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Vorwort

Mit der Entwicklung der Wissenschaft, die immer kompliziertere Sachverhalte zum

Gegenstand der Untersuchung macht, steigt der Aufwand für Experimente immer
stärker an. Dies zwingt die Wissenschaftler zu einer rationellen Gestaltung ihrer Ex-
perimente. Im Verlauf der letzten fünfzig Jahre wurden in zunehmenden Maße auch
mathematische Methoden zur Steigerung der Effektivität der Experimente eingesetzt.
Diese mathematischen Methoden haben besonders dann ihre Leistungsfähigkeit be-
wiesen, wenn Experimente betrachtet werden müssen, deren Resultate zufallsbecin-
flußt, also z. B. Zufallsgrößen sind.

In den Biowissenschaften machte sich die Notwendigkeit, zufällige Einflüsse, z. B.
des Klimas, des Bodens und des Versuchsobjekts zu berücksichtigen und die Schran-
ken des Versuchsaufwandes, z. B. durch die Begrenzung der Zahl der Versuchsobjekte
und der Generationszeit, zuerst bemerkbar. Daher wurden hier zuerst mathematische
Methoden bei der Planung und Auswertung zufallsbeeinflußter Experimente ange-
wandt. Heute verfügen die Biowissenschaftler in der Biometrie (vgl. z. B. Rasch]
Enderlein/Herrendörfer [l]) über eine leistungsfähige Wissenschaftsdisziplin für die
Planung und Auswertung von Experimenten im biologischen Bereich.

In den anderen Naturwissenschaften und in der Technik ist die Auswertung von

Experimenten mit den Methoden der mathematischen Statistik (vgl. z. B. Bd. l7
dieser Reihe) seit langem üblich. Bei der Planung von Experimenten jedoch bedient
man sich erst in den letzten zwanzig Jahren gewisser Verfahren aus der Biometrie (vgl.
z. B. Scheffler [l]). Darüber hinaus wurden bereits einige Methoden entwickelt, die
speziell den Bedürfnissen der Technik Rechnung tragen (vgl. z. B. Bandemer/Bell-
mann/Jung/Richter [1], Hartmann/Letzkij/Schäfer[1]).

Die Grundlagen der Theorie der Versuchsplanung sind relativ tiefliegend in der
höheren Algebra, der Entscheidungstheorie und der Theorie der nichtlinearen Opti-
mierung zu finden. Im gegebenen Rahmen ist es daher nur möglich, eine erste Ein-
führung in die Problematik und zumeist exemplarische Anwendungsaufgaben zu

liefern. Als Voraussetzung der Lektüre wird die Kenntnis des Bandes 17 dieser Reihe
oder eines ähnlichen einführenden Lehrbuches in die Wahrscheinlichkeitstheorie und
die mathematische Statistik (Storm [l], Maibaum [l]) angesehen.

Obwohl versucht worden ist, die Beispiele über alle Anwendungsgebiete gleich-
mäßig zu verteilen, wobei im einzelnen Fall dem typischen Problem der Vorrang ge-
geben wurde, scheint eine Übersetzung der Aufgabenstellung in das engere Fach-
gebiet des Lesers möglich und unerläßlich.

Die Formulierung sinnvoller Übungsaufgaben wurde nach reiflicher Überlegung
für nicht möglich erachtet, da die Lösung (nichttrivialer) theoretischer Probleme, etwa
zur Berechnung von Plänen, entweder anspruchsvollere mathematische Hilfsmittel
oder den Einsatz von EDVA erfordern würde. Andererseits schließen praktische
Probleme als Übungsaufgaben die Darlegung von umfangreichen fachspezifischen
Details, der mathematischen Modellierung und der Versuchsergebnisse ein. Dies würde
erheblichen Platz beanspruchen, jedoch jeweils nur für einen kleinen Teil der Leser von
Interesse sein. Daher wird empfohlen, analog zu den gegebenen Beispielen Probleme
aus dem jeweiligen Spezialgebiet zu wählen und in die entsprechende Lehrveranstal-
tung einzubauen. .

Mit dem vorliegenden Band wurde erstmals in deutscher Sprache versucht, die sta-
tistische Versuchsplanung als Teilgebiet der mathematischen Statistik für den An-
wender lehrbuchmäßig darzustellen.
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1. Einführung in die Problemstellung

1.1. Ausgangspunkt und Ziel der statistischen Versuchsplanung

Jede angewandte Wissenschaft bedient sich des Experiments als Mittel zur Er-
kenntnisgewinnung im weitesten Sinne, sei es in der Forschung zur Untersuchung
neuer Sachverhalte, sei es bei der Kontrolle und Steuerung von Abläufen. Jeder ex-

perimentellen Untersuchung muß eine genaue Problemstellung zugrunde liegen. Die
Formulierung dieser Problemstellung ist keine Aufgabe der Mathematik, jedoch füh-
ren die Bemühungen, bei dieser Formulierung die Sprache der Mathematik mit heran-
zuziehen, zu einem erneuten genauen Durchdenken des Problems und in der Regel
auch zu seiner erforderlichen Präzisierung.

Vergleichen wir z. B. die ursprüngliche Fragestellung: „Ist das Futtermittel B für
Schweine besser als das bisher verwendete Futtermittel A?“ mit der präzisierten Fas-
sung: „Wird die mittlere tägliche Gewichtszunahme bei Schweinen der Rasse DL, die
in Großanlagen gehalten werden, erhöht, wenn wir das Futtermittel B anstelle von A
einführen?“ (Vgl. Rasch/Enderlein/Herrendörfer [l]).

Durch eine präzisierte Problemstellung werden die zu untersuchenden Größen und
die hauptsächlichsten Bedingungen, unter denen diese betrachtet werden sollen, fest-
gelegt. Es ist jedoch unmöglich, alle Bedingungen für einen Versuch festzulegen. Ent-
weder (vgl. das nachfolgende Beispiel 1) sind die Versuchsobjekte „naturgegeben“ (so
vor allem in den Biowissenschaften), oder (vgl. das nachfolgende Beispiel 2) der Auf-
wand für die Fixierung der Bedingungen wäre unvertretbar hoch (so vor allem in den
technischen Wissenschaften). Darüber hinaus (vgl. das nachfolgende Beispiel 3) gelten
selbstverständlich die aus den Versuchsergebnissen erwarteten Aussagen in der Regel
nur für die festgelegten Versuchsbedingungen. Dabei ist eine starke Einschränkung
dieses Aussagebereiches natürlich nur selten erwünscht.

Beispiele:
1. Die Versuchstiere einer Rasse unterscheiden sich bezüglich der Gewichtszunahme selbst bei

gleichen Haltungsbedingungen.
2. Die Fixierung der Umweltbedingungen (z. B. Temperatur und Feuchtigkeitsgehalt der Luft, Er-

schütterungsfreiheit des umgebenden Mediums usw.) dürfte bei einer einfachen Längenmessung einen
zu großen Aufwand erfordern, obwohl diese Bedingungen einen Einfiuß auf das Meßergebnis haben.

3, Die Schwierigkeiten bei der Übertragung von Aussagen aus Laborversuchen in die Produktion
sind genau so bekannt wie die begrenzte Aussagefähigkeit von ökonomischen Untersuchungen in
einem einzelnen Betrieb.

Eine sinnvolle Beschreibung solcher Sachverhalte und praktischer Aufgabenstel-
lungen wird durch die Anwendung der Methoden der Stochastik, das sind z. B. die
Wahrscheinlichkeitstheorie und die Mathematische Statistik, ermöglicht. Dabei
werden die auf das Versuchsergebnis wirkenden Einflüsse, die wir nicht kennen
oder konstant halten können, als zufällige Einflüsse betrachtet, und das Ergebnis
eines Versuches ist somit ein zufälliges Ereignis. Nach der Festlegung der zu unter-
suchenden Größen und der Abgrenzung des Aussagebereiches durch Fixierung von
Versuchsbedingungen können wir die konkreten Ergebnisse der Versuche als Reali-
sierungen von entsprechenden Zufallselementen (Zufallsgrößen, -vektoren oder -pro-
zessen) auffassen (vgl. Storm [1], Maibaum [l]).

Einen Versuch können wir also als Beobachtung eines entsprechenden Zufallsele-
mentes deuten, wobei diese Zufallselemente von festgelegten Versuchsbedingungen
abhängen, die auch systematisch von Versuch zu Versuch geändert werden können.
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Eine wohldefinierte, endliche Menge von Versuchen wollen wir im folgenden Ex-
periment nennen.

Wenn in einem gegebenen Sachverhalt verschiedene konkurrierende Möglichkeiten
für Experimente zur Verfügung stehen, also eine Auswahl unter beobachtbaren Zu-
fallselementen (z. B. durch Festlegung gewisser Parameter) möglich ist, dann wollen
wir von (statistischer) Versuchsplanung sprechen.

Erfolgt die Auswahl eines Experimentes aus den konkurrierenden Möglichkeiten
nach einem gegebenen Optimalitätskriterium, so wollen wir dies (statistische) optimale
Versuchsplanung nennen.

Das Ziel der Versuchsplanung ist allgemein, die gewünschten oder erforderlichen
Erkenntnisse aus der experimentellen Untersuchung mit möglichst geringem Versuchs-
aufwand oder, bei beschränktem Versuchsaufwand, möglichst aussagekräftige Er-
kenntnisse zu gewährleisten. Der ständig steigende notwendige Aufwand für experi-
mentelle Untersuchungen macht die stets vorhandenen Schranken für die Mittel an
Geld, Zeit und Versuchsmaterial immer fühlbarer und zwingt die Wissenschaftler in
zunehmendem Maße, sich um eine rationelle Gestaltung ihrer Experimente zu küm-
mern. Die statistische Versuchsplanung ist ein wertvolles Hilfsmittel hierzu, das je-
doch nur dann zur vollen Wirksamkeit gelangen kann, wenn seiner Anwendung eine
rationelle Gestaltung der Versuchsfrage vorangeht. Es ist also eine möglichst präzise
fachwissenschaftliche und mathematisch faßbare Aufgabenstellung zu formulieren.
Dazu gehört u. a. die Einbettung in ein wahrscheinlichkeitstheoretisches Modell.

Es sei schließlich bemerkt, daß zur rationellen Vorbereitung von experimentellen
Untersuchungen auch die geschickte Wahl eines Versuchstyps gehört (z. B. Testver-
such, Laborversuch, Modellversuch, Pilotversuch, Praxisversuch, Erhebung; vgl.
Rasch/Enderlein/Herrendörfer [l]). Die Wahl hängt von den bereits vorliegenden
Erfahrungen, dem gewünschten Aussagebereich, der Zielstellung der Versuche sowie
der möglichen Übertragbarkeit der Aussagen ab. Prinzipiell ist es natürlich möglich,
diese Wahl mit in die statistische Versuchsplanung einzubeziehen, wenn es nämlich
gelingt, die den Versuchstypen entsprechenden Zufallselemente in ihren Eigenschaften
zu beschreiben und den Wert der Aussagen (etwa im Rahmen entscheidungstheoreti—
scher Betrachtungen) gegeneinander abzuwägen. Im allgemeinen jedoch dürfte es

gegenwärtig noch empfehlenswerter sein, diese Auswahl aus sachlogischen Erwägun-
gen der anwendenden Fachwissenschaft und ökonomischen Überlegungen vor der
Anwendung der statistischen Versuchsplanung zu treffen.

1.2. Versuchsplanung und -auswertung

Wie wir bereits im vorigen Abschnitt bemerkt haben, hängt die Auswahl des Ex-
periments wesentlich von der Problemstellung ab und von dem Ziel, das wir verfolgen.
Dieses Ziel ist im vorliegenden Fall in einem stochastischen Modell, d. h. als Aufgabe
der mathematischen Statistik, formuliert. Wir werden bestrebt sein, möglichst ein-
fache statistische Standardaufgaben zu erhalten, die jedoch die praktische Problem-
Stellung nicht unzulässig simplifizieren dürfen. Beispiele für solche Standardaufgaben
wurden bereits in Bd. 17 vorgestellt, mit zwei Beispielen wollen wir uns daran erinnern.

Beispiel 1.1: Mit einem gegebenen Meßgerät ist eine physikalische Kenngröße zu bestimmen, gleich-
zeitig wird eine Aussage über die unbekannte Genauigkeit des Meßgerätes benötigt. Wir wollen an-

nehmen, daß folgende Voraussetzungen gelten:
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a) Das Meßgerät hat keinen systematischen Fehler,
b) die zufälligen Meßfehler sind normalverteilt.

Damit können wir das Meßergebnis als Zufallsgröße der Form

X = ,u + e (1.1)

auffassen, wobei EX = ‚u der wahre Wert der Kenngröße und die Zufallsgröße s der normalverteilte
zufällige Meßfehler mit Es = 0 ist. Die unbekannte Meßgenauigkeit wird durch die Varianz D29 = a’
charakterisiert. Die statistische Aufgabe besteht in diesem Fall in der Schätzung von u und a2 an-

hand einer Stichprobe X‚ , ..., X„ (wir wollen dieses Problem als Meßproblem bezeichnen).
Beispiel 1.2: Eine vorgegebene Lieferung von technischem Kleinmaterial (z. B. Schrauben) darf höch-
stens 100pg % Ausschuß enthalten. Es ist unmöglich, alle Stücke der Liefenmg zu prüfen (zu hoher Auf-
wand oder zerstörende Prüfung). Bei dieser Lieferung interessiert, ob die Gütebedingung eingehalten
wurde. Wir entnehmen zufällig und voneinander unabhängig eine feste Anzahl von Elementen und
prüfen diese. Die Anzahl X der Ausschußstücke in unserer „Stichprobe“ ist eine Zufallsgröße, die
näherungsweise binomialverteilt (asymptotisch normalverteilt) ist mit EX = np und der Varianz
D2X = np(1 -— p). Die statistische Aufgabe besteht hier in einem Test der Hypothese p g pa (Pro-
blem der statistischen Qualitätskontrolle).

Nach der Formulierung der statistischen Aufgabe, bei deren theoretischer Lösung
die Auswertungsmethode für die Versuchsergebnisse festgelegt wird, ergeben sich
dann sofort die Probleme der statistischen Versuchsplanung.

1.2.1. Auswahlprohlem

Die Beobachtung einer Zufallsgröße geschieht häufig durch die Auswahl von Ele-
menten aus einer Menge von in gewisser Beziehung gleichartigen Objekten, die an-
schließend einer Untersuchung oder einer Behandlung unterzogen werden, deren
Ergebnis die Realisierung der Zufallsgröße ist (vgl. das Problem der statistischen
Qualitätskontrolle, Beispiel 1.2). Die Auswahl dieser Elemente muß zufällig und
unabhängig voneinander erfolgen, damit die Methoden der mathematischen Statistik
repräsentative Ergebnisse liefern. Dabei heißt eine zufällige Auswahl, daß jedes Ele-
ment der betrachteten Menge mit der gleichen Wahrscheinlichkeit in diese Auswahl
gelangen kann, und unabhängig voneinander heißt, daß die bereits erhaltenen Ergeb-
nisse keinen Einfluß auf die weitere Auswahl von Elementen haben.
Beispiel 1.3: Gegeben seien zwei Behandlungsmethoden A und B (z. B. zwei Futtermittel bei Schwei-
nen oder zwei technologische Verfahren zur Aufbereitung von Bodenschätzen) und eine von ihnen
beeinfiußte Wirkung X (z. B. tägliche Gewichtszunahme der Tiere bzw. Feinheit eines gewonnenen
Mahlgutes). Es soll untersucht werden, ob die Behandlung A eine bessere durchschnittliche Wirkung
hat als B, d. h.‚ ob

EX(A) '= u. > m; = EX<B>. (1.2)

Vorausgesetzt sei, dal3 X(A) und X(B) normalverteilt mit der gleichen Varianz o" sind. Es mögen 2n
zufällig aus einer größeren Menge gleichartiger Versuchsobjekte ausgewählte Objekte (z. B. Tiere
oder Mindestmengen für einen technologischen Durchlauf o. ä.) zur Verfügung stehen. Es ist offen-
sichtlich, daß diese 2n Objekte wiederum zufällig je zur Hälfte den beiden Behandlungen zugeordnet
werden sollten, damit der eventuell festgestellte Unterschied nicht im Zuordnungsverfahren seinen
Grund hat.

Die Forderung nach einer zufälligen und unabhängigen Auswahl am konkreten
Problem mit einer subjektiven Auswahl aufs Geratewohl zu erfüllen, bringt eine Reihe
von Gefahren, die sogar die gesamte Untersuchung fragwürdig machen können. Wir
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überlegen uns leicht, daß bei einer solchen Auswahl aufs Geratewohl gerade die Sach-
kenntnis des Auswählenden und gewisse technische Probleme, z. B. der unterschied-
lichen Zugänglichkeit der einzelnen Objekte, eine entscheidende Rolle spielen, selbst
wenn wir vorausssetzen dürfen, daß der Auswählende eine zufällige und unabhängige
Auswahl vornehmen will. Bekanntlich (vgl. Bd. l7) läßt sich mit der Benutzung von

Zufallszahlen die Auswahl objektivieren und die genannte Forderung erfüllen. Den-
ken wir uns die Objekte durchnumeriert und entnehmen wir einer Tabelle von Zu-
fallszahlen eine entsprechende Anzahl von Zahlen, die dem gewünschten Stichproben-
umfang entspricht. Die Objekte, deren gedachte Nummer unter diesen ausgewählten
Zahlen vorkommt, werden in die Auswahl einbezogen.

Entsprechend verfahren wir, wenn wir vorgegebenen Objekten verschiedene Be-
handlungen zuordnen wollen.

Schließlich können wir auch solche Fälle betrachten, in denen die Reihenfolge der
Versuchsdurchführung einen unerwünschten Einfluß auf die Ergebnisse haben kann
(Veränderungen der Versuchsbedingungen im Tagesverlauf, Verschleißerscheinungen
in der Versuchseinrichtung o. ä.). Auch hierbei können wir uns die einzelnen Versuche
(Versuchsobjekte, Kombinationen von gewählten Versuchsbedingungen o. ä.) durch-
numeriert denken. Die Reihenfolge für die Durchführung der Versuche legen wir ent-
sprechend einer sukzessiven Auswahl aus einer Zufallszahlentabelle fest.

1.2.2. Problem der Einhaltung des Aussagebereiches

Ein weiteres Problem der Versuchsplanung hängt damit zusammen, daß genau die
‚festgelegten Versuchsbedingungen eingehalten werden müssen und daß sich die als zu-

fällig betrachteten Einflüsse auch nur zufällig ändern dürfen. Die Folgen, die ein
Nichteinhalten der festgelegten Versuchsbedingungen hat, sind in der Regel dem Ex-
perimentator bewußt, und er wird in Zweifelsfällen die Einhaltung der Bedingungen
entweder während des Versuches kontrollieren oder nachträglich anhand der Ergeb-
nisse prüfen (z. B. mit einem Ausreißertest). Gefährlicher, weil in der Regel dem Ex-
perimentator nicht bewußt, sind die Folgen, die sich aus einer nicht zufälligen Ande-
rung (z. B. auch aus einer Konstanz) gewisser, als zufällig betrachteter Einflüsse, er-
geben. Diese Einflüsse gehen dann als determiniert in die Versuchsergebnisse ein, ver-
ändern also die Versuchsbedingungen und damit die beobachtete Zufallsgröße. Die
statistischen Schlüsse aus den Ergebnissen gelten dann selbstverständlich nur unter
diesen zusätzlichen Bedingungen, und das ist gleichbedeutend mit einer Einschrän-
kung des Aussagebereiches.

Beispiel 1.4: Es ist die Genauigkeit eines chemischen Analyseverfahrens zu bestimmen. Vorgegeben
werden verschiedene Testsubstanzen. Die nötigenfalls einer Umrechnung unterzogenen Meßergeb-
nisse seien normalverteilt mit dem Erwartungswert Null (d. h.‚ das Verfahren habe keinen systema-
tischen Fehler) und der Varianz a2. Die Untersuchung wird von einem einzigen Experimentator in
einem Labor durchgeführt. Die erhaltenen Ergebnisse gelten dann auch nur für diesen Experimentator
in diesem Laboratorium, denn die Fähigkeit und die Sorgfalt des Experimentators wie auch die Ar-
beitsverhältnisse im Labor haben bekanntlich einen Einfluß auf die Meßergebnisse (persönlicher
Fehler). Um die Genauigkeit des Verfahrens für beliebige Experimentatoren und beliebige Laborato-
rien festzustellen (um die Genauigkeit z. B. mit der eines bereits eingeführten Verfahrens zu verglei-
chen), müssen wir also dafür sorgen, daß der Einfluß des Experimentators und des Labors zufällig ist.
Deshalb sollte das Verfahren von einer Anzahl zufällig ausgewählter Experimentatoren in ebenfalls
zufällig herausgegriffenen Labors geprüft werden. Die Ergebnisse werden dann als gemeinsame Stich-
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probe ausgewertet. Die Auswahl kann mit der in Abschnitt 1.2.1. genannten Methode vorgenommen
werden. Mit Problemen dieser Art beschäftigt sich die Stichprobentheorie (vgl. Cochran [1]).

Beispiel 1.5: Mehrere Weizensorten sind hinsichtlich ihres Ertrages zu vergleichen. Es gelten die
Voraussetzungen, daß der Ertrag eine von der Sorte abhängige normalverteilte Zufallsgröße ist und
die Varianzen aller dieser Zufallsgrößen gleich sind. Ein gegebenes Versuchsfeld werde in gleichbreite
Streifen zerlegt, und die Weizensorten A, B, C, D, werden den Streifen zugeordnet, so daß jede
Sorte je einmal vorkommt, s. Bild 1.1.

Bild 1.1

Es ist denkbar und in praktischen Fällen häufig, daß die Bodenverhältnisse sich vom linken zum

rechten Feldrand systematisch ändern (vgl. Bild 1.1) und daß Ertragsunterschiede mehr von diesen
unterschiedlichen Bodenverhältnissen als von den Sortenunterschieden herrühren können. Auch hier
werden wir mit einer entsprechenden Aufteilung des Versuchsfeldes und anschließender zufälliger Zu-
ordnung der Sorten zu den einzelnen Teilstücken diesen unerwünschten systematischen Einfluß des

Bodens weitgehend auszublenden suchen. Entsprechende Methoden werden im Kapitel 3 behandelt.

Durch die Forderung nach einer Erweiterung des Aussagebereiches wird die An-
zahl derjenigen Einflüsse erhöht, die als zufallig angenommen werden. Dies führt in
der Regel zu einer Vergrößerung der Varianz der betrachteten Zufallsgrößen. Diese
Erhöhung der Ungenauigkeit kann jedoch die erhaltenen Aussagen für den Experi-
mentator unbrauchbar werden lassen.

Ein Ausweg ist hier die Sogenannte Bloekbildung. Zu einem Block gehören alle die
Versuche, bei denen ein bestimmter oder mehrere bestimmte, als zufällig angesehene
Einflüsse (wenigstens annähernd) als konstant angesehen werden dürfen. Wir können
dann z. B. untersuchen, ob diese Einflüsse eine wesentliche Wirkung haben und er-

halten gegebenenfalls Aussagen unter entsprechenden Zusatzbedingungen. Probleme
dieser Art werden im Kapitel 3 untersucht.

1.2.3. Problem der Wahl der veränderlichen determinierten Versuchsbedingungen

Sehr häufig kommt es bei experimentellen Untersuchungen darauf an, die Wirkung
einer Reihe von gegebenen determinierten und wählbaren Einflüssen A, B, C, D,
auf eine Kenngröße zu erforschen. Außer diesen determinierten Einflüssen sollen noch
eine Reihe weiterer als zufällig betrachtete Einflüsse auf die Kenngröße wirken kön-
nen. Als stochastisches Modell bietet sich in diesem Fall an, die Kenngröße als eine
von den determinierten Einflüssen abhängige Zufallsgröße Y(A, B, C, D, ...) aufzu-
fassen, wobei häufig die vereinfachende Annahme gilt, daß

Y(A‚ B, C, D,...)=f(A‚ B, c, D, ...) + s (1.3)

ist, wobei EY(A, B, C, D, ...) = _f(A, B, C, D, ...) und a ein normalverteilter Fehler
mit Es : 0 und mit einer von A, B, C, D, unabhängigen Varianz D26 = a’ ist (die
Voraussetzung der Gleichheit der Varianzen ist sehr einschneidend und kann in einer
Reihe von Fällen abgeschwächt werden).

Die statistische Aufgabe kann nun entweder darin bestehen, festzustellen, ob
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Y(A, B, C, D, ...) tatsächlich von A, B, C, D, oder nur von einer gegebenen Teil-
menge der Einflüsse abhängt (dies führt uns auf Signifikanztests)‚ oder die Funktion
f(A, B, C, D, ...) ist näherungsweise zu bestimmen (dies bedeutet für uns, ein Schätz-
problem für die unbekannte Funktion zu lösen).

Bei Modellen der Form (1.3) unterscheiden wir gewöhnlich zwischen Varianzana-
lysemodellen und Regressionsmodellen. Ein Unterscheidungsmerkmal zwischen die-
sen beiden Modelltypen ist dabei die Art der Einflußfaktoren A, B, C, D,

Im Varianzanalysemadell wird nicht angenommen, daß die Faktoren A, B, C,
(wir bezeichnen in der Varianzanalyse die Einflüsse A, B, C, als Faktoren) quanti-
tativ sind, jedoch wollen wir zulassen, daß jeder Faktor in gewissen Abstufungen auf-
treten kann. Auch wenn diese Abstufung quantitativ ist, spielen die entsprechenden
Werte der betrachteten Stufen bei der Untersuchung keine Rolle.

Beispiel 1.6: Es sei der Einfiuß sechs verschiedener Düngerkomponenten (also 6 Faktoren) auf den
Ertrag einer gegebenen Weizensorte zu untersuchen. Aus sachlogischen Erwägungen heraus seien für
jede Komponente nur vier verschiedene Dosierungen (das sind die Stufen) sinnvoll. Unter den Do-
sierungen soll auch die Dosierung 0 auftreten, d. h., eine Komponente tritt nicht auf, Zur Beschrei-
bung des Sachverhaltes wählen wir ein Modell der Varianzanalyse und erhalten für den zufälligen
Ertrag in Abhängigkeit von den verschiedenen Dosen und für jede Kombination der Düngerkompo-
nenten die Darstellung

Yukzmno = M + 511+ “z; + + 015,. + 7/1211 + + 7561m:

+ 7123m + + 7455mm + 7123411“ ‘i’

+ 73456hlmn + 71234suk1m +

‘i’ 723456mmn + 7123456immn + El,/klmnax

i,j,k,I,m,n=l,2,3,4; o=1,2,...,r. (1.4)

Dabei bedeuten:

u — das allgemeine Gesamtmittel

cc” — die durch die j-te Dosierung (Stufe) der i-ten Komponenten (Faktor) verur-
sachte Abweichung vom Gesamtmittel‚ ‚

12mm„ — die Wechselwirkung (hier zweiter Ordnung) derjl-ten Stufe des ii-ten Faktors
mit der jz-ten Stufe des ig-ten Faktors usw.

r - ist die Anzahl der Wiederholungen des Versuches mit der durch i, j, k, I, m, n

gegebenen Kombination der Faktoren und deren Stufen.

Efjklmnn —- sind norrnalverteilte Fehler mit Es = 0, mit der Varianz D26 = a’ (also unab-
hängig von einer bestimmten Kombination) und wenn der Fehler e an zwei
verschiedenen Stellen (d. h., die Indizes der Fehler unterscheiden sich an min-
destens einer Stelle) betrachtet wird, so soll die Kovarianz der Fehler verschwin-
den, die Fehlergrößen sollen bei vorgegebener Normalverteilung unabhängig
sein.

Die statistische Aufgabe besteht hierbei nun darin, zuerst (z. B. durch einen Test) festzustellen,
welche der Faktoren A, B, C, D, einen signifikanten Einfluß auf den Ertrag haben. Weiterhin ist
dieser Einfluß auf den Ertrag durch eine Schätzung anzugeben. Eine der üblichen Möglichkeiten,
solch einen Versuch zu planen, besteht darin, daß wir jeden Faktor auf jeder Stufe untersuchen.
Wollen wir mit einer Einstellung jeweils nur einen Versuch (r = 1) durchführen, dann erhalten wir
für sechs Faktoren auf vier Stufen insgesamt 45 = 4096 Kombinationsmöglichkeiten, und somit
müßten wir mindestens 4096 Versuche durchführen. Diese Anzahl dürfte die praktischen Möglich-
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keiten und Notwendigkeiten in jedem Fall um ein Vielfaches übersteigen. Eine Aufgabe der stati-
stischen Versuchsplanung ist es nun, aus der Gesamtmenge der 4096 möglichen verschiedenen Ver-
suche eine geeignete Auswahl zu treffen, so daß die notwendigen Tests und Schätzungen mit der ge-
wünschten Güte durchgeführt werden können. Dabei wird eine wesentliche Rolle spielen, inwieweit
gewisse Wechselwirkungen [vgl. Darstellung (1.4)] aus sachlogischen Gründen als vernachlässigbar
angesehen werden können.

Im Regressionsmodell wird angenommen, daß die betrachteten Faktoren sämtlich
quantitativ sind. Es ist jedoch auch möglich, qualitative Faktoren zuzulassen, wenn

für diese Faktoren nur ihr Vorhandensein oder ihr Nichtvorhandensein von Interesse
ist. Wir können dann die Quantifizierung l bzw. O wählen.

Beispiel 1.7: Für einen gegebenen chemischen Prozeß wollen wir die Abhängigkeit der Ausbeute 1;

von der Reaktionszeit x, und der Reaktionstemperatur x2 untersuchen. Aus theoretischen Über-
legungen wissen wir, daß sich dieser Zusammenhang in der Form

’7(X1x X2) = [1 ‘l’ X1 exp ('91 ‘ 92X2”?! ‚ (1-5)

darstellen lassen müßte. Dabei sind 29, und 192 zwei unbekannte Prozeßparameter. Für jede mögliche
Kombination der kontinuierlich veränderlichen Werte x, und x2 definieren wir eine Zufallsgröße
Y(X1.X2)7

Y(x1sX2) = W(X1aX2) + 5, (1-5)

wobei e ein normalverteilter zufälliger Fehler mit Es = 0 und D25 = o’ (also von x, und x2 unab-
hängiger Varianz) ist. Für zwei verschiedene Versuche mit gleichen oder mit verschiedenen Werten
x2 , x2 seien die entsprechenden Fehler e unabhängig voneinander. Wir wählen zur Lösung der sta-
tistischen Aufgabe ein Regressionsmodell. Die Aufgabe besteht entweder darin, die sogenannte Wir-
kungsfläche 17(x1, x2) zu schätzen oder mit einem Test zu prüfen, ob die Parameter 191 und 292 ge-
wisse vorgegebene Werte haben. So bedeutet z. B. die Hypothese Hon92 = O, dal3 17(x„ x2) von
x2 nicht abhängt, also 17(x„ x2) = 17,(x,) gilt.

Bei dem betrachteten chemischen Prozeß hat die Wirkungsfiäche bekanntlich eine Bedeutung für
die Steuerung des Prozesses. Deshalb besteht eine Aufgabe der Versuchsplanung in diesem Fall darin,
die sogenannten Versuchspunkte (x„, 2:2,) i = 1, ..., n, an denen die Zufallsgrößen Y(x„‚ x2.) be-
obachtet werden sollen, so festzulegen, daß eine Schätzung oder ein Test z. B. mit der erforderlichen
Genauigkeit durchgeführt werden kann.

Für die Schätzung der Parameter in linearen Regressionsansätzen, d. h. für solche
Typen von Wirkungsflächen, die in den unbekannten Parametern linear sind (die Fak-
toren dürfen nichtlinear auftreten), gibt es eine gut ausgearbeitete Theorie (s. Ab-
schnitt 1.3.). Schätzprobleme für in den Parametern nichtlineare Regressionsan-
sätze betrachtet man entweder als nichtstatistische Approximationsprobleme, oder
man linearisiert die Ansätze bezüglich der Parameter (z. B. durch eine Taylorformel).
In beiden Fällen erhält man über die Eigenschaften der Schätzungen höchstens asymp-
totische Aussagen. Dementsprechend ist auch die Versuchsplanung für solche nicht-
linearen Regressionsansätze wenig entwickelt. Daher ist es ratsam, lineare Regressions-
ansätze zu betrachten, die für das Beispiel 1.7 die Form

k

77(x1> xzv 191: ---v 79k) = Z '9igi(x1 s X2) (1-7)
i=l

haben können, wobei die g,-(x1, x2) bekannte, im interessierenden Bereich stetige
und linear unabhängige Funktionen sind. Gewöhnlich erreichen wir durch eine Ent-
wicklung der unbekannten Wirkungsfläche in eine Taylorreihe mit Vernachlässigung
des entsprechenden Restgliedes einen linearen Ansatz.
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Falls kein sachlogisch begründeter Ansatz gegeben werden kann oder falls dieser
eine komplizierte analytische Form hat, wählen wir zur Approximation in der Regel
Polynomansätze in den Einflußfaktoren.

Im Kapitel 4 wird daher der Versuchsplanung für solche Regressionsansätze be-
sondere Aufmerksamkeit geschenkt.

Denken wir uns die Faktoren und Stufen in einem Modell der Varianzanalyse als
quantitative Faktoren x, (d. h., wir setzen xv = 1, wenn der entsprechende Faktor
oder die Stufe im Versuch auftritt, sonst sei x. = 0), dann erhalten wir in den Fak-
toren xv einen unvollständigen Polynomansatz. Dieser Ansatz enthält die x, nur in
den ersten Potenzen und außerdem alle möglichen Produkte dieser Faktoren, deren
entsprechende Koeffizienten die Wechselwirkung zwischen den im Produkt vor-

handenen Faktoren sind. Wir erkennen somit eine formale Übereinstimmung zwischen
beiden Modellen (beide Modelle sind Spezialfalle des linearen Modells, vgl. Ab-
schnitt 1.3.), die es uns ermöglicht, gleiche Planungsprinzipien für gewisse Modelle
der Varianzanalyse und gewisse Regressionsmodelle anzuwenden.

1.2.4. Problem der Anzahl der Beobachtungen

Die Wahl des Stichprobenumfangs n beim Auswahlproblem (vgl. Beispiel 1.3)
und beim Problem der Einhaltung des Aussagebereichs (vgl. Beispiele 1.4 und 1.5)
sowie die Wahl der Anzahl der Versuchswiederholungen bei einer festen Faktor-
Stufen—Kombination (vgl. Beispiel 1.6) und der Anzahl der Versuchspunkte im Re-
gressionsmodell, d. h. der Wahl des Stichprobenumfangs (vgl. Beispiel 1.7), ist in
vielen praktischen Fällen wohl das auffälligste Problem der Versuchsplanung. Hier-
bei treten die praktischen Möglichkeiten, die Beschränkungen durch das vorhandene
Versuchsmaterial, die zur Verfügung stehenden Mittel an Material und Zeit unmittel-
bar und olTensichtlich in die Betrachtung ein. Daraus ergeben sich Schranken für den
praktisch möglichen Stichprobenumfang. Andererseits haben wir zu berücksichtigen,
daß wir Zufallsgrößen zu beobachten haben und daß wir daher aus einer relativ ge-
ringen Zahl von Realisierungen kaum brauchbare Schlüsse ziehen können. So kön-
nen wir z. B. aus einer einzigen Messung keine Aussage über die Genauigkeit des
Meßverfahrens (wir haben hierbei das Problem der Schätzung der Varianz einer Zu-
fallsgröße vorliegen) erhalten. Aus dem stochastischen Modell und der entsprechenden
Lösung der statistischen Aufgabe ergibt sich also stets ein mindestens notwendiger
Stichprobenumfang. In der Regel werden jedoch an die Güte der Aussagen gewisse
Forderungen zu stellen sein, damit diese Aussagen auch als konkrete Schlußfolgerun-
gen oder Empfehlungen praxiswirksam werden. So könnten wir etwa bei der Schät-
zung eines Parameters die erwartete Länge des Konfidenzintervalls vorgeben (vgl.
Kapitel 2). Durch so eine Güteforderung wird ein wünschenswerzer’ Stichprobenum-
fang definiert, der die Erfüllung dieser Forderung garantiert, Der Vergleich des prak-
tisch möglichen mit dem mindestens notwendigen und dem wünschenswerten Stich-
probenumfang führt in der Regel zu einem Kompromiß, eventuell sogar zu einer
Änderung der Güteforderung, manchmal aber auch zu einer Änderung des verwen-
deten Modells. Den kleinsten wünschenswerten Stichprobenumfang wollen wir als
optimalen Stichprobenumfang bezüglich der vorgegebenen Güteforderung bezeichnen,
auf ihn bezieht sich das Kapitel 2. .

Bei der Planung der Versuche für eine konkrete praktische Aufgabenstellung wer-
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den in der Regel alle vier oben genannten Probleme (Abschnitt l.2.1.—1.2.4.) gleich-
zeitig auftreten.

Beispiel 1.8: Betrachten wir noch einmal das Beispiel 1.6. Die Ergebnisse der Auswertung sollen sich
auf ein größeres Territorium mit unterschiedlichen lokalen Verhältnissen übertragen lassen. Dazu ist
es notwendig, die entsprechenden Flächenstücke für den Versuch auszuwählenund diesen Teil-
fiächen die entsprechende Düngerkombination zuzuordnen. Bei dieser Aufgabenstellung sind die
Probleme der Auswahl der Flächen und die Zuordnung derselben zu den Düngerkombinationen sehr
eng miteinander verknüpft (vgl. Abschnitt 1.2.1. und 1.2.2.). Weiterhin müssen wir, bevor wir den
Versuch durchführen können, festlegen, wie groß die Anzahl der Wiederholungen sein soll, d. h.,
wieviel Flächenstücke mit der gleichen Düngerkombination bearbeitet werden sollen (vgl. Ab-
schnitt 1.2.4.).

Schließlich sollen noch die mittleren Erträge in Abhängigkeit von den Düngergaben geschätzt
werden. Dazu gehen wir zu einem Regressionsrnodell über, in dem die genauen Dosen als Einfiuß-
größen auftreten. Damit haben wir für die Versuchsplanung noch die Wahl dieser veränderlichen
determinierten Versuchsbedingungen vorzunehmen (vgl. Abschnitt 1.2.3.).

Abschließende Bemerkung.’
Die Methode für die Auswertung der Versuchsergebnisse ist sehr eng mit dem ge-

wählten stochastischen Modell verbunden. Von beiden hängt die Wahl der geeigneten
Versuchsstrategie wesentlich ab. Bei der praktischen Durchführung der Versuche
können sich jedoch auch nicht erwartete oder berücksichtigte Erscheinungen zeigen,
so können z. B. Meßwerte ausfallen oder gewisse Versuchsbedingungen unrealisierbar
werden. Es ist daher in jedem Falle ratsam, bei und nach der Durchführung der Ver-
suche zu prüfen, ob die bei der Modellwahl und Versuchsplanung gemachten Voraus-
setzungen und Forderungen und die verwendeten Versuchspläne (also stochastisches
Modell, Aussagebereich, Faktorkombinationen) auch eingehalten wurden. Falls dies
nicht so ist, müssen wir ein anderes Modell anpassen und die Auswertung nach dem
neuen Modell vornehmen. Dies ist jedoch häufig mit einem großen Verlust für die
Aussagefähigkeit der Ergebnisse verbunden.

1.3. Einführung des linearen Modells

Schließen wir an die Betrachtungen des Abschnitts 1.2.3. an und führen wir diese
Überlegungen weiter, dann ergibt sich die folgende statistische Aufgabenstellung:
Über eine Funktion 17(x„ ..., xk), (X1, ..., xk) E B Q R", die Sogenannte Wirkungs-
fläche, die von den k Einflußgrößen x1, ..., xk abhängt, sind gewisse Aussagen zu

machen. Die Funktion kann punktweise mit einem gewissen zufälligen Fehler be-
obachtet werden. Die Beobachtungen an n Stellen, die Stichprobe

Yi = Y(xl1s m, xlk): —--‚ Yr: = Y(xn1s ---a Xnk) (1-8)

mit der Darstellung

Yi:77(xt1‚---‚xtk)+3i‚ i=1>27‘-'3": (L9)
bildet also eine mögliche Grundlage für die geforderten Aussagen.

Dabei wird wie üblich für die zufälligen Fehler a, = a(x„, ..., x„‚) vorausgesetzt,
daß

Es, = 0; D25,- = 0'2; (1.10)

COV(8i‚€j) = 0; i4=j; i,j =1,...,n.
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Weiterhin wird angenommen, daß eine Funktionenschar

77061. x1, 291, „.490, (191,-~~,19.)e S Q R’, (1-11)

bekannt ist, in der die unbekannte Wirkungsfläche enthalten ist, d. h., daß es ein
(19%, ..., 19:‘) gibt mit

17(x,,...,xk,1?{,...,19‘I)=17(x,,...,x,,). - (1.12)

Ein Ansatz mit der Eigenschaft (1.12) soll als wahrer Ansatz bezeichnet werden.
Damit eine mathematische Behandlung ohne allzugroße Schwierigkeiten möglich

ist, setzen wir über den Ansatz weiterhin voraus, daß (1.11) nur linear von den Para-
metern 191 ‚ ..., 19, abhängt (vgl. auch Abschnitt 1.2.3.), also von der Form

77951, w, XI” 191, --~: 77v) = 791f1(-X1» m: 9511)‘? +19‚fi(x1‚ ---s 95k) (1-13)

ist, wobei die_f,«(x„ ..., x„) bekannte Funktionen sind.
Zur übersichtlicheren und kürzeren Darstellung der folgenden Überlegungen wollen

wir die Vektorschreibweise benutzen. Wir setzen (x1, ..., xk) = XT und (29,, ..., 19,)

= 19T und fassen die Funktionen f,(x) zusammen zu (f1(x), ..., f‚(x)) = f(x)T. Die
Stichprobe (1.8) läßt sich kurz als (Y, , ..., Y„) = 03T schreiben. Für die Beobachtungs-
punkte (x„ ‚ ..., x„‚) = x‚T wird aus (1.13) 17(x‚-‚ 19) = f(x,)TI9. Mit dem Fehlervektor
e = (5,, ..., e,,)T und der Matrix

f1(X1)"'fr(X1)‘

F: I i =(f(x1)‚...,f(x„))T (1.14)

Lok.) 11:2.)

erhalten wir für (1.9) die Darstellung

e = F19 + s. (1.15)

Der Ausdruck (1.15) zusammen mit (1.10) und eventuellen Voraussetzungen über
die Verteilung von s wird als lineares Modell bezeichnet.

Betrachten wir die Beispiele im Abschnitt 1.2.3, dann stellen wir fest, daß sowohl
die Varianzanalyse als auch die Regressionsanalyse spezielle lineare Modelle darstellen.

In vielen Fällen wird es sich als günstig erweisen, Polynome der Einflußgrößen als
Ansatz für die Wirkungsfunktion 77(x) zu verwenden. Dabei können wir uns diese
Polynome entstanden denken durch eine Entwicklung von 7;(x) in eine Taylor- (bzw.
Fourier-) Reihe, die hinreichend schnell konvergiert und deshalb nach einer endlichen
Teilsumme abgebrochen werden darf. Wir werden im weiteren zwei Typen solcher
Polynome verwenden. Unter einen Polynom vom Grad d wollen wir ein Polynom ver-

stehen, bei dem die größte Summe der Exponenten eines Summanden gleich d ist. All-
gemein also

77(Xa 79) = 790 ‘|' 791351 + '1' 7911751 + 7912351352 + + '19(k-1)kxk-lxk

+ + 19ux§+ + 19k,,x,E + + 19,,,...,,,,...,,x;’,,“ x;
+ + 19„...„x‚'f. (1.16)

So ein Ansatz der Form (1.13) besitzt (k z d) unbekannte Koeffizienten. Die

Koeffizienten 2912, ..., 19„‚_1„‚ werden dabei als zweifaktorielle Wechselwirkungen der
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Einflußgrößen x, und x, (i,j = 1, ..., k, z’ =|= j) bezeichnet. Analog drücken die Koeffi-
zienten 19,- 1...‚»„ die mehrfaktoriellen Wechselwirkungen zwischen den entsprechenden
Einflußgrößen aus. Für k = 2 und d = 2 erhalten wir aus (1.13) den speziellen Ansatz

17(x‚ a9) = 190 + 191x1 + 192x; + 191zx1x2 + 1911):? + 1922xä (1.17)

mit (2 ä 2) = = 6 Koeffizienten.

Dagegen verstehen wir unter einem Polynom vom Grad d in jeder Variablen ein Poly-
nom der Form

770‘: 79) = 790 ‘i’ 791951 + ‘i’ flax: ‘i’ 79111-1752 + ‘I’ 792.17‘: ‘i’

+ 00¢-I)d+1xk ‘i’ + 7911.175: ‘i’ ‘i’ 79135119‘: ‘i’

+ 19„‚xfx€ x,‘{, (1.18)

d. h., für jede Variable tritt ein Polynom vom Grad d auf, wenn die anderen Einfluß-
größen als fest betrachtet werden. Ein Polynom der Form (1.18) besitzt (d + I)“ un-

bekannte Koeffizienten. Für k = 2 und d = 2 wird aus (1.15) das spezielle Polynom
mit (2 + l)2 = 9 Koeffizienten

fi(x, 19) = 190 + 191x1 + 192x? + 193x; + 194xä + 195x1x2 + 195x1xä

+ 19-,x§x; + fisxfxi. (1.19)

Wir werden sehr häufig Polynome vom Grad d = 1 Verwenden. Aus (1.13) erhalten
wir das Polynom vom Grad 1

77(x,t9) = 29., + 1.91x1 + 192x; + + z9,,x,, (1.20)

und für k = 2 das Polynom vom Grad 1 in jeder Variablen

17(x,19) = 191, + 191x1 + 192x; + 1912x1x2. (1.21)

Durch eine einfache Umbenennung der Funktionen f‚-(x1 ‚ ..., x1) und der Parameter
191, ..., 19, läßt sich eine formale Übereinstimmung der Ansätze (1.16) und (1.18) mit
(1.13) herstellen. Ist z. B.

f1(x1: w: xk) = xo E1: f2(x1.---s xx) = xx.
f3(x1‚ ..., x1) = x2, f1(x1, ...‚x„) = x1x2‚

f5(x12>"axk) =’xi: .f6(x11~~-axle): Xi und

"91 = 79i), 792 = 79i, 793 = 79i: 794 = 79i» 795 = 79iia 79s = 7922»

dann ergibt sich aus (1.13) der spezielle Ansatz (1.17). Die hierbei eingeführte Va-
riable xo ist eine Scheinvariable, die stets den Wert 1 besitzt. Dieses x11 können wir
uns bei den Ansätzen (1.16) und (1.18) zu 190 hinzumultipliziert denken.

1.3.1. Regressionsanalyse

Der Bereich B, in dem der Vektor der Einflußgrößen variiert, sei beschränkt und
abgeschlossen, die Funktionen fi(x) (i = 1, ..., r) stetig und linear unabhängig. Ist für
die Schätzung der Wirkungsfunktion 1](x) ein linearer Ansatz der Form (1.13) ge-

2 Bandemez, Versuchsplanung
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geben, dann wird die Schätzung von n(x) zurückgeführt auf eine Schätzung der Para-
meter 29, (i = 1, ..., r) des Ansatzes ':7(x, 19). Unter den Voraussetzungen (1.10) über
den zufälligen Fehler hat die Kovarianzmatrix des Stichprobenvektors 4J die spe-
zielle Form

Buy = E(@/ — EW) (W — EQOT = a2E„. (1.22)

Wegen (1.22) können wir zur Schätzung des Parametervektors z? die Methode der
kleinsten Quadrate (MkQ) (vgl. z. B. Rasch [l]) anwenden. Bei dieser Methode wäh-
len wir für ü, e S solche Parameterwerte 19, in der Menge S der zulässigen Parameter,
für die die Summe der Abweichungsquadrate

(y(x:) — mm, ä)? (1.23)

minimal wird. Verwenden wir die Matrizenschreibweise, dann geht (1.23) mit (1.14)
und mit der Realisierung zz des Stichprobenvektors W über in

(y — F29)T (y — F19). (1.24)

Aus der notwendigen Bedingmg für ein relatives Minimum von (1.24) erhalten wir
[Nullsetzen des Gradienten von (1.24)] das System der Normalgleichungen

FTF5 = FTzx. (1.25)

Wenn die Matrix FTF von vollem Rang ist, d. h. Rg FTF = r g n, dann läßt sich

bekanntlich das System (1.25) eindeutig lösen. Der Lösungsvektor 5 hängt linear von
den Realisierungen 3/ des Zufallsvektors W ab, ist also selbst Realisierung des ent—

sprechenden Zufallsvektors Ö. Die Lösung von (1.25) ist somit

ö = (FTm-Irw (1.26)

und mit Ö ist ’

r(x) = 77(x, 6) = vom“ (1.27)

cine Schätzung für die Wirkungsfläche 7;(x). Die Schätzung (1.26) ist wegen EÖ = t9

erwartungstreu und besitzt die Kovarianzmatrix _

Bö = ar2(FTF)‘1. (1.28)

Die Schätzung (1.27) ist ebenfalls erwartungstreu, die Varianz ist eine Funktion
von x der Form

D’ Y(x) = a2fT(x)(FTF)‘1f(x). (1.29)

[(1.29) werden wir deshalb als Varianzfunktion bezeichnen]. Der Parameter o’ in (1.22)
wird geschätzt durch

S122 = S‘/(n - r).
wobei S’ die Summe der quadratischen Abweichungen

s2 = (a — FÖ)T (a — FÖ)

ist. Die Schätzung S; wird auch als Restuarianz bezeichnet, und es genügt bekannt-
lich (n — r) Sfi/a’ einer xZ-Verteilung mit dem Parameter (n — r).

Als einfachsten Spezialfall wollen wir einen Ansatz der Form

77(x, ö) = 19., + 191x (1.30)
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betrachten. Dieser Ansatz wird z. B. beim Problem der besten Geraden (vgl. z. B.
Rasch [l]) benutzt.

Für (1.30) ist die Matrix F Von der Form

1... 1

FT=(x1mx) (1.31)

u11d FTFist

n 121x,

FTF= n 2 (1.32)

2x1 E. 35:2
i=1 i?

Falls an mindestens zwei verschiedenen Punkten Messungen durchgeführt werden
sollen, ist die Matrix FTF regulär, und es existiert die Inverse G«‘TF)‘1. Wir erhalten
die Schätzung des Parametervektors

1 i=1 " "

also — ;)=:1x‘ n E; Ym
l II 1 II

Ö0 = ggl Y1’ Ö1 ’n"§1 xi:

II 1 n 7|

El xi Y‘ — ‘n. E1 x! E1 Y‘
91 = —..-L1“—..—-T‘ (1-34)

2 xi: ' — 2 xi
t=1 n 1=1

mit der Kovarianzmatrix

i x? — Zn x1
0-2 1=1 l=1

Be“) = „ „ 2 „ ‚ (1.35)
n2x.’—(Zx1) — 2x. n

l= I=1 i-l

Die Wirkungsfläche 7/(x) wird geschätzt durch

Y(x) = 90 + 912:,

wobei diese Schätzung die Varianzfunktion

‘ ix,’ — Zxgn x, + nx’
D2Y(x) = 52"‘ „ *1 (1.36)n 2

n Z x.‘— (2 x1)
l=1 1:1

besitzt.
2*

I
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Der Parameter a’ kann dabei durch die Restvarianz

1 2":1(Yi — Ö0 " 91x1):= y

= :7 Y? - H23, Yilz — 9%[X% — Häxilil}
geschätzt werden, wobei (n — 2) Sf,/02 einer f-Verteilung mit dem Parameter (n — 2)
genügt.

Sie

1.3.2. Varianzanalyse

Bei der Varianzanalyse werden Faktoren A ‚ ‚ A2, A3, ...‚ A, betrachtet, die even-

tuell noch auf verschiedenen Stufen AW, AS”, ..., A?!’ auftreten können. Um die
übliche Form (1.4) des Varianzanalysemodells als Spezialfall des allgemeinen linearen
Modells (1.15) zu erkennen, führen wir die Einfiußgrößen x?’ ein, die nur die Werte 0
oder l annehmen können. Dabei bedeutet xf” = 1, daß der i-te Einflußfaktor A i auf
der j-ten Stufe A?’ im Versuch auftritt.

Wenn z. B. jeder der q Faktoren über die gleiche Zahl von p Stufen verfügt, dann
erhalten wir einen Einflußgrößenvektor

xT = (x‘,", ...‚ x‘{”, x‘,", ..., xg”, ..., xg", ..., xff’)

der Dimension pq, jedoch umfaßt der Definitionsbereich B jetzt nur die Punkte im
R”, deren Koordinaten 0 oder 1 sind. Da ein Faktor A,- in einem Versuch nur auf
einer Stufe auftreten kann, gilt für jeden Versuchspunkt x„„ m = 1, ...‚ n,

P

Jglxß: 1, i= l‚2,...,q.

Als Ansatz haben wir ein Polynom vom Grade 1 in jeder derpq Variablen [vg]. (1 .2l)]
zu wählen, da. wir Potenzen von x5” auf dem Definitionsbereich nicht unterscheiden
können. Für q = 6 und p = 4 erhalten wir speziell die Darstellung (1.4), wobei bei
jedem Versuch-nur die Koeffizienten angegeben sind, für die die Einfiußgrößen ge-
rade gleich 1 sind. Dabei haben wir die Anzahl der Wiederholungen r ebenfalls als 1

gedacht.
Betrachten wir ein anderes, einfacheres Beispiel mit q = 1, jedoch mit der Mög-

lichkeit, auf jeder Stufe AY’ n, Versuche durchzuführen. Es sei

Y,,,, = 7;(x$, t9) + 6,, ' (1.37)

mit x‘{,’,, = 1, d. h.

xii,’ = (0, 0, ...,1,..., 0)T.

j-te Ktxlyrdinate

Dann ist der Stichprobenvektor von der Form

WT = (Y11,..., Y1“, Y“, ..., Y2”, ..., Y,,,,..., YW),

und die Matrix F hat die spezielle Gestalt (vgl. die Bezeichnung im Abschnitt 1.3.)
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[11o.--0]
1.10-~0
10 0

F= ’1"01_,_0. (1.38)

100.1 ü’

100.1

Die Spalten der Matrix F entsprechen dabei den p Stufen des Faktors, die erste Spalte
enthält die Scheinvariable x0 = 1. Mit dem speziellen Stichprobenvektor Z? und der
Matrix (1.38) formulieren wir die (1.15) entsprechende Darstellung für ‘J = Fa? + s.

Diese Form macht es möglich, das Problem der Schätzung für 19 aufzuwerfen, d. h. es

als Regressionsaufgabe zu deuten.

Es kommt häufig vor, daß in einem linearen Modell sowohl Einflußgrößen auftreten, die nur die
Werte O und 1 annehmen, als auch Einfiußgrößen mit Werten aus entsprechenden Intervallen. Solche
Modelle nennt man Kovarianzanalysemodelle und behandelt mit ihnen sowohl Regressionsprobleme
als auch Varianzanalyseprobleme.

Schreiben wir die Komponenten des Stichprobenvektors im Spezialfall (1.38) auf
und benutzen dabei die in der Varianzanalyse übliche Bezeichnung der Parameter
29T = (,u, 0c, , ocz, ..., 0:1,), dann ergibt sich

YlJ:M+‘x!+8ija i:1>->>p> (1-39)

j = 1, ...‚ m.

Einen Ansatz der Form (1.39) wollen wir als Modell der einfachen Klassifikation
bezeichnen, die Parameter cc,» heißen Eflekte des Faktors auf der i-ten Stufe, der Para-
meter 11 bezeichnet das Gesamtmittel (a, drückt auch die Abweichung des Erwar-
tungswertes der i-ten Stufe vorn Gesamtmittel aus).

Sollen Schätzungen für die ElTekte a, ermittelt werden, dann müssen wir beachten,
dal3 die Matrix F gemäß (1.38) vom Rang Rg F = p < p + 1 ist, die Inverse von FTF
also nicht existiert. Durch Hinzunahme einer zusätzlichen Bedingung, die als Repara-
metrisierungsbedingung bezeichnet wird, erreichen wir, daß die um diese Bedingung
erweiterte Matrix F regulär ist, eine eindeutige Schätzung der Parameter nach der
Methode der kleinsten Quadrate also möglich ist. Für die einfache Klassifikation
lautet diese Reparametrisierungsbedingung

f“, = o. ’ (1.40)
1:1

Haben wir bei der Analyse der Beobachtungswerte nicht nur einen Faktor, sondern
die Wirkung zweier Faktoren zu berücksichtigen, dann erhalten wir durch analoge



22 1. Einführung in die Problemstellung

Überlegungen mit (1.17) für (1.21) die Darstellung

Ym = /4 + 0‘: + I31 + 5ms (1-41)

1.31, u-‚Piaj =1: ---9172:]: 1, "'5 *1:

wobei der eine Faktor aufp 1 Stufen und der andere Faktor aufp; Stufen Vorkommen
kann, für jede Stufenkombination liegen n Versuchsergebnisse vor. Ein Modell der
Form (1.41) wird als zweifache Klassifikation bezeichnet, den speziellen Fall l = 1

werden wir in Kapitel 3 benötigen. Legen wir unseren Betrachtungen als Ansatz ein
Polynom 1. Grades in jeder Variablen zugrunde, also ein Polynom der Form

77(x, a9) = 19° + 191x1 + + flux,‘ + fiuxlxz + + z9(,,-1,kx,Hx,,,

dann gelangen wir zu einer zweifachen Klassifikation, die durch die Beziehung

Ym = M + 0‘: + I31 + 7:1 + Sm: (1-42)

i: l‚...‚p, j = l,...‚q‚ l= 1, ...‚n‚

beschrieben wird. Die Koeffizienten 72„ werden dabei als Wechselwirkung des einen
Faktors auf der i-ten Stufe mit dem zweiten Faktor auf der j-ten Stufe bezeichnet.
Zur Schätzung der Effekte bei einer zweifachen Klassifikation benutzen wir die Re-
parametrisierungsbedingungen

im, = 0, £213, = 0 für (1.41) (1.43)
i=1 i=1

und dazu noch
P

1217m = 0 (j = 1. q), — (1-44)

:34, = o (i = 1, ...,p) für (1.42).

Entsprechende Überlegungen führen zu einer dreifachen Klassifikation, von der wir
hier nur den Spezialfall

Y,-,,,=,u+o¢,+13,+y,,+s,,-,,, (1.45)

i = 1, ...‚p„ j = 1, ...,p2, u = 1, ...,p3,

angeben wollen. Zu (1.45) gehören die Reparametrisierungsbedingungen
P1 D2 D3

2m=2m=2n=0 am
i 2 1 J= 1 u= 1

Weiterhin werden wir auch die spezielle vierfache Klassifikation

Y„„„ = ‚u + 1x, + ß, + 7„ + 6,, + a;,,,,,, (1.47)

i=1,...,p1, j =1,--.,p2. u =1,...,ps, v = I‚...‚p4‚
mit den Reparametrisierungsbedingungen

P1 172 I7; DA

zm=2m=2n=2m=o am
l=1 j=1 u=1 u=1

anwenden.
Eine der hauptsächlichsten Aufgaben bei der Auswertung von Versuchen mit Mo-
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dellen der Varianzanalyse ist die Durchführung von Testen auf eine Gleichheit ge-
wisser Effekte. Um so einen Test durchführen zu können, benötigen wir die folgenden
Voraussetzungen über den zufälligen Fehler e.

Es sei

e, normalverteilt mit

Ea, = 0, Die, = a’ und cov(s,,vs,,) = 0 (1.49)

für t + t’,

wobei t e T und T eine entsprechende Indexmenge ist (bei der zweifachen Klassifika-
tion (1.41) ist z. B. t .=. ijl).

Mit der Voraussetzung (1.49) können wir nun beispielsweise die Hypothese
Ho : (x1 = 1x2 = = cc, gegen die Alternativhypothese HA : ax, + a, für mindestens
ein i und j mit i =i= j testen. Die entsprechende Testgröße genügt einer F-Verteilung.
Für die Durchführung des Tests verweisen wir auf die entsprechende Literatur (z. B.:
Ahrens [l], Rasch [1], Scheffé [1]). Bei einer zweifachen Klassifikation (1.42) können
wir außerdem noch die Nullhypothesen Ho’:,6, =13; = = fiqund Ho” : 32,2 = yu
= = 7/M gegen die entsprechenden Alternativhypothesen testen.

Zur Klärung gewisser Fragen bei der Planung von Versuchen (z. B. die Anzahl der
wirkenden Faktoren oder Aussagen über den Versuchsfehler) ist es häufig zweck-
mäßig, einen Versuch durchzuführen, bei dem ein betrachteter Faktor nur auf einer
Stufe vorkommt (o. B. d. A. x?’ = O für alle j), also konstant gehalten wird. Wir
sprechen in so einem Fall von einem Blindversuch.

1.4. Versuchsplanung als Entscheidungsproblem

Die verschiedenen im Abschnitt 1.2. vorgestellten Probleme der statistischen Versuchsplanung las-
sen sich alle einheitlich im Rahmen der statistischen Entscheidungstheorie (vgl. Bd. 21) darstellen.
Die mathematische Struktur dieser Probleme der Versuchsplanung wird dadurch besonders deutlich
und ermöglicht es, Verbindungen zwischen den Problemen und zu den anderen Teilgebieten der Ma-
thematik aufzuzeigen, eine praktisch realisierbare Vorgehensweise festzulegen und Verfahren zur
Lösung der Aufgabenstellungen zu formulieren.

Wir wollen nun die Versuchsplanung in Terrnen der statistischen Entscheidungstheorie darstellen.
Die Charakterisierung aller möglichen verschiedenen Zustände, die bei einem zu untersuchenden
Sachverhalt auftreten können, wollen wir in einer gegebenen Menge Z, die wir als Menge der „Zu-
stände der Natur“ bezeichnen, zusammenfassen. Die Menge Z enthält z. B. alle möglichen Werte
eines Parameters. Eine Menge A, die ebenfalls gegeben ist und die wir als Menge der „Aktionen des
Statistikers“ bezeichnen, enthält die Entscheidungen, die über den zu untersuchenden Sachverhalt
getroffen werden können, z. B. alle möglichen Schätzwerte für einen Parameter oder alle möglichen
Entscheidungen über eine Hypothese bei einem Test. Die Natur wählt nun einen Zustand C E Z, der
dem Statistiker unbekannt ist. Der Statistiker kann sich aber über den Zustand der Natur Informatio-
nen durch die Beobachtung eines Zufallselements Y; beschafien. Die Verteilung von Y; hängt vom
wahren Zustand C der Natur ab. Läßt sich nun dieses Zufallselement Y; aus einer gegebenen Menge
(Y;(c)‚ c E C} wählen, wobei C eine geeignet definierte Indexmenge ist, dann sprechen wir vom Pro-
blem der statistirchen Versuchsplanung. Jedem Element c e C entspricht also ein Experiment, dessen
Ergebnis y;(c) eine Realisierung von Y;(c) ist. Häufig sind die Zufallselemente auch Vektoren, deren
Komponenten Zufallsgrößen Y;(v) sind, deren Index 12 aus einer gegebenen Menge, dem Versuchs-
bereich V, gewählt werden kann. Ein typisches Beispiel hierfür ist die Regressionsanalyse. Der Ver-
suchsbereich Vist ein Teilgebiet des k-dimensionalen euklidischen Raumes, und v ist der Versuchs-
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punkt x, an dem die Kenngröße Y;(v) = Y(x) beobachtet wird. Führen wir zur Abkürzung die fol-
genden Definitionen ein:
Definition 1.1: Ein n-tupel von Elementen v aus V

V,,:=(v,,...,v,,)» (1.50)

heißt konkreter Versuchsplan au: V vom Umfang n.

Dabei müssen die v. (i = l, . . ., n) nicht alle voneinander verschieden sein. Weiterhin bezeichnen wir
mit V“"’ die Menge der für eine bestimmte Aufgabenstellung interessierenden Versuchspläne, die
nicht notwendig vom gleichen Umfang sein müssen.

Definition 1.2: Das n-tupel von Zufallsgrößen

WV.) = (Ygvt), Y‚(v„»T (Lsn
heißt Beobachtungsvektor zum Verruchsplan V„.

Nach der Beobachtung von @;( V,,), womit C im allgemeinen immer noch nicht genau bekannt ist.
muß der Statistiker eine Entscheidung a e A wählen. Diese Entscheidung wird von 47504,) abhängen.
da jedem @;(V,,) durch eine Entscheidungsfunktion d./"(4/;(V,,)) eine Entscheidung u = d„„(„_‚(V„))
zugeordnet wird. Das heißt also z. B., daß jedem Beobachtungsvektor unter Berücksichtigung des

verwendeten Versuchsplanes V„ ein Schätzwert für den Parameter zugeordnet wird _ Für iedes
V„ E V"’" sei eine Menge D(V„) von solchen Entscheidungsfunktionen gegeben, In vieten ‘Fällen
enthalten die Mengen D( V„) für verschiedene V„ Funktionen gleicher Struktur.

Die Beurteilung’ der Zweckmäßigkeit eines Versuchsplanes V" E V“) und einer Entscheidungs-
funktion d G D(V„) erfolgt über eine auf Z x V“) X A definierte Verlustfunktion

L(C‚ V719 “L (1.52)

die den Verlust und die Aufwendungen des Statistikers angibt, die entstehen, wenn der wahre Zustand
der Natur C vorliegt, der Statistiker den Versuchsplan V„ benutzt und die Entscheidung a wählt. Set-
zen wir nun die Entscheidungsfunktion d„„ (‘d7/;( V„)) in die Verlustfunktion ein, dann erhalten wir
eine Funktion, deren Funktionswerte Zufallsgrößen der Form L(I, V,, , dyn (Q?/;( V,,)) sind. Nun bilden
wir den Erwartungswert (falls dieser existiert) bezüglich der Verteilung von @(V„). Wir erhalten mit

EwL(C, V„‚ dv„(%( V„))) = R(C‚ V... du) (1.53)

den erwarteten Verlust beim Vorgehen gemäß der Entscheidungsfunktion dy„ und bezeichnen die
Funktion (1.53) als Risik0funktion‚ die aber auch noch vom wahren Zustand der Natur abhängt.

Im allgemeinen müssen Verlustfunktion und Risikofunktion nicht unbedingt skalare Funktionen
sein, sie sind z. B. auch als vektor- bzw. matrixwertige Funktionen sinnvoll zu behandeln.

Eine brauchbare Bewertung der Wahl des Versuchsplans und dcr Entscheidungsfunktion kann
aber nur durch eine vom unbekannten wahren Zustand C der Natur unabhängige reelle Zahl erfol-
gen. Deshalb wollen wir die Risikofunktion (1.53) durch ein geeignetes Funktional Q auf die reelle
Achse abbilden. Dadurch erhalten wir das (verallgemeinerte) Risiko

RQ(V‚.‚ dz/,. = QR(C, V", dv,,). (1.54)

Dieses Risiko ist nur noch eine Funktion vom Versuchsplan V„ und der Entscheidungsfunktion d”,
also von Elementen, die der Statistiker wählen kann. Es ist nun sinnvoll, den Plan V,, und die Funktion
dy„ so zu wählen, daß das Risiko (1.54) minimiert wird. Diese Wahl ist das Ziel der entscheidungs-
theoretischen Behandlung. Auf diese Weise erhalten wir das folgende Optimalitätskriterium.

Definition 1.3: V,‘,* und d}: heißen Q-optimal, falls

Rq(V:‚ 4:3) = mi" Rom, dm. (1.55)
neu/W.

n," eD(V„l.

In den Kapiteln 2 und 5 werden Spezialfälle solcher Entscheidungsprobleme, bei denen die Ver-
suchsplanung eine Rolle spielt, behandelt und durch entsprechende Beispiele erläutert.
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Mit der Definition 1.3 haben wir eine allgemeine Form für ein Optimalitätskriterium der optimalen
(statistischen) Versuchsplanung gefunden.
In manchen Fällen ist es günstiger, die Risikofunktion R(C, V,,, d,/,,) aufzuspalten in die Form

R(C‚ Vmdm.) = R1(C,dv,,) + K(V..), (1.56)

wobei mit R1(C, dm.) die Risikofunktion bezeichnet wird, die den erwarteten Verlust angibt, wenn Z

der wahreZustand der Natur ist und der Statistiker die Entscheidungsfunktion dy,, wählt. Die Funk-
tion K( V„) ist eine gegebene Kostenfunktion für die Beobachtungen gemäß des Versuchsplanes V„.
Solch einen Zugang zur Lösung des Problems wählt z. B. Wald [1].

Häufig können wir jedoch keine gemeinsame Maßeinheit für die Risikofunktion R. und die Ko-
stenfunktion K finden. Dann bietet sich für eine Optimierung des Risikos als Alternative zu (1.55)
die folgende Optimierungsaufgabe an:

RQ1(d$*)= min R(1l(dV..)) (1-57)
y"eV<aa,

dynsD(V,,)

unter Beachtung der Nebenbedingung

K(V:) ä I'm (1-58)

wobei RQ, = QR1 gilt und ko eine vorgegebene Kostenschranke bedeutet. Auch die zu (1.57) und
(1.58) duale Aufgabe

K(V‚’‚“) = min K(V„)‚ (1.59)
ynsy/(a)

unter Beachtung der Nebenbedingung

12.11013?) g n, . (1.60)

mit der vorgegebenen Risikoschranke n, ist in manchen Fällen zur Beschreibung eines praktischen
Problems notwendig.

1.5. Anwendungsprobleme der optimalen Versuchsplanung

1.5.1. Anwendung der entscheidungstheoretischen Formulierung

Zum gegenwärtigen Zeitpunkt hat die entscheidungstheoretische Formulierung der
optimalen Versuchsplanung vom praktischen Standpunkt aus hauptsächlich metho-
dische Bedeutung, denn es ist in konkreten Fällen zur Zeit noch selten möglich, eine
Verlustfunktion und ein Risikofunktional zu finden, die den sachlogischen und öko-
nomischen Verhältnissen genau entsprechen. Es muß jedoch bemerkt werden, daß
bereits einfache Annahmen über die Verlustfunktion zu vernünftigen, praktisch deut-
baren Optimalitätskriterien führen.

Beispiel 1.9: Wir wollen einen Parameter 19 der Verteilung einer Zufallsgröße Y auf Grund einer
Stichprobe @(n) = (Y, ‚ ...‚ Y„) schätzen. Die Wahl des Versuchsplanes reduziert sich hier also auf
die Wahl des Stichprohenumfangs n. Die Entscheidungsfunktionen d,,(@(n)) sind hierbei Schätz-
funktionen für den Parameter 19, die wir mit 9,, = (9,,(W(n)) bezeichnen wollen. Als Verlustfunktion
werde

Lw, n, 6x101») = c(0„(@(n)) — W, c = const., (1.61)

gewählt und als Menge D(n) die Menge aller erwartungstreuen Schätzfunktionen für 19, d. h., es gilt

59„ = a. (1.62)
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Dann erhalten wir

12,69, 6,.) = EL(19, 0,.) = cE(6„ — 19)’, (1.63)

und wegen (1.62) ist

R1(19,(9,,) = cD1Ö„. (1.64)

Die Aufwendungen für die Beobachtungen wollen wir durch eine Kostenfunktion der Form

K(n) = kln (1.65)

mit einer vorgegebenen Konstanten k, bewerten. Da R1 nicht vom wahren Parameter abhängt, er-

übrigt sich die Wahl eines Funktionals Q, d. h.‚ es ist also R01 = R, .

Die (1.57) und (1.58) entsprechende Optimierungsaufgabe

D20; = min 1220„ (1.66)
flqénED(fl)

unter Berücksichtigung von

kln g kc (1.67)

hat folgenden praktischen Sinn: Wir suchen eine erwartungstreue Schätzung kleinster Varianz bei
beschränktem Stichprobenumfang n. Für solche Aufgaben werden durch die mathematische Stati-
stik Lösungen angegeben.

Beispiel 1.10: Wir wollen nun einen Parametertest durchführen. Dazu zerlegen wir die Menge S aller
zulässigen Parameter in zwei Teilbereiche So und SA in der Weise, daß gilt

S = So u SA und (1.68)

so n SA = Q.

Geben wir uns nun eine Nullhypothese

Ho 219e so (1.69)

und eine Alternativhypothese

HAzöesA (1.70)

vor, so können folgende Entscheidungen möglich sein:
a0: Annahme der Hypothese Ho bzw. Ablehnung von HA

a1: Ablehnung der Hypothese Ho bzw. Annahme von HA.

Als Verlustfunktion wählen wir

0 fa1ls19eS0,

Lw’a°)=:1 r11 a9 s (m)as e A,

1 faI1s19eSo,
L t9, a =

( ‘) i o falls19eSA,

d. h., wenn die Entscheidung richtig ist (richtige Hypothese angenommen), dann soll der Verlust den
Wert 0 annehmen, und wenn die Entscheidung falsch ist, dann soll der Verlust den Wert 1 annehmen.
Eine Entscheidungsfunktion d„ ordnet hier also einem Teil der möglichen Stichproben y(n) =

(y, , ..., y,,) die Entscheidung a0 zu und dem anderen Teil die Entscheidung a, . Dadurch wird der
Stichprobenraum von W01) in einen Annahmebereich C„(d„) und in einen Ablehnungsbereich CA(d,,)

für H), zerlegt. Für die Risikofunktion R1 erhalten wir somit

R (Ü d) P(?"/e C„(d„)) für 19€ so, (l 72)

’ ’ " pw e c„(d„)) für 79 e s1. '
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Die Funktionswerte von (1.72) sind als Wahrscheinlichkeiten für einen möglichen Irrtum und mit

0409, n) = P(4’/ E C‚i(d..)) und 309, n) = P(@ E Co(r1..))

als Irrtumswahrscheinlichkeiten (oder Risiko oder Fehler) erster und zweiter Art bekannt (vgl. z. B.
Rasch [l]). Die optimale Versuchsplanung, die sich hier nur auf den Stichprobenumfang bezieht,
betrachtet die zu (1.59) und (1.60) analoge Aufgabenstellung

K(n*) = min K(n) (1.73)

mit

R,(19, d,‘_“.) g one für alle 19 E So, (1.74)

R109, d,'f.) g flu für alle 19 E SA.

Diese Aufgabe können wir wie folgt interpretieren: Es ist der kleinste Stichprobenumfang zu finden,
so daß das Risiko erster und das Risiko zweiter Art gleichzeitig unter vorgegebenen Schranken blei-
ben. Allerdings ist diese Aufgabe nicht immer lösbar.

1.5.2. Weitere Probleme und Bemerkungen

In vielen Fällen, vor allem bei komplizierteren stochastischen Modellen als den hier vorgestellten,
wünscht der Experimentator, daß der Versuchsplan möglichst mehrere Kriterien gleichzeitig erfüllt.
Dann muß sorgfältig geprüft werden, welche Kriterien sich auf eine entsprechende (dann eventuell
auch vektorwertige) Verlustfunktion, auf die Mengen der zugelassenen Entscheidungen, der betrach-
teten Entscheidungsfunktionen und der möglichen Versuchspläne beziehen. Trotz dieser Komplexität
der Problematik gelingt es in gewissen Fällen, eine sinnvolle Optimierungsaufgabe zu formulieren.
Ein Beispiel dafür wird in Kapitel 4 gegeben. '

Bei solchen praktischen Problemen, bei denen die Versuchsdurchführung und -auswertung wenig
Zeit erfordert, erscheint es oft attraktiv, die Versuchsplanung sequentiell zu gestalten, weil wir dann
die Informationen, die wir durch die bereits vorliegenden Versuchsergebnisse zur Verfügung haben,
zu einer Verbesserung der Planung weiterer Versuche ausnutzen können. Solche Verfahren werfen
aber in der Regel kompliziertere mathematische Probleme auf und erfordern wesentlich umfang-
reichere stochastische Modelle. Nur für sehr einfache Spezialfälle liegen bisher Lösungen der ent-
sprechenden Optimierungsprobleme vor. Im Kapitel 6 wird eine Aufgabenklasse vorgestellt, bei der
solche sequentiellen Verfahren angewandt werden. Hierbei werden die Schwierigkeiten, die sich bei
einer Optimierung ergeben, deutlich werden. Einen Einblick in die Bedeutung und Anwendung se-

quentieller Methoden, z. B. in der Regelungstechnik, (z. B. bei der Modellidentifikation)‚ finden wir
bei Hartmann/Letzkij/Schäfer [1] und bei Chernofi’ [1].

Einc Behandlung dieses Problemkreises würde den Rahmen dieser Einführung sprengen.

1.6. Zusammenfassung

Ausgangspunkt ist in jedem Fall ein wahrscheinlichkeitstheoretisches Modell der Versuchsfrage,
das der Experimentator aufzustellen oder zu wählen hat. Auf dieses Modell gründet sich die Wahl der
Strategie für die Durchführung der Versuche und die Auswertung der Ergebnisse (vgl. Schema 1). Da-
bei muß die Einhaltung der Modellbedingtingen garantiert werden, dazu gehören u. a. Unabhängigkeit
der Komponenten und lzinlänglic/zer Umfang der Stichprobe, Zufdlligkeit der Auswahl der Versuchs-
objekte bei der Zuordnung zu Versuchseinheiten.

Können oder wollen wir bei einer Versuchsdurchführung nur die Anzahl der Beobachtungen wäh-
len, dann müssen wir uns für einen Stichprobenumfang n entscheiden, der zwischen dem mindest not-
wendigen Umfang für die Lösung einer statistischen Aufgabe und dem praktisch möglichen Umfang,
der durch den Versuchsaufwand gegeben wird, liegt (vgl. Kapitel 2). '
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Für Modelle der Varianzanalyse können wir z. B. Blockpläne und lateinische Quadrate anwenden
(vgl. Kapitel 3).

Wollen wir die unbekannten Parameter eines Ansatzes i7(x‚ i9) für die Wirkungsfunktion 17(x)

schätzen, können die Einflußgrößen im Versuchsbereich nur gewisse diskrete Werte (Niveaus) an-
nehmen, dann lassen sich Mehrfaktorpläne zur Lösung dieser Aufgabe heranziehen (vgl. Kapitel 4).

Für das Modell der linearen Regression mit stetig variierbaren Einflußgrößen x,e V definie—

ren wir Optimalitätskriterien durch gewisse Funktionale von Matrizen, angewandt auf die bei der
Schätzung der Parameter auftretende Matrix FTF. Optimale Versuchspläne für diesen Fall werden-
in Kapitel 5 konstruiert.

Häufig hat der Experimentator mehrere Ansätze für eine Schätzung von 17(x) zur Auswahl. Durch
die Anwendung eines Verfahrens der Diskrimination von Regressionsansätzen kann unter den ge-
gebenen Ansätzen ein in einem festzulegenden Sinn bester Ansatz ausgewählt werden (vgl. Ka~
pitel 6).



2. Planung des Stichprobenumfangs

2.1. Aufgabenstellung

Knüpfen wir an die Ausführungen des Kapitels 1 (insbesondere die Abschnitte
1.2.4., 1.4. und 1.5.1.) an und betrachten die Risikofunktion R1(19, 9(n)) (vgl. (1.63)
mit Ö(n) für 9,.) für die Schätzung eines unbekannten Parameters 29. Verwenden wir
für 29 eine erwartungstreue und konsistente SchätzungÖ(vgl. z. B. Rasch [1]) und be-
trachten (1.64), dann ist das Risiko offensichtlich eine für n —> co fallende Funktion, und
es gibt ein n1, so daß D29(n,) g D2901) fürn > n1. Andererseits ist aber jede Stichpro-
bennahme mit gewissen Kosten, die durch eine Kostenfunktion K( V„) ausgedrückt wer-

den, verbunden. Verursacht ein Versuch z. B. die Kosten kl und stehen insgesamt
nur kg Mittel für die Versuchsdurchführung zur Verfügung, dann ergibt sich für den

. k _

praktisch möglichen Stichprobenumfang (vgl. Abschnitt 1.2.4.) n g l—€—° . D16 Kosten-
1

funktion K(V„) wird im allgemeinen mit n wachsen. Veranschaulichen wir uns die
Risiko- und die Kostenfunktion in Abhängigkeit von n, dann ergibt sich beispiels-
weise folgender Verlauf (s. Bild 2.1).

R7 (v, zNnUor/‚i/„l

l

1

M2», {m}

n ' - m/ndes/en; aufwand/gar xi p abenumfang

n" — pra/r//Jr/7 w; c Jl/"t/I/zroaanumfung

/7 "'- wins:/zensi-/er/er 5//'c/‘wroben Umfang

Bild 2.1

Die Festlegung des wünschenswerten Stichprobenumfangs werden wir nun so vor-

nehmen, daß einerseits ein hinreichend kleines Risiko garantiert wird, andererseits
aber die Kosten, die man allgemein als Versuchskosten, -dauer oder -aufwand inter-
pretieren kann, in vernünftigen Grenzen gehalten werden. Für das in Bild 2.1 auf-
gezeigte Beispiel würden wir den wünschenswerten Stichprobenumfang durch Mini-
mierung des Ausdrucks (1.56) bezüglich n "berechnen.

Im Kapitel 2 werden nun Optimalitätskriterien formuliert, mit deren Hilfe der
kleinste wünschenswerte Stichprobenumfang (optimaler Stichprobenumfang) be-
stimmt werden kann. Dabei wird im wesentlichen die Vorgabe einer Güteforderung
für eine statistische Aussage verwendet werden.
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2.2. Vorgabe der Genauigkeit

2.2.1. Parameterschätzungen

Eine der Grundaufgaben der mathematischen Statistik ist das Schätzproblem. Die
Verteilungsfunktion der Grundgesamtheit X hängt von gewissen Parametern ab. Wir
wollen uns hier auf nur einen Parameter 15‘ beschränken und die Verteilungsfunktion
mit F„(x,19) bezeichnen. Als Schätzung für den unbekannten Parameter wird eine
geeignete Stichprobenfunktion durch ein Schätzverfahren (z. B. Maximum-Likeli-
hood-Methode, Momentenmethode, vgl. Smirnov/Dunin-Barkowski [1]) ausgewählt.
Legen wir der Schätzung des Parameters 19 eine Stichprobe ü"(n) = (X1, ..., X,,)
zugrunde, dann ist G) = (9(n) eine Zufallsgröße mit der Verteilungsfunktion
F5909). Wir wollen hier nur erwartungstreue Schätzungen 9 für 19 zulassen
(also EÖ = 19) und betrachten dasAEreignis, daß der Schätzwert nicht mehr als d vom

Erwartungswert abweicht, d. h. |(9(n) — 19| g d. Dabei ist d ein vorgegebener Wert,
der es uns ermöglicht, in einem konkreten, praktischen Fall den Schätzwert v9 und
den wahren Wert 19 miteinander ohne Verlust zu identifizieren, wenn I19 — 19| g d.
Da die Schätzung 9(11) jedoch eine Zufallsgröße ist, läßt sich im allgemeinen nicht er-

reichen, daß das Ereignis |9(n) — 19| g d immer eintritt. Daher wählen wir eine
Wahrscheinlichkeit l — o: mit cc > 0, mit der dieses Ereignis mindestens eintreten
soll und fordern

P(]9(n) — 19] g d) = l — 0c. (2.1)

Diese Forderung (2.1) können wir nun zur Berechnung des optimalen Stichproben-
umfangs heranziehen, wenn die beiden Voraussetzungen
1. die Schätzung Ö(n) hängt explizit vom Stichprobenumfang ab und
2. durch identische Umformungen können wir erreichen, daß die zufällige Funktion

g(Q(n)) eine bekannte Verteilungsfunktion besitzt, der Ausdruck

P(g(9(n)) < gm) = 1 - 06 (2-2)

also eindeutig bestimmt ist, wobei g1_„ ein (1-oc)-Quantil der Verteilungsfunktion
von g(9(n)) ist,

erfüllt sind. Nehmen wir an, daß der Ausdruck (2.1) sich so umformen läßt, daß wir
erhalten

P(8(9(n)) ä 417601)) = 1 - a, (2-3)

wobei der Faktor k(n), der durch diese Umformung zustande gekommen ist, den
Stichprobenumfang n explizit enthält. Vergleichen wir nun (2.2) und (2.3), dann finden
wir die Beziehung

81-1; = dk(n). (2.4)

Durch Auflösen von (2.4) nach n ergibt sich ein optimaler Stichprobenumfang zur
Erfüllung der Forderung (2.1) (vgl. z. B. Rasch/Enderlein/Herrendörfer [1], Smirnov,’
Dunin-Barkowski [l]).

Beispiel 2.1: Die Verteilung der Grundgesamtheit X gehöre zur Familie der Normalverteilungen, der

Erwartungswert ‚u sei unbekannt und zu schätzen, die Varianz a’: sei bekannt. Durch Y = -1- i X.
n s: 1

ist eine erwartungstreue. konsistente Schätzung für ‚u gegeben. Die Verteilung von Y ist bekanntlich
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N(‚u‚ L12/_n). Die Voraussetzung 1 ist erfüllt, denn Ö(n) hängt explizit von n ab, weiterhin ist die Größe

Y = n (X — /A)/0' normiert normalverteilt, d. h. mit EY = 0 und DzY = 1. Stellen wir nun einen
Ausdruck der Form (2.2) auf, dann erhalten wir

P(\/;|X — /1]/0' < u,_,,,) = 1 — on, (2.5)

d. h.‚ wir wählen g(Ö(n)) = x 31,? —— ‚ul/zr mit 19 = ‚u, und u‚_„,2ist das (1 —- oc/2)-Quantil der normier-
ten Normalverteilung. Als Genauigkeitsforderung für die Schätzung Y für ‚u geben wir vor

1’(lz7- ‚ul ä r1)= 1- oz. (2.6)

Durch Umformen erhalten wir

PQ/ÜX — ‚uI/cr g dJI/o) = 1 — a. (2.7)

Ein Vergleich der Ausdrücke (2.5) und (2.7) ergibt analog zu (2.4) bei vorgegebenem o:

um“ = d\/;/0

und somit einen mindestens notwendigen Stichprobenumfang zur Erfüllung der Forderung (2.7)
mit ‘

n‘ = u§_mo’2/dz . ‘ (2.8)

Dabei wird als n* stets die kleinste ganze Zahl, die größer als die rechte Seite von (2.8) ist, eingesetzt.
Wir benutzen den optimalen Stichprobenumfang im folgenden stets in dieser Bedeutung, ohne es je-
doch ausdrücklich zu bemerken.

In vielen Fällen läßt sich die Verteilungsfunktion von g((9(n)) nicht unabhängig
von n angeben (z. B. wenn g(9(n)) einer t- oder einer xz-Verteilung genügt). Dann er-

halten wir aber analog zu (2.4) eine Beziehung

g1—a(") = d/C(11), (Z9)

die sich im allgemeinen nicht mehr explizit nach n auflösen läßt. In diesem Fall gehen
wir so vor, dal3 wir mit einem Stichprobenumfang no, der gewiß zu klein ist, beginnen
(es muß aber no größer als der mindest notwendige Stichprobenumfang sein). Wird
für no die geforderte Genauigkeit nach (2.1) noch nicht erreicht, dann gehen wir zu

no + 1 über. Dieses Verfahren wird solange fortgesetzt, bis die Genauigkeit a’ erreicht
oder unterschritten wurde. Ein Beispiel soll diese Vorgehensweise veranschaulichen.

Beispiel 2.2: Für eine normalverteilte Grundgesamtheit X sei sowohl der Erwartungswert ‚u als

auch die Varianz 0'2 unbekannt. Der Parameter p wird durch A7 und der Parameter o’ durch S’ =

n

2 (X, — Y)‘/(n — 1) geschätzt. Für die Schätzung von ‚u sei wiederum die Genauigkeitsforderung
i: 1

(2.6) aufgestellt. Wählen wir analog g(Ö(n)) = \/n IX — ‚uI/S, dann genügt g(Ö(n)) bekanntlich einer
t-Verteilung mit (n — 1) Freiheitsgraden, d. h.‚ (n — 1) ist der Parameter der t-Verteilung. Präzisieren
wir nun für unser Beispiel die Forderung (2.2), so erhalten wir

P(\/Z11? — m/s < r.-...-.,2)=1— a, (2.10)
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wobei aber das (1 —— zx/2)-Quantil der t-Verteilung vom Stichprobenumfang n abhängt. Durch Um-
formen der (2.6) entsprechenden Forderung erhalten wir

P(\/Z|,\’—,1|/s§d(/I/s)=1 —oc (2.11)

und somit

t„_„,_„„ = dJä/s (2.12)

bzw. für den optimalen Stichprobenumfang V

n* = z‚f_,_ „,2 S2/dz. (2.13)

In (2.13) ist n* eine Zufallsgröße, die in t,,_,_1_,,,2 und in S2 von n abhängt. Wir können sie
zur praktischen Bestimmung eines optimalen Stichprobenumfanges heranziehen, wenn eine obere

Schranke „i“ für 0'2 bekannt ist, mit der wir die Schätzung S2 modifizieren können, d. h., wir
setzen S2 = i’, falls S2 g 32 ausfällt. Je besser die obere Schranke 32 ist, desto genauer wird die
Näherung für den optimalen Stichprobenumfang n* ausfallen. Wir wählen ein no und vergleichen
den Ausdruck

d = ’u.—1.1—a/zg/\/"0 , (2.14)

mit der vorgegebenen Genauigkeit d. Wenn d‘ > d ausfällt, dann berechnen wir (2.14) mit no + l an-

stelle von no. Dieses Vorgehen führen wir solange fort, bis z; g d ausfällt, der entsprechende Stich-
probenumfang no + k (nach k Schritten) ist dann eine obere Schranke für den optimalen Stich-
probenumfang n‘.

Geben wird = 10, o: = 0,01 und§ = 5 vor, dann erhalten wir für no = 4mit t3;o_995 = 5,841 aus

(2.14):

d= 5,841 —5/„/Z = 14,6025 > d = 1o.

Für no + 1 = 5 mit 14,0395 = 4,604 erhalten wir:

d = 4,604- sA/E = 10,2952 > d = 1o

und für no + 2 = 6 und t5;0‘99, = 4,032:

d = 4,032 - 5/\/€ = 8,2319 < d =1o.

Folglich erfüllt der optimale Stichprobenumfang n‘ = 6 die Forderung

P(|X—‚u | g 1o) = 0,99.

Die Forderung (2.1) läßt sich in der Form

P(9(n) — d g 19 g O(n) + d): 1 — o: (2.15)

auch als Konfidenzintervall zum Niveau l — 4x interpretieren.
Dieses Intervall hat die Länge 2d, also bedeutet eine Genauigkeitsvorgabe gemäß

(2.1) die Vorgabe der halben Länge des Konfidenzintervalls für den entsprechenden
Parameter.

Beispiel 2.3: Zur Schätzung des Parameters ‚u einer normalverteilten Grundgesamtheit X bei be-
kanntem 02 verwenden wir für vorgegebenes o: das Konfidenzintervall

Y — o'u1_m/\/I-1 g [4 g X + au,_,,,,,/(/E. (2.16)

Die Länge dieses Intervalls beträgt y

L = 2aul_„,2/\/n. (2.17)

3 Bundemer, Versuchsplanung
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Durch Umschreiben von (2.16) in die Form

IX ‘ /ll ä Uu1—ot/2/\/;

erhalten wir sofort die Aussage (2.17). Der optimale Stichprobenumfang beträgt damit

n* = 4a2uf_„„jL2. (2.18)

Für o: = 0,05, o’ = 4 und eine vorgegebene Länge L = 2 erhalten wir mit u 0575 = 1,96 und mit

4- 16- 1,962/4 = 61,47

einen optimalen Stichprobenumfang n* = 62.

Die Bestimmung des optimalen Stichprobenumfangs bei Schätzung anderer Para<
meter gestaltct sich sehr schwierig in bezug auf die numerische Rechnung. Zur Schät-
zung des Parameters a einer Normalverteilung können wir fordern, daß die Abwei-
chung der Schätzung S von a „

P(|S—o'|§p¢7/100)=1——zx, 0<p<1, (2.19)

erfüllt. Wir geben also als Genauigkeit für die Schätzung nicht mehr nur eine absolute
Abweichung vom wahren Parameterwert 29 vor, sondern eine relative Abweichung be-
züglich des zu schätzenden Parameters (bei kleinen Parameterwerten wollen wir ge-
nauere Aussagen haben als bei großen Werten). Die halbe Breite des entsprechenden
Konfidenzintervalls soll dabei p% von 0' betragen, d. h. d = po/ 100. Da dieser Weg
zur Bestimmung von n sehr schwierig ist, werden wir uns im konkreten Fall eines
Nomogramms bedienen, wie es z. B. bei Rasch/Enderlein/Herrendörfer [1] zu finden
ist.

Für vorgegebene Überdeckungswahrscheinlichkeiten wird von Guenther und
Thomas [1] eine Beziehung zur Bestimmung von n* für ein Konfidenzintervall für 0'

angegeben. Ein zweistufiges Vorgehen finden wir bei Birnbaum und Healy [1].
Wir wollen hier ein weiteres Verfahren zur Bestimmung von n* kennenlernen. Wir

gehen wieder von einer normalverteilten Grundgesamtheit X aus. Der Erwartungs—
wert ‚u sei zu schätzen bei bekanntem 0". Für ein vorgegebenes Konfidenzniveau l — o:

erhalten wir bei ebenfalls vorgegebener Länge L des Intervalls (2.16) als optimalen
Stichprobenumfang den Ausdruck (2.18). y

Ist die Varianz a’ jedoch unbekannt, dann benutzen wir anstelle von a“ die Schät-
zung S“. Für die Schätzung von o" erhält man bekanntlich das einseitige Konfidenz-
intervall

(n — 1) S2/;g§_,,,_0, < u’ < 0o. (2.20)

Setzen wir nun in (2.18) die untere Grenze des Intervalls (2.20) ein, dann erhalten wir
einen im allgemeinen zu kleinen Stichprobenumfang

= 4u:..,2 (n — I) s2
n 2 2L Zu—1.1—a

(2.21)

[(2.21) ist dabei nur eine Schätzung für den Stichprobenumfang n].
Die Beziehung (2.21) läßt sich für eine sukzessive Bestimmung einer Näherung für
den optimalen Stichprobenumfang heranziehen. Wir wählen einen gewiß zu kleinen
Wert no, realisieren eine Stichprobe mit dem Umfang no und berechnen daraus den
Schätzwert s3.
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Durch Einsetzen von s3 für S2 und no für n auf der rechten Seite von (2.21) bestim-
men wir einen neuen Wert n1. Falls n1 — no > 0, realisieren wir n1 —n1‚ weitere
Stichprobenelemente. Aus der Gesamtstichprobe vom Umfang n1 berechnen wir den
Schätzwert s} und prüfen analog zu (2.14), ob bereits

L z 2z.,_..,_.,.s./«/Z (2.22)

In diesem Falle wäre n1 eine hinreichende Näherung für n*. Andernfalls wird mit
n1 und s? aus (2.21) ein neuer Wert n; bestimmt usw. Das Verfahren endet aber auch,
wenn n‚+1 g n, ist. In diesem Fall berechnet man schrittweise für n,+,,,, m = 1, 2, ...,

die Genauigkeitsforderung (2.22) und bricht ab, wenn für ein n‚.‚„. (2.22) erfüllt ist.

2.2.2. Testen von Hypothesen

Bei der Festlegung eines kleinsten wünschenswerten Stichprobenumfangs für einen
Test läßt sich eine Genauigkeitsforderung in verschiedener Weise vorgeben. Beachten
wir z. B. den Zusammenhang zwischen einem Signifikanztest und einem Konfidenz-
intervall (vgl. Bd. l7), dann läßt sich in einfacher Weise der optimale Stichproben-
umfang n* angeben. Wir wollen dieses Vorgehen an einer speziellen Aufgabenstel-
lung erläutern. Die Grundgesamtheit sei normalverteilt mit unbekanntem Erwar-
tungswert ‚uo und bekannter Varianz 0'2. Eine Konfidenzschätzung für ‚uo bei vor-

gegebenem zx hat die Form (2.16). Dabei ist durch l — ac die Wahrscheinlichkeit vor-
gegeben, mit der das Intervall den unbekannten Parameter ‚uo überdecken soll. Mit
welcher Wahrscheinlichkeit die von ‚uo verschiedenen Parameterwerte überdeckt wer-

den, wird nicht untersucht. Um zu einer Aussage über den optimalen Stichproben-
umfang n* zu gelangen, wollen wir noch die Wahrscheinlichkeit dafür vorgeben, daß
das Konfidenzintervall für ‚uo zum Konfidenzniveau l — ac die Werte In — ‚uol > h
mit einer Wahrscheinlichkeit von l — ß’ nicht überdeckt. Mit anderen Worten, die
Werte |‚u — ‚uol > h für vorgegebenes h sollen vom Konfidenzintervall nur mit einer
Wahrscheinlichkeit ß überdeckt werden (vgl. Heinhold/Gaede [l]). Die Werte ‚u, die
von ‚uo einen größeren Abstand als h haben, sind durch

‚u<‚uo—h und ‚u>‚uo+h (2.23)

gegeben. Vergleichen wir nun die Grenzen des Konfidenzintervalls (2.16) für [to mit
(2.23), dann erhalten wir mit

‚uo -— h g X’ — u1_„„ O/\/I-1 und (2.24)

X + ul-a/ZU/J; ä M0 + h

eine Forderung dafür, dal5 das Konfidenzintervall die Werte Lu — ‚uol > h nur mit
der Wahrscheinlichkeit fl überdeckt. Aus (2.24) ergibt sich wegen

u‚_„„ — /1 \/;z/o‘ g \/Z(/Y — ,u(,)/o‘ g h r/ä/a — u1_‚„„ (2.25)

sofort i

w: |2? — Mal/v g h JZ/a — u.-.‚.‚ (2.26)

wobei gilt

w; IX - Hol/G g h Jä/u — = 1 — ß- (2.27)
3:
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Für vorgegebene Wahrscheinlichkeit ß erhält man aus der Kenntnis der Verteilung
von \/n | X’ — ,u0|/0’ einen Wert u1_ß gemäß

Pa/H12? — mt/o < um) = 1 — ß, (2.28)

und durch Vergleich der entsprechenden Größen ergibt sich

h Jä/a — u1_,,,,, g u1_,, (2.29)

und somit für den optimalen Stichprobenumfang n*

71* = ("i-ß + u1—uI2)2 0'2/hz (2-30)

(vgl. Heinhold/Gaede [l]).
Auf Grund der Beziehung zwischen einer Konfidenzschätzung und einem ent-

sprechenden Test können wir den Stichprobenumfang n* gemäß (2.30) auch als opti-
malen Stichprobenumfang bei einem Test auf die Hypothese H0: ‚u = ‚uo verwenden,
wobei die vorgegebenen Werte für 0c und ß den Wahrscheinlichkeiten für einen Fehler
l. bzw. 2. Art entsprechen.

Ein anderes Vorgehen zur Bestimmung des optimalen Stichprobenumfangs finden
wir bei Rasch/Enderlein/Herrendörfer [l]. Betrachten wir wieder eine normalver-
teilte Grundgesamtheit mit bekannter Varianz 02 und unbekanntem Erwartungswert
‚u, dann lassen sich zur Nullhypothese Ho : y = yo z. B. die drei Alternativhypothe-
sen formulieren

HA1?/1 > I40; H423,“ < /‘oi HA3?/l ‘i: Mo-

Als Genauigkeit wollen wir auch in diesem Fall eine interessierende Mindestdifle-
renz h zwischen dem Schätzwert für den Parameter und dem durch die Nullhypothese
gegebenen Wert festlegen. Damit gehen die Alternativhypothesen über in

HA1:/‘3.“o+h§ HA23.“§/40-h; I'IA35[.“‘/*‘o!§]’l- (2-31)

Vergleichen wir die zu Beginn dieses Abschnittes gestellte zusätzliche Forderung an

das Konfidenzintervall für yo mit der Hypothese HA3 , dann stellen wir eine Überein-
stimmung fest. Es liegen also zwei Betrachtungsweisen für einunddieselbe Genauig-
keitsforderung vor (die Begründung finden wir im Zusammenhang zwischen der Kon-
fidenzschätzung und dem Test). Sind die Wahrscheinlichkeit 0c für den Fehler 1. Art
und die Wahrscheinlichkeit ß für den Fehler 2. Art vorgegeben, dann läßt sich der
optimale Stichprobenumfang n* für die verschiedenen Alternativhypothesen (2.31)
aus den folgenden Beziehungen bestimmen:

für HA1 gilt ß = 4504H — h fl/a), (2.32)

für HA2 gilt ß = d5(—u1_„ — h \/71/0), (2.33)

für HA3 gm ß =@<u.-.‚. — h x/ä/G) — ‘15(u1-.;2 — h \/:1/<7) (2.34)

(mit ¢I>(x) wird die Verteilungsfunktion der normierten Normalverteilung bezeich-
net).

Beispiel 2.4: Die normalverteilte Grundgesamtheit X besitze den unbekannten Erwartungswert ‚u und
die Varianz o" = 0,36. Für einen Test auf die Hypothese Ho : ‚u = yo seien vorgegeben on = 0,05 und
ß = 0,10. Die Mindestdifierenz zwischen dem Schätzwert für ‚ug und dem vorgegebenen Wert u.) sei
0,3.
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Für die Alternativhypothese H,“ ergibt sich

u.,_,,-, = 1,645, u,_,, — h\/Z/a = 1,645 — 0,3 \/I/0,6,
für Q5(x) = 0,10 erhält man x = — 1,282 und somit aus

1,645 — 0,3 JZ/oß = —1,2s2

den optimalen Stichprobenumfang n* = 35.

Für die Altemativhypothese HA3 ergibt sich

M0975 = 1,96; +u,_„„ _ z. \/71/a = 1,95 — 0,3 Jim,
—u,_„,2 — h JZ/a = —1,95 — 0,3 JZ/ofi

und damit nach (2.34)

0,10 = <_2>(1,96 —

0 3 — 0 3 —

’ — <15 -1,96 — 4
0,6 ‘/") 0,6 \/”

Das zweite Glied wird für n > 4 bereits vernachlässigbar klein, so daß wir mit (15(x) = 0,10 und x =

—1,282 erhalten

1,96 — 0,3 \/;/0,6 = —1,282,

n‘ = 43. I

Benutzen wir zur Berechnung des optimalen Stichprobenumfangs die Formel (2.30), dann errech-
nen wir für ein zweiseitigcs Konfidenzintervall (das ist die der Alternativhypothese HA3 entspre-
chende Form) mit 140375 = 1,96 und ug_9o = 1,282 den Wert

* (1,282 + 1‚960)2
n = je

0,09

n*=43.

0,36,

Wir erkennen, daß es im Fall einseitiger Alternativhypothesen günstig ist, die Aus-
drücke (2.32) und (2.33) zu verwenden. Bei einer Alternativhypothese der Form H„3

wenden wir dagegen den Ausdruck (2.30) mit Vorteil an [(2.30) läßt sich auch für ein-
seitige Alternativhypothesen formulieren].

In den meisten praktischen Problemen ist die Varianz a’ der ‘Grundgesamtheit un-

bekannt. Wir können dann eine Testgröße T zur Prüfung der Nullhypothese heran-
ziehen, die einer t-Verteilung genügt. Zur Berechnung des optimalen Stichproben-
Umfangs n* ergibt sich dann analog zu (2.30) der Ausdmek

= (tn—l,1—a/2 +hl;n—1,1-fiI2)2o'2

für eine Alternativhypothese der Form HA3.

Die Beziehung (2.35) gilt jedoch nur approximativ und kann durch systematisches
Suchen, wie es im Abschnitt 2.2.1. beschrieben wurde, gelöst werden. Dazu muß aber
auch noch a2 durch eine bekannte obere Schranke oder durch einen Schätzwert ersetzt
werden. Im letzteren Fall erhält man auch nur eine Schätzung für n* (Rasch/Herren-
dörfer/Bock [1]). Tabellen zur Bestimmung des optimalen Stichprobenumfangs finden
wir z. B. bei Rasch/Herrendörfer/Bock/Busch [1].

n*
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2.3. ' Stichprobenumfänge für einige ausgewählte Aufgaben der mathematischen
Statistik

Wenden wir uns zunächst einer praktisch wichtigen Problemstellung zu. Für zwei
vorliegende Stichproben soll entschieden werden, ob ihre entsprechenden Grund-
gesamtheiten, die wir als normalverteilt annehmen wollen, hinsichtlich des Erwar-
tungswertes einen Unterschiedaufweisen. Zum Nachweis dieses Unterschiedes soll
ein optimaler Stichprobenumfang für beide Stichproben berechnet werden, wobei es

gleichgültig ist, ob wir eine Konfidenzschätzung für ‚ul — ‚u; oder einen Test auf die
Hypothese Ho : ‚u, = ‚u; durchführen wollen. Für die Grundgesamtheit X1 mit der
Verteilung N(„u1, of), wobei a} bekannt sei, liege die Schätzung X1 vor und für die
Grundgesamtheit X2 mit der Verteilung N(‚u2‚ oi) bei bekanntem a: die Schätzung
X2. Die Umfange der Stichproben aus X1 bzw. X2 seien n bzw. m. Bekanntlich wird
durch

j
X1 “X2 —“1—a/2,‘/’Uni+‘“</11 ‘M2 <-Y1 -372

2 2

+ “1—a/2 Jg + {f (2.36)

ein Konfidenzintervall zur Schätzung von ‚a1 — ‚u; bei vorgegebenem Konfidenz-
niveau l — zx bestimmt.

Geben wir uns nun als Genauigkeit die Länge L des Konfidenzintervalls (2.36) vor,
dann erhalten wir

L2
L = 2u1_„,„ A/% + (2.37)

Für den optimalen Stichprobenumfang ergibt sich dann

_ <7_2 'm — n a1 (2.38)

mit
4 ’_„

= "L12" o',(o', + (72) . (2.39)

und
4 2

m = “F” a2(o'1 + :12) (2.40)

(vgl. Rasch]Enderlein/Herrendörfer [l]).
Meistens werden jedoch die Varianzen a} und a2 unbekannt sein. Dürfen wir aber

annehmen, daß a} = a2 = u’ gilt (diese Hypothese muß gegebenenfalls durch einen
Test geprüft werden), dann erhalten wir eine Realisierung der Konfidenzschätzung
für ‚u, — ‚u; bei vorgegebenem o: durch

>7; ’ >72 " tu+in—2,l—a:I2~YA/

+fn+m—2_1—aIZS//n + m 5 (241)
HIN

n+m <‚u1—‚u;<5c‚—.?;
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mit s aus

n m

s2 = Z (xi, — )?,)2 + Z (xi; — i2)’ /(n + m — 2).
i=1 (=1

Geben wir als Genauigkeit die Länge L des Intervalls (2.41) vor, dann ergeben sich
die erwarteten optimalen Stichprobenumfange aus

‚k _ * _ 8t;2:+m—2,1—o:l2 2 i

n —m ———L2la. (2.42)

Wenn von vornherein die Stichprobenumfange gleich sein sollen, dann ist durch

n>z< ‚z 2°'1(tn—1.a/2 + ’n—1.fl)2
h2

mit der vorgegebenen Mindestdifferenz h = ‚u, — M; eine Näherung des erwarteten
optimalen Umfangs für einen Test mit Fehler 2. Art ß gegeben. In (2.42) und (2.43)
kann man dann analog zu (2.14) obere Schranken für a’ einführen.

Betrachten wir nun eine Aufgabenstellung der statistischen Qualitätskontrolle. Es
ist zu prüfen, ob der Ausschußanteil einer vorliegenden Produktion einem vorgege-
benen Wert po entspricht. Der Stichprobenumfang ist hier die Anzahl der zufällig ent-
nommenen Probestücke‚ unter denen der Ausschußanteil festgestellt werden soll.
Dieses Problem führt uns auf einen entsprechenden Test zu einem Signifikanzniveau ac.

Die Behandlung der zugehörigen hypergeometrisch verteilten Testgröße bereitet
große numerische Schwierigkeiten, deshalb gehen wir zu einer approximativ normal-
verteilten Testgröße über. Dieses Vorgehen ist bei nicht zu kleinem Stichproben-
umfang gerechtfertigt.

Der für einen Test auf die Hypothese H0 : p = po optimale Stichprobenumfang er-
gibt sich bei Verwendung der Alternativhypothese HA : p = p, > po aus der Be-
ziehung ‚

= u (2 44)
(”(Po + A) (1 — Po — 11))“ ß i

mitA = p 1 — po und vorgegebenem Fehler 2. Artß. Verwenden wir dagegen die Alter-
nativhypothese HA : p = p, < po, dann benutzen wir den Ausdruck

“ax/"Po(1‘17o)+ nA -1 = u (m)
(”(Po — A) (1 — Po + A))m 1- i

(vgl. Rasch/Enderlein/Herrendörfer [l]).

(2.43)

Beispiel 2.5: Bei der Lieferung eines bestimmten Bauteils wurde mit dem Zulieferbetrieb ein zuläs-
siger Ausschußanteil von pg = 0,1 vereinbart. Wieviel Bauteile müßten beim Wareneingang geprüft
werden, wenn für einen Fehler 1. Art xx = 0,05 und einen Fehler 2. Art ß = 0,2 eine Erhöhung des

Ausschußanteils um 0,06 nicht mehr toleriert wird.
Aus einer Tafel der kritischen Werte für die Normalverteilung entnehmen wir die Werte 14935 =

1,645 und 110.20 = —0‚842. Mit A = 0,06 erhalten wir aus (2.44) über

1,645 \/n-0,1(1— 0,1) — n - 0,06 + 1

= —o,s42
(n(0,1 + 0,06) (1 — 0,1 — 0,06))“
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die quadratische Gleichung für n

n — 13,370 JÄ- 16,667 = 0.

Die Lösung dieser Gleichung ergibt den optimalen Stichprobenumfang n‘ = 211. Wir müssen also
zur Überprüfung der Güteforderung 211 Versuche durchführen.

Wollen wir durch einen Test eine Entscheidung zwischen zwei vorgegebenen Wahr-
scheinlichkeiten pl und p; fällen, dann läßt sich dazu der bekannte Test für die Gleich:
heit zweier Erwartungswerte ausnutzen, wenn wir die Transformation x = arc sin x/p
durchführen. Geben wir uns eine praktisch interessierende Mindestdifferenz

h = arc sin Jp-g — arc sin \/p_1 (2.46)

vor, dann können wir den optimalen Stichprobenumfang bestimmen durch

(u:+ uß)’ _

2(arc sin \/pl — arc sin \/pl)‘ '

*._
(2.47)

Für verschiedene ex und ß gibt es zur Bestimmung von n* gemäß (2.47) Tabellen, die
wir z. B. bei Cochran/Cox [1] finden.

Bei unseren bisherigen Betrachtungen hatten wir stets vorausgesetzt, daß die Fa-
milie der Verteilungen, nach der die Grundgesamtheit X verteilt ist, bekannt sei. Wenn
das nicht der Fall ist, dann läßt sich die unbekannte Verteilungsfunktion z. B. durch
die empirische Verteilungsfunktion schätzen. Auf diese Weise gelangen wir zu einem
bestimmten Verteilungstyp. Wir wollen nun den optimalen Stichprobenumfang zur

Schätzung der Verteilungsfunktion durch Vorgabe der Breite des Konfidenzbandes
als Genauigkeit berechnen. Nach dem bekannten Satz von Kolmogorow (vgl. z. B.
Storm [l]) besitzt die Größe D„ = max |W„(x) — FX(x)] eine Verteilung,

XER‘

für die gilt

lim P(D„ J; < ,1) = KO.) (2.48)

mit

m) = 1 + E (—1)”e~W’. (2.49)
7:1

Dabei ist W,,(x) die empirische Verteilungsfunktion der Stichprobe
Eine Konfidenzschätzung zu vorgegebenem Konfidenzniveau 1 — zx ist bekannt-

lich

mac) — Z14:/\/Z < Fm < W„<k> + 11-0:/\/g’ (2.50)

wobei AH, das entsprechende (1 —oc)-Quantil der Verteilung (2.49) ist. Die Breite des
Konfidenzbandes sei mit L bezeichnet, dann ist

L = 2/1,_a/\/Z,

und somit ergibt sich

„* = 4}.f_a/L2 (2.51)

(vgl. Bandemer [1]).
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Konnten wir uns nach Auswertung einer Stichprobe oder aus früheren Erkennt-
nissen heraus bereits für einen bestimmten Verteilungstyp entscheiden, dann ist meist
nur noch eine Schätzung der Parameter der Verteilungsfunktion von Interesse.

2.4. Zusammenfassung

Es sei d > 0 ein vorgegebener Wert, so daß bei I15 — 19l g d der Schätzwert 19 mit dem Parameter-
wert z? identifiziert werden kann. Dann ist die Forderung an n

1=u@(n) — :9: s d) = 1 — a v)
sinnvoll, wobei a: > O eine vorgegebene kleine Irrtumswahrscheinlichkeit ist. Bei Kenntnis der Ver-
teilung von 9m) läßt sich aus dieser Beziehung ein optimaler Stichprobenumfang berechnen. Genügt
Ö0!) einer Normalverteilung, dann ist n explizit angebbar. Der Ausdruck (*) läßt sich auch als Vor-
gabe der Länge des Konfidenzimervalls zur Schätzung von ö deuten.

Auf Grund der Dualitätsbeziehung zwischen der Konfidenzschätzung und einem Test auf die
Nullhypothese Ho :0 = 19° läßt sich (*) als die Vorgabe einer interessierenden Mindestditferenz
zwischen dem Schätzwert und dem Wert 190 auffassen. Im Falle normalverteilter Stichproben werden
für einige Tests Ausdrücke zur Berechnung eines optimalen Stichprobenumfangs angegeben.



3. Versuchspläne zur Erfassung und Ausschaltung unerwünschter
Einflüsse

3.1. Problemstellung

Wie wir bereits in den Abschnitten 1.2.1. und 1.2.2. gesehen haben, werden die auf
eine Zielgröße wirkenden Einflüsse in zwei Gruppen aufgeteilt. Dabei enthält die eine
Gruppe die in ihrer Wirkung zu untersuchenden Einflüsse und die andere Gruppe die
als zufällig vorausgesetzten Einflüsse. Wenn von diesen im Modell als zufällig voraus-
gesetzten Einflüssen sich einige während des Experiments systematisch ändern, dann
kann dies unerwünschte und schwerwiegende Folgen für die Aussagefähigkeit der
Versuchsergebnisse haben. Es ist daher eine Aufgabe der Versuchsplanung, dafür zu

sorgen, daß solche systematischen Änderungen entweder in zufällige überführt oder
daß sie als neue zu untersuchende Einflüsse erfaßt werden. Für den ersteren Fall wer-

den wir die Randomisation (vgl. Abschnitt 3.2.), für den letzteren die Möglichkeiten
einer sogenannten Blockbildung (vgl. Abschnitt 3.3.) betrachten.

Zu einer Untersuchung des Einflusses unerwünschter Störgrößen gelangen wir
auch durch Anwendung der Kovarianzanalyse (vgl. Abschnitt 1.3.2.).

Eine Ausschaltung unerwünschter Einflüsse ist besonders dann von großem Inter-
esse, wenn durch die Versuche zu klären ist, ob und wie verschiedene Faktoren eine
Wirkung auf eine beobachtete Größe hervorrufen. Eine Lösung dieser Aufgaben-
stellung führt uns zu den Methoden der Varianzanalyse (vgl. Abschnitt 1.3.2.). Daher
werden wir in diesem Kapitel einige Möglichkeiten der Versuchsplanung für dieses
spezielle lineare Modell behandeln.

3.2. Randomisation

Eine zufällige Zuordnung der Stufen der einzelnen Faktoren (Behandlungen) zu

den Versuchseinheiten, d. h. zu den Einzelversuchen, wollen wir als Randomisation
bezeichnen. Werden alle in ein Experiment einbezogenen Versuchseinheiten allen Be-
handlungen zufällig zugeordnet, dann sprechen wir von einer vollständig randomisier-
ten Versuchsanlage. -

Als technisches Hilfsmittel einer solchen Randomisation verwenden wir Tafeln
mit Zufallsziffern. Solche Tafeln finden wir z. B. bei I-lald [1], Owen [1], Rasch [l],
Müller/Neumann/Storm [1].

Gewöhnlich enthält eine Tafel von Zufallsziffern Folgen der zufällig angeordneten
Ziffern 0, l, ..., 9, die Realisierungen von in der Gesamtheit unabhängigen Zufalls-
größen Xi (i = l, 2, ...) mit einer diskreten Gleichverteilung sind (P(X‚ = r) = 1/l0
für r 2 O, l, ..., 9). Es sind jedoch z. B. auch Tafeln normalverteilter Zufallsgrößen
und zufälliger Permutationen einer Anzahl von Objekten (z. B. A, B, C, D) bekannt.

Bei der Anwendung einer solchen Tafel denken wir uns die für einen Versuch ins-
gesamt zur Verfügung stehenden Objekte durchnumeriert. Dann entnehmen wir einer
Zufallszifferntabelle in einer beliebigen, aber immer systematischen Reihenfolge (z. B.
spaltenweise) eine entsprechende Anzahl Zufallszahlen in der Größenordnung der
Numerierung und wählen die Objekte mit den erhaltenen Zufallszahlen für die vor-
gesehene Behandlung aus. Zur Erläuterung dieser Vorgehensweise kehren wir zum

Beispiel 1.5 zurück und ändern es geringfügig ab.
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Beispiel 3.1: Es sind fünf Weizensorten A, B, C, D und E hinsichtlich ihres Ertrages zu untersuchen.
Das für die Untersuchung vorgesehene Versuchsfeld wird in 20 Teilstücke aufgeteilt, jede Sorte soll
dabei auf 4 dieser Stücke angebaut werden. Wie wir bereits im Abschnitt 1.2.2. überlegt haben (siehe
Bild 3,1), ist eine Anordnung der Feldstücke in der folgenden Form ungünstig, da. eine systematische

Bild 3.1

Änderung der Bodenqualität von einem Rand des Feldes zum anderen möglich ist. So eine Änderung
würde einen Vergleich der Sorten beeinträchtigen. Zur Ausschaltung dieses unerwünschten Einflusses
werden wir die 20 Teilfelder den 5 Weizensorten zufällig so zuordnen, dal3 jede Sorte genau viermal
vertreten ist. Dazu entnehmen wir einer Zufallsziflerntafel jeweils 2 neben- oder untereinanderstehen-
de Zifiern zu einer Zufallszahl zwischen 00 und 99. Von jeder Zahl subtrahieren wir k - Z0 mit k =

0, 1, 2, 3, 4 und lassen alle die Zahlen weg, die bereits in der Folge vorkommen. Damit erhalten wir
z. B. die zufällige Anordnung der Zahlen 01 bis 20
5,14, 3, 17, 19, ll, 13, 2,15,16‚ 8,12,10, 4, 6, 1, 9, 7, 20,18.

Die ersten vier Zahlen geben die Feldnummern für die Weizensorte A, die nächsten vier Zahlen die
Feldnummern für die Weizensorte B an. Für alle fünf Sorten ergibt sich somit die randomisierte Ver-
suchsanlage (s. Bild 3.2).

‚MBADADECEDBCBACCAEBE
t

4L i

12 3 6 5 i7 0 .970 111213 1k 151517151920 fe/dnummer

Bild 3.2

Auch aus anderen Anwendungsbereichen lassen sich Problemstellungen in der be-
schriebenen Weise behandeln. Sollen z. B. fünf Verfahren zur Messung eines be-
stimmten Qualitätsmerkmals bei der Produktion von Walzgut miteinander verglichen
werden, dann läßt sich der durch Bild 3.2 gegebene Versuchsplan ebenfalls verwen-
den, wenn sich ein störender Einfluß längs des Walzgutes durch systematische Ande-
rung eines Faktors bemerkbar machen könnte. V

Auch in dem Fall, daß wir z. B. fünfTypen von Brikettpressen bezüglich der Druck-
festigkeit der erzeugten Briketts vergleichen wollen, läßt sich ein vollständig randomi-
sierter Versuchsplan verwenden. Alle fünf Pressen werden mit dem gleichen Mahlgut
beschickt. Um systematische Einflüsse auf die Untersuchung, z. B. der Druckfestig-
keit, auszuschalten, werden jeder Presse zufällig Briketts für eine Untersuchung ent-
nommen. Die Entnahme eines solchen Probcbriketts soll beispielsweise aller l0 min
vorgenommen werden können, von jeder Presse werden 4 Proben benötigt, dann ist
eine Probenahme nach dem randomisierten Versuchsplan in Bild 3.2 möglich. Wir
entnehmen zuerst der Presse D ein Brikett, l0 min später der Presse B, nach weiteren
10 min der Presse A usw.

Einen vollständig randomisierten Versuchsplan können wir also z. B. anwenden,
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wenn die Wirkung nur eines Faktors auf eine Zielgröße untersucht werden soll. Läßt
sich dieser Faktor dabei auf p Stufen einstellen und sind die Voraussetzungen (1.49)
an den zufälligen Meßfehler s erfüllt, dann können wir einen solchen Versuchsplan
durch das Modell einer einfachen Klassifikation in der Varianzanalyse auswerten.
Bezeichne ‚u das Gesamtmittel, (x, die Effekte der i-ten Stufe des Faktors und at den
zufälligen Fehler, dann gilt für die Beobachtungsergebnisse die Darstellung

Yij = I‘ ‘i’ 0‘: + 3m i=1,---aP» j =1‚-u‚"i (3-1)

[vgl. (l.39)]. Zur numerischen Berechnung einer Realisierung der Testgröße beim
Test auf eine Gleichheit der Effekte bedienen wir uns der üblichen Tabelle der Va-
rianzanalyse (vgl. z. B. Ahrens [1]).

3.3. Blockpläne

Im vorangegangenen Abschnitt untersuchten wir die Wirkung nur eines Einfiuß-
faktors A auf eine Zielgröße, alle anderen Einflußfaktoren B, C, sollten sich nur

zufällig ändern können. Sind die Versuchsergebnisse in der Form (3.1) mit D2 Yij = 0'2

(i = l, ..., p; j = l, ..., 11,») darstellbar, dann haben wir der Auswertung das Modell
der einfachen Klassifikation zugrunde gelegt.

Ist dabei der Parameter a’ für die betrachtete Problemstellung unvertretbar groß,
wie aus Vorversuchen oder Überlegungen hervorgeht, dann kann das daran lie-
gen, daß durch das Modell (3.1) einer der wesentlichen Einflüsse nicht mit erfaßt
wurde. Es ist dann sinnvoll, einen weiteren Faktor B in das Modell aufzunehmen
und zur Darstellung der Versuchsergebnisse durch

Yu = ‚M + 041+ I3; + Vii ‘l’ 3m i=1,---:17: I =17"~sk! (3-2)

überzugehen, wobei ß, die Eflekte derj—ten Stufe des Faktors B und y‚-,- die Wechsel—
wirkungseffekte zwischen A und B darstellen. In vielen Fällen ist es gerechtfertigt,
diese Wechselwirkungen unberücksichtigt zu lassen (y,,- = 0), was wir im folgenden
annehmen wollen. Falls jedoch yi, 4: 0 gilt, dann ist dies bei der Konstruktion von

Versuchsplänen zu berücksichtigen. Im Modell (3.2) sei D2 Y„ = aß, und wir er-

warten im Fall, daß der hinzugenommene Faktor B wesentlich ist, eine Herabsetzung
der Varianz, d. h. a}, < a’. Dies läßt sich auch durch einen Test auf die Hypothese
a}, = a2 prüfen.

Ein Test auf diese Hypothese ist gleichbedeutend damit, daß wir die Hypothese
ß’, = /32 = = ß, = 0 testen. In beiden Fällen benötigen wir Schätzungen für a’
und aß, die wir durch die Methode der kleinsten Quadrate bestimmen können.

lst Y, eine Schätzung für EY, (i = l, ..., p), dann ist durch

1 i (Y. — ‘o2
""17 i=r

S’:

eine Schätzung für o’ gegeben. Der Parameter a}, werde durch

2 _ 1 p k __ A 2s, —————(p_ 1) (k _ I) 1,51m, Yus)
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geschätzt, wobei Y”, eine Schätzung für EY‚, nach (3.2) ist. Zur Berechnung dieser
Schätzungen werden wir die bekannten Tafeln der Varianzanalyse heranziehen. Die für
einen Test auf die Hypothese a}, = a’ benutzte Testgröße genügt bekanntlich einer
F-Verteilung (vgl. Bd. 17) mit den Parametern n — p und (p — 1) (k — 1) (es ist offen-
sichtlich pk = n). Auf ein ähnliches Testproblem werden wir auch im Kapitel 4 ein-
gehen.

Wir wollen nun beschreiben, wie solche Versuchspläne zur Erfassung des Einflusses
des zweiten Faktors konstruiert werden können. Insgesamt werden pk Versuche
durchgeführt, und zwar p Versuche, bei denen jede Behandlung des Faktors A mit
genau einer Behandlung des Faktors B vorkommt. Diesen Teil des Versuchsplanes
wollen wir als Block bezeichnen. Wir führen nun die p Versuche in einem Block für
alle Behandlungen von B durch.

Beispiel 3.2: Es ist die Wirkung von fünf Verfahren zur Düngung von Bäumen zu untersuchen (wir
verwenden vier verschiedene Dünger und führen einen Blindversuch ohne Dünger zur Kontrolle
durch). Für die Versuchsdurchführung wählen wir in einem Wald durch eine vollständige Randornisa-
tion 50 Bäume aus, die l0 verschiedenen Altersklassen angehören mögen. Führten wir einen voll-
ständig randomisierten Versuchsplan für das Modell (3.1) durch, dann hätten wir durch den Einfiuß
des Alters mit einem hohen Wert für a’ zu rechnen.

Teilen wir jedoch die Bäume so ‘in l0 Blocks ein, daß sich in jedem Block fünf Bäume befinden, die
sich hinsichtlich des Alters nur wenig unterscheiden (also zu einer Altersgruppe gehören), und führen
wir in jedem Block alle fünf Behandlungen durch, die wir den Bäumen zufällig zuordnen, dann
wird U}, < a’ sein, da das Alter der Bäume ebenfalls einen wesentlichen Einfluß auf die die Wirkung
der Düngung messende Kenngröße hat.

Durch eine Blockbildung kann sich die Randomisation nur noch über die p Stufen
(Behandlungen) des Faktors innerhalb eines Blockes erstrecken, sie geht nicht über
einen Block hinaus, ist also im Gegensatz zur vollständigen Randomisation einge-
schränkt. Für die Behandlung einer praktischen Aufgabenstellung muß nun von Fall
zu Fall entschieden werden, ob ein Versuchsplan aufgestellt wird, der eine vollständig
randomisierte Versuchsanlage erfordert oder ob durch eine Blockbildung, d. h. durch
Berücksichtigung eines weiteren Einflußfaktors, des sogenannten „Blockeffekts“, und
durch eine Erfassung dieser Wirkung bei einer eingeschränkten Randomisation eine
bessere Versuchsaussage (im Sinne einer kleineren Varianz) erhalten werden kann.

Die hier beschriebene Vorgehensweise ist auch dann noch anwendbar, wenn wir
mehrere solcher zusätzlich zu berücksichtigenden Faktoren erfassen wollen. Wir wer-

den dann auf Versuchspläne geführt, die Blockbildungen in mehreren Richtungen
besitzen (Vgl. die Abschnitte 3.4. und 3.5.).

3.3.1. Vollständige Blockpläne

Wenn die einzelnen Blocks so groß gewählt werden, daß die Anzahl der Versuchs-
einheiten innerhalb eines Blockes mindestens mit der Anzahl der Behandlungen (Stu-
fen des zu untersuchenden Faktors) übereinstimmt, dann heißt ein solcher Versuchs-
plan vollständiger Block. Jede Behandlung soll dabei in jedem Block mindestens ein-
mal auftreten, innerhalb eines Blockes wird eine zufällige Zuordnung zwischen Ver-
suchseinheiten und Behandlungen vorgenommen (wir sprechen dann auch von rando-
misierten vollständigen Blockplänen). Betrachten wir beispielsweise die folgende Pro-
blemstellung:

In einem Versuch ist der Einfluß eines Faktors A zu prüfen, wobei A die Stufen



46 3. Versuchspläne zur Erfassung und Ausschaltung unerwünschter Einflüsse

A“), ...‚ A"” annehmen kann. Die vollständigen Blocks müssen dann jeweils minde-
stens p Versuchseinheiten umfassen. Für p = 5 erhalten wir z. B. für n = 20 deshalb
k = 4 Blocks (s. Tab. 3.1).

Tabel1e3.1

Nr. des Blocks Stufen des Faktors A

1 A3 A5 A; A1 A.
2 A, A4 A3 A5 A2
3 A4 A2 A5 A3 A,
4 A, A4 A2 A3 A5

Bei der Auswertung eines Blockplanes haben wir außer dem interessierenden Fak-
tor A noch einen zweiten Faktor zu berücksichtigen. Da zwischen beiden Faktoren
keine Wechselwirkungen berücksichtigt werden sollen, wählen wir zur Auswertung
der Versuchsergebnisse das Modell der Varianzanalyse mit spezieller zweifacher Klas-
sifikation (vgl. 1.41)

Yu=N+M+ßJ+5m i=1,---.17, J'=1,---y/€~ (3-3)

Dabei ist bekanntlich ‚u das Gesamtmittel‚ an, der Efiekt des Faktors A auf der i—ten

Stufe (d. h. die Abweichung von/z durch Am) und ß, der Effekt des j-ten Blockes. Für
den zufälligen Fehler 8„ gelte die Voraussetzung (1.49).

Ein Experimentator steht häufig vor der Frage, welchen Typ eines Versuchsplancs
er verwenden soll. Wir wollen deshalb eine Möglichkeit kennenlernen, einen voll-
ständig randomisierten Versuchsplan und einen vollständigen Blockplan bezüglich
ihrer Wirksamkeit zu vergleichen. Wie wir bereits bemerkt haben, lassen sich die Va-
rianzen a2 und a: für eine Beurteilung der Güte des verwendeten Modells ausnutzen.
Verwenden wir einen vollständig randomisierten Versuchsplan, dann ist S2 eine
Schätzung für a’ [(n — p)S2/oz ist xz-verteilt mit dem Parameter f, = n — p]. Bei
Verwendung eines Vollständigen Blockplanes schätzen wir a}, durch S}, [die Zufalls-

(11 - 1)(k - 1)S§größe GB ist gfi-verteilt mit dem Parameter f; = (p — 1) (k — 1)].

Als Maß für die Effektivität eines Blockplanes wurde von Fisher (vgl. Cochran/Cox
[l]) der Quotient

= (f2 + 1) (f1 + w
” ‘o1 + MF’.+ s»;

eingeführt, dabei sind s2 und s}, Realisierungen von S2 und S}. In Anlehnung an die
in der mathematischen Statistik übliche Bezeichnung wollen wir 17 relativen Wir-
kungsgrad nennen.

Liegt eine Realisierung eines vollständigen Blockplanes zur Auswertung vor, dann
entnehmen wir der Tabelle der Varianzanalyse (vgl. z. B. Ahrens [l]) den Schätzwert
5%,. Auf Grund einer einfachen Überlegung läßt sich aus dieser Tabelle auch noch ein
Schätzwert s’ berechnen. Hätten wir einen vollständig randomisierten Plan realisiert,
dann wäre der zweite Faktor im Modell (3.3) unberücksichtigt geblieben und hätte zu

einer anderen Varianz a2 geführt. Als Schätzung für a2 unter Verwendung einer Ta-

(3.4)
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belle der Varianzanalyse für ein Modell der Form (3.3) können wir benutzen

S’ = (k(11 - 1) Si + (k - 1)MQs)/(Pk - 1)
mit

MQa = SQs/(k - 1)
und

k Y; Y2
S = " —QB jg p pk

Zu einer Schätzung von o“ können wir auch durch Blindversuche gelangen.
Der relative Wirkungsgrad 17 [vgl. (3.4)] gibt nur die Größenordnung an, in der sich

die Varianzen a2 und a; unterscheiden. Für eine Anwendung bei praktischen Auf-
gabenstellungen, vor allem dann, wenn kleine Werte von fl undfg vorliegen, ist des-
halb 17 nicht sehr vorteilhaft. Besser geeignet ist dann ein von Cochran/Cox [1] und
Rasch/Herrendörfer/Bock/Busch [1] angegebenes Entscheidungsverfahren, das von

einem entsprechenden Test ausgeht.

Beispiel 3.3: Fünf Sorten Sommerweizen (A, B, C, D und E) sind bezüglich ihres Ertrages zu unter-
suchen (vgl. Linder [l]). Dazu verwenden wir einen vollständigen Blockplan mit 4 Blocks (s. Tab. 3.2).

Tabelle 3.2

Nr. des Blocks Stufen des Faktors (Sorten)

1 C D B E A
2 D A B E C
3 A E C D B
4 E - D A B C

Auf diesen 20 Parzellen wurden folgende Erträge [l0 kg/ha] registriert (s. Tab. 3.3). Werten wir diesen
Versuch durch eine Varianzanalyse mit spezieller zweifacher Klassifikation aus, dann ergeben sich

Tabelle 3.3

"Block Nr.

1 446 409 440 421 464
2 376 441 393 402 334
3 407 410 321 309 320
4 327 296 376 351 343

die in Tabelle 3.4 zusammengefaßten Resultate (dabei verwenden wir die übliche Varianztabelle, vgl.
z. B. Ahrens [l]).

Tabelle 3.4

Quelle der Variation SQ Freiheitsgrade MQ

Zwischen den Sorten l875‚7 4 468,9
Zwischen den Blocks 28 201,0 3 9400,3
Vcl uU sfehler 197955 l2 l 649‚6



48 3. Versuchspläne zur Erfassung und Ausschaltung unerwünschter Einflüsse

Vergleichen wir nun diesen Bloekversuch mit einer vollständig randomisierten Versuchsanlage
durch den relativen Wirkungsgrad. Für S}, entnehmen wir der Tabelle 3.4 den Schätzwert

sf; = l649,6.
Mit MQB = 9400,3 und sf, berechnen wir den Schätzwert :2

l
s’ = —54—1[4(5 — 1)-1649,6 + (4 — 1) - 9400,31

s2 = 2873‚4.

Für (3.4) ergibt sich mit f, = 15 und f2 = 12 der relative Wirkungsgrad

_ (l2 + 1) - (15 + 3) ° 2873,4

" (15 +1)~(12 + 3)-1649,6
d. h., ein vollständiger Blockplan ist im vorliegenden Fall wesentlich wirksamer als eine vollständig
randomisierte Versuchsanlage.

= 1,698,

Spezielle vollständige Blockpläne sind die sogenannten Lateinischen Quadrate, La—

teinischen Rechtecke und Griechisch-lateinischen Quadrate. Da diese Versuchspläne
aber eine besondere Rolle in der Varianzanalyse spielen, wollen wir ihnen einen be-
sonderen Abschnitt widmen (vgl. Abschnitt 3,4).

3.3. 2. Unvollständige Blockpläne
Solange die Anzahl der Stufen eines Einfiußfaktors klein ist, bleiben auch die Um-

fänge der Blocks klein und somit der Versuchsaufwand in erträglichen Grenzen. Für
einen Faktor A auf 4 Stufen und einen Faktor B auf 5 Stufen (5 Blocks) erfordert ein
vollständiger Blockplan z. B. n g 20 Versuche, in jedem Block also mindestens 4 Ver-
suche. Muß der Faktor A auf einer großen Anzahl von Stufen untersucht werden,
steigt auch die Anzahl der Versuche in einem Block stark an. Wird A z. B. auf
l5 Stufen beobachtet, dann beträgt der Blockumfang, sollen alle Stufen in einem Block
vorkommen, ebenfalls l5; insgesamt werden dann n = 75 Versuche notwendig sein.
Bei vielen praktischen Problemstellungen ist es jedoch entweder nicht möglich, einen
Block von diesem Umfang aufzustellen, oder die dem Block entsprechende Stufe des
Faktors B läßt sich für so viele Versuche nicht unverändert beibehalten. Aus diesen
und anderen Gründen sind Versuchspläne entwickelt worden, bei denen die Anzahl p
der Behandlungen des Faktors A größer ist als die Anzahl n„ der Versuchseinheiten
in einem Block, wir sprechen in diesem Fall von einem unvollständigen Block. Kon-
struieren wir einen unvollständigen Block, so dal3 jede Stufe des Faktors A mit jeder
anderen Stufe desselben Faktors mindestens einmal in diesem Block vorkommt, dann
nennen wir diese Versuchsanlage balanciert.

Die Aufstellung von balancierten unvollständigen Blockplänen ist sehr schwierig.
Deshalb sind solche Versuchspläne tabellarisch zusammengefaßt, z. B. bei Rasch/
Enderlein/Herrendörfer [1] und bei Cochran/Cox [1]. Zur Beschreibung dieser Pläne
benötigen wir fünf Parameter: ‘

p — (v) — Anzahl der Behandlungen (Stufen) des Faktors A,
71„ — (k) — Anzahl der Versuchseinheiten in einem Block,
v — (r) — Anzahl der Wiederholungen jeder Behandlung von A im Gesamtversuch,

k — (b) — Anzahl der Blocks, d. h. Anzahl der Stufen des Faktors B,
Z — (Z) — Anzahl des gemeinsamen Auftretens zweier Behandlungen des Faktors A

im Gesamtversuch.
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In Klammern wurde jeweils die in der Biometrie übliche Bezeichnung für die Para-
meter angegeben.

Zwischen diesen fünf Parametern müssen die folgenden Beziehungen erfüllt sein:

kn, = vp, V (3.5)

(n - 1)
2. = l—?———. 3.6p _ l < )

Es ist ‘üblich, für balancierte unvollständige Blocks nur Strukturpläne anzugeben.
Nach der Auswahl eines für das Problem geeigneten Strukturplanes müssen wir die
Behandlungen innerhalb der Blocks den Versuchseinheiten zufällig zuordnen, die
einzelnen Blocks werden ebenfalls untereinander zufällig geordnet. Auf diese Weise
erhalten wir eine randomisierte Versuehsanlage zur Untersuchung der Wirkung zweier
Faktoren A und B auf eine Zielgröße.

Wir geben nun einige ausgewählte Strukturpläne an:
1. Die Parameter des Blockplanes seien

p=4,n„=2,v=3‚k=6‚Ä=1.
Werden die Stufen mit 1, 2, 3 und 4 bezeichnet, dann ist der Plan gegeben durch

12 13 14
34 24 23,

d. h. Block 1: Behandlungen 1 2
Block 2: Behandlungen 3 4 } I. Wiederholung der Behandlungen (v = 1),

Block 3: Behandlungen 1 3

Block 4: Behandlungen 2 4

Block 5: Behandlungen 1 4 I
Block 6: Behandlungen 2 3

} 2. Wiederholung der Behandlungen (v = 2),

3. Wiederholung der Behandlungen (v = 3).

2. Der Blockplan für

p=6,n‚=2‚v=5‚k=l5‚Ä=1
hat die in Wiederholungen gruppierte Form

1 2 1 3 1 4 1 5 1 6

3 4 2 5 2 6 2 4 2 3

5 6 4 6 3 5 3 6 4 5 .

3. Für die Parameter

p=10,n,,=4,v=6,k=l5,l=2
ergibt sich der Blockplan

1234 16810 35910

1256 2369 36710

1378 24710 3458

14910 25810 4567

1579 2789 4689

4 Bandemer, Versuchsplanung
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Der Parameter i. = 2 drückt dabei aus, daß jede Stufe des Faktors A (z. B. Stufe l0) mit jeder
anderen Stufe von A genau zweimal gekoppelt wird,

z. B. l0 mit 1 im Block 4 und 6,
10 mit 2 im Block 8 und 9,
10 mit 3 im Block 11 und 12
usw.

Für eine Auswertung der Versuche, die nach einem balancierten unvollständigen
Blockplan durchgeführt wurden, ziehen wir ein Modell der Varianzanalyse mit spe-
zieller zweifacher Klassifikation heran. Das Beobachtungsergebnis sei in der Form

Yui =.“ ‘l’ “t + ß! + 3m, 5% I/---all. j =1‚---‚k‚ l=1,~-,1’,
g (3.7)

darstellbar [vgl. auch (3.3)]. Zur Durchführung des Testes auf die Hypothese H0 : 0:1 =

2 = = ac, benutzen wir bei der Berechnung einer Realisierung der Testgrößeo:

die Tafel der Varianzanalyse, die entsprechend der speziellen Struktur des Versuchs-
planes modifiziert werden muß. Berücksichtigen wir v Wiederholungen, so erfolgt die
Berechnung nach Tab. 3.5 (vgl. Rasch]Enderlein/Herrendörfer [1]).

Tabelle 3.5

Quelle der Variation SQ Freiheitsgrade SQ, MQ, MQ2

Behandlungen (Faktor A) SQ, p —— 1 SQA’ko“I MQA
Blocks (Faktor B) SQL“, k '- v SQB MQB
Wiederholungen SQW v —— 1 SQW

Versuchsfehler SQR arp — p — k + 1 SQR MQR MQR
Gesamt SQG vp — l SQG

Im einzelnen haben wir folgende Abkürzungen benutzt:

SQA kon- =L i Q?»
‘ "p”1>(n„ _ 1) !=1

SQB.kon' = SQB + SQA.korr ‘ SQA7

Q! = "DA! “ Kn
A, — Summe der Beobachtungswerte der i-ten Behandlung,

K, — Summe der Blocksummen, in denen die i-te Behandlung auftritt,

SQ —‘1§:B2— G2 —SQ
B H n, 1:1 ' vp W’

B, — Summe der Beobachtungswerte des j-ten Blocks,

l7J6.v

G = Z ym (Gesamtsumme),
1.1 =
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k,» '

W, = 2 y,1, (Summe der Beobachtungen der i-ten Wiederholung),
J‚l=1

1 ’ z G’
SQA - 72114:‘ F,

p,k,v G2
S = 1 _ ...__QG “F1 J’:/1 pp

M .4Mit der Realisierung der F-verteilten Testgröße mit den Parametern
MQR

fl = p — l und f2 = vp — p —— k + 1 können wir einen Test auf Ho durchführen.
Die Schätzwerte der einzelnen Behandlungen 04,- sind bei Verwendung eines balancier-
ten‚ unvollständigen Blockplanes nicht einfach vergleichbar, sie müssen durch den
Faktor

(MQs - MQn)W = ” 3.8
vp(n. -1)MQa + n.(k — v — p + DMQR ‘ ’

korrigiert werden. Die korrigierten Mittelwerte berechnen wir dann aus

_ A + WZ
yLkon- = '*‘—f‘ (3-9)

mit Z, = (p — n„)A‚ — (p — 1) K, + (n, —- 1) G. (3.10)

Wir wollen nun diese recht komplizierte Auswertung an einem Beispiel demonstrie-
ren.

Beispiel 3.4: Durch einen Versuch soll der Ertrag von 6 Kartoffelsorlen verglichen werden, und es ist
zu prüfen, ob zwischen den einzelnen Sorten signifikante Unterschiede im Ertrag bestehen. Wegen
großer Bodenunterschiede im Versuchsfeld kann ein Block jeweils nur 2 Behandlungen umfassen.
Wir wählen deshalb einen balancierten unvollständigen Blockplan mit p = 6, np = 2, v = 5, k = 15

und A = 1 aus.

1 2 1 3 1 4 1 5 1 6

3 4 2 5 2 6 2 4 2 3

5 6 4 6 3 5 3 6 4 5

Durch Randomisation ergab sich der folgende Versuchsplan (Tab. 3.6). In die Tabelle wurden die
Ergebnisse der entsprechenden Messungen mit eingetragen (vgl. Rasch/Enderlein/Herrendörfer [l]).

Führen wir in der angegebenen Weise die Varianzanalyse durch, dann erhalten wir die Realisierung

1954,s
MQ‘ = 51,10.
MQR 38,25

Für ein vorgegebenes Signifikanzniveau o: = 0,05 beträgt das (1 — ac)-Quantil der F-Verteilung mit
den Parametern

f1=6—l=5 und fz=5'6-6-l5+1=10

F5;lD;D_95=3)326'

Also müssen wir auf Grund der Stichprobe die Hypothese, daß zwischen den 6 Kartoffelsonen kein
Unterschied im Ertrag besteht, verwerfen.
4x



52 3. Versuchspläne zur Erfassung und Ausschaltung unerwünschter Einflüsse

Tabelle 3.6

Wieder- Blocks Behandlungen Erträge Block- W,
holungen (dt/ha) summe

1 l 201

2 234 435
1 2 3 197

4 218 415
3 5 194

6 228 422 1 272

4 4 223
6 235 458

2 5 3 237
1 265 502

6 5 214
2 283 497 1 457

7 1 218
4 199 417

3 8 6 211
2 240 451

9 5 206
3 228 434 1 302

10 2 278
4 245 523

4 l1 1 266
5 203 469

12 6 277
3 261 538 1 530

l3 5 151

4 206 357
5 14 1 268

6 260 528
15 2 228

3 185 413 1 298

Gesamtv
summe 6 859

Bei der Auswertung von Versuchen mit unvollständigen Blocks läßt sich auch eine
Sogenannte Zwischenblockinformation ausnutzen. Eine weitere wichtige Klasse von
Versuchsplänen stellen die teilweise balancierten unvollständigen Blocks dar. Zu die-
sen beiden Erweiterungen der balancierten unvollständigen Blocks vgl. Cochran/Cox
[ll
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3.4. Lateinische Quadrate

Kehren wir zu dem Beispiel 1.5 im Kapitel l zurück und betrachten unser Ver-
suchsfeld. Bisher haben wir als auszuschaltenden bzw. besonders zu erfassenden Fak-
tor eine Änderung der Bodenqualität in nur einer Richtung (von links nach rechts)
angenommen. Vielfach ist aber auch eine Qualitätsänderung in einer zweiten Richtung
zu verzeichnen. Es gelang uns, durch Blockbildung den unerwünschten Einfluß in
einer Richtung auszuschalten. Wenden wir das Prinzip noch einmal an, dann können
wir auch den unerwünschten Einfluß in einer zweiten Richtung ausschalten. Wir ge-
langen so zu einer Versuchsanlage, bei der die Anzahl der Blocks der Anzahl der Be-
handlungen (Stufen eines Faktors) und der Anzahl der Wiederholungen in einem Block
entspricht. Solch eine Versuchsanlage wollen wir lateinisches Quadrat nennen.

Es soll nun die Konstruktion eines lateinischen Quadrates an einem Beispiel demon-
striert werden. Dabei gehen wir in zwei Schritten vor. Es ist die Wirkung eines Fak-
tors zu untersuchen, der auf 4 Stufen (A, B, C und D) eingestellt werden kann. Der
erste Block unseres quadratischen Schemas enthält eine systematische Anordnung der
vier Behandlungen, in jedem weiteren Block werden die Behandlungen zyklisch ver-
tauscht. Da wir vier Behandlungen haben, bekommen wir auch vier Blocks, die wir
als Zeilen einer matrixartigen Anordnung auffassen können. In den Spalten dieser An-
ordnung kommt jede Behandlung auch genau einmal vor. Wir erhalten Tab. 3.7.

Tabelle 3.7

Spalten
Blocks ' 1 2 3 4

l A B C D
2 D A B C
3 C D A B
4 B C D A

Im zweiten Schritt müssen wir nun den Strukturplan (Tab. 3.7) randomisieren. Eine
Randomisation ist in diesem Fall innerhalb der Blocks und zwischen den Blocks
möglich, wir erhalten also ebenfalls eine Einschränkung der vollständigen Randomi-
sation. Zur Herstellung der zufälligen Anordnung entnehmen wir einer entsprechen-
den Tabelle eine zufällige Permutation der Zahlen l, 2, 3 und 4. Erhalten wir z. B. die

Tabelle 3.8

1 2 3 4

3 C D A B
4 B C D A
2 D A B C
1 A B C D

Permutationen 3 4 2 l und l 4 3 2, dann schreiben wir die Blocks in der Reihenfolge
der ersten Permutation auf (Tab. 3.8) und anschließend die Spalten in der Reihen-
folge der zweiten Permutation (Tab. 3.9) oder umgekehrt.
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Mit Tabelle 3.9 haben wir einen realisierbaren Versuchsplan gefunden. Erfüllt der
zufällige Fehler a die Voraussetzungen (1.49), dann können wir zur Auswertung der
Versuchsergebnisse ein Modell der Varianzanalyse mit einer speziellen dreifachen
Klassifikation heranziehen. Die Beobachtungswerte seien darstellbar durch

Yut=M+°°t+I3J+7t+€:/z‚ l}]}l=1,---Jl- (3-11)

Tabelle3.9

1 4 3 2

3 C B A D
4 B A D C
2 D C B A
1 A D C B

Dabei bedeuten

‚u — Gesamtmittel,

ex, — Abweichung von [4 durch den i-ten Block

(i = 1, ...‚n)‚
ß, — Abweichung von ‚u durch die j-te Spalte

(J'= 1. ...‚n)‚
y, — Abweichung von ‚u durch die l-te Behandlung

(I = 1, ...‚ n).

Wir können zur Auswertung der Versuche wieder die bekannte Varianztabelle für
eine spezielle dreifache Klassifikation (vgl. z. B. Ahrens [l]) verwenden (Tab. 3.10),

Tabelle 3.10

Quelle der Variation SQ Freiheitsgrade MQ F

Behandlungen (Faktor A) SQ‘ n — 1 MQA FA = MQA/MQR
Blocks (Faktor B) SQ3 ll -— 1 MQB F3 = MQ„/MQR
Spalten (Faktor C) SQC n — 1 MQC FC = MQC/MQR
Versuchsfehler SQR (n — 1) (n — 2) MQR
Gesamt SQG n2 — 1

wobei die einzelnen Größen folgende Bedeutung haben:
II n 7| Pl

B1: zyijka C1 = Zym, A): = Z ymn G = Z yljks
1,1: (‚k 1.1 1../Jc

7| 1 I!

SQG=§y5k’F: SQc=;Zj:C12—_2s
n Z n Z

SQ„=%.>;B%—%‚ SQA:%g-4ä—i2s

SQR = SQG “ SQB — SQC “ SQ»
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Für ein vorgegebenes Signifikanzniveau o: läßt sich mit den Gößen FA, F, und FC
ein Test durchführen, ob die Variationsursache (Faktor A, B oder C) signifikante Ab-
weichungen von der Gleichheit der entsprechenden Erwartungswerte verursacht. Der
kritische Bereich wird dabei durch das (i —zx)-Quantil der F-Verteilung, durch

Fm- 1).(n— 1)(n— 2);(1—a)

festgelegt.

Beispiel 3.5: Zur Herstellung eines Werkzeuges wurden vier verschiedene Verfahren entwickelt.
Wir wollen die Hypothese prüfen, ob die vier Verfahren/t, B, C, D zur gleichen mittleren Lebens-
dauer des Werkzeuges führen. Da die Lebensdauer auch von der Reinheit des verwendeten Materials
und von der Qualifikation des das Werkzeug benutzenden Arbeiters abhängt, müssen wir diese Ein-
fiüsse berücksichtigen und gesondert erfassen, da sie die Lebensdaueruntersuchung in Abhängigkeit
vom verwendeten Verfahren systematisch verfälschen würden. Als Versuchsplan verwenden wir des-
halb ein lateinisches Quadrat der Größe 4 x 4, die Zeilen dieses Quadrates repräsentieren die Quali-
fikation der Arbeiter und die Spalten die Reinheit des Materials.

Eine bereits randomisierte Form des Strukturplanes ist

A B D C

D C A B

C D B A

B A C D .

Für die dritte Zeile heißt das z. B., daß der Arbeiter mit der Qualifikationsstufe 3 Werkzeuge bis
zum Verschleiß benutzt, die mit Verfahren C bei der Reinheitsstufe 1, mit Verfahren D bei der Rein-
heitsstufe 2 usw. hergestellt wurden. Als Versuchsergebnisse (Tab. 3.11) erhielten wir die Lebensdauer
in Betriebsstunden.

Tabelle 3.11

Zeilensumme (8,)

_ 251 241 227 229 948
234 273 274 226 1 007
235 236 218 268 957
195 270 230 225 920

915 1020 949 948 3 832
Spaltensumme (C,) Gesamtsumme (G)

Tabelle 3.12

Quelle der Variation SQ Freiheits- MQ F
grade

Behandlungen 4 621,5 3 1540,5 25,15
Blocks 986,5 3 328,8 5,37
Spalten 1468,5 3 489,5 7,99
Versuchsfehler 367,5 6 61,25
Gesamt 7444‚0 15
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Daraus berechnen wir die für die Varianzanalyse benötigten Werte.

A, = 251+ 274 + 268 + 270 = 1063,

A2 = 880,

A3 = 967,

A4 = 922

und erhalten Tab. 3.12.
Vergleichen wir die Werte der letzten Spalte aus Tabelle 3.12 mit dem (1 — ax)-Quamil der F<Ver-

teilung für xx = 0,05, wobei die Parameter der Verteilung fl = n — I = 3und f, = (n —— 1)(n — 2) = 6

betragen, dann stellen wir fest, daß

F3;6;o_95 = 4,756 < 5,37 < 7,99 < 25,15

gilt. Somit führt mindestens ein Verfahren zu einer Erhöhung der Lebensdauer des Werkzeuges.

Eine Voraussetzung für die Anwendung eines lateinischen Quadrates zur Auswer-
tung von Versuchen ist, daß für alle n’ Versuche auch Ergebnisse vorliegen. Es kann
aber sehr leicht vorkommen, daß ein Wert bei der Versuchsdurchführung verlorengeht
oder sich als unbrauchbar erweist (z. B. Sogenannte Ausreißer). Damit wir die Aus-
wertung trotzdem vornehmen können, wollen wir den fehlenden Wert aus den vor-

liegenden Ergebnissen schätzen und dabei die Schätzung so bestimmen, daß SQR
möglichst klein wird. '

Wir geben hier keine Ableitung des Schätzverfahrens, sondern verweisen auf die
Literatur (Linder [1]). Als Schätzwert wird dort vorgeschlagen

n Z + P + V — 2G’
u : ‚ (3.12)

wobei folgende Bezeichnung benutzt wurde:

Z — Summe der Meßwerte in der Zeile mit fehlender Angabe,

P — Summe der Meßwerte in der Spalte mit fehlender Angabe,

V — Summe der Meßwerte für die Behandlung mit fehlender Angabe,

G’ — Gesamtsumme der Meßergebnisse.

Beispiel 3.6: Für das lateinische Quadrat in Tabelle 3.9 erhielten wir folgende Ergebnisse

640 670 641 661

625 610 558 598

608 589 * 653

649 630 621 639

(der Wert ' liegt nicht vor).
Um nach (3.12) einen Schätzwert für die fehlende Angabe zu berechnen, ermitteln wir für n = 4

Z = 608 + 589 + 653 = 1850,

P = 641+ 558 + 621 = 1820,

V= 670 + 625 + 639 = 1934

(es fehlt eine Angabe für die Behandlung B, vgl. -Tabelle 3.9).



3.5. Lateinisches Rechteck, griechisch-lateinisches Quadrat 57

G’: 640 + 625 + + 653 + 639 = 9392,

also ist

40,850 +1820 + 1934) — 2 - 9392
„-4:605,33.

(4-1)‘(4- 2)

3.5. Lateinisches Rechteck, griechisch-lateinisches Quadrat

Das lateinische Quadrat ist eine Versuchsanlage zur Beurteilung von Faktoren mit nur wenigen
Stufen, eine hohe Stufenzahl benötigt viele Wiederholungen. So wie wir vom vollständigen Blockplan
zum unvollständigen Blockplan übergegangen sind, wollen wir auch hier eine Modifikation des latei-
nischen Quadrates angeben. Wenn die Anzahl der Stufen ein Vielfaches der Anzahl der Spalten (bzw.
Blocks) beträgt, dann können wir ein lateinischer Rechteck konstruieren. Dabei sind wir aber nicht
mehr in der Lage, systemaii Lire Unterschiede innerhalb eines Blocks von Versuchseinheit zu Ver-
suchseinheit durch Randomisation auszuschalten, sondern nur noch nach jeder zweiten, dritten usw.

Versuchseinheit. Eine Auswertung von Versuchen nach einem lateinischen Rechteck wird analog zur

Auswertung eines lateinischen Quadrates vorgenommen.
Eine weitere Verallgemeinerung der Problematik ergibt sich, wenn wir beispielsweise die Wirkung

von vier Faktoren (A, B, C und D) aufjeweils p Stufen prüfen wollen. Bei der Auswertung eines ent-
sprechenden Versuches ist dabei eine mögliche systematische gegenseitige Beeinflussung der Fak-
toren A und B einerseits und der Faktoren C und D andererseits durch eine geeignete Versuchs-
planung auszuschalten. Ein für diese praktische Aufgabenstellung geeigneter Versuchsplan wird durch
ein sogenanntes gr iechisch-Iateinischu Quadrat gegeben. Wir wollen das Konstruktionsprinzip wieder
an einem Beispiel erläutern.

Die Faktoren A, B, C und D seien auf jeweils p = 4 Stufen einstellbar (zu jedem Faktor gehören
p = 4 Behandlungen). Der Strukturplan eines griechisch-lateinischen Quadrates hat dann die Ge-
stalt von Tab. 3.13.

Tabelle 3.13

Stufen des Faktors B
1 2 3 4

Stufen 1 (1,1) (2,2) (3,3) (4,4)
des 2 (2,4) (1,3) (4,2) (3,1)
Faktors 3 (3,2) (4,1) (1,4) (2,3)

(4.3) (3.4) (2,1) (1.2)

1

Dieser Versuchsplan ist dabei wie folgt zu interpretieren: Befindet sich beispielsweise der Faktor A
auf der Stufe 2 und der Faktor B auf der Stufe 4, dann ist der Versuch mit dem Faktor C auf der
Stufe 3 und dem Faktor D auf der Stufe 1 durchzuführen.

Beim Aufstellen eines solchen griechisch-lateinischen Quadrates muß jede Variation 2. Ordnung
der Zahlen 1, 2, ..., p genau einmal vorkommen.

Eine Auswertung der Versuchsergebnisse, die nach einem solchen Versuchsplan gewonnen wur-
den, ist bei Erfülltsein der entsprechenden Voraussetzungen (1.49) durch eine Varianzanalyse mit
spezieller vierfacher Klassifikation möglich.

Im Gegensatz zu den lateinischen Quadraten gibt es griechisch-lateinische Quadrate nicht von

jeder beliebigen Ordnung. Für 3, 4, ..., 12 Behandlungen mit Ausnahme von p = 6 undp = I0 sind
solche Versuchspläne konstruiert worden (vgl. z. B. Cochran/Cox [I]).
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3.6. Zusammenfassung

Falls in einem Problem der Varianzanalyse außer den im Modell erfaßten Einflußfaktoren weitere
systematische Einflüsse eine wesentliche Wirkung haben, kann man diese Wirkung entweder durch
Randomisierung ausschalten oder durch die Aufnahme weiterer Faktoren ins Modell erfassen. Spe-
ziell werden die Modelle der einfachen und zweifachen Klassifikation behandelt.

Die Randamisierung erfolgt_ durch die zufällige Zuordnung der Versuchseinheiten zu den Behand-
lungen. Dabei finden Zufallszahlentafeln Verwendung.

Der Erfassung weiterer Einflußfaktoren dient die Verwendung von Blockplänen (bei einem weiteren
Faktor) und von lateinischen und griechisch-lateinischen Quadraten und Rechtecken (bei zwei wei-
teren Faktoren).

Die Auswertung wird über spezielle Modelle der Mehrfachklassifikation (Tafeln der Varianzana-
lyse) bis hin zum F-Test durchgeführt.



4. Mehrfaktorpläne

4.1. Problemstellung

Im vorangegangenen Kapitel bestand die statistische Aufgabenstellung darin, quali-
tative Aussagen über die Wirkung von Einflußfaktoren auf eine Zielgröße zu ermit-
teln. Wir haben uns in erster Linie nur dafür interessiert, ob ein Einfluß eines Faktors
vorhanden ist oder nicht. Dazu konnten wir die Modelle der Varianzanalyse aus-

nutzen und als Entscheidungskriterium einen geeigneten Test (meist einen F-Test)
heranziehen. Vielfach stehen aber auch quantitative Aussagen über die Wirkungs-
funktion 7} (x) im Vordergrund, d. h.‚ wir wollen beispielsweise eine Näherung für die
Funktion 17(x) bestimmen. In so einem Fall werden wir durch eine Regressionsanalyse
zu den gewünschten Aussagen gelangen.

Grundlage für eine Schätzung der Wirkungsfunktion 17(x) ist die Kenntnis eines
Ansatzes v7(x, 19). Wir wollen hier spezielle lineare Ansätze, die durch Polynome be-
schrieben werden, betrachten. Dabei wählen wir für fi(x, 29) entweder ein Polynom
vom Grad a’ [vgl. (1.16), Seite 16] oder ein Polynom vom Grad d in jeder Variablen
[vgl. (1.18), Seite 17], wenn wir k Einflußgrößen x1, ...‚ x„ bei der Beschreibung der
Zielgröße berücksichtigen müssen. Uns werden später besonders die Spezialfalle von

(1.16) und (1.18) für k = 1, 2 und d = l, 2 interessieren. Die Brauchbarkeit eines An-
satzes zur Beschreibung von 17(x) in einem Bereich H <: B g R" können wir gegebenen-
falls durch einen Test nachprüfen. Darauf werden wir im Abschnitt 4.2. kurz eingehen.

Zur Vereinfachung der folgenden Untersuchungen wollen wir annehmen, daß die
Faktoren x, (i = 1, ..., k) aufjeweils nur t,, (i = 1, ...‚ k;j = 1, ...,p‚) verschiedenen
Stufen vorkommen können, d. h.‚ die Variablen x, nehmen im Versuchsbereich Vnur
gewisse diskrete Werte t„ an, Die Stufen t,-, werden üblicherweise auch als Niveaus
bezeichnet. Auf Grund des speziellen Charakters der Einflußgrößen können wir so-

wohl qualitative Untersuchungen durch Modelle der Varianzanalyse (dafür geben wir
im Abschnitt 4.2. ein Beispiel an), als auch quantitative Untersuchungen durch eine
Regressionsanalyse vornehmen, letzteres wird uns vorrangig interessieren.

Zur Untersuchung des Einflusses mehrerer Faktoren auf eine Zielgröße wird viel-
fach noch in der folgenden Weise vorgegangen: Es werden Versuche durchgeführt,
bei denen jeweils nur ein Faktor variiert, alle anderen Faktoren versucht man kon-
stant zu halten. Dieses Vorgehen wird für jede Einflußgröße wiederholt. Wir können
dabei Versuchspläne anwenden, wie wir sie beispielsweise im Kapitel 3 angegeben
haben. Durch den sehr hohen Versuchsaufwand, der sich nicht nur in der Anzahl der
Versuche ausdrücken muß, ist eine solche Vorgehensweise vielfach sehr ungünstig. Oft
läßt sich ein solches Versuchsschema gar nicht mehr realisieren. Wir wollen deshalb
Versuchspläne konstruieren, bei denen die Wirkung aller Faktoren gleichzeitig unter-
sucht werden kann. Damit in den Ansätzen (1.16) und (1.18) eine Schätzung der Para-
meter möglich ist, müssen die Versuchspläne jeweils eine Mindestanzahl von Ver-
suchen beinhalten (vgl. Abschnitt 1.3.). So besitzt ein Ansatz der Form (1.16)

+ d
d a, ) Ver-

suche enthalten. Für einen Ansatz durch ein Polynom vom Grad d in jeder Va-
riablen müssen wir für jede Variable mindestens d + 1 Stufen festlegen, um die Koeffi-
zienten schätzen zu können.

Die Konstruktion eines Versuchsplanes ist mit großen numerischen Schwierig-

gerade (k d) Koeffizienten, der Versuchsplan muß also mindestens (k
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keiten verbunden. Da jedoch der Ansatz 77(x, 19) eine Approximation für n(x) ist und
weitere, im Ansatz nicht berücksichtigte Einflüsse vorliegen können, ist es sinnvoll,
aus praktischen Erwägungen heraus an die Versuchspläne zusätzliche Forderungen
zu stellen, um eine Berechnung zu ermöglichen (vgl. Box/Hunter [l]).

. Der Versuchsplan soll in einem interessierenden Bereich H eine Schätzung für den
Ansatz 17(x, 19) mit vorgegebener Genauigkeit erlauben.

2. Durch einen geeigneten Test soll nachprüfbar sein, ob die erhaltene Schätzung
Y(x) = 77(x, Ö) die wahre Wirkungsfläche n(x) hinreichend genau beschreibt. Er-
weist sich der Ansatz i7(x, Ü) als ungeeignet, dann soll der Versuchsplan als Kern
eines Versuchsplanes für einen Ansatz nächsthöherer Ordnung verwendbar sein.

. Der Versuchsplan soll die Erfassung eines weiteren systematischen Einflusses durch
eine Blockbildung ermöglichen.
Einen Versuchsplan, der die Schätzung der Koeffizienten des Ansatzes (1.16) er-

laubt, wollen wir als k-dimensionalen Versuchsplan der Ordnung d bezeichnen. Erfüllt
dieser Plan die zusätzlichen Bedingungen 1 bis 3 (oder zumindestens eine Teilmenge
dieser Bedingungen) und nehmen die k Einflußfaktoren x, die Stufen 1„ (i = 1, ..., k;
j = 1, ..., p,-) an, die in gewissen Kombinationen im Versuchsplan enthalten sind,
dann sprechen wir von einem faktoriellen Versuchsplan (wir benutzen dafür die Ab-
kürzung FV). Treten alle Faktoren auf der gleichen Anzahl von Stufen auf, dann
heißen die Versuchspläne symmetrisch, andernfalls unsymmetrisch. Wir werden nur

symmetrische Versuchspläne betrachten.
Die Versuchspläne, die alle diese einschränkenden Bedingungen erfüllen, sind nicht

eindeutig, sie unterscheiden sich z. B. in ihrem Umfang, d. h. in der Anzahl der vor-

gesehenen Versuche. Fordern wir nun noch, daß diese Anzahl so gering wie möglich
ist, dann erhalten wir ein Optimalitätskriterium für faktorielle Versuchspläne zur

Schätzung von t9.

u
.

U
)

4.2. Vollständige faktorielle Versuchspläne vom Typ 2"

In diesem Abschnitt wollen wir die unbekannte Wirkungsfunktion durch ein Poly-
nom vom Grad d = l in jeder Variablen beschreiben. Zur Durchführung entspre-
chender Versuche müssen die Faktoren xi, ..., xk jeweils auf p = d + 1 z 2 ver-
schiedene Niveaus eingestellt werden können. Eine hinreichend genaue Beschreibung
der Funktion w/(x) durch ein Polynom 1. Grades in jeder Variablen ist nur in einem
kleinen Bereich H sinnvoll. Zur bequemen Darstellung wollen wir uns diesen Bereich
als k-dimensionalen Würfel

-1 g x,- g 1., i=1,...,k, (4.1)

denken. Als Stufen für die Faktoren x„ z’ = 1, ..., k, wählen wir die Endpunkte des
Versuchsbereiches V, bei V = H also das untere Niveau —l (bezeichnen wir als —-)

und das obere Niveau + 1 (bezeichnen wir als +). Durch die Festlegung der Niveaus
besteht der Versuchsbereich nur noch aus einzelnen Punkten. Enthält ein faktorieller
Versuchsplan alle möglichen 2" Variationen der beiden Stufen der k Faktoren, dann
wollen wir so einen Plan als vollständigen faktoriellen Versuchsplan vom Typ 2" be-
zeichnen und dafür die Abkürzung VFV 2" verwenden. Die Basis der Typenbezeich-
nung gibt dabei die Anzahl der Stufen, der Exponent die Anzahl der Faktoren und die
Potenz selbst die Anzahl der Versuche an. Sind keine anderen Festlegungen getroffen
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worden, dann führen wir in jedem Versuchspunkt eines VFV 2" genau einen Versuch
durch.

Das Konstruktionsprinzip für einen VFV 2" werden wir für den Fall k = 2 erläutern.
Als Ansatz für 17(x) wählen wir ein Polynom l. Grades in beiden Variablen

17(x, 19) = 190x‘, + 01x1 + 192x; + 1912x1x2. (4.2)

Mit der Wechselwirkung 191„ dem Absolutglied 191, und den Hauptwirkungen 191

und 193 haben wir insgesamt vier Parameter zu schätzen, müssen also mindestens vier
Versuche durchführen. Betrachten wir zuerst die Scheinvariable x0, für sie tragen wir
bei allen Versuchen in den Versuchsplan + ein, da sie als +1 definiert war. Dann
werden für x1 und x2 die vier möglichen Stufenkombinationen gebildet. Diese beiden
Spalten ergeben den eigentlichen Versuchsplan, in unserem Fall einen V4 (der Index
gibt die Anzahl der Versuche n = 22 an). Aus den Spalten für x1 und x2 erhalten wir
durch einfache Produktbildung die Werte von x1 x2. Somit ergibt sich für einen VFV 22

der folgende Strukturplan (Tab. 4.1).

Tabelle 4.1

Versuch V‘; V Codierung Beobachtungs-

Nr. x0 x1 x; x1x2 Vektor

1 + — — + (1) y;
2 + + — — a y;
3 + -— + — b y;
4 + + + + ab ‚v4

Falls die Versuche nacheinander durchgeführt werden sollen und die Reihenfolge
einen systematischen Einfluß haben könnte, muß diese noch randomisiert werden
(vgl. auch Abschnitt 3.2.).

Die vorletzte Spalte der Tabelle 4.1 enthält eine Codierung des VFV 22, die eine
einfachere Schreibweise des Versuchsplanes erlaubt. Befinden sich beide Faktoren
auf dem unteren Niveau, dann schreiben wir (l), befindet sich der Faktor x1 auf dem
oberen Niveau, dann schreiben wir a, für den Faktor x2 auf dem oberen Niveau
schreiben wir b, und befinden sich beide Faktoren x1 und x2 auf dem oberen Niveau,
dann müssen wir also ab schreiben. Durch diese Codierung läßt sich der VFV 22 auch
schreiben i

(l),a‚b,ab. (4.3)

Im R2 dargestellt bedeutet der Versuchsplan (4.3), daß die Versuche in den Eck-
punkten des Quadrates —l g x,- g 1, i = l, 2, durchzuführen sind (Bild 4.1).

Stimmt, wie beim vorliegenden Versuchsplan, die Anzahl der zu schätzenden Koef-
fizienten mit der Anzahl der Versuche überein, dann sprechen wir von einem gesättig-
ten Versuchsplan. In diesem Fall haben wir zwar eine minimale Versuchsanzahl,
können aber keinen Test durchführen, in dessen Testgröße die Stichprobenvarianz
eingeht, da hierbei die Summe der Abweichungsquadrate dividiert wird durch die
Differenz aus der Versuchsanzahl und der Anzahl der Freiheitsgrade (d. h. der Para-
meter der entsprechenden Verteilungsfunktion). Das ist z. B. der Fall bei einem Test
auf die Hypothese, daß der Ansatz 17(x‚ 19) die Wirkungsfunktion 1](x) hinreichend ge-



62 4. Mehrfaktorpläne
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Bild 4.1

nau beschreibt, wobei wir noch zusätzliche Versuche benötigen. Die Durchführung
dieses Testes werden wir jetzt kurz beschreiben, da diese statistische Fragestellung bei
der Auswertung von faktoriellen Versuchen eine wichtige Rolle spielt.

Voraussetzung für eine Anwendung des Testes ist, daß die Meßergebnisse minde-
stens asymptotisch normalverteilt sind. Die Varianz a2 des zufälligen Fehlers ist in den
meisten Fällen unbekannt, deshalb wird zunächst ein Schätzwert S’ für a2 bestimmt.
Dabei können die zur Schätzung von a’ notwendigen zusätzlichen Versuche in fol-
gender Weise durchgeführt werden: entweder
1. in I (l g 1) verschiedenen Punkten des VFV je no Versuche oder
2. no Versuche in (x1, ..., x„)T = (0, ...‚ 0), dann ist in (4.4) l = 1.

Als Schätzung für U2 erhalten wir
l up 1 no

2 = ‘ _ _ Z ' _ = jS ‚(n0 _ 1) E1 J§1(Y,, Y,) mit Y, no la Y”. (4.4)

Die Restvarianz a} wird bekanntlich geschätzt durch

1 " .

S}: = Z (Y: - Yu)“ (4-5)
n - f‘ I=1

(vgl. auch Abschnitt 1.3.1.), wobei Y. das Ergebnis des i-ten Versuches ist und I7, die

entsprechende Schätzung Y. = 77(x, 6). Als Testgröße benutzen wir den Quotienten
der Stichprobenvarianzen

= —. (4.6)

Da die Zufallsgrößen (n — r)S§/o'2 und (l(no —— 1)) S2 /02 unabhängig sind und einer
gfi-Verteilung genügen, besitzt die Zufallsgröße (4.6) eine F-Verteilung mit den Para-
metern fl = n — r und f; = l(no — 1). Durch die Vorgabe eines Signifikanzniveaus
(x ist der kritische Bereich durch das (l ——oc)-Quantil der F-Verteilung F„_‚_„„„_1 ,_ 1 _,,, fest-
gelegt. Erhalten wir für einen vorgegebenen Ansatz fi(x, t9) bei festgelegtem Versuchs-
plan V,, für T nach (4.6) eine Realisierung, die im kritischen Bereich liegt, dann führte
eine zu große Stichprobenrestvarianz zur Ablehnung der Hypothese. Von einer großen
Restvarianz dürfen wir aber auf einen zur Beschreibung von n(x) ungünstigen Ansatz



4.2. Vollstandige faktorielle Versuchspläne vom Typ 2" 63

schließen (vgl. auch Kapitel 6). In diesem Fall müssen wir einen anderen Ansatz zur

Auswertung heranziehen, d. h., wir gehen zu einem Polynom nächsthöherer Ordnung
über und fügen damit dem Ansatz neue Funktionen der Einflußgrößen hinzu. Das hat
zur Folge, daß wir die Anzahl der Niveaus der Einflußgrößen erhöhen müssen.

Haben wir bisher der Versuchsdurchführung einen VFV 22 zugrunde gelegt, so wer-

den wir jetzt einen VFV 23 konstruieren. Wir benutzen als Ansatz ein Polynom
1. Grades in allen Variablen und berücksichtigen nun k = 3 Einflußgrößen bei
fl(x, :9). Es sei

77(x, 19) = 00x0 + 19,x, + 192x; + 193x3 + fiuxlxz (4.7)

+ 2913x1x3 + 1923x2x;, + ':912,x1x;x3.

Bei der Konstruktion des VFV 23 gehen wir von einem VFV 22 aus und führen diesen
Versuchsplan einmal bei festgehaltenem x3 auf dem unteren Niveau —l und einmal
bei festem x3 auf dem oberen Niveau +1 durch (s. Bild 4.2).

X1 X2 X3

+ _ _

V4 _ „ _

+ + -

V:

— — +

+ - +

7 v‘ — + +

+ + i‘

Bild 4.2

Fassen wir beide Pläne V4 und die Stufen von x3 zusammen, ergibt sich für einen V3

der Strukturplan aus Tab. 4.2.

Tabelle 4.2

Versuch V; Codierung Beobach-

Nr‘ x0 xi x2 X3 x‚x‚ xlxg xzxg xlxzxa

1 + — — — + + — (1) y,
2 + ‘ + '— — § — — + + a ‚v,
3 + —- + — - + - + b „v3

4 + _ + + — ; + — — — ab y4
5 + — — + g + — — + c. y5
6 + + - + - + - - ac ys
7 + E - + + 5 —— — + - bc y-‚
8 + i + + + i + + + + abc yg
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Führen wir eine Codierung ein und bezeichnen das untere Niveau mit (1) und die
oberen Niveaus der Faktoren x1 , x2 bzw. x3 mit a, b bzw. c, dann können wir den
VFV 23 in der Kurzform

(I), a, b, ab, c, ac, bc, abc i (4.8)

schreiben. Dieses Konstruktionsprinzip läßt sich leicht verallgemeinern, wir können
für ein beliebiges k den VFV 2" stets aus einem VFV 2“" aufbauen, indem wir diesen
Plan mit x,, auf dem unteren und mit xk auf dem oberen Niveau durchführen. Als An-
satz 17(x, 19) wird dabei jeweils ein Polynom l. Grades in jeder Variablen

m, 0) = fioxo + 19,x1 + +. 0.x, + 1?12x1x2 + ~‘-- (4.9)

‘l’ 7912...kxiX2 X1;

benutzt. Für k = 4 demonstrieren wir die Konstruktion des VFV 24 durch einen
VFV 23 anhand der Codierung. Befindet sich die Variable x4 auf dem oberen Niveau,
so codieren wir mit d. Führen wir den VFV 23 [vgl (4.8)] auf dem unteren Niveau
von x4 durch, dann erhalten wir wieder (4.8), mit x4 auf dem oberen Niveau ist (4.8)
jeweils mit d zu multiplizieren. Auf diese Weise erhalten wir den VFV 24

(l), a, b, ab, c, ac, bc, abc, d, ad, bd, abd, ca’, acd, bcd‚ abcd. (4.10)

Wir haben bisher nur Polynome l. Grades in jeder Variablen als Ansatz 77(x‚ 19) für
die Wirkungsfläche 1](x) benutzt. Für ein Polynom d-ten Grades mit k Einflußgrößen

k + d ‘

d ) unbe-

kannten Koeffizienten schätzen zu können. Für eine größere Anzahl von Einfluß—
größen und einen höheren Polynomgrad wird der Unterschied zwischen der Anzahl
der Versuche und der Parameter sehr groß. Für k = 3 und d = 2 besitzt ein Ansatz

müssen wir als Versuchsplan einen VFV (d + l)" verwenden, um die

5 .

d-ten Grades <2) = l0 Parameter, der VFV 33 erfordert bereits n = 27 Versuche,

für k = 4 und d = 3 stehen für die Schätzung von = 35 Parametern bei einem

VFV 4‘ n = 256 Versuche zur Verfügung. Diese hohe Versuchsanzahl ist aber viel-
fach zu aufwendig. Wir wollen mit einer geringeren Anzahl von Versuchen auskom-
men (Für 35 Parameter genügen 35 Versuche, wenn kein Test durchgeführt werden
soll).

4.2.1. Auswertung eines VFV 2" zur Schätzung der Regressionskoeffizienten

Der Versuchsplan V„ beeinflußt die Schätzung Ö des Parametervektors 19 nur durch
die Matrix FTF (vgl. Abschnitt 1.3.). Diese Matrix hat die Gestalt

länonyxx» Jäfdxßfxxl)
FTF_—_ _ (4.11)

i n<x,)r,(xj> i; /.(x,>/,<x,>
I= 1 J = l
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Ein Ansatz der Form (4.9) läßt sich unter Beachtung von (1.37) überführen in einen
Ansatz der Form

770K, 0) = 191f1(X) + + 19rfr(X) (4-12)

[vg1. (1.19)]. Dabei gilt beispielsweise

xo =f1(X) E 1» x1 =f2(X)s ---: xk =fk+1(X)a »

X1352 = fk+2(X)s w: xlxl Xu = f2"(X)» i (4.13)
wobeif;(X;), i = 1, ...‚ 2";j = 1, ...‚ n, jeweils nur die Werte —1 und +1 annehmen
kann.
Für die Elemente der Matrix (4.11) gelten somit für einen VFV 2" die Beziehungen

Jé1f,(x,)fk(x,) = 0, i4: k; i, k = 1, ...,r‚ (4.14)

i f.(x‚.) = o, i = 2, (4.15)
J=1

(f‚(x‚))2 =.n, i: l‚...‚r. „ (4.16)

Für einen V3 (vgl. (Tabelle 4.2) würde (4.14) bedeuten, daß die Spalten x,x2, x1x3
bzw. x2x3 summiert werden, bei (4.15) sind die Spalten x1 ‚ x2 bzw. x3 zu summieren,
und bei (4.16) erhält man eine Summation von n-mal +1.

Damit erhält die Matrix FTF die spezielle Gestalt

n 0

FTF = = nE„. (4.17)
0 n

Mit (4.17) vereinfachen sich die Schätzungen der Parameter 19„ i = l, ...‚ r, (vgl. Ab-
schnitt 1.3.1.) wesentlich. Es ergibt sich aus (1.26) _

a 1
6 =(nE„)"FT?/= ;1—FT@ (4.18)

mit
2

B9 = a’(FTF)“ =

Für die einzelnen Parameter 19„ i = 1, ...‚ r, erhalten wir aus (4.18) die Schätzungen

A 1 " .

G); = —- Z fi(x,)Y„ z 1, ...,r. (4.19)
n J: 1

Durch V,, werden also die Vorzeichen für eine Summation der Beobachtungswerte
festgelegt. Die Parameterschätzungen (4.19) sind unkorreliert und bei vorliegender
Normalverteilung für die Beobachtungswerte sogar unabhängig.

4.2.2. Auswertung eines VFV 2" mittels Varianzanalyse

Die Auswertung eines vollständigen faktoriellen Versuchsplanes mit einem Modell
der Varianzanalyse soll hier nur am Beispiel eines VFV 22 erläutert werden. Für mehr
als zwei Einflußgrößen vgl. z. B. Cochran/Cox [1].

5 Bandemex, Versuchsplanung
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Zur qualitativen Auswertung von n Realisierungen eines VFV 22 benutzen wir eine
zweifache Klassifikation der Form

YiJl=:”'+0‘!+flJ+7iJ+8ijl: i=1»2§ f=1.2§ i=1,---J1
[vgl. (l.42)], wobei 1x, die Effekte des Einfiußfaktors A1 mit den Stufen A3" und AP,
ß, die Effekte des Faktors A 2 mit den Stufen Ag" und A?’ sind. Durch w, werden die
entsprechenden Wechselwirkungen von A, mit A; ausgedrückt.

Ist bei der Planung der Versuche die Erfassung eines sich systematisch ändernden
Einflußfaktors zu berücksichtigen, so führen wir eine Blockbildung durch. Dazu
fassen wir die vier Stufenkombinationen der Einflußfaktoren als Stufen eines Faktors
in einer Versuchsanlage mit vollständig randomisierten Blocks auf und werten die
Versuchsergebnisse zunächst entsprechend einem Blockversuch aus (vgl. Abschnitt
3.3.1.) und anschließend durch ein Modell der zweifachen Klassifikation. Eine An-
leitung zur Auswertung eines VFV 22, der in q Realisierungen vorliegt (die wir als
Blocks auffassen) und ein ausführliches Beispiel finden wir bei Rasch/Enderlein/ >

Herrendörfer [l].
Bei den Modellen der Varianzanalyse betrachten wir die Variablen x‚- (i = 1, ..., k)

auf den Stufen 0 und l, bei einem VFV 2" haben wir die Stufen —1 und +1 ver-
wendet. Wollen wir die Schätzungen 0, der Parameter 19, für ein Regressionsmodell
mit den Schätzungen für die Effekte in Varianzanalysemodellen vergleichen, so er-

halten wir beispielsweise

Q1 = 031/2, 02 = 0'62/2, "->0p+1 = 191/2; ---s Qp+a+l =3'12/2-

4.3. Teilweise faktorielle Versuchspläne vom Typ 2“"

Wie wir bereits am Ende von Abschnitt 4.2. bemerkt haben, wird für mehrere Ein-
fiußgrößen der Unterschied zwischen der Anzahl der Parameter des Ansatzes und
derVersuchsanzahl sehr schnell unvertretbar groß. Eine sehr große Anzahl von Ver-
suchen ergibt zwar eine große Genauigkeit der zu schätzenden Parameter, ist für die
Lösung praktischer Probleme aber meist nicht gerechtfertigt. Wissen wir darüber
hinaus z. B. aus sachlichen Gründen, daß eine gewisse Anzahl von Wechselwirkungen
gleich null ist, dann erfordert ein VFV zu viele Versuche. In diesen Fällen können wir
mit einer gewissen Auswahl von Versuchen aus einem VFV als Versuchsplan aus-

kommen. Solche Versuchspläne wollen wir als teilweise faktorielle Versuchspliine be-
zeichnen und mit TFV abkürzen. Die Konstruktion eines TFV werden wir an einem
einfachen Beispiel demonstrieren. Für die Wirkungsfläche 17(x) nehmen wir einen
Polynomansatz 1. Grades

o7(x,1‘)) = 50x0 + 0.x. + 192x; + 03x3 (4.20)

an. Ein VFV 23 würde 8 Versuche zur Schätzung der Koeffizienten fordern. Da der
Ansatz (4.20) vier unbekannte Koeffizienten besitzt, wollen wir versuchen, diese
Koeffizienten durch Verwendung eines VFV 22 (erfordert vier Versuche) zu schätzen.
Wenn wir x3 = x‚xz setzen, dann geht der Ansatz (4.20) in den Ansatz (4.2) über. Für
diesen haben wir aber den VFV 22 konstruiert. Deshalb wollen wir den Faktor x3
auf die Stufen von xix; eines VFV 22 einstellen, als Codierung schreiben wir dafür c.
Wir erhalten somit die Tabelle 4.3.
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Tabelle 4.3

Versuch x0 x1 x; x1x; = x3 Codierung Beobachtungsvektor
Nr.

1 + — - + c ‚v1

2 + + -- -— a y;
3 + —- + —- b ya
4 + + + + abc y‘

Wenn aber die Annahme, die Wechselwirkung 1912 sei null, falsch ist, dann ist die
durch den VFV 2“ für 193 gefundene Schätzung Q3 noch von dieser Wechselwirkung
abhängig, wir haben dann mit Q3 den Ausdruck 193 + 1912 geschätzt. Ist 1912 #= 0,
dann müßte nämlich der Ansatz (4.20) die Form

17(x, 19) = 190x11 + 191x1 + 192x; + 193x; + 1912x1x;

haben. Da sich die Werte für xix; und für x3 in den Punkten x, des Planes nicht
unterscheiden, ist

"7(Xn '9) = 790x01 + 1919511 + 192952: + (193 + 791299531,

und dem Koeffizienten 193 in (4.20) entspricht in den Planpunktenfi, + 1912. Die
Schätzung G, aus den Versuchsergebnissen gilt also für 193 + 1911. Ahnliche Über-
legungen gelten selbstverständlich auch für die Schätzungen der Koeffizienten 191 und
192. In dem Fall, daß die Schätzungen gewisser Koeffizienten voneinander abhängen,
sprechen wir von Vermengungen und schreiben dafür im oben erwähnten Beispiel

Ü’; -—> 793 + 7912 . y

Wir bezeichnen den durch Tabelle 4.3 gegebenen faktoriellen Versuchsplan als
TFV 23“. Ein wichtiges Problem bei der Auswertung von Versuchen nach einem
TFV ist die Aufdeckung solcher Vermengungen innerhalb der Schätzungen. Wir wol-
len die allgemeine Vorgehensweise wieder für einen TFV 23“ beschreiben. Bei der
Konstruktion des Versuchsplanes hatten wir x3 = x1x2 gesetzt. Bezeichnen wir die
erste Spalte (entspricht x0) der Tabelle 4.3 mit I, dann ergibt sich für jede Spalte als
Produkt der Spalte mit sich selbst stets I (z. B. x3x3 = I), also wegen x3 = x1x2

I = x3x3 = x1x2x3. (4.21)

Die rechte Seite von (4.21) wird als Generator eines Versuchsplanes und (4.21) selbst
als definierende Beziehung bezeichnet. Mit dieser definierenden Beziehung können wir
nun die Vermengungen der einzelnen Schätzungen berechnen. Dazu multiplizieren
wir (4.21) nacheinander mit x1 , x2 und x3 und erhalten wegen x} = x2 = x3 = I

x1 = x2x3, xz = x1x3, x3 = x1xz. (4.22)

Aus (4.22) lesen wir die entsprechenden Vermengungen ab

Q’1——>191 +1923, Q5619; +1913, 9’1—>193 +1912. (4.23)

Aus (4.21) ergibt sich für die Schätzung des Absolutgliedes

671,-» 19„ + «am. (4.24)

Können wir die Annahme aufrechterhalten, daß alle Wechselwirkungen verschwinden
(was gegebenenfalls durch einen Test nachzuprüfen ist), dann sind O1 (i = 0, ..., 3)
5a:
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Schätzungen für die Parameter 29, (i = 0, ..., 3). Bei der Typbezeichnung eines
TFV gibt der Exponent von 2 die Differenz zwischen Anzahl der Faktoren und Gene-
ratoren an, in diesem Fall also 3 — 1. Die Beziehung x3 = xlxz war willkürlich ge-
wählt worden. Ebenso hätten wir auch x3 = —x1x2 setzen können und wären so zu
einem alternativen TFV gelangt (Tab. 4.4).

Tabelle 4.4

Versuch x0 x1 x2 x3 = —x,x2 Codierung Beobachtungsvektor
Nr.

1 + - - - (1) J’;
2 + + — + ac y;
3 + — + + be ‚v3

4 + + + —- ab y4

Die definierende Beziehung I = —x1x2x3 führt zu den Vermengungen

93"’79o “ 7-9123; @'1""791 — 7923:

6;’ —> 172 — 1913, 93' —> 193 —- 1912 . (4.25)

Mit Hilfe der beiden alternativen TFV können wir alle Koeffizienten (auch die Wech-
selwirkungskoeffizienten) des Ansatzes

77(x, 19) = 190360 + 191x, + 192x; + 1939:3 + 1912x,x2‘ (4.26)

‘l’ 7913x1353 ‘l’ 7923352353 ‘l’ 79123351352353

unvermengt schätzen, wenn sich nach Durchführung eines TFV 23"‘ herausgestellt
hat, daß der Ansatz (4.20) nicht sinnvoll ist. Die Schätzungen für die Parameter er-

geben sich in der Form

Q1 = 91 E‘ 91

und Q Ö (4.27)

91, =

Analog erhält man aus (4.23), (4.24) und (4.25) die übrigen Schätzungen. Ein TFV 23"
und ein alternativer TFV 23“ zusammen ergeben einen VFV 23.

Beispiel 4.1: Es ist die Wärmeleitfähigkeit von Sublimaten, die bei der Chlorierung titanhaltiger
Schlacke in der Schmelze entstehen, zu untersuchen (vgl. Chomjakov/Zeltova/Adler/Nalimov [l]).
Um die Apparaturen des Kondensationssystems bei der Projektierung der Chloratoren berechnen zu

können, müssen wir den spezifischen Wärmeleitfähigkeitskoeffizienten der Sublimate kennen. Es ist
dieser Wert in Abhängigkeit von der Dichte des Stofies, seiner chemischen Zusammensetzung und
der Temperatur zu ermitteln. Wir müssen also vier Einflußfaktoren berücksichtigen:

x?” — Schüttgewicht (in g/cm’),

x2” — Chlorgehalt der Sublimate (in Vüillfllßnprolvutcu),

x‘3°’ — Verhältnis der Konzentrationen von S10, und TiO; in den Sublimaten,

x2” — Temperatur (in °C)

(die weiteren Berechnungen werden ohne Maßeinheiten durchgeführt). Auf Grund praktischer Er-
fahrungen können wir annehmen, dal3 nur die Faktoren xg" und xg” bzw. x‘3°’ und xff’ sieh gegen-
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seitig beeinflussen, alle anderen Wechselwirkungen können vernachlässigt werden. Somit erhalten
wir für den Wärrneleitfahigkeitskoeffizienten den Ansatz

fi(x, 0) = 19,,xf,°’ + z91x§°) + 192x‘,°’ + 03x‘3°’

+ 194x,‘,°’ + 19flx‘2°’x§°’ + 6,,,x§°>x5,°’, (4.28)

der für den Versuchsbereich

V: 0,72 g x<,°> g 1,02; 3s g x3’ g 45; (4.29)

0,75 g x2’ g 1,25; 200 g x53’ g 300

von Interesse ist. Beim Aufstellen des Strukturplanes eines TFV wurden stets die Niveaus — 1 und +1
benutzt. Ein Versuchsbereich V, der durch ein Parallelepiped der Form a, g x?” g b„ z’ = l, ..., k,
gegeben ist und den wir als natürlichen Versuchsbereich I ' ' en wollen, geht durch eine einfache
Transformation in die gewünschte Form über. Es gilt für den i-ten Faktor

(o) _ -0»x, — x,
b1 — ü: .+Tx„ t=1,...,k, (4.30)

mit
a‚+b‚i?) = __ _

So erhalten wir z. B. für x‘,°’ auf dem unteren Niveau aus

0,72 + 1,02 1,02 — 0,72
0,72 = ———T—— +Tx,

x, = —1.

Analog transformieren wir den gesamten Versuchsbereich Vnach (4.29) und erhalten Tabelle 4.5.

Tabelle 4.5

‚((10) ‚((20) X130) x51»

unteres Niveau x,
Nullniveau x,
oberes Niveau x,

— 1 0,72 35,0 0,75 200
0,87 40,0 1,00 250
1,02 45,0 1,25 300w

o

Der Ansatz (4.28) zur Schätzung der Wirkungsfunktion 17(x) besitzt 7 Koeffizienten, wir wollen
deshalb einen TFV 24" konstruieren, mit dem diese Koeffizienten geschätzt werden können. Zur
Aufstellung der definierenden Beziehung gehen wir von

x4 = xlx; (4.31)

aus (ein TFV 2"‘ ist ein Versuchsplan für 3 Faktoren, aber die Wechselwirkung xix; soll nach Vor-
aussetzung veu hlässigbai sein). Multiplizieren wir (4.31) mit x4, um die definierende Beziehung

I = x1xzx4 (4.32)

und daraus die Vermengungsstrukttu der Schätzungen zu erhalten. Durch Multiplikation mit x0,
x, , . . .‚ x4, xlx; ‚ . . .‚ x3x4 berechnen wir die Vermengungen, wobei wir alle zweifaktoriellen Wechsel-
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Wirkungen mit berücksichtigen wollen.

-Yo = X1X2x4. 9o " 790 + 79x24;

Xi = Xixzxa = X2964: Ö1 "’ 791 ‘i’ 7924»

x2 z‘ x,x§x4 = x1x4, 02 -> 292 + 1914,

X3 = Xxxzxsxm 93 —’ 793 + 191234;

x4 = x1x2xfi= xlxz, 94-» 194 + 19,2,

Xixz = 952x214 = X4, 012 " 7912 + 794: Ü) (433)

X1753 = XiXzX3-X4 = 12x39cm 913 "* i913 + 79234-

X1X4 = fix??? = x2» Q14 * ‘914’+ 792K‘)

X2-X3 = x1x§x3x4 = -X1x3-X4: 923 —’ 7923 + 79134,

X2X4 = X1«\%X§= X1: 924-’ 7924 + 791- (*)

x3x4 = Xxxzxsxi = X1-Xzxsa 034 ’*1934 + 17x23~

Auf die mit (“) versehenen Beziehungen können wir verzichten, diese treten doppelt auf. Der Ansatz
(4.28) besitzt 7 Koeffizienten, der TFV 2"‘ erfordert 8 Versuche. Damit wir die Standardabweichung
a des Versuchsfehlers hinreichend genau schätzen können, führen wir in jedem Punkt des V3 zwei
Versuche durch. Die Komponenten des Beobachtungsvektors in Tabelle 4.6 sind die jeweiligen Mit-
telwerte der beiden Versuche. Wir wollen noch für die Verteilung des zufälligen Fehlers eine Normal-
verteilung voraussetzen und für den Test auf eine hinreichend genaue Beschreibung von 27(x)

durch fi(x, n9) außerdem noch 2Versuche im Punkt (x1, x2 , x3 ‚ x..)T= (0, 0, 0, 0) durchführen (dabei
ergab sich yo = 350,0).

Der in Tabelle 4.6 angegebene Versuchsplan ist dabei durch Randomisation aus dem Plan Vs in
Tabelle 4.2 entstanden unter Benutzung der randomisierten Zahlenfolge

7,6‚8‚5‚3‚2‚4‚1.
Berechnen wir nun aus Tabelle 4.6 Schätzungen der Koeffizienten des Ansatzes (4.28) unter Ver-
wendung des Ausdrucks (4. 19). Es ergeben sich, wenn wir die Versuchsergebnisse (letzte Spalte in Ta-
belle 4.6) mit den Vorzeichen der zum Koeffizient gehörenden Einfiußgröße versehen, folgende
Schätzungen

190 = (296 + 122 + 239 + 586 + 232 + 292 + 539 + 383)/8 = 336,12,

29, = (296 + l22 —— 239 — 586 + 232 + 292 -— 539 — 383)/8 = —l00‚62,

ä, = 38,2, 19, = —2s,3s‚ 49,. = ——9,62,

3,3 = —1,12, 5,3 = 92,12, 33.. = ——33‚62.

Aus den Vermengungen (4.33) entnehmen wir, daß die Schätzungen Ö, jeweils nur mit unwesentlichen,
vernachlässigbaren Koeffizienten vermengt sind. Weiterhin überzeugen wir uns leicht durch einen
entsprechenden Test, daß die Schätzung (9,3 nicht signifikant von null verschieden ist. Bevor wir die

Schätzung z7(x, 0) weiterverwenden können, wollen wir prüfen, ob der Ansatz fi(x, n?) die Wirkungs-
fläche hinreichend genau zu beschreiben vermag. Wir gehen dabei einen etwas anderen Weg als wir
im Abschnitt 4.2. beschrieben haben, da wir keine zusätzlichen Versuche durchführen wollen, die
Differenz aus Anzahl der Freiheitsgrade (Parameter der Verteilung) und Anzahl der Versuche aber
nuril beträgt.

Fügen wir der Tabelle 4.6 eine Spalte mit x,’ hinzu, dann stimmen die Elemente dieser Spalte mit
der Spalte für x9 überein. Da wir 19124 = 0 setzen konnten, ist Ö0 eine vermengte Schätzung für

4
290 + 19,, + + 044 = 0g + Z 19... Andererseits ist der Mittelwert in der Versuchsergebnisse von

l= 1
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Tabelle 4.6

Ver—

such .................... .7?.......................... .. B°°b3°1?tungs-
Nr. x0 g x1 x; x3 x4 = xlx; xlxg x2x3 x3x4 vektor

1 + ä + + + + + + 296
2 + + — + — + — — 122
3 + 1 — — + + —— - + 239
4 + ' — + + — — + — 586
5 + ‘ + + — + ä — — —— 232
6 + 5 + — - — — + + 292
7 + f — —- — + f + + - 539
8 + i — —- — i + - + 383

im Punkt (x, , . . ., x4)T = (O, O, O, 0) durchgeführten Versuchen eine unvermengte Schätzung für 190.
n 4 4

Mit y = 2 ‚v‚/n als Schätzung Ö9 für 190 + 219,. wird durch )7 — yo der Ausdruck 2 19„ geschätzt.
a: l i: 1 I= 1

4

Dann läßt sich die Hypothese Ho: 2 19„ = 0 durch Anwendung des bekannten t-Tests prüfen. Für
i=1

II

das vorliegende Beispiel berechnen wir I: = 2 y‚/8 = 336,12 und mit 7o = 350,0 die Schätzung
z= 1

4 4

J7 — Po = 336,12 — 350,0 = —l3‚88 für 21%,. Da wir die Hypothese Hg: Z19“ = O für ein belie-
l-i <— l= l

biges Signifikanzniveau o; nicht abzulehnen brauchen, können wir den Ansatz (4.28) als hinreichend
gute Beschreibung von 17(x) ansehen. Damit der gesuchte Wärmeleitfähigkeitskoeffizient berechnet
werden kann, müssen wir noch die Rücktransformation zu (4.30) durchführen. Wir erhalten mit den
Beziehungen

x‘,°’ — 0,87 x§°’ — 40
X1 = *1-— , x2 = -‘?—‘ y

0,15 5

x9” — 1,0 x3’ — 250
x3 =e. x4 =j

0,25 so

für die Wirkungsfunktion

77(x, 3) = 336,12 — 100,62x, + 38,12x; — 25,38x3

—9,62x4 + 92,l2x;x3 — 33,62x3x.,.

Bei der Durchführung eines TFV 2"“ sprechen wir wegen 2"“ = 2"/2 auch von

halben Wiederholungen. Für k > 5 sind solche halben Wiederholungen doch häufig
schon zu umfangreich, der Versuchsaufwand ist zu hoch. Da aber viele der unkorre-
lierten Schätzungen eines TFV 2"“ mit oft nur unwesentlichen Wechselwirkungen
vermengt sind, können wir zu noch kleineren Teilen von VFV 2" übergehen. Sind die
Parameter 29.„ ...‚ 19„ eines Ansatzes 270c, a?) zu schätzen, also beispielsweise die Para-
meter in

fi(x, 29) = 00x0 + 01x1 + + 197x-,, (4.34)
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dann gehen wir von einem VFV 2" aus. Für (4.34) würde so ein Plan n = 27 = 128
Versuche verlangen. Den VFV 2" zerlegen wir nun in 2" Teile und betrachten einen
2"-ten Teil als TFV 2"". Da in (4.34) nur acht Parameter zu schätzen sind, zerlegen
wir den VFV 2" in 2‘ = 16 Teile, weil der entstehende TFV 27“ dann nur noch acht
Versuche verlangt. Zur Berechnung der bei dieser Zerlegung auftretenden Vermengun-
gen benötigen wir insgesamt p Generatoren, für einen TFV 27"‘ also p = 4. Die Ver-
mengungen benötigen wir dann, wenn wir festgestellt haben, daß ein Ansatz 770:, z?)

nicht umfangreich genug ist und wir zu einem anderen Ansatz übergehen müssen.
Für den Ansatz (4.34) wählen wir die folgenden vier Beziehungen

xlxz = x4, x,x3 = x5, xzx, = x5, xlxgxa = x7. (4.35)

Aus (4.35) leiten wir die definierende Beziehung

I = x1x2x4 = x1x3x5 = x2x3x6 = x1x2x3x7 (4.36)-

her. Damit wir alle Vermengungen aufdecken können, müssen wir auch noch alle
Produkte der Generatoren (4.36) betrachten, also z. B. I = (x1x3x5) (xzxsxs) =

x,x2x5x6. Bilden wir alle (4) = 6 paarweisen Produkte, alle ( Produkte mit 3
2

Generatoren und das Produkt aller 4 Generatoren, dann hat die vollständige definie-
rende Beziehung dieses TFV 27“‘ die Gestalt

I = x‚x;x4 = x‚x3x5 = x2x3x5 = xlxzxsx, = x2x,x4x5

= x1x3x4x6 = x3x4x7 = x,x2x5x5 = x2x5x7 = x,x5x7 (4.37)

= x¢x5x,-, = x,x4x5x7 = x2x4x5x-, = x3x5x6x7 = x,x2x3x4x5x.;x7.
Auf dem üblichen Weg, also durch eine entsprechende Multiplikation, bestimmen wir
die Vermengungen der Schätzungen. So z. B. für x,

751 = 752754 = 753755 = 751752753756 = 752753757 = 751752753754755 = 753754756

= x,x3x4x7 = x2x5x5 = x1x;x5x7 = x5x7 = x1x4x5x6 = x4x5x6

= 751752754755757 = 751753755755757 = 752753754755756757

gilt also

91 ‘W91 + 7924 + 7-935 + 791235 + 59237 + 1912345 + 7934s

‘l’ 771347 + 1725s + 191257 ‘l’ 7767 + 791456 ‘l’ 77455 (4-38)

+ 7712467 ‘l’ 7713567 + 77234557-

Damit wir diese Schätzung sinnvoll anwenden können, müssen wir uns also davon
überzeugt haben, daß die entsprechenden Wechselwirkungen vernachlässigbar sind.

Pläne mit einer großen Anzahl von Versuchen erfordern bei ihrer Durchführung
viel Zeit. Über einen langen Zeitraum sind aber die Versuchsbedingungen kaum kon-
stant zu halten, sei es durch Alterung der Aggregate, durch Anderung der Eigen-
schaften der Rohstoffe oder durch deren Verbrauch. Würden wir die Versuche in
einer ununterbrochenen Reihenfolge durchführen, dann müßten wir mit einem,
möglicherweise recht großen systematischen Fehler rechnen. Deshalb soll dieser zu-
sätzliche Einfiuß durch eine Blockbildung (vgl. Kapitel 3) erfaßt werden. Um diese
Aufgabe zu lösen, führen wir eine neue diskrete Variable x* in den Ansatz 77(x, ü) ein.
Diese Variable x* soll die Veränderung zwischen den Blocks charakterisieren. Wol-
len wir eincn Versuchsplan in 2" Blocks aufteilen, dann müssen wir q neue Variable
x*, x**, einführen. Beim Aufteilen eines VFV 23 in zwei Blocks identifizieren wir
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die neue Variab1e,x* z. B. dann mit x1x2x3 , wenn die Wechselwirkung 19,23 vernach-
lässigbar ist. Der erste Block enthält dann alle die Versuche eines VFV 23, für die
xlxgx, = x„‚ = +1 gilt, und der zweite Block entsprechend alle Versuche mit
x1x2x3 = x* = -1. Den so erhaltenen Versuchsplan können wir auch als TFV 2““
mit der definierenden Beziehung I = x1x2x_~,x* betrachten und die entsprechenden Ver-
mengungen bestimmen. Dabei sollen keine Wechselwirkungen 191*, 192*, ..., 1912*,
auftreten können. Einzelheiten zur Aufteilung eines VFV 2" in Blocks finden wir
z. B. bei Davies [1].

4.4. Versuchspliine 2. Ordnung

Läßt sich die Wirkungsfläche n(x) nicht hinreichend genau durch ein Polynom
l. Grades in jeder Variablen beschreiben, dann gehen wir zu einem Ansatz durch ein
Polynom 2. Grades über

k k k

"7(Xs '9) = 790950 ‘i’ 2 191351 + 2 flux? ‘l’ 2 äijxlxl‘ (4-39)
1- l i — l j :l1—‘ il<j

Versuchspläne für einen Ansatz der Form (4.39), die wir als Versuchspläne 2. Ordnung
bezeichnen, erfordern, daß jeder Faktor auf mindestens 3 Stufen untersucht werden
kann, damit eine unvermengte Schätzung der Koeffizienten 19„ (i = l, ..., k) möglich
ist. Nur in wenigen Fällen werden wir für die Beschreibung der Wirkungsfläche 17(x)

sofort einen Ansatz der Form (4.39) wählen. Häufiger wird es sein, zuerst eine Appro-
ximation durch ein spezielles Polynom 1. Grades in jeder Variablen vorzunehmen
und nur, wenn sich dieser Ansatz als nicht ausreichend erwiesen hat, werden wir zu

einem Ansatz durch ein Polynom 2. Grades übergehen. Zur Schätzung der Koeffi-
zienten dieses Ansatzes können wir einen VFV 3" verwenden. Dabei ist aber die An-
zahl der Versuche oft unvertretbar groß, außerdem wurden ja bereits Versuche durch-
geführt, die wir gern weiterverwenden wollen (vgl. Forderung 2 in Abschnitt 4.1.).

Erweist sich nach Durchführung eines VFV 2" oder TFV 2"" der Ansatz durch ein
Polynom l. Grades in jeder Variablen als unzureichend zur Beschreibung von 1;(x)‚
dann wollen wir weitere Versuche durchführen, um die Koeffizienten 191, , 2922 , ..., 19k,

des quadratischen Ansatzes schätzen zu können. Den Punkten des durchgeführten
Planes werden neue Punkte hinzugefügt, z. B. die sogenannten Sternpunkte. Wir
können 2k solche Sternpunkte mit den Koordinaten

(x1, ...‚x„) = (0, ...‚O, i ax, 0, ...,0); I= 0, l, ...‚k -1,
\_,_._,

I

finden. Bei der Wahl von ac können wir weitere Forderungen an den Versuchsplan be-
rücksichtigen. Für einen VFV 2" hat wegen FTF = nE„ [vgl. (4.l7)] die Varianzfunk-
tion D’ Y(x) der Schätzung f/(x) = 77(x, (9) die spezielle Form [vgl. (l.29)]

D’Y(x) = a=(1‚ xT)%E„

(4.40)

a2
= 7a + xTx) (4.41)

2

:|q(1+x§+x§+--- +x,“,).
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Dabei haben wir den speziellen Funktionsvektor

f(x)T = (xo.x;,..-,xk) = (1.xT) (4.42)

Verwendet. Den Ausdruck (4.41) können wir wie folgt interpretieren: Die Varianz
der Schätzung l7(x) ist auf allen Kugelschalen x? + xi + ‘l- xi = Q2 mit festem
Radius g konstant. Ein Versuchsplan mit dieser Eigenschaft heißt drehbar. Wir for-
dern nun, daß auch der durch die Sternpunkte erweiterte Plan drehbar ist. Dazu wer-
den wir Aussagen benötigen, unter welchen Bedingungen an die Matrix FTF die Va-
rianzfunktion von der Gestalt (4.41) ist. Bei Box/Hunter [l] und bei Nalimov/Öer-
nova [1] finden wir für Versuchspläne 2. Ordnung die Bedingungen

1. éx},/n = /12, i= 1, (4.43)

2' jgl X’:/n = 3 ‚E! xlzlxlzl/n = 34'4-

3. die ungeraden Momente bis zur 4. Ordnung sind identisch null,
wobei die beliebig wählbaren Konstanten Ä; und 24 noch durch

A: k + 2

eingeschränkt sind (andernfalls ist FTF singulär).
Beschreiben wir nun als Beispiel die Konstruktion eines Versuchsplanes 2. Ord-

nung für k = 3 Einflußfaktoren. Der Ansatz 7'7(x‚ 19) habe also die Form
77(x, 19) = Üoxo + 01x1 + 192x; + 193x, + 011x} (4.46)

+ 2922x§ + 1933x§ + 1‘/‘lzxlxz + 19,3x,x3 + 15‘23x2x3.

Für k = 3 existieren 2k = 6 Sternpunkte mit den Koordinaten .

(w, 0, 0)‚ (0. ac, 0), (0, 0, Dc). (4~47)

(-or. 0, 0). (0, -oc‚ 0)‚ (0, 0‚ -rx)-
Außerdem werden noch n0 weitere Versuche im Zentrum des Versuchsbereiches
(x1 ‚...‚ x„)T = (0,...‚ O) durchgeführt. Dabei beeinfiußt no die statistischen Eigenschaf-
ten des Versuchsplaries V„ (z. B. die Varianz der Parameterschätzungen). Deshalb kön-
nen wir zur Festlegung von no weitere Bedingungen heranziehen (z. B. D-Optimali-
tät‚ vgl. Kapitel 5, und Nalimov [1]).

Ein Versuchsplan, der aus einem VFV 2" oder TFV 2"'” als Kern, aus den Stern-
punkten und den Versuchen im Zentrum des Versuchsbereiches besteht und drehbar
ist, soll zentral zusammengesetzter, drehbarer Versuchsplan heißen. Er erfordert ins-
gesamt

n = 2"" + 2k + no v (4.48)

Versuche. Wählen wir als Stufen der Einflußfaktoren wieder die Niveaus -1 und
+1, dann können wir den Parameter 0c aus der Forderung der Drehbarkeit be-
rechnen. Vzählen wir als Versuchsbereich V eine Hyperkugel mit dem Radius g

= max {\/k, 2"“"’/‘}‚ dann ist cc = 2"“"”“. Für k = 3 wollen wir als Kern einen
VFV 23 verwenden, der Versuchsbereich V sei eine Kugel mit dem Radius
g = max{\/3, 2‘3'°’/‘} = \/3, die Sternpunkte sind gegeben durch o: = 23l‘ = 1,682.

(4.45)



4.5. Aufsuchen optimaler Bedingungen (Methode von Box und Wilson) 75

Die günstigste Anzahl no VGIl Versuchen im Zentrum beträgt no = 6. Somit ergibt sich
der in Tabelle 4.7 angegebene Versuchsplan zur unvermengten Schätzung der Ko-
effizienten des Ansatzes (4.46). Die Schätzungen sind aber nicht mehr unkorreliert,
es sind cov(90, 0,,-) und cov(Q,-,1, Q“) von null verschieden.

Tabelle 4.7

Ver-
such
Nr. Xg x, X1 x3 x21 x22 xä 23x; xlx; xix;

1 1 -1 -1 -1 1 1 1 1 1 1

2 1 1 -1 -1 1 1 1 -1 -1 1

3 1 -1 1 -1 1 1 1 -1 1 -1 a.
4 1 1 1 -1 1 1 1 1 -1 -1 >
5 1 -1 -1 1 1 1 1 1 -1 -1 ä
6 1 1 -1 1 1 1 1 —1 1 -1 5
7 1 -1 1 1 1 1 1 —1 —1 1 g
3 1 1 1 1 1 1 1 1 1 1

9 1 —1,682 o o 2,323 o o o o o Q

1o 1 1,682 o o 2,828 o o 0 o o E
11 1 o —1,532 o o 2,323 o o o o E

12 1 0 1,682 o o 2,828 0 o o o ä
13 1 0 0 -1,682 o o 2,828 0 o o 2
14 1 0 0 1,682 o o 2,828 o 0 o "‘

15 1 0 o o o o o o o o
16 1 0 0 o 0 0 o 0 ‚ 0 0 „g g .3

17 1 o o 0 o o 0 0 0 o 3 E g
13 1 0 o 0 0 0 o o o o g a g „

19 1 o o o o 0 o o o o g g g f’:
2o 1 o o o o o o o o o > N > 2

Veranschaulichen wir uns die Lage der Versuchspunkte im R3, dann erhalten wir
das folgende Bild 4.3. .

Die Punkte des VFV 23 sind in Bild 4.3 durch Kreise, die Sternpunkte durch Kreuze
und das Zentrum des Versuchsbereiches durch einen vollen Kreis dargestellt. Außer
der hier vorgestellten Möglichkeit gibt es noch andere Konstruktionsprinzipien für
Versuchspläne 2. Ordnung. So können wir z. B. die Versuchspunkte auf mehreren
Kugelschalen anordnen, oder wir konstruieren nichtdrehbare, zentral zusammen-

gesetzte Pläne 2. Ordnung. Nähere Ausführungen zu dieser Problematik finden wir
z. B. bei Bandemer/Bellmann/Jung/Richter [1].

4.5. Aufsuchen optimaler Bedingungen (Methode von Box und Wilson)

Bei der Lösung praktischer Aufgabenstellungen interessiert sehr häufig, unter wel-
chen Bedingungen die Durchführung eines bestimmten Prozesses optimal ist. So
suchen wir bei einem chemischen Prozeß z. B. einen bestimmten Temperaturbereich,
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/
‚x1

Bild 4.3

eine Reaktionszeit, bestimmte Druck- oder Konzentrationswerte, so daß ein Quali-
tätsmerkmal des Endproduktes ein Maximum annimmt. Mathematisch formuliert
suchen wir ein Maximum der Wirkungsfiäche 17(x) in einem festgelegten Versuchs-
bereich V. Wenn die Funktion 77(x) bekannt ist, dann geschieht die Suche nach einem
Optimum mit bekannten Verfahren der Optimierung (vgl. Bd. 14 und Bd. 15). Ist
die Wirkungsfiäche unbekannt, werden wir eine Schätzung 'r7(x, G) mit einem geeig-
neten Ansatz berechnen. Dabei wird.für eine hinreichende Genauigkeit im gesamten
Definitionsbereich in der Regel eine große Anzahl von Versuchen erforderlich sein,
zumal dann, wenn ein Polynom 2. oder höheren Grades verwendet werden muß. Ein
von Box/Wilson [1] vorgeschlagencs Verfahren erlaubt ein Aufsuchen optimaler Be-
dingungen mit relativ wenig Versuchen. Dazu muß die Behandlung der praktischen
Aufgabenstellung die Anwendung eines Sequentialverfahrens erlauben, die Varianz
o2 des Versuchsfehlers muß hinreichend klein sein, die Wirkungsfläche soll im inter-
essierenden Bereich Vlokal linear approximierbar sein, und ein lokales Maximum von

17(x) soll zugleich ein globales Maximum sein. Der Grundgedanke des Verfahrens be-
steht nun darin, zunächst mit wenig Versuchen einen kleinen Teil der Wirkungsfläche
durch ein spezielles Polynom (meist 1. Grades) zu beschreiben. Ist diese Beschreibung
in dem gewünschten kleinen Teilgebiet sinnvoll (das kann durch einen Test geprüft
werden, vgl. Abschnitt 4.2.), dann gehen wir in Gradientenrichtung (Richtung des

steilsten Anstieges) auf }'(x) = fi(x, Ö) solange weiter, bis wir ein Maximum der Reali-
sierungen der Zielgröße in dieser Richtung gefunden haben Dieser Versuchspunkt
wird nun Zentrum eines neuen Teilgebietes von V, in dem wir wieder r)(x) durch ein
spezielles Polynom zu beschreiben versuchen. Ist diese Beschreibung auch noch sinn-
voll, dann gehen wir in Richtung des Gradienten von 77(x‚ 5) zu einem neuen maxi-
malen Wert, dem Zentrum des nächsten Teilgebietes, über. Diese Vorgehensweise
können wir solange fortsetzen, bis das gewählte spezielle Polynom zur Beschreibung
von 17(x) nicht mehr ausreicht und wir auf andere Ansätze zurückgreifen müssen. Das
Gebiet, in dem das spezielle Polynom keine sinnvolle Beschreibung von n(x) liefert,
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wird als fast-stationärer Gebiet bezeichnet. In diesem Gebiet wird nun ein Versuchs-
plan höherer Ordnung (meist 2. Ordnung) zur Schätzung von n(x) herangezogen (der
bisherige Versuehsplan kann dabei als Kern weiterverwendet werden, vgl. Abschnitt
4.4.). Selten wird es auch notwendig sein, einen Versuchsplan 3. Ordnung zu ver-
wenden.

Die Vorgehensweise von Box/Wilson bewirkt, daß die meisten Versuche im Gebiet
des Maximums der Wirkungsfläche durchgeführt werden. Bei dem so. gefundenen
Maximum handelt es sich jedoch meist nur um ein relatives Maximum. Davies [1]
weist aber darauf hin, daß z. B. bei chemischen Prozessen das lokale und das globale
Maximum in der Regel zusammenfallen.

Als Gradient einer Funktion g(x) bezeichnet man bekanntlich den Vektor der par-
tiellen Ableitungen nach den einzelnen Variablen

vg(x) = (Öfff) (4.49)

Berechnen wir nun den Gradient einer Realisierung der Schätzung Y(x) des Ansatzes
77(x, v9), wobei ein Polynom 1. Grades als Ansatz verwendet werden soll, dann er-

halten wir mit (4.49)

Vi = (z91,...,19;,)T. (4.50)

Also ist eine Bewegung in Gradientenrichtung gleichbedeutend damit, daß die Va-
riablen x1 ‚ ..., xk proportional zu den Parameterschätzungen geändert werden müssen.
Die Festlegung der Änderung der Variablen wird mit einer sogenannten Einheit vor-
genommen. Ist V‘°’ der natürliche Versuchsbereich, gegeben durch das Parallelepiped

a,- g x?” g b,-, i = 1, ...,k,

dann wird die der Änderung der Variablen xi (i = 1, ..., k) vom Niveau‘0 auf das Ni-
veau 1 ‘entsprechende Änderung der natürlichen Variablen xf-°’ als Einheit festgelegt.
Diese Anderung erhalten wir durch (b; — a‚)/2 (i = 1, ..., k). Entsprechend den
praktischen Erfordernissen müssen wir nun bei der Behandlung des Problems die
Schrittlänge einer beliebigen natürlichen Variablen xj” fest wählen, um damit dann
den Proportionalitätsfaktor w für die Anderung der Variablen berechnen zu können.
Die Schrittlängen der Variablen x?” ergeben sich dann durch Multiplikation des Aus-
drucks (b,- — a‚) 29‚/2 mit dem Proportionalitätsfaktor w.

Das Erreichen des fast-stationären Gebietes erkennen wir nun daran, daß die
Schätzungen der Hauptwirkungen nicht mehr groß sind im Verhältnis zu den Schät-
zungen gewisser Wechselwirkungen, oder daß die Meßwerte in Gradientenrichtung
sich deutlich nichtlinear ändern. Erweisen sich die Schätzungen der Hauptwirkungen
(d. h. der Anstieg von 77(x‚ 29)) als nicht mehr signifikant von null verschieden, dann
haben wir die Umgebung des Maximums der Wirkungsfläche erreicht und müssen die
weiteren Untersuchungen mit einem Versuchsplan höherer Ordnung vornehmen.

Beipiel4.2 (l. Etappe des Verfahrens von Box/Wilson): Für die Extraktion von Mikromengen
Hafnium durch Tributylphosphat sind die optimalen Prozeßbedingungen zu bestimmen (vgl. Komis-
sarova/Granovskij/Prutkova/Adler/Nalimov/Spicyn [1]). Als Zielgröße betrachten wir den Vertei-
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lungskoeffizienten des Hafniums, der von vier Einflußgrößen

x‘1°’ — Konzentration der wasserfreien Salpetersäure in der wäßrigen Ausgangslösung
(in Normalprozenten),

x§°’ H Konzentration von Tributylphosphat im o—Xylol (in Volumenprozenten),

x§°’ — Verhältnis der Phasen,

x3" - Extraktionszeit (in Minuten),

abhängt. Für die erste Etappe des Verfahrens wollen wir einen TFV 2“‘ mit der definierenden Be-
ziehung I = x1x;x3x4 verwenden. Mit diesem Versuchsplan lassen sich 8 Koeffizienten schätzen.
Als Ansatz für n(x) wählen wir das spezielle Polynom 1. Grades _

f/(x, 29) = 190250 + 191x; + 292x; + 03x3 + 34x4

+ öuxlxg + z913x‚x3 + t9„x‚x4. (4.51)

Die Schätzungen der Parameter sind wie folgt vermengt

Öl -->191, 92 +192, 93 +193. Ö4 a 194,

6)„ —> 19„ + a“, 0„ .1 19,3 + 1924, 0,4» 19,. + 19,3. (4.52)

Wir beginnen unsere Rechnung mit dem Anfangsversuchsbereich

V‘1’:5 g x5“) g 9, 4o g 11;“ g 60,

0,2 g 215°’ g 0,4, 2 g x30’ g 12. (4.53)

Die in der Tabelle 4.8 enthaltenen Beobachtungswerte sind jeweils wieder Mittelwerte aus je zwei
Beobachtungen in jedem Versuchspunkt. Die Schätzungen ‚ (i = 1, ..., 4) wurden unter Verwen-
dung yon (4.19) berechnet. Durch praktische Versuchsvorschriften sei in diesem Beispiel eine Ände-
rung der Variablen x5“ um jeweils 3 Einheiten (Volurnenprozente) vorgegeben. Würden wir über die
Tabelle 4.8 hinaus einen 12. Versuch durchführen, dann könnten wir feststellen, daß wir bereits beim
11. Versuch den Maximalwert der Realisierung der Zielgröße erreicht haben. Daher wäre also der
11. Versuchspunkt Zentrum des Teilversuchsbereiches V“), in dem die Untersuchungen fortzusetzen
wären. Wir überzeugen uns aber leicht davon, daß wir mit dem 11. Punkt bereits das fast-stationäre
Gebiet erreichvhaben. Zur weiteren Untersuchung müßten wir nun ein Polynom 2. Grades heran-
ziehen, das wollen wir aber nicht mehr ausführen.

Haben wir durch einen Versuchsplan 2. oder höherer Ordnung im fast-stationären
Gebiet eine hinreichend gute Beschreibung der Wirkungsfläche n(x) erhalten, dann
können wir die optimalen Versuchsbedingungen bestimmen. Dazu untersuchen wir
den Typ der Wirkungsfiäche (wir identifizieren nach der Schätzung die unbekannte
Wirkungsfläche mit v7(x, t9), d. h., wir bringen 17(x, 19) durch eine Hauptachsentrans—
formation auf die Normalform einer Fläche 2. oder höherer Ordnung und bestimmen
den optimalen Punkt dieser Fläche. Eine ausführliche Darstellung und weitere Bei-
spiele zu diesem Vorgehen finden wir bei Box/Wilson [1], Davies [1] und Nalimov/
Öernova [1].

4.6. Zusammenfassung

Für eine Schätzung der Wirkungsfunktion sollen als Ansätze ;7(x, u9)Po1ynome vom Grad d und
Polynome vom Grad a’ in jeder Variablen (vgl. (1 .16) und (l .l8)) herangezogen werden. Die Einflußfak-
toren x, (i = 1, ...‚ k) können dabei im Versuchsbereich Vjeweils nur 1„ (i = 1, ...‚ k;j = 1, ...‚p‚)
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Tabelle 4.8

Beobachtungs-
x‘,°” x‘2°’ x‘3°’ x ‘f’ ergebnisse

unteres Niveau (x,- = — 1) 5,0 40,0 0,2 2,0
Nullniveau (x, = 0) 7,0 50,0 0,3 7,0
oberes Niveau (x,- = 1) 9,0 60,0 0,4 12,0
Einheit (b, — a,)/2 = e, 2,0 10,0 0,1 5,0

Versuch Nr. x1 x2 x3 x4
1 . — — — — 0,2970
2 + — + - 5,3650
3 — - + + 0,3995
4 — + — + 0,6770
5 + + — ~ 21,4500
6 + — — + 8,9300
7 — + + — 0,3505
8 + + + + 16,2500

9,- 6,284 2,967 — 1,124 —0,151
5,5, 12,568 29,57 —0‚112 —0,75s
vorgeschriebene
Änderung A 3

Proportionalitäts-
faktor w

(A e M2292) 0,101
we;19,- 1,269 3 - 0,011 — 0,076
Rundung der
Schrittweite 1,3 3 —0,0l -0,1

Versuch Nr. 9

1. Schritt 8,3 53 0,29 6,9 44,0000
Nullniveau + Schrittweite

Versuch Nr. 10

2. Schritt 9,6 56 0,28 6,8 160,0
Niveau 9. Versuch
+ Schrittweite

Versuch Nr. 11

3. Schritt 10,9 59 0,27 6,7 303,3
Niveau 10. Versuch
+ Schrittweite

diskrete Werte annehmen, die wir als Stufen oder Niveaus bezeichnen. Damit eine eindeutige Schät-
zung der Parameter überhaupt möglich ist, müssen mindestens so viele Versuche durchgeführt wer-

den, wie ein Ansatz unbekannte Parameter besitzt. Außerdem muß bei einem Ansatz durch ein Poly-
nom vom Grade d in jeder Variablen dieselbe auf mindestens (d + 1) Stufen vorkommen. Weiter-
hin soll ein Versuchsplan noch die Forderungen

1. in H sei eine hinreichend genaue Schätzung möglich,

2. durch einen Test sei nachprüfbar, ob die Schätzung fi(x, Ö) hinreichend genaufür n(x) ist, andern-
falls soll der Versuchsplan als Kern weiterverwendet werden,

3. eine Blockbildung sei möglich,
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erfüllen. Für einen Ansatz fi,(x, |9) durch ein Polynom vom Grad 1 in jeder Variablen betrachten wir
die k Faktoren auf 2 Stufen, d. h. 2" Versuche zur Schätzung der 2" Koeffizienten. Durch weitere
Versuche können wir durch den bekannten F-Test prüfen, ob der Ansatz zur Beschreibung von n(x)
ausreicht. Falls bekannt ist, daß gewisse Koeffizienten des Ansatzes 7710:, |9) null sind, lassen sich
aus VFV 2" Teilpläne TFV 2""’ auswählen, mit denen die verbleibenden Koeffizienten geschätzt
werden können. Für die Schätzung der Koeffizienten von fi,(x, |9) ergeben sich dabei Vermen-
gungsstrukturen. Fürein Polynom Z. Grades 1720:, |9) als Ansatz werden für jede Variable als dritte
Stufe Sternpunkte gewählt, so daß der sich aus einem VFV 2" ergebende Plan drehbar wird,
d. h. D’ }7(x) = g([g]), wobei g der Abstand eines Punktes einer Kugeloberfläche vom Koordinaten-
ursprung ist. Anwendung finden die Pläne z. B. bei einem Verfahren von Box und Wilson zum Auf-
suchen eines optimalen Wertes von 1;(x). Dabei beginnen wir in einem kleinen Teilgebiet und nä-
hern 17(x) durch ein Polynom 1. Grades. Falls dieses zur Beschreibung ausreicht (Test), gehen wir
in Richtung des steilsten Anstiegs (Gradient von |7(x, 5)) bis zum größten Wert in dieser Richtung
vorwärts und beschreiben 77(x) im Teilgebiet um diesen Wert wieder durch ein Polynom 1. Grades,
usw. In dieser Weise gehen wir solange vorwärts, wie ein Polynom 1. Grades zur Beschreibung aus-

reicht’. Andernfalls gehen wir zu einem Polynom 2. Grades über und bestimmen im damit erreich-
ten Teilgebiet die Extrema der Schätzung von fi;(x, |9).



5. Optimale Versuchsplanung für die Schätzung im
Regressionsmodell

5.1. Einleitung und Problemstellung

Wie wir bereits in Kapitel l gesehen haben, besteht die Aufgabe der Versuchs-
planung im linearen Regressionsmodell darin, vor der Durchführung von Versuchen
die zu verwendenden Meßstellen auszuwählen, zu planen. Zur Schätzung der unbe-
kannten Koeffizienten des Ansatzes 77(x, z?) wählen wir stets die Methode der klein-
sten Quadrate. Ein vorgegebener Versuchsplan V„ muß dabei gewisse Eigenschaften
besitzen, damit die Schätzmethode überhaupt angewendet werden kann. Können wir
beispielsweise zur Schätzung der Koeffizienten 190 und 191 eines linearen Ansatzes der
Form 77(x, i?) = 190 + 791x Versuche in einem Versuchsbereich V = [a, b] durch-
führen, dann müssen wir mindestens zwei verschiedene Punkte in Vauswählen, damit
190 und 191 eindeutig geschätzt werden können. So ist es z. B. möglich, n/2 Versuche
bei x = a und n/2 Versuche bei x = b durchzuführen. Aber auch jede andere An-
ordnung der n Versuchspunkte, also z. B. auch die äquidistante Anordnung xi = a,
x2 z a + (b — a)/(n — 1)‚x3 = a + 2(1) — a)/(n — l), ...,x„ = b, liefert einen mög-
lichen Versuchsplan zur Schätzung von 190 und 01 .

Bei einem gegebenen Versuchsplan, bei festem a2 und n erhalten wir durch die Me-
thode der kleinsten Quadrate eine beste, lineare, erwartungstreue Schätzung. Gilt für
die Kovarianzmatrix des Stichprobenvektors By = ¢72E,,, dann erfüllt die Kovarianz-
matrix des nach der MkQ geschätzten Parametervektors die Beziehung

xTBgx g xTBgx (5.1)

für alle x e R", wobei B5 die Kovarianzmatrix einer beliebigen linearen, erwartungs-
treuen Schätzung ist. Diese Aussage wird in dem bekannten Theorem von Gauß-
Markow bewiesen (vgl. z. B. Scheffe [l]). Gilt für zwei MatrizenA und B der Ordnung
k x k für alle x e R" die Beziehung XTAX g XTBX, dann ist das gleichbedeutend mit
xT(B — A)x g O. Das heißt aber, daß B — A eine positiv semidefinite Matrix ist (vgl.
Bd. 13), und wir führen durch die Schreibweise B g A eine Halbordnung für Matri-
zen im Sinne dieser positiven Semidefinitheit ein.

Besitzt der Regressionsansatz 77(x, 19) nur einen unbekannten Koeffizienten‚ dann
ergibt sich aus (5.1) die Beziehung

D29 g D25). ’ (5.2)

Durch eine Planung der durchzuführenden Versuche wollen wir erreichen, daß die
"Größen auf der linken Seite von (5.1) bzw. (5.2) für die MkQ weiter beeinflußt (d. h.
minimiert) werden. Für den Ansatz 190 + 191x bedeutet das, wir versuchen die Varian-
zen der Parameterschätzungen [vgl. (l.35)]

U’ i x?
D290 = i=1

n ‘ä (x, — 3?)‘ (5.3)

und

D291 =L
i?! (x1 — 3-‘):

6 Bandemer, Versuchsplanung
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durch eine geeignete Wahl der Versuchspunkte x1, ..., x„ zu verkleinern. Da die
Schätzungen 0° und Ö1 nicht unabhängig voneinander sind [vgl. (1.35)], können wir
im allgemeinen zwei Versuchspläne zur Schätzung mehrerer Parameter nicht einfach
durch die dazugehörigen Varianzausdrücke vergleichen, sondern benötigen geeignete
Optimalitätskriterien.

5.2. Konkrete und diskrete Versuchspläne

Wie wir bereits in Kapitel 1 festgelegt haben, wollen wir die Gewinnung einer
Realisierung y(x) einer Zufallsgröße Y(x) an einem vorgegebenen Punkt x als Versuch
bezeichnen. Alle Punkte x, in denen solche Realisierungen gewonnen werden können,
fassen wir zum Versuchsbereich V zusammen. Vielfach interessiert aber die Wirkungs-
fiäche 17(x) gerade für solche Punkte x, in denen wir keine (oder noch keine) Versuche
durchführen können. Deshalb bezeichnen wir alle Punkte x, in denen Schätzungen
der Parameter 29. bzw. der Wirkungsfläche 1)(x) interessieren, als Prognosebereich H.
Selbstverständlich müssen 17(x) und auch 77(x, ü) sowohl über V als auch über H defi-
niert sein. Folgende Relationen zwischen Versuchs- und Prognosebereich sind von

besonderem Interesse bei der Behandlung praktischer Problemstellungen

V=H,VcH,VnH=l2J. ' (5.4)

Eine Definition eines konkreten Versuchsplanes wurde bereits im Kapitel 1 (vgl. Def.
1.1) gegeben. Unter einer Durchführung eines konkreten Versuchsplanes wollen wir
die Gewinnung von je einer Realisierung der Zielgröße Y(x) an den Punkten x1 ‚ ..., x„
des Planes V„ verstehen. Dabei sind die Punkte xi (i = l, ..., n) nicht notwendig von-

einander verschieden. Für großes n und viele gleiche Punkte xi ist deshalb eine abge-
kürzte Schreibweise, die nur die Punkte des Planes V„ anführt, die voneinander ver-

schieden sind, günstiger. Besitzt der Versuchsplan V„ genau m verschiedene Punkte
x, (i = 1, ..., m), dann bezeichnen wir die Gesamtheit dieser verschiedenen Punkte
als Spektrum S(V„). Zur Festlegung eines konkreten Versuchsplanes V„ gehört dann
nur noch die Angabe der Häufigkeit, mit der die Punkte des Spektrums S( V„) im Plan
V„ auftreten sollen. Ist p, die relative Häufigkeit für den Punkt x„ dann erhalten wir
die Darstellung

V„ = {X"""X’"} = , m. 5.5
. p“ „üpm ‘X1 Pl): l ( )

mit

p, = n‚/n‚ n, e (1, 2, ..., n) und ‘Z1 p, = 1. (5.6)

Die relativen Häufigkeiten pi werden auch als Gewichte der Punkte x, bezeichnet und
sind Vielfache von l /n.

Zur Beurteilung der Genauigkeit einer Schätzung ziehen wir die entsprechenden
Varianzausdrücke für diese Schätzungen heran. Für die Schätzungen 9,, i = I, ..., k,
der Paiameter des Ansatzes fi(x, i?) = f(x)Tn9 [vgl. ( 1.26)] ist das die Kovarianzmatrix
der Schätzung Ö des Parametervektors I9

Ba = «Wm-1 (5.7)
[vgl. (l.28)] und für die Schätzung fi(x‚ Ö) = Y(x) der Wirkungsfunktion [vgl. (l.29‚)]

D’Y(x) = a’f(x)T(FTF)‘1 f(x). (5.8)
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Die Varianzausdrücke (5.7) und (5.8) sind nur über die Matrix FTF durch den Ver-
suchsplan V„ zu beeinflussen. Die Matrix FTF wird also im Weiteren eine bedeutende
Rolle spielen, deshalb führen wir die Bezeichnung ‘

%FTF = M(V,,) ' (5.9)

ein und nennen die Matrix M(V„) auch Informationsmatrix (sind die Beobachtungen
Y(x) normalverteilt, dann entspricht M( V„) der bekannten Fishersehen Informations-
matrix, vgl. z. B. Fisz [1]). MitM(V,,) erhalten wir aus (5.7)

3,; = :—2M“‘(V,) (5.10)

und aus (5.8.)

D‘Y(x) = “Yr T(x)M‘1(V,,)f(x). (5.11)

Für die weiteren Betrachtungen benötigen wir einige Eigenschaften der Matrix M( V„),
die sich aber leicht aus der Struktur von FTF herleiten lassen [vgl. (4.11)].
Verwenden wir für F die Darstellung (1.14), dann erhalten wir

w = I): r(x.)r(x.)*. e (5.12)

Für einen Versuchsplan der Form (5.5) wird somit

FTF = n. r(x.) r<x,>* = n] p. für.) «xm.

Wegen (5.9) läßt sich die Informationsmatrix somit in der Form

Mm = p.r<x.> r<x.)T (5.13)

schreiben. Ein Beispiel erläutere diese Darstellung. l

Ist für den Ansatz fi(x, 0) = 19g + 191x ein Versuehsplan

-1 1

’V„ = {U3 2/3} gegeben, dann ist f(x)T = (1, x).

Für n = 6 schreiben wir für den konkreten Versuchsplan V5 auch V5 = (-1, -1, +1, +1, +1, +1)
und die Matrix FTF [vgl. (4.11)] ist dann

6 2< )2 6
6

wobei z. B. 2 f1(x,)f2(x_,) = 1(—1)+1(—1)+l+1+l+l= 2gilt.
J=1

Für (5.13) erhalten wir mit = 2, pl = I/3, p; = 2/3 für die Informationsmatrix

M(V)— 1 l (1 1) + 2 l (1 1)n “ 3 _l 3 l a

1 1 -1 2 1 1 1 1/3
M(V.. ‘—‘ — + — = ),

3 -1 1 3 1 1 1/3 1

also wegen (5.9) Übereinstimmung der Darstellungen.
6Ü
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Die Informationsmatrix besitzt die folgenden Eigenschaften:

1. M(V„) ist eine positiv semidefinite Matrix (d. h. detM(V„) g 0).

2. Es gilt detM( V„) = 0, wenn das Spektrum S( V„) weniger als r Punkte enthält (ent-
hält S(V„) nur r’ < r Punkte, dann ist RgF g r’ < r und somit detFTF = 0, vgl.
Bd. 13).

3. Für zwei Versuchspläne V„ = (x‘1",..., x2’) und V, = (x‘,”, ..., xi”) gilt als Summe
der Pläne V„„, = (x‘,", ..., xff’, xi”, ...‚ X?) und für die Informationsmatrizen
dann entsprechend

(n + s) M(V,,+,) = nM(V,.) + sM(Vs). (5.14)

Wegen (5.13) läßt sich (5.14) schreiben als

(n + s)M(V„„> = n pflxz) «xm + p; f(x.) r(x.)T

max(m.m’

= El )("P1f(X1)f(Xl)T + S17If(X:)f(Xz)T).

also als Summe von Matrizen. Das zur Erläuterung von (5.13) betrachtete Beispiel
kann für V6 und Vg leicht zur Bestätigung von (5.14) herangezogen werden.

1st für einen festen Versuchsplan V,, die Zufallsgröße Y(x) normalverteilt mit
EY(x) = 1’7(x‚t9) und D2 Y(x) = a’, dann ist auch die Schätzung Ö des Parameter-

vektors 19 normalverteilt, da Ö eine lineare Schätzung ist [vgl. (l.26)]. Die Parameter
dieser r-dimensionalen Normalverteilung sind EÖ = 15‘ und BÖ = a‘(F TF)", die Dich-
tefunktion selbst hat die Gestalt

‚(in = (2n)-"2(dec1;,;)-"2 exp {— ä (ä — 19)TB3(13 — o) (5.15)

Betrachten wir nun die Flächen zweiter Ordnung, die im Exponenten von (5.15) auf-
treten. Es sei

(f9 — n9) TB3(a§ — z?) = co, co — reelle Konst.‚ (5.16)

dann wird durch (5.16) ein Ellipsoid beschrieben, wovon wir uns leicht überzeugen
können, wenn wir (5.16) durch eine Hauptachsentransformation auf die Normalform
bringen (vgl. Bd. 13). Hat co den Wert r + 2, dann sprechen wir von einem Sogenann-
ten Streuungsellipsoid. Im Fall des Ansatzes 17(x‚ t9) = 190 + 191x hat (5.16) die spe-
zielle Gestalt

i ?9o‘19oI1 "M
:

R

l 1

(190 — 19°, 191 — m) = 4. (5.17)
n n

Z xi 275:2 51 *5;
t=1 i=1

Für zwei vorgegebene Realisierungen 190 und 191 ergibt sich im R2 z. B. die Ellipse in
Abb. 5.1.

Bezeichnen wir die Elemente der Kovarianzmatrix B9 mit

„ __ bu I712

Be — (bll b22),
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Ö1 ’ T”

s

Va “o
Bild 5.1

dann lassen sich die in Abbildung 5.1 durch Ziffern bezeichneten Strecken für jed_e

Realisierung 5 durch Elemente von B5 ausdrücken. Es ist bis auf einen Faktor \/co

Strecke 1: \/SpB§ = \/1711 + 1;“,

Strecke 2: JE,
Strecke 3: \/b—„,

Strecke 4: bl;/\/b—11,

Strecke 5: bu/x/IE.
Die Fläche der Ellipse ist bis auf co durch. /detB§ = \/bnbzz — b}, gegeben. Die

Interpretation gewisser Elemente der Kovarianzmatrix B5 im Zusammenhang mit
dem Streuungsellipsoid wird uns später bei der geometrischen Deutung einiger Opti-
malitätskriterien nützlich sein.

Die Gewichte für die einzelnen Punkte des Spektrums waren bisher ganzzahlige
Vielfache von l/n. Für eine bessere Behandlung der Versuchsplanungsproblematik
und eine geschlossene Darstellung der Ergebnisse ist es sinnvoll, auf die konkrete Be-
deutung der Gewichte als relative Häufigkeiten zu verzichten. Vielmehr wollen wir
annehmen, daß die Gewichte p, beliebige Werte aus (0‚1] sind. Wir erhalten damit
einen neuen Ausdruck, den wir als diskreten Versuchrplan E bezeichnen wollen.

s = {"“ = <x.,p,}.":,, 2 p.=1.p.e<o,11. (5.18)
pl a - 4 - 3 pm 1= 1

Es ist E eine Gewichtsfunktion, die jedem Punkt x, (I = 1, ..., m) des Spektrums 5(5)
das Gewicht E(x‚) = p, und jedem Punkt, der nicht zu S(E) gehört, das Gewicht Null
zuordnet. Die Klasse aller dieser Versuchspläne (5.18) ist umfassender, da jeder kon-
krete Versuchsplan V„ der Form (5.5) mit (5.6) ein Spezialfall von (5.18) ist.

Der diskrete Versuchsplan E ist nicht mehr vom Stichprobenumfang n abhängig,
die Informationsmatrix M (E) können wir analog zu (5.14) ausdrücken durch

M(s> = §1p.r(x,>r<x,)T.
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Die Unabhängigkeit eines diskreten Versuchsplanes vom Stichprobenumfang n bringt
gewisse Vorteile bei der Konstruktion optimaler Pläne (vgl. Kiefer [l]). Beschränken
wir uns bei der Optimierung nur auf konkrete Pläne, dann haben wir sehr oft schwie-
rige kombinatorische Probleme zu lösen.

Manchmal ist ein optimaler diskreter Versuchsplan für gewisse Stichprobenum-
fange n bereits ein konkreter Plan. Stets läßt sich jedoch ein diskreter Plan als Nähe-
rung für einen konkreten Plan verwenden, wenn nur der Umfang n hinreichend groß
ist. Falls aber die Aufwendungen für die einzelnen Versuche, also gewisse Versuchs-
kosten bei der Realisierung eines Planes V„, mit in Betracht gezogen werden müssen,
wird häufig die Konstruktion von Versuchsplänen mit kleinem Umfang n von Inter-
esse sein. Dann gibt ein diskreter Plan möglicherweise nur eine sehr grobe Näherung
für einen konkreten Versuchsplan, wir werden also auch spezielle Konstruktionsver-
fahren für optimale konkrete Versuchspläue entwickeln müssen.

5.3. Optimalitätskriterien

Nach der Definition konkreter und diskreter Versuchspläne können wir uns nun

der im Abschnitt 5.1. beschriebenen Aufgabe zuwenden. Die Lage der Versuchspunkte
im Bereich V ist durch einen Versuchsplan V„ bzw. E gegeben. Ausgehend von der
Schätzung nach der Methode der kleinsten Quadrate wollen wir durch eine geeignete
Wahl der Versuchspunkte das Varianzverhalten der Schätzungen noch weiter günstig
beeinflussen. Das Varianzverhalten der Schätzungen wird bei mehr als einem unbe-
kannten Parameter im Ansatz durch die Kovarianzmatrix bzw. durch die Varianz-
funktion charakterisiert. Wir werden deshalb verschiedene Möglichkeiten betrachten,
ein Optimalitätskriterium zu definieren. Als besonders günstig hat es sich erwiesen,
gewisse Funktionale der Kovarianzmatrix zu verwenden. Wegen (5.9) und (5.10)
werden wir die Optimalitätskriterien gleich für die Informationsmatrix M( V„) ein-
führen. Die entsprechende Optimierung erstreckt sich dann bei vorgegebenem n über
eine gegebene Menge V‘°’ von Plänen, meist über die Menge V" aller konkreten Ver-
suchspläne V,„ für die gilt ‘

V" = {V,,|x,e V,j = 1, ..., n; detM(V„) =l= 0}. (5.19)

Die Wahl eines solchen Funktionals Z, das eine Abbildung von M(V„) in den R1
bewirkt (wir werden häufiger direkt M“(V„) benutzen), soll die folgende Eigenschaft
einer isotonen Abbildung besitzen. Wenn im Sinne der in Abschnitt 5.1. eingeführten
Halbordnung positiv semidefiniter Matrizen

M“(V„‘) ä M"(V3) (520)
gilt, dann soll auch die Beziehung

Z(M“(Vä)) ä Z(M“(V?.)) (5-21)

gelten.
Wir wollen nun einige spezielle, praktisch wichtige Funktionale Z angeben und

damit Optimalitätskriterien definieren.

Definition 5.1: Ein konkreter Versuchsplan V: heißt D-optimal, wenn gilt
detM‘1(V‚1‘) = min detM"(V,,). (5.22)

V,,eV"
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Wegen (5.10) entspricht einer Minimierung von detM“(V,,) eine Minimierung von
detBg (bis auf einen konstanten Faktor). Die Elemente der Kovarianzmatrix Bf,
haben dabei bekanntlich die folgende Bedeutung

D10 i = j
B‘ = b "t b = ” ’

9 “ w’ m‘ " {cov(9., 9,), z-+1, m‘ = I, r.

In detBg gehen also nicht nur die Varianzen von 0,, sondern auch die Kovarianzen
von 9,. und 9, (i + j) ein, deshalb heißt detBg auch verallgemeinerte Varianz. Können
wir für den Stichprobenvektor ‘J eine n-dimensionale Normalverteilung voraus-
setzen, dann wird durch einen D-optimalen Versuchsplan gerade das Volumen des

Streuungsellipsoids für 0 minimiert. i

(5.23)

Beispiel 5.1: Als Ansatz für die Wirkungsfunktiom7(x) sei gegeben fi(x, ü) = 190 + 291x. Führen wir
n Versuche an den Punkten x, , ..., x„ durch, erhalten wir mit f(x)T = (1, x) die Matrizen

n n)? "
1 Z x,‘ —m'c

FTF = _ n 2 und (FTF)“ = t=1

„x 151x! "Fax? " (W32 —n)’c n

Wegen (FTF)(FTF)“ = E„ ist det(F TFT‘ = 1 /det FTF und eine Minimierung von det(FTF)“ gleich-
bedeutend mit einer Maximierung von det FTF. Wählen wir V = [-— 1,1], dann ist also

II n

n 2X‚z-n2)'c2=n 2(x,—E)’
i=1 r=1

über V" zu maximieren. Für n = 2 wird

+ 1 + 2
2((x1 — + (X2 — x1 2 x2) ) = 2(xf + xi — x,(x1 + xz)

— x2(x1 + xz) + (Xi + X2)‘/4 + (X1 + xz)’/4) = (xi - x2)’

maximal über V, wenn x1 = —l und x; = +1 gewählt wird. Ein D-optimaler Versuchsplan V; be-
steht also aus je einem Versuch bei -1 und einem Versuch bei + l. Für andere Umfange n geben wir
diesen D-optimalen Plan im Abschnitt 5.4 an.

Es sei Sp der Spuroperator, d. h. SpA = i) an.
¢=1

Definition 5.2: Ein konkreter Versuchsplan V: heißt A-optimal, wenn gilt
SpM“(V,‘,') = min SpM“(V„). (5.24)

VnEV"

Wegen (5.10) wird durch einen optimalen Plan V: ‚ der (5.24) erfüllt, die Spur der Ko-

varianzmatrix B5 minimiert. Aus (5.23) sehen wir aber, daß SpBg = Z D29, gilt,
I: l

eine Minimierung von SpBg also gleichbedeutend ist mit einer Minimierung der
Summe der Varianzen der einzelnen Parameterschätzungen (das ist bis auf einen kon-
stanten Faktor die mittlere Varianz). Genügt der Beobachtungsvektor 93/ einer n-di-
mensionalen Normalverteilung, dann wird durch V: gemäß (5.24) die mittlere Halb-
achsenlänge des Streuungsellipsoides minimiert (vgl. Bild 5.1).

Es sei Ä„‚„(M“(V„)) der größte Eigenwert der Matrix M“(V‚.).
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Definition 5.3: Ein konkreter Versuchsplan V: heißt E-optimal, wenn gilt

lmax(M"(VZ‘)) = ‘fnitfln l...ax(M"(V..))- (5.25)

Wegen (5.10) wird durch V: gemäß (5.25) der größte Eigenwert der Kovarianzmatrix
B5 minimiert. Dieser größte Eigenwert }...,.,(B§) ist eine obere Schranke für die größte
Varianz einer Parameterschätzung 0„ also wird durch V: eine obere Schranke für
die größte Varianz D29, minimiert. Bei n-dimensional normalverteiltem Beobach-
tungsVektor‘J entspricht das gerade der Minimierung der größten Halbachse des
Streuungsellipsoides.

Definition 5.4: Ein konkreter Versuchsplan V: heißt C-optimal bezüglich c, wenn für
einen vorgegebenen Vektor c = (cl , ...‚ c‚)T gilt

cTM“(V,‘f) c = min cTM“(V,,) c. (5.26)
V„eV'I

I‘

Ist eine Linearkombination Z an‘); = c T19 der Parameterfl, (i = 1, ..., r) von Interesse,
l = 1

dann ergibt sich durch cTÖ eine Schätzung dieser Linearkombination. Die Varianz
für cTQ ist mit (5.10) gegeben durch

A 2

D2(cT@) = cTB§c = “T cTM-1(V,, c. (5.27)

Also wird durch einen Versuchsplan V3, der (5.26) erfüllt, die Varianz der Schätzung
einer Linearkombination der Parameter minimiert. Wählen wir für c speziell c =

(l, 0, ..., 0)T, dann geht (5.26) über in

m‘“’(V‚f) = min m‘“’(V„ ‚ (5.28)
vnevn '

wobei m‘“’(V,,) das Element der ersten Zeile und ersten Spalte von M"(V,,) ist. We-
gen (5.10) und (5.23) ist (5.28) gleichbedeutend (bis auf einen hier nicht interessieren-
den konstanten Faktor) mit l

Blau/x) = min D291(V„). (5.29)
V‚.eV"

Durch eine spezielle Wahl des Vektors c lassen sich also gewünschte Linearkombina-
tionen der Parameterschätzungen bezüglich ihrer Varianz minimieren.

Die durch die Definitionen 5.1-5.4 gegebenen Optimalitätskriterien beziehen sich
alle auf eine Schätzung des Parametervektors 19. Vielfach sind aber Aussagen über die
Wirkungsfiäche n(x) selbst notwendig, dazu soll die Schätzung 77(x‚ 0) fiber dem Pro-
gnosebereich H bezüglich der Varianzfunktion (5.11) durch die Wahl eines Versuchs-
planes beeinflußt werden. Auf diese Weise gelangen wir zu den folgenden beiden
Optimalitätskriterien.

Definition 5.5: Ein konkreter Versuchsplan V: heißt G-optimal, wenn gilt

max f T(x) M“(V,‘)‘) f(x) = min max f(x) TM“(V,,) f(x). (5.30)
xeH V..eV" xeH

Durch Vf wird hierbei der über H maximale Wert der Varianzfunktion D’ Y(x) mini-
miert.
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Beispiel 5.2: Für einen Ansatz fi(x‚ ü) = 190 + 291x ist die Matrix
0.2 n

BÖ = eng- Ex? — n)?
!= 1

i= 1 — n)’: n

[vg]. auch (1.35)) Kovarianzmatrix des Schätzvektors 6. Mit fT(x) = (1, x) erhalten wir für die Va-
rianzfunktion

A a2 n

D’ Y(x) =gi- ( Z x,’ — Znix + nxz) . (5.31)

n 2 x,’ — n2)?’ ‘=1
i= l

Der Prognosebereich sei H = [-1, l], dann ermitteln wir max D2 fix) durch eine Untersuchung der

Parabel nx’ — 2n2‘cx + ifnlxf = c. Der Abszissenwert des Scheitelpunktes dieser Parabel liegt bei

x0 = i, das Maximum der Parabel wird über H in den Randpunkten von H angenommen. Es ist

Dzfi- 1), wenn 2‘: > 0,

max D2)7(x) = D2?(1), wenn x < o, (5.32)

_ “H D2f'(—1)= D2Y(1),wenn x = o,

Für X = 0 ist wegen (5.30) somit der Ausdruck

1 1
+ _ (5.33)

n

0-2 ll -

D2Y(1)=—T—(n + 2 =02 n

n z xi, i: 1 Z xi:

i= 1 i: 1

über der Menge V" der konkreten Versuchspläne zu minimieren.

Definition 5.6: Ein konkreter Versuchsplan V: heißt I-optimal bezüglich p(x), wenn für
eine bekannte, vorgegebene Gewichtsfunktion p(x) mit f p(x) dx = l gilt

H

fr(x)TM-1(V,:)r(x)p(x) dx =1/min _|'f(x)TM-1(V„)r(x)p(x) dx. (5.34)
H n67" H

Mit anderen Worten wird durch einen I-optimalen Versuchsplan die mit p(x) gewich-
tete Varianz der Schätzung Y(x) für die Wirkungsfläche n(x) über einem Prognose-
bereich H minimiert.

Einige andere Optimalitätskriterien für die Schätzung von 19 und von n(x) finden
_ wir z. B. in Bandemer/Bellmann/Jung/Richter [1]. Viele Optimalitätskriterien lassen

sich bezüglich ihrer Eigenschaften zusammenfassen, wenn wir direkt ein Funktional Z
mit der Eigenschaft (5.20) und (5.21) betrachten. Ist dieses Funktional linear, dann
können wir allgemeine Aussagen über solche ‘Optimalitätskriterien erhalten (vgl. dazu
z. B. Fedorov [l]).

Die Matrix M(V„), die in den Optimalitätskriterien auftritt, wird mit den Funk-
tionen f,(x) (i = 1, ‚.., r) des Ansatzes 77(x‚ 19) gebildet. Folglich ist ein mit M( V„) er-
haltener optimaler Versuchsplan V: in der Regel auch nur für den gegebenen Ansatz
optimal. Für einen festen Ansatz und für einen festen Stichprobenumfang n sind die
optimalen Versuchspläne für ein bestimmtes Optimalitätskriterium nicht eindeutig
bestimmt. Dabei sollen Versuchspläne, die sich nur in der Reihenfolge ihrer Punkte
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unterscheiden, als gleich angesehen werden. Um aus der Menge der optimalen Ver-
suchspläne, die alle den gleichen minimalen Funktionalwert der Informationsmatrix
besitzen, einen auszuwählen, können wir ein weiteres Kriterium, z. B. die Versuchs-
kosten, heranziehen. Bei den beschriebenen Optimierungsaufgaben wurde der Um-
fang der Versuchspläne stets festgehalten, es ist aber offensichtlich, daß wir für ver-

schiedene n auch im allgemeinen verschiedene Versuchspläne zu erwarten haben.
Wollen wir nun Optimalitätskriterien zur Auswahl eines optimalen diskreten Ver-

suchsplanes 5* konstruieren, dann können wir völlig analog vorgehen. Dabei hängt
die Informationsmatrix nun vom diskreten Plan ab, sie hat also die Gestalt (5.19). Die
Optimierung ist folglich über eine Menge .E"°’ der diskreten Pläne, meist über

E = {e15 = <x.,p.>r.1, = 1,1». e (0.11, detM<5> + o} (5.35)

zu erstrecken. Wir wollen dann einen diskreten'Versuchsp1an 5* D-optimal nennen,
wenn gilt

detM“(£"‘) = min detM"(£). (5.36)
GEE

In der gleichen Weise lassen sich alle hier definierten Optimalitätskriterien für diskrete
Versuchspläne formulieren.

5.4. G- und D-optimale Versuchspläne

in diesem Abschnitt werden wir uns mit der Konstruktion von D- und G-optimalen
Versuchsplänen beschäftigen. Dabei werden die diskreten Versuchspläne E im Vorder-
grund stehen, da dafür bereits eine Reihe von Resultaten erzielt worden ist. Wesent-
liche Grundlage für die weiteren Betrachtungen ist ein von Kiefer und Wolfowitz [1]
formulierter Aquivalenzsatz. Es seien i7(x, 19) ein Ansatz der Form fi(x, 29) = 19,fi(x)
+ + 0,f,(x) = f(x)TI9, der Versuchsbereich Veine abgeschlossene und beschränkte
Teilmenge des R" und V = H. Die Beobachtungen Y(x) mögen den Erwartungswert
'r7(x, 29) besitzen, wobei dieser Ansatz wahr sei [vgl. (l.l2)]. Die Kovarianzmatrix des
Beobachtungsvektors sei By = cr2E,,. Dann gilt
Satz 5.1:
l. Die folgenden drei Aussagen sind äquivalent:

a) 6* maximiert detM(§) über E.
b) 5* minimiert mal} f(x) TM“(E) f(x) über E.

c) max f(x)TM‘1E-'*) f(x) = r.
xell

2. Die Menge aller derjenigen Pläne 5*, die diese Aussagen erfüllen, ist konvex und ab-
geschlossen, und M(£*) ist dasselbe für alle 5* aus dieser Menge.
Dieser wichtige Satz besagt also, daß ein diskreter Versuchsplan 5* genau dann D-

optimal ist (vgl. l.a), wenn er G-optimal ist (vgl. l.b). Dabei läßt sich der optimale
Wert des Funktionals durch die Anzahl der Parameter des Ansatzes ausdrücken (vgl.
l.c). Diese Bedingung ist notwendig und hinreichend dafür, daß ein diskreter G-opti-
maler Plan 5* auch D-optimal ist.

Durch ein entsprechendes Beispiel können wir uns jedoch davon überzeugen, daß
dieser Äquivalenzsatz nicht für die Klasse der konkreten Versuchspläne V„ gilt. Für
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den Ansatz 77(x, ü) = 29° + 19,3: und den Versuchsbereich V = H = [-1, 1] ist der
Plan

Vgl‘ = {-1, +1, +1} (5.37)

ein konkreter D-optimaler Versuchsplan, er ist jedoch nicht G—optima1, denn im
Sinne der G-Optimalität ist der Plan

V;"’ = {——l, O, +1} (5.38)

besser; dieser ist G-optimal. Auch die Aussage l.c des Satzes 5.1 braucht für konkrete
G-optimale Versuchspläne nicht erfüllt zu sein. So ist z. B. für den Ansatz i/(x, t9) =

19° + 191x mit einem G-optimalen Plan und mit V = H = [— l, 1]

1. bei geradem n: max f(x)TM"(V,’,") f(x) = 2 und
H

2. bei ungeradem nxzsmax f(x)TM"(V,f) f(x) = 2 + l/(n —— 1).
xeH

Wir wollen nun den Äquivalenzsatz 5.1 zur Konstruktion optimaler Pläne heran-
ziehen (vgl. auch Abschnitt 5.6.). In manchen Fällen können wir direkt aus der Aus-
sage l.c des Satzes 5.1 auf die Informationsmatrix eines diskreten G-optimalen Planes
schließen. Es sei

77(x, z?) = 190 + 29,x1 + + 29,x, » (5.39)

ein wahrer Ansatz für die Wirkungsfunktion im Versuchsbereich

V=H={xi|—1§x,§1,i=1,...,r}. (5.40)

Wegen f(x)T = (1, x1, ..., x‚) ergibt sich sofort

122x f(x)Tf(x) = + xi + + x3) = r + l. (541)

Wenn wir nun M”‘(£) = E,“ setzen dürfen, dann ist (5.41) identisch mit
max f(x) TM"(E) f(x) = r + 1,
xel-I

und die Bedingung l.c wäre erfüllt, d. h., ein diskreter Versuchsplan 5* mit M"1(5*) =

E,“ ist G-optimal. Es läßt sich zeigen, daß es zu jedem Wert r + 1 eine Matrix F so

gibt, daß

%FTF = M(£) = E,“ (5.42)

gilt. Wenn wir eine Matrix F so konstruieren, daß (5.42) erfüllt ist, dann haben wir für
den Ansatz (5.39) und den Versuchsbereich (5.40) einen G- (und D-) optimalen dis-
kreten Plan gefunden. Die Konstruktion einer Matrix, die die Bedingung (5.42) er-

füllt, ist nicht schwierig. So gibt es z. B. Matrizen H„‚ die nur aus den Elementen — 1

und +1 bestehen und für die H„H„T/n = E„ gilt. Diese Matrizen H, heißen Hada-
mard-Matrizen, sie lassen sich für jedes durch 4 teilbare n mit r + 1 g n g 200,
n + 188 konstruieren. Solche Matrizen H„ bzw. Teile solcher Matrizen werden nun

als Matrix F verwendet, damit haben wir diskrete G-optimale Pläne 5* gefunden, die
für ein jeweils entsprechendes n zugleich konkrete Versuchspläne V„ darstellen. Solche
Versuchspläne, die nur aus den Elementen —l und +1 bestehen, traten auch schon
im Kapitel 4 auf und wurden dort als Faktorpläne bezeichnet. Es läßt sich auf diese
Weise für Faktorpläne eine Beziehung zu G-optimalen Versuchsplänen herstellen.
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Wir wollen jedoch für einen Ansatz der Form (5.39) einige Hadamard-Matrizen
angeben für die Schätzung der Parameter 19i, i = 1, ..., r, im Versuchsbereich (5.40).
Für n = 2, 4, 8, 12 erhalten wir, bezeichnen wir —1 mit — und +1 mit +, die Ver-
suchspläne

++ ++++
(+—) ++——

+—+—
+——+

++++++++ ++++++++++++
++++———— +—+—+++———+—
++——++—— +——+—+++———+
++————++ ++——+—+++———
+—+—+—+— +—+——+—+++——
+—+——+—+ +——+——+—+++—
+——++——+ +———+——+—+++
+——+—++— ++———+——+—++

+++———+——+—+
++++———+——+—
+—+++———+——+
++—+++~——+——J

Die mit diesen Hadamard—Matrizen gebildeten Versuchspläne sind auch D-‚ A-
und E-optimal. Wir geben nun ein Beispiel zur Anwendung dieser Hadamard-Matri-
zen als Versuchspläne.

Es sei fi(x, c9) = 19;, + 01x1 + 192x; ein Ansatz für n(x), weiterhin sei V = H = [~ l, 1] und die An-
zahl der Versuche n = 4. Wegen r + 1 = 3 wählen wir den Plan für n = 4 aus und streichen eine
Spalte. Die erste Spalte muß erhalten bleiben, da unser Ansatz 17(x, |9) ein Absolutglied besitzt. Strei-
chen wir also o.B.d.A. die letzte Spalte, dann ist

+ + +

+ + —

F = , 5.43+ _ + < >

.+ “ '-

d. h., ein konkreter G-optimaler Versuchsplan vom Umfang n = 4 erfordert je einen Versuch in den
Punkten V

X1 = (1.1). X2 = (1. -1), X3 =(-1.1). x4 = (-1. -1)-
Der Versuchsplan V,,, der durch (5.43) gegeben ist, ist auch gleichzeitig ein vollständiger faktorieller
Versuchsplan (VFV) vom Typ 22 (vgl. Tab. 4.6).

Das Kriterium der G-Optimalität können wir besonders dann mit Erfolg anwen-
den, wenn es nicht so sehr auf die Genauigkeit der Schätzungen für die einzelnen Para-
meter ankommt, sondern vor allem darauf, daß die geschätzten Funktionswerte Y(x)
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{fir alle x e H möglichst genau sind. Diese Genauigkeit erhalten wir ebenfalls aus dem
Aquivalenzsatz 5.1. Es ist mit (5.11)

max D’ Y(x) = max i; f(x) TM“(5*) f(x),
xeHXEH

und wegen l.c (vgl. Satz 5.1) gilt
z

max D2 Y(x) = 0— r. (5.44)
xeH n

Diese Schranke kann in verschiedenen Fällen auch durch einen konkreten G-opti—
malen Plan erreicht werden. Ist für eine praktische Problemstellung eine zu erreichende
Mindestgenauigkeit co’ vorgegeben, dann ergibt sich aus (5.44) ein Näherungswert
n = r/c für den notwendigen Stichprobenumfang.

Der Äquivalenzsatz von Kiefer und Wolfowitz läßt sich auch noch auf andere Opti-
malitätskriterien übertragen (vgl. Fedorov [2], Kiefer [2]).

Ein diskreter G-optimaler Versuchsplan 5* mit M(E*) = E,“ ist bei Verwendung
des Ansatzes (5.39) auch D-, A- und E-optimal, so eine Übereinstimmung optimaler
Versuchspläne tritt aber nur in wenigen Spezialfallen auf.

Wir wollen nun einige bekannte optimale Versuchspläne zusammenstellen.

r-
n

. Ansatz 77(x, n9) = 290 + 191x, Versuchsbereich V = H = [- 1, 1]. Ein diskreter G-‚ D-, A- und E-
optimaler Versuchsplan ist gegeben durch

s*—{‘1 I} (545)
" 1/2 1/2' _ ‘

Dieser Versuchsplan ist auch C-optimal für cT = (0,1) und I-optimal für p(x) = const.
Ein konkreter G-optimaler Plan vom Umfang n ist
1. falls n gerade

-1 1

V: 2 {I1/2 n/2} ’ (5.46)

2. falls n ungerade

— 1 0 1

Vj," = .

(n — 1)/2 l (n —— l)/2

Ist nun V + H und H = {x,,) ein Prognosepunkt, d. h.‚ ist der Funktionswert von 170x) an der
Stelle x = x* optimal vorherzusagen, dann ist für x, > 1 ein diskreter G-optimaler Plan gegeben
durch

(5.47)

—1 1

5* = x‚„ — 1 x, + 1 . (5.48)

2x, 2x,

."
’ Ansatz 17(x‚ 0) = 19g + 191x + 02x2, Versuchsbereich V = H = [—l‚ 1].

Ein diskreter A-optimaler Versuchsplan hat die Form

s*={_1 0 I} (549)
1/4 1/2 1/4' ‘

Dieser Plan ist auch I-optimal bezüglich p(x) = const und C-optimal bezüglich cT = (0, 0, 1).
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Ein diskreter G- und D-optimaler Versuchsplan ist

—1 0 l
5* = {1/3 1/3 1/3}‘ (550)

Für V =l= H und H = {x,} mit x, > 1 erhalten wir zur optimalen Vorhersage den Plan

-1 o 1

5* = xi — x, 2x: — 2 xi + x, ~ (5-51)

4x:—2 4xi—2 4xi—2
3. Ansatz 17(x, :9) = 190 + 19126 + 2922:2 + + 19,x", Versuchsbereich V = H = [—1,1].

Ein diskreter G- und D-optimaler Versuchsplan gibt den r + 1 Punkten des Spektrums S(E‘) das
Gewicht I/(r + 1)

r = 1 2 i 1,0000

r = 2: i 1,0000 0,0000

r = 3: :t1,0000 10,4472

r = 4: 11,0000 10,6547 0,0000

r = 5: il,0O00 i0,7651 10,2852

r = 6: i1,0000 i0,8302 10,4689 0,0000.

Allgemein können wir feststellen, daß die Punkte des Spektrums eines diskreten G-optimalen Pla-
nes gerade die Nullstellen fro, ..., i, von (1 — x2)L;(x) sind, wobei Lxx) die Ableitung des r-ten
Legendre’schen Polynoms ist. Für r = 2, ..., l0 finden wir diese optimalen Versuchspläne zusam-
men mit den daraus berechneten Matrizen zur Parameterschätzung vertafelt in Dubova/Pckialadze/
Fedorov [l ].
Ein I-optimaler Versuchsplan bezüglich p(x) = const ist gegeben durch

lL71(Xx)| I’

E‘ = J’: , k (5.52)
‘ z lL,"(x,)J .

J = O 1 = 5

wobei 2E, (i = 0, . . .‚ r) die Punkte des Spektrums S(E*) eines G-optimalen Planes sind.
Ein diskreter C-optimaler Plan bezüglich cT = (0, . . .‚ 0,1) ist

-1, x, = cos(j71:/r), 1

6* = J=1.....r—1. . (5-53)

I/2r, l/r, l/2r

Für einen Prognosepunkt x, > l, also für V * H und H = {x‚} ist ein diskreter G-optimaler Plan

5s Q {x,= —cos(j1r/r),p,}jr=0 (5.54)

mit

(5.55,

1:20 IU;(x.5)|

und f

UJO‘) = (x ‘ X0)” (X - 951-1) (X "‘ -X./+1)"' (x ’ xr) (5.56)

(X1 — X0) (X1 '- X,/-1) (X1 “ X/+1)“' (X1 " M) l

Weitere optimale Versuchspläne finden wir z. B. in Bandemer/Bellmann/Jung/Richter [l].
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Wir haben bisher als Versuchsbereich stets das Intervall [— 1,1] gewählt. In prak-
tischen Anwendungsproblemen haben wir es aber sehr oft mit anderen Versuchs-
bereichen zu tun. Von großer Bedeutung ist deshalb die Frage, ob sich die für einen
Versuchsbereich V‘“ = {xii -1 g x,» g 1, i = 1, ..., k} konstruierten optimalen
Versuchspläne auch dann noch als optimale Pläne erweisen, wenn wir zu einem Ver-
suchsbereich Va’ = {z‚ I a, g z, g 17,, i = 1, ...‚ k} übergehen.

Im Versuchsbereich V“) sci der Ansatz fi(x, ü) = f(x)T19 gegeben und 5* =

(x„p,);"_‚ ein bekannter optimaler Versuchsplan. Weiterhin sei im Versuchsbereich V”)
der Ansatz 77(z, 19) = f(z)Tt9 gegeben, und es wird ein optimaler Versuchsplan ge-
sucht. Es existiere zwischen den Versuchsbereichen V”) und V“) eine affine Abbil-
dung z = g(x) so, daß es zu f und g eine reguläre Matrix C gibt, für die für alle
x e V“) gilt

f(g(x)) = Cf(x). - (5.57)

Dann läßt sich durch (5.57) ein diskreter Plan E, = {g(x‚)‚ p‚};:‚ in einfacher Weise
aus 5* berechnen. Für f, gilt nun wegen (5.19)

M(§.) = §111zf(Z:)f(Zz)T = l§m1171Cf(Xt)f(X1)TCT

= C i Pzf(Xx)f(Xz)T CT (5-58)

= CM(£*) CT,
und es ist

f(Z) TM“(E.) f(z) = fix) TC T(CM(£*) C T)“ Cf(X)
= f(x)TM"1(§*) f(x). (5.59)

Aus (5.58) folgt detM(E‚) = (detC)2 detM(£*), d. h. ‘also, daß bei Gültigkeit der Be-
ziehung (5.57) detM(£,) proportional ist zu detM(£*) und damit jeder diskrete (bzw.
auch der entsprechende konkrete) D—optimale Versuchsplan 5* affin—inVariant be-
züglich der Transformation z = g(x) ist. Für V = H sind bei Gültigkeit von (5.57)
auch alle G-optimalen Versuchspläne affin-invariant bezüglich einer Transformation g.

Beispiel 5.3: Es seien 17(x, 0) = 19g + 291x + 191x’ in V“) = [—1,1]und1'1'(z, 0) = 190 + 1912 + fizz’
in V”) = [0,2]. Eine affine Abbildung von V“) auf V") sei durch z = g(x) = x + l gegeben. Dann
gibt es eine Matrix C, für die (5.57) gilt:

f1(z) 1 1 100 1

f(Z)=(f;(z))=(z)=(x+l)=(110)(x)=Cf(x)
f3(z) z’ (x +1)’ l 2 l x’

m“ 1o o

C=(110)-
121

Der Versuchsplan 5* = { I_ l } ist für V = H = [—l,1] ein G-optimaler Plan, dann ist auch
112 1/2

der Versuchsplan

E’ = i” + 1""}in=1= {I72 lizi
für V = H = [0,2] ein G~optimaler Versuchsplan.
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5.5. Ungleichungen

Die Berechnung konkreter optimaler Versuchspläne aus diskreten optimalen Ver-
suchsplänen ist ein schwieriges und noch nicht befriedigend gelöstes Problem. Des-
halb sind Näherungen für konkrete optimale Pläne, die aus diskreten optimalen Plä-
nen berechnet werden, von besonderem Interesse. Um eine solche Näherung beur-
teilen zu können, wollen wir den Funktionalwert des konkreten Planes mit dem
Funktionalwert des diskreten Planes vergleichen. Das führt uns zu Ungleichungen
für die Funktionalwerte der Versuchspläne.

Eine allgemeine Ungleichung wurde von Fedorov [1] aufgestellt. W sei ein Funk-
tional mit den Eigenschaften

W(A + B) g W(A), W(kA) = kW(A), (5.60)

wobei A und B beliebige positiv semidefinite Matrizen sind, dann gilt für die opti-
malen Versuchspläne V3,“ und 5* die Ungleichung

H-Wl
n W<M(s*>> g W(M(V:» g W(M(s*»‚ (5.61)

wobei mit W(M(E*)) = max W(M(§)) und W(M(V,’,")) = i/11a;(n W(M(V,,)) bezeichnet

wurde (m ist die Anzahl der Punkte des Spektrums S(5*)). Für n g m ist diese Un-
gleichung trivial, also nur für n > m interessant. Wählen wir für das Funktional
W(M) = (detM)"", dann können wir für einen konkreten D-optimalen Versuchsplan
die Abschätzung

(" ’ ”’)'detM(5*) g detM(V;‚') g detM(.f*) (5.62)
n

benutzen. Wählen wir dagegen für das Funktional W(M) = min(f(x) TM" f(x))“,
xeV

dann erhalten wir für G-optimale Versuchspläne ' '

max f(x) TM"(§*) f(x) g max f(x)TM-1(V;) f(x) (5.63)
x5 V xe V

é I’!
n _ m Tia; r<x)*M-‘(so f(x).

Außer einem Vergleich eines konkreten optimalen Planes (bzw. einer Näherung dafür)
mit einem diskreten optimalen Plan ist für eine praktische Anwendung oft noch von
großem Nutzen zu wissen, wie weit ein bekannter diskreter Versuchsplan E von dem
entsprechenden optimalen Plan 5* bezüglich des Funktionalwertes entfernt ist. So
einen bekannten Plan E können wir beispielsweise durch eine Vereinfachung eines
optimalen Planes erhalten, oder wir nehmen einen häufig benutzten Plan, den es ein-
zuschätzen gilt. ‚

Für die G-Optimalität ist bei V = H ein solcher Vergleich sehr einfach, können
wir doch die Aussage 1.c des Aquivalenzsatzes von Kiefer und Wolfowitz benutzen
(vgl. Satz 5.1). Für einen G-optimalen Plan 5* gilt bekanntlich

max f(x) TM'1(£*) f(x) = r.
xs V
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Berechnen wir nun die entsprechende Größe für den Plan E, dann können wir aus

dem Unterschied zu r auf eine Güte der Näherung schließen. Ein Vorteil dabei ist
noch, daß der optimale Plan nicht bekannt zu sein braucht. __

Für die Einschätzung eines diskreten D-optimalen Planes läßt sich der Aquivalenz-
satz nicht verwenden. Von Wynn [l] wurde folgende Abschätzung gegeben:

detM(5) r ' max f(x)TM‘1(5) f(x) — l "*1
Lg —-? M (5.64)detM(£*) max f(x)TM‘1(5) f(x) ——ar—l——:

xeV '-

und von Atwood [1] die Abschätzung nach unten

detM(5) r ’

man ä - ‘m’
xeV

Durch Umformen der Ungleichungen (5.64) und (5.65) sind wir in der Lage, mit einem
diskreten Plan 5 Schranken für den Funktionalwert eines D-optimalen Planes 5* an-

zugeben.

5.6. Ein Iterationsverfahren für G- und D-optimale Versuchspläne

Die Berechnung eines diskreten G- und D-optimalen Versuchsplans aus dem defi-
nierenden Optimierungsproblem ist numerisch oft recht" schwierig, vielfach ist solch
eine Lösung wegen eines nicht zu vertretenden großen Aufwandes praktisch nicht zu

ermitteln. Letzteres wird besonders dann der Fall sein, wenn der Versuchsbereich V
eine komplizierte Gestalt hat oder wenn nur geringe Anhaltspunkte über die Form
eines diskreten G-optimalen Planes vorliegen. Eine günstige, weil rationelle bzw. öko-
nomische Möglichkeit zur Konstruktion eines optimalen Planes besteht darin, Schritt
für Schritt, ausgehend von einem Anfangsversuchsplan, jeweils einen neuen Versuchs-
punkt aus dem Versuchsbereich V auszuwählen und dem Anfangsplan hinzuzufügen.
Für dieses iterative Vorgehen wurden von Fedorov [I], Sokolov [1] und Wynn [1]
Verfahren zur Konstruktion eines G-optimalen Planes angegeben.

Der Grundgedanke dieser Verfahren besteht darin‚. daß ein G-optimaler Plan nur

solche Punkte im Spektrum enthält, in denen die Varianz der geschätzten Funktions-
werte Y(x) maximal ist. Für einen diskreten Plan E = {x„ p,};'='1 gilt

[ä Pi f(XI) TM‘1(§) f(X1) = [ä] SP(M-1(5) f(X1) f(X1) TF1)

ll SP(M“(E) i pi f(Xz) f(Xz) T) (5-66)

3P(M’ ‘(£) M(£))
= SpE, = r V

(diese Herleitung läßt sich leicht bestätigen, wenn wir für f(x) und MÄ‘1(E) die Kompo-
nentendarstellung einsetzen und die Ausdrücke ausrechnen). Soll nun E ein G-opti-
maler Versuchsplan sein, dann erhalten wir aus der Aussage l..c des Aquivalenzsatzes
5.1 von Kiefer und Wolfowitz (vgl. Abschnitt 5.4.)‘

f(x‚)l'M“(5) f(x‚„) g r,. l = l, ..., m. (5.67)

7 Banriemex, Versuchsplanung
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Damit aber für einen G-optimalen Plan (5.66) gilt, muß in (5.67) das Gleichheits-
zeichen stehen. Also besteht das Spektrum eines diskreten G-optimalen Planes 5* nur

aus solchen Punkten, in denen die Varianz D’ Y(x) = f(x)T M“‘(E*) f(x) der Schät-
zungen I‘/(x) maximal ist (vgl. Aussage l.c, Satz 5.1).

Wir wollen nun einen diskreten G—optimalen Versuchsplan näherungsweise be-
rechnen. Das Iterationsverfahren wird durch folgende Schritte charakterisiert:
Schritt 1: Gegeben sei ein Anfangsplan V,” mit detM(V,,“) =t= 0. Dieser Plan muß

nicht optimal sein, er muß nur die Schätzung aller Parameter erlauben.
Ein solcher Plan läßt sich ohne Schwierigkeiten angeben.

Schritt 2: Es wird ein Versuchspunkt x„„+‚ so gesucht, daß

f(X„.+i)TM"(V„.‚)f(X„„+1) = mat} f(X)TM"(Vn.) f(X) (5.63)

gilt. Wir suchen somit die Abszisse des absoluten Maximums der Funk-
tion g(x) = f(x)T M“(V,,n) f(x).

Die Maximierung der Funktion g(x) bereitet oft große Schwierigkeiten, da im all-
gemeinen aufwendige Optimierungsverfahren angewandt werden müssen. Bei der An-
wendung dieser Verfahren (z. B. Methode des steilsten Anstiegs, zufälliges Suchver—
fahren) kann es vorkommen, daß das Ergebnis der Rechnung nur ein relatives Maxi-
mum liefert, wir müssen das Verfahren mit anderen, zufällig gewählten Startpunkten
wiederholen. Wenn g(x) eine konvexe Funktion ist (vgl. z. B. Bd. 14 bzw. Bd. l5),
können wir uns bei der Suche des Maximums auf den Rand von V beschränken.

Schritt 3: Der im Schritt 2 gefundene Punkt wird dem Plan V„„ hinzugefügt. Es er-

gibt sich ein Plan

Vn..+1 = (X1: m, Xn„ Xn.+1)a

der für uns ein neuer Anfangsplan ist, mit dem nun die Bestimmung des
optimalen Abszissenwertes der Funktion g(x) wiederholt wird.

Auf diese Weise erhalten wir eine Folge von konkreten Versuchsplänen V,,a,

V,,n+1, ..., V,,, Für jedendieserPläne können wirdetM(V‚-) (i = no, no+ 1, ..., n, ...)
berechnen. Es gilt dann der von Wynn [1] bewiesene Satz

Satz 5.2: Für die Folge der konkreten Versuchspläne

V„„, V„„„, .. ., V„, .. . gilt
lim detM(V„) = detM(§*), (5.69)

ll—>O0

wobei 5* ein diskreter G-aptinuzler Versuchsplan ist.

Das Iterationsverfahren kann bereits nach einer endlichen Anzahl von Schritten
abbrechen, wenn der Anfangsplan V„a nur solche Punkte enthält, die zum Spektrum
S(£*) eines G-optimalen Planes gehören. Als Abbruchbedingung verwenden wir da-
bei die Bedingung l.c des Satzes 5.1 (Äquivalenzsatz von Kiefer/Wolfowitz). Enthält
das Spektrum des Anfangsplanes Punkte,’ die nicht zum Spektrum S(5*) eines G-opti-
malen Planes gehören, dann besitzt solch ein Punkt im Versuchsplan V„ immer noch
mindestens das Gewicht l/n. Ist dieses Gewicht hinreichend klein, dann wird der ent-
sprechende Punkt aus dem Spektrum gestrichen. In diesem Fall erhalten wir nicht
nach endlich vielen Schritten einen diskreten G-optimalen Plan. Wir werden des-
halb ein anderes, geeigneteres Abbruchkriterium verwenden müssen. Es ist also für
die notwendige Schrittzahl und damit für den Rechenaufwand bei dem hier vorge-
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stellten Iterationsverfahren von großer Bedeutung, einen möglichst guten Anfangs-
plan V,” vorzugehen. Das hier beschriebene Iterationsverfahren wurde weiter ver-

feinert, z. B. durch eine Änderung der Gewichte (vgl. Fedorov [l], Atwood [2]).
Analog zu den Ungleichungen (5.64) und (5.65) wurden von Wynn [l] Ungleichun-

gen angegeben, die für jeden Schritt des Iterationsverfahrens berechnet werden können.
Es gilt

A„ g detM(5*) g B„ (5.70)
mit

A„ = detM(E..) {%}H» (5.713)

„ = detM(E„) exp{ä(E„) - r} (5.71b)
und mit

_ _ n+]'detM(£,,,)_
‘m ‘ " ‘detM<s':) ‘i ‘m’

Wird nun für ein gewisses n der Ausdruck B„ — A„ hinreichend klein, dann kann das
Iterationsverfahren abgebrochen werden. Wir werden die Anwendung des Iterations-
Verfahrens an einem Beispiel demonstrieren und einen diskreten D-optimalen Plan
konstruieren, der nach dem Äquivalenzsatz auch ein diskreter G-optimaler Plan ist.

Beispiel 5.4: Zur Schätzung der Wirkungsfiäche n(x) sei der Ansatz 'f7'(x‚ 0) = fig + 191x, + 292x;
gegeben. Der Versuchsbereich V sei gewählt als V = lxl, x2, x3, x4) mit xi = (2,2), xz =(—l‚l)‚
x3 = (1, —1) und x4 = (—l, —1) (vgl. Bild 5.2). Als Anfangsplan benutzen wir den Plan V3

= (x2, x3, x4). Daraus berechnen wir die Informationsmatrix für no = 3

n

"u ‘Z Xi:
n

2 X2:
r-l i*1

1 „ n Ä

M(V3) =;‘ 2 Xi! Z Xi.‘ Z Xuxzr
i= l

1 3 -1 —1

=? -1 3 -1 . (5.73)

—1 -1 3

Aus (5.73) erhalten wir detM( V3) = 0,5926 und somit für die Varianzfunktion

l

D2Y(x)=(l,x1,x2)M"(Va) x1 i (5.74)

X2
mit

1,50 0,75 0,75

M"(V3)= 0,75 1,50 0,75 ‚

0,75 0,75 1,50
also

D"‘Y(x) = l,50(I + x} + x; + x, + x2 + xlxz). ß (5.75)
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*2

2 ' 4?

752 7

l

J2 ~1 7 x;

x4 -/ x3

—2

Bild 5.2

Berechnen wir nun max D2 Y(x), dann wird dieses Maximum für den Punkt x, angenommen.
xe A

Als Funktionswert ergibt sich aus (5.75) D2 Y(x1) = 25,5.
Bestimmen wir die Grenzen A3 und B3 der Ungleichung (5.70), dann ist die durch den Anfangsplan

V3 erhaltene Näherung für 5* noch unzureichend (Vgl. Tab. 5.1), wir gehen zu einem

V4 = (x2, x3, x4, xi) über, berechnen M‘1(V4) und aus D2 }7(x) durch Maximierung den nächsten
Punkt des Versuchsplanes. In der folgenden Tabelle 5.1 haben wir die Ergebnisse von 12 Rechen-
schritten zusammengestellt (vgl. Wynn [1]) und jeweils die Schranken der Ungleichung (5.70) mit
angegeben.

Tabelle 5.1

n Versuchspunkt detM( V„) 3(E,,) A,, B,,

1 x2
2 x3
3 x4 0,5926 25,5000 2,4252 5,9 x 109
4 x, 2,3750 3,5790 2,4252 4,2374
5 x, 2,3040 3,7500 2,3802 4,8776
6 x2 2,3333 4,2857 2,5205 8,4403
7 x3 2,5190 3,2407 2,5297 3,2046
8 x, 2,4688 ‚ 3,3165 2,4863 3,3878
9 x, 2,4527 3,6846 2,5220 4,8634

10 x3 2,5200 3,3429 2,5240 2,9076
l1 x1 2,4883 3,3478 2,5094 3,5235
12 x4 2,5000 3,2000 2,5075 3,0553

Setzen wir das Iterationsverfahren bis n = 32 fort, dann ergibt sich der Versuchsplan

V32 = (X2:X3:X4,X1,X1,X2,X3:X1:XzyxayX1;X4:X2,X3aX1sX2,x3;

X1: X4. X2: X3, X1: X3, X2, X1. X4, X3: X2, X1, X2, X1, X3)- (5-76)

Für den Plan (5.76) ermitteln wir

detM(V„) = 2,53125. (5.77)
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Die Schranken für det M(E*) sind

A3; = B3; = 2,53125,

und die Abbruchbedingung für das Verfahren, die Aussage 1.c des Äquivalenzsatzes, liefert

max D2Y(x) = 3 (5.78)
xeV

(a'(5..) gibt für n —> 00 gerade max D’ ;’(x)).
xeV

Damit endet das Iterationsverfahren, wir haben mit

S
X1 x2 x3 x4} (579)

= 10/32 9/32 9/32 4/32

[vgl. (5.76)] einen diskreten G-optimalen Versuchsplan für den Versuchsbereich V = {xi , x1, x3, x5}
erhalten.

5.7. Weitere Probleme

In diesem Abschnitt wollen wir einige Problemstellungen kennenlernen, in denen wir die Durch-
führung von Versuchen nach einem optimalen Plan vornehmen können.

Untersuchen wir Mixturen, d. h. Gemische aus verschiedenen Komponenten, dann drücken die
Einflußgrößen der Wirkungsfunktion z. B. Gewichts-, Volumen- oder Molanteile aus. Zwischen
solchen Einflußgrößen gilt dann die Bedingung

k

2x, = l, (5.80)
1=1

wobeix, g Ofüri’: 1,...,k.
Durch (5.80) ist eine Einschränkung des Versuchsbereiches gegeben, wir dürfen nur noch Versuche
auf einem sogenannten Simplex durchführen (s. Bild 5.3). Für k = 3 hat (5.80) die spezielle Form
eines Dreiecks (der ursprüngliche Versuchsbereich Vist der Würfel 0 g x. g 1, i = 1, ...‚ k).

X3

7V

/
X7

Bild 5.3

s Bandemer, Versuchsplanung
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Die Beschränkung auf (5.80) führt auch dazu, daß die Parameter des Ansatzes 17(x, 0) nur bis auf
eine additive Konstante bestimmt werden können. Dies folgt aus

k k

770‘: Ü) = '90 ‘i’ I: 791x: = (790 ‘l’ 7») + 2 ('91 ' A)-751 (531)
= 1 l=l

k

wegen Z x1 = 1. Betrachten wir einen Ansatz der Form
i= 1

fi(x‚ n9) = 190 + 01x1 + + 19,,x., (5.82)

dann erhalten wir wegen (5.80) eine Reduktion des Ansatzes. Ersetzen wir beispielsweise x1 durch
k

1 — Z x1, dann geht (5.82) über in 1”/(x, y) = 'y1 + ygx; + + 7/,x,,. Verwenden wir dagegen
1:1

k

1 = 2 x1, dann geht (5.82) über in den Ansatz fl(x‚ d) = 61x1 + 62x; + + 61x1, der kein Abso-
= 1

lutglied mehr enthält. Diese beiden Ansätze 17(x, y) und fi(x, 6) sind von unterschiedlicher Bedeutung
für den Experimentator, mathematisch gesehen sind sie völlig gleichwertig.

Eine wesentliche Grundlage für die optimale Versuchsplanung für Mixturen bildet das (k‚d)-Git-
ter. Dabei wird der Simplex für k Einfiußgrößen mit einem Gitter der Maschenweite l/d überzogen.
Die Gitterpunkte sind dann die möglichen Punkte eines optimalen Versuchsplanes, die Berechnung
reduziert sich. auf eine Bestimmung der Gewichte für die Gitterpunkte. Ein (3‚3)-Gitter besteht bei-
spielsweise aus den 10 Punkten (s. Bild 5.4)

1 o o 2/3 1/3 o 0 1/3 2/3 1/3

{Xu X10} = o 1 o 1/3 2/3 2/3 1/3 0 o 1/3 .

o o 1 o o 1/3 2/3 2/3 1/3 1/3

Blld 5.4

Optimale Versuchspläne zur Schätzung der Parameter bei Mixturen finden wir z. B. bei Bandemer/
Bellmann/Jung/Richter [1].

Bei vielen praktischen Problemen sind wir daran interessiert, nur so viele Versuche durchzuführen,
wie zur Erreichung einer Mindestgenauigkeit unbedingt erforderlich sind. Diese Forderung legt fol-
gende Versuchsstrategie nahe: Ausgehend von einem mindest notwendigen Anfangsplan, der eine
Schätzung der interessierenden Parameter erlaubt, führen wir jeweils nur einen Versuch oder eine
geringe Anzahl von Versuchen durch. Die dabei gewonnenen Ergebnisse werden bei jedem Schritt zur

Schätzung der Parameter des Ansatzes der Wirkungsfunktion herangezogen. Haben wir die geforderte
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Genauigkeitsschranke (oder ein anderes Abbruchkriterium) noch nicht erreicht, dann führen wir
weitere Versuche durch, ansonsten endet das Verfahren. Diese Vorgehensweise wird sequentiell ge-
nannt (hier: sequentielle Schätzung) im Gegensatz zu einem iterativen Vorgehen, bei dem die Er-
gebnisse der Versuche bei der Auswahl des nächsten Versuchspunktes nicht mit berücksichtigt wer-
den. Diese Versuchsstrategie läßt sich besonders dann anwenden, wenn die Versuche sehr aufwendig
sind oder nur in größeren Abständen durchgeführt werden können. Erste Untersuchungen zur Kon—

struktion optimaler Versuchspläne bei sequentiellen Schätzungen finden wir bei Hohmann [1].
Bei unseren bisherigen Überlegungen haben wir stets die Kosten für eine Versuchsdurchführung

ausgeklammert. Das dürfte aber nur in seltenen Fällen möglich sein, häufiger wird eine Berücksichti-
gung der Versuchskosten die Konstruktion optimaler Versuchspläne beeinflussen. Auf eine Formu-
lierung der Aufgabenstellungsind wir bereits kurz im Kapitel 1, Abschnitt 1.4, eingegangen, Vor-
schläge für eine Konstruktion kostenoptimaler Versuchspläne finden wir bei Jung [1].

Bei der Aufstellung eines wahrscheinlichkeitstheoretischen Modells ist eine Beschreibung des vor-
liegenden Sachverhaltes durch die Annahme unkorrelierter Beobachtungen oft nicht mehr möglich.
Wir müssen dann annehmen, daß die Kovarianzmatrix Bey des Stichprobenvektors W die Form
Bay = o‘: W(x‚ , ..., x„) hat, wobei W(x1 , ..., x„) eine positiv semidefinite Matrix ist, deren Struktur
wir kennen müssen. In diesem Fall ist die Methode der kleinsten Quadrate nicht mehr ohne Ein-
schränkung anwendbar. Erste Überlegungen für eine optimale Versuchsplanung für korrelierte Meß-
fehler finden wir bei Bellmann [1].

5.8. Zusammenfassung

Alle im linearen Modell auftretenden Varianzausdrücke hängen nur durch die Matrix FTF vom
Versuchsplan V„ ab. Deshalb definieren wir Optimalitätskriterien für die Auswahl eines Versuchs-
planes als Funktional der Informationsmatrix M( V„) = FTF/n. Durch eine spezielle Wahl der Funk-
tionale erhalten wir die Kriterien für D-‚ A-, E-, C—, G- und I-optimale Versuchspläne.

Der Übergang von konkreten zu diskreten Versuchsplänen bringt Vorteile bei der mathematischen
Bearbeitung der Aufgabenstellung. Für diskrete Versuchspläne gilt der fundamentale Satz von
Kiefer und Wolfowitz, der besagt, daß ein D—optima1er diskreter Plan 5* auch G-optimal ist. Weiter-
hin läßt sich nach diesem Satz der Funktionalwert von 5* durch die Anzahl der Parameter n9 des An-
satzes 17(x, :9) ausdrücken. Diese Möglichkeit erlaubt uns die Konstruktion einer gewissen Klasse von

Versuchsplänen durch Hadamard-Matrizen.
Nach einer Zusammenstellung einiger wichtiger Versuchspläne wird das Problem betrachtet, ob

ein für einen Versuchsbereich V“) optimaler Plan 5* auch für einen Versuchsbereich V‘2’ optimal ist,
wenn VW durch eine affine Transformation auf Vm zurückgeführt werden kann. Ein G-optimaler
Versuchsplan für V“) ist auch für V”) G-optimal, wenn es zu einer affinen Abbildung z = g(x) eine
Matrix C gibt, so daß f(g(x)) = Cf(x) gilt. Für die Einschätzung eines konkreten optimalen Versuchs-
planes V,‘,‘ , der im allgemeinen eine Näherung für einen diskreten Plan ist, werden Ungleichungen von

Fedorov, Wynn und Atwood angegeben, mit denen ein Plan 6* bezüglich des entsprechenden Funk-
tionalwertes verglichen werden kann.

Hat der Versuchsbereich Veine sehr komplizierte Gestalt oder bestehen keine Vorstellungen über
die Form eines G- oder D-optimalen Versuchsplanes, dann wird ein Iterationsverfahren zur Berech-
nung eines diskreten optimalen Planes vorgeschlagen. Dabei wird die Tatsache ausgenutzt, daß ein
G-optimaler Plan nur solche Punkte in seinem Spektrum enthält, in denen die Varianz der geschätz-
ten Funktionswerte maximal ist. Solche Punkte mit maximaler Varianz werden bei jedem Schritt des

Verfahrens ausgewählt und zu einem Anfangsplan hinzugefügt. Auf diese Weise wird iterativ ein dis-
kreter G- und D-optimaler Plan berechnet.

8*



6. Versuchsplanung zur Diskrimination
von Regressionsansätzen

6.1. Einleitlmg und Problemstellung

Zur Schätzung der unbekannten Wirkungsfläche r}(x) haben wir bisher stets einen
Ansatz benutzt, der entweder ein wahrer Ansatz ist’ [vgl. (l.l2)] oder der eine hinrei-
chend gute Beschreibung von 17(x) liefert, wobei wir v;(x) durch Polynome approxi-
mieren wollen. Vielfach kann_ aber ein Experimentator eine ganze Reihe von mög-
lichen Ansätzen in Betracht ziehen für eine Schätzung der Wirkungsfläche. Ein Bei-
spiel soll dies verdeutlichen. Für eine chemische Reaktion A —> B soll die Konzen-
tration des Stoffes A in Abhängigkeit von der Zeit (Einflußgröße x1) und von der
Temperatur (Einflußgröße x2) durch eine Funktion beschrieben werden. Dabei ist es

möglich, Versuche in einem gewissen Bereich V durchzuführen. Der Experimentator
kann zur Beschreibung von n(x) (Konzentration von A) einen der Ansätze

<1J_‚9(2)x,)77m0‘, 0(1)) : 64.491 2 ,

97‘2’(x, 09”’) = [1 +x1e""12’--"22”‘2’]",

7”1“3’(X,I9‘3’) = [1 + 2x,e<»§"—0‘23’m]""2,

fi<4)(X,,9(4)) = [l + 3x1e(‚9(l4)_„(24>x‚)]—1/g.

(6.1)

wählen. Zur Entscheidung für einen der Ansätze wollen wir Versuche durchführen,
deren Auswertung eine Diskrimination (also eine Unterscheidung) der Ansätze er-

laubt. Allgemein können wir die Aufgabenstellung wie folgt formulieren: Die Wir-
kungsfiäche n(x) ist durch einen Regressionsansatz 77(x‚ i9) zu schätzen. Der Ansatz
17(x‚ 19) sei dabei ein wahrer Ansatz, der aber in den meisten Fällen unbekannt und
nur schwer zu beschaffen sein wird. Vielfach kennt aber der Experimentator wenig-
stens eine Klasse von Funktionen, mit denen sich ein für das betrachtete Problem
sinnvoller Ansatz konstruieren läßt. Von allen mit den Funktionen dieser Klasse kon-
struierbaren Ansätzen betrachten wir nur eine gewisse Teilmenge, die wir in die engere
Wahl ziehen. Diese Ansätze 77“’(x, 19“’), z’ = l, ...‚ q, unter denen wir einen geeigneten
auswählen müssen, bezeichnen wir als konkurrierende Ansätze. Liegt uns eine Reali-
sierung des Beobachtungsvektors W vor, dann können wir nach einem vorher festge-
legten Kriterium den besten auswählen. Als geeignetes Kriterium wird sich vielfach
ein Test erweisen. Diesen so ausgewählten besten Ansatz können wir nun weiteren
statistischen Fragestellungen, z. B. der Schätzung der Parameter zugrunde legen. Für
eine mathematische Behandlung erweist es sich als günstig, vorauszusetzen, daß min-
destens einer der konkurrierenden Ansätze ein wahrer Ansatz ist, und wir wollen
darüber hinaus noch annehmen, daß der ermittelte beste Ansatz ein wahrer Ansatz ist.

Es gibt in der mathematischen Statistik verschiedene Verfahren, die nach der Durch-
führung von Versuchen eine Auswahl eines besten Ansatzes aus den konkurrierenden
Ansätzen ermöglichen, die bekanntesten sind die Rückwärtselimination und die
schrittweise Regression (vgl. z. B. Draper/Smith [1], Enderlein [1] und Anderson [1]).
Die Verfahren zur Entscheidung über die Ansätze hängen von der Lage der Versuchs-
punkte ab, diese Abhängigkeit wird aber in den meisten Fällen nicht zur Unterstüt-
zung einer Entscheidungsfindung herangezogen. Die folgenden Überlegungen sollen
die Bedeutung der Lage der Versuchspunkte für diese Entscheidung veranschaulichen.

Für eine Wirkungsfläche i7(x) liegen uns die Ansätze o7‘“(x, w9‘”) und 17‘”(x, 19“’) vor.
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Nach einem bestimmten Kriterium (z. B. durch ein Schätzverfahren) wählen wir für
jede Schar einen speziellen Parametervektor 5"’ und 5“’ aus. Das Bild 6.1 stellt einen
möglichen Kurvenverlauf dar.

Führen wir nun die Versuche an solchen Punkten x durch, die kleiner als x0 sind,
dann werden wir nur eine geringe Differenz zwischen (17(x)—77‘“(x,5‘“)) und
(¢;(x) — ':7(2’(x, 5‘”)) zu erwarten haben und sehr viele Versuche zum Erkennen die-
ser geringen Unterschiede benötigen. Wählen wir als Versuchspunkte Abszissenwerte,

7-] K2)”. 012/)

71W
,7(7)Q(,1)(71)

X*0

Bild 6.1

die größer als x0 sind, dann weichen die Funktionen 77‘”(x,29“’) und 17‘“(x,19‘2’)
stark voneinander ab, und wir werden mit wesentlich weniger Versuchen eine Ent-
scheidung für den besten Ansatz ermöglichen. So ein Teilbereich <;_ V, in dem sich
die Ansätze wesentlich unterscheiden, kann nur dann angegeben werden, wenn wir die
Wirkungsfunktion 1;(x) kennen. Wir wollen nun durch die Konstruktion eines opti-
malen Versuchsplanes erreichen, möglichst viele Versuche im Bereich Ü zu konzentrie-
ren. Dabei ist eine sequentielle Vorgehensweise Vielfach vorteilhaft. Wir gehen von

einem Anfangsplan V,,° aus und prüfen, ob wir uns für einen der konkurrierenden An-
sätze entscheiden können. Ist das noch nicht der Fall, dann wählen wir als neuen zu

V„_ hinzukommenden Versuchspunkt einen solchen Punkt aus V, der einen möglichst
großen Unterschied zwischen den Ansätzen erwarten läßt. Liegen zur Beschreibung
von 17(x) genau qAnsätze 77‘“(x, 19“’), i = 1, ..., q, vor, wobei genau einer dieser An-
sätze ein wahrer Ansatz ist, dann können wir die Konstruktion eines optimalen Ver-
suchsplanes zur Diskrimination von Regressionsansätzen durch die folgenden Schritte
charaktersieren :

Schritt 1: Nach einem beliebigen, nicht notwendig optimalen Anfangsplan V„ wer-
den n Versuche durchgeführt. Der Umfang des Planes muß dabei so ge-
wählt werden, daß alle Parameter der konkurrierenden Ansätze geschätzt
werden können.

Schritt 2: Aus den vorliegenden Versuchsergebnissen bestimmen wir die erforder-
lichen Schätzwerte und prüfen (z. B. mit einem geeigneten Test), ob die
Auswahl des besten Ansatzes möglich ist. Können wir diese Entscheidung
fallen, dann endet das Verfahren, im anderen Fall sind weitere Versuche
erforderlich. ' '
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Schritt 3: Der nächste Versuchspunkt wird unter Verwendung der vorliegenden n

Versuchsergebnisse nach einem Optimalitätskriterium ausgewählt und
dem Plan V„ hinzugefügt.

Schritt 4: In dem neuen Versuchspunkt X,“ realisieren wir die Zufallsgröße Y(x„„),
d. h., wir führen einen Versuch durch und kehren zum Schritt 2 zurück.

Die Konstruktion eines Versuchsplanes zur Diskrimination von Regressionsan-
sätzen beschränkt sich auf Schritt 3, wir werden einige solcher Kriterien zur Auswahl
von x„„ im weiteren vorstellen. Auf Möglichkeiten einer Entscheidung für den
besten Ansatz gehen wir hier nicht ein, da uns besonders der Versuchsplanungsaspekt
bei der Auswahl von x„„ interessiert, wir verweisen z. B. auf Draper/Smith [l] und
Anderson [1].

6.2. Optimalitätskriterien unter Verwendung der Stichprobenvarianz

Zur Schätzung der Wirkungsfläche mögen uns zwei Ansätze vorliegen, 77‘”(x, 29”’)
und 77‘2’(x, 19“’), von denen genau einer ein wahrer Ansatz ist. Der Beobachtungs-
vektor 0.7l sei für alle Stichprobenumfange n normalverteilt‚ seine Komponenten un-

abhängig. Die Varianz sei für alle Komponenten gleich o’. Wählen wir nun einen
Versuchsplan V„ so, daß beide Parametervektoren 19“) und 19“) nach der Methode
der kleinsten Quadrate eindeutig geschätzt werden können. Diese Schätzungen be-

zeichnen wir mit ()‘“(V,,) und é‘2’( V,,). Bei der Auswertung von Versuchen durch ein
lineares Modell ist es üblich, zur Beurteilung der Güte eines Ansatzes 17‘“(x‚ 19“’) für
die Wirkungsfläche 17(x) die Summe der quadratischen Abweichungen

Sm) = j§1<Y(x,> — 17<'><x„ä<'><V„>))2‚ i= 1, 2. (6.2)

heranzuziehen. Bis auf einen konstanten Faktor ist (6.2) die Sogenannte Restvarianz
(vgl. auch Abschnitt 1.3.1. und 4.2.). Entsprechend den Überlegungen aus dem vor-

angegangenen Abschnitt wollen wir dann denjenigen der beiden Ansätze 'r7‘“(x,19‘”),
z‘ = 1, 2, als besten Ansatz auswählen, der eine kleinere Restvarianz (d. h. eine klei-
nere Summe der quadratischen Abweichungen bei festem n) besitzt. Eine große Rest-
varianz soll ein Zeichen für einen von n(x) stark abweichenden Ansatz 170c, 19) sein.
Tritt das zufällige Ereignis S1(V„) — S2(V,,) > O ein, dann werden wir 77‘2’(x, 19”’) als
besten Ansatz auswählen. Im Fall S‚(V„ — S2(V„) < O wählen wir 17‘“(x‚19‘“) als
besten Ansatz aus (das Ereignis S1(V„) — S2(V„) = 0 besitzt die Wahrscheinlichkeit
0 und bleibt deshalb unberücksichtigt).

Wenn wir die Möglichkeit haben, nach der Durchführung eines Planes V„ = (x, ‚

...‚ x„) und vor der Entscheidung über die Ansätze noch weitere Versuche zu machen,
also sequentiell vorgehen können, dann läßt sich ein modifiziertes Entscheidungskri-
terium anwenden. Es seien A und B vorgegebene positive Zahlen, die außer von der
Verteilung von S,(V„) — S2(V,,) auch von den Fehlern 1. Art oc (wir wählen z. B. den
Ansatz 17‘2’(x, 19“’), obwohl 17‘"(x, 19“’) wahrer Ansatz ist) und 2. Art ß (wir wählen
fl(“(x‚ 19"’), obwohl 17‘”(x‚ 19m) wahrerAnsatz ist) abhängen. In praxi verwenden wir
die Zahlen A = zx/(l — ß) und B = (l —— ac)/f} (vgl. Wald [1]). Tritt das Ereignis

Sl(Vn) - S2(V..) < Ä (6.3)
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ein, dann entscheiden wir uns für den Ansatz 77‘1)(x, 19“’), beini Ereignis

S1(Vn _ S2(Vn) > B

nehmen wir den Ansatz fi“>(x, 19m) als besten Ansatz, und im Fall

A ä S1(V.. — S2(V..) g B (6.5)

setzen wir die Versuche fort. Dazu wählen wir einen neuen Versuchspunkt x„„,
fügen diesen zu V„ hinzu und wiederholen das Verfahren mit dem Plan V,,+1 .

Zur Auswahl des nächsten Punktes x„„ ist es sinnvoll, die Entscheidungsgröße
S1(V„) — S2(V,,) als Kriterium heranzuziehen. Die Summen der quadratischen Ab-
weichungen (6.2) lassen sich für den Punkt x,,,,1 nach Durchführung von V„ schreiben
als

s.-<x.„‚ V.) = i <y<x,) — w7<°(x,, é<'><Vm>>)2
F‘ A (6.6)

+ (Ycx...) — fi"’(X..+1.9“’(V,.+1)))‘, z= 1, 2,

wobei die Schätzung 0"’ (V„+1) mit dem Beobachtungsvektor (y(x1), ..., y(x,,),
Y(x,,+,))T zu bilden ist. Wegen (6.6) ist aber S1(x,,+1 ‚ V„) —— Sz(x„„ ‚ V„) eine Zufalls-
grime, die wir nur dann für eine Optimierung bezüglich x„„ heranziehen können,
wenn wir den Erwartungswert bilden bezüglich der Verteilung des Stichprobenvek-
tors unter der Voraussetzung, daß der Ansatz 77“)(x, 19“’) wahrer Ansatz ist (diesen
Erwartungswert bezeichnen wir mit E‚). Da der wahre Ansatz unbekannt ist, müssen
wir den Versuchspunkt x„„ aus den beiden Beziehungen

max E1[S2(X. V») “ S1(X‚ Vn)] = E1[S2(xn'+ls V») _ S1(xn+1a V:-)1
XEV

(6.7)

max E2[S1(X‚ V.) — s2(x, m] = E2[S1(Xn+1aVu) — 520cm. m]
xeV

gleichzeitig auswählen. Dazu können wir eine von Fedorov [1] angegebene Zerlegungs-
formel mit Erfolg anwenden. Trotzdem wird sich ein Punkt x„„ nach (6.7) wenn
überhaupt, dann nur sehr schwer bestimmen lassen. Deshalb ist es günstiger, als Aus-
wahlkriterium

max [v1E1(S2(X9 V») - S1(X, V..)) + v2Ez(S1(X. V» - S2(X‚ V„))] (5-3)
xeV

zu verwenden. Dabei sind v1 und v; spezielle Gewichtsfunktionen, die von den Feh-
lern o: und ß abhängen.

Wenden wir zur Auswahl des besten Ansatzes nicht die DilTerenz der S,( V,,), i = l,
2, an, sondern den entsprechenden Likelihoodquotienten für die Ansätze 77(‘>(x, 19m),
i = 1, 2, dann wird von Hunter/Reiner [l] ein Auswahlkriterium vorgeschlagen,
nach dem X,“ so gewählt wird, daß der Abstand der Schätzungen der Wirkungsfiäche
maximal ist

max [v7‘“(x‚ IMV.» — am (x, 3"’(V„))l’
xsV A A

= [fl‘“(x„+i‚ 190W.» — man, 29"’(V„))]’.
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6.3. Optimalitätskriterium unter Verwendung der Entropie

Wir lassen nun q konkurrierende Ansätze zur Schätzung der Wirkungsfläche zu.

Außer 7;‘”(x, 09"’), z’ = 1, ...‚ q, sei für jeden dieser Ansätze eine Wahrscheinlichkeit
P„ z’ = 1, ...‚ q, gegeben. Dieser Wert P, gibt an, mit welcher Wahrscheinlichkeit der
Ansatz 'r7"’(x, 1'3"’) der wahre oder zur Beschreibung von n(x) am besten geeignete
Ansatz ist. Dabei müssen die Ansätze disjunkt sein, d. h., es darf keine Funktion

geben, die zu zwei verschiedenen Ansätzen gehört, und es muß i P, = 1 gelten. Sind
a= l

alle Ansätze gleichberechtigt, dann setzen wir sinnvollerweise P, = P2 = = P.
= l /q. Liegt uns die Realisierung eines Versuchsplanes V„ vor, dann können wir unter
Verwendung der Versuchsergebnisse aus den a-priori-Wahrscheinlichkeiten P, durch
die Bayessche Formel für jeden Ansatz eine a-posteriori-Wahrscheinlichkeit P,~,,,

i = l, ...‚ q, berechnen. Diese so bestimmte Wahrscheinlichkeit PM können wir zur

Grundlage einer Auswahl des besten Ansatzes nehmen. Wir wählen z. B. 17‘”’(x, 19°”)
als besten Ansatz, wenn gilt

P„„ = max P,,,. (6.10)
I

Unterscheiden sich die Pi, nur wenig voneinander, dann ist (6.10) kein sehr günstiges
Kriterium. Da sich die Wahrscheinlichkeiten P,»,, Von Versuch zu Versuch ändern
werden, ist es vorteilhaft, sequentiell vorzugehen. Dabei wird die a-posteriori-Wahr-
scheinlichkeit des (n + k)-ten Schrittes zur a-priori-Wahrscheinlichkeit für den
(n + k + l)—ten Schritt.

Es sei der Ansatz 77“’(x‚ 19“’) wahrer Ansatz, und es liege eine Realisierung eines
Planes V„ vor, dann ist das Versuchsergebnis des (n + 1)—ten Versuchs an einer be-
liebigen, aber festen Stelle x ebenfalls normalverteilt mit E‚-Y(x) = ”“’(x, ü”) und
D3Y(x) = a’ (wir hatten bereits die Komponenten des Stichprobenvektors €71 als
normalverteilt und unabhängig vorausgesetzt). Der Parametervektor 19“’ des wahren
Ansatzes variiere in einer Parametermenge S g R’. Können wir in S aus irgendeinem
Grunde keine Werte bevorzugen, sind alle 19m6 S gleichberechtigt, dann können wir
19“’ als Zufallsgröße 0"’ mit einer a-priori-Gleichverteilung über S auffassen. Wir er-

halten dann, falls 17"’(x, (‘W’) mindestens approximativ linear in Ü") ist, für 77"’(x, 0“’)
ebenfalls eine Normalverteilung mit dem Erwartungswert o7“’(x, 19“’(V„)) und der

Varianz D2(17“’(x, z§‘“(V,,))). Wenden wir eine stetige Verallgemeinerung der Formel
für die totale Wahrscheinlichkeit an und bezeichnen mit s? den Funktionswert der
Varianzfunktion von i7‘“(x, Ö"’(V„)), dann läßt sich die Wahrscheinlichkeit für die
Vorhersage des Versuchsergebnisses Y(x) an einer beliebigen, aber festen Stelle x

unter der Bedingung, daß eine Realisierung y Von V,, vorliegt und der i-te Ansatz wahr
sei, ausdrücken durch

mm) = (y — fi"’(x, -§<'><V.)>)2}.

(6.11)

1
jexp {— j-——

\/2'rc(o‘2 + sf) 2(a2 + sf)

Die totale Wahrscheinlichkeitsdichte p(y|;x) für Y(x) ist dann entsprechend

aw) = 1n(ylz/) Pun (6.12)
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Damit können wir nach Durchführung des (n + 1)-ten Versuchs die a-posteriori-
Wahrscheinlichkeiten für die einzelnen Ansätze berechnen durch

Pin Pi(J’n+1li/)

P“"“’ = p(ym|?) (613)

Wir wollen nun ein Auswahlkriterium für den Versuchspunkt x„„ konstruieren. Dazu
bedienen wir uns einer zentralen Größe der Informationstheorie. Sind P1, ..., P.,
Wahrscheinlichkeiten, die bei einer vollständigen Zerlegung des sicheren Ereignisses
entstehen, dann benutzen wir

h = — ‘i! P,- In z: (6.14)

als Maß für die Entropie (wird auch als Grad der Unbestimmtheit bezeichnet). In
unserem Fall der Diskrimination von Regressionsansätzen sind die Wahrscheinlich-
keiten P, als a-priori-Wahrscheinlichkeiten für die einzelnen Ansätze zu deuten.
Der Wert der Entropie wird maximal, d. h., die Unbestimmtheit ist am größten, wenn

wir keinen Ansatz bevorzugen können, wenn also P, = P2 = = P, = 1/q ist.
Die Durchführung und Auswertung von Versuchen ergibt eine Zunahme an Informa-
tion, also im allgemeinen eine Abnahme der Entropie. Wir wollen nun daher den
nächsten Versuchspunkt x„+, so auswählen. daß die Änderung der Entropie maximal
wird. Bezeichnet Ah(x, V„) die erwartete Entropieänderung nach dem n-ten Versuch
durch den (n + l)-ten Versuch (da das Ergebnis des (n + l)-ten Versuchs zufällig ist,
können wir nur den Erwartungswert der Entropieänderung zur Konstruktion heran-
ziehen), dann läßt sich diese ausdrücken durch

‘I Z ‘I

Ah<x, v.) = —;1P..1n1>.. — (-1) f <l_21P1(n+1)111Pun+1))P(}’W) d»

(6.15)

Als Auswahlkriterium könnten wir nun verwenden: wähle x„„ so, daß

Ah(x„„, V„) = max Ah(x, V„) (6.16)
xsV

gilt. Bei der Auswahl von x‚„_1 nach (6.16) treten aber große numerische Schwierig-
keiten auf. Deshalb empfehlen Box und Hill [1], bei der Anwendung ihres Verfahrens
zu einer oberen Schranke 4W(x, V„) überzugehen und den Punkt x„„ gemäß

Mm... V.) = ma; A”h‘(x, V.) (6.17)

auszuwählen. Nutzen wir (6i3) und eine Ungleichung von Kullback, dann können
wir mit (6.11) die Funktion Ah(x‚ V„) explizit angeben

(S? - S? 2

(:72 + sf) (U2 + sf)

1 q '1

Ah(x, V.) =yg 2 P..P..{
l j=l+1

(6.18)

~ . A I I"(D () _"() (1)2+<n (m9.) wxu» » (02+Si,+U,+si,)}.
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Die Konstruktion eines optimalen Versuchsplanes zur Diskrimination von q disjunk-
ten Regressionsansätzen wird nun durch folgende Schritte beschrieben:

Schritt 1: Durchführung eines Versuchsplanes V„. Aus diesem Plan berechnen wir
Schätzwerte 3“’ und s,’ (der Umfang des Anfangplanes muß so groß sein,
daß diese Schätzungen nach der MkQ eindeutig sind).

Schritt 2: Unter Verwendung des entsprechenden Funktionswertes aus (6.11) be-
rechnen wir aus den vorgegebenen a-priori-Wahrscheinlichkeiten P, mit
(6.13) die a-posteriori-Wahrscheinlichkeiten PM (i = 1, ..., q).

Schritt 3: Ein einfaches Entscheidungskriterium wird durch den Vergleich der a-po-
steriori-Wahrscheinlichkeiten gegeben. Wir wählen den Ansatz 17"’(x, 29"’)

als besten Ansatz, wenn gilt

Pin > Pin (6-19)

für i = 1, ..., q und i =t= l.(andere Abbruchkriterien sind noch nicht be-
kannt). Läßt sich nach (6.19) das Verfahren noch nicht beenden, dann
folgt Schritt 4.

Schritt4: Wir berechnen nun die Funktion (6.18) und wählen einen neuen Ver-
suchspunkt x„+, gemäß (6.17). Bei der Lösung dieser Optimierungsauf-
gabe treten oft große numerische Schwierigkeiten auf, die wir umgehen
können, wenn wir den Versuchsbereich durch ein geeignetes Gitternetz
diskretisieren und die Funktion Ah nur noch an diesen endlich vielen
Punkten betrachten. Da Ah nur eine obere Schranke für Ah ist, können
wir auch den durch diese Diskretisierung erhaltenen optimalen Punkt
x„+, für das Verfahren weiter verwenden.

Schritt 5 : Wir führen an dem Versuchspunkt x„+, einen Versuch durch und berech-

nen die Schätzwerte 29"’ und sf neu. Dann gehen wir zu Schritt 2 mit
V„+, anstelle von V„.

Das hier vorgestellte Verfahren hat bereits in vielen praktischen Anwendungen zu

guten Ergebnissen geführt. Das nun folgende Beispiel 6.1 wurde von Box/Hill [1] an-
gegeben.

Beispiel 6.1: Es ist die Wirkungsfläche zur Beschreibung einer chemischen Reaktion A —> B zu

schätzen (um beispielsweise optimale Bedingungen für die Durchfühnmg des Prozesses zu ermitteln,
vgl. Abschnitt 4.5.). Die Einfiußgrößen seien x, und x2, dabei ist x, die Reaktionszeit und
x2 = (1 /T — 1/525) eine Funktion der Temperatur. Als Versuchsbereich sei uns vorgegeben

V: 0 < x, g 150, 450 g T; 600. (6.20)

Zur Beschreibung von 17(x) sind vier Ansätze gegeben [vgl. (6.l)]. Da wir alle Ansätze gleichberechtigt
betrachten wollen, ist also

P10=P20=P30=P40=0s25-

Um später auftretende numerische Schwierigkeiten zu umgehen, wollen wir den Versuchsbereich V
diskretisieren durch ein Gitter mit der Maschenweite von jeweils 25 Einheiten. Damit enthält Vnur
noch insgesamt 42 mögliche Versuchspunkte. Als Anfangsversuchsplan wählen wir einen VFV 2’, da-
bei entspricht das untere Niveau (—) bei x, dem Wert 25, bei x2 dem Wert 475 und das obere Niveau
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(+) bei x, dem Wert 125 und bei x; dem Wert 575. Setzen wir noch a’ = 0,05 als bekannt voraus,
dann liefert der Plan

I xx l x2
1. — +
2. — —

3. + —

4. + +

die a-posteriori-Wahrscheinlichkeiten

PM = 0,0069; P24 = 0,4290; P34 = 0,5008; P44 = 0,0633 .

Zur Bestimmung des Versuchpunktes x5 berechnen wir den Funktionswert A—h(x‚ V4) nach (6.18) für
alle Punkte von V. Auf diese Weise erhalten wir max AT(x, V4) = fl(x,, V4) mit x, = (125; 600).

x VE

Nach der Durchführung des Versuches an der Stelle x5 berechnen wir die a-posteriori-Wahrschein-
lichkeiten

P15 = 0,0019; P25 = 0,5602; P35 = 0,4291; P45 = 0,0088.

Tabelle 6.1

n x1 X2 J’ / P11 P21 P3: P41

0 0,2500 0,2500 0,2500 0,2500
1 . 25 575 0,3961
2 25 475 0,7232
3 125 475 0,4215
4 125 575 0,1297 0,0069 0,4290 0,5008 0,0639
5 125 600 0,0984 0,0019 0,5602 0,4291 0,0088
6 125 600 0,0556 0,0018 0,8639 0,1339 0,0004
7 50 450 0,7969 0,0021 0,9736 0,0243 0,0000
8 100 600 0,0325 0,0032 0,9956 0,0012 0,0000
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Die Ergebnisse für die ersten acht Schritte in diesem Sequentialverfahren sind in Tabelle 6.1 zusam-

mengefaßt.
Stellen wir den Versuchsbereich V graphisch dar und tragen wir die Versuchspunkte ein, dann er-
halten wir Bild 6.2.
Nach n = 8 Versuchen ergibt sich für P“ ein wesentlich größerer Wert als für P13, P33 und P43.
Wir werden also den Ansatz fia’(x, 19i”) als besten Ansatz auswählen und weiteren Untersuchungen
zugrunde legen.

6.4. Nichtsequentielles Verfahren zur Diskriminatiou von Polynomansätzen

Zur Schätzung der Wirkungsfläche 17(x) wollen wir den besseren der beiden Ansätze

1'}‘“(x, ü“) = 190 + 19,»: + 02x2 + + 199c’, (6.21)

17(”(x,19‘”) = 19., + 0.x + 02x2 + + 29kg:’: k > s,

benutzen. Die Auswahl des besten Ansatzes können wir durch einen Test auf die Hypothese Hg : 19,, =

z9,‘_1 = = 1?,“ = 0 vornehmen. Von Stigler [1] wurde für k = s + 1 ein Verfahren entwickelt,
nach dem ein geeigneter Versuchsplan für diese Entscheidungen konstruiert werden kann. Als Opti-
malitätskriterium wird dabei die D- (bzw. G-) Optimalität verwendet, die entsprechend dem Charak-
ter der Aufgabenstellung modifiziert wurde. Ein diskreter D- (und G-) optimaler Versuchsplan soll
c-besclzränkt heißen, wenn er für ein gegebenes c außer der Bedingung (5.22) [bzw. (5.30)] die Neben-
bedingung

A 5-2

020mg c7 (6.21)

erfüllt. Die Wahl der Konstanten c beeinflußt dabei die Aussage, für welche Parameterschätzungen
der erhaltene Versuchsplan optimal ist. Wählen wir c —> oo, dann wird sich ein diskreter D- (bzw. G-)
optimaler Plan zur Schätzung der Parameter 9o, ...‚ 19s ergeben, gilt jedoch c = co > O (co ist eine
untere Schranke für c), dann erhalten wir einen optimalen Plan zur Schätzung von 195+, .

Im Versuchsbereich V = [—l‚1] seien die Ansätze

1‘]'“)(x, 19(1)) = 190 + 191x und

17‘2’(x, 19(2)) = 29° + 19,): + 292x’

gegeben. Die Lösung der entsprechenden Optimierungsaufgabe unter der Nebenbedingung (6.22)
führt zu einem diskreten D- (und G-) optimalen c-beschränkten Versuchsplan

-1 o 1

€"=1+1,/111A/111+1A/1 1 (6-23)

T7777 T7777?
für c g 4. Aus (6.23) erhalten ‚wir für c —> oo einen diskreten D-optimalen Versuchsplan zur Schin-
zung Von 290 und 19, [vg]. auch (5.45)]

-1 1
* = 6.24

5 {1/2 1/2} ( )

und für c = 4 einen optimalen Plan

—l 0 l

5‘={1/4 1/2 1/4} (625)
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zur Schätzung des Parameters 192 [vgl. auch den c-optimalen Plan (5.49) bezüglich cT = (0, 0, 1)].
Zur Festlegung der wählbaren Konstanten c können wir Effizienzen (also Wirksamkeiten) dieser

Versuchspläne heranziehen und durch die Gütefunktion des Tests auf die Hypothese 192 = O eine
geeignete Konstante c bestimmen. Dieses Verfahren wurde von Atwood [1] für den Fall k > s + 1

erweitert.

6.5. Zusammenfassung

Entsprechend der zu behandelnden Aufgabenstellung werden die Ansätze fi<"(x, 19“’), i = 1, ..., q,
formuliert. Es wird ein Anfangsplan V„ durchgeführt, mit dem alle Parameter Ü“), i = 1, ..., q, ge-
schätzt werden können. Aus der Realisierung 35/ des Stichprobenvektors €V( V,,) werden die zur Schät-
zung benötigten Größen berechnet und die Restvarianzen Sf , i = I, ..., q, ermittelt. Dann wird mit
einem Entscheidungskriterium geprüft, ob die Auswahl eines besten Ansatzes möglich ist. Als Kri-
terium wird dabei die Differenz der Stichprobenvarianzen S1(V„) — S2(V„), bei nur zwei konkurrie-
renden Ansätzen, oder die a-posteriori-Wahrscheinlichkeiten P‚-„für die Ansätze fi("(x, 190"), i z 1,

..., q, herangezogen. Wenn die Entscheidung für einen besten Ansatz noch nicht möglich ist und
weitere Versuche durchgeführt werden können, dann wird ein nächster Versuchspunkt x„+‚ nach
einem Optimalitätskriterium ausgewählt. Als Kriterium kann entweder die Differenz der Stich-
probenvarianzen für zwei Ansätze, der quadratische Abstand der Schätzungen für die Wirkungs-
fiäche oder der durch den (n + 1)-ten Versuch erwartete Informationsgewinn herangezogen werden.
Nach Durchführung eines Versuches in x„„ wird auf das Gesamtergebnis 3/(V,,+1) wieder das Ent-
scheidungskriterium angewandt, usw. Das Verfahren wird so lange wiederholt, bis ein bester Ansatz
ausgewählt werden kann.
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