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Einleitung

Im allgemeinsten Sinne versteht man unter Simulation die Untersuchung eines
Prozesses oder eines Systems mit Hilfe eines Ersatzsystems. Häufig zitierte Beispiele
für derartige Simulationen sind Simulatoren bei der Ausbildung von Flugzeugpiloten
oder in Fahrschulen. Die Gründe für ein derartiges Vorgehen liegen auf der Hand.
Es sind in erster Linie geringere Kosten und geringere Gefahr; in vielen praktischen
Fällen sind darüber hinaus Untersuchungen am realen System gar nicht möglich, wie
spätere Beispiele zeigen werden.

Wichtige Ersatzsysteme für Simulationen stellen die mathematischen Modelle dar,
die den zu untersuchenden Prozeß beschreiben und die auf einem Digitalrechner aus-
gewertet werden. In einem solchen Falle spricht man von digitaler Simulation oder
Simulation im engeren Sinne. Im folgenden werden wir uns mit derartigen Simula-
tionen beschäftigen.

Meist tritt noch ein weiteres Moment hinzu, nämlich das Experimentieren mit
einem solchen Modell. Das ist darin begründet, daß die Modelle oft sehr kompliziert
und umfangreich sind, so daß keine expliziten mathematischen Methoden zur Be-
stimmung von Optimallösungen vorliegen; diese können dann nur über Varianten-
rechnungen ermittelt werden. Aus diesen Gründen spricht man im Zusammenhang
mit der Simulation oft auch von experimenteller Mathematik.

Zwei wesentliche Gründe sind es, die in vielen Fällen die Anwendung der Simula-
tion erforderlich machen. Erstens ist es der vielfach sehr große Modellumfang, der
explizite mathematische Verfahren‘) verhindert. Zweitens sind bei komplexen Auf-
gabenstellungen die Teile von völlig unterschiedlicher mathematischer Struktur, so

daß es nicht möglich ist, ein einheitliches Modell zu erarbeiten. Vielmehr müssen in
solchen Fällen Teilmodelle aufgestellt werden, die durch Informationsaustausch mit-
einander verknüpft sind. Man spricht hier von Modellsystemen. Bei der Anwendung
einer expliziten Methode muß aber im allgemeinen ein „reinen“ Aufgabentyp Vor-
liegen, z.B. ein Modell der linearen Optimierung, ein Bedienungsmodell oder ähn-

'liches. Ist das nicht der Fall, so kann wieder mit Erfolg die Simulation eingesetzt
werden.

Diese kurzen Ausführungen sollen zur Begründung der Notwendigkeit von Simu-
lationsverfahren genügen. Im folgenden werden viele praktische Beispiele zur weiteren
Verdeutlichung beitragen.

1) Hierunter wollen wir im folgenden stets exakte Lösungsmethoden oder solche Näherungs-
verfahren verstehen, die keinen experimentellen Charakter besitzen.



1. Grundlagen

1.1. Definition und Klassifizierung der Simulationsmethoden

1.1.1. Definition

Im Hinblick auf die vorausgegangenen Betrachtungen können wir nunmehr de-
finieren, was wir im folgenden unter Simulation verstehen wollen.

Definition: Simulation ist ein Verfahren zur Durchführung von Experimenten aufeinem
Digitalrechner unter Benutzung mathematischer Modelle mit dem Ziel, Aussagen über
das Verhalten des realen Systems zu gewinnen.

Aus dieser Definition sind unmittelbar zwei wichtige Gesichtspunkte abzulesen.

Erstens erkennt man, daß es sich bei der Simulation nicht um eine feststehende
Methode, wie z.B. bei der Simplexmethode der linearen Optimierung, handelt, son-
dern um eine Methodik oder Vorgehensweise, die je nach der Problemstellung sehr
unterschiedlich ausfallen kann. Vor der Anwendung der Simulation hat man also
meist erst noch eine beträchtliche Anpassungsarbeit zu leisten. Andererseits liegt aber
gerade in der Allgemeinheit und Flexibilität der Simulation ihr Vorteil und ihre
Stärke.

Zweitens zeigt die Definition, daß es sich bei der Simulation um eine Vorgehens-
weise handelt, die dem Studium des Systemverhaltens dient, nicht aber unmittelbar
zu einer Systemoptimierung führt. Vielmehr kann man nur mittelbar durch ein Experi-
mentieren in die entsprechende Richtung zu Optimallösungen gelangen.

1.1.2. Klassifizierung

Die Klassifizierung der Simulationsverfahren kann nach sehr unterschiedlichen Ge-
sichtspunkten erfolgen und wird auch in der Literatur nicht einheitlich vorgenommen.
Wir werden im folgenden die wichtigsten Klassifizierungsmerkmale zusammen—
stellen.

(I) Einteilung nach der Art des Experimentierens

Nach diesem Merkmal unterscheidet man zwei Arten der Simulation, nämlich
— Monte-Carlo-Simulation oder zufallsbedingte Simulation,
— gezielte oder geplante Simulation.

lm erstgenannten Fall werden die den Experimenten zugrunde liegenden Bedingungen
oder zumindest ein Teil von ihnen zufällig ausgewählt, während sie im zweiten Fall
einem exakt vorbestimmten Plan folgen. Die Monte-Carlo-Simulation ist im all-
gemeinen mit wesentlich mehr Rechenaufwand verbunden als die gezielte Simulation.
Wie wir jedoch noch sehen werden, gibt es Fälle, wo keine gezielte Simulation möglich
ist. Vielfach tritt in der Praxis eine Mischung beider Fälle auf: Man beginnt mit einer
Monte-Carlo-Simulation und erhält dadurch genügend Informationen, um danach
zur gezielten Simulation übergehen zu können. Die Erzeugung zufälliger Bedingungen
werden wir im nächsten Abschnitt behandeln.

(2) Einteilung nach der Art der angestrebten Lösung
Das Verhalten von Systemen kann durch statische oder dynamische Lösungen cha-

rakterisiert werden. Unter einer statischen Lösung wollen wir einen mathematischen
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Zusammenhang Verstehen, der objektiv gültig ist und über Experimente aufgedeckt
wird. Ein Beispiel hierfür wäre die optimale Auslegung oder Fahrweise einer tech-
nischen Anlage in Abhängigkeit von bestimmten Parametern. Mittels Simulation
kann man das Optimum oder zumindest eine Näherungslösung dadurch bestimmen,
daß die Fahrweisen bei Veränderung der Parameter ermittelt und die günstigste
herausgesucht wird. Ein ganz anderer Sachverhalt liegt bei einer dynamischen Lösung
vor. Hier will man das Verhalten des Systems in Abhängigkeit von der Zeit kennen-
lernen. Als Beispiel betrachten wir ein Bedienungssystem. Forderungenstrom und
Bedienungszeiten werden in ihrem zeitlichen Ablauf gemäß ihrer Wahrscheinlich-
keitsverteilungen von einem Rechenautomaten erzeugt, und man erhält die Warte-
schlangenlänge oder die abgelehnten Forderungen in einem Verlustsystem für jedes
Zeitintervall. Man kann somit eine Einteilung in

— Simulation mit statischer Lösung
— Simulation mit dynamischer Lösung

vornehmen. Diese Einteilung ist auch dadurch charakterisiert, daß im ersten Fall die
Reihenfolge der Experimente gleichgültig ist (außer natürlich, wenn eine gezielte
Simulation in einer ganz bestimmten Richtung durchgeführt wird), während im zwei-
ten Fall die Zeitabhängigkeit unbedingt zu beachten ist.

(3) Einteilung nach den Zeitpunkten der Berechnung

Diese Einteilung bezieht sich im wesentlichen auf Simulation mit dynamischer Lösung.
Während bei einer statischen Lösung die Wahl des Zeitpunktes, wann irgend etwas
gerechnet wird, völlig beliebig und ohne Einfluß auf das Ergebnis ist, braucht das bei
dynamischen Lösungen nicht der Fall zu sein. Man könnte hier das Verhalten des
Systems für beliebige zukünftige Zeitpunkte im voraus berechnen oder nur dann ge-
wisse Berechnungen durchführen, wenn das System durch äußere Einflüsse gestört
wird. Dieser zweite Fall ist bei Prozeßsteuerungen gegeben, wo man in diskreten
Zeitpunkten eine Berechnung durchführtfdiese können vorgegeben werden oder sich
im Laufe der Zeit zufällig durch das Verhalten des Prozesses erforderlich machen. Wir
können also einteilen in

— zeitimabliängige Simulation
— Simulation in diskreten Zeitpunkten (discrete euent Simulation).

Die vorangegangenen Ausführungen zeigen, daß alle Aufgaben mit statischer Lösung
und ein Teil der Aufgaben mit dynamischer Lösung zur ersten Gruppe gehören.

Weitere Einteilungen sind nach der Art der zugrunde liegenden mathematischen Auf-
gabenstellungen möglich, doch soll hierauf nicht eingegangen werden, da der Leser
hierüber im Zusammenhang mit den Anwendungsbeispielen einen Einblick bekommt.

1.2. Möglichkeiten zur Erzeugung von Zufallszahlen und zufälligen Reihen-
folgen

1.2.1. Gleichverteilte Zufallszahlen

Bei der Monte-Carlo-Simulation sind, wie erwähnt, gewisse Größen zufällig aus-
zuwählen. Das kann durch die Erzeugung von Zufallszahlen auf Digitalrechnern ge-
schehen. Zufallszahlen sind Realisierungen von zufälligen Veränderlichen, die be-



1.2. Erzeugung von Zufallszahlen 7

stimmten Verteilungen gehorchen. Als einfachster und wichtigster Fall treten hier die
im Intervall [0, 1] gleichverteilten Zufallszahlen auf, die als Realisierung einer zufälligen
Veränderlichen mit der Dichte

1 für 0 g x g 1

m) = {O
sonst

bzw. der Verteilungsfunktion

0 für x g 0

F(x)={x für 0<x§l
1 für x > 1

aufzufassen sind. Wir werden oft einfacher von gleichverteilten Zufallszahlen spre-
chen und die Angabe des Intervalls [0, l] weglassen. Die Zufallszahlen müssen somit
erstens eine Stichprobe aus einer Grundgesamtheit mit dieser Verteilung bilden und
zweitens auch in ihrer Anordnung zufällig sein (vg1.Bd. 17). Es muß sich also um
eine zufällige Stichprobe handeln. Hat man nun eine Vorschrift zur Erzeugung von

Zufallszahlen, so ist mit entsprechenden statistischen Tests zu prüfen, ob diese beiden
Forderungen erfüllt sind. Man könnte hierzu einen Anpassungstest und einen Ite-
rationstest benutzen. Da man wegen der begrenzten Stellenzahl in Digitalrechnern
nur endliche Dezimalbrüche erhält, sind allerdings nicht sämtliche reellen Zahlen
des Intervalls [0, 1] darstellbar, und man kann deshalb von Quasizufallszuhlen
sprechen. Wenn wir im folgenden trotzdem immer von Zufallszahlen sprechen, so
deshalb, weil der erwähnte Tatbestand für praktische Anwendungen keine tief-
greifenden Folgen hat.

Ein einfaches Verfahren zur: Erzeugung von Zufallszahlen ist die Quadratmittel-
methode. Man geht von einer beliebigen Folge von n Ziffern aus. Die Größe n richtet
sich nach der Stellenzahl der benutzten Rechenanlage, sollte gerade sein und könnte
also z.B. I0 betragen. Faßt man diese Ziffernfolge als ganze Zahl auf und quadriert
diese, so erhält man eine Folge aus 2n Ziffern, wobei evtl. vorn Nullen zu ergänzen

sind. Streicht man vorn und hinten die ersten bzw. letzten 122- Ziffem weg, so erhält man

wieder eine Folge von n Ziflern und kann das Verfahren wiederholen. Setzt man vor
die Ziffernfolgen jeweils „O,“, so erhält man n-stellige Dezimalbrüche, die als Zufalls-
zahlen benutzt werden können. Das Verfahren hat jedoch einen schwerwiegenden
Nachteil. Es könnte im Laufe der Erzeugung von Ziffernfolgen z. B. eintreten, daß die
ersten 5 oder mehr Stellen einer Zifiernfolge aus Nullen bestehen; dann bleibt diese
Eigenschaft offensichtlich für alle weiteren Ziffernfolgen erhalten, und man bekommt
nur noch Zahlen < l0’5‚ die dann nicht mehr zufällig in [0, 1] Verteilt sind. Eine
solche Folge bezeichnet man als entartet, und sie ist unbrauchbar. Leider kann man
das Eintreten dieses Entartungsfalles nicht von vornherein erkennen.

Man hat deshalb andere Verfahren zur Erzeugung von Zufallszahlen entwickelt,
die derartige Entartungen weitgehend ausschließen, so daß man hinreichend lange
Folgen von Zufallszahlen erzeugen kann. Bei diesen Betrachtungen spielt der Begriff
der Kongruenz eine wesentliche Rolle.

Definition: Zwei ganze Zahlen a und b heißen kongruent modulo m, wobei m positiv
und ganz ist, wenn a — b durch m teilbar irt. In Zeichen schreibt man dann a E b
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mod m. Man sieht, daß im Falle einer solchen Kongruenz a und b bei Division durch m

denselben Rest lassen.

Beispielsweise gilt

3 E 8mod5‚ 14E0mod7, -4-=‘ 7modll.

Ausgehend von einer beliebigen positiven ganzen Zahl x0 ergeben sich mit geeignet
gewählten ganzen positiven Zahlen c und m weitere ganze Zahlen xi, i = 1, 2, ...‚

gemäß der Rekursionsformel

x‚«„ s c" x,- mod m,

wobei für xi“ immer die kleinste nichtnegative ganze Zahl zu nehmen ist, die dieser

Kongruenz genügt. Die Zahlen 5‘- liegen zwischen 0 und 1 und können als gleich-
m

verteilte Zufallszahlcn dienen. Wird ein x. : 0, so erhält man von dieser Stelle an nur
noch Nullen und die Folge entartet. Durch geschickte Wahl von c und m kann jedoch
die Wahrscheinlichkeit derartiger Entartungen hinreichend klein gehalten werden.

Bei den praktisch verwendeten Programmen nach diesem Verfahren benutzt man
bei einer im Binärsystem arbeitenden Rechenanlage m = 2', wo r die Anzahl der
Bits in einem Wort bezeichnet. Dann rechnet die Maschine automatisch modulo m

und die Division durch m bedeutet lediglich eine Kommaverschiebung (warum 7).
Bei der Wahl von c muß man auf eine möglichst große Periodenlänge achten. Gewisse

Erwägungen statistischer Art legen eine Wahl von c in der Größenordnung von \/m
nahe. Istjedoch m eine Zweierpotenz, so muß c ungerade sein, da sonst die Perioden-
länge kleiner wird. (Man stelle ein Flußdiagramm für diese Art der Erzeugung von
Zufallszahlen auf.)

Es gibt noch eine ganze Reihe weiterer Erzeugungsvorschriften, die naf Kongruenz-
betrachtungen beruhen, doch soll hierauf nicht weiter eingegangen werden.

1.2.2. Zufallszahlen mit anderen Verteilungen

Will man Zufallszahlen mit einer anderen Verteilungsfunktion F(x) erzeugen, so
geht man von einer Folge E1 , £2, gleichverteilter Zufallszahlen aus und berechnet
die Folge 77. = F“(E,), wobei F" die inverse Funktion von F bezeichnet. Wegen

P {m < X} = P{F“(5i) < x} = P{5z < F(x)} = F(x)

sind die 17, tatsächlich nach dem Verteilungsgesetz F(x) verteilt. Diese Methode wird
als Inversionsmethode bezeichnet. F muß dabei stetig und monoton sein.

Beispiel 1.1: Es sollen Zufallszahlen erzeugt werden, die der Exponentialverteilung genügen; solche
spielen in der Bedienungstheorie (vgl. Abschnitt 2.3.3.) eine Rolle. Für die Exponentialverteilung gilt
F(x)=1— e""‘ für x g 0 und sonst F(x) = 0.

Dann gilt oflenbar

77i = F-l(5i') = "*:‘1n(1"§.').

und die gleiehverteilten Zufallszahlen E; gehen in Zufallszahlen n, über, die der angegebenen Expo-
nentialverteilung genügen.
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1.2.3. Zufällige Reihenfolgen

Wie wir später in den Anwendungen sehen werden, spielt auch die Erzeugung zu-

fälliger Reihenfolgen bei gewissen Problemen eine wichtige Rolle. Die Zahlen 1, 2,... ‚ n

lassen sich bekanntlich auf nl = 1 - 2 n Arten anordnen. Eine solche Anordnung
oder Permutation entspricht einer Reihenfolge, und das Problem ist, aus den n! mög-
lichen Reihenfolgen zufällig eine bestimmte Anzahl auszuwählen. Eine theoretische
Möglichkeit bestände darin, alle Reihenfolgen zu numerieren und dann aus den
Nummern 1 bis n! zufällig welche auszuwählen. Da aber die Zuordnung der Reihen-
folgen zu den Nummern 1 bis n! und umgekehrt numerisch sehr aufwendig ist, muß
man nach anderen Wegen suchen. '

Definition: Ist o: eine reelle Zahl, so versteht man unter dem ganzen Anteil [ex] diejenige
ganze Zahl, für die o: —— 1 < [o4] g oc gilt.

Wir nehmen an, daß n g 99 ist, Man wird sofort erkennen, daß das keine wesent-
liche Einschränkung darstellt, sondern nur gewisse Rechenvereinfachungen ermög-
licht. (Überlegen Sie, wie man bei n g 100 vorgehen könnte!) Wir erzeugen gleich-
verteilte Zufallszahlen 51,52, Wir setzen E} = [100£,] für i = 1,2, Der bei
Division durch n verbleibende Rest von 5’, ist die erste Zahl der auszuwählenden Per-
mutation; sollte der Rest gleich null sein, so nimmt man den Teiler n als diese Zahl.
Die so ermittelte Zahl wird aus der Folge der Zahlen l bis n entfernt; die verbleibenden
Zahlen werden den Speicherplätzen 1 bis n — l‘) zugeordnet, stimmen aber im all-
gemeinen nicht mit diesen Speicherplatznummern überein. Nun wird 5; durch n —1

geteilt; der Divisionsrest (bei 0 nehmen wir n — l) gibt den Speicherplatz an, wo die
nächste Zahl der auszuwählenden Reihenfolge zu finden ist. Man fährt fort, bis alle
n Zahlen angeordnet sind; offenbar braucht man dieses Verfahren nur bis zur vor-

letzten Zahl durchzuführen, weil die letzte dann eindeutig bestimmt ist. Danach wird
genauso eine zweite Reihenfolge ausgewählt usw. Die erwähnte Zuordnung zu Spei-
cherplätzen erscheint zunächst etwas kompliziert, läßt sich aber in Rechenautomaten
verhältnismäßig leicht realisieren.

1.3. Allgemeine Gesichtspunkte bei der Anwendung von Simulationsmethoden

1.3.1. Eine spezielle Aufgabenstellung

Wir betrachten in diesem Abschnitt zunächst eine sehr einfache Aufgabe der Simu-
lation, nämlich die Berechnung eines bestimmten Integrals

l

„I“ ¢(x) dx

mittels gleichverteilter Zufallszahlen. Nehmen wir 0 g <;u(x) g 1 an, so ist das Inte-
gral durch den Inhalt einerFläche gegeben, die ganz im Einheitsquadrat liegt (Bild 1.1),
Man erzeugt gleichverteilte Zufallszahlen im Intervall [0, 1] und faßt je 2 zu den Koor-
dinaten eines Punktes im Einheitsquadrat zusammen. Ist N die Gesamtzahl der so

l) Diese Numerierung muß nicht der Numerierung in der Rechenanlage entsprechen, sie wurde nur

der Bequemlichkeit halber so gewählt.
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erzeugten Punkte und ‚M(N) die Zahl derjenigen Punkte davon, die innerhalb oder auf
dem Rand der zu berechnenden Fläche liegen, so folgt nach der Statistischen Wahr-
scheinlichkeitsdefinition (vgl. Bd. l7), daß

fqsbc) dx z M1(%r)

gilt. Die Bestimmung von M(N) ist sehr einfach. Hat man einen Punkt (§,,, 5,“), so

wird M(N) genau dann um l erhöht, wenn 5M g 311(43) gilt.

97m

I

fyrx) dx
t7

\

Bild l‚I
7 x

Obwohl die Berechnung eines bestimmten Integrals keine typische Aufgabe der
Simulation darstellt, kann man daran — wie im folgenden noch näher ausgeführt wird —

wichtige Gesichtspunkte erkennen. Im übrigen sind aber natürlich die wesentlichen
Elemente unserer Definition gegeben (inwiefern ?).

1.3.2. Bemerkungen zur Anzahl der erforderlichen Zufallszahlen

Wir wollen uns nun eine Vorstellung von der Anzahl der benötigten Zufallszahlen
verschaffen, um eine bestimmte Genauigkeit zu erreichen. Die Benutzung von Zu-
fallszahlen liefert eine Fehlerabschätzung in Form einer Wahrscheinlichkeitsaussage.
Wir benutzen dazu die Tschebyschetfsche Ungleichung (vgl. Bd. 17)

P{lX-E(X)l g K} 2 1 — “ff,
wobeiX eine Zufallsgröße, E(X) bzw. o'2(X) deren Erwartungswert bzw. Varianz und K
eine willkürliche Konstante bezeichnen. Ist p der gesuchte Flächeninhalt, so genügen
die Versuchsergebnisse, die in der zufälligen Erzeugung von Punkten bestehen, offen-
sichtlich einer binomischen Verteilung mit dem Parameter p (warum?) Die Wahr-
scheinlichkeit, daß von n Punkten genau k innerhalb der gesuchten Fläche liegen, ist

P„(k) = U:>p“(l — p)""‘. Wegen E(X) = np und U’(X) = np(l — p) ergibt sich aus der

Tschebyschefischen Ungleichung mit K = e > n

_ p(1 -17)
ein——p|§s};1~1={X

n
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und 3’;- entspricht unserem Niherungswert}M%V) . Mit p = äunda = 0,01 hat man

X 10‘P{7—-p go,01};1 — 4.

Will man nun die Genauigkeit auf 2 Dezimalen mit einer Wahrscheinlichkeit von
4

0,99 erreichen, so folgt aus l -— % = 0,99 unmittelbar n = ä 10°, und man muß also

5 - 105 Zufallszahlen erzeugen, weil diese Zahl doppelt so groß wie n ist.

1.3.3. Vergleich mit anderen Methoden

Vergleicht man diesen Aufwand mit einem expliziten numerischen Integrations-
verfahren, etwa der Trapezregel, so ist die Simulation sehr uneffektiv. Das ändert sich
allerdings schnell, wenn man mehrfache Integrale zu berechnen hat, Beachtet man die
Deutung eines K-fachen Integrals als ein Volumen im (K + 1)-dimensionalen Raum,
so liegt die Übertragung des Simulationsverfahrens unmittelbar auf der Hand. Zur
Festlegung eines Punktes im (K + l)—dimensionalen Raum benötigt man K + 1 Zu-
fallszahlen; aber die Abschätzungen gemäß der Tschebyscheffschen Ungleichung
bleiben erhalten. Somit steigt der Aufwand im wesentlichen linear mit der Dimen-
sion; von der Form des Integranden als Funktion mehrerer Variabler wird dabei
abgesehen. Betrachtet man dagegen die Verallgemeinerung der Trapezregel, so benö-
tigt man m" Stützstellen, wenn man für jede Variable m Werte benutzt; hier liegt also
eine exponentielle Steigerung vor. Trägt man die Rechenaufwände über der Dimen-
sion auf, wie das in Bild 1.2 geschehen ist, so erkennt man, daß die Simulation bei

A
uf

w
an

d

Bild 1.2

kleinem K gegenüber den expliziten Verfahren äußerst uneffektiv ist, aber bei größeren
K wesentlich besser abschneidet. Bei großen Dimensionen kann die Simulation bei
erträglichem Rechenaufwand noch brauchbare Näherungswerte liefern, während die
expliziten Verfahren schon lange Versagen. Wie weit man mit der Simulation gehen
kann, hängt dabei natürlich von der verfügbaren Rechenanlage ab.

Die Praxis zeigt, daß dieses Verhalten der Simulationsverfahren nicht nur bei der
Berechnung mehrfacher Integrale auftritt, sondern typisch ist: Bei einfachen Auf-
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gaben sind explizite Verfahren vorzuziehen, bei umfangreichen und komplexen Pro-
blemen kann die Simulation aber Lösungen liefern, wenn die expliziten Methoden wegen
zu hohen Aufwandes versagen. Darüber hinaus könnte natürlich bei komplizierten
Problemen der Fall eintreten, daß überhaupt keine expliziten Methoden verfügbar
sind, sondern die Simulation die einzig mögliche Vorgehensweise darstellt und damit
gleichberechtigt neben anderen Methoden steht.

Es muß allerdings ausdrücklich darauf hingewiesen werden, daß die Simulation
kein „Allheilmittel“ ist, mit dem man alle anstehenden Probleme lösen kann. Es ist
durchaus möglich, daß auch die Simulation einen zu großen Aufwand erfordert oder
kein Modell vorliegt, das die Realität hinreichend genau widerspiegelt.

1.3.4. Anpassungsarheit

Wir kommen damit zu dem wichtigen Problem der Anpassungsarbeit. Wenn auch
im Zusammenhang mit den zu behandelnden Beispielen hierzu noch einiges gesagt
werden wird, so erscheint es doch notwendig und nützlich, einige grundlegende und
allgemeine Gesichtspunkte voranzustellen. Es wird vielfach die Meinung vertreten,
daß die in der Literatur angegebenen Beispiele wenig nützen, weil jedes Problem an-
ders geartet ist, und man doch jedesmal von vorn anzufangen hat. In vielen Fällen
dürfte diese Auffassung darin begründet sein, daß man dem praktischen Tatbestand
mehr Aufmerksamkeit schenkt als dem mathematischen oder der Problemstruktur.
Es ist natürlich richtig, daß man die Simulation wegen der großen Breite der An-
wendungsmöglichkeiten im wesentlichen an Beispielen darstellen muß (und wir tun
das im folgenden ebenfalls), aber der Leser erkennt doch an den Beispielen viele nütz-
liche Gesichtspunkte, die er bei seinen Problemen verwerten kann.

1.3.5. Einschätzung der Ergebnisse

Ein wesentlicher Punkt bei der Anwendung von Simulationsmethoden ist auch die
Einschätzung der Ergebnisse. Die Güte der Ergebnisse ist natürlich von der Genauig-
keit und Adäquatheit des Modells abhängig und somit ein Anpassungsproblem.
Das Modell muß durch Vergleich seiner Ergebnisse mit der Realität verifiziert werden,
um seine Güte einschätzen zu können. Die Verifikation kann im wesentlichen auf drei
Arten erfolgen, und zwar durch

(1) direkten Vergleich mit der Wirklichkeit,
(2) Auswahl gewisser Daten zum Vergleich,
(3) Vergleich mit ähnlichen Modellen, weil kein Vergleich mit der Wirklichkeit

möglich ist.

Die Sicherheit ist in dieser Reihenfolge abnehmend. Die ersten beiden Möglichkeiten
scheitern vielfach daran, daß man in realen Systemen nicht beliebig experimentieren
kann, ohne den Ablauf empfindlich zu stören. Es gibt aber auch Fälle, wo eine Veri-
fikation völlig unproblematisch ist, nämlich z.B. dann, wenn das Modell auf rein
mathematischen Überlegungen beruht, wie im Falle der Berechnung bestimmter Inte-
grale oder in dem später zu betrachtenden Reihenfolgeproblem. lm ersteren Fall ist
das „Modell“ die statistische Definition der Wahrscheinlichkeit, im letzteren Fall die
Formel für die Gesamtdurchlaufzeit in Abhängigkeit von den einzelnen Bearbeitungs-
Zeiten.
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Ein weiteres wichtiges Problem im Zusammenhang mit der Anpassungsarbeit ist
die Frage, wie weit man in Einzelheiten gehen soll. Die Simulation ist ja in jedem
Fall mit hohem Rechenaufwand verbunden, und die Entscheidung darüber, ob sich
die Berücksichtigung gewisser Details lohnt und in einem vernünftigen Verhältnis
zum Mehraufwand steht, erscheint daher besonders wichtig. Als Faustregel mag hier
gelten: Das Modell ist so grob wie möglich zu entwerfen. Die Verwirklichung erscheint
auf den ersten Blick schwierig, ist es aber nicht. Man kann nämlich stets mit möglichst
einfachen Modellen beginnen und diese nach und nach verfeinern, solange die Veri-
fikation unbefriedigend ausfällt. Die „Kehrseite“ dieses Vorgehens ist allerdings, daß
ein Simulationsmodell in vielen Fällen eigentlich nie „fertig“ wird. Auch diese Be-
trachtungen zeigen den mitunter beträchtlichen Arbeitsaufwand bis zu dem ge-
wünschten Erfolg und führen zu der Schlußfolgerung, daß man nur wichtige und loh-
nende Aufgaben in Angrifi” nehmen sollte. In jedem Fall erscheint es ratsam, einen auf
diesem Gebiet erfahrenen Mathematiker zu konsultieren.

Einige Möglichkeiten zur Verringerung des Aufwandes werden im folgenden Ab-
schnitt allerdings noch angegeben.

1.4. Möglichkeiten zur Erhöhung der Effektivität

Wir haben gesehen, daß der Aufwand bei Monte-Carlo-Simulationen doch verhält-
nismäßig hoch ist. Durch Vergrößerung des Stichprobenumfanges läßt sich zwar die
Genauigkeit erhöhen, doch kann man hier natürlich nicht beliebig weit gehen. Man
kann aber den Fehler einer Monte-Carlo-Rechnung auch durch eine geschickte Or-
ganisation der Rechnung herabsetzen, indem man den Zufall „manipuliert“.

Zur Beschreibung solcher Techniken benutzen wir wieder die Berechnung eines
einfachen Integrals

l

I = _[f(x) dx.
0

Wir versuchen zunächst, uns ein Maß zum Vergleich mehrerer Methoden zu ver-
schaffen. Zwei zu vergleichende Methoden mögen n1 bzw. n, Einheiten an Rechen-
zeit benötigen und die erhaltenen Schätzungen von I sollen dann die Varianzen of

bzw. 0% haben. Die Wirksamkeit der Methode 2 bezüglich Methode l ist n
2

dabei heißt % Aufwandskoeffizient und % Varianzkoeffizient.
2 2

10% und
nzaä ’

1.4.1. Gewöhnliche Monte-Carlo-Methode

Gegen über der bereits genannten Möglichkeit der Berechnung des lntegrals läßt sich
das Verfahren zunächst erst einmal noch wirksamer gestalten, indem man die Zufalls-
zahlen auf eine andere Art benutzt. Es seien E1, ‚ 5„ gleichverteilte Zufallszahlen;
dann sind fi =f(5,-) unabhängige Zufallsgrößen mit dem Erwartungswert I, d.h.,

eine Schätzung von I ist durchf =-’1T if; gegeben, und für die Varianz gilt
i: l

l 1 27f(f(x)—1)2dx=a7.
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Bei praktischen Aufgaben muß man das o’ über die Stichprobenvarianz gemäß
I n

2 : __ 2
s 7_ 1 (fi f)

schätzen. Dieses Vorgehen wird in der Literatur mitunter als gewöhnliche Monze—

Carlo-Met/zode bezeichnet.
Es zeigt sich, daß das eben genannte Verfahren gegenüber dem früher geschilderten

einen Wirksamkeitsfaktor von 3 hat.
Wir wollen nun einige weitere Möglichkeiten zur Erhöhung der Effektivität be-

trachten.

1.4.2. Geteilte Stichproben

Der Integrationsbereieh wird in Intervalle unterteilt, etwa oc_,_, g x g 0a„ wobei
0 = a.) < «x, < < a,‘ = 1 gilt, und die Berechnung wird für jedes Intervall ge-
trennt durchgeführt; die Zufallszahlen des j-ten Intervalls seien Eu. Die Schätzgröße
ist k „J 1

F = Z 20X1 ~‘ °‘j—1)— f(°‘J~1 + (“J ' “1-1) 5:1).
J: 1 I: r "1

wobei nj die (vorher) festgelegten Anzahlen ausgewählter Zufallszahlen im Intervall j
bezeichnen. Die Varianz dieser Sehätzgröße ist

2

[mm1 dx -lg { f/(x) ax} .

„w. E}-I

Diese Varianz ist kleiner als a} mit n = Z "J, wenn die Unterteilung in Intervalle so
durchgeführt wird, dal3 die Differenzen zwischen den Mittelwerten vonf in den Teil-
intervallen größer als die Variationen von f in den Teilen sind.

Sind die Teilpunkte festgelegt, so ist es günstig, die Zufallszahlen in den Inter-
vallen so zu verteilen, daß n} proportional zu

a; a, 2

(Ix; - 04H) f [f(Is)]‘ dx -{ ff(x) 61x}

ausfällt. H-‘ M.‘ j
Die Teilpunkte ex, kann man im einfachsten Falle gleichfsetzen, d.h., die Teil-

intervalle sind gleich lang. Günstiger ist allerdings eine solche Unterteilung, daß die
Variation von f in jedem Teilintervall gleich ist.

Es zeigt sich, daß diese Methode etwa l0mal so wirksam wie die gewöhnliche
Monte-Carlo-Methode ist.

Die Schätzung des Standardfehlers muß nach den folgenden Beziehungen vor-
genommen werden:

It _ 2 n

5}“ =‘/Z: Sgi ‘§]l(fu ‘ Jr/)2:
l "Ä"; — 1)

‘X1 —0‘J—1

J=1 n;

l "x
fu =f(°‘1—1 + (“J — °‘1—1)5u). 71 = 'r;l"§lfu'
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1.4.3. Gewichtete Stichprobenauswahl

Man setzt
l l l

_ _ f(x) _ f(x)1 _ ff(x) dx _ ;(x—)p(x) dx _ m; dG(x),
0 0 O

wobei G(x) = p(y) dy ist. I ist somit der Erwartungswert der Zufallsgröße
‘ l

bezüglich der ZoufallsgrößeXmit der Dichtep(x). Mit p > o und G(1) : f p(y) dy = l
O

kann man G als Verteilungsfunktion auffassen. Sind nun mm1, ...‚ Zufallszahlen,
f(’7i)die der Verteilung p genügen, so hat
„VW:

den Erwartungswert I und die Varianz
1

W3, : of (fi—:)) — I): dG(x).

.. . . 1 „ ‚Istf > 0, so konnten wir p = cf mit c = 7 setzen, und man hatte 0,1,, =,0, also eme

„ideale“ Monte—Carlo-Methode. Natürlich ist das praktisch nicht durchführbar, weil
wir I kennen müßten, und dann brauchten wir keine Monte-Carlo-Methode mehr zu

seiner Bestimmung.
Trotzdem kann man aber durch diese Überlegungen etwas verbessern. Was auch

für eine positive Funktion gewählt wird, so erhalten wir stets eine erwartungstreue
Schätzung von I, und wir können ein solches p wählen, das den Standardfehler unserer
Schätzung verkleinert. Nach den obigen Überlegungen müßte p ähnlich wie f ver-

laufen, andererseits aber mit einer direkten Methode integrierbar sein, weil
l

fp(y) dy = 1 erfüllt sein muß. Das sind in gewissem Sinne entgegenlaufende Forde-
0

rungen, wenn f sehr kompliziert ist.

x — 1
Beispiel 1.2: Ist f= :_1
gewöhnlichen Monte-Carlo-Methode einen Varianzkoeffizienten von 29 und einen Aufwands-
koeffiziemen von g, so dal1 wir einen Gesamtfaktor von etwa l0 erhalten.

, so können wir z.B. p(x) = x nehmen. Wir finden hier gegenüber der

Das Verfahren funktioniert im übrigen auch für unbeschränkte Integranden.

1.4.4. Regressionsmethoden

Hier betrachten wir zunächst eine allgemeinere Problemstellung. Es seien ver-

schiedene zu schätzende Größen 01,62, ...‚0„ gegeben und eine Menge 12„ ...‚ u„
(n g h) von Schätzwerten mit der Eigenschaft

E[91] = X1101 + + 75m6»: (i=1:-~~a”)a (1-1)

wo E wie üblich den Erwartungswert bezeichnet und x„ bekannte Konstanten sind.
Eine erwartungstreue lineare Schätzung von 0 = (61 , ..., 6,,) mit Minimalvarianz ist

v* = (XW“X)"X’V“v,
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wo X die (n, h)—Matrix (x„)‚ V die (n, n)—Kovarianzmatrix der v, und v = (v, ‚ ‚ v„)
bezeichnet, Außer V ist in dieser Formel alles bekannt. Nun betrachten wir mit einer
anderen Kovarianzmatrix V0 die Schätzung

v: = (XTV3‘X)*‘X’V5’v. (1.2)

Statt (1.1) können wir auch schreiben E[v] = X6, und da v}; linear in v ist, so folgt

E[v3] = E[(XTV3‘X)"X’V;‘v] = (xTVg1x)~1X7V;‘E[v]

= (XTV;‘X)“XTV3‘X0 = 0.

v3 ist also auch erwartungstreue Schätzung von 0, was auch für ein V0 benutzt wird;
bei V0 4: V liegt allerdings keine Schätzung mit Minimalvarianz vor. Wenn also V
unbekannt ist, können wir es durch eine Schätzung V0 ersetzen.

In der Praxis werden dann N unabhängige Mengen von Schätzungen vi, ..., v„,
die mit v„_.‚ ...‚ v“ (k = l, ...‚ N) bezeichnet seien, benutzt und die v,-, werden durch

Nl _ .

9:91’ = N _ l k§1(”ik ’ Vi) (U11: ‘ vi)

_ _ 1 N __

mit r,- : —— 2 v‚-„ geschatzt.
N „l

Man setzt dann V0 = (v3) und benutzt (1.2) als Schätzung für 0.
Ein Spezialfall, der zur Berechnung eines bestimmten Integrales benutzt werden

kann, soll im folgenden betrachtet werden. Wir suchen zu einer Schätzung v eine
andere Schätzung v’, die denselben (unbekannten) Erwartungswert wie v besitzt und
mit 17 stark negativ korreliert ist. Dann ist §(v + v’) eine erwartungstreue Schätzung
von 6 mit

023(1) + v')] = }O'2(U) + $0202’) + ä cov (v, v’).

Durch geeignete Wahl von v’ kann a2[}(v + v’)] unter Umständen kleiner als 112(12)

ausfallen.
Als Beispiel betrachten wir Zufallszahlen E, die im Intervall [0,1] gleichverteilt

sind. Dasselbe gilt dann für l —— E, und wennfmonoton ist, sind f(E) undf(l — E)

negativ korreliert. Wir können dann ä-(v + v’) 2 ~§~f(E) + %f(l — E) als Schätzungfür
1

9 = |‘f(x) dx nehmen und erhalten eine 30fache Verbesserung zur gewöhnlichen
d

Monte-Carlo-Methode.
Haben wir n Schätzungen eines einfachen Parameters, so wird die Matrix X zum

Spaltenvektor x, und in vielen Spezialfällen sind alle Elemente von x gleich l. So sind
z.B.

2‘f(£) + %f(1~ E),

H65) + H6 - t5) + U6 + i5) + %f(1 - äf)
l

erwartungstreue Schätzungen des Integrals 9 = |’f(x) dx. Wir haben hier den spe-

V1

U2

ziellenl’allh:l,n=2‚x=(1 . °
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l

Beispiel 1.3: Es sei wieder f(x) = wofür J f(x)dx = o,41so227 gilt. Dann erhält man")
‚ D

etwa mit N = 100 171 = 0,4218353 und ü; = 0‚4l89959.
Die Stichprobe liefert weiter

0,00l3]493 0,000334 49

o,ooo334 49 o,ooos5o9

und wir erhalten u: = O,4l80273‚ was dem tatsächlichen Wert wesentlich besser entspricht als
ü, oder 5,.

Obwohl wir die Methoden zur Effektivitätserhöhung nur an der Berechnung von
Integralen erläutert haben, sind sie oft auch bei anderen Aufgaben brauchbar. Man
muß sich dazu nur vor Augen halten, daß Monte-Carlo-Methoden bzw. Simula-
tionen im Grunde genommen weiter nichts als Verfahren darstellen, unbekannteWerte
von Parametern gewisser Verteilungen über Stichproben zu schätzen, und daß die
Überlegungen auch auf andere Schätzprobleme zu übertragen sind.

Zum Schluß wollen wir noch einmal die wesentlichen Überlegungen und Gesichts-
punkte zusammenfassen, die bei der Anwendung von Simulationsverfahren zu be-
achten sind.

Vo=(9g)=(

1. Analyse des Problems: Zusammenstellung der gegebenen und gesuchten Daten,
Festlegung des Ziels der Untersuchung.
Modellierung der Aufgabe.

. Auswahl des Lösungsverfahrens.
Überlegungen zur Efiektivität der Simulationsverfahren und falls vorhanden
expliziter Verfahren. Rechen-‚ Zeit- und Kostenaufwand gegenüberstellen; evtl.
Möglichkeiten zur Verringerung des Rechenaufwandes berücksichtigen.

5. Programmierung, Rechnung, Auswertung.
Möglicherweise Modellverbesserung und erneuter Beginn bei 3.

P
W

.“

‘) Zahlenwerte aus [4].

2 Piehlenslmnlntion



2. Beispiele

2.1. _ Mathematische Probleme

2.1.1. Berechnung bestimmter Integrale

Zur Berechnung bestimmter Integrale werden zwei Verfahren angegeben. Das
erste hängt mit der Berechnung der Häufigkeit zusammen, mit der eine zufällige
Größe in ein vorgegebenes Intervall fallt. Das zweite beruht auf der Berechnung des
Mittelwertes einer Funktion von einer zufälligen Variablen.

Zu berechnen ist das Integral

i’
1 = j h(x) dx, (2.1)

E

wobei h(x) eine im Intervall [a‚ b] beschränkte, nichtnegative integrierbare Funktion
ist. Die Berechnung geschieht unter Zurückführung auf ein Integral der Form

1 = j}<p(x) dx (2.2)
D

mit 0 g <p(x) g 1 im Intervall [0, 1]. In l.3.l. wurde bereits gezeigt, wie Integrale
dieser Art mit Monte-Carlo-Simulationen (manchmal auch als Methoden der sta-
tistischen Versuche bezeichnet) näherungsweise berechnet werden können, Man setzt
zunächst

m = min h(x); M = max h(x).
xE[a,b] xe[n,b]

Mit Hilfe der Variablentransformation

x = a + (b — a) z

läßt sich das zu berechnende Integral (2.1) auf die Form
l

I= (b —a)jh[a + (b — a)z]dz
0

bringen. Durch einfache Umformungen, die eine Maßstabsänderung bewirken, er-

hält man

I=(M—m)(b—a)Ji dz+(b—a)m. (2.3)

Führt man für den Integranden von (2.3) die Bezeichnung h*(z) ein, so folgt
l

I = (M — m)(b — a)J‘/1*(z)dz + (b — a)m.
0

Man erkennt unmittelbar, daß für z e [0, 1] 0 g h*(z) g 1 gilt. Damit ist die Berech-
nung des Integrals (2.1) auf den bereits betrachteten Fall (2.2) zurückgeführt.
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Diese Methode läßt sich auf die Bestimmung mehrfacher Integrale verallgemeinern.
Zu berechnen ist das Integral

I= If-~ fh(x,,-~,x,>dx1--~dxn (2.4)g .

über einen beschränkten und abgeschlossenen Bereich Q. Q liege in dem n-dimensio-
nalen Quader [a„ b‚]‚ i = 1, ..., n. Mittels der Transformation

xl=al+(bl"al)zls i=1‚---‚”‚

erhält man aus (2.4)

I = 1-1071“ at) Jvh[a1 +(b1 ’ a1)z1a ~»-:an+(bn"an)Zn]dz1 "'dzn
{=1

Hierbei liegt der transformierte Integrationsbereich w im n-dimensionalen Einheits-
würfcl. Durch eine Maßstabsänderung erhält man, wenn mit M bzw. m der größte
bzw. kleinste Wert von h in Q bezeichnet wird,

im
>< dz, dz,, + 45m

h[a‚ + (b, -— u,)z,, ...] — m

M—m

oder mit einer entsprechenden Änderung der Bezeichnungsweise

I = (M — m) (b, — a,) H 1‘h*(z1, z,,)dz, dz„ +u'1m‚ (2.5)
i=i ' ' m “

wo (D der Inhalt des Bereiches w ist. Das Integral in (2.5) kann als Volumen V eines
Körpers im Einheitswürfel des (n + 1)-dimensionalen Raumes gedeutet werden,

Das Integral

1* = lz*(z, , ..., z„) dz, dz,, (2.6)

läßt sich mittels Anwendung der Simulation auf folgende Weise näherungsweise be-
stimmen. Es werden N statistische Versuche durchgeführt, wobei bei der Festlegung
von N zu berücksichtigen ist, daß die Zahl der statistischen Versuche gemäß den
Darlegungen in 1.3.2. die Genauigkeit des Ergebnisses beeinfiußt. Zu jedem Versuch
benötigt man n + l im Intervall [0, 1] gleichverteilter Zufa11szahlenE1,£;, ...,§,,,1;.
Diese bilden die Koordinaten eines Punktes P"'*" des (n + l)-dimensionalen Rau-
mes. Bei jedem Versuch wird überprüft, ob P‘"“’ dem Volumen V angehört. Ist M
die Zahl der erfolgreichen Versuche

PM =(§1,E2,~~.E..,77)EV, (2.7)

dann entspricht M/N näherungsweise dem gesuchten Integralwert (2.6). Es gilt also

MIt N TI N N ‚

2*
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(2.7) ist zu den beiden Beziehungen

77 ä h’(§1,~-.§..), (2.8)

P"" = (E1352: -~,§..)ew (2.8')

äquivalent.
Fällt w mit dem n-dimensionalen Einheitswürfel zusammen, so ist (2.8’) immer er-
füllt, und es ist lediglich eine Überprüfung von (2.8) nötig. Der Sachverhalt wird durch
die Bilder 2.1 und 2.1a veranschaulicht.

Es soll nun die zweite Methode zur Berechnung bestimmter Integrale betrachtet
werden. Sie beruht auf der Bestimmung des Mittelwertes einer Zufallsgröße durch
Simulation. In 1.4. wurde dieser Gedanke bereits aufgegriffen, um die Effektivität der
Simulation zu erhöhen (gewichtete Stichprobenwahl).

«w Bild 2.1

Bild 2.1 a

Gegeben ist eine im Intervall [a, b] integrierbare Funktion f(x). Bestimmt werden
soll

I7

1 = _[f(x)dx. (2.9)
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Man wählt in [a, b] eine beliebige stetige Zufallsgröße Y mit einer Dichte p(x) > 0.
Dann wird X mit

f(Y)X = (Y = —— 2.10g ) pm ( )

ebenfalls eine Zufallsvariable.
Aus der Wahrscheinlichkeitstheorie ist bekannt, dal3 der Erwartungswert von X

durch

f(x)E(X)= J'mp(x)dx= '[f(x)dx

gegeben ist. Das bestimmte Integral (2.9) kann somit durch Ermittlung von E(X)
gemäß

f(Y)EX =E (Y) =E(—) 2.11( ) (g > pm 1 )

berechnet werden. Aus den Betrachtungen ist zu ersehen, daß die lntegrationsgrenzen
von (2.9) nicht endlich sein müssen, Die Methode eignet sich demnach auch für un-
eigentliche Integrale. E(X) kann näherungsweise durch Simulation bestimmt werden.
Es werden N gleichverteilte Zufallszahlen 5„ E2, ...‚ 5„ erzeugt. Aus

"ltj p(x)dx = 5. (1 = 1, N) (2.12)
0

ermittelt man N nach p(x) verteilten Zufallszahlen 771,172, ...,n,., (vgl. hierzu Ab-
schnitt l.2.). Dann folgt

1 N f(’7i)I = E X z —— ——.

( ) N E: P071)

Es ist zu erwarten, daß bei gleicher Anzahl statistischer Versuche N die Wahl von
p(x) einen Einfluß auf die Genauigkeit des Ergebnisses hat. Die gewichtete Stich-
probenauswahl drückt sich in einer geschickten Wahl dieser Dichtefunktion aus (vgl.
Abschnitt 2.4.).
Für

p(x) =, a g x S b, (2,13)

f lf(x)| dx
H

wird die Varianz a’(X) minimal; denn es ist
b

2

o"(X) = E(X’) — (E(X))‘ = “im — 12. (2.14)
u p(x)

Aus der Analysis ist bekannt, daß für zwei Funktionen u(x), v(x) die Ungleichung
b 1 D D

(f |uv| dx) g J u’ dx f u’ dx (Schwarz-Bunjakowski)
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gilt. Mit u = f(x)/g/5(7), v = „AT; erhält man

b 2 b b b

f2(96) ‘ _ f’(x)Lf|f(x)]dxJ g a Po‘) dxnfp(x)dx —af PO‘) dx.

Unter Berücksichtigung von (2.14) folgt

a2(X) g [_[bf(x) dx:|2 — 12. (2.15)

Wird p(x) entsprechend (2.13) festgelegt, gilt in (2.15) das Gleichheitszeichen.
Wählt man somit p(x) proportional zu |f(x)!, ist die Genauigkeit des Simulations-

ergebnisses am größten. Die Dichte (2.13) selbst läßt sich natürlich nicht bestimmen,
da der Integralwert

f|f(x)l dx

ebenfalls unbekannt ist. Stehen jedoch mehrere Dichtefunktionen zur Auswahl, wird
man sich für jene entscheiden, die der genannten Forderung der Proportionalität am

besten entspricht.

Beispiel 2.1: Zur Veranschaulichung dieser Darlegungen wird das folgende aus [8] entnommene
Zahlenbeispiel betrachtet. Zu berechnen ist das Integral

n/2

I = J‘ sin x dx.
0

Y sei zunächst eine im Intervall [0, rr/Z] gleichverteilte Zufallsgröße, also hat man

) {2/71: für 0 ä x ä 7:/2,

MK" _ 0 sonst

Wegen (2.12) wird

TE

'71 = ‘f5:
und

1~ " 5 - 216~ 2Nl;,ls1nm, (. )

N = I0 Zufallszahlen E. sowie n, und sin m sind in der folgenden Tabelle angegeben.

i 1 2 3 4 5 6 7 8 9 10

E, 0,865 0,159 0,079 0,566 0,155 0,664 0,345 0,655 0,812 0,332
n, 1,359 0,250 0,124 0,889 0,243 1,043 0,542 1,029 1,275 0,521
sin n, 0,978 0.247 0,124 0,776 0,241 0,864 0,516 0,857 0,957 0,498

Man erhält

I z 0,952.
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Die Zufallsgröße Y mit der Dichte

Sx/‘Ir’ für x E (0, 7r/2)
p(x) =

0 sonst

müßte zu einem wesenflich genaueren Ergebnis führen. Ein anschaulicher Vergleich (Bild 2.2) zeigt,
daß die zweite Dichte der Forderung nach Proportionalität zu If(x)l besser entspricht. Die prak-
tische Berechnung ergibt mit denselben Zufallszahlen £.(1' = l, ..., l0) unter Berücksichtigung von

„ _

7I=7\/5
und

w’ N sinr],

“W F. m m”

y

.£
z? '

1-75‘

Bild 2.2
L" X
7

die folgenden Zahlenwerte.

i 1 2 3 4 5 6 7 3 9 10

5. 0,865 0,159 0,079 0,566 0,155 0,664 0,345 0,655 0,312 0,332
n, 1,451 0,626 0,442 1,132 0,513 1,230 0,923 1,271 1,415 0.905

EL 0,680 0,936 0,968 0,733 0,937 0,743 0,863 0,751 0,593 0,353

und
In: 1,016.

n]:
Wegen], sinxdx = 1 finden wir bestätigt, daß die Wahl der zweiten Dichte zu einem wesentlich

ll

besseren Resultat führt. (Man stelle Flußdiagramme auf!)

Ist ein n-faches Integral zu berechnen, wird man sich nicht in jedem Fall für die
Anwendung der Simulation entscheiden. Die wesentliche Rechenarheit liegt in der
Bestimmung der Funktionswerte des Integranden an den Stützstellen. Es wurde schon
in 1.4. darauf hingewiesen, daß der Rechenaufwand hierfür bei Anwendung direkter
Methoden nach einer Potenzfunktion, bei der Simulation nur linear ansteigt. Die Si-
mulation wird erst bei großer Dimensionszahl effektiv.
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2.1.2. Eine Lösungsmethode für lineare Gleichungssysteme

Die Simulation kann auch effektiv bei der Lösung linearer Gleichungssysteme ein-
gesetzt werden. Wir werden in den folgenden Ausführungen ein Verfahren erörtern,
welches wegen der geringen Voraussetzungen eine sehr breite Anwendungsmöglich-
keit besitzt.

Gegeben ist ein Gleichungssystem in der Form
H

kfllamxk = b, (i = 1, 2, ..., n) (2.18)

Bzw. in Vektorschreibweise

Ax = b,

wobei A = (an) eine (n x n)-Matrix, x = (x,,) und h = (b‚) n-dimensionale Spalten-
vektoren sind. Es wird nur vorausgesetzt, daß das System eine eindeutige Lösung
x = (xx) besitzt. Die Auflösung des Systems (2.18) ist äquivalent der Aufgabe, das
Minimum der quadratischen Form (vgl. Bd. 13)

n n 2

V(x,, xn) =‘>_:lc;(_;1a1.xk ~12.)

aufzufinden, wobei 0„ ..., c„ beliebige positive Zahlen sind. Man kann sieh leicht
davon überzeugen, daß die xi positive Koeffizienten besitzen. Daher stellt die Un-
gleichung

V(x„ ...,x„) g D mit D > 0

geometrisch ein n—dimensionales Ellipsoid dar.
Die Koordinaten des Symmetriezentrums x") = (x1) sind mit der gesuchten

Lösung i‘: identisch, denn im Punkt x") nimmt Vdas Minimum an. Es gilt also

X0) = i _

Bild 2.3
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Das Volumen des n-dimensionalen Ellipsoides wird von jeder der n durch das Sym-
metriezentrum gehenden Hyperebenen

xx = X?) (k =1‚ Nun):

die parallel zu den Koordinatenebenen liegen, halbiert (vgl. Bild 2.3 für den Fall
n = 3).

Dieser Sachverhalt kann zur Bestimmung der Koordinaten des Symmetriezentrums
ausgenutzt werden. Man wählt irgendein n-dimensionales Parallelepiped mit

E1§Xi§Fi (i=1>2:---9"):
in welchem das n-dimensionale Ellipsoid enthalten ist. Es werden insgesamt N Ver-
suche durchgeführt. Zu jedem Versuch benötigt man eine Serie von n Zufallszahlen,
die zu einem Zufallszahlenvektor

5“’ = (E‘1"’,E‘z"’, -A-,E§"’,--45$’), k = 1,2,---,N,
zusammengefaßt werden. Dabei sind die E?" im Intervall [E‚ , F,], die .E‘,"’ im Intervall
[E2, F2] und allgemein die 5"’ im Intervall [E„ F.) gleichverteilte Zufallszahlen. Die
Vektoren 5"" kann man als im m-dimensionalen Parallelepiped „gleichverteilte Punk-
te“ auffassen. Uns interessieren davon nur die dem n-dimensionalen Ellipsoid an-

gehörenden Punkte. Es werden also nur diejenigen 5“" mit

V(5‘("’. ..~,E‘.{"’) s D

betrachtet. Ihre Zahl sei M. Bildet man die arithmetischen Mittelwerte

g =L 55mm g =_1_ £506)
l Mx'=ll 7 l R Mp=1n 3

so ist E = (E; , 52, ...‚ 5,.) ein Näherungswert des gesuchten Symmetriezentrums und
damit der Lösung des Gleichungssystems (2.18).

Die dargestellte Methode erfordert eine verhältnismäßig große Anzahl von Rechen—
Operationen, da man für jeden Zufallszahlenvektoren faktisch den Wert der quadra-
tischen Form V(x„ x1, ...,x„) berechnen muß. Außerdem werden von N Zufalls-
zahlenvektoren nur M benutzt. Der eigentliche Wert der Methode besteht in ihrer Uni-
versalität. Man kann spezielle Zufallsprozesse (Markotfprozesse) konstruieren, die
mit der Auflösung von algebraischen Gleichungssystemen zusammenhängen. Aller-
dings sind spezielle Voraussetzungen für die Matrix A nötig. Darauf beruhende Me-
thoden sind z.B. in [3] dargestellt.

2.1.3. Lösung von Gleichungen

Es ist eine beliebige Gleichungf(x) = O vorgegeben und eine Wurzel b dieser Glei-
chung zu bestimmen. Es sei uns bekannt, daß im Intervall [a, a + 1] eine Lösung
existiert. Es gilt also

f(b) = 0 für ein be [a‚a + l]. (2.19)

Weiterhin wird vorausgesetzt, daß die Funktion y = f(x) in [a, a + l] monoton
wächst und eine differenzierbare Umkehrfunktion x = <p(y) besitzt. X sei eine im
Intervall [a, a + 1] gleichverteilte Zufallsgröße.
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Es läßt sich zunächst zeigen, daß die Wurzel b in der Form

b = a + P[/(X) < 0] (2.20)

dargestellt werden kann. Anschließend bereitet es keine Schwierigkeiten, den Wert
mit Hilfe der Methode der statistischen Versuche näherungsweise zu berechnen.
Wenden wir uns zunächst dem Beweis der Gültigkeit von (2.20) zu. Gemäß der
Definition der Verteilungsfunktion einer Zufallsgröße gilt speziell für X:

b

P(X<b)=fldx‚ bE[a‚a+ 11. (2.21)

Wir führen die Substitution x = ¢p(y) aus und erhalten aus (2.21)

f(b)
P(X < b) = j (p'(y) dy. (2.22)

f0!)

Da f nach Voraussetzung eine monoton wachsende Funktion ist, gilt P(X < b)
= P[f(X) <f(b)], und es folgt aus (2.22)

up
P[f(X) <f(b)] = J <P'(,v)dy~.

Wegen f(b) = 0 folgt m’)

P[f(X) < 0] = f<P'(y)dyv

Die Integration ergibt m)

P[f(X) < 0] = ¢P(0) - <P[f(t1)]-

Wegen 1p[f(a)} = a und <p(0) = b folgt aus der letzten Gleichung (2.20).
Zur näherungsweisen Berechnung von P[f(X) < 0] werden N statistische Versuche

durchgeführt. Für jeden Versuch erzeugt man eine in [a‚ a + l] gleichverteilte Zu-
fallszahl E, und überprüft anschließend, ob die Beziehungf(E‚) < 0 erfüllt ist. Bezeich-
net M die Anzahl der positiv ausgehenden Versuche, so folgt

M
P X 0 z —.U( ) < 1 N

Beispiel 2.2: Wir betrachten die positive Wunel der quadratischen Gleichung

f(x)=x’-%=0.
Die Wurzel x, = 0,5 liegt im Intervall [0, 1], f(x) ist in diesem Intervall 1 unehmend. Der
Tabelle von Zufallszahlen in [8] entnehmen wir die folgenden N = l5 Zufallszahlen 5,»:-[01].

0,865 15 0,907 95 0,66155 0,664 34 0,565 5s 0,123 32

0,691 86 0,03393 0,42502 0,99224 0,35955 0,53758
0,41686 0,42163 0,85181 0,38967 0,33181 0,72664
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Die folgende Übersicht zeigt die Beziehung j'(£,) < 0 (—) bzw./(5‚) g 0 (+) für alle Werte
5, (i: l. l5) an

+
+

l I +
+

+
+

+
+

_ _ + _ _

Mit M = 7 folgt

b = 0 + P[f(X) g 01.7.7/18 z 0,389.

Die Differenz zwischen genauem und Näherungswert beträgt 0,111. Entnehmen wir der Zufalls-
tabelle N = 90 Zufallszahlen, so wird M = 37 und somit

b ~ 37 ~ 0412Q» 90 ~ , .

Für N = 180 ist M = 80. Es ergibt sich ein Näherungswert für die Wurzel

b~ 8° ~o444
“ 180 N’ '

2.1.4. Auflösung von nichtlinearen Gleichungssystemen

Gegeben ist ein beliebiges System von Gleichungen in der Form

I-',(x1,x;,...,x,,) = 0, i = 1, 2, ...‚n.

Bei der Lösung wird ein aus der Quantentheorie bekannter physikalischer Sach-
verhalt benutzt. Um das Verfahren zu verstehen, genügt es, den Fall n = 2 zu be-
trachten:

Ft(x‚y) = 0, Fz(X.y) = 0- (2-23)

Es wird dabei vorausgesetzt, daß genau eine reelle Wurzel existiert. Eine Verall-
gemeinerung auf n > 2, den Fall mehrerer verschiedener reeller Wurzeln und schließ-
lich die Einbeziehung komplexer Wurzeln bereiten wenig Schwierigkeiten, wenn die
prinzipielle Vorgehensweise verstanden wurde.

Man definiert zunächst ein sogenanntes Pseudopotential

U(x‚y) = t1§F§(x, y) + a§F§(x,y). (2-24)

a, und a; sind beliebige Konstante. Es ist unmittelbar ersichtlich, daß die simultane
Erfüllung von F,.(x, y) = 0 (i = 1, 2) äquivalent ist der Beziehung U(x‚ y) 2 0. Auf
dem Potentialfeld bewegt sich eine große Zahl von Teilchen, die zufällig miteinander
kollidieren. Es existiere eine mittlere freie Weglänge A (i. > O). Zwischen den Kolli-
sionen wirken die Teilchen nicht aufeinander ein, und sie sind in Übereinstimmung
mit dem Potential; d.h.‚ sie bewegen sich entsprechend den Gleichungen

dzx ÖU_ dzy ÖU

EF="aT’ 'd'z7="V' <2-25)

Mit den Bezeichnungen

dx dy ÖU GU
w=Px§ Ff’-Py§ $=Ux; —5;‘=Uy
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folgt
dp. dpi
—— = ——U ' ——— = — . 2.2 ’d, .‚ d, U, < s)

Im Moment der Kollision geschieht eine Übertragung von Energie, wobei die Teil-
chen isotrop gestreut werden. Die statistische Mechanik liefert nun die Aussage, daß
die Lage der Teilchen durch einen Zufallsvektorprozeß (X„ Y‚) beschrieben werden
kann. Die zweidimensionale Dichte im stationären Zustand lautet

_ w.»
ß

f(x, y) =m;
ff er Z ’ dx dy

ß ist eine physikalische Konstante. Vereinfacht ausgedrückt kann man sagen, daß zu
einem beliebigen Zeitpunkt t nach der Anfangsphase die Lageverteilung der Teilchen
durch die Dichtefunktion (2.26) gegeben ist. (2.24) nimmt ihr einziges Minimum
an der Stelle (x, y) mit U(x, y) = 0 an. Das bedeutet physikalisch, daß die Konzen-
tration der Teilchen in unmittelbarer Nähe von (x, y) am größten ist.
Es gilt aber

(2.26)

U U
_ e—75"d d ye—Td dx=E(X)=fl%LL_il_ =,;(Y)=.f__lx1, W,

He ßdxdy He fidxdy
Somit ist die Bestimmung der Wurzel des Gleichungssystems (2.23) äquivalent der
Aufgabe, den Erwartungswert der Lageverteilung der Teilchen zu einem beliebigen
Zeitpunkt t zu finden. Aus diesen Überlegungen ergibt sich ein Weg für die Anwen-
dung der Simulation. Man erzeugt Zufallszahlen (E„n,)‚ i = 1, ..., N, entsprechend
der Vertei1ungsdichtcf(x, y) und erhält

_ 1 l
x e725, y zyim.

Wir wollen aber einen etwas originelleren Weg beschreiten. Voraussetzung ist die An-
wendung eines sogenannten Ergodensatzes. Er besagt auf unseren spezifischen Fall
angewandt, daß bei der Berechnung von E(X) und E(Y) die Beobachtung der Lage-
verteilung der Teilchen in einem Moment durch die der Lageverteilung eines ein-
zigen Teilchens über einen sehr langen Zeitraum hinweg (theoretisch unendlich
lange) ersetzt werden kann.
Beobachtet man die Lage eines Teilchens über einen genügend langen Zeitraum hin-
weg zu den diskreten, äquidistanten Zeitpunkten t, (i = l, ...‚ N), erhält man

_ N l N

x s: —1V‘)=:1x,,, y z —I\Tl§1y,,.

Es wird nun im Modell der Weg eines Teilchens nachgespielt. Dabei muß zunächst
eine bestimmte Schrittweite w festgelegt werden. Nach jedem Schritt registriert man
Zustand und Lage des Teilchens. Jedesmal, wenn seine kinetische Energie eine be-
stimmte Schwelle T„, überschritten hat, erfolgt ein Zusammenstoß. Das Teilchen er-
hält dabei einen Energiebetrag T,,,£, wobei 5 eine gleichverteilte Zufallszahl ist. Ist
T„‚ am Ende eines Schrittes nicht erreicht, setzt das Teilchen gemäß der Bewegungs-
gleichung den Weg fort.
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Der Algorithmus läßt sich folgendermaßen beschreiben:
0. Man lege T„„ w und N fest.

Man wähle eine zufällige Ausgangsposition aus.
. Es wird der Wert der kinetischen Energie T 2 T,,,§ bestimmt.
Man ermittle die Geschwindigkeitskomponenten5

"“
?

\/.7—"cos 27:5 =>p,, \/isin 21:6 =>p‚.

4. Man berechne die erforderliche Zeit für die Bewegung während eines Schrittes

Ä = dt.
\/ T

Man berechne die LageveränderungV
‘

p, dt => dx‚ p, dt w dy.

6. Man berechne die Geschwindigkeitsänderung

— U, dt => dpx, - U, dt => dp‚.

. Man bestimme die neue Lage und Geschwindigkeit\
I

x+dx=>x, y+dy=>y,
12x + dp‚=>p„ py + d11»='py~

.Manbercchne

2x+x=*I>Ix, 2y+y=Zy,
n+l=>n.

9. Wenn n = N, dann ll.

0
0

l0. Wenn pf, + pf > T,,,, dann 2, sonst 4.
ll. Man berechne

1 l72x, NZ)’-

(Zeichnen Sie das Flußdiagramm!)
Eine Verallgemeinerung des Verfahrens unter den eingangs genannten Gesichts-

punkten findet man in [l8]. Die Suche nach dem Extremum einer Funktion kann im
Prinzip auf die Lösung eines nichtlinearen Gleichungssystems zurückgeführt werden.
Man vergleiche hierzu [I2], [l8].

2.1.5. Lösung partieller Differentialgleichungen

Die Lösung von Randwertproblemen partieller Differentialgleichungen erweist sich
oftmals als äußerst schwierig. In einigen Fällen gelingt es, durch die Nachbildung so-
genannter „Irrfahrtsprozessc“ näherungsweise die Lösung zu bestimmen. Die Vor-
gehensweise wird an zwei Beispielen erläutert.

Wir betrachten zunächst die Laplace-Diiferentialgleichung

Ö’ (‚) Ö’ (x,)%g:%+~%y=o (Au=0) (2.28)
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in einem einfach zusammenhängenden abgeschlossenen Gebiet B mit der Bedingung

u(x. J’) = f(X. J’) (2-29)

auf dem Gebietsrand R3. Zunächst erfolgt eine Diskretisierung. B wird mit einem Netz
von Quadraten gemäß Bild 2.4 überzogen. Es bedeutet keine Einschränkung der All-
gemeinheit, wenn als Schrittweite h 2 l gewählt wird. Man erhält offensichtlich zwei
Arten von Punkten, innere und Randpunkte R,-. Der Einfachheit halber nehmen wir
an, daß die R, auf R, liegen, also gilt

u(Rz) =/(R1), i= 1. (2-29’)
r-¢‘/- S

K.

K Uqydl \
\

\

( (X-I,y) (m) (My) /
. Bild 2.4\ {xyil /

Man legt nun die Vorstellung zugrunde, daß ein „Teilchen“ vom Punkt (x, y) aus zu

einer Irrfahrt startet.
Dabei führt es eine endliche Anzahl von Schritten aus und bewegt sich nach folgenden
Regeln:

(1) Befindet sich das „Teilchen“ auf einem inneren Punkt, dann bewegt es sich im
nächsten Schritt „zufällig“ zu einem der vier Nachbargitterpunkte. Jeder der vier
Punkte wird dabei mit derselben Wahrscheinlichkeit 1/4 ausgewählt.

(2) Erreicht das Teilchen einen Randpunkt R), bleibt es dort mitWahrscheinlichkeit 1.

Ohne Beweis sei darauf hingewiesen, dal3 ein Teilchen, von einem inneren Punkt
startend, mit Wahrscheinlichkeit l im Verlauf» der Irrfahrt nach einer endlichen An-
zahl von Schritten einen Randpunkt erreicht. Wir bezeichnen mit

p((x‚ y); Rz)

die Wahrscheinlichkeit, daß eine Irrfahrt von (x, y) aus im Punkt R,- cndet. Dann gilt
offensichtlich

p(Rt;R.») = 1, p(R‚-;R‚-) = 0, i+.i.
und

p(r_x,y); R.-) = l[p(<x — Ly); R1) + p(<x + 1,.v);R;) + p(<x‚y - 1>;R.-)

+ p(<x‚y + 1);R:)]. (2.30)

Nach einfachen Umformungen folgt

P((x — 1.)’); R1) - 2p((x.y); R1) + p(<x + l, y); RA‘) + p(<x.y — l); RI‘)

-2P((x,y>; R.) + p((x‚y + l); R.) = 0. (2.31)

(2.31) ist aber eine Differenzenglcichung für p(x, y), die der partiellen Differential-
gleichung (2.28) entspricht.
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Führt man nun N Irrfahrten vom Punkt (x, y) aus durch, von denen M, im Punkt
R, enden, dann gilt

M
p((x‚ y); R.) z (2.32)

Die letzte Beziehung gibt näherungsweise die Lösung von (2.28) im Punkt (x, y)
unter den Bedingungen (2.29’). Nun berücksichtigen wir die allgemeine Randwert-
bedingung (2.29). Es sei

v<x‚ y) = i /<R.)p<<x, y); R.). (2.33)
i= l

Multipliziert man (2.30) mit f(R‚)‚ so folgt

f(Ri)P((X.y);R.) = HKROPGX - 1,,V);R:) + +f(R:)P((x»)’ + 1); R0]
und unter Berücksichtigung von (2.33)

§f<R.)p<<x,y); R.) = l [2/<R.)p«x — Ly); R.) +

+ z/<R.)p«x‚y +1); 12.)]

v(x, y) = §[v(x — l,y) + v(x + l‚y) + v(x,y — 1) + u(x,y + 1)]. (2.34)

(2.34) ist ofiensichtlich wiederum eine Differenzenglcichung der oben betrachteten
Form, die der partiellen Differentialgleichung (2.28) für v(x, y) entspricht. v(x‚ y) er-

füllt außerdem die Randwertbedingung (2.29), denn für (x, y) = R, gilt

um.) =‘if(R))p(R). R.) = /(Rn.

Führt man N Irrfahrten von (x, y) aus durch und enden jeweils M, dieser Fahrten in
R, (i = I, ...,n), dann ist

au. y) z 71¢ M.f(R))
die gesuchte näherungsweise Lösung des Randwcrtproblems.

Die Realisierung der Irrfahrten mit Hilfe der Methode der statistischen Versuche
ist äußerst einfach. X sei eine in [0, l] gleichverteilte Zufallsgröße. Legt man bei-

i _ 1 ; (i = l, ..., 4) das Teilchen in den Nachbar-

oder

spielsweise fest, daß beiXe
4

gitterpunkt P, überwechselt (wobei die Reihenfolge der Numerierung der 4 benach-
barten Punkte völlig gleichgültig ist), läuft der Irrfahrtsprozeß in der angegebenen
Weise ab.

Als zweites Randwertproblem betrachten wir die Wärmeleitungsgleichung

öu(x. y. z. t) h ö’u(x‚ y. z‚t) ö’u(x.y.z‚t) 0‘u(x,y.z,t>
öt _ Öx’ + by‘ + bz’ (235)

für (x, y, z)eB, teT‚ wobei B ein einfach zusammenhängendes abgeschlossenes
Gebiet mit dem Rand R, ist, unter den Anfangs- und Randbedingungen

u(x. y. z‚ 0) = g(x, y. z). (x. y. z) e B.

u(x‚ y. z. t) = f(x. y. z). (x. y. z) e R...
(2.36)
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Dem Gebiet B wird ein Gitter der Maschenweite h = 1 einbeschrieben. Man erhalte
insgesamt n innere Punkte P. = (x„ y„ 2,) und m Randpunkte Rj. Wählt man unter
Zugmndelegung eines Zeitmaßstabes eine Folge von s + 1 Zeitpunkten aus
(z = 0, l, 2, ..., k, ..., s), so sind die Funktionswerte

u(P‚;k), i = 1, ...‚n‚ k = 0, ...,s,

unter Berücksichtigung der Bedingungen

u(P„0)=g(P‚)‚ i= l‚...,n
u(R_„ t) =f(R,), j = 1, ...,m,

zu bestimmen. Es werden wiederum Irrfahrten auf dem Gitter von B durchgeführt.
p(P,;R,;t) sei die Wahrscheinlichkeit, daß ein „Teilchen“, zur Zeit to = 0 in
P,- = (x„ y„ z‚) startend, nach t Zeiteinheiten im Randpunkt R, = (x), y,, z,) an-

kommt. Dabei bewegt es sich in einer Zeiteinheit jeweils zufällig mit der Wahrschein-
lichkeit 1/6 zu einem der 6 benachbarten Gitterpunkte. Erreicht es einen Randpunkt
R,, so ist die Irrfahrt beendet. Sind PM ; Pm, , P,“ die Nachbarpunkte von Pi,
so gilt

(2.36’)

p(P.;R‚;z + 1) = %ip(P„.;R‚;r) (2.37)

und außerdem ‘=1

p(R,v, R1,!) = l,

5:‘: 51:3 : ' * J’ (2.38)

p(P,, R,,0) = 0.

Man kann analog zum ersten Beispiel zeigen, daß (2.37) eine der Wirmeleitungs-
gleichung (2.35) näherungsweise entsprechende Differenzengleichung ist.

Wir betrachten nun folgende Funktion

vom + 1)=kZ~:v(Pl:Pksz + 1>g(P.> + Ev<P.,R,. r + 1)/(Rn. (2.39)
=l J= l

Unter Berücksichtigung von (2.37) folgt

vom, z + 1)= a; i vom. ‚ n, am) + i vom, 12,, t)/(Rn
k: l _I=l

+hil”(I7i+2a Pin t)§(Ph) +J£ "(Pub R1: Ü/(RJ) ‘i’
= = l

+ i vom, m. am) +JE vom. 12,, 2)/(Rn
k: l = l

oder

v(P„ t + 1) = 5:5; v(1>„„ z). (2.40)
a=l

Die letzte Gleichung ist ebenfalls zu (2.35) äquivalent und erfüllt außerdem die An-
fangs- und Randbedingungen (2.36). Denn setzt man in (2.39) P, = R,,, so folgt
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unter Berücksichtigung von (2.38)

v(R;„ t + 1) =f(R:.)
und für P, = Pk

v(P:., 0) = g(P:.)-

v(P,, t + I) gibt näherungsweise die Lösung des Problems im Punkt P, zur Zeit
t + 1. Indem N Irrfahrten mit Hilfe der Simulation durchgeführt werden, erhält
man Näherungswerte für die v-Werte der rechten Seite von (2.39) und somit auch für
lI(P1;t +

33

Beispiel 2.3: Als Zahlenbeispiel soll die Laplaoesche Diflerentialgleichung in einem Einheitsquadrat
0 _S_ x g l; 0 g y g 1 mit den Randbedingungen u(x,0) = 0, u(0‚y) = 0, u(x, 1) = x, u(l,y) = y
betrachtet werden. Es ist der Wert u(l/2, 1/2) zu bestimmen. Das Beispiel ist [18] entnommen. Als
Schrittweite des Maschen m es wurde h = 1/4 gewählt. Die Numerierung der Punkte und die Rand-
werte f(RI) sind in Bild 2.5 angegeben.

uII7,1)- 0 7/4

.71

I I

0 I6

I I

I7 71—-7?

I I

17 b‘ T 7

I I

7 .7

u(I7,0)-:7 0

7/2 3/A 7-uI7,7)

U 0-u(7,0}

Es wurden insgesamt N = l6 Irrfahrten durchgeführt, die alle im Punkt mit der Nummer 13 be-
ginnen. Zur Simulation wurde die im Anhang von [18] enthaltene Tabelle von Zufallszahlen ver-

wendet. Man erhielt die folgenden Wege:

Nummer des Weg Zufälliges Randwert
Versuches Wegende f(R.) am

s Wegende

1 13-18-17-16 16 O

2 13-12-13- 8- 7-12-17-16 16 0
3 13-12-11 11 0
4 13-18-23 23 1/2
5 13-14- 9-10 l0 1/4
6 13-12-17-16 16 0
7 13-12-11 11 0
8 13-18-13- 8-13—14— 9- 4 4 0
9 13- 8- 7- 2 2 O

10 13-14-19-24 24 3/4
l1 13-12-17-18-13- 8- 3 3 0
12 13-14-19—18—19—24 24 3/4
13 13-18-23 23 1/2
14 13-14-13-12-11 ll 0
15 13- 8- 3 3 0
16 13-12-11 ll 0

3 Pieblar. Simuhtion
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Es folgt gemäß (2.32) und (2.33)

1 l l I1 I 1 l 311(77): Wl=2lM,f(R,) =—‘?(11 -0 +1-—4—+ 2-7+ 2-7) z 0,17.

Damit gilt näherungsweise

u(1/2, I/2) z 0,17.

Für die empirische Varianz erhält man

u = — e T z ‚ ‚2(2) l 1262’ l lgz); 008l
15 ,_, ' 15-16 \,_, 5

wo Z die Zufallsgröße der angenommenen Randwerte bezeichnet. Somit ist der wahrscheinliche
Fehler

02(2)
n5 = 0.675 l6 z 0,05.

Die exakte Lösung dieser Aufgabe ist u(x, y) = x - y. Die Diflerenz zwischen dem genannten Wert
u(l/2, l/2) = 0,25 und dem durch Simulation erhaltenen Wert 0,17 beträgt 0,08.

2.1.6. Berechnung von Eigenwerten

Die Bestimmung der Eigenwerte und Eigenfunktionen von Operatoren ist ein sehr
wichtiges, aber meistens sehr schwieriges mathematisches Problem. Eine weitgehende
Übersicht über die Einsatzmöglichkeiten der Simulation findet man zum Beispiel in
[14] und [I8]. Wir wollen an zwei speziellen Beispielen zeigen, wie der kleinste Eigen-
wert ermittelt werden kann.

Gegeben ist der Differentialoperator L

1 dz
Lw(x) : 7 diff) — V(x)1v(x). (2.41)

Wenn eine Lösung 2/1,.(x) der Differentialgleichung
Zä dd':(f) — V(x) 1/1(x) = im), A = const, (2.42)

mit der Bedingung H]. |tp|z dx = 1 genügt, so heißt sie Eigenfunktion des Operators L.

Die entsprechende Zahl Ä,- heißt dabei Eigenwert. Es wird im folgenden vorausgesetzt,
daß ein kleinster Eigenwert I11 mit Eigenfunktion w1(x) existiert. (2.42) ist eine so-
genannte Schrödinger-Gleichung, die in der Quantenmechanik das Verhalten eines
Teilchens in einem durch das Potential V(x) vorgegebenen Kraftfeld beschreibt. /1,

entspricht dem tiefsten Energieniveau des Teilchens.
Grundlage für den Einsatz der Simulation ist ein Zusammenhang zwischen dem

Operator L und bestimmten stochastischen Prozessen. Wir wollen diesen Zusammen-
hang nur angeben. Die Ableitung der entsprechenden Formeln findet der Leserin [3].
Man geht von einem sogenannten Wiener-ProzeBX(t) (t g 0) (vgl. Bd. 19/1) aus. Ein
solcher Prozeß besitzt die Eigenschaft, dal3 fast alle Realisierungen stetige Funktionen
der Zeit sind und die Zuwachse

X02) - X01); X04) - X03)
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für beliebige t, < t2 < t3 < t4 unabhängige normalverteilte Zufallsgrößen mit Er-
wartungswert 0 und Varianz t2 — t1 sind. Es wird nun ein weiterer Zufallsprozeß

l

Y(t) = j V(X(1:)) d7:
O

gebildet, wobei die x(r) Realisierungen des Prozesses X(t) sind. Die eindimensionale
Verteilungsfunktion des Prozesses Y(t) für ein beliebiges t sei

mm < y) = my I r).

Zwischen dem stochastischen Prozeß Y(t) und dem kleinsten Eigenwert gilt nähe-
rungsweise für große Werte t, ‚ t, der Zusammenhang

1 E(e“"“’)
,2 __ ‚l n E(e—ym)) '

Es gilt also, die Erwartungswerte der eindimensionalen Zufallsgrößen Y(t‚), Y(t2) des

i. = (2.43)

stetigen Prozesses Y(t) zu simulieren. In der Praxis löst man dieses Problem, indem
der stetige Prozeß durch einen diskreten Prozeß Y*(t) approximiert wird.

Anstelle des Wiener-Prozesses X(t) betrachtet man zunächst den diskreten Prozeß

X(k) = 9:317, . (2.44)

Die T, sind nach dem gleichen Gesetz verteilte zufällige Größen mit dem Mittelwert 0
und der Varianz l. Als Verteilungsgesetz der T,» könnte man etwa

_1‚

T‘=i+l.
Mr. = +1) = P(T‚ = —1)=g

wählen. Anstelle des stetigen stochastischen Prozesses Y(t) betrachtet man anschlie-
ßend den Zufallsprozeß

m» = iglr/< Ü? (2.45)

Dieser ist, wie leicht nachgeprüft werden kann, ein sich nur zu den Zeitpunkten

z = ändernder diskreter stochastischer Prozeß. Es läßt sich zeigen, daß Y„(t) den

stetigen Prozeß in dem Sinne approximiert, daß bei jedem e > O ein no gefunden
werden kann, so daß für n > no

|Y?‘(t) - Y(t)| < 8

gilt. Je größer n gewählt wird, um so besser wird der Prozeß approximiert. Zur Simu—

lation der Erwartungswerte E(e":“") und E(e"rl"2’) sind nun ähnliche Irrfahrtspro—
zesse durchzuführen, wie sie bereits im Abschnitt 2.1.5. betrachtet wurden. Für
jede der beiden Größen werden N Versuche durchgeführt. Im Ergebnis jedes dieser
Versuche erhält man eine Realisierung x‘“(k) (i = 1, 2, ..., N) des Prozesses (2.44)
(Bild 2.6). Anschließend wird Y,f‘“(t,) gemäß (2.45) bestimmt. Nun folgt bei Berück-
3*
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sichtigung aller N Ergebnisse

N

ma z % 2 Y:<*><z.).
i= l

Hat man auf analoge Weise Y,‘f(t2) berechnet, ergibt sich Ä, näherungsweise nach For-
mel (2.43). ‘

)(’”(k}

Bild 2.6
k{lI7t,) I

Beispiel 2.4: In [3] ist die Erprobung des Verfahrens beschrieben‘ Es wurde u. a. der kleinste Eigen-
wert für V(x) = x’ bestimmt. Zugrunde gelegt sind die Parameter I, = S, z; = 3,75 und n = 400.
Die Werte

l x, _ 1 x, 1

7| k<nl‚ w’; ’ " k<nl,(\/I-1)

wurden jeweils N = 100mal berechnet. Da für einen Versuch allein nr, = 400 - 5 = 2000 Werte der
Zufallsgrößen T, notwendig waren, ergab sich insgesamt eine Zahl von N - 2000 = 200000 Werte
für T,. Man erhielt folgende Ergebnisse: Ä, z 0,80 (nach 50 Versuchen), Ä, z 0,75 (nach 100 Ver—

suchen). Ä, = 0,71 (genau).

Eine große Bedeutung für die Praxis besitzt die Berechnung der Eigenwerte und
Eigenfunktionen von Integralgleichungen. Auf einem Gebiet G der x-y-Ebene sind
gegeben eine Funktion q2(x, y) und eine Funktion K(x‚ y, x’, y’) mit P = (x, y) e G
und P’ = (x’, y’) e G. Zu bestimmen sind erster Eigenwert 2.1 und Eigenfunktion
z‚(x‚ y) der homogenen Integralgleichung

z(x‚ y) = 1 f K(x‚ y, x’‚ y’) z(x'‚ y’) dx’ d?’ (2-46)
G

oder kurz
z(P) = J. f K(P, P’) z(P’) dP’. (2.46’)

G

Wir führen nun folgende Bezeichnungsweise ein:

K<P(P) = f K(P. P’)¢(P’)dP’, (2-47)
G

K[K9>(P)] = K’<P(P)

= ff K(P, P’) K(P’, P”) ¢p(P") dP’ dP” (2.47')
GG

Auf diese Art und Weise lassen sich dann auch K31p(P) und allgemein K‘q>(P) bilden.
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Die Mehrheit der Näherungsmethoden zur Berechnung von Eigenwerten und Eigen-
funktionen (z.B. Ritzsches Verfahren, vgl. Bd. 18) erfordert die Berechnung kompli-
zierter Integrale. Hierbei ist der Einsatz der Simulation von Vorteil. Nach der Me-
thode von Kellogg gilt für zwei in G positive Funktionen 1,u(P) und gv(P)

f w’) K’a>(P) dP
iimL—._———— = 1, (2.48)
H“ fv(P)K‘“<r(P) dP

G

und
I

lim K MP) (2.433
W A/fv(P)K‘“<P(P)dP =

Die Integrale in (2.48) lassen sich grundsätzlich mit den behandelten Integrations-
methoden lösen. Die besondere Struktur erlaubt es jedoch, hier einen günstigeren
Weg einzuschlagen. Die Berechnung dieser Integrale läßt sich auf die Durchführung
von Irrfahrten etwas anderer Form zurückführen. Man betrachtet innerhalb von G
eine beliebige Wahrscheinlichkeitsdichtep(P) und eine beliebige Übergangsdichte vom

Bild 2.7

Punkt P zum Punkt P’, p(P, P’). Ein Teilchen tritt nun gemäß Bild 2.7 vom Punkt Po
aus zu einer Irrfahit an und gelangt nach i Schritten zum Punkt P‚. Die Lage des
Anfangspunktes wird durch die Wahrscheinlichkeitsdichte p(P)‚ die Lage von P, bei
bekanntem P_‚_‚ durch die Übergangsdichte p(P,_, , P,) bestimmt.
Die Wahrscheinlichkeitsdichte für die Kette

P0—>P,—>----+1’,
ist dann

Pi(Po. P1, --ups)=P(Po)P(Po»P1):---s17(Px—i, PI)-
Führt man die folgende Bezeichnungsweise

_ K(P0aPl)K(Pl: P2) K(P:-1,15) ._—___._—____.:, = ', 2.49
1 p(1=..,mp(P,.1>2> ...p<P,-1,P,) ’ ' ‘ ’

ein, dann ist
K(P — 4 P )

W1 = W!" ‘m’
Der Ausdruck

— “F” WW.) (2.51)
"' ‘ P(Po)



38 2. Beispiele

stellt eine Zufallsgröße dar, da die Lage des Punktes P, nach i Schritten zufällig ist.
Es läßt sich nun beweisen, daß die Beziehung

Euro = ‚l «um K'<p<Po> dPo (2.52)
G

gilt. Es gilt zunächst

EtX.) = f J’x.p.(P„‚ ...‚P.->dPo dP.-.
G G

Hieraus folgt wegen (2.49), (2.50) und (2.51)

P(Po)

= _l'P(Po)dPo J""_i.K(Po: P1)---K(Pi—1sP1)W(P1) dPl --«dP1
z; G z;

E(X.) % MP0) W,p.(P,,, ..i,P,)dP.,...dP,
G G

= f w(Po) dPoK*¢<Pa)
G

womit die Beziehung (2.52) bewiesen ist.
Es werden nun N derartige Irrfahrten durchgeführt. Wird nach dem zlten Schritt

jeweils der Punkt Pf” (s = 1, , N) erreicht, so gilt mit

(g = 'P(Po) W P“)
. . x. P030) z‘P( r )

die Beziehung

l N (s)E(X‚-) z Wsglx, .

Eine unmittelbare Anwendung ist beispielsweise die Bestimmung des kritischen
Parameters eines Kernreaktors. Diese Aufgabe läßt sich auf die Berechnung des
ersten Eigenwertes Ä, der Integralgleichung

JW) | M
l e- P / rz(P) — Ä z(P)dP

G

zurückführen. o i

G0 ist ein dreidimensionaler Bereich, in dem die Diffusion der Neutronen vor sich
geht. zx(P) und ‚8(P) sind positive Funktionen, die den Diflusionsprozeß charakteri-
sieren. In [l8] wurde Ä, bestimmt, wobei speziellz‚v(P) = I,zp(P) E ß gewählt wurde.

2.2. Naturwissenschaftliche und technische Probleme,

Die Simulation hat in viele Gebiete der Naturwissenschaft und Technik Eingang
gefunden, so in Atomphysik, Kerntechnik, Plasmaphysik, Gaskinetik, Optik, Che-
mische Reaktionstechnik, Hochfrequenztechnik und Kybernetik, um nur einige zu
nennen. Dabei wird sie einerseits zur Imitierung bestimmter Vorgänge und Prozesse
und zum anderen zur Lösung mathematischer Probleme eingesetzt. Beispiele sind die
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lmitierung der Zusammenstöße, freien Wegstrecken, Trajektorien und Geschwindig-
keiten von Teilchen verschiedener Art, Neutronen bei Kernspaltungsprozessen in
Reaktoren, Elektronen und Ionen bei Vorgängen im Plasma und Molekülen in
Diffusionsprozessen [15, 19]. Die Simulation wurde auch effektiv eingesetzt bei der
Modellierung kettenartiger chemischer Reaktionen [20] und bei zahlreichen quanten—
theoretischen Problemen [Comptoneffekt [13]). Da viele Vorgänge in Natur und
Technik durch komplizierte Differentialgleichungen, Integralgleichungen und andere
mathematische Beziehungen hoher Dimension beschrieben werden können, hat auch
die Lösung mathematischer Probleme eine große‘Bedeutung. Beispiele wurden im
Abschnitt 2.1. genannt. Weitere sind die Lösung der kinetischen Gasgleichung [l0],
von Wiener-integralen [l 1] und Gleichungen der Optik [l6]. Aus der Vielfalt der An-
wendungsmöglichkeiten werden zwei im folgenden ausführlicher erläutert.

2.2.1. Eine Anwendung in der Kerntechnik

Viele Probleme der Technik lassen sich bewältigen, indem man bestimmte Vorgänge
oder Prozesse imitiert. Ein Beispiel[8] hierfür ist die Berechnung der Wahrscheinlichkeit
dafür, daß ein Neutron eine Schutzschicht durchdringt. Dieses Problem hat eine
große Bedeutung bei der Bestimmung der Abmessungen des Schutzschildes eines
Atomreaktors.

Der Einfachheit halber nehmen wir an, daß das Schutzschild die Form einer
ebenen, homogenen Platte mit 0 g x g I1 (vgl. Bild 2.8) hat. Auf sie falle unter einem
Winkel von 90° ein Strom Neutronen mit der Energie Eo. Beim Eindringen in die

g gsxsh II

.:_?V‘)

M?
Wand kommt es zur Wechselwirkung mit den Atomen. Ein Zusammenstoß eines
Neutrons mit einem Kern führt zur Absorption oder Streuung. Wir setzen zur Ver-
einfachung des Problems weiterhin voraus, daß das Neutron im Falle der Streuung
seine Energie nicht verändert und in eine beliebige Richtung abgelenkt wird. Es ist
nun gefordert, die Wahrscheinlichkeiten p+ für den Durchgang, p‘ für die Reflexion
und p° für die Absorption zu bestimmen.

In der Neutronenphysik wird die Wechselwirkung der Neutronen mit den Atom-
kernen durch sogenannte „effektive Schnitte“ o‘ beschrieben. Auf eine einato-
mige ebene Schicht eines Stoffes mit n Atomen (cm") falle senkrecht ein homogener
Strom von Neutronen. Wenn die Zahl der Neutronen, die in Wechselwirkung mit

Bild 2.8
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den Kernen tritt, gleich d ist, setzt man

d
a = —.

n

Entsprechend definiert man o; und u, als „effektive Schnitte“ bezüglich Absorption
und Streuung. Dabei gilt

o‘ 2 ac + o}.

Diese Größen hängen selbstverständlich von der Energie der Elektronen und der
Art des Stoffes ab und sind katalogjsiert. Man bildet die Größen

Z‘ = de; EC = ace; E. = 6.9;

g bezeichnet die Dichte des Stoffes. Dann sind 2„/2 und 23/2 die Wahrscheinlichkeiten
für die Absorption bzw. Streuung eines Neutrons.

Die freie Weglänge zwischen zwei aufeinanderfolgenden Zusammenstößen eines
Neutrons mit Atomen ist eine stetige Zufallsgröße L, die man erfahrungsgemäß als
poissonverteilt mit der mittleren freien Weglänge

E(L) = 1/2

annehmen kann. Die Dichte von L ist

p‚.(x) = Ze"".
Es ist nicht schwierig, die freie Wegstrecke „nachzuspielen“. Ist 5’ eine gleichverteilte
Zufallszahl, so gilt

L

fE'e”"dx = E’.
Ü

Hieraus folgt
l rL = — fln (l — E)

bzw. mit; = l — 5’

l
2

Wobei 5 ebenfalls gleichverteilt ist. Es bleibt noch zu zeigen, wie im Falle der Streuung
die beliebige Richtung festzulegen ist. An den Ergebnissen für p*, p‘ und p° ändert
sich aus Symmetriegründen nichts, wenn man sich auf Streuungswinkel (p e [0, 7:] be-
schränkt. Dann ist die Richtung der Streuung eindeutig durch ‚u = cos (p festgelegt.
q: ist als eine im Intervall [0, n] gleichverteilte Zufallszahl anzusehen. Es läßt sich
zeigen, daß dies äquivalent ist einer Gleichverteilung von ‚u im Intervall [— 1,+1].
Bezeichnet E wiederum eine gleichverteilte Zufallsgröße, so folgt

‚u=2E-1.
Man ist nun in der Lage, den Weg eines Neutrons mit Hilfe der Simulation zu

imitieren und die Wahrscheinlichkeiten p+, p‘ und p“ näherungsweise zu bestimmen.
Ein Neutron befinde sich nach k Streuungen in einem Punkt mit der Abszisse xk und

L=— 1115,
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bewege sich in einer Richtung ‚u = ‚uk. Man bestimmt mittels einer Zufallszahl die
freie Weglänge

l
Z,‘ = — flné

und berechnet

Xk+1= Xx + Ähuk-

Gilt x,“ > h oder x,“ < 0, so ist der Weg des Neutrons beendet. Es hat die Wand
durchdrungen bzw. wurde reflektiert. Ist keine der beiden Bedingungen erfüllt, erfolgt
der nächste Zusammenstoß, und es ist notwendig, das „Schicksal“ des Neutrons, mit
der Wahrscheinlichkeit E‚/E absorbiert oder mit E‚/E = 1 — Z‘,/E gestreut zu werden,
nachzuspielen. Dies kann in einfacher Weise durch Erzeugung einer weiteren Zufalls-
zahl .5 und der folgenden Festlegung realisiert werden

E < E‚/E: Absorption,

E g E„/E: Streuung.

fingzmr der/Jm/7

K-0,x,-0,;z,,-7

Nu’!!! ' Nu”/9 +7

{<21/E?

Bild 2.9

. _ „— N,

Ausymdrrflafen

4 Plehler, Simulation
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Im ersten Fall ist der Weg des Teilchens beendet. Im zweiten Teil bestimmt man die
neue Richtung des Neutrons durch Erzeugung einer weiteren Zufallszahl E und Be-
rechnung von

u“, = 26-1.

Der Zyklus beginnt von neuem. Es läßt sich beweisen, daß mit Wahrscheinlichkeit 1

nach einer endlichen Anzahl von Zusammenstößen einer der 3 Zustände eintritt. Hat
man insgesamt N Trajektorien ermittelt, jedesmal mit den Werten x0 = 0, ‚uo = l
beginnend, gilt

+ I!) N+ — N N. o N NoP~N» P~N. I7~N»

wobei N+ die Zahl der durchgedrungenen Neutronen, N‘ die der reflektierten und N°

die der absorbierten bedeuten. Bild 2.9 zeigt das Flußdiagramm für die Berechnung.

ii/zgne der [Mm

Bild 2.10

Ausgabe derEulen
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Die Buchstaben j bedeuten dabei die Nummern der Trajektorien und k die der Zu-
sammenstöße.

Diese Methode ist im allgemeinen schwierig anzuwenden. Ist die Wahrscheinlich-
keit pt sehr klein, etwa 10*‘ bis 10“", so muß man etwa 109 bis 10” Trajektorien
betrachten, um eine Genauigkeit von 10% zu erzielen. Wir werden deshalb noch
einen anderen, effektiveren Weg der Berechnung erörtern.

Es wird von der Vorstellung ausgegangen, daß sich auf einer Trajektorie zu Beginn
ein ganzes „Paket“ von Neutronen mit der Anzahl wo bewegt. Beim ersten Zusammen-
stoß im Punkt mit der Abszisse x, ist die Menge der absorbierten Neutronen im
Mittel w„(E„/Z'). Der verbliebene Rest W1 wird in eine beliebige Richtung gestreut. Alle
abgeleiteten Formeln bleiben gültig. Es ist nur zu beachten, daß sich nach jedem Zu-
sammenstoß die Zahl der Neutronen im „Paket“ verringert. Betrug ihre Zahl vor
dem k-ten Zusammenstoß wk, dann ist sie danach

wk“ = w,,(E,/E), k = O, 1

In der Neutronenphysik spricht man anstelle eines Paketes mit w,‘ (k = 0, 1 ...) Neu-
tronen von „einem“ Neutron mit dem „Gewicht“ wk. Ein solches Neutron kann
verständlicherweise nicht durch Absorption enden. Es läßt sich jedoch zeigen, daß
auch in diesem Fall die Trajektorien mit Wahrscheinlichkeit l nach einer endlichen
Anzahl von Zusammenstößen abbrechen. Bild 2.10 zeigt mit der bereits eingeführten
Bezeichnungsweise das Flußdiagramm für diesen Berechnungsweg.

2.2.2. Ein Problem aus der Informationsiibemagnng

Die zweite Aufgabe ist dem Gebiet der Informationsübertragung entnommen. Es
wird im Gegensatz zum ersten Beispiel kein Vorgang imitiert. Die Simulation dient
lediglich dazu, komplizierte Integrale zu berechnen. Eine ausführliche Darstellung
findet der Leser in [9].

Die Informationsübertragung auf elektromagnetischem Wege läßt sich allgemein
durch das in Bild 2.1l angegebene Schema realisieren. Die Mitteilung wird im Sender
auf elektromagnetische Wellen moduliert. Bei der Übertragung der Wellen kommt

Jtiruny

Kanal fmpfinytr 3nd 2.1 1

eine Störung hinzu. Im Empfänger wird die Demodulation vorgenommen. Elektro-
magnetische Schwankungen lassen sich mathematisch durch Funktionen der Form

s(t) = A cos (Zt + (p) (2.53)

beschreiben. A ist die Amplitude, Ä die Frequenz und q: die Anfangsphase der Welle.
Es ist möglich, die drei Parameter für die Informationsübertragung auszunutzen.
Wird die Information durch Veränderung von A vorgenommen, spricht man von
Amplitudenmodulation, bei Veränderung von i. oder (‚v von Frequenz- bzw. Phasen—

4*
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modulation. Der einfachste Fall ist das Verfahren der diskreten Modulation. Jede In-
formation, auch als Signal bezeichnet, wird durch eine zeitliche Folge von Werten
kodiert. Ein Signal S enthält mehrere Komponenten

s = (s.‚s„ ...‚s„). (2.54)

Physikalisch sind die Komponenten z.B. eine Folge von Spannungsimpulsen. Man
unterscheidet deterministische und stochastische Signale. Bei den erstgenannten ist
die Abhängigkeit der Komponenten von fixierten Werten t streng deterministisch,
bei den letzteren stochastisch. Dementsprechend ist (2.54) im ersten Fall ein Zahlen-
vektor, im zweiten ein Zufallsvektor. Stochastische Signale können korrelierte und
unkorrelierte Komponenten besitzen. Da ein Signal nicht ungestört übertragen wird,
kommt zum Signalvektor noch ein Störvektor

N=(N1:N2:-~~sNm) (255)

hinzu. Seine Komponenten sind Zufallsgrößen.
In der Praxis tritt häufig eine additive Verknüpfung von Signal und Störung auf.

Dann gilt

S+N=(S1+N,,Sz+N;,...,S,,,+N,,,) (2.56)

oder mit X, = S, + N,-

x =(Xl9X2a'“sXm)' (2-56')

(2.56) ist ein m—dimensionaler Zufallsvektor mit bestimmten Wahrscheinlichkeits-
theoretischen Charakteristiken (Verteilungsgesetz, Parameter der Verteilung). Wir
setzen im folgenden voraus, daß die Verteilungsdichten (2.55) und (2.56) gleiche funk-
tionale Form p(x‚ ‚ x2 ‚ ...‚ x„„ a) besitzen und sich nur durch unterschiedliche Werte
von on unterscheiden. Die Dichte des Störungsvektors ist p(x,,x2, ...,x,,,,0), die
Dichte des Zufallsvektors (2.56) p(x„ x2, ...‚ x„„ o4) mit zx > 0.

Im Empfänger ist nun das Signal von der Störung zu trennen. Diese Aufgabe läuft
auf die Prüfung des Parameters zx hinaus. Eine geeignete Methode ist das Verfahren
von Neyman-Pearson:

Es werden 2 Hypothesen H0 und H1 aufgestellt:

Hoioc=0 H1:oc=oc1.

Die erste Hypothese ist identisch mit der Aussage, dal3 kein Signal gesendet wurde,
x = «x1 identisch mit der Aussage, daß ein Signal gesendet wurde. Die Entscheidung
wird auf der Grundlage der konkreten Stichprobe

x = (x1, ...‚ x„‚) (2.57)

gefallt. Die Gesamtheit aller möglichen m-tupel (2.57) wird nach der Methode von
Neyman-Pearson in zwei Bereiche eingeteilt, in den Anmzhmebereic/1 und den kri-
tischen Bereich. Im ersten Bereich wird Ho angenommen, im zweiten Bereich zurück-
gewiesen. Aus der Statistik ist bekannt, daß bei dieser Vorgehensweise Fehler erster
und zweiter Art zu beachten sind. Es kann Ho richtig sein, aber abgelehnt werden und
Ho falsch sein, aber angenommen werden. Im ersten Fall nimmt man irrtümlich an,
daß ein Signal gesendet wurde. Die reine Störung wird für ein Gemisch von Signal
und Störung gehalten. Im zweiten Fall glaubt man irrtümlich, daß kein Signal ge-
sendet wurde. Das Gemisch von Störung und Signal wird für reine Störung gehalten.
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Beide Fehler können nicht gleichzeitig minimiert werden. Es ist zweckmäßig, die
Wahrscheinlichkeit p 1 für die Fehler erster Art konstant zu setzen und den kritischen
Bereich so zu wählen, daß die Wahrscheinlichkeit p; für die Fehler zweiter Art mini-
mal wird.

Als kritischer Bereich wird nun die Gesamtheit der Punkte festgelegt, für welche

pa1(xl a ---a xm) ä C 'Pazo(-xi» --~- xm) ' (2-58)

gilt. Die Konstante c heißt Schwellwert und ist abhängig von der Wahlder Wahrschein-
lichkeit pl. In der Theorie der mathematischen Statistik wird bewiesen, daß bei einer
Wahl des kritischen Bereiches entsprechend (2.58) die Fehler zweiter Art minimal
werden. Setzt man

Pa;(x1a "'3 xm)
Ia: ‚ -~-, m = ‚

‘(xi x ) P:xo(x1; "-axm)

dann wird nach Neyman-Pearson die Hypothese Ho fiir alle (x1 ‚ ..., x„‚) mit
l(x,, ..., x,,,) < c angenommen, für (xl, ..., x„‚) mit I(x„ ...,x„‚) g c dagegen H1.
Die Wahrscheinlichkeiten für die Fehler erster und zweiter Art sind dann

171 = pato(xl:"'->xm)dx1 ---dxma
l,l(:n.....x,,.)gc

p2= [w] p„<x.‚...‚x„.)dx„..dx‚„.
r„<x.....‚x‚„><c -

Anstelle p; gibt man die Wahrscheinlichkeit d = l — p; an. Es gilt

d = p„„(x„ ...,x,,,) dx, dxm;
l,.l(:n.....xm)gc

d ist die Wahrscheinlichkeit dafür, daß das Gemisch von Signal und Störung nicht
irrtümlich für Störung gehalten wird.

Die Problemstellung wurde sehr vereinfacht angegeben. Um zu entscheiden, ob auf
dem Hintergrund der Störung ein Signal vorhanden ist, muß strenggenommen ge-
prüft werden: ‚

Hozoc = 0, H,:zx > 0.

Das ist mathematisch mit großen Schwierigkeiten verbunden und oftmals nicht durch-
führbar. Man behilft sich auf die folgende Art und Weise: Für d wird eine untere
Grenze d, festgelegt. Der untere Wert a1 , der diese Grenze d1 gerade noch gewähr-
leistet, heißt SchwellenWahrscheinlichkeit. Geprüft werden die Hypothesen

H„:cx=0‚ H,:oc=oc,.

Die Bestimmung von ml ist rechentechnisch aufwendig. Sie ist jedoch nicht die ein»
zige Aufgabe, bei welcher die Simulation effektiv eingesetzt wird. Wichtig ist auch die
Ermittlung von Kennlinien für d, d.h. der Abhängigkeit

d = d(a,pi).
5 Piehler, simumio
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Es gelten die folgenden Beziehungen

l...(xi.xz‚ ...‚x‚„) ä c.

J---J p.,.,<x,,x2, ...,xm>dx, dxrn =p.‚ (2.59)
l,x1(x,,.,..x,.);c

17au(xx;x2:~--:Xm)dx1 ---dxm =d-
l.,<n.....x..r;c

Setzt man

D(0‘1s"‘)= pa(xlsx29-~'sxm)dxl"'dxms
1,‘(x;....,x..)g:

so folgt offensichtlich

D(0‘1,0‘o) : Pi, D(°‘1,0‘1) = d-

Ist oc, bekannt, kann man c unmittelbar durch Simulation aus (2.59) näherungsweise
bestimmen. Ist ac, unbekannt, gibt man zunächst einen Anfangswert ocf vor und
bestimmt c* auf die angegebene Weise. Anschließend wird das Integral D(oc‘f,ocf)
mittels Simulation bestimmt. Es können die in Kapitel 2 angegebenen Integrations-
methoden angewendet werden. Gilt

DOxL a?) ä d.

wird ein neuer Wert act‘ kleiner als au: gewählt und die Prozedur wiederholt. Ist

D(a}', ext) < d,

so wiederholt man die Berechnun mit einem a" rößer als ax‘.l 1

2.3. Probleme der Operationsforschung

Wir möchten hier noch einmal das in 1.1.1. Gesagte wiederholen, weil das für die
Probleme der Operationsforschung in besonders starkem Maße zutrifft. Diese Auf-
gabenstellungen sind in den wenigsten Fällen „reine“ Probleme, sondern führen meist
auf Modellsysteme, so daß die Anpassungsarbeit hier oft besonders schwierig ist.
Wenn wir im folgenden trotzdem Probleme ganz bestimmter Typen behandeln, so
nur wegen der Einfachheit und größeren Übersichtlichkeit. Einige Fragen der Kopp<
lung solcher Modelle werden in 2.3.5. behandelt. Außerdem wollen wir auch hier nur

Beispiele zeitunabhängiger Simulationen betrachten. Weitere Beispiele findet man
etwa in [Sa], wo auch die Bedeutung der modernen Rechentechnik für die Simu-
lation gebührend berücksichtigt wird,

2.3.1. Reihenfolgeprobleme

Probleme dieser Art spielen innerhalb der Operationsforschung eine bedeutende
Rolle. Sie führen auf kombinatorische Optimalprobleme, für die die Lösungs-
methoden in vielen Fällen wenig effektiv sind, so daß man gern auf die Simulation
zurückgreift [7].
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Gegeben sind eine Kette von m hintereinander zu durchlaufenden Maschinen und
n Produktlose, die über die Maschinenkette zu laufen haben. Die Bearbeitungszeit
des Loses i auf der Maschine k sei gegeben und mit a„‚ bezeichnet. Die Rüstzeiten
seien der Einfachheit halber in den Bearbeitungszeiten enthalten. Je nach den wei-
teren Voraussetzungen erhält man nun unterschiedliche Problemstellungen. Wir
wollen einen der einfachsten Fälle zugrunde legen, weil es uns ja vor allem auf die
Möglichkeiten der Anwendung von Simulationsmethoden ankommt. Wir setzen vor-
aus, daß

— alle Lose die Maschinen in gleicher Reihenfolge durchlaufen;
— eine Maschine zur gleichen Zeit nur ein Los bearbeiten kann;
— ein Los erst dann zur nächsten Maschine übergeht, wenn seine Bearbeitung auf der

vorangegangenen Maschine vollständig abgeschlossen ist;
— beliebige Zwischenlagerzeiten der Produkte und Stillstandszeiten der Maschinen

möglich sind;
— die gesamte Durchlaufzeit zu minimieren ist, indem die günstigste Durchlauf»

reihenfolge ausgewählt wird.

Bezeichnen wir mit xi,‘ die Verlustzeit vor der Bearbeitung des Loses i auf der
Maschine k und vereinbaren, daß xi,‘ > 0 einer Stillstandszeit der Maschine und
x,„ < 0 einer Liegezeit' des Loses entspricht, so setzen wir

fun z am + max (Xiki o):

und es gilt dann [7]

O für am = 0,

xik = i"! ..

Z1(fsk' _fsk) +f-‘k’ f“ au: 4= Ü,
s:

k’=max(r|r§k—1,a,-,>0).
Wir legen fest, dal3 nicht definierte a,-,, und x„, gleich null zu setzen sind. "Der Aus-
druck

n

max ff”,
1:1

ist die Durchlaufzeit aller Lose, und dieser ist durch geeignete Reihenfolgewahl, d.h.
entsprechende Anordnung und Umnumerierung der Lose 1, ...‚ n zu einem Minimum
zu machen.

Die theoretische Möglichkeit, für alle n! Reihenfolgen die jeweilige Durchlaufzeit
auszurechnen und die optimale auszuwählen, scheitert an dem ungeheuren Rechen-
aufwand bei großem n. Man kann daher hier eine Monte-Carlo-Simulation benutzen,
indem man aus den n! möglichen Reihenfolgen eine gewisse „erträgliche“ Anzahl N
gemäß dem Vorgehen in 1.2.3. zufällig auswählt. Der Begriff erträglich hängt we-

sentlich von der Leistungsfähigkeit der Rechenanlage ab, wird aber später noch auf
andere Weise festgelegt. Es ist dann zu erwarten, dal3 unter den N ausgewählten Rei-
henfolgen auch solche auftreten, die eine in der Nähe des gesuchten Optimums lie-
gende Durchlaufzeit liefern und daher als Näherungslösungen aufzufassen sind. Die
Bestimmung einer Näherungslösung erfolgt dann also einfach durch Auswahl der
Reihenfolge mit der kürzesten Durchlaufzeit aus den N ausgewählten. Es handelt
51
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sich somit um eine typische Monte-Carlo-Simulation; eine gezielte Simulation ist
hier kaum möglich, da eben die Zusammenhänge zwischen den Reihenfolgen und
der Durchlaufzeit sehr kompliziert und schwer zu übersehen sind.

Zwei wesentliche Fragen sind noch offen, nämlich die Frage nach der Wahl von N
und der Güte der erhaltenen Näherungslösung. Beide Probleme hängen natürlich
eng zusammen, da die Güte offensichtlich nicht schlechter werden kann, wenn man

das N erhöht. Wegen der zufälligen Auswahl der N Reihenfolgen kann man außer-
dem nur Wahrscheinlichkeitsaussagen über die Güte der Näherung erhalten. Erfor-
derlich hierzu ist eine Aussage über die Wahrscheinlichkeitsverteilung der Durchlauf-
zeiten bei zufälliger Auswahl der Reihenfolgen. Eine solche kann ebenfalls nur ex-
perimentell ermittelt werden, und es hat sich gezeigt, daß man mit einer Normal-
verteilung arbeiten kann. Daß diese nur näherungsweise zutrefien kann, folgt natür-
lich schon aus der Tatsache, daß die Durchlaufzeiten weder beliebig klein noch be-
liebig groß werden können. Die unbekannten Parameter der Normalverteilung lassen
sich in einem konkreten Fall aus der Stichprobe schätzen, die durch die N zufällig
ausgewählten Reihenfolgen gegeben ist.

Es sei nun Z‚„,„(N) der Minimalwert der Durchlaufzeiten aus der Stichprobe vom

Umfang N. Nach Transformation auf die Standardnormalverteilung gemäß

_ z — E(Z)
_ 0(2)

ergebe sich z‚„,„ als zugehöriger Minimalwert (siehe Bild 2.12). Bezeichnen wir mit

v(x) die Dichte der Standardnormalverteilung, so liefert dann W = f v(x) dx‘) die

Wahrscheinlichkeit dafür, noch günstigere Durchlaufzeiten zu erhalten. Hieraus

WX)

Bild 2.12
I X

ergibt sich aber sofort eine Aussage darüber, wie viele zufällige Reilienfolgen N ’ man

etwa auszuwählen hat, um noch günstigere Durchlaufzeiten zu erhalten. Es gilt, wie
man sich sofort überlegt,

‘) Hier kann man natürlich Tabellen benutzen.
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Ist die Anzahl der noch auszuwählenden Reihenfolgen zu groß, muß man sich mit der
bisherigen Näherungslösung begnügen. Praktisch wird man solche Betrachtungen
jeweils nach einer bestimmten Vergrößerung des Stichprobenumfangs anstellen und
so im Verlaufe der Rechnung über Abbruch oder Weiterführung entscheiden. (Stellen
Sie ein Flußbild auf!)

Kompliziertere Reihenfolgeprobleme können entsprechend behandelt werden, es

ändert sich dabei das mathematische Modell, d.h. die Formel für die Durchlaufzeit,
und man hat gegebenenfalls zu überprüfen, ob als Wahrscheinlichkeitsverteilung wei-
terhin die Normalverteilung zugrunde gelegt werden kann.

2.3.2. Probleme der Ablaufplannng

Im Zusammenhang mit der Ablaufplanung hat sich bekanntlich die Netzplantech-
nik als ein wertvolles Hilfsmittel bei der Zeitplanung erwiesen. Als einfachstes und
verbreitetstes Verfahren ist die Methode des kritischen Weges zu nennen. Diese
liefert die frühest— und spätestmöglichen Ereigniszeiten und damit die Schlupfzeiten
für die Vorgänge. Vorgänge mit der Schlupfzeit Null heißen bekanntlich kritische
Vorgänge, und nur diese bringen bei einer Zeiteinsparung eine Verkürzung des Ge-
samtprojekts.

Da jedoch die Methode des kritischen Weges und auch gewisse ihrer Erweiterungen
Kapazitätsschranken für Arbeitskräfte und Hilfsmittel nicht berücksichtigen, in vielen
Fällen ein wirkungsvoller Einsatz solcher Methoden aber erst möglich wird, wenn
gleichzeitig eine Planung der Arbeitskräfte erfolgt, ist eine entsprechende Erweiterung
und Vervollständigung erforderlich. In den letzten Jahren sind verschiedene Verfahren
entwickelt worden, die eine Planung bzw. Verteilung von Arbeitskräften und Hilfs-
mitteln ermöglichen. Ohne auf alle diese Verfahren im einzelnen einzugehen, sei
lediglich vermerkt, daß sie alle eine Zeitplanung nach der Methode des kritischen
Weges voraussetzen und danach mit im allgemeinen verhältnismäßig hohem Aufwand
mehr oder weniger gute Näherungslösungen für den günstigsten Einsatz von A1‘-
beitskräften liefern. Im wesentlichen kann man diese Methoden in zwei Gruppen ein-
teilen: Die erste Gruppe versucht, ungleichmäßigen Arbeitskräfte- oder Hilfsmittel-
bedarf auszugleichen, indem gewisse Vorgänge innerhalb ihrer Schlupfzeiten ver-
schoben oder ausgedehnt werden; gegebenenfalls ist das auch bei kritischen Aktivi-
täten oder über die Schlupfzeiten hinaus durchzuführen, so daß sich die Gesamt-
projektdauer verändert. Die zweite Gruppe geht von der Anzahl der zur Verfügung
stehenden Arbeitskräfte und Hilfsmittel zu jeder Zeiteinheit aus, und die Vorgänge
werden gemäß der durch den Netzplan festgelegten zeitlichen Reihenfolge so ein-
geordnet, daß die gegebenenWerte von vornherein gar nicht erst überschritten werden.

Wir wollen eine Möglichkeit für eine Monte-Carlo-Simulation beschreiben, die zu

der ersten Gruppe der Verfahren zu rechnen wäre. Die Nützlichkeit eines solchen
Simulationsverfahrens ergibt sich daraus, daß es kaum Kriterien dafür gibt, welche
Vorgänge man wie weit verschieben bzw. ausdehnen muß, um die Arbeitskräfte oder
Hilfsmittel möglichst gut auszugleichen. Bei der Verschiebung eines Vorganges, die
zunächst einen sehr starken Abbau gewisser Arbeitskräftespitzen ermöglicht, kann
man sich unter Umständen gewisse weitere Möglichkeiten verbauen, die dann später
zu einem noch besseren Ausgleich führen könnten. Deshalb kann man auch gleich
von Anfang an die zu verschiebenden Vorgänge und die Größe der Verschiebung
bzw. Ausdehnung zufällig bestimmen und eine größere Anzahl von Durchlaufen
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ausführen, um die Variante mit dem besten Ausgleich auszuwählen. Die Idee des
Simulationsverfahrens ist damit gegeben.

Das nun näher zu beschreibende Verfahren [5] war in erster Linie für einen Aus-
gleich des Arbeitskräftebedarfs in Schiffswerften geschaffen worden, ist jedoch so
allgemein angelegt, daß es auch in anderen Industriezweigen angewendet werden
kann. Es wird angenommen, daß für das zu betrachtende Projekt ein Netzwerk vor-
liegt und zur Realisierung Arbeitskräfte verschiedener Berufsgruppen benötigt wer-
den. Jedoch soll für jeden Vorgang nur eine Berufsgruppe erforderlich sein.

Das Verfahren beginnt mit der Berechnung der Zeitpunkte des frühestmöglichen
Beginns und der Pufferzeiten für jeden Vorgang nach der Methode des kritischen
Weges. Die Vorgänge werden dann entsprechend ihrer frühesten Startmöglichkeit
angeordnet und der Arbeitskräftebedarf pro Beruf und Zeiteinheit berechnet, Man
erhält so für jeden Beruf eine Auslastungskurve gemäß Bild 2.13, Das Ziel ist, das
Bedarfsmaximum abzubauen. Dazu werden nacheinander für jede Auslastungskurve
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solche Vorgänge verschoben, die erstens zu dem Bedarfsmaximum einen Beitrag
leisten und zweitens über genügend Pufferzeit verfügen, so daß sie auch nach der
Verschiebung erst nach dem Maximum beginnen. Da es im allgemeinen für jede Be-
rufsgruppe mehrere Vorgänge gibt, die diesen Bedingungen genügen, benutzt man
zur Auswahl Zufallszahlen. Die Zahl der Zeiteinheiten, um die verschoben wird, kann
gleichfalls über Zufallszahlen ermittelt werden. Das genaue Vorgehen bei der Be-
nutzung von Zufallszahlen entspricht demjenigen aus 1.2.3. bei der Ermittlung der
ersten Zahl einer Reihenfolge. .

Das Verfahren wird so lange fortgesetzt, bis es keine Möglichkeiten mehr für die
Verschiebung gibt. Man muß natürlich auch darauf achten, daß durch die Verschie-
bung nicht neue Bedarfsspitzen aufgebaut werden. Im übrigen wäre neben Verschie-
bungen auch entsprechend eine Verlängerung der Vorgangszeiten einzubauen, wo-
durch die Arbeitskräftezahl pro Zeiteinheit gleichfalls abgebaut werden könnte.

Als „ideale“ Lösung für jede Auslastungskurve würde man ein Rechteck haben,
d.h. gleichbleibender Bedarf für den Gesamtzeitraum. Das ist natürlich kaum zu

erreichen.
Das Verfahren ist zunächst so oft zu wiederholen, bis die Bedarfsmaxima nicht

mehr über dem erlaubten Höchstbedarf liegen. Außerdem ist aber die gesamte Rech-
nung mehrfach durchzuführen, denn wegen der Verwendung von Zufallszahlen
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werden die jeweiligen Lösungen differieren, und man kann sich die günstigste aus-
suchen.

Wenn man nicht alle Entscheidungen durch Zufallszahlen trifft, kann man natür-
lich den Rechenaufwand wesentlich einschränkemhier hätten wir dann eine teilweise
gezielte Simulation.

2.3.3. Bedienungsmodelle

Wir wollen nun zeigen, wie man Bedienungsprobleme (vgl. Bd. 19/1) mit Simula-
tionsverfahren behandeln kann, wobei wir wieder einen sehr einfachen Fall be-
trachten. Wir legen ein Wartesystem zugrunde und wollen bei gegebenem Forde-
rungenstrom und gegebener Verteilung der Bedienungszeiten die optimale Anzahl
von Bedienungseinheiten bestimmen. Will man explizite Methoden anwenden, so
muß man sowohl für den Forderungenstrom als auch für die Bedienungszeiten ge-
wisse Annahmen treffen, z.B. daß der Forderungenstrom poissonverteilt und die
Bedienungszeiten exponentiell verteilt sind. Bei der Simulation ist das nicht not-
wendig, und das erweist sich als großer Vorteil, weil diese Verteilungen oft nicht zu-
treffen. Mit welchen Verteilungen man arbeiten muß, ergibt sich durch ein Studium
des Bedienungssystems und der Aufstellung entsprechender empirischer Verteilungen.

Wir charakterisieren den Forderungenstrcm durch eine Zufallsgröße X1, die als
Zeitintervall zwischen zwei aufeinanderfolgenden Forderungen definiert ist und die
Verteilungsfunktion <I>,(x) besitze. Die Zufallsgröße X2 mit der Verteilungsfunktion
(D,(x) möge die Bedienungszeit charakterisieren. Gemäß Abschnitt 1.2. erzeugen wir
Zufallszahlen mit diesen Verteilungsfunktionen, Jeder eintreffenden Forderung ord-
nen wir eine der erzeugten Bedienungszeiten zu und können unter weiterer Benutzung
der erzeugten Zeitintervalle zwischen zwei Forderungen für jede Zeiteinheit bei ge-
gebener Anzahl von Bedienungseinheiten die Anzahl der im System befindlichen For-
derungen bestimmen. Sobald eine Bedienungseinheit frei ist, kommt die erste der
„anstehenden“ Forderungen auf diese Einheit, falls eine Forderung da ist. Jede an-

kommende Forderung wird entweder sofort bedient, falls eine Einheit frei ist oder
reiht sich an die Warteschlange an. In jeder Zeiteinheit summieren wir die Anzahl der
wartenden Forderungen bzw. die Zahl nicht genutzter Bedienungseinheiten. Über die
ökonomischen Verluste, die den wartenden Forderungen bzw. nicht genutzten
Bedienungseinheiten entsprechen, kommt man zu einer Bewertung des Bedienungs-
systems und kann durch Variation der Anzahl der Bedienungseinheiten das optimale
System aussuchen.

Bei Verlustsystemen wäre ein analoges Vorgehen möglich, wobei lediglich statt der
Warteschlangenlänge als Kennziffer und Bewertungsgrundlage die Anzahl der pro
Zeiteinheit abgelehnten Forderungen zu dienen hätte.

2.3.4. Lagerhaltungsprobleme

Im Zusammenhang mit der Lagerhaltung (vgl. Bd. 19/l) spielt die Simulation
gleichfalls eine wesentliche Rolle, weil die expliziten Modelle vielfach sehr kompli-
ziert sind. Aus der großen Reihe unterschiedlicher Problemstellungen wollen wir zwei
einfache Fälle herausgreifen, nämlich die Bestimmung der

(l) optimalen Lagerpolitik für Ersatzteillager,
(2) optimalen Lagerpolitik für Lager für Rohstoffe, Zwischenprodukte oder Fertig-

produkte.
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Betrachten wir zunächst den ersten Fall. Es handelt sich um Ersatzteile für Repara-
turen, und die Aufgabe besteht in der Ermittlung einer optimalen Bestellpolitik‚ so
daß die Summe aus Lager-, Mangel— und evtl. Beschaffungskosten im Mittel mini-
mal ausfällt.

Die drei genannten Kostenarten sind übrigens typisch für Lagerhaltungssysteme.
Man kann aber mitunter auch andere Aufgabenstellungen, die mit Lagerhaltung über-
haupt nichts zu tun haben, als Lagerhaltungsmodelle auffassen, sofern nur Kosten-
arten auftreten, die als Lager—‚ Mangel— und Besehafiungskosten gedeutet werden
könnten.

Die Notwendigkeit zum Simulieren ergibt sich, wenn für den Bedarf keine theo-
retische Verteilung bekannt ist oder auch andere Komplikationen eintreten, die ein
explizites Verfahren verhindern oder sehr aufwendig gestalten würden. Bei der Durch-
führung der Simulation kann im wesentlichen dasselbe Konzept wie im vorigen Bei-
spiel benutzt werden. Man bestimmt empirisch eine Verteilung für den Bedarf und
variiert die Bestellung und evtl. den Bestellzyklus, der sich auf die Beschalfungs-
kosten auswirken kann. Aus diesen Varianten, die sich durch Simulation über einen
längeren Zeitraum ergeben, kann man diejenige mit den geringsten Kosten auswählen.

In diesem Zusammenhang sei erwähnt, daß es unter Umständen notwendig und
sinnvoll sein kann, ein solches Lagerhaltungsmodell mit einem Reparaturmodell zu
koppeln. Ein Reparaturmodell wird im allgemeinen zu dem Zweck aufgestellt, die
günstigsten Zeitpunkte für planmäßig vorbeugende Instandhaltungsmaßnahmen aus-
zurechnen. Da aber der überwiegende Teil der Reparaturmaßnahmen planmäßig
durchgeführt wird, wäre es nicht richtig, den Bedarf rein stochastisch zu betrachten,
sondern man kann den Bedarf für die planmäßigen Reparaturen aus dem Reparatur-
modell ableiten. Über solche und andere Modellkopplungen wird aber im nächsten
Abschnitt noch ausführlicher zu sprechen sein.

Im zweiten Fall der Lagerhaltungsprobleme geht es in erster Linie um die Be-
stimmung optimaler Lagerkapazitäten, Bei zu kleiner Auslegung solcher Lager müssen
in Havariefällen oder auch bereits bei planmäßigen Reparaturen, bei Störungen Ln der
Rohstoffzufuhr oder dem Abtransport der Fertigprodukte ganze Produktionsstränge
stillgelegt werden. Bei zu großer Auslegung sind unnötig viel Investitions- und Unter-
haltungskosten aufzuwenden.

Zur Simulation werden in solchen Fällen Verteilungen über die Häufigkeit von
Havariefallen und die Zeitdauer für deren Beseitigung benötigt; es liegt also hier ein
Sachverhalt wie bei einem Bedienungsmodell, allerdings mit etwas anderer Ziel-
stellung, vor. Es ist außerdem erforderlich, die Zyklen der planmäßigen Instandhal-
tung zu berücksichtigen, so daß eine Kopplung mit einem Reparaturmodell hier
ebenfalls sinnvoll erscheint.

2.3.5. Durchführung von Modellkopplungen

Die Kopplungsbeziehungen zwischen den Modellen eines Modellsystems lassen
sich durch einen gerichteten Graphen darstellen, wobei die Knoten den Modellen
und die Bögen den Informationsflüssen entsprechen. Unter einem Weg in einem
gerichteten Graphen versteht man eine Folge von Bögen, wo der Endknoten eines
Bogens mit dem Anfangsknoten des nächsten Bogens übereinstimmt‚ falls noch ein
nächster Bogen in der Folge existiert. Fallen bei einem Weg Anfangs- und Endknoten
zusammen, so spricht man von einem Kreis.
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Die Berechnung eines Modellsystems wird nun gerade dann problematisch, wenn
der zugeordnete Graph Kreise enthält. In einem solchen Fall kann man kein Modell
des Kreises berechnen, weil Informationen aus dem vorangegangenen Modell erfor-
derlich sind. Im übrigen treten solche Situationen auch oft bei der Berechnung che-
mischer Anlagen auf, weil durch Produktrückläufe ebenfalls Kreise entstehen.

Ein einfacher Fall eines solchen Kreises ist in Bild 2.14 dargestellt. Der Beginn der
Berechnung ist olTensichtlich nur dann möglich, wenn die Informationen, die über
einen Bogen laufen, geschätzt werden. Man spricht dann vom „Aufschneiden“ des

Bild 2. l4

entsprechenden Bogens. Hat man dann die Berechnung aller Modelle des Kreises
durchgeführt, so ergeben sich auch Werte für die geschätzten Informationen, und der
Vergleich zeigt, ob die Schätzung gut war. Stimmen nämlich geschätzte und errech-
nete Werte überein, so ist der Kreis wieder „geschlossen“, und die Berechnung ist
beendet. Anderenfalls ist die Berechnung mit neuen Schätzwerten zu wiederholen, und
in vielen Fällen wird ein solches Iterationsverfahren auch konvergieren.

Ein Ansatzpunkt für die Simulation ergibt sich aus der Frage, welchen Bogen eines
Kreises man aufschneiden soll. Wegen des damit verbundenen hohen Rechenaufwan-
des ist es sicher wenig sinnvoll, alle Möglichkeiten durchzuprobieren. Vielmehr muß
man versuchen, das Aufschneiden gemäß bestimmter Kriterien vorzunehmen. Zu
diesem Zweck bewertet man die Bögen nach solchen Kriterien und schneidet (da in
einem Graphen auch mehrere Kreise auftreten können) solche Bögen auf, daß damit
alle Kreise beseitigt sind und die Bewertungssumme der aufgeschnittenen Bögen
minimal wird. Zur Bestimmung der Bewertungen können verschiedene Gesichts-
punkte herangezogen werden, von denen wir zwei nennen wollen:

(1) Man wählt als Bewertung die Anzahl der Daten, die über einen Bogen ver-
mittelt werden. Dann sind ofiensichtlich beim Aufschneiden eines Bogens mit kleiner
Bewertung nur wenige Größen zu schätzen. Diese Möglichkeit wird bei der Berech-
nung untereinander gekoppelter chemischer Anlagen benutzt.

(2) Als Bewertung wird ein Maß der Sensitivität des die Daten empfangenden
Modells bezüglich dieser Daten gewählt. Bei geringer Sensitivität (also kleiner Be-
Wertung) hat eine fehlerhafte oder ungenaue Schätzung wenig Einfluß auf die weitere
Berechnung.

Ohne näher auf Möglichkeiten zur Definition eines solchen Sensitivitätsmaßes ein-
zugehen, sei nur soviel bemerkt, daß hier mit Erfolg simuliert werden kann, indem
für ein Modell die Auswirkung von Anderungen der Eingangsdaten auf die Aus-
gangsdaten untersucht wird. Die Änderungen der Eingangsdaten können entweder
zufällig oder geplant durchgeführt werden. Direkte Methoden zur Bestimmung der
Sensitivität dürften nur bei sehr einfachen Modellen anwendbar sein.

Die Lösung des Schnittproblems kann über Methoden der ganzzahligen Optimie-
rung erfolgen [6], so daß wir darauf an dieser Stelle nicht näher eingehen wollen.
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2.4. Simulation durch Spiele

Wir betrachten den einfachsten spieltheoretischen Fall, nämlich den des endlichen
2-Personen—Nullsummenspiels (vgl. Bd.21). Spieler I habe die Spielmöglichkeiten
1, ..., m, Spieler II die Möglichkeiten 1, ..., n. Die Auszahlungsmatrix sei A = (a„-).
Gesucht sind gemischte Strategien x* = (xf, ..., x;“„) und y* = (yf, ...,y,",‘), so daß

der Erwartungswert für den Gewinn des SpielersI E(x*, y*) = 2 Eaux;-“y]* der
Beziehung “"=1

max min E(x, y) = min max E(x, y) = E(x*, y*)
x y y x

genügt. Die Existenz solcher optimaler Strategien x*, y* ist nach dem Hauptsatz der
Spieltheorie gesichert. Die Bestimmung von x* kann durch Lösung eines linearen
Optimalproblems erfolgen; y‘ ergibt sich als Optimallösung des zugehörigen Dual-
problems, wobei die Koeffizientenschemata dieser beiden Probleme durch A bzw.
AT gegeben sind.

Man kann aber ein solches Spiel auch dadurch lösen, daß man es nach einer
bestimmten Vorschrift durch einen Rechenautomaten spielen läßt. Der Ablauf
einer solchen Simulation besteht darin, daß zunächst I willkürlich eine seiner
Möglichkeiten 1, ..., m wählt, etwa i, Diese Auswahl ist im übrigen das einzige
zufällige Element der Simulation, denn alles andere folgt — wie wir sehen werden —

zwangsläufig. Die genannte Wahl von i, fassen wir als gemischte Strategie
x, z (0, ‚.., 0, 1, 0 0) auf, wobei die 1 an der Stelle i, steht. Spieler II wählt dann
unter der Annahme, daß I auch in Zukunft x, spielt, eine solche Spielmöglichkeit j, ,

so daß er möglichst wenig Verliert. Diese Wahl fassen wir als entsprechende gemischte
Strategie y, auf. Nun spielt I unter der Annahme, daß II auch weiter y, spielt, so daß
er möglichst viel gewinnt. Ergibt sich wiederum i, als Spielmöglichkeit, so ist x; = x1;
ergibt sich dagegen i, = £1, so ist x2 = (0, ..., O, -1», 0, ..., 0, L 0, ..., 0), wobei die
Größen l an den Stellen i, und i2 stehen. Dann ist wieder II an der Reihe; er wählt
seine Spielmöglichkeit unter der Annahme, daß I in Zukunft x2 spielt usw. Das Ver-
fahren konvergiert, wenn auch langsam‚ gegen optimale Strategien x* bzw. y*.

Wir hatten erwähnt, daß man ein Spiel durch Zurückführung auf zueinander duale
lineare Optimalprobleme lösen kann. Die Umkehrung gilt aber auch: Ein lineares
Optimalproblem läßt sich auf ein Spiel zurückführen, wenn auch mit etwas höherem
Aufwand [I]. Damit wird es möglich, auch lineare Optimalprobleme durch Simulation
zu lösen, indem man das beschriebene Verfahren auf das zugehörige Spiel anwendet.
Die erwähnte langsame Konvergenz wird durch die Einfachheit des Verfahrens teil-
weise kompensiert.

Selbstverständlich ist aber — wie bei allen Simulationsverfahren — bei kleineren Auf-
gaben wieder ein explizites Verfahren, also etwa die Simplexmethode, vorzuziehen.

2.5. Simulation ganzzahliger Optimierungsprobleme durch Irrfahrten

Wie wir bereits im Abschnitt 2.1.5. sahen, spielen Irrfahrten bei Simulationen eine
wichtige Rolle, und wir wollen im folgenden zeigen, daß auch bei Operationsfor-
schungsproblemen derartige Betrachtungsweisen nützlich sein können. Wir betrachten
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ein rein-ganzzahliges lineares Optimalproblem der Gestalt

z = cTx = max!

Ax = b

X g 0 und ganz

mit ganzzahligen c, A und b und lösen dieses Problem zunächst ohne die Forderung x
ganz. Auflösung nach den Basisvariablen‚ die wir ohne Beschränkung der Allgemein-
heit mit x, ‚ ...‚ x„‚ bezeichnen wollen, ergebe

xi = 0‘: ‘l’ 0‘1,m+1("xm+x) ‘l’ ‘l’ 9‘In(‘xn)s i: 1: ---s m- (2-60)

Aus der Theorie der linearen Optimierung ist bekannt, daß die Koeffizienten cc, und
o¢,-,- als rationale Brüche mit dem Nenner d darstellbar sind, wobei d der Absolut-
betrag der Basisdeterminante ist. i

Einsetzen der Ausdrücke für die Basisvariablen in die Zielfunktion liefert

Z = y + 7m+1("Xm+1)+ i‘ J’n(‘xn)-

Auf Grund des Simplexkriteriums gilt y, g 0 fürj = m + l, ...‚ n, und y und diese
y, sind ebenfalls als rationale Brüche mit dem Nenner d darstellbar. Vor Beginn der
Simulation ersetzen wir y durch eine Größe yo, die zunächst als sehr große Zahl
definiert ist. Dadurch soll erreicht werden, daß z für keinen zulässigen Gitterpunkt
negativ ausfällt. Das Prinzip der Simulation ist nun folgendes:

l. Es wird ein Irrfahrtproblem konstruiert, indem man die Variablen x„‚+„ ...‚ x„
zufälligen Änderungen um +l oder —l unterwirft.

2. Sobald ein x, (j= m + l, ...‚n) oder ein gemäß (2,60) auszurechnendes x,
(i = l, ...‚ m) negativ wird, kehrt man um, d.h.‚ man macht den letzten Schritt
rückgängig und wählt eine andere zufällige Änderung.

. Sind alle Variablen nicht negativ und ganz, so hat man einen zulässigen Gitter-
punkt erhalten. Gilt. für diesen yo > y,,,+,x,,,+, + + y,,x,,, so ersetzt man 72.,

durch y,,,+1x,,,+1 + + y„x„ — 1; dadurch wird der zulässige Bereich verkleinert.
Enthält der so verkleinerte zulässige Bereich keinen Gitterpunkt mehr, so ist der
zuletzt gefundene Gitterpunkt optimal.

4. Nach bekannten Sätzen über Markowsche Ketten (vgl. Bd. 19/1) wird bei be-
schränktem zulässigem Bereich jeder zulässige Gitterpunkt mit der Wahrschein-
lichkeit 1 erreicht. Somit konvergiert das Verfahren in dem Sinn, daß ein optimaler
Gitterpunkt mit der Wahrscheinlichkeit l erreicht wird. Da keine Divisionen auf-
treten, entfallen Schwierigkeiten durch Rundungsfehler.

Dieses Prinzip erscheint verhältnismäßig einfach, jedoch ergaben sich bei der prak-
tischen Erprobung zwei Schwierigkeiten:

Erstens kann man zwar alle Koeffizienten als rational annehmen und die Forde-
rung auf Ganzzahligkeit von c, A und b durch Multiplikation mit dem Hauptnenner
erreichen, doch weisen dann die ganzzahligen Koeffizienten bedeutende Unterschiede
in der Größenordnung auf. Solche Eigenschaften wirken sich auf numerische Ver-
fahren meist ungünstig aus, und das ist auch bei dem Suchprozeß der Fall. Es habe
z.B. eine der Nebenbedingungen des Problems die Form aw-oxjo + xj, = Inn mit

1 §jo,j1 g n; jo =i=j,, wobei zum, eine sehr große Zahl ist und bio z ugh’ gilt;

L
»
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wenn dann x10 Basisvariable in der stetigen Optimallösung ist und x], Niehtbasis-
variable, so hat eine Änderung von x], um 1 nur einen sehr geringen Einfluß auf die
Veränderung von x‚-„‚ und es werden sehr viele Suchschritte notwendig, um ganz-
zahlige Werte für x10 zu erhalten.

In solchen Fällen ist es günstig, eine Näherungslösung für einen optimalen Gitter-
punkt zu haben, bei der der Suchprozeß begonnen werden kann.

Zweitens kann man leicht Beispiele angeben, für die es nicht möglich ist, eine Irr-
fahrtroute zu einem beliebig vorgegebenen Gitterpunkt so anzugeben, daß alle
Zwischenlösungen im zulässigen Bereich liegen. Es ist daher nicht eine sofortige Um-
kehr zu empfehlen, wenn der zulässige Bereich bei der Irrfahrt verlassen wird.

Daher wurde das geschilderte Verfahren folgendermaßen ergänzt bzw. abgeändert:

— Zur Realisierung der Irrfahrt werden die Übergangswahrscheinlichkeiten für die
Nichtbasisvariablenümgekehrt proportional zu den reduzierten Kosten y, gewählt.
Dann erfolgt eine Anderung von Variablen mit kleinen reduzierten Kosten mit
größerer Wahrscheinlichkeit.

- Es werden auch Irrfahrten außerhalb des zulässigen Bereiches gestattet. Wird
innerhalb einer vorgegebenen Anzahl k von Suchschritten nach dem Verlassen
des zulässigen Bereiches keine zulässige Zwischenlösung angetroffen, so erfolgt eine
„erzwungene Rückkehr“, d.h.‚ die Irrfahrt wird abgebrochen und mit der zuletzt
angetroffenen zulässigen Zwischenlösung fortgesetzt.

— Das Verfahren bricht ab, sobald eine vorgegebene Anzahl von Suchschritten im
' zulässigen Bereich ausgeführt wurde, ohne einen weiteren Gitterpunkt zu finden.

— Damit nicht jede Rechnung mit der gleichen Folge von Zufallszahlen durchgeführt
wird, ist ein ganzzahliger Parameter l > 0 anzugeben, der dafür sorgt, daß die
Simulation mit der I-ten Zufallszahl beginnt.

Weitere Möglichkeiten zur Verbesserung und Beschleunigung des Verfahrens sollen
hier nicht betrachtet werden, da es uns nur auf das prinzipielle Vorgehen bei solchen
Methoden ankommt.

Es zeigt sich nun in der Praxis, daß dasVerfahren beimanchen Aufgaben sehr schnell
zum Ziele führte. Darunter waren solche, die mit expliziten Lösungsmethoden nur

sehr schwer oder überhaupt nicht lösbar waren, und das sind auch gerade die Fälle,
bei welchen der Einsatz von Simulationsverfahren vorteilhaft ist. Es gab natürlich
auch Probleme, die mit dem Simulationsverfahren nicht in erträglicher Zeit lösbar
waren.
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