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1. Einleitung

In den letzten beiden Jahrzehnten werden in zunehmendem Maße ebenso wie die
Wahrscheinlichkeitsrechnung und die mathematische Statistik auch die Theorie der
stochastischen Prozesse und Klassen von stochastischen Modellen zur mathe<
matischen Bearbeitung von Problemen der gesellschaftlichen Praxis eingesetzt. Das
ist z. B. der Fall bei der Beschreibung von Rauschvorgängen in der Nachrichten-
technik, bei der Darstellung von volkswirtschaftlichen Wachstumsvorgängen, bei
der Planung von Instandhaltungsmaßnahmen, bei der Charakterisierung der
Zuverlässigkeit eines Erzeugnisses und bei Lagerhaltungsproblemen. Derartige
Anwendungen sowie die damit verbundenen Fragestellungen der Praxis lieferten
und liefern viele Impulse für die Entwicklung dieser Gebiete.

Die Theorie der stochastischen Prozesse, deren Entwicklung u. a. mit den Namen
Markow, Wiener, Kolmogorow, Doob, Chintschin und Dynkin verbunden ist,
beschäftigt sich mit der Problematik der quantitativen Analyse von dynamischen
Vorgängen, bei deren Beschreibung zufällige Einflüsse zu berücksichtigen sind.
Stochastische Modelle bauen in starkem Maße auf der Theorie der stochastischen
Prozesse auf und sind mathematische Widerspiegelungen von speziellen Vorgängen,
bei deren Modellierung zufällige Aspekte zu berücksichtigen sind. Beispiele von

Klassen stochastischer Modelle sind die der Bedienungstheorie, bei deren Entwick-
lung u. a. Erlang, Palm, Chintschin und Gnedenko einen großen Beitrag geleistet
haben, die Modelle der Zuver1ässigkeitstheorie‚ deren Anfange mit den Namen
Lotka und Weibull verbunden sind, und die Modelle der Lagerhaltungstheorie, zu
deren ersten Bearbeitern Arrow, Harris und Marschak zu zählen sind.

Durch ihre Bedeutung für die Praxis finden die Theorie der stochastischen Prozesse
und gewisse Klassen von stochastischen Modellen immer mehr Eingang in die Aus-
bildung naturwissenschaftlicher, technischer und ökonomischer Fachrichtungen.
Dabei kommt es in erster‘ Linie darauf an, einen Überblick über diese Gebiete zu
geben, wichtige Grundbegriffe zu vermitteln und das methodische Herangehen zu
zeigen. Diese Zielstellung verfolgt auch der vorliegende Band der Reihe „Mathe-
matik für Naturwissenschaftler, Ingenieure, Ökonomen und Landwirte“. Der Leser
soll befähigt werden, weiterführende Literatur selbständig durchzuarbeiten und sich
mit Spezialisten dieser Gebiete austauschen zu können, wenn er entsprechende
Aufgaben zu lösen hat.

Kapitel 2 gibt eine Einführung in die Theorie der stochastischen Prozesse. In den
Kapiteln 3 und 4 werden zwei Klassen von stochastischen Prozessen, die Markow-
schen und die stationären Prozesse, vorgestellt. In den Kapiteln 5 bis 7 wird ein
Überblick über einige für die Anwendung wichtige Klassen stochastischer Modelle
gegeben. Es handelt sich dabei um ausgewählte Modelle der Bedienungstheorie
(Kapitel 5), der Zuverlässigkeitstheorie (Kapitel 6) und der Lagerhaltungstheorie
(Kapitel 7).

Bei der Darstellung wurde auf eine ausführliche Beweisführung verzichtet.
Wesentliche Ergebnisse werden am Beispiel erläutert.



2. Stochastische Prozesse

Die Theorie der stochastischen Prozesse (zufälligen Funktionen oder Zufalls-
prozesse) ist eine der jüngsten Entwicklungsrichtungen der Wahrscheinlichkeits-
theorie. Sie untersucht das Verhalten von Zufallsgrößen in Abhängigkeit von einem
oder mehreren Parametern, z. B. der Zeit oder den Koordinaten eines Punktes im
Raum, und leitet Gesetzmäßigkeiten her. Zufallsgrößen werden gewissermaßen in
ihrer zeitlichen Entwicklung betrachtet (sofern der Parameter die Zeit ist). Die
Theorie der stochastischen Prozesse ist heute für die Lösung vieler Aufgaben in
Naturwissenschaften, Technik und Ökonomie, insbesondere auch in der Zuverlässig-
keits-‚ Erneuerungs- und Lagerhaltungstheorie unentbehrlich geworden. Beispiels-
weise wird es in der Regelungstechnik durch ihre Anwendung erst möglich, die
Einwirkung verschiedener zufälliger Einflüsse bzw. Störungen auf die Arbeit eines
Systems zu berücksichtigen und die Stabilität der automatischen Geräte gegenüber
Störungen zu sichern.

Es werden zunächst Begriffe und grundlegende Gesetzmäßigkeiten stochastischer
Prozesse dargestellt. Anschließend werden Prozesse mit speziellen Eigenschaften
eingehender betrachtet.

2.1. Definition und Eigenschaften stochastischer Prozesse

Vor einer genauen Begriffsbestimmung betrachten wir einige Beispiele.

Beispiel 2.1: Im Jahre 1826 beobachtete der englische Botaniker Brown unter dem
Mikroskop das Verhalten kleiner Teilchen in" einer Flüssigkeit. Er bemerkte, daß
sie eine ungeordnete und zufällige „Zickzack-Bewegung“ ausführen. Wie sich heraus-
stellte, kommt diese Bewegung unter dem Einfluß dauernder zufälliger Zusammen-
stöße mit Molekülen der Flüssigkeit zustande. Wir legen nun einmal ein räumliches
Koordinatensystem (X, Y, Z) zugrunde und beobachten die Bewegung eines Teil-
chens, das sich zur Zeit to = 0 im Koordinatenursprung befinden möge. Die Lage
des Teilchens zur Zeit t g 0 wird durch die Koordinaten X(t), Y(t) und Z(t) beschrie-
ben. In Folge der dauernden Zusammenstöße ist dieLage des Teilchens zu einem
beliebigen Zeitpunkt t > 0 selbstverständlich nicht vorherbestimmbar, sondern
zufälliger Art. X(t), Y(t) und Z(t) sind somit für jeden festen Wert t Zufallsgrößen,
wie man in der Wahrscheinlichkeitstheorie sagt. Die Menge der von r, t g O,

abhängigen Größen X(t) (ebenso auch Y(t) und Z(t)) bezeichnet man als stochastischen
Prozeß.

Die ungeordnete Bewegung von Teilchen in einer Flüssigkeit ist unter dem Namen
„Brownsche Bewegung“ bekannt. Mathematisch erforschten diesen Prozeß Ein-
stein, Smoluchowski und Bachelier. Eine strenge Theorie entwickelte schließlich
der Mathematiker N. Wiener.

Beispiel 2.2: Einen stochastischen Prozeß in der Technik der Werkstoffbearbeitung
stellt das Sogenannte „Istprofil“ eines bearbeiteten Werkstückes dar. Unter dem
Mikroskop erkennt man, daß die Oberfläche niemals ganz glatt ist, sondern Gestalts-
abweichungen zufälliger Art aufweist.
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Bild 2.1 zeigt im Koordinatensystem einige mögliche Querschnittskurven des
„Istprofils“, wobei X(z) die Ordinate an der Stelle t bezeichnet. Wie man erkennt, ist
X(t)‚ 0 g t g T, hinsichtlich aller möglichen Querschnittskurven für jeden Para-
meterwert t eine Zufallsgröße. Die Menge dieser Zufallsgrößen bilden einen sto-

Bild 2.1. Oberflächenprofile von geschliffenen
Stahlflächen nach Smirnow [24] (Vergrößerung
waagerecht l880fach und senkrecht l5000fach)

chastischen Prozeß. Stellt man bestimmte Anforderungen an die „Glätte“ der Ober-
fläche, dürfen spezifische Kennziffern des stochastischen Prozesses gewisse Toleranz-
grenzen nicht überschreiten (Vgl. [24]).

Beispiel 2.3: Für die Beurteilung der Auslastung einer Telefonzentrale ist die Unter-
suchung der in Abhängigkeit von der Zeit registrierten Anzahl von Ferngesprächen
erforderlich. Die Beobachtung erstrecke sich jeweils über einen Tag. Die Gesprächsfor-
derungen treffen zufällig oder, präziser gesagt, in zufälligen Zeitpunkten ein. Mit
X(t) werde die Gesamtzahl der bis zum Zeitpunkt t eingetroffenen Forderungen
bezeichnet.
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X(t) ist für jeden Zeitpunkt des Tages eine Zufallsgröße. Die Anzahl der in Ab-
hängigkeit der Zeit registrierten Gespräche ist ein stochastischer Prozeß, der im
Gegensatz zu den bisher genannten Beispielen nur ganzzahlige nichtnegative Werte
annehmen kann._.Eür die Beurteilung der Auslastung der Zentrale ist u. a. die
Ermittlung folgender Parameter wichtig:

a) Wahrscheinlichkeit, daß bis zum Zeitpunkt t höchstens m Gespräche vermittelt
werden,

b) Erwartungswert (mittlere Anzahl) der bis zum Zeitpunkt tvermittelten Gespräche,
c) Wahrscheinlichkeit, daß n Leitungen bzw. alle zur Verfügung stehenden Lei-

tungen besetzt sind (nach einer gewissen Anlaufphase).

Weitere Beispiele für stochastische Prozesse sind in der folgenden Übersicht
zusammengefaßt. Dabei ist angegeben, für welche Probleme ihre Untersuchung von
Bedeutung ist.
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Stochastische Prozesse Bedeutung

n
:

. Lufttemperatur in Abhängigkeit der
Zeit an einem Ort
Signale, die bei der Übertragung
durch Störungen überlagert werden

Krängungswinkel eines Schifies unter
dem Einfluß der Wellenbewegung

N
5*

’
A . Schlingerbewegung eines Flugzeuges

in Turbulenzen

. Auf ein System einwirkende zufällige
Störungen

. Bedarf einer Ware in Abhängigkeit

v»
au

Klimatische Untersuchungen

Filtration des Signals

Konstruktion geeigneter Feuerleitgeräte
zur Gewährleistung der Treffsicherheit
bei Bordwafien
Bau geeigneter Stabilisatoren

Optimale Steuemng eines stochastischen
dynamischen Systems

Vorhersage des zukünftigen Bedarfs,
der Zeit Extrapolation

. Gewichtszunahme von Tieren in Aufstellung optimaler Futterpläne
Abhängigkeit der Zeit

x1

Die Anzahl der Beispiele läßt sich beliebig erweitern. In allen genannten Fällen
handelt es sich um eine Menge von Zufallsgrößen X(t), die von einem nichtzufalligen
Parameter t einer bestimmten Parametermenge I abhängt. Um jedoch das Neue, das
mit dem Begriff des stochastischen Prozesses verbunden ist, sichtbar zu machen,
betrachten wir noch einen anderen Aspekt.

In den Bildern 2.] und 2.2 erkennt man, daß ein stochastischer Prozeß auch aus
einer Menge reeller Funktionen besteht. Jeder Beobachtung entspricht in der Dar-
stellung eine Kurve. In den Abbildungen sind nur wenige eingezeichnet.

Es ergibt sich eine Analogie zum Begrifi einer Zufallsgröße. In der Wahrscheinlich-
keitstheorie ist eine Zufallsgröße als Abbildung X = X(w) (w e.Q) erklärt, wobei
die w sog. Elementarereignisse eines Raumes .0 sind. Jedem Elementarereignis a)

wird ein Zahlenwert x der reellen Zahlengeraden zugeordnet. Bei einem stochastischen
Prozeß geht man ebenfalls von einem Raum ‚Q von Elementarereignissen w aus.
Wir ordnen jedoch jedem Elementarereignis eine nichtzufallige Funktion x(t) eines
nichtzufalligen Parameters t (t e I) zu. Jede solche Funktion heißt Realisierung oder
Trajektarie des Prozesses. Faßt man beide Gesichtspunkte zusammen, gelangt man
zu der folgenden

Definition 2.1: Ein stochastischer Prozeß ist eine Abbildung X(w, t) aus „Q x I auf
die Menge der reellen Zahlen, die für jeden festen nichtzufälligen Parametern/wert te I
eine Zufallsgräße X(t) undfür jedesfixierte w e „Q eine gewöhnliche reelle Funktion x(t)
darstellt. ‘)

Kehren wir zur Erläuterung der Definition nochmals zum Beispiel 2,3 zurück und
betrachten die Tabelle 2.1 zu Bild 2.2.

1) Es gibt auch mehrdimensionale und komplexwertige stochastische Prozesse. Sie werden im
Rahmen dieses Buches nicht behandelt.
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Tabelle 2.1

Zahl der bis zum Zeitpunkt t registrierten Gespräche

r 1 Tag 2. Tag 3. Tag

1 1 0 0
2 2 1 1

3 2 3 3

4 3 3 3

5 4 4 3

Man erkennt folgende Zusammenhänge:

Elementarereignis: —> Trajektorie x(t):
Beobachtung eines Funktionsmäßiger Ausdruck
konkreten Tagesverlaufs des konkreten Verlaufs

t = t,: —> Zufallsgröße X(t1):
Fixierung eines kon- ‚ Zahl der bis zum Zeitpunkt
stanten Zeitpunktes t1 registrierten Gespräche
an jedem Tag an jedem Tag

Q besteht, wie man leicht einsieht, in diesem Beispiel aus einer abzählbaren Menge
von Elementarereignissen.

Ebenso wie bei Zufallsgrößen an Stelle von X(w) einfach X geschrieben wird, ist
es auch üblich, einen stochastischen Prozeß {X(w‚ t), teI} kürzer in der Form
{X(t)‚ te I} zu symbolisieren.

Stochastische Prozesse werden entsprechend der Parametermenge I und der Werte-
menge I, auf welcher X(t) variiert, folgendermaßen klassifiziert:

Tabelle 2.2

Parameterv Werte- Bezeichnung Symbolisierung
menge menge des Prozesses
I " '

stetig beliebig Stochastischer 1

Prozeß
Zufälliger Prozeß

stetig diskret Diskreter {X,(t)‚ t e I}
stochastischer
Prozeß
Diskreter Prozeß

diskret beliebig Zufallsfolge _

Zufällige Folge 22:?’ t — 1°’ t‘ ‘ m}

diskret diskret Zufällige Kette l {Xm n = o’ 1’ 2’ m}
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Ein Beispiel für einen diskreten stochastischen Prozeß lernten wir bereits in der
Anzahl der eintreffenden Gespräche in einer Telefonzentrale kennen. Weitere der-
artige Prozesse werden im 3. Kapitel unter der Bezeichnung Geburts— und Todes-
prozesse behandelt.

Oftmals wird bei praktischen Problemstellungen an Stelle eines stochastischen
Prozesses näherungsweise eine zufällige Folge untersucht. Es ist beispielsweise aus-
reichend, bei der Kontrolle der Gewichtszunahme von Tieren Messungen nur in
bestimmten Abständen, etwa jeweils nach einem Monat, und nicht kontinuierlich
durchzuführen; Analoges gilt für statistische Erhebungen in der Okonomie.

Zufällige Ketten lassen sich infolge ihrer übersichtlichen Struktur relativ leicht
mathematisch behandeln.
Beispiel 2.4: Betrachtet werde der Bedarf einer Ware (z. B. Kühlschränke) in einem
Kaufhaus. Im n-ten Monat (n = 0, 1,2, 3, ...) werden 5„ Kühlschränke benötigt
(E0 E 0). Alle 5„ können in der Praxis näherungsweise als unabhängige Zufalls-
größen angesehen werden. Dann stellt der kumulative Bedarf X„ in n Monaten eine
zufällige Kette {X„; n = O, l, 2, 3, dar. Dabei gilt

Xn = 2 5:-
i=0

Ist der erwartete Bedarf im n-ten Monat a„, dann gilt für den erwarteten kumulativen
Bedarf in n Monaten

Eor.) = Ecs. + + s.) = E<s1>+ + 5c.) = a.-.

Spezielle zufällige Ketten werden ausführlich im 3. Kapitel behandelt. Sie sind unter
anderem wichtig bei der Lösung mathematischer, physikalischer und technischer
Probleme mit Hilfe von Simulation auf digitalen Rechnern (z. B. bei der näherungs-
weisen Lösung von Randwertproblemen).

Es ist nun die Frage zu beantworten, wie ein stochastischer Prozeß {X(t), tel}
vollständig charakterisiert und festgelegt werden kann. Zunächst betrachte man den
Prozeß an einem beliebigen aber festen Zeitpunkt t, .

X(r,) ist eine Zufallsgröße, deren Wahrscheinlichkeitsverteilung durch Angabe
der Verteilungsfunktion

Fx.(x1) = P(X(!1) < x1) i (2-1)

bestimmt ist. Man betrachte den Prozeß jetzt gleichzeitig an zwei beliebigen Stellen
t1, t2

{X002 X(t2)}

ist ein zweidimensionaler Zufallsvektor, der eine zweidimensionale Wahrscheinlich-
keitsverteilung besitzt, die durch die Verteilungsfunktion

F,h,2(x1, x3) = P(X(I‚) < x1, X02) < x2) (2.2)

festgelegt ist. Schließlich betrachte man X(t) gleichzeitig an n verschiedenen Stellen
t1, t2, ..., 1,, n g l):

{X(t1)§ Xltz)! ---§ -X-/(7n)}x
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ist ein n-dimensionaler Zufallsvektor, dessen Verteilung durch Angabe der n-dimen-
sionalen Verteilungsfunktion

F,h,1,,,,_,n(x,, x2, ...‚ x„) = P(X(t‚) < x1, X(t2) < x2, ...‚ X(t„) < x„) (2.3)

bestimmt ist.
Durch Angabe der n-dimensionalen Verteilungsfunktion (2.3) für beliebige

n-tupel t, ‚ t2, ...‚ t„ e I ist ein stochastischer Prozeß bereits in gewissem Grade fest-
gelegt. Es ist plausibel, daß er um so vollständiger charakterisiert wird, je größer n

ist,

Definition 2.2: Die Gesamtheit aller endlichdimensionalen Verteilungsfunktionen

F„„2„„„„(x„ x2, ..., x,,) = P(X(t1) < x,, X(t2) < x2, ...‚ X(t„) < x,,)

mit beliebigen t, ‚ t2 ‚ ...‚ t„ e I und beliebigen endlichen n nennt man die dem Prozeß
{X(t), t e I} zugeordnete Verteilung.

Wesentlich ist, daß Prozesse mit gleicher zugeordneter Verteilung so geringfügige
Unterschiede aufweisen, dal3 diese in der Praxis unberücksichtigt bleiben können.
Man bezeichnet sie als äquivalente stochastische Prozesse.

Beispiel 2.5: Wir betrachten die beiden stochastischen Prozesse

X(w, t) = 0, tel, w eQ,
und

l für f: w, .

Y(a>, I) = t 6 I, o) E Q. (2.4)
0 für t=l= o),

Für beide Prozesse sei I = [0, oo) und Q = [0, 1]. Beide Prozesse besitzen die
zugeordnete Verteilung

1 für xj > 0, j = 1, ...,n,
E„...„„(Xi‚ X.) = { (2-5)

0 sonst.

Die Realisierungen des Prozesses X(w, t) lauten x(t) = 0 für alle w. Y(a), t) besitzt
die Realisierungen

0 für t =i= o),
LVÜ) = __

1 fur t = w.

Für jeden Wert w unterscheiden sich die Trajektorien beider Prozesse also jeweils
nur in einem Punkt.

Die Art der zugeordneten Verteilung stellt ein weiteres wichtiges Unterscheidungs-
merkmal stochastischer Prozesse dar. Ausgehend hiervon werden Prozesse, deren
zugeordnete Verteilung aus n-dimensionalen Normalverteilungen besteht, als Gauß-
prozesse bezeichnet.

Im allgemeinen ist es jedoch nicht möglich, alle n-dimensionalen Verteilungs-
funktionen (2.3) anzugeben. Man wird sich dann auf die Angabe bestimmter Para-
meter des Prozesses beschränken, ähnlich wie man bei der Charakterisierung von
Zufallsgrößen oftmals nur Momente und nicht die Verteilungsfunktion zur Verfügung
hat. Für Zufallsgrößen X sind Erwartungswert E(X) und Varianz a2(X)‘) die wichtig-
sten Parameter. Diese Begriffe lassen sich unmittelbar auf stochastische Prozesse
übertragen.

1) In der Literatur auch mit D’(X) bezeichnet (z.B.Bd. 17).
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Definition 2.3: Als Mittelwertfunktion eines stochastischen Prozesses {X(t), te I}
bezeichnet man eine nichtzufällige Funktion m,(t), die für jeden Parameterwert t = t,
gleich dem Erwartungswert E[X(t‚)] der Zufa/Isgroße X(1,) ist.

Ähnlich wie sich alle Werte einer Zufallsgröße um ihren Mittelwert gruppieren
stellt m‚(t) eine „mittlere“ Funktion dar, um die sich sämtliche Trajektorien des
Prozesses anordnen. Existieren eindimensionale Dichtefunktionen f‚(x) zu den Zu-
fallsgrößen X(t) (t e 1), so kann man auch schreiben

+93

mx(t) = j xf‚(x) dx, tel. (2.6)
—oo

Definition 2.4: Als Varianzfunktion eines stochastischen Prozesses {X(t), te I}
bezeichnet man eine nichtzufällige Funktion a§(t), die an jeder Stelle t = t, gleich
der Varianz 0'2 [X(t‘)] der ZufaIIsgroße X(n) ist.

Ähnlich wie die Varianz einer Zufallsgröße eine Vorstellung von der Abweichung
der Werte vom Erwartungswert vermittelt, erhält man durch die Varianzfunktion
ein Bild von der Abweichung der Trajektorien vom mittleren Verlauf des stochasti-
schen Prozesses. Es ist

U50) = E[X(I) - mx(I)]2~ (2-7)

Existieren alle eindimensionalen Dichtefunktionen f,(x), gilt
+00

a§(t) = (x — m,‘(t))2f,(x) dx, (2.8)
e so

o„(t) = \/a§(t) bezeichnet man als Standardabweichung des Prozesses.
Auch wenn m‚(t) und a§(t) existieren, reichen sie jedoch selbst für eine sehr grobe

Beschreibung eines stochastischen Prozesses nicht aus‘) Das liegt vor allem daran,
daß die Zufallsgrößen Xttl), X(t2), X(t,,) (t„ t2, ...‚ t„ e I) voneinander abhängen
können. Die bisher genannten Parameter lassen diesen Zusammenhang unberück-
sichtigt. Eine geeignete Größe hierfür ist in gewissem Maße die sogenannte Auto-
korrelationsfunktion, wenn sie existiert. Wir betrachten den stochastischen Prozeß
zunächst an zwei beliebigen aber festen Stellen t, ‚ t2. Aus der Wahrscheinlichkeits-
theorie (vgl. Band l7) ist bekannt, daß sich der Zusammenhang von X, = X(t,)
und X2 = X(t2) durch die Kovarianz

C0V(X1X2)= EI(X‚ — Ear,» (X2 — 120cm (2.9)

ausdrücken läßt. Durchlaufen t, und t; alle Werte der Parametermenge I unabhängig
voneinander, erhält man eine Funktion zweier Veränderlicher. '

Definition 2.5: Die Funktion

k,(s, t) = E[(X(s) -— m,(s)) (X(t) — m,,(t))], s, t e I, (2.10)

/Eel?!) Ant}?orrelationsfunktionz) (oder einfach Korrelationsfunktion) des Prozesses
X t , te .

1) m,(t) und i720) existieren nicht für jeden beliebigen Prozeß, weil Erwartungswert und Varianz
nicht für alle Zufallsgrößen definiert sind (vgl. Bd. 17).

2) Der Begriff Kovarianzfunktion ist ebenfalls gebräuchlich.
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Bei Existenz zweidimensionaler DichtefunktionenfS,(x1, x2) kann k„(s‚ t) durch

w, r) = T (mt) — mm) (ms) — mx(3))fsx(X1ax2)dS dz

ermittelt werden. Die Funktion

_ k,,(s, z)
r„(s‚ t) —f (2.11)

bezeichnet man als normierte Karrelationsfunktion.
In den nachfolgenden Sätzen sind einige wichtige Eigenschaften von Korrelations-

funktionen zusammengefaßt.

Satz 2.1: a) Die Korrelationsfunktion eines stochastischen Prozesses ist eine bezüg-
lich s und t symmetrische Funktion:

kx(s‚ t) = k„(t‚ s), s, t e I. (2.12)

b) Es ist

k‚(t, t) = a§(t). (2.13)

Beweis: a) folgt unmittelbar aus der Definition 2.5, da die Reihenfolge der Faktoren
bei der Erwartungswertbildung vertauschbar ist.

Zum Beweis von b) setzt man in (2.10) t = s. Dann folgt

k„—(t‚ t) = E[X(r) — mx(t)]Z = via).

Satz 2.2: Zwei Prozesse {X(t)‚ re I} und {Y(t)‚ tel} mit Y(t) = X(t) +f(t)‚ die
sich nur durch eine nichtzufällige Funktion f(t) unterscheiden, besitzen dieselbe Kor-
relationsfunktion.

Beweis: Sind m„(t) und k‚(s‚ t) Mittelwert- und Korrelationsfunktion von {Y(t)‚ te I},
so folgt unter Berücksichtigung von

WW) = mm + f(t)
die Beziehung

k‚(s‚ t) = E[( Y(s) — m‚(s))(Y(t) — In‚(t))] 4

= Ems) +f(s) — mx(5) — /<s>) (X0) +f(t) — mm —f(t))]

= E[(X(S) - mx(S))(X(t) - Im-(0)1

= kx(s, t).

Aus diesem Satz folgt insbesondere, daß die Prozesse {X(t)‚ tel} und
{X(t) — m,(t),tEI} gleiche Korrelationsfunktionen haben. Beim Operieren mit
stochastischen Prozessen kann man daher oftmals ohne Einschränkung der All-
gemeinheit die Mittelwertfunktion gleich null annehmen.
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Aufgabe 2.1: Zeigen Sie

(1) Für beliebige reelle Zahlen z, und beliebige Werte t, (i = 1, ...‚ n) gilt

z,z,k,,(t,-, 2,) g 0. (2.14)
l,J=

(2) Für alle s, te I ist

kx(s1t)2 é kx(S! S)kx(t, t)- (2-15)

Aufgabe 2.2: Gegeben sei ein Zufa11sprozeß:.{X(t)‚ O g t g T}, mit X(t) = Xr. X ist
eine normalverteilte Zufallsgröße mit E(X) = 0 und a2(X) = a2 (a 4: O). Bestimmen
Sie m„(t), o'§(t) und kx(s, t).

Die Kenntnis von Mittelwert- und Korrelationsfunktion reicht zur Behandlung
bestimmter Probleme bereits aus. Ein Beispiel ist die in Kapitel 4 betrachtete Extrapo-
lationsaufgabe (vgl. Seite 53 ff.). Es wurden auch eine Analysis stochastischer Prozesse
entwickelt und verschiedene Stetigkeits—, Differenzierbarkeits- und Integrierbarkeits-
begriffe eingeführt. Im Rahmen dieses Buches wird hierauf nicht eingegangen.
Weiterführende Darstellungen findet der l eser in [l l], [2l], [28] und [31].

2.2. Beispiele für stochastische Prozesse

Beispiel 2.6: Prozesse mit homogenen unabhängigen Zmvächsen. Wir knüpfen an
das Beispiel 2.3 an. Die Telefonanrufe bilden eine Folge gleichartiger zufälliger
Ereignisse, die im Moment ihres Eintreffens in ihrer zeitlichen Reihenfolge registriert
werden. X(t) sei, wie bereits erwähnt, die Anzahl der bis zum Zeitpunkt t eintretenden
Ereignisse (Telefonanrufe), wobei diese ab t = O gezählt werden. {X(t), t g O} ist
ein diskreter Prozeß mit den Werten m = 0, 1, 2, Die Wahrscheinlichkeit, daß
im Intervall [0, t) genau m Erreignisse (Anrufe) erfolgen, werde mit p„,(t) bezeichnet.
Es sind nun näherungsweise zwei Eigenschaften erfüllt, die man als „Fehlen einer
Nachwirkung“ und „Homogenität“ bezeichnet.

(1) Das Fehlen einer Nachwirkung besagt, daß die Wahrscheinlichkeit des Ein-
tritts einer bestimmten Anzahl m von Ereignissen in einem beliebigen Zeitabschnitt
[t,-, Im) mit 0 g I,- < I,-+1 < +00 nicht davon abhängig ist, wie viele Ereignisse
vor dem Zeitpunkt t,- auftraten. Für nichtüberschneidende Intervalle

[toy tx):[t1a ti): "o: DIA-l: tn): 0 ä to <71 < < tn < +00:

bilden demnach die Zuwächse

X01) - X0o)‚ X02) - X01), X0„) - X0„—i)

unabhängige Zufallsgrößen. Allgemein sagt man



2.2. Beispiele für stochastische Prozesse l5

Definition 2.6: Ein Prozeß {X(I), te I}, für den bei beliebiger Zerlegung
to < t1 < < t,, (to, ..., t„, t‚eI) dieZuwächse

AX, = X(t,«) — X(t,_1), i=1, 2, ..., n

unabhängig sind, heißt Prozeß mit unabhängigen Zuwächsen.

(2) Die Homogenität besagt, daß die Wahrscheinlichkeit des Eintritts einer
bestimmten Zahl von Ereignissen in einem beliebigen Intervall [t‚-, ti“) mit
0 g t, < im < +00 nur von der Länge, nicht aber von der speziellen Lage des
Intervalls abhängig ist. Die Wahrscheinlichkeitsverteilungen für Zuwächse gleicher
Intervallänge sind gleich. Allgemein sagt man:

Definition 2.7: Ein Prozeß mit unabhängigen Zuwächsen {X(t), te I} heißt Prozeß
mit homogenen unabhängigen Zuwächsen, wenn die Wahrscheinlichkeitsverteilung der
Zuwächse

AXi = X01)‘ X(ti-1)
nur von der Diflerenz t; — t,--1 ‚ aber nicht von der Lage der Werte t,- > t;_1 (I,-; n-‘ e I)‘
abhängt.

Hinsichtlich der Folge der Ereignisse ist es unwesentlich, zu welchem Zeitpunkt
t = to mit der Registrierung der Ereignisse begonnen wird. Denn sind [to, n).
[t5t‚’) zwei Intervalle gleicher Länge At, ist die Wahrscheinlichkeit, dieselbe Anzahl m

von Ereignissen in beiden Intervallen anzutreffen, gleich. Es gilt also

P(X(t‚) — X(t0) = m) = P(X(t,’) — X(t(,) = m): p,,,(At).

Man kann somit to = 0 setzen.
Ein großer Teil der in diesem Buch betrachteten Prozesse ist dieser Art.

Aufgabe 2.3: Zeigen Sie, daß die in Beispiel 2.4 definierte Kette unabhängige Zuwächse
besitzt.
Beispiel 2.7: Poissansche Prozesse. Die Folge der zufällig eintreffenden Telefon-
gespräche in einer Telefonzentrale ist „ordinär“. Diese Eigenschaft äußert sich in
der praktischen Unmöglichkeit des gleichzeitigen Eintretens zweier oder mehrerer
Ereignisse. Bezeichnet p> ‚(A0 die Wahrscheinlichkeit dafür, daß in At mehr als ein
Ereignis eintritt, so läßt sie sich mathematisch durch die Beziehung p, 1(At) = o(At)
formulieren. o(At) ist eine Größe, die allein durch die Eigenschaft

o(At) _

1' — 0
A5130 At

charakterisiert wird; man sagt daher auch, daß o(At) Von höherer Ordnung als At
ist (gegen null strebt). Das Symbol o(At) wird „klein-o von At“ oder „kleines Lan-
dau-Symbol von At“ gelesen (vgl. mit Bd. 18, S. 55). Für das Rechnen mit diesen
Größen gelten einige Besonderheiten, wie z. B. k-o(At) = o(At), o(At) i o(At)i
= o(At), ohne daß daraus jedoch o(At) = 0 folgt. Als Beispiele für o(At) seien
Atz, At3, genannt. -

Es werde nun ganz allgemein eine Folge von zufällig eintretenden Ereignissen
betrachtet, die homogen, ohne Nachwirkung und ordinär ist. Dann läßt sich zeigen,
daß {X(t), t g 0} ein sogenannter Poissanscher Prozeß ist (vgl. [24]).
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Definition 2.8: Ein diskreter stochastischer Prozeß {X(t), t g 0} mit den Werten
m = 0, l, 2, .. . wird Poissonscher Prozeß mit der Intensität l genannt, wenn

(1) P(X(0) = o) = 1 gilt,
(2) {X(t), t g 0} ein Prazeß mit homogenen unabhängigen Zuwächsen ist und

(3) für ein beliebiges t (O g t < o0) X(t) eine poissonverteilte Zufallsgräße mit

(lt '"
p‚„(t) = P(X(t) = m) = 73cm, m = o, 1, 2, (2.16)

ist.
Die Intensität l gibt die durchschnittliche Anzahl (Erwartungswert) der pro

Zeiteinheit eintretenden Ereignisse an.
Somit läßt sich Aufgabe a) des Beispiels 2.3 lösen. Durch (2.16) sind die ein-

dimensionalen Wahrscheinlichkeitsverteilungen des betrachteten Prozesses gegeben.
Werden pro Zeiteinheit durchschnittlich l Gespräche geführt, dann ist die Wahr-
scheinlichkeit, daß bis zum Zeitpunkt t höchstens m Gespräche vermittelt werden,

mit).
l=0

In einem Postamt wurde die Anzahl der pro Minute aufgegebenen Telegramme registriert. Die
ausgezogene Linie in Bild 2.3 zeigt die empirisch ermittelte Verteilung, die gestrichelte entspricht
einer theoretischen Verteilung mit den Wahrscheinlichkeiten

e—0.47(0,47)m

p" =T‘
Es zeigt sich eine sehr gute Übereinstimmung. Man kann daher annehmen, daß die Anzahl der in
einem Intervall [0, r) aufgegebenen Telegramme einen Poissonsehen Prozeß bildet.

Bild 2.3
Verteilung der in einem Postamt aufgegebenen Telegramme

72J45E7m

Parameter und wichtige Eigenschaften dieser speziellen Klasse von Prozessen mit
homogenen unabhängigen Zuwächsen lassen sich unmittelbar herleiten.

Aus Band l7 ist bekannt, daß eine poissonverteilte Zufallsgröße X mit

PX— —’"m 4 -012(—m9—7n—!C s m- ‚ a ‚w:

den Erwartungswert l und die Varianz l besitzt. Somit ist unmittelbar ersichtlich,
daß Mittelwert- bzw. Varianzfunktion

m„(t) = lt bzw. a},(t) = lt
lauten.



2.2. Beispiele für stochastische Prozesse 17

In Aufgabe b) des Beispiels 2.3 wurde nach dem Erwartungswert der bis zum Zeit-
punkt t vermittelten Gespräche gefragt. Bei gegebenem Ä kann m‚(t) unmittelbar
angegeben werden.

Die Korrelationsfunktion k,(s, t) läßt sich folgendermaßen finden. Zunächst sei
daran erinnert, daß man an Stelle von {X(t), t g 0} von einem Prozeß {Y(t)‚ t g 0}
mit Y(t) = X(t) — it ausgehen kann. Nach Satz 2.1 besitzen beide Prozesse dieselbe
Korrelationsfunktion. Nun ist aber

my(t) = O, a§(t) = lt. (2.17)

Es sei zunächst s g t. Unter Berücksichtigung von Y(s) = Y(t) + Y(s) — Y(t)
folgt für die Korrelationsfunktion des Prozesses {Y(t), t g 0}

kyü, f) = E[Y(S) Y(t)]

= E{[Y<r> + (m) — Y(0)] m}
= 5mm] + E{Y<r> im) — Y<t>1}. (2.18)

Wegen Y(0) = 0, der Unabhängigkeit der Zuwächse und E[Y(t)] = 0 ist

E{Y(r>{Y<s) — m1} = E{[Y(t) — Y<0>1[Y(s)— Yon}
= E[Y(t) — Y(0)] E[Y(s) — Y(t)] = 0. (2.19)

Somit folgt aus (2.18) unter Berücksichtigung von (2.17) und (2.19)

k‚(s‚ t) = lt = k‚(s, t). (2.20)

Für t g s erhält man entsprechend

‘ k‚(s‚ t) = k‚(s, t) = ls. - (2.21)

Faßt man beide Beziehungen (2.20) und (2.21) zusammen, ergibt sich für die Kor-
relationsfunktion eines Poissonschen Prozesses mit der Intensität Ä

kx(s, t) = Ä min (s, t).

Für einen Poissonschen Prozeß lassen sich leicht die zwei- und mehrdimensionalen
Verteilungen angeben. Zu diesem Zweck betrachten wir zwei Zeitpunkte s und t
und bestimmen zunächst die durch die Zufallsgrößen X(s) und X(t) erzeugten zwei-
dimensionalen Verteilungen. Hierfür genügt es, für alle ganzzahligen Werte m, , m, g 0
die Wahrscheinlichkeiten

P(X(s) = ms, X(t) = m‚)

anzugeben. Da {X(t), t g 0} nach Voraussetzung ein Prozeß mit unabhängigen
Zuwächsen und X(O) == 0 ist, gilt

P(X(s) = ms, X(t) = m,) = P(X(s) — X(O) = ms, X(t) — X(s) = m, — m_„)

= P(X(s) = m5) P(X(t) — X(s) = m, — ms).

Damit erhält man
e—ls(Äs)m‚ e—/1(t—:)[l(t _ S)]m,—m,

P(X(s) = ms, X(t) = m,) =

2 Beyer, Stoch. Proz.
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In ähnlicher Weise kann man alle drei- und höherdimensionalen Verteilungen
bestimmen. .

Betrachten wir nun noch den Abstand zwischen zwei aufeinanderfolgenden
Ereignissen bei einem Poissonschen Prozeß. Die Wahrscheinlichkeit, daß in einem
beliebigen Intervall [to, to + t) kein Ereignis eintritt, ist gleich der Wahrscheinlich-
keit‚ daß im Intervall [0, t) kein Ereignis eintritt. Nach Definition 2.8 gilt hierfür

p0(t) = e-'1‘. (2.22)

Es sei ‘L’ die Zeit bis zum Eintritt des ersten Ereignisses. Dann ist

P(-r g t) = e-1’ (2.23)
zw.

F.(t) = P(-r < t) = 1 — c4’. (2.24)

Somit besitzt die Wartezeit bis zum Eintreffen des ersten Ereignisses oder des näch-
sten Ereignisses nach to eine Exponentialverteilung mit der Verteilungsdichte

FLO) = fi(t) = Ä 6"“-

Unter Verwendung der Formel von Taylor folgt aus (2.22) für kleine t

ll at)’po(t)= l ‘i’

Die Wahrscheinlichkeit, daß in dem Zeitintervall [0, t) (bzw. At) kein Ereignis
eintritt, ist somit

p„(t) = 1 — it + o(t), (po(At) = 1 — 2A: + o(At)). (2.25)

Aufgabe 2.4: Zeigen Sie, daß
o0

p‚(At) = ILA: + o(At); p>0(At) = §1p,(Az) = J. At + o(At) (2.26)

gilt.
In diesem Zusammenhang besitzt eine besondere Eigenschaft der Exponential-

verteilung eine große Bedeutung. Es sei bekannt, daß im Intervall [0, t) kein Ereignis
eingetreten ist, so daß die Wartezeit -r größer als t ist. Wie groß ist unter dieser Be-
dingung die Wahrscheinlichkeit, daß im Intervall [0; t + At) ein Ereignis eintritt?
Es ist somit die Wahrscheinlichkeit dafür zu bestimmen, daß t < ‘t < r + Ar unter
der Bedingung r > t ist. Es gilt (vgl. Band 17, Seite 29)

P(t < 1 < t + At/r > t) = —%(t<P(TT:tt)+ At)

Unter Berücksichtigung von (2.23), (2.24) und (2.25) gilt N

P(t < 1 < t + At) = e—"’(l — WM‘) = ZAte”"+ o(At). (2.27)

Folglich ist

P(t < -r < t + At/1 > t) = 1 — e—"A' = }.At + o(At). (2.28)
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Ein Vergleich der Beziehungen (2.28) mit (2.26) zeigt, daß die Wahrscheinlichkeit
des Eintretens eines Ereignisses nicht davon abhängt, wie groß der Zeitabstand vom
zuletzt eingetretenen Ereignis ist.

In bezug auf die Verteilung der Lebensdauer von Materialien und Geräten bedeutet
diese Eigenschaft, daß die Anzahl der einwandfrei verlaufenden Betriebsstunden
keinen Einfiuß auf die Wahrscheinlichkeit der Zerstörung in der nächsten Zukunft
hat. Obwohl diese Eigenschaft irreal erscheint, gibt es doch viele Beispiele, auf die
das zutrifft: Lebensdauer von Zapfenlagern guter Uhren und gewisser Arten von
elektrischen Sicherungen.
Beispiel 2.8: Wienersche Prozesse. Zu Beginn des 2. Kapitels wurde die Brownsche
Molekularbewegung betrachtet. Es läßt sich zeigen, daß sie (eindimensional) durch
die im folgenden betrachtete Klasse von Prozessen mathematisch modelliert werden
kann.

Definition 2.9: Ein stochastischer Prozeß {X(t), t g 0} mit stetigen Realisierungen
heißt Wienerscher Prozeß, wenn er folgende Eigenschaften besitzt:

(1) P(X(0) = 0) = 1,
(2) X(t) besitzt homogene unabhängige Zuwächse,
(3) für einen beliebigen Punkt t (0 g t < oo) ist X(t) eine normalverteilte

Zufallsgröße mit der Wahrscheinlichkeitsdichte

1 —% 2
f,(x)=-——~—~e 2"’; a >0.

\/27rz72t

Für (12 = 1 spricht man von einem standardisierten Wienerschen Prozeß. Erwar-
tungswert, Varianz- und Korrelationsfunktion lassen sich leicht bestimmen. Aus
der Wahrscheinlichkeitstheorie ist bekannt, daß eine normalverteilte Zufallsgröße X
mit

l (x—u)‘
fix) = \/27:02 6* Zaz

den Erwartungswert n und die Varianz a2 besitzt. Somit ist sofort ersichtlich, daß
Mittelwert bzw. Varianzfunktion

m,(t) = 0 bzw. o'f,(t) = a'2t
lauten.
Aufgabe 2.5: Zeigen Sie durch analoge Betrachtung zum Poissonschen Prozeß, daß
die Korrelationsfunktion eines Wienerschen Prozesses

k‚(s, t) = o’ min (s, t)
lautet.

Bekanntlich sind Summe und Diflerenz zweier normalverteilter Zufallsgrößen
ebenfalls wieder normalverteilte Zufallsgrößen. Dementsprechend sind die Zuwächse
X(t) — X(s)‚ s < t, normalverteilt. Im standardisierten Fall ergeben sich für Erwar-
tungswert und Varianz der Zuwächse

E[X(t) — X(s)] = O, z72[X(t) ~ X(s)] = t — s.

2*
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Die Trajektorien eines Wienerschen Prozesses besitzen interessante Eigenschaften.
Sie haben auf einem beliebigen Intervall eine unbeschränkte Schwankung und sind
an keiner Stelle differenzierbar (vgl. [2l]).

Aus der Voraussetzung P(X(O) = 0) = 1 und der Unabhängigkeit der Zuwächse

X00 - X(to)‚ X(t2) - X01), X(t..) — X(t..—1)

für beliebige Werte to = 0 < t, < t2 < < t„ folgt eine Eigenschaft von grund—
legender Bedeutung.

Schreibt man X(t„) in der Form

m) = [X09 — X(ti-1)]9 (2.29)

erkennt man, daß X(t„) nur von X(t,,_1), nicht aber von Werten X(ti) (i < n — l)
abhängt.

Dies steht in Übereinstimmung mit dem folgenden anschaulichen Sachverhalt Um
wahrscheinlichkeitstheoretisch einzuschätzen, wo sich das Teilchen zur Zeit t„
befinden wird, genügt es, seine Lage zum Zeitpunkt t,,_1 Zu kennen. Die Kenntnis
seiner Lage zu den Zeitpunkten t,,_2 , t,,_3, ..., to bringt keine zusätzliche Information,
welche die Einschätzung beeinflußt. Prozesse mit dieser Eigenschaft werden nach
dem sowjetischen Mathematiker Markow benannt. Sie werden im nächsten Kapitel
ausführlich untersucht.



3. Markowsche Prozesse

3. 1. Markowsche Ketten

Wir wollen uns nun mit zufälligen Prozessen beschäftigen, die folgende Eigen-
schaft besitzen:

Jede wahrscheinlichkeitstheoretische Aussage über den zukünftigen Prozeßverlauf
hängt bei bekanntem Wert in der Gegenwart nicht vom Prozeßverlauf in der Vergangen-
heit ab.

Derartige zufällige Prozesse sind von großer Bedeutung für die Praxis. Zunächst
sollen zufällige Ketten mit dieser Eigenschaft untersucht werden.

Wir knüpfen an Beispiel 2.4 an. Der kumulative Bedarf an Kühlschränken in
n Monaten ist

X(n) = 5o + 5. + 52 + + 5. (n = o, 1,2, ...),

wobei alle E, (i = 1,2,3 ...) voneinander unabhängige Zufallsgrößen sind. Den
kumulativen Bedarf in n + 1, n + 2, Monaten kann man auch in der Form

X(n +1): X(n) + 5+1;

X(n + 2) = X(n) + (am + En-2)

ausdrücken. Man erkennt, daß bei bekanntem Gesamtbedarf X(n) in n Monaten bei
der Einschätzung des zukünftigen kumulativen Bedarfs die Kenntnis des Gesamt-
bedarfs in den ersten n — 1 Monaten X(n — 1), X(n — 2), keine Rolle spielt. Man
sagt, die Gesamtheit der Zufallsgrößen

X(0), X(1), X(2), X(n), X(n + 1),

bilden eine Markowsche Kette. Mit Hilfe von bedingten Wahrscheinlichkeiten läßt
sich diese Eigenschaft mathematisch folgendermaßen formulieren.

Gegeben sei eine zufällige Kette {X(t)‚ teI Ohne Einschränkung der All-
gemeinheit kann die diskrete Parametermenge I Von te I = {0, 1, 2, 3, und die
Wertemenge- Pi, auf welcher X(t) variiert, E = {0, 1, 2, angenommen werden.

Definition 3.1: {X(t), t = 0, l, 2, heißt Markowsche Kette, wenn bei beliebigem
t e [für beliebige Werte i, j e I die bedingte Wahrscheinlichkeit

P(X(t + 1) =j/X(t) = i, X(t —— 1) = i„ ...‚ X(0) = i‚)

gleich der bedingten Wahrscheinlichkeit

' P(X(t + l) =j/X(t) = i) (3.1)

mtlll) ist die Wahrscheinlichkeit, mit welcher die Kette vom Wert i bei t in den
Wert j bei t + l übergeht. Die Werte i, j bezeichnet man auch als Zustände der
Kette.
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Definition 3.2: Die bedingte Wahrscheinlichkeit P(X(t + 1) = j/X(t) = i) heißr
Übergangswahr heinli " cit des Zustandes X(t) = i bei t in den Zustand
X(t + 1) = j bei t + 1 und wird symbolisch mit p‚-J-(t‚ t + 1) bezeichnet.

Am eindimensionalen Modell der Irrfahrt eines Teilchens untersuchen wir nun

die Eigenschaften Markowscher Ketten.
Beispiel 3.1: Ein Teilchen verändere seine Lage X (1 g x g s) längs einer Geraden
zu den Zeitpunkten I 2 1, 2, 3, nach folgender Vorschrift:
a) Von den Punkten x = 2, ..., s — 1 wird es in der nachfolgenden Zeiteinheit um

eine Einheit mit Wahrscheinlichkeit p in positiver und mit Wahrscheinlichkeit
q = 1 — p in negativer Richtung bewegt.

b) An den Punkten x = 1 und x = s wird das Teilchen absorbiert. Es verbleibt
mit Wahrscheinlichkeit 1 in der nachfolgenden Zeiteinheit dort.

Zur Zeit t = 0 befinde es sich mit Wahrscheinlichkeit p,(0) bei x z i
(i=1,2‚3,...‚s). '

Bezeichnen wir mit X(t) die Lage des Teilchens zur Zeit l, ist unmittelbar ersicht—
lich, daß '

{X(t), t = 0, 1, 2, 3, ...}

eine Markowsche Kette mit den s möglichen Zuständen 1,2, 3, .„‚s bildet. Wir
wollen die Wahrscheinlichkeiten bestimmen, das Teilchen
a’) zur Zeit t = lbei x =j‚
b’)zurZeitt=n(n>1)beix =j
anzutreffen. 1)

Wir bestimmen zunächst die Übergangswahrscheinlichkeiten p„(t‚ t + 1).
Für i =je {2, 3, ...‚s — 1} ist p‚-‚-(t, t + 1) = 0, weil das Teilchen nach Voraus-
setzung mit Wahrscheinlichkeit Null am Ort bleibt. Für alle i, j mit [i ~ j l g 2 gilt
ebenfalls p,,(t, t + 1) = O, da das Teilchen mit Wahrscheinlichkeit Null um zwei
und mehr Einheiten in einer Zeiteinheit fortbewegt wird. Wegen der Absorption
bei x = 1 und x = s ist p11(t,t + 1) =p„(t,t + 1) = 1. Die nachfolgende
Tabelle 3.1 gibt eine Übersicht über alle p„(t‚ t + 1):

Tabelle 3.1

in den Zustand

vom Zustand i

Kennzeichnend ist, daß alle Übergangswahrscheinlichkeiten von t unabhängig
sind.

1) Anwendungen für „Irrfahren“ findet der Leser in Bd. 20.
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Definition 3.33} Eine Markawsche Kette heißt homogen, wenn für beliebige i, jeä
und t e I die ÜbergangsWahrscheinlichkeiten p,,(t, t + 1) nicht von t abhängen.

Man schreibt p„(t‚ t + 1) = p,,, wobei jetzt p„ die Übergangswahrscheinlich-
keit vom Zustand i in den Zustand j während einer beliebigen Zeiteinheit ist. Weiter-
hin erkennt man in der Tabelle, daß die Zeilensummen jeweils den Wert 1 ergeben.
Es gilt die Gleichung‘)

21m = 1-
J

Hierin drückt sich die Tatsache aus, daß X(t) in der nachfolgenden Zeiteinheit vom
Zustand i unbedingt in einen der Zustände j übergeht. Anfangszustand und Über-
gangswahrscheinlichkeiten beschreiben eine Markowsche Kette vollständig. Wir
lösen zunächst Aufgabe a’). Zu bestimmen ist die unbedingte Wahrscheinlichkeit

P(X(1) x j).
Die Anfangsbedingungen lauten

P(X(0) = i) = p,(0), i = 1, 2, 3, ..., s.

Unter Anwendung des Satzes über die totale Wahrscheinlichkeit (vgl. Band 17)
folgt

P(X(1) =j) = z P(X<o> = i)»,

= Pz(0) Fir (3-2)

Man setze beispielsweise s = 5, p = q = <1». Das Teilchen befinde sich zur Zeit t = 0 mit Wahr-
scheinlichkeit f im Punkt 2 und mit Wahrscheinlichkeit 4} im Punkt 4.

Die Anfangsbedingungen lauten also

mo) = 0. 112(0) = i, 173(0) = 0, 174(0) = ‘In 115(0) = 0- (3-3)

Dann folgt sofort gemäß (3.2)

P(X(1) = I) = i, P(X(1) = 2) = 0, P(X(1) = 3) = f, P(X(1) = 4) = 0,

P(X(1) = 5) = i».

Die Wahrscheinlichkeiten, das Teilchen zur Zeit t = 1 an den Stellen j = 1, 2, 3, 4 und 5 anzutreffen,
sind also beispielsweise l/4, 0, 1/2, 0 bzw. 1/4.

Wenden wir uns nun der Aufgabe b’) zu. Zu bestimmen ist die unbedingte Wahr-
scheinlichkeit

P(X<n> =1).
Bezeichnet p,,(n) die Ubergangswahrscheinlichkeit einer homogenen Markowschen
Kette, nach n Zeiteinheiten vom Zustand i in den Zustand j zu gelangen, folgt analog
zu a’)

P(X<n> =1) = z P(X(o) = i)p.,(n)

= ;Pt(0)Pu(”)- (3-4)

1) Eine entsprechende Gleichung Z p„(t, t + 1) = 1 gilt allgemein für Markowsche Ketten.
i
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Alle p„(n) lassen sich nun rekursiv aus den Werten pi,» berechnen. Die Wahrschein-
lichkeit, daß ein Übergang von X(0) = i in X(1) = k und anschließend in X(n) = j
erfolgt, ist wegen der Unabhängigkeit der beiden Ereignisse gleich

pikPkj(n’_ 1)- (3-5)

Unter Anwendung der Formel über die totale Wahrscheinlichkeit folgt

pij(n) = §17xI¢PkJ(n * 1)~ (3-6)

Sind alle 11,, bekannt, lassen sich nacheinander alle p„(2)‚ p‚-‚(3) und schließlich
p,- (n) bestimmen. Formel (3.6) ist ein Spezialfall einer allgemeineren Beziehung, die
nach Markow benannt wurde.

Satz 3.1 (Gleichung von Markow): Bei homogenen Markowschen Ketten gilt für
beliebiges ganzzahligen‘ m (1 g m _S_ n — l

P1j(”) = §I7zh(m) Pkj(” " m)- (3-7)

Den Beweis kann der Leser leicht selbst durchführen.
Bei der Berechnung der Werte p„(n) (n > 1) kann man mit Vorteil die
Matrizenrechnung anwenden. Schreibt man die Übergangswahrscheinlichkeiten p,»,~

(i, j = 1, 2, ..., s) in Form einer sogenannten Übergangsmatrix

P11 P12 P1:

P21 P22 P2:
(Pu) = s (3-3)

ps1 psi pss

dann ist nach der Multiplikationsregel für Matrizen

(Pu(2)) = (Pu)(Pr1) = (Pu)2,

und allgemein gilt für n g 1

(Pu(")) = (Pu)"- (3-9)

Im Falle der Irrfahrt des Teilchens (vgl. Tabelle 3.1) ergibt sich für n = 2, p = q = 5 und s = 5

10000 10000 10000
4,0500 4,0100 51010

(pu(2))= 0§°%0 0‘E0%0 = i0ir0%
oogog 004,01; How
00001 00001 00001

Mit den Anfangsbedingungen (3.3) erhält man beispielsweise für die Wahrscheinlichkeit, das Teil-
chen zur Zeit t = 2 bei j = 2 anzutreffen,

P(X(2) = 1) = I521 I7z(0)Px2(2)

=0+-5-&+0+-}~%+0=1.
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Häufig kann man bei homogenen Markowschen Ketten beobachten, daß die
Wahrscheinlichkeit P(X(n) = j), nach der Zeit t = n das Teilchen an der Stelle j
anzutreffen, für große Werte n (n —> oo) unabhängig von den speziellen Anfangs-
bedingungen wird. Gemäß (3.4) müßten in diesem Fall die p,~,(n) gegen Grenzwerte
konVergieren‚ die nicht mehr von i abhängen.

Satz 3.2 (Ergodentheorem): Es seien p„- die ÜbergangsWahrscheinlichkeiten einer
homogenen Markowschen Kette mit einer endlichen Anzahl von Zuständen i, je 3:‘.

Wenn es eine natürliche Zahl no gibt, so daß die Übergangswahrscheinlichkeiten
p,,(no) mindestens für einen Zustandj die Bedingung

mlin Pu("o) = ü, ü > Ü,

erfüllen, existieren Wahrscheinliclzkeitswerte pi, so daß

1imPij(") = 17;: fe f» (3.10)

mit Zpj = 1 gilt.
f

Den Beweis des Satzes findet der Leser in [8].
Die Grenzwerte p,» heißen ergodische Wahrscheinlichkeiten. Bei Konvergenz gegen

diese Werte strebt die homogene Markowsche Kette einem Gleichgewichtszustand
zu. Denn bei großen n gilt (gemäß Satz 3.2) annähernd

PrJ(” — 1) = Pij(") = Pol" + 1) = Pja (3-11)

so daß gemäß (3.4) näherungsweise

P(X<n — 1)=j)= P(X<n> =1) = P(X<n + 1) =j> = p,

ist. Die Wahrscheinlichkeit, daß sich die homogene Markowsche Kette im Zustand j
befindet, ändert sich für große n nur noch wenig und konvergiert schließlich. Zur
Ermittlung der pi geht man von den Beziehungen (3.6) aus.

Unter Berücksichtigung von (3.1 l) erhält man für die gesuchten ergodischen Wahr-
scheinlichkeiten die Bestimmungsgleichungen

Pj = §.PkPkja f =1, 2, ~-‘,5, (3-12)

wobei Z p, = l zu beachten ist.
I ‚

Wir kehren nun zu dem betrachteten Beispiel zurück und untersuchen, ob ergo—

dische Wahrscheinlichkeiten existieren. Der Einfachheit halber setzen wir s = 3.
Dann ist wegen

100
pu=(q0p)

001

100 100 100

Pu'(2) = (q 0 p) (q 0 p) = (q 0 p)
001 001 001

und
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p,-‚- = p„(2) = p„(3) = = p„(n). Die Voraussetzungen des Satzes 3.2 sind somit
nicht erfüllt. Offenbar gelten auch die Behauptungen des Satzes nicht. Es ist wegen

P110‘) = 1 (n =1a2s 3:

1imPn(”) = 1:
7!’*UD

während
1imp21(n) = q, 1imp3i(n) = 0
""00 n-mo

gilt. Die Grenzwerte sind nicht unabhängig von den Anfangszuständen. Betrachten
wir die Zustände bei diesem Beispiel genauer: Vom Zustand 2 gelangt man sofort
nach l (bzw. 3), während es unmöglich ist, mit positiver Wahrscheinlichkeit von l
(bzw. 3) nach 2 zurückzukehren. Man bezeichnet 2 als vorübergehenden Zustand.

Definition 3.4: Ein Zustand i heißt transient, wenn für mindestens einen Zustand j
und für eine natürliche Zahl no die Übergangswahrseheinlichkeit p„-(n„) positiv ist,
aber für alle natürlichen Zahlenn > no pu(n) = O gilt. Anderenfalls bezeichnet man i
als wesentlichen Zustand.

Demnach sind die Zustände i = 1, 3 wesentlich und der Zustand i = 2 transient.
Beispiel 3.2: Es werde nun die Irrfahrt des Teilchens (vgl. Beispiel 3.1) dahingehend
abgeändert, daß an den Enden des Intervalles [1, s] das Teilchen mit Wahrscheinlich-
keit p bzw. q reflektiert wird. Für die Übergangswahrscheinlichkeiten gelte

pu=q=l—p; p+q=1‚
p für i=1,2,3,...,s—1; j=i+l‚

p„= q für i=2‚3,4‚...,s; j=i—l,
0 für alle übrigen Paare (ij),

12s. = p = 1 — q-

Die Übergangsmatrix hat dann die Form
q p O 0 0 0

q0p0...00
(Pu): 051017---00

0000...qp
Es läßt sich zeigen, daß in diesem Fall Satz 3.2 (Ergodentheorem) gilt. Der Einfach-
heit halber beschränken wir uns wieder auf den Fall s = 3. Dann ist

(1170

(im) = (q 0 p),
011p
qp0 4170 q’+pq qp p’

(p„(2))= 4012 £1012 = q’ 2M p’ ~

Oqp 0412 q’ pq qp+p’
Die Voraussetzungen des Satzes 3.2 sind erfüllt.
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Speziell mit p = q = l errechnen sich gemäß (3.12) die ergodischen Wahrschein-
lichkeiten aus dem System

pi = äpi + äpz,

P2 = 12171 + ipsa

P3 = %pz + his,

unter Beachtung von

P1 ‘i’ P2 + P3 = 1-

Die Auflösung des Systems ergibt unmittelbar

lPi =I72 ’—‘P3:’§-

Das Ergebnis ist plausibel, da nach einiger Zeit, unabhängig von der Anfangs-
situation, zu erwarten ist, das Teilchen an jedem Ort mit gleicher Wahrscheinlich-
keit anzutreffen. Weitere Ausführungen über Markowsche Ketten findet der Leser
in [5], [8] und [4a].

3.2. Diskrete Markowsche Prozesse

3.2.1. Definition und Eigenschaften

Wir betrachten nun einen diskreten stochastischen V Prozeß {X(t)‚ t e I Ohne
Einschränkung der Allgemeinheit kann man I = {0, 1, 2, 3, setzeu. Die Ele-
mente von Ff werden auch wie im Falle von Ketten als Zustände bezeichnet.

Definition 3.5: Ein diskreter stochastischer Prozeß {X(t), te I} heißt diskreter Mal'-
kowscher Prozeß, wenn für jede beliebige wachsende Folge von Werten

to <1, < < t„ < t,,+1

aus I und beliebige Zustände i„, i1, ..., i„, i„, aus ?€ gilt:

P(X(tn+1) = in+1/X(tn) = ins X0 <1) = irrt, ---s X00) : i0)

= P(X(tn+1) = in+1/X(tn) = inl- (3-13)

Die Markoweigenschaft äußert sich wie im Falle der eben behandelten Markowschen
Ketten in dem Fehlen einer Nachwirkung. Die zusätzliche Kenntnis von Zuständen
zu früheren Zeitpunkten

XÜO) = i0: X(t1)=i1: m; X(tn-1)=in~1

hat keinen Einfluß auf die Wahrscheinlichkeit, daß sich der Prozeß zur Zeit t„„‚1
im Zustand i„, befinden wird, unter der Voraussetzung, dal3 er sich zur Zeit t„
im Zustand i„ befindet.
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Definition 3.6: Die bedingte Wahrscheinlichkeit P(X(t) = j/X(s) = i) (s < t,
s, te I, i, je I) heißt Übergangswahrscheinlichkeit des Zustandes i zur Zeit s in den
Zustandj zur Zeit t und wird mit pi‚(s‚ t) bezeichnet.

Viele Eigenschaften Markowscher Ketten lassen sich in entsprechender Weise für
diskrete Markowsche Prozesse verallgemeinern.

Satz 3.3: Für die Übergangswahrscheinlichkeite/z p„-(s, t) diskreter Markowscher
Prozesse gilt:

0 .5 17:7“: f) 5 la (3-14)

.21»,-,-(.2 r) = 1. (3.15)

Pij(5a T) = §l7rk(5s T)I7kJ(Ta Ü; S < T < 7- (3-16)

Gleichung (3.15) sagt aus, daß der Prozeß mit Wahrscheinlichkeit l im Zeitintervall
[s, t) vom Zustand i in einen Zustand j übergeht. (3.16) ist eine Verallgemeinerung
der Gleichung von Markow und wird Chapman-Kolmogorowsche Gleichung genannt.
Weitere Eigenschaften ergeben sich aus der Betrachtung des folgenden Beispiels.

Beispiel 3.3: Es wird die Arbeit einer Telefonzentrale betrachtet. X(t) (t g 0)
bezeichnet die Anzahl der Gespräche, die bis zum Zeitpunkt t anfallen. Im Mittel
treten 4 Gespräche pro Zeiteinheit auf.

a) Wie lauten die Übergangswahrscheinlichkeiten für diesen Prozeß?
b) Wie groß ist die Wahrscheinlichkeit dafür, daß in den ersten 3 Zeiteinheiten genau

2 Gespräche registriert werden?
c) Wie groß ist die Wahrscheinlichkeit dafür, daß nach sehr langer Zeit (t—> oo)

a Gespräche registriert werden?

In Kapitel 2 wurde darauf hingewiesen, daß {X(t), t g 0} ein diskreter stochastischer
Prozeß mit homogenen unabhängigen Zuwächsen und speziell ein Poissonscher
Prozeß ist. Ä ist dabei der Erwartungswert der pro Zeiteinheit anfallenden Gespräche.
Um zu zeigen, daß es sich bei dem im Beispiel beschriebenen Prozeß um einen
Markowschen handelt, benötigen wir den folgenden

Satz 3.4:’) Ein diskreter stochastischer Prozeß {X(t), t g O} mit P(X(0) = b) = 1

(b konstant) und unabhängigen Zuwächsen ist ein diskreter Markowscher Prozeß.

Denn ist 0 = to < I, < < 2,, < t,,+1 eine beliebige wachsende Folge von
Parameterwerten, läßt sich X(t„„) als Summe unabhängiger Zuwächse schreiben:

X0...) e X10) + [X(n) — X(0)l + + [X(t„+‚) — 2mm.

Unter Beachtung des letzten Abschnittes von Kapitel 2 kann der Leser den Beweis
leicht selbst beenden.

Man erkennt also, daß alle Poissonschen Prozesse (somit auch der im Beispiel
betrachtete Prozeß) diskrete Markowsche Prozesse sind.

‘) Dieser wichtige Satz gilt nicht nur für diskrete Prozesse, sondern Iäßt sich verallgemeinern.
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Wir ermitteln nun die Übergangswahrscheinlichkeiten eines Poissonschen Pro-
zesses. Es ist zunächst

P1101912) = P(X(t2) =1./'X(t1) = i)

_ P(X(t1) = i,X(r2) =1‘) . .__ (l,_]~—0,1,2,...). (3.17)

Unter Beachtung Von (2.16) folgt

p.-‚(z„ 22) = TL(X(t1)= Ä 5U‘) = j _ i)

{ e—2(z2—r.>‚ i <1",
(j — i)!

0, igj. (3.18)

Mitt = t2 — t1 kann man schreiben

GÜITI‘ 6.417 i<j’
17:70‘): (J “ l)- (3-19)

Ü, i ä J'-

Definition 3.7: Ein diskreter Markowscher Prazeß {X(t)‚ teI} heißt homogen, wenn

für beliebige i, j e P6 und t1, t; eI die Ubergangswahrscheinlichkeir pi]-(t1’ tz) nicht
von t, und t2, sondern nur von der Dzflerenz t = t; — t1 abhängt. Man schreibt

pI'j(tl ‚ f2) = Pu'(t)-

Poissonsche Prozesse sind somit homogene diskrete Markowsche Prozesse.
_ Mit l = 4 ergeben sich aus (3.18) die in Aufgabe a) von Beispiel 3.3 gesuchten

Ubergangswahrscheinlichkeiten

(4t)j"‘ _ . .

[7ij(t)=(j_].)!e4': l<.]9

P.-1(1) = Os i213
Zur Lösung von b) bestimmen wir die absoluten Wahrscheinlichkeiten p,-(t)
= P(X(t) = j). Mit den allgemeinen Anfangsbedingungen

p‚(0) = P(X(0) = i), i = 0,1, 2, ..., (3.20)

erhält man unter Berücksichtigung der Formel für totale Wahrscheinlichkeiten

p;(t) = g 1J.-(0)17.«,~(t)- (3.21)

Da zur Zeit t = 0 mit der Registrierung der Gespräche begonnen wird, ist

l für i = O,
= i=0‚1,2,...

0 für i=i=O‚P.»(0)
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und mit Ä = 4

22

m3) = 120,26) - 12—, e“.

Aus (3.20) und (3.21) ist ersichtlich, daß Anfangsbedingungen und Übergangs-
wahrscheinlichkeiten einen homogenen diskreten Markowschen Prozeß vollständig
(wahrscheinlichkeitstheoretisch) charakterisieren. Zur Lösung von c) betrachten wir
homogene diskrete Markowsche Prozesse noch etwas eingehender.

Die in Satz 3.3 angegebenen Beziehungen kann man in der Form

0 ä 17:10). (3-22)

;p”(t) = l, (3.23)

PuÜ + 5) z §l7:'k(t)PhJ(5)a ial = 0a la 2- (3-24)

schreiben. Satz 3.2 kann in der folgenden Weise verallgemeinert werden:

Satz 3.5: Für homogene Markawsehe Prozesse {X(t), t g O} mit endlich vielen
Zuständen {0, I, 2, ...‚ n} existieren die Grenzwerte

lim PUÜ) = P1 (3-25)
t->00

für alle i,j = 0, 1, ...‚ n, wenn es ein t* (0 g t* < oo) gibt, für welches alle p‚«‚(t*)
(i‚j = 0, l, 2, ...‚ n; i <j)positiv sind.

Gemäß (3.21) streben bei Gültigkeit dieses Satzes auch die absoluten Wahrschein-
lichkeiten p,(t) gegen die von den Anfangsbedingungen unabhängigen Grenzwerte pf, '

denn es gilt

1in1 PJÜ) = EPz-(O) P1 = P1 212(0) = Pj- (3-26)
t~oo i i

Obwohl ein Poissonscher Prozeß unendlich _vie1e Zustände i = 0, l, 2, besitzt
und Satz 3.5 nicht anwendbar ist, haben alle Ubergangswahrscheinlichkeiten Grenz-
werte. Denn es gilt

1imp,,(t) =1im (71017 e-h = o, i, j= o, 1,2, (3.27)
I->00 I-00 (J — l)!

Die Wahrscheinlichkeit, daß für t—> oo genau j = a Gespräche eintrefien, ist somit
gleich null. Die Gültigkeit von (3.25) erklärt sich daraus, daß alle Zustände transient
sind (vgl. Definition 3.4). Von jedem Zustand i kann man zum Zustand j (j > i)
übergehen, aber aus dem Zustand j nicht zum Zustand i zurückkehren.

3.2.2. Geburts- und Todesprozesse

Es werden nun Prozesse betrachtet, bei denen der Zustand sowohl durch Zugänge
(Geburten) als auch durch Abgänge (Todesfälle) verändert werden kann. Bei der
Betrachtung von Bevölkerungsentwicklungen, der Vermehrung von Bakterien-
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kolonien‚ radioaktiver Zerfallsprozesse sowie bei vielfältigen Problemen der Bedie-
nungs—‚ Lagerhaltungs— und Zuverlässigkeitstheorie besitzen sie eine große Bedeu-
tung.

Definition 3.8: Ein diskreter Markowprozeß {X(t), t g 0}, I = {0‚ 1,2 heißt
Geburts- und Todesprozeß, wenn seine ÜbergangsWahrscheinlichkeiten folgende Be-
dingungen erfüllen:

Der Prazeß geht von einem Zustand n zur Zeit t in einem genügend kleinen Zeit-
intervall At mit Wahrscheinlichkeit

Mr) At + o(At)

in den nächsthöheren Zustand n + 1, mit Wahrscheinlichkeit

‚u„(t) At + 0(At)

in den nächstniederen Zustand n — 1 und mit Wahrscheinlichkeit o(At) in einen
Zustandn i r, r g 2, über.

/l„(t) und ‚u„(t) sind von n und t abhängige Funktionen, welche die Schnelligkeit
des Wachstums bzw. des Abnehmens der Ordinaten von X(t) bestimmen. Sie heißen
Geburts- bzw. Sterbekoejfizient. iBei ‚u„(t) E 0, 7.„(t) + 0 spricht man von einem
reinen Geburtsprozeß, bei Ä„(t) E 0, ‚u„(t) ¢ 0 von einem reinen Todesprozeß.
Aufgabe 3.1: Ermitteln Sie die Koeffizienten Ä, und ‚u„ für ein Modell einer Bak-
terienkolonie, wenn jeder Mikroorganismus sich in At mit Wahrscheinlichkeit
ÄAt + o(At) teilt und mit Wahrscheinlichkeit ‚uAt + o(At) abstirbt.

Es läßt sich nun beweisen, daß bei Geburts- und Todesprozessen die Übergangs-
wahrscheinlichkeiten einem System von Differentialgleichungen, den sogenannten
„Kolmogorowschen Gleichungen“ genügen. Stellt man dieses System auf und löst
es, können alle interessierenden Parameter unmittelbar bestimmt werden. Im folgen-
den soll das Kolmogorowsche System aufgestellt und die Lösungen für spezielle
Geburts- und Sterbekoeffizienten ermittelt werden.

Der Prozeß {X(t), t g 0} wird zu 3 verschiedenen Zeitpunkten s, t und t + A)‘
mit s < t betrachtet. Es sei weiterhin bekannt, daß X(s) = i und X(t + At) : n ist.
Dann gibt es für den Übergang von i nach n folgende Möglichkeiten:
a) X(t) geht während des Zeitabschnitts [s, t) von i in n — 1 und anschließend im

Abschnitt [t‚ t + Ar) von n — 1 in n über. Die entsprechenden Übergangswahr-
scheinlichkeiten sind

p.-.„_i(s‚ t), pn-l,n(t9 t + At) = ln_1(t)At + o(Ar). (3.28)
b) X(t) geht während des Abschnitts [s, t) von i in n + 1 und anschließend im Inter-

vall [t, t + At) von n + 1 in n über. Die entsprechenden Übergangswahrschein-
lichkeiten hierfür sind

Pt‚n+1(5a f): pn+1,n(t: l + At) = /"n+1(’) At + Ü(A’)- (3-29)

c) X(t) geht innerhalb [s, t) von i in n über und verbleibt im nachfolgenden Inter-
vall [t‚ t + Ar) in diesem Zustand. Die Übergangswahrscheinlichkeiten hierfür
sind

p‚„(s, t), p‚„‚(t, 2 + Ar) = 1 — }.,,(t)At — ,u,,(t)At — o(Az). (3.30)
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d) X(t) geht innerhalb [s, t) von z‘ in n i r mit |r| >_ l und anschließend in [1, t + At)
von n i r in n über. Hierfür ergeben sich die Ubergangswahrscheinlichkeiten

p,-_„„_x‚(s‚ I), p„i„„(t‚ t + Ar) = o(At). (3,31)

Wegen der Unabhängigkeit der Übergänge in [s‚ t) und [t, t + At) gilt

17.-y.(S, t + At) = /1..—1(t)17:...—1(S,t)At + M..+1(f)17:.».+1(S»t)At

+ [1 — ).,,(t)At — ,u,,(t) At]p,,,(s, t) + o(At). (3.32)

Nach einfachen Umformungen erhält man

p.-„(s‚ t + Ar) — pm(s, t) :

At in-10) Pun-1(Sa t) ‘l’ ;“n+1(’) Pm-+1(5> I)

A
— wt) + /4.10)] ms, r) + “m”. (3.33)

Setzt man voraus, daß die partielle Ableitung nach t existiert, folgt für n g l

= awn) p1‘.n<1(Sa o + l‘n+1(7)Pi.n+1(-5‘: z) — im) + „m: ms, r)

(3.34)
und für n = 0

ö i ‚t
= M1(t)17z1(-9: t) ’ }“¢J(t)Pio(-5': f),

da ein Glied mit L10) entfällt. Außerdem setzt man n00) = 0, da sonst der Wert — 1

auftreten würde.
X(t) nehme mit Wahrscheinlichkeit l für t = 0 den Wert N an. Dann erhält man

unter Berücksichtigung von (3.21) aus (3.34) ein System von Differentialgleichungen
für die absoluten Wahrscheinlichkeiten p„(t) (n g 0)

72124:) = n„-‚<z)p„-.<r) + M,.+1(t)p..+1(t) — Wt) + fln(t)ll7n(t)‚ n g 1,

“g7p0(t)=‚ul(t)p1(t)— Monte), n = o, (3.35)

mit ‘den Anfangsbedingungen

1 für n = N,
MO) o für n 4: N.

Ist lo = O, so gilt X(t) = 0 für alle t g t1, falls X(t‚) = 0 ist. Der Prozeß verbleibt
also immer im Zustand Null, falls er einmal dorthin gelangt ist. Man bezeichnet
n = 0 in diesem Fall als absorbierenden Zustand. Gilt lo > 0, so ist mit positiver
Wahrscheinlichkeit X(t) > 0 für t g ti, falls X01) = 0 ist. Der Prozeß geht mit
positiver Wahrscheinlichkeit in einen Zustand n > 0 über. Man bezeichnet dann
n = O als reflektierenden Zustand.
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Es sollen nun unter einigen speziellen Annahmen die Lösungen angegeben werden.
Für

M!) = Ä; /4‚.(t) = 0 (3-36)

ergibt sich mit VN = 0 ein Poissonscher Prozeß.
Denn aus (3.35) ergibt sich das System

“pg? = zp.-.<r> — mo). n z 1,

d t (3.37)

"f1? = 4m)

mit den Anfangsbedingungen 170(0) = 1, p,,(0) = 0, n g 1. Mit dem Lösungsansatz
p„‚(t) = e“’q,,,(t) erhält man

d „

(Id?) = M..—1(t), n > l,

d‘ff’ = z, 4100): 1

mit den Anfangsbedingungen q0(0) = l, q„(O) = 0, n g 1. Hieraus erhält man

schrittweise
(/It)‘ W)"

q1(t) = Ä’; 7'40) = 2| s -~-9 qr-(t) = n|

und schließlich

p„(t) = Er“, n = 0,1, 2, (3.38)
n!

Mit N = 1 ergibt sich, wie man leicht nachprüfen kann,

pm = %e-1*, n = 1, 2, (3.39)

P00) 5 0-

Für allgemeine Koeffizienten wird die Bestimmung der Lösung kompliziert. Ist
beispielsweise

1„ = Ä(t) n, ‚u„ = ‚u(t) n (3.40)

(/Z(t) und ‚u(t) sind stetige Funktionen), ergibt sich mit N = 1

120(1) = u(t), n = 0,
(3.41)

17.10) = [1 - u(t)] [1 - v(f)]v(l)”“, n ä 1,

e77’
mit U 1

u(t) = l — W5, v(t) = 1 -— WY, (3.42)

3 Beyer, Stoch. Pro1.
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wobei
t

w(t) = e"1’1|:1 + f e’(">,u(19)d29] (3.43)
o

und
I

r(t) = f U40’) - 109)] d1’ (3-44)
o

ist. Den Lösungsweg findet der interessierte Leser ausführlich in [17] dargestellt.
Unter Berücksichtigung von (3.4l)—(3.44) lassen sich Mitte1wert- und Varianz-
funktion bestimmen. Es folgt

mm = nur) nu — um] u — v(r>1v(r>"-'

= [1 — um] n — um] E mm"-1
n=0

_ 1 — u(t) _ e_r(,)

_ 1 — v(t) _

= exp{— j (pea) — }.(45‘)]d19}. (3.45)
O

Für die Varianzfunktion gilt

0§(t) = E[X’(t) - m§(t)]- (3-46)

Es ist aber

E[X‘(t)] =n=Z0 n217..(t) = ‚grün - 1)p„0) + §0np..(t)

= [1 — u(t)] [1 — v(;)]§0n(n — 1) 12(2)"-1 + 1T§%E:—;-

= [1 — u(t)] {[1 — v(t)] u(t)§0 n(r1 — 1) u(t)"‘2 g

= [1 — u(t)1{u — v<r)1v<r>[—1_—2l,(,)¢ +

2v(t) + 1 — v(t)
=[1—u(t>1 U_v(,)]2

_ u — u(t)n1+ um]
‘ n — um? '

Somit ergibt sich unter Berücksichtigung von (3.46)

G20) _ [1 - u0)l [1 + v0)] _ [1 - u(t)J’ _ [1 - 140)] [u0) + v0)l
" _ [1 - v(t)]’ 1 — v0) _ [1 - v(t)]2

= e~2r<t> f e'(“’>[/1(19)+ ,u(19)]dz9. (3.47)
0
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Wegen lo z 0 - /I(t) = 0 ist n = 0 „absorbierender Zustand“. Ist eine Trajektorie
zu einem Zeitpunkt t1 > 0 null, dann ist sie auch für alle t g t, gleich null. Die
Wahrscheinlichkeit, daß sich der Prozeß zur Zeit I im Zustand O befindet, ist wegen
(3.42)—(3.44)

X

j‘ e41’) ,u(z9) dö

p.‚(z) = u = —°—,——:. (3.48)

1 + j am M09) da
0

Die Wahrscheinlichkeit der Absorption des Prozesses ist dann

I

f am„(in cw

1imp0(t) = lim} = po. (3.49)
1*w 1—>oo l + J‘ey(19)/K19.) dig

0

Ist po = l, endet der Prozeß mit Wahrscheinlichkeit 1 durch Absorption. Das
bedeutet, daß „fast alle“ Trajektorien jeweils zu irgendeinem Zeitpunkt null werden.
Aus (3.49) erkennt man, daß die notwendige und hinreichende Bedingung für die
Absorption mit Wahrscheinlichkeit l die Gültigkeit der Beziehung

t

lim f e'(">;4(19) d1? = oo (3.50)
t-'oo f,

ist. Wir betrachten nun etwas genauer den Zeitpunkt z der Absorption, d. h. die
Zeitpunkte, in denen die einzelnen Trajektorien des Prozesses in den Zustand Null
gelangen. -r ist eine Zufallsvariable, deren Verteilungsfunktion F‚(t), Verteilungs-
dichte f‚(t) und Parameter leicht ermittelt werden können. Es ist

' F‚(t) = P(-r < z) = p._-,(t) (3.51)

F40) =/4:) = ,°'(°"(” 2 -

[1 + f e""),u(19)d19:'
O

und

(3.52)

Der Erwartungswert E(-r) kennzeichnet die mittlere Lebensdauer des Prozesses.
EC!) kann aus der Gleichung

am
f e’(‘)‚u(t) dt = 1 (3.53)

O

ermittelt werden.
Es bereitet keine Schwierigkeiten, weitere Spezialfälle zu behandeln. Ist beispiels-

weise
l,,(t) = n2, p„(t) = pm; Ä, u = const,

3*
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ergeben sich entsprechende Formeln für absolute Wahrscheinlichkeitsverteilung,
Mittelwertfunktion und Varianzfunktion unmittelbar durch Spezialisierung des
eben behandelten Falles.

Beispiel 3.4: Wir betrachten im folgenden die kosmische Strahlung. Es sollen meh-
rere Modelle für das Zustandekommen des sogenannten Kaskadenschauers betrach-
tet werden. Das erste Modell ist sehr einfach und spiegelt die realen Verhältnisse nur
sehr grob wider. Jedes folgende Modell berücksichtigt weitere Voraussetzungen und
stimmt mit der Wirklichkeit besser überein.

Die kosmische Strahlung setzt sich aus harter und weicher Strahlung zusammen.
Die weiche Strahlung, der wir unsere Aufmerksamkeit widmen wollen, besteht aus
energiereichen Photonen und Elektronen hoher Geschwindigkeit. Trifft ein Photon
beispielsweise auf Bleiwände, wird es auf einem Wegstück At mit einer bestimmten
Wahrscheinlichkeit absorbiert. Bei der Absorption entstehen ein Elektron und ein
Positron (sie sollen im folgenden nicht weiter unterschieden werden). Ein Elektron
strahlt beim Durchlaufen einer Wegstrecke At mit einer bestimmten Wahrschein-
lichkeit unter Energieverlust ein Lichtquant aus. Die sekundär entstandenen Photo-
nen bzw. Elektronen erzeugen wiederum Elektronen bzw. Photonen. Dieser Prozeß
setzt sich lawinenartig fort. Es entsteht in der Wilsonschen Nebelkammer der bekannte
Kaskadenschauer. Da in der Nebelkammer nur Elektronen, jedoch keine Photonen
beobachtet werden können, sollen nur Modelle angegeben werden, die Aussagen
über die Zahl der Elektronen machen.

Das erste Modell wurde 1937 erstmalig angegeben. Die Wahrscheinlichkeit, daß
ein Elektron erzeugt wird, wurde proportional der Wegstrecke At angenommen.
Dabei wurde weder die Zahl der bereits erzeugten Elektronen, noch ihre Energie
bzw. die bereits zurückgelegten Wegstrecken berücksichtigt. Unter diesen Voraus-
setzungen ergibt sich ein reiner Geburtsprozeß mit

Ä..=Ä‚ M„=0.
Nimmt man an, daß zur Zeit t = 0 gerade ein Elektron auf der Oberfläche des
Materials auftriflt, erhält man das System (3.37) mit den Anfangsbedingungen
(N=1)

1 für n=l,
p"(0)=<0 für n4: l.

Als Lösung erhält man (3.39). p„(t) gibt dabei die Wahrscheinlichkeit an, daß zur
Zeit t genau n Elektronen vorhanden sind.

Das zweite Modell wurde wenig später vorgeschlagen. Jedes weitere Elektron
erzeugt ebenfalls auf der Wegstrecke At mit einer Wahrscheinlichkeit proportional
zu At durch die beschriebene Reaktion ein weiteres Elektron. Allerdings ist auch in
diesem Modell die Wahrscheinlichkeit unabhängig von der Energie der Elektronen
angenommen. Man erhält wiederum einen reinen Geburtsprozeß, jedoch ist

(3.54)

Z, = nl, ‚u„ = O.

Bei gleichen Anfangsbedingungen (3.54) wie im ersten Modell folgt

pi(t) = -lp1(t), n = 1,

I7.’.(t) = 101 — 1)1I,.—1(t) - 7-n1I..(t), n > l-
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Unter Berücksichtigung von (3.40)—(3.44) erhält man mit

r(t) = —Ät,

w(t) = e“,

u(t) = O und u(t) = l — e“'
die Lösungen

1700) = 07

p„(t) = e‘“ [1 — e""]"“‚ n > 0.

Die Mittelwertfunktion von {X(t)‚ t g 0} gibt die mittlere Zahl der Elektronen
in Abhängigkeit der Zeit an und lautet gemäß (3.45)

m‚(t) = e“.

Dieses Modell stellt ebenfalls noch eine grobe Näherung dar, denn während hierin
der Erwartungswert für die Zahl der erzeugten Elektronen mit zunehmender Material-
dicke exponentiell zunimmt, zeigt die Wirklichkeit, daß die mittlere Zahl der Elek-
tronen zunächst stark zunimmt, nach Überschreitung einer bestimmten Plattenstärke
jedoch schnell absinkt.

Das 3. Modell berücksichtigt diesen Sachverhalt. Zu den genannten Voraus-
setzungen kommt noch die folgende hinzu. Jedes Elektron wird beim Durchlaufen
der Wegstrecke At mit einer Wahrscheinlichkeit proportional zu dieser Wegstrecke
absorbiert. Diese Wahrscheinlichkeit sei unabhängig von der vorher bereits durch-
laufenen Wegstrecke t. Man erhält

Ä„=nÄ‚ ‚u„=n‚u, ‚u=l=Ä.

Das Difierentialgleichungssystem für die p,,(t) lautet dann unter den gleichen Anfangs-
bedingungen (3.54)

1760) = Mpz(t)‚

121.0) = (n - 1)Äp„—u(t)+(n + 1)/4Pn+:(t) r "(Ä + IOMI).
Unter Berücksichtigung von (3.4l)——(3.44) folgt

r(t) = (M — i) t,
Il e(‘“!‘)’ — ‚u

w(t) —

Es ergibt sich als Lösung

_ M - ÄPoÜ) — 1 +,

Pi— M2 e(/A-21): (1 _ e(fl~2)[)”'1Ä: W , n >0.

(1 — “

p„(t) =
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Die Erwartungswertfunktion lautet

m,„(t) = e(""‘)‘.

Dabei gilt

limm (t) = {w für Ä > "’
r-my X 0 für Ä < ‚u.

Das letzte von Arley vorgeschlagcne Modell berücksichtigt zusätzlich, daß die
Wahrscheinlichkeit der Absorption jedes Elektrons nicht nur der Länge der betrach-
teten Wegstrecke At, sondern auch der Länge des vorher bereits durchlaufenen
Weges proportional ist. Diesem Ansatz liegt die Annahme zugrunde, daß die Elek-
tronen um so mehr Energie verlieren, je größere Strecken t sie im Material durch-
laufen. Man erhält jetzt einen inhomogenen Geburts- und Todesprozeß mit

11„ = An, ,u,,(t) = ‚um.

Unter Beibehaltung der bisherigen Anfangsbedingungen (3.54) ergibt sich das
System

1760) = MIMI),

p.’.(t) = l(n - 1)pn—1(t) — (Ä + Mt)np„(t) + M" + 1)p„„(I)-

Unter Berücksichtigung von (3.40)—(3.44) folgt

r(t) _ im: — /It,

I

w(t) = 1 + 2. e‘*"”+“f e‘1""’"‘ d0.
0

Somit folgt das System

P00) = 1 — e"“""’,
Juli (‚ut-A)? —n+1

p,,(t)=e 2A""[A+e 2"] ‚ n>0,
mit

‘ (w9—1)’

A =Z_’-e 2/‘ dö.
o

Für die Mittelwertfunktion erhält man

M2

m,(z) = e("' 2 )

t2
Mit Ä = 2 und ‚u = 1 ergibt sich speziell m,(t) = exp (2! — Die mittlere Lebensdauer E(T) des
Prozesses kann gemäß (3.53) aus

Ea) 2

Jiexp — 2!) tdt=-1
o
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bestimmt werden. Die graphische Auswertung des Integrals liefert E(r) = 3,2. Man erkennt außer-
dem, daß lim p„(t) = 1 ist, weil nach (3.50)

t—>O0

I 2

lim fexp (L — Zt) tdt = oo
law 2

o

ist. Das bedeutet, daß der Prozeß mit Wahrscheinlichkeit 1 durch Absorption endet. Skizziert man

den Verlauf von m„(t), erkennt man, daß die Elektronenzahl zunächst stark zunimmt und dann
rasch gegen null abnimmt. Untersuchungen haben ergeben, daß dies mit den tatsächlichen Beobach-
tungen gut übereinstimmt.

Aufgabe 3.2: Bestimmen Sie mx(t) und <1,2,(t) für das Modell der Bakterienkolonie in
Aufgabe 3.1. Dabei sei y = H. '

Oftmals interessiert nicht die allgemeine Lösung von (3.35), sondern bei homo-
genen Geburts- und Todesprozessen mit konstanten Koeffizienten Ä„(t) = Ä„ und
‚u„(t) = ‚u„ die Lösung im stationären Zustand. Es kann gezeigt werden, daß mit
t—> o0 die ergodischen Wahrscheinlichkeiten p„ nach Satz 3.5 existieren, wenn

MA" < 1, n g no. Mit (if: = 0, n = 0, 1, 2, ..., erhält man folgende Bestimmungs-
n+l

gleichungen l

0 = Änviflmi — Ü». + M„)P„ + Mn+1Pn+1‚ 71 ä 1-
(3.55)

0: —}*oPo+M1PJs "=0-

Für (3.55) kann man

' nPn + /4:-+117n+1 — (_2n-lpn-1 ‘l’ MnPn) = 0

schreiben, so daß sich

_ _L[71 M1 Po» (3 56)

_ final _ " Äk-i I

17» — M” p‚.—i — Pokll M

ergibt. Für po erhält man unter Berücksichtigung von

no n Äkßl
po+2(pon—)=1

n=! k=l Mk

die Beziehung i

— [1 + ff Ü Ä’°‘1]_1 (357)
P0 n=l k=l M I '

Für
2,, = A; ‚u„ = m, Ä„u = const,
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ermittelt man beispielsweise aus (3.55) sehr leicht

%(-fr)" $1 A np,=———1—fT=e 7!—(—), n=0,1,2,... (3.58)

,-2507(7)

Aufgabe 3.3: Man zeige, dal3 für 7.„ = Ä, m, = ‚u das System (3.55) die Lösung

»=<~i><i>i
_ M M

besitzt.
Beispiel 3.5: Wir setzen die Behandlung der Gesprächsvermittlung in einer Telefon-
zentrale fort.

Es werde zunächst vorausgesetzt, daß „unendlich“ viele Leitungen vorhanden
sind, so daß jeder Teilnehmer eine freie Leitung vorfindet. In Übereinstimmung mit
den bisherigen Betrachtungen können wir voraussetzen, daß die Zahl der bis zum
Zeitpunkt r eingetrolfenen Gespräche einen Poissonschen Prozeß {Y(r), r g O} mit
der Intensität Ä bildet. Die Gesprächsdauer sei eine exponentialverteilte Zufalls-
größe Z mit dem Parameter u. X(t) sei die Anzahl der Leitungen, die zum Zeitpunkt r
besetzt sind, {X(t),t g 0} ist ein stochastischer Prozeß, dessen Charakteristiken
ermittelt werden können. Es sei bekannt, daß zum Zeitpunkt r (Beginn der Regi-
strierung) i Leitungen besetzt sind, d. h.‚ P(X(r) = i) = 1. Dann hängt die Zahl
der besetzten Leitungen zur Zeit r + At eindeutig
a) von der Zahl der Leitungen, die im Intervall Ar frei werden,
b) von der Zahl der im Intervall At neu ankommenden Gespräche und
c) von der Dauer der Gespräche, die in At beginnen,
ab. Auf Grund der Voraussetzungen ({Y(t), t g 0} ist Poissonscher Prozeß) sind
alle diese Faktoren unabhängig davon, wie der Prozeß bis zum Zeitpunkt r verlief.
Das erscheint insbesondere in Hinsicht auf den ersten Faktor paradox, erklärt sich
aber aus den im Kapitel 2 angegebenen Eigenschaften von Poissonprozessen und
Exponentialverteilung. {X(r), t g 0} ist somit ein homogener diskreter Markow-
prozeß mit unendlich vielen Zuständen z" (i = 0, 1,2, ...). Die Wahrscheinlichkeit,
daß in einem Zeitintervall Ar wenigstens l Anruf eintrilTt, ist gleich ÄAt + o(Ar)
(vgl. Aufgabe 2.4), die Wahrscheinlichkeit des Eintreffens von mehr als einem
Gespräch o(At). Die Wahrscheinlichkeit, daß ein Gespräch länger dauert als Ar, ist

1>(z > Ar) = e-vm.

Die Wahrscheinlichkeit, daß n Gespräche länger als Ar dauern, ist (wegen der Un—

abhängigkeit der Gespräche) gleich

(e—yAr)n = e—pnAI_

Die Wahrscheinlichkeit, daß in At wenigstens eine Leitung frei wird, ist gleich

nyAt nz/z’ Ar’ _ + J

l! + 2!

= n/4 At + n(At).

1—e’/"'A‘=l—[1—
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Die Wahrscheinlichkeit für das Freiwerden von mehr als einer Leitung ist o(At).
Damit erhält man

p,-„(t, z + At) = o(At), |i — n] > 1,

p„„‚+‚(t, t + At) = 1A: + o(At), (3.59)

p,,,,,_1(t, t + Ar) = n‚u At + 0(At).

{X(t), t g O} ist also ein Geburts- und Todesprozeß mit

7.„ = Ä; ‚u„ = n‚u. (3.60)

Das Diflerentialgleichungssystem für die absoluten Wahrscheinlichkeiten p„(t) lautet
dann gemäß (3.35)

pE>(t) = /tp.(t) — 1110(1), n = 0.

p.’.(t) = lp..—1(t) — (Ä + nn)p„(t) + M" + 1)p„+1(t)‚ n ä 1.

Da man sich bei dieser Problematik nur für den stationären Zustand interessiert,
erhält man folgendes von den Anfangsbedingungen unabhängige Gleichungssystem
[vg1. (3.55)]

0:/"P1—7*Po» "=0.
O = Äpn-l — (Ä ‘i’ /m)I7n ‘i’ M07 +1)pn+l> n > 0-

Als Lösung erhält man nach (3.58)

Ä

1 A n --p,_=W<7) e”, n;0.

p„ ist die Wahrscheinlichkeit, daß nach sehr langer Zeit n Leitungen besetzt sind
(vgl. Aufgabe c) des Beispiels 2.3). Wie man erkennt, hängt diese Wahrscheinlich-

keit wesentlich vom Quotienten Ä/‚u ab. E": p, ist die Wahrscheinlichkeit, daß höch-
i—i‚. _

stens n Leitungen besetzt sind, l — Z p, die Wahrscheinlichkeit, daß mindestens
n Leitungen besetzt sind. "=‘

In der Praxis ist selbstverständlich die Anzahl a der Leitungen begrenzt. Sind
alle Leitungen belegt, kann ein neu eintreffender Anruf nicht berücksichtigt werden.
Entfällt er, so spricht man bezüglich der Telefonzentrale von einem System mit
Verlust. Da X nur die Werte 0, 1, 2, , a annehmen kann, erhält man anstelle (3.60)

Ä ={Ä für n=0‚1‚...,a‚
" 0 für n>a;

l für n=0‚1,...,a—1‚
""={o für nga.
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Anstelle des Gleichungssystems (3.55) ergibt sich

1120+/tp1=0, "=0,
Äpn-x — (Ä + /m)17.. + MOI +1)p„+i = 0, 0 < n 5 a — 1, (3-61)

Zp,,_, — ,uap,, = O, n = a.

Wegenp„ =1/n!(l/,u)"p0 fürn =1,...,a und iog, = l ist

1

TTT7
IEO

L
n! ‚u

ü 1 A i ’

(7)
pa gibt die Wahrscheinlichkeit an, daß ein neu ankommender Anruf keine freie
Leitung vorfindet und damit verlorengeht. Tabellen für pa unter Verschiedenen
Annahmen für a und Ä/‚u findet der Leser in [17]. In der Praxis geht man u. a. von
der Forderung aus, die Zentrale so zu dimensionieren, daß Auslastung und Verlust-
wahrscheinlichkeit in einem vernünftigen Verhältnis stehen.

In den vorangehenden Abschnitten wurden Markowsche Ketten und diskrete
Markowsche Prozesse behandelt. Von großer Bedeutung insbesondere für die
Naturwissenschaften sind allgemeine stochastische Prozesse mit Markoweigen-
schaften.

Ein allgemeiner Markowscher Prozeß kann ähnlich wie im diskreten Fall durch
Angabe einer Übergangsfunktion

F(s‚x;t‚y)=P(X(t)<yIX(s)=x)‚ s,t:0, x,y6(-00; +00),
(3.63)

charakterisiert werden. Sie gibt die Wahrscheinlichkeit dafür an, daß im Moment t
die Zufallsgröße X(t) einen Wert kleiner als y annimmt, wenn bekannt ist, daß im
Moment s (s < t) X(s) = x gilt. (3.63) ist eine bedingte Wahrscheinlichkeitsvertei-
lungsfunktion, die analog zum diskreten Fall die Übergangswahrscheinlichkeit des
Prozesses von einem Wert in eine Menge anderer Werte zu einem späteren Zeitpunkt
angibt. Eine ausführliche Behandlung findet der Leser in [5], [6] und [21]. Durch
Prozesse dieser Art lassen sich u. a. Difiusionsvorgänge modellieren. Ein Spezialfall
ist die Brownsche Molekularbewegung.

Po:

und allgemein

p,, = n = 0‚1‚..., a. (3.62)



4. Stationäre Prozesse

4.1. Grundlegende Eigenschaften

In der Praxis treten häufig zufällige Prozesse auf, deren Charakteristiken sich bei
Verschiebung der Parameterwerte auf der Parameterachse nicht ändern. Kehren wir
zum Beispiel 2.2 zurück. Normalerweise ist es bei der statistischen Untersuchung
des Oberflächenprofils eines Werkstückes gleichgültig, an welcher Stelle der Bezugs-
punkt t= 0 festgelegt wird (vgl. Bild 2.2). Wir würden die gleichen Mittelwert—,
Varianz- und Korrelationsfunktionen und sogar dieselbe zugeordnete Verteilung
erhalten, wenn er an einer anderen Stelle als der eingezeichneten liegen würde.
Ähnliches Verhalten kann man auch bei zufälligen Prozessen, wie dem Rauschen
in E1ektronenröhren‚ dem Schwund (Fading) und der Abweichungen selbstregelnder
und selbststeuernder Systeme, die unter konstanten äußeren Bedingungen arbeiten,
feststellen. Bei diesen Prozessen ist es gleichgültig, zu welchem Zeitpunkt wir mit
der Beobachtung und Registrierung des Prozeßverlaufs beginnen. Sie verhalten sich
„stationär“ bezüglich des Parameters t.

Definition 4.1: Ein stachastischer Prozeß {X(t), te I} heißt stationärer stochastischer
Prozeß, wenn sich die n-dimensionalen Verteilungsfunktianen zu beliebigen Parameter-
werten 1„ t2, ..., t„ (t, ‚ ..., t„ e I, n = 1, 2, ...) bei Verschiebung dieser Werte längs
der Parameteraehse um einen beliebigen Wert 1 nicht ändern.

Das bedeutet

Ft,,...,r,,(x1s --~a xn) r‘: Fr‚+r„..‚r„+r (X1: ---> Xn)a (4-'1)

und falls die Dichtefunktionen filw, „_(x‚ ‚ ..., x„) existieren, gilt auch

fi„...‚r„ (X1: U-a xn) =fl‚+r‚.„,t„+r (x1: --va xn)- (42)

Bei zufälligen Folgen und Ketten mit dieser Eigenschaft spricht man von stationären
Folgen bzw. stationären Ketten. Betrachten wir einige wichtige Eigenschaften.

Satz 4.1: Mitrelwert- und Varianzfunktion eines stationären Prozesses sind kon-
stant. Die Karrelationsfunktion hängt nur von der Diflerenz 1 =12 — t1, jedoch
nicht von t1 und t2 selbst ab.

Beweis: Aus (4.1) folgt für n = 1

Fz,(X1) = FI2(x1) = = F2,.(X1)-

Die eindimensionalen Verteilungsfunktionen sind von t unabhängig. Hieraus folgt
m‚„(t) = const und zr,2,(t) = const. Aus (4.1) folgt weiterhin für n = 2 und 1 = —t1

Fz,t;(X1s X2) = F0,!2-!,(x1sx2) = Fu‚t‚—t‚(x2 — x1)- (43)

Die zweidimensionalen Verteilungsfunktionen hängen nur von t2 — t1 ab. Hieraus
folgt der zweite Teil der Behauptung.
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Die Korrelationsfunktion eines stationären Prozesses ist somit eine (reelle) Funk—
tion einer Veränderlichen, und man schreibt

kx(tl7 t2) = kx(t2 - h) = kx('€)- (4.4)

Existieren die Dichtefunktionen, erhält man m„(t), o§(t) und k,,(-r) aus

+00

m,(t) = xf(x) dx = m,

‘: (4.5)

(x — m)2f(x) dx = :12

—ao

030)

und
(X)

k‚„(t‚; t1) = J" (x, — m) (x2 — m)f„„‚_„(x2 — x,)dx1 ax, = k,,(1).
-09

Man kann sich leicht davon überzeugen, daß die in Satz 4.1 genannten Eigenschaften
nicht hinreichend für die Stationarität sind. Ein Prozeß {X(t)‚ tel} mit diesen
Eigenschaften braucht nicht stationär zu sein. Da man sich aber in den meisten
praktischen Anwendungen auf Momente erster und zweiter Ordnung beschränkt,
ist es zweckmäßig, den Begriff der Stationarität etwas weiter zu fassen. Man bezeich-
net einen Prozeß im erweiterten Sinne stationär, wenn er die in Satz 4.1 angegebenen
Eigenschaften besitzt.

Aus Satz 2.1 und (2.15) ergeben sich unmittelbar die folgenden Eigenschaften
von k‚„(-t).

a) kx(1) ist eine gerade Funktion:

M1) = kx(-1)- (4-6)

b) Die Werte einer Korrelationsfunktion sind höchstens gleich der Varianz der
Zufallsfunktion:

kx(0) ä 1641)-

In den Anwendungen treten Zufallsprozesse vielfach infolge stetiger Einwirkung
verschiedener zufälliger Störungen auf ein dynamisches System auf. Daher wird
oftmals bei einer genügend großen Länge des Zeitintervalls 1 = t2 — t, die Abwei-
chung der Ordinate eines Zufallsprozesses von der mathematischen Erwartung im
Zeitpunkt t2 vom Wert dieser Abweichung im Zeitpunkt t, praktisch unabhängig.
Dann gilt

lim k,(1:) = 0, (4.7)
1-woo

und die Korrelationsfunktionen besitzen den in Bild 4.1 dargestellten Verlauf.
Korrelationsfunktionen gemäß Bild 4.la lassen sich im allgemeinen durch die Aus-
drücke

k,,(r) = a2 e"""l, (4.s)'

k,(-5) = a’ e"""’, 4x > 0, (4.9)
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und solche gemäß Bild 4.lb durch

k‚„(-r) = a’ e'°‘l'l cos/31, cc > 0, (4.10)

k„(1) = e""2'2 cos ßr (4.11)

mit genügender Genauigkeit approximierenf)

K (T) K (T)

T r

Bild 4.1. Korrelationsfunktionen stationärer Prozesse

Wir führen im folgenden einige Beispiele für stationäre Prozesse an:

Beispiel 4.1: Ein zufälliger Prozeß {X(t)‚ ——oo < t < +00} entstehe auf folgende
Weise. Wir betrachten auf der Achse Ot eine Folge von Ereignissen, die in zufälligen
Momenten nacheinander eintreten. Die Wahrscheinlichkeit p„‚(At)‚ daß m Ereignisse
im Zeitintervall der Länge At eintreten, sei

MAI) = 0%6““-

X(t) nimmt zwischen zwei aufeinanderfolgenden Ereignissen im Wechsel die Werte
+1 bzw. ——l an (vgl. Bild 4.2). Man spricht auch von einem homogenen Poisson-
schen Strom von Ereignissen mit dem Parameter Ä (vgl. Kapitel 5). Man bezeichnet

Bild 4.2. Trajektorie eines Signalprozesses

{X(t), —oo < t < +00} auch als Signalprozeß. Es läßt sich zeigen, daß dieser
Prozeß im erweiterten Sinne stationär ist und eine Korrelationsfunktion der Form
(4.8) besitzt.

Zwei Trajektorien, die an jeder Stelle t Ordinatenwerte mit entgegengesetzten
Vorzeichen besitzen, sind als gleichwahrsclzeinlfch anzusehen. Daher ist sofort ein-

1) Es läßt sich beweisen, daß diese Funktionen tatsächlich Korrelationsfunktionen stationärer
Prozesse sein können.
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zusehen, daß an jeder Stelle t

+1 mit Wahrscheinlichkeit 1/2,X z

(t) —1 mit Wahrscheinlichkeit 1/2

ist. Für Mittelwert- und Varianzfunktion ergeben sich

mx(t) = %(-1) + %'1= 0
und

U30) = %(-1)’ + l‘ 1’ =1.

Bei der Bestimmung der Korrelationsfunktion

k,(t„ t2) = E[X(r,) X(t2)] (t, < I2)

ist zu berücksichtigen, daß das Produkt X([1)X(Iz) gleich -1 wird, wenn zwischen
t, und t2 eine ungerade Anzahl von Ereignissen (Vorzeichenwechsel), bzw. gleich
+l wird, wenn eine gerade Anzahl von Ereignissen auftritt. Die Wahrscheinlichkeit
p„ für den ersten Fall ist gleich der Summe der Wahrscheinlichkeiten, daß
l, 3, 5, 7, Ereignisse stattfinden. Mit r = t; — t, ist

_ eo (ÄT)2m+l e-h.

p" ’‚„=„ (2m +1):

Die Wahrscheinlichkeit pg für den zweiten Fall ist entsprechend

"- o0 (116271:

F“ ‘M am)!
-1-:

Aus der Analysis sind die folgenden Beziehungen bekannt:

eo (ÄT)2m+1 -1 I -1

,.§o'<‘2W1T"3‘°‘ ‘W
oc (ÄT)2m _ 1 1 -1

m=r<27n>”s'?“" H”
Somit ergibt sich für t1 < t2

16x01, t2) = kx(T) = (-1)P.. + (+1)P: = 6""-

Analog erhält man für t1 > t2

k‚(t1‚ t2) = k‚„(1) = e-ZK-Ü.

Faßt man beide Beziehungen zusammen, erhält man

k„(ti‚ t2) = kxfi) = e‘“"'-

Beispiel 4.2: Betrachten wir als nächstes Beispiel einen Schwingungsvorgang der
Form

X(t) = E1 cos M + E; sin 22.



4.1. Grundlegende Eigenschaften 47

£1 und £2 sind unkorrelierte Zufallsgrößen mit

5(51) = 5(52) = 0; 172(51) = G2(E2) = 1-

Ä ist eine Konstante. Es folgt

m,.(t) = 0,

und mit t2 = I, + T ergibt sich

k,,(t1, t2) = kx(t1,t1 + 1:) = E[X(t1 + T) X(t1)]

= E{[E, cos l(t1 + 1) + E; sin l(t1 + 1)]

x [5, cos ltl + E; sin 112]}

= E{5% cos l(t1 + T) cos M1 + E1-52 [sin Z(t1 + -r:)coslt1

+ cos /l(t‚ + T) sin Ätl] + §%sinZt1sinZ(t, + 1)}

= cos At, cos Mt, + 1) + sin Ätl sin Z(t1 + T).

Hieraus folgt schließlich

k„(t‚; t2) = k,,(r) = cos Ä-r.

Die Schwingung X(z) ist somit in erweitertem Sinne stationär.
Beispiel 4.3: Betrachten wir nun einen Prozeß, der durch Überlagerung einer end-
lichen Anzahl von zufälligen Schwingungen der ebengenannten Art entsteht. Es sei

X0) = i zum)
k=l

mit
E,,(t) = Ek cos Zkt + 17k sin Akt,

wobei
E(5„) = E(1;„) = 0, a2(£k) = ¢12(n,,) = 1 für k = 1, 2, ..., n,

E05151) = 507m1) = 0 für i4=j und

E(5‚o7‚) = 0 für i‚j = 1,2, ...‚n

Vorausgesetzt wird. Durch analoge Ableitung, die der Leser zur Übung leicht selbst
durchführen kann, findet man

k‚(t1, t2) = k‚(1) = kg] bf, cos /Lgr.

Da cos 1.,; eine gerade Funktion ist, kann k,,(-r) mit }._,, = -1,‘ und b„‚ = —b„ auch
in der Form

k‚(r) = 2 §b,2,cosl,,1:
k: —n

geschrieben werden. Diese Schwingungsvorgänge haben in der Technik häufig die
Bedeutung von Spannung oder Stromstärke. In diesem Fall sind die Koeffizienten b},

proportional der Energie, die im Mittel auf die Schwingungen der Frequenz 11k
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entfallen, da die Energie eines elektrischen Stromes dem Quadrat der Amplituden
der entsprechenden Schwingung proportional ist. Diese Analogie hat man häufig
auch dann im Auge, wenn der Schwingungsprozeß keinen elektrodynamischen
Prozeß charakterisiert. Die Gesamtheit der Zahlen bk heißt daher Energiespektrum,
die Werte 3.„ Frequenzen des Prozesses. Die Energie ist durch die Varianz des
Prozesses

II H

k,„(0) = ä 2 b}, cos 02„ = § 2 b,E (4.12)
=—n k: —n

gegeben.

Aufgabe 4.1: Als Korrelationszeit 1„ eines stationären Prozesses {X(t), t e (— o0, 00)}
w

bezeichnet man in der Technik den Wert 1„ = [r,(-r)| d-r, wobei r,„(1) die normierte
o

Korrelationsfunktion ist. Bestimmen Sie 1„ für r,(1)= e“"|’l. Was bedeutet 1„
geometrisch? ’

4.2. Spektraldarstellung

Wir knüpfen an die letzten Ausführungen an und stellen die Frage, ob für alle
in erweitertem Sinne stationären Prozesse eine derartige analoge Betrachtungsweise
möglich ist. Das ist tatsächlich der Fall. Man erkennt diesen Sachverhalt klarer,
wenn eine andere Darstellungsweise der Korrelationsfunktion‚ die sogenannte
Spektraldarstellung eingeführt wird. Betrachten wir deshalb noch einmal das
Beispiel 4.2. Es wird die folgende Funktion F(Ä) definiert.

0 für Ä g —Ä„
F(z) = 1/2 für —z, < z g zl, (4.13)

1 für z, < z. “

Ist Ä“) (i = :1; i2; ...) eine beliebige Unterteilung der reellen Achse und Al“)
= zw — AW‘), so kann k‚(-r) auch in der Form

km = lim 2cosl(')1[F(l(‘)) — F(Ä(‘“‘))]
Azm-o i

oder mit Hilfe des Riemann-Stieltjes-Integrals (vgl. Band 2, S. 224)

+oo

k,(1)= f cos z: am) (4.14)

dargestellt werden.
Da cos h eine gerade Funktion ist und dF(Ä) = —dF(—Ä) gilt, kann man auch

schreiben

k„(1) = 2 fcos in: dF(Ä).
o
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Zu einer Darstellung der Form (4.14) gelangt man auch beim Beispiel 4.3, wenn man
F0») als nichtfallende linksseitig stetige Stufenfunktion definiert, die jeweils in den

1 4 ..Punkten i/lk um den Betrag 712,; wachst.

0 für Ä g —Ä„,
n—!ä 1:54, für —/1,< A g —z,_, (z = n,n — 1, ...,2),
k=0

1 " ..Fa) = äkglbfi fur -21 < Ä g Z1,

1 n , 1 H , ..

-2- Z 14+? bk fur 11-, <Z§l, (l=2,...,n),
k=l k=l

i b}, für 1,, > 1,,
k=1

Es läßt sich beweisen, daß die Korrelationsfunktion eines beliebigen reellen statio-
nären Prozesses mit endlicher Varianz in der Form

k(r) = fa cos z: am) = 2 f cos z: am) (4.15)
—- o0 0

dargestellt werden kann, wobei F0.) eine reelle nichtfallende und beschränkte Funk-
tion ist?) Wird umgekehrt für F(Ä) eine Funktion mit den ebengenannten Eigen-
schaften gewählt, die der Bedingung (4.15) genügt, dann ist k(-c) Korrelationsfunk-
tion eines reellen stationären Prozesses.

Die Funktion F0.) aus (4.15) heißt Spektralfunktion des entsprechenden Prozesses.
Im folgenden sollen einige Eigenschaften genannt werden. Zunächst wird die
Beschränktheit von F(}.) gezeigt. Unter Beachtung von (4.15) erkennt man

k(0) = f dm). (4.16)

Da F0.) eine nicht abnehmende Funktion ist, folgt mit (4.16) wegen

o 3111m): F(oo) — F(—oo) = k(0) < +00, (4.17)

daß F(l) eine beschränkte Funktion ist. Wir setzen nun voraus, daß

f) |k(-r)| dr < oo (4.18)
—w

gilt. In der Praxis ist die Forderung fast immer erfüllt, da mit wachsendem r die
Korrelation schnell abnimmt. Dann läßt sich k(-r) in Form eines Fourierintegrals

‘) Hier und im weiteren wird der Index x immer dann weggelassen, wenn bei der Betrachtung be-
liebiger stationärer Prozesse deren Darstellung in der Form, {X(t)t e I} nicht explizit vorgegeben ist.

4 Beyer, Stoch. Proz.
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(vgl. Bd. 3) darstellen. Da k(':) eine gerade Funktion ist, erhält man

k(-r) = 2 ff(/1) cos ltd}. (4.19)

mit 0 w

1m) = g f k(-:) cos z: d1. (4.20)

o

Vergleicht man diese Darstellung mit (4.15), so erhält man

Z.

F0.) = ff(z9)dö, (4.21)

also _ m

F’(Ä) =f(Z). (4.22)

Die Funktion f(Z) wird als Spektraldichte des Prozesses bezeichnet. Wegen (4.12)
und (4.19) gilt

f(Z)g0, ——oo<Z<+oo,
und

k(0) = 2 ff(l) dl. (4.23)
o

Betrachtet man an Stelle eines stationären stochastischen Prozesses eine stationäre
Folge {X(n), n = 0, 1, 2, erhält man durch analoge Ableitungen anstatt (4.19)
und (4.20) die Beziehungen

k,,(n) = f f(l) cos Än d}.

und ""

fa) = % "ä k„(n) cos in. (4.24)

Bei theoretischen und praktischen Untersuchungen stationärer Prozesse erweist
es sich häufig als zweckmäßig, an Stelle der Korrelationsfunktion die Spektraldichte
einzuführen, so z.__B. bei der Analyse und Synthese von Regelsystemen in der Tech-
nik. Ein Grund ist darin zu sehen, daß die Spektraldichte oftmals ein sehr einfacher
rationaler Ausdruck ist. Weitergehende Ausführungen findet man in [S], [l8], [25]
und [31].
Beispiel 4.4: In Beispiel 4.1 lernten wir die Korrelationsfunktion

k„(-r) = e"°‘|’|

eines Signalprozesses kennen. Wir ermitteln jetzt die Spektraldichte dieses Prozesses.
Es läßt sich zeigen, daß k,„(-r) die Bedingung (4.18) erfüllt. Weil k‚(-r) eine gerade
Funktion ist, also k,(—r) = k,(-r) gilt, kann man die folgende Beziehung anwenden:

co eo IX)

% J. kx('r) cos h d'r = ä I k,,('r) cos Zr d'r 2 -21; I k,(r) e“‘-’ dr.
0 - eo — so
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Somit ergibt sich gemäß (4.20)

so

= I e411 e—a}t[ d1

—oo

oder
00

fa) =% j e‘“’-“|'l d1.
—oo

Wegen
1, 1 g 0,

Irl = l
—-1, 1 < O,

folgt
1 9 .°°

= T (ix-i}. 1 (o¢+i41)1f(A) 2” [lee ) dr + 6| e d'r:|.

Nach Berechnung der komplexen Integrale erhält man schließlich (vgl. Bild 4.3)

1 1 l 1 V

f0») = — [-— + ] = N
27: oc—il ‘r\+fi ?7.2+¢x2‘

f (/1)

“I

2

"-7 Bild 4.3. Spektraldichte des Prozesses bei
e unterschiedlichema

‘Y1 ‘ D‘: ‘ D‘:

Beispiel 4 5: Ein wichtiger Prozeß ist das Sogenannte weiße Rauschen. Wächst in
dem eben betrachteten Beispiel m, nimmt der Betrag der Ordinaten von k‚(r) sehr
schnell ab. Gleichzeitig verringert sich dabei die Anfangsordinate der Spektraldichte

1E. Wegen

f0.) d}. = 1

wird das Kurvenbild der Spektraldichte f(Ä) zunehmend flacher. Während k,(r) für
sehr große oc-Werte in eine nadelförmige Funktion übergeht, deren Ordinaten nur
in einem kleinen Intervall um den Nullpunkt von Null verschieden sind, ist f0.) in
einem sehr breiten Gebiet der Frequenz Ä nahezu konstant. Es ist nun naheliegend,
Prozesse zu untersuchen, die ein konstantes Spektrum

f0.) = c = const, Ze(—oo, +00)
4*



52 4. Stationäre Prozesse

besitzen. Prozesse mit derartigen Spektren bezeichnet man als vueißes Rauschen, Für
zufällige Folgen sind die Verhältnisse sehr einfach zu beschreiben. Gemäß (4.24)
erhält man die Korrelationsfunktion

‘IF

km) z f c cosh: d2
—n

[m für n=0,

l%sinm-:=O für n=i1;:2...

Solche Folgen sind also für n + 0 unkorreliert und im Falle einer Normalverteilung
somit unabhängig. Bei stochastischen Prozessen (mit stetiger Zeit) stößt man bei
einer analogen Betrachtungsweise auf große Schwierigkeiten. Unter Berücksichtigung
von (4.23) erkennt man, daß die Varianz o0 ist, denn es gilt

a2 = k(O) = 2 lwfa) dz
0

+00

= 2 cdÄ = o0. (4.25)
o

Die Korrelationsfunktion kann in der Form

k(-r) = 27rcc5('r)

ausgedrückt werden, wobei

+ o0, T = O,

0, 1 4= 0,
die Sogenannte Dirne-Funktion‘) ist.

Solche vollständig unkorrelierten stochastischen Prozesse gibt es in der Praxis
nicht. Sie müßten insbesondere eine unendlich große Varianz zu jedem Zeitpunkt
besitzen. Viele Prozesse lassen sichjedoch näherungsweise durch das weiße Rauschen
darstellen (z. B. das Rauschen der Elektronenröhren) und sind somit einer einfacheren
analytischen Behandlung zugänglich.

6(1) =

4.3. Ein Anwendungsproblem

In der Technik hat man es häufig mit dynamischen Systemen zu tun, an deren
Ein- und Ausgängen Zufallsfunktionen {X(t)‚ tel} und {Y(t)‚ te I} mit bekannten
Charakteristiken sind. Die Parameter des Systems sind so zu bestimmen, daß die
am Ausgang des Systems gewonnene Funktion {Y(t)‚ tel} einen stochastischen

"/WV/\: Bild 4.4. Schematische Darstellung eines stochastischen
X (f) V(/) dynamischen Systems

1) Hierbei handelt es sich um keine gewöhnliche Funktion. Eine genaue Charakterisierung findet
der Leser in [31].
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Prozeß {Z(t), te I}, den man zu erreichen wünscht, möglichst genau approximiert.
Man sagt dann, es ist ein optimales dynamisches System zu berechnen, Mathematisch
bedeutet das Problem, eine Funktion zu finden, die auf X(t) angewendet Z0) im
Sinne eines gewählten Kriteriums am besten annähert. Im allgemeinen Wählt man
als Kriterium die mittlere quadratische Abweichung der Ordinaten voneinander
und fordert, daß diese Differenz minimal wird (vgl. Methode der kleinsten Quadrate,
Bd. 4).

E{1Y(t) — zum = min. (4.26)

Ein spezifisches Problem dieser Art ist die Extrapolation oder Vorhersage. Hierbei
handelt es sich darum, auf der Grundlage bis zu einem Zeitpunkt t bekannter Ordi-
natenwerte der stochastischen Eingangsfunktion {X(t), tel} den Wert zu irgend-
einem zukünftigen Zeitpunkt t + 1 möglichst genau vorherzusagen. Somit ist

Z(t) = X(t + 1),

und es muß ein Operator L so bestimmt werden, dal3

E{|X(t + r) — LX(t)|2} = min (4.27)

wird. Kennt man die Ordinatenwerte von X(t) nur in einem beschränkten Intervall
[t„, t], so spricht man von Extrapolation auf der Grundlage eines endlichen Zeitinter-
valls. Sind sämtliche Werte im Intervall (— oo, t] gegeben, spricht man von Extra-
polation bei Kenntnis der gesamten Vergangenheit. Auf Extrapolationsaufgaben stößt
man z. B. bei der Konstruktion von Feuerleitgeräten auf Schiffen. Sie müssen gewähr-
leisten, daß eine Salve in dem Moment abgefeuert wird, in dem das Deck horizontal
ist und dementsprechend den sich zufällig ändernden Neigungswinkel des Schiffes
extrapolieren. Eine große Rolle spielt die Extrapolation auch bei der Verhinderung
der Schlingerbewegungen eines Flugzeuges und beim Bau dementsprechender
Dämpfungseinrichtungen.

In der Ökonomie extrapoliert man oftmals für kurze Zeiträume die Entwicklung
von Kennziffern aus ihrem Verlauf in der Vergangenheit; derartige sog. kurzfristige
Vorausberechnungen werden u. a. durchgeführt für den Einzelhandelsumsatz, die
Warenproduktion u. ä. mehr [27].

Ein weiteres Problem ist die Filtration oder Glättung. Hierbei ist die Eingangs-
funktion die Summe von zwei Zufallsprozessen

X(r) = U(t) + V(t),

wobei U(t) ein Nutzsignal ist und V(t) eine Störung darstellt, von der man sich
durch Konstruktion eines passenden Filters befreien möchte. Dann ist

ZU) = U(T)‚

und L ist so zu bestimmen, daß

E{|L[U(t) + V(t)] — U(t)|2} = min (4.28)

gilt. Beispiele für solche Aufgaben sind u. a. die Auswertung experimentell bestimmter
Kurven eines stochastischen Prozesses mit dem Ziel, Meßfehler oder Fehler in der
Registriereinrichtung zu beseitigen sowie die Trennung von Nutzsignal und Rau-
schen in Rundfunkübertragungskanälen [28].
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Die Lösung der genannten Aufgaben in ihrer Allgemeinheit bereitet große Schwie-
rigkeiten. Wir werden uns deshalb auf die Extrapolation stationärer zufälliger Folgen
beschränken. Gegeben ist eine Folge

{X(t — n), X(t — 2), X(t — 1), X(t), X(t + 1), X(t + m), ...},

n > O, m g O. (4.29)

Der Prozeßverlauf sei bis zum Zeitpunkt t — l bekannt, und es soll die Ordinate
X(t + m) (m g 0) extrapoliert werden. Gemäß (4.27) ist eine Funktion

L = L[X(t — l), X(t — 2), ..., X(t — n)] (4.30)

so zu bestimmen, daß

E{[L — X(t + m)]’} = min (4.31)

wird. Wir bezeichnen mit

E, = E[X(t + m)/X(t — 1), X(t — 2), ..., X(t — n)] (4,32)

die bedingte mathematische Erwartung (vgl. Bd. 17) von X(t + m) unter der Bedingung
X(t — 1), ..., X(t — n). Dann läßt sich die linke Seite von (4.31) in der Form

E{[(L — E1) + (E, — X(t + m))]2} (4.33)

schreiben. Quadriert man die Klammer aus und wendet die Rechenregel über die
mathematische Erwartung einer Summe an, ergibt sich für (4.33) der Ausdruck

E{[X<r + m) — E112} + E{[L — E112} + 2E{[L — E11 [Et — X(t + mm.
(4.34)

Der letzte Summand ist jedoch gleich null. Denn unter Anwendung der folgenden
Rechenregeln für bedingte mathematische Erwartungswerte

a) E[E(X/Y„ Y2, ..., Y„)] = E(X)‚

b) E[X1f(Y„ Y2, ..., Y,,)/Y,, Y3, ..., Y,,] =f(Y,, Y2, ..., Y„) E(X1) '

für Zufallsgrößen X, Y1. ..., Y,, gilt

E{[L — E‚] [E1 — X(t + m)]}

= E{E[L — E1] [E, — X(t + m)]/X(t —- l), ..., X(t — n)}

= E{[L — E1] E[(E, — X(t + m))/X(t — 1), ..., X(t — n)]}

= E{[L — E1] [E1 — E1]} = 0. (4.35)

Hieraus folgt, daß (4.31) minimiert wird, wenn

L[X(t — l), ..., X(t — n)] = E, = E[X(t + m)/X(t—1),..., X(t — n)]

gewählt wird. Das heißt, daß die Funktion L, die den mittleren quadratischen Fehler
der Approximation bei beliebigem Verteilungsgesetz der Ordinate der Zufallsfolge
minimal werden läßt, gleich der bedingten mathematischen Erwartung der zu extra-
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polierenden Ordinate X(t + m) unter der Bedingung X(t — 1), ..., X(t — n) ist.
Diese bedingte mathematische Erwartung läßt sich allgemein ebenfalls sehr schwer
ermitteln. Unter der Voraussetzung, daß die zugeordnete Verteilung von (4.29) eine
Normalverteilung ist, läßt sich zeigen, daß

E[X(t + m)/X(t — 1),..., X(t — n)]

= a1X(t -— 1) + a2X(t — 2) + + a,,X(t —- n) (4.36)

gilt, wobei 11,, a2, ‚ a„ reelle Zahlen sind.
L[X(t — l), ..., X(t — n)] ist eine lineare Funktion von X(t — 1), ..., X(t — n).

Aber auch dann, wenn die Folge nicht normalverteilt ist, liefert die Anwendung
eines linearen Operators brauchbare Näherungslösungen, denn viele in der Praxis
auftretenden Prozesse sind, näherungsweise normalverteilt. Oftmals treten auch
Zufallsfunktionen als vergleichsweise kleine Zusätze zu nichtstochastischen Aus-
drücken auf, so daß eine Linearisierung möglich und sinnvoll erscheint.

Es soll nun die lineare Extrapolation der stationären Folge (4.29) mit endlicher
Vergangenheit (n endlich) durchgeführt werden. Die Korrelationsfunktion k,,('r),
1 = 0, i 1, i2, ..., der Folge sei bekannt. Ohne Einschränkung der Allgemeinheit
sei m‚(r) = 0. Zunächst soll X(t) bei beobachteten

X(t — 1) = x,_1,...,X(t— n) = x,_,,

extrapoliert werden. Wir bilden den Ausdruck
2

ag„(a„ a„) = EHXO) — i)?‘ a‚.x(z — i)“ (4.37)

Die Koeffizienten a1, ..., (1,, sind so zu bestimmen, daß aä„(a„ ...,a„) minimal
wird. Einfache Umformungen ergeben

ag„(a„ a„) = E{X(t)X(t) — 2X(t)éjl a,X(t — i) + a,X(z — an

= E{X(t)X(t) — 2 i a,X(t)X(t — i)
i= l

+ ‚ä a,-a,X(t— i)X(t -1)“.
Wegen

E[X(t)X(!)] = kx(0); E[X(t)X(t - i)l = 16x0’);

E[X(t — i) X(t — l)] = k„(i — I)
folgt

oä„<a„ a.) = um — am) + g": ‚ä a.a.k.(i — I).

Partielle Differentiation nach a, , a1, ..., a„ liefert

ÖUKZM

Ga,-
= —2kx(i) + 2§a,k,(i — 1), i= 1,2,

[=1
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Bezeichnet man die gesuchten Werte von a1, a2, ..., a„ mit af, a5‘, ...‚ a}, findet
man sie aus

603„ = aqgML

Dal „F,“ ’ Da; k

2

= o, °""" = o,
2 aka Öa„ „k = aß‘

also durch Auflösung des Gleichungssystems

—k,(i) + i afk„(i — I) = o, i= 1,2,
1:1

Als Schätzwert für die Ordinate X(t) erhält man somit

X(t) = aT-xt-l ‘l’ a§xt<2 + + a]fXf'n'

Die Varianz ist dabei

aä‚.(af‚ ax) = kx(0) — 2 i a.-wt) + i i afafkxo. — I).
i=l i=l l=l

Bei der Ermittlung der extrapolierten Ordinatenwerte von X(t + m), in g 1, kann
analog vorgegangen werden. Es ist

6,2m, = E{[X(t + m) — Eula,-X(t — Ü]?

zu minimieren. Die entsprechenden Werte a9"), ...,a§,”') der linearen Funktion
ergeben sich aus dem Gleichungssystem

—k„(m + i) + i af””k,(i — l) = 0, i: 1,2, (4.38)
I=l

Wir betrachten hierzu zum Abschluß das folgende Zahlenbeispiel.

Beispiel 4,6: Für eine stationäre Folge {X(t); t = 0, j-_1, :2, sei mx(t) = 0, k‚„(T) = e‘l". Zu
den Zeitpunkten: — 1 bzw. t — 2 werden die Ordinaten x(I — 1) = 4 und x(t — 2) = 2 beobach-
tet. Zu extrapolieren seien X(t) und X(t + 1).

Mit m = 0 und n = Zfolgt

arme) + afkxfl) = kx(1):

a?’/<x(l) + 01'/<x(0) = kx(2)'

1 1 1 l
Mit k‚(0) = 1, k,(l) = ?, k,(2) = e—2 und k,(3) = e—3ergibt sich als Lösung a?‘ = : und a; = 0.

Somit ergibt sich als Extrapolationswert

A 4
x(t) = 4a;* + Zaf = : + 0.

Mit m = 1 und n = 2 folgt aus (4.38)

"‘1"kx(0) + <1‘2"kx(1) = M2),
a‘f>k„(1) + a‘2‘>kx(0) = kx(3).
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.. .. 1 . .Als Losung erhalt man a?) = -5-; und a‘2" = 0. Der Extrapolationswert ist

A 4
x(! + l) = 4a?’ + 211g‘) = ? + 0.

Wie ist die Tatsache zu bevuerten, daß für beide Extrapolationswerte a2 = 0 ist‘!

4.4. Experimentelle Bestimmung von Parametern stochastischer Prozesse

In den meisten praktischen Fällen ist ein stochastischer Prozeß nicht theoretisch
vorgegeben, sondern es sind nur einige Realisierungen von ihm bekannt. Es ist
dann die Aufgabe zu lösen, auf der Grundlage der Beobachtungen des Verlaufs
einiger Realisierungen die Kenngrößen des Prozesses näherungsweise zu bestimmen.
Im weiteren wollen wir uns insbesondere mit der experimentellen Ermittlung der
wichtigsten Parameter, der Mittelwert- und der Korrelationsfunktion beschäftigen.

Gegeben sind Realisierungen x,.(t) (i = 1,2, 3, ...) eines Prozesses {X(t)‚ t g 0}
im Intervall [0, T]. Wir unterteilen [0, T] in m gleiche Teilintervalle mit den Tei-
lungspunkten

O = to; t1; ...; tj; ...; t„‚ = T.

Die Mittelwertfunktion mx(t) läßt sich in [0, T] näherungsweise bestimmen, indem
wir in jedem Teilpunkt t,» den arithmetischen Mittelwert über die Werte x‚-(t,)
(i = 1, 2, ..., n) bilden. Es gilt

„ l
X01) = g

Die Werte

>"r(to), 30:), )"€(tm)

repräsentieren näherungsweise die Mittelwertfunktion n1„(t) zu den diskreten Zeit-
punkten to, t,, ..., t,,,.

Um die Varianzfunktion

¢1§(t) = E(X(t) — m,,(t))Z (4.40)

_1x,-(1,), j= 0, 1,2, (4.39)
l

näherungsweise zu ermitteln, bestimmen wir die empirische Streuung s’ an den
Teilpunkten t1‘ (j z 0, 1, 2, ..., m). Es ist

52W) =

Die Werte

520b); s’(t1); s2(tm)

repräsentieren näherungsweise die Varianzfunktion a,2,(t) zu den diskreten Zeit-
punkten to, t1, ..., t,„. Zur experimentellen Ermittlung der Korrelationsfunktion

k„(t; s) = E[(X(t) — m„(t)) (X(s) — m,,(s))], t, s E [0, T], (4.42)

n 1 I (x,<r,-) — am»)? (4.41)
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bestimmen wir die empirische Korrelation lE„(t‚-, t,) jeweils zwischen zwei Zeit-
punkten 1„ t, (j, I = 0, 1, ...‚m). Es gilt '

l " „ _

Ex(tj: tn) = n _ 1 .21 (xt(’j) — 7501)) (X101) " X(tz))- (4-43)

Nach Ausführung der Multiplikation auf der rechten Seite folgt
N 1 n 1 N n

kx(t]> ti) = 2 X101) 351(51) — X01): X.~(t1)
n — 1 ,«=; II — 1 ,-=1

1 „ " n _ „

— n _ 1 X(t1)l_§lxs(t/) + n _ l XÜJ) x(’t)<

Unter Beachtung von (4.39) ergibt sich

- l " N _

kx(tjs (z) = 2 XuÜj) xiÜt) — n 'x(tj)X(t1)- (4-44)
n —— l ,-:1 n — l

Die Gesamtheit der Werte P,(tj, 1,) (j, l = 0, l, 2, ..., m) repräsentieren näherungs-
weise die Korrelationsfunktion zu den diskreten Zeitpunkten to, t1 , ..., I„‚. Setzt man
in (4.44) t, = 1„ erhfilt man selbstverständlich (4.41). N

N 2'c(t,), s2(t,) und kx(t,, t‚) sind Werte von Punktschätzungen X0), S’(t‚) und
K,(t‚-,t‚) für m„(t,)‚ 1120,-) und k,(t‚-‚ t.) (vgl. Bd. 17, Abschn. 3.3.2.).

Geht man in der oben angegebenen Weise vor, so muß man zur Bestimmung von

Mittelwert- und Korrelationsfunktion im allgemeinen eine große Anzahl von Reali-
sierungen des Prozesses heranziehen. In der Praxis ist jedoch die Beobachtung einer Zu-
fallsfunktion und die darauffolgende Auswertung sehr kompliziert. Darum ist es er-
wünscht, mit einer möglichst geringen Anzahl von Realisierungen auszukommen.
Stationäre Prozesse besitzen nun unter sehr allgemeinen Voraussetzungen die Eigen-
schaft, daß sich Mittelwert- und Korrelationsfunktion beliebig genau aus einer
einzigen Realisierung x(t) bestimmen lassen. Wir setzen im folgenden voraus, daß
{X(t), t g 0} stationär ist und die Korrelationsfunktion k,,(r) die Bedingung

f|k‚(1)|dr < oo (4.45)
0

erfülle. (4.45) bedeutet, daß die Werte der Korrelationsfunktion mit wachsendem .1:

sehr schnell abnehmen. Für die meisten der in der Praxis auftretenden Zufalls-
prozesse ist diese Voraussetzung erfüllt. Dann kann man einen Ergodensatz anwen-
den, demzufolge man sowohl die mathematische Erwartung von {X(t)‚ t g 0} als
auch die Korrelationsfunktion aus einer Realisierung x(t) des Prozesses durch
Mittelung über die Zeit gewinnen kann:

T

m, = E[X(t)] = LT f x(t)dt, (4.46)

0

k„(r) = E[(X(t) — m„)(X(t + r) — m9]
T

= km % f [(x(t) — m,)(x(r + T) — mg] dt. (4.47)

0
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Betrachten wir zunächst die experimentelle Berechnung des Mittelwertes m, etwas
eingehender. Das Intervall [0, T] werde in m gleiche Intervalle der Länge A = T/m
eingeteilt. Bei Mittelung der Ordinatenwerte einer Realisierung des Prozesses über
die Zeit erhält man

_ 1 m

x = mi: l x(t‚-) (4.48)

T
oder wegen m = K

- l "‘
x = 2 x(t‚-)A.

J‘ 1

Strebt A —> 0, erhält man

T

5c = f x(t)dt. (4,49)

0

Die Beziehungen (4.48) und (4.49) können zur näherungsweisen Bestimmung von
m, herangezogen werden. Die Schätzung ist um so genauer, je größer T gewählt
wird. 5c ist wiederum eine Realisierung der Punktschätzung X’ für m, Es läßt sich
zeigen [28], daß die mathematische Erwartung von f’ gleich m,‘ ist, d. h.

Em = m,, (4.50)

und die Varianz von X’ mit wachsendem T gegen 0 strebt, d. h.

lim „im = o. (4.51)
T-voo

Man spricht wegen (4.50) von einer erwartungstreuen Schätzung für m,‘ .

Kommen wir nun zur näherungsweisen Bestimmung der Korrelationsfunktion eines
stationären Prozesses auf der Grundlage des Ergodentheorems. Gemäß Definition
gilt

k„('r) = E((X(t) — mx) (X(t + 1:) — m,)).

Weil m, selbst in den meisten Fällen nicht zur Verfügung steht, nehmen wir den
Schätzwert 2?. Es bedeutet keine Einschränkung der Allgemeinheit, wenn angenom-
men wird, daß das Zeitintervall T gerade l Intervalle der Länge A enthält. Dann ist

I = —T. (4.52)

Wir gehen aus von dem Wert

I E’ [(x<r,-> — i) (w) + v) — 2)]. (4.53)E“) M:—(1+1>,=.
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Nach Erweiterung mit A folgt

_ 1

—(m«l—l)
Unter Beachtung von (4.52) ergibt sich

M?)

(m—l—l)A=(m——l—l)%=T—-r—A.

Aus (4.54) folgt dann

l
x") =e

Strebt A gegen null, erhält man

12 T?‘ [x(r‚-) — x] [x(t,- + 1) _ 5-] A.

TJ_’1[x(:) — 2] [x(t + T) — 5-] dt.
0

Im) = T:

A [(x(t,-) — x») (m, + 1) — 52)] A. (4.54)

(4.55)

(4.56)

(4.57)

I},,(1) ist eine Realisierung der Punktschätzung I?,(r) für k„(1). Es läßt sich zeigen,
daß die folgenden Beziehungen gelten

lim a2[I~(,(1)] = O,
T-voo

lim £[1E,(z)] = k,,(:).
T~oo

(4.58)

(4.59)

Man spricht wegen (4.59) nur von einer asymprorisch erwarrungstreuen Schätzung.
Die Gleichungen (4.53) und (4.54) können zur Ermittlung von Näherungswerten
für die Korrelationsfunktion herangezogen werden. Die Genauigkeit der experi-
mentell ermittelten Werte steigt selbstverständlich mit wachsendem T.

Weitere Ausführungen findet der Leser in [24], [25] und [28].



5. Einführung in die Bedienungstheorie

In den letzten Jahrzehnten führten die Entwicklung des Telefonwesens, der Physik
und besonders auch Fragen der sinnvollen Organisation der Abfertigung in Läden,
an Schaltern und durch Automaten zu einer Klasse mathematischer Aufgaben, bei
deren Bearbeitung Methoden der Wahrscheinlichkeitsrechnung, speziell die der
Theorie stochastischer Prozesse, eine wichtige Rolle spielen. Die Untersuchung
entsprechender stochastischer Modelle führte zur Entwicklung der Bedienungs-
theorie‚ deren Ideen und Methoden in den letzten Jahren vielfältige und wichtige
Anwendung fanden. In dem folgenden Kapitel wollen wir einen Überblick über
einige Grundbegriffe der Bedienungstheorie geben, an einer Methode die Vorgehens-
weise bei der Bearbeitung Von Bedienungsproblemen kennenlernen und abschließend
auf wesentliche weitere Methoden der Bedienungstheorie hinweisen.

5. 1. Aufgabe der Bedienungstheorie

In Naturwissenschaften, Technik und Ökonomie, aber auch im Transport- und
Militärwesen treten in großem Umfang Bedienungssituationen auf, bei denen zufällige
Einflüsse eine Rolle spielen. Diese Situationen können sehr unterschiedlich in ihrem
Anlaß sein. Es kann sich z. B. handeln um

— Kundenabfertigung an einem Fahrkartenschalter,
—- Durchführung von Reparaturen in einer Reparaturwerkstatt,
— Vorratswirtschaft in einem Lager hinsichtlich eines bestimmten Artikels,
— Vermittlung von Telefongesprächen in einer Telefonzentrale.

Das Wesen der geschilderten Bedienungssituationen läßt sich folgendermaßen
charakterisieren:

In zufälligen Zeitpunkten fordern Kunden Bedienung von einem sogenannten
Bedienungsapparat, der für die Abfertigung des Kunden eine zufällige Zeit benötigt.
Beispiele von Forderungen und Bedienungsapparaten sind in der folgenden Auf-
stellung enthalten:

Forderung Bedienungsapparat

Verkauf einer Fahrkarte Fahrkartenverkäufer bzw. Fahrkanen-
automat

Reparatur eines PKW Autoschlosser

Bezahlung von Lebensmitteln Kassiererin in einem Selbstbedienungsladen

Vermittlung eines Telefongesprächs Telefonistin in einer Telefonzentrale bzw.
Vermittlungsanlage

Sicherung eines bestimmten Lagerbestandes
von einem gewissen Artikel in einem Lager

Disponent
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In der Bedienungstheorie werden Fragen der mathematischen Modellierung
(Beschreibung) von Bedienungssituationen der obengenannten Art und der Unter-
suchung der entsprechenden mathematischen Modelle behandelt.

Definition 5.1: Die in Verbindung mit der mathematischen Behandlung von Bedienungs-
situationen betrachteten mathematischen Modelle werden als Bedienungsrriodelle
(Bedienungssysteme), die Folge der von einem Bedienungsapparat zu bedienenden
Forderungen als Forderungenstrom (Kundenstrom) und die für die Bedienung einer
Forderung benötigte zufällige Zeit als Bedienungszeit bezeichnet,

Aufgabe der Bedienungstheorie ist es, Methoden bereitzustellen und der Anwen-
dung zuzuführen, mit denen Kenngrößen des jeweiligen Bedienungssystems ermittelt
werden können, die eine Beurteilung der zugrundeliegenden Bedienungssituation
ermöglichen. Das können u. a. Kenngrößen sein

— für die Länge der Wartezeit einer Forderung,
— für die Länge der Zeit, in der von dem Bedienungsapparat keine Bedienung

gefordert wird.

Großen Einfluß auf die Entstehung der Bedienungstheorie hatten die von A. K.
Erlang in den beiden ersten Jahrzehnten dieses Jahrhunderts bei der Beschreibung
von Bedienungssituationen im Telefonwesen und bei der Untersuchung der ent-
sprechenden Bedienungsmodelle erzielten Ergebnisse. In den letzten Jahrzehnten
sind große Fortschritte bei der Entwicklung der Bedienungstheorie erzielt worden.
Sie sind in großem Umfang sowjetischen Mathematikern zu danken, unter denen
besonders A. J. Chintschin, B. W. Gnedenko und J. N. Kowalenko zu nennen sind.

5.2. Beschreibung eines Bedienungssystems

Wir wollen von folgendem Beispiel einer Bedienungssituation ausgehen.

Beispiel 5.1: An einen Fahrkartenschalter treten Reisende in zufälligen Zeitpunkten
heran und wollen Fahrtausweise erwerben. Sofern der Schalter frei ist, wird mit der
Abfertigung des jeweiligen Reisenden sofort begonnen. Im anderen Fall reiht er
sich entweder in die Schlange der Wartenden ein, wenn er nicht, z. B. aus gesundheit-
lichen Gründen, bevorzugt abgefertigt wird, oder er verläßt den Schalter wieder,
evtl. nach einer gewissen Wartezeit in der Schlange, um die Fahrkarte zu einem
anderen Zeitpunkt, z. B. im Zug, zu erwerben. Je nach dem Reiseziel wird die Aus-
fertigung und der Verkauf des Fahrtausweises durch den Fahrkartenverkäufer in der
Zeitdauer von Reisendem zu Reisendem variieren. Sie wird von zufälliger Länge
sein.

Die geschilderte Bedienungssituation können wir kennzeichnen durch

— die Folge der zufälligen Zeitpunkte des Herantretens der Reisenden an den
Schalter,

— Angaben über die Zeit der Abfertigung am Schalter,
— Angaben darüber, wie sich ein Reisender verhält, der einen Schalter besetzt

vorfindet,
— Angaben über Möglichkeiten der bevorzugten Abfertigung und der Art und

Weise ihrer Realisierung.
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Entsprechend diesem Beispiel ist die Bedienungssituation auch in anderen Fällen
zu charakterisieren. Sie läßt sich allgemein beschreiben durch Angaben über den
Farderungenstrom, die Bedienungszeit und die Bedienungsorganisation. Dabei werden
der Forderungenstrom durch einen stochastischen Prozeß hinsichtlich der Anzahl
der eintreffenden Forderungen im Intervall (0, t), die Bedienungszeiten durch iden-
tisch verteilte Zufallsgrößen und die Bedienungsorganisation durch Angaben über
das Verhalten von Forderungen, die den Bedienungsapparat besetzt vorfinden, und
über Vereinbarungen hinsichtlich der vorzeitigen Bedienung einer eintreffenden
Forderung erfaßt.

Durch diese Angaben ist die Bedienungssituation beschrieben und damit das ent-
sprechende Bedienungsmodell gegeben, das mit den Methoden der Bedienungstheorie
zu untersuchen und durch entsprechende Kenngrößen zu charakterisieren ist. Bei-
spiele solcher Kenngrößen sind die mittlere Wartezeit bis zum Bedienungsbeginn
oder die mittlere Warteschlangenlänge oder die Verteilung der Warteschlangen-
länge, wenn die Forderung bei besetztem Bedienungsapparat nicht auf Bedienung
verzichtet, und die Verlustwahrscheinlichkeit, d. h. die Wahrscheinlichkeit des Ver-
zichts einer Forderung auf Bedienung, wenn der Bedienungsapparat besetzt ist.

5.3. Klassifizierung von Bedienungssystemen

Im letzten Abschnitt wiesen wir darauf hin, daß die Beschreibung einer Bedie—'
nungssituation Angaben über die Bedienungsorganisation enthalten muß. Wir ver-
standen darunter einerseits das Verhalten einer Forderung, die bei ihrem Eintreffen
den Bedienungsapparat besetzt vorfindet, und zum anderen die Berücksichtigung der
Möglichkeit einer vorzeitigen Bedienung. Auf der Grundlage der Bedienungs-
organisation werden die Bedienungssysteme klassifiziert in Wartesysteme, Systeme
mit Prioritäten, Verlustsysteme und kombinierte Warte-Verlustsysteme.

Wartesysteme

Definition 5.2: Ein Bedienungssystem, bei dem sich eine eintreflende Forderung in die
Reihe der schon auf Bedienung wartenden Forderungen, also in eine Warteschlange,
einreiht, wird als Wartesystem bezeichnet.

Bei einem Wartesystem wird von der Annahme ausgegangen, daß geeignete
Wartemöglichkeiten vorhanden sind. Außerdem wird bei solchen Systemen eine
Festlegung iiber die Reihenfolge der Bedienung der in der Schlange wartenden For-
derungen getroflen. („Schlangendisziplin“ [16]). Wir wollen einige Schlangen-
disziplinen nennen.

Definition 5.3: Erfolgt bei einem Bedienungssystem die Bedienung der Forderungen in
der Reihenfolge ihres Eintreflfens, so wird diese Schlangendisziplin als FIFO (first in —

first out) bezeichnet.

Beispiel 5.2: Werden in einer Reparaturwerkstatt die Aufträge in der Reihenfolge
ihres Eintreffens ausgeführt, dann liegt die Schlangendisziplin FIFO vor.

Definition 5.4: Erfolgt bei einem Bedienungssystem die Bedienung der zuletzt ein-
gegangenen Forderung vor der Bedienung der schon in der Warteschlange befindlichen
Forderungen, so wird diese Schlangendisziplin LIFO (least in — first out) genannt.
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Beispiel 5.3: Werden in einem Lager die zuletzt angelieferten Waren vor die schon
im Lager befindlichen gestellt und dementsprechend auch zuerst wieder ausgeliefert,
dann erfolgt die__Bedienung der Schlangendisziplin LIFO entsprechend.

Definition 5.5: Wird bei einem Bedienungssystem die zu bedienende Forderung aus den
in der Warteschlange befindlichen Forderungen zufällig ausgewählt, dann wird diese
Schlangendisziplin SIRO (service in random order) genannt.

Beispiel 5.4: Die Entnahme eines bestimmten Erzeugnisses durch einen Kundenlaus
einem Warenträger eines Selbstbedienungsladens erfolgt im allgemeinen wahllos,
also der Schlangendisziplin SIRO entsprechend.

Systeme mit Prioritäten

Definition 5.6: Bedienungssysteme, bei denen die Forderungen verschiedene Dringlich-
keitsstufen (Prioritäten) hinsichtlich des Bedienungsbeginns haben, werden Systeme mit
Prioritäten genannt.

Beispiel 5.5 : In Häfen werden Schiffe mit leichtverderblicher Ladung im allgemeinen
vorrangig abgefertigt. Trifft eine Forderung mit höherer Dringlichkeitsstufe ein, so
wird sie entweder weit vorn in die Warteschlange eingeordnet oder sofort bedient,
wobei die Möglichkeit besteht, daß bei der in der Abfertigung befindlichen For-
derung die Bedienung zugunsten der gerade eingetroffenen Forderung unterbrochen
wird. Dieser Bedienungssituation entspricht ein Bedienungsmodell mit Prioritäten.

Verlustsysteme

Definition 5.7: Bedienungssysteme‚ bei denen eintreflende Forderungen auf Bedienung
verzichten, wenn sie den Bedienungsapparat besetzt vorfinden, werden Verlustsysteme
genannt.

Beispiel 5.6: Entsprechend der Anzahl der Amtsanschlüsse können von der Telefon-
zentrale eines Betriebes gleichzeitig mehrere Verbindungen außerhalb des Betriebes
hergestellt werden. Sind alle Leitungen besetzt, so können neu eintrefiende Anrufe
nicht vermittelt werden. Sie gehen verloren. Das entsprechende Bedienungssystem
ist also ein Verlustsystem.

Kombinierte Warte- VerIust—Systeme

Definition 5.8: Bedienungssysteme, bei denen eine Forderung nach einer gewissen Zeit
des Verweilens in der Warteschlange auf eine Abfertigung verzichtet oder bei denen es

nur eine beschränkte Anzahl von Warteplätzen gibt, so daß manchmal für eine ein-
treflende Forderung kein Warteplatz mehr existiert, diese demzufolge nicht in die
Warteschlange aufgenommen werden kann, werden kombinierte Warte-Verlust-
Systeme genannt.

Beispiel 5.7: Ein an der Kasse eines Selbstbedienungsladens in der Schlange stehen-
der Kunde hat etwas vergessen. Er verläßt die Schlange und stellt sich nach Ent-
nahme des vergessenen Artikels aus dem Regal am Ende der Schlange wieder an.
Das entsprechende Bedienungssystem ist ein kombiniertes Warte-Verlust-System.
Beispiel 5.8: Der Besitzer einer bestimmten Haushaltmaschine möchte diese repa-
rieren lassen. In der Reparaturannahmestelle erhält er jedoch den Bescheid, daß die
Reparaturkapazität ausgelastet ist und deshalb zur Zeit keine Annahme erfolgt.
Auch dieser Bedienungssituation entspricht ein kombiniertes Warte-Verlust-System.
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Wir wollen nun eine von D. G. Kendall für Wartesysteme angegebene Möglich-
keit zur Charakterisierung eines Bedienungssystems in einer in [16] erweiterten Form
erläutern. Die Charakterisierung erfolgt durch vier Größen in folgender Art:
A/B/s/m.

Durch den Buchstaben A wird der Forderungenstrom gekennzeichnet. Dabei
bedeutet u. a.

A = M (Markow), daß ein Poissonscher Forderungenstrom vorliegt, d. h., daß in
keinem Zeitpunkt mehr als eine Forderung eintriflt und die Zeiten zwischen
zwei eintreffenden Forderungen unabhängige, identisch exponentiell ver-
teilte Zufallsgrößen sind;

A = GI (general independent), daß ein rekurrenter Farderungenstrom vorliegt, d. h.‚
daß in keinem Zeitpunkt mehr als eine Forderung eintrifi"t und die Zeiten
zwischen zwei eintreffenden Forderungen unabhängige, positive, identisch
verteilte Zufallsgrößen sind;

A = D (deterministic), daß ein Forderungenstrom mit konstanten zeitlichen Ab-
ständen zwischen den einzelnen Forderungen vorliegt.

Mit dem Buchstaben B wird die Folge der Bedienungen auf den Bedienungs-
apparaten erfaßt. So bedeutet z. B.

B: G (general), daß hinsichtlich der Bedienungszeit bei jedem Bedienungs-
apparat eine Folge unabhängiger, positiver, identisch verteilter Bedienungs-
zeiten vorliegt;

B = M (Markow), daß hinsichtlich der Bedienungszeit bei jedem ‘Bedienungs-
apparat eine Folge unabhängiger, identisch exponentiell verteilter Bedie-
nungszeiten vorliegt.

Weiterhin wird mit dem Buchstaben s die Anzahl der im Bedingungssystem vor-
handenen gleichartigen Bedienungsapparate und mit dem Buchstaben m die Anzahl
der im Bedienungssystem vorhandenen Warteplätze erfaßt. Für m = 0 liegt also ein
Verlustsystem, für m = oo ein Wartesystem und für 0 < m < oo ein kombiniertes
Warte—Verlust-System vor. Bei konkreten Bedienungssystemen wird im allgemeinen
die Unabhängigkeit des Forderungenstromes von der] Folge der Bedienungszeiten
angenommen.

5.4. Poissonsche Bedienungssysteme

In diesem Abschnitt wollen wir die Vorgehensweise bei der Untersuchung eines
Bedienungssystems schildern. Es gilt allgemein, daß das zeitliche Verhalten eines
solchen Systems nur mit Hilfe von stochastischen Prozessen beschrieben werden
kann. Dabei hängt es vom Typ des Bedienungssystems ab, aus welcher Klasse von
stochastischen Prozessen ein geeigneter Vertreter zu wählen ist.

Wir werden uns in der Darstellung auf ein einfaches Bedienungssystem, das
System M/M/n/m beschränken.

Definition 5.9: Ein System der Struktur M/M/n/m wird als Poissonsches Bedienungs-
system bezeichnet.

5 Beyer, Stoch. Proz.
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Wir gehen also von einer Bedienungssituation aus, die durch folgende Merkmale
charakterisiert ist:

u
.

. Der Forderungenstrom wird durch einen Poissonprozeß beschrieben. Dieser
Prozeß wurde in 2.2. dargestellt. Überdenken Sie die dort erzielten Ergebnisse
aus der Sicht der bei einem Poissonschen Bedienungssystem vorliegenden Bedie-
nungssituation l

2. Bei allen Bedienungsapparaten sind die Bedienungszeiten für jede Forderung
identisch exponentiell verteilte unabhängige Zufallsgrößen.

. Die Anzahl der Bedienungsapparate beträgt n.

. Eintreffende ForderungenA
L

»

— verzichten bei besetzten Bedienungsapparaten auf eine Abfertigung (Verlust-
system), d. h., es ist m = 0.

— ordnen sich bei besetzten Bedienungsapparaten in eine Warteschlange mit der
Bedienungsorganisation FIFO ein (Wartesystem), d. h., es ist m = oo.

Bei der Untersuchung der beiden o. g. Bedienungssysteme fragen wir zuerst nach
der Wahrscheinlichkeit dafür, daß sich k Forderungen im Bedienungssystem befin-
den, und anschließend nach Kenngrößen zur Charakterisierung des jeweiligen
Bedienungssystems.

5.4.1. Ein Poissonsches Verlustsystem

Bei dem Verlustsystem M/M/n/O stehen zur Bedienung eintreffender Forderungen
n gleiche Bedienungsapparate zur Verfügung, von denen jeder gleichzeitig nur eine
Forderung bedienen kann. Sofern ein Bedienungsapparat frei ist, wird die Bedienung
einer eintreffenden Forderung unverzüglich begonnen. Sind alle Bedienungsapparate
besetzt, verzichtet die Forderung auf Bedienung.

Bei einem solchen Bedienungssystem sind folgende Kenngrößen von Bedeutung:

I. Die VerlusWahrscheinlichkeit

Definition 5.10: Die Wahrscheinlichkeit dafür, daß beim Eintreflen einer Forderung
alle n Bedienungsapparate besetzt sind, wird als Verlustwahrscheinlichkeit bezeichnet.

2. Die mittlere Anzahl der besetzten Bedienungsapparate

Beide Kenngrößen erlauben eine Einschätzung der Auslastung des Systems. Zu
ihrer Ermittlung wählen wir folgenden Weg:

Wir betrachten den stochastischen Prozeß {X(t)‚ t g 0}, der die Anzahl der
zur Zeit t besetzten Bedienungsapparate bezeichnet. Zur Zeit t = 0 soll kein Bedie-
nungsapparat besetzt sein. Für ein festes t ist {X(t)‚ t g O} eine diskrete Zufalls-
größe mit den Werten O, 1, 2, ..., n. Wir fragen nach der Wahrscheinlichkeit p„(t)‚
daß k Bedienungsapparate zum Zeitpunkt t besetzt sind:

p‚.(t) = P(X(t) = k), k = O, l, ..., n. (5.1)

Dazu gehen wir von folgenden Annahmen aus:

1. Die Exponentialverteilung, die die Länge des Zeitintervalls (t - ti) zwischen den
zu den Zeitpunkten t und t1 eintreffenden Forderungen beschreibt, besitzt die Ver-
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teilungsfunktion:

F(t — r,) = l — e"-0*’->, (5.2)

wobei Ä > O eine Konstante ist und t g I, gilt.

2. Die die Bedienungszeiten beschreibende Exponentialverteilung hat die Ver-
teilungsfunktion:

F(t) = 1 — e"", (5.3)

wobei ‚u > 0 eine Konstante und r g 0 ist.
Unter Berücksichtigung dieser Annahmen stellt der stochastische Prozeß, der das

betrachtete Bedienungssystem M/M/n/O charakterisiert, einen Geburts- und Todes-
prozeß (vgl. 3.2.2.) dar, für den die Relation (3.60) erfüllt ist, In Verbindung mit
unseren Betrachtungen lautet diese:

1„ = 2. ,4. = k,u, k = 1,2, (5.4)

Das entsprechende DilTerentialgleichungssystem hat hier folgende Form:

1260) = —Äpo(t) + MW). . (5-5)

11:20) = /‘~pk—1(t) — (Ä + kMptU) + (k + 1)Iupk+1([): 1 g k g n — I, (5-6)

p$.(t) = ?~p..~1(t) 4 H/»1I..(t)~ (5-7)

Aufgabe 5.1: Leiten Sie dieses Differentialgleichungssystem entsprechend dem in
3.2.2. gewiesenen Weg her!

Aus diesem System von Differentialgleichungen, das als Erlangsches System
bezeichnet wird, können sukzessive die gesuchten Wahrscheinlichkeiten pk(t),

n

k = 0, 1, ..., n, unter Verwendung der Relation Z p,.(t) x 1 ermittelt werden.
k=0

Im allgemeinen wird in der Bedienungstheoric die stationäre Lösung für t—> oo

untersucht. Da die Grenzwerte

pk: limpk(t), k=0,I,2,...,n, (5.8)
I’*l)0

existieren, erhalten wir für das durch (5.5) bis (5.7) gegebene Differentialgleichungs-
system zur Bestimmung der stationären Wahrscheinlichkeiten pk, k = 0, 1, ..., n,
das folgende lineare homogene Gleichungssystem:

-1170 + MP1 = 0, ' (5.9)

ÄPk-z —(l+kM)Pk+(k+1)/Wm; =0, 1§k §’l— 1, (5.10)

112m — n/417.. = 0. (5.11)

Das Lösungsprinzip für dieses System wurde in (3.56) angegeben.
5*
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Wir wollen hier nochmals das Ergebnis nennen, das als Erlangsche Formeln
bezeichnet wird:

„o: l U)” (5.12)

i=0 1' ‚u

_ P /"~ " — ‚_pk -k—j(7), k _ 1, 2, ...,/1. (5.13)

Damit kann die gesuchte Verlustwahrscheinlichkeit angegeben werden:

(")"(1)
p. — " ’“ (5.14)

z": 1 2. )'
1:0 I"! (‚ü

Die zweite Kenngröße zur Charakterisierung des Bedienungssystems M/M/n/O,
der Erwartungswert m(t) = E(X(t)) für die Anzahl der besetzten Bedienungsapparate
zum Zeitpunkt t, errechnet sich für den stationären Fall zu:

n n 1 Ä k
m =kgokp„ =k§l@—_—T)—! po. (5.15)

Durch (5.12) wird schließlich die Wahrscheinlichkeit dafür angegeben, daß alle
Bedienungsapparate frei sind.

5.4.2. Ein Poissonsches Wartesystem

Bei dem Wartesystem M/M/n/oo stehen zur Bedienung der eintreffenden For-
derungen n gleiche Bedienungsapparate bereit, von denen jeder gleichzeitig nur eine
Forderung bedienen kann. Sofern bei Eintreffen einer Forderung ein Bedienungs-
apparat frei ist, wird unverzüglich mit der Abfertigung begonnen. Sind alle Bedie-
nungsapparate besetzt, so wird die eintreffende Forderung in die Schlange der auf
Bedienung wartenden Forderungen (Warteschlange) eingereiht und entsprechend der
Reihenfolge des Eintreffens bedient.

Bei dem vorliegenden unbeschränkten Wartesystem sind u. a. folgende Kenn-
größen von Bedeutung:

1. Die mittlere Wartezeit einer Forderung in der Warteschlange bis zum Bedienungs-
beginn.

2. Die mittlere Warteschlangenlänge:

Definition 5.1l: Als mittlere Warteschlangenlänge wird der Erwartungswert der
Anzahl der Forderungen bezeichnet, die aufBedienung warten.
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3. Die mittlere Anzahl der Forderungen, die sich im Bedienungssystem aufhalten:

Definition 5.12: Die mittlere Anzahl der Forderungen, die sich im Bedienungssystem
aufhalten, ist der Erwartungswert der Summe aus der Anzahl der Forderungen, die
gerade bedient werden, und der Anzahl der in der Warteschlange befindlichen For-
derungen.

4. Die mittlere Anzahl freier Bedienungsapparate.

Die Kenngrößen, die eine gute Einschätzung des Wartesystems zulassen, ermitteln
wir folgendermaßen:

Wir betrachten den stochastischen Prozeß {X(t), t g 0} der Anzahl der im Bedie-
nungssystem befindlichen Forderungen. X(t) ist die Summe aus der Anzahl der
Forderungen, die gerade bedient werden, und der Anzahl der in der Warteschlange
befindlichen Forderungen. Zur Zeit t = 0 soll kein Bedienungsapparat besetzt sein.
Es können beliebig viele Forderungen im Bedienungssystem sein, d. h., X(t) kann
die Werte 0, 1, 2, annehmen. Gesucht sind die Wahrscheinlichkeiten 1J„(t),
k = 0, 1, 2, ..., dafür, daß sich k Forderungen zur Zeit t im Bedienungssystem
befinden, d. h., daß X(t) den Wert k annimmt:

p‚„.(t) = P(X(t) = k), k = 0,1, 2, (5.16)

Wir machen die im Abschnitt 5.4.1. festgehaltenen Annahmen für die Länge des
Zeitintervalls zwischen zwei Forderungen und für die Bedienungszeiten. Unter
Berücksichtigung dieser Annahmen ist der stochastische Prozeß {X(t), t g 0}, mit
dem das Bedienungssystem M/M/n/oo beschrieben wird, ein Geburts- und Todes-
prozeß. Zur Aufstellung des Differentialgleichungssystems für die unbekannten
Wahrscheinlichkeiten p,_.(t), k = O, 1,2, ..., werden deshalb entsprechende Über-
legungen wie bei dem in 5.4.1. erläuterten Verlustsystem angestellt. Unterschiede
ergeben sich lediglich aus der Tatsache, daß jetzt die Anzahl der im Bedienungssystem
befindlichen Forderungen die Anzahl der Bedienungsapparate übersteigen kann.
Dadurch ist die Anzahl der Gleichungen des Diflerentialgleichungssystems un-

beschränkt. Im Ergebnis dieser Überlegungen erhält man das folgende Differential-
gleichungssystem zur Bestimmung der Wahrscheinlichkeiten p„(t), k = 0, 1, 2,

1)«i(f)= “kpokÜ + MIHÜL (5-17)

PIK’) Z }*Pk—1(t) “ (k ‘l’ k/ÖPkÜ) + (k ‘l’ 1)/Wk+1(1)= 1§ k ä 7' — I;
(5.18)

PIX?) = 317:c—1(t) — Ü» + '1/‘)Pu(f)+ ",“Pk+1(f), '7 ä k ' (5-19)

Wie oben beschränken wir uns auf das Aufsuchen der stationären Lösung dieses
Systems für t—> oo. Dabei ergibt sich jetzt zur Ermittlung der stationären Wahr-
scheinlichkeiten pk, k = 0,1,2,..., das folgende lineare homogene Gleichungs-
system: _

‘ÄPO '1' /‘P1 = 0, (5-20)

Äpk-1—(Ä ‘l’ k:“)Pk ‘l’ (k +1)/4[7k+1 = 0, 1 ä k ä 7' -1, (5-21)

/1p:--1 — (Ä + "mm + nimm = 0, n g k. (5-22)



70 5. Einführung in die Bedienungstheorie

so

Unter Verwendung der Relation Z pk = 1 werden sukzessive die stationären Wahr-
k-o

scheinliehkeiten pk, k = 0, 1, .‚.‚ ermittelt:

n
.

P0 = "-1 1 Ä xk 1 Z)» oo Ä )k—n v (523)

Emlrl + wir. 2.17,;
1 Ä "

pk =k—.(7) p... i; k g n. (5.24)

1 Ä "
pk po, n g k. (5.25)

Nach [10] konvergiert die unendliche Reihe in (5.23), falls Z/‚u = g < n ist. Im
anderen Fall divergiert sie, was pg = 0 und nach (5.24) und (5.25) auch pk = 0,
k = 1,2, ..., zur Folge hat. Die Warteschlangenlänge würde unbegrenzt mit der
Zeit wachsen.

Mit (5.23), (5.24) und (5.25) lassen sich die o. g. Kenngrößen ermitteln, die wir
ohne Herleitung (vgl. [20]) angeben:

1. Die mittlere Wartezeit T„ einer Forderung bis zum Bedienungsbeginn:

_ Po Ä n I

’"‘<7:'1mI«7»'—T>2(7)' (m)

2. Die mittlere Warteschlangenlänge m1 :

m, = __—*._”""1Ä 2 . (5.27)

"” i‘ ’ Ü)
3. Die mittlere Anzahl m; der Forderungen, die sich im Bedienungssystem aufhalten:

_ "P" n-l 1 ;_ k
m2 — m1 +T: + PokgI . (5.28)

"M

4. Die mittlere Anzahl m3 freier Bedienungsapparate:

_ k ,1 k
ma = po. (5.29)

Im Rahmen dieser Ausführungen kann nicht auf Beispiele konkreter Bedienungs-
Situationen eingegangen werden. Wir verweisen auf [l0], [l6] und [20].
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5.5. Überblick über einige weitere Methoden der Bedienungstheorie

Im vorangegangenen Abschnitt beschrieben wir das Bedienungssystem M/M/rt/n1
mit Hilfe von Geburts- und Todesprozessen‚ also mit Markowschen Prozessen.
Obwohl die diesem Bedienungssystem zugrunde liegenden Voraussetzungen im
allgemeinen in praktischen Anwendungen nicht genau erfüllt sind (vgl. [l0])‚ geben
sie doch einen guten Ansatzpunkt für die Untersuchung konkreter Bedienungs-
situationen. Andererseits wird aber auch dann, wenn wenigstens eine der Voraus-
setzungen nicht erfüllt ist, auf Grund der „günstigen Eigenschaften“ Markowscher
Prozesse versucht, die Beschreibung realer Bedienungssituationen auf Markowsche
Prozesse zurückzuführen. Dieses Vorgehen erwies sich als sehr erfolgreich. An dieser
Stelle sind die von D. G. Kendall entwickelte Methode der eingebetteten Markow-
Ketten (Vgl. [l0] und [16]) und die von L. Kosten und D. R. Cox angegebene Methode
der Zusatzvariablert (vgl. [l6]) zu nennen. Weiterhin lassen sich Bedienungssituationen,
bei denen wenigstens eine auftretende Zufallsgröße nicht exponentialverteilt ist,
durch Semi-Markawsche Prozesse (Vgl. [l0] und [16]) beschreiben. Nicht zuletzt ist es

auch möglich, stochastische Prozesse mit Geschwindigkeiten (Vgl. [15] und [16]) bei der
Untersuchung von Bedienungssystemen einzusetzen, Vorausgesetzt alle auftretenden
Zufallsgrößen sind exponentialverteilt. Ist mit analytischen Verfahren, von denen
oben einige genannt wurden, die Beschreibung einer realen Bedienungssituation nicht
oder nur schwer möglich, bieten sich schließlich noch Näherungs- und Simulatians-
verfahren (vgl. [l6]) an.
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Bei der Bearbeitung von Problemen der Zuverlässigkeit technischer Erzeugnisse
sind mathematische Methoden, speziell die der Wahrscheinlichkeitsrechnung und
mathematischen Statistik, ein wesentliches Hilfsmittel. Im folgenden Kapitel werden
wir die Aufgabe der mathematischen Theorie der Zuverlässigkeit (kurz: Zuverlässig-
keitstheorie) und einige für die Zuverlässigkeitsarbeit wichtige stochastische Modelle
kennenlernen. Dabei kann lediglich eine kurze Einführung und kein vollständiger
Überblick gegeben werden.

6.1. Aufgabe der Zuverlässigkeitstheorie

Im Zuge des technischen Fortschritts werden einerseits die technischen Erzeug-
nisse (Maschinen, Anlagen) immer umfangreicher und in ihrem Aufbau komplizier-
ter, wodurch eine Erhöhung ihrer Störanfälligkeit gegeben ist, andererseits entstehen
aber auf Grund ihrer hohen Produktivität durch einen Ausfall hohe Verluste. Es ist
demzufolge eine wichtige Aufgabe bei Entwicklung, Fertigung und Einsatz solcher
Erzeugnisse, jede Vorsorge zu trelTen, um die Störanfälligkeit während der geplanten
Betriebszeit und unter den vorgesehenen Betriebsbedingungen so klein wie möglich
zu halten.

Zur Beurteilung technischer Erzeugnisse hat sich deshalb in den letzten Jahren
zusätzlich ein weiteres Bewertungskriterium zu denen, die durch technisch—physi-
kalische Kenngrößen und durch Anschaffungs- und Unterhaltungskosten gegeben
sind, herausgebildet: die Zuverlässigkeit des betreffenden Erzeugnisses.

Definition 6.1: Mit dem Begrifl Zuverlässigkeit wird die Eigenschaft einer Erzeug-
nisses charakterisiert, unter definierten umgebungs- und funktionsbedingten Bean-
spruchungen während einer vorgegebenen Zeitdauer unter Beibehaltung seiner Betriebs-
kennwerte in vorgegebenen Grenzen bestimmten Forderungen an seine Funktion zu

entsprechen. 1)

Durch geeignete Kenngrößen erfolgt die Quantifizierung der verschiedenen
Aspekte dieser Eigenschaft.

Die bei der Bearbeitung auftretenden Fragestellungen sind derart komplex, daß
sie im allgemeinen in interdisziplinärer Arbeit von Spezialisten mehrerer Fach-
disziplinen (Mathematikern, Ingenieuren, Ökonomen, Physikern, Chemikern)
bearbeitet werden.

Aufgabe der Zuverlässigkeitstheorie ist es, mathematische Methoden zur Bearbei-
tung von Zuverlässigkeitsproblemen bereitzustellen, d. h. entsprechende mathe-
matische Modelle zu entwickeln. Diese Modelle sind im allgemeinen stochastische
Modelle, da die bei Zuverlässigkeitsuntersuchungen auftretenden mathematischen
Fragestellungen zu ihrer Bearbeitung meist Methoden der Wahrscheinlichkeits-
rechnung und mathematischen Statistik erfordern.

1) Zuverlässigkeit in der Technik — Begriffe. TGL 26096, Blatt l.
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Wir wollen einige für die weiteren Betrachtungen wichtige Begriffe klären.

Definition 6.2: Jeder Gegenstand einer Zuverlässigkeitsuntersuchung wird Betrach-
tungseinheit genannt. Jeder Zustand einer Betrachtungseinheit, bei dem mindestens
eine der gestellten Anforderungen nicht erfüllt ist, wird als Fehler bezeichnet,‘ ein
Zustand der Betraehtungseinheit, bei dem diese nicht mehr arbeitsfähig ist, wird Ausfall
genannt?)

Jeder Ausfall ist also ein Fehler, aber nicht jeder Fehler ist gleichzeitig ein Ausfall.
Wir werden allgemein den Begrilf Fehler verwenden.

Jede Betrachtungseinheit wird je nach der zu beantwortenden Fragestellung ent-
weder als Element oder als System aufgefaßt.

Definition 6.3: Als Element wird die kleinste Betraehtungseinheit, die eine weitere
Unterteilung für die jeweilige Zuverlässigkeitsbetrachtung nicht erfordert, und als
System eine Kombination von Elementen, die für die jeweiligen Zuverlässigkeits-
betrachtungen eine funktionelle Einheit bilden, bezeichnen‘)

So wird z. B. ein Getriebe vom Hersteller als System und vom Abnehmer, der
dieses Getriebe in einen LKW einbaut, als Element betrachtet werden.

6.2. Charakterisierung der Zuverlässigkeit eines Elements

Häufig tritt bei Zuverlässigkeitsuntersuchungen die Frage auf, wie die Zuverlässig-
keit eines Elements charakterisiert werden kann, das zum Zeitpunkt t = 0 seine
Arbeit aufnimmt und bei dem erstmals zum Zeitpunkt t ein Fehler auftritt. Eine
solche Fragestellung ist z. B. von Interesse bei Zuverlässigkeitsbetrachtungen an

Flugzeugen, an in der Erntesaison eingesetzten Landmaschinen (z. B. Mähdreschern)
oder an Rechenautomaten.

Ausgangspunkt für entsprechende Untersuchungen ist die Tatsache, daß dieser
Zeitpunkt t nicht voraus bestimmt werden kann, sondern vielmehr von Element
zu Element variiert. S0 kann z. B. der Zeitpunkt des Durchbrennens einer Glüh-
lampe vor diesem Ereignis nicht exakt angegeben werden. Wir werden deshalb die
fehlerfreie Arbeitszeit T eines Elements im Intervall [0, t) als Zufallsgröße auffassen
und mit Hilfe ihrer Verteilungsfunktion F(t) die Zuverlässigkeit des betrachteten
Elements charakterisieren. Das erfolgt durch entsprechende Kenngrößen.

6.2.1. Zuverliissigkeitskenngriillen

Zur Charakterisierung der Zuverlässigkeit eines Elements bieten sich die Ausfall-
Wahrscheinlichkeit, die Über]ebenswahrscheinlichkeit, der Erwartungswert der
fehlerfreien Arbeitszeit und die Ausfallrate an.

I. Die Ausfallwahrseheinliehkeit F(t):
Definition 6.4: Als Ausfallwahrscheinlichkeit F(t) wird die Wahrscheinlichkeit dafür
bezeichnet, daß bei dem Element der erste Fehler vor dem Zeitpunkt t (O g t < +co)

1) s. TGL 26096, Blatt 1.
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auftritt:
F(t) = P(T < z). (6.1)

Im allgemeinen ist die fehlerfreie Arbeitszeit T eine stetige Zufallsgröße. Wir
wollen dies im folgenden voraussetzen. Für die Dichtef(t) dieser Zufallsgröße — sie
wird Dichte der Ausfallwahrscheinlichkeit genannt — gilt dann

f0) = F'(f)~ (6-2)

2. Die Überlebenswahrscheinliehkeit R(t):

Definition 6.5: Die Wahrscheinlichkeit dafür, daß das Element bis zum Zeitpunkt t
(0 g t < +00) nicht ausfällt, wird Überlebenswahrscheinlichkeit (auch: Zuverlässig-
keitsfunktion) R(t) genannt:

R(t) = 1 — F(t) = P(T g z). (6.3)

3. Der Erwartungswert T0 der fehlerfreien Arbeitszeit T:
+w

n, = 5(7) = f tf(z)dt. (6.4)
o

Unter der Voraussetzung, daß die auftretenden Integrale konvergieren, ergibt sich
für (6.4) durch partielle Integration:

+00

To = f R(t)dt. (6.5)
O

Für To wird auch die Bezeichnung‘ MTBF (engl.: mean time before failure) verwandt.

4. Die Ausfallrate (auch Fehlerrate) /I(t):
Sie ist ein lokales Charakteristikum und kann als Maß für die Anfälligkeit eines

Elements angesehen werden, das das Alter t erreicht hat. M!) At ist bis auf eine
Größe der Ordnung o(At) die bedingte Wahrscheinlichkeit dafür, daß bei dem
betrachteten Element ein Fehler im Intervall [t, t + At) eintritt, wenn es im Inter-
vall [O‚ t) ordnungsgemäß arbeitete.

Wir wollen Mt) näher betrachten und gehen dazu von folgender Fragestellung aus:
Gesucht wird die bedingte Wahrscheinlichkeit R(t, t + At), daß ein Element, das bis
zum Zeitpunkt t ordnungsgemäß arbeitete, auch im Intervall [t, t + At) ordnungs-
gemäß arbeitet. Bezeichnen wir mit E, das Ereignis {t g T < t + Ar} und mit E2
das Ereignis {T > t}, dann erhalten wir:

P(E1 n E2) _ R(t + Ar)
R(t, f + At) = P(E;/E2) =T) —

Für die bedingte Ausfallwahrscheinlichkeit F(t‚ t + At) erhalten wir dann:

_ _ R(t + Ar)F(t,t+At)—1—R(t,t+At)— 1-)
Für hinreichend kleines At ergibt sich weiterhin:

R’(l)
R(t)

F(t, t + At) = —— At + o(At).
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Es ist nun möglich, die Ausfallrate Ä(r) zu definieren:
Definition 6.6:

m) = _ Rm _ F'(t)
R(t) A 1 — F(t) '

Für hinreichend kleines A! kann also gesetzt werden:

F(t‚ t + At) z ).(t)Az. (6.8)

Die Ausfallrate Ä(t) hat für viele Elemente die in Bild 6.1 angegebene typische
Form einer „Badewannenkurve“. Im Verlauf dieser Kurve fallen drei typische

(6.7)

M?)

z, z, z
l . V »

Fm/7~ i ‚v ~ ‚„ i Alterungs-
}‘feh/er’§“Z”’”’/"W" ‚ fen/er Bild 6.1.KurvenvcrlaufderAusfallrateZ(t)

Abschnitte auf. Der erste, in dem die Ausfallrate monoton fällt, wird bestimmt durch
die bei dem Element auftretenden Frühfelzler. Der zweite mit annähernd konstanter
Ausfallrate ist gekennzeichnet durch die bei dem Element auftretenden Zufalls-
fehler. lm letzten Abschnitt wächst die Ausfallrate monoton. Dies ist durch die bei
dem Element auftretenden Alterungsfehler zu erklären.

Alle drei Fehlerarten besitzen Zufallscharakter. Im Prinzip kann jede von ihnen
in allen drei Abschnitten unabhängig von den beiden anderen auftreten.

Dabei sind Frühfehler durch eine monoton fallende (110)), Zufallsfehler durch
eine konstante (110)) und Alterungsfehler durch eine monoton wachsende (Ä3(t))

Ml), M (t),i-1, 2,3

Bild 6.2. Kurvenverlauf der Ausfallrate/".(t)
durch Superposition der Ausfallraten für
FrI'.'ihfehXer}.,(t), für Zufallsfehlerl2(t) und
für Alterungsfehler /13(1)

Ausfallrate über alle drei Abschnitte gekennzeichnet. Durch Superposition dieser
Ausfallraten ergibt sich der oben angegebene Verlauf der Ausfallrate l(t) (Bild 6.2).
Da aber in jedem der drei Abschnitte eine der drei Fehlerarten dominiert, werden in
der Regel die beiden anderen vernachlässigt.
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Der zwischen der Ausfallwahrscheinlichkeit F(t), der Überlebenswahrscheinlich-
keit R(t) und der Ausfallrate M2‘) bestehende Zusammenhang ist in Tabelle 6.1
angegeben:

Tabelle 6.1
Zusammenhang zwischen den Größen F(t),'R(t) und 2(1)

F(t) i R(t) m)

RT!)
1 — R(t) 1 — F(t) — Rm

— im d! — fllo) d! F”)
1 — e 0 e o 1 — F(r)

Prüfen Sie die in dieser Tabelle angegebenen Relationen nach!

6.2.2. S‘ ' " Verteilungen

Die in Abschnitt 6.2.1. erklärten Kenngrößen sind in Tabelle 6.2 für einige in der
Zuverlässigkeitstheorie wichtige Verteilungen zusammengestellt. Es handelt sich
dabei um die Exponentiab, die Weibull-, die Gamma—, die Normal- und die Log-
normalverteilung.

In vielen Fällen wird bei Zuverlässigkeitsuntersuchungen die Exponenrialverteilung
angewandt. Das hat zwei Gründe. Einmal ist sie — nicht zuletzt aus physikalischen
Gründen — zur Beschreibung vieler bei Zuverlässigkeitsbetrachtungen auftretenden
Erscheinungen gut geeignet. Zum anderen vereinfachen sich viele Berechnungen bei
Anwendung der Exponentialverteilung. Dies ist besonders dadurch begründet, daß
bei ihr die Wahrscheinlichkeit fehlerfreier Arbeit im Intervall [t‚ t + Ar) nur von

der Intervallänge At und nicht von der schon abgelaufenen Arbeitszeit t abhängt,
d. h., die Arbeitsfähigkeit eines Elements zum gegenwärtigen Zeitpunkt ist unabhän-
gig von der Vorgeschichte. Analytisch drückt sich dies folgendermaßen aus:

-7.( A

R(t, t + At) = 535i = = e-w. (6.9)

Auch das Umgekehrte gilt: Ist für eine Verteilung die Relation (6.9) erfüllt, dann ist
sie exponentialverteilt.

Da die Exponentialverteilung eine konstante Ausfallrate besitzt, eignet sie sich
gut zur Beschreibung des Abschnitts, der durch die beim Element auftretenden
Zufallsfehler gekennzeichnet ist. Dasselbe gilt für die Weibull- (für o: = 1) und für
die Gammavertcilung (für o: = 1).

Zur Beschreibung der Früh- und Alterungsfehler werden im allgemeinen die
Normal-, die Weibull-, die Lagnormal- und auch die Gammaverteilung herangezogen.
Für ac < 1 besitzen die Weibull- und die Gammaverteilung eine fallende Ausfallrate.
Sie eignen sich also zur Beschreibung von Frühfehlern. Eine wachsende Ausfallrate
haben die Normalverteilung (für ‚u > a), die Lognormalverteilung (für ‚u < 3o),
die Weibull- und die Gammaverteilung (für zx > 1). Mit ihrer Hilfe kann das Auf-
treten von Alterungsfehlern charakterisiert werden.
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6.2.3. Kenngrößenstatistik

Wir wollen nun für einige der in Abschnitt 6.2.1. erklärten Kenngrößen Möglich-
keiten zu ihrer experimentellen Bestimmung kennenlernen. Dazu werden N gleich-
artige Elemente zum Zeitpunkt t = 0 in den Versuch eingesetzt, wobei sie sich in
ihrer Arbeitsweise gegenseitig‘ nicht beeinflussen sollen, d. h., es werden gleichzeitig
N unabhängige Versuche durchgeführt.

Zur experimentellen Bestimmung der Überlebenswahrscheinlichkeit R(t) zum

Zeitpunkt to wird die Anzahl n(t0) der bis dahin fehlerfrei arbeitenden Elemente

festgestellt. Dann kann die relative Häufigkeit HA = % (bis zum Zeitpunkt to

tritt bei dem Element kein Fehler auf) als Schätzung für R(t„) gewählt werden, da
die relative Häufigkeit für N—> o0 mit Wahrscheinlichkeit 1 gegen R(t0) konver-
giert [9].

Definition 6.7: Die relative Häufigkeit HN (bis zum Zeitpunkt t g to tritt bei dem
Element kein Fehler auf) wird als empirische Überlebenswahrscheinlichkeit R„(t)
bezeichnet.

Beträgt die Anzahl der bis zum Zeitpunkt t (r g to) fehlerfrei arbeitenden Ele-
mente n(t)‚ dann berechnet sich R„(t) wie folgt:

t
R„(t) = "](V) . (6.10)

Für hinreichend große N können wir sie nach dem Satz von Gliwenko [4] als Schät-
zung für die Uberlebenswahrscheinlichkeit R(t) wählen und dann also setzen:

R(t) z R„(t) = (6.11)

Eine Extrapolation von R„(t) für einen Zeitpunkt t > t0 sollte unterbleiben, wenn die
analytische Form von R(t) nicht aus Vorversuchen bekannt ist bzw. wenn ent-
sprechende physikalische Überlegungen nicht angestellt werden können.

Bei der experimentellen Bestimmung der mittleren Lebensdauer To wird von

jedem der N Elemente die Zeit t„ i = 1, 2, ..., n, bis zum Auftreten eines Fehlers
festgestellt und das arithmetische Mittel t dieser Zeiten ermittelt:

N

.2, r.»

‘ = “ . 6.12t N ( )

Definition 6.8: Das durch (6.12) gegebene arithmetische Mittel ‘f wird als empirische
mittlere Lebensdauer bezeichnet.

Es läßt sich zeigen, daß i für N —> +00 mit Wahrscheinlichkeit 1 gegen To kon-
vergiert [4, 9]. Für hinreichend großes N können wir wiederum setzen:

N

l:.=T
T, z ‘N . (6.13)



6.3. Einfache Ersatzmodelle -9

Zur experimentellen Bestimmung der Ausfallrate 1(1) stellen wir die Anzahl nu)
der Elemente fest, bei denen bis zum Zeitpunkt t noch kein Fehler auftrat. Wir
betrachten nun die folgende Größe:

n(t) — n(t + At)
RN(t) —— RN(t + At) _ N

AtR,,(t) _ n(t)A .___

t N

M0) '=

_ n(t) — n(t + At)
—, (6.14)

wobei At > 0 ist.

Definition 6.9: Die durch (6.14) gegebene Größe Ä„(t) wird als empirische Ausfallrate
bezeichnet.

Für hinreichend kleines At und hinreichend großes N können wir setzen:

Kt) z Ä„(t). (6.15)

6.3. Einfache Ersatzmodelle

Im Gegensatz zu der im letzten Abschnitt behandelten Fragestellung wird jetzt
das betrachtete Element nach dem Auftreten eines Fehlers durch ein anderes Element
ersetzt, d. h.‚ es wird erneuert. Das fehlerhafte Element wird entweder durch ein
neues, mit dem alten identisches Element ersetzt, oder es wird einer Reparatur unter-
zogen, in deren Ergebnis seine Gebrauchseigenschaften wiederhergestellt werden. Für
die nun folgende Darstellung einfacher Ersatzmodelle ist nicht die Art, sondern die
Folge der Ersetzungen (Erneuerungen) von Interesse.

6.3.1. Unverzügliche Erneuerung

Wir wollen zuerst den Fall betrachten, daß die Erneuerung eines fehlerhaften
Elements sofort nach Auftreten des Fehlers und ohne zeitliche Dauer erfolgt. Die

Bild 6.3. Schematische Darstellung eines ein»
fachen Emeuerungsprozesses (nach [l9]. S. 192|

in dieser Form vorgenommene Erneuerung ist in Bild 6.3 veranschaulicht. Dabei
nehmen wir an, daß das Element zum Zeitpunkt So = 0 seine Arbeit aufnimmt und
nicht schon eine gewisse Zeit in Betrieb ist. Nach Ablauf der zufälligen Zeit T, tritt
zum Zeitpunkt T1 = S, bei dem Element ein Fehler auf. Das erneuerte Element
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wird nach Ablauf der zufälligen Zeit T; zum Zeitpunkt S2 fehlerhaft. Allgemein
ausgedrückt: Nach der (k .— 1)-ten Erneuerung tritt bei dem Element nach Ablauf
der zufälligen Zeit T, zum Zeitpunkt 5,‘, k = 1, 2, ..., ein Fehler auf. Auf Grund
unserer Annahme sind die zufälligen Zeiten T‚-, i: 1,2, ..., identisch verteilte,
unabhängige, positive Zufallsgrößen, d. h., für ihre Verteilungsfunktion gilt:
F(t) = P(T‚ < t), i = 1, 2, Hinsichtlich der Zeitpunkte S‚-, die als Erneuerungs-
punkte bezeichnet werden, ist das nicht mehr der Fall. Sie genügen der Beziehung:

k
S, = Z T‚- , k = 1, 2, ..., und bilden einen einfachen (auch: gewöhnlichen) Erneuerungs-

i= l

prozeß. Das ist ein stochastischer Prozeß aus der Klasse der Punktprozesse.

Definition 6.10: Durch eine Folge unabhängiger, positiver Zufallsgräßen T, mit den
Verteilungsfunktionen F(t) = P(T‚ < t), i = 1, 2, ..., wird ein einfacher Emeuerungs-
prozeß erklärt.

Zu seiner Charakterisierung werden verwendet:
1. Der stochastische Prozeß {N(t), t g 0}, mit

N(t) = max (i: S, < t, t g 0). (6.16)
i

Er ist ein sogenannter Zählprazeß und gibt die Anzahl der Erneuerungen im Intervall
[0, t) an. Fürjedes t > O ist N(t) eine diskrete Zufallsgröße mit den Werten O, 1, 2,
Die für den Erneuerungsprozeß {Sh i = 1, 2, erklärten zufälligen Ereignisse
{S„ g t}, n = 1,2, ..., sind den zufälligen Ereignissen {N(t) g n}, n 2 1, 2, ..., des
Zählprozesses {N(t), t g 0} äquivalent:

{N<z) g n} = {Sn z t}, n = 1,2, (6.17)

Es gilt deshalb:

P(N(t) g n) = P(S„ g t) = 1 — P(S„ < t). (6.18)

Die Verteilung des Zählprozesses {N(t), t g 0} kann für jedes t > 0 mit Hilfe der
Verteilung des Erneuerungsprozesses {S„ i = 1, 2, angegeben werden. Die Ver-
teilungsfunktion F„(t) der Zufallsgröße S„, n = 1, 2, ...,

F„(t) = P(S„ < z) = 1>(‚}::l7‘‚ < z), n = 1,2, (6.19)

erhalten wir für n > 1 durch Faltung (vgl. [4]) der Verteilungsfunktionen F„_,(t)
und F(t):

l

F„(t) = I F..—i(t — y)f(y) dy, (6.20)
o

wobeif(t) die Dichte der Verteilungsfunktion F(t) ist:

F'(t) = f(t )-

2. Die Mittelwertfunktion des Zählprozesses {N(t),tg 0}, die hier mit H(t)
bezeichnet und Erneuerungsfunktion genannt wird:

H(t) = E(N(t)). (6.21)
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Mit (6.19) berechnen wir H(t):

Ho) = i n[F„(t) — F;+1<r)1 = i Fm. (6.21)
„=o „:1

Dieser Erwartungswert existiert immer: H(t) < oo.

3. Die Sogenannte Erneuerungsdichte I1(t)‚ die wie folgt erklärt ist:

(6.22)

Sie existiert, wenn F’(t) =f(t) gilt. Existiert weiterhin F‚’‚(t) =f„(t), n = 1, 2, ..., so

errechnet sich h(t) wie folgt:

Im) = ä/„m. (6.23)

Im Rahmen dieses Bandes ist es nicht möglich, auf den Erneuerungsprozeß näher,
z. B. auf Fragen der Stationarität und auf Grenzwertsätze, einzugehen. Ausführliche
Darstellungen sind in [9] und [19] enthalten. Mit den Charakteristiken des Erneue-
rungsprozesses können Zuverlässigkeitsaussagen für ein Element gemacht werden,
bei dem nach einem Fehler eine Erneuerung unter den oben genannten Voraus-
setzungen vorgenommen wird.
Beispiel 6.1: Für den Fall‚ daß die zufälligen Zeiten Ti, i = l, 2, ..., zwischen zwei
Erneuerungen durch eine Exponentialverteilung mit der Verteilungsfunktion

F(t) = P(Ti<t)=1— e"~', A > o, i= 1,2, z; o, (6.24)

beschrieben werden können, ergeben sich für die n-fache Faltung von (6.24) und
die o. g. Charakteristiken für den entsprechenden einfachen Erneuerungsprozeß, den
Poissonprozeß :

F,,(t) ii %e—/=1 = 1 e-M, (6.25)

H(t) = 2:, h(t) = 2 mit % = am) = 5(72) = (6.26)

P(N(z) = n) = %e”", n = o, 1, 2, g (6.27)

Die Anzahl der Erneuerungen bis zum Zeitpunkt t ist also durch eine Poisson—
Verteilung mit dem Erwartungswert Zt gegeben.

Bringen Sie diese Relationen in Zusammenhang mit den im Abschnitt 2.2. zum

Poissonprozeß angeführten Ergebnissen !

6.3.2. Verzögerte Erneuerung

Betrachten wir nun den Fall, daß für das Element nach dem Auftreten eines Fehlers
eine endliche Erneuerungszeit zugelassen wird, wobei diese Zeit nicht in Anteile
für das Aufsuchen und den Austausch bzw. die Reparatur des fehlerhaften Elements

6 Beyer, stach. Proz.
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gegliedert wird. Bild 6.4 veranschaulicht die Aufeinanderfolge der in dieser Form
vorgenommenen Erneuerungen. Auch hier wird angenommen, daß das Element
zum Zeitpunkt S” = 0 seine Arbeit aufnimmt und nicht schon eine gewisse Zeit in
Betrieb ist. Auf die Erläuterung dieses Falls wollen wir uns hier beschränken. Nach

Bild 6.4. Schematische Darstellung eines
alteruierenden Erneuerungsprozesses (nach
[l9], S. 192)

Ablauf der zufälligen Zeit T,’ tritt zum Zeitpunkt T1’ = Si bei dem Element ein
Fehler auf. Die zufällige Erneuerungszeit beträgt T1”, so daß zum Zeitpunkt Sf’ das
erneuerte Element die Arbeit wieder aufnimmt. Nach Ablauf der zufälligen Zeit T2’

tritt zum Zeitpunkt S; wiederum bei dem Element ein Fehler auf, der nach Ablauf
der zufälligen Zeit Tz" zum Zeitpunkt S5’ behoben ist. Allgemein ausgedrückt: Das
zum Zeitpunkt S,’,’_, , k = 1, 2, ...‚ in Betrieb genommene Element wird nach Ablauf
der zufälligen Zeit T; zum Zeitpunkt S; fehlerhaft. Nach der ebenfalls zufälligen
Erneuerungszeit T,2’ wird es zum Zeitpunkt S‚',’ wieder in Betrieb genommen, d. h.‚
Arbeitsphase und Reparaturphase folgen alternierend aufeinander.

Die zufälligen Zeiten T,’ bzw. T‚”, i = 1, 2, ...‚ sind positive, unabhängige Zufalls-
größen, die identisch verteilt sind mit den Verteilungsfunktionen F(t) = P(T,~' < t),
i = l, 2, ...‚ bzw. G(t) = P(T‚” < t), i = l, 2, Zu den Zeitpunkten

k-l
S;§=§l[T.-’+T{']+T,§, k=1,2,..., (6.28)

treten Fehler auf, und zu den Zeitpunkten A

k
SL’ =i; [Tf + T,~"], k = 1,2, ...‚ (6.29)

sind die Erneuerungen jeweils beendet.

Definition 6.11: Durch die Folge der Zeitpunkte (8,2, Sf), k = l, 2, wobei S; bzw.
Sf,’ durch (6.28) bzw. (6.29) gegeben ist, wird ein alternieremler Erneuerungsprozeß
erklärt.

Auch dieser Prozeß ist ein stochastischer Prozeß aus der Klasse der Punktprozesse.
Die Charakterisierung dieses Erneuerungsprozesses erfolgt auf folgendem Weg:

Wir erklären die Zufallsgrößen

T, = T,’ + n", i= 1,2, (6.30)

mit der Verteilungsfunktion K(t) = P(T‚ < t) und der Dichte k(t) = K’(t). K(t)
erhalten wir durch Faltung der Verteilungsfunktionen F(r) der Zufallsgröße Ti’,
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i = 1, 2, ..., und G(t) der Zufallsgröße T‚"‚ i = I, 2,

K(t) = P(T, < t) = P(T{ + T,-" < t)

= F(t — x) g(x) dx. i (6.31)
0 .

wobei die Existenz der Dichte G’(t) = g(t) vorausgesetzt wird.
Die Folge der Zufallsgrößen T1, T2, definiert einen einfachen Erneuerungs-

prozeß, bei dem sich jede Zufallsgröße T,, i= 1,2, ..., auf einen Erneuerungs-
Zyklus, der sich aus der Zeit bis zum Auftreten eines Fehlers und aus der sich an-
schließenden Reparaturzeit zusammensetzt, bezieht. Die Erneuerungszeitpunkte

k
S,, = z T‚-, k = 1, 2, ..., geben dann die Zeit bis zur Vollendung des n-ten Zyklus an.

=1

Die‘ Charakteristiken dieses einfachen Erneuerungsprozesses erhalten hinsichtlich
des ursprünglichen alternierenden Prozesses folgende Bedeutung:

1. Mit dem Zählprozeß N(t) = max (i: S, < t; t g 0) wird eine Aussage über die

Anzahl der Erneuerungszyklen im Intervall [0, t) gemacht.
2. Die Verteilungsfunktion der Zeit bis zur Beendigung des n-ten Zyklus K„(t)

erhalten wir durch die n-fache Faltung der Verteilungsfunktion K(t):

K„(t) = P(S„ < t) = f‘ K„„‚(t — x) k(x) dx. (6.32)
o

3. Die Einzelwahrscheinlichkeiten der Zufallsgröße N(t) (t fest!) ergeben sich zu:

P(N(t) = n) = K„(t) — K,,+1(t), n = 0, 1, 2, (6.33)

4. Die Erneuerungsfunktion

H(t) = E(N(t)) = äzgo) (6.34)

gibt den Erwartungswert der im Intervall [0, t) auftretenden Erneuerungen an.
Vergleichen Sie die hier aufgeführten Charakteristiken mit den in (6.16)—(6.23)

angegebenen Größen!

6.3.3. Verfügbarkeit

In Verbindung mit dem in Abschnitt 6.3.2. erklärten alternierenden Erneuerungs-
prozeß spielt — besonders auch für die Anwendung in der Praxis — eine weitere
Kenngröße eine große Rolle, die Verfügbarkeit V(t).

Definition 6.12: Die Wahrscheinlichkeit dafür, daß ein Element zu einem Zeitpunkt
t > 0 ordnungsgemäß arbeitet, wird als Verfügbarkeit V(t) des Elements bezeichnet.

Sie ist wie folgt zu ermitteln:

V(t) = R(t) + _{'R(t — x) h(x) dx, (6.35)
o

6!
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wobei R(r) die in (6.3) erklärte Überlebenswahrscheinlichkeit und /1(t) die in (6.22)
angegebene Erneuerungsdichte sind. Im allgemeinen wird jedoch der Grenzwert V
von V(t) für t —> + oo betrachtet. Unter der Annahme seiner Existenz wollen wir ihn
ohne Herleitung — es sei auf [9] und [19] verwiesen — angeben:

A . _ Em)
V ”,1‘i“/") ' Em’) + Ea.-">’

d. h., V ist der Quotient aus dem Erwartungswert der Zeit fehlerfreier Arbeit und
der Summe aus dem Erwartungswert der Zeit fehlerfreier Arbeit und dem Erwar-
tungswert der Erneuerungszeit.

(6.36)

6.4. Charakterisierung der Zuverlässigkeit eines Systems

6.4.1. Charakterisierung der Zuverlässigkeit eines Systems durch Strukturanalyse

In Abschnitt 6.1. haben wir ein System als „Kombination von Elementen. die für
die jeweiligen Zuverlässigkeitsuntersuchungen eine funktionelle Einheit bilden“ (vgl.
TGL 26096) charakterisiert. Wir werden nun kennenlernen, wie die Zuverlässigkeit
eines solchen Systems durch die seiner Elemente ausgedrückt werden kann.

Dazu wollen wir von folgenden Voraussetzungen ausgehen:

1. Das System S besteht aus n Elementen E,-, i = 1, 2, ..., n.

2. Die Elemente E,-, i= l, 2, ..., n, arbeiten unabhängig voneinander, d. h., das
Auftreten eines Fehlers bei einem Element besitzt keine Auswirkungen auf das
Fehlerverhalten der anderen Elemente des Systems.

3. Die Struktur und die Arbeitsweise des Systems sind in einem solchen Umfang
bekannt, daß für jede Gruppe‘) von Elementen des Systems bekannt ist, ob ein
bei ihnen auftretender Fehler zu einem Fehler des Systems führt.

4. Erforderliche Zuverlässigkeitskenngrößen der Elemente des Systems, also z. B.
Überlebenswahrscheinlichkeit, Ausfallrate, sind bekannt.
Die Struktur eines Systems ist im Hinblick auf seine Zuverlässigkeit nicht iden-

tisch mit seiner- funktionellen Struktur. So kann z. B. bei einem einfachen elektrischen
System, das aus zwei Elementen besteht, die funktionelle Struktur durch eine Parallel-
schaltung gegeben sein, während seine Zuverlässigkeitsstruktur eine weiter unten
erklärte Serienstruktur ist. In [l9] ist dafür ein Beispiel angegeben.

Die Zuverlässigkeitsstruktur eines Systems wird in Form einer sogenannten
ZuverIässigkeitsersatzschaltung entweder hinsichtlich der Arbeitsfähigkeit oder hin-
sichtlich des Fehlerverhaltens des Systems erfaßt. Sie wird unter Verwendung der
Symbole der Schaltalgebra grafisch dargestellt.

Wir wollen die Zuverlässigkeit eines Systems S, das die o. g. Voraussetzungen
erfüllt und zum Zeitpunkt t = 0 seine Arbeit aufnimmt, bis zum ersten Auftreten
eines Fehlers zum Zeitpunkt t für verschiedene Zuverlässigkeitsstrukturen charak-
terisieren.

1) Als „Gruppe von Elementen“ wird in diesem Zusammenhang mit Ausnahme der leeren Teil-
menge jede Teilmenge der Menge der Elemente Ei, i = l, 2, ..., n, bezeichnet.
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Serienstruktur:
Definition 6.13: Die Struktur eines Systems (hinsichtlich der fehlerfreien Arbeit des
Systems bis zum Zeitpunkt t) wird als Serienstruktur bezeichnet, wenn das System
bis zum Zeitpunkt t nur dann fehlerfrei arbeitet, wenn alle n Elemente des Systems bis
zu diesem Zeitpunkt fehlerfrei arbeiten.

In Bild 6.5 ist die zugehörige Zuverlässigkeitsersatzschaltung angegeben. Unter
Verwendung der Uberlebenswahrscheinlichkeiten R‚-(t)‚ i = 1, 2, ..., n, der Elemente

Bild 6.5. Zuverlässigkeitsersatzschal-
A ""W f’ tung einer Serienstruktur

ergibt sich die Überlebenswahrscheinlichkeit R(t) des Systems

R(t) = R,-(t). (6.37)

Ist /‘.(t) die Ausfallrate des Systems und sind Mt), i = 1, 2, ..., n, die Ausfallraten
der Elemente, dann ergibt sich mit der Relation in Tabelle 6.1 aus (6.37):

4‘ ;.(.s)d: _j'2.,(;)d:—j'A;(.v)ds—...~fz,,(x)dx
e o = e o o o '

Damit erhalten wir:

Mr) = l,(r) + }.2(t) + + }.,,(t), (6.38)

d. h.‚ bei einer Serienstruktur summieren sich die Ausfallraten. Kann die zufällige
Zeit bis zum Auftreten eines Fehlers bei dem Element Ei, i = l, 2, ..., n, durch eine
Exponentialverteilung mit der Ausfallrate Ä‚«(t) = Z, i= 1,2, ...,n, beschrieben
werden, dann ergibt sich mit (6.38) für die Ausfallrate Ä(t) des Systems

/1(;)=z+2.+ +Z=n/1, (6.39)

d. h.‚ die zufällige Zeit bis zum Auftreten eines Fehlers kann bei dem System mit
einer Exponentialverteilung mit der Ausfallrate Ä(t) = n}. beschrieben werden.
Aufgabe 6.1.’ Berechnen Sie für den Fall der Exponentialverteilung den Erwartungs-
wert T0 der fehlerfreien Arbeitszeit T des Systems!

Aus (6.37) können wir schließlich die Ausfallwahrscheinlichkeit F(t) z l — R(t)
des Systems ermitteln, wenn F‚(t) = l — R‚(t), i = l, 2, ..., n, die Ausfallwahrschein-
lichkeiten der Elemente sind:

F(t) = I — (1 — F1(t))(1 — F2(t)) (1 — F,,(t)). (6.40)

Parallelstruktur:
Definition 6.14: Die Struktur eines Systems (hinsichtlich der fehlerfreien Arbeit des
Systems bis zum Zeitpunkt t) wird als Parallelstruktur bezeichnet, wenn für seine feh-
lerfreie Arbeit nur die fehlerfreie Arbeit eines seiner Elemente Ei, i= 1,2, ...,n,
erforderlich ist.

Bild 6.6'zeigt die zugehörige Zuverlässigkeitsersatzschaltung. In diesem Falle wird
auch von der Redundanz der Elemente gesprochen. Sie trägt zu einer Erhöhung der
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Überlebenswahrscheinlichkeit R(t) des Systems bei. Die Ermittlung der Überlebens-
wahrscheinlichkeit R(t) des Systems erfolgt jetzt mit der Ausfallwahrscheinlichkeit
F(t) = 1 — R(t) des Systems und den Ausfallwahrscheinlichkeiten F‚(t) = 1 — R,(t),
i = 1, 2, ..., n, der Elemente. Bei dem System tritt bis zum Zeitpunkt t nur dann ein
Fehler auf, wenn bei allen Elementen bis dahin ein Fehler auftritt, d. h., es gilt für

Bild 6.6
Zuverlässigkeitsersatzschaltung einer Parallelstruktur

die Ausfallwahrscheinlichkeit F(t) des Systems bis zum Zeitpunkt t:

F(t) = F1(t)F2(t) F„(t). (6.41)

Mit (6.41) ergibt sich durch Einsetzen für die Überlebenswahrscheinlichkeit R(t) des
Systems bis zum Zeitpunkt t:

um) = 1 -113 (1 _ R,(t)). (6.42)

Die Ausfallrate Ä(t) des Systems läßt sich offensichtlich nicht in so einfacher Art
durch die Ausfallraten der Elemente 1,0), i = 1, 2, ..., n, wie bei der Serienstruktur
ausdrücken. In diesem Fall kann die Zeit bis zum ersten Auftreten eines Fehlers bei
dem System nicht durch eine Exponentialverteilung beschrieben werden, wenn auch
die Zeit bis zum ersten Auftreten eines Fehlers bei den Elementen einer Exponential-
verteilung genügt.

Serienparallelstruktur:
Definition 6.15: Die Struktur eines Systems (hinsichtlich der fehlerfreien Arbeit des

. Systems bis zum Zeitpunkt t) wird als Serienparallelstruktllr bezeichnet, wenn sie durch
eine Kombination von Serien- und Parallelstrukturen aus den Elementen Ei,
z" = 1, 2, ..., n, erfaßt werden kann.

Die Zuverlässigkeitsersatzschaltung eines solchen Systems ist dann eine Serien-
parallelschaltung. Wir wollen die Ermittlung der Über]ebenswahrscheinlichkeit R(t)
eines solchen Systems am Beispiel erläutern.
Beispiel 6.2: Zu bestimmen ist die Über]ebenswahrscheinlichkeit R(t) eines Systems S,
das aus n = 6 Elementen besteht und das die in Bild 6.7 angegebene Struktur besitzt,
aus den Überlebenswahrscheinlichkeiten R(t), i = 1, 2, „., 6, seiner Elemente E,-,
i= 1,2, ..., 6.

Bild 6.7. Zuverlässigkeitsersatzschal-
tung eines Beispiels einer Serienpar-
allelstmktur (n = 6)
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In einem ersten Schritt wird das System S in die Teilsysteme S; und SH gegliedert,
für die das System eine Serienstruktur besitzt. Das Teilsystem Sn wiedemm besitzt
hinsichtlich der Teilsysteme SA und SB eine Parallelstruktur, die selbst wieder in bezug
auf die Elemente E3 und E4 bzw. E5 und E5 eine Serienstruktur haben.

In einem zweiten Schritt wird unter Verwendung von (6.37) und von (6.42) schritt-
weise die gesuchte Überlebenswahrscheinlichkeit R(t) des Systems S errechnet. Die
einzelnen Ergebnisse sind im folgenden zusammengestellt, wobei die Angaben für
jedes Teilsystem durch entsprechende Indizes gekennzeichnet sind:

R;(t) = 1 — (1 - R1(t))(1 — R2(t)),

RAU) = Ra(t) R40).

R30) = R5(t)R6(t)>

R11(t) = 1 — (1 — R,,(t))(1 — R,,(t))

= 1 — (1 — R3(t) R4(t))(1 — R.-,(t) R6(t)),

R(t) = R;(t) Rn(z) p

= [1 - (1 - Rl(l))(1 ‘ R2(t))]

x [1 — (I — R3(t) R.,(t))(1 — R5(t)R5(t))].

Ist die Darstellung der Struktur eines Systems durch Serienparallelstrukturen
möglich, kann die Bestimmung der Überlebenswahrscheinlichkeit R(t) dieses Systems
mit Hilfe eines Booleschen Zuverlässigkeitsmndells erfolgen. Solche Modelle werden
in [l9] und [26] ausführlich beschrieben.

Auch für Systeme, deren Struktur sich nicht in einfacher Weise durch ei_ne Kombi-
nation von Serien- und Parallelstrukturen darstellen läßt, kann dann die Uberlebens<
Wahrscheinlichkeit R(t) des Systems berechnet werden, wenn von jeder der 2" — 1

Gruppen der n Elemente des Systems bekannt ist, ob das Auftreten eines Fehlers
bei allen Elementen der jeweiligen Gruppe zu einem Fehler des Systems führt oder
nicht. Wir können darauf nicht näher eingehen und Verweisen auf [9].

6.4.2. Charakterisierung der Zuverlässigkeit eines Systems durch Zustandsanalyse

Zuverlässigkeitsmodelle, bei denen auf die Unabhängigkeit der Arbeitsweise der
Elemente und auf die bei den Booleschen Modellen geforderte Monotonieeigenschaft
verzichtet wird, gehen primär nicht vom Verhalten der Elemente aus, um von da
auf die Arbeitsweise des Systems zu schließen, sondern stellen an die Spitze der
Untersuchung eine Zustandsanalyse des Systems.

Definition 6.16: Als Zustandsanalyse eines gegebenen Systems S wird die Erfassung
der in Verbindung mit der vorliegenden Fragestellung interessierenden Zustände des
Systems und der Möglichkeiten des Übergangs zwischen den einzelnen Zuständen
bezeichnet.

Bei der Zustandsanalyse des Systems werden die Zustände der Elemente des
Systems berücksichtigt.



88 6. Einführung in die Zuverlässigkeitstheorie

Beispiel 6.3: Bei der Zustandsanalyse eines Systems S, dessen Zuverlässigkeits-
ersatzschaltung in Bild 6.8 angegeben ist, werden die Zustände S 1 (das System
arbeitet fehlerfrei) und S; (bei dem System liegt ein Fehler vor) und entsprechend bei
den Elementen E,-, z" = 1, 2, 3, die Zustände Ei, (das i-te Element arbeitet fehlerfrei)

Bild 6.8. Zuverlässigkeitsersatzschaltting eines Bei-
spiels einer Serienparallelstruktur (n = 3)

und E,-2 (bei dem i-ten Element liegt ein Fehler vor) betrachtet. Die Zustände des
Systems ergeben sich aus den Zuständen der Elemente in der in Tabelle 6.3 zusam-
mengestellten Art. Mit Hilfe der Tabelle 6.3 ist es möglich, Betrachtungen hinsicht-
lich des Übergangs zwischen den Zuständen anzustellen.

Tabelle 6.3
Abhängigkeit des Systemzustandes von den Zuständen der Elemente für das in Bild 6.8
dargestellte System

Zustand des Zustand der Elemente E,- ,

Systems S i = l, 2, 3

S1 E11:E21,E31
S1 E11: E22: E31
51 E1zsE21sE31
S2 E11» E21, E32
S2 En ß E22: E32
S2 El2)E2llE32
52 E12» E22» E32

Im einzelnen wird bei solchen Modellen vorausgesetzt:
1. Das System S kann m Zustände z, ‚ 22, ..., z„, annehmen.
2. Der Zustand des Systems S wird für jeden Zeitpunkt t g 0 durch eine Zufalls-

größe Z(t) charakterisiert.
3. Der Zustand Z(t) des Systems wird in seiner zeitlichen Abhängigkeit durch einen

stochastischen Prozeß {Z(t)‚ t g 0} mit endlich vielen Zuständen und stetigem
Parameterraum beschrieben.
Bild 6.9 zeigt eine Realisierung eines derartigen Prozesses.

las/und

Im
Zm-1

Zm-2

Bild 6.9
A Mögliche Realisierung eines sto-
51 chastisehen Prozesses mit endlich
f; . vielen Zuständen und stetigem Pa-

f, f2); I‘ f5 t; f, l rameterraum (nach [l9], S. 109)
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Bei Zuverlässigkeitsuntersuchungen eines Systems S auf der Grundlage eines
Modells, das die o. g. Voraussetzungen erfüllt, wird nach Möglichkeit ein stocha-
stischer Prozeß einer Klasse gewählt, deren Eigenschaften schon gut bekannt sind.
So wird häufig — nicht zuletzt aus physikalisch-technischen Überlegungen ~ ver-
sucht, die Klasse der Markowschen oder auch Semi-Markawschen Prozesse ein-
zusetzen. Die damit verbundenen Überlegungen führen zu den Markowschen Zuver-
lässigkeitsmodellen. Im Rahmen dieses Bandes können wir nicht näher darauf ein-
gehen. Ausführliche Darstellungen sind in [9] und [19] enthalten.

6.5. Komplexe Ersatzmodelle

Im vorangehenden Abschnitt haben wir Zuverlässigkeitsbetrachtungen für ein
System bis zum ersten Auftreten eines Fehlers angestellt. Jetzt wollen wir Möglich-
keiten für Zuverlässigkeitsaussagen bei Systemen skizzieren, wenn deren Elemente
bei jedem Fehler erneuert werden, und uns dabei auf den Fall beschränken, daß die
Erneuerung sofort nach dem Eintritt des Fehlers und ohne Erneuerungszeit erfolgt.
Nach der Erneuerung der fehlerhaften Elemente soll das System seine Arbeitsfähigkeit
zum Zeitpunkt: = 0 wiedererlangt haben. Wir wollen weiter annehmen, daß die Ele-
mente des Systems unabhängig voneinander arbeiten, d. h. untereinander unabhängig
sind. Gehen wir von unseren Überlegungen für ein einzelnes Element in Abschnitt 6.3.
aus, so bilden die Zeitpunkte, zu denen ein Fehler im System auftritt, ‘gleichzeitig also
auch eine Erneuerung stattfindet, einen Erneuerungsprozeß. Besteht das System S aus

[/'/IE1/era/7g!/7

des f/emmfs

Bild 6.10. Schematische Darstellung
eines Erneuerungsprozesses für ein
System S als Summe der Erneuerungs-
prozesse seiner Elemente Ei, i: l.
2, n (nach [9], S. 122)

n Elementen E„ i= l, 2, ...‚ n, so wird dieser Erneuerungsprozeß auf Grund der
von uns angenommenen Unabhängigkeit der Elemente E,- durch die Erneuerungs-
prozesse der Elemente bestimmt. Besitzt das System eine Serienstruktur, dann ergibt
sich dieser Erneuerungsprozeß durch die Summierung der n Erneuerungsprozesse der
Elemente (Bild 6.10).

Aufgabe der Zuverlässigkeitstheorie ist es, diesen Erneuerungsprozeß zu unter-
suchen, seine Grundcharakteristiken zu erfassen und damit entsprechende Zuxer-
lässigkeitsaussagen zu ermöglichen. In [9] und [19] wird diese Problematik. auf die
wir hier nicht näher eingehen können, eingehend behandelt.



7. Einführung in die Lagerhaltungstheorie

Stochastische Lagerhaltungsmodelle werden erst seit etwa 25 Jahren studiert.
Dabei laufen die Untersuchungen in zwei Richtungen. Einerseits wird — vor allem
in jüngster Zeit —— der spezifische Ablauf der Lagerhaltung exakt erfaßt‚ und dazu
werden als mathematische Hilfsmittel stochastische Prozesse eingesetzt. Anderer-
seits werden die Steuerungen eines Lagers erforscht. Dazu wird eine in einem gewissen
Sinne beste Steuerung gesucht, wobei das Prozeßverhalten in den Hintergrund tritt.

Das vorliegende Kapitel wendet sich besonders dem zuerst genannten deskriptiven
Problemkreis zu und analysiert einfache Lagerhaltungssysteme. Dabei werden die
in den vorangegangenen’ Kapiteln bereitgestellten Aussagen über Markowsche
Ketten und diskrete Markowsche Prozesse verwendet. Die normative Seite der La-
gerhaltung, die auf Optimierungsprobleme führt, kann hier nur gestreift werden.

7.1. Aufgabe der stochastischen Lagerhaltungstheorie

Lager werden in Industrie, Landwirtschaft, Medizin und Handel angelegt, um
Produktion und Konsumtion kontinuierlich aufrechtzuerhalten und ihre natur-
bedingten lokalen und zeitlichen Diskrepanzen auszugleichen. Ein Lager hat also
die Aufgabe, einen Bedarf an Produkten oder Materialien zu befriedigen. Nun ist
z. B. der Verbrauch von Hilfsmaterialien oder Blutkonserven nicht exakt planbar,
auch erfordert die Zuführung von Produkten an das Lager eine gewisse, zumeist
nicht genau angebbare Beschaffungszeit. Damit erhalten im allgemeinen die Bestände
eines Lagers irn Planzeitraum einen zufälligen Charakter. Bei dieser Unsicherheit
hat der Lagerhalter die Frage zu beantworten: Wann ist wieviel zu bestellen? Hierzu
müssen noch folgende ökonomischen Konsequenzen beachtet werden. Durch genü-
gend große Bestände kann jede Bedarfsforderung erfüllt werden. Andererseits bin-
den hohe Lagerbestände beträchtliche Umlaufmittel. Deshalb besteht das Problem,
bei möglichst niedrigen Beständen eine weitgehende Bedarfsbefriedigung zu gewähr-
leisten. Einen Weg zur Lösung des Lagerhaltungsprohlems weist die stochastische
Lagerhaltungstheorie‚ deren Einsatz in der Praxis von großer volkswirtschaftlicher
Bedeutung ist (vgl. etwa [22]).

Betrachten wir z. B. die Material— und Lagerwirtschaft eines Kombinats, so wer-

den im Durchschnitt einige zehntausend Artikel in etwa einem Dutzend Magazinen
gelagert. Wollen wir ein derartiges komplexes System rationalisieren, so ist dazu ein
Modell erforderlich, das die wichtigsten Einflußgrößen berücksichtigt, dabei aber
noch so einfach ist, daß es sich rechentechnisch in vertretbarer Zeit realisieren läßt. Es
werden deshalb folgende Annahmen getroffen:

A. Die Magazine des Kombinats werden zu einem Lager zusammengefaßt (Infor-
mationen über den Verbrauch in den einzelnen Magazinen werden nicht genutzt).

B. Jeder Artikel wird isoliert gehalten (Wechselwirkungen zwischen verschiedenen
Artikeln, wie Einsparung durch gemeinsame Bestellmöglichkeit oder Austausch-
barkeit, werden vernachlässigt).
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C. Der Umfang des Bedarfs wird für jeden Artikel durch Stückzahlen charak-
terisiert (durch geeignete Wahl der Mengeneinheiten ist C stets erfüllbar).

Unter diesen drei Voraussetzungen genügt es, Sogenannte diskrete Ein-Lager/Ein-
Produkt-Modelle einzusetzen. Im weiteren werden nur derartige Modelle aufgestellt
und untersucht. Auf das Problem des Einbaus solcher Lagerhaltungsmodelle in ein
EDV-Projekt „Material“ kann hier nicht eingegangen werden (vgl. hierzu aber [1]
bzw. [14]). .

7.2. Einflußfaktoren der Lagerhaltung

Wir beschäftigen uns nun mit der Konstruktion von Lagerhaltungsmodellen und
beginnen damit, die wichtigsten Einflußgrößen zusammenzustellen und mathematisch
zu beschreiben (s. Bild 7.1). Es handelt sich hierbei um den Bedarf und die Lager-
reaktion (L), welche den Lagerabgang bestimmen, sowie um die Bestellregeln (B)

fimel/any 5mm’
<- — — —-——— <****g'

Bestand
Hafen/Q; l _ 105757017W"!
L»

Bild 7. 1

nebst Beschaffungszeit, welche die Lagerzufuhr steuern. Für die Modellierung ist
der Prozeßcharakter der Lagerhaltung wesentlich. Durch die Vorgabe der genannten
Einfiußfaktoren ist das Verhalten des Lagers, gekennzeichnet etwa durch die jeweils
vorhandenen Bestände, für _die Zukunft (d. h. den unendlichen Planzeitraum
{tz 0 g t < oo}) festgelegt. Ändern wir speziell die Bestellregel, so ändern sich
natürlich auch die Bestände. Um nun entscheiden zu können, welche Bestellregel
besser ist, wird dem System eine Kostenstruktur aufgeprägt; damit werden gleich-
zeitig die vorhandenen Bestände aber auch die Bedarfsbefriedigung bewertet. Über
die erhaltene Kostenfunktion gelingt es, eine optimale Bestellregel zu ermitteln.

7.2. 1. Bedarf

Unter der Nachfrage verstehen wir die innerhalb eines Zeitintervalls vom Lager
abgeforderte Menge eines Artikels. Vielfach beobachtet man in der Praxis folgende
Eigenschaften der Nachfrage:

a) In gleichlangen Zeitintervallen verhält sich die Nachfrage annähernd gleichartig;
b) die Nachfrage wächst mit der Größe des Intervalls;
c) zwischen der Nachfrage in getrennten Intervallen besteht kein funktionaler

Zusammenhang.

Wie bereits unter 7.1. festgestellt wurde, ist die Nachfrage in einem Intervall des
Planzeitraumes i. allg. zufällig, wir sprechen dann kurz vom Bedarf Werden die
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Annahme C sowie die Eigenschaften a), b) und c) berücksichtigt, kann man diesen
Begrifi’ mathematisch wie folgt präzisieren: ‚

Definition 7.1: Ein (kumulative1')‘) Bedarfsprozefl ist ein stochastischer Prozeß
{ß(t), t g O} mit unabhängigen, homogenen, nichtnegativ-ganzzahligen Zuwächsen
und ß(0) = 0.

Stochastische Prozesse mit unabhängigen, homogenen Zuwäehsen wurden im
zweiten Kapitel eingeführt. Deshalb kann hier festgestellt werden, daß ein Bedarfs-
prozeß bereits Vollständig charakterisiert wird durch die Sogenannte Bedarfsfunktion

MH=HW%ß@=M=PW0=H‚k=&L2 ‚ an
welche die Verteilung des Bedarfs in einem Intervall der Länge t angibt.
Als Beispiele führen wir zwei Bedarfsprozesse an, die uns auch später zur Illustration
dienen werden.

Definition 7.2: Ein (kumulativer) Bedarfsprozeß mit der Bedarfsfunktion:
k

a) b‚(k) = (i? e”"‚ k = o, 1,2, (7.2)

heißt Poissonsc‘ Bedarfsprozeß mit Intensität Ä > 0,

b) mn=(jÜowra—mn k=QLl ‚ am

heißt Bernoullischer Bedarfsprozeß mit Parameter q, wobei 0 < q < I ist, [t] ist der
ganze Anteil der Zahl t.

Beim Poissonschen Bedarfsprozeß mit Intensität i. ist der Bedarf während einer
Zeiteinheit wegen (7.2) Poisson-verteilt mit dern Erwartungswert l. Dieser Prozeß
läßt sich auch bedienungstheoretisch als Forderungenstrom deuten. Zu gewissen

‚_

i

5x405;
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7,-23:1 5

„w I, i
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Bild 7.2. Realisierung eines Poissonschen Bedarfsprozesses mit Ä = 0,5

') „kumulativ“ bedeutet „aufsummiert, angehäuft“ (auf ein Zeitintervall bezogen).
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Zeitpunkten, den sogenannten Bedarfsfällen, treffen Forderungen nach jeweils einer
Mengeneinheit des Artikels im Lager ein, wobei die Pause T,, zwischen zwei aufein-
anderfolgenden Bedarfsfällen exponentiell verteilt ist.

Beim Bernoullischen Bedarfsprozeß mit Parameter q ist der Bedarf während einer

Zeiteinheit nach (7.3) geometrisch verteilt mit dem Erwartungswert ‚u = i.
Er kann als ein Forderungenstrom interpretiert werden, bei dem Forderungen im
Abstand von jeweils einer Zeiteinheit eintreffen und der Umfang jeder Forderung
geometrisch verteilt ist.

Wir wollen einen Bedarfsprozeß, bei dem die Pause zwischen zwei aufeinander-
folgenden Bedarfsfällen gerade eine Zeiteinheit beträgt, einen periodischen Bedarfs-
prozeß nennen. Bild 7.3 zeigt eine Realisierung eines periodischen Bedarfsprozesses.

7 2 3 1 5 f 7 t9 $7 717

Bild 7.3. Realisierung eines Bernoullischen Bedarfsprozesses mit q = 0,5

Der Zufall steckt bei einem derartigen Prozeß nur noch in den Sprunghöhen.
Deshalb ist es sinnvoll, eine einfachere Darstellung einzuführen. Die Differenz

I301 + 0) — I901 - 0) = I 5.. (7~4)

gibt die im Zeitpunkt t = n vom Lager abgeforderte (zufällige) Stückzahl des
betrachteten Artikels an. Die Folge von unabhängigen Zufallsgrößen
13,, [32, ...‚ ß„, mit der Eigenschaftl)

P03» = k) = b1(k) =1 b(k) ' (7-5)

ist dann äquivalent einem periodischen Bedarfsprozeß. Das Verteilungsgesetz des
Prozesses ist eindeutig festgelegt durch Vorgabe einer Funktion b(k), wobei k
eine ganzzahlige Variable ist, mit den Eigenschaften

b(k) g o mit b(k) = o für k < o, (7.6a)

f b(k) = 1. (7.6b)
k=0

‘) (7.5) folgt wegen der Homogenität der Zuwächse unmittelbar aus (7.1) und (7.4).
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Unter dem mittleren Bedarf eines periodischen Bedarfsprozesses verstehen wir
O0

p = E09.) = 2 kb<k>.
k l

Der Gesam=tbedarf der ersten n Bedarfsfälle ergibt sich hier zu ß(n) = i ßk
mit den Einzelwahrscheinlichkeiten b„(.) und der Verteilungsfunktion "=1

3.0) = P0301) E1") = P0301 - 1) + /3.. éf)
i

=kä B..—i(j - k) b(/<) (7-7)

nach der Formel der totalen Wahrscheinlichkeit.
Beim Bernoullischen Bedarfsprozeß liefert (7.3) speziell die Verteilungsfunktion

3.0) = <1 — q>"k:f0 (” + : ’ 1) q”,

der negativen Binomialverteilung mit den Parametern q und n.

Die Bedarfsfunktion b(k) = b‚(k) liefert die Verteilung des Bedarfs während
einer Zeiteinheit. Dieser Sachverhalt führt uns darauf, jedem (kumulativen) Bedarfs-
prozeß {ß(t), t g 0} einen periodischen Bedarfsprozeß ßl’, fig, ..., fl,’,, gemäß der
Vorschrift

1301) - fl(" - 1) =II9£

zuzuordnen. Hierbei gibt 5,: den Bedarf in der n-ten Periode (n -— 1 < t g n) an.
Offenbar ist dieser periodische Bedarfsprozeß im allgemeinen nicht mehr dem
(kumulativen) Bedarfsprozeß äquivalent, sondern stellt eine die Bedarfsinformation
verdichtende Vergröberung dieses Prozesses dar. Dabei wird ein fiktiver Bedarfsfall
im Endpunkt des Intervalls angenommen, an dem der ursprüngliche Bedarfsprozeß
mit dem zugeordneten Prozeß übereinstimmt.

7.2.2. Lagerreaktion

Der Bedarf wurde als ein Informationsstrom eingeführt, der unabhängig von den
Möglichkeiten des Lagers abläuft. Es wird nun vereinbart, wie der durch den Bedarfs-
prozeß ausgelöste Lagerabgang erfolgt. Tritt zu einem Zeitpunkt t ein Bedarfs-
fall auf, wobei der Umfang der abgeforderten Menge gleich u ist, so kann diese
Nachfrage sofort befriedigt werden, wenn der vorhandene Lagerbestand x g u ist.
Gilt dagegen x < u, so können wir den unbefriedigten Bedarf u — x für einen
späteren Zeitpunkt vormerken oder aber nur den Anteil x der Nachfrage befriedigen
und den Rest abweisen, d. h. auch später unberücksichtigt lassen. Diese beiden
Lagerreaktionen, die mathematisch Transformationen des Bestands sind, werden
formelmäßig wie folgt erfaßt:

Definition 7.3: Es sei x der Bestand unmittelbar vor einem Bedarfifall vom Umfang u
und r der Bestand nach der Lagerreaktion. Wir sprechen von einer Vormerkreaktion,
falls

r = r(x, u) = x — u (7.8)
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gilt, bzw. von einer Verlustreaktion im Falle

x — u für x > u,
. = = _ + =I r(x, u) [x u] 0 für x g u‘ (7.9)

Bei der Verlustreaktion wird körperlich‘) vorhandener Bestand wieder in körper-
lichen Bestand überführt. Ist bei der Vormerkreaktion (7.8) x körperlicher Bestand,
so ist r im Falle u > x negativ. Wir nennen (—r) dann Fehlbestand und für belie-
biges x und u die Größe r Buchbestand. _

In der Betriebswirtschaft dominiert die Vormerkreaktion. Im Handel werden
dagegen noch häufig Verlustreaktionen praktiziert.

7.2.3. Beschaflung

Wir fassen unter dem Begriff „Beschaflung“ die Kontrolle der Bestände, die Fest-
legung der erforderlichen Bestellmenge, die Auslösung einer Bestellung sowie die
Anlieferung zusammen und modellieren diese Vorgänge wie folgt:

Die Bestandskontrolle und die Aufgabe einer Bestellung erfolge stets zum Zeit-
punkt eines Bedarfsfalles. Der Umfang der Bestellmenge werde durch eine Bestell-
regel in Abhängigkeit vom derzeitigen Bestand ermittelt. Nach einer Beschajfungs-
zeit I, die auch zufällig sein kann und den Bestellvorgang, eventuell die Produktions-
zeit des Artikels und den Transport zum Lager einschließt, ist die bestellte Menge
am Lager verfügbar.

Die Wahl der Bedarfsfalle als Bestellzeitpunkte ist nicht so einschneidend, wie
man auf den ersten Blick annehmen könnte. Die in der Betriebspraxis übliche
maschinelle Bestandsrechnung liefert dem Disponenten u. U. nur alle l0 Tage oder
sogar nur monatlich die erforderliche Information, so daß dann die Bestellzeitpunkte
durch die Organisation und nicht durch den Bedarfsprozeß bestimmt werden. Dieser
Fall wird jedoch im Modell dadurch erfaßt, daß man — wie in Abschnitt 7.2.1.
ausgeführt —— den ursprünglichen Bedarfsprozeß vergröbert und gemäß (7.7) zu
einem periodischen Bedarfsprozeß übergeht. Dabei wird unter der Angabe t = n

ein Zeitpunkt verstanden, der n Zeiteinheiten vom Anfang des Planzeitraumes
entfernt ist.

Es seien noch einige spezielle Bestellregeln angegeben. Die denkbareinfachste
Bestellregel besteht darin, bei jedem Bedarfsfall dieselbe feste Menge Q zu bestellen.
Eine weitere Bestellregel legt eine Bestellmenge fest, die den Bestand auf ein Niveau S
ergänzt. Wir erweitern und präzisieren dies in der

Definition 7.4: Es seien x der Bestand unmittelbar nach einem Bedarfsfall und s, S
ganze Zahlen mit 0 < s g S. Eine Vorschrift, die dann die Bestellmenge z(x) gemäß

z(x) = {
S —— x für x < s,
0 (7.10)

für xgs
festlegt, heißt Bestellregel vom (s, S)-Typ.

Bei einer Bestellregel vom (s, S)-Typ wird also genau dann eine Bestellung aus-
gelöst, wenn der Bestand unter den sogenannten Bestellpunkt s gesunken ist. Liegt

‘) „körperlich“ bezeichnet die am Lager materiell vorhandenen und verfügbaren Bestände.
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der Anfangsbestand unterhalb von S, so wird im Spezialfall s = S bei jedem Bedarfs-
fall bestellt. Stets wird auf das Niveau S aufgestockt.

Abschließend sei noch der Rhythmus des Zusammenspiels der Elemente der
Beschaffung und der Bedarfsbefriedigung festgelegt. Tritt zum Zeitpunkt r eine
Nachfrage auf, so wird folgende Reihenfolge eingehalten:

E -E g
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Bedarfsfall ~ Lagerreaktion — Bestellung. Daran schließt sich die Lieferung an.
Bei beliebiger Beschaffungszeit ist es möglich, daß eine Lieferung gerade im
Zeitpunkt eines Bedarfsfalls verfügbar wird. Dann erfolgt die Bestandsänderung vor
der Lagerreaktion (vgl. Bild 7.4).

7.2.4. Kosten

Durch Vorgabe der bisher aufgeführten Einfiußgrößen kann man den Lager-
haltungsprozeß vollständig beschreiben und Verhaltenscharakteristiken berechnen.
Zur Beantwortung der Grundfrage: „Wann ist wieviel zu bestellen?“ ist aber eine
Bewertung der Lagerhaltung erforderlich. Wir werden deshalb Lagerhaltungskosten
in Rechnung stellen und diejenige Bestellregel als beste auszeichnen, welche die
Gesamtkosten des Lagerhaltungsprozesses minimiert.

Hier werden drei Kostenfaktoren berücksichtigt: Beschaflungskosten, Lager-
kosten und Fehlmengenkosten.

Beschaffungskosten entstehen bei jeder Bestellung, wobei insbesondere der Trans-
port zum Lager berücksichtigt wird. Es werden folgende Symbole für die Kosten-
faktoren verwendet:
K [M/Bestellung] — fixe Beschaffungskosten für eine Bestellung; hierbei gibt M die

Geldeinheit an.
c [M/ME] — mengenproportionale Beschaffungskosten für eine Mengen-

einheit (ME).
Lagerkasten erfassen den Aufwand, der bei der Unterhaltung von Lagern und bei

der Finanzierung der gelagerten Artikel (Umlaufmittelbindung) entsteht.
/1[M/ME-ZE] — Lagerkosten für das Lagern einer Mengeneinheit für eine Zeit-

einheit (ZE).
Fehlmengenkosten werden erhoben, wenn bei einem Bedarfsfall das Lager nicht

über die angeforderte Menge verfügt.
g[M/ME-ZE] — Kosten beim Fehlen einer (angeforderten) Mengeneinheit für

eine Zeiteinheit.
Auf die Problematik des Erfassens der Kosteneinheiten kann hier nicht eingegan-

gen werden.
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7.3. Periodische Lagerhaltungssysteme

Durch Spezialisierung der unter 7.2. eingeführten Einfiußfaktoren können jetzt
Lagerhaltungsmodelle aufgestellt werden. Dabei setzen wir uns das Ziel, verschiedene
Bestandsprozesse zu erklären und damit Verhaltenscharakteristiken wie mittlerer
Bestand, Bestellzyklus und Sicherheitsgrad zu bestimmen. Außerdem wird noch eine
Kostenminimierung zur Berechnung optimaler Parameter angeschlossen.

Zur Illustration verdeutlichen wir diese Aufgaben an zwei Beispielen, auf die wir
später zurückkommen werden.
Beispiel 7.]: Ein Betrieb benötigt während einer Zeiteinheit im Durchschnitt ‚u, Men-
geneinheiten eines bestimmten Materials. Eine genauere statistische Analyse der
vorhandenen Verbrauchszahlen ergab, daß der Bedarf in einer Zeiteinheit geo-
metrisch verteilt ist mit dem Parameter q. Der Disponent des Betriebes nimmt höch-
stens S Mengeneinheiten des Materials auf Lager und stockt den Bestand erst dann
auf das Niveau S auf, wenn dieser unter den Sicherheitsbestand s gefallen ist.

Die Effektivität einer derartigen Disposition kann an folgenden Kriterien ein-
geschätzt werden:
a) Wie groß sind die mittleren Lagerbestände?
b) Mit welcher Sicherheit wird eine auftretende Nachfrage sofort befriedigt?
c) In welchen Abständen werden Bestellungen aufgegeben?

Beispiel 7.2: Der Bedarf an einem Produkt in einem Magazin sei während einer
Zeiteinheit geometrisch verteilt mit Erwartungswert ‚u = 1. Es wurden folgende
Kosteneinheiten ermittelt: K = 8, h = 1, g = 21.

Wann ist wieviel zu bestellen, damit der finanzielle Aufwand der Lagerhaltung
möglichst klein gehalten wird?

Unser Anliegen ist es, die Methodik an möglichst einfachen Systemen vorzuführen.
Deshalb beschränken wir uns im folgenden auf Bestellregeln vom (s, S)—Typ und auf
verschwindende, konstante bzw. exponentiell verteilte Beschaflungszeit. Dabei
werden nur Verlust- bzw. Vormerkreaktionen verwendet, und daher wird von
Verlust- bzw. Vormerksystemen gesprochen. Weiterhin betrachten wir ausschließlich
periodische oder Poissonsche Bedarfsprozesse und nennen das entsprechende System
periodisches bzw. Paissonsches Lagerhalrungsxystem.

7.3.1. Ein periodisches Verlustsystem ohne Lieferverzögerung

Es wird die Lagerhaltung eines Systems untersucht, die durch folgende spezielle
Einflußgrößen beschrieben werden kann, welche wir zusammenfassen zu dem

Modell 1

a) Der Bedarfsprozeß ist periodisch und wird durch eine Bedarfsfunktion b(k) mit
den Eigenschaften (7.6) charakterisiert.

b) Es gilt die Verlustreaktion (7.9).
c) Die Beschaffungszeit 1 ist vernachlässigbar.
d) Die Bestellregel ist vom (s, S)—Typ.
e) Der Anfangsbestand beträgt S Mengeneinheiten.
Die körperlichen Bestände im Modell 1 während des Planzeitraumes werden durch
zwei stochastische Prozesse X0, X1, X2, sowie Y0, Y1, Y}, beschrieben.
Dabei bezeichnet X„ den Bestand zur Zeit t = n vor der Bestellung und Y„ den Bestand

6a
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zur Zeit t = n + 0 nach der unverzüglichen Lieferung. Der Zusammenhang ergibt
sich aus den Bilanzgleichungen:

Y„ = X, + z(X,,), (7.11a)

X" = [Y—1 - fink (7~11b)

wobei z durch (7.10) erklärt ist und zu (7.llb) gerade (7.9) verwendet wurde. Aus
(7.llb) erhalten wir mittels (7.1 la) und (7.10)

X" = {[Xn—1 — I3n]+ f‘? Xn-1 ä 3 (7.12)

[S — ß„]+ fur X„_1 < s.

Aus (7.l1a) folgt mit (7.llb) und (7.10)

Y" = {[Yn-1 — M fur Y.-. g ‚an + s, (m)
S fur Y„_‚ < 13„ + x.

Wird noch die Voraussetzung e) berücksichtigt, so ergibt sich

X0 = Yo = S. (7.14)

Im Modell 1 ist der Bestandsprozeß X0, X1, Xz, fiber (7.12) und (7.14) und der
Bestandsprozeß Yo, Y1, Y2, ..., über (7.13) und (7.14) eindeutig festgelegt. Ver-
wenden wir die in Bild 7.3 angegebene Bedarfsrealisierung, ergibt sich für die beiden
Bestandsprozesse der in Bild 7.5 angegebene Verlauf. Hieraus ist ersichtlich, daß
im Zustandsbereich [s, S) beide Prozesse übereinstimmen.

5 m m ?V„1___?t if» „W7

i l l

l l l

5 ’ ä E l
i I (e

l i» ä i i

>50 i l I

>so w, : : I w,
3 ‘ ' ‘"1 : :

l l 1

.2 _ ä E #15"1, >;9_,_V;___nXm.¥a

5 i i E

l

‚- l g

l l i

. . y W i ‘X5 ~ -

ü 7 2 3 4 5 5 7 8 $7 70
f-—>

Bild 7.5. Realisierung zweier Bestandsprozesse bei Bemoullischem Bedarfsprozeß mit
q = 0,5 und einer Bestellregel vom (s, S)-Typ mit x = 2 und S = 6
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Im Hinblick auf eine effektive Lagerhaltung können wir uns nicht mit dem bloßen
Nachvollziehen der Prozesse begnügen, sondern müssen nach den Verteilungsgesetzen
der beiden Bestandsprozesse fragen.

Satz 7.1: Die durch (7.12), (7.13) und (7.14) definierten Bestandsprozesse sind homo-
gene Markawsche Ketten mit den Zustandsräumen

33x = {S‚S —1,...,1,0} bzw. X, = {S‚S —1,...,s + 1,5}

und den Übergangsmatrizen

‘b(O) b(l) b(D) b(D + 1) b(S — 1) 1a('s) -

9 b_(0) 17(1) —1)b(_D) b0? — 2) I7_(S — 1)

PX = ö ö 1(6) b(l) b(s— 1) 5(1) (7.15)

b_(0) 17(1) b(D) 5(1) 1) b(S f 1)

_1$(o) 1(1) b(D) b(D „i 1) b(S: 1) E(s)
bzw.

17(D>+ 1) + b(O) b(l) b(D)

Py = 1':9_(D) 12(0) im — 1) ’ (7.16)

15(1) i) 13(0)

wobei D :=_S — s und §(i) := 1 —- B(i — 1) = E: b(k) gesetzt wurde und b(k) ent-
sprechend (7.5) erklärt ist. "=’

Beweis: Aus den Rekursionen (7.12) und (7.13) erhalten wir direkt die Markow-
Eigenschaft der Ketten. Hinsichtlich der Übergangsmatrizen beschränken wir uns
hier auf die Ermittlung von 12„ für den X-Prozeß und Zustände i g s. Es gilt wegen
(7.12) für} # 0

P11 = P(Xn =1./X—1 = i) = P([X«1 ‘ /9111+ =1./X~1 = i)

= P(/3.. = i —1'/X—1 = i)-= P091. = i -J') = b(i -1’)-

Für j = 0 ergibt sich

P10 = P(1:Xn-1 “ I3n]+ = 0/X -1 =1)

= P(Xr1-1 — 1311 S 0/Xn-1 =

= im g i) = käbac) = Fa).

Damit ist die Richtigkeit der ersten D + 1 Zeilen der Matrix PX bestätigt. Zu
beachten ist nur, daß die Elemente entsprechend der Anordnung im Zustandsraum
gruppiert sind. So steht in der linken oberen Ecke von PX das Element PS5 = b(S — S)
= b(O) und in der rechten oberen Ecke ps0 = §(S).
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Fassen wir die unbedingten Wahrscheinlichkeiten pJ-(n) = P(X,, = j) zu einem
Vektor p„(X) := (p5(n), p5_1(n), ...,po(n)) zusammen, erhalten wir (s. Kap. 3) das
Bildungsgesetz

Pn(X) = Pn—1(/Y) PX = Po(/Y) P" ‚ (717)

wobei wegen (7.14) für die Anfangsverteilung gilt

125(0) = 1 und p,,(0) = 0 für k =1: S. (7.18)

Für unsere Untersuchungen wird, nicht zuletzt um den Apparat zu vereinfachen,
statt der Verteilungen p„(X) die ergodische Verteilung p(X) benutzt. Wir sagen
dann auch, das System befindet sich im stationären Regime. Das bedeutet, der Bestand
ist unabhängig Von der Zeit, er wird durch eine Zufallsgröße X charakterisiert,
deren Verteilung gerade die stationäre Grenzverteilung p(X) ist.

Satz 7.2: Gibt es eine ganze Zahl x g S mit

b(x) > 0, . (7.19)

dann sind die beiden durch die Anfangsuerteilung (7.18) und die Übergangsmatrizen
(7.15), (7.16) definierten Markowxchen Kelten ergodisch. Die „stationären Bestandsver-
teilungen ergeben sich zu

1 E m(k/D) für '— 0
1 + M(D) k=S j _ ’

(S - J"/D)
. X z m____

f’( ) 1 + M(D)

m(S - j)
1 + M(D)

für 0 <j < s, (7.20)

für S ä] ä S,

bzw.

m(S -1‘)
l + M(D)
1 + m(O)

1 + M(D)

für s g j < S,

130’) = (7-21)
für j = S.

Die in den Formeln (7.20), (7.21) auftretenden Hilfsfunktionen sind wie folgt
rekursiv aufgebaut:

mac) = b<k> +_ bur '“.I') mo"); (7.22)

m(k/D) := b(k) b(k — j) m(j), k > D; (7.23)

M(k) 3:; m(j). (7.24)
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Der Grenzwertsatz 7.2 gilt also schon, wenn zu einem Bedarfsfall eine Menge ab-
gefordert werden kann, die größer oder gleich dem Niveau S ist. Ist die Nachfrage
stets kleiner als S, vereinfachen sich die Prozesse, die Bestände sind dann gleich-
mäßig beschränkt. Dem Leser sei empfohlen, diesen Fall selbständig zu erarbeiten.

Beweis von Satz 7.2: Nach Voraussetzung (7.19) und (7.6) ist 5(5) = E b(k) > 0.
k s

Weiterhin gilt B(j) g B(S) für alle j g S. Damit enthält die letzte Spalte der Matrix
(7.15) bzw. die erste Spalte der Matrix (7.l6) nur positive Elemente. Nach Satz 3.2
sind deshalb die beiden Markowschen Ketten ergodisch, und es existieren stationäre
Grenzverteilungen

lim p„(X) = f(X), lim p„(Y) z f(Y). (7.25)
n-Nxo neue

Wegen (7.17) kann man diese stationären Verteilungen bestimmen, indem jeweils
ein lineares Gleichungssystem von der Form

f(X) = f(X)PX, f(Y) = f(Y)P,, (7.26)

gelöst und dabei die Verteilungseigenschaft (vgl. (7.6)) beachtet wird sowie die
Hilfsfunktionen gemäß (7.22), (7.23), (7.24) verwendet werden.
Beispiel 7.3: Modell 1 mit Bernaullischem Bedarfsprozefl. Entsprechend Def. 7.2
gilt für die Bedarfsfunktion hier

b(k) = q*(1 — q) = Poe. = k). _ (7.27)

wobei O < q < 1 ist. Aus (7.22) folgt damit

m(k) = (1 - q) [q* + 4*-imm]. (7.28)

Für k = 0 ergibt sich aus (7.28) sofort m(0) = (l — q)/q. Induktiv kann allgemein
gezeigt werden, daß

mac) = <1 — q)/q = 1//2 (7.29)

gilt. Mit (7.29) und (7.27) erhalten wir für die Hilfsfunktionen (7.23) und (7.24):

m(k/D) = (1 - <I)q"’”“ (7.30)
und

M(D) = (1 + D) (1 - 4)/<1 = (1 + D)//L (7.31)

Nach Satz 7.2 ergibt sich die stationäre Verteilung des Bestandes unmittelbar vor
einer Bestellung zu

Iuqs-l

,u+ l +D
qs—.i

‚u+l+D
l

‚u+1+D

für j = O,

f‚-(X) = für O <j < s, (7.32)

für sgjgs,

7 Beyer, smch. Proz.
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entsprechend folgt für die stationäre Verteilung des Bestandes unmittelbar nach
einer Lieferung:

1 .. .

‚T? f“ ‘é1<S=
/,(Y)= 1 + (7.33)
j“ für j=S.‚u+l+D

7.3.2. Ein periodisches Vormerksystem mit konstanter Beschalfungszeit

Das Modell des vorigen Abschnitts wird modifiziert, indem die Annahmen b)
und c) über die Lagerreaktion und die Beschaffungszeit geändert werden.

Modell 2

a) Der Bedarfsprozeß ist periodisch mit der Bedarfsfunktion b(k) und dem mittleren
Bedarf ‚u.

b) Es gilt die Vormerkreaktion (7.8).
c) Die Beschaflungszeit I ist eine feste natürliche Zahl.
d) Die Bestellregel ist vom (s, S)-Typ.
e) Der Anfangsbestand beträgt S Mengeneinheiten.
Analog zu den Bilanzgleichungen (7.1 l) werden die beiden Bestandsprozesse‘)

“Y,, = "X" + z(”‘X,,), (7.343)

‘X, = “Ym — :3" (7.34b)

eingeführt; dabei wurde (7.34b) gemäß (7.8) gebildet. Entsprechend d) ersetzen wir
z(.) nach (7.10) und erhalten

„X : {dXn-i — flu für dXn-l 2 S, (7.35)

n S — /3,, für “X,,_, < s,
sowie

dY z {dYm-l — fin für dYn-i ä 3 + ßn: (7.36)

" S für "Y„-1 < s + fin.

Für den Spezialfall verschwindender Beschaffungszeit gibt uns dY„ den zur Zeit
t= n unmittelbar nach der Lieferung körperlich vorhandenen Lagerbestand an.
“X,, erfaßt den Buchbestand zur Zeit t = n vor der Bestellung. Ist dagegen die Be-
schalfungszeit größer als null, müssen wir den Ansatz (7.34) und die damit erklärten
Prozesse andersartig deuten. Wir nennen “Y,, den dispaniblen Bestand nach der
Bestellung zur Zeit t = n. Dieser besteht aus dem körperlich vorhandenen Bestand
sowie den bestellten aber noch nicht verfügbaren Mengen abzüglich der vorgemerkten
Mengen. “X” heißt disponibler Bestand vor der Bestellung zur Zeit t = n. Er unter-
scheidet sich von “Y,, nur um die zur Zeit t = n aufgegebene Bestellmenge.

Es sei betont, daß gemäß (4.37a) die Bestellregel sich auf den disponiblen Bestand
bezieht, d. h., falls bestellt wird, dann wird der disponible Bestand auf das Niveau S

1) Der hoehgestellte Index „d“ weist auf „disponibel“ hin.
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gebracht. Werden (7.13) und (7.36) Verglichen, so ergibt sich die Gleichheit des
Bestands nach der Bestellung bei Verlustreaktion und Vormerkreaktion. Allerdings
handelt es sich einmal um körperlichen und einmal um disponiblen Bestand. Als
neuer Prozeß braucht deshalb nur der disponible Bestand vor der Bestellung unter-
sucht zu werden.

Satz 7.3: Der durch (7.35) und “X0 = S definierte disponible Bestandrprozeß bildet
eine homogene Markowsche Kette mit dem Zustandsraum 43€ = {S, S — 1, und
der Ubergangsmatrix

b(O) b(1) b(D) w) + 1) b(D + 2)

q im) m} — 1) b(D) b(D „g 1)

P = ö ö 1(0) b(I) b(2) I . (7.37)
m) b(1) b(D) b(D + 1) b(D + 2) .

b(0) 17a) b(D) b(D + 1) b(D + 2)

Beweis: Für s g i g S gilt wegen (7.35)

Pu‘ = P(dXn =j/dXn—1 = i) = P(dXn-1 — .31: =1-/d/Yrwl = i)

= P(19.. = i -J') = b(i —J')- (7-38)

Für i < s ergibt sich p‚-, = P(S — ß„ =j) = b(S —j).

Satz 7.4: Eine homogene Markowsche Kette mit der Übergangsmatrix P gemäß (7.37)
ist ergodisch. Die stationäre Verteilung besitzt die Komponenten

m S — ' ’Ad?) für s g 1 g S,

fl-("X) = . (7-39)mE:A@_fl,-<3
1 + M(D) ’ '

Auf den Beweis wollen wir hier verzichten und nur auf Satz 7.2 Formel (7.20)
verweisen,

Die stationäre Bestandsverteilung im Falle von Modell 2 und einem Bernoullischen
Bedarfsprozeß ergibt sich aus (7.29), (7.30), (7.31) und (7.39) zu

1 .. .;:T:3'“‘55Jä&
n@n= f„ aw)

7:T:3‘”‘f<*
Wie wir sehen, ist der disponible Bestand unabhängig von der Beschaffungszeit.
Um aber ein Lagerhaltungssystem beurteilen zu können, ist die Kenntnis der körper-
7*
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lichen Bestände bzw. der Buchbestände erforderlich. Orientieren wir uns zunächst
an einem Beispiel (vgl. Bild 7.6) über die Wirkung einer Beschafiungszeit I > 0,

X ..@dXn77 V.7,JX:a: Via

T’

T’
L

Bild 7.6. Realisierung des disponiblen Bestandes und des Buchbestandes bei einem Ber-
noullischen Bedarfsprozeß mit q = 0,5 und einer Bestellregel vom (s, S)-Typ mit x = 2

und S = 6 sowie Beschaffungszeit I = 2

Dem Bild sowie der Modellannahme e) können folgende Zusammenhänge zwischen
den Beständen entnommen werden:

’X„ = ’Y,, := s -1‘; 5, für n = 1, 2, (7.41)

sowie
I

’Y„ := "Y,,-, i‘; ß„-„„ für n > I, g (7.42a)

IX, := ’Y,,-, — fin für n > I. (7.42b)

DielGröße ‘Y„ gibt den Buchbestand zur Zeit t = n sofort nach Eintreffen der zur
Zeit t = n — I bestellten Menge an. 'X„ erfaßt den Buchbestand zur Zeit t= n

unmittelbar vor dem Eintreffen der Lieferung.
Die Verteilungsgesetze der Buchbestände ergeben sich aus den Verteilungen des

Bedarfsprozesses und des disponiblen Bestandsprozesses (der zum Bestandsprozeß
von Modell l äquivalent ist). Wegen der Unabhängigkeit der Zufallsgrößen auf den
rechten Seiten von (7.41) und (7.42) erhalten wir die Verteilung der Komponenten
‘X,,, 'Y,, durch Faltung. .

7.3.3. Verhaltenscharakteristiken

Das Verhalten eines Lagerhaltungssystems haben wir bisher durch verschiedene
Bestandsprozesse erfaßt. Für den Disponenten in der Praxis sind diese Prozesse
selbst zu aufwendig und deshalb ungeeignet. Er benötigt verdichtete Daten.
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a) Eine geeignete Kenngröße ist der mittlere Bestand, den wir als Erwartungswert
des stationären Bestands definieren. Aus Satz 7.2 folgt direkt

Satz 7.5: Bei Modell 1 ergibt sieh der mittlere Bestand vor der Bestellung zu

l
E‘X>=1—+7(3i [EWIG — 7/D) + §jm<s m] (7.43)

_/‘=1

und der mittlere Bestand unmittelbar I7acl7 der Lieferung zu

1 D
Z km(k ). (7.44)E">=S‘Tr4<T>.-.

Im Falle des Bernoullischen Bedarfsprozesses erhalten wir speziell aus Satz 7.5
unter Berücksichtigung von (7.29), (7.30), (7.31):

E(X) =M. [m —g+ (s + ä) (D + 1)] (7.45)

und

E(Y) = s —. . (7.46)

Satz 7.6: Bei Modell 2 ergibt sich der mittlere dispanible Bestand vor der Bestellung zu

1
oo D

d —B. _ _E( X) _ 1 + Mm) [kgoflr k) m(D + k/D) +k§0(S k) m(k)]. (7.47)

Der mittlere disponible Bestand nach der Bestellung wird durch (7.44) gegeben, d. /7.

E(° Y) = E(Y
Für den Bernoullischen Bedarfsprozeß ergibt sich im Modell 2

E(“X) = -1: [,7 + (s + 3) (D + 1)]. (7.48)
‚u + 1 + D 2

Satz 7.7: Die mittleren Buchbestände haben bei Modell 2 die Form

E(’X) = E(Y) — (1 + 1),u (7.49)

E(’Y) = E(Y) — /,u, (7.50)

wobei E(Y) durch (7.44) gegeben ist.
Der Beweis ergibt sich unmittelbar aus (7.42) und Satz 7.6. Betrachten wir wieder

speziell einen Bernoullischen Bedarfsprozeß, so ist der mittlere Buchbestand gegeben
durch

D(D + 1)

2(‚u + D + 1)’

d. h.‚ zu einem beliebigen Zeitpunkt t = n bei stationärem Regime ist im Mittel
der Buchbestand (7.51) vorhanden, wobei eine eventuell zur Zeit t = n eintreffende
Lieferung bereits mit berücksichtigt wird.

E(’Y) = s.— 1,7 — (7.51)
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b) Für die Beurteilung der Lieferbereitschaft eines Lagers können wir den
sogenannten Sicherheitsgrad verwenden, den wir als die Wahrscheinlichkeit dafür
definieren, daß zu einem beliebigen Bedarfsfall im stationären Regime die Nachfrage
vollständig befriedigt wird.

Satz 7.8: Im Modell 1 gilt für den Sicherheitsgrad

P1(s, S) := P(Y — ß g 0) (7.52)

P‚(s, s) = 117% [B(S) +k§0B(S — k) m(k)]. (7.53)

Beweis: Wie aus Bild 7.4 ersichtlich, erfolgt nach einem Bedarfsfall die Lager-
reaktion‚ die im vorliegenden Verlustfall unbefriedigten Bedarf bei der Bildung des
Restbestandes X nicht ausweist. Vor einem Bedarfsfall ist der (stationäre) Bestand Y
vorhanden. Deshalb ist der Sicherheitsgrad durch (7.52) gegeben, wobei ß = ß, den
Umfang des Bedarfs angibt. Mittels der Formel der totalen Wahrscheinlichkeit er-
gibt sich unter Verwendung von (7.21)

m, s) = P(Y — ß. a o/Y =j)f‚-(Y)

_S“ . WKS-J‘)-jg; P031 äU 
Wird nun die Beziehung

l + m(0)
+P(I31 §S) - (7.54)

P09. g j) = é0b(k)f= B0).

berücksichtigt, so folgt (7.53), was zu beweisen war. _

Für den Bernoullischen Bedarfsprozeß liefert Satz 7.8 zusammen mit B(j) = q’
die Beziehung

S

P,(s, S) = 1 —ä. (7.55)

Aus (7.55) kann man ablesen, daß sich hier der Sicherheitsgrad mit wachsendem s

bzw. wachsendem D = S — s erhöht.

Satz 7.9: Im Modell 2 gilt für den Sicherheitsgrad

Pz(s. s) = P(‘X 2 o)
1 D

=?W,) [B.+1<s) +k§°B.+1<s — k) man]. (7.56)

Die Funktion BHQ’) kann rekursiv nach (7.7) berechnet werden, wobei B1(j) = B(j)
ist.

Im Falle des Bernoullischen Bedarfsprozesses erhalten wir speziell
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c) Auskunft über die Häufigkeit einer Bestellauslösung erhalten wir über den
Bestellzyklus T, der Zeitspanne zwischen zwei aufeinanderfolgenden Bestellungen.
In den Modellen 1 und 2 ist T eine Zufallsgröße.

Diesen Sachverhalt wollen wir noch etwas genauer erklären. Die Zeitpunkte, an denen bestellt
wird, zerlegen den Planzeilraum in Intervalle der Länge T, , T2, T3, Die Längen 7; sind Zufalls-
größen, die aus dem Bedarfsprozeß mittels der übrigen Einflußgrößen des Systems bestimmt wer-

den. Bei dem von uns betrachteten periodischen Lagerhaltungssystem sind die Zufallsgrößen T„
identisch verteilt und unabhängig. In diesem Sinne wählen wir T als Repräsentanten dieser Zufalls-
größen und sprechen vom Bestellzyklus (der Länge) T.

Zunächst wird eine Beziehung für den Bestellzyklus T hergeleitet, die es gestattet,
dessen Verteilungsgesetz zu gewinnen. In den Modellen 1 und 2 ist zum Zeitpunkt
t = n unmittelbar nach der hier erfolgten Bestellung der (körperliche bzw. disponible)
Bestand gleich S. Wann wird nun die nächste Bestellung ausgelöst? Oflenbar genau
dann, wenn erstmalig der Bestellpunkt s unterschritten wird. Wegen s > 0 (vgl.
Def. 7.4) gilt also fiir beide Modelle im Falle des Bestellzyklus T z

S — (‚Bau ‘l’ ßn+2 ‘l’ + ßm-r-i) ä S; (7)583)

S ' (fin-+1 "l" + l8n+1~1 "l" 13m7‘) < 5- (7-58b)

Im Modell 2 sind die linken Seiten von (7.58) gerade gleich °X„„_1 bzw. °X„„,
im Modell 1 ist die linke Seite von (7.58 a) gleich X„.„_1. Nach der Bestellung zur
Zeit t = n wird also erstmalig zur Zeit t = n + T bestellt. Aus (7.58) erhalten wir

Satz 7.10: Für die Modellel und 2 besitzt der Bestellzyklus folgendes Verteilungs-
gesetz:

P(T = k) = B‚._1(D) — Bk(D). (7.59)

Der mittlere Bestellzyklus ergibt sich zu

E(T) = l + M(D). (7.60)

Beweis: Wir setzen 5M; + ßn+2 + + ß„„ = 7, und können damit (7.58) vereinfachen zu

‘/r_1 é D und 71 > D. (7.61)

Wegen (7.61) folgt aus T g k sofort ~/,_. > D und umgekehrt. Deshalb gilt unter Beachtung
von (7.7)

P(T; k) = PM > D) = 1 - BAD). (7-62)

Auf Grund der Beziehung

P(T: k): P(T; k) — P(T; k -1)
folgt mit (7.62) die Behauptung (7.59). Der Erwartungswert des Bestellzyklus kann nun wie folgt
berechnet werden:

E(T) = n20 kP(T= k)
kill

= °2°P(T=k)+ §P<:r=k+1)+ §P(T=k+2)+...
k-I k-I k-I

= P(T> o)‚+ P(T> 1) + P(T> 2) +

1 + B‚(D) + 32m) +II
lI 1 + E B,,(D). (7.63)

n-1
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Die Reihe E B,,(u) = : R(u) ist in jedem endlichen Intervall gleichmäßig konvergent, so daß
n-l

u no u

Z R04 — i) W) = Z (Z B..(u - I’)/1(0)
1‘-0 nxl l=O

äM
s

Bn+1(“) = KW) — 51W)

gebildet werden kann, wobei (7.7) benutzt wurde. Aus dieser Gleichung folgt
u

R(u) = B,(u) +120 R(u w i) b(i). (7.64)

Betrachten wir andererseits die Gleichung (7.22) für k = 0, 1, .„, u und summieren, so ergibt sich
wegen (7.24)

M u k

Mao = 2 b(k) + z (2 buc -1") mm)
k=0 k=0 i=0

= B104) + Z 1704 *1’) Z m0")
I=O j=0

= B104) + 2 M(u — i) b(i).
i=0

Diese Gleichung entspricht genau (7.64). Da (7.64) eindeutig lösbar ist, folgt damit
ac

M(u) = R(u) = 2‘ B,.(u). (7.65)

Die gesuchte Beziehung (7.60) ergibt sich nun unmittelbar aus (7.63) und (7.65).

Die mittlere Dauer des Bestellzyklus bei einem Bernoullischen Bedarfsprozeß
erhält man aus (7.60) und (7.31) zu

E(T) = 1 + 17(D + 1). (7.66)

Wie auch allgemein gezeigt werden kann, wächst der mittlere Bestellzyklus in den
Modellen 1 und 2 mit D monoton.

7.3.4. SuboptimaleBestell1-egeln

Unser Lager wird mittels Bestellregeln vom (s, S)«Typ gesteuert. Deshalb liegt
es nahe, nach der besten Bestellregel dieses Typs zu fragen. Zunächst muß präzisiert
werden, was als „beste“ Bestellregel verstanden werden soll. Wir nennen eine
Bestellregel vom (s, S)-Typ suboptimal, wenn die durch sie verursachten Gesamt-
kosten nicht größer sind als die bez. irgendeiner anderen Bestellregel dieser Klasse.
Wir sprechen Von einer optimalen Bestellregel, wenn sie die Gesamtkosten hinsicht-
lich beliebiger Bestellregeln minimiert.

a) Es werden nun durchschnittliche Gesamtkosten für ein periodisches Lager-
haltungssystem aufgestellt. In jeder Periode fallen zufällige‘ Kosten an, die wir über
die Funktion k(.) erfassen. Das Argument dieser Funktion ist eine Zufallsgröße U,
die den jeweiligen Lagerbestand charakterisiert. Die Kosten während der ersten
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N
N Perioden ergeben sich dann zu Z k(U,,). Da bei unbeschränktem Planzeitraum

"=1
diese Kosten über alle Grenzen wachsen, ist es ratsam, zu Durchschnittskosten
überzugehen, die sich als Limes der arithmetischen Mittel der Kosten in den einzelnen
Perioden ergeben: Die Praktikabilität dieser Durchschnittskosten k wird durch
folgendes Theorem von J. L. Doob gewährleistet:

Bildet die Folge U1, U2, eine ergodische Markowsche Kette mit der statia-
nären Verteilung f(U), dann gilt

k := um I? ä kw») =2 k(i)fi(U). (7.67)
N-wo n=l 1:31,

falls die rechte Seite von (7.67) endlich ist?)
Auf der Grundlage von Formel (7.67) werden für die Modelle 1 und 2 Durch-

schnittskosten hergeleitet.
b) Zunächst werden für das Modell l die erwarteten Lager- und Fehlmengen—

kosten L(y) in der n-ten Periode (n — l, n] unter der Bedingung Y -1 = y angegeben
(Bild 7.7). Dabei wird eine Sogenannte lineare Restbestandsbewertung benutzt.

Zr-I ‘Y X17 Vn

""7 VI Bild 7.7

Unter {Y -1 = y} ergibt sich der Restbestand in der n-ten Periode zu

Xna falls i3». § y:
y '_ flu =

~ V,,, falls 13,, > y.

Ist der Restbestand positiv, so sind Lagerkosten zu zahlen, ist er negativ, sind Fehl-
mengenkosten zu entrichten. Unter Berücksichtigung der in 7.2.4. eingeführten
Kostenfaktoren ergibt sich

L(y) = E(/IX» + gV..)

=/z_i<y—j>bo‘)+g E <j—y)bo'>. (7.68)
/=0 J=y+1

Natürlich könnte auch anders bewertet werden. Da wir den Periodenbedarf erst
am Ende der Periode wirksam werden lassen, wären auch die Lagerkosten hy denk-
bar. Doch soll für das weitere stets (7.68) verwendet werden.

e) Nun werden Durchschnittskosten für Modell 1 bestimmt. Für den von uns
gewählten unendlichen Planzeitraum brauchen mengenproportionale Beschafl"ungs«
kosten nicht berücksichtigt zu werden, d. h., man kann c = 0 setzen. Während einer
Periode fallen die Kosten

( ) _ {K + L(S)‚ falls y = s,
(7.69)

L(y), falls s g y < S,

1) Durch (7.67) wird der Zusammenhang zwischen den in der Ökonomie durchaus üblichen
Durchschnittskosten pro Periode und den mittels der stationären Verteilung des Bestandsprozesses
gebildeten, relativ einfach auswertbaren „stationären Kosten“ aufgedeckt.

8 Beyer, Stock. Pro2.
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an, wenn der Bestand nach der Bestellung gleich y ist. Nach (7.67) ergibt sich damit
für die Durchschnittskosten

k = km. s) = (K + L(S))fs(Y) +SEL<1>L<Y>
J=S

= -1-+—1,m[(K + L<s>) (I + m<o)) + L0) m(s — n]

_ 1 D . _ Km(0)
_ T65 [K + L(S) +j‘:;0L(S —})m(])] + If

wobei Formel (7.21) von Satz 7.2 verwendet wurde. Der Ansatz (7.69) setzt implizit
voraus, daß in jeder Periode Bedarf auftritt; wir können uns aber von der Bedingung
b(0) = 0 lösen, indem wir die Bestände vor der Entscheidung heranziehen.

Satz 7.11: Für Modell 1 ergeben sich die beeinflußbaren Durchschnittskosten zu

ms, D) = —r+LM(§ [K + L(S) +j§0L(S — j) m(j)], (7.70)

wobei L(y) durch (7.68) erklärt ist.
d) Für den Spezialfall eines Bernoullischen Bedarfsprozesses und linearer Rest-

bestandsbewertung (7.68) werden die Kosten $(S, D) expliziert. Wird (7.27) in
(7.68) eingesetzt, so ergibt sich

L(y) = (y - M)’: + (h + g)/u1’- (7-71)

Damit folgt aus (7.70) unter Beachtung von (7.29) und (7.31)

1
.Y(s + D, D) = ‚u LuK + h(0,5D2 + (s + 0,5) D

+ 1 +D

+ (s - /4)(.u + 1)> + l42(/1 + g) t1“’]-
Aus den bekannten Bedingungen für ein lokales Minimum dieser Funktion‘) folgen
für die suboptimalen Parameter s* und 5* = s* + D* die Einschließung '

——l‚5 + \/0,25 + 2,u(K — h)/h g D* g 0,5 + \/l,25 + 2‚u(K + /1)//2

_ (7.72a)
SOWIC

. (‚u + 1 + D*) h ‚_
S g ——————— s I 1. 7.72bq _ (h + g) I“ _ q ( )

Für das Beispiel 7.2 ergibt sich aus Formel (7.72 a)

2,3 g D’ g 4,9

1) Diese Bedingungen führen auf ein nichtlineares Gleichungssystem, für das eine ganzzahlige
Lösung (s*, D*) gesucht wird. Dieses System kann nur näherungsweise gelöst werden, und seine
Lösungen sind im allgemeinen keine ganzen Zahlen; deshalb wird es durch das Ungleichungssystem
(7.72a, b) ersetzt.
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und aus Formel (7.72b)

„L S 2.: S _4’;__
D’ + 2 ‘ — D’ + 2

D’ = 4 und s’ = 2 ist die einzige ganzzahlige Lösung dieses Ungleichungssystems.
Damit ist die Bestellregel vom (s,S)-Typ mit s = 2 und S = 6 suboptimal.

e) Im Modell 2 bewirkt eine Bestellauslösung zur Zeit t = n — 1 eine Lieferung
und damit eine Änderung der körperlichen Bestände zum Zeitpunkt t = n —— 1 + I,
d. h., die Entscheidung wird nicht in der n—ten Periode, sondern erst in der (n + l)-ten
Periode wirksam (Bild 7.8).

"'Y,,,,-y “K, IYn-nl 111.-!
l l '

n’-7 I i7 n-M , d+l

*7" "” 91m1 Bild 7.8

Um nun die erwarteten Lager- und Fehlmengenkosten für eine Periode aus-
zurechnen, gehen wir wieder von der Bedingung {“Y _‚ = y} aus. Der Restbestand
in der (n + l)—ten Periode ergibt sich dann zu

1

lXn+t = ‘Yr:-1+1 — ßn+l = J’ "kg, f9n+k = J’ "‘ .50 ‘l’ ])- (773)

Wir erhalten analog zu (7.68) bei linearer Restbestandsbewertung
y ü)

LÜ’) = (11% (J’"j)b1+1(j) ‘l’ ZHU — J’) b1+1U)' (7.74)
= l=y

f) Im Abschnitt 7.3.2. wurde festgestellt, daß P("Y„ = Y„) = 1 ist und damit
f("Y) = f(Y) gilt. Deshalb können wir entsprechend zu Satz 7.11 verfahren und
erhalten

Satz 7.12: Für Modell 2 ergeben sich die beeinflußbaren Durchschnittskosten zu

1

1 + M(D)

wobei L(y) durch (7.74) erklärt ist.

54s, D) = [K + L(S) +j§j0L(S — j) m(j)], (7.75)

7.4. Poissonsche Lagerhaltungssysteme

Es werden nun zwei Modelle für ein Ersatzteillager betrachtet, von dem in
zufälligen Zeitpunkten jeweils ein Ersatzteil abgefordert wird. Wir beschreiben ein
derartiges Nachfrageverhalten durch einen Poissonschen Bedarfsprozeß mit der
Bedarfsfunktion

(}.t)" _‚ „_ _b'(k):P(ß(t):k)=ITeA fur k—0‚l‚2‚..., (7.76)

0 für k < 0.
3*
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7.4.1. Ein Poissonsches Vormerksystem mit konstanter " ‘aflungszeit

Das Modell 2 von Abschnitt 7.3.2. wird nun hinsichtlich des Bedarfsprozesses
geändert und ergibt

Modell 3

a) Der Bedarf wird durch einen Poissonschen Prozeß mit der Bedarfsfunktion (7.76)
beschrieben.

b) Es gilt die Vormerkreaktion (7.8).
c) Die Beschaffungszeit l ist eine feste natürliche Zahl.
d) Die Bestellregel ist vom (s, S)-Typ.
e) Der Anfangsbestand beträgt S Mengeneinheiten.
Das Konzept der Bilanzgleichungen, das bei periodischen Systemen erfolgreich an-
gewendet wurde, um Bestandsprozesse einzuführen, läßt sich nicht ohne weiteres ein-
setzen. Wie der Bedarfsprozeß werden auch die Bestandsprozesse zu stochastischen Pro-
zessen in stetiger Zeit und nicht einfach rekursiv erzeugte Folgen von Zufallsgrößen.

Wir bezeichnen mit “X, bzw. “Y, den disponiblen Bestand vor bzw. nach der
Bestellung zur Zeit I. Nach Bedingung e) gilt “Yo = S.

Wegen d) wird solange abgebaut, bis der Bestand auf das Niveau 5 — 1 gefallen
ist. Dann erfolgt sofort eine Bestellauslösung, wobei die Menge Q:= S — s + 1

bestellt wird. Zu diesem Zeitpunkt t’ wird also der disponible Bestand wieder S
erreichen; in Formeln '

‘X77 : S — ß(t’) = s -1, “Y,r = S. (7.77)

Der (zufällige) Zeitpunkt t’ wird hierbei durch die Vorschrift t’ := min (t: ß(t) = Q)
erklärt. In t’ startet bekanntlich der Poissonsche Bedarfsprozeß und damit auch Y,
von neuem. Der Bestand S wird bis zum Zeitpunkt t” = min (t:fl(t) = 2Q) ab-
gebaut und in t” wiederum die Menge Q bestellt. Den disponiblen Bestandsprozeß
bezeichnet man deshalb auch als einen regenerativen Prozcß (vgl. Bild 7.9).

“y
5-. * :

5 :

i 1

5_ l 1..
1

i

1. g
g.

E); 3.

2.

7- ‘x

1 1 1 ‘ ‘ ‘ J ‘ 1 l ' ‘ l

o 7 2 7 7 5 5 7 er u 7 77 72: 77 77 >7 75 77 77„P ’ ‘

Bild 7.9. Realisierung des disponiblen Bestandes bei einem Poissonschen Bedarfsprozeß
mit l = 0,5 und einer Bestellregel vom (s, S)-Typ mit r = 2 und S = 6 sowie I = 2
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Wir wollen im folgenden den Buchbestand ‘Y, näher untersuchen. Für kleiner
(t < t’) gilt: ‘Y, = S - fl(t). Für t; t’ sind noch die bis zur Zeit t erfolgten
Lieferungen zu berücksichtigen. Die Anzahl der Bestellungen bis zur Zeit t ist gerade
[ß(t)/Q]‚ d. h. der ganze Anteil des Quotienten fl(t)/Q. Denn es wird genau dann
bestellt, wenn ,6’(t) gleich einem ganzzahligen Vielfachen von Q ist. Beachten wir noch
die Beschaffungszeit I, so ergibt sich die bis zur Zeit t gelieferte Gesamtmenge zu
[ß(t — l)/Q] Q. Damit erhalten wir für den Buchbestand zur Zeit z; l die Dar-
stellung

‘Y; z 5 + [/90‘ - 1)/Ql Q - ß(f)- (7.78)

Dieser Buchbestand bildet keinen Markowschen Prozeß, denn das Ereignis {‘Y‚„ = k}
für 0 < 75 < 1 wird nicht durch das Ereignis {‘Y, =j} allein, sondern zusätzlich
noch durch die Lage des letzten Bestellzeitpunktes vor z beeinflußt.

Satz 7.13: Der Buchbesrartdsprozefl (7.78) besitzt folgende Grenzverteilung

. ‚ 1 0-1 „ . i

f) =x;<'Y> = hm Par. = J) = 5 420 b.(s ~ x — n. (7.79)
1"’ o0 I=

Beweis: Nach dem Satz von der totalen Wahrscheinlichkeit gilt

P('Y‚=J') = XP('Yz =j/Auv) P(Auv) (7-30)
mit "'”

AMD == {£30 - 1) = M,/90) - I30 e 1) = U}-

Wegen der Unabhängigkeit und der Stationarität der Zuwächse des Bedarfs-
prozesses folgt mit (7.76)

P(A„„) = bt—l(u) 17z(v)- (7-81)

Zu jedem u gibt es ein k = k(u) g O, so daß gilt

kQ§u<(k+ l)Q.
Damit ergibt sich unter Beachtung von (7.78)

P(‘Y. =1/A...) =P(s + Q — (u + v) = im)
=P(S+kQ—u—v=j,kQ§u<(k+ I)Q/AW).

Diese Wahrscheinlichkeit ist genauidann gleich eins, falls

z; = S + kQ — u — j
ist.

Wir erhalten hiermit aus (7.80) und (7.81) sowie (7.76)

‘W’ ‘Ü ii, (k+§::I ’ LL31)" e”“-'>b.<s + kQ — u — z)
cc Q—l ai+kQ

=k§0 _§0 e'"b,(S — i — j), (7.82)
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wobei a:= Ä(t — I) ist und u — kQ = i’ gesetzt wurde. Berücksichtigen wir noch
die Beziehung

“E1845 am+klZ _ i
a-wo k=0 (m + kQ)! Q ’

erhalten wir aus (7.82) die Behauptung (7.79).
Wir geben noch zwei Verhaltenscharakteristiken an.

Satz 7.14: Für den mittleren Buchbestand gilt in Modell 3:

E(‘Y) = S — I). — %(Q — l) (7.83a)

: %(s + S) ~ IÄ. (7.83b)

Beweis: Nach (7.79) erhalten wir

1 5 Q-l
E('Y) = EP2001151 bt(S — i — j)

‚ S ooQ—l cc Q—l

=3 2 Z b‚(u-i)—2u2bz(u—i)
u=01=0 u=0 1=0

_SQ—-loob 10-130.
" M) ‘ 6.-2% L‘=Z—i(l + "> ‘W

1 o—1=S—§i=°(i-+-M)

und damit die Behauptung.

Satz 7.15: Im Modell 3 giltfür den Sicherheitsgrad

Pa(s. s) = Pox g o)

= ä i (Im) — Bau — Q))~ (7.84)
u=0

Beweis: Ist t ein beliebiger, aber fest gewählter Zeitpunkt, so haben wir
P(‘Y, = ’X,) = 1, denn die Wahrscheinlichkeit dafür, daß t Lieferzeitpunkt ist,
verschwindet wegen der Stetigkeit der Pausenverteilung. Wir können deshalb
Satz 7.13 anwenden

s 1 SQ-l
Pa(S‚S) = Zf; =— Z Z bKS- i -J')

j=0 Q j=0 i=0

19-1 b 1 594b 1 .

=§u§0(Q—"4) 1(")+§u§Q E0 104-1)

und erhalten nach entsprechenden Umformungen, die dem Leser überlassen seien,
die Behauptung (7.84).
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Es können sehr einfach durchschnittliche Lager- und Fehlmengenkosten .9 ein-
geführt werden, wenn der stationäre Buchbestand ‘Y in den stationären körper-
lichen Bestand Y" und den stationären Fehlbestand Y’ zerlegt wird:

90, S) = hE(Y") + gE(Y’)

= (h + g) E(Y") - gE('Y)
S

= (h + 2,0217; - g[%(S + S) — 11l-
i=l

Auf die Bestimmung suboptimaler Bestellregeln wollen wir hier verzichten.

7.4.2. Ein Poissonsches Verlustsystem mit zufälliger Beschaifungszeit

In der Praxis kann bei verschiedenen Artikeln eine feste Lieferfrist nicht garan-
tiert werden. Vielfach werden Verträge abgeschlossen, in denen Lieferanten ein
Spielraum für die Anlieferung eingeräumt wird. Einen derartigen Sachverhalt
modellieren wir mittels einer zufälligen Beschaffungszeit.

Modell 4

a) Der Bedarf wird durch einen Poissonschen Prozeß mit der Bedarfsfunktion (7.76)
beschrieben.

b) Es gilt die Verlustreaktion (7.9).
c) Die Beschaffungszeit TE ist eine exponentiell verteilte Zufallsgröße mit dem

Parameter r =

d) Die Bestellregel ist vom (S, S)—Typ, d. h. s = S.
e) Der Anfangsbestand beträgt S Mengeneinheiten.
Das Modell 4 unterscheidet sich also vom Modell 3 in der Lagerreaktion und der
Beschaffungszeit. Es gilt aber für die mittlere Beschaffungszeit: E(T,,) = 1. Weiter-
hin ist gegenüber dem Modell 3 die Bestellregel spezieller gewählt. Dies hat zur Folge,
daß zu jedem Bedarfsfall das abgegebene Ersatzteil unverzüglich zu ersetzen ist
und deshalb sofort eine Bestellung ausgelöst wird. Trifft jedoch eine Forderung zu
einem Zeitpunkt ein, an dem das Lager leer ist, wird diese wegen b) zurückgewiesen.

Gesucht ist — wie beim Modell 1 — der körperliche Bestand Y(t):= Y, zur
Zeit t.

Satz 7.16: Der Bestandsprozeß {Y(t), t g 0}, zu Modell 4 ist ein homogener Markew-
seher Prazeß mit dem Zustandsraum 2,, = {S, S — l, ..., 1, 0} und der Intensitäts-
matrix

-1 2. 0 00 o o

1—(l+'r) 2. o...o o o

A 0 2T —(Ä + 2T) Ä 0 0 0

ö o ö (')...&S—1)—(-l+(S—l)-r) i
0 0 0 0 0 ST —S'L’

(7.85)
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Unter den Modellvoraussetzungen können wir die Markow-Eigenschaft zeigen
sowie die Darstellung der Ubergangsmatrix für ein Zeitintervall mit kleiner Länge Ar:

PY(At) = I + A At + a(At) (7.86)

mit der Einheitsmatrix I und einer Matrix A gemäß (7.85).

Satz 7.17: Der Bestandsprozeß zu Modell 4 besitzt die stationäre Grenzverreilung

,5. = lim P(Y, =j) = (7.87)

'“°° (s —7>!2 k—,
k=0 ~

Beweis: Wie in 3., (3.61), ergibt sich die stationäre Verteilung eines homogenen
Markowschen Prozesses aus

f - A = 0. (7.88)

Die einfache Bandstruktur der Matrix (7.85) läßt uns sofort die Lösung

_ l (ms
1* _ (1,!/1,—2—(lA)2,..., S! )

von (7.88) ablesen, wobei I = ä ist. Normieren wir diesen Vektor, so erhalten wir

die Behauptung (7.87), falls wir die Reihenfolge der Komponenten von f entsprechend

f = (fssfs-i: ~~-afo) (7-89)
beachten.

Wie Sewastjanow 1957 in einem anderen Zusammenhang gezeigt hat, bleibt die
sogenannte Erlangsche Formel (7.87) für jede Beschaffungszeit T3 mit dem Erwar-
tungswert l gültig, insbesondere also auch für konstante Beschafiungszeit T3 = l.

Satz 7.18: Im Modell 4 gilt für den mittleren Bestand

F S — l
E(Y) = s — 171% (7.90)

undfür den Sicherheitsgrad
F S — l

P4(S‚S)=1—fo =%(‚S)—)‚ (7.91)

j ‚k
wobei F‚(j) = e" — ist.

k=0 k!
Den einfachen Beweis möchten wir dem Leser überlassen.

7.5. Optimale Lagerhaltung

Wir wollen nun das Lagerhaltungsproblem „Wann ist wieviel zu bestellen?“ in
einem etwas allgemeineren Rahmen lösen. Bisher sind wir jeweils von einer Bestell-
regel vom (s, S)—Typ ausgegangen. Wir können natürlich auch andere Bestellregeln
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zulassen; weiterhin ist es möglich, zu verschiedenen Bedarfsfällen Verschiedene
Bestellregeln anzuwenden. Deshalb erklären wir: Unter einer Bestellstrategie
(„Entscheidung“)

e = (2,, 91,...) mit e„(x) g x für jedes ganze x (7.92)

verstehen wir eine Folge von Bestellregeln, wobei e„(.) die zum n—ten Bedarfsfall
zu verwendende Bestellregel bezeichnet. Sind alle Bestellregeln untereinander gleich,
sprechen wir von einer stationären Strategie.

Am Ende wird sich zeigen, daß unter gewissen Bedingungen trotz einer derartigen.
Erweiterung der Bestellmöglichkeiten die erwarteten Kosten nicht kleiner ausfallen
als die Kosten, die mittels einer stationären Bestellstrategie vom (s, S)—Typ erzielt
werden.

Um den Sachverhalt möglichst zu konkretisieren, beschränken wir uns auf eine
Modifikation des Modells 2:

Modell 5

a) Der Bedarfsprozeß ist periodisch mit der Bedarfsfunktion b(t).
b) Es gilt die Vormerkreaktion (7.8).
c) Die Beschaffungszeit I ist eine feste natürliche Zahl.
d) Die Bestellstrategie e ist von der Form (7.92).
e) Das Lager ist am Anfang leer.

Entsprechend den Bilanzgleichungen (7.34) werden zwei disponible Bestands-
prozesse definiert:

“Y; e,,(“X,‘,’), » (7.93a)

‘X; = “Y,fi_, — /9,. (7.93b)

Bezeichnet x den realisierten disponiblen Bestand vor der Bestellung zur Zeit t = n,
so gibt e„(x) =: y den disponiblen Bestand unmittelbar nach der Bestellung zur

Zeit t = n an. Für die Bestellmenge gilt z = e„(x) — x.

Uns interessieren nun die Kosten, die durch Bestellungen in den ersten N Perioden
verursacht und in den Perioden l+ l bis l+ N wirksam werden. Bezeichnen wir
mit

lI

c) Kö0+ bfiso {O f“ ’=°’ (794)CZ I= Z CZ, WO Cl = .

Z 1 für z > o,

die Beschalfungskosten für z Mengeneinheiten und mit L(y) gemäß (7.74) die
erwarteten Lager- und Fehlmengenkosten, so ergeben sich die beeinflußbaren
erwarteten diskontierten Kosten für den Zeitraum [0, N]:

kL,(e, N) = E ä oc"*’ [c(“ Y; — “X§) + L(“ Y;)], (7.95)
n=l

hierbei ist 0c ein Diskontfaktor‘) für eine Zeiteinheit (0 < cc g 1). Die Summanden
von (7.95) können wie folgt interpretiert werden: Eine zur Zeit t 2 n aufgegebene
Bestellung verursacht Kosten k„‚ die bei Eingang der Lieferung zur Zeit t = n + I

1) Der Diskontfaktor x ergibt sich aus dem Zinssatz p - 100% nach der Forme1zx(1 + 11) = l.
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zu zahlen sind. Beziehen wir die zu verschiedenen Zeiten anfallenden Kosten auf
den Beginn des Planzeitraumes, haben die Kosten k„ den Wert oc"+'k,,.

Definition 7.5: Eine Bestellstrategie e* heißt (N, at)-optimal, falls

ka(€*, N) ä k„(e‚ N)

für jede Entscheidung e gilt.
Die dynamische Optimierung (vgl. Band l6) liefert uns eine Methode zur Bestim-

mung einer (N, ax)-optimalen Bestellstrategie. Dazu bezeichnen wir mit g„(i) die
erwarteten diskontierten Kosten für den Zeitraum [n — 1, N] bei einer (N, cc)-

optimalen Lagersteuerung und dem Bestand x = i zur Zeit t = n — 1. Dann ergibt
sich nach dem Bellmanschen Optimalitätsprinzip

m") = Ngp [c(y — i) + L<y)1‚ 096a)

g„(i) = Min [c<y — i) + L<y> + a E g,,+1<y — k) boo], <7.96b)
yäl k=0

n = N — 1, N — 2, ...‚ 1. Wird g„(.) nach (7.96a) berechnet, ergibt sich gleichzeitig
e}, gemäß

g„(i) = c(e‚f‚(i) — i) + L(e,‘{,(i)).

Rekursiv erhalten wir dann g„_‚(.), efH ‚ ..., g1(.), ef und damit

k‚„(e*. N) = «x‘*‘g1(0).‘)

Definition 7.6: Eine Bextellstrategie e* heißt oz-optimal, falls

k..(€*‚ 00) é ka(e, 00)

für jede Entscheidung e gilt.
Beim Übergang vom endlichen zum unendlichen Planzeitraum gelangen wir von

(7.96 b) zur Funktionalgleichung

go") = Min [eo — z“) + L(y> + a f g(y — k) baa]. (7.97)
‚Väx k=O

der sogenannten optimalen Lagerhaltungsgleichung.
Wir geben hierzu noch zwei wichtige Ergebnisse an.

Satz 7.19: Es sei g(.) eine endliche, nach unten gleichmäßig beschränkte Lösung der
optimalen Lagerhaltungsgleichung (7.97). Dann gilt für jedes ac-optimale e*:

k„(e*‚ o0) = oc’+‘g(0). (7.98)

Einen Beweis von Satz 7.19 findet der Leser z. B. in [29], S. 64.

’)Bezüglich des hierfür erforderlichen recht umfangreichen Rechenaufwands vgl. Bd.16,
Abschn. 4.3.1.
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Satz 7.20: Es werde das Mode/IS gemäß (7.95) bewertet, wobei L(y) konvex ist und
c(l — 0c)y + L(y) —> oo für Iyl —> oo strebt. Dann gilt

lim (1 — ac) k,,(e*, oo) = .2’ (S*‚ D*). (7.99)
a»:

Der auf Scarf (1960) zurückgehende Satz 7.20 besagt, daß in der Klasse der Bestell-
Strategien (7.92) bereits Strategien optimal sind, die aus untereinander identischen
Bestellregeln von (s, S)-Typ bestehen. Damit wird die in den vorangehenden Ab-
schnitten praktizierte Beschränkung auf Bestellregeln vom (s, S)-Typ ~ zumindest
unter gewissen Konvexitätsbedingungen an die Kosten — nachträglich gerecht-
fertigt.

Beispiel 7.2 kann nunmehr für den Fall einer linearen Restbestandsbewertung
abgeschlossen werden.

Die erwarteten Lager- und Fehlmengenkosten L(y) ergeben sich nach (7.71) für
y > 0 zu

L(y) =y — l + 22-0,5’

und füry < Ozu

L(y)=1— J‘-

Die Voraussetzungen von Satz 7.20 sind also erfüllt. Damit ist die suboptimale
Bestellregel vom (s, S)-Typ sogar optimal, d. h.‚ es gibt hier keine bessere Bestell-
strategie als die angegebene stationäre vom (s, S)-Typ mit s = 2, S = 6.

Aufgabe 7.]: Es ist der Zusammenhang zwischen einem Poissonschen Verlustsystem
mit zufälliger Beschaflungszeit, einem Bedienungssystem M/M/n/O und der Ge-
sprächsvermittlung in einer Telefonzentrale herzustellen.

Aufgabe 7.2: Es sind die Verhaltenscharakteristiken (mittlerer Bestand, Sicherheits-
grad und Bestellzyklus) für ein Lagerhaltungssystem unter den Bedingungen von
Beispiel 7.2 bei optimaler Steuerung zu berechnen.
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2.1: (1) Ohne Einschränkung der Allgemeinheit kann m„(t) = 0 gesetzt werden. Dann ist

n 2 n

auf?! z,X(t,-)] } = ‘,2! z,z,.k,(z,, n) g o.

(2) für beliebiges o: gilt E[X(s) + ocX(t)]2 g 0. Einfache Umformungen ergeben

E[X(s)]’ + 2ocE[X(s) X(t)] + oc2E[X(t)]’

E(X(S) X(t))
E(X(t))Z

Da der linke Teil für alle 0c nicht negativ bleibt, folgt

{E[X(S)X(t)l}’ ä E[X(S)]‘ E[X(!)]’,
woraus sich unmittelbar die Behauptung ergibt.

[15{X(s)X(t>}]’
£IX<z>12 ä o‘

= E[X(t)]2 [oz + T + E[X(.r)]2 w

2.2: m,,(t) = E(Xt) = tEX = 0,

k,(s, t) = E[(Xs — 0) (Xt — 0)] = s tE[X2] = a’s t,

a,’,(r) = k,(t,t) = a‘t2.

2.3: Die Unabhängigkeit der Zuwächse folgt aus der Unabhängigkeit der S,- (i = l, 2, ...).

2.4: Es gilt: p>o(At) = l — p„(At) = Zr + o(At). Wegen p>1(At) = (KAI) folgt p‚(At) = RA!
+ o(At).

2.5: Mit m,,(t) = 0 und a§(t) = a’! folgt unter Verwendung der Beziehungen (2.18) und (2.19)
k„(s, t) = E[X(t)]2 = 02! fürs g t und k‚(s, t) = a’: für s g I.

3.1: Z" = n/'., ‚u„ = n/z.

3.2: Unter Verwendung der Formeln (3.45) und (3.47) findet man

I
3 - 3 3

mm = c7", aim = e?“ f e-flgm

7
u

=% -i{—zz(e-}Ar_ I)

3.3: Die Lösung ergibt sich sofort unter Beachtung der Beziehungen (3.56) und (3.57).

00

l
4.1: T,‘ = e“""dr = —.

Oi
0

5.1: Unter Verwendung dieser Beziehungen sind nun die Differenzenquotienten zu bilden und der
Grenzübergang At —> 0 auszuführen; danach erhält man das Gleichungssystem (5.5)—(5.7).

zum + (1 - 11)) = ':i°17:(1x)P.'x(1 - (i). k = Ü, L -«-:71.
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Mit t, = t und Ar = I — t, ergibt sich daraus:

PkU+AÜ= §°pi(’)pik(-\t)y k=0y1y-~-J1 o

Da der betrachtete Prozeß ein Geburts- und Todesprozeß ist, gilt:

p00(At) = 1 — p01(At) + o(’_\t) = l — 2A: + o(At),

p,,1(At) = /IA! + o(At),

pk.l<—1(A’)= k]! A! + (KAT),

p”+1(At) = ZAI + 0(At), k = 1,2, ...,n -1.

Durch Bildung der Differenzenquotienten und Durchführung des Grenzübergangs At—> 0 ergibt
sich das Diffeientialgleichungssystem (5.5)—(5.7).

6.1: Nach Tabelle 6.2 ist bei der Exponentialverteilung der Erwartungswert To der fehlerfreien
Arbeitszeit T gleich dem Kehrwert der Ausfallrate Ä. Bei einer Serienstruktur mit einer entsprechend
(6.39) gegebenen Ausfallrate ergibt sich also:

1

n}. '

7.1: Der Bestandsprozeß eines Poissonschen Verlustsystems mit exponentiell verteilter Beschafiungs-
zeit läßt sich nach Satz 7.16 durch einen homogenen Markowschen Prozeß Y(t) mit der Intensitäts-
matrix A gemäß (7.85) beschreiben. Die stationäre Grenzverteilung ergibt sich dann nach der Erlang-
schen Formel (7.88). Betrachten wir die Anzahl der Forderungen in einem Bedienungssystem
M/M/n/0 (vgl. 5.4.1.), so bildet diese ebenfalls einen Markowschen Prozeß ‚Y(t). Setzen wir die Anzahl
der Bedienungsgeräte n = S, so ist der Prozeß S — Y(t) zum Prozeß X(I) äquivalent; insbesondere
erhalten wir die Wahrscheinlichkeiten für die Anzahl der Forderungen im System im stationären
Regime über die Erlangsche Formel. Die Modellierung der Gesprächsvermittlung in einer Telefon-
zentrale durch einen Markowschen Prozeß wird in Kapitel 3 (Beispiel 3.5) erörtert.

To =

7.2: Für das Beispiel 7.2 ist die (2,6)-Bestellregel in der Klasse der Bestellregeln vom (s, S)—Typ

suboptimal. Beachten wir (7.71), so erhalten wir L(y) = y —— 1 + 22 0})’. Olfenbar ist diese Funk-
tion konvex, und es gilt lim L(y) = co. Damit ist Satz 7.20 anwendbar, so daß die Bestellstrategie,

„V -00

die aus tmtereinander identischen Bestellregeln von (2,6)-Typ besteht, eine optimale Steuerung hin-
sichtlich des Modells 5 liefert.

Nun umfaßt das Modell 5 unser Modell 2. Speziell für verschwindende Beschafiungszeit bekom-
men wir für die Verhaltenscharakteristiken

21
a) mittlerer Bestand vor der Bestellung: E(X) = —6— = 3,5 ME nach (7.48);

26 _

b) mittlerer Bestand nach der Bestellung: E(Y) = T = 4,3 ME nach (7.46);

_ _ 1 6 1 k E I 1 k 11,5
c)S1cherhe1tsgrad:P2(2,6)=Ti- 50(7) +31 ‚Eo 7) = —12—z 0,96 nach (7.57);

d) mittlerer Bestellzyklus: E(T) = 6 ZE nach (7.66).
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