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1. Einleitung

In den letzten beiden Jahrzehnten werden in zunehmendem MaBe ebenso wie die
Wabhrscheinlichkeitsrechnung und die mathematische Statistik auch die Theorie der
stochastischen Prozesse und Klassen von stochastischen Modellen zur mathe-
matischen Bearbeitung von Problemen der gesellschaftlichen Praxis eingesetzt. Das
ist z. B. der Fall bei der Beschreibung von Rauschvorgingen in der Nachrichten-
technik, bei der Darstellung von volkswirtschaftlichen Wachstumsvorgédngen, bei
der Planung von InstandhaltungsmaBnahmen, bei der Charakterisierung der
Zuverlissigkeit eines Erzeugnisses und bei Lagerhaltungsproblemen. Derartige
Anwendungen sowie die damit verbundenen Fragestellungen der Praxis lieferten
und liefern viele Impulse fiir die Entwicklung dieser Gebiete.

Die Theorie der stochastischen Prozesse, deren Entwicklung u. a. mit den Namen
Markow, Wiener, Kolmogorow, Doob, Chintschin und Dynkin verbunden ist,
beschiftigt sich mit der Problematik der quantitativen Analyse von dynamischen
Vorgidngen, bei deren Beschreibung zufillige Einflisse zu berticksichtigen sind.
Stochastische Modelle bauen in starkem MaBe auf der Theorie der stochastischen
Prozesse auf und sind mathematische Widerspiegelungen von speziellen Vorgdngen,
bei deren Modellierung zuféllige Aspekte zu beriicksichtigen sind. Beispiele von
Klassen stochastischer Modelle sind die der Bedienungstheorie, bei deren Entwick-
lung u. a. Erlang, Palm, Chintschin und Gnedenko einen groBen Beitrag geleistet
haben, die Modelle der Zuverldssigkeitstheorie, deren Anfidnge mit den Namen
Lotka und Weibull verbunden sind, und die Modelle der Lagerhaltungstheorie, zu
deren ersten Bearbeitern Arrow, Harris und Marschak zu zihlen sind.

Durch ihre Bedeutung fiir die Praxis finden die Theorie der stochastischen Prozesse
und gewisse Klassen von stochastischen Modellen immer mehr Eingang in die Aus-
bildung naturwissenschaftlicher, technischer und &konomischer Fachrichtungen.
Dabei kommt es in erster Linie darauf an, einen Uberblick iiber diese Gebiete zu
geben, wichtige Grundbegriffe zu vermitteln und das methodische Herangehen zu
zeigen. Diese Zielstellung verfolgt auch der vorliegende Band der Reihe ,,Mathe-
matik fiir Naturwissenschaftler, Ingenieure, Okonomen und Landwirte*. Der Leser
soll befdhigt werden, weiterfiihrende Literatur selbstdndig durchzuarbeiten und sich
mit Spezialisten dieser Gebiete austauschen zu kdnnen, wenn er entsprechende
Aufgaben zu 16sen hat.

Kapitel 2 gibt eine Einfiihrung in die Theorie der stochastischen Prozesse. In den
Kapiteln 3 und 4 werden zwei Klassen von stochastischen Prozessen, die Markow-
schen und die stationdren Prozesse, vorgestellt. In den Kapiteln 5 bis 7 wird ein
Uberblick iiber einige fiir die Anwendung wichtige Klassen stochastischer Modelle
gegeben. Es handelt sich dabei um ausgewdhlte Modelle der Bedienungstheorie
(Kapitel 5), der Zuverlassigkeitstheorie (Kapitel 6) und der Lagerhaltungstheorie
(Kapitel 7).

Bei der Darstellung wurde auf eine ausfiihrliche Beweisfiihrung verzichtet.
Wesentliche Ergebnisse werden am Beispiel erldutert.



2. Stochastische Prozesse

Die Theorie der stochastischen Prozesse (zufélligen Funktionen oder Zufalls-
prozesse) ist eine der jlingsten Entwicklungsrichtungen der Wahrscheinlichkeits-
theorie. Sie untersucht das Verhalten von ZufallsgréBen in Abhéngigkeit von einem
oder mehreren Parametern, z. B. der Zeit oder den Koordinaten eines Punktes im
Raum, und leitet GesetzmaBigkeiten her. ZufallsgroBen werden gewissermallen in
ihrer zeitlichen Entwicklung betrachtet (sofern der Parameter die Zeit ist). Die
Theorie der stochastischen Prozesse ist heute fiir die Losung vieler Aufgaben in
Naturwissenschaften, Technik und Okonomie, insbesondere auch in der Zuverlissig-
keits-, Erneuerungs- und Lagerhaltungstheorie unentbehrlich geworden. Beispiels-
weise wird es in der Regelungstechnik durch ihre Anwendung erst moglich, die
Einwirkung verschiedener zufilliger Einfliisse bzw. Stérungen auf die Arbeit eines
Systems zu beriicksichtigen und die Stabilitit der automatischen Gerite gegeniiber
Storungen zu sichern.

Es werden zunidchst Begriffe und grundlegende GesetzmaBigkeiten stochastischer
Prozesse dargestellt. AnschlieBend werden Prozesse mit speziellen Eigenschaften
eingehender betrachtet.

2.1. Definition und Eigenschaften stochastischer Prozesse

Vor einer genauen Begriffsbestimmung betrachten wir einige Beispiele.

Beispiel 2.1: Im Jahre 1826 beobachtete der englische Botaniker Brown unter dem
Mlkroskop das Verhalten kleiner Teilchen in einer Fliissigkeit. Er bemerkte, daB
sie eine ungeordnete und zufillige ,,Zickzack-Bewegung* ausfiihren. Wie sich heraus-
stellte, kommt diese Bewegung unter dem EinfluB dauernder zufilliger Zusammen-
stofe mit Molekiilen der Fliissigkeit zustande. Wir legen nun einmal ein rdumliches
Koordinatensystem (X, Y, Z) zugrunde und beobachten die Bewegung eines Teil-
chens, das sich zur Zeit 7, = 0 im Koordinatenursprung befinden moge. Die Lage
des Teilchens zur Zeit ¢ = 0 wird durch die Koordinaten X(¢), Y(¢) und Z(¢) beschrie-
ben. In Folge der dauernden ZusammenstdBe ist die' Lage des Teilchens zu einem
beliebigen Zeitpunkt 7 > 0 selbstverstindlich nicht vorherbestimmbar, sondern
zufilliger Art. X(), Y(¢) und Z(¢) sind somit fiir jeden festen Wert ¢ ZufallsgréBen,
wie man in der Wahrscheinlichkeitstheorie sagt. Die Menge der von 7, t = 0,
abhingigen GréBen X(7) (ebenso auch Y(¢) und Z(z)) bezeichnet man als stochastischen
ProzeB.

Die ungeordnete Bewegung von Teilchen in einer Fliissigkeit ist unter dem Namen
,,Brownsche Bewegung® bekannt. Mathematisch erforschten diesen ProzeB Ein-
stein, Smoluchowski und Bachelier. Eine strenge Theorie entwickelte schlieBlich
der Mathematiker N. Wiener.

Beispiel 2.2: Einen stochastischen ProzeB in der Technik der Werkstoffbearbeitung
stellt das sogenannte ,,Istprofil*“ eines bearbeiteten Werkstiickes dar. Unter dem
Mikroskop erkennt man, daB die Oberflache niemals ganz glatt ist, sondern Gestalts-
abweichungen zufilliger Art aufweist.
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Bild 2.1 zeigt im Koordinatensystem einige mogliche Querschnittskurven des
L, Istprofils, wobei X(#) die Ordinate an der Stelle 7 bezeichnet. Wie man erkennt, ist
X(t), 0 < ¢t < T, hinsichtlich aller méglichen Querschnittskurven fiir jeden Para-
meterwert ¢ eine Zufallsgrofe. Die Menge dieser ZufallsgroBen bilden einen sto-

Bild 2.1. Oberflichenprofile von geschliffenen
Stahlflichen nach Smirnow [24] (VergréBerung
waagerecht 1880fach und senkrecht 15000fach)

chastischen ProzeB. Stellt man bestimmte Anforderungen an die ,,Gldtte* der Ober-
fliche, diirfen spezifische Kennziffern des stochastischen Prozesses gewisse Toleranz-
grenzen nicht tiberschreiten (vgl. [24]).

Beispiel 2.3: Fir die Beurteilung der Auslastung einer Telefonzentrale ist die Unter-
suchung der in Abhingigkeit von der Zeit registrierten Anzahl von Ferngesprachen
erforderlich. Die Beobachtung erstrecke sich jeweils tiber einen Tag. Die Gespréachsfor-
derungen treffen zufillig oder, préziser gesagt, in zufilligen Zeitpunkten ein. Mit
X(t) werde die Gesamtzahl der bis zum Zeitpunkt # eingetroffenen Forderungen
bezeichnet.

X(t) X(H) Xt

—
—
<

-
—_—
-

% Bild 2.2. Zahl der registrierten
L iy AW Telefongespriche am Tagesbeginn

234 5~tmin] 7 } é 4‘ 5I'~I~f1_’minJ ' } 2345~tmin]  dreier aufeinanderfolgender Tage

oot
NGy
ANy

X(2) ist fur jeden Zeitpunkt des Tages eine ZufallsgréBe. Die Anzahl der in Ab-
héngigkeit der Zeit registrierten Gespriche ist ein stochastischer ProzeB, der im
Gegensatz zu den bisher genannten Beispielen nur ganzzahlige nichtnegative Werte
annehmen kann—Eiir die Beurteilung der Auslastung der Zentrale ist u.a. die
Ermittlung folgender Parameter wichtig:

a) Wabhrscheinlichkeit, da3 bis zum Zeitpunkt # hochstens m Gespriche vermittelt
werden,

b) Erwartungswert (mittlere Anzahl) der bis zum Zeitpunkt ¢ vermittelten Gespriche,

¢) Wabhrscheinlichkeit, daB » Leitungen bzw. alle zur Verfiigung stehenden Lei-
tungen besetzt sind (nach einer gewissen Anlaufphase).

Weitere Beispiele fiir stochastische Prozesse sind in der folgenden Ubersicht
zusammengefaBt. Dabei ist angegeben, fiir welche Probleme ihre Untersuchung von
Bedeutung ist.
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Stochastische Prozesse

Bedeutung

—

. Lufttemperatur in Abhadngigkeit der
Zeit an einem Ort

Signale, die bei der Ubertragung
durch Stérungen tiberlagert werden
Kriangungswinkel eines Schiffes unter
dem EinfluB der Wellenbewegung

[

had

>

Schlingerbewegung eines Flugzeuges

in Turbulenzen

. Auf ein System einwirkende zufillige
Storungen

. Bedarf einer Ware in Abhingigkeit

w

=N

Klimatische Untersuchungen
Filtration des Signals

Konstruktion geeigneter Feuerleitgerite
zur Gewihrleistung der Treffsicherheit
bei Bordwaffen

Bau geeigneter Stabilisatoren

Optimale Steuerung eines stochastischen
dynamischen Systems
Vorhersage des zukiinftigen Bedarfs,

der Zeit Extrapolation
. Gewichtszunahme von Tieren in Aufstellung optimaler Futterpldne

Abhingigkeit der Zeit

~

Die Anzahl der Beispiele 16t sich beliebig erweitern. In allen genannten Féllen
handelt es sich um eine Menge von ZufallsgréBen X(¢), die von einem nichtzufélligen
Parameter ¢ einer bestimmten Parametermenge 7 abhiangt. Um jedoch das Neue, das
mit dem Begriff des stochastischen Prozesses verbunden ist, sichtbar zu machen,
betrachten wir noch einen anderen Aspekt.

In den Bildern 2.1 und 2.2 erkennt man, daB ein stochastischer Proze auch aus
einer Menge reeller Funktionen besteht. Jeder Beobachtung entspricht in der Dar-
stellung eine Kurve. In den Abbildungen sind nur wenige eingezeichnet.

Es ergibt sich eine Analogie zum Begriff einer ZufallsgroBe. In der Wahrscheinlich-
keitstheorie ist eine ZufallsgroBe als Abbildung X = X(w) (w € £2) erkldrt, wobei
die @ sog. Elementarereignisse eines Raumes (2 sind. Jedem Elementarereignis «
wird ein Zahlenwert x der reellen Zahlengeraden zugeordnet. Bei einem stochastischen
ProzeB geht man ebenfalls von einem Raum £ von Elementarereignissen w aus.
Wir ordnen jedoch jedem Elementarereignis eine nichtzufillige Funktion x(7) eines
nichtzufélligen Parameters ¢ (¢ € I) zu. Jede solche Funktion heiBt Realisierung oder
Trajektorie des Prozesses. FaBt man beide Gesichtspunkte zusammen, gelangt man
zu der folgenden

Definition 2.1: Ein stochastischer ProzeB ist eine Abbildung X(w,t) aus 2 x I auf
die Menge der reellen Zahlen, die fiir jeden festen nichtzufilligen Parameterwert t € I
eine Zufallsgrifie X(t) und fiir jedes fixierte w € £2 eine gewéhnliche reelle Funktion x(t)
darstellt.))

Kehren wir zur Erlduterung der Definition nochmals zum Beispiel 2.3 zuriick und
betrachten die Tabelle 2.1 zu Bild 2.2.

1) Es gibt auch mehrdimensionale und komplexwertige stochastische Prozesse. Sie werden im
Rahmen dieses Buches nicht behandelt.
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Tabelle 2.1
Zahl der bis zum Zeitpunkt ¢ registrierten Gespriache

t 1. Tag 2. Tag 3. Tag

1 1 0 0

2 2 1 1

3 2 3 3

4 3 3 3

5 4 4 3

Man erkennt folgende Zusammenhénge:

Elementarereignis: — Trajektorie x(¢):
Beobachtung eines FunktionsmaBiger Ausdruck
konkreten Tagesverlaufs des konkreten Verlaufs
t=1t: — ZufallsgroBe X(t,):
Fixierung eines kon- . Zahl der bis zum Zeitpunkt
stanten Zeitpunktes t, registrierten Gespriche
an jedem Tag an jedem Tag

0 besteht, wie man leicht einsieht, in diesem Beispiel aus einer abzdhlbaren Menge
von Elementarereignissen.

Ebenso wie bei ZufallsgroBen an Stelle von X(w) einfach X geschrieben wird, ist
es auch iiblich, einen stochastischen ProzeB {X(w,?), teI} kiirzer in der Form
{X(t), t € I} zu symbolisieren.

Stochastische Prozesse werden entsprechend der Parametermenge 7 und der Werte-
menge X, auf welcher X(¢) variiert, folgendermaBen klassifiziert:

Tabelle 2.2
Parameter- Werte- Bezeichnung Symbolisierung
menge menge des Prozesses
1 X '
stetig beliebig Stochastischer
ProzeB
Zufilliger ProzeB
stetig diskret Diskreter {X,(t), tel}
stochastischer
ProzeB
Diskreter Prozef
diskret beliebig Zufallsfolge _
Zufillige Folge X, 1=to, 15, ..}
oder
diskret diskret Zufillige Kette Kpn=0,1,2,..}
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Ein Beispiel fiir einen diskreten stochastischen ProzeB lernten wir bereits in der
Anzahl der eintreffenden Gespriche in einer Telefonzentrale kennen. Weitere der-
artige Prozesse werden im 3. Kapitel unter der Bezeichnung Geburts- und Todes-
prozesse behandelt.

Oftmals wird bei praktischen Problemstellungen an Stelle eines stochastischen
Prozesses niherungsweise eine zufillige Folge untersucht. Es ist beispielsweise aus-
reichend, bei der Kontrolle der Gewichtszunahme von Tieren Messungen nur in
bestimmten Abstinden, etwa jeweils nach einem Monat, und nicht kontinuierlich
durchzufiihren; Analoges gilt fiir statistische Erhebungen in der Okonomie.

Zufillige Ketten lassen sich infolge ihrer iibersichtlichen Struktur relativ leicht

mathematisch behandeln.
‘Beispiel 2.4: Betrachtet werde der Bedarf einer Ware (z. B. Kiihlschrinke) in einem
Kaufhaus. Im n-ten Monat (n = 0, 1,2, 3, ...) werden &, Kiihlschrinke bené&tigt
(6o = 0). Alle &, konnen in der Praxis ndherungsweise als unabhingige Zufalls-
groBen angesehen werden. Dann stellt der kumulative Bedarf X, in n Monaten eine
zufillige Kette {X,;n = 0,1, 2, 3, ...} dar. Dabei gilt

X, =X &.
i=o

Ist der erwartete Bedarf im n-ten Monat a,, dann gilt fiir den erwarteten kumulativen
Bedarf in » Monaten

EX) = B + o+ £) = EE) + .+ BE&) = 3 a.

Spezielle zuféllige Ketten werden ausfiihrlich im 3. Kapitel behandelt. Sie sind unter
anderem wichtig bei der Losung mathematischer, physikalischer und technischer
Probleme mit Hilfe von Simulation auf digitalen Rechnern (z. B. bei der nidherungs-
weisen Losung von Randwertproblemen).

Es ist nun die Frage zu beantworten, wie ein stochastischer ProzeB {X(z), rel} -
vollstandig charakterisiert und festgelegt werden kann. Zunéchst betrachte man den
ProzeB an einem beliebigen aber festen Zeitpunkt 7, .

X(t,) ist eine ZufallsgroBe, deren Wahrscheinlichkeitsverteilung durch Angabe
der Verteilungsfunktion

Fi (xy) = P(X(t,) < xy) ' Q2.1

bestimmt ist. Man betrachte den ProzeB jetzt gleichzeitig an zwei beliebigen Stellen

ty, 1!
{X(1); X(12)}

ist ein zweidimensionaler Zufallsvektor, der eine zweidimensionale Wahrscheinlich-
keitsverteilung besitzt, die durch die Verteilungsfunktion

Fro(x1, X2) = P(X(1;) < x1, X(12) < x2) 2.2)

festgelegt ist. SchiieBlich betrachte man X(z) gleichzeitig an n verschiedenen. Stellen
tistay oy by (2 1)

{X(2); X(12)5 . X(0)}
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ist ein n-dimensionaler Zufallsvektor, dessen Verteilung durch Angabe der n-dimen-
sionalen Verteilungsfunktion

Fityt (X1, X2, 0y X,) = P(X(1) < X1, X(£2) < X2, .00, X(t) < X,) (2.3)
bestimmt ist.

Durch Angabe der n-dimensionalen Verteilungsfunktion (2.3) fiir beliebige
n-tupel #,, t2, ..., t, € I ist ein stochastischer ProzeB bereits in gewissem Grade fest-
gelegt. Es ist plausibel, daBl er um so vollstdndiger charakterisiert wird, je grofer n
ist.

Definition 2.2: Die Gesamtheit aller endlichdimensionalen Verteilungsfunktionen
Fiityt (X105 X2y s ) = P(X(1) < xp, X(8) < X2, .0 X(2) < x,

mit beliebigen t, t,, ..., t,€ I und beliebigen endlichen n nennt man die dem Prozef
{X(7), t € I} zugeordnete Verteilung.

Wesentlich ist, daB3 Prozesse mit gleicher zugeordneter Verteilung so geringfiigige
Unterschiede aufweisen, daB3 diese in der Praxis unberiicksichtigt bleiben kénnen.
Man bezeichnet sie als dquivalente stochastische Prozesse.

Beispiel 2.5: Wir betrachten die beiden stochastischen Prozesse
X(w,t) =0, tel, wel,
und
1 fir 1= o, .
Y(w, 1) = tel, we. (2.4)
0 fir ¢+ o,
Fiir beide Prozesse sei /= [0, 00) und Q = [0, 1]. Beide Prozesse besitzen die
zugeordnete Verteilung
1 fir x;>0, j=1,..,n
Frrpn (X1, o X)) = (2.5)
0 sonst.
Die Realisierungen des Prozesses X(w, t) lauten x(¢) = 0 fiir alle . Y(w, t) besitzt
die Realisierungen

0 flirt+ o,
) = :
1 firt =o.

Fiir jeden Wert o unterscheiden sich die Trajektorien beider Prozesse also jeweils
nur in einem Punkt.

Die Art der zugeordneten Verteilung stellt ein weiteres wichtiges Unterscheidungs-
merkmal stochastischer Prozesse dar. Ausgehend hiervon werden Prozesse, deren
zugeordnete Verteilung aus n-dimensionalen Normalverteilungen besteht, als Gaufs-
prozesse bezeichnet.

Im allgemeinen ist es jedoch nicht méglich, alle n-dimensionalen Verteilungs-
funktionen (2.3) anzugeben. Man wird sich dann auf die Angabe bestimmter Para-
meter des Prozesses beschranken, dhnlich wie man bei der Charakterisierung von
ZufallsgréBen oftmals nur Momente und nicht die Verteilungsfunktion zur Verfiigung
hat. Fir Zufallsgrofen X sind Erwartungswert £(X) und Varianz ¢?(X)*) die wichtig-
sten Parameter. Diese Begriffe lassen sich unmittelbar auf stochastische Prozesse
ibertragen.

1) In der Literatur auch mit D?(X) bezeichnet (z.B. Bd. 17).
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Definition 2.3: Als Mittelwertfunktion eines stochastischen Prozesses {X(t), t e I}
bezeichnet man eine nichtzufillige Funktion m(t), die fiir jeden Parameterwert t = t,
gleich dem Erwartungswert E[X(t,)] der Zufallsgrofe X(t,) ist.

Ahnlich wie sich alle Werte einer Zufallsgrofe um ihren Mittelwert gruppieren
stellt m,(7) eine ,,mittlere’* Funktion dar, um die sich sdamtliche Trajektorien des
Prozesses anordnen. Existieren eindimensionale Dichtefunktionen f,(x) zu den Zu-
fallsgroBen X(¢) (¢ € I), so kann man auch schreiben

+ 0
my(t) = J xfi(x)dx, tel (2.6)
- o
Definition 2.4: Als Varianzfunktion eines stochastischen Prozesses {X(t),tel}
bezeichnet man eine nichtzufillige Funktion o(t), die an jeder Stelle t = t, gleich
der Varianz o*[X(t,)] der Zufallsgrofe X(t,) ist.

Ahnlich wie die Varianz einer ZufallsgroBe eine Vorstellung von der Abweichung
der Werte vom Erwartungswert vermittelt, erhdlt man durch die Varianzfunktion
ein Bild von der Abweichung der Trajektorien vom mittleren Verlauf des stochasti-
schen Prozesses. Es ist

ax(t) = E[X(t) — m(n)]*. (2.7)
Existieren alle eindimensionalen Dichtefunktionen f£;(x), gilt
+ 00
(1) = [ (x — m0)* fi(x) dx. (2.8)
- 00

0,(t) = /oX(t) bezeichnet man als Standardabweichung des Prozesses.

Auch wenn m,(7) und 02(¢) existieren, reichen sie jedoch selbst fiir eine sehr grobe
Beschreibung eines stochastischen Prozesses nicht aus.') Das liegt vor allem daran,
daf} die ZufallsgroBen X(z,), X(12), ..., X(t,) (¢, 2, ..., t, € I) voneinander abhéngen
konnen. Die bisher genannten Parameter lassen diesen Zusammenhang unberiick-
sichtigt. Eine geeignete GroBe hierfiir ist in gewissem MaBe die sogenannte Auto-
korrelationsfunktion, wenn sie existiert. Wir betrachten den stochastischen ProzeB
zunédchst an zwei beliebigen aber festen Stellen 7,, 7,. Aus der Wahrscheinlichkeits-
theorie (vgl. Band 17) ist bekannt, daB sich der Zusammenhang von X, = X(z,)
und X, = X(t,) durch die Kovarianz

cov (X1X3) = E[(X1 — E(X))) (X2 — E(X>))] (2.9)
ausdriicken 14Bt. Durchlaufen 7, und ¢, alle Werte der Parametermenge 7 unabhingig
voneinander, erhilt man eine Funktion zweier Verdnderlicher.

Definition 2.5: Die Funktion

k(s 1) = E[(X(s) — m(9)) (X(1) — m(N)], s,tel, (2.10)
heifit Autokorrelationsfunktion®) (oder einfach Korrelationsfunktion) des Prozesses
{X(t), tel}.

1) my(t) und 0%(#) existieren nicht fiir jeden beliebigen ProzeB, weil Erwartungswert und Varianz
nicht fiir alle ZufallsgroBen definiert sind (vgl. Bd. 17).
2) Der Begriff Kovarianzfunktion ist ebenfalls gebrauchlich.
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Bei Existenz zweidimensionaler Dichtefunktionen f;,(x,, x,) kann k,(s, ¢) durch

kdst) = [ [ (x1(0) = m0)) (%25) = mul(s)) forl¥1, x2) ds dt

ermittelt werden. Die Funktion

ks,
rs, 1) = NZ oLl @.11)

bezeichnet man als normierte Korrelationsfunktion.
In den nachfolgenden Sitzen sind einige wichtige Eigenschaften von Korrelations-
funktionen zusammengefalt.

Satz 2.1: a) Die Korrelationsfunktion eines stochastischen Prozesses ist eine beziig-
lich s und t symmetrische Funktion:

ks, 1) = ki(t, ), s,tel. 2.12)
b) Es ist
ky(t, 1) = oX(1). (2.13)

Beweis: a) folgt unmittelbar aus der Definition 2.5, da die Reihenfolge der Faktoren
bei der Erwartungswertbildung vertauschbar ist.
Zum Beweis von b) setzt man in (2.10) # = s. Dann folgt

ky(t, 1) = E[X(t) — m{(0)]* = o%(2).

Satz 2.2: Zwei Prozesse {X(t),tel} und {Y(t), teI} mit Y(t) = X(¢) + f(t), die
sich nur durch eine nichtzufillige Funktion f(t) unterscheiden, besitzen dieselbe Kor-
relationsfunktion.

Beweis: Sind m,(t) und k,(s, t) Mittelwert- und Korrelationsfunktion von {¥(¢), t€ I},
so folgt unter Beriicksichtigung von

my(1) = my(t) + f(t)
die Beziehung
ky(s, 1) = E[(Y(s) — my(s)) (Y(2) — my(D))] )
= E[(X(s) + f(s) — m(s) — f()) (X(1) + f(t) — m(t) — f(D))]
= E[(X(s) — my(5)) (X(1) — mx(1))]
= k,(s, t).

Aus diesem Satz folgt insbesondere, daB die Prozesse {X(¢),¢z€l} und
{X(#) — my(t), 1€ I} gleiche Korrelationsfunktionen haben. Beim Operieren mit
stochastischen Prozessen kann man daher oftmals ohne Einschrinkung der All-
gemeinheit die Mittelwertfunktion gleich null annehmen.
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Aufgabe 2.1: Zeigen Sie
(1) Fiir beliebige reelle Zahlen z; und beliebige Werte ¢, (i = 1, ..., n) gilt

zl 22kt 1) = 0. @.14)
ij=

(2) Fir alle s, ¢ € I ist
ks, 1) = ki(s, ) k(8 1). (2.15)

Aufgabe 2.2: Gegeben sei ein ZufallsprozeB::{X(t), 0=t =T}, mitX(r) = Xt. X ist
eine normalverteilte ZufallsgroBe mit E(X) = 0 und 6*(X) = a? (a # 0). Bestimmen
Sie my(t), oX(t) und k(s 1).

Die Kenntnis von Mittelwert- und Korrelationsfunktion reicht zur Behandlung
bestimmter Probleme bereits aus. Ein Beispiel ist die in Kapitel 4 betrachtete Extrapo-
lationsaufgabe (vgl. Seite 53 ff.). Es wurden auch eine Analysis stochastischer Prozesse
entwickelt und verschiedene Stetigkeits-, Differenzierbarkeits- und Integrierbarkeits-
begriffe eingefiihrt. Im Rahmen dieses Buches wird hierauf nicht eingegangen.
Weiterfiihrende Darstellungen findet der I.eser in [11], [21], [28] und [31].

2.2. Beispiele fiir stochastische Prozesse

Beispiel 2.6: Prozesse mit homogenen unabhdngigen Zuwdchsen. Wir kniipfen an
das Beispiel 2.3 an. Die Telefonanrufe bilden eine Folge gleichartiger zufélliger
Ereignisse, die im Moment ihres Eintreffens in ihrer zeitlichen Reihenfolge registriert
werden. X(7) sei, wie bereits erwéhnt, die Anzahl der bis zum Zeitpunkt ¢ eintretenden
Ereignisse (Telefonanrufe), wobei diese ab 7 = 0 gezdhlt werden. {X(r), r = 0} ist
ein diskreter ProzeB mit den Werten m = 0, 1, 2, ... Die Wahrscheinlichkeit, daf
im Intervall [0, #) genau m Erreignisse (Anrufe) erfolgen, werde mit p,(¢) bezeichnet.
Es sind nun ndherungsweise zwei Eigenschaften erfiillt, die man als ,,Fehlen einer
Nachwirkung® und ,,Homogenitit* bezeichnet.

(1) Das Fehlen einer Nachwirkung besagt, daBl die Wahrscheinlichkeit des Ein-
tritts einer bestimmten Anzahl m von Ereignissen in einem beliebigen Zeitabschnitt
[t;, t;+q) mit 0 < ¢, < t;4; < + 00 nicht davon abhidngig ist, wie viele Ereignisse
vor dem Zeitpunkt #; auftraten. Fiir nichtiiberschneidende Intervalle

[tos 21)s [t1s 82)s cany [tnm1s 1), OS5t <ty < oo <1, < 400,
bilden demnach die Zuwichse
X(ty) = X(to), X(£2) = X(t,), .., X(t,) — X(t,-1)

unabhingige ZufallsgroBen. Allgemein sagt man
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Definition 2.6: Ein - Prozefi {X(t),tel}, fiir den bei beliebiger Zerlegung
ty <ty <..<t,(to, ..., t,, t;,€I) die Zuwichse

AX; = X(t) — X(ti-y), i=1,2,...,n
unabhdingig sind, heifpit ProzeB mit unabhiingigen Zuwi
(2) Die Homogenitdt besagt, dafl die Wahrscheinlichkeit des Eintritts einer
bestimmten Zahl von Ereignissen in einem beliebigen Intervall [z, 7;+;) mit
0 =<1 <ty < +oo0 nur von der Lédnge, nicht aber von der speziellen Lage des
Intervalls abhéngig ist. Die Wahrscheinlichkeitsverteilungen fiir Zuwéchse gleicher
Intervalldnge sind gleich. Allgemein sagt man:

Definition 2.7: Ein Prozeﬁ mit unabhingigen Zuwichsen {X(t), tel} heift ProzeB
mit homogenen unabhiingigen Zuwich wenn die Wahrscheinlichkeitsverteilung der

) 515!

Zuwdichse
AX; = X(t;) — X(t;-1)

nur von der Differenz t; — t;_, , aber nicht von der Lage der Werte t; > t;—y (t;; t;—y €I)
abhdngt.

Hinsichtlich der Folge der Ereignisse ist es unwesentlich, zu welchem Zeitpunkt
t = t, mit der Registrierung der Ereignisse begonnen wird. Denn sind [t,, 7,),
[75t{) zwei Intervalle gleicher Lange At, ist die Wahrscheinlichkeit, dieselbe Anzahl m
von Ereignissen in beiden Intervallen anzutreffen, gleich. Es gilt also

P(X(t,) — X(to) = m) = P(X(11) — X(tg) = m) = p,(At).

Man kann somit ¢z, = 0 setzen.

Ein groBer Teil der in diesem Buch betrachteten Prozesse ist dieser Art.
Aufgabe 2.3: Zeigen Sie, daB die in Beispiel 2.4 definierte Kette unabhingige Zuwichse
besitzt.
Beispiel 2.7: Poissonsche Prozesse. Die Folge der zufillig eintreffenden Telefon-
gespréiche in einer Telefonzentrale ist ,,ordindr*. Diese Eigenschaft duBert sich in
der praktischen Unmoglichkeit des gleichzeitigen Eintretens zweier oder mehrerer
Ereignisse. Bezeichnet p-,(At) die Wahrscheinlichkeit dafiir, daB in A7 mehr als ein
Ereignis eintritt, so 148t sie sich mathematisch durch die Beziehung p. ,(Af) = o(At)
formulieren. o(At) ist eine GroBe, die allein durch die Eigenschaft

. o(Ar)
1
Aleo At

h

=0

charakterisiert wird; man sagt daher auch, daB o(Af) von héherer Ordnung als Ar
ist (gegen null strebt). Das Symbol o(At) wird ,,klein-o von At* oder ,kleines Lan-
dau-Symbol von At* gelesen (vgl. mit Bd. 18, S. 55). Fiir das Rechnen mit diesen
GroBen gelten einige Besonderheiten, wie z. B. k- o(At) = o(At), o(At) + o(Atr)
= o(Ar), ohne daB daraus jedoch o(Ar) = 0 folgt. Als Beispiele fiir o(Af) seien
At?, A3, ... genannt.

Es werde nun ganz allgemein eine Folge von zufillig emtretenden Erelgmssen
betrachtet, die homogen, ohne Nachwirkung und ordinr ist. Dann 148t sich zeigen,
daB {X(t), t = 0} ein sogenannter Poissonscher Prozef ist (vgl. [24]).
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Definition 2.8: Ein diskreter stochastischer Prozef {X(t),t = 0} mit den Werten
m =0, 1,2, ... wird Poissonscher ProzeB mit der Intensitit J genannt, wenn

1) P(X(0) = 0) = 1 gilt,

[#)] {X(t), t 2 0} ein Prozef mit homogenen unabhdngigen Zuwdchsen ist und
3) fiir ein beliebiges t (0 < t < o) X(¢) eine poissonverteilte Zufallsgréfie mit
aHm
pult) = P(X(t) = m) = m—)!e-“, m=0,1,2,... (2.16)
ist.

Die Intensitit A gibt die durchschnittliche Anzahl (Erwartungswert) der pro
Zeiteinheit eintretenden Ereignisse an.

Somit 1aBt sich Aufgabe a) des Beispiels 2.3 16sen. Durch (2.16) sind die ein-
dimensionalen Wahrscheinlichkeitsverteilungen des betrachteten Prozesses gegeben.
Werden pro Zeiteinheit durchschnittlich 4 Gespriche gefiihrt, dann ist die Wahr-
scheinlichkeit, daB bis zum Zeitpunkt z héchstens m Gespriche vermittelt werden,

S po).
i=0

In einem Postamt wurde die Anzahl der pro Minute aufgegebenen Telegramme registriert. Die
ausgezogene Linie in Bild 2.3 zeigt die empirisch ermittelte Verteilung, die gestrichelte entspricht
einer theoretischen Verteilung mit den Wahrscheinlichkeiten

&-047(0 47)m
T
Es zeigt sich eine sehr gute Ubereinstimmung. Man kann daher annehmen, daB die Anzahl der in
einem Intervall [0, ) aufgegebenen Telegramme einen Poissonschen Prozef bildet.

Bild 2.3
Verteilung der in einem Postamt aufgegebenen Telegramme

17234567m

Parameter und wichtige Eigenschaften dieser speziellen Klasse von Prozessen mit
homogenen unabhingigen Zuwichsen lassen sich unmittelbar herleiten.
Aus Band 17 ist bekannt, daB eine poissonverteilte ZufallsgroBe X mit

e
P(X=m~)=—m—!c>, m=20,1,2,...,

den Erwartungswert 2 und die Varianz 2 besitzt. Somit ist unmittelbar ersichtlich,
daB Mittelwert- bzw. Varianzfunktion

my(t) = 2t bzw. oXt) =M
lauten.
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In Aufgabe b) des Beispiels 2.3 wurde nach dem Erwartungswert der bis zum Zeit-
punkt 7 vermittelten Gespriche gefragt. Bei gegebenem A kann m,(¢f) unmittelbar
angegeben werden.

Die Korrelationsfunktion k,(s, t) 148t sich folgendermaBen finden. Zunéchst sei
daran erinnert, daB man an Stelle von {X(¢), # = 0} von einem ProzeB {Y(¢), t = 0}
mit Y(z) = X(¢#) — At ausgehen kann. Nach Satz 2.1 besitzen beide Prozesse dieselbe
Korrelationsfunktion. Nun ist aber

my1) =0,  o3(1) = At (2.17)

Es sei zundchst s = ¢. Unter Beriicksichtigung von Y(s) = Y(¢) + Y(s) — Y(¢)
folgt fiir die Korrelationsfunktion des Prozesses {Y(¢), 7 = 0}

ky(s, 1) = E[Y(s) Y(©)]
= E{[Y() + (Y(s) — Y(1))] Y(O)}
= E[Y*(1)] + E{Y(t) [Y(s) — Y()]}. (2.18)
Wegen Y(0) = 0, der Unabhéngigkeit der Zuwéchse und E[Y(#)] = 0 ist
B{Y() [¥(s) — YOI = E{[¥() — YO)] [¥6s) — YOI}

= E[Y(t) — Y(O)] E[Y(s) — Y(#)] = 0. (2.19)
Somit folgt aus (2.18) unter Bertiicksichtigung von (2.17) und (2.19)
ky(s, t) = 2t = k(s, 1). (2.20)
Fiir 1 > s erhélt man entsprechend
k(s 1) = ky(s, 1) = As. : (2.21)

FaBt man beide Beziehungen (2.20) und (2.21) zusammen, ergibt sich fiir die Kor-
relationsfunktion eines Poissonschen Prozesses mit der Intensitit A
ky(s, ) = Amin (s, t).

Fiir einen Poissonschen ProzeB lassen sich leicht die zwei- und mehrdimensionalen
Verteilungen angeben. Zu diesem Zweck betrachten wir zwei Zeitpunkte s und ¢
und bestimmen zunéchst die durch die ZufallsgréBen X(s) und X(¢) erzeugten zwei-
dimensionalen Verteilungen. Hierfiir gentigt es, fiir alle ganzzahligen Werte m, m, = 0
die Wahrscheinlichkeiten

P(X(s) = m,, X(t) = m,) ‘
anzugeben. Da {X(¢),# = 0} nach Voraussetzung ein ProzeB mit unabhingigen
Zuwéichsen und X(0) = 0 ist, gilt

P(X(s) = my, X(t) = m,) = P(X(s) — X(0) = my, X(t) — X(s) = m, — my)

= P(X(s) = m;) P(X(t) — X(s) = m, — my).
Damit erhilt man
e25(As)"s e~ M=t — s)]me—ms
my! (m, — my)!

P(X(s) = mg, X(t) = m,) =

2 Beyer, Stoch. Proz.
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In dhnlicher Weise kann man alle drei- und hoéherdimensionalen Verteilungen
bestimmen. ;

Betrachten wir nun noch den Abstand zwischen zwei aufeinanderfolgenden
Ereignissen bei einem Poissonschen ProzeB. Die Wahrscheinlichkeit, daB3 in einem
beliebigen Intervall [7,, #, + ) kein Ereignis eintritt, ist gleich der Wahrscheinlich-
keit, daB im Intervall [0, ¢) kein Ereignis eintritt. Nach Definition 2.8 gilt hierfiir

Polt) = e ™. 2.22)
Es sei 7 die Zeit bis zum Eintritt des ersten Ereignisses. Dann ist
Pxzt)=e™ (2.23)
ZW.
Ft)=Pr<t)=1-—e" (2.29)

Somit besitzt die Wartezeit bis zum Eintreffen des ersten Ereignisses oder des nach-
sten Ereignisses nach #, eine Exponentialverteilung mit der Verteilungsdichte

Ft) = f(t) = Ae ™.
Unter Verwendung der Formel von Taylor folgt aus (2.22) fiir kleine ¢

At (M)
Polt) =1 -+ 5 -

Die Wahrscheinlichkeit, daB in dem Zeitintervall [0, ) (bzw. At) kein Ereignis
eintritt, ist somit

Po®) =1 — At + o), (polAr) = 1 — 2 AL + o(A1)). ©.25)
Aufgabe 2.4: Zeigen Sie, daB
p1(At) = LAt + o(At); Pso(At) = X p(Ar) = 2 At + o(Ar) (2.26)
i=1

gilt.

In diesem Zusammenhang besitzt eine besondere Eigenschaft der Exponential-
verteilung eine groBe Bedeutung. Es sei bekannt, daB im Intervall [0, 7) kein Ereignis
eingetreten ist, so daB die Wartezeit = groBer als ¢ ist. Wie groB ist unter dieser Be-
dingung die Wahrscheinlichkeit, daB im Intervall [0; # + Az) ein Ereignis eintritt?
Es ist somit die Wahrscheinlichkeit dafiir zu bestimmen, daB ¢ < 7 < ¢ + Az unter
der Bedingung 7 > ¢ ist. Es gilt (vgl. Band 17, Seite 29)

P(t<1<t+At/r>t)=Ht—;r§;ﬂ
Unter Beriicksichtigung von (2.23), (2.24) und (2.25) gilt ‘

Pt <t <t+At)=eM(l —e?)=1Ate*+ o(Ar). (2.27)
Folglich ist

Pt<t<t+Atflt >1t)=1—e* =LAt + o(A?). (2.28)
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Ein Vergleich der Beziehungen (2.28) mit (2.26) zeigt, daB3 die Wahrscheinlichkeit
des Eintretens eines Ereignisses nicht davon abhidngt, wie grof3 der Zeitabstand vom
zuletzt eingetretenen Ereignis ist.

In bezug auf die Verteilung der Lebensdauer von Materialien und Gerdten bedeutet

diese Eigenschaft, daB die Anzahl der einwandfrei verlaufenden Betriebsstunden
keinen EinfluB auf die Wahrscheinlichkeit der Zerstérung in der nachsten Zukunft
hat. Obwohl diese Eigenschaft irreal erscheint, gibt es doch viele Beispiele, auf die
das zutrifft: Lebensdauer von Zapfenlagern guter Uhren und gewisser Arten von
elektrischen Sicherungen.
Beispiel 2.8: Wienersche Prozesse. Zu Beginn des 2. Kapitels wurde die Brownsche
Molekularbewegung betrachtet. Es 1aBt sich zeigen, daB sie (eindimensional) durch
die im folgenden betrachtete Klasse von Prozessen mathematisch modelliert werden
kann.

Definition 2.9: Ein stochastischer Prozef {X(t), t = 0} mit stetigen Realisierungen
hei st Wienerscher ProzeB, wenn er folgende Eigenschaften besitzt:

I PO =0)=1,

2 X(2) besitzt homogene unabhéngige Zuwdchse,
3) fiir einen beliebigen Punkt t (0 <t < o) ist X(t) eine normalverteilte
Zufallsgrofe mit der Wahrscheinlichkeitsdichte
1 X
X) = ————2¢ 29%; o2 > 0.
74 / 2ro?t

Fiir 0 = 1 spricht man von einem standardisierten Wienerschen Prozef. Erwar-
tungswert, Varianz- und Korrelationsfunktion lassen sich leicht bestimmen. Aus
der Wahrscheinlichkeitstheorie ist bekannt, daB3 eine normalverteilte ZufallsgréBe X
mit

1 (x—p?

fx) = \/27,;02 e 202

den Erwartungswert x4 und die Varianz o2 besitzt. Somit ist sofort ersichtlich, daf3
Mittelwert bzw. Varianzfunktion

myt) =0 bzw. oX(t) = ot
lauten.
Aufgabe 2.5: Zeigen Sie durch analoge Betrachtung zum Poissonschen ProzeB, daB
die Korrelationsfunktion eines Wienerschen Prozesses

ky(s, t) = ¢® min (s, 1)
lautet.

Bekanntlich sind Summe und Differenz zweier normalverteilter ZufallsgroBen
ebenfalls wieder normalverteilte ZufallsgréBen. Dementsprechend sind die Zuwéchse
X(t) — X(s), s < t, normalverteilt. Im standardisierten Fall ergeben sich fiir Erwar-
tungswert und Varianz der Zuwichse

EX() — X(5)] =0,  o*[X(1) — X(s)] = 1 — 5.
2*
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Die Trajektorien eines Wienerschen Prozesses besitzen interessante Eigenschaften.
Sie haben auf einem beliebigen Intervall eine unbeschrankte Schwankung und sind
an keiner Stelle differenzierbar (vgl. [21]).

Aus der Voraussetzung P(X(0) = 0) = 1 und der Unabhingigkeit der Zuwichse

X(11) — X(to), X(12) — X(11), ..., X(ta) — X(ty-1)

fiir beliebige Werte 1, =0 < #; < t, < ... < t, folgt eine Eigenschaft von grund-
legender Bedeutung.
Schreibt man X(z,) in der Form

X(w) = 3 [X(@) = X)), (229)

erkennt man, daBl X(z,) nur von X(#,-,), nicht aber von Werten X(¢,) ( <n — 1)
abhéngt.

Dies steht in Ubereinstimmung mit dem folgenden anschaulichen Sachverhalt. Um
wahrscheinlichkeitstheoretisch einzuschidtzen, wo sich das Teilchen zur Zeit ¢,
befinden wird, geniigt es, seine Lage zum Zeitpunkt 7,-; zu kennen. Die Kenntnis
seiner Lage zu den Zeitpunkten #,_», #,-3, ..., t, bringt keine zusitzliche Information,
welche die Einschitzung beeinfluit. Prozesse mit dieser Eigenschaft werden nach
dem sowjetischen Mathematiker Markow benannt. Sie werden im néchsten Kapitel
ausfiihrlich untersucht.
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3.1. Markowsche Ketten

Wir wollen uns nun mit zufélligen Prozessen beschiftigen, die folgende Eigen-
schaft besitzen:

Jede wahrscheinlichkeitstheoretische Aussage iiber den zukiinftigen Prozefverlauf
hingt bei bekanntem Wert in der Gegenwart nicht vom Prozefverlauf in der Vergangen-
heit ab.

Derartige zufillige Prozesse sind von groBer Bedeutung fiir die Praxis. Zunédchst
sollen zufdllige Ketten mit dieser Eigenschaft untersucht werden.

Wir kniipfen an Beispiel 2.4 an. Der kumulative Bedarf an Kiihlschrinken in
n Monaten ist

X)=bo+& + &+ ..+ & (=012,

wobei alle & (i =1,2,3...) voneinander unabhingige ZufallsgroBen sind. Den
kumulativen Bedarfin n + 1, n + 2, ... Monaten kann man auch in der Form

X+ 1) = X(n) + Epers
X(n + 2) = X(n) + (Ensr + Eus2)

ausdriicken. Man erkennt, daB bei bekanntem Gesamtbedarf X() in » Monaten bei
der Einschidtzung des zukiinftigen kumulativen Bedarfs die Kenntnis des Gesamt-
bedarfs in den ersten n — 1 Monaten X(n — 1), X(n — 2), ... keine Rolle spielt. Man
sagt, die Gesamtheit der ZufallsgroBen

X(0), X(1), XQ), ..., X(n), X(n + 1), ...

bilden eine Markowsche Kette. Mit Hilfe von bedingten Wahrscheinlichkeiten 1483t
sich diese Eigenschaft mathematisch folgendermaBen formulieren.

Gegeben sei eine zufillige Kette {X(¢), te}. Ohne Einschrinkung der All-
gemeinheit kann die diskrete Parametermenge I von te/ = {0, 1,2, 3, ...} und die
Wertemenge X, auf welcher X(¢) variiert, X = {0, 1, 2, ...} angenommen werden.

Definition 3.1: {X(z),7 = 0, 1,2, ...} heiffit Markowsche Kette, wenn bei beliebigem
t € I fiir beliebige Werte i, j € X die bedingte Wahrscheinlichkeit

P(X(t + 1) = jIX(t) = i, X(t — 1) = iy, ..., X(0) = i,)
gleich der bedingten Wahrscheinlichkeit
' P(X(t + 1) = jIX(r) = i) @3.1)
m&S,I) ist die Wahrscheinlichkeit, mit welcher die Kette vom Wert i bei ¢ in den

Wert j bei ¢ + 1 iibergeht. Die Werte. i, j bezeichnet man auch als Zustinde der
Kette.
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Definition 3.2: Die bedingte Wahrscheinlichkeit P(X(t + 1) = j/X(t) = i) heift
Ubergangswahrscheinlichkeit des Zustandes X(t) =i bei t in den Zustand
X(t + 1) =j bei t + 1 und wird symbolisch mit p,(t, t + 1) bezeichnet.

Am eindimensionalen Modell der Irrfahrt eines Teilchens untersuchen wir nun
die Eigenschaften Markowscher Ketten.
Beispiel 3.1: Ein Teilchen veridndere seine Lage X (1 < x =< s) langs einer Geraden
zu den Zeitpunkten ¢t = 1, 2, 3, ... nach folgender Vorschrift:
a) Von den Punkten x = 2, ..., s — 1 wird es in der nachfolgenden Zeiteinheit um
eine Einheit mit Wahrscheinlichkeit p in positiver und mit Wahrscheinlichkeit
g = 1 — p in negativer Richtung bewegt.
b) An den Punkten x = 1 und x = s wird das Teilchen absorbiert. Es verbleibt
mit Wahrscheinlichkeit 1 in der nachfolgenden Zeiteinheit dort.
Zur Zeit t =0 befinde es sich mit Wahrscheinlichkeit p,(0) bei x =i
(i=1,23,..59). :
Bezeichnen wir mit X(¢) die Lage des Teilchens zur Zeit 7, ist unmittelbar ersicht-
lich, da3 :
{X(0),t=0,1,2,3,...}

eine Markowsche Kette mit den s moglichen Zustdnden 1,2, 3, ..., s bildet. Wir
wollen die Wahrscheinlichkeiten bestimmen, das Teilchen
a') zur Zeit t = 1 bei x = j,
b’)zur Zeit t = n(n > 1) bei x = j
anzutreffen.!)

Wir bestimmen zunichst die Ubergangswahrscheinlichkeiten p,(, ¢ + 1).
Fir i = je{2,3,...,5 — 1} ist p;(t,t + 1) = 0, weil das Teilchen nach Voraus-
setzung mit Wahrscheinlichkeit Null am Ort bleibt. Fiir alle 7, j mit |i — j| = 2 gilt
ebenfalls p;;(¢,t + 1) = 0, da das Teilchen mit Wahrscheinlichkeit Null um zwei
und mehr Einheiten in einer Zeiteinheit fortbewegt wird. Wegen der Absorption
bei x=1 und x=us ist py,(t,1 + 1) = pu(t, ¢ + 1) = 1. Die nachfolgende
Tabelle 3.1 gibt eine Ubersicht iiber alle p, St + 1)

Tabelle 3.1

in den Zustand

vom Zustand 7

Kennzeichnend ist, daB alle Ubergangswahrscheinlichkeiten von ¢ unabhingig
sind.

1) Anwendungen fiir ,,Irrfahren* findet der Leser in Bd. 20.
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Definition 3.3: Eine Markowsche Kette heifit homogen, wenn fiir beliebige i,je X
und t € I die Ubergangswahrscheinlichkeiten p(t, t + 1) nicht von t abhdngen.

Man schreibt p;(t, ¢ + 1) = p; n wobei jetzt p;; die Ubergangswahrscheinlich-
keit vom Zustand i in den Zustand j wihrend einer beliebigen Zeiteinheit ist. Weiter-
hin erkennt man in der Tabelle, daB8 die Zeilensummen jeweils den Wert 1 ergeben.
Es gilt die Gleichung?)

Xpij=1.

i
Hierin driickt sich die Tatsache aus, daB X(¢) in der nachfolgenden Zeiteinheit vom
Zustand i unbedingt in einen der Zustinde j iibergeht. Anfangszustand und Uber-

gangswahrscheinlichkeiten beschreiben eine Markowsche Kette vollstindig. Wir
16sen zunichst Aufgabe a’). Zu bestimmen ist die unbedingte Wahrscheinlichkeit

P(X(1) = j).
Die Anfangsbedingungen lauten
P(X(0) =i)=pi(0), i=1,2,3,..,s
Unter Anwendung des Satzes iiber die totale Wahrscheinlichkeit (vgl. Band 17)

folgt
P(X(1) = j) = £ P(X(0) = i) p,
=2 pi0) pi;- (3.2)

Man setze beispielsweise s = 5, p = ¢ = %. Das Teilchen befinde sich zur Zeit + = 0 mit Wahr-
scheinlichkeit 4 im Punkt 2 und mit Wahrscheinlichkeit 4 im Punkt 4.
Die Anfangsbedingungen lauten also

P10 =0, p(0) =%, p30) =0, ps0)=%  ps0)=0. 3.3)
Dann folgt sofort gemaB (3.2)

PXW)=1)=4%, PX1)=2=0, PXD=3)=% PXD=4=0,

PX(1) = 5) = %.
Die Wahrscheinlichkeiten, das Teilchen zur Zeit # = 1 an den Stellenj = 1, 2, 3, 4 und 5 anzutreffen,
sind also beispielsweise 1/4, 0, 1/2, 0 bzw. 1/4.

Wenden wir uns nun der Aufgabe b’) zu. Zu bestimmen ist die unbedingte Wahr-
scheinlichkeit

P(X(n) = ).

Bezeichnet p,;;(n) die Ubergangswahrscheinlichkeit einer homogenen Markowschen
Kette, nach n Zeiteinheiten vom Zustand i in den Zustand j zu gelangen, folgt analog

zu a’)
P(X(n) =j) = Z P(X(0) = i) pi(n)
= ;p;(o) Diy(n). (3.4)

1) Eine entsprechende Gleichung 3 p;(#, ¢ + 1) = 1 gilt allgemein fiir Markowsche Ketten.
i
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Alle p;;(n) lassen sich nun rekursiv aus den Werten p;; berechnen. Die Wahrschein-
lichkeit, daB ein Ubergang von X(0) = i in X(1) = k und anschlieBend in X(n) = j
erfolgt, ist wegen der Unabhéngigkeit der beiden Ereignisse gleich

Pikij(n'— 1). (3.5
Unter Anwendung der Formel iiber die totale Wahrscheinlichkeit folgt
pisn) = %Pmpu(n - 1). (3.6)

Sind alle p;; bekannt, lassen sich nacheinander alle p;;(2), p;;(3) und schlieBlich
p: (n) bestimmen. Formel (3.6) ist ein Spezialfall einer allgemeineren Beziehung, die
nach Markow benannt wurde.

Satz 3.1 (Gleichung von Markow): Bei homogenen Markowschen Ketten gilt fiir
beliebiges ganzzahliges m (1 < m < n — 1

pisn) = %Pu(m) Prf(n — m). 3.7

Den Beweis kann der Leser leicht selbst durchfiihren.
Bei der Berechnung der Werte p;;(n) (n > 1) kann man mit Vorteil die
Matrizenrechnung anwenden. Schreibt man die Ubergangswahrscheinlichkeiten p;;
(i,j = 1,2, ..., ) in Form einer sogenannten Ubergangsmatrix

P11 P12 -+ Dis
P21 P22 ... Pas

(i) = > (3.8)
Ps1 Ds2 -+ Dss

dann ist nach der Multiplikationsregel fiir Matrizen

(pij(z)) 5= (PU) (Pif) = (PU)Z,

und allgemein gilt fiir n = 1

(Pum)) = (piy)" (3.9)

Im Falle der Irrfahrt des Teilchens (vgl. Tabelle 3.1) ergibt sich firn =2, p =g =%unds =5

10000 10000 10000
30300 30300 33030
(Pif2)={0%0%0 0030 =140%01%
00404% 00304% 04041
00001 00001 00001

Mit den Anfangsbedingungen (3.3) erhdlt man beispielsweise fiir die Wahrscheinlichkeit, das Teil-
chen zur Zeit t = 2 bei j = 2 anzutreffen,

5
PXQ2)=1) = ,_Z‘ Pi(0) pi2(2)

=0+4%3+0+4-314+0=14.
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Haufig kann man bei homogenen Markowschen Ketten beobachten, dafB3 die
Wabhrscheinlichkeit P(X(n) = j), nach der Zeit = n das Teilchen an der Stelle ;
anzutreffen, fiir groBe Werte n (n — c0) unabhéngig von den speziellen Anfangs-
bedingungen wird. GemaB (3.4) miiBlten in diesem Fall die p;;(n) gegen Grenzwerte
konvergieren, die nicht mehr von 7 abhéngen.

Satz 3.2 (Ergodentheorem): Es seien p;; die Ubergangswahrscheinlichkeiten einer
homogenen Markowschen Kette mit einer endlichen Anzahl von Zustinden i, j € X.
Wenn es eine natiirliche Zahl ny gibt, so daf die Ubergangswahrscheinlichkeiten
Dij(no) mindestens fiir einen Zustand j die Bedingung

min p;(ne) = a, a>0,
i

erfiillen, existieren Wahrscheinlichkeitswerte p;, so daf

lim p;y(n) = p;, jeX, (3.10)

mit Y. p; = 1 gilt.
i

Den Beweis des Satzes findet der Leser in [8].

Die Grenzwerte p; heillen ergodische Wahrscheinlichkeiten. Bei Konvergenz gegen
diese Werte strebt die homogene Markowsche Kette einem Gleichgewichtszustand
zu. Denn bei groBen n gilt (geméf Satz 3.2) anndhernd

pif(n — 1) = pi(n) = pi(n + 1) = p;, (3.11)
so daB gemdlB (3.4) ndherungsweise
P(X(n = 1) = j) = P(X() = j) = P(X(n + 1) = j) = p,

ist. Die Wahrscheinlichkeit, daB sich die homogene Markowsche Kette im Zustand j
befindet, dndert sich fiir groBe » nur noch wenig und konvergiert schlieSlich. Zur
Ermittlung der p; geht man von den Beziehungen (3.6) aus.

Unter Berticksichtigung von (3.11) erhélt man fiir die gesuchten ergodischen Wahr-
scheinlichkeiten die Bestimmungsgleichungen

pj=§pwu,j=l,zuq& (3.12)
wobei 3 p; = 1 zu beachten ist.

J P,
Wir kehren nun zu dem betrachteten Beispiel zuriick und untersuchen, ob ergo-
dische Wahrscheinlichkeiten existieren. Der Einfachheit halber setzen wir s = 3.
Dann ist wegen

100
P¢j=(‘]017)
001

100, /100 100
pif2) = (q 0 p) (q 0 p) = (q 0 p)
001/ \0o01 001

und
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Pij = pi2) = pi(3) = ... = p;;(n). Die Voraussetzungen des Satzes 3.2 sind somit
nicht erfiillt. Offenbar gelten auch die Behauptungen des Satzes nicht. Es ist wegen
pum) =1(mn=1,23,..)

limp,,(n) = 1,

n—wo
wihrend

lim p,,(n) = g, lim p3,(n) = 0

n—oo n—oo
gilt. Die Grenzwerte sind nicht unabhédngig von den Anfangszustinden. Betrachten
wir die Zustdnde bei diesem Beispiel genauer: Vom Zustand 2 gelangt man sofort

nach 1 (bzw. 3), wihrend es unmdglich ist, mit positiver Wahrscheinlichkeit von 1
(bzw. 3) nach 2 zuriickzukehren. Man bezeichnet 2 als voriibergehenden Zustand.

Definition 3.4: Ein Zustand i heifit transient, wenn fiir mindestens einen Z d j
und fiir eine natiirliche Zahl n, die Ubergangswahrscheinlichkeit p,;(no) positiv ist,
aber fiir alle natiirlichen Zahlenn > no p,;(n) = 0 gilt. Anderenfalls bezeichnet man i
als wesentlichen Zustand.

Demnach sind die Zustinde i = 1, 3 wesentlich und der Zustand i = 2 transient.
Beispiel 3.2: Es werde nun die Irrfahrt des Teilchens (vgl. Beispiel 3.1) dahingehend
abgedndert, daB an den Enden des Intervalles [1, 5] das Teilchen mit Wahrscheinlich-
keit p bzw. g reflektiert wird. Fiir die Ubergangswahrscheinlichkeiten gelte

Pu=4g=1-p; p+gqg=1,
p fir i=1,2,3,..,s—=1; j=i+1,
piy=1{q fiur i=2,3,4,..,s; j=i-1,
0 fiir alle {ibrigen Paare (i),
Ps=p=1-4q.
Die Ubergangsmatrix hat dann die Form
qp00..00

q0p0..00
(P)=§0g0p..00

0000 ..qp

Es 148t sich zeigen, daB in diesem Fall Satz 3.2 (Ergodentheorem) gilt. Der Einfach-
heit halber beschrinken wir uns wieder auf den Fall s = 3. Dann ist

qp0
(ry) = (q 0 p),

04qp

gp O\ /gp 0 9 +pq 9o P’
(i) = (qu) (q Op) =(42 2pq P? )

0¢qp/ \0qp, q° pq qp +p?

Die Voraussetzungen des Satzes 3.2 sind erfiillt.
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Speziell mit p = g = % errechnen sich gemdf (3.12) die ergodischen Wahrschein-
lichkeiten aus dem System

P =3p1 + ipa.
P2 = %py + ps,
Ps = %p> + 1ps,

unter Beachtung von

pi+p2+ps=1.
Die Auflésung des Systems ergibt unmittelbar

P =P2=ps=1%.

Das Ergebnis ist plausibel, da nach einiger Zeit, unabhingig von der Anfangs-
situation, zu erwarten ist, das Teilchen an jedem Ort mit gleicher Wahrscheinlich-
keit anzutreffen. Weitere Ausfiihrungen tiber Markowsche Ketten findet der Leser
in [5], [8] und [4a].

3.2. Diskrete Markowsche Prozesse

3.2.1. Definition und Eigenschaften

Wir betrachten nun einen diskreten stochastischen ProzeB {X(¢),¢eI}. Ohne
Einschrinkung der Allgemeinheit kann man X = {0, 1,2, 3, ...} setzen. Die Ele-
mente von X werden auch wie im Falle von Ketten als Zustdnde bezeichnet.

Definition 3.5: Ein diskreter stochastischer Prozef {X(t), t € I} heif3t diskreter Mar-
kowscher ProzeB, wenn fiir jede beliebige wachsende Folge von Werten

to <ty < oo <ty <ty
aus I und beliebige Zustinde iy, iy, ..., Iy, iy+y aus X gilt:
P(X(ti1) = iner[X(t) = Tny X(tam1) = dnmys ooy X(b0) = i)
= P(X(tar1) = inr[X(t) = 1) (3.13)

Die Markoweigenschaft duBert sich wie im Falle der eben behandelten Markowschen
Ketten in dem Fehlen einer Nachwirkung. Die zusitzliche Kenntnis von Zustinden
zu fritheren Zeitpunkten

X(t0) = io, X(t)) = i1y ooy X(ty-1) = ln—y
hat keinen EinfluB auf die Wahrscheinlichkeit, daB sich der ProzeB zur Zeit #,.,

im Zustand i,., befinden wird, unter der Voraussetzung, daB er sich zur Zeit ¢,
im Zustand i, befindet.
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Definition 3.6: Die bedingte Wahrscheinlichkeit P(X(t) = jlX(s) =i) (s <1,
s,tel, i,jeX) heift Ubergangswahrscheinlichkeit des Zustandes i zur Zeit s in den
Zustand j zur Zeit t und wird mit p;(s, t) bezeichnet.

Viele Eigenschaften Markowscher Ketten lassen sich in entsprechender Weise fiir
diskrete Markowsche Prozesse verallgemeinern.

Satz 3.3: Fiir die Ubergangswahrscheinlichkeiten p,(s,t) diskreter Markowscher
Prozesse gilt:

0=pys,) =1, (3.14)

Zpils, 1) =1, (3.15)

pif(s, 1) = X puls, D) piy(T, 1); s <T < 1. (3.16)
k

Gleichung (3.15) sagt aus, daB der ProzeB mit Wahrscheinlichkeit 1 im Zeitintervall
[s,t) vom Zustand i in einen Zustand j iibergeht. (3.16) ist eine Verallgemeinerung
der Gleichung von Markow und wird Chapman-Kolmogorowsche Gleichung genannt.
Weitere Eigenschaften ergeben sich aus der Betrachtung des folgenden Beispiels.

Beispiel 3.3: Es wird die Arbeit einer Telefonzentrale betrachtet. X(¢) (zr = 0)
bezeichnet die Anzahl der Gespriche, die bis zum Zeitpunkt 7 anfallen. Im Mittel
treten 4 Gespriache pro Zeiteinheit auf.

a) Wie lauten die Ubergangswahrscheinlichkeiten fiir diesen ProzeB?

b) Wie groB ist die Wahrscheinlichkeit dafiir, daB in den ersten 3 Zeiteinheiten genau
2 Gespréche registriert werden?

c) Wie groB ist die Wahrscheinlichkeit dafiir, da nach sehr langer Zeit (¢t > o)
a Gespriache registriert werden?

In Kapitel 2 wurde darauf hingewiesen, daB {X(), # = 0} ein diskreter stochastischer
ProzeB mit homogenen unabhidngigen Zuwichsen und speziell ein Poissonscher
ProzeB ist. A ist dabei der Erwartungswert der pro Zeiteinheit anfallenden Gespréche.
Um zu zeigen, daBl es sich bei dem im Beispiel beschriebenen Proze um einen
Markowschen handelt, benétigen wir den folgenden

Satz 3.4:') Ein diskreter stochastischer Prozef {X(t),t = 0} mit P(X(0) = b) =1
(b konstant) und unabhdingigen Zuwdchsen ist ein diskreter Markowscher Prozefs.

Denn ist 0 =17, <t <..<t,<t,; eine beliecbige wachsende Folge von
Parameterwerten, 148t sich X(#,+,) als Summe unabhéngiger Zuwiéchse schreiben:

X(twsr) = X(0) + [X() — XO)] + ... + [X(tys1) — X(@)].

Unter Beachtung des letzten Abschnittes von Kapitel 2 kann der Leser den Beweis
leicht selbst beenden.

Man erkennt also, daB alle Poissonschen Prozesse (somit auch der im Beispiel
betrachtete ProzeB3) diskrete Markowsche Prozesse sind.

1) Dieser wichtige Satz gilt nicht nur fiir diskrete Prozesse, sondern 148t sich verallgemeinern.
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Wir ermitteln nun die Ubergangswahrscheinlichkeiten eines Poissonschen Pro-
zesses. Es ist zundchst
pifty, t2) = P(X(12) = jIX(t;) = i)
_ P(X() =i, X(12) =)

PG = 1) (6j=0,1,2,..). (3.17)

Unter Beachtung von (2.16) folgt
- P(X(t,) = i) P(X(t2) — X(t)) =j — i)

Piftys 12) PX(,) = 1)
e = )V e
—_——— e M), <,
=[ G- !
0, izj. (3.18)
Mit ¢t = t, — ¢, kann man schreiben
GO e-n, i<,
piut)=1{(G—D! (3.19)
0, =

Definition 3.7: Ein diskreter Markowscher Prozef {X(t), te I} heifit homogen, wenn
fiir beliebige i,je€X und t,,t, el die Ubergangswahrscheinlichkeit p;j(t,, t;) nicht
von ty und t,, sondern nur von der Differenz t = t, — t, abhdngt. Man schreibt

Pif(ts, t2) = pij(t).

Poissonsche Prozesse sind somit homogene diskrete Markowsche Prozesse.
_Mit 2 = 4 ergeben sich aus (3.18) die in Aufgabe a) von Beispiel 3.3 gesuchten
Ubergangswahrscheinlichkeiten

4r)-i .
pij(t) = ((]_) o e, i<,

pif(t) =0, i2].

Zur Losung von b) bestimmen wir die absoluten Wahrscheinlichkeiten p;(r)
= P(X(#) = j). Mit den allgemeinen Anfangsbedingungen

pi(0) = P(X(0) =i), i=0,1,2,.., (3.20)
erhilt man unter Beriicksichtigung der Formel fiir totale Wahrscheinlichkeiten
pit) = ; Pi0) pi(). (3.21)

Da zur Zeit ¢ = 0 mit der Registrierung der Gespriche begonnen wird, ist
1 fir i=0,

- i=0,1,2, ...
0 fir i+0,

pi(0)
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und mit A = 4
22
P2(3) = po2(3) = —e’”

Aus (3.20) und (3.21) ist ersichtlich, daB Anfangsbedingungen und Ubergangs-
wahrscheinlichkeiten einen homogenen diskreten Markowschen ProzeB vollstindig
(wahrscheinlichkeitstheoretisch) charakterisieren. Zur Lésung von c¢) betrachten wir
homogene diskrete Markowsche Prozesse noch etwas eingehender.

Die in Satz 3.3 angegebenen Beziehungen kann man in der Form

0 = piy(®), (3.22)
;zm(t) =1, (3.23)
pift +5) = )k:p.-k(t)pu(s), i,j=012,.. (3.24)

schreiben. Satz 3.2 kann in der folgenden Weise verallgemeinert werden:

Satz 3.5: Fiir homogene Markowsche Prozesse {X(t),t = 0} mit endlich vielen
Zustinden {0, 1,2, ..., n} existieren die Grenzwerte

lim p,(t) = p; (3.25)
fand e}

fir alle i,j = 0,1, ...,n, wenn es ein t* (0 < t* < oo0) gibt, fiir welches alle p;(t*)
(i,j=0,1,2, ..., n; i <j) positiv sind.

GemiB (3.21) streben bei Giiltigkeit dieses Satzes auch die absoluten Wahrschein-
lichkeiten p,(t) gegen die von den Anfangsbedingungen unabhingigen Grenzwerte p;, °
denn es gilt

lim (1) = £ 2y = 1, T 0:0) = . (3.26)

Obwohl ein Poissonscher ProzeB unendlich viele Zustinde i = 0, 1,2, ... besitzt
und Satz 3.5 nicht anwendbar ist, haben alle Ubergangswahrschemhchkelten Grenz-
werte. Denn es gilt

@)
w (j—)!
Die Wahrscheinlichkeit, daB fiir # - oo genau j = a Gespriche eintreffen, ist somit
gleich null. Die Giiltigkeit von (3.25) erklért sich daraus, daB alle Zusténde transient

sind (vgl. Definition 3.4). Von jedem Zustand i kann man zum Zustand j (j > i)
iibergehen, aber aus dem Zustand j nicht zum Zustand i zuriickkehren.

hmp,,(t) = hm eM=0, i,j=0,1,2,.... 3.27)

3.2.2.  Geburts- und Todesprozesse

Es werden nun Prozesse betrachtet, bei denen der Zustand sowohl durch Zuginge
(Geburten) als auch durch Abginge (Todesfille) verdndert werden kann. Bei der
Betrachtung von Bevolkerungsentwicklungen, der Vermehrung von Bakterien-
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kolonien, radioaktiver Zerfallsprozesse sowie bei vielfdltigen Problemen der Bedie-
nungs-, Lagerhaltungs- und Zuverldssigkeitstheorie besitzen sie eine grofe Bedeu-
tung.

Definition 3.8: Ein diskreter Markowprozef {X(t),t = 0}, ¥ = {0,1,2...}, heift
Geburts- und TodesprozeB, wenn seine Ubergangswahrschemlzchketten folgende Be-
dingungen erfiillen:

Der Prozef geht von einem Zustand n zur Zeit t in einem geniigend kleinen Zeit-
intervall At mit Wahrscheinlichkeit

In(t) At + o(At)
in den ndchsthoheren Zustand n + 1, mit Wahrscheinlichkeit
1) At + o(At)

in den ndichstniederen Zustand n — 1 und mit Wahrscheinlichkeit o(At) in einen
Zustand n + r, r = 2, iiber.

2q(t) und p,(t) sind von n und ¢ abhidngige Funktionen, welche die Schnelligkeit
des Wachstums bzw. des Abnehmens der Ordinaten von X(#) bestimmen. Sie heiflen
Geburts- bzw. Sterbekoeffizient. Bei u,(t) = 0, 4,(t) + 0 spricht man von einem
reinen GeburtsprozeB, bei 4,(t) = 0, u,(t) = 0 von einem reinen Todesprozef.
Aufgabe 3.1: Ermitteln Sie die Koeffizienten 4, und u, fir ein Modell einer Bak-
terienkolonie, wenn jeder Mikroorganismus sich in Az mit Wahrscheinlichkeit
AAt + o(At?) teilt und mit Wahrscheinlichkeit Az + o(At) abstirbt.

Es 14Bt sich nun beweisen, daB bei Geburts- und Todesprozessen die Ubergangs-
wahrscheinlichkeiten einem System von Differentialgleichungen, den sogenannten
,,Kolmogorowschen Gleichungen® geniigen. Stellt man dieses System auf und 16st
es, konnen alle interessierenden Parameter unmittelbar bestimmt werden. Im folgen-
den soll das Kolmogorowsche System aufgestellt und die Losungen fiir spezielle
Geburts- und Sterbekoeffizienten ermittelt werden.

Der ProzeB {X(¢), t = 0} wird zu 3 verschiedenen Zeitpunkten s, 7 und 7 + Ar
mit s < ¢ betrachtet. Es sei weiterhin bekannt, daB X(s) = i und X(t + Ar) = n ist.
Dann gibt es fiir den Ubergang von i nach n folgende Mdoglichkeiten:

a) X(t) geht wihrend des Zeitabschnitts [s, #) von i in » — 1 und anschlieBend im

Abschnitt [¢, ¢ + Af) von n — 1 in n iiber. Die entsprechenden Ubergangswahr-

scheinlichkeiten sind

Pina(S 1)y Paoratt + A1) = 2 () AL + 0(A7). (3.28)

b) X(7) geht wahrend des Abschnitts [s, #) von i in n + 1 und anschlieBend im Inter-
vall [t,¢ + At) von n + 1 in n iiber. Die entsprechenden Ubergangswahrschein-
lichkeiten hierfiir sind

Prnsa(S5 1)y Purralty £+ A) = p,is (1) At + o(A2). (3.29)

c) X(t) geht innerhalb [s, #) von i in n iber und verbleibt im nachfolgenden Inter-
vall [t,¢ 4+ Ar) in diesem Zustand. Die Ubergangswahrscheinlichkeiten hierfiir
sind

Pin(S, 1)y put, t + A1) = 1 — A,(t) At — u,(t) At — o(At). (3.30)
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d) X(z) geht innerhalb [s, #) von i in #n + r mit |r| > 1 und anschlieBend in [¢, ¢ + Af)
von n + r in n iiber. Hierfiir ergeben sich die Ubergangswahrscheinlichkeiten
Pinzd8,1); Puzealty t + A1) = o(A1). (331
Wegen der Unabhingigkeit der Ubergiinge in [s, ¢) und [z, ¢ + Ar) gilt
Pin(s, t 4+ A1) = Ayey(8) Pron=1(5 1) At + pii1(8) pronsa(s, 1) At
+ [1 — 2,(6) At — u,(t) At] pi(s, t) + o(At). (3.32)
Nach einfachen Umformungen erhélt man

(S, T + At) — pus, t . :
Pulss L4 2D Pl D) g (0)praes(ss 1) + tinea) Prsrss, D)

o(At)
At

Setzt man voraus, daB3 die partielle Ableitung nach ¢ existiert, folgt fiir n = 1

— [(t) + pa®O] Punls, 1) + (3.33)

LD g0 prres5, 1) + s ®) P ) = V) + 0] s, 1)

(3.39)
und firn =0

g’% = p1(8) pir(s, 1) — 2o(t) Pio(s, 1),

da ein Glied mit A_,(¢) entféllt. AuBerdem setzt man uo(t) = 0, da sonst der Wert —1
auftreten wiirde.

X(#) nehme mit Wahrscheinlichkeit 1 fiir # = 0 den Wert N an. Dann erhdlt man
unter Beriicksichtigung von (3.21) aus (3.34) ein System von Differentialgleichungen
fir die absoluten Wahrscheinlichkeiten p,(t) (n = 0)

—31717..(1) = Z0=1(8) Pums(8) + pinss(8) Puea(8) = [20) + (Ol (1), 2 1,

S po®) = @ i) ~ 7a0) polt), 1 =0, (339)

mit .den Anfangsbedingungen

©) = 1 fir n=N,
2= 0 fir n+ N

Ist 2, = 0, so gilt X(¢) = O fiir alle r = ¢,, falls X(#,) = 0 ist. Der ProzeB verbleibt
also immer im Zustand Null, falls er einmal dorthin gelangt ist. Man bezeichnet
n = 0 in diesem Fall als absorbierenden Zustand. Gilt 4, > 0, so ist mit positiver
Wahrscheinlichkeit X(¢) > 0 fiir ¢ > #,, falls X(#,) = 0 ist. Der ProzeB geht mit
positiver Wahrscheinlichkeit in einen Zustand n > 0 iiber. Man bezeichnet dann
n = 0 als reflektierenden Zustand.
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Es sollen nun unter einigen speziellen Annahmen die Losungen angegeben werden.
Fiir

M) =h; ) =0 (3.36)

ergibt sich mit N = 0 ein Poissonscher Prozef.
Denn aus (3.35) ergibt sich das System

PO aprs) = o), mz 1,

. (3.37)
2s) . apott)

mit den Anfangsbedingungen po(0) = 1, p,(0) = 0, n = 1. Mit dem Losungsansatz
Pu(t) = e7q,(t) erhilt man

dgu(t) _
@ = Mu-1(t), n>1,
dg,(?) _ _
=k @ =1

mit den Anfangsbedingungen ¢o(0) = 1, ¢,0) =0, n = 1. Hieraus erhilt man
schrittweise

w0 =1, o)=L g0 =
und schlieBlich
o) = ('1’) M en n=o0,1,2,.. (3.38)

Mit N = 1 ergibt sich, wie man leicht nachpriifen kann,

Pul?) —%e-‘z n=12 .., (3.39)

po(t) = 0.

Fiir allgemeine Koeffizienten wird die Bestimmung der Lésung kompliziert. Ist
beispielsweise

=MD, = p(t)n (3.40)
(7(t) und pu(z) sind stetige Funktionen), ergibt sich mit N = 1
po(t) =u(t), n=0,

(3.41)
pot) = [L = u@®][l — o] 0(ty-!, nz1,
mit () .
e~
ut) =1- oK o) =1~- Ok (3.42)

3 Beyer, Stoch. Proz.
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wobei

w(t) = e—’(’)[l + f e @ () dﬁ] (3.43)
und ‘

rt) = J’ [u(@) — A(9)] d9 (3.44)
ist. Den Losungsweg findet der interessierte Leser ausfiihrlich in [17] dargestellt.
Unter Beriicksichtigung von (3.41)—(3.44) lassen sich Mittelwert- und Varianz-

funktion bestimmen. Es folgt

mt) = 3 np(6) = 3 il = u®] 11 - (o)) o0y

= [ = ] [t = (0] 3 moley~
0]

= 1_—0(0. = e-1(0
= exp{ = [ [u®) — 2] dﬁ}. (3.45)
0
Fiir die Varianzfunktion gilt
oX(t) = E[X*(t) — m¥®)]. (3.46)
Es ist aber
E[X*(1)] =n=20 n2p,(t) =n§° n(n — 1) p,(t) + gonpn(t)

[ — @[l - v(:)]:'gon(n — Doy + 11—}‘;—8—
=1 = w1 {11 = o010 3 ntr = 1) oy = s
2 1
= [1 = u(®)] {[1 ~ {010 =507 T D(t)}
20(t) + 1 — o(t)

B =)
_ =@l 0+ (o)
m—OF

Somit ergibt sich unter Beriicksichtigung von (3.46)

_ [ —u@®Ill +o®)] (1 —u@®]? _ {1 — u@)] [u@) + v@®)]
) =T 0P =) =T wF

= e~ f e® [AD) + u()] dd. (3.47)
0
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Wegen A, = 0-A(t) = 0 ist n = 0 ,,absorbierender Zustand*. Ist eine Trajektorie
zu einem Zeitpunkt 7, > 0 null, dann ist sie auch fiir alle # = ¢, gleich null. Die
Wahrscheinlichkeit, daB sich der ProzeB zur Zeit 7 im Zustand 0 befindet, ist wegen
(3.42)—(3.44)
t
Jﬂ @ u(P) dd
pot) =u=—t (3.48)

t

1+ [ e®u@)dd
0
Die Wahrscheinlichkeit der Absorption des Prozesses ist dann

t
[ er® u(9) do
lim po(t) = lim—%——— = p,. (3.49)
fad:d 1= 1+ j‘ er(ﬂ)lu(ﬂ.) dy9
0

Ist po = 1, endet der ProzeB mit Wahrscheinlichkeit 1 durch Absorption. Das
bedeutet, daB ,,fast alle* Trajektorien jeweils zu irgendeinem Zeitpunkt null werden.
Aus (3.49) erkennt man, daBl die notwendige und hinreichende Bedingung fiir die
Absorption mit Wahrscheinlichkeit 1 die Gtiltigkeit der Beziehung

t

lim [ e® p®) dd = oo (3.50)
t>o g

ist. Wir betrachten nun etwas genauer den Zeitpunkt v der Absorption, d. h. die
Zeitpunkte, in denen die einzelnen Trajektorien des Prozesses in den Zustand Null
gelangen. 7 ist eine Zufallsvariable, deren Verteilungsfunktion Fi(z), Verteilungs-
dichte f;(#) und Parameter leicht ermittelt werden konnen. Es ist

" F(1) = P(v < 1) = po(t) (3.51)
und "
Flo) = f40) = <M
[1 + [e®u®) dﬁ]

0

(3.52)

Der Erwartungswert E(r) kennzeichnet die mittlere Lebensdauer des Prozesses.
E(7) kann aus der Gleichung

E(7)
[ eOu(r)dt =1 (3.53)
0

ermittelt werden.
Es bereitet keine Schwierigkeiten, weitere Spezialfille zu behandeln. Ist beispiels-
weise
J(t) = nd,  p(t) = pn; 2, pu = const,
3*
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ergeben sich entsprechende Formeln fiir absolute Wahrscheinlichkeitsverteilung,
Mittelwertfunktion und Varianzfunktion unmittelbar durch Spezialisierung des
eben behandelten Falles.

Beispiel 3.4: Wir betrachten im folgenden die kosmische Strahlung. Es sollen meh-
rere Modelle fiir das Zustandekommen des sogenannten Kaskadenschauers betrach-
tet werden. Das erste Modell ist sehr einfach und spiegelt die realen Verhiltnisse nur
sehr grob wider. Jedes folgende Modell beriicksichtigt weitere Voraussetzungen und
stimmt mit der Wirklichkeit besser tiberein.

Die kosmische Strahlung setzt sich aus harter und weicher Strahlung zusammen.
Die weiche Strahlung, der wir unsere Aufmerksamkeit widmen wollen, besteht aus
energiereichen Photonen und Elektronen hoher Geschwindigkeit. Trifft ein Photon
beispielsweise auf Bleiwdnde, wird es auf einem Wegstiick Az mit einer bestimmten
Wahrscheinlichkeit absorbiert. Bei der Absorption entstehen ein Elektron und ein
Positron (sie sollen im folgenden nicht weiter unterschieden werden). Ein Elektron
strahlt beim Durchlaufen einer Wegstrecke A¢ mit einer bestimmten Wahrschein-
lichkeit unter Energieverlust ein Lichtquant aus. Die sekundir entstandenen Photo-
nen bzw. Elektronen erzeugen wiederum Elektronen bzw. Photonen. Dieser Prozel3
setzt sich lawinenartig fort. Es entsteht in der Wilsonschen Nebelkammer der bekannte
Kaskadenschauer. Da in der Nebelkammer nur Elektronen, jedoch keine Photonen
beobachtet werden konnen, sollen nur Modelle angegeben werden, die Aussagen
iiber die Zahl der Elektronen machen.

Das erste Modell wurde 1937 erstmalig angegeben. Die Wahrscheinlichkeit, da3
ein Elektron erzeugt wird, wurde proportional der Wegstrecke A¢ angenommen.
Dabei wurde weder die Zahl der bereits erzeugten Elektronen, noch ihre Energie
bzw. die bereits zuriickgelegten Wegstrecken berticksichtigt. Unter diesen Voraus-
setzungen ergibt sich ein reiner GeburtsprozeB3 mit

=12y  pn=0.

Nimmt man an, daB zur Zeit ¢t = 0 gerade ein Elektron auf der Oberfliche des
Materials auftrifft, erhdlt man das System (3.37) mit den Anfangsbedingungen

w=1
I fir n=1,

0) =
0 {0 fir n+ 1.

Als Losung erhdlt man (3.39). p,(¢) gibt dabei die Wahrscheinlichkeit an, da3 zur
Zeit t genau n Elektronen vorhanden sind.

Das zweite Modell wurde wenig spiter vorgeschlagen. Jedes weitere Elektron
erzeugt ebenfalls auf der Wegstrecke At mit einer Wahrscheinlichkeit proportional
zu At durch die beschriebene Reaktion ein weiteres Elektron. Allerdings ist auch in
diesem Modell die Wahrscheinlichkeit unabhéngig von der Energie der Elektronen
angenommen. Man erhélt wiederum einen reinen Geburtsproze8, jedoch ist

(3.54)

Ay = 1A, Yn = 0.

Bei gleichen Anfangsbedingungen (3.54) wie im ersten Modell folgt
pi(t) = —2p,(D), n=1,
o) = An = 1) puey(t) — Inpy(1), n > 1.
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Unter Beriicksichtigung von (3.40) — (3.44) erhélt man mit
r(t) = =X,
w(t) = e*,
u(t) =0 und v(t)=1—¢e*
die Losungen
Po(t) =0,
) = e M1 —e 1, n>0.

Die Mittelwertfunktion von {X(¢),z = 0} gibt die mittlere Zahl der Elektronen
in Abhéngigkeit der Zeit an und lautet geméB (3.45)

my(t) = e,

Dieses Modell stellt ebenfalls noch eine grobe Naherung dar, denn wihrend hierin
der Erwartungswert fiir die Zahl der erzeugten Elektronen mit zunehmender Material-
dicke exponentiell zunimmt, zeigt die Wirklichkeit, daB die mittlere Zahl der Elek-
tronen zunichst stark zunimmt, nach Uberschreitung einer bestimmten Plattenstdrke
jedoch schnell absinkt.

Das 3. Modell beriicksichtigt diesen Sachverhalt. Zu den genannten Voraus-
setzungen kommt noch die folgende hinzu. Jedes Elektron wird beim Durchlaufen
der Wegstrecke Ar mit einer Wahrscheinlichkeit proportional zu dieser Wegstrecke
absorbiert. Diese Wahrscheinlichkeit sei unabhidngig von der vorher bereits durch-
laufenen Wegstrecke . Man erhalt

I = A, Mo = npL, =+ A

Das Differentialgleichungssystem fiir die p,(¢) lautet dann unter den gleichen Anfangs-
bedingungen (3.54)

pot) = pp:(2),

po(t) = (n = D) Ap,y(t) + (n + 1) pppas(t) — 12 + ) po(2).
Unter Berticksichtigung von (3.41) —(3.44) folgt

rt) =@ -2t

Aet-mn — g
w(t) = ——m——
Es ergibt sich als Losung
- u—=2
Po(t) =1+ Ty

(,u = 1)2 elu=nt (1 wi e(ﬂﬂl)’)"?l
22

=T n>0.
(1 — %e(u—l)')

pult) =
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Die Erwartungswertfunktion lautet

my(t) = eC-mr,

Dabei gilt
fir 2
lim my(f) = {"0 o AL
P 0 fir 4<gp.

Das letzte von Arley vorgeschlagene Modell beriicksichtigt zusitzlich, daB die
Wahrscheinlichkeit der Absorption jedes Elektrons nicht nur der Linge der betrach-
teten Wegstrecke Af, sondern auch der Lidnge des vorher bereits durchlaufenen
Weges proportional ist. Diesem Ansatz liegt die Annahme zugrunde, dal die Elek-
tronen um so mehr Energie verlieren, je grofBere Strecken ¢ sie im Material durch-
laufen. Man erhélt jetzt einen inhomogenen Geburts- und Todesproze3 mit

Ay = n, 1a(t) = ptn.

Unter Beibehaltung der bisherigen Anfangsbedingungen (3.54) ergibt sich das
System
po(t) = ptp.(1),
put) = Mn — 1) pues(t) = (2 + pt) npa(t) + pt(n + 1) ppas(0).
Unter Beriicksichtigung von (3.40) —(3.44) folgt
r(t) = ut* — At,
t

W(t) = 1 + hetutsit [ ehuoi=a gy,
0

Somit folgt das System
Po(t) = 1 — ef-tue?)

pt) =e 2A"*‘[A+e 2"] , n>0,

mit
: (ud-2)?
A=2 _’. e 2 dd.
0
Fiir die Mittelwertfunktion erhélt man

my(t) = e 5.

’2
Mit 2 = 2 und p = 1 ergibt sich speziell m,(t) = exp (Zt - —2—) Die mittlere Lebensdauer E(7) des
Prozesses kann gemiB (3.53) aus
E@

t2
fexp (T - 2t) tdt =1
0
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bestimmt werden. Die graphische Auswertung des Integrals liefert E(z) = 3,2. Man erkennt aufer-
dem, daB lim po(#) = 1 ist, weil nach (3.50)
20

13 12
lim fexp (— - Zt) tdt = 0
tso0 2
0

ist. Das bedeutet, daB3 der ProzeB mit Wahrscheinlichkeit 1 durch Absorption endet. Skizziert man
den Verlauf von m,(r), erkennt man, daB die Elektronenzahl zunédchst stark zunimmt und dann
rasch gegen null abnimmt. Untersuchungen haben ergeben, daB dies mit den tatsdchlichen Beobach-
tungen gut iibereinstimmt.

Aufgabe 3.2: Bestimmen Sie m(¢) und o2(¢) fiir das Modell der Bakterienkolonie in
Aufgabe 3.1. Dabei sei u = }A. :

Oftmals interessiert nicht die allgemeine Ldsung von (3.35), sondern bei homo-
genen Geburts- und Todesprozessen mit konstanten Koeffizienten A,(f) = 4, und
1a(t) = u, die Losung im stationdren Zustand. Es kann gezeigt werden, daB mit
t —» oo die ergodischen Wahrscheinlichkeiten p, nach Satz 3.5 existieren, wenn

.“n+1 Tdr
gleichungen

<1, nzny Mit — dp =0,n=0,1,2, ..., erhélt man folgende Bestimmungs-

0 = Jp-1Pn-1 = (ln + ) P + Pne1Puer, nZ 1.
(3.55)

0= —Aopo + p1P1s n=0.
Fiir (3.55) kann man
—ubn + pnsi1Puy = (= AneiDaey + puPr) = 0
schreiben, so daB sich
A
ey —/ﬁp"’ (3.56)
- LI B

= 170,‘1;[l s

Pn =

ergibt. Fiir p, erhalt man unter Beriicksichtigung von

.
po+2(poH-L)=l
k=1 Mk

die Beziehung

00 n }'kl -1
[ +3 11 ] . (.57)
n=1k=1 Mg
Fiir
=2,  p,=nu, A u = const,
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ermittelt man beispielsweise aus (3.55) sehr leicht

ar (&)’
—1!7"—1-7 —e F(—")"’ n=01,2,.. (3.58)
i=o_i!—(7)

Aufgabe 3.3: Man zeige, daB fiir 2, = 4, u, = p das System (3.55) die Losung

o= (-2 o

besitzt.

Beispiel 3.5: Wir setzen die Behandlung der Gespréichsvermittlung in einer Telefon-
zentrale fort.

Es werde zunidchst vorausgesetzt, da ,,unendlich® viele Leitungen vorhanden
sind, so daB jeder Teilnehmer eine freie Leitung vorfindet. In Ubereinstimmung mit
den bisherigen Betrachtungen koénnen wir voraussetzen, daB die Zahl der bis zum
Zeitpunkt ¢ eingetroffenen Gespriche einen Poissonschen ProzeB {Y(¢), t = 0} mit
der Intensitit A bildet. Die Gespridchsdauer sei eine exponentialverteilte Zufalls-
groBe Z mit dem Parameter u. X(¢) sei die Anzahl der Leitungen, die zum Zeitpunkt ¢
besetzt sind. {X(r),r = 0} ist ein stochastischer ProzeB, dessen Charakteristiken
ermittelt werden konnen. Es sei bekannt, daB zum Zeitpunkt 7 (Beginn der Regi-
strierung) i Leitungen besetzt sind, d. h., P(X(r) = i) = 1. Dann héngt die Zahl
der besetzten Leitungen zur Zeit ¢ + At eindeutig
a) von der Zahl der Leitungen, die im Intervall Az frei werden,

b) von der Zahl der im Intervall A7 neu ankommenden Gespriache und

c¢) von der Dauer der Gespriche, die in A¢ beginnen,

ab. Auf Grund der Voraussetzungen ({¥(¢), = 0} ist Poissonscher ProzeB) sind
alle diese Faktoren unabhéngig davon, wie der ProzeB bis zum Zeitpunkt ¢ verlief.
Das erscheint insbesondere in Hinsicht auf den ersten Faktor paradox, erklirt sich
aber aus den im Kapitel 2 angegebenen Eigenschaften von Poissonprozessen und
Exponentialverteilung. {X(¢), # = 0} ist somit ein homogener diskreter Markow-
prozeB mit unendlich vielen Zustinden i (i = 0, 1, 2, ...). Die Wahrscheinlichkeit,
daB in einem Zeitintervall At wenigstens 1 Anruf eintrifft, ist gleich AAz + o(Ar)
(vgl. Aufgabe 2.4), die Wahrscheinlichkeit des Eintreffens von mehr als einem
Gesprich o(At). Die Wahrscheinlichkeit, daB ein Gesprich linger dauert als Az, ist

P(Z > At) = e,

Die Wahrscheinlichkeit, daB n Gespriche ldnger als Az dauern, ist (wegen der Un-
abhiéngigkeit der Gespriche) gleich

2
“

Pn =

M8

(e—yAr)n - e—lmAl_
Die Wahrscheinlichkeit, daB in Az wenigstens eine Leitung frei wird, ist gleich
At 2u? At?
e s EE e ]

11 a7
= nu At + o(At).

l_e*IlnAt=1_[1_
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Die Wahrscheinlichkeit fiir das Freiwerden von mehr als einer Leitung ist o(Af).
Damit erhdlt man

Pt t + A1) = o(Ar), |i—n| >1,
Pranir(t, t + At) = LAt + o(At), (3.59)
Pun-1(t, t + A1) = nu At + o(Ar).
{X(1), t = 0} ist also ein Geburts- und TodesprozeB mit
I =4; Iy = RL. (3.60)

Das Differentialgleichungssystem fiir die absoluten Wahrscheinlichkeiten p,(7) lautet
dann gemiB (3.35)

po(t) = up(t) — 4po(t), n =0,
o) = App—s(t) — A + un) po(t) + p(n + 1) ppis(t), n2 1.

Da man sich bei dieser Problematik nur fiir den stationdren Zustand interessiert,
erhélt man folgendes von den Anfangsbedingungen unabhéngige Gleichungssystem

[vgl. (3.55)]
0 = pupy — Apo, n=0,
0 =App-y — (2 + pn) pp + p(n + ) ppsy, n>0.

Als Losung erhélt man nach (3.58)

2
1 (A\" %
Pn=ﬁ(7)e , n=0.

pn ist die Wahrscheinlichkeit, daB nach sehr langer Zeit n Leitungen besetzt sind
(vgl. Aufgabe c) des Beispiels 2.3). Wie man erkennt, hingt diese Wahrscheinlich-

keit wesentlich vom Quotienten 4/u ab Z p; ist die Wahrscheinlichkeit, daB hoch-

stens n Leitungen besetzt sind, 1 — Z p, die Wahrscheinlichkeit, daB mindestens
n Leitungen besetzt sind.

In der Praxis ist selbstverstandhch die Anzahl a der Leitungen begrenzt. Sind
alle Leitungen belegt, kann ein neu eintreffender Anruf nicht beriicksichtigt werden.
Entfallt er, so spricht man beziiglich der Telefonzentrale von einem System mit
Verlust. Da X nur die Werte0, 1,2, ..., @ annehmen kann, erhélt man anstelle (3.60)

A fir n=0,1,...,a,
= {0 fir n> a;

A fir n=0,1,...,a—1,
""z{o fir n2 a.
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Anstelle des Gleichungssystems (3.55) ergibt sich

Apo + ppy =0, n=0,
W1 — A+ pn) py + p(n + D) ppey =0, 0<ns=a-1, (3.61)
APa-1 — pap, = 0, n=a.

Wegen p, = 1/n! (Au)* po firn =1, ...,aund Y p, = 1ist
n=0

=T n=20,1,...,a. (3.62)

£ (%)
Pa gibt die Wahrscheinlichkeit an, daB ein neu ankommender Anruf keine freie
Leitung vorfindet und damit verlorengeht. Tabellen fiir p, unter verschiedenen
Annahmen fiir @ und A/u findet der Leser in [17]. In der Praxis geht man u. a. von
der Forderung aus, die Zentrale so zu dimensionieren, daB Auslastung und Verlust-
wahrscheinlichkeit in einem verniinftigen Verhéltnis stehen.

In den vorangehenden Abschnitten wurden Markowsche Ketten und diskrete
Markowsche Prozesse behandelt. Von groBler Bedeutung insbesondere fiir die
Naturwissenschaften sind allgemeine stochastische Prozesse mit Markoweigen-
schaften.

Ein allgemeiner Markowscher ProzeB kann #dhnlich wie im diskreten Fall durch
Angabe einer Ubergangsfunktion

F(s,x; t,y) = P(X(t) < y | X(s) = x), 5,620, x,ye(—o0;+00),
(3.63)

charakterisiert werden. Sie gibt die Wahrscheinlichkeit dafiir an, daB im Moment ¢
die ZufallsgroBe X(¢) einen Wert kleiner als y annimmt, wenn bekannt ist, daB im
Moment s (s < t) X(s) = x gilt. (3.63) ist eine bedingte Wahrscheinlichkeitsvertei-
lungsfunktion, die analog zum diskreten Fall die Ubergangswahrscheinlichkeit des
Prozesses von einem Wert in eine Menge anderer Werte zu einem spiteren Zeitpunkt
angibt. Eine ausfiihrliche Behandlung findet der Leser in [5], [6] und [21]. Durch
Prozesse dieser Art lassen sich u. a. Diffusionsvorgdnge modellieren. Ein Spezialfall
ist die Brownsche Molekularbewegung.
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4.1. Grundlegende Eigenschaften

In der Praxis treten hiufig zufillige Prozesse auf, deren Charakteristiken sich bei
Verschiebung der Parameterwerte auf der Parameterachse nicht dndern. Kehren wir
zum Beispiel 2.2 zuriick. Normalerweise ist es bei der statistischen Untersuchung
des Oberflachenprofils eines Werkstiickes gleichgiiltig, an welcher Stelle der Bezugs-
punkt z = 0 festgelegt wird (vgl. Bild 2.2). Wir wiirden die gleichen Mittelwert-,
Varianz- und Korrelationsfunktionen und sogar dieselbe zugeordnete Verteilung
erhalten, wenn er an einer anderen Stelle als der eingezeichneten liegen wiirde.
Ahnliches Verhalten kann man auch bei zufilligen Prozessen, wie dem Rauschen
in Elektronenréhren, dem Schwund (Fading) und der Abweichungen selbstregelnder
und selbststeuernder Systeme, die unter konstanten duBeren Bedingungen arbeiten,
feststellen. Bei diesen Prozessen ist es gleichgiiltig, zu welchem Zeitpunkt wir mit
der Beobachtung und Registrierung des ProzeBverlaufs beginnen. Sie verhalten sich
,,stationdr* beziiglich des Parameters ¢.

Definition 4.1: Ein stochastischer Prozef {X(t), t € I} heift stationiirer stochastischer
ProzeB, wenn sich die n-dimensionalen Verteilungsfunktionen zu beliebigen Parameter-
werten ty, ty, ...ty (ty, ..o tyel,n = 1,2, ...) bei Verschiebung dieser Werte lings
der Parameterachse um einen beliebigen Wert T nicht dndern.

Das bedeutet
Fopoa (1 oos X0) = Fopee e (Y1 s Xa), @1
und falls die Dichtefunktionen f; ... . (x1, ..., X,) existieren, gilt auch
Strots K1y oo X0) = frivm e (X1, oo Xa). 42

Bei zufilligen Folgen und Ketten mit dieser Eigenschaft spricht man von stationdren
Folgen bzw. stationidren Ketten. Betrachten wir einige wichtige Eigenschaften.

Satz 4.1: Mittelwert- und Varianzfunktion eines stationdren Prozesses sind kon-
stant. Die Korrelationsfunktion héingt nur von der Differenz v = t, — t,, jedoch
nicht von t, und t, selbst ab.

Beweis: Aus (4.1) folgt fiirn = 1

Fz,(xx) = th(xl) = .= Ft,.(xx)~
Die eindimensionalen Verteilungsfunktionen sind von ¢ unabhiingig. Hieraus folgt
my(t) = const und o2(¢) = const. Aus (4.1) folgt weiterhin fiir n = 2 und 7 = —t¢,
Ft,tz(xl, X2) = Fo,rz—t,(xu X3) = Fo,rz—r,(xz — X1). 4.3)

Die zweidimensionalen Verteilungsfunktionen hingen nur von ¢, — ¢, ab. Hieraus
folgt der zweite Teil der Behauptung.
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Die Korrelationsfunktion eines stationdren Prozesses ist somit eine (reelle) Funk-
tion einer Verdnderlichen, und man schreibt

ki(ty, 1) = k(t: — 1)) = k(7). 4.4)

Existieren die Dichtefunktionen, erhilt man m.(r), 6(t) und k.(7) aus

@) = | 3fx) dx = m,

T 4.5)
ox1) = T(x = m)* f(x) dx = o?
und o
kit 1) = JDo (xy = m) (x2 = m) fo,- (X2 — x;) dx; dx2 = ky(7).

Man kann sich leicht davon iiberzeugen, daB die in Satz 4.1 genannten Eigenschaften
nicht hinreichend fiir die Stationaritit sind. Ein ProzeB {X(¢), 7€} mit diesen
Eigenschaften braucht nicht stationar zu sein. Da man sich aber in den meisten
praktischen Anwendungen auf Momente erster und zweiter Ordnung beschrankt,
ist es zweckmaBig, den Begriff der Stationaritét etwas weiter zu fassen. Man bezeich-
net einen ProzeB im erweiterten Sinne stationdr, wenn er die in Satz 4.1 angegebenen
Eigenschaften besitzt.
Aus Satz 2.1 und (2.15) ergeben sich unmittelbar die folgenden Eigenschaften
von k(7).
a) k() ist eine gerade Funktion:
k() = ki{(—7). (4.6)
b) Die Werte einer Korrelationsfunktion sind hoéchstens gleich der Varianz der
Zufallsfunktion:
kx(0) 2 ky(r).

In den Anwendungen treten Zufallsprozesse vielfach infolge stetiger Einwirkung
verschiedener zufilliger Stérungen auf ein dynamisches System auf. Daher wird
oftmals bei einer geniigend groBen Lange des Zeitintervalls v = ¢, — ¢, die Abwei-
chung der Ordinate eines Zufallsprozesses von der mathematischen Erwartung im
Zeitpunkt ¢, vom Wert dieser Abweichung im Zeitpunkt 7, praktisch unabhéngig.
Dann gilt

lim k() = 0, 4.7)
T 00
und die Korrelationsfunktionen besitzen den in Bild 4.1 dargestellten Verlauf.

Korrelationsfunktionen geméaB Bild 4.1a lassen sich im allgemeinen durch die Aus-
driicke

ku(7) = 0% e-i7, (4.8)
k@) = 02 e, o > 0, 4.9)
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und solche gemiB Bild 4.1b durch

ky(z) = o> e*I"lcos fr, « >0, (4.10)
k() = e=**" cos fr 4.11)
mit geniigender Genauigkeit approximieren.!)
K(T) K(T)
T T

Bild 4.1. Korrelationsfunktionen stationdrer Prozesse

Wir fiihren im folgenden einige Beispiele fiir stationdre Prozesse an:
Beispiel 4.1: Ein zufilliger ProzeB {X(¢), —o0 <t < +oo} entstehe auf folgende
Weise. Wir betrachten auf der Achse Ot eine Folge von Ereignissen, die in zufilligen
Momenten nacheinander eintreten. Die Wahrscheinlichkeit p,(At), daB m Ereignisse
im Zeitintervall der Lange At eintreten, sei

@A™,
Pu(A) = — e,

X(#) nimmt zwischen zwei aufeinanderfolgenden Ereignissen im Wechsel die Werte

+1 bzw. —1 an (vgl. Bild 4.2). Man spricht auch von einem homogenen Poisson-
schen Strom von Ereignissen mit dem Parameter 4 (vgl. Kapitel 5). Man bezeichnet

X
7
| ™
1 |

|
+ i +
% _ |5

t

Bild 4.2. Trajektorie eines Signalprozesses

{X(t), —0 < t < +o0o} auch als Signalprozef. Es 1aBt sich zeigen, daB dieser
ProzeB im erweiterten Sinne stationdr ist und eine Korrelationsfunktion der Form
(4.8) besitzt.

Zwei Trajektorien, die an jeder Stelle z Ordinatenwerte mit entgegengesetzten
Vorzeichen besitzen, sind als gleichwahrscheinlich anzusehen. Daher ist sofort ein-

1) Es 1aBt sich beweisen, daB diese Funktionen tatsichlich Korrelationsfunktionen stationirer
Prozesse sein konnen.
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zusehen, daB an jeder Stelle ¢
X(0) = +1 mit Wahrscheinlichkeit 1/2,
~ |—1 mit Wahrscheinlichkeit 1/2

ist. Fiir Mittelwert- und Varianzfunktion ergeben sich
m() == +311=0
) =H-1?+3 12 = 1.

Bei der Bestimmung der Korrelationsfunktion
ki(ty, t2) = E[X(1)) X(12)] (1, < 12)

ist zu beriicksichtigen, daB3 das Produkt X(z,) X(#,) gleich —1 wird, wenn zwischen
t, und 7, eine ungerade Anzahl von Ereignissen (Vorzeichenwechsel), bzw. gleich
+1 wird, wenn eine gerade Anzahl von Ereignissen auftritt. Die Wahrscheinlichkeit
p. fir den ersten Fall ist gleich der Summe der Wahrscheinlichkeiten, daB
1,3,5,7, ... Ereignisse stattfinden. Mit v = ¢, — ¢, ist

R (hr)2m+1 ot

P = 2 Cm D)

und

Die Wahrscheinlichkeit p, fiir den zweiten Fall ist entsprechend
0 (ZT)Zm

- -t
Pe= 2 Gmt ©

Aus der Analysis sind die folgenden Beziehungen bekannt:

0 (ZT)Zm-)»l —1 e e
Zoem -2 e
& o)™ 1 e e
Zo@mr ~ 7 E e

Somit ergibt sich fir #; < 7,
k(ty, ) = k(@) = (=1) py + (+1) p, = €72,
Analog erhalt man fir ¢; > 7,
ko(ty, 12) = ky(z) = e 29,
FaBt man beide Beziechungen zusammen, erhilt man
k(ty, 12) = ky(z) = e~ 27,

Beispiel 4.2: Betrachten wir als nichstes Beispiel einen Schwingungsvorgang der
Form
X(t) = & cos At + &, sin Ar.
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&; und &, sind unkorrelierte ZufallsgroBen mit
E() = E¢) =0;  o%(&y) = 0%(6) = 1.
4 ist eine Konstante. Es folgt
my(t) = 0,
und mit £, = ¢, + 7 ergibt sich
kty, t2) = ki(ty, t;, + 7) = E[X(#; + 7v) X(#))]
= E{[£, cos A(t; + T) + & sin At + 7)]
x [£; cos Aty + &, sin Aty]}
= E{&} cos A(t; + 7) cos Aty + &,&, [sin A(t; + 7) cos Aty
+ cos A(f; + 7)sin At,] + & sin At, sin Aty + 7)}
= cos Aty cos Aty + 7) + sin Aty sin A(t; + 7).
Hieraus folgt schlieBlich
ky(ty; t2) = k(r) = cos Ar.

Die Schwingung X(¢) ist somit in erweitertem Sinne stationar.
Beispiel 4.3: Betrachten wir nun einen ProzeB, der durch Uberlagerung einer end-
lichen Anzahl von zufilligen Schwingungen der ebengenannten Art entsteht. Es sei

X() = 3 bér)
mit
E(t) = & cos It + ny sin A2,
wobei
EE) = Em) =0, o &) =c*(p) =1 fir k=1,2,..,n,
E(:£) = Emy) =0 fur i) und
E¢m;) =0 fir i,j=1,2,..,n
vorausgesetzt wird. Durch analoge Ableitung, die der Leser zur Ubung leicht selbst
durchfiihren kann, findet man

Kty 12) = k@) = 3 B cos .
k=1

Da cos 47 eine gerade Funktion ist, kann k() mit A, = —4, und b_;, = —b; auch
in der Form
k(r) = X 1b%coshr
k=-n
geschrieben werden. Diese Schwingungsvorgénge haben in der Technik héufig die
Bedeutung von Spannung oder Stromstirke. In diesem Fall sind die Koeffizienten 57
proportional der Energie, die im Mittel auf die Schwingungen der Frequenz 4,
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entfallen, da die Energie eines elektrischen Stromes dem Quadrat der Amplituden
der entsprechenden Schwingung proportional ist. Diese Analogie hat man héufig
auch dann im Auge, wenn der SchwingungsprozeB keinen elektrodynamischen
ProzeB charakterisiert. Die Gesamtheit der Zahlen b, heiit daher Energiespektrum,

die Werte 4, Freq 1 des Prozesses. Die Energie ist -durch die Varianz des
Prozesses
n n )
k0) =% > bicosO4 =+ > b2 (4.12)
k=-n k=-—n
gegeben.

Aufgabe 4.1: Als Korrelationszeit 7, eines stationdren Prozesses {X(¢t), ¢ € (— o0, )}
0

bezeichnet man in der Technik den Wert 7, = J |ri(7)| dz, wobei r (t) die normierte

0
Korrelationsfunktion ist. Bestimmen Sie 7, fiir r,(r) = e~*I*l. Was bedeutet 7,
geometrisch? -

4.2, Spektraldarstellung

Wir kniipfen an die letzten Ausfiihrungen an und stellen die Frage, ob fiir alle
in erweitertem Sinne stationdren Prozesse eine derartige analoge Betrachtungsweise
mdglich ist. Das ist tatsdchlich der Fall. Man erkennt diesen Sachverhalt klarer,
wenn eine andere Darstellungsweise der Korrelationsfunktion, die sogenannte
Spektraldarstellung eingefiihrt wird. Betrachten wir deshalb noch einmal das
Beispiel 4.2. Es wird die folgende Funktion F() definiert.

0 fiir AL =4y,
F() = {12 fir —4 <A<y, (4.13)
1 fir A <A :

Ist A0 (i = +1; £2;...) eine beliebige Unterteilung der reellen Achse und AA®
= 2 — 20-1)_ 50 kann k() auch in der Form

ki(r) = lim Y cos AO[F(AM) — F(AG-1)]
A0 7
oder mit Hilfe des Riemann-Stieltjes-Integrals (vgl. Band 2, S. 224)
+00
k@) = [ cosiv dF(2) (4.14)
-

dargestellt werden.
Da cos A7 eine gerade Funktion ist und dF() = —dF(—2) gilt, kann man auch
schreiben

ki) =2 j'ocos At dF(2).
0
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Zu einer Darstellung der Form (4.14) gelangt man auch beim Beispiel 4.3, wenn man
F(%) als nichtfallende linksseitig stetige Stufenfunktion definiert, die jeweils in den

Lo, .
Punkten 42, um den Betrag 7b,; wachst.

0 fir A< —A,
n—1

%kzobﬁ_k fir -4 <A< —A(=mn—1..2),

1 & 2 o

5 - <

FO) =12 ,El bi fir -2, <A=,

n -1

1 > b;zc+1— b2 fir Aoy <AZh (=2 ..,n),

2 k=1 2 =1

Zn: b} fiir An > Ay

k=1

Es 1aBt sich beweisen, daB die Korrelationsfunktion eines beliebigen reellen statio-
nédren Prozesses mit endlicher Varianz in der Form

k(z) = fo cos At dF(Z) = 2 jw cos Ar dF(%) (4.15)
-0 0

dargestellt werden kann, wobei F(4) eine reelle nichtfallende und beschriankte Funk-
tion ist.') Wird umgekehrt fiir F(1) eine Funktion mit den ebengenannten Eigen-
schaften gewihlt, die der Bedingung (4.15) geniigt, dann ist k(z) Korrelationsfunk-
tion eines reellen stationdren Prozesses.

Die Funktion F(2) aus (4.15) heiBt Spektralfunktion des entsprechenden Prozesses.
Im folgenden sollen einige Eigenschaften genannt werden. Zunichst wird die
Beschrinktbeit von F(%) gezeigt. Unter Beachtung von (4.15) erkennt man

k©O) = [ dF(@). (4.16)
Da F(Z) eine nicht abnehmende Funktion ist, folgt mit (4.16) wegen
0 < [ dF(2) = F(e0) — F(—) = k(0) < + 0, 4.17)

daB F(2) eine beschrankte Funktion ist. Wir setzen nun voraus, dafl

_fo k(@) dr < © 4.18)

-®

gilt. In der Praxis ist die Forderung fast immer erfiillt, da mit wachsendem 7 die
Korrelation schnell abnimmt. Dann 148t sich k(r) in Form eines Fourierintegrals

1) Hier und im weiteren wird der Index x immer dann weggelassen, wenn bei der Betrachtung be-
liebiger stationirer Prozesse deren Darstellung in der Form, {X(#)¢ € I} nicht explizit vorgegeben ist.

4  Beyer, Stoch. Proz.
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(vgl. Bd. 3) darstellen. Da k(7) eine gerade Funktion ist, erhdlt man

k(@) = 2 [ f(2) cos 2z dA 4.19)
mit ¢ N

f0) = % f k() cos A dr. (4.20)

0
Vergleicht man diese Darstellung mit (4.15), so erhélt man
A

F@) = [ fd)do, @21
also ; o

F'2) = f4). (4.22)

Die Funktion f(4) wird als Spektraldichte des Prozesses bezeichnet. Wegen (4.12)
und (4.19) gilt

f@ =0, —0 <A< 4w,
und

k0) =2 ff(z) di. (4.23)
0

Betrachtet man an Stelle eines stationdren stochastischen Prozesses eine stationire
Folge {X(n),n =0, 1,2, ...}, erhdlt man durch analoge Ableitungen anstatt (4.19)
und (4.20) die Beziehungen

ky(n) = f f(A) cos An dA
und -

) = % é’;o k. (n) cos An. (4.24)

Bei theoretischen und praktischen Untersuchungen stationdrer Prozesse erweist
es sich hdufig als zweckmiBig, an Stelle der Korrelationsfunktion die Spektraldichte
einzufiihren, so z..B. bei der Analyse und Synthese von Regelsystemen in der Tech-
nik. Ein Grund ist darin zu sehen, daB die Spektraldichte oftmals ein sehr einfacher
rationaler Ausdruck ist. Weitergehende Ausfiihrungen findet man in [8], [18], [25]
und [31].

Beispiel 4.4: In Beispiel 4.1 lernten wir die Korrelationsfunktion
k(z) = el

eines Signalprozesses kennen. Wir ermitteln jetzt die Spektraldichte dieses Prozesses.
Es 1aBt sich zeigen, daB k,(r) die Bedingung (4.18) erfiillt. Weil k() eine gerade
Funktion ist, also k,(—7) = k,(7) gilt, kann man die folgende Beziehung anwenden:

0 0 0
1 1 1 i
;fk,(-c) cos Az dv === ka(r) cos At dr =5 ka(r)e dr.
0 —-® -
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Somit ergibt sich gemal (4.20)

©

f) = ~21T f e"isremaltldr

oder B
0
- 1 —idr-al7|
) = 5= j ¢ dr.
— 0
Wegen
7,7=0,
= |
—-1,7<0,
folgt

1 0 @
[ = —[ e=idrdr + [ eleride d‘r:I.
2n _‘L 0

Nach Berechnung der komplexen Integrale erhalt man schlieBlich (vgl. Bild 4.3)

1 1 1 1 «
A == - —| =— .
1) 2n[a—11+rx+ll] T A2 +a?

f(A)
%
2
% Bild 4.3. Spektraldichte des Prozesses bei

unterschiedlichem
<, <o;

Beispiel 4.5: Ein wichtiger ProzeB ist das sogenannte weife Rauschen. Wichst in
dem eben betrachteten Beispiel &, nimmt der Betrag der Ordinaten von k() sehr
schnell ab. Gleichzeitig verringert sich dabei die Anfangsordinate der Spektraldichte

1
Pl Wegen
[fydr =1

wird das Kurvenbild der Spektraldichte f(1) zunehmend flacher. Wihrend k(7) fiir
sehr groBe x-Werte in eine nadelformige Funktion iibergeht, deren Ordinaten nur
in einem kleinen Intervall um den Nullpunkt von Null verschieden sind, ist f(4) in
einem sehr breiten Gebiet der Frequenz A nahezu konstant. Es ist nun naheliegend,
Prozesse zu untersuchen, die ein konstantes Spektrum

f(A) = ¢ = const, Ae(—oc0, +00)
4%
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besitzen. Prozesse mit derartigen Spektren bezeichnet man als weifles Rauschen. Fiir
zuféllige Folgen sind die Verhiltnisse sehr einfach zu beschreiben. GemiB (4.24)
erhdlt man die Korrelationsfunktion
T
k(n) = [ ccosand2
l nc fir n=0,
=12c . "

l7smnn =0 fir n=4+1; +2...
Solche Folgen sind also fiir n + 0 unkorreliert und im Falle einer Normalverteilung
somit unabhingig. Bei stochastischen Prozessen (mit stetiger Zeit) stoBt man bei
einer analogen Betrachtungsweise auf groBe Schwierigkeiten. Unter Beriicksichtigung
von (4.23) erkennt man, daB3 die Varianz oo ist, denn es gilt

o* = k(0) = 2 }wf(l) di
0

+ o0
=2 [ cdi=o. (4.25)
0
Die Korrelationsfunktion kann in der Form
k(t) = 2mcd(r)
ausgedriickt werden, wobei
+o00, 7=0,
0, 7%0,
die sogenannte Dirac-Funktion) ist.
Solche vollstindig unkorrelierten stochastischen Prozesse gibt es in der Praxis
nicht. Sie miiBiten insbesondere eine unendlich groBe Varianz zu jedem Zeitpunkt
besitzen. Viele Prozesse lassen sich jedoch ndherungsweise durch das weile Rauschen

darstellen (z. B. das Rauschen der Elektronenréhren) und sind somit einer einfacheren
analytischen Behandlung zugénglich.

o) =

4.3. Ein Anwendungsproblem

In der Technik hat man es hdufig mit dynamischen Systemen zu tun, an deren
Ein- und Ausgingen Zufallsfunktionen {X(¢), r € I} und {Y(z), f € I} mit bekannten
Charakteristiken sind. Die Parameter des Systems sind so zu bestimmen, daB die
am Ausgang des Systems gewonnene Funktion {Y(¢), 7€/} einen stochastischen

"/W\;f\: Bild 4.4. Schematische Darstellung eines stochastischen
X

Yit) dynamischen Systems

1) Hierbei handelt es sich um keine gewdhnliche Funktion. Eine genaue Charakterisierung findet
der Leser in [31].
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ProzeB {Z(t), t € I}, den man zu erreichen wiinscht, mdglichst genau approximiert.
Man sagt dann, es ist ein optimales dynamisches System zu berechnen. Mathematisch
bedeutet das Problem, eine Funktion zu finden, die auf X(f) angewendet Z(t) im
Sinne eines gewihlten Kriteriums am besten anndhert. Im allgemeinen wéhlt man
als Kriterium die mittlere quadratische Abweichung der Ordinaten voneinander
und fordert, daB diese Differenz minimal wird (vgl. Methode der kleinsten Quadrate,
Bd. 4).

E{Y(f) — Z(£)]?} = min. (4.26)

Ein spezifisches Problem dieser Art ist die Extrapolation oder Vorhersage. Hierbei
handelt es sich darum, auf der Grundlage bis zu einem Zeitpunkt ¢ bekannter Ordi-
natenwerte der stochastischen Eingangsfunktion {X(r), te I} den Wert zu irgend-
einem zukiinftigen Zeitpunkt 7 + 7 moglichst genau vorherzusagen. Somit ist

Z(t) = X(t + 1),
und es muf ein Operator L so bestimmt werden, dal
E{|X(t + ) — LX(t)|*} = min 4.27)

wird. Kennt man die Ordinatenwerte von X(¢) nur in einem beschriankten Intervall
[#o, t], so spricht man von Extrapolation auf der Grundlage eines endlichen Zeitinter-
valls. Sind samtliche Werte im Intervall (— oo, t] gegeben, spricht man von Extra-
polation bei Kenntnis der gesamten Vergangenheit. Auf Extrapolationsaufgaben stoBt
man z. B. bei der Konstruktion von Feuerleitgerdten auf Schiffen. Sie miissen gewéhr-
leisten, dafB3 eine Salve in dem Moment abgefeuert wird, in dem das Deck horizontal
ist und dementsprechend den sich zufillig dndernden Neigungswinkel des Schiffes
extrapolieren. Eine groBe Rolle spielt die Extrapolation auch bei der Verhinderung
der Schlingerbewegungen eines Flugzeuges und beim Bau dementsprechender
Déampfungseinrichtungen.

In der Okonomie extrapoliert man oftmals fiir kurze Zeitriume die Entwicklung
von Kennziffern aus ihrem Verlauf in der Vergangenheit; derartige sog. kurzfristige
Vorausberechnungen werden u. a. durchgefiihrt fiir den Einzelhandelsumsatz, die
Warenproduktion u. 4. mehr [27].

Ein weiteres Problem ist die Filtration oder Glattung. Hierbei ist die Eingangs-
funktion die Summe von zwei Zufallsprozessen

X(t) = U@t + V(1),

wobei U(t) ein Nutzsignal ist und V() eine Storung darstellt, von der man sich
durch Konstruktion eines passenden Filters befreien méchte. Dann ist

Z(r) = U(t),
und L ist so zu bestimmen, daf3
E{|IL[U(t) + V()] — U(#)|*} = min (4.28)

gilt. Beispiele fiir solche Aufgaben sind u. a. die Auswertung experimentell bestimmter
Kurven eines stochastischen Prozesses mit dem Ziel, MeBfehler oder Fehler in der
Registriereinrichtung zu beseitigen sowie die Trennung von Nutzsignal und Rau-
schen in Rundfunkiibertragungskanilen [28].
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Die Losung der genannten Aufgaben in ihrer Allgemeinheit bereitet groBe Schwie-
rigkeiten. Wir werden uns deshalb auf die Extrapolation stationdrer zufélliger Folgen
beschrianken. Gegeben ist eine Folge

{X(@t — n), ..., X(t — 2), X(t = 1), X(0), X(t + 1), ..., X(t + m), ...},
n>0,mz=0. (4.29)

Der ProzeBverlauf sei bis zum Zeitpunkt # — 1 bekannt, und es soll die Ordinate
X(t + m) (m = 0) extrapoliert werden. GemaB (4.27) ist eine Funktion

L =L[X(t—-1),X(t—2),..X@1t—n) (4.30)
so zu bestimmen, dal

E{[L — X(t + m)]*} = min (4.31)
wird. Wir bezeichnen mit

E, = E[X(t + m)/X(t — 1), X(t — 2), ..., X(t — n)] (4.'32)

die bedingte mathematische Erwartung (vgl. Bd. 17) von X(¢ + m) unter der Bedingung
X(t — 1), ..., X(t — n). Dann 148t sich die linke Seite von (4.31) in der Form

E{[(L — E) + (E, — X(t + m))]*} (4.33)

schreiben. Quadriert man die Klammer aus und wendet die Rechenregel iiber die
mathematische Erwartung einer Summe an, ergibt sich fiir (4.33) der Ausdruck

E{[X(t + m) — E\]’} + E{[L — E\]*} + 2E{[L — E,][E, — X(t + m)]}.
(4.34)

Der letzte Summand ist jedoch gleich null. Denn unter Anwendung der folgenden
Rechenregeln fiir bedingte mathematische Erwartungswerte

a) E[E(X]Y,, Y,, ..., Y,)] = EX),
b) EX,f(Y,, Y2, ... )| Yy, Yo, .., Y, ] = f(¥y, Ya, ..., Y,) E(X,) g
fiir ZufallsgroBen X, Y, ..., Y, gilt
E{IL - E|] [E, — X(t + m)]}
= E{E[L — E,\][E; — X(t + m)]|X(¢t = 1), ..., X(t — n)}
= E{[L — E\JE[(E, — X(t + m)/X(t — 1), ..., X(t — )]}
= E{[L — E,][E, — E,]} = 0. (4.35)
Hieraus folgt, daB (4.31) minimiert wird, wenn
LIX(t— 1), ..., X(t — n)] = E, = E[X(t + m)|X(t — 1), ..., X(t — n)]

gewihlt wird. Das heiBt, daB die Funktion L, die den mittleren quadratischen Fehler
der Approximation bei beliebigem Verteilungsgesetz der Ordinate der Zufallsfolge
minimal werden 1dBt, gleich der bedingten mathematischen Erwartung der zu extra-
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polierenden Ordinate X(z + m) unter der Bedingung X(¢ — 1), ..., X(t — n) ist.
Diese bedingte mathematische Erwartung 1a8t sich allgemein ebenfalls sehr schwer
ermitteln. Unter der Voraussetzung, daB die zugeordnete Verteilung von (4.29) eine
Normalverteilung ist, 1aBt sich zeigen, da3
E[X(t + m)[X(t — 1), ..., X(t — n)]
=a, Xt —1)+ aX(t—-2)+ ..+ aX(@t—n) (4.36)
gilt, wobei ay, a,, ..., a, reelle Zahlen sind.

L[X(t — 1), ..., X(t — n)] ist eine lineare Funktion von X(z — 1), ..., X(t — n).
Aber auch dann, wenn die Folge nicht normalverteilt ist, liefert die Anwendung
eines linearen Operators brauchbare Néherungslosungen, denn viele in der Praxis
auftretenden Prozesse sind . ndherungsweise normalverteilt. Oftmals treten auch
Zufallsfunktionen als vergleichsweise kleine Zusdtze zu nichtstochastischen Aus-
driicken auf, so daB eine Linearisierung méglich und sinnvoll erscheint.

Es soll nun die lineare Extrapolation der stationdren Folge (4.29) mit endlicher
Vergangenheit (n endlich) durchgefiihrt werden. Die Korrelationsfunktion k.(7),
7=0,4+1, +2, ..., der Folge s¢i bekannt. Ohne Einschrinkung der Allgemeinheit
sei m,(t) = 0. Zunichst soll X(¢) bei beobachteten

Xt = 1) = Xmq5 o0, X(t — 1) = X,y
extrapoliert werden. Wir bilden den Ausdruck
2

@1y ) = E{[X(t) - ,};1 aX(t — i)]} 437)

Die Koeffizienten ay, ...,a, sind so zu bestimmen, daB o3,(a,, ..., a,) minimal
wird. Einfache Umformungen ergeben

(1, oy @) = E{X(t) X(t) — 2X(1) _;"‘ aX(t — i) + Lzl aX(t — i)]Z;
- E{X(t) X() - 23 aX(t) X(t — i)
i=1

+ [j;l é:l aaX(t — i) X(t — 1)]}.
Wegen -
E[X(t) X(1)] = k.(0);  E[X(t) X(t — )] = ki(i);

E[X(t — )Xt — D] = k(i — 1)
folgt

n n n
03n(@s, -..r ) = ki(0) — 2 Y akd) + X P aak,(i - 1).

Partielle Differentiation nach a,, a, ..., a, liefert
003,
oa;

— i)+ 2S aki = 1), i=1,2..n.
I=1
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Bezeichnet man die gesuchten Werte von a,, as, ..., a, mit af, a¥, ..., a¥, findet
man sie aus

003, 0 ba%,,,L _o 003, -0
= a*

_ G _
08y, |o,=a*

s
04, |oy=a* oa,

also durch Auflgsung des Gleichungssystems
-k + X afk(i—-1=0, i=12,..n.
=1

Als Schatzwert fiir die Ordinate X(¢) erhdlt man somit
x(t) = afxi—y + @FX2 + o+ X,

Die Varianz ist dabei
n n n
atuat, ..., a§) = k(0) — 2 -21 arki(i) + Zl ;21 arark (i — 1).
i= i= =

Bei der Ermittlung der extrapolierten Ordinatenwerte von X(z + m), m = 1, kann
analog vorgegangen werden. Es ist

62, = E”X(t + m) — Enl aX(t — i)]zj

zu minimieren. Die entsprechenden Werte a{™, ...,a% der linearen Funktion
ergeben sich aus dem Gleichungssystem

hm )Y @k~ 1) =0, i=1,2,..n. (4.38)
I=1

Wir betrachten hierzu zum AbschluB das folgende Zahlenbeispiel.

Beispiel 4.6: Fiir eine stationire Folge {X(f); =0, +1, £2, ...} sei my(t) = 0, ky(7) = e7!7\. Zu
den Zeitpunkten ¢t — 1 bzw. ¢ — 2 werden die Ordinaten x(r — 1) = 4 und x(# — 2) = 2 beobach-
tet. Zu extrapolieren seien X(¢) und X(z + 1).

Mit m = 0 und n = 2 folgt

afkx(0) + afhk(1) = kx(1),
afkx(1) + afk(0) = kx(2).

1 1 1 1
Mit k,(0) = 1, k(1) = - ky(2) = = und k,(3) = e—sergibt sichals Losung af = - und af = 0.
Somit ergibt sich als Extrapolationswert
4
(1) = 4aft + 2af = -t 0.

Mit m = 1 und n = 2 folgt aus (4.38)
aPk(0) + aPk(1) = k(2),
aPk(1) + aPk(0) = ky(3).
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P N 1 : ;
Als Losung erhélt man a{D.= = und a3’ = 0. Der Extrapolationswert ist

R 4
X(t+ 1) =4aP + 24 = =t 0.

Wie ist die Tatsache zu bewerten, daB fir beide Extrapolationswerte a, = 0 ist?

4.4. Experimentelle Bestimmung von Parametern stochastischer Prozesse

In den meisten praktischen Fillen ist ein stochastischer ProzeB nicht theoretisch
vorgegeben, sondern es sind nur einige Realisierungen von ihm bekannt. Es ist
dann die Aufgabe zu 16sen, auf der Grundlage der Beobachtungen des Verlaufs
einiger Realisierungen die Kenngr6Ben des Prozesses ndherungsweise zu bestimmen.
Im weiteren wollen wir uns insbesondere mit der experimentellen Ermittlung der
wichtigsten Parameter, der Mittelwert- und der Korrelationsfunktion beschéftigen.

Gegeben sind Realisierungen x,(t) (i = 1,2, 3, ...) eines Prozesses {X(¢), t = 0}
im Intervall [0, 7]. Wir unterteilen [0, 7] in m gleiche Teilintervalle mit den Tei-
lungspunkten

0=1to5t;...5t5 s ty=T.

Die Mittelwertfunktion m,(¢) 1Bt sich in [0, 7] ndherungsweise bestimmen, indem
wir in jedem Teilpunkt #; den arithmetischen Mittelwert liber die Werte x,(t))
(i = 1,2, ..., n) bilden. Es gilt

. 1
M) =
Die Werte

X(t0), X(11), -y X(tw)

reprasentieren naherungsweise die Mittelwertfunktion m,(7) zu den diskreten Zeit-
punkten zo, #y, ..., t,.
Um die Varianzfunktion

oX(t) = E(X(r) — m(1))? (4.40)

x{t), j=0,1,2, ..., m. (4.39)

n
i=1

ndherungsweise zu ermitteln, bestimmen wir die empirische Streuung s? an den
Teilpunkten ¢, (j = 0, 1, 2, ..., m). Es ist

1
n—1

s3(t) =
Die Werte
57(t0); 57(11)5 v S2(tw)

reprisentieren niherungsweise die Varianzfunktion o2() zu den diskreten Zeit-
punkten #,, #, ..., t,,. Zur experimentellen Ermittlung der Korrelationsfunktion

ki(t; ) = E[(X(t) — my(1)) (X(s) — m(s))], ¢t s€[0,T], (4.42)

n
i=1

(i) — 5(1)*. (4.41)
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bestimmen wir die empmsche Korrelation k.(t;, ;) ]ewells zwischen zwei Zelt-
punkten #;, t, (,/ = 0,1, ..., m) Es gilt

) (xit) — x(1)). 4.43)
Nach Ausfiihrung der Multiplikation auf der rechten Seite folgt
)?(tj).Zl xi(th)

i=

kx(tj s

. 1 d 1
ki(t;, 1) = T AZ! xi(ty) xi(t) — 71
i=

TR0 3 xlt) + 5

Unter Beachtung von (4.39) ergibt sich

i (1)) %(ty)-

k(15 —— X(1y) X(1). (4.44)
Die Gesamtheit der Werte k(t;, #;) (j, I = 0, 1, 2, ..., m) représentieren niherungs-
weise die Korrelationsfunktion zu den diskreten Zeitpunkten #,, #,, ..., t,,. Setzt man
in (4.44) t; = t,, erhilt man selbstverstandlich (4.41).

(1), s*(t;) und k(#,t,) sind Werte von Punktschitzungen X(1,), S(t;) und

Ky(t;. 1) fiir my(t)), o2(t;) und ki(t;, #;) (vgl. Bd. 17, Abschn.3.3.2.).

Geht man in der oben angegebenen Weise vor, so muB man zur Bestimmung von
Mittelwert- und Korrelationsfunktion im allgemeinen eine grof3e Anzahl von Reali-
sierungen des Prozesses heranziehen. In der Praxis ist jedoch die Beobachtung einer Zu-
fallsfunktion und die darauffolgende Auswertung sehr kompliziert. Darum ist es er-
wiinscht, mit einer moglichst geringen Anzahl von Realisierungen auszukommen.
Stationdre Prozesse besitzen nun unter sehr allgemeinen Voraussetzungen die Eigen-
schaft, daB sich Mittelwert- und Korrelationsfunktion beliebig genau aus einer
einzigen Realisierung x(¢) bestimmen lassen. Wir setzen im folgenden voraus, daB
{X(t), t = 0} stationdr ist und die Korrelationsfunktion k.(r) die Bedmgung

f |k (7)] dT < © (4.45)
erfille. (4.45) bedeutet, daBl die Werte der Korrelationsfunktion mit wachsendem z
sehr schnell abnehmen. Fiir die meisten der in der Praxis auftretenden Zufalls-
prozesse ist diese Voraussetzung erfiillt. Dann kann man einen Ergodensatz anwen-
den, demzufolge man sowohl die mathematische Erwartung von {X(¢), = 0} als

auch die Korrelationsfunktion aus einer Realisierung x(f) des Prozesses durch
Mittelung iiber die Zeit gewinnen kann:
T

my = EX()] = lim lT f (1) dr, (4.46)
0
ky(t) = E[(X(0) — my) (X(t + 7) — my)]

= lim f [(x() = my) (x(t + 7) — my)] de. @47
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Betrachten wir zundchst die experimentelle Berechnung des Mittelwertes m, etwas
eingehender. Das Intervall [0, 7] werde in m gleiche Intervalle der Linge A = T/m
eingeteilt. Bei Mittelung der Ordinatenwerte einer Realisierung des Prozesses iiber
die Zeit erhilt man

%= %,. 'l x(1) (4.48)

>N

oder wegen m =

" 1
X =—

T i<

Mz

x(t)A.

Strebt A — 0, erhélt man
T
X = IT f x(t) dz. (4.49)
0

Die Beziehungen (4.48) und (4.49) konnen zur naherungsweisen Bestimmung von
m, herangezogen werden. Die Schitzung ist um so genauer, je groBer 7' gewéhlt
wird. % ist wiederum eine Realisierung der Punktschitzung X fiir m,. Es 1Bt sich
zeigen [28], daB die mathematische Erwartung von X gleich m, ist, d. h.

E[X] = m,, (4.50)
und die Varianz von X mit wachsendem T gegen O strebt, d. h.

lim ¢2[X] = 0. (4.51)
T

Man spricht wegen (4.50) von einer erwartungstreuen Schitzung fiir m,.

Kommen wir nun zur niherungsweisen Bestimmung der Korrelationsfunktion eines
stationdren Prozesses auf der Grundlage des Ergodentheorems. Gemaf3 Definition
gilt

k() = E((X(t) — mye) (X(t + 7) — my)).

Weil m, selbst in den meisten Fillen nicht zur Verfiigung steht, nehmen wir den
Schitzwert ¥. Es bedeutet keine Einschrankung der Allgemeinheit, wenn angenom-
men wird, daB das Zeitintervall v gerade / Intervalle der Lange A enthdlt. Dann ist

r=tr. (4.52)

m

Wir gehen aus von dem Wert

m—(1+1),-zl

m—1

k(1) = [(x(z)) — %) (x(z; + 7) — X)]. (4.53)
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Nach Erweiterung mit A folgt

b = w5, [0 = %) (36 + ) = D] A, 4.54)
Unter Beachtung von (4.52) ergibt sich

(m—l—l)A:(m—l—l)%:T—r—A. (4.55)
Aus (4.54) folgt dann

Fur) = ﬁ E‘: [x(1) — %] [x(t, + 1) — KA. (4.56)

Strebt A gegen null, erhdlt man
T-7
[ [x(t) — %] [x(¢ + 7) — &]dt. (4.57)

0

. 1
k@ =

ky(7) ist eine Realisierung der Punktschitzung Ex(r) fur k(7). Es 14Bt sich zeigen,
daB3 die folgenden Beziehungen gelten

ITim ?[K,(7)] = 0, (4.58)
lim E[K(7)] = kx(2). (4.59)
T-

Man spricht wegen (4.59) nur von einer asymptotisch erwartungstreuen Schétzung.
Die Gleichungen (4.53) und (4.54) konnen zur Ermittlung von Naherungswerten
fiir die Korrelationsfunktion herangezogen werden. Die Genauigkeit der experi-
mentell ermittelten Werte steigt selbstverstindlich mit wachsendem 7.

Weitere Ausfiihrungen findet der Leser in [24], [25] und [28].



S. Einfiihrung in die Bedienungstheorie

In den letzten Jahrzehnten fiihrten die Entwicklung des Telefonwesens, der Physik
und besonders auch Fragen der sinnvollen Organisation der Abfertigung in Laden,
an Schaltern und durch Automaten zu einer Klasse mathematischer Aufgaben, bei
deren Bearbeitung Methoden der Wahrscheinlichkeitsrechnung, speziell die der
Theorie stochastischer Prozesse, eine wichtige Rolle spielen. Die Untersuchung
entsprechender stochastischer Modelle fiihrte zur Entwicklung der Bedienungs-
theorie, deren Ideen und Methoden in den letzten Jahren v1elfalt1ge und wichtige
Anwendung fanden. In dem folgenden Kapitel wollen wir einen Uberblick iiber
einige Grundbegriffe der Bedienungstheorie geben, an einer Methode die Vorgehens-
weise bei der Bearbeitung von Bedienungsproblemen kennenlernen und abschlieBend
auf wesentliche weitere Methoden der Bedienungstheorie hinweisen.

S.1. Aufgabe der Bedienungstheorie

In Naturwissenschaften, Technik und Okonomie, aber auch im Transport- und
Militdrwesen treten in groBem Umfang Bedienungssituationen auf, bei denen zufillige
Einfliisse eine Rolle spielen. Diese Situationen konnen sehr unterschiedlich in ihrem
AnlaB sein. Es kann sich z. B. handeln um

— Kundenabfertigung an einem Fahrkartenschalter,

— Durchfiihrung von Reparaturen in einer Reparaturwerkstatt,

— Vorratswirtschaft in einem Lager hinsichtlich eines bestimmten Artikels,
— Vermittlung von Telefongespréchen in einer Telefonzentrale.

Das Wesen der geschilderten Bedienungssituationen 1dBt sich folgendermaBen
charakterisieren:

In zufilligen Zeitpunkten fordern Kunden Bedienung von einem sogenannten
Bedienungsapparat, der fiir die Abfertigung des Kunden eine zufillige Zeit benétigt.
Beispiele von Forderungen und Bedienungsapparaten sind in der folgenden Auf-
stellung enthalten:

Forderung

Bedienungsapparat

Verkauf einer Fahrkarte

Fahrkartenverkdufer bzw. Fahrkarten-
automat

Reparatur eines PKW

Autoschlosser

Bezahlung von Lebensmitteln

Kassiererin in einem Selbstbedienungsladen

Vermittlung eines Telefongesprachs

Telefonistin in einer Telefonzentrale bzw.
Vermittlungsanlage

Sicherung eines bestimmten Lagerbestandes
von einem gewissen Artikel in einem Lager

Disponent
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In der Bedienungstheorie werden Fragen der mathematischen Modellierung
(Beschreibung) von Bedienungssituationen der obengenannten Art und der Unter-
suchung der entsprechenden mathematischen Modelle behandelt.

Definition 5.1: Die in Verbindung mit der mathematischen Behandlung von Bedienungs-
situationen betrachteten mathematischen Modelle werden als Bedienungsmodelle
(Bedienungssysteme), die Folge der von einem Bedienungsapparat zu bedienenden
Forderungen als Forderungenstrom (Kundenstrom) und die fiir die Bedienung einer
Forderung bendtigte zufiillige Zeit als Bedienungszeit bezeichnet.

Aufgabe der Bedienungstheorie ist es, Methoden bereitzustellen und der Anwen-
dung zuzufiihren, mit denen KenngroBen des jeweiligen Bedienungssystems ermittelt
werden konnen, die eine Beurteilung der zugrundeliegenden Bedienungssituation
ermoglichen. Das konnen u. a. KenngroBen sein

— fiir die Lange der Wartezeit einer Forderung,
— fir die Lange der Zeit, in der von dem Bedienungsapparat keine Bedienung
gefordert wird.

GroBen EinfluB auf die Entstehung der Bedienungstheorie hatten die von A. K.
Erlang in den beiden ersten Jahrzehnten dieses Jahrhunderts bei der Beschreibung
von Bedienungssituationen im Telefonwesen und bei der Untersuchung der ent-
sprechenden Bedienungsmodelle erzielten Ergebnisse. In den letzten Jahrzehnten
sind grofe Fortschritte bei der Entwicklung der Bedienungstheorie erzielt worden.
Sie sind in groBem Umfang sowjetischen Mathematikern zu danken, unter denen
besonders A. J. Chintschin, B. W. Gnedenko und J. N. Kowalenko zu nennen sind.

5.2. Beschreibung eines Bedienungssystems

Wir wollen von folgendem Beispiel einer Bedienungssituation ausgehen.
Beispiel 5.1: An einen Fahrkartenschalter treten Reisende in zufélligen Zeitpunkten
heran und wollen Fahrtausweise erwerben. Sofern der Schalter frei ist, wird mit der
Abfertigung des jeweiligen Reisenden sofort begonnen. Im anderen Fall reiht er
sich entweder in die Schlange der Wartenden ein, wenn er nicht, z. B. aus gesundheit-
lichen Griinden, bevorzugt abgefertigt wird, oder er verldBt den Schalter wieder,
evtl. nach einer gewissen Wartezeit in der Schlange, um die Fahrkarte zu einem
anderen Zeitpunkt, z. B. im Zug, zu erwerben. Je nach dem Reiseziel wird die Aus-
fertigung und der Verkauf des Fahrtausweises durch den Fahrkartenverkéufer in der
Zeitdauer von Reisendem zu Reisendem variieren. Sie wird von zufilliger Linge
sein.

Die geschilderte Bedienungssituation konnen wir kennzeichnen durch

— die Folge der zufilligen Zeitpunkte des Herantretens der Reisenden an den
Schalter,

— Angaben tiber die Zeit der Abfertigung am Schalter,

— Angaben dariiber, wie sich ein Reisender verhilt, der einen Schalter besetzt
vorfindet,

— Angaben iiber Moglichkeiten der bevorzugten Abfertigung und der Art und
Weise ihrer Realisierung.
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Entsprechend diesem Beispiel ist die Bedienungssituation auch in anderen Fallen
zu charakterisieren. Sie 1aBt sich allgemein beschreiben durch Angaben iiber den
Forderungenstrom, die Bedienungszeit und die Bedienungsorganisation. Dabei werden
der Forderungenstrom durch einen stochastischen ProzeB hinsichtlich der Anzahl
der eintreffenden Forderungen im Intervall (0, ¢), die Bedienungszeiten durch iden-
tisch verteilte ZufallsgroBen und die Bedienungsorganisation durch Angaben iiber
das Verhalten von Forderungen, die den Bedienungsapparat besetzt vorfinden, und
iiber Vereinbarungen hinsichtlich der vorzeitigen Bedienung einer eintreffenden
Forderung erfaf(3t.

Durch diese Angaben ist die Bedienungssituation beschrieben und damit das ent-
sprechende Bedienungsmodell gegeben, das mit den Methoden der Bedienungstheorie
zu untersuchen und durch entsprechende KenngréBen zu charakterisieren ist. Bei-
spiele solcher KenngréBen sind die mittlere Wartezeit bis zum Bedienungsbeginn
oder die mittlere Warteschlangenldnge oder die Verteilung der Warteschlangen-
lange, wenn die Forderung bei besetztem Bedienungsapparat nicht auf Bedienung
verzichtet, und die Verlustwahrscheinlichkeit, d. h. die Wahrscheinlichkeit des Ver-
zichts einer Forderung auf Bedienung, wenn der Bedienungsapparat besetzt ist.

5.3. Klassifizierung von Bedienungssystemen

Im letzten Abschnitt wiesen wir darauf hin, daB die Beschreibung einer Bedie-'
nungssituation Angaben iiber die Bedienungsorganisation enthalten mu. Wir ver-
standen darunter einerseits das Verhalten einer Forderung, die bei ihrem Eintreffen
den Bedienungsapparat besetzt vorfindet, und zum anderen die Beriicksichtigung der
Moglichkeit einer vorzeitigen Bedienung. Auf der Grundlage der Bedienungs-
organisation werden die Bedienungssysteme klassifiziert in Wartesysteme, Systeme
mit Priorititen, Verlustsysteme und kombinierte Warte-Verlustsysteme.

Wartesysteme

Definition 5.2: Ein Bedienungssystem, bei dem sich eine eintreffende Forderung in die
Reihe der schon auf Bedienung wartenden Forderungen, also in eine Warteschlange,
einreiht, wird als Wartesystem bezeichnet.

Bei einem Wartesystem wird von der Annahme ausgegangen, daB geeignete
Wartemdglichkeiten vorhanden sind. AuBerdem wird bei solchen Systemen eine
Festlegung tiber die Reihenfolge der Bedienung der in der Schlange wartenden For-
derungen getroffen. (,,Schlangendisziplin® [16]). Wir wollen einige Schlangen-
disziplinen nennen.

Definition 5.3: Erfolgt bei einem Bedienungssystem die Bedienung der Forderungen in
der Reihenfolge ihres Eintreffens, so wird diese Schlangendisziplin als FIFO (first in —
first out) bezeichnet.

Beispiel 5.2: Werden in einer Reparaturwerkstatt die Auftrige in der Reihenfolge
ihres Eintreffens ausgefiihrt, dann liegt die Schlangendisziplin F/FO vor.

Definition 5.4: Erfolgt bei einem Bedienungssystem die Bedienung der zuletzt ein-
gegangenen Forderung vor der Bedienung der schon in der Warteschlange befindlichen
Forderungen, so wird diese Schlangendisziplin LIFO (least in — first out) genannt.
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Beispiel 5.3: Werden in einem Lager die zuletzt angelieferten Waren vor die schon
im Lager befindlichen gestellt und dementsprechend auch zuerst wieder ausgeliefert,
dann erfolgt d1e - Bedienung der Schlangendisziplin LIFO entsprechend.

Definition 5.5: Wtrd bei einem Bedienungssystem die zu bedienende Forderung aus den
in der Warteschlange befindlichen Forderungen zufillig ausgewdhlt, dann wird diese
Schlangendisziplin SIRO (service in random order) genannt.

Beispiel 5.4: Die Entnahme eines bestimmten Erzeugnisses durch einen Kunden aus
einem Warentréger eines Selbstbedienungsladens erfolgt im allgemeinen wahllos,
also der Schlangendisziplin STRO entsprechend.

Systeme mit Prioritdten

Definition 5.6: Bedienungssysteme, bei denen die Forderungen verschiedene Dringlich-
keitsstufen (Priorititen) hinsichtlich des Bedienungsbeginns haben, werden Systeme mit
Prioritéiten genannt.

Beispiel 5.5: In Hafen werden Schiffe mit leichtverderblicher Ladung im allgemeinen
vorrangig abgefertigt. Trifft eine Forderung mit héherer Dringlichkeitsstufe ein, so
wird sie entweder weit vorn in die Warteschlange eingeordnet oder sofort bedient,
wobei die Maéglichkeit besteht, daB3 bei der in der Abfertigung befindlichen For-
derung die Bedienung zugunsten der gerade eingetroffenen Forderung unterbrochen
wird. Dieser Bedienungssituation entspricht ein Bedienungsmodell mit Prioritdten.

Verlustsysteme

Definition 5.7: Bedienungssysteme, bei denen eintreffende Forderungen auf Bedienung
verzichten, wenn sie den Bedienungsapparat besetzt vorfinden, werden Verlustsysteme
genannt.

Beispiel 5.6: Entsprechend der Anzahl der Amtsanschliisse kénnen von der Telefon-
zentrale eines Betriebes gleichzeitig mehrere Verbindungen auBerhalb des Betriebes
hergestellt werden. Sind alle Leitungen besetzt, so konnen neu eintreffende Anrufe
nicht vermittelt werden. Sie gehen verloren. Das entsprechende Bedienungssystem
ist also ein Verlustsystem.

Kombinierte Warte-Verlust-Systeme

Definition 5.8: Bedienungssysteme, bei denen eine Forderung nach einer gewissen Zeit
des Verweilens in der Warteschlange auf eine Abfertigung verzichtet oder bei denen es
nur eine beschrinkte Anzahl von Warteplitzen gibt, so dafi manchmal fiir eine ein-
treffende Forderung kein Warteplatz mehr existiert, diese demzufolge nicht in die
Warteschlange ~aufgenommen werden kann, werden kombinierte Warte-Verlust-
Systeme genannt.

Beispiel 5.7: Ein an der Kasse eines Selbstbedienungsladens in der Schlange stehen-
der Kunde hat etwas vergessen. Er verldt die Schlange und stellt sich nach Ent-
nahme des vergessenen Artikels aus dem Regal am Ende der Schlange wieder an.
Das entsprechende Bedienungssystem ist ein kombiniertes Warte-Verlust-System.

Beispiel 5.8: Der Besitzer einer bestimmten Haushaltmaschine mdochte diese repa-
rieren lassen. In der Reparaturannahmestelle erhilt er jedoch den Bescheid, daB3 die
Reparaturkapazitit ausgelastet ist und deshalb zur Zeit keine Annahme erfolgt.
Auch dieser Bedienungssituation entspricht ein kombiniertes Warte-Verlust-System.



5.4. Poissonsche Bedienungssysteme 65

Wir wollen nun eine von D. G. Kendall fiir Wartesysteme angegebene Méglich-
keit zur Charakterisierung eines Bedienungssystems in einer in [16] erweiterten Form
erlautern. Die Charakterisierung erfolgt durch vier GroBen in folgender Art:
A|B|s|m.

Durch den Buchstaben A4 wird der Forderungenstrom gekennzeichnet. Dabei
bedeutet u. a.

A = M (Markow), daB ein Poissonscher Forderungenstrom vorliegt, d. h., daB in
keinem Zeitpunkt mehr als eine Forderung eintrifft und die Zeiten zwischen
zwei eintreffenden Forderungen unabhéngige, identisch exponentiell ver-
teilte ZufallsgroBen sind;

A = GI (general independent), daB ein rekurrenter Forderungenstrom vorliegt, d. h.,
daB in keinem Zeitpunkt mehr als eine Forderung eintrifft und die Zeiten
zwischen zwei eintreffenden Forderungen unabhéngige, positive, identisch
verteilte ZufallsgréBen sind;

A =D (deterministic), daB ein Forderungenstrom mit konstanten geitlichen Ab-
stinden zwischen den einzelnen Forderungen vorliegt.

Mit dem Buchstaben B wird die Folge der Bedienungen auf den Bedienungs-
apparaten erfait. So bedeutet z. B.

B =G (general), daB hinsichtlich der Bedienungszeit bei jedem Bedienungs-
apparat eine Folge unabhéngiger, positiver, identisch verteilter Bedienungs-
zeiten vorliegt;

B =M (Markow), daB hinsichtlich der Bedienungszeit bei jedem Bedienungs-
apparat eine Folge unabhingiger, identisch exponentiell verteilter Bedie-
nungszeiten vorliegt.

Weiterhin wird mit dem Buchstaben s die Anzahl der im Bedingungssystem vor-
handenen gleichartigen Bedienungsapparate und mit dem Buchstaben m die Anzahl
der im Bedienungssystem vorhandenen Warteplitze erfaBBt. Fiir m = 0 liegt also ein
Verlustsystem, fiir m = oo ein Wartesystem und fiir 0 < m < o ein kombiniertes
Warte-Verlust-System vor. Bei konkreten Bedienungssystemen wird im allgemeinen
die Unabhangigkeit des Forderungenstromes von der] Folge der Bedienungszeiten
angenommen.

5.4. Poissonsche Bedienungssysteme

In diesem Abschnitt wollen wir die Vorgehensweise bei der Untersuchung eines
Bedienungssystems schildern. Es gilt allgemein, daB3 das zeitliche Verhalten eines
solchen Systems nur mit Hilfe von stochastischen Prozessen beschrieben werden
kann. Dabei hingt es vom Typ des Bedienungssystems ab, aus welcher Klasse von
stochastischen Prozessen ¢in geeigneter Vertreter zu wihlen ist.

Wir werden uns in der Darstellung auf ein einfaches Bedienungssystem, das
System M/M/n/m beschrianken.

Definition 5.9: Ein System der Struktur M|M[n/m wird als Poissonsches Bedienungs-
system bezeichnet.

5  Beyer, Stoch. Proz.
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Wir gehen also von einer Bedienungssituation aus, die durch folgende Merkmale
charakterisiert ist:

—

. Der Forderungenstrom wird durch einen PoissonprozeB3 beschrieben. Dieser
ProzeB wurde in 2.2. dargestellt. Uberdenken Sie die dort erzielten Ergebnisse
aus der Sicht der bei einem Poissonschen Bedienungssystem vorliegenden Bedie-
nungssituation !

2. Bei allen Bedienungsapparaten sind die Bedienungszeiten fiir jede Forderung
identisch exponentiell verteilte unabhédngige ZufallsgroBen.

. Die Anzahl der Bedienungsapparate betragt n.

. Eintreffende Forderungen

AW

— verzichten bei besetzten Bedienungsapparaten auf eine Abfertigung (Verlust-
system), d. h., es ist m = 0.

— ordnen sich bei besetzten Bedienungsapparaten in eine Warteschlange mit der
Bedienungsorganisation FIFO ein (Wartesystem), d. h., es ist m = co.

Bei der Untersuchung der beiden o. g. Bedienungssysteme fragen wir zuerst nach
der Wahrscheinlichkeit dafiir, daB sich k Forderungen im Bedienungssystem befin-
den, und anschlieBend nach KenngréBen zur Charakterisierung des jeweiligen
Bedienungssystems.

5.4.1. Ein Poissonsches Verlustsystem

Bei dem Verlustsystem M/M/n/0 stehen zur Bedienung eintreffender Forderungen
n gleiche Bedienungsapparate zur Verfiigung, von denen jeder gleichzeitig nur eine
Forderung bedienen kann. Sofern ein Bedienungsapparat frei ist, wird die Bedienung
einer eintreffenden Forderung unverziiglich begonnen. Sind alle Bedienungsapparate
besetzt, verzichtet die Forderung auf Bedienung.

Bei einem solchen Bedienungssystem sind folgende KenngréBen von Bedeutung:

1. Die Verlustwahrscheinlichkeit

Definition 5.10: Die Wahrscheinlichkeit dafiir, daf3 beim Eintreffen einer Forderung
alle n Bedienungsapparate besetzt sind, wird als Verlustwahrscheinlichkeit bezeichnet.

2. Die mittlere Anzahl der besetzten Bedienungsapparate

Beide KenngroBen erlauben eine Einschdtzung der Auslastung des Systems. Zu
ihrer Ermittlung wihlen wir folgenden Weg:

Wir betrachten den stochastischen ProzeB {X(r), 7 = 0}, der die Anzahl der
zur Zeit ¢ besetzten Bedienungsapparate bezeichnet. Zur Zeit 7 = 0 soll kein Bedie-
nungsapparat besetzt sein. Fiir ein festes 7 ist {X(), t = 0} eine diskrete Zufalls-
groBe mit den Werten 0, 1, 2, ..., n. Wir fragen nach der Wahrscheinlichkeit p,(?),
daB k Bedienungsapparate zum Zeitpunkt ¢ besetzt sind:

) = P(X(t) = k), k=0,1,...,n. (5.1)

Dazu gehen wir von folgenden Annahmen aus:

1. Die Exponentialverteilung, die die Lénge des Zeitintervalls (+ — 7,) zwischen den
zu den Zeitpunkten ¢ und #, eintreffenden Forderungen beschreibt, besitzt die Ver-
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teilungsfunktion:
F(t — 1) = 1 — e -1 (5.2)

wobei 4 > 0 eine Konstante ist und 7 > 7, gilt.
2. Die die Bedienungszeiten beschreibende Exponentialverteilung hat die Ver-
teilungsfunktion:
Fi)y=1—¢em, (5.3)

wobei 1 > 0 eine Konstante und ¢ = 0 ist.

Unter Beriicksichtigung dieser Annahmen stellt der stochastische ProzeB, der das
betrachtete Bedienungssystem M/M|n/0 charakterisiert, einen Geburts- und Todes-
prozeB (vgl. 3.2.2.) dar, fur den die Relation (3.60) erfiillt ist. In Verbindung mit
unseren Betrachtungen lautet diese:

= we=ku, k=12 .,n. (5.4)

Das entsprechende Differentialgleichungssystem hat hier folgende Form:

po(t) = —apo(t) + pup,(1), . (53)
i) = 2pi-1(1) = Q4+ k) p(t) + (K + D ppess(t), 1=k=<n—1, (56)
Palt) = Apu-r(t) — nup,(1). (5.7)

Aufgabe 5.1: Leiten Sie dieses Differentialgleichungssystem entsprechend dem in
3.2.2. gewiesenen Weg her!

Aus diesem System von Differentialgleichungen, das als Erlangsches System
bezeichnet wird, konnen sukzessive die gesuchten. Wahrscheinlichkeiten py(t),

n
k =0,1,...,n, unter Verwendung der Relation Y p.(t) = 1 ermittelt werden.
k=0

Im allgemeinen wird in der Bedienungstheorie die stationdre Lésung fiir ¢ — oo
untersucht. Da die Grenzwerte

p=limp(t), k=0,1,2,...,n, (5.8)
[ Smde ]
existieren, erhalten wir fiir das durch (5.5) bis (5.7) gegebene Differentialgleichungs-

system zur Bestimmung der stationiren Wahrscheinlichkeiten p,, k = 0, 1, ..., n,
das folgende lineare homogene Gleichungssystem:

—2po + ppy =0, ' (5.9)
M-y — (o + k) pe + (k + Dppeoy =0, 1<k <n—1, (5.10)
Ipy-1 — npup, = 0. (5.11)

Das Losungsprinzip fiir dieses System wurde in (3.56) angegeben.

5%
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Wir wollen hier nochmals das Ergebnis nennen, das als Erlangsche Formeln
bezeichnet wird:

Po = z - (L)i’ (5.12)
iso it \
_Po (AN
’ mﬁ(g) k=12 (5.13)
Damit kann die gesuchte Verlustwahrscheinlichkeit angegeben werden:
() G
o) \ v
DPn = —‘u—"- (5.14)
2": 1 /2 )'
<o 1! (/t

Die zweite KenngroBe zur -Charakterisierung des Bedienungssystems M/M/n/0,
der Erwartungswert m(t) = E(X(t)) fir die Anzahl der besetzten Bedienungsapparate
zum Zeitpunkt ¢, errechnet sich fiir den stationdren Fall zu:

n

n 1 Ak
m=Zho =2 e () e G.13)

Durch (5.12) wird schlieBlich die Wahrscheinlichkeit dafiir angegeben, daB alle
Bedienungsapparate frei sind.

5.4.2. Ein Poissonsches Wartesystem

Bei dem Wartesystem M/M/n/oo stehen zur Bedienung der eintreffenden For-
derungen n gleiche Bedienungsapparate bereit, von denen jeder gleichzeitig nur eine
Forderung bedienen kann. Sofern bei Eintreffen einer Forderung ein Bedienungs-
apparat frei ist, wird unverziiglich mit der Abfertigung begonnen. Sind alle Bedie-
nungsapparate besetzt, so wird die eintreffende Forderung in die Schlange der auf
Bedienung wartenden Forderungen (Warteschlange) eingereiht und entsprechend der
Reihenfolge des Eintreffens bedient.

Bei dem vorliegenden unbeschrinkten Wartesystem sind u. a. folgende Kenn-
gréBen von Bedeutung:

1. Die mittlere Wartezeit einer Forderung in der Warteschlange bis zum Bedienungs-
beginn.
2. Die mittlere Warteschlangenlinge:

Definition 5.11: A/s mittlere Warteschlangenlinge wird der Erwartungswert der
Anzahl der Forderungen bezeichnet, die auf Bedienung warten.
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3. Die mittlere Anzahl der Forderungen, die sich im Bedienungssystem aufhalten:

Definition 5.12: Die mittlere Anzahl der Forderungen, die sich im Bedienungssystem
aufhalten, ist der Erwartungswert der Summe aus der Anzahl der Forderungen, die
gerade bedient werden, und der Anzahl der in der Warteschlange befindlichen For-
derungen.

4. Die mittlere Anzahl freier Bedienungsapparate.

Die KenngréBen, die eine gute Einschidtzung des Wartesystems zulassen, ermitteln
wir folgendermafien:

Wir betrachten den stochastischen ProzeB {X(¢), # = 0} der Anzahl der im Bedie-
nungssystem befindlichen Forderungen. X(¢) ist die Summe aus der Anzahl der
Forderungen, die gerade bedient werden, und der Anzahl der in der Warteschlange
befindlichen Forderungen. Zur Zeit ¢ = 0 soll kein Bedienungsapparat besetzt sein.
Es konnen beliebig viele Forderungen im Bedienungssystem sein, d. h., X(#) kann
die Werte 0,1,2,... annehmen. Gesucht sind die Wahrscheinlichkeiten p(7),
k =0,1,2,..., dafiir, daB sich k Forderungen zur Zeit r im Bedienungssystem
befinden, d. h., daB X(z) den Wert k annimmt:

plt) = P(X(H) = k), k=0,1,2, ... (5.16)

Wir machen die im Abschnitt 5.4.1. festgehaltenen Annahmen fiir die Linge des
Zeitintervalls zwischen zwei Forderungen und fiir die Bedienungszeiten. Unter
Beriicksichtigung dieser Annahmen ist der stochastische ProzeB {X(¢), ¢ = 0}, mit
dem das Bedienungssystem M/M/njco beschrieben wird, ein Geburts- und Todes-
prozeB. Zur Aufstellung des Differentialgleichungssystems fiir die unbekannten
Wabhrscheinlichkeiten py(1), kK = 0, 1,2, ..., werden deshalb entsprechende Uber-
legungen wie bei dem in 5.4.1. erliuterten Verlustsystem angestellt. Unterschiede
ergeben sich lediglich aus der Tatsache, daB jetzt die Anzahl der im Bedienungssystem
befindlichen Forderungen die Anzahl der Bedienungsapparate iibersteigen kann.
Dadurch ist die Anzahl der Gleichungen des Differentialgleichungssystems un-
beschréinkt. Im Ergebnis dieser Uberlegungen erhilt man das folgende Dxfferentlal-
gleichungssystem zur Bestimmung der Wahrscheinlichkeiten p, (), k = 0, 1,2, .

pot) = —=2po(t) + up(2), (5.17)

pit) = Ips(t) — A+ k) p(®) + (k + D ppiss (@), 1 Sk sn—1,
(5.18)

Pit) = Ap—y(t) = (A + np) pi(t) + mupiei(t), n < k. - (5.19)

Wie oben beschridnken wir uns auf das Aufsuchen der stationiren Losung dieses
Systems fiir 7 — co. Dabei ergibt sich jetzt zur Ermittlung der stationiren Wahr-
scheinlichkeiten p,, k =0, 1,2, ..., das folgende lineare homogene Gleichungs-
system: R
—Apo + pp; =0, (5.20)

ey — A+ k) p+ (b + Dppeey =0, 1=k=n—1, (5.21)

k-1 — (2 + np) pi + nupey = 0, n < k. (5.22)
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w
Unter Verwendung der Relation Y p, = 1 werden sukzessive die stationdren Wahr-
k=0

scheinlichkeiten p,, k = 0, 1, ..., ermittelt:

—_

Po = 57 1 77 \F 1 7 ),. "y R (5.23)
kgo_'(;-) n! (7 kgn (_"/7)
1 [ 2\F
o=gr()pe 15ksn (5.24)
1 Ak
P = e (7) Po, n<k. (5.25)

Nach [10] konvergiert die unendliche Reihe in (5.23), falls A/u = ¢ < n ist. Im
anderen Fall divergiert sie, was p, = 0 und nach (5.24) und (5.25) auch p, = 0,
k=1,2,..., zur Folge hat. Die Warteschlangenlinge wiirde unbegrenzt mit der
Zeit wachsen.

Mit (5.23), (5.24) und (5.25) lassen sich die o. g. KenngréBen ermitteln, die wir
ohne Herleitung (vgl. [20]) angeben:

1. Die mittlere Waitezeit T, einer Forderung bis zum Bedienungsbeginn:

— Po A\ f
=Dl =7 (7) : (5.26)

2. Die mittlere Warteschlangenlinge m :

oy = _12'1_;‘._2 (5.27)
(-
3. Die mittlere Anzahl m, der Forderungen, die sich im Bedienungssystem aufhalten:
np, n—1 1 ( Y )k
my =m; + + —] . 5.28
2 1 : __Z_ Pok§1 *k—-—D! \n ( )
n

4. Die mittlere Anzahl my freier Bedienungsapparate:

—k /1 \k
e = HT<7) Poi (5.29)

Im Rahmen dieser Ausfithrungen kann nicht auf Beispiele konkreter Bedienungs-
situationen eingegangen werden. Wir verweisen auf [10], [16] und [20].
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5.5. Uberblick iiber einige weitere Methoden der Bedienungstheorie

Im vorangegangenen Abschnitt beschrieben wir das Bedienungssystem M/M/n/m
mit Hilfe von Geburts- und Todesprozessen, also mit Markowschen Prozessen.
Obwohl die diesem Bedienungssystem zugrunde liegenden Voraussetzungen im
allgemeinen in praktischen Anwendungen nicht genau erfiillt sind (vgl. [10]), geben
sie doch einen guten Ansatzpunkt fiir die Untersuchung konkreter Bedienungs-
situationen. Andererseits wird aber auch dann, wenn wenigstens eine der Voraus-
setzungen nicht erfiillt ist, auf Grund der ,,glinstigen Eigenschaften* Markowscher
Prozesse versucht, die Beschreibung realer Bedienungssituationen auf Markowsche
Prozesse zuriickzufiihren. Dieses Vorgehen erwies sich als sehr erfolgreich. An dieser
Stelle sind die von D. G. Kendall entwickelte Methode der eingebetteten Markow-
Ketten (vgl. [10] und [16]) und die von L. Kosten und D. R. Cox angegebene Methode
der Zusatzvariablen (vgl. [16]) zu nennen. Weiterhin lassen sich Bedienungssituationen,
bei denen wenigstens eine auftretende ZufallsgroBe nicht exponentialverteilt ist,
durch Semi-Markowsche Prozesse (vgl. [10] und [16]) beschreiben. Nicht zuletzt ist es
auch moglich, stochastische Prozesse mit Geschwindigkeiten (vgl. [15] und [16]) bei der
Untersuchung von Bedienungssystemen einzusetzen, vorausgesetzt alle auftretenden
ZufallsgréBen sind exponentialverteilt. Ist mit analytischen Verfahren, von denen
oben einige genannt wurden, die Beschreibung einer realen Bedienungssituation nicht
oder nur schwer moglich, bieten sich schlieBlich noch Néherungs- und Simulations-
verfahren (vgl. [16]) an.



6. Einfithrung in die Zuverlissigkeitstheorie

Bei der Bearbeitung von Problemen der Zuverléssigkeit technischer Erzeugnisse
sind mathematische Methoden, speziell die der Wahrscheinlichkeitsrechnung und
mathematischen Statistik, ein wesentliches Hilfsmittel. Im folgenden Kapitel werden
wir die Aufgabe der mathematischen Theorie der Zuverléssigkeit (kurz: Zuverlassig-
keitstheorie) und einige fiir die Zuverlédssigkeitsarbeit wichtige stochastische Modelle
kennenlernen. Dabei kann lediglich eine kurze Einfithrung und kein volistindiger
Uberblick gegeben werden.

6.1. Aufgabe der Zuverlissigkeitstheorie

Im Zuge des technischen Fortschritts werden einerseits die technischen Erzeug-
nisse (Maschinen, Anlagen) immer umfangreicher und in ihrem Aufbau komplizier-
ter, wodurch eine Erhohung ihrer Storanfilligkeit gegeben ist, andererseits entstehen
aber auf Grund ihrer hohen Produktivitit durch einen Ausfall hohe Verluste. Es ist
demzufolge eine wichtige Aufgabe bei Entwicklung, Fertigung und Einsatz solcher
Erzeugnisse, jede Vorsorge zu treffen, um die Stéranfilligkeit wihrend der geplanten
Betriebszeit und unter den vorgesehenen Betriebsbedingungen so klein wie méglich
zu halten.

Zur Beurteilung technischer Erzeugnisse hat sich deshalb in den letzten Jahren
zusdtzlich ein weiteres Bewertungskriterium zu denen, die durch technisch-physi-
kalische KenngréBen und durch Anschaffungs- und Unterhaltungskosten gegeben
sind, herausgebildet: die Zuverldssigkeit des betreffenden Erzeugnisses.

Definition 6.1: Mit dem Begriff Zuverlissigkeit wird die Eigenschaft eines Erzeug-
nisses charakterisiert, unter definierten umgebungs- und funktionsbedingten Bean-
spruchungen wdhrend einer vorgegebenen Zeitdauer unter Beibehaltung seiner Betriebs-
kennwerte in vorgegebenen Grenzen bestimmten Forderungen an seine Funktion zu
entsprechen.')

Durch geeignete KenngroBen erfolgt die Quantifizierung der verschiedenen
Aspekte dieser Eigenschaft.

Die bei der Bearbeitung auftretenden Fragestellungen sind derart komplex, daB
sie im allgemeinen in interdisziplindrer Arbeit von Spezialisten mehrerer Fach-
disziplinen (Mathematikern, Ingenieuren, Okonomen, Physikern, Chemikern)
bearbeitet werden.

Aufgabe der Zuverléssigkeitstheorie ist es, mathematische Methoden zur Bearbei-
tung von Zuverldssigkeitsproblemen bereitzustellen, d.h. entsprechende mathe-
matische Modelle zu entwickeln. Diese Modelle sind im allgemeinen stochastische
Modelle, da die bei Zuverldssigkeitsuntersuchungen auftretenden mathematischen
Fragestellungen zu ihrer Bearbeitung meist Methoden der Wahrscheinlichkeits-
rechnung und mathematischen Statistik erfordern.

1) Zuverldssigkeit in der Technik — Begriffe. TGL 26096, Blatt 1.
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Wir wollen einige fiir die weiteren Betrachtungen wichtige Begriffe klaren.

Definition 6.2: Jeder Gegenstand einer Zuverldssigkeitsuntersuchung wird Betrach-
tungseinheit genannt. Jeder Zustand einer Betrachtungseinheit, bei dem mindestens
eine der gestellten Anforderungen nicht erfiillt ist, wird als Fehler bezeichnet; ein
Zustand der Betrachtungseinheit, bei dem diese nicht mehr arbeitsfihig ist, wird Ausfall
genannt.')

Jeder Ausfall ist also ein Fehler, aber nicht jeder Fehler ist gleichzeitig ein Ausfall.
Wir werden allgemein den Begriff Fehler verwenden.

Jede Betrachtungseinheit wird je nach der zu beantwortenden Fragestellung ent-
weder als Element oder als System aufgefaft.

Definition 6.3: A/s Element wird die kleinste Betrachtungseinheit, die eine weitere
Unterteilung fiir die jeweilige Zuverldssigkeitsbetrachtung nicht erfordert, und als
System eine Kombination von El , die fiir die jeweiligen Zuverldssigkeits-
betrachtungen eine funktionelle Einheit bilden, bezeichnet.")

So wird z. B. ein Getriebe vom Hersteller als System und vom Abnehmer, der
dieses Getriebe in einen LKW einbaut, als Element betrachtet werden.

6.2. Charakterisierung der Zuverlissigkeit eines Elements

Haufig tritt bei Zuverlédssigkeitsuntersuchungen die Frage auf, wie die Zuverldssig-
keit eines Elements charakterisiert werden kann, das zum Zeitpunkt # = 0 seine
Arbeit aufnimmt und bei dem erstmals zum Zeitpunkt ¢ ein Fehler auftritt. Eine
solche Fragestellung ist z. B. von Interesse bei Zuverldssigkeitsbetrachtungen an
Flugzeugen, an in der Erntesaison eingesetzten Landmaschinen (z. B. Méhdreschern)
oder an Rechenautomaten.

Ausgangspunkt fiir entsprechende Untersuchungen ist die Tatsache, daB dieser
Zeitpunkt ¢ nicht voraus bestimmt werden kann, sondern vielmehr von Element
zu Element variiert. So kann z. B. der Zeitpunkt des Durchbrennens einer Gliih-
lampe vor diesem Ereignis nicht exakt angegeben werden. Wir werden deshalb die
fehlerfreie Arbeitszeit T eines Elements im Intervall [0, 7) als Zufallsgr6Be auffassen
und mit Hilfe ihrer Verteilungsfunktion F(¢) die Zuverldssigkeit des betrachteten
Elements charakterisieren. Das erfolgt durch entsprechende KenngréBen.

6.2.1.  Zuverlissigkeitskenngrofien

Zur Charakterisierung der Zuverldssigkeit eines Elements bieten sich die Ausfall-
wahrscheinlichkeit, die Uberlebenswahrscheinlichkeit, der Erwartungswert der
fehlerfreien Arbeitszeit und die Ausfallrate an.

1. Die Ausfallwahrscheinlichkeit F(t):

Definition 6.4: A/s Ausfallwahrscheinlichkeit F(¢) wird die Wahrscheinlichkeit dafiir
bezeichnet, daf bei dem Element der erste Fehler vor dem Zeitpunkt t (0 < t < + )

1) s. TGL 26096, Blatt 1.
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auftritt:
Fit)=P(T < t). 6.1)
Im allgemeinen ist die fehlerfreie Arbeitszeit 7' eine stetige ZufallsgroBe. Wir

wollen dies im folgenden voraussetzen. Fiir die Dichte f(¢) dieser ZufallsgroBe — sie
wird Dichte der Ausfallwahrscheinlichkeit genannt — gilt dann

S0 = F'(0). 6.2)
2. Die Uberlebenswahrscheinlichkeit R(t):
Definition 6.5: Die Wahrscheinlichkeit dafur, daﬁ das Element bis zum Zeitpunkt t

(0 £ t < +00) nicht ausfallt, wird Uberl heinlichkeit (auch: Zuverlissig-
Keitsfunktion) R(r) genannt:
Rt)y=1—-Fit)=PT 1. (6.3)
3. Der Erwartungswert T, der fehlerfreien Arbeitszeit T':
+o
T, = E(T) = [ #f(t) dz. (©.4)
0

Unter der Voraussetzung, daB die auftretenden Integrale konvergieren, ergibt sich
fiir (6.4) durch partielle Integration:

+00
To = [ R(t)dt. (6.5)
o

Fiir T, wird auch die Bezeichnung MTBF (engl.: mean time before failure) verwandt.

4. Die Ausfallrate (auch Fehlerrate) A(t):

Sie ist ein lokales Charakteristikum und kann als MaB fiir die Anfilligkeit eines
Elements angesehen werden, das das Alter ¢ erreicht hat. A(f) At ist bis auf eine
GroBe der Ordnung o(Ar) die bedingte Wahrscheinlichkeit dafiir, daB bei dem
betrachteten Element ein Fehler im Intervall [#, # + A¢) eintritt, wenn es im Inter-
vall [0, #) ordnungsgemalB arbeitete.

Wir wollen A(¢) niaher betrachten und gehen dazu von folgender Fragestellung aus:
Gesucht wird die bedingte Wahrscheinlichkeit R(¢, # + At), daB ein Element, das bis
zum Zeitpunkt ¢ ordnungsgemiB arbeitete, auch im Intervall [z, 7 + A¢) ordnungs-
gemiB arbeitet. Bezeichnen wir mit E, das Ereignis { < 7 < ¢ + At} und mit E,
das Ereignis {7 > ¢}, dann erhalten wir:

P(E, n Ey) R(t + Ar)

R(t,t + At) = P(E,|E>) = PE) O (6.6)
Fiir die bedingte Ausfallwahrscheinlichkeit F(z, ¢ + Ar) erhalten wir dann:
5 - R(t + Ar)
F(t,t +At)y=1— R(t, t + At) = 1—T

Fiir hinreichend kleines Af ergibt sich weiterhin:

F@t,t 4+ At) = — 1;8 At + o(A1).
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Es ist nun moglich, die Ausfallrate A(7) zu definieren:
Definition 6.6:

_ R(t)  F(
M) = S Y R 6.7)
Fiir hinreichend kleines Az kann also gesetzt werden:
F(t,t + At) ~ A1) At. (6.8)

Die Ausfallrate A(¢) hat fiir viele Elemente die in Bild 6.1 angegebene typische
Form einer ,,Badewannenkurve®. Im Verlauf dieser Kurve fallen drei typische

Alt)

| |
1

0 7 3 7
Frith- o 5 e, | Alterungs-

- - hler —wte .

fetler T2 ITe T ebler Bild 6.1. Kurvenverlauf der Ausfallrate(7)

Abschnitte auf. Der erste, in dem die Ausfallrate monoton féllt, wird bestimmt durch
die bei dem Element auftretenden Friihfehler. Der zweite mit anndhernd konstanter
Ausfallrate ist gekennzeichnet durch die bei dem Element auftretenden Zufalls-
fehler. Im letzten Abschnitt wichst die Ausfallrate monoton. Dies ist durch die bei
dem Element auftretenden Alterungsfehler zu erklaren.

Alle drei Fehlerarten besitzen Zufallscharakter. Im Prinzip kann jede von ihnen
in allen drei Abschnitten unabhéngig von den beiden anderen auftreten.

Dabei sind Frithfehler durch eine monoton fallende (2,(¢)), Zufallsfehler durch
eine konstante (4.(f)) und Alterungsfehler durch eine monoton wachsende (23(1))

A A (@), 1=1,2,3

Alf)
;0
Bild 6.2. Kurvenverlauf der Ausfallrate A(t)
) durch Superposition der Ausfallraten fiir
w 24 Friihfehler 4,(t), fiir Zufallsfehler 2,(¢) und
M fiir Alterungsfehler 43(r)

t

Ausfallrate iiber alle drei Abschnitte gekennzeichnet. Durch Superposition dieser
Ausfallraten ergibt sich der oben angegebene Verlauf der Ausfallrate A(z) (Bild 6.2).
Da aber in jedem der drei Abschnitte eine der drei Fehlerarten dominiert, werden in
der Regel die beiden anderen vernachlissigt.
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Der zwischen der Ausfallwahrscheinlichkeit F(7), der Uberlebenswahrscheinlich-
keit R(#) und der Ausfallrate A(f) bestehende Zusammenhang ist in Tabelle 6.1
angegeben:

Tabelle 6.1
Zusammenhang zwischen den GréBen F(¢), R(r) und A(t)
F(1) R(1) A1)
R0
1 — R(1) 1— F(1) - I0)
- i' Mo dr - j!l(l) dr F,_(t) e
1—-eo© e 0 1— F(1)

Priifen Sie die in dieser Tabelle angegebenen Relationen nach!

6.2.2. Spezielle Verteilungen

Die in Abschnitt 6.2.1. erklarten KenngréBen sind in Tabelle 6.2 fiir einige in der
Zuverlassigkeitstheorie wichtige Verteilungen zusammengestellt. Es handelt sich
dabei um die Exponential-, die Weibull-, die Gamma-, die Normal- und die Log-
normalverteilung.

In vielen Fillen wird bei Zuverlédssigkeitsuntersuchungen die Exponentialverteilung
angewandt. Das hat zwei Griinde. Einmal ist sie — nicht zuletzt aus physikalischen
Griinden — zur Beschreibung vieler bei Zuverlédssigkeitsbetrachtungen auftretenden
Erscheinungen gut geeignet. Zum anderen vereinfachen sich viele Berechnungen bei
Anwendung der Exponentialverteilung. Dies ist besonders dadurch begriindet, daf
bei ihr die Wahrscheinlichkeit fehlerfreier Arbeit im Intervall [¢, ¢ + At) nur von
der Intervallinge A und nicht von der schon abgelaufenen Arbeitszeit ¢ abhéingt,
d. h., die Arbeitsfahigkeit eines Elements zum gegenwirtigen Zeitpunkt ist unabhan-
gig von der Vorgeschichte. Analytisch driickt sich dies folgendermaBen aus:

R(t +Ar) e 2o
O

R(t, t + A1) = = e A1 (6.9)

Auch das Umgekehrte gilt: Ist fiir eine Verteilung die Relation (6.9) erfiillt, dann ist
sie exponentialverteilt.

Da die Exponentialverteilung eine konstante Ausfallrate besitzt, eignet sie sich
gut zur Beschreibung des Abschnitts, der durch die beim Element auftretenden
Zufallsfehler gekennzeichnet ist. Dasselbe gilt fiir die Weibull- (fiir x = 1) und fiir
die Gammaverteilung (fiir o« = 1).

Zur Beschreibung der Friith- und Alterungsfehler werden im allgemeinen die
Normal-, die Weibull-, die Lognormal- und auch die Gammaverteilung herangezogen.
Fiir « < 1 besitzen die Weibull- und die Gammaverteilung eine fallende Ausfallrate.
Sie eignen sich also zur Beschreibung von Friihfehlern. Eine wachsende Ausfallrate
haben die Normalverteilung (fiir # > 0), die Lognormalverteilung (fiir u < 30),
die Weibull- und die Gammaverteilung (fiir « > 1). Mit ihrer Hilfe kann das Auf-
treten von Alterungsfehlern charakterisiert werden.
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6.2.3.  KenngroBenstatistik

Wir wollen nun fiir einige der in Abschnitt 6.2.1. erklarten KenngroBen Moglich-
keiten zu ihrer experimentellen Bestimmung kennenlernen. Dazu werden N gleich-
artige Elemente zum Zeitpunkt 7 = 0 in den Versuch eingesetzt, wobei sie sich in
ihrer Arbeitsweise gegenseitig nicht beeinflussen sollen, d. h., es werden gleichzeitig
N unabhingige Versuche durchgefiihrt.

Zur experimentellen Bestimmung der Uberlebenswahrscheinlichkeit R(f) zum
Zeitpunkt 7, wird die Anzahl n(z,) der bis dahin fehlerfrei arbeitenden Elemente
festgestellt. Dann kann die relative Haufigkeit Hy = ”(IO) (bis zum Zeitpunkt 7,
tritt bei dem Element kein Fehler auf) als Schétzung fir R(to) gewdhlt werden, da
die relative Haufigkeit fiir N - co mit Wahrscheinlichkeit 1 gegen R(f,) konver-
giert [9].

Definition 6.7: Die relative Hdaufigkeit Hy (bis zum Zeztpunkt t < to tritt bei dem
Element kein Fehler auf) wird als empirische Uberleb ahrscheinlichkeit Ry(7)
bezeichnet.

Betrigt die Anzahl der bis zum Zeitpunkt 7 (¢ < #,) fehlerfrei arbeitenden Ele-
mente n(t), dann berechnet sich Ry(f) wie folgt:

Ry(t) = n(t) (6.10)

Fir hinreichend groBe N kénnen wir sie nach dem Satz von Gliwenko [4] als Schit-
zung fiir die Uber;ebenswahrscheinlichkeit R(t) wahlen und dann also setzen:

R(t) ~ Ry(t) = % (6.11)

Eine Extrapolation von Ry(?) fiir einen Zeitpunkt ¢ > ¢, sollte unterbleiben, wenn die
analytische Form von R(7) nicht aus Vorversuchen bekannt ist bzw. wenn ent-
sprechende physikalische Uberlegungen nicht angestellt werden konnen.

Bei der experimentellen Bestimmung der mittleren Lebensdauer 7, wird von
jedem der N Elemente die Zeit #;, i = 1,2, ..., n, bis zum Auftreten eines Fehlers
festgestellt und das arithmetische Mittel ¢ dieser Zeiten ermittelt:

N
pIR
- =t
= . 6.12
7 o (6.12)
Definition 6.8: Das durch (6.12) gegebene arithmetische Mittel T wird als empirische
mittlere Lebensdauer bezeichnet.

Es 148t sich zeigen, daB 7 fiir N > + co mit Wahrscheinlichkeit 1 gegen 7, kon-
vergiert [4, 9]. Fur hinreichend groBes N konnen wir wiederum setzen:

N
>t
~=L 6.13
Tox —5 (6.13)
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Zur experimentellen Bestimmung der Ausfallrate A(¢) stellen wir die Anzahl n(r)
der Elemente fest, bei denen bis zum Zeitpunkt # noch kein Fehler auftrat. Wir
betrachten nun die folgende GroBe:

n(t) — n(t + At)
Ry(t) — Ry(t + A1) N
AtRN(1) - n(t)
My

Ay(t) =

_n(t) — n(t + Ar)
- (6.14)

wobei At > 0 ist.

Definition 6.9: Die durch (6.14) gegebene Grifie Ay(t) wird als empirische Ausfallrate
bezeichnet.

Fiir hinreichend kleines A7 und hinreichend groBes N konnen wir setzen:
Mt) ~ (). (6.15)

6.3. Einfache Ersatzmodelle

Im Gegensatz zu der im letzten Abschnitt behandelten Fragestellung wird jetzt
das betrachtete Element nach dem Auftreten eines Fehlers durch ein anderes Element
ersetzt, d. h., es wird erneuert. Das fehlerhafte Element wird entweder durch ein
neues, mit dem alten identisches Element ersetzt, oder es wird einer Reparatur unter-
zogen, in deren Ergebnis seine Gebrauchseigenschaften wiederhergestellt werden. Fiir
die nun folgende Darstellung einfacher Ersatzmodelle ist nicht die Art, sondern die
Folge der Ersetzungen (Erneuerungen) von Interesse.

6.3.1.  Unverziigliche Erneuerung

Wir wollen zuerst den Fall betrachten, da die Erneuerung eines fehlerhaften
Elements sofort nach Auftreten des Fehlers und ohne zeitliche Dauer erfolgt. Die

t

Bild 6.3. Schematische Darstellung eines ein-
fachen Erneuerungsprozesses (nach [19], S.192)

S

R -
| | |
e R
i } } I
|
P
o |
in dieser Form vorgenommene Erneuerung ist in Bild 6.3 veranschaulicht. Dabei
nehmen wir an, daBl das Element zum Zeitpunkt S, = 0 seine Arbeit aufnimmt und
nicht schon eine gewisse Zeit in Betrieb ist. Nach Ablauf der zufilligen Zeit 7 tritt
zum Zeitpunkt 7, = S; bei dem Element ein Fehler auf. Das erneuerte Element
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wird nach Ablauf der zufilligen Zeit 7, zum Zeitpunkt S, fehlerhaft. Allgemein
ausgedriickt: Nach der (k — 1)-ten Erneuerung tritt bei dem Element nach Ablauf
der zufilligen Zeit 7, zum Zeitpunkt S,, k = 1,2, ..., ein Fehler auf. Auf Grund
unserer Annahme sind die zufdlligen Zeiten 7;, i = 1,2, ..., identisch verteilte,
unabhédngige, positive ZufallsgroBen, d.h., fiir ihre Verteilungsfunktion gilt:
F(t) = P(T; < t), i = 1,2, ... Hinsichtlich der Zeitpunkte S;, die als Erneuerungs-
punkte bezeichnet werden, ist das nicht mehr der Fall. Sie geniigen der Beziehung:

k

Sy = > T;,k = 1,2, ..., und bilden einen einfachen (auch: gewéhnlichen) Erneuerungs-
i=1

prozef. Das ist ein stochastischer ProzeB aus der Klasse der Punktprozesse.

Definition 6.10: Durch eine Folge unabhingiger, positiver Zufallsgrofien T; mit den

Verteilungsfunktionen F(t) = P(T; < t), i = 1,2, ..., wird ein einfacher Erneuerungs-
prozeB erklirt.

Zu seiner Charakterisierung werden verwendet:
1. Der stochastische ProzeB {N(¢), t = 0}, mit

N@)=max (i: S; < t,t=0). (6.16)
i

Er ist ein sogenannter Zdihlprozef3 und gibt die Anzahl der Erneuerungen im Intervall
[0, 7) an. Fiir jedes ¢ > 0 ist N(z) eine diskrete ZufallsgréBe mit den Werten 0, 1, 2, ...
Die fiir den ErneuerungsprozeB {S,i=1,2,...} erklirten zufilligen Ereignisse
{S, = t},n=1,2, .., sind den zufilligen Ereignissen {N(r) < n}, n = 1,2, ..., des
Zéhlprozesses {N(t), t = 0} dquivalent:

NOysnp={S,zt}, n=12,.. (6.17)
Es gilt deshalb:
P(N(t)y£n)=PS,2t)=1— P(S, <1). (6.18)

Die Verteilung des Zdhlprozesses {N(¢), ¢ = 0} kann fiir jedes # > 0 mit Hilfe der
Verteilung des Erneuerungsprozesses {S;, i = 1,2, ...} angegeben werden. Die Ver-
teilungsfunktion F,(¢) der ZufallsgréBe S,, n = 1,2, ...,

E(f) = P(S, <) = P(éﬂ < t), n=1,2 ... (6.19)

erhalten wir fiir » > 1 durch Faltung (vgl. [4]) der Verteilungsfunktionen F,_,()
und F(t):

t

Ft) = [ Foei(t = ) f() dy, (6.20)
0
wobei f(¢) die Dichte der Verteilungsfunktion F(z) ist:

F'(0) = f).

2. Die Mittelwertfunktion des Zihlprozesses {N(¢), ¢ = 0}, die hier mit H(r)
bezeichnet und Erneuerungsfunktion genannt wird:

H(t) = E(N()). (6.21)
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Mit (6.19) berechnen wir H(t):
o w
H(t) = gon[Fn(t) = Fa(0)] = ; Fy(t). (6.217)

Dieser Erwartungswert existiert immer: H(t) < oo.

3. Die sogenannte Erneuerungsdichte h(t), die wie folgt erklart ist:

h(t) = . (6.22)

Sie existiert, wenn F'(¢) = f(¢) gilt. Existiert weiterhin F(t) = f,(t), n = 1,2, ..., so
errechnet sich A(z) wie folgt:

W) = X 10, 623)

Im Rahmen dieses Bandes ist es nicht méglich, auf den ErneuerungsprozeB néher,
z. B. auf Fragen der Stationaritdt und auf Grenzwertsitze, einzugehen. Ausfiihrliche
Darstellungen sind in [9] und [19] enthalten. Mit den Charakteristiken des Erneue-
rungsprozesses konnen Zuverlidssigkeitsaussagen fiir ein Element gemacht werden,
bei dem nach einem Fehler eine Erneuerung unter den oben genannten Voraus-
setzungen vorgenommen wird.

Beispiel 6.1: Fiir den Fall, daB3 die zufilligen Zeiten T}, i = 1, 2, ..., zwischen zwei
Erneuerungen durch eine Exponentialverteilung mit der Verteilungsfunktion

F)=PT,<t)=1—¢e* 1>0, i=12.., t=0, (6.24)

beschrieben werden konnen, ergeben sich fiir die n-fache Faltung von (6.24) und
die o. g. Charakteristiken fiir den entsprechenden einfachen ErneuerungsprozeB3, den
Poissonprozefs:

® (G, ol ek,
F,(t) =k:2n = 1 -2 e A (6.25)
H(t) =2, h(t) =2 mit % = KT) = ETy) = ..., (6.26)
P(N(t) = n) = %e"’, n=0,1,2, .. 7 (6.27)

Die Anzahl der Erneuerungen bis zum Zeitpunkt ¢ ist also durch eine Poisson-
verteilung mit dem Erwartungswert A¢ gegeben.

Bringen Sie diese Relationen in Zusammenhang mit den im Abschnitt 2.2. zum
Poissonproze3 angefiihrten Ergebnissen !

6.3.2. Verzogerte Erneuerung

Betrachten wir nun den Fall, daB fiir das Element nach dem Auftreten eines Fehlers
eine endliche Erneuerungszeit zugelassen wird, wobei diese Zeit nicht in Anteile
fir das Aufsuchen und den Austausch bzw. die Reparatur des fehlerhaften Elements

6 Beyer, Stoch. Proz.
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gegliedert wird. Bild 6.4 veranschaulicht die Aufeinanderfolge der in dieser Form
vorgenommenen Erneuerungen. Auch hier wird angenommen, daB das Element
zum Zeitpunkt Sy’ = 0 seine Arbeit aufnimmt und nicht schon eine gewisse Zeit in
Betrieb ist. Auf die Erlduterung dieses Falls wollen wir uns hier beschrinken. Nach

Bild 6.4. Schematische Darstellung eines
alternierenden Erneuerungsprozesses (nach
[19], S.192)

Ablauf der zufilligen Zeit 77 tritt zum Zeitpunkt 77 = S] bei dem Element ein
Fehler auf. Die zufillige Erneuerungszeit betrdgt 77, so daB zum Zeitpunkt S{’ das
erneuerte Element die Arbeit wieder aufnimmt. Nach Ablauf der zufilligen Zeit 75
tritt zum Zeitpunkt S; wiederum bei dem Element ein Fehler auf, der nach Ablauf
der zufdlligen Zeit 75’ zum Zeitpunkt S3’ behoben ist. Allgemein ausgedriickt: Das
zum Zeitpunkt S;’;, k = 1, 2, ..., in Betrieb genommene Element wird nach Ablauf
der zufilligen Zeit 7y zum Zeitpunkt S; fehlerhaft. Nach der ebenfalls zufélligen
Erneuerungszeit 7y’ wird es zum Zeitpunkt S;’ wieder in Betrieb genommen, d. h.,
Arbeitsphase und Reparaturphase folgen alternierend aufeinander.

Die zufilligen Zeiten 7} bzw. T;', i = 1, 2, ..., sind positive, unabhéngige Zufalls-
groBen, die identisch verteilt sind mit den Verteilungsfunktionen F(t) = P(T} < t),
i=1,2,..,bzw. G(t) = P(T}' < t),i=1,2,... Zu den Zeitpunkten

k=1
Si=3X [+ T+ Tk, k=12,.., (6.28)
i=1
treten Fehler auf, und zu den Zeitpunkten -
k
Sk =3 I[TI+T], k=12.., (6.29)
i=1

sind die Erneuerungen jeweils beendet.

Definition 6.11: Durch die Folge det Zeitpunkte (S, S), k = 1,2, ..., wobei Sj, bzw.
Sy durch (6.28) bzw. (6.29) gegeben ist, wird ein alternierender ErneuerungsprozeB
erkldrt.

Auch dieser ProzeB ist ein stochastischer ProzeB aus der Klasse der Punktprozesse.
Die Charakterisierung dieses Erneuerungsprozesses erfolgt auf folgendem Weg:
Wir erkldren die ZufallsgroBen

T,=T+T/, i=12.., (6.30)

mit der Verteilungsfunktion K(¢) = P(T; < t) und der Dichte k(¢) = K'(¢). K(t)
erhalten wir durch Faltung der Verteilungsfunktionen F(¢) der ZufallsgroBe 77,
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i=1,2, ..., und G(¢) der ZufallsgroBe 7;',i = 1,2, ...:
K@t)=P(T, <t)=PT + T <1t)

= Ir F(t — x) g(x) dx, ‘ (6.31)
0 .

wobei die Existenz der Dichte G'(t) = g(¢) vorausgesetzt wird.

Die Folge der ZufallsgréBen T, T, ... definiert einen einfachen Erneuerungs-
prozeB, bei dem sich jede ZufallsgréBe 7, i = 1,2, ..., auf einen Erneuerungs-
zyklus, der sich aus der Zeit bis zum Auftreten eines Fehlers und aus der sich an-
schlieBenden Reparaturzeit zusammensetzt, bezieht. Die Erneuerungszeitpunkte

k
Sy = 3 Ti,k = 1,2, ..., geben dann die Zeit bis zur Vollendung des n-ten Zyklus an.

i=1
Die Charakteristiken dieses einfachen Erneuerungsprozesses erhalten hinsichtlich
des urspriinglichen alternierenden Prozesses folgende Bedeutung:

1. Mit dem ZéhlprozeB N(z) = max (i: S; < t; ¢t = 0) wird eine Aussage iiber die
1

Anzahl der Erneuerungszyklen im Intervall [0, 7) gemacht.
2. Die Verteilungsfunktion der Zeit bis zur Beendigung des n-ten Zyklus K,(t)
erhalten wir durch die n-fache Faltung der Verteilungsfunktion K(7):

K () =P(S, <1t)= f’ K, (t — x) k(x) dx. (6.32)
0

3. Die Einzelwahrscheinlichkeiten der ZufallsgroBe N(r) (¢ fest!) ergeben sich zu:
P(N(t) = n) = K,(t) — Kpss(t), n=0,1,2, ... (6.33)
4. Die Erneuerungsfunktion

1) = E(VO) = 3 K0 | (634)

gibt den Erwartungswert der im Intervall [0, 7) auftretenden Erneuerungen an.
Vergleichen Sie die hier aufgefiihrten Charakteristiken mit den in (6.16)—(6.23)
angegebenen GroBen !

6.3.3.  Verfiigbarkeit

In Verbindung mit dem in Abschnitt 6.3.2. erklarten alternierenden Erneuerungs-
prozeB spielt — besonders auch fiir die Anwendung in der Praxis — eine weitere
KenngroBe eine groBe Rolle, die Verfiigbarkeit V(z).

Definition 6.12: Die Wahrscheinlichkeit dafiir, dafi ein Element zu einem Zeitpunkt
t > 0 ordnungsgemdfs arbeitet, wird als Verfiigbarkeit V() des Elements bezeichnet.

Sie ist wie folgt zu ermitteln:

V() = R(t) + f'R(t — x) h(x) dx, (6.35)
0

6*
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wobei R(t) die in (6.3) erklirte Uberlebenswahrscheinlichkeit und /(z) die in (6.22)
angegebene Erneuerungsdichte sind. Im allgemeinen wird jedoch der Grenzwert V'
von V(t) fiir t - + oo betrachtet. Unter der Annahme seiner Existenz wollen wir ihn
ohne Herleitung — es sei auf [9] und [19] verwiesen — angeben:

i vy o BT
V=IO = my Ry

d. h., V ist der Quotient aus dem Erwartungswert der Zeit fehlerfreier Arbeit und
der Summe aus dem Erwartungswert der Zeit fehlerfreier Arbeit und dem Erwar-
tungswert der Erneuerungszeit.

(6.36)

6.4. Charakterisierung der Zuverlissigkeit eines Systems

6.4.1. Charakterisierung der Zuverlissigkeit eines Systems durch Strukturanalyse

In Abschnitt 6.1. haben wir ein System als ,,Kombination von Elementen, die fir
die jeweiligen Zuverlédssigkeitsuntersuchungen eine funktionelle Einheit bilden® (vgl.
TGL 26096) charakterisiert. Wir werden nun kennenlernen, wie die Zuverldssigkeit
eines solchen Systems durch die seiner Elemente ausgedriickt werden kann.

Dazu wollen wir von folgenden Voraussetzungen ausgehen:

1. Das System S besteht aus n Elementen E;, i = 1,2, ..., n.

2. Die Elemente E;, i = 1,2, ...,n, arbeiten unabhingig voneinander, d. h., das
Auftreten eines Fehlers bei einem Element besitzt keine Auswirkungen auf das
Fehlerverhalten der anderen Elemente des Systems.

3. Die Struktur und die Arbeitsweise des Systems sind in einem solchen Umfang
bekannt, daB fiir jede Gruppe') von Elementen des Systems bekannt ist, ob ein
bei ihnen auftretender Fehler zu einem Fehler des Systems fiihrt.

4. Erforderliche ZuverldssigkeitskenngroBen der Elemente des Systems, also z. B.
Uberlebenswahrscheinlichkeit, Ausfallrate, sind bekannt.

Die Struktur eines Systems ist im Hinblick auf seine Zuverldssigkeit nicht iden-
tisch mit seiner funktionellen Struktur. So kann z. B. bei einem einfachen elektrischen
System, das aus zwei Elementen besteht, die funktionelle Struktur durch eine Parallel-
schaltung gegeben sein, wihrend seine Zuverldssigkeitsstruktur eine weiter unten
erkldrte Serienstruktur ist. In [19] ist dafiir ein Beispiel angegeben.

Die Zuverldssigkeitsstruktur eines Systems wird in Form einer sogenannten
Zuverldssigkeitsersatzschaltung entweder hinsichtlich der Arbeitsfahigkeit oder hin-
sichtlich des Fehlerverhaltens des Systems erfaBt. Sie wird unter Verwendung der
Symbole der Schaltalgebra grafisch dargestellt.

Wir wollen die Zuverlédssigkeit eines Systems S, das die o. g. Voraussetzungen
erfillt und zum Zeitpunkt ¢ = 0 seine Arbeit aufnimmt, bis zum ersten Auftreten
eines Fehlers zum Zeitpunkt 7 fiir verschiedene Zuverlassigkeitsstrukturen charak-
terisieren.

1) Als ,,Gruppe von Elementen* wird in diesem Zusammenhang mit Ausnahme der leeren Teil-
menge jede Teilmenge der Menge der Elemente E;, i = 1, 2, ..., n, bezeichnet.
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Serienstruktur:
Definition 6.13: Die Struktur eines Systems (hinsichtlich der fehlerfreien Arbeit des
Systems bis zum Zeitpunkt t) wird als Serienstruktur bezeichnet, wenn das System
bis zum Zeitpunkt t nur dann fehlerfrei arbeitet, wenn alle n Elemente des Systems bis
zu diesem Zeitpunkt fehlerfrei arbeiten.

In Bild 6.5 ist die zugehdrige Zuverldssigkeitsersatzschaltung angegeben. Unter
Verwendung der Uberlebenswahrscheinlichkeiten Ry(¢), i = 1,2, ..., n, der Elemente

Bild 6.5. Zuverldssigkeitsersatzschal-

Ao— & [ & [~ of tung einer Serienstruktur
ergibt sich die Uberlebenswahrscheinlichkeit R(t) des Systems

R(t) = H R 6.37)

Ist A(t) die Ausfallrate des Systems und sind 4,(¢), i = 1, 2, ..., n, die Ausfallraten
der Elemente, dann ergibt sich mit der Relation in Tabelle 6.1 aus (6.37):

t 3 3 t
~[ Ms)ds —[ 21(s)ds=[ Az(s)ds—...~ [4,(s)ds
€ o e o o 0 N

Damit erhalten wir:
M) = 2,() + 2(8) + ... + 4,(0), (6.38)

d. h., bei einer Serienstruktur summieren sich die Ausfallraten. Kann die zuféllige
Zeit bis zum Auftreten eines Fehlers bei dem Element E;, i = 1, 2, ..., n, durch eine
Exponentialverteilung mit der Ausfallrate A,(t) = 4, i = 1,2, ...,n, beschrieben
werden, dann ergibt sich mit (6.38) fiir die Ausfallrate A(t) des Systems

M)y=A+ A+ ...+ 2A=nk, (6.39)

d. h., die zufillige Zeit bis zum Auftreten eines Fehlers kann bei dem System mit
einer Exponentialverteilung mit der Ausfallrate A(f) = n/ beschrieben werden.
Aufgabe 6.1: Berechnen Sie fiir den Fall der Exponentialverteilung den Erwartungs-
wert T, der fehlerfreien Arbeitszeit 7 des Systems!

Aus (6.37) konnen wir schlieBlich die Ausfallwahrscheinlichkeit F(f) = 1 — R(z)
des Systems ermitteln, wenn Fy(¢) = 1 — R(¢),i = 1, 2, ..., n, die Ausfallwahrschein-
lichkeiten der Elemente sind:

F()=1—(1 - F,(0)(1 = Fy@)) ... (1 = F(1)). (6.40)
Parallelstruktur:
Definition 6.14: Die Struktur eines Systems (hinsichtlich der fehlerfreien Arbeit des
Systems bis zum Zeitpunkt t) wird als Parallelstruktur bezeichnet, wenn fiir seine feh-
lerfreie Arbeit nur die fehlerfreie Arbeit eines seiner Elemente E;, i = 1,2,...,n,
erforderlich ist.

Bild 6.6 zeigt die zugehdrige Zuverlissigkeitsersatzschaltung. In diesem Falle wird
auch von der Redundanz der Elemente gesprochen. Sie trigt zu einer Erhdhung der
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Uberlebenswahrscheinlichkeit R(r) des Systems bei. Die Ermittlung der Uberlebens-
wahrscheinlichkeit R(#) des Systems erfolgt jetzt mit der Ausfallwahrscheinlichkeit
F(t) =1 — R(t) des Systems und den Ausfallwahrscheinlichkeiten Fy() = 1 — i(t),
i=1,2, ..., n, der Elemente. Bei dem System tritt bis zum Zeitpunkt ¢ nur dann ein
Fehler auf wenn bei allen Elementen bis dahin ein Fehler auftritt, d. h., es gilt fiir

Bild 6.6
Zuverlassigkeitsersatzschaltung einer Parallelstruktur

die Ausfallwahrscheinlichkeit F(7) des Systems bis zum Zeitpunkt 7:
F(t) = F,(t) Fx(t) ... F(1). (6.41)

Mit (6.41) ergibt sich durch Einsetzen fiir die Uberlebenswahrscheinlichkeit R(¢) des
Systems bis zum Zeitpunkt #:

R =1 -inl (1 = R(®)). (6.42)

Die Ausfallrate A(f) des Systems 1Bt sich offensichtlich nicht in so einfacher Art
durch die Ausfallraten der Elemente 1,(¢), i = 1,2, ..., n, wie bei der Serienstruktur
ausdriicken. In diesem Fall kann die Zeit bis zum ersten Auftreten eines Fehlers bei
dem System nicht durch eine Exponentialverteilung beschrieben werden, wenn auch
die Zeit bis zum ersten Auftreten eines Fehlers bei den Elementen einer Exponential-
verteilung geniigt.

Serienparallelstruktur:
Definition 6.15: Die Struktur eines Systems (hinsichtlich der fehlerfreien Arbeit des
« Systems bis zum Zeitpunkt t) wird als Serienparallelstruktur bezeichnet, wenn sie durch
eine Kombination von Serien- und Parallelstrukturen aus den Elementen E;,
i=1,2,..,n, erfafit werden kann.

Die Zuverlass1gke1tsersatzschaltung eines solchen Systems ist dann eine Serien-

parallelschaltung Wir wollen die Ermittlung der Uberlebenswahrscheinlichkeit R(t)
eines solchen Systems am Beispiel erldutern.
Beispiel 6.2: Zu bestimmen ist die Uberlebenswahrscheinlichkeit R(z) eines Systems S,
das aus n = 6 Elementen besteht und das die in Bild 6.7 angegebene Struktur besitzt,
aus den Uberlebenswahrscheinlichkeiten Ry(¢), i = 1,2, ..., 6, seiner Elemente E;,
i=12..6

Bild 6.7. Zuverlissigkeitsersatzschal-
tung eines Beispiels einer Serienpar-
allelstruktur (n = 6)
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In einem ersten Schritt wird das System S in die Teilsysteme St und Sy gegliedert,
fiir die das System eine Serienstruktur besitzt. Das Teilsystem Sy wiederum besitzt
hinsichtlich der Teilsysteme S, und S eine Parallelstruktur, die selbst wieder in bezug
auf die Elemente E; und E, bzw. Es und Eg eine Serienstruktur haben.

In einem zweiten Schritt wird unter Verwendung von (6.37) und von (6.42) schritt-
weise die gesuchte Uberlebenswahrscheinlichkeit R(f) des Systems S errechnet. Die
einzelnen Ergebnisse sind im folgenden zusammengestellt, wobei die Angaben fiir
jedes Teilsystem durch entsprechende Indizes gekennzeichnet sind:

Ri(t) =1 —=(1 — R(@®)(1 — R(1)),
R(t) = Ry(1) Ru(D),
Ry(t) = Rs(t) Re(1),
Ru(t) =1 — (1 — R()) (1 — Ry(2))

=1 = (1 — Rs(t) Ra(0)) (1 — Rs(t) Re(2)),
R(t) = Ri(t) Ru(?) »

=[1=(1 - R®)(1 = RA1))]

x [1 = (1 = Rs(2) Ra(1)) (1 — Rs(t) Rs())].

Ist die Darstellung der Struktur eines Systems durch Serienparallelstrukturen
méglich, kann die Bestimmung der Uberlebenswahrscheinlichkeit R(¢) dieses Systems
mit Hilfe eines Booleschen Zuverlissigkeitsmodells erfolgen. Solche Modelle werden
in [19] und [26] ausfiibrlich beschrieben.

Auch fiir Systeme, deren Struktur sich nicht in einfacher Weise durch eine Kombi-
nation von Serien- und Parallelstrukturen darstellen 148t, kann dann die Uberlebens-
wahrscheinlichkeit R(#) des Systems berechnet werden, wenn von jeder der 2" — 1
Gruppen der n Elemente des Systems bekannt ist, ob das Auftreten eines Fehlers
bei allen Elementen der jeweiligen Gruppe zu einem Fehler des Systems fiihrt oder
nicht. Wir kénnen darauf nicht ndher eingehen und verweisen auf [9].

6.4.2.  Charakterisierung der Zuverlissigkeit eines Systems durch Zustandsanalyse

Zuverlassigkeitsmodelle, bei denen auf die Unabhingigkeit der Arbeitsweise der
Elemente und auf die bei den Booleschen Modellen geforderte Monotonieeigenschaft
verzichtet wird, gehen primdr nicht vom Verhalten der Elemente aus, um von da
auf die Arbeitsweise des Systems zu schlieBen, sondern stellen an die Spitze der
Untersuchung eine Zustandsanalyse des Systems.

Definition 6.16: A/s Zustandsanalyse eines gegebenen Systems S wird die Erfassung
der in Verbindung mit der vorliegenden Fragestellung interessierenden Zustinde des
Systems und der Moglichkeiten des Ubergangs zwischen den einzelnen Zustinden
bezeichnet.

Bei der Zustandsanalyse des Systems werden die Zustinde der Elemente des
Systems berticksichtigt.
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Beispiel 6.3: Bei der Zustandsanalyse eines Systems S, dessen Zuverldssigkeits-
ersatzschaltung in Bild 6.8 angegeben ist, werden die Zustinde S; (das System
arbeitet fehlerfrei) und S, (bei dem System liegt ein Fehler vor) und entsprechend bei
den Elementen E;, i = 1, 2, 3, die Zustdnde E;, (das i-te Element arbeitet fehlerfrei)

Bild 6.8. Zuverlassigkeitsersatzschaltung eines Bei-
spiels einer Serienparallelstruktur (n = 3)

und E;, (bei dem i-ten Element liegt ein Fehler vor) betrachtet. Die Zustinde des
Systems ergeben sich aus den Zustinden der Elemente in der in Tabelle 6.3 zusam-
mengestellten Art. Mit Hilfe der Tabelle 6.3 ist es moglich, Betrachtungen hinsicht-
lich des Ubergangs zwischen den Zustinden anzustellen.

Tabelle 6.3
Abhiingigkeit des Systemzustandes von den Zustéinden der Elemente fiir das in Bild 6.8
dargestellte System

Zustand des Zustand der Elemente E;,
Systems S i=1,2,3

Sl E113E21’E31

Sy Eyy, Bz, E3y

Sy Eyz, Ezy, E3y

SZ Ellv E219 ESZ

Y Eiy, Ezs, Es,

SZ EIZ)EZl)EJZ

Sz Ei2, Ezz, E3z

Im einzelnen wird bei solchen Modellen vorausgesetzt:

1. Das System S kann m Zusténde z,, z,, ..., z,, annehmen.

2. Der Zustand des Systems S wird fiir jeden Zeitpunkt ¢ = 0 durch eine Zufalls-
groBe Z(t) charakterisiert.

3. Der Zustand Z(t) des Systems wird in seiner zeitlichen Abhéngigkeit durch einen
stochastischen ProzeB {Z(r), t = 0} mit endlich vielen Zustinden und stetigem
Parameterraum beschrieben.

Bild 6.9 zeigt eine Realisierung eines derartigen Prozesses.

Zustand

In
I

In2

Bild 6.9

Z Maogliche Realisierung eines sto-
53 chastischen Prozesses mit endlich
f; ) 11 I 1 | I vielen Zustinden und stetigem Pa-

4 bh Lk i t, ¢  rameterraum (nach [19], S. 109)
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Bei Zuverlassigkeitsuntersuchungen eines Systems S auf der Grundlage eines
Modells, das die o. g. Voraussetzungen erfiillt, wird nach Maéglichkeit ein stocha-
stischer ProzeB einer Klasse gewihlt, deren Eigenschaften schon gut bekannt sind.
So wird hiufig — nicht zuletzt aus physikalisch-technischen Uberlegungen — ver-
sucht, die Klasse der Markowschen oder auch Semi-Markowschen Prozesse ein-
zusetzen. Die damit verbundenen Uberlegungen fiihren zu den Markowschen Zuver-
lassigkeitsmodellen. Im Rahmen dieses Bandes konnen wir nicht ndher darauf ein-
gehen. Ausfiihrliche Darstellungen sind in [9] und [19] enthalten.

6.5. Komplexe Ersatzmodelle

Im vorangehenden Abschnitt haben wir Zuverléssigkeitsbetrachtungen fiir ein
System bis zum ersten Auftreten eines Fehlers angestellt. Jetzt wollen wir Mdglich-
keiten fiir Zuverldssigkeitsaussagen bei Systemen skizzieren, wenn deren Elemente
bei jedem Fehler erneuert werden, und uns dabei auf den Fall beschrinken, daB die
Erneuerung sofort nach dem Eintritt des Fehlers und ohne Erneuerungszeit erfolgt.
Nach der Erneuerung der fehlerhaften Elemente soll das System seine Arbeitsfahigkeit
zum Zeitpunkt 7 = 0 wiedererlangt haben. Wir wollen weiter annehmen, daf die Ele-
mente des Systems unabhingig voneinander arbeiten, d. h. unteremander unabhéngig
sind. Gehen wir von unseren Uberlegungen fur ein einzelnes Element in Abschnitt 6.3.
aus, so bilden die Zeitpunkte, zu denen ein Fehler im System auftritt, gleichzeitig also
auch eine Erneuerung stattfindet, einen Erneuerungsprozef3. Besteht das System S aus

£Frneverungen
des Flements

Bild 6.10. Schematische Darstellung
frr I I L eines Erneuerungsprozesses fiir ein
“Mfm‘”; System S als Summe der Erneuerungs-
prozesse seiner Elemente E;, i = 1,
¢ 2, ..., n (nach [9], S. 122)

n Elementen E;, i = 1,2, ..., n, so wird dieser Erneuerungsprozel3 auf Grund der
von uns angenommenen Unabhingigkeit der Elemente E; durch die Erneuerungs-
prozesse der Elemente bestimmt. Besitzt das System eine Serienstruktur, dann ergibt
sich dieser Erneuerungsproze durch die Summierung der n Erneuerungsprozesse der
Elemente (Bild 6.10).

Aufgabe der Zuverldssigkeitstheorie ist es, diesen Erneuerungsprozel zu unter-
suchen, seine Grundcharakteristiken zu erfassen und damit entsprechende Zuver-
lassigkeitsaussagen zu ermoglichen. In [9] und [19] wird diese Problematik, auf die
wir hier nicht néher eingehen kdnnen, eingehend behandelt.
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Stochastische Lagerhaltungsmodelle werden erst seit etwa 25 Jahren studiert.
Dabei laufen die Untersuchungen in zwei Richtungen. Einerseits wird — vor allem
in jlingster Zeit — der spezifische Ablauf der Lagerhaltung exakt erfaBt, und dazu
werden als mathematische Hilfsmittel stochastische Prozesse eingesetzt. Anderer-
seits werden die Steuerungen eines Lagers erforscht. Dazu wird eine in einem gewissen
Sinne beste Steuerung gesucht, wobei das ProzeBverhalten in den Hintergrund tritt.

Das vorliegende Kapitel wendet sich besonders dem zuerst genannten deskriptiven
Problemkreis zu und analysiert einfache Lagerhaltungssysteme. Dabei werden die
in den vorangegangenen Kapiteln bereitgestellten Aussagen iiber Markowsche
Ketten und diskrete Markowsche Prozesse verwendet. Die normative Seite der La-
gerhaltung, die auf Optimierungsprobleme fiihrt, kann hier nur gestreift werden.

7.1. Aufgabe der stochastischen Lagerhaltungstheorie

Lager werden in Industrie, Landwirtschaft, Medizin und Handel angelegt, um
Produktion und Konsumtion kontinuierlich aufrechtzuerhalten und ihre natur-
bedingten lokalen und zeitlichen Diskrepanzen auszugleichen. Ein Lager hat also
die Aufgabe, einen Bedarf an Produkten oder Materialien zu befriedigen. Nun ist
z. B. der Verbrauch von Hilfsmaterialien oder Blutkonserven nicht exakt planbar,
auch erfordert die Zufiihrung von Produkten an das Lager eine gewisse, zumeist
nicht genau angebbare Beschaffungszeit. Damit erhalten im allgemeinen die Bestinde
eines Lagers im Planzeitraum einen zufilligen Charakter. Bei dieser Unsicherheit
hat der Lagerhalter die Frage zu beantworten: Wann ist wieviel zu bestellen? Hierzu
miissen noch folgende 6konomischen Konsequenzen beachtet werden. Durch genii-
gend groBe Bestinde kann jede Bedarfsforderung erfiillt werden. Andererseits bin-
den hohe Lagerbestande betrichtliche Umlaufmittel. Deshalb besteht das Problem,
bei moglichst niedrigen Bestdnden eine weitgehende Bedarfsbefriedigung zu gewdhr-
leisten. Einen Weg zur Losung des Lagerhaltungsproblems weist die stochastische
Lagerhaltungstheorie, deren Einsatz in der Praxis von groBer volkswirtschaftlicher
Bedeutung ist (vgl. etwa [22]).

Betrachten wir z. B. die Material- und Lagerwirtschaft eines Kombinats, so wer-
den im Durchschnitt einige zehntausend Artikel in etwa einem Dutzend Magazinen
gelagert. Wollen wir ein derartiges komplexes System rationalisieren, so ist dazu ein
Modell erforderlich, das die wichtigsten EinfluBgroBen beriicksichtigt, dabei aber
noch so einfach ist, daB es sich rechentechnisch in vertretbarer Zeit realisieren 148t. Es
werden deshalb folgende Annahmen getroffen:

A. Die Magazine des Kombinats werden zu einem Lager zusammengefaB3t (Infor-
mationen iiber den Verbrauch in den einzelnen Magazinen werden nicht genutzt).
B. Jeder Artikel wird isoliert gehalten (Wechselwirkungen zwischen verschiedenen

Artikeln, wie Einsparung durch gemeinsame Bestellmdglichkeit oder Austausch-

barkeit, werden vernachléssigt).
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C. Der Umfang des Bedarfs wird fiir jeden Artikel durch Stiickzahlen charak-
terisiert (durch geeignete Wahl der Mengeneinheiten ist C stets erfiillbar).

Unter diesen drei Voraussetzungen geniigt es, sogenannte diskrete Ein-Lager|Ein-
Produkt-Modelle einzusetzen. Im weiteren werden nur derartige Modelle aufgestellt
und untersucht. Auf das Problem des Einbaus solcher Lagerhaltungsmodelle in ein
EDV-Projekt ,,Material*“ kann hier nicht eingegangen werden (vgl. hierzu aber [1]
bzw. [14]).

7.2. EinfluBfaktoren der Lagerhaltung

Wir beschiftigen uns nun mit der Konstruktion von Lagerhaltungsmodellen und
beginnen damit, die wichtigsten EinfluBgroBen zusammenzustellen und mathematisch
zu beschreiben (s. Bild 7.1). Es handelt sich hierbei um den Bedarf und die Lager-
reaktion (L), welche den Lagerabgang bestimmen, sowie um die Bestellregeln (B)

etelng_ 4 L
Bestand
Ligferung /| Lagerabgang
]
Bild 7.1

nebst Beschaffungszeit, welche die Lagerzufuhr steuern. Fiir die Modellierung ist
der ProzeBcharakter der Lagerhaltung wesentlich. Durch die Vorgabe der genannten
EinfluBfaktoren ist das Verhalten des Lagers, gekennzeichnet etwa durch die jeweils
vorhandenen Bestdnde, fiir die Zukunft (d.h. den unendlichen Planzeitraum
{t:0 <t < o)) festgelegt. Andern wir speziell die Bestellregel, so #ndern sich
natiirlich auch die Bestinde. Um nun entscheiden zu konnen, welche Bestellregel
besser ist, wird dem System eine Kostenstruktur aufgeprigt; damit werden gleich-
zeitig die vorhandenen Bestinde aber auch die Bedarfsbefriedigung bewertet. Uber
die erhaltene Kostenfunktion gelingt es, eine optimale Bestellregel zu ermitteln.

7.2.1. Bedarf

Unter der Nachfrage verstehen wir die innerhalb eines Zeitintervalls vom Lager
abgeforderte Menge eines Artikels. Vielfach beobachtet man in der Praxis folgende
Eigenschaften der Nachfrage:

a) In gleichlangen Zeitintervallen verhalt sich die Nachfrage annidhernd gleichartig;

b) die Nachfrage wichst mit der GréBe des Intervalls;

c) zwischen der Nachfrage in getrennten Intervallen besteht kein funktionaler
Zusammenhang.

Wie bereits unter 7.1. festgestellt wurde, ist die Nachfrage in einem Intervall des
Planzeitraumes i. allg. zufillig, wir sprechen dann kurz vom Bedarf. Werden die
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Annahme C sowie die Eigenschaften a), b) und c) beriicksichtigt, kann man diesen
Begriff mathematisch wie folgt prézisieren:
Definition 7.1: Ein (kumulativer)') BedarfsprozeB ist ein stochastlscher Prozef
{p(t), t = 0} mit unabhingigen, homogenen, nichtnegativ-ganzzahligen Zuwdichsen
und p(0) = 0.

Stochastische Prozesse mit unabhéngigen, homogenen Zuwichsen wurden im
zweiten Kapitel eingefiihrt. Deshalb kann hier festgestellt werden, daB ein Bedarfs-
prozef3 bereits vollstandig charakterisiert wird durch die sogenannte Bedarfsfunktion

bik) = P(B(0) — fO) = k) = P(B() = k), Kk =0,1,2, .., (1.1)
welche die Verteilung des Bedarfs in einem Intervall der Lénge 7 angibt.

Als Beispiele fiihren wir zwei Bedarfsprozesse an, die uns auch spiter zur Illustration
dienen werden.

Definition 7.2: Ein (kumulativer) Bedarfsprozef$ mit der Bedarfsfunktion:
At
a by =2

e, k=0,1,2,.., (7.2)
heifit Poissonscher Bedarfsprozef mit Intensitit A > 0,
w0 = () ara-on k=012, (1.3)

heifit Bernoullischer Bedarfsprozef mit Parameter g, wobei 0 < q < 1 ist, [t] ist der
ganze Anteil der Zahl t.

Beim Poissonschen BedarfsprozeB mit Intensitdt A ist der Bedarf wihrend einer
Zeiteinheit wegen (7.2) Poisson-verteilt mit dem Erwartungswert 1. Dieser Proze
148t sich auch bedienungstheoretisch als Forderungenstrom deuten. Zu gewissen
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Bild 7.2. Realisierung eines Poissonschen Bedarfsprozesses mit 4 = 0,5

1) ., kumulativ‘‘ bedeutet ,,aufsummiert, angehduft*‘ (auf ein Zeitintervall bezogen).
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Zeitpunkten, den sogenannten Bedarfsfillen, treffen Forderungen nach jeweils einer
Mengeneinheit des Artikels im Lager ein, wobei die Pause T}, zwischen zwei aufein-
anderfolgenden Bedarfsfillen exponentiell verteilt ist.

Beim Bernoullischen BedarfsprozeB mit Parameter g ist der Bedarf wihrend einer

Zeiteinheit nach (7.3) geometrisch verteilt mit dem Erwartungswert u = Tq—

Er kann als ein Forderungenstrom interpretiert werden, bei dem Forderungen im
Abstand von jeweils einer Zeiteinheit eintreffen und der Umfang jeder Forderung
geometrisch verteilt ist. .

Wir wollen einen BedarfsprozeB, bei dem die Pause zwischen zwei aufeinander-
folgenden Bedarfsfillen gerade eine Zeiteinheit betrigt, einen periodischen Bedarfs-
prozef3 nennen. Bild 7.3 zeigt eine Realisierung eines periodischen Bedarfsprozesses.
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Bild 7.3. Realisierung eines Bernoullischen Bedarfsprozesses mit ¢ = 0,5

Der Zufall steckt bei einem derartigen ProzeB nur noch in den Sprunghohen.
Deshalb ist es sinnvoll, eine einfachere Darstellung einzufiihren. Die Differenz

Bn + 0) — p(n — 0) =: B, 74
gibt die im Zeitpunkt z = n vom Lager abgeforderte (zufillige) Stiickzahl des

betrachteten ~ Artikels an. Die Folge von unabhidngigen ZufallsgroBen
B1s B2y wees Bus ... mit der Eigenschaft')

P(By = k) = bi(k) =:b(k) - (7.5)

ist dann dquivalent einem periodischen BedarfsprozeB. Das Verteilungsgesetz des
Prozesses ist eindeutig festgelegt durch Vorgabe einer Funktion b(k), wobei k
eine ganzzahlige Variable ist, mit den Eigenschaften

bk)= 0 mit bk)=0 fir k<O, (7.62)
> bk) = 1. (7.6b)
k=0

1) (7.5) folgt wegen der Homogenitit der Zuwichse unmittelbar aus (7.1) und (7.4).
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Unter dem mittleren Bedarf eines periodischen Bedarfsprozesses verstehen wir
w = EP,) = Z kb(k).

Der Gesamtbedarf der ersten n Bedarfsfille ergibt sich hier zu p(n) = 2 B
mit den Einzelwahrscheinlichkeiten b,(.) und der Verteilungsfunktion .

B,(j) = P(B(m) =j) = P(Bn — 1) + B £ /)

j
=k§, B,—1(j — k) b(k) 7.7
nach der Formel der totalen Wahrscheinlichkeit.
Beim Bernoullischen BedarfsprozeB liefert (7.3) speziell die Verteilungsfunktion

Bh=a-o% ("

der negativen Binomialverteilung mit den Parametern g und n.

Die Bedarfsfunktion b(k) = b,(k) liefert die Verteilung des Bedarfs wihrend
einer Zeiteinheit. Dieser Sachverhalt fiihrt uns darauf, jedem (kumulativen) Bedarfs-
prozeB {B(t), = 0} einen periodischen BedarfsprozeB i, f3, ..., By, ... gemiB der
Vorschrift

Bo) — fn — 1) =: 5

zuzuordnen. Hierbei gibt f, den Bedarf in der n-ten Periode (n — 1 < ¢t < n) an.
Offenbar ist dieser periodische BedarfsprozeB im allgemeinen nicht mehr dem
(kumulativen) BedarfsprozeB3 dquivalent, sondern stellt eine die Bedarfsinformation
verdichtende Vergroberung dieses Prozesses dar. Dabei wird ein fiktiver Bedarfsfall
im Endpunkt des Intervalls angenommen, an dem der urspriingliche BedarfsprozeB
mit dem zugeordneten ProzeB iibereinstimmt.

7.2.2. Lagerreaktion

Der Bedarf wurde als ein Informationsstrom eingefiihrt, der unabhéngig von den
Maoglichkeiten des Lagers ablduft. Es wird nun vereinbart, wie der durch den Bedarfs-
prozeB ausgeloste Lagerabgang erfolgt. Tritt zu einem Zeitpunkt ¢ ein Bedarfs-
fall auf, wobei der Umfang der abgeforderten Menge gleich u ist, so kann diese
Nachfrage sofort befriedigt werden, wenn der vorhandene Lagerbestand x = u ist.
Gilt dagegen x < u, so kénnen wir den unbefriedigten Bedarf u — x fiir einen
spéteren Zeitpunkt vormerken oder aber nur den Anteil x der Nachfrage befriedigen
und den Rest abweisen, d.h. auch spater unberiicksichtigt lassen. Diese beiden
Lagerreaktionen, die mathematisch Transformationen des Bestands sind, werden
formelmaBig wie folgt erfalBt:

Definition 7.3: Es sei x der Bestand unmittelbar vor einem Bedarfsfall vom Umfang u
und r der Bestand nach der Lagerreaktion. Wir sprechen von einer Vormerkreaktion,
Jalls

r=r(x,u)=x—u (7.8)
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gilt, bzw. von einer Verlustreaktion im Falle

) = I+ x —u fir x>u, 19)
r=r(x,u) =[x —ult = . .
0 fir x < u.

Bei der Verlustreaktion wird korperlich?) vorhandener Bestand wieder in kdrper-
lichen Bestand iiberfiihrt. Ist bei der Vormerkreaktion (7.8) x koérperlicher Bestand,
so ist » im Falle # > x negativ. Wir nennen (—r) dann Fehlbestand und fiir belie-
biges x und u die GréBe r Buchbestand. .

In der Betriebswirtschaft dominiert die Vormerkreaktion. Im Handel werden
dagegen noch hiufig Verlustreaktionen praktiziert.

7.2.3.  Beschaffung

Wir fassen unter dem Begriff ,,Beschaffung® die Kontrolle der Bestdnde, die Fest-
legung der erforderlichen Bestellmenge, die Auslosung einer Bestellung sowie die
Anlieferung zusammen und modellieren diese Vorginge wie folgt:

Die Bestandskontrolle und die Aufgabe einer Bestellung erfolge stets zum Zeit-
punkt eines Bedarfsfalles. Der Umfang der Bestelimenge werde durch eine Bestell-
regel in Abhidngigkeit vom derzeitigen Bestand ermittelt. Nach einer Beschaffungs-
zeit I, die auch zufillig sein kann und den Bestellvorgang, eventuell die Produktions-
zeit des Artikels und den Transport zum Lager einschlieBt, ist die bestellte Menge
am Lager verfiigbar.

Die Wahl der Bedarfsfille als Bestellzeitpunkte ist nicht so einschneidend, wie
man auf den ersten Blick annehmen konnte. Die in der Betriebspraxis iibliche
maschinelle Bestandsrechnung liefert dem Disponenten u. U. nur alle 10 Tage oder
sogar nur monatlich die erforderliche Information, so dal dann die Bestellzeitpunkte
durch die Organisation und nicht durch den BedarfsprozeB bestimmt werden. Dieser
Fall wird jedoch im Modell dadurch erfalt, daB man — wie in Abschnitt 7.2.1.
ausgefithrt — den urspriinglichen BedarfsprozeB vergrébert und gemiB (7.7) zu
einem periodischen BedarfsprozeB iibergeht. Dabei wird unter der Angabe ¢ = n
ein Zeitpunkt verstanden, der n Zeiteinheiten vom Anfang des Planzeitraumes
entfernt ist.

Es seien noch einige spezielle Bestellregeln angegeben. Die denkbar -einfachste
Bestellregel besteht darin, bei jedem Bedarfsfall dieselbe feste Menge Q zu bestellen.
Eine weitere Bestellregel legt eine Bestellmenge fest, die den Bestand auf ein Niveau S
erginzt. Wir erweitern und prézisieren dies in der

Definition 7.4: Es seien x der Bestand unmittelbar nach einem Bedarfsfall und s, S
ganze Zahlen mit 0 < s < S. Eine Vorschrift, die dann die Bestellmenge z(x) gemdf

) - |
festlegt, heifst Bestellregel vom (s, S)-Typ.

Bei einer Bestellregel vom (s, S)-Typ wird also genau dann eine Bestellung aus-
gelost, wenn der Bestand unter den sogenannten Bestellpunkt s gesunken ist. Liegt

S —x fir x<s,
0 (7.10)

fir x>

1) ,,korperlich* bezeichnet die am Lager materiell vorhandenen und verfiigbaren Bestinde.
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der Anfangsbestand unterhalb von S, so wird im Spezialfall s = S bei jedem Bedarfs-
fall bestellt. Stets wird auf das Niveau S aufgestockt.

AbschlieBend sei noch der Rhythmus des Zusammenspiels der Elemente der
Beschaffung und der Bedarfsbefriedigung festgelegt. Tritt zum Zeitpunkt ¢ eine
Nachfrage auf, so wird folgende Reihenfolge eingehalten:

S S s

<5 <= <~

=3 == <3

Ss 2 > Es® 2889

QES 3 L ES Se8s

S8 S SSE S88=

S8 = SS9 =XBE

|3 = IS SIS

L‘/J lJ L. Bild 7.4
—_— T

~
~.
b1
~

Bedarfsfall — Lagerreaktion — Bestellung. Daran schlieBt sich die Lieferung an.
Bei beliebiger Beschaffungszeit ist es mdglich, daB eine Lieferung gerade im
Zeitpunkt eines Bedarfsfalls verfiigbar wird. Dann erfolgt die Bestandsénderung vor
der Lagerreaktion (vgl. Bild 7.4).

7.2.4. Kosten

Durch Vorgabe der bisher aufgefiihrten EinfluBgroBen kann man den Lager-
haltungsproze3 vollstindig beschreiben und Verhaltenscharakteristiken berechnen.
Zur Beantwortung der Grundfrage: ,,Wann ist wieviel zu bestellen? ist aber eine
Bewertung der Lagerhaltung erforderlich. Wir werden deshalb Lagerhaltungskosten
in Rechnung stellen und diejenige Bestellregel als beste auszeichnen, welche die
Gesamtkosten des Lagerhaltungsprozesses minimiert.

Hier werden drei Kostenfaktoren berticksichtigt: Beschaffungskosten, Lager-
kosten und Fehlmengenkosten.

Beschaffungskosten entstehen bei jeder Bestellung, wobei insbesondere der Trans-
port zum Lager beriicksichtigt wird. Es werden folgende Symbole fiir die Kosten-
faktoren verwendet:

K [M/Bestellung] — fixe Beschaffungskosten fiir eine Bestellung; hierbei gibt M die
Geldeinheit an.

¢ [M/ME] — mengenproportionale Beschaffungskosten fiir eine Mengen-
einheit (ME).

Lagerkosten erfassen den Aufwand, der bei der Unterhaltung von Lagern und bei
der Finanzierung der gelagerten Artikel (Umlaufmittelbindung) entsteht.

h [M/ME - ZE] — Lagerkosten fiir das Lagern einer Mengeneinheit fiir eine Zeit-
einheit (ZE).

Fehlmengenkosten werden erhoben, wenn bei einem Bedarfsfall das Lager nicht
tiber die angeforderte Menge verfiigt.

g [M/ME - ZE] — Kosten beim Fehlen einer (angeforderten) Mengeneinheit fiir
eine Zeiteinheit.

Auf die Problematik des Erfassens der Kosteneinheiten kann hier nicht eingegan-
gen werden.
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7.3. Periodische Lagerhaltungssysteme

Durch Spezialisierung der unter 7.2. eingefiihrten EinfluBfaktoren kénnen jetzt
Lagerhaltungsmodelle aufgestellt werden. Dabei setzen wir uns das Ziel, verschiedene
Bestandsprozesse zu erklidren und damit Verhaltenscharakteristiken wie mittlerer
Bestand, Bestellzyklus und Sicherheitsgrad zu bestimmen. AuBerdem wird noch eine
Kostenminimierung zur Berechnung optimaler Parameter angeschlossen.

Zur 1llustration verdeutlichen wir diese Aufgaben an zwei Beispielen, auf die wir

spater zuriickkommen werden.
Beispiel 7.1: Ein Betrieb bendtigt wéihrend einer Zeiteinheit im Durchschnitt z Men-
geneinheiten eines bestimmten Materials. Eine genauere statistische Analyse der
vorhandenen Verbrauchszahlen ergab, daB der Bedarf in einer Zeiteinheit geo-
metrisch verteilt ist mit dem Parameter ¢. Der Disponent des Betriebes nimmt héch-
stens S Mengeneinheiten des Materials auf Lager und stockt den Bestand erst dann
auf das Niveau S auf, wenn dieser unter den Sicherheitsbestand s gefallen ist.

Die Effektivitidt einer derartigen Disposition kann an folgenden Kriterien ein-
geschatzt werden:

a) Wie groB sind die mittleren Lagerbestdnde?

b) Mit welcher Sicherheit wird eine auftretende Nachfrage sofort befriedigt?

¢) In welchen Abstinden werden Bestellungen aufgegeben?

Beispiel 7.2: Der Bedarf an einem Produkt in einem Magazin sei wéhrend einer
Zeiteinheit geometrisch verteilt mit Erwartungswert u = 1. Es wurden folgende
Kosteneinheiten ermittelt: K = 8, h = 1, g = 21.

Wann ist wieviel zu bestellen, damit der finanzielle Aufwand der Lagerhaltung
moglichst klein gehalten wird?

Unser Anliegen ist es, die Methodik an méglichst einfachen Systemen vorzufiihren.
Deshalb beschrianken wir uns im folgenden auf Bestellregeln vom (s, S)-Typ und auf
verschwindende, konstante bzw. exponentiell verteilte Beschaffungszeit. Dabei
werden nur Verlust- bzw. Vormerkreaktionen verwendet, und daher wird von
Verlust- bzw. Vormerksystemen gesprochen. Weiterhin betrachten wir ausschlieBlich
periodische oder Poissonsche Bedarfsprozesse und nennen das entsprechende System
periodisches bzw. Poissonsches Lagerhaltungssystem.

7.3.1.  Ein periodisches Verlustsystem ohne Lieferverzogerung

Es wird die Lagerhaltung eines Systems untersucht, die durch folgende spezielle
EinfluBgroBen beschrieben werden kann, welche wir zusammenfassen zu dem

Modell 1

a) Der BedarfsprozeB ist periodisch und wird durch eine Bedarfsfunktion (k) mit
den Eigenschaften (7.6) charakterisiert.

b) Es gilt die Verlustreaktion (7.9).

¢) Die Beschaffungszeit / ist vernachldssigbar.

d) Die Bestellregel ist vom (s, S)-Typ.

e) Der Anfangsbestand betrdgt S Mengeneinheiten.

Die korperlichen Bestdnde im Modell 1 wihrend des Planzeitraumes werden durch

zwei stochastische Prozesse X,, X, X2, ... sowie Y,, Y;, Y,, ... beschrieben.

Dabei bezeichnet X, den Bestand zur Zeit ¢ = n vor der Bestellung und Y, den Bestand

6a
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zur Zeit ¢t = n + 0 nach der unverziiglichen Lieferung. Der Zusammenhang ergibt
sich aus den Bilanzgleichungen:

Y, =X, + z2(X,), (7.11a)
Xy = Yooy — Bul*s (7.11b)

wobei z durch (7.10) erkldrt ist und zu (7.11b) gerade (7.9) verwendet wurde. Aus
(7.11b) erhalten wir mittels (7.11a) und (7.10)

X = {[Xn—l - ﬂn]+ fiir Xn—l g s (7 12)
"AIS =B fir X, <s. ;

Aus (7.11a) folgt mit (7.11b) und (7.10)
Y,-1 — Bu]+ fi —1 =
Y, = {[ w=1 = Bal flfl' Yoy 2 B + 5, (7.13)
S fir Y,—; < B, + s.

Wird noch die Voraussetzung e) beriicksichtigt, so ergibt sich
Xo=Y,=S. (7.14)

Im Modell 1 ist der BestandsprozeB X,, X,, X>, ... iiber (7.12) und (7.14) und der
BestandsprozeB Y, ¥,, Y-, ..., iiber (7.13) und (7.14) eindeutig festgelegt. Ver-
wenden wir die in Bild 7.3 angegebene Bedarfsrealisierung, ergibt sich fiir die beiden
Bestandsprozesse der in Bild 7.5 angegebene Verlauf. Hieraus ist ersichtlich, daB
im Zustandsbereich [s, S) beide Prozesse iibereinstimmen.
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Bild 7.5. Realisierung zweier Bestandsprozesse bei Bernoullischem BedarfsprozeB mit
g = 0,5 und einer Bestellregel vom (s, S)-Typ mit s=2 und S=6
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Im Hinblick auf eine effektive Lagerhaltung kénnen wir uns nicht mit dem bloBen
Nachvollziehen der Prozesse begniigen, sondern miissen nach den Verteilungsgesetzen
der beiden Bestandsprozesse fragen.

Satz 7.1: Die durch (7.12), (7.13) und (7.14) definierten Bestandsprozesse sind homo-
gene Markowsche Ketten mit den Zustandsrdumen

X =1{S,S—1,..,1,0} bzw. Xy ={S,S—1,..,5+ 1,5}
und den Ubergangsmatrizen
bO) b(1) ... (D)  BD + 1) ... b(S — 1) BS) |
0  b0) ... (D — 1) b(D) . b(S =2 B(S—1)

Pe=|0 0 .50  b1) .. bs—1) B (7.15)
b(0) b(1) ... b(D) oD +1) .. (S -1 5(59)

L50) &(1) ... 5D)  B(D + 1) ... (S — 1) B(S)

bzw.
[BD + 1) + 50 b(1) ... b(D)
p, - | B bO) . oD~ 1) | 0o
| 31) 0 .. H0)

- 0
wobei D:= S — s und B(i):=1— B(i — 1) = Y b(k) gesetzt wurde und b(k) ent-
sprechend (1.5) erklirt ist. k=1

Beweis: Aus den Rekursionen (7.12) und (7.13) erhalten wir direkt die Markow-
Eigenschaft der Ketten. Hinsichtlich der Ubergangsmatrizen beschrinken wir uns
hier auf die Ermittlung von p;; fiir den X-ProzeB und Zustdnde i = s. Es gilt wegen
(7.12) fiir j + 0

Py = POy = j{Xpes = i) = P(Koey — B = jlXos = )
= P =i — jlXas = )= P(By = i — j) = b(i — ).
Fiir j = 0 ergibt sich
Pio = P(Xey — Bl = 0oy = 1)
= P(Xyoy = o S 0/X,ey = 1)

= PG,z )= ¥ b0 = BO).

Damit ist die Richtigkeit der ersten D + 1 Zeilen der Matrix Py bestitigt. Zu
beachten ist nur, daB die Elemente entsprechend der Anordnung im Zustandsraum
gruppiert sind. So steht in der linken oberen Ecke von Py das Element pgs = b(S — S)

= b(0) und in der rechten oberen Ecke ps, = B(S).
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Fassen wir die unbedingten Wahrscheinlichkeiten p;(n) = P(X, = j) zu einem
Vektor p,(X) := (ps(n), ps-1(n), ..., po(n)) zusammen, erhalten wir (s. Kap. 3) das
Bildungsgesetz

Pi(X) = Pa-1(X) Px = po(X) P%, (7.17)
wobei wegen (7.14) fiir die Anfangsverteilung gilt
ps©0) =1 und p(0)=0 fiir k= S. (7.18)

Fiir unsere Untersuchungen wird, nicht zuletzt um den Apparat zu vereinfachen,
statt der Verteilungen p,(X) die ergodische Verteilung p(X) benutzt. Wir sagen
dann auch, das System befindet sich im stationdren Regime. Das bedeutet, der Bestand
ist unabhdngig von der Zeit, er wird durch eine ZufallsgroBe X charakterisiert,
deren Verteilung gerade die stationdre Grenzverteilung p(X) ist.

Satz 7.2: Gibt es eine ganze Zahl x = S mit
b(x) >0, (7.19)

dann sind die beiden durch die Anfangsverteilung (7.18) und die Ubergangsmatrizen
(7.15), (7.16) definierten Markowschen Ketten ergodisch. Die stationdren Bestandsver-
teilungen ergeben sich zu

1 ® RNy
TM(D)I:ES m(k/D) fir j=0,
_ | mS—jD)
100 =1 T amm)
m(S —j)
1+ M(D)

fir 0<j<s, (7.20)

fir s<j<8,
bzw.

m(S —Jj)
T + M(D)
1 + m(0)
1 + M(D)

fir s<j<S$§,
S(Y) = (7.21)
fiir j=S.

Die in den Formeln (7.20), (7.21) auftretenden Hilfsfunktionen sind wie folgt
rekursiv aufgebaut:

k) = b0 + S bk ) m; a2

m(k|D) := b(k) +f‘02, bk —j)m(j), k> D; (7.23)

ME) =3 m(). )
j=0
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Der Grenzwertsatz 7.2 gilt also schon, wenn zu einem Bedarfsfall eine Menge ab-
gefordert werden kann, die gréBer oder gleich dem Niveau S ist. Ist die Nachfrage
stets kleiner als S, vereinfachen sich die Prozesse, die Bestinde sind dann gleich-
miBig beschrankt. Dem Leser sei empfohlen, diesen Fall selbstindig zu erarbeiten.

—_ 00
Beweis von Satz 7.2: Nach Voraussetzung (7.19) und (7.6) ist B(S) = Y b(k) > 0.
k=5

Weiterhin gilt B(j) = B(S) fiir alle j < S. Damit enthilt die letzte Spalte der Matrix
(7.15) bzw. die erste Spalte der Matrix (7.16) nur positive Elemente. Nach Satz 3.2
sind deshalb die beiden Markowschen Ketten ergodisch, und es existieren stationire
Grenzverteilungen

lim p,(X) = f(X), lim p,(Y) = f(Y). (7.25)
n—o n—oo
Wegen (7.17) kann man diese stationdren Verteilungen bestimmen, indem jeweils
ein lineares Gleichungssystem von der Form
f(X) = fX) Py,  £(Y) =1£(Y)Py (7.26)

gelost und dabei die Verteilungseigenschaft (vgl. (7.6)) beachtet wird sowie die
Hilfsfunktionen geméB (7.22), (7.23), (7.24) verwendet werden.

Beispiel 7.3: Modell 1 mit Bernoullischem Bedarfsprozefs. Entsprechend Def. 7.2
gilt fiir die Bedarfsfunktion hier

b(k) = ¢"(1 — q) = P(B, = k), , (7.27)
wobei 0 < g < 1 ist. Aus (7.22) folgt damit
k
m) = (1 = g) [¢* + % g-m()]. (7.28)

Fiir kK = 0 ergibt sich aus (7.28) sofort m(0) = (I — ¢)/g. Induktiv kann allgemein
gezeigt werden, dal

m(k) = (1 = q)lq = 1/u (7.29)
gilt. Mit (7.29) und (7.27) erhalten wir fiir die Hilfsfunktionen (7.23) und (7.24):

m(k|D) = (1 — q) g1 (7.30)
und

MD) =0+ D)1 —q)g= 1+ D)u. (7.31)

Nach Satz 7.2 ergibt sich die stationdre Verteilung des Bestandes unmittelbar vor
einer Bestellung zu

ug*!
w+1+D

qs—.i
uw+1+D

1
uw+1+D

fur j=0,
[(X) = fir 0<j<s, (7.32)

fir s<j<8S,

7  Beyer, Stoch. Proz.
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entsprechend folgt fiir die stationdre Verteilung des Bestandes unmittelbar nach
einer Lieferung:

1
b <
WF1+D ir s<j<3S,
=" (.33
e j=5
uw+1+D i

7.3.2.  Ein periodisches Vormerksystem mit konstanter Beschaffungszeit

Das Modell des vorigen Abschnitts wird modifiziert, indem die Annahmen b)

und c) iiber die Lagerreaktion und die Beschaffungszeit gedndert werden.

Modell 2

a) Der BedarfsprozeB ist periodisch mit der Bedarfsfunktion (k) und dem mittleren
Bedarf u.

b) Es gilt die Vormerkreaktion (7.8).

c) Die Beschaffungszeit / ist eine feste natiirliche Zahl.

d) Die Bestellregel ist vom (s, S)-Typ.

e) Der Anfangsbestand betrdgt S Mengeneinheiten.

Analog zu den Bilanzgleichungen (7.11) werden die beiden Bestandsprozesse')

Y, = X, + 2(°X,), (7.34a)
aX, = 9Y,_, — B (7.34b)

eingefiihrt; dabei wurde (7.34b) gemal (7.8) gebildet. Entsprechend d) ersetzen wir
z(.) nach (7.10) und erhalten

dy — {an—l - ﬁn fiir an—l ; S, (7 35)
" S — B fir 9X,-, <s, ;
sowie
ay — {dYn—x — fu fir Y,y 25+ B, (1.36)
"Ts fir 4Y,_; <5 + fa- ’

Fiir den Spezialfall verschwindender Beschaffungszeit gibt uns Y, .den zur Zeit
t = n unmittelbar nach der Lieferung kérperlich vorhandenen Lagerbestand an.
4X,, erfaBt den Buchbestand zur Zeit = n vor der Bestellung. Ist dagegen die Be-
schaffungszeit groBer als null, miissen wir den Ansatz (7.34) und die damit erklarten
Prozesse andersartig deuten. Wir nennen °Y, den disponiblen Bestand nach der
Bestellung zur Zeit t = n. Dieser besteht aus dem korperlich vorhandenen Bestand
sowie den bestellten aber noch nicht verfiigbaren Mengen abziiglich der vorgemerkten
Mengen. X, heiBt disponibler Bestand vor der Bestellung zur Zeit t = n. Er unter-
scheidet sich von Y, nur um die zur Zeit # = n aufgegebene Bestellmenge.

Es sei betont, daB3 gemaB (4.37a) die Bestellregel sich auf den disponiblen Bestand
bezieht, d. h., falls bestellt wird, dann wird der disponible Bestand auf das Niveau S

1) Der hochgestellte Index ,,d** weist auf ,,disponibel** hin.
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gebracht. Werden (7.13) und (7.36) verglichen, so ergibt sich die Gleichheit des
Bestands nach der Bestellung bei Verlustreaktion und Vormerkreaktion. Allerdings
handelt es sich einmal um korperlichen und einmal um disponiblen Bestand. Als
neuer ProzeB braucht deshalb nur der disponible Bestand vor der Bestellung unter-
sucht zu werden.

Satz 7.3: Der durch (7.35) und °X, = S definierte disponible Bestandsprozef bildet
eine homogene Markowsche Kette mit dem Zustandsraum °¥ = {S, S — 1, ...} und
der Ubergangsmatrix

50) b(1) ... b(D) b + 1) b(D +2) ...
0 b0O) ..bD—1)bD)  bD+1) ..

P=l0o 0 .m0 b1 b2 .| (.37
BO) B(1) ... B(D)  B(D + 1) B(D + 2) ... .
b(0) b(1) ... D)  BD + 1) b(D +2) ...

Beweis: Fir s < i < S gilt wegen (7.35)
piy = POX, = j[*Npey = i) = P(*Xomy — B = j[*Npmy = 1)
= P(B,=i—j)=0bi—J). (7.38)
Fiir i < s ergibt sich p;; = P(S — B, = j) = b(S — j).

Satz 7.4: Eine homogene Markowsche Kette mit der Ubergangsmatrix P gemdpf (7.37)
ist ergodisch. Die stationdre Verteilung besitzt die Komponenten

mS —j) .. .
) T+ MD) fir s<j<8S, 09
: - 7m($-j/D) fiir j<s '
T+ MD) J<s-

Auf den Beweis wollen wir hier verzichten und nur auf Satz 7.2 Formel (7.20)
verweisen.

Die stationire Bestandsverteilung im Falle von Modell 2 und einem Bernoullischen
BedarfsprozeB ergibt sich aus (7.29), (7.30), (7.31) und (7.39) zu

1
—  fiir $SjES,
p+1+D D
X)) = - (7.40)
FEisDp Wriss

Wie wir sehen, ist der disponible Bestand unabhingig von der Beschaffungszeit.
Um aber ein Lagerhaltungssystem beurteilen zu kénnen, ist die Kenntnis der kdrper-

il
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lichen Bestdnde bzw. der Buchbestinde erforderlich. Orientieren wir uns zunachst
an einem Beispiel (vgl. Bild 7.6) iiber die Wirkung einer Beschaffungszeit / > 0.

i .y’@dx oo Ko

.
f
L

Bild 7.6. Realisierung des disponiblen Bestandes und des Buchbestandes bei einem Ber-
noullischen BedarfsprozeB mit ¢ = 0,5 und einer Bestellregel vom (s, S)-Typ mit s = 2
und S = 6 sowie Beschaffungszeit / = 2

Dem Bild sowie der Modellannahme ) konnen folgende Zusammenhénge zwischen
den Bestidnden entnommen werden:

Y, =1%,:=S— Y f fir n=12..,1, (7.41)
k=1
sowie
!
Y, =%y — ¥ By fir n>1, (7.42a)
k=1 -
X, =,y — P fir n>1. (7.42b)

DiefGroBe 'Y, gibt den Buchbestand zur Zeit ¢ = n sofort nach Eintreffen der zur
Zeit t = n — [ bestellten Menge an. 'X, erfaBt den Buchbestand zur Zeit ¢ = n
unmittelbar vor dem Eintreffen der Lieferung.

Die Verteilungsgesetze der Buchbestinde ergeben sich aus den Verteilungen des
Bedarfsprozesses und des disponiblen Bestandsprozesses (der zum Bestandsprozef3
von Modell 1 dquivalent ist). Wegen der Unabhéngigkeit der ZufallsgroBen auf den
rechten Seiten von (7.41) und (7.42) erhalten wir die Verteilung der Komponenten
'X,, 'Y, durch Faltung. .

7.3.3.  Verhaltenscharakteristiken

Das Verhalten eines Lagerhaltungssystems haben wir bisher durch verschiedene
Bestandsprozesse erfaB8t. Fiir den Disponenten in der Praxis sind diese Prozesse
selbst zu aufwendig und deshalb ungeeignet. Er benétigt verdichtete Daten.
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a) Eine geeignete KenngroBe ist der mittlere Bestand, den wir als Erwartungswert
des stationdren Bestands definieren. Aus Satz 7.2 folgt direkt

Satz 7.5: Bei Modell 1 ergibt sich der mittlere Bestand vor der Bestellung zu

1

E® = 11y

[ S m(s =Dy + £ jmts — )] )

j=1
und der mittlere Bestand unmittelbar nach der Lieferung zu

] D
S km(k). (7.44)

EN =S = 1=Fmy Z,

Im Falle des Bernoullischen Bedarfsprozesses erhalten wir speziell aus Satz 7.5
unter Beriicksichtigung von (7.29), (7.30), (7.31):

_ 9(1 — ¢°) D
O [us— 4= +(s+7)(D+l)] (7.45)
und
3 DD + 1)
B0 =5 = 5o p ‘ (7.46)

Satz 7.6: Bei Modell 2 ergibt sich der mittlere disponible Bestand vor der Bestellung zu
1

0 D

de=——[ s — Kym(D + kD —k k]. 7.47

X = Ty | Z,6 — O m® + kD) + £ (S = kymk)]. (1.47)

Der mittlere disponible Bestand nach der Bestellung wird durch (7.44) gegeben, d. h.
E(CY) = E(Y).

Fiir den Bernoullischen Bedarfsproze ergibt sich im Modell 2
EOX) = — [u + (s + 3) o + 1)] . (7.48)
uw+1+D 2

Satz 7.7: Die mittleren Buchbestiinde haben bei Modell 2 die Form
EX)=EY)—(+ Dp (7.49)
E(Y)=EY) — Iu, (7.50)

wobei E(Y) durch (7.44) gegeben ist.

Der Beweis ergibt sich unmittelbar aus (7.42) und Satz 7.6. Betrachten wir wieder
speziell einen Bernoullischen BedarfsprozeB, so ist der mittlere Buchbestand gegeben
durch

D(D + 1)
2u+ D+ 1)’
d. h., zu einem beliebigen Zeitpunkt ¢ = n bei stationirem Regime ist im Mittel

der Buchbestand (7.51) vorhanden, wobei eine eventuell zur Zeit ¢ = n eintreffende
Lieferung bereits mit berticksichtigt wird.

E(Y) =58 —lu— (7.51)
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b) Fiir die Beurteilung der Lieferbereitschaft eines Lagers konnen wir den
sogenannten Sicherheitsgrad verwenden, den wir als die Wahrscheinlichkeit dafiir
definieren, daBl zu einem beliebigen Bedarfsfall im stationdren Regime die Nachfrage
vollstindig befriedigt wird.

Satz 7.8: Im Modell 1 gilt fiir den Sicherheitsgrad
Py(s,8):=PY - 2z0) (7.52)

Pi(s, S) = [B(S) +k§DOB(s —k m(k)]. (7.53)

1

1+ M(D)
Beweis: Wie aus Bild 7.4 ersichtlich, erfolgt nach einem Bedarfsfall die Lager-
reaktion, die im vorliegenden Verlustfall unbefriedigten Bedarf bei der Bildung des
Restbestandes X nicht ausweist. Vor einem Bedarfsfall ist der (stationdre) Bestand Y
vorhanden. Deshalb ist der Sicherheitsgrad durch (7.52) gegeben, wobei f = ; den
Umfang des Bedarfs angibt. Mittels der Formel der totalen Wahrscheinlichkeit er-
gibt sich unter Verwendung von (7.21)

Py S) =,-Zi P(Y = By 2 0] = ) (¥)

5 P ) 4 PG S )

Jj=s

1 + m(0)
T (7.54)

Wird nun die Beziehung
J .
Py =)) = 2 b(k) = B(j),

berticksichtigt, so folgt (7.53), was zu beweisen war.
Fiir den Bernoullischen BedarfsprozeB liefert Satz 7.8 zusammen mit B(j) = ¢’
die Beziehung

S
Pl(s’ S) =1- ,u-!-‘ul% (7.55)

Aus (7.55) kann man ablesen, daB sich hier der Sicherheitsgrad mit wachsendem s
bzw. wachsendem D = S — s erhoht.

Satz 7.9: Im Modell 2 gilt fiir den Sicherheitsgrad
Py(s, S) = P(X z 0)
1
1+ M(D)

Die Funktion B.,(j) kann rekursiv nach (7.7) berechnet werden, wobei B,(j) = B(j)
ist.
Im Falle des Bernoullischen Bedarfsprozesses erhalten wir speziell

[B10s() + £ Bunas = 0y m(i)] (1.56)
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c) Auskunft tber die Hiufigkeit einer Bestellausldsung erhalten wir tiber den
Bestellzyklus T, der Zeitspanne zwischen zwei aufeinanderfolgenden Bestellungen.
In den Modellen 1 und 2 ist 7 eine ZufallsgroBe.

Diesen Sachverhalt wollen wir noch etwas genauer erkldren. Die Zeitpunkte, an denen bestellt
wird, zerlegen den Planzeitraum in Intervalle der Lange T, T, T3, ... Die Ldngen 7} sind Zufalls-
groBen, die aus dem BedarfsprozeB mittels der iibrigen EinfluBgroBen des Systems bestimmt wer-
den. Bei dem von uns betrachteten periodischen Lagerhaltungssystem sind die ZufallsgroBen Tj
identisch verteilt und unabhingig. In diesem Sinne wihlen wir T als Reprisentanten dieser Zufalls-
grofen und sprechen vom Bestellzyklus (der Léinge) 7.

Zunachst wird eine Beziehung fiir den Bestellzyklus 7 hergeleitet, die es gestattet,
dessen Verteilungsgesetz zu gewinnen. In den Modellen 1 und 2 ist zum Zeitpunkt

= nunmittelbar nach der hier erfolgten Bestellung der (kdrperliche bzw. disponible)
Bestand gleich S. Wann wird nun die néchste Bestellung ausgeldst? Offenbar genau
dann, wenn erstmalig der Bestellpunkt s unterschritten wird. Wegen s > 0 (vgl.
Def. 7.4) gilt also fir beide Modelle im Falle des Bestellzyklus 7'

S — (Bus1 + Busz + oo + Purr—1) 2 5, (7.58a)
S = (Buer + oo+ Pusr—1 + Busr) < 5. (7.58b)

Im Modell 2 sind die linken Seiten von (7.58) gerade gleich 4X,.7—; bzw. X4,
im Modell 1 ist die linke Seite von (7.58a) gleich X,.;—,. Nach der Bestellung zur
Zeit t = n wird also erstmalig zur Zeit # = n + T bestellt. Aus (7.58) erhalten wir

Satz 7.10: Fiir die Modelle 1 und 2 besitzt der Bestellzyklus folgendes Verteilungs-
gesetz:

P(T = k) = By—1(D) — By(D). (7.59)
Der mittlere Bestellzyklus ergibt sich zu

ET)=1+ M(D). (7.60)
Beweis: Wir setzen f,,1 + fui2 + ... + Pur = ¥, und konnen damit (7.58) vereinfachen zu

Yr-1 =D und yr > D. (7.61)

Wegen (7.61) folgt aus T =< k sofort y, > D und umgekehrt. Deshalb gilt unter Beachtung
von (7.7)
P(T = k) = P(yx > D) = 1 — By(D). (7.62)

Auf Grund der Beziehung
PT=ky=PT=k)—PT=k-1)

folgt mit (7.62) die Behauptung (7.59). Der Erwartungswert des Bestellzyklus kann nun wie folgt
berechnet werden:

ET) = 3 kP@T= k)
k=1
= SPT=k+ SPT=k+1)+ > PT=k+2)+..
k=1 k=1 k=1

=PT>0)+PT>1)+PT>2) + ...
1+ By(D) + By(D) + ...

I

1+ 3 Bw). (7.63)
n=1
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©
Die Reihe > B,(#) =: R(u) ist in jedem endlichen Intervall gleichmaBig konvergent, so daf}
n=1
u o / u
S Ru—pbi = 3 (3 Bw—b b(i))
i=0 n=1 \i=0

el
= 3 B = R@) ~ By

gebildet werden kann, wobei (7.7) benutzt wurde. Aus dieser Gleichung folgt

u
R() = B;(u) + > R(u — i) b(i). (7.64)

i=0
Betrachten wir andererseits die Gleichung (7.22) fiir k = 0, 1, ..., « und summieren, so ergibt sich

wegen (7.24)
u u k
M= S0+ 3 (3 0= nmo)
k=0 k=0 \j=0
= Bi(w) + 2 bu—1i) 2 m(j)
i=0 i=0
= By(u) + 3 M(u — i) b(i).
i=0
Diese Gleichung entspricht genau (7.64). Da (7.64) eindeutig 16sbar ist, folgt damit
0
M) = R(w) = 21 B(u). (7.65)
Die ges{:chte Beziehung (7.60) ergibt sich nun unmittelbar aus (7.63) und (7.65).

Die mittlere Dauer des Bestellzyklus bei einem Bernoullischen Bedarfsprozef
erhélt man aus (7.60) und (7.31) zu

ET)=1+ 17(0 +1). (7.66)

Wie auch allgemein gezeigt werden kann, wichst der mittlere Bestellzyklus in den
Modellen 1 und 2 mit D monoton.

7.3.4.  Suboptimale Bestellregeln

Unser Lager wird mittels Bestellregeln vom (s, S)-Typ gesteuert. Deshalb liegt
es nahe, nach der besten Bestellregel dieses Typs zu fragen. Zunédchst mufl prézisiert
werden, was als ,,beste Bestellregel verstanden werden soll. Wir nennen eine
Bestellregel vom (s, S)-Typ suboptimal, wenn die durch sie verursachten Gesamt-
kosten nicht groBer sind als die bez. irgendeiner anderen Bestellregel dieser Klasse.
Wir sprechen von einer optimalen Bestellregel, wenn sie die Gesamtkosten hinsicht-
lich beliebiger Bestellregeln minimiert.

a) Es werden nun durchschnittliche Gesamtkosten fiir ein periodisches Lager-
haltungssystem aufgestellt. In jeder Periode fallen zufallige' Kosten an, die wir iiber
die Funktion k(.) erfassen. Das Argument dieser Funktion ist eine ZufallsgroBe U,
die den jeweiligen Lagerbestand charakterisiert. Die Kosten wahrend der ersten



7.3. Periodische Lagerhaltungssysteme 109

N
N Perioden ergeben sich dann zu Y k(U,). Da bei unbeschranktem Planzeitraum
n=1

diese Kosten iiber alle Grenzen wachsen, ist es ratsam, zu Durchschnittskosten
iiberzugehen, die sich als Limes der arithmetischen Mittel der Kosten in den einzelnen
Perioden ergeben:®Die Praktikabilitit dieser Durchschnittskosten k& wird durch
folgendes Theorem von J. L. Doob gewéhrleistet:

Bildet die Folge U,, U,, ... eine ergodische Markowsche Kette mit der statio-
ndren Verteilung f(U), dann gilt

N
ki=lim 4 5 KUY = 3 KG)AU), 7.67)
N-w n=1 i=%y

falls die rechte Seite von (7.67) endlich ist.*)

Auf der Grundlage von Formel (7.67) werden fir die Modelle 1 und 2 Durch-
schnittskosten hergeleitet.

b) Zundchst werden fiir das Modell 1 die erwarteten Lager- und Fehlmengen-
kosten L(p) in der n-ten Periode (n — 1, n] unter der Bedingung Y,—, = y angegeben
(Bild 7.7). Dabei wird eine sogenannte lineare Restbestandsbewertung benutzt.

Y=y )(,,‘
P W Bild 7.7

5<

Unter {Y,-, = y} ergibt sich der Restbestand in der n-ten Periode zu

X,, falls g, =<y,
y - ﬂn =
—V,, falls B, > y.

Ist der Restbestand positiv, so sind Lagerkosten zu zahlen, ist er negativ, sind Fehl-
mengenkosten zu entrichten. Unter Beriicksichtigung der in 7.2.4. eingefiihrten
Kostenfaktoren ergibt sich

L(y) = E(hX, + gVu)
“hE G -DbG) +g 3 G- ) b0). (7.68)
j=0 Jj=y+1

Natiirlich konnte auch anders bewertet werden. Da wir den Periodenbedarf erst
am Ende der Periode wirksam werden lassen, wéren auch die Lagerkosten Ay denk-
bar. Doch soll fiir das weitere stets (7.68) verwendet werden.

¢) Nun werden Durchschnittskosten fiir Modell 1 bestimmt. Fiir den von uns
gewihlten unendlichen Planzeitraum brauchen mengenproportionale Beschaffungs-
kosten nicht berticksichtigt zu werden, d. h., man kann ¢ = 0 setzen. Wihrend einer
Periode fallen die Kosten

K + L(S), falls y =S,

k - B
) {L(y), falls s<y<S, (7.69)

1) Durch (7.67) wird der Zusammenhang zwischen den in der Okonomie durchaus iiblichen
Durchschnittskosten pro Periode und den mittels der stationdren Verteilung des Bestandsprozesses
gebildeten, relativ einfach auswertbaren ,,stationaren Kosten‘* aufgedeckt.

8  Beyer, Stoch. Proz.



110 7. Lagerhaltungstheorie

an, wenn der Bestand nach der Bestellung gleich y ist. Nach (7.67) ergibt sich damit
fiir die Durchschnittskosten

k = k(s, $) = (K + L) fs(¥) +S£ LO)A(Y)

1 5-1
- [(K FLS)(1 +mO) + 3 LG)m(S - j)]
_ 1 2 N Km(0)
- T wor [K FLS) + T IS - ) m(])] R

wobei Formel (7.21) von Satz 7.2 verwendet wurde. Der Ansatz (7.69) setzt implizit
voraus, daB in jeder Periode Bedarf auftritt; wir konnen uns aber von der Bedingung
b(0) = 0 16sen, indem wir die Bestinde vor der Entscheidung heranziehen.

Satz 7.11: Fiir Modell 1 ergeben sich die beeinflufbaren Durchschnittskosten zu

1 ) o
205, D) = 1757 [K +LS) + TL(S = ) m ])] , (71.70)

wobei L(y) durch (7.68) erklirt ist.

d) Fiir den Spezialfall eines Bernoullischen Bedarfsprozesses und linearer Rest-
bestandsbewertung (7.68) werden die Kosten #(S, D) expliziert. Wird (7.27) in
(7.68) eingesetzt, so ergibt sich

L) =G —mwh+ (h + g) ug. (7.71)
Damit folgt aus (7.70) unter Beachtung von (7.29) und (7.31)
el v
u+1+D
TE-—we+ D) +ut+2e]

Aus den bekannten Bedingungen fiir ein lokales Minimum dieser Funktion') folgen
fir die suboptimalen Parameter s* und S* = s* + D* die EinschlieBung

—1,5 + /0,25 + 2u(K — h)]h < D* <05+\/125 T 2u(K + hh

L(s+ D,D) = [uK + h<0,5D* + (s + 0,5) D

(7.722)
sowie
- (,u + 1+ D¥) h .1
G T =i, 7.72b
1 h+p = =4 ; )
Fiir das Beispiel 7.2 ergibt sich aus Formel (7.72a)
23<D £49

1) Diese Bedingungen fiihren auf ein nichtlineares Gleichungssystem, fiir das eine ganzzahlige
Losung (s*, D¥) gesucht wird. Dieses System kann nur ndherungsweise gelost werden, und seine
Losungen sind im allgemeinen keine ganzen Zahlen; deshalb wird es durch das Ungleichungssystem
(7.72a, b) ersetzt.
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und aus Formel (7.72b)

22 <o 44
D +2= D' +2°
D' =4 und s =2 ist die einzige ganzzahlige Losung dieses Ungleichungssystems.
Damit ist die Bestellregel vom (s,S)-Typ mit s = 2 und § = 6 suboptimal.

e) Im Modell 2 bewirkt eine Bestellausldsung zur Zeit ¢t = n — 1 eine Lieferung
und damit eine Anderung der korperhchen Bestinde zum Zeitpunkt 7 = — 1 + 1,
d. h., die Entscheidung wird nicht in der n-ten Periode, sondern erst in der (n + [)-ten
Periode wirksam (Bild 7.8).

Yoy s ot
1 i -
[ = 4l
& e Bild 7.8

Um nun die erwarteten Lager- und Fehlmengenkosten fiir eine Periode aus-
zurechnen, gehen wir wieder von der Bedingung {*Y,—, = y} aus. Der Restbestand
in der (n + [)-ten Periode ergibt sich dann zu

Koot = Yoort = Porr =y — Z Brs =y — U+ 1). (7.73)

Wir erhalten analog zu (7.68) bei linearer Restbestandsbewertung
LO) = h %, 0= ) buns) + 8 3. (= 3) b, (.74
f) Im Abschnitt 7.3.2. wurde festgestellt, daB P(@Y, = Y,) = 1 ist und damit

f(°Y) = f(Y) gilt. Deshalb kénnen wir entsprechend zu Satz 7.11 verfahren und
erhalten

Satz 7.12: Fiir Modell 2 ergeben sich die beeinfluBbaren Durchschnittskosten zu

1 D ) )
1+ MD) [K + LS + ZUS =) mo)], (7.75)

wobei L(y) durch (1.74) erkldrt ist.

#(S, D) =

7.4. Poissonsche Lagerhaltungssysteme

Es werden nun zwei Modelle fiir ein Ersatzteillager betrachtet, von dem in
zufilligen Zeitpunkten jeweils ein Ersatzteil abgefordert wird. Wir beschreiben ein
derartiges Nachfrageverhalten durch einen Poissonschen BedarfsprozeB mit der
Bedarfsfunktion

l(lt)"

b(k) = P((t) = k) = eM fir k=0,1,2,..,

(1.76)
0 fir k <0.
8*
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7.4.1.  Ein Poissonsches Vormerksystem mit konstanter Beschaffungszeit

Das Modell 2 von Abschnitt 7.3.2. wird nun hinsichtlich des Bedarfsprozesses
gedndert und ergibt

Modell 3

a) Der Bedarf wird durch einen Poissonschen ProzeB3 mit der Bedarfsfunktion (7.76)
beschrieben.

b) Es gilt die Vormerkreaktion (7.8).

c) Die Beschaffungszeit / ist eine feste natiirliche Zahl.

d) Die Bestellregel ist vom (s, S)-Typ.

e) Der Anfangsbestand betrigt S Mengeneinheiten.

Das Konzept der Bilanzgleichungen, das bei periodischen Systemen erfolgreich an-

gewendet wurde, um Bestandsprozesse einzufiihren, 1Bt sich nicht ohne weiteres ein-

setzen. Wie der Bedarfsproze3 werden auch die Bestandsprozesse zu stochastischen Pro-

zessen in stetiger Zeit und nicht einfach rekursiv erzeugte Folgen von ZufallsgroBen.

Wir bezeichnen mit 4X, bzw. ¢Y, den disponiblen Bestand vor bzw. nach der
Bestellung zur Zeit ¢. Nach Bedingung e) gilt 4Y, = S.

Wegen d) wird solange abgebaut, bis der Bestand auf das Niveau s — 1 gefallen
ist. Dann erfolgt sofort eine Bestellauslosung, wobei die Menge Q:= S — s + 1
bestellt wird. Zu diesem Zeitpunkt ¢* wird also der disponible Bestand wieder S
erreichen; in Formeln :

Ky =8S—-pt)y=s—-1, Y, = S. (7.77)
Der (zufillige) Zeitpunkt ¢ wird hierbei durch die Vorschrift ¢ := min (¢: f(t) = Q)
erkldrt. In ¢’ startet bekanntlich der Poissonsche BedarfsprozeB und damit auch Y,
von neuem. Der Bestand S wird bis zum Zeitpunkt ¢ = min (z: f(t) = 2Q) ab-
gebaut und in ¢"” wiederum die Menge Q bestellt. Den disponiblen BestandsprozeB
bezeichnet man deshalb auch als einen regenerativen Prozefs (vgl. Bild 7.9).

L ! L | ! L ! I L L 1 L L L
0 72 3 4 5 6 7 8 & wonm R B K4 BT

v[ﬂ) )

Bild 7.9. Realisierung des disponiblen Bestandes bei einem Poissonschen Bedarfsprozef3
mit A = 0,5 und einer Bestellregel vom (s, S)-Typ mit s = 2 und S = 6 sowie / = 2
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Wir wollen im folgenden den Buchbestand 'Y, ndher untersuchen. Fiir kleine 7
(t<t') gilt: 'Y, =S — p(t). Fiir t = ¢’ sind noch die bis zur Zeit ¢ erfolgten
Lieferungen zu beriicksichtigen. Die Anzahl der Bestellungen bis zur Zeit # ist gerade
[B(1)/Q], d.h. der ganze Anteil des Quotienten f§(¢)/Q. Denn es wird genau dann
bestellt, wenn f(¢) gleich einem ganzzahligen Vielfachen von Q ist. Beachten wir noch
die Beschaffungszeit /, so ergibt sich die bis zur Zeit ¢ gelieferte Gesamtmenge zu
[f(t — 1)/Q] Q. Damit erhalten wir fiir den Buchbestand zur Zeit ¢ = / die Dar-
stellung

Y, =S+ [t - D/Q1Q - B@). (7.78)

Dieser Buchbestand bildet keinen Markowschen ProzeB, denn das Ereignis {'Y,., = k}
fir 0 <7 <[ wird nicht durch das Ereignis {'Y, =} allein, sondern zusitzlich
noch durch die Lage des letzten Bestellzeitpunktes vor ¢ beeinfluf3t.

Satz 7.13: Der Buchbestandsprozef (7.78) besitzt folgende Grenzverteilung
. Lo i
S =f(Y) = lim P(Y, = j) = 0 420 b(S —i—J). (7.79)
1= 00 =

Beweis: Nach dem Satz von der totalen Wahrscheinlichkeit gilt

: P(Y,=j) = X P(Y: = jlA.) P(4.) (7.80)
mit o
A= (Gt = D) = u, (1) = Bt — ) = v}.

Wegen der Unabhéngigkeit und der Stationaritit der Zuwéchse des Bedarfs-
prozesses folgt mit (7.76)

P(4,) = bi—i(u) bi(v). (7.81)
Zu jedem u gibt es ein k = k(u) = 0, so daB gilt
kQ<u<(k+1Q.
Damit ergibt sich unter Beachtung von (7.78)
POY, = jldu) =P(S + [F] € = @+ v) = i)
=P +kQ—-u—-v=jkOSu<(k+1)Q/4,).
Diese Wahrscheinlichkeit ist genau dann gleich eins, falls
; v=8S+kQ—-u-—j
ist.
Wir erhalten hiermit aus (7.80) und (7.81) sowie (7.76)

o (k+1DQ-1  Ju(t — )
P =p =5 3 12D crenp(s ko - u - j)
k=0 a=kQ u:

© Q-1 gi+kQ

=k§0 igome'“b,(s —-i=-j), (7.82)
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wobei a:= At — ) ist und u — kQ = i gesetzt wurde. Beriicksichtigen wir noch
die Beziehung

am+kQ 1

allrr;e kzo (m + kQ)! =E’

erhalten wir aus (7.82) die Behauptung (7.79).
Wir geben noch zwei Verhaltenscharakteristiken an.

Satz 7.14: Fiir den mittleren Buchbestand gilt in Modell 3:
E(Y)=S—-1L-30 -1 (7.832)
=3s+ S)— 7. (7.83b)

Beweis: Nach (7.79) erhalten wir

. 1 S o-1
E(Y) = 0, X ;}bz(s—i—j)
. S =« - o Q-1
=§2 Z W —10) =X u bu—1i)
= u=0 i=0
_ SQ—l 0 b 1 Q-1 o . b )
_Ei=0 v=27i I(U)—§i=20 u=zli(1+v) ,(1/)

s- L%
=5-— +

g5 TH
und damit die Behauptung.

Satz 7.15: Im Modell 3 gilt fiir den Sicherheitsgrad
Py(s, S) = P('X =2 0)
1 s
=0 > (Bi(u) — B,(u — Q)). (7.84)
u=0
Beweis: Ist t ein beliebiger, aber fest gewéhlter Zeitpunkt, so haben wir
P(Y, = 'X,) = 1, denn die Wahrscheinlichkeit dafiir, daB ¢ Lieferzeitpunkt ist,

verschwindet wegen der Stetigkeit der Pausenverteilung. Wir konnen deshalb
Satz 7.13 anwenden

PAs.S) = B = T % b(S =i =)

1zt , 1 SQ«lb o
—gu‘éo(Q—“) 1(")+§u§2 EO W — i)

und erhalten nach entsprechenden Umformungen, die dem Leser iiberlassen seien,
die Behauptung (7.84).



7.4, Poissonsche Lagerhaltungssysteme ' 115

Es konnen sehr einfach durchschnittliche Lager- und Fehlmengenkosten 2 ein-
gefiihrt werden, wenn der stationdre Buchbestand 'Y in den stationdren korper-
lichen Bestand Y* und den stationdren Fehlbestand Y zerlegt wird:

(s, S) = hE(Y*) + gE(Y”)
= (h + g) E(Y*) — gE(Y)

S
=+ g).lefj — gl3(s + 8) — 1]
i=
Auf die Bestimmung suboptimaler Bestellregeln wollen wir hier verzichten.

7.4.2. Ein Poissonsches Verlustsystem mit zufilliger Beschaffungszeit

In der Praxis kann bei verschiedenen Artikeln eine feste Lieferfrist nicht garan-
tiert werden. Vielfach werden Vertrige abgeschlossen, in denen Lieferanten ein
Spielraum fiir die Anlieferung eingerdiumt wird. Einen derartigen Sachverhalt
modellieren wir mittels einer zufélligen Beschaffungszeit.

Modell 4

a) Der Bedarf wird durch einen Poissonschen ProzeB mit der Bedarfsfunktion (7.76)
beschrieben.

b) Es gilt die Verlustreaktion (7.9).

c) Die Beschaffungszeit 7 ist eine exponentiell verteilte ZufallsgroBe mit dem
Parameter 7 = —}—

d) Die Bestellregel ist vom (S, S)-Typ, d. h. s = S.

e) Der Anfangsbestand betrigt S Mengeneinheiten.

Das Modell 4 unterscheidet sich also vom Modell 3 in der Lagerreaktion und der

Beschaffungszeit. Es gilt aber fiir die mittlere Beschaffungszeit: E(T) = . Weiter-

hin ist gegeniiber dem Modell 3 die Bestellregel spezieller gewihlt. Dies hat zur Folge,

daB zu jedem Bedarfsfall das abgegebene Ersatzteil unverziiglich zu ersetzen ist

und deshalb sofort eine Bestellung ausgelost wird. Trifft jedoch eine Forderung zu

einem Zeitpunkt ein, an dem das Lager leer ist, wird diese wegen b) zuriickgewiesen.
Gesucht ist — wie beim Modell 1 — der korperliche Bestand Y(¢):= Y, zur

Zeit t.

Satz 7.16: Der Bestandsprozef {Y(t), t = 0}, zu Modell 4 ist ein homogener Markow-
scher Prozeff mit dem Zustandsraum %y = {S, S — 1, ..., 1,0} und der Intensitits-
matrix

-1 2 0 0..0 0 0

T —-(A+17) 2 0..0 0 0

4 0 27 —-(A+2)1..0 0 0
0 0 0 0..8-1) —-A+(E-D7) 2

0 0 0 0..0 St — St

(7.85)
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Unter den Modellvoraussetzungen kénnen wir die Markow-Eigenschaft zeigen
sowie die Darstellung der Ubergangsmatrix fiir ein Zeitintervall mit kleiner Linge Az:

Py(At) = I + A At + o(Ar) (7.86)
mit der Einheitsmatrix 7 und einer Matrix A gemaB (7.85).

Satz 7.17: Der Bestandsprozefs zu Modell 4 besitzt die stationdre Grenzverteilung

S—j
£ =lim P(Y, = ) = % (7.87)
o s -y B
k=0 !

Beweis: Wie in 3., (3.61), ergibt sich die stationire Verteilung eines homogenen
Markowschen Prozesses aus

fA=0. (7.88)
Die einfache Bandstruktur der Matrix (7.85) 148t uns sofort die Losung
1 (B
* — ot 2
£ (1, Iy (0, o )
von (7.88) ablesen, wobei / =—i— ist. Normieren wir diesen Vektor, so erhalten wir

die Behauptung (7.87), falls wir die Reihenfolge der Komponenten von f entsprechend
f=(fs, fs-15 s o) (7.89)

beachten.

Wie Sewastjanow 1957 in einem anderen Zusammenhang gezeigt hat, bleibt die
sogenannte Erlangsche Formel (7.87) fiir jede Beschaffungszeit 7p mit dem Erwar-
tungswert / giiltig, insbesondere also auch fir konstante Beschaffungszeit T, = I

Satz 7.18: Im Modell 4 gilt fiir den mittleren Bestand

Fu(S - 1)
EY)=S8 - n22—_—~ 7.90
) Fii(S) ¢ )
und fiir den Sicherheitsgrad
Fu(S — 1
PS8 =1-fo = D, a.91)

ik
wobei Fi(j) = e 3. — ist.
K=o k!

Den einfachen Beweis mdchten wir dem Leser tiberlassen.

7.5. Optimale Lagerhaltung

Wir wollen nun das Lagerhaltungsproblem ,,Wann ist wieviel zu bestellen?* in
einem etwas allgemeineren Rahmen 16sen. Bisher sind wir jeweils von einer Bestell-
regel vom (s, S)-Typ ausgegangen. Wir konnen natiirlich auch andere Bestellregeln
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zulassen; weiterhin ist es moglich, zu verschiedenen Bedarfsfillen verschiedene
Bestellregeln anzuwenden. Deshalb erkliren wir: Unter einer Bestellstrategie
(,,Entscheidung)

e = (ey, €5,...) mit e,(x) = x fiir jedes ganze x (7.92)

verstehen wir eine Folge von Bestellregeln, wobei ¢,(.) die zum n-ten Bedarfsfall
zu verwendende Bestellregel bezeichnet. Sind alle Bestellregeln untereinander gleich,
sprechen wir von einer stationdren Strategie.

Am Ende wird sich zeigen, daB unter gewissen Bedingungen trotz einer derartigen.
Erweiterung der Bestellmoglichkeiten die erwarteten Kosten nicht kleiner ausfallen
als die Kosten, die mittels einer stationdren Bestellstrategie vom (s, S)-Typ erzielt
werden.

Um den Sachverhalt moglichst zu konkretisieren, beschrinken wir uns auf eine
Modifikation des Modells 2:

Modell 5

a) Der Bedarfsprozef ist periodisch mit der Bedarfsfunktion b(¢).

b) Es gilt die Vormerkreaktion (7.8).

c) Die Beschaffungszeit / ist eine feste natiirliche Zahl.

d) Die Bestellstrategie e ist von der Form (7.92).

e) Das Lager ist am Anfang leer.

Entsprechend den Bilanzgleichungen (7.34) werden zwei disponible Bestands-
prozesse definiert:

aYe = ¢,(4X?), - (7.93a)
axe = aye | — B.. (7.93b)

Bezeichnet x den realisierten disponiblen Bestand vor der Bestellung zur Zeit ¢ = n,
so gibt e,(x) =:yp den disponiblen Bestand unmittelbar nach der Bestellung zur
Zeit t = n an. Fiir die Bestellmenge gilt z = e,(x) — x.

Uns interessieren nun die Kosten, die durch Bestellungen in den ersten N Perioden
verursacht und in den Perioden / + 1 bis / + N wirksam werden. Bezeichnen wir
mit

I

@)1= Ko@) + bei o = [0 Tor 2=0, (7.94)
o(z) := z) + ¢z, wobei = R

‘ {1 fir z> 0,
die Beschaffungskosten fiir z Mengeneinheiten und mit L(y) gemaB (7.74) die
erwarteten Lager- und Fehlmengenkosten, so ergeben sich die beeinfluBbaren
erwarteten diskontierten Kosten fiir den Zeitraum [0, N]:

ko(e, N) = E % "™ [e(Yg — Xg) + LY, (7.95)
n=1

hierbei ist o ein Diskontfaktor?) fiir eine Zeiteinheit (0 < o < 1). Die Summanden
von (7.95) kénnen wie folgt interpretiert werden: Eine zur Zeit 1 = n aufgegebene
Bestellung verursacht Kosten k,, die bei Eingang der Lieferung zur Zeit t = n + /

1) Der Diskontfaktor « ergibt sich aus dem Zinssatz p » 100 % nach der Formel x(1 + p) = 1.
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zu zahlen sind. Beziehen wir die zu verschiedenen Zeiten anfallenden Kosten auf
den Beginn des Planzeitraumes, haben die Kosten k, den Wert «™'k,,.

Definition 7.5: Eine Bestellstrategie e* heifit (N, o)-optimal, falls
ka(e*, N) = ke, N)

fiir jede Entscheidung e gilt.

Die dynamische Optimierung (vgl. Band 16) liefert uns eine Methode zur Bestim-
mung einer (N, «)-optimalen Bestellstrategie. Dazu bezeichnen wir mit g,(i) die
erwarteten diskontierten Kosten fiir den Zeitraum [z — 1, N] bei einer (N, «)-
optimalen Lagersteuerung und dem Bestand x = i zur Zeit # = n — 1. Dann ergibt
sich nach dem Bellmanschen Optimalitdtsprinzip

&(@ = Min [y = i) + L0, (7.962)
&i@) = Min [oly = ) + L0) + & £ sy = B ) (7.96b)
yzi k=0

n=N-1,N—-2,..,1. Wird gy(.) nach (7.96a) berechnet, ergibt sich gleichzeitig
e gemil

gn(i) = c(ef(@) — i) + L(ef(D)).

Rekursiv erhalten wir dann gy_;(.), ef_q, ..., g1(.), ef und damit
ka(e*, N) = a'+g1(0).Y)

Definition 7.6: Eine Bestellstrategie e* heifit a-optimal, falls
ka(e*, 00) < kafe, )

fiir jede Entscheidung e gilt.

Beim Ubergang vom endlichen zum unendlichen Planzeitraum gelangen wir von
(7.96b) zur Funktionalgleichung

8() = Min [o(y = 1) + L) + Y o — k) ) (1.97)
yzi k=0

der sogenannten optimalen Lagerhaltungsgleichung.
Wir geben hierzu noch zwei wichtige Ergebnisse an.

Satz 7.19: Es sei g(.) eine endliche, nach unten gleichmdpig beschrinkte Losung der
optimalen Lagerhaltungsgleichung (7.97). Dann gilt fiir jedes x-optimale e*:

ka(e*, ) = «+1g(0). (7.98)
Einen Beweis von Satz 7.19 findet der Leser z. B. in [29], S. 64.

1) Beziiglich des hierfiir erforderlichen recht umfangreichen Rechenaufwands vgl. Bd. 16,
Abschn. 4.3.1.
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Satz 7.20: Es werde das Modell 5 gemdf3 (7.95) bewertet, wobei L(y) konvex ist und
(1 — «)y + L(y) — oo fiir [y| - oo strebt. Dann gilt

lim (1 — &) ka(e*, ) = & (S*, D¥). (7.99)
a1

Der auf Scarf (1960) zuriickgehende Satz 7.20 besagt, daB in der Klasse der Bestell-
strategien (7.92) bereits Strategien optimal sind, die aus untereinander identischen
Bestellregeln von (s, S)-Typ bestehen. Damit wird die in den vorangehenden Ab-
schnitten praktizierte Beschrankung auf Bestellregeln vom (s, S)-Typ — zumindest
unter gewissen Konvexitidtsbedingungen an die Kosten — nachtriglich gerecht-
fertigt.

Beispiel 7.2 kann nunmehr fiir den Fall einer linearen Restbestandsbewertung
abgeschlossen werden.

Die erwarteten Lager- und Fehlmengenkosten L(y) ergeben sich nach (7.71) fiir
y>0zu

Ly)=y—1+22:05
und fiiry < 0 zu
Ly)=1-y.

Die Voraussetzungen von Satz 7.20 sind also erfiillt. Damit ist die suboptimale
Bestellregel vom (s, S)-Typ sogar optimal, d. h., es gibt hier keine bessere Bestell-
strategie als die angegebene stationdre vom (s, S)-Typ mits = 2, S = 6.

Aufgabe 7.1: Es ist der Zusammenhang zwischen einem Poissonschen Verlustsystem
mit zufélliger Beschaffungszeit, einem Bedienungssystem AM/M/n/0 und der Ge-
spriachsvermittlung in einer Telefonzentrale herzustellen.

Aufgabe 7.2: Es sind die Verhaltenscharakteristiken (mittlerer Bestand, Sicherheits-
grad und Bestellzyklus) fiir ein Lagerhaltungssystem unter den Bedingungen von
Beispiel 7.2 bei optimaler Steuerung zu berechnen.
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2.1: (1) Ohne Einschrankung der Allgemeinheit kann m(r) = 0 gesetzt werden. Dann ist

n 2 n
E{[Z ZrX(f.')] } = 3 zizjk(t;, 1) Z 0.
1 ij=1

i=
(2) fiir beliebiges o gilt E[X(s) + «X(f)]*> = 0. Einfache Umformungen ergeben
E[X(5)]* + 20E[X(s) X(1)] + «2E[X(1)]?

E(X(s) X(1) 1? [E{X(s) X()}1*
- 2 2 _ - - T >0.
E[X(1)] [oc + X)) + E[X(s)] FIXOT =

Da der linke Teil fiir alle « nicht negativ bleibt, folgt

{EIX(s) X(0]}* = E[X(s))* EIX(D]?,
woraus sich unmittelbar die Behauptung ergibt.
2.2: my(t) = E(Xt)=tEX =0,

ky(s, 1) = E[(Xs — 0) (Xt — 0)] = stE[X?] = a’st,

(1) = ky(t, 1) = a®t2.
2.3: Die Unabhingigkeit der Zuwichse folgt aus der Unabhingigkeit der & (i = 1,2, ...).

2.4:Es gilt: poo(At) =1 — po(Ar) = At + o(Ar). Wegen p. ;(At) = o(Ar) folgt py(At) = At
+ o(Ap).

2.5: Mit m(t) = 0 und 6%(t) = ¢t folgt unter Verwendung der Bezichungen (2.18) und (2.19)
ky(s, t) = E[X(£)]* = 0%t fir s = ¢t und ky(s, £) = o35 fiir s < ¢.

3.1: dy=nh,  p, = nu.
3.2: Unter Verwendung der Formeln (3.45) und (3.47) findet man

t
3. 3 3
mt) = €%, o2y = 7N f e 2 g

i
0
=%e-zzz(e%lr l)

3.3: Die Losung ergibt sich sofort unter Beachtung der Beziehungen (3.56) und (3.57).
o

1
4.1: = | e%dr = —,

o

0

5.1: Unter Verwendung dieser Beziehungen sind nun die Differenzenquotienten zu bilden und der
Grenziibergang At — 0 auszufiihren; danach erhilt man das Gleichungssystem (5.5)—(5.7).

Pty + (1 = 1)) = '_zopi(fx)l’ik(f —t), k=0,1,..,n,
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Mit t; = ¢t und At = ¢ — ¢, ergibt sich daraus:
pt+ A= 3 p()pu(AD), k=0,1,....n .
i=0

Da der betrachtete ProzeB ein Geburts- und TodesprozeB ist, gilt:
Poo(At) = 1 = poy(Ar) + o(Af) = 1 — AAt + o(A1),
Po1(At) = 2 At + o(At),
Pry-1(A1) = ku At + o(At),
Prrs1(A) = A1 + o(Ar), k=1,2,..,n—1.

Durch Bildung der Differenzenquotienten und Durchfiihrung des Grenziibergangs Az — 0 ergibt
sich das Differentialgleichungssystem (5.5)—(5.7).

6.1: Nach Tabelle 6.2 ist bei der Exponentialverteilung der Erwartungswert T, der fehlerfreien
Arbeitszeit T gleich dem Kehrwert der Ausfallrate 2. Bei einer Serienstruktur mit einer entsprechend
(6.39) gegebenen Ausfallrate ergibt sich also:

1

ni "

7.1: Der Bestandsprozef3 eines Poissonschen Verlustsystems mit exponentiell verteilter Beschaffungs-
zeit 148t sich nach Satz 7.16 durch einen homogenen Markowschen Prozel Y(#) mit der Intensitts-
matrix A gemiB (7.85) beschreiben. Die stationdre Grenzverteilung ergibt sich dann nach der Erlang-
schen Formel (7.88). Betrachten wir die Anzahl der Forderungen in einem Bedienungssystem
M[M]|n/0 (vgl.5.4.1.), so bildet diese ebenfalls einen Markowschen Proze8 X(r). Setzen wir die Anzahl
der Bedienungsgerite n = S, so ist der ProzeB S — Y(¢) zum ProzeB X(¢) dquivalent; insbesondere
erhalten wir die Wahrscheinlichkeiten fiir die Anzahl der Forderungen im System im stationidren
Regime uber die Erlangsche Formel. Die Modellierung der Gesprichsvermittlung in einer Telefon-
zentrale durch einen Markowschen ProzeB wird in Kapitel 3 (Beispiel 3.5) erértert.

T, =

7.2: Fiir das Beispiel 7.2 ist die (2,6)-Bestellregel in der Klasse der Bestellregeln vom (s, S)-Typ
suboptimal. Beachten wir (7.71), so erhalten wir L(y) = y — 1 + 22 ($)*. Offenbar ist diese Funk-
tion konvex, und es gilt lim L(y) = oo. Damit ist Satz 7.20 anwendbar, so daB die Bestellstrategie,

Yo
die aus untereinander ic{er‘ltischen Bestellregeln von (2,6)-Typ besteht, eine optimale Steuerung hin-
sichtlich des Modells § liefert.
Nun umfa3t das Modell 5 unser Modell 2. Speziell fiir verschwindende Beschaffungszeit bekom-
men wir fiir die Verhaltenscharakteristiken

21
a) mittlerer Bestand vor der Bestellung: E(X) = <= 3,5 ME nach (7.48);
26 =
b) mittlerer Bestand nach der Bestellung: E(Y) = < = 4,3 ME nach (7.46);

X X 1 [S /1 \F S /1 1\F 11,5
¢) Sicherheitsgrad: P,(2,6) = — = - = ——~® 0, nach (7.57);
) Sicherheitsgrad: P2(2,6) 12 Eo(Z) +1§z :Eo 2) 12 ~ 0,9 h (7.57)

d) mittlerer Bestellzyklus: E(T) = 6 ZE nach (7.66).
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