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Einleitung

Im allgemeinsten Sinne versteht man unter Simulation die Untersuchung eines
Prozesses oder eines Systems mit Hilfe eines Ersatzsystems. Haufig zitierte Beispiele
fiir derartige Simulationen sind Simulatoren bei der Ausbildung von Flugzeugpiloten
oder in Fahrschulen. Die Griinde fiir ein derartiges Vorgehen liegen auf der Hand.
Es sind in erster Linie geringere Kosten und geringere Gefahr; in vielen praktischen
Fillen sind dariiber hinaus Untersuchungen am realen System gar nicht moglich, wie
spatere Beispiele zeigen werden.

Wichtige Ersatzsysteme fiir Simulationen stellen die mathematischen Modelle dar,
die den zu untersuchenden ProzeB beschreiben und die auf einem Digitalrechner aus-
gewertet werden. In einem solchen Falle spricht man von digitaler Simulation oder
Simulation im engeren Sinne. Im folgenden werden wir uns mit derartigen Simula-
tionen beschéftigen.

Meist tritt noch ein weiteres Moment hinzu, nimlich das Experimentieren mit
einem solchen Modell. Das ist darin begriindet, dafl die Modelle oft sehr kompliziert
und umfangreich sind, so daB keine expliziten mathematischen Methoden zur Be-
stimmung von Optimallésungen vorliegen; diese kénnen dann nur iiber Varianten-
rechnungen ermittelt werden. Aus diesen Griinden spricht man im Zusammenhang
mit der Simulation oft auch von experimenteller Mathematik.

Zwei wesentliche Griinde sind es, die in vielen Fallen die Anwendung der Simula-
tion erforderlich machen. Erstens ist es der vielfach sehr groBe Modellumfang, der
explizite mathematische Verfahren') verhindert. Zweitens sind bei komplexen Auf-
gabenstellungen die Teile von vollig unterschiedlicher mathematischer Struktur, so
daB es nicht méglich ist, ein einheitliches Modell zu erarbeiten. Vielmehr miissen in
solchen Fillen Teilmodelle aufgestellt werden, die durch Informationsaustausch mit-
einander verkniipft sind. Man spricht hier von Modellsystemen. Bei der Anwendung
einer expliziten Methode muf aber im allgemeinen ein ,,reiner* Aufgabentyp vor-
liegen, z.B. ein Modell der linearen Optimierung, ein Bedienungsmodell oder ahn-

-liches. Ist das nicht der Fall, so kann wieder mit Erfolg die Simulation eingesetzt
werden.

Diese kurzen Ausfithrungen sollen zur Begriindung der Notwendigkeit von Simu-
lationsverfahren geniigen. Im folgenden werden viele praktische Beispiele zur weiteren
Verdeutlichung beitragen.

1) Hierunter wollen wir im folgenden stets exakte Losungsmethoden oder solche Niherungs-
verfahren verstehen, die keinen experimentellen Charakter besitzen.



1. Grundlagen

1.1 Definition und Klassifizierung der Simulationsmethoden

1.1.1.  Definition

Im Hinblick auf die vorausgegangenen Betrachtungen konnen wir nunmehr de-
finieren, was wir im folgenden unter Simulation verstehen wollen.

Definition: Simulation ist ein Verfahren zur Durchfiihrung von Experimenten auf einem
Digitalrechner unter Benutzung mathematischer Modelle mit dem Ziel, Aussagen tiber
das Verhalten des realen Systems zu gewinnen.

Aus dieser Definition sind unmittelbar zwei wichtige Gesichtspunkte abzulesen.

Erstens erkennt man, daB es sich bei der Simulation nicht um eine feststehende
Methode, wie z.B. bei der Simplexmethode der linearen Optimierung, handelt, son-
dern um eine Methodik oder Vorgehensweise, die je nach der Problemstellung sehr
unterschiedlich ausfallen kann. Vor der Anwendung der Simulation hat man also
meist erst noch eine betriachtliche Anpassungsarbeit zu leisten. Andererseits liegt aber
gerade in der Allgemeinheit und Flexibilitdt der Simulation ihr Vorteil und ihre
Starke.

Zweitens zeigt die Definition, daB es sich bei der Simulation um eine Vorgehens-
weise handelt, die dem Studium des Systemverhaltens dient, nicht aber unmittelbar
zu einer Systemoptimierung fithrt. Vielmehr kann man nur mittelbar durch ein Experi-
mentieren in die entsprechende Richtung zu Optimallésungen gelangen.

1.1.2. Klassifizierung

Die Klassifizierung der Simulationsverfahren kann nach sehr unterschiedlichen Ge-
sichtspunkten erfolgen und wird auch in der Literatur nicht einheitlich vorgenommen.
Wir werden im folgenden die wichtigsten Klassifizierungsmerkmale zusammen-
stellen.

(1) Einteilung nach der Art des Experimentierens
Nach diesem Merkmal unterscheidet man zwei Arten der Simulation, namlich

— Monte-Carlo-Simulation oder zufallsbedingte Simulation,
— gezielte oder geplante Simulation.

Im erstgenannten Fall werden die den Experimenten zugrunde liegenden Bedingungen
oder zumindest ein Teil von ihnen zuféllig ausgewéhlt, wihrend sie im zweiten Fall
einem exakt vorbestimmten Plan folgen. Die Monte-Carlo-Simulation ist im all-
gemeinen mit wesentlich mehr Rechenaufwand verbunden als die gezielte Simulation.
Wie wir jedoch noch sehen werden, gibt es Fille, wo keine gezielte Simulation méglich
ist. Vielfach tritt in der Praxis eine Mischung beider Falle auf: Man beginnt mit einer
Monte-Carlo-Simulation und erhélt dadurch geniigend Informationen, um danach
zur gezielten Simulation iibergehen zu kénnen. Die Erzeugung zufélliger Bedingungen
werden wir im nidchsten Abschnitt behandeln.

(2) Einteilung nach der Art der angestrebten Losung

Das Verhalten von Systemen kann durch statische oder dynamische Lésungen cha-
rakterisiert werden. Unter einer statischen Losung wollen wir einen mathematischen
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Zusammenhang verstehen, der objektiv giiltig ist und iiber Experimente aufgedeckt
wird. Ein Beispiel hierfiir wiare die optimale Auslegung oder Fahrweise einer tech-
nischen Anlage in Abhingigkeit von bestimmten Parametern. Mittels Simulation
kann man das Optimum oder zumindest eine Naherungslosung dadurch bestimmen,
daB dic Fahrweisen bei Veranderung der Parameter ermittelt und die giinstigste
herausgesucht wird. Ein ganz anderer Sachverhalt liegt bei einer dynamischen Losung
vor. Hier will man das Verhalten des Systems in Abhéngigkeit von der Zeit kennen-
lernen. Als Beispiel betrachten wir ein Bedienungssystem. Forderungenstrom und
Bedienungszeiten werden in jhrem zeitlichen Ablauf gemaB ihrer Wahrscheinlich-
keitsverteilungen von einem Rechenautomaten erzeugt, und man erhilt die Warte-
schlangenlinge oder die abgelehnten Forderungen in einem Verlustsystem fiir jedes
Zcitintervall. Man kann somit eine Einteilung in

— Simulation mit statischer Losung
— Simulation mit dynamischer Losung

vornehmen. Diese Einteilung ist auch dadurch charakterisiert, daB im ersten Fall die
Reihenfolge der Experimente gleichgiiltig ist (auBer natiirlich, wenn eine gezielte
Simulation in einer ganz bestimmten Richtung durchgefiihrt wird), wahrend im zwei-
ten Fall die Zeitabhingigkeit unbedingt zu beachten ist.

(3) Einteilung nach den Zeitpunkten der Berechnung

Diese Einteilung bezieht sich im wesentlichen auf Simulation mit dynamischer Lésung.
Wihrend bei einer statischen Losung die Wahl des Zeitpunktes, wann irgend etwas
gerechnet wird, véllig beliebig und ohne EinfluB auf das Ergebnis ist, braucht das bei
dynamischen Lésungen nicht der Fall zu sein. Man konnte hier das Verhalten des
Systems fiir beliebige zukiinftige Zeitpunkte im voraus berechnen oder nur dann ge-
wisse Berechnungen durchfiihren, wenn das System durch duBere Einfliisse gestort
wird. Dieser zweite Fall ist bei ProzeBsteuerungen gegeben, wo man in diskreten
Zeitpunkten eine Berechnung durchfiihrt;diese konnen vorgegeben werden oder sich
im Laufe der Zeit zuféllig durch das Verhalten des Prozesses erforderlich machen. Wir
konnen also einteilen in

- zeitunabhdngige Simulation
— Simulation in diskreten Zeitpunkten (discrete event simulation).

Die vorangegangenen Ausfithrungen zeigen, daB alle Aufgaben mit statischer Lésung
und ein Teil der Aufgaben mit dynamischer Lsung zur ersten Gruppe gehoren.
Weitere Einteilungen sind nach der Art der zugrunde liegenden mathematischen Auf-
gabenstellungen moglich, doch soll hierauf nicht eingegangen werden, da der Leser
hieriiber im Zusammenhang mit den Anwendungsbeispielen einen Einblick bekommt.

1.2. Moglichkeiten zur Erzeugung von Zufallszahlen und zufilligen Reihen-
folgen

1.2.1.  Gleichverteilte Zufallszahlen

Bei der Monte-Carlo-Simulation sind, wie erwahnt, gewisse Grofen zufillig aus-
zuwihlen. Das kann durch die Erzeugung von Zufallszahlen auf Digitalrechnern ge-
schehen. Zufallszahlen sind Realisierungen von zufélligen Verénderlichen, die be-
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stimmten Verteilungen gehorchen. Als einfachster und wichtigster Fall treten hier die
im Intervall [0, 1] gleichverteilten Zufallszahlen auf, die als Realisierung einer zufilligen
Veranderlichen mit der Dichte

1 fir 0=sx=1
@ =1,
sonst

bzw. der Verteilungsfunktion
0 fir x<0
F(x)={x fir 0<x=1
1 fir x>1

aufzufassen sind. Wir werden oft einfacher von gleichverteilten Zufallszahlen spre-
chen und die Angabe des Intervalls [0, 1] weglassen. Die Zufallszahlen miissen somit
erstens eine Stichprobe aus einer Grundgesamtheit mit dieser Verteilung bilden und
zweitens auch in ihrer Anordnung zufallig sein (vgl. Bd. 17). Es muB sich also um
eine zufillige Stichprobe handeln. Hat man nun eine Vorschrift zur Erzeugung von
Zufallszahlen, so ist mit entsprechenden statistischen Tests zu priifen, ob diese beiden
Forderungen erfiillt sind. Man konnte hierzu einen Anpassungstest und einen Ite-
rationstest benutzen. Da man wegen der begrenzten Stellenzahl in Digitalrechnern
nur endliche Dezimalbriiche erhalt, sind allerdings nicht samtliche reellen Zahlen
des Intervalls [0, 1] darstellbar, und man kann deshalb von Quasizufallszahlen
sprechen. Wenn wir im folgenden trotzdem immer von Zufallszahlen sprechen, so
deshalb, weil der erwahnte Tatbestand fiir praktische Anwendungen keine tief-
greifenden Folgen hat.

Ein einfaches Verfahren zur Erzeugung von Zufallszahlen ist die Quadratmittel-
methode. Man geht von einer beliebigen Folge von n Ziffern aus. Die GroBe n richtet
sich nach der Stellenzahl der benutzten Rechenanlage, sollte gerade sein und kdonnte
also z.B. 10 betragen. FaBt man diese Ziffernfolge als ganze Zahl auf und quadriert
diese, so erhalt man eine Folge aus 2n Ziffern, wobei evtl. vorn Nullen zu erginzen

sind. Streicht man vorn und hinten die ersten bzw. letzten 5 Ziffern weg, so erhélt man

wieder eine Folge von n Ziffern und kann das Verfahren wiederholen. Setzt man vor
die Ziffernfolgen jeweils ,,0,%, so erhdlt man n-stellige Dezimalbriiche, die als Zufalls-
zahlen benutzt werden kénnen. Das Verfahren hat jedoch einen schwerwiegenden
Nachteil. Es kénnte im Laufe der Erzeugung von Ziffernfolgen z. B. eintreten, daBl die
ersten 5 oder mehr Stellen einer Ziffernfolge aus Nullen bestehen; dann bleibt diese
Eigenschaft offensichtlich fiir alle weiteren Ziffernfolgen erhalten, und man bekommt
nur noch Zahlen < 10-%, die dann nicht mehr zufillig in [0, 1] verteilt sind. Eine
solche Folge bezeichnet man als entartet, und sie ist unbrauchbar. Leider kann man
das Eintreten dieses Entartungsfalles nicht von vornherein erkennen.

Man hat deshalb andere Verfahren zur Erzeugung von Zufallszahlen entwickelt,
die derartige Entartungen weitgehend ausschlieBen, so daB man hinreichend lange
Folgen von Zufallszahlen erzeugen kann. Bei diesen Betrachtungen spielt der Begriff
der Kongruenz eine wesentliche Rolle.

Definition: Zwei ganze Zahlen a und b heifien kongruent modulo m, wobei m positiv
und ganz ist, wenn a — b durch m teilbar ist. In Zeichen schreibt man dann a = b
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mod m. Man sieht, dafy im Falle einer solchen Kongruenz a und b bei Division durch m
denselben Rest lassen.

Beispielsweise gilt
3=8mod5, 14=0mod7, —4=7modll.

Ausgehend von einer beliebigen positiven ganzen Zahl x, ergeben sich mit geeignet
gewihlten ganzen positiven Zahlen ¢ und m weitere ganze Zahlen x;,i = 1,2, ...,
geméB der Rekursionsformel

X1 = ¢+ x; mod m,
wobei fiir x;,, immer die kleinste nichtnegative ganze Zahl zu nehmen ist, die dieser
Kongruenz geniigt. Die Zahlen —)r—cn‘— liegen zwischen 0 und 1 und konnen als gleich-

verteilte Zufallszahlen dienen. Wird ein x; = 0, so erhélt man von dieser Stelle an nur
noch Nullen und die Folge entartet. Durch geschickte Wahl von ¢ und m kann jedoch
die Wahrscheinlichkeit derartiger Entartungen hinreichend klein gehalten werden.

Bei den praktisch verwendeten Programmen nach diesem Verfahren benutzt man
bei ciner im Bindrsystem arbeitenden Rechenanlage m = 2", wo r die Anzahl der
Bits in einem Wort bezeichnet. Dann rechnet die Maschine automatisch modulo m
und die Division durch m bedeutet lediglich eine Kommaverschiebung (warum?).
Bei der Wahl von ¢ muB man auf eine moglichst groBe Periodenlinge achten. Gewisse
Erwigungen statistischer Art legen eine Wahl von ¢ in der GréBenordnung von /m
nahe. Ist jedoch m eine Zweierpotenz, so muB ¢ ungerade sein, da sonst die Perioden-
lange kleiner wird. (Man stelle ein FluBdiagramm fiir diese Art der Erzeugung von
Zufallszahlen auf.)

Es gibt noch eine ganze Reihe weiterer Erzeugungsvorschriften, die naf Kongruenz-
betrachtungen beruhen, doch soll hierauf nicht weiter eingegangen werden.

1.2.2.  Zufallszahlen mit anderen Verteilungen

Will man Zufallszahlen mit einer anderen Verteilungsfunktion F(x) erzeugen, so
geht man von einer Folge &,, &,, ... gleichverteilter Zufallszahlen aus und berechnet
die Folge ; = F~1(£;), wobei F~! die inverse Funktion von F bezeichnet. Wegen

Py <x}=P{F') <x} =P < Fx)} = F(x)

sind die #; tatsdchlich nach dem Verteilungsgesetz F(x) verteilt. Diese Methode wird
als Inversionsmethode bezeichnet. F muf3 dabei stetig und monoton sein.

Beispiel 1.1: Es sollen Zufallszahlen erzeugt werden, die der Exponentialverteilung geniigen; solche
spielen in der Bedienungstheorie (vgl. Abschnitt 2.3.3.) eine Rolle. Fiir die Exponentialverteilung gilt
F(x) = 1 — e fir x = 0 und sonst F(x) = 0.

Dann gilt offenbar

1
7= FE) = — 5 In(l - &),

und die gleichverteilten Zufallszahlen &; gehen in Zufallszahlen #; tiber, die der angegebenen Expo-
nentialverteilung gentigen.
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1.2.3.  Zufillige Reihenfolgen

Wie wir spater in den Anwendungen sehen werden, spielt auch die Erzeugung zu-
falliger Reihenfolgen bei gewissen Problemen eine wichtige Rolle. Die Zahlen 1, 2,..., n
lassen sich bekanntlich auf n! = 1-2 ... n Arten anordnen. Eine solche Anordnung
oder Permutation entspricht einer Reihenfolge, und das Problem ist, aus den n! mog-
lichen Reihenfolgen zuféllig eine bestimmte Anzahl auszuwiahlen. Eine theoretische
Moglichkeit bestinde darin, alle Reihenfolgen zu numerieren und dann aus den
Nummern 1 bis n! zufillig welche auszuwéhlen. Da aber die Zuordnung der Reihen-
folgen zu den Nummern 1 bis #! und umgekehrt numerisch sehr aufwendig ist, mu8
man nach anderen Wegen suchen. )

Definition: Ist « eine reelle Zahl, so versteht man unter dem ganzen Anteil [«] diejenige
ganze Zahl, fiir die x — 1 < [o] < w gilt.

Wir nehmen an, daB » < 99 ist. Man wird sofort erkennen, daB das keine wesent-
liche Einschrankung darstellt, sondern nur gewisse Rechenvereinfachungen ermog-
licht. (Uberlegen Sie, wie man bei » = 100 vorgehen kénnte!) Wir erzeugen gleich-
verteilte Zufallszahlen &, &,, .... Wir setzen & = [100&,] fiir i = 1,2, .... Der bei
Division durch n verbleibende Rest von & ist die erste Zahl der auszuwihlenden Per-
mutation; sollte der Rest gleich null sein, so nimmt man den Teiler » als diese Zahl.
Die so ermittelte Zahl wird aus der Folge der Zahlen 1 bis n entfernt; die verbleibenden
Zahlen werden den Speicherplatzen 1 bis n — 1) zugeordnet, stimmen aber im all-
gemeinen nicht mit diesen Speicherplatznummern iiberein. Nun wird &; durch n —1
geteilt; der Divisionsrest (bei 0 nehmen wir n — 1) gibt den Speicherplatz an, wo die
nichste Zahl der auszuwéihlenden Reihenfolge zu finden ist. Man féhrt fort, bis alle
n Zahlen angeordnet sind; offenbar braucht man dieses Verfahren nur bis zur vor-
letzten Zahl durchzufiihren, weil die letzte dann eindeutig bestimmt ist. Danach wird
genauso eine zweite Reihenfolge ausgewéhlt usw. Die erwahnte Zuordnung zu Spei-
cherplétzen erscheint zunichst etwas kompliziert, 1Bt sich aber in Rechenautomaten
verhaltnismaBig leicht realisieren.

1.3. Allgemeine Gesichtspunkte bei der Anwendung von Simulationsmethoden

1.3.1.  Eine spezielle Aufgabenstellung

Wir betrachten in diesem Abschnitt zunéchst eine sehr einfache Aufgabe der Simu-
lation, namlich die Berechnung eines bestimmten Integrals

1

[p(x) dx

mittels gleichverteilter Zufallszahlen. Nehmen wir 0 < ¢(x) < 1 an, so ist das Inte-
gral durch den Inhalt einer Flache gegeben, die ganz im Einheitsquadrat liegt (Bild 1.1).
Mar erzeugt gleichverteilte Zufallszahlen im Intervall [0, 1] und faBit je 2 zu den Koor-
dinaten eines Punktes im Einheitsquadrat zusammen. Ist N die Gesamtzahl der so

1) Diese Numerierung muB nicht der Numerierung in der Rechenanlage entsprechen, sie wurde nur
der Bequemlichkeit halber so gewahlt.
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erzeugten Punkte und M(V) die Zahl derjenigen Punkte davon, die innerhalb oder auf
dem Rand der zu berechnenden Flache liegen, so folgt nach der Statistischen Wahr-
scheinlichkeitsdefinition (vgl. Bd. 17), daB

fq:(x) dx ~ MI(VM

gilt. Die Bestimmung von M(N) ist sehr einfach. Hat man einen Punkt (&, &;4,), so
wird M(N) genau dann um 1 erhoht, wenn &y < @(&,) gilt.

$00

17
f g ax

0

Bild 1.1

1 X

Obwohl die Berechnung eines bestimmten Integrals keine typische Aufgabe der
Simulation darstellt, kann man daran — wie im folgenden noch naher ausgefiihrt wird —
wichtige Gesichtspunkte erkennen. Im iibrigen sind aber natiirlich die wesentlichen
Elemente unserer Definition gegeben (inwiefern ?).

1.3.2. Bemerkungen zur Anzahl der erforderlichen Zufallszahlen

Wir wollen uns nun eine Vorstellung von der Anzahl der benétigten Zufallszahlen
verschaffen, um eine bestimmte Genauigkeit zu erreichen. Die Benutzung von Zu-
fallszahlen liefert eine Fehlerabschiatzung in Form einer Wahrscheinlichkeitsaussage.
Wir benutzen dazu die Tschebyscheffsche Ungleichung (vgl. Bd. 17)

POX - B s Ky 21 - 2,

wobei X eine ZufallsgréBe, E(X) bzw. 62(X) deren Erwartungswert bzw. Varianz und K
eine willkiirliche Konstante bezeichnen. Ist p der gesuchte Flacheninhalt, so geniigen
die Versuchsergebnisse, die in der zufalligen Erzeugung von Punkten bestehen, offen-
sichtlich einer binomischen Verteilung mit dem Parameter p (warum?). Die Wahr-
scheinlichkeit, dal von » Punkten genau k innerhalb der gesuchten Flache liegen, ist

Pyk) = (Z)p"(l — p)"* Wegen E(X) = np und 0*(X) = np(1 — p) ergibt sich aus der
Tschebyscheffschen Ungleichung mitK=e-n

p(l —p)
——,

— = < >1 -
p}:-e}:l pom

ﬂX
n
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und " entspricht unserem Niherungswert-%. Mitp = %unda = 0,01 hat man
X 10*
= < > —
p{n p=0,01}=1 e

Will man nun die Genauigkeit auf 2 Dezimalen mit einer Wahrscheinlichkeit von
4

0,99 erreichen, so folgtaus 1 — % = 0,99 unmittelbar n = % 108, und man muB also

5-10% Zufallszahlen erzeugen, weil diese Zahl doppelt so groB wie 7 ist.

1.3.3.  Vergleich mit anderen Methoden

Vergleicht man diesen Aufwand mit einem expliziten numerischen Integrations-
verfahren, etwa der Trapezregel, so ist die Simulation sehr uneffektiv. Das dndert sich
allerdings schnell, wenn man mehrfache Integrale zu berechnen hat, Beachtet man die
Deutung eines K-fachen Integrals als ein Volumen im (K + 1)-dimensionalen Raum,
so liegt die Ubertragung des Simulationsverfahrens unmittelbar auf der Hand. Zur
Festlegung eines Punktes im (K + 1)-dimensionalen Raum benétigt man K + 1 Zu-
fallszahlen; aber die Abschatzungen gemaB der Tschebyscheffschen Ungleichung
bleiben erhalten. Somit steigt der Aufwand im wesentlichen linear mit der Dimen-
sion; von der Form des Integranden als Funktion mehrerer Variabler wird dabei
abgesehen. Betrachtet man dagegen die Verallgemeinerung der Trapezregel, so bend-
tigt man mX Stiitzstellen, wenn man fiir jede Variable m Werte benutzt; hier liegt also
eine exponentielle Steigerung vor. Trigt man die Rechenaufwinde iiber der Dimen-
sion auf, wie das in Bild 1.2 geschehen ist, so erkennt man, daB die Simulation bei

Aufwond

Bild 1.2

kleinem K gegeniiber den expliziten Verfahren duBerst uneffektiv ist, aber bei groBeren
K wesentlich besser abschneidet. Bei groen Dimensionen kann die Simulation bei
ertriglichem Rechenaufwand noch brauchbare Néaherungswerte liefern, wihrend die
expliziten Verfahren schon lange versagen. Wie weit man mit der Simulation gehen
kann, hangt dabei natiirlich von der verfiigbaren Rechenanlage ab.

Die Praxis zeigt, daB dieses Verhalten der Simulationsverfahren nicht nur bei der
Berechnung mehrfacher Integrale auftritt, sondern typisch ist: Bei einfachen Auf-
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gaben sind explizite Verfahren vorzuziehen, bei umfangreichen und komplexen Pro-
blemen kann die Simulation aber Losungen liefern, wenn die expliziten Methoden wegen
zu hohen Aufwandes versagen. Dariiber hinaus kénnte natiirlich bei komplizierten
Problemen der Fall eintreten, daB iiberhaupt keine expliziten Methoden verfiigbar
sind, sondern die Simulation die einzig mégliche Vorgehensweise darstellt und damit
gleichberechtigt neben anderen Methoden steht.

Es muB allerdings ausdriicklich darauf hingewiesen werden, dafl die Simulation
kein ,,Allheilmittel“ ist, mit dem man alle anstehenden Probleme 16sen kann. Es ist
durchaus méglich, daB auch die Simulation einen zu groBen Aufwand erfordert oder
kein Modell vorliegt, das die Realitdt hinreichend genau widerspiegelt.

1.3.4.  Anpassungsarbeit

Wir kommen damit zu dem wichtigen Problem der Anpassungsarbeit. Wenn auch
im Zusammenhang mit den zu behandelnden Beispielen hierzu noch einiges gesagt
werden wird, so erscheint es doch notwendig und niitzlich, einige grundlegende und
allgemeine Gesichtspunkte voranzustellen. Es wird vielfach die Meinung vertreten,
daB dic in der Literatur angegebenen Beispiele wenig niitzen, weil jedes Problem an-
ders geartet ist, und man doch jedesmal von vorn anzufangen hat. In vielen Fallen
diirfte diese Auffassung darin begriindet sein, daB man dem praktischen Tatbestand
mehr Aufmerksamkeit schenkt als dem mathematischen oder der Problemstruktur.
Es ist natiirlich richtig, da man die Simulation wegen der groBen Breite der An-
wendungsmdglichkeiten im wesentlichen an Beispielen darstellen muB (und wir tun
das im folgenden ebenfalls), aber der Leser erkennt doch an den Beispiclen viele niitz-
liche Gesichtspunkte, die er bei seinen Problemen verwerten kann.

1.3.5. Einschiitzung der Ergebnisse

Ein wesentlicher Punkt bei der Anwendung von Simulationsmethoden ist auch die
Einschitzung der Ergebnisse. Die Giite der Ergebnisse ist natiirlich von der Genauig-
keit und Adiquatheit des Modells abhdngig und somit ein Anpassungsproblem.
Das Modell muf3 durch Vergleich seiner Ergebnisse mit der Realitit verifiziert werden,
um seine Giite einschitzen zu konnen. Die Verifikation kann im wesentlichen auf drei
Arten erfolgen, und zwar durch

(1) direkten Vergleich mit der Wirklichkeit,

(2) Auswahl gewisser Daten zum Vergleich,

(3) Vergleich mit ahnlichen Modellen, weil kein Vergleich mit der Wirklichkeit
moglich ist.

Die Sicherheit ist in dieser Reihenfolge abnehmend. Die ersten beiden M&glichkeiten
scheitern vielfach daran, dal man in realen Systemen nicht beliebig experimentieren
kann, ohne den Ablauf empfindlich zu stéren. Es gibt aber auch Falle, wo eine Veri-
fikation véllig unproblematisch ist, nimlich z.B. dann, wenn das Modell auf rein
mathematischen Uberlegungen beruht, wie im Falle der Berechnung bestimmter Inte-
grale oder in dem spater zu betrachtenden Reihenfolgeproblem. Im ersteren Fall ist
das ,,Modell* die statistische Definition der Wahrscheinlichkeit, im letzteren Fall die
Formel fiir die Gesamtdurchlaufzeit in Abhéingigkeit von den einzelnen Bearbeitungs-
zeiten.
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Ein weiteres wichtiges Problem im Zusammenhang mit der Anpassungsarbeit ist
die Frage, wie weit man in Einzelheiten gehen soll. Die Simulation ist ja in jedem
Fall mit hohem Rechenaufwand verbunden, und die Entscheidung dariiber, ob sich
die Beriicksichtigung gewisser Details lohnt und in cinem verniinftigen Verhiltnis
zum Mehraufwand steht, erscheint daher besonders wichtig. Als Faustregel mag hier
gelten: Das Modell ist so grob wie mdglich zu entwerfen. Die Verwirklichung erscheint
auf den ersten Blick schwierig, ist es aber nicht. Man kann namlich stets mit mdglichst
einfachen Modellen beginnen und diese nach und nach verfeinern, solange die Veri-
fikation unbefriedigend ausfallt. Die ,,Kehrseite** dieses Vorgehens ist allerdings, daB
ein Simulationsmodell in vielen Fillen eigentlich nie ,,fertig wird. Auch diese Be-
trachtungen zeigen den mitunter betrachtlichen Arbeitsaufwand bis zu dem ge-
wiinschten Erfolg und fithren zu der SchluBfolgerung, da man nur wichtige und loh-
nende Aufgaben in Angriff nehmen sollte. In jedem Fall erscheint es ratsam, einen auf
diesem Gebiet erfahrenen Mathematiker zu konsultieren.

Einige Moglichkeiten zur Verringerung des Aufwandes werden im folgenden Ab-
schnitt allerdings noch angegeben.

1.4. Moglichkeiten zur Erhohung der Effektivitit

Wir haben gesehen, daB der Aufwand bei Monte-Carlo-Simulationen doch verhilt-
nismaBig hoch ist. Durch VergroBerung des Stichprobenumfanges 18t sich zwar die
Genauigkeit erhdhen, doch kann man hier natiirlich nicht beliebig weit gehen. Man
kann aber den Fehler einer Monte-Carlo-Rechnung auch durch eine geschickte Or-
ganisation der Rechnung herabsetzen, indem man den Zufall ,,manipuliert®.

Zur Beschreibung solcher Techniken benutzen wir wieder die Berechnung eines
einfachen Integrals

1

= [fx)dx. -
0

Wir versuchen zunéchst, uns ein MaBl zum Vergleich mehrerer Methoden zu ver-
schaffen. Zwei zu vergleichende Methoden mégen n, bzw. n, Einheiten an Rechen-
zeit benétigen und die erhaltenen Schitzungen von 7 sollen dann die Varianzen o?

bzw. 03 haben Die Wirksamkeit der Methode 2 beziiglich Methode 1 1st
dabei heth e Auﬁvandskoefﬁzzent und —1 Varianzkoeffizient.

, und

1.4.1.  Gewohnliche Monte-Carlo-Methode

Gegentiber der bereits genannten Moglichkeit der Berechnung des Integrals 1aBt sich
das Verfahren zunichst erst einmal noch wirksamer gestalten, indem man die Zufalls-
zahlen auf eine andere Art benutzt. Es seien &, ..., &, gleichverteilte Zufallszahlen;
dann sind f; = f(&;) unabhingige ZufallsgréBen mit dem Erwartungswert I, d.h.,

eine Schitzung von [ ist durch f = -;ll— 3 f; gegeben, und fiir die Varianz gilt
i=1

%f(f(x) iy dx=o'%.
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Bei praktischen Aufgaben mufl man das o2 iiber die Stichprobenvarianz gemif3
1 n
INES -2

n—1;
schitzen. Dieses Vorgehen wird in der Literatur mitunter als gewdhnliche Monte-
Carlo-Methode bezeichnet.
Es zeigt sich, daB das eben genannte Verfahren gegeniiber dem frither geschilderten
einen Wirksamkeitsfaktor von 3 hat.
Wir wollen nun einige weitere Moglichkeiten zur Erh6hung der Effektivitat be-
trachten.

st =

1.4.2.  Geteilte Stichproben

Der Integrationsbereich wird in Intervalle unterteilt, etwa a;_; < x < «;, wobei
0=wnp <oy <+ <o =1 gilt, und die Berechnung wird fiir jedes Intervall ge-
trennt durchgefiihrt; die Zufallszahlen des j-ten Intervalls seien &;;. Die SchétzgroBe
ist k on 1
F=73% 3 (0~ o) — floyoy + (5 — oj-1) &),

Jj=1i=1 nj
wobei n; die (vorher) festgelegten Anzahlen ausgewahlter Zufallszahlen im Intervall j
bezeichnen. Die Varianz dieser SchatzgrofBle ist
2

. T ! 2 5 1 :
o= x5 MEE [P dx - 3 | [ ax)
J=1 n; j=1ny
aj-t @1
Diese Varianz ist kleiner als 67 mit n = ¥ n;, wenn die Unterteilung in Intervalle so
durchgefiihrt wird, da8 die Differenzen zwischen den Mittelwerten von fin den Teil-
intervallen gréBer als die Variationen von f in den Teilen sind.
Sind die Teilpunkte festgelegt, so ist es giinstig, die Zufallszahlen in den Inter-
vallen so zu verteilen, daf n}- proportional zu

() = a0 | FP dx—{ f]f(x)dx}

aj-
ausfallt. j

Die Teilpunkte «; kann man im einfachsten Falle gleich?setzen, d.h., die Teil-
intervalle sind gleich lang. Giinstiger ist allerdings eine solche Unterteilung, daB die
Variation von f in jedem Teilintervall gleich ist.

Es zeigt sich, daB diese Methode etwa 10mal so wirksam wie die gewdhnliche
Monte-Carlo-Methode ist.

Die Schitzung des Standardfehlers muB nach den folgenden Beziehungen vor-
genommen werden:

K o(a— )2 M

=3 G2l S gy,
. =1on(ny = 1) =1

wobei 1 &

Ju=floyy + @y —apnéy), = . 2 fis

gilt. S 4=1
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1.4.3.  Gewichtete Stichprobenauswahl

Man setzt

f (x)
p(X)

f()

—=—=px)dx = p(X)

I= f F(x) dx = dG(x),

x
wobei G(x) = J p(y)dy 1st I ist somlt der Erwartungswert der ZufallsgroBe ! g;

beziiglich der ZufallsgroBean der Dichte p(x). Mitp > Ound G(1) = fp(y) dy =1

kann man G als Verteilungsfunktion auffassen. Sind nun %,,7,, ..., Zufallszahlen,

die der Verteilung p geniigen, so hat ;; EZZ))
oy = f (% —1) d4G(x).

. . . 1 . .
Ist f > 0, so kénnten wir p = ¢f mit ¢ = ¥ setzen, und man hitte o’},,, =0, also eine

den Erwartungswert I und die Varianz

,,ideale Monte-Carlo-Methode. Natiirlich ist das praktisch nicht durchfiihrbar, weil
wir I kennen miiiten, und dann brauchten wir keine Monte-Carlo-Methode mehr zu
seiner Bestimmung.

Trotzdem kann man aber durch diese Uberlegungen etwas verbessern. Was auch
fiir eine positive Funktion gewéhlt wird, so erhalten wir stets eine erwartungstreue
Schitzung von 7, und wir kénnen ein solches p wahlen, das den Standardfehler unserer
Schiitzung verkleinert. Nach den obigen Uberlegungen miiBte p dhnlich wie f ver-
laufen, andererseits aber mit einer direkten Methode integrierbar sein, weil

1

f p(y)dy = 1 erfiillt sein muB. Das sind in gewissem Sinne entgegenlaufende Forde-

0
rungen, wenn f sehr kompliziert ist.

[
Beispiel 1.2: Ist f= P o
gewohnlichen Monte-Carlo-Methode einen Varianzkoeffizienten von 29 und einen Aufwands-
koeffizienten von 4, so daB wir einen Gesamtfaktor von etwa 10 erhalten.

5o kénnen wir z.B. p(x) = x nehmen. Wir finden hier gegeniiber der

Das Verfahren funktioniert im iibrigen auch fiir unbeschrinkte Integranden.

1.4.4.  Regressionsmethoden

Hier betrachten wir zunéchst eine allgemeinere Problemstellung. Es seien ver-
schiedene zu schitzende GréBen 6,,0,, ..., 0, gegeben und eine Menge vy, ..., 1,
(n 2 h) von Schatzwerten mit der Eigenschaft

Elv] = x0; + - +xp0 (=1,...,n), (L.1)
wo E wie iiblich den Erwartungswert bezeichnet und x;; bekannte Konstanten sind.
Eine erwartungstreue lineare Schiatzung von 8 = (0,, ..., 0,) mit Minimalvarianz ist

v¢ = (XTV-IX)-IXTV-ty,
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wo X die (n, h)-Matrix (x;;), V die (n, n)-Kovarianzmatrix der v; und v = (vy, ..., v,)
bezeichnet. Aufler V ist in dieser Formel alles bekannt. Nun betrachten wir mit einer
anderen Kovarianzmatrix V, die Schitzung

v = (XTV3IX)IXTV3ly. (1.2)
Statt (1.1) konnen wir auch schreiben E[v] = X6, und da v§ linear in v ist, so folgt
E[v3] = E[(X"V5'X)'X Vo] = (X"V4'X) X7 V5 E[v]
=(X"V3'X)"'X"V5'X0 = 6.
v ist also auch erwartungstreue Schitzung von 0, was auch fiir ein V, benutzt wird;
bei Vo + V liegt allerdings keine Schatzung mit Minimalvarianz vor. Wenn also V
unbekannt ist, kénnen wir es durch eine Schitzung V, ersetzen.

In der Praxis werden dann N unabhingige Mengen von Schitzungen v, ..., v,,
die mit vy, ..., v, (k = 1, ..., N) bezeichnet seien, benutzt und die v;; werden durch

1 N - -
v = -ﬁ-kgl (v — 1) (o — D)

- 1 X .
mit ; = W > vy geschatzt.
k=1

Man sctzt dann Vo = (v§) und benutzt (1.2) als Schatzung fiir 6.

Ein Spezialfall, der zur Berechnung eines bestimmten Integrales benutzt werden
kann, soll im folgenden betrachtet werden. Wir suchen zu einer Schatzung v eine
andere Schitzung v, die denselben (unbekannten) Erwartungswert wie v besitzt und
mit v stark negativ korreliert ist. Dann ist 4(v + ') eine erwartungstreue Schitzung
von 6 mit

o [4(v + V)] = 16*(v) + 162(v") + % cov (v, V).

Durch geeignete Wahl von v’ kann o2[}(v + v')] unter Umsténden kleiner als ¢?(v)
ausfallen.

Als Beispiel betrachten wir Zufallszahlen &, die im Intervall [0, 1] gleichverteilt
sind. Dasselbe gilt dann fiir 1 — £, und wenn f monoton ist, sind f(£) und f(1 — &)
negativ korreliert. Wir kénnen dann 3(v + v') = 1f(§) + 1/(1 — £) als Schatzung fiir

1

0= vli f(x)dx nehmen und erhalten eine 30fache Verbesserung zur gewdhnlichen
]

Monte-Carlo-Methode.
Haben wir n Schitzungen eines einfachen Parameters, so wird die Matrix X zum
Spaltenvektor x, und in vielen Spezialfillen sind alle Elemente von x gleich 1. So sind

z.B.
1+ 3/ =8,
GO+ 3G -1+ G + 1) + 1A - 19

1
erwartungstreue Schitzungen des Integrals 6 = [ f(x) dx. Wir haben hier den spe-

Uy

U2

ziellen Fallh:l,n=2,x=(l). °
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1

Z __11 , wofir J f(x)dx = 0,4180227 gilt. Dann erhélt man')
. [
etwa mit N = 100 &, = 0,4218353 und i, = 0,4189959.
Die Stichprobe liefert weiter
0,00131493  0,000334 49
0,00033449 0,000850 9 )'

und wir erhalten v = 0,4180273, was dem tatsichlichen Wert wesentlich besser entspricht als
0y oder 7,.

Obwohl wir die Methoden zur Effektivititserhéhung nur an der Berechnung von
Integralen erlautert haben, sind sie oft auch bei anderen Aufgaben brauchbar. Man
muB sich dazu nur vor Augen halten, daB Monte-Carlo-Methoden bzw. Simula-
tionen im Grunde genommen weiter nichts als Verfahren darstellen, unbekannte Werte
von Parametern gewisser Verteilungen iiber Stichproben zu schétzen, und daB die
Uberlegungen auch auf andere Schitzprobleme zu iibertragen sind.

Zum SchluB wollen wir noch einmal die wesentlichen Uberlegungen und Gesichts-
punkte zusammenfassen, die bei der Anwendung von Simulationsverfahren zu be-
achten sind.

Beispiel 1.3: Es sei wieder f(x) =

Vo=(vi?)=(

1. Analyse des Problems: Zusammenstellung der gegebenen und gesuchten Daten,
Festlegung des Ziels der Untersuchung.

2. Modellierung der Aufgabe.

3. Auswahl des Losungsverfahrens.

. Uberlegungen zur Effektivitit der Simulationsverfahren und falls vorhanden
expliziter Verfahren. Rechen-, Zeit- und Kostenaufwand gegeniiberstellen; evtl.
Moglichkeiten zur Verringerung des Rechenaufwandes beriicksichtigen.

5. Programmierung, Rechnung, Auswertung.

Moglicherweise Modellverbesserung und erneuter Beginn bei 3.

F

1) Zahlenwerte aus [4).
2 Piehler, Simulation



2. Beispiele

2.1.  Mathematische Probleme

2.1.1.  Berechnung bestimmter Integrale

Zur Berechnung bestimmter Integrale werden zwei Verfahren angegeben. Das
erste hangt mit der Berechnung der Haufigkeit zusammen, mit der eine zufillige
GréBe in cin vorgegebenes Intervall fillt. Das zweite beruht auf der Berechnung des
Mittelwertes einer Funktion von einer zufilligen Variablen.

Zu berechnen ist das Integral

b
I = [ h(x)dx, 2.1)
a
wobei 4(x) eine im Intervall [a, b] beschrankte, nichtnegative integrierbare Funktion
ist. Die Berechnung geschieht unter Zuriickfithrung auf ein Integral der Form

I= fltp(x) dx (2.2)

0

mit 0 £ ¢(x) £ 1 im Intervall [0, 1]. In 1.3.1. wurde bereits gezeigt, wie Integrale
dieser Art mit Monte-Carlo-Simulationen (manchmal auch als Methoden der sta-
tistischen Versuche bezeichnet) naherungsweise berechnet werden kénnen. Man setzt
zunachst

m = min h(x); M = max h(x).

x€(a,b] xe[a,b)

Mit Hilfe der Variablentransformation

x=a+(b-a)z

1aBt sich das zu berechnende Integral (2.1) auf die Form
1
I=(b-a)[hla+ (b -a)z]dz
0

bringen. Durch einfache Umformungen, die eine MaBstabsanderung bewirken, er-
hélt man
b—a)z] -

m
oW —m dz + (b — a)m. (2.3)

I=(M—m)(b—a)fh[a+

Fiithrt man fiir den Integranden von (2.3) die Bezeichnung h*(z) ein, so folgt
1
I=WM-m)®b - a)J‘h*(z)dz + (b —a)ym.
0

Man erkennt unmittelbar, da8 fiir z € [0, 1] 0 £ A*(z) <1 gilt. Damit ist die Berech-
nung des Integrals (2.1) auf den bereits betrachteten Fall (2.2) zuriickgefiihrt.
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Diese Methode 148t sich auf die Bestimmung mehrfacher Integrale verallgemeinern.
Zu berechnen ist das Integral

I= [ [h(xy, e, %) dxy - dx, (2.4)
P
iiber einen beschrinkten und abgeschlossenen Bereich 2. 2 liege in dem n-dimensio-
nalen Quader [a;, b;], i = 1, ..., n. Mittels der Transformation
xp=a+ b —a)z, i=1,...,n,

erhélt man aus (2.4)
l_[ (b, - al)f h[ax + (by — a1)zy, ... a, + (by — a,) 2,] dzy -+ 4z,

Hierbei liegt der transformierte Integrationsbereich o im n-dimensionalen Einheits-
wiirfel. Durch eine MafBstabsinderung erhilt man, wenn mit M bzw. m der groBte
bzw. kleinste Wert von /4 in £2 bezeichnet wird,

1= = m 16— a) [ [ [ Aot adz, ] o m

M—-m

x dzy «+ dz, + om

oder mit einer entsprechenden Anderung der Bezeichnungsweise
I=(M—-m)T]: - a) fj ‘ h*(zyy e, 2,) dzy ... dz, + @, (2.5
i=1 o

wo @ der Inhalt des Bereiches w ist. Das Integral in (2.5) kann als Volumen ¥ eines
Korpers im Einheitswiirfel des (n + 1)-dimensionalen Raumes gedeutet werden.
Das Integral

1% = [[ e [h¥z0, 00, 2) dzy o dz, (2.6)

1aBt sich mittels Anwendung der Simulation auf folgende Weise naherungsweise be-
stimmen. Es werden N statistische Versuche durchgefiihrt, wobei bei der Festlegung
von N zu beriicksichtigen ist, daB8 die Zahl der statistischen Versuche gemaB den
Darlegungen in 1.3.2. die Genauigkeit des Ergebnisses beeinfluBt. Zu jedem Versuch
benétigt man # + 1 im Intervall [0, 1] gleichverteilter Zufallszahlen &,, &,, ..., &, 7.
Diese bilden die Koordinaten eines Punktes P*+! des (n + 1)-dimensionalen Rau-
mes. Bei jedem Versuch wird iiberpriift, ob P™+ dem Volumen V angehért. Ist M
die Zahl der erfolgreichen Versuche

PO = (§,&5, ..., 6,mEV, 2.7

dann entspricht M/N ndherungsweise dem gesuchten Integralwert (2.6). Es gilt also
M

* o

I*~ ¥

2%
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(2.7) ist zu den beiden Bezichungen

n S h*Ey, 060, (2.8)
PM = (§,,&, .., &)ew (2.8)
dquivalent.

Fillt o mit dem n-dimensionalen Einheitswiirfel zusammen, so ist (2.8') immer er-
fiillt, und es ist lediglich eine Uberpriifung von (2.8) nétig. Der Sachverhalt wird durch
die Bilder 2.1 und 2.1a veranschaulicht.

Es soll nun die zweite Methode zur Berechnung bestimmter Integrale betrachtet
werden. Sie beruht auf der Bestimmung des Mittelwertes einer ZufallsgréBe durch
Simulation. In 1.4. wurde dieser Gedanke bereits aufgegriffen, um die Effektivitit der
Simulation zu erhéhen (gewichtete Stichprobenwahl).

PR N Bild 2.1

Bild 2.1a

Gegeben ist eine im Intervall [a, b] integrierbare Funktion f(x). Bestimmt werden

soll
b

I=[f(x)dx. (2.9)
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Man wihlt in [a, b] eine beliebige stetige ZufallsgroBe ¥ mit einer Dichte p(x) > 0.
Dann wird X mit

)
X =g 2.10
g(¥) = 20 (2.10)
ebenfalls eine Zufallsvariable.
Aus der Wahrscheinlichkeitstheorie ist bekannt, daB der Erwartungswert von X
durch

E(X) = J' ) piydx = .[ f(x) dx

gegeben ist. Das bestimmte Integral (2.9) kann somit durch Ermittlung von E(X)
gemaB
SY)
E(X) = E(g(Y) =E(—) 211

(X) = B = E(75 @11)
berechnet werden. Aus den Betrachtungen ist zu ersehen, daB die Integrationsgrenzen
von (2.9) nicht endlich sein miissen. Die Methode eignet sich demnach auch fiir un-
eigentliche Integrale. E(X) kann naherungsweise durch Simulation bestimmt werden.
Es werden N gleichverteilte Zufallszahlen &,, &,, ..., &y erzeugt. Aus

}‘p(x) dx=§ (=1,..,N) (2.12)
[

ermittelt man N nach p(x) verteilten Zufallszahlen %y, 7,, ..., 7y (vgl. hierzu Ab-
schnitt 1.2.). Dann folgt
f (’71)

N t 1P

Es ist zu erwarten, daB bei gleicher Anzahl statistischer Versuche N die Wahl von
p(x) einen EinfluB auf die Genauigkeit des Ergebnisses hat. Die gewichtete Stich-
probenauswahl driickt sich in einer geschickten Wahl dieser Dichtefunktion aus (vgl.
Abschnitt 2.4.).
Fiir

I=EX)~

[FAC))
[1/G)l dx

px) = as<xs2bh, (2.13)

wird die Varianz ¢%(X) minimal; denn es ist
o(X) = E(X?) - (EX)? = f L g, - @14)

Aus der Analysis ist bekannt, daB fiir zwei Funktionen u(x), v(x) die Ungleichung

b 2 b b
(f Juv| dx) < [u?dx [v?dx (Schwarz-Bunjakowski)
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gilt. Mit u = f(x)/v/p(x), v = +/p(x) erhilt man

I:f|f(x)| dx] = fp((xx)) dxfp(x) dx =

Unter Beriicksichtigung von (2.14) folgt

b
fix)
p(x) d

X (X) 2 [ [fx) dx:l - I, (2.15)

Wird p(x) entsprechend (2.13) festgelegt, gilt in (2.15) das Gleichheitszeichen.

Wihlt man somit p(x) proportional zu | f(x)|, ist die Genauigkeit des Simulations-
ergebnisses am groften. Die Dichte (2.13) selbst 1Bt sich natiirlich nicht bestimmen,
da der Integralwert

b
[17G0] dx

ebenfalls unbekannt ist. Stehen jedoch mehrere Dichtefunktionen zur Auswahl, wird
man sich fiir jene entscheiden, die der genannten Forderung der Proportionalitit am
besten entspricht.

Beispiel 2.1: Zur Veranschaulichung dieser Darlegungen wird das folgende aus [8] entnommene
Zahlenbeispiel betrachtet. Zu berechnen ist das Integral
a2
I= J. sin x dx.
0

Y sei zunichst eine im Intervall [0, ©/2] gleichverteilte ZufallsgroBe, also hat man

N {2/7: fir 0 = x < /2,
P = 0 sonst
Wegen (2.12) wird
™
m= 6
und
1~—§s1nr), (2.16)

N = 10 Zufallszahlen &; sowie 7; und sin#; sind in der folgenden Tabelle angegeben.

i 1 2 3 4 5 6 7 8 9 10
& 0,865 0,159 0,079 0,566 0,155 0,664 0,345 0,655 0,812 0,332
N 1,359 0,250 0,124 0,889 0,243 1,043 0,542 1,029 1,275 0,521

sing, 0978 0,247 0,124 0,776 0,241 0,864 0,516 0,857 0,957 0,498

Man erhilt
1% 0,952,
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Die ZufallsgroBe Y mit der Dichte
8x/n? fir x€(0,7/2)
0 sonst

p(x) = {

miiBte zu einem wesentlich genaueren Ergebnis fiihren. Ein anschaulicher Vergleich (Bild 2.2) zeigt,
daB die zweite Dichte der Forderung nach Proportionalitit zu [f(x)| besser entspricht. Die prak-

tische Berech ergibt mit d Iben Zufaliszahlen &,(i = 1, ..., 10) unter Beriicksichtigung von
T -
1= &
und
w2 N sinmy
fPvas 217
8N G om @1
Y
e
IZ
Bild 2.2
F1 3
2

die folgenden Zahlenwerte:

i 1 2 3 4 5 6 7 8 9 10

& 0,865 0,159 0,079 0,566 0,155 0,664 0,345 0,655 0,812 0,332
m 1,461 0,626 0442 1,182 0,618 1,280 0923 1,271 1,415 0,905
Som 0,680 0936 0968 0,783 0,937 0,748 0,863 0,751 0,698 0,868

und
1~ 1,016.
nl2
Wegenj sinxdx =1 finden wir bestitigt, daB die Wahl der zweiten Dichte zu einem wesentlich

o
besseren Resultat fithrt. (Man stelle FluBdiagramme auf!)

Ist ein n-faches Integral zu berechnen, wird man sich nicht in jedem Fall fiir die
Anwendung der Simulation entscheiden. Die wesentliche Rechenarbeit liegt in der
Bestimmung der Funktionswerte des Integranden an den Stiitzstellen. Es wurde schon
in 1.4. darauf hingewiesen, daBl der Rechenaufwand hierfiir bei Anwendung direkter
Methoden nach einer Potenzfunktion, bei der Simulation nur linear ansteigt. Die Si-
mulation wird erst bei groBer Dimensionszahl effektiv.
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2.1.2. Eine Losungsmethode fiir lineare Gleichungssysteme

Die Simulation kann auch effektiv bei der Lésung linearer Gleichungssysteme ein-
gesetzt werden. Wir werden in den folgenden Ausfithrungen ein Verfahren erértern,
welches wegen der geringen Voraussetzungen eine sehr breite Anwendungsmdglich-
keit besitzt.

Gegeben ist ein Gleichungssystem in der Form

n
kE]a,,‘xk =b (=12,...,n) (2.18)

Bzw. in Vektorschreibweise

Ax = b,
wobei A = (ay) eine (n x n)-Matrix, x = (x,) und b = (b;) n-dimensionale Spalten-
vektoren sind. Es wird nur vorausgesetzt, daB das System eine eindeutige Losung

X = (x;) besitzt. Die Auflésung des Systems (2.18) ist aquivalent der Aufgabe, das
Minimum der quadratischen Form (vgl. Bd. 13)

n n 2
Vixy, s ) =% ci( 2 auXi “bx)
=1 \k=1

aufzufinden, wobei ¢y, ..., ¢, beliebige positive Zahlen sind. Man kann sich leicht
davon iiberzeugen, daB die x2 positive Koeffizienten besitzen. Daher stellt die Un-
gleichung

V(xyy..oxp) D mit D>0

geometrisch ein n-dimensionales Ellipsoid dar.
Die Koordinaten des Symmetriezentrums x* = (x§) sind mit der gesuchten
Losung % identisch, denn im Punkt x® nimmt ¥ das Minimum an. Es gilt also

x® = x.

Bild 2.3
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Das Volumen des n-dimensionalen Ellipsoides wird von jeder der n durch das Sym-
metriezentrum gehenden Hyperebenen

u=x (k=1..n),

die parallel zu den Koordinatenebenen liegen, halbiert (vgl. Bild 2.3 fiir den Fall
n = 3).

Dieser Sachverhalt kann zur Bestimmung der Koordinaten des Symmetriezentrums
ausgenutzt werden. Man wibhlt irgendein n-dimensionales Parallelepiped mit

E<x;sF (=12..,n),

in welchem das n-dimensionale Ellipsoid enthalten ist. Es werden insgesamt N Ver-
suche durchgefiihrt. Zu jedem Versuch benétigt man eine Serie von n Zufallszahlen,
die zu einem Zufallszahlenvektor

E® = (P, &P, .. &P, L EP), k=1,2,..,N,

zusammengefaBt werden. Dabei sind die £{ im Intervall [E, , F,], die &8 im Intervall
[E,, F,] und allgemein die £&* im Intervall [E,, F,] gleichverteilte Zufallszahlen. Die
Vektoren §* kann man als im m-dimensionalen Parallelepiped ,,gleichverteilte Punk-
te** auffassen. Uns interessieren davon nur die dem n-dimensionalen Ellipsoid an-
gehdrenden Punkte. Es werden also nur diejenigen §*” mit

VER, ... 88 = D

betrachtet. Thre Zahl sei M. Bildet man die arithmetischen Mittelwerte
£ | S £ £
1 =ﬁx§1§1 EIRE) n=—ﬁ.§1n >

soist § = (&, &, ..., &,) ein Naherungswert des gesuchten Symmetriezentrums und
damit der Losung des Gleichungssystems (2.18).

Die dargestellte Methode erfordert eine verhaltnismaBig groBe Anzahl von Rechen-
operationen, da man fiir jeden Zufallszahlenvektoren faktisch den Wert der quadra-
tischen Form V(x,, x,, ..., X,) berechnen muB. AuBerdem werden von N Zufalls-
zahlenvektoren nur M benutzt. Der eigentliche Wert der Methode besteht in ihrer Uni-
versalitit. Man kann spezielle Zufallsprozesse (Markoffprozesse) konstruieren, die
mit der Auflésung von algebraischen Gleichungssy zusammenhdngen. Aller-
dings sind spezielle Voraussetzungen fiir die Matrix A nétig. Darauf beruhende Me-
thoden sind z.B. in [3] dargestellt.

2.1.3. Lbsung von Gleichungen

Es ist eine beliebige Gleichung f(x) = 0 vorgegeben und eine Wurzel b dieser Glei-
chung zu bestimmen. Es sei uns bekannt, daB im Intervall [a, @ + 1] eine Losung
existiert. Es gilt also

fB) =0 fireinbela,a+ 1]. (2.19)

Weiterhin wird vorausgesetzt, daB die Funktion y = f(x) in [a, @ + 1] monoton
wichst und eine differenzierbare Umkehrfunktion x = @(y) besitzt. X sei eine im
Intervall [a, a + 1] gleichverteilte ZufallsgroBe.
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Es 1aBt sich zunéchst zeigen, daB die Wurzel b in der Form
b=a+ P[f(X)< 0] (2.20)

dargestellt werden kann. AnschlieBend bereitet es keine Schwierigkeiten, den Wert
mit Hilfe der Methode der statistischen Versuche nidherungsweise zu berechnen.
Wenden wir uns zunichst dem Beweis der Gilltigkeit von (2.20) zu. GemaB der
Definition der Verteilungsfunktion einer ZufallsgréBe gilt speziell fiir X:

b

P(X<b)=[ldx, bela,a+1]. @21)
Wir fiihren die Substitution x = ¢(y) aus und erhalten aus (2.21)
J(®)
P(X<b)= [ ¢'(»)dy. (2.22)
S(ay

Da f nach Voraussetzung eine monoton wachsende Funktion ist, gilt P(X < b)
= P[f(X) < f(b)], und es folgt aus (2.22)

S

PLAX) < f(B)] = J')<P'(Y) dy.
Wegen f(b) = 0 folgt

PAX) < 0] = [ ¢'(y)dy.
Dic Integration ergibt fu)

PLf(X) < 0] = ¢(0) — ¢[f(a)].

Wegen ¢[f(a)] = a und ¢(0) = b folgt aus der letzten Gleichung (2.20).

Zur naherungsweisen Berechnung von P[f(X) < 0] werden N statistische Versuche
durchgefiihrt. Fiir jeden Versuch erzeugt man eine in [a, a + 1] gleichverteilte Zu-
fallszahl £, und iiberpriift anschlieBend, ob die Beziehung f(§;) < 0 erfiillt ist. Bezeich-
net M die Anzahl der positiv ausgehenden Versuche, so folgt

PLAX) < 0] ~ %

Beispiel 2.2: Wir betrachten die positive Wurzel der quadratischen Gleichung
fx)=x*=%=0.

Die Wurzel x; = 0,5 liegt im Intervall [0, 1], f(x) ist in diesem Intervall monoton zunehmend. Der
Tabelle von Zufallszahlen in [8] entnehmen wir die folgenden N = 15 Zufallszahlen & €[01].

0,86515 0,90795 0,66155 0,66434 0,56558 0,12332
0,69186  0,03393 0,42502 0,99224 0,88955 0,53758
0,41686 0,42163 0,85181 0,38967 0,33181 0,72664
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Die folgende Ubersicht zeigt die Beziehung f(§) < 0 (=) bzw.f(£) = 0 (+) fir alle Werte
£ G=1,,15an

+ o+
|
I
+ +
+ +
++ 1

- - + — —

Mit M = 7 folgt
b =0+ P[f(X) = 0] ~7/18 = 0,389.

Die Differenz zwischen genauem und Niherungswert betragt 0,111, Entnehmen wir der Zufalls-
tabelle N = 90 Zufallszahlen, so wird M = 37 und somit

37
S 0,412.
Fiir N = 180 ist M = 80. Es ergibt sich ein Niherungswert fiir die Wurzel

b 0 ~ 0,444
T1s0 YT

2.1.4. Auflésung von nichtlinearen Gleichungssystemen

Gegeben ist ein beliebiges System von Gleichungen in der Form
Fix(sXx2, ., x) =0, i=12..,n

Bei der Losung wird ein aus der Quantentheorie bekannter physikalischer Sach-
verhalt benutzt. Um das Verfahren zu verstehen, geniigt es, den Fall n = 2 zu be-
trachten:

Fi(x,») =0, Fyx,5)=0. (2.23)

Es wird dabei vorausgesetzt, daB genau eine reelle Wurzel existiert. Eine Verall-
gemeinerung auf n > 2, den Fall mehrerer verschiedener reeller Wurzeln und schlie8-
lichv die Einbeziehung komplexer Wurzeln bereiten wenig Schwierigkeiten, wenn die
prinzipielle Vorgehensweise verstanden wurde.

Man definiert zunéchst ein sogenanntes Pseudopotential

U(x, y) = aiFi(x, y) + a3F3(x, y), (2.24)

a, und a, sind beliebige Konstante. Es ist unmittelbar ersichtlich, daB die simultane
Erfiillung von Fi(x, y) = 0 (i = 1, 2) dquivalent ist der Bezichung U(x, y) = 0. Auf
dem Potentialfeld bewegt sich eine groBe Zahl von Teilchen, die zufallig miteinander
kollidieren. Es existiere eine mittlere freic Weglinge A (2 > 0). Zwischen den Kolli-
sionen wirken die Teilchen nicht aufeinander ein, und sie sind in Ubereinstimmung
mit dem Potential; d.h., siec bewegen sich entsprechend den Gleichungen

dxx oU dzy oU

rrilial e Ay T 2.23)
Mit den Bezeichnungen
dx . dy . oU . oU

T T W TR 5 T
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folgt

dp dp
—==-U; 2 = U, 2.25'
= U 2= -y, @25)
Im Moment der Kollision geschieht eine Ubertragung von Energie, wobei die Teil-
chen isotrop gestreut werden. Die statistische Mechanik liefert nun die Aussage, daB
die Lage der Teilchen durch einen ZufallsvektorprozeB (X;, ¥,) beschrieben werden
kann. Die zweidimensionale Dichte im stationiren Zustand lautet

_ Uy
5
fx,y) = —Ua‘;— (2.26)
H e” —p dxdy

,3 ist eine physikalische Konstante. Vereinfacht ausgedriickt kann man sagen, daB zu
einem beliebigen Zeitpunkt ¢ nach der Anfangsphase die Lagevertellung der Teilchen
durch die Dichtefunktion (2.26) gegeben ist. (2.24) nimmt ihr einziges Minimum
an der Stelle (x, y) mit U(x, y) = 0 an. Das bedeutet physikalisch, dafl die Konzen-
tration der Teilchen in unmittelbarer Niahe von (x, y) am groBten ist.

Es gilt aber

er ﬂdxdy - EY) = ”ye—%dxdy‘

fe ﬂdxdy He_%dxdy

Somit ist die Bestimmung der Wurzel des Gleichungssystems (2.23) dquivalent der
Aufgabe, den Erwartungswert der Lageverteilung der Teilchen zu einem beliebigen
Zeitpunkt ¢ zu finden. Aus diesen Uberlegungen ergibt sich ein Weg fiir die Anwen-
dung der Simulation. Man erzeugt Zufallszahlen (&;,%,), i = 1, ..., N, entsprechend
der Verteilungsdichte f(x, y) und erhilt

- 1 _ 1
szZE,, yzW}:m-

Wir wollen aber einen etwas originelleren Weg beschreiten. Voraussetzung ist die An-
wendung eines sogenannten Ergodensatzes. Er besagt auf unseren spezifischen Fall
angewandt, daB bei der Berechnung von E(X) und E(Y) die Beobachtung der Lage-
verteilung der Teilchen in einem Moment durch die der Lageverteilung eines ein-
zigen Teilchens iiber einen sehr langen Zeitraum hinweg (theoretisch unendlich
lange) ersetzt werden kann.

Beobachtet man die Lage eines Teilchens iiber einen geniigend langen Zeitraum hin-
weg zu den diskreten, aquidistanten Zeitpunkten #; (i = 1, ..., N), erhilt man

% = E(X)= (2.27)

- 1 X - 1 X

Es wird nun im Modell der Weg eines Teilchens nachgespielt. Dabei muBl zunéichst
eine bestimmte Schrittweite w festgelegt werden. Nach jedem Schritt registriert man
Zustand und Lage des Teilchens. Jedesmal, wenn seine kinetische Energie eine be-
stimmte Schwelle T,, iiberschritten hat, erfolgt ein ZusammenstoB. Das Teilchen er-
halt dabei einen Energiebetrag T,£&, wobei & eine gleichverteilte Zufallszahl ist. Ist
T,, am Ende eines Schrittes nicht erreicht, setzt das Teilchen gemaB der Bewegungs-
gleichung den Weg fort.
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Der Algorithmus 148t sich folgendermaBen beschreiben:
0. Man lege 7,,, w und N fest.
Man wibhle eine zuféllige Ausgangsposition aus.
. Es wird der Wert der kinetischen Energie T = T,,¢ bestimmt.
. Man ermittle die Geschwindigkeitskomponenten

W -

JTcos2né=p,, ~/Tsin2né=p,.

4. Man berechne die erforderliche Zeit fiir die Bewegung wéhrend eines Schrittes
- —a
vT

Man berechne die Lageverdnderung

b

prdt=dx, p,dr=dy.

6. Man berechne die Geschwindigkeitsinderung
—-U,dt=dp,, -U,dt=dp,.

. Man bestimme die neue Lage und Geschwindigkeit

=

x + dx=x, y+dy=y,
Px + dpx = ps, Py + dp, = p,.
. Man berechne
Tx+x=>3¥x, Xy+y=2%y,
n+1=n.

9. Wenn n = N, dann 11.
10. Wenn p2 + p} > T, dann 2, sonst 4.
11. Man berechne

oo

1 1
sz, NZY—

(Zeichnen Sie das FluBdiagramm!)

Eine Verallgemeinerung des Verfahrens unter den eingangs genannten Gesichts-
punkten findet man in [18]. Die Suche nach dem Extremum einer Funktion kann im
Prinzip auf die Ldsung eines nichtlinearen Gleichungssystems zuriickgefiihrt werden.
Man vergleiche hierzu [12], [18].

2.1.5. Losung partieller Differentialgleichungen

Die Losung von Randwertproblemen partieller Differentialgleichungen erweist sich
oftmals als auBerst schwierig. In einigen Fillen gelingt es, durch die Nachbildung so-
genannter ,,Irrfahrtsprozesse naherungsweise die Losung zu bestimmen. Die Vor-
gehensweise wird an zwei Beispielen erlautert.

Wir betrachten zunichst die Laplace-Differentialgleichung

2 2
a_g(;%y_) + 3% =0 (du=0) (2.28)
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in einem einfach zusammenhangenden abgeschlossenen Gebiet B mit der Bedingung

u(x, y) = f(x, y) (2.29)
auf dem Gebietsrand R. Zuniachst erfolgt eine Diskretisierung. B wird mit einem Netz
von Quadraten gemaf Bild 2.4 {iberzogen. Es bedeutet keine Einschriankung der All-
gemeinheit, wenn als Schrittweite # = 1 gewahlt wird. Man erhilt offensichtlich zwei
Arten von Punkten, innere und Randpunkte R;. Der Einfachheit halber nehmen wir
an, daB die R, auf R; liegen, also gilt

ulR)=fR), i=1,..,n. (2.29")

e e

R
( ixyh AN

AN

N

! (x-1y) [(xy) |(x+1y) /
( Bild 2.4
\ 71 /

Man legt nun die Vorstellung zugrunde, daB ein ,, Teilchen** vom Punkt (x, y) aus zu

einer Irrfahrt startet.

Dabei fiihrt es eine endliche Anzahl von Schritten aus und bewegt sich nach folgenden

Regeln:

(1) Befindet sich das ,,Teilchen* auf einem inneren Punkt, dann bewegt es sich im
néchsten Schritt ,,zufallig® zu einem der vier Nachbargitterpunkte. Jeder der vier
Punkte wird dabei mit derselben Wahrscheinlichkeit 1/4 ausgewihlt.

(2) Erreicht das Teilchen einen Randpunkt R;, bleibt es dort mit Wahrscheinlichkeit 1.

Ohne Beweis sei darauf hingewiesen, daB ein Teilchen, von einem inneren Punkt

startend, mit Wahrscheinlichkeit 1 im Verlauf der Irrfahrt nach einer endlichen An-

zahl von Schritten einen Randpunkt erreicht. Wir bezeichnen mit

pl(x, »); R;)
die Wahrscheinlichkeit, daB3 eine Irrfahrt von (x, y) aus im Punkt R; endet. Dann gilt
offensichtlich

PR;R) =1, pR;R) =0, i%],
und

e, 5 R) = 4lp(x — 1, )5 R) + plx + 1,15 R) + p((x, y — D; Ry)

+ p(x, y + D5 R)]. (2.30)
Nach einfachen Umformungen folgt
P = 1,15 R) = 2p((x, 3); R) + p((x + 1, )5 R) + p((x, y — 1 R))
=2p((x. ); R) + p((x, y + D; R) = 0. 2.31)

(2.31) ist aber eine Differenzengleichung fiir p(x, y), die der partiellen Differential-
gleichung (2.28) entspricht.
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Fiihrt man nun N Irrfahrten vom Punkt (x, y) aus durch, von denen M, im Punkt
R, enden, dann gilt

M,
P Y5 R) ~ (2.32)
Die letzte Beziehung gibt naherungsweise die Losung von (2.28) im Punkt (x, y)

unter den Bedingungen (2.29'). Nun beriicksichtigen wir die allgemeine Randwert-
bedingung (2.29). Es sei

u(x, y) =élf(R()p(<x, »; Ry). (2.33)

Multipliziert man (2.30) mit f(R,), so folgt
SR) p((x, 3); R) = H(R) p(x = 1, 3); R) + -+ + f(R) p(x, y + D; R))
und unter Beriicksichtigung von (2.33)
TSR bl 5 R) = 4 [ESR) pG = 1,03 R) + -
+ ZSR) p(x, y +1; R)]
o(x,y) =4vlx — Ly)+o(x + Ly) +v(x,y — 1) + v(x, ¥y + 1)]. (2.34)

(2.34) ist offensichtlich wiederum eine Differenzengleichung der oben betrachteten
Form, die der partiellen Differentialgleichung (2.28) fiir v(x, y) entspricht. v(x, y) er-
fiillt auBerdem die Randwertbedingung (2.29), denn fiir (x, y) = R, gilt

u(R)) =i§1f(Ri)P(RJ: R) = f(R)).

Fithrt man N Irrfahrten von (x, y) aus durch und enden jeweils M, dieser Fahrten in
R, (i=1,...,n), dann ist

o5, ) % o T MAR)

die gesuchte niherungsweise Losung des Randwertproblems.
Die Realisierung der Irrfahrten mit Hilfe der Methode der statistischen Versuche
ist duBerst einfach. X sei eine in [0, 1] gleichverteilte ZufallsgroBe. Legt man bei-

i ; %) (i=1, ..., 4) das Teilchen in den Nachbar-

oder

spielsweise fest, daBl beiXe

4
gitterpunkt P, iiberwechselt (wobei die Reihenfolge der Numerierung der 4 benach-
barten Punkte véllig gleichgiiltig ist), lauft der IrrfahrtsprozeB in der angegebenen
Weise ab.
Als zweites Randwertproblem betrachten wir die Warmeleitungsgleichung
oulx, y,z,t) _ 0%ulx,y,z,1) | Oux,y,z1)  0%u(x,y,z1)

ot B ox? * oy? * 022 233
fir (x,y,z)e B, teT, wobei B ein einfach zusammenhingendes abgeschlossenes
Gebiet mit dem Rand Ry ist, unter den Anfangs- und Randbedingungen

u(x, y,2,0) = g(x,y,2), (x,»,z)€B,
ulx,y,2,t) = f(x,5,2), (x,,2)€Rp.

(2.36)
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Dem Gebiet B wird ein Gitter der Maschenweite 4 = 1 einbeschrieben. Man erhalte
insgesamt » innere Punkte P; = (x;, y;, z;) und m Randpunkte R;. Wahlt man unter
Zugrundelegung eines ZeitmaBstabes eine Folge von s + 1 Zeitpunkten aus
(t=0,1,2,...,k, ...,5), so sind diec Funktionswerte
ulPi;k), i=1,..,n, k=0,..,5s,
unter Beriicksichtigung der Bedingungen
u(P;,0)=g(P), i=1,..,n
uRy, ) =f(R), Jj=1,....m,

zu bestimmen. Es werden wiederum Irrfahrten auf dem Gitter von B durchgefiihrt.
p(P;; Ry;t) sei die Wahrscheinlichkeit, daB ein ,,Teilchen, zur Zeit t, = 0 in
P; = (x;, yi, z;) startend, nach ¢ Zeiteinheiten im Randpunkt R; = (x,, y;, z;) an-
kommt. Dabei bewegt es sich in einer Zeiteinheit jeweils zufallig mit der Wahrschein-
lichkeit 1/6 zu einem der 6 benachbarten Gitterpunkte. Erreicht es einen Randpunkt
R;, so ist die Irrfahrt beendet. Sind Pj.q; Py, ..., Piy¢ die Nachbarpunkte von P;,
so gilt

(2.36")

PP R+ 1) = 4 5 pPres Ry 1) @37)
und auBerdem

P(R;, Ry 1) =1,

PR, Ry 1) =0, i)

p(Py, P, 0) =1,

PPy, R;,0) =0,

Man kann analog zum ersten Beispiel mxgen daB (2.37) eine der Wirmeleitungs-
gleichung (2.35) niaherungsweise p Differenzengleichung ist.
Wir betrachten nun folgende Funktion

(2.38)

(Pt + 1) =u§10(P" Py, 1+ 1) g(Py) +,=21"(P" Ryt + Df(R). (2.39)
Unter Beriicksichtigung von (2.37) folgt
(Pt +1)=1% ung(P‘“’ Py, t) g(Py) +J§1”(P1+1 s Ry, 1) f(R))
+h§lv(pi+2: Py, 1) g(Py) +l§lU(Pi+2’ R, ) f(R) + -

n m
+k§lv(P;+s, Py, 1) g(Py) +J§lv(Pi+6’ R;, 1) f(R))
oder

6
(Pt +1) = I;,g:lv(l’m, 1). (2.40)

Die letzte Gleichung ist ebenfalls zu (2.35) dquivalent und erfiillt auBerdem die An-
fangs- und Randbedingungen (2.36). Denn setzt man in (2.39) P, = R,, so folgt
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unter Beriicksichtigung von (2.38)

o(Ry, t + 1) = f(Ro)
und fiir P, = P,

u(Py, 0) = g(Py).
v(P;, t + 1) gibt naherungsweise die Losung des Problems im Punkt P, zur Zeit
t + 1. Indem N Irrfahrten mit Hilfe der Simulation durchgefiihrt werden, erhilt
man Néherungswerte fiir die v-Werte der rechten Seite von (2.39) und somit auch fiir
(P, t + 1).
Beispiel 2.3: Als Zahlenbeispiel soll die Lapl he Differentialgleict in einem Einheitsquadrat
0 < x <1;0 = y <1 mit den Randbedingungen u(x, 0) = 0, (0, y) = 0, u(x, 1) = x, u(1,y) = y
betrachtet werden. Es ist der Wert u(1/2, 1/2) zu bestimmen. Das Beispiel ist [18] entnommen. Als
Schrittweite des Maschennetzes wurde / = 1/4 gewihlt. Die Numerierung der Punkte und die Rand-
werte f(R,) sind in Bild 2.5 angegeben.

u(on=10 " /4 B/ 7=u(1)
2 ——2—U%—15

0 16 —17 —108——19—20
0 1—1 Th—715 12

§—7 —4—9—m 4 Bild 2.5
R
] —2—3—4—3
ulo0)=0 0 0 0 0=u(10;

Es wurden insgesamt N = 16 Irrfahrten durchgefiihrt, die alle im Punkt mit der Nummer 13 be-
ginnen. Zur Simulation wurde die im Anhang von [18] enthaltene Tabelle von Zufallszahlen ver-
wendet. Man erhielt die folgenden Wege:

Nummer des Weg Zufilliges Randwert
Versuches Wegende S(R) am
s Wegende
1 13—-18—-17-16 16 0

2 13-12-13—- 8- 7-12-17-16 16 0

3 13—-12-11 11 0

4 13-18-23 23 1/2

5 13—14— 9-10 10 1/4

6 13—-12—-17-16 16 0

7 13-12-11 11 0

8 13—18—13— 8-13—-14— 9— 4 4 0

9 13— 8- 7- 2 2 0

10 13—-14-19-24 24 3/4

11 13—-12—-17-18—-13— 8- 3 3 0

12 13—-14—-19-18-19-24 24 3/4

13 13-18-23 23 1/2

14 13—-14-13-12-11 11 0

15 13— 8- 3 3 0

16 13—-12—11 11 0

3 Piehler, Simulation
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Es folgt gemiB (2.32) und (2A33)

Ly M; f(Ry) - 11-0+1- ! 2 ! 3
27 2 S —Té—( + —4T+ 7+L—“)~0]7

Damit gilt ndherungsweise
u(1/2,1/2) = 0,17.
Fir die empirische Varianz erhélt man
az(Z)=L ‘f Z’»;/ Ez)lz 0,081
15,547 7 15-16 \(57° .

wo Z die ZufallsgroBe der angenommenen Randwerte bezeichnet. Somit ist der wahrscheinliche

Fehler
2(2)
rie = 0,675 T6 ~ 0,05.

Die exakte Losung dieser Aufgabe ist u(x, y) = x - y. Die Differenz zwischen dem genannten Wert
u(1/2,1/2) = 0,25 und dem durch Simulation erhaltenen Wert 0,17 betrigt 0,08.

2.1.6.  Berechnung von Eigenwerten

Die Bestimmung der Eigenwerte und Eigenfunktionen von Operatoren ist ein sehr
wichtiges, aber meistens sehr schwieriges mathematisches Problem. Eine weltgehende
Ubersicht iiber die Einsatzmdglichkeiten der Simulation findet man zum Beispiel in
[14] und [18]. Wir wollen an zwei speziellen Beispielen zeigen, wie der kleinste Eigen-
wert ermittelt werden kann.

Gegeben ist der Differentialoperator L

l d?p(x
Lye) =+ S8 ). @4
Wenn eine Losung y,(x) der Differentialgleichung
2,
% J d";(j‘) — V(x)p(x) = Mp(x), A = const, (2.42)

mit der Bedingung | [p|>dx = 1 geniigt, so heiBt sie Eigenfunktion des Operators L.

Die entsprechende Zahl 2; heiBt dabei Eigenwert. Es wird im folgenden vorausgesetzt,
dal} ein kleinster Elgenwert A, mit Eigenfunktion y,(x) existiert. (2.42) ist eine so-
genannte Schrodinger-Gleichung, die in der Quantenmechanik das Verhalten eines
Teilchens in einem durch das Potential ¥(x) vorgegebenen Kraftfeld beschreibt. 4,
entspricht dem tiefsten Energieniveau des Teilchens.

Grundlage fiir den Einsatz der Simulation ist ein Zusammenhang zwischen dem
Operator L und bestimmten stochastischen Prozessen. Wir wollen diesen Zusammen-
hang nur angeben. Die Ableitung der entsprechenden Formeln findet der Leserin [3].
Man geht von einem sogenannten Wiener-ProzeBX(¢) (f = 0) (vgl. Bd. 19/1) aus. Ein
solcher ProzeB besitzt die Eigenschaft, daB fast alle Realisierungen stetige Funktionen
der Zeit sind und die Zuwachse

X(t) = X(1); X(ta) — X(t3)
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fiir beliebige #; < f, < t3 < t, unabhingige normalverteilte ZufallsgréBen mit Er-
wartungswert O und Varianz ¢, — ¢, sind. Es wird nun ein weiterer Zufallsproze

Y(t) = [ V(X(z)) dr
0

gebildet, wobei die x(¢) Realisierungen des Prozesses X(¢) sind. Die eindimensionale
Verteilungsfunktion des Prozesses Y(¢) fiir ein beliebiges 7 sei

P(Y(t) <y) = F(|1).

Zwischen dem stochastischen ProzeB Y(¢) und dem kleinsten Eigenwert gilt néhe-
rungsweise fiir groBe Werte ¢, , #, der Zusammenhang
1 ~Y(11)
In _E(e_—) .

= 1, | E(e)
Es gilt also, die Erwartungswerte der eindimensionalen ZufallsgréBen Y(#,), Y(¢,) des
stetigen Prozesses Y(¢) zu simulieren. In der Praxis 16st man dieses Problem, indem
der stetige ProzeB durch einen diskreten ProzeB Y*(¢) approximiert wird. ‘

Anstelle des Wiener-Prozesses X(#) betrachtet man zunéchst den diskreten Proze

k
X(k) = ‘;T‘ . (2.44)

A= (2.43)

Die 7 sind nach dem gleichen Gesetz verteilte zufillige GroBen mit dem Mittelwert 0
und der Varianz 1. Als Verteilungsgesetz der 7; kénnte man etwa

-1,
T‘={+l.
PTi= +)=P(Ti = -1) =}

wahlen. Anstelle des stetigen stochastischen Prozesses Y(¢) betrachtet man anschlie-
Bend den ZufallsprozeB

YA = %IEHV< ’i}’:_l) ) (2.45)

Dieser ist, wie leicht nachgepriift werden kann, ein sich nur zu den Zeitpunkten

t= I}% andernder diskreter stochastischer ProzeB. Es laB3t sich zeigen, daB Y,(¢) den

stetigen ProzeB in dem Sinne approximiert, daB bei jedem & > 0 ein n, gefunden
werden kann, so daB fiir n > n,

Y30 - YOl <e¢

gilt. Je groBer n gewéhlt wird, um so besser wird der ProzeB approximiert. Zur Simu-
lation der Erwartungswerte E(e'* “) und E(e'* “»)) sind nun éhnliche Irrfahrtspro-
zesse durchzufiihren, wie sie bereits im Abschnitt 2.1.5. betrachtet wurden. Fiir
jede der beiden GréBen werden N Versuche durchgefiihrt. Im Ergebnis jedes dieser
Versuche erhilt man eine Realisierung x’(k) (i = 1, 2, ..., N) des Prozesses (2.44)
(Bild 2.6). AnschlieBend wird Y*®(¢,) gemaB (2.45) bestimmt. Nun folgt bei Beriick-
3'
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sichtigung aller N Ergebnisse

1 X .
Yit) ~ N ’le:m(tx)-

Hat man auf analoge Weise Y *(z,) berechnet, ergibt sich 1, niherungsweise nach For-
mel (2.43). .

X

Bild 2.6

L
k(ant) t

Beispiel 2.4: In [3] ist die Erprobung des Verfahrens beschrieben. Es wurde u.a. der kleinste Eigen-
wert fir ¥(x) = x? bestimmt. Zugrunde gelegt sind die Parameter #, = 5, t, = 3,75 und n = 400.
Die Werte

1 ( Xk ) 1 X \?

n k<nr, \/; oon k<m.(\/;)
wurden jeweils N = 100mal berechnet. Da fiir einen Versuch allein nt; = 400 - 5 = 2000 Werte der
ZufallsgroBen T; notwendig waren, ergab sich insgesamt eine Zahl von N - 2000 = 200000 Werte
fiir 7;. Man erhielt folgende Ergebnisse: 4; & 0,80 (nach 50 Versuchen), 4, ~ 0,75 (nach 100 Ver-
suchen), 4, = 0,71 (genau).

Eine groBe Bedeutung fiir die Praxis besitzt die Berechnung der Eigenwerte und
Eigenfunktionen von Integralgleichungen. Auf einem Gebiet G der x-y-Ebene sind
gegeben eine Funktion ¢(x, y) und eine Funktion K(x, y, x’, y’) mit P = (x,») € G
und P’ = (x',y’) € G. Zu bestimmen sind erster Eigenwert 4, und Eigenfunktion
z4(x, y) der homogenen Integralgleichung

2(x,y) = 2 [ K(x, y, %', ') 2(x', ') dx' dy’ (2.46)
G

oder kurz
Z(P) = A [ K(P, P') z(P") dP". (2.46")
G

Wir fiihren nun folgende Bezeichnungsweise ein:
Kp(P) = [ K(P, P") p(P") dP’, (247
G

K[Kp(P)] = K*¢p(P)
= [[ K(P, P") K(P', P") p(P") dP’ dP" (2.47)
GG

Auf diese Art und Weise lassen sich dann auch K3p(P) und allgemein K'p(P) bilden.
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Die Mehrheit der Naherungsmethoden zur Berechnung von Eigenwerten und Eigen-
funktionen (z.B. Ritzsches Verfahren, vgl. Bd. 18) erfordert die Berechnung kompli-
zierter Integrale. Hierbei ist der Einsatz der Simulation von Vorteil. Nach der Me-
thode von Kellogg gilt fiir zwei in G positive Funktionen (P) und ¢(P)

[#(P) K'p(P) dP

I L A—— | (2.48)
i~ [y(P)K'*'g(P)dP
und
i
lim K'9(P) (). (2.48"

= [[o®)Kg(p)ap -

Die Integrale in (2.48) lassen sich grundsitzlich mit den behandelten Integrations-
methoden 16sen. Die besondere Struktur erlaubt es jedoch, hier einen giinstigeren
Weg einzuschlagen. Die Berechnung dieser Integrale 148t sich auf die Durchfithrung
von Irrfahrten etwas anderer Form zuriickfithren. Man betrachtet innerhalb von G
eine beliebige Wahrscheinlichkeitsdichte p(P) und eine beliebige Ubergangsdichte vom

Bild 2.7

Punkt P zum Punkt P’, p(P, P'). Ein Teilchen tritt nun gemaB Bild 2.7 vom Punkt P,
aus zu einer Irrfahit an und gelangt nach i Schritten zum Punkt P,. Die Lage des
Anfangspunktes wird durch die Wahrscheinlichkeitsdichte p(P), die Lage von P, bei
bekanntem P;_; durch die Ubergangsdichte p(P;-,, P;) bestimmt.
Die Wahrscheinlichkeitsdichte fiir die Kette

Py > P, > > P
ist dann

PiPo, Pyy ooy Py) = p(Po) p(Poy P1)y ooy P(Pi=y, Py).
Fithrt man die folgende Bezeichnungsweise
_ K(Po, P\) K(Py, P,) ... K(Py-y, Py) . _

W= =1 i, 2.49
I= 5o, P P10 (Prr B) il
ein, dann ist
K(Pj-1, P))
W, = W, ———, 2.50
/ !lp(Pj—l»Pj) ( )
Der Ausdruck
P,
PRI @51)

P(Po)
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stellt eine ZufallsgroBe dar, da die Lage des Punktes P; nach i Schritten zufallig ist.
Es 14Bt sich nun beweisen, daf die Beziehung

E(X)) = [y(Po) K'p(Po) dP, 2.52)
G
gilt. Es gilt zunachst

E(X) = f fxiP((Po: s Py)dPg ... dP;.
G G

Hieraus folgt wegen (2.49), (2.50) und (2.51)

P(Po)

= f‘P(Po)dPo f"‘fK(Po’ Py) ... K(P;i_y, P) @(P;) dP; ... dP;
G G G

E(X) = ff YP0) 7 i (Po, oy PPy AP,
G G

= [ 9(Po) dPoK'9(Po)
G

womit die Beziehung (2.52) bewiesen ist.
Es werden nun N derartige Irrfahrten durchgefithrt. Wird nach dem i-ten Schritt
jeweils der Punkt P{® (s = 1, ..., N) erreicht, so gilt mit

) = 22 W)
die Beziehung

1 N
~ (s)
EX) ~ ~ s§= lx, X
Eine unmittelbare Anwendung ist beispielsweise die Bestimmung des kritischen

Parameters eines Kernreaktors. Diese Aufgabe 14Bt sich auf die Berechnung des
ersten Eigenwertes A, der Integralgleichung

[
- ﬁ(l”)e‘lv
=1 J RIP=PT

z(P')dP’
Go

zuriickfiihren.

G, ist ein dreidimensionaler Bereich, in dem die Diffusion der Neutronen vor sich

geht. «(P) und B(P) sind positive Funktionen, die den Diffusionsproze8 charakteri-

sieren. In [18] wurde A, bestimmt, wobei speziell p(P) = 1, p(P) = f gewihlt wurde.

2.2.  Naturwissenschaftliche und technische Probleme

Die Simulation hat in viele Gebiete der Naturwissenschaft und Technik Eingang
gefunden, so in Atomphysik, Kerntechnik, Plasmaphysik, Gaskinetik, Optik, Che-
mische Reaktionstechnik, Hochfrequenztechnik und Kybernetik, um nur einige zu
nennen. Dabei wird sie einerseits zur Imitierung bestimmter Vorgiange und Prozesse
und zum anderen zur Lésung mathematischer Probleme eingesetzt. Beispiele sind die
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Imitierung der Zusammenst6Be, freien Wegstrecken, Trajektorien und Geschwindig-
keiten von Teilchen verschiedener Art, Neutronen bei Kernspaltungsprozessen in
Reaktoren, Elektronen und Ionen bei Vorgingen im Plasma und Molekiilen in
Diffusionsprozessen [15, 19]. Die Simulation wurde auch effektiv eingesetzt bei der
Modellierung kettenartiger chemischer Reaktionen [20] und bei zahlreichen quanten-
theoretischen Problemen [Comptoneffekt [13]). Da viele Vorginge in Natur und
Technik durch komplizierte Differentialgleichungen, Integralgleichungen und andere
mathematische Beziehungen hoher Dimension beschrieben werden kénnen, hat auch
die Losung mathematischer Probleme eine groBe’Bedeutung. Beispiele wurden im
Abschnitt 2.1. genannt. Weitere sind die Losung der kinetischen Gasgleichung [10],
von Wiener-Integralen [11] und Gleichungen der Optik [16]. Aus der Vielfalt der An-
wendungsmaglichkeiten werden zwei im folgenden ausfiihrlicher erlautert.

2.2.1. Eine Anwendung in der Kerntechnik

Viele Probleme der Technik lassen sich bewiltigen, indem man bestimmte Vorgange
oder Prozesse imitiert. Ein Beispiel [ 8] hierfiir ist die Berechnung der Wahrscheinlichkeit
dafiir, daB ein Neutron eine Schutzschicht durchdringt. Dieses Problem hat eine
groBe Bedeutung bei der Bestimmung der Abmessungen des Schutzschildes eines
Atomreaktors.

Der Einfachheit halber nehmen wir an, daB das Schutzschild die Form einer
ebenen, homogenen Platte mit 0 < x < 4 (vgl. Bild 2.8) hat. Auf sie falle unter einem
Winkel von 90° ein Strom Neutronen mit der Energie E,. Beim Eindringen in die

—N\

0| 0sxsh h
_____V)

I

Wand kommt es zur Wechselwirkung mit den Atomen. Ein ZusammenstoB eines
Neutrons mit einem Kern fiihrt zur Absorption oder Streuung. Wir setzen zur Ver-
einfachung des Problems weiterhin voraus, daBl das Neutron im Falle der Streuung
seine Energie nicht verandert und in eine beliebige Richtung abgelenkt wird. Es ist
nun gefordert, die Wahrscheinlichkeiten p* fiir den Durchgang, p- fiir die Reflexion
und p° fiir die Absorption zu bestimmen.

In der Neutronenphysik wird die Wechselwirkung der Neutronen mit den Atom-
kernen durch sogenannte ,effektive Schnitte” o beschrieben. Auf eine einato-
mige ebene Schicht eines Stoffes mit # Atomen (cm~2) falle senkrecht ein homogener
Strom von Neutronen. Wenn die Zahl der Neutronen, die in Wechselwirkung mit

Bild 2.8

A
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den Kernen tritt, gleich d ist, setzt man

d
0 =—.
n
Entsprechend definiert man ¢, und o; als ,,effektive Schnitte” beziiglich Absorption
und Streuung. Dabei gilt

¢ =0, + 0.
Diese Groflen hangen selbstverstindlich von der Energie der Elektronen und der
Art des Stoffes ab und sind katalogisiert. Man bildet die GréBen
Z=0p; X =o00; Z =o00;
o bezeichnet die Dichte des Stoffes. Dann sind 2,/X und Z/Z die Wahrscheinlichkeiten
fiir die Absorption bzw. Streuung eines Neutrons.
Die freie Wegldnge zwischen zwei aufeinanderfolgenden ZusammenstoBen eines

Neutrons mit Atomen ist eine stetige ZufallsgroBe L, die man erfahrungsgeméB als
poissonverteilt mit der mittleren freien Wegldnge

EL) =1/Z
annehmen kann. Die Dichte von L ist
pu(x) = Ze =,

Es ist nicht schwierig, die freie Wegstrecke ,,nachzuspielen®. Ist £’ eine gleichverteilte
Zufallszahl, so gilt

L
[Zet=dx =¢.
0

Hieraus folgt
1 .
L=-— z,—ln (1-&)
bzw.mit £ =1 - ¢

1
L= -,

wobei £ ebenfalls gleichverteilt ist. Es bleibt noch zu zeigen, wie im Falle der Streuung
die beliebige Richtung festzulegen ist. An den Ergebnissen fiir p*, p~ und p° andert
sich aus Symmetriegriinden nichts, wenn man sich auf Streuungswinkel ¢ € [0, =] be-
schrankt. Dann ist die Richtung der Streuung eindeutig durch u = cos ¢ festgelegt.
@ ist als eine im Intervall [0, ] gleichverteilte Zufallszahl anzusehen. Es 1aBt sich
zeigen, daB dies dquivalent ist einer Gleichverteilung von x im Intervall [—1,+1].
Bezeichnet & wiederum eine gleichverteilte ZufallsgroBe, so folgt

u=2—-1.

Man ist nun in der Lage, den Weg eines Neutrons mit Hilfe der Simulation zu
imitieren und die Wahrscheinlichkeitén p*, p~ und p°® ndherungsweise zu bestimmen.
Ein Neutron befinde sich nach k Streuungen in einem Punkt mit der Abszisse x, und
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bewege sich in einer Richtung 4 = u,. Man bestimmt mittels einer Zufallszahl die
freie Wegldnge

1
M= — Eln&
und berechnet
Xpe1 = Xi + M.

Gilt x4, > h oder x,4; < 0, so ist der Weg des Neutrons beendet. Es hat die Wand
durchdrungen bzw. wurde reflektiert. Ist keine der beiden Bedingungen erfiillt, erfolgt
der nachste ZusammenstoB, und es ist notwendig, das ,,Schicksal* des Neutrons, mit
der Wahrscheinlichkeit Z./Z absorbiert oder mit X;/2 = 1 — Z,/X gestreut zu werden,
nachzuspielen. Dies kann in einfacher Weise durch Erzeugung einer weiteren Zufalls-
zahl ¢ und der folgenden Festlegung realisiert werden

& < Z /2 Absorption,
& 2 X /2 Streuung.

Fingabe der Daten

W= N #1 J—r’

Ny =N #1

Bild 2.9

N - N N
i A

Ausgabeder Jaten

4 Piehler, Simulation
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Im ersten Fall ist der Weg des Teilchens beendet. Im zweiten Teil bestimmt man die
neue Richtung des Neutrons durch Erzeugung einer weiteren Zufallszahl & und Be-
rechnung von

ey = 28 — 1.

Der Zyklus beginnt von neuem. Es 148t sich beweisen, daB mit Wahrscheinlichkeit 1
nach einer endlichen Anzahl von Zusammenst6Ben einer der 3 Zustinde eintritt. Hat
man insgesamt N Trajektorien ermittelt, jedesmal mit den Werten xo, = 0, yo = 1
beginnend, gilt

N* N- N°

- 00D
N P~N,P N

Pt

wobei N+ die Zahl der durchgedrungenen Neutronen, N- die der reflektierten und N°©
die der absorbierten bedeuten. Bild 2.9 zeigt das FluBdiagramm fiir die Berechnung,

Fingabe der Daten

Ny =Ny #1

Bild 2.10

Kneu = Kait * 1

S P
PNl P

Ausgabe der Daten
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Die Buchstaben j bedeuten dabei die Nummern der Trajektorien und & die der Zu-
sammenstdBe.

Diese Methode ist im allgemeinen schwierig anzuwenden. Ist die Wahrscheinlich-
keit p* sehr klein, etwa 105 bis 10-1°, so muBl man etwa 10° bis 10*3 Trajektorien
betrachten, um eine Genauigkeit von 10% zu erzielen. Wir werden deshalb noch
einen anderen, effektiveren Weg der Berechnung erértern.

Es wird von der Vorstellung ausgegangen, daB sich auf einer Trajektorie zu Beginn
ein ganzes ,,Paket” von Neutronen mit der Anzahl w, bewegt. Beim ersten Zusammen-
stoB im Punkt mit der Abszisse x; ist die Menge der absorbierten Neutronen im
Mittel wo(Z,/2). Der verbliebene Rest w, wird in eine beliebige Richtung gestreut. Alle
abgeleiteten Formeln bleiben giiltig. Es ist nur zu beachten, daB sich nach jedem Zu-
sammenstof3 die Zahl der Neutronen im ,,Paket verringert. Betrug ihre Zahl vor
dem k-ten ZusammenstoB w,, dann ist sie danach

Wirr = wil(Z/2), k=0,1...

In der Neutronenphysik spricht man anstelle eines Paketes mit w, (k = 0, 1 ...) Neu-
tronen von ,.einem‘ Neutron mit dem ,,Gewicht*“ w,. Ein solches Neutron kann
verstandlicherweise nicht durch Absorption enden. Es 1aBt sich jedoch zeigen, daB
auch in diesem Fall die Trajektorien mit Wahrscheinlichkeit 1 nach einer endlichen
Anzahl von Zusammensto8en abbrechen. Bild 2.10 zeigt mit der bereits eingefiihrten
Bezeichnungsweise das FluBdiagramm fiir diesen Berechnungsweg.

2.2.2. Ein Problem aus der Informationsiibertragung

Die zweite Aufgabe ist dem Gebiet der Informationsiibertragung entnommen. Es
wird im Gegensatz zum ersten Beispiel kein Vorgang imitiert. Die Simulation dient
lediglich dazu, komplizierte Integrale zu berechnen. Eine ausfiihrliche Darstellung
findet der Leser in [9].

Die Informationsiibertragung auf elektromagnetischem Wege 1Bt sich allgemein
durch das in Bild 2.11 angegebene Schema realisieren. Die Mitteilung wird im Sender
auf elektromagnetische Wellen moduliert. Bei der Ubertragung der Wellen kommt

Stérung

Kanal Empfinger Bild 2.11

eine Stérung hinzu. Im Empfinger wird die Demodulation vorgenommen. Elektro-
magnetische Schwankungen lassen sich mathematisch durch Funktionen der Form

s(t) = A cos (At + @) (2.53)

beschreiben. 4 ist die Amplitude, 4 die Frequenz und ¢ die Anfangsphase der Welle.
Es ist moglich, die drei Parameter fiir die Informationsiibertragung auszunutzen.
Wird die Information durch Veranderung von 4 vorgenommen, spricht man von
Amplitudenmodulation, bei Veranderung von 4 oder ¢ von Frequenz- bzw. Phasen-

4*
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modulation. Der einfachste Fall ist das Verfahren der diskreten Modulation. Jede In-
formation, auch als Signal bezeichnet, wird durch eine zeitliche Folge von Werten
kodiert. Ein Signal S enthélt mehrere Komponenten

S = (81,85, 05 Sm). (2.54)

Physikalisch sind die Komponenten z.B. eine Folge von Spannungsimpulsen. Man
unterscheidet deterministische und stochastische Signale. Bei den erstgenannten ist
die Abhangigkeit der Komponenten von fixierten Werten ¢ streng deterministisch,
bei den letzteren stochastisch. Dementsprechend ist (2.54) im ersten Fall ein Zahlen-
vektor, im zweiten ein Zufallsvektor. Stochastische Signale konnen korrelierte und
unkorrelierte Komponenten besitzen. Da ein Signal nicht ungestért iibertragen wird,
kommt zum Signalvektor noch ein Storvektor

N = (Ny, Nayooooy Ny (2.55)
hinzu. Seine Komponenten sind ZufallsgréBen.

In der Praxis tritt hdufig cine additive Verkniipfung von Signal und St6érung auf.
Dann gilt

S+N=(S; +Ny,S;, + Nay oo, S + Ny) (2.56)
oder mit X; = S; + N;
X =(X1,X2"“5Xm)' (2-56’)

(2.56) ist ein m-dimensionaler Zufallsvektor mit bestimmten wahrscheinlichkeits-
theoretischen Charakteristiken (Verteilungsgesetz, Parameter der Verteilung). Wir
setzen im folgenden voraus, daB die Verteilungsdichten (2.55) und (2.56) gleiche funk-
tionale Form p(x;, X,, ..., X,,, &) besitzen und sich nur durch unterschiedliche Werte
von « unterscheiden. Die Dichte des Storungsvektors ist p(x;, X, ..., X, 0), die
Dichte des Zufallsvektors (2.56) p(xy, X2, -.., X, &) mit « > 0.

Im Empfinger ist nun das Signal von der Stérung zu trennen. Diese Aufgabe lauft
auf die Priifung des Parameters « hinaus. Eine geeignete Methode ist das Verfahren
von Neyman-Pearson:

Es werden 2 Hypothesen H, und H, aufgestellt:

Hy:ao =0 H;:ox =0.

Die erste Hypothese ist identisch mit der Aussage, daB3 kein Signal gesendet wurde,
o = «, identisch mit der Aussage, daB ein Signal gesendet wurde. Die Entscheidung
wird auf der Grundlage der konkreten Stichprobe

X = (X1, 00y Xp) (2.57)

gefillt. Die Gesamtheit aller moglichen m-tupel (2.57) wird nach der Methode von
Neyman-Pearson in zwei Bereiche eingeteilt, in den Annahmebereich und den kri-
tischen Bereich. Im ersten Bereich wird H, angenommen, im zweiten Bereich zuriick-
gewiesen. Aus der Statistik ist bekannt, daB bei dieser Vorgehensweise Fehler erster
und zweiter Art zu beachten sind. Es kann H,, richtig sein, aber abgelehnt werden und
H, falsch sein, aber angenommen werden. Im ersten Fall nimmt man irrtiimlich an,
daB ein Signal gesendet wurde. Die reine Stérung wird fiir ein Gemisch von Signal
und Stérung gehalten. Im zweiten Fall glaubt man irrtiimlich, daB kein Signal ge-
sendet wurde. Das Gemisch von Stérung und Signal wird fiir reine Stérung gehalten.
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Beide Fehler konnen nicht gleichzeitig minimiert werden. Es ist zweckmaBig, die
‘Wahrscheinlichkeit p, fiir die Fehler erster Art konstant zu setzen und den kritischen
Bereich so zu wahlen, daB die Wahrscheinlichkeit p, fiir die Fehler zweiter Art mini-
mal wird.

Als kritischer Bereich wird nun die Gesamtheit der Punkte festgelegt, fiir welche

Pas(X15 ooy Xin) Z € Pao(X15 vy Xim) ' (2.58)

gilt. Die Konstante c heiBit Schwellwert und ist abhangig von der Wahl der Wahrschein-
lichkeit p,. In der Theorie der mathematischen Statistik wird bewiesen, daB bei einer
Wahl des kritischen Bereiches entsprechend (2.58) die Fehler zweiter Art minimal
werden. Setzt man

Poi(X1s -5 Xm)

L Xy, ooy Xp) = s
R N

dann wird nach Neyman-Pearson die Hypothese H, fir alle (x,, ..., x,) mit
I(x;, ..., X,y) < ¢ angenommen, fir (x,, ..., X,) mit I(x, ..., x,,) = ¢ dagegen H,.
Die Wahrscheinlichkeiten fiir die Fehler erster und zweiter Art sind dann

Py = JJ Pao(X15 v Xm) dXy ... dX,

Lo (FpsnXm) €

P2 = JJ. Par(X15 oovs Xp) dXy ... Xy,

la (X1, Xm) <€
Anstelle p, gibt man die Wahrscheinlichkeit d = 1 — p, an. Es gilt

d= f f Par(X1s cvvy Xp) dxy 200 dXy;

la) (X1 ¥m) 2¢

d ist die Wahrscheinlichkeit dafiir, daB das Gemisch von Signal und Stérung nicht
irrtiimlich fiir Stérung gehalten wird.

Die Problemstellung wurde sehr vereinfacht angegeben. Um zu entscheiden, ob auf
dem Hintergrund der Stoérung ein Signal vorhanden ist, muf3 strenggenommen ge-
priift werden: p

Hy:ao =0, Hy:x>0.

Das ist mathematisch mit groBen Schwierigkeiten verbunden und oftmals nicht durch-
fithrbar. Man behilft sich auf die folgende Art und Weise: Fiir d wird eine untere
Grenze d, festgelegt. Der untere Wert «, , der diese Grenze d; gerade noch gewahr-
leistet, heiBt Schwellenwahrscheinlichkeit. Gepriift werden die Hypothesen

Hy:a =0, Hy:o=0.

Die Bestimmung von «; ist rechentechnisch aufwendig. Sie ist jedoch nicht die ein-
zige Aufgabe, bei welcher die Simulation effektiv eingesetzt wird. Wichtig ist auch die
Ermittlung von Kennlinien fiir d, d.h. der Abhéngigkeit

d = d(«, py).

5 Piehler, Simulatio
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Es gelten die folgenden Beziehungen
L (61, X5 oy X)) Z €4

[ ] Paois X2y ooy Xm) dxy .. X = py, (2.59)

[IRETSEY

Jf Pay(X1, Xy ey Xp) dxy ... dx,, = d.

l,l(x,..“,x");c
Setzt man
D(xy,0) = f_J Pa(X15 X25 v Xp) dXy ... Xy,

l,‘(xl....,x,‘)gl
so folgt offensichtlich
D(xy, x0) = p1s Doy, ) = d.

Ist «; bekannt, kann man c unmittelbar durch Simulation aus (2.59) ndherungsweise
bestimmen. Ist «; unbekannt, gibt man zunichst einen Anfangswert af vor und
bestimmt ¢* auf die angegebene Weise. AnschlieBend wird das Integral D(oc¥, %)
mittels Simulation bestimmt. Es konnen die in Kapitel 2 angegebenen Integrations-
methoden angewendet werden. Gilt

D(at, of) 2 d,
wird ein neuer Wert «%* kleiner als «¥ gewahlt und die Prozedur wiederholt. Ist
D(at,a¥) < d,

so wiederholt man die Berechnung mit einem a¥* groBer als a¥.
1 1

2.3. Probleme der Operationsforschung

Wir méchten hier noch einmal das in 1.1.1. Gesagte wiederholen, weil das fiir die
Probleme der Operationsforschung in besonders starkem MaBe zutrifft. Diese Auf-
gabenstellungen sind in den wenigsten Fillen ,,reine‘ Probleme, sondern fiihren meist
auf Modellsysteme, so daB die Anpassungsarbeit hier oft besonders schwierig ist.
Wenn wir im folgenden trotzdem Probleme ganz bestimmter Typen behandeln, so
nur wegen der Einfachheit und gréBeren Ubersichtlichkeit. Einige Fragen der Kopp-
lung solcher Modelle werden in 2.3.5. behandelt. AuBerdem wollen wir auch hier nur
Beispiele zeitunabhéngiger Simulationen betrachten. Weitere Beispiele findet man
etwa in [8a], wo auch die Bedeutung der modernen Rechentechnik fiir die Simu-
lation gebiihrend beriicksichtigt wird.

2.3.1. Reihenfolgeprobleme

Probleme dieser Art spielen innerhalb der Operationsforschung eine bedeutende
Rolle. Sie fithren auf kombinatorische Optimalprobleme, fiir die die Losungs-
methoden in vielen Fallen wenig effektiv sind, so dal man gern auf die Simulation
zuriickgreift [7].
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Gegeben sind eine Kette von m hintereinander zu durchlaufenden Maschinen und
n Produktlose, die iiber die Maschinenkette zu laufen haben. Die Bearbeitungszeit
des Loses i auf der Maschine k sei gegeben und mit a;, bezeichnet. Die Riistzeiten
seien der Einfachheit halber in den Bearbeitungszeiten enthalten. Je nach den wei-
teren Voraussetzungen erhdlt man nun unterschiedliche Problemstellungen. Wir
wollen einen der einfachsten Fille zugrunde legen, weil es uns ja vor allem auf die
Moglichkeiten der Anwendung von Simulationsmethoden ankommt. Wir setzen vor-
aus, daB

— alle Lose die Maschinen in gleicher Reihenfolge durchlaufen;

— eine Maschine zur gleichen Zeit nur ein Los bearbeiten kann;

- ein Los erst dann zur nichsten Maschine iibergeht, wenn seine Bearbeitung auf der
vorangegangenen Maschine vollstandig abgeschlossen ist;

~ beliebige Zwischenlagerzeiten der Produkte und Stillstandszeiten der Maschinen
mdoglich sind;

- die gesamte Durchlaufzeit zu minimieren ist, indem die giinstigste Durchlauf-
reihenfolge ausgewihlt wird.

Bezeichnen wir mit x; die Verlustzeit vor der Bearbeitung des Loses i auf der
Maschine k und vereinbaren, daB x; > O einer Stillstandszeit der Maschine und
Xy < 0 einer Liegezeit' des Loses entspricht, so setzen wir

S = ay + max (xy; 0),
und es gilt dann [7]
0 fir a, =0,

Xy ={'2t "
2 (foer = fa) + fue flir ay 0,
s=1

k' =max(r|r <k —1,a, > 0).

Wir legen fest, daB nicht definierte a; und Xy, gleich null zu setzen sind. Der Aus-
druck

n
max ;‘T‘- Sfix

ist die Durchlaufzeit aller Lose, und dieser ist durch geeignete Reihenfolgewahl, d.h.
entsprechende Anordnung und Umnumerierung der Lose 1, ..., n zu einem Minimum
zu machen.

Die theoretische Mdglichkeit, fiir alle n! Reihenfolgen die jeweilige Durchlaufzeit
auszurechnen und die optimale auszuwahlen, scheitert an dem ungeheuren Rechen-
aufwand bei groBem ». Man kann daher hier eine Monte-Carlo-Simulation benutzen,
indem man aus den n! méglichen Reihenfolgen eine gewisse ,,ertragliche Anzahl N
gemaB dem Vorgehen in 1.2.3. zuféllig auswahlt. Der Begriff ertriaglich hingt we-
sentlich von der Leistungsfahigkeit der Rechenanlage ab, wird aber spéter noch auf
andere Weise festgelegt. Es ist dann zu erwarten, daB3 unter den N ausgewihlten Rei-
henfolgen auch solche auftreten, die eine in der Nihe des gesuchten Optimums lie-
gende Durchlaufzeit liefern und daher als Naherungslésungen aufzufassen sind. Die
Bestimmung einer Naherungslésung erfolgt dann also einfach durch Auswahl der
Reihenfolge mit der kiirzesten Durchlaufzeit aus den N ausgewahlten. Es handelt

5*
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sich somit um eine typische Monte-Carlo-Simulation; eine gezielte Simulation ist
hier kaum moglich, da eben die Zusammenhdnge zwischen den Reihenfolgen und
der Durchlaufzeit sehr kompliziert und schwer zu iibersehen sind.

Zwei wesentliche Fragen sind noch offen, namlich die Frage nach der Wahl von N
und der Giite der erhaltenen Néherungslosung. Beide Probleme hdngen natiirlich
eng zusammen, da die Giite offensichtlich nicht schlechter werden kann, wenn man
das N erhoht. Wegen der zufalligen Auswahl der N Reihenfolgen kann man auBer-
dem nur Wahrscheinlichkeitsaussagen iiber die Giite der Naherung erhalten. Erfor-
derlich hierzu ist eine Aussage iiber die Wahrscheinlichkeitsverteilung der Durchlauf-
zeiten bei zufilliger Auswahl der Reihenfolgen. Eine solche kann ebenfalls nur ex-
perimentell ermittelt werden, und es hat sich gezeigt, daB man mit einer Normal-
verteilung arbeiten kann. Daf3 diese nur naherungsweise zutreffen kann, folgt natiir-
lich schon aus der Tatsache, daB8 die Durchlaufzeiten weder beliebig klein noch be-
liebig groB werden konnen. Die unbekannten Parameter der Normalverteilung lassen
sich in einem konkreten Fall aus der Stichprobe schitzen, die durch die N zufillig
ausgewihlten Reihenfolgen gegeben ist.

Es sei nun Zy,;,(N) der Minimalwert der Durchlaufzeiten aus der Stichprobe vom
Umfang N. Nach Transformation auf die Standardnormalverteilung gemafl

_Z-EQ2)
)

ergebe sich z,,, als zugehdriger Minimalwert (siehe Bild 2.12). Bezeichnen wir mit
v(x) die Dichte der Standardnormalverteilung, so liefert dann W = f v(x) dx?) die
Wabhrscheinlichkeit dafiir, noch giinstigere Durchlaufzeiten zu erhalten Hieraus

V(X)

Bild 2.12

Z X

ergibt sich aber sofort eine Aussage dariiber, wie viele zufallige Reikenfolgen N’ man

etwa auszuwihlen hat, um noch giinstigere Durchlaufzeiten zu erhalten. Es gilt, wie
man sich sofort iiberlegt,

1) Hier kann man natiirlich Tabellen benutzen.
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Ist die Anzahl der noch auszuwéhlenden Reihenfolgen zu groB, muB man sich mit der
bisherigen Naherungslésung begniigen. Praktisch wird man solche Betrachtungen
jeweils nach einer bestimmten VergroBerung des Stichprobenumfangs anstellen und
so im Verlaufe der Rechnung iiber Abbruch oder Weiterfiihrung entscheiden. (Stellen
Sie ein FluBbild auf!)

Kompliziertere Reihenfolgeprobleme konnen entsprechend behandelt werden, es
andert sich dabei das mathematische Modell, d.h. die Formel fiir die Durchlaufzeit,
und man hat gegebenenfalls zu iiberpriifen, ob als Wahrscheinlichkeitsverteilung wei-
terhin die Normalverteilung zugrunde gelegt werden kann.

2.3.2. Probleme der Ablaufplanung

Im Zusammenhang mit der Ablaufplanung hat sich bekanntlich die Netzplantech-
nik als ein wertvolles Hilfsmittel bei der Zeitplanung erwiesen. Als einfachstes und
verbreitetstes Verfahren ist die Methode des kritischen Weges zu nennen. Diese
liefert die frithest- und spatestmdéglichen Ereigniszeiten und damit die Schlupfzeiten
fur die Vorgdnge. Vorgange mit der Schlupfzeit Null heiBen bekanntlich kritische
Vorgdnge, und nur diese bringen bei einer Zeiteinsparung eine Verkiirzung des Ge-
samtprojekts.

Da jedoch die Methode des kritischen Weges und auch gewisse ihrer Erweiterungen
Kapazitatsschranken fiir Arbeitskréfte und Hilfsmittel nicht beriicksichtigen, in vielen
Fallen ein wirkungsvoller Einsatz solcher Methoden aber erst méglich wird, wenn
gleichzeitig eine Planung der Arbeitskrifte erfolgt, ist eine entsprechende Erweiterung
und Vervollstindigung erforderlich. In den letzten Jahren sind verschiedene Verfahren
entwickelt worden, die eine Planung bzw. Verteilung von Arbeitskraften und Hilfs-
mitteln ermoglichen. Ohne auf alle diese Verfahren im einzelnen einzugehen, sei
lediglich vermerkt, daB sie alle eine Zeitplanung nach der Methode des kritischen
Weges voraussetzen und danach mit im allgemeinen verhéltnismaBig hohem Aufwand
mehr oder weniger gute Néherungslosungen fiir den giinstigsten Einsatz von Ar-
beitskriften liefern. Im wesentlichen kann man diese Methoden in zwei Gruppen ein-
teilen: Die erste Gruppe versucht, ungleichméaBigen Arbeitskrafte- oder Hilfsmittel-
bedarf auszugleichen, indem gewisse Vorginge innerhalb ihrer Schlupfzeiten ver-
schoben oder ausgedehnt werden; gegebenenfalls ist das auch bei kritischen Aktivi-
taten oder iiber die Schlupfzeiten hinaus durchzufiihren, so daB sich die Gesamt-
projektdauer verindert. Die zweite Gruppe geht von der Anzahl der zur Verfiigung
stehenden Arbeitskrifte und Hilfsmittel zu jeder Zeiteinheit aus, und die Vorgange
werden gemidB der durch den Netzplan festgelegten zeitlichen Reihenfolge so ein-
geordnet, daB die gegebenen Werte von vornherein gar nicht erst iiberschritten werden.

Wir wollen eine Mdoglichkeit fiir eine Monte-Carlo-Simulation beschreiben, die zu
der ersten Gruppe der Verfahren zu rechnen ware. Die Niitzlichkeit eines solchen
Simulationsverfahrens ergibt sich daraus, daB3 es kaum Kriterien dafiir gibt, welche
Vorgénge man wie weit verschieben bzw. ausdehnen muB, um die Arbeitskréfte oder
Hilfsmittel méglichst gut auszugleichen. Bei der Verschiebung eines Vorganges, die
zunéchst einen sehr starken Abbau gewisser Arbeitskraftespitzen ermdglicht, kann
man sich unter Umsténden gewisse weitere Mglichkeiten verbauen, die dann spater
zu einem noch besseren Ausgleich fithren kénnten. Deshalb kann man auch gleich
von Anfang an die zu verschiebenden Vorginge und die GroBe der Verschiebung
bzw. Ausdehnung zufdllig bestimmen und eine groBere Anzahl von Durchlaufen
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ausfithren, um die Variante mit dem besten Ausgleich auszuwihlen. Die Idee des
Simulationsverfahrens ist damit gegeben.

Das nun niher zu beschreibende Verfahren [5] war in erster Linie fiir einen Aus-
gleich des Arbeitskriftebedarfs in Schiffswerften geschaffen worden, ist jedoch so
allgemein angelegt, daB es auch in anderen Industriezweigen angewendet werden
kann. Es wird angenommen, daB fiir das zu betrachtende Projekt ein Netzwerk vor-
liegt und zur Realisierung Arbeitskrifte verschiedener Berufsgruppen benétigt wer-
den. Jedoch soll fiir jeden Vorgang nur eine Berufsgruppe erforderlich sein.

Das Verfahren beginnt mit der Berechnung der Zeitpunkte des frithestméglichen
Beginns und der Pufferzeiten fiir jeden Vorgang nach der Methode des kritischen
Weges. Die Vorginge werden dann entsprechend ihrer frithesten Startméglichkeit
angeordnet und der Arbeitskraftebedarf pro Beruf und Zeiteinheit berechnet. Man
erhilt so fiir jeden Beruf eine Auslastungskurve gemaB Bild 2.13. Das Ziel ist, das
Bedarfsmaximum abzubauen. Dazu werden nacheinander fiir jede Auslastungskurve

AK

verfigbar

vor Ausgieich

-------- nach Ausgleich

Bild 2.13

Zeit

solche Vorginge verschoben, die erstens zu dem Bedarfsmaximum einen Beitrag
leisten und zweitens iiber geniigend Pufferzeit verfiigen, so daB sie auch nach der
Verschiebung erst nach dem Maximum beginnen. Da es im allgemeinen fiir jede Be-
rufsgruppe mehrere Vorginge gibt, die diesen Bedingungen geniigen, benutzt man
zur Auswahl Zufallszahlen. Die Zahl der Zeiteinheiten, um die verschoben wird, kann
gleichfalls iiber Zufallszahlen ermittelt werden. Das genaue Vorgehen bei der Be-
nutzung von Zufallszahlen entspricht demjenigen aus 1.2.3. bei der Ermittlung der
ersten Zahl einer Reihenfolge.

Das Verfahren wird so lange fortgesetzt, bis es keine Moghchkelten mehr fiir die
Verschiebung gibt. Man muB natiirlich auch darauf achten, daB durch die Verschie-
bung nicht neue Bedarfsspitzen aufgebaut werden. Im iibrigen wire neben Verschie-
bungen auch entsprechend eine Verlingerung der Vorgangszeiten einzubauen, wo-
durch die Arbeitskriftezahl pro Zeiteinheit gleichfalls abgebaut werden kénnte.

Als ,,ideale* Losung fiir jede Auslastungskurve wiirde man ein Rechteck haben,
d.h. gleichbleibender Bedarf fiir den Gesamtzeitraum. Das ist natiirlich kaum zu
erreichen.

Das Verfahren ist zunéchst so oft zu wiederholen, bis die Bedarfsmaxima nicht
mehr iiber dem erlaubten Hochstbedarf liegen. AuBerdem ist aber die gesamte Rech-
nung mehrfach durchzufiihren, denn wegen der Verwendung von Zufallszahlen
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werden die jeweiligen Losungen differieren, und man kann sich die giinstigste aus-
suchen.

Wenn man nicht alle Entscheidungen durch Zufallszahlen trifft, kann man natiir-
lich den Rechenaufwand wesentlich einschrinken; hier hitten wir dann eine teilweise
gezielte Simulation.

2.3.3. Bedienungsmodelle

Wir wollen nun zeigen, wie man Bedienungsprobleme (vgl. Bd. 19/1) mit Simula-
tionsverfahren behandeln kann, wobei wir wieder einen sehr einfachen Fall be-
trachten. Wir legen ein Wartesystem zugrunde und wollen bei gegebenem Forde-
rungenstrom und gegebener Verteilung der Bedienungszeiten die optimale Anzahl
von Bedienungseinheiten bestimmen. Will man explizite Methoden anwenden, so
muB man sowohl fiir den Forderungenstrom als auch fiir die Bedienungszeiten ge-
wisse Annahmen treffen, z.B. daB der Forderungenstrom poissonverteilt und die
Bedienungszeiten exponentiell verteilt sind. Bei der Simulation ist das nicht not-
wendig, und das erweist sich als groBer Vorteil, weil diese Verteilungen oft nicht zu-
treffen. Mit welchen Verteilungen man arbeiten muB, ergibt sich durch ein Studium
des Bedienungssystems und der Aufstellung entsprechender empirischer Verteilungen.

Wir charakterisieren den Forderungenstrom durch eine ZufallsgroBe X, , die als
Zeitintervall zwischen zwei aufeinanderfolgenden Forderungen definiert ist und die
Verteilungsfunktion @,(x) besitze. Die ZufallsgroBe X, mit der Verteilungsfunktion
@,(x) mdge die Bedienungszeit charakterisieren. Geméaf Abschnitt 1.2. erzeugen wir
Zufallszahlen mit diesen Verteilungsfunktionen. Jeder eintreffenden Forderung ord-
nen wir eine der erzeugten Bedienungszeiten zu und kénnen unter weiterer Benutzung
der erzeugten Zeitintervalle zwischen zwei Forderungen fiir jede Zeiteinheit bei ge-
gebener Anzahl von Bedienungseinheiten die Anzahl der im System befindlichen For-
derungen bestimmen. Sobald eine Bedienungseinheit frei ist, kommt die erste der
,anstehenden* Forderungen auf diese Einheit, falls eine Forderung da ist. Jede an-
kommende Forderung wird entweder sofort bedient, falls eine Einheit frei ist oder
reiht sich an die Warteschlange an. In jeder Zeiteinheit summieren wir die Anzahl der
wartenden Forderungen bzw. die Zahl nicht genutzter Bedienungseinheiten. Uber die
dkonomischen Verluste, die den wartenden Forderungen bzw. nicht genutzten
Bedienungseinheiten entsprechen, kommt man zu einer Bewertung des Bedienungs-
systems und kann durch Variation der Anzahl der Bedienungseinheiten das optimale
System aussuchen.

Bei Verlustsystemen wire ein analoges Vorgehen mdoglich, wobei lediglich statt der
Warteschlangenlidnge als Kennziffer und Bewertungsgrundlage die Anzahl der pro
Zeiteinheit abgelehnten Forderungen zu dienen hétte.

2.3.4. Lagerhaltungsprobleme

Im Zusammenhang mit der Lagerhaltung (vgl. Bd. 19/1) spielt die Simulation
gleichfalls eine wesentliche Rolle, weil die expliziten Modelle vielfach sehr kompli-
ziert sind. Aus der groBen Reihe unterschiedlicher Problemstellungen wollen wir zwei
einfache Fille herausgreifen, namlich die Bestimmung der

(1) optimalen Lagerpolitik fiir Ersatzteillager,
(2) optimalen Lagerpolitik fiir Lager fiir Rohstoffe, Zwischenprodukte oder Fertig-
produkte.
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Betrachten wir zunachst den ersten Fall. Es handelt sich um Ersatzteile fiir Repara-
turen, und die Aufgabe besteht in der Ermittlung einer optimalen Bestellpolitik, so
daB die Summe aus Lager-, Mangel- und evtl. Beschaffungskosten im Mittel mini-
mal ausfallt.

Die drei genannten Kostenarten sind iibrigens typisch fiir Lagerhaltungssysteme.
Man kann aber mitunter auch andere Aufgabenstellungen, die mit Lagerhaltung iiber-
haupt nichts zu tun haben, als Lagerhaltungsmodelle auffassen, sofern nur Kosten-
arten auftreten, die als Lager-, Mangel- und Beschaffungskosten gedeutet werden
konnten.

Die Notwendigkeit zum Simulieren ergibt sich, wenn fiir den Bedarf keine theo-
retische Verteilung bekannt ist oder auch andere Komplikationen eintreten, die ein
explizites Verfahren verhindern oder sehr aufwendig gestalten wiirden. Bei der Durch-
fithrung der Simulation kann im wesentlichen dasselbe Konzept wie im vorigen Bei-
spiel benutzt werden. Man bestimmt empirisch eine Verteilung fiir den Bedarf und
variiert die Bestellung und evtl. den Bestellzyklus, der sich auf die Beschaffungs-
kosten auswirken kann. Aus diesen Varianten, die sich durch Simulation iiber einen
langeren Zeitraum ergeben, kann man diejenige mit den geringsten Kosten auswahlen.

In diesem Zusammenhang sei erwdhnt, daB es unter Umstidnden notwendig und
sinnvoll sein kann, ein solches Lagerhaltungsmodell mit einem Reparaturmodell zu
koppeln. Ein Reparaturmodell wird im allgemeinen zu dem Zweck aufgestellt, die
giinstigsten Zeitpunkte fiir pldnmaBig vorbeugende InstandhaltungsmaBnahmen aus-
zurechnen. Da aber der iiberwiegende Teil der ReparaturmaBnahmen planmaBig
durchgefiihrt wird, wire es nicht richtig, den Bedarf rein stochastisch zu betrachten,
sondern man kann den Bedarf fiir die planméBigen Reparaturen aus dem Reparatur-
modell ableiten. Uber solche und andere Modellkopplungen wird aber im néchsten
Abschnitt noch ausfiihrlicher zu sprechen sein.

Im zweiten Fall der Lagerhaltungsprobleme geht es in erster Linie um die Be-
stimmung optimaler Lagerkapazitéten. Bei zu kleiner Auslegung solcher Lager miissen
in Havarieféllen oder auch bereits bei planméBigen Reparaturen, bei Stérungen in der
Rohstoffzufuhr oder dem Abtransport der Fertigprodukte ganze Produktionsstringe
stillgelegt werden. Bei zu groBer Auslegung sind unnétig viel Investitions- und Unter-
haltungskosten aufzuwenden.

Zur Simulation werden in solchen Fillen Verteilungen iiber die Héufigkeit von
Havarieféllen und die Zeitdauer fiir deren Beseitigung benétigt; es liegt also hier ein
Sachverhalt wie bei einem Bedienungsmodell, allerdings mit etwas anderer Ziel-
stellung, vor. Es ist auBerdem erforderlich, die Zyklen der planmaBigen Instandhal-
tung zu beriicksichtigen, so dafB3 eine Kopplung mit einem Reparaturmodell hier
ebenfalls sinnvoll erscheint.

2.3.5. Durchfiihrung von Modellkopplungen

Die Kopplungsbeziehungen zwischen den Modellen eines Modellsystems lassen
sich durch einen gerichteten Graphen darstellen, wobei die Knoten den Modellen
und die Bogen den Informationsfliissen entsprechen. Unter einem Weg in einem
gerichteten Graphen versteht man eine Folge von Bbgen, wo der Endknoten eines
Bogens mit dem Anfangsknoten des niachsten Bogens iibereinstimmt, falls noch ein
néchster Bogen in der Folge existiert. Fallen bei einem Weg Anfangs- und Endknoten
zusammen, so spricht man von einem Kreis.
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Die Berechnung eines Modellsystems wird nun gerade dann problematisch, wenn
der zugeordnete Graph Kreise enthalt. In einem solchen Fall kann man kein Modell
des Kreises berechnen, weil Informationen aus dem vorangegangenen Modell erfor-
derlich sind. Im iibrigen treten solche Situationen auch oft bei der Berechnung che-
mischer Anlagen auf, weil durch Produktriickldufe ebenfalls Kreise entstehen.

Ein einfacher Fall eines solchen Kreises ist in Bild 2,14 dargestellt. Der Beginn der
Berechnung ist offensichtlich nur dann méglich, wenn die Informationen, die iiber
einen Bogen laufen, geschitzt werden. Man spricht dann vom ,,Aufschneiden* des

Bild 2.14

entsprechenden Bogens. Hat man dann die Berechnung aller Modelle des Kreises
durchgefiihrt, so ergeben sich auch Werte fiir die geschitzten Informationen, und der
Vergleich zeigt, ob die Schatzung gut war. Stimmen nimlich geschétzte und errech-
nete Werte iiberein, so ist der Kreis wieder ,,geschlossen, und die Berechnung ist
beendet. Anderenfalls ist die Berechnung mit neuen Schéatzwerten zu wiederholen, und
in vielen Fillen wird ein solches Iterationsverfahren auch konvergieren.

Ein Ansatzpunkt fiir die Simulation ergibt sich aus der Frage, welchen Bogen eines
Kreises man aufschneiden soll. Wegen des damit verbundenen hohen Rechenaufwan-
des ist es sicher wenig sinnvoll, alle Méglichkeiten durchzuprobieren. Vielmehr muf3
man versuchen, das Aufschneiden gemiB bestimmter Kriterien vorzunehmen. Zu
diesem Zweck bewertet man die Bogen nach solchen Kriterien und schneidet (da in
einem Graphen auch mehrere Kreise auftreten kdnnen) solche Bogen auf, dal damit
alle Kreise beseitigt sind und die Bewertungssumme der aufgeschnittenen B&gen
minimal wird. Zur Bestimmung der Bewertungen konnen verschiedene Gesichts-
punkte herangezogen werden, von denen wir zwei nennen wollen:

(1) Man wihlt als Bewertung die Anzahl der Daten, die iiber einen Bogen ver-
mittelt werden. Dann sind offensichtlich beim Aufschneiden eines Bogens mit kleiner
Bewertung nur wenige Groflen zu schatzen. Diese Moglichkeit wird bei der Berech-
nung untereinander gekoppelter chemischer Anlagen benutzt.

(2) Als Bewertung wird ein MaB der Sensitivitit des die Daten empfangenden
Modells beziiglich dieser Daten gewahlt. Bei geringer Sensitivitdt (also kleiner Be-
wertung) hat eine fehlerhafte oder ungenaue Schitzung wenig EinfluB auf die weitere
Berechnung.

Ohne néher auf Mdglichkeiten zur Definition eines solchen Sensitivititsmafes ein-
zugehen, sei nur soviel bemerkt, daB hier mit Erfolg simuliert werden kann, indem
fiir ein Modell die Auswirkung von Anderungen der Eingangsdaten auf die Aus-
gangsdaten untersucht wird. Die Anderungen der Eingangsdaten kénnen entweder
zufallig oder geplant durchgefiihrt werden. Direkte Methoden zur Bestimmung der
Sensitivitat diirften nur bei sehr einfachen Modellen anwendbar sein.

Die Losung des Schnittproblems kann iiber Methoden der ganzzahligen Optimie-
rung erfolgen [6], so daB wir darauf an dieser Stelle nicht néher eingehen wollen.
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2.4. Simulation durch Spiele

Wir betrachten den einfachsten spieltheoretischen Fall, namlich den des endlichen
2-Personen-Nullsummenspiels (vgl. Bd. 21). Spieler I habe die Spielmdglichkeiten
1, ..., m, Spieler II die Moglichkeiten 1, ..., n. Die Auszahlungsmatrix sei A = (a;;).
Gesucht sind gemischte Strategien x* = (x¥, ..., x¥) und y* = (3%, ..., y¥), so daB

der Erwartungswert fiir den Gewinn des Spielers I E(x*,y*) = ¥ 3 a;;x{yf¥ der
Beziehung =151

max min E(x, y) = min max E(x, y) = E(x*, y*)
x oy y ox

geniigt. Die Existenz solcher optimaler Strategien x*, y* ist nach dem Hauptsatz der
Spieltheorie gesichert. Die Bestimmung von x* kann durch Losung eines linearen
Optimalproblems erfolgen; y* ergibt sich als Optimallésung des zugehorigen Dual-
problems, wobei die Koeffizientenschemata dieser beiden Probleme durch A bzw.
AT gegeben sind.

Man kann aber ein solches Spiel auch dadurch 16sen, dal man es nach einer
bestimmten Vorschrift durch einen Rechenautomaten spielen laBt. Der Ablauf
einer solchen Simulation besteht darin, daB zunachst I willkiirlich eine seiner
Moglichkeiten 1, ..., m wihlt, etwa i,. Diese Auswahl ist im ibrigen das einzige
zufallige Element der Simulation, denn alles andere folgt — wie wir sehen werden —
zwangsldufig. Die genannte Wahl von i; fassen wir als gemischte Strategie
x; =(0,...,0,1,0 ... 0) auf, wobei die 1 an der Stelle i; steht. Spieler IT wahlt dann
unter der Annahme, daB I auch in Zukunft x, spielt, eine solche Spielmdglichkeit j, ,
so dafB3 er moglichst wenig verliert. Diese Wahl fassen wir als entsprechende gemischte
Strategie y, auf. Nun spielt I unter der Annahme, daf3 II auch weiter y, spielt, so daB
er moglichst viel gewinnt. Ergibt sich wiederum i, als Spielméglichkeit, so ist x, = x;;
ergibt sich dagegen i, = iy, so ist x, = (0,...,0,4,0,...,0,4,0, ..., 0), wobei die
GréBen 4 an den Stellen 7; und 7, stehen. Dann ist wieder II an der Reihe; er wahlt
seine Spielmdoglichkeit unter der Annahme, daB I in Zukunft x, spielt usw. Das Ver-
fahren konvergiert, wenn auch langsam, gegen optimale Strategien x* bzw. y*.

Wir hatten erwdhnt, da man ein Spiel durch Zuriickfiithrung auf zueinander duale
lineare Optimalprobleme 16sen kann. Die Umkehrung gilt aber auch: Ein lineares
Optimalproblem laBt sich auf ein Spiel zuriickfithren, wenn auch mit etwas héherem
Aufwand [1]. Damit wird es méglich, auch lineare Optimalprobleme durch Simulation
zu 16sen, indem man das beschriebene Verfahren auf das zugehérige Spiel anwendet.
Die erwahnte langsame Konvergenz wird durch die Einfachheit des Verfahrens teil-
weise kompensiert.

Selbstverstandlich ist aber — wie bei allen Simulationsverfahren — bei kleineren Auf-
gaben wieder ein explizites Verfahren, also etwa die Simplexmethode, vorzuziehen.

2.5. Simulation ganzzahliger Optimierungsprobleme durch Irrfahrten

Wie wir bereits im Abschnitt 2.1.5. sahen, spielen Irrfahrten bei Simulationen eine
wichtige Rolle, und wir wollen im folgenden zeigen, daB auch bei Operationsfor-
schungsproblemen derartige Betrachtungsweisen niitzlich sein kénnen. Wir betrachten
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ein rein-ganzzahliges lineares Optimalproblem der Gestalt
z = ¢"x = max!
Ax =Db
x 2 0 und ganz

mit ganzzahligen ¢, A und b und 16sen dieses Problem zunéchst ohne die Forderung x
ganz. Auflésung nach den Basisvariablen, die wir ohne Beschrankung der Allgemein-
heit mit x,, ..., x,, bezeichnen wollen, ergebe

Xp =04+ Kt (= Xmer) + o0+ Xi(=X,),  P=1,...,m. (2.60)

Aus der Theorie der linearen Optimierung ist bekannt, daB die Koeffizienten «; und
o;; als rationale Briiche mit dem Nenner d darstellbar sind, wobei d der Absolut-
betrag der Basisdeterminante ist. \

Einsetzen der Ausdriicke fiir die Basisvariablen in die Zielfunktion liefert

Z2=9 + Ymer(=Xme1) + o+ Y= X,).

Auf Grund des Simplexkriteriums gilt y; = 0 fiir j = m + 1, ..., n, und y und diese
y; sind ebenfalls als rationale Briiche mit dem Nenner d darstellbar. Vor Beginn der
Simulation ersetzen wir y durch eine GroBe y,, die zunichst als sehr groBe Zahl
definiert ist. Dadurch soll erreicht werden, daB z fiir keinen zulédssigen Gitterpunkt
negativ ausfallt. Das Prinzip der Simulation ist nun folgendes:

1. Es wird ein Irrfahrtproblem konstruiert, indem man die Variablen X4, ..., X,
zufilligen Anderungen um +1 oder —1 unterwirft.

2.Sobald ein x; (j=m+ 1,...,n) oder ein gemdB (2.60) auszurechnendes x,
(i =1, ..., m) negativ wird, kehrt man um, d.h., man macht den letzten Schritt
riickgingig und wahlt eine andere zufillige Anderung.

. Sind alle Variablen nicht negativ und ganz, so hat man einen zuldssigen Gitter-
punkt erhalten. Gilt. fiir diesen yo > Yms1Xme1 + -+ + VuXn, SO €rsetzt man y,
durch 41 Xpmsy + o+ + yaX, — 1; dadurch wird der zuldssige Bereich verkleinert.
Enthalt der so verkleinerte zulassige Bereich keinen Gitterpunkt mehr, so ist der
zuletzt gefundene Gitterpunkt optimal.

4. Nach bekannten Satzen iiber Markowsche Ketten (vgl. Bd. 19/1) wird bei be-
schranktem zuldssigem Bereich jeder zuldssige Gitterpunkt mit der Wahrschein-
lichkeit 1 erreicht. Somit konvergiert das Verfahren in dem Sinn, daB ein optimaler
Gitterpunkt mit der Wahrscheinlichkeit 1 erreicht wird. Da keine Divisionen auf-
treten, entfallen Schwierigkeiten durch Rundungsfehler.

Dieses Prinzip erscheint verhaltnisméaBig einfach, jedoch ergaben sich bei der prak-

tischen Erprobung zwei Schwierigkeiten:

Erstens kann man zwar alle Koeffizienten als rational annehmen und die Forde-
rung auf Ganzzahligkeit von ¢, A und b durch Multiplikation mit dem Hauptnenner
erreichen, doch weisen dann die ganzzahligen Koeffizienten bedeutende Unterschiede
in der GroBenordnung auf. Solche Eigenschaften wirken sich auf numerische Ver-
fahren meist ungiinstig aus, und das ist auch bei dem SuchprozeB der Fall. Es habe
z.B. eine der Nebenbedingungen des Problems die Form aigj,xj, + Xj, = bi, mit

1 < Jjo,j1 £ n; jo + Jj1, wobei ai,j, eine sehr groﬁé Zahl ist und b, = %"’—" gilt;

w
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wenn dann x;, Basisvariable in der stetigen Optimallosung ist und x;, Nichtbasis-
variable, so hat eine Anderung von x;, um I nur einen sehr geringen EinfluB auf die
Veranderung von xj,, und es werden sehr viele Suchschritte notwendig, um ganz-
zahlige Werte fir x;, zu erhalten.

In solchen Fallen ist es giinstig, eine Naherungsldsung fiir einen optimalen Gitter-
punkt zu haben, bei der der SuchprozeB begonnen werden kann.

Zweitens kann man leicht Beispiele angeben, fiir die es nicht moglich ist, eine Irr-
fahrtroute zu einem beliebig vorgegebenen Gitterpunkt so anzugeben, daB alle
Zwischenlésungen im zuldssigen Bereich liegen. Es ist daher nicht eine sofortige Um-
kehr zu empfehlen, wenn der zulassige Bereich bei der Irrfahrt verlassen wird.

Daher wurde das geschilderte Verfahren folgendermaBen ergénzt bzw. abgeéndert:

— Zur Realisierung der Irrfahrt werden die Ubergangswahrscheinlichkeiten fiir die
Nichtbasisvariablen umgekehrt proportional zu den reduzierten Kosten y; gewahlt.
Dann erfolgt eine Anderung von Variablen mit kleinen reduzierten Kosten mit
groBerer Wahrscheinlichkeit.

- Es werden auch Irrfahrten auBlerhalb des zuldssigen Bereiches gestattet. Wird
innerhalb einer vorgegebenen Anzahl k& von Suchschritten nach dem Verlassen
des zuldssigen Bereiches keine zuldssige Zwischenlésung angetroffen, so erfolgt eine
nerzwungene Riickkehr®, d.h., die Irrfahrt wird abgebrochen und mit der zuletzt
angetroffenen zuldssigen Zwischenlosung fortgesetzt.

— Das Verfahren bricht ab, sobald eine vorgegebene Anzahl von Suchschritten im
' zulassigen Bereich ausgefiihrt wurde, ohne einen weiteren Gitterpunkt zu finden.
— Damit nicht jede Rechnung mit der gleichen Folge von Zufallszahlen durchgefiihrt
wird, ist ein ganzzahliger Parameter / > O anzugeben, der dafiir sorgt, daB die

Simulation mit der /-ten Zufallszahl beginnt.

Weitere Moglichkeiten zur Verbesserung und Beschleunigung des Verfahrens sollen
hier nicht betrachtet werden, da es uns nur auf das prinzipielle Vorgehen bei solchen
Methoden ankommt.

Es zeigt sich nun in der Praxis, daB das Verfahren beimanchen Aufgaben sehr schnell
zum Ziele fithrte. Darunter waren solche, die mit expliziten Losungsmethoden nur
sehr schwer oder iiberhaupt nicht 16sbar waren, und das sind auch gerade die Fille,
bei welchen der Einsatz von Simulationsverfahren vorteilhaft ist. Es gab natiirlich
auch Probleme, die mit dem Simulationsverfahren nicht in ertriglicher Zeit 16sbar
waren.
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