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Vorwort zur 1. Auflage

Viele mathematische Theorien wurden mit dem Ziele entwickelt, optimale Lösun-
gen von praktischen Problemen zu bestimmen. Auch bei der Spieltheorie handelt es

sich um ein solches Teilgebiet der Mathematik. In diesem Falle geht es um das Auf-
finden optimaler Entscheidungen unter den Bedingungen des Konfliktes oder der Un-
gewißheit.

Vor fast 50 Jahren, im Jahre i928, erschien die für die Spieltheorie grundlegende
Arbeit von J. V. Neumann [8]. Nach l6 Jahren, 1944, wurde das Buch „Spieltheorie
und wirtschaftliches Verhalten“ von J. V. Neumann und O. Morgenstern publiziert,
das mehrfach aufgelegt und ins Deutsche und Russische übersetzt wurde [9]. Schon
im Titel wird ausgedrückt, daß der Anwendung der entwickelten Methoden in der
Ökonomie besondere Beachtung geschenkt wird. Seit dieser Zeit ist überhaupt das
Bemühen spürbar, spieltheoretische Methoden u, a. in Ökonomie und Technik an-

zuwenden. Da diese Anwendungen nicht nur der Unterstützung, sondern der Mit-
arbeit besonders der Ökonomen und Ingenieure bedürfen, und die Spieltheorie z. T.
bereits Bestandteil der mathematischen Ausbildung verschiedener Fachrichtungen
ist, wurde eine Einführung in die Spieltheorie in der Reihe „Mathematik für In-
genieure, Naturwissenschaftler, Ökonomen und Landwirte“ aufgenommen.

Für Hinweise und Bemerkungen zum Manuskript möchten wir unseren Kolle-
ginnen und Kollegen Doz. Dr. M. Bliefernich, Berlin, Prof. Dr. H. Erfurth, Merse-
burg, Prof. Dr. H. Fischer, Berlin, und Dr. H. Jüttler, Dresden, vielmals danken.

Magdeburg, im Frühjahr 1976 Die Verfasser

Vorwort zur 2. Auflage

Gegenüber der l. Auflage ist der Beweis des Hauprsatzes über Matrixspiele (Ab-
schnitt 2.3., Satz 2.2) ohne Anwendung von Sätzen der Funktionalanalysis, sondern
mit Hilfe der Dualitätstheorie der linearen Optimierung geführt worden; auch der
Abschnitt 2.4. hat eine Umarbeitung erfahren.

Ferner wurden Verschiedene Hinweise berücksichtigt, für die wir den Kollegen
Prof. Dr. H. Erfurth, Merseburg, und J. Portner, Pritzwalk, danken.

Magdeburg, im Herbst 1978
Die Verfasser
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1. Spiele in Normalform

1.1. Einführende Bemerkungen, Definitionen

In den mannigfaltigsten praktischen Problemen treten Erscheinungen auf, die da-
durch gekennzeichnet sind, daß die an der Lösung dieser Probleme beteiligten Seiten
die unterschiedlichsten Ziele verfolgen. Auf natürliche Weise wird jede Seite bestrebt
sein, ihre Handlungsweise so auszuwählen, daß die Lösung des Problems in ihrem
Sinne positiv wird.

Eine solche Erscheinung wollen wir als Konflikt bezeichnen. Ein Konflikt wird nicht
wie in der Umgangssprache nur durch eine Konfrontation, durch die Lösung eines
antagonistischen Widerspruchs charakterisiert, sondern die Grundlinien eines Kon-
fliktes bestehen in den überaus mannigfaltigen Wechselbeziehungen der beteiligten
Seiten, in vernünftigen Aussagen über seine Teilnehmer, über seine Ausgänge, die
von Teilnehmerzahl und Handlungsweisen der Teilnehmer abhängen, über die Seiten,
die am Ausgang des Konfliktes interessiert sind und über die Form der Offenbarung
dieser Interessen.

Die Notwendigkeit, derartige Konfliktsituationen zu analysieren, führte zur Ent-
wicklung einer speziellen mathematischen Disziplin, der Spieltheorie. Die Theorie
der Spiele ist dem Wesen nach eine mathematische Modellierung von Konfliktsitua-
tionen. Die Spieltheorie ist demnach eine Theorie von Modellen, insbesondere mathe-
matischer Modelle, mit dem Ziel, Normen zu schaffen, wie sich die am Konflikt Be-
teiligten zu verhalten haben, welcher Ausgang des Konfliktes erreicht werden kann,
wie vernünftig, günstig und gerecht die Ausgänge sind.

Grundziel einer jeden Analyse des Konfliktes besteht in der Aufdeckung des opti-
malen (vernünftigen, gerechten) Ausganges, und alle anderen Aspekte, die einen Kon-
flikt charakterisieren, haben sich diesem Ziele unterzuordnen. Deshalb kann man die
Spieltheorie als Theorie der mathematischen Modelle mit optimaler Entscheidungs-
findung unter den Bedingungen von Konfliktsituationen beschreiben.

In ihren Anfängen benutzte man die Spieltheorie zur Beschreibung ökonomischer
Erscheinungen, und zwar unter den Bedingungen der Konkurrenzwirtschaft. Solche
Probleme werden in den sog. Anbotsmodellen (mehrere in Konkurrenz stehende
Personen kämpfen um den Auftrag oder um den Erwerb eines Gegenstandes) be-
handelt. Im Zuge ihrer Weiterentwicklung ist die Spieltheorie allerdings über diesen
Rahmen hinausgewachsen und findet ihre Anwendung z. B. in den verschiedenen
Zweigen der Ökonomie und Technik, der Militärwissenschaft und der Versuchs-
planung. Betrachten wir hierzu einige Grundmodelle:

l. Spieltheorie und Statistische Qualitätskontrolle (SQK)
In der SQK spielen einmal die Kontrollkarten und zum anderen die Stichprobenpläne eine große
Rolle. Die Aufstellung solcher Stichprobenpläne kann man mit Hilfe der Spieltheorie durchführen.
Wir betrachten folgende Situation: Es soll entschieden werden, ob ein Los von N gleichartigen
Erzeugnissen angenommen bzw. abgelehnt wird, wobei derjenige, der die Entscheidung zu treffen
hat, anhand einer Stichprobe vom Umfang n eine gewisse Information über die Güte des Loses
bekommt. Wir wollen einen solchen Plan konstruieren, mit dessen Hilfe man aus der Information
durch die Stichprobe für jedes beliebige Los eine entsprechende Entscheidung treffen kann. Als
mathematisches Modell hat man ein sogenanntes Spiel gegen die Natur (Statistisches Spiel, s. Ab-
schnitt 3.), wobei für den 1. Spieler, die „Nuatr“, die Strategie in der Wahl des Ausschußanteiles
p (0 g p g 1) liegt, und der 2. Spieler als Strategie die Möglichkeit des Ablehnens x4 bzw. An-
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l. Spiele in Normalform

nehmens x5 hat. Bezeichnet man mit L = L(p, d) die Verlustfunktion

x3 für mgk)
(d=d(m)= x4 für m>k

so kann man für diskrete p-Werte die Spielmatrix aufstellen und somit das Problem lösen.

. Spieltheorie in der Technik
Wir betrachten folgendes statische Problem: Ein Balken mit genügender Festigkeit ruhe auf zwei
Stützen, die jedoch einen beschränkten Querschnitt haben: F, + F; = 1. Es wirke jetzt eine nor-
mierte Kraft vom Betrage 1 in einem unbekannten Abstand x von der rechten Stütze auf den Bal—

ken.

PX j.

55

77777 777/777

X
Bezeichnen wir mit F, = y und F; I — y, so beträgt die Spannung in F1: 7 und in F2:

l — x

1 __

Balken tragen. Die spieltheoretische Lösung erfolgt über ein sogenanntes Spiel auf dem Einheits-
quadrat (s. Abschn. 2.5.) mit folgenden Parametern:
1. Spieler: Natur mit der Strategie x e [0, I],
2. Spieler: Ingenieur mit der Strategie y e [0, l].

. Das statische Problem liegt darin, die Stärke der Stützen zu bestimmen, damit sie den

ist die Gewinnfunktion in diesem Spiel.H(x, y) = max{ i,
y 1 -

AngrifilVerteidigungs-Spiel
Ein idealisiertes Abbild aus der Militärwissenschaft ist das Sogenannte AngriFf-Verteidigungs-Spiel:
Von einem Verteidiger V sollen n gleichartige Objekte vor einem Angreifer A geschützt werden.
Dem Verteidiger V stehen HIV Einheiten zur Verteidigung zur Verfügung, der Angreifer A besitzt
mA Einheiten. Es wird vorausgesetzt, daß jedes Objekt mit keiner, einer oder zwei Einheiten ver-

teidigt bzw. angegriffen wird und daß der Verteidiger (Angreifer) zu schwach ist, alle Objekte mit
2 Einheiten zu verteidigen (anzugreifen), d. h. Zn > my (Zn > /71,1).

Die Strategiemenge des Verteidigers bzw. des Angreifers besteht in sämtlichen möglichen Kombi-
nationen, Ziele mit 2, l oder 0 Einheiten zu schützen bzw. anzugreifen. Setzt man voraus, daß ein
Angriff von Erfolg ist, wenn der Angreifer mindestens-eine Einheit mehr als der Verteidiger ein-
setzt, so läßt sich die Gewinnfunktion als Erwartungswert darstellen, und somit ist das Modell als
Spiel vollständig charakterisiert.

Probleme der Versuchsplanung
Die Versuchsplanung ist ein mathematisches Hilfsmittel zur Modellierung technologischer und
physikalisch-chemischer Prozesse. Mit Hilfe einer endlichen Anzahl von Versuchen ist eine Regres-
sionsfunktion so zu bestimmen, daß durch sie ein unbekannter stetiger funktionaler Zusammen-
hang F = F(x„ ...,x„) zwischen einer Zielgröße F und unabhängigen Variablen x1, ...,x,, so

genau wie möglich (optimal nach gewissen Kriterien) angenähert wird. Wir können diese Proble-
matik spieltheoretisch in 2 verschiedenen Richtungen untersuchen:
a) bis zu einer bestimmten Stufe die Regressionsfunktion so genau wie möglich zu ermitteln,
b) zu entscheiden, ob nach dem k-ten Versuch abgebrochen wird oder nicht.
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Xi f1(1)
Zu a) Es seien x =[ f Je f, 3€ ist Variablenraum (Faktorraum), f(x) = ‘k '; Jmitfioc) als Mes-

x„ Ä c, fi,(x)
sung der gesuchten Funktion im Versuchi E k, c = E s6, G ist Parameterraum, und

k—l
Kot, c) = [fi,(x) ~ Z1 C,-f,-(x)] die Gewinnfunktion. 0"“

j:

Dann beschreibt das Spiel I‘ = (35, (E, K (x, 6)) die unter a) genannte Problematik. Da
die Funktion K(x, c) konvex in c ist, besitzt der Spieler 2 eine reine optimale Strategie
(s. Abschn. 2.5.).

Zu b) Angenommen, es wurde der k-te Versuch ordnungsgemäß im Sinne der Versuchsplanung
durchgeführt. Danach muß man entscheiden:
entweder a, — Durchführung des nächsten Versuches in bestimmter Richtung,

a2 — Konstruktion einer neuen Regressionsfläche,
a3 — Abbrechen des Versuches.

Die Entscheidung hängt von verschiedenen Größen ab und ist durch die Entscheidungs-
funktion de D (Menge der Entscheidungsfunktionen) gegeben. Die Gewinnfunktion ist
eine Risikofunktion g(x, d), und wir haben wiederum ein Spiel gegen die Natur:
F = (X, D, g).
Da man auf jeder Stufe eine solche Entscheidung zu treffen hat, spricht man von einem
Sequentialspiel (s. Abschn. 3.4.).

Die hier angeführten Beispiele geben selbstverständlich nur einen kleinen Einblick
in die Vielzahl der spieltheoretischen Modelle und sollen das Interesse des Lesers
auf die vielfältigen Anwendungsmöglichkeiten der Spieltheorie lenken. Die allge-
meinen Perspektiven der Anwendung der Spieltheorie sind sehr umfangreich, jedoch
wegen der Kompliziertheit der Aufgabenstellung nicht in diesem Rahmen zu disku-
tieren.

Kehren wir wieder zum Ausgangspunkt, zur mathematischen Entscheidungsfindung
unter Konfliktsituationen zurück. Zur mathematischen Modellierung von Konflikt-
situationen müssen folgende Faktoren berücksichtigt werden:

1. Es müssen unbedingt die am Konflikt beteiligten Seiten fixiert sein. In dieser Rolle
können Einzelpersonen, aber auch ganze Kollektive auftreten, wobei es durch Ver-
handlungen zwischen den einzelnen Seiten zur Bildung von Koalitionen, Gegen-
koalitionen und ähnlichem kommen kann. Diese Seiten beeinflussen unmittelbar
durch ihr Handeln den Ausgang des Konfliktes. Es hat sich hierfür der Begriff der
Handlungskoalition eingebürgert; die Menge aller Handlungskoalitionen wird mit
9,, bezeichnet.

2. Unmittelbar daran anknüpfend stellt sich die Frage, welcher Ausgang für jede
Handlung der Koalitionen erreicht werden kann. Natürlich ist jede Koalition be-
strebt, im voraus einen Verhaltensplan aufzustellen, der ihr einen in ihrem Sinne
positiven Ausgang des Konfliktes sichert. Wir sprechen von einer Strategie der
Koalition.
Die Strategie einer jeden Koalition K ist demnach ein vollständiger Verhaltensplan,
der fürjede mögliche Lage, in die die Koalition gelangen kann, ihr Verhalten, d. h.
die in dieser Lage zu treffende Entscheidung, festlegt. Die Menge aller Strategien
der Handlungskoalition K wollen wir mit SK bezeichnen.
Hat jede Koalition ihre Strategie gewählt, so nennt man das Ergebnis dieser Wahl
eine Situation im Sinne der Spieltheorie. Situationen erhält man also durch die Aus-
wahl der Strategien aller am Konflikt beteiligterLSeiten, d. h., die Situationen werden
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durch die Strategien bestimmt. Das gibt uns die Möglichkeit, die Menge aller Situa-
tionen, die wir mit S bezeichnen wollen, mathematisch als kartesisches Produkt dar-
zustellen:

S g H SK.
Kam.

(Die Menge S muß deshalb als Teilmenge des kartesischen Mengenproduktes be-
trachtet werden, weil bestimmte Situationen verboten sein können. Existieren keine
verbotenen Situationen, so gilt die Gleichheit.)

. Neben den am Konflikt unmittelbar beteiligten Seiten ist es notwendig, auch jene
Seiten aufzuzeigen, die irgendein Interesse am Ausgang des Konfiiktes haben. Man
kann sich leicht vorstellen, daß einerseits Teilnehmer am Konflikt, die Einfluß auf
seinen Ausgang nehmen, nicht unbedingt ein Interesse an seinem Ausgang haben,
andererseits Interessenten am Ausgang des Konfliktes vorhanden sind, die keine
Handelnden sind.
Als Beispiel sei ein sportlicher Wettkampf angeführt. Der Schiedsrichter, der als aktiver Teil-
nehmer durch sein Handeln das Ergebnis des Wettkampfes in bedeutendem Maße bestimmt, darf
infolge seiner Stellung kein Recht auf irgendwelche Interessen haben, der Zuschauerjedoch, der
den Wettkampf beobachtet, wird am Sieg seiner Lieblingsmannschaft interessiert sein, kann aber
den Verlauf des Wettkampfes nicht beeinflussen.
Dieser Unterschied zwischen handelnden und sich interessierenden Seiten findet
in der modernen Spieltheorie seinen Niederschlag. Da. die sich interessierenden
Seiten im allgemeinen Falle kollektiver Art sind, sprechen wir von einer Interessen-
koalition. Die Menge aller Interessenkoalitionen bezeichnen wir mit Q“.

. Um die Modellierung von Konfliktsituationen vollenden zu können, ist es not-
wendig, die Interessen (d. h. die Ziele) der Teilnehmer des Konfliktes zu beschrei-
ben. Dazu wird rein formal eine binäre Vorzugsrelation eingeführt, die für jede
Interessenkoalition K e Ru auf der Menge der Situationen S erklärt ist (geschrieben:
>K). Diese Vorzugsrelation besagt nichts weiter, als daß die Interessenkoalition K
auf das Erreichen der für ihre Interessen günstigste Situation s e S orientiert.
Für zwei Situationen s1 e S, s2 e S bedeutet s1 > K s; , daß die Interessenkoalition K
die Situation s1 bevorzugt.

Die eben aufgezeigten Faktoren gestatten uns, die allgemeine Definition eines
Spieles als mathematisches Modell von Konfliktsituationen zu formulieren:

Definition 1.1: Es seien EH die Menge der Handlungskoalitionen, SK die Stralegiemenge
der Handlungskoalition Ke QB , S die Menge der Situationen, Ru die Menge der Interessen-
koalitionen und >K eine für die Interessenkoalition K e ST, auf der Menge der Situa-
tionen S erklärte Vorzugsrelation; dann nennt man das System

G = <91!’ {Sk}ke9.‘1-1: S: ‘Qus{>k}/(E914)

ein Spiel.

1.2. Klassifikation der Spiele, Spiele in Normalform

Eine systematische Untersuchung der Spiele kann nur durchgeführt werden, wenn

man sich eine sinnvolle Klassifikation der Spiele schafft, die auf der eben angegebenen
allgemeinen Definition eines Spieles basiert. Man sollte hierbei bedenken, daß die
Spieltheorie eine verhältnismäßig junge mathematische Disziplin ist (die Anfange
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gehen auf eine Arbeit von John von Neumann‘) „Zur Theorie der Gesellschaftsspiele“
zurück, die 1928 veröffentlicht wurde) und eine einheitliche Beschreibung aller Zweige
der Spieltheorie noch nicht möglich ist,

Eine grobe Klassifizierung der Spiele läßt sich aus der Gestalt der Menge der
Interessenkoalitionen 3?“, aus der Gestalt der Menge der Handlungskoalitionen St},

und aus den Bedingungen, die für das Wirken der Vorzugsrelationen notwendig sind,
ableiten. Betrachten wir zunächst die Menge der Interessenkoaltionen fig: lst die
Menge leer, d. h. ft‘, = Ü, so hat das Spiel rein deskriptive Aufgaben, d. h., es besteht
nur in der Beschreibung des Konfliktes als solchen, ohne daß irgendwelche Seiten
auftreten, die ein Interesse am Ausgang des Konfliktes bekunden. Anders ausge-
drückt, eine Vorzugsrelation ist in diesem Falle nicht erklärt, d. h. {>-K}K e 9., = Ü,

und der optimisierende Charakter des Spiels (im Sinne der Vorzugsrelation) geht ver-

loren. Besteht 5%„ nur aus einer Koalition, mathematisch dargestellt durch den Aus-
druck |§‘,,| = l, so bekommen wir die verschiedenen Klassen der Extremalwertauf-
gaben.

Von Spieltheorie im eigentlichen Sinne des Wortes spricht man erst, wenn die Menge
der Interessenkoalitionen 5%,, aus mindestens zwei Elementen besteht, d. h. [ftp] g 2.
Man kann hierfür bestimmte Grundklassen von Spielen konstruieren, deren Betrach-
tungen im einzelnen nicht durchgeführt werden sollen. Eine Grobeinteilung erhält
man aus der Gestalt der Menge der Handlungskoalitionen 3?“.

Setzen wir im weiteren immer voraus, daß die Menge der Interessenkoalitionen S?“

mindestens zwei Elemente besitzt, so erhalten wir in Abhängigkeit von der Menge der
Handlungskoalitionen ft}, folgende Fälle:
Ist fig = Ü, d. h.‚ ist die Menge der Handlungskoalitionen leer, so haben wir ein Spiel,
in dem nichts geschieht, keine Seite durch ihre Strategien den Ausgang des Kon-
fliktes beeinflußt. Ein solches Spiel ist vom mathematischen Standpunkt uninteressant.

Für den Fall, daß die Menge der Handlungskoalitionen S?” nur aus einem Element
besteht, IRH| = l, spricht man von nichtstrategischen Spielen. Nichtstrategisch des-
halb, weil nur eine Situation existiert, die durch diese Handlungskoalition bestimmt
wird, und die Interessenten immer in dieser Situation verbleiben. In diese Klasse
fallen die (allgemeinen) kooperativen Spiele, die zuerst von John von Neumann be-
trachtet wurden.

Besteht die Menge der Handlungskoalitionen 9„ aus mehr als einem Element,
|S”E,,| g 2, so erhält man die große Klasse der strategischen Spiele.

Wir wollen uns in den weiteren Ausführungen vorwiegend den strategischen Spielen
widmen.

Gegeben sei eine gewisse Menge I, die sich aus der Vereinigung der Menge der Hand-
lungskoalitionen 9„ und der Menge der Interessenkoalitionen Q, zusammensetzt,

I=E,,UK¥,,.
Die Elemente der Menge I heißen Spieler. Führt man auf der Menge aller Situationen
S für jede Interessenkoalition K e 3%,, eine reellwertige Funktion FK ein, so nennt man
diese Funktion die Gewinnfunktion der Interessenkoalition K. Zwischen der Gewinn-
funktion FK und der im vorigen Abschnitt eingeführten Vorzugsrelation >-K besteht
ein enger Zusammenhang. Wir wissen, daß jede Interessenkoalition K e Q, bestrebt

1) John von Neumann (1903-1957), ungarischer Mathematiker, wirkte in Berlin, Hamburg, Prin-
cetou und Los Alamos.
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ist, die für sie günstigste Situation s e S zu ermitteln. Als günstigste Situation können
wir diejenige ansehen, für die der Wert der Gewinnfunktion FK für die Koalition K
am größten wird. Mit anderen Worten, für zwei gegebene Situationen s, e S, s2 e S
wird die Koalition K diejenige bevorzugen, für die der Wert der Gewinnfunktion
am größten ist. Das bedeutet mathematisch

s1>Ks2 für Kz—:§‘E,,, wenn FK(s1) > FK(s2).

Wir betrachten jetzt die Menge der Spieler I und wissen, daß für I gilt:
I = St}, U SE".

Fällt die Menge der Handlungskoalitionen 9,, mit der Menge der Interessenkoali-
tionen 8%„ zusammen, also RH E 9“, so gilt für die Menge derSpieler I:

I E 9,, E Sh.

Werden gleichzeitig verbotene Situationen nicht zugelassen, d. h., die Menge der
Situationen S ist dem kartesischen Mengenprodukt der Strategiemengen gleich,

S : H S,-,
isl

so sprechen wir von einem nichtkooperativen Spiel. Jedes nichtkooperative Spiel kann
man durch das folgende Tripel darstellen

G = <1» {Si}l'eI: {Fi}aeI>a

wobei I die Menge der Spieler, S, die Menge der Strategien des Spielers i und F,- die
Gewinnfunktion des Spielers i sind.

Ist die Anzahl der Spieler endlich, ll | = n, so sprechen wir von einem n-Personen-
spiel. Die eben beschriebene Form des n-Personenspiels nennt man nach J. v. Neu-
mann ein n-Personenspiel in Normalform.

John von Neumann entwickelte zu dieser Form ein äquivalentes, aber bedeutend komplizierteres,
allgemeines Schema eines zi-Personenspiels, das er als extensive Form des Spielers bezeichnete
und das heute in die Klasse der endlichen Positionsspiele eingeordnet wird.

Für die weiteren Untersuchungen gebrauchen wir nur die Normalform.

1.3. Optimalitätsprinzip

Nach der formalen Beschreibung eines Spiels ist es unbedingt notwendig, das Pro-
blem des rationalen oder optimalen Verhaltens des Spielers im Spiel zu analysieren.
Die Interpretation des Wortes „optimal“ ist mehr oder weniger kompliziert, denn im
Grunde genommen könnte man es mit der trivialen Bemerkung beschreiben, daß jeder
Spieler den maximalen Gewinn anstrebt.

F,(s) sei die Gewinnfunktion des Spielers i bezüglich der Situation s ; dann würde das
eben Gesagte bedeuten, daß für jeden Spieler i das Maximum der Gewinnfunktion
(sofern es existiert) zu bestimmen wäre, d. h. max F‚A(s) für alle ie I. Bei diesem Prin-

eS

zip würde der Charakter des Spiels als Modell von Konfliktsituationen verlorengehen;
denn der Konflikt wandelt sich zu einem Vergnügen, bei dem jeder Spieler ein Maxi-
mum an Genugtuung erhält. Aber unabhängig davon muß man das Kriterium ver-

werfen, denn nur in ganz speziellen, seltenen Fällen nehmen alle Gewinnfunktionen
F‚v(s) für ein und dieselbe Situation s e S ihr Maximum an.
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In den meisten Fällen werden die Spieler an der Schaffung verschiedener Situatio-
nen interessiert sein. Daraus resultiert, daß jeder Spieler nicht nur seine eigenen Hand-
lungsmöglichkeiten analysieren, sondern auch die Möglichkeiten seiner Partner im
Konflikt studieren muß. Wählt z. B. der Spieler i (i e I) die für ihn günstige Strategie
s, aus seiner Strategiemenge S,~, so muß er damit rechnen, daß ein Gegner, etwa der
Spieler j (j e I), diese Strategie als eine Bedrohung für sich erkennt und Gegenmaß-
nahmen seinerseits durch die Auswahl einer Antwortstrategie s, e S, einleitet. Mit
anderen Worten wird sich bei einem n-Personenspiel jeder Spieler mit seiner Stra-
tegiemenge und der seiner Mitspieler auseinandersetzen müssen, in deren Ergebnis
eine Situation erarbeitet wird, die jeder Spieler akzeptiert und von der kein Spieler
abweichen will. Ein solches Verhalten der Spieler führt uns zum Begriff des Gleich-
gewichtspunktes bzw. der Gleichgewichtssituation.

Wir betrachten eine Situation se S. Nach Definition erhält man die Menge der
Situationen S aus dem kartesischen Mengenprodukt der Strategiemengen S, der
Spieler ie I, S = H Si. Wir können demnach die Situation s e S wie folgt darstellen:

ieI .

s = (s1, s2, ...‚s‚-‚ ..., s„), wobei s, e S,- für ieIist.

Ändert der Spieler i e I seine Strategie, wechselt er von der Strategie s, e S, zur Stra-
tegie s,’ e Si, so wird diese Veränderung folgendermaßen beschrieben:

5 51i = (S12 527 my Si-l s 5:)‘: 5t+ia "-5 Sn)‘

Damit läßt sich der Begrifi’ der Gleichgewichtssituation definieren.

Definition 1.2: In einem n-Persanenspiel G = <I,{S,},-E1, {FJH} heißt eine Situa-
tion s = (S1, ..., s„) e S Gleichgewichtssituation des Spieles, wenn für alle i e I

Fi(5 ä Fi(s)

gilt. Die zur Gleichgewichtssituation s gehörende Strategie s, des Spielers i heißt dann
Gleichgewichtsstrategie des Spielers i (i e I),

Da die Gleichgewichtssituation von einem Strategien-n-Tupel beschrieben wird,
spricht man oft vom Gleichgewichtspunkt. Eine Gleichgewichtssituation ist eine Ver-
haltensvorschrift für alle Spieler. Weicht beispielsweise der Spieler i von dieser Ver-
haltensvorschrift ab, die anderen Spieler dagegen beachten sie, so folgt aus der Defi-
nition, daß der Spieler i keinen größeren Gewinn zu erwarten hat, meist wird ihm diese
Abweichung Schaden zufügen. Eine solche Situation wird Von den Spielern als opti-
mal anerkannt, und es existieren seitens der Spieler keine Motive, von der so festge-
legten Situation abzuweichen. Somit stellt ein Gleichgewichtspunkt ein stabiles Ver-
halten der Spielergesamtheit dar.

Wir wollen als Lösung eines n-Personenspiels ein System von Handlungsweisen
der Spieler im Spiel verstehen, das in sich eine Art Gleichgewicht und Stabilität be-
sitzt. Das entspricht genau der Bestimmung der Gleichgewichtssituationen, und in
eben dieser Bestimmung liegt unser Optimalitätsprinzip. Wir werden demnach die
Gleichgewichtsstrategien als optimale Strategien bezeichnen.

Eine wichtige Frage besteht in der Existenz solcher Gleichgewichtssituationen.
Wir wollen die Frage nicht im voraus beantworten, sondern die Existenz im Verlaufe
der Betrachtungen der verschiedenen Spiele soweit wie möglich beschreiben. Zuvor
noch einige einfache Definitionen:
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Definition 1.3: Ein n-Personenspiel in Normalform G = (I, {S,},5,, {IHM} heißt
endlich, wenn alle Strategiemengen S, (i e I) endlich sind.

Definition 1.4: Zwei n-Personenspiele G, = (I, {S,},E,, {F,};E,) und G2 = (1, {S‚}‚-E„
{FQ},-E1) mit F,’»(s) = a,F,»(s) + b, (a. > 0,b‚ beliebig undreelleZahlen) heißen äquivalent
zueinander.

Diese Aquivalenzrelation führt, wie wir später sehen werden, zu gewissen Vorteilen
bei der Lösung von Spielen, denn die Gleichgewichtssituationen in äquivalenten
Spielen sind gleich.

Definition 1.5: Das Spiel G = (I, {S,},»E,, {F,},.e,) heißt Konstantsummenspiel, falls
eine Zahl c existiert mit

‘n_,jF,(s)=c, seS.
i=1

Ist c = 0, so spricht man von einem Nullsummenspiel.

Besteht die Spielermenge I nur aus zwei Elementen, I = {l, 2}, so sprechen wir
von einem Zweipersonenspiel. Eine interessante Klasse von Zweipersonenspielen sind
die Zweipersonennullsummenspiele, für die gilt

2

§lF,(s) = 0 oder F1(s) = —F2(s).

Solche Zweipersonennullsummenspiele bezeichnet man auch als antagonistische
Spiele, denn bezüglich der Interessen der Spieler besteht ein antagonistischer Wider-
Spruch.



2. Zweipersonennullsummenspiele

2.1. Matrixspiele

Nachdem im vorigen Abschnitt ein kurzer Abriß über Form und Inhalt des Spieles
und eine grobe Klassifizierung der Spiele gegeben wurde, kommen wir nun zum Haupt-
anliegen der spieltheoretischen Untersuchungen dieses Lehrbuches — der Bestim-
mung der optimalen Lösungen für bestimmte Klassen von antagonistischen Spielen.
Als Rechtfertigung für solches Herangehen sei bemerkt, daß es bisher im wesentlichen
nur für Zweipersonennullsummenspiele gelungen ist, eine ziemlich vollständige
Theorie des optimalen Verhaltens der Spieler im Spiel zu schaffen.

Wir betrachten ein Zweipersonennullsummenspiel

G = <1» {Si}ieI7 {Fi}isI> mit I ={1:2} und F1C‘) = "F2(5)—

Die formale Beschreibung eines solchen Spieles läßt sich wesentlich vereinfachen:

a) Die Spielermenge I besteht immer aus zwei Elementen, I = {1, 2}; es ist demnach
nicht nötig, sie extra aufzuführen.

b) Die Elemente der Menge {S;}.~e1 sind die Strategiemengen der beiden Spieler:
S, und S2. Um eine unübersichtliche Indizierung zu Verhindern, bezeichnen wir
sie mit Xund Y, d. h. S, = X, S2 = Y.

c) Im Zweipersonennullsummenspiel unterscheiden sich die Gewinnfunktionen der
beiden Spieler nur um das Vorzeichen. Aus diesem Grunde genügt es, in der Be-
schreibung des Spieles nur die Gewinnfunktion des l. Spielers anzugeben,

FC?) = F10") = —F2(5)«

Daraus ergibt sich für das Zweipersonennullsummenspiel die folgende abgekürzte
Bezeichnung

G = (X, Y, F).
Ist das Spiel Gendlich, d. h., sind die Strategiemengen der Spieler endliche Mengen,

so lassen sich die Werte der Gewinnfunktion F(s) in Abhängigkeit der Situationen
s e S in Matrixform darstellen. Besteht die Menge X aus m Elementen,

X= {x1.xz, ...‚x‚„}‚
und die Menge Y aus n Elementen

Y ={.V1,.V2s --~:J’n}s

dann erhält man für jede Situation s e S das Zahlenpaar

s = (x, y) oder s‚-‚- = (x„y‚) für

und für die Gewinnfunktion F die Werte

F(s) = F(x,y), xeX, ye Y,
bzw.

F(s,»,-) = F(x,»,yJ-) = Fl-j mit i = l, ...,m; j = l, ..., n.

Trägt man zeilenweise die Werte F,-, in Abhängigkeit der Strategien des Spielers l ab
und in den Spalten die entsprechenden Werte in Abhängigkeit der Strategien des
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Spielers 2, so erhält man folgende schematische Darstellung:

X\Y y] y„

xi F“,

x2 172„

Fm

En; -»- F»...

Eine solche Tabelle (Matrix) bezeichnet man als Gewinnmatrix des Spielers l oder
als Spielmatrix, wobei im weiteren bei ihrer Darstellung die übliche Matrizenschreib-
weise gebraucht werden soll, also

F11F12"'F1n
p = [F„1„„„ = €21 €22 52»

Fm Fm; Fm
Spiele, bei denen man eine solche Spielmatrix aufstellen kann, heißen Matrixspiele.

Wir betrachten hierzu folgende Beispiele:

1. Ein Betrieb B kann ein bestimmtes Produkt durch n verschiedene technologische Prozesse er-

zeugen. Der Unterschied bei der Anwendung der verschiedenen Technologien besteht darin, daß in
einem festgelegten Zeitraum eine unterschiedliche Stückzahl von verschiedener Qualität des Pro-
duktes hergestellt wird, d. h.‚ die Anwendung der Technologie i ergibt z. B. eine größere Stückzahl
von minderer Qualität des Produktes als die Anwendung der Technologie j. Der Betrieb hat also die
Möglichkeit eine solche Technologie auszuwählen, die ihm die größte Stückzahl (schlechteste Quali-
tät) und somit den größten Gewinn sichert. Auf der anderen Seite steht der Abnehmer A. Er ist
daran interessiert, vom Betrieb B qualitätsgerechte Produkte zu erhalten, die er zur Weiterverarbei-
tung bzw. zum Verkauf an den Endverbraucher benötigt. Liefert der Betrieb B keine qualitätsgerechte
Ware, so besteht für den Abnehmer das Recht der Rückgabemöglichkeit, bzw. er kann vom Betrieb
eine gewisse Entschädigung fordern. Wir wollen ohne Einschränkung der Allgemeinheit annehmen,
daß der Betrieb B zwei technologische Prozesse zur Herstellung des Produktes zur Verfügung hat,
d. h. n = 2. Damit ist gleichzeitig die Strategiemenge Xdes Betriebes B bestimmt: X = {x1 ‚ x2} mit
xi -— Anwendung der Technologie l und x; — Anwendung der Technologie 2. Um das Verhalten
des Abnehmers A analysieren zu können, muß man etwas über die Güte der vom Betrieb benutzten
Technologie aussagen. Wir setzen voraus, daß im Zeitraum Tder Betrieb B bei der Anwendung der
Technologie 1 80 Stück des Produktes mit einer Ausschußquote von p, = 0,05 herstellt und bei der
Anwendung der Technologie 2 50 Stück mit der Ausschußquote p; = 0,02. Mit anderen Worten
würden bei der Anwendung der Strategie x, des Betriebes B von den 80 hergestellten Produktstüeken
durchschnittlich 4 Stück Ausschuß sein, und bei der Anwendung der Strategie x; hat man im Mittel
von 50 produzierten Stücken 1 Ausschußstück.

Zwischen Betrieb und Abnehmer besteht folgende Vereinbarung:

Akzeptiert der Abnehmer A das angebotene Los bedingungslos, so haftet der Betrieb für eventuell
auftretende Verluste durch Ausschußware nicht, meldet der Abnehmer jedoch von vornherein Be—

denken an, so hat er die Möglichkeit, die schlechten Stücke zurückzugeben und eine Entschädigung
von 1 Einheit pro schlechtem Stück zu verlangen. Der Stückpreis des erzeugten Produktes betrage
1 Einheit.
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In Abhängigkeit von der Kenntnis über das Vorgehen des Betriebes B hat der Abnehmer A 2 Mög-
lichkeiten, seine Strategiemenge zu bestimmen.

(a) Besteht zwischen Betrieb und Abnehmer ein Vertrauensverhältnis und gibt der Betrieb im
voraus seine Handlungsweise bekannt, so sprechen wir von einem Spiel gegen den Vollständig in-
formierten Abnehmer. Die Strategiemenge des Abnehmers A hat dann folgendes Aussehen:

y, : Der Abnehmer akzeptiert bedingungslos die Entscheidung des Betriebes. Mit anderen Worten,
wählt der Betrieb B die Strategie xi , so nimmt der Abnehmer A das Los ohne irgendwelche Bedin-
gungen an (Bezeichnung: o), und genauso verhält sich der Abnehmer, wenn sich der Betrieb B für
die Strategie x2 entscheidet. Wir können die Strategie y, des Abnehmers A durch das Buchstaben-
paar ao charakterisieren, wobei der erste Buchstabe die Antwort des Abnehmers auf die Strategie x;
des Betriebes beschreibt und der zweite Buchstabe entsprechend die Antwort auf x2 darstellt.

y2: Der Abnehmer akzeptiert die Strategie x, des Betriebes bedingungslos, er antwortet also mit a

und meldet als Antwort auf die Strategie x2 Bedenken an, d. h.‚ die Strategie x2 des Betriebes wird
nicht bedingungslos akzeptiert (Bezeichnung: n). Als Buchstabenpaar ausgedrückt, erhalten wir on.

Analog ergibt sich y3 : no und y4 : nn.

Setzen wir voraus, daß bei Anwendung der Technologie l die Selbstkosten für ein produziertes
Los 78 Einheiten sowohl für Betrieb und Abnehmer sind und entsprechend bei Anwendung der
Technologie 2 die Selbstkosten 49,5 Einheiten betragen, so erhält man aus den vorliegenden Daten
leicht die Gewinnmatrix für beide Spieler:

Betrieb B:

A Y1 Y2 J’3 Y4
B (oo) (an) (no) (nn)

F5 =

x, 80-78 80-78 72-78 72~78
x2 50—49,5 48—49‚5 50—49,5 48—49,5

A
B ‚V1 ‚V2 ya Y4

x1 2 2 — 6 — 6

x2 0,5 —l,5 0,5 —l,5

Abnehmer A:

Ax }’i ‚V2 v ‚V3 ‚V4

FA _

xx 76-78 76v78 84-78 84-78
x2 49 — 49,5 51 —49‚5 49 —49,5 51- 49,5

Ax .V1 yz y; Y4

x, — 2 ' —2 6 6

x2 —0,5 1,5 —0‚5 1,5

Wir sehen, daß F = F2, = — FA ist, wir haben es also mit einem Zweipersonennullsummenspiel zu

tun, und wegen der Endlichkeit der Strategiemengen beider Spieler ist dieses Spiel ein Matrixspiel.



l6 2. Zwcipersonennullsummcu pielc

(b) Eine andere Variante des Problems erhalten wir dann, wenn der Abnehmer nicht vom Betrieb
über sein Vorgehen informiert wird. Dann erweisen sich die Handlungsmöglichkeiten o und n des
Abnehmers unmittelbar selbst als Strategien von A, d. h.‚ der Abnehmer hat die Möglichkeit, ohne (a)
oder mit (n) Einschränkung auf das Vorgehen des Betriebes zu antworten. Bleiben die oben angeführ-
ten Wertigkeiten erhalten, so ergeben sich die folgenden Gewinnmatrizen:

Betrieb B:

A Y1 ‚V2 AR (o) (n) B ‚V1 ‚Vz

F3 = =

x1 80-78 72-78 ‘X1 2 -6
x2 50—49,5 48—49,5 x2 0,5 — 1,5

Abnehmer A:

A A
B J’: Y2 B ‚V1 ‚V2

1-‘A = =

x1 76-78 84-78 x, -2 6

x2 49—49,5 51 —49,5 x2 —0,5 1,5

Auch diese Variante stellt ein Matrixspiel dar, denn F = F3 = —F,,, und die Strategiemengen der
Spieler sind endlich.

2. Knobelspiel Papier—Schere—Stein
Das Knobelspiel Papier-Schere-Stein ist ein Zweipersonenspiel. Beide Spieler wählen unabhängig

voneinander eines der Symbole „Papier“, „Schere“ oder „Stein“. Danach vergleicht man das Ge-
wählte, und der Sieger erhält vom Verlierer l Einheit nach der Regel: Papier verliert gegenüber Schere,
Schere verliert gegenüber Stein, und Stein verliert gegenüber Papier.

Die Art des Spieles ist antagonistisch und ein Matrixspiel, denn die Strategiemengen sind endlich.
Die Strategiemengen der beiden Spieler kann man wie folgt beschreiben:

1. Spieler: x, — er wählt Papier (P)
x2 — er wählt Schere (Sch)
x3 — er wählt Stein (S!)

2. Spieler: y, — er wählt Papier (P)
_/yz — er wählt Schere (Sch)

y3 — er wählt Stein (St)

Die Gewinnmatrix des l. Spielers hat dann folgendes Aussehen:

X/ Y .V1(P) y2(Sch) .va(SI)

x1(P) . 0 —1 l

x2(Sch) l 0 -1

x3(Sr) -1 l 0

2.2. Wert eines Spieles und optimale Strategien

Als nächstes wollen wir uns die Aufgabe stellen, die optimalen Strategien im
Matrixspiel zu bestimmen und anhand der eben angeführten Beispiele zu erläutern.
Die optimalen Strategien der Spieler werden durch die Gleichgewichtsstrategien
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(s. Abschn. 1.3.) gegeben, wobei die Gleichgewichtsstrategien die zu einer Gleich-
gewichtssituation S gehörenden Strategien sind. Eine Gleichgewichtssituation ist da-
durch gekennzeichnet, daß für jeden Spieler ein Abweichen von dieser unvorteilhaft
wäre, d. h.

Fi(s [J s.) g F,-(s) für alle ie I.
Auf ein allgemeines Zweipersonennullsummenspiel übertragen, d. h. I = {l, 2} und
F(s) = F1(s) = —F2(s), ergibt sich daraus

F1(5' ii S1) § F10‘) und F2(-5‘ 32) ä F2C‘)-

Wird die Gleichgewichtssituation s e S durch das Strategienpaar (x*, y*) beschrieben,
s = (x*‚ y*)‚ und werden die entsprechenden Abweichungen davon wie folgt dar-
gestellt

(S H S1) = (x,y*).
(S Il S2) = (x*‚y)‚

so erhält man entsprechend der Gleichgewichtsdefinition

Fl(x‚;v*) ä F1(x*. y*) und F2(x*, y) é F2(x*, y*).
Aus der Beziehung F‚(x, y) = ——F2(x, y) und aus der letzten Ungleichung folgt

—Fr(x*‚ y) ä —F1(x*,y*)
oder

F1(x*s .V*) ä F1(X*: y)‚
und als Resümee bekommt man die Bedingung für einen Gleichgewichtspunkt
(x*‚ y*) im Zweipersonennullsummenspiel

F(x‚y*) ä F(x*‚y*) g F(x*.y)
(dabei wurde die Beziehung F(x, y) = F,(x, y) impliziert). Diese Bedingung ist gleich-
wertig mit der Beziehung

F(x*‚y*) = max F(x, y*) = min F(x*, y).
xeX ye!’

sofern die Existenz des Maximums bzw. des Minimums der Gewinnfunktion ge-
sichert ist. Die letzte Behauptung läßt sich leicht aus den Beziehungen

max F(x, y*) g F(x, y*) für alle x e X
XEX

und
min F(x*‚y) g F(x*,y) für alleye Y
yeY

verifizieren.
Die Gewinnfunktion F(x, y) muß also in der Gleichgewichtssituation s = (x*, y*)

bezüglich x ein Maximum und bezüglich y ein Minimum ergeichen. John V. Neu-
mann bezeichnet die Gleichgewichtspunkte der Zweipersonennullsummenspiele als
Sattelpunkte, wobei der Name „Sattelpunkt“ aus der Geographie stammt und unser

Gleichgewichtspunkt (x*‚ y*) die wesentlichen Merkmale eines Sattelpunktes oder
Passes in diesem Punkt hat.

Für die Existenz eines Sattelpunktes gilt folgender Satz:
Satz 2.1: Für das Zwetpersonennullsummenspiel G = (X, Y, F> erhält man dann

und nur dann einen Sattelpunkt, wenn die Ausdrücke max inf F(x, y) und min sup F(x,y)
xeX ye)’ yeY xeX

2 Mantenfiel, Spieltheorie
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existieren und gleich sind, d. h.

max infF(x, y) = min suig F(x, y) = F(x*‚y*) = v.
xeX ysY ye)’ xeX

Die Gleichgewichtsstrategien des 1. Spielers sind diejenigen Strategien x*eX, für
die das y-Infimum bzgl. x das Maximum erreicht, und analog sind die Gleichgewichts-
strategien des 2. Spielers diejenigen Strategien y*‘eY, für die das x-Supremum bzgl.
y sein Minimum annimmt.

Beweis: Ist (x*‚ y*) ein Sattelpunkt, so gilt nach der Definition des Sattelpunktes

F(x,y*) g F(x*, y*) für alle x e X.

Existiert inf F(x‚ y), dann gilt erst recht
ye)’

inf F(x, y) g F(x*, y*) für alle x e X.
_yeY

Aus der Beziehung

F(x*, y*) = max F(x, y*) = min F(x*, y)
.xeX yEY

folgt, daß der Ausdruck min F(x*, y) selbst ein solches y-Infimum ist, d. h.
ye)’

F(x*,y*) = max inf F(x,y).
xEX yeY

Analog zeigt man, daß auch

F(x*,y*) = 1:13 8:3 F(x,y)

gilt, und also die Gleichung

F(x*,y*) = max inf F(x, y) = min sug F(x, y) = v
. xeX yeY ye

erfiillt 1st.

Umgekehrt sei

max inf F(x, y) = min sup F(x, y) = v.
xex yeY ye)’ xeX

Die Gleichgewichtsstrategie x* des l. Spielers ist diejenige Strategie, für die das y-
Infimum bzgl. x das Maximum erreicht, d. h.

inf F(x*, y) = v.
yeY

Analog gilt für y*

sup F(x,y*) = v.
xeX

Da aber infF(x*, y) g F(x*, y*) ist, erhalten wir
ye)’

v ä F(x*,y*)-
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Genauso folgt aus

sup F(x,y*) = v,
xeX

daß

F(x*‚y*) g v

ist. Demnach erhält man

F(X*‚y*) = v = Sup F(x,y*) = max F(x,y*)
xEX xEX

und
F(x’f‘,y*) = v = inf F(x*, y) = min F(x*,y)

yEY yeY

d. h., (x*‚ y*) ist Gleichgewichtspunkt, und der Satz ist bewiesen.
Aus der Existenz des Sattelpunktes folgt unmittelbar der Begriff des Wertes eines

Spieles.

Definition 2.1: Das antagonistirche Spiel G = (X, Y, F) besitze einen Sattelpunkt.
Die Zahl

v = u(G) = max inf F(x, y) = min sup F(x, y)
xeX yEY yEY xeX

heißt Wert des Spieles (für den Spieler 1).

Aus der Art der Zweipersonennullsummenspiele erhält man den Wert für den
Spieler 2 durch Umkehrung des Vorzeichens.

Für Matrixspiele folgt aus der Endlichkeit der Strategiemengen und der Beschränkt-
heit der Gewinnfunktion für die Existenz des Sattelpunktes und damit des Wertes
des Spieles das Kriterium

v(G) = max min F(x, y) = min max F(x, y).
xsX yeY yer’ xsX

Dieses Kriterium ist auch unter dem Namen Minimax-Prinzip bekannt.
Wenn für ein Matrixspiel G = (X, Y, F) ein solcher Sattelpunkt existiert, so läßt

er sich leicht ermitteln. Die Strategiemenge des 1. Spielers bestehe wieder aus m Ele-
menten,

X = {x1,x2, ...,x,,,},

und die Strategiemenge des 2. Spielers habe n Elemente,

Y = {y1.yz. ...,y..}.
Die Gewinnfunktion

Fij=F(xn)’1) '

sei beschränkt. Dann erhält man den Wert des Spieles aus der Relation

j-l 1-11=l

m n_ If m

v(G) = max min F” = rnm max F”.
I: „ _

2!!
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Zur Bestimmung des Wertes betrachten wir zunächst die linke Seite der letzten
Gleichung, also den Ausdruck

m „

max min Fijq
{=1 j=l

Dazu ermittelt man in jeder Zeile i (i = l, ..., m) der Gewinnmatrix Fden minimalen
Funktionswert der Gewinnfunktion F”, und aus dieser erhaltenen Menge bestimmt
man bzgl. i, also bezüglich der Zeilen, das Maximum. Ebenso verfährt man mit der
rechten Seite der obigen Gleichung. Wir bestimmen zunächst in jeder Spalte j
(j = l, ...,n) der Gewinnmatrix F den maximalen Funktionswert und anschließend
aus der erhaltenen Menge das Minimum.

Schematisch sieht das so aus:

n

X\Y yl }'2 y; y.. min Fu
i=l

Xi F11 F12 F11 Flu F1

X2 F21 F22 F21 F2-I F1

F:
x; Fu F42 Fu Fm Fr’)

x„‚ F,“ Fm ~ - - Fm] ~ - ~ Fmn Fm

m

maxfi, F1 F2 F1 F» F: = F1
i=l

min (F,,F2, ...,F,,) = F, = Wert des
Spieles

Aus dem Kriterium für den Wert des Spieles v(G) folgt, daß

F; = F, = v(G)

sein muß, der Sattelpunkt ist der Funktionswert F”, und die optimale Strategie des
l. Spielers ist die Strategie

x* = xi

und die des 2. Spielers

LV* = yi-

Zur Illustration wollen wir den Wert der Spiele, den Sattelpunkt und die opti-
malen Strategien der Spieler für die im Abschnitt 2.1. aufgeführten Beispiele be-
stimmen.

1) m3X(F1.F2: "‘sFm) = F1-
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l. (a) Spiel gegen den informierten Abnehmer:
Die Gewinnmatrix des Betriebes B hatte folgende Gestalt:

A “.
B Y1 J’: ya y4 Fl]

,=

F x1 2 2 *5 ’5 *5 ’max(—6, —1‚5)

x; 0,5 —1‚5 0,5 —1‚5 —1‚5 f = “*5
Z

max F” 2 2 0,5 -1.5 v(G) = —1‚5
i=1

min (2, 2, 0,5, —1‚5): -1,5

Bildet man die Zeilenminima der Gewinnntatrix, so erhält man die Menge (-6, —1‚5), und das hier-
aus ermittelte Maximum ist —1‚5. Analog bekommt man aus den Spaltenmaxima die Menge (2, 2,
0,5, —1‚5), und das dazugehörige Minimum hat ebenfalls den Wert —1‚5. Damit ist die Bedingung

m fl n m

v(G) = max min F„= min max F” = —1‚5
i=1/'=l j=I i=1

erfüllt und somit Sattelpunkt und Wert des Spieles (natürlich für Spieler 1 = Betrieb B) ermittelt.
Die optimale Strategie für den Spieler l, also für den Betrieb, ist die Strategie

x‘ = x2,

d. h.‚ der Betrieb arbeitet nach der Technologie 2. Die optimale Strategie des Abnehmers ist

y‘ = m.

Der Abnehmer nimmt also nie ein Los bedingungslos an, ganz gleich, welche Strategie der Betrieb
auch wählt. Ein Abweichen einer Seite von der Gleichgewichtssituation würde nur mit Verlust der
abweichenden Seite enden, denn würde z. B. der Betrieb die Strategie x1 vorziehen, der Abnehmer aber
die optimale Strategie beibehalten, so beträgt sein Gewinn -6 Einheiten, und genauso würde es dem
Abnehmer ergehen, wenn er von der Gleichgewichtssituation abweicht.

(b) Spiel gegen den nichtinformierten Abnehmer:
Der Ausgangspunkt ist wieder die Gewinnmatrix:

S 2.N yl J’: r_mr11Fu,=

x1 2 ——6 —6
p =

X2 0,5 —1‚5 —1‚5

2

max E, 2 —1‚5 1KG) = "L5
i=1

min (2, —1‚5) = —1‚5

Analog dem Beispiel (a) bildet man zunächst die Zeilenminima und ermittelt aus der erhaltenen
Menge den maximalen Wert. Aus den Zeilenmaxima erhält man durch Ermittlung des zugehörigen
minimalen Wertes die rechte Seite des Sattelpunktkriteriums. Wir sehen, daß ein Gleichgewichts-
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punkt existiert, der Wert des Spieles (für Spieler 1) beträgt —1,5 Einheiten, und die optimalen Stra-
tegien sind die Strategien

x* = x2 (Betrieb wählt Technologie 2),

y"‘ = ‚v; (Abnehmer akzeptiert nicht bedingungslos).

2. Knobelspiel Papier-Schere-Stein

Wir wollen auch hier genauso wie bei den vorangegangenen Beispielen den Wert des Spieles mit
den zugehörigen optimalen Strategien bestimmen:

3

X\Y Y1 .V2 Y3 minFlJ
i=l

x, 0 -1 I -1

x; l 0 —1 -1 max(—l,—1,—l)= -1

x3 -1 1 0 —l

3

maxfh 1 1 1

i=l
min (1, 1, 1) =1

Wir erhalten also

3 3 3 3

max min F„= —l und min max 1-}, = 1,
i=l i=l j=! i=l

d. h.‚ daß beide Relationen nicht übereinstimmen, das Minimax-Kriterium nicht erfüllt ist und somit
kein Sattelpunkt und Wert des Spieles existiert.

Damit tritt natürlich sofort die Frage in den Vordergrund, ob nicht doch eine Lösung des Spieles
und somit eine optimale Verhaltensvorschrift für die Spieler möglich ist.

Die Beantwortung dieser Frage führt zur Erweiterung des Spielbegriffes.

2.3. Gemischte Erweiterung

Vergegenwärtigen wir uns noch einmal das Knobelspiel Papier-Schere-Stein, so

liegt die Vermutung nahe, daß dieses Spiel nicht nur einmal, sondern in mehreren
Partien hintereinander gespielt wird. Der gesunde Menschenverstand sagt uns, daß
es dann für die Spieler günstig ist, ihre Strategien nach den Mechanismen des Zu-
falls zu wechseln, ihre Strategien mit gewissen Wahrscheinlichkeiten zu mischen.
Das führt zu dem Begriff der gemischten Strategien.

Definition 2.2: Gegeben sei das Matrixspiel G = (X, Y, F) mit den Strategie-
mengen X = {x1,x2‚ ..., x‚„} und Y = {y„y2‚ ...‚y„}.

Unter der gemischten Strategie des Spielers 1 versteht man den m-dimensionalen
m

Vektorp = (p,,p2, ...,p„‚)’mit p, g Ofür alle i= 1, ...,m und Zp, = 1; eine ge-
i=l
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mischte Strategie des 2. Spielers ist dann entsprechend der n-dimensionale Vektor

b = (q1, qz,...,(1,,,)’ mit q, g 0 (j= 1, ..., n) und i q_, =1.

Die Menge der gemischten Strategien für den lflSpieler ist somit eine Menge von
Vektoren des R"‘, also

P = {peR"‘|p, gÖ und iälp, = l}.
Entsprechend ist

Q = {416R"Iq1 g 0 und iäifi = 1}

die Menge der gemischten Strategien des 2. Spielers. Im Unterschied zu den gemischten
Strategien werden die bisher betrachteten gewöhnlichen Strategien als reine Strate-
gien bezeichnet. Offensichtlich kann man diese reinen Strategien als Spezialfall der ge-
mischten Strategien auffassen. Aus der Definition der gemischten Strategie ist ersicht-
lich, daß man diese als Wahrscheinlichkeitsverteilung über die Menge der reinen
Strategien interpretieren kann. Eine spezielle Verteilung, die einer bestimmten Strate-
gie das Wahrscheinlichkeitsmaß 1 und den restlichen das Maß 0 zuordnet, etwa
p, = 1 undp, = O (j = 1, ...‚ m,j =4: z’) ist eine solche reine Strategie. Das Entspre-
chende gilt natürlich für die Menge Q.

Die Mengen P und Q sind, wie man leicht zeigen kann, abgeschlossen und be-
schränkt. Die Konvexität der Menge P (d. h.‚ wenn man zwei beliebige Punkte der
MengePbetrachtet‚ so müssen sämtliche Punkte auf der Verbindungstrecke dieser
beiden Punkte wieder zu P gehören, vgl. Bd. 4, 1.1.3.) erhält man aus (und analog für
die Menge Q):

Äp’ + (1 — Ä)p” = p”’‚ p’,p” eP, O < Ä <1. (l)
Offensichtlich ist

pf’ ä 0 (j = 1,

denn wenn p’, p” e P, so sind p’ g 0 und p” g 0 und folglich auch p”’ g 0.
Es ist nach (1)

=i§1<Ap:~ + <1 — am’)

= A + <1 — Ibiälpi’.

Aus der Definition der Menge P ist ersichtlich, daß

‚i112.‘- = 1 und i112: = 1

ist, und erhalten x-

= z + (1 — z) 1.

Für p”’ gilt also: p”’ e R'”, p”’ g 0 und = l, d. h. p”’ e P; Pist demnach kon-
vex. ‘ =1

Mit Hilfe des Begriffs der gemischten Strategie läßt sich der Spielbegrifl" erweitern.
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Definition 2.3: Gegeben sei ein endliches Zweipersonennullsummenspiel G (X, Y,
F>, wobei X = {x1, ..., xm} und Y = {y,, ..., y,,} diereinen Strategiemengen der Spieler
und F = [F„(]„„„ die dazugehörige Gewinnmatrix sind. Die Mengen der gemischten

Strategien sind P = {peR"‘]p g 0 und gjpi = 1} und Q = {qeR"|q g 0 und
n i=l

2111 = 1}-
‚=

Für jede gemischte Strategie p e P und q E Q Iäßt sich dann der Erwartungswert E
(für Spieler l) nach

m PI

EU’. q) = z‘ zlpiFijqj = P’ ’ F ’ q
z: j:

bestimmen, und das Spiel F = (P, Q, E) heißt gemischte Erweiterung von G.
Der Erwartungswert E(p, q) läßt sich folgendermaßen umformen:

I11 II m n

E(17‚ q) = ‘E! Ein-Fritz; = 21 z1P:F(X:,yj)¢1j
x= I= I= J"-‘

= §‘.1PiJgIF(Xra yj) qj =}§nl 4/lei! F(xi:yJ) I7:-

Bezeichnen wir

jgllflxiayj) ‘I1 = E(x:a 41) (i=19"'3 m)

und den entsprechenden Vektor

[Ebm q)]m.1 = EM)

bzw. ist _’i1F(x,, y,) p, = E(p,y,) (j = l, ...‚n) oder vektoriell
‚:

[E(p,y;)]...1 = 113(11),

so erhalten wir für den Erwartungswert

E(p, q) = äflxe, q)p.- = E,<q> "p,

E(p, q) i:E(p, y» q; = EM) - q.

Es erhebt sich natürlich die Frage, inwieweit man für die gemischte Erweiterung
den Wert des Spieles bestimmen kann.

Das Ziel des Spielers l liegt darin, den Erwartungswert E(p, q) möglichst groß zu

machen, wogegen der Spieler 2 bestrebt sein wird, ihn möglichst klein zu halten. Mit
anderen Worten muß der 1. Spieler eine Strategie p e P so wählen, daß min E(p, q)
möglichst groß wird, also "59

v1 = max min E(p, q).
psi’ qEQ

(Wegen der Abgeschlossenheit und Beschränktheit der Mengen P und Q nimmt die
stetige Funktion E(p, q) auf einer dieser Mengen stets ihr Maximum bzw. Minimum



2.3. Gemischte Erweiterung 25

an. Vgl. Bd. 4, Satz 2.5.) Ebenso muß der 2. Spieler seine Strategie q e Q so wählen,
daß E(p, q) möglichst klein wird, wobei er in Betracht ziehen muß‚ daß sein Gegner
auf die Maximierung des Erwartungswertes orientiert. Es gilt demnach

v2 = min max E(p‚ q).
IIEQ PEP

Nunmehr sind wir in der Lage, den Hauptsatz der Theorie der Matrixspiele zu for-
mulieren:

Satz 2.2 (Hauptsatz für Matrixspiele): Für jedes Matrixspiel G = (X, Y, F> besitzt
die zugehörige gemischte Erweiterung 1‘ = (P, Q, E> einen Wert, undfür beide Spieler
existieren optimale Strategien. Den Wert 0(11) des Spieles F erhält man durch die
Gleichung v1 = v2, also

v(F) = max min E(p, q) = min max E(p, q).
pEP qeQ «SQ pel’

Der Hauptsatz für Matrixspiele besagt also, daß in jedem endlichen Zweipersonen-
nullsummenspiel ein Paar gemischter Strategien p* e P und q* e Q existiert, so daß
(p*‚ q*) Sattelpunkt von F ist, d. h.

E(p, 11*) g E(p*‚ 1*) g E(p*‚ q).
Beweis des Hauptsatzes. Der letzte Teil des Satzes, die Bestimmung des Wertes

der gemischten Erweiterung F, ergibt sich unmittelbar aus der Definition des Gleich-
gewichtspunktes und den entsprechenden Herleitungen wie in Abschnitt 2.2.

Es bleibt also zu zeigen, daß für jedes Matrixspiel die Gleichung

v(F) = max min E(p, q) = min max E(p, q)
peP qeQ qeQ pEP

existiert. Die Existenz von vi = max min E(p, q) und v2 = min max E(p‚ q) ist durch
_ psP qEQ . . qEQ P5P _ ‘

die Kompaktheit der Mengen P und Q sowie durch die Steti keit der Funktion
E(p, q) garantiert (vgl. Bd. 4, 2.5.). Offensichtlich gilt für allep e P und q e Q die Un-
gleichung

E(12,q) g max E(12, q)-
peP

Daraus folgt unmittelbar, daß .

min E(p, q) g min max E(p‚ q)
qeQ qEQ ps1’

für alle p e P ist. Diese Ungleichung gilt wie gesagt für alle p e P, folglich auch für
das p e P, für welches die linke Seite der Ungleichung maximal wird, d. h.

U, = max min E(p, q) g min max E(p, q) = v2.
peP qEQ qeQ peP

Gelingt es uns, die Umkehrung der letzten Ungleichung, also v; g v1 zu zeigen,
dann ist der Hauptsatz der Matrixspiele vollständig bewiesen

Nach Definition von v; gilt:
v; = min max E(p, q) = min E(p*‚ q)

qsQ pet’ I169

mit E(p*, q) = max E(p, q) für alle q E Q.
peP
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Wir berechnen zunächst E(p*, q). Die Vorschrift zur Bestimmung von E(p, q),

E(p*‚ q) = max E(p‚ q),
pa)’

kann als lineares Optimierungsprogramm geschrieben werden, nämlich

E07, q) = ép:E(xz, q) -> max

unter den Nebenbedingungen p e P, d. h.

I'ERma§.1I7z = 1,

17:20, (i=1,---,m)-
Aus der Dualitätstheorie für lineare Optimierungsprobleme (vgl. Band 14, S. 74fl'.,
insbesondere S. 79, Satz 1) folgt:

E(p*‚ q) = min y
yeR

mit R = {yly ä E(xq.q)‚ i= 1,

Aus dem dualen Optimierungsprogramm folgt unmittelbar

E(p*‚ q) = m"äxE<x„ q) = Em, q) für alle qeQ.
1:1

Kehren wir zur Bestimmung von v2 zurück:

v; = min E(p*, q) = min E(x,„, q)
qeQ qeQ

kann man wieder als lineares Optimierpngsprogramm aufschreiben und über das
duale Problem lösen: ‘

E<x‚.‚ q) = z" q‚F<x‚.‚ n) a min
j= l

unter den Nebenbedingungen

q e R", Z q) = 1,
j=l

4h ä 0. (j =1.---J1);
als duales Problem erhalten wir

v; = max z
15S

mit S ={z1z g Fgx,.,y,»>, j = 1....,n},
und als Lösung folgt

172 = F(xI.,s yl) = F(xx.s yJo)~ "
,=
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Wir betrachten E(x,o, q) für alle q e Q:

fl II

E(x.., q) = z‘ qjF(x1o!yJ) g F<x.».,, m21 m.
I-= J=

Da f q, = 1 ist, gilt
1-=1

U2 = F(xr»s yja) S E(xt„» q) für alle q E

Somit gilt auch

v; g min E(x,-„‚ q), und wir erhalten
qso

II/
\

m

v2 max min E(x„ q) = max min E(p‚ q) = v, .

' l qeQ ps1’ asQ‚=

Aus der gleichzeitigen Richtigkeit der Beziehungen 1:, g v2 und 1;, g v; folgt, daß
v1 = v; ist, und der Hauptsatz für Matrixspiele ist bewiesen.

Sehr interessant ist in diesem Zusammenhang die Bestimmung des Wertes des so-

genannten symmetrischen Matrixspieles, denn wie wir sehen werden, läßt sich jedes
Matrixspiel auf ein symmetrisches Matrixspiel zurückführen.

Definition 2.4: Ein Matrixspiel G = (X, Y, F) heißt symmetrisch, wenn die Ge-
winnmatrix schiefsymmetrisch ist, d. h. F = ——F’.

Aus der Symmetrieeigenschaft der Gewinnmatrix folgt, daß sowohl die Strategie-
menge X des Spielers 1 als auch die Strategiemenge Y des Spielers 2 n Elemente ent-
hält, also

X={xl:---9xn}aV Y={y1>-">yn}'
Für die gemischte Erweiterung F = (P, Q, E) gilt dann:

P= {p6R"|p ä 0.21% = 1},

Q = {qemqämilqj =1},
,=

II Tl

E(p, q) = A21 _Zlp.-F:,-q,- = p’ - F ' q
.= ,=

=(p’-F'q)’ = q"F"p = -q"F'p~
Es sei (p*, q*) mit p* e P, q* e Q Sattelpunkt, d. h.

v(P) = Em w) = p*’ "F. 4*
(die Existenz des Sattelpunktes ist nach dem Hauptsatz über Matrixspiele gesichert),
dann gilt nach dem Sattelpunktkriterium

p’.F.q*§p*’.I.‘.q*§p*'.F.q

(p’-F-4*)’ é (p*’ ‘F‘q*)’ é (p*’ ' F~q)’-
bzw.
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Durch Umformen erhält man:

q*’.F’.p§ q*I.I:/.p*§ qupupac,

_q*'.F.p§ _q*I.[:.p>1=§_qr.I:.p*’
q*I.F.p g q*'.1.'.p* ä qI.F.p*_

Die letzte Ungleichung besagt, daß man für die Gleichgewichtssituation (p*,q*)
den Wert u(F) = q*’Fp* erhält,

Da‘) = qasI.F.p* = (q:2<.I:.p>s<)I

=p*I.Er.q* = _p4<r.F.q* = _„(f)_

Daraus folgt unmittelbar 0U") = 0. Zusammenfassend läßt sich der folgende Satz
formulieren:

Satz 2.3: In jedem symmetrischen Matrixspiel G = (X, Y, F> ist der Wert seiner
gemischten Erweiterung F = (P, Q, E) stets Null, d. h.

v(I') = 0.

Betrachtet man ein beliebiges Spiel G mit positiver Gewinnmatrix F (d. h., alle
Elemente der Gewinnmatrix sind positiv), so kann man durch verschiedene Verfah-
ren eine Symmetrisierung erreichen, etwa indem wir ein neues Spiel mit der Gewinn-
matrix

0 —F Im

B=[ F’ 0 _InJ = [bij]m+n+1.m+n+1>
—I„‚’ 1„’ 0

konstruieren, wobeiIK = [1],(_1 ist. DieVoraussetzungF > Oist keine Einschränkung
der Allgemeinheit, weil man aus der Aquivalenzrelation von Spielen stets ein äqui-
valentes Spiel mit obiger Bedingung erhalten kann.

2.4. Lösung von Matrixspielen mit Hilfe der linearen Optimierung

Nachdem wir uns eingehend über Existenzfragen für Gleichgewichtspunkte in
Matrixspielen beschäftigt haben, gehen wir jetzt zu den Lösungsmethoden über,
d. h., wir untersuchen die Frage, wie man die optimalen gemischten Strategien bei
Matrixspielen ermitteln kann.

Es gibt hierfür Verschiedene Möglichkeiten, etwa algebraische Verfahren, Lösungs-
verfahren mit Hilfe von Differentialgleichungen, Iterationsverfahren, Simulations-
verfahren (vgl. Band 20, S. 54), Verfahren der linearen Optimierung. Wir wollen uns
nur mit den letzteren Verfahren beschäftigen; denn einmal würde die Behandlung
aller Verfahren den Rahmen dieses Lehrbuches sprengen, zum anderen kann man aus

den Lösungsverfahren mit Hilfe der linearen Optimierung gewisse Verallgemeine-
rungen zwischen der Spieltheorie und der Theorie der konvexen Optimierung her-
leiten.
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Ausgangspunkt ist die Sattelpunktrelation

v(F) = max min E(p, q) = min max E(p, q).
peP qeQ qEQ PEP

Beim Beweis des Hauptsatzes für Matrixspiele erhielten wir folgende Beziehung:
m

E(p*‚ q) = ma; E(p, q) = nfm1xE(x.-, q) für alle q e Q.
DE l=

Genauso läßt sich zeigen, daß

E(p, q*) = min E(p, q) = minn E(p, y,-) für alle p e P
«so j=l

gilt.

Aus der Sattelpunktrelation erhalten wir dann

0(11) = max min E(p, q
psi’ qeQ .

m

= max E(p, q*) = max E(x„ q*)
REP i= 1

bzw.
v(F) = min max E(p, q)

qeo peP
fl

= min E(p*, q) = min E(p*‚ 12,)

qEQ 1:1

Setzen wir E(x‚-, q*) = z" qJ-‘Fij
[:1

und E(p*‚ y.) = §p.~*F.-,-.
i=1

so folgt aus den obigen Beziehungen:

um = m21} E<x.—‚ q*) = mlixi am 2 iqfla. (i = 1, ...‚m>;
i=1 j=l1'=1j=l

II II III m

v(F) = mi§1E(p*,y,«) = min Z1>E“F.-1 é ,Zlp.»“F.-; J‘ = 1, ---,n).
J= I=1'=li=l

und wir erhalten eine andere Sattelpunktrelation, nämlich

(i = 1, m)II m

* 2* ..

I§1FUq] é v(P) §i‘=Z'1p' F” (j = 19 ---‚ n)-

Aus dieser Sattelpunktrelation läßt sich leicht ein zugehöriges lineares Opti-
mierungsproblem herleiten, mit dessen Hilfe man die optimalen Strategien p* eP
und q* eQ ermitteln kann. Gegeben sei ein Matrixspiel G = (X, Y, F) mit posi-
tiver Gewinnmatrix F, d. hxF > 0. Wegen der Aquivalenzbeziehung zwischen Ma-
trixspielen ist diese Bedingung keine Einschränkung der Allgemeinheit.
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Dann gilt für die gemischte Erweiterung T = (P, Q, E), daß der Erwartungswert
E(p, q) = p’ - F" q > 0 für allep e P, q e Q ist, und folglich ist auch v(F) > 0. Die
optimalen gemischten Strategien des Spielers 1 11* = (pf, ..., p,",‘,)’ e P und des Spie-
lers2 q* = (qf , ..., q,’f)’ e Q bestimmt man aus den folgenden Ungleichungssystemen:

Epm 2 au“) o = 1, n),
i=l

17.7% 0, ‘Z177 =1 (i=1.---ym),
und

zlFijqf g 1;(F) (i = l, ...‚ m),
,=

41* ä 0, 2 41* =1 U =1,---,”)~

Der Leser wird leicht erkennen, daß diese Ungleichungssysteme sofort aus der Sattel-
punktrelation und aus der Definition der Mengen P und Q folgen. Ist v(F) > 0, d. h.,
besitzt das Spiel eine positive Gewinnmatrix, so kann man beide Ungleichungssysteme
durch den Wert des Spieles dividieren, ohne daß die Ungleichungen sich Verändern.
Wir erhalten

iglTd-T F11 ä] 1: ---an):

p?‘ "' p?‘ _ 1 ._m“ §17<T)’”WF7 ""1"-*”">’
und

fir. "7 :1 (i=1 m);=1"v(F)_ ’ ’ ’

a} " e" _ 1 -_

Tm?“ ”“~~’”’°
Das Ziel des 1. Spielers besteht in der Maximierung des Wertes des Spieles, das des

2. Spielers in der Minimierung. Setzen wir

p.’ q?‘ =

v0") v(1‘)

und berücksichtigen wir, daß der Wert des Spieles v(F) im Nenner erscheint, so er-
halten wir zur Bestimmung der optimalen Strategien folgende lineare Optimierungs-
programme:

= u, und w,

'" 1 .

Z1 =iäu‚ = Ü; —» mm;

_M
a

uiFi 21 1, ~--an):

I11 l

lIV o 1?
.

II ä“t



2.4. Lösung von Matrixspielen 31

und
" 1

Z2 fiiglwj — "(Ü

i F„w‚ g 1 (i = 1,
j-Il

—> max;

w,;0 (j=I,...,n).
Diese beiden linearen Optimierungsaufgaben sind offenbar dual zueinander und

können mit dem Simplexverfahren leicht gelöst werden. Wegen der Dualität genügt
es, eine dieser Aufgaben zu lösen, die Lösung der dualen Aufgabe kann man dann
sofort aus dem erhaltenen Simplexendtableau ablesen.

Hat man die Werte u, (i = 1, ..., m) und w, (j = 1, ..., n) bestimmt, so erhält man

ohne viel Aufwand den Wert des Spieles v(F) und die optimalen gemischten Stra-
tegien p* e P und q* e Q. ’

Beispiel: Zur Bestimmung der optimalen gemischten Strategien diene das Knobelspiel Papier-
Schere—Stein G = (X, Y, F> als Beispiel. Die Gewinnmatrix F hatte folgendes Aussehen:

0 —1 1

F = 1 0 —1]'
—1 1 0

Für dieses Spiel gilt die Voraussetzung F > O nicht.
Deshalb müssen wir, damit das Verfahren anwendbar ist, ein zu G äquivalentes Spiel G1 konstru-

ieren. Nach der Äquivalenzdefinition gilt

F}!-=aF,j+.b,

wobei a > 0, b beliebige reelle Zahlen sind. Ist a = 1 und b = 2, so erhält man für das Spiel
G = (X, Y, F) die Gewinnmatrix

2 1 3

F'=[3 2 I].
1 3 2

Da F’ > 0 ist, ‚gilt für das Spiel G1:

Z,=u,+u1+u3=;—>min
"(P0

umer den Bedingungen

Zu, + 3a; + n3 g 1,

u; + 2M; + 3a; g1,
3141 + u; + 2u3 ä 1,

u,;0 (i=1,2,3)
und

Z,=w,+w2+w3= —+max_L_
U(-rx)
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mit den Nebenbedingungen

Zw, + w; + 3w3 IIA

3w1 + 2W; + w; IIA

w, + 3W; + 2w3 lI/
\

1,

o (:=1,2,3).IIVWt

Wir lösen das 2. Problem mit Hilfe der Simplexmethode:

G) W1 W2 W3 ® W5 W2 W3

W4 2 1 3 1 W4 -2/3 ‘1/3 7/3 1/3 ‘-

W5 3 2 1 1<- W1 1/3 2/3 1/3 1/3

We 1 3 2 1 W5 -1/3 7/3 5/3 2/3

Z "1 -1 -1 0 Z ‘l: -‘/a -’/s 1/3

T T

@ w, w; W4 @ w5 ‘v6 W4

W3 -2/7 ‘1/7 3/7 1/7 W3 ‘5/15 1/19 7/19 1/5

W1 11/7 5/7 ‘1/7 2/7 W1 7/13 —s/lB 1/13 1/6

We 1/7 18/7 \ '5/7 3/7 ‘- W2 1/18 7/13 "5/18 1/6

Z I/J ‘11/7 1/7 3/7 Z 1/6 1/5 1/5 1/2

T

Aus dem 4. Tableau (Endtableau) erhält man die Lösungen w, (i = 1, 2, 3) und wegen der Dualität
gleichzeitig die L-"sungen u, (i = 1, 2, 3) der beiden linearen Optimierungsprobleme:

W1=W2=W3=1/6‚ "1=ü2="3=1/s-
Des weiteren kann man den Wert des Spieles G1 ablesen:

1 _1
„(In " 2’

Die optimalen Strategien p‘ e P, q‘ e Q für G1 ermittelt man aus den Beziehungen

v(I",) = 2 .

-———p" - u ——L! — w
um) " um) ”

und man erhält

17?‘=2"/s=’/a (i=1‚2‚3)‚ t],-*=2"/5=‘/: (J'=1‚2‚3)-

4 Somit sind p* =__ (1/3, 1/3. 1/3) E P und q* = (1/3, ‘/3, 1/3) e Q die optimalen Strategien in Spiel 6„
und wegen der Aquivalenz der Spiele G und G, sind sie auch optimal in G.
-‘ [In Worte gefaßt bedeutet das, daß im Knobelspiel Papier-Schere-Stein beide Spieler jede der
möglichen Strategien rein zufällig gleich oft anwenden müssen, um zum optimalen Gewinn zu kom-
men.

Den optimalen Gewinn, also den Wert des Spieles G, erhält man aus v(1",) wie folgr:
„I n

E’(p, q) = 2 Z pJ-‘ijq, mit Pi’, = aF„ + b, a, b reelle Zahlen (a > 0).
i=lj=l
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Dann ist

M
s ‚.

E’(p‚ q) = Z Maß; + b) q;
i i=llIl

m II Ill II

= “Z 2 17x51‘?! + b: 2 P17;
i=lj=I i=!j=l

= aE(p‚ q) + b,

und aus dem Gleichgewichtskriterium erhält man

v(1"‚) = au(F) + b.

In unserem Beispiel ist a = 1, b = 2:

2 = v(P,) = v(I‘) + 2

oder

u(F) = 0.

Dieses Ergebnis war natürlich zu erwarten, weil das Knobelspiel Papier—Schere—Stein ein symme-
trisches Matrixspiel ist, und wir haben früher gezeigt, daß für jedes symmetrische Matrixspiel der Wert
v(F) = 0 ist.

2.5. Verallgemeinerung

2.5.1. Unendliche Spiele

Nachdem eingehend endliche Zweipersonennullsummenspiele, also Matrixspiele
untersucht wurden, erhebt sich zwangsläufig die Frage nach Verallgemeinerungen
in der Hinsicht, daß man einmal die Einschränkung der Endlichkeit der Strategie-
mengen fallenläßt und zum anderen mehr als zwei Spieler zuläßt. Wegen der
Kompliziertheit der Thematik würde eine intensive Behandlung und Analyse dieser
Typen von Spielen den Rahmen dieses Lehrbuches sprengen; deshalb soll ein kurzer
Abriß genügen.

Wir betrachten zunächst das antagonistische Spiel G = (X, Y, F), wobei die
Strategiemengen X und Y unendliche Mengen sind. Natürlich wird auch in diesem
Spiel die optimale Verhaltensweise der Spieler durch die Gleichgewichtssituation ge-
kennzeichnet, d. h., jeder Spieler ist bestrebt, eine Strategie x* e X, y*e Yzu finden,
daß

F(x‚ y*) g F(3c*, y*) s F(x*‚ y)

gilt. Genauso wie im Endlichen gibt es Spiele, wo dieser Sattelpunkt nicht existiert.
Wir betrachten hierzu folgendes einfache Beispiel:

X= Y=(0‚l) und F(x,y)=x+y.

3 Man!/enfiel, Spieltheorie
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Aus der Sattelpunktrelation folgt, daß x* = l, y‘ = 0 ist. Diese Werte sind jedoch nicht gestattet,
da die Strategiemengen X, YotTene Mengen sind. Der 1. Spieler müßte also eine Strategie nahe 1 wäh-
len, der zweite nahe 0, etwa

x5=l—s, y£=e, e>0.

Daraus resultiert der Begriff des a-Sattelpunktes.

Definition 2.5: Wenn für ein e > 0 ein Strategiepaar (Xe, yg) mit xaeX, yee Y
existiert, so daß die Ungleichung

F(x„v‚) - e é F(x;,y¢) é F(x£,y) + 6

erfüllt wird, so heißt dieses Paar e-Gleichgewichtssituation oder e-Sattelpunkt.

Existiert ein e-Sattelpunkt (e > 0), so gilt stets

sup inf F(x,y) = inf sup F(x, y).
xeX eY yEY xEX

Auch bei den unendlichen antagonistischen Spielen existieren Sattelpunkte im all-
gemeinen nur im Bereich der gemischten Strategien. Zu diesem Zweck betrachten wir
die Klasse der wohlbeschränkten oder präkompakten Spiele.

Definition 2.6: R sei ein metrischer Raum mit der Metrik g. Existiert für ein be-
liebiges e > 0 ein a-Netz R, in R, so heißt der Raum R wohlbeschränkt oder präkom-
pakt. —

Dabei verstehen wir unter einem e-Netz R5: für alle re R existiert ein r, E R5, so

daß g(r„, r) < e gilt.

Im unendlichen Spiel G = (X, Y, F) gelte für die Metrik g, in X und g; in Y fol-
gende Definition (der natürlichen Metrik oder Metrik von Helley):

910c’. x”) = su1;lF(x’,y)— F(x”‚y)l x’. x”eX‚
ye

92(y’,y”) = sup I F(x. y’) — Fm") I yfly” 6 Y-
xsX

Dann läßt sich ein wohlbeschränktes Spiel wie folgt formulieren.

Definition 2.7: Das Spiel G heißt wohlbeschränkt oder präkompakt, wenn in der
natürlichen Metrik die Strategienräume X, Y wohlbeschränkt sind.

Ohne Beweis sei folgender wichtiger Satz angegeben.

Hauptsatz (von Wald): Ein wohlbeschränktes Spiel G hat für beliebiges e > O stets
einen e-Sattelpunkt, und die e-optimalen Strategien sind eine Mischung von endlich
vielen reinen Strategien, d. h.

= x1>---9-xm = y1,....y..
p‘ ipi‚...‚p‚„i‚ q‘ iq„...‚q„i.

Der Ausdruck p, = E" "";'"] bedeutet, daß die e-optimale Strategie sich aus
1,
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den m reinen Strategien x1, ..., x„‚ zusammensetzt, wobei x1 mit der Wahrschein-
lichkeit p„ ..., x„‚ mit der Wahrscheinlichkeit p„‚ auftritt.

Weiterhin gelten folgende Sätze:

1. In einem unendlichen Zweipersonennullsummenspiel hat der Spieler] eine reine
optimale Strategie, wenn die Gleichung

v = max inf F(x, y)
xeX yeY

gilt, und analog hat Spieler 2 eine reine optimale Strategie, wenn

v = min sup F(x, y)
yEY xsX

gilt.

2. Existiert eine gemischte Strategie p* e P und gilt E(p*, y) g v für alle y e Y, so ist
p* optimal.
Entsprechendes gilt für q”‘ e Q: Wenn E(x‚ q*) g u für alle x e X ist, so ist q* opti-
mal.

Wir wollen noch kurz eine spezielle Klasse von unendlichen antagonistischen Spielen
streifen, die relativ leicht zu analysieren ist, die sog. Spiele über dem Einheitsquadrat.

Definition 2.8: Ein Spiel G = (X, Y, F) mit X = Y = [0, l] nennt man ein Spiel
über dem Einheitsquadrat.

In einem solchen Spiel sind alle Situationen über dem Einheitsquadrat darstellbar:

y

7 X

Diese Einschränkung der Strategieräume ist nicht sehr stark, denn jedes abgeschlos-
sene Intervall [a, b] läßt sich auf das Intervall [0, l] transformieren.

Die gemischten Strategien sind die Wahrscheinlichkeitsverteilungen über dem
Intervall [0, I]. Genauer versteht man unter der gemischten Strategie des Spielers l
das Wahrscheinlichkeitsmaß p(x) g O, xe X, mit p[0, 1] = l. Entsprechendes gilt
für den 2. Spieler: q(y) g 0, y e Y, mit q[0, 1] = l. Der Gewinn des 1. Spielers stellt
sich dann als Erwartungswert dar:

Etp, y) = i F(x, y) dp(x),
0

1

Eoc, q) = i F(x‚y) dq(y>,

l
0

I

E(p. q>= I f F<x, y) dp(x> dem).
0 o
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Ein Spiel fiber dem Einheitsquadrat heißt stetig, wenn die Gewinnfunktion sowohl in
x e X als auch in y e Y stetig ist. Für die gemischten Strategien kann man dann fol-
gern:

F(x‚ y) ist bei beliebigen festen x e X stetig in y,

F(x, y) ist bei beliebigen festen y e Y stetig in x.

Für stetige Spiele über dem Einheitsquadrat gilt der folgende Hauptsatz: Jedes
stetige Spiel über dem Einheitsquadrat hat einen Wert, und die Spieler besitzen opti-
male Strategien.

Es läßt sich leicht zeigen, daß dieses Spiel wohlbeschränkt ist, und folglich exi-
stieren nach dem Satz von Wald e-optimale Strategien für beliebig kleine e > 0,
d. h., es gilt

v = sup inf F(x, y) = inf sup F(x, y).
xeX yell yEY xeX

Die Bestimmung der optimalen Strategien für Spiele über dem Einheitsquadrat kann
sehr kompliziert, wenn nicht unmöglich sein. Im allgemeinen gelingt sie nur bei einer
sehr kleinen Klasse von Spielen, den konvexen Spielen.

Definition 2.9: Das unendliche antagonistische Spiel auf dem Einheitsquadrat
= (X, Y, F> heißt konvex, wenn die Gewinnfunktion F (x, y) für beliebiges festes

x0 e X in y konvex ist, d. h.

F(xo‚Äy' + (1 ~/1) y") ä /1F(Xo,y') + (1 - Ä)F(Xo‚y")‚
y’,y”eY=[0,1], le[0_.]].

Wenn f(y) eine konvexe Funktion ist, so kann man folgende Eigenschaften be-
weisen:

Ing /Ly.) /1.-f(y.-)

mitl,» go (i: 1, ...,n), ä 1,. = 1.
i=l

l

2~f([ y dq(y)) é fl/’(y) dq(y)
0o

(q(y) ist das oben definierte Wahrscheinlichkeitsmaß).

Wenn zp(x, y) konvex in y e Y ist und p(x) eine Verteilung über x e [0, l], dann ist
1

_|‘ <p(x, y) dp(x) = f(y) ebenfalls konvex.

U Wir betrachten wieder das konvexe Spiel G. Der Spieler 2 habe die optimale ge-
mischte Strategie q*(y) e Q.

Dann gilt für die mathematische Erwartung y* der Zufallsgröße y e Y

1

y* = {y dq*(y).
0
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Für die Gewinnfunktion F(x, y*) erhält man aus den Eigenschaften der konvexen
Funktionen bzw. aus der mathematischen Erwartung y* folgenden Ausdruck:

II/
\

E

I 1

F(x‚y*) = F(X‚ f)? dq*(y)) ä fFOny) dq*(‚v) = E(x‚ 4*)
0 0

Damit ist auch y* e Y optimal, d. h., im konvexen Spiel hat der 2. Spieler stets eine
optimale reine Strategie.

Im folgenden sei die Gewinnfunktion F(x, y) für ein festes x e X nach y differenzier-
bar. Dann gelten folgende Sätze:

Satz 2.4: G sei ein konvexes Spiel über dem Einheitsquadrat, und die optimale reine
Strategie y* e Y des Spielers 2 sowie der Wert o seien schon bekannt. Wenn y* > 0
ist, so existiert ein x’ e X mit F(x’‚ y*) = v, und dabei ist

ü g o_
öy ,,,.

Satz 2.5: Unter denselben Voraussetzungen wie im Satz 2.4 sei y* < 1. Dann gibt
es ein x” e X mit v = F(x”‚ y*)‚ so daß

ÖF(x”‚ y)
by

go
y-”

ist.

Für 0 < y* < 1 gelten beide Sätze gleichzeitig. Daraus resultiert der Hauptsatz
für konvexe Spiele.

Hauptsatz (für konvexe Spiele): G =< X, Y, F> sei ein konvexes Spiel, wobei
F(x, y) eine nach y diflerenzierbare Funktion ist. Die optimale reine Strategie y* e Y
des Spielers 2 und der Wert des Spieles v seien bekannt. Dann gilt:

a) für y* = 0 hat der I . Spieler die reine optimale Strategie x* = x” (siehe Satz 2.5),
b) für y* = 1 hat der I. Spieler die reine optimale Strategie x* = x’ (siehe Satz 2.4),
c) für 0 < y* < l hat der 1. Spieler die gemischte optimale Strategie p* e P mit

x‚x„
17*.-[cc 1—~<x]’

wobei 0c die Wurzel der Gleichung

51"(x’,y)o,_j_

5F(X",y)by + (1 — ade
y-y’ Ö Y-

=f(zx) = 0
y‘

ist.

Wenn man auf diese Weise ein unendliches Zweipersonennullsummenspiel lösen
will, müssen folgende Schritte durchgeführt werden:

1. Es muß sich um ein konvexes Spiel handeln (prüfen l).
2. Man berechnet aus v = min max F(x, y) die optimale Strategie y* e Y des Spie-

lers 2. _ Y" "EX ‘

3. Berechnung von v = F(x, y*).

4 Mnnteufiol, spn-nlmrse
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4. Es sind solche Strategien x’, x” des Spielers 1 zu finden, für die die l. Ableitung
der Gewinnfunktion nach y an der Stelle y = y* verschiedene Vorzeichen hat.

öF(x’‚ y) ÖF(x”, y)
Ö

5. Aus 1xT + (1 — 0c) = O ist o: zu ermitteln, d. h. die

gemischte optimaleyStrategie des Spielers 1.

Als Beispiel für die Bestimmung der Lösung eines konvexen Spieles sei eine Variante des Angriffv
Verteidigungsspiels (siehe Abschn. 1.1) angeführt. Der Verteidiger, bei uns Spieler 2, beherrsche
2 Objekte. Ein Angreifer (Spieler 1) will mindestens eines dieser Objekte erobern. Beide Spieler haben
1 Einheit zum Erreichen ihres Zieles zur Verfügung. Die Aufteilung dieser Einheit in 2 Teileinheiten
die entsprechend zur Eroberung (Verteidigung) der Objekte 1 bzw. 2 eingesetzt werden sollen, ist
die jeweilige Strategie der Spieler. Der 1. Spieler verteilt seine Einheit so, daß der Teil x für den Kampf
um das Objekt 1 und der Teil 1 — ‚x für den Kampf um das Objekt 2 eingesetzt wird (0 g x g 1).

Der 2. Spieler setzt die Teileinheit y zur Verteidigung des Objektes l und die Teileinheit l — y zur

Verteidigung des Objektes 2 ein. Als Sieger geht derjenige hervor, dessen Teileinheit stärker ist, d. h.,
für x > y hat der Angreifer das Objekt 1 errungen. Somit ergibt sich für die Gewinnfunktion der fol-
gende Ausdruck:

_ e10: — y) fürx ä y (c1 > 0),
F(x’y) — c;(y — x) fürx g y (e; > 0)

(e, , c2 sind Gewichte, die die Wichtigkeit der Objekte charakterisieren). Zur Bestimmung der Lösung
dieses Spieles gehen wir nach den oben angegebenen Schritten vor.

1. Wir prüfen, ob es sich um ein konvexes Spiel handelt. Dazu ist zu zeigen, daß für ein beliebiges
festes x = x0 die Gewinnfunktion F(xo, y) in y konvex ist. Das stößt oft auf Schwierigkeiten derart,
daß entweder die Gewinnfunktion nicht analytisch gegeben oder nicht stetig differenzierbar (wie in
diesem Beispiel) ist. Deshalb analysiert man, wenn es möglich ist, diese Eigenschaft auf graphischem
Wege.

Oflensichtlich ist I-“(xo, y) für beliebiges x = x0 in y konvex.

2. Wir berechnen

u = min max F(x, y).
y x

Dazu betrachten wir zunächst

max F(X, y) = max {max c;(x — y). max c2(y - x)} = max{c1(1 — y), cm-
x xzy xgy

Daraus folgt

v = min max F(x, y) = min max {e10 — y), czy}.
‚v x ‚v
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v ermittelt man am einfachsten aus folgender praktischen Darstellung:

c, (7-y) : v v n emax {c,(1~y),:,y}
Ä

91

Danach gilt

ci(l — y) = C2)’ bzw. y = y‘ = j.
c1 + c2

Damit ist die optimale Strategie y* des Spielers 2 bestimmt.

m . Wir berechnen v:

_ n=_' e- C162”-6'2)’-Ci(1-}’)-—--
C1+Cz

A. Ermittlung der Strategien x’, x” des Spielers 1 :

Ausgangspunkt ist der Wert des Spieles

C152 *v=——=F(X.,v)='£‘1+(‘;
c1(x — y*) für x ä y‘,
cz(y* — x) für x g y‘.

Für x g y‘ gilt

( C1 ) C102
c, x - — = 1-,

cl + c2 c, + c2

d. h. x = 1.

Analog folgt für x g y‘

cl clc;
o;T — x = e,

cl + c; c, + c2

d. h, x = 0. Bilden wir jetzt die l. Ableitungen

'3F(X=1.y) = ÖCiU — .V)| = __c < 0

Öy F,» by [,=,. l ’

ÖF(x = 0. y) | öczy
DI = = c2 > 0,

Ö)’ |y=y" by ‘»y=y‘ ‘

so erhalten wir

x’ = 1, x” = o.

5. Wir ermitteln aus der Gleichung

ÖF ’, öF ”,a (x y) +<1_a) (x y) :0

Öy ,.=‚. by „y.

4:
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das a, d. h.‚ für unser Beispiel gilt

ac, +(1— oc)(—c1)= o oder on = —°’——.
c1 + c2

Daraus ergibt sich, daß der 1. Spieler eine gemischte optimale Strategie hat:

x’ = l x” = 0

P - c; cl

iTH?
Wir kommen zu folgenden optimalen Ergebnissen: Der Verteidiger verteidigt das Objekt 1 mit einer

Stärke von y = ?—:%— Einheiten und entsprechend das Objekt 2 mit einer Stärke von
1 2

02

cl + L’;

Einheiten. Der Angreifer wechselt seine Strategie. Das Objekt 1 greift er mit der ganzen Einheit
mit Wahrscheinlichkeit von

C2

c, + c2

und das Objekt 2 mit der entsprechenden Wahrscheinlichkeit

C1

EFT;
überhaupt nicht an.

2.5.2. n-Personen-Nullsummenspiele

Wir wollen noch kurz einige Bemerkungen zur umfangreichen Theorie der n-Per-
sonenspiele machen.

Früher wurde schon der Begriff des nichtkooperativen Spiels eingeführt, jedoch
mathematisch abstrakt und für den Praktiker nicht geeignet. Deshalb eine andere
Definition:

Definition 2.10: Ein n-Personenspiel heißt nichtkooperativ, wenn keinerlei Ab-
sprachen über Verhaltensmaßregeln im Spiel oder über die Verteilung des Gewinns
zwischen den Spielern vorliegen; sonst spricht man von einem kooperativen Spiel.

Für das nichtkooperative n—Personenspiel

G = <1. {S1}ieI. {Fi}leI>

gilt bezüglich der Gleichgewichtssituationen der Spieler der folgende Satz:

Satz (von Nash): Jedes nichtkooperative endliche n-Personenspiel hat eine Gleich-
gewichtssituatian in gemischten Strategien.

Der Satz von Nash ist offenbar eine Verallgemeinerung des Hauptsatzes für
Matrixspiele. Allgemein lassen sich diese Gleichgewichtssituationen sehr schwer
bestimmen, es ist bisher nur für bestimmte Drei- und Vierpersonenspiele gelungen.
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Führt man die Verallgemeinerung in der Richtung fort, daß wirein nichtkoopera-
tives n-Personenspiel mit n —> oo betrachten, so gilt folgender Satz:

Satz 2.6: Das Spiel G = <I,{S‚};e1‚{Fr}ie1> mit [I] = 0o besitzt keine Gleichge-
wichtssituation. .

In den Anwendungen sind die kooperativen Spiele die wichtigeren. Wir betrachten
ein n-Personenspiel, bei dem Koalitionsabsprachen möglich sind, und bezeichnen
mit

I = {l‚ ..., n} die Menge der Spieler insgesamt,

K die Menge der Spieler, die sich zu einer Koalition zusammengetan
haben (K c I),

v(K) den Gewinn der Koalition K.

Gehen wir von einem nichtkooperativen endlichen n-Personenspiel G = (I, {S‚}‚AE„
{F,-}‚-g‚> aus und nehmen wir an, daß sich k, Spieler zu einer Koalition K zusammen-

schließen, K = {I}, i2,..., ik}, so muß man damit rechnen, daß die übrigen Spieler
eine Gegenkoalition I\K bilden und im Endeffekt sich nur noch zwei „Koalitions—
spieler“ gegenüberstehen. Auf diese Art und Weise entsteht für jede Koalition K ein
antagonistisches Spiel, wegen der Endlichkeit sogar ein Matrixspiel, das wir mit GK

bezeichnen wollen.
Ist K = {i‚ , ..., i„}‚ so ist SK = {s‚-_, ...,s‚-„} mit Sf] e Si‘, ...,s,-,,e S,-,‘ eine Stra-

tegie der Koalition K (des Spielers K), und die Menge aller Strategien von K bezeich-
nen wir mit yK.

Genauso gilt für die Koalition I\K:

I\K ={j,,...,j,}, l+k=n,
S,\,( = {s,-_, ...‚s„} mit sjle Sh, ...,s‚-, e S,-, ist eine Strategie von I\K,

ym ist die Strategiemenge des Spielers I\K.

Wie für alle Matrixspiele interessiert auch hier der Begrifi" der gemischten Erwei-
terung. Unter der gemischten Strategie der Koalition K (der Koalition I\K) versteht
man die Wahrscheinlichkeitsverteilung über die Strategiemenge yK bzw. 9/“K, etwa
pk bzw. q,\K. Für die Gewinnfunktion F des Spieles GK gilt:

F(Ska S1\x)= F(-9i.» ---Jim S15: ---5 Sn) = FG) = §{F.-(5),
IG

wobei F‚.(s) die Gewinnfunktion des Koalitionspartners i (iek) bei der Situation
se S im Spiel G ist. Gewinnt die Koalition K den Betrag F(s) = Z F,(s), so erhält
die Koalition I\K den Betrag — 2 F,-(s). ‘GK

' KIE

Für jede beliebige Koalition K entsteht demnach aus dem Spiel G = (I,
{S,<},-51{F,»},-5,) das Matrixspiel GK = (3/K, ;/“K, 1-"(s)>, und da für Matrixspiele die
Ermittlung der Lösung recht einfach erfolgt, wollen wir das für die weiteren Be-
trachtungen zur Ermittlung der optimalen Strategie ausnutzen.

Definition 2.11: Wenn das Spiel G für eine beliebige Koalition K (K c I) einen Wert
hat, der von K abhängt, so heißt dieser Wert die charakteristische Funktion des Spiels G.
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Bezeichnet man den Wert des Spieles G mit v(K), so gelten folgende Eigenschaften:

1. v(0) = 0,

2. K„K2, ...‚K‚eImit K,» fiKj = 0 für i ;&j, so ist
v(K1 U K2 U U K) ä v(K1) + v(K2) + + v(K,).

3. Ist G ein Konstantsummenspiel mit der Gewinnsumme c, so ist v(I) = c, und es

gilt für jede Koalition K: I: v(K) + v(I\K) = v(I).

Definition 2.12: Die charakteristische Funktion v heißt additiv, wenn v(K U L)
= v(K) + v(L) mit Kn L = Ü ist.

Notwendig und hinreichend für die Additivität der Funktion v ist, daß

Z v(i) = v(I)
ieI

ist. Kooperative Spiele mit additiver charakteristischer Funktion heißen unwesent-
liche Spiele (unwesentlich deshalb, weil die Koalitionsbildung nicht zu einem Mehr-
gewinn führt), alle anderen heißen wesentlich (vgl. das Bsp. S. 38).

Definition 2.13: Die charakteristischen Funktionen v und v‘ heißen strategisch äqui-
valent, v ~ v’, wenn für ein beliebiges k > 0 reelle Zahlen c,- (i e I) existieren, so daß

v(K) = kv’(K) + Z c,-

ieK
ist.

Sind nichtkooperative Spiele G und G’ strategisch äquivalent, so sind auch die ent-
sprechenden charakteristischen Funktionen strategisch äquivalent.

Aus dem bisher Gesagten folgt, daß die Koalition K sich den Gewinn v(K) sichern
kann, wobei stets v(K) g v(I) ist. Die Spieler insgesamt bekommen den Gewinn
v(I), und es bleibt die Frage ofi"en, wie dieser Gesamtgewinn unter den n Spielern zu
verteilen ist. Bezeichnen wir das kooperative Spiel G mit G = (I, v), so gilt:

Definition 2.14: Unter einer Verteilung im Spiel G = (I, v) verstehen wir einen n-

dimensionalen reellen Vektor p = (pl, ..., p„) mit

1-Pi§7?(i)» i5]
(u(i) ist der Wert des Spielers ie I, den er sich in jedem Falle selbst sichern kann,
ohne Teil einer Koalition zu sein),

2- 2 Pi =

iel

Da die Verteilung im Spiel G = (I, v) nicht eindeutig ist, ist natürlich jeder Spieler
bestrebt, über gewisse Vorzugsrelationen die für ihn günstigste Verteilung zu er-

mitteln.

Definition 2.15: Eine Verteilung p dominiert bezüglich der Verteilung q in der
Koalition K, p >K q, wenn

1- 2 p; ä v(K)‚
ieK

2.p‚- > qt, ieK,
gilt.
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Daraus resultiert der von Neumann-Morgensternsche Lösungsbegrifl.

Definition 2.16: Eine Lösung des Spieles G = (I, v) ist eine Menge 2 von Ver-
teilungen von G mit den Eigenschaften:

1) Zu jeder Verteilung p ¢ 8 existiert eine Verteilung q e E}, so daß q > p.
2) Keine Verteilung aus S’, dominiert bezüglich einer anderen Verteilung aus B.

Zur Bestimmung der Lösung des Spiels G = (I, u) ist folgender Satz von Be-
deutung:

Satz 2.7: Zu jedem wesentlichen Spiel G = (I, v) gibt es genau ein strategisch
äquivalentes Spiel G’ = (I, v’), für dessen charakteristische Funktion gilt

z/(i) = 0 (i = 1, ...‚n) und v’(I) = 1.

Wir sprechen von der O-I-reduzierten Form eines kooperativen Spieles. Mit
Hilfe der 0-l-reduzierten Form (strategischen Äquivalenz) ist es möglich, die
Lösung eines kooperativen Spieles G anzugeben.

Wir betrachten ein 2—Personenspiel:

v’(1)= o, 1/(2) = o, 1/(I) = v’({l,2}) = 1.

Daraus folgt sofort, daß jedes Z-Personen-Konstantsummenspiel ein unwesentliches
ist, denn aus v’(l) + v’(2) = v’(1, 2) = c ergibt sich v’(2) = v’({1‚ 2}) — z/(l)
= l — 0 = 1, was nach Satz 2.7 unmöglich ist. Unwesentliche Konstantsummen-
spiele lassen sich wie Matrixspiele lösen.

Für ein 3—Personenspiel gilt: v’(l) = v’(2) = v’(3) = 0, v’({1, 2}) = v’({1, 3})
= u’({2, 3}) = l (wegen v({1,2}) = v({l‚ 2, 3}) — 12(3) = 1 —— 0 = l, usw.)‚ 1/(I)
= v’({l, 2, 3}) = l, d. h., für 3—Personen-Konstantsummenspiele existiert eine Klasse
von wesentlichen Spielen, und für diese gilt

Satz 2.8: G = (I, v) sei ein 3-Personen-Konstantsummenspiel, für dessen O-l-
reduzierte Form die charakteristische Funktion v’ die oben angegebenen Bedingungen
erfüllt, dann gibt es die folgenden Lösungen:

L0 = "2"! i)! (äs 0a .2): (ä, 2:

LE0 = Menge aller Verteilungen (p 1 , p2 , ps)
mitp, = c, wobei0 g c < -§(i = 1,2,3) ist.

v. Neumann-Morgenstern bestimmten zuerst sämtliche Lösungen für die allgemeinen Drei-
personenspiele sowie für gewisse Klassen von 4—Personenspielen. Die Theorie der kooperativen Spiele
entwickelte sich zur Theorie der Dominanzrelationen. Eine allgemeine Lösungsmethode existiert
nicht.
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3.1. Problemstellung

Statistische Spiele (wir wollen nur endliche Spiele betrachten) sind modifizierte
Formen von Zweipersonennullsummenspielen. Bei antagonistischen Spielen, ins-
besondere bei Matrixspielen, kann man relativ leicht mit Hilfe des Minimax—Theorems
(siehe Hauptsatz für Matrixspiele) die optimalen Verhaltensweisen der Spieler im
Spiel bestimmen. Dieses Minimax-Theoremläßt sich, wie wir später sehen werden,
nicht nur in Fällen direkter Interessenkonflikte zwischen zwei Spielern verwenden,
sondern auch in solchen Fällen, in denen Entscheidungen angesichts von Ungewiß-
heiten gefallt werden müssen. Eine optimale Entscheidungsfindung unter Ungewiß-
heit ist der Hauptinhalt der statistischen Spiele. Ausführlicher heißt das: Ein Mensch
soll eine Entscheidung fällen, also ein Element aus einer bestimmten Menge Y (das
ist die Menge seiner möglichen Handlungsweisen) auswählen, wobei er über den wah-
ren Zustand, dem er sich gegenübersieht, im ungewissen ist. Er weiß lediglich, daß
dieser Zustand ein Element einer gewissen Menge X (wir werden diese Menge als
Menge der möglichen Zustände der Natur bezeichnen) ist, sowie daß jede seiner
Handlungsweisen ye Y für jeden Zustand xeX der Natur zu einer bestimmten
Konsequenz für ihn führt.

Es besteht also eine Konfliktsituation zwischen Mensch und einem fiktiven Geg-
ner, der sogenannten „Natur“. Läßt sich die vom Zustand der Natur und den Hand-
lungsweisen des Menschen abhängige Konsequenz als Gewinnfunktion darstellen,
so ist es vernünftig, diese Problematik als Spiel zu formulieren, genauer als ant-
agonistisches Spiel G = (X, Y, F).

Es ist natürlich hierbei zu bedenken, daß man die Natur nicht ohne weiteres als rationalen Gegner
auffassen kann, dessen Ziel es ist, die Gewinnfunktion F zu maximieren und damit dem Menschen
den größtmöglichen Schaden zuzufügen. Trotzdem hat es sich als sinnvoll erwiesen, das Minimax-
Prinzip als ein mögliches Prinzip des rationalen Verhaltens für den Menschen zu benutzen, gerade
weil durch die Annahme, daß die Natur als rationaler Gegner auftritt, das Risiko einer Fehlentschei-
dung minimal wird. Es sei an dieser Stelle bemerkt, daß mehrere Autoren das Minimax-Kriterium
als „pessimistisches Kriterium“ ablehnen und durch subjektive Faktoren die Zustände der Natur
abzubilden versuchen, jedoch ist kein Beweis erbracht, daß diese Kriterien realistischer sind als das
Minimax-Kriterium.

Spiele, die die Konfliktsituation Natur-Mensch beschreiben, heißen Spiele gegen
die Natur oder statistische Spiele. Bevor wir zur Analyse statistischer Spiele kommen,
werden einige notwendige mathematische Begriffe eingeführt. Gegeben sei eine
Funktion (p, die auf dem Produktraum X >< Y definiert ist. Dann wollen wir unter
der Funktion (p, für jedes y e Y eine Funktion verstehen, die auf X definiert ist, so
daß
_ (p‚(x) = (p(x, y) für alle x e X
ist.

Definition 3.1: Gegeben seien die Funktionen (p und f, wobei die obige Definition
von (p bezüglich f erhalten bleibt undf(z) für alle z e Z definiert ist. Dann versteht man
unter der Komposition der Funktionen (p und f, geschrieben (p of, die Funktion h,
so daßfür alle z e Z

h(z) = <P[f(z)]
gilt.
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Definition 3.2: Unter einer Teilung des Raumes Z verstehen wir eine Zerlegung der
Menge Z in gegenseitig disjunkte Teilmengen Z„ deren Vereinigung die Menge Z ist.
Eine Teilung wird durch das Symbol S gekennzeichnet und die Menge aller Teilungen
durch E.

Eine Funktion f, die auf Z definiert ist, bestimmt eine Teilung S, von Mengen Z,
mit

z. = {z |f(z) = i}.

3.2. Stichprobenraum, Strategienraum der Natur und des Statistikers

Grundlage jedes statistischen Spiels ist der Sogenannte Stichprobenraum, der alle
möglichen Ergebnisse eines Experimentes beschreibt. Der Stichprobenraum dient
dem Statistiker (Mensch) als lnformationsmenge über die Zustände der Natur, d. h.‚
der Statistiker erhält durch" Experimentieren die Möglichkeit, die Natur „auszuspio-
nieren“, und die Art und Weise dieses Spionierens bestimmt grundlegend die Strategie
des Statistikers.

Z sei der Raum aller möglichen Ergebnisse eines Experiments und N ein Para-
meterraum;dann können wir auf dem kartesischen Produkt Z >< N eine Funktion p
definieren, die für ein festes n e N, wir schreiben dafür p„, ein Wahrscheinlichkeits-
maß auf Z ist, d. h.‚ p„ ist als nichtnegative Funktion auf Z erklärt mit p„(z) : 0 für
z¢Zund2p,,(z)= l. ‚

zsZ
Die Menge N kann man als Indexmenge für die Klasse der Wahrscheinlichkeits-

verteilungen über Z interpretieren.
Wir kommen nun zur mathematisch-formalen Definition des Stichprobenraums.

Definition 3.3: Es seien Z und N zwei nichtleere Mengen, und psei eine auf Z >< N
definierte Funktion, so daß p„ für ein festes n e N eine Wahrscheinlichkeitsverteilung
über Z ist. Dann heißt das Tripel

R = (Z, N‚p)
Stichprobenraum.

In der Theorie der statistischen Spiele stellt das Element n e N eine reine Strategie
der Natur dar. Demnach ist die Menge N die Strategiemenge der Natur und ent-
spricht der Strategiemenge X im allgemeinen Zweipersonennullsummenspiel. Wir
nennen die Elemente n e N auch Zustände der Natur. Für einen beliebigen Zustand
der Natur n e N kann man aus der im Stichprobenraum definierten Wahrscheinlich-
keitsverteilung p die Wahrscheinlichkeit dafür angeben, daß im Experiment das Er-
gebnis z erreicht wird. Es gilt:

p„(z) = p(z/n)‚ n e N.

Wir fassen also die Wahrscheinlichkeit p„ als bedingte Wahrscheinlichkeit auf, d. h.‚
wir setzen voraus, daß das Ergebnis des Experimentes z e Z erst dann eintritt, wenn
die Natur bereits den Zustand n angenommen hat. Damit ist auch vom Standpunkt
des Praktikers ein vernünftiges Herangehen bei der Bestimmung der Informations-
menge gewährleistet.

5 Mantcn!!cI,Spie1thooric
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Ein wenig komplizierter ist die Struktur des Raumes der reinen Strategien für den
Statistiker. Wir wollen im weiteren nur den Fall behandeln, daß der Stichprobenraum
R aus einem einmaligen Experiment resultiert (auch aus ökonomischen Gründen ver-

nünftigl). Ein solches Experiment setzt sich allgemein aus einer endlichen Anzahl
von Teilexperimenten zusammen, und das Ergebnis dieser Teilexperimente bestimmt
einen endlichdimensionalen Vektor, der, wie wir später sehen werden, einen ent-
scheidenden Einfluß auf die Handlungsweise des Statistikers hat. Dem Statistiker
steht eine gewisse Klasse A von möglichen Aktionen zur Verfügung, aus der er an-

gesichts des ihm unbekannten Zustandes der Natur ein Element zu wählen hat (eine
Entscheidung zu treffen hat). Es muß jedoch darauf hingewiesen werden, daß dieser
Raum nicht immer der Raum der reinen Strategien des Statistikers sein muß, denn
man kann sich gut vorstellen, daß die Anzahl der Strategien des Statistikers ungeheuer
wächst, wenn er jedem Ergebnis im Experiment einen Punkt a e A zuordnet. Deshalb
ist es sinnvoll, die Strategie als Funktion von z e Z zu definieren, und wir kommen zu

dem Begrifi" der Entscheidungsfunktion.

Definition 3.4: Es sei R = (Z, N, p) ein Stiehprobenraum und A ein beliebiger
Raum von Aktionen. Dann heißt eine Funktion d, die auf Z definiert ist und Z auf A
abbildet, eine Entscheidungsfunktion. Die Menge D aller Entscheidungsfunktionen ist
die Menge der reinen Strategien für den Statistiker.

Mit Hilfe der Entscheidungsfunktion de D läßt sich eine Teilung von Z in dis-
junkte Teilmengen erreichen, d. h., die Funktion d(z) bestimmt die Teilung S, Von

Mengen E02„ mit
§lR,,={z|d(z)=a}, Li§U2,,=Z.

Das bedeutet wiederum, daß ein Ergebnis im Experiment in eine der Mengen ‘Di, (aeA)
fallen muß, und fällt es in die Menge §D?,,, so wählt der Statistiker die Aktion a.

Kommen wir nun zur Definition eines statistischen Spiels mit einmaligem Experi-
ment. Bekannt sind die Strategiemengen der beiden Spieler, N und D. Bleibt nur
noch eine Art Gewinnfunktion zu bestimmen.

Definition 3.5: R sei der Stichprobenraum und A ein beliebiger Aktionenraum. Eine
beschränkte numerische Funktion L, die auf der Produktmenge N >< A definiert ist,
heißt Verlustfunktion und wird durch den Ausdruck

L = L(n‚ a), (n, a) e N X A,

dargestellt.
Da wir es mit einem Entscheidungsproblem unter Ungewißheit zu tun haben —

wir kennen nur die bedingte Wahrscheinlichkeit p„(z) für das Auftreten des Ergeb-
nisses z im Experiment, wenn die Natur den Zustand n angenommen hat —-‚ müssen
wir den mittleren Verlust ermitteln, d. h., wir müssen den Erwartungswert für die
Verlustfunktion L bezüglich der Verteilung p„ bestimmen. Die so bestimmte Funktion
heißt Risikofunktion und ist wie folgt definiert.

Definition 3.6: Gegeben sind der Stichprobenraum R = (Z, N, p), der Aktionen-
raum A, die Strategiemenge des Statistikers D und die auf N >< A definierte Verlust-
funktion L. Dann versteht man unter einer auf N >< D definierten Risikofunktian den
Ausdruck

9("‚ d) = E22 L(n‚ d(Z))17n(z)~
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Die Risikofunktion g ist das Äquivalent zur Gewinnfunktion F im Zweipersonen-
nullsummenspiel, und somit gilt für ein Statistisches Spiel

Definition 3.7: Es seien R = (Z, N, p) der Stichprabenraum, A ein Aktionenraum‚
D die Klasse der Entscheidungsfunkrionen und g die Risikafunktion. Dann heißt das
Spiel G = (N, D, g) statistisches Spiel.

3.3. Gemischte Strategien im statistischen Spiel

Ausgehend vom statistischen Spiel G = (N, D, g) erhält man die gemischte Er-
weiterung F = <0, 29, Q) genauso wie in einem allgemeinen Zweipersonennullsummen-
spiel. E) ist wieder der Raum der gemischten Strategien der Natur, in statistischen
Spielen nennt man ihn den Raum der a-priori-Wahrscheinlichkeitsverteilungen über
die Zustände der Natur, 19 ist der Raum der gemischten Strategien für den Statistiker,
und g ist die mathematische Erwartung des Risikos g bezüglich einer Wahrschein-
lichkeitsverteilung aus 0 und einer Wahrscheinlichkeitsvertcilung aus i9.

Da der Raum der a—priori—Vertcilung mitunter schwierig zu ermitteln ist, geht man

den Umweg über die a—posteriori-Verteilung. Wir betrachten den Stichprobenraum
R = (Z, N, p). Die Menge Z der Ergebnisse eines Experimentes läßt sich mittels
einer Teilung Sf in disjunkte Teilmengen zerlegen. Die Teilmenge S nennen wir Er-
eignis des Stichprobenraums, und die Wahrscheinlichkeit für das Eintreten des Er-
eignisses S ist gegeben durch

P„(S) = §Sp..(Z)-

Zur Bestimmung der a-posteriori-Wahrscheinlichkeitsverteilung und des a-posteriori-
Risikos benötigt man den Begriff der bedingten Wahrscheinlichkeit und der bedingten
Erwartung (vgl. Band 17, Abschn. 2.2.3.1., S. 29, und Abschn. 2.3.7.3., S. 87).

Definition 3.8: S sei ein Ereignis im Stichprobenraum R = (Z, N, p) und f(z) eine
über Z definierte Zufallsvariable. Für irgendein n e N heißt der Ausdruck

_ f(Z)11..(Z)
En(f/S) ~ 2W

zeS

die bedingte Erwartung von f bei gegebenen S und n, wobei

ZSlf(z)|p..(Z) < 0°

sein muß.

Definition 3.9: Im Stichprobenraum R = (Z, N, p) hat für irgendeine Teilung aus

E die Zufallsvariable h(z) = (p of (Komposition der Zufallsvariablen f und (p) für alle
z e S e C5 den konstanten Wert

M2) = E..(f/5) = En(f/€)~
Definition 3.10: Es sei g eine Zufallsvariable in R. Durch g seien die Mengen 2132„

= {z | g(z) = a} in Farm einer Teilung S, bestimmt. Für ein festes n e N heißt die Zu-
fallsvariable E,,(f/S9) = E,,(f/g) bedingter Erwartungswert von f bei gegebenem g.

Kommen wir wieder zum Spiel G = (N, D, g) mit der gemischten Erweiterung
F = (9,19, g). Gegeben sei eine a-priori-Verteilung E e O. Gesucht wird eine Verteilung

5x
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q; über Z >< N, die für das Ereignis Z >< {n}, ne N, die Wahrscheinlichkeit £(n)
und für das bedingte Ereignis {z} >< N/Z x {n}, zeZ‚ die Wahrscheinlichkeit
p (z/n) hat. (Das Ereignis {z} x N wird unter der Bedingung betrachtet, daß das
Ereignis Z >< {n} bereits eingetreten ist.) Anders ausgedrückt, wir suchen einen Stich-
probenraum R’ = (Z x N, 0, g), der die Eigenschaft hat, daß

(1) Qs(Z X {”}) = 5(71)
für allezeZ, neNund £60 ist und

(2) für 5(11) > 0

Q:({Z} X N/Z X i'd) =P(Z/11)gi1t,

wobei für irgendein Ereignis S C Z x N

Qs(S) = Z I1e(z,11)
(z‚n)es

ist.
Es seien S C Z’ = Z x N und Q;(S) > 0. Für eine auf Z’ definierte Zufallsva-

riable f gilt nach Definition

Z f(z’) q:(z’)

Em =

Für f(z’) = 1 mit einem bestimmten z’ e Z >< N (für alle anderen z’ istf(z') = 0) er-
hält man für das Ereignis S = {z} >< N:

Z f(z’) 1Is(z’)
z’eS

Qe(-9)

f(Z:1')qe(Z,1')

Es(f/S) =

Z
(z.DE{Z) x N

Z qs(z‚ i)
(z‚i‘)e(z) x N

= q5(Zs n)
Z ¢1e(z,1') '

ieN .

Nach dem Multiplikationstheorem der Wahrscheinlichkeitsverteilung ist

qs(z‚ n) = p(z/11) 6(11),

und wir erhalten

Ems) = = w).

E‚(n) ist die bekannte a-posteriori-Wahrscheinlichkeitsverteilung (Bayessche Formel).
Nun seif(z’) = L(n, d(z)) mit d e D und S e {z} >< N, dann erhalten wir

Z L(n, 11(2)) 17(Z/11) 5(11)

W/S’ =
HEN

=3, L(n, d(z)) Ez(11) = 11(11)-
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r,(d) heißt bedingte oder a-posteriori-Risikofunktion. Wir wollen noch einige Be-
merkungen zum Raum der gemischten Strategien des Statistikers machen:

Definition 3.11 : Es seien R = (Z, N, p) der Stichprobenraum, A ein beliebiger Aktio-
nenraum und 19 eine Klasse von Funktionen 6, die auf A >< Z definiert sind, so daß Ö, für
jedes z e Z eine Wahrscheinlichkeitsverteilung über A ist. Dann ist 19 der Raum der
gemischten Strategien für den Statistiker.

Aus der Definition folgt sofort, daß beim Eintreten des Ergebnisses z e Z der Sta-
tistiker die Aktion a e A mit der Wahrscheinlichkeit

M“) = 501/Z)

wählt, wobei "diese seine gemischte Strategie wieder sinnvollerweise als bedingte
Wahrscheinlichkeit interpretiert wird. Die Risikofunktion Q ist dann folgendermaßen
definiert.

Definition 3.12: Gegeben seien wieder der Stichprobenraum R, der Aktionenraum A,
der Raum der gemischten Strategien des Statistikers 19 und die Verlustfunktion L.
Unter der (zufälligen) Risikofunktion Q, die auf N x z? definiert ist, versteht man den
Ausdruck

50h Ö) = ä L("‚ ü) E„(Ö(a/Z)) = E‘ §ZL(IM1)5(a/Z)17(Z/I1)

mit 6 e t9.

Analog äßt sich die Risikofunktion Q auf 0 >< 29 definieren.
Zur Lösung des statistischen Spiels läßt sich das Minimax-Kriterium verwenden,

jedoch etwas abgewandelt. Wir betrachten das Spiel G = (N, D‚g> und die dazu-
gehörige gemischte Erweiterung T = (0, 29, o). Angenommen, der Statistiker wählt
die gemischte Strategie 6 e19. Dann gibt es nur die Alternative: entweder keine an-

dere Strategie ist besser als 6, d. h., es existiert kein 6* e 6‘ mit §(n, 6*) < Q(n, 6) für
ne N, oder es existiert eine solche. Im l. Falle bezeichnet man die Strategieö als
zulässig, sie muß jedoch nicht unbedingt Verwendung finden, sofern es noch gleich-
wertige gibt. Im 2. Falle würde 6 klar fallengelassen. Daraus resultiert folgendes ver-

nünftige Auswahlprinzip. '

Definition 3.13: Es sei G = (N, D, g) ein statistisches Spiel und I" = (0, 29, Ö} die ge-
mischte Erweiterung. Existiert für alle n e N (E E Q) keine andere gemischte Strategie
6 e 1?, die besser ist als 6* e i9, d. h.‚gibt es kein 6 mit§(n, 6) < §(n, 6*), so nennt man 6*
eine zulässige Strategie.

Alle zulässigen Strategien bilden für die möglichen Zustände die Klasse C der zu-

lässigen Strategien.

Definition 3.14: Die Klasse C von zulässigen Entscheidungsfunktionen 6 E 19 heißt
vollständig, wenn manfür ein 6, das nicht zu C gehört, ein Element 6* e Cfinden kann mit

e(n‚ 5*) < 901,5)-

Um die vollständige Menge der zulässigen Lösungen zu erhalten, fordern wir als
Entscheidungsregel, daß das Risiko g bezüglich 6 e i9 zu einem Minimum wird, d. h.

§(n, 6*) = min §(n, 6) für alle n e N.
Bea
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Diese Entscheidungsregel ging auch unter dem Namen Bayessches Lösungskriterium
in die Literatur ein.

Zwischen dem Minimax-Kriterium der Matrixspiele und der Bayesschen Lösungs-
formel besteht ein enger Zusammenhang. Betrachten wir ein Matrixspiel G = (X, Y, F>

mit zugehöriger gemischter Erweiterung F = (P, Q, E), so gilt nach dem Haupt-
satz für Matrixspiele

v(F) = max min E(p, q) = min max E(p, q) = E(p*, q*).
ps1’ «SQ qeQ peP

Auf das statistische Spiel angewendet (wir betrachten nur endliche statistische Spiele),
erhält man demnach -

v(f') = max min §(E, ö) = min max §(E, ö) = @(E*, 5*).
€e6 den? 6&9 €56

Ist 5* eine bekannte a-priori-Verteilung über die Zustände der Natur (natürlich kann
diese Verteilung durch eine a-posteriori-Verteilung 6;‘ ersetzt werdenl), die statistisch
ermittelt wurde und als für den Statistiker ungünstig interpretiert wird, so gilt

min @(E*, Ö) g min @(E, Ö)
de’) ass

oder
min §(E*,6) = max min @(.§,6) = min max z_3(.E,r§),

äeö EEG 66:9 050 E59

d. h., Minimax-Lösung und Bayes-Lösung sind äquivalent.

Es wurde schon zu Anfang dieses Kapitels bemerkt, daß das Minimax-Kriterium ein übertrieben
vorsichtiges Kriterium ist, und zwar dadurch, daß man die Natur als rationalen Gegner auffaßt, dessen
Ziel auf maximalen Schaden des Spielers (Statistikers) gerichtet ist. Diese übertriebene Vorsichtigkeit
wird durch das Bayes-Kriterium ausgemerzt, indem 5* e O statistisch ermittelt wird. Es gibt noch eine
Reihe anderer Kriterien, die auf verschiedene Arten Versuchen, den Mangel des Minimax-Kriteriums
auszugleichen, etwa das Maximax-Kriterium, das Hurwicz-a-Kriterium, das Laplace-Kriterium und
verschiedene Ableitungen dieser. Jedoch soll auf diese Kriterien im einzelnen nicht eingegangen
werden.

Zusammenfassend sei noch einmal der Zusammenhang zwischen Matrixspiel und
endlichem statistischem Spiel mit einmaligem Experiment angegeben:

Matrixspiel Statistisches Spiel

Spieler l Natur
Spieler 2 Statistiker

reine Strategie x Auswahl des wahren Elementes
des Spielers 1 n durch die Natur
Menge X der reinen Strategien Menge N der Zustände der Natur
für Spieler l
reine Strategie y des Spielers 2 Auswahl einer Entscheidungsfunktion d

durch den Statistiker
Menge Y der reinen Strategien Menge D aller möglichen Ent-
für Spieler 2 scheidungsfunktionen d
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Matrixspiel Statistisches Spiel

Gewinnfunktion F(x, y) Risikofunktion g(n, d)
Gemischte Strategie p des Spielers 1 a priori (a posteriori)

Verteilung 5 (6,) über N
Gemischte Strategie q des Spielers 2 Wahrscheinlichkeitsmaß Ö

Minimax-Kriterium z. B. Bayes-Kriterium

Beispiel: Als Beispiel für ein Statistisches Spiel diene ein Modell aus der Verkehrsplanung. Ge-
geben sei ein öffentliches Personennahverkehrsnetz mit n Linien, das von m Bussen befahren werden
soll. Es ist vorausgesetzt, daß die Linienführung unvereinbar sein soll. Gefragt wird nach der An-
zahl der Busse, die eingesetzt werden muß, damit die Bedürfnisse der Bevölkerung befriedigt werden
und dem Betrieb ein maximaler Nutzen entsteht.

Zunächst bestimmen wir den Stichprobenraum: Wir betrachten einen bestimmten Zeitraum T.
Dann kann eine Linie zu einem Zeitpunkt Ie Tentweder von keinem, einem oder mehreren Bussen
bedient werden. Wir sagen dafür: Die Linie wird nullfach, einfach oder s-fach bedient. Bei n Linien
gibt es demnach (s + l)" mögliche Ergebnisse, d. h., Z besteht aus (s + 1)” Elementen. Das Eintreten
jedes Ereignisses ist für einen beliebigen Zeitpunkt tE Tzufallsbedingt. Die Elemcutarereignisse der
Menge Z bezeichnen wir mit Z5’) (v = 0, 1, ..., s). Dabei bedeutet Z5”), daß die '-te Linie zur Zeit
te T v Busse benötigt (v = 0, 1, ...‚ s). Die Ereignisse Z5”) (i = 1, ...‚ n) bilden für jedes i = l, ...‚ n

ein vollständiges System. Die Elemente der Menge Z kann man aus den Elememaiereignissen Zf")
bestimmen. Für das Ereignis, daß genau die ersten kg Linien keinen Bus, die nächsten kl Linien einen
Bus, ...‚ und schließlich die letzten k, Linien s Busse benötigen, kann man dann schreiben:

I

Z = Zio) Z;\2)Z§\'{z?|'1 ZI(:§)+I.'. ZI‘fn)+...+1.-;—x+1 Zzff‚’+...+i. mit 2o kt = '1
,=

Um alle möglichen Ereignisse darstellen zu können, wird ein „Exponent“ eingeführt, der für alle i
einen Wert der Menge M = {0, 1, ...‚ s} annehmen kann und die Eigenschaft hat, für einen bestimm-
ten Wert aus M nur das Elementarereignis stehenzulassen, welches als oberen Index den gleichen
Wert aufweist.

Es gilt also:

23°) für I, =0,

Z§o>z,-Z51».-.__Z§s)t.-= Z?“ fÜf1:=1‚

Z5‘) für l, = s.

Dann läßt sich die Menge Z wie folgt darstellen:

Z = {Z(10)h Z(ls)l1 Z(0)ln Z(s)l,u}
n n ’

_ 7|

wobei XI, = I — 0, 1, ...‚ n, und I, E Mist. Der Einfachheit halber bezeichnen wir die Elemente der
i= l n

Menge Z mit 2g’), Z = {zp}, wobei l die benötigten Fahrzeuge auf den Linien bezeichnen)", I, = l,
I= I

und iein Element aus den möglichen Kombinationen von den Linien, die insgesamt [Busse benötigen,
zu der Gesamtzahl n der Linien ist. _

Die Menge N, die Strategiemenge der Natur, besteht aus den nichtnegativen ganzen Zahlen von

0 bis ns:

N= {j} mitj = 0‚1,...‚n-s.
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Die Natur befindet sich im Zustand j, wenn j Autobusse benötigt werden. Die Elemente der Menge N
kann man ebenfalls auf die Elementarereignisse Z5”) zurückführen. Es gilt

N= {N=j} = {[2 l[2§°>'1 zf": 250"» z§f>'r-1} mitje (o, 1, ...,ns}.
1+.--+ n=i

Der wahre Zustand der Natur ist uns unbekannt. Eine a-priori-Verteilung über die Zustände der
Natur kann man wiederum aus den Ergebnissen des Experiments bestimmen. Ist pf”) = P(Z§”3) die
Wahrscheinlichkeit für das Eintreten des Elementarereignisses ZS”), so erhält man aus der eben an-

gegebenen Form der Menge N durch einige Umformungen die gesuchte Verteilung:

5, = P(N = i) = 2 p‘,°’“ 125"“ p,‘°>‘~ ...p;=>'~.ie {0. m}.
l1+...+1n=j

Diese Wahrscheinlichkeitsverteilung E wird als die für die Natur günstigste Verteilung angesehen und
beim Bayes-Kriterium zugrunde gelegt. '

Zur vollständigen Beschreibung des Stichprobenraumes R = (Z, N, p) müssen wir noch die auf
Z >< N definierte Verteilung p,(z) ermitteln (z E Z, j e N). p,(z) ist die Wahrscheinlichkeit dafür, daß
das Ereignis Z = z unter der Bedingung, daß die Natur bereits im Zustand j ist, eintritt, d. h.

171(2): P(Z = z/N =j).

Nach dem Multiplikationstheorem der Wahrscheinlichkeitsrechnung gilt

P(Z = z, N = j)
11;(z)= ——+

P(N = I)

P(N = j) = E, ist bereits bekannt. Präzisieren wir das Element z E Z, indem wir wie oben die Ele-
mente von Z mit 2,“) bezeichnen, so gilt

H

P(fl) = 0 flit: I, =§= I =j‚
i:1

P<z= z;°,N=i) = „

P(Z) = 2,03 fiirz I, = l= j.
i:

Dann erhält man für die Wahrscheinlichkeit p_,(z) den Ausdruck

0 „fürl#j,
‚M0; = 1>(z = 40)

-jJ—— für 1 = j.

Der Stichprobenraum R = (Z, N, p) ist also Vollständig beschrieben. Die Entscheidungsfunktion
d e D des Statistikers hängt vom Ergebnis des Experimentes ab. Seine Aktionenmenge ist A = {0‚ l,
..., n5}, d. h., der Statistiker kann von null bis nr eine bestimmte Anzahl von Bussen einsetzen. Er-
scheint im Experiment das Element zfÜ E Z, so weiß der Statistiker, daß insgesamt I Busse benötigt
werden, und er entscheidet sich für die Aktion a = le {0, 1, ..., ns}, d. h.

d(z,“)) = a = I für alle möglichen Linienführungen i .

Die Menge der gemischten Strategien des Statistikers besteht aus allen Wahrscheinlichkeitsvertei-
lungen

¢5(d= l) für lE{0,1, ...‚ n5}.

Um die Verlustfunktion ermitteln zu können, benötigen wir die Kenntnis über den Wert W, der
von einem Kraftomnibus in einem bestimmten Zeitraum Terarbeitet wird. Ohne auf ökonomische
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Einzelheiten einzugehen, sei

W = c + v + g

mit

c: Kosten zur Beschafiung eines Busses, Instandhaltungskosten (etc.),

v: Arbeitslohn für das Fahrpersonal,

g: Gewinn beim Einsatz eines Busses.

Ohne Einschränkung der Allgemeinheit wollen wir annehmen, daß jeder eingesetzte Bus den gleichen
Wert schafft. Für I eingesetzte Busse gilt dann

Angenommen, der Zustand der Natur sei j und der Statistiker entscheidet sich für den Einsatz von

I Fahrzeugen, d(z§’)) = I. Der Selbstkostenpreis für diese I Fahrzeuge ist dann

S, = I(c + v).

Für I g j erzeugen die I eingesetzten Busse keinen größeren Gewinn als j eingesetzte Busse, also nur

einen Gewinn von jg Einheiten, und wir erhalten für den Wert Wu den Ausdruck

m, = l(c + v) + jg = das”) [c + v] + jg.

Ist W, der wahre Wert, so erhalten wir

L = W,, — Wo.

Es sei a'(z§‘7) = I g j. Das bedeutet, wir setzen weniger bzw. gleich vie1 Fahrzeuge ein, wie benötigt

werden, und erhalten für den We—rt W]:

W, = d(z,<0) W = IW für alle i.

Die Verlustfunktion ist dann

Lo‘, du?» = m, — W,

= d(z;'7) [c + v] + jg

—d(z§°) [c + v + g]

= (j — d<z§'°»g.

Für d(z‚(’)) = I ä j gilt

W, = 1'W,

da l Busse dieselbe Arbeit leisten wie j, und wir erhalten

Lo: d<z§°» = m, — W;

r =d(z,('7)[c+v]+,ig—-j(c+v+g)

= (dem — f) (c + 1’)-

Man sieht sofort, daß für d(z‚“)) = I = j

Lo; d<z;°» = 0
ist.
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Da. die Strategiemengen der Natur und des Statistikers endlich sind, kann man eine Verlustmatrix
aufstellen:

L = [Ljd]ns‚n: mi‘ L14 = LU:d(Z1(D))-

Die Risikofunktion erhält man aus der bekannten Definition

eo, d) = 2 D Lo‘. d<z§“»p,<z,“>),
z,‘ s

indem man für

O für I # j,

dm”) = 518L
5;

setzt. Ist Q, = {z,"7 l d(z§'7) = I}, so gilt

für l=j

I l _ P(z(i))
w, d) = 2 Lo, d(z,"’>> = I —’—.

n‘ e 1 E;

Im allgemeinen entscheidet der Statistiker unter Ungewißheind. h.,er weiß nicht, welches Ergebnis
zur Zeit I gerade eintritt. Mit anderen Worten

da?) = d m: z,“>e z,
und somit gilt für die Risikofunktion

P( (1'))

9(1) d) = Lrj, d) 2 i
zx“"eQ1 ‚i

Zur Bestimmung der optimalen Wahrscheinlichkeitsverteilung (§(d) e 29, betrachten wir die Risiko-
funktion in Abhängigkeit von E und ö(d).

56,6) = 2_ 2 g<j.d<z,<°)>s,a(drz§‘>)).
zx<"sZ jeN

= L03 d).

In unserem Problem ist

da50) = de{0, 1, ...‚ns}‚

N = je {0, l, ..., ns},

und es folgt

905,6) = E
d:

n: n: ns

0 j=
2 9(./',d)5;5(d) = Z 2 LU, d) 51501).

O d= 0 1' = 0

Nach dem Bayes-Kriterium erhalten wir folgendes lineare Optimierungsprogramm

§(§, ö) —. min

unter der Bedingung

E r5(d)=1, 15(11): 0.
d=0

n:

Die Größen}: L(j‚ d) E, sind bekannt; wir bezeichnen sie mit
/‘=0

v(5. d) = E L(f, d) E;
i=0
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und erhalten für die Risikofunktion

r

§(E. Ö) = n2 V(E‚d)<5(d).

Aus der Theorie der linearen Optimierung läßt sich leicht die Lösung ermitteln. Die optimale Lösung
lautet

f v(E. 060') = «arm

mit I:

v(S,d*) = {v(E,i)} und z5(d") = 1.
i=0

Der Statistiker entscheidet also mit der Wahrscheinlichkeit 1, d. h. mit Sicherheit den Einsatz
von d* Autobussen.

Wir betrachten zum Abschluß ein Verkehrsnetz mit 7 Linien:

Linie 1 2 3 4 5 6 7

Busabstand 60 60 60 15 30 30 6

(min)
Länge (km) 18,4 15,4 11,2 5,8 6,0 7,2 10,8

Fahrzeit 47,5 46,2 33,6 17,4 18,0 21,6 32,4

(min)

Hieraus kann man leicht die Wahrscheinlichkeiten pf”) errechnen:

„(P = 0,2 pg°> = 0,4 pg” = 0,8 17(51): 0,6 pg” = 0,2

pg” = 0,217 pg°> = 0,267 19) = 0,783 pg“ = 0,733 115,5) = 0,5

pg°> = 0,433 pg") = 0 pg‘) = 0,567 pi," = o pfi = 0,5

pi?’ = 12$" = 0,8

alle anderen pf”) = 0.

Daraus ermittelt man die Verteilung S = {£,} mitjE {0, ..., 42} [n = 7, s = 6]:

50 = = 55 = 0
55 =0,0008
5, =0,0115
5g =0‚0666
E9 =0,1980
51g = 0,3178
511: 0,2756
512 = 0,1143
513 = 0,0156

51A = =542 =0

42

215,- = 1,0002 (durch Rundungsfehler)
J =
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Sind c + v = 2 und g = 1, so können wir die Verlustmatrix aufschreiben. Wir betrachten allerdings
nur den uns interessierenden Teil j, d = 6, ..., 13.

j\d 0‚...‚6 7 8 9 10 l1 12 13‚...‚42

0

6 0 2 4 6 8 10 12 14

7 1 0 2 4 6 8 10 12

8 2 1 0 2 4 6 8 10

9 3 2 1 0 2 4 6 8

10 4 3 2 1 0 2 4 6
' 11 5 4 3 2 l 0 2 4

12 6 5 4 3 2 1 O 2

13 7 6 5 4 3 2 I 0

42

Wir bestimmen jetzt

45.4) = E Luxus,
- /=0

Aus der Verlustmatrix ist ersichtlich, daß v(E‚ d) für a‘ = 0, ..., 5 und d = 14, ..., 42 immer größer ist
als der kleinste Wert für d = 6, ..., 13

a5, 6) = 4,1829 v(§,10)= 1,2888

v(5,7) = 3,1851 v(E, 11) = 2,0727

v(E, 8) =’2,221s v(E, 12) = 3,6834

v(£, 9) = 1,4583 145,13) = 5,6370,
42

min v(rS, i) = 1/(5, d‘) = v(E,10),
i: o

d. h. d* = 10. Der Statistiker entscheidet sich also für den Einsatz von l0 Bussen. Sein durchschnitt-
licher Verlust beträgt v(§, d*) = 1,2888 Einheiten.

3.4. Sequentialspiele

Statistische Spiele mit einmaligem Experiment sind eine sehr spezielle Klasse in
der Theorie der statistischen Spiele. In der Praxis, z. B. in der Versuchsplanung, führt
der Statistiker mehrere Versuche durch und entscheidet auf Grund der Information,
ob das Experiment gestoppt werden soll und eine Entscheidung möglich ist oder ob
weitere Beobachtungen durchgeführt werden müssen. Im allgemeinen ist die Frage
der Weiterführung der Versuche eine Kostenfrage, und der Statistiker muß bei jeder
Beobachtungsstufe erwägen, inwieweit eine weitere Beobachtung seine Informations-
menge verbessern kann. Ein statistisches Spiel mit Folgetestverfahren zur Ermittlung
des Stichprobenraumes wollen wir als Sequentialspiel bezeichnen.

Um ein solches Spiel zu analysieren, stellen wir uns vor, daß wir die Anzahl der
Versuche als einheitliches Experiment betrachten, d. h. also, unser Experiment be-
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steht aus einer Serie von Teilexperimenten. Dabei müssen folgende Voraussetzungen
beachtet werden: -'

1) Die Anzahl der möglichen Teilexperimente darf nicht eine gewisse vorgeschriebene
ganze Zahl M überschreiten.

2) Die Folge, in der diese Versuche durchgeführt werden, wird vorher festgelegt und
ist kein Element der Strategie des Statistikers.

Unter diesen Bedingungen hat der Stichprobenraum folgende Struktur: Z ist der
Raum aller möglichen Ergebnisse im Experiment. Da sich das Experiment aus maxi-
mal M Teilexperimenten zusammensetzt, läßt sich jeder Punkt zeZ als m-Tupel
z = (z, ‚ ..., z„‚) (m g M) darstellen. N sei der Raum der reinen Strategien der Natur
und p„ eine auf Z >< N definierte Wahrscheinlichkeitsverteilung, so gilt für die Dar-
stellung des Stichprobenraumes wieder das Tripel R = (Z, N, p). p„(z) ist dabei die
Wahrscheinlichkeit dafür, daß beim Zustand n der Natur im Experiment der Ergeb-
nisvektor z = (z, , ...‚ z‚„) erreicht wird.

Anhand dieser durch den Stichprobenraum erhaltenen Informationsmenge will
der Statistiker seine Entscheidung treffen. Ist ein Folgetestplan T gegeben, so kann
man irgendeine Entscheidungsfunktion d in eine Folge von Entscheidungsfunktio-
nen d,- zerlegen, so daß für jedesj d, die Folge T, e T in einen Aktionenraum A ab-
bildet. Dazu betrachten wir einen Punkt zeZ. Diesen Punkt z können wir durch
zwei Werte charakterisieren, nämlich durch eine ganze Zahlj = 1, 2, ..., M, die an-

gibt, welche Koordinate von z gerade beobachtet wird, und durch ein Element a e A,
das besagt, welche Aktion der Statistiker durchführen würde, sobald die Testfolgej
beendet ist. Haben die Punkte z e Z, z’ e Z die gleichen erstenj (j = 1, ...‚ M) Koor-
dinaten, so werden beide Punkte durch den Wert (j, a) charakterisiert. Dann läßt
sich der Raum der sequenten Entscheidungsfunktionen wie folgt definieren:

Definition 3.15: EsseienR = (Z, N, p) der Stichprobenraum, 3 = {0, l, ..., M} eine
Indexmenge, A ein Aktionenraum und T* die Menge aller möglichen Folgetestpläne
mit T = (To, T, , ..., Tm) G T* (m g M). D sei eine Klasse von Funktionen d, die auf
3 x Z definiert sind und 3 >< Z oufA abbilden, d(j, z) = a, so daßfiir z, z’ E Z mit
z, = z; (1 g i gj) d(j, z) = d(j, z’) = agi/t, dann nennt man den Produkfraum T* >< D
den Raum der sequenten Entscheidungsfunktionen.

Aus dieser Definition folgt, daß die Elemente (T, d) e T* >< D die reinen Strategien
für den Statistiker im sequentiellen Spiel sind.

Als nächstes wollen wir die Risikofunktion bestimmen. Im Unterschied zu den ge-
wöhnlichen statistischen Spielen muß man bei Sequcntialspielen die Ausführungs-
kosten jedes Teilexperimentes berücksichtigen.

Definition 3.16: Es seienR = (Z, N, p) wieder der Stichprobenraum und f; = {0, l,
..., M } eine Indexmenge, so heißt eine auf S >< Z definierte nichtnegariL-e Funktion c,
für die mit z, z’ e Z und z, = z; (i = l, ...,j) c(j, z) : c(j, z’) gilt, Kostenfunktion.

Oft wird die Kostenfunktion proportional der Anzahl der durchgeführten Versuche
gesetzt, d. h. c(j,z) = kj für alle zeZ‚ wobei k > 0 eine reelle Konstante ist. Wir
setzen der Einfachheit halber

6U, z) = Cj(Z)-



58 Literatur

Definition 3.17: Es seien R = (Z, N, p) der Stichprabenraum, A der Aktionenraunz,
T * >< D die Klasse der sequentiellen Entscheidungsfunktionen, L eine auf N >< A
definierte Verlustfunktion und c eine aufi} >< A = {0, l, ..., M}) definierte Kasten-
funktion. Dann ist die Risikofunktion g, die auf N >< T* >< D definiert ist, gleich

90h T, d) = Zr [6,-(Z) + L04, d0", z))] q..(z). r e S.
J: IE 1

Das Spiel G = (N, T* >< D, g) heißt Sequentialspiel.

Genauso wie bei statistischen Spielen mit einmaligem Experiment kann man die
gemischte Erweiterung des Sequentialspieles G bestimmen, Als Entscheidungskri-
terium empfiehlt sich wieder das Bayes-Kriterium.
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