bild 3.1. Histogramm
179 180 781 182 183 184 785 Xm fiir Beispiel 3.1 (Tabelle 3.1)
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Ein Haufigkeitspolygon (Linienpolygon) erhalten wir, wenn iiber den Klassenmitten
(Abszisse) die zugehorigen absoluten bzw. relativen Haufigkeiten (evtl. in Prozenten) (Or-
dinate) als Punkte abgetragen und benachbarte Punkte miteinander verbunden werden.
Es soll dann auf der Merkmalsachse in der Klassenmitte der den Randklassen benachbar-
ten Klassen beginnen bzw. enden, falls das Auftreten von MeBwerten in diesen Klassen
theoretisch moglich ist. In den Bildern 3.3 und 3.4 sind die zu den in den Tabellen 3.1
und 3.4 erfaBten Héufigkeitstabellen gehorenden Héufigkeitspolygone angegeben. Ferti-
gen Sie wieder selbstindig das Haufigkeitspolygon zu der in Tabelle 3.3 erfaBten Haufig-
keitstabelle an!

Durch ein Summenpolygon wird es nun moglich, absolute bzw. relative Summenhéufig-
keiten graphisch darzustellen. Wir erhalten es, wenn iiber den oberen Klassengrenzen
(Abszisse) die zugehorigen absoluten bzw. relativen Summenhaufigkeiten (evtl. in Pro-
zenten) (Ordinate) als Punkte abgetragen und benachbarte Punkte miteinander verbun-
den werden. Die Bilder 3.5 und 3.6 zeigen die zu den in den Tabellen 3.1 und 3.3 erfaBten
Hiufigkeitstabellen gehérenden Summenpolygone.

Fertigen Sie selbstindig das Summenpolygon zu der in Tabelle 3.4 erfaBten Haufig-
keitstabelle an!

Bei diskreten Merkmalen werden zur graphischen Darstellung von Héufigkeitsvertei-
lungen Streckendiagramme und Treppenpolygone angewandt. Wir wollen hier nur den
Weg zur Herstellung solcher Diagramme bzw. Polygone angeben und aus demselben
Grund wie oben von einer (sekundédren) Haufigkeitstabelle ausgehen.

Ein Streckendiagramm erhalten wir, wenn in den Klassenmitten Senkrechte errichtet
werden, deren Lingen den absoluten bzw. relativen Haufigkeiten der jeweiligen Klassen
entsprechen. Endpunkte benachbarter Senkrechter werden nicht verbunden.

Von einem Treppenpolygon sprechen wir dann, wenn in den oberen Klassengrenzen

Bild 3.2. Histogramm
- - -6 & 7 8 430
v 2 Klassengrenzen fiir Beispiel 3.2 (Tabelle 3.3)

I ! L L L I I Bild 3.3. Héufigkeitspolygon
79 180 181 182 183 184 185 186 Xy fur Beispiel 3.1 (Tabelle 3.1)
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tm
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L L | L L L L Bild 3.4. Hédufigkeitspolygon
-7 -9 -3 I 3 9 15 2 27 i» fur Beispiel 3.2 (Tabelle 3.4)
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Senkrechte mit einer der absoluten bzw. relativen Summenhaufigkeit (evtl. in Prozenten)
eweiligen Klasse entsprechenden Hohe errichtet werden und von den einzelnen End-
kten ausgehend in positiver Richtung Parallele zur Merkmalsachse bis zur nidchsten
crechten gezogen werden.

Nzhere Ausfithrungen zur graphischen Darstellung von Haufigkeitsverteilungen finden
Sie z.B. in [5].

3.1.1.3. Statistische MaBzahlen

Im folgenden werden wir uns mit Moglichkeiten beschiftigen, eine Menge von MeB-
werten eines meBbaren Merkmals durch gewisse Kennwerte, die statistische Maf3zahlen ge-
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nannt werden, zu charakterisieren.!) Sie sind vorteilhaft zur Beschreibung von Hiufig-
keitsverteilungen. Aus der Vielzahl von statistischen MaBzahlen beschrinken wir uns auf
solche zur Erfassung des Mittelwertes und der Streuung.

MittelwertmafSe

Durch den Mittelwert einer Menge von MefBwerten erhalten wir AufschluB iiber die
Lage des Zentrums dieser MeBwerte. Fiir ihn sind folgende statistische MaBzahlen ge-
bréuchlich: das arithmetische Mittel, der Median oder Z Iwert, der Modalwert oder das
Dichtemittel und das g ische Mittel.

Das arithmetische Mittel X: Das arithmetische Mittel X ist eine hiufig in vielen Gebieten
von Forschung und Praxis angewandte statistische MaBzahl. Es ist fiir eine Menge von
MeBwerten x;, i =1, 2, ..., n, wie folgt erklart:

uM:

%= % % 3.0

fer)

m=1

Treten k mogliche MeBwerte x,,, m=1,2, ..., k, mit den Héaufigkeiten h,,,(
auf, so geht (3.1) iiber in:

1 k
== Xnhy. 62
n .=
Fiir das Beispiel 3.1 ergibt sich:
2=%[179-2+ 180-4+ ... +185-1]=—++-3633 =181,7.

Liegt eine Klasseneinteilung vor, so berechnen wir das arithmetische Mittel nach der For-

mel
k

z=1 > tphy, (3.3)
noa=
wobei k die Anzahl der Klassen, u,, m=1, 2, ..., k, die Klassenmitte und h,, die Anzahl
der MeBwerte der Klasse m bezeichnen. Da die MeBwerte einer Klasse also durch Klas-
senmitten représentiert werden, konnen sich Unterschiede zwischen den nach (3.1) und
(3.3) errechneten numerischen Werten von maximal d/2 ergeben.

Am Ende des Abschnittes wird in Verbindung mit anderen statistischen MaBzahlen fiir
das Beispiel 3.2 das arithmetische Mittel angegeben.

Der Median x: Bei stark asymmetrischen Haufigkeitsverteilungen und bei nur wenigen
MeBwerten wird oft der Median als MittelwertsmaB angewandt. Fiir eine Menge von MeB-
werten x;,i=1,2, ..., n, ist der Median bei ungeradzahligem n gleich dem mittleren
Wert und bei geradzahligem n gleich dem arithmetischen Mittel aus den beiden in der
Mitte liegenden Werten der zugehdrigen Variationsreihe xf,j=1,2,...,n

XEits falls n=2k+1,
1B g peni G4

Fiir Beispiel 3.1 ist X = —-(xf, + xf) = %(182 +182) = 182.

1
75

) Im Unterschied zu den Kennwerten einer Wahrscheinlichkeitsverteilung gemidB Ab-
schnitt 2.3.3. sprechen wir auch von empirischen Kennwerten.
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Ist die Anzahl der MeBwerte groB, konnen wir den Median nidherungsweise aus der
Hiufigkeitstabelle ablesen. Dazu summieren wir die Haufigkeiten der MeBwerte in den
einzelnen Klassen schrittweise auf, bis zu der Klasse, fiir die diese Summe gleich n/2
oder ,wenig“ kleiner als n/2 ist. Als Ndherungswert fiir den Median wird dann die Mitte
der folgenden Klasse gewihlt. Die genaue Berechnung des Medians kénnen Sie in [18]
nachlesen.

Der Modalwert D: Bei Haufigkeitsverteilungen wird oft der Modalwert (das Dichtemit-
tel) als MittelwertmaB herangezogen. Er ist der MeBwert, der in einer Menge von MeBwer-
ten am héufigsten auftritt.

Der Modalwert kann sofort aus der primdren Verteilungstafel abgelesen werden. Im
Beispiel 3.1 ist D = 182. Beim Vorliegen einer sekundidren Haufigkeitstabelle konnen wir
niaherungsweise nur die Klasse angeben, in der der Modalwert zu suchen ist. Die Klassen-
mitte der Klasse mit der groBten absoluten Haufigkeit ist dann ein Néherungswert fiir D.
Zur genauen Berechnung von D sei wieder auf [18] verwiesen.

Anmerkung: Bei symmetrischen Haufigkeitsverteilungen fallen die Werte des arithmeti-
schen Mittels, des Medians und des Modalwertes zusammen:

x=x=D.

Das geometrische Mittel G: Bei Untersuchungen in der Okonomie, z.B. bei der Berech-
nung von Wachstumsraten, wird als MittelwertmaB hédufig das geometrische Mittel ange-
wandt. Liegt eine Menge von positiven MeBwerten x;, i=1, 2, ..., n, vor, dann kénnen
wir es wie folgt bestimmen:

=4/ 3.5
i=1

Seine Berechnung erfolgt zweckmiBig auf logarithmischem Wege:

logG=%Z log x;.
i=1

Streuungsmape

Zur Beschreibung einer Héufigkeitsverteilung ist die Angabe des Mittelwertes noch
nicht ausreichend. Es ist weiterhin erforderlich, zu bestimmen, in welchem MaBe die
MeBwerte streuen. So haben z.B. die beiden Reihen von MeBwerten: 2,1; 3,2; 5,4; 6,1 und
3,9; 4,1; 4,5; 4,3 das gleiche arithmetische Mittel X = 4,2, unterscheiden sich aber wesent-
lich voneinander. Die Werte der ersten Reihe streuen insgesamt, aber auch um das
arithmetische Mittel stirker als die der zweiten Reihe.

Fiir die Charakterisierung der Streuung einer Menge von MeBwerten sind folgende sta-
tistische MaBzahlen gebrduchlich: die mittlere quadratische Abweichung, die Variationsbreite
und der empirische Variationskoeffizient.

Die mittlere quadratische Abweichung (empirische Varianz) s*: Die mittlere quadratische
Abweichung s? ist eine statistische MaBzahl, die auf den Abweichungen der einzelnen
MeBwerte x;, i = 1,2, ..., n, einer Menge von MeBwerten vom arithmetischen Mittel X
dieser MeBwerte aufbaut. Sie ist wie folgt erkldrt:

1

2=
sti=
n—1

¥ (- 7. (3.6)
i=1

Die positive Quadratwurzel von s nennen wir empirische Standardabweichung.
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Anmerkung: Im Abschnitt 3.3. werden wir begriinden, warum in Formel (3.6) die Division
durch (n — 1) und nicht durch n erfolgt, wie es auf Grund der Erklidrung des arithmeti-
schen Mittels zu erwarten wire.

Begriinden Sie, warum es nicht sinnvoll ist, in der Formel (3.6) die Summe der Abwei-
chungsquadrate durch die Summe der Abweichungen zu ersetzen!

Fiir Berechnungen wird die Formel (3.6) meist in folgender Form angewandt:

si= 1 i 21 Zn: ' 3.7
n—1 i=1xv' n Xi . 3.7

i=1

Fiihren Sie diese Umrechnung selbst durch und bedenken Sie dabei, da8 Z Xx; = nx ist!
i=1

k
Treten k mogliche MeBwerte x,,, m =1, 2, ..., k, mit den Haufigkeiten h,,.( Z h, = n)

m=1

auf, so gehen (3.6) und (3.7) in die Ausdriicke

k
st= '"%1— > (g — X by (3.8)
m=1

und

1 k 1 k 2
2 — 2p
= L; Xihn = <MZ=1 x,,,h,,,) ] (3.9
iiber.

Fiir das Beispiel 3.1 ist das Rech hema zur Berechnung von s? mit X = 181,7 nach
(3.8) in Tabelle 3.5 und nach (3.9) in Tabelle 3.6 angegeben.

Tabelle 3.5. Schema zur Berechnung von s? nach (3.8)

Xm hn X = X (xm — X)? (X = X)? by
179 2 -2,7 7,29 14,58
180 4 -1,7 2,89 11,56
181 3 -0,7 0,49 1,47
182 5 0,3 0,09 0,45
183 3 1,3 1,69 5,07
184 2 2,3 5,29 10,58
185 1 33 10,89 10,89
20 54,60

Wir erhalten:
1,
19
s=17.

s2=——54,60 =287,

Nach Tab. 3.6 (S. 120) erhalten wir:
1 1 1
2 = N, 2l = . -
=79 [659 989 20 3633 ] 54,55 =2487,

19
s=17.
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Tabelle 3.6. Schema zur Berechnung von s?

nach (3.9)
Xm hn Xl X2,
179 2 358 64082
180 4 720 129600
181 3 543 98283
182 5 910 165620
183 3 549 100467
184 2 368 67712
185 1 185 34225
20 3633 659989

Sind die MeBwerte in Klassen eingeteilt, so berechnen wir die empirische Varianz wie
folgt:

k

=S (= F o, (3.10)
n=1,2

wobei k die Anzahl der Klassen, u,,, m= 1,2, ..., k, die Klassenmitte und h,, die Anzahl

der MeBwerte der Klasse m bezeichnen. Durch einfaches Umrechnen geht (3.10) {iber in

1 k 1/ <& 2
2= 2 _ L
R ,,,21 Vi n (,,,2::1 u,,,h,,,) ’ G1p

Aus dem schon bei der Erkldrung des arithmetischen Mittels genannten Grund kénnen
sich zwischen den mit Formel (3.6) und den mit Formel (3.10) ermittelten numerischen
Werten gewisse Unterschiede ergeben.

Zur rechentechnischen Bearbeitung bieten sich die Formeln (3.9) bzw. (3.11) an.

Fiir das Beispiel 3.2 wird am Ende dieses Abschnittes die Berechnung der mittleren
quadratischen Abweichung angegeben.

Die Variationsbreite (Sp ite) R: Ein einfaches StreuungsmaB, das sich besonders
beim Vorliegen von nur wenigen MeBwerten bewéhrt hat, ist die schon in Abschnitt
3.1.1.1. eingefiihrte Variationsbreite R.

Fiir eine Menge von MeBwerten x;, i = 1, 2, ..., n, ist sie die Differenz aus dem groBten
(Xmay) und dem kleinsten (x.;,,) MeBwert bzw. des letzten (x}) und des ersten (xf Wertes
der zugehorigen Variationsreihe:

R = Xpa — Xoin = X* = XF. (3.12)

Im Beispiel 3.1 betridgt die Spannweite
R=185-179=6.
Der empirische Variationskoeffizient v: Bei praktischen Untersuchungen wird in zuneh-
mendem Umfang beim Vergleich der Streuungen zweier Haufigkeitsverteilungen der em-

pirische Variationskoeffizient herangezogen. Sein Vorteil liegt darin, daB er die GroBe s
in Prozenten des arithmetischen Mittels ausdriickt:

vi==-100%. (.13)
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Fiir das Beispiel 3.1 erhalten wir folgenden empirischen Variationskoeffizient:

1,7
181,7

v= +100% = 0,94%.

Zum AbschluB dieses Abschnittes wollen wir fiir das Beispiel 3.2 bis auf das geometri-
sche Mittel die oben erlduterten MaBzahlen berechnen.
In Tabelle 3.7 ist das Rechenschema zur Bestimmung von X und s? angegeben.

Tabelle 3.7. Schema zur Berechnung von X nach (3.3) und s? nach (3.11)

Klassengrenzen U hy Uphpm uh,
—18 bis unter —12 -15 7 -105 1575
—12 bis unter — 6 -9 11 - 99 891
— 6 bis unter -3 18 - 54 162
0 bis unter 6 3 30 90 270
6 bisunter 12 9 28 252 2268
12 bis unter 18 15 15 225 3375
18 bis unter 24 21 8 168 3528
24 bis unter 30 27 3 81 2187
120 558 14256

Mit den in Tabelle 3.7 erfaBten Ergebnissen ergibt sich unter Verwendung der Formeln
(3.3) und (3.11):

_—-1_. =
*=750 558 =4,65,

1
2= 2 -
s 119(14256 20 558) 119 -11661 =98,
5=99.

SchlieBlich sind in Tabelle 3.8 die fiir das Beispiel 3.2 ermittelten statistischen MaB-
zahlen zusammengestellt.

Tabelle 3.8. Zusammenstellung statisti-
scher MaBzahlen fiir Beispiel 3.2

MittelwertmaBe StreuungsmaBe

X=14,65 s2=98,5=99
%=4 R=45
D=3 v=213%

3.1.2. Beschreibende Statistik bei zwei Merkmalen

3.1.2.1. Urliste, Korrelationstabelle, Haufigkeitsverteilung

Wir wollen jetzt die Ausfilhrungen in Abschnitt 3.1.1. dahingehend erweitern, da8 bei
einem Untersuchungsobjekt gleichzeitig zwei meBbare Merkmale X und Y betrachtet wer-
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den. Bei diesem Herangehen interessiert uns weniger die Beschreibung eines dieser Merk-
male isoliert vom anderen, als vielmehr die der Abhdngigkeit zwischen diesen Merkma-
len.

Die fiir die beiden Merkmale X und Y ermittelten MeBwerte fassen wir fiir jedes Ele-
ment des Untersuchungsobjekts zu einem MeBwertpaar (x;; y), i =1, 2, ..., n, zusam-
men. Diese werden wiederum in einer Urliste festgehalten.

Beispiel 3.3: In einem Stahlwerk wird bei einer Stahlsorte der Siliziumgehalt [%] (Merkmal
X) und die Druckfestigkeit [10 MPa] (Merkmal Y) untersucht. Die Urliste

Tabelle 3.9. Urliste zum Beispiel 3.3

(x5 3) (x5 ) (x5 9)

0,34 66,0 0,30 63,3 0,27 63,7
0,27 59,3 0,32 62,9 0,32 68,0
0,26 59,3 0,21 553 022 52,2
0,31 61,9 0,24 64,2 0,23 58,9
0,29 60,2 0,24 60,2 0,23 62,0

mit den Wertepaaren (x;, y,), i= 1,2, ..., 15, ist in Tabelle 3.9 angegeben. Besteht zwi-
schen den beiden Merkmalen eine Abhingigkeit?

Das Ordnen der MeBwertpaare der Urliste geschieht dann, wenn bei keinem der beiden
Merkmale eine Klasseneinteilung erforderlich ist, durch Eintragen dieser MeBwertpaare
in ein rechtwinkliges Koordinatensystem. Die so entstehende Punktwolke vermittelt nur
einen ersten Eindruck von dem vorli den Zahl terial. Bild 3.7 zeigt die von den
MeBwertpaaren des Beispiels 3.3 erzeugte Punktwolke.

Yi
70F

661
661
5‘-
621
601
55_
561
54t
52t *

. . . . ) . :
0z 03 9% gz 09 031 0% 0% X

Bild 3.7. Punktwolke fiir Beispiel 3.3

Aus ihr ersehen wir, daB fir groBere Werte des Merkmals X groBere Werte des Merk-
mals Y zu erwarten sind, also eine Abhdngigkeit zwischen beiden Merkmalen besteht,
und daB andererseits diese Abhédngigkeit nicht durch eine Funktionsgleichung erfaBt wer-
den kann.
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Erweist es sich fiir wenigstens eines der beiden Merkmale als giinstig, die MeBwerte in
Klassen einzuteilen, dann besteht der erste Schritt beim Ordnen des Zahlenmaterials
darin, die MeBwertpaare (x;, y;), i = 1, 2, ..., n, ebenfalls durch eine Punktwolke zu veran-
schaulichen. LaBt die Gestalt der Punktwolke eine Abhdngigkeit zwischen den beiden
Merkmalen erwarten, dann wird zusétzlich zu der graphischen Darstellung der MeBwert-
paare meist noch eine Haufigkeitstabelle angefertigt. Sie wird in diesem Zusammenhang
als Korrelationstabelle bezeichnet und ist die Grundlage fiir die Berechnung statistischer
MaBzahlen.

Bei einer Korrelationstabelle unterteilen wir die vorliegenden MeBwerte des Merkmales
X bzw. Y in k bzw. I Klassen der Breite dy bzw. dy mit den Klassenmitten u;,
i=1,2,...,kbzw. v,j=1,2, ..., ], und ordnen die MeBwertpaare in das so entstehende

Raster ein, wodurch wir die absoluten Haufigkeiten h;, i=1,2...,k;j=1,2,...,1, er-
1

halten. Wir erfassen weiterhin die Randsummen h,~.=2h,~,~,i=1,2,...,k,
ji=1
1

k k
und k=Y hy, j=1,2, ..., 1 und die Gesamtsumme n= Y. Y. h;.
i=1 i=1j=1
Durch eine Korrelationstabelle wird eine zweidimensionale Haufigkeitsverteilung ver-
anschaulicht.
Wir wollen das Vorgehen an einem Beispiel erldutern:

Beispiel 3.4: Von 86 Chargen einer Stahlsorte wurden der Kohlenstoffgehalt C [%] (Merk-
mal X) und die Zugfestigkeit o3 [10 MPa] (Merkmal Y) in der Urliste (Tabelle 3.10) festge-
halten.

Die Punktwolke, die die MeBwertpaare (x;, ;), i = 1,2, ..., 86, veranschaulicht, 148t
eine Abhingigkeit zwischen den beiden Merkmalen erkennen (Bild 3.8).

[

80+

214

4 1 1 1 1 1
07 03 04 04 0% 0 0 x

Bild 3.8. Punktwolke fiir Beispiel 3.4
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Tabelle 3.10. Urtliste fir Beispiel 3.4

(i3 ) (i3 ) (x5 92)
0,42 68,6 041 69,6 042 72,5
042 72,5 039 68,1 041 71,7
046 752 042 7038 0,40 70,3
0,46 82,3 045 73,0 0,38 62,9
0,41 69,4 0,40 68,1 0,44 752
0,45 71,7 042 734 0,40 734
043 734 039 717 038 66,4
0,45 68,6 041 752 0,40 66,4
043 752 039 66,4 042 752
0,45 79,6 0,42 66,4 039 69,0
042 739 043 62,9 044 79,6
0,40 62,9 041 63,7 044 719
0,40 62,9 036 633 0,43 1752
042 744 039 69,4 042 66,4
0,42 672 0,40 64,2 041 66,8
041 734 038 664 042 69,4
042 68,1 039 64,6 038 69,9
045 72,5 036 66,4 0,44 67,2
043 72,5 0,43 69,0 0,41 68,1
0,40 752 043 7038 041 787
042 72,5 045 71,7 042 73,4
047 79,6 042 73,0 043 73,9
042 73,9 041 71,7 045 7038
043 752 0,47 774 048 77,4
043 76,5 041 708 044 76,1
038 70,8 045 77,0 041 17038
043 71,7 038 734 0,40 73,0
045 77,9 0,46 78,7 045 77,0
043 774 039 69,0

Tabelle 3.11. Korrelationstabelle fiir Beispiel 3.4

Zugfestigkeit (Merkmal Y)
Kohlenstoffgehalt 60...64 |64...68 [68...72(72...76 | 76...80 | 80...84 | h;.
(Merkmal X)
v | 62 66 70 74 78 82
u;

0,35...0,37 0,36 1 1 2
0,37...0,39 0,38 1 3 2 1 7
0,39...0,41 0,40 2 3 7 3 15
0,41...0,43 0,42 1 4 11 12 1 29
0,43...0,45 0,44 1 1 3 7 5 17
0,45...0,47 0,46 4 3 5 1 13
0,47...0,49 0,48 3 3
h.; 6 12 27 26 14 1 86
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Wir werden nun eine Korrelationstabelle anfertigen. Dazu teilen wir die MeBwerte des
Merkmals X bzw. Y in k = 7 bzw. [ = 6 Klassen der Breite dy = 0,02 bzw. dy = 4 ein und
verfahren weiter wie oben beschrieben. Tabelle 3.11 zeigt die Korrelationstabelle.

AbschlieBend wollen wir bemerken, daB die graphische Darstellung einer zweidimen-
sionalen Haufigkeitsverteilung bei stetigen Merkmalen durch Hiufigkeitsgebirge bzw.
Héufigkeitsflichen und bei diskreten Merkmalen durch Streckendiagramme erfolgt. Da
in diesem Rahmen nicht ndher darauf eingegangen werden kann, verweisen wir auf
[5; 15].

3.1.2.2. Statistische MaBzahlen

Moglichkeiten zur quantitativen Erfassung der fiir die Merkmale X und Y vorliegenden
MeBwertpaare (x;, y,), i = 1,2, ..., n, durch statistische MaBzahlen wollen wir in diesem
Abschnitt kennenlernen.

Betrachten wir die beiden Merkmale getrennt, dann kann dies durch die in Abschnitt
3.1.1.3. angegebenen statistischen MaBzahlen erfolgen, von denen in diesem Zusammen-
hang besonders das arithmetische Mittel und die empirische Varianz bevorzugt werden.

Durch die Angabe des arithmetischen Mittels X bzw. y [Formel (3.1)] und der empiri-
schen Varianz s3 bzw. s2 [Formel (3.6)] fiir das Merkmal X bzw. Y erfassen wir noch nicht
den Grad der Abhingigkeit zwischen den Merkmalen. Dies gelingt mit der empirischen
Kovarianz syy:

1 &

Sri= Ty L =R 0= 9, ¢.14)
n Xi 2, Vi

R Ex.y,_ﬁ (3.15)

L A a0 n .

Sie ist positiv oder negativ, je nachdem, ob mit wachsendem x; auch die y;
(i=1,2,...,n) wachsen (direkter Zusammenhang) oder fallen (indirekter Zusammen-
hang).

L%;gt fiir die beiden Merkmale eine Klasseneinteilung vor, dann ergeben sich fiir syy
die Formeln:

1
n—1

M~

1
Sxy = Z hy; (y;—X%) (v=y), (3.16)
=1

i=1

1 ko1 1&
Syy = Py [,; ,; hyuv; — 72 h,-.u,-z h.,»v,] . (3.17)

Dabei wurden die in 3.1.2.1. erkldrten Symbole verwandt.

Fiir die rechentechnischen Belange sind die Formeln (3.15) bzw. (3.17) heranzuziehen.

Durch Normierung der empirischen Kovarianz syy erhalten wir den empirischen Korrela-
tionskoeffizienten:

Sxy

" sy (3.18)

Iyt

Er ist ein MaB fiir den linearen algebraischen Zusammenhang zwischen den Merkma-

len X und Y. Dabei sind sy bzw. sy die empirischen Standardabweichungen der Merkmale
X bzw. Y (vgl. S.118).
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Tabelle 3.12. Sch zur Berech der MaBzahlen fir
Beispiel 3.3

Xi Yi x i Xiyi
0,34 66,0 0,1156 4356 22,44
0,27 59,3 0,0729 3516 16,01
0,26 59,3 0,067 6 3516 15,42
0,31 61,9 0,0961 3832 19,19
0,29 60,2 0,0841 3624 17,46
0,30 63,3 0,0900 4007 18,99
0,32 62,9 0,1024 3956 20,13
0,21 55,3 0,0441 3058 11,61
0,24 64,2 0,0576 4122 15,41
0,24 60,2 0,0576 3624 14,45
0,27 63,7 0,0729 4058 17,20
0,32 68,0 0,1024 4624 21,76
0,22 52,2 0,0484 2725 11,48
0,23 58,9 0,0529 3469 13,55
0,23 62,0 0,0529 3844 14,26
4,05 917,4 1,1175 56331 249,36

Tabelle 3.13. Schema zur Berechnung von statistischen MaBzahlen bei Vorliegen einer Korrelations-

tabelle
!
v vy v, |y Z u;v;hy; h;. h.u; hy.u?
U; i=1
!
uy uyvihyy uyvzhy; .| wvthy z uyvhy; hy. hy.uy hl.ug
i=1
!
uy uv1hy Uyv,hy, | uyvihy > uyvihy; hy. hy.uy hy.u}
i=1
1
Uy Vi Vs | ukvih by . h.uy hy.u}
=1
k k k k 1 k k k k
Z u;vhy Z uvihyy Z uvshy | ... Z wuhy Z z u;v;hy Z hi.=n Z hi.u; Z h.u?
i=1 i=1 i=1 i=1 j=1li=1 i=1 i=1 i=1
U
h; hy hay Ry Y hij=n
i=1
1
h,y v, b0, Ak > oy
i=1
!
2 2 2 2 2
hv h.qv? h.qv? | h? Zih.lvl
i<
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Fiir ihn gilt:
—lsrny=s1. (3.19)

Fiir die Beispiele 3.3 und 3.4 soll abschlieBend der empirische Korrelationskoeffizient
bestimmt werden. Tabelle 3.12 zeigt uns ein Schema, mit dessen Hilfe fiir das Beispiel 3.3
der empirische Korrelationskoeffizient berechnet wird.

Es ergibt sich:

sp = 0,0017, s¢ =0,041,
2 =1592, sy =3,99,
sxy= 0,119 ryy = 0,726.

SchlieBlich ist in Tabelle 3.13 ein Schema enthalten, mit dessen Hilfe die Errechnung
von statistischen MaBzahlen beim Vorliegen einer Korrelationstabelle erleichtert werden
kann.

In Tabelle 3.14 ist dieses Rechenschema fiir das Beispiel 3.4 verdeutlicht.

Es ergibt sich:
s = 0,00073, sy =0,027,
st =21,52, sy =464,
sxy= 0,074, ryy=0,59.

3.2. Grundgesamtheit und Stichprobe

Im Abschnitt 3.1. gingen wir an die Betrachtung der fiir die Merkmale eines Untersu-
chungsobjektes ermittelten MeBwerte ohne Beriicksichtigung unserer in Kapitel 2. erwor-
benen Kenntnisse auf dem Gebiet der Wahrscheinlichkeitsrechnung heran. Das ist nicht
mehr moglich, sobald die statistischen Untersuchungen iiber den Rahmen dieses Ab-
schnitts hinausgehen. Da die einzelnen MeBwerte auBer durch die auf Grund gleichblei-
bender Versuchsbedingungen erfabaren durch eine Vielzahl zufilliger, nicht erfaBbarer
Einfliisse bestimmt werden, konnen die Merkmale als ZufallsgroBen und die MeBwerte
als mogliche Werte dieser ZufallsgroBen aufgefaBt werden. So ist es moglich, da im Bei-
spiel 3.2 auf die MeBwerte fiir die MaBabweichung (Merkmal X) u. a. folgende zufilligen
Einfliisse wirken: Ablesefehler, Temperaturschwankungen, Erschiitterungen der Werk-
bank, Schwankungen in der Qualitdt der Werkstoffe.

Wir wollen zur Erfassung dieses Sachverhaltes die Begriffe Grundgesamtheit und Stich-
probe im Sinne der mathematischen Statistik einfiihren.

Definition 3.1: Eine Zufallsgrofe X mit der zugehirigen Wahrscheinlichkeitsverteilung bezeich-
nen wir als Grundgesamtheit.

In der Wahrscheinlichkeitsrechnung gehen wir von der vollstindigen Information iiber
die Wahrscheinlichkeitsverteilung der betrachteten ZufallsgroBe aus. Fiir diese liegt bei
den jetzt zu betrachtenden Fragestellungen keine oder nur unvollstindige Information
vor. Wir wollen deshalb durch sich gegenseitig nicht beeinflussende Wiederholungen des
der ZufallsgroBe zugrunde liegenden zufilligen Versuches AufschluB iiber Kennwerte
und Verteilungsfunktion der ZufallsgroBe gewinnen. Dabei liefert jede einzelne Wieder-
holung einen der moglichen Werte der ZufallsgroBe. Wir sprechen in diesem Zusammen-
hang von einer Realisierung der ZufallsgroBe.
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Definition 3.2: Eine Menge von n Realisierungen {x,, x, ..., x,}') einer Grundgesamtheit X

bezeichnen wir als konkrete Stichprobe vom Umfang n. Jede einzelne Realisierung nennen wir
Element der Stichprobe.

Mit den beiden Definitionen werden nun die hdufig benutzten Sprechweisen: ,Die
Grundgesamtheit unterliegt einer Normalverteilung®; , Aus einer normalverteilten Grund-
gesamtheit wird eine Stichprobe vom Umfang n gezogen.“ verstindlich.

Die in den Tabellen 3.1, 3.3 und 3.11 erfaB8ten Urlisten der Beispiele 3.1, 3.2 und 3.3
stellen konkrete Stichproben dar. Charakterisieren Sie nochmals die entsprechenden
Grundgesamtheiten! Geben Sie weitere Beispiele von Grundgesamtheiten und Stichpro-
ben an!

Kommen wir nun zur Kennzeichnung der Gesamtheit aller konkreten Stichproben vom
Umfang n. Dazu beschreiben wir die i-te Wiederholung des zugrunde liegenden Versu-
ches durch eine ZufallsgroBe X;, i=1, 2, ..., n, die derselben Verteilung wie die Grund-
gesamtheit unterliegt. Das Element x; der konkreten Stichprobe ist dann eine Realisie-
rung von X;.

Definition 3.3: Als mathematische Stichprobe bezeichnen wir die n-dimensionale Zufalls-

grofe (X, X, ..., X,) mit den untereinand bhdngi; und identisch entsprechend der
Grundgesamtheit X verteilten Komponenten X;, i=1,2,...,n.
Die konkrete Stichprobe x,, x,, ..., x, ist dann eine Realisierung dieser n-dimensiona-

len ZufallsgroBe.

Wichtigste Aufgabe der mathematischen Statistik ist es, aus der in einer Stichprobe
enthaltenen Information Aussagen iiber die Grundgesamtheit zu gewinnen. Es treten da-
bei folgende wesentlichen Probleme auf:

1. Schitzen der Parameter der Grundgesamtheit: Ist nur der Verteilungstyp der Grundge-
samtheit bekannt, dann sind die unbekannten Kennwerte (Parameter) dieser Verteilung
zu schitzen. So sind z.B. aus der aus einer normalverteilten Grundgesamtheit gezogenen
konkreten Stichprobe im Beispiel 3.2 — MaBabweichungen konnen als normalverteilt an-
gesehen werden — Schiétzwerte fiir den Erwartungswert und die Varianz der Grundgesamt-
heit zu gewinnen.

2. Priifen von Hypothesen: Nicht selten werden Annahmen iiber die Grundgesamtheit
gemacht, z. B. iiber den Typ oder die Kennwerte (Parameter) der Verteilung. Diese An-
nahmen (Hypothesen) sind mit der der Stichprobe entnommenen Information derart in
Beziehung zu bringen, daB entschieden werden kann, ob sie mit dieser Information ver-
einbar sind.

Im Beispiel 3.1 ermittelten wir fiir eine bestimmte Betonsorte aus der konkreten Stich-
probe (Urliste) das arithmetische Mittel der Druckfestigkeit (Merkmal X) in 10-!MPa
x=181,7. An einer anderen konkreten Stichprobe wurde fiir dieselbe Betonsorte das
arithmetische Mittel der Druckfestigkeit X = 183,2 festgestellt. Es ist die Hypothese, daB
die Erwartungswerte der entsprechenden Grundgesamtheiten gleich sind, zu priifen.

Ausgangspunkt aller Auswertungen mit Methoden der mathematischen Statistik ist
eine konkrete Stichprobe, ist das mit Hilfe der beschreibenden Statistik aufbereitete Zah-
lenmaterial.

Die Art und Weise der Entnahme einer konkreten Stichprobe aus der Grundgesamtheit
ist vom Ziel der Untersuchung ausgehend festzulegen. In diesem Zusammenhang sei auf
die wichtige Problematik der Versuchsplanung, die im Band 19/2 dieser Reihe behandelt
wird, hingewiesen.

) Im allgemeinen wird fiir die konkrete Stichprobe xj, x, ..., x, geschrieben.

9 Beyer, Wahrscheinlichkeitsrechnung

D.3.2

D.3.3
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Wir wollen hier lediglich folgendes festhalten: Da aus der in einer konkreten Stich-
probe enthaltenen Information Schliisse hinsichtlich der Grundgesamtheit gezogen wer-
den sollen, miissen wir sichern, daB diese représentativ fiir die Grundgesamtheit ist. Wir
haben uns also zu iiberlegen, wie die Einheiten des Untersuchungsobjektes auszuwihlen
sind, daB diese eine ,, Zufallsstichprobe“ bilden. Das ist dann der Fall, wenn jede Einheit
des Untersuchungsobjektes die gleiche Chance hat, ausgewéhlt zu werden und die Aus-
wahl der nachfolgenden Einheit nicht von den vorangehenden beeinfluBt wird. Die an
diesen Einheiten fiir das betrachtete Merkmal X ermittelten MeBwerte bilden eine kon-
krete Stichprobe aus der Grundgesamtheit. So sind im Beispiel 3.1 die Betonwiirfel Ein-
heiten des Untersuchungsobjektes ,Betonsorte und die an den Probewiirfeln fiir das
Merkmal Druckfestigkeit festgestellten Werte Elemente der entsprechenden konkreten
Stichprobe. Zur Veranschaulichung der ,chancengleichen“ Auswahl von Einheiten eines
Untersuchungsobjektes, bei dem nur endlich viele Einheiten moglich sind, wollen wir ver-
schiedene Vorgehensweisen darstellen.

Eine besteht darin, wie in einer Lotterie alle Einheiten des Untersuchungsobjektes gut
durchzumischen und unter Wahrung des Zufalls die einzelnen Einheiten der Stichprobe
zu ziehen. Falls dieses Vorgehen nicht moglich ist, z.B. bei gestapeltem Material, kann je-
der Einheit eine natiirliche Zahl zugeordnet werden. Aus diesen werden diejenigen ausge-
wihlt, deren entsprechende Einheiten in die Stichprobe aufgenommen werden. Da aber
oft unbewuBt gewisse Zahlen und deren Vielfaches bevorzugt werden (z.B. 9, 7, 13, 25,
39), sollten wir diese Zahlen durch Auslosen oder mit Hilfe von Tafeln von Zufallszahlen
ermitteln. Einen Auszug aus einer Tafel mit vierstelligen Zufallszahlen gibt Tafel 7 im
Anhang wieder. Das Verfahren, nach dem solche Tafeln aufgestellt werden, sichert, daB

. die Ziffern 0, 1, ..., 9 an jeder Stelle der vierstelligen Zahlen gleichwahrscheinlich sind.
Den Gebrauch der Tafel wollen wir an einem Beispiel erldutern.

Beispiel 3.5: Von N = 480 Einheiten eines Untersuchungsobjektes sollen n = 18 zufillig
entnommen werden. Dazu werden die Einheiten von 000 bis 479 durchnumeriert. Nun
wiahlen wir in der vorliegenden Tafel von vierstelligen Zufallszahlen (fiir unser Beispiel ist
eine Tafel mit dreistelligen Zufallszahlen ausreichend) willkiirlich in irgendeiner Spalte
eine Zahl und legen eine Vorschrift fest, nach der wir die iibrigen Zufallszahlen ermitteln
wollen (z.B. horizontales, vertikales oder diagonales Fortschreiten). Von den Zufallszah-
len beachten wir nur die drei ersten Ziffern und notieren die, die kleiner als 479 sind. Ge-
hen wir z.B. in der Tafel von der zweiten Zahl in der siebenten Spalte aus und gehen ver-
tikal weiter, so erhalten wir fir unsere Stichprobe die Elemente mit den Nummern:

227 477 033 459 115 202
188 227 015 394 361 216
164 019 384 008 282 327

Durch die Verwendung von Zufallszahlen ist die zufillige Auswahl gesichert.

Wie wir oben darstellten, ist die Grundgesamtheit eines Merkmales X eine Zufalls-
groBe. Diese wird durch ihre Verteilungsfunktion Fy(f) = F(t), —® < t< +o, die wir in
diesem Zusammenhang auch als theoretische Verteilungsfunktion bezeichnen werden, voll-
stindig charakterisiert. Sie ist allerdings im allgemeinen unbekannt. Wir werden deshalb
versuchen, iiber sie mit Hilfe einer aus dieser Grundgesamtheit gezogenen konkreten
Stichprobe gewisse Informationen zu erhalten. Dazu erkliren wir die von der Variations-
reihe x¥ < x¥ = ... = x} einer konkreten Stichprobe x;, x;, ..., x, vom Umfang n ausge-
hende konkrete empirische Verteilungsfunktion
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0 fir t=xf,
£ ()= % fir xp<tsxh., m=12,..,n-1, (3.20)
1 fir t>x},
mit —o <t <+,

Die konkrete empirische Verteilungsfunktion F,(t) ist einer bestimmten konkreten
Stichprobe vom Umfang n zugeordnet.

Wir betrachten nun die zugehérige mathematische Stichprobe (X;, X;, ..., X,). Jeder
Komponente X; (i=1, ..., n) ordnen wir durch die Vorschrift

_[1, falls das Ereignis {X; < ¢} eintritt,
"7 10, falls das Ereignis {X; = 1} eintritt,

wobei ¢ eine beliebige fest vorgegebene reelle Zahl ist, die ZufallsgroBe Y; (i=1, ..., n)

)B4

= :1 fiir jedes beliebige feste ¢ eine ZufallsgroBe. Wir bezeich-

nen die Funktion F,(#) (= < t < ) als empirische Verteilungsfunktion. Jede konkrete em-
pirische Verteilungsfunktion F,(¢) derselben Grundgesamtheit ist demzufolge eine Reali-
sierung von F,(1).

Einen wichtigen Zusammenhang zwischen der empirischen Verteilungsfunktion F,(t)
und der theoretischen Verteilungsfunktion Fy(f) der Grundgesamtheit X gibt der Satz von
Gliwenko, der hdufig auch Hauptsatz der mathematischen Statistik genannt wird. Er
lautet:

zu. Dann ist auch F,(t) :=

Satz 3.1 (Satz von Gliwenko")): Ist F,(t) die empirische Verteil: funktion der h ischen
Stichprobe (X,, ..., X,) vom Umfang n und Fx(t) die Verteilungsfunktion der Grund, heil
X, dann konvergiert F,(t) fiir n— o mit Wahrscheinlichkeit 1 gleichmdpig in t gegen die Vertei-
lungsfunktion Fy(t).

Mit anderen Worten: Mit wachsendem Stichprobenumfang kommt F,(¢) der unbekann-
ten Verteilungsfunktion der Grundgesamtheit Fy(z) beliebig nahe (mit Wahrscheinlich-
keit 1).

Den Beweis dieses Satzes finden Sie in [3; 12].

Aus den bisherigen Ausfithrungen ist offensichtlich, daB die in 3.1. eingefiihrten stati-
stischen MaBzahlen ebenfalls als Realisierungen von ZufallsgréBen aufzufassen sind und
auBerdem von den Elementen der konkreten Stichprobe abhéngig sind. Durch die mathe-
matische Stichprobe werden die entsprechenden ZufallsgroBen erklért, die Funktionen
der ZufallsgroBen X, X;, ..., X, sind und als Stichprobenfunktionen bezeichnet werden. Ist
z. B. T'=T'(Xy, ..., X,) eine Stichprobenfunktion der mathematischen Stichprobe
X1, X;, ..., X,), so bezeichnen wir mit ¢’ = t'(xy, ..., x,) die Realisierung dieser Zufalls-
groBe fiir die konkrete Stichprobe x;, x,,..., X,.

‘Wichtige Beispiele von Stichprobenfunktionen sind

X = X, das arithmetische Mittel; 3.21)

S|
™M=

1

5=

1 < = . - .
P Z (X;— X)?, die empirische Varianz. 3.22)
i=1
1) Waleri Iwanowitsch Gliwenko (1897-1940), sowjetischer Mathematiker.

9¢

S.3.1
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In 2.3.8.3. wurden weitere wichtige Stichprobenfunktionen angegeben. Unter der Voraus-
setzung, daB die Elemente X; der mathematischen Stichprobe (X;, X,, ..., X,)
N(u; o)-verteilt sind, gilt:

1 ¢ =
Y,’;_1=7Z()(}—X)2 (3.23)
i=1
unterliegt einer Chi-Quadrat-Verteilung mit (n —1) Freiheitsgraden (vgl. Satz 2.7);
zz =X (3.24)

unterliegt einer Student-Verteilung mit (n —1) Freiheitsgraden (vgl. Satz 2.8). Wird vor-
ausgesetzt, daB die Elemente X(¥ der mathematischen Stichproben (X, X{, ..., X¥),
k=1, 2, N(u; o)-verteilt sind, so unterliegt

(n = 1) 2 (X{) - XOp2
w* i=1

m-ln-1"

- (3.25)
(m=1) 3, (X - Xy
j=1

einer F-Verteilung mit (n; — 1, n, — 1) Freiheitsgraden (vgl. Satz 2.9).
In der mathematischen Statistik wird fiir die Stichprobenfunktion

- Y, auch das Symbol x2_,,
-7y, auch das Symbol t,_;,

- Wi 1.1 auchdas Symbol F, _, ,
verwandt.

Die zu diesen Verteilungen gehorenden Tafeln sind im Anhang zusammengestellt.

3.3. Statistische Schitzverfahren

3.3.1. Einleitung

In diesem Abschnitt werden wir uns mit statistischen Schétzfragen beschiftigen. Die
ihnen zugrunde liegende Fragestellung wollen wir mit Hilfe von zwei Beispielen erldu-
tern.

Beispiel 3.6: Bei der Produktion eines Maschinenteiles sind fiir ein AbmaB gewisse Tole-
ranzen zugelassen. Vor Aufnahme der Fertigung soll gepriift werden, ob von der Ma-
schine, auf der die Herstellung erfolgen soll, diese Toleranzen anndhernd eingehalten
werden konnen. Dazu fassen wir die MaBabweichung vom NennmaB als ZufallsgroBe X
auf, die wir auf Grund fritherer Betrachtungen als N(u; o)-verteilt annehmen konnen. Die
Grundgesamtheit X ist durch ihre Verteilungsfunktion

Fy(t) = P(X <t) = D(t; u, 0)

vollstindig beschrieben.

Bezeichnen wir mit ¢, bzw. ¢, die obere bzw. untere zuldssige MaBabweichung, so ergibt
sich unter der Voraussetzung, dal die Maschineneinstellung dem NennmaB entspricht,
d.h. unter der Voraussetzung u = 0, die Wahrscheinlichkeit dafiir, daB unzuldssige MaB-
abweichungen auftreten, zu:
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P(X<t,)+P(Xzt)=1-P(t,=X<t)=1-[P(t;0,0)— D(t,;0,0)].

Auf Grund der ermittelten Wahrscheinlichkeit ist eine Aussage iiber den auftretenden
AusschuBanteil moglich, und somit ist iber die Aufnahme der Produktion auf der be-
trachteten Maschine zu entscheiden.

Zur Berechnung dieser Wahrscheinlichkeit ben6tigen wir den Kennwert (Parameter) o.
Da er uns unbekannt ist, miissen wir ihn aus den MeBwerten, die wir auf der Grundlage
von n auf der Maschine gefertigten Probestiicken gewonnen haben, d. h. auf der Basis
einer konkreten Stichprobe vom Umfang n, schétzen.

Beispiel 3.7: Die Grundgesamtheit des Merkmals ,Anzahl der Atome, die in einer be-
stimmten Zeiteinheit zerfallen“, wird durch eine poissonverteilte ZufallsgroBe X charak-
terisiert. Diese ist durch ihre Einzelwahrscheinlichkeiten

*
PX=k)=7e" k=0,1,2,..

vollstindig beschrieben.

Wie im Beispiel 3.6 ist der unbekannte Kennwert (Parameter) 4 auf der Grundlage
einer konkreten Stichprobe zu schitzen.

Beide Beispiele haben gemeinsam, daB von der ZufallsgroBe X, die die Grundgesamt-
heit beschreibt,

— der Verteilungstyp als bekannt vorausgesetzt wird,
— wenigstens ein Kennwert (Parameter)!) dieser Verteilung aber unbekannt ist.

Wir charakterisieren den Verteilungstyp einer stetigen bzw. diskreten Zufallsgroe X
durch ihre Dichtefunktion f(t; 0y, ..., 0,,), — © <t < + o bzw. ihre Einzelwahrschein-
lichkeiten P(X = x;; 04, ..., 0,) =p(x;, 0y, ..., 0,),i=1,2, ... ,n,bzw. i=1,2, ..., mit
den Parametern @,, ..., 0,,. Die statistischen Schétzverfahren dienen dazu, die Parameter
0, ..., 0,, von denen wir annehmen, daB sie unbekannt sind, auf der Basis einer aus der
Grundgesamtheit gezogenen Stichprobe zu schitzen. Diese Schitzungen, die Stichpro-
benfunktionen und dementsprechend ZufallsgroBen sind, werden Schdatzfunktionen ge-
nannt. Diese bezeichnen wir fiir eine mathematische Stichprobe (X, X,, ..., X,) vom
Umfang n mit 6, = 6,(X,, X, ..., X,), i=1, 2, ..., m. Ihre Realisierungen, die auf Grund

einer konkreten Stichprobe x,, x,, ..., X, — einer Realisierung von (X, X;, ..., X,) — ge-
wonnen werden und Schétzwerte heiBen, kennzeichnen wir mit 4 = &(x;, x,, ..., X,),
i=1,2,...,m.

Im folgenden wollen wir zwei Arten von Schitzungen betrachten. Dies ist einmal die
Punkt- und zum anderen die Konfidenzschitzung.

3.3.2. Punktschidtzungen

3.3.2.1. Begriff der Punktschitzung

Von einer Punktschitzung eines unbekannten Parameters @ sprechen wir dann, wenn
ein einziger aus einer Stichprobe gewonnener Wert mit dem unbekannten Parameter ©
identifiziert wird. In diesem Zusammenhang werden @ = @(X,, X, ..., X,) Punktschiitz-
funktion und ihre Realisierungen & = §(x,, x, ..., X,) Punktschitzwerte genannt. So sind
z.B. die Stichprobenfunktionen

0y(X1, Xy, ..., X)) =X(X1, Xp, ..., Xp) =

>

1) In Verbindung mit statistischen Schitzverfahren wird im allg. von Parametern und seltener von
Kennwerten gesprochen. So soll es auch hier geschehen.
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und
éz(Xth, ~"7Xn)=X~(X1’X2’ s Xp) =X

Punktschitzfunktionen des Parameters @ = E(X) einer Grundgesamtheit X. Entspre-
chend stellen die Realisierungen dieser ZufallsgroBen

91("'1; Xy, eeey Xp) = X(Xp, Xy 0y X)) =X
und
Sa(x1, X2, ooes Xa) = X(X1, X2, ooy Xp) = X

Punktschétzwerte des Parameters @ = E (X) dieser Grundgesamtheit dar (vgl. 3.1.1.3.).

Wie wir gerade sahen, konnen zur Schitzung eines Parameters einer Grundgesamtheit
mehrere Punktschétzfunktionen herangezogen werden. Es erhebt sich die Frage, welche
dieser Schatzfunkiionen uns die beste Information iiber den unbekannten Parameter lie-
fert, mit anderen Worten, welche dieser Schatzfunktionen wir wihlen.

Zur Beantwortung dieser Frage stellte R. A. Fisher 1930 Kriterien fiir die Auswahl einer
Punktschétzfunktion auf. Er fordert, daB eine ,gute Schédtzung“ erwartungstreu, konsistent
und effizient sein soll. Wir wollen diese Kriterien erkldren und durch entsprechende Bei-
spiele veranschaulichen, ohne in jedem Fall auf den Nachweis einzugehen.

Definition 3.4.: Eine Punktschitzfunktion O(X,, ..., X,) eines Parameters © nennen wir er-
wartungstreu (unverzerrt), wenn der Erwartungswert von O gleich dem Parameter @ ist, d. h.,
wenn gilt: E(@)= 0. Eine Punkischitzfunktion @ eines Parameters © bezeichnen wir als
asymptotisch erwartungstreu, falls fiir wachsenden Stichprob ifang der Grenzwert des Er-
wartungswertes von O gleich dem Parameter © ist, d. h., wenn gilt: lim E(O(X,, ..., X,)) = @

n—w

So sind beispielsweise

— die relative Haufigkeit @ = H,(A4) eine erwartungstreue Punktschitzfunktion der Wahr-
scheinlichkeit @ = p fiir das Eintreten des Ereignisses A im Ergebnis eines zufilligen
Versuchs;

- die empirische Verteilungsfunktion F,(¢) fiir jedes feste t (—© < t < + ) eine erwar-
tungstreue Punktschitzfunktion fiir die Verteilungsfunktion Fx(t) der Grundgesamt-
heit X;

— das arithmetische Mittel & = X eine erwartungstreue Punktschitzfunktion fiir den Er-
wartungswert @ = E(X) der Grundgesamtheit X;

— der Median @ = X eine asymptotisch erwartungstreue Punktschitzfunktion fiir den Er-
wartungswert @ = E (X)der normalverteilten Grundgesamtheit X;

— die empirische Varianz 6, = 5 eine erwartungstreue, die GroBe 6, = §2= 21— " L
eine asymptotisch erwartungstreue') und die Spannweite @; =R nicht einmal eine
asymptotisch erwartungstreue Punktschitzfunktion fiir die Varianz @ = D?(X) der
Grundgesamtheit X;

— das arithmetische Mittel @ = X eine erwartungstreue Punktschitzfunktion fiir den Pa-
rameter ® = A einer poissonverteilten Grundgesamtheit X.

Fiir das arithmetische Mittel X und die GroBe S? wollen wir diese Aussage nachweisen:

1. Mit 6 =X und 6 = E(X) ergibt sich E(X) = E(X) wie folgt:

EX) = E[li ] E[ZX] li )= nE®X)=EX).
n = B n

1) Das ist auch die Begriindung fiir die Erkldrung der empirischen Varianz in 3.1.1.3.
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2. Mit
6=51= Z X, — X7
und @ = D*(X) ergibt sich ILH:, E(S?) = DX(X) wie folgt:

E(S)=E [%Z - X)’] - [%ZX.? —72] = E(X) - E(D);
i=1

E(i’)zE[( Zx)]=—11— I DI =L pan + 2 LEwy;

E@) = Ea) - ey - 2L pxy
2L B0y - P Er = B - B = i
lim E(S) = D(X).

Definition 3.5: Eine Punktschitzfunktion @(X,, ..., X,) eines Parameters © bezeichnen wir als D.3.5
(schwach) konsistent (passend), wenn @ mit wachsendem n in Wahrscheinlichkeit gegen ©
konvergiert, d. h., wenn fiir jedes beliebige ¢ > 0 gilt:

lim P(|6(X,, ..., X,) - O|<e)=1.

Mit anderen Worten: Mit wachsendem Stichprob fang strebt die Wahrscheinlich-

keit des Ereignisses ,|@ — 0| < &“ gegen 1. So sind z.B.

- die relative Hiufigkeit @ = H,(4) eine konsistente Punktschitzfunktion der Wahr-
scheinlichkeit @ = p fiir das Eintreten des Ereignisses A im Ergebnis eines zufdlligen
Versuchs (vgl. Gesetz der groBen Zahlen von Bernoulli; Satz 2.13);

— die empirische Verteilungsfunktion F,(t) fur jedes feste t (— © < t < + ©) eine konsi-
stente Punktschitzfunktion fiir die Verteilungsfunktion Fy(t) der Grundgesamtheit X
(vgl. Aussage des Satzes von Gliwenko);

- das arithmetische Mittel & = X eine konsistente Punktschitzfunktion fiir den Erwar-
tungswert der Grundgesamtheit X;

— der Median @ = X eine konsistente Punktschitzfunktion fiir den Erwartungswert einer
normalverteilten Grundgesamtheit;

- die empirische Varianz € = §? eine konsistente Punktschitzfunktion fiir die Varianz
@ = D*(X) der Grundgesamtheit X;

— das arithmetische Mittel @ = X eine konsistente Punktschitzfunktion des Parameters
@ = ] einer poissonverteilten Grundgesamtheit X.

Die in Definition 3.5 fiir das Vorliegen der (schwachen) Konsistenz angegebene Forde-

rung ist im allgemeinen nicht einfach nachweisbar. Bei Kenntnis der Erwartungstreue

einer Punktschétzfunktion ist ihre (schwache) Konsistenz mit Hilfe des folgenden Satzes
oft einfacher zu untersuchen:

Satz 3.2: Ist eine Punkischitzfunktion @ = 6(X,, X, ..., X,) eines Parameters @ asymptotisch S.3.2
erwartungstreu, d. h. hm E(0) = 0, so ist die Erfullung von lu'n D%(0) =0 eine hinreichende

Bedi furlhrefL he) K
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Der Beweis des Satzes ergibt sich aus Formel (2.69).

Fiir das arithmetische Mittel @ = X, das eine erwartungstreue Punktschitzfunktion des
Erwartungswertes @ = E (X) einer Grundgesamtheit X ist, ergibt sich die (schwache) Kon-
sistenz mit Hilfe dieses Satzes, da

DX
lim D%(X) = lim ( ) =0
gilt.
Definition 3.6: Die erwartungstreue Punktschitzfunktion @, des Parameters @ einer Grundge-

samtheit nennen wir effizienter (wirksamer) als eine erwartungstreue Punkischitzfunktion 6,
desselben Parameters, wenn fiir ihre Varianzen D*(0,)=E((6,— 0)*) und D*(6,)
=E((6,- 0)?) gilt:
D*(0,) < D¥(6,).

Das Verhltnis

D*(6y)

D¥(6,)

bezeichnen wir als relative Wirksamkeit (Wirkungsgrad) von 0, in bezug auf 0, und die

fiir einen Parameter der Grundgesamtheit vorliegende Punktschdtzfunktion mit der kleinsten Va-
rianz als die effektive (wirksamste) Schitzung.

ni=

Eine Aussage iiber eine untere Schranke der Varianz von Punktschitzfunktionen
0=0(X,,X,...,X,) eines Parameters @ der Grundgesamtheit X liefert der Satz von
Rao-Cramér: Wird eine Grundgesamtheit X durch eine Dichte f(¢; @) charakterisiert, die
von einem Parameter @ abhingt, ist f(¢, @) fur jedes t zweimal nach O differenzierbar
und gelten weitere Regularititsvoraussetzungen, dann ist fiir jede Punktschitzfunktion 6
des Parameters @ die Ungleichung

1
D¥(6) ;m

erfiillt, wobei I,(@) = nD? ist.

dinf(X;0) ] .
de
I,(®) wird als Fishersche Information bezeichnet. Sie hdngt im allgemeinen von € und
dem Stichprobenumfang n ab. Als MaBzahl macht sie eine Aussage iiber die in der Stich-
probe enthaltene Information hinsichtlich des zu schitzenden Parameters 6.

Beispiel 3.8: In einer N(u, oy)-verteilten Grundgesamtheit sei der Parameter ¢, bekannt.
Der unbekannte Parameter @ = u soll geschitzt werden. Die Dichte

(t—-oy
exp [—T], (mo<t< +),

1
f(t; 0, 0)= \/ﬁﬂ
0

der ZufallsgroBe X erfiillt die o.g. Voraussetzungen. Dann ergibt sich fiir 1,(0):
. — 2
1.(6) = nD? [w] —np? [% <_ In {37 0y — M)]

de 203
X-0 1 1 n
= 2 2 =p—qgl=—
nD [ 7 ] o DXX)=n P ) 2



3.3. Statistische Schitzverfahren 137

Das arithmetische Mittel @ = X ist also die effektive Punktschitzfunktion des Parameters
O = u der normalverteilten Grundgesamtheit X; denn sie ist erwartungstreu, und es gilt:

2
D¥(6) = DX(X) = %

3.3.2.2. Maximum-Likelihood-Methode

Zur Beurteilung, ob eine Punktschitzfunktion eine ,gute Schidtzung® ist, werden die
o.g. Kriterien herangezogen. Es ist hdufig nicht einfach, nachzupriifen, ob eine Punkt-
schitzfunktion den einzelnen Kriterien gerecht wird. Es erhebt sich deshalb die Frage
nach praktikablen Methoden, mit deren Hilfe Punktschétzfunktionen gesucht werden, die
moglichst viele dieser Kriterien erfiillen.

Eine dieser Methoden ist die Maximum-Likelihood-Methode (MLM). Sie wurde von
R. A.Fisher entwickelt, nachdem sie C.F. GauB schon vorher in Spezialfdllen angewandt
hatte. Bei ihr gehen wir von einer konkreten Stichprobe x;, x,, ..., x, vom Umfang n aus
einer Grundgesamtheit X aus. Der Verteilungstyp der Grundgesamtheit X sei bekannt.
Die Parameter 0,,i=1,2, ..., m, dieser Verteilung seien unbekannt und sollen unter
Verwendung der in der konkreten Stichprobe iiber die Grundgesamtheit enthaltenen In-
formation geschédtzt werden. Dazu erkliren wir die Likelihood-Funktion
L(x1, X3, .., X3 Oy, Oy, ..., 6,). Wir wollen uns im folgenden auf den Fall eines Parame-
ters @ beschrianken.

Definition 3.7: Ist x, x,, ..., X, eine aus einer Grundgesamtheit X gezogene konkrete Stich- D.3.7
probe vom Umfang n und ist X eine diskrete bzw. stetige Zufallsgrifie mit den Einzelwahrschein-
lichkeiten P(X = x;; 0), i =1,2, ..., bzw. der Dichte fx(t; ©), wobei der Parameter © unbe-

kannt ist, dann wird die Funktion

L(x1, %3, ..., % 0) = [ P(X = x;; 0) (3.26)
i=1
bzw.
L(xy, Xp, vy %3 0) = [ fi(xis ©) (327
i=1

als Likelihood-Funktion bezeichnet.

Die Likelihood-Funktion L(x, X, ..., x,; @) ist fiir jede konkrete Stichprobe eine
Funktion des unbekannten Parameters ©. Das Prinzip der MLM besteht nun darin, als
Punktschitzwert J fiir den unbekannten Parameter @ denjenigen zu ermitteln, fiir den die
Likelihood-Funktion ein Maximum annimmt. Im diskreten Fall heiBt das z.B., unter den
moglichen Punktschidtzwerten fir @ denjenigen auszuwéhlen, fir den das Ereignis
{X,=x1, X, =x,, ..., X, = x,} die groBte Wahrscheinlichkeit besitzt.

Unter der Voraussetzung der Differenzierbarkeit der Likelihood-Funktion nehmen wir
die Auswahl der gesuchten Punktschitzfunktion mit Hilfe der notwendigen Bedingung
fiir ein relatives Maximum vor:

dL

6= 0. (3.28)
Oft ist es giinstiger, den natiirlichen Logarithmus der Likelihood-Funktion zu bilden und
von der Gleichung

dinL
ae 0

(3.29)



138 3. Mathematische Statistik

an Stelle von (3.28) auszugehen. Begriinden Sie diesen Schritt! Eine Losung dieser Glei-
chung, die wir mit = 8(x, x,, ..., x,) bezeichnen, ist eine Realisierupg, ein Punkt-
schitzwert, der entsprechenden Punktschitzfunktionen 6 = (X;, X,, ..., X,). 0 wird als
Maximum-Likelihood-Schdtzung fiir @ bezeichnet.

Ubertragen Sie die eben angestellten Betrachtungen auf den Fall, daB die Wahrschein-
lichkeitsverteilung der Grundgesamtheit von zwei unbekannten Parametern €, und 0, ab-
hangt!

Die Maximum-Likelihood-Schitzungen sind unter bestimmten Bedingungen konsi-
stent, wenigstens asymptotisch erwartungstreu und asymptotisch normalverteilt.

Beispiel 3.9: Die Wahrscheinlichkeit P(4) = p eines Ereignisses 4 soll auf der Grundlage
von 120 unabhingigen Versuchen, in deren Ergebnis 96mal das Ereignis 4 eintrat, ge-
schitzt werden.
Dazu fiihren wir eine Null-Eins-verteilte ZufallsgroBe X ein, wobei dem Ereignis 4 der
Wert 1 und dem Ereignis A der Wert 0 zugeordnet wird:
PX=1)=p; P(X=0)=1-p.

Der Parameter @ = p dieser Verteilung ist zu schétzen. Der Serie von 120 Versuchen ent-
spricht dann eine konkrete Stichprobe vom Umfang 120, in der 96mal der Wert 1 und
24mal der Wert 0 auftritt. Die Likelihood-Funktion hat dann die Gestalt:

120
L(xy, Xy, ..., X203 P) = || P(X = x;; p)
i=1

=[PX =D [PX=0)J~*
=p*(1-p)*,

wobei von den x;, i=1,2, ..., 120, 96 den Wert 1 und 24 den Wert 0 haben. Um Formel
(3.29) anwenden zu konnen, bilden wir InL =961np + 241n(1 — p) und erhalten damit:

dinL _ 96 24
dp p 1-p
Die Losung dieser Maximum-Likelihood-Gleichung ist eine Realisierung der Punkt-
schitzfunktion 6 = p, die wir mit § = j bezeichnen wollen. Fiir sie ergibt sich

5= g %6 _
=Pr=750 = 08.

=0.

Allgemein erhalten wir: @ = p = k/n, wobei wir mit k die Anzahl des Eintretens des Er-
eignisses 4 und mit n die Anzahl der Versuche kennzeichnen. Wir sehen also, daB die re-
lative Haufigkeit = H,(4) die Maximum-Likelihood-Schitzung fiir den Parameter
O = p ist.

Beispiel 3.10: Von einer N(u; o)-verteilten Grundgesamtheit X sind die Parameter
6, = pund O, = 0? unbekannt. Mit Hilfe der in einer konkreten Stichprobe x;, x;, ..., X,

vom Umfang n enthaltenen Information sollen diese beiden Parameter geschiitzt werden.
Dazu bilden wir die Likelihood-Funktion der Stichprobe:

1 1 ¢
L(x1, X2, .., Xa3 02)=Wexp[—ﬁ ;(xi—u)’]

und den natiirlichen Logarithmus dieser Funktion:
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-_n - n_ L oo
InL=-7InQm -5 -5 i;(x,- u)?.

Durch Bildung der partiellen Ableitungen nach den Parametern @, = u bzw. 0, = ¢? er-
halten wir das Likelihood-Gleichungssystem:

aanL) 1Z(x =0

8nL) _ n_ 1 <
Y P P

Aus der ersten Gleichung errechnet sich

Z x;i—nu=0

i=1
und damit der Punktschétzwert

1
9= - Z X = X. (3.30)
i=1

8, setzen wir fiir x in die zweite Gleichung ein und erhalten durch Umformung:

(%= X)=a’n,

~-

1

woraus sich weiter der zweite Punktschitzwert ergibt:
1 ¢ =2
=;Z(x.-—x) . (3.31)

Die entsprechenden Punktschitzfunktionen fir die Formeln (3.30) und (3.31) lauten
dann:

_ 1
_I;X'
und

é,=s§=%2(x,—,?)1.
i=1

3.3.2.3. Momentenmethode

Neben der Maximum-Likelihood-Methode sind die M hode, die Methode der
kleinsten Quadrate und die Minimum-Chi-Quadrat-Methode weitere Methoden zur Kon-
struktion von Punktschitzungen. Im folgenden wollen wir auf die Momentenmethode
eingehen. Hinsichtlich der beiden anderen Methoden wird der Leser auf [14; 15] verwie-
sen.

Bei der Momentenmethode wird von einer mathematischen Stichprobe (Xi, X,, ..., X,)
ausgegangen, die aus einer Grundgesamtheit X gezogen wurde. Die Wahrscheinlichkeits-
verteilung von X soll von den Parametern 6;,, i=1,2, ..., k, abhdngen, fiir die eine
Punktschétzfunktion gesucht wird. Weiterhin sollen die im allgemeinen von den Para-
metern O, i=1,2, ..., k, abhdngenden Momente m, von X mindestens bis zur k-ten
Ordnung, k = 1, existieren:
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m =EX")=¢g/(6y,...,0), r=12 ..k

Zur Schitzung der unbekannten Parameter 6, i=1,2,...,k, wird das Moment m;
durch die Stichprobenfunktion

. _1¢
,—ng
ersetzt. )
Die Losungen @, i=1,2,..., k, des Gleichungssystems

1, = g,(01 e, .-, ), r=1,2, ...,k (3.33)
werden als Punktschitzfunktionen nach der Momentenmethode bezeichnet.

Beispiel 3.11: Die Parameter @; = E(X) = u und 0, = D*(X) = ¢? einer N(u, o)-verteilten
Grundgesamtheit X sind zu schitzen. Unter Verwendung der Beziehung D%(X) = o?
= E(X? — [E(X)]? ergibt sich nach (3.33) folgendes Gleichungssystem:

L
T L X=EX) =g,
i=1
%iX% o+ [EX)P.
i=1

_ 1
Mit X = o Z X; ergeben sich als Losungen:
i=1

6=i=X 6,-a=5.

Auf Grund ihrer Einfachheit wird die Momentenmethode in zunehmendem MaB ange-
wandt. Allerdings sind die Eigenschaften der mit dieser Methode ermittelten Punkt-
schitzfunktionen noch nicht umfassend untersucht.

3.3.3. Konfidenzschitzungen

3.3.3.1. Begriff der Konfidenzschitzung

Mit einer Punktschdtzung, bei der wir einen unbekannten Parameter @ durch einen
einzigen aus einer Stichprobe ermittelten Wert schétzen, gewinnen wir keine Aussage
iiber die Genauigkeit einer solchen Schétzung. Die Abweichungen einzelner Punkt-
schitzwerte vom Wert des Parameters ® konnen erheblich sein. Das ist besonders dann
der Fall, wenn der Stichprobenumfang klein ist. Um uns eine Vorstellung iiber die Ge-
nauigkeit einer Schédtzung verschaffen zu konnen, wollen wir uns mit der Konfidenzschat-
zung, einer speziellen Form der Bereichsschidtzung, beschiftigen.

Bei ihr wird fiir einen unbekannten Parameter ® der Grundgesamtheit mit Hilfe einer
Stichprobe ein Intervall mit den Grenzen G, und G, (G; = G,) gesucht, das @ mit einer
vorgegebenen groBen Wahrscheinlichkeit 1 — o liberdeckt:

P(G,<0<G)=1—e. (3.34)

Wir bezeichnen G, und G, als Konfidenzgrenzen (Vertrauensgrenzen), (G, G,) als Konfi-
denzintervall (Vertrauensintervall), 1 — o als Konfidenzniveau (Vertrauensniveau) und o
als {l’ll h heinlichkeit.

Die Konfidenzgrenzen sind Stichprobenfunktionen der mathematischen Stichprobe
(X1, X,, ..., X,) vom Umfang n:
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G=6(X1, X, ..., X)), G =G(X1, Xy, ..., X).

Sie sind also ZufallsgroBen. Dementsprechend stellt das Konfidenzintervall (G;, G,) ein
Zufallsintervall dar. Fiir eine konkrete Stichprobe (x;, x,, ..., X,), eine Realisierung von
(X,, X, ..., X,), erhalten wir dann mit den Realisierungen g, und g, der Konfidenzgren-
zen G, und G, eine Realisierung (g, g,) des Konfidenzintervalls, die wir als konkrete Kon-
fidenzschdtzung bezeichnen.

In einfachen Spezialfillen fithrt die Ermittlung des Konfidenzintervalls (G,, G,) fir
den Parameter O unter Verwendung einer Punktschétzfunktion @ = (X, ..., X,) dieses
Parameters auf Konfidenzgrenzen der Form G, = @ — 6, und G, = 0 + §, bzw. G, = 0 §,
und G, = 6-4,. (3.34) geht dann iiber in

PO-6,<0<0+d)=1-« (3.35)
bzw.
P(6-6,<0<0-0)=1-a. (3.36)

Die GroBen 6, und d, werden wir fiir einige Spezialfélle in 3.3.3.2. bis 3.3.3.5. berechnen.

Wir wollen nochmals bemerken: Das Konfidenzniveau (1 — «) ist die Wahrscheinlich-
keit dafiir, daB das Zufallsintervall (G,, G,) den unbekannten Parameter @ tiberdeckt. An-
ders ausgedriickt: Die ermittelten konkreten Konfidenzintervalle werden durchschnittlich
in (1 — &) - 100% der Fille @ tiberdecken und in o - 100% der Fille @ nicht iiberdecken.
Deshalb wird « als Irrtumswahrscheinlichkeit bezeichnet; o ist ein Ausdruck des Risikos,
das bei dieser Schatzung eingegangen wird. Die Irrtumswahrscheinlichkeit ist also vom
Bearbeiter vor Beginn der Schitzung entsprechend der Problemstellung festzulegen. In
der Praxis wird fiir « im allgemeinen 0,05 bzw. 0,01 bzw. 0,001 gewéhit.

3.3.3.2. Konfidenzschitzung fiir den Erwartungswert einer normalverteilten
Grundgesamtheit mit bekannter Varianz

Von einer Grundgesamtheit X sei bekannt, daB sie N(u; o)-verteilt ist. Einer der bei-
den Parameter dieser Verteilung — Varianz ¢? — soll uns bekannt sein. Der andere — der
Erwartungswert x4 — ist uns unbekannt. Fiir ihn suchen wir eine Konfidenzschitzung, d.h.
ein Intervall, das 4 mit einer groBen Wahrscheinlichkeit {iberdeckt.

Dazu gehen wir von einer mathematischen Stichprobe (X, X,, ..., X,) vom Umfang n
aus und wihlen als Punktschétzfunktion fiir den unbekannten Parameter © = u das

. . . -_1¢ R . sp e
arithmetische Mittel @ = X = " Z X;. Wie wir im Abschnitt 2.3.8.3. sahen, ist die Zu-
i=1

fallsgroBe X N([l; )-veneilt. In (3.35) setzen wir @ =X und @ = u und wegen der

v
Yn
Symmetrie der Dichtefunktion einer normalverteilten Zufallsgrofe 6,=03,=39. Damit er-
halten wir:

PX-0<u<X+0)=P(|X—-pu|<d)=1-a, (3.37)

d. h., die Wahrscheinlichkeit dafiir, daB der Betrag des Schitzfehlers kleiner als die
Schranke ¢ ist, wird mit 1 — o vorgegeben.
Zur Bestimmung der GroBe 0 standardisieren wir die ZufallsgroBe X:
X
P

n

Die ZufallsgroBe Z ist N(0; 1)-verteilt. (3.37) geht damit tiber in

4 (3.38)
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p u<@ -

K 3.39)
yn
oder anders geschrieben in:
P(Z|<za)=1-o mit za= 6‘({; H (3.40)
2 2

(3.40) wird in Bild 3.9 veranschaulicht.

Bild 3.9. Konfidenzniveau
und Irrtumswahrscheinlichkeit
im Fall der Relation (3.40)

Aus Tafel 4 des Anhangs k6nnen wir nun zu vorgegebener Irrtumswahrscheinlichkeit o
das zugehorige z« entnehmen. Setzen wir (3.38) in die Ungleichung
2

1Z|< za
2

ein, so ergibt sich:

n|< za 3.41)
2

und durch entsprechende Umformung die fiir den Parameter @ = u gesuchte Konfidenz-
schitzung

a - a
X—za—=<u<X+za—F. 3.42
TJ; “ 2 yn ¢ )

Das Zufallsintervall ( X — zo —— 1/— X+za ‘/—) iberdeckt den Parameter ® = yu mit der
7

Wahrscheinlichkeit (1 — a). Jede konkrete Stichprobe aus der 0. g. Grundgesamtheit lie-
fert uns eine Realisierung der ZufallsgroBe X und damit eine Realisierung dieses Zufalls-
intervalls. Das Intervall

[
« <u<x+za 3.43
z2 1/; u<x+z < (3.43)

ist dann eine konkrete Konfidenzschidtzung oder ein konkretes Konfidenzintervall fir den
Parameter @ = u.
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Die Linge des Konfidenzintervalls
4

n

ist von o und n abhingig. Sie ist also bei festem « und n konstant. Die Lage des konkre-

ten Konfidenzintervalls wird durch die konkrete Stichprobe bestimmt. In Bild 3.10 wird
diese Aussage veranschaulicht.

26=2za (3.44)
2

_—
X |
I
| % Bild 3.10. Konkrete Konfidenzintervalle
?———:"}'-—‘—" fir den Parameter @ = u bei
| 3 verschiedenen konkreten Stichproben
Vo= aus einer Grundgesamtheit

Bei festem n wird das Konfidenzintervall kleiner, falls die Irrtumswahrscheinlichkeit
groBer wird. Die Lange des Konfidenzintervalls ist ein MaB fiir die Genauigkeit der An-
gabe von u und die Irrtumswahrscheinlichkeit ein MaB fiir das Risiko. Die Genauigkeit
konnen wir durch eine VergroBerung des Stichprobenumfangs erhéhen.

Beispiel 3.12: An Erzeugnissen, die auf einem Drehautomaten hergestellt werden, werden
hinsichtlich eines AbmaBes Untersuchungen angestellt. Die dabei ermittelten Abwei-
chungen vom NennmaB (um) konnen als Realisierungen einer normalverteilten Zufalls-
groBe X aufgefaBt werden.

Der Erwartungswert dieser ZufallsgroBe ist von der jeweiligen Einstellung des Automa-
ten abhingig. Er ist uns deshalb nicht bekannt. Ihre Varianz ¢? = 400 kennen wir aus vor-
angegangenen Funktionsgenauigkeitspriffungen des Automaten. Fiir den Erwartungswert
u suchen wir eine konkrete Konfidenzschitzung zum Konfidenzniveau 1 — « = 0,95.

Wir wollen annehmen, daB wir aus einer konkreten Stichprobe vom Umfang 16, d. h.
aus 16 festgestellten MaBabweichungen, das arithmetische Mittel X = 55 ermitteln konn-
ten. Wir lesen nun fiir die Irrtumswahrscheinlichkeit o = 0,05 in Tafel 4 des Anhanges
den Wert z« = zgpps = 1,96 ab. Durch Einsetzen dieser Werte in (3.43) erhalten wir ein

2

konkretes Konfidenzintervall fir u:

20 20
55— 1,96—20 < 4 <55 + 1,96
Jie ~¥ Ji6

und daraus

452 <p<64,8.
Wihlen wir einen kleineren Wert fiir &, so wird das Konfidenzintervall groBer. So lesen
wir z.B. fiir « = 0,01 in Tafel 4 des Anhangs z« = zy45 = 2,58 ab. Es ergibt sich als Konfi-
denzintervall ’

42,1 < pu<67,9.

Die hohere Sicherheit geht also zu Lasten der Genauigkeit der Schéitzung.
AbschlieBend zu diesem Beispiel wollen wir zeigen, wie der fir eine gewiinschte Ge-
nauigkeit erforderliche Stichprobenumfang n ermittelt werden kann. Dazu haben wir die
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in (3.44) fur die Linge des Konfidenzintervalls angegebene Relation nach n aufzuls-

sen:
za0\?
n=|-—2
5 )
Fiir ein vorgegebenes Konfidenzniveau 1 — « = 0,95 und ein gewiinschtes Konfidenz-

intervall von der Lénge 10 um erhalten wir mit
Za =Zopps =196 und 0=5
2

. 2
SILIEL

Um die geforderte Genauigkeit zu erhalten, ist ein Stichprobenumfang von mindestens
n = 62 notwendig.

3.3.3.3. Konfidenzschitzung fiir den Erwartungswert einer normalverteilten
Grundgesamtheit mit unbekannter Varianz

Wir betrachten den Fall, daB beide Parameter einer N(u; o)-verteilten Grundgesamt-
heit X unbekannt sind. Wie im vorangehenden Abschnitt suchen wir fiir einen der beiden
Parameter — den Erwartungswert u4 — eine Konfidenzschétzung.

Wiederum gehen wir von einer mathematischen Stichprobe (X;, X, ..., X,) vom Um-
fang n aus und wihlen ebenfalls als Punktschitzfunktion fiir den unbekannten Parameter

0 = u das arithmetische Mittel @ = X = % Z X, und als Punktschétzfunktion fiir die Va-
i=1

"
rianz ¢?, die ebenfalls unbekannt ist, die empirische Varianz §2 = ﬁ Z X, — X)%. Wir
i=1

verwenden jetzt zur Berechnung der GroBen 6, und 6, die Stichprobenfunktion

Y_
Zr =t = S”x/;, (3.45)

die einer Student-Verteilung mit m = n — 1 Freiheitsgraden geniigt. Auf Grund der Sym-
metrie der Dichtefunktion der ZufallsgroBe Z¥* konnen wir 6, = 6, = 0 setzen.

Aus der Tafel der Student-Verteilung (Tafel 4 des Anhangs) lesen wir zu vorgegebener
Irrtumswahrscheinlichkeit « und fiir den Freiheitsgrad m den Wert ¢« ab, fiir den die
Gleichung "

g
P2 <te ) =1-a (3.46)

erfiillt ist. (3.46) wird in Bild 3.11 veranschaulicht.

A0

Bild 3.11. Konfidenzniveau
und Irrtumswahrscheinlichkeit
im Fall der Relation (3.46) fir m =4

‘r;l‘,-m | t‘zl t
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Durch Einsetzen von (3.45) in (3.46) erhalten wir
X—u
P ( < n
oder anders geschrieben
Pl-te <Xl ficte )=1-a
mo S 7

Durch einfache Umrechnung bekommen wir die gesuchte Konfidenzschitzung fiir den
Parameter @ = u:

<'5.,,,)=1““
3

S - S
X—te ——<u<X+te —.
AN
Das Zufallsintervall | X — ta. i, X+ ta. = iiberdeckt den Parameter @ = x mit
T 7im

der Wahrscheinlichkeit (1 — «). Jede konkrete Stichprobe aus der o. g. Grundgesamtheit
liefert je eine Realisierung der ZufallsgroBen X und S und damit eine Realisierung des
Zufallsintervalls. Das Intervall

s s
Tt = <U<T+la —= 3.47)
Tndn F 7mn ¢

ist dann eine konkrete Konfidenzschdtzung fiir den Parameter © = u.

Fiir gleichen Stichprobenumfang n und gleiche Irrtumswahrscheinlichkeit ist das Kon-
fidenzintervall (3.47) im allgemeinen groBer als das Konfidenzintervall (3.43). Da die Stu-
dent-Verteilung fiir n — c gegen die Normalverteilung strebt, wird der Unterschied in der
Linge der beiden Intervalle bei geniigend groBem n sehr klein werden.

Wir verwenden deshalb fiir hinreichend groBe m = n — 1 die Ndherung

ta, Sta = 2Za,
; 3
die erfahrungsgemaB schon fiir m > 120 eine in vielen Fillen zufriedenstellende Néhe-
rung liefert.

Beispiel 3.13: 12 Versuchsflichen wurden mit einer neuen Weizensorte bestellt. Diese
Versuchsflichen brachten folgende Hektarertriage [dt]: 35,6; 33,7; 37,8; 31,2; 37,2; 34,1;
35,8; 36,6; 37,1; 34,9; 35,6; 34,0.

Erfahrungen zeigen, daB die Grundgesamtheit ,zufélliger Hektarertrag“ gewOhnlich als
normalverteilt angesehen werden kann. Fiir den Erwartungswert 4 des Hektarertrags wol-
len wir mit der Irrtumswahrscheinlichkeit o« = 0,05 ein Konfidenzintervall ermitteln. Da
die Varianz ¢2 der Grundgesamtheit ebenfalls unbekannt ist, werden wir von der o. g. kon-
kreten Stichprobe ausgehend fiir die beiden Parameter @, = yund @, = ¢ die Punkt-
schitzwerte X und s und mit ihnen unter Verwendung von (3.47) ein konkretes
Konfidenzintervall fiir den Parameter 0, = u ermitteln. Mit den errechneten X = 35,3 und
s = 1,86 und dem aus Tafel 4 fiir m = 11 Freiheitsgrade und eine Irrtumswahrscheinlich-
keit & = 0,05 abgelesenen Wert ta o= loos;n = 2,20 lautet das konkrete Konfidenzinter-

.

vall:

353-220288 <y <353+ 220288

iz 12

10 Beyer, Wahrscheinlichkeitsrechnung
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oder umgerechnet
34,12 < u<36,48.

3.3.3.4. Konfidenzschitzung fiir die Varianz einer normalverteilten Grundgesamtheit

Zur Ermittlung eines Konfidenzintervalls fiir die Varianz o¢? einer N(u, o)-verteilten
Grundgesamtheit X gehen wir von einer mathematischen Stichprobe (X, X;, ..., X,) vom
Umfang n aus und wihlen als Punktschitzfunktion fiir den unbekannten Parameter

0 = ¢? die empirische Varianz 0 = §2= ﬁ > (X;— X)2. Als Grundlage fiir die Be-
i=1
stimmung des gesuchten Konfidenzintervalls benutzen wir die Stichprobenfunktion

Y=g, =t e - Ly - gy, (3.48)
4 [t

die einer y2-Verteilung mit m = n — 1 Freiheitsgraden geniigt. Bei gegebener Irrtums-
wahrscheinlichkeit o lassen sich aus der Tabelle der y2-Verteilung fiir m Freiheitsgrade
zwei solche Werte ¢; und c, (c; < c,) ablesen, fiir die die Relationen

Pz e)= [fpGodx=1-% (3.49)
und l

P(Yhzc)= I faydx=7 (3.50)
gelten. Beide fassen wir zusammen zu

P, <Yr<c)= ff,z(x)dx=1—zx. 3.51)

Bild 3.12 veranschaulicht diese Beziehung fiir die x2-Verteilung mit m = 6 Freiheitsgra-
den.

Bild 3.12. Konfidenzniveau
und Irrtumswahrscheinlich-
keitimFallderRelation (3.51)

Fiir die GréBen ¢, und c, als von der Irrtumswahrscheinlichkeit « abhidngige Realisie-
rungen einer y2-verteilten ZufallsgroBe mit m Freiheitsgraden setzen wir:

c,=xi . und =2, (3.52)
“Eim Eim

2
Mit (3.48) und (3.52) erhalten wir aus (3.51)
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71 Sl
P(x’ <M<xi >=l—a. (3.53)
7;’"

_«, o?
1-%m

Durch Umformung ergibt sich die gesuchte Konfidenzschitzung fiir 62 zum Konfidenz-
niveau 1 — o

_1 -
nlg gl g (3.54)
« L

Zim 1-3im

Jede konkrete Stichprobe aus der o. g. Grundgesamtheit liefert uns eine Realisierung s?
der ZufallsgroBe S? und damit eine Realisierung des Zufallsintervalls, d. h., das Intervall

1l =l (3.55)
X

«
m 1-2m

2

e

ist eine konkrete Konfidenzschitzung fiir den Parameter @ = 2.

Beispiel 3.14: Auf einer Maschine wird ein bestimmtes Einzelteil eines Erzeugnisses her-
gestellt. Der Durchmesser [mm)] dieses Einzelteils kann als normalverteilte ZufallsgroBe X
angesehen werden. Um eine Aussage iiber die Fertigungsgenauigkeit der Maschine hin-
sichtlich dieses Durchmessers zu erhalten, soll eine Konfidenzschitzung der unbekann-
ten Varianz @ = ¢? der Grundgesamtheit zum Konfidenzniveau 1 — & = 0,98 vorgenom-
men werden. Dazu ziehen wir aus der Grundgesamtheit X eine konkrete Stichprobe, die
im vorliegenden Fall vom Umfang 25 sein soll. Aus dieser berechnen wir s? = 0,1764.
5-=0,01bzw. 1~2-=099und m=n —1=24
Freiheitsgrade die GroBen c¢; = x3.50=10,9 und ¢, = x3.,, =43 ab. Die konkreten
Konfidenzgrenzen sind dann nach (3.55)

Nun lesen wir in Tafel 3 des Anhangs fiir

-1
6=y 51=%~o,1764=0,0984
Eim
und
n-1 24
g2=x: - s =05 01764 =03884.
—gim

Ein konkretes Konfidenzintervall fiir ¢? zum Konfidenzniveau 0,98 ist somit
0,0984 < ¢? < 0,3884.
Daraus ergibt sich zum gleichen Niveau ein Konfidenzintervall fiir o:

0,3137<0<0,6232.

3.3.3.5. Konfidenzschitzung fiir den Parameter p einer Null-Eins-verteilten
Grundgesamtheit

Wir wollen eine Null-Eins-verteilte Grundgesamtheit X betrachten, die die Werte 1
und 0 mit den Wahrscheinlichkeiten P(X =1) = p und P(X =0) = 1 — p = q besitzt.

10*
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Fiir den Parameter ® = p dieser Grundgesamtheit, der im allgemeinen unbekannt ist,
soll auf der Grundlage einer mathematischen Stichprobe (X;, X;, ..., X,) vom Umfang n
eine Konfidenzschitzung mit dem Niveau (1 — &) ermittelt werden. Wir benutzen

‘"7:7:'}?2""‘ (3.56)
i=1
als Punktschitzfunktion fiir den Parameter 6 = p.

n
Die ZufallsgroBe nX = Z X; unterliegt einer Binomialverteilung mit den Parametern n

i=1
und p (vgl. Abschnitt 2.3.10.2).
Fiir kleinen Stichprobenumfang n 148t sich deshalb ein Konfidenzintervall fiir p mit
Hilfe der Binomialverteilung konstruieren. Wir verweisen auf [18].
Fiir hinreichend groBen Stichprobenumfang ist die ZufallsgroBe X annihernd

N (p; ﬁ%‘i)-veneilt. Geben Sie eine Begriindung dafiir!
Dementsprechend ist die ZufallsgroBe
X-p

i
n

anndhernd N(0; 1)-verteilt.
Zur Konstruktion des Konfidenzintervalls fiir hinreichend groBen Stichprobenumfang
setzen wir in (3.35) @ =p, @ =X, 6, = 6, = 6 und erhalten

P(X-p|<d)=1-a. 3.57)
Durch Umformung von (3.57) ergibt sich

Z=

pl| Xz | odn)_

o« (3.58)
pa | Vpa
n
und daraus
P(Zl<za)=1-a (3.59)
2
mit

Wenn wir nun zu der vorgegebenen Irrtumswahrscheinlichkeit & in der Tafel 4 des An-
hangs z« ablesen, erhalten wir aus
2

-

Vpa
ein Konfidenzintervall fiir den Parameter @ = p mit einem Konfidenzniveau von anné-
hernd 1 — &

< zl) =1-« (3.60)
2




3.3. Statistische Schitzverfahren 149

z; o z,\?2
n = 2 X1-X) 7
2 _ A7) (=
n+z2 T z% n (n) <P
7
z; RS Z,\?
n|gat xa-0 (3
<n+z"x L+ 2n+z% n t 2n ’ (3.61)
7

Beispiel 3.15: Der AusschuBprozentsatz p - 100% eines groBen Lieferpostens von Schrau-
ben soll auf der Grundlage einer Stichprobe vom Umfang n = 200, in der 8 fehlerhafte
Schrauben festgestellt wurden, ermittelt werden. Mit anderen Worten: Der Parameter
@ = p einer Null-Eins-verteilten Grundgesamtheit X soll mit Hilfe einer konkreten Stich-
probe vom Umfang n = 200 geschitzt werden.

Ordnen wir dem Ereignis ,Ziehen einer fehlerhaften Schraube“ den Wert x; = 1 bzw.
dem Ereignis ,Ziehen einer fehlerfreien Schraube“ den Wert x, = 0 der ZufallsgroBe mit
P(X=1)=pbzw. P(X=0)-=1— p = q zu, dann enthilt die konkrete Stichprobe 8mal die
Realisierung x; = 1 und 192mal die Realisierung x, = 0. Fiir die ZufallsgroBe 6 = X er-
halten wir damit eine Realisierung

§=x=-5_—004.

Wir fragen nun nach konkreten Konfidenzgrenzen fiir den AusschuBprozentsatz des
Lieferpostens bei einem Konfidenzniveau von 0,99. Da der Stichprobenumfang hinrei-
chend groB ist, konnen wir fiir die Angabe der konkreten Konfidenzgrenzen von (3.61)
ausgehen. Mit % = 0,005 ermitteln wir z« = 2,58 und erhalten durch Einsetzen

2

200 2,58 _ 004-096 (2,58
81277200 + 2,582 (0’04 * 400 T 28 200 ( 400 ) )

Daraus errechnen wir:
£ =0,017 und g,=0,093.
Das konkrete Konfidenzintervall ist dann
0,017 < p < 0,093
bzw. in der gesuchten Form
1,7% < p-100% < 9,3%.

3.3.3.6. Weiterfithrende Betrachtungen

In den vorangegangenen Abschnitten haben wir stets die Verteilung der Grundgesamt-
heit als bekannt vorausgesetzt und hatten dadurch die Moglichkeit, Konfidenzschdtzun-
gen fiir unbekannte Parameter der Grundgesamtheit anzugeben. Es erhebt sich nun die
Frage nach Moglichkeiten von Konfidenzschdtzungen von unbekannten Parametern der
Grundgesamtheit, wenn deren Verteilung unbekannt ist. Da wir in diesem Rahmen nicht
ausfiihrlich darauf eingehen konnen, wollen wir lediglich am Beispiel eine Moglichkeit
des Vorgehens andeuten.
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Fiir den Erwartungswert ® = E (X) einer beliebig verteilten Grundgesamtheit wollen wir
eine Konfidenzschitzung ndherungsweise angeben. Dazu ziehen wir aus dieser Grundge-
samtheit eine mathematische Stichprobe (X;, X;, ..., X,) vom Umfang n und wihlen als

Punktschitzfunktion fiir @ = E(X) das arithmetische Mittel 6 = X = % Z X;. Diese Zu-
i=1

fallsgroBe ist fiir hinreichend groBes n annihernd N (@; V—‘L)-vertei]t, wobei ¢? = D*(X)
n

die Varianz der Grundgesamtheit ist. Daher konnen wir bei bekanntem ¢? und hinrei-
chend groBem n fiir das Konfidenzniveau (1 — «) nach (3.42) das Zufallsintervall

(4
G, G) = « X+za
©n0=(F-s e e )

niherungsweise als Konfidenzschitzung fiir @ = E(X) verwenden. Ist dagegen o2 unbe-
kannt, dann konnen wir bei hinreichend groBem n fiir das Konfidenzniveau (1 — «) nach
Abschnitt 3.3.3.3. das Zufallsintervall

o= S -
(GI>G2)_(X_t%:m‘/‘ X+ % 1/—>

als Konfidenzschitzung fiir ® = E(X) verwenden. In beiden Fillen wichst mit zuneh-
mendem Stichprobenumfang die Qualitit der Schitzung.
Fiir weitergehende Betrachtungen wird auf [14, 18] verwiesen.

3.4. Statistische Priifverfahren

3.4.1. Problemstellung und Grundbegriffe

Eine aus einer Grundgesamtheit gezogene Stichprobe enthélt Informationen iiber die
Verteilung der Grundgesamtheit und iiber ihre Kennwerte. Diese Informationen sind in
der Regel nicht vollstindig. Sie konnen aber genutzt werden, um Entscheidungen iiber
statistische Hypothesen, kurz Hypothesen, zu fallen. Dabei verstehen wir unter statistischen
Hypothesen Annahmen iiber interessierende unbekannte Charakteristika der Grund-
gesamtheit, z. B. liber deren Kennwerte.

‘Wir wollen diesen Begriff durch einige Beispiele erldutern.

Beispiel 3.16: Es ist bekannt, daB ein gewisses AbmaB eines in groBer Stiickzahl gefertig-
ten Erzeugnisses durch eine normalverteilte ZufallsgroBe X beschrieben werden kann.
Nun soll ermittelt werden, ob der unbekannte Erwartungswert dieser ZufallsgréBe E (X)
= u mit dem NennmaB g, libereinstimmt, d. h. also, die Hypothese H: E(X) = u, ist zu
priifen.

Beispiel 3.17: Ein Betrieb hat einen groBen Lieferposten vom Umfang N erhalten, in dem
sich nach Angaben des Herstellers hochstens p-100% = 3% AusschuB befinden sollen.
Mit Hilfe einer Stichprobe soll ermittelt werden, ob diese Vereinbarung eingehalten wor-
den ist. Es ist also folgende Hypothese zu priifen:

H: p=0,03.

Beispiel 3.18: Ein bestimmter Gerétetyp wird in 2 Werken gefertigt. Es soll festgestellt wer-
den, ob die mittlere Lebensdauer der in beiden Werken gefertigten Gerite als gleich zu
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beurteilen ist. Wird die Lebensdauer der Gerite aus Werk I bzw. II durch die ZufallsgroBe
X bzw. Y beschrieben, dann ist die Hypothese:

H: EX)=E(Q)
zu priifen.

Beispiel 3.19: Zur Priifung der Frage, ob die Zugfestigkeit einer bestimmten Drahtsorte
durch eine normalverteilte ZufallsgroBe X charakterisiert werden kann, wird folgende Hy-
pothese aufgestellt:

H: Fy(t)=®(t; u,0), —o<t<o,

Beispiel 3.20: Zur Bestimmung einer physikalischen GroBe stehen zwei unterschiedliche
MeBverfahren zur Auswahl. Auf der Grundlage zweier ProbemeBreihen soll entschieden
werden, welche der beiden Methoden genauere Angaben liefert, wobei als Kriterium der
Genauigkeit die Streuung der MeBwerte in den Probereihen gewihlt wird. Da die MeB-
werte als Realisierungen zweier normalverteilter ZufallsgroBen X und Y aufgefaBt werden
konnen, ist also folgende Hypothese H zu priifen:

H: D¥X)=DXY).

Die Priifung einer Hypothese H erfolgt mit statistischen Priifverfahren, die auch statisti-
sche Tests, kurz Tests, genannt werden. Die Aufgabe besteht hierbei darin, auf der Grund-
lage einer konkreten Stichprobe, die aus der betrachteten Grundgesamtheit gezogen wird,
zu einer Entscheidung iiber die Hypothese H zu gelangen. Die Hypothese H wird als Null-
hypothese H, bezeichnet, wenn neben ihr noch weitere Hypothesen aufgestellt werden kon-
nen, die dann Alternativhypothesen genannt werden.

Die Arbeitsweise eines statistischen Priifverfahrens wollen wir mit Hilfe eines Beispiels
erldutern.

Beispiel 3.21: Bei der Fertigung von Wellen ist fiir diese ein NennmaB von 4 mm vorge-
schrieben. Am Anfang der Schicht ist die Maschine, von der bekannt ist, daB sie mit einer
Standardabweichung von ¢ = 0,003 mm arbeitet, auf diesen Wert eingerichtet worden.
Nach einer gewissen Zeit soll auf der Grundlage einer Stichprobe vom Umfang n = 25
aus der laufenden Produktion die Einstellung der Maschine iiberpriift werden. Aus den
25 MeBwerten ergibt sich fiir den Durchmesser der Wellen ein arithmetisches Mittel
X = 4,0012 mm. Es erhebt sich die Frage, wie diese Abweichung des Stichprobenmittel-
wertes vom NennmaB zu beurteilen ist.!)

Zur Beantwortung dieser Frage gehen wir davon aus, daB die der Produktion entspre-
chende Grundgesamtheit X N(4; 3-107%)-verteilt ist (geben Sie eine Begriindung dafiir
an!) und daB die Nullhypothese

Hy: EX)=pp=4
gegen die Alternativhypothese
Hy: EX)=p (p*4)

zu priifen ist. Mit anderen Worten: Es ist zu testen, ob die obengenannte konkrete Stich-
probe aus der N(4; 3-107%)-verteilten Grundgesamtheit stammen kann oder nicht. Dabei
gibt es fiir einen Entscheid zwei Moglichkeiten:

Ist die Abweichung des Stichprobenmittelwerts vom NennmaB gering, so wird die Null-
hypothese nicht abgelehnt. Die Abweichung wird dann als zufillig bezeichnet.

1) Bei den weiteren Betrachtungen dieses Abschnittes lassen wir die Angabe der MaBeinheit weg.
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Ist andererseits die Abweichung des Stichprobenmittelwerts vom NennmaB so groB,
daB die konkrete Stichprobe nicht aus der Grundgesamtheit X gezogen scheint, so wird
die Nullhypothese abgelehnt. Die aufgetretene Abweichung wird dann signifikant oder sta-
tistisch gesichert genannt. Das bedeutet, daB die Maschine bei der Fertigung das NennmaB
nicht einzuhalten scheint und ein neues Einrichten erforderlich ist, um AusschuB} zu ver-
hindern.

Um die Frage nach der Schranke ¢ zwischen kleinen (zufdlligen) und groBeren (signifi-
kanten) Abweichungen beantworten zu konnen, stellen wir folgende Uberlegung an: Das
arithmetische Mittel X der konkreten Stichprobe ist eine Realisierung der Punktschétz-
funktion X.

Da wir vorausgesetzt haben, daB die Grundgesamtheit X N(4; 3- 107%)-verteilt ist, ist

. i T 3-10°° .
die ZufallsgroBe X N (4; -verteilt.

5

. -3

Bild 3.13 zeigt die Dichtefunktion ¢ (t; 4, 3 150

plrs 25)

) der ZufallsgroBe X. An ihr veran-

@ « Bild 3.13. Dichtefunktion
2 Z o (1 4,6-107
! der ZufallsgroBe X
I b 4 4tc t

schaulichen wir uns die folgende Vorgehensweise:

— Wir wihlen einen Wert @« (0 < @ < 1);

— Wir bestimmen einen Wert ¢ so, daB die Wahrscheinlichkeit fiir ein Abweichen der
ZufallsgroBe X vom NennmaB 4,00 dem Betrage nach um mindestens c gleich « be-
trigt, wenn H, als richtig vorausgesetzt wird:

P(X - 4|2 c/Hy) = a. (3.62)

Die Wahrscheinlichkeit o« wird als Irrtumswahrscheinlichkeit und 1 — o als Signifikanz-
niveau bezeichnet. Sie hdngt von der Problemstellung ab; sie kann nicht errechnet wer-
den, sondern wird vorgegeben. In der Regel wird 0,05 oder 0,01 oder 0,001 gew#hlt, wobei
erfahrungsgemiB bei Routineuntersuchungen « = 0,05 und bei wesentlichen Entschei-
dungen hochstens o« = 0,01 gewéhlt wird. Durch die Irrtumswahrscheinlichkeit wird die
Schranke ¢ bestimmt und damit der Ablehnungsbereich (kritischer Bereich) K fiir die Null-
hypothese H, festgelegt. Der kritische Bereich wird also so bestimmt, daB er Werte, die
vom Erwartungswert E (X) = 4 stark abweichen, iiberdeckt.

Ehe wir uns der Betrachtung gewisser Fehler zuwenden, die bei der Priifung einer Hy-
pothese gemacht werden konnen, wollen wir fiir das Beispiel 3.21 den kritischen Bereich
K bestimmen. Aus (3.62) ergibt sich durch Standardisierung der ZufallsgroBe X:

P( X-4

3107
Die ZufallsgroBe Z =

4
>
=310

5[ »5/110) = (3.63)

%~ 5 ist N(0; 1)-verteilt. Sie wird zur Entscheidung iiber die
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Nullhypothese angewandt und deshalb als Priifgrife (Testgrife) bezeichnet.!) In Tafel 4

des Anhangs kann fiir die PriifgroBe Z der kritische Wert z« = Tco_; 5 abgelesen wer-
2

den. Der kritische Bereich K fiir X ergibt sich dann aus der Ungleichung

X-4
T = = a«. o
|3‘10_3 5 =zT (3.64)
Demzufolge wird die Nullhypothese H, abgelehnt, wenn
.10-3 _ 11073
7;4+3 10 z« oder X§4—3 10 Za. (3.65)
5 73 503
Fiir die gesuchte Schranke c gilt somit:
_3-10 -3 ,
= {2
Geben wir im Beispiel « = 0,01 vor, so lesen wir in Tafel 4 des Anhangs z« = 2,58 ab. Da-
2
. -3
mit errechnen wir ¢ = 3 150 -2,58=155-10"° und erhalten als kritischen Bereich

X =<3,99845, X= 4,00155.

Das aus der konkreten Stichprobe ermittelte arithmetische Mittel X =4,0012 liegt
nicht in diesem Bereich, d. h., die aus der Grundgesamtheit gezogene Stichprobe steht
nicht im Widerspruch zu H,. Es besteht kein Grund dafiir, die Nullhypothese zu verwer-
fen, die Abweichung X — 4 ist als zufillig anzusehen.

Betrachten wir nun mogliche Fehlentscheidungen, die bei der Anwendung statistischer
Priifverfahren auftreten konnen. Auf Grund der Tatsache, daB die Entscheidung auf der
in einer konkreten Stichprobe enthaltenen Information beruht, ist damit immer ein gewis-
ses Irrtumsrisiko verbunden; denn es konnen zwei Arten von Fehlentscheidungen auftre-
ten:

Wir machen einen Fehler
— 1. Art, wenn wir die Nullhypothese ablehnen, obwohl sie richtig ist;
— 2. Art, wenn wir die Nullhypothese nicht ablehnen, obwohl sie falsch ist.
Einen Fehler 1. Art begehen wir also dann, wenn wir aus der Grundgesamtheit, fir die die
Nullhypothese H, richtig ist, eine konkrete Stichprobe ziehen, aus der sich eine Realisie-
rung u der PriifgroBe U errechnet, die im kritischen Bereich K liegt. Auf Grund der Fest-
legung von K gilt:

P(UeK/Hy) = o,

d.h., die Wahrscheinlichkeit, einen Fehler 1. Art zu begehen, betrdgt . Damit wird auch
die Bezeichnung ,Irrtumswahrscheinlichkeit® verstdndlich. Wird ein Test mehrmals
durchgefiihrt, so wird also im Mittel bei 100 - « % der Entscheidungen ein Fehler 1. Art ge-
macht werden.

Wie wir oben ausfiihrten, ist die Irrtumswahrscheinlichkeit & der Problemstellung ent-
sprechend vorzugeben. Wihlen wir & moglichst klein, so bedeutet dies, daB die Wahr-
scheinlichkeit, die Nullhypothese H, abzulehnen, obwohl sie richtig ist, klein ist. Aber je

1) Allgemein werden wir U als Symbol fiir PriifgréBen verwenden.
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kleiner « ist, um so schwieriger wird es, die , Falschheit einer falschen Hypothese zu zei-
gen; denn der kritische Bereich fiir die TestgroBe U wird kleiner. Dadurch kann die Wahr-
scheinlichkeit fiir einen Fehler 2. Art recht groB werden. Das Vorgehen der allgemeinen
Testtheorie (vgl. [10]) wollen wir am Beispiel 3.19 veranschaulichen. Der Nullhypothese
Hy: E(X) = uo = 4 konnen wir jede Alternativhypothese H,: E (X) = u (u # 4) gegeniiber-
stellen. Davon ausgehend wird versucht, den kritischen Bereich K so zu bestimmen, daB
die Wahrscheinlichkeit fiir die Ablehnung einer ,falschen“ Nullhypothese H,, d. h. fur
Nichtablehnung der Alternativhypothese H, unter der Bedingung, daB H, richtig ist, mog-
lichst groB ist:

P(Ue K/H)=1- 8. (3.66)

Dabei ist # die Wahrscheinlichkeit fiir das Begehen eines Fehlers 2. Art. (3.66) nennen wir
Giite oder auch Trennschdrfe des statistischen Priifverfahrens. Den kritischen Bereich K
sollten wir demzufolge so wihlen, daB8 die Irrtumswahrscheinlichkeit ¢ moglichst klein
und die Trennschiérfe (1 — f) moglichst groB ist.

In Tabelle 3.15 sind zur Veranschaulichung die vier moglichen Entscheidungen, die
in Verbindung mit einem statistischen Test gefillt werden konnen, nochmals mit den ent-
sprechenden Wahrscheinlichkeiten p;, i=1, 2, ..., 4, zusammengestellt.

Tabelle 3.15. Fehler 1. und 2. Art

nicht abgelehnt abgelehnt
Hyist richtige Entscheidung Fehlentscheidung
richtig Fehler 1. Art
p=1l-o p=«
H,ist Fehlentscheidung richtige Entscheidung
falsch Fehler 2. Art
p=p ps=1-p

Wird lediglich die Irrtumswahrscheinlichkeit o vorgegeben und auf eine direkte Be-
riicksichtigung des Fehlers 2. Art und der Alternativhypothese H, verzichtet, so sprechen
wir von Signifikanztests. Wir sollten uns aber immer bewuBt sein, daB ein Fehler 2. Art
trotzdem bei jeder Entscheidung auftreten kann.

Nach dem zuletzt Gesagten gibt es sehr viele Moglichkeiten zur Festlegung des kriti-
schen Bereiches K bei vorgegebener Irrtumswahrscheinlichkeit . Von praktischem Inter-
esse sind davon nur zwei. Das ist einmal die zweiseitige und zum anderen die einseitige
Fragestellung.

Von einer zweiseitigen symmetrischen Fragestellung') sprechen wir dann, wenn fiir die
PriifgroBe U zur Irrtumswahrscheinlichkeit o das Ereignis ,,|U| = u«“ unter der Bedingung

2

H, betrachtet wird. Bild 3.14 veranschaulicht dies fiir eine N(0; 1)-verteilte TestgroBe U,
wobei auBerdem der kritische Bereich K angegeben ist. Im Beispiel 3.21'liegt eine zwei-
seitige symmetrische Fragestellung vor.

1) Hiufig treten unsymmetrische zweiseitige Fragestellungen auf (vgl. z.B. 3.4.4.).
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$(4,07)
® '3 Bild 3.14. Darstellung des kriti-
2 2 schen Bereiches K bei zweiseitiger
Fr 1
Uy Uy t
2 z
K K

Bei einer einseitigen Fragestellung betrachten wir fiir eine symmetrisch verteilte Test-
groBe U entweder das Ereignis ,U=u,“ unter der Bedingung H, oder das Ereig-
nis ,U = —u,“ unter der Bedingung H, fiir die TestgroBe U bei einer Irrtumswahrschein-
lichkeit o. Dieser Fall ist fir eine N(0; 1)-verteilte TestgroBe U in Bild 3.15 zusammen
mit dem kritischen Bereich K dargestelit.

9(1,07) 9 (t,07)
o o
Uy [ t | Uy t
— -~

Bild 3.15. Darstellung des kritischen Bereiches K bei einseitiger Fragestellung

Uberlegen Sie sich Beispiele fiir Priifungen, bei denen einseitige bzw. zweiseitige Frage-
stellungen auftreten!

AbschlieBend zu diesem Abschnitt wollen wir das Vorgehen bei der Anwendung eines
Signifikanztests folgendermaBen schematisieren:

1. Aufstellen der Nullhypothese H,.

2. Vorgabe der Irrtumswahrscheinlichkeit o.

3. Wahl einer geeigneten PriifgroBe U= U(X,, X;, ..., X,). Sie ist eine Stichproben-
funktion einer zur betrachteten Grundgesamtheit gehdrenden mathematischen Stich-
probe (X, X;, ..., X,). Ihre Verteilungsfunktion sei bekannt.

4. Ermittlung eines kritischen Bereichs K aus der Beziehung P(U € K/H,) = .

5. Berechnung einer Realisierung u der PriifgroBe U mit Hilfe einer konkreten Stich-
probe x;, x,, ..., x, vom Umfang n.

6. Der Entscheid iiber die Nullhypothese H, wird wie folgt vorgenommen:

Falls ue K, so wird H, abgelehnt;
falls u¢ K, so wird H, nicht abgelehnt.

Die Darstellung der in den Abschnitten 3.4.2., 3.4.3. und 3.4.9. angegebenen Priifver-
fahren wird nach diesem Schema erfolgen. In den nachfolgenden Abschnitten 3.4.4. bis
3.4.7. sind dann nur noch die Schritte 1. bis 4. angegeben.
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3.4.2. Priifung des Erwartungswerts einer normalverteilten
Grundgesamtheit mit bekannter Varianz

In Verbindung mit Beispiel 3.21 haben wir ein statistisches Priifverfahren angegeben,
das auf folgende Fragestellung angewandt werden kann:

Es soll gepriift werden, ob der unbekannte Erwartungswert E (X) = u einer N(u; a)-ver-
teilten Grundgesamtheit X mit bekannter Varianz D?*(X) = ¢2 einen bestimmten Wert u,
besitzt. Beispielsweise kann iiber die GroBe des Wertes y, bereits eine Vermutung vorlie-
gen — u, ist haufig der Sollwert des Merkmals X. Probleme dieser Art treten in der statisti-
schen Qualitdtskontrolle auf. Wir wollen den fiir diese Fragestellung in Abschnitt 3.4.1.
entwickelten Test zusammenstellen.

1. Hy: E(X) = po.
2. Vorgabe der Irrtumswahrscheinlichkeit o

3. Zu einer mathematischen Stichprobe (Xi, X;,...,X,) vom Umfang n aus der
N (u; o)-verteilten Grundgesamtheit X wird die N(0; 1)-verteilte PriifgroBe

X-
U= T‘“ Vn (3.67)
gewihlt.
4. Der kritische Bereich K wird ermittelt bei

— zweiseitiger Fragestellung aus:

P(|U| > zﬁ/H,,) =a
2

zu
- a - 4
Xzu+——=z« und X=po— Za (3.68)
yn 7 yn 7
- einseitiger Fragestellung aus:
P{Uzz,/H)=wa bzw. P(Us -z/H)=«a
u
Tzup+—Lz baw. Xsu——Zz,. (3.69)
Vn Vn

5. Aus einer konkreten Stichprobe xi, x,, ..., x, der Grundgesamtheit wird das
arithmetische Mittel und mit diesem eine Realisierung der TestgroBe U errechnet:

u=""E (3.10)
6. Der Entscheid erfolgt bei
— zweiseitiger Fragestellung in folgender Art:
Falls |u| 2 z«, so wird H, abgelehnt;
2

falls |u| < za, so wird H, nicht abgelehnt;
2

- einseitiger Fragestellung in folgender Art:

Fallsu=z, bzw. u= —z, sowird H, abgelehnt;

falls u <z, bzw. u> —z,, so wird H, nicht abgelehnt.

Nachdem wir in Beispiel 3.21 die zweiseitige Fragestellung betrachtet haben, wollen
wir noch ein Beispiel zur einseitigen Fragestellung bringen.
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Beispiel 3.22: Die Druckfestigkeit [MPa)] X einer Betonsorte sei normalverteilt. Aus der Er-
fahrung kennen wir die Standardabweichung der Grundgesamtheit (¢ = 2,6). Aus einer
konkreten Stichprobe vom Umfang n = 10 ermitteln wir fir die Druckfestigkeit das
arithmetische Mittel X = 26,23. Wir wollen untersuchen, ob diese Stichprobe aus einer
Grundgesamtheit mit u, = 28 (Sollwert) stammt. Im vorliegenden Fall ist eine Unter-
schreitung des Sollwerts kritisch. Deshalb priifen wir die Hypothese H,: E(X) = 28 fiir den
Fall einer einseitigen Fragestellung, wobei wir & = 0,05 wihlen wollen. Fiir die Realisie-
rung u der TestgroBe U errechnen wir:

u=x;uo&_2623 8 5o s,

Aus Tafel 4 entnehmen wir bei dieser einseitigen Fragestellung —z, = —1,64 und erhalten
fiir den kritischen Bereich K das Intervall (— o, —1,645). Da u < —z, ist, lehnen wir die
Nullhypothese Hj ab, d.h., die Abweichung der Druckfestigkeit vom Sollwert ist signifi-
kant.

3.4.3. Priifung des Erwartungswerts einer normalverteilten
Grundgesamtheit mit unbekannter Varianz

Wir wollen priifen, ob der unbekannte Erwartungswert E(X) = u einer N(u; o)-verteil-
ten Grundgesamtheit X mit unbekannter Varianz D*(X) = ¢? einen bestimmten Wert u,
besitzt. Der Unterschied gegeniiber dem im letzten Abschnitt dargestellten statistischen
Priifverfahren besteht also darin, daB auBer dem Erwartungswert E(X) jetzt auch die Va-
rianz D*(X) der Grundgesamtheit unbekannt ist. Wir werden diese ebenfalls mit Hilfe
einer Stichprobe zu schitzen haben. Dadurch erhalten wir aber eine andere PriifgroBe als
im Abschnitt 3.4.2.

Betrachten wir das Schema dieses Priifverfahrens:

1. Hy: E(X) = po.

2. Vorgabe der Irrtumswahrscheinlichkeit o.

3.Zu einer mathematischen Stichprobe (X, X;, ..., X,) vom Umfang n aus der
N(u; o0)-verteilten Grundgesamtheit X wird die einer Student-Verteilung mit m=n —1
Freiheitsgraden geniigende PriifgroBe

i_
U=t =5 3.7

gewiihlt, wobei S? die aus der mathematischen Stichprobe ermittelte empirische Varianz
darstellt.

4. Der kritische Bereich K wird mit Hilfe der Tafel 4 ermittelt bei
- zweiseitiger Fragestellung aus:

P(|U| =1, /H0)=a
TI’I-]

zu

- S - S
Xzpp+—F—t. s Xspy——F—ta 3.72)
o ‘/; 2in-1 Ho ‘/; Fin-1
(vgl. Bild 3.16);
- einseitiger Fragestellung aus:

P(U2 ty, 1/H) =0 bzw. P(US —to, \/H)=w
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zu

ngo+iz“_l bzw. iéﬂo“'ﬁ‘la;,-l (3.73)
n Vn
(vgl. Bild 3.17).

fr (1)
Bild 3.16. Darstellung des kritischen
Bereiches K bei zweiseitiger
Fr llung und Verwendung
der PriifgroBe U=1,_,
Sin ’%‘ in-1 t
T.' )4—/(——
(1) (1)
x o
= tu;n-1 | t ’ tuinr  t
AK—H PK—

Bild 3.17. Darstellung des kritischen Bereiches K bei einseitiger Fragestellung
und Verwendung der PriifgroBe U=1,_,

5. Aus einer konkreten Stichprobe xj, x,, ..., x, der Grundgesamtheit werden das
arithmetische Mittel X und die Standardabweichung s und mit diesen eine Realisierung
u der TestgroBe U errechnet:

u= % . (3.74)

6. Der Entscheid erfolgt bei
— zweiseitiger Fragestellung in folgender Weise:
Falls |u| =z t, S0 wird H, abgelehnt;
2"

falls |u| < ’1.,,,1’ so wird H, nicht abgelehnt.
5

- einseitiger Fragestellung in folgender Weise:
Fallsuzt,,.; bzw. u=—t,, 1, so wird H, abgelehnt;
falls u<t,,-; bzw. u>—t,,_,so wird H, nicht abgelehnt.
Anmerkung: Bei hinreichend groBem Stichprobenumfang kann die PriifgroBe
U= X~
o

eingesetzt wird. Geben Sie eine Begriindung fiir dieses Vorgehen an!

JIT des Abschnittes 3.4.2. angewandt werden, wobei fiir ¢ der Schitzwert s
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Beispiel 3.23: Der FertigungsprozeB von Stahlringen, fiir deren duBeren Durchmesser ein
NennmaB von 18,6 mm vorgegeben ist, soll hinsichtlich der Einhaltung dieses Nennma-
Bes iiberpriift werden. Der Durchmesser kann dabei als N(u; o)-verteilte ZufallsgroBe X
aufgefaBt werden. Aus einer konkreten Stichprobe vom Umfang n =9 ergibt sich das
arithmetische Mittel X = 18,3 und die empirische Standardabweichung s = 0,2. Mit Hilfe
dieser Stichprobe testen wir die Nullhypothese H,: E(X) = 18,6 fiir eine vorgegebene Irr-
tumswahrscheinlichkeit & = 0,05. Wir entscheiden uns fiir eine zweiseitige Fragestellung.
Entsprechend dem Punkt 5 des Schemas errechnen wir eine Realisierung der PriifgroBe

_183-186
“ 0,2

Fiir eine Irrtumswahrscheinlichkeit & = 0,05 und m = 8 Freiheitsgrade lesen wir in Ta-
fel 4 den kritischen Wert #9055, = 2,31 ab. Da nun |u| > 2,31 ist, lehnen wir die Nullhypo-
these H, ab, d.h., der Unterschied zwischen dem NennmaB und dem aus der Stichprobe
ermittelten arithmetischen Mittel X ist signifikant. Es liegt also Veranlassung vor, in den
ProduktionsprozeB einzugreifen.

3=-45.

3.4.4. Priifung der Varianz einer normalverteilten Grundgesamtheit

Als MaB fiir die Genauigkeit und GleichméBigkeit z. B. eines Produktionsprozesses
oder eines MeBgerites kann die Varianz D*(X) der entsprechenden Grundgesamtheit X
betrachtet werden. Wir wollen in diesem Abschnitt deshalb ein Priifverfahren fiir die Va-
rianz kennenlernen. Es soll gepriift werden, ob die unbekannte Varianz D*(X) = ¢? einer
N(u; o)-verteilten Grundgesamtheit X einen bestimmten Wert o3 besitzt.

Schematisch stellt sich das entsprechende Priifverfahren wie folgt dar:

1. Hy: DX(X) = d2.

2. Vorgabe der Irrtumswahrscheinlichkeit e,

3.Zu einer mathematischen Stichprobe (X}, X, ..., X,) vom Umfang n aus der
N(u; ag)-verteilten Grundgesamtheit X wird die einer y*>-Verteilung mit m = n — 1 Frei-
heitsgraden geniigende Priifgro8e

- 2
g=gi, =22 (3.75)
0
gewiihlt, wobei S? die aus der mathematischen Stichprobe ermittelte empirische Varianz
ist.

4. Der kritische Bereich K wird mit Hilfe der Tafel 3 bei

— zweiseitiger Fragestellung aus den Relationen

2 %
P(U;x%ﬂm‘))— >

und
_ o

2
P(ngli%nfl/m,) >

oder

[STEY

P(U>xf_£_ l/Ho>=1—
2"

ermittelt zu

Uz x% und Usy’
in-1 1-5n-1

(3.76)
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(vgl. Bild 3.18);
- einseitiger Fragestellung aus
P(Uzy%, /H)=«
ermittelt zu
Uz, 6.77)
(vgl. Bild 3.19).

fy2(t)
Bild 3.18. Darstellung des kritischen
I's " Bereiches K bei zweiseitiger
2 7 Fi llung und Verwendung der
PriifgroBe U= y2_,
2 2
17251 Xeing !
- P
K K
fya(t)
Bild 3.19. Darstellung des kritischen
Bereiches K bei einseitiger
b F llung und Verwend
— der PriifgroBe U= y2_,
l.’i,ﬂ-l 4
I3

Beispiel 3.24: Ein Betrieb produziert Serien von Massenartikeln. Ein Merkmal X dieser
Erzeugnisse ist N(u; o)-verteilt. Treten keine wesentlichen Storungen in diesem Ferti-
gungsprozeB auf, so behilt die Varianz D*(X) = ¢? ihren Wert. Ist nun als Erfahrungswert
0y = 6 bekannt, und liefert eine konkrete Stichprobe vom Umfang n = 25 eine empirische
Standardabweichung s = 6,9, so erhebt sich die Frage, ob die aufgetretenen Abweichun-
gen vom hypothetischen Wert durch zufdllige Schwankungen zu erkldren sind.

Wir haben also die Nullhypothese H,: D*(X) = 36 zu priifen und geben uns dazu eine
Irrtumswahrscheinlichkeit « = 0,01 vor. Da in diesem Fall nur Abweichungen ,nach
oben“ von Interesse sind, wird die einseitige Fragestellung herangezogen. Die konkrete
Stichprobe ergibt

_24-6%9

36
Fiir den kritischen Wert x2., _, lesen wir aus Tafel 3 fir « = 0,01 und m = 24 Freiheits-
grade

u =31,74.

X«z),m;u =43
ab. Da
u<y %.01; 24
ist, besteht kein Grund zur Ablehnung der Nullhypothese. Die Abweichungen zwischen
D*(X) =36 und s> = 6,9 = 47,61 sind als zufillig anzusehen.
Ist der Stichprobenumfang gréBer als 30, dann kann zum Testen von Hy: D*(X) = ¢7 die
N(0; 1)-verteilte PriifgroBe
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1
SZ_ _1 —
N )] Y2n—1

herangezogen werden, wobei S? die empirische Varianz ist. Der kritische Bereich wird bei
ihr entsprechend dem Vorgehen in Abschnitt 3.4.2. bestimmt.

£l (3.78)
%

U=z=[

3.4.5. Priifung der Gleichheit der Erwartungswerte zweier unabhéngiger
normalverteilter Grundgesamtheiten

Im Beispiel 3.18 wurde fiir zwei ZufallsgroBen X und Y die Hypothese H: E(X) = E(Y)
aufgestellt. Diese Problematik tritt sehr hdufig bei Fragestellungen der Praxis auf, z. B.
beim Vergleich zweier Produktionsverfahren fiir ein bestimmtes Erzeugnis oder beim Ver-
gleich verschiedener MefBverfahren. Wir wollen jetzt ein entsprechendes Priifverfahren
kennenlernen:

Es soll gepriift werden, ob der Erwartungswert E(X) = uy einer N(uy; oy)-verteilten
Grundgesamtheit X dem Erwartungswert E(Y) = uy einer N(uy; oy)-verteilten Grund-
gesamtheit Y gleich ist. Dabei wird vorausgesetzt, daB die beiden ZufallsgroBen X und Y
unabhiingig sind und fiir die Varianzen D*(X) = D*(Y) = ¢? gilt, wobei ¢? nicht bekannt
sein muB.

Der Test soll wieder in schematischer Darstellung gebracht werden:

1. Hy: E(X) = E(Y).

2. Vorgabe der Irrtumswahrscheinlichkeit o.

3.Zu einer mathematischen Stichprobe (Xi, X, ..., X;)) vom Umfang n, aus der
Grundgesamtheit X und einer mathematischen Stichprobe (Y3, Y5, ..., ¥,) vom Umfang
n, aus der Grundgesamtheit Y wird die einer Studentverteilung mit m = n; + n, — 2 Frei-
heitsgraden geniigende TestgroBe

X-Y nny(ny+ ny —2)
Vo =1 S+ (- 1) 8} Mt

gewihlt, wobei X bzw. Y das arithmetische Mittel und S% bzw. S2 die empirische Varianz
der ZufallsgroBe X bzw. Y sind.

4. Der kritische Bereich K wird mit Hilfe der Tafel 4 bei zweiseitiger Fragestellung aus
der Relation

P(|U|; 'g;m/H°)='X

U=t,= 3.79

ermittelt zu

-7 s TS oA mtm
X Y|gt%;m\/(n, DS +(m-1)S: W/mnz(n1+nr2)' (3.80)

Auf die Darstellung des kritischen Bereiches bei einseitiger Fragestellung wollen wir
hier nicht eingehen.

Wie vereinfacht sich die TestgroBe bei gleichem Stichprobenumfang?

Haben die Varianzen der beiden Grundgesamtheiten D*(X) und D?(Y) nicht denselben
Wert, so 1dBt sich der Test nicht in der obigen Form anwenden. Wir verweisen den Leser
auf [18].

Beispiel 3.25: An zwei FertigungsstraBen werden Widerstinde hergestellt. Wir wollen prii-
fen, ob die an jeder der FertigungsstraBen produzierten Widerstinde im Mittel den glei-
chen Widerstandswert [Q] besitzen.

11 Beyer, Wahrscheinlichkeitsrechnung
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Die Widerstandswerte der an der FertigungsstraBe I bzw. II erzeugten Widerstéinde be-
schreiben wir durch die Grundgesamtheit X [Q] bzw. Y [Q]. Zur Priifung entnehmen wir
den Grundgesamtheiten die konkreten Stichproben x;, x,, ..., X;5 bzW. y;, ¥, ..., ¥1, vom
Umfang n, = 15 bzw. n, = 12.

Die Nullhypothese H,: E(X) = E(Y) wollen wir fiir eine Irrtumswahrscheinlichkeit
o = 0,05 und zweiseitige Fragestellung priifen. Aus den beiden Stichproben werden die
empirischen arithmetischen Mittel X = 152,5 und y = 159,9 und die empirischen Stan-
dardabweichungen sy = 1,6 und sy = 1,2 und damit eine Realisierung der PriifgroBe er-
rechnet:

152,5 - 150,9 15-12-25
u= =2,87.
V14-2,56 + 11-1,44 27
Bei zweiseitiger Fragestellung lesen wir in Tafel 4 fiir « = 0,05 und m =n, + n, —2=25

den kritischen Wert #y)s,,5 = 2,06 ab.
Da u = 2,87 > 2,06 = ty(s,,s ist, lehnen wir H, ab.

3.4.6. Priifung der Gleichheit der Varianzen zweier unabhingiger
normalverteilter Grundgesamtheiten

Wie wir oben feststellten, kann die Varianz als ein MaB fiir die Genauigkeit und
GleichmaBigkeit z. B. eines Produktionsprozesses, der Arbeit von Maschinen oder MeB-
gerdten angesehen werden. Sehr héufig tritt dabei auch die Frage nach dem Vergleich der
Genauigkeit zweier Prozesse, Maschinen oder MeBgerite auf.

In diesem Abschnitt wollen wir ein entsprechendes Priifverfahren darstellen. Es dient
auBerdem dazu, die Voraussetzung (D*(X) = D*(Y)) fiir das in Abschnitt 3.4.5. angege-
bene Priifverfahren zu testen.

Es soll gepriift werden, ob die Varianz D*(X) = ¢% einer N(uy; oy)-verteilten Grund-
gesamtheit X der Varianz D*(Y) = % einer N(u,; oy)-verteilten Grundgesamtheit Y gleich
ist. Dabei wird vorausgesetzt, daB die beiden ZufallsgroBen X und Y unabhéngig sind.

Es ist nicht erforderlich, daB die beiden Erwartungswerte E(X) und E(Y) bekannt sind.

Wir wenden folgenden Test an:

1. Hy: DX(X) = DX(Y).

2. Vorgabe der Irrtumswahrscheinlichkeit o.

3.Zu einer mathematischen Stichprobe (X), Xy, ..., X,,) vom Umfang n; aus einer
N(uy; oy)-verteilten Grundgesamtheit X und einer mathematischen Stichprobe (Y,
Yy, ..., ¥,,) vom Umfang n, aus einer N(uy; oy)-verteilten Grundgesamtheit ¥ wird die
einer F-Verteilung mit m; = n; — 1 und m, = n, — 1 Freiheitsgraden geniigende TestgroBe

Sk

U=Fy =X (3.81)
1, M Szy

gewihlt, wobei S% bzw. S% die empirische Varianz der ZufallsgroBe X bzw. Y ist. Wird die
groBere der beiden empirischen Varianzen in den Zahler der PriifgroBe U geschrieben, so
sind die Realisierungen von U groBer als 1. In diesem Fall ist nur die einseitige Fragestel-
lung von Interesse.!)

1 N

!) Die ZufallsgroBe Foym = 7" s—: geniigt einer F-Verteilung mit den Freiheitsgraden
my, my X

(my, my).
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4. Der kritische Bereich K wird mit Hilfe der Tafel 5 bei einseitiger Fragestellung aus
der Relation
P(UZ fo mymy/Ho) =
(vgl. Bild 3.20) ermittelt.
f (1)

Bild 3.20. Darstellung des
@ kritischen Bereiches K bei
einseitiger Fragestellung und Ver-
wendung der PriifgroBe U = Fp, m,

[ oy mp t
P—K-*——

Beispiel 3.26: Zur Priifung der Genauigkeit zweier Drehautomaten, die gleichartige Werk-
stiicke fertigen, wird der laufenden Produktion des ersten bzw. zweiten Automaten eine
Stichprobe vom Umfang n, =13 bzw. n, =20 Stiick entnommen. Der Durchmesser der
Werkstiicke, das zu priifende Merkmal, kann als N(uy; oy)-verteilte bzw. N(uy; oy)-ver-
teilte ZufallsgroBe X bzw. Y aufgefaBt werden. Aus den konkreten Stichproben der
Grundgesamtheiten X und Y werden die konkreten empirischen Varianzen s%= 10,2 um?
und s% = 6,2 um? errechnet. Zur Beantwortung der Fragestellung ist die Nullhypothese Hy:
D*(X) = D*(Y) zu priifen, wobei die Irrtumswahrscheinlichkeit o = 0,05 betragen soll. In
Tafel 5 lesen wir fir «=0,05 und m;=n,-1=12; my=n,—1=19 den Wert
Soos;12,19=2,31 ab. Aus den konkreten Stichproben errechnen wir weiter die Realisie-
rung

sh_ 102

u=s—§— 6.2 =1,65.
Da u <2,31 ist, wird H, nicht abgelehnt, d.h., die Abweichungen in den Genauigkeiten
beider Automaten werden als zufillig angesehen.

3.4.7. Priifung des Parameters p einer Null-Eins-verteilten Grundgesamtheit

Bei einer Null-Eins-verteilten Grundgesamtheit X sind im allgemeinen die Wahr-
scheinlichkeiten P(X=1)=p und P(X =0)=1 - p = g unbekannt. Dementsprechend
wird eine Annahme iiber den Wert dieser Wahrscheinlichkeit gemacht. Es kommt nun
darauf an, diese Annahme zu priifen, eine Fragestellung, die hdufig, z. B. in der statisti-
schen Qualitdtskontrolle, auftritt.

Es soll also gepriift werden, ob der Erwartungswert E(X) = p einer Null-Eins-verteilten
ZufallsgroBe X dem Wert p, gleich ist.

Das Priifverfahren lautet im Schema folgendermaBen:

1. Hy: E(X) = p,.

2. Vorgabe der Irrtumswahrscheinlichkeit e.

3. Bei groBem Stichprobenumfang n wird zur mathematischen Stichprobe (X;, X,, ...,
X,) aus der Grundgesamtheit X die auf Grund des Satzes von Moivre-Laplace annéhernd
N(0; 1)-verteilte PriifgroBe

U=Z="r—— (3.82)
Vnpoqo

gewihlt.

X; — npo
=1

11*
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Auf die Angabe einer TestgroBe bei kleinem Stichprobenumfang kénnen wir in diesem
Rahmen nicht eingehen. Wir verweisen den Leser auf [18].
4. Der kritische Bereich K wird wie in Abschnitt 3.4.2. angegeben errechnet.

Beispiel 3.27: Bei der Giitekontrolle eines Erzeugnisses wurde iiber einen lingeren Zeit-
raum festgestellt, daB die Lieferungen im Mittel 5% AusschuB enthalten. Wir wollen prii-
fen, ob der AusschuBprozentsatz in einem weiteren Lieferposten wesentlich von diesem
Erfahrungswert abweicht, nachdem wir in einer Stichprobe vom Umfang n =400 aus
einer Lieferung 28 fehlerbehaftete Teile festgestellt haben (die Stichprobe enthilt also 7%
fehlerhafte Teile).

Wir gehen von einem p,= 0,05 aus und priifen fiir eine Irrtumswahrscheinlichkeit
o« =0,01 die Nullhypothese Hy: E(X) = 0,05, wobei X eine Null-Eins-verteilte Grund-
gesamtheit ist. Da eine groBe Stichprobe vorliegt, wihlen wir (3.82) als PriifgroBe. Dem-
entsprechend erhalten wir als Realisierung der TestgroBe

yo 2400005 e

1/400- 0,05 0,95
Da lediglich Abweichungen ,nach oben“ von p, = 0,05 interessieren, fdllen wir die Ent-
scheidung fiir eine einseitige Fragestellung. Wir entnehmen aus Tafel 4 z,,, = 2,33. Da
die Realisierung u = 1,835 kleiner als der Tafelwert zq(, = 2,33 ist, wird die Nullhypo-
these nicht abgelehnt. Die Abweichung des AusschuBanteils wird als zufillig angese-
hen.

3.4.8. Priifung, ob eine Grundgesamtheit einer Normalverteilung unterliegt
(mit Hilfe des Wahrscheinlichkeitsnetzes)

Bisher haben wir meist vorausgesetzt, daB die zur Beschreibung eines Merkmals heran-
gézogene Grundgesamtheit normalverteilt ist. Da es sich bei den betrachteten Merkmalen
vielfach um MaBabweichungen, Beobachtungs- oder MeBfehler handelte, die jeweils von
einer Vielzahl von zufilligen Einfliissen verursacht werden, konnte der zentrale Grenz-
wertsatz zur Rechtfertigung der Annahme einer Normalverteilung herangezogen werden.

Héufig besteht aber keine Klarheit dariiber, ob eine Grundgesamtheit einer Normalver-
teilung unterliegt oder nicht. Es sind deshalb entsprechende Priifverfahren erforderlich.
Wir werden in diesem Abschnitt ein graphisches Verfahren kennenlernen, das kein stati-
stischer Test im iiblichen Sinne ist. Ein rechnerisches statistisches Priifverfahren bringen
wir im néchsten Abschnitt. Seine Anwendbarkeit beschrankt sich nicht nur auf normal-
verteilte Grundgesamtheiten.

Bei dem graphischen Verfahren zur Priifung, ob eine Grundgesamtheit X einer Nor-
malverteilung unterliegt, verwenden wir ein Wahrscheinlichkeitsnetz.') Das ist ein recht-
winkliges Koordinatensystem, bei dem die Abszisse linear und die Ordinate so unterteilt
ist, daB der Graph der Verteilungsfunktion der Normalverteilung zu einer Geraden ge-
streckt wird. Bild 3.21 zeigt die Verteilungsfunktion der Normalverteilung unverzerrt und
Bild 3.22 dieselbe Verteilungsfunktion im Wahrscheinlichkeitsnetz.

In diesem Rahmen wollen wir nicht auf die Herleitung des Wahrscheinlichkeitsnetzes
eingehen — vgl. dazu [18] —, sondern seine Anwendung darstellen.

Wollen wir also priifen, ob eine Grundgesamtheit X durch eine Normalverteilung be-
schrieben werden kann, so ziehen wir aus dieser eine hinreichend groBe konkrete Stich-
probe. Die Elemente der Stichprobe werden in Klassen eingeteilt, und fiir jede Klasse wer-

1) Verlag Schifer’s Feinpapier, Plauen/Vogtland.
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den die relative Haufigkeit und die relative Summenhiufigkeit [%] berechnet. Nun
werden auf der Abszissenachse des Wahrscheinlichkeitsnetzes die Klassengrenzen einge-
tragen und den oberen Klassengrenzen die entsprechenden relativen Summenhéufigkei-
ten zugeordnet. Die so erhaltenen Punkte liegen anndhernd auf einer Geraden, falls die

b (tp,0)

-9 1 1 L 1 !

p36 pl6 poo » W6 pr2e prie t

Bild 3.21. Verteilungsfunktion der Normalverteilung N (u; o)
[%IA & (1, 4,6)
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Bild 3.22. Verteilungsfunktion der Normalverteilung N (u; ¢) im Wahrscheinlichkeitsnetz

Grundgesamtheit X durch eine Normalverteilung beschrieben werden kann. Fiir kleine
bzw. groBe Ordinatenwerte ist das Wahrscheinlichkeitsnetz stark verzerrt. Deshalb ist es
empfehlenswert, zur Beurteilung die Ordinatenwerte zwischen 10% und 90% heranzuzie-
hen.

Fiir viele praktische Untersuchungen ist dieses schnelle, aber auch ,grobe“ Verfahren
oft ausreichend. Ist das nicht der Fall, so ist zusétzlich ein rechnerisches Verfahren heran-
zuziehen, z. B. das in Abschnitt 3.4.9. angegebene. Das ist dann nicht nétig, wenn die
Punkte im Wahrscheinlichkeitsnetz nicht anndhernd auf einer Geraden liegen, sondern
stark streuen.

Konnen wir annehmen, daB die betrachtete Grundgesamtheit durch eine Normalvertei-
lung beschrieben werden kann, so ist es moglich, aus dem Wahrscheinlichkeitsnetz Na-
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herungswerte fir das konkrete arithmetische Mittel X und die konkrete empirische Stan-
dardabweichung s der konkreten Stichprobe abzulesen. Die durch die Punkte
,bestmoglich“ gelegte Gerade wird mit der zur Abszissenachse parallelen durch die Ordi-
nate ,50%“ gehenden Geraden — kurz 50%-Linie — zum Schnitt gebracht.

Die Abszisse des Schnittpunktes ist ein Nédherungswert fiir das konkrete arithmetische
Mittel X. Die eingezeichnete Gerade wird weiter mit der 15,87 %-Linie bzw. 84,13 %-Linie
zum Schnitt gebracht. Die Abszissen der Schnittpunkte seien x; und x,. Dann gilt:

x;=X—s und x,~X+s,

woraus folgt:
1
§= 7(x1 - x).

Beispiel 3.28: Mit Hilfe des Wahrscheinlichkeitsnetzes wollen wir priifen, ob die 120 MeB-
werte in Beispiel 3.2, die eine konkrete Stichprobe vom Umfang n = 120 darstellen, aus
einer normalverteilten Grundgesamtheit X (X ist die MaBabweichung des Durchmessers
vom NennmaB) gezogen sein kdnnen. Die aus Tabelle 3.3 entnommenen relativen Sum-
menhiufigkeiten (in %) wurden in Bild 3.23 als Ordinaten bei den jeweiligen oberen Klas-
sengrenzen eingetragen. Durch die so erhaltenen Punkte kénnen wir néherungsweise eine
Gerade legen, d.h., die Grundgesamtheit, aus der diese Stichprobe stammt, kann als nor-
malverteilt angesehen werden. Aus Bild 3.23 konnen wir weiterhin das konkrete arithme-
tische Mittel X ~ 4,6 und die konkrete Standardabweichung s =~ 10 ablesen.

%
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Bild 3.23. Wahrscheinlichkeitsnetz, Auswertung von Beispiel 3.2

3.49. Priifung der Verteilungsfunktion einer Grundgesamtheit
(Anpassungstest)

Bei den bisher betrachteten Priifverfahren wurde immer von einer normalverteilten
Grundgesamtheit ausgegangen. Mit dem jetzt zu betrachtenden Test werden wir eine Me-
thode kennenlernen, bei der diese Voraussetzung nicht gemacht wird. Wir sprechen in
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einem solchen Fall von einem verteilungsunabhéngigen Priifverfahren. Mit dem folgen-
den soll gepriift werden, ob die durch eine konkrete Stichprobe iiber die Verteilungsfunk-
tion einer Grundgesamtheit X gewonnene Information mit der fiir diese Grundgesamtheit
angenommenen Verteilungsfunktion vertréglich ist. Wir versuchen also, einer Grundge-
samtheit mit unbekannter Verteilungsfunktion eine bekannte Verteilungsfunktion anzu-
passen. Das folgende Priifverfahren wird deshalb auch Anpassungstest genannt.

Es soll gepriift werden, ob die unbekannte Verteilungsfunktion Fy(t), — ® <t < + o,
einer Grundgesamtheit X die Form Fy(t), — © < ¢t < +, besitzt. Wir wollen den Test
wieder in schematisierter Form angeben:

1. Hy: Fx(t) = Fy(1).

2. Vorgabe der Irrtumswahrscheinlichkeit o.

3. Zu einer mathematischen Stichprobe (X;, X, ..., X,) vom Umfang n aus der Grund-
gesamtheit X wird die einer y2-Verteilung mit (k — r — 1) Freiheitsgraden geniigende
PriifgroBe

& (Hy = npp)?
— 2 - Dm)

U=x3i . m; o (3.83)

gewdhlt, wobei

— die Elemente der Stichprobe in k Klassen eingeteilt wurden;

- die ZufallsgroBe H, die absolute Haufigkeit, die hier auch empirische Héaufigkeit ge-
nannt wird, von Elementen der mathematischen Stichprobe in der m-ten Klasse
(m=1, 2, ..., k) charakterisiert;

— Dn die mit Hilfe der angenommenen Verteilungsfunktion Fy(¢) errechnete Wahrschein-
lichkeit dafiir darstellt, daB ein Wert der Grundgesamtheit X in der m-ten Klasse
(m=1,2, ..., k) liegt;

— np, die entsprechende absolute Haufigkeit, die hier auch theoretische Haufigkeit ge-
nannt wird, von n Elementen in der m-ten Klasse (m =1, 2, ..., k) angibt und

— r die Anzahl der in der angenommenen Verteilungsfunktion Fy(¢) geschitzten Para-
meter ist.

Die theoretischen Haufigkeiten diirfen nicht zu klein sein. Im allgemeinen wird np,, = 5,

m=1,2, ..., k, gefordert. Kann diese Bedingung nicht erfiillt werden, so sind einige Klas-

sen zusammenzulegen.
4. Der kritische Bereich K, der bei diesem Priifverfahren nur fiir die einseitige Frage-
stellung von Interesse ist, ergibt sich aus der Relation

PUz i, 1/H) =0t

In Bild 3.24 ist dieser Bereich veranschaulicht.

fy2(t)

Bild 3.24. Darstellung des

x kritischen Bereiches K
beim A
2
lat;k~r~7 t
fe——r—
K

5. Aus einer konkreten Stichprobe x,, x,, ..., X, vom Umfang n aus der Grundgesamt-
heit X errechnen wir eine Realisierung u der PriifgréBe U:
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k — 2
u=y (b — npp)

m=1  "Pm®IN

(3.84)

wobei h, eine Realisierung der ZufallsgréBe H,, (m =1, 2, ..., k) darstellt.
6. Der Entscheid erfolgt in folgender Weise:
Ist

UEF P
so wird H, abgelehnt; ist
U<yri .1
so wird H, nicht abgelehnt.
Anmerkung: Die PrifgroBe (3.83) 14Bt sich in der Form

k H2
U= ———n 3.85
mz=l np ¢ )
angeben. Diese Darstellung bringt rechentechnische Vorteile.

Beispiel 3.29: Rutherford und Geiger verdffentlichten 1910 das folgende Versuchsergeb-
nis: In 2608 Zeitintervallen von je 7,5 s Linge wurden die emittierten a-Teilchen einer
radioaktiven Substanz gezihlt. In Tabelle 3.16 sind die Anzahlen h,, der Zeitintervalle er-
faBt, in denen m Teilchen gezihlt wurden.

Mit einer Irrtumswahrscheinlichkeit o = 0,05 soll gepriift werden, ob die entsprechende
Grundgesamtheit X (X ist die Anzahl der innerhalb von 7,5s emittierten «-Teilchen)
durch eine Poissonverteilung beschrieben werden kann. Die Nullhypothese H, lautet
also:

m

AT
Hy PX=m)="te ™ m=0,1,2, .

Tabelle 3.16. Anzahlen h, der Zeitintervalle,
in denen m «-Teilchen im Versuch von
Rutherford und Geiger emittiert wurden

m B m Ay,
0 57 Ubertrag 2108
1 203 6 273
2 383 7 139
3 525 8 45
4 532 9 27
5 408 10 und mehr 16
2108 2608

Anmerkung: Bei Merkmalen, die durch eine diskrete ZufallsgroBe beschrieben werden, ist
es zweckmiBig, die Nullhypothese nicht fiir die Verteilungsfunktion, sondern fiir die Ein-
zelwahrscheinlichkeiten aufzustellen.

Um die Nullhypothese priifen zu konnen, benétigen wir die entsprechenden konkreten
empirischen Hiufigkeiten h, und die zugehorigen theoretischen Héaufigkeiten np,. Er-
stere gewinnen wir aus den Versuchsergebnissen, letztere errechnen wir mit den Einzel-
wahrscheinlichkeiten der Poissonverteilung. Bei dieser ist der Parameter 4, aus der Stich-
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probe zu schitzen, wobei das arithmetische Mittel X eine Maximum-Likelihood-Schit-
zung fir A, darstellt. Im vorliegenden Fall erhalten wir als Realisierung dieser
Punktschitzfunktion

x=3_87.
Damit ergibt sich fiir die theoretischen Haufigkeiten
np,=nP(X=m)= 2608~3’—:,Z—e‘3'”, m=0,1, ...

Die y*-verteilte PriifgroBe hat hier k —r—1=11—1-1=9 Freiheitsgrade, da zur Be-
rechnung der theoretischen Haufigkeiten bei einer Poissonverteilung der Parameter 4, aus
der konkreten Stichprobe geschitzt wurde. In Tabelle 3.17 ist ein Schema zur Berechnung
der Realisierung (3.84) der PriifgroBe (3.83) aus den Werten der konkreten Stichprobe
(Tabelle 3.16) angegeben.

Tabelle 3.17. Schema zur Berechnung der Realisierung (3.84) der PriifgroBe (3.83) aus
Tabelle 3.16

m hn Pm NPy |y = nDp| | (B = nDp)? (= npn)*
NPm
0 57 0,021 54,8 2,2 4,84 0,088
1| 203 0,081 211,2 8,2 67,24 0,318
2| 383 0,156 406,8 23,8 566,44 1,392
3] 525 0,201 524,2 0,8 0,64 0,001
4] 532 0,195 508,6 234 547,56 1,007
5| 408 0,151 3938 14,2 201,64 0,512
6| 273 0,097 253,0 20,0 400,00 1,581
71 139 0,054 140,8 1,8 3,24 0,023
8 45 0,026 67,8 22,8 519,84 7,667
9 27 0,011 28,7 1,7 2,89 0,101
=10 16 0,007 18,3 2,3 5,29 0,289
2608 1,000 u = 13,049

Fiir o = 0,05 lesen wir in Tafel 3 einen kritischen Wert x 5., = 16,9 ab und erhalten fiir
den kritischen Bereich K das Intervall (16,9; «).
Da u = 13,05 < 16,9 = x3 s, ist, wird die Nullhypothese nicht abgelehnt.

Beispiel 3.30: Mit einer Irrtumswahrscheinlichkeit « = 0,05 wollen wir priifen, ob die im
Beispiel 3.2 angegebene Urliste eine konkrete Stichprobe vom Umfang n = 120 aus einer
normalverteilten Grundgesamtheit X (X ist die MaBabweichung des Durchmessers vom
NennmaB), die das betrachtete Merkmal beschreibt, sein kann. Wir stellen folgende Null-
hypothese auf:

Hy: Fy(t) = D(t; o, 09)-
Die Kennwerte E(X) = uo und D*(X) = 02 der Normalverteilung sind unbekgnnt. Fir
sie wihlen wir als geeignete Punktschdtzfunktionen das arithmetische Mittel X und die

empirische Varianz S2. Als konkrete Schétzungen erhalten wir aus der konkreten Stich-
probe

X=4,65 und s?=98.
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Um zu einer Entscheidung iiber H, zu kommen, werden die theoretischen Haufigkeiten
benotigt. In Beispiel 3.2 hatten wir die MeBwerte in k =8 Klassen eingeteilt (vgl. Ta-
belle 3.3) und erhielten so die konkreten empirischen Héufigkeiten h,, m=1, 2, ..., 8.
Die entsprechenden theoretischen Haufigkeiten np,, m =1, 2, ..., 8, ergeben sich in fol-
gender Weise:

- firm=2,...,7:

99  =%<" 99
=120 P(z-1 = Z< z,) = 120 [D(2,,; 0, 1) = D(z,,-1; 0, 1)],
wobei a,,, m =2, 3, ..., 7, die obere Klassengrenze der m-ten Klasse darstellt und die Zu-
fallsgroBe Z = % N(0; 1)-verteilt ist;
- firm=1:

-1 — 4,65 a, — 4,65
120 p, =120 P(a,- =X <a,) =120 P

120 p, =120 P(X < —12) = IZOP(X_4’65 M)

T99 <7 99
=120 P(Z< —1,68) =120 &(-1,68;0,1)
=120-0,0465=5,58;

- firm=28:

99 = 99
=120 P(Z=21,95) =120[1 — P(Z < 1,95)]
=120[1 - &(1,95; 0, 1)] = 120- 0,025 6 = 3,07.

120 py = 120 P(X = 24) = 120P<M>M)

Tabelle 3.18 enthilt die erforderlichen Rechenschritte zur Bestimmung einer Realisie-
rung (3.84) der PriifgroBe (3.83) aus den Werten der konkreten Stichprobe (vgl. Ta-
belle 3.3). In ihr wurden auf Grund der Forderung np, = 5 die letzten beiden Klassen zu-
sammengefaBt. Damit reduziert sich die Anzahl der Klassen auf 7. Die y?-verteilte
PriifgroBe hat hier kK —r—1=4 Freiheitsgrade, da zur Berechnung der theoretischen
Hiufigkeiten bei der Normalverteilung beide Parameter aus der konkreten Stichprobe ge-
schitzt wurden. Aus Tafel 3 lesen wir fiir o = 0,05 den kritischen Wert x3 5., = 9,5 ab. Da
u=144<95= X(Z),OS;A ist, wird die Nullhypothese H|, nicht abgelehnt, d.h., das Ergebnis
steht nicht im Widerspruch zu der Annahme, daB8 die konkrete Stichprobe aus einer nor-
malverteilten Grundgesamtheit gezogen wurde.

3.5.  Einfithrung in die Varianzanalyse

3.5.1. Problemstellung

Die Varianzanalyse, die in Verbindung mit der Auswertung von Feldversuchen in der
Landwirtschaft entwickelt wurde, hat sich in den letzten Jahren zu einem sehr allgemei-
nen mathematisch-statistischen Verfahren entwickelt, das in Naturwissenschaft, Land-
wirtschaft und Technik sehr breite Anwendung bei der Auswertung von quantitativen
Versuchsergebnissen findet. Ihre Wirksamkeit erstreckt sich auf zwei Gruppen von Frage-
stellungen:



171

3.5. Einfihrung in die Varianzanalyse

PpI=n (1148
. . . 291 To“m 9520°0 . . n T 0¢ Jowunsiq p7

10°0 y1°0 8€°0 SS'L 62900 P¥L6°0 S6'T 8 pT IoMUNSIq 8T
440 TL'e €61 £6°91 11910 ST16°0 SET ST 81 Iounsiq Z]
61°0 20°S 144 9L'ST LY1IT0 YOLLO yLO 8¢ 71 Ieunsiq9
600 [4)4 791 8€'8C S9€T°0 LSSS0 y1°0 0€ 9 IounsiqQ
LSO 8T1°C1 6¥'c 6¥'1T T6L1°0 T61€°0 LY'0— 8T 0 Jjunsiq9—
000 S0°0 €20 €TTI 9€60°0 1041°0 80°T— 11 9— JIounsiqzI—
9€°0 20T W'l 85°S $9¥0°0 S9%0°0 89°T— L 71— 1oun siq g1 —

} o{(du —*y) du —"*y “du “d “2D @ “z “y uaZuaIBUBSSELY

(%du —

(£8°€) 29018Jnud 19p ($8°¢) SUnIaISI[EIY ISUId SUNUYIAISG INZ BWAYDS "81°¢ 9[[OqBL



172 3. Mathematische Statistik

1. In Erweiterung des in Abschnitt 3.4.5. angegebenen Verfahrens zur Priifung der
Gleichheit der Erwartungswerte zweier unabhéngiger normalverteilter Grundgesamthei-
ten wird sie zur gleichzeitigen Priifung der Gleichheit der Erwartungswerte mehrerer un-
abhingiger normalverteilter Grundgesamtheiten angewandt. Dadurch wird es moglich,
den EinfluB eines in mehreren Stufen wirkenden Faktors auf ein meBbares Merkmal zu
ermitteln. So kann z. B. der EinfluB des Faktors , Stahlsorte“ auf das meBbare Merkmal
,Zugfestigkeit“ untersucht werden. Dabei werden die pro Stahlsorte ermittelten Ergeb-
nisse verglichen.

2. Kommt es darauf an, die Anteile an der Gesamtvariabilitit (Gesamtvarianz) eines
meBbaren Merkmals zu ermitteln, die durch das Wirken bestimmter Faktoren oder Fakto-
rengruppen hervorgerufen werden, so wird ebenfalls die Varianzanalyse angewandt. Eine
solche Problematik tritt beispielsweise auf, wenn Aussagen iiber die Stabilitédt eines Pro-
duktionsprozesses zu machen sind.

Die Fragestellungen der ersten bzw. zweiten Gruppe werden als Problem 1. bzw. 2. Art
bezeichnet und durch das Modell I bzw. II beschrieben. Bei jedem der beiden Modelle
wird je nach der Anzahl der Faktoren, die beriicksichtigt werden, zwischen einfacher,
zweifacher, ..., n-facher Klassifikation unterschieden.

In den folgenden Abschnitten werden wir jedes der beiden Modelle bei einfacher Klas-
sifikation und auBerdem das allgemeine lineare Modell betrachten und so die Arbeits-
weise der Varianzanalyse kennenlernen. Fiir weitergehende Ausfilhrungen verweisen wir
auf [1].

3.5.2. Modell I bei einfacher Klassifikation

Im Modell I bei einfacher Klassifikation untersuchen wir die Wirkung verschiedener fe-
ster Stufen eines Faktors auf ein meBbares Merkmal. Im Endergebnis vergleichen wir die
fiir die einzelnen Stufen erzielten Ergebnisse. Da bei diesem Modell die einzelnen Stufen
des Faktors fest vorgegeben sind, bezeichnen wir es auch als Modell mit festen Effekten.

Wir wollen dies an einigen Beispielen veranschaulichen:

Merkmal Faktor Stufen

Laufzeit von PKW-Reifen PKW-Reifen verschiedene Typen von PKW-
Reifen

Ertrag von Getreide Getreidesorte verschiedene Getreidesorten

MeBfehler MeBgerit verschiedene MeBgerite

Kaloriengehalt von Butter Butter verschiedene Buttersorten

Zur Darstellung der Arbeitsweise der Varianzanalyse soll angenommen werden, daB der
betrachtete Faktor k (k = 2) Stufen besitzt. Fiir jede einzelne Stufe wird das untersuchte
meBbare Merkmal durch eine Grundgesamtheit X; (i =1, 2, ..., k) beschrieben, die
N(u;; oy)-verteilt ist. Wir setzen dabei voraus, daB die Standardabweichung fiir alle X;
gleich ist, d.h. g; = ¢. Die X; sollen untereinander unabhingig sein. Aus jeder der Grund-
gesamtheiten ziehen wir nun eine konkrete Stichprobe. Zur Vereinfachung betrachten wir
hier nur Stichproben gleichen Umfangs /. Wir haben damit insgesamt k - I = n Realisie-
rungen: x; (i=1,2, ..., k;j=1,2, ..., ). Diese werden im sogenannten Versuchsplan er-
faBt, der auBerdem noch die Summen s;, der Realisierungen pro Stufe, die Summe s
aller Realisierungen, die konkreten arithmetischen Mittel X; . der einzelnen Stufen und
das konkrete Gesamtmittel X enthilt.
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Tabelle 3.19. Balancierter Versuchsplan bei einfacher Klassifikation

Stufen Realisierungen je Stufe

des Faktors | 1 2 J ! 5. X;.

1 X1 X1 Xy, X1y 5 X

2 X X2 X X 5 X

i X1 Xp Xij Xi1 S; X;

k Xe1 X2 - Xij - Xkt Sk. X
s X,

Versuchsplidne fiir den hier betrachteten Spezialfall (gleicher Stichprobenumfang fiir
alle Stufen) werden als balanciert oder orthogonal bezeichnet. Das Schema eines solchen
Versuchsplans ist in Tabelle 3.19 angegeben. Dabei gelten folgende Relationen:

1
5= %, =12,k (3.86)

k 1 k
S.= Z D %= Z Sics (3.87)

1
F= Y x= s, =12,k (3:38)
1A%
18 ¢ 1
X=—) Y x="s. (3.89)
nisja n

Aufgabe der Varianzanalyse bei Modell I mit einfacher Klassifikation ist es, die Null-
hypothese

Hy i =p=...= i (3.90)

zu pritfen, um damit eine Aussage iiber die Wirkung der einzelnen Stufen des Faktors auf
das betrachtete Merkmal machen zu kénnen.

Zur Herleitung einer PriifgroBe fiir die Nullhypothese (3.90) gehen wir von der konkre-
ten empirischen Varianz

1 k 1
2= L — X )2
E— ; j; (%= %) (3.91)
aus und zerlegen den Zihler dieses Ausdrucks wie folgt:

>

i=1j

™M=

(=

1
Z (= %, + %, — X )
k 1

Gy = %P 420 (= %) (5.~ %)

||[\/]»

1

nM-

+ lZ (% - X ) (3.92)
i=1
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Dieser Zihler ist die Summe der Abweichungsquadrate aller Realisierungen vom ,Ge-
samtmittel“ X . Wir bezeichnen ihn als ,,Si der Abweich quadrate total“ (Symbol:
SAQp).

Der erste Summand auf der rechten Seite von (3.92) ist die Summe der Abweichungs-
quadrate der Realisierungen einer Stufe vom jeweiligen ,Stufenmittelwert X;, i=1,
2, ..., k. Wir bezeichnen ihn als ,Summe der Abweichungsquadrate innerhalb der Stufe”
(Symbol: SAQy).

Der zweite Summand auf der rechten Seite von (3.92) hat den Wert Null. Begriinden
Sie dies!

Der dritte Summand auf der rechten Seite von (3.92) ist die Summe der Abweichungs-
quadrate zwischen den ,Stufenmittelwerten“ X, , i = 1, 2, ..., k, und dem ,Gesamtmittel-
wert“ X . Wir bezeichnen ihn als ,Summe der Abweichungsquadrate zwischen den Stufen“
(Symbol: SAQ).

Damit kénnen wir fiir (3.92) schreiben:

SAQr = SAQ; + SAQ;. (3.93)
Teilen wir diese GroBen durch die jeweiligen Freiheitsgrade — auf eine Begriindung fiir
die Aufteilung der n — 1 Freiheitsgrade in (3.93) soll hier verzichtet werden — erhalten wir

die entsprechenden konkreten empirischen Varianzen:

SAQr

MAQr=——T", (3.94)

MAQ; = iéQ,i, (3.95)
SA

MAQ, = k_le. (3.96)

In der Tabelle 3.20, der sog. Varianztabelle, sind die einzelnen GroBen zusammengefaBt.

Tabelle 3.20. Varianztabelle bei einfacher Klassifikation und balanciertem Versuchsplan

Variabilitat SAQ Freiheits- MAQ
grade
k i _ SAQT
Total SAQr=Y Y (x;— X n-1 MAQr=-—3
i=1j=1
Zwischen L _ SAQ
den Stufen SAQ, =1}, (% — X k-1 MAQz = *— 1Z
i=1
Innerhalb LI _ SAQ
der Stufen SAQ =Y, X (x— %) n—k MAQ, = 7_—,:
i=1j=1

Zur Berechnung der ,,SAQ“ werden vorteilhaft folgende Relationen herangezogen:
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1 1 k 1 2
SAQr=Y. 3. xs—;(Z 2 xu‘) ; 3.97)

1 k 1 k 1 2
SAQ. =7 ZS?. T (Z > x,-,-) s (3.98)

SAQ; = SAQ: — SAQ;. (3.99

Nun sind wir in der Lage, eine PriifgroBe fiir die Nullhypothese (3.90) anzugeben. Es 148t
sich nachweisen [1], daB sich bei zutreffender Nullhypothese H, MAQ; und MAQ, nur
zufillig unterscheiden kénnen und daB bei nichtzutreffender Nullhypothese H, MAQ;,
im allgemeinen einen groBeren Wert als MAQ; annimmt.

Es 148t sich weiter begriinden [1], daB beide Varianzen die Voraussetzung fiir die An-
wendung der in Abschnitt 3.4.6. angegebenen PriifgroBe (3.81) fiir m; =k —1 und
m, = n — k Freiheitsgrade erfillen. Wir bilden mit (3.95) und (3.96) den Quotienten

~ MAQ,
T MAQ;’

(3.100) ist dann eine Realisierung der PriifgroB8e (3.81). Da (3.100) im allgemeinen groBer
als eins ist, wird in dem Fall, daB der Quotient f sehr stark von eins abweicht, die Null-
hypothese abgelehnt. Fiir Werte von (3.100) nahe eins gibt es keine Veranlassung, die
Nullhypothese abzulehnen. f ist demzufolge mit dem kritischen Wert f,, ,, , flir die Irr-
tumswahrscheinlichkeit « zu vergleichen und iiber die Nullhypothese nach der in Ab-
schnitt 3.4.6. angegebenen Vorschrift zu entscheiden.

Wird die Nullhypothese H, nicht abgelehnt, so beeinfluBt der betrachtete Faktor das
untersuchte Merkmal nur zufillig, d.h., die Menge der MeBwerte kann als homogen ange-
sehen werden. Wird im Gegensatz dazu die Nullhypothese H, abgelehnt, so iibt der be-
trachtete Faktor einen EinfluB auf das untersuchte Merkmal aus. Es erhebt sich dann die
Frage, welche der Erwartungswerte E(X;) = w;, i =1, 2, ..., k, nicht gleich sind. Zur Un-
tersuchung dieses Problems stehen mehrere Priifverfahren zur Verfiigung, auf die wir je-
doch in diesem Rahmen nicht eingehen konnen. Wir verweisen auf [1].

(3.100)

Beispiel 3.31: Es soll untersucht werden, ob sich vier verschiedene Stahlsorten beziiglich
des Merkmals Zugfestigkeit [10 MPa] wesentlich unterscheiden; d.h., welchen EinfluB hat
der Faktor ,Stahlsorte“ auf das betrachtete Merkmal ,Zugfestigkeit“. Der Versuchsplan
mit kK =4 und /= 10 ist in der Tabelle 3.21 angegeben.

Tabelle 3.21. Balancierter Versuchsplan bei einfacher Klassifikation fiir das Beispiel 3.31

Stufen | Realisierungen je Stufe
des Fak- | Merkmal: Zugfestigkeit
tors
Stahlsortg 1 2 3 4 5 6 7 8 9 10 S,

Ral

61,9 | 60,2| 63,3| 553 59,3| 64,2 | 61,9 | 68,1 | 59,3|67,7| 621,2|62,12
68,6 | 72,5| 71,7| 73,4| 68,6| 752 | 79,6 | 62,9 | 67,2|72,5| 712,2|71,22
67,2 | 82,3| 75,2 79,6 | 80,5| 74,8 | 90,2 | 73,4 | 84,1|79,6| 786,9 | 78,69
58,4 | 58,9| 63,7| 59,3| 60,2| 62,9 | 64,2 | 62,4 | 65,5|57,5| 613,0 |61,30

BWN

2733,3 168,33
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Wir konnen annehmen, daB die Zugfestigkeiten X; (i =1, 2, 3, 4) der vier Stahlsorten
normalverteilte ZufallsgroBen mit gleicher Varianz ¢? sind. Die Priifung der Hypothese
Hy: py = py = u3 = py erfolgt mit der Irrtumswahrscheinlichkeit o = 0,01. Wir berechnen
zuerst die einzelnen GroBen der Varianztabelle. Nach Formel (3.97) erhalten wir fiir

SAQr=189578 — 186773 = 2805,
nach Formel (3.98) fiir

SAQ; = 1—10(621,22 +...)— 186773 =2037

und schlieBlich nach Formel (3.99) fir
SAQ; =2805-2037=1768.

Die Varianztabelle fiir dieses Beispiel lautet somit:

Variabilitdt SAQ Freiheitsgrade MAQ

Total SAQr =2805 n—1=39 MAQ: =719
Zwischen den Stufen SAQz=12037 k—=1=3 MAQ, =679
Innerhalb der Stufen SAQ; = 768 n—k=36 MAQ; =213

Die PriifgroBe (3.81) hat m; = k — 1 =3 und m, = n — k = 36 Freiheitsgrade. Der kritische
Wert fiir & = 0,01 ist nach Tafel 5 fo ;. 3, 36 = 4,39, und damit ist das Intervall (4,39; ) der
kritische Bereich. Die Realisierung der PriifgroBe ist nach (3.100)
_MAQ; _ 679 _
f= MAQ, 213 31.9.
Da der Wert 31,9 im kritischen Bereich liegt, wird die Hypothese H, abgelehnt. Der Fak-
tor ,Stahlsorte“ hat EinfluB auf das Merkmal ,Zugfestigkeit*.

3.5.3. Modell II bei einfacher Klassifikation

Wie wir in Abschnitt 3.5.1. andeuteten, kommt es bei der Anwendung der Varianzana-
lyse bei Modell II darauf an, die Anteile zu ermitteln, die in mehreren Stufen wirkende
Faktoren an der Gesamtvariabilitdt der Grundgesamtheit eines mebaren Merkmals ha-
ben, d.h., die Variabilitdt des betrachteten Merkmals in der Grundgesamtheit zu untersu-
chen. Wir wollen die Betrachtungen wieder fiir den Fall des Wirkens eines Faktors, also
bei einfacher Klassifikation, bei balanciertem Versuchsplan durchfiihren. Die einzelnen
Stufen des Faktors werden als Zufallsstichproben aus der Grundgesamtheit des meBbaren
Merkmals X aufgefaBt, wobei die Realisierungen pro Stufe die Elemente der jeweiligen
Stichprobe sind. Wir wollen dies wieder an einigen Beispielen veranschaulichen:

Merkmal Faktor Stufen

Durchmesser von Einstellung der k Stichproben von je ! Wellen, die dem Pro-

Wellen Maschine duktionsprozeB entnommen werden

Laufzeit von PKW-| StraBenzustand k Stichproben von je / PKW-Reifen eines

Reifen eines Typs Typs

Zuckergehalt von Bodenart k Stichproben von je ! Zuckerriiben an ver-

Zuckerriiben schiedenen Stellen des Anbaugebietes ent-
nommen
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Bei jedem dieser Beispiele konnen die Realisierungen x;;, j =1, 2, ..., [, der i-ten Stufe,
i=1,2, ..., k, in folgender Art dargestellt werden:

Xj=p+a+e;. (3.101)
Dabei kennzeichnet u eine Konstante, a; den EinfluB des Faktors in der i-ten Stufe und

¢;; den Versuchsfehler, mit dem die j-te Realisierung der i-ten Stufe behaftet ist, wobei
vorausgesetzt wird, da3

— die GroBen a; (i=1, 2, ..., k) Realisierungen der untereinander unabhingigen und
N(0; a,)-verteilten ZufallsgroBen 4; sind,
- die GroBen ¢, i=1,2, ..., k; j=1, 2, ..., I, Realisierungen der untereinander unab-

hingigen und N(0; og)-verteilten ZufallsgroBen E;; sind,
- die ZufallsgroBen 4;,i=1,2, ..., k,und E;;, i=1,2, ..., k; j=1,2, ..., ], untereinan-
der unabhingig sind.
Da die GroBen 4; (i =1, ..., k) das zufdllige Wirken eines Faktors (Effekts) kennzeich-
nen, wird das Modell IT auch Modell mit zufilligen Effekten genannt.
Mit X;; bezeichnen wir die ZufallsgréBen mit den obengenannten Realisierungen Xx;;
(i=1,.,kj=1..,10.
Wegen (3.101) gilt dann

X,=u+A4,+E,. (3.102)

Nach den Ergebnissen der Beispiele 2.57 und 2.60 aus Abschnitt 2.3.9. ist X;; normalver-
teilt. Aus (2.129) bzw. (2.130) erhalten wir die Kennwerte

EXj))=u+EA)+EE)=u (3.103)
und
o= D¥(X,;)) = DX(4)) + DX(E;) = o} + 0} (3.104)

Es ist mdglich, fiir die beiden Komponenten ¢ und o2 als Schitzwerte s2 und s2 die
GroBen

_ MAQ; —-MAQ,
e
zu wihlen. Damit konnen wir unter Beriicksichtigung der Fragestellung des Modells II
den Versuchsplan (Tabelle 3.19) und die Varianztabelle 3.20 in Abschnitt 3.5.2. zur Be-
rechnung dieser Schitzwerte heranziehen. Eine Begriindung fiir dieses Vorgehen finden
Sie in [1].

Um nun zu priifen, ob die durch den Faktor bewirkte Variabilitit einen signifikanten
Beitrag zur Gesamtvariabilitdt liefert, wird von der Nullhypothese

Hy o2 =0 (3.106)

ausgegangen und die in Abschnitt 3.4.6. angegebene PriifgroBe (3.81) mit m; = k — 1 und
m, = n — k Freiheitsgraden gewihlt. Die Realisierung dieser PriifgroB3e

_MAQ,
" MAQ

wird mit dem aus Tafel 5 entnommenen kritischen Wert f,., », flir die Irrtumswahr-
scheinlichkeit e verglichen und iiber die Nullhypothese nach der in Abschnitt 3.4.6. an-
gegebenen Vorschrift entschieden.

Die Moglichkeit der Anwendung dieses Priifverfahrens zur Priifung der Nullhypothese
(3.106) wird in [1] begriindet.

s2=MAQ; und s? (3.105)

f (3.107)

12 Beyer, Wahrscheinlichkeitsrechnung
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Anmerkung: Wenn auch bei Modell I und bei Modell II dasselbe Priifverfahren angewandt
wird, so ist doch die Fragestellung und die Interpretation der Ergebnisse unterschied-
lich.

Beispiel 3.32: Dem ProduktionsprozeB eines gewissen Erzeugnisses sind in groBeren Zeit-
abstdnden 3 Stichproben von je 8 Einheiten entnommen worden. An jeder Einheit wurde
ein bestimmtes AbmaB [mm] gemessen. Es ist mit einer Irrtumswahrscheinlichkeit
o = 0,05 zu priifen, ob die im Laufe der Zeit eintretende Verdnderung der Einstellung der
Maschinen einen wesentlichen Anteil an der Gesamtvariabilitdt der Fertigung hinsicht-
lich dieses AbmaBes ausmacht.

Wir haben hier eine dem oben beschriebenen Modell II entsprechende Fragestellung
vorliegen, wobei das untersuchte AbmaB das Merkmal, die im Laufe der Zeit eintretende
Verinderung der Maschineneinstellung den Faktor, die Stichproben die Stufen und die
Elemente der Stichproben die Realisierungen darstellen.

In Tabelle 3.22 ist der Versuchsplan und in Tabelle 3.23 die entsprechende Varianz-
tabelle festgehalten.

Tabelle 3.22. Versuchsplan zum Beispiel 3.32

Nummer der | Realisierungen je Stufe

Stichprobe |1 2 3 4 5 6 7 8 s;. X

1 1 8 6 7 6 5 N 4 42 525

2 3 2 2 1 2 3 4 3 20 2,5

3 5 6 7 5 4 5 6 6 44 55
106 44

Tabelle 3.23. Varianztabelle zum Beispiel 3.32

Variabilitat SAQ Freiheits- MAQ

grade
Total SAQ; =88 23 MAQ;=3,8
Innerhalb SAQ; =44 21 MAQ; =2,1
Zwischen SAQ,=44 2 MAQz =222

Zur Beantwortung der Fragestellung des Beispiels ist die Nullhypothese
Hy: 03=0

mit der Irrtumswahrscheinlichkeit & = 0,05 zu priifen, wobei ¢2 die durch den Faktor in
der Grundgesamtheit bewirkte Variabilitdt angibt.

Wir haben dazu die nach (3.107) berechnete Realisierung der Priifgro8e (3.81) fiir
m, =2 und m, =21 Freiheitsgrade

222
f= 2,1

mit dem aus der Tafel 5 fur eine Irrtumswahrscheinlichkeit & =0,05 entnommenen
Wert

=10,6

Joos;2n = 3,47
zu vergleichen. Da 10,6 > 3,47, wird die Nullhypothese abgelehnt.



3.6. Regressions- und Korrelationsanalyse 179

3.5.4. Das allgemeine lineare Modell

Die beiden in den Abschnitten 3.5.2. und 3.5.3. betrachteten Modelle sind Spezialfdlle
des allgemeinen linearen Modells. Wir wollen die Grundgedanken dieses Modells kurz
charakterisieren. Dazu fassen wir die bei der Untersuchung eines meBbaren Merkmals X
gewonnenen MeBwerte als Realisierungen von n ZufallsgroBen X;, j=1, 2, ..., n, auf.
LBt sich jede dieser ZufallsgroBen X als linearer Ausdruck von k GréBen g, i=1,2, ..., k,
darstellen, so erhalten wir das allgemeine lineare Modell:

k
X=Yvb+E, j=12..,n (3.108)
i=1

wobei die GroBen y;;, i =1, 2, ..., k, noch niher zu charakterisierende reelle Zahlen und
die ZufallsgroBe E; den MeBfehler des j-ten MeBwerts kennzeichnen.

Durch (3.108) werden im wesentlichen alle bekannten Modelle der Varianzanalyse er-
faBt, wenn die GroBen y;;, i =1,2, ..., k;j =1, 2, ..., I, lediglich die Werte 1 — der Effekt
i ist vorhanden — und 0 — der Effekt i ist nicht vorhanden — annehmen konnen.

Die Unterscheidung zwischen Modell I und Modell II wird mit Hilfe der Parameter §;,
i=1,2, ..., k, vorgenommen. Sind diese feste GroBen, so sprechen wir von einem Modell
mit festen Effekten (Modell I). Sind demgegeniiber die §;, i =1, 2, ..., k, ZufallsgroBen,
so sprechen wir von einem Modell mit zufélligen Effekten (Modell II).

Konnen die GroBen y;;, i =1, 2, ..., k;j=1,2, ..., I, nicht nur die Werte 0 und 1, son-
dern alle reellen Werte eines Intervalls annehmen - sie kennzeichnen dann z.B. Tempe-
ratur, Druck, Zugfestigkeit —, fiihrt dies zu den Modellen der Regressions- und Korrela-
tionsanalyse, deren Grundziige wir im Abschnitt 3.6. kennenlernen werden.

3.6. Einfiihrung in die Regressions- und Korrelationsanalyse

3.6.1. Problemstellung

Im Abschnitt 3.1.2. betrachteten wir in den Beispielen 3.3 und 3.4 bei den jeweiligen
Untersuchungsobjekten gleichzeitig zwei meBbare Merkmale X und Y und lernten Mog-
lichkeiten kennen, wie die bei einer Untersuchung als MeBwertpaare (x;, y,),i=1,2, ..., n,
gewonnenen MefBergebnisse geordnet, verdichtet und dargestellt werden konnen. Wir leg-
ten dabei besonderes Gewicht auf die Beschreibung der zwischen diesen beiden Merkma-
len bestehenden Abhingigkeit. Die Betrachtungen flihrten uns zur empirischen Kova-
rianz syy (3.14) und zum empirischen Korrelationskoeffizienten ryy (3.18). Der
Aufgabenstellung des Abschnittes 3.1. entsprechend kam es uns dabei darauf an, die in
der Menge der MeBwertpaare iiber die Merkmale X und Y enthaltenen Informationen zu
erfassen. Auf Grund unserer in Abschnitt 3.1. erworbenen Kenntnisse stellen wir unter
anderem die Frage nach der Schitzung und Priifung der entsprechenden Kennwerte der
zugehdrigen Grundgesamtheit (X, Y). Mit solchen Fragestellungen beschiftigt sich die
Regressions- und Korrelationsanalyse, wobei die in den Abschnitten 3.3. und 3.4. angege-
benen Methoden eingesetzt werden.

Wihrend die Regressionsanalyse die Art des Zusammenhanges der betrachteten Merk-
male untersucht, ist es demgegeniiber Aufgabe der Korrelationsanalyse, Aussagen iiber
die Stirke der Abhdngigkeit zwischen den betrachteten Merkmalen zu machen. Im fol-
genden werden wir einige wichtige Methoden der Regressions- und Korrelationsanalyse
kennenlernen. Dabei wollen wir uns auf den Fall zweier meBbarer Merkmale und linearen
Zusammenhanges beschrinken. Fiir weitergehende Betrachtungen verweisen wir u.a. auf
[18; 14].

12¢
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3.6.2. Regressionsanalyse

Im Abschnitt 3.2.1. trugen wir die bei den Beispielen 3.3 und 3.4 fiir die meBbaren
Merkmale X und Y in der Urliste enthaltenen MeBwertpaare (x;, y;), i =1, 2, ..., n, in ein
rechtwinkliges Koordinatensystem ein. Bei beiden Beispielen stellten wir fest, daB zwi-
schen den jeweiligen Merkmalen zwar kein Zusammenhang in Form einer Funktionsglei-
chung besteht, aber aus der Form der Punktwolke doch die Tendenz einer gewissen Ab-
héngigkeit zu erkennen ist. Wir konnten auch feststellen, daB fiir einen bestimmten
festen Wert des Merkmals X das Merkmal Y verschiedene Werte annehmen kann. Wir be-
zeichnen eine solche Abhdngigkeit als stochastisch und das eine Merkmal als Einfluf3grife
und das andere als Zielgrdfe.

In der Regressionsanalyse ist die ZielgroBe in jedem Fall eine ZufallsgroBe, wihrend
die EinfluBgroBe eine ZufallsgroBe sein kann, aber nicht sein muB.

Wie schon erwihnt, ist es die Aufgabe der Regressionsanalyse, die Art des Zusammen-
hanges zwischen beiden Merkmalen zu untersuchen und entsprechende Priif- und Schitz-
verfahren anzugeben.

Dazu wird von einer zweidimensionalen Grundgesamtheit (X, Y) ausgegangen. Weiter-
hin sollen folgende Voraussetzungen erfiillt sein, wobei 0.B.d. A. das Merkmal X als Ein-
fluB- und das Merkmal Y als ZielgroBe gewihlt ist.

Unter der Bedingung, daB die EinfluBgroBe X eine beliebige, aber feste Realisierung x
angenommen hat, unterliegt die ZielgroBe Y einer Normalverteilung mit dem bedingten
Erwartungswert

E(Y/X=x)=n(x)=p+ bx (3.109)
und der bedingten Varianz
D*(Y/X = x) = ¢* = const. (3.110)

Anmerkung: (3.109) bedeutet, daB zwischen der EinfluBgroBe X und der ZielgroBe Y im
Mittel eine lineare Abhéngigkeit besteht.

Die Gerade (3.109) beze1chnen wir als (theoretische) Regressionsgerade und ihren Anstieg
B, als (th ischen) Regr koeffizienten. Er gibt an, um wieviel die ZielgroBe Y im
Mittel zunimmt, wenn die EinfluBgroBe X um eine Einheit wichst.

(3.110) nennen wir Varianz um die Regressionsgerade oder auch Restvarianz. Dieser
Kennwert gibt den Anteil der Gesamtvarianz der ZielgroBe an, der nicht auf die Abhén-
gigkeit der beiden Merkmale zuriickzufiihren ist. In Bild 3.25 sind die Voraussetzungen
der Regressionsanalyse veranschaulicht.

*
K B

bedingte Dichte fy (y/%)

Bild 3.25. Veranschaulichung
der Voraussetzungen der
Regressionsanalyse bei

zwei meBbaren Merkmalen

X; X, Xi X
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3.6.2.1. Schitzung der Parameter f,, §, und o?

Die Schitzung der Parameter 8, f, und ¢? erfolgt auf der Basis einer konkreten Stich-
probe (x;, i), i =1, 2, ..., n, vom Umfang n aus der Grundgesamtheit (X, Y).

Schdtzung der Parameter B, und fB,: Mit einer konkreten Stichprobe (x;, y,), i=1,2, ..., n,
erhalten wir Realisierungen b, und b, der aus einer mathematischen Stichprobe (X}, Y)),
i=1,2, ..., n, gewonnenen entsprechenden Punktschitzfunktionen f; und g, der Parame-
ter B, und B,. Wir bezeichnen f, als empirischen und b, als konkreten empirischen Regres-
sionskoeffizienten. Gleichzeitig damit ergibt sich eine Realisierung

Y(x) = by + byx (3.111)

der Punktschitzung #(x) = f; + f,x von (3.109). #(x) nennen wir empirische und y(x)
konkrete empirische Regressionsgerade.

Die Ermittlung der Realisierungen b, und b, mit Hilfe der konkreten Stichprobe (x;, y;),
i=1,2, ..., n, soll nun so vorgenommen werden, daB sich die konkrete empirische Re-
gressionsgerade (3.111) der Punktwolke (vgl. Bild 3.7 und 3.8) moglichst gut anpaBt.

Dazu verwenden wir die GauBsche Methode der kleinsten Quadrate (s. Band 18 dieser
Reihe), bei der diese Schitzwerte b; und b, aus der Forderung

Y=y’ = Zl(yi — by — b;x)’—Min (3.112)
i=1 i=

ermittelt werden. Die GroBen b, und b, sind also so zu bestimmen, daB die Quadrat-
summe der Ordinatendifferenzen zwischen den MeBwertpaaren (x;, ,), i=1, 2, ..., n,
und den entsprechenden Punkten (x;, y(x;)) der Geraden (3.111) zu einem Minimum ge-
macht wird.

Veranschaulichen Sie sich diese Forderung an einer Skizze!

Wir haben damit eine Extremwertaufgabe fiir eine Funktion der beiden unabhéngigen
Variablen b, und b, zu 16sen (vgl. Band 4 dieser Reihe). Durch partielle Ableitung von
(3.112) nach b; und b, und Nullsetzen der jeweiligen Ergebnisse erhalten wir folgendes li-
neare inhomogene Gleichungssystem:

3 [Z = b - bzxi)Z]
i=1 _
b, B

] [Z (yi— b — bzx,-)z] n
i=1

3% =23 (= b= bix)x =0.

Durch einfache Umformungen ergeben sich aus (3.113) die GauBschen Normalgleichun-
gen:

=23 (= b~ byx) =0,
=1 (3.113)

bint by Y %= Yy, by xit by =3 xy. (3.114)
i=1 i=1 i=1 i=1 i=1
Mit
__ 1 _ 1<
X = 72)(,- und y= 72

erhalten wir fiir (3.114) die Losung
b=y - bX, (3.115)
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e\ :
_iny.-—7<_z xi) Ly Le=RHGi-)

= : = = (3.116)
2

l(x, x)

S
=

i
X,
|
3=
{—\
M-
=
S—

Mit (3.14) und (3.18) konnen wir fiir (3.116) auch schreiben:

Sxy Sy
b1=s—§=lxys—x. (3.117)

Setzen wir (3.115) in (3.111) ein, erhalten wir
Y(x) =@ = bX) + byx =y + by(x — X). (3.118)

Die konkrete empirische Regressionsgerade (3.118) wird hiufig durch den Zusatz ,von Y
in bezug auf X“ genauer erldutert.

Fiithren wir die obigen Betrachtungen nicht fiir eine konkrete, sondern fiir eine mathe-
matische Stichprobe vom Umfang n durch, so erhalten wir an Stelle der Schitzwerte b,
und b, die entsprechenden Punktschitzfunktionen £, und f,. Sie besitzen die Eigenschaf-
ten von Maximum-Likelihood-Schétzungen, da sich die Methode der kleinsten Quadrate
als Sonderfall der Maximum-Likelihood-Methode darstellen 148t. Wir konnen in diesem
Rahmen nicht nidher darauf eingehen und verweisen den Leser auf [14; 18].

Anmerkungen: 1. Wenn die entsprechenden Voraussetzungen erfiillt sind, kann in gleicher
Art die Regression von X in bezug auf Y ermittelt werden. In diesem Fall ist das Merkmal
X die ZielgroBe und das Merkmal Y die EinfluBgroBe. Bei praktischen Problemen besteht
aber meist nur Interesse fiir eine der beiden moglichen Regressionsgeraden.

2. Wir haben hier zur Schitzung der Regressionsgeraden die Quadratsumme der Or-
dinatendifferenzen minimiert. Bei der sog. orthogonalen Regression wird die Quadrat-
summe der orthogonalen Abstinde der Punkte (x;, y,), i=1, 2, ..., n, von der gesuchten
Geraden minimiert.

Schétzung des Parameters o: Aus einer konkreten Stichprobe (x;, y,), i =1, 2, ..., n, er-
halten wir eine Realisierung s} der aus einer mathematischen Stichprobe (X;, Y), i=1,
2, ..., n, gewonnenen entsprechenden Punktschitzfunktion ¢? der Restvarianz ¢2. Wir be-
zeichnen 62 als empirische und s} als konkrete empirische Restvarianz.

Indem wir von den Differenzen (y; — y(x;)), i = 1, 2, ..., n, ausgehen, ist es sinnvoll, die
konkrete empirische Restvarianz s2 folgendermaBen zu erkldren:

2 1 - 2
S R DUCRSIENS (3119

=1

Veranschaulichen Sie sich (3.119) mit Hilfe einer Skizze!

Wird die in (3.119) fiir die konkrete empirische Restvarianz s2 gegebene Erklirung auf
die aus einer mathematischen Stichprobe (X;, Y;), i =1, 2, ..., n, zu ermittelnde empiri-
sche Restvarianz 42 iibertragen, so ldBt sich zeigen (z.B. [14; 18]), daB diese eine erwar-
tungstreue Schétzung ist.

Da die Formel (3.119) zur Berechnung von s} aufwendig ist, ist es giinstiger, sie in fol-
gender Form anzuwenden:

n n 2 n 1 n n
shi=— | Y- (D) ~ b Sxn- ST (3.120)
n=2 |5 n\i=1 i=1 nis1 s
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Beispiel 3.33: Im Abschnitt 3.1.2. war im Beispiel 3.4 fiir eine bestimmte Stahlsorte die
Abhingigkeit der Zugfestigkeit [10 MPa] (ZielgroBe Y) vom Kohlenstoffgehalt [%] (Ein-
fluBgroBe X) auf der Grundlage von n = 86 MeBwertpaaren zu untersuchen. Unter der An-
nahme, daB fiir einen bestimmten Kohlenstoffgehalt die zugeordneten Werte der Zugfe-
stigkeit normalverteilt sind, ist unter Verwendung der Urtliste (Tabelle 3.12) und der mit
dem Rechenschema (Tabelle 3.16) errechneten Werte der konkrete empirische Regres-
sionskoeffizient b, nach (3.117), die konkrete empirische Regressionsgerade
»(x) = by + b,x nach (3.118) und die konkrete empirische Restvarianz s2 nach (3.120) zu
ermitteln. Durch Einsetzen erhalten wir:
4,64

b= 0,59 5057 = 1014,

b, =71,53 —101,4-0,42 = 28,94,
y(x)=(71,53 - 101,4-0,42) + 101,4x = 71,53 + 101,4(x — 0,42),
y(x)=128,94 +101,4x.
In Bild 3.8 ist diese Regressionsgerade eingetragen.
sk =14,56; sp=3,82.

Durchdenken Sie die Aussage dieser Ergebnisse!
Fiihren Sie entsprechende Berechnungen fiir Beispiel 3.3 durch! Die zugehorige Re-
gressionsgerade ist in Bild 3.7 eingetragen.

3.6.2.2. Priifung der Parameter f, und f,; Konfidenzbereich fiir die Regressionsgerade

Im folgenden werden wir einige in Verbindung mit Regressionsanalysen wichtige stati-
stische Priifverfahren kennenlernen. Fiir die Darstellung wird wieder die im Ab-
schnitt 3.4. angewandte Form gewihlt.

Priifung des Regressionskoeffizienten: Haufig tritt bei der Untersuchung der Abhéngigkeit
von zwei Merkmalen die Frage auf, ob der ermittelte konkrete empirische Regressions-
koeffizient b, mit einem vorgegebenen Wert f,, vereinbar ist. Zur Priifung dieser Frage
wird das folgende Priifverfahren angewandt:

1. Hy: By = Bro-

2. Vorgabe der Irrtumswahrscheinlichkeit o.

3. Auf der Grundlage einer mathematischen Stichprobe (X, Y), i=1, 2, ..., n, vom
Umfang n aus einer zweidimensionalen Grundgesamtheit (X, Y) und unter den oben an-
gegebenen Voraussetzungen wihlen wir die PriifgroBe

ﬂZ - pZO

U=t,=—F—, (3.121)
Sﬁz

die einer Student-Verteilung mit m = n — 2 Freiheitsgraden unterliegt, wobei

s -0 si=—L S (x- 1y (.122)

AT m-nsy X a1 & .

und

I

X=—2X

sind.
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4. Der kritische Bereich K fiir zweiseitige Fragestellung wird aus folgender Relation be-
stimmt:

P(|U¢g tfa;m/Ho)=oc.

Er ergibt sich zu
Bz B+ 'u,msﬂz

und ~ (3.123)
Pr=bo—te Sp

5. Mit Hilfe einer konkreten Stichprobe (x;, y,), i =1, 2, ..., n, vom Umfang n aus der
Grundgesamtheit (X, Y) wird eine Realisierung von (3.121) errechnet:

_ by — P
L N %

Sp

EINCESIY

6. Der Entscheid iiber die Nullhypothese H, erfolgt in folgender Art:
Ist |u| <ty ,sowird Hynicht abgelehnt;

im

mit (3.124)

ist |u|=t, ,sowird H, abgelehnt.
Sim

Beispiel 3.34: In Fortfiihrung von Beispiel 3.33 ist zu priifen, ob der errechnete konkrete
empirische Regressionskoeffizient b, = 101,4 mit dem vorgegebenen Wert S, = 0 verein-
bar ist, wobei wieder eine Irrtumswahrscheinlichkeit & = 0,01 zugrunde gelegt wird. Von
der Nullhypothese Hy: B, =0 ausgehend, kénnen wir mit den Werten aus Tabelle 3.14
und den Ergebnissen aus Beispiel 3.33 eine Realisierung der PriifgroBe (3.121) berech-
nen:
101,4 _
u= 3’7 85 0,00073 = 6,6.

Dieser Wert wird mit dem in Tafel 4 angegebenen kritischen Wert 2,5, 34 = 2,64 vergli-
chen.

Da u = 6,6 > 2,64 = 1554 ist, wird H, abgelehnt, d. h., zwischen beiden Merkmalen
liegt eine Abhingigkeit vor.

Fiihren Sie fiir Beispiel 3.3 die entsprechenden Berechnungen durch!

Priifung der K der Regressi aden: Zur Priifung der Frage, ob die bei der Un-
tersuchung der Abhédngigkeit von zwei Merkmalen X und Y ermittelte konkrete empiri-
sche Konstante b, mit einem vorgegebenen Wert vereinbar ist, wird das folgende Priifver-
fahren angewandt:

1. Hy: p1 = Buo-

2. Vorgabe der Irrtumswahrscheinlichkeit o.

3. Auf der Grundlage einer mathematischen Stichprobe (X, Y)), i=1, 2, ..., n, vom
Umfang n aus einer zweidimensionalen Grundgesamtheit (X, ¥) und unter den oben an-
gegebenen Voraussetzungen, wihlen wir die PriifgroBe

U=1, = B — B X (3.125)
S,
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die einer Student-Verteilung mit m = n — 2 Freiheitsgraden unterliegt, wobei

1 X
§2 =g2[—
A ”(n (n—l)s§)
mit (3.126)
1
83 = X; - X)?
Y on-1 i;
und
¥ -=Lyy
n=
ist.

4. Der kritische Bereich K fiir zweiseitige Fragestellung wird aus folgender Relation be-
stimmt:

P(|U|gtl_ /H0)=a.
3

Er ergibt sich zu
Bz B+ ta mSﬁ,
3

und (3.127)
Bi=ho— 173 msﬂ,-
]
5. Mit Hilfe einer konkreten Stichprobe (x;, y;), i =1, 2, ..., n, vom Umfang n aus der
Grundgesamtheit (X, Y) wird eine Realisierung von (3.125) errechnet:

= bl - ﬂlo
g ’

[ERY (R S .
A7k n T (-5}
ist.

6. Der Entscheid tiber die Nullhypothese H, erfolgt in folgender Art:
Ist |u|<t, ,sowird Hynicht abgelehnt;
Eim

u (3.128)

wobei

ist |u|zt, ,sowird H, abgelehnt.
Lim

Beispiel 3.35: In Weiterfithrung von Beispiel 3.33 ist zu priifen, ob die errechnete empiri-
sche Konstante b, = 28,94 mit dem vorgegebenen Wert 8, = 30 vertretbar ist, wobei wie-
der eine Irrtumswahrscheinlichkeit o = 0,01 zugrundegelegt wird. Wir gehen dazu von
der Nullhypothese H,: f; = 30 aus und errechnen mit den Werten aus Tabelle 3.16 und
den Ergebnissen aus Beispiel 3.33 eine Realisierung (3.128) der PriifgroBe (3.125):

1 0,422
2 R TTN. + . C A,
53, 14,56(86 + 85.0‘00073) 41,56,
55, = 6,45,
_ 28,9430
6,45
u=-0,16.

13 Beyer, Wahrscheinlichkeitsrechnung
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Dieser Wert wird mit dem in Tafel 4 abgelesenen kritischen Wert £00s, 34 = 2,64 vergli-
chen.
Da |u|=0,16 < 2,64 = 05,34 ist, wird H, nicht abgelehnt.

Konfidenzbereich fiir die Regressionsgerade: Die Betrachtungen des Abschnittes 3.6.2.1.
ermoglichten es uns, aus einer konkreten Stichprobe eine Realisierung y(x) = b; + byx
der Punktschitzung 7(x) = f, + f,x der Regressionsgeraden 7(x) = f; + f,x anzugeben.
Nicht zuletzt fir Untersuchungen der Praxis ist es giinstig, fiir diese Gerade einen Konfi-
denzbereich anzugeben. Dies geschieht mit Hilfe der Konfidenzintervalle fiir die Para-
meter f, und f,, die auf der Grundlage einer mathematischen Stichprobe (X}, Y;), i =1,
2, ..., n, vom Umfang n aus einer zweidimensionalen Grundgesamtheit und unter den
oben angegebenen Voraussetzungen ermittelt werden.

Das Konfidenzintervall fiir den Parameter f, zum Konfidenzniveau (1 — &) wird be-
stimmt, indem wir in (3.121) B,, durch B, ersetzen:

P( b-8

Sﬂz
und den in der Klammer stehenden Ausdruck nach f, auflosen. Wir erhalten:

<ta ) =1-« (3.129)
LI

B, — tl>mSﬁz<ﬂ2<ﬁz +ta gy (3.130)
2’ 2’
Fiir eine entsprechend konkrete Stichprobe (x;, y;), i =1, 2, ..., n, erhalten wir dann eine
Realisierung von (3.130), ein konkretes Konfidenzintervall fir f,:
by—te sp<Pr<bytts sp. (3.131)
2" 2m

So errechnen wir von den Werten des Beispiels 3.4 ausgehend folgendes konkrete Konfi-
denzintervall fur §,:

3,82 3,82

8 g 1014+ 2,64——22

V85-000073 1/85-0,00073
60,9 < f, < 141,9.

Ermitteln Sie in gleicher Weise aus den Werten des Beispiels 3.3 eine Realisierung des
Konfidenzintervalls fiir ,!

Das Konfidenzintervall fir den Parameter f, zum Konfidenzniveau (1 — &) wird in
gleicher Art bestimmt. Wir ersetzen in (3.125) 8y, durch B;:

Al

101,4 — 2,64

S,

<ta ) =l-« (3.132)
Eim
und 16sen den in der Klammer stehenden Ausdruck nach B, auf. Wir erhalten:

b, - ta Sp<pi< B+ te S (3.133)
2 2

Fiir eine entsprechende konkrete Stichprobe (x;, y,), i =1, 2, ..., n, erhalten wir dann
eine Realisierung von (3.133), ein konkretes Konfidenzintervall fiir ;:

b, — ty 55 < Bi<b +t, g, (3.134)
2" 2"

So errechnen wir von den Werten des Beispieles-3.4 ausgehend folgendes konkrete Konfi-
denzintervall fur §,:
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28,94 —2,64-6,45 < < 28,94 + 2,64 6,45,
11,91 < B, < 45,97.

Ermitteln Sie wieder in gleicher Weise aus den Werten des Beispiels 3.3 eine Realisie-
rung des Konfidenzintervalls fiir ;!

Fiir die Regressionsgerade (3.109) kann nun unter Verwendung von (3.130) und (3.133)
ein Konfidenzbereich angegeben werden. Wir wollen nicht auf diese Herleitung eingehen
(siehe [18]), sondern lediglich das Ergebnis angeben:

A(x) = te S;<n(x) <AHX)+ta S, (3.135)
Lim Zim
wobei
L1 (x—X)2
1ol xmX)
5 ”(n PR
mit

- 1<
n_li;(x,—X)z und X=7’;X,-

3=
ist und ¢, wieder aus Tafel 4 abzulesen ist.
7; m

Der Ausdruck (3.135) ist auBer von e, n, Sy, X und ¢ auch von x abhingig. Fiir jedes
feste x erhalten wir ein Konfidenzintervall fiir #(x). Wihrend fiir x = X das Konfidenz-
intervall mit den engsten Grenzen vorliegt, wird dieses mit wachsenden |x — X| breiter.
Es 14Bt sich zeigen, daB die Grenzen des Konfidenzbereiches Hyperbeln sind. Uberlegen
Sie, welche Folgerungen sich daraus iiber die Genauigkeit der Aussage ergeben.

Fiir eine entsprechend konkrete Stichprobe (x;, y;), i =1, 2, ..., n, erhalten wir dann
eine Realisierung von (3.135), einen konkreten Konfidenzbereich fiir #(x):
y(x) —tq 5< 7(x) <y(x) + ta i (3.136)
2’ 2’

Aus den Werten des Beispiels 3.4 errechnen wir folgenden konkreten Konfidenzbereich
fiir n(x):

_ _ 1, (x-0427
2894~ 1014x 3,82 4 g+ 5o g 0000 1264 <n(x)
— 2
<2894+ 101,4x + 3,82 4/ + X 04D° ., o

86 = 85-0,00073

Setzen Sie in diesen Ausdruck fiir x jeweils 0,42; 0,52 und 0,62 ein und errechnen Sie fiir
diese die entsprechenden Werte der Grenzen des Konfidenzbereiches fiir #(x)!

3.6.3. Korrelationsanalyse

Die Korrelationsanalyse, die sich mit der Stirke des Zusammenhanges von zwei meB-
baren Merkmalen X und Y, speziell mit entsprechenden statistischen Priifverfahren be-
schiftigt, geht von der Voraussetzung aus, daB beide Merkmale ZufallsgroBen sind und
die Grundgesamtheit (X, Y) durch eine zweidimensionale Normalverteilung beschrieben
wird. Aus Abschnitt 2.3.7. ist uns bekannt, daB diese durch die Erwartungswerte
E(X) = py, E(Y) = uy, die Varianzen D*(X) = g2, D*(Y) = o2 und den Korrelationskoeffi-
zienten gyy vOllig bestimmt ist. Der Korrelationskoeffizient gyy liefert eine Aussage iiber
den linearen Zusammenhang zwischen X und Y. Da wir uns auf eine normalverteilte

13*
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Grundgesamtheit (X, Y) beschrinken, ist oyy=0 genau dann, wenn die ZufallsgroBen X
und Y unabhingig sind. Aus einer konkreten Stichprobe (x;, y;), i =1, 2, ..., n, erhalten
wir fiir gyy eine Realisierung ryy (3.18), den konkreten empirischen Korrelationskoeffi-
zienten, seiner aus einer mathematischen Stichprobe (X}, Y;), i=1, 2, ..., n, gewonnenen
Punktschdtzfunktion gyy, des empirischen Korrelationskoeffizienten.

Im folgenden werden wir ein Verfahren zur Pritfung der Unabhingigkeit der beiden
Merkmale und ein Verfahren zur Priifung des linearen Zusammenhanges der beiden
Merkmale kennenlernen.

Priifung der Unabhdngigkeit von zwei Merkmalen. Bei vielen Untersuchungen der Praxis
wird die Frage gestellt, ob zwei Merkmale X und Y, die durch ZufallsgroBen charakteri-
siert sind, als unabhéingig angesehen werden konnen. Zur Priifung dieser Frage wird das
folgende Priifverfahren angewandt:

1. Hy: oxy=0.

2. Vorgabe der Irrtumswahrscheinlichkeit o.

3. Zu einer mathematischen Stichprobe (X;, Y;), i =1, 2, ..., n, vom Umfang n aus der
zweidimensionalen normalverteilten Grundgesamtheit (X, Y) wihlen wir die PriifgroBe

_ OxyVn—2
V1-63y
die einer Student-Verteilung mit m = n — 2 Freiheitsgraden unterliegt.

4. Von zweiseitiger Fragestellung ausgehend wird der kritische Bereich K aus folgender
Relation bestimmt:

U=1t, (3.137)

P(|U|g te. /Ho)=u. (3.138)
%

Wir erhalten:

N 1 . 1
Oxy= ~la » Oy Zla .
2? n—2+1t2 b n-2+t%
3im P

5. Mit Hilfe einer konkreten Stichprobe (x;, y;), i =1, 2, ..., n, vom Umfang n aus der
Grundgesamtheit (X, Y) wird eine Realisierung von (3.137) errechnet:

ryyyn —2

u= il (3.140)
v1- iy

6. Die Entscheidung iiber die Nullhypothese H, geschieht folgendermaBen:

(3.139)

Ist |u| <ty , sowird Hynicht abgelehnt;
7im

ist |u|=t, , sowird H, abgelehnt.
Eim

Beispiel 3.36: Fiir eine bestimmte Stahlsorte war im Beispiel 3.4 des Abschnittes 3.1.2. die
Abhingigkeit der Zugfestigkeit (ZielgroBe Y) vom Kohlenstoffgehalt (EinfluBgréB8e X) auf
der Grundlage von n = 86 MeBwertpaaren zu untersuchen. Unter der Annahme, daB die
zweidimensionale ZufallsgroBe (X, Y) normalverteilt ist, soll unter Verwendung des mit
dem Rechenschema (Tabelle 3.14) errechneten konkreten empirischen Korrelationskoef-
fizienten ry, gepriift werden, ob die beiden Merkmale mit einer Irrtumswahrscheinlich-
keit « = 0,01 als unabhingig angesehen werden konnen. Dazu stellen wir wiederum die
Nullhypothese Hy: gxy = 0 auf und errechnen mit (3.140) eine Realisierung von (3.137):
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_059Y84 _ oo
Y1-10,59
Dieser Wert wird mit dem aus Tafel 4 entnommenen kritischen Wert #,9s, 3¢ = 2,64 ver-
glichen. Da

u=16,70 > 2,64 = 10005, 34

ist, wird die Nullhypothese abgelehnt, d. h., die Abweichung des konkreten empirischen
Korrelationskoeffizienten ryy = 0,59 vom hypothetischen Wert gyy = 0 ist signifikant.

Fiihren Sie die entsprechende Priifung der Unabhingigkeit der beiden Merkmale des
Beispiels 3.3 im Abschnitt 3.1.2. durch!

Priifung der Stdrke des linearen Zusammenhanges von zwei Merkmalen. Neben der oben be-
handelten Fragestellung, ob iiberhaupt ein linearer Zusammenhang zwischen den Merk-
malen X und Y vorliegt, kommt es im Falle der Ablehnung der Nullhypothese hiufig dar-
auf an, die Starke des linearen Zusammenhanges zu untersuchen. Es ist also zu priifen,
ob der Korrelationskoeffizient gyy einer normalverteilten zweidimensionalen Grundge-
samtheit (X, Y) den Wert g # 0 besitzt.

Das entsprechende Priifverfahren lautet folgendermaBen:

1. Hy: oxy=0-

2. Vorgabe der Irrtumswahrscheinlichkeit o.

3. Zu einer mathematischen Stichprobe (X;, ), i =1, 2, ..., n, vom Umfang n aus der
zweidimensionalen normalverteilten Grundgesamtheit (X, Y) wéhlen wir unter Verwen-
dung der Transformation

1. 1+ gy
W=—In—7—, 3.141
2 1- gy (3.141)
die asymptotisch normalverteilt ist mit
—py=Lplte e AW = g2 = L
EW)=puy 21n1_9+2(n_1) und D(W)—aw—n_s, (3.142)
die asymptotisch N(0; 1)-verteilte PriifgroBe:
Wﬁ
U=z=—"H" (3.143)
Ow

4. Von zweiseitiger Fragestellung ausgehend wird der kritische Bereich K aus folgender
Relation bestimmt:

P(|U| = zi/Ho) =a. (3.144)
2

Er lautet:
W= uy+ OwZa
2

und (3.145)
Wspw— 0wz
2
5. Mit Hilfe einer konkreten Stichprobe (x;, y,), i =1, 2, ..., n, vom Umfang n aus der
Grundgesamtheit (X, Y) wird eine Realisierung von (3.143) errechnet:

W~ hw

o (3.146)

u=
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6. Die Entscheidung iiber die Nullhypothese H, geschieht folgendermaBen:

Ist |u|<z4, sowird H, nicht abgelehnt,
2

ist |u|z z,, so wird H, abgelehnt.
2

Beispiel 3.37: In Fortsetzung von Beispiel 3.36 ist mit einer Irrtumswahrscheinlichkeit
o = 0,01 zu priifen, ob der Korrelationskoeffizient der Grundgesamtheit den Wert ¢ = 0,6
hat. Wir stellen dazu die Nullhypothese Hy: gxy = 0,6 auf und errechnen mit Hilfe von
(3.141) und (3.142) eine Realisierung der PriifgroBe (3.143):

1. 1+059
w —71ﬂm—0,6777,

1, 1+06 . 06 _
mreh 06 Taes 00T
g, =L=0,11,

V83
w = 0,6777 - 0,6967 _ ~01727.

0,11

Dieser Wert wird mit dem aus Tafel 4 entnommenen kritischen Wert zq s = 1,96 vergli-
chen. Da |u|=0,1727 < 1,96 = z( s ist, wird die Nullhypothese nicht abgelehnt.

Fiihren Sie die entsprechende Priifung iiber die Stirke des linearen Zusammenhanges
fiir das Beispiel 3.3 durch!

3.7. Einfiihrung in verteilungsunabhingige Priifverfahren

Im Abschnitt 3.4. lernten wir einige statistische Priifverfahren kennen. Bis auf eine
Ausnahme (Abschnitt 3.4.9.) wurde bei ihnen von der Voraussetzung ausgegangen, dafl
die erforderlichen Stichproben aus normalverteilten Grundgesamtheiten gezogen wurden.
Die Nullhypothese, die bei dem jeweiligen Priifverfahren zu testen war, bezog sich auf un-
bekannte Kennwerte dieser normalverteilten Grundgesamtheit. Mit anderen Worten: Der
Typ der Verteilung der Grundgesamtheit wurde als bekannt angenommen, wihrend dies
fiir alle oder auch gewisse Kennwerte dieser Grundgesamtheit nicht der Fall war.

Mit der verstiarkten Anwendung mathematisch-statistischer Methoden in Naturwissen-
schaft und Technik zeigte sich aber immer mehr, daB viele auftretende ZufallsgroBen kei-
ner Normalverteilung unterliegen. In solchen Féllen war dann auch eine Anwendung der
bekannten Priifverfahren nicht moéglich. Deshalb machte es sich erforderlich, mathema-
tisch-statistische Priifverfahren zu entwickeln, die nicht auf der Voraussetzung einer nor-
malverteilten Grundgesamtheit aufbauen. Es entstanden die sogenannten verteilungsunab-
hdngigen Priifverfahren, die in der Literatur auch als verteilungsfrei oder parameterfrei
bezeichnet werden. Sie sind anwendbar zur Priiffung von Héufigkeiten, von Rangdaten,
d.h. von Daten, fiir die lediglich eine Rangordnung gegeben ist, und von MeBdaten. Als
Beispiel eines solchen Priifverfahrens lernten wir in Abschnitt 3.4.9. schon den x?-Anpas-
sungstest kennen, mit dem der Vergleich einer aus einer konkreten Stichprobe gewonne-
nen konkreten empirischen Verteilungsfunktion mit der angenommenen Verteilungs-
funktion der Grundgesamtheit moglich war.
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Gegeniiber den ,klassischen“ haben verteilungsunabhéngige Priifverfahren folgende
— Vorteile:

1. Sie sind unabhidngig von der Voraussetzung einer normalverteilten Grundgesamt-

heit.

2. Sie sind bei kleinem Stichprobenumfang einfach in der Handhabung.

— Nachteile:

1. Ihre Giite (vgl. Abschnitt 3.4.1.) ist bei gleichem Signifikanzniveau kleiner als bei

einem entsprechenden ,klassischen Priifverfahren“. Mit anderen Worten: Der Nach-

weis vorhandener Unterschiede ist mit einem verteilungsunabhéngigen Verfahren
schwieriger.

2. Bei verteilungsunabhéngigen Verfahren erhoht sich i. allg. mit wachsendem Stich-

probenumfang der Rechenaufwand erheblich.

3. Im Prinzip erfordert jedes einzelne verteilungsunabhéngige Priifverfahren eine Ta-

belle der Verteilungsfunktion der entsprechenden PriifgroBe.

Verteilungsunabhingige Priifverfahren werden wir dann anwenden, wenn die Vorausset-
zungen der ,klassischen Priifverfahren“ nicht erfiillt sind.

Eine umfassende Darstellung verteilungsunabhingiger Priifverfahren ist in diesem
Rahmen nicht moglich. Wir verweisen auf [18]. Die Arbeitsweise solcher Priifverfahren
wollen wir am Beispiel des
- Vierfelder-y?-Priifverfahrens,

— U-Priifverfahrens von Mann-Whitney
vermitteln.

Das Vierfelder-y*-Priifverfahren: Fragestellungen, bei denen die Unabhéngigkeit von zwei
Versuchen zu priifen ist, von denen jeder die Alternativausginge 4 und 4 bzw. B und B
hat, werden mit dem Vierfelder-y?-Priifverfahren untersucht. Beispiele hierfiir sind:

Versuch I Versuch IT

Auswahl des Produktionsverfahrens Qualitdt des Erzeugnisses

A: Neues Produktionsverfahren B: Erzeugnis ist qualitéitsgerecht

A: Altes Produktionsverfahren B: Erzeugnis ist nicht qualitdtsgerecht
Gewicht Futterart

A: Gewichtszunahme B: Normalfutter

A: keine Gewichtszunahme B: Spezialfutter

Die Versuche beschreiben wir durch zwei Null-Eins-verteilte ZufallsgroBen

_ [0, falls 4 eintritt, Y= 0, falls B eintritt,
1, falls A eintritt; 1, falls B eintritt.

Es ist dann zu priifen, ob die ZufallsgrBen X und Y unabhingig sind. Dazu sind folgende
Schritte notwendig:

1. Hy: Die ZufallsgréBen X und Y sind in der zweidimensionalen Grundgesamtheit
(X, Y) unabhéngig.

2. Vorgabe der Irrtumswahrscheinlichkeit o.

3. Es wird eine mathematische Stichprobe (X;, Y;), i=1, 2, ..., n, vom Umfang n aus
der zweidimensionalen Grundgesamtheit (X, Y) betrachtet.
Die absoluten Haufigkeiten Hy, (k, /=1, 2) werden in einer Vierfelder- (oder auch
2 X 2-)Tafel zusammengefaBt (Tabelle 3.24).
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Tabelle 3.24. Vierfelder-Tafel

Y X|1 0 Summe
1 Hy Hy, H,
0 Hy Hy H,
Summe H; H, n
Es gilt:
Hy+Hy,=H,,
Hy + Hy=H,,
Hy+Hy=H,,
Hy+ Hy=H,,

Hy, + Hy,+ Hy + Hy = n.
Als PriifgroBe U wihlen wir:

n(Hy Hy — Hy Hy)?

3.147
H\H, H,H, 0

U=yxi=
eine GroBe, die annihernd y2-verteilt ist mit dem Freiheitsgrad m =1 [3, 18].
4. Den kritischen Bereich K bestimmen wir fiir die einseitige Fragestellung aus der Re-
lation
P(Uz Xza,l/Ho) =,

wobei wir den entsprechenden kritischen Wert Xi,l aus Tafel 3 entnehmen.

5. Mit einer konkreten Stichprobe (x;, y,), i =1, 2, ..., n, vom Umfang n aus der zwei-
dimensionalen Grundgesamtheit (X, Y) ermitteln wir eine Realisierung der PriifgroBe
(3.147)

n (hyy hyy — hyp hy)?

YT hhah, G149
wobei die GroBen hy;, i,j=1,2, ..., hy, hy, by, h, Realisierungen der entsprechenden
GroBen in (3.147) darstellen.

6. Der Entscheid tiber die Nullhypothese H,, wird in folgender Weise gefillt:

Ist u < Xf,;l, so wird H, nicht abgelehnt, d.h., beide Merkmale konnen als unabhéngig an-
gesehen werden;

ist u = x%.,, so wird H, abgelehnt, d. h., beide Merkmale konnen als abhingig angesehen
werden.

Anmerkungen: Die in (3.147) angegebene PriifgroBe ist fiir n > 60, H, = 5 und H, = 5 mit
guter Ndherung y?-verteilt mit m = 1 Freiheitsgraden. Das ist auch noch fiir einen Stich-
probenumfang 20 = n = 60 der Fall, wenn (3.147) mit der Korrektur von Yates angewandt
wird:

n(|Hy Hy — Hyp Hy | — n/2)?

.
U=x H, H, H,H, : 3149

Beispiel 3.38: Ein Erzeugnis wird nach einem neuen Verfahren gefertigt. Dabei wird eine
geringere AusschuBquote als bei Einsatz des alten Verfahrens beobachtet. Es erhebt sich
die Frage, ob mit einer Irrtumswahrscheinlichkeit & = 0,05 ein Zusammenhang zwischen
der Art der Fertigung und der erzielten Qualitdt nachzuweisen ist.
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Zu ihrer Beantwortung werden der nach dem alten und dem neuen Verfahren erfolgten
Produktion n =360 Erzeugnisse entnommen und bei jedem gepriift, ob es qualitdts-
gerecht ist oder nicht. Die aufgetretenen Héaufigkeiten sind in einer Vierfelder-Tafel
(Tabelle 3.25) festgehalten.

Tabelle 3.25. Vierfelder-Tafel fuir Beispiel 3.38

Altes Verfahren Neues Verfahren Summe
Qualitatsgerecht 142 188 330
Nicht qualitdtsgerecht 18 12 30
Summe 160 200 360

Zur Priifung stellen wir die Nullhypothese
H,: ,Beide Merkmale sind unabhingig“

auf. Mit den in Tabelle 3.25 enthaltenen Werten errechnen wir eine Realisierung (3.148)
der PriifgroBe (3.147):
_ 360(142-12 —188-18)* _
“="160-200-330-30 >0

Fir die Irrtumswahrscheinlichkeit o = 0,05 lesen wir weiterhin den kritischen Wert
23051 = 3,8 ab. Zum Entscheid werden beide Werte verglichen.

Da u=3207<38= xévos;l ist, wird die Nullhypothese nicht abgelehnt, d. h., beide
Merkmale sind als unabhéngig zu betrachten. Zwischen der Art der Fertigung und der
Qualitdt der Erzeugnisse kann also keine Abhingigkeit nachgewiesen werden.

Das U-Priifverfahren von Mann-Whitney: Zur Untersuchung der Fragestellung, ob zwei
unabhéngig voneinander gewonnene Stichproben, kurz zwei unabhingige Stichproben,
aus identisch verteilten Grundgesamtheiten gezogen sein konnen, ist es moglich, das
U-Priifverfahren — es zdhlt zu den Rangpriifverfahren — einzusetzen. Das ist z. B. dann
der Fall, wenn ein Erzeugnis auf zwei Maschinen gefertigt wird und ermittelt werden soll,
ob sich die auf beiden Maschinen gefertigten Erzeugnisse hinsichtlich eines bestimmten
Qualitdtsmerkmals unterscheiden. Es ist also zu priifen, ob die beiden Grundgesamthei-
ten X und Y mit den Verteilungsfunktionen Fy(t) = F(t) und Fy(t) = G(¢) fiir alle ¢
(= < t < +») gleich sind.

Wir wenden dazu folgendes Priifverfahren an:

1. Hy: F(1) = G(1).

2. Vorgabe der Irrtumswahrscheinlichkeit o.

3.Zu einer mathematischen Stichprobe (Xi, X, ..., X,,) vom Umfang n, aus der
Grundgesamtheit X mit der Verteilungsfunktion F(f), —® < t< +_ und einer mathe-
matischen Stichprobe (Y3, Y, ..., ¥,,) vom Umfang n, aus der Grundgesamtheit ¥ mit
der Verteilungsfunktion G(f), —® <t <+, werden beide Stichproben zu einer vom
Umfang n = n; + n, vereinigt. Nun wird die PriifgroBe U gewihlt:

U = U, = Anzahl der Inversionen') in der vereinigten und mit einer Rangord-
nung versehenen Stichprobe vom Umfang n.
Dies ist eine diskrete ZufallsgroBe, die ganzzahlige Werte zwischen 0 und n, n, annimmt
und fiir n; + n, = 20 anndhernd

1) Der Begriff Inversion wird in Verbindung mit der konkreten Stichprobe (Pkt.5) erliutert.
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2 12

In diesem Fall ist dann die N(0; 1)-verteilte PriifgroBe anwendbar

N(ln‘nz; Lnln;(n1 +n,+1) )-verteilt ist.

U, - %nlnz
I=—f———, (3.150)
1
*ﬁnlnz(nl +n,+1)

Im anderen Fall ist die Tafel der PriifgroBe U, heranzuziehen, die z. B. in [18] enthalten ist.
4. Bei der Bestimmung des kritischen Bereiches K wollen wir uns auf den Fall der Priif-
groBe (3.150) beschrinken. Er ist bei zweiseitiger Fragestellung aus der Relation

P(|Z| > zi/Ho) = (3.151)
2

und bei einseitiger Fragestellung aus der Relation
P(Zzz,/Hy)=ao (3.152)

zu bestimmen. Wir verweisen hierzu auf die Ausfiihrungen in Abschnitt 3.4.1.

5. Aus einer konkreten Stichprobe x;, i =1, 2, ..., n;, vom Umfang n, aus der Grund-
gesamtheit X und einer konkreten Stichprobe y;, k =1, 2, ..., n,, aus der Grundgesamt-
heit Y bilden wir die vereinigte Stichprobe vom Umfang n, + n, = n. Die Elemente dieser
Stichprobe ordnen wir mit dem kleinsten beginnend der GroBe nach, d.h., wir stellen eine
Rangordnung her und ermitteln die Gesamtanzahl der Inversionen dieser Stichprobe.
Dabei wird unter einer Inversion eines beliebigen Paares (x;,y;) die Erfiullung der Rela-
tion y; < x; verstanden. Eine Inversion liegt also dann vor, wenn in der Rangfolge y, vor x;
steht.

Anmerkung: Stehen alle x;,i =1,2,...,n,, in der Rangfolge vor den y,k =1,2,...,n,, so
ist die Anzahl der Inversionen also 0. Begriinden Sie, warum diese dann, wenn alle
Yo, k=1,2,...,n,, vor den x;,i =1,2,...,n,, stehen, n, - n, betrdgt. In beiden Fillen wer-
den die Stichproben nicht aus derselben Grundgesamtheit stammen.

Die Gesamtanzahl der Inversionen in der aus den beiden konkreten Stichproben gebil-
deten Stichprobe stellt dann gleichzeitig eine Realisierung u, der PriifgroBe U, dar:

Uy = Z 2 T = x3), (3.153)
k=1 i=1

wobei

o 1 fur yo—x<0,
G x*)_{O fir y,—x20 (.154)

ist. Treten bei den Stichproben gleiche MeBwerte, sogenannte Bindungen auf, so wird die
Differenz zwischen beiden gleich null; entsprechend (3.154) soll ein solcher Fall nicht als
Inversion gezdhlt werden.

Bei unseren Betrachtungen wollen wir uns auf den Fall n; + n, = 20 beschrianken. Wir
konnen deshalb fiir den Vergleich eine Realisierung der PriifgroBe (3.150) wihlen:

Uy — % nyn,
I —— (3.155)

1
V) niny(ny + ny + 1)
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Uber die Nullhypothese H, kann auf Grund unserer in 5. gegebenen Beschrinkung
nach der in 3.4.1. angegebenen Weise entschieden werden.

Beispiel 3.39: Auf zwei Priifgeriten sollen fiir ein bestimmtes Material gleichzeitig Deh-
nungsversuche durchgefiihrt werden. In einem Vorversuch soll mit einer Irrtumswahr-
scheinlichkeit & = 0,05 ermittelt werden, ob beide Gerite gleichméBig arbeiten, d.h. ob
die an beiden Geriten ermittelten MeBwerte einer Grundgesamtheit entstammen kénnen.
Dazu wurden die an Probestében eines bestimmten Materials fiir eine feste Belastung er-
mittelten Dehnungen [mm] festgehalten.

Bei dem ersten Gerét wurden bei n, = 10 Versuchen folgende Dehnungen festgestellt,
wobei mit X die entsprechende Grundgesamtheit gekennzeichnet wurde:

x;= 5,0, x5=25,0, xy =451,
x;= 9,9, xs = 30,6, X10=49,8.
x; = 14,6, x7=136,0,
x4=20,1, x3 =404,

Bei dem zweiten Gerit wurden bei n, = 10 Versuchen folgende Dehnungen ermittelt, wo-
bei mit Y die entsprechende Grundgesamtheit gekennzeichnet ist:

»n= 52, s =248, vy =458,
y,=10,1, Y6 =269, Y10 =50,0.
y3 =145, y7=358,
¥4=20,2, ys = 40,6,

Tabelle 3.26. Rangzahlen und Inversionen
fiir Beispiel 3.39

MeBwerte Rangzahlen Inversionen
X; Yk

5,0 - 1 - -
- 5.2 - 2 9

9,9 - 3 - -
- 10,1 - 4 8
- 14,5 - 5 8
14,6 - 6 - -
20,1 - 7 - -
- 20,2 - 8 6
- 24,8 - 9 6
25,0 - 10 - -
- 26,9 - 11 N
30,6 - 12 - -
- 35,8 - 13 4
36,0 - 14 - -
40,4 - 15 - -
- 40,6 - 16 2
45,1 - 17 - -
- 458 - 18 1
49,8 - 19 - -
- 50,0 - 20 0

49
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Zur Priifung der aufgeworfenen Problematik stellen wir die Nullhypothese

H,: ,Die Verteilungsfunktionen der beiden Grundgesamtheiten sind fiir alle ¢
gleich“

auf, vereinigen die beiden konkreten Stichproben zu einer vom Umfang n = n, + n,, ord-
nen die Elemente dieser neuen Stichprobe nach der GroBe und ermitteln die Gesamt-
anzahl der vorliegenden Inversionen.

In Tabelle 3.26 sind die entsprechenden Ergebnisse zusammengefaBt. Insgesamt treten
u, =49 Inversionen auf. Damit kann die Realisierung (3.155) der PriifgroBe (3.150) be-
rechnet werden:

1
49—7'10'10

z= T =-0,0756.
\/3-10-10(10+ 10+ 1)

Wir fiihren fiir die Irrtumswahrscheinlichkeit o = 0,05 den Entscheid bei zweiseitiger Fra-
gestellung durch, wobei zqgs = 1,96 ist. Da nun |z |=0,0756 < 1,96 = z,; ist, wird die
Nullhypothese H, nicht abgelehnt, d.h., die beiden Geridte unterscheiden sich nicht we-
sentlich voneinander.

3.8. Aufgaben

3.1: Die Zugfestigkeit [10 MPa] einer Sorte von Stahlblechen wird untersucht. 90 MeB-
werte enthilt die folgende Urliste:

49,9 48,8 51,2 50,5 50,1 48,7 50,9 51,4 50,6 50,0
49,5 48,0 49,1 45,9 47,0 50,0 46,2 48,0 492 474
50,8 50,4 49,2 455 478 47,7 48,4 49,8 46,6 46,0
47,2 46,3 48,6 47,0 46,0 48,2 46,3 48,2 473 474
47,7 44,4 453 43,1 47,0 48,4 46,6 474 451 46,6
48,0 47,8 42,0 45,5 478 452 446 423 437 453
46,0 435 452 43,4 47,0 46,8 46,5 47,7 484 489
48,0 483 50,1 46,5 47,9 48,8 45,1 48,5 51,3 47,0
49,5 49,1 44,7 49,2 444 49,3 48,7 448 479 46,9
Stellen Sie eine sekundire Haufigkeitstabelle auf und zeichnen Sie das zugehorige Histo-
gramm, das Héufigkeitspolygon und das Summenpolygon! Berechnen Sie X und s!

3.2: Zeigen Sie, daB das arithmethische Mittel X eine erwartungstreue Schitzfunktion
fiir den Erwartungswert x4 einer Grundgesamtheit X ist!

3.3: In einer Werkhalle arbeiten 12 gleichartige Maschinen. Die Anzahl der durch Sto-
rungen in einer bestimmten Zeiteinheit ausgefallenen Maschinen kann als poissonver-
teilte ZufallsgroBe X aufgefaBt werden. In n = 220 Zeiteinheiten wurden die Ausfille ge-
zdhlt. Das Ergebnis dieser Beobachtungen enthilt folgende Tabelle:

kK | 0 1 2 3 4567 89 10 11 12
B | 38 66 56 27 18 7 4 2 1 1 0 0 0O

(h, Anzahl der Zeiteinheiten mit k ausgefallenen Maschinen)

Unter Verwendung der Maximum-Likelihood-Methode ist der Parameter 4 = E(X) dieser
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Poisson-Verteilung zu schdtzen. Berechnen Sie danach die Wahrscheinlichkeit
PX=2)!

3.4: Von einer exponentialverteilten Grundgesamtheit X ist der Parameter ® = 4 unbe-
kannt. Mit Hilfe einer konkreten Stichprobe xi, x5, ..., x, ist nach der Maximum-Likeli-
hood-Methode fiir 4 ein Schitzwert zu ermitteln.

3.5: Eine konkrete Stichprobe vom Umfang 100 stamme aus einer normalverteilten
Grundgesamtheit mit dem Parameter o = 2. Die Stichprobe hat den Mittelwert X = 6,4.
Bestimmen Sie zu dem Konfidenzniveau 0,95 ein konkretes Konfidenzintervall fiir den
Parameter u!

3.6: Wie groB muB in Aufgabe 3.5 der Stichprobenumfang n gewéhlt werden, damit wir
zu dem Konfidenzniveau 0,95 ein konkretes Konfidenzintervall mit der Lange 0,5 erhal-
ten?

3.7: Welche konkreten Konfidenzintervalle ergdben sich in Aufgabe 3.5, wenn n = 400
bzw. n =10 wire?

3.8: Es wurden 5 unabhéngige Messungen zur Bestimmung der Ladung eines Elektrons
durchgefiihrt. Die Versuche lieferten folgende Resultate (in absoluten elektrostatischen
Einheiten)

4,781-1071°; 4,792-107°; 4,769-1071;

4,795-1071°; 4,779-107°1°,
Es sind eine Schétzung fiir die GroB8e der Ladung des Elektrons und unter der Annahme,
daB die Stichprobe aus einer normalverteilten Grundgesamtheit stammt, ein konkretes
Konfidenzintervall mit & = 0,01 anzugeben. (Entnommen [16])

3.9: Fiir die ZufallsgroBe X (Zugfestigkeit) in Aufgabe 3.1 ist zu dem Konfidenzniveau
0,95 fiir den Parameter 4 der zugehorigen Grundgesamtheit ein konkretes Konfidenz-
intervall zu ermitteln.

3.10: Eine konkrete Stichprobe vom Umfang n = 25, die einer normalverteilten Grund-
gesamtheit entnommen wurde, ergibt s> = 8,5. Mit « = 0,05 ist ein konkretes Konfidenz-
intervall fiir den Parameter ¢? zu ermitteln.

3.11: Die Lebensdauer X einer Gliihlampenart wird gepriift. Eine konkrete Stichprobe
vom Umfang n =25 ergab X = 2480 Stunden und s = 18 Stunden. Unter der Annahme,
daB X eine normalverteilte ZufallsgroBe ist, sind fiir die Parameter x und ¢ mit & = 0,05
konkrete Konfidenzintervalle zu berechnen.

3.12: Aus der Produktion von Kugellagern wurden 150 Stiick zufdllig entnommen. In
dieser Stichprobe sind 6 unbrauchbare. Der AusschuBprozentsatz p-100% der Gesamt-
produktion ist unbekannt. Mit Hilfe der Stichprobe ist ein konkretes Konfidenzintervall
fiir p mit o« = 0,05 zu berechnen.

3.13: An 40 Einzelteilen (Stichprobe aus einer Tagesproduktion) wird der Sollwert
eines MaBes gepriift. Die Stichprobe liefert einen Mittelwert der Abweichung vom Soll-
wert von X = 22,95 um und die Standardabweichung s = 4,42 pm. Unter der Vorausset-
zung, daB die zugehorige Grundgesamtheit normalverteilt ist, ist zu testen, ob diese Stich-
probe aus einer Grundgesamtheit mit x, = 20 pm stammen kann. Es sei & = 0,01.

3.14: Eine konkrete Stichprobe vom Umfang n = 16 aus einer normalverteilten Grund-
gesamtheit X ergibt die Standardabweichung s = 3,9. Es ist mit & = 0,05 bei einseitiger
Fragestellung zu testen, ob diese Stichprobe aus einer Grundgesamtheit mit o2 = ¢ = 10
stammen kann.

*

*

*

*
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3.15: Ein bestimmtes Erzeugnis wird nach 2 Verfahren hergestellt. Es wird untersucht,
ob bei beiden Verfahren der Rohstoffverbrauch pro Produkt der gleiche ist. X sei der Roh-
stoffverbrauch bei dem ersten Verfahren und Y bei dem zweiten Verfahren. Eine Stich-
probe aus X ist 3,6; 3,3; 3,9; 3,5; 3,7; 3,0; eine Stichprobe aus der Grundgesamtheit Y ist
4,5; 4,8; 4,5; 4,2; 3,5. Unter der Annahme, daB ¢ bei beiden Grundgesamtheiten gleich
ist, ist mit & = 0,05 die Hypothese Hy: E(X) = E(Y) zu priifen. Weiterhin sei vorausge-
setzt, daB X und Y normalverteilt sind.

3.16: In der Aufgabe 3.15 wurde die Annahme gemacht, daB D?(X) = D*(Y) = ¢? ist.
Testen Sie diese Annahme mit & = 0,05.

3.17: Priifen Sie, ob die konkrete Stichprobe vom Umfang n = 150 in Aufgabe 3.12 aus
einer Null-Eins-verteilten Grundgesamtheit X mit E(X) = p, = 0,02 stammen kann! Die
Irrtumswahrscheinlichkeit sei 0,01.

3.18: Werten Sie mit Hilfe des Wahrscheinlichkeitsnetzes das Zahlenmaterial in Auf-
gabe 3.1 aus!

3.19: Priifen Sie mit einer Irrtumswahrscheinlichkeit & = 0,05, ob die in Aufgabe 3.1
angegebene Urliste eine konkrete Stichprobe aus einer normalverteilten Grundgesamtheit
sein kann!

3.20: Aus einer Grundgesamtheit (X, Y) wurde folgende konkrete Stichprobe vom Um-
fang n = 6 entnommen:
x| 2,4 33 4.4 5,7 7,7 9,6
y | 35 48 58 71 95 117
Fiir X und Y gelten die Voraussetzungen des Abschnittes 3.6.2. Mit Hilfe dieser kon-
kreten Stichprobe ist
a) eine Schitzung fiir die Regressionsgerade 7(x) = f; + fyx,
b) mit der Irrtumswahrscheinlichkeit o = 0,05 ein konkretes Konfidenzintervall fiir
den Regressionskoeffizienten f, zu ermitteln.

3.21: Unter der Annahme, daB die Stichprobe
x | 2 4 5 7 8
v | 4 6 5 6 1

aus einer normalverteilten Grundgesamtheit stammt, ist fiir den Korrelationskoeffi-
zienten gyy ein Schétzwert zu bestimmen.

3.22: Ein Werk liefert Eisenplatten. Der Verwendungszweck dieser Platten erfordert,
daB sie eine gleichméBige Dicke besitzen. Zur Untersuchung dieses Merkmales werden
der Lieferung 5 Platten entnommen. An jeder dieser Platten wird die Dicke [mm] an
vier verschiedenen Stellen gemessen. Die MeBergebnisse enthilt folgende Tabelle:

Stellen-Nr. | Platten-Nr.
1 2 3 4 5

9,3 9,3 9,1 9,3 9,2

9,6 9,5 9,6 9,5 9,5

9,1 9,1 9,0 9,0 9,0

9,7 9,7 9,5 9,6 9,5

Auf Grund dieser Stichprobe ist zu entscheiden, ob der Unterschied der Plattenstirke
zwischen den verschiedenen MeBstellen zufillig oder signifikant ist. Als Irrtumswahr-
scheinlichkeit wird o = 0,01 gewihlt.

N




2.1:

2.3:

2.4:

2.8:

2.10:

2.12:

2.13:

2.14:

2.15:

2.16:

2.19:

2.20:

Losungen der Aufgaben

a) AnC...,Die gezogene Zahl ist hochstens gleich 12 und gerade®;
BnCnD...,Die gezogene Zahl ist 12 oder 18%;
BuD...,Die gezogene Zahl ist mindestens gleich 8 oder ein Vielfaches von 3;
(A uB)n D...,Die gezogene Zahl ist ein Vielfaches von 3;
B n C...,Die gezogene Zahl ist 2 oder 4 oder 6%;
(AnB)nCnD...,Die gezogene Zahl ist mindestens gleich 8, gerade und kein Vielfa-
ches von 3¢
b) F=BnC; G=4nC; H=BnCu@AnT).

D=An(B;UB,UB;UB)N(C,UC); D=AU(B nB,nB;nBY)uU(CnTCy.

(') (¥

10! 31 10! . . b 1L,
IR LI 3 (U 25 @) A =
12! 12! (k> (k>
47 9 1 1 1
?WE 2.9: a)?, b) ?, 0)7
376' 211: a) 0,9998;  b) 00081; ) 0,0919; d) 03911, e) 0,5087.

k| -2 0 | +2
PX=k) | p* [ 2p-p) | A-p)

0 fur =0,
1
W a=5;5  b) K= % fir 0<1=2,
1 fir 2<¢t.
1, )
7 fir t=<0, 1
a) Fx(t)= 1 b) P(0§X<1)=7(1—e-l):0,3161.

——a-f i .
1 7e fur ¢t>0;

E(X)=2.
0 fir 1=1, 15 .
a) Fx(t) = 1,% fir > 1; b) PA=X<2)=3£=09375; ¢ EX)=7;
¢ 2 2 2 2 4 - 81 -
& EX) =2, DX)=EX)-(EX)y=7; e P(Xz3) =7 =03164.
0 fur ts -3,
01 fir -3<t=0, b) P(X>0)=0,75;
_Jo2s fir 0<t=1, o
O BO=1035 mr 1<r=2, ¢ EX)=15;
06 fir 2<t=3, d) D*(X)=335.
1 fir 3<t;
gk L0 | 1 | 2 b) 0,648;

P(X=k) | 0,216 | 0,432 | 0,288 | 0,064
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2.21:

2.22:

2.23:

2.25:

3.1
3.4:
3.7:
3.8:
3.11:

3.13:

3.14:
3.15:
3.16:
3.17:
3.19:
3.20:
3.22:

Losungen der Aufgaben

0 fir
0,216 fir
0,648 fir
0,936 fiir
1 fir

t=0,
0<t=1,
1<t=2,
2<ts3,
3<t;

©) Fx(t)= d) 1.2

e) 0,72.

Jede Zahl aus dem Intervall (0,1] ist Quantil der Ordnung 0,1; 0,2; 0,3.
Jede Zahl aus dem Intervall (1,2] ist Quantil der Ordnung 0,4; 0,5.

() ()6 &)

30
4
2.24: a) 0,841345;
p N(0;1) N2;3)
2
) b) l’zife"v”=0,2362,
0,01 -2,33 -4,99
0,05 -1,64 -2,92
0,1 -1,28 -1,84
0,2 -0,84 -0,52
a), b)
x Y |0 1 2 3
0 0,000001  0,000027 0,000243 0,000729 0,001 000
1 0,000270 0,004 860 0,021870 0 0,027000
2 0,024300  0,218700 0 0 0,243 000
3 0,729000 0 0 0 0,729000
0753571 0,223587 0,022113 0,000729 1,000 000
o k | o0 | 1 2 |3
P(X=KkY=1) | 0,000121 | 0,021737 | 0,978143 | 0
X=4747; s=2,14. 3.3: i=191; P(X=2)=0,700.
i=1 35: 601<u<679. 3.6 n~246.
X
62<u<66 bzw. 516<u<7,64. 3.9: 47,03 <pu<4791.

X=4,783-10"1%; 4,761-1071°< u < 4,805-1071°,
2472,6 <u <24874; 14<g<252.
Die Hypothese Hy:
Die Hypothese H,:
Die Hypothese Hy:
Die Hypothese Hy:

Die Hypothese H,:

E(X) = E(Y) wird abgelehnt.

Die Hypothese H,:

a) y=0,89+1,12x; b) 1,05 < f, < 1,19.

E(X) = puo =20 wird abgelehnt.
D*(X) = ¢} = 10 wird nicht abgelehnt.

3.10:
3.12:

D*(X) = D*(Y) wird nicht abgelehnt.
E(X) = py= 0,02 wird nicht abgelehnt.
Fy(t) = ®D(t; o, 0p) wird nicht abgelehnt.
3.21:

Die Hypothese Hy: u, = uy = u3 = pq wird abgelehnt.

52<02<16,4.
0,018 < p <0,085.

ryy = 0,86.
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Tafel 3. x*-Verteilung: 2, ,-Werte (s. Bild S.210)

Anzahl der | Irrtumswahrscheinlichkeit o
Freiheits-
grade m 0,99 0,975 0,95 0,05 0,025 0,01
1 0,00016 0,00098 0,0039 38 5,0 6,6
2 0,020 0,051 0,103 6,0 7.4 9,2
3 0,115 0,216 0,352 7.8 9,4 11,3
4 0,297 0,484 0,711 9,5 11,1 133
5 0,554 0,831 1,15 11,1 12,8 15,1
6 0,872 1,24 1,64 12,6 14,4 16,8
7 1,24 1,69 2,17 14,1 16,0 18,5
8 1,65 2,18 2,73 15,5 17,5 20,1
9 2,09 2,70 3,33 16,9 19,0 21,7
10 2,56 3,25 3,94 18,3 20,5 232
11 3,05 3,82 4,57 19,7 21,9 24,7
12 3,57 4,40 523 21,0 233 26,2
13 4,11 5,01 5,89 224 247 27,7
14 4,66 5,63 6,57 23,7 26,1 29,1
15 5,23 6,26 7,26 25,0 27,5 30,6
16 5,81 6,91 7,96 26,3 28,8 32,0
17 6,41 7,56 8,67 27,6 30,2 334
18 7,01 8,23 9,39 28,9 31,5 34,8
19 7,63 8,91 10,1 30,1 32,9 36,2
20 8,26 9,59 10,9 314 342 37,6
21 8,90 10,3 11,6 32,7 355 38,9
22 9,54 11,0 12,3 339 36,8 40,3
23 10,2 11,7 13,1 35,2 38,1 41,6
24 10,9 12,4 13,8 36,4 394 43,0
25 11,5 13,1 14,6 37,7 40,6 443
26 12,2 13,8 15,4 389 41,9 45,6
27 12,9 14,6 16,2 40,1 432 47,0
28 13,6 15,3 16,9 41,3 445 48,3
29 14,3 16,0 17,7 42,6 45,7 49,6
30 15,0 16,8 18,5 43,8 47,0 50,9
40 22,2 244 26,5 55,8 59,3 63,7
50 29,7 324 348 67,5 71,4 76,2
60 37,5 40,5 432 79,1 833 88,4
70 45,4 48,8 51,7 90,5 95,0 100,4
80 53,5 57,2 60,4 101,9 106,6 112,3
90 61,8 65,6 69,1 113,1 118,1 124,1
100 70,1 74,2 71,9 1243 129,6 1358
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Tafel 4. t-Verteilung: t,, ,- und t, -Werte (s. Bilder S.210)
PR

Anzahl der | Irrtumswahrscheinlichkeit o fiir zweiseitige Fragestellung
Freiheits-
grade m 0,10 0,05 0,02 0,01 0,002 0,001
1 6,31 12,7 31,82 63,7 3183 637,0
2 1,92 4,30 6,97 9,92 22,33 31,6
3 2,35 3,18 4,54 5,84 10,22 12,9
4 2,13 2,78 3,75 4,60 7,17 8,61
5 2,01 2,57 3,37 4,03 5,89 6,86
3 1,94 2,45 3,14 31 521 5,96
7 1,89 2,36 3,00 3,50 479 5,40
8 1,86 2,31 2,90 3,36 4,50 5,04
9 1,83 2,26 2,82 3,25 4,30 4,78
10 1,81 2,23 2,76 3,17 4,14 4,59
11 1,80 2,20 2,72 3,11 4,03 4,44
12 1,78 2,18 2,68 3,05 3,93 4,32
13 1,77 2,16 2,65 3,01 3,85 4,22
14 1,76 2,14 2,62 2,98 3,79 4,14
15 1,75 2,13 2,60 2,95 3,73 4,07
16 1,75 2,12 2,58 2,92 3,69 4,01
17 1,74 2,11 2,57 2,90 3,65 3,96
18 1,73 2,10 2,55 2,88 3,61 3,92
19 1,73 2,09 2,54 2,86 3,58 3,88
20 1,73 2,09 2,53 2,85 3,55 3,85
21 1,72 2,08 2,52 2,83 3,53 3,82
22 1,72 2,07 2,51 2,82 3,51 3,79
23 1,71 2,07 2,50 2,81 3,49 3,717
24 1,71 2,06 2,49 2,80 3,47 3,74
25 1,71 2,06 2,49 2,79 3,45 3,72
26 1,71 2,06 2,48 2,78 3,44 3,711
27 1,71 2,05 2,47 2,77 3,42 3,69
28 1,70 2,05 2,46 2,76 3,40 3,66
29 1,70 2,05 2,46 2,76 3,40 3,66
30 1,70 2,04 2,46 2,75 3,39 3,65
40 1,68 2,02 2,42 2,70 331 3,55
60 1,67 2,00 2,39 2,66 3,23 3,46
120 1,66 1,98 2,36 2,62 3,17 3,37
ol) 1,64 1,96 2,33 2,58 3,09 3,29
0,05 0,025 0,01 0,005 0,001 0,0005
Irrtumswahrscheinlichkeit o fiir einseitige Fragestellung

') Fiir den Freiheitsgrad m— o ist die Normalverteilung Grenzverteilung der z-Verteilung. Spe-
zielle Quantile der Normalverteilung, die i.allg. fiir statistische Untersuchungen von Interesse sind,
lassen sich in der Zeile m = « ablesen.
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Tafel 5.1. F-Verteilung: f,. .1, my-Werte fiir « = 0,01 (s. Bild S. 210)
my
m
1 2 3 4 5 6 8 12 24 30 40 ®
114052 4999 5403 5625 5764 5859 5981 6106 6234 6261 6287 6366
2198,49 99,00 99,17 99,25 9930 99,33 99,36 99,42 99,46 99,47 99,47 99,50
313412 30,81 29,46 28,71 2824 2791 2749 27,05 26,60 26,50 26,41 26,12
412120 18,00 16,69 1598 1552 1521 1480 14,37 1393 13,84 13,74 13,46
516,26 13,27 12,06 11,39 1097 10,67 1027 9,89 947 938 929 9,02
6(13,74 10,92 9,78 9,15 875 847 810 7,72 731 723 714 6,88
711225 9,55 845 785 746 719 684 647 607 599 591 565
81126 865 7,59 701 663 637 603 567 528 520 512 486
910,56 8,02 699 6,42 606 580 547 511 473 465 457 431
10(10,04 7,56 6,55 599 564 539 506 471 433 425 417 391
11| 9,65 1720 622 567 532 507 474 440 402 394 386 3,60
12 933 6,93 595 541 506 48 450 416 3,78 3,70 3,62 3,36
13| 9,07 6,70 574 520 486 462 430 39 359 351 343 3,16
14| 838 6,51 556 503 4,69 446 414 380 343 335 327 3,00
15| 8,68 6,36 542 489 456 432 400 367 329 321 313 287
16| 853 6,23 529 477 444 420 389 355 318 310 3,02 275
17| 840 6,11 518 4,67 434 410 379 345 308 300 2,92 265
18| 828 6,01 509 4,58 425 401 371 337 300 292 284 257
19| 818 593 501 450 417 394 363 330 292 284 276 249
20| 810 585 494 443 410 387 35 323 28 2,78 2,69 242
21| 8,02 578 487 437 404 381 351 317 280 2,72 2,64 236
22| 794 572 482 431 399 376 345 312 2,75 2,67 2,58 231
23| 7,88 566 476 426 394 371 341 3,07 2,70 2,62 2,54 226
24| 782 561 472 422 39 3,67 336 303 266 258 249 221
25| 7,77 557 468 4,18 386 3,63 332 299 262 254 245 217
26| 7,72 553 464 414 382 359 329 29 2,58 250 242 2,13
27| 7,68 549 460 411 378 356 326 293 255 247 238 210
28| 7,64 545 457 407 375 353 323 290 252 244 235 2,06
29| 7,60 542 454 404 373 350 320 287 249 241 233 2,03
30| 7,56 539 451 402 3,70 347 317 284 247 238 230 2,01
40| 7,31 518 431 383 351 329 299 266 229 220 211 1,80
60| 7,08 498 413 365 334 312 28 250 212 203 19 1,60
120 6,85 479 395 348 317 29 266 234 195 18 1,76 1738
«| 664 460 378 332 302 28 251 218 1,79 1,70 1,59 1,00
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Tafel 5.2. F-Verteilung: f,, », »,-Werte fir « = 0,05

m,
my
1 2 3 4 5 6 8 12 24 30 40 ®

1(161,4 199,5 215,7 224,6 230,2 2340 2389 2439 249,00 250 251 254,3
2| 18,51 19,00 19,16 19,25 19,30 19,33 19,37 19,41 1945 19,46 1947 19,50
3] 10,13 9,55 928 9,12 901 894 884 874 864 862 860 853
41 771 694 6,59 639 626 616 6,04 591 577 574 571 563
5| 661 579 541 519 505 495 482 468 453 450 446 436
6| 599 514 476 453 439 428 415 400 384 381 377 3,67
71 559 474 435 412 397 387 373 357 341 338 334 323
8| 532 446 407 384 369 358 344 328 312 308 305 293
9 512 426 386 363 348 337 323 307 29 28 282 271
10 49 410 3,71 348 333 322 307 291 274 270 267 254
11| 484 398 359 336 320 3,09 295 2,79 261 2,57 253 240
12| 475 3,88 349 326 311 3,00 285 269 250 246 242 230
13| 467 380 341 318 3,02 292 2797 260 242 238 234 221
14| 460 374 334 311 296 285 270 253 235 231 227 213
15| 454 368 329 306 29 2,79 2,64 248 229 225 221 2,07
16 449 363 324 301 285 274 259 242 224 220 216 201
17| 445 359 320 29 281 270 255 238 219 215 211 1,96
18| 441 355 316 293 2,77 266 251 234 215 211 2,07 1,92
19| 438 352 313 29 2,74 263 248 231 211 2,07 2,02 1,88
200 435 349 310 287 2,71 260 245 228 2,08 2,04 199 1,84
21| 432 347 307 284 268 257 242 225 205 200 19 181
22| 430 344 305 282 266 255 240 223 2,03 1,98 1,93 1,78
23| 428 342 303 280 264 253 238 220 200 19 191 1,76
24| 426 340 301 278 262 251 236 218 1,98 194 189 1,73
25| 424 338 299 276 260 249 234 216 19 1,92 187 1,71
26| 422 337 298 2,74 259 247 232 215 1,95 1,90 185 1,69
27| 421 335 29 2,793 257 246 230 213 1,93 188 184 1,67
28| 420 334 295 271 256 2,44 229 212 191 1,87 181 1,65
29| 4,18 333 293 270 254 243 228 210 19 185 180 1,64
300 417 332 292 2,69 253 242 227 209 189 184 1,79 1,62
40| 4,08 323 284 261 245 234 218 200 1,79 1,74 1,69 151
60| 4,00 315 276 2,52 237 225 210 1,92 1,70 1,63 1,59 1,39
120 3,92 3,07 268 245 229 217 202 183 1,61 1,55 1,46 1,25
o| 384 299 260 237 221 209 194 175 1,52 1,46 1,35 1,00
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Tafel 6. Einzelwahrscheinlichkeiten der Poisson-Verteilung:

k
P(X= k)=-i—,-e"‘

k A
0,1 0,2 0,3 0,4 0,5 0,6
0 0,904 837 0,818731 0,740818 0,670320 0,606 531 0,548 812
1 0,090484 0,163 746 0,222245 0,268128 0,303265 0,329287
2 0,004 524 0,016 375 0,033337 0,053626 0,075816 0,098 786
3 0,000151 0,001091 0,003334 0,007150 0,012636 0,019757
4 0,000 004 0,000055 0,000250 0,000715 0,001 580 0,002 964
5 0,000 002 0,000015 0,000057 0,000158 0,000356
6 0,000001 0,000004 0,000013 0,000035
7 0,000001 0,000 003
k A
0,7 0,8 0,9 1,0 2,0 3,0

0 0,496 585 0,449329 0,406 570 0,367879 0,135335 0,049 787
1 0,347610 0,359463 0,365913 0,367879 0,270671 0,149361
2 0,121663 0,143785 0,164 661 0,183 940 0,270671 0,224042
3 0,028 388 0,038343 0,049 398 0,061313 0,180447 0,224 042
4 0,004 968 0,007 669 0,011115 0,015328 0,090224 0,168 031
5 0,000695 0,001227 0,002 001 0,003 066 0,036 089 0,100819
6 0,000081 0,000 164 0,000 300 0,000511 0,012030 0,050409
7 0,000008 0,000019 0,000039 0,000073 0,003 437 0,021 604
8 0,000 002 0,000004 0,000 009 0,000859 0,008 101
9 0,000001 0,000191 0,002 701
10 0,000038 0,000810
11 0,000 007 0,000221
12 0,000001 0,000055
13 0,000013
14 0,000003
15 0,000 001
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Tafel 6. (Fortsetzung)

k A
4,0 5,0 6,0 7,0 8,0 9,0
0 0,018316 0,006 738 0,002 479 0,000912 0,000335 0,000123
1 0,073263 0,033690 0,014 873 0,006 383 0,002 684 0,001111
2 0,146 525 0,084224 0,044618 0,022 341 0,010735 0,004 998
3 0,195367 0,140374 0,089235 0,052129 0,028 626 0,014994
4 0,195367 0,175467 0,133853 0,091126 0,057252 0,033737
5 0,156293 0,175467 0,160623 0,127717 0,091604 0,060 727
6 0,104 194 0,146223 0,160 623 0,149003 0,122138 0,091090
7 0,059 540 0,104 445 0,137677 0,149003 0,139587 0,117116
8 0,029770 0,065278 0,103258 0,130377 0,139587 0,131756
9 0,013231 0,036266 0,068 838 0,101405 0,124077 0,131756
10 0,005292 0,018133 0,041303 0,070983 0,099262 0,118 580
11 0,001925 0,008 242 0,022 529 0,045171 0,072190 0,097020
12 0,000 642 0,003 434 0,011262 0,026 350 0,048127 0,072765
13 0,000197 0,001321 0,005 199 0,014188 0,029616 0,050376
14 0,000056 0,000472 0,002228 0,007 094 0,016 924 0,032384
15 0,000015 0,000157 0,000 891 0,003311 0,009026 0,019431
16 0,000 004 0,000090 0,000334 0,001448 0,004 513 0,010930
17 0,000001 0,000014 0,000118 0,000 596 0,002 124 0,005 786
18 0,000 004 0,000039 0,000232 0,000 944 0,002 893
19 0,000001 0,000012 0,000085 0,000397 0,001370
20 0,000 004 0,000030 0,000159 0,000617
21 0,000001 0,000010 0,000061  0,000264
22 0,000003 0,000 022 0,000 108
23 0,000001 0,000008 0,000 042
24 0,000003 0,000016
25 0,000001 0,000006
26 0,000002
27 0,000001
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Tafel 7. Zufallszahlen

4357
5339
6583
6564
4811

6931
8755
6742
6655
8514

8135
4414
3727
5434
7195

2705
1547
3424
8969
5225

6432
3085
0264
8710
5736
7529
5133
3170
3024
4398

0082
4351
3268
4391
7328

3835
8731
2995
5597
3081

7406
5969
4765
3219
6906

7993
2549
3672
2217
3162

4146
7325
8433
3526
1933

7236
3390
2260
3030
4806

5004
6855
7959
7342
8828

8245
8981
1435
7551
7820

9861
5903
1246
2419
9001

1339
7995
9915
0680
3121

5419
6516
0086
8487
0705

2938
4980
7868
9028
5876

4439
9442
9647
2532
8859

3141
3737
7033
0293
9968

8353
6862
0717
2171
3763

1230
6120
3443
9014
4124

7299
0127
5056
0314
9869

6251
4972
1354
3695
8898

1516
8319
3687
6065
3132

4802
8030
6960
1127
7749

7659
6814
7580
4884
0652

2671
8674
0683
5660
8150

5683
7696
4364
7571
5044

0103
7686
4844
3978
6369

9952
7584
0606
3809
6265

0441
7825
0190
6032
9286

8981
5489
5983
7252
2785

9611
1280
7631
4915
2478

2849
2744
9759
0036
4521

5751
7408
2621
8088
8191

2061
5898
1337
1488
9424

4691
4506
3768
5006
1360

6877
7510
1037
2815
8826

4528
0723
0149
5933
1258

8004
8634
9284
3428
8931

4013
9005
9278
7574
0449

4689
5157
8021
0067
3186

1077
4286
7260
7921
3342

2539
0814
6995
9650
9973

3785
2186
6718
0200
2087

2506
3973
3884
2249
7082

0559
7262
0625
8325
1868

2920
1620
4975
8696
6218

7988
4505
7412
1032
0416

[entnommen dem Tafelwerk von Owen]

7945
3485
2719
5523
0649

1352
7012
1816
1685
5051

1950
6386
0204
2800
8375

0641
5678
7361
2913
9200

2208
7318
6565
2027
5070

7125
0725
4059
5868
8270

7573
8103
5679
6661
8579

8382
8127
9887
9677
9265

9588
4973
1998
9248
3206

4635
6841
6370
5192
4326

1530
2278
1888
9078
8085

6563
1643
7697
5258
4772

2271
7492
7616
6292
7414

0195
0338
0151
3840
8836

4595
8619
3949
6042
8078

4922
5554
9919
0084
5233

1157
3616
4830
5774
5647

2825
2022
7060
2169
3277

3002
1911
1359
9410
9034

8478
1379
1884
1732
7840

5207
5832
2889
0648
6177

1499
9934
7933
3100
4651

2201
3736
4325
4706
7232

7024
8096
8903
9031
7269

8616
7614
1012
5467
4150

8877
5664
1007
6362
3980

3979
2049
4509
7205
5571

4928
2178
0514
3196
8465

2869
1288
1346
9282
0843

9094
6460
0717
2137
6525

4730
0612
0285
7768
4450

7332
4044
0067
5358
0038

8344
7164
7454
3454
0401

6202
8284
9056
9747
2992

6170
3265
0179
1839
2276

9530
6791
6469
6808
6774

2309
7843
9587
2717
9667

5379
7463
0034
0357
7502

3746
6160
6125
6572
9832

9077
1869
5740
9357
2608

1967
8118
2765
3326
2139

3068
7022
2906
1929
1580

3852
0498
5039
6881
2483

3899
7010
8684
9735
6284

5865
5999
0059
5571
5059

6499
9677
5410
3727
8522

0811
0568
2184
0730
5855

8635
4842
8600
7811
6458

3690
9797
5078
3940
2703

5306
5700
8471
5941
5255
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9(t,07) 9(t,07)
d(x)
9
I x t [ X t
Bild zu Tafel 1 Bild zu Tafel 2
f(t)
fye(f)
o
o
! Xom ' l Fomymg t
Bild zu Tafel 3 Bild zu Tafel 5
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x K4
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Bild zu Tafel 4 Bild zu Tafel 4
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