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Vorwort zur 1. Auflage

Viele mathematische Theorien wurden mit dem Ziele entwickelt, optimale Lsun-
gen von praktischen Problemen zu bestimmen. Auch bei der Spieltheorie handelt es
sich um ein solches Teilgebiet der Mathematik. In diesem Falle geht es um das Auf-
finden optimaler Entscheidungen unter den Bedingungen des Konfliktes oder der Un-
gewiBheit.

Vor fast 50 Jahren, im Jahre 1928, erschien die fiir die Spieltheorie grundlegende
Arbeit von J. v. Neumann [8]. Nach 16 Jahren, 1944, wurde das Buch ,,Spieltheorie
und wirtschaftliches Verhalten® von J. v. Neumann und O. Morgenstern publiziert,
das mehrfach aufgelegt und ins Deutsche und Russische tibersetzt wurde [9]. Schon
im Titel wird ausgedriickt, dal3 der Anwendung der entwickelten Methoden in der
Okonomie besondere Beachtung geschenkt wird. Seit dieser Zeit ist iiberhaupt das
Bemiihen spiirbar, spieltheoretische Methoden u, a. in Okonomie und Technik an-
zuwenden. Da diese Anwendungen nicht nur der Unterstiitzung, sondern der Mit-
arbeit besonders der Okonomen und Ingenieure bediirfen, und die Spieltheorie z. T.
bereits Bestandteil der mathematischen Ausbildung verschiedener Fachrichtungen
ist, wurde eine Einfithrung in die Spieltheorie in der Reihe ,,Mathematik fir In-
genieure, Naturwissenschaftler, Okonomen und Landwirte** aufgenommen.

Fiir Hinweise und Bemerkungen zum Manuskript méchten wir unseren Kolle-
ginnen und Kollegen Doz. Dr. M. Bliefernich, Berlin, Prof. Dr. H. Erfurth, Merse-
burg, Prof. Dr. H. Fischer, Berlin, und Dr. H. Jiittler, Dresden, vielmals danken.

Magdeburg, im Frithjahr 1976 Die Verfasser

Vorwort zur 2. Auflage

Gegeniiber der 1. Auflage ist der Beweis des Hauptsatzes iiber Matrixspiele (Ab-
schnitt 2.3., Satz 2.2) ohne Anwendung von Satzen der Funktionalanalysis, sondern
mit Hilfe der Dualitatstheorie der linearen Optimierung gefiihrt worden; auch der
Abschnitt 2.4. hat eine Umarbeitung erfahren.

Ferner wurden verschiedene Hinweise beriicksichtigt, fiir die wir den Kollegen
Prof. Dr. H. Erfurth, Merseburg, und J. Portner, Pritzwalk, danken.

Magdeburg, im Herbst 1978
Die Verfasser
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1. Spiele in Normalform

1.1.  Einfiihrende Bemerkungen, Definitionen

In den mannigfaltigsten praktischen Problemen treten Erscheinungen auf, die da-
durch gekennzeichnet sind, daB die an der Losung dieser Probleme beteiligten Seiten
die unterschiedlichsten Ziele verfolgen. Auf natiirliche Weise wird jede Seite bestrebt
sein, ihre Handlungsweise so auszuwihlen, daB die Losung des Problems in ihrem
Sinne positiv wird.

Eine solche Erscheinung wollen wir als Konflikt bezeichnen. Ein Konflikt wird nicht
wie in der Umgangssprache nur durch eine Konfrontation, durch die Losung eines
antagonistischen Widerspruchs charakterisiert, sondern die Grundlinien eines Kon-
fliktes bestehen in den iiberaus mannigfaltigen Wechselbeziehungen der beteiligten
Seiten, in verniinftigen Aussagen iiber seine Teilnehmer, iiber seine Ausginge, die
von Teilnehmerzahl und Handlungsweisen der Teilnehmer abhingen, iiber die Seiten,
die am Ausgang des Konfliktes interessiert sind und iiber die Form der Offenbarung
dieser Interessen.

Die Notwendigkeit, derartige Konfliktsituationen zu analysieren, fiihrte zur Ent-
wicklung einer speziellen mathematischen Disziplin, der Spieltheorie. Die Theorie
der Spiele ist dem Wesen nach eine mathematische Modellierung von Konfliktsitua-
tionen. Die Spieltheorie ist demnach eine Theorie von Modellen, insbesondere mathe-
matischer Modelle, mit dem Ziel, Normen zu schaffen, wie sich die am Konflikt Be-
teiligten zu verhalten haben, welcher Ausgang des Konfliktes erreicht werden kann,
wie verniinftig, giinstig und gerecht die Ausgéinge sind.

Grundziel einer jeden Analyse des Konfliktes besteht in der Aufdeckung des opti-
malen (verniinftigen, gerechten) Ausganges, und alle anderen Aspekte, die einen Kon-
flikt charakterisieren, haben sich diesem Ziele unterzuordnen. Deshalb kann man die
Spieltheorie als Theorie der mathematischen Modelle mit optimaler Entscheidungs-
findung unter den Bedingungen von Konfliktsituationen beschreiben.

In ihren Anfingen benutzte man die Spieltheorie zur Beschreibung 6konomischer
Erscheinungen, und zwar unter den Bedingungen der Konkurrenzwirtschaft. Solche
Probleme werden in den sog. Anbotsmodellen (mehrere in Konkurrenz stehende
Personen kidmpfen um den Auftrag oder um den Erwerb eines Gegenstandes) be-
handelt. Im Zuge ihrer Weiterentwicklung ist die Spieltheorie allerdings iiber diesen
Rahmen hinausgewachsen und findet ihre Anwendung z. B. in den verschiedenen
Zweigen der Okonomie und Technik, der Militirwissenschaft und der Versuchs-
planung. Betrachten wir hierzu einige Grundmodelle:

1. Spieltheorie und Statistische Qualititskontrolle (SQK)
In der SQK spielen einmal die Kontrollkarten und zum anderen die Stichprobenpline eine groBe
Rolle. Die Aufstellung solcher Stichprobenplane kann man mit Hilfe der Spieltheorie durchfiihren.
Wir betrachten folgende Situation: Es soll entschieden werden, ob ein Los von N gleichartigen
Erzeugnissen angenommen bzw. abgelehnt wird, wobei derjenige, der die Entscheidung zu treffen
hat, anhand einer Stichprobe vom Umfang » eine gewisse Information iiber die Giite des Loses
bekommt. Wir wollen einen solchen Plan konstruieren, mit dessen Hilfe man aus der Information
durch die Stichprobe fiir jedes beliebige Los eine entsprechende Entscheidung treffen kann. Als
mathematisches Modell hat man ein sogenanntes Spiel gegen die Natur (statistisches Spiel, s. Ab-
schnitt 3.), wobei fiir den 1. Spieler, die ,,Nuatr*, die Strategie in der Wahl des AusschuBanteiles
p (0 < p = 1) liegt, und der 2. Spieler als Strategie die Moglichkeit des Ablehnens x4 bzw. An-
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nehmens xp hat. Bezeichnet man mit L = L(p, d) die Verlustfunktion

xp fur mgk)

(d=d(m)= xy fir m>k

so kann man fiir diskrete p-Werte die Spielmatrix aufstellen und somit das Problem 16sen.

. Spieltheorie in der Technik

Wir betrachten folgendes statische Problem: Ein Balken mit geniigender Festigkeit ruhe auf zwei
Stiitzen, die jedoch einen beschrinkten Querschnitt haben: Fy + F, = 1. Es wirke jetzt eine nor-
mierte Kraft vom Betrage 1 in einem unbekannten Abstand x von der rechten Stiitze auf den Bal-

ken.
FX ]

5 7

/4 T

Bezeichnen wir mit F; = y und F, = | — y, so betrigt die Spannung in F: % und in F:

1—x

11—y

Balken tragen. Die spieltheoretische Losung erfolgt tiber ein sogenanntes Spicl auf dem Einheits-

quadrat (s. Abschn. 2.5.) mit folgenden Parametern:

1. Spieler: Natur mit der Strategie x € [0, 1],

2. Spieler: Ingenieur mit der Strategie y € [0, 1].

H(x,y) = max‘ i, !
ly 1=

Angriff-Verteidigungs-Spiel

Ein idealisiertes Abbild aus der Militirwissenschaft ist das sogenannte Angriff-Verteidigungs-Spiel:

Von einem Verteidiger ¥ sollen # gleichartige Objekte vor einem Angreifer A4 geschiitzt werden.

Dem Verteidiger V stehen my Einheiten zur Verteidigung zur Verfiigung, der Angreifer 4 besitzt

m, Einheiten. Es wird vorausgesetzt, daB jedes Objekt mit keiner, einer oder zwei Einheiten ver-

teidigt bzw. angegriffen wird und daB der Verteidiger (Angreifer) zu schwach ist, alle Objekte mit

2 Einheiten zu verteidigen (anzugreifen), d. h. 2n > my (2n > my).

Die Strategiemenge des Verteidigers bzw. des Angreifers besteht in simtlichen moglichen Kombi-

nationen, Ziele mit 2, 1 oder 0 Einheiten zu schiitzen bzw. anzugreifen. Setzt man voraus, daB} ein

Angrifl von Erfolg ist, wenn der Angreifer mindestens-eine Einheit mehr als der Verteidiger ein-

setzt, so 1aBt sich die Gewinnfunktion als Erwartungswert darstellen, und somit ist das Modell als

Spiel vollstindig charakterisiert.

Probleme der Versuchsplanung

Die Versuchsplanung ist ein mathematisches Hilfsmittel zur Modellierung technologischer und

physikalisch-chemischer Prozesse. Mit Hilfe einer endlichen Anzahl von Versuchen ist eine Regres-

sionsfunktion so zu bestimmen, daB durch sie ein unbekannter stetiger funktionaler Zusammen-

hang F = F(xy, ..., x,) zwischen einer ZielgroBe F und unabhingigen Variablen xi, ..., x, so

genau wie moglich (optimal nach gewissen Kriterien) angenidhert wird. Wir kénnen diese Proble-

matik spieltheoretisch in 2 verschiedenen Richtungen untersuchen:

a) bis zu einer bestimmten Stufe die Regressionsfunktion so genau wie moglich zu ermitteln,

b) zu entscheiden, ob nach dem k-ten Versuch abgebrochen wird oder nicht.

Das statische Problem liegt darin, die Stirke der Stiitzen zu bestimmen, damit sie den

ist die Gewinnfunktion in diesem Spiel.
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X1 fi(x)
Zua) Esseien x =[ : ]e X, X ist Variablenraum (Faktorraum), f(x) = [ : ] mit fi(x) als Mes-

Xp . C1 Silx)
sung der gesuchten Funktionim Versuchi < k, ¢ = : €@, @ ist Parameterraum, und

K(x, ©) = [fix) — Y ¢;fi(x)] die Gewinnfunktion. Cle-1
j=1
Dann beschreibt das Spiel I" = (¥, €, K (x, ¢)> die unter a) genannte Problematik. Da
die Funktion K(x, ¢) konvex in c ist, besitzt der Spieler 2 eine reine optimale Strategie
(s. Abschn. 2.5.).
Zu b) Angenommen, es wurde der k-te Versuch ordnungsgemiB im Sinne der Versuchsplanung

durchgefiihrt. Danach muB man entscheiden:
entweder a; — Durchfiihrung des nichsten Versuches in bestimmter Richtung,

a, — Konstruktion einer neuen Regressionsfliche,

a3 — Abbrechen des Versuches.
Die Entscheidung hiingt von verschiedenen GroBen ab und ist durch die Entscheidungs-
funktion d € D (Menge der Entscheidungsfunktionen) gegeben. Die Gewinnfunktion ist
eine Risikofunktion o(x, d), und wir haben wiederum ein Spiel gegen die Natur:
I' = (X, D, 0.
Da man auf jeder Stufe eine solche Entscheidung zu treffen hat, spricht man von einem
Sequentialspiel (s. Abschn. 3.4.).

Die hier angefiihrten Beispiele geben selbstverstindlich nur einen kleinen Einblick
in die Vielzahl der spieltheoretischen Modelle und sollen das Interesse des Lesers
auf die vielfiltigen Anwendungsméglichkeiten der Spieltheorie lenken. Die allge-
meinen Perspektiven der Anwendung der Spieltheorie sind sehr umfangreich, jedoch
wegen der Kompliziertheit der Aufgabenstellung nicht in diesem Rahmen zu disku-
tieren.

Kehren wir wieder zum Ausgangspunkt, zur mathematischen Entscheidungsfindung
unter Konfliktsituationen zuriick. Zur mathematischen Modellierung von Konflikt-
situationen miissen folgende Faktoren beriicksichtigt werden:

1. Es miissen unbedingt die am Konflikt beteiligten Seiten fixiert sein. In dieser Rolle
konnen Einzelpersonen, aber auch ganze Kollektive auftreten, wobei es durch Ver-
handlungen zwischen den einzelnen Seiten zur Bildung von Koalitionen, Gegen-
koalitionen und &hnlichem kommen kann. Diese Seiten beeinflussen unmittelbar
durch ihr Handeln den Ausgang des Konfliktes. Es hat sich hierfiir der Begriff der
Handlungskoalition eingebiirgert; die Menge aller Handlungskoalitionen wird mit
Ry bezeichnet.

2. Unmittelbar daran ankniipfend stellt sich die Frage, welcher Ausgang fiir jede
Handlung der Koalitionen erreicht werden kann. Natiirlich ist jede Koalition be-
strebt, im voraus einen Verhaltensplan aufzustellen, der ihr einen in ihrem Sinne
positiven Ausgang des Konfliktes-sichert. Wir sprechen von einer Strategie der
Koalition.

Die Strategie einer jeden Koalition K ist demnach ein vollstindiger Verhaltensplan,
der fiir jede mogliche Lage, in die die Koalition gelangen kann, ihr Verhalten, d. h.
die in dieser Lage zu treffende Entscheidung, festlegt. Die Menge aller Strategien
der Handlungskoalition K wollen wir mit Sk bezeichnen.

Hat jede Koalition ihre Strategie gewahlt, so nennt man das Ergebnis dieser Wahl
eine Situation im Sinne der Spieltheorie. Situationen erhilt man also durch die Aus-
wahl der Strategien aller am Konflikt beteiligten Seiten, d. h., die Situationen werden
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durch die Strategien bestimmt. Das gibt uns die Méglichkeit, die Menge aller Situa-
tionen, die wir mit .S bezeichnen wollen, mathematisch als kartesisches Produkt dar-
zustellen:
Sc [T Sk
Ke@m

(Die Menge S muB deshalb als Teilmenge des kartesischen Mengenproduktes be-
trachtet werden, weil bestimmte Situationen verboten sein kénnen. Existieren keine
verbotenen Situationen, so gilt die Gleichheit.)

. Neben den am Konflikt unmittelbar beteiligten Seiten ist es notwendig, auch jene

Seiten aufzuzeigen, die irgendein Interesse am Ausgang des Konfliktes haben. Man
kann sich leicht vorstellen, daf3 einerseits Teilnehmer am Konflikt, die Einflul auf
seinen Ausgang nehmen, nicht unbedingt ein Interesse an seinem Ausgang haben,
andererseits Interessenten am Ausgang des Konfliktes vorhanden sind, die keine
Handelnden sind.

Als Beispiel sei ein sportlicher Wettkampf angefiihrt. Der Schiedsrichter, der als aktiver Teil-
nehmer durch sein Handeln das Ergebnis des Wettkampfes in bedeutendem MaBe bestimmt, darf
infolge seiner Stellung kein Recht auf irgendwelche Interessen haben, der Zuschauer jedoch, der
den Wettkampf beobachtet, wird am Sieg seiner Lieblingsmannschaft interessiert sein, kann aber
den Verlauf des Wettkampfes nicht beeinflussen.

Dieser Unterschied zwischen handelnden und sich interessierenden Seiten findet
in der modernen Spieltheorie seinen Niederschlag. Da die sich interessierenden
Seiten im allgemeinen Falle kollektiver Art sind, sprechen wir von einer Interessen-
koalition. Die Menge aller Interessenkoalitionen bezeichnen wir mit &,.

. Um die Modellierung von Konfliktsituationen vollenden zu kdénnen, ist es not-

wendig, die Interessen (d. h. die Ziele) der Teilnehmer des Konfliktes zu beschrei-
ben. Dazu wird rein formal eine bindre Vorzugsrelation eingefiihrt, die fiir jede
Interessenkoalition K € &, auf der Menge der Situationen S erklart ist (geschrieben:
>x). Diese Vorzugsrelation besagt nichts weiter, als daB die Interessenkoalition K
auf das Erreichen der fiir ihre Interessen giinstigste Situation s € .S orientiert.

Fiir zwei Situationen s, € S, 5, € S bedeutet s; > s5,,daB die Interessenkoalition K
die Situation s, bevorzugt.

Die eben aufgezeigten Faktoren gestatten uns, die allgemeine Definition eines

Spieles als mathematisches Modell von Konfliktsituationen zu formulieren:

Definition 1.1: Es seien &y, die Menge der Handlungskoalitionen, Sk die Strategiemenge
der Handlungskoalition Ke Ry, S die Menge der Situationen, R, die Menge der Interessen-
koalitionen und >y eine fiir die Interessenkoalition K € &, auf der Menge der Situa-
tionen S erklirte Vorzugsrelation, dann nennt man das System

G= <@H, {Sk}keR‘H’ S, ‘Qu’ {>k}keﬁ‘u>

ein Spiel.

1.2.  Klassifikation der Spiele, Spiele in Normalform

Eine systematische Untersuchung der Spiele kann nur durchgefiihrt werden, wenn

man sich eine sinnvolle Klassifikation der Spiele schafft, die auf der eben angegebenen
allgemeinen Definition eines Spieles basiert. Man sollte hierbei bedenken, daB die
Spieltheorie eine verhiltnismiBig junge mathematische Disziplin ist (die Anfange
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gehen aufeine Arbeit von John von Neumann') ,,Zur Theorie der Gesellschaftsspiele
zuriick, die 1928 veréffentlicht wurde) und eine einheitliche Beschreibung aller Zweige
der Spieltheorie noch nicht méglich ist.

Eine grobe Klassifizierung der Spiele 148t sich aus der Gestalt der Menge der
Interessenkoalitionen &,, aus der Gestalt der Menge der Handlungskoalitionen £
und aus den Bedingungen, die fiir das Wirken der Vorzugsrelationen notwendig sind,
ableiten. Betrachten wir zunichst die Menge der Interessenkoaltionen &,: Ist die
Menge leer, d. h. &, = 0, so hat das Spiel rein deskriptive Aufgaben, d. h., es besteht
nur in der Beschreibung des Konfliktes als solchen, ohne daB irgendwelche Seiten
auftreten, die ein Interesse am Ausgang des Konfliktes bekunden. Anders ausge-
driickt, eine Vorzugsrelation ist in diesem Falle nicht erklart, d. h. {>x}xe®, = 0,
und der optimisierende Charakter des Spiels (im Sinne der Vorzugsrelation) geht ver-
loren. Besteht &, nur aus einer Koalition, mathematisch dargestellt durch den Aus-
druck |®,] = I, so bekommen wir die verschiedenen Klassen der Extremalwertauf-
gaben.

Von Spieltheorie im eigentlichen Sinne des Wortes spricht man erst, wenn die Menge
der Interessenkoalitionen &, aus mindestens zwei Elementen besteht, d. h. |&,] = 2.
Man kann hierfiir bestimmte Grundklassen von Spielen konstruieren, deren Betrach-
tungen im einzelnen nicht durchgefiihrt werden sollen. Eine Grobeinteilung erhélt
man aus der Gestalt der Menge der Handlungskoalitionen &, .

Setzen wir im weiteren immer voraus, dal die Menge der Interessenkoalitionen &,
mindestens zwei Elemente besitzt, so erhalten wir in Abhéngigkeit von der Menge der
Handlungskoalitionen &y folgende Fille:

Ist & = 0, d. h., ist die Menge der Handlungskoalitionen leer, so haben wir ein Spiel,
in dem nichts geschieht, keine Seite durch ihre Strategien den Ausgang des Kon-
fliktes beeinfluBlt. Ein solches Spiel ist vom mathematischen Standpunkt uninteressant.

Fiir den Fall, dal die Menge der Handlungskoalitionen & nur aus einem Element
besteht, |R®y| = 1, spricht man von nichtstrategischen Spielen. Nichtstrategisch des-
halb, weil nur eine Situation existiert, die durch diese Handlungskoalition bestimmt
wird, und die Interessenten immer in dieser Situation verbleiben. In diese Klasse
fallen die (allgemeinen) kooperativen Spiele, die zuerst von John von Neumann be-
trachtet wurden.

Besteht die Menge der Handlungskoalitionen & aus mehr als einem Element,
[f4] = 2, so erhdlt man die groBe Klasse der strategischen Spiele.

Wir wollen uns in den weiteren Ausfithrungen vorwiegend den strategischen Spielen
widmen.

Gegeben sei eine gewisse Menge 7, die sich aus der Vereinigung der Menge der Hand-
lungskoalitionen &5 und der Menge der Interessenkoalitionen &, zusammensetzt,

I=8;U8,.

Die Elemente der Menge 7 heiBen Spieler. Fiihrt man auf der Menge aller Situationen
S fiir jede Interessenkoalition K € &, eine reellwertige Funktion Fx ein, so nennt man
diese Funktion die Gewinnfunktion der Interessenkoalition K. Zwischen der Gewinn-
funktion Fg und der im vorigen Abschnitt eingefiihrten Vorzugsrelation > besteht
ein enger Zusammenhang. Wir wissen, daB jede Interessenkoalition K e &, bestrebt

1) John von Neumann (1903-1957), ungarischer Mathematiker, wirkte in Berlin, Hamburg, Prin-
ceton und Los Alamos.
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ist, die fiir sie giinstigste Situation s € S zu ermitteln. Als giinstigste Situation kénnen
wir diejenige ansehen, fiir die der Wert der Gewinnfunktion Fy fiir die Koalition K
am groften wird. Mit anderen Worten, fiir zwei gegebene Situationen s, € S, s, € S
wird die Koalition K diejenige bevorzugen, fiir die der Wert der Gewinnfunktion
am groBten ist. Das bedeutet mathematisch

sy >k S, fir Ke®,, wenn Fg(s,) > Fk(s,).
Wir betrachten jetzt die Menge der Spieler 7 und wissen, daB fiir 7 gilt:
I=84US&,.

Fallt die Menge der Handlungskoalitionen &, mit der Menge der Interessenkoali-
tionen &, zusammen, also & = &, so gilt fiir die Menge der Spieler /:

I= 8y = 8,.
Werden gleichzeitig verbotene Situationen nicht zugelassen, d.h., die Menge der
Situationen S ist dem kartesischen Mengenprodukt der Strategiemengen gleich,
S = H S,
iel
so sprechen wir von einem nichtkooperativen Spiel. Jedes nichtkooperative Spiel kann
man durch das folgende Tripel darstellen

G=, {Si}iel’ {Fi}isl>,
wobei / die Menge der Spieler, S; die Menge der Strategien des Spielers i und F; die
Gewinnfunktion des Spielers 7 sind.

Ist die Anzahl der Spieler endlich, |I| = n, so sprechen wir von einem n-Personen-
spiel. Die eben beschriebene Form des n-Personenspiels nennt man ‘nach J. v. Neu-
mann ein #-Personenspiel in Normalform.

John von Neumann entwickelte zu dieser Form ein dquivalentes, aber bedeutend komplizierteres,
allgemeines Schema eines n-Personenspiels, das er als extensive Form des Spielers bezeichnete
und das heute in die Klasse der endlichen Positionsspiele eingeordnet wird.

Fiir die weiteren Untersuchungen gebrauchen wir nur die Normalform.

1.3. Optimalitéitsprinzip

Nach der formalen Beschreibung eines Spiels ist es unbedingt notwendig, das Pro-
blem des rationalen oder optimalen Verhaltens des Spielers im Spiel zu analysieren.
Die Interpretation des Wortes ,,optimal‘ ist mehr oder weniger kompliziert, denn im
Grunde genommen kénnte man es mit der trivialen Bemerkung beschreiben, daB jeder
Spieler den maximalen Gewinn anstrebt.

F(s) seidie Gewinnfunktion des Spielers 7 beziiglich der Situation s ; dann wiirde das
eben Gesagte bedeuten, daB fiir jeden Spieler 7 das Maximum der Gewinnfunktion
(sofern es existiert) zu bestimmen wire, d. h. max F(s) fiir alle i € /. Bei diesem Prin-

ses
zip wiirde der Charakter des Spiels als Modell von Konfliktsituationen verlorengehen;
denn der Konflikt wandelt sich zu einem Vergniigen, bei dem jeder Spieler ein Maxi-
mum an Genugtuung erhilt. Aber unabhidngig davon muf3 man das Kriterium ver-
werfen, denn nur in ganz speziellen, seltenen Fillen nehmen alle Gewinnfunktionen
Fi(s) fiir ein und dieselbe Situation s € S ihr Maximum an.
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In den meisten Fillen werden die Spieler an der Schaffung verschiedener Situatio-
nen interessiert sein. Daraus resultiert, daB jeder Spieler nicht nur seine eigenen Hand-
lungsmdoglichkeiten analysieren, sondern auch die Mdglichkeiten seiner Partner im
Konflikt studieren muB. Wahlt z. B. der Spieler i (i € I) die fiir ihn giinstige Strategie
s; aus seiner Strategiemenge S;, so muB er damit rechnen, daB ein Gegner, etwa der
Spieler j (je I), diese Strategie als eine Bedrohung fiir sich erkennt und GegenmaB-
nahmen seinerseits durch die Auswahl einer Antwortstrategie s; € S; einleitet. Mit
anderen Worten wird sich bei einem n-Personenspiel jeder Spieler mit seiner Stra-
tegiemenge und der seiner Mitspieler auseinandersetzen miissen, in deren Ergebnis
eine Situation erarbeitet wird, die jeder Spieler akzeptiert und von der kein Spieler
abweichen will. Ein solches Verhalten der Spieler fithrt uns zum Begriff des Gleich-
gewichtspunktes bzw. der Gleichgewichtssituation.

Wir betrachten eine Situation s € S. Nach Definition erhélt man die Menge der
Situationen S aus dem kartesischen Mengenprodukt der Strategiemengen S; der
Spieler ie I, S = [] S;. Wir kénnen demnach die Situation s € S wie folgt darstellen:

iel B

S = (S1, 82, ce0s Si5 --es Sy), Wobei s; €S fiir i € [ ist.

Andert der Spieler i € I seine Strategie, wechselt er von der Strategie s; € S; zur Stra-
tegie s/ € S;, so wird diese Veranderung folgendermafBien beschrieben:

S ISP = (515825 ces Sim 15 815 Sit1s oo Sn)-
Damit 148t sich der Begriff der Gleichgewichtssituation definieren.

Definition 1.2: In einem n-Personenspiel G = {I,{S:}ier, {Fi}ier) heift eine Situa-
tion s = (sy, ..., 5,) € S Gleichgewichtssituation des Spieles, wenn fiir alle i € I

Fi(s | s3) = Fi(s)

gilt. Die zur Gleichgewichtssituation s gehdrende Strategie s; des Spielers i heifit dann
Gleichgewichtsstrategie des Spielers i (i € I).

Da die Gleichgewichtssituation von einem Strategien-n-Tupel beschrieben wird,
spricht man oft vom Gleichgewichtspunkt. Eine Gleichgewichtssituation ist eine Ver-
haltensvorschrift fiir alle Spieler. Weicht beispielsweise der Spieler i von dieser Ver-
haltensvorschrift ab, die anderen Spieler dagegen beachten sie, so folgt aus der Defi-
nition, daB der Spieler i keinen gréBeren Gewinn zu erwarten hat, meist wird ihm diese
Abweichung Schaden zufiigen. Eine solche Situation wird von den Spielern als opti-
mal anerkannt, und es existieren seitens der Spieler keine Motive, von der so festge-
legten Situation abzuweichen. Somit stellt ein Gleichgewichtspunkt ein stabiles Ver-
halten der Spielergesamtheit dar.

Wir wollen als Ldsung eines n-Personenspiels ein System von Handlungsweisen
der Spieler im Spiel verstehen, das in sich eine Art Gleichgewicht und Stabilitit be-
sitzt. Das entspricht genau der Bestimmung der Gleichgewichtssituationen, und in
eben dieser Bestimmung liegt unser Optimalitdtsprinzip. Wir werden demnach die
Gleichgewichtsstrategien als optimale Strategien bezeichnen.

Eine wichtige Frage besteht in der Existenz solcher Gleichgewichtssituationen.
Wir wollen die Frage nicht im voraus beantworten, sondern die Existenz im Verlaufe
der Betrachtungen der verschiedenen Spiele soweit wie méoglich beschreiben. Zuvor
noch einige einfache Definitionen:
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Definition 1.3: Ein n-Personenspiel in Normalform G = <I,{S}ier, {F:}icry heift
endlich, wenn alle Strategiemengen S, (i € I) endlich sind.

Definition 1.4: Zwei n-Personenspiele Gy = {I, {S;}ic1, {Fi}ier) und G = {I, {Si}ier,
{Fi}iery mit Fi(s) = a;Fi(s) + b; (a; > 0, b, beliebig und reelle Zahlen) heiffen iquivalent
zueinander.

Diese Aquivalenzrelation fiihrt, wie wir spater sehen werden, zu gewissen Vorteilen
bei der Losung von Spielen, denn die Gleichgewichtssituationen in dquivalenten
Spielen sind gleich.

Definition 1.5: Das Spiel G = <1, {S}ier, {Fi}ier) heift Konstantsummenspiel, falls
eine Zahl c existiert mit

n
> Fis) =c, ses.
i=1

Ist ¢ = 0, so spricht man von einem Nullsummenspiel.

Besteht die Spielermenge 7 nur aus zwei Elementen, I = {1, 2}, so sprechen wir
von einem Zweipersonenspiel. Eine interessante Klasse von Zweipersonenspielen sind
die Zweipersonennullsummenspiele, fiir die gilt

2
> F(s) =0 oder F(s) = —F,(s).
i=1
Solche Zweipersonennullsummenspiele bezeichnet man auch als antagonistische

Spiele, denn beziiglich der Interessen der Spieler besteht ein antagonistischer Wider-
spruch.



2. Zweipersonennullsummenspiele

2.1.  Matrixspiele

Nachdem im vorigen Abschnitt ein kurzer Abrif iiber Form und Inhalt des Spieles
und eine grobe Klassifizierung der Spiele gegeben wurde, kommen wir nun zum Haupt-
anliegen der spieltheoretischen Untersuchungen dieses Lehrbuches — der Bestim-
mung der optimalen Losungen fiir bestimmte Klassen von antagonistischen Spielen.
Als Rechtfertigung fiir solches Herangehen sei bemerkt, daB es bisher im wesentlichen
nur fir Zweipersonennullsummenspiele gelungen ist, eine ziemlich vollstindige
Theorie des optimalen Verhaltens der Spieler im Spiel zu schaffen.

Wir betrachten ein Zweipersonennullsummenspiel

G = LS}, {Fi}iery mit I ={1,2} und Fy(s) = —F(s).
Die formale Beschreibung eines solchen Spieles 148t sich wesentlich vereinfachen:

a) Die Spielermenge / besteht immer aus zwei Elementen, / = {1, 2}; es ist demnach
nicht nétig, sie extra aufzufiihren.

b) Die Elemente der Menge {S,}ies sind die Strategiemengen der beiden Spieler:
S; und S,. Um eine uniibersichtliche Indizierung zu verhindern, bezeichnen wir
siemit XYund ¥,d.h. S, =X, S, =Y.

c) Im Zweipersonennullsummenspiel unterscheiden sich die Gewinnfunktionen der
beiden Spieler nur um das Vorzeichen. Aus diesem Grunde geniigt es, in der Be-
schreibung des Spieles nur die Gewinnfunktion des 1. Spielers anzugeben,

F(s) = Fi(s) = —I5(s).
Daraus ergibt sich fiir das Zweipersonennullsummenspiel die folgende abgekiirzte
Bezeichnung
G={(X,Y,F).
Ist das Spiel G endlich, d. h., sind die Strategiemengen der Spieler endliche Mengen,

so lassen sich die Werte der Gewinnfunktion F(s) in Abhédngigkeit der Situationen
s € S in Matrixform darstellen. Besteht die Menge X aus m Elementen,

X = {xl’ X2 ooy Xings
und die Menge Y aus n Elementen

Y= {J’l’yz, ~~>J’n},
dann erhilt man fiir jede Situation s € S das Zahlenpaar

s=(x,y) oder s;=(x;,y; fir {JI : Lo
und fiir die Gewinnfunktion F die Werte

F(s) = F(x,y), xeX, yeY,
bzw.

F(s;) = F(x;, p) = Fy; mit i=1,...m; j=1,..,n
Tragt man zeilenweise die Werte F;; in Abhdngigkeit der Strategien des Spielers 1 ab
und in den Spalten die entsprechenden Werte in Abhéngigkeit der Strategien des
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Spielers 2, so erhélt man folgende schematische Darstellung:

T
X\Y ‘ 1 ' Y2 | | Yi Yn
X1 Fyy Fia Fyy Fin
X2 Fay Faa Fyy Fap
Xi Fiy Fiy Fij Fin
Xm Fony Foz Fuy Fon

Eine solche Tabelle (Matrix) bezeichnet man als Gewinnmatrix des Spielers 1 oder
als Spielmatrix, wobei im weiteren bei ihrer Darstellung die iibliche Matrizenschreib-
weise gebraucht werden soll, also

Fyy Fis... Fyy
F = [Fijlun = 1:21 1::22 -'-{;‘Zn
F oy Bz o Fo

Spiele, bei denen man eine solche Spielmatrix aufstellen kann, heilen Matrixspiele.
Wir betrachten hierzu folgende Beispiele:

1. Ein Betrieb B kann ein bestimmtes Produkt durch » verschiedene technologische Prozesse er-
zeugen. Der Unterschied bei der Anwendung der verschiedenen Technologien besteht darin, daB in
einem festgelegten Zeitraum eine unterschiedliche Stiickzahl von verschiedener Qualitit des Pro-
duktes hergestellt wird, d. h., die Anwendung der Technologie i ergibt z. B. eine groBere Stiickzahl
von minderer Qualitit des Produktes als die Anwendung der Technologie j. Der Betrieb hat also die
Maglichkeit eine solche Technologie auszuwihlen, die ihm die groBte Stiickzahl (schlechteste Quali-
tat) und somit den groBten Gewinn sichert. Auf der anderen Seite steht der Abnehmer A. Er ist
daran interessiert, vom Betrieb B qualititsgerechte Produkte zu erhalten, die er zur Weiterverarbei-
tung bzw. zum Verkauf an den Endverbraucher bendtigt. Liefert der Betrieb B keine qualititsgerechte
Ware, so besteht fur den Abnehmer das Recht der Riickgabemoglichkeit, bzw. er kann vom Betrieb
eine gewisse Entschddigung fordern. Wir wollen ohne Einschrinkung der Allgemeinheit annehmen,
daB der Betrieb B zwei technologische Prozesse zur Herstellung des Produktes zur Verfiigung hat,
d. h. n = 2. Damit ist gleichzeitig die Strategiemenge X des Betriebes B bestimmt: X = {x,, x,} mit
x; — Anwendung der Technologie 1 und x, — Anwendung der Technologie 2. Um das Verhalten
des Abnehmers A analysieren zu konnen, mufl man etwas tiber die Giite der vom Betrieb benutzten
Technologie aussagen. Wir setzen voraus, daBl im Zeitraum 7 der Betrieb B bei der Anwendung der
Technologie 1 80 Stiick des Produktes mit einer AusschuBquote von p; = 0,05 herstellt und bei der
Anwendung der Technologie 2 50 Stiick mit der AusschuBquote p, = 0,02. Mit anderen Worten
wiirden bei der Anwendung der Strategie x, des Betriebes B von den 80 hergestellten Produktstiicken
durchschnittlich 4 Stiick Ausschuf} sein, und bei der Anwendung der Strategie x, hat man im Mittel
von 50 produzierten Stiicken 1 AusschuBstiick.

Zwischen Betrieb und Abnehmer besteht folgende Vereinbarung:

Akzeptiert der Abnehmer A4 das angebotene Los bedingungslos, so haftet der Betrieb fiir eventuell
auftretende Verluste durch AusschuBware nicht, meldet der Abnehmer jedoch von vornherein Be-
denken an, so hat er die Moglichkeit, die schlechten Stiicke zuriickzugeben und eine Entschadigung
von 1 Einheit pro schlechtem Stiick zu verlangen. Der Stiickpreis des erzeugten Produktes betrage
1 Einheit.
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In Abhingigkeit von der Kenntnis {iber das Vorgehen des Betriebes B hat der Abnehmer 4 2 Mog-
lichkeiten, seine Strategiemenge zu bestimmen.

(a) Besteht zwischen Betrieb und Abnehmer ein Vertrauensverhiltnis und gibt der Betrieb im
voraus seine Handlungsweise bekannt, so sprechen wir von einem Spiel gegen den vollstindig in-
formierten Abnehmer. Die Strategiemenge des Abnehmers A hat dann folgendes Aussehen:

y1: Der Abnehmer akzeptiert bedingungslos die Entscheidung des Betriebes. Mit anderen Worten,
wihlt der Betrieb B die Strategie x;, so nimmt der Abnehmer 4 das Los ohne irgendwelche Bedin-
gungen an (Bezeichnung: o), und genauso verhilt sich der Abnehmer, wenn sich der Betrieb B fiir
die Strategie x, entscheidet. Wir konnen die Strategie y; des Abnehmers 4 durch das Buchstaben-
paar oo charakterisieren, wobei der erste Buchstabe die Antwort des Abnehmers auf die Strategie x;
des Betriebes beschreibt und der zweite Buchstabe entsprechend die Antwort auf x, darstellt.

y2: Der Abnehmer akzeptiert die Strategie x; des Betriebes bedingungslos, er antwortet also mit o
und meldet als Antwort auf die Strategie x, Bedenken an, d. h., die Strategie x, des Betriebes wird
nicht bedingungslos akzeptiert (Bezeichnung: n). Als Buchstabenpaar ausgedriickt, erhalten wir on.
Analog ergibt sich y; : no und y, : nn.

Setzen wir voraus, daB bei Anwendung der Technologie 1 die Selbstkosten fiir ein produziertes
Los 78 Einheiten sowohl fiir Betricb und Abnehmer sind und entsprechend bei Anwendung der
Technologie 2 die Selbstkosten 49,5 Einheiten betragen, so erhilt man aus den vorliegenden Daten
leicht die Gewinnmatrix fiir beide Spieler:

Betrieb B:

A | Y2 RE) Ya

B (00) (on) (no) (nn)

Fy =

X1 80—78 80—78 72-178 72—-78

X2 50—49,5 | 48—49,5 | 50—49,5 | 48—49,5
A

B Y1 V2 V3 Ya

X1 2 2 -6 -6

X2 0,5 -1,5 0,5 -1,5

Abnehmer A4:

A

B Y1 Y2 - V3 Ya

Fy=

Xy 76—78 | 76—78 8478 8478

X2 49—-49,5 | 51—49,5 | 49—-49,5 | 51—-49,5
A

B Y1 Y2 RE] Ya

x -2 | -2 6 6

X2 -0,5 1,5 —0,5 1,5

Wir sehen, daB F = Fp = —F, ist, wir haben es also mit einem Zweipersonennullsummenspiel zu

tun, und wegen der Endlichkeit der Strategiemengen beider Spieler ist dieses Spiel ein Matrixspiel.
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(b) Eine andere Variante des Problems erhalten wir dann, wenn der Abnehmer nicht vom Betrieb
iiber sein Vorgehen informiert wird. Dann erweisen sich die Handlungsmdglichkeiten o und n des
Abnehmers unmittelbar selbst als Strategien von 4, d. h., der Abnehmer hat die Méglichkeit, ohne (0)
oder mit (n) Einschrankung auf das Vorgehen des Betriebes zu antworten. Bleiben die oben angefiihr-
ten Wertigkeiten erhalten, so ergeben sich die folgenden Gewinnmatrizen:

Betrieb B:
A\ Y2 A
N (0) (n) B Y1 Y2
Fy= =
X1 80—-78 | 72-78 X1 2 -6
X2 50—49,5 | 48—49,5 X2 0,5 -1,5
Abnehmer A4:
A A
B Y1 Y2 B Y1 Y2
F,= =
X1 76—78 | 8478 X1 -2 6
X2 49—-49,5 | 51—-49,5 X3 -0,5 1,5
Auch diese Variante stellt ein Matrixspiel dar, denn F = Fy = —F,, und die Strategiemengen der

Spieler sind endlich.

2. Knobelspiel Papier—Schere-Stein
Das Knobelspiel Papier-Schere-Stein ist ein' Zweipersonenspiel. Beide Spieler wihlen unabhéngig
voneinander eines der Symbole ,,Papier®, ,,Schere* oder ,,Stein*. Danach vergleicht man das Ge-
wihlte, und der Sieger erhilt vom Verlierer 1 Einheit nach der Regel: Papier verliert gegeniiber Schere,
Schere verliert gegeniiber Stein, und Stein verliert gegeniiber Papier.
Die Art des Spieles ist antagonistisch und ein Matrixspiel, denn die Strategiemengen sind endlich.
Die Strategiemengen der beiden Spieler kann man wie folgt beschreiben:
1. Spieler: x; — er wéhlt Papier (P)
x, — er wahlt Schere (Sch)
x3 — er wihlt Stein (S7)
2. Spieler: y; — er wihlt Papier (P)
__y» — er wiihlt Schere (Sch)
y3 — er wihlt Stein (St)

Die Gewinnmatrix des 1. Spielers hat dann folgendes Aussehen:

Xy y1(P) y2(Sch) | y3(St)
xi(P) . 0 -1 1
x,(Sch) 1 0 -1
x3(St) -1 1 0

2.2. Wert eines Spieles und optimale Strategien

Als nichstes wollen wir uns die Aufgabe stellen, die optimalen Strategien im
Matrixspiel zu bestimmen und anhand der eben angefiihrten Beispiele zu erlautern.
Die optimalen Strategien der Spieler werden durch die Gleichgewichtsstrategien
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(s. Abschn. 1.3.) gegeben, wobei die Gleichgewichtsstrategien die zu einer Gleich-
gewichtssituation S gehdrenden Strategien sind. Eine Gleichgewichtssituation ist da-
durch gekennzeichnet, daB fiir jeden Spieler ein Abweichen von dieser unvorteilhaft
wire, d. h.

Fi(s |l s;) < Fi(s) furalleiel.
Auf ein allgemeines Zweipersonennullsummenspiel iibertragen, d. h. I = {1, 2} und
F(s) = Fy(s) = —F(s), ergibt sich daraus

Fy(s |l s;) < Fy(s) und Fy(s | s2) < Fa(s).
Wird die Gleichgewichtssituation s € S durch das Strategienpaar (x*, y*) beschrieben,

s = (x*, y¥), und werden die entsprechenden Abweichungen davon wie folgt dar-
gestellt

(s lIs) = (x,9%),
(51 52) = (x* ),
so erhélt man entsprechend der Gleichgewichtsdefinition
Fi(x, y*) < Fi(x*,y*) und  Fp(x*,y) £ Fp(x*,y%).
Aus der Beziehung F,(x, y) = — F,(x, y) und aus der letzten Ungleichung folgt
—Fy(x*,y) £ —F,(x*,»%)
oder
Fi(x*y*) = Fi(x* ),

und als Resiimee bekommt man die Bedingung fiir einen Gleichgewichtspunkt
(x*, y*) im Zweipersonennullsummenspiel

F(x,y*) < F(x*,y*) < F(x*,y)

(dabei wurde die Beziehung F(x, y) = F,(x, y) impliziert). Diese Bedingung ist gleich-
wertig mit der Beziehung

F(x*, y*) = max F(x, y*) = min F(x*, ),
xeX yey
sofern die Existenz des Maximums bzw. des Minimums der Gewinnfunktion ge-
sichert ist. Die letzte Behauptung 148t sich leicht aus den Beziehungen
max F(x, y*) = F(x,y*) firallexe X
xeX

und
min F(x*, y) < F(x*,y) firalleyeY
yeYy

verifizieren.

Die Gewinnfunktion F(x, y) muB also in der Gleichgewichtssituation s = (x*, y*)
beziiglich x ein Maximum und beziiglich y ein Minimum erteichen. John v. Neu-
mann bezeichnet die Gleichgewichtspunkte der Zwexpersonennullsummensplele als
Sattelpunkte, wobei der Name ,,Sattelpunkt aus der Geographie stammt und unser
Gleichgewichtspunkt (x*, y*) die wesentlichen Merkmale eines Sattelpunktes oder
Passes in diesem Punkt hat.

Fiir die Existenz eines Sattelpunktes gilt folgender Satz:

Satz 2.1: Fiir das Zweipersonennullsummenspiel G = {X, Y, F) erhdlt man dann

und nur dann einen Sattelpunkt, wenn die Ausdriicke max inf F(x, y) und min sup F(x,y)
xeX yeY yeY xeX

2 Manteuffel, Spieltheorie
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existieren und gleich sind, d. h.

max inf F(x, y) = min su}% F(x,y) = F(x*,y*) = v.
yeY xeX

xeX yeY

Die Gleichgewichtsstrategien des 1. Spielers sind diejenigen Strategien x* € X, fiir
die das y-Infimum bzgl. x das Maximum erreicht, und analog sind die Gleichgewichts-
strategien des 2. Spielers diejenigen Strategien y*eY, fiir die das x-Supremum bzgl.
y sein Minimum annimmt.

Beweis: Ist (x*, y*) ein Sattelpunkt, so gilt nach der Definition des Sattelpunktes

F(x, y*) £ F(x*,y*) fiir alle xe X.

Existiert inf F(x, y), dann gilt erst recht
yeYy
inf F(x,y) £ F(x* y*) firallexeX.
yeY

Aus der Beziehung
F(x*, y*) = max F(x, y*) = min F(x*, y)
xeX yeYy

folgt, daB3 der Ausdruck min F(x*, y) selbst ein solches y-Infimum ist, d. h.
yeyYy
F(x*, y*) = max inf F(x,y).
xeX yeY

Analog zeigt man, daB3 auch

F(x*,y*) = min sup F(x,y)
yeY xeX

gilt, und also die Gleichung
F(x*, y*) = max inf F(x,y) = min sup F(x,y) =v

xeX yeY yeY xeX
erfiillt ist.
Umgekehrt sei

max inf F(x,y) = mm sup F(x,y) =v.

xeX yeY

Die Gleichgewichtsstrategie x* des 1. Spielers ist diejenige Strategie, fiir die das y-
Infimum bzgl. x das Maximum erreicht, d. h.

inf F(x*,y) = v.
yeyY .

Analog gilt fiir y*
sup F(x, y*) = v.
xeX

Da aber inf F(x*, y) < F(x*, y*) ist, erhalten wir
yeY

v < F(x*, y*).
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Genauso folgt aus

sup F(x,y*) = v,

xeX
daB

F(x*,y*) s v
ist. Demnach erhalt man

F(x*, y*) = v = sup F(x,y*) = max F(x,y*)

xeX xeX

und

F(x*,y*) = v = inf F(x*,y) = min F(x*,y)
yeYy yeY

d. h., (x*, y*) ist Gleichgewichtspunkt, und der Satz ist bewiesen.
Aus der Existenz des Sattelpunktes folgt unmittelbar der Begriff des Wertes eines
Spieles.

Definition 2.1: Das antagonistische Spiel G = {X, Y, F) besitze einen Sattelpunkt.
Die Zahl

v = v(G) = max inf F(x, y) = min sup F(x,y)
xeX yeY yeY xeX

heifst Wert des Spieles (fiir den Spieler I).

Aus der Art der Zweipersonennullsummenspiele erhdlt man den Wert fiir den
Spieler 2 durch Umkehrung des Vorzeichens.

Fiir Matrixspiele folgt aus der Endlichkeit der Strategiemengen und der Beschrinkt-
heit der Gewinnfunktion fiir die Existenz des Sattelpunktes und damit des Wertes
des Spieles das Kriterium

v(G) = max min F(x,y) = min max F(x,y).
xeX yeY yeY xeX

Dieses Kriterium ist auch unter dem Namen Minimax-Prinzip bekannt.

Wenn fiir ein Matrixspiel G = (X, Y, F) ein solcher Sattelpunkt existiert, so 146t
er sich leicht ermitteln. Die Strategiemenge des 1. Spielers bestehe wieder aus m Ele-
menten,

X = {x17x25 cees xm},
und die Strategiemenge des 2. Spielers habe n Elemente,
Y ={y1, 725 s P}
Die Gewinnfunktion
Fijy = F(x;,y)) ’
sei beschriankt. Dann erhélt man den Wert des Spieles aus der Relation

j=1 i=1

i=1

m Pl- ’f m
v(G) = max mull F;; = min max Fj;.
j=

2%



20 2. Zweipersonennullsummenspiele

Zur Bestimmung des Wertes betrachten wir zunichst die linke Seite der letzten
Gleichung, also den Ausdruck

m on
max min Fj;.
i=1 j=1
Dazu ermittelt man in jeder Zeile i (i = 1,...,m) der Gewinnmatrix F den minimalen
Funktionswert der Gewinnfunktion Fj;, und aus dieser erhaltenen Menge bestimmt
man bzgl. i, also beziiglich der Zeilen, das Maximum. Ebenso verfihrt man mit der
rechten Seite der obigen Gleichung. Wir bestimmen zunichst in jeder Spalte j
(j=1,...,n) der Gewinnmatrix F den maximalen Funktionswert und anschlieBend
aus der erhaltenen Menge das Minimum.
Schematisch sieht das so aus:

n
x\y Y1 Y2 Vi In {nir; Fy
j=
x1 Fi Fyis Fy, Fin F
X2 Fay Fas Fay Fon F,
F=
Xi Fiy Fiz Fiy Fin FY)
Xm Font Fuz e Fony W Foun Fn
m
max Fy; | Fy F, Fy F, F=F
i=1
min (Fy, Fa,...,F,) = F; = Wert des
Spieles

Aus dem Kriterium fiir den Wert des Spieles v(G) folgt, da3
Fy=F; = uG)

sein muB, der Sattelpunkt ist der Funktionswert F;;, und die optimale Strategie des
1. Spielers ist die Strategie

x* = x;
und die des 2. Spielers
yE=0;

Zur Illustration wollen wir den Wert der Spiele, den Sattelpunkt unq d.ie opti-
malen Strategien der Spieler fiir die im Abschnitt 2.1. aufgefiihrten Beispiele be-
stimmen.

1) max (Fy, £z, -y F) = Fi.
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1. (a) Spiel gegen den informierten Abnehmer:
Die Gewinnmatrix des Betriebes B hatte folgende Gestalt:

A 4
N Y1 Y2 RE) Ya m"; Fiy
j=
Fe X1 2 2 -6 -6 -6 l max (—6, —1,5)
x2 0,5 -1,5 | 05 |-15 | -15 ’ =-L3
2
max Fy; | 2 2 0,5 -1,5 | uG) = -1,5
i=1

min (2, 2, 0,5, —1,5) = —1,5

Bildet man die Zeilenminima der Gewinnmatrix, so erhilt man die Menge (—6, —1,5), und das hier-
aus ermittelte Maximum ist —1,5. Analog bzkommt man aus den Spaltenmaxima die Menge (2, 2,
0,5, —1,5), und das dazugehdrige Minimum hat ebenfalls den Wert —1,5. Damit ist die Bedingung

m on noom
v(G) = max min F;; = min max F;; = —1,5
i=1 j=1 j=1 i=1

erfiillt und somit Sattelpunkt und Wert des Spieles (natiirlich fiir Spieler 1 = Betrieb B) ermittelt.
Die optimale Strategie fiir den Spieler 1, also fiir den Betrieb, ist die Strategie

x* = x,,
d. h., der Betrieb arbeitet nach der Technologie 2. Die optimale Strategie des Abnehmers ist
¥ = s

Der Abnehmer nimmt also nie ein Los bedingungslos an, ganz gleich, welche Strategie der Betrieb
auch wihlt. Ein Abweichen einer Seite von der Gleichgewichtssituation wiirde nur mit Verlust der
abweichenden Seite enden, denn wiirde z. B. der Betrieb die Strategie x; vorziehen, der Abnehmer aber
die optimale Strategie beibehalten, so betrdgt sein Gewinn — 6 Einheiten, und genauso wiirde es dem
Abnehmer ergehen, wenn er von der Gleichgewichtssituation abweicht.

(b) Spiel gegen den nichtinformierten Abnehmer:

Der Ausgangspunkt ist wieder die Gewinnmatrix:

S 2
\ Y1 Y2 ;‘lﬂ; Fiy
Xy 2 -6 -6
F=
X2 0,5 -1,5 -1,5
2
max F, | 2 —-15 | G = -1,5
i=1
min (2, —1,5) = —1,5

Analog dem Beispiel (a) bildet man zunichst die Zeilenminima und ermittelt aus der erhaltenen
Menge den maximalen Wert. Aus den Zeilenmaxima erhélt man durch Ermittlung des zugehdrigen
minimalen Wertes die rechte Seite des Sattelpunktkriteriums. Wir sehen, daB ein Gleichgewichts-
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punkt existiert, der Wert des Spieles (fiir Spieler 1) betrdgt — 1,5 Einheiten, und die optimalen Stra-
tegien sind die Strategien

x* = x, (Betrieb wihlt Technologie 2),

y* = y, (Abnehmer akzeptiert nicht bedingungslos).

2. Knobelspiel Papier-Schere—Stein

Wir wollen auch hier genauso wie bei den vorangegangenen Beispielen den Wert des Spieles mit
den zugehérigen optimalen Strategien bestimmen:

3
x\y 1 Y2 V3 rpir:F,,
i=
X1 0 -1 1 -1
X2 1 0 -1 -1 max (=1, =1, =1) = —1
X3 -1 1 0 -1
3
max Fyy 1 1 1
=1

min(1,1,1) =1

Wir erhalten also

3 3 3 3
max min Fj; = —1 und min max F;; =1,
i=1 j=1 Jj=1 i=1
d. h., daB beide Relationen nicht {ibereinstimmen, das Minimax-Kriterium nicht erfiillt ist und somit
kein Sattelpunkt und Wert des Spieles existiert.
Damit tritt natiirlich sofort die Frage in den Vordergrund, ob nicht doch eine Losung des Spieles
und somit eine optimale Verhaltensvorschrift fiir die Spieler moglich ist.
Die Beantwortung dieser Frage fiihrt zur Erweiterung des Spielbegriffes.

2.3. Gemischte Erweiterung

Vergegenwirtigen wir uns noch einmal das Knobelspiel Papier-Schere-Stein, so
liegt die Vermutung nahe, daB dieses Spiel nicht nur einmal, sondern in mehreren
Partien hintereinander gespielt wird. Der gesunde Menschenverstand sagt uns, daf3
es dann fiir die Spieler giinstig ist, ihre Strategien nach den Mechanismen des Zu-
falls zu wechseln, ihre Strategien mit gewissen Wahrscheinlichkeiten zu mischen.
Das fiihrt zu dem Begriff der gemischten Strategien.

Definition 2.2: Gegeben sei das Matrixspiel G = (X, Y, F) mit den Strategie-
mengen X = {X1, Xz, ..., Xy und Y = {1, ¥, .co, Yu}-
Unter der gemischten Strategie des Spielers 1 versteht man den m-dimensionalen
m
Vektorp = (Pys P2y ... Pm) mit p; 2 0 fiir alle i = 1,...,m und ¥ p;, = 1; eine ge-

i=1
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mischte Strategie des 2. Spielers ist dann entsprechend der n-dimensionale Vektor
b= (g1, 925 qu) mit ;20 (j=1,. ,n)unquJ =1L

Die Menge der gemischten Strategien fiir den 1 preler ist somit eine Menge von
Vektoren des R™, also
={peR"p, 20 und _E‘,p, =1}.
Entsprechend ist =
—{geRg, 20 und ﬁlqi _—
i=

die Menge der gemischten Strategien des 2. Spielers. Im Unterschied zu den gemischten
Strategien werden die bisher betrachteten gewohnlichen Strategien als reine Strate-
gien bezeichnet. Offensichtlich kann man diese reinen Strategien als Spezialfall der ge-
mischten Strategien auffassen. Aus der Definition der gemischten Strategie ist ersicht-
lich, daB man diese als Wahrscheinlichkeitsverteilung iiber die Menge der reinen
Strategien interpretiéren kann. Eine spezielle Verteilung, die einer bestimmten Strate-
gie das WahrscheinlichkeitsmaB 1 und den restlichen das MaB 0 zuordnet, etwa

=1lundp; =0 (j=1,...,m,j# i) ist eine solche reine Strategie. Das Entspre-
chende gilt natiirlich fiir die Menge Q.

Die Mengen P und Q sind, wie man leicht zeigen kann, abgeschlossen und be-
schrinkt. Die Konvexitit der Menge P (d. h., wenn man zwei beliebige Punkte der
Menge P betrachtet, so miissen sdmtliche Punkte auf der Verbindungstrecke dieser
beiden Punkte wieder zu P gehoren, vgl. Bd. 4, 1.1.3.) erhdlt man aus (und analog fiir
die Menge 0):

'+ A =Ap'=p", p,p'eP, 0<i<l. (1)
Offensichtlich ist
;20 (j=1..m),

denn wenn p’, p”’ € P, so sind p’ = 0 und p” = 0 und folglich auch p’"’ = 0.
Es ist nach (1)

o =3 0ri+ (1= i)
=1 élp} +(1 - l)élp}'~
Aus der Definition der Menge P ist ersichtlich, da
Spi=1 und ¥pi=1
ist, und V:’l_l' erhalten -
ol =a+ (- =
Fiir p'”’ gilt also: p’”’ € R™, p"’ = 0 und fjlp;" =1, d. h. p""’ € P; Pist demnach kon-

vex.
Mit Hilfe des Begriffs der gemischten Strategie 1aBt sich der Spielbegriff erweitern.
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Definition 2.3: Gegeben sei ein endliches Zweipersonennullsummenspiel G = {X, Y,
F), wobei X = {xy, ..., x,,} und Y = {yy, ..., y,} diereinen Strategiemengen der Spieler
und F = [Fy ]y, die dazugehirige Gewinnmatrix sind. Die Mengen der gemischten

Strategien sind P={peR"|p=0 und %Pt =1} und Q ={qeR|g=0 und
i=1
2 q; =1}

Fur Jede gemischte Strategie p e P und q € Q lift sich dann der Erwartungswert E
(fiir Spieler 1) nach

E(p,q) = ZZp.Fuq, p"F‘q

bestimmen, und das Sptel I'=(P,Q,E ) heifpt gemischte Erweiterung von G.
Der Erwartungswert E(p, ) 148t sich folgendermaBen umformen:

m n m n
E(p.q) = Zl leiFquj = ZI leip(xi)yj) q;
i=1j= i=1j=

= épiélF(xi, ¥i)4; =}§"l q,é F(x,y) pi-
Bezeichnen wir
ngF(Xi’yj) q;=E(xi,q) (i=1,...,m)
und den entsprechenden Vektor
[E(xi, @)ln,s = Ex(g)
bzw. ist _%:IF(x,, y) pi = E(p,y;) (j =1,...,n)oder vektoriell
e

[E(p, y)ln1 = E\(P),
so erhalten wir fiir den Erwartungswert

E(p,q) = glE(X.-, 9)p:=EJlg)p,

E(p. q) =,§ Ep,y) 4, = EP) 4.

Es erhebt sich natiirlich die Frage, inwieweit man fiir die gemischte Erweiterung
den Wert des Spieles bestimmen kann.

Das Ziel des Spielers 1 liegt darin, den Erwartungswert E(p, g) moglichst grof3 zu
machen, wogegen der Spieler 2 bestrebt sein wird, ihn mdglichst klein zu halten. Mit
anderen Worten muf3 der 1. Spieler eine Strategle p € P so wihlen, daBl min E(p, q)
mdglichst groB3 wird, also a<Q

v; = max min E(p, q).
pEP  qeQ
(Wegen der Abgeschlossenheit und Beschréinktheit der Mengen P und Q nimmt die
stetige Funktion E(p, q) auf einer dieser Mengen stets ihr Maximum bzw. Minimum
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an. Vgl. Bd. 4, Satz 2.5.) Ebenso muf} der 2. Spieler seine Strategie ¢ € Q so wihlen,
daB E(p, ) moglichst klein wird, wobei er in Betracht ziehen muB, daB sein Gegner
auf die Maximierung des Erwartungswertes orientiert. Es gilt demnach
v, = min max E(p, q).
qeQ  peP

Nunmehr sind wir in der Lage, den Hauptsatz der Theorie der Matrixspiele zu for-
mulieren:

Satz 2.2 (Hauptsatz fiir Matrixspiele): Fiir jedes Matrixspiel G = (X, Y, F) besitzt
die zugehirige gemischte Erweiterung I' = (P, Q, E einen Wert, und fiir beide Spieler
existieren optimale Strategien. Den Wert v(I") des Spieles I" erhilt man durch die
Gleichung v, = v,, also

v(I") = max min E(p, ) = min max E(p, ¢).
PEP qeQ gqeQ  peP

Der Hauptsatz fiir Matrixspiele besagt also, daB in jedem endlichen Zweipersonen-
nullsummenspiel ein Paar gemischter Strategien p* € P und ¢* € Q existiert, so dafl
(p*, ¢%) Sattelpunkt von /" ist, d. h.

E(p, ¢*) < E(p*, ¢%) < E(p*, ).

Beweis des Hauptsatzes. Der letzte Teil des Satzes, die Bestimmung des Wertes
der gemischten Erweiterung I, ergibt sich unmittelbar aus der Definition des Gleich-
gewichtspunktes und den entsprechenden Herleitungen wie in Abschnitt 2.2.

Es bleibt also zu zeigen, daB fiir jedes Matrixspiel die Gleichung

v(I") = max min E(p, g) = min max E(p, q)
Pe)

PpeP geQ

existiert. Die Existenz von v, = max min E(p, q)und v, = min max E(p, q) ist durch
eP qeQ

die Kompaktheit der Mengen I;J und Q sowie durch die Stetlgkelt der Funktion

E(p, q) garantiert (vgl. Bd. 4, 2.5.). Offensichtlich gilt fiir alle p € P und ¢ € Q die Un-

gleichung

E(p, q) < max E(p, q).
PEP

Daraus folgt unmittelbar, daB .
min E(p, ¢) = min max E(p, q)
qeQ gqeQ  peP

fiir alle p e P ist. Diese Ungleichung gilt wie gesagt fiir alle p € P, folglich auch fiir
das p € P, fiir welches die linke Seite der Ungleichung maximal wird, d. h.

v, = max min E(p, g) £ min max E(p, q) = v,.
peP  geQ qeQ

Gelingt es uns, die Umkehrung der letzten Ungleichung, also v, < v, zu zeigen,
dann ist der Hauptsatz der Matrixspiele vollstindig bewiesen.
Nach Definition von v, gilt:
v, = min max E(p, q) = mm E(p*, q)
qeQ  peP

mit E(p*, g) = max E(p, q) fur alle qe0.
peP
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Wir berechnen zunéchst E(p*, q). Die Vorschrift zur Bestimmung von E(p, q),
E(p*, q) = max E(p, q),
pEP

kann als lineares Optimierungsprogramm geschrieben werden, namlich

m
E(p, q) = i;]PiE(xl’ g) - max

unter den Nebenbedingungen p € P, d. h.
PERm,g.lPi =1,

20, (@(=1,..m).

Aus der Dualitétstheorie fiir lineare Optimierungsprobleme (vgl. Band 14, S. 74ft,,
insbesondere S. 79, Satz 1) folgt:

E(p*, ¢) = miny
YER
mit R = {yly 2 E(x;,q), i=1,..,m}.
Aus dem dualen Optimierungsprogramm folgt unmittelbar
m
E(p*, q) = max E(x;, q) = E(x;,, q) fiiralle geQ.
i=1
Kehren wir zur Bestimmung von v, zuriick:
v, = min E(p*, ¢) = min E(x;,, q)
q€Q €0

kann man wieder als lineares Optimierungsprogramm aufschreiben und iiber das
duale Problem 16sen: )
E(xi9) = 3. 4/F(x, ;)  min
i=
unter den Nebenbedingungen
n
geR, Y q; =1,
j=1
7;20, G=1,..,n);

als duales Problem erhalten wir

v, = max z
zeS

mit § = {z|lz £ F(x,, y;), j=1,...,n},
und als Losung folgt

Uy = mlln F(xi,, y5) = F(xiyy ys0)- !
j=
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Wir betrachten E(x;,, ¢) fiir alle g€ Q:
n n
E(x,, q) = 2‘ q;F(xi, ¥;) 2 Flxi, J’J.,)AZI 95
j= j=
n
Da} g; = 1ist, gilt
i=1
v, = F(x,, y;) < E(x;,, q) firalle ge Q.

Somit gilt auch

v, < min E(x;,, ¢), und wir erhalten
=0

IIA

L)
im1

max min E(x;, ¢) = max min E(p, q) = v;.
a€Q PEP  qeQ

Aus der gleichzeitigen Richtigkeit der Beziehungen v; = v, und v, < v, folgt, daB

v, = v, ist, und der Hauptsatz fiir Matrixspiele ist bewiesen.

Sehr interessant ist in diesem Zusammenhang die Bestimmung des Wertes des so-
genannten symmetrischen Matrixspieles, denn wie wir sehen werden, 1a8t sich jedes
Matrixspiel auf ein symmetrisches Matrixspiel zuriickfiihren.

Definition 2.4: Ein Matrixspiel G = {X, Y, F) heifit symmetrisch, wenn die Ge-
winnmatrix schiefsymmetrisch ist, d. h. F = —F'.

Aus der Symmetrieeigenschaft der Gewinnmatrix folgt, da sowohl die Strategie-
menge X des Spielers 1 als auch die Strategiemenge Y des Spielers 2 n Elemente ent-
hilt, also

X={x1,,,.,x,,} 7 Y={y1,-~,y..}-
Fiir die gemischte Erweiterung I" = (P, Q, E) gilt dann:

P={peR|p20, Zpl— 1},
0= {qeR"lqzo,Zlqj= 1,
g

n n
E(p, q) = ‘21 ZlPiFiﬂj =pFq
i=1j=
=@ Fq =q F-p=—q Fp.
Es sei (p*, ¢*) mit p* € P, ¢* € Q Sattelpunkt, d. h.
ol) = E(p*, 4) = p*' - F-4°

(die Existenz des Sattelpunktes ist nach dem Hauptsatz iiber Matrixspiele gesichert),
dann gilt nach dem Sattelpunktkriterium

p’.F.q* ép*’.F.q* gp*’.F.q

(' F-q*) <(p* F-q*) <(p* F-q).

bzw.
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Durch Umformen erhélt man:

¢ Fps gq“ F-p*s< ¢ F-p
_q*'.F.p < _q*l.l:.p* § —q"F'p*,
q*’.F.p ; q*’.F.p* g q’Fp*

Die letzte Ungleichung besagt, daB man fiir die Gleichgewichtssituation (p*, ¢*)
den Wert o(I") = ¢*'Fp* erhilt,

o) = ¢*' - F-p* = (q* F-p*)
=p¥ F -q* = —p*¥ -F-q* = —p(I).

Daraus folgt unmittelbar v(I") = 0. Zusammenfassend 148t sich der folgende Satz
formulieren:

Satz 2.3: In jedem symmetrischen Matrixspiel G = (X, Y, F) ist der Wert seiner
gemischten Erweiterung I' = (P, Q, E) stets Null, d. h.

o(I) = 0.

Betrachtet man ein beliebiges Spiel G mit positiver Gewinnmatrix F (d. h., alle
Elemente der Gewinnmatrix sind positiv), so kann man durch verschiedene Verfah-
ren eine Symmetrisierung erreichen, etwa indem wir ein neues Spiel mit der Gewinn-
matrix

0 —F I,
B= [ F 0 —InJ = [bij]m+n+1.m+n+1’
-1 L' 0

konstruieren, wobei Ix = [1]k,; ist. Die Voraussetzung F > 0 ist keine Einschrinkung
der Allgemeinheit, weil man aus der Aquivalenzrelation von Spielen stets ein dqui-
valentes Spiel mit obiger Bedingung erhalten kann.

2.4. Losung von Matrixspielen mit Hilfe der linearen Optimierung

Nachdem wir uns eingehend iiber Existenzfragen fiir Gleichgewichtspunkte in
Matrixspielen beschéftigt haben, gehen wir jetzt zu den Ldsungsmethoden iiber,
d. h., wir untersuchen die Frage, wie man die optimalen gemischten Strategien bei
Matrixspielen ermitteln kann.

Es gibt hierfiir verschiedene Méglichkeiten, etwa algebraische Verfahren, Losungs-
verfahren mit Hilfe von Differentialgleichungen, Iterationsverfahren, Simulations-
verfahren (vgl. Band 20, S. 54), Verfahren der linearen Optimierung. Wir wollen uns
nur mit den letzteren Verfahren beschiftigen; denn einmal wiirde die Behandlung
aller Verfahren den Rahmen dieses Lehrbuches sprengen, zum anderen kann man aus
den Losungsverfahren mit Hilfe der linearen Optimierung gewisse Verallgemeine-
rungen zwischen der Spieltheorie und der Theorie der konvexen Optimierung her-
leiten.
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Ausgangspunkt ist die Sattelpunktrelation

v(I") = max min E(p, ¢) = min max E(p, q).
Q gqeQ  peP

PEP  gEi

Beim Beweis des Hauptsatzes fiir Matrixspfele erhielten wir folgende Beziehung:
m
E(p*, q) = max E(p, g¢) = max E(x;, q) firalle geQ.
PEP i=1

Genauso 148t sich zeigen, daB3
E(p, ¢*) = min E(p, q¢) = min E(p, y;) fiiralle pe P
<0 j=1
gilt.
Aus der Sattelpunktrelation erhalten wir dann
v(I") = max min E(p, q
peP geQ .
m
= max E(p, ¢*) = max E(x;, %)
PEP i=1

bzw.

o(I") = min max E(p, q)
qeQ  peP

n
= min E(p*, ¢) = min E(p*, y;)
q€Q j=1
Setzen wir E(x;, ¢*) = 3. ¢}*F;
=1

m
und E(p*,y;) = ZIP.‘*FU,

i=
so folgt aus den obigen Beziehungen:

o(I') = max E(x;, ¢*) = max ¥, ¢fF; 2 Y g*F;; (i=1,...,m);
i=1 i=1j=1 j=1

n n m m
o(l’) = min E(p*,y;) = min ¥ p¥*F,; < Y piF; (G=1,..,n),
j=1 i=1

j=1i=1
und wir erhalten eine andere Sattelpunktrelation, namlich

(i=1,..,m)

n m
Fq* < o) < 3 p*F, ,
jg.l ua < o) _EIP. J G=1,.n).

Aus dieser Sattelpunktrelation 14Bt sich leicht ein zugehoriges lineares Opti-
mierungsproblem herleiten, mit dessen Hilfe man die optimalen Strategien p* € P
und ¢* € Q ermitteln kann. Gegeben sei ein Matrixspiel G = (X, Y, F) mit posi-
tiver Gewinnmatrix F, d. h.-F > 0. Wegen der Aquivalenzbeziehung zwischen Ma-
trixspielen ist diese Bedingung keine Einschrankung der Allgemeinheit.
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Dann gilt fiir die gemischte Erweiterung I = (P, Q, E), daB der Erwartungswert
E(p,q) =p'- F-q > 0 fir alle pe P, g€ Q ist, und folglich ist auch »(I") > 0. Die
optimalen gemischten Strategien des Spielers 1 p* = (p%, ..., p¥)' € P und des Spie-
lers2 ¢* = (g%, ..., ¢¥)’ € Q bestimmt man aus den folgenden Ungleichungssystemen:

;lp;"Fu = o) (j=1,..,n),

pF20, Xpr=1 i=1,..,m),
und
Y Fugt o) i=1,..m)),
j=1

¢20, Tg=1 G=1..n.

Der Leser wird leicht erkennen, daBl diese Ungleichungssysteme sofort aus der Sattel-
punktrelation und aus der Definition der Mengen P und Q folgen. Ist o(I") > 0, d. h.,
besitzt das Spiel eine positive Gewinnmatrix, so kann man beide Ungleichungssysteme
durch den Wert des Spieles dividieren, ohne daB3 die Ungleichungen sich verindern.
Wir erhalten

N _pl*— Fyzl (G=1 n)
S V= J R ON
L mopt 1 o

o) =7 El o) o) (i=1,..,m),
und

n q]* < 1 - 1

/§1FU oI = (i=1,..,m),

e S .

o(I") 20, E, oDy - o) (=1..,n).

Das Ziel des 1. Spielers besteht in der Maximierung des Wertes des Spieles, das des
2. Spielers in der Minimierung. Setzen wir

n 9 _

o) = u; und o) " w;
und beriicksichtigen wir, daBB der Wert des Spieles (/") im Nenner erscheint, so er-
halten wir zur Bestimmung der optimalen Strategien folgende lineare Optimierungs-
programme:

m
Z, =Y u; = ——— — min;
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und

n
Zz=2w,—————>max

j=1 o(I")
" .
SEw Sl (i=1,..m),
Jj=1

w; =0 (=1,..,n).

Diese beiden linearen Optimierungsaufgaben sind offenbar dual zueinander und
konnen mit dem Simplexverfahren leicht gelost werden. Wegen der Dualitat geniigt
es, eine dieser Aufgaben zu 16sen, die Losung der dualen Aufgabe kann man dann
sofort aus dem erhaltenen Simplexendtableau ablesen.

Hat man die Werte u; (i = ,m)und w; (j = 1, ..., n) bestimmt, so erhalt man
ohne viel Aufwand den Wert des Spieles v(I") und dxe optimalen gemischten Stra-
tegien p* € P und ¢* € Q.

Beispiel: Zur Bestimmung der optimalen gemischten Strategien diene das Knobelspiel Papier—
Schere—Stein G = (X, Y, F) als Beispiel. Die Gewinnmatrix F hatte folgendes Aussehen:

0-1 1
F= 1 0 —1]'
-1 1 0
Fir dieses Spiel gilt die Voraussetzung F > 0 nicht.

Deshalb miissen wir, damit das Verfahren anwendbar ist, ein zu G dquivalentes Spiel G; konstru-
ieren. Nach der Aquivalenzdefinition gilt

Fjj=aF; + b,

wobei a > 0, b beliebige reelle Zahlen sind. Ist @ = 1 und b = 2, so erhilt man fiir das Spiel
G = (X, Y, F) die Gewinnmatrix

213
F'=[3 2 lj'.
1.3 2

Da F’ > 0 ist, ,gilt fur das Spiel G :
Zl=u,+u;+u3=m—vmm
unter den Bedingungen
2uy +3up + uz =1,
uy + 2uy +3u3 =1,
3uy + up + 2uz 21,

u20 (=123
und

1
Z, = + + = ——— — max
2= W1 T W2t W3 ) g
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mit den Nebenbedingungen

IA

2wy + wy+ 3wy =1,
3wy + 2wy + ws

IIA

wy + 3wy + 2w;

IA

>

0 (i=123).

11

Wi

Wir 16sen das 2. Problem mit Hilfe der Simplexmethode:

@ wy Wa w3 ® Ws wy W3
W4 2 1 3 1 Wa =23 =3 I3 s«
Ws 3 2 1 1« 2 s 2/3 s s
We 1 3 2 1 We ) /3 5/s ?ls
z | -1 -1 -1 0 z s =5 =% /s
T T
Ws w2 Wa @® Ws We Wa
W3 =2/ =5 3/ Yq W3 —/18 18 18 ‘/e
W1 3/, 5/, =5 %/ Wi "is =8 18 /s
We /2 18/, N =3/ 3/7 « W /18 s =518 e
z Yy =3 %[ 37 z s s /s 'z
t

Aus dem 4. Tableau (Endtableau) erhilt man die Losungen w; (i = 1, 2, 3) und wegen der Dualitit
gleichzeitig die Losungen #; (i = 1, 2, 3) der beiden linearen Optimierungsprobleme:

wi=wy=w3=1, U =uy=us3="1.

Des weiteren kann man den Wert des Spieles G, ablesen:

1 1
—_— o)) = 2.
oD 3 (5]
Die optimalen Strategien p* € P, g* € Q fiir G, ermittelt man aus den Beziehungen
* *

o 4,
T T ) R

und man erhalt
pF=2"Ys=" (=123, ‘]}* =2-Ys=13 (G=123).

" Somit sind p* = ("/3, '/3, '/s) € Pund ¢* = (/3, /3, !/) € Q die optimalen Strategien in Spiel Gy,
und wegen der Aquivalenz der Spiele G und G, sind sie auch optimal in G.
® [In Worte gefaBt bedeutet das, daB im Knobelspiel Papier-Schere-Stein beide Spieler jede der
mdoglichen Strategien rein zufillig gleich oft anwenden miissen, um zum optimalen Gewinn zu kom-
men.
Den optimalen Gewinn, also den Wert des Spieles G, erhilt man aus v(I";) wie folgt:

m n
E'p9=) % p,Fi'iq, mit Fj=aF;+b, a,breelle Zahlen (a > 0).
i=1j=1
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Dann ist

3

n
E'(p,g) =2 Y plaFy; + b) g,
i=1j=1

m n m n
=ay 3 pFya;+b% 3 pg;
i=1j=1 i=1j=1

= aE(p,q) + b,
und aus dem Gleichgewichtskriterium erhdlt man
o(I'y) = av(l") + b.
In unserem Beispiel ista = 1, b = 2:

2=o(l") =v)+ 2
oder
o(I) = 0.

Dieses Ergebnis war natiirlich zu erwarten, weil das Knobelspiel Papier-Schere-Stein ein symme-
trisches Matrixspiel ist, und wir haben frither gezeigt, daB fiir jedes symmetrische Matrixspiel der Wert
o(I") = Oist.

2.5.  Verallgemeinerung

2.5.1.  Unendliche Spiele

Nachdem eingehend endliche Zweipersonennullsummenspiele, also Matrixspiele
untersucht wurden, erhebt sich zwangsldaufig die Frage nach Verallgemeinerungen
in der Hinsicht, daB man einmal die Einschrinkung der Endlichkeit der Strategie-
mengen fallenliBt und zum anderen mehr als zwei Spieler zulaBt. Wegen der
Kompliziertheit der Thematik wiirde eine intensive Behandlung und Analyse dieser
Typen von Spielen den Rahmen dieses Lehrbuches sprengen; deshalb soll ein kurzer
Abrif} geniigen.

Wir betrachten zunichst das antagonistische Spiel G = <X, Y, F), wobei die
Strategiemengen X und Y unendliche Mengen sind. Natiirlich wird auch in diesem
Spiel die optimale Verhaltensweise der Spieler durch die Gleichgewichtssituation ge-
kennzeichnet, d. h., jeder Spieler ist bestrebt, eine Strategie x* € X, y*e€ Y zu finden,
daB

Flx, %) < F(x*, %) < F(x*,3)

gilt. Genauso wie im Endlichen gibt es Spiele, wo dieser Sattelpunkt nicht existiert.
Wir betrachten hierzu folgendes einfache Beispiel:

X=Y=(0,1) und F(x,y)=x+y.

3 Manteuffel, Spieltheorie
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Aus der Sattelpunktrelation folgt, daB x* = 1, y* = 0 ist. Diese Werte sind jedoch nicht gestattet,
da die Strategiemengen X, Y offene Mengen sind. Der 1. Spieler miifite also eine Strategie nahe 1 wéih-
len, der zweite nahe 0, etwa

xe=1—¢, Ve =6, e>0.
Daraus resultiert der Begriff des e-Sattelpunktes.

Definition 2.5: Wenn fiir ein ¢ > 0 ein Strategiepaar (x., y.) mit x,€ X, y.€ Y
existiert, so daf$ die Ungleichung

F(x,y) — ¢ = F(x;,5,) < Fx., p) + ¢
erfiillt wird, so heift dieses Paar e-Gleichgewichtssituation oder ¢-Sattelpunkt.

Existiert ein e-Sattelpunkt (¢ > 0), so gilt stets
sup inf F(x, y) = inf sup F(x,y).
xeX yeY ye¥ xeX

Auch bei den unendlichen antagonistischen Spielen existieren Sattelpunkte im all-
gemeinen nur im Bereich der gemischten Strategien. Zu diesem Zweck betrachten wir
die Klasse der wohlbeschrankten oder prakompakten Spiele.

Definition 2.6: R sei ein metrischer Raum mit der Metrik o. Existiert fiir ein be-
liebiges ¢ > 0 ein e-Netz R, in R, so heifst der Raum R wohlbeschrinkt oder prikom-
pakt. :

Dabei verstehen wir unter einem e-Netz R.: fiir alle r € R existiert ein r. € R, so
daf o(re, r) < e gilt.

Im unendlichen Spiel G = <X, Y, F) gelte fiir die Metrik g, in X und g, in Y fol-
gende Definition (der natiirlichen Metrik oder Metrik von Helley):
0, (x', x") = SuglF(X',y) - Fx",p)| x,x"eX,
ye .
0,(y, ") =sup|F(x,y) — F(x,»") | y,)"eY.
xeX
Dann 148t sich ein wohlbeschrianktes Spiel wie folgt formulieren.

Definition 2.7: Das Spiel G heifst wohlbeschrinkt oder prikompakt, wenn in der
natiirlichen Metrik die Strategienrdume X, Y wohlbeschrinkt sind.

Ohne Beweis sei folgender wichtiger Satz angegeben.

Hauptsatz (von Wald): Ein wohlbeschrinktes Spiel G hat fiir beliebiges ¢ > 0 stets
einen e-Sattelpunkt, und die e-optimalen Strategien sind eine Mischung von endlich
vielen reinen Strategien, d. h.

— X150 Xm - ,Vum,y..:l
Pe [pl: ~~~’pm]’ 4 I:qla-“y qnl -

Der Ausdruck p, = [’;" "";'"] bedeutet, da die e-optimale Strategie sich aus

19 eer
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den m reinen Strategien x,, ..., x, zusammensetzt, wobei x, mit der Wahrschein-
lichkeit p,, ..., x, mit der Wahrscheinlichkeit p,, auftritt.
Weiterhin gelten folgende Sitze:
1. In einem unendlichen Zweipersonennullsummenspiel hat der Spieler 1 eine reine
optimale Strategie, wenn die Gleichung

v = max inf F(x,y)
xeX yeY
gilt, und analog hat Spieler 2 eine reine optimale Strategie, wenn

v = min sup F(x,y)
yeY xeX
gilt.
2. Existiert eine gemischte Strategie p* € P und gilt E(p*, y) = v fiir alle y € Y, so ist
p* optimal.
Entsprechendes gilt fiir g* € Q: Wenn E(x, ¢*) < v fiir alle x € X ist, so ist q* opti-
mal.
Wir wollen noch kurz eine spezielle Klasse von unendlichen antagonistischen Spielen
streifen, die relativ leicht zu analysieren ist, die sog. Spiele iiber dem Einheitsquadrat.
Definition 2.8: Ein Spiel G = (X, Y, F) mit X = Y = [0, 1] nennt man ein Spiel
iiber dem Einheitsquadrat.

In einem solchen Spiel sind alle Situationen iiber dem Einheitsquadrat darstellbar:

M

7 X

Diese Einschrankung der Strategierdaume ist nicht sehr stark, denn jedes abgeschlos-
sene Intervall [a, b] 1Bt sich auf das Intervall [0, 1] transformieren.

Die gemischten Strategien sind die Wahrscheinlichkeitsverteilungen iiber dem
Intervall [0, 1]. Genauer versteht man unter der gemischten Strategie des Spielers 1
das WahrscheinlichkeitsmaB p(x) = 0, x € X, mit p[0, 1] = 1. Entsprechendes gilt
fiir den 2. Spieler: g(y) = 0, y € Y, mit ¢[0, 1] = 1. Der Gewinn des 1. Spielers stellt
sich dann als Erwartungswert dar:

1

E(p, y) = [ F(x,y) dp(x),
0
1

E(x, q) = [ F(x,y)dg(»),

0

11
E(p, )= [ [ F(x.y) dp(x) dg(p).
00
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Ein Spiel iiber dem Einheitsquadrat heiBt stetig, wenn die Gewinnfunktion sowohl in
x € X als auch in y € Y stetig ist. Fiir die gemischten Strategien kann man dann fol-
gern:

F(x, y) ist bei beliebigen festen x € X stetig in y,

F(x, y) ist bei beliebigen festen y € Y stetig in x.

Fiir stetige Spiele iiber dem Einheitsquadrat gilt der folgende Hauptsatz: Jedes
stetige Spiel iiber dem Einheitsquadrat hat einen Wert, und die Spieler besitzen opti-
male Strategien.

Es 14Bt sich leicht zeigen, daB dieses Spiel wohlbeschrankt ist, und folglich exi-
stieren nach dem Satz von Wald e-optimale Strategien fiir beliebig kleine & > 0,
d. h., es gilt

v = sup inf F(x,y) = inf sup F(x,y).
xeX yeY yeY xeX

Die Bestimmung der optimalen Strategien fiir Spiele iiber dem Einheitsquadrat kann
sehr kompliziert, wenn nicht unméglich sein. Im allgemeinen gelingt sie nur bei einer
sehr kleinen Klasse von Spielen, den konvexen Spielen.

Definition 2.9: Das unendliche antagonistische Spiel auf dem Einheitsquadrat
= (X, Y, F) heifit konvex, wenn die Gewinnfunktion F (x, y) fiir beliebiges festes
Xo € X in y konvex ist, d. h.

F(xo, 2" + (1 =) y") € AF(xq,¥") + (1 — 2) F(xo, "),
y,y'eY =101, iel01].

Wenn f(y) eine konvexe Funktion ist, so kann man folgende Eigenschaften be-
weisen:

1f(§:1 iy §§‘i i f(y1)

Mith 20 (i=1,.un), 3=l
i=1

1

1
2.1([ v dg®)) = [ ) dg(»)
0

0
(q(y) ist das oben definierte WahrscheinlichkeitsmaB).
Wenn ¢(x, y) konvex in y € Y ist und p(x) eine Verteilung iiber x € [0, 1], dann ist
1

[ @(x, ») dp(x) = f(») ebenfalls konvex.

0

Wir betrachten wieder das konvexe Spiel G. Der Spieler 2 habe die optimale ge-
mischte Strategie ¢*(») € Q.

Dann gilt fiir die mathematische Erwartung y* der ZufallsgréBe ye Y

1
y* = [ ydg*().
0
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Fiir die Gewinnfunktion F(x, y*) erhédlt man aus den Eigenschaften der konvexen
Funktionen bzw. aus der mathematischen Erwartung y* folgenden Ausdruck:

IA
<

1 1
F(x,y*) = F(x, [ y dg* () £ [ F(x,7) dg*(y) = E(x, ¢%)
0 0

Damit ist auch y* € ¥ optimal, d. h., im konvexen Spiel hat der 2. Spieler stets eine
optimale reine Strategie.

Im folgenden sei die Gewinnfunktion F(x, y) fiir ein festes x € X nach y differenzier-
bar. Dann gelten folgende Sitze:

Satz 2.4: G sei ein konvexes Spiel iiber dem Einheitsquadrat, und die optimale reine
Strategie y* € Y des Spielers 2 sowie der Wert v seien schon bekannt. Wenn y* > 0
ist, so existiert ein x' € X mit F(x', y*) = v, und dabei ist

z
OF(x', y) <o0.
oy yay*
Satz 2.5: Unter denselben Voraussetzungen wie im Satz 2.4 sei y* < 1. Dann gibt
es ein x'' € X mit v = F(x", y*), so daf3
OF(x", y)
oy

=0

y=y*

ist.
Fiir 0 < y* < 1 gelten beide Satze gleichzeitig. Daraus resultiert der Hauptsatz
fiir konvexe Spiele.

Hauptsatz (fiir konvexe Spiele): G =< X, Y, F) sei ein konvexes Spiel, wobei
F(x, y) eine nach y differenzierbare Funktion ist. Die optimale reine Strategie y* € Y
des Spielers 2 und der Wert des Spieles v seien bekannt. Dann gilt:

a) fiir y* = 0 hat der 1. Spieler die reine optimale Strategie x* = x'' (siehe Satz 2.5),
b) fiir y* = 1 hat der 1. Spieler die reine optimale Strategie x* = x' (siehe Satz 2.4),
¢) fiir 0 <y* <1 hat der 1. Spieler die gemischte optimale Strategie p* € P mit

. XX
r= [oc 1 - (x]’ » '
wobei « die Wurzel der Gleichung
L OF, )
oy

OF(x", y)

+ (1 - 3
y=y*

y=y*

= f@) = 0

ist.
Wenn man auf diese Weise ein unendliches Zweipersonennullsummenspiel 16sen
will, miissen folgende Schritte durchgefiihrt werden:
1. Es muB sich um ein konvexes Spiel handeln (priifen!).
2. Man berechnet aus v = min max F(x, y) die optimale Strategie y* € ¥ des Spie-
lers 2. YeY  xeX '
3. Berechnung von v = F(x, y*).

4 Manteuffel, Spicltheorie
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4. Es sind solche Strategien x’, x’* des Spielers 1 zu finden, fiir die die 1. Ableitung
der Gewinnfunktion nach y an der Stelle y = y* verschiedene Vorzeichen hat.
Fx' 1
5. Aus o LD | g gy OF0Y)
0y e )
gemischte optimale Strategie des Spielers 1.

= 0 ist o zu ermitteln, d. h. die

=y*

Als Beispiel fiir die Bestimmung der Losung eines konvexen Spieles sei eine Variante des Angriff—
Verteidigungsspiels (sieche Abschn. 1.1) angefiihrt. Der Verteidiger, bei uns Spieler 2, beherrsche
2 Objekte. Ein Angreifer (Spieler 1) will mindestens eines dieser Objekte erobern. Beide Spieler haben
1 Einheit zum Erreichen ihres Zieles zur Verfiigung. Die Aufteilung dieser Einheit in 2 Teileinheiten
die entsprechend zur Eroberung (Verteidigung) der Objekte 1 bzw. 2 eingesetzt werden sollen, ist
die jeweilige Strategie der Spieler. Der 1. Spieler verteilt seine Einheit so, daB der Teil x fiir den Kampf
um das Objekt 1 und der Teil 1 — x fiir den Kampf um das Objekt 2 eingesetzt wird (0 = x = 1).
Der 2. Spieler setzt die Teileinheit y zur Verteidigung des Objektes 1 und die Teileinheit 1 — y zur
Verteidigung des Objektes 2 ein. Als Sieger geht derjenige hervor, dessen Teileinheit starker ist, d. h.,
fiir x > » hat der Angreifer das Objekt 1 errungen. Somit ergibt sich fiir die Gewinnfunktion der fol-
gende Ausdruck:

a(x—y firxzy (cq0>0),

Fx, y) = oy —x) firx=sy (cz > 0)

(¢, ¢, sind Gewichte, die die Wichtigkeit der Objekte charakterisieren). Zur Bestimmung der Losung
dieses Spieles gehen wir nach den oben angegebenen Schritten vor.

1. Wir priifen, ob es sich um ein konvexes Spiel handelt. Dazu ist zu zeigen, daB fiir ein beliebiges
festes x = x, die Gewinnfunktion F(x,, y) in y konvex ist. Das stoBt oft auf Schwierigkeiten derart,
daB entweder die Gewinnfunktion nicht analytisch gegeben oder nicht stetig differenzierbar (wie in
diesem Beispiel) ist. Deshalb analysiert man, wenn es moglich ist, diese Eigenschaft auf graphischem
Wege.

Offensichtlich ist F(xo, y) fiir beliebiges x = X, in y konvex.
2. Wir berechnen

v = min max F(x, y).
y x
Dazu betrachten wir zunichst

max F(x, y) = max {max ¢;(x — y), max ¢,(y — x)} = max {c;(1 = »), c2p}.
x xzy xZy

Daraus folgt

v = min max F(x, y) = min max {¢;(1 — »), c2¥}.
y x »
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2.5. Verallgemeinerung

v ermittelt man am einfachsten aus folgender praktischen Darstellung:

oo omax {¢(1-y), Gy}

Danach gilt

€1
el —p) =cy bzw. y=y*=——.
¢+ ez

Damit ist die optimale Strategie y* des Spielers 2 bestimmt.

. Wir berechnen v:

* : C1C2
v=cy* =l =y = ———.
¢+ e

. Ermittlung der Strategien x’, x”” des Spielers 1:

Ausgangspunkt ist der Wert des Spieles
cica ci(x — y*) fir x = y*,

c(p* — x) fiir x < y*,

v =

=" = F(x,y% =
A (x, y*) {

Fiir x = y* gilt
€1 €1C2
c|x — — =—
[ ) ¢+ ¢y

dhx=1
Analog folgt fiir x < y*

€1 €1C2
G X = —,
¢y + ¢z [ S

d. h. x = 0. Bilden wir jetzt die 1. Ableitungen

OF(x = 1,5) oe(1 =) |
= | =—¢; <0,
oy =y o [y=pm
F(x = 0,) | dczy
—_— = =c, >0,
oy ly=p 0 ly=ys .
so erhalten wir
x'=1, X" =0.
. Wir ermitteln aus der Gleichung
OF(x', AF(x"",
o ', ) 20— ", y) o
W y=p W y=y

39
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das «, d. h., fiir unser Beispiel gilt

C2

ac; + (1 —a)(—c)) =0 oder o = ————.

¢+ e

Daraus ergibt sich, daB der 1. Spieler eine gemischte optimale Strategie hat:

X =1 x"=0
P = C2 C1

ety et

Wir kommen zu folgenden optimalen Ergebnissen: Der Verteidiger verteidigt das Objekt 1 mit einer

[+
Starke von y = —c—-i—l—c_ Einheiten und entsprechend das Objekt 2 mit einer Stirke von
1 2
C2
¢+ ez

Einheiten. Der Angreifer wechselt seine Strategie. Das Objekt 1 greift er mit der ganzen Einheit
mit Wahrscheinlichkeit von

C2
¢+ e
und das Objekt 2 mit der entsprechenden Wahrscheinlichkeit
€1
¢ +cy

iiberhaupt nicht an.

2.5.2.  n-Personen-Nullsummenspiele

Wir wollen noch kurz einige Bemerkungen zur umfangreichen Theorie der n-Per-
sonenspiele machen.

Frither wurde schon der Begriff des nichtkooperativen Spiels eingefiihrt, jedoch
mathematisch abstrakt und fiir den Praktiker nicht geeignet. Deshalb eine andere
Definition:

Definition 2.10: Ein n-Personenspiel heifit nichtkooperativ, wenn keinerlei Ab-
sprachen iiber Verhaltensmafregeln im Spiel oder iiber die Verteilung des Gewinns
zwischen den Spielern vorliegen; sonst spricht man von einem kooperativen Spiel.

Fiir das nichtkooperative n-Personenspiel
G = (L {Si}ier, {Fi}ier)
gilt beziiglich der Gleichgewichtssituationen der Spieler der folgende Satz:

Satz (von Nash): Jedes nichtkooperative endliche n-Personenspiel hat eine Gleich-
gewichtssituation in gemischten Strategien.

Der Satz von Nash ist offenbar eine Verallgemeinerung des Hauptsatzes fiir
Matrixspiele. Allgemein lassen sich diese Gleichgewichtssituationen sehr schwer
bestimmen, es ist bisher nur fiir bestimmte Drei- und Vierpersonenspiele gelungen.
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Fiihrt man die Verallgemeinerung in der Richtung fort, daB wirein nichtkoopera-
tives n-Personenspiel mit n — oo betrachten, so gilt folgender Satz:

Satz 2.6: Das Spiel G = {I,{S:}ier, {Fi}ier) mit |I| = co besitzt keine Glezchge-
wichtssituation.

In den Anwendungen sind die kooperativen Spiele die wichtigeren. Wir betrachten
ein n-Personenspiel, bei dem Koalitionsabsprachen mdglich sind, und bezeichnen
mit

I = {1, ...,n} die Menge der Spieler insgesamt,

K  die Menge der Spieler, die sich zu einer Koalition zusammengetan
haben (K < I),

v(K) den Gewinn der Koalition K.

Gehen wir von einem nichtkooperativen endlichen n-Personenspiel G = {Z, {S } e,
{F;};er) aus und nehmen wir an, daB sich k. Spieler zu einer Koalition K zusammen-
schlieBen, K = {i,, is,..., i}, so muB man damit rechnen, daB die iibrigen Spieler
eine Gegenkoalition 7\K bilden und im Endeffekt sich nur noch zwei ,,Koalitions-
spieler* gegeniiberstehen. Auf diese Art und Weise entsteht fiir jede Koalition K ein
antagonistisches Spiel, wegen der Endlichkeit sogar ein Matrixspiel, das wir mit Gg
bezeichnen wollen.

Ist K={ij,....,0}, so ist Sx = {s;, ..., 83} mit 5, €Sy, ..., s, €Sy, eine Stra-
tegie der Koalition K (des Spielers K), und die Menge aller Strategien von K bezeich-
nen wir mit yg.

Genauso gilt fiir die Koalition 7\K:

NK ={j1a~~-,jr}> I+k=n,
Snk = {8,, ..., 5} mit 5;,€8;,,...,5,€8;, ist eine Strategie von I\K,
ynk ist die Strategiemenge des Spielers 1\K.

Wie fiir alle Matrixspiele interessiert auch hier der Begriff der gemischten Erwei-
terung. Unter der gemischten Strategie der Koalition K (der Koalition 7\K) versteht
man die Wahrscheinlichkeitsverteilung {iber die Strategiemenge yx bzw. yx, etwa
px bzw. gy k. Fiir die Gewinnfunktion F des Spieles G gilt:

F(Sk, Snk) = F(Siys vos Sis Sjys s 1) = F(s) = %Fi(s)’
i€,

wobei F(s) die Gewinnfunktion des Koalitionspartners i (i € k) bei der Situation
se S im Spiel G ist. Gewinnt die Koalition K den Betrag F(s) = 2 F(s), so erhalt
die Koalition J\K den Betrag — Z F(s) .

Fiir jede beliebige Koalmon K entsteht demnach aus dem Spiel G = {J,
{Si}ier {Fi}iery das Matrixspiel Gx = {yx, vnx, F(s)», und da fiir Matrixspiele die
Ermittlung der Losung recht einfach erfolgt, wollen wir das fiir die weiteren Be-
trachtungen zur Ermittlung der optimalen Strategie ausnutzen.

Definition 2.11: Wenn das Spiel G fiir eine beliebige Koalition K (K < I) einen Wert
hat, der von K abhdngt, so heifit dieser Wert die charakteristische Funktion des Spiels G.
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Bezeichnet man den Wert des Spieles G mit v(K), so gelten folgende Eigenschaften:
1.v(®) = 0,
2.K;,K;, ..., K. eImit K, K; = 0 fiir i # J, so ist
WK, UK U . UK 2 oK) + oK) + ... + (K,
3. Ist G ein Konstantsummenspiel mit der Gewinnsumme ¢, so ist v(I) = ¢, und es
gilt fiir jede Koalition K = I: v(K) + v(I\K) = ().

Definition 2.12: Die charakteristische Funktion v heifst additiv, wenn v(KJ L)
= u(K) + o(L) mit KN L = 0 ist.

Notwendig und hinreichend fiir die Additivitit der Funktion v ist, da
Z,”(i) = u(I)

ist. Kooperative Spiele mit additiver charakteristischer Funktion heiBen unwesent-
liche Spiele (unwesentlich deshalb, weil die Koalitionsbildung nicht zu einem Mehr-
gewinn fiihrt), alle anderen heiflen wesentlich (vgl. das Bsp. S. 38).

Definition 2.13: Die charakteristischen Funktionen v und v’ heiflen strategisch dqui-
valent, v ~ v/, wenn fiir ein beliebiges k > 0 reelle Zahlen c; (i € I) existieren, so daf

v(K) = kv'(K) + X ¢;
ieK
ist.

Sind nichtkooperative Spiele G und G’ strategisch dquivalent, so sind auch die ent-
sprechenden charakteristischen Funktionen strategisch dquivalent.

Aus dem bisher Gesagten folgt, da die Koalition K sich den Gewinn v(K) sichern
kann, wobei stets v(K) < v(J) ist. Die Spieler insgesamt bekommen den Gewinn
v(I), und es bleibt die Frage offen, wie dieser Gesamtgewinn unter den » Spielern zu
verteilen ist. Bezeichnen wir das kooperative Spiel G mit G = {Z, v}, so gilt:

Definition 2.14: Unter einer Verteilung im Spiel G = (I, v) verstehen wir einen n-
dimensionalen reellen Vektor p = (py, ..., p,) mit
Lp zu(@), iel

(v(i) ist der Wert des Spielers i€ I, den er sich in jedem Falle selbst sichern kann,

ohne Teil einer Koalition zu sein),
2.3 pi = o).

iel

Da die Verteilung im Spiel G = {/, v) nicht eindeutig ist, ist natiirlich jeder Spieler
bestrebt, iiber gewisse Vorzugsrelationen die fiir ihn giinstigste Verteilung zu er-
mitteln.

Definition 2.15: Eine Verteilung p dominiert beziiglich der Verteilung q in der
Koalition K, p > q, wenn

LY pi £ v(K),

€K
2.p;i > q;, iek,
gilt.
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Daraus resultiert der von Neumann-Morgensternsche Losungsbegriff.

Definition 2.16: Eine Liosung des Spieles G = {I,v) ist eine Menge & von Ver-
teilungen von G mit den Eigenschaften:

1) Zu jeder Verteilung p ¢ & existiert eine Verteilung q € &, so daf q > p.
2) Keine Verteilung aus & dominiert beziiglich einer anderen Verteilung aus &.

Zur Bestimmung der Losung des Spiels G = (I, v) ist folgender Satz von Be-
deutung:

Satz 2.7: Zu jedem wesentlichen Spiel G = {I,v) gibt es genau ein strategisch
dquivalentes Spiel G' = (I, v"), fiir dessen charakteristische Funktion gilt

v(i)=10 (i=1,...,n) und vV(I)=1.

Wir sprechen von der 0-1-reduzierten Form eines kooperativen Spieles. Mit
Hilfe der O-l1-reduzierten Form (strategischen Aquivalenz) ist es mdglich, die
Losung eines kooperativen Spieles G anzugeben.

Wir betrachten ein 2-Personenspiel:

Y1) =0, @ =0, vl)=v{l2})=1.

Daraus folgt sofort, daB3 jedes 2-Personen-Konstantsummenspiel ein unwesentliches
ist, denn aus v'(1) + v'(2) = v'(1,2) = ¢ ergibt sich v'(2) =v'({1,2}) — v'(1)
=1 — 0 =1, was nach Satz 2.7 unmdglich ist. Unwesentliche Konstantsummen-
spiele lassen sich wie Matrixspiele 16sen.

Fiir ein 3-Personenspiel gilt: v'(1) = v'(2) = v'(3) =0, v'({1,2}) = ({1, 3})
=0({2,3}) =1 (wegen o({1,2}) =0v({l1,2,3}) —v(3) =1—-0=1, usw.), v'()
= v'({1, 2,3}) = 1, d. h,, fiir 3-Personen-K onstantsummenspiele existiert eine Klasse
von wesentlichen Spielen, und fiir diese gilt

Satz 2.8: G = {I,v) sei ein 3-Personen-Konstant. spiel, fiir d 0-1-
reduzierte Form die charakteristische Funktion v' die oben angegebenen Bedingungen
erfiillt, dann gibt es die folgenden Losungen:

L, = {(0’ 39, %0,%), (% 4 0)}

L) = Menge aller Verteilungen (p,,p,, ps)
mitp; = ¢, wobei 0 < ¢ <+ (i=1,2,3)ist.

v. Neumann-Morgenstern bestimmten zuerst simtliche Losungen fiir die allgemeinen Drei-
personenspiele sowie fiir gewisse Klassen von 4-Personenspielen. Die Theorie der kooperativen Spiele
entwickelte sich zur Theorie der Dominanzrelationen. Eine allgemeine Losungsmethode existiert
nicht.
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3.1.  Problemstellung

Statistische Spiele (wir wollen nur endliche Spiele betrachten) sind modifizierte
Formen von Zweipersonennullsummenspielen. Bei antagonistischen Spielen, ins-
besondere bei Matrixspielen, kann man relativ leicht mit Hilfe des Minimax-Theorems
(siche Hauptsatz fiir Matrixspiele) die optimalen Verhaltensweisen der Spieler im
Spiel bestimmen. Dieses Minimax-Theorem laBt sich, wie wir spéter sehen werden,
nicht nur in Fillen direkter Interessenkonflikte zwischen zwei Spielern verwenden,
sondern auch in solchen Fillen, in denen Entscheidungen angesichts von Ungewif3-
heiten gefallt werden miissen. Eine optimale Entscheidungsfindung unter Ungewif3-
heit ist der Hauptinhalt der statistischen Spiele. Ausfiihrlicher heiBt das: Ein Mensch
soll eine Entscheidung fillen, also ein Element aus einer bestimmten Menge Y (das
ist die Menge seiner mdglichen Handlungsweisen) auswéhlen, wobei er iiber den wah-
ren Zustand, dem er sich gegeniibersieht, im ungewissen ist. Er weiB lediglich, daB
dieser Zustand ein Element einer gewissen Menge X (wir werden diese Menge als
Menge der mdéglichen Zustinde der Natur bezeichnen) ist, sowie daB jede seiner
Handlungsweisen y e Y fiir jeden Zustand x € X der Natur zu einer bestimmten
Konsequenz fiir ihn fiihrt.

Es besteht also eine Konfliktsituation zwischen Mensch und einem fiktiven Geg-
ner, der sogenannten ,,Natur®. LaBt sich die vom Zustand der Natur und den Hand-
lungsweisen des Menschen abhidngige Konsequenz als Gewinnfunktion darstellen,
so ist es verniinftig, diese Problematik als Spiel zu formulieren, genauer als ant-
agonistisches Spiel G = (X, Y, F).

Es ist natiirlich hierbei zu bedenken, dal man die Natur nicht ohne weiteres als rationalen Gegner
auffassen kann, dessen Ziel es ist, die Gewinnfunktion F zu maximieren und damit dem Menschen
den gréﬁtméglichen Schaden zuzufiigen. Trotzdem hat es sich als sinnvoll erwiesen, das Minimax-
Prinzip als ein mogliches Prinzip des rationalen Verhaltens fiir den Menschen zu benutzen, gerade
weil durch die Annahme, daf3 die Natur als rationaler Gegner auftritt, das Risiko einer Fehlentschei-
dung minimal wird. Es sei an dieser Stelle bemerkt, daB mehrere Autoren das Minimax-Kriterium
als ,,pessimistisches Kriterium* ablehnen und durch subjektive Faktoren die Zustinde der Natur
abzubilden versuchen, jedoch ist kein Beweis erbracht, daB diese Kriterien realistischer sind als das
Minimax-Kriterium.

Spiele, die die Konfliktsituation Natur-Mensch beschreiben, heiflen Spiele gegen
die Natur oder statistische Spiele. Bevor wir zur Analyse statistischer Spiele kommen,
werden einige notwendige mathematische Begriffe eingefiihrt. Gegeben sei eine
Funktion ¢, die auf dem Produktraum X x Y definiert ist. Dann wollen wir unter
der Funktion g, fiir jedes y € Y eine Funktion verstehen, die auf X definiert ist, so
daB

@i(x) = p(x,y) firallexeX
ist.

Definition 3.1: Gegeben seien die Funktionen ¢ und f, wobei die obige Definition
von ¢ beziiglich f erhalten bleibt und f(z) fiir alle z € Z definiert ist. Dann versteht man
unter der Komposition der Funktionen ¢ und f, geschrieben ¢ of, die Funktion h,
so dap3 fiir alle ze Z

h(2) = ¢lf(2)]
gilt.
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Definition 3.2: Unter einer Teilung des Raumes Z verstehen wir eine Zerlegung der
Menge Z in gegenseitig disjunkte Teilmengen Z,;, deren Vereinigung die Menge Z ist.
Eine Teilung wird durch das Symbol S gekennzeichnet und die Menge aller Teilungen
durch ©.

Eine Funktion f, die auf Z definiert ist, bestimmt eine Teilung S, von Mengen Z;

mit
Z,={zIfle) =1}

3.2. Stichprobenraum, Strategienraum der Natur und des Statistikers

Grundlage jedes statistischen Spiels ist der sogenannte Stichprobenraum, der alle
moglichen Ergebnisse eines Experimentes beschreibt. Der Stichprobenraum dient
dem Statistiker (Mensch) als Informationsmenge iiber die Zustinde der Natur, d. h.,
der Statistiker erhélt durch’ Experimentieren die Mdoglichkeit, die Natur ,,auszuspio-
nieren®, und die Art und Weise dieses Spionierens bestimmt grundlegend die Strategie
des Statistikers.

Z sei der Raum aller moglichen Ergebnisse eines Experiments und N ein Para-
meterraum; dann kénnen wir auf dem kartesischen Produkt Z x N eine Funktion p
definieren, die fiir ein festes n € N, wir schreiben dafiir p,, ein Wahrscheinlichkeits-
maB auf Z ist, d. h., p, ist als nichtnegative Funktion auf Z erkliart mit p,(z) = 0 fiir

z¢ Zund Y p(z) = 1.
zeZ
Die Menge N kann man als Indexmenge fiir die Klasse der Wahrscheinlichkeits-
verteilungen iiber Z interpretieren.
Wir kommen nun zur mathematisch-formalen Definition des Stichprobenraums.

Definition 3.3: Es seien Z und N zwei nichtleere Mengen, und p sei eine auf Z x N
definierte Funktion, so daf p, fiir ein festes n€ N eine Wahrscheinlichkeitsverteilung
iiber Z ist. Dann heift das Tripel

R=(Z,N.p)
Stichprobenraum.

In der Theorie der statistischen Spiele stellt das Element 7 € N eine reine Strategie
der Natur dar. Demnach ist die Menge N die Strategiemenge der Natur und ent-
spricht der Strategiemenge X im allgemeinen Zweipersonennullsummenspiel. Wir
nennen die Elemente n € N auch Zustinde der Natur. Fiir einen beliebigen Zustand
der Natur #» € N kann man aus der im Stichprobenraum definierten Wahrscheinlich-
keitsverteilung p die Wahrscheinlichkeit dafiir angeben, daB im Experiment das Er-
gebnis z erreicht wird. Es gilt:

pi(2) = plz[n),  neN.
Wir fassen also die Wahrscheinlichkeit p, als bedingte Wahrscheinlichkeit auf, d. h.,
wir setzen voraus, dal das Ergebnis des Experimentes z € Z erst dann eintritt, wenn
die Natur bereits den Zustand » angenommen hat. Damit ist auch vom Standpunkt
des Praktikers ein verniinftiges Herangehen bei der Bestimmung der Informations-
menge gewihrleistet.

5 Manteuffel, Spieltheorie
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Ein wenig komplizierter ist die Struktur des Raumes der reinen Strategien fiir den
Statistiker. Wir wollen im weiteren nur den Fall behandeln, daB der Stichprobenraum
R aus einem einmaligen Experiment resultiert (auch aus 6konomischen Griinden ver-
niinftig!). Ein solches Experiment setzt sich allgemein aus einer endlichen Anzahl
von Teilexperimenten zusammen, und das Ergebnis dieser Teilexperimente bestimmt
einen endlichdimensionalen Vektor, der, wie wir spiter sehen werden, einen ent-
scheidenden EinfluB auf die Handlungsweise des Statistikers hat. Dem Statistiker
steht eine gewisse Klasse 4 von méglichen Aktionen zur Verfiigung, aus der er an-
gesichts des ihm unbekannten Zustandes der Natur ein Element zu wihlen hat (eine
Entscheidung zu treffen hat). Es muB jedoch darauf hingewiesen werden, daB dieser
Raum nicht immer der Raum der reinen Strategien des Statistikers sein muf3, denn
man kann sich gut vorstellen, daB3 die Anzahl der Strategien des Statistikers ungeheuer
wichst, wenn er jedem Ergebnis im Experiment einen Punkt a € A4 zuordnet. Deshalb
ist es sinnvoll, die Strategie als Funktion von z € Z zu definieren, und wir kommen zu
dem Begriff der Entscheidungsfunktion.

Definition 3.4: Es sei R = (Z, N, p) ein Stichprobenraum und A ein beliebiger
Raum von Aktionen. Dann heifit eine Funktion d, die auf Z definiert ist und Z auf A
abbildet, eine Entscheidungsfunktion. Die Menge D aller Entscheidungsfunktionen ist
die Menge der reinen Strategien fiir den Statistiker.

Mit Hilfe der Entscheidungsfunktion d e D 1dBt sich eine Teilung von Z in dis-
junkte Teilmengen erreichen, d. h., die Funktion d(z) bestimmt die Teilung S, von
Mengen ¢, mit

M, ={z|dz)=a}, UM =2Z.
acA

Das bedeutet wiederum, daB ein Ergebnis im Experiment in eine der Mengen 9, (a€ 4)
fallen muB, und féllt es in die Menge 9,, so wihlt der Statistiker die Aktion a.

Kommen wir nun zur Definition eines statistischen Spiels mit einmaligem Experi-
ment. Bekannt sind die Strategiemengen der beiden Spieler, N und D. Bleibt nur
noch eine Art Gewinnfunktion zu bestimmen.

Definition 3.5: R sei der Stichprobenraum und A ein beliebiger Aktionenraum. Eine
beschrinkte numerische Funktion L, die auf der Produktmenge N X A definiert ist,
heifst Verlustfunktion und wird durch den Ausdruck

L = L(n, a), (n,a)e N x A,
dargestellt.

Da wir es mit einem Entscheidungsproblem unter UngewiBkeit zu tun haben —
wir kennen nur die bedingte Wahrscheinlichkeit p,(z) fiir das Auftreten des Ergeb-
nisses z im Experiment, wenn die Natur den Zustand » angenommen hat —, miissen
wir den mittleren Verlust ermitteln, d. h., wir miissen den Erwartungswert fiir die
Verlustfunktion L beziiglich der Verteilung p, bestimmen. Die so bestimmte Funktion
heiBt Risikofunktion und ist wie folgt definiert.

Definition 3.6: Gegeben sind der Stichprobenraum R = (Z, N, p), der Aktionen-
raum A, die Strategiemenge des Statistikers D und die auf N x A definierte Verlust-
funktion L. Dann versteht man unter einer auf N x D definierten Risikofunktion den
Ausdruck

e(n, d) = 3, Lin, d(2)) pu(2).
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Die Risikofunktion g ist das Aquivalent zur Gewinnfunktion F im Zweipersonen-
nullsummenspiel, und somit gilt fiir ein statistisches Spiel

Definition 3.7: Es seien R = (Z, N, p) der Stichprobenraum, A ein Aktionenraum,
D die Klasse der Entscheidungsfunktionen und o die Risikofunktion. Dann heifit das
Spiel G = (N, D, o) statistisches Spiel.

3.3. Gemischte Strategien im statistischen Spiel

Ausgehend vom statistischen Spiel G = (N, D, o) erhélt man die gemischte Er-
weiterung I = {0, 9,5 genauso wie in einem allgemeinen Zweipersonennullsummen-
spiel. @ ist wieder der Raum der gemischten Strategien der Natur, in statistischen
Spielen nennt man ihn den Raum der a-priori-Wahrscheinlichkeitsverteilungen iiber
die Zustande der Natur, ¢ ist der Raum der gemischten Strategien fiir den Statistiker,
und g ist die mathematische Erwartung des Risikos ¢ beziiglich einer Wahrschein-
lichkeitsverteilung aus @ und einer Wahrscheinlichkeitsverteilung aus 9.

Da der Raum der a-priori-Verteilung mitunter schwierig zu ermitteln ist, geht man
den Umweg iiber die a-posteriori-Verteilung. Wir betrachten den Stichprobenraum
R = (Z, N, p). Die Menge Z der Ergebnisse eines Experimentes 1aBt sich mittels
einer Teilung S, in disjunkte Teilmengen zerlegen. Die Teilmenge S nennen wir Er-
eignis des Stichprobenraums, und die Wahrscheinlichkeit fiir das Eintreten des Er-
eignisses S ist gegeben durch

Py(S) = glspn(z}

Zur Bestimmung der a-posteriori-Wahrscheinlichkeitsverteilung und des a-posteriori-
Risikos bendtigt man den Begriff der bedingten Wahrscheinlichkeit und der bedingten
Erwartung (vgl. Band 17, Abschn. 2.2.3.1,, S.29, und Abschn. 2.3.7.3., S. 87).

Definition 3.8: S sei ein Ereignis im Stichprobenraum R = (Z, N, p) und f(z) eine
iiber Z definierte Zufallsvariable. Fiir irgendein n € N heifst der Ausdruck

f(2) pu(2)
E(fIS) = 3 LB
U9 = 575s)

die bedingte Erwartung von f bei gegebenen S und n, wobei
Zslf(Z)Ipn(Z) < ®

sein mufs.

Definition 3.9: Im Stichprobenraum R = (Z, N, p) hat fiir irgendeine Teilung aus
© die Zufallsvariable h(z) = ¢ o f (Komposition der Zufallsvariablen f und @) fiir alle
z€ S € & den konstanten Wert

h(z) = Ef]S) = EA/f]€).
Definition 3.10: Es sei g eine Zufallsvariable in R. Durch g seien die Mengen I,
= {z| g(z) = a} in Form einer Teilung S, bestimmt. Fiir ein festes ne N heift die Zu-
fallsvariable E,(f]S,) = E,(f|g) bedingter Erwartungswert von f bei gegebenem g.
Kommen wir wieder zum Spiel G = (N, D, ¢) mit der gemischten Erweiterung
I" = (0,9,0). Gegeben sei eine a-priori-Verteilung & € ©. Gesucht wird eine Verteilung

5%
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ge iiber Z x N, die fiir das Ereignis Z x {n}, ne N, die Wahrscheinlichkeit &(1)
und fiir das bedingte Ereignis {z} x N/Z x {n}, ze Z, die Wahrscheinlichkeit
p (z/n) hat. (Das Ereignis {z} x N wird unter der Bedingung betrachtet, daB das
Ereignis Z x {n} bereits eingetreten ist.) Anders ausgedriickt, wir suchen einen Stich-
probenraum R’ = (Z x N, 0, p), der die Eigenschaft hat, daB
(6] 0(Z x {n}) = &(n)

fiir alle ze Z, ne N und & € @ ist und
?2) fir &(n) > 0

0:({z} x Njz x {n}) = p(z/n) gilt,

wobei fiir irgendein Ereignis S C Z x N
0:(8) =% gz, n)
(z,m)eS

ist.
Esseien S C Z' = Z x N und Qg(S) > 0. Fiir eine auf Z’ definierte Zufallsva-
riable f gilt nach Definition
> f2") g(2)

__ z'eS
RIS = "o

Fiir f(z') = 1 mit einem bLestimmten z' € Z x N (fiir alle anderen z’ ist f(z') = 0) er-
hilt man fiir das Ereignis S = {z} x N:

> f7) q:=")
z’eS

0«(S)
Sz 1) gelz, )

@De{zh x N

E(f]S) =

2 qe(z, 1)
(@ie{z} x N

_ _an
> qz,1)
ieN B
Nach dem Multiplikationstheorem der Wahrscheinlichkeitsverteilung ist
45(z, n) = p(z/n) &(n),
und wir erhalten

EUlS) = PEmED

iEZI.V p(z/i) &)

£,(n) ist die bekannte a-posteriori-Wahrscheinlichkéitsverteilung (Bayessche Formel).
Nun sei f(z') = L(n, d(z)) mit de D und S e{z} x N, dann erhalten wir

% L0, d@) pleln) 00
EUIS) = =—s7emem
neN

=2 L(n, d(2)) &(n) = r(d).
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rAd) heiBt bedingte oder a-posteriori-Risikofunktion. Wir wollen noch einige Be-
merkungen zum Raum der gemischten Strategien des Statistikers machen:

Definition 3.11: Es seien R = (Z, N, p) der Stichprobenraum, A ein beliebiger Aktio-
nenraum und 9 eine Klasse von Funktionen 6, die auf A x Z definiert sind, so daf3 é, fiir
Jedes z € Z eine Wahrscheinlichkeitsverteilung iiber A ist. Dann ist O der Raum der
gemischten Strategien fiir den Statistiker.

Aus der Definition folgt sofort, daB beim Eintreten des Ergebnisses z € Z der Sta-
tistiker die Aktion a € A mit der Wahrscheinlichkeit

0:(a) = d(a/z)
wihlt, wobei ‘diese seine gemischte Strategie wieder sinnvollerweise als bedingte

Wabhrscheinlichkeit interpretiert wird. Die Risikofunktion g ist dann folgendermafBen
definiert.

Definition 3.12: Gegeben seien wieder der Stichprobenraum R, der Aktionenraum A,
der Raum der gemischten Strategien des Statistikers 9 und die Verlustfunktion L.
Unter der (zufilligen) Risikofunktion g, die auf N x O definiert ist, versteht man den
Ausdruck

o(n,0) = ;A L(n, a) E,(0(alz)) = g{ gz L(n, a) 6(a/z) p(z[n)
mit d € 9.

Analog Bt sich die Risikofunktion g auf @ x 9 definieren.

Zur Losung des statistischen Spiels 1d8t sich das Minimax-Kriterium verwenden,
jedoch etwas abgewandelt. Wir betrachten das Spiel G = (N, D, 0> und die dazu-
gehorige gemischte Erweiterung I' = (@, 9, §>. Angenommen, der Statistiker wihlt
die gemischte Strategie d € 9. Dann gibt es nur die Alternative: entweder keine an-
dere Strategie ist besser als 0, d. h., es existiert kein 6* € ¢ mit g(n, 0*) < o(n, d) fiir
ne N, oder es existiert eine solche. Im 1. Falle bezeichnet man die Strategie d als
zuléssig, sie muf} jedoch nicht unbedingt Verwendung finden, sofern es noch gleich-
wertige gibt. Im 2. Falle wiirde d klar fallengelassen. Daraus resultiert folgendes ver-
niinftige Auswahlprinzip.

Definition 3.13: Essei G = (N, D, o) ein statistisches Spiel und I = {0O, #, 0) die ge-
mischte Erweiterung. Existiert fiir alle ne N (€ € @) keine andere gemischte Strategie
& € 9, die besser ist als 6* € 9,d. h., gibt es kein 6 mitg(n, 0) < g(n, 6*), so nennt man 6*
eine zulissige Strategie.

Alle zulédssigen Strategien bilden fiir die méglichen Zusténde die Klasse C der zu-
lassigen Strategien.

Definition 3.14: Die Klasse C von zulissigen Entscheidungsfunktionen 6 € heift
vollstiindig, wenn man fiir ein 6, das nicht zu C gehort, ein Element 6* € C finden kann mit

o(n, 6%) < a(n, 0).

Um die vollstindige Menge der zulédssigen Losungen zu erhalten, fordern wir als

Entscheidungsregel, daB das Risiko g beziiglich d € 9 zu einem Minimum wird, d. h.

o(n, 6*) = min g(n,d) fir allene N.
ded
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Diese Entscheidungsregel ging auch unter dem Namen Bayessches Losungskriterium
in die Literatur ein.

Zwischen dem Minimax-Kriterium der Matrixspiele und der Bayesschen Losungs-
formel besteht ein enger Zusammenhang. Betrachten wir ein Matrixspiel G = (X, Y, F)
mit zugehoriger gemischter Erweiterung I' = (P, Q, E), so gilt nach dem Haupt-
satz fiir Matrixspiele

v(I") = max min E(p, q) = min max E(p, q) = E(p*, q%).
peP  ¢eQ q€Q  peP

Auf das statistische Spiel angewendet (wir betrachten nur endliche StatlthSChe Spiele),
erhdlt man demnach

v(I") = max min o(&,0) = min max 0(&, 0) = p(&*, 6%).
0

Ist £* eine bekannte a-pr10r1 Vertellung uber d1e Zustinde der Natur (natiirlich kann
diese Verteilung durch eine a-posteriori-Verteilung 5* ersetzt werden!), die statistisch
ermittelt wurde und als fiir den Statistiker ungiinstig interpretiert wird, so gilt

min p(£*,0) = min (&, 0)
e oed
oder
min g(&*,0) = max min g(¢,0) = min max 3(¢, o),
ded éeO ded et &e0

d. h., Minimax-Lésung und Bayes-Losung sind dquivalent.

Es wurde schon zu Anfang dieses Kapitels bemerkt, daB das Minimax-Kriterium ein iibertrieben
vorsichtiges Kriterium ist,und zwar dadurch, daB man die Natur als rationalen Gegner auffaf3t, dessen
Ziel auf maximalen Schaden des Spielers (Statistikers) gerichtet ist. Diese iibertriebene Vorsichtigkeit
wird durch das Bayes-Kriterium ausgemerzt, indem &* € O statistisch ermittelt wird. Es gibt noch eine
Reihe anderer Kriterien, die auf verschiedene Arten versuchen, den Mangel des Minimax-Kriteriums
auszugleichen, etwa das Maximax-Kriterium, das Hurwicz-x-Kriterium, das Laplace-Kriterium und
verschiedene Ableitungen dieser. Jedoch soll auf diese Kriterien im einzelnen nicht eingegangen
werden.

Zusammenfassend sei noch einmal der Zusammenhang zwischen Matrixspiel und
endlichem statistischem Spiel mit einmaligem Experiment angegeben:

Matrixspiel Statistisches Spiel

Spieler 1 Natur

Spieler 2 Statistiker
reine Strategie x Auswahl des wahren Elementes
des Spielers 1 n durch die Natur
Menge X der reinen Strategien Menge N der Zustinde der Natur
fiir Spieler 1
reine Strategie y des Spielers 2 Auswahl einer Entscheidungsfunktion d

durch den Statistiker

Menge Y der reinen Strategien Menge D aller méoglichen Ent-
fiir Spieler 2 scheidungsfunktionen d
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Matrixspiel Statistisches Spiel
Gewinnfunktion F(x, y) Risikofunktion g(n, d)
Gemischte Strategie p des Spielers 1 a priori (a posteriori)
Verteilung & (&,) iiber N
Gemischte Strategie g des Spielers 2 Wabhrscheinlichkeitsmal3 &
Minimax-Kriterium z. B. Bayes-Kriterium

Beispiel: Als Beispiel fiir ein statistisches Spiel diene ein Modell aus der Verkehrsplanung. Ge=
geben sei ein offentliches Personennahverkehrsnetz mit # Linien, das von m Bussen befahren werden
soll. Es ist vorausgesetzt, daB die Linienfithrung unvereinbar sein soll. Gefragt wird nach der An-
zahl der Busse, die eingesetzt werden muB, damit die Bediirfnisse der Bevolkerung befriedigt werden
und dem Betrieb ein maximaler Nutzen entsteht.

Zunichst bestimmen wir den Stichprobenraum: Wir betrachten einen bestimmten Zeitraum 7.
Dann kann eine Linie zu einem Zeitpunkt 7 € T entweder von keinem, einem oder mehreren Bussen
bedient werden. Wir sagen dafiir: Die Linie wird nullfach, einfach ... oder s-fach bedient. Bei n Linien
gibt es demnach (s + 1)" mogliche Ergebnisse, d. h., Z besteht aus (s + 1)" Elementen. Das Eintreten
jedes Ereignisses ist fiir einen beliebigen Zeitpunkt 7 € T zufallsbedingt. Die Elementarereignisse der
Menge Z bezeichnen wir mit Z*) (v = 0, 1, ..., 5). Dabei bedeutet Z(*), daB die i-te Linie zur Zeit
te T v Busse bendtigt (v = 0, 1, ..., 5). Die Ereignisse Z,(”) (i =1, ..., n) bilden fiir jedes i = 1, ..., n
ein vollstiandiges System. Die Elemente der Menge Z kann man aus den Elementarereignissen Z,(”)
bestimmen. Fiir das Ereignis, daB genau die ersten k, Linien keinen Bus, die ndchsten k; Linien einen
Bus, ..., und schlieBlich die letzten k¢ Linien s Busse bendtigen, kann man dann schreiben:

s
€0) ( (1 ( :

2= 2O ZOZe o Bess o Bttt e By i T = .

i=
Um alle moglichen Ereignisse darstellen zu konnen, wird ein ,,Exponent* eingefiihrt, der fiir alle ¢
einen Wert der Menge M = {0, 1, ..., s} annehmen kann und die Eigenschaft hat, fiir einen bestimm-
ten Wert aus M nur das Elementarereignis stehenzulassen, welches als oberen Index den gleichen

Wert aufweist.

Es gilt also:
Z firl, =0,
ZOLiZ(l 7l = Z@P fark =1,
i i i i .
Z® firl =s.

Dann 14Bt sich die Menge Z wie folgt darstellen:
Z={ZOh .. Z®U .z Zis)ln}’

N n

wobei Y. /; = 1= 0,1, ..., n;und /; € M ist. Der Einfachheit halber bezeichnen wir die Elemente der
i=1 n

Menge Z mit z{), Z = {z{)}, wobei ! die bendtigten Fahrzeuge auf den Linien bezeichnet, > /; = /,

i=1
und 7 ein Element aus den méglichen Kombinationen von den Linien, die insgesamt / Busse bendtigen,
zu der Gesamtzahl n der Linien ist. .
Die Menge N, die Strategiemenge der Natur, besteht aus den nichtnegativen ganzen Zahlen von
0 bis ns:
N={j} mitj=0,1,...,n"s.
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Die Natur befindet sich im Zustand j, wenn j Autobusse bendtigt werden. Die Elemente der Menge N
kann man ebenfalls auf die Elementarereignisse Z§”) zuriickfiihren. Es gilt

N={N=j={ [z@h .. z®OL | ZzOh | ZOW]} mitje{0,1,..., ns}.
Httln=j

Der wahre Zustand der Natur ist uns unbekannt. Eine a-priori-Verteilung iiber die Zustinde der
Natur kann man wiederum aus den Ergebnissen des Experiments bestimmen. Ist p(*) = P(Z(")) die
Wahrscheinlichkeit fiir das Eintreten des Elementarereignisses ZEV), so erhilt man aus der eben an-
gegebenen Form der Menge N durch einige Umformungen die gesuchte Verteilung:

§=PN=))=%  pOU.pO . pOh Ol je 0, .., ns}.
U+ .tln=j

Diese Wahrscheinlichkeitsverteilung & wird als die fiir die Natur giinstigste Verteilung angesehen und
beim Bayes-Kriterium zugrunde gelegt.

Zur vollstindigen Beschreibung des Stichprobenraumes R = (Z, N, p) miissen wir noch die auf
Z x N definierte Verteilung p;(z) ermitteln (z € Z, j € N). pj(z) ist die Wahrscheinlichkeit dafiir, da3
das Ereignis Z = z unter der Bedingung, daB die Natur bereits im Zustand j ist, eintritt, d. h.

pi2)=P(Z =z|N =
Nach dem Multiplikationstheorem der Wahrscheinlichkeitsrechnung gilt
P(Z=2z,N=j))
) = ———
P(N =)

P(N = j) = &; ist bereits bekannt. Prézisieren wir das Element z € Z, indem wir wie oben die Ele-
mente von Z mit z{) bezeichnen, so gilt

n
P@) =0 furd L+ 1=j,
i=1
PZ=:,N=))=

P(Z) =z furz L=I1=j.

Dann erhélt man fiir die Wahrscheinlichkeit P(z) den Ausdruck

0 furl=j,
i) ={ P(Z = z{"
—5‘,—‘ furl =j.

Der Stichprobenraum R = (Z, N, p) ist also vollstindig beschrieben. Die Entscheidungsfunktion
d € D des Statistikers hiingt vom Ergebnis des Experimentes ab. Seine Aktionenmenge ist 4 = {0, 1,
..., ns}, d. h., der Statistiker kann von null bis ns eine bestimmte Anzahl von Bussen einsetzen. Er-
scheint im Experiment das Element zf’j € Z, so weiB der Statistiker, daB insgesamt / Busse benétigt
werden, und er entscheidet sich fiir die Aktion a = /€{0, 1, ..., ns}, d. h.

d(z,(")) = g =/ fiir alle moglichen Linienfithrungen i.

Die Menge der gemischten Strategien des Statistikers besteht aus allen Wahrscheinlichkeitsvertei-
lungen

Sd=1 fir 1€{0,1,...,ns}.

Um die Verlustfunktion ermitteln zu konnen, bendtigen wir die Kenntnis tiber den Wert W, der
von einem Kraftomnibus in einem bestimmten Zeitraum T erarbeitet wird. Ohne auf 6konomische
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Einzelheiten einzugehen, sei
W=c+v+g
mit
c: Kosten zur Beschaffung eines Busses, Instandhaltungskosten (etc.),

v: Arbeitslohn fiir das Fahrpersonal,
g: Gewinn beim Einsatz eines Busses.

Ohne Einschrankung der Allgemeinheit wollen wir annehmen, daB jeder eingesetzte Bus den gleichen
Wert schafft. Fiir / eingesetzte Busse gilt dann

Angenommen, der Zustand der Natur sei j und der Statistiker entscheidet sich fiir den Einsatz von
1 Fahrzeugen, d(z{?) = I. Der Selbstkostenpreis fiir diese / Fahrzeuge ist dann

Sy =1Ilc+ ).

Fiir / = j erzeugen die / eingesetzten Busse keinen groBeren Gewinn als j eingesetzte Busse, also nur
einen Gewinn von jg Einheiten, und wir erhalten fiir den Wert W;; den Ausdruck

Wy, = l(c + v) + jg = d@D) [c + ] + Jg.
Ist W, der wahre Wert, so erhalten wir
L=w,-W,.

Es sei d(z,m) = [ < j. Das bedeutet, wir setzen weniger bzw. gleich viel Fahrzeuge ein, wie benotigt
werden, und erhalten fiir den Wert W;:

Wy =de® w=Iw firallei.
Die Verlustfunktion ist dann
LG, d) = Wi, - W,
=d(z") [c + V] + jg
—dz) [c + v + ¢l
=(—-di)s.
Fiir d(z®) = 1 = j gilt
W, =iw,
da I Busse dieselbe Arbeit leisten wie j, und wir erhalten
LG, d) = W, — W,
v o =dEM e+ +jg—jlc+v+g)
= @G =) (e + ).
Man sieht sofort, daB fiir d(z(?) = I = j

LG, (") = 0
ist.



54 3. Statistische Spiele

Da die Strategiemengen der Natur und des Statistikers endlich sind, kann man eine Verlustmatrix
aufstellen:

L = [Lyglus,ns mit Lyg = LG, d(z)).
Die Risikofunktion erhélt' man aus der bekannten Definition

W) =3 ZL(j, d(z{") py(z),

z1We.
indem man fiir
0 fir [ %7,
pief = | PEl).
&

setzt. Ist Q@ = {z® | d(z{D) = I}, so gilt

fir I =j

. P z(i)
W)=Y LG.dePy =125
z1VeQ; 3 j
Im allgemeinen entscheidet der Statistiker unter UngewiBheit, d. h., er weiB nicht, welches Ergebnis
zur Zeit ¢ gerade eintritt. Mit anderen Worten
dizfh)=d fir zDez,
und somit gilt fiir die Risikofunktion
P(z{?)
o) =LY,
z1(DeQ; &
Zur Bestimmung der optimalen Wahrscheinlichkeitsverteilung 6(d) € &, betrachten wir die Risiko-
funktion in Abhéngigkeit von & und d(d).
e =3 T eGd) £ ).
N

z1VeZ je

= L(j,d).

In unserem Problem ist
dzP) = def0,1,...,ns},
N=je{0,1,..., ns},

und es folgt

0E) =3 ¥ o, dE0d) =3 X LU, d)&,0(d).
d=0j=0 d=0j=0

Nach dem Bayes-Kriterium erhalten wir folgendes lineare Optimierungsprogramm
0(£,0) —» min
unter der Bedingung

ns
> od)=1, dd)z0.
d=0

ns
Die GroBen 'y, L(j,d)&; sind bekannt; wir bezeichnen sie mit
j=0

J

ns
wEd) =3 LG, d)E;
=0
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und erhalten fur die Risikofunktion

s

n.
9, 0) = 3 v(& d)od).

Aus der Theorie der linearen Optimierung 148t sich leicht die Lésung ermitteln. Die optimale Losung
lautet

X wE D) OG) = v(& d%)
0

mit )
WE,d%) = min (&) und 0@ = 1.
i=0

Der Statistiker entscheidet also mit der Wahrscheinlichkeit 1, d. h. mit Sicherheit den Einsatz
von d* Autobussen.

Wir betrachten zum AbschluB} ein Verkehrsnetz mit 7 Linien:

Linie 1 2 3 4 5 6 7
Busabstand 60 60 60 15 30 30 6
(min)

Lange (km) 184 154 11,2 58 60 72 108
Fahrzeit 47,5 46,2 336 174 18,0 21,6 324
(min)

Hieraus kann man leicht die Wahrscheinlichkeiten p{*) errechnen:

=02  pP=04  pP=08 =06 PP =02
PO =0217  p®=0267 pP =078 pP=0733 PP =05
PO =043 pP=0 P =0567 pP =0 P9 =05
=0 P =08

alle anderen p{") = 0.

Daraus ermittelt man die Verteilung & = {£;} mit j€ {0, ...,42} [n = 7, s = 6]:

fo=...=6& =0
&6 =0,0008
&, =00115
&g = 10,0666
& =0,1980
&0 = 03178
&1 =0,2756
&2 =0,1143
&3 =0,0156

Sla=..=6,=0

42
> & = 1,0002 (durch Rundungsfehler)
ji=1
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Sindec+v=2und g =1, so Kénnen wir die Verlustmatrix aufschreiben. Wir betrachten allerdings
nur den uns interessierenden Teil j, d = 6, ..., 13.

N 0,6 7 8 9 10 11 12 13,42

0
6 0 2 4 6 8 10 12 14
7 1 0 2 4 6 8 10 12
8 2 1 0 2 4 6 8 10
9 3 2 1 0 2 4 6 8
10 4 3 2 1 0 2 4 6
n 5 4 3 2 1 0 2 4
12 6 5 4 3 2 1 0 2
13 7 6 5 4 3 2 1 0
42

Wir bestimmen jetzt

WEd) = 3 LG,
- =0

Aus der Verlustmatrix ist ersichtlich, daB »(&, d) fird = 0, ..., Sund d = 14, ..., 42 immer groBer ist
als der kleinste Wert fird = 6, ..., 13

»(&, 6) = 4,1829 »(£,10) = 1,2888
v(§,7) = 3,1851 »(&, 11) = 2,0727
»(&,8) =2,2218 »(&,12) = 3,6834
»(§,9) = 1,4583 »(§, 13) = 5,6370,

2

min (£, i) = »(§, d*) = »(§, 10),

i=0
d. h. d* = 10. Der Statistiker entscheidet sich also fiir den Einsatz von 10 Bussen. Sein durchschnitt-
licher Verlust betrigt »(£, d*) = 1,2888 Einheiten.

3.4.  Sequentialspiele

Statistische Spiele mit einmaligem Experiment sind eine sehr spezielle Klasse in
der Theorie der statistischen Spiele. In der Praxis, z. B. in der Versuchsplanung, fiihrt
der Statistiker mehrere Versuche durch und entscheidet auf Grund der Information,
ob das Experiment gestoppt werden soll und eine Entscheidung mdéglich ist oder ob
weitere Beobachtungen durchgefiihrt werden miissen. Im allgemeinen ist die Frage
der Weiterfiihrung der Versuche eine Kostenfrage, und der Statistiker muB bei jeder
Beobachtungsstufe erwigen, inwieweit eine weitere Beobachtung seine Informations-
menge verbessern kann. Ein statistisches Spiel mit Folgetestverfahren zur Ermittlung
des Stichprobenraumes wollen wir als Sequentialspiel bezeichnen.

Um ein solches Spiel zu analysieren, stellen wir uns vor, daB wir die Anzahl der
Versuche als einheitliches Experiment betrachten, d. h. also, unser Experiment be-
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steht aus einer Serie von Teilexperimenten. Dabe1 miissen folgende Voraussetzungen
beachtet werden:

1) Die Anzahl der méoglichen Teilexperimente darf nicht eine gewisse vorgeschriebene
ganze Zahl M {iiberschreiten.

2) Die Folge, in der diese Versuche durchgefiihrt werden, wird vorher festgelegt und
ist kein Element der Strategie des Statistikers.

Unter diesen Bedingungen hat der Stichprobenraum folgende Struktur: Z ist der
Raum aller moglichen Ergebnisse im Experiment. Da sich das Experiment aus maxi-
mal M Teilexperimenten zusammensetzt, 146t sich jeder Punkt z € Z als m-Tupel
z = (21, ..., Zy) (m = M) darstellen. N sei der Raum der reinen Strategien der Natur
und p, eine auf Z x N definierte Wahrscheinlichkeitsverteilung, so gilt fiir die Dar-
stellung des Stichprobenraumes wieder das Tripel R = (Z, N, p). p,(2) ist dabei die
Wabhrscheinlichkeit dafiir, daB3 beim Zustand »n der Natur im Experiment der Ergeb-
nisvektor z = (zy, ..., z,,) erreicht wird.

Anhand dieser durch den Stichprobenraum erhaltenen Informationsmenge will
der Statistiker seine Entscheidung treffen. Ist ein Folgetestplan 7" gegeben, so kann
man irgendeine Entscheidungsfunktion 4 in eine Folge von Entscheidungsfunktio-
nen d; zerlegen, so daB fiir jedes j d; die Folge T € T in einen Aktionenraum A ab-
bildet. Dazu betrachten wir einen Punkt z € Z. Diesen Punkt z kénnen wir durch
zwei Werte charakterisieren, ndmlich durch eine ganze Zahl j = 1, 2, ..., M, die an-
gibt, welche Koordinate von z gerade beobachtet wird, und durch ein Element a € 4,
das besagt, welche Aktion der Statistiker durchfiihren wiirde, sobald die Testfolge j
beendet ist. Haben die Punkte z € Z, z’ € Z die gleichen ersten j (j = 1, ..., M) Koor-
dinaten, so werden beide Punkte durch den Wert (j, @) charakterisiert. Dann 148t
sich der Raum der sequenten Entscheidungsfunktionen wie folgt definieren:

Definition 3.15: Esseien R = (Z, N, p) der Stichprobenraum, § = {0, 1, ..., M} eine
Indexmenge, A ein Aktionenraum und T* die Menge aller moglichen Folgetestpline
mit T = (T, Ty, ..., T) €T* (m < M). D sei eine Klasse von Funktionen d die auf
S % Z definiert sind und § x Z auf A abbilden, d(j, z) = a, so daf fiir z, 2’ € Z mit
zi=2z;(1 £iZj) dj,z) = d(j,z') = agilt,dann nennt man den Produktraum T* x D
den Raum der sequenten Entscheidungsfunktionen.

Aus dieser Definition folgt, daB die Elemente (7, d) e T* x D die reinen Strategien
fiir den Statistiker im sequentiellen Spiel sind.

Als nichstes wollen wir die Risikofunktion bestimmen. Im Unterschied zu den ge-
wohnlichen statistischen Spielen muB3 man bei Sequentialspielen die Ausfithrungs-
kosten jedes Teilexperimentes beriicksichtigen.

Definition 3.16: Es seien R = (Z, N, p) wieder der Stichprobenraum und 3§ = {0, 1,
., M} eine Indexmenge, so heift eine auf' J x Z definierte nichtnegative Funktion c,
fiir die mit z, 2’ € Zund z; = z, (i = 1, ...,j) ¢(j,z) = c(j. z) gilt, Kostenfunktion.

Oft wird die Kostenfunktion proportional der Anzahl der durchgefiihrten Versuche
gesetzt, d. h. ¢(j, z) = kj fir alle z€ Z, wobei k > 0 eine reelle Konstante ist. Wir
setzen der Einfachheit halber

(s 2) = ¢,(2).
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Definition 3.17: Es seien R = (Z, N, p) der Stichprobenraum, A der Aktionenraum,
T* x D die Klasse der sequentiellen Entscheidungsfunktionen, L eine auf N x A
definierte Verlustfunktion und c eine auf § x A (3 = {0, 1, ..., M}) definierte Kosten-
funktion. Dann ist die Risikofunktion o, die auf N x T* x D definiert ist, gleich

o T.d) =3 % lei(2) + L(n, d(j, 2))] gu(2), r € 3.
Jj=02zeT;
Das Spiel G = (N, T* x D, o) heifit Sequentialspiel.

Genauso wie bei statistischen Spielen mit einmaligem Experiment kann man die
gemischte Erweiterung des Sequentialspieles G bestimmen. Als Entscheidungskri-
terium empfiehlt sich wieder das Bayes-Kriterium.
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