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Vorwort

Mit der Formulierung und Präzisierung der Dilferential- und Integralrechnung
(Analysis) im 17. bis zum 19. Jahrhundert war für die Naturwissenschaften, insbeson-
dere für die Physik, ein äußerst tragfähiges mathematisches Fundament geschaffen

worden. Die Erfolge, die mit der klassischen Differential- und Integralrechnung
erzielt wurden, sind bis heute für den wissenschaftlich-technisehen Fortschritt von

großem Nutzen. Insbesondere werden gewöhnliche und partielle Differentialglei-
chungen zur Beschreibung und Modellierung deterministischer Prozesse in umfang-
reichem Maße angewandt.

In der Anfangszeit der Analysis stand die Untersuchung der einzelnen Lösungen
von Differentialgleichungen, von einzelnen Funktionen (wie etwa sin x oder In x)
im Vordergrund.

Ende des 19. und Anfang des 20. Jahrhunderts entwickelte sich durch das Zu-
sammenwirken solcher Disziplinen wie der Theorie der Differentialgleichungen, der
Theorie der Integralgleichungen und der Variationsrechnung in zunehmendem Maße
die Auffassung einer Funktion als ein Einzelobjekt oder Element einer ganzen Funk-
tionenmenge bzw. eines Funktionenraumes. Ein solches Element kann damit wieder
als eine „unabhängige Variable“ betrachtet werden, die man ihrerseits in Funktionen
(= Abbildungen oder Operatoren) einsetzt und das Verhalten solcher „Funktionen
von Funktionen“ untersucht. Es stellte sich heraus, daß in Funktionenräumen Be-

griffe der anschaulichen, altbekannten (analytischen) Geometrie, wie Länge, Abstand.
Winkel usw., in natürlicher Weise eingeführt werden konnten. Damit war eine „Geo-
metrisierung der Analysis“ erreicht worden, die es ermöglichte, komplizierte analy-
tische Sachverhalte in einer einfachen geometrischen Sprache auszudrücken.

In der Mitte der zwanziger Jahre unseres Jahrhunderts wurden (gemeinsam von

Mathematikern und Physikern) die mathematischen Grundlagen der Quantentheorie
geschafien. Hier erkannte man die unabdingbare Notwendigkeit der funktional-
analytisehen Begriffe für die Aufstellung einer adäquaten Mathematisierung. Etwa
gleichzeitig etablierte sich die Funktionalanalysis als selbständige mathematische
Disziplin. Sie stellte Querverbindungen scheinbar weit voneinander entfernter mathe-
matischer Gebiete her.

Heute ist die Funktionalanalysis, die sich auf Grund ihrer klaren, umfassenden
Begriffsbildungen und der vielfachen Anwendungsmöglichkeiten zu einer umfang-
reichen Theorie entfaltet hat, für die Weiterentwicklung der mathematischen Grund-
lagen solcher aktueller Gebiete, wie Technologie, Ökonomie und Energiewirtschaft,
speziell auch der Netzwerktheorie und Mikroelektronik unumgänglich.

Das Ziel des vorliegenden Bandes besteht darin, einige typische Anwendungen der
Funktionalanalysis zu umreißen. Dies wollen wir erreichen, indem wir — aufbauend
auf einigen Kenntnissen des Lesers aus mathematischen und physikalischen Grund-
Vorlesungen sowie den vorangehenden Bänden, auf die an verschiedenen Stellen ver-

wiesen wird — im ersten Kapitel an 5 Problemkreisen (Approximation/Fourier-
koeffizienten; Stoßvorgang/Distributionen; Oszillator/Spektrum eines Operators,
Wahl von Räumen; Verflechtungsmodell/Fixpunkteigenschaften eines Operators;
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Steuerung/Prä-Hilbertraum-Methoden) motivieren, welche funktionalanalytischen
Begriffsbildungen auftreten werden. Auf diese gehen wir dann in Kap. 2 und 3

systematisch ein. In den restlichen beiden Kapiteln werden ausgewählte Anwendun-
gen der Begriffe des 2. und 3. Kapitels behandelt.

Der von dieser Reihe angesprochene Leserkreis wird naturgemäß sehr unterschied-
liche mathematische Kenntnisse haben, so daß wir den Band als Arbeitsbuc/z zur

Funktionalanalysis ansehen wollen, d. h., es muß das Verständnis der einzelnen Ab-
schnitte durch wiederholtes Lesen, durch Studium der zugehörigen systematischen
Kapitel bzw. Beispiele, durch eigenes Nachrechnen der Sachverhalte, durch Blicke
in die angegebene Lchrbuchliteratur und schließlich vor allem bei neuen Begriffen
und wichtigen Sätzen durch den Versuch, zugrunde liegende Dinge aus der gewöhn-
lichen Differential/Integralrechnung, linearen Algebra, Geometrie zu erkennen,
erarbeitet werden. Solche zugrunde liegenden bekannten Sachverhalte sind etwa die
Auflösungstheorie linearer Gleichungssysteme, der in der Funktionalanalysis die
Fredholmsche Alternative (vgl. 3.2.4.) und mit weit größerem Anwendungsbereich
die Spektralzerlegung eines Operators (vgl. 5.2.1.) gegenüberstehen, die Theorie der
Fourier-Reihen, der in der Funktionalanalysis die Theorie der Orthogonalreihen
entspricht (vgl. Satz 2.40), oder die Ableitungsbegriffe, die in Fre'chet- und Gateaux-
Differential (vgl. 4.2.) oder allgemeineren Begriifen ihr Gegenstück haben.

Besonders wichtig bei einer neu zu erlernenden mathematischen Disziplin sind
vorgerechnete Beispiele, die aus den Anwendungen der Disziplin stammen. In dieser
Hinsicht möchten wir insbesondere auf unsere Abschnitte 1.2.1., 1.2.2. und 1.2.5.,
auf die Berechnung des Spektrums für den einfachsten. in der Störungstheorie auf-
tretenden Operatoi (Bsp. 3.3), auf die Lösungsdarstellung durch eine Reihe für ein
elliptisches (verallgemeinertes) Randwertproblem [(5.73)fi".] und auf die (einfachen)
Beispiele der Spektralzerlegung eines Operators (vgl. 5.2.3.) verweisen. Die Kapitel,
die den Banachschen Fixpunktsatz (vgl. 1.2.4. und 4.3.2.), den Schauderschen Fix-
punktsatz (vgl. Bem. 4.5), das Ritzsche Verfahren (vgl. 5.3.), die stark und beschränkt
konvexen Funktionale (vgl. 4.2.2.2.) und die verschiedenen Anwendungen zur Physik
(etwa 1.2.2., 1.2.3., 5.l.3.—5., 5.2.3. und 4.), zur Steuerungstheorie (vgl. 1.2.5.) und
zur Störungsrechnung (vgl. 3.3.3.) betreffen, lassen die direkten Anwendungen der
Funktionalanalysis (auch in der Numerik) erkennen. Sie zeigen auch, daß so ab-
strakte Abschnitte wie 1.3. (Lebesgue-Integrale) oder die Kapitel über die Sobolew-
Räume oder über die Erweiterung von Operatoren durch die Anwendungen erfor-
derlich sind. _

Dabei möchten wir betonen, daß in diesem Band nur Ansätze für die allereinfach-
sten Anwenduhgen der Funktionalanalysis behandelt werden können. Inhaltsreiche
und vor allem überzeugende (motivierende) Anwendungen der Funktionalanalysis
auf Praxisprobleme sind bei ausführlicher mathematischer Darstellung (wie im Rahmen
der MlNÖL-Reihe erforderlich) sehr aufwendig und z. T. wesentlich komplizierter
als die hier vorgeführten Beispiele. Dieser Tatsache stehen eine wachsende Zahl sol-

cher inhaltsreicher Anwendungen in den Ingenieurwissenschaften, in der Physik,
Ökonomie und Biologie gegenüber — wir erwähnen hier nur die interessanten Arbei-
ten in der Theorie nichtlinearer Schwingungen (man vergleiche hierzu die Tagungs-
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berichte der VII. Internationalen Konferenz über Nichtlineare Schwingungen, Berlin
1975) oder in der Theorie der Kemreaktoren, die tiefliegende Hilfsmittel der Spek-
traltheorie von Halbgruppen linearer Operatoren benötigt (wir verweisen auf das
grundlegende Werk von S. B. Schichow über Reaktortheorie, Moskau 1973). Somit
ergibt sich in immer stärkerem Maße die Notwendigkeit, in der Mathematikausbil-
dung von Ingenieuren und Naturwissenschaftlern Elemente der Funktionalanalysis
einfließen zu lassen. Im internationalen Maßstab ist diese Tendenz bereits deutlich
spürbar und stellt qualitativ höhere Ansprüche an die Erziehung und Ausbildung von
Ingenieurstudenten. Diesen Forderungen zu entsprechen ist das Anliegen dieses Ban-
des. Ausdrücklich möchten wir noch auf den Ergänzungsband zum Taschenbuch der
Mathematik von Bronstein und Semendjajew (19. Auflage), speziell den Abschnitt
8.1. — Funktionsanalysis—, hinweisen, den wir zum Gebrauch neben diesem Band be-
sonders empfehlen.

Für wertvolle Hinweise danken die Verfasser vor allem Herrn Prof. Dr. Jentsch,
TH Karl-Marx-Stadt, Herrn Prof. Dr. Möbius, TU Dresden, Herrn Prof. Dr. Stolle‚
WPU Rostock, Herrn Prof. Dr. Thämelt, Herrn Dr. sc. Bergmann und Herrn Dr.
Lange, sämtlich TH Leuna-Merseburg; Herrn Dr. sc. Schirotzek, TU Dresden, so-
wie Herrn Doz. Dr. Zeidler, Hochschule für Ökonomie Berlin. Frau Dr. Böhlmann,
Herrn Dr. Kayser, beide TU Dresden, und Herrn Dr. Rhodius, PH Dresden, dan-
ken wir für wichtige Hinweise bei den Korrekturen. Für die präzise und terminge-
rechte Durchführung der Schreibarbeiten danken wir Frl. Augsten und Frau Hofl-
mann, TH Leuna-Merseburg. Dem Verlag sei für die gute Zusammenarbeit herz-
lieh gedankt.

Dresden und Merseburg, im Februar 1980 T. Riedrich
A. Göpfert
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1. Einfiihrendes zur Anwendung der Funktionalanalysis

1.1. Allgemeine Grundbegriffe

Vor einer systematischen, ausführlichen Darstellung der erforderlichen funktional-
analytischen Begriffe in Abschnitt 2. und 3. soll hier nur über einige Grundbegriffe
der Funktionalanalysis so Viel gesagt werden, daß der mathematische Inhalt der ein-
führenden Beispiele verständlicher wird.

Ein Raum bezeichnet innerhalb einer funktionalanalytischen Beschreibung stets
eine geeignet gewählte Menge von gleichartigen Elementen. Deren mathematische
Natur und Herkunft kann jeweils vollkommen unterschiedlich sein. So gibt es Räume
von Zahlen, Funktionen, Vektoren, Maßen, Matrizen, Operatoren, von Systemen
von Funktionen, Vektoren, Matrizen usw. Für die Anwendung der Funktional-
analysis haben sich vor allem lineare Räume (vgl. Bd. 1) als nützlich erwiesen.

Unter einem linearen Raum versteht man eine Menge E von Elementen, f, g, h, ...,

für die die Rechenoperationen der Addition f+ g und der Multiplikation yf der
Elementefmit Zahlen y (reell bzw. komplex) erklärt sind, welche die üblichen Rechen-
regeln der Addition von Vektoren bzw. der Multiplikation von Vektoren mit Zahlen
erfüllen. Aus diesem Grund nennt man einen linearen Raum auch verallgemeinernd
einen Vektorraum und seine Elemente Vektoren. Wird die Multiplikation der Ele-
mente von E nur mit reellen Zahlen zugelassen, so sprechen wir von einem reellen
Vektorraum; sind alle komplexen Zahlen als Faktoren möglich, so nennen wir E
einen komplexen Vektorraum. Eine Teilmenge F g E heißt ein linearer Teilraum
(linearer Unterraum) von E, wenn F bezüglich der in E erklärten Operationen
„Addition“ und „Multiplikation mit einem (skalaren) Faktor“ selbst ein linearer
Raum ist. In E gibt es genau ein Nullelement („Nullvektor“) o; für dieses gelten die
Gleichungen f+ 0 =fund 0 -f = o für alle fe E. Eine endliche Menge fl, ...,j’,,
von Elementen eines linearen Raumes heißt linear abhängig, wenn es Zahlen y, , y„
gibt, die nicht alle gleich 0 sind, so daß

Z7kfic=0
k: l

(1.1)

gilt. Anderenfalls heißt die Menge fl, ...,f,, linear unabhängig.
Für die Anwendungen, insbesondere für Näherungsverfahren auf funktional-

analytischer Grundlage, reicht jedoch die Einführung eines linearen Raumes allein
nicht aus, weil mit der Festlegung der Rechenoperationen noch nichts über die
relative Lage der Elemente des Raumes zueinander ausgesagt wird, z. B. darüber,
ob zwei Elemente „weit“ voneinander entfernt sind oder „nahe“ beieinander liegen.
Die Beschreibung derartiger Beziehungen gelingt z. B. mittels des Abstandsbegriifs,
d. h.‚ durch die Einführung einer Metrik genannten Abstandsfunktion (vgl. Bd. l).

Definition 1.1: Unter einem metrischen Raum versteht man eine Menge X von Elemen-
ten x, y, z, ..., in welcher je zwei Elementen x, y eine nichtnegative Zahl d(x, y), ihr
Abstand, zugeordnet ist, wobei die folgenden Forderungen (Axiome, Postulate) erhoben
werden:

(M 1) d(x, y) = 0 genau dann, wenn x = y gilt (Definitheit).

(M2) d(x, y) = d(y, x) für alle x, y E X (Symmetrie).

(M 3) d(x, y) g d(x, z) + d(z,y) für alle x, y, z e X (Dreiecksungleichung).

D.l.l
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Diese Forderungen sind einerseits allgemein genug, um die unterschiedlichsten
Anwendungssituationen erfassen zu können, und sie sind andererseits speziell genug,
um das Wesentliche eines Abstandsbegrilfs zu enthalten. Stellen wir uns etwa d(x, y)
als die übliche Entfernung zweier Punkte x, yiin der Ebene vor, so sind die Eigen-
schaften (M I)—(M3) unmittelbar ersichtlich.

Führt man nun in einem linearen Raum E eine Metrik d ein, so muß man zusätz-
lich darauf achten, daß die Rechenoperationen in E mit der Metrik d verträglich
sein müssen. Man kann diese Verträglichkeitsforderungen in verschiedener Weise
formulieren. Wir stellen sie in der Form der folgenden beiden Bedingungen:

(LM l) d(f + h, g + h) = d(f, g) für allef, g, l2 EE (Translationsinvarianz).

(LM2) Ist {yn} eine Zahlenfolge mit lim y„ = 0, so gilt Iim d(y,,f, 0) = 0

für allefe E. ""°° "”°°

Die Forderung (LM1) sagt aus, daß sich der Abstand zweier Elemente (Vektoren) f
und g nicht ändert, wenn beide Elemente um das Element (Vektor) h parallel ver-
schoben werden. Die Forderung (LM2) drückt eine Stetigkeitseigenschaft aus.

Ist in einem linearen Raum eine Metrik gegeben, die außer den Forderungen
(M 1)-(M3) zusätzlich die Bedingungen (LMl) und (LM2) erfüllt, so heißt E ein
linearer metrischer Raum.

Beispiel 1.1: Es sei E = R" die Menge aller Zahlen-n-tupel x = (51. .„,5„) reeller Zahlen S,
(j = 1, ..., n) mit den üblichen Festlegungen der Rechenoperationen: Ist x = (E1, ..., 5,),
y = (im „m, so sei x + y = (Ei + m, En + m). und für 7 6 R sei 7x = (751, .-.4/5,.)
(R: Menge der reellen Zahlen). Wird der Abstand d(x, y) zweier Elemente x, y e R" (abweichend

n

vom üblichen Entfernungsbegrifl) festgelegt durch d(x, y) = 2 15,. — ml, so sind die Eigenschaften
(M l), (M2), (M 3), (LM l), (LM 2) erfüllt. k:1

S. Banach (der Begründer der polnischen funktionalanalytischen Schule) speziali-
sierte den Begrilf des linearen metrischen Raumes in einer für viele Anwendungen
geeigneten Weise durch die Einführung des Begriffs des normierten Raumes. Die
Norm eines Elementes eines linearen Raumes verallgemeinert den Begrifi" der Länge
eines Vektors.

Definition 1.2: Es sei E ein linearer Raum. Jedem x e E sei eine nichtnegative Zahl
Hxll, die Norm von x, zugeordnet. Dabei sollen die folgenden Eigenschaften (Norm-
axiome) (N l)—(N3) erfüllt sein (K: Menge der komplexen Zahlen‘)):

(N l) |lx|| = 0 genau dann, wenn x = 0 (Definitheit).
(N2) Hyxfl = Iyl - HxH für alle x e E und alle y E R (bzw. y e K)

(positive Homogenität).

(N3) llx + yll g [Ixll + H yll für alle x, y e E (Dreiecksungleichung).

Dann heißt E ein (reeller bzw. komplexer) normierter Raum.

Bemerkung 1.1: Im Hinblick darauf, daß auf demselben Vektorraum E verschie-
dene Normen eingeführt werden können (abhängig von der jeweiligen Anwendung)
bezeichnet man genauer das Paar (E, I] .ll) als den (gegebenen) normierten Raum
(vgl. Bsp. 1.2).

‘) In der Literatur wird die Menge der komplexen Zahlen auch häufig mit C bezeichnet.
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Mittels der Gleichung

d(x‚y) = 11x — y11 (x‚y e E) (1.2)

kann man in jedem normierten Raum eine Metrik einführen, die außer den Forde-
rungen (Ml)—(M 3) auch die Forderungen (LM 1), (LM2) erfüllt. (LM2) folgt z. B.

so: d(7..fi o) = um’ — o1 = ml - 11/1 » o, da {n}, also auch {im } eine Nuurolge
ist. Jeder normierte Raum ist daher mit der Metrik (1.2) ein linearer metrischer Raum.

n

Beispiel 1.2: Der Raum E = R" wird mit der Festlegung 11x1; = 2 15,1 (x = (3,, 5„) E R") zu
j-1

einem normierten Raum.2 15,1 ist eine Norm 11x11, denn215,1 = 0; 15, = 0 (j = 1, 2, ...,n)<>x
= (5x. 5.1) = o. also gilt (NI); wegen 11yx11=21yE‚1 = W12 15,1. = 171-1124H gilt (N2); wegen
der Dreiecksungleichung 215, + 11,1 g 2 (15,1 + ml) gilt (N3): [fix + y11= 215, + 17,1 g 215,1
+ 2 111,1 = 1x11 + 11,1121. Wegen 11x — y11 = 215, — 77,1 ergibt sich über (1.2) die Metrik von Bsp. 1.1.

n l

Im R" wird auch durch E,-2 eine Norm (euklidische Norm) und durch (1.2) dann die zu-
1=l

gehörige „euklidische“ Metrik erklärt.

Bemerkung 1.2: Es gibt für die Anwendungen wichtige metrische lineare Räume, deren Metrik
nicht durch die Beziehung (1.2) aus einer passenden Norm hergeleitet werden kann. Man muß sogar
noch allgemeinere Räume, die topologischen Vektorräume (s. [17] und Raum-Graph) einführen,
um die allgemeinsten Zusammenhänge zwischen Vektorraumstruktur und Stetigkeitseigenschaften
herstellen zu können. Die zugleich notwendigen und hinreichenden Bedingungen dafür, daß ein
topologischer Vektorraum als ein normierter Raum aufgefaßt werden kann, wurden von dem
sowjetischen Mathematiker A. N. Kolmogorow, der auch durch seine grundlegenden Arbeiten zur

Wahrscheinlichkeitstheorie (s. Bd. 17) bekannt geworden ist, angegeben.

Die Erfolge der Funktionalanalysis liegen u. a. darin begründet, daß es ihr gelingt,
komplizierte Fragen aus den verschiedensten Gebieten in einfacher, geometrisch fall-
barer Form darzustellen und zu behandeln. Die Einführung des Raumbegrifis und
des Abstandsbegriffs (Norm, Metrik) machen dies deutlich. Noch enger wird die
Bindung an unsere gewohnten geometrischen Anschauungen, wenn auch Winkel
zwischen Elementen (Vektoren), insbesondere die Beziehung des „Aufeinander senk-
recht Stehens“ verfügbar sind. Dies wird durch die Einführung eines Skalarprodukts
(vgl. Bd. l3, 2.3.1.) erreicht.

Definition 1.3: Es sei E ein linearer (komplexer) Raum, in dem zuje zwei Elementen x, y
eine komplexe Zahl (x 1 y), das Skalarprodukt von x und y, erklärt ist, wobei die
folgenden Eigenschaften (Sl)—(S4) gelten sollen (x, y, z E E):

(51) (X + Z|y> = <x|,V> + <ZIy>-
(S2) (x 1 y) = (y 1 x) (Ä sei die zu i. konjugiert komplexe Zahl).

(S3) (3611)?) = 7»(X1y> (Ä 6 K)-
(S4) (x1 x) > 0 für alle x # o.

Aus (S2) und (S 3) folgt die Gleichheit (ix I y) = Ä(x 1 y).

Ist der lineare Raum E reell, so fordert man, daß (x I y) reellwertig ist für alle
x, y e E. Die Forderung (S 2) lautet dann

(S2’)(x1y> = (yl x).
Einen linearen Raum E mit einem bestimmten Skalarprodukt (. 1 .) nennen wir
einen unitären Raum oder auch Prä-Hilbertraum. ‘

D.1.3
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Beispiel 1.3: Es sei E = R" (s. Bsp. 1.1). Mit

(X U’) = 1:1‘, Eldlk (13)
k=1

wird E zu einem (reellen) Prä-Hilbertraum (n-dimensionaler euklidischer Raum).

Beispiel 1.4: E bestehe aus allen (reellwertigen) stetigen Funktionen f(t) (a g t g b) der reellen
Variablen t e [0, b]. Mit den (üblichen) Festlegungen

<f+ g)(!) =f(!) + g(I) (a :1: b),

(700) = 7N), (1.4)

wird E zu einem linearen Raum, den wir mit Cn[a,b] (vgl, Def. 2.15) bezeichnen. Wir definieren

b

<ng> = f1<r>g(r)dr.

76K,

(1-5)

Dann sind die Forderungen (S1)—(S4) sämtlich erfüllt, und CRIa, b] ist, versehen mit dem Skalar-
produkt (1.5), ein reeller Prä-Hilbertraum.
Beispiel 1.5: E bestehe aus allen komplexwertigen stetigen Funktionen [(1) = u(I) + im)
(a g r g b) der reellen Variablen IE [11, b]. Mit den Festlegungen analog (1.4) im Bsp. 1.4 wird E
zu einem linearen Raum. Bezeichnung: C[z1, b]. Mir

b

<f1g>= |f(r)g(!)dt
I:

sind die Forderungen (S1)-(S4) von Def. 1.3 erfüllt, und E ist, versehen mit (1.6), ein komplexer
Prä—Hilbertraum.

Beispiel 1.6: Es sei E = K" die Menge aller komplexen Vektoren x = (5„ „., E„) (E; = a, + ifij;
oz,-,fl, reell, j = 1, ...,n). K" ist ein linearer Raum (Definition der Vektoroperationen wie im R").
Es seien p, ‚pz, ...‚p„ positive reelle Zahlen. Dann wird durch die Vorschrift

(1.6)

<x1y> = ‚cf: pm (1.7)
=1

ein Skalarprodukt auf K" erklärt (Beweis als Aufgabe).

In einem Prä-Hilbertraum E läßt sich eine Norm dadurch gewinnen, daß man setzt

llfll =\/<fif> (f€E)- (1-3)

Im R" (Bsp. 1.3) liefert die G1. (1.8) die Beziehung llxll = \/<x | x) = A/ i 6,2, was
k=1

mit der üblichen Definition der Länge eines Vektors übereinstimmt. In jedem Prä-
Hilbertraum E läßt sich so mit (1.8) und (1.2) eine Metrik einführen:

d(fig)=x/<f-g|f-g> (figEE)- (1-9)

Der Beweis dafür, daß mit einemskalarprodukt durch (1.8) tatsächlich eine Norm
geliefert wird, ergibt sich aus den Eigenschaften des Skalarprodukts (Def. 1.3) und
aus der folgenden Schwarzseher: Ungleichung.

Satz 1.1 (Schwarz-Bunjakowskische Ungleichung): Es sei E ein Prä-Hilbertraum mit
dem Skalarprodukt <. I .). Dann gilt im Sinne der Definitionsgleichung (1.8) die Un-
gleichung

l<f| g>| g |1f1|' llgll. (1-10)
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Das Gleichheitszeichen gilt in dieser Ungleichung genau dann, wenn f und g linear
abhängig sind, d. h, wenn f = wg oder g = ßf gilt (xx, ß e K).

Den Beweis findet man in [7], S. 28.
Der Nachweis der Normeigenschaften (N 1)—(N 3) für die durch (1.8) eingeführte

Funktion \/(f|f> läßt sich nun leicht führen: Die Eigenschaft (N1) und (N2)
ergeben sich unmittelbar aus den Skalarprodukteigenschaften; die Dreiecksunglei-
chung folgt so: Fürf + g = a ist (N 3) trivialerweise erfüllt. Fürf + g + o erhalten
wir mittelsder Schwarzschen Ungleichung Hf+ gjlz = <f+ g If + g> = {f + g If)
+ <f+ g I g> ä llf+ gll llfll + Ilf+ gll llgll = llf+ gll (llfll + HgHL Woraus mich
Division beider Seiten der erhaltenen Ungleichung durch Hf + gH sofort (N 3) folgt.

Nicht jeder normierte Raum ist ein Prä-Hilbertraum. Genau dann, wenn für je
zwei Elemente f und g des gegebenen Raumes die Parallelogrammgleichung

llf+ gill + Hf- gll’ = ZUI/JI’ + llgllf) (1-11)

gilt, existiert ein Skalarprodukt <. | .> auf diesem Raum, so daß Jlfll = \/(f|f>
für alle f besteht. In einem Prä-Hilbertraum kann man (1.11) sofort bestätigen.

Nun können wir den Begriff zweier „aufeinander senkrecht stehender“ Vektoren
in beliebigen Prä-Hilberträtimen einführen. Systeme paarweise aufeinander senkrecht
stehender Vektoren werden für den Aufbau von Orthonormalsystemen in einem
Prä-Hilbertraum (s. Def. 1.5) benötigt, die ihrerseits für die Lösung angewandter
Probleme von Bedeutung sind.

Definition 1.4: Es sei (E, (.l.)) ein Prä-Hilbertraum. Zwei Elemente f und g aus E
heißen zueinander orthogonal (senkrecht), wenn die folgende Gleichung gilt:

<flg> = 0- (1-12)

Definition 1.5: Es sei (E, <.|.)) ein Prd-Hilbertraum. Eine Folge f1,f2, von Ele-
menten von E heißt ein Orthogonalsystem in E, wenn die Gleichungen (j = 1, 2, ...;
k = 1, 2, ...)

<fjlfi> =0 (1%/<)

. van Elementen von E heißt ein Orthonormalsystem (ONS),

(1.13)

gelten. Eine Folge e1 , ez, ..

wenn die Gleichungen

‘ = 1,2,
<€j|4’k> ={ J

0 (jaw) _

1 (j = k): ' 5”’ k = 1, 2, (H4)

gelten. (Jedes e, hat daher wegen (1.8) und (1.9) die Länge 1.)

Bemerkung 1.3: Jedes ONS ist ein Orthogonalsystem. Der Begrifi" des ONS ver-
allgemeinert den Begriff eines orthonormierten Systems von Vektoren im R" (bzw.
im K").

Beispiel 1.7: Es seien E = R" und <. 1 .> das übliche Skalarprodukt (s. Def. 1.3). Dann bilden die
Vektoren e, = (O, „,0, 1,0, ...‚0) (j-te Koordinate gleich 1, sonst 0) ein ONS im R".

Beispiel 1.8: Es sei E der Raum aller reellen stetigen Funktionen f(t),g(t), auf dem Intervall
n

[0, 21:] mit Skalarprodukt (f g) = Jf(t)g(t) dt (s. Bsp. 1.4).
0

D.1.4

D.l.5
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Dann bilden die Funktionen (k = l, 2, ...)

1 cos t sin t cos 2t cos kt sin ktd; y N/; s v); a w; s m» a s

ein ONS (Beweis durch partielle Integration, vgl. Bd. 3).

1.2. Einführende Anwendungsbeispiele der Funktionalanalysis

Es wird jetzt an verschiedenen Problemen die funktionalanalytische Arbeitsweise
erläutert. Neu auftretende Begriffe werden später (Kap. 2., 3.) systematisch be-
handelt.

1.2.1. Ein Approximationsproblem

Eine typische Aufgabenstellung, die in den Anwendungen wiederholt auftritt, ist
die Frage nach der näherungsweisen Ersetzung einer komplizierten, rechnerisch
schwierig zu handhabenden Funktion durch eine möglichst einfache Funktion, deren
Eigenschaften besser zu überblicken sind. Zur Veranschaulichung der Methoden der
Funktionalanalysis behandeln wir das Problem der Approximation einer stetigen
Funktion durch trigonometrische Polyome. Wir gehen dabei in einer für die Funk-
tionalanalysis typischen Weise vor:

A) Analytische Formulierung der gestellten Aufgabe.
B) Herstellung einer abstrakt-funktionalanalytischen, aber geometrisch mo-

tivierten Fassung des Problems unter A).
C) Lösung von A) auf der Grundlage der allgemeinen Methoden zur Lö-

sung von B).

Wir führen nun für das gestellte Approximationsproblem die einzelnen Schritte
näher aus.

A) Es sei f(x) eine auf dem Intervall [0, 21:] definierte stetige reellwertige Funk-
tion. Wir betrachten für ein beliebiges, aber festes n = 1, 2, die Menge M aller
trigonometrischen Polynome einer Ordnung, die höchstens gleich n ist:

T„(x) = 323 + ‚(ä (akcos kx + b, sin kx) (0 g x g 2:). (1.15)

Unter allen T„(x) suchen wir solche, die die gegebene Funktion f(x) möglichst gut
approximieren. Damit diese Aufgabe sinnvoll ist, muß gesagt werden, was „approxi-
mieten“ bzw. „annähern“ im vorliegenden Fall heißen soll. Von den (unendlich)
vielen Möglichkeiten wählen wir die folgende, die sich für praktische Aufgaben oft
ausreichend gut bewährt hat: Gesucht seien diejenigen trigonometrischen Polyome
T„(x), für die die mittlere quadratische Abweichung

21! U2

Q = f (f(x) — T.(x»2 ax] (1.16)
0

einen kleinstmöglichen Wert annimmt (vgl. auch Bd. 3, 5.9.). Damit ist die Aufgabe
analytisch formuliert (Schritt A): Die Koeffizienten ac, a1 , ..., a„; b ‚ , .‚., b„ in (1.15)
sind so zu wählen, daß der Wert Q in (1.16) einen minimalen Wert erhält.

B) Man kann von der speziellen Natur der Funktionen T„(x) und f(x) abstrahie-
ren und diese Funktionen als Elemente oder „Punkte“ eines Funktionenraumes
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ansehen. Alle T„(x) bilden dann eine gewisse Teilmenge M dieses Raumes. Als
linearen normierten Raum wählen wir zweckmäßig den Raum Cn[0, 27:] mit der
Norm

27: 1/2

urn = i f (f(x))’ dx] . (1.17)
o

Die zugehörige Metrik hat dann die Form [vgl. (l.2)]
2:1 l/2

dff. g) = Hf- gll = (f(x) ~ g(x))2 01x] (f. g 6 Cn[0, 2Tr])- (1-18)
0

Der Vergleich der Formeln (1.16) und (1.18) ergibt die Beziehung

1

JE
. . . . . 1 .

Für die Mimmierung von Q ist der konstante Faktor 2_ offenbar unwesentlxch,

Q = llf- T..H- (1-19)

TE

mit Q wird auch \/2rc Q minimal. Daher können wir das unter A) gestellte Problem
auch so formulieren: „Von allen Elementen T„ der Menge M suchen wir diejenigen,
die von dem gegebenen Element f einen kleinstmöglichen Abstand besitzen.“ In
dieser Fassung besitzt die gestellte Aufgabe geometrischen Charakter, wie man sich
z. B. in Bild l.l veranschaulichen kann.

Bild l.l Bild 1,2

Berücksichtigt man die Tatsache, daß die Menge M selbst ein linearer Raum, ein
Teilraum von C‚;[O‚ 27:] ist (die Summe zweier trigonometrischer Polynome der
Ordnung höchstens gleich n ist wieder ein solches Polynom, dasselbe gilt für die
Multiplikation eines trigonometrischen Polynoms mit einer Zahl), so läßt sich die
geometrische Veranschaulichung der gestellten Aufgabe noch präzisieren:

„Von allen Elementen des linearen Teilraums M von Cn[0, 27:] suchen wir die-
jenigen, die von dem gegebenen Element f e Cn[0, 27:] einen kleinstmöglichen Ab-
stand besitzen.“

Veranschaulicht man sich die Menge M mittels einer Geraden durch den Null-
punkt o (einfachster Fall eines linearen Teilraums), so erhält unsere geometrische
Fassung des Problems die in Bild 1.2 dargestellte Form. Hieraus ist es möglich,
Hinweise für einen Lösungsansatz zu gewinnen. Da nämlich im Raum E = CR[O, 21c]

ein Skalarprodukt und damit der Begrifi" des „Senkrechtstehens“ zur Verfügung
steht, gelangt man (von Bild 1.2 ausgehend) zu der Vermutung, daß die gesuchten
Elemente aus M die Eigenschaft haben müssen, auf dem Verbindungsvektor zu f
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senkrecht zu stehen. Gesucht werden also zunächst alle Elemente T„ e M mit der
Eigenschaft

<T„|T„ -f> =0- (1-20)

Es sei Tff” ein Element von M, das die obige G1. (1.20) erfüllt (wobei zunächst die
Frage offen bleibt, ob es ein solches Element tatsächlich gibt oder nicht). Wir ver-
gleichen die Abstände zwischen f und einem beliebigen Element T„ von M und zwi-
schen f und T,f°’. Es gilt nach den Rechenregeln für das Skalarprodukt, wegen (1.20)
und wegen 11T)?’ —— TM11’ g 0:

11f- Tull’ = <f- T.. If- T‚.> = <f- T,§°’ + (T„‘°’ - Tn)1f" T1“

+ (T,§°’ - T..)>

= I1f- IN + 2</— rs” 1 7:" — T„> + HTS” — ml
= Hf— T;°’H’ — 2</— Ts” I T.> + um — 7.12

ä 11f- T911’ - 2<f- T!” I T‚.>- (1-21)

Folglich werden wir die gewünschte Ungleichung

I1f- T‚.1I’ ä 1If- T‚5°’11’

sicher dann erhalten, wenn T‚f‘” so gewählt wird, daß über die Forderung (1.20)
hinausgehend die Eigenschaft

(T, | T,§"’ —f> = 0 für alle T„ e M (1.22)

verlangt wird. Genügt T‚}°’ der Bedingung (1.22), so folgt mittels derselben Rech-
nung wie in (1.21), daß die Gleichung

I1f- T„112 = I1f- T„‘°’I1’ + 11T‚5°’- Tnll’ (1-23)

für alle T„ e M gilt. Es folgt dann die Ungleichung

1If- Tail’ ä 1If- TM!‘ (Tn EM),

11f- T‚.1I ä 1If- Tl°’11 (Tn EM) (L24)

Ein Element T‚f°’ e M, das der Bedingung (1.22) genügt, ist also ein Element aus M
mit minimalem Abstand zuf und erfüllt die Forderung der Minimierung von (1.19).

C) Zur Lösung der unter A) gestellten Aufgabe verwenden wir die Ergebnisse
von B), also insbesondere die gefundene Bedingung (1.22):

<Tn 1 7.1”’ —f> = 0 (T»€M)-
T„ besitze die Form (1.15), für T,‘,°’ gelte die Gleichheit

T,‘‚°’(x) = 13°- + i (ockcos kx + ßk sin kx), o g x g 21v. ’ (1.25)
k=l

Die Bedingung (1.22) lautet dann ausgeschrieben
27:

I (F21 +k;"1 (ak cos kx + b„ sin kx))
o

x + (ax, cosjx +12, sinjx) ~ f(x)) dx = 0 (1.26)
j=l



1.2. Einführende Anwendungsbeispiele 17

für alle Werte a0, ak; bk (k = I, ...‚ n). Beachtet man, daß die Funktionen 1, cos kx,
sin kx, ein Orthogonalsystem bilden (s. Bsp. 1.8), so Vereinfacht sich (1.26)
wegen '

2:: 2:.

J‘ (cos kx)2 dx = n, (sin kx)’ dx = 7: (k = 1, 2, ...)
o o

zur Gleichung

7' (E? ‘i’ g (“Wk ‘i’ bkfiid) " E29‘ d?‘

o
2:! 27l

— 2 ((1,, f f(x) cos kx dx + b„ f f(x) sin kx dx) = o. (1.27)

k 0 0

In dieser Gleichung sind die Koeffizienten a0; ak, bk (k = 1, ...‚ n) beliebig wählbar!
Wählen wir speziell z. B. a0 = 1, a1 = a; = = 11,, = 0, b1 = bl = = b,, = 0,
so erhalten wir die Gleichung

2n
zx 1

——2—Jf(x)dx = 0

und daraus
29l

m, = ä Im) dx. e (1.28)

0

Setzen wir ak = 1, b„ = 0 und alle übrigen a, = 0, b]. = O (j + k), so erhalten wir
entsprechend

22:

a, = —‘_1?Jf(x)coskxdx (k = 1, ...,n) (1.29)

und analog o

1 .

‚s, =;ff(x)sm/cxdx (k= 1,...,n); (1.30)

0

also die bekannten Formeln für die Fourierkoeffizienten (vgl. Bd. 3 und 2.4.2.).
Wenn wir (x0; oc,,, ßk gemäß (1.28)—(1.30) wählen, so erkennt man durch Einsetzen
in (1.27) sofort, daß (1.27) erfüllt ist. Damit ist T,f°’ nach (1.25) eine Lösung von
(1.22) und nach B) eine Lösung der eingangs gestellten Aufgabe A).

T‚f'” ist eindeutig bestimmt. Wäre auch Tß’ $ T,§°’ Lösung, so gilt neben (T, I T5”) — f) = 0
auch (7)„ Tf,” —-f) = 0 für alle T}, EM. Folglich ist (T„ I T?’ — T5") = 0 für alle T„ EM, ins-
besondere für T„ = T,f°’ — T5". Dies heißt aber, daß (T,f°’ — T,f" I T,f”’ — Ti") = 0 gilt, also muß
wegen (S4) in Def. 1.3 gelten T‚f°’ — Tf," = o, d.h.‚ es gibt keine andere Lösung als T‚f°’.

1.2.2. Mathematische Beschreibung eines Stoßvorganges

Wir betrachten einen einfachen Schwingkreis mit konstanter Selbstinduktion L und
Kapazität C sowie mit Anfangsladung 0. Diesen wollen wir zum Zeitpunkt t = 0
durch einen zeitlich punkthaften Spannungsstoß der Größe S anregen. Uns interessiert

2 Göpiert, Fnnktiomlaxmlysis
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der Stromverlauf nach dem Stoß und die mathematische Beschreibung des Stoßes.
Wir werden dabei auf den Begriff der verallgemeinerten Ableitung geführt, der von
Sobolew erstmals in der Theorie der Differentialgleichungen konsequent genutzt
wurde und samt dem Distributionenbegriff heute diese Theorie, die ein Teil der
Funktionalanalysis ist, beherrscht.

Wir gehen von bekannten Tatsachen aus. Die Anregung des Schwingkreises erfolge
durch Anlegung einer stetigen Spannung E(t), die so Verlaufe (S gegeben):

E(t)=0 für —oo<t<0‚

_{TE(t)dt = s, (1.31)
0

E(t) = 0 für tg T;

dabei nehmen wir, um der „momentanen“ (= punkthaften) Anregung nahezukom-
men, T als klein an. Damit kennt man den sich für tg 0 einstellenden Strom-
verlauf I(t): er genügt der Gleichung

um + % 11(1) dr = 5(2) (1.32)

0

mit der Anfangsbedingung

I(t) = 0 (t g O). (1.33)

(1.32) ist genaugenommen eine Integro-Diflerentialgleichung. Wenn man aber die Stamm-
funktion

I

1(1) = 11(1) d1 (1.34)
0

einführt, so ist (1.32), (1.33) gleichwertig dem Cauchyschen Anfangswertproblem

D,[J] = Lf+ % J = E(t), j(o) = 1(0) = o. (1.35)

(1): Da wir als erstes Ziel haben, den Stromverlauf nach einer punkthaften An-
regung zu studieren, schreiben wir den Stromverlauf I(t) bei der Anregung E(t) von

(1.31) auf [wir lösen also (l.32)/(l.33)]:
t

I(t) = L4 E( )cos (LC)"/’ (t — )d (t g 0,
J T T T ) (1.36)

l(t)=0 für t<0

[Vgl. Bd. 7 oder bei Verwendung der Laplace-Transformation zur Lösung von
(1.32)/(l.33) Bd. l0], und betrachten (1.36) nach erfolgter Anregung, also für t g T.

Für solche I ist E(t) = 0, also:

T

I(t) = L“ E(1r) cos(LC)"/2 (f —— r) d1 (t g T). (1.37)
o
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Nun hatten wir die Anregungszeit T klein angenommen, näherungsweise ist dann
cos (LC)‘“2 (t — r) durch cos (LC)“/2t ersetzbar, weil in (1.37) nur über r mit
0 _S_ r g T integriert wird. Also gilt für t g T genähert

1(1) z L" cos (LC)-W z fTE(r) dr (1.38)
0

und wegen (1.31)

I(t) z L" (cos (LC)""2 t) S, t g T. (1.39)

Zum Zeitpunkt T (Endzeitpunkt der Anregung) ist

I(T) z SL“ cos (LC)‘1/’ T; (1.40)

da T klein ist, ersetzen wir das cos-Glied durch 1:

I(T) z SL’1. . (1.41)

Die Formel (1.41) sagt aus, daß I(t) im (kleinen) Anregungszeitintervall 0 g t g T
von 1(0) = O auf I(T) z SL" „springtffl Die Herleitung (vgl. [I 1]) verrät, daß die
Näherungen für I(T) und I(t) für t g T

I(T) z sL-I, 1(:) z SL" cos (LC)-1/2: (t g T) (1.42)

um so genauer werden, je kleiner T ist, wenn nur (1.31) erhalten bleibt (die Größe
des Spannungsstoßes). E(t) kommt gar nicht mehr vor! Diese Überlegungen legen
es nahe, den Spannungsverlauf E(t) und die Anregungsdauer T ganz außerhalb der
Betrachtung zu lassen und ein mathematisches Äquivalent für einen punkthaften
Stoß der Größe S zum Zeitpunkt t = 0 zu finden, so daß in dessen Gefolge der
Strom von [(0) = 0 auf genau SL“ springt (bei t = 0), und dann [entsprechend
(1.42)) gilt .

1(z) = SL“ cos (LC)“/2t (t g o),
1.43I(t)=0 (t<0). ( )

Mit Benutzung der Heaviside-Funktion

0 (t < 0),
0 = 1.44(I) 1 (t g Ü) ( )

lautet der Stromverlauf bei punkthafter Anregung:

1(1) = SL“ 0(t) cos (LC)“/2 t (t e R). (1.45)

1(1) ist (an der Stelle 0) nicht differenzierbar (Bild 1.3), kann also [im Gegensatz zu
I(t) in (l.36)} nicht (für alle 1e R) einer Differentialgleichung genügen. Dies ist der
Ansatzpunkt für den Einsatz der Funktionalanalysis: Sie gestattet nämlich, daß
auch in diesem Fall, also für I(t) in (1.45), eine Difierentialgleichung in einem ver-
allgemeinerten Sinne „sehr ähnlich“ zu (1.32) [bzw. (l.35)] aufgeschrieben werden
kann. Ist dies geschehen, so schließen wir folgendermaßen: Da ersichtlich in (1.32)
bzw. (1.35) auf der rechten Seite der Differentialgleichung „der von außen auf das
System Schwingkreis wirkende Einfluß“ steht, wie es nach den Kirchhoffschen Ge-
setzen sein muß, so müßte sich aus der angekündigten, über eine funktionalanaly»
tische Methode gewonnenen „verallgemeinerten“ Differentialgleichung für (1.45) bei
2*
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geeigneter Schreibweise die gewünschte mathematische Beschreibung des äußeren
Einflusses, also des punkthaften Spannungsstoßes, ablesen lassen.

(2): Wir beschreiben nun die funktionalanalytische Methode, der (bei t = 0) nicht
differenzierbaren Funktion I(t) von (1.45) eine „verallgemeinerte Ableitung“ zu-
zuordnen und mit diesem Ableitungsbegrilf dann eine zu (1.32) ganz ähnliche „ver—

ylt)

Bild 1.3 ' Bild 1.4

allgemeinerte“ DitTerentialgleichung aufzuschreiben. Wir müssen dafür zunächst die
Gesamtheit der Funktionen (p, die für alle te R erklärt sind, betrachten, die jede
der folgenden Eigenschaften haben (Bild 1.4):

(a) ¢;o(t) beliebig oft differenzierbar.

(b) Es gibt (abhängig von (p) eine Zahl c > 0, so daß gilt

q2(t) E 0 für |t| g c.

(1.46)

Wenn noch festgelegt wird, wann eine Folge von solchen Funktionen konvergent
heißt (vgl. 4.1.; wir machen aber hier in 1.2.2. keinen Gebrauch davon), so heißt
die Gesamtheit der erwähnten Funktionen <p der Grundraum D (der Distributionen).
Jede lineare (und stetige) Funktion (vgl. 2.3.), die für alle (p e D erklärt ist, heißt
eine Distribution. Die Menge aller Distributionen sei mit D’ bezeichnet. Der Begriff
einer Distribution erscheint sehr abstrakt. Wir geben aber sogleich zwei klärende
Beispiele:

Beispiel 1.9. Es sei f eine gewöhnliche, für alle t e R erklärte stetig differenzierbare (oder wenigstens
dem Betrage nach in jedem endlichen Intervall integrierbare lvgl. Def. 2.19, L,‘„c(R)]) Funktion.
Wir betrachten für jedes (p e D das Integral

+ 00

(f. <0) = j" f(t)w(t)dt. (1.47)
——oo

Es konvergiert [wegen (b)] und ist natürlich in q) linear ((f, oqtpl + oczqzz) = o„(f, 412,) + a‚(f‚ mp2),

4x1, a, e R, q:,, (p, e D) und stetig. Also haben wir durch feine Distribution erzeugt, denn durch
(1.47) ist jedem q: ED in linearer (stetiger) Weise eine Zahl (eben das Integral) zugeordnet: Diese
Distribution können wir durch (f, ‚) bezeichnen.

Es gelten die Deutungen:

f als Funktion: t —>f(t) (t e R)
+ O0

f als Distribution: (p ~> (f, (p) = f(t) (p(t) dt (go e D). (1.48)
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Man kann zeigen, daß [für fe L,{‚„(R)] die Zuordnung zwischen f und der zu-
gehörigen Distribution (f, .) eineindeutig ist. Daher unterscheidet man oft nicht
zwischen f und (f, .) [38].

Beispiel 1.10. Jedem «p ED werde die Zahl ¢p(0) zugeordnet. Damit ist eine Distribution Ö0 defi-
niert‚ denn diese Definitionsvorschrift ist linear (und stetig). Wir schreiben in Anlehnung an die
Schreibweise (1.47):

5o: (Öo‚4P)=<P(0)‚ <PED- (L49)

Diese Distribution heißt Dirne-Distribution, und man kann zeigen, daß es keine
Funktion f e L‚}„(R) gibt, so daß diese Distribution durch ein Integral wie in (1.47)
dargestellt werden könnte [38, 39].

Damit wissen wir, daß es „mehr“ Distributionen als gewöhnliche Funktionen gibt.
Was ist der Sinn ihrer Definition? Ein wichtiger Zweck ist, daß man eine Distribu-
tion stets differenzieren kann. Man definiert nämlich für eine beliebige Distribution
f e D’, deren Wert für ein rp e D durch (f, (p) bezeichnet sei, die Ableitung f’ als fol-
gende Distribution:

f’: (f3 <1?) = —(f‚ IP’) (tr E D)- (1-50)

In Worten: Unter f’ verstehen wir die Distribution, deren Wert für jedes q) ED
durch —(f, m’) gegeben ist.

Auch hierfür geben wir zwei Beispiele an und kommen dann zur Distribution (I, .),
die wir unserem Stromverlauf (1.45) zuordnen.

Beispiel 1.11. Wir nehmen eine stetig differenzierbare Funktion f, die für alle t e R erklärt ist, und
bilden ihre Ableitung f’ an jeder Stelle re R sowie die f’ zugeordnete Distribution, deren Wert für
jedes (p durch

— x

<1’, m) = j /'<r> w) dr
— d:

gegeben ist. Partielle Integration liefert unter Beachtung von (1.46 (b))
+ eo

(/',<P) = " j f(f)97'(Y)d! = ‘(f, W’), (1-51)
— 7.

also gerade (1.50). Daher ist die allgemeine Definition (1.50) motiviert.

Beispiel 1.12: Wir nehmen diesmal die Heaviside-Funktion (9 von (1.44). Sie ist (bei t = 0) unstetig!
Wir fassen sie als Distribution auf. Dann können wir ihre Ableitung berechnen (es ist gerade die
Dirac-Distribution 6.,):

<6'‚<;>)"="—<9‚<r'> = — j emmidr

= — _I‘ Wt) dru=m—¢<r) J3 = man. (1.52)
0 ‚

Da dies für jedes «p e D gilt, ist im distributionellen Sinne Q’ = 6.,.

Nun kommen wir zu unserem Schwingkreis zurück und berechnen für I nach
(1.45) den Ausdruck der linken Seite der Diiferentialgleichung (1.32) im distribu-

f

tionellen Sinne: Wir ersetzen also die Funktion [gemäß (l.48)] j 1(1) d1 durch ihre
0
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f

Distribution f 1(1) d1, . und die Ableitung i durch die distributionelle Ableitung:
. . o
I —> (I, (p) = —(I‚ gb). Folglich ist

I

La; m) + g ( f I<r> dr, m)

0
+00 t

1 1‘)
= —L(I, (i2) + F f (p(t) I 0(1) SL" cos (LC)"" r dr dt

o—y«

+uo

= —L J @(t) SL“ cos (LC)‘1’2t¢(l) dt + %

= —s I cos(LC)‘1/2tq‘2(t)dt + s f (LC;-W sin (I.C)‘-" um) dt

0 Ü

und durch partielle Integration im ersten Term sowie wegen (1.46) folgt
oo

—s f (Lcym sin (LC)“/2 ttp(t)dt — scos(Lc)-1i2t¢p(r)z:, + s...
0

l1

5¢(0) = Sao: 9?);

also erfüllt I von (1.45) im distributionellem Sinne die Gleichung [die zu (1.32)
„ähnlich“ ist] 1 r

L(1;.)+ E 1(1) dr, = saso, .), gr eD, (1.53)

o

d. h.‚ da rechts die Dirac-Distribution Ö0, multipliziert mit S steht, beschreibt S60

den Spannungsstoli der Größe S (bei t = 0) mathematisch.
In der Schreibweise (1.35), D2 aufgefaßt als distributionellen Differentialoperator,

wobei die 2. distributionelle Ableitung analog (1.50) durch f"i (f"‚ <17) = (fa f/9");
q: e D, definiert wird (vgl. 4.1.), lautet das Ergebnis dann

D2[J] = S60, I (1.54)

und J ist als die Distribution aufzufassen, die von 1‘ 1(1) dr erzeugt wird.
o

Die gefundene mathematische Beschreibung eines Stoßvorganges war schon in Bd. 7 und Bd. 10

Untersuchungsgegenstand. In Bd. 7 wurde der punktförmige Stoß approximiert durch eine Folge
kürzer werdender „Rechteckstöße“ (T,, —> O, T,, g 0, n = 1, 2, ...):

0 (t < 0),

S
E,.(l) = — (0 ä t ä Tn).

Tn

Ü (f > Tn):
Tn

S
dann ist stets f?dt = S (n =1,2,...).

o n
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Der Stromverlauf 1„ nach der Anregung En, also Vt g T„‚ ergibt sich auch nach (1.37):

T.

1 S i/zI„(t) = L’ Tcos(LC)‘ (1 — T) d1. (1.55)

0

Nun interessiert natürlich der Grenzwert für n —> oo (also T„ —> 0). Die Regel von de l‘Hospital
ergibt wie in Bd. 7/1 unsere Lösung (1.43) für den Stromverlauf bei stoßförmiger Anregung: man
faßt in (1.55) T„ als Variable auf, Dann folgt:

lim SL“ cos(LC)~‘/1 (r — T,,) = SL" cos(LC)-1/1 1, r g 0.
r„—»o

Diese Approximation ist auch für den Übergang von der Folge (En) zur Dirac-Distribution anwend-
bar. Wir fassen dazu 15„ als Distribution auf: E„—> (En, -). Dann ist für jedes (v ED nach der
de l’Hospitalschen Regel

+00 T„
1

[im J‘ E,,(t)1p(t)dt= Iim — SJ. qJ(!) d! = S<p(0). (1.56)
‚H30 Maw Tn

—oo

Also: Der Grenzwert der Folge der Distributionen (E‚„ -) ist S6O(~). Der Konvergenzbegriff in
(1.56) ist die schwache Konvergenz einer Distributionenfolge {En} gegen die Öo-Distribution (s. auch
2.2.4.):

{En} —r S6. (1.57)

Die (50-Distribution wurde schon in Bd. 10 eingeführt. Dort heißt es, dal3 für sie folgende Regel
gilt:

1: 3C

I Mr) 50(1) dI = <7>(0)- (1.58)
Ä so

Dabei ist der Ausdruck links sowohl dort in Bd. 10 als auch hier bei uns als Vorschrift aufzufassen,
jeder Funktion (p den Wert qo(0) zuzuordnen. Wir hatten für q: dabei nur Elemente aus D zugelas-
sen, die Zuordnungsvorschrift (wenn man nicht differenzieren will) ist aber auch für jedes nur

stetige (p erklärt.
Wir wollen noch auf den Zusammenhang rnit Greenschen Funktionen hinweisen (vgl. 4.1. und

Bd. 7/2 und S). Man gewinnt die Greensche Funktion J(t‚ to) für unser Anfangswertproblem (1.35),
indem man bei homogenen Anfangsbedingungen die Wirkung eines Einheitsstoßes zur Zeit 1„ > 0

studiert. Dieser wird durch die „verschobene“ ö-Distribution 6,0 beschrieben, die jedem q: ED
den Wert <p(t„) zuordnet. Also muß statt (1.54) jetzt

D;[J] = 6,0 (ta > 0) (1.59)

erfüllt werden. Der wichtige Unterschied gegenüber (1.54) ist der Stoßzeitpunkt to > 0. Also ant-
wortet der (Zeitverschiebungen gegenüber invariante) Schwingkreis auch „um to verschoben“
(vgl. 1.43):

I(t; to) = L“‘(-)(t — t0) cos (LC)“/2 (I — to), (1.60)

und hieraus ergibt sich wieder [wie in (1.54)]

J(r; to) = ~l[I(T; ro)dr, te R, In > 0. (1.61)

0

Dies ist die gesuchte Grcensche Funktion. Sie erfüllt die Bedingungen von Bd. 7/2, die ihr zu-

geordnete Distribution J erfüllt (1.59). Insbesondere wird die Lösung von (1.35) durch

m) = ‘[110; z) 5(1) dt, (1.62)
o
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die Lösung von (1.32), (1.33) durch

i’

1a) = f I(r;1)E(1)dr (1.63)

o

dargestellt; I(t; to) bzw. J(t; to) gestatten also die Darstellung von 1(1) bzw. J(t) als gewichtete
[mit E(t)] Aufsummierung (das Integral) der Wirkungen I(t; r) bzw. J(t;1) der Stöße zu den Zeit-
punkten 1 ä 0.

1.2.3. Hamilton-Funktidn und Hermitesche Diflereutialgleichung
beim quantenmechanischen harmonischen Oszillator

Wir benutzen den linearen ungedämpften Oszillator, um in die Anwendung der
Funktionalanalysis in der Quantenmechanik einzuführen.

Unter einem linearen harmonischen Oszillator versteht man bekanntlich die (ein-
dimensionale) Bewegung eines Teilchens der Masse m unter dem Einfluß eines Kraft-
feldes K(x):

K(x) = — kx, (1.64)

wenn x(t) die Ortskoordinate des Teilchens und k > 0 eine gegebene Konstante ist.
Die Anfangsbedingungen seien

x0 = x(0) = C1 (Anfangsort),
1.65

120 = x(0) = C, (Anfangsgeschwindigkeit). (

Bild 1.5

Die Kraft K(x) bewirkt eine ungedämpfte Schwingung, deren mathematische Be-
schreibung durch das Newtonsche Kraftgesetz

m56 = —kx (1.66)

und die Anfangsbedingungen gegeben ist. Die Lösung dieses Anfangswertproblems
(1.65), (1.66) ist (vgl. Bd. 3, 5.1.)

x(t) = A cos (cot — (p), (1.67)

wobei Amplitude A, Frequenz w und Phase q: gegeben sind durch

w‘=-S, A=A/x3+—(:i2, sinzp=%, cos<p=—):T°. (1.68)
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Nach dem Energiesatz für unser Problem ist

_ kE=E„+E„=flx2+—x2 (1.69)
2 2

eine Konstante für t g 0. Folglich ist wegen (1.65) und (1.68)

k 2

E=%vg+—2—xä=3% ‚ (1.70)

also ist die Amplitude A nur von der Gesamtenergie E abhängig. Da die Größe
von (p nur eine Verschiebung der Kurve x(t) = A cos cut um tp/w ausmacht, wollen
wir sagen, die Gesamtenergie beschreibt den Zustand des Oszillators.

Wenn also zu festen k, m die Bedingungen (1.65) vorgegeben sind, berechnet man

E nach (1.69), und nun schwingt das Teilchen ungedämpft mit der Amplitude A für
diese Gesamtenergie. Dieser „Zustand“ ist stationär, denn er ändert sich nicht mit
wachsender Zeit. Quantenmechanisch sind aber — wie wir gleich sehen werden —

stationäre Zustände nur für gewisse Gesamtenergien E„‚ n = 0, l, ..., möglich.
Für stationäre Zustände quantenmechanischer Systeme (als ein solches wollen wir

unseren Oszillator ansehen) liefert die Quantenmechanik folgendes Herangehen:
1. Man schreibe die klassische Hamilton-Funktion H(p„, xk) des Systems auf.

Dann ersetze man H durch einen Operator .6, indem

a) die Ortskoordinaten xk durch die Multiplikation mit x‚„
b) die Impulskoordinaten pk (= mxk) durch den Diflerentiationsoperator

h Ö

i Öxk

ersetzt werden.
2. Man finde einen geeigneten Hilbertraum H (s. 2.4.), so daß der Definitions-

bereich D(.i>) von i» eine Teilmenge dieses Hilbertraumes ist. i) muß ein selbst-
adjungierter Operator (vgl. 3.3.) sein. [Dies ergibt sich bei la) von selbst, bei 1b)
muß der gewonnene Operator der Differentiation erst erweitert werden (s. 5.l.2.).]
Der erweiterte Operator heiße .2). _

3. Man schreibe das Eigenwertproblem (vgl. Bd. l3) auf bezüglich des Operators S):

Sf = Äf, Ä reell, fe D(5), (1.72)

und bestimme das Spektrum (s. 3.2.1.) des Operators .5. Insbesondere gilt dann

a) die Eigenwerte 1„ sind gerade die möglichen Energieniveaus E„ des quanten-
mechanischen Systems,

b) die zugehörigen linear unabhängigen Eigenvektorenf„ entsprechen (eineindeutig)
den zugehörigen stationären quantenmechanischen Zuständen,

c) erfolgt ein Übergang des Systems von dem stationären Zustand der Energie En

zum stationären Zustand mit der Energie E _„ so findet gleichzeitig eine elektro-
magnetische Strahlung der Frequenz

(1.71)

v = ‚in. — E.-.) (1.73)

oder eine äquivalente Erscheinung mit entsprechender Energie- und lmpulsübertra-
gung statt.
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Wir wollen für unser Beispiel dieses Programm genauer ausführen. Als Hilbert-
raum H wählen wir

H = L2(R) (1.74)

(s. 2.4.1. und 1.3.).
1. Die Hamilton-Funktion lautet in unserem Beispiel

1 k
H(P‚ x) = 27.172 + 7x2 (1175)

(sie ist für unser Beispiel einfach die Energie (1.69), wobei statt J‘: der Impuls p = m)‘:

als Variable stehen muß). Anwendung der Ersetzungsregel 1a), 1b) ergibt dann den
Operator

1 h d h d k 2

59'"§r7f(TE§)(TE)'+7"" Ü“)
wobei an Stelle des Punktes ein Element des Definitionsbereiches D05) von IQ zu
stehen hat.

2. Als Definitionsbereich D(.b) bietet sich an (s. 2.2.1.)

0(13) = {flfe 611(11)}. (1.77)

Es ist dann

£>f= — 2"—m + §x2 -1 (fe D(s:»)>. - (1.78)

Den Differentialoperator rechts können wir identifizieren: bis auf einige Konstanten
ist es der aus Band 7/2 bekannte Hermitesehe Differentialoperator

D2[y] = —y”(x) + x2y(x), —oo < x < +00. (1.79)

3. Ii) von (1.76) ist noch nicht selbstadjungiert [1, S. 137]. Wir müssen i) durch
seine Erweiterung .53 (s. Kap. 3.) ersetzen. i) selbst gestattet aber schon, viele Eigen-
schaften von i) auszurechnen, so z. B. die Eigenwerte 1„ und zugehörige Eigen-
funktionen f„: Es müssen alle f„ ä o mit

@fi.=Ä‚.fi„ n=o‚1‚2‚...‚ » (1.80)

gesucht werden. Steht statt i) der Operator D2 (aus 1.79), soukennen wir alle Eigen-
werte 1,, und Eigenfunktionen H„ [vgL (2.69)]:

dn

dx”

Man bemerkt, daß der (ursprüngliche) Definitionsbereich für 8:) nach (1.77) zu eng
ist. Aber bei (1.80) müßte auch .6 stehen, und es ist D(.f)) g D(.E)).

Wählt man die C„ so, daß

z, = 211+ 1, n = o, 1,2, H„(x) = c.e7 (e""). (1.81)

To |H,,(x)|2 dx = 1 (1.82)

ist (Normierung), so ist jedem Eigenwert 1,, genau eine Eigenfunktion zugeordnet.
Die H„(x) heißen normierte Hermitesclie Funktionen. Wenn man den Operator .6

nun auf
(„(3.) = D„H„(o(x)‚ n = o, 1, 2, D„ reell, cc = 1/mkh-Z (1.83)
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anwendet, so folgt

31>!/1..(x) = hw(n + ä) w‚.(x)‚ n = 0, 1,2. (1-84)

d. h., die Funktionen in (1.83) sind gerade Eigenfunktionen des Eigenwertproblems
(1.80) mit den aus (1.84) ablesbaren Eigenwerten

2„=hw(n+—;—‚ n=0,l,2,... (1.85)

Entsprechend 3a)—3 c) heißt dieses Resultat für die quantenmechanische Betrachtung
des Oszillators:

Mögliche Energieniveaus E„ für stationäre Zustände sind

E„ (= /1„) = fzw(n + Jg), (1.86)

und wenn der Oszillator auf ein niedrigeres Niveau übergeht, E„ ——> E _„ so erfolgt
eine Energieabgabe E„ — E„_ 1 ‚ die einer elektromagnetischen Strahlung der Frequenz

v ='1I(Erx — E.-.) (1.87)

entspricht. Das entspricht der berühmten Quantenhypothese von Planck für den
harmonischen Oszillator. Und die diesen quantenmechanisch möglichen Energie-
niveaus E„ für stationäre Zustände eineindeutig (das gilt, wenn die zp„ normiert sind:

+ so

J. |zp,,(x)|2 dx = 1) zugeordneten Eigenfunktionen (1.83) nimmt man als mathema-
—— eo

tisches Äquivalent für den quantenphysikalischen stationären Zustand „Oszillator
mit Gesamtenergie En“.

Schwingt das Teilchen mit der Energie E„ , so sagen wir, der harmonische Oszillator
befinde sich — als quantenmechanisches System — im Zustand 1p,,(x). Man kann auch
sagen, daß die eindimensionalen Unterräume des Lfi(R), die von den 111„ erzeugt
werden, die möglichen Zustände des quantenmechanischen Systems repräsentieren.

Wir wollen noch einen anderen Sachverhalt der Quantenmechanik am Oszillator funktional-
analytisch deuten. Die normierten Eigenfunktionen zp„(x) von (1.83) bilden ein vollständiges ONS
[s. (1.14) und 2.4.2.]

x '„‚ x x = ‚. = .

+°° () ()d ä 1, falls m=n‚ (183)

low" i’ '” o, falls m 4: n.

Dann kann man (s. 2.4.2.) jedes Element g EL|2‘(R) in eine Reihe
cc

g(X) = Z CHMX) (1-39)
y=o

entwickeln, wobei (1.89) in folgendem Sinne gilt:
+ no „

lim f lg(x) — z c,,1p,,(x)]2 dx = o ' (1.90)
‚Hm ' v=0

— eo

(die Reihe konvergiert im quadratischen Mittel).1) Die Koeffizienten dieser Reihenemwicklung
kann man leicht berechnen, wenn unter Benutzung des Skalarprodukts [s. (1.5)]

+ IX)

l gcx) h(x) dx = <g1h> (11,: e401» (1.91)
—w

‘) Das benutzte Integral ist das Lebesgue-Integral. Denn auch wenn g und die 1p„ glatte Funk-
tionen sind, muß (1.89) nur „bis auf eine Menge vom Maß 0“ (s. 1.3,) erfüllt sein.
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wie folgt gerechnet wird: Man bildet (1.91) mit g von (1.89) und mit einem beliebigen 1/1,. für h:

DO

<3 I w) =< cm i w>
v=0

(CM. l w> (1-92)F
48

0i
n[

v]
,~

u

cv<1Vv[Wk> = Cu, k = Ü, 1,2:
Ü

Damit sind die Koeffizienten bekannt, da die Vertauschung in (1.92) erlaubt ist [vgl. (2.42): das
LZ-Skalarprodukt ist (bezüglich jeder seiner beiden Variablen) stetig].

(1.89) heißt, daß jedes g eLi(R) als (Fourier-) Reihe dargestellt werden kann nach den v1„(x)‚
die die stationären Zustände des quantenmechanischen Systems darstellen. Um dies physikalisch

auszunutzen, nehmen wir jetzt an, wir hätten die Erweiterung des Operators i) zu 5 schon kon-

struiert. Das bedeutet, wir kennen den Definitionsbereich D($§) als Teilmenge des Läfll); D(.§)

umfaßt D(.S;)) und liegt weiterhin dicht in Lädt). Wir betrachten ein beliebiges g eD(©), welches
normiert sei: (gig) = 1. Ein solches g wollen wir auch als Zustand des quantenmechanischen
Systems ansehen. Da es erst recht die Darstellung

so

g = Z cm. (1.93)
n=0

gestattet, wollen wir sagen, daß der quantenmechanische Zustand g beschrieben wird durch Linear-
kombination (Superposition) der Eigenzustände Ip,,. Dabei gestatten die c„ folgende Interpretation:
c„ ist die Wahrscheinlichkeitsamplitude und |c,,l2 die Wahrscheinlichkeit, mit der der Eigenzustand
(stationärer Zustand) 1p,. in g enthalten ist. Bei einer Energiemessung findet man dann mit der Wahr-
scheinlichkeit |c,,l‘ die Energie E„.

Wir berechnen Z 14.1"‘. Da das Orthonormalsystem {1p,.(x)} vollständig ist, gilt die Vollständig-
keitsrelation [s. (2.66)]‚ und es ist

214.1’ = ligil’ = - (1.94)

Die Wahrscheinlichkeit, irgend eines der Energieniveaus E, zu messen, ist also I. Man erhält somit

mit Wahrscheinlichkeit 1 bei einer Energiemessung einen der Eigenwerte des Operators [Diese

einfache Interpretation geht nur, da ‚S5 (und auch S) ein reines Punktspektrum mit einfachen Eigen-
werten hat.]

Die mathematische Erwartung (der quantenmechanische Mittelwert) bei der Energiemessung
wäre dann (Bd. 17, Def. 2.28)

w .

2 z. 1cm (1.95)
n=0

und ist endlich, da diese Reihe konvergent ist [36]. Es besteht ein enger Zusammenhang zur quadra-

tischen Form (Egg I g) (g e D(.§)):
_ '13

<3Z>eJg> = X 7~m'cn;". (1-95')
„=o

Die quadratische Form (Sig I g) erweist sich im Definitionsbereich von S5 gerade als der quanten-
mechanische Mittelwert bei der Energiemessung im Zustand g. Auf Beziehungen zur Streuung
gehen wir unten in 5.1.3. ein.

1.2.4. Ein volkswirtschaftlicher» Verflechtungsmodell als Fixpunktproblem

Im einfachsten Volkswirtschaftlichen Verflechtungsmodell werden in einem be-
stimmten Zeitraum N Produktionszweige betrachtet, die je eine Produktart produ-
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zieren. Der i-te Zweig produziere von seinem Produkt die Menge x„ an den j-ten
Zweig liefere er die Menge p,, und an äußere Bedarfsträger die Menge 11,. Es sei pu
der Gesamtproduktion des j-ten Zweiges proportional:

p„ = müxj, (1.96)

dann ergibt sich folgendes Gleichungssystem als Bilanz:
N

x, =Zm„x‚+a‚ (i=1,...,N). (1.97)
j=1

Entsprechend A) in 1.2.1. Iautet die Aufgabe: Gesucht ist ein Vektor
x = (x1, ...,x„) e R", so daß bei gegebener Verflechtungsmatrix M = (mu) und
gegebenem Output a = (a1, ...‚ aN) e R" folgende Gleichung erfüllt ist:

x = Mx + a. (1.98)

Wir formulieren jetzt diese Aufgabe funktionalanalytisch entsprechend B) in
1.2.1. In (1.98) kommt die gesuchte Größe x sowohl „rechts“ vor als auch „isoliert“
auf der linken Seite. Wir fassen die rechte Seite in (1.98) als Abbildungsvorschrift
auf, einem Vektor x e R" den Vektor Mx + a als Bild zuzuordnen. Wir sehen, daß
(1.98) gelöst ist, wenn wir einen solchen Vektor x* e R" haben, daß das Bild
Mx* + a von x* gerade wieder x* ist, also Mx* + a = x* gilt. Ein solcher Vektor
x* e R" heißt ein Fixpunkt der beschriebenen Abbildung. Ist allgemein A eine Ab-
bildung, die einem Vektor x eR" den Vektor y = A(x) eR" zuordnet (man sagt
auch, daß A den R" „in sich“ abbildet), so heißt ein Vektor x* e R" ein Fixpunkt
von A, wenn A(x*) = x* ist.

Jetzt sind zwei Fragen zu beantworten: Welche Forderungen müssen an A ge-
stellt werden, damit ein Fixpunkt existiert (die Abbildung A mit A(x) = x + l hat
keinen Fixpunkt für x e R), und, wie kann ein existierender Fixpunkt berechnet
werden? Eine Antwort gibt der sehr allgemeine Fixpunktsatz von Banach (s. 4.3.2.).
In ihm ist A „kontrahierend“. Eine Abbildung A von R" in sich heißt kontrahierend,
wenn es eine Konstante k gibt mit 0 < k < l, so daß für je zwei Elemente x, y e R"
gilt (d sei die Metrik in R"):

41040€), A0/)) é kd(x,y) (Im! 6 R") (1-99)

(1.99) bedeutet, daß der Abstand der Bilder zweier Elemente aus R" kleiner oder
gleich ist dem mit einem festen Faktor k (0 < k < 1) multiplizierten Abstand der
Urbilder. Da in (1.99) nur die Metrik d von R" gebraucht wird, kann eine kontra-
hierende Abbildung auch in allgemeinen metrischen Räumen E (oder Teilmengen E0
von E) definiert werden [vgL (4.83)]. In unserem Beispiel ist E.) = E = (R",d).
Ax = Mx + a, x e R". Unten geben wir vier Möglichkeiten an, einen Faktor k
für A" = M" + a zu berechnen. Ist dann 0 < k < 1 erfüllt, so weiß man, daß
genau ein Fixpunkt x* existiert, denn es gilt

Satz 1.2 (Fixpunktsatz von Banach): Eine kontrahierende Abbildung A einer nicht-
leeren abgeschlossenen‘) Teilmenge E0 eines vollständigen metrischen Raumes E in
sich hat genau einen Fixpunkt. Dieser kann mit folgendem Iterationsoerfahren berech-
net werden: Man wählt ein Anfangselement x0 E Eo. Dann bestimmt man sukzessive
x, : A(xo), x2 = A(x,), ...,x„ = A(xk_1), ...‚ und die so gewonnene Folge {xj}
(j = l, 2, ...) konvergiert gegen den Fixpunkt x*.

1) Vgl. (2.4).

S.l.2
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Wir realisieren C) von 1.2.1. und geben vier Möglichkeiten zur Bestimmung eines
Kontraktionsfaktors k für (1.99) an. Dazu sei |J.|l eine Norm in R”. Folglich gilt
mit der durch diese Norm festgelegten Metrik d:

d(A(x)‚A(‚V)) = [|A(x) - A(y)|l = l|(Mx + a) - (My + 0)H = ||M(x(T

Wir setzen x — y = z eR", z =(z1,..., z„).
a) Wahl der euklidischen Norm im R" (s. Bsp. 1.2):

„Mziiz z 2 mikzk)2 —§ 2 z?)
i k x k k

= HZ“? ämk) = k? HZW. kl = mi%r)1/2' (1-101)

b) Wahl der Norm [|z|\2 = Max |z‚| (z e R"):

ilMzilz = M3_1XmikZk! g Mix: imiki Izkl
I I

II/
\

MaXZ lmml Max Izkl = (Maxi lm.-z.|) HZ!lz
i k k i k

= kzllzllza kz = MW‘; |mih|-
l (1.102)

N

c) Wahl der Norm HzH3 = 2 lz,-|:
‚er

„Mzlis = mzkzk‘ g ä‘. lmikl lzkl

= Z lzhl Z Im»! S Z Ilkl MaXZ 1mal
k . k k l

= llzlla ' k3: ks = M':1XZ Imml- (1-103)

d) Wahl der euklidischen Norm, aber andere Abschätzung der Matrix: Es gilt
nämlich, wenn ‚l der größte Eigenwert der Matrix MTM ist (es ist stets Ä g 0)

HMz!|T§1Hzl|§, (1-104)

und damit ist auch J1 eine Konstante (k4) gemäß (1.99).
Die für eine gegebene Matrix M berechenbaren Zahlen k, , kg, k3, k4 sind

„Matrixnormen“ und heißen „euklidische Norm“ (kl), „Zeilenbetragssummen-
norm“ (kz), „Spaltenbetragssummennorm" (k3)‚ „Spektralnorm“ (k4). Die letztere
ist auch die Norm von M als Norm einer linearen beschränkten Abbildung im Sinne
der Funktionalanalysis (s. Def. 3.6); [7].

Bemerkung 1.4: Die Zahlen kl, k‘, können bei einer gegebenen Matrix ver-

schieden ausfallen.

Bemerkung 1.5: ln Bd. 18, 2.3., Bsp. 2.5, wird ein lineares Gleichungssystem mit dem
oben angegebenen Iterationsverfahren gelöst. Die dabei berechnete Kontraktions-
konstante ist gerade k3. Im allgemeinen wird die Fixpunktmethode auf nichtlineare
Gleichungen angewandt, z. B. werden mit Satz 1.2 im Lehrbuch [14] der Existenz-
satz für gewöhnliche Dilferentialgleichungssysteme (s. auch Bd. 7/1) und auch der
große Auflösungssatz (s. auch Bd. 4) bewiesen.
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1.2.5. Zeitoptimale Steuerung einer erzwungenen gedämpften Schwingung

In der kybernetischen Betrachtungsweise von Systemen ist es üblich und zweck-
mäßig, Sogenannte Übertragungsglieder zu betrachten, die ein Eingangssignal x(t)
(t g 0: Zeitparameter) in ein Ausgangssignal y(t) verwandeln. Eine Frae der
Steuerung entsteht, wenn für das Ausgangssignal bestimmte Vorgaben durch ge-
eignete Wahl des Eingangssignals erzielt werden sollen. Wird verlangt, daß das Aus-
gangssignal y(t) in kürzester Zeit To einen bestimmten Endwert y,,,d = y(T0) errei-
sehen soll, so liegt eine Aufgabe der zeitoptimalen Steuerung (s. Bd. 16) vor. Opti-
malitätsforderungen können aber auch hinsichtlich anderer Kenngrößen gestellt
werden, z. B. in bezug auf minimalen Energieaufwand für das Eingangssignal.

Faßt man die Eingangssignale x(t) als Elemente eines linearen Raumes E, die
Ausgangssignale als Elemente eines linearen Raumes F auf, so läßt sich die Wirkung
eines Übertragungsgliedes mittels eines Übertragungsoperators U: E —> F, d. h.:

(Ux) (t) = y(t) (0 g t < oo) (1.105)

beschreiben‘. Für die Praxis interessant sind vor allem lineare und gleichzeitig zeit-
invariante Übertragungsglieder. Sie sind durch folgende Eigenschaften gekennzeich-
net:

1) U(c,x1 + 02x2) z clUxl + c2Ux2 - (1.106)

für beliebige x1, x2 e E; cl, c2 bel. Konstanten (Linearität).

2) Ist y(t) = (Ux) (t) und ist )_c(t) = x(t — z), so gilt

(U2) (t) = y(t — z) (Zeitinvarianz). (1.107)

Mit anderen Worten, ein lineares Übertragungsglied ist ein Umwandlungsmechanis-
mus, für den das Superpositionsgesetz gilt. Die Zeitinvarianz bedeutet, daß das
Ubertragungsglied auf gleichartige, nur zeitlich gegeneinander verschobene Eingangs-
signale in gleicher Weise reagiert, abgesehen von einer (gleichgroßen) zeitlichen Ver-
schiebung. Als Beispiel eines solchen Übertragungsgliedes kann das mathematische
Modell eines Wassereinzugsgebietes dienen. Dabei bedeutet x(t) die zur Zeit t durch
Regen pro Zeiteinheit zugeführte Wassermenge und y(t) die zur Zeit t an einem
Abflußkanal pro Zeiteinheit abfließende Wassermenge.

Lineare zeitinvariante Übertragungsglieder lassen sich unter geeigneten Voraus-
setzungen durch einen Übertragungsoperator der folgenden Gestalt beschreiben:

(Ux) (t) = y(t) = J3/1(t — 1:) x(t) d1 (t g 0). (1.108)
o

Dabei ist h(t) die sog. Impulsantwortfunktion, die als Reaktion (= Ausgangssignal)
auf einen Nadelimpuls x(t) = ö(t) (Ö-Distribution, s. 1.2.2. oder 4.1.) auftritt. Ist die
Impulsantwortfunktion /1(t) bekannt, so ergibt sich für stetige Eingangssignale x(t)
aus Linearität, Zeitinvarianz und Stetigkeit (in einem geeigneten Sinne) des Über-
tragungsoperators die Darstellung (1.108) [s. auch (l.62)].

Bemerkung 1.6: In der Kybernetik bezeichnet man die Impulsantwortfunktion auch
als Stoßantwort bzw. (bei geeigneter Festlegung der Dimension) als Gewichtsfunktion
(s. [37, S. 857]).

Wir gehen im folgenden von der Darstellung (1.108) des Übertragungsoperators
aus. Als Beispiel eines solchen Übertragungsgliedes betrachten wir eine schwingende
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Punktmasse‚ die durch eine Zwangskraft x(t) zu einer gedämpften Schwingung y(t)
aus der Ruhelage heraus (y(0) = 0, y(0) = 0) angeregt wird. Das Ausgangssignal
y(t) (= Amplitude der Schwingxmg) bestimmt man aus dem Eingangssignal hierbei
durch die Lösung der Differentialgleichung (s. Bd. 7/1)

mm + 91(1) + am) = xv) (1.109)

mit den Anfangsbedingungen y(0) = 0, y(0) = 0. Die Schwingung erfolge schwach
gedämpft, d. h.‚ es gelte 92 < 411m. Dann ist (s. Bd. 7/1, S. 96-99, S. 133, Lösung
der Aufgabe 3.21) die Lösungsformel

y(t) = f a)1—me—ß<*—*> sin w(t — 1) m) d: (z g o), (1.110)

0

wobei
1 n;fl=% und w=—fl-(/4am—g2 (1.111)

gilt.
Aus dem Vergleich der Formel (1.110) und der G1. (1.108) erkennen wir, daß die

Antwort y(t) des schwingungsfahigen Systems „Punktmasse an Feder“ auf das Ein-
gangssignal (Zwangskraft) x(t) einem linearen, zeitinvarianten Übertragungsglied ent-
spricht, wobei die Impulsantwortfunktion h(t) durch den speziellen Ausdruck

h(t) = #64’ sin cot (t g 0) (1.112)

gegeben ist.

Bemerkung 1.7: Durch Vergleich der Ausdrücke (1.112) oben und den Betrachtun-
gen in Bd. 7/1 (S. 98) erkennen wir, daß die Impulsantwortfunktion h(t) über die
Gleichung

G(t, z) = h(t — z)

mit der Greenschen Funktion G(t, r) der Anfangswertaufgabe (1.109) zusammen-
hängt (s. auch 1.2.2.).

Im weiteren sei h(t) stetig und in keinem Intervall [0, to] identisch gleich null.
Es sei nun to > 0 ein fester Zeitpunkt. Dann gilt nach (1.108) -

y(to) = jfho, — 'r)x(1)d'1:. (1.113)
0

Wir benutzen (der grundlegenden Arbeit [20] folgend) die Schwarzsche Unglei-
chung (Satz 1.1) im Prä-Hilbertraum C‚\[0, to] (s. Bsp. 1.4) der auf [0, to] stetigen
Funktionen mit dem Skalarprodukt (f [ g) und der zugehörigen Norm:

to to 1/2

(fl g> = fflf) g(T) d7, Ilfll = [f(f(T))2 d7] -

o o

Es gilt wegen (1.113) und der Schwarzschen Ungleichung (vgl. S. l1)
1° 1/2 1„ 1/2

g (/1(f0 — ‘E))2 d1] I: f (x(1))2 d1::| . (1.114)1}'(7o)| = _

o o

1,, -

1 /1(r,, — r) x(r) d'r
0
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Nach der Substitution s = to — ‘L’ ergibt sich
1,, 0 to

f(h(to — 1))‘ dt = — f(h(s))2 d: = f(h(s))’ ds = |[h|12. (1.115)
o 1° o

Also erhalten wir mittels (1.114)

|y(to)l = iohCo - T)x(T)dT é Hhll - |1xi|- (‘1-116)
o

Das Gleichheitszeichen in dieser Ungleichung gilt genau dann (s. Satz 1.1), wenn die
Funktionen unter dem lntegralzeichen linear abhängig sind. In unserem Fall bedeutet
dies, daß

x(r) = Kh(t„ — 1) (0 g T g to), (1.117)

K eine beliebige Konstante, gilt.
Aus (1.113) ergibt sich für ein x(r) dieser Form [vgl. (l.115)]

1o

y(z„) = Kf (/1(t., — 1))Z d1 = 1<n111|2. (1.118)
0

Ist nun y(t„) = y,,,,, ein vorgegebener, zu erreichender Wert, so folgt aus (1.118)

K = 1.119W ( )

und für das zugehörige Eingangssignal, das wir von jetzt ab mit fc(.) bezeichnen,
ergibt sich mittels (1.117)

51(1) = Ty}—:—?"T1.(:(, — 1) (o g r g to). (1.120)

Es gilt für dieses spezielle Eingangssignal [s. (l.115)]

. _ iyendi h _ iyendi 112|
nxu W n |1 „h“ . < . >

Für jedes andere beliebige Eingangssignal x(r) gilt nach (1.116) die Ungleichung

iyendi < 1 122W ä: llxll. (- )

wenn wir fordern, daß für dieses Eingangssignal ebenfalls die Beziehung y(t0) = y“,
gilt. Aus (1.121) und (1.122) folgt

Ilfcll < Ilxll, (1.123)

d. h., das Eingangssignal J‘c(-r) ist Von allen Eingangssignalen x(1), die zum Zeit-
punkt to den gleichen Wert des Ausgangssignals y(to) = yam, liefern, dasjenige mit

r 1/2

der kleinsten Norm. Da die Norm HxH = _[°(x(r))2 dt als ein Maß für die
o

Energie des Eingangssignals angesehen werden kann, lautet unser Ergebnis:

2(1) = filmt, — 1)

3 Güplert, Fuuktionalannlysis
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erzielt den Wert ym, des Ausgangssignals („Schwingungsausschlag“) zum Zeit-
punkt to mit minimalem Energieaufwand. Damit ist eine spezielle Aufgabe der opti-
malen Steuerung gelöst. Uns interessiert im folgenden die Frage, wie das Eingangs-
signal x(t) gewählt werden muß, um unter der Energieaufwandsbeschränkung

Hxllz g E (E > 0, gegeben) (1.124)

den vgrgegebenen Wert y(t„) = ym, des Ausgangssignals in kürzester Zeit

i to —> Minimum! (1.125)

zu erreichen.
Wir können die obigen Betrachtungen zur Lösung dieser Aufgabe verwenden. Es

sei x(t) ein Eingangssignal, welches unter der Bedingung (1.124) zu einem gewissen,
nicht notwendig minimalen Zeitpunkt to den geforderten Endwert y(t0) = ym
liefert. Dann gilt wegen (1.122), (1.124)

M = ‘m’ g uxn g fi- (1.126)

Daraus folgt als notwendige Bedingung

g nhu. (1.127)
\/E

to 1/2

Die rechte Seite Elhll = I: f (h(r))2 d1] hängt von dem Endzeitpunkt to ab; wir
setzen ö

ac(t„) z Hhll. (1.128)

Wegen (1.112) gilt daher für oc:

<X(0) = 0,
0 g ti < t2 ä a(t1) < oc(t2),} (1.129)

.a¢(to) hängt stetig von to ab.

Es gibt somit genau einen oder keinen kleinsten Wert to = TD = inf t g 0 |oc(t)

_ lyendl } mit

— \/E I I= = yefl .

Ilhll <X(To) \/E (1.130)

Wir setzen voraus, daß der Wert To existiert. Nach den Eigenschaften (1.129) gilt
für to < T0 die Ungleichung

uhu = am) < am) = JE ’

d. h., die notwendige Bedingung (1.127) ist für to < To nie erfüllt. Für to = To wird
die Bedingung (1.127) und die Bedingung y(t„) = y,,,,, durch die Lösung 22(1) aus
(1.120) erfüllt, d. h., T0 ist die minimale Endzeit, zu der unter der Energiebeschrän-
kung (1.124) ein Eingangssignal (eine Steuerung) existiert mit x(T0) = y,,,,,, und
dieses Eingangssignal ist eindeutig bestimmt durch die Gleichung

x<r) = m) = filmt, — r) (o g z g n),
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welches wegen der G1. (1.130) die Form

E

yend

hat. Also ist die gestellte Aufgabe lösbar [eben mittels des Eingangssignals (l.13l)],
und die Minimalzeit To ermittelt man aus der Gleichung [vgl. (l.I30)]

To

f (h(t))2 d: = (1.132)

0

)'c(r) = /1(T0 — 1) (0 g t g T0) (1.131)

(wobei To der kleinste Wert ist, der diese Gleichung erfüllt). Für unser Beispiel der
erzwungenen gedämpften Schwingung lautet diese G1. (1.132)

n, .

6”“ . 1%.,I wzm, s1112wtdt= —E—‘ (1.133)

o

oder nach ausgeführter Integration und nach Einsetzen der Konstanten
I2 _ 9

and 1 _ e m 1 mTo

E _ Zag a 4am — g’

>< (g 5in2 (uTo + J4am — 92 sin wTo cos wTo). (1.134)

Aus (1.134) ist To zu berechnen (durch ein Näherungsverfahren). Das zugehörige x(t)
hat die Form

„ t :

x0 ymdwm

Es gilt stets die Ungleichung

e‘ß("o")sin w(T„ — t) (0 g t g To). (1.135)

T0 ?°

1/1112 = _| <Iz<r»2 d: g ) <h(r>)2 dz.
o o

vorausgesetzt, dal3 das rechtsstehende Integral existiert. In unserem Beispiel hat es

den Wert
eo

f (/1(t))’ dt = (1.136)

0 2

Zufolge der Gleichheit (1.132) folgt die Ungleichung g“ g 2L“ oder

E 112

lyendl S ‚

d. h., ein Endzustand y,,,d = y(T,,) mit

1y..,.11> (1.137)

ist durch kein Eingangssignal x('r) mit HxH g /IT? realisierbar! Für große Werte

von g und a wird (bei festem E) der Wert von TE‘) sehr klein, so daß dann bereits

3*
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relativ kleine Werte von I y„„‚| nicht „ansteuerbar“ sind (dies ist von Interesse bei der
Dimensionierung von Dämpfungsgliedern). Für E = + oo ist (1.137) nie erfüllt,
d. h., jeder Endzustand ym, ist erreichbar, wenn beliebig viel Energie zur Verfügung
steht.

Alle Betrachtungen lassen sich mit geringfügigen Modifikationen auch auf andere
lineare zeitinvariante Systeme übertragen.

1.3. Meßbare Funktionen, Lebesgue-Integral

An den verschiedensten Stellen dieses Bandes sind die Grundbegriffe der Theorie
des Lebesgue-Integrals unumgänglich. Sie werden hier — ausschließlich auf der Grund-
lage der vorangehenden Bände — nur soweit entwickelt, wie es die weiteren Dar-
legungen erfordern. Der Leser, der sich über dieses notwendige Minimum hinaus
weiter informieren möchte, sei auf die Darstellungen in [27], [35]. [I9], [14] ver-
wiesen.

Im einzelnen gehen wir nur auf die Theorie im R‘ ein. Unsere Darstellung ist so
gewählt, daß der Übergang zur Lebesgue-Integration im R" unmittelbar möglich ist.
Zum Teil ist der hier gewählte Zugang an [31] bzw. an [33] orientiert, unterscheidet
sich aber hinsichtlich der gewählten Funktionenmenge, von der man ausgeht (stetige
Funktionen anstelle von Treppenfunktionen).

Definition 1.6: Es sei [a, b] ein Intervall der Zahlengeraden, (a < b). Eine Teilmenge
A g [a, b] dieses Intervalls heißt eine Menge vom Maß Null, wenn es zu jedem e > O

eine Folge oflener Intervalle J„ gibt (J„ = (a„‚ b„))‚ deren Gesamtlängensumme nicht
größer ist als e und deren Vereinigungsmenge die Menge A enthält:

äm —‘a,,) g e, (1.138)

(1.139)C
8Ag J„.

n 1

Beispiel 1.13: Eine Menge A g [a‚b], die aus endlich vielen Punkten x], ...‚ x„ besteht, hat das
Maß Null. Eine Menge A = {x1, .„,x„‚ ...} g [a, b], die sich als Folge schreiben läßt (eine sog.
abzählbar unendliche Menge), hat das Maß Null. Zum Beweis wählt man (es genügt, den zweiten
Fall zu betrachten) zum gegebenen e > O die Intervalle 1,, = (a,,, b,,) in der Form

J,,=(x,, —7%,x,.-1-7::-) (n=1,2,...).

°° °° e "9 1 1 1 W

Dann gilt Z (17„ — a„) = Z --n- = e Z T = am‘ — = esowieA = {x,, ...,x,,, g U J,,.
n=1 n=l2 "=12 1“: Z rx=l

Also sind die Bedingungen (1.138) und (1.139) für jedes a > 0 erfüllbar. Somit hat A das Maß
Null. Analog zu Bsp. 1.13 kann man zeigen, daß die Vereinigungsmenge einer Folge von Mengen
vom Maß Null wieder das Maß Null hat. Das Intervall [a, b] (a < b) hat andererseits nicht das
Maß Null.

Definition 1.7: Es gelte eine gewisse Eigenschaft P = P(x) für alle Punkte x des

Intervalls [a, b] mit Ausnahme der Punkte x, die zu einer Menge vom Maß Null ge-
hören. Dann sagt man: Die Eigenschaft P gilt für fast alle x E [a, b] oder: P gilt in
[a, b] fast überall.
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Zum Beispiel kann man durch Verwendung dieser Definition sagen, daß es in der
lntegrationstheorie auf Mengen vom Maß Null nicht ankommt, sie sind „vernach-
lässigbar klein“.

Definition 1.8: Eine (reellwertige) Funktion f(x), definiert auf dem Intervall [a, b], D.l.8
heißt meßbare Funktion, wenn es eine Folge stetiger Funktionen {g„(x)} (a g x g b)
gibt, die fast überall in [a, b] gegenf(x) konvergiert; m. a. W., es giltf(x) = lim g„(x)

fix e [a, b] \ A), wobei A eine Menge vom Maß Null ist. (Die Menge A hängt von

((x) ab.)

Man überzeugt sich leicht davon, daß die Summe zweier meßbarer Funktionen
wieder eine meßbare Funktion ist und daß die Multiplikation mit einem (reellen)
Zahlenfaktor nicht aus dem Bereich der meßbaren Funktionen herausführt, m. a. W.,
die meßbaren Funktionen bilden einen linearen Raum. Man bezeichnet ihn mit
S[a, b] oder mit L0[a, b].

Definition 1.9 (Lebesgue-Integral für beschränkte meßbare Funktionen): Es sei f(x) D.l.9
eine (reellwertige) beschränkte meßbare Funktion auf [11, b]; d. l1., es gibt ein M > 0
mit |f(x)I E Mfür a g x g b. Ist {g„(x)} eine Folge stetiger Funktionen, die auf
[a, b] fast überall gegen f(x) konvergiert (Def. 1.7), so setzen wir

b b

u] f(x) dx = lim <]‘gn(x) dx>. (1.140)

Hierbei stehen rechts gewöhnliche Riemann-Integrale für stetige Funktionen (s. Bd. 2).

Bemerkung 1.8: Die obige Definition 1.9 ist korrekt, da gezeigt werden kann, daß
der Grenzwert (1.140) unabhängig von der gewählten Folge (g„(x)) ist.

Definition 1.10 (Nichtnegative summierbare Funktionen): Es seif(x) eine niehtnegative D.l.10
meßbare Funktion: f(x) g 0 (a g x g b). Wir bilden die Folge beschränkter meß-
barer Funktionen

f”) _ ]f(x) xe [a, b] und O g/(x) g n,
— = 1,2,

l n x s [a, b] und n <f(x). (n )

Die Funktion f(x) ltelßl (Lebesgue-) summierbar über [a, b], wenn die Folge der Inte-
b

grale { f,,(x) dx nach oben beschränkt ist. Man setzt

_Ff(x) dx = linn lbfixx) dx(= sup ]bf,,(x) dx) (1.141)

und bezeichnet diesen Ausdruck als das Lebesgue-Integral vanf(x) über [a‚ b]‘).

Definition 1.11 (Summierbare Funktionen beliebigen Vorzeiehens): Es sei f(x) eine
(reellwertige) rneßbare Funktion auf [a, b]. Wenn es zwei niehtnegative summierbare
Funktionen f,(x), fz(x) gibt, für die D-Lll

f(x) = fxlx) - fztx) (x E [m bl) (H42)

‘) Henri Lebesgue 1875-1941
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gilt, so heißt f(x) summierbar ((L)-summierbar) über [a, b]. Die Zahl

b b b

_ f f(x) dx = 1 /1<x>dx — ffz(x)dx
u a a

wird das (L)-Integral von f(x) über [a, b] genannt ((L)- bedeutet Lebesgue—).

(1.143)

Bemerkung 1.9: 1) Der Leser zeige als Übung, daß der Wert (1.143) des Integrals
einer surnmierbaren Funktion von der speziellen Darstellung (1.142) unabhängig ist.
2) Statt „summierbar“ sagt man gelegentlich auch „integrierbar“.

Bemerkung 1.10: Komplexwertige summierbare Funktionen f(x) erhält man genau
in der Form

f(x) = u(x) + iv(x) (a S x ä b),

wobei u(x)‚ v(x) reellwertige summierbare Funktionen sind.
Das Lebesgue-Integral hat analoge Eigenschaften wie das Riemann-Integral

(s. Kap. 2.). Insbesondere bildet die Menge aller (reell— oder komplexwertigen)
summierbaren Funktionen einen linearen Raum, und die Zuordnung

(1.144)

b

f-+ lf(x)dx_ (1.145)

ist linear, d. h.,

1. b b

_l (f(x) + g(x)) dx = ff(x)dx + fg(x)dX‚ (1-146)

b b

f(hf(x)) dx = hfflx) dx (I. e R oder i. e K). (1.147)

Oben hatten wir Mengen mit dem Lebesgue-Maß Null betrachtet. Meßbare Men-
gen beliebigen Lebesgue-Maßes lassen sich über die Betrachtung ihrer Indikator-
funktion einführen. Ist A = [a, b], so heißt die durch die Vorschrift

0 für x¢A,
.. (aéxéb)l fur xeAZAÜ‘) =

definierte Funktion gm die charakteristische Funktion (Indikatorfunktion) von A.

Definition 1.12: Eine Menge A g [11, b] heißt meßbar (Lebesgue-meßbar), wenn ihre
Indikatorfimktian 1A summierbar ist. Die Zahl

JPZACX) dx (1.148)

heißt das Maß ((L)-Maß) von A und wird mit mes A bezeichnet.

Beispiel 1.14: Es sei A = [c, d] g’ [a, b]. Dann gilt mesA = d — c. Das Lebesgue-Maß ist also
eine Verallgemeinerung des elementargeometrischen Längenbegrifis.
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Satz 1.3: Sind A g [a, b] und B g [a, b] zwei meßbare disjunkte Teilmengen von

[a, b], d. l1. gilt An B = 0, so ist auch A v B meßbar, und es gilt (Additivität des
Maßes)

mes (AuB) = mesA + mes B. (1.149)

Im Rahmen der bisherigen Betrachtungen war das Intervall [a, b] beliebig, aber
fest. Man kann zeigen, daß alle obigen Definitionen, Sätze usw. von der Wahl eines
solchen Intervalls unabhängig sind. Man erhält also allgemein beschränkte (L)—meß-
bare Mengen und summierbare Funktionen auf beschränkten Definitionsintervallen.
Die Erweiterung der obigen Begriffe auf den Fall von Funktionen, die auf un-
beschränkten Intervallen erklärt sind, wird wiederum mittels eines Grenzüberganges
durchgeführt. Nichtnegative summierbare Funktionen erhält man durch die Forde-
rungen:

f: (—o0‚ +00) —> R, f(x) ä 0 (x G R),
f summierbar über jedes Intervall [—n, n] (n = l, 2, ...),

lirn f(x) dx existiert.
n-osc H”

+3: V

Letzterer Grenzwert wird mit j f(x) dx bezeichnet.
-— eo

Danach ist es möglich, wie in Def. l.ll summierbare Funktionen beliebigen Vor-
Zeichens auf (— oo, +00) einzuführen und unbeschränkte meßbare Mengen analog
zu Def. 1.12 zu erklären. Die Betrachtungen im k-dimensionalen Raum R" verlaufen
analog. Es können auch beliebige meßbare Mengen als Definitionsbereiche summier-
barer Funktionen verwendet werden.

Schließlich führen wir noch folgenden wichtigen Satz an:

Satz 1.4: Ist f(x) (komplex- oder reellwertig) summierbar über dem Intervall [a, b]
und gilt

b

llf(x)l dx = o,a.

so ist f(x) = 0 fast überall in [a, b]. '

Der große Fortschritt, der mit der Einführung des Lebesgue-Integrals erreicht wurde, liegt vor

allem in der Möglichkeit, Grenzübergänge unter sehr allgemeinen Voraussetzungen durchführen
zu können. Wir nennen hier nur zwei wichtige Sätze vom Typ „Grenzübergang unter dem Inte-
gralzeichen“:

Satz 1.5 (B. Levi): Es sei (f„(x)) eine nicht fallende Folge nichtnegutiver summierbarer Funk-
tionen auf dem Intervall [a, b], und es existiere eine (von n unabhängige) reelle Zahl C > 0 mit
b

lf„(x) dx g C(n g 1, 2, . . .). Dann ist die Funktion f(x) = limf„(x) über [a, b] summierbar, und
5 „am

es gilt
‘b b

J (um fi,(x))dx = lim lf„(x)dx.
a nam naw u

b

[f(x) dx = (1. 150)

Satz 1.6 lLebesgue): Es sei (fi,(x)) eine Folge summierbarer Funktionen auf [a‚b], die dort fus/
überall gegen eine (meßbare) Funktion f(x) konvergiert: f(x) = 1imf,, (x) (x e [a, b] mit evtl. Atty

n —» 0o

nahme einer Menge vom Maß Null). Es existiere eine über [a, b] summierbare Funktion g(x) ä 0
nii/]fi,(x)] 5 g(x) (x E[l1, b])für n = l, 2, . .. . Dann gill (1.150).

S.l.3

S.l.4

S.l.5

S.1.6
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2. Räume

2.1. Vollständige metrische Räume, Banachräume

2.1.1. Konvergenz von Folgen in metrischen Räumen. Abgeschlossene und otfene
Mengen. Vollständigkeit und Kompaktheit

Da zahlreiche Probleme zur Berechnung praxiswichtiger Größen, die bei der
mathematischen Behandlung angewandter Aufgaben vorkommen, erfahrungsgemäß
näherungsweise gelöst werden müssen, ist es erforderlich, exakte Maßstäbe an den
Begriff „näherungsweise“ anzulegen. Dies geschieht erstens durch den in Kap. l.
eingeführten Begriff einer Metrik, die imstande ist, den Unterschied zwischen exakter
Lösung und Näherungslösung zu erfassen, und zweitens mittels des Begriffs einer
(bezüglich der gegebenen Metrik) konuergenten Folge. Die Existenz einer Folge von
Näherungslösungen, die gegen die exakte Lösung konvergiert, sichert, daß die Nähe-
rungslösung beliebig genau gewählt werden kann.

Definition 2.1: Es sei (X, d) ein metrischer Raum (s. Def. 1.1). Eine Folge {f„} von

Elementen aus X heißt konvergent, wenn ein Elementf e X existiert mit

1imd(f„‚f) = 0,
n-MX) ‚

d. h., wenn die (Zahlen-)folge der Abstände zwischen f und ff, eine Nullfolge bildet.
Das Element f heißt der Grenzwert der Folge {f„}‚ in Zeichen

f = lim fi,.
n-H10

(2.1)

(2.2)

Bemerkung 2.1: Daß wir in obiger Definition von dem Grenzwert f einer Folge {f„}
sprechen, ist dadurch begründet, daß eine konvergente Folge nur einen einzigen
Grenzwert besitzt.

Gäbe es nämlich noch ein weiteres Element g e X mit lim d(g,fi‚) = 0, so folgt mittels der Drei-

ecksungleichung (M 3) und mittels (M 2) (s. Def. 1.1) did-llitgleichung

0§d(f,g)§d(f..,f)+d(f..,g) (n=1‚2‚-„)- (*)

Führen wir in (*) den Grenzübergang n —> 00 durch, so folgt, da sich Ungleichungen der Form „g “

zwischen den Elementen konvergenter Zahlenfolgen auf deren Grenzwerte übertragen,

0;d(f‚g);0+o=0‚
also ist d(f‚ g) = 0 und somit [nach (Ml)] f= g.

Definition 2.2: Es sei A g X eine Teilmenge des metrischen Raumes (X, Die
Menge A heißt abgeschlossen, wenn aus f= 1imf„ undf„ eA (n = l, 2, ...) folgt,

n-voo

daß auch f e A gilt. Mit anderen Worten, eine Menge A heißt abgeschlossen, wenn der
Grenzwert jeder konvergenten Folge von Elementen aus A ebenfalls zu A gehört. Ist
A z 0 (leere Menge), so wird A definitionsgemdß als abgeschlossen bezeichnet.

Beispiel 2.1: Es sei X = R und d(x, y) = lx — y] (x‚y e R). Es sei A1 die Menge aller rationalen
Zahlen, A; die Menge A; = [0, 1] = {x e RIO g x g 1). Die Menge A, ist nicht abgeschlossen;
die Menge A; ist abgeschlossen (Beweis als Aufgabe).
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Definition 2.3: Es sei f e X ein Element des metrischen Raumes (X, d) und r eine
positive reelle Zahl. Weiter sei (s. Bd. 1, 7.8.)

B(f; r) = {gEXI 403g) < r},
K(f; r) = {g eXI d(1Cg) ä r},
S(f; r) = {geXl dtfig) = r},

dann heißt B(f; r) die offene Kugel, K(f; r) die abgeschlossene Kugel mit dem Mittel-
punkt f und dem Radius r sowie S(f; r) die Kugeloberfläche (Sphäre) dieser Kugeln
(vgl. Bsp. 2.9).

Bemerkung 2.2: Die Mengen S(f; r) und K(f, r) sind abgeschlossene Mengen im
Sinne der Def. 2.2. Dies rechtfertigt die Bezeichnung „abgeschlossene Kugel“ für
die Menge K(f; r).

Definition 2.4: Es sei G g X eine Teilmenge des metrischen Raumes (X, d). Die
Menge G heißt ofien, wenn sie mit jedem ihrer Elemente f eine Kugel B(f; r) enthält.
Mit anderen Worten, G heißt oflen, wenn es zu jedem f e G ein r = r(f) > 0 gibt
mit B(f; r) g G. Die leere Menge (l) ist nach Definition eine oflene Menge.

Beispiel 2.2: Ist n, > 0, so ist die Menge B(f;; ro) für jedes fa EX eine oflene Menge (dies recht-
fertigt die Bezeichnung „otfene Kugel“).
Beweis: Ist f e B(fo; ro) ein beliebiges Element von B(fo; re), so gilt d(f,fu) < ro. Wir setzen
r = n, —- d(f‚fi‚). Es gilt r > O. Ist h s B(f; r) beliebig, so ist d(h‚f) < r. Nach der Dreiecksunglei-
chung (M 3) folgt

d(/ufo) é d(/Zfo) + d(h.f) < d<fif:) + r = d(fifo) + ro - dtfifo) = ro-

Also ist d(h,f0) < ro, und somit gilt hEB(f[„r0). Jedes Element von B(f; r) gehört somit zu

EU); m), somit ist B(f; r) g B(f0, ro). Es gibt also zu jedem Element f von B(fo; re) eine (oflene)
Kugel mit Mittelpunkt f, die ganz zu B(fi,; m) gehört. Daher ist B(fg; ro) eine oifene Menge. I
Beispiel 2.3: Es sei X = R und d(x, y) = ix — yl (x, y e R). Die Menge [0, 1] ist nicht offen, ebenso
sind die Mengen (O, 1] = {x s R J 0 < x g1} und [0,1) = {xe R I0 g x <1} keine offenen
Mengen (Beweis als Übungsaufgabe).

Der Zusammenhang zwischen den Begriffen „abgeschlossene Menge“ und „olfene
Menge“ wird durch den folgenden Satz geklärt:

Satz 2.1: Eine Teilmenge F eines metrischen Raumes (X, d) ist genau dann abgeschlos-
sen, wenn die Komplementärmenge G = X \ F eine oflene Menge ist.

(Beweis z. B. ll'l [17].)

Die folgende Aussage über die Eigenschaften der Gesamtheit aller offenen bzw.
abgeschlossenen Mengen eines metrischen Raumes gilt wie für‘ Mengen des euklidi-
schen R" (s. Bsp. 1.3).

Satz 2.2: A) Die Vereinigungsmenge beliebig vieler, der Durchschnitt je endlich vieler
aflener Mengen eines metrischen Raumes X sind stets (wieder) oflene Mengen.

B) Der Durchschnitt beliebig vieler, die Vereinigungsmenge je endlich vieler ab-
geschlossener Mengen eines metrischen Raumes X sind stets (wieder) abgeschlossene
Mengen.

C) Die leere Menge Q) und der ganze Raum X sind beide sowohl abgeschlossene als
auch oflene Mengen.
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Bemerkung 2.3: Die Eigenschaften A) und C) [bzw. B) und C)] sind der Ausgangs-
punkt der Theorie der topologischen Räume (vgl. [l7]), die die Theorie der metri-
schen Räume als Spezialfall enthält.

Jede Teilmenge A eines metrischen Raumes X besitzt eine abgeschlossene Ober-
menge, z. B. X selbst. Der Durchschnitt aller die Menge A enthaltenden abgeschlos-
senen Mengen ist nach dem vorhergehenden Satz, Aussage B) selbst wieder abgeschlos-
sen und ist (nach Definition des Durchschnitts) in jeder A enthaltenden abgeschlos-
senen Menge enthalten; also ist dieser Durchschnitt die kleinste abgeschlossene
Menge, welche die gegebene Menge A enthält. Man bezeichnet diese Menge auch
als Abschließung von A.

Definition 2.5: Es sei (X, d) ein metrischer Raum und A g X eine Teilmenge von X.
Die Menge Ä = fl{F I F abgeschlossen und A g F} bezeichnet man als Abschließung
(abgeschlossene Hülle von A).

Satz 2.3: Es sei A eine Teilmenge des metrischen Raumes X. Ein Element f von X
gehört genau dann zu Ä, wenn es eine Folge {f,',} aus A gibt mit lim f„ = f.

n—>eo

Die Abschließung einer Menge A stimmt also mit der Menge aller Grenzwerte
konvergenter Folgen von Elementen aus A überein. Stets gilt die Enthaltensein-
beziehung

A g Ä. (2.3)

Eine Menge A ist genau dann abgeschlossen, wenn gilt

A = Ä. (2.4)

Beispiel 2.4: Es sei X= R und d(x,y) = Ix -— yi. Die Menge A = {x e R | x =1/n;n =1,2,...}
ist nicht abgeschlossen, weil Ä = A v {O} 2 A gilt. (Der Beweis dafür, daß Ä die angegebene Form
hat, ergibt sich mittels Satz 2.3; Aufg. für den Leser.)

Hinsichtlich ihrer Konvergenzeigenschaften können sich die Folgen in metrischen
Räumen wesentlich unterscheiden. Es erweisen sich die Begriffe Cauchy-Folge, Kom-
paktheit, Vollständigkeit als sehr nützlich (s. auch Bd. l):

Definition 2.6: Eine Folge von Elementen {f„} eines metrischen Raumes (X, d) heißt
eine Cauchy-Folge, wenn es zu jedem e > 0 ein no = n0(a) gibt mit d(j"‚„f„‚) g e für
alle n, m _2_ n„(e).
Satz 2.4: Jede kanvergente Folge ist eine Cauchy-Folge.

Beweis: Die Folge {12,} konvergiere‚ d.h.‚ es existiert ein fEX mit: lim d(fi,, f) = 0. Bei vor-
wn-v

gegebenem e > 0 gibt es daher ein no mit d(fi., f) g e/2 für alle n g no. Aus der Dreiecksunglei»
chung (M 3) erhalten wir für n, m g no

d(fil!.fin) g am.» + am.) g g + §= e. I

Die Umkehrung dieses Satzes gilt jedoch nicht! Mit anderen Worten, es gibt
metrische Räume, in denen nicht jede Cauchy—Folge konvergiert (s. Bsp. 2.8).
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Bemerkung 2.4: Es sei {f„} eine Cauchy-Folge in einem metrischen Raum (X, d).
Die Folge {f„} besitze eine konvergente Teilfolge {f,,J}. Dann ist fin} eine konver-
gente Folge, und es gilt

lim f„ lim flj.
j<o”LHai)

Beweis: Wir setzen f= lim f„J und geben ein e > 0 beliebig vor. Da U.) eine Cauchy-Folge ist,
‘—»ac1

gibt es ein no mit d(f‚„f„) g e/Z für n, m g no. Da die Teilfolge {f,,J.} gegen f konvergiert, gibt
es ein jo mit d(f,.J,f) g 5/2 fürj gjg, Für j —> oo gilt aber n, —> oo, und es existiert ein j, gju
mit n, g no für j gjl. Für n g nu gilt dann auf Grund der Dreiecksungleichung (M3) (weil

"i. g "o und 11 g io ist)

am,/> g d(/n,ru,_) + d(/.,,l.r) g g +

d. h. die Folge {f,.} konvergiert gegenf. I

8 _

3 ' ‘s

Definition 2.7: Ein metrischer Raum (X, d) heißt kompakt, wenn jede Folge {f„} aus X
eine konvergente Teilfolge besitzt. Eine Teilmenge eines metrischen Raumes heißt kom-
pakt, wenn sie, als Teilraum aufgefaßt, ein kompakter metrischer Raum ist.

Definition 2.8: Ein metriseher Raum (X, d) heißt vollständig, wenn jede Cauchy-Falge
aus X eine konvergente Folge ist.

Den Zusammenhang zwischen beiden Begritfen liefert

Satz 2.5 z Jeder kompakte metrische Raum ist vollständig.

Beweis: Ist {fin} eine Cauchy-Folge des kompakten metrischen Raumes X, so besitzt
diese (wegen der Kompaktheit) eine konvergente Teilfolge. Nach Bem. 2.4 ist {f„}
daher selbst konvergent. I

Die Umkehrung dieser Aussage gilt nicht! Dies zeigt

Beispiel 2.5: Der Raum C[0‚ 1] (s. Bsp. 1.5) ist mit der Metrik dtf, g) = max l/(t) - g(t)[ voll-
051S!

ständig (s. [17] und Bd. l: gleichmäßige Konvergenz). Die Folge {f„} mitflt) = n (0 ä t ä 1)

besitzt aber keine gegen ein Element von C[0‚ 1] konvergierende Teilfolge (Beweis als Aufgabe).

Hinsichtlich des Verhaltens von Teilmengen (als Teilräume aufgefaßt) gelten die
folgenden Aussagen:

Satz 2.6: Es sei (X, d) ein vollständiger metrischer Raum. Eine Teilmenge Y g X
von X ist (als Teilraum von X aufgefaßt) genau dann vollständig, wenn Y abgeschlos-
sen ist.

Satz 2.7 : Es sei (X, d) ein kompakter metrischer Raum. Eine Teilmenge Y g X von X
ist (als Teilraum von X aufgefaßt) genau dann kompakt, wenn Yabgeschlossen ist.

Das einfachste Beispiel eines vollständigen metrischen Raumes ist die Menge R
der reellen Zahlen, versehen mit der Metrik d(x‚ y) = |x — y]. Die Eigenschaft der
Vollständigkeit wird hier durch das bekannte Cauchysche Konvergenzkriterium ge-
liefert. Betrachtet man den Teilraum P g R dieses Raumes, der aus allen rationalen
Zahlen besteht, so ist dieser Teilraum nicht vollständig.

D.2.7
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Der Übergang von den rationalen Zahlen zu den reellen Zahlen, also von einem
nicht vollständigen Raum zu einem vollständigen Raum, der den ersteren als dichte
Teilmenge enthält („jede irrationale Zahl ist Grenzwert einer Folge rationaler Zah-
len“), ist ein spezielles Beispiel für einen allgemeinen Sachverhalt, den man „Vervoll-
ständigung“ nennt.

Definition 2.9: Es sei (X, d) ein metrischer Raum. Die Teilmenge A g X heißt dicht
in X, wenn A : Xgilt.

Beispiel 2.6: Die Menge P der rationalen Zahlen liegt dicht in der Menge R der reellen Zahlen
(bezüglich der Metrik d(x‚ y) = lx — yj). Diese Tatsache ergibt sich daraus, daß jede reelle Zahl x

als Grenzwert einer Folge rationaler Zahlen x„ (z. B. der nach der n-ten Stelle nach dem Komma
abgebrochenen Dezimalbruchentwicklung x„ von x; n = 1, 2, ...) dargestellt werden kann.

Definition 2.10: Es seien (X, d) und (Y, g) metrische Räume. Der Raum (X, d) heißt
(eine) Vervollständigung von (Y, g), wenn folgende Bedingungen erfüllt sind:

I) (Y, g) ist ein Teilraum von (X, d); d. h., Y ist eine Teilmenge von X und g(f, g)
= d(f,g)f17'flgE Y-

II) Y ist eine dichte Teilmenge von X; d. h., die Abschließung (in X!) von Y ist
gleich X.

III) Der Raum (X, d) ist vollständig

Satz 2.8: Jeder metrische Raum besitzt eine Vervollständigung [l7].

Bemerkung 2.5: Immer dann, wenn ein gegebener (nicht vollständiger) metrischer
Raum (X1, d1) Teilraum eines vollständigen Raumes (X, d) ist, läßt sich eine Ver-
vollständigung von (X1, d1) in einfacher Weise angeben. Als eine solche kann man

nämlich die Abschließung X1 g X von X1 in X, versehen mit der auf X1 eingeschränk-
ten Metrik d, nehmen.

Definition 2.1l: Zwei metrische Räume (X1, d1) und (X2, d2) heißen isometrisch, wenn

es eine Abbildung (p: X1 —> X2 von X1 auf X2 (d. h., q2(X2) = X2) gibt mit

d2((p(f), ¢(g)) = d1(f, g) (f. g e X1).

Jede solche Abbildung o) heißt eine Isometrie von X1 auf X2.

(2.5)

Beispiel 2.7: Es sei X1 = X2 = R" (bzw. = K") mit der euklidischen Metrik
n I/Z

1103)’) = (Z (E; " 771) (E; - 771)) ‚

i=l

und es sei A eine orthogonale Matrix, d. h. ATA = AAT = I (bzw. A sei eine unitäre Matrix
A*A = AA* = I, wobei A* =7). Dann ist die durch A erklärte Abbildung eine Isometrie von

X1 auf X2. Der Beweis dieser Aussage ergibt sich sofort aus der Invarianz des Skalarprodukts bei
der Anwendung orthogonaler (bzw. unitärer) Matrizen:

d<Ax.Ay) = <Ax — Ay I Ax — AN’ = <A<x — y)1A<x — y)>"2

= <ATA<x — y) Ix — y>‘/2 = <x — y a x — N1 = dm).

Satz 2.9: Je zwei Vervallständigungen eines metrischen Raumes sind isometrisch.

Identifiziert man also isometrische Räume untereinander, so kann man in diesem
Sinne von „der“ Vervollständigung eines metrischen Raumes sprechen. Die Vervoll-
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ständigung eines metrischen Raumes (X, d) hängt in entscheidendem Maße davon ab,
welche Metrik auf der Trägermenge X dieses Raumes verwendet wird. Das folgende
Beispiel soll dies zeigen: Versehen wir die Menge X = CR[—1, 1] mit der Metrik
d(f, g) = max [f(t) — g(t)], so erhalten wir einen vollständigen metrischen Raum

— s :l
(X, d). Verwenden wir aber in X = CR[—1, 1] die Metrik

1

d1(fa g) ={ J (f0) ~ g(t))Z dry/2 (f, g e X),
—l

so ist der entstehende metrische Raum (X, d1) nicht vollständig und besitzt daher
eine von (X, d) verschiedene (nicht zu (X, d) isometrische) Vervollständigung. Der
Beweis für die Tatsache, daß (X, d1) nicht vollständig ist, ergibt sich daraus, dal3 es

in (X, d1) Cauchy-Folgen gibt, die nicht konvergieren:

Beispiel 2.8: Im Raum (CR[—1,1],d1) definieren wir eine Folge {f,,) durch

[1 für 4:120,
l

I-nt für 0<t§-, (n=l,2,...)
fl-(V): n

| -. L <l0 fur n<I=l.

(Der Leser zeichne eine Skizze des Funktionsverlaufes von /",,.) Für n g m gilt (kurze Zwischen-
rechnung)

d‚<f../„):L.('""") g 13_ <n=1,2,...;m:n).
nx/3n m

Da ——= (n = 1, 2, ...) eine Nullfolge ist, ist {12,} eine Cauchy-Folge bezüglich d, Es kann gezeigt
n

werden, daß es kein Element f e CR[—1, 1] mit lim d1(1',„f) = 0 gibt. Die Cauchy-Folge {f„} ist
n-bß’)

somit nicht konvergent. Also ist der Raum (CR[—1‚ l], d1) nicht vollständig. Seine Vervollständi-
gung ist der Raum Lfi[—1‚l]‚ wobei sich in diesem Raum als Grenzwert der obigen Folge {f,,)
die Funktion

1 für e] ä t ä 0,

0 für 0 < t g 1

ergibt (s. 2.2.2.).

fit) =

2.1.2. Banachräume

Definition 2.12: Einen normierten Raum (E, H . H) nennt man einen Banach-Raum D.2.l2
(auch: Banachraum bzw. (B)-Raum), wenn er bezüglich der durch die Norm induzier-
Ien Metrik d(f‚ g) = Hf — g}! (f, g e E) ein vollständiger metrischer Raum ist.

Bemerkung 2.6: Die Bezeichnung „Banach-Raum“ wurde zu Ehren von Stefan
Banach (1892-1945) gewählt, dessen Buch „Theorie des operations linéaires“ (1932)
den Grundstein für alle weiteren Entwicklungen der Funktionalanalysis in normier-
ten Räumen legte.
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Der einfachste Banachraum ist der Raum R" der n-dimensionalen Vektoren
x = (5„ ..., E") (bzw. (5„ ..., £,,)T) (EI reell, j = 1, ..., n), versehen mit der euklidi-
schen Norm

nxn ={§1s%}1/2

bzw. der komplexe endlichdimensionale Raum K”, dessen Elemente Vektoren
x = (5„ ..., E„) (bzw. (5„ ..., £,,)"') mit komplexen Koordinaten E, (j = l, ..., n)
sind, versehen mit der euklidischen Norm

Hxl] = IE1-If/2 = 5,-5‘,}”2

Weitere wichtige konkrete Banachräume werden im Abschnitt 2.2. behandelt. Hier
werden nur einige grundsätzliche Konstruktionen in Banachräumen besprochen:
äquivalente Normen, Produktraum, Quotientenraum.

(2.6)

(2.7)

Definition 2.13: Es sei E ein linearer Raum (Vektorraum). Auf E seien zwei Normen
H.|J1 und H.112 gegeben. Die Norm |[.|I2 heißt äquivalent zur Norm |l.1| 1, wenn es

Zahlen m > 0, M > 0 gibt, so daß die Ungleichungen

mHXllt S “X”: §'MHXl|1
für alle x e E gelten.

Der Übergang zu einer äquivalenten Norm bringt oft gewisse Rechenvorteile.
Beim Übergang von einer Norm [|.l|1 zu einer äquivalenten Norm ||.[l2 bleiben
konvergente Folgen konvergent (genau darauf beruht Bemerkung 1.4, denn es erweist
sich, daß in endlichdimensionalen Räumen alle Normen äquivalent sind). Dabei gilt:
(__E, H . H2) ist genau dann ein Banachraum, wenn (E, |] . H1) ein Banachraum ist; Die
Aquivalenz von Normen hat die üblichen (vgl. Bd. 1) Eigenschaften einer Aqui-
valenzrelation: Reflexivität, Symmetrie, Transitivität.

Eine lineare Abbildung S eines normierten Raumes E in den normierten Raum F
(vgl. Def. 3.1) heißt ein Normisomorphismus, wenn S den Raum E auf F abbildet
und Hsxll, = |]x|]E für alle x e E gilt.

Beispiel 2.9: Im K" sind folgende Normen (s. auch 1.2.4.) äquivalent:

52
n 11/2

HXHi = 2 lEJ-lz ‚

J'=l l7 2

i nxu; = max (15,0, (2.8)
1§i§n

57 Ilxll; = 2 15,).
j=1

Bild 2.1

Dieselben Normen sind auch im (reellen) Raum R" äquivalent. Dies erkennt man auch an der Ge-
stalt der Einheitskugeln (für n: 2 s. Bild 1. 2), d. h. der Mengen (x5 R"|\]x!1, g 1} (j = 1, 2, 3).
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Definition 2.14: Es seien endlich viele normierte Räume (E1, || . H1), (E2, || . H2), ...,

(E,,, |[.[],,) gegeben. Weiter sei E = E1 >< E, >< ><E„ das Produkt der Mengen
E1, ...,E„‚ d. h. die Menge aller n-Tupel x = (E1: ..., 5,.) mit E]. 9E; (f = 1, ..., n).
Bezüglich der Operationen (y = (m, ._.., m) e E)

x + y =(E1+ 771.6,, + m),
Äx =(Ä5l,2E2‚...,ÄE„), AER bzw. }.eK,

wird E zu einem (reellen bzw. komplexen) Vektorraum. Versehen wir E mit der Norm

Ilxll = Z1 lläjll; (x E E),
J=

so nennen wir den Raum (E, H . H) den Produktraum der Räume (E); ]] . M1’) (j = 1, ..., n).

Bezeichnung: (E, H ~ H) = (E,-; l! - lb)-
,=

Es seien (Ej, \|.1!,) (j = l, ..., n) Banachräume. Dann ist auch der Produktraum

(E, || . H) =Aq (15,; H . Hf) ein Banachraum.
,2

Beispiel 2.10: Da der Übergang zu einer äquivalenten Norm nichts an der Struktur eines Banach-
raumes ändert, können wir mittels der Aussage von Bsp. 2.9 sagen, daß der Raum K" der (n-fache)
Produktraum der Räume K (mit der euklidischen Norm) ist.

Eine weitere Operation, die aus einem gegebenen Banachraum weitere Banach-
räume zu bilden gestattet, ist die Konstruktion von Quotientenräumen. Hierzu be-
trachten wir zunächst einen beliebigen linearen Raum E sowie einen linearen Teil-
raum ED g E. Wir führen eine (zweistellige) Relation ~ auf E durch die Gleichung

x~y¢>x—yeE0 (2.9)

ein. Wie leicht zu sehen ist, erfüllt ~ die Eigenschaften einer Äquivalenzrelation
(Refleivitxät, Symmetrie und Transitivität). Die Menge

[x]={yeE|x—yeE„}={yeE|xwy} (2.10)

bezeichnen wir als die zu x gehörende Äquivalenzklasse (Restklasse). In der Menge
aller dieser Aquivalenzklassen führen wir die Vektorraumoperationen Addition und
Multiplikation mit einem Zahlenfaktor durch die Definitionsgleichungen

[x] + [y] = ix + y],
Älxl = [7-X]

ein, die, wie man zeigen kann, eindeutig definierte Operationen in der Menge der
Aquivalenzklassen liefern und den Axiomen für die Rechenoperationen eines Vektor-
raumes (s. 1.1.) genügen. Den auf diese Weise entstehenden Vektorraum nennt man
den Quotientenraum von E bezüglich E0 (bzw. „nach Eo“) und bezeichnet ihn mit
dem Symbol

E/E0. (2.11)

Beispiel 2.11. Es sei E = K" und Eo = {x EEl (x I xo> = 0}, wobei x0 6K" ein fest gegebener
von o verschiedener Vektor aus K" ist. ED ist ersichtlich ein linearer Teilraum von E (Beweis als
Übung). Die Menge (Äquivalenzklasse) [x] hat für beliebiges x E K" folgendes Aussehen:

[Xl={yeE|x—;v€Eo}={y6EI<x-y|xo>=0}
={yEE|<xIXu>=<.VlXo>}-

(x,yeE; }.eR bzw. K)

D.2.l4
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Ist x e K" gegeben, so besteht [x] also aus allen Elementen y e K", für die das Skalarprodukt (y l x0)
den konstanten Wert c(x) = (x | x0) hat. In anschaulicher Interpretation heißt dies, daß [x] eine
zu Eo parallele (Hyper-) Ebene darstellt, deren Normalenvektor die Richtung von x0 hat.

2. Räume

Ist (E, [l . H) ein normierter Raum und Eo ein abgeschlossener Teilraum von E, so
kann man auf den Quotientenraum E/E0 durch die Gleichung

lllxllleisfi inf{llyll I y E {x1} (2-12)

eine Norm einführen (s. [l7], [24]), womit der Quotientenraum E/Eo zu einem nor-
mierten Raum wird.

Satz 2.10: Ist (E, H . H) ein Banachraum, so ist (E/Eg, H . |],;,Eo) ebenso ein Banach-
raum (Beweis s. [9]).

2.2. Funktionenriiume
Die für die Anwendungen wichtigsten normierten Räume sind Funktionenräume,

d. h. lineare Räume, deren Elemente (Vektoren) Funktionen (mit reellen bzw. kom-
plexen Werten) sind, die einen gemeinsamen Definitionsbereich besitzen. Ist X dieser
gemeinsame Definitionsbereich, so sind die algebraischen Grundoperationen in
einem Funktionenraum stets, wie üblich, durch die Gleichungen (punktweise)

(f+g)(x)=f(x)+g(x) (XEX).
(if) (x) =}f(x) (xeX; ÄeR bzw.leK)

erklärt. Hinzu kommen gewisse Eigenschaften, die die Funktionen des betrachteten
Funktionenraumes auszeichnen, wie z. B. Stetigkeits—, Differenzierbarkeits- bzw.
Integrierbarkeitseigenschaften. Einen gewissen Sonderfall stellen die Folgenräume
dar, die als Funktionenräume, bestehend aus Funktionen mit dem gemeinsamen
Definitionsbereich N (Menge der natürlichen Zahlen), aufgefaßt werden können
(s. 2.2.4.).

2.2.1. Räume stetiger und stetig diiferenzierbarer Funktionen

Definition 2.15: Es sei K g R" eine nichtleere Teilmenge des R". Die Menge aller
komplexwertigen (bzw. nur reellwertigen) Funktionen, die auf K stetig sind (s. Bd. 4)
bezeichnet man mit C(K) (bzw. mit CR(K)).

Satz 2.11: Es sei K g R" nichtleer, abgeschlossen und beschränkt (K ist daher kom-
pakt). Dann ist die Menge C(K) (bzw. CR(K)) versehen mit der üblichen Vektorraum-
struktur (s. oben, Beginn von 2.2.) bezüglich der Norm (Supremum-Norm, Maximum-
Norm)

llfllcao = m?I1{X|f(x)l = 511113 1f(x)I (fE C(K)), (2-13)
XE XE

ein Banachraum.
(Beweis und weitere Einzelheiten in [36].)

Im folgenden sei Q ein Gebiet des R", d. h. eine offene zusammenhängende‘)
Teilmenge des R" (z. B. der R" selbst). Mit ÖQ = .Q\.Q bezeichnen wir den Rand

1) Dabei heißt eine Teilmenge des R" (allgemeiner: eines metrischen Raumes) zusammenhängend,
wenn sie nicht die Vereinigungsmenge zweier disjunkter, nicht leerer, abgeschlossener Mengen ist.



2.2. Funktionenräume 49

des Gebietes Q. Der Index R weise stets darauf hin, daß nur reellwertige Funk-
tionen zugelassen sind.

Ein geordnetes n-Tupel o: = (a, ‚ ...‚ oc,,) von nichtnegativen ganzen Zahlen nennen
fl

wir einen Multiindex. Mit |rx| bezeichnet man die zugehörige Summe Ea, der
"-1

Komponenten des Multiindex a. Die Einführung eines Multiindex dientlz-ur über-
sichtlichen Schreibweise partieller Ableitungen von Funktionen mehrerer Veränder-
licher (s. 4.1.). Man setzt (s. Bd. 4) für eine Funktion fmit

f(x) =f(51, --~»£..) (X = (51: 5„))I

o: Ö ""’f a _ .‚. at; 41„

Ü’ ‘ egg. egg. i x ‘ 5952 5»-

Definition 2.16: Es sei Q ein beschränktes Gebiet im R" und k = 0, l, 2, eine nicht-
negative ganze Zahl. Die Menge aller komplexwertigen Funktionen, die auf der Ab-
schließung Q (= QuöQ) stetig sind und in Q stetige partielle Ableitungen bis zur

Ordnung k einschließlich besitzen und die sämtlich auf ganz Q stetig fortgesetzt wer-
den können, bezeichnen wir mit C"(Q).

(2.14)

Bemerkung 2.7: Für k = 0 gilt die Gleichung C"(Q) = C(Q) (s. Def. 2.15). Die For-
derung der stetigen Fortsetzbarkeit der partiellen Ableitung_en auf ganz Q ist nicht
unwesentlich. Ist z. B. im R2 die Funktion f(x1, x2) = \/xi + auf dem Ge-
biet Q: 0 <x, < l, 0 < x2 <l gegeben, so läßt sich zwar f(x„x‚) auf Q:
0 g x, g l, 0 g x2 g 1 stetig fortsetzen (mit derselben Zuordnungsvorschrift),
jedoch läßt sich z. B. die erste partielle Ableitung von f(x„ x2) nach der ersten
Variablen, die in Q erklärte Funktion

E’. _ :1
bx, 2 ’

nicht stetig auf Q (als Funktion mit Werten aus R) fortsetzen, da für x1 —> 0 die

Funktiongkeinen (endlichen) reellen Grenzwert besitzt (Skizze !).
1

Satz 2.12: Die Menge cm6) m bezüglich der Norm

llfllcw?) = M2Sk(r;13}x lO"f(x)|) (2.15)

ein Banachraum (das Symbol 2 bedeutet, daß über sämtliche Multiindizes o: mit
la|<k

incl g k zu summieren ist).

Definition 2.17: Mit C°°(Q) bezeichnen wir die Menge aller im Gebiet Q g R” be-
liebig oft diflerenzierbaren komplexwertigen Funktionen. Mit C3°(Q) (oder auch mit
C°°(.Q)) bezeichnen wir die Menge aller Funktionen, die Elemente van C°° (Q) sind und

deren Träger, d. h. die Menge suppf = {x e Q | f(x) =l= 0}, beschränkt ist und ganz
in Q liegt. Mit C"(Q) bezeichnen wir die Menge aller im Gebiet Q g R" insgesamt
k-mal stetig diflerenzierbaren Funktionen.

4 Gövfert, Funktionalanalysis

D.2.l6

S.2.12

D.2.l7
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Die Untersuchung von Operatoren auf Funktionenräumen erfordert häufig die
Kenntnis kompakter Mengen in diesen Räumen. Daher geben wir das folgende
Kompaktheitskriterium (Satz von Arzela und Ascoli [2], [17]) an:

Satz 2.13: Es sei Q ein beschränktes Gebiet des R" (m. a. W., die Menge Q ist kom-
pakt). Es sei weiter M g C"(Q) eine abgeschlossene Teilmenge des Raumes
(C"(Q)‚ H ‚ Meran) [vg]. (2.l5)]. Dafür, daß M eine kompakte TeilmengeQ von C"() ist,
ist notwendig und zugleich hinreichend, daß M beschränkt und gleichgradigstetig zur

Ordnung k ist; m. a. W.‚ M ist genau dann kompakt, wenn es eine feste Zahl Q > 0
gibt mit

llfllcua) ä Q (f9 M)
und wenn es zu jedem e > 0 ein Ö = 6(8) > 0 (welches nicht von f e M abhängt) gibt,
so daß aus der Beziehung

Hx — x’l|Rn g ö (x, x’ SQ)
stets die Beziehung

lö“f(x) - 0”f(x’)l é 8

für jeden Multiindex o; mit [o4 = k und für alle f e M folgt.

2.2.2. Räume integrierbarer Funktionen (Lebesgue-Räume)

Eine wichtige Klasse von Funktionenräumen stellen die sog. Lebesgue-Räume
dar. Ihre Elemente sind Funktionen (genauer: Mengen [s. Bern. 2.10] Von (L)-fast
überall übereinstimmenden Funktionen), die auf einem Gebiet Q g R" meßbar sind
und zusätzlich Integrierbarkeitseigenschaften besitzen.

Definition 2.18: Es sei p eine positive reelle Zahl. Der Raum L"(Q) ist die Menge
aller aufdem Gebiet Q definierten meßbaren komplexwertigen Funktionenf(x) (genauer:
die Menge aller Klassen zueinander (L)—äquivalenter Funktionen), für welche

J’ jf(x)1"dx < +00 (2.16)
Q

gilt. Die Funktionen, die Elemente von L’(Q) sind, nennt man die zur p-ten Potenz
über Q absolut integrierbaren Funktionen. Mit L°° (Q) bezeichnet man die Menge aller
auf dem Gebiet Q definierten meßbaren komplexwertigen Funktionen f(x), für welche
eine (von der betrachteten Funktion abhängende) Konstante a > 0 existiert mit

meS({X E9 I |f(x)l ä a}) = 0-
Jedes solche a heißt eine „wesentliche Schranke“ von f(x), und f(x) heißt dann im
wesentlichen beschränkt. Man nennt L°°(Q) den Raum der auf Q fast überall be-
schränkten Funktionen.

Satz 2.14: Für 1 g p < + oo ist der Raum L”(Q) bezüglich der Norm

ufn. = (i mxnrdxfi (2-17)
Q

ein Banachraum. Der Raum L°° (Q) ist bezüglich der Norm

llfll no := vraxisgnix |f(x)| I= 6855:1113 |f(x)l

z: inf{a > or mes <{x e91 lf(x)| 2 a» = 0} (2.18)
ein Banachraunt.
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Bemerkung 2.8: Ist 9 == (a, b) g R ein Intervall der reellen Zahlengeraden, so
schreibt man für den Ausdruck L”(9) auch L”(a, b). Betrachtet man Funktionen,
die auf dem abgeschlossenen Intervall [a‚ b] definiert und. dort zur p—ten Potenz
absolut integrierbar sind, so bezeichnet man den entstehenden Raum auch mit
L"[a, b]; dieser unterscheidet sich (im Sinne der Normisomorphie normierter Räume)
nicht von L"(a, b). Entsprechendes gilt allgemein beim Übergang von 9 g R" zu .9.

Bemerkung 2.9: Der Beweis dafür, daß durch den Ausdruck auf der rechten Seite
von (2.17) eine Norm gegeben ist, ergibt sich aus den Ungleichungen von Hölder
bzw. Minkowski (s. [l7]):

Ist p > I und p‘1 + q“ = 1 und sind feL"(Q)‚ g eL‘(9), so ist fg eL1(.9).
und es gilt

Jux) grx) dx g l!fHp- ign... (Haider)
Q

Ist p g 1 und sind f e L"(9), g eL"(9), so ist

llf+ gllp ä llfllp + llgllp- (Minkowski)

Bemerkung 2.10: Aus Platzgründen können wir die exakte Definition der Räume
L’(.9) als Räume von Klassen zueinander (L)—äquivalenter Funktionen nur beschrei-
ben und nicht Vollständig logisch durchkonstruieren. Zur Ergänzung seien aber die
folgenden Bemerkungen angeführt. Mittels der Minkowskischen Ungleichung ergibt
sich zunächst, daß die Menge aller Funktionen (komplexwertig, meßbar), die der
Ungleichung (2.16) genügen, einen Vektorraum bilden; er werde mit E” bezeichnet.
Die Menge N0 aller Funktionen, die auf 9 fast überall gleich null sind, bildet einen
linearen Teilraum von E”. Der Raum L’(.9) ist dann der Quotientenraum 2"’/N0
[s. (2.ll)]. Diese Quotientenraumbildung wird ausschließlich durch den Umstand
veranlaßt, daß der Ausdruck (2.17) auf E” keine Norm liefert, da er für alle Ele-
mente von Na gleich null ist (also auch für Funktionen, die nicht überall auf 9
gleich null sind). Das praktische Rechnen im Raum L"(9) wird aber auf das Rech-
nen in .5,” zurückgeführt (man rechnet mit Funktionen, nicht mit den Elementen
des Quotientenraumes).

Definition 2.19: Unter Lfoc (.9) (0 < p < 0o) versteht man die Menge aller auf dem
Gebiet 9 definierten meßbaren komplexwertigen Funktionen (genauer: die Menge aller
Klassen zueinander (IQ-äquivalenten Funktionen) mit

f|f(x)|”dx < +00
Q,

für jedes beschränkte Gebiet .9’ g 9 (s. 1.2.2. und 4.1.),

Bemerkung 2.11; Lf„(!2) ist ein Vektorraum (Funktionenraum). Ist 9 beschränkt,
so gilt Lf{„‚(!2) = L"(9); sonst sind diese Räume Verschieden. L}‚„(.Q) wird auch als
der Raum der „lokal integrierbaren Funktionen auf .9“ bezeichnet. Zum Beispiel
liegt f(x) = x” nicht in L‚{„(R1).

Satz 2.15: Für l g p g oo gilt die Beziehung (.9 g R", beliebiges Gebiet)

L"(9) E Lioc(9)- (2-19)

Über die Struktur der kompakten Mengen im Raum L"(.9) gibt der folgende Satz
Auskunft.
4*

D.2.19

S.2.l5
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8.2.16 Satz 2.16: Es sei M g L"(Q) eine abgeschlossene Teilmenge des Rahmes L”(Q).
Dafür, daß M kompakt ist, ist das gleichzeitige Bestehen der folgenden Bedingungen
sowohl notwendig als auch hinreichend:
(1) M ist beschränkt; d. h.‚ es existiert ein K > 0 mit Hf H ‚ g Kfür alle fe M;
(2) Zu jedem e > 0 gibt es ein ö > 0 und eine abgeschlossene beschränkte Teilmenge

G g Q mit

(2.1) |f(x)|” dx g e (fe M) und
ms

(2-2) |/:(X + h) —f(x)|" dx ä 8
.0

für alle feM und alle h e R" mit Hhllm g ö, wobeif(x) die durch

_ f(x) rx e s2),

m) " {O (xeR"\.Q)
erklärte Funktion bezeichnet.

Zum Verhältnis der Räume C"(Q) und L”(Q) ist zu sagen, daß für ein beschränktes
Gebiet Q die Beziehung

C"(9) S L"(~Q)

in dem Sinne gilt, daß die von den Elementen von C"(Q) erzeugten Klassen [(L)-fast
überall übereinstimmender Funktionen] Elemente von L"(Q) sind. Im Sinne der

Abschlußbildung im Raum L"(Q) gilt die Gleichung C"(!? = L"(Q)‚ d. h., der Raum
C"(Q) liegt dicht in L"(Q) (Q beschränkt). ‚

Ist das Gebiet Q nicht beschränkt, so gilt in entsprechendem Sinn die folgende
Aussage.

S.2.l7 Satz 2.17: Die Menge Ö°°(Q) (s. Def. 2.17) liegt dicht in L”(Q) für l g p < +00.

2.2.3. Sobolew-Räume

In diesem Abschnitt führen wir Sobolew-Räume (ganzzahliger Ordnung k g O)

ein, Diese Räume sind Räume von (Klassen (L)-fast überall übereinstimmender)
Funktionen, die auf einem Gebiet Q g R" definiert sind und gewisse Differenzier-
barkeitseigenschaften besitzen; sie sind überdies Teilräume der Räume L"(Q) und
haben sich insbesondere bei der theoretischen und numerischen Behandlung par-
tieller Differentialgleichungen als nützlich erwiesen (s. auch 5.3.). Es gibt verschie-
dene Möglichkeiten, die Sobolew-Räume einzuführen:
a) als Vervollständigmg des Raumes C"(Q) bezüglich einer speziellen Metrik (s. u.);
b) als Räume von Funktionenfderen verallgemeinerte Ableitungen (s. auch 4.1.) bis

zur Ordnung k einschließlich existieren und zusätzlich Elemente des Raumes
L"(Q) sind.

Es zeigt sich, daß diese verschiedenen Zugänge für 1 g p < +oo stets die gleichen
Räume liefern. Im einzelnen definieren wir folgende Begriffe (vgl. [2], [22], [35]).

D.2.20 Definition 2.20: Istfe C"(Q) und l g p < 0o, so setzen wir

n/n.‚„={ 2 llövllili, k=0.1.2....; (2.20)
oglalgk J
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ferner sei

|(f|1k_w =o;r[1i1J);k;jE)’7llx, k=0,1,2,..., (2.21)

wobei H . Hp (1 g p g oc) die Norm im Raum L"(!2) bezeichnet [s. (2.17), (2.l8)].

Definition 2.21: Mit H"~"(.Q) bezeichnet man die Vervollständigung der Menge D.2.2l
{f | f e C"(.Q), |]fi1,,,_,, < do} bezüglich der durch HfHk, „ erzeugten Metrik.

Der Raum H""’(Q) ist bereits ein Sobolew-Raum für (l g p < o0) (s. Satz 2.19).
Seine Elemente sind aber nur sehr unkonkret erfaßbar. Die zweite Möglichkeit,
Sobolew—Räume einzuführen, ist wesentlich anschaulicher. Allerdings kommt sie
ohne Benutzung des Begriffs der verallgemeinerten Ableitung (= Distributions—
ableitung) nicht aus (s. auch 4.1.).

Vorbereitend sei dazu bemerkt, dal3 für jedes feste f e C"(.Ö) und beliebiges
«peC°°(Q) nach den Regeln der partiellen Integration (Gaußscher lntegralsatz!)
immer gilt

j f(x) Mm dx = 1- 1)W _|' (]J(X) O"f(x) dx,
.0 I?

wobei 6°‘<p, ö"f die Ableitungen im üblichen Sinne sind. Diese Eigenschaft der „klas-
sischen“ Ableitungen bildet die Grundlage für folgende Verallgemeinerung:

Definition 2.22: E5 sei feL,‘oc(Q). Eine Funktion g, die zu L,‘„„('Q) (vgl. Bern. 2.11) D.2.2l
gehört, heißt schwache Ableitung oder verallgemeinerte Ableitung (Distributions-
ableitung) von f bezüglich des Multiindex 0c, wenn die Gleichung

f ./(x) aw) ax = <—1>*~! i‘ goo WC) dx (2.22)
‚Q .0

für jede Funktion t;(.\') gill. die zu C‘“(.Q) gehört. Wir schreiben dann

g = D‘f- (2-23)

Wegen der vorbereitenden Bemerkung folgt, daß für jedes fe C"(.Ö) die verall-
gemeinerte und die klassische Ableitung übereinstimmen (im Sinne der Gleichheit
im Raum L"(Q)). [Bezüglich der Motivation dieser Definition s. (l.5l).]

Definition 2.23: Mir W"~"(.Q) bezeichnen wir den linearen Raum D.2.23

W*~v(.Q) z { fe zum) | 137e L"(.Q) für 0 g |<x| g k} (2.24)

(andere Bezeichnung: W,f(Q): W‚{‘(Q)).

_ Zum Beispiel gehört die Funktion f(x) = Ix|“" (xeQ g R”, „Q olTen und be-

schränkt), wobei [xi = \'§§ + + E3 ist, für 0 < a < — l) zu W"’(Q), falls
n g 3 ist [6].

Satz 2.18: Der Raum W”‘-P(Q) ist, versehen mit der Norm 8.2.18
1

Hfllm = gD"fl‘.?‘17, (2-25)

Gil? Banachraum.
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Definition 2.24: Mit W""’(Q) (auch W’5"’(.Q)) bezeichnet man die Abschließung der
Menge Ö°°(!2) im Raum W""’(.Q) [versehen mit der Norm (2.25)].

W""’(Q) ist somit ein abgeschlossener linearer Teilraum von W""'(.Q).
Der folgende, wichtige Satz zeigt, daß beide geschilderten Möglichkeiten der Ein-

führung von Sobolew-Räumen im wesentlichen äquivalent sind.

Satz 2.19 (N. Meyers, J.Serrin, I964): Für l g p < o0 gilt die Gleichheit (k = 0, 1, 2, ...)

H’*""(Q) = W""’(Q). ‘ (2.26)

Bemerkung 2.12: Im Sinne der mengentheoretischen Enthaltenseinsrelation g gilt
stets

Ö°°(9) g W""’(9) E W""’(9) E L"(~Q). (227)

Für k = 0 ist dabei speziell

W°"’(Q) = W°"’(.Q) = L"(.Q) (1 g p < so). (2.28)

Für p = oo gilt die G1. (2.26) nicht! (Siehe [2].)

Für andere Varianten der Definition der Räume H“ bzw. W"-" vergleiche man
das inhaltsreiche Bu_ch [22] fiber Funktionenräume, S. 250-273. Für die Beziehungen
zwischen diesen Räumen ergeben sich dann vom Satz 2.19 abweichende Resultate.

2.2.4. Folgenräume

In vielen funktionalanalytischen Betrachtungen lassen sich zur Darstellung eines
Sachverhalts einfache unendlichdimensionale Räume, nämlich Folgenräume be-
nutzen. Ihre Elemente (Vektoren) sind Folgen komplexer (bzw. reeller) Zahlen bzw.
allgemeiner Folgen von Elementen eines Banachraumes. Die folgende Definition
führt einige wichtige Folgenräume ein.

D.2.25 Definition 2.25: Imfolgenden sei x = {En} eine Folge konzplexer Zahlen 5„ (n = l, 2, ...).
Wir reizen (s. [29]):

l°° = {x l sup [§,,l < +00} (Raum der beschränkten Folgen).

c = ‘xi lim 5„ existiert} (Raum der konvergenten Folgen),
naw

co = {x| lim 5„ = 0} (Raum der Nullfalgen),
r1—>oo

(Raum der zur p—ten Potenz
summierbaren Folgen),

I" ={x«§ Im” < +oo} <1 gp < w)
„:i

s ={x|1imn"£,, = Ofür alle k =1,2,...:
neue i

(Raum der rasch fallenden Folgen),

so = {x | 5„ = O für alle n, bis auf endlich viele}

(Raum der finiten Folgen).
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Bemerkung 2.13: Es gelten die Enthaltenseinsbeziehungen

sogsgl"gc„gcgl°° (2.29)

(ebenso richtig für so“, 5a, In, ..., also Räume reeller Zahlenfolgen).

Satz 2.20: 1) Mit der Norm 11x11“, = sup |£,,| ist l°° ein Banachraum, ebenso c und q,
mit der gleichen Norm. " -

DC l

2) Mit der Norm l!xll„ = { Z |E,,|"}7ist I" ein Banachraum.
n=1

2.3.

2.3.1.

Zu den einfachsten Funktionen, die man auf Vektorräumen betrachten kann, ge-
hören die häufig auftretenden linearen Funktionen. Linearität ist hierbei eine Eigen-
schaft, die in den Anwendungen vor allem als „Superpositionsprinzip“ zutage tritt.
Lineare Funktionen mit Werten in R oder K heißen lineare Funktionale oder Linear-
formen. Die Elemente von (normierten) Vektorräumen werden im folgenden mit
x, y, z, bezeichnet.

Lineare Funktionale, schwache Konvergenz, dualer Raum

Lineare Funktionale

Definition 2.26: Es sei E ein Vektorraum. Eine Abbildung f: E —> R (bzw. K) heißt
lineares Funktional (Linearform), wenn die folgenden Bedingungen erffillt sind (s. Bd. 1,

8.4.):
f(x + y) = f(x) + f(y) (x, y E E), (2-30a)

f(/ix) = /'.f(x) (x e E; Il e R bzw. K). (2.30b)

Beispiel 2.12: Es sei E = R" (bzw. K") mit den üblichen Vektoroperationen, und es seien a1, ...‚ 11,,

feste reelle (bzw. komplexe) Zahlen. Für x = (E1, ...‚ En) E E setzen wir
II

f(x) = X a,£,~. (2.31)
i=1

f(x) ist ein lineares Funktional aufE. Ist el = (1,0. .„,0); e; = (O, 1, 0, ...,0); ...; e„ = (0,0, ...‚ 1)

die ausgezeichnete Basis von E, so gilt ersichtlich die Gleichung

f(e„) = (1„ (k = 1, ...‚ n). (2.32)

Wegen (2.30) ist

n n

f(X) = Z "151 = E für) 51- (2-33)
j=1 j=1

Sind umgekehrt die Werte f(e,) = aj (j = 1, ...,n) vorgegeben, so definiert (2.31) ein lineares
Funktional auf E mit (2.32). Mit anderen Worten, jedes lineare Funktional auf E hat die Form
(2.31), und durch die Vorgabe der Werte f(e;) (j = 1, ...,n) ist das lineare Funktional f(x) ein—

deutig bestimmt.

Beispiel 2.13: Es sei E = C[a, b] (s. Def. 2.15). Die Elemente von C[a‚ b] bezeichnen wir jetzt mit
x, y, bzw. x(t),y(t)‚ oder auch x(.),y(.), Es sei

b

f(x) = f x(t) dt (x e E). (2.34)

S.2.20

D.2.26
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Es gilt (x‚y 5E; Ä e R; K):

i’ ‘i ”. ”
fix + y) = J (X + y)(t)d!= j (X0) + y(!))d! = X(t)dt + Jy(1)dt

u a

= f(x) + f(y);

zfxmdz = J./(X);
a

b b

f(Äx) = J’ (ix) (z) dr = f Lx(t) dt =

u

also ist f ein lineares Funktional auf E.

Beispiel 2.14: Es sei E = C[a, b] und c e [a, b] ein Punkt aus dem Intervall [a‚ b]. Wir setzen

f(x) = x(c) (x 6E). (2.35)

Wie durch Einsetzen in (2.303), (2.30b) sofort ersichtlich wird, ist f ein lineares Funktional auf
E = C[a, b]; s. auch Bsp. 1.10 und (1.58).

Beispiel 2.15: Es sei E = L’[a, b] (Bezeichnung der Elemente wie in Bsp. 2.13). Wir setzen
b

f(x) = J’ x(I) d1. (2.36)

Zufolge der Enthaltenseinsbeziehung

142l“, b] E 131a, b]

ist das Funktional [tatsächlich auf L2[a, b] definiert (der Leser überlege sich dies!) und (s. Bsp. 2.13)
linear.

H) heißtDefinition 2.27: Ein (lineares) Funktionalf auf dem normierten Raum (E, [i .

stetig, wenn aus der Beziehung

1imx„ = x (x„, xeE)

stets die Beziehung

1jmf(xn) = f(X) (2-37)

folgt.

Bevor wir zu Beispielen stetiger linearer Funktionale kommen, soll die Stetigkeits-
eigenschaft noch eingehender diskutiert werden.

Hilfssatz 2.1: Ist f: E —> R (K) ein lineares Funktional auf dem normierten Raum
(E, H . H) mit der Eigenschaft (x,, e E):

lim x„ = o => lim f(x„) = 0,
n—>oo n—»oo

so ist }f(x)[ auf jeder Kugel K(o; r) = {x e E! |]xH g r} (r > 0) beschränkt.

Beweis: Wir zeigen zuerst, daß [f(x)] auf der Kugeloberfläche S = S(0; r) = {x GE} HXH = r}
beschränkt ist. Angenommen, dies wäre nicht der Fall, dann gibt es zu jedem n = l, 2, .„‚ ein

f x.)
1

= — „\x„'i = ä (n = l, 2, ...) folgt durch Grenzübergang lim (7 Jg.) = o; aber es gilt
naao

g I. Wegenx„eS mit 1f(x,.)1§ n. Mittels der Linearität von f(x) folgt daraus
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1

nicht lim f(; 2g.) = 0;Widerspruch! Es gibt also ein M > 0 mit lf(x)l g M(x E S). Ist x E K(a;r),
„am 1 _ r r _ '

so gilt für x =l: o die Relation (T m) ES (weil T x = HxH = r gilt). Also ist
llXll liX

lf g M, und wir erhalten (Linearität von f) die Ungleichung (man beachte, daß

gm) vom g M g M,‚.

die auch für x = o gilt. I

Mqr =

Hilfssatz 2.2: Ist f: E —> R (K) ein lineares Funktional auf dem normierten Raum
(E, H . H), welches auf einer gewissen Kugel K(o; r) (r > 0) beschränkt ist, d. h., es

existiere ein M> 0 mit lf(x)| g M (xeK(o; r))‚ so gilt die Ungleichung lf(x)|
g AHxH (x e E), A = Mr” auf ganz E, und das Funktionalf(x) ist auf dem (ganzen)
Raum E stetig.

I‘‘(MM
woraus sofort die Ungleichung |f(x)| g T folgt (die für x = a trivjalerweise wegen f(o) = 0

erfüllt ist). Ist weiter {x„} eine Folge aus E mit lim x,, = x, so erhalten wir aus der Abschätzung
naor.

Beweis: Für gegebenes x e E (x # o) liegt das Element x in K(o; r), daher gilt g M,

(f ist linear) lf(x„) —f(x)l = ‘f<X., — X)‘ g y-lln. — xi! (n = 1,

die Beziehung lirn f(x„) = f(x).‘ ’
n-wo

2, ‚..) wegen lim Hx„ — xi! = 0
„a;

Aus den beiden Hilfssätzen ergeben sich eine Reihe wichtiger Folgerungen, deren
Beweis wir dem Leser überlassen.

Satz 2.2l: Ist f: E —-> R (bzw. E —> K) ein lineares Funktional auf dem normierten
Raum (E, H . H), so ist f(x) genau dann stetig, wenn es an der Stelle x = o stetig ist.

Definition 2.28: Ein lineares Funktional f: E ——> R (K) auf dem normierten Raum
(E, H . H) heißt beschränkt, wenn es ein M > O gibt mit

lf(x)l S Mllxll (x GE)-

Satz 2.22: Ein lineares Funktional)": E —> R (K) auf dem normierten Raum (E, H . H)

ist genau dann stetig, wenn es beschränkt ist.

(2.38)

Definition 2.29: Es sei f: E —> R (K) ein beschränktes lineares Funktional auf dem
normierten Raum (E, H . H). Die Zahl

llfll = “S;~|IgI|f(x)l

hewt die Norm von f.

(2.39)

Satz 2.23: Ist f: E —> R (K) ein beschränktes lineares Funktional auf dem normierten
Raum (R, H . H), so gilt die Ungleichung

l/(XN é Ilfll Hxll (X615).
Ist M > 0 eine Zahl, für die (2.38) gilt, so ist HfH g M.

Mit anderen Worten, die Zahl Hf H ist die kleinste Dehnungskonstante von f.

(2.40)

S.2.2l

D.2.28

S.2.21

D.2.29

S.2.23
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Satz 2.24: Ist f: E —> R (bzw. K) ein beschränktes lineares’ Funktional auf dem nor-
mierten Raum (E, [l . H), so gilt

Ilfll = Sup lf(x)l-
uxnéx

Beispiel 2.16: Es sei E = K" der n-dimensionalen komplexe Vektorraum mit der Norm Im}

= I E,l2]m(x = (E, ‚ ..., §,.)). Mit gewissen komplexen Zahlen a1, „.‚ 11,. bilden wir durch die

Vorghiift f(x) = ialé, ein lineares Funktional f(x) (Bsp. 2.12). Mittels der Schwarzschen Un-

gleichung folgt deJs;:1 Beschränktheit und damit Stetigkeit: für x EK" ist
n n 1/2 n 1/2

If(x)!= 2111551; §{k;I1akn=} {kglw} =Mnxn

2
1 " 2 M

=—=M.kgglmk‘ Al=3
11x717:

|f(X’)| = "AT
n

2 “h5;
= l

n

2
k=l

Also ist llfll = sup | f(x)] g If(x’)| = M. Aus der zuvor bewiesenen Ungleichung folgt für
||xII=1

Hxll = 1 die Abschätzung |f(x)I g M und somit IJfIJ =

die Gleichheit
. n 1/2

llfll = M= { Z IHN} .

k=l

sup 1f(x)l g M. Insgesamt erhalten wir
IIXII=I

(2.41)

Beispiel 2.17: Es sei E = C[a‚ b] mit der Maximum-Norm Hxll =

tioual (s. Bsp. 2.13)
b

f(x) = f xmdz (xecta, bl)

max |x(t)[. Das lineare Funk-
agtgb

ist stetig, wir geben sogar seine Norm an:

b b b

f x(t)dt g f Jx(r)]dtg f sup 1x(t)|dt
a a u ”§'§b

1f(x)l =

b b

= f nxudr=nxu f dr=(b—a)nxn <xeE>.

Wir erhalten die Ungleichung IlfH g (b — a). Für die Funktion x’(t) = 1 (a _s_ t g b) wird Hx’Ji, = 1

b

und lf(x’)l = I] dt = b — a und somit Hfl] = Slllp |f(x)| ä b — a (= |f(x’)|). Insgesamt erhalten
Ilxl él ‘ü

wir die Beziehung H/H = b -— a.
b 1/Z

Beispiel 2.18: Es sei E = L2[a, b] mit der Norm IlxH = (x(t))’ dt} und g(.) e L2[a, b]. Das
lineare Funktional - a

b

f<x) = f x<r>g<z) d: <2.42>



592.3. Lineare Funktionale, schwache Konvergenz

ist, wie man mittels der Schwarzschen Ungleichung erkennt, beschränkt und daher stetig. Analoge
Betrachtungen wie in Bsp. 2.17 zeigen, dal3 die folgende Gleichung gilt:

b 1/2

HfH ={ f um? m} = ngutz.

Die letztgenannten Beispiele 2.17 und 2.18 sind Spezialfälle allgemeinerer grund-
legender Aussagen über die Form stetiger linearer Funktionale im Raum C[a‚ b]
bzw. in einem Hilbértraumi).

(2.43)

Satz 2.25 (Stetige Linearform in C|;[a‚ b]): Ist E = CR[a, b], versehen mit der max-

Norm, so laßt sich jedes stetige lineare Funktional f(x) auf Cn[a, b] als Riemann—
Stieltjes-Integral

_ b

f(x) = f x(t)dg(t) (x e C„[a‚ 17])

mit einer gewissen Belegungsfunktion g(t) (a g t .5 b) von beschränkter Variation
darstellen (die bis auf eine additive Konstante und fast überall bestimmt ist).

Bemerkung 2.14: Bezüglich der Definition des Riemann-Stieltjes-Integrals vgl. [17,
S. 176/77].

Der folgende wichtige Satz stammt von F. Riesz.

(2.44)

Satz 2.26 (Stetige Linearformen im Hilbertraum): Ist H ein Hilbertraum‘) mit dem
Skalarprodukt (. [ .> undf(x) ein stetiges lineares Funktional auf H, so gibt es genau
ein Element g e H, so daß die Gleichheit

f(x) = (g I x>

für alle x e H gilt. Zusätzlich gilt die Beziehung

m = Ilgllu = \/<g I g>. (2.45)

2.3.2.

Definition 2.30: Es sei E ein Vektorraum. Die Menge E* aller linearen Funktionale
auf E, die mittels der Operationen g

Dualer Raum

(f+ g) (x) =f(x) + g(x) (x e E), (2-45a)

(Äf) (x) = Äflx) (x E E) (2.46?!)

(f, g e E "t, i. e K bzw. R) zu einem Vektorraum wird, nennt man den algebraisch dualen
bzw. algebraisch konjugierten Raum von E.

Definition 2.31: Es sei (E, H . HE) ein normierter Raum. Denjenigen linearen Teil-
raum E’ von E*‚ der aus allen stetigen linearen Funktionalen auf E besteht, versehen
mit der Norm

llfllz’ =” in}; lf(x)l‚ (2-47)

nennt man den Dualraum van (E, [|.[|E) (bzw. den dualen oder konjugierten Raum

von (E, ll - Ha)-

') (s. Def. 2.37 weiter unten).

S.2.25

S.2.26

D.2.30

D.2.31
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Satz 2.27: Der Dualraum (E’, H . H E’) eines normierten Raumes (E, H . H E) ist stets ein
Banachraum.

i/z
Beispiel 2.19: Es sei E = K"mit der NormHxl] = (x = (E1, ..„ En) 6K"). Jedes [e E*
hat die Form

f(x) = £1315, (x E K")
,=

{i im}
i=1

(2.48)

mit eindeutig bestimmten a, (j = 1, „.‚n) (vgl. Bsp. 2.12) und ist stetig. Das heißt, im vorliegen-
den Fall gilt die Beziehung E* = E’. Weiter ist [s. (2.41)] die Gleichung

_:=’n ‘dz 1/2

M ‘jgf J‘ l
erfüllt. Ordnet man jedem fe E’ den zugehörigen Vektor (a1, ...‚ a„) e K" zu, so erhält man eine
eineindeutige lineare Abbildung T von E’ auf K", die wegen (2.49) sogar ein Normisomorphismus
ist. (Beweis der Linearität und der Surjektivität der Abbildung T als Übung.) Im Sinne der Gleich-
setzung normisomorpher Räume gilt also die Beziehung

(K")’ = K".

(2.49)

(2.50)

Es sei noch bemerkt, daß — wiederum im Sinne der Gleichsetzung normisomorpher
. . . . 1

Räume — die Beziehung (L’(Q))’ = L"(.Q) gilt, wobei 1 < p < oo und i + — = 1

ist (q heißt der zu p konjugierte Exponent) (vgl. [24], S. 125). q p

Beispiel 2.20: Es sei E ein (komplexer) Hilbertraum. Nach dem Satz Von F. Riesz hat jedes fe E’
die Form

f(x) = <gIx> (x95) (2.51)

mit einem eindeutig bestimmten g e E, für welche die Gleichung

llfll = Hell (2-52)

gilt. Die Zuordnung T: f —+ g ist eine eineindeutige Abbildung von E’ auf E, die aber nicht linear,
sondern antilinear ist in folgendem Sinn (Beweis als Übung):

T(fi +fz) = T(fi) + T(f2)

T(/If) = Zrf.

Wegen (2.52) ist Tein antilinearer Normisomorphismus von E’ auf E. Ist E ein reeller Hilbertraum‚
so ist T linear, und es gilt (im Sinne der Identifizierung normisomorpher Räume) E’ = E.

Definition 2.32: Es sei (E, H . H) ein Banachraum und (E’, H . H 5:) sein Dualraum. Den
Dualraum von (E ’, H . H E’) bezeichnet man als Bidualraum (bidualen Raum) (E”‚ H . H E”)

von (E. H.H).

Satz 2.28: Der biduale Raum (E ”, H . HE") enthält einen linearen Teilraum, der zu

(E, H.H) normisomorp/i ist. Es gilt also (im Sinne der Gleichsetzungnormisomorpher
Räume) die Relation E g E”. Dabei wird jedem x e E dasjenige Element Ix e E” zu-
geordnet, das durch die Gleichung ‘

ldf) =f(x) (f6 E’) (2-53)

definiert ist (kanonische Einbettung).
Für einen Beweis dieses Satzes vgl. [17].
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Definition 2.33: Der normierte Raum (E, H . H) heißt reflexiv, wenn die kanonische
Einbettung x —> Ix (x E E) (s. Satz 2.28) ein Normisomorphismus von E auf E” ist.

Zu den reflexiven Räumen gehören die Räume R", K" sowie die Räume L’(Q)
(l < p < o0) und alle Hilberträume.

2.3.3. Fortsetzung stetiger linearer Funktionale. Satz von Hahn und Banach.
Trennungssätze

Die Fortsetzung von Funktionen auf größere Definitionsbereiche spielt an vielen
Stellen in der Funktionalanalysis eine Rolle. Die Forderung der Linearität und der
Stetigkeit eines Funktionals ermöglichen unter geringen zusätzlichen Voraussetzun-
gen weitreichende Aussagen über die Existenz von Fortsetzungen.

Satz 2.29 (Hahn-Banach-Theorem). Es sei (E, H . H) ein normierter Raum und E0 ein
linearer Teilraum von E. Auf E0 sei ein stetiges lineares Funktional f0 definiert. Dann
gibt es (mindestens) ein stetiges lineares Funktional f auf E, welches auf E0 mit fa
übereinstimmt (f(x) z f„(x) für x e Eo) undfür das die Gleichung

HfH = “fen
gilt.

(Beweis s. [17].)

(2.54)

Bemerkung 2.15: lm Hinblick auf die Gl. (2.54) heißt f eine normerhaltende Fort-
setzung (Erweiterung) von f0.

Eine wichtige Folgerung aus dem Hahn-Banach-Theorem ist der folgende Satz,
der die Existenz nichttrivialer stetiger linearer Funktionale sichert.

Satz 2.30: Es sei (E, H . H) ein normierter Raum und x0 =i= o ein (beliebiges) Element
von E. Dann existiert ein stetiges lineares Funktional f auf E mit HfH = l und
f(x„) = HxoH. (In der Ungleichung |f(x)| g Hf H HxH‚ die generell für alle x e E gilt,
steht also für x = x0 das Gleichheitszeichen). __

Beweis (s. [17]): Mit Eo bezeichnen wir die Menge E0 = {x e E | x = txo, t beliebig
komplex}. Dann ist E0 ein linearer Teilraum von E. Durch die Vorschrift

fo(x) = tHxoH (x = txo 6 Eo)
ist ein lineares Funktional auf E0 gegeben. Es gilt

lf0(x)| = III llxoll = Htxoll = HXH (x550)-
Hieraus ergibt sich die Gleichung HfoH = l, und aus Satz 2.29 folgt die Behaup-
tung. I

Für die Belange der Optimierungstheorie ist eine geometrische Form (bzw. Fol-
gerung) des Hahn-Banach-Theorems wesentlich, die zu den sog. „Trennungssätzen“
gehört.

Definition 2.34: Es sei E ein reeller linearer Raum und f # a ein stetiges lineares
Funktional auf E, sowie c eine (reelle) Konstante. Die Menge [f2 c] := {xeE[
f(x) = c} heißt die Hyperehene bezüglich f zum Niveau c. v

. 5 5 L .

Beispiel 2.21: Es sei E = R3 undf(x) = Tl + + T3 , x = (:1, :2, 53), (a, b, c reell und # 0).
b

Die Hyperebene [f= l] stimmt mit derjenigen Ebene im R3 überein, die durch die Punkte (a, 0, 0),

(0, b, 0). (0‚ 0, C) geht.

D.2.33
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Zwei konvexe Mengen des R" kann man als „voneinander getrennt“ ansehen,
wenn sie auf verschiedenen Seiten einer (Hyper-) Ebene liegen. In Bd. 15 werden
Trennungssätze für konvexe Teilmengen des R" aufgeführt. Die folgende Definition
verallgemeinert diesen Sachverhalt auf konvexe Mengen in beliebigen linearen nor-
mierten Räumen. Eine Teilmenge M eines Vektorraumes heißt konvex, wenn mit
je zwei Punkten x, y e M auch alle Punkte der Verbindungsstrecke [x, y]
={z=Äx + (1 —l)y|0§l g 1} vonxundyzu Mgehören (s. Bd.4‚ 2.Aufl.‚
S. 12).

Definition 2.35: Es seien (E, H . H) ein reeller normierter Raum, A g E und B g E
zwei konvexe Teilmengen von E. Man sagt, daß A und B trennbar sind, wenn es ein
stetiges lineares Funktional f auf E und eine reelle Konstante c gibt mit

f(x) g c für alle x EA,
__ _ (2.55)

f(x) g c fur alle x e B (s. Bild 2.2).

Falls sogar die Ungleichungen i

f(x) < c f"r all eA,
" e x (2.56)

f(x) > c für alle x e B (s. Bild 2.3)

gelten, so heißen die Mengen A und B strikt trennbar. [f = c] heißt dann die A und B
trennende bzw. strikt trennende Hyperebene.

Bild 2.2 Bild 2.3

Ein für die Optimierung wichtiger Satz lautet dann:

Satz 2.31: Es seien (E, || . H) ein normierter Raum und A g E eine konvexe Menge,
die innere Punkte besitzt, d. h., es gibt eine offene Kugel (s. Def. 2.3), die ganz in A
liegt. Ist x beliebiges Element von E, das nicht zu A gehört oder höchstens Randpunkt
(d. h., in jeder Umgebung von x liegen sowohl Punkte von A als auch solche nicht
aus A) von A ist, so sind A und {x} trennbar. Sind A und B nichtleere oflene konvexe
Mengen mit leerem Durchschnitt, so sind A und B strikt trennbar.

(Für einen Beweis auf der Grundlage des Hahn-Banach-Theorems s. [32, S. 108].)
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2.3.4.

In vielen Untersuchungen reichen Grenzübergänge „bezüglich der Norm“ in einem
linearen Raum nicht aus [siehe z. B. (l.57)]. Neben der Norm-Konvergenz betrach-
tet man auch die sog. schwache Konvergenz. In diesem Kapitel werden nur die
Definition und einige wesentliche Eigenschaften der schwachen Konvergenz an-
gegeben.

Schwache Konvergenz

Definition 2.36: Es sei (E, H . ll) ein normierter Raum und {x„} eine Folge von Ele-
menten von E. Die Folge {x„} heißt schwach konvergent gegen das Element i? e E,
wenn für jedes stetige lineare Funktionalf auf E die Gleichheit lim f(x„) = f(:?) gilt:
abgekürzt x„ —A i (n —> oo). ""°°

Aus dieser Definition folgt sofort, daß jede (norm)konvergente Folge {x„} auch
schwach konvergent ist. Die Umkehrung gilt jedoch i. allg. nicht. Hierzu betrachten
wir das folgende Beispiel:

Beispiel 2.22: Es sei (H, (. I .>) ein Hilbertraum (s. Def. 2.37) und (e„) ein vollständiges ONS
(s. Def. 2.41) in H. Darm gilt

e„—= o (n —> 00).

obwohl alle e„ die Norm 1 haben (He„i| = 1) und daher die Folge {e„} in H nicht gegen a konver-
giert.

Zum Beweis betrachte man ein beliebiges Element xeH. Dann gilt x = E (en | x) e,,. Für
n=1

ein beliebiges stetiges Funktional f auf H folgt daraus (wegen der Stetigkeit von f) die Gleichung
co

f(x) = 2 <e‚.lx>f(e„)- (*)
n = l

Nach dem Satz von F. Riesz (Satz 2.26) hat das Funktional f(x) die Gestalt

f(x) = <y|X> (XEHJ (**)

mit einem eindeutig bestimmten y e H, für welches IIfI] = Iiyll gilt. Einsetzen von (**) in (*) ergibt
die Gleichheit

db

<.vIx> = Z <e..lx><y1€..> (x6H)~ Ü“)
n=l

Setzen wir in (**") für x speziell x = y, so erhalten wir

llyll‘ = <yJ,v> = $102.. lr> <yIe‚.> = i104. Er) (e„. l.v> = §!|<e..|,v>|’.

Die rechtsstehende Reihe ist somit konvergent. Daher bilden (s. Bd. 3) ihre Glieder |(e„ l y>|2 eine
Nullfolge. Daher ist aber auch die Zahlenfolge f(e„) = <y[e„> (n = 1,2, ...) eine gegen null
konvergente Folge, womit alles gezeigt ist.

Satz 2.32: Es sei (E, || . H) ein normierter Raum und {x„} eine Folge aus E, die gegen
das Element i‘: schwach konvergiert. Dann gilt die Ungleichung

lliil ä 1i_m_|ix‚.|i‚ (2-57)

und es existiert eine Konstante K> 0 mit Hx,,H g K (n = l, 2,...) (m. a. W., jede
schwach konvergente Folge ist beschränkt).

In speziellen Räumen läßt sich die schwache Konvergenz genauer kennzeichnen,
wie der folgende Satz am Beispiel des Raumes C[a, b] zeigt. Der Raum C[a‚ b] sei
hierbei wie üblich mit der Maximum-Norm versehen.

D.2.36
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Satz 2.33 (s. [17, S. 226]): Eine Folge {x„( . )} aus C[a, b] konvergiert genau dann
schwach gegen ein Element )'c(.) aus C[a‚ b], wenn folgende Bedingungen beide (gleich-
zeitig) erfüllt sind

1) lx„(t)| g M (te [a, b]; n = 1,2, ...) für ein M> 0;

2) lim x„(t) = x0) (t e [a, b]) (punktweise Konvergenz).
n-voo

Sehr wichtig ist noch der Satz über die Charakterisierung der reflexiven Banach-
räume durch die schwache (Folgen-) Kompaktheit ihrer (Norm-) Kugeln, der auf
W. F. Eberlein‚ L. Alaoglu, W. Schmuljan zurückgeht:

Satz 2.34 (s. [21, S. 50]): Ein Banachraum ist genau dann reflexiv, wenn seine ab-
geschlossene Einheitskugel K = {xl llxll g 1} schwach folgenkompakt ist, d. h., wenn

jede Folge aus K eine schwach konvergente Teilfolge enthält.

2.4.

2.4.1. Grundbegriffe, Beispiele

Nach Def. 1.3 hatten wir den Begrifi des Prä-Hilbertraumes H eingeführt, Dessen
Skalarprodukt erzeugt eine Norm vermöge

llxll = ¢<x I x> (x e H).

Definition 2.37: Ein Prä-Hilbertraum heißt ein Hjlbertraum, wenn er bezüglich der
durch die Norm (2.58) erzeugten Metrik (s. 1.1.) ein vollständiger metrischer Raum
ist. Allgemeine Hilberträume bezeichnen wir mit dem Buchstaben H.

Hilberträume, Orthogonaientwicklungen

(2.58)

(D. Hilbert, 1862- 1943, schuf die Grundlagen der Theorie linearer Operatoren in
speziellen Hilberträumen.)

Bemerkung 2.16: Jeder Hilbertraum ist ein Banachraum, aber nicht umgekehrt. Ein
Banachraum (E, [l . H) ist genau dann ein Hilbertraum, wenn die Norm von E die
sog. Parallelogranungleichung

ilx ~ J/H2 + llx + yli’ = 2(llxll’ + llyll’) (XJEE) (2-59)

erfüllt. Ist die G1. (2.59) erfüllt, so existiert auf E ein Skalarprodukt (xl y), für
welches die Gl. (2.58) gilt (wobei auf der linken Seite dieser Gleichung die gegebene
Norm von E steht).

Die rechts stehende Liste nennt Beispiele für Hilberträume mit dem jeweiligen Skalar-
produkt. Alle aufgeführten Räume sind komplexe lineare Räume. Ist z = a +ib
eine komplexe Zahl, so bezeichnet E = a — ib die konjugierte komplexe Zahl.

Das Skalarprodukt (x | y) ist eine stetige Funktion von x und y. Dies zeigt der
folgende Satz.

Satz 2.35: Es seien H ein Prä-Hilbertraum (speziell: ein Hilbertraum) und {x„} bzw.
{y„} zwei Folgen aus H, die gegen bestimmte Elemente x bzw. y aus H konvergieren:
lim x„ = x, lim y„ = y. Dann gilt
n—>oo n—>oo

lim <x„ l y.) = (x I y>. (2.60)
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Bezeich-
nung des
Raumes

Elemente des Raumes x, y; f, g Skalarprodukt
(x I y> bzW- {fl g}

n-tupel komplexer Zahlen E, (1 §j g n)

x = (s1, 5,), y = (m, ....n„> C"

Folgen komplexer Zahlen E, (j = 1, 2, W) mit

00
2E! IEA < +00. I;

X = (51, 52, w; 5m m):

‚v = (771a772‚«<-s77n‚ ...)

(Klassen) komplexwertiger quadratisch abso-

lut summierbarer Funktionen f, g, .‚.‚ die auf
einem Gebiet!) g R” definiert sind L2(.Q)

[:f(x)|=dx < +00
Q

J/T>g<x> dx

(Klassen fast überall übereinstimmender) kom-
plexwertiger quadratisch summierbarer Funk-
tionen f,g, „., die im Gebiet Q g R" verall-
gemeinerte Ableitungen bis zur Ordnung m

besitzen (m = 1, 2, ‚..; fest) und für die diese

verallgemeinerten Ableitungen zu L2(.Q) ge-

hören

Wm,2(_Q) 2 107(7) D“g<x> dx
0§|a=[§mg

(Klassen fast überall übereinstimmender) kom-
plexwertiger (bzw. reellwertiger) absolut qua-
dratisch sumrnierbarer Funktionen, die auf
dem Intervall [a, b] definiert sind

L’ la, b]

b

W)g(x) dx

Beweis: Es gilt (Rechenregeln für (x | y), s. 1.l.)

Oé |<xly>| -<x..|y..>l =l<x-x..ly> +<x..|y-J/">1
ä l<x - x.. ly>l + l<x„ ly - y..>l ä llx - x..|I Ilyll + !Ix‚.lI Im. - yll = an

(n = 1, 2, ...) [Dreiecksungleichung für komplexe Zahlen und (l.l0)]. Wegen
Hx — x,,|| —> O, |ly„ — yll —> 0, ||x„H -—> Hxll für n —> oo bilden die Zahlen ac, eine
Nullfolge (Iim zx,, = 0 ‚ und daher ist auch Kx | y) — <x„ | y„>| eine Nullfolge,

n-mo

woraus die Behauptung folgt. I

2.4.2. Orthogonalentwicklungen

Definition 2.38: Es sei H ein Prä-Hilbertraum. Die Elemente x, y E H heißen (zu- D.2.38
einander) orthogonal, wenn (x l y) = O gilt. Eine Teilmenge von H heißt ein Ortho-
gunalsystem, wenn je zwei ihrer Elemente orthogonal sind. Ein Ortlzoganalsystem,

5 Göplert, Funkbionalnnalysis
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welches nur Elemente x mit Hxll = 1 enthält, heißt ein Orthonormalsystem kurz:
ein ONS.

Satz 2.36 (Pythagoras): Ist G g H ein Orthogonalsystem im Prä-Hilbertraum H und
sind z, ‚ ..„ z„ Elemente von G, so gilt

H21 + z; + + z„{|2

2 n

= Z2; Z.»
j=l 1

= j§l<z,- l z‚> 1g Hz,-H2. I

H211!’ + H221!” + + |\Z..H’- (2-61)

Beweis: Es gilt

b1
:„

221
f=l

=25;
1:1 r

<2, I Z.)
r 1

Satz 2.37 (Schmidtsches Orthogonalisierungsverfahren): Ist x1 , x2, eine (endliche
oder unendliche) Folge linear unabhängiger Vektoren eines Prä-Hilbertraumes H, ‘S0
gibt es ein ONS c1, c2, ..., welches den gleichen linearen Teilraum von H erzeugt,

n

d. h.‚ die Menge aller endlichen Linearkambinationen 2 zxJ-ej stimmt mit der Menge
m j=l

aller endlichen Linearkombinationen 215km überein (n; m = l, 2, ...,oc„ß‚„ belie-
k-l

bige komplexe Zahlen). Das ONS el, ez, kann auf die folgende Weise berechnet
werden

l

n——l

x‚. - Z (ex. I X») 6;.

e„ = k“ für n = 2, 3, (2.62)

x. —"§ <ek I x„>
k=l

Wie man leicht nachrechnet, gilt (en I em) = 0 für n =l= m sowie lle„|l = l
(n = 1, 2, Mittels vollständiger Induktion ergeben sich die weiteren Aussagen
des Satzes.

Wie wir bereits in den einführenden Beispielen gesehen haben, spielen die ONS
bei der Darstellung von Elementen eines (Prä-) Hilbertraumes im Hinblick auf die
Approximation allgemeiner Vektoren (= Funktionen, die Elemente eines Funk-
tionenraumes sind) durch besonders übersichtliche und einfache Elemente eine wich-
tige Rolle (s‚ auch Bd. 12, Kap. 1.). m

Im folgenden treten unendliche Reihen 2 x„ auf, deren Glieder x„ Elemente
n=l

eines Hilbertraumes sind. Die Konvergenz dieser Reihen wird analog zur Kon-
vergenz von Zahlenreihen (Bd. 3) erklärt:

Definition 2.39: Es sei {xk} eine Folge von Elementen eines Hilbertraumes H. Der
w

Ausdruck 2x‚„ bezeichnet einerseits die Folge der zugehörigen Partialsummen
1n k=

s„ = 2 xk (n = l, 2, ...) und wird unendliche Reihe genannt. Die unendliche Reihe
k: I
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a:

2 x‚_. heißt konvergent, wenn die Folge {s,,} der Partialsummen konvergiert. In die-
k l m: o0

sem Fall schreibt man s = lim s„ =

‚man 0o _ k=I
den Wert der unendlichen Reihe 2 x„.. Eine unendliche Reihe, die nicht kanvergent
ist, heißt divergent. k“

2 x„ und nennt s = 2 x„ andererseits auch
k-l

Satz 2.38: Es sei H ein Hilbertraum, und die Folge {z„} sei ein Orthogonalsystem in H.
f!)‘I.

Die unendliche Reihe 2 2„ konvergiert genau dann, wenn 2 ||z,,||2 konvergiert. Gilt
n=I n=1oo

2 z„ = z, so ist
n=l x

llzll’ = 2 HZ» 3- (2-63)
n=l

k

Beweis: Für n > m gilt mit 5,. = 2 z, (k = 1, 2, ...) die Gleichheit (Satz des Pytha-
goras) '=‘

n Z n n m

Hs.. - Km!" = 2 z; = Z Ilztll’ = X HZ,-H’ - Z Hzjll’.
y=m+i j=m+1 1:1 ‚er

Daher ist die Folgel i 2,} = {s„} genau dann eine Cauchy-Folge in H (s. Def. 2.6),
k = l

n

wenn die Folge { 2 W12: eine Cauchy-Folge (in R) ist. Wegen der Vollständigkeit
k-l no

von H ergibt sich die erste der obigen Behauptungen. Es gelte jetzt 2 zk = z, d.h.,

die Folge {s„} = l i 2k} konvergiert gegen z. Nach Pythagoras (Salm 2.36) gilt

|\s„|1’ = 2 Hzkilz. Wegen lim |Js„ — zH = 0 gilt auch lim Hs„H = Hz“ (Dreiecks-

ungleichiihg, Stetigkeit derliloorm). Also ist auch 1im"fi;2 = Hzljz, woraus die
zweite Behauptung sofort folgt. I n—>oo

Definition 2.40: Es sei (en) ein ONS im Hilbertraum H. Ist x ein beliebiges Element
von H, so heißt die Zahl

(ck f x> (k =1,2,...)
der k-te Fourierkoeffizient von x bezüglich des gegebenen ONS.

(2.64)

Bei der Entwicklung nach Orthogonalfunktionen (s. Bd. ll) ist wesentlich, daß
das vorliegende ONS umfangreich genug ist, um alle Elemente des betrachteten Rau-
mes approximieren zu können. Zum Beispiel bildet das System {e1, 22} mit
e. = (l, 0, 0), e; = (0, 1, 0) zwar ein ONS im (reellen Hilbertraum) R3. Der Vektor

2

xo = (l, 1, l) hat jedoch von allen Linearkombinationen 2 txjej = ale, + 04222

]=¢<a1—1)2+<«2—1)2+1;1,
karm also durch dieses ONS nicht lajeliebig genau approximiert werden. Die ent-
scheidende Eigenschaft eines ONS, die eine solche Approximierbarkeit gewähr-
leistet, ist die sog. Vollständigkeit des ONS.
5*

2

= (zx,,oc2,0) einen Abstand x0 —— 209e,-
"-1

S.2.38

D.2.40
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Definition 2.41: Es sei (e„) ein ONS im Hilbertraum H. Das ONS (e„) heißt voll-
ständig, wenn es keinen vom Nullvektor verschiedenen Vektor z gibt, der zu_aIlen
Vektoren e„ orthogonal ist.

Der entscheidende Entwicklungssatz lautet (s. [8, S. 130/l32]):

Satz 2.39 (von der Orthogonalentwicklnng): Es sei H ein Hilbertraum und (e„) ein
ONS in H. Dann sind die folgenden Aussagen gleichwertig:

(l) Das ONS (e„) ist vollständig.

(2) Für jedes x e H gilt (Fourierentwicklung V011 x)

x = E‘, (e,, l x) e„. (2.65)
n=l

(3) Für jedes x e H gilt (Parsévalsche Gleichung)

HXHZ = ä l<€‚. I x>|’- (2-66)

Beispiel 2.23: Es sei H = L’[0,27r]. Dann ist das folgende Funktionensystem ein v-llständiges
ONS:

e—inz

x/2?

Weitere Beispiele vollständiger ONS erhält man (Bd. 12, S. 14-—19) durch Ortho-
gonalisierung der Funkt1'onenfo1ge_fi,(x) = x" \/p(x), wobei p(x) g O eine sog. Be-
legungsfunktion bezeichnet. Auf diese Weise erhält man z. B. im Raum L,{[—1, 1]

und für p(x) = 1 die normierten Legendreschen Polynome

(2.67)

_ 2n + I l d" 2 _ _

P,,(x) _ man -1)" (n - o, 1, 2, ...), (2.68)

und im .Lfi(R) für p(x) = e-X‘ die normierten Hermiteschen Funktionen

‚. f. „ _,,:
H,,(x) =e2 3°71 (n = o, 1, 2, ...) (2.69)

\/2w „/„ dx

als ONS [s. auch (I.81)].

2.4.3. Orf‘ „ ‘ V _‘ ‘ art‘ „ ‘ direkte S

Definition 2.42: Es sei H ein Prä-Hilbertraum und E eine Teilmenge von H. Die
Menge aller Elemente x e H, die auf allen Vektoren aus E senkrecht stehen, bezeichnet
man mit H 6 E; sie heißt das orthogonale Komplement von E bezüglich H (bzw.
in H):

H6E={xeH|(x[y>=0 füralle yeE}. (2.70)

Satz 2.40: Unter den Voraussetzungen der obigen Definition ist H 6 E ein abgeschlos-
sener Iinearer Teilraunz von H.
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Beweis: Ist x e He E, so gilt für beliebiges komplexes Ä: (Ax | y) = Rx | y) = 0
für alle y e E, also ist auch Ax EH6 E. Sind x1, x2 e H e E, so auch x, + x2,
weil (x, + x2 I y) = (x, Iy) + {x2 | y) = 0 für alle yeE gilt. Gilt schließlich
x,,eHeE und x = lim x„‚ so ist (xiy) = lim <x„|y) : 0 für alle yeE. I

n—rO0n-o 7:

Beispiel 2.24: Es sei H ein Hilbertraum und (e„) ein vollständiges ONS in H. Es sei E = {e, , e„‚}
die Teilmenge dieses ONS, die aus den ersten m Elementen e, besteht.

Dann besteht H e E aus allen Elementen x der Form
OD (D

x = 2 c„e„ mit 2 lckl’ < +00 . (2.71)
k=m+l k=m+l

I

Denn (x|e‚) = 2 c'‚<e, . e„) = 0 für r = l, ...‚m; also liegt jedes x der Gestalt (2.71) in
k= +1

He E. Ist umgekelfrt x EH e E, so gilt nach dem Entwicklungssatz (Satz 2.39)

o0

x = 2 (e,1.‘x>ek.
k=l

Weil x EH9 E ist, muß (e, i x) = 0 für k = 1, ...‚m gelten. Also ist

x=§
k=m+

0c

(k = m + 1,m + 2, ...).Aus demEntwicklungssatz folgt weiteigdaß +00 > HxHZ =k 2 !1<e,,J x)?
+

CD

2 cke,‘ mit ck=(e„|x)
=m+

<€’klX> 9k =

I

eo = m

= 2 lckl’ gilt, woraus die Konvergenz der rechtsstehenden Reihe folgt. Mit anderen Worten, das
k=m+l

orthogonale Komplement einer Menge endlich vieler Elemente eines (vollständigen) ONS besteht
aus allen (Fourier—) Reihen, in denen nur die restlichen Elemente des ONS auftreten.

Definition 2.43: Es seien H ein HiIbertraum und H, bzw. H2 abgeschlossene lineare
Teilräume von H. Ist x, EH, und x2 e H2, so gelte stets (x, | x2) = 0 (man sagt
dann: die Teilräume H, und H2 sind zueinander orthogonal). Die Menge

{xeHlx = x, + x2,x,eH„x2eH2}
heißt die orthogonale direkte Summe von H, und H2 und wird bezeichnet mit

H, ® H2. (2.72)

Satz 2.4l: Unter den in Def. 2.43 getroflenen Voraussetzungen ist die orthogonale
direkte Summe von H, und H2 stets ein abgeschlossener linearer Teilraum von H.

Es ist. in Analogie zu Def. 2.43 klar, wie die orthogonale direkte Summe
H, (D H2 (3 G) H„ endlich vieler, paarweise orthogonaler linearer Teilräume zu
definieren ist.

Satz 2.42: Es sei H, ein abgeschlossener linearer Teilraum eines Hilbertraumes H und
H2 = H G H1 das orthogonal/e Komplement von H, in H. Dann ist H die ortho-
gonale direkte Summe von H, und H2: H = H, G; H2.

Dieser und der folgende Satz zeigen, daß die Bildung des orthogonalen Komple-
ments und der orthogonalen direkten Summe zueinander invers (komplementär)
sind.

D.2.43

S.2.41

S.2.42
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Satz 2.43: Es sei H ein Hilbertraum, und es gelte H = H1 (+3 H2. wobei H1, H2
zwei abgeschlossene lineare Teilräume von H bezeichnen. Dann gelten die Gleichungen

H1 n H2 = {o},

H1 = HG H2, (2.73)

H2 = H e H1.

Außerdem läßt sich jedes x E H auf genau eine Weise in der Farm

x = x1 + x2 (x1 eH1‚ x2 eH2) (2.74)

darstellen.

Beweis: Wir zeigen nur die erste der Gln. (2.73) sowie die GI. (2.74). Da H1 und H2
lineare Teilräume von H sind, gilt o eH1 r\ H2. Ist andererseits .\' e H1 n H2, so
gilt nach Def. 2.43 der orthogonalen direkten Summe, daß (xi x) = 0 sein muß;
d. h. aber x = 0. Somitist H1 n H2 = {o}. Wegen H = H1 6) H2 gibt es für jedes
x e H stets mindestens eine Darstellung der Form

x=x1+x2, x1eH1‚x2eH2.
Gilt zusätzlich

x=x;+x’2‚ x’1eH1,x’2eH2‚

so wird wegen

x1 +x2=x'1+x’2 auch x1—x’1=x’2—x2.

x1 — x’1 ist ein Element von H1, x’2 — x2 gehört zu H2. Da diese beiden Elemente
gleich sind, gehören sie sowohl zu H1 als auch zu H2. also zu H1 n H2, und daher
gilt nach dem zuvor bewiesenen, daß x1 — x’1 = x’; — x2 = a sein muß, woraus
schließlich x1 = x1, x2 = x’2 folgt. Es gibt also nur eine Zerlegung von x in der
Form (2.74). l
Satz 2.44: Es sei H1 ein abgeschlossener linearer Teilraunz des Hilbertrautnes H. Zu
jedem x e H gibt es genau ein Element x1 e H1, welches von x einen minimalen Ab-
stand (bezüglich H1) besitzt (die Projektion von x auf H1):

Ilx - xill = inf Hx - yll- (2-75)
yEH.

Der Vektor x — x1 = x2 gehört dann zum orthogonaletz Komplement H G H1.
(Zum Beweis s. [l7].)

Zur Veranschaulichung des Satzes 2.44 betrachten wir im reellen Hilbertraum
H = Lf1[a, b] (a = 0, b = 27:) das vollständige ONS

l 1 l
—_ , T-cos t, j_cosI1r, ,_.

\/21: n ‘/7: \’r:

H1 bestehe aus allen trigonometrischen Polynomen der Ordnung g n:

l . ‚

———sin t, ..., sinnt. (0 g 1g 27c).
TE

y(t) = 0% +k;l(o<,’, cos kt + f3,f. sin kt) (0 g I g 2:). (2.76)
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lst x e H beliebig, so läßt sich x (s. den Entwicklungssatz 2.39) in der Form

x(t) =L_ + E (am + bk smkt)
\/27: k=1 7: \/7:,

= L2" +käl(oc„ coskt + ‚s. sin kt) (0 g z g 27c) (2.77)

darstellen, wobei diese Reihe im Sinne des Raumes L’[0, 27:] gegen x konvergiert
(die Folge der Partialsummen s„(t) konvergiert im quadratischen Mittel gegen x(t),
d. h.,

27:

lim J’ (s,,(t) — x(t))Z dt = o).
n-wo 0

Es gelten die Beziehungen

E" a ’ b
“o=aoA/;‚ “k: k‘: .Bk=\/k; (kr-1:2;--~)

V/7‘
und

27: 21-:

J‘x(t) dt, ak = L. j x(t) cos kt dt,
(/-::

o 0

2.1

fx(t)sin ktdt (k = 1,2, ...).b __I_
Ä‘ \/fio

Das Element x, e H„ welches gemäß Satz 2.44 den kürzesten Abstand zwischen
H1 und x realisiert, ist dann genau die n-te Partialsumme der Reihe (2.77):

l
JEa0:

x, = x‚(t) = 523 +31 (m, cos kt + ‚s. sin kt) (o g z g 27:).

Das Element x2 = x — x1 hat die Form

x2 = x20) =k Z l(a,, cos kt + 13k sin kt) (0 g t g Zn)
=II+

und gehört (ofiensichtlich) zum orthogonalen Komplement von H1.
Zur Ergänzung der Ausführungen über Hilbert-Räume erwähnen wir noch folgen-

den Satz von F. Riesz und E. Fischer.

Satz 2.45: Es sei H ein HiIbert-Raum und {e„} ein vollständiges ONS in H. Kon- S.2.45

vergiert für eine Zahlenfolge {ah} die Reihe f [a,,}’, dann gibt es genau ein Element
k-=1

x e H, dessen Fourierkoeffizienten bezüglich {e„} gerade mit den gegebenen Werten a,‘

übereinstimmen; a,‘ = (ek | x) (k = 1, 2, ...).

Aus diesem Satz (zum Beweis s. [l7]) folgt die Normisomorphie aller (separablen)
Hilbert-Räume.
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3. Lineare Operatoren

Im Zusammenhang mit der Lösung sog. „linearer Probleme“, d. h. von Proble-
men, in denen die wesentlichen Zusammenhänge ein lineares Verhalten zeigen,
untersucht die Funktionalanalysis lineare Operatoren und Gleichungen, in denen
lineare Operatoren auftreten. Die einfachste Grundaufgabe dieser Art ist die Frage
nach den Lösbarkeitseigenschaften eines linearen Gleichungssystems mit endlich
vielen Unbekannten 51s ...‚ 5„

kglaikgk = bi = 1» m: m), (3-1)

wobei die Koeffizienten ajk und die absoluten Glieder bj gegebene (reelle oder kom-
plexe) Zahlen sind.

Kennzeichnend für die funktionalanalytische Denkweise ist die Auffassung, daß
der Koeffizientenmatrix (an) ein Operator T entspricht, der jeden Vektor
x = (5„ ...‚ 5„) in einen Vektor y = (27„ ...,a7„‚) überführt:

m iäam <1 = 1, m) (3.2)

oder
y = T(x) (oder: y = Tx). (3.3)

Die Aufgabe, das lineare Gleichungssystem (3.1) zu lösen, kann also in der folgen-
den Weise formuliert werden:

Man bestimme alle x, die die Gleichung

Tx = b (3.4)

(b = (b, , ...‚ b„‚)) erfüllen.
Der Operator T hat ersichtlich folgende Eigenschaften

Additivität: T(x‘” + x‘2’) = T(x‘“) + T(x(2’), (3.5)

Homogenität: T(Äx) = AT(x) (Ä reell oder komplex).

Diese Tatsache veranlaßt die folgende Definition.

Definition 3.1: Eine Abbildung (ein Operator) T: E —> F, die einen Iinearen Raum E
in einen linearen Raum F abbildet, heißt linear, wenn für alle x“), x"), x aus E, und
alle (reellen bzw. komplexen) Zahlen Ä die Gleichungen (3.5) geltenß)

Ein Operator der Form (3.3) ist ersichtlich ein linearer Operator, der den Raum K"
(n-dimensionaler komplexer Vektorraum) in den Raum K'" abbildet. Die Auffassung
des linearen Gleichungssystems (3.1) als lineare Operatorgleichung (3.4) (s. auch
1.2.4.) ist deshalb von so grundsätzlicher Bedeutung, weil sich die wichtigsten Ergeb-
nisse über lineare Gleichungen mit endlich vielen Unbekannten auf allgemeinere
Operatorengleichungen übertragen lassen, welche insbesondere solche Differential-
bzw. lntegralgleichungen umfassen, die in der Praxis häufig auftreten. Beispiele für
lineare Operatoren werden in den folgenden Abschnitten eingeführt.

1) Vgl. auch Bd. l, 8.4.
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3.1. Das Rechnen mit linearen Operatoren

Ein linearer Operator T: E —> F, der den linearen Raum E in den linearen Raum F
abbildet, legt folgende Teilräume fest:

den Kern‘) von T, abgekürzt Ker T, der aus allen Nullstellen von T besteht, d. h.
(o, bezeichne das Nullelement von F)

Ker T = {x 6 EI Tx = 0,}, (3.6)

den Rag oder Wertebereich von T, abgekürzt Ran T oder R(T) oder T[E], der
aus allen Elementen von F besteht, die als Werte der Abbildung auftreten:

RanT={yeF|y=Tx füreinxeE}. (3.7)

Zufolge der Linearität von T sind Ker T und Ran T lineare Teilräume von E bzw.
von F.

Schließlich muß man (Vor allem für die Theorie unbeschränkter Operatoren) den
Fall vorsehen, daß ein linearer Operator Tnur auf einem linearen Teilraum Eo von E
definiert ist, T: Eo —> F, deutlicher, T: Eo g E —> F. In diesem Fall hebt man den
Definitionsbereich E0 = D(T) von T besonders hervor.

lm folgenden seien T, S, U, lineare Operatoren von E in F. Ist F = E, so

spielt der identische Operator I, erklärt durch

Ix = x (x e E) (3.8)

eine besondere Rolle.

Definition 3.2: Die Summe T + S der (linearen) Operatoren T und S wird durch die D.3.2
Gleichung

(T + S) (x) = T(x) + S(x) (x eE) (3.9)

erklärt. Die Multiplikation des Operators T mit der (komplexen bzw. reellen) Zahl Ä

wird definiert durch die Gleichung

(AT) (x) = /IT(x) (x e E). (3.10)

Satz 3.1: Mittels der in Def. 3.2 eingeführten Operationen für lineare Operatoren S.3.l
T: E —> F wird die Menge dieser Operatoren zu einem Vektorraum (linearen Raum).

Definition 3.3: Sind E, F, G lineare Räume und T: E —> F; S: F —> G lineare 0pera- D.3.3
toren, dann wird das Produkt ST der Operatoren T und S durch die Zuordnungs-
vorschrift

(ST) (x) = S(T(x)) (x e E) (3.11)

erklärt.

Satz 3.2: Das Produkt ST (im Sinne der Def. 3.3) ist ein linearer Operator von E in G: S.3.2

STZ E —> G.

1) Synonym: Nullraum von T: N(T).
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Definition 3.4: Es sei T: E —> E ein linearer Operator, der E in sich abbildet. Man
definiert (rekursiv) die Potenzen T" von Tfür n = O, 1, 2, durch die folgenden Glei-
chungen

T° = I,
T‘ = T, (3.12)

T"“ 2 TT" (n = 1,2, ...),

wobei in der Gl. (3.12) rechts das Produkt der Operatoren T und T" im Sinne der
Def”. 3.3 steht.

Der aus der linearen Algebra bekannte Begrifi" der inversen Matrix wird durch die
folgende Definition auf allgemeine lineare Operatoren übertragen.

Definition 3.5: Es sei T: E —> F ein Iinearer Operator. Falls es einen linearen Opera-
tor S: F —> E gibt, so daß folgende Gleichungen gelten

ST = IE, ‘TS = 1,, (3.13)

wobei IE bzw. I, die identischen Abbildungen von E bzw. F sind, so heißt S der zu T
inverse Operator (Umkehroperator, reziproker Operator), und man bezeichnet ihn mit

s = T“. (3.14)

Bemerkung 3.1: Man weist leicht nach, daß es nur einen einzigen solchen Operator
S = T“ geben kann. Hat T einen Umkehroperator T*1, so ist T eine lineare ein-
eindeutige Abbildung von E auf F und T“ eine lineare eineindeutige Abbildung
von FaufE (vgl. auch Bem. 3.3).

Satz 3.3: Es seien T1: E -+ F, T2: F —> G lineare Operatoren, die Umkehroperatoren
T; 1, T?‘ besitzen. Dann hat auch der Operator T2T1: E —> G einen Umkehroperator,
und es gilt

(T2T1)“ TI‘T;’-
(Beweis der Sätze 3.l—3.3 als Übungsaufgabe.)

3.2. Beschränkte lineare Operatoren in Banaehräumen
Für die physikalischen Anwendungen ist es vor allem erforderlich, lineare Opera-

toren in Hilberträumen zu betrachten. Zur Klärung einiger allgemeiner Begriffe ist
es jedoch günstiger, zunächst lineare Operatoren in Banachräumen zu behandeln,
soweit es die Theorie beschränkter Operatoren betrifft. Unbeschränkte lineare Ope-
ratoren werden wir von vornherein nur in Hilberträumen untersuchen (s. 3.3. und 5.).
Im folgenden bezeichnet (E, H ‚ H) einen komplexen Banachraum.

(3.15)

Definition 3.6: Es sei T: E —-> E eine lineare Abbildung von E in sich. Theißt beschränkt,
wenn es eine Konstante K > 0 gibt mit

llTxll ä Kllxll (X 6 E). (3-15)

Das Infimum dieser Werte K, für die die Ungleichung (3.16) gilt, wird mit HTH be-
zeichnet.

Satz 3.4: Eine lineare Abbildung (ein Operator) T ist genau dann stetig (d. h., aus
x„ —> x folgt stets Tx„ —-> Tx), wenn T beschränkt ist.



3.2. Beschränkte lineare Operatoren 75

Bemerkung 3.2: Ein völlig analoger Satz gilt für lineare Abbildungen eines normier-
ten Raumes in einen anderen normierten Raum, wenn die Definition der Beschränkt-
heit analog zur G1. (3.16) getroflen wird; vgl. die entsprechende Aussage für lineare
Funktionale (2.3.l.).

Beispiel 3.1: Es sei C[a‚ b] (s, Bsp. 1.5) versehen mit der Maximum-Norm ljxi. = max fx(t)]. Mit
agigb

K(s,r) werde eine für a g s, t g b definierte stetige komplexwertige Funktion bezeichnet. Dann
wird durch die Zuordnungsvorschrift [s. (3.3)]

b

(TX) (S) = .v(S) = (KG, I) X(I)dt (a g s g b)
a

(3.17)

eine beschränkte lineare Abbildung von C[a‚ b] in C[a, b] definiert; T ist ein sog. linearer Integral-
operator mit dem Kern K(s, t). Das Wort „Kern“ wird hier in anderem Sinn als in (3.6), S.73, ge-
braucht. Als Übung zeige der Leser, daß durch die Vorschrift (3.17) tatsächlich eine Abbildung
von C[a, b] in C[u b] definiert ist. Die Beschränktheit von T erkennt man so:

b b

um (S)! = iytsii =| f Km. i) x(t) du] g f uns. or Ix(t)1dt

b b

g J‘ |K(s, I)! maxb Ix(t)I d: = iixii f lK(s,t)1dr (a g s g b).
„ -2; a

Durch Übergang zum Maximum folgt

iiTxll Q max ](Tx) (s)i g iixi] max [ K(s‚t)‘i dt (xeC[a,b]).
a::§b agsgb R

Also ist T beschränkt, denn es gilt für alle xeC[a, b] eine Ungleichung J‚Tx3‚ S Mlixj, mit
b

M = max 5 iK(s, t)‚‘ dt. Eine genauere Betrachtung zeigt, daß sogar M = ETH gilt.
a gsgb u

3.2.1. Spektrum und Resolvente

Wesentliche Eigenschaften eines linearen Operators T treten erst zutage, wenn man
ihn mit anderen linearen Operatoren vergleicht; speziell hat sich der Vergleich mit
Vielfachen M des identischen Operators als entscheidend erwiesen. I ist die durch

Ix = x (xeE) (3.18)

erklärte (lineare, stetige) identische Abbildung [s. (3.8)]. Man untersucht hierzu die
Menge (Schar, Familie) von Operatoren

7J -— T (i. komplex), (3.19)

die für jedes fest gewählte komplexe 2 einen linearen (stetigen, falls T stetig ist)
Operator auf E (von E in sich) liefert.

Definition 3.7: Es sei T ein linearer stetiger Operator auf E mit Werten in E. Die
Menge g(T) aller komplexen Zahlen Ä, für die die Abbildung ÄI — T surjektiv (d. h.
eine eindeutige Abbildung U011 E auf sich." T[E] = E) ist und für die die Umkehr-
abbildung (die Reziprake)

R(/'.; T) = R,(T) = (M — T)“ (3.20)

ein stetiger (Iiiiearer) Operator ist, heißt die Resolventenmenge g(T) ton T. Der inverse
Operator R;_(T) = (7.! — T)" des Operators Ä] — T heißt die Resolvente ran T ini
Punkt Ä.

D.3.7
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Bemerkung 3.3: Ist T: E1 —> E1 eine stetige lineare Abbildung, die den normierten
Raum E1 eineindeutig (injektiv) auf sich abbildet, so existiert eine Umkehrabbil-
dung S: E1 —> E1 der Abbildung T, d. h.‚ die Gleichung Tx = y ist äquivalent zur
Gleichung x = Sy für x e E1, y eE1. Der Operator S ist notwendig linear, aber
nicht notwendig stetig. Ist aber zusätzlich E1 ein Banachraum, dann muß S not-
wendig auch stetig sein (Satz von Banach über den inversen Operator). Eine kom-
plexe Zahl Z gehört daher genau dann zur Resolventenmenge eines auf einem Banach-
raum definierten linearen stetigen Operators T, wenn die Abbildung AI — T eine
injektive Abbildung von E auf sich ist. Die Gleichung

Äx—Tx=y
ist dann für jedes y e E lösbar mit genau einem x SE, und dieses x hängt stetig
von y ab (wenn y als variabel betrachtet wird).

Definition 3.8: Es sei T: E —-> E ein linearer, stetiger Operator. Die Komplementär-
menge der Resalventenmenge g(T) (bezüglich K), die Menge

0(T) = K\9(T) (322)

heißt das Spektrum von T. Die Zahl

(3.23)r(T) = SUD W
Aeam

heißt der Spektralradius von T.

Satz 3.5: Die Resolventenmenge Q(T) ist eine (in K) oflene Menge, das Spektrum a('T)
ist eine nichtleere, abgeschlossene und beschränkte Menge. Es gilt die Gleichung

r(T) = lim z/um = inf 2/urnu (3.24)
n—>:>o neN

sowie die Ungleichung

r(T) S HTM-

Satz 3.6: Für Zahlen ‚u, /'. aus der Resolventenmenge gilt die sogenannte 1. Resolventen-
gleichung:

R(l; T) - R01; T) = (n - i) RM; T) R01; T).

(3.25)

(3.26)

Beweis: Mit R(‚'t; T) = (M — T)“, R(‚u; T) = (‚uI — T)" gilt wegen der Vertausch-
barkeit von III —— Tund ‚uI — Tdie Gleichheit (u! — T) (AI — T) [R(l; T) — R(‚u; T)]
= (MI — T) — (Z1 — T) = (‚u — Ä) I. Multipliziert man beide Seiten letzterer Glei-
chung mit R(/1; T) R(‚u; T), so erhält man unmittelbar die Gl. (3.26). I

Mittels eines gegebenen stetigen linearen Operators T: E —> E, der den vorliegen-
den Banachraum in sich abbildet, kann man durch Linearkombination der Potenzen
von T [s. (3.l2)] mit komplexen Konstanten an, a1 , ...‚c<‚„.,

Operatorpolynome: i zxkT" z 0:01 + zx1T + «J2 + + oc„T” (3.27)
k=O

bzw.
Operatorpotenzreihen: k§0ockT" (3.28)

(3.21)_
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gewinnen, wobei im letzteren Fall die Konvergenz geeignet erklärt werden muß. Es
sind diese Ausdrücke Spezialfälle der allgemeineren Operatorfunktionen, auf deren
nähere Beschreibung wir hier verzichten (s. aber 5.1.4.). Von Interesse in diesem
Zusammenhang ist vor allem der sog. Spektralabbildungssatz, der aussagt, daß für
eine komplexe Funktion f(z)‚ die in einer offenen Obermenge des Spektrums a(T)
holomorph ist, die folgende Gleichung gilt:

0(f(T)) = f(0(T)) - (3-29)

Beispiel 3.2: Es sei E = K" der n-dimensionale komplexe Vektorraum mit der üblichen Norm und
T: K"—> K“ eine lineare Abbildung. Dann ist T stetig (Beweis als Übungsaufgabe). Die Abbildung T
läßt sich als Matrix darstellen: T = (t,j)1§,,,»§,,; ist x e E gegeben, x = (E1, „., {-'„), so ist
Tx =(7]1, ...,n,,) mit.

m = _z1’ltJEJ (k =1,-~~. 70- (330)
J:

Der Abbildung M ~ T (komplex) entspricht die Matrix

0 für i+ j
5U = .. . .l fur l = j

und diese Abbildung besitzt, wie aus der linearen Algebra bekannt, genau dann eine Inverse
(III — T)" (diese ist dann automatisch stetig), wenn die Detern1inante der entsprechenden Matrix
von null verschieden ist. Also gilt die Beziehung

Ä 5 e(T) Ö d0‘ (lam — !1j)~‘l= 0,
und deshalb ist

l. E¢r(T)<>det (/16,, — tu) = 0-:=~det (tij — 2:5,-,) = 0.

Eine komplexe Zahl gehört also genau dann zum Spektrum a(T), wenn die Gleichung

(Ääij “ fu)1;i.J§n

711 — Ä ‘i2 -~ '1n

i2, I2? — i. 12.„ : O (3.31)

t„1 r„2 .. r„„ — A

gilt. (3.31) ist aber die bekannte Gleichung zur Bestimmung der Eigenwerte 1.„ der Matrix (1,1);

d. h., die Lösungen 1.1, A2, der Gl. (3.31) stellen die Eigenwerte von (ru) dar. Mit Berücksichti-
gung ihrer Vielfachheit hat die Gl. (3.31) n Lösungen ll, ...,l,.. Im vorliegenden Fall gilt somit

U(T) = {in .~J»..}~ (3-32)

Nicht in jedem Fall läßt sich das Spektrum eines linearen stetigen Operators in
so einfacher Weise kennzeichnen wie im Bsp. 3.2, sondern o'(T) zerfällt in mehrere
qualitativ verschiedene Teile.

Definition 3.9: Es sei (E, H . H) ein Banachraum, T: E —> E eine lineare beschränkte
Abbildung. Eine komplexe Zahl /1 heißt Eigenwert von T, wenn es ein Element x =¥= o

in E gibt mit »

Tx = Ax.

Das Element x heißt ein zugehöriger Eigenvektor zum Eigenwert Ä.

(3.33)

Definition 3.10: Es sei (E, |1 . H) ein Banachraum; T: E —> E ein linearer beschränkter
Operator. Die Menge aller Eigenwerte von T bezeichnet man als das Punktspektrum
o'„(T). Die Menge aller Ä e a(T), die nicht in o‘„(T) liegen undfür die der Wertebereich

D.3.9

D.3.l0
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von Ä! — T in E dicht liegt, (AI — T) [E] = E, bildet das kontinuierliche Spektrum
oder Stetigkeitsspektrum uc(T) von T. Alle übrigen Punkte des Spektrums werden zum
Restspektrum (auch: Residualspektrum) o‘,(T) = o'(T)\ (d,,(T) U O'c(T)) zusammengefa/Jr.

Bemerkung 3.4: Es gilt die Gleichung a(T) = a„(T)u UC(T)UU,(T)‚ und die ein-
zelnen Bestandteile dieser Vereinigungsmenge sind paarweise elementfremd. Für die
Punkte Ä, die zu a‚;(T) oder zu a‚(T) gehören, ist die Abbildung (U — T) zwar ein-
eindeutig‚ aber die Umkehrabbildung (Z1 — T)” läßt sich nicht auf ganz E definie-
ren, da in diesem Fall der Wertebereich von (ll — T) eine echte Teilmenge von E ist.

Beispiel 3.3: Es sei E = C[0, 1]; HxiJ = max lx(t)l (x SE). Wir definieren den linearen Opera-
tor T: E —> E durch die Gleichung “[0-1]

f

(Tx) (t) = x(0) + [x(s) ds (0 g I; 1; x GE). (3.34)
0

(Man erhält T durch formale Integration (vgl. Bd. 7/1, 2.5.1.) der Differentialgleichung x’ = x;
s. auch [4, Kap. 3, §2.2.], dort wird das Spektrum dieser Differentialgleichung nach einer Störung
benötigt (vgl. 3.3.3. unten). Ein schwierigeres Beispiel zur Ermittlung des Spektrums geht über
unseren Band hinaus; s. aber auch Kap. 5.)

Durch die Gl. (3.34) wird jeder auf dem Intervall [0, 1] stetigen Funktion x(.) eine Funktion Tx(.)
zugeordnet. (Die folgenden Tatsachen beweise der Leser als Übung.) Diese Funktion ist wieder
stetig, d. h.‚ Tbildet den RaumE wieder in den Raum E ab. T ist linear und beschränkt; HTH = 2.

Zur Ermittlung des Spektrums betrachten wir den Operator l1 — T für beliebiges komplexes 7..

Es gilt für x 6E
l

(M — T>(x><z> = M!) — x(0) — j m) as <0 g z g 1).
o

Wir geben ein y E E vor und untersuchen die Gleichung (mit der Unbekannten x):

(M — T)x = y. (3.35)

Ausgeschrieben lautet diese Beziehung

I

MC) — X(0) - IXÜ) d5 = YÜ) (0 S t ä 1)« (3.35)
0

Für t = O folgt aus dieser Gleichung

}.x(0) ~ x(0) = y(0), d. h. (Z — 1)x(0) = y(0). (3.37)

Wir setzen zunächst voraus, daß y(t) eine differenzierbare (nicht nur stetige) Funktion ist. Unter
der Annahme, daß die Gl. (3.35) eine Lösung hat, gilt für Ä + 0

l

x(t) =% x(0) + fxü) ds + y(t) (0 g t g1). ,

0

Auf der rechten Seite stehen nur ditterenzierbare Funktionen, also ist auch x(t) auf der linken Seite
eine differenzierbare Funktion. Durch Differentiation beider Seiten von (3.36) erhalten wir mit

lx'(!) - x(I) = y'(!) (3-33)

eine gewöhnliche lineare Differentialgleichung erster Ordnung für die gesuchte Funktion x(t), in
der vor der höchsten Ableitung der Parameter i. auftritt! Mittels Standardmethoden (s. Bd.7/1)
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erhalten wir die allgemeine Lösung der Dilferentialgleichung (3.38):

1_(,_1. 1 ‘ - „

x(t)=KeÄ +7fy’(s)e Ä d; (05:51), K=x(0).
0

Ist Ä + l, so können wir aus (3.37) den Wert K = x(0) bestimmen:

J'(0)

A — 1

K: x(0) =

und erhalten
l_[ I

o " 1 —‘—<—>

x(t)= “v”: +7fy’(s)e l x ids.
0

l_

und aus dieser Formel mittels partieller Integration und Zwischenrechnung
]_ r

C‘ I 1 1 — %(x—I)

1(7) = flmm ‘l’ 7K‘) ‘l’ F0 7(5) 5 d-V (0 §1§l)- (3-39)

Wie man durch Einsetzen in die Gleichung (nach einer Zwischenrechnung) erkennt, stellt die rechte
Seite der Gl. (3.39) für Ä ¢ 0, l ä: 1 die Auflösung der Gl. (3.35) nach der Funktion x(.) dar. Man
stellt dabei fest, daß die Voraussetzung, daß y(t) dlfierenzierbar sein soll, nirgends benötigt wird,
Die Formel (3.39) stellt somit eine Lösung der Gl. (3.35) für eine beliebige (stetige) rechte Seite y(t)
aus E dar. Wie wir weiter unten nachweisen werden, ist es auch die einzige Lösung von (3.35). Da
die Zuordnung y(.) —> „Ausdruck auf der rechten Seite von (3.39)“ ersichtlich einen linearen steti-
gen Operator in E definiert, der E in E abbildet, stellt die rechte Seite von (3.39) die Resolvente
R(Z; T)von Tdar, d.h.,f1'ir2 ¢ 0,1 + l gilt (0 g I g 1;yeE):

RU»; T) (.V)(!) = (U " T)"1(J’)(1)
l r

J. _1_ _ .e 1 1 J‘ At: od 340
= O 2- — — . .y()m_1)+}_y(t)+l,0y(s)e s ( )

Nachzutragen ist noch der Beweis dafür, daß (3.39) die einzige Lösung von (3.35) darstellt. An-
genommen, es gäbe zwei Lösungen x1 # x2 der Gl. (3.35). Dann gilt (0 g l g 1):

f I

K?) = ÄXiU) - 961(0) — J.x1(S)dS = /11620’) — 962(0) - JXASNS-
0 0

Für t = 0 folgt speziell

(Ä - 1)x1(02=(l ' 032(0)»

also (II # 1): x1(0) = xz(0) und damit
I

z<x1<r> — x2<:» = „l (x1<s>— ms» as <0 s z 2 n.
D

Die rechte Seite letzterer Gleichung ist differenzierbar, also ist es auch die linke Seite, und wir erhal-
ten durch Differentiation

}~£'(X1(’) ‘ 32(1)) = 171(1)‘ X20)

bzw. mit der Abkürzung x1(t) — x2(t) = u(t) (0 g t g 1)
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I

Diese Differentialgleichung für u hat die allgemeine Lösung (s. Bd. 7/1) u(t) = Ke" t mit einer
Konstanten K. Es gilt einerseits (s. o.) u(0) = x1(0) — x;(0) = 0 und andererseits u(0) = K. Also
gilt K = 0 und damit ist u(t) = 0 (0 g t g 1), d. h. aber

310): X2Ü) (0 ä F ä 1)-

Also stimmen je zwei Lösungen von (3.35) [bei gegebenem y(.)] überein, und (3.39) liefert für
i. # 0, i. + 1 die einzige Lösung von (3.35). Alle i. + O, 1 gehören somit zu g(T).

Zur Bestimmung der einzelnen Bestandteile des Spektrums untersuchen wir zunächst die Frage
nach den Eigenwerten von T. Es gelte also die Gleichung Tx = ix mit x # 0. Ausgeschrieben
lautet diese Gleichung

I

x(0) + .x(x) d: = ix(t). (3.41)
O

Für i. = 0 erhält man, wie durch Differentiation sofort ersichtlich ist, die Gleichung x(t) = O

(O g t g I); also ist i. = 0 kein Eigenwert. Nach den obigen Betrachtungen ist nur noch der Wert
t

i. = 1 zu untersuchen.Die Gleichung x(O) + _fx(s) ds = .x(t) liefert nach Diflerentiation (erlaubt,
0

weil die linke Seite difierenzierbar ist) x(t) = x’(t), woraus x(t) = C e‘ (0 g t g 1) folgt. Ist C + 0,
so liegt, wie die Probe zeigt, tatsächlich ein Eigenvektor x(.) zum Eigenwert I vor. Somit gilt
a„(T) = {I}. Die Untersuchung der Gleichung (i! — T)x = y führt für i. = 0 sofort auf die Be-
ziehung

I

—x<o) — fxts) as = yo) (o 5251).
0

(3.42)

Auf der linken Seite steht eine difierenzierbare Funktion von t [wenn wir voraussetzen, daß die
Gl. (3.42) eine Lösung hat]. Also muß auch die Funktion y(t) auf der rechten Seite von (3.42) dif-
ferenzierbar sein (0 g t g 1). Da es aber stetige Funktionen y(t) gibt, die nicht in jedem Punkt
des Intervalls [0, 1] difierenzierbar sind (z. B. y(t) = It — 45!), ist die Gl. (3.42) nicht für jedes stetige
y(t) nach x(t) auflösbar. Also gehört i. = 0 nicht zur Resolventenmenge von T. Eine genauere Unter-
suchung zeigt, daß für i. = 0(ÄI — T[E] = (—T[E]) = E gilt.

Somit gehört der Wert i. = O zum kontinuierlichen Spektrum von T. Zusammenfassend haben
wir folgendes Ergebnis:

etT) = K\ {0. I};

r(T) = sup {i} = 1;
1eu(T)

Im folgenden gehen wir zu einer speziellen Darstellung der Resolvente über, die
vor allem für die Lösung von Integralgleichungen von Interesse ist.

¢7(T) = (0. 1}; GUT) = {O}, U,(T) = Ü.

HTH = 2.

<7p(T)={1}.

°° 1 .

Satz 3.7: Die Reihe Z 7 T" sei kanvergent im Sinne der Operatornarm, das heißt,
„=o ~

es existiert ein linearer stetiger Operator S auf E mit:

. " 1
hm 2 —‚_T“ — S = 0.
k-vw „=oÄ

Dann gilt die Gleichung

00 -1s=;}i"r~=(1—/LT) (H0). (3.43)
/1:0 * ~
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Beispiel 4.3: Die Entwicklung eines Polynoms nach Legendreschen Polynomen.
Wir wollen eine Formel für die Entwicklung von t” nach Legendreschcn Polynomen angeben

und setzen an:

1" = f a,.P,¢(t). (4.32)
k=0

Dann ergibt sich wegen (4.29)

+1

J‘t"Pk(t) d: für k = 0,1, 2, ..., n.

—1

2k+l
ak=

Eine kurzc Rechnung ergibt

"l I) [P„(t) + an — wärmt) + an — 7) z" "

. l
t 2_4 P,._,;(t) + ...]. (4.33)

Diese Formel hat bereits Legendre angegeben.

Kurvenbild

Aus der Formel (4.31) können wir mit dem Satz von Rolle [Band 2] auf die Lage
der Nullstellen von P„(t) schließen. Das Polynom (t2 — 1)" = (t — l)” (t + 1)" hat
je eine n-fache Nullstelle bei t = i 1. Mithin hat seine 1. Ableitung je eine (n — 1)-
fache bei il und eine einfache dazwischen. Die 2. Ableitung besitzt je eine (n — 2)-
fache Nullstelle bei il und zwei einfache dazwischen. Schließlich besitzt die n-te
Ableitung — also P„(t) — genau n einfache reelle Nullstellen zwischen —l und +1.

-1 z +7

ea}1. Ab! ‘t_7 +7 e/ uny

1. + 7 2. Ableitung

n-re Ableitung
- 7 + 7

du
Bild 4.3. Lage der Nullstellen von F (t3 — l)”

Die Werte der Nullstellen (auf 6 Dezimalstellen genau) ergeben sichxim Intervall
[0, l] für die ersten 6 Polynome P„(t):

n = 1: t, = 0

n = 2: t1 = O,577350

n = 3: I, = 0 I; = 0‚774597

n = 4: £1 = 0,339981 I2 = 0,86I136

n = 5: t1 = 0 t2 = 0‚538469 t3 = 0306180

n = s; 11 = 0238619 z, = 0‚66l209 t3 = 0932470.
6 Sieber, Funktionen



82 4. Kugelfunktionen

Die Kurven der Polynome P„(t) haben folgenden Verlauf:

Bild 4.4. Kurvenvcrlauf der
Legendreschen Polynome

'7~.

4.2.3. Integmldarstellungen

Weitere Darstellungen der Legendreschen Kugelfunktionen erhält man — analog
zum Vorgehen in Kapitel 3 —‚ wenn die Betrachtungen zu den Funktionen auf
komplexe Veränderliche ausgedehnt und Sätze der Funktionentheorie ‘genutzt wer-
den. Insbesondere wird t im folgenden als komplexe Veränderliche aufgefaßt.

So erhalten wir durch Anwendung der Cauchyschen Integralformel [Band 9] auf
die Rodriguessche Formel

I 2P„(t) = -27’; din [ß — 1]» (4.34)

eine erste Integraldarstellung für die Funktionen P„(t)‚ t komplex:

_ 1 (c2“— 1)" _ 1 (:1 — 1)"
P..(l) — f; C — 375T; dC» (4-35)

e <:
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wobei der Integrationsweg (S in der komplexen C-Ebene den Punkt C = t einmal im
positiven Sinne umläuft. Dieser Ausdruck stammt von Schläfli (1881).

S

Bild 4.5. ' ationsweg (S

Ebenso ergibt sich durch Anwendung der Cauchyschen Integralformel auf die
Potenzreihenentwicklung

1 1 °° n—= = P„(t)z
9 \;1—2zt+z n=0

eine weitere Integraldarstellung
1 ‘ d:

211i J Cn+l\/ _ 2,: + :2 ’
i,

wobei G,’ eine Kurve ist, die den Nullpunkt der komplexen Zahlenebene einmal im

P„(r) = (4.36)

1

positiven Sinne umläuft, ohne einen singulären Punkt von (I — 21C + 62)’? zu
umschließen.

Aufgabe 4.6: Man leite (4.35) aus (4.36) durch die Substitution \/'1 — 21C + C‘ = Cz — l fürdie
neue Variable z her.

Wie betrachten wieder die Darstellung (4.35) und wählen (S als Kreis mit dem
1

Mittelpunkt t und dem Radius It‘ —-1[7 (t + i I), so daß längs E! gesetzt werden
kann:

£=t+\/t2— 1 e”, ~—7t.__<_(p§ +1r.

Die Wahl des Zweiges von Jt’ — l ist für die weiteren Betrachtungen ohne Be-
deutung. Nach der Substitution erhalten wir für alle Werte von t + i1

+7:

1 J <t2—1+2t\/Z2 —1e"”+(t2 —1)e“'v>"id¢
P„(I) = 2n+1fli \/tz _1 6.„

—n

+7:

=-l— ( t‘—Ie“¢+2t+\/r2—le‘<")"drp
2"*‘7':

-7:

6a
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Definition 3.13: Es seien E. F nomtierte Räume; E’, F’ iltre Dualriiztitie (s. 2.3.2.). Ist
T: E —> F eine lineare stetige Abbildung, so wird die Abbildung T’: F’ —> E’ durch die
Gleichung

Tf=fT (fe F’) (3.49a)

gegeben, d. l1., für jedes lineare ‚stetige Funktional f auf F wird (ein litteares" ‚rtetiges)
Funktional T'f auf E erklärt mittels der Beziehung

(T7) (x) =f(Tx) (x e E). (3.49b)
Die Zuordnung T’ : f'—+ T’/'l1eMt die zu T adjungierte oder duale Abbildung (T’ ist der
zu T duale Operator).

Eenterkuizg 3.6: Die Tatsache, daß T] zu E’ gehört, ergibt sich sofort aus der De-
hnitionsgleichung (3.49a): Tffist die Zusammensetzung (Hintereitianderausführung)
zweier stetiger linearer Abbildungen Lind daher selbst stetig und linear.

Satz 3.14: Ist T e L(E, F), so ist T’ e L(F’‚ E’), und es gilt

HT’H = HTH. (3.50)

Beispiel 3.6: Es seien E = R", F: R"' (mit der euklidischen Norm), Te L(E‚ F) eine gegebene
lineare Abbildung. Bezüglich (gegebener) Basen in E bzw. F wird T dargestellt durch eine (m, n)-
Matrix

A = [Y,nJ1g/‘gm; (3.51)
ist. gn,

Die zu T duale Abbildung T’ ist dann durch die (n, tm-Matrix

A’ = [tfkhg 5„ mit t‚’,„ = IN
I; gilt

gegeben, die F’ = F = R"’ in E’ = E = R" abbildet.
A’ entsteht also aus A durch Vertauschung von Zeilen und Spalten, ist also die zu A lranspunierte

Matrix (häufig mit AT bezeichnet).

Beispiel 3. 7: Es seiK(:, r) (a g I g b: e g s g d) cine reellwertige stetige Funktion zweier Variabler.
Der lineare Operator T:

n

(n) (s) = J’ K(s,t).r(/)d/ (c g s‘ g d) (x eljda, b1)

bildet den Raum Lflmh] stetig in den Raum Läk‘, d] ab. Der zu T duale Operator T’ ist dann
durch die Gleichung

tl

(T’.\-)(.r) = i K(t‚.r).\'(l)dl (a g s g b) (‚v eL;[c,z/1)
l.

gegeben und bildet den Raum F’ = L§[c,:l] = F in den Raum E’ = Läla, b] = E ab. (Man be-
achte, daß entsprechend Bsp. 2.20 in 2.3.2. stetige lineare Funktionale aufLfi und Elemente von Lä
identifiziert werden.) K(t‚s) heißt der zu K(s, t) transportierte Kern.

Für den Übergang zur dualen Abbildung gelten die folgenden Rechenregeln (es

gelte T, Sel.(E. F)):
(1) (T+ S)’ = T’+ S’:
(2) (/IT)’ = 2T’ (i. reell oder komplex);
(3) U5)’ = [Ed
(4) (T”)’ = (7)1;
(5) ist Te L(E. F) und SeL(F. G). so ist STeL(E, G), und es gilt (ST)’ = T’S’.
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längs dieser Wegeinschnitte ebenfalls gegen null gehen und somit die Deformation
nach dem Cauchyschen Integralsatz erlaubt ist:

<- L‘! ‘u

eitn- l)w ei(n+ yv
P,,(c0s/r)=_E_ I ( dcp

-- J’ V/l — 2e"? cosz? + e‘2" \/2(cos<r — cos 2))
—.Lr

._\/E "sinttn +m> my

_ i9

= J2 ‘+c0s((n+%)<P) d,
„i z" \/COSq7—COSL9

-9
27 V/cos go — cos i9

Das zweite Integral verschwindet, da der Integrand ungerade in rp ist, somit wird
‚_ .9

P,,(C0s t7) = J / (‚L (4393)
.. V _

o

Substituieren wir r; = z —- q’ und ersetzen 19 durch 1': — :9’, so ergibt sich nach Weg-
lassen der Striche bei e’ und 29' aus (4.39a)

,_ fl

/2 ‘ s'n( 1 + v

P„(cos a; = ;__ / dzp. (4.3%)
.. V, _ ‚

Die letzten beiden Formeln stammen von Mehler (1872).

4.3. Zugeordnete Kugelfunktionen

Wir hatten im vorangegangenen Abschnitt für die Diflerentialgleichung (4.7) zu-
nächst nur solche Lösungen gesucht, die lediglich von 19 abhängen. Um allgemeinere
Lösungen zu finden. die zudem auch von (p abhängen, machen wir den Separations-
ansatz S„(z9. q) = 9(29) 450p), wobei 0 nur von t9 und (15 nur von (p abhängen soll.
Setzen wir diesen Ansatz in (4.7) ein, so ergibt sich

(D ö ' ‚ d0 0 62115
n(n + 1) 0115 + W 39- (sind-d?)

s.-“Ta T37 =

sin‘ i9 x . .

9g) und einer Umstellung, die die Trennung der

5in0 ‚d (Si Ü d0)_ _1 d2<D

0 d2? dz? ‘ ö de’ '

Beide Seiten müssen somit konstant sein. Wir setzen die Konstante gleich m’. So
erhält man für <15 die einfache gewöhnliche Differentialgleichung

7

oder nach Multiplikation mit
Veränderlichen bedingt:

nth + 1) sin: 19 +

dqf + m3? = 0,

deren allgemeine Lösung

<I>,,.(qr) = Am cos mt; + B,,. sin mr; mit konstantem A„,. B„, (4.40)
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3.3. Lineare Operatoren in Hilberträumen

3.3.1. Grundlegende Begriffe, Sätze und Beispiele

3.3.1.1. Einführende Beispiele

Die linearen Operatoren, die mit der Diskussion physikalischer Probleme auf-
treten, sind häufig Operatoren, die auf einem dichten linearen Teilraum eines Hilbert-
raumes definiert und unbeschränkte Operatoren sind. Dabei heißt ein linearer Opera-
tor unbeschränkt. wenn er nicht beschränkt ist im Sinne der Definition 3.6, ein sol-
cher Operator ist nicht stetig. Es sei z. B. E der lineare Raum aller stetig differenzier-
baren (komplexwertigen) Funktionen, die auf dem Intervall [0, l] definiert sind. Eist
ein dichter Teilraum des Hilbertraumes L2[0, l]. Auf E erklären wir den (linearen)
Operator T durch die Zuordnungsvorschrift: jedem x SE, d. h. jeder stetig diffe-

renzierbaren Funktion x(t) (0 g r g 1) ordnen wir die stetige Funktion x’(t) = (jäh)
zu:

(Tx) (r) = x’(r) (0 g r g l; xeE). (3.58)

Da jede stetige Funktion (hier: x’(t)) zu L2 gehört, ist Teine Abbildung (ein Opera-
tor) von E in den Raum L2[0. 1],

T: E—> L’[0, l].
.\/Ian sagt auch: „T ist ein linearer Operator im Hilbertraum L2[0, l] mit D(T) = E
und R(T) g L2[0, 1]“.

Dieser Operator ist unbeschränkt. Das folgt z. B. daraus, daß die Elemente x,, E E mit x,.(t) = t
(0 g r g l), n = l, 2, .„‚ die Norm ilx„iL2 = (Zn +1)"‘/3 < 1 (n = 1,2, ...) besitzen, für ihre
T-Bilder jedoch ifTx„iiL2 = n(2n —— 1)"l2 gilt; für diese speziellen x,, folgt also [iT.v„!‚=1_2 —> +00 für
n —> + ac, und dabei existiert keine endliche Konstante K derart, daß i‘T.r,,‘,‘L2 g Kii‚\'„ii gilt. Also
ist T unbeschränkt.

Zum anderen betrachten wir eine stetige Funktion q2(t) (0 g t g l) und erklären
den folgenden (linearen) Operator S: L2[0, l] —> L2[0, 1]

(Sx) (r) = ¢(t)x(r) (o g z g 1: x eüio, 1]). (3.59)

S ist ein linearer Operator. der auf dem ganzen Hilbertraum L2[O, l] erklärt ist. Es
gilt für ein beliebiges x eL2[0. I]

'1 1/2 ‘1 1/2

HS-vii = {i IWWXUMZ d?) = {J i¢(t)|2 |X(I)I2 df}
0 l 0 1/2

é i I‘ ( max i¢(r)4‘) Moll dr}
0' 0:221 ‚

I‘ 1/2 I 1/2

= max |gz(r)j2) _[ |x(t)|‘dr} =(max 1c/(t)i2)‘/21‘| |x(t)[‘ dt}
Oglgt o Ogrgl 0

= Kiixii

mit K = ( max igr(z)iZ)‘/2 = max |¢(r)!. Da ¢(I) stetig ist. gilt 0 g K < + oe.
Ogrgl ‚ Og/gl
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Es gilt also llSxll g Kllxll (xeL’[0, 1]), d. h., S ist ein beschränkter (stetiger)
linearer Operator.

3.3.1.2. Die Matrixdarstellung eines linearen Operators

Es sei H ein Hilbertraum und T: H —> H ein auf dem ganzen Raum definierter
linearer Operator. Weiter bezeichne (e„) ein vollständiges ONS (s. Def. 1.5) in H.
Dann läßt sich jedes Bildelement Tek nach den e,, entwickeln:

(D

Tek = ;la,,,,e,, (3.60)

mit
am, = (9,, | Tek) (n, k = I, 2, ...). (3.61)

Ist x eine endliche Linearkombination von e1, ..., e,,,,

x 5515,45 (E,- komplexe Zahlen),
,=

so gilt zufolge der Linearität von T und wegen (3.61) die Gleichung

TX = T< E EJEJ5 = El 51T‘? = f. 5J f anjen
j=l j=l j=1 n=l

m )0 w m n m

= 2 2 a„‚-s‚-e‚. = 2 2 £7,115,-€..= 2 ( a„‚-s‚)e...
j=ln=l n=lj=l n=l j-=1

Bezeichnen wir das Element Tx mit y und stellen y durch seine Fourierreihe dar,

n z y =g1n,e,,

so gilt daher
WI

17,, =_Zla,,‘jEj (n = 1,2,
,=

oder
I)!

nn = 2l<en i Tej> 5J"
‚=

Beachtet man noch, daß S, : (e, | x) und 7],, = (9,, I y) = <e,, l Tx) gilt, so erhält
man die Beziehung

<e„ | Tx> = §<e,|Te,><e,.1x> (n = 1,2, ...). (3.62)
j=l

lst der Operator T zusätzlich beschränkt, so gilt, wie man mittels eines Grenzüber-
gangs zeigen kann, für jedes x e H die Gleichung

(en | Tx) ‘=/~::Ll(e,, | Tej) (e, | x) (n: 1,2, ...). (3.63)

Zufolge der Gleichung Tx = E <e„ l Tx) e„ ist die Abbildung T durch die (kom-
„=i

plexen) Zahlen a„j =_<e„ l Te,-> (11,,/' = 1,2,...) festgelegt. Die (unendliche) Ma-
trix [a,,,] bezeichnen wir als die zum Operator T zugehörige Koordinatenmatrix
bezüglich des gegebenen (vollständigen) ONS.
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3.3.1.3. Der adjungierte Operator eines beschränkten Operators im Hilbertraum

Es sei T ein linearer. beschränkter Operator im Hilbertraum mit D(T) = H. der
H wieder in H abbildet. Für jedes _l' e H und jedes x e H setzen wir

fy(X) = <.v I TX). (3.64)

Für festes y und variables x ist f„(x) ein lineares Funktional auf H. Mittels der
Sehwarzschen Ungleichung erhalten wir unter Benutzung der Beschränktheit von T

lfiml = K)‘ l TX>l E H,1»‘H-HTXU Mil llTll - llXll = KllXl‘ (X611)-

Also ist das lineare Funktional)’, beschränkt (stetig). Nach dem Satz 2,26 (von Riesz)
gibt es genau ein Element z E H mit

j"‚.(x) = {z l x} (x eH). (3.65)

wobei die Gleichung ,‘1f,() = H2)? besteht. Das Element z werde mit T*_l- bezeichnet
(dies bringt zum Ausdruck. daß z durch J‘ eindeutig bestimmt ist). Es gilt also die
Gleichung [beachte (3.64) und (3.65)]

<.l'l TX> = <T*J' I -Y) (166)

für alle my e H. In Abhängigkeit von y ist T“) linear und stetig (Beweis als Auf-
gabe). d. h.. die Zuordnung y —> T*_)' definiert einen (stetigen) linearen Operator
auf H.

Definition 3.14: Der Operator T“, der durch die Gleichung (3.66) erklärt wird, ließt
der zu T adjungierte Operator (auch: die Adjungierte von T).

<

Wichtige Eigenschaften des Übergangs zum adjungierten Operator sind die fol-
genden (T und S bezeichnen beschränkte lineare Operatoren. die auf H definiert
sind):

(l) (T+S)*=T*“+S’*. (4) />== =1.
(2) (/'.T)* = 21*. (5) (T*)* = T.

(3) (ST)“ = T*S*. (6) llT*l' = llTll.
(7) (T")"‘ = (T*)" (falls einer dieser Operatoren existiert).

Zufolge dieser Rechetiregeln gilt speziell für beliebige komplexe i. die Gleichung

(T — ;.1)* = r>== -21
und _

((7 — ;.1)—*)* = (r? — /1/)“.

falls eine der beiden inversen als vorhanden vorausgesetzt wird. m. a. W., gehört i.
zur Resolventenmenge 9(T). so gehört Ä zur Resolventenlnenge g(T*) (s. Def. 3.7)
und umgekehrt. Wegen (7(T) : K\ y(T) gilt dieselbe Aussage für das Spektrum:
r7(T*) besteht genau aus den komplexen Zahlen. die zu den Zahlen aus r7(T) kon-
jugiert komplex sind‘)

‘) lm Hilbertraum übernimmt der adjungierte Operator die Rolle des dualen Operators (s. 3.2.3.).
Auf den einfachen Zusammenhang zwischen beiden Begriffen gehen wir nicht weiter ein.
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Beispiel 3.8: Es sei A = [a„] eine komplexe (n, n)-Matrix. Dann wird durch die Zuordnung
n

771 = Z axxfk (f=1‚-u‚")
k = 1

eine (stetige) lineare Abbildung T des Hilbertraumes K" in sich erklärt, die jedem n-dimensionalen
komplexen Vektor x = (E1, .‚.‚ En) einen ebensolchen Vektor y = (17„ ...,17,,) zuordnet. (In Matri-
zenschreibweise gilt y’ = Ax’.) Die zugehörige adjungierte Transformation T* wird durch die zu A
herrnitesch-konjugierte Matrix A‘ geliefert, wobei A = [a,,,} gilt mit

a}: = ‘T, (3.67)

Mit anderen Worten, gilt y = T"x, so ist

" _

m = E aufi (i = 1‚ --..n) (vgl. Bsp- 3-6)-
k=1

Beispiel 3.9: Es sei T ein stetiger lntegraloperator im Hilbertraum L’[a, b],
b

(Tx) (s) = f K(s‚ l)x(t) dt (a ._<. s g b; x eL2[a‚b]).
a

Die adjungierte Abbildung T‘ hat dann die Form
b

(T*x) (s) = Jl K(t,s)x(t) d! (a ä s § b; x eL2[a, b]). (3.68)

Der Kern K(r, s) heißt auch der zu K(s, t) adjungierte Kern.

Wir geben schließlich noch einige Aussagen über vollstetige Operatoren in Hilbert-
räumen an, darunter die Fredholmsehe Alternative in der Fassung für diese Opera-
toren [s. auch Bemerkung bei (3.47)].

Satz 3.16: Ist H ein Hilbertraum und T: H —> H ein linearer vollstetiger Operator,
so ist auch T* vollstetig.

Satz 3.17: Ist H ein Hilbertraum und T: H —+ H ein linearer vollstetiger Operator,
so gilt:

(1) Das Spektrum von T* besteht aus den zu den im Spektrum von T liegenden kon-
jugiert komplexen Zahlen:

u(T*) = {Ä e K|1eo'(T)}.

(2) Der ganze Raum H Iaßt sich als ortlzogonale direkte Summe des Wertebereichs
des Operators T* — H und des Nullraumes [Vgl (3.7), (3.6) und Def. 2.42] von T — ÄI
für Ä =l= 0 darstellen:

H=(T* -11)[H]EBN(T-U) (Ä + 0)

(N(T — 2.1) = {x e H| Tx — Ax = o}). 6'69)

(3) Die Nullräume N(T — AI) und N(T* — U) haben für I". # 0 die gleiche, endliche
Dimension.

Bemerkung 3.7: Die Eigenschaft (1) in obigem Satz gilt auch ohne die Forderung
der Vollstetigkeit von T für lineares beschränktes T.

7 Göplert, Funktionalnnalysls

8.3.16

S.3.17
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Satz 3.18 (Fredholmsche Alternative in der Fassung für Hilberträume): Es sei
T: H —> H ein vollstetiger linearer Operator. Dann gilt:

(1) Ist Ä e K kein Spektralwert des Operators T, so hat die Gleichung Tx — /1x = y
für jede rechte Seite y e H (vorgegeben) genau eine Lösung. Diese Lösung hängt stetig
von y ab.

(2) Ist l. =I= 0 ein Element des Spektrums des Operators T, so hat die Gleichung
Tx — ix = y genau dann Lösungen, wenn der Vektor y zu allen Lösungen der Glei-
chung T*x — Xx = 0 orthogonal ist. In "esem Fall hat die Gleichung Tx — Äx = y
unendlich viele Lösungen; diese haben die Gestalt

7|

x = x0 + 2 ckxks
k=l

wobei x0 eine spezielle Lösung der (inhomogenen) Gleichung Tx — Äx = y bezeichnet
und die xk die (endlich vielen) linear unabhängigen Lösungen der (homogenen) Glei-
clzung Tx —— Äx = o sind.

3.3.1.4. Der eines L ‘ " ‘ t" - im Hilbertraum

Für unbeschränkte Operatoren ist die Definition des adjungierten Operators kom-
plizierter, da unbeschränkte Operatoren in der Regel nicht auf dem ganzen Raum
definiert sind.

’ w f‘,

Definition 3.15: Es sei T ein auf einem dichten Teilraum D(T) des Hilbertraumes H
definierter linearer Operator mit Werten in H. Es sei D(T*) die Menge aller x e H,
zu denen ein y e H existiert, so daß die Gleichung

(x I T2} = (y I Z) (3-70)

für alle z e D(T) gilt.
"Für jedes x e D(T*) setzen wir dann [wenn (3.70) erfüllt ist]

y = T*x. (3.71)

Der Operator T* heißt der zu T adjungierte Operator.

Bemerkung 3.8: Es zeigt sich, daß D(T*) ein linearer Teilraum von H ist und daß
das Element y gemäß Formel (3.70) eindeutig festgelegt ist, so daß die G1. (3.71)
sinnvoll ist. Auf D(T*) ist dann T* ein linearer Operator, der D(T*) in H abbildet
(aber nicht ste.ig zu sein braucht). Ist D(T) == H und ist T beschränkt, so gilt auch
D(T*) = H, und T* ist der zu T adjungierte Operator im Sinne der Def. 3.14.

Für die Anwendungen in der (Quanten-)Physik sind vor allem symmetrische,
speziell selbstadjungierte Operatoren von Interesse. Wir bringen hier die Defini-
tionen, Anwendungen folgen in Kap. 5.

Definition 3.16: Es sei T ein auf einem dichten Teilraum des Hilbertraumes H definier-
ter linearer Operator. T heißt symmetrisch (oder auch hermitesch), wenn D(T) g D(T*)
und T*x = Tx für alle x e D(T) gilt; m. a. W. : T heißt symmetrisch, wenn die Glei-
chung
l (x | Ty) = (Tx | y) für alle x, y eD(T) (3.72)

gi t.

in diesem Zusammenhang ist der folgende Satz von E. Hellinger und O. Toeplitz
von besonderem Interesse.
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Satz 3.19: Es sei T ein auf D(T) = H (Hilbertraum) definierter linearer Operator, S.3.l9
der D(T) in H abbildet. Falls die Gleichung

(x I TY) = (TX I J’)

für alle x, y e H gilt, so ist T notwendig beschränkt (stetig).

Mit anderen Worten, ein überall auf H definierter symmetrischer linearer Operator
ist (automatisch) beschränkt.

Eine im allgemeinen stärkere Forderung als die Symmetrie ist die Selbstadjungiert-
heit eines linearen Operators.

Definition 3.17: Ein auf einem dichten linearen Teilraum D(T) eines Hilbertraumes H D.3.17
definierter linearer Operator heißt selbstadjungiert, wenn T symmetrisch ist und zu-

sätzlich
D(T) = D(T*)

gilt, d. h., wenn T* = T ist.

Der Nachweis für die Selbstadjungiertheit ist für unbeschränkte Operatoren relativ
aufwendig, die Symmetrie läßt sich oft sehr viel leichter zeigen. Für beschränkte
lineare Operatoren, die auf dem ganzen Raum (= Hilbertraum) definiert sind, fallen
jedoch die Begriffe Symmetrie und Selbstadjungiertheit zusammen. Für unbeschränkte
Operatoren kann man folgende Kriterien für Selbstadjungiertheit benutzen.

Satz 3.20: Es sei T ein auf einem dichten linearen Teilraum des Hilbertraumes H S.3.20
definierter linearer symmetrischer Operator. T ist genau dann selbstadjungiert, wenn

die Bildmengen der Operatoren T + iI und T — iI, also die Mengen (T + if) [D(T)]
und (T — iI) [D(T)] beide mit ganz H übereinstimmen.

Satz 3.21: Es sei T ein auf einem dichten linearen Teilraum des Hilbertraumes H 5.3.21
definierter (linearer) selbstadjungierter Operator. Weiter sei S ein symmetrischer Opera-
tor mit D(T) g D(S). Für gewisse reelle Zahlen ö und c mit 0 g ö < 1 und c g 0 sei
die Ungleichung

IISXH ä ÖHTXH + Cllxll (x €D(T))

erfüllt. Dann ist der Operator T + S mit D(T + S) = D(T) selbstadjungiert.

Dieser Satz, der auf T. Kato zurückgeht, ist vor allem in der Quantenmechanik
nützlich (Beweis: [36, S. 209]).

Ein Beispiel für einen selbstadjungierten, unbeschränkten Operator erhält man in
folgender Weise.

Beispiel 3.10: Es sei H = L2(R) der Hilbertraum der (Klassen von) quadratisch summierbaren
(komplexwertigen) Funktionen x(t)(—oo < t < +00) und W"’(R) der zugehörige Sobolew-
Raum der verallgemeinert zweimal differenzierbaren Funktionen. W"2(R) liegt in H dicht [vgl
(2.27) und Satz 2.19]. Der Operator T: W2"(R) —> H, der durch die Vorschrift

Tx(t) = ——x”(t) (— o0 < t < +00; xe W“(R))

erklärt ist, ist selbstadjungiert in H (Beweis: [36, S. 287]).

7*
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3.3.2. Vollstetige selbstadjungierte Operatoren im Hilbertraum

Die Eigenschaft der Vollstetigkeit hat für die Gestalt eines auf dem ganzen Raum
definierten selbstadjungierten Operators wesentliche Konsequenzen, die zuerst von
D. Hilbert erkannt wurden.

Satz 3.22: Es sei H ein (separabler)‘) Hilbertraum und T: H —> H ein selbstadjungier-
ter, vollstetiger Operator. Dann besitzt T Eigenwerte ll , h2, ...‚ }.„, ..., und es existiert
ein in H vollständiges ONS von zugehörigen Eigenvektoren e, , ez, ...‚ e„‚

Te„ = Ä„e„ (n = 1,2,

Ist H unendlichdimensional, so gilt lim 1„ = 0.
n-ooo

Unter den Bedingungen des Satzes 3.22 hat die dem Operator T zugeordnete
Matrix die folgende Gestalt [s. (3.61)]:

/1,, für j = n,
au = <e„ I Te,«> = <en[]‘J‘ej> = 2'J'<en J e‚> = 0 für]. + n

Dem Operator T entspricht somit eine (i. allg. unendliche) Diagonalmatrix, in der in
der Diagonale die Eigenwerte des Operators stehen; m. a. W.‚ vollstetige selbst-
adjungierte Operatoren lassen eine ‚‚Hauptachsentransformation“ zu, wie dies von
reellen symmetrischen Matrizen her bekannt ist. Die Bedingung der Selbstadjungiert-
heit ist dabei wesentlich. Es gibt nicht-selbstadjungierte vollstetige Operatoren, z.B.
den Operator e

S

(Tx)(s) = j x(t)dt (o gsg 1) xeLa[0,1]
0

im Hilbertraum LEJO, l], die keinen einzigen Eigenwert besitzen.
Wie für reelle symmetrische Matrizen gilt die folgende Aussage über die Eigenwerte

und Eigenvektoren eines (nicht notwendig beschränkten) symmetrischen Operators.

Satz 3.23: Es sei T ein symmetrischer Operator im Hilbertraum. Dann gilt
(I) Jeder Eigenwert von T ist reell;

(II) Eigenvektoren zu verschiedenen Eigenwerte): sind zueinander orthogonal.

Beweis. Ist Tx = 2.x mit x =¢= o, so folgt mittels der Symmetrie von T die
Gleichheit }.(x I x) = (xllx) = (x | Tx) = <Tx[ x) 2 (1x | x) = }.(x] x) mit
Hxijz = <x|x) > 0. Folglich muß 1: Ä gelten; Ä ist reell. Gilt zum anderen
Tx = Äx und Ty = ‚uy mit x + o, y 4: o und 7. ä: ‚u, so sind /l„u reell, und wir er

ha1tenn<xly> = <xluy> = <x| Ty> = <Txly> = </1x|y> = 1-<xly> = 1-<x|y>
also (xly) = 0. I
3.3.3. Störungsrechnung

In der Störungsrechnung (allgemeiner: in der Störungstheorie) beschäftigt man sich mit der
Frage des Verhaltens von Eigenwerten und Eigenvektoren (bzw. allgemeinen Operatoreigenschaften)
eines Operators in Abhängigkeit von sog. „Störungen“ eines gegebenen festen Operators. Zum
Beispiel sei To ein selbstadjungierter Operator im Hilbertraum H, S ein weiterer selbstadjungierter

‘) Ein Hilbertraum H heißt separabel, wenn es eine Folge {x„) E H gibt, so daß zu jedem x e H
eine Teilfolge (‚m‘) von (x,,} existiert, so daß x = lim x,“ ist.

keoo
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Operator mit dem gleichen Definitionsbereich wie T0, der (wie 70) Werte in H besitzt. Mit e werde
eine (beliebige) reelle Zahl bezeichnet. Der Operator

T0 + es ’ (3.73)

kann (insbesondere für betragsmäßig kleine e) als eine „Störung“ von T0 angesehen werden. Der
Operator T0 besitze einen Eigenwert l0 mit zugehörigem Eigenvektor x0; (x0 # o)

ToXo = 10X0-

Man fragt nach den „gestörten“ Eigenwerten Ms) bzw. Eigenvektoren x(e), die die Gleichungen

(T0 + SS) x(e) = 2(5) .x(s), (3.74)

lim x(s) = x0, 1im}.(s) = 7.0 (3,75)
e—»o z—>0

erfüllen. Die Forderung (3.75) besagt, daß für kleine Werte von e der gestörte Eigenwert (bzw. der
gestörte Eigenvektor) in der Nähe des ungestörten Eigenwertes (bzw. Eigenvektors) liegt und für
e —+ 0 in diesen übergeht (Stabilitätseigenschaft). Derartige A ‘ abenstellungen haben u. a. bei der
quantenmechanischen Erklärung der Aufspaltung von Spektrallinien durch ein Magnetfeld große
Bedeutung erlangt [4]. Es sei nämlich T0 der selbstadjungierte Hamilton-Operator eines quanten-
mechanischen Systems, 7.0 ein Eigenwert (Energieniveau) des stationären Zustandes x0 (s. 1.2.3.).
Wirken nun äußere Felder, die durch den Störoperator S beschrieben werden, so besteht ein wich-
tiges Problem darin, zu 7.0 und x0 „benachbarte“ [s. (3.74)] stationäre Zustände bzw. Energie-
niveaus zu finden, die zu To + 6S „gehören“; die Gln. (3.75) beschreiben die „Aufspaltung“ in
benachbarte Zustände und Niveaus.

Im folgenden sei vorausgesetzt, daß der Operator T0 ein vollständiges ONS von Eigenvektoren
a0, 2„ eg, ...‚ e„, zu den Eigenwerten 7.0, 7., ‚ ..„Ä„‚ besitzt. Es sei e0 (bis auf Vielfache) der
einzige Eigenvektor zum Eigenwert 20. Mit den obigen Bezeichnungen sei x0 = eo.

Zur Lösung der GI. (3.74) wird ein (formaler) Potenzreihenansatz bezüglich a aufgestellt [der
bereits (3.75) erfüllt]:

a)

1(8) = 7-o + /1,8 + ‚uzez + = 7.0 + Z ‚ukel‘,
k=1
m (3.76)

x(6) = en + s2, + e22; + = s0 + Z e"z,‘,
/(=1

wobei die Koeffizienten ‚u„ und die Vektoren 2k aus (3.74) zu bestimmen sind. Für die weitere Rech-
nung fordert man noch die Gleichung

<x(£) l x(e)> = 1, (3.77)

die nur eine Normierung von x(e) beinhaltet. Ferner werden die Vektoren zk nach den Vektoren
des ONS (e„) entwickelt:

so

z,‘ = Z o.‘J“)ej (k = 1,2, ...). (3.78)
j=0

Einsetzen von (3.76), (3.77) und (3.78) in die GI. (3.74) sowie anschließender Koeffizientenvergleich
liefert die sog. Formeln der Störungstheorie für die wesentlichen Bestandteile ‚u, ‚ m; z, , 2;:

’° ]<S€o 18,-)?’
I’1 = <-$90190}; ‚"2 = 2 j (3.79)

1= -0 " ‘f’.

Z1 = e?"&:°> e,, (3.80)
j=1 ‘o - /v‘

„c ‚_ .

Z2 : i <‘:kwS:0><;e1\'SeA'> e] _ so (Sei) leo) <9} L590) j

‚r:ik=i U-0- vJ)(.-0":~k) j=1 (Äo-Äj)

1 x <-’-’j l 53o>'a1

_ 3 (E. (2., — 2.,)! )”"'
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Damit sind Ä(e) und x(e) für betragsmäßig kleine e näherungsweise berechenbar.
Tritt, im Gegensatz zu unserer bisherigen Voraussetzung, der Fall ein, daß zum Eigenwert lo

mehrere linear unabhängige Eigenvektoren gehören, so muß der Ansatz für x(e) modifiziert werden.
Es gelte z. B.

lo = 1, = = Ä„_, (lo ist ein n-facher Eigenwert),

dann wird der Ansatz

Ms) = lo +,u1e + /A282 + ..., (3.81)

n-l
x(e) = 2 c‚.e,. + e21 + e222 +

r=0

anstelle des Ansatzes (3.76) mit unbekannten Koeffizienten c, (r = 0,‘..., n —- 1) gemacht.
Für die Bestimmung der Koeffizienten c2 und des Wertes ‚u, erhält man [mittels Einsetzen in (3.74)

und Koeffizientenvergleich] ein Matrizen-Eigenwertproblem, die sog. Säkulargleichungen:

<90 | S90) (eo l S91} (Eo l S9n_1> Co Co

(er {.S:‘eo> . A C1. = M cl. _ (3.82)

<en—1 i590) <en—1 |S31> <9n—1 l Sept-i) („-1 Cn—l

Mit anderen Worten, ‚u, ergibt sich als Eigenwert und (co , c1 ‚ .. .‚ c,,_1) als Eigenvektor der „Säkular-
matrix“ [(2,] Se„>] (0 ä j, k ä n — 1). Hat diese Matrix verschiedene Eigenwerte, so erfolgt die
bereits erwähnte „Aufspaltung der Eigenwerte“ für den Eigenwert 1o des Operators To bei Ein-
schaltung der Störung eS.

Beispiel 3.1l. Im reellen Hilbertraum H = R’ seien To bzw. S die durch die Matrizen

1 2 1 0 O 0

To=[211] bzw. S=[000J
1 1 3 0 0 1

beschriebenen linearen Operatoren (selbstadjungiert). Der Operator To besitzt die Eigenwerte

1.0 = 3 + (/2; l1 = 3 — \/2; A; = -1 mit einem zugehörigen (vollständigen) ONS von Eigen-
Vektoren.

1/2 1/2 „ß
eo: I/2 ; el= 1/2 ; 92: _1/J2 _

0i/fi —1/(/E

Nach den Formeln (3.79) ergibt sich durch die Entwicklung des Eigenwertes }.„(e) des gestörten
Operators To + 5S nach Potenzen von s bis zu Gliedern mit a2 die Näherung (für kleine Werte

. _ 1 E .. .‚ . .

von |e]) Äo(e) z /.g + ms + ,u2s2 = 3 + ‘/2 + -5 s + #6- 22. Fur den zugehorigen (normierten)

Eigenvektor x(s) erhält man nach (3.80) näherungsweise

\.1é£—1e2

\/is ._;e2F 12s

1 L532_.£ —

ß 52
x(e) zen + cz1+ 5222 = eo — Tee, — 6—4eo=

M
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4. Ausgewählte Anwendungen

4.1. Distributionen

In Abschnitt 1.2.2. waren schon Distributionen als lineare (stetige) Funktionale
über dem linearen Raum Ü: der über dem R" definierten, finiten, beliebig oft diffe-
renzierbaren Funktionen erklärt worden. Sie spielen in der modernen Theorie der
Differentialgleichungen eine überragende Rolle [38], [39], [42]. Wir gehen jetzt genauer
darauf ein.

4.1.1. Distributionen als lineare stetige Funktionale

Definition 4.1: Unter einer Distribution L verstehen wir ein lineares stetiges Funk-
tional L über dem Grundraum D = Ö°°(R") (s. Def. 2.17), wobei in D die Konver-
genz einer EIementfoIge {¢p,,,} gegen (p gegeben ist durch [s. (2.l4)]

{D‘*<p„.} -> D“? (o: ä 0. gaHZ);‘) (4.1)
{<p,,,} —> (p <:> ‚es existiert unabhängig von m eine beschränkte Menge

U g R" mit supp (pm g U. (4.2)

D ist nichtleer [38, S. 69]. Die Menge der Distributionen bezeichnen wir mit D’;
D’ ist nichtleer: denn jede lokalsummierbare (s. Def. 2.19) Funktion f liefert ein
Element L, aus D’, indem wir f das Integral

Lt?’ = I‘ f(x) <P(x) dx = (fi w) (97 G D) (4-3)
R.

zuordnen. Dieses L, ist bei festem f über D linear und stetig, also eine Distribution.
Distributionen, die eine Darstellung (4.3) gestatten, heißen regulär, andernfalls
singulär. Die regulären Distributionen sind eineindeutig den lokalsummierbaren
Funktionen zugeordnet, wenn man äquivalente Funktionen als gleich ansieht
(s. 2.2.2.). Wenn wir in der Menge L,‘„(R") jeweils f durch L, ersetzen und bis auf
Mengen vom Maß 0 gleiche Funktionen als gleich ansehen, die so gewonnene Menge
sei M, so gilt M g D’. Da das bezüglich 0 e R" gebildete Dirac-Funktional
[s. (I.49)] Ö0:

(60: w) = Lid?) = 90(0) (av E D) (44)
auch ein lineares stetiges Funktional über D ist, was nicht durch ein lokalintegrables
f repräsentierbar ist [38, S. 74]. so ist M g D’, weswegen Distributionen auch „ver-
allgemeinerte Funktionen“ heißen. Man kann jeder von ihnen auch einen Träger
(für Funktionen s. Def. 2.17) zuordnen: Wir sagen nämlich zunächst, daß eine ver-

allgemeinerte Funktion L in einem Gebiet G g R" (G habe nichtleeres Inneres,
int G # 0, s. Satz 2.3l) verschwindet, wenn gilt L<p = 0 für alle goeD mit
supp zp g int G, und nun wird definiert:

Definition 4.2: Ein Punkt x e R" gehört zum Träger von L, supp L, falls in keiner
Umgebung von x gilt L = O.

Beispielsweise ist daher supp L50 = {O}, und zwei Distributionen L„L2 heißen
gleich, wenn L190 —- Lzq) = 0 gilt; sie heißen gleich über G (wobei G wie oben ein
Gebiet mit nichtleerem Inneren ist), falls L1 — L2 = 0 über G gilt.

l) Gleichmäßige Konvergenz für jeden Multiindex 0c.

D.4.1

D.4.2
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4.1.2. Rechenregeln

Definition 4.3 (Diflerentiationsregel): Ist die Distribution L gegeben, so ist die (distri-
butionelle) Ableitung der Ordnung-a von L die Distribution D"L mit [s. auch (L50),
(2.23), (2.l4)]

(D“L) (w) = (-1)'“' L(D”<P) (r E D)- (4-5)

Die Reihenfolge der Ableitungen (bei n > l) spielt keine Rolle.

Beispiel 4.1: Es sei L die Delta-Distribution Ö0. Dann ist

(D7130) (<17) = (*1)""'¢5o(D"<I1) = (—1)""'D°‘lP(0) (f)? 6D)- (4-58)

Die Ladungsdiehte für einen im Punkt x = 0 liegenden Dipol mit dem elektrischen Moment +1
auf einer Geraden (x-Achse) entspricht —ö(, [38].

Ist f stetig dilferenzierbar bis auf die Stelle 2°: e R, an der endliche Grenzwerte
von f und f’ von rechts und links existieren, so berechnet sich für die dieser lokal-
integrablen Funktion f zugeordneten Distribution L, die 1. Ableitung wie folgt:

( Tf(x) «pm ax)
-00

+00

— j" f(x) <i>’(x) dx
—oo

(Lß, w) = L}(<P)

x

- I f(x)<P’(x)dx - Tf(x)<P'(x)dxll

o

-[f(>°< - 0) <P(>°€)] + fXf’(X) <P(x)dx +f(J°€ + 0) WO?)
—oo

+ ff'<x>qa<x>dx

II

— o0

f f’(x) <P(x) dx + (f(>”¢ + 0) -f(>°< - 0)) WC).
+ no

also:
(L;)' = L/' + (f(>°€ + 0) -f(-i - 0)) ÖL (4-51?)

bei der Ö-Distribution steht gerade die Sprunghölie von f an der Stelle 5c als Faktor.
Ist also f an der Stelle 5% stetig, so ist (L,)’ = L,,.

Definition 4.4 (Konvergenz einer Folge {Lm} von Distributionen): {L„‚} heißt kan-
vergent gegen die Distribution L, wofür wir kurz {L,,,} —> L schreiben, falls

<r{L„‚} —> L90 (m e D)

gilt (schwache Konvergenz der Funktionale über D).

(4.6)

Beispiel 4.2: {En} —> S50 von 1.2.2. bei (1.57).

Gilt für die Folge {L„‚} von Distributionen, daß {Lmtp} für jedes (p e D konvergent
ist gegen die Zahl G(q:), so ist G eine Distribution (Satz von Banach-Steinhaus für D).
Umgekehrt gilt: D ist dicht in D’ eingebettet. Jede verallgemeinerte Funktion ist
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also Grenzwert [im Sinne von (4.6)] regulärer Distributionen. Ferner ist D’ mit der
Konvergenz in (4.6) vollständig. {L,,,} —> L zieht auch die Konvergenz der Folge der
Ableitungen {D“L„‚} —> D“L nach sich.

(p i) dx 1st in Abhängigkeit von zp ED eine
x

f üdx} regulärer
x

x2 ilxl> f _

Beispiel 4.3: Der Hauptwert (Bd. 2, S. 231) von f
R

Distribution P: Denn er ist der (existierende) Grenzwert der Folge
Distributionen: Man setze in (4.3)

=0 ([xjS—1-)
._ k ’

l 1 1

x (x|>7).

P ist eine singuläre Distribution. Sie tritt in den Anwendungen (Quantenphysik) bei den Formeln
von Sochozki auf:

1

fr:

—;?6=—in§o+P, x_io =ir:60+P. (4.6a,b)

Die Zeichen +0 und -0 auf der linken Seite sollen auf die Herkunft durch Grenzwertbildung im

Sinne von (4.6) hinweisen: Betrachtet man nämlich die den Funktionen x + 1.5 für e„ > 0,
lim 6„ = 0 zugeordneten regulären Distributionen, also

n-mo

L 1

"W- x+
R

so konvergiert die Folge {L,,<p} für jedes cp:

{Law} -> (-in ¢(0) + P97) (o E D),
und das ist gerade die rechte Seite von (4.6a) [39].

. ‘P(x) dx,
15,,

Definition 4.5 (Multiplikation einer Distribution L mit einer Funktion f): Ist f e C“i,
so definiert man das Produkt f - L durch

(fL) <12 = L(f'P) (¢P G D)- (4-7)

Tatsächlich ist die rechte Seite der letzten Zeile sinnvoll, da f - (p e D.

Beispiel 4.4: Es Seife C°". Wir bilden föo:

(föo) <17 = 5o(f<P) =f(0)¢(0), also f5o =f(0) Öo- (4-78)

Ferner sei f(x) z x. Wir bilden xP:

(xP) o: = P(x<p) = Hauptwertf x? dx = J.1<p(x)dx = I, (4.7 b)

wobei I die von f 2 1 erzeugte Distribution ist.

Definition 4.6 (Faltung zweier Distributionen): Es sei L1 eine beliebige Distribution
und L2 eine Distribution mit kompaktem Träger G, d. /1., supp L2 ist eine kompakte
Teilmenge G g R". Dann versteht man unter der Faltung L1 an L2 van L1 mit L2 die
Distribution

L1 *Lz I (L1 * L2) <19 = L1(L2<F(J’ + -)) (‘P 6 D). (4-8)

D.4.5

D.4.6
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Durch (4.8) ist tatsächlich eine Distribution definiert [39, S. 69], weil L2q2(y + .)
eine Funktion aus D ist.

Beispiel 4.5: Es seien L„L2 reguläre Distributionen, die von den Funktionen L,(x)‚L;(x) erzeugt

werden: (L„ qz) = IL,(x)1p(x) dx, und G = supp L2 sei kompakt. Dann ist
Rn

(L1 «L» a: = f L1(y) [ f L205) w + x) dx]dy
R" R" g

= f Lay) [ f L45 — y) ms) d5]dy
R" R”

(Satz von Fubiui [36] für die Vertauschung der Integrationen)

= f m) [ f L1<y>L2<s — y) dy]ds‚
Rn Rn

und da das zweite Integral gerade die Faltung der beiden Funktionen L1(x), L2(x) ist, können wir

(L1 '14)?’ = im.) ~L2<.» <11(E) d5.
Rn

= (L1(~)*L2(~))9’ (4-9)

schreiben, d. h.‚ die Faltung zweier regulärer Distributionen ist (unter der Bedingung suppLz
kompakt) gerade die von der Faltung der beiden Funktionen erzeugte Distribution.

Beispiel 4.6: Es sei L eine beliebige Distribution. Dann existiert die Faltung mit der Delta-Distri-
bution äo, und es gilt

(L =- 50) ‘P = L(Öo(<P(y + -)))‚

und nach Definition der Delta-Distribution folgt:

(L ~ 5o) w = L(<P(y)) = L(<r)‚ (v: E D).

und daher ist

Lxröo =L. (4.10)

Da die Faltung zweier Distributionen, wenn sie existiert, kommutativ ist, ist auch

6o a: L = L. (4.10’)

Die beiden letzten Formeln korrespondieren zu Bd. l0: „bezüglich der Faltung ist
die Delta-Distribution das Einselement“.

Da Distributionen diiferenzierbar sind, kann auch die Faltung L1 >rL2 zweier
Distributionen diiferenziert werden:

D"(Lr * L2) = (D°‘L1) * L2 = L1 * (D“L2), (4-11)

und das ergibt wegen (4.10) mit L, = Ö0 die interessante Formel

(D550) s: L2 = 60 =s= D"L2 = D"‘L2; (4.12)

Differentiation kann durch eine Faltung mit der entsprechenden Ableitung der
(So-Distribution (die wie Ö0 selbst kompakten, nämlich einpunktigen Träger hat)
ersetzt werden. Man benötigt daher bei Benutzung der Faltung vom Diiferentiations-
kalkül nur die Ableitungen von Ö0.

Hat weder L, noch L2 kompakten Träger, so muß (4.11) nicht gelten! Dazu sei
9 die der Heaviside-Funktion [s. (l.44)], 1 die der Funktion f E 1 und 0 die der
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Funktion f E 0 zugeordnete Distribution. Dann (existiert 9 au I nicht, und es) gilt

0’*1=6*1=1; 0*1’=6*0=0,

wobei sich 1’ so berechnet (zp e D):

1 -<p dx)’ = — j 1 wp’ dx = 0 (Integration!)
n n

Für einen partiellen Differentialoperator P(D) mit konstantenäKoeffizienten folgt
wegen der Linearität aus (4.12)

P(D) =| 12 MD“: (am = a..,..,.....,),
on gm

P(D) L = (P(D) Ö0) * L. (4.13)

Eine Distribution G, die der distributionellen Differentialgleichung

P(D) G = 60 (4.14)

genügt, heißt eine „Grundlösung“ des Differentialoperators P(D). In 1.2.2. hatten wir
zum Diflerentialausdruck D2 in (1.35)

1
—JD2J=P(D)J=Lf+ C (4.15)

eine Greensche Funktion J gefunden; die ihr zugeordnete Distribution genügte der
distributionellen Gleichung P(D) J = 5,0 als Funktion ihres ersten Arguments, als
Funktion der Differenz ihrer Argumente genügt sie der G1. (4.14) (und weil sie den
homogenen Anfangsbedingungen genügte, war sie auch eindeutig bestimmt) und ist
daher eine Grundlösung von P(D).

Es sei nun E eine Distribution mit kompaktem Träger. Dann gilt folgende Dar-
stellungsformel für Lösungen einer Diflerentialgleichung im distributionellem Sinne:

Satz 4.1: Ist P(D) ein beliebiger Diflerentialausdruck mit konstanten Koeffizienten,
um] G eine Grundlösung von P(D), also

P(D) G = Ö0, (4.16)

so gibt es eine Lösung L der distributionellen Dzflerentialgleic/zung P(D)L = E der
Gestalt

L = Ea: G. ' (4.17)

L heißt auch eine verallgemeinerte Lösung der Differentialgleichung P(D) L = E.
Zur Frage, wann eine verallgemeinerte Lösung eine klassische ist, vgl. z. B.

[41/11], [39].
Die physikalische Bedeutung der Lösungsdarstellung (4.17) besteht in der Super-

position E ar G der punktweisen Wirkungen des äußeren Einflusses E: G ist die
Antwort des Systems auf einem punkthaften Einfiuß der Stärke 1 an der Stelle 0,
G * E die richtige Überlagerung der mit E gewichteten punkthaften Wirkungen.

Die Lösungsdarstellung des homogenen Anfangswertproblems

L} + i1 = E(t), 1(0) = 1(0) = 0
C

S.4.l
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lautet (s. 1.2.2.; E stetige Funktion)
I

J0) = I10; E) E(E)dE;
o

und wenn wir berücksichtigen, daß J(t; f) nur von der Argumentedifferenz t — E

abhängt, und J(t; E) = G(t — E) schreiben:

1(1) = ist: — s) 5(5) d5.
o

so entspricht dies wegen (4.9) gerade der Faltung

J = G a: E

in (4.17). (G(t — E) verschwindet für E g t).
Beweis von (4.17):

P(D)(E*G) = E=r(P(D) G) = Em, = E. (4.17')
(4.1!) (4. l6) (4.10)

Wir wollen die Rechenregeln durch die Fouriertransformation ergänzen (und
zugleich eine Möglichkeit angeben, zu einem gegebenen Differentialausdruck P(D)
eine Grundlösung G zu ermitteln). Damit die Fouriertransformierte FL einer Distri-
bution L wieder eine Distribution ist und durch

FL: (FL) (w) = L<F<p> up e D) (4.18)

erklärt werden kann, muß F<p in D liegen. Man weiß aber [s. auch (4.2l)], daß Ftp
eine beliebig oft differenzierbare Funktion ist, die nur dann einen kompakten Trä-
ger haben kann (also in D liegt), wenn gilt 1;: E 0. Man muß daher eine Funktionen-
menge 6 als Grundmenge zulassen, die umfassender als D ist. Als Grundmenge 6
wird jetzt die Menge der über dem R" beliebig oft differenzierbaren Funktionen 1;)

gewählt, für die gilt

lim (1 + |x|2)" |D"‘1p| = o (4.19)
|x]—mo

für jedes ganze k und für jeden Multiindex ex. Es ist dann die lineare Abbildung F
ein Isomorphismus von 6 auf 6, der wegen (4.20) auch stetig ist.

Um lineare stetige Funktionale (sog. Distributionen schwachen Wachstums) über
6 bilden zu können, braucht man in 6 einen Konvergenzbegiiff: Für Funktionen w,‘

und 1;) aus 6 gilt:

(‘P0120 " ‘I’ *3’ (XßDiWO/«go ‘* x”D"w (4-20)

für jedes ac, ß und für jedes x e R" [vg]. zu x5 (2.l4)].
Dann ist 6 g D, und aus der Konvergenz in D folgt die in 6; schließlich folgt,

daß jede Distribution über 6 erst recht eine über D, also 6’ g D’, ist. Zu den Ele-
menten aus 6’ gehören:

— Distributionen aus D’ mit kompaktem Träger;
— Distributionen, die von lokalintegrablen Funktionen f erzeugt werden, wobei

_f|f(x)| (1 + x)"" dx < oo für ein gewisses m g 0 gilt (als f können somit z. B.

f(x) =. 90¢), f(x) E 1, fix) = e"""‚ f(x) 6L"(R") für 1 ä p ä °0‚ f6 D Oder
f(x) em Polynom gewählt werden);



4.1. Distributionen 10l

— jede Ableitung D"L einer Distribution L e C5’ und schließlich
— jede Faltung L1 *L2 mit L, g 6’, supp L2 kompakt.
(Jede Distribution aus C6’ ist distributionelle Ableitung einer stetigen Funktion, die
wie eine Potenz wächst [38, S. 112].)

Mit den Distributionen über G, also den L e 6’, werden die Fourier-Transforma-
tionen F ausgeführt. F bildet 6’ auf 65’ (linear und stetig) ab. Ebenso gilt das von
F". Die Distributionen aus 6’ heißen auch „verallgemeinerte Funktionen schwachen
Wachstums“.

Definition 4.7: Ist L e S’, so heißt FL Fouriertransfonnierte von L, und es gilt

(FL) (w) = L(Fw) (w e 6), (4-21)
wobei .

F1/1 = 1/2(x) e‘<5|"> dx (Ip e S)
R.

aus 6 ist 1). F ist ein linearer stetiger Integraloperator über 6 (und C3’).

Eigenschaften: Es sei L e S’. Dann ist:

D"(FL) = F((ix)°‘ L); (4.22)

F(D”L) = (-i5)“ F(L)2); (4-23)

F9 = 1-. Ö0 + iP; (4.24)

F60 = 1 (die vonf E 1 erzeugte Distribution); (4.25)

FLzp(x + 5e) = ei<5-’°‘>FLq2(x); (4.26)

F1 = (21:)" 60, wobei 1 die vonf(x) s 1, x ER",
erzeugte Distribution ist; (4.27)

F69 = e‘<5l9>, wobei Q = (£1, ..., in)’ der charakteristische

Punkt von Ö0 sei; (4.28)

Fm») = w) e-*<e»x> de = w) (—x); (4.29)

F( [|x|\‘2) ‘= 2n2n5u—1 bei x,.£eR3; (4.30)

F-I(u§u-2) = (47:\|x|1)“ bei x, 5 e123. (4.31)

Wird schließlich die Distribution L e S’ von einer lokalintegrablen Funktion f er-

zeugt, so wird FL von Ff erzeugt.

Bemerkung 4.1: Ist G eine Grundlösung schwachen Wachstums (d. h. Ge 6’) von
P(D) = Z a,D‘, so gilt

P(D) G = a... (4.32)

1) Manchmal (vgl. z. B. [36, S. 98] und (4.29)) steht —i<5 [ x> statt i<5 [ x) in der Definition von

F und der Faktor (27:)"‘ bei F bzw. als (27r)‘"/z bei F und F“.
1 w ‘ 1

z) Also F“ — —i- D} L) = E°‘F(L)» daher wird in der Physik statt D oft der Operator —- — D

benutzt. Die Formel ergibt sich durch partielle Integration.

D.4.7
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Fourier-Transformation liefert

F(P(D) G) = Z a„(-i5)“F(G) = Föo = 1, (4-33)

P(—i§) F(G) = 1. (4.34)

Diese Gleichung für F(G) ist in G’ stets lösbar [38]. Es gibt also zu jedem Differen-
tialausdruck P(D) mit konstanten Koeffizienten eine Grundlösung schwachen Wachs-
tums! Die Konstruktion der Lösung hängt von der Lage der Nullstellen von P ab.
G selbst ist über die inverse Transformation F“ durch F"(F(G)) prinzipiell be-
stimmbar [38, S. 134].

In 1.2.2. hatten wir für die Differentialgleichung

P(D) J = Li + LCJ = 0 (4.35)

die Greensche Funktion zu homogenen Anfangsbedingungen gefunden:

J(t; 1.,) = 9o: — to) sin :/Tfif = G(t — to). (4.36)

Diese Funktion erzeugt wegen der Hinweise unter (4.20) eine Distribution G aus 6’,
da (t — to = T gesetzt)

f |G(-r)] (1 + pr|)—2 d'r < oo (4.37)
R1

gilt. G löst (4.34) für P(D) in (4.35).
Wir wollen jetzt umgekehrt eine Grundlösung nach (4.34) konstnneren. Dazu be-

trachten wir den Laplace-Operator P(D) = A in 3 Dimensionen. Eine Grund-
lösung G muß also der G]. (4.34) genügen:

P(—i£) F(G) = I, (4.34’)

wobei wegen P(D) = A gelten mull

1’(~i5) = (—iE;)Z + (-i£2)’ + (-iEa)’ = —l|E1i‘- (4-33)

Zunächst ist F(G) gesucht, also ist die Gleichung

- IIEH’ F(G) = 1 (4-39)

nach F(G) aufzulösen. (4.39) ist eine Gleichung vom Typ (4.7). Da — Hflkzeine im
R3 integrable Funktion ist (dies gilt auch für mehr als drei Raumdimensionen, nicht

aber für n = 2, dort hat die Grundlösung mit 2%] In Ilxll gegenüber (4.43) für

n = 3 auch eine ganz andere Gestalt; die Lösung von (4.39) hängt dann mit der
singulären Distribution P zusammen), gilt für die von —HE|]‘2 erzeugten Distri-
bution

-IJEH’ (—IIEH"‚ w) = FHEII", ~l|§||’ w)

=(1,w)= L (4-40)

folglich löst F(G) = t — NEU-ä w) die G1. (4.39), daher

b = F-w-usu-ä w) = <F"‘(— 151-2), w). (4.41)
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und aus (4.31) folgt

l
= _ ___ 4.42( Mx“ w), < >

daher ist eine Grundlösung gefunden; sie wird erzeugt von

1 3G3(x) — —- E W (x e R ). (4.43)

Dies ist die bekannte Fundamentallösung des Laplace-Operators A im R3.

Bemerkung 4.2: Eine lineare stetige Abbildung A eines Hilbertraumes E, auf einen Hilbertraum E;
mit der Eigenschaft <f I g>gl = <AfI Ag);-2 für f, g E E1 heißt unitär. Fund F'1 sind als Abbildun-
gen mit D(f) = L’(R"), D(F") = L’(R") unitäre Abbildungen [36].

Dies kann man ausnutzen, um eine Variante des Sabolewschen Einbettungssarzes zu beweisen.
Es ist im Sinne der Ersetzung von Lz-Funktionen durch Distributionen aus G’:

L2(R") S 5'03"), (4-44)

damit erst recht

W""(R") g (5’(R"), (4.45)

wobei W“ in 2.2.3. definiert wurde.F ist dann eine Abbildung von W"-Z(R") auf L2,,(,,,, wobei
p(x) = (1 + |lx1|“‘)‘” und Li“, der Hilbertraum L§(,,,(R") = {f(x) l p(x)f(x) EL2(R")} mit dem
Skalarprodukt

(f1 €>L‚2(x) = <Pfl17A’>1.¢

ist, und F ist sogar unitär, wenn in Lfim zu einer äquivalenten Norm übergegangen wird. Ist C‘(R")

die Vervollständigung von C°°(R") in der Norm

llfllci = Z sup !D°‘f(x)l‚
my xeR"

(4.46)

(4.47)

so gilt

Satz 4.2 (Sobolewscher Einbettungssatz) [36]: Ist k g 0 ganz, I > g eine natürliche

Zahl, dann ist der Hilbertraum H1 = W""'2(R") stetig in den Banachraum Ö"(R")
eingebettet. Es gibt daher eine Zahl c, so daß für alle fe W'*"-’(R") gilt

Ilfllek § CiIfH wmz.

Beispiel 4.7: n = 3, k = 0, I = 2. Dann ist l > ä, also sind die verallgemeinerten Ableitungen

nullter Ordnung (d. h. die Funktionen f aus W"2(R3) selbst) stetige Funktionen (im Sinne der
Gleichheit fast überall mit einer stetigen Funktion).

(4.48)

4.2. Difi'u-entialrechnung und Anwendungen

4.2.1. Ableitungsbegrifle

Die wichtigsten Sätze der gewöhnlichen Differentialrechnung (s. Bd. 4) beruhen
auf dem Begrifl" des totalen Differentials: Eine Funktion f mit Definitionsbereich
D(f) = R" heißt im Punkt 5% total differenzierbar, falls

f(>'C + h) -f(>°€) = Vf(>'?)T/1 + 0(J|h\|) (h ER") (4-49)

S.4.2
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gilt. Dabei bedeutet u(|Jh]|), daß gilt

lim Ilhll“ 0(lihli) = 0- (4-50)
llhll->0

Definition 4.8: Der lineare Anteil des Funktionswertezuwachses in (4.49), der durch

df = Vf(i)T h = %f<2) h.- (4.51)

gegeben ist, heißt das totale oder Frechet-Diflerential von f an der Stelle i6.

Der Vektor Vf(5é) „erzeugt“ diese lineare Funktion. Er heißt (Fréchet-) Gradient
von f an der Stelle 3%. (4.50) heißt, daß das Frechet-Differential den Funktionswerte-
zuwachs f()°c + h) — f(5é) ,,von höherer als erster Ordnung“ bezüglich der Norm des
Argumentzuwachses approximiert.

Bemerkung 4.3: Ist der Definitionsbereich D(f) nicht der Gesamtraum, so muß stets
(i + h) eD(f) sein in (4.49), (4.50). Die eindeutige Bestimmtheit des Gradienten
Vf(>°c) ist noch gesichert, wenn der Definitionsbereich D(f) die Form

>°c+M={J"c+y|yeM} (4.52)

hat, wobei i: fest ist und M eine oflene Nullumgebung ist (d. h., eine offene Menge,
die den Nullpunkt enthällt).

Es sei nun B ein reeller Banachraum: -B = (B, ll . H), und f ein über B definiertes
Funktional; ist [ein über B lineares stetiges Funktional (s. Def. 2.29), so schreiben
wir statt f(x) auch (f, x) in Anlehnung an die Schreibweise von Distributionen
[s. (4.4)] oder die Schreibweise von linearen stetigen Funktionalen als Skalarprodukte
(s. Satz 2.26) in Hilberträumen.

Definition 4.9:fheißt im Punkte SE Fréchet-dzflerenzierbar, falls ein (von 2% abhängiger)
Element f *()°c) aus dem Dualraum B’ existiert, so daß gilt

f0? + h)=f(>°<) +(f*()°<)J1)+ 0(HhH) (h E B)-

Die Größe (f*(J°c), h) stellt den linearen Anteil in der Zerlegung (4.53) dar und
wird Fréchet-Differential von f an der Stelle it genannt. f*()‘é) e B’ heißt Frechet-
Gradient oder Frechet-Ableitung von f an der Stelle 5%. Wir behalten auch die im
R" übliche Bezeichnung bei :f*()'é) = Vf(J'?). Gilt Bem. 4.3, so ist in (4.53) h e M c B
zu nehmen?)

(4.53)

Beispiel 4.8: Es sei H ein reeller Hilbertraum, A ein selbstadjungierter (s. Def. 3.17) linearer steti-
ger Operator von H in sich, g ein festes Element aus H. Dann sei

f(X) = (AX l x) - 2<g I x). (4-54)

f ist überall auf dem Hilbertraum definiert. Wir wollen prüfen, ob das Funktional f Frechet-difle-
renzierbar ist. Es sei i ein Element aus H. Wir bilden die Zerlegung (4.53):

f()‘c+h)=<A(‚i:+h)l)t+h>—2<g|2t+h>

= (AM5) — 2<E|>'€>+ (A/1iI?>+<AJ'€|h) — 2<g|h> + (A/INK),

und weiter gilt insbesondere, da A selbstadjungiert ist,

f(.€ + h) =/oz) + 2<Ax | h> — 2<g I h> + (Ah [h>. (4.55)

‘) Das Fréchet-Differential kann man natürlich für jedes h E B bilden.
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Die Schwarzsche Ungleichung und die Besehränktheit von A ergeben

(All l ll> ä ‘fAil. llhllz. (4-553)

folglich ist
2<AX‘ — g l /1) (4.56b)

der lineare Anteil des Zuwachses f(i: + h) — f(i), also istf in i: Fréchet-differenzierbar, und es gilt

f*(-V‘) = 2(/if - s). (4-560)

Neben der Frechet-Diflerenzierbarkeit studiert man noch einen weiteren Ab-
leitungsbegrifi‘: Wir wollen dazu in (4.53) für h setzen h = ocs, wobei 0c ein reeller
Parameter und s ein festes Element aus B sei. Es sei wiederfein Funktional über B.
lst f Frechet-difierenzierbar an der Stelle 5E, so folgt aus (4.53)

um f0? + M) -f(>°c)
a-+0 06

= (Vf(>°<), S) + li§;%0(|Jas|l) = (Vf(>°c).S). (4-57)

und dies ist gerade die Ableitung von f an der Stelle 2% bezüglich der Geraden in
s-Richtung.

Definition 4.10: Istfein Funktional mit D(f) = ic + M = + s I e M}, Mlineare
Teilmenge von B, und existiert

d r
1imé(f()'E + zxs) — wo) L am, s) (4.58)
42-00

für jedes s e M, so heißt öfbt, s) das Gateaux-Diflerential (I. Variation) von fan der
Stelle fc in Richtung s; f heißt dann Gateaux-diflerenzierbar an der Stelle i.

Bei (4.57) folgte: ist f an i: Frechet-differenzierbar, so auch Gateaux-diiferenzier-
bar. Umgekehrt gilt (mit D(f) E B)

Satz 4.3: Existiert das Gateaux-Diflerential in einer Normumgebung von ‚t in B und
ist öf(x‚ s) gleichmäßig stetig in x und stetig bezüglich s, so stimmt es mit dem Frechet-
Diflerential von f an der Stelle 56 überein [24, S. 310].

Beispiel 4,9: Ist A in (4.54) nur linear, selbstadjungert und nicht beschränkt, so ist sein Defini-
tionsbereich D(A) g H eine lineare in H dichte Teilmenge (s. Def. 3.17) und D(A) = D(f). Wir

wollen das Gateaux-Differential berechnen. Es ist für it eD(A), s E D(A) wegen 
= %(2(AA': l zxs) —- 2<g [ M) + oc2<Ax I s):

öfli, s) = 2(Ai —— g | s). (4.59)

In diesem Falle ist das Gateaux-Difierential 6f(X, s) ein bezüglich s lineares stetiges Funktional.
Dann heißt das „erzeugende“ Element 2(Ai — g) der Gateaux-Gradient. Er sieht freilich genau so

aus wie in (4.56c)‚ aber diesmal ist die Gültigkeit der Zerlegung (4.53) nicht gegeben, wir haben
nur aus (4.59) den Gradienten formal so abgelesen wie in (4.53). [(4.56a) gilt für A jetzt nicht.)

4.2.2.

4.2.2.1.

Anwendungen der Ableitungsbegrifle

Beziehungen zur Variationsrechnnng

An einem wichtigen Beispiel soll erläutert werden, wie in der Variationsrechnung
notwendige Bedingungen für relative Extremalstellen eines Funktionals f hergeleitet
werden können (vgl. auch Lemma 5.l—5.3).

8 Göplert, Fnnktionnlnnalysis

D.4.l0

S.4.3
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Über dem Einheitskreis K = {(x, y) I x2 + y’ g l} werde der reelle Hilbertraum
H = Lfi(K) betrachtet. Die Menge der über K zweimal stetig ditferenzierbaren Funk-
tionen u, die auf dem Kreisrand OK gleich einer dort vorgegebenen Funktion
(p e C§(bK) sind, ist dann eine Teilmenge SB von H. Für jedes u aus $8 gilt also,
wenn der Kreisrand durch Polarkoordinaten r = I, 0 g ‘E g 27-c beschrieben wird:

u(cos 1, sin r) = zp(t), 0 g 1 g 27:. (4.60)

Wir betrachten das Funktional f (Dirichlet-Integral):

f(u) = (ui + 14,’) dx dy, D(f) = 53. (4.61)
K

Wir stellen die Aufgabe, relative (= lokale) Extremalstellen vonfzu charakterisieren.
Eine Stelle ü e 53 heißt relative Extremalstelle von f über ü wenn bei hinreichend
kleinem s > 0 für alle u e53 mit liu — üllg < s gilt

f(u) ä f(ü). (4-52)

In der Variationsrechnung betrachtet man diese zu ü benachbarten u in der Form
u = ü + an mjt 17 E M ={17 e C§(K) I17 = 0 auf öK} und für [a] hinreichend klein;
„ü wird variiert“. In der Tat ist bei vorgegebenem a > 0 und r; =4= o E H

llu - fill = llü + M7 - fill = l<><l ' um: < s,

falls nur |zx| < Hnfl" e, und für solche ac lautet (4.62)

f0? +M7)äf(ü)‚ UEM- (4-63)

M ist eine lineare Teilmenge von H. Ist nun ü eine relative Extremalstelle von f
über Q3, so muß sie notwendig (4.63) erfüllen. Wir fassen daher die Menge ü + M g H
als neuen Definitionsbereich von f auf. Ist f an der Stelle ü Gateaux-dilferenzierbar
in Richtung 1; (für jedes 17 e M), so muß

r3f(z2,17) = 0, 17 e M, (4.64)

sein; denn wir brauchen nur die Vorzeichen des Quotienten

1 . .:(f(u + MI) -f(14)). 77 fest. (4-65)

zu studieren: wegen (4.63) ist (4.65) größer gleich null für (kleine locl bei) ac > 0,
kleiner gleich null für (kleine |zx| und) ac < 0; da der Grenzwert öf(ü, n) für (x —> 0
existiert (Gateaux-Differenzierbarkeit) und Ungleichungen beim Grenzübergang
erhalten bleiben (s. Bem. 2.1), muß

0 g ÖfOÄ 77.) ä 0 (4-66)

sein; das ist gerade (4.64). (4.64) heißt auch: die erste Variation (erzeugt durch den
Übergang von ü zu ü + am) von f an der Stelle ü muß verschwinden.

Wir berechnen jetzt das Gateaux-Diiferential Öf(ü,7;) von f an der Stelle ü in
n-Richtung:

%[ H ((17, + my + (ü, + c<77,)2)dx dy — H (ü; + 12;) dx dy] (4.67)

K K

= ff 120747: + üym) + 0407i + 773)] dx dy (4-68)
K
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und wegen der l. Greenschen Formel (vgl. Bd. 8, S. 97),

(jagt, + ü„t«‚.)dx dy = — (vA12)dxdy + fa 3E dr, (4.69)

K K ÖK

wobei n‘ die (normierte) Außennormale bezüglich OK ist, folgt aus (4.68), wobei
v = n gesetzt werde,

öf(ü‚n) = lim%(f(ü + m) —f(ü)) = —2H„Aü dxdy (neM). (4.70)
u-«O

K

Dabei verschwand das Randintegral, weil 7; auf dem Rand verschwindet, und die
Normalableitung von ü (unter unseren Voraussetzungen) existiert. Also existiert das
Gateaux-Differential. Wegen (4.66) muß es verschwinden:

0 = 6f(z2,r,) = —-2_|"_[17Aüdxdy (neM).
K

Da nun M ein in H = Lfi(K) sogar dichter (vgl. Satz 2.17) linearer Teilraum ist,
muß Aü selbst verschwindenf) Damit haben wir folgende notwendige Bedingung für ü
erhalten, welches Lösung der Extremalanfgabe (4.62) war:

Aü = o. (4.71)

Eine Lösung ü der Extremalaufgabe (der Klasse Cä(K)) ist also notwendig Lösung
des Dirichlet-Problems:

Aü = 0 im Kreisinnern,

ü(x, y)[ÖK = ¢p(-r) auf dem Kreisrand. (4.72)

Gleichung (4.71) heißt Eulersche Gleichung zum Variationsproblem (4.62). (4.72) sind
für eine relative Extremalstelle notwendige Bedingungen. Bei (p e C§(OK) gilt auch:
das Dirichlet-Problem (4.72) ist eindeutig lösbar, die Lösung gehört zu C§(K) und
ist die eindeutige (sogar globale) Lösung des Variationsproblems, f von (4.61) über
D(f) = SB zu minimieren:

f(u) = Min! (u e e). (4.73)

Man kommt bei Verwendung anderer Beweismittel mit geringeren Regularitäts-
Voraussetzungen aus: Dirichletsches Prinzip (für den Einheitskreis): g sei über K
stetig und in K \ÖK (stückweise) stetig djtferenzierbar, so daß f(g) [s. (4.61)) exi-
stiert. Die Klasse aller Funktionen d5, die in K stetig, in K \ÖK (stückweise) stetig
differenzierbar sind und dieselben Randwerte wie g haben, enthält genau eine Funk-
tion ü, so daß gilt

f0?) é f(‘I’). (4.74)

Diese Funktion ü löst das Dirichlet-Problem für Au = 0 mit u = g auf BK; ü liegt
dann in C’(K\ÖK) (sogar in C“(K\ÖK)). Lit. s. z. B. [l2], [28], [18], [41/III].

’) Das Funktional öf(ü,1;) von (4.70) ist in n linear und stetig auf M. Da M dicht liegt in H
ist jedes Element von H Grenzwert einer Folge aus M. Somit kann 5f(12,77) auf ganz H mit Wert 0
stetig fortgesetzt werden. Das nach dem Satz 2.26 von Riesz eindeutig existierende erzeugende Ele-
ment f* EH kann also nur das Nullelement o e H sein. Das ist (4.71), da nach (4.70) das erzeu-

gende Element —2Aü heißt; da ü in Cfi(K) liegen und Randbedingungen genügen sollte, folgt
daraus (4.72).

3*
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4.2.2.2.

Analysis beinhaltet das Studium von Räumen und von Abbildungen zwischen sol-
chen Räumen unter Verwendung von Grenzwertbegriffen. Man spricht von kon-
vexer Analysis, wenn bei der Gewinnung von Aussagen Konvexitätseigenschaften
von Mengen oder Abbildungen eine wichtige Rolle spielen. Dies ist z. B. bei Fix-
punktsätzen der Fall, die vom Schauderschen Typ sind:

Beziehungen zur konvexen Analysis

Satz 4.4 (Schauderscher Fixpunktsatz [l7], [30]: Es sei E ein normierter Raum und
M g E eine nichtleere abgeschlossene und konvexe Teilmenge von E. Es sei T: M —> E
eine stetige Abbildung mit T[M] g M, und der Abschluß T[M] der Bildmenge T[M]
sei kompakt (s. Def. 2.7). Dann hat T (mindestens) einen Fixpunkt, d.h., es gibt ein
x e M mit Tx = x.

Man kann sich für E etwa den R’ (oder den Banachraum C[a, b]) und für M die Einheilskrcis-
scheibe im R2 (oder eine kompakte konvexe Menge in C[a‚ b], vgl. Satz 2.13) denken. Dieser Satz
wird u. a. zur Lösung von Randwertproblemen ausgenutzt (vgl. z. B. [41 /l]).

In der mathematischen Optimierung in allgemeinen Räumen spielt die konvexe
Analysis eine besonders wichtige Rolle, denn für konvexe Optimierungsaufgaben
können Hauptziele der Optimierungstheorie wie das Aufstellen von dualen Auf-
gaben, von Optimalitätsbedingungen, von Lösungsverfahren usw. recht zufrieden-
stellend gelöst werden (siehe z. B. Bd. 15 im R" oder [41/III], [13]), während für
nicht mehr konvexe Aufgaben sich die Resultate oft stark „am konvexen Fall orien-
tieren“ (s. z.B. [45] oder [48]). Dabei spielen —als Gegenstände der konvexen Analy-
sis — Trennungssätze für konvexe Mengen (s. 2.3.3.), Differenzierbarkeitsbegriffe (oft
noch allgemeinere als oben behandelt) und (vor allem in der Steuertheorie, vgl. [23])
die W’-"-Riume die Hauptrolle.

Wir wollen auf einige Beziehungen zwischen Frechet-Dlfferenzlerbarkeit und „stark-
und beschränkt-konvexen“ Funktionalen eingehen, die bei Abstiegsverfahren der Opti-
mierung und bei der Lösung von Operatorgleichungen (vgl. auch [30]; s. 5.3. und
Z. B. in [18], [l3]) wichtig sind.

Ein über einer offenen Menge D eines reellen Hilbertraumes gegebenes Funk-
tional f(x) heißt stark konvex (mit der Schranke m > 0) und beschränkt konvex (mit

der Schranke MS 0), falls Waage-D g H und V/11,12 g 0 mit Z, + Z; = l gilt
_ 1 z 2 1 l 2

1,»;/.,2.2l|x — x“ g Z,F(x) + l2F(x) — F(}.1x + 12x)

g gMzuzllfc — (4.75)

F ist damit erst recht streng konvex. F sei fernerhin stetig. Diese stark und be-
schränkten konvexen stetigen Funktionale lassen sich wie folgt durch Frechet-Ab-
leitungen charakterisieren:

Satz 4.5: Das auf einer oflenen konvexen Menge D erklärte stetige (reelle) Funk-
tional F ist genau dann stark und beschränkt konvex, wenn F in allen Punkten von D
eine Fréchet-Ableitung VF(x) besitzt und für diese die Monotonie-Bedingung gilt:
(siehe Z. B. in [l3])

mIIx ~ §||Z g (WG) — vF(§c)l;'c — i) g MM}: — .%]|Z, (fr, i e 1)).
(4.76)
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Die Bedeutung dieser Klasse von konvexen Funktionalen liegt u. a. darin, daß der
„Durchhang“ [d. i. die Differenz in der Mitte der Ungleichungskette (4.75)] nach

oben und unten durch den Abstand — abgeschätzt wird oder (unter Benutzung
des folgenden Satzes 4.6) daß der Graph des Funktionals z = F(x) — F(>‘i') im Raum
R‘ x H zwischen den beiden, sich in x = ‚t berührenden Hyperparaboloiden

‚z = <VF(:”c) | x — i) + gmnx — ‚w, (4.77)

z = (VF(5é) | x — 5c) + gMux — w (4.78)

liegt. Wenn also F auf ganz H definiert ist, so wächst es für (Hx — 56H) -> oo stärker
als _z (stärker als linear) und „zwischen“ z und 2 gegen + oo.

Satz 4.6: Das auf einer oflenen konvexen Menge D g H erklärte stetige Funktional F S.4.6
ist genau dann stark und beschränkt konvex, wenn F Fréc/zet-diflerenzierbar ist und
folgende Bedingung gilt:

gmHi — 52H’ g F()1c)— F62) — <vF($é)|;‘c — §é>

g §M||§ — 52H’ (52, 31c e D). (4.79)

4.3. Anwendungen von Fixpunktsätzen

4.3.1. Gleichgewichtspunlite und Fixpunkte in Ökonomie und Spieltheorie

Bei der mathematischen Behandlung ökonomischer Modelle ergibt sich oft fol-
gende Situation: Gegeben seien ein kompakter konvexer Bereich Z g R" (zulässiger
Bereich, nichtleer) und n beteiligte Parteien (Spieler), denen je eine Funktionfi , ...,f„
zugeordnet ist (Auszahlungsfunktionen), die Z in R abbildet. Der u-te Spieler
(v = l, n) möchte seine Auszahlung f„(z)‚ z e Z, maximieren, hat aber nur Ein-
fiuß auf die v-te Komponente des Vektors z e Z. Er muß sich daher mit der Auf-
gabe

=fvixi a ~-a xv—-1359 xv+l ~ "'5 Xn) = Ina'X!7
(4.80)

z = (xi. xv-ls E, XM- A3.) EZ

beschäftigen, in der die restlichen n — l Komponenten des Vektors z fest sind.
Wird also ein Punkt z aus Z fest angenommen (damit ist jedem Spieler eine Mög-
lichkeit der Wahl seiner Komponente von z vorgeschlagen), so wird jeder Spieler
die Aufgabe (4.80) lösen wollen. Sind die f„ (v = l, ..., n) stetig, so existiert auch
für jedes v eine Lösung, i. allg. eine Menge F„ von Lösungen, die von dem vor-
gegebenen z abhängtl Es wird somit jedem z eZ ein Vektor (F1(z), ..., F„(z)) zu-
geordnet, dessen v-te Komponente die Lösungen von (4.80) enthält. Wir wollen den
Vektor der Lösungsmengen mit F(z) bezeichnen. Es wird dann jedem zeZ das
Bild F(z) zugeordnet, es ist eine Teilmenge des R".

Wenn es nun gelingt, ein z* zu finden, daß gilt

2* e F(z*), ‘ (4.81)

d. h. daß zf ein Element von F1(z*), z; ein Element von F2(z*) ist usw., so ist eine
solche Wahl der von jedem Spieler beeinflußbare Komponente von z vorgeschlagen,
daß die Auszahlungsfunktion f„ für jedes v im Sinne von (4.80) maximiert wird.
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2* heißt dann ein Gleiehgewichtspunkt des n-Personenspieles, welches durch fl, ..., f„
und Z g R" beschrieben ist (s. auch Bd. 21/1).

Die Existenz eines solchen Gleichgewichtspunktes kann durch den Fixpunktsatz
von Kakutani gesichert werden, wenn F gewisse Voraussetzungen erfüllt.

Definition 4.11: Es sei Z eine kompakte niehtleere Teilmenge des R" und f eine Ab-
bildung vonZ in die Menge Zz der Teilmengen von Z. Für jedes z e Z sei die Menge
f (z) abgeschlossen in R". Dann heißt f stetig, falls die Menge (der Graph von f)

G(f) = {(27 y) I Z 6 Z, y 6f(z)} (4-82)

abgeschlossen in R" x R" ist.

Satz 4.7 (Fixpunktsatz von Kakutani) [41/I]: Es sei F eine stetige (s. Def. 4.11)
(Punkt-Mengen) Abbildung der kompakten, konvexen nichtleeren Menge Z g R" in 22
(Menge aller Teilmengen von Z). Für jedes z e Z sei F(z) konvex, abgeschlossen und
nichrleer. Dann besitzt F einen Fixpunkt 2*; d. h.‚ es gibt ein 2* e Z mit 2* e F(z*).

In [26] wird das ökonomische Modell von Arrow und Debrou mit Satz 4.7 be-
handelt.

Bemerkung 4.4: Für die Anwendungen ist neben der Existenz (mindestens) eines
Gleichgewichtspunktes (Fixpunktes) die numerische Bestimmung von Bedeutung.
Während bei Anwendbarkeit des Fixpunktsatzes von Banach (s. Satz 1.2) eine
iterative Berechnung des (dann eindeutig bestimmten) Fixpunktes möglich ist
(s. 4.3.2.), sind für Fixpunktsätze vom Schauderschen Typ (Satz 4.4, vgl. auch
[41/1]) erst in jüngster Zeit konstruktive Beweise und iterative Berechnungsmöglich-
keiten gefunden worden, die auf Lemke und Scarf zurückgehen, vgl. z. B. [25].

4.3.2.

In 1.2.4. hatten wir den Banachschen Fixpunktsatz (Satz 1.2) in Zusammenhang
mit einem linearen Gleichungssystem (in der Form x = Mx + a, x und a aus R”)
genannt. Weitere Anwendungen findet man z. B. in [41/I]. Wir stellen jetzt den
Beweis dieses Satzes dar, da er konstruktiv ist, d. h. ein konvergentes Verfahren
[s. (4.84)] zur Bestimmung des Fixpunktes liefert, der unter den Bedingungen des
Satzes existiert. Es sei d die Metrik eines vollständigen metrischen Raumes E und
A eine Abbildung, die eine fest vorgegebene abgeschlossene Teilmenge EO g E in
sich abbildet und die auf Eo kontrahierend ist:

d(A(x). A(y)) é kd(x,y), (m! eEo)‚ 0 < k < 1-

Banachscher Fixpunktsatz und zugehöriges Iterationsverfahren

(4.83)

Wir untersuchen, unter welchen Bedingungen die Gleichung x : A(x) für x eEg
durch sukzessive Approximation

xo 6150. xm = A(x„)‚ n 2 0, ganz (4-34)

gelöst werden kann. Die Antwort gibt der

Satz 4.8 (Fixpunktsatz von Banach): Eine kontrahierende Abbildung A einer nicht-
leeren abgeschlossenen Teilmenge E„ (aus E) in sich hat genau einen Fixpunkt x*. Die
Folge {x,,} mit x0 E E0, x„„ = A(x„) konvergiert gegen x*für jedes x0 e E.
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Beweis. Die Folge {x„} ist eine Cauchy-Folge (s. Def. 2.6). Denn es ist, indem ab-
wechselnd (4.84) und (4.83) verwendet werden,

(im, X,..1) = d(A(X.._1), A(x„)) S. kd(Xn-1,Xn)

= kd(A(x„_2)‚ A(x..-1)) ä 162409.4, x‚._1) g
= k"“d(A(xo), A(x,)) g k"d(xo, x1). (4.85)

Für 0 g n < m ist dann (Dreiecksungleichung)

d(x„, x„‚) g d(x,,,x,,+1) + + d(x„‚_1, x„‚)‚

und nach Einsetzen von (4.85) mit den entsprechenden Indizes:

d(x„‚ x„‚) g k"d(x0, x1) + k"*‘d(x0, x1) + + k"“‘d(x,,, x,)
= d(x0,x,) k" (1 + k + + k"""“)
g d(x„‚ x‚) (1 — k)“ k". (4.86)

Da die Folge {k"} wegen 0 < k < l gegen null konvergiert, ist {x„} wegen (4.86)
eine Cauchy-Folge. Da E vollständig ist, liegt der (eindeutig bestimmte) Grenzwert x*
von {x„} in E, da alle x„‚ n g 0, in E0 liegen und Eo abgeschlossen ist, liegt x*
in Eo. Da A eine stetige Abbildung ist [wegen (4.83), s. Satz 3.4] ergibt Grenzwert-
bildung in der Beziehung x„„ = A(x„), n g 0:

x* = lim x,,+1 = lim A(x,,) = A (lim x„) = A(x*). (4.87)
n—>ao ll-‘W Il<OOO

Damit ist x* als Lösung erkannt: x* E Eu und x* = A(x*).
Die Eindeutigkeit folgt so: Wären x*, i zwei verschiedene Fixpunkte, so müßte

d(x*, i) = d(Ax*, A2?) g kd(x*,>’c) sein; dies ist aber für d(x*,)’c) # 0 unmöglich,
weil k < 1. Da es somit nur einen Fixpunkt gibt, ist dieser auch vom gewählten An-
fangselement x0 unabhängig. I

Die Voraussetzungen des Banachschen Fixpunktsatzes lassen sich in verschieden-
ster Hinsicht abschwächen (vgl. hierzu [30]). Wir nennen repräsentierend die fol-
gende Aussage.

Satz 4.9 (Verallgemeinerung des Banachschen Fixpunktsatzes): Es sei E ein vollstän- S.4.9
diger metrischer Raum (Metrik d) und Eo eine nichtleere abgeschlossene Teilmenge von

E. Die Abbildung A bildet die Menge Eo stetig in sich ab, und es sei eine gewisse Po-
tenz A" von A eine kontrahierende Abbildung (d. h., d(A"(x)‚ A"(y)) g kd(x, y)x‚ y e E0,
0 < k < 1 fest). Dann hat A genau einen Fixpukt x* EEO. Für jedes x0 EEO konver-
giert die Folge {x,,} mit x,,+, = A(x„) (n = 0, 1,2, gegen x*.
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5.1. Halbbeschränkte Operatoren in Hilberträumen

5.1.1. Der Satz von Friedrichs

Ein linearer Operator A, dessen Definitionsbereich D(A) dicht in einem Hilbert-
raum H liegt, der D(A) in H abbildet und symmetrisch ist,

<Au l v> = (u I Av) (M, v 6D(/1)), (5.1)

und für den gilt

es gibt ein reelles y mit (Au | u) g yzflullz (u e D(A)), (5.2)

heißt halbbeschränkt (stark positiv definit).

Beispiel 5.1: Es sei H = Lfi[0‚ 1], D(A) = {u e Cfim, 1], u(O) = u(l) = 0}, und A sei der Operator

d: (5 3d)‘, . . )

A ist halbbeschréinkt. Denn es ist 5(7) = H, A symmetrisch, wie durch partielle Integration folgt,
x z x x l

und (5.2) gilt wegen uZ(x) = {J1/(t)dr) g j dr _[u”(r)dt g [u'2(z)dt, o g x g 1:
o 0 o o r

l

Hallig g f <u'<r»=dr= <Aulu>. (5.4)
0

Bemerkung 5.1 : Gleichwertig zu (5.2) ist, daß

. (Au! u)
= f -—— 0 5.2’

g „eoäiäno nunz > t ( ’
gilt, d. h., die untere Grenze g von A ist positiv.

Der zu A adjungierte Operator A* ist definiert (vgl. Def. 3.15) für alle z: e H, für
die ein u* existiert mit

(v ] Au) = (L-* | u) (u e D(A)). (5.5)

Die Abhängigkeit I: —> 12* wird gerade mit 12* = A*v bezeichnet. Wenn man (5.5) mit
(5.1) vergleicht, sieht man, daß

D(A*) 2 D(A) i (5-6)

gilt. Wenn man also für A die Eigenschaft der Selbstadjungiertheit haben möchte
((5.1) zusammen mit D(A) = D(A*))‚ so muß D(A) wegen (5.6) vergrößert werden.
Eine solche Erweiterung des Definitionsbereiches von A fordert daher, A auf ge-
wissen weiteren Elementen in H zu definieren, und zwar soll dabei die untere Grenze
[vgL auch (5.2’)]

g = inf{</11/ I u>l Hull = 1, u6D(A)} (5-7)
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von A (und damit die starke positive Definitheit) erhalten bleiben. Ist das gelungen, so
hat man A fortgesetzt. Es gilt der folgende Satz von Friedrichs:

Satz 5.1 (Fortsetzung halbbeschränkter Operatoren): Jeder halbbeschränkte Opera-
tar A gestattet eine Fortsetzung Ä, d. h., es ist D(Ä) g D(A), Au = Äu (u e D(A)),
und dieser Operator Ä ist selbstadjungiert, hat dieselbe untere Grenze wie A, und sein
Wertebereich ist der gesamte Raum H. Es existiert sogar M)“ und ist symmetrisch
und beschränkt. '

Wir wollen zuerst diesen Fortsetzungsprozeß erläutern und dann auf zwei An-
wendungen eingehen: Operatoren der Quantenmechanik, Lösung elliptischer Diffe-
rentialgleichungen. v

5.1.2. Der Fortsetzungsprozeß

Hätten wir die Fortsetzung (= Erweiterung) von A zu Ä schon erledigt, so müßte
für ein ü e D(Ä) das Bild Äü auch in H liegen. Wir nehmen so umgekehrt ein be-
liebiges feH (es soll ja R(Ä) = H sein) und versuchen nach einer einheitlichen
Verfahrensweise solche u zuzuordnen, daß für f e R(A) gerade u e D(A) gilt, also

Au = f (5.8)

ist, und daß für die weiteren fe H \ R(A) auch u zugeordnet werden, die dann nicht
mehr in D(A) liegen, also D(A) „erweitern“, und daß die gesamte Zuordnung die
im Satz genannten Eigenschaften hat. Wir können sagen, daß wir A so erweitern
wollen, daß (5.8) für jedes f s H lösbar wird. Daraus folgt auch, daß die ins Auge
gefaßte Erweiterung „maximal“ ist, da H der größtmögliche Wertebereich eines
„in H abbildenden“ Operators ist.

Wir führen einige Gedanken des Beweises für reelle Hilberträume hier durch, da
sich interessante Beziehungen zur Variationsrechnung und konvexen Analysis und
eine schöne Anwendung des Satzes von Riesz ergeben [28]; bezüglich des allgemeinen
Falles vgl. etwa [I6], [36].

Es sei zunächst fe R(A). Dann gibt es dazu eindeutig ein u, e D(A) mit Au, = f.
Denn hätte die homogene Gleichung Au = 0 Lösungen u + O, so widerspräche das
(5.2). Für u, gilt:

Lemma 5.1: uj‘ löst die Optimierungsaufgabe (das Variationsproblem)

F(u)'= (Au [ u) —— 2(u If) = min! (5.9)
ueD(A)

Beweis: Wir variieren u, mit 17 =i= 0 beliebig aus D(A). Dann ist

F(u; + n) = F<u,> + 2<Au, — fl n> + <An I n> (5.10)

wie bei (4.55), da A symmetrisch ist; da u, die Operatorgleichung (5.8) löst, und
(5.2) gilt, folgt

F(u‚ + n) > F(u,) (17 eD(A)). (5.11)

Es ist also u, sogar „globale“ Minimalstelle von F, dies ist auch klar, da F konvex
über D(A) ist. u, ist ferner, wie aus (5.11) folgt, eindeutige Minimalstelle von F. Auch
dies ist klar, denn F ist [wegen (5.2)] streng konvex (s. Bd. 15). I

S.5.l

L.5.l
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Es gilt auch die Umkehrung:

Lemma 5.2: Ist ü Minimalstelle von (5.9) bei gegebenem f, so löst ü die Gleichung
Au = f.

Beweis: Da F Gateaux-difierenzierbar ist [s. (4.58)], muß V17 eD(A) das Gateaux-
Diflerential öF(u, n) = 2<Au — f I n) an der Stelle u = ü notwendig Verschwinden.
Wie schon bei (4.66) folgte, ist also Aü — f = 0 (Au = fist die Eulersche Gleichung
zu (5.9)). I

Wir lassen jetzt ein beliebiges fe H zu. Ist fe H \ R(A)‚ so kann keine Minimal-
stelle von (5.9) existieren, denn sie würde die Eulersche Gleichung lösen, alsofe R(A)
nach sich ziehen. Es gilt aber, dal3 auch bei beliebigem festemfdie untere Grenze Jf
der Menge der F-Werte stets endlich ist, wenn u den Bereich D(A) durchläuft:

J, (5.12)inf F(u) > —oo.
ueD(A)

Denn es ist, falls nur 3/‘IIuJI — 2|IfII g 1 ist, wegen (5.2) und der Schwarzschen Un-
gleichung

(Au I u) - 2(f| u) ä IIu|I (7‘IIuII — 2|IfI|) ä IIu|I ä 0,

und im anderen Falle, d. h. y’|IuI| — 2IIfII < 1, ist

2I<fI u>| ä 2I|fII IIuII < 7/‘2(1 + 2|IfII) (2IIfI|)

(Au I u> - 2(f| u) ä 9/ZI|uI|‘ - 27“(1 + 2IIfII) IIfII§ K

(K = -27/‘Z0 + 2IIfII)IIfII).

Das Variationsproblem (5.9) hat also für jedes f e H einen endlichen Minimalwert,
aber nur fürf e W(A) eine Minimalstelle. Jetzt konstruieren wir durch Vergrößerung
des zulässigen Bereiches D(A) des Variationsproblems Minimalstellen fürfEH \ R(A),
wobei der Minimalwert Jf ungeändert bleibt(!):

Wir führen dazu in der Menge D(A) g H ein neues Skalarprodukt ein durch

(u I v>D(A) = (Au I v) (u, v e D(A)). (5.14)

Wegen der Halbbeschränktheit ist das ein Skalarprodukt. Dieses induziert eine Norm
in D(A): "

(5.13)

„uliäm = (u I “>n(A) = <14“ I 14>; (5-15)

und wegen der Halbbeschränktheit gilt (vgl. auch Def. 2.13)

II14III2.7(.4) ä yzllull’ (u G D(A)). (5-16)

Fundamentalfolgen in D(A) im Sinne der Norm II . II mA, sind wegen (5.16) erst recht
welche in H, und da H vollständig ist, gehört zu ihnen eindeutig ein Grenzelement.
Wir nehmen zu D(A) alle diese Grenzelemente von I| . |I,,(A,-Fundamentalfolgen hinzu.
Die entstandene Menge heiße HA und ist Abschließung von D(A) im Sinne der
I| . |I,,(A)-Norm. HA ist selbst ein Hilbertraum (energetischer Raum), und es gilt natür-
lich H‘ g H.

Die Norm eines Elements u in HA ist, falls u e D(A) g HA gilt:

IIuII%z,, = (Au I u>; (5-17)
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falls u e HA \ D(A), so ist u Grenzwert etwa der Fundamentalfolge {u,,}, also

\|uHfr, = lim <Au.. I u„>. (5-18)
n—>oo

Beispiel 5.2: Es seien A, H, D(A) wie in Bsp. 5.1. Dann ist (H#H„)
HA = {u I u absolut stetig‘) auf [0, 1], ux ELfi[0, 1], u(0) = u(l) = 0} g H = Lflo, 1].

(5.l8'

Da zum zulässigen Bereich D(A) nur Grenzwerte von Folgen aus D(A) hinzu
genommen werden, bleibt J, wirklich ungeändert. Wir setzen nun in (5.9) für u e D(A)
gerade (5.17) ein:

F(u) = 1141i, - 2<u 1f>

und (5.19) kann sogar für alle u e HA gelesen werden! Jetzt hat die Aufgabenstellung

F(u) = 11H11i1„ - 2<u |f> = m21! (5-20)

(5.19)

einen Sinn, und es gilt das bemerkenswerte

Lemma 5.3: Für beliebig fest vorgegebener feH existiert genau ein u, EHA mit
F(u‚) = inf F(u), und verschiedenen fe H entsprechen verschiedene u, e HA.

Bemerkung 5.2: Für A gemäß (5.3) lautet F(u) aus (5.9)

l 1

F(u) = — uuxx dx — Zffudx,
o o

und in der Form (5.19) hat es die Gestalt
l l

F(u) = u” dx — 2f/"u dx, (5.21)
o o

und dies kann wegen u e HA [s. (5.18')] ausgewertet werden. .

Wir führen den Beweis von Lemma 5.3 an, da er eindrucksvoll den Satz von Riesz
ausnützt:

Beweis von Lemma 5.3: Der Term <u1f> in (5.20) ist ein lineares beschränktes
Funktional in HA, denn es gilt wegen (5.16)

|<U1f>1 ä [lull 11f11 ä 1711114113, 11f1i (5-33!

zunächst in D(A) und wegen der Stetigkeit von ( . I f) und 11 . 11 H‘ auch für die Grenz-
elemente, also in HA. Somit gibt es nach dem Satz von Riesz genau ein Element
u, eHA, so daß gilt

<u |f>n = <u I uf>H,, (u EH4). A
x

U
1

[J a
n

X

‘) u(x) heißt absolut stetig auf [a, b], wenn ein v existiert, v eL‚“[a‚ b], so daß u(x) = J-z'(r)dt
+ const. (a g X g b) gilt. a

L.5.3
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wenn mit (. I .>[1A das Skalarpiodukt in HA bezeichnet wird. Damit ist für belie-
biges festes u e HA

F0’) Z Hull?!‘ — 2<“ | uf>H„ + (“f | uf>H, ‘ (“f l "DH,

= (u - M; l u - Hf)”, — Hufllfi, (5-24)

und folglich, da der erste Summand in (5.24) nichtnegativ ist,

min F(u) = —Hu‚I!i;A. (5.25)
ueHA

Da für u =l= u, gilt Mu — u,H}1‘ > 0, gibt es keine weitere Minimalstelle. I
Definition 5.1: Das Element uf e HA (s. Lemma 5.3.) heißt verallgemeinerte Lösung
von Au = f. Liegt u, bereits in D(A), so ist u, gewöhnliche Lösung von Au = f. Die
Gesamtheit der verallgemeinerten Lösungen sei der Definitionsbereich D(Ä) eines
Operators Ä. Er wird wie folgt definiert: Zu ü E D(Ä) existiert gemäß Lemma 5.3
genau ein f e H mit der Eigenschaft, daß ü verallgemeinerte Lösung von Au = f ist;
die Abbildung ü —> f“ definiert den Operator Ä: Äü =f. Dieser Operator ist die Friedrichs-
sche Erweiterung von A.

Die weiteren Aussagen des Satzes von Friedrichs sind erfüllt. Die Gleichheit der
unteren Grenzen bedeutet

(Aula) = llullä,
ueD(A),14$o “MHZ uepu), we llullz

(5.26)

5.1.3. Einige Operatoren der Quantenmechanik

In (1.7l)—(1.73) waren die Hamilton-Operatoren als wichtige Hilfsmittel der
Quantenmechanik genannt worden. Sie führen auf lineare selbstadjungierte Opera-
toren. Das frühere Oszillatorbeispiel ergab als Hamilton-Operator zunächst den
Operator (1.78). Er war noch nicht selbstadjungiert. Dies kann aber gerade nach dem
Satz von Friedrichs erreicht werden. Man studiert dazu die Operatoren folgender
Art, die dem Hermiteschen Operator von (1.79) verwandt sind:

Cu = —u" + pu mit D(C) = {u e C°°(R)} g L2(R), p(x) reell,

und p(x) —> oo für |x| —> oo, p(x) g I. (5.27)

Nachweis der Symmetrie und Halbbeschränktheit:

(Ca | v) = _|'(—u” +pu)vdx
n

= _|‘ (ü’v’ + püv) dx
n

= _|" ü(—v" + pv) dx = (Cu | u) (u, v e D(C)), (5.28)
n ‚

<Cu I u> = j (W + pIuI?)dx 2 J W dx = Huuizm) (5.29)
n n

und 17c’) = H = LZ(R).
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Wir denken uns C nach dem Satz von Friedrichs zu Ö fortgesetzt. Ö ist dann
selbstadjungiert und hat reines Punktspektrum und leeres Stetigkeitsspektrum. Ist
insbesondere p(x) = x’ + 1, so ist folgender Zusammenhang zum Hermiteschen
Operator H gegeben:

C = H + I, H = D2 von (1.79) (5.30)

(I ist _der identische Operator), und (5.30) bleibt bei der Fortsetzung bestehen:

Ö = H + I. Das Spektrum 0(71) kennen wir bereits aus (1.81). Es gilt dann über
dem Bereich 0(71), wenn Ä, = 2j + l, j = 0, l, 2, die Eigenwerte, {H,} die ortho-
normierten Eigenfunktionen sind (sie bilden als Eigenfunktionen eines selbstadjun-
gierten Operators mit reinem Punktspektrum und leerem Stetigkeitsspektrum ein
vollständiges Orthogonalsystem, [36]):

~ D(l_l) = u[ueH, E 2.,2|<u | H1)!‘ < o0 ‚ (5.31)
f=0

und dies gilt für jeden selbstadjungierten Operator mit reinem Punktspektrum,
leerem Stetigkeitsspektrum und {if} nach der Größe der Beträge geordnet.

Wir wollen noch einen interessanten Zusammenhang zur Theorie der Distributionen (Kap. 4.1.)

angsirllänb und u aus D(C) in (5.27), so ist wegen der Selbstadjungiertheit von C: C = C‘ somit

(Cul (P) = <C"u l w) = <14 I Ü<P> (W E E"'(R))- (532)

Die rechte Seite kann für u EL’(R) a.ls Distribution L aufgefaßt werden (Co: = Ctp):

LII-<10 = <u l Ctr) (i: e 5“°<R». (5.33)

Diese Distribution wird für u s Hg gerade von Cu erzeugt, und folglich kann der Operator C im
Sinne der Distributionen ausgerechnet werden.

Der Operator

Au = xu mit D(A) = {u eL’(R) | xu(x) eL2(R)} g L2(R) (5.34)

tritt ebenso in der Quantenmechanik auf und ist selbstadjungiert und nicht beschränkt:

Unbeschränktheit :

HA1) = sup HAuH = sup J x2uZ(x) dx. (5.35)
!M|=l |I14|l=1 Ii
us A) ueD(A)

Mit der Folge {u„} mit u„ = l für xe [n, n + l] und u„ = 0 sonst wird [|Au,,H

beliebig groß.
Selbstadjungiertheit: Stets war D(A) g D(A*) für symmetrische Operatoren. Es

sei v e D(A*) und A*u = v*. Dann gilt nach der Definitionsformel für adjungierte
Operatoren

(Au | v) = (u l 0*) (u eD(/1)). (5.36)

Dies bedeutet

0 = _l' [x(H(X)) v(X) — 17(x>v*(x)]dX
n

= J‘ m) (,n~(x) — U*(x)) dx. (5.37)
R
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insbesondere für alle u s C°°(R), folglich fast überall xv(x) = v*(x); da v*(x) e L2(R),
ist xv(x) eL’(R)‚ also v eD(A). Somit ist D(A*) g D(A)‚ also D(A) = D(A*).

Auch der Operator B mit

dzu

B"=‘Fx7’ D(B) = {u e C°°(R)} g L2(R) (5.38)

tritt in der Quantenmechanik auf. Er fällt in die bei (5.27) behandelte Klasse. Als
H3 im Sinne von (5.17) fungiert W1'1(R). Wird D(B) = W“(R) und H = L2(R_)
gewählt, so ist B selbstadjungiert über W“(R) und kann fortgesetzt werden zu B
mit Da?) = H3 = W“(R).

Das Modell „Atomkern im Koordinatensprung, ein Elektron im Abstand r mit
der Ladung e und der Masse m sowie der Kernladungszahl 1 des Atoms“ führt im
R’ auf den Hami1ton—Operator

sgu = — (32-21 + i2)u (h = —h—6 62- 10-" erg s). (5.39)
2m r 27: ’

In der Klammer steht ein elliptischer Dilferentialoperator. Etwa bei homogenen
Dirichlet-Randvorgaben ist er. halbbeschränkt (s. 5.1.6.), also über den Friedrichs-
schen Formalismus fortsetzbar zu einem selbstadjungierten Operator .5}.

5.1.4. Instationäre Zustände und Schrödinger-Gleichung

Es sei „f: der (selbstadjungierte) Hamilton-Operator (vgl. 1.2.3.) eines quanten-
mechanischen Systems. Befindet sich das System zur Zeit t = 0 im Zustand ü e D(.‘;'>),

Hüll = 1,750 gilt, daß sein Zustand zum Zeitpunkt l > 0 durch u(t) mit Hu(t)H = l,
u(-) eD(.i)) gekennzeichnet ist, wobei u(I) für r > 0 der abstrakten Differentialglei-
chung (Schrödinger-Gleichung)

im) = —ih“.6u(t) (5.40)

genügt. Zusammen mit der Anfangsbedingung u(0) = ü ist (5.40) ein abstraktes
Cauchysches Anfangswertproblem.

Die Lösung dieses Cauchyschen Anfangswertproblems ist eindeutig bestimmt und
gegeben durch [vgl. (5.51) und (5.99)]

u(t) = e""““512, 1g o. (5.41)

Der Operator rechts in (5.41) kann [vgl. (3.28)] als Potenzreihe nach den Potenzen
von b dargestellt werden:

eAü = LA")ü‚ A = —it"“15‚ (5.41')

wobei die Konvergenz gemäß (3.43) zu verstehen ist und die Reihe („in der Operator-
norm“, also erst recht für jedes üeH konvergiert [vgl. auch (5.5l)] .

Stationarität von ü bedeutet: Der Anfangszustand des Systems, charakterisiert
durch ü, ändert sich nicht mit der Zeit. Da em” ü mit oc(t) reell‚ endlich, denselben
eindimensionalen Unterraum wie ü, also denselben Zustand erzeugt, ist die Gleichung

e“’“"512 = e""">1Z (5.42)

notwendig und hinreichend für Stationarität.



5.1. Halbbeschränkte Operatoren 119

Wir wollen (5.40) deuten. Für das bei (5.39) beschriebene Modell lautet (5.40) für
Funktionen u e D(.i)), wobei u jetzt noch von der Zeit abhängt,

2

im: = — Zlmziu + V(x) u, (5.43)

und da E) über die Friedrichssche Fortsetzung eindeutig bestimmt ist, müssen die
quantenmechanischen Informationen schon in (5.43) enthalten sein. Man kann
Lösungen in Gestalt von Fourierreihen nach den orthonormierten Eigenfunktionen
(= stationären Zuständen!) 1pk(x) und Eigenwerten 1„ des Operators Lu z

2

— —2h7Au + V(x) u erhalten, wenn man, wie bei einer parabolischen Differentialglei-

chung in dem zylindrischen Gebiet [0, T] X G, ein Randanfangswertproblem stellt, etwa

u(0, x) = ü(x) (x e G, Zeit t = 0),
5.44

u(t, x): 0 (t g 0, xeÖG). ( )

Es ist dann .

"(ta x) = ‚E.‘ (‘I’); l ü) e-m-l ÄIJWIÄX) (5-45)

[eine formale Lösung (und sogar klassische Lösung bei ü(x) e C‘(G) und hinreichend
glattem Rand ÖG); [38], [14/4].

Diese Deutung von (5.40) bezog nicht den erweiterten Operator ‚Sein. Dazu be-
trachten wir folgende, von einer Variablen t abhängige Menge von Elementen u(t)
eines Hilbertraumes H: {u(t) l u(t) e Hfürjedes t e (rx, ß) mit — o0 g o: < ß g + o0}.
u(t) heißt auch Funktion von t mit Werten in einem Hilbertraum. Diese heißt stetig
im Punkte y e (a, ß), falls es zu jedem a > 0 ein ö = 6(6) > 0 gibt mit

Ilu(t) — u(7)H < s für IV — tl < 6(8); (5-46)

sie heißt stetig differenzierbar in y, falls ein Element u’(y) e H existiert mit

. + h — ‚hm f __ u (y)
h—¢0

= 0 (5.47)

und u’(t) auch in einer Umgebung von y existiert und in y stetig ist.
Wir betrachten nun folgende Aufgabenstellung: Es seien ein selbstadjungierter

Operator A und ein Element ü e D(A) gegeben. Weiter werde das Intervall [0, oo)
betrachtet. Gesucht sei eine stetige und stetig differenzierbare Funktionl) u(t), die
für jedes te [0, eo) im Definitionsbereich von A liegt, bei t = 0 den Wert ü an-
nimmt und so beschaffen ist, daß u’(t) für jedes t gerade gleich iAu(t) ist. Wir wollen
also die folgende Aufgabe lösen:

Verallgemeinertes Cauchysches Anfangswertproblem

u(t) eD(A) für alle t> 0, u(0) = ü,

u’(t) = iAu(t). (5.48)

Eine weitere Verallgemeinerung wäre ein von t abhängiger Operator A (vgl. [23],
parabolische Dilferentialgleichungen).

1) In t = O sind dann (5.46), (5.47) rechtsseitigherfüllt.
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Satz 5.2 (Existenz- und Unitätssatz): Aufgabe (5.48) besitzt genau eine Lösung. Sie
läßt sich in der Form

u(t) = e“ ü, 0 g t < o0, (5.49)

darstellen. Die Operatoren e+“" sind unitär. Die Lösung hängt stetig von den Anfangs-
werten ab [36, S. 280].

Es sei A ein Operator mit reinem Punktspektrum, und das System der Eigenfunktionen qa, zu

den Eigenwerten 11,11, ..., sei Vollständig. Dann ist für ‚v eD(A)

Ay=Z<vvtlAy>wt=Z<Aovtly>vzt

=21t<<n l y> ‘Pb (5.50)

Für den Operator e“ gilt dann (für jedes t g 0)

e"‘y = 2 e““‘ <<n I y> w. (5.51)

Diese Reihe konvergiert im Sinne der Norm. Es ist D(e"‘) = R(e"‘) = H. Man erkennt sofort,
daß e“ unitär ist:

He“‘,vH‘ = €“(‘*","” <47; I y> (In l y> «e; l <m.>
J .

=2 Kw W)!’ = Hyll’ (5-52)
1'

wegen der Vollständigkeitsrelation. Unter Verwendung von (5.47) und der Tatsache, daß A mit
e“ vertauscht werden darf, erkennt man, daß u(t) in (5.49) der Differentialgleichung (5.48) genügt.

Nachweis der stetigen Abhängigkeit von den Anfangswerten: Es seien 140(1) und u,(t) die Lösun-

gen von (5.48) mit u„(0) = u bzw. u‚(0) = u. Dann ist wegen (5.52)

Huo(!) - 141(1)}! = Iluo - Mill (t > 0).

und somit ist die Lösungsdifierenz klein, wenn die Differenz der Anfangswerte klein ist.
Die Gl. (5.48) ist die abstrakte Fassung der Schrödinger-Gleichung der Quantentheorie [vgl.

(5.40)].

(5.53)

5.1.5. Beziehungen zur quantenmechanischen Streuung. Unschärferelation

Es sei f) der_ selbstadjungierte Hamilton-Operator eines quantenmechanischen
Systems; f e D(.f)) mit IIf [J = l sei der Zustand des Systems. In (l.95’) war <.§)f I f)
gerade der quantenmechanische Mittelwert der Energiemessung. Die Streuung wird
dann (wie in der Wahrscheinlichkeitsrechnung, vgl. auch Bd. 17) durch

U’(f/5) = H5/"~ <=33f|f>f||’

definiert. Eine „scharfe“ Energiemessung ist für einen Zustand möglich genau dann,
wenn gilt a’ = 0:

5f= <5f|f>f- (5-55)

Dies bedeutet, daß f Eigenwert von E), also stationärer Zustand ist. Man gelangt
mit dem Streuungsbegrifl (5.54) in folgender Weise funktionalanalytisch zur Heisen-
bergschen Unschärferelation: Es seifmit |Jf H = 1 der Zustand eines quantenmecham-
schen Systems, und A, B seien zwei beobachtbare Größen, also zwei lineare selbst-
adjungierte Operatoren. Es sei

fe D(A) n 0(3), Afe 0(3), Bfé D(A).

(5.54)

(5.56)
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Dann ist ([36, S. 474])

U(f/A)<7(f/B) ä %I<(BA - AB)flf>l- (5.57)

Ist nun (BA —- AB)f = g/(g komplexe Zahl), so folgt

<7(f/A)<7(f/B) ä %lé<f!f>l = %l9I- (5-58)

(5.58) mit 9 =t= 0 zieht nach sich, daß ein f [welches (5.56) genügt] nur existieren
kann, wenn o'(f/A) und a(f/B) nicht verschwinden. f kann dann nicht Eigenelement
von A oder B sein, bzw. im f entsprechenden Zustand des quantenmechanischen
Systems kann weder A noch B scharf gemessen werden.

Die praktische Bedeutung liegt darin, dal3 für einen Zustand f, für den die be-
obachtbare Größe A eine Messung mit kleiner Streuung a(f/A) erlaubt, die Streuung
o'(f/B) die Relation (5.58) erfüllen muß. Für den Fall des Oszillators (A, B seien die
der Impuls- bzw. Ortskoordinate zugeordneten Operatoren)

Bf= xfa 5(5) = {f1feL’(R)‚ Xf‘~'=L2(R)}a (5-59)

_ h df _ 1,2Af- TE: D(/1) — W (Ü) (5-50)

ist dann fürfe C°°(R)

(BA —AB)/=l3x% ——?—d—i(xf)=Tr‚lf (5.61)

in die rechte Seite von (5.57) einzusetzen, so daß sich

GU/A)<7(f/B) ä äfi, (5-62)

also die bekannte Unschärferelation ergibt.

5.1.6. Fortsetzung elliptischer Diflerentialoperatoren
T sei ein partieller linearer selbstadjungierter Diflerentialausdruek 2. Ordnung,

der in einem beschränkten Gebiet Q mit stückweise glattem Rand ö!) elliptisch ist:

Tu 5 —— _E)j(£(a,,‘(x' —é:—ju> + cu, c = c(x1, ..., x,,) g 0, (5.63)

mit au. 6 Cé(-0), c e C.‘{(9)‚ Z a.k(x1, x..) m ä M 1?, (am) = A (symmetrisch,
I“ > 0)_ i=1

Als ‚u kann das Infimum ‚u* der Eigenwerte der quadratischen Form ÄTA(x)Ä Vx
dienen, falls ‚u* > 0 ist. Als Randbedingung sei u(x) = 0 (x e69) gestellt. Damit ist

D(T) = {u l u e Cfi(Q), u = O für x e69} (5.64)

dicht in L§(.Q). T ist dann symmetrisch, wie aus der Greenschen Formel1)

fv|nf(v Tu —— uTv)dx= — —— u—a—6N—v)df, (5.65)

‚Q ea

folgt, wobei-Ööfidie Konormalenableitung

ö ö
W = Z0‘-"D37", 0% = gakicos (n:xk)v (5-66)

‘) Vgl. Bd. 5 und 8.

9 Gbpfert, Funkbionalamalysis
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und n die Außennormale bezüglich ÖQ ist. T ist aber auch halbbeschränkt in L§(.Q),
denn es ist (partielle Integration)

(Tulu) §‘%C‘(a,,.-§C—ku)u+cuu)dx (5.67)

Öu
= f...f(2aihO—)ux‘ + cuu)dx + 0, (5.68)

pan.Int n i,k xk

und wegen der Elliptizität FA}. g ,u][M|2 folgt

(Tulu) g ‚u f... jzpnydx + f...fc(x„ x„)u=dx (5.69)
n n

und hieraus wegen der Ungleichung von Friedrichs und c g 0 die Halbbeschränkt-
heit.

Die Ungleichung von Friedrichs lautet ([36], [28])

J‘ u’(x) dx g constf f Z u,2,i(x) dx. (5.70)
.0 Q

Die Bildung der Fortsetzung nach Friedrichs gestattet leicht, Aussagen über das
Eigenwertproblem zum l. Randwertproblem zu machen: Es lautet

Tu — Au = O im Gebiet Q mit ö!) = S, u(S) = 0. (5.71)

Zu T sei T die Friediichssche Fortsetzung (T ist ein Operator mit reinem Punkt-
spektrum, der Raum HT ist gleich W,{'2). T hat eine lineare selbstadjungierte voll-
stetige Inverse G. Wendet man G auf die mit T gebildete Eigenwertgleichung an, so

erhält ma“ u — mu = o, u(S) = o. (5.72)

Dieses EWP ist vollständig zu übersehen, da G vollstetig ist. Die Eigenwerte (1,4)
von (5.72) häufen sich also höchstens bei 0, sind reell, haben endliche Vielfachheit,
Eigenfunktionen zu verschiedenen Eigenwerten stehen orthogonal zueinander, und
es gilt der Fredholmsche Alternativsatz (s. 3.3.2. und 3.3.1.3.).

Es ist interessant, daß das System derEigenfunktionen vollständig ist, denn G besitzt eine Inverse:
G4}: = 0=> go = 0. Deshalb gilt, daß wirklich unendlich viele Eigenfunktionen da sind, da der Grund-
raum I}, unendlichdimensional ist. Ein zugehöriges vollständiges ONS kann man zur Lösung der
Gleichung

Tu — Äu = g (5.73)

bei gegebenem g e L§(.Q) anwenden:

Es sei Ä nicht Eigenwert und {l1} das System der Eigenwerte, {¢p,} das System der Eigenfunk-
lionen als ONS. Für die gesuchte Lösung u von Tu — Au = g machen wir folgenden Ansatz:

eo

u = Z <q».- I u> «m- (5.74)
i=l

Da G ein beschränkter linearer Operator ist, folgt

G“ = Z «Pi l u) G591 = Z <4Pj l u) 1,71 ‘Pr (5-75)

Da die inhomogene Operatorgleichung erfüllt sein soll, ergibt Einsetzen in die mittels G umgeformte
Gleichung u — ÄGu = Gg:

l
Z<lPJ1u>fPJ‘ 7-2<I’1T<%‘W>= GAG
j f J'
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und nach Skalarmultiplikation mit 47:. i = 1, 2, ...‚ erhält man

1

Z012: I rm <<z=; ! u> — 1-Z w; i u>/,—<¢. I <m> = (v): I Gg>.
J J v‘

Die Orthonormalität des Systems {(12,-} ergibt

(W: i lI> (l - 17-fl) = <9’: I G3) (I'=1.2.~~);

durch Koeffizientenvergleich mit dem Ansatz folgt

<¢ l G3)
u (p, (/1 + 11,1),

und wegen der Symmetrie von G und Gqz, = Z;“q2, erhält man schließlich

<97’: i8)
" " A, — z

Im Falle, daß Ä = 1* Eigenwert ist, muß laut Theorie (Fredholmscher Alternativsatz, Satz 3.15)
mit der rechten Seite Gg der umgerechneten Eigenwertgleichung gelten (damit eine Lösung existiert)

(Gg ] 4p*) = 0 für alle q2* mit 1p* — 164,12* = O. (5.77)

Dies heißt:

0= <GgJ¢*> = <g1G<I1‘>=<g

(5.76)

71; <p*> = <g1¢*>. <s.7s>

also g J. 92*. Das ist die Lösbarkeitsbedingung für elliptische Differentialgleichungen bei Vorhanden-
sein von Eigenwerten bei der homogenen l. Randwertaufgabe.

Das Spektrum von T (erst recht das von T) ist ein reines Punktspektrum, da das
Lösen von Tu — Äu = g mit dem Lösen von u — ÄGu = Gg gleichwertig war. Nun
gehört in der Gleichung ‚uu — Gu = 0 zwar y = 0 als Häufungspunkt der Eigen-
werte zum Spektrum, ist aber nicht Eigenwert, da Gu = 0 nach sich zieht u = O.

Da für T die /r‘ die Eigenwerte sind, hat T reines Punktspektrum.
Ist also Ä nicht Eigenwert 2,», so ist Tu — Äu = g für jedes g lösbar. Folglich ist

für Ä + Z, die Resolvente R, = (T — M)“ überall erklärt. Sie ist auch beschränkt:
Die Lösung von Tu — Äu = g für Ä (nicht Eigenwert) lautete:

u = E ¢h = Riga (5.760
k=l M — Ä

weil R) = (T — M)“. Da {zpk} vollständig ist, gilt für g,

g= Z <%|g><Pz.-,
k=l

die Vollständigkeitsrelation [= Parsevalsche Gleichung, Vgl. (2.66)]:

nguz = i l<<p.lg>l2.
k=l

In der Lösungsdarstellung (5.76) ergibt Normbildung

nur gä1 q: n: (5.79)If h
--a-

=1
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Nun sei min [Ä — Ll = d (7. fest, Ä nicht Eigenwert). Dann ergeben die beiden
M

Ietzten Resultate
o0 2 1

IImgIIz = W g k§1L;,',—g>'— = 7 HgII’ (g eLa<.o>>,

also

“RI.” é d? (5-80)

Folglich gehören alle i. zur Resolventenmenge, nur die Eigenwerte nicht. (Das gilt
auch für komplexe Ä, g ELZCQ), s. [24].) Eigenwertprobleme für elliptische Diffe-
rentialoperatoren treten z. B. bei Eigenschwingungen einer eingespannten Membran
auf [35/2].

5.2. Spektralzerlegung selbstadjungierter Operatoren in Hilberträumen

5.2.1. Vollstetige Operatoren

In separablen Hilberträumen H gilt für vollstetige, vom Nulloperator verschie-
dene, symmetrische Operatoren T: H —> H der Entwicklungssatz (s. auch Sätze 2.39
und 3.22): Ist Ä = 0 nicht Eigenwert, so ist das zu den Eigenwerten Ä, =t= 0
(j = 1,2,...) gehörige Orthonormalsystem von Eigenfunktionen {zpj} vollständig.
Für jedes u EH gilt

u = E <<p,-Iu><p,-, Tu= E ?~;<<m|u><Pj- (5.81)
i=1 i=1

Wir formen die Reihendarstellung von u um, um eine Gestalt zu erhalten, die auch
allgemeine (d. h. T nur selbstadjungiert, H beliebiger Hilbertraum) Gültigkeit hat.
Dazu führen wir folgende Operatoren E, ein, wobei Ä ein reeller Parameter sei:

E/1u= 2 <97J‘lu>97i <ueH). (5.81)
1,51

Ofl"enbar ist E, für Ä < —|\TH der Nulloperator, denn der Spektralradius von T
ist HTH. Ebenso erkennt man E, = I, falls Ä > HTH ist, denn wegen der Vollständig-
keit ist für Ä > HT11

CO

E2": <‘Pji">9‘j:I“:“-
,:

Deshalb heißt die Schar der Operatoren E, eine Zerlegung der Einheit. Diese Opera-
toren E, haben bemerkenswerte Eigenschaften:

a) Sie sind (für jedes Ä) linear, symmetrisch, itempotent, d. 11., E,(E,u) = E,u für
jedes u EH, und es ist E,(E„(u)) = EM‚„(„„,(u). E, ist Projektionsoperator von H
in R(E,); es gilt überdies HE,” = 1, ferner ist E, positiv (denn (E,u! u) = I] E,ul[2 g 0).

b) Die Funktion 9(1) = (E,u | u) für jedes (beliebige) u e H, und —oo < A < +00
ist eine Treppenfunktion mit (höchstens) abzählbar unendlich vielen Sprungstellen:

au) = <E„u I u> — <¢,- I u> q»,-I film I u> ¢k>

2 Km) I u>Iä (5.82)
.<„z;
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und für ‘u g i. ist

au!) - 94/3) =_ X |<<m I u)!” ä 0; (5-83)mag);

es ist also 9(2) eine monoton wachsende Funktion (und g ist rechtsseitig stetig:
lim 9(2) = 9010))-

;_a;.0+o

Für stetige Funktionen f(Ä) existiert somit das Stieltjes-Integral [14/2] mit der Be-
legungsfunktion 9(2):

b

Wlfl/Ä) dgt/".). (5.84)
ü

Es gilt nun der umgeformte Entwicklungssatz [vgl. (5.8l)]:

Satz 5.3: Für jedes z/ e H (O ist nicht Eigenwert von T, sonst s. Satz 5,4) ist

urn nrn '

(Tu I u) = | Z dgU.) = I Ä d(E‚»_u [ u). (5.85)
—,m|—o —1|f||—o .

Man schreibt kurz (und diese Kurzschreibweise läßt sich ebenso durch einen Zer-
legungsprozeß wie bei einem Stieltjes-Integral erklären [16]):

IITIl
Tu =

-lITlI—0

IiTl!
T 2 l

—.;r‘;:—o

2. dE‚-_: 2. d(EZu). (5.86)

Da im Stieltjes-Integral in (5.84) nur die Sprungstellen von g einen Anteil zum

Integral liefern (weil g eine Treppenfunktion nach (5.82) ist), wird Tin (5.86) genau
durch seine Eigenwerte, also sein Punktspektrum (a(T) = a,.(T) U {O}, vgl. Satz 3.13)
bestimmt. Der Satz heißt daher auch der Spektralsatz, die Darstellung (5.85) bzw,
(5.86) die Spektralzerlegung von T und die Schar {El} die Spektralschar von T.

5.2.2.

Analog gilt für selbstadjungierte nicht notwendig beschränkte (vgl. Def. 3.17 und
Abschnitt 5.1.1.) Operatoren T:

Selbstadjungierte Operatoren in Hilberträumen

Satz 5.4 (Allgemeiner Spektralsatz in Hilbertr5iumen‘)): Ist T ein selbstadjungierter
Operator mit D(T) g H, R(T) g H, so gibt es eine eindeutig durch T festgelegte
Spektralsehar {E1} mit den Eigenschaften

a) wie im vgl/stetigen Fall.
b) 9(1) = (E‚-_u I u) ist für jedes u e H monoton wachsend, rechtsseitig stetig, und

es ist glim Q0.) = 0. >lim 9(2) = Null’ (Q wird i. allg. nicht mehr Treppenfunkfion

Xein). Ferner ist für jedes reelle ‚u: E,,+ou = lim E11: = E„u für jedes u EH und
A» ‚+0

lim neun = o. lim gut» = Etui] für jedes „ein.
za_y. ‚:„_.„

1) Ein Beweis wurde zuerst von J. v. Neumann gegeben, s. a. [l].

S.5.3

S.5.4
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c) Für alle u e D(T) gilt die Spektraldarstellung

+00

(Tulu): f 1d<E,1u|u) (5.87)
—uc

oder auch analog abgekürzt wie in (5.86) geschrieben.

Interessanterweise kann auch der Definitionsbereich D(T) durch das Stieltjes-
Integral mit 9(1) charakterisiert werden; es ist nämlich

+ IX)

u eD(T)¢> f l’ dga) < oo, (5.88)

und es ist EÄu e D(T) für jedes u e H und jedes 7. sowie

+ 00

(Tu | v) = f t d(E,-_u | v) (u e D(T), v e H). (5.89)
—oc

Die Kenntnis der Spektralschar {E1} eines selbstadjungierten Operators T ge-
‘stattet, die früher vorgenommenen Anwendungen der Funktionalanalvsis in der
Quantenmechanik zu verallgemeinern, denn wir hatten uns in Kap. 4. stets auf
Operatoren mit reinem Punktspektrum bezogen. Ganz ähnlich wie bei beschränkten
Operatoren lassen sich über die Spektralschar {EA} jetzt die Begriffe Spektrum von T,
Größe a Resolventenmenge usw. erklären (vgl. [l6], [1]; s. auch bei (5.110)).

5.2.3. Anwendungen auf die Quantenmechanik

A sei ein selbstadjungierter Operator, der eine beobachtbare Größe a der Quanten-
mechanik beschreibt. Befindet sich nun das quantenmechanische System im
Zustand a, so ist der quantenmechanische Mittelwert bezüglich der beobachtbaren
Größe a durch {Au} u) definiert. Es ist daher

+00

(Aulu) = j Ädfläulu), (5.90)
—oo

wenn {El} die zugehörige Spektralschar ist; es muß folglich, 9(1) als Verteilungs-
funktion einer Zufallsgröße a betrachtet, sein:

P(A; [m13]; u) = <(Ep - Ea) u I u), (5-91)

wenn links die Wahrscheinlichkeit dafür steht, daß die Messung der dem Operator A
zugrunde liegende physikalische Größe a im Zustand u zwischen a und ß liegt. Die
Sprungpunkte von E) (d. h. Z. mit lim EÄu + EÄu) sind gerade Werte von a, denen

Äa/L-O —

stationäre Zustände (normierte Eigenvektoren von A) entsprechen, denen also eine
Wahrscheinlichkeit <(E1 — EÄ_0) u l u> > 0 zukommt.

Als Beispiel studieren wir den Operator A, der der Ortskoordinate t zugeordnet
wird: Ist der Definitionsbereich D(A) = {u eL2(R) I {u(t) eL2(R)}. so ist A selbst-
adjungiert, jedoch nicht beschränkt [s. (5.35)]. A hat keine Eigenwerte, denn wäre
für fast alle t

(A — M) u(t) = (t — Ä) u(t) = 0, (5.92)
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so folgt (l1 fest, reell) u = o eL2(R). Trotzdem muß der Spektralsatz gelten. Wir
erraten die zugehörige Spektralschar:

Eiu = ;g(—oo, /1) u, (5.93)

wobei ;;(——oo,l) die charakteristische Funktion (s. Text vor Def. 1.12) für das
Intervall (— o0, Ä) ist. Tatsächlich ist auch

i}? 2 d<E‚.ul u> = T I. d( +jmx<—oo, z)a<s)u<s)da)
'—r/> „J: T;

= f 2d( J Iu(E)I’ de)

+00

'= l|u(l)|2 d).

= To t|u(I)|2 dt

= (tu | u) = (Au | u). (5.94)

gU.) ist somit in diesem Beispiel von der Gestalt
A

9(1) = j’ lu(§)|’ d5

und offenbar monoton wachsend. Es kann keine Eigenwerte geben, denn

lim H(E;. - EH) NH’
v5—>+0

= lim l|[x(-00.7») - Jfl-OOJ - Müll’
ä—++0

7

= lim W. — 5,1) un2=nm f" |u(E)|2dE=0, (5.95)
a»+o a=o‚“ d

weil das Lebesgue-Integral stetig von der Länge des Integrationsintervalls abhängt.
Auch (5.88) läßt sich explizieren, denn wegen

7 +30

D(A) = {u f ÄZdHEÄuHZ < so}

= {u V/:2 d 1u(§)|2 d5 < co}

={„

erhält man gerade tu(t) 5L“ wie in (5.34).

+30

f /:2 [u(z)|2 d}. < co}
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Quantenmechanisch gedeutet heißt (5.95), daß der beobachtbaren Größe A kein
stationärer Zustand zukommt. Eine Wahrscheinlichkeit ist aber wie in (5.91) für
jedes (abgesch1ossene)‘) Intervall (und einen Zustand u e D(A)) angebbar:

P(A; [04, I3], u) = ((55 - Em) u I u)

T m. ß] |u<s>|2 as

ß

J" Iu(E)I2 de. (5.96)
cc

Man erkennt so auch 0 g P g 1, da u als Zustand stets mit Hull = 1 anzusehen war.
Als quantenmechanische Streuung der beobachtbaren Größe im Zustand u ergibt

sich wegen (q: stückweise stetige Funktion)
+00 2 +00

J‘ <P(1)d(E;u) = f |¢(}‘)l2dHE}.u“2:

o0 2

i <2 — <Au I u» d(E}.u)
„o |

02(u/A) = l|(A - <Au|u> [M12 =i

=70]/1 —— (Au I u)|‘d}[E,-’uH2. (5.97)

Man erkennt weiter leicht, daß im Falle A = 5 von 1.2.3. aus (5.96) wieder die
Interpretation der Icjlz wie im Text nach (1.94) folgt. Denn man setzt die Spektral-
schar aus (5.81) ein und erhält mit o: = Z_, (Eigenwert) wie in (5.82)

H5; 12.4.2.1, u) = —<(E.;.o — E.)_u1u>=|<u|w_‚>i2=1c,|2. (5.98)

Schließlich kommen wir nochmals zur zeitabhängigen Schrödinger-Gleichung.
Jetzt könnte im Beweis des Existenz- und Unitätssatzes auf die dort gemachte Ein-
schränkung eines reinen Punktspektrums verzichtet werden, wenn mit der Spektral-
darstellung eines Operators wie in (5.87) gerechnet wird.

Dem Operator e‘"‘ entspricht dann mit {EA} als Spektralschar von A
‘i’ IX)

e“); = i e“? d(E‚_y). (5.99)
—oo

5.2.4. Eigendiflerentiale

Wenn man die Spektralschar zu einem Operator kennt, so ist also die quantenmechanische Inter-
pretation vollständig durchführbar. Das Auffinden der Spektralschar ist aber in jedem Fall ein
schwieriges Problem. Wir haben auch nur für den vollstetigen Fall allgemein und für den Orts-
operator die Spektralschar angegeben (5.81’)‚ (5.93). Als weiteres Hilfsmittel zur Analyse von Opera-
toren dienen die sog. Eigenpakete, die auch Wellenpakete oder Eigendiflerentiale genannt werden.
Sie stehen in enger Beziehung zur Spektralschar. Wir betrachten wieder einen selbstadjungierten
(eventuell sogar nur symmetrischen) Operator A mit D(A) g H, R(A) g H. Wir fassen eine feste
Stelle A0 e R ins Auge. Gibt es ein vom Parameter l e R normstetig abhängiges Element (15,1 E D(A)‚

1) Unwesentlich, da g stetig ist für den Operator A.
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welches für Ä = 7.0 mit dem Nullelement zusammenfällt und dessen Bild unter A sich durch Stieltjes-
Integration über die reelle Achse von l0 (Bezugspunkt) bis Ä darstellen läßt:

A

AG?) = J ‚man, (5.100)

30

so heißt (I?) (— o0 < i. < + 0o) ein Eigenpaket. Für einen Eigenvektor (p zum Eigenwert l. von A
würde A1}: = M? gelten; (5.100) bedeutet, daß A45) mit allen i‘), (von Äg bis I.) darstellbar ist.

Das Rechnen mit Stieltjes-Integralen gestattet, (5.100) umzuformen:
1

A<15;_ =/11.151 ~ J" q, (1,1, (5.101)

Äo

und diese Gleichung zeigt, daß 95,1 nicht Eigenvektor ist für festes Ä. Man kann aber (5.101) auch
in Diflerentialform schreiben, denn

1 1

A} 11 d(<15# — <1b,.o) = (Ada — Z4520) — J 45,, (1,1, (5.102)

lo 7-0

und formal in 1. Näherung (das Integral rechts verschwindet von höherer als l. Ordnung) ist

A(dd5‚() = 16145)), (5.103)

woraus der Name Eigendifferential abgeleitet ist.
Der Zusammenhang zur Spektralschar {Ei} von A, wenn A selbstadjungiert ist, ist in folgender

Weise herstellbar [l6]: Man löst die Sprungstellen aus {EA} heraus (denn d?) ist normstetig, {EA} hat
Sprungstellen). Dies geschieht in folgender Weise: Da 9(1) = {EM l u) rechtsseitig stetig und
monoton wachsend ist, läßt es sich als Summe einer Treppenfunktion 1(1) und einer stetigen mono-

Ionen Funktion 0(1) darstellen [l4]. Entsprechend sei

E) = T), + S} (5.104)
mit

TA = 2 (EA, - EA,._o). (5-105)
M§A

51 = EA — )2 (EAJ. - E/'.J.,o) = EA - T1. (5-105)
„g

wobei die 1., die Eigenwerte von A sind. Dann gilt [16]

Satz 5.5: Ist A selbstadjungierter Operator mit D(A) g H und u e H ein beliebiges Element, so ist S.5,5
(D) = (s) — S10) u (5.107)

ein Eigenpaket von A in D(A) bezüglich lo. Ix! G’) ein Eigenpaket von A bezüglich 7.0, so kann es in
jedem Intervall —oo < o: __<. i. g fi < no mit on g 7.0 g fl durch

d’). = (51- SAD) (45,3 ‘r (P11) (5-103)

dargestellt werden.

Eigenpakete kann man im allgemeinen einfacher finden als die Spektralscharen. Ist z. B. A ein
symmetrischer Differentialoperator mit leerem Punktspektrum‘) und tp(x‚Ä) $ 0 eine Lösungs-
schar von Au = Au mit ~00 < l. < +00, so muß ‘1"lPH1., = o0 für jedes Ä sein, denn sonst wäre 01

Eigenfunktion für festes Z. Dann kann man versuchen, Eigenpakete in der Form
A

«m. = l w(x,1t)d1t (5.109)
30

oder auch in Form eines Stieltjes-Integrals zu finden.

d . 1

‘) Zum Beispiel Aw = ih" E w, dann ist Anp = 111p durch w(x, i.) = e"M" lösbar für jedes 1.,

aberllllll Ü“) ä + 0o. Durch einen Integrationsprozeß ähnlich (5.109) werden dann „Wellenpakete“
in der Quantenmechanik aufgebaut. (siehe z. B. [10, Aufg. Nr. 2]).
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Beispiel 5.3: Der schon bei (5.92) behandelte Multiplikationsoperator A hat leeres Punktspek-
trurn, und jedes reelle Ä gehört zum Stetigkeitsspektrum.

Die Spektralschar war nach (5.93)

{E2} = M" 00.1)}, ÄGR (5-110)

wobei auch rechts Operatoren stehen.
Wir bestimmen ein Eigenpaket zu I10 = 0. Gemäß (5.104) ist E; = Sh gemäß (5.107) ist

Ü; =(51 - 5/1°) ü = [z(—°0,l) '" 7,(—°°.0)] M (5-111)

= +(sgn Ä) 750., 0) u,

/+ (sgn Ä) u für x zwischen 0 und 7.

Ä —\ O für die sonstigen x.

Wir wenden zur KontrolleA auf <D;_ an; 115;, liegt offenbar in D(A). Es sei i. > 0. Dann ist bei festem x

' J.i. 1.

f„d4>„ =}.<15,_ — f <1>„d‚t = +l;;(}.,0)u — J z(‚u‚0)u .114.

1.0 o

}—oo<}.<oo. (5.112)

o

= +/1;4(;.,0) u — ( f cm) „a, o) u

= +Äz(}., 0) u — (Ä — x) '/_(Ä, 0) u

= x101, 0) u

= Art). (5.113)

5.3. Weitere Anwendungen von Operatoren

Wir nennen hierzu noch Prob1emkreise‚ die in den naturwissenschaftlichen und
ingenieurtechnischen Anwendungen große Bedeutung haben.

(1) Ergodensiitze
Die Ergodentheorie befaßt sich mit der Existenz von Grenzwerten zeitlicher Mit-

tel und Darstellungsmöglichkeiten dieser Grenzwerte. Ein einfaches Beispiel ist:
Zum Zeitpunkt t = 0 sei der Zustand eines Systems durch x EH, ||x|[ = 1 dar-

gestellt. In den folgenden diskreten Zeitpunkten n = 1, werde der Zustand durch
U"x beschrieben, wobei U ein in H unitärer Operator sei. Dann besagt eine Variante
des Ergodensatzes von von Neuman, daß im Normsinne gilt

_ 1 N—l
11m — Z U" = Px, (5.114)

N—v so n = 0

wobei P die (orthogonale) Projektion von x in den Raum der Eigenvektoren von U
zum Eigenwert 1 ist. Links in (5.114) steht der Grenzwert des zeitlichen Mittels über
die Zustände längs einer Trajektorie. Einen kurzen Beweis von F. Riesz findet man

in [15]. Weiteres siehe z. B. in [29], [8, Bd. 2].

(2) Ritzsches Verfahren
Oft lassen sich Bestimmungsgleichungen für eine Größe x eines reellen separa-

blen Hilbertraumes H in der Form Tx = y (y eH, y gegeben) schreiben, wobei T ein
linearer stetiger selbstadj ungierter halbbeschränkter Operator mit D(T) = H ist.
Dann ist R(Y) = H, und es existiert für festes y eH eine eindeutige Lösung x* (s. [40]).
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x* ist (s. 5.1.2.) eindeutige Minimalstelle von

F(x) = (Tx | x) — 2(x I y) (5.115)

Jede Minimalfolge, d. i. eine Folge {x„} mit

lim F(x„)= inf {F(x) | x e H} (5.116)

erfüllt wegen (5.115)

lim F(x„) 2 infF(x) = min F(x) = F(x*)
n—v 0o m: xeH

und konvergiert unter unseren Voraussetzungen an T sogar selbst (in der Norm von

H) gegen x*. Eine solche Minimalfolge gewinnt man folgendermaßen (Ritzsches Ver-
fahren): Es sei {qaj} ein vollständiges ONS in H. Man betrachtet nun eine echt auf-
steigende Folge endlichdimesionaler Räume H1 g H2 g g H, dabeiist H„ derli-
neare Teilraum von H, der aus den ersten n Elementen des ONS gebildet werden kann.
Auf jedem H„ bestimmt man ein minimales Element x„ von F. x„ ist unter unseren
Voraussetzungen an T eindeutig bestimmt, wird durch Lösen eines linearen Glei-
chungssystems gewonnen, und es gilt

F(x*) g g F(x„) g F(x,,_1)._<_ g F(x2) g F(x,). (5.117)

Die Folge {x„} ist eine Minimalfolge (Beweis s. [40]).
Ist Tnur symmetrisch und halbbeschränkt aber nicht beschränkt, so ist D(T) in der

Regel nur eine dichte Teilmenge in H. Dann gilt: Für jedes ye R(T) existiert eindeu-
tig eine Lösung x„eD(T) von Tx = y, und x0 minimiert F über D(T) eindeutig;
jede Minimalfolge {x„} (x„eD(T)) von F konvergiert gegen x0 (in der Norm von
H). Das Ritzsche Verfahren zur Gewinnung einer Minimalfolge muß jetzt D(T) =I= H
berücksichtigen und ist in [40] erklärt. Für weitere Anwendungen und die Verfah-
ren von Trefftz und Galerkin s. [42].

(3) Finite-Elemente-Methode

In (2) wurde zur Approximation der Lösung einer Operatorgleichung ein ONS
benutzt. Es bildet eine Basis des benutzten Raumes. Als Basis kann man auch stück-
weise polynomiale Funktionen benutzen (finite Elemente), die in der modernen
Numerik eine hervorragende Rolle spielen. Man gewinnt sie, indem das Grund-
gebiet .0 des zugrunde liegenden Funktionenraumes geeignet trianguliert wird, und
dann (etwa durch Vorgabe von Funktionswerten in den Eckpunkten und auf Punk-
ten der Seitenflächen der durch die Triangulation entstandenen Teilbereiche) auf
jedem Teilbereich Polynome festgelegten Grades bestimmt werden. Zum Verhalten
des Ritzschen Wrfahrens bei solchen Basisfunktionen, angewendet auf das erste
Randwertproblem der elliptischen Differentialgleichung Au = —f in Q, u z 0 auf
Ö9, u e W"2(.Q),fe L2(.Q) vgl. [41/II; S. 47]. Weiteres z.B. in [51].
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