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Vorwort

Mit der Entwicklung der Wissenschaft, die immer kompliziertere Sachverhalte zum
Gegenstand der Untersuchung macht, steigt der Aufwand fiir Experimente immer
stirker an. Dies zwingt die Wissenschaftler zu einer rationellen Gestaltung ihrer Ex-
perimente. Im Verlauf der letzten fiinfzig Jahre wurden in zunehmenden MafBe auch
mathematische Methoden zur Steigerung der Effektivitdt der Experimente eingesetzt.
Diese mathematischen Methoden haben besonders dann ihre Leistungsfahigkeit be-
wiesen, wenn Experimente betrachtet werden miissen, deren Resultate zufallsbeein-
fluBt, also z. B. ZufallsgréBen sind.

In den Biowissenschaften machte sich die Notwendigkeit, zuféllige Einfliisse, z. B.
des Klimas, des Bodens und des Versuchsobjekts zu beriicksichtigen und die Schran-
ken des Versuchsaufwandes, z. B. durch die Begrenzung der Zahl der Versuchsobjekte
und der Generationszeit, zuerst bemerkbar. Daher wurden hier zuerst mathematische
Methoden bei der Planung und Auswertung zufallsbeeinfluBter Experimente ange-
wandt. Heute verfiigen die Biowissenschaftler in der Biometrie (vgl. z. B. Rasch/
Enderlein/Herrend6rfer [1]) tiber eine leistungsfahige Wissenschaftsdisziplin fiir die
Planung und Auswertung von Experimenten im biologischen Bereich.

In den anderen Naturwissenschaften und in der Technik ist die Auswertung von
Experimenten mit den Methoden der mathematischen Statistik (vgl. z. B. Bd. 17
dieser Reihe) seit langem {iblich. Bei der Planung von Experimenten jedoch bedient
man sich erst in den letzten zwanzig Jahren gewisser Verfahren aus der Biometrie (vgl.
z. B. Scheffler [1]). Dariiber hinaus wurden bereits einige Methoden entwickelt, die
speziell den Bediirfnissen der Technik Rechnung tragen (vgl. z. B. Bandemer/Bell-
mann/Jung/Richter [1], Hartmann/Letzkij/Schéfer[1]).

Die Grundlagen der Theorie der Versuchsplanung sind relativ tiefliegend in der
hoheren Algebra, der Entscheidungstheorie und der Theorie der nichtlinearen Opti-
mierung zu finden. Im gegebenen Rahmen ist es daher nur méglich, eine erste Ein-
fiihrung in die Problematik und zumeist exemplarische Anwendungsaufgaben zu
liefern. Als Voraussetzung der Lektiire wird die Kenntnis des Bandes 17 dieser Reihe
oder eines dhnlichen einfiihrenden Lehrbuches in die Wahrscheinlichkeitstheorie und
die mathematische Statistik (Storm [1], Maibaum [1]) angesehen.

Obwohl versucht worden ist, die Beispiele iiber alle Anwendungsgebiete gleich-
maBig zu verteilen, wobei im einzelnen Fall dem typischen Problem der Vorrang ge-
geben wurde, scheint eine Ubersetzung der Aufgabenstellung in das engere Fach-
gebiet des Lesers moglich und unerldflich.

Die Formulierung sinnvoller Ubungsaufgaben wurde nach reiflicher Uberlegung
fiir nicht moglich erachtet, da die Losung (nichttrivialer) theoretischer Probleme, etwa
zur Berechnung von Pldnen, entweder anspruchsvollere mathematische Hilfsmittel
oder den Einsatz von EDVA erfordern wiirde. Andererseits schlieBen praktische
Probleme als Ubungsaufgaben die Darlegung von umfangreichen fachspezifischen
Details, der mathematischen Modellierung und der Versuchsergebnisse ein. Dies wiirde
erheblichen Platz beanspruchen, jedoch jeweils nur fiir einen kleinen Teil der Leser von
Interesse sein. Daher wird empfohlen, analog zu den gegebenen Beispielen Probleme
aus dem jeweiligen Spezialgebiet zu wihlen und in die entsprechende Lehrveranstal-
tung einzubauen.

Mit dem vorliegenden Band wurde erstmals in deutscher Sprache versucht, die sta-
tistische Versuchsplanung als Teilgebiet der mathematischen Statistik fiir den An-
wender lehrbuchméBig darzustellen.
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Dabher sind kritische Hinweise, die zur Verbesserung des Lehrbuches in der néch-
sten Auflage fiihren, jederzeit willkommen.
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1. Einfiihrung in die Problemstellung

1.1. Ausgangspunkt und Ziel der statistischen Versuchsplanung

Jede angewandte Wissenschaft bedient sich des Experiments als Mittel zur Er-
kenntnisgewinnung im weitesten Sinne, sei es in der Forschung zur Untersuchung
neuer Sachverhalte, sei es bei der Kontrolle und Steuerung von Abldufen. Jeder ex-
perimentellen Untersuchung muf eine genaue Problemstellung zugrunde liegen. Die
Formulierung dieser Problemstellung ist keine Aufgabe der Mathematik, jedoch fiih-
ren die Bemithungen, bei dieser Formulierung die Sprache der Mathematik mit heran-
zuziehen, zu einem erneuten genauen Durchdenken des Problems und in der Regel
auch zu seiner erforderlichen Prézisierung.

Vergleichen wir z. B. die urspriingliche Fragestellung: ,,Ist das Futtermittel B fiir
Schweine besser als das bisher verwendete Futtermittel 4?*“ mit der prizisierten Fas-
sung: ,,Wird die mittlere tigliche Gewichtszunahme bei Schweinen der Rasse DL, die
in GroBanlagen gehalten werden, erh6ht, wenn wir das Futtermittel B anstelle von A
einfithren?* (vgl. Rasch/Enderlein/Herrendérfer [1]).

Durch eine prézisierte Problemstellung werden die zu untersuchenden GréBen und
die hauptsichlichsten Bedingungen, unter denen diese betrachtet werden sollen, fest-
gelegt. Es ist jedoch unmaglich, alle Bedingungen fiir einen Versuch festzulegen. Ent-
weder (vgl. das nachfolgende Beispiel 1) sind die Versuchsobjekte ,,naturgegeben‘ (so
vor allem in den Biowissenschaften), oder (vgl. das nachfolgende Beispiel 2) der Auf-
wand fir die Fixierung der Bedingungen wire unvertretbar hoch (so vor allem in den
technischen Wissenschaften). Dariiber hinaus (vgl. das nachfolgende Beispiel 3) gelten
selbstverstidndlich die aus den Versuchsergebnissen erwarteten Aussagen in der Regel
nur fiir die festgelegten Versuchsbedingungen. Dabei ist eine starke Einschrinkung
dieses Aussagebereiches natiirlich nur selten erwiinscht.

Beispiele:

1. Die Versuchstiere einer Rasse unterscheiden sich beziiglich der Gewichtszunahme selbst bei
gleichen Haltungsbedingungen.

2. Die Fixierung der Umweltbedingungen (z. B. Temperatur und Feuchtigkeitsgehalt der Luft, Er-
schiitterungsfreiheit des umgebenden Mediums usw.) diirfte bei einer einfachen Lingenmessung einen
zu groBen Aufwand erfordern, obwohl diese Bedingungen einen EinfluB auf das MefBergebnis haben.

3. Die Schwierigkeiten bei der Ubertragung von Aussagen aus Laborversuchen in die Produktion
sind genau so bekannt wie die begrenzte Aussagefihigkeit von dkonomischen Untersuchungen in
einem einzelnen Betrieb.

Eine sinnvolle Beschreibung solcher Sachverhalte und praktischer Aufgabenstel-
lungen wird durch die Anwendung der Methoden der Stochastik, das sind z. B. die
Wabhrscheinlichkeitstheorie und die Mathematische Statistik, ermdglicht. Dabei
werden die auf das Versuchsergebnis wirkenden Einfliisse, die wir nicht kennen
oder konstant halten kénnen, als zuféllige Einfliisse betrachtet, und das Ergebnis
eines Versuches ist somit ein zufélliges Ereignis. Nach der Festlegung der zu unter-
suchenden GroBen und der Abgrenzung des Aussagebereiches durch Fixierung von
Versuchsbedingungen kénnen wir die konkreten Ergebnisse der Versuche als Reali-
sierungen von entsprechenden Zufallselementen (ZufallsgroBen, -vektoren oder -pro-
zessen) auffassen (vgl. Storm [1], Maibaum [1]).

Einen Versuch konnen wir also als Beobachtung eines entsprechenden Zufallsele-
mentes deuten, wobei diese Zufallselemente von festgelegten Versuchsbedingungen
abhingen, die auch systematisch von Versuch zu Versuch gedndert werden kénnen.
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Eine wohldefinierte, endliche Menge von Versuchen wollen wir im folgenden Ex-
periment nennen.

Wenn in einem gegebenen Sachverhalt verschiedene konkurrierende Méglichkeiten
fiir Experimente zur Verfiigung stehen, also eine Auswahl unter beobachtbaren Zu-
fallselementen (z. B. durch Festlegung gewisser Parameter) mdglich ist, dann wollen
wir von (statistischer) Versuchsplanung sprechen.

Erfolgt die Auswahl eines Experimentes aus den konkurrierenden Méglichkeiten
nach einem gegebenen Optimalitdtskriterium, so wollen wir dies (statistische) optimale
Versuchsplanung nennen.

Das Ziel der Versuchsplanung ist allgemein, die gewiinschten oder erforderlichen
Erkenntnisse aus der experimentellen Untersuchung mit moglichst geringem Versuchs-
aufwand oder, bei beschrinktem Versuchsaufwand, mdoglichst aussagekriftige Er-
kenntnisse zu gewihrleisten. Der stindig steigende notwendige Aufwand fiir experi-
mentelle Untersuchungen macht die stets vorhandenen Schranken fiir die Mittel an
Geld, Zeit und Versuchsmaterial immer fiihlbarer und zwingt die Wissenschaftler in
zunehmendem MaBe, sich um eine rationelle Gestaltung ihrer Experimente zu kiim-
mern. Die statistische Versuchsplanung ist ein wertvolles Hilfsmittel hierzu, das je-
doch nur dann zur vollen Wirksamkeit gelangen kann, wenn seiner Anwendung eine
rationelle Gestaltung der Versuchsfrage vorangeht. Es ist also eine moglichst prazise
fachwissenschaftliche und mathematisch fabare Aufgabenstellung zu formulieren.
Dazu gehort u. a. die Einbettung in ein wahrscheinlichkeitstheoretisches Modell.

Es sei schlieBlich bemerkt, daB3 zur rationellen Vorbereitung von experimentellen
Untersuchungen auch die geschickte Wahl eines Versuchstyps gehort (z. B. Testver-
such, Laborversuch, Modellversuch, Pilotversuch, Praxisversuch, Erhebung; vgl.
Rasch/Enderlein/Herrendorfer [1]). Die Wahl hidngt von den bereits vorliegenden
Erfahrungen, dem gewiinschten Aussagebereich, der Zielstellung der Versuche sowie
der méglichen Ubertragbarkeit der Aussagen ab. Prinzipiell ist es natiirlich moglich,
diese Wahl mit in die statistische Versuchsplanung einzubeziehen, wenn es namlich
gelingt, die den Versuchstypen entsprechenden Zufallselemente in ihren Eigenschaften
zu beschreiben und den Wert der Aussagen (etwa im Rahmen entscheidungstheoreti-
scher Betrachtungen) gegeneinander abzuwégen. Im allgemeinen jedoch diirfte es
gegenwiirtig noch empfehlenswerter sein, diese Auswahl aus sachlogischen Erwégun-
gen der anwendenden Fachwissenschaft und 6konomischen Uberlegungen vor der
Anwendung der statistischen Versuchsplanung zu treffen.

1.2 Versuchsplanung und -auswertung

Wie wir bereits im vorigen Abschnitt bemerkt haben, héingt die Auswahl des Ex-
periments wesentlich von der Problemstellung ab und von dem Ziel, das wir verfolgen.
Dieses Ziel ist im vorliegenden Fall in einem stochastischen Modell, d. h. als Aufgabe
der mathematischen Statistik, formuliert. Wir werden bestrebt sein, moglichst ein-
fache statistische Standardaufgaben zu erhalten, die jedoch die praktische Problem-
stellung nicht unzuléssig simplifizieren diirfen. Beispiele fiir solche Standardaufgaben
wurden bereits in Bd. 17 vorgestellt, mit zwei Beispielen wollen wir uns daran erinnern.

Beispiel 1.1: Mit einem gegebenen MeBgerit ist eine physikalische KenngrdBe zu bestimmen, gleich-
zeitig wird eine Aussage iiber die unbekannte Genauigkeit des MeBgerites bendtigt. Wir wollen an-
nehmen, daB folgende Voraussetzungen gelten:
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a) Das Mefgerit hat keinen systematischen Fehler,
b) die zufilligen MeBfehler sind normalverteilt.

Damit konnen wir das MefBergebnis als ZufallsgroBe der Form
X=pte .

auffassen, wobei EX = p der wahre Wert der KenngroBe und die ZufallsgroBe ¢ der normalverteilte
zufillige MeBfehler mit Ee = 0 ist. Die unbekannte MeBgenauigkeit wird durch die Varianz D% = o?
charakterisiert. Die statistische Aufgabe besteht in diesem Fall in der Schitzung von z und ¢? an-
hand einer Stichprobe Xj, ..., X, (wir wollen dieses Problem als MeBproblem bezeichnen).
Beispiel 1.2: Eine vorgegebene Lieferung von technischem Kleinmaterial (z. B. Schrauben) darf héch-
stens 100 p, % AusschuB enthalten. Es ist unmdglich, alle Stiicke der Lieferung zu priifen (zu hoher Auf-
wand oder zerstérende Priifung). Bei dieser Lieferung interessiert, ob die Giitebedingung eingehalten
wurde. Wir entnehmen zufillig und voneinander unabhéngig eine feste Anzahl von Elementen und
priifen diese. Die Anzahl X der AusschuBstiicke in unserer ,,Stichprobe** ist eine ZufallsgroBe, die
niherungsweise binomialverteilt (asymptotisch normalverteilt) ist mit EX = np und der Varianz
D*X = np(1 — p). Die statistische Aufgabe besteht hier in einem Test der Hypothese p < po (Pro-
blem der statistischen Qualitdtskontrolle).

Nach der Formulierung der statistischen Aufgabe, bei deren theoretischer Losung
die Auswertungsmethode fiir die Versuchsergebnisse festgelegt wird, ergeben sich
dann sofort die Probleme der statistischen Versuchsplanung.

1.2.1.  Auswahlproblem

Die Beobachtung einer ZufallsgréBe geschieht hdufig durch die Auswahl von Ele-

menten aus einer Menge von in gewisser Beziehung gleichartigen Objekten, die an-
schlieBend einer Untersuchung oder einer Behandlung unterzogen werden, deren
Ergebnis die Realisierung der ZufallsgroBe ist (vgl. das Problem der statistischen
Qualitdtskontrolle, Beispiel 1.2). Die Auswahl dieser Elemente muf zuféllig und
unabhiéngig voneinander erfolgen, damit die Methoden der mathematischen Statistik
représentative Ergebnisse liefern. Dabei heif3t eine zuféllige Auswahl, daB jedes Ele-
ment der betrachteten Menge mit der gleichen Wahrscheinlichkeit in diese Auswahl
gelangen kann, und unabhéingig voneinander heif3t, da die bereits erhaltenen Ergeb-
nisse keinen EinfluB auf die weitere Auswahl von Elementen haben.
Beispiel 1.3: Gegeben seien zwei Behandlungsmethoden 4 und B (z. B. zwei Futtermittel bei Schwei-
nen oder zwei technologische Verfahren zur Aufbereitung von Bodenschitzen) und eine von ihnen
beeinfluBte Wirkung X (z. B. tégliche Gewichtszunahme der Tiere bzw. Feinheit eines gewonnenen
Mabhlgutes). Es soll untersucht werden, ob die Behandlung A eine bessere durchschnittliche Wirkung
hat als B, d. h., ob

EX(A) = py > ug = EX(B). (1.2)
Vorausgesetzt sei, daB X(4) und X(B) normalverteilt mit der gleichen Varianz ¢2 sind. Es mogen 2n
zufillig aus einer groBeren Menge gleichartiger Versuchsobjekte ausgewihlte Objekte (z. B. Tiere
oder Mindestmengen fiir einen technologischen Durchlauf o. 4.) zur Verfiigung stehen. Es ist offen-
sichtlich, daB3 diese 2n Objekte wiederum zufillig je zur Hélfte den beiden Behandlungen zugeordnet

werden sollten, damit der eventuell festgestellte Unterschied nicht im Zuordnungsverfahren seinen
Grund hat.

Die Forderung nach einer zufilligen und unabhéngigen Auswahl am konkreten
Problem mit einer subjektiven Auswahl aufs Geratewohl zu erfiillen, bringt eine Reihe
von Gefahren, die sogar die gesamte Untersuchung fragwiirdig machen kénnen. Wir
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iiberlegen uns leicht, da bei einer solchen Auswahl aufs Geratewohl gerade die Sach-
kenntnis des Auswihlenden und gewisse technische Probleme, z. B. der unterschied-
lichen Zugénglichkeit der einzelnen Objekte, eine entscheidende Rolle spielen, selbst
wenn wir vorausssetzen diirfen, daBl der Auswihlende eine zuféllige und unabhéngige
Auswahl vornehmen will. Bekanntlich (vgl. Bd. 17) 1aBt sich mit der Benutzung von
Zufallszahlen die Auswahl objektivieren und die genannte Forderung erfiillen. Den-
ken wir uns die Objekte durchnumeriert und entnehmen wir einer Tabelle von Zu-
fallszahlen eine entsprechende Anzahl von Zahlen, die dem gewiinschten Stichproben-
umfang entspricht. Die Objekte, deren gedachte Nummer unter diesen ausgewéhlten
Zahlen vorkommt, werden in die Auswahl einbezogen.

Entsprechend verfahren wir, wenn wir vorgegebenen Objekten verschiedene Be-
handlungen zuordnen wollen.

SchlieBlich kénnen wir auch solche Fille betrachten, in denen die Reihenfolge der
Versuchsdurchfiihrung einen unerwiinschten Einflul auf die Ergebnisse haben kann
(Verdnderungen der Versuchsbedingungen im Tagesverlauf, VerschleiBerscheinungen
in der Versuchseinrichtung o. .). Auch hierbei kénnen wir uns die einzelnen Versuche
(Versuchsobjekte, Kombinationen von gewéhlten Versuchsbedingungen o. d.) durch-
numeriert denken. Die Reihenfolge fiir die Durchfiihrung der Versuche legen wir ent-
sprechend einer sukzessiven Auswahl aus einer Zufallszahlentabelle fest.

1.2.2.  Problem der Einhaltung des Aussagebereiches

Ein weiteres Problem der Versuchsplanung hidngt damit zusammen, daf3 genau die
. festgelegten Versuchsbedingungen eingehalten werden miissen und daB sich die als zu-
féillig betrachteten Einfliisse auch nur zuféllig dndern diirfen. Die Folgen, die ein
Nichteinhalten der festgelegten Versuchsbedingungen hat, sind in der Regel dem Ex-
perimentator bewuBt, und er wird in Zweifelsféllen die Einhaltung der Bedingungen
entweder wihrend des Versuches kontrollieren oder nachtréglich anhand der Ergeb-
nisse priifen (z. B. mit einem AusreiBertest). Gefihrlicher, weil in der Regel dem Ex-
perimentator nicht bewuBt, sind die Folgen die sich aus einer nicht zufilligen Ande-
rung (z. B. auch aus einer Konstanz) gewisser, als zufillig betrachteter Einfliisse, er-
geben. Diese Einfliisse gehen dann als determiniert in die Versuchsergebnisse ein, ver-
andern also die Versuchsbedingungen und damit die beobachtete ZufallsgréBe. Die
statistischen Schliisse aus den Ergebnissen gelten dann selbstverstindlich nur unter
diesen zusdtzlichen Bedingungen, und das ist gleichbedeutend mit einer Einschridn-
kung des Aussagebereiches.

Beispiel 1.4: Es ist die Genauigkeit eines chemischen Analyseverfahrens zu bestimmen. Vorgegeben
werden verschiedene Testsubstanzen. Die nétigenfalls einer Umrechnung unterzogenen Mefergeb-
nisse seien normalverteilt mit dem Erwartungswert Null (d. h., das Verfahren habe keinen systema-
tischen Fehler) und der Varianz o. Die Untersuchung wird von einem einzigen Experimentator in
einem Labor durchgefiihrt. Die erhaltenen Ergebnisse gelten dann auch nur fiir diesen Experimentator
in diesem Laboratorium, denn die Fahigkeit und die Sorgfalt des Experimentators wie auch die Ar-
beitsverhiltnisse im Labor haben bekanntlich einen EinfluB auf die MeBergebnisse (personlicher
Fehler). Um die Genauigkeit des Verfahrens fiir beliebige Experimentatoren und beliebige Laborato-
rien festzustellen (um die Genauigkeit z. B. mit der eines bereits eingefiihrten Verfahrens zu verglei-
chen), miissen wir also dafiir sorgen, daB der EinfluBl des Experimentators und des Labors zufillig ist.
Deshalb sollte das Verfahren von einer Anzahl zuféllig ausgewihlter Experimentatoren in ebenfalls
zufillig herausgegriffenen Labors gepriift werden. Die Ergebnisse werden dann als gemeinsame Stich-
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probe ausgewertet. Die Auswahl kann mit der in Abschnitt 1.2.1. genannten Methode vorgenommen
werden. Mit Problemen dieser Art beschiftigt sich die Stichprobentheorie (vgl. Cochran [1]).
Beispiel 1.5: Mehrere Weizensorten sind hinsichtlich ihres Ertrages zu vergleichen. Es gelten die
Voraussetzungen, daB der Ertrag eine von der Sorte abhidngige normalverteilte ZufallsgroBe ist und
die Varianzen aller dieser ZufallsgréBen gleich sind. Ein gegebenes Versuchsfeld werde in gleichbreite
Streifen zerlegt, und die Weizensorten A, B, C, D, ... werden den Streifen zugeordnet, so daB jede
Sorte je einmal vorkommt, s. Bild 1.1.

o

1 |

‘A{B’c D
‘

[ |

Bild 1.1

Es ist denkbar und in pfaklischen Fillen hdufig, daB die Bodenverhiltnisse sich vom linken zum
rechten Feldrand systematisch dndern (vgl. Bild 1.1) und daB Ertragsunterschiede mehr von diesen
unterschiedlichen Bodenverhiltnissen als von den Sortenunterschieden herrithren kénnen. Auch hier
werden wir mit einer entsprechenden Aufteilung des Versuchsfeldes und anschlieBender zufilliger Zu-
ordnung der Sorten zu den einzelnen Teilstiicken diesen unerwiinschten systematischen Einflul des
Bodens weitgehend auszublenden suchen. Entsprechende Methoden werden im Kapitel 3 behandelt.

Durch die Forderung nach einer Erweiterung des Aussagebereiches wird die An-
zahl derjenigen Einflisse erhoht, die als zufillig angenommen werden. Dies fiihrt in
der Regel zu einer VergroBerung der Varianz der betrachteten ZufallsgroBen. Diese
Erhéhung der Ungenauigkeit kann jedoch die erhaltenen Aussagen fiir den Experi-
mentator unbrauchbar werden lassen.

Ein Ausweg ist hier die sogenannte Blockbildung. Zu einem Block gehéren alle die
Versuche, bei denen ein bestimmter oder mehrere bestimmte, als zufillig angesehene
Einfliisse (wenigstens anndhernd) als konstant angesehen werden diirfen. Wir kénnen
dann z. B. untersuchen, ob diese Einfliisse eine wesentliche Wirkung haben und er-
halten gegebenenfalls Aussagen unter entsprechenden Zusatzbedingungen. Probleme
dieser Art werden im Kapitel 3 untersucht.

1.2.3.  Problem der Wahl der veriinderlichen determinierten Versuchsbedingungen

Sehr hiufig kommt es bei experimentellen Untersuchungen darauf an, die Wirkung
einer Reihe von gegebenen determinierten und wihlbaren Einfliissen 4, B, C, D, ...
auf eine KenngroBe zu erforschen. AuBer diesen determinierten Einfliissen sollen noch
eine Reihe weiterer als zuféllig betrachtete Einfliisse auf die KenngréBe wirken kon-
nen. Als stochastisches Modell bietet sich in diesem Fall an, die KenngrdBe als eine
von den determinierten Einfliissen abhdngige ZufallsgroBe Y(4, B, C, D, ...) aufzu-
fassen, wobei hdufig die vereinfachende Annahme gilt, da

Y(4,B,C,D,..)=f(4,B,C,D,..)+¢ (1.3)

ist, wobei EY(A, B, C, D, ...) = f(4, B, C, D, ...) und ¢ ein normalverteilter Fehler
mit Ee = 0 und mit einer von 4, B, C, D, ... unabhéngigen Varianz D% = ¢? ist (die
Voraussetzung der Gleichheit der Varianzen ist sehr einschneidend und kann in einer
Reihe von Fillen abgeschwicht werden).

Die statistische Aufgabe kann nun entweder darin bestehen, festzustellen, ob
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Y(4, B, C, D, ...) tatsdchlich von 4, B, C, D, ... oder nur von einer gegebenen Teil-
menge der Einfliisse abhidngt (dies fiithrt uns auf Signifikanztests), oder die Funktion
f(4, B, C, D, ...) ist ndherungsweise zu bestimmen (dies bedeutet fiir uns, ein Schitz-
problem fiir die unbekannte Funktion zu 15sen).

Bei Modellen der Form (1.3) unterscheiden wir gewdhnlich zwischen Varianzana-
lysemodellen und Regressionsmodellen. Ein Unterscheidungsmerkmal zwischen die-
sen beiden Modelltypen ist dabei die Art der EinfluBfaktoren 4, B, C, D, ....

Im Varianzanalysemodell wird nicht angenommen, daf3 die Faktoren 4, B, C, ...
(wir bezeichnen in der Varianzanalyse die Einfliisse 4, B, C, ... als Faktoren) quanti-
tativ sind, jedoch wollen wir zulassen, daB jeder Faktor in gewissen Abstufungen auf-
treten kann. Auch wenn diese Abstufung quantitativ ist, spielen die entsprechenden
Werte der betrachteten Stufen bei der Untersuchurg keine Rolle.

Beispiel 1.6: Es sei der EinfluB sechs verschiedener Diingerkomponenten (also 6 Faktoren) auf den
Ertrag einer gegebenen Weizensorte zu untersuchen. Aus sachlogischen Erwégungen heraus seien fiir
jede Komponente nur vier verschiedene Dosierungen (das sind die Stufen) sinnvoll. Unter den Do-
sierungen soll auch die Dosierung 0 auftreten, d. h., eine Komponente tritt nicht auf. Zur Beschrei-
bung des Sachverhaltes wihlen wir ein Modell der Varianzanalyse und erhalten fiir den zufalligen
Ertrag in Abhéngigkeit von den verschiedenen Dosen und fiir jede Kombination der Diingerkompo-
nenten die Darstellung

Yijkimno = g + %11 + 025 + =+ + Gen + V1215 + - + Vsemn
+ Vizaijk + o+ Vaseimn + Vizaaija + o
+ V3asekimn + V1234sijkim T 00

+ V234s6jkimn T V1234561 kimn T Eijkimnos

ik, mn=1,23,40=12,..,r. 1.4
Dabei bedeuten:
© - das allgemeine Gesamtmittel
) — die durch die j-te Dosierung (Stufe) der i-ten Komponenten (Faktor) verur-

sachte Abweichung vom Gesamtmittel,

Virtziry, — die Wechselwirkung (hier zweiter Ordnung) der j;-ten Stufe des i;-ten Faktors

mit der j,-ten Stufe des i,-ten Faktors usw.

r — ist die Anzahl der Wiederholungen des Versuches mit der durch i, j, k, [, m, n
gegebenen Kombination der Faktoren und deren Stufen.

- sind normalverteilte Fehler mit E¢ = 0, mit der Varianz D% = ¢2 (also unab-
héngig von einer bestimmten Kombination) und wenn der Fehler ¢ an zwei
verschiedenen Stellen (d. h., die Indizes der Fehler unterscheiden sich an min-
destens einer Stelle) betrachtet wird, so soll die Kovarianz der Fehler verschwin-
den, die FehlergroBen sollen bei vorgegebener Normalverteilung unabhéngig
sein.

€1 jkimno

Die statistische Aufgabe besteht hierbei nun darin, zuerst (z. B. durch einen Test) festzustellen,
welche der Faktoren A, B, C, D, ... einen signifikanten EinfluB auf den Ertrag haben. Weiterhin ist
dieser EinfluB auf den Ertrag durch eine Schitzung anzugeben. Eine der iiblichen Moglichkeiten,
solch einen Versuch zu planen, besteht darin, daB wir jeden Faktor auf jeder Stufe untersuchen.
Wollen wir mit einer Einstellung jeweils nur einen Versuch (¢ = 1) durchfiihren, dann erhalten wir
fiir sechs Faktoren auf vier Stufen insgesamt 4° = 4096 Kombinationsméoglichkeiten, und somit
miiBten wir mindestens 4096 Versuche durchfithren. Diese Anzahl diirfte die praktischen Méglich-
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keiten und Notwendigkeiten in jedem Fall um ein Vielfaches iibersteigen. Eine Aufgabe der stati-
stischen Versuchsplanung ist es nun, aus der Gesamtmenge der 4096 moglichen verschiedenen Ver-
suche eine geeignete Auswahl zu treffen, so daf3 die notwendigen Tests und Schitzungen mit der ge-
wiinschten Giite durchgefiihrt werden konnen. Dabei wird eine wesentliche Rolle spielen, inwieweit
gewisse Wechselwirkungen [vgl. Darstellung (1.4)] aus sachlogischen Griinden als vernachlissigbar
angesehen werden konnen.

Im Regressionsmodell wird angenommen, dal die betrachteten Faktoren siamtlich
quantitativ sind. Es ist jedoch auch méglich, qualitative Faktoren zuzulassen, wenn
fiir diese Faktoren nur ihr Vorhandensein oder ihr Nichtvorhandensein von Interesse
ist. Wir konnen dann die Quantifizierung 1 bzw. 0 wihlen.

Beispiel 1.7: Fir einen gegebenen chemischen ProzeB wollen wir die Abhéngigkeit der Ausbeute 7
von der Reaktionszeit x; und der Reaktionstemperatur x, untersuchen. Aus theoretischen Uber-
legungen wissen wir, daB sich dieser Zusammenhang in der Form

7(xy, X2) = [1 4 xgexp (9; — doxx)I™* . (@3)
darstellen lassen miiite. Dabei sind #; und ¢, zwei unbekannte ProzeBparameter. Fiir jede mogliche

Kombination der kontinuierlich verdnderlichen Werte x; und x, definieren wir eine ZufallsgroBe
Y(x1,x5):

Y(xy, x2) = n(xy, x2) + &, (1.6)
wobei ¢ ein normalverteilter zufilliger Fehler mit Ee = 0 und D% = ¢2 (also von x; und x, unab-
héngiger Varianz) ist. Fiir zwei verschiedene Versuche mit gleichen oder mit verschiedenen Werten
X1, X, seien die entsprechenden Fehler ¢ unabhingig voneinander. Wir wihlen zur Losung der sta-
tistischen Aufgabe ein Regressionsmodell. Die Aufgabe besteht entweder darin, die sogenannte Wir-
kungsfliche 7(x;, x2) zu schitzen oder mit einem Test zu priifen, ob die Parameter ©#; und #, ge-
wisse vorgegebene Werte haben. So bedeutet z. B. die Hypothese Hy: ¥, = 0, daB #(x,, x,) von
X, nicht abhéngt, also 7(x;, x2) = 7,(x;) gilt.

Bei dem betrachteten chemischen ProzeB hat die Wirkungsfliche bekanntlich eine Bedeutung fiir
die Steuerung des Prozesses. Deshalb besteht eine Aufgabe der Versuchsplanung in diesem Fall darin,
die sogenannten Versuchspunkte (x;;, x2;) i = 1, ..., n, an denen die ZufallsgroBen Y(xy;, x2;) be-
obachtet werden sollen, so festzulegen, daB eine Schétzung oder ein Test z. B. mit der erforderlichen
Genauigkeit durchgefiihrt werden kann.

Fiir die Schatzung der Parameter in linearen Regressionsansitzen, d. h. fiir solche
Typen von Wirkungsflichen, die in den unbekannten Parametern linear sind (die Fak-
toren diirfen nichtlinear auftreten), gibt es eine gut ausgearbeitete Theorie (s. Ab-
schnitt 1.3.). Schdtzprobleme fiir in den Parametern nichtlineare Regressionsan-
sitze betrachtet man entweder als nichtstatistische Approximationsprobleme, oder
man linearisiert die Ansitze beziiglich der Parameter (z. B. durch eine Taylorformel).
In beiden Fillen erhélt man tiber die Eigenschaften der Schéitzungen hochstens asymp-
totische Aussagen. Dementsprechend ist auch die Versuchsplanung fiir solche nicht-
linearen Regressionsansitze wenig entwickelt. Daher ist es ratsam, lineare Regressions-
ansitze zu betrachten, die fiir das Beispiel 1.7 die Form

k
(X1 X25 F15 eees D) =i§:‘ 9g4(X1 5 X2) 1.7

haben koénnen, wobei die g;(x;, x,) bekannte, im interessierenden Bereich stetige
und linear unabhéngige Funktionen sind. Gewohnlich erreichen wir durch eine Ent-
wicklung der unbekannten Wirkungsflache in eine Taylorreihe mit Vernachlissigung
des entsprechenden Restgliedes einen linearen Ansatz.
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Falls kein_sachlogisch begriindeter Ansatz gegeben werden kann oder falls dieser
eine komplizierte analytische Form hat, wihlen wir zur Approximation in der Regel
Polynomansétze in den EinfluBfaktoren.

Im Kapitel 4 wird daher der Versuchsplanung fiir solche Regressionsansitze be-
sondere Aufmerksambkeit geschenkt.

Denken wir uns die Faktoren und Stufen in einem Modell der Varianzanalyse als
quantitative Faktoren x, (d. h., wir setzen x, = 1, wenn der entsprechende Faktor
oder die Stufe im Versuch auftritt, sonst sei x, = 0), dann erhalten wir in den Fak-
toren x, einen unvollstindigen Polynomansatz. Dieser Ansatz enthdlt die x, nur in
den ersten Potenzen und auBerdem alle méglichen Produkte dieser Faktoren, deren
entsprechende Koeffizienten die Wechselw1rkung zwischen den im Produkt vor-
handenen Faktoren sind. Wir erkennen somit eine formale Ubereinstimmung zwischen
beiden Modellen (beide Modelle sind Spezialfille des linearen Modells, vgl. Ab-
schnitt 1.3.), die es uns erméglicht, gleiche Planungsprinzipien fiir gewisse Modelle
der Varianzanalyse und gewisse Regressicnsmodelle anzuwenden.

1.2.4. Problem der Anzahl der Beobachtungen

Die Wahl des Stichprobenumfangs n beim Auswahlproblem (vgl. Beispiel 1.3)
und beim Problem der Einhaltung des Aussagebereichs (vgl. Beispiele 1.4 und 1.5)
sowie die Wahl der Anzahl der Versuchswiederholungen bei einer festen Faktor-
Stufen-Kombination (vgl. Beispiel 1.6) und der Anzahl der Versuchspunkte im Re-
gressionsmodell, d. h. der Wahl des Stichprobenumfangs (vgl. Beispiel 1.7), ist in
vielen praktischen Féllen wohl das auffilligste Problem der Versuchsplanung. Hier-
bei treten die praktischen Moglichkeiten, die Beschrinkungen durch das vorhandene
Versuchsmaterial, die zur Verfiigung stehenden Mittel an Material und Zeit unmittel-
bar und offensichtlich in die Betrachtung ein. Daraus ergeben sich Schranken fiir den
praktisch moglichen Stichprobenumfang. Andererseits haben wir zu berticksichtigen,
daB wir ZufallsgroBen zu beobachten haben und daB wir daher aus einer relativ ge-
ringen Zahl von Realisierungen kaum brauchbare Schliisse ziehen kénnen. So kon-
nen wir z. B. aus einer einzigen Messung keine Aussage iliber die Genauigkeit des
MeBverfahrens (wir haben hierbei das Problem der Schitzung der Varianz einer Zu-
fallsgréBe vorliegen) erhalten. Aus dem stochastischen Modell und der entsprechenden
Losung der statistischen Aufgabe ergibt sich also stets ein mindestens notwendiger
Stichprobenumfang. In der Regel werden jedoch an die Giite der Aussagen gewisse
Forderungen zu stellen sein, damit diese Aussagen auch als konkrete SchiuBfolgerun-
gen oder Empfehlungen praxiswirksam werden. So konnten wir etwa bei der Schét-
zung eines Parameters die erwartete Lénge des Konfidenzintervalls vorgeben (vgl.
Kapitel 2). Durch so eine Giiteforderung wird ein wiinschenswerter Stichprobenum-
fang definiert, der die Erfiillung dieser Forderung garantiert. Der Vergleich des prak-
tisch moglichen mit dem mindestens notwendigen und dem wiinschenswerten Stich-
probenumfang fiihrt in der Regel zu einem Kowpromlﬁ eventuell sogar zu einer
Anderung der Giiteforderung, manchmal aber auch zu einer Anderung des verwen-
deten Modells. Den kleinsten wiinschenswerten Stichprobenumfang wollen wir als
optimalen Stichprobenumfang beziiglich der vorgegebenen Giiteforderung bezeichnen,
auf ihn bezieht sich das Kapitel 2.

Bei der Planung der Versuche fiir eine konkrete praktische Aufgabenstellung wer-
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den in der Regel alle vier oben genannten Probleme (Abschnitt 1.2.1.-1.2.4.) gleich-
zeitig auftreten.

Beispiel 1.8: Betrachten wir noch einmal das Beispiel 1.6. Die Ergebnisse der Auswertung sollen sich
auf ein groBeres Territorium mit unterschiedlichen lokalen Verhéltnissen tibertragen lassen. Dazu ist
es notwendig, die entsprechenden Flachenstiicke fiir den Versuch auszuwihlen und diesen Teil-
flichen die entsprechende Diingerkombination zuzuordnen. Bei dieser Aufgabenstellung sind die
Probleme der Auswahl der Flidchen und die Zuordnung derselben zu den Diingerkombinationen sehr
eng miteinander verkniipft (vgl. Abschnitt 1.2.1. und 1.2.2.). Weiterhin miissen wir, bevor wir den
Versuch durchfithren konnen, festlegen, wie groB3 die Anzahl der Wiederholungen sein soll, d. h.,
wieviel Flichenstiicke mit der gleichen Diingerkombination bearbeitet werden sollen (vgl. Ab-
schnitt 1.2.4.).

SchlieBlich sollen noch die mittleren Ertrdge in Abhdngigkeit von den Diingergaben geschitzt
werden. Dazu gehen wir zu einem Regressionsmodell tiber, in dem die genauen Dosen als EinfluB3-
groBen auftreten. Damit haben wir fiir die Versuchsplanung noch die Wahl dieser verinderlichen
determinierten Versuchsbedingungen vorzunehmen (vgl. Abschnitt 1.2.3.).

Abschlieffende Bemerkung:

Die Methode fiir die Auswertung der Versuchsergebnisse ist sehr eng mit dem ge-
wihlten stochastischen Modell verbunden. Von beiden hdngt die Wahl der geeigneten
Versuchsstrategie wesentlich ab. Bei der praktischen Durchfiihrung der Versuche
konnen sich jedoch auch nicht erwartete oder berticksichtigte Erscheinungen zeigen,
so kénnen z. B. MeBwerte ausfallen oder gewisse Versuchsbedingungen unrealisierbar
werden. Es ist daher in jedem Falle ratsam, bei und nach der Durchfiihrung der Ver-
suche zu priifen, ob die bei der Modellwahl und Versuchsplanung gemachten Voraus-
setzungen und Forderungen und die verwendeten Versuchspléne (also stochastisches
Modell, Aussagebereich, Faktorkombinationen) auch eingehalten wurden. Falls dies
nicht so ist, miissen wir ein anderes Modell anpassen und die Auswertung nach dem
neuen Modell vornehmen. Dies ist jedoch héufig mit einem groBen Verlust fiir die
Aussagefihigkeit der Ergebnisse verbunden.

1.3. Einfiihrung des linearen Modells

SchlieBen wir an die Betrachtungen des Abschnitts 1.2.3. an und fiihren wir diese
Uberlegungen weiter, dann ergibt sich die folgende statistische Aufgabenstellung:
Uber eine Funktion #(xy, ..., x), (X1, ..., X,) € B < R*, die sogenannte Wirkungs-
fliche, die von den k EmﬁuBgroBen xl, ..., X; abhingt, sind gewisse Aussagen zu
machen. Die Funktion kann punktweise mit einem gewissen zufilligen Fehler be-
obachtet werden. Die Beobachtungen an n Stellen, die Stichprobe

Yi= Y(xiaseees X10)s eves Yo = Y(Xn1s oees Xt (1.8)
mit der Darstellung
Yy = (e, 0 Xa) t &, i=12,..,n, (1.9)

bildet also eine mdgliche Grundlage fiir die geforderten Aussagen.
Dabei wird wie tiblich fiir die zufilligen Fehler &; = &(x;y, ..., X;) vorausgesetzt,
daB

Ee; = 0; D%, = 0% (1.10)
cov(e;,e) =05 i#j; i,j=1,...,n.
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Weiterhin wird angenommen, daB eine Funktionenschar
A1y oo X D15 s By, By, 9)eSSR, (1.11)

bekannt ist, in der die unbekannte Wirkungsfliche enthalten ist, d. h., daB es ein
(9%, ..., 9¥) gibt mit
s oo X, O, oy ) = 900y, o X). : (1.12)
Ein Ansatz mit der Eigenschaft (1.12) soll als wahrer Ansatz bezeichnet werden.
Damit eine mathematische Behandlung ohne allzugroBe Schwierigkeiten mdglich

ist, setzen wir tiber den Ansatz weiterhin voraus, daB (1.11) nur linear von den Para-
metern 9, ..., 9, abhdngt (vgl. auch Abschnitt 1.2.3.), also von der Form

(X1 5 wos Xis D1y ey By) = D1 fi (Xps ooy X0) + o+ fi(X15 00 Xi) (1.13)
ist, wobei die fi(xy, ..., x;) bekannte Funktionen sind.

Zur tibersichtlicheren und kiirzeren Darstellung der folgenden Uberlegungen wollen
wir die Vektorschreibweise benutzen. Wir setzen (xy, ..., x;) = XT und (&, ..., &)
= 97T und fassen die Funktionen fi(x) zusammen zu (fi(x), ..., f,(x)) = f(x)T. Die
Stichprobe (1.8) 148t sich kurz als (Y, ..., ¥,) = #T schreiben. Fiir die Beobachtungs-
punkte (X, ..., Xi) = x;T wird aus (1.13) 7(x;, 9) = f(x;)T9. Mit dem Fehlervektor
& = (&g, ..., &)T und der Matrix

f1(X1) o fo(X o)y
F=| -. | = dx), o )T (1.14)

V1(Xn) *+ fr(X5)
erhalten wir fiir (1.9) die Darstellung
Y =F9 + e. (1.15)

Der Ausdruck (1.15) zusammen mit (1.10) und eventuellen Voraussetzungen iiber
die Verteilung von & wird als lineares Modell bezeichnet.

Betrachten wir die Beispiele im Abschnitt 1.2.3, dann stellen wir fest, dal sowohl
die Varianzanalyse als auch die Regressionsanalyse spezielle lineare Modelle darstellen.

In vielen Fillen wird es sich als giinstig erweisen, Polynome der EinflugréBen als
Ansatz fiir die Wirkungsfunktion 7(x) zu verwenden. Dabei konnen wir uns diese
Polynome entstanden denken durch eine Entwicklung von #(x) in eine Taylor- (bzw.
Fourier-) Reihe, die hinreichend schnell konvergiert und deshalb nach einer endlichen
Teilsumme abgebrochen werden darf. Wir werden im weiteren zwei Typen solcher
Polynome verwenden. Unter einen Polynom vom Grad d wollen wir ein Polynom ver-
stehen, bei dem die grote Summe der Exponenten eines Summanden gleich d ist. All-
gemein also

(X, 8) = Fo + P11 + -+ + DX + P22, %2 + o 4+ Do ypXu—1 Xk
4o+ ByxF 4 e+ PxE 4 o DX X5
+ oo+ DX (1.16)

So ein Ansatz der Form (1.13) besitzt (k : d) unbekannte Koeffizienten. Die

Koeffizienten @5, ..., @1, werden dabei als zweifaktorielle Wechselwirkungen der
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EinfluBgréBen x; und x; (i, j = 1, ..., k, i & j) bezeichnet. Analog driicken die Koeffi-
zienten 9,...;, die mehrfaktoriellen Wechselwirkungen zwischen den entsprechenden
EinfluBgroBen aus. Fiir k = 2 und d = 2 erhalten wir aus (1.13) den speziellen Ansatz

7i(x, 9) = 9o + F1x1 + Faxz + Fpax1 X5 + Oy X3 + F22x3 (1.17)
mit (2 ; 2) = (;) = 6 Koeffizienten.

Dagegen verstehen wir unter einem Polynom vom Grad d in jeder Variablen ein Poly-
nom der Form
(X, 9) = + Fxy + -+ + Fxf + DapiXa + - + Pogx§ +
+ DgenyasXe + o0+ Faxl + o0+ Dxixg +
+ Dpxixd - x4, (1.18)
d. h., fiir jede Variable tritt ein Polynom vom Grad d auf, wenn die anderen Einflu3-
groBen als fest betrachtet werden. Ein Polynom der Form (1.18) besitzt (d + 1)* un-
bekannte Koeffizienten. Fiir £ = 2 und d = 2 wird aus (1.15) das spezielle Polynom
mit (2 + 1)> = 9 Koeffizienten
(X, &) =Py + Fyx; + Fox7 + Pa3xz + Dux3 + Fsxyx2 + Fex,%3
+ Pox3xs + Dexing. (1.19)
Wir werden sehr hiufig Polynome vom Grad d = 1 verwenden. Aus (1.13) erhalten
wir das Polynom vom Grad 1

(X, 9) = Fo + 91X + D22 + - + Dx (1.20)
und fiir k¥ = 2 das Polynom vom Grad 1 in jeder Variablen
(%, 9) = 9o + F1x1 + Faxz + Fr2x1%2. (1.21)

Durch eine einfache Umbenennung der Funktionen fi(x,, ..., x;) und der Parameter
94, ..., 9, 1aBt sich eine formale Ubereinstimmung der Ansatze (1.16) und (1.18) mit
(1.13) herstellen Ist z. B.

il e X)) = Xo=1, fo(x1, .05 X) = Xy,
Sa(X1s s X)) = X2, Ja(X15 s Xi) = X1 X2,
SsCes, ey x) =1, So(x1, ..., x) = x3 und
“91 = ?%, 9, =, 93 = 19;, 794 = ﬂ;z’ 95 = 4, 06 = ?9;2,
dann ergibt sich aus (1.13) der spezielle Ansatz (1.17). Die hierbei eingefiihrte Va-

riable x, ist eine Scheinvariable, die stets den Wert 1 besitzt. Dieses x, kénnen wir
uns bei den Ansitzen (1.16) und (1.18) zu ¢, hinzumultipliziert denken.

1.3.1.  Regressionsanalyse

Der Bereich B, in dem der Vektor der EinfluBgréBen variiert, sei beschrinkt und
abgeschlossen, die Funktionen fi(x) (i = 1, ..., r) stetig und linear unabhangig. Ist fiir
die Schitzung der Wirkungsfunktion 7(x) ein linearer Ansatz der Form (1.13) ge-

2 Bandemer, Versuchsplanung
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geben, dann wird die Schitzung von 7(x) zuriickgefiihrt auf eine Schiatzung der Para-
meter #; (i = 1, ..., r) des Ansatzes 7(x,?). Unter den Voraussetzungen (1.10) iiber
den zufélligen Fehler hat die Kovarianzmatrix des Stichprobenvektors % die spe-
zielle Form
By = E¥ — E%) (% — E¥)T = ¢’E,. (1.22)
Wegen (1.22) kénnen wir zur Schitzung des Parametervektors ¢ die Methode der
kleinsten Quadrate (MkQ) (vgl. z. B. Rasch [1}) anwenden. Bei dieser Methode wih-
len wir fiir 9; € S solche Parameterwerte &, in der Menge S der zulidssigen Parameter,
fiir die die Summe der Abweichungsquadrate

= 0) = i, )2 (123)

minimal wird. Verwenden wir die Matrizenschreibweise, dann geht (1.23) mit (1.14)
und mit der Realisierung » des Stichprobenvektors % iiber in
% — FOT ( — Fd). (1.24)
Aus der notwendigen Bedingung fiir ein relatives Minimum von (1.24) erhalten wir
[Nullsetzen des Gradienten von (1.24)] das System der Normalgleichungen
FTF) = FTy. (1.25)
Wenn die Matrix FTF von vollem Rang ist, d. h. Rg F'F = r < n, dann 148t sich

bekanntlich das System (1.25) eindeutig 1sen. Der Losungsvektor & hiingt linear von
den Realisierungen  des Zufallsvektors & ab, ist also selbst Realisierung des ent-

sprechenden Zufallsvektors 0. Die Losung von (1.25) ist somit

6 = (FF)'F'¥ (1.26)
und mit O ist -
(%) = ii(x, ©) = {T(x)@ (1.27)

eine Schitzung fiir die Wirkungsfliche #(x). Die Schatzung (1.26) ist wegen EO =9
erwartungstreu und besitzt die Kovarianzmatrix )
Bg = o*(FTF)~. (1.28)
Die Schitzung (1.27) ist ebenfalls erwartungstreu, die Varianz ist eine Funktion
von x der Form
D*Y(x) = o T(x)(FTF)~(x). (1.29)
[(1.29) werden wir deshalb als Varianzfunktion bezeichnen]. Der Parameter o2 in (1.22)
wird geschitzt durch
Si = S%(n — 1),
wobei S? die Summe der quadratischen Abweichungen
S? = (@ — FO)T (¥ — FO)
ist. Die Schitzung S% wird auch als Restvarianz bezeichnet, und es geniigt bekannt-
lich (n — r) S%/o? einer y>-Verteilung mit dem Parameter (n — r).
Als einfachsten Spezialfall wollen wir einen Ansatz der Form

fi(x, B) = 9 + Pyx (1.30)
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betrachten. Dieser Ansatz wird z. B. beim Problem der besten Geraden (vgl. z. B.
Rasch [1]) benutzt.
Fiir (1.30) ist die Matrix F von der Form

1.1
FT= (xl--- x,,> (1.31)
und FTF ist
n i Xy
FF=| (1.32)
iglxi 1221 x‘z

Falls an mindestens zwei verschiedenen Punkten Messungen durchgefiihrt werden
sollen, ist die Matrix FTF reguldr, und es existiert die Inverse (FTF)~*. Wir erhalten
die Schitzung des Parametervektors
n n
- x > Y,
i=1 i=1
’

e : 3 T élx’z
o-E-ba- T (5
i=1

1 i= "
also " 21 Texy
12 12
Op=—Y Y, —0,— 3 x,, (1.33)
ni=1 ni=1
n 1 n n
Erti-g EnE
o= T (134)
% 5t - (% x)
i=1 n \i=1
mit der Kovarianzmatrix -
) XX - XX
o i=1 i=1
e " , (1.35)
nE - (T \-Zx o
i=1 i=1 i=1
Die Wirkungsfliche #(x) wird geschétzt durch
Y(x) = 65 + Oyx,
wobei diese Schitzung die Varianzfunktion
> x2—2xY x; + nx?
D ¥(x)=o* 71 (1.36)

n 2
ng - (Zx)
i=1 i=1
besitzt.

2%

v
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Der Parameter ¢? kann dabei durch die Restvarianz

1 n
Si= mg:l (Y: = 0 — 0,x,?

srfE g ) - eE - LB )

geschitzt werden, wobei (n — 2) Si/o? einer y2-Verteilung mit dem Parameter (n — 2)
gentigt.

1.3.2.  Varianzanalyse

Bei der Varianzanalyse werden Faktoren A,, A,, As, ..., A, betrachtet, die even-
tuell noch auf verschiedenen Stufen A{, AP, ..., AY? auftreten konnen. Um die
tibliche Form (1.4) des Varianzanalysemodells als Spezialfall des allgemeinen linearen
Modells (1.15) zu erkennen, fiihren wir die EinflugréBen x{” ein, die nur die Werte 0
oder 1 annehmen konnen. Dabei bedeutet x{? = 1, daB der i-te EinfluBfaktor 4; auf
der j-ten Stufe 4 im Versuch auftritt.

Wenn z. B. jeder der ¢ Faktoren tiber die gleiche Zahl von p Stufen verfiigt, dann
erhalten wir einen EinfluBgréB8envektor

= (1) p) (1) p) (1) (py
54 2 (B34 e 23 o0 851 oo S5 b o0on S comp )

der Dimension pg, jedoch umfaBit der Definitionsbereich B jetzt nur die Punkte im
Rr4, deren Koordinaten 0 oder 1 sind. Da ein Faktor A4; in einem Versuch nur auf
einer Stufe auftreten kann, gilt fiir jeden Versuchspunkt x,,, m = 1, ..., n,

14
DM A=D1 i=1,2..,q.
J=1

Als Ansatz haben wir ein Polynom vom Grade 1 in jeder der pg Variablen [vgl. (1.21)]
zu withlen, da wir Potenzen von x{’ auf dem Definitionsbereich nicht unterscheiden
konnen. Fiir ¢ = 6 und p = 4 erhalten wir speziell die Darstellung (1.4), wobei bei
jedem Versuch-nur die Koeffizienten angegeben sind, fiir die die EinfluBgroBen ge-
rade gleich 1 sind. Dabei haben wir die Anzahl der Wiederholungen r ebenfalls als 1
gedacht.

Betrachten wir ein anderes, einfacheres Beispiel mit ¢ = 1, jedoch mit der Mog-
lichkeit, auf jeder Stufe A n; Versuche durchzufiihren. Es sei

Yim = n(x, 9) + &n ' (1.37)
mit x, = 1, d. h.
X9 =(0,0,...,1,...,0)T.

Jj-te Koordinate

Dann ist der Stichprobenvektor von der Form
YT = (Yu, eoes Ynu 5 2X1n oo qu’ LX) Yp1 seee p’lp)’
und die Matrix F hat die spezielle Gestalt (vgl. die Bezeichnung im Abschnitt 1.3.)
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1100
1100
1010

F=|701 0l (1.38)
100 - 1 "
100 -1

Die Spalten der Matrix F entsprechen dabei den p Stufen des Faktors, die erste Spalte
enthalt die Scheinvariable x, = 1. Mit dem speziellen Stichprobenvektor % und der
Matrix (1.38) formulieren wir die (1.15) entsprechende Darstellung fiir # = F& + e.
Diese Form macht es mdglich, das Problem der Schitzung fiir ¢ aufzuwerfen, d. h. es
als Regressionsaufgabe zu deuten.

Es kommt hiufig vor, daB} in einem linearen Modell sowohl EinfluBgroBen auftreten, die nur die
Werte 0 und 1 annehmen, als auch EinfluBgréBen mit Werten aus entsprechenden Intervallen. Solche
Modelle nennt man Kovarianzanalysemodelle und behandelt mit ihnen sowohl Regressionsprobleme
als auch Varianzanalyseprobleme.

Schreiben wir die Komponenten des Stichprobenvektors im Spezialfall (1.38) auf
und benutzen dabei die in der Varianzanalyse iibliche Bezeichnung der Parameter
9T = (u, «y, 2, ..., &,), dann ergibt sich

Yy=p+o+e;, i=1.,p, (1.39)

j=1,...,n.

Einen Ansatz der Form (1.39) wollen wir als Modell der einfachen Klassifikation
bezeichnen, die Parameter «; heien Effekte des Faktors auf der i-ten Stufe, der Para-
meter u bezeichnet das Gesamumittel (o; driickt auch die Abweichung des Erwar-
tungswertes der i-ten Stufe vom Gesamtmittel aus).

Sollen Schétzungen fiir die Effekte «; ermittelt werden, dann miissen wir beachten,
daB die Matrix F geméB (1.38) vom Rang RgF = p < p + 1 ist, die Inverse von FTF
also nicht existiert. Durch Hinzunahme einer zusitzlichen Bedingung, die als Repara-
metrisierungsbedingung bezeichnet wird, erreichen wir, daBl die um diese Bedingung
erweiterte Matrix F reguldr ist, eine eindeutige Schitzung der Parameter nach der
Methode der kleinsten Quadrate also mdglich ist. Fiir die einfache Klassifikation
lautet diese Reparametrisierungsbedingung

P o
Zou=0. (1.40)

Haben wir bei der Analyse der Beobachtungswerte nicht nur einen Faktor, sondern
die Wirkung zweier Faktoren zu beriicksichtigen, dann erhalten wir durch analoge
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Uberlegungen mit (1.17) fiir (1.21) die Darstellung
Yijp=p+ o+ B+ e (1.41)
i=1.,p,j=1.,pl=1..,n
wobei der eine Faktor auf p, Stufen und der andere Faktor auf p, Stufen vorkommen
kann, fiir jede Stufenkombination liegen n Versuchsergebnisse vor. Ein Modell der
Form (1.41) wird als zweifache Klassifikation bezeichnet, den speziellen Fall / = 1
werden wir in Kapitel 3 bendtigen. Legen wir unseren Betrachtungen als Ansatz ein
Polynom 1. Grades in jeder Variablen zugrunde, also ein Polynom der Form

(X, 9) = Fo + P1x; + - + DXy + F12X1X2 + -+ + D gem 1 Xu- 1%

dann gelangen wir zu einer zweifachen Klassifikation, die durch die Beziehung
Yip=p+ou+ B+ yy+ ey, (1.42)
ie=l,..,p, j=1,..,q, I=1,...,n,

beschrieben wird. Die Koeffizienten y;; werden dabei als Wechselwirkung des einen

Faktors auf der i-ten Stufe mit dem zweiten Faktor auf der j-ten Stufe bezeichnet.

Zur Schitzung der Effekte bei einer zweifachen Klassifikation benutzen wir die Re-
parametrisierungsbedingungen

14 a
Sa; =0, Xp;, =0 fir(1.41) (1.43)
i=1 i=1

und dazu noch

P
Zru=0 =19, : (1.44)

Jﬁly,, =0 (i=1,.,p) fir(l.42).
Entsprechende Uberlegungen fiihren zu einer dreifachen Klassifikation, von der wir
hier nur den Spezialfall
Yiju=p+ o+ B+ yu + &5 (1.45)
i=1,..,p1, j=1,.,p2, u=1,..,ps,
angeben wollen. Zu (1.45) gehdren die Reparametrisierungsbedingungen

sz, Zﬁj—Zyu—O (1.46)
Weiterhin werden wir auch die spezielle vierfache Klassifikation
Yijw=p+ 6 + By + 7u + 0o + €juns (1.47)

i=1,..,p, j=1.,p2 u=1..,p5, v=1..ps,
mit den Reparametrisierungsbedingungen

5 o= Zﬂ, zyu—ui16u=0 (1.48)

anwenden.
Eine der hauptsichlichsten Aufgaben bei der Auswertung von Versuchen mit Mo-
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dellen der Varianzanalyse ist die Durchfilhrung von Testen auf eine Gleichheit ge-
wisser Effekte. Um so einen Test durchfiihren zu kénnen, benétigen wir die folgenden
Voraussetzungen iiber den zufilligen Fehler e.

Es sei

&, normalverteilt mit
Ee, =0, D?%,=0% und cov(e,s,) =0 (1.49)
fir ¢+ ¢',

wobei # € T und T eine entsprechende Indexmenge ist (bei der zweifachen Klassifika-
tion (1.41) ist z. B. ¢ = ).

Mit der Voraussetzung (1.49) koénnen wir nun beispielsweise die Hypothese
Hy:x; = oy = -+ =, gegen die Alternativhypothese H,: «; # «; fiir mindestens
ein 7 und j mit i # j testen. Die entsprechende TestgroBe gentigt einer F-Verteilung.
Fiir die Durchfiihrung des Tests verweisen wir auf die entsprechende Literatur (z. B.:
Ahrens [1], Rasch [1], Scheffé [1]). Bei einer zweifachen Klassifikation (1.42) kdnnen
wir auBerdem noch die Nullhypothesen Hy':f; =f, = -+ = fund Hy' 1 y12 = 943
= .-« = y,, gegen die entsprechenden Alternativhypothesen testen.

Zur Klarung gewisser Fragen bei der Planung von Versuchen (z. B. die Anzahl der
wirkenden Faktoren oder Aussagen iiber den Versuchsfehler) ist es hdufig zweck-
méBig, einen Versuch durchzufiihren, bei dem ein betrachteter Faktor nur auf einer
Stufe vorkommt (0. B. d. A. x{ = 0 fiir alle j), also konstant gehalten wird. Wir
sprechen in so einem Fall von einem Blindversuch.

1.4. Versuchsplanung als Entscheidungsproblem

Die verschiedenen im Abschnitt 1.2. vorgestellten Probleme der statistischen Versuchsplanung las-
sen sich alle einheitlich im Rahmen der statistischen Entscheidungstheorie (vgl. Bd. 21) darstellen.
Die mathematische Struktur dieser Probleme der Versuchsplanung wird dadurch besonders deutlich
und erméglicht es, Verbindungen zwischen den Problemen und zu den anderen Teilgebieten der Ma-
thematik aufzuzeigen, eine praktisch realisierbare Vorgehensweise festzulegen und Verfahren zur
Losung der Aufgabenstellungen zu formulieren.

Wir wollen nun die Versuchsplanung in Termen der statistischen Entscheidungstheorie darstellen.
Die Charakterisierung aller moglichen verschiedenen Zustinde, die bei einem zu untersuchenden
Sachverhalt auftreten konnen, wollen wir in einer gegebenen Menge Z, die wir als Menge der ,,Zu-
stinde der Natur* bezeichnen, zusammenfassen. Die Menge Z enthilt z. B. alle moglichen Werte
eines Parameters. Eine Menge A, die ebenfalls gegeben ist und die wir als Menge der ,,Aktionen des
Statistikers* bezeichnen, enthilt die Entscheidungen, die tiber den zu untersuchenden Sachverhalt
getroffen werden konnen, z. B. alle moglichen Schétzwerte fiir einen Parameter oder alle moglichen
Entscheidungen tiber eine Hypothese bei einem Test. Die Natur wihlt nun einen Zustand ¢ € Z, der
dem Statistiker unbekannt ist. Der Statistiker kann sich aber tiber den Zustand der Natur Informatio-
nen durch die Beobachtung eines Zufallselements Y; beschaffen. Die Verteilung von ¥z hingt vom
wahren Zustand ¢ der Natur ab. LaBt sich nun dieses Zufallselement Y; aus einer gegebenen Menge
{Y¢(c), ¢ € C} wihlen, wobei C eine geeignet definierte Indexmenge ist, dann sprechen wir vom Pro-
blem der statistischen Versuchsplanung. Jedem Element ¢ € C entspricht also ein Experiment, dessen
Ergebnis y;(c) eine Realisierung von Y;(c) ist. Hiufig sind die Zufallselemente auch Vektoren, deren
Komponenten ZufallsgroBen Yz(v) sind, deren Index v aus einer gegebenen Menge, dem Versuchs-
bereich ¥, gewihlt werden kann. Ein typisches Beispiel hierfiir ist die Regressionsanalyse. Der Ver-
suchsbereich ¥ ist ein Teilgebiet des k-dimensionalen euklidischen Raumes, urid v ist der Versuchs-
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punkt x, an dem die KenngrdBe Y(v) = Y(x) beobachtet wird. Fiithren wir zur Abkiirzung die fol-
genden Definitionen ein:
Definition 1.1: Ein n-tupel von Elementen v aus V

Vot = 015 s On)» (1.50)

heift konkreter Versuchsplan aus V vom Umfang n.

Dabei miissen die v; (i = 1, ..., n) nicht alle voneinander verschieden sein. Weiterhin bezeichnen wir
mit V@ die Menge der fiir eine bestimmte Aufgabenstellung interessierenden Versuchspline, die
nicht notwendig vom gleichen Umfang sein miissen.

Definition 1.2: Das n-tupel von Zufallsgrofen

Y (Vo) = (Yelvn), o, Yeoa))T .51

heift Beobachtungsvektor zum Versuchsplan V,.

Nach der Beobachtung von #(¥,), womit ¢ im allgemeinen immer noch nicht genau bekannt ist,
muB der Statistiker eine Entscheidung a € A4 wiihlen. Diese Entscheidung wird von % «(V,) abhiingen,
da jedem % (¥,) durch eine Entscheidungsfunktion dy,(%¢(V,)) eine Entscheidung a = d, ( 2#7:(V.))
zugeordnet wird. Das heiBt also z. B., daB jedem Beobachtungsvektor unter Beriicksichtigune des
verwendeten Versuchsplanes ¥, ein Schitzwert fiir den Parameter zugeordnet wird, Fiir jedes
V, € V@ sei eine Menge D(V,) von solchen Entscheidungsfunktionen gegeben. In vielen Fillen
enthalten die Mengen D(V,) fiir verschiedene ¥, Funktionen gleicher Struktur.

Die Beurteilung’ der ZweckmiBigkeit eines Versuchsplanes ¥, € ¥® und einer Entscheidungs-
funktion d € D(V,) erfolgt iiber eine auf Z x V@ x A definierte Verlustfunktion

L&, Vi, @), (1.52)

die den Verlust und die Aufwendungen des Statistikers angibt, die entstehen, wenn der wahre Zustand
der Natur ¢ vorliegt, der Statistiker den Versuchsplan ¥, benutzt und die Entscheidung a wihlt. Set-
zen wir nun die Entscheidungsfunktion dy,, (%¢(V,)) in die Verlustfunktion ein, dann erhalten wir
eine Funktion, deren Funktionswerte ZufallsgroBen der Form L(C, V,, dy,, (% (V) sind. Nun bilden
wir den Erwartungswert (falls dieser existiert) beziiglich der Verteilung von #(V})). Wir erhalten mit

EyL(, Vu, dv,(Z (V) = RC, Va, dv,) (1.53)

den erwarteten Verlust beim Vorgehen gemill der Entscheidungsfunktion dy, und bezeichnen die
Funktion (1.53) als Risikofunktion, die aber auch noch vom wahren Zustand der Natur abhéngt.

Im allgemeinen miissen Verlustfunktion und Risikofunktion nicht unbedingt skalare Funktionen
sein, sie sind z. B. auch als vektor- bzw. matrixwertige Funktionen sinnvoll zu behandeln.

Eine brauchbare Bewertung der Wahl des Versuchsplans und der Entscheidungsfunktion kann
aber nur durch eine vom unbekannten wahren Zustand { der Natur unabhiingige reelle Zahl erfol-
gen. Deshalb wollen wir die Risikofunktion (1.53) durch ein geeignetes Funktional Q auf die reelle
Achse abbilden. Dadurch erhalten wir das (verallgemeinerte) Risiko

Ro(Va, dy,) = QRC, V., dy,). (1.54)

Dieses Risiko ist nur noch eine Funktion vom Versuchsplan ¥, und der Entscheidungsfunktion dy,,
also von Elementen, die der Statistiker wihlen kann. Es ist nun sinnvoll, den Plan ¥, und die Funktion
dy, so zu wihlen, daB das Risiko (1.54) minimiert wird. Diese Wahl ist das Ziel der entscheidungs-
theoretischen Behandlung. Auf diese Weise erhalten wir das folgende Optimalitétskriterium.

Definition 1.3: V;f und d,’f: heien Q-optimal, falls

Ro(V¥,d%w) = min  Ro(Va, dy,). (1.55)

Vauev (@),
dy, €D(Vn).

In den Kapiteln 2 und 5 werden Spezialfille solcher Entscheidungsprobleme, bei denen die Ver-
sqchsplanung eine Rolle spielt, behandelt und durch entsprechende Beispiele erldutert.
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Mit der Definition 1.3 haben wir eine allgemeine Form fiir ein Optimalititskriterium der optimalen

(statistischen) Versuchsplanung gefunden.
In manchen Fillen ist es giinstiger, die Risikofunktion R(C, V,, dy,) aufzuspalten in die Form

R, Vas dp,) = Ri(C, dy,) + K(V,), (1.56)
wobei mit R,(C, dy,) die Risikofunktion bezeichnet wird, die den erwarteten Verlust angibt, wenn
der wahre Zustand der Natur ist und der Statistiker die Entscheidungsfunktion dy,, wéhlt. Die Funk-
tion K(V,) ist eine gegebene Kostenfunktion fiir die Beobachtungen gemif3 des Versuchsplanes V.
Solch einen Zugang zur Losung des Problems wiéhlt z, B. Wald [1].

Hiufig konnen wir jedoch keine gemeinsame MaBeinheit fiir die Risikofunktion R, und die Ko-
stenfunktion K finden. Dann bietet sich fiir eine Optimierung des Risikos als Alternative zu (1.55)
die folgende Optimierungsaufgabe an:

RQl(d%) = min Res(dy,), (1.57)
VeV @,
dy, eD(Vy)
unter Beachtung der Nebenbedingung
KWV = 1o, (1.58)

wobei Roy = OR; gilt und k, eine vorgegebene Kostenschranke bedeutet. Auch die zu (1.57) und
(1.58) duale Aufgabe
KWy = min K(V,), (1.59)
ynéy(a)

unter Beachtung der Nebenbedingung
Ro1(@}#) = 1o . (1.60)

mit der vorgegebenen Risikoschranke rq ist in manchen Fillen zur Beschreibung eines praktischen
Problems notwendig.

1.5. Anwendungsprobleme der optimalen Versuchsplanung

1.5.1.  Anwendung der entscheidungstheoretischen Formulierung

Zum gegenwartigen Zeitpunkt hat die entscheidungstheoretische Formulierung der
optimalen Versuchsplanung vom praktischen Standpunkt aus hauptsichlich metho-
dische Bedeutung, denn es ist in konkreten Fillen zur Zeit noch selten moglich, eine
Verlustfunktion und ein Risikofunktional zu finden, die den sachlogischen und ¢ko-
nomischen Verhéltnissen genau entsprechen. Es muB jedoch bemerkt werden, daf
bereits einfache Annahmen (iber die Verlustfunktion zu verniinftigen, praktisch deut-
baren Optimalitatskriterien fiihren.

Beispiel 1.9: Wir wollen einen Parameter 9 der Verteilung einer ZufallsgroBe Y auf Grund einer
Stichprobe #(n) = (Y, ..., Y,) schitzen. Die Wahl des Versuchsplanes reduziert sich hier also auf
die Wahl des Stichprobenumfangs n. Die Entscheidungsfunktionen d,(%(n)) sind hierbei Schitz-
funktionen fiir den Parameter ¢, die wir mit @, = 0,(%(n)) bezeichnen wollen. Als Verlustfunktion
werde

L@, n, 0,@ () = O,@¥®) — 9)?, ¢ = const,, (.61
gewihlt und als Menge D(n) die Menge aller erwartungstreuen Schéitzfunktionen fiir 8, d. h., es gilt
EB, = 9. (1.62)
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Dann erhalten wir

Ry(@®,0,) = EL®, 6,) = cE@, - 9)°, (1.63)
und wegen (1.62) ist
R((®, 6,) = cD?*6,. (1.64)
Die Al;fwendungen fiir die Beobachtungen wollen wir durch eine Kostenfunktion der Form
K(n) = kyn (1.65)

mit einer vorgegebenen Konstanten k; bewerten. Da R; nicht vom wahren Parameter abhingt, er-
tibrigt sich die Wahl eines Funktionals Q, d. h., es ist also Rg; = R;.
Die (1.57) und (1.58) entsprechende Optimierungsaufgabe
D0} = min D6, (1.66)
n,8,eD(n)

unter Beriicksichtigung von
kyn < ko (1.67)

hat folgenden praktischen Sinn: Wir suchen eine erwartungstreue Schitzung kleinster Varianz bei
beschrinktem Stichprobenumfang n. Fiir solche Aufgaben werden durch die mathematische Stati-
stik Lésungen angegeben.

Beispiel 1.10: Wir wollen nun einen Parametertest durchftihren. Dazu zerlegen wir die Menge S aller
zuldssigen Parameter in zwei Teilbereiche S, und S, in der Weise, daB gilt

S=8 uUS, und (1.68)
SoNSys=.
Geben wir uns nun eine Nullhypothese
Hy:9€eS, (1.69)
und eine Alternativhypothese
Hy:9€e8, (1.70)

vor, so koénnen folgende Entscheidungen méglich sein:
ay: Annahme der Hypothese H, bzw. Ablehnung von H,
ay: Ablehnung der Hypothese H, bzw. Annahme von H .
Als Verlustfunktion wihlen wir

0 falls#eS,,

L@, ao) = .71
1 falls$eS,,

1 fallsdeS,,

L@®,ay) =
s { 0 fallsdeS,,

d. h., wenn die Entscheidung richtig ist (richtige Hypothese angenommen), dann soll der Verlust den
Wert 0 annehmen, und wenn die Entscheidung falsch ist, dann soll der Verlust den Wert 1 annehmen.
Eine Entscheidungsfunktion 4, ordnet hier also einem Teil der mdglichen Stichproben g(n) =
(¥15 -+ ¥n) die Entscheidung a¢ zu und dem anderen Teil die Entscheidung a, . Dadurch wird der
Stichprobenraum von #(n) in einen Annahmebereich Cy(d,) nnd in einen Ablehnungsbereich C 4(d,)
fiir H, zerlegt. Fir die Risikofunktion R; erhalten wir somit

SPASN P@eCyd)  firdeS,, .
e P@eCody))  firdesS,. )
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Die Funktionswerte von (1.72) sind als Wahrscheinlichkeiten fiir einen moglichen Irrtum und mit
«(@,n) = P(# € C4(d)) und f(S,n) = P € Co(dy)

als Irrtumswahrscheinlichkeiten (oder Risiko oder Fehler) erster und zweiter Art bekannt (vgl. z. B.
Rasch [1]). Die optimale Versuchsplanung, die sich hier nur auf den Stichprobenumfang bezieht,
betrachtet die zu (1.59) und (1.60) analoge Aufgabenstellung

K(n*) = min K(n) (1.73)
n
mit
Ri(@,d%) = oo fiir alle 9 € So, (1.74)
Ri@,d¥%) = fo fiir alle 9 € Sq.

Diese Aufgabe kénnen wir wie folgt interpretieren: Es ist der kleinste Stichprobenumfang zu finden,
so daB das Risiko erster und das Risiko zweiter Art gleichzeitig unter vorgegebenen Schranken blei-
ben. Allerdings ist diese Aufgabe nicht immer 15sbar.

1.5.2. Weitere Probleme und Bemerkungen

In vielen Fillen, vor allem bei komplizierteren stochastischen Modellen als den hier vorgestellten,
wiinscht der Experimentator, daB der Versuchsplan moglichst mehrere Kriterien gleichzeitig erfiillt.
Dann muB sorgfiltig gepriift werden, welche Kriterien sich auf eine entsprechende (dann eventuell
auch vektorwertige) Verlustfunktion, auf die Mengen der zugelassenen Entscheidungen, der betrach-
teten Entscheidungsfunktionen und der moglichen Versuchspline beziehen. Trotz dieser Komplexitit
der Problematik gelingt es in gewissen Fillen, eine sinnvolle Optimierungsaufgabe zu formulleren
Ein Beispiel daftir wird in Kapitel 4 gegeben.

Bei solchen praktischen Problemen, bei denen die Versuchsdurchfiihrung und -auswertung wenig
Zeit erfordert, erscheint es oft attraktiv, die Versuchsplanung sequentiell zu gestalten, weil wir dann
die Informationen, die wir durch die bereits vorliegenden Versuchsergebnisse zur Verfiigung haben,
zu einer Verbesserung der Planung weiterer Versuche ausnutzen kdnnen. Solche Verfahren werfen
aber in der Regel kompliziertere mathematische Probleme auf und erfordern wesentlich umfang-
reichere stochastische Modelle. Nur fiir sehr einfache Spezialfille liegen bisher Lsungen der ent-
sprechenden Optimierungsprobleme vor. Im Kapitel 6 wird eine Aufgabenklasse vorgestellt, bei der
solche sequentiellen Verfahren angewandt werden. Hierbei werden die Schwierigkeiten, die sich bei
einer Optimierung ergeben, deutlich werden. Einen Einblick in die Bedeutung und Anwendung se-
quentieller Methoden, z. B. in der Regelungstechnik, (z. B. bei der Modellidentifikation), finden wir
bei Hartmann/Letzkij/Schifer [1] und bei Chernoff [1].

Eine Behandlung dieses Problemkreises wiirde den Rahmen dieser Einfithrung sprengen.

1.6. Zusammenfassung

Ausgangspunkt ist in jedem Fall ein wahrscheinlichkeitstheoretisches Modell der Versuchsfrage,
das der Experimentator aufzustellen oder zu wihlen hat. Auf dieses Modell griindet sich die Wahl der
Strategie fir die Durchfiihrung der Versuche und die Auswertung der Ergebnisse (vgl. Schema 1). Da-
bei muB die Einhaltung der Modellbedingungen garantiert werden, dazu gehdren u. a. Unabhdngigkeit
der Komponenten und Ahinldnglicher Umfang der Stichprobe, Zufalligkeit der Auswahl der Versuchs-
objekte bei der Zuordnung zu Versuchseinheiten.

Konnen oder wollen wir bei einer Versuchsdurchfiihrung nur die Anzahl der Beobachtungen wih-
len, dann miissen wir uns fir einen Stichprobenumfang n entscheiden, der zwischen dem mindest not-
wendigen Umfang fir die Losung einer statistischen Aufgabe und dem praktisch moghchen Umfang,
der durch den Versuchsaufwand gegeben wird, liegt (vgl. Kapitel 2).
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Fiir Modelle der Varianzanalyse konnen wir z. B. Blockpldne und lateinische Quadrate anwenden
(vgl. Kapitel 3).

Wollen wir die unbekannten Parameter eines Ansatzes 7(x, &) fiur die Wirkungsfunktion #(x)
schitzen, konnen die EinfluBgrofien im Versuchsbereich nur gewisse diskrete Werte (Niveaus) an-
nehmen, dann lassen sich Mehrfaktorplane zur Losung dieser Aufgabe heranziehen (vgl. Kapitel 4).

Fiir das Modell der linearen Regression mit stetig variierbaren EinfluBgroBen x; € V definie-
ren wir Optimalitdtskriterien durch gewisse Funktionale von Matrizen, angewandt auf die bei der
Schitzung der Parameter auftretende Matrix FTF. Optimale Versuchspline fiir diesen Fall werden-
in Kapitel 5 konstruiert.

Hiufig hat der Experimentator mehrere Ansitze fiir eine Schiatzung von 7(x) zur Auswahl. Durch
die Anwendung eines Verfahrens der Diskrimination von Regressionsansidtzen kann unter den ge-
gebenen Ansitzen ein in einem festzulegenden Sinn bester Ansatz ausgewéhlt werden (vgl. Ka-
pitel 6).



2. Planung des Stichprobenumfangs

2.1. Aufgabenstellung

Kniipfen wir an die Ausfithrungen des Kapitels 1 (insbesondere die Abschnitte
1.2.4., 1.4. und 1.5.1.) an und betrachten die Risikofunktion R, (@, O(n)) (vgl. (1.63)
mit O(n) fiir ©,) fiir die Schitzung eines unbekannten Parameters ¢, Verwenden wir
fiir 9 eine erwartungstreue und konsistente Schitzung @ (vgl. z. B. Rasch [1]) und be-
trachten (1.64),dann ist das Risiko offensichtlich eine fiir n — co fallende Funktion, und
es gibt einn, , so daB D2O(n,) = D*O(n) fiirn > n, . Andererseits ist aber jede Stichpro-
bennahme mit gewissen Kosten, die durch eine Kostenfunktion K(¥,) ausgedriickt wer-
den, verbunden. Verursacht ein Versuch z. B. die Kosten k,; und stehen insgesamt
nur k, Mittel fiir die Versuchsdurchfiihrung zur Verfiigung, dann ergibt sich fiir den
praktisch méglichen Stichprobenumfang (vgl. Abschnitt 1.2.4.) n < l[% . Die Kosten-

1
funktion K(¥,) wird im allgemeinen mit » wachsen. Veranschaulichen wir uns die
Risiko- und die Kostenfunktion in Abhédngigkeit von n, dann ergibt sich beispiels-
weise folgender Verlauf (s. Bild 2.1).

Ry (K Dn)#lY,)

Ry, H(n))

P PEr n n

nt - s notwendger Sticho g
n** - praktisch moglicher Stichprobenumfang
n*™* - winschenswerter Stichproben. umfong

Bild 2.1

Die Festlegung des wiinschenswerten Stichprobenumfangs werden wir nun so vor-
nehmen, daf} einerseits ein hinreichend kleines Risiko garantiert wird, andererseits
aber die Kosten, die man allgemein als Versuchskosten, -dauer oder -aufwand inter-
pretieren kann, in verniinftigen Grenzen gehalten werden. Fiir das in Bild 2.1 auf-
gezeigte Beispiel wiirden wir den wiinschenswerten Stichprobenumfang durch Mini-
mierung des Ausdrucks (1.56) beziiglich » berechnen.

Im Kapitel 2 werden nun Optimalitdtskriterien formuliert, mit deren Hilfe der
kleinste wiinschenswerte Stichprobenumfang (optimaler Stichprobenumfang) be-
stimmt werden kann. Dabei wird im wesentlichen die Vorgabe einer Giiteforderung
fiir eine statistische Aussage verwendet werden.



2.2. Vorgabe der Genauigkeit 31
2.2, Vorgabe der Genauigkeit

2.2.1.  Parameterschitzungen

Eine der Grundaufgaben der mathematischen Statistik ist das Schétzproblem. Die
Verteilungsfunktion der Grundgesamtheit X hangt von gewissen Parametern ab. Wir
wollen uns hier auf nur einen Parameter ¢ beschranken und die Verteilungsfunktion
mit Fy(x,?) bezeichnen. Als Schitzung fiir den unbekannten Parameter wird eine
geeignete Stichprobenfunktion durch ein Schétzverfahren (z. B. Maximum-Likeli-
hood-Methode, Momentenmethode, vgl. Smirnov/Dunin-Barkowski [1]) ausgewahlt.
Legen wir der Schitzung des Parameters ¢ eine Stichprobe Z(n) = (X, ..., X,)
zugrunde, dann ist ©® = O(n) eine ZufallsgroBe mit der Verteilungsfunktion
Fa(®). Wir wollen hier nur erwartungstreue Schitzungen O fiir ¢ zulassen
(also EO = ) und betrachten das Ereignis, daB der Schitzwert nicht mehr als 4 vom
Erwartungswert abweicht, d. h. |6(n) — | < d. Dabei ist d ein vorgegebener Wert,
der es uns ermoglicht, in einem konkreten, praktischen Fall den Schitzwert & und
den wahren Wert ¢ miteinander ohne Verlust zu identifizieren, wenn |§ — 9| < d.
Da die Schitzung O(x) jedoch eine ZufallsgréBe ist, 146t sich im allgemeinen nicht er-
reichen, daB das Ereignis |©(n) — 9| < d immer eintritt. Daher wihlen wir eine
Wahrscheinlichkeit 1 — « mit « > 0, mit der dieses Ereignis mindestens eintreten
soll und fordern

PlOm) =9 £d)=1—«. 2.1)
Diese Forderung (2.1) kénnen wir nun zur Berechnung des optimalen Stichproben-
umfangs heranziehen, wenn die beiden Voraussetzungen
1. die Schitzung @(n) hingt explizit vom Stichprobenumfang ab und

2. durch identische Umformungen kénnen wir erreichen, daB die zuféllige Funktion
2(O(n)) eine bekannte Verteilungsfunktion besitzt, der Ausdruck

P(gO() < g1-e) = 1 — & 2.2
also eindeutig bestimmt ist, wobei g;_ ein (I1-o)-Quantil der Verteilungsfunktion
von g(O(n)) ist,

erfiillt sind. Nehmen wir an, daB3 der Ausdruck (2.1) sich so umformen 146t, daf} wir
erhalten

PEOm) < dk(m) =1 — o, - @3
wobei der Faktor k(n), der durch diese Umformung zustande gekommen ist, den
Stichprobenumfang n explizit enthilt. Vergleichen wir nun (2.2) und (2.3), dann finden
wir die Bezichung

81— = dk(n). 24
Durch Auflésen von (2.4) nach # ergibt sich ein optimaler Stichprobenumfang zur

Erfiillung der Forderung (2.1) (vgl. z. B. Rasch/Enderlein/Herrendorfer [1], Smirnov/
Dunin-Barkowski [1]).

Beispiel 2.1: Die Verteilung der Grundgesamtheit X gehore zur Familie der Normalverteilungen, der
a . . . . e
Erwartungswert x sei unbekannt und zu schétzen, die Varianz 62 sei bekannt. Durch X = — > X,
ni=1
ist eine erwartungstreue, konsistente Schitzung fiir # gegeben. Die Verteilung von X ist bekanntiich
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N(u, 02/_75). Die Voraussetzung 1 ist erfiillt, denn ©(x) héngt explizit von n ab, weiterhin ist die GroBe

Y = «/n (X — p)/o normiert normalverteilt, d. h. mit EY = 0 und D?Y = 1. Stellen wir nun einen
Ausdruck der Form (2.2) auf, dann erhalten wir

P(/HI% = o < uy_pp) =1 =, (2.5)

d. h., wir wiihlen g(6(n)) = Y ;lX — plfo mit® = u,und u; _ypzist das (1 — «/2)-Quantil der normier-
ten Normalverteilung. Als Genauigkeitsforderung fiir die Schitzung X fiir 12 geben wir vor

P(¥—plsd)=1-a. 2.6)

Durch Umformen erhalten wir

P(/nIX = plfo < ds/nfo)=1—a. @7
Ein Vergleich der Ausdriicke (2.5) und (2.7) ergibt analog zu (2.4) bei vorgegebenem o
tyap = d/no

und somit einen mindestens notwendigen Stichprobenumfang zur Erfiillung der Forderung (2.7)
mit h

n* = u}_,,0%d>. ' 2.8

Dabei wird als n* stets die kleinste ganze Zahl, die groBer als die rechte Seite von (2.8) ist, eingesetzt.
Wir benutzen den optimalen Stichprobenumfang im folgenden stets in dieser Bedeutung, ohne es je-
doch ausdriicklich zu bemerken.

In vielen Fillen 148t sich die Verteilungsfunktion von g(©)(n)) nicht unabhingig
von n angeben (z. B. wenn g(O(n)) einer #- oder einer >-Verteilung geniigt). Dann er-
halten wir aber analog zu (2.4) eine Beziehung

81-a(n) = dk(n), (2.9)

die sich im allgemeinen nicht mehr explizit nach » auflosen 146t. In diesem Fall gehen
wir so vor, daf3 wir mit einem Stichprobenumfang n,, der gewil zu klein ist, beginnen
(es muB aber n, groBer als der mindest notwendige Stichprobenumfang sein). Wird
fiir no die geforderte Genauigkeit nach (2.1) noch nicht erreicht, dann gehen wir zu
no + 1 tiber. Dieses Verfahren wird solange fortgesetzt, bis die Genauigkeit  erreicht
oder unterschritten wurde. Ein Beispiel soll diese Vorgehensweise veranschaulichen.

Beispiel 2.2: Fir eine normalverteilte Grundgesamtheit X sei sowohl der Erwartungswert u als
auch die Varianz > unbekannt. Der Parameter u wird durch X und der Parameter o2 durch S> =

n

> (X; — X)?/(n — 1) geschitzt. Fiir die Schitzung von u sei wiederum die Genauigkeitsforderung
1=1
(2.6) aufgestellt. Wihlen wir analog 2(0m) = \/ n|X — ul/S, dann geniigt 2(O(n)) bekanntlich einer

t-Verteilung mit (n — 1) Freiheitsgraden, d. h., (» — 1) ist der Parameter der 7-Verteilung. Prizisieren
wir nun fiir unser Beispiel die Forderung (2.2), so erhalten wir

P(/nIX = plfS < tuy, 1og) =1 =, @.10)
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wobei aber das (1 — «/2)-Quantil der 7-Verteilung vom Stichprobenumfang » abhingt. Durch Um-
formen der (2.6) entsprechenden Forderung erhalten wir

P(J/nIX = S S d/nlS) =1 -« @11)
und somit

ti1,1-ai2 = d\/;/s (2.12)
bzw. fiir den optimalen Stichprobenumfang .

=17, 1-a2 S2[d>. (2.13)

In (2.13) ist n* eine ZufallsgroBe, die in #,_; ;a2 und in S? von n abhingt. Wir kdnnen sie
zur praktischen Bestimmung eines optimalen Stichprobenumfanges heranziehen, wenn eine obere
Schranke §2 fiir ¢2 bekannt ist, mit der wir die Schitzung $2 modifizieren kénnen, d. h., wir

setzen S2 = 52, falls S2 = $2 ausfillt. Je besser die obere Schranke §2 ist, desto genauer wird die
Néherung fiir den optimalen Stichprobenumfang n* ausfallen. Wir wihlen ein 7, und vergleichen
den Ausdruck

d=ty,_4 1-o¢/z§/\/”0 N (2.14)
mit der vorgegebenen Genauigkeit d. Wenn d>d ausfillt, dann berechnen wir (2.14) mit 7o + 1 an-
stelle von nq. Dieses Vorgehen fithren wir solange fort, bis d = d ausfillt, der entsprechende Stich-
probenumfang ny + k (nach k Schritten) ist dann eine obere Schranke fiir den optimalen Stich-
probenumfang r*.

Geben wird = 10, « = 0,01 und § = 5 vor, dann erhalten wir fiir 7o = 4 mit 350,005 = 5,841 aus
(2.14):

d = 5,841 - 5/\/4 = 14,6025 > d = 10.
Fir ng 4+ 1-= 5 mit t4; 9,095 = 4,604 erhalten wir:
d=4,604-5//5 = 10,2952 > d = 10
und fiir 7o + 2 = 6 und #5; 9,005 = 4,032:
d=4032-5//6=82319 < d=10.
Folglich erfiillt der optimale Stichprobenumfang n* = 6 die Forderung
P(| X — p| = 10) = 0,99.
Die Forderung (2.1) 14Bt sich in der Form
POM) —d<d=O0m)+d)y=1—-« (2.15)
auch als Konfidenzintervall zum Niveau 1 — « interpretieren.
Dieses Intervall hat die Lange 24, also bedeutet eine Genauigkeitsvorgabe gemil
(2.1) die Vorgabe der halben Linge des Konfidenzintervalls fiir den entsprechenden
Parameter.

Beispiel 2.3: Zur Schatzung des Parameters 4 einer normalverteilten Grundgesamtheit X bei be-
kanntem o2 verwenden wir fiir vorgegebenes o das Konfidenzintervall

X = ouy_upln/n S 1S X+ ouy_ypli/n. @.16)
Die Liange dieses Intervalls betrigt ’
L = 20uy_y/</ 1. @.17)

3 Bandemer, Versuchsplanung
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Durch Umschreiben von (2.16) in die Form

IX = pl S ouy_yol\/n
erhalten wir sofort die Aussage (2.17). Der optimale Stichprobenumfang betrégt damit
= 40%2_, /L2, (2.18)
Fiir « = 0,05, 0 = 4 und eine vorgegebene Linge L = 2 erhalten wir mit # ¢,975 = 1,96 und mit
4-16-1,96%/4 = 61,47
einen optimalen Stichprobenumfang n* = 62.
Die Bestimmung des optimalen Stichprobenumfangs bei Schitzung anderer Para-
meter gestaltet sich sehr schwierig in bezug auf die numerische Rechnung. Zur Schit-

zung des Parameters o einer Normalverteilung konnen wir fordern, da3 die Abwei-
chung der Schétzung S von ¢ ;

P(S — 0] £ po/100) =1 -, O<p<1, (2.19)

erfiillt. Wir geben also als Genauigkeit fiir die Schitzung nicht mehr nur eine absolute
Abweichung vom wahren Parameterwert ¢} vor, sondern eine relative Abweichung be-
ziiglich des zu schitzenden Parameters (bei kleinen Parameterwerten wollen wir ge-
nauere Aussagen haben als bei groBen Werten). Die halbe Breite des entsprechenden
Konfidenzintervalls soll dabei p % von ¢ betragen, d. h. d = pg/100. Da dieser Weg
zur Bestimmung von n sehr schwierig ist, werden wir uns im konkreten Fall eines
Nomogramms bedienen, wie es z. B. bei Rasch/Enderlein/Herrendorfer [1] zu finden
ist.

Fiir vorgegebene Uberdeckungswahrscheinlichkeiten wird von Guenther und
Thomas [1] eine Beziehung zur Bestimmung von n* fiir ein Konfidenzintervall fiir o
angegeben. Ein zweistufiges Vorgehen finden wir bei Birnbaum und Healy [1].

Wir wollen hier ein weiteres Verfahren zur Bestimmung von n* kennenlernen. Wir
gehen wieder von einer normalverteilten Grundgesamtheit X aus. Der Erwartungs-
wert u sei zu schétzen bei bekanntem o2, Fiir ein vorgegebenes Konfidenzniveau 1 — «
erhalten wir bei ebenfalls vorgegebener Linge L des Intervalls (2. 16) als optimalen
Stlchprobenumfang den Ausdruck (2.18).

Ist die Varianz 62 jedoch unbckannt dann benutzen wir anstelle von ¢2 die Schét-
zung S2. Fiir die Schétzung von o2 erhilt man bekanntlich das einseitige Konfidenz-
intervall

(n—1)S? /i y1e < 02 < 0. (2.20)

Setzen wir nun in (2.18) die untere Grenze des Intervalls (2.20) ein, dann erhalten wir
einen im allgemeinen zu kleinen Stichprobenumfang

dul, (1—1)8

- L7 P
[(2.21) ist dabei nur eine Schatzung fiir den Stichprobenumfang n].
Die Beziehung (2.21) 1aBt sich fiir eine sukzessive Bestimmung einer Néherung fiir
den optimalen Stichprobenumfang heranziehen. Wir wihlen einen gewi3 zu kleinen

Wert n,, realisieren eine Stichprobe mit dem Umfang n, und berechnen daraus den
Schitzwert s3.

@.21)
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Durch Einsetzen von s} fiir S2 und n, fiir # auf der rechten Seite von (2.21) bestim-
men wir einen neuen Wert n,. Falls n; — ng > 0, realisieren wir n; —n, weitere
Stichprobenelemente. Aus der Gesamtstichprobe vom Umfang n; berechnen wir den
Schitzwert s und priifen analog zu (2.14), ob bereits

L2 2 ysapsiVm1- (2.22)
In diesem Falle wire n, eine hinreichende Néaherung fiir #n*. Andernfalls wird mit
ny und s aus (2.21) ein neuer Wertn, bestimmt usw. Das Verfahren endet aber auch,
wenn 7,,; < n, ist. In diesem Fall berechnet man schrittweise fiir #,,,,, m = 1, 2, ...,
die Genauigkeitsforderung (2.22) und bricht ab, wenn fiir ein #,,, (2.22) erfiillt ist.

2.2.2. Testen von Hypothesen

Bei der Festlegung eines kleinsten wiinschenswerten Stichprobenumfangs fiir einen
Test 146t sich eine Genauigkeitsforderung in verschiedener Weise vorgeben. Beachten
wir z. B. den Zusammenhang zwischen einem Signifikanztest und einem Konfidenz-
intervall (vgl. Bd. 17), dann 1Bt sich in einfacher Weise der optimale Stichproben-
umfang n* angeben. Wir wollen dieses Vorgehen an einer speziellen Aufgabenstel-
lung erldutern. Die Grundgesamtheit sei normalverteilt mit unbekanntem Erwar-
tungswert u, und bekannter Varianz ¢2. Eine Konfidenzschitzung fiir u, bei vor-
gegebenem « hat die Form (2.16). Dabei ist durch 1 — « die Wahrscheinlichkeit vor-
gegeben, mit der das Intervall den unbekannten Parameter u, iiberdecken soll. Mit
welcher Wahrscheinlichkeit die von u, verschiedenen Parameterwerte iiberdeckt wer-
den, wird nicht untersucht. Um zu einer Aussage iiber den optimalen Stichproben-
umfang n* zu gelangen, wollen wir noch die Wahrscheinlichkeit dafiir vorgeben, dafl
das Konfidenzintervall fiir u, zum Konfidenzniveau 1 — « die Werte |u — uo| > &
mit einer Wahrscheinlichkeit von 1 — f nicht iiberdeckt. Mit anderen Worten, die
Werte |u — uo| > h fiir vorgegebenes / sollen vom Konfidenzintervall nur mit einer
Wahrscheinlichkeit # iiberdeckt werden (vgl. Heinhold/Gaede [1]). Die Werte u, die
von p, einen grofleren Abstand als /2 haben, sind durch

Hw<po—h und p>u,+h (2.23)

gegeben. Vergleichen wir nun die Grenzen des Konfidenzintervalls (2.16) fiir x, mit
(2.23), dann erhalten wir mit

to —h £ X — uy_ypol/n und (2.24)
X+ ul—a;zU/\/; St h

eine Forderung dafiir, daB das Konfidenzintervall die Werte |4 — po| > A nur mit
der Wahrscheinlichkeit # iiberdeckt. Aus (2.24) ergibt sich wegen

Uy—ap — h/nlo £ /n (X = po)lo < h/nlo — uy_yp (2.25)
sofort ’

V11X = pollo < h/njo — uy o, (2.26)
wobei gilt

P(/nIX = pollo £ h/njo — uy_ap) = 1 = B. (2.27)

3%
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Fiir vorgegebene Wahrscheinlichkeit § erhdlt man aus der Kenntnis der Verteilung
von /7| X — pol/o einen Wert u;_p gemalh

PR/nIX = pollo < uy_g) =1 - B, (2.28)
und durch Vergleich der entsprechenden Grofen ergibt sich

h/njo — s = us_p 2.29)
und somit fiir den optimalen Stichprobenumfang n*

n* = (uy_p + Uy _ap)? 0% [H? (2.30)

(vgl. Heinhold/Gaede [1]).

Auf Grund der Beziehung zwischen einer Konfidenzschiatzung und einem ent-
sprechenden Test kénnen wir den Stichprobenumfang n* gemif3 (2.30) auch als opti-
malen Stichprobenumfang bei einem Test auf die Hypothese Hy: i = u, verwenden,
wobei die vorgegebenen Werte fiir « und § den Wahrscheinlichkeiten fiir einen Fehler
1. bzw. 2. Art entsprechen.

Ein anderes Vorgehen zur Bestimmung des optimalen Stichprobenumfangs finden
wir bei Rasch/Enderlein/Herrendorfer [1]. Betrachten wir wieder eine normalver-
teilte Grundgesamtheit mit bekannter Varianz ¢® und unbekanntem Erwartungswert
1, dann lassen sich zur Nullhypothese Hy: = o z. B. die drei Alternativhypothe-
sen formulieren

Hyyipp > po; Happtp < pos Hyztp = plo-
Als Genauigkeit wollen wir auch in diesem Fall eine interessierende Mindestdiffe-

renz i zwischen dem Schétzwert fiir den Parameter und dem durch die Nullhypothese
gegebenen Wert festlegen. Damit gehen die Alternativhypothesen tiber in

HytpZpo+hy Hpip S po—h; Hyst | — pol 2 he (2.31)

! Vergleichen wir die zu Beginn dieses Abschnittes gestellte zusitzliche Forderung an
das Konfidenzintervall fiir u, mit der Hypothese H 3, dann stellen wir eine Uberein-
stimmung fest. Es liegen also zwei Betrachtungsweisen fiir einunddieselbe Genauig-
keitsforderung vor (die Begriindung finden wir im Zusammenhang zwischen der Kon-
fidenzschdtzung und dem Test). Sind die Wahrscheinlichkeit « fiir den Fehler 1. Art
und die Wahrscheinlichkeit § fiir den Fehler 2. Art vorgegeben, dann 148t sich der
optimale Stichprobenumfang n* fiir die verschiedenen Alternativhypothesen (2.31)
aus den folgenden Beziehungen bestimmen:

fiir Hyy gilt f = D(uy_y — h/n]o), (2.32)
fiir H,, gilt f = D(—uy_, — h/njo), (2.33)
fiir Hys gilt f=Bu; o — h\/1j0) = B(y_ap — h/7[0) (2.34)

(mit @(x) wird die Verteilungsfunktion der normierten Normalverteilung bezeich-
net).

Beispiel 2.4: Die normalverteilte Grundgesamtheit X besitze den unbekannten Erwartungswert x4 und
die Varianz 6 = 0,36. Fiir einen Test auf die Hypothese Hy : . = po seien vorgegeben o = 0,05 und
B = 0,10. Die Mindestdifferenz zwischen dem Schétzwert fiir o und dem vorgegebenen Wert 1, sei
0,3.
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Fiir die Alternativhypothese H,, ergibt sich
Uo,05 = 1,645, uy_o— hn/nfo = 1,645 — 0,3 /10,6,
fiir @(x) = 0,10 erhilt man x = —1,282 und somit aus
1,645 — 0,34/n/0,6 = —1,282
den optimalen Stichprobenumfang n* = 35.
Fir die Alternativhypothese H 45 ergibt sich
Uoors = 1,965 +ity_op — ha/njo = 1,96 — 03 1/n/0,6,
—tty_py — hnfo = —1,96 = 03 /n/06
und damit nach (2.34)

0,10 = (196——\/;,) ( 196———\/71)

Das zweite Glied wird fiir n > 4 bereits vernachléssigbar klein, so dal wir mit @(x) = 0,10 und x =
—1,282 erhalten

1,96 — 0,3/n/0,6 = —1,282,
n* =43, .

Benutzen wir zur Berechnung des optimalen Stichprobenumfangs die Formel (2.30), dann errech-
nen wir fir ein zweiseitiges Konfidenzintervall (das ist die der Alternativhypothese H,; entspre-
chende Form) mit u#g 975 = 1,96 und g, 9o = 1,282 den Wert

(1,282 + 1,960)*

nf=————0,36,
0,09

n* =43,

Wir erkennen, daB es im Fall einseitiger Alternativhypothesen giinstig ist, die Aus-
driicke (2.32) und (2.33) zu verwenden. Bei einer Alternativhypothese der Form H 5
wenden wir dagegen den Ausdruck (2.30) mit Vorteil an [(2.30) 148t sich auch fiir ein-
seitige Alternativhypothesen formulieren].

In den meisten praktischen Problemen ist die Varianz ¢ der Grundgesamtheit un-
bekannt. Wir konnen dann eine TestgréBe 7" zur Priifung der Nullhypothese heran-
ziehen, die einer 7-Verteilung geniigt. Zur Berechnung des optimalen Stichproben-
umfangs n* ergibt sich dann analog zu (2.30) der Ausdruck

baor 1oars + nest 1-p12)°0"
(fa-1,1-a12 2 1,1-p12) (2.35)

fiir eine Alternativhypothese der Form H 5.

Die Beziehung (2.35) gilt jedoch nur approximativ und kann durch systematisches
Suchen, wie es im Abschnitt 2.2.1. beschrieben wurde, geldst werden. Dazu mul3 aber
auch noch ¢? durch eine bekannte obere Schranke oder durch einen Schéitzwert ersetzt
werden. Im letzteren Fall erhélt man auch nur eine Schitzung fiir n* (Rasch/Herren-
dorfer/Bock [1]). Tabellen zur Bestimmung des optimalen Stichprobenumfangs finden
wir z. B. bei Rasch/Herrendorfer/Bock/Busch [1].

n* =
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2.3.  Stichprobenumfiinge fiir einige ausgewihlte Aufgaben der mathematischen
Statistik

Wenden wir uns zundchst einer praktisch wichtigen Problemstellung zu. Fiir zwei
vorliegende Stichproben soll entschieden werden, ob ihre entsprechenden Grund-
gesamtheiten, die wir als normalverteilt annehmen wollen, hinsichtlich des Erwar-
tungswertes einen Unterschied aufweisen. Zum Nachweis dieses Unterschiedes soll
ein optimaler Stichprobenumfang fiir beide Stichproben berechnet werden, wobei es
gleichgiiltig ist, ob wir eine Konfidenzschdtzung fiir u; — u, oder einen Test auf die
Hypothese H: u; = u, durchfiihren wollen. Fiir die Grundgesamtheit X, mit der
Verteilung N(u, , 62), wobei o2 bekannt sei, liege die Schéitzung X; vor und fiir die
Grundgesamtheit X, mit der Vertellung N(u., 03) bei bekanntem ¢ die Schitzung
X,. Die Umfinge der Stichproben aus X; bzw. X, seien n bzw. m. Bekanntlich wird
durch

= _ o o =
X, —Xo —uy_p —n—+-l-n—<,ul—,uz<X,—X2
ot o3
Tt Ui-ap «\/Tl-l'_mi (2.36)

ein Konfidenzintervall zur Schitzung von u; — u. bei vorgegebenem Konfidenz-
niveau 1 — « bestimmt.

Geben wir uns nun als Genauigkeit die Lange L des Konfidenzintervalls (2.36) vor,
dann erhalten wir

2
L=2u_,, A/%Jr %l’- _ @.37)
Fiir den optimalen Stichprobenumfang ergibt sich dann
4 m= n:—: (2.38)
mit
n= -4-14[1:;“’2—0'1(01 + 02) ) (2.39)
und
m=20 50, + 02) (2.40)

(vgl. Rasch/Enderlein/Herrendorfer [1]).

Meistens werden jedoch die Varianzen o} und o3 unbekannt sein. Diirfen wir aber
annehmen, daB ¢} = ¢ = o2 gilt (diese Hypothese muB3 gegebenenfalls durch einen
Test gepriift werden), dann erhalten wir eine Realisierung der Konfidenzschédtzung
fur u, — p. bei vorgegebenem « durch

= — n+m - -
X1 = X2 = lytm-2,1-a125 P <py—p <X — X2

+ lymeztanS / nEm @.41)

nm
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mit s aus
n m
s* = L, b = %)? + Z Gz — )2 [ + m = 2).

Geben wir als Genauigkeit die Liange L des Intervalls (2.41) vor, dann ergeben sich
die erwarteten optimalen Stichprobenumfinge aus

e ook 8t3+m—2‘1—a12 2 /
R (2.42)

Wenn von vornherein die Stichprobenumfange gleich sein sollen, dann ist durch

n* a 20%(tn-1,012 + ta-1,6)"
h2

mit der vorgegebenen Mindestdifferenz & = u; — u, eine Naherung des erwarteten

optimalen Umfangs fiir einen Test mit Fehler 2. Art # gegeben. In (2.42) und (2.43)

kann man dann analog zu (2.14) obere Schranken fiir ¢* einfiihren.

Betrachten wir nun eine Aufgabenstellung der statistischen Qualititskontrolle. Es
ist zu priifen, ob der AusschuBanteil einer vorliegenden Produktion einem vorgege-
benen Wert p, entspricht. Der Stichprobenumfang ist hier die Anzahl der zuféllig ent-
nommenen Probestiicke, unter denen der AusschuBanteil festgestellt werden soll.
Dieses Problem fiihrt uns auf einen entsprechenden Test zu einem Signifikanzniveau .
Die Behandlung der zugehorigen hypergeometrisch verteilten TestgroBe bereitet
groBe numerische Schwierigkeiten, deshalb gehen wir zu einer approximativ normal-
verteilten Testgrofe liber. Dieses Vorgehen ist bei nicht zu kleinem Stichproben-
umfang gerechtfertigt.

Der fiir einen Test auf die Hypothese H, : p = p, optimale Stichprobenumfang er-
gibt sich bei Verwendung der Alternativhypothese H,:p = p, > p, aus der Be-
ziehung .

“1—4\/”1’0(1 —po) —nd +1 = (2.44)
(n(po + A) (1 — po — AN'*> e '
mitd = p; — p,und vorgegebenem Fehler 2. Art 3. Verwenden wir dagegen die Alter-
nativhypothese H,:p = p; < po, dann benutzen wir den Ausdruck
t/mpol —po) +nd =1 _ 2.45)
(n(po — A (1 = po + 4))
(vgl. Rasch/Enderlein/Herrendorfer [1]).

(2.43)

Beispiel 2.5: Bei der Lieferung eines bestimmten Bauteils wurde mit dem Zulieferbetrieb ein zulés-
siger Ausschufanteil von po = 0,1 vereinbart. Wieviel Bauteile miiiten beim Wareneingang gepriift
werden, wenn fiir einen Fehler 1. Art « = 0,05 und einen Fehler 2. Art # = 0,2 eine Erhéhung des
AusschuBanteils um 0,06 nicht mehr toleriert wird.

Aus einer Tafel der kritischen Werte fiir die Normalverteilung entnehmen wir die Werte 95 =
1,645 und g 20 = —0,842. Mit 4 = 0,06 erhalten wir aus (2.44) iiber

1,645 /7 0,1(1 — 0,1) — n- 0,06 + 1

= —0,842
(n(0,1 + 0,06) (1 — 0,1 — 0,06))!/2
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die quadratische Gleichung fiir n
n—13,370/n — 16,667 = 0.

Die Losung dieser Gleichung ergibt den optimalen Stichprobenumfang »* = 211. Wir miissen also
zur Uberpriifung der Giiteforderung 211 Versuche durchfiihren.

Wollen wir durch einen Test eine Entscheidung zwischen zwei vorgegebenen Wahr-
scheinlichkeiten p, und p, féllen, dann 148t sich dazu der bekannte Test fiir die Gleich-
heit zweier Erwartungswerte ausnutzen, wenn wir die Transformation x = arc sin \/ )4
durchfiihren. Geben wir uns eine praktisch interessierende Mindestdifferenz

h = arc sin \/;1: — arc sin \/p_1 (2.46)
vor, dann kénnen wir den optimalen Stichprobenumfang bestimmen durch

n* = (ui‘.+ up)? B
2(arc sin\/p; — arcsin/p2)?

Fir verschiedene « und 8 gibt es zur Bestimmung von n* gemaB (2.47) Tabellen, die
wir z. B. bei Cochran/Cox [1] finden.

Bei unseren bisherigen Betrachtungen hatten wir stets vorausgesetzt, daB die Fa-
milie der Verteilungen, nach der die Grundgesamtheit X verteilt ist, bekannt sei. Wenn
das nicht der Fall ist, dann 148t sich die unbekannte Verteilungsfunktion z. B. durch
die empirische Verteilungsfunktion schitzen. Auf diese Weise gelangen wir zu einem
bestimmten Verteilungstyp. Wir wollen nun den optimalen Stichprobenumfang zur
Schitzung der Verteilungsfunktion durch Vorgabe der Breite des Konfidenzbandes
als Genauigkeit berechnen. Nach dem bekannten Satz von Kolmogorow (vgl. z. B.
Storm [1]) besitzt die GréB8e D, = max |W,(x) — Fx(x)| eine Verteilung,

xeR!

(2.47)

fir die gilt

lim P(D,/n < 3) = K(3) 248)
mit
KD =1+ 3 (~1ye, (2.49)

Dabei ist W,(x) die empirische Verteilungsfunktion der Stichprobe
Eine Konfidenzschidtzung zu vorgegebenem Konfidenzniveau 1 — « ist bekannt-
lich
W(k) — My_alx/n < Fy(k) < Wyk) + Ao/, (2.50)
wobei 4,_, das entsprechende (1 —«)-Quantil der Verteilung (2.49) ist. Die Breite des
Konfidenzbandes sei mit L bezeichnet, dann ist

L=2h\/n,
und somit ergibt sich
n* = 432_,|L? (2.51)

(vgl. Bandemer [1]).
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Konnten wir uns nach Auswertung einer Stichprobe oder aus fritheren Erkennt-
nissen heraus bereits fiir einen bestimmten Verteilungstyp entscheiden, dann ist meist
nur noch eine Schitzung der Parameter der Verteilungsfunktion von Interesse.

2.4. Zusammenfassung

Es sei d > 0 ein vorgegebener Wert, so daB bei [§ — @] < d der Schitzwert & mit dem Parameter-
wert ¢ identifiziert werden kann. Dann ist die Forderung an n

P(Om) -9 =d)=1-« *

sinnvoll, wobei « > 0 eine vorgegebene kleine Irrtumswahrscheinlichkeit ist. Bei Kenntnis der Ver-
teilung von O(n) 148t sich aus dieser Beziechung ein optimaler Stichprobenumfang berechnen. Geniigt
O(n) einer Normalverteilung, dann ist n explizit angebbar. Der Ausdruck (*) 1iBt sich auch als Vor-
gabe der Linge des Konfidenzintervalls zur Schitzung von ¢ deuten.

Auf Grund der Dualititsbeziehung zwischen der Konfidenzschitzung und einem Test auf die
Nullhypothese Hy: 9 = 9, 1dBt sich (*¥) als die Vorgabe einer interessierenden Mindestdifferenz
zwischen dem Schétzwert und dem Wert &, auffassen. Im Falle normalverteilter Stichproben werden
fiir einige Tests Ausdriicke zur Berechnung eines optimalen Stichprobenumfangs angegeben.



3. Versuchspline zur Erfassung und Ausschaltung unerwiinschter
Einfliisse

3.1. Problemstellung

Wie wir bereits in den Abschnitten 1.2.1. und 1.2.2. gesehen haben, werden die auf
eine ZielgroBe wirkenden Einfliisse in zwei Gruppen aufgeteilt. Dabei enthilt die eine
Gruppe die in ihrer Wirkung zu untersuchenden Einfliisse und die andere Gruppe die
als zuféllig vorausgesetzten Einfliisse. Wenn von diesen im Modell als zuféllig voraus-
gesetzten Einfliissen sich einige wihrend des Experiments systematisch dndern, dann
kann dies unerwiinschte und schwerwiegende Folgen fiir die Aussagefahigkeit der
Versuchsergebnisse haben. Es ist daher eine Aufgabe der Versuchsplanung, dafiir zu
sorgen, daf} solche systematischen Anderungen entweder in zuféllige tiberfiihrt oder
daB sie als neue zy untersuchende Einfliisse erfa3t werden. Fiir den ersteren Fall wer-
den wir die Randomisation (vgl. Abschnitt 3.2.), fiir den letzteren die Moglichkeiten
einer sogenannten Blockbildung (vgl. Abschnitt 3.3.) betrachten.

Zu einer Untersuchung des Einflusses unerwiinschter StérgroBen gelangen wir
auch durch Anwendung der Kovarianzanalyse (vgl. Abschnitt 1.3.2.).

Eine Ausschaltung unerwiinschter Einfliisse ist besonders dann von groBem Inter-
esse, wenn durch die Versuche zu kldren ist, ob und wie verschiedene Faktoren eine
Wirkung auf eine beobachtete GroBe hervorrufen. Eine Losung dieser Aufgaben-
stellung fithrt uns zu den Methoden der Varianzanalyse (vgl. Abschnitt 1.3.2.). Daher
werden wir in diesem Kapitel einige Mglichkeiten der Versuchsplanung fiir dieses
spezielle lineare Modell behandeln.

3.2 Randomisation

Eine zufillige Zuordnung der Stufen der einzelnen Faktoren (Behandlungen) zu
den Versuchseinheiten, d. h. zu den Einzelversuchen, wollen wir als Randomisation
bezeichnen. Werden alle in ein Experiment einbezogenen Versuchseinheiten allen Be-
handlungen zufillig zugeordnet, dann sprechen wir von einer vollstindig randomisier-
ten Versuchsanlage.

Als technisches Hilfsmittel einer solchen Randomlsatlon verwenden wir Tafeln
mit Zufallsziffern. Solche Tafeln finden wir z. B. bei Hald [1], Owen [1], Rasch [1],
Miiller/Neumann/Storm [1].

Gewohnlich enthilt eine Tafel von Zufallsziffern Folgen der zuféllig angeordneten
Ziffern 0, 1, ..., 9, die Realisierungen von in der Gesamtheit unabhéngigen Zufalls-
groBen X; (i = 1,2,...) mit einer diskreten Gleichverteilung sind (P(X; = r) = 1/10
fir r = 0, 1, ..., 9). Es sind jedoch z. B. auch Tafeln normalverteilter ZufallsgréBen
und zufalliger Permutationen einer Anzahl von Objekten (z. B. 4, B, C, D) bekannt.

Bei der Anwendung einer solchen Tafel denken wir uns die fiir einen Versuch ins-
gesamt zur Verfiigung stehenden Objekte durchnumeriert. Dann entnehmen wir einer
Zufallszifferntabelle in einer beliebigen, aber immer systematischen Reihenfolge (z. B.
spaltenweise) eine entsprechende Anzahl Zufallszahlen in der GréBenordnung der
Numerierung und wihlen die Objekte mit den erhaltenen Zufallszahlen fiir die vor-
gesehene Behandlung aus. Zur Erlduterung dieser Vorgehensweise kehren wir zum
Beispiel 1.5 zuriick und dndern es geringfiigig ab.
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Beispiel 3.1: Es sind fiinf Weizensorten A, B, C, D und E hinsichtlich ihres Ertrages zu untersuchen.
Das fiir die Untersuchung vorgesehene Versuchsfeld wird in 20 Teilstiicke aufgeteilt, jede Sorte soll
dabei auf 4 dieser Stiicke angebaut werden. Wie wir bereits im Abschnitt 1.2.2. iiberlegt haben (siehe
Bild 3.1), ist eine Anordnung der Feldstiicke in der folgenden Form ungiinstig, da eine systematische

Bild 3.1

Anderung der Bodenqualitit von einem Rand des Feldes zum anderen moglich ist. So eine Anderung
wiirde einen Vergleich der Sorten beeintriachtigen. Zur Ausschaltung dieses unerwiinschten Einflusses
werden wir die 20 Teilfelder den 5 Weizensorten zufillig so zuordnen, daf3 jede Sorte genau viermal
vertreten ist. Dazu entnehmen wir einer Zufallszifferntafel jeweils 2 neben- oder untereinanderstehen-
de Ziffern zu einer Zufallszahl zwischen 00 und 99. Von jeder Zahl subtrahieren wir k : 20 mit & =
0,1, 2, 3, 4 und lassen alle die Zahlen weg, die bereits in der Folge vorkommen. Damit erhalten wir
z. B. die zufillige Anordnung der Zahlen 01 bis 20
5,14,3,17,19, 11, 13, 2, 15, 16, 8, 12, 10, 4, 6, 1, 9, 7, 20, 18.

Die ersten vier Zahlen geben die Feldnummern fiir die Weizensorte A, die nichsten vier Zahlen die
Feldnummern fir die Weizensorte B an. Fiir alle fiinf Sorten ergibt sich somit die randomisierte Ver-
suchsanlage (s. Bild 3.2).

|

'b|8|a|p|a|p|E|c|e(p|B|c|B|a|c|c|a|€|8]E
5

172 34 5 67 8 910111213 % 15 16 17 18 19 20 Feldummer

Bild 3.2

Auch aus anderen Anwendungsbereichen lassen sich Problemstellungen in der be-
schriebenen Weise behandeln. Sollen z. B. fiinf Verfahren zur Messung eines be-
stimmten Qualitdtsmerkmals bei der Produktion von Walzgut miteinander verglichen
werden, dann 1dBt sich der durch Bild 3.2 gegebene Versuchsplan ebenfalls verwen-
den, wenn sich ein storender EinfluB ldngs des Walzgutes durch systematische Ande-
rung eines Faktors bemerkbar machen kénnte. )

Auch in dem Fall, daB wir z. B. fiinf Typen von Brikettpressen beziiglich der Druck-
festigkeit der erzeugten Briketts vergleichen wollen, 146t sich ein vollstindig randomi-
sierter Versuchsplan verwenden. Alle fiinf Pressen werden mit dem gleichen Mahlgut
beschickt. Um systematische Einfliisse auf die Untersuchung, z. B. der Druckfestig-
keit, auszuschalten, werden jeder Presse zufillig Briketts fiir eine Untersuchung ent-
nommen. Die Entnahme eines solchen Probebriketts soll beispielsweise aller 10 min
vorgenommen werden konnen, von jeder Presse werden 4 Proben benétigt, dann ist
eine Probenahme nach dem randomisierten Versuchsplan in Bild 3.2 méglich. Wir
entnehmen zuerst der Presse D ein Brikett, 10 min spdter der Presse B, nach weiteren
10 min der Presse 4 usw.

Einen vollstindig randomisierten Versuchsplan konnen wir also z. B. anwenden,
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wenn die Wirkung nur eines Faktors auf eine ZielgroBe untersucht werden soll. L4t
sich dieser Faktor dabei auf p Stufen einstellen und sind die Voraussetzungen (1.49)
an den zufélligen MeBfehler ¢ erfiillt, dann konnen wir einen solchen Versuchsplan
durch das Modell einer einfachen Klassifikation in der Varianzanalyse auswerten.
Bezeichne u das Gesamtmittel, «; die Effekte der i-ten Stufe des Faktors und ¢; den
zufélligen Fehler, dann gilt fiir die Beobachtungsergebnisse die Darstellung

Yy=p+to+e;, i=1L.,p, j=1L.,n (3.1

[vgl. (1.39)]. Zur numerischen Berechnung einer Realisierung der TestgroBe beim
Test auf eine Gleichheit der Effekte bedienen wir uns der iiblichen Tabelle der Va-
rianzanalyse (vgl. z. B. Ahrens [1]).

338 Blockpliine

Im vorangegangenen Abschnitt untersuchten wir die Wirkung nur eines EinfluB3-
faktors A auf eine ZielgroBe, alle anderen EinfluBfaktoren B, C, ... sollten sich nur
zufillig dndern kénnen. Sind die Versuchsergebnissein der Form (3.1) mit D*Y;; = o2
(G=1,..,p;j=1,..,n) darstellbar, dann haben wir der Auswertung das Modell
der einfachen Klassifikation zugrunde gelegt.

Ist dabei der Parameter o2 fiir die betrachtete Problemstellung unvertretbar groB,
wie aus Vorversuchen oder Uberlegungen hervorgeht, dann kann das daran lie-
gen, dafl durch das Modell (3.1) einer der wesentlichen Einfliisse nicht mit erfat
wurde. Es ist dann sinnvoll, einen weiteren Faktor B in das Modell aufzunechmen
und zur Darstellung der Versuchsergebnisse durch

Yy=p+o+f;+yy+ey i=1.,p j=1,.,k, (3.2)

iiberzugehen, wobei f; die Effekte der j-ten Stufe des Faktors B und y;; die Wechsel-
wirkungseffekte zwischen 4 und B darstellen. In vielen Féllen ist es gerechtfertigt,
diese Wechselwirkungen unberticksichtigt zu lassen (y;; = 0), was wir im folgenden
annehmen wollen. Falls jedoch y;; 0 gilt, dann ist dies bei der Konstruktion von
Versuchspldnen zu beriicksichtigen. Im Modell (3.2) sei D*Y;; = ¢%, und wir er-
warten im Fall, daB3 der hinzugenommene Faktor B wesentlich ist, eine Herabsetzung
der Varianz, d. h. 6% < ¢2. Dies ldBt sich auch durch einen Test auf die Hypothese
0% = ¢ priifen.

Ein Test auf diese Hypothese ist gleichbedeutend damit, daB wir die Hypothese
fy = p, =+ = f, =0 testen. In beiden Fillen bendtigen wir Schétzungen fiir o*
und 0%, die wir durch die Methode der kleinsten Quadrate bestimmen konnen.

Ist ¥, eine Schitzung fiir EY; (i = 1, ..., p), dann ist durch

§* =t (- T
W=D i i i
eine Schétzung fiir 0® gegeben. Der Parameter 0% werde durch
1 p k N
§2 = - Y,, — Y,p)?
TG nE-n & & T
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geschitzt, wobei Y;; eine Schitzung fiir EY;; nach (3.2) ist. Zur Berechnung dieser
Schétzungen werden wir die bekannten Tafeln der Varianzanalyse heranziehen. Die fiir
einen Test auf die Hypothese 0% = o2 benutzte TestgroBe geniigt bekanntlich einer
F-Verteilung (vgl. Bd. 17) mit den Parametern #» — p und (p — 1) (k — 1) (es ist offen-
sichtlich pk = n). Auf ein dhnliches Testproblem werden wir auch im Kapitel 4 ein-
gehen.

Wir wollen nun beschreiben, wie solche Versuchspldne zur Erfassung des Einflusses
des zweiten Faktors konstruiert werden konnen. Insgesamt werden pk Versuche
durchgefiihrt, und zwar p Versuche, bei denen jede Behandlung des Faktors A4 mit
genau einer Behandlung des Faktors B vorkommt. Diesen Teil des Versuchsplanes
wollen wir als Block bezeichnen. Wir fiihren nun die p Versuche in einem Block fiir
alle Behandlungen von B durch.

Beispiel 3.2: Es ist die Wirkung von fiinf Verfahren zur Diingung von Biumen zu untersuchen (wir
verwenden vier verschiedene Diinger und fithren einen Blindversuch ohne Diinger zur Kontrolle
durch). Fiir die Versuchsdurchfiihrung wihlen wir in einem Wald durch eine vollstindige Randomisa-
tion 50 Baume aus, die 10 verschiedenen Altersklassen angehdren mogen. Fiihrten wir einen voll-
stidndig randomisierten Versuchsplan fiir das Modell (3.1) durch, dann hiitten wir durch den Einflu
des Alters mit einem hohen Wert fiir 6 zu rechnen.

Teilen wir jedoch die Baume so in 10 Blocks ein, daB sich in jedem Block fiinf Biume befinden, die
sich hinsichtlich des Alters nur wenig unterscheiden (also zu einer Altersgruppe gehdren), und fithren
wir in jedem Block alle fiinf Behandlungen durch, die wir den Bidumen zufillig zuordnen, dann
wird 02 < o2 sein, da das Alter der Biume ebenfalls einen wesentlichen EinfluB auf die die Wirkung
der Diingung messende KenngroBe hat.

Durch eine Blockbildung kann sich die Randomisation nur noch tber die p Stufen
(Behandlungen) des Faktors innerhalb eines Blockes erstrecken, sie geht nicht tiber
einen Block hinaus, ist also im Gegensatz zur vollstindigen Randomisation einge-
schrankt. Fiir die Behandlung einer praktischen Aufgabenstellung muf3 nun von Fall
zu Fall entschieden werden, ob ein Versuchsplan aufgestellt wird, der eine vollstindig
randomisierte Versuchsanlage erfordert oder ob durch eine Blockbildung, d. h. durch
Beriicksichtigung eines weiteren EinfluBfaktors, des sogenannten ,,Blockeffekts*, und
durch eine Erfassung dieser Wirkung bei einer eingeschrinkten Randomisation eine
bessere Versuchsaussage (im Sinne einer kleineren Varianz) erhalten werden kann.

Die hier beschriebene Vorgehensweise ist auch dann noch anwendbar, wenn wir
mehrere solcher zusitzlich zu beriicksichtigenden Faktoren erfassen wollen. Wir wer-
den dann auf Versuchspldne gefiihrt, die Blockbildungen in mehreren Richtungen
besitzen (vgl. die Abschnitte 3.4. und 3.5.).

3.3.1.  Volistindige Blockpline

Wenn die einzelnen Blocks so grof3 gewéhlt werden, dal die Anzahl der Versuchs-
einheiten innerhalb eines Blockes mindestens mit der Anzahl der Behandlungen (Stu-
fen des zu untersuchenden Faktors) tibereinstimmt, dann heif3t ein solcher Versuchs-
plan vollstindiger Block. Jede Behandlung soll dabei in jedem Block mindestens ein-
mal auftreten, innerhalb eines Blockes wird eine zuféllige Zuordnung zwischen Ver-
suchseinheiten und Behandlungen vorgenommen (wir sprechen dann auch von rando-
misierten vollstindigen Blockpldnen). Betrachten wir beispielsweise die folgende Pro-
blemstellung:

In einem Versuch ist der EinfluB eines Faktors 4 zu priifen, wobei 4 die Stufen
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A® ..., A” annehmen kann. Die vollstdndigen Blocks miissen dann jeweils minde-
stens p Versuchseinheiten umfassen. Fiir p = 5 erhalten wir z. B. fiir n = 20 deshalb
k = 4 Blocks (s. Tab. 3.1).

Tabelle 3.1

Nr. des Blocks Stufen des Faktors 4
1 Ay As A, Ay As
2 Ay Ay A As A,
3 Ay Ay As Az Ay
4 A, Ay Ay A; A

Bei der Auswertung eines Blockplanes haben wir auer dem interessierenden Fak-
tor A noch einen zweiten Faktor zu beriicksichtigen. Da zwischen beiden Faktoren
keine Wechselwirkungen beriicksichtigt werden sollen, wiahlen wir zur Auswertung
der Versuchsergebnisse das Modell der Varianzanalyse mit spezieller zweifacher Klas-
sifikation (vgl. 1.41)

Yy=pu+o+B+ey i=1.,p, j=1.,k. (3.3)

Dabei ist bekanntlich  das Gesamtmittel, «; der Effekt des Faktors A auf der i-ten
Stufe (d. h. die Abweichung von u durch A®) und /3, der Effekt des j-ten Blockes. Fiir
den zufilligen Fehler ¢;; gelte die Voraussetzung (1.49).

Ein Experimentator steht hdufig vor der Frage, welchen Typ eines Versuchsplanes
er verwenden soll. Wir wollen deshalb eine Méglichkeit kennenlernen, einen voll-
stindig randomisierten Versuchsplan und einen vollstindigen Blockplan beziiglich
ihrer Wirksamkeit zu vergleichen. Wie wir bereits bemerkt haben, lassen sich die Va-
rianzen o und o?% fiir eine Beurteilung der Giite des verwendeten Modells ausnutzen.
Verwenden wir einen vollstindig randomisierten Versuchsplan, dann ist S? eine
Schitzung fiir o [(n — p)S?/o? ist y2-verteilt mit dem Parameter f; = n — p]. Bei
Verwendung eines vollstindigen Blockplanes schitzen wir 63 durch S% [die Zufalls-

(r =1k —=1S3

grofBe o

ist y2-verteilt mit dem Parameter f> = (p — 1) (k — 1)].
Als MaB fiir die Effektivitdt eines Blockplanes wurde von Fisher (vgl. Cochran/Cox
[1]) der Quotient

_ Lt D+
" FDG: + 3

eingefiihrt, dabei sind s und s Realisierungen von S? und Sz. In Anlehnung an die
in der mathematischen Statistik ibliche Bezeichnung wollen wir n relativen Wir-
kungsgrad nennen.

Liegt eine Realisierung eines vollstandigen Blockplanes zur Auswertung vor, dann
entnehmen wir der Tabelle der Varianzanalyse (vgl. z. B. Ahrens [1]) den Schétzwert
s3. Auf Grund einer einfachen Uberlegung léBt sich aus dieser Tabelle auch noch ein
Schitzwert s? berechnen. Hétten wir einen vollstindig randomisierten Plan realisiert,
dann wire der zweite Faktor im Modell (3.3) unberticksichtigt geblieben und hétte zu
einer anderen Varianz o? gefiihrt. Als Schitzung fiir ¢ unter Verwendung einer Ta-

(3.4)



3.3. Blockpldne 47

belle der Varianzanalyse fiir ein Modell der Form (3.3) kénnen wir benutzen
8% = (k(p — 1) S + (k — 1) MQp)/(pk — 1)

mit
MQp = SQs/(k — 1)
und . R ,
s@ =y 221

j=1 P pk ’
Zu einer Schitzung von ¢? kénnen wir auch durch Blindversuche gelangen.

Der relative Wirkungsgrad % [vgl. (3.4)] gibt nur die GréBenordnung an, in der sich
die Varianzen o? und o% unterscheiden. Fiir eine Anwendung bei praktischen Auf-
gabenstellungen, vor allem dann, wenn kleine Werte von f; und f, vorliegen, ist des-
halb # nicht sehr vorteilhaft. Besser geeignet ist dann ein von Cochran/Cox [1] und
Rasch/Herrend6rfer/Bock/Busch [1] angegebenes Entscheidungsverfahren, das von
einem entsprechenden Test ausgeht.

Beispiel 3.3: Funf Sorten Sommerweizen (4, B, C, D und E) sind beziiglich ihres Ertrages zu unter-
suchen (vgl. Linder [1]). Dazu verwenden wir einen vollstindigen Blockplan mit 4 Blocks (s. Tab. 3.2).

Tabelle 3.2

Nr. des Blocks Stufen des Faktors (Sorten)
1 C D B E 4

2 D A4 B E C

3 A E C D B

4 E-D A B C

Auf diesen 20 Parzellen wurden folgende Ertrige [10 kg/ha] registriert (s. Tab. 3.3). Werten wir diesen
Versuch durch eine Varianzanalyse mit spezieller zweifacher Klassifikation aus, dann ergeben sich

Tabelle 3.3

Block Nr.

1 446 409 440 421 464
2 376 441 393 402 334
3 407 410 321 309 320
4 327 296 376 351 343

die in Tabelle 3.4 zusammengefaBten Resultate (dabei verwenden wir die iibliche Varianztabelle, vgl.
z. B. Ahrens [1]).

Tabelle 3.4

Quelle der Variation S0 Freiheitsgrade MQ
Zwischen den Sorten 1875,7 4 4689
Zwischen den Blocks 28201,0 3] 9400,3

Versuchsfehler 19795,5 12 16496
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Vergleichen wir nun diesen Blockversuch mit einer vollstindig randomisierten Versuchsanlage
durch den relativen Wirkungsgrad. Fiir $% entnehmen wir der Tabelle 3.4 den Schétzwert

5% = 1649,6.
Mit MQp = 9400,3 und 5% berechnen wir den Schitzwert s*
1
2 = TROST [4(5 — 1) - 1649,6 + (4 — 1) - 9400,3]
s? = 2873 4.
Fiir (3.4) ergibt sich mit f; = 15 und f, = 12 der relative Wirkungsgrad
_ 12+ 1)-(15 +3)-28734
T U5+ 1) (12 + 3) - 1649,6

d. h., ein vollstindiger Blockplan ist im vorliegenden Fall wesentlich wirksamer als eine vollstindig
randomisierte Versuchsanlage.

= 1,698,

Spezielle vollstdndige Blockpline sind die sogenannten Lateinischen Quadrate, La-
teinischen Rechtecke und Griechisch-lateinischen Quadrate. Da diese Versuchsplidne
aber eine besondere Rolle in der Varianzanalyse spielen, wollen wir ihnen einen be-
sonderen Abschnitt widmen (vgl. Abschnitt 3.4).

3.3.2.  Unvollstiindige Blockpline

Solange die Anzahl der Stufen eines EinfluBfaktors klein ist, bleiben auch die Um-
féange der Blocks klein und somit der Versuchsaufwand in ertrdglichen Grenzen. Fiir
einen Faktor 4 auf 4 Stufen und einen Faktor B auf 5 Stufen (5 Blocks) erfordert ein
vollstandiger Blockplanz. B. n = 20 Versuche, in jedem Block also mindestens 4 Ver-
suche. MuB3 der Faktor 4 auf einer groBen Anzahl von Stufen untersucht werden,
steigt auch die Anzahl der Versuche in einem Block stark an. Wird A z. B. auf
15 Stufen beobachtet, dann betrégt der Blockumfang, sollen alle Stufen in einem Block
vorkommen, ebenfalls 15; insgesamt werden dann n = 75 Versuche notwendig sein.
Bei vielen praktischen Problemstellungen ist es jedoch entweder nicht méglich, einen
Block von diesem Umfang aufzustellen, oder die dem Block entsprechende Stufe des
Faktors B 1dBt sich fiir so viele Versuche nicht unverindert beibehalten. Aus diesen
und anderen Griinden sind Versuchspline entwickelt worden, bei denen die Anzahl p
der Behandlungen des Faktors 4 groBer ist als die Anzahl n, der Versuchseinheiten
in einem Block, wir sprechen in diesem Fall von einem unvollstindigen Block. Kon-
struieren wir einen unvollstindigen Block, so daB jede Stufe des Faktors A mit jeder
anderen Stufe desselben Faktors mindestens einmal in diesem Block vorkommt, dann
nennen wir diese Versuchsanlage balanciert.

Die. Aufstellung von balancierten unvollstindigen Blockpldnen ist sehr schwierig.
Deshalb sind solche Versuchspldne tabellarisch zusammengefaBt, z. B. bei Rasch/
Enderlem/Herrendorfer [1] und bei Cochran/Cox [1]. Zur Beschreibung dleser Plane
bendtigen wir fiinf Parameter:

p - (» - Anzahl der Behandlungen (Stufen) des Faktors 4,

- (k) — Anzahl der Versuchseinheiten in einem Block,

» - (r) - Anzahl der Wiederholungen jeder Behandlung von 4 im Gesamtversuch,
k - (b) - Anzahl der Blocks, d. h. Anzahl der Stufen des Faktors B,

A - (%) — Anzahl des gemeinsamen Auftretens zweier Behandlungen des Faktors 4
im Gesamtversuch.
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In Klammern wurde jeweils die in der Biometrie iibliche Bezeichnung fiir die Para-
meter angegeben.
Zwischen diesen fiinf Parametern miissen die folgenden Beziehungen erfiillt sein:

kn, = wp, ) 3.5
_ 11(”, - 1)
A= e (3.6)

Es ist-iiblich, fiir balancierte unvollstindige Blocks nur Strukturpline anzugeben.
Nach der Auswahl eines fiir das Problem geeigneten Strukturplanes miissen wir die
Behandlungen innerhalb der Blocks den Versuchseinheiten zuféllig zuordnen, die
einzelnen Blocks werden ebenfalls untereinander zuféllig geordnet. Auf diese Weise
erhalten wir eine randomisierte Versuchsanlage zur Untersuchung der Wirkung zweier
Faktoren 4 und B auf eine ZielgroBe.

Wir geben nun einige ausgewihlte Strukturpldne an:
1. Die Parameter des Blockplanes seien

p=4n=2v=3,k=6471=1.
Werden die Stufen mit 1, 2, 3 und 4 bezeichnet, dann ist der Plan gegeben durch

12 13 14
34 24 23,

d.h. Block 1: Behandlungen 1 2

Block 2: Behandlungen 3 4 } 1. Wiederholung der Behandlungen (v = 1),

Block 3: Behandlungen 1 3
Block 4: Behandlungen 2 4

Block 5: Behandlungen 1 4 . >
Block 6: Behandlungen 2 3 } 3. Wiederholung der Behandlungen (» = 3).

} 2. Wiederholung der Behandlungen (» = 2),

2. Der Blockplan fiir
p=6n=2v=5k=15Ai=1
hat die in Wiederholungen gruppierte Form
12 13 14 15 16
34 25 26 24 23
56 46 35 36 45.

3. Fur die Parameter
p=10,n,=4,v=6,k=151=2

ergibt sich der Blockplan

1234 16810 35910
1256 2369 36710
1378 24710 3458
14910 25810 4567
1579 2789 4689

4 Bandemer, Versuchsplanung
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Der Parameter 4 = 2 driickt dabei aus, daB jede Stufe des Faktors 4 (z. B. Stufe 10) mit jeder
anderen Stufe von A genau zweimal gekoppelt wird,
z. B. 10 mit 1 im Block 4 und 6,
10 mit 2 im Block 8 und 9,
10 mit 3 im Block 11 und 12
usw.

Fiir eine Auswertung der Versuche, die nach einem balancierten unvollstindigen
Blockplan durchgefiihrt wurden, zichen wir ein Modell der Varianzanalyse mit spe-
zieller zweifacher Klassifikation heran. Das Beobachtungsergebnis sei in der Form

Yip=p+o+pBi+ey i=L.,p, j=1L.,k I=1.,9

, @)
darstellbar [vgl. auch (3.3)]. Zur Durchfiihrung des Testes auf die Hypothese Hy: x; =
o, = -+ =, benutzen wir bei der Berechnung einer Realisierung der TestgrofBe

die Tafel der Varianzanalyse, die entsprechend der speziellen Struktur des Versuchs-
planes modifiziert werden muB. Berticksichtigen wir » Wiederholungen, so erfolgt die
Berechnung nach Tab. 3.5 (vgl. Rasch/Enderlein/Herrendorfer [1]).

Tabelle 3.5

Quelle der Variation S0 Freiheitsgrade Yo MQ, MQ,
Behandlungen (Faktor A) SQ,4 p—1 SO 4 xorr MQ,
Blocks (Faktor B) SOsxorr k= S0p MQp
Wiederholungen SOw y—1 SOw

Versuchsfehler SOr w—p—k+1 SOr MQr MQg
Gesamt SO wp—1 S0c

Im einzelnen haben wir folgende Abkiirzungen benutzt:
e = —L— 1 3 02,
. nyp(n, — 1) i<
SOpxorr = S0 + SO axorr — SQ s
0, =nyd; — K,
A; - Summe der Beobachtungswerte der i-ten Behandlung,
K; — Summe der Blocksummen, in denen die i-te Behandlung auftritt,

S0 2L 3 K- _sp
i np j=1 ! w v
B; - Summe der Beobachtungswerte des j-ten Blocks,
p.k,y
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Ky
W= X yin (Summe der Beobachtungen der i-ten Wiederholung),
5i=1
1 14 GZ
504 = v ; T’
2
S0 = 'Z Vin—
ijl=
MO,

Mit der Reahslerung der F-verteilten TestgroBe mit den Parametern

R
fi=p—1lund f, =wwp — p — k + 1 konnen wir einen Test auf H, durchfiihren.
Die Schitzwerte der einzelnen Behandlungen «; sind bei Verwendung eines balancier-
ten, unvollstdndigen Blockplanes nicht einfach vergleichbar, sie missen durch den
Faktor

_ Y(MQp — MQg) (3.8)
T wp(n, — 1) MOg + ny(k —v — p + 1) MOy '

korrigiert werden. Die korrigierten Mittelwerte berechnen wir dann aus

— A, + WZ
Vior = —L—v—‘ (3.9)
mit  Z=@-n)A- (- DK + @ —1)G. (3.10)

Wir wollen nun diese recht komplizierte Auswertung an einem Beispiel demonstrie-
ren.

Beispiel 3.4: Durch einen Versuch soll der Ertrag von 6 Kartoffelsorten verglichen werden, und es ist
zu priifen, ob zwischen den einzelnen Sorten signifikante Unterschiede im Ertrag bestehen. Wegen
groBer Bodenunterschiede im Versuchsfeld kann ein Block jeweils nur 2 Behandlungen umfassen.
Wir wihlen deshalb einen balancierten unvollstindigen Blockplan mitp = 6,n, = 2,v = 5,k = 15
und 4 = 1 aus.

12 13 14 RS 16

34 25 26 24 23

56 46 35 36 45
Durch Randomisation ergab sich der folgende Versuchsplan (Tab. 3.6). In die Tabelle wurden die

Ergebnisse der entsprechenden Messungen mit eingetragen (vgl. Rasch/Enderlein/Herrendorfer [1]).
Fiihren wir in der angegebenen Weise die Varianzanalyse durch, dann erhalten wir die Realisierung
M( 1954,8
94 = 51,10.
MQ, 3825

Fiir ein vorgegebenes Signifikanzniveau & = 0,05 betriagt das (1 — «)-Quantil der F-Verteilung mit
den Parametern

fi=6—1=5 und f,=5-6—-6—-15+1=10
Fs;m;o,ss = 3,326.

Also miissen wir auf Grund der Stichprobe die Hypothese, daB zwischen den 6 Kartoffelsorten kein
Unterschied im Ertrag besteht, verwerfen.

4%
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Tabelle 3.6
Wieder- Blocks Behandlungen | Ertrige Block- W,
holungen (dt/ha) summe
1 1 201
2 234 435
1 2 3 197
4 218 415
3 5 194
6 228 422 1272
4 4 223
6 235 458
2 5 3 237
1 265 502
6 5 214
2 283 497 1457
7 1 218
4 199 417
3 8 6 211
2 240 451
9 S 206
3 228 434 1302
10 2 278
4 245 523
4 11 1 266
5 203 469
12 6 277
3 261 538 1530
13 S 151
4 206 357
5 14 1 268
6 260 528
15 2 228
3 185 413 1298
Gesamt-
summe 6859

Bei der Auswertung von Versuchen mit unvollstindigen Blocks 1aBt sich auch eine
sogenannte Zwischenblockinformation ausnutzen. Eine weitere wichtige Klasse von
Versuchsplédnen stellen die teilweise balancierten unvollstindigen Blocks dar. Zu die-
sen beiden Erweiterungen der balancierten unvollstdndigen Blocks vgl. Cochran/Cox

[11.
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3.4. Lateinische Quadrate

Kehren wir zu dem Beispiel 1.5 im Kapitel 1 zuriick und betrachten unser Ver-
suchsfeld. Bisher haben wir als auszuschaltenden bzw. besonders zu erfassenden Fak-
tor eine Anderung der Bodenqualitit in nur einer Richtung (von links nach rechts)
angenommen. Vielfach ist aber auch eine Qualitdtsinderung in einer zweiten Richtung
zu verzeichnen. Es gelang uns, durch Blockbildung den unerwiinschten EinfluB in
einer Richtung auszuschalten. Wenden wir das Prinzip noch einmal an, dann kénnen
wir auch den unerwiinschten EinfluB in einer zweiten Richtung ausschalten. Wir ge-
langen so zu einer Versuchsanlage, bei der die Anzahl der Blocks der Anzahi der Be-
handlungen (Stufen eines Faktors) und der Anzahl der Wiederholungen in einem Block
entspricht. Solch eine Versuchsanlage wollen wir lateinisches Quadrat nennen.

Es soll nun die Konstruktion eines lateinischen Quadrates an einem Beispiel demon-
striert werden. Dabei gehen wir in zwei Schritten vor. Es ist die Wirkung eines Fak-
tors zu untersuchen, der auf 4 Stufen (4, B, C und D) eingestellt werden kann. Der
erste Block unseres quadratischen Schemas enthilt eine systematische Anordnung der
vier Behandlungen, in jedem weiteren Block werden die Behandlungen zyklisch ver-
tauscht. Da wir vier Behandlungen haben, bekommen wir auch vier Blocks, die wir
als Zeilen einer matrixartigen Anordnung auffassen konnen. In den Spalten dieser An-
ordnung kommt jede Behandlung auch genau einmal vor. Wir erhalten Tab. 3.7.

Tabelle 3.7

Spalten
Blocks 1 2 3 4
1 A B C D
2 D A B C
3 C D A B
4 B C D 4

Im zweiten Schritt miissen wir nun den Strukturplan (Tab. 3.7) randomisieren. Eine
Randomisation ist in diesem Fall innerhalb der Blocks und zwischen den Blocks
mdglich, wir erhalten also ebenfalls eine Einschrankung der vollstdndigen Randomi-
sation. Zur Herstellung der zufélligen Anordnung entnehmen wir einer entsprechen-
den Tabelle eine zufillige Permutation der Zahlen 1, 2, 3 und 4. Erhalten wir z. B. die

Tabelle 3.8

1 2 3 4
3 C D A B
4 B C D 4
2 D A B C
1 A B C D

Permutationen 3 4 2 1 und 1 4 3 2, dann schreiben wir die Blocks in der Reihenfolge
der ersten Permutation auf (Tab. 3.8) und anschlieBend die Spalten in der Reihen-
folge der zweiten Permutation (Tab. 3.9) oder umgekehrt.
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Mit Tabelle 3.9 haben wir einen realisierbaren Versuchsplan gefunden. Erfiillt der
zuféllige Fehler ¢ die Voraussetzungen (1.49), dann kdnnen wir zur Auswertung der
Versuchsergebnisse ein Modell der Varianzanalyse mit einer speziellen dreifachen
Klassifikation heranziehen. Die Beobachtungswerte seien darstellbar durch

Yn=p+o++vi+ey, Lil=1..,n (3.11)
Tabelle 3.9
1 4 3 2
3 C B A D
4 B A D C
2 D C B 4
1 A D C B

Dabei bedeuten
u - Gesamtmittel,
«; — Abweichung von x durch den i-ten Block

=1,..,n),

B; - Abweichung von y durch die j-te Spalte
(] =1.., n),

v — Abweichung von u durch die /-te Behandlung
(I=1,..,n).

Wir kénnen zur Auswertung der Versuche wieder die bekannte Varianztabelle fiir
eine spezielle dreifache Klassifikation (vgl. z. B. Ahrens [1]) verwenden (Tab. 3.10),

Tabelle 3.10

Quelle der Variation SO Freiheitsgrade ~MQ F

Behandlungen (Faktor A) SO 4 n-—1 MQ, F4 = MQ/4/MQr
Blocks (Faktor B) S0z n—1 MQp  Fp = MQs/MQg
Spalten (Faktor C) SOc¢ n—1 MQ¢ Fe = MQc[/MQr
Versuchsfehler SOr (n—1)m-2) MQg

Gesamt S0 n? -1

wobei die einzelnen GroBen folgende Bedeutung haben:

n n n n
Bi=Yyiws C;=2Viws Ax=2Yijgs G= 2 Vijes
JkT ik i 1.7k
n G2 1 n GZ
SO =3 p2, — 2 _lyec_ Y
Og “zjyllk ol S0Oc = 2}: C; 2

1 n GZ 1» GZ
SQ5=7.2‘:B:2"?, SQA=7{§A§—n—2,

SQr = SQ¢ — SQp — SQc — SQ 4.
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Fiir ein vorgegebenes Signifikanzniveau « 148t sich mit den G6Ben F,, Fp und F,
ein Test durchfiihren, ob die Variationsursache (Faktor 4, B oder C) signifikante Ab-
weichungen von der Gleichheit der entsprechenden Erwartungswerte verursacht. Der
kritische Bereich wird dabei durch das (1 —«)-Quantil der F-Verteilung, durch

Fan-1),(n—1)(n=2);(1 =)
festgelegt.

Beispiel 3.5: Zur Herstellung eines Werkzeuges wurden vier verschiedene Verfahren entwickelt.
Wir wollen die Hypothese priifen, ob die vier Verfahren 4, B, C, D zur gleichen mittleren Lebens-
dauer des Werkzeuges fithren. Da die Lebensdauer auch von der Reinheit des verwendeten Materials
und von der Qualifikation des das Werkzeug benutzenden Arbeiters abhédngt, miissen wir diese Ein-
fliisse beriicksichtigen und gesondert erfassen, da sie die Lebensdaueruntersuchung in Abhéingigkeit
vom verwendeten Verfahren systematisch verfalschen wiirden. Als Versuchsplan verwenden wir des-
halb ein lateinisches Quadrat der GroBe 4 x 4, die Zeilen dieses Quadrates reprisentieren die Quali-
fikation der Arbeiter und die Spalten die Reinheit des Materials.
Eine bereits randomisierte Form des Strukturplanes ist

A B D C
D C A B
¢ D B A
B A C D.

Fiir die dritte Zeile heiBt das z. B., daBB der Arbeiter mit der Qualifikationsstufe 3 Werkzeuge bis
zum VerschleiB benutzt, die mit Verfahren C bei der Reinheitsstufe 1, mit Verfahren D bei der Rein-
heitsstufe 2 usw. hergestellt wurden. Als Versuchsergebnisse (Tab. 3.11) erhielten wir die Lebensdauer
in Betriebsstunden.

Tabelle 3.11

Zeilensumme (B))

o251 241 227 229 948
234 273 274 226 1007
235 236 218 268 957
195 270 230 225 920

915 1020 949 ~ 948 3832

Spaltensumme (C;) Gesamtsumme (G)
Tabelle 3.12
Quelle der Variation N Freiheits- MQ F

grade

Behandlungen 4621,5 3 1540,5 25,15
Blocks 986,5 3 328,8 5,37
Spalten 1468,5 3] 489,5 7,99
Versuchsfehler 367,5 6 61,25
Gesamt 7444,0 15
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Daraus berechnen wir die fiir die Varianzanalyse bendtigten Werte.
Ay = 251 + 274 + 268 + 270 = 1063,

A, = 880,
Az = 967,
Ay = 922

und erhalten Tab. 3.12.

Vergleichen wir die Werte der letzten Spalte aus Tabelle 3.12 mit dem (1 — «)-Quantil der F-Ver-
teilung fiir « = 0,05, wobei die Parameter der Verteilung f; =n—1=3und f,=(n—1)(n—2) =6
betragen, dann stellen wir fest, daf3

F3;6;0.05 = 4,756 < 5,37 < 7,99 < 25,15

gilt. Somit fithrt mindestens ein Verfahren zu einer Erhohung der Lebensdauer des Werkzeuges.

Eine Voraussetzung fiir die Anwendung eines lateinischen Quadrates zur Auswer-
tung von Versuchen ist, daB fiir alle n* Versuche auch Ergebnisse vorliegen. Es kann
aber sehr leicht vorkommen, daB3 ein Wert bei der Versuchsdurchfiihrung verlorengeht
oder sich als unbrauchbar erweist (z. B. sogenannte Ausreifler). Damit wir die Aus-
wertung trotzdem vornehmen koénnen, wollen wir den fehlenden Wert aus den vor-
liegenden Ergebnissen schitzen und dabei die Schitzung so bestlmmen daB SQg
moglichst klein wird.

Wir geben hier keine Ableitung des Schétzverfahrens, sondern verweisen auf die
Literatur (Linder [1]). Als Schitzwert wird dort vorgeschlagen

nZ+P+V)-2G
u= (—(ﬁ—_l)—(—r—z—):T s (3.12)
wobei folgende Bezeichnung benutzt wurde:
Z, - Summe der MeBwerte in der Zeile mit fehlender Angabe,
P - Summe der MeBwerte in der Spalte mit fehlender Angabe,
V' - Summe der MeBwerte fiir die Behandlung mit fehlender Angabe,

G’ - Gesamtsumme der MefBergebnisse.

Beispiel 3.6: Fir das lateinische Quadrat in Tabelle 3.9 erhielten wir folgende Ergebnisse
640 670 641 661
625 610 558 598
608 589 & 653
649 630 621 639

(der Wert * liegt nicht vor).
Um nach (3.12) einen Schétzwert fiir die fehlende Angabe zu berechnen, ermitteln wir fiir n = 4

Z = 608 + 589 + 653 = 1850,
P = 641 + 558 + 621 = 1820,
V = 670 + 625 + 639 = 1934
(es fehlt eine Angabe fiir die Behandlung B, vgl. Tabelle 3.9).
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G’ = 640 + 625 + -+ + 653 + 639 = 9392,
also ist
4(1850 + 1820 + 1934) — 2-9392

e = 605,33.
G-1-4-2 =

3.5. Lateinisches Rechteck, griechisch-lateinisches Quadrat

Das lateinische Quadrat ist eine Versuchsanlage zur Beurteilung von Faktoren mit nur wenigen
Stufen, eine hohe Stufenzahl benétigt viele Wiederholungen. So wie wir vom vollstindigen Blockplan
zum unvollstindigen Blockplan iibergegangen sind, wollen wir auch hier eine Modifikation des latei-
nischen Quadrates angeben. Wenn die Anzahl der Stufen ein Vielfaches der Anzahl der Spalten (bzw.
Blocks) betrigt, dann konnen wir ein lateinisches Rechteck konstruieren. Dabei sind wir aber nicht
mehr in der Lage, systematische Unterschiede innerhalb eines Blocks von Versuchseinheit zu Ver-
suchseinheit durch Randomisation auszuschalten, sondern nur noch nach jeder zweiten, dritten usw.
Versuchseinheit. Eine Auswertung von Versuchen nach einem lateinischen Rechteck wird analog zur
Auswertung eines lateinischen Quadrates vorgenommen.

Eine weitere Verallgemeinerung der Problematik ergibt sich, wenn wir beispielsweise die Wirkung
von vier Faktoren (4, B, C und D) auf jeweils p Stufen priifen wollen. Bei der Auswertung eines ent-
sprechenden Versuches ist dabei eine mogliche systematische gegenseitige Beeinflussung der Fak-
toren A und B einerseits und der Faktoren C und D andererseits durch eine geeignete Versuchs-
planung auszuschalten. Ein fiir diese praktische Aufgabenstellung geeigneter Versuchsplan wird durch
ein sogenanntes griechisch-lateinisches Quadrat gegeben. Wir wollen das Konstruktionsprinzip wieder
an einem Beispiel erldutern.

Die Faktoren 4, B, C und D seien auf jeweils p = 4 Stufen einstellbar (zu jedem Faktor gehoren
p = 4 Behandlungen). Der Strukturplan eines griechisch-lateinischen Quadrates hat dann die Ge-
stalt von Tab. 3.13.

Tabelle 3.13

Stufen des Faktors B
1 2 3 4

Stufen 1 ) 22 63 @4
des 2 249 (1,3 42 G
Faktors 3 32 G 09 @3
A 4 43 G4 2D 12

’

Dieser Versuchsplan ist dabei wie folgt zu interpretieren: Befindet sich beispielsweise der Faktor 4
auf der Stufe 2 und der Faktor B auf der Stufe 4, dann ist der Versuch mit dem Faktor C auf der
Stufe 3 und dem Faktor D auf der Stufe 1 durchzufithren.

Beim Aufstellen eines solchen griechisch-lateinischen Quadrates muB jede Variation 2. Ordnung
der Zahlen 1, 2, ..., p genau einmal vorkommen.

Eine Auswertung der Versuchsergebnisse, die nach einem solchen Versuchsplan gewonnen wur-
den, ist bei Erfiilltsein der entsprechenden Voraussetzungen (1.49) durch eine Varianzanalyse mit
spezieller vierfacher Klassifikation moglich.

Im Gegensatz zu den lateinischen Quadraten gibt es griechisch-lateinische Quadrate nicht von
jeder beliebigen Ordnung. Fiir 3, 4, ..., 12 Behandlungen mit Ausnahme von p = 6 und p = 10 sind
solche Versuchspline konstruiert worden (vgl. z. B. Cochran/Cox [1]).
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3.6. Zusammenfassung

Falls in einem Problem der Varianzanalyse auBer den im Modell erfaBten EinfluBfaktoren weitere
systematische Einfliisse eine wesentliche Wirkung haben, kann man diese Wirkung entweder durch
Randomisierung ausschalten oder durch die Aufnahme weiterer Faktoren ins Modell erfassen. Spe-
ziell werden die Modelle der einfachen und zweifachen Klassifikation behandelt.

Die Randomisierung erfolgt durch die zufillige Zuordnung der Versuchseinheiten zu den Behand-
lungen. Dabei finden Zufallszahlentafeln Verwendung.

Der Erfassung weiterer EinfluBfaktoren dient die Verwendung von Blockplinen (bei einem weiteren
Faktor) und von lateinischen und griechisch-lateinischen Quadraten und Rechtecken (bei zwei wei-
teren Faktoren).

Die Auswertung wird tber spezielle Modelle der Mehrfachklassifikation (Tafeln der Varianzana-
lyse) bis hin zum F-Test durchgefiihrt.
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4.1. Problemstellung

Im vorangegangenen Kapitel bestand die statistische Aufgabenstellung darin, quali-
tative Aussagen iiber die Wirkung von EinfluBfaktoren auf eine ZielgréBe zu ermit-
teln. Wir haben uns in erster Linie nur dafiir interessiert, ob ein EinfluB eines Faktors
vorhanden ist oder nicht. Dazu konnten wir die Modelle der Varianzanalyse aus-
nutzen und als Entscheidungskriterium einen geeigneten Test (meist einen F-Test)
heranziehen. Vielfach stehen aber auch quantitative Aussagen iiber die Wirkungs-
funktion 7 (x) im Vordergrund, d. h., wir wollen beispielsweise eine Nédherung fiir die
Funktion #(x) bestimmen. In so einem Fall werden wir durch eine Regressionsanalyse
zu den gewiinschten Aussagen gelangen.

Grundlage fiir eine Schatzung der Wirkungsfunktion #(x) ist die Kenntnis eines
Ansatzes 7(x, ¥). Wir wollen hier spezielle lineare Ansétze, die durch Polynome be-
schrieben werden, betrachten. Dabei wahlen wir fiir 4(x, 9) entweder ein Polynom
vom Grad d [vgl. (1.16), Seite 16] oder ein Polynom vom Grad d in jeder Variablen
[vgl. (1.18), Seite 17], wenn wir k EinfluBgréBen x;, ..., x; bei der Beschreibung der
ZielgroBe berticksichtigen miissen. Uns werden spiter besonders die Spezialfille von
(1.16) und (1.18) fiir k = 1, 2 und d = 1, 2 interessieren. Die Brauchbarkeit eines An-
satzes zur Beschreibung von 7(x) in einem Bereich H = B = R*kdnnen wir gegebenen-
falls durch einen Test nachpriifen. Darauf werden wir im Abschnitt 4.2. kurz eingehen.

Zur Vereinfachung der folgenden Untersuchungen wollen wir annehmen, daB die
Faktoren x; (i = 1, ..., k) auf jeweilsnur #,; = 1, ..., k;j = 1, ..., p;) verschiedenen
Stufen vorkommen konnen, d. h., die Variablen x; nehmen im Versuchsbereich ¥ nur
gewisse diskrete Werte t;; an. Die Stufen t;; werden iiblicherweise auch als Niveaus
bezeichnet. Auf Grund des speziellen Charakters der EinfluBgrofen konnen wir so-
wohl qualitative Untersuchungen durch Modelle der Varianzanalyse (dafiir geben wir
im Abschnitt 4.2. ein Beispiel an), als auch quantitative Untersuchungen durch eine
Regressionsanalyse vornehmen, letzteres wird uns vorrangig interessieren.

Zur Untersuchung des Einflusses mehrerer Faktoren auf eine ZielgroBe wird viel-
fach noch in der folgenden Weise vorgegangen: Es werden Versuche durchgefiihrt,
bei denen jeweils nur ein Faktor variiert, alle anderen Faktoren versucht man kon-
stant zu halten. Dieses Vorgehen wird fiir jede EinfluBgré8e wiederholt. Wir kénnen
dabei Versuchspldne anwenden, wie wir sie beispielsweise im Kapitel 3 angegeben
haben. Durch den sehr hohen Versuchsaufwand, der sich nicht nur in der Anzahl der
Versuche ausdriicken muB, ist eine solche Vorgehensweise vielfach sehr ungiinstig. Oft
148t sich ein solches Versuchsschema gar nicht mehr realisieren. Wir wollen deshalb
Versuchspldne konstruieren, bei denen die Wirkung aller Faktoren gleichzeitig unter-
sucht werden kann. Damit in den Ansétzen (1.16) und (1.18) eine Schitzung der Para-
meter moglich ist, miissen die Versuchspldne jeweils eine Mindestanzahl von Ver-
suchen beinhalten (vgl. Abschnitt 1.3.). So besitzt ein Ansatz der Form (1.16)
; d d) Ver-
suche enthalten. Fiir einen Ansatz durch ein Polynom vom Grad d in jeder Va-
riablen miissen wir fiir jede Variable mindestens d + 1 Stufen festlegen, um die Koeffi-
zienten schitzen zu kénnen.

Die Konstruktion eines Versuchsplanes ist mit groBen numerischen Schwierig-

gerade (k d) Koeffizienten, der Versuchsplan muf8 also mindestens (k
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keiten verbunden. Da jedoch der Ansatz 7j(x, ) eine Approximation fiir 7(x) ist und

weitere, im Ansatz nicht beriicksichtigte Einfliisse vorliegen kénnen, ist es sinnvoll,

aus praktischen Erwdgungen heraus an die Versuchspline zusitzliche Forderungen

zu stellen, um eine Berechnung zu erméglichen (vgl. Box/Hunter [1]).

. Der Versuchsplan soll in einem interessierenden Bereich H eine Schitzung fiir den
Ansatz fj(x, 9) mit vorgegebener Genauigkeit erlauben.

2. Durch einen geeigneten Test soll nachpriifbar sein, ob die erhaltene Schitzung
P(x) = 4(x, ©) die wahre Wirkungsfliche 7(x) hinreichend genau beschreibt. Er-
weist sich der Ansatz 7(x, ¥) als ungeeignet, dann soll der Versuchsplan als Kern
eines Versuchsplanes fiir einen Ansatz nichsthéherer Ordnung verwendbar sein.

. Der Versuchsplan soll die Erfassung eines weiteren systematischen Einflusses durch
eine Blockbildung erméglichen.

Einen Versuchsplan, der die Schiatzung der Koeffizienten des Ansatzes (1.16) er-
laubt, wollen wir als k-dimensionalen Versuchsplan der Ordnung d bezeichnen. Erfiillt
dieser Plan die zusitzlichen Bedingungen 1 bis 3 (oder zumindestens eine Teilmenge
dieser Bedingungen) und nehmen die k EinfluBfaktoren x; die Stufen #,; (i = 1, ..., k;
j=1,.., p) an, die in gew1ssen Kombinationen im Versuchsplan enthalten smd
dann sprechen wir von einem faktoriellen Versuchsplan (wir benutzen dafiir die Ab-
kiirzung FV). Treten alle Faktoren auf der gleichen Anzahl von Stufen auf, dann
heiBen die Versuchspldne symmetrisch, andernfalls unsymmetrisch. Wir werden nur
symmetrische Versuchsplidne betrachten.

Die Versuchspline, die alle diese einschrinkenden Bedingungen erfiillen, sind nicht
eindeutig, sie unterscheiden sich z. B. in ihrem Umfang, d. h. in der Anzahl der vor-
gesehenen Versuche. Fordern wir nun noch, da3 diese Anzahl so gering wie méglich
ist, dann erhalten wir ein Optimalitdtskriterium fiir faktorielle Versuchspldne zur
Schdtzung von 9.

—

w

4.2 Vollstiindige faktorielle Versuchspline vom Typ 2*

In diesem Abschnitt wollen wir die unbekannte Wirkungsfunktion durch ein Poly-
nom vom Grad d = 1 in jeder Variablen beschreiben. Zur Durchfiihrung entspre-
chender Versuche miissen die Faktoren x,, ..., x, jeweils auf p =d + 1 = 2 ver-
schiedene Niveaus eingestellt werden konnen. Eine hinreichend genaue Beschreibung
der Funktion #7(x) durch ein Polynom 1. Grades in jeder Variablen ist nur in einem
kleinen Bereich H sinnvoll. Zur bequemen Darstellung wollen wir uns diesen Bereich
als k-dimensionalen Wiirfel

—12x51, i=1,..,k, 4.1)

denken. Als Stufen fiir die Faktoren x;, i = 1, ..., k, wihlen wir die Endpunkte des
Versuchsbereiches V, bei ¥ = H also das untere Niveau —1 (bezeichnen wir als —)
und das obere Niveau + 1 (bezeichnen wir als +). Durch die Festlegung der Niveaus
besteht der Versuchsbereich nur noch aus einzelnen Punkten. Enthélt ein faktorieller
Versuchsplan alle méglichen 2* Variationen der beiden Stufen der k Faktoren, dann
wollen wir so einen Plan als vollstindigen faktoriellen Versuchsplan vom Typ 2* be-
zeichnen und dafiir die Abkiirzung VFV 2* verwenden. Die Basis der Typenbezeich-
nung gibt dabei die Anzahl der Stufen, der Exponent die Anzahl der Faktoren und die
Potenz selbst die Anzahl der Versuche an. Sind keine anderen Festlegungen getroffen
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worden, dann fiihren wir in jedem Versuchspunkt eines VFV 2* genau einen Versuch
durch.

Das Konstruktionsprinzip fiir einen VFV 2% werden wir fiir den Fall k = 2 erldutern.
Als Ansatz fiir 7(x) wéhlen wir ein Polynom 1. Grades in beiden Variablen

7i(x, 9) = Poxo + Hx; + Paxs + Fppxix2. 4.2)

Mit der Wechselwirkung ¢,,, dem Absolutglied ¥, und den Hauptwirkungen ¢,
und ¢, haben wir insgesamt vier Parameter zu schitzen, miissen also mindestens vier
Versuche durchfiihren. Betrachten wir zuerst die Scheinvariable x,, fiir sie tragen wir
bei allen Versuchen in den Versuchsplan + ein, da sie als +1 definiert war. Dann
werden fiir x; und x, die vier moglichen Stufenkombinationen gebildet. Diese beiden
Spalten ergeben den eigentlichen Versuchsplan, in unserem Fall einen ¥, (der Index
gibt die Anzahl der Versuche n = 22 an). Aus den Spalten fiir x, und x, erhalten wir
durch einfache Produktbildung die Werte von x, x, . Somit ergibt sich fiir einen VFV 22
der folgende Strukturplan (Tab. 4.1).

Tabelle 4.1

Versuch Va - Codierung Beobachtungs-
Nr. Xo Xy Xa X1X2 vektor

1 + = = + 1) Y1

2 + a7 = = a Y2

3 + = + = b V3

4 a7 o5 Gl + ab Ya

Falls die Versuche nacheinander durchgefiihrt werden sollen und die Reihenfolge
einen systematischen Einfluf haben konnte, muBl diese noch randomisiert werden
(vgl. auch Abschnitt 3.2.).

Die vorletzte Spalte der Tabelle 4.1 enthilt eine Codierung des VFV 22, die eine
einfachere Schreibweise des Versuchsplanes erlaubt. Befinden sich beide Faktoren
auf dem unteren Niveau, dann schreiben wir (1), befindet sich der Faktor x, auf dem
oberen Niveau, dann schreiben wir a, fir den Faktor x, auf dem oberen Niveau
schreiben wir b, und befinden sich beide Faktoren x; und x, auf dem oberen Niveau,
dann miissen wir also ab schreiben. Durch diese Codierung a8t sich der VFV 22 auch
schreiben i

(1),a,b,ab. 4.3)

Im R? dargestellt bedeutet der Versuchsplan (4.3), daB die Versuche in den Eck-
punkten des Quadrates —1 < x; < 1, i = 1, 2, durchzufiihren sind (Bild 4.1).

Stimmt, wie beim vorliegenden Versuchsplan, die Anzahl der zu schdtzenden Koef-
fizienten mit der Anzahl der Versuche iiberein, dann sprechen wir von einem gesattig-
ten Versuchsplan. In diesem Fall haben wir zwar eine minimale Versuchsanzahl,
konnen aber keinen Test durchfiihren, in dessen TestgroBe die Stichprobenvarianz
eingeht, da hierbei die Summe der Abweichungsquadrate dividiert wird durch die
Differenz aus der Versuchsanzahl und der Anzahl der Freiheitsgrade (d. h. der Para-
meter der entsprechenden Verteilungsfunktion). Das ist z. B. der Fall bei einem Test
auf die Hypothese, daB der Ansatz 7(x, 9) die Wirkungsfunktion (x) hinreichend ge-
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b 1 ab
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|

Bild 4.1

nau beschreibt, wobei wir noch zusétzliche Versuche benétigen. Die Durchfiihrung
dieses Testes werden wir jetzt kurz beschreiben, da diese statistische Fragestellung bei
der Auswertung von faktoriellen Versuchen eine wichtige Rolle spielt.
Voraussetzung fiir eine Anwendung des Testes ist, daf3 die MeBergebnisse minde-
stens asymptotisch normalverteilt sind. Die Varianz o des zufélligen Fehlers ist in den
meisten Féllen unbekannt, deshalb wird zunichst ein Schitzwert S? fiir 62 bestimmt.
Dabei konnen die zur Schitzung von ¢ notwendigen zusitzlichen Versuche in fol-
gender Weise durchgefiihrt werden: entweder
1.in I (I = 1) verschiedenen Punkten des VFV je n, Versuche oder
2. ny Versuche in (xy, ..., x,)T = (0, ..., 0), dann ist in (4.4) / = 1.
Als Schétzung fiir o erhalten wir

1 - 1 %
2 2 i 5
S l(no — P2 Z é‘, (Y, - Y) mit Y, = e jgl Y. 4.4
Die Restvarlanz 0% wird bekanntlich geschitzt durch
= X (- T (4.5)

(vgl. auch Abschnitt 1.3.1.), wobei Y; das Ergebnis des i-ten Versuches ist und ¥; die

entsprechende Schiitzung ¥; = 7i(x, 6). Als TestgroBe benutzen wir den Quotienten
der Stichprobenvarianzen

_ Sk 4.6)

Da die ZufallsgroBen (n — r)Sz/o? und (/(n, — 1)) S? [o* unabhéngig sind und einer
«2-Verteilung gentigen, besitzt die ZufallsgroBe (4.6) eine F-Verteilung mit den Para-
metern f; = n — rund f, = I(n, — 1). Durch die Vorgabe eines Signifikanzniveaus
o ist der kritische Bereich durch das (1 —«)-Quantil der F-Verteilung F,_,,i(ng-1), 1-« f€St-
gelegt. Erhalten wir fiir einen vorgegebenen Ansatz 7(x, ¢) bei festgelegtem Versuchs-
plan V, tir 7 nach (4.6) eine Realisierung, die im kritischen Bereich liegt, dann fiihrte
eine zu groBe Stichprobenrestvarianz zur Ablehnung der Hypothese. Von einer grofen
Restvarianz diirfen wir aber auf einen zur Beschreibung von #(x) ungiinstigen Ansatz



4.2, Vollsténdige faktorielle Versuchspline vom Typ 2* 63

schlieBen (vgl. auch Kapitel 6). In diesem Fall miissen wir einen anderen Ansatz zur
Auswertung heranziehen, d. h., wir gehen zu einem Polynom néchsthéherer Ordnung
tiber und fiigen damit dem Ansatz neue Funktionen der EinfluBgréBen hinzu. Das hat
zur Folge, daB wir die Anzahl der Niveaus der EinfluBgréBen erhéhen miissen.

Haben wir bisher der Versuchsdurchfiihrung einen VFV 22 zugrunde gelegt, so wer-
den wir jetzt einen VFV 23 konstruieren. Wir benutzen als Ansatz ein Polynom
1. Grades in allen Variablen und beriicksichtigen nun k = 3 EinfluBgréBen bei
fi(x, 9). Es sei

(X, &) = Foxo + F1x; + Foxz + Faxz + F1ox1%2 .7
+ B1ax1 X3 + PraXaXs + Pyp3X 1 X2X3.
Bei der Konstruktion des VFV 22 gehen wir von einem VFV 22 aus und fiihren diesen

Versuchsplan einmal bei festgehaltenem x; auf dem unteren Niveau —1 und einmal
bei festem x5 auf dem oberen Niveau +1 durch (s. Bild 4.2).

X7 X2 X3
]
- _ .
V4 . + -
+ + =
Ve
- - +
+ - +
%4 - + +
+ + +
Bild 4.2

Fassen wir beide Plane ¥, und die Stufen von x; zusammen, ergibt sich fiir einen Vg
der Strukturplan aus Tab. 4.2.

Tabelle 4.2

Versuch Vs Codierung | Beobach-
h R : tungs-

Nr, Xo {X1 X3 X3 X1Xz X1X3 XaX3 X1XzX3 vek%or

1 + i = = + o+ - 0) »

2 + i+ = =i = = 4+ o+ a ¥z

3 SIS B + = + b Y3

4 L A = = = ab Ya

3 G i = ol ep = = o ¢ Vs

6 LI LR IR + = = ac Y6

7 + P-4+ o+ = =+ = be V2

8 + i+ + +i o+ + + + abc Vs




64 4. Mehrfaktorpline

Fithren wir eine Codierung ein und bezeichnen das untere Niveau mit (1) und die
oberen Niveaus der Faktoren x;, x, bzw. x3 mit a, b bzw. ¢, dann kénnen wir den
VFV 22 in der Kurzform

(1), a, b, ab, c, ac, bc, abc ' (4.8)

schreiben. Dieses Konstruktionsprinzip 148t sich leicht verallgemeinern, wir kénnen
fiir ein beliebiges k den VFV 2 stets aus einem VFV 2%-! aufbauen, indem wir diesen
Plan mit x; auf dem unteren und mit x; auf dem oberen Niveau durchfiihren. Als An-
satz 7j(x, &) wird dabei jeweils ein Polynom 1. Grades in jeder Variablen

7i(%, 8) = DoXo + D1X; + - + DX + Diaxixz + - “.9)
+ Dip aXi X2 e X

benutzt. Fiir & = 4 demonstrieren wir die Konstruktion des VFV 24 durch einen
VFV 23 anhand der Codierung. Befindet sich die Variable x, auf dem oberen Niveau,
so codieren wir mit d. Fiithren wir den VFV 22 [vgl. (4.8)] auf dem unteren Niveau
von x, durch, dann erhalten wir wieder (4.8), mit x, auf dem oberen Niveau ist (4.8)
jeweils mit d zu multiplizieren. Auf diese Weise erhalten wir den VFV 2%

(1), a, b, ab, c, ac, be, abce, d, ad, bd, abd, cd, acd, bed, abed. (4.10)

Wir haben bisher nur Polynome 1. Grades in jeder Variablen als Ansatz fi(x, ¢) fiir
die Wirkungsfliche #(x) benutzt. Fiir ein Polynom d-ten Grades mit k EinfluBgréBen
k+d :

d ) unbe-
kannten Koeffizienten schitzen zu konnen. Fiir eine groBere Anzahl von EinfluB3-
groBen und einen hoheren Polynomgrad wird der Unterschied zwischen der Anzahl
der Versuche und der Parameter sehr groB. Fiir £ = 3 und d = 2 besitzt ein Ansatz

miissen wir als Versuchsplan einen VFV (d + 1)* verwenden, um die

d-ten Grades G) = 10 Parameter, der VFV 33 erfordert bereits n = 27 Versuche,

fiir k = 4 und d = 3 stehen fiir die Schitzung von (Z) =135 Parameterﬁ bei einem

VFV 4* n = 256 Versuche zur Verfiigung. Diese hohe Versuchsanzahl ist aber viel-
fach zu aufwendig. Wir wollen mit einer geringeren Anzahl von Versuchen auskom-
men (Fiir 35 Parameter gentigen 35 Versuche, wenn kein Test durchgefiihrt werden
soll).

4.2.1. Auswertung eines VFV 2¥ zur Schiitzung der Regressionskoeffizienten

Der Versuchsplan ¥, beeinflu3t die Schitzung 6 des Parametervektors & nur durch
die Matrix FTF (vgl. Abschnitt 1.3.). Diese Matrix hat die Gestalt

Jélf 1Xf1(x)) oo Ié:lfl(xj)fr(xj)

FF=1|].. . 4.11)
S AGNE) 3 AR
J=1 Jj=1
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Ein Ansatz der Form (4.9) 1aBt sich unter Beachtung von (1.37) iiberfiihren in einen
Ansatz der Form

ii(x, 9) = 91 /i(x) + - + Fofe(x) (4.12)
[vel. (1.19)]. Dabei gilt beispielsweise

Xo=fi(®) =1, x1 =f£o(X),..0s Xk = frpa(X), -

X1X2 = fr42(X)y ey X1X2 e Xy = for(X), } @.13)

wobei fi(x)), i =1, ..., 2%; j = 1, ..., n, jeweils nur die Werte —1 und + 1 annehmen
ann.
Fiir die Elemente der Matrix (4.11) gelten somit fiir einen VFV 2% die Beziehungen

Y fENAE) =0, i%k; Lk=1,.r, @4.14)
Jj=1
Y fix) = 0, S0l @.15)
=1
él ) =n,  i=1,..,r. , (4.16)

Fiir einen Vg (vgl. (Tabelle 4.2) wiirde (4.14) bedeuten, daB3 die Spalten xyx,, X;x3
bzw. x,x; summiert werden, bei (4.15) sind die Spalten x,, X, bzw. x; zu summieren,
und bei (4.16) erhdlt man eine Summation von n-mal + 1.

Damit erhélt die Matrix FTF die spezielle Gestalt

n 0
FF = ( ) = nE,. 4.17)

() oo 1]
Mit (4.17) vereinfachen sich die Schatzungen der Parameter 9, i = 1, ..., r, (vgl. Ab-
schnitt 1.3.1.) wesentlich. Es ergibt sich aus (1.26) .

6 =@E,)"'FT% = —rll—FW/ 4.18)
mit
0.2
Bg =d*(FTF)'= YE"'
Fiir die einzelnen Parameter 9, i = 1, ..., r, erhalten wir aus (4.18) die Schitzungen
0, =L > fx)Y, i=1,..,r. (4.19)
nj=1

Durch ¥, werden also die Vorzeichen fiir eine Summation der Beobachtungswerte
festgelegt. Die Parameterschatzungen (4.19) sind unkorreliert und bei vorliegender
Normalverteilung fiir die Beobachtungswerte sogar unabhingig.

4.2.2. Auswertung eines VFV 2* mittels Varianzanalyse

Die Auswertung eines vollstdndigen faktoriellen Versuchsplanes mit einem Modell
der Varianzanalyse soll hier nur am Beispiel eines VFV 22 erldutert werden. Fiir mehr
als zwei EinfluBgroBen vgl. z. B. Cochran/Cox [1].

5 Bandemer, Versuchsplanung
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Zur qualitativen Auswertung von n Realisierungen eines VFV 22 benutzen wir eine
zweifache Klassifikation der Form

Ypp=p+o+B+yy+en i=12 j=12; I=1,..,n

[vgl. (1.42)], wobei «; die Effekte des EinfluBfaktors A; mit den Stufen A" und 4?,
B, die Effekte des Faktors 4, mit den Stufen 4$” und A% sind. Durch y,; werden die
entsprechenden Wechselwirkungen von 4, mit 4, ausgedriickt.

Ist bei der Planung der Versuche die Erfassung eines sich systematisch d&ndernden
EinfluBfaktors zu beriicksichtigen, so fiihren wir eine Blockbildung durch. Dazu
fassen wir die vier Stufenkombinationen der EinfluBfaktoren als Stufen eines Faktors
in einer Versuchsanlage mit vollstdndig randomisierten Blocks auf und werten die
Veérsuchsergebnisse zundchst entsprechend einem Blockversuch aus (vgl. Abschnitt
3.3.1.) und anschlieBend durch ein Modell der zweifachen Klassifikation. Eine An-
leitung zur Auswertung eines VFV 22, der in g Realisierungen vorliegt (die wir als
Blocks auffassen) und ein ausfiihrliches Beispiel finden wir bei Rasch/Enderlein/ -
Herrendorfer [1].

Bei den Modellen der Varianzanalyse betrachten wir die Variablen x; (i = 1, ..., k)
auf den Stufen 0 und 1, bei einem VFV 2* haben wir die Stufen —1 und +1 ver-
wendet. Wollen wir die Schitzungen @, der Parameter #, fiir ein Regressionsmodell
mit den Schitzungen fiir die Effekte in Varianzanalysemodellen vergleichen, so er-
halten wir beispielsweise

01 =61/2,0;, = 82/2, ..., 0pss = Bu]2, ..., Opiygrr = F12/2.

4.3. Teilweise faktorielle Versuchspline vom Typ 2%-7

Wie wir bereits am Ende von Abschnitt 4.2. bemerkt haben, wird fiir mehrere Ein-
fluBgréBen der Unterschied zwischen der Anzahl der Parameter des Ansatzes und
der Versuchsanzahl sehr schnell unvertretbar groB. Eine sehr groe Anzahl von Ver-
suchen ergibt zwar eine groBe Genauigkeit der zu schdtzenden Parameter, ist fiir die
Losung praktischer Probleme aber meist nicht gerechtfertigt. Wissen wir dariiber
hinaus z. B. aus sachlichen Griinden, daB eine gewisse Anzahl von Wechselwirkungen
gleich null ist, dann erfordert ein VFV zu viele Versuche. In diesen Féllen kénnen wir
mit einer gewissen Auswahl von Versuchen aus einem VFV als Versuchsplan aus-
kommen. Solche Versuchsplane wollen wir als teilweise faktorielle Versuchspline be-
zeichnen und mit TFV abkiirzen. Die Konstruktion eines TFV werden wir an einem
einfachen Beispiel demonstrieren. Fiir die Wirkungsfliche #(x) nehmen wir einen
Polynomansatz 1. Grades

(%, B) = DoXo + DX, + 92x2 + DXy (4.20)

an. Ein VFV 22 wiirde 8 Versuche zur Schitzung der Koeffizienten fordern. Da der
Ansatz (4.20) vier unbekannte Koeffizienten besitzt, wollen wir versuchen, diese
Koeffizienten durch Verwendung eines VFV 22 (erfordert vier Versuche) zu schétzen.
Wenn wir x3 = x,Xx, setzen, dann geht der Ansatz (4.20) in den Ansatz (4.2) tiber. Fiir
diesen haben wir aber den VFV 22 konstruiert. Deshalb wollen wir den Faktor x;
auf die Stufen von x,x, eines VFV 22 einstellen, als Codierung schreiben wir dafiir c.
Wir erhalten somit die Tabelle 4.3.
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Tabelle 4.3

Versuch Xo Xy X2 x3X2 = x3  Codierung Beobachtungsvektor
Nr.

1 s = = Iz c »1

2 + + = = a Y2

3 + - T+ - b 3

4 ot o+ + + abe Ya

Wenn aber die Annahme, die Wechselwirkung ;. sei null, falsch ist, dann ist die
durch den VFV 22 fiir 9, gefundene Schitzung ©; noch von dieser Wechselwirkung
abhingig, wir haben dann mit ©; den Ausdruck 9 + %, geschitzt. Ist #;, % 0,
dann miiBte ndmlich der Ansatz (4.20) die Form

(X, 9) = Foxo + Xy + Xz + Fax3 + F1x1%2

haben. Da sich die Werte fiir x,x, und fiir x; in den Punkten x; des Planes nicht
unterscheiden, ist

Xy, §) = JoXoy + F1x1; + FaX2y + (B3 + F12)Xa4s
und dem Koeffizienten 5 in (4.20) entspricht in den Planpunkten #; + ¢;,. Die
Schitzung @5 aus den Versuchsergebnissen gilt also fiir #3 + #,,. Ahnliche Uber-
legungen gelten selbstversténdlich auch fiir die Schéitzungen der Koeffizienten 4, und
9,. In dem Fall, daB die Schitzungen gewisser Koeffizienten voneinander abhéingen,
sprechen wir von Vermengungen und schreiben dafiir im oben erwidhnten Beispiel

9/3 - 03 + Py, :
Wir bezeichnen den durch Tabelle 4.3 gegebenen faktoriellen Versuchsplan als
TFV 23-1, Ein wichtiges Problem bei der Auswertung von Versuchen nach einem
TFV ist die Aufdeckung solcher Vermengungen innerhalb der Schiatzungen. Wir wol-
len die allgemeine Vorgehensweise wieder fiir einen TFV 23-! beschreiben. Bei der
Konstruktion des Versuchsplanes hatten wir x; = x;x, gesetzt. Bezeichnen wir die
erste Spalte (entspricht x,) der Tabelle 4.3 mit 7, dann ergibt sich fiir jede Spalte als
Produkt der Spalte mit sich selbst stets 7 (z. B. x3x3 = I), also wegen x3 = x,x»

I = X3x%3 = X;X2%3. (4.21)
Die rechte Seite von (4.21) wird als Generator eines Versuchsplanes und (4.21) selbst
als definierende Beziehung bezeichnet. Mit dieser definierenden Beziehung konnen wir
nun die Vermengungen der einzelnen Schitzungen berechnen. Dazu multiplizieren
wir (4.2]) nacheinander mit x,, x, und x5 und erhalten wegen x} = x} =x3 = J

X, = X2X3, X3 = X1X3, X3 = X1X3. 4.22)
Aus (4.22) lesen wir die entsprechenden Vermengungen ab

Oy =B, + Brs, Oy —> 9 + D13, OF =95 + 04,. (4.23)
Aus (4.21) ergibt sich fiir die Schidtzung des Absolutgliedes

Oy — Do + F125. (4.24)

Kénnen wir die Annahme aufrechterhalten, daB alle Wechselwirkungen verschwinden
(was gegebenenfalls durch einen Test nachzupriifen ist), dann sind @, (i = 0, ..., 3)

5%
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Schétzungen fiir die Parameter 9; (i =0, ..., 3). Bei der Typbezeichnung eines
TFV gibt der Exponent von 2 die Differenz zwischen Anzahl der Faktoren und Gene-
ratoren an, in diesem Fall also 3 — 1. Die Beziehung x; = x,x, war willkiirlich ge-
wiahlt worden. Ebenso hdtten wir auch x; = —x,x, setzen konnen und wiren so zu
einem alternativen TFV gelangt (Tab. 4.4).

Tabelle 4.4
Versuch Xo X1 Xz x3 = —x3x, Codierung Beobachtungsvektor
Nr.
1 + - - - @ »
2 it et = &P ac Y2
3 + = + + be Vs
4 + + + == ab Ya
Die definierende Beziehung I = —x,x,x; filhrt zu den Vermengungen
96’—”‘90 — D123, @;"—’01 — P23,
Of =, — i3, OF > 03 — Dy (3.2

Mit Hilfe der beiden alternativen TFV konnen wir alle Koeffizienten (auch die Wech-
selwirkungskoeffizienten) des Ansatzes

(X, ) = Foxo + Pyx; + Foxz + Faxs + F1,%x,%2 (4.26)

+ B13%1X3 + F23%2X3 + F123%1%2X3

unvermengt schitzen, wenn sich nach Durchfiihrung eines TFV 23! herausgestellt
hat, daB der Ansatz (4.20) nicht sinnvoll ist. Die Schétzungen fiir die Parameter er-
geben sich in der Form

o, _ Gt o
und 5 Z o “.27)

=233

6, 5 .
Analog erhélt man aus (4.23), (4.24) und (4.25) die iibrigen Schitzungen. Ein TFV 23-1
und ein alternativer TFV 23-* zusammen ergeben einen VFV 23,

Beispiel 4.1: Es ist die Warmeleitfahigkeit von Sublimaten, die bei der Chlorierung titanhaltiger
Schlacke in der Schmelze entstehen, zu untersuchen (vgl. Chomjakov/Zeltova/Adler/Nalimov [1]).
Um die Apparaturen des Kondensationssystems bei der Projektierung der Chloratoren berechnen zu
konnen, miissen wir den spezifischen Wirmeleitfahigkeitskoeffizienten der Sublimate kennen. Es ist
dieser Wert in Abhingigkeit von der Dichte des Stoffes, seiner chemischen Zusammensetzung und
der Temperatur zu ermitteln. Wir miissen also vier EinfluBfaktoren beriicksichtigen:

x® - Schiittgewicht (in g/cm?),

x{ - Chlorgehalt der Sublimate (in Volumenprozenten),

x{ - Verhiltnis der Konzentrationen von SiO und TiO, in den Sublimaten,

x{ - Temperatur (in °C)
(die weiteren Berechnungen werden ohne MaBeinheiten durchgefiihrt). Auf Grund praktischer Er-
fahrungen kénnen wir annehmen, daB nur die Faktoren x$ und x{ bzw. x{ und x{” sich gegen-
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seitig beeinflussen, alle anderen Wechselwirkungen konnen vernachlissigt werden. Somit erhalten
wir fiir den Wirmeleitfihigkeitskoeffizienten den Ansatz

7, 9) = dx{” + 9xi” + $2 + B2
+ 350 + 9y x®@xP + 9, xPx?, (4.28)
der fiir den Versuchsbereich
V:0,72 = x¥ = 1,02; 35 < x¥ = 45; (4.29)
0,75 < x{¥ < 1,25; 200 = x{* =< 300

von Interesse ist. Beim Aufstellen des Strukturplanes eines TFV wurden stets die Niveaus —1 und +1
benutzt. Ein Versuchsbereich ¥, der durch ein Parallelepiped der Form a; < x{® < b;,i=1,..., k,
gegeben ist und den wir als natiirlichen Versuchsbereich bezeichnen wollen, geht durch eine einfache
Transformation in die gewiinschte Form tiber. Es gilt fiir den i-ten Faktor
’ b — a,

AP =20 - 5 “xi,  d=1,..k, (4.30)
mit
a; + by

Tc

iEO) a=

So erhalten wir z. B. fiir x{® auf dem unteren Niveau aus

072 + 1,02 1,02 — 0,72
072 = 3 + 5 x;

x; = —1.

Analog transformieren wir den gesamten Versuchsbereich ¥ nach (4.29) und erhalten Tabelle 4.5.

Tabelle 4.5

© © () (©)
X7 x5 xP X

unteres Niveau x;
Nullniveau X
oberes Niveau X

-1 10,72 350 0,75 200
0,87 40,0 1,00 250
1,02 450 1,25 300

]

-o

Der Ansatz (4.28) zur Schitzung der Wirkungsfunktion 7(x) besitzt 7 Koeffizienten, wir wollen
deshalb einen TFV 24! konstruieren, mit dem diese Koeffizienten geschitzt werden konnen. Zur
Aufstellung der definierenden Beziehung gehen wir von

X4 = X1X3 “4.31)

aus (ein TFV 24-1 ist ein Versuchsplan fiir 3 Faktoren, aber die Wechselwirkung x, x, soll nach Vor-
aussetzung vernachldssigbar sein). Multiplizieren wir (4.31) mit x4, um die definierende Beziehung

I= x1X3%4 4.32)

und daraus die Vermengungsstruktur der Schitzungen zu erhalten. Durch Multiplikation mit xo,
Xy, .. Xa, X1X2, ..., X3X4 berechnen wir die Vermengungen, wobei wir alle zweifaktoriellen Wechsel-
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wirkungen mit beriicksichtigen wollen.

Xo = X1X2X4, B0 > Do + B124,
Xy = BXaX4 = XpXa, 6y By + D34,

Xz =, X1X3Xe = X3X4) 6, > 95 + 14,

X3 = X1X2X3X4, O3> 95 + V1234,
Xa = X1 X2X2 = Xy%3, Oy > 94 + V42,
X1Xp = X}Xpxq = X4, O12 > 91z + D4y () (4.33)
X1X3 = XjX2X3Xa = X2XaXa, O13 > 913 + D234,
X1 Xa = XGxo X% = X3, Ora > B4+ 92, (%)
X2X3 = x1x§x3x4 = X1X3X4, O3> 023 + D134,
Xa¥Xa = %4322 = Xy, s> D34 + By, (*)
X3Xa = X;X2X3X3 = X1X2X3, @34 —> 034 + F123.

Auf die mit (*¥) versehenen Beziehungen kénnen wir verzichten, diese treten doppelt auf. Der Ansatz
(4.28) besitzt 7 Koeffizienten, der TFV 24-1 erfordert 8 Versuche. Damit wir die Standardabweichung
o des Versuchsfehlers hinreichend genau schétzen konnen, fithren wir in jedem Punkt des Vg zwei
Versuche durch. Die Komponenten des Beobachtungsvektors in Tabelle 4.6 sind die jeweiligen Mit-
telwerte der beiden Versuche. Wir wollen noch fiir die Verteilung des zufilligen Fehlers eine Normal-
verteilung voraussetzen und fiir den Test auf eine hinreichend genaue Beschreibung von 7(x)
durch 7(x, 9) auBerdem noch 2 Versuche im Punkt (x;, x5, x5, x4)T= (0, 0, 0, 0) durchfiihren (dabei
ergab sich y, = 350,0).
Der in Tabelle 4.6 angegebene Versuchsplan ist dabei durch Randomisation aus dem Plan Vg in

Tabelle 4.2 entstanden unter Benutzung der randomisierten Zahlenfolge

7,6,8,5,3,2,4,1.
Berechnen wir nun aus ‘Tabelle 4.6 Schitzungen der Koeffizienten des Ansatzes (4.28) unter Ver-
wendung des Ausdrucks (4.19). Es ergeben sich, wenn wir die Versuchsergebnisse (letzte Spalte in Ta-
belle 4.6) mit den Vorzeichen der zum Koeffizient gehdrenden EinfluBgroBe versehen, folgende
Schitzungen

B0 = (296 + 122 + 239 + 586 + 232 + 292 + 539 + 383)/8 = 336,12,

4, = (296 + 122 — 239 — 586 + 232 + 292 — 539 — 383)/8 = —100,62,

4, =382, #; = —2538, By = -9,62,

$i3 = —1,12, B3 = 92,12, B34 = —33,62.
Aus den Vermengungen (4.33) entnehmen wir, daf die Schatzungen @, jeweils nur mit unwesentlichen,
vernachlissigbaren Koeffizienten vermengt sind. Weiterhin iberzeugen wir uns leicht durch einen
entsprechenden Test, daB die Schitzung @,3 nicht signifikant von null verschieden ist. Bevor wir die
Schitzung 7(x, @) weiterverwenden konnen, wollen wir priifen, ob der Ansatz 7j(x, ¢) die Wirkungs-
fliche hinreichend genau zu beschreiben vermag. Wir gehen dabei einen etwas anderen Weg als wir
im Abschnitt 4.2. beschrieben haben, da wir keine zusitzlichen Versuche durchfiihren wollen, die
Differenz aus Anzahl der Freiheitsgrade (Parameter der Verteilung) und Anzahl der Versuche aber

nur'l betragt.
Fiigen wir der Tabelle 4.6 eine Spalte mit x,z hinzu, dann stimmen die Elemente dieser Spalte mit

der Spalte fiir xo iiberein. Da wir @,4 = 0 setzen konnten, ist @, cine vermengte Schitzung fiir
4

Bo + Fyq + oo+ + F4q = Fo + 2 P Andererseits ist der Mittelwert j, der Versuchsergebnisse von
=1
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Tabelle 4.6
Ver-
such | ] Vel Beobachtungs-
Nr. Xo X1 X2 X3 X4 = X1Xp | X1X3 XzX3 XaXs | vektor
1 + i+ + 4+ o+ o+ |29
2 + i+ -+ = T+ - = 122
3 + - - + + = - + 239
4 + = + + = = + - 586
5 + e - = = 232
6 + + - = = R + 292
7 + - - - + e <)
8 + - - - =+ 383
im Punkt (xy, ..., x4)T = (0, 0, 0, 0) durchgefuhrten Versuchen eine unvermengte Schatzung fiir 9.
n

Mit 5 = 3 y,/n als Schitzung O, fiir 9o + 20,, wird durch y — y, der Ausdruck Z &y, geschitzt.
i=1 i=1 i=1
4
Dann 148t sich die Hypothese Hy : > #;; = 0 durch Anwendung des bekannten #-Tests priifen. Fiir
=1
n
das vorliegende Beispiel berechnen wir j = Z y,/S = 336,12 und mit y, = 350,0 die Schitzung

7 — yo = 336,12 — 350,0 = —13,88 fur 21‘}“ Da wir die Hypothese Hj : 219“ = 0 fiir ein belie-

biges Signifikanzniveau o nicht abzulehnen brauchen, konnen wir den Ansatz (4 28) als hinreichend
gute Beschreibung von n(x) ansehen. Damit der gesuchte Wirmeleitfahigkeitskoeffizient berechnet
werden kann, miissen wir noch die Riicktransformation zu (4.30) durchfithren. Wir erhalten mit den
Beziehungen

x? — 0,87 X2 — 40
A e Xy = ——(—,
0,15 5
* - 1,0 *Y — 250
X3 = ——c Xg = ——/——
0,25 50

fir die Wirkungsfunktion
7i(x, §) = 336,12 — 100,62x; + 38,12x, — 25,38x;
—9,62x4 + 92,12x,x3 — 33,62X3X4.

Bei der Durchfiihrung eines TFV 2%-! sprechen wir wegen 2¢~! = 2%/2 auch von
halben Wiederholungen. Fiir k& > 5 sind solche halben Wiederholungen doch hiufig
schon zu umfangreich, der Versuchsaufwand ist zu hoch. Da aber viele der unkorre-
lierten Schitzungen eines TFV 2%-1 mit oft nur unwesentlichen Wechselwirkungen
vermengt sind, konnen wir zu noch kleineren Teilen von VFV 2* {ibergehen. Sind die
Parameter &, ..., 9, eines Ansatzes 7(x, &) zu schétzen, also beispielsweise die Para-
meter in

(X, 9) = Foxo + Xy + -+ + F9x4, (4.34)
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dann gehen wir von einem VFV 2* aus. Fiir (4.24) wiirde so ein Plan n = 27 = 128
Versuche verlangen. Den VFV 2* zerlegen wir nun in 2? Teile und betrachten einen
27-ten Teil als TFV 2*-?, Da in (4.34) nur acht Parameter zu schiitzen sind, zerlegen
wir den VFV 27 in 2* = 16 Teile, weil der entstehende TFV 27-4 dann nur noch acht
Versuche verlangt. Zur Berechnung der bei dieser Zerlegung auftretenden Vermengun-
gen bendtigen wir insgesamt p Generatoren, fiir einen TFV 27-% also p = 4. Die Ver-
mengungen benGtigen wir dann, wenn wir festgestellt haben, daB ein Ansatz 7(x, 9)
nicht umfangreich genug ist und wir zu einem anderen Ansatz {ibergehen miissen.
Fiir den Ansatz (4.34) wihlen wir die folgenden vier Beziehungen

X1X2 = X4, X1X3 = X5, X2X3 = Xg, X1X2X3 = X;. (4.35)
Aus (4.35) leiten wir die definierende Beziehung
I = X1X3X4 = X1X3Xs = X2X3Xg = X1X2X3X7 (4.36):

her. Damit wir alle Vermengungen aufdecken konnen, miissen wir auch noch alle
Produkte der Generatoren (4.36) betrachten, also z. B. I = (x;x3xs) (X2X3Xg) =
X;X2Xs5X¢. Bilden wir alle ( ;) = 6 paarweisen Produkte, alle ( g) Produkte mit 3
Generatoren und das Produkt aller 4 Generatoren, dann hat die vollstédndige definie-
rende Beziehung dieses TFV 27-4 die Gestalt

I = X1X2X4 = X1X3X5 = X2X3Xe = X1X2X3X7 = X2X3X4Xs
= X1X3X4Xe = X3XqX7 = X1 X2X5Xe = X2X5X7 = X1XeX7 4.37)
= X4X5Xg = X1X4X5X7 = X2X4XeX7 = X3Xs5XeX7 = X1X2X3X4X5XeX7.
Auf dem tiblichen Weg, also durch eine entsprechende Multiplikation, bestimmen wir
die Vermengungen der Schitzungen. So z. B. fiir x,
X1 = X2Xg4 = X3Xs = X1X2X3Xe = X2X3X7 = X1X2X3X4X5 = X3X4X¢
= X1X3X4X7 = X2X5Xg = X1X2X5X7 = XeX7 = X1X4X5Xs = X4Xs5X¢
= X1X2X4XX7 = X1X3X5X6X7 = X2X3X4X5X6X7
gilt also
O, =y + Dag + D35 + Diazs + P23 + Pr2zas + Dass
+ ?91347 + 19256 + "91257 + 1?67 + 191456 + 19456 (4'38)
+ D12467 + P13567 + P234567-
Damit wir diese Schatzung sinnvoll anwenden konnen, miissen wir uns also davon
iiberzeugt haben, daB die entsprechenden Wechselwirkungen vernachléssigbar sind.
Plidne mit einer groBen Anzahl von Versuchen erfordern bei ihrer Durchfiihrung
viel Zeit. Uber einen langen Zeitraum sind aber die Versuchsbedingungen kaum kon-
stant zu halten, sei es durch Alterung der Aggregate, durch Auderung der Elgen-
schaften der Rohstoffe oder durch deren Verbrauch. Wiirden wir die Versuche in
einer ununterbrochenen Reihenfolge durchfiihren, dann miifiten wir mit einem,
moglicherweise recht groBen systematischen Fehler rechnen. Deshalb soll dieser zu-
sitzliche EinfluB durch eine Blockbildung (vgl. Kapitel 3) erfaBt werden. Um diese
Aufgabe zu 16sen, fithren wir eine neue diskrete Variable x,, in den Ansatz 7(x, 9) ein.
Diese Variable x,, soll die Verdnderung zwischen den Blocks charakterisieren. Wol-
len wir einen Versuchsplan in 22 Blocks aufteilen, dann miissen wir ¢ neue Variable

Xy» Xgx, ... cinfiihren. Beim Aufteilen eines VFV 22 in zwei Blocks identifizieren wir
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die neue Variable x,, z. B. dann mit x,x,x3, wenn die Wechselwirkung #,,5 vernach-
ldssigbar ist. Der erste Block enthélt dann alle die Versuche eines VFV 23, fiir die
X1X2X3 = X, = +1 gilt, und der zweite Block entsprechend alle Versuche mit
X1X2X3 = X, = — 1. Den so erhaltenen Versuchsplan konnen wir auch als TFV 24-*
mit der definierenden Beziehung I = x;x,x3x, betrachten und die entsprechenden Ver-
mengungen bestimmen. Dabei sollen keine Wechselwirkungen &4, P24,..., 124, -
auftreten konnen. Einzelheiten zur Aufteilung eines VFV 2% in Blocks finden wir
z. B. bei Davies [1].

4.4. Versuchspline 2. Ordnung

LaBt sich die Wirkungsfliche #(x) nicht hinreichend genau durch ein Polynom
1. Grades in jeder Variablen beschreiben, dann gehen wir zu einem Ansatz durch ein
Polynom 2. Grades iiber

k k k
(X, 9) = Joxo + X dx; + X duxi + T dyxixg. (4.39)
=t =1 s=ri<s
Versuchspléne fiir einen Ansatz der Form (4.39), die wir als Versuchspline 2. Ordnung
bezeichnen, erfordern, daB jeder Faktor auf mindestens 3 Stufen untersucht werden
kann, damit eine unvermengte Schitzung der Koeffizienten #;; (i = 1, ..., k) moglich
ist. Nur in wenigen Féllen werden wir fiir die Beschreibung der Wirkungsfliche 7(x)
sofort einen Ansatz der Form (4.39) wéhlen. Haufiger wird es sein, zuerst eine Appro-
ximation durch ein spezielles Polynom 1. Grades in jeder Variablen vorzunehmen
und nur, wenn sich dieser Ansatz als nicht ausreichend erwiesen hat, werden wir zu
einem Ansatz durch ein Polynom 2. Grades tibergehen. Zur Schitzung der Koeffi-
zienten dieses Ansatzes konnen wir einen VFV 3* verwenden. Dabei ist aber die An-
zahl der Versuche oft unvertretbar grof3, aulerdem wurden ja bereits Versuche durch-
gefiihrt, die wir gern weiterverwenden wollen (vgl. Forderung 2 in Abschnitt 4.1.).
Erweist sich nach Durchfiihrung eines VFV 2 oder TFV 2*-? der Ansatz durch ein
Polynom 1. Grades in jeder Variablen als unzureichend zur Beschreibung von #(x),
dann wollen wir weitere Versuche durchfiihren, um die Koeffizienten &, , 922, ..., P
des quadratischen Ansatzes schidtzen zu kénnen. Den Punkten des durchgefiihrten
Planes werden neue Punkte hinzugefiigt, z. B. die sogenannten Sternpunkte. Wir
konnen 2k solche Sternpunkte mit den Koordinaten

g5 x) =(0,..,,0, £ %,0,...,0); I=0,1,....,k -1,
NI
!
finden. Bei der Wahl von « konnen wir weitere Forderungen an den Versuchsplan be-
riicksichtigen. Fiir einen VFV 2* hat wegen FTF = rE, [vgl. (4.17)] die Varianzfunk-
tion D?Y¥(x) der Schitzung ¥(x) = #(x, @) die spezielle Form [vgl. (1.29)]

D2P(x) = o¥(l, xT)%E,, (i)

(4.40)

02
== +xT) (4.41)

0.2
=7(1+ X4 x5+ e+ D).
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Dabei haben wir den speziellen Funktionsvektor
f)T = (x0, X1, .0 X)) = (1,XT) (4.42)

verwendet. Den Ausdruck (4.41) kénnen wir wie folgt interpretieren: Die Varianz
der Schitzung ¥(x) ist auf allen Kugelschalen x3 + x% + -+ + x2 = p? mit festem
Radius p konstant. Ein Versuchsplan mit dieser Eigenschaft heiBt drehbar. Wir for-
dern nun, daB auch der durch die Sternpunkte erweiterte Plan drehbar ist. Dazu wer-
den wir Aussagen bendtigen, unter welchen Bedingungen an die Matrix FTF die Va-
rianzfunktion von der Gestalt (4.41) ist. Bei Box/Hunter [1] und bei Nalimov/Cer-
nova [1] finden wir fiir Versuchspldne 2. Ordnung die Bedingungen

1. T A=l i=1,enk, (4.43)
Jj=1
2. jgl Xpyln =3 ng Xxhin = 324, (4.44)

3. die ungeraden Momente bis zur 4. Ordnung sind identisch null,

wobei die beliebig wihlbaren Konstanten 4, und 4, noch durch
2T k+2

eingeschriankt sind (andernfalls ist F TF singuldr).

Beschreiben wir nun als Beispiel die Konstruktion eines Versuchsplanes 2. Ord-
nung fiir k = 3 EinfluBfaktoren. Der Ansatz #(x, 9) habe also die Form

(X, 9) = Doxo + F1x1 + Dax2 + IaX5 + F11x (4.46)
+ D2233 4+ D33x3 + Fr2x1%2 + F13X1X3 + Fa3XoXs.

Fiir k = 3 existieren 2k = 6 Sternpunkte mit den Koordinaten .
(2,0,0), (0,4,0), (0,0,0), (4.47)
(=,0,0), (0, —x,0), (0,0, —c).

AuBerdem werden noch n, weitere Versuche im Zentrum des Versuchsbereiches

(X155 X)T = (0, ..., 0) durchgefiihrt. Dabei beeinfluBit n, die statistischen Eigenschaf-

ten des Versuchsplanes ¥, (z. B. die Varianz der Parameterschétzungen). Deshalb kén-

nen wir zur Festlegung von 1, weitere Bedingungen heranziehen (z. B. D-Optimali-

tét, vgl. Kapitel 5, und Nalimov [1]).

Ein Versuchsplan, der aus einem VFV 2* oder TFV 2¢-7 als Kern, aus den Stern-
punkten und den Versuchen im Zentrum des Versuchsbereiches besteht und drehbar
ist, soll zentral zusammengesetzter, drehbarer Versuchsplan heilen. Er erfordert ins-
gesamt

n=2%?42k+mn, - (4.48)

Versuche. Wiahlen wir als Stufen der EinfluBfaktoren wieder die Niveaus —1 und

+1, dann konnen wir den Parameter « aus der Forderung der Drehbarkeit be-

rechnen. Wihlen wir als Versuchsbereich ' eine Hyperkugel mit dem Radius o

= max {\/k, 2%-/4} " dann ist « = 2%-P/4, Fiir k = 3 wollen wir als Kern einen

VFV 23 verwenden, der Vgrsuchsbereich V sei eine Kugel mit dem Radius

o = max{y/3, 2@3-94} = /3, die Sternpunkte sind gegeben durch & = 23/ = 1,682.

(4.45)
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Die giinstigste Anzahl n, von Versuchen im Zentrum betrégt n, = 6. Somit ergibt sich
der in Tabelle 4.7 angegebene Versuchsplan zur unvermengten Schitzung der Ko-
effizienten des Ansatzes (4.46). Die Schitzungen sind aber nicht mehr unkorreliert,
es sind cov(By, O;,) und cov(O,;, O,;) von null verschieden.

Tabelle 4.7

Ver-

such

Nr. X0 x; Xz X3 x X3 X% xixy Xix3 XaXs

11 -1 =il =] 1 1 1 1 1 1

2 1 1 =1 =1 1 1 1 = =i 1

31 -1 1 -1 1 1 1 =] il =il 8

4 1 1 1 -1 1 1 1 1 -1 -1 >

5 -1 -1 =5 1 1 1 1 TR L £

6 1 1 —1 1 1 1 1 -1 = =

7 1 =1 1 1 1 1 1 =1 —1 1 S

8 1 1 1 1 1 1 1 1 1 1

9 1 —-1,682 0 0 2,828 0 0 0 0 0 o

0 1 1,682 0 0 2,828 0 0 0 0 0 Z

m. 1 0 —1,682 0 0 2828 0 0 0 0 E

2 1 o0 1,682 0 0 2,828 0 0 0 0 g
13 1 0 0 —1,682 0 0 2,828 0 0 0 2

4 1 0 0 1,682 0 0 2,828 0 0 0 “

5 1 0 0 0 0 0 0 0 0 0

6 1 0 0 0 0 0 0 0. 0 0 EBg
17 1 0 0 0 0 0 0 0 0 0 P
18 1 0 0 0 0 0 0 0 0 0 S3%,
9 1 0 0 0 0 0 0 0 0 0 EEES
20 1 0 0 0 0 0 0 0 0 0 SN

Veranschaulichen wir uns die Lage der Versuchspunkte im R3, dann erhalten wir
das folgende Bild 4.3.

Die Punkte des VFV 23 sind in Bild 4.3 durch Kreise, dxe Sternpunkte durch Kreuze
und das Zentrum des Versuchsbereiches durch einen vollen Kreis dargestellt. Aufler
der hier vorgestellten Moglichkeit gibt es noch andere Konstruktionsprinzipien fiir
Versuchspldne 2. Ordnung. So kénnen wir z. B. die Versuchspunkte auf mehreren
Kugelschalen anordnen, oder wir konstruieren nichtdrehbare, zentral zusammen-
gesetzte Plane 2. Ordnung. Néhere Ausfithrungen zu dieser Problematik finden wir
z. B. bei Bandemer/Bellmann/Jung/Richter [1].

4.5, Aufsuchen optimaler Bedingungen (Methode von Box und Wilson)

Bei der Losung praktischer Aufgabenstellungen interessiert sehr hiufig, unter wel-
chen Bedingungen die Durchfiihrung eines bestimmten Prozesses optimal ist. So
suchen wir bei einem chemischen ProzeB z. B. einen bestimmten Temperaturbereich,
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eine Reaktionszeit, bestimmte Druck- oder Konzentrationswerte, so daBl ein Quali-
titsmerkmal des Endproduktes ein Maximum annimmt. Mathematisch formuliert
suchen wir ein Maximum der Wirkungsfliche #7(x) in einem festgelegten Versuchs-
bereich V. Wenn die Funktion 7(x) bekannt ist, dann geschieht die Suche nach einem
Optimum mit bekannten Verfahren der Optimierung (vgl. Bd. 14 und Bd. 15). Ist
die Wirkungsflache unbekannt, werden wir eine Schitzung #(x, @) mit einem geeig-
neten Ansatz berechnen. Dabei wird.fiir eine hinreichende Genauigkeit im gesamten
Definitionsbereich in der Regel eine groBle Anzahl von Versuchen erforderlich sein,
zumal dann, wenn ein Polynom 2. oder hoheren Grades verwendet werden muB. Ein
von Box/Wilson [1] vorgeschlagenes Verfahren erlaubt ein Aufsuchen optimaler Be-
dingungen mit relativ wenig Versuchen. Dazu muf3 die Behandlung der praktischen
Aufgabenstellung die Anwendung eines Sequentialverfahrens erlauben, die Varianz
o2 des Versuchsfehlers muB hinreichend klein sein, die Wirkungsfliche soll im inter-
essierenden Bereich ¥ lokal linear approximierbar sein, und ein lokales Maximum von
7(x) soll zugleich ein globales Maximum sein. Der Grundgedanke des Verfahrens be-
steht nun darin, zunéchst mit wenig Versuchen einen kleinen Teil der Wirkungsfldche
durch ein spezielles Polynom (meist 1. Grades) zu beschreiben. Ist diese Beschreibung
in dem gewiinschten kleinen Teilgebiet sinnvoll (das kann durch einen Test gepriift
werden, vgl. Abschnitt 4.2.), dann gehen wir in Gradientenrichtung (Richtung des
steilsten Anstieges) auf J(x) = 7(x, 9) solange weiter, bis wir ein Maximum der Reali-
sierungen der ZielgréBe in dieser Richtung gefunden haben, Dieser Versuchspunkt
wird nun Zentrum eines neuen Teilgebietes von V, in dem wir wieder #(x) durch ein
spezielles Polynom zu beschreiben versuchen. Ist diese Beschreibung auch noch sinn-
voll, dann gehen wir in Richtung des Gradienten von 7j(x, ¢) zu einem neuen maxi-
malen Wert, dem Zentrum des nichsten Teilgebietes, {iber. Diese Vorgehensweise
konnen wir solange fortsetzen, bis das gewéhlte spezielle Polynom zur Beschreibung
von 7(x) nicht mehr ausreicht und wir auf andere Ansétze zuriickgreifen miissen. Das
Gebiet, in dem das spezielle Polynom keine sinnvolle Beschreibung von #(x) liefert,
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wird als fast-stationdres Gebiet bezeichnet. In diesem Gebiet wird nun ein Versuchs-
plan hoherer Ordnung (meist 2. Ordnung) zur Schéitzung von 7(x) herangezogen (der
bisherige Versuchsplan kann dabei als Kern weiterverwendet werden, vgl. Abschnitt
4:4.). Selten wird es auch notwendig sein, einen Versuchsplan 3. Ordnung zu ver-
wenden.

Die Vorgehensweise von Box/Wilson bewirkt, daB die meisten Versuche im Gebiet
des Maximums der Wirkungsfliche durchgefiihrt werden. Bei dem so. gefundenen
Maximum handelt es sich jedoch meist nur um ein relatives Maximum. Davies [1]
weist aber darauf hin, daB z. B. bei chemischen Prozessen das lokale und das globale
Maximum in der Regel zusammenfallen.

Als Gradient einer Funktion g(x) bezeichnet man bekanntlich den Vektor der par-
tiellen Ableitungen nach den einzelnen Variablen

0g(x o0g(x))\ T :

Ve(x) = ( 2 | ..,aii—)) : 4.49)
k

Berechnen wir nun den Gradient einer Realisierung der Schitzung Y(x) des Ansatzes

7i(x, 9), wobei ein Polynom 1. Grades als Ansatz verwendet werden soll, dann er-

halten wir mit (4.49)

vy = @1, 90T, (4.50)

Also ist eine Bewegung in Gradientenrichtung gleichbedeutend damit, daB die Va-
riablen Xy, ..., x; proportional zu den Parameterschatzungen gedndert werden miissen.
Die Festlegung der Anderung der Variablen wird mit einer sogenannten Einheit vor-
genommen. Ist V@ der natiirliche Versuchsbereich, gegeben durch das Parallelepiped

(0) .
G = X0 by, i=1,..,k,

dann wird die der Anderung der Variablen x; (i = 1, ..., k) vom Niveau 0 auf das Ni-
veau 1 entsprechende Anderung der natiirlichen Vanablen X als Einheit festgelegt.
Diese Anderung erhalten wir durch (b —a)[2 (i=1, ..., k). Entsprechend den
praktischen Erfordernissen miissen wir nun bei der Behandlung des Problems die
Schrittlinge einer beliebigen natiirlichen Variablen x$ fest wihlen, um damit dann
den Proportionalititsfaktor w fiir die Anderung der Variablen berechnen zu kdnnen.
Die Schrittlingen der Variablen x{” ergeben sich dann durch Multiplikation des Aus-
drucks (b; — a;) #;/2 mit dem Proportionalititsfaktor .

Das Erreichen des fast-stationdren Gebietes erkennen wir nun daran, daBl die
Schitzungen der Hauptwirkungen nicht mehr groB sind im Verhéltnis zu den Schét-
zungen gewisser Wechselwirkungen, oder dafl die MeBwerte in Gradientenrichtung
sich deutlich nichtlinear dndern. Erweisen sich die Schdtzungen der Hauptwirkungen
(d. h. der Anstieg von 7(x, ©)) als nicht mehr signifikant von null verschieden, dann
haben wir die Umgebung des Maximums der Wirkungsfliche erreicht und miissen die
weiteren Untersuchungen mit einem Versuchsplan héherer Ordnung vornehmen.

Beipiel 4.2 (1. Etappe des Verfahrens von Box/Wilson): Fiir die Extraktion von Mikromengen
Hafnium durch Tributylphosphat sind die optimalen ProzeBbedingungen zu bestimmen (vgl. Komis-
sarova/Granovskij/Prutkova/Adler/Nalimov/Spicyn [1]). Als ZielgroBe betrachten wir den Vertei-



78 4. Mehrfaktorpline

lungskoeffizienten des Hafniums, der von vier EinfluBgroBen

x{9> - Konzentration der wasserfreien Salpetersiure in der wiBrigen Ausgangslgsung
(in Normalprozenten),

x$%  — Konzentration von Tributylphosphat im 0-Xylol (in Volumenprozenten),
x§®> - Verhiltnis der Phasen,
x{® - Extraktionszeit (in Minuten),

abhingt. Fiir die erste Etappe des Verfahrens wollen wir einen TFV 24~ mit der definierenden Be-
ziehung I = x;x,x3x4 verwenden. Mit diesem Versuchsplan lassen sich 8 Koeffizienten schitzen.
Als Ansatz fiir 7(x) wihlen wir das spezielle Polynom 1. Grades N

7(x, 9) = Poxg + P1x1 + Faxz + F3x3 + Fyxy
+ D1ax1X5 + Dyaxygxs + iaxyxg. 4.51)
Die Schitzungen der Parameter sind wie folgt vermengt
0,9, O,->09,, O3>0, O,—d,,
Or2> D1z + B34y Or3> Dy + Daay Or> Dra + Bas. 4.52)
Wir beginnen unsere Rechnung mit dem Anfangsversuchsbereich

yw:s<xP <9, 40 =P < 60,

02=x¥ =04, 2=xP =12, (4.53)
Die in der Tabelle 4.8 enthaltenen Beobachtungswerte sind jeweils wieder Mittelwerte aus je zwei
Beobachtungen in jedem Versuchspunkt. Die Schitzungen ¢; (i = 1, ..., 4) wurden unter Verwen-

dung von (4.19) berechnet. Durch praktische Versuchsvorschriften sei in diesem Beispiel eine Ande-
rung der Variablen x5’ um jeweils 3 Einheiten (Volumenprozente) vorgegeben. Wiirden wir iiber die
Tabelle 4.8 hinaus einen 12. Versuch durchfiihren, dann kdnnten wir feststellen, daB wir bereits beim
11. Versuch den Maximalwert der Realisierung der ZielgroBle erreicht haben. Daher wire also der
11. Versuchspunkt Zentrum des Teilversuchsbereiches ¥(?), in dem die Untersuchungen fortzusetzen
wiren. Wir Giberzeugen uns aber leicht davon, daB wir mit dem 11. Punkt bereits das fast-stationire
Gebiet erreicht*haben. Zur weiteren Untersuchung miifiten wir nun ein Polynom 2. Grades heran-
ziehen, das wollen wir aber nicht mehr ausfiihren.

Haben wir durch einen Versuchsplan 2. oder hoherer Ordnung im fast-stationdren
Gebiet eine hinreichend gute Beschreibung der Wirkungsfliche #(x) erhalten, dann
konnen wir die optimalen Versuchsbedingungen bestimmen. Dazu untersuchen wir
den Typ der Wirkungsfliche (wir identifizieren nach der Schédtzung die unbekannte
Wirkungsfliche mit 5(x, 9), d. h., wir bringen #(x, 9) durch eine Hauptachsentrans-
formation auf die Normalform einer Fliche 2. oder héherer Ordnung und bestimmen
den optimalen Punkt dieser Fldche. Eine ausfiihrliche Darstellung und weitere Bei-
spiele zu diesem Vorgehen finden wir bei Box/Wilson [1], Davies [1] und Nalimov/
Cernova [1].

4.6. Zusammenfassung

Fiir eine Schitzung der Wirkungsfunktion sollenals Ansitze #(x, &) Polynome vom Grad d und
Polynome vom Grad d in jeder Variablen (vgl. (1.16) und (1.18)) herangezogen werden. Die Einflufak-
toren x; (i = 1, ..., k) konnen dabei im Versuchsbereich ¥ jeweils nur #;; G = 1,...,k;j =1, ..., p)
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Tabelle 4.8
Beobachtungs-

P X x®  x©  ergebnisse
unteres Niveau (x;=-=1) 50 40,0 0,2 2,0
Nullniveau (x;= 0 7,0 50,0 0,3 7,0
oberes Niveau = D 9,0 600 04 12,0
Einheit (b; — a))/2 = ¢; 2,0 10,0 0,1 50
Versuch Nr. X X1 X2 X3 X4
i - - — 0,2970
2 + - + = 5,3650
3 = = + + 0,3995
4 = + - + 0,6770
5 + + - — 21,4500
6 + = - + 8,9300
7 = + + = 0,3505
8 + + ek + 16,2500
5,- 6,284 2,967 —1,124  —0,151
eid, 12,568 29,67  —0,112 —0,755
vorgeschriebene .
Anderung 4 3
Proportionalitits-
faktor w
(A = weyB,) 0,101
wedy 1,269 3 -0,011 —0,076
Rundung der
Schrittweite 153) 3 —0,01 -0,1

Versuch Nr. 9
1. Schritt 8,3 53 0,29 6,9 44,0000
Nullniveau + Schrittweite

Versuch Nr. 10

2. Schritt 9,6 56 0,28 6,8 160,0
Niveau 9. Versuch

+ Schrittweite

Versuch Nr. 11

3. Schritt 10,9 59 0,27 6,7 303,3
Niveau 10. Versuch

+ Schrittweite

diskrete Werte annehmen, die wir als Stufen oder Niveaus bezeichnen. Damit eine eindeutige Schit-

zung der Parameter iiberhaupt moglich ist, miissen mindestens so viele Versuche durchgefiihrt wer-

den, wie ein Ansatz unbekannte Parameter besitzt. Auflerdem muf bei einem Ansatz durch ein Poly-

nom vom Grade d in jeder Variablen dieselbe auf mindestens (¢ + 1) Stufen vorkommen. Weiter-

hin soll ein Versuchsplan noch die Forderungen

1. in H sei eine hinreichend genaue Schitzung moglich,

2. durch einen Test sei nachpriifbar, ob die Schitzung 7j(x, @) hinreichend genau fiir #(x) ist, andern-
falls soll der Versuchsplan als Kern weiterverwendet werden,

3. eine Blockbildung sei moglich,
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erfiillen. Fiir einen Ansatz #j;(x, #) durch ein Polynom vom Grad 1 injeder Variablen betrachten wir
die k Faktoren auf 2 Stufen, d. h. 2*¥ Versuche zur Schitzung der 2* Koeffizienten. Durch weitere
Versuche konnen wir durch den bekannten F-Test priifen, ob der Ansatz zur Beschreibung von 7(x)
ausreicht. Falls bekannt ist, daB3 gewisse Koeffizienten des Ansatzes 7j;(x, #) null sind, lassen sich
aus VFV 2* Teilpldne TFV 2%-P auswihlen, mit denen die verbleibenden Koeffizienten geschitzt
werden konnen. Fir die Schatzung der Koeffizienten von #j;(x, &) ergeben sich dabei Vermen-
gungsstrukturen. Fiir ein Polynom 2. Grades j,(x, #) als Ansatz werden fiir jede Variable als dritte
Stufe Sternpunkte gewihlt, so daB der sich aus einem VFV 2* ergebende Plan drehbar wird,
d.h.D? f’(x) = g(lol), wobei g der Abstand eines Punktes einer Kugeloberfliche vom Koordinaten-
ursprung ist. Anwendung finden die Plane z. B. bei einem Verfahren von Box und Wilson zum Auf-
suchen eines optimalen Wertes von #(x). Dabei beginnen wir in einem kleinen Teilgebiet und na-
hern 7(x) durch ein Polynom 1. Grades. Falls dieses zur Beschreibung ausreicht (Test), gehen wir
in Richtung des steilsten Anstiegs (Gradient von #j(x, 5)) bis zum groBten Wert in dieser Richtung
vorwirts und beschreiben #7(x) im Teilgebiet um diesen Wert wieder durch ein Polynom 1. Grades,
usw. In dieser Weise gehen wir solange vorwirts, wie ein Polynom 1. Grades zur Beschreibung aus-
reichf. Andernfalls gehen wir zu einem Polynom 2. Grades iiber und bestimmen im damit erreich-
ten Teilgebiet die Extrema der Schatzung von 7j,(x, 9).



5. Optimale Versuchsplanung fiir die Schiitzung im
Regressionsmodell

5.1 Einleitung und Problemstellung

Wie wir bereits in Kapitel 1 gesehen haben, besteht die Aufgabe der Versuchs-
planung im linearen Regressionsmodell darin, vor der Durchfiihrung von Versuchen
die zu verwendenden MeBstellen auszuwiahlen, zu planen. Zur Schitzung der unbe-
kannten Koeffizienten des Ansatzes #(x, ) wihlen wir stets die Methode der klein-
sten Quadrate. Ein vorgegebener Versuchsplan ¥, muB3 dabei gewisse Eigenschaften
besitzen, damit die Schitzmethode tiberhaupt angewendet werden kann. Kénnen wir
beispielsweise zur Schitzung der Koeffizienten ¢, und #; eines linearen Ansatzes der
Form 7i(x, ¥) = ¥, + ¥,x Versuche in einem Versuchsbereich ¥ = [a, b] durch-
fiihren, dann miissen wir mindestens zwei verschiedene Punkte in ¥ auswéhlen, damit
¥ und ¥, eindeutig geschétzt werden konnen. So ist es z. B. mdglich, n/2 Versuche
bei x = a und n/2 Versuche bei x = b durchzufiihren. Aber auch jede andere An-
ordnung der n Versuchspunkte, also z. B. auch die dquidistante Anordnung x; = a,
x2=a+ b —-a)ln—1,x3=a+2b — a)@n —1),..., x, = b, liefert einen m6g-
lichen Versuchsplan zur Schitzung von 4, und 9, .

Bei einem gegebenen Versuchsplan, bei festem o2 und » erhalten wir durch die Me-
thode der kleinsten Quadrate eine beste, lineare, erwartungstreue Schitzung. Gilt fiir
die Kovarianzmatrix des Stichprobenvektors By = ¢”E,, dann erfiillt die Kovarianz-
matrix des nach der MkQ geschidtzten Parametervektors die Bezichung

xTBgx < xTBgx 5.1

fiir alle x € R¥, wobei B¢ die Kovarianzmatrix einer beliebigen linearen, erwartungs-
treuen Schitzung ist. Diese Aussage wird in dem bekannten Theorem von Gauf-
Markow bewiesen (vgl. z. B. Scheffé [1]). Gilt fiir zwei MatrizenA und B der Ordnung
k x k fiir allex € R* die Beziehung x TAx < xTBx, dann ist das gleichbedeutend mit
xT(B — A)x = 0. Das heifit aber, daB B — A eine positiv semidefinite Matrix ist (vgl.
Bd. 13), und wir fiihren durch die Schreibweise B > A eine Halbordnung fiir Matri-
zen im Sinne dieser positiven Semidefinitheit ein.

Besitzt der Regressionsansatz #j(x, ) nur einen unbekannten Koeffizienten, dann
ergibt sich aus (5.1) die Beziehung

D0 £ D?6. ' (5.2)
Durch eine Planung der durchzufithrenden Versuche wollen wir erreichen, daB die
"GroBen auf der linken Seite von (5.1) bzw. (5.2) fiir die MkQ weiter beeinfluBt (d. h.

minimiert) werden. Fiir den Ansatz#, + 9¥;x bedeutet das, wir versuchen die Varian-
zen der Parameterschitzungen [vgl. (1.35)]

o* ¥ x}
Dz(’;o — i=1
F\2
B3 x = %) (.3)
und
0.2
DOy = ———
> (e —X)?
i=1

6 Bandemer, Versuchsplanung
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durch eine geeignete Wahl der Versuchspunkte x,, ..., X, zu verkleinern. Da die
Schatzungen O, und @, nicht unabhingig voneinander sind [vgl. (1.35)], konnen wir
im allgemeinen zwei Versuchsplane zur Schitzung mehrerer Parameter nicht einfach
durch die dazugehorigen Varianzausdriicke vergleichen, sondern bendtigen geeignete
Optimalitatskriterien.

5.2. Konkrete und diskrete Versuchspline

Wie wir bereits in Kapitel 1 festgelegt haben, wollen wir die Gewinnung einer
Realisierung y(x) einer ZufallsgroBe Y(x) an einem vorgegebenen Punkt x als Versuch
bezeichnen. Alle Punkte x, in denen solche Realisierungen gewonnen werden konnen,
fassen wir zum Versuchsbereich V zusammen. Vielfach interessiert aber die Wirkungs-
fliche #(x) gerade fiir solche Punkte x, in denen wir keine (oder noch keine) Versuche
durchfiithren konnen. Deshalb bezeichnen wir alle Punkte x, in denen Schétzungen
der Parameter #; bzw. der Wirkungsfliche 7(x) interessieren, als Prognosebereich H.
Selbstverstandlich miissen 7(x) und auch 7j(x, 9) sowohl iiber V als auch tiber H defi-
niert sein. Folgende Relationen zwischen Versuchs- und Prognosebereich sind von
besonderem Interesse bei der Behandlung praktischer Problemstellungen

V=HVcHVAH=2. (54

Eine Definition eines konkreten Versuchsplanes wurde bereits im Kapitel 1 (vgl. Def.
1.1) gegeben. Unter einer Durchfiihrung eines konkreten Versuchsplanes wollen wir
die Gewinnung von je einer Realisierung der ZielgréB8e Y(x) an den Punkten x4, ..., X,
des Planes ¥, verstehen. Dabei sind die Punkte x; (i = 1, ..., n) nicht notwendig von-
einander verschieden. Fiir groBes » und viele gleiche Punkte x; ist deshalb eine abge-
kiirzte Schreibweise, die nur die Punkte des Planes ¥V, anfiihrt, die voneinander ver-
schieden sind, giinstiger. Besitzt der Versuchsplan ¥, genau m verschiedene Punkte
x; (i = 1, ..., m), dann bezeichnen wir die Gesamtheit dieser verschiedenen Punkte
als Spektrum S(V,). Zur Festlegung eines konkreten Versuchsplanes 7, gehort dann
nur noch die Angabe der Haufigkeit, mit der die Punkte des Spektrums S(V,) im Plan
V, auftreten sollen. Ist p; die relative Haufigkeit fiir den Punkt x;, dann erhalten wir
die Darstellung

X1, ...
V,,={1’ ’ } X, P 55
P1sees P 15 Pi}im1 (5.5)
mit ’
p=mn, me{l,2,...,ny und Y p,=1. (5.6)
=1

Die relativen Haufigkeiten p; werden auch als Gewichte der Punkte x; bezeichnet und
sind Vielfache von 1/n.

Zur Beurteilung der Genauigkeit einer Schitzung ziehen wir die entsprechenden
Varianzausdriicke fiir diese Schitzungen heran. Fiir die Schdtzungen 0,i=1,..,k,
der Parameter des Ansatzes 7(x, &) = f(x)T9 [vgl. (1.26)] ist das die Kovarlanzmatnx

der Schitzung O des Parametervektors &
Bg = c*(FTF)"! 5.7
[vgl. (1.28)] und fiir die Schiitzung 7(x, @) = ¥(x) der Wirkungsfunktion [vgl. (1.29)]
D*Y¥(x) = o*(x)T(FTF)-! f(x). (5.8)
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Die Varianzausdriicke (5.7) und (5.8) sind nur tber die Matrix FTF durch den Ver-
suchsplan ¥, zu beeinflussen. Die Matrix FTF wird also im Weiteren eine bedeutende
Rolle spielen, deshalb fiihren wir die Bezeichnung N

%FTF - M) : (5.9)

ein und nennen die Matrix M(V,) auch Informationsmatrix (sind die Beobachtungen
Y(x) normalverteilt, dann entspricht M(¥,) der bekannten Fisherschen Informations-
matrix, vgl. z. B. Fisz [1]). Mit M(¥,) erhalten wir aus (5.7)

B = (;—ZM*(V,,) (5.10)
und aus (5.8.)
D*Y(x) = %f TR)M-1(V)f(x). 5.11)

Fiir die weiteren Betrachtungen bendtigen wir einige Eigenschaften der Matrix M(V,),
die sich aber leicht aus der Struktur von FTF herleiten lassen [vgl. (4.11)].
Verwenden wir fiir F die Darstellung (1.14), dann erhalten wir

FTF = ;é f(x)f(x;)". : (5.12)
Fir einen Vcrsuc};splan der Form (5.5) wird somit
FTF = % 0, fx) 105)" = 1 5 p, fx) 06",
Wegen (5.9) 1aBt sich die Informationsmatrix somit in der Form
MO = T ) fx)" (5.13)
schreiben. Ein Beispiel erldutere diese Darstellung.
Ist fur den Ansatz 7j(x, #) = 99 + &;x ein Versuchsplan
W, = {1'/; 2;3} gegeben, dann ist ()T = (1, x).

Fiir n = 6 schreiben wir fiir den konkreten Versuchsplan ¥ auch Vg = (—1, =1, +1, +1, +1, +1)
und die Matrix FTF [vgl. (4.11)] ist dann

6 2
i ( ),
2 6
6
wobeiz.B. 3 filxpfa(x) = 1(=1) 4+ 1(-1) +1 + 1+ 1+ 1=2gil.
=1

Fiir (5.13) erhalten wir mit n = 2, p1 = 1/3, p, = 2/3 fiir die Informationsmatrix
M(V,) : ! 1 1 25 11
= — —_ + —
=1 () -o+3 (),

1 1 -1 2 /11 1 13
M) = — +— = )
3 \-1 1 311 13 1
also wegen (5.9) Ubereinstimmung der Darstellungen.
6‘
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Die Informationsmatrix besitzt die folgenden Eigenschaften:

1. M(V,) ist eine positiv semidefinite Matrix (d. h. detM(¥,) = 0).

2. Es gilt detM(V,) = 0, wenn das Spektrum S(¥,) weniger als r Punkte enthilt (ent-
hélt S(V,) nur r’ < r Punkte, dann ist RgF < r’ < r und somit detFTF =0, vgl.
Bd. 13).

3. Fiir zwei Versuchspldne V, = (x{,..., x*) und V; = (x?, ..., x?) gilt als Summe
der Pldne V,,, = xP, ..., xP, xP, ..., x?) und fiir die Informationsmatrizen
dann entsprechend

(n + )MV ,1s) = nM(V,) + sM(V5). (5.14)
Wegen (5.13) 1aBt sich (5.14) schreiben als

(1 + IMa) =0 px) )T + 55 71 100 1x) T

max(m,m’

)
= X Op ) fx)T + spif(x) fx)T),

also als Summe von Matrizen. Das zur Erlduterung von (5.13) betrachtete Beispiel
kann fiir V und ¥, leicht zur Bestatigung von (5.14) herangezogen werden.

Ist fiir einen festen Versuchsplan V, die Zufallsgréfe Y(x) normalverteilt mit
EY(x) = #(x,®) und D?*¥(x) = 02, dann ist auch die Schitzung @ des Parameter-
vektors 9 normalverteilt, da @ eine lineare Schitzung ist [vgl. (1.26)]. Die Parameter
dieser r-dimensionalen Normalverteilung sind £@ = ¢ und Bg = o*(FTF)~!, die Dich-
tefunktion selbst hat die Gestalt

2(®) = (2m)"(detBg)1 exp {— % @ - 9TBEG - 9) } (.15)

Betrachten wir nun die Flichen zweiter Ordnung, die im Exponenten von (5.15) auf-
treten. Es sei

@ — NBZB — 9) =co, co — reclle Konst,, (5.16)

dann wird durch (5.16) ein Ellipsoid beschrieben, wovon wir uns leicht iiberzeugen
konnen, wenn wir (5.16) durch eine Hauptachsentransformation auf die Normalform
bringen (vgl. Bd. 13). Hat ¢, den Wert r + 2, dann sprechen wir von einem sogenann-
ten Streuungsellipsoid. Im Fall des Ansatzes 7(x, &) = 9, + ¢,x hat (5.16) die spe-
zielle Gestalt
n
n > X By — B

i=1

B0 — B, By — D) = 4. (5.17)

n n
Ex g5 \o.-o,
Fiir zwei vorgegebene Realisierungen #, und &, ergibt sich im R? z. B. die Ellipse in

Abb. 5.1.
Bezeichnen wir die Elemente der Kovarianzmatrix Bg mit

N by by»
Be - (b12 bZZ)’
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vy

L) Yo
Bild 5.1

dann lassen sich die in Abbildung 5.1 durch Ziffern bezeichneten Strecken fiir jede
Realisierung & durch Elemente von Bg ausdriicken. Es ist bis auf einen Faktor \/ co

Strecke 1: /SpBg = </b1; + b2z,
Strecke 2: \/ 11,

Strecke 3: /b2,
Strecke 4: bu/\/b—n,
Strecke 5 by,//baz.

Die Fléche der Ellipse ist bis auf ¢ durch \/detBg = «/by;b,, — b3, gegeben. Die
Interpretation gewisser Elemente der Kovarianzmatrix Bg im Zusammenhang mit
dem Streuungsellipsoid wird uns spéter bei der geometrischen Deutung einiger Opti-
malitétskriterien niitzlich sein.

Die Gewichte fiir die einzelnen Punkte des Spektrums waren bisher ganzzahlige
Vielfache von 1/n. Fiir eine bessere Behandlung der Versuchsplanungsproblematik
und eine geschlossene Darstellung der Ergebnisse ist es sinnvoll, auf die konkrete Be-
deutung der Gewichte als relative Haufigkeiten zu verzichten. Vielmehr wollen wir
annehmen, daB die Gewichte p, beliebige Werte aus (0,1] sind. Wir erhalten damit
einen neuen Ausdruck, den wir als diskreten Versuchsplan & bezeichnen wollen.

X1sees Xy - -
§={ : }=<x,,p,},.l, > pi=1,pe(1]. (5.18)
P1seisPm =1

Es ist & eine Gewichtsfunktion, die jedem Punkt x; (/ = 1, ..., m) des Spektrums S(§)
das Gewicht &(x;) = p, und jedem Punkt, der nicht zu S(¢) gehort, das Gewicht Null
zuordnet. Die Klasse aller dieser Versuchsplédne (5.18) ist umfassender, da jeder kon-
krete Versuchsplan ¥, der Form (5.5) mit (5.6) ein Spezialfall von (5.18) ist.

Der diskrete Versuchsplan & ist nicht mehr vom Stichprobenumfang » abhingig,
die Informationsmatrix M (&) konnen wir analog zu (5.14) ausdriicken durch

M@ = ¥ pufx) 1007
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Die Unabhingigkeit eines diskreten Versuchsplanes vom Stichprobenumfang » bringt
gewisse Vorteile bei der Konstruktion optimaler Pline (vgl. Kiefer [1]). Beschrinken
wir uns bei der Optimierung nur auf konkrete Pline, dann haben wir sehr oft schwie-
rige kombinatorische Probleme zu 15sen.

Manchmal ist ein optimaler diskreter Versuchsplan fiir gewisse Stichprobenum-
fange n bereits ein konkreter Plan. Stets 148t sich jedoch ein diskreter Plan als Néhe-
rung fiir einen konkreten Plan verwenden, wenn nur der Umfang » hinreichend gro8
ist. Falls aber die Aufwendungen fiir die einzelnen Versuche, also gewisse Versuchs-
kosten bei der Realisierung eines Planes ¥,,, mit in Betracht gezogen werden miissen,
wird haufig die Konstruktion von Versuchsplanen mit kleinem Umfang » von Inter-
esse sein. Dann gibt ein diskreter Plan méoglicherweise nur eine sehr grobe Néherung
fiir einen konkreten Versuchsplan, wir werden also auch spezielle Konstruktionsver-
fahren fiir optimale konkrete Versuchsplédne entwickeln miissen.

5.3. Optimalititskriterien

Nach der Definition konkreter und diskreter Versuchsplane kénnen wir uns nun
der im Abschnitt 5.1. beschriebenen Aufgabe zuwenden. Die Lage der Versuchspunkte
im Bereich ¥ ist durch einen Versuchsplan ¥, bzw. & gegeben. Ausgehend von der
Schétzung nach der Methode der kleinsten Quadrate wollen wir durch eine geeignete
Wabhl der Versuchspunkte das Varianzverhalten der Schitzungen noch weiter giinstig
beeinflussen: Das Varianzverhalten der Schiatzungen wird bei mehr als einem unbe-
kannten Parameter im Ansatz durch die Kovarianzmatrix bzw. durch die Varianz-
funktion charakterisiert. Wir werden deshalb verschiedene Mdglichkeiten betrachten,
ein Optimalitdtskriterium zu definieren. Als besonders giinstig hat es sich erwiesen,
gewisse Funktionale der Kovarianzmatrix zu verwenden. Wegen (5.9) und (5.10)
werden wir die Optimalitatskriterien gleich fiir die Informationsmatrix M(V,) ein-
fithren. Die entsprechende Optimierung erstreckt sich dann bei vorgegebenem # iiber
eine gegebene Menge V' von Plinen, meist iiber die Menge V'” aller konkreten Ver-
suchspline V,, fiir die gilt '

Vr=A{VIx;eV,j=1,...,n;detM(V,) + 0}. (5.19)
Die Wahl eines solchen Funktionals Z, das eine Abbildung von M(¥,) in den R!
bewirkt (wir werden hiufiger direkt M~1(¥,) benutzen), soll die folgende Eigenschaft

einer isotonen Abbildung besitzen. Wenn im Sinne der in Abschnitt 5.1. eingefiihrten
Halbordnung positiv semidefiniter Matrizen

M-4(V;) 2 M~(V7) (5.20)
gilt, dann soll auch die Beziechung
ZM-Y(Vy) =2 ZMH(VD) (5.21)

gelten.
Wir wollen nun einige spezielie, praktisch wichtige Funktionale Z angeben und
damit Optimalitdtskriterien definieren.

Definition 5.1: Ein konkreter Versuchsplan V* heifst D-optimal, wenn giit
detM-1(V'¥) = min detM-1(V,). (5.22)

VapeVn
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Wegen (5.10) entspricht einer Minimierung von detM~*(V,) eine Minimierung von
detBg (bis auf einen konstanten Faktor). Die Elemente der Kovarianzmatrix Bg
haben dabei bekanntlich die folgende Bedeutung

D*@,,i=j
Bg = ((0 it b;; = N ’

6 = (b)) mit by {cov(@,, 0),i%j,ij=1,..,r
In detBg gehen also nicht nur die Varianzen von O,, sondern auch die Kovarianzen
von O, und @, (i + j) ein, deshalb heiBt detBg auch verallgemeinerte Varianz. Konnen
wir fiir den Stichprobenvektor % eine n-dimensionale Normalverteilung voraus-
setzen, dann wird durch einen D-optimalen Versuchsplan gerade das Volumen des

Streuungsellipsoids fiir O minimiert.

(5.23)

Beispiel 5.1: Als Ansatz fiir die Wirkungsfunktion(x) sei gegeben 7j(x, #) = ¥ + #,x. Fiihren wir
n Versuche an den Punkten xy, ..., x, durch, erhalten wir mit f(x) T = (1, x) die Matrizen

n nx n

1 S x} —nx
FiF=| = und (FTF)!= i=1
" z=z1xi ”'Z X = @®* \—nx n
=1

Wegen (FTF)(FTF)~! = E, ist det(FTF)~! = 1/det FTF und eine Minimierung von det(FTF)~! gleich-
bedeutend mit einer Maximierung von det FTF. Wihlen wir ¥ = [—1,1], dann ist also

n n
n3x?—-mx=n3 (x, — X)?
=1 i=1

iiber V" zu maximieren. Fir n = 2 wird
X1 + x2\? X1 + x3\?
z((xl Sl 2 = ’) + (x2 S 5 2) ) =203 + x5 — x:(x; + x2)

= Xa(x1 + x2) + (¥1 + X2)%/4 + (x1 + x2)%/4) = (%1 — x2)*

maximal iiber ¥, wenn x; = —1 und x, = +1 gewihlt wird. Ein D-optimaler Versuchsplan ¥, be-
steht also aus je einem Versuch bei —1 und einem Versuch bei + 1. Fiir andere Umfinge n geben wir
diesen D-optimalen Plan im Abschnitt 5.4 an.

Es sei Sp der Spuroperator, d. h. SpA = Y a;;.
=1

Definition 5.2: Ein konkreter Versuchsplan V¥ heiB3t A-optimal, wenn gilt
SpM-1(V'¥) = min SpM~(V,). (5.24)
VneVn

Wegen (5.10) wird durch einen optimalen Plan V¥, der (5.24) erfiillt, die Spur der Ko-
varianzmatrix Bg minimiert. Aus (5.23) sehen wir aber, dal SpBg = > D0, gilt,
i=1

eine Minimierung von SpBg also gleichbedeutend ist mit einer Minimierung der
Summe der Varianzen der einzelnen Parameterschdtzungen (das ist bis auf einen kon-
stanten Faktor die mittlere Varianz). Geniigt der Beobachtungsvektor # einer n-di-
mensionalen Normalverteilung, dann wird durch 7 gema8 (5.24) die mittlere Halb-
achsenlidnge des Streuungsellipsoides minimiert (vgl. Bild 5.1).

Es sei Amax(M~1(V,)) der groBte Eigenwert der Matrix M~1(V,).
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Definition 5.3: Ein konkreter Versuchsplan V¥ heifit E-optimal, wenn gilt
T (V2)) = i, A MV (525)

Wegen (5.10) wird durch V* gemiB (5.25) der groBte Eigenwert der Kovarianzmatrix
Bg minimiert. Dieser groBte Eigenwert Anax(Bg) ist eine obere Schranke fiir die groBte
Varianz einer Parameterschétzung ©;, also wird durch V'* eine obere Schranke fiir
die groBte Varianz D?0, minimiert. Bei n-dimensional normalverteiltem Beobach-
tungsvektor % entspricht das gerade der Minimierung der groBSten Halbachse des
Streuungsellipsoides.

Definition 5.4: Ein konkreter Versuchsplan V¥ heift C-optimal beziiglich ¢, wenn fiir
einen vorgegebenen Vektor ¢ = (cy, ..., ¢,)T gilt
¢TM-1(V¥) ¢ = min ¢TM-}(V,) c. (5.26)

Vaehn
Ist eine Linearkombination Z ¢y = ¢T® der Parameterd,(i = 1, ...,r) von Interesse,
i=1

dann ergibt sich durch ¢T@ eine Schitzung dieser Linearkombination. Die Varianz
fiir ¢ T@ ist mit (5.10) gegeben durch

- 2
D*(cTH) =cTBge = "7 cTM-1(V,)e. (5.27)

Also wird durch einen Versuchsplan V¥, der (5.26) erfiillt, die Varianz der Schitzung
einer Linearkombination der Parameter minimiert. Wéhlen wir fiir ¢ speziell ¢ =
(1,0, ...,0)T, dann geht (5.26) tiber in

mUD(V¥) = min mA(V,), (5.28)
VneVn N

wobei mV(V,) das Element der ersten Zeile und ersten Spalte von M~ L(V,) ist. We-
gen (5.10) und (5.23) ist (5.28) gleichbedeutend (bis auf einen hier nicht interessieren-
den konstanten Faktor) mit

D2O,(V¥) = mm D*O,(V,). (5.29)
Durch eine spezielle Wahl des Vektors ¢ lassen sich also gewiinschte Linearkombina-
tionen der Parameterschétzungen beziiglich ihrer Varianz minimieren.

Die durch die Definitionen 5.1-5.4 gegebenen Optimalitatskriterien beziehen sich
alle auf eine Schétzung des Parametervektors ¢. Vielfach sind aber Aussagen iiber die
Wirkungsflache 7(x) selbst notwendig, dazu soll die Schitzung #(x, @) iiber dem Pro-
gnosebereich H beziiglich der Varianzfunktion (5.11) durch die Wahl eines Versuchs-
planes beeinfluBt werden. Auf diese Weise gelangen wir zu den folgenden beiden
Optimalitatskriterien.

Definition 5.5: Ein konkreter Versuchsplan V¥ heifit G-optimal, wenn gilt
max fT(x) M~}(V¥)f(x) = min max f(x) TM~1(V,) {(x). (5.30)
xeH VneV" xeH
Durch V* wird hierbei der iiber H maximale Wert der Varianzfunktion D?¥(x) mini-
miert.
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Beispiel 5.2: Fur einen Ansatz 7j(x, 9) = & + 9;x ist die Matrix
0.2 n
Bg=—— Sx} —nx
i=1
i=1 —nXx n
[vgl. auch (1.35)] Kovarianzmatrix des Schitzvektors 0. Mit f T(x) = (1, x) erhalten wir fiir die Va-
rianzfunktion
~ o2 n
D?Y(¥) = —f— ( S x? — 2n%x + nxz). (5.31)
2 _ ez i=1
i=1

Der Prognosebereich sei # = [— 1, 1], dann ermitteln wir max D? i(x) durch eine Untersuchung der

n
Parabel nx? — 2n¥x + 3 x2 = c. Der Abszissenwert des Scheitelpunktes dieser Parabel liegt bei

Xo = X, das Maximum der Parabel wird iiber H in den Randpunkten von H angenommen. Es ist

D’i(— 1), wenn X > 0,
max D2¥(x) = { D*Y(), wenn % < 0, (5.32)

oA D*¥(—1) = D2¥(1), wenn X = 0.

Fiir ¥ = 0 ist wegen (5.30) somit der Ausdruck
1 1

+ — (5.33)
n

=

n 3 X - > xiz
=1 i=1

0-2 n -
D) = —3— (n + 3 x,z) = o?
2 t=1

iiber der Menge V" der konkreten Versuchsplidne zu minimieren.
Definition 5.6: Ein konkreter Versuchsplan V} heif3t I-optimal beziiglich p(x), wenn fiir
eine bekannte, vorgegebene Gewichtsfunktion p(x) mit f p(x)dx =1 gilt

H

[ TM1(V#) £(x) p(x) dx = min [ f(x) TM~1(V,) i(x) p(x) dx.  (5.34)
H Vne¥" [

Mit anderen Worten wird durch einen I-optimalen Versuchsplan die mit p(x) gewich-
tete Varianz der Schitzung ¥(x) fiir die Wirkungsfliche #(x) {iber einem Prognose-
bereich H minimiert.

Einige andere Optimalititskriterien fiir die Schitzung von & und von #(x) finden

_ wir z. B. in Bandemer/Bellmann/Jung/Richter [1]. Viele Optimalitdtskriterien lassen
sich beziiglich ihrer Eigenschaften zusammenfassen, wenn wir direkt ein Funktional Z
mit der Eigenschaft (5.20) und (5.21) betrachten. Ist dieses Funktional linear, dann
konnen wir allgemeine Aussagen tiber solche Optimalitdtskriterien erhalten (vgl. dazu
z. B. Fedorov [1]).

Die Matrix M(V,), die in den Optimalitatskriterien auftritt, wird mit den Funk-
tionen f;(x) (i = 1, ..., r) des Ansatzes 7(x, ) gebildet. Folglich ist ein mit M(V,) er-
haltener optimaler Versuchsplan V*in der Regel auch nur fiir den gegebenen Ansatz
optimal. Fiir einen festen Ansatz und fiir einen festen Stichprobenumfang » sind die
optimalen Versuchsplidne fiir ein bestimmtes Optimalitdtskriterium nicht eindeutig
bestimmt. Dabei sollen Versuchspléine, die sich nur in der Reihenfolge ihrer Punkte
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unterscheiden, als gleich angesehen werden. Um aus der Menge der optimalen Ver-
suchspléine, die alle den gleichen minimalen Funktionalwert der Informationsmatrix
besitzen, einen auszuwihlen, konnen wir ein weiteres Kriterium, z. B. die Versuchs-
kosten, heranziehen. Bei den beschriebenen Optimierungsaufgaben wurde der Um-
fang der Versuchspléne stets festgehalten, es ist aber offensichtlich, daB wir fiir ver-
schiedene n auch im allgemeinen verschiedene Versuchspldne zu erwarten haben.
Wollen, wir nun Optimalitétskriterien zur Auswahl eines optimalen diskreten Ver-
suchsplanes &* konstruieren, dann kénnen wir vollig analog vorgehen. Dabei hdngt
die Informationsmatrix nun vom diskreten Plan ab, sie hat also die Gestalt (5.19). Die
Optimierung ist folglich iiber eine Menge 5 der diskreten Pléne, meist {iber

& = {8 = %, piile, T po =1, p1€ (0,1], detME) + O} (5.35)

zu erstrecken, Wir wollen dann einen diskreten Versuchsplan &* D-optimal nennen,
wenn gilt

detM~1(6*) = inisn detM-1(%). (5.36)

In der gleichen Weise lassen sich alle hier definierten Optimalitétskriterien fiir diskrete
Versuchspldne formulieren.

5.4. G- und D-optimale Versuchspline

In diesem Abschnitt werden wir uns mit der Konstruktion von D- und G-optimalen
Versuchspldnen beschiftigen. Dabei werden die diskreten Versuchspldne & im Vorder-
grund stehen, da dafiir bereits eine Reihe von Resultaten erzielt worden ist. Wesent-
liche Grundlage fiir die weiteren Betrachtungen ist ein von Kiefer und Wolfowitz [1]
formulierter Aquivalenzsatz. Es seien #(x, #) ein Ansatz der Form 7i(x, #) = &, f1(x)
+ - 4+ 4£(x) = f(x) T9, der Versuchsbereich ¥ eine abgeschlossene und beschrankte
Teilmenge des R* und ¥ = H. Die Beobachtungen Y(x) mogen den Erwartungswert
7i(x, 9) besitzen, wobei dieser Ansatz wahr sei [vgl. (1.12)]. Die Kovarianzmatrix des
Beobachtungsvektors sei By = ¢2E,. Dann gilt
Satz 5.1:

1. Die folgenden drei Aussagen sind dquivalent:

a) & maximiert detM(&) itber E.

b) &* minimiert max f(x) TM~1(&) f(x) tiber =.

) max f(x) T™M-1E%) f(x) = r.

2. Die Menge aller derjemgen Pline £*, die diese Aussagen erfiillen, ist konvex und ab-
geschlossen, und M(&¥) ist dasselbe fiir alle £* aus dieser Menge.

Dieser wichtige Satz besagt also, daB ein diskreter Versuchsplan &* genau dann D-
optimal ist (vgl. 1.a), wenn er G-optimal ist (vgl. 1.b). Dabei 148t sich der optimale
Wert des Funktionals durch die Anzahl der Parameter des Ansatzes ausdriicken (vgl.
1.c). Diese Bedingung ist notwendig und hinreichend dafiir, daB ein diskreter G-opti-
maler Plan &% auch D-optimal ist.

Durch ein entsprechendes Beispiel konnen wir uns jedoch davon iiberzeugen, daf3
dieser Aquivalenzsatz nicht fiir die Klasse der konkreten Versuchspline V, gilt. Fiir
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den Ansatz j(x, 9) = &, + ?;x und den Versuchsbereich ¥V = H = [—1, 1] ist der
Plan

VE={-1,+1, +1} (5.37)
ein konkreter D-optimaler Versuchsplan, er ist jedoch nicht G-optimal, denn im
Sinne der G-Optimalitat ist der Plan

V¥ = {=1,0, +1} (5.38)
besser; dieser ist G-optimal. Auch die Aussage 1.c des Satzes 5.1 braucht fiir konkrete
G-optimale Versuchspléne nicht erfiillt zu sein. So ist z. B. fiir den Ansatz 7(x, &) =
¥ + P x mit einem G-optimalen Plan und mit ¥V = H = [—1, 1]
1. bei geradem n: max f(x)TM-*(V}¥) f(x) = 2 und

xcH
2. bei ungeradem n: max f(x) M*(V¥) f(x) = 2 + 1/(n — 1).
xeH

Wir wollen nun den Aquivalenzsatz 5.1 zur Konstruktion optimaler Pline heran-
ziehen (vgl. auch Abschnitt 5.6.). In manchen Féllen konnen wir direkt aus der Aus-
sage 1.c des Satzes 5.1 auf die Informationsmatrix eines diskreten G-optimalen Planes
schlieBen. Es sei

(x, 9) = 0 + F1x; + -+ + 0y, . (5.39)
ein wahrer Ansatz fiir die Wirkungsfunktion im Versuchsbereich
V=H={x|-1=x=1i=1,..,r} (5.40)

Wegen f(x)T = (1, x4, ..., x,) ergibt sich sofort
max f(x)"f(x) = max(l + x} + -+ + x3) =r + 1.
io; (x)™(x) er( 1 ) (5.41)

Wenn wir nun M~1(¢) = E,, setzen diirfen, dann ist (5.41) identisch mit
max f(x) TM- (&) f(x) = r + 1,
xeH

und die Bedingung 1.c wire erfiillt, d. h., ein diskreter Versuchsplan &* mit M~1(£*) =
E,,, ist G-optimal. Es 148t sich zeigen, daB es zu jedem Wert r + 1 eine Matrix F so
gibt, dafl

-rlTF TF =M(¢) =E, (5.42)

gilt. Wenn wir eine Matrix F so konstruieren, daB (5.42) erfiillt ist, dann haben wir fiir
den Ansatz (5.39) und den Versuchsbereich (5.40) einen G- (und D-) optimalen dis-
kreten Plan gefunden. Die Konstruktion einer Matrix, die die Bedingung (5.42) er-
fiillt, ist nicht schwierig. So gibt es z. B. Matrizen H,,, die nur aus den Elementen —1
und +1 bestehen und fiir die H,H,T /n = E, gilt. Diese Matrizen H, heilen Hada-
mard-Matrizen, sie lassen sich fiir jedes durch 4 teilbare » mit r + 1 < n < 200,
n % 188 konstruieren. Solche Matrizen H, bzw. Teile solcher Matrizen werden nun
als Matrix F verwendet, damit haben wir diskrete G-optimale Plane &* gefunden, die
fiir ein jeweils entsprechendes n zugleich konkrete Versuchspline V, darstellen. Solche
Versuchspldne, die nur aus den Elementen —1 und +1 bestehen, traten auch schon
im Kapitel 4 auf und wurden dort als Faktorplane bezeichnet. Es 148t sich auf diese
Weise fiir Faktorpldne eine Beziehung zu G-optimalen Versuchsplanen herstellen.
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Wir wollen jedoch fiir einen Ansatz der Form (5.39) einige Hadamard-Matrizen
angeben fiir die Schitzung der Parameter 9;, i = 1, ..., r, im Versuchsbereich (5.40).
Fiir n = 2, 4, 8, 12 erhalten wir, bezeichnen wir —1 mit — und +1 mit +, die Ver-
suchspléne

+ + + o+ 4+
(+—) + o+ - -
+ -+ -
+ - =+
o+ o+ o+ o+ S S S
I -+ -+t + ===+ -
I T T i
4+ - - = =+ + 4+ - -+ -+ ++ - ==
i e -t - -+ -+ = -
+ -+ - -+ -+ - - - =+ -+ + + -
+ - -+ + - -+ - - -+ - =+ =+ + +
+ - -+ -+ + - 4+ - - -+ - -+ -+ +
- - -+ - =+ =+
B e S
-+t - - -+ - =+
I T e e

Die mit diesen Hadamard-Matrizen gebildeten Versuchspldne sind auch D-, A-
und E-optimal. Wir geben nun ein Beispiel zur Anwendung dieser Hadamard-Matri-
zen als Versuchspline.

Es sei 7j(x, #) = ¥ + P3x; + P,x, ein Ansatz fiir 5(x), weiterhin sei ¥ = H = [—1, 1] und die An-
zahl der Versuche n = 4. Wegen r + 1 = 3 wiihlen wir den Plan fiir » = 4 aus und streichen eine

Spalte. Die erste Spalte muB3 erhalten bleiben, da unser Ansatz 7j(x, ¥) ein Absolutglied besitzt. Strei-
chen wir also 0.B.d.A. die letzte Spalte, dann ist

+ + +
+ + -
F= 5 5.43
-+ G43)
\t+ — —
d. h., ein konkreter G-optimaler Versuchsplan vom Umfang n = 4 erfordert je einen Versuch in den
Punkten .
x =01, =@, -1, x3=(-1,1), x=(-1,-1.
Der Versuchsplan V,,, der durch (5.43) gegeben ist, ist auch gleichzeitig ein vollstindiger faktorieller
Versuchsplan (VFV) vom Typ 22 (vgl. Tab. 4.6).

Das Kriterium der G-Optimalitit konnen wir besonders dann mit Erfolg anwen-
den, wenn es nicht so sehr auf die Genauigkeit der Schitzungen fiir die einzelnen Para-
meter ankommt, sondern vor allem darauf, daB die geschitzten Funktionswerte Y(x)
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fiir alle x € H méglichst genau sind. Diese Genauigkeit erhalten wir ebenfalls aus dem
Aquivalenzsatz 5.1. Es ist mit (5.11)

max D?Y(x) = max (—;—2- f(x) TM1 (&%) f(x),
xeH

xeH
und wegen 1.c (vgl. Satz 5.1) gilt

2
max D2 ¥(x) = L. (5.44)
xeH n
Diese Schranke kann in verschiedenen Fillen auch durch einen konkreten G-opti-
malen Plan erreicht werden. Ist fiir eine praktische Problemstellung eine zu erreichende
Mindestgenauigkeit co? vorgegeben, dann ergibt sich aus (5.44) ein Niaherungswert

n = r[c fiir den notwendigen Stichprobenumfang.

Der Aquivalenzsatz von Kiefer und Wolfowitz 148t sich auch noch auf andere Opti-
malitétskriterien libertragen (vgl. Fedorov [2], Kiefer [2]).

Ein diskreter G-optimaler Versuchsplan &* mit M(§*) = E,,; ist bei Verwendung
des Ansatzes (5.39) auch D-, 4- und E-optimal, so eine Ubereinstimmung optimaler
Versuchspléne tritt aber nur in wenigen Spezialfillen auf.

Wir wollen nun einige bekannte optimale Versuchsplidne zusammenstellen.

-

. Ansatz 7j(x, 9) = 9y + ?;x, Versuchsbereich ¥ = H = [—1, 1]. Ein diskreter G-, D-, 4- und E-
optimaler Versuchsplan ist gegeben durch

S 5.45
¢ ‘{1/2 1/2}' _ )

Dieser Versuchsplan ist auch C-optimal fiir ¢T = (0,1) und Z-optimal fiir p(x) = const.
Ein konkreter G-optimaler Plan vom Umfang # ist
1. falls n gerade

-1 1
= {n/Z n/Z}’ :48)

2. falls n ungerade

-1 0 1
V¥ = .
m—102 1 (n-1)2
Ist nun ¥ += H und H = {x,} ein Prognosepunkt, d. h., ist der Funktionswert von ?(x) an der

Stelle x = x,, optimal vorherzusagen, dann ist fiir x, > 1 ein diskreter G-optimaler Plan gegeben
durch

(5.47)

-1 1
B={x,—1 x,4+1} (5.48)
2x, 2x,

e

Ansatz 7i(x, 9) = 9 + #1x + 9,x?, Versuchsbereich ¥ = H = [—1, 1]
Ein diskreter A-optimaler Versuchsplan hat die Form

& ={1_/: 1(/)2 1;4}'

Dieser Plan ist auch I-optimal beziiglich p(x) = const und C-optimal beziiglich ¢ T = (0, 0, 1).

(5.49)
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Ein diskreter G- und D-optimaler Versuchsplan ist

-1 0 1
o = . 5.50
{1/3 13 1/3} (550
Fir ¥V + Hund H = {x,} mit x,, > 1 erhalten wir zur optimalen Vorhersage den Plan
-1 0 1
f=l2-x, 22-2. Rix, | (551

-2 Axi-2 4G -2

3. Ansatz 7j(x, &) = 9 + Fyx + 9,x* + -+ + §,x", Versuchsbereich V = H = [—1,1].
Ein diskreter G- und D-optimaler Versuchsplan gibt den r + 1 Punkten des Spektrums S(5*) das
Gewicht 1/(r + 1)

r=1:£1,0000

r=2:+1,0000 0,0000

r=3:+1,0000 +0,4472

r=4:+1,0000 +0,6547  0,0000
r=>5:+1,0000 +0,7651 +0,2852
r==6:+1,0000 +0,8302 0,468  0,0000.

Allgemein konnen wir feststellen, daB die Punkte des Spektrums eines diskreten G-optimalen Pla-
nes gerade die Nullstellen %o, ..., X, von (1 — x?)L{(x) sind, wobei L{(x) die Ableitung des r-ten
Legendre’schen Polynoms ist. Fiir r = 2, ..., 10 finden wir diese optimalen Versuchspline zusam-
men mit den daraus berechneten Matrizen zur Parameterschétzung vertafelt in Dubova/Pckialadze/
Fedorov [1].
Ein I-optimaler Versuchsplan beziiglich p(x) = const ist gegeben durch
IL7Ax)l Y r
e= {1, F (5.52)
YOI
Jj=0 1=90,
wobei x; (i = 0, ..., r) die Punkte des Spektrums S(é*) eines G-optimalen Planes sind.
Ein diskreter C-optimaler Plan beziiglich ¢T = (0, ..., 0,1) ist

-1, x;=cos(jr/r), 1
&= J=1...r-1, . (5.53)
1/2r, 1/r, 1/2r,
Fiir einen Prognosepunkt x,, > 1, also fiir ¥ + Hund H = {x,} ist ein diskreter G-optimaler Plan
= {x,: —cos(fﬂ/f),p;}jr_ 0 (5.54)
mit
Uj(x
L 5,55
2 Ul
Jj=0
und ;
= Xg) (X = Xj_1) (x = Xj41) - (x — X,
Uj(x) _ (x Xo) ( . 1) ( j+x) (¢ r) (5.56)

(x; — Xo) (X5 — Xj_1) (X/ —= Xp1) e (6 = x,) ’

Weitere optimale Versuchspléne finden wir z. B. in Bandemer/Bellmann/Jung/Richter [1].
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Wir haben bisher als Versuchsbereich stets das Intervall [—1,1] gewdhlt. In prak-
tischen Anwendungsproblemen haben wir es aber sehr oft mit anderen Versuchs-
bereichen zu tun. Von groBer Bedeutung ist deshalb die Frage, ob sich die fiir einen
Versuchsbereich V™ = {x;| =1 < x; £ 1,i = 1,...,k} Konstruierten optimalen
Versuchspléne auch dann noch als optimale Pline erweisen, wenn wir zu einem Ver-
suchsbereich V® = {z;|a; < z; < b;,i = 1,..., k} iibergehen.

Im Versuchsbereich V' sei der Ansatz #(x, 3) = f(x)T9 gegeben und &* =
{x;,p,}1, ein bekannter optimaler Versuchsplan. Weiterhin sei im Versuchsbereich V®
der Ansatz #(z, &) = f(z) T9 gegeben, und es wird ein optimaler Versuchsplan ge-
sucht. Es existiere zwischen den Versuchsbereichen V™ und ¥® eine affine Abbil-
dung z = g(x) so, daB es zu f und g eine regulire Matrix C gibt, fiir die fiir alle
xe VD gilt

f(g(x)) = Cf(x). . (5.57)
Dann 148t sich durch (5.57) ein diskreter Plan &, = {g(x,), p,}2; in einfacher Weise
aus &* berechnen. Fiir &, gilt nun wegen (5.19)

M) = £ 5 1@ )T = T pCi) fx)TCT

= C 3 pilx) f(x)T CT (5.58)
- cMeE CT,
und es ist
f(2) TM-(&,) (z) = £(x) TCT(CME¥) CT)* CH(x)
= 10 TMH %) £(x). (5.59)

Aus (5.58) folgt detM(&,) = (detC)? detM(&*), d. h. also, daB bei Giiltigkeit der Be-
ziehung (5.57) detM(£,) proportional ist zu detM(&*) und damit jeder diskrete (bzw.
auch der entsprechende konkrete) D-optimale Versuchsplan &* affin-invariant be-
ziiglich der Transformation z = g(x) ist. Fiir V' = H sind bei Giiltigkeit von (5.57)
auch alle G-optimalen Versuchspline affin-invariant beziiglich einer Transformation g.
Beispiel 5.3: Esseiendj(x, #) = 9 + 91x + $,x% in VO = [—1,1]und 7j(z, #) = & + #1z + $,2°
in ¥® = [0,2]. Eine affine Abbildung von 1) auf ¥® sei durch z = g(x) = x + 1 gegeben. Dann
gibt es eine Matrix C, fur die (5.57) gilt:

(2 1 1 100y /1
f(2)=(fz(z))=(z)=(x+1 ):(1 1 0) (x):(}f(x)
f3(2) 22 (x + 1)? 121 x?
mit 100
C=(l 1 0)~
121

Der Versuchsplan &* = [

-1

1 } ist fir ¥ = H = [—1,1] ein G-optimaler Plan, dann ist auch
12 172

der Versuchsplan

0 2
&= {"’ * 1""};: 17 {1/2 1/2}

fiir ¥ = H = [0,2] ein G-optimaler Versuchsplan.
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SIS? Ungleichungen

Die Berechnung konkreter optimaler Versuchspldne aus diskreten optimalen Ver-
suchspldnen ist ein schwieriges und noch nicht befriedigend geldstes Problem. Des-
halb sind Néherungen fiir konkrete optimale Pldne, die aus diskreten optimalen Pl4-
nen berechnet werden, von besonderem Interésse. Um eine solche Néherung beur-
teilen zu konnen, wollen wir den Funktionalwert des konkreten Planes mit dem
Funktionalwert des diskreten Planes vergleichen. Das fiihrt uns zu Ungleichungen
fiir die Funktionalwerte der Versuchspléine.

Eine allgemeine Ungleichung wurde von Fedorov [1] aufgestellt. W sei ein Funk-
tional mit den Eigenschaften

W(A + B) = W(A), W(KA) = kW(A), (5.60)

wobei A und B beliebige positiv semidefinite Matrizen sind, dann gilt fiir die opti-
malen Versuchspldne ¥ und &* die Ungleichung
e
n
wobei mit W(M(¢*)) = max W(M(¢)) und W(M(V¥)) = max W(M(V,)) bezeichnet
éeE VneVn

T WED) £ WMVE) < WME), (5.61)

wurde (m ist die Anzahl der Punkte des Spektrums S(£*)). Fiir n < m ist diese Un-
gleichung trivial, also nur fiir n > m interessant. Wahlen wir fiir das Funktional
W(M) = (detM)"r, dann kénnen wir fiir einen konkreten D-optimalen Versuchsplan
die Abschitzung

(” - m)rdetM(E*) < detM(V¥) < detM(E*) (5.62)

n
benutzen. Wihlen wir dagegen fiir das Funktional W(M) = min(f(x) TM* f(x))~?,
xeV

dann erhalten wir fiir G-optimale Versuchspline

max f(x) TM~1(£*) f(x) < max f(x) TM-1(V'¥) f(x) (5.63)
xeV xeV
< e max f)TM(E) ().

AuBer einem Vergleich eines konkreten optimalen Planes (bzw. einer Naherung dafiir)
mit einem diskreten optimalen Plan ist fiir eine praktische Anwendung oft noch von
groBem Nutzen zu wissen, wie weit ein bekannter diskreter Versuchsplan & von dem
entsprechenden optimalen Plan &* beziiglich des Funktionalwertes entfernt ist. So
einen bekannten Plan & konnen wir beispielsweise durch eine Vereinfachung eines
optimalen Planes erhalten, oder wir nehmen einen hiufig benutzten Plan, den es ein-
zuschidtzen gilt. )

Fiir die G-Optimalitit ist bei ¥ = H ein solcher Vergleich sehr einfach, kénnen
wir doch die Aussage 1.c des Aquivalenzsatzes von Kiefer und Wolfowitz benutzen
(vgl: Satz 5.1). Fir einen G-optimalen Plan &* gilt bekanntlich

max f(x) TM~1(&*¥) {(x) = r.
xeV
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Berechnen wir nun die entsprechende Grofie fiir den Plan &, dann kénnen wir aus
dem Unterschied zu r auf eine Giite der Naherung schlieBen. Ein Vorteil dabei ist
noch, daB der optimale Plan nicht bekannt zu sein braucht.

Fiir die Einschitzung eines diskreten D-optimalen Planes 148t sich der Aquivalenz-
satz nicht verwenden. Von Wynn [1] wurde folgende Abschitzung gegeben:

detM(£) r " max f(x) TM-(¢) f(x) — 1 * (5.64)
detM(&%) = [max f(x) TM~1(¢) f(x)} [ Y '
xeV

r—1

und von Atwood [1] die Abschiatzung nach unten

detME) [ r } (5.65)

detM(£*) = | max f(x) TM~*(£) f(x)
xeV

Durch Umformen der Ungleichungen (5.64) und (5.65) sind wir in der Lage, mit einem
diskreten Plan & Schranken fiir den Funktionalwert eines D-optimalen Planes £* an-
zugeben.

5.6. Ein Iterationsverfahren fiir G- und D-optimale Versuchspline

Die Berechnung eines diskreten G- und D-optimalen Versuchsplans aus dem defi-
nierenden Optimierungsproblem ist numerisch oft recht schwierig, vielfach ist solch
eine Losung wegen eines nicht zu vertretenden groBen Aufwandes praktisch nicht zu
ermitteln. Letzteres wird besonders dann der Fall sein, wenn der Versuchsbereich V'
eine komplizierte Gestalt hat oder wenn nur geringe Anhaltspunkte tiber die Form
eines diskreten G-optimalen Planes vorliegen. Eine giinstige, weil rationelle bzw. 6ko-
nomische Méglichkeit zur Konstruktion eines optimalen Planes besteht darin, Schritt
fiir Schritt, ausgehend von einem Anfangsversuchsplan, jeweils einen neuen Versuchs-
punkt aus dem Versuchsbereich ¥ auszuwéhlen und dem Anfangsplan hinzuzufiigen.
Fiir dieses iterative Vorgehen wurden von Fedorov [1], Sokolov [1] und Wynn [I]
Verfahren zur Konstruktion eines G-optimalen Planes angegeben.

Der Grundgedanke dieser Verfahren besteht darin, daB ein G-optimaler Plan nur
solche Punkte im Spektrum enthélt, in denen die Varianz der geschitzten Funktions-
werte Y(x) maximal ist. Fiir einen diskreten Plan & = {x,, p,}12, gilt

El P f(x) TMTH(E) f(x,) = El Sp(M-1(&) f(x,) 1(x,)) Tp1)

SpM~'(§) é puf(x) f(x) T) (5.66)

Sp(M~*(§) M(£))

=SpE, =r
(diese Herleitung 148t sich leicht bestitigen, wenn wir fiir f(x) und M~*(¢) die Kompo-
nentendarstellung einsetzen und die Ausdriicke ausrechnen).. Soll nun & ein G-opti-

maler Versuchsplan sein, dann erhalten wir aus der Aussage 1.c des Aquivalenzsatzes
5.1 von Kiefer und Wolfowitz (vgl. Abschnitt 5.4.)'

fx)™ @& f(x)<r, I=1,...,m. (5.67)

7 Bandemer, Versuchsplanung
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Damit aber fiir einen G-optimalen Plan (5.66) gilt, muB in (5.67) das Gleichheits-
zeichen stehen. Also besteht das Spektrum eines diskreten G-optimalen Planes &* nur
aus solchen Punkten, in denen die Varianz D*Y(x) = f(x)T M~*(£*) f(x) der Schit-
zungen ¥(x) maximal ist (vgl. Aussage 1.c, Satz 5.1).

Wir wollen nun einen diskreten G-optimalen Versuchsplan naherungsweise be-
rechnen. Das Iterationsverfahren wird durch folgende Schritte charakterisiert:
Schritt 1: Gegeben sei ein Anfangsplan ¥, mit detM(F¥,,) # 0. Dieser Plan muf3

nicht optimal sein, er muB nur die Schitzung aller Parameter erlauben.
Ein solcher Plan 148t sich ohne Schwierigkeiten angeben.

Schritt 2: Es wird ein Versuchspunkt x, ., so gesucht, daB
£(%5,.1) TMH(V, )f(X,,1) = max f(x) TM~(V,,) f(x) (5.68)
xeV

gilt. Wir suchen somit die Abszisse des absoluten Maximums der Funk-
tion g(x) = f(x)T M~(V,,) f(x).

Die Maximierung der Funktion g(x) bereitet oft groBe Schwierigkeiten, da im all-
gemeinen aufwendige Optimierungsverfahren angewandt werden miissen. Bei der An-
wendung dieser Verfahren (z. B. Methode des steilsten Anstiegs, zufilliges Suchver-
fahren) kann es vorkommen, daf das Ergebnis der Rechnung nur ein relatives Maxi-
mum liefert, wir miissen das Verfahren mit anderen, zufdllig gewéhlten Startpunkten
wiederholen. Wenn g(x) eine konvexe Funktion ist (vgl. z. B. Bd. 14 bzw. Bd. 15),
konnen wir uns bei der Suche des Maximums auf den Rand von ¥ beschrinken.
Schritt 3: Der im Schritt 2 gefundene Punkt wird dem Plan ¥, hinzugefiigt. Es er-

gibt sich ein Plan

Vi1 = (X Xn,» Xn.+1);

der fiir uns ein neuer Anfangsplan ist, mit dem nun die Bestimmung des
optimalen Abszissenwertes der Funktion g(x) wiederholt wird.
Auf diese Weise erhalten wir eine Folge von konkreten Versuchsplinen V, ,
Vi1 +--s Vas ... FUr jeden dieser Pldne konnen wir detM(V;) (i = no, no+1, ..., n,...)
berechnen. Es gilt dann der von Wynn [1] bewiesene Satz
Satz 5.2: Fiir die Folge der konkreten Versuchspline
51450 0005145 oo 411
lim detM(V,) = detM(£¥), (5.69)
n—00

wobei &* ein diskreter G-optimaler Versuchsplan ist.

Das Iterationsverfahren kann bereits nach einer endlichen Anzahl von Schritten
abbrechen, wenn der Anfangsplan ¥, nur solche Punkte enthilt, die zum Spektrum -
S(&*) eines G-optimalen Planes gehdren. Als Abbruchbedingung verwenden wir da-
bei die Bedingung 1.c des Satzes 5.1 (Aquivalenzsatz von Kiefer/Wolfowitz). Enthilt
das Spektrum des Anfangsplanes Punkte, die nicht zum Spektrum S(£*) eines G-opti-
malen Planes gehéren, dann besitzt solch ein Punkt im Versuchsplan ¥, immer noch
mindestens das Gewicht 1/n. Ist dieses Gewicht hinreichend klein, dann wird der ent-
sprechende Punkt aus dem Spektrum gestrichen. In diesem Fall erhalten wir nicht
nach endlich vielen Schritten einen diskreten G-optimalen Plan. Wir werden des-
halb ein anderes, geeigneteres Abbruchkriterium verwenden miissen. Es ist also fiir
die notwendige Schrittzahl und damit fiir den Rechenaufwand bei dem hier vorge-



5.6. Ein Iterationsverfahren fiir G- und D-optimale Versuchspline 99

stellten Iterationsverfahren von groBer Bedeutung, einen moglichst guten Anfangs-
plan 7, vorzugeben. Das hier beschriebene Iterationsverfahren wurde weiter ver-
feinert, z. B. durch eine Anderung der Gewichte (vgl. Fedorov [1], Atwood [2]).

Analog zu den Ungleichungen (5.64) und (5.65) wurden von Wynn [1] Ungleichun-
gen angegeben, die fiir jeden Schritt des Iterationsverfahrens berechnet werden kénnen.
Es gilt

A, < detM(§¥) < B, (5.70)
mit
d(&,) r—1 -1t
detM(En){ = } {{3(5") = 1} . (5.71a)
= detM(¢,) exp{d(£,) — r} (5.71b)
und mit
[ 1Y detM,.)
- d(E) —n[( - ) T AN 1}. (5.72)

Wird nun fiir ein gewisses n der Ausdruck B, — A, hinreichend klein, dann kann das
Iterationsverfahren abgebrochen werden. Wir werden die Anwendung des Iterations-
verfahrens an einem Beispiel demonstrieren und einen diskreten D-optimalen Plan
konstruieren, der nach dem Aquivalenzsatz auch ein diskreter G-optimaler Plan ist.

Beispiel 5.4: Zur Schitzung der Wirkungsfliche 7(x) sei der Ansatz 7j(x, 9) = ¥y + #;x; + ,x,
gegeben. Der Versuchsbereich V sei gewihlt als V' = {xy, X5, X3, X4} mit x; = (2,2), x, =(—1,1),
X3 = (1, —1) und x4 = (-1, —1) (vgl. Bild 5.2). Als Anfangsplan benutzen wir den Plan V;
= (X1, X3, X4). Daraus berechnen wir die Informationsmatrix fiir ny = 3

n n
no 2 xu 2 Xy
i=1 i=1
1 n n n
M(V3) = — Sxu 3 Xy 2 XuXzg
no i=1 i=1 i=
n n n
2 Xy 2 XuXz 2 X%i
i=1 i=1 i=1
1 31 =1
=31 3 -t} (5.73)
-t -1 3

Aus (5.73) erhalten wir detM(¥3) = 0,5926 und somit fiir die Varianzfunktion
1

D*¥(x) = (1, x1, x) M~'(V3) | x, : (5.74)
X2
mit
1,50 0,75 0,75
M3 =10,75 1,50 0,75),
0,75 0,75 1,50,
also

D2P(x) = 1,50(1 + x3 + x3 + x; + x5 + x1x2). (5.75)
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X2
2
=
X, 7
: 2
|
|
=2 -1 7 X7
X4 -7 X3
42

Bild 5.2

Berechnen wir nun max D?Y(x), dann wird dieses Maximum fiir den Punkt x; angenommen.

X€ -~
Als Funktionswert ergibt sich aus (5.75) D*Y(x,) = 25,5.

Bestimmen wir die Grenzen A3 und B; der Ungleichung (5.70), dann ist die durch den Anfangsplan
V5 erhaltene Niherung fiir &* noch unzureichend (vgl. Tab. 5.1), wir gehen zu einem
Va4 = (X2, X3, X4, X;) Uber, berechnen M~1(V,) und aus D?*Y(x) durch Maximierung den nichsten
Punkt des Versuchsplanes. In der folgenden Tabelle 5.1 haben wir die Ergebnisse von 12 Rechen-
schritten zusammengestellt (vgl. Wynn [1]) und jeweils die Schranken der Ungleichung (5.70) mit

angegeben.
Tabelle 5.1
n Versuchspunkt detM(V,) d&n) Ay B,
1 Xa
2 X3
3 X4 0,5926 25,5000 2,4252 5,9x10%
4 Xy 2,3750 3,5790 2,4252 4,2374
5 X1 2,3040 3,7500 2,3802 4,8776
6 Xz 233333 4,2857 2,5205 8,4403
7 X3 2,5190 3,2407 2,5297 3,2046
8 X3 2,4688 . 3,3165 2,4863 3,3878
9 X2 2,4527 3,6846 2,5220 4,8634
10 X3 2,5200 3,3429 2,5240 2,9076
11 Xy 2,4883 3,3478 2,5094 315235
12 X4 2,5000 3,2000 2,5075 3,0553
Setzen wir das Iterationsverfahren bis n = 32 fort, dann ergibt sich der Versuchsplan
Va2 = (X2, X3, X4, X1, X1, X2, X3, X1, X2, X3, X1, X4, X2, X3, X1, X2, X3,
X1, X4, X2, X3, X1, X3, X2, X1, Xg, X3, X2, X1, X2, X1, X3). (5.76)
Fiir den Plan (5.76) ermitteln wir
detM(V3,) = 2,53125. (5.77)
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Die Schranken fiir det M(&*) sind
A3z = B;, = 2,53125,
und die Abbruchbedingung fiir das Verfahren, die Aussage 1.c des Aquivalenzsatzes, liefert
max D?Y(x) = 3 (5.78)

xeV

(d(,) gibt fiir n — 0o gerade max D2 Y(x)).
xeV

Damit endet das Iterationsverfahren, wir haben mit
£= X X, X3 X4
©ol10/32 9732 9/32 432

[vgl. (5.76)] einen diskreten G-optimalen Versuchsplan fiir den Versuchsbereich ¥ = {x;, X2, X3, X4}
erhalten.

(5.79)

5.7. Weitere Probleme

In diesem Abschnitt wollen wir einige Problemstellungen kennenlernen, in denen wir die Durch-
fithrung von Versuchen nach einem optimalen Plan vornehmen kdnnen.

Untersuchen wir Mixturen, d. h. Gemische aus verschiedenen Komponenten, dann driicken die
EinfluBgroBen der Wirkungsfunktion z. B. Gewichts-, Volumen- oder Molanteile aus. Zwischen
solchen EinfluBgroBen gilt dann die Bedingung

k
Zx=1, (5.80)
i=1

wobei x; = 0 firi=1,..., k.

Durch (5.80) ist eine Einschrinkung des Versuchsbereiches gegeben, wir diirfen nur noch Versuche
auf einem sogenannten Simplex durchfiihren (s. Bild 5.3). Fiir k = 3 hat (5.80) die spezielle Form
eines Dreiecks (der urspriingliche Versuchsbereich ¥ ist der Wiirfel 0 < x; < 1,i= 1, ..., k).

23

/
X7

Bild 5.3
8  Bandemer, Versuchsplanung
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Die Beschrinkung auf (5.80) fiihrt auch dazu, daB die Parameter des Ansatzes 7j(x, 9) nur bis auf
eine additive Konstante bestimmt werden kénnen. Dies folgt aus

k k
7i(x, 9) = 9o + ‘Z dxp=@o+ N+ 3 @ —Dx (5.81)
=1 =1

k
wegen > x; = 1. Betrachten wir einen Ansatz der Form
=1
(X, ®) = B + F1x; + -+ + xy, (5.82)
dann erhalten wir wegen (5.80) eine Reduktion des Ansatzes. Ersetzen wir beispielsweise x; durch

k
1 — 3 x;, dann geht (5.82) iber in #j(x, y) = 1 + Y2x2 + -+ + ¥x;. Verwenden wir dagegen
1=1

k
1= 3 x;, dann geht(5.82) iiber in den Ansatz 7j(x, ) = 81Xy + Ox5 + -+ + Oxy, der kein Abso-
-1

lutglied mehr enthilt. Diese beiden Ansitze 7j(x, ) und j(x, 8) sind von unterschiedlicher Bedeutung
fiir den Experimentator, mathematisch gesehen sind sie vollig gleichwertig.

Eine wesentliche Grundlage fiir die optimale Versuchsplanung fiir Mixturen bildet das (k,d)-Git-
ter. Dabei wird der Simplex fiir £ EinfluBgroBen mit einem Gitter der Maschenweite 1/d tiberzogen.
Die Gitterpunkte sind dann die moglichen Punkte eines optimalen Versuchsplanes, die Berechnung
reduziert sich auf eine Bestimmung der Gewichte fiir die Gitterpunkte. Ein (3,3)-Gitter besteht bei-
spielsweise aus den 10 Punkten (s. Bild 5.4)

1 0 0 23130 0 1/3231/3
{xi,wx}=1{0 1 0 132323130 0 13}
0 0 1 0 0 1/32/323 1313

Bild 5.4

Optimale Versuchspline zur Schitzung der Parameter bei Mixturen finden wir z. B. bei Bandemer/
Bellmann/Jung/Richter [1].

Bei vielen praktischen Problemen sind wir daran interessiert, nur so viele Versuche durchzufiihren,
wie zur Erreichung einer Mindestgenauigkeit unbedingt erforderlich sind. Diese Forderung legt fol-
gende Versuchsstrategie nahe: Ausgehend von einem mindest notwendigen Anfangsplan, der eine
Schitzung der interessierenden Parameter erlaubt, filhren wir jeweils nur einen Versuch oder eine
geringe Anzahl von Versuchen durch. Die dabei gewonnenen Ergebnisse werden bei jedem Schritt zur
Schitzung der Parameter des Ansatzes der Wirkungsfunktion herangezogen. Haben wir die geforderte
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Genauigkeitsschranke (oder ein anderes Abbruchkriterium) noch nicht erreicht, dann fithren wir
weitere Versuche durch, ansonsten endet das Verfahren. Diese Vorgehensweise wird sequentiell ge-
nannt (hier: sequentielle Schitzung) im Gegensatz zu einem iterativen Vorgehen, bei dem die Er-
gebnisse der Versuche bei der Auswahl des nichsten Versuchspunktes nicht mit beriicksichtigt wer-
den. Diese Versuchsstrategie 148t sich besonders dann anwenden, wenn die Versuche sehr aufwendig
sind oder nur in groBeren Abstidnden durchgefiihrt werden konnen. Erste Untersuchungen zur Kon-
struktion optimaler Versuchspline bei sequentiellen Schiatzungen finden wir bei Hohmann [1].

Bei unseren bisherigen Uberlegungen haben wir stets die Kosten fiir eine Versuchsdurchfithrung
ausgeklammert. Das diirfte aber nur in seltenen Fillen mdglich sein, héufiger wird eine Beriicksichti-
gung der Versuchskosten die Konstruktion optimaler Versuchspline beeinflussen. Auf eine Formu-
lierung der Aufgabenstellung sind wir bereits kurz im Kapitel 1, Abschnitt 1.4, eingegangen, Vor-
schlége fiir eine Konstruktion kostenoptimaler Versuchspldne finden wir bei Jung [1].

Bei der Aufstellung eines wahrscheinlichkeitstheoretischen Modells ist eine Beschreibung des vor-
liegenden Sachverhaltes durch die Annahme unkorrelierter Beobachtungen oft nicht mehr méglich.
Wir miissen dann annehmen, daB die Kovarianzmatrix By des Stichprobenvektors % die Form
By = 0% W(x,, ..., X,) hat, wobei W(xy, ..., X,) eine positiv semidefinite Matrix ist, deren Struktur
wir kennen miissen. In diesem Fall ist die Methode der kleinsten Quadrate nicht mehr ohne Ein-
schrinkung anwendbar. Erste Uberlegungen fiir eine optimale Versuchsplanung fiir korrelierte MeB-
fehler finden wir bei Bellmann [1].

5.8. Zusammenfassung

Alle im linearen Modell auftretenden Varianzausdriicke hingen nur durch die Matrix FTF vom
Versuchsplan ¥, ab. Deshalb definieren wir Optimalititskriterien fiir die Auswahl eines Versuchs-
planes als Funktional der Informationsmatrix M(¥,) = F TF/n. Durch eine spezielle Wahl der Funk-
tionale erhalten wir die Kriterien fiir D-, A-, E-, C-, G- und I-optimale Versuchspline.

Der Ubergang von konkreten zu diskreten Versuchsplinen bringt Vorteile bei der mathematischen
Bearbeitung der Aufgabenstellung. Fiir diskrete Versuchspline gilt der fundamentale Satz von
Kiefer und Wolfowitz, der besagt, daB3 ein D-optimaler diskreter Plan £* auch G-optimal ist. Weiter-
hin 148t sich nach diesem Satz der Funktionalwert von £* durch die Anzahl der Parameter & des An-
satzes 7j(x, ¥) ausdriicken. Diese Moglichkeit erlaubt uns die Konstruktion einer gewissen Klasse von
Versuchspldnen durch Hadamard-Matrizen.

Nach einer Zusammenstellung einiger wichtiger Versuchspline wird das Problem betrachtet, ob
ein fiir einen Versuchsbereich ) optimaler Plan &* auch fiir einen Versuchsbereich ¥® optimal ist,
wenn V@ durch eine affine Transformation auf ¥V zuriickgefiihrt werden kann. Ein G-optimaler
Versuchsplan fiir ¥V ist auch fiir ¥®> G-optimal, wenn es zu einer affinen Abbildung z = g(x) eine
Matrix C gibt, so daB f(g(x)) = Cf(x) gilt. Fiir die Einschitzung eines konkreten optimalen Versuchs-
planes V¥, der im allgemeinen eine Néherung fiir einen diskreten Plan ist, werden Ungleichungen von
Fedorov, Wynn und Atwood angegeben, mit denen ein Plan &* beziiglich des entsprechenden Funk-
tionalwertes verglichen werden kann.

Hat der Versuchsbereich ¥ eine sehr komplizierte Gestalt oder bestehen keine Vorstellungen iiber
die Form eines G- oder D-optimalen Versuchsplanes, dann wird ein Iterationsverfahren zur Berech-
nung eines diskreten optimalen Planes vorgeschlagen. Dabei wird die Tatsache ausgenutzt, daB} ein
G-optimaler Plan nur solche Punkte in seinem Spektrum enthilt, in denen die Varianz der geschitz-
ten Funktionswerte maximal ist. Solche Punkte mit maximaler Varianz werden bei jedem Schritt des
Verfahrens ausgewéhlt und zu einem Anfangsplan hinzugefiigt. Auf diese Weise wird iterativ ein dis-
kreter G- und D-optimaler Plan berechnet.

8*



6. Versuchsplanung zur Diskrimination
von Regressionsansiitzen

6.1. Einleitung und Problemstellung

Zur Schitzung der unbekannten Wirkungsflidche #(x) haben wir bisher stets einen
Ansatz benutzt, der entweder ein wahrer Ansatz ist [vgl. (1.12)] oder der eine hinrei-
chend gute Beschreibung von #(x) liefert, wobei wir %(x) durch Polynome approxi-
mieren wollen. Vielfach kann aber ein Experimentator eine ganze Reihe von még-
lichen Ansétzen in Betracht ziehen fiir eine Schitzung der Wirkungsfliche. Ein Bei-
spiel soll dies verdeutlichen. Fiir eine chemische Reaktion A — B soll die Konzen-
tration des Stoffes 4 in Abhéngigkeit von der Zeit (EinfluBgréBe x;) und von der
Temperatur (EinflugroBe x,) durch eine Funktion beschrieben werden. Dabei ist es
méglich, Versuche in einem gewissen Bereich ¥ durchzufiihren. Der Experimentator
kann zur Beschreibung von #7(x) (Konzentration von A) einen der Ansétzeé

FO(x, #W) = e‘x.e“’(xl)—"(zz"l”
FO(x, @) = [1 +x,e0P -0§Px]-1,
FOx, ) = [1 + 2x,e@P -0 x]-112

FO(x, 9@) = [1 + 3x,e049-o]-112.

6.1)

wihlen. Zur Entscheidung fiir einen der Ansitze wollen wir Versuche durchfiihren,
deren Auswertung eine Diskrimination (also eine Unterscheidung) der Ansitze er-
laubt. Allgemein konnen wir die Aufgabenstellung wie folgt formulieren: Die Wir-
kungsfliche 7(x) ist durch einen Regressionsansatz 7(x, &) zu schitzen. Der Ansatz
7j(x, ¥) sei dabei ein wahrer Ansatz, der aber in den meisten Fallen unbekannt und
nur schwer zu beschaffen sein wird. Vielfach kennt aber der Experimentator wenig-
stens eine Klasse von Funktionen, mit denen sich ein fiir das betrachtete Problem
sinnvoller Ansatz konstruieren 146t. Von allen mit den Funktionen dieser Klasse kon-
struierbaren Ansitzen betrachten wir nur eine gewisse Teilmenge, die wir in die engere
Wabhl ziehen. Diese Ansitze 7(x, 9), i = 1, ..., g, unter denen wir einen geeigneten
auswihlen miissen, bezeichnen wir als konkurrierende Ansdtze. Liegt uns eine Reali-
sierung des Beobachtungsvektors # vor, dann kénnen wir nach einem vorher festge-
legten Kriterium den besten auswiahlen. Als geeignetes Kriterium wird sich vielfach
ein Test erweisen. Diesen so ausgewdéhlten besten Ansatz konnen wir nun weiteren
statistischen Fragestellungen, z. B. der Schitzung der Parameter zugrunde legen. Fiir
eine mathematische Behandlung erweist es sich als giinstig, vorauszusetzen, da3 min-
destens einer der konkurrierenden Ansitze ein wahrer Ansatz ist, und wir wollen
dariiber hinaus noch annehmen, daf3 der ermittelte beste Ansatz ein wahrer Ansatz ist.

Es gibt in der mathematischen Statistik verschiedene Verfahren, die nach der Durch-
fiihrung von Versuchen eine Auswahl eines besten Ansatzes aus den konkurrierenden
Ansitzen ermdglichen, die bekanntesten sind die Riickwirtselimination und die
schrittweise Regression (vgl. z. B. Draper/Smith [1], Enderlein [1] und Anderson [1]).
Die Verfahren zur Entscheidung tiber die Ansitze hingen von der Lage der Versuchs-
punkte ab, diese Abhingigkeit wird aber in den meisten Fllen nicht zur Unterstiit-
zung einer Entscheidungsfindung herangezogen. Die folgenden Uberlegungen sollen
die Bedeutung der Lage der Versuchspunkte fiir diese Entscheidung veranschaulichen.

Fiir eine Wirkungsfliche (x) liegen uns die Ansitze 7 (x, 9 V) und 7®(x, ) vor.
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Nach einem bestimmten Kriterium (z. B. durch ein Schétzverfahren) wihlen wir fiir

jede Schar einen speziellen Parametervektor 9 und 9 aus. Das Bild 6.1 stellt einen
moglichen Kurvenverlauf dar.
Fiihren wir nun die Versuche an solchen Punkten x durch, die kleiner als x, sind,

dann werden wir nur eine geringe Differenz zwischen (n(x)—7®(x, 9)) und

((x) — §®(x, 9@)) zu erwarten haben und sehr viele Versuche zum Erkennen die-
ser geringen Unterschiede bendtigen. Wihlen wir als Versuchspunkte Abszissenwerte,

7 (2){%.17/2/)

n(x)
(1 H7)

Xp X

Bild 6.1

die groBer als x, sind, dann weichen die Funktionen #®(x, ™) und 7®(x, $?®)
stark voneinander ab, und wir werden mit wesentlich weniger Versuchen eine Ent-
scheidung fiir den besten Ansatz ermdglichen. So ein Teilbereich V < ¥, in dem sich
die Ansatze wesentlich unterscheiden, kann nur dann angegeben werden, wenn wir die
Wirkungsfunktion #(x) kennen. Wir wollen nun durch die Konstruktion eines opti-
malen Versuchsplanes erreichen, mdglichst viele Versuche im Bereich 7 zu konzentrie-
ren. Dabei ist eine sequentielle Vorgehensweise vielfach vorteilhaft. Wir gehen von
einem Anfangsplan ¥, aus und priifen, ob wir uns fiir einen der konkurrierenden An-
sitze entscheiden kénnen. Ist das noch nicht der Fall, dann wéhlen wir als neuen zu
V,, hinzukommenden Versuchspunkt einen solchen Punkt aus ¥, der einen méglichst
groBen Unterschied zwischen den Ansidtzen erwarten ldf3t. Liegen zur Beschreibung
von 7(x) genau ¢ Ansitze (x, 9?), i = 1, ..., g, vor, wobei genau einer dieser An-
sitze ein wahrer Ansatz ist, dann kénnen wir die Konstruktion eines optimalen Ver-
suchsplanes zur Diskrimination von Regressionsansétzen durch die folgenden Schritte
charaktersieren:

Schritt 1: Nach einem beliebigen, nicht notwendig optimalen Anfangsplan ¥V, wer-
den n Versuche durchgefiihrt. Der Umfang des Planes muf3 dabei so ge-
withlt werden, daB alle Parameter der konkurrierenden Ansétze geschétzt
werden konnen.

Schritt 2: Aus den vorliegenden Versuchsergebnissen bestimmen wir die erforder-
lichen Schitzwerte und priifen (z. B. mit einem geeigneten Test), ob die
Auswahl des besten Ansatzes méglich ist. Konnen wir diese Entscheidung
féllen, dann endet das Verfahren, im anderen Fall sind weitere Versuche
erforderlich. ’ ’
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Schritt 3: Der nichste Versuchspunkt wird unter Verwendung der vorliegenden n
Versuchsergebnisse nach einem Optimalitéitskriterium ausgewéhlt und
dem Plan ¥, hinzugefiigt.

Schritt 4: In dem neuen Versuchspunkt x,,,, realisieren wir die ZufallsgroBe Y(x,.,),
d. h., wir fiihren einen Versuch durch und kehren zum Schritt 2 zuriick.

Die Konstruktion eines Versuchsplanes zur Diskrimination von Regressionsan-
sitzen beschrinkt sich auf Schritt 3, wir werden einige solcher Kriterien zur Auswahl
von X,,; im weiteren vorstellen. Auf Mdoglichkeiten einer Entscheidung fiir den
besten Ansatz gehen wir hier nicht ein, da uns besonders der Versuchsplanungsaspekt
bei der Auswahl von x, interessiert, wir verweisen z. B. auf Draper/Smith [1] und
Anderson [1].

6.2. Optimalitiitskriterien unter Verwendung der Stichprobenvarianz

Zur Schitzung der Wirkungsfliche mdgen uns zwei Ansétze vorliegen, 7 (x, 9)
und 7®(x,9?), von denen genau einer ein wahrer Ansatz ist. Der Beobachtungs-
vektor % sei fiir alle Stichprobenumfinge n normalverteilt, seine Komponenten un-
abhingig. Die Varianz sei fiir alle Komponenten gleich ¢2. Wihlen wir nun einen
Versuchsplan V, so, daB beide Parametervektoren 9 und & nach der Methode
der kleinsten Quadrate eindeutig geschitzt werden koénnen. Diese Schétzungen be-
zeichnen wir mit @W(¥,) und @@(V,). Bei der Auswertung von Versuchen durch ein
lineares Modell ist es iiblich, zur Beurteilung der Giite eines Ansatzes 7 (x, 9) fiir
die Wirkungsfliche #(x) die Summe der quadratischen Abweichungen

S(V) = X (Fx) = 10, 67", i = 1.2, 62)

heranzuziehen. Bis auf einen konstanten Faktor ist (6.2) die sogenannte Restvarianz
(vgl. auch Abschnitt 1.3.1. und 4.2.). Entsprechend den Uberlegungen aus dem vor-
angegangenen Abschnitt wollen wir dann denjenigen der beiden Ansitze 7P (x, 91),
i = 1, 2, als besten Ansatz auswahlen, der eine kleinere Restvarianz (d. h. eine klei-
nere Summe der quadratischen Abweichungen bei festem 7) besitzt. Eine grofe Rest-
varianz soll ein Zeichen fiir einen von 7(x) stark abweichenden Ansatz 7(x, &) sein.
Tritt das zuféllige Ereignis S,(V,) — Sz2(V,) > 0 ein, dann werden wir 7'2(x, ) als
besten Ansatz auswihlen. Im Fall S;(V,) — S2(V,) < 0 wihlen wir §®(x, 91) als
besten Ansatz aus (das Ereignis S;(V,) — S2(V,) = 0 besitzt die Wahrscheinlichkeit
0 und bleibt deshalb unberiicksichtigt).

Wenn wir die Méglichkeit haben, nach der Durchfiihrung eines Planes V, = (x,,
..., X,) und vor der Entscheidung tiber die Ansétze noch weitere Versuche zu machen,
also sequentiell vorgehen konnen, dann 148t sich ein modifiziertes Entscheidungskri-
terium anwenden. Es seien 4 und B vorgegebene positive Zahlen, die auBler von der
Verteilung von S;(V,) — S2(¥,) auch von den Fehlern 1. Art o (wir wéhlen z. B. den
Ansatz §®(x, 9®), obwohl 7(x, 9’) wahrer Ansatz ist) und 2. Art § (wir withlen
FO(x, 9P), obwohl 7 (x, ¥ @) wahrer Ansatz ist) abhingen. In praxi verwenden wir
die Zahlen 4 = «/(1 — f) und B = (1 — &)/B (vgl. Wald [1]). Tritt das Ereignis

S1(Ve) = Sa(Vi) < 4 6.3)
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ein, dann entscheiden wir uns fiir den Ansatz 7(x, 9), beim Ereignis

S1(Va) — S2(V,) > B (6.4)
nehmen wir den Ansatz §®)(x, 9®) als besten Ansatz, und im Fall

A2 8:(V,) — S:(Va) = B (6.5)

setzen wir die Versuche fort. Dazu wihlen wir einen neuen Versuchspunkt X,.;,
fiigen diesen zu ¥, hinzu und wiederholen das Verfahren mit dem Plan V,,;.

Zur Auswahl des nichsten Punktes x,,; ist es sinnvoll, die Entscheidungsgréfe
S1(V,) — S2(V,) als Kriterium heranzuziehen. Die Summen der quadratischen Ab-
weichungen (6.2) lassen sich fiir den Punkt x,,; nach Durchfiihrung von ¥, schreiben
als

51 V) = 5 (X)) = 196, 00(V,,0)
S (6.6)
+ (Y Xns1) = TOFni1, OV i), i=1,2,

wobei die Schitzung @® (V,,;) mit dem Beobachtungsvektor (y(xy), ..., Y(Xn),
Y(X,.1))T zu bilden ist. Wegen (6.6) ist aber Sy (X415 V) — S2(Xns1, V) eine Zufalls-
grofle, die wir nur dann fiir eine Optimierung beziiglich x,,; heranziehen kdnnen,
wenn wir den Erwartungswert bilden beziiglich der Verteilung des Stichprobenvek-
tors unter der Voraussetzung, daB3 der Ansatz 7(x, 3V) wahrer Ansatz ist (diesen
Erwartungswert bezeichnen wir mit E;). Da der wahre Ansatz unbekannt ist, miissen
wir den Versuchspunkt x,,; aus den beiden Beziehungen

m‘;x Eq[Sa(x, V) — S1(X, V)] = Ei[S2(Xps1s Vi) — Si(Xns1s V)l
Xe

©.7)
max EZ[Sl(x’ Vn) - SZ(X’ Vn)] = EZ[Sl(xn+13 Vn) - Sl(xn+ls Val
xeV

gleichzeitig auswihlen. Dazu konnen wir eine von Fedorov [1] angegebene Zerlegungs-
formel mit Erfolg anwenden. Trotzdem wird sich ein Punkt x,,; nach (6.7) wenn
iberhaupt, dann nur sehr schwer bestimmen lassen. Deshalb ist es giinstiger, als Aus-
wahlkriterium

max [0, Ey(S2(X, Vi) — Si(X, Vi) + 02E2(S1(X, Vi) — Sa(X, V)] (6.8)
xeV

zu verwenden. Dabei sind v; und v, spezielle Gewichtsfunktionen, die von den Feh-
lern « und § abhéngen.

Wenden wir zur Auswahl des besten Ansatzes nicht die Differenz der Sy(V,),i = 1,
2,an, sondern den entsprechenden Likelihoodquotienten fiir die Ansitze 7(x, ),
i =1, 2, dann wird von Hunter/Reiner [1] ein Auswahlkriterium vorgeschlagen,
nach dem x,, so gewéhlt wird, daB der Abstand der Schéitzungen der Wirkungsfliche
maximal ist

max [FO(x, $O(F,) — 72 (x, IO
xeV (6.9)
= [V Fns1, POF) = T2 Xnaq, IOV
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6.3. Optimalitétskriterium unter Verwendung der Entropie

Wir lassen nun ¢ konkurrierende Ansétze zur Schitzung der Wirkungsfldche zu.
AuBer 79(x, 9°), i = 1, ..., g, sei fiir jeden dieser Ansitze eine Wahrscheinlichkeit
P, i =1,..., q, gegeben. Dieser Wert P, gibt an, mit welcher Wahrscheinlichkeit der
Ansatz f®(x, 9®) der wahre oder zur Beschreibung von 7(x) am besten geeignete
Ansatz ist. Dabei miissen die Ansitze disjunkt sein, d. h., es darf keine Funktion

a
geben, die zu zwei verschiedenen Ansitzen gehért, und es muB Y P; = 1 gelten. Sind
1=1

alle Ansdtze gleichberechtigt, dann setzen wir sinnvollerweise Py = P, = --- = P,
= 1/q. Liegt uns die Realisierung eines Versuchsplanes ¥, vor, dann kénnen wir unter
Verwendung der Versuchsergebnisse aus den a-priori-Wahrscheinlichkeiten P; durch
die Bayessche Formel fiir jeden Ansatz eine a-posteriori-Wahrscheinlichkeit P;,,
i =1, ..., g, berechnen. Diese so bestimmte Wahrscheinlichkeit P;, konnen wir zur
Grundlage einer Auswahl des besten Ansatzes nehmen. Wir wihlen z. B. 7(x, 9¢)
als besten Ansatz, wenn gilt

P,, = max P,,. (6.10)
i

Unterscheiden sich die P;, nur wenig voneinander, dann ist (6.10) kein sehr giinstiges
Kriterium. Da sich die Wahrscheinlichkeiten P;, von Versuch zu Versuch dndern
werden, ist es vorteilhaft, sequentiell vorzugehen. Dabei wird die a-posteriori-Wahr-
scheinlichkeit des (n + k)-ten Schrittes zur a-priori-Wahrscheinlichkeit fiir den
(n + k + 1)-ten Schritt.

Es sei der Ansatz 7®(x, 9®) wahrer Ansatz, und es liege eine Realisierung eines
Planes V, vor, dann ist das Versuchsergebnis des (# + 1)-ten Versuchs an einer be-
liebigen, aber festen Stelle x ebenfalls normalverteilt mit £;Y(x) = §®(x, 9”) und
D*Y(x) = ¢* (wir hatten bereits die Komponenten des Stichprobenvektors % als
normalverteilt und unabhéingig vorausgesetzt). Der Parametervektor 9’ des wahren
Ansatzes variiere in einer Parametermenge S < R". Kénnen wir in S aus irgendeinem
Grunde keine Werte bevorzugen, sind alle 9 e S gleichberechtigt, dann kénnen wir
9D als ZufallsgroBe @ mit einer a-priori-Gleichverteilung iiber S auffassen. Wir er-
halten dann, falls 7°(x, @) mindestens approximativ linear in @@ ist, fiir V(x, @®)
ebenfalls eine Normalverteilung mit dem Erwartungswert 7®(x, $(V,)) und der
Varianz D*(fi(x, 9¥(V,))). Wenden wir eine stetige Verallgemeinerung der Formel
fiir die totale Wahrscheinlichkeit an und bezeichnen mit s? den Funktionswert der
Varianzfunktion von §P(x, @(V,)), dann 14Bt sich die Wahrscheinlichkeit fiir die
Vorhersage des Versuchsergebnisses Y(x) an einer beliebigen, aber festen Stelle x
unter der Bedingung, daB eine Realisierung # von ¥, vorliegt und der i-te Ansatz wahr
sei, ausdriicken durch

POI) = —— O = 70, 0.
o)

exp {_
27(o? + 53) 2(c* + s?
(6.11)
Die totale Wahrscheinlichkeitsdichte p(y|) fiir Y(x) ist dann entsprechend

p0lp) = élp,(ylzx) Py,. (6.12)
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Damit kénnen wir nach Durchfithrung des (n + 1)-ten Versuchs die a-posteriori-
Wabhrscheinlichkeiten fiir die einzelnen Ansitze berechnen durch

Pin Dil(Yni1l7)
POnetly)

Wir wollen nun ein Auswahlkriterium fiir den Versuchspunkt x,,, konstruieren. Dazu
bedienen wir uns einer zentralen GroBe der Informationstheorie. Sind Py, ..., P,
‘Wahrscheinlichkeiten, die bei einer vollstindigen Zerlegung des sicheren Ereignisses
entstehen, dann benutzen wir

(6.13)

Pi(n+1) =

h=—3 PP, (6.14)
i=1

als MaB fiir die Entropie (wird auch als Grad der Unbestimmtheit bezeichnet). In
unserem Fall der Diskrimination von Regressionsansitzen sind die Wahrscheinlich-
keiten P; als a-priori-Wahrscheinlichkeiten fiir die einzelnen Ansdtze zu deuten.
Der Wert der Entropie wird maximal, d. h., die Unbestimmtheit ist am groBten, wenn
wir keinen Ansatz bevorzugen kdnnen, wenn also P; = P, = -+ = P, = 1/q ist.
Die Durchfiihrung und Auswertung von Versuchen ergibt eine Zunahme an Informa-
tion, also im allgemeinen eine Abnahme der Entropie. Wir wollen nun daher den
néchsten Versuchspunkt x,,; so auswihlen. daB die Anderung der Entropie maximal
wird. Bezeichnet 4h(x, V,) die erwartete Entropieinderung nach dem n-ten Versuch
durch den (n + 1)-ten Versuch (da das Ergebnis des (n + 1)-ten Versuchs zufillig ist,
kénnen wir nur den Erwartungswert der Entropiednderung zur Konstruktion heran-
ziehen), dann 148t sich diese ausdriicken durch

aq i q
Ahx, V) = = 3 Puln Py = (=1) [ ( % Prwsoln Prwsn))pO1)

(6.15)
Als Auswahlkriterium kénnten wir nun verwenden: wihle x,,, so, dal
Ah(Xyr1, V) = max 4h(x, V) (6.16)
xeV

gilt. Bei der Auswahl von x,,; nach (6.16) treten aber groBe numerische Schwierig-
keiten auf. Deshalb empfehlen Box und Hill [1], bei der Anwendung ihres Verfahrens

zu einer oberen Schranke AA(x, V,) iiberzugehen und den Punkt x,.,, gemiB
Ah(Xni1, Vi) = max Ah(x, V,) (6.17)
xeV
auszuwihlen. Nutzen wir (6.13) und eine Ungleichung von Kullback, dann kénnen

wir mit (6.11) die Funktion Ah(x, V,) explizit angeben

{ (57 —5p)*
(0% + s3) (6* + 5P

N 1 a a
Ah(x, V,) = Y X PuPy

2 =1 iS4

(6.18)

s . = 1 1
P70) Oy — 70 My)2 _
+ (@O(x, 9) — 7O(x, 9P)) (62 T Sf+ﬂz T s}z)}
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Die Konstruktion eines optimalen Versuchsplanes zur Diskrimination von ¢ disjunk-
ten Regressionsansitzen wird nun durch folgende Schritte beschrieben:

Schritt 1: Durchfithrung eines Versuchsplanes V,. Aus diesem Plan berechnen wir
Schitzwerte 9® und s? (der Umfang des Anfangplanes muB3 so groB sein,
daf3 diese Schidtzungen nach der MkQ eindeutig sind).

Schritt 2: Unter Verwendung des entsprechenden Funktionswertes aus (6.11) be-
rechnen wir aus den vorgegebenen a-priori-Wahrscheinlichkeiten P; mit
(6.13) die a-posteriori-Wahrscheinlichkeiten P;, (i = 1, ..., g).

Schritt 3: Ein einfaches Entscheidungskriterium wird durch den Vergleich der a-po-
steriori-Wahrscheinlichkeiten gegeben. Wir wihlen den Ansatz 7®(x, 9¢)
als besten Ansatz, wenn gilt

Py > Py (6.19)
fir i = 1, ..., g und i % / (andere Abbruchkriterien sind noch nicht be-

kannt). LaBt sich nach (6.19) das Verfahren noch nicht beenden, dann
folgt Schritt 4.

Schritt 4: Wir berechnen nun die Funktion (6.18) und wiéhlen einen neuen Ver-
suchspunkt x,,; gemiB (6.17). Bei der Losung dieser Optimierungsauf-
gabe treten oft grofe numerische Schwierigkeiten auf, die wir umgehen
konnen, wenn wir den Versuchsbereich durch ein geeignetes Gitternetz
diskretisieren und die Funktion 4A nur noch an diesen endlich vielen
Punkten betrachten. Da Ah nur eine obere Schranke fiir 44 ist, kénnen
wir auch den durch diese Diskretisierung erhaltenen optimalen Punkt
X, fiir das Verfahren weiter verwenden.

Schritt 5: Wir fithren an dem Versuchspunkt x,,; einen Versuch durch und berech-

nen die Schitzwerte 9® und s? neu. Dann gehen wir zu Schritt 2 mit
V.1 anstelle von V.

Das hier vorgestellte Verfahren hat bereits in vielen praktischen Anwendungen zu
guten Ergebnissen gefiihrt. Das nun folgende Beispiel 6.1 wurde von Box/Hill [1] an-
gegeben.

Beispiel 6.1: Es ist die Wirkungsfliche zur Beschreibung einer chemischen Reaktion 4 — B zu
schitzen (um beispielsweise optimale Bedingungen fiir die Durchfiihrung des Prozesses zu ermitteln,
vgl. Abschnitt 4.5.). Die EinfluBgroBen seien x; und x,, dabei ist x; die Reaktionszeit und
x2 = (1/T — 1/525) eine Funktion der Temperatur. Als Versuchsbereich sei uns vorgegeben

V: 0<x; =150, 450 =T = 600. (6.20)

Zur Beschreibung von 7(x) sind vier Ansitze gegeben [vgl. (6.1)]. Da wir alle Ansitze gleichberechtigt
betrachten wollen, ist also

Pyg = P39 = P3o = P4o = 0,25.

Um spiter auftretende numerische Schwierigkeiten zu umgehen, wollen wir den Versuchsbereich ¥
diskretisieren durch ein Gitter mit der Maschenweite von jeweils 25 Einheiten. Damit enthélt ¥ nur
noch insgesamt 42 mogliche Versuchspunkte, Als Anfangsversuchsplan wihlen wir einen VFV 22, da-
bei entspricht das untere Niveau (—) bei x; dem Wert 25, bei x, dem Wert 475 und das obere Niveau
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(+) bei x; dem Wert 125 und bei x, dem Wert 575. Setzen wir noch 62 = 0,05 als bekannt voraus,

dann liefert der Plan

| x| x2
L|-1]+
2.0 - | -
kI R
4.0+ | +

die a-posteriori-Wahrscheinlichkeiten

Pys = 0,0069; P4 = 0,4290; P34 = 0,5008;

Pus = 0,0633.

Zur Bestimmung des Versuchpunktes x5 berechnen wir den Funktionswert Ah(x, V) nach (6.18) fiir
alle Punkte von V. Auf diese Weise erhalten wir max Ah(x, V,) = Ah(xs, V,) mit x5 = (125; 600).

xeV

Nach der Durchfiihrung des Versuches an der Stelle x5 berechnen wir die a-posteriori-Wahrschein-

lichkeiten
Pys = 0,0019; P,s5 = 0,5602; P3s = 0,4291; P,s = 0,0088.
Tabelle 6.1
n X1 X2 ¥y / Py Py Py Py
0 0,2500 0,2500 0,2500 0,2500
T 25 575 0,3961
2 25 475 0,7232
3 125 475 0,4215
4 125 575 0,1297 0,0069 0,4290 0,5008 0,0639
5 125 600 0,0984 0,0019 0,5602 0,4291 0,0088
6 125 600 0,0556 0,0018 0,8639 0,1339 0,0004
7 50 450 0,7969 0,0021 0,9736 0,0243 0,0000
8 100 600 0,0325 0,0032 0,9956 0,0012 0,0000
i
§ 56

600 T ‘

; L
75 |- i
550 |—
525
500
475 2 2
450

0 25 75 00 125 150 Xq

Bild 6.2
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Die Ergebnisse fiir die ersten acht Schritte in diesem Sequentialverfahren sind in Tabelle 6.1 zusam-

mengefalt.
Stellen wir den Versuchsbereich ¥ graphisch dar und tragen wir die Versuchspunkte ein, dann er-

halten wir Bild 6.2.

Nach n = 8 Versuchen ergibt sich fiir P, ein wesentlich groBerer Wert als fiir Pyg, Psg und Pyg.
Wir werden also den Ansatz 7@(x, @) als besten Ansatz auswihlen und weiteren Untersuchungen
zugrunde legen.

6.4. Nichtsequentielles Verfahren zur Diskrimination von Polynomansitzen

Zur Schitzung der Wirkungsfliche 7(x) wollen wir den besseren der beiden Ansitze
FO, OD) = 9o + 91X + 9px® + oo + D, (6.21)
TP, §®) = 9o + Fyx + Opx® + -+ + ¥, k>,
benutzen. Die Auswahl des besten Ansatzes konnen wir durch einen Test auf die Hypothese H, : ;, =
Py = -+ = P54y = 0 vornehmen. Von Stigler [1] wurde fiir k = s + 1 ein Verfahren entwickelt,
nach dem ein geeigneter Versuchsplan fiir diese Entscheidungen konstruiert werden kann. Als Opti-
malitatskriterium wird dabei die D- (bzw. G-) Optimalitit verwendet, die entsprechend dem Charak-
ter der Aufgabenstellung modifiziert wurde. Ein diskreter D- (und G-) optimaler Versuchsplan soll
c-beschrinkt heiBen, wenn er fiir ein gegebenes c auBer der Bedingung (5.22) [bzw. (5.30)] die Neben-
bedingung

- o?
D@, < c— (6.21)
n

erfiillt. Die Wahl der Konstanten ¢ beeinflut dabei die Aussage, fiir welche Parameterschidtzungen
der erhaltene Versuchsplan optimal ist. Wihlen wir ¢ — c, dann wird sich ein diskreter D- (bzw. G-)
optimaler Plan zur Schitzung der Parameter &, ..., 9 ergeben, gilt jedoch ¢ = ¢o > 0 (¢, ist eine
untere Schranke fiir ¢), dann erhalten wir einen optimalen Plan zur Schitzung von &, .

Im Versuchsbereich ¥ = [—1,1] seien die Ansitze

FV(x, 9D) = P + #,x und
TP(x, §®) = 9 + yx + F,x2

gegeben. Die Losung der entsprechenden Optimierungsaufgabe unter der Nebenbedingung (6.22)
fihrt zu einem diskreten D- (und G-) optimalen c-beschriinkten Versuchsplan

1 0 1

5‘=1+1A/1 11 A/1 1 1+1A/1 1 (6.23)
s 2NT T 2 T 1T 2ANT T

fir ¢ = 4. Aus (6.23) erhalten wir fiir ¢ —  einen diskreten D-optimalen Versuchsplan zur Schit-
zung von Jo und 9, [vgl. auch (5.45)]

-1 1
* .2

“=(n 1) ©29
und fiir ¢ = 4 einen optimalen Plan

—10 1
E‘={1/4 12 1/4} 625
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zur Schitzung des Parameters ¢, [vgl. auch den c-optimalen Plan (5.49) beziiglich ¢T = (0, 0, 1)].

Zur Festlegung der wihlbaren Konstanten ¢ konnen wir Effizienzen (also Wirksamkeiten) dieser
Versuchspldne heranziehen und durch die Giitefunktion des Tests auf die Hypothese #, = 0 eine
geeignete Konstante ¢ bestimmen. Dieses Verfahren wurde von Atwood [1] fiir den Fall k > s + 1
erweitert.

6.5. Zusammenfassung

Entsprechend der zu behandelnden Aufgabenstellung werden die Ansitze 77¥(x, 9¢),i = 1, ..., q,
formuliert. Es wird ein Anfangsplan ¥, durchgefiihrt, mit dem alle Parameter 9@, i = 1, ..., q, ge-
schitzt werden konnen. Aus der Realisierung # des Stichprobenvektors #/(V,) werden die zur Schit-
zung benotigten GroBen berechnet und die Restvarianzen Sf ,i=1,..., g, ermittelt. Dann wird mit
einem Entscheidungskriterium gepriift, ob die Auswahl eines besten Ansatzes mdglich ist. Als Kri-
terium wird dabei die Differenz der Stichprobenvarianzen S;(¥,) — S»(¥,), bei nur zwei konkurrie-
renden Ansétzen, oder die a-posteriori-Wahrscheinlichkeiten P, fiir die Ansitze 7@(x, 9®), i = 1,
..., ¢, herangezogen. Wenn die Entscheidung fur einen besten Ansatz noch nicht moglich ist und
weitere Versuche durchgefiihrt werden konnen, dann wird ein néchster Versuchspunkt X,,; nach
einem Optimalitdtskriterium ausgewéhlt. Als Kriterium kann entweder die Differenz der Stich-
probenvarianzen fir zwei Ansitze, der quadratische Abstand der Schitzungen fiir die Wirkungs-
flache oder der durch den (n + 1)-ten Versuch erwartete Informationsgewinn herangezogen werden.
Nach Durchfiihrung eines Versuchesin x,,; wird auf das Gesamtergebnis %(V,) wieder das Ent-
scheidungskriterium angewandt, usw. Das Verfahren wird so lange wiederholt, bis ein bester Ansatz
ausgewihlt werden kann.
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