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Vorwort

Mit der Formulierung und Prézisierung der Differential- und Integralrechnung
(Analysis) im 17. bis zum 19. Jahrhundert war fiir die Naturwissenschaften, insbeson-
dere fiir die Physik, ein duflerst tragfahiges mathematisches Fundament geschaffen
worden. Die Erfolge, die mit der klassischen Differential- und Integralrechnung
erzielt wurden, sind bis heute fiir den wissenschaftlich-technischen Fortschritt von
groBem Nutzen. Insbesondere werden gewohnliche und partielle Differentialglei-
chungen zur Beschreibung und Modellierung deterministischer Prozesse in umfang-
reichem MaBe angewandt.

In der Anfangszeit der Analysis stand die Untersuchung der einzelnen Lésungen
von Differentialgleichungen, von einzelnen Funktionen (wie etwa sin x oder In x)
im Vordergrund.

Ende des 19. und Anfang des 20. Jahrhunderts entwickelte sich durch das Zu-
sammenwirken solcher Disziplinen wie der Theorie der Differentialgleichungen, der
Theorie der Integralgleichungen und der Variationsrechnung in zunehmendem MaBe
die Auffassung einer Funktion als ein Einzelobjekt oder Element einer ganzen Funk-
tionenmenge bzw. eines Funktionenraumes. Ein solches Element kann damit wieder
als eine ,,unabhéngige Variable betrachtet werden, die man ihrerseits in Funktionen
(= Abbildungen oder Operatoren) einsetzt und das Verhalten solcher ,,Funktionen
von Funktionen‘ untersucht. Es stellte sich heraus, daB in Funktionenrdumen Be-
griffe der anschaulichen, altbekannten (analytischen) Geometrie, wie Lange, Abstand,
Winkel usw., in natiirlicher Weise eingefiihrt werden konnten. Damit war eine ,,Geo-
metrisierung der Analysis* erreicht worden, die es ermdglichte, komplizierte analy-
tische Sachverhalte in einer einfachen geometrischen Sprache auszudriicken.

In der Mitte der zwanziger Jahre unseres Jahrhunderts wurden (gemeinsam von
Mathematikern und Physikern) die mathematischen Grundlagen der Quantentheorie
geschaffen. Hier erkannte man die unabdingbare Notwendigkeit der funktional-
analytischen Begriffe fiir die Aufstellung einer addquaten Mathematisierung. Etwa
gleichzeitig etablierte sich die Funktionalanalysis als selbstindige mathematische
Disziplin. Sie stellte Querverbindungen scheinbar weit voneinander entfernter mathe-
matischer Gebiete her.

Heute ist die Funktionalanalysis, die sich auf Grund ihrer klaren, umfassenden

Begriffsbildungen und der vielfachen Anwendungsméglichkeiten zu einer umfang-
reichen Theorie entfaltet hat, fiir die Weiterentwicklung der mathematischen Grund-
lagen solcher aktueller Gebiete, wie Technologie, Okonomie und Energiewirtschaft,
speziell auch der Netzwerktheorie und Mikroelektronik unumginglich.

Das Ziel des vorliegenden Bandes besteht darin, einige typische Anwendungen der
Funktionalanalysis zu umreifien. Dies wollen wir erreichen, indem wir — aufbauend
auf einigen Kenntnissen des Lesers aus mathematischen und physikalischen Grund-
vorlesungen sowie den vorangehenden Banden, auf die an verschiedenen Stellen ver-
wiesen wird — im ersten Kapitel an 5 Problemkreisen (Approximation/Fourier-
koeffizienten; StoBvorgang/Distributionen; Oszillator/Spektrum eines Operators,
Wahl von Raumen; Verflechtungsmodell/Fixpunkteigenschaften eines Operators;
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Steuerung/Pri-Hilbertraum-Methoden) motivieren, welche funktionalanalytischen
Begriffsbildungen auftreten werden. Auf diese gehen wir dann in Kap.2 und 3
systematisch ein. In den restlichen beiden Kapiteln werden ausgewihlte Anwendun-
gen der Begriffe des 2. und 3. Kapitels behandelt.

Der von dieser Reihe angesprochene Leserkreis wird naturgemiB sehr unterschied-
liche mathematische Kenntnisse haben, so daB wir den Band als Arbeitsbuch zur
Funktionalanalysis ansehen wollen, d. h., es muB das Verstéindnis der einzelnen Ab-
schnitte durch wiederholtes Lesen, durch Studium der zugehdorigen systematischen
Kapitel bzw. Beispiele, durch eigenes Nachrechnen der Sachverhalte, durch Blicke
in die angegebene Lehrbuchliteratur und schlieBlich vor allem bei neuen Begriffen
und wichtigen Sitzen durch den Versuch, zugrunde liegende Dinge aus der gewdhn-
lichen Differential/Integralrechnung, linearen Algebra, Geometrie zu erkennen,
erarbeitet werden. Solche zugrunde liegenden bekannten Sachverhalte sind etwa die
Auflosungstheorie linearer Gleichungssysteme, der in der Funktionalanalysis die
Fredholmsche Alternative (vgl. 3.2.4.) und mit weit groBerem Anwendungsbereich
die Spektralzerlegung eines Operators (vgl. 5.2.1.) gegeniiberstehen, die Theorie der
Fourier-Reihen, der in der Funktionalanalysis die Theorie der Orthogonalreihen
entspricht (vgl. Satz 2.40), oder die Ableitungsbegriffe, die in Fréchet- und Gateaux-
Differential (vgl. 4.2.) oder allgemeineren Begriffen ihr Gegenstiick haben.

Besonders wichtig bei einer neu zu erlernenden mathematischen Disziplin sind
vorgerechnete Beispiele, die aus den Anwendungen der Disziplin stammen. In dieser
Hinsicht méchten wir insbesondere auf unsere Abschnitte 1.2.1., 1.2.2. und 1.2.5.,
auf die Berechnung des Spektrums fiir den einfachsten, in der Stérungstheorie auf-
tretenden Operator (Bsp. 3.3), auf die Losungsdarstellung durch eine Reihe fiir ein
elliptisches (verallgemeinertes) Randwertproblem [(5.73)ff.] und auf die (einfachen)
Beispiele der Spektralzerlegung eines Operators (vgl. 5.2.3.) verweisen. Die Kapitel,
die den Banachschen Fixpunktsatz (vgl. 1.2.4. und 4.3.2.), den Schauderschen Fix-
punktsatz (vgl. Bem. 4.5), das Ritzsche Verfahren (vgl. 5.3.), die stark und beschrinkt
konvexen Funktionale (vgl. 4.2.2.2.) und die verschiedenen Anwendungen zur Physik
(etwa 1.2.2., 1.2.3,, 5.1.3.-5., 5.2.3. und 4.), zur Steuerungstheorie (vgl. 1.2.5.) und
zur Stérungsrechnung (vgl. 3.3.3.) betreffen, lassen die direkten Anwendungen der
Funktionalanalysis (auch in der Numerik) erkennen. Sie zeigen auch, daB so ab-
strakte Abschnitte wie 1.3. (Lebesgue-Integrale) oder die Kapitel liber die Sobolew-
Rdume oder iiber die Erweiterung von Operatoren durch die Anwendungen erfor-
derlich sind. .

Dabei méchten wir betonen, daB in diesem Band nur Ansitze fiir die allereinfach-
sten Anwendungen der Funktionalanalysis behandelt werden konnen. Inhaltsreiche
und vor allem iiberzeugende (motivierende) Anwendungen der Funktionalanalysis
auf Praxisprobleme sind bei ausfiihrlicher mathematischer Darstellung (wie im Rahmen
der MINOL-Reihe erforderlich) sehr aufwendig und z. T. wesentlich komplizierter
als die hier vorgefiihrten Beispiele. Dieser Tatsache stehen eine wachsende Zahl sol-
cher inhaltsreicher Anwendungen in den Ingenieurwissenschaften, in der Physik,
(Okonomie und Biologie gegeniiber — wir erwiihnen hier nur die interessanten Arbei-
ten in der Theorie nichtlinearer Schwingungen (man vergleiche hierzu die Tagungs-
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berichte der VII. Internationalen Konferenz iiber Nichtlineare Schwingungen, Berlin
1975) oder in der Theorie der Kernreaktoren, die tiefliegende Hilfsmittel der Spek-
traltheorie von Halbgruppen linearer Operatoren bendtigt (wir verweisen auf das
grundlegende Werk von S. B. Schichow iiber Reaktortheorie, Moskau 1973). Somit
ergibt sich in immer stirkerem MaBe die Notwendigkeit, in der Mathematikausbil-
dung von Ingenieuren und Naturwissenschaftlern Elemente der Funktionalanalysis
einflieBen zu lassen. Im internationalen MaBstab ist diese Tendenz bereits deutlich
spiirbar und stellt qualitativ hohere Anspriiche an die Erziehung und Ausbildung von
Ingenieurstudenten. Diesen Forderungen zu entsprechen ist das Anliegen dieses Ban-
des. Ausdriicklich méchten wir noch auf den Erganzungsband zum Taschenbuch der
Mathematik von Bronstein und Semendjajew (19. Auflage), speziell den Abschnitt
8.1. — Funktionsanalysis—, hinweisen, den wir zum Gebrauch neben diesem Band be-
sonders empfehlen.

Fiir wertvolle Hinweise danken die Verfasser vor allem Herrn Prof. Dr. Jentsch,
TH Karl-Marx-Stadt, Herrn Prof. Dr. Mébius, TU Dresden, Herrn Prof. Dr. Stolle,
WPU Rostock, Herrn Prof. Dr. Thamelt, Herrn Dr. sc. Bergmann und Herrn Dr.
Lange, samtlich TH Leuna-Merseburg; Herrn Dr. sc. Schirotzek, TU Dresden, so-
wie Herrn Doz. Dr. Zeidler, Hochschule fiir Okonomie Berlin. Frau Dr. Bohlmann,
Herrn Dr. Kayser, beide TU Dresden, und Herrn Dr. Rhodius, PH Dresden, dan-
ken wir fiir wichtige Hinweise bei den Korrekturen. Fiir die prizise und terminge-
rechte Durchfiihrung der Schreibarbeiten danken wir Frl. Augsten und Frau Hoff-
mann, TH Leuna-Merseburg. Dem Verlag sei fiir die gute Zusammenarbeit herz-
lich gedankt.

Dresden und Merseburg, im Februar 1980 T. Riedrich
A. Gopfert
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1. Einfiihrendes zur Anwendung der Funktionalanalysis

1.1.  Allgemeine Grundbegriife

Vor einer systematischen, ausfiihrlichen Darstellung der erforderlichen funktional-
analytischen Begriffe in Abschnitt 2. und 3. soll hier nur {iber einige Grundbegriffe
der Funktionalanalysis so viel gesagt werden, dal der mathematische Inhalt der ein-
fiithrenden Beispiele verstandlicher wird.

Ein Raum bezeichnet innerhalb einer funktionalanalytischen Beschreibung stets
eine geeignet gewahlte Menge von gleichartigen Elementen. Deren mathematische
Natur und Herkunft kann jeweils vollkommen unterschiedlich sein. So gibt es Rdume
von Zahlen, Funktionen, Vektoren, MaBen, Matrizen, Operatoren, von Systemen
von Funktionen, Vektoren, Matrizen usw. Fiir die Anwendung der Funktional-
analysis haben sich vor allem lineare Ridume (vgl. Bd. 1) als niitzlich erwiesen.

Unter einem linearen Raum versteht man eine Menge E von Elementen, f, g, 4, ...,
fir die die Rechenoperationen der Addition /' + g und der Multiplikation yf der
Elemente f mit Zahlen y (reell bzw. komplex) erklart sind, welche die iiblichen Rechen-
regeln der Addition von Vektoren bzw. der Multiplikation von Vektoren mit Zahlen
erfiillen. Aus diesem Grund nennt man einen linearen Raum auch verallgemeinernd
einen Vektorraum und seine Elemente Vektoren. Wird die Multiplikation der Ele-
mente von E nur mit reellen Zahlen zugelassen, so sprechen wir von einem reellen
Vektorraum; sind alle komplexen Zahlen als Faktoren mdglich, so nennen wir E
einen komplexen Vektorraum. Eine Teilmenge F < E heiflt ein linearer Teilraum
(linearer Unterraum) von E, wenn F beziiglich der in E erklarten Operationen
,Addition* und ,,Multiplikation mit einem (skalaren) Faktor* selbst ein linearer
Raum ist. In E gibt es genau ein Nullelement (,,Nullvektor) o; fiir dieses gelten die
Gleichungen f + o = fund 0 f = o fiir alle /'€ E. Eine endliche Menge f, ..., f,
von Elementen eines linearen Raumes heif3t linear abhéngig, wenn es Zahleny,, ..., 7,
gibt, die nicht alle gleich 0 sind, so daB

i yfi =0 (1.1)
k=1

gilt. Anderenfalls heilt die Menge f7, ..., f, linear unabhiingig.

Fir die Anwendungen, insbesondere fiir Néherungsverfahren auf funktional-
analytischer Grundlage, reicht jedoch die Einfiihrung eines linearen Raumes allein
nicht aus, weil mit der Festlegung der Rechenoperationen noch nichts iiber die
relative Lage der Elemente des Raumes zueinander ausgesagt wird, z. B. dariiber,
ob zwei Elemente ,,weit* voneinander entfernt sind oder ,,nahe‘ beieinander liegen.
Die Beschreibung derartiger Beziehungen gelingt z. B. mittels des Abstandsbegriffs,
d. h., durch die Einfiihrung einer Metrik genannten Abstandsfunktion (vgl. Bd. 1).

Definition 1.1: Unter einem metrischen Raum versteht man eine Menge X von Elemen-
ten x, Yy, z, ..., in welcher je zwei Elementen x, y eine nichtnegative Zahl d(x, y), ihr
Abstand, zugeordnet ist, wobei die folgenden Forderungen (Axiome, Postulate) erhoben
werden:

(M1) d(x,y) = 0 genau dann, wenn x =y gilt (Definitheit).
M2) d(x,y) = d(y, x) fiir alle x,y € X (Symmetrie).
M3) d(x,y) £ d(x, z) + d(z,y) fir alle x,y, ze€ X (Dreiecksungleichung).

D.1.1
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Diese Forderungen sind einerseits allgemein genug, um die unterschiedlichsten
Anwendungssituationen erfassen zu konnen, und sie sind andererseits speziell genug,
um das Wesentliche eines Abstandsbegriffs zu enthalten. Stellen wir uns etwa d(x, y)
als die tibliche Entfernung zweier Punkte x, y-in der Ebene vor, so sind die Eigen-
schaften (M 1)-(M3) unmittelbar ersichtlich.

Fiihrt man nun in einem linearen Raum E eine Metrik d ein, so muf3 man zusétz-
lich darauf achten, daB die Rechenoperationen in E mit der Metrik d vertraglich
sein miissen. Man kann diese Vertraglichkeitsforderungen in verschiedener Weise
formulieren. Wir stellen sie in der Form der folgenden beiden Bedingungen:

@AM d(f + h, g + h) = d(f, g) fiir alle f, g, h € E (Translationsinvarianz).
(LM2) Ist {y,} eine Zahlenfolge mit lim y, = 0, so gilt lim d(y,f, 0) = 0
fiir alle f € E. e "

Die Forderung (LM 1) sagt aus, daB sich der Abstand zweier Elemente (Vektoren) f
und g nicht dndert, wenn beide Elemente um das Element (Vektor) / parallel ver-
schoben werden. Die Forderung (LM?2) driickt eine Stetigkeitseigenschaft aus.

Ist in einem linearen Raum eine Metrik gegeben, die auBer den Forderungen
(M1)-(M3) zusitzlich die Bedingungen (LM 1) und (LM?2) erfiillt, so heiit E ein
linearer metrischer Raum.

Beispiel 1.1: Es sei E = R" die Menge aller Zahlen-n-tupel x = (&, ..., &,) reeller Zahlen &;
(j =1,..,n) mit den iblichen Festlegungen der. Rechenoperationen: Ist x = ({y, ..., &),
Y =01, ..smn), 50 sei x+y=(E +n, .., & + ), und fir yeR sei px = &y, ..., 760
(R: Menge der reellen Zahlen). Wird der Abstand d(x, y) zweier Elemente x, y € R" (abweichend

n
vom iiblichen Entfernungsbegriff) festgelegt durch d(x, y) = 3" [& — 7/, so sind die Eigenschaften
(M1), (M2), (M3), (LM 1), (LM2) erfiillt. k=1

S. Banach (der Begriinder der polnischen funktionalanalytischen Schule) speziali-
sierte den Begriff des linearen metrischen Raumes in einer fiir viele Anwendungen
geeigneten Weise durch die Einfithrung des Begriffs des normierten Raumes. Die
Norm eines Elementes eines linearen Raumes verallgemeinert den Begriff der Lénge
eines Vektors.

Definition 1.2: Es sei E ein linearer Raum. Jedem x € E sei eine nichtnegative Zahl
|lx|l, die Norm von x, zugeordnet. Dabei sollen die folgenden Eigenschaften (Norm-
axiome) (N 1)-(N3) erfiillt sein (K: Menge der komplexen Zahlen')):

(N1) |x|| = 0 genau dann, wenn x = o (Definitheit).
(N2) |yx| = |yl - |x| fiir alle x € E und alle y € R (bzw. y € K)
(positive Homogenitit).
(N3) [x + yll < |Ix]| + |»| fiir alle x, y € E (Dreiecksungleichung).
Dann heifit E ein (reeller bzw. komplexer) normierter Raum.

Bemerkung 1.1: Im Hinblick darauf, daB auf demselben Vektorraum E verschie-
dene Normen eingefiihrt werden konnen (abhéngig von der jeweiligen Anwendung)
bezeichnet man genauer das Paar (E, ||.||) als den (gegebenen) normierten Raum
(vgl. Bsp. 1.2).

1) In der Literatur wird die Menge der komplexen Zahlen auch hiufig mit € bezeichnet.
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Mittels der Gleichung
dix,y) = |x =yl (x,ye E) (1.2)
kann man in jedem normierten Raum eine Metrik einfiihren, die auller den Forde-
rungen (M 1)-(M3) auch die Forderungen (LM 1), (LM2) erfiillt. (LM2) folgt z. B.

50: d(yaf; 0) = llyaf — oll = lyal - £l = 0, da {y,}, also auch {|y,|} eine Nullfolge
ist. Jeder normierte Raum ist daher mit der Metrik (1.2) ein linearer metrischer Raum.

Beispiel 1.2: Der Raum E = R" wird mit der Festlegung |x|| = Z &1 (x = (&4,.., &) ERY zu

einem normierten Raum. Y’ |£;| ist eine Norm |||, denn}’ [£)| = 0@ E1=00=12..,msx

= (615, &) = o, also gilt (N1); wegen [px]l =3 [y = Iy X 15,1 = [7] - IxI| gilt (N2); wegen

der Dreiecksungleichung D&+l £ 3 (&1 + Iyl gilt (N3): e + yll =218 + 0yl = 3165

+ X Il = Ixll + 1. Wegen llx — yll =X |& — ;| ergibt sich iiber (1.2) die Metrik von Bsp. 1.1.
2

1
Im R" wird auch durch Z & eine Norm (euklidische Norm) und durch (1.2) dann die zu-

gehorige ,,euklidische* Metrlk erklart.

Bemerkung 1.2: Es gibt fir die Anwendungen wichtige metrische lineare Rdume, deren Metrik
nicht durch die Beziehung (1.2) aus einer passenden Norm hergeleitet werden kann. Man muB sogar
noch allgemeinere Rdume, die topologischen Vektorraume (s. [17] und Raum-Graph) einfiihren,
um die all, insten Zusammenhi zwischen Vektorraumstruktur und Stetigkeitseigenschaften
herstellen zu konnen. Die zugleich notwendigen und hinreichenden Bedingungen dafiir, da3 ein
topologischer Vektorraum als ein normierter Raum aufgefaBBt werden kann, wurden von dem
sowjetischen Mathematiker A. N. Kolmogorow, der auch durch seine grundlegenden Arbeiten zur
‘Wabhrscheinlichkeitstheorie (s. Bd. 17) bekannt geworden ist, angegeben.

Die Erfolge der Funktionalanalysis liegen u. a. darin begriindet, daB es ihr gelingt,
komplizierte Fragen aus den verschiedensten Gebiceten in einfacher, geometrisch faf-
barer Form darzustellen und zu behandeln. Die Einfiihrung des Raumbegriffs und
des Abstandsbegriffs (Norm, Metrik) machen dies deutlich. Noch enger wird die
Bindung an unsere gewohnten geometrischen Anschauungen, wenn auch Winkel
zwischen Elementen (Vektoren), insbesondere die Beziehung des ,,Aufeinander senk-
recht Stehens® verfiigbar sind. Dies wird durch die Einfiihrung eines Skalarprodukts
(vgl. Bd. 13, 2.3.1.) erreicht.

Definition 1.3: Es sei E ein linearer (komplexer) Raum, in dem zu je zwei Elementen x,y
eine komplexe Zahl {x|y), das Skalarprodukt von x und y, erklirt ist, wobei die
folgenden Eigenschaften (S1)~(S4) gelten sollen (x, y, z € E):

SD x+zlyy=Lx]y) +Lz]».
(S2) (x| ¥y =<y | x) (4 sei die zu 2 konjugiert komplexe Zahl).
(83) x| Ayy =MKx|yy (AeK).
(S4) (x| x> >0 firallex % o.
Aus (S2) und (S3) folgt die Gleichheit (Jx | y) = (x| y).

Ist der lineare Raum E reell, so fordert man, daB (x| y) reellwertig ist fiir alle
x, y € E. Die Forderung (S2) lautet dann

(82) Lx 1y =<y %.

Einen linearen Raum E mit einem bestimmten Skalarprodukt {.|.» nennen wir
einen unitiren Raum oder auch Pri-Hilbertraum.

D.1.3
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Beispiel 1.3: Es sei E = R" (s. Bsp. 1.1). Mit
n
x> =3 Ean (1.3)
k=1
wird E zu einem (reellen) Pri-Hilbertraum (n-dimensionaler euklidischer Raum).

Beispiel 1.4: E bestehe aus allen (reellwertigen) stetigen Funktionen f(r) (¢ = ¢ < b) der reellen
Variablen 7 € [a, b]. Mit den (iiblichen) Festlegungen

F+ea=f)+gt) @ast=b),

GH@ =2, v€R, (1.4

wird E zu einem linearen Raum, den wir mit CRrla, b] (vgl. Def. 2.15) bezeichnen. Wir definieren
b

{flgy = [ f(D)g(r)dr. (1.5)
a

Dann sind die Forderungen (S1)-(S4) sémtlich erfiillt, und CRrl[a, b] ist, versehen mit dem Skalar-
produkt (1.5), ein reeller Pri-Hilbertraum.

Beispiel 1.5: E bestehe aus allen komplexwertigen stetigen Funktionen f(f) = u(t) + iv(r)
(a =t = b) der reellen Variablen ¢ € [a, b]. Mit den Festlegungen analog (1.4) im Bsp. 1.4 wird E
zu einem linearen Raum. Bezeichnung: Cla, b]. Mit
b__
flgy = [ fln) gyt (1.6)
a

sind die Forderungen (S1)-(S4) von Def. 1.3 erfiillt, und E ist, versehen mit (1.6), ein komplexer
Pra-Hilbertraum.

Beispiel 1.6: Es sei E = K" die Menge aller komplexen Vektoren x = (&, ..., &) (§; = o + iff;;
oy, By reell, j = 1,...,n). K"ist ein linearer Raum (Definition der Vektoroperationen wie im R").
Es seien py, p2, ..., Py positive reelle Zahlen. Dann wird durch die Vorschrift

n -
&y =X i 1.7
k=1
ein Skalarprodukt auf K" erklart (Beweis als Aufgabe).

In einem Pri-Hilbertraum E a8t sich eine Norm dadurch gewinnen, daBl man setzt

Il =D (feE). (1.8)
Im R" (Bsp. 1.3) liefert die GI. (1.8) die Beziechung |x|| = \/m = i &, was
k=1

mit der iiblichen Definition der Léinge eines Vektors iibereinstimmt. In jedem Pra-
Hilbertraum E 148t sich so mit (1.8) und (1.2) eine Metrik einfithren:

df.e)=J{f~¢gIf~& (fgeE). (1.9)
Der Beweis dafiir, da mit einem Skalarprodukt durch (1.8) tatsachlich eine Norm
geliefert wird, ergibt sich aus den Eigenschaften des Skalarprodukts (Def. 1.3) und
aus der folgenden Schwarzschen Ungleichung.

Satz 1.1 (Schwarz-Bunjakowskische Ungleichung): Es sei E ein Prd-Hilbertraum mit
dem Skalarprodukt {.|.». Dann gilt im Sinne der Definitionsgleichung (1.8) die Un-
gleichung

Kfll = 11 - lgll- (1.10)
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Das Gleichheitszeichen gilt in dieser Ungleichung genau dann, wenn f und g linear
abhdingig sind, d. h., wenn f = «g oder g = fBf gilt (, f € K).

Den Beweis findet man in [7], S. 28.

Der Nachweis der Normeigenschaften (N1)-(N3) fiir die durch (1.8) eingefiihrte
Funktion /{fTf> liBt sich nun leicht fiihren: Die Eigenschaft (N1) und (N2)
ergeben sich unmittelbar aus den Skalarprodukteigenschaften; die Dreiecksunglei-
chung folgt so: Fiir /' + g = o ist (N3) trivialerweise etfiillt. Fiir f + g # o erhalten
wir mittels der Schwarzschen Ungleichung |+ g|> = <{f+ g|f+ & =<+ g|f)

+<f+ele = If+gllIfl + 1f+ gl gl = If+ gl (fIl + lgl), woraus nach
Division beider Seiten der erhaltenen Ungleichung durch | f + g| sofort (N3) folgt.

Nicht jeder normierte Raum ist ein Pria-Hilbertraum. Genau dann, wenn fiir je
zwei Elemente / und g des gegebenen Raumes die Parallelogrammgleichung

If+ &l? + If = gl = 201117 + lgl®) (1.11)

gilt, existiert ein Skalarprodukt <.|.) auf diesem Raum, so daB [f| = \/(f|f>
fiir alle f besteht. In einerm Pra-Hilbertraum kann man (1.11) sofort bestdtigen.

Nun kénnen wir den Begriff zweier ,,aufeinander senkrecht stehender* Vektoren
in beliebigen Pra-Hilbertrdumen einfiihren. Systeme paarweise aufeinander senkrecht
stehender Vektoren werden fiir den Aufbau von Orthonormalsystemen in einem
Pri-Hilbertraum (s. Def. 1.5) benétigt, die ihrerseits fiir die Losung angewandter
Probleme von Bedeutung sind.

Definition 1.4: Es sei (E, {.|.)) ein Pra-Hilbertraum. Zwei Elemente f und g aus E
heiffen zueinander orthogonal (senkrecht), wenn die folgende Gleichung gilt:

{flgy =0. 1.12)

Definition 1.5: Es sei (E, {.|.)) ein Prd-Hilbertraum. Eine Folge f,,f,, ... von Ele-
menten von E heifit ein Orthogonalsystem in E, wenn die Gleichungen (j = 1,2, ...;
k=1,2..)

Silfio =0 (G *k) (1.13)
gelten. Eine Folge e, e,, ... von Elementen von E heifit ein Orthonormalsystem (ONS),
wenn die Gleichungen

Cesle ={° U*“} j=12..

= Oj, 1.14
1=k 7 k=12, 419
gelten. (Jedes e; hat daher wegen (1.8) und (1.9) die Linge 1.)

Bemerkung 1.3: Jedes ONS ist ein Orthogonalsystem. Der Begriff des ONS ver-

allgemeinert den Begriff eines orthonormierten Systems von Vektoren im R" (bzw.

im K").

Beispiel 1.7: Es seien E = R" und <. |.) das tbliche Skalarprodukt (s. Def. 1.3). Dann bilden die

Vektoren ¢; = (0, ..., 0, 1,0, ..., 0) (j-te Koordinate gleich 1, sonst 0) ein ONS im R".

Beispiel 1.8: Es sei E der Raum aller reellen stetigen Funktionen f(¢), g(#), ... auf dem Intervall
2n

[0, 2] mit Skalarprodukt {f|g) = _[f(r)g(!) dz (s. Bsp. 1.4).
0

D.1.4

D.1.5
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Dann bilden die Funktionen (k = 1,2, ...)
1 cost sint cos2t cos kt - sin kt
Nom ' Nm NE N N AR

ein ONS (Beweis durch partielle Integration, vgl. Bd. 3).

1.2. Einfiihrende Anwendungsbeispiele der Funktionalanalysis

Es wird jetzt an verschiedenen Problemen die funktionalanalytische Arbeitsweise
erlautert. Neu auftretende Begriffe werden spiter (Kap. 2., 3.) systematisch be-
handelt.

1.2.1.  Ein Approximationsproblem

Eine typische Aufgabenstellung, die in den Anwendungen wiederholt auftritt, ist
die Frage nach der naherungsweisen Ersetzung einer komplizierten, rechnerisch
schwierig zu handhabenden Funktion durch eine méglichst einfache Funktion, deren
Eigenschaften besser zu iiberblicken sind. Zur Veranschaulichung der Methoden der
Funktionalanalysis behandeln wir das Problem der Approximation einer stetigen
Funktion durch trigonometrische Polyome. Wir gehen dabei in einer fiir die Funk-
tionalanalysis typischen Weise vor:

A) Analytische Formulierung der gestellten Aufgabe.

B) Herstellung einer abstrakt-funktionalanalytischen, aber geometrisch mo-
tivierten Fassung des Problems unter A).

C) Losung von A) auf der Grundlage der allgemeinen Methoden zur L&-
sung von B).

Wir fithren nun fiir das gestellte Approximationsproblem die einzelnen Schritte
niher aus.

A) Es sei f(x) eine auf dem Intervall [0, 2] definierte stetige reellwertige Funk-
tion. Wir betrachten fiir ein beliebiges, aber festes n = 1, 2, ... die Menge M aller
trigonometrischen Polynome einer Ordnung, die hochstens gleich » ist:

T(x)—-—+ Z (@, cos kx + b, sinkx) (0 < x £ 27). (1.15)

Unter allen T,(x) suchen wir solche, die die gegebene Funktion f(x) mdglichst gut
approxxmleren Damit diese Aufgabe sinnvoll ist, muf3 gesagt werden, was ,,approxi-
mieren® bzw. ,,anndhern* im vorliegenden Fall heifien soll. Von den (unendlich)
vielen Moglichkeiten wihlen wir die folgende, die sich fiir praktische Aufgaben oft
ausreichend gut bewihrt hat: Gesucht seien diejenigen trigonometrischen Polyome
T,(x), fiir die die mittlere quadratische Abweichung

12

2n
- [% [ - 10y dx} (1.16)
0

einen kleinstmoglichen Wert annimmt (vgl. auch Bd. 3, 5.9.). Damit ist die Aufgabe
analytisch formuliert (Schritt A): Die Koeffizienten ao, ay, ..., @y; by, ..., b, in (L.15)
sind so zu wihlen, daB der Wert Q in (1.16) einen minimalen Wert erhalt.

B) Man kann von der speziellen Natur der Funktionen 7;,(x) und f(x) abstrahie-
ren und diese Funktionen als Elemente oder ,,Punkte eines Funktionenraumes
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ansehen. Alle 7,(x) bilden dann eine gewisse Teilmenge M dieses Raumes. Als
linearen normierten Raum wihlen wir zweckmiBig den Raum CRr[0, 2] mit der
Norm

2 12
171 =[0f (fx)? dx] . (1.17)
Die zugehorige Metrik hat dann die Form [vgl. (1.2)]
Adf,e)=If-gl = [f (fx) — g)? dx]m (f, g€ Cal0,27)). (1.13)
Der Vergleich der Formeln (1.16) und (1.18) ergibt die Beziehung

1
=—|If=T,l. .19
0=/~ T (1.19)

e . 1 .
Fiir die Minimierung von Q ist der konstante Faktor = offenbar unwesentlich,

7T
mit Q wird auch/2x O minimal. Daher konnen wir das unter A) gestellte Problem
auch so formulieren: ,,Von allen Elementen 7, der Menge M suchen wir diejenigen,
die von dem gegebenen Element f einen kleinstmoglichen Abstand besitzen.* In
dieser Fassung besitzt die gestellte Aufgabe geometrischen Charakter, wie man sich
z. B. in Bild 1.1 veranschaulichen kann.

Bild 1.1 Bild 1.2

Berticksichtigt man die Tatsache, daB die Menge M selbst ein linearer Raum, ein
Teilraum von CRr[0, 2x] ist (die Summe zweier trigonometrischer Polynome der
Ordnung héchstens gleich » ist wieder ein solches Polynom, dasselbe gilt fiir die
Multiplikation eines trigonometrischen Polynoms mit einer Zahl), so 1aBt sich die
geometrische Veranschaulichung der gestellten Aufgabe noch prézisieren:

,,Von allen Elementen des linearen Teilraums M von CRrl[0, 2n] suchen wir die-
jenigen, die von dem gegebenen Element fe CRr[0, 2x] einen kleinstmdglichen Ab-
stand besitzen.

Veranschaulicht man sich die Menge M mittels einer Geraden durch den Null-
punkt o (einfachster Fall eines linearen Teilraums), so erhilt unsere geometrische
Fassung des Problems die in Bild 1.2 dargestellte Form. Hieraus ist es moglich,
Hinweise fiir einen Losungsansatz zu gewinnen. Da namlich im Raum E = CRrl[0, 2~]
ein Skalarprodukt und damit der Begriff des ,,Senkrechtstehens* zur Verfiigung
steht, gelangt man (von Bild 1.2 ausgehend) zu der Vermutung, daB die gesuchten
Elemente aus M die Eigenschaft haben missen, auf dem Verbindungsvektor zu f
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senkrecht zu stehen. Gesucht werden also zunichst alle Elemente 7, € M mit der
Eigenschaft

(T T, - f>=0. (1.20)

Es sei T\” ein Element von M, das die obige GI. (1.20) erfiillt (wobei zunichst die
Frage offen bleibt, ob es ein solches Element tatsichlich gibt oder nicht). Wir ver-
gleichen die Abstinde zwischen f und einem beliebigen Element 7, von M und zwi-
schen f und 7. Es gilt nach den Rechenregeln fiir das Skalarprodukt, wegen (1.20)
und wegen |T® — T,|* = 0:

If =TI =Xf=Tf-T)={f -T2+ (> - T)If - T}
+(T,° = T.))
= =T + 2Xf = TP T, = T, + |ITY = T,|?
=If=T2P - Xf =TTy + IT,” - T,|*
zIf =TI - 2%f -T2 T). (1.21)
Folglich werden wir die gewiinschte Ungleichung
If=Tl* z If = T )
sicher dann erhalten, wenn 7® so gewihlt wird, daB tiber die Forderung (1.20)
hinausgehend die Eigenschaft
(T, TP —fy=0 firalle T,eM (1.22)
verlangt wird. Geniigt 7,” der Bedingung (1.22), so folgt mittels derselben Rech-
nung wie in (1.21), daB die Gleichung
If = T1* = 1f = T°I? + IT° = T|? (1.23)
fir alle 7, € M gilt. Es folgt dann die Ungleichung
If=TI?zIf=T°1* (T,eM),

If =Tl zf =Tl (T,eM). (1.24)

Ein Element 7.” € M, das der Bedingung (1.22) geniigt, ist also ein Element aus M
mit minimalem Abstand zu f und erfiillt die Forderung der Minimierung von (1.19).

C) Zur Losung der unter A) gestellten Aufgabe verwenden wir die Ergebnisse
von B), also insbesondere die gefundene Bedingung (1.22):

LI =f>=0 (T,eM).
T, besitze die Form (1.15), fiir 7\” gelte die Gleichheit

TO®) = i"j"- + Y (apcoskx + Pesinkx), 0= x < 2. ©(1.25)
k=1

Die Bedingung (1.22) lautet dann ausgeschrieben
2

J. (_‘121 + Zﬂ (ay cos kx + by sin kx))
K=1
0

X (S + % (3 cosx +fsinjx) — ) dx = 0 (1.26)
j=1
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fiir alle Werte aq, a;; by (k = 1, ..., n). Beachtet man, daB3 die Funktionen I, cos kx,
sin kx, ... ein Orthogonalsystem bilden (s. Bsp. 1.8), so vereinfacht sich (1.26)
wegen :
27
| (cos kx)? dx = =, JGinkx)?dx =7 (k=1,2..)
0 0

zur Gleichung

7 (250 + @ + bib) - ﬁ‘(x) dx
0

27 2z
-y (ak f F(%) cos kx dx + b, f £0) sin kx dx) —0. @27
k
0 0

In dieser Gleichung sind die Koeffizienten ay; a;, by (k = 1, ..., n) beliebig wahlbar!
Wihlen wir speziell z.B.ay = 1,4, =a, = ... =a,=0,b, =b, = ... =b, =0,
so erhalten wir die Gleichung

27
n(%") —%ff(x)dx =0
und daraus ’
27
= 71:- j £09) dx. . (1.28)
0

Setzen wir @, = 1, b, = 0 und alle tibrigen a; = 0, b; = 0 (j % k), so erhalten wir
entsprechend

27
o = -Hf(x) coskxdx (k=1,...m) (1.29)
) .
und analog
b = %ff(x) sinkxdx (k=1,...,n); (1.30)
0

also die bekannten Formeln fiir die Fourierkoeffizienten (vgl. Bd.3 und 2.4.2.).
Wenn wir «y; &, f gemaB (1.28)-(1.30) wahlen, so erkennt man durch Einsetzen
in (1.27) sofort, daB (1.27) erfiillt ist. Damit ist 7,® nach (1.25) eine Lésung von
(1.22) und nach B) eine Losung der eingangs gestellten Aufgabe A).

T® ist eindeutig bestimmt. Wire auch TV # T Losung, so gilt neben (T, | T — > = ¢
auch <T,, T — f> = 0 fiir alle T, € M. Folglich ist (T, | T® — T{"> = 0 fiir alle T, € M, ins-
besondere fiir 7, = T — TV, Dies heiBt aber, daB (T — T® | T© — T = 0 gilt, also muB
wegen (S4) in Def. 1.3 gelten T® — TP = o, d.h., es gibt keine andere Losung als 7.

1.2.2. Mathematische Beschreibung eines StoBvorganges

Wir betrachten einen einfachen Schwingkreis mit konstanter Selbstinduktion L und
Kapazitit C sowie mit Anfangsladung 0. Diesen wollen wir zum Zeitpunkt 7 = 0
durch einen zeitlich punkthaften SpannungsstoB der GroBe S anregen. Uns interessiert

2  Gopiert, Funktionalanalysis
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der Stromverlauf nach dem Sto und die mathematische Beschreibung des StoBes.
Wir werden dabei auf den Begriff der verallgemeinerten Ableitung gefiihit, der von
Sobolew erstmals in der Theorie der Differentialgleichungen konsequent genutzt
wurde und samt dem Distributionenbegriff heute diese Theorie, die ein Teil der
Funktionalanalysis ist, beherrscht.

Wir gehen von bekannten Tatsachen aus. Die Anregung des Schwingkreises erfolge
durch Anlegung einer stetigen Spannung E(¢), die so verlaufe (S gegeben):

Elt)=0 fir —o0 <t<0,

T

[ E@)ydr =5, (1.31)
0

Et)y=0 fir t>T;

dabei nehmen wir, um der ,,momentanen* (= punkthaften) Anregung nahezukom-
men, 7 als klein an. Damit kennt man den sich fiir # = 0 einstellenden Strom-
verlauf I(7): er gentigt der Gleichung

Litr) + % f 1) dr = E() (1.32)
0

mit der Anfangsbedingung
It)y=0 (t<0). (1.33)

(1.32) ist genaugenommen eine Integro-Differentialgleichung. Wenn man aber die Stamm-
funktion
t

J(t) = J’ I(x) dr (1.34)
0

einfiihrt, so ist (1.32), (1.33) gleichwertig dem Cauchyschen Anfangswertproblem

Dyl = L + % J=E@), J0)=J0) =0. (1.35)

(1): Da wir als erstes Ziel haben, den Stromverlauf nach einer punkthaften An-
regung zu studieren, schreiben wir den Stromverlauf /(7) bei der Anregung E(t) von
(1.31) auf [wir 16sen also (1.32)/(1.33)]:

t
I(t)= L' [ E(x)cos (LC) 2 (t —1)dr (t = 0),
) J() (LO)2 (1 =) dr (12 0) 136

I(1)=0 fir t<0

[vgl. Bd.7 oder bei Verwendung der Laplace-Transformation zur Lésung von
(1.32)/(1.33) Bd. 10], und betrachten (1.36) nach erfolgter Anregung, also fiir ¢ > 7.
Fiir solche ¢ ist E(t) = 0, also:
T
I(t) = L J E(r)cos (LC) 2 (t —7v)dr (1= T). (1.37)
0
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Nun hatten wir die Anregungszeit 7 klein angenommen, naherungsweise ist dann
cos (LC)"2 (t — 7) durch cos (LC)"%/? ¢ ersetzbar, weil in (1.37) nur iiber 7 mit
0 < 7 < T integriert wird. Also gilt fiir # > T genédhert

T
I(t) ~ L~* cos (LC) 2 ¢ | E(x) dv (1.38)
0

und wegen (1.31)
I(t) ~ L~ (cos (LC)*2 1) S, t=T. (1.39)

Zum Zeitpunkt 7" (Endzeitpunkt der Anregung) ist

I(T) ~ SL~* cos (LC)~*2 T; (1.40)
da T klein ist, ersetzen wir das cos-Glied durch 1:

IT) ~ SL. . (1.41)

Die Formel (1.41) sagt aus, daB I(z) im (kleinen) Anregungszeitintervall 0 < ¢t < T
von I(0) = 0 auf I(T) ~ SL-* ,,springt. Die Herleitung (vgl. [11]) verrit, daB die
Néherungen fiir (T) und I(¢) fir t 2 T

IT)~ SL-',  I() ~ SL-*cos (LC)%t (¢t 2 T) (1.42)

um so genauer werden, je kleiner 7 ist, wenn nur (1.31) erhalten bleibt (die Grofie
des SpannungsstoBes). E(t) kommt gar nicht mehr vor! Diese Uberlegungen legen
es nahe, den Spannungsverlauf E(7) und die Anregungsdauer 7 ganz auBerhalb der
Betrachtung zu lassen und ein mathematisches Aquivalent fiir einen punkthaften
StoB der GroBe S zum Zeitpunkt ¢ = 0 zu finden, so daB in dessen Gefolge der
Strom von I(0) = 0 auf genau SL-' springt (bei ¢ = 0) und dann [entsprechend
(1.42)] gilt

I(t) = SL-* cos (LC)" 2 ¢ (¢ = 0),

It)=0 (t<0). (143
Mit Benutzung der Heaviside-Funktion
0 (r<0),
00 =\, 20 (1.44)
lautet der Stromverlauf bei punkthafter Anregung:
I(t) = SL-' O(t) cos (LC)'* ¢t (teR). (1.45)

I(r) ist (an der Stelle 0) nicht differenzierbar (Bild 1.3), kann also [im Gegensatz zu
I(¢) in (1.36)] nicht (fiir alle 7 € R) einer Differentialgleichung geniigen. Dies ist der
Ansatzpunkt fiir den Einsatz der Funktionalanalysis: Sie gestattet ndmlich, daf3
auch in diesem Fall, also fiir 1(¢) in (1.45), eine Differentialgleichung in einem ver-
allgemeinerten Sinne ,,sehr dhnlich® zu (1.32) [bzw. (1.35)] aufgeschrieben werden
kann. Ist dies geschehen, so schlieBen wir folgendermaBen: Da ersichtlich in (1.32)
bzw. (1.35) auf der rechten Seite der Differentialgleichung ,,der von auBen auf das
System Schwingkreis wirkende EinfluB‘ steht, wie es nach den Kirchhoffschen Ge-
setzen sein mufl, so miiite sich aus der angekiindigten, tiber eine funktionalanaly-
tische Methode gewonnenen ,,verallgemeinerten‘* Differentialgleichung fiir (1.45) bei

2%
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geeigneter Schreibweise die gewiinschte mathematische Beschreibung des duBeren
Einflusses, also des punkthaften Spannungsstofes, ablesen lassen.

(2): Wir beschreiben nun die funktionalanalytische Methode, der (bei 7 = 0) nicht
differenzierbaren Funktion I(#) von (1.45) eine ,verallgemeinerte Ableitung® zu-
zuordnen und mit diesem Ableitungsbegriff dann eine zu (1.32) ganz &hnliche ,,ver-

Bild 1.3 "Bild 1.4

allgemeinerte* Differentialgleichung aufzuschreiben. Wir miissen dafiir zunachst die
Gesamtheit der Funktionen ¢, die fiir alle 7 € R erklért sind, betrachten, die jede
der folgenden Eigenschaften haben (Bild 1.4):

(a) @(t) beliebig oft differenzierbar.
(b) Es gibt (abhingig von ) eine Zahl ¢ > 0, so daB gilt
@) =0 fir [t =c.

Wenn noch festgelegt wird, wann eine Folge von solchen Funktionen konvergent
heiBt (vgl. 4.1.; wir machen aber hier in 1.2.2. keinen Gebrauch davon), so heifit
die Gesamtheit der erwdhnten Funktionen ¢ der Grundraum D (der Distributionen).
Jede lineare (und stetige) Funktion (vgl. 2.3.), die fiir alle ¢ € D erklart ist, heifit
eine Distribution. Die Menge aller Distributionen sei mit D’ bezeichnet. Der Begriff
einer Distribution erscheint sehr abstrakt. Wir geben aber sogleich zwei klirende
Beispiele:

Beispiel 1.9: Es sei f eine gewohnliche, fiir alle 7 € R erklirte stetig differenzierbare (oder wenigstens
dem Betrage nach in jedem endlichen Intervall integrierbare [vgl. Def.2.19, Li(R)]) Funktion.
Wir betrachten fiir jedes ¢ € D das Integral

(1.46)

/

+ o
o= f () g0 dz. (1.47)

Es konvergiert [wegen (b)] und ist natiirlich in ¢ linear ((f, x1¢; + x292) = &;(f, 91) + x2(f, 1),
1,02 €R, @, @, € D) und stetig. Also haben wir durch f eine Distribution erzeugt, denn durch
(1.47) ist jedem @ € D in linearer (stetiger) Weise eine Zahl (eben das Integral) zugeordnet: Diese
Distribution kénnen wir durch (f, .) bezeichnen.

Es gelten die Deutungen:
f als Funktion: ¢ - f(t) (teR)

f als Distribution: ¢ - (f, ) = | OQf(t) p(t)dt (¢ € D). (1.48)

-
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Man kann zeigen, daB [fiir fe LL.(R)] die Zuordnung zwischen f und der zu-
gehorigen Distribution (f, .) eineindeutig ist. Daher unterscheidet man oft nicht
zwischen f und (£, .) [38].

Beispiel 1.10. Jedem ¢ € D werde die Zahl ¢(0) zugeordnet. Damit ist eine Distribution do defi-
niert, denn diese Definitionsvorschrift ist linear (und stetig). Wir schreiben in Anlehnung an die
Schreibweise (1.47):

0o (0o, ¢) = ¢(0), @eD. (1.49)

Diese Distribution heifit Dirac-Distribution, und man kann zeigen, daB es keine
Funktion f e LL(R) gibt, so daB diese Distribution durch ein Integral wie in (1.47)
dargestellt werden konnte [38, 39].

Damit wissen wir, da} es ,,mehr* Distributionen als gewohnliche Funktionen gibt.
Was ist der Sinn ihrer Definition? Ein wichtiger Zweck ist, dal man eine Distribu-
tion stets differenzieren kann. Man definiert namlich fiir eine beliebige Distribution
fe D', deren Wert fiir ein ¢ € D durch (f, ¢) bezeichnet sei, die Ableitung f” als fol-
gende Distribution:

f(fie) = =(f¢) (peD). (1.50)
In Worten: Unter f verstehen wir die Distribution, deren Wert fiir jedes ¢ € D
durch —(f, ¢") gegeben ist.

Auch hierfiir geben wir zwei Beispiele an und kommen dann zur Distribution (7, .),
die wir unserem Stromverlauf (1.45) zuordnen.

Beispiel 1.11. Wir nehmen eine stetig differenzierbare Funktion f, die fiir alle # € R erklart ist, und
bilden ihre Ableitung /” an jeder Stelle 7 € R sowie die f” zugeordnete Distribution, deren Wert fiir
jedes ¢ durch

o
(o= [ fOp0d
- 00
gegeben ist. Partielle Integration liefert unter Beachtung von (1.46 (b))
+o
f, 9= - ] fO ) dr=—(f,9), (1.51)
-0
also gerade (1.50). Daher ist die allgemeine Definition (1.50) motiviert.
Beispiel 1.12: Wir nehmen diesmal die Heaviside-Funktion © von (1.44). Sie ist (bei # = 0) unstetig!
Wir fassen sie als Distribution auf. Dann konnen wir ihre Ableitung berechnen (es ist gerade die

Dirac-Distribution dq):
+ 0

def .
©@,9)= -(0,¢) = - | 6@ ende
=- [ gd = )5 = 9(0). (1.52)
. 6 (1,46)

Da dies fiir jedes ¢ € D gilt, ist im distributionellen Sinne ©" = d,.

Nun kommen wir zu unserem Schwingkreis zuriick und berechnen fiir 7 nach
(1.45) den Ausdruck der linken Seite der Differentialgleichung (1.32) im distribu-
t

tionellen Sinne: Wir ersetzen also die Funktion [gemafB (1.48)] j I(r) dr durch ihre
0
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t
Distribution f I(z) d, . | und die Ableitung 7 durch die distributionelle Ableitung:
i 0
I- (I, 9) = —(I, ¢). Folglich ist
t

L) + ( [ 1@ ar, w)
0

+ 0 t

= —L(, ¢) + % f o(t) f O(v) SL~! cos (LC)~'2 v dr dt
0

-
+

=-L f 6(t) SL~* cos (LC)~ 1 tp(t) dt + %

-5 f cos (LC)YY2 t(r) dt + S f (LC)*" sin (LC)* 1g(t) dt
0 0

und durch partielle Integration im ersten Term sowie wegen (1.46) folgt
0

-s f (LO)172 sin (LC)*'2 tg(r) dt — Scos (LC)-*21g()f5 + S ...
)

I

Sp(0) = S(%, 9);
also erfiillt 7 von (1.45) im distributionellem Sinne die Gleichung [die zu (1.32)
,»~ahnlich* ist] ] t

L)+ (f 1) dr, ) = S0, .), geD, (1.53)
0
d. h., da rechts die Dirac-Distribution d,, multipliziert mit S steht, beschreibt So,
den SpannungsstoB der Grofe S (bei 7 = 0) mathematisch.

In der Schreibweise (1.35), D, aufgefaBt als distributionellen Differentialoperator,
wobei die 2. distributionelle Ableitung analog (1.50) durch f": (f, ¢) = (f, ¢""),
@ € D, definiert wird (vgl. 4.1.), lautet das Ergebnis dann

D,[J] = Sb,, . (1.54)
und J ist als die Distribution aufzufassen, die von _[ I(7) dz erzeugt wird.
0

Die gefundene mathematische Beschreibung eines StoBvorganges war schon in Bd. 7 und Bd. 10
Untersuchungsgegenstand. In Bd. 7 wurde der punktférmige Sto3 approximiert durch eine Folge
kiirzer werdender ,,RechteckstoBe* (7, -0, 7, = 0, n = 1,2, ...):

0 (r<0),
N
Ef)y=(— O=t=T),
T,
0 t>T),

T,
N
dann ist stets '[Tdr =S m=12..).
g I
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Der Stromverlauf I, nach der Anregung E,, also V¢ = T, ergibt sich auch nach (1.37):
T,

I() = L' j %cos (LC) M2 (1 — 1) dr. (1.55)
S

Nun interessiert natiirlich der Grenzwert fiir n — oo (also 7, — 0). Die Regel von de 1’'Hospital
ergibt wie in Bd. 7/1 unsere Losung (1.43) fir den Stromverlauf bei stoBférmiger Anregung: man
fat in (1.55) 7, als Variable auf. Dann folgt:
lim SL~! cos (LC)™2 (1 — T;) = SL~' cos (LC)™ 1, 12 0.
T,-0
Diese Approximation ist auch fiir den Ubergang von der Folge {E,} zur Dirac-Distribution anwend-
bar. Wir fassen dazu E, als Distribution auf: E, — (E,, -). Dann ist fir jedes ¢ € D nach der
de I'Hospitalschen Regel
+ o T,
1
lim f E(t) p(t)dt = lim — Sf (1) dr = Sg(0). (1.56)
n0 nsoo Tn
- 0
Also: Der Grenzwert der Folge der Distributionen (E,, ") ist S0o(+). Der Konvergenzbegriff in
(1.56) ist die schwache Konvergenz einer Distributionenfolge {E,} gegen die do-Distribution (s. auch
2.24.):
{E} = S6. (1.57)

Die dp-Distribution wurde schon in Bd. 10 eingefiihrt. Dort heiBt es, daf fiir sie folgende Regel
gilt:
+ %
| @@ do(x) dr = @(0). (1.58)
— 0
Dabei ist der Ausdruck links sowohl dort in Bd. 10 als auch hier bei uns als Vorschrift aufzufassen,
jeder Funktion ¢ den Wert @(0) zuzuordnen. Wir hatten fiir ¢ dabei nur Elemente aus D zugelas-
sen, die Zuordnungsvorschrift (wenn man nicht differenzieren will) ist aber auch fiir jedes nur
stetige @ erklirt.

Wir wollen noch auf den Zusammenhang mit Greenschen Funktionen hinweisen (vgl. 4.1. und
Bd. 7/2 und 8). Man gewinnt die Greensche Funktion J(z, t,) fiir unser Anfangswertproblem (1.35),
indem man bei homogenen Anfangsbedingungen die Wirkung eines EinheitsstoBes zur Zeit 7o > 0
studiert. Dieser wird durch die ,,verschobene* ¢-Distribution d;, beschrieben, die jedem ¢ € D
den Wert ¢(1o) zuordnet. Also muf statt (1.54) jetzt

Dy[J] = 6, (to > 0) (1.59)
erfiillt werden. Der wichtige Unterschied gegeniiber (1.54) ist der StoBzeitpunkt 7, > 0. Also ant-
wortet der (Zeitverschiebungen gegeniiber invariante) Schwingkreis auch ,,um 7, verschoben®
(vgl. 1.43):

1(t; 1) = L™16(1 — 10) cos (LO)* (1 — to), (1.60)

und hieraus ergibt sich wieder [wie in (1.54)]
J(t; 10) = .!fl(r; to)dr, t€R, 15> 0. (1.61)
0
Dies ist die gesuchte Greensche Funktion. Sie erfiillt die Bedingungen von Bd. 7/2, die ihr zu-
geordnete Distribution J erfiillt (1.59). Insbesondere wird die Losung von (1.35) durch
I = l|‘IJ(t; 7) E(r) dr, (1.62)
0
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die Losung von (1.32), (1.33) durch
t
[0 = [ 1(t;7) E@ de (1.63)
0

dargestellt; I(z; 1) bzw. J(t; t,) gestatten also die Darstellung von I(#) bzw. J(¢) als gewichtete
[mit E(z)] Aufsummierung (das Integral) der Wirkungen I(¢; 7) bzw. J(¢; 7) der StoBe zu den Zeit-
punkten 7 = 0.

1.2.3. Ham]lton-Funktlon und Henmtesche Differentialgleichung

beim q harmoni: Ostzillator

Wir benutzen den linearen ungedampften Oszillator, um in die Anwendung der
Funktionalanalysis in der Quantenmechanik einzufiihren.

Unter einem linearen harmonischen Oszillator versteht man bekanntlich die (ein-
dimensionale) Bewegung eines Teilchens der Masse m unter dem EinfluB eines Kraft-
feldes K(x):

K(x) = — kx, (1.64)

wenn x(¢) die Ortskoordinate des Teilchens und k > 0 eine gegebene Konstante ist.
Die Anfangsbedingungen seien

xo = x(0) = C; (Anfangsort),
vy = X(0) = C, (Anfangsgeschwindigkeit).

A R —————
x(t)-—
!

(1.65)

Bild 1.5

Die Kraft K(x) bewirkt eine ungedimpfte Schwingung, deren mathematische Be-
schreibung durch das Newtonsche Kraftgesetz

mx = —kx (1.66)

und die Anfangsbedingungen gegeben ist. Die Losung dieses Anfangswertproblems
(1.65), (1.66) ist (vgl. Bd. 3, 5.1.)

x(t) = A cos (ot — @), (1.67)
wobei Amplitude 4, Frequenz w und Phase ¢ gegeben sind durch

k v3 . vo Xo
0?=—, A= x§+—w7, sing = -7, cosg =—r. (1.68)
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Nach dem Energiesatz fiir unser Problem ist

E=E+E="wike (1.69)
2 2
eine Konstante fiir # > 0. Folglich ist wegen (1.65) und (1.68)
_m ., i‘_ a _ mo?
E =30} +5x3= 542 (1.70)

also ist die Amplitude 4 nur von der Gesamtenergie E abhingig. Da die GroBe
von ¢ nur eine Verschiebung der Kurve x(f) = A cos wf um @/w ausmacht, wollen
wir sagen, die Gesamtenergie beschreibt den Zustand des Oszillators.

Wenn also zu festen &, m die Bedingungen (1.65) vorgegeben sind, berechnet man
E nach (1.69), und nun schwingt das Teilchen ungeddmpft mit der Amplitude A fiir
diese Gesamtenergie. Dieser ,,Zustand** ist stationdr, denn er dndert sich nicht mit
wachsender Zeit. Quantenmechanisch sind aber — wie wir gleich sehen werden -
stationdre Zustinde nur fiir gewisse Gesamtenergien E,, n = 0, 1, ..., moglich.

Fiir stationdre Zustinde quantenmechanischer Systeme (als ein solches wollen wir
unseren Oszillator ansehen) liefert die Quantenmechanik folgendes Herangehen:

1. Man schreibe die klassische Hamilton-Funktion H(p,, x;) des Systems auf.
Dann ersetze man H durch einen Operator §, indem

a) die Ortskoordinaten x; durch die Multiplikation mit x;,
b) die Impulskoordinaten p, (= mx,) durch den Differentiationsoperator

h 0

i 0x

ersetzt werden.
2. Man finde einen geeigneten Hilbertraum H (s. 2.4.), so daf der Definitions-
bereich D(9) von $ eine Teilmenge dieses Hilbertraumes ist. § muB ein selbst-
adjungierter Operator (vgl. 3.3.) sein. [Dies ergibt sich bei 1a) von selbst, bei 1b)
muf der gewonnene Operator der Differentiation erst erweitert werden (s. 5.1.2.).]
Der erweiterte Operator heifie 9. ~
3. Man schreibe das Eigenwertproblem (vgl. Bd. 13) auf beziiglich des Operators $:

§f =if, Areell, feD(®), (1.72)

und bestimme das Spektrum (s. 3.2.1.) des Operators 9. Insbesondere gilt dann

a) die Eigenwerte /, sind gerade die moglichen Energieniveaus E, des quanten-
mechanischen Systems,

b) die zugehorigen linear unabhingigen Eigenvektoren f, entsprechen (eineindeutig)
den zugehorigen stationdren quantenmechanischen Zustinden,

c) erfolgt ein Ubergang des Systems von dem stationdren Zustand der Energie E,
zum stationdren Zustand mit der Energie E, ;, so findet gleichzeitig eine elektro-
magnetische Strahlung der Frequenz

(1.71)

y = %(E,l —E_) (1.73)

oder eine dquivalente Erscheinung mit entsprechender Energie- und Impulsiibertra-
gung statt.
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Wir wollen fiir unser Beispiel dieses Programm genauer ausfiihren. Als Hilbert-
raum H wihlen wir

H = I*(R) (1.74)

(s. 2.4.1. und 1.3.).
1. Die Hamilton-Funktion lautet in unserem Beispiel
—_ 1 2 k 2
H(p, x) = P + 7 X (1.75)
(sie ist fiir unser Beispiel einfach die Energie (1.69), wobei statt x der Impuls p = mx
als Variable stehen muB). Anwendung der Ersetzungsregel 1a), 1b) ergibt dann den
Operator
1 yhn d\(h d k _,
o= (Fa)Fam) * 27 (€.76)
wobei an Stelle des Punktes ein Element des Definitionsbereiches D($) von § zu
stehen hat.
2. Als Definitionsbereich D(9) bietet sich an (s. 2.2.1.)

D) = (/17 ¢-(R). .
Es ist dann
A N A L. .78)

Den Differentialoperator rechts konnen wir identifizieren: bis auf einige Konstanten
ist es der aus Band 7/2 bekannte Hermitesche Differentialoperator

Dy[y]l = =y"(x) + x*p(x), —o0 <x < +. (1.79)
3. © von (1.76) ist noch nicht selbstadjungiert [1, S. 137]. Wir miissen $ durch
seine Erweiterung § (s. Kap. 3.) ersetzen. § selbst gestattet aber schon, viele Eigen-

schaften von $ auszurechnen, so z. B. die Eigenwerte 4, und zugehérige Eigen-
funktionen f,: Es miissen alle f, # o mit

Ofu=Iufos n=0,1,2, .., . (1.80)

gesucht werden. Steht statt § der Operator D, (aus 1.79), so kennen wir alle Eigen-
werte 7, und Eigenfunktionen H, [vgl. (2.69)]:

dr .
o (™). (1.81)
Man bemerkt, daB8 der (urspriingliche) Definitionsbereich fiir © nach (1.77) zu eng
ist. Aber bei (1.80) miiBte auch $ stehen, und es ist D(9) 2 D(D).

Wihlt man die C, so, daB

Tn=2m+1, n=01,2,..; H(x) =Cye>

T |H,(x)?dx =1 (1.82)

ist (Normierung), so ist jedem Eigenwert Z, genau eine Eigenfunktion zugeordnet.
Die H,(x) heiBen normierte Hermitesche Funktionen. Wenn man den Operator $
nun auf

v(¥) = DH,(xx), n=0,1,2,...; Dyreell, o« =</mkh?  (1.83)
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anwendet, so folgt
Hpu(x) = hoo(n + P yu(x), n=0,1,2, ..., (1.84)

d. h., die Funktionen in (1.83) sind gerade Eigenfunktionen des Eigenwertproblems
(1.80) mit den aus (1.84) ablesbaren Eigenwerten

I =hom+ %), n=0,1,2,.. (1.85)

Entsprechend 3a)-3c) heiBt dieses Resultat fiir die quantenmechanische Betrachtung
des Oszillators:
Maogliche Energieniveaus E, fiir stationdre Zustédnde sind

E, (= 2) = ho(n + %), (1.86)

und wenn der Oszillator auf ein niedrigeres Niveau tibergeht, E, — E,_,, so erfolgt
eine Energieabgabe E, — E,_,, die einer elektromagnetischen Strahlung der Frequenz

v = (B~ B (1.87)

entspricht. Das entspricht der beriihmten Quantenhypothese von Planck fiir den
harmonischen Oszillator. Und die diesen quantenmechanisch mdoglichen Energie-
niveaus E, fiir stationdre Zustinde eineindeutig (das gilt, wenn die y, normiert sind:
+ 0

J' [pu(x)|? dx = 1) zugeordneten Eigenfunktionen (1.83) nimmt man als mathema-

— 0
tisches Aquivalent fiir den quantenphysikalischen stationiren Zustand ,,Oszillator
mit Gesamtenergie E,*.

Schwingt das Teilchen mit der Energie E,, so sagen wir, der harmonische Oszillator
befinde sich - als quantenmechanisches System — im Zustand y,(x). Man kann auch
sagen, daB die eindimensionalen Unterrdume des L&(R), die von den v, erzeugt
werden, die moglichen Zustinde des quantenmechanischen Systems reprasentieren.

Wir wollen noch einen anderen Sachverhalt der Quantenmechanik am Oszillator funktional-
analytisch deuten. Die normierten Eigenfunktionen ,(x) von (1.83) bilden ein vollstindiges ONS
[s. (1.14) und 2.4.2.]

+o 1, falls m=n,
[ 00 ) dx = 6 = (1.88)
0, falls m* n.

-

Dann kann man (s. 2.4.2.) jedes Element g € LR(R) in eine Reihe

gx) =¥ o) (1.89)

v=

entwickeln, wobei (1.89) in folgendem Sinne gilt:
+ o 5
m [ 1g0) = X op@Pdy=0 ’ (1.90)
now o v=
(die Reihe konvergiert im quadratischen Mittel).!) Die Koeffizienten dieser Reihenentwicklung
kann man leicht berechnen, wenn unter Benutzung des Skalarprodukts [s. (1.5)]
+ 0
f e(x) h(x) dx = (g1 hy (h,g e Lj(R) (1.91)

-

1) Das benutzte Integral ist das Lebesgue-Integral. Denn auch wenn g und die v, glatte Funk-
tionen sind, muf (1.89) nur ,,bis auf eine Menge vom MaB 0 (s. 1.3.) erfiillt sein.
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wie folgt gerechnet wird: Man bildet (1.91) mit g von (1.89) und mit einem beliebigen v fiir /:

{gly = < > oy w>

y=

™Ms

1 ey Ly 1.92)

]

M3

v

[

ey Ly =, k=0,1,2,...
0

Damit sind die Koeffizienten bekannt, da die Vertauschung in (1.92) erlaubt ist [vgl. (2.42): das
L?-Skalarprodukt ist (beziiglich jeder seiner beiden Variablen) stetig].

(1.89) heifit, daB jedes g eLﬁ(R) als (Fourier-) Reihe dargestellt werden kann nach den ,(x),
die die stationdren Zustinde des quantenmechanischen Systems darstellen. Um dies physikalisch
auszunutzen, nehmen wir jetzt an, wir hitten die Erweiterung des Operators § zu § schon kon-
struiert. Das bedeutet, wir kennen den Definitionsbereich D(§) als Teilmenge des L.%(R); D(9)
umfaBt D(H) und liegt weiterhin dicht in Li(R). Wir betrachten ein beliebiges g € D(9), welches
normiert sei: {(g|g> = 1. Ein solches g wollen wir auch als Zustand des quantenmechanischen

Systems ansehen. Da es erst recht die Darstellung
0

&= 2 tin (1.93)
n=
gestattet, wollen wir sagen, daBB der quantenmechanische Zustand g beschrieben wird durch Linear-
kombination (Superposition) der Eigenzustidnde y,. Dabei gestatten die ¢, folgende Interpretation:
¢, ist die Wahrscheinlichkeitsamplitude und |c,|? die Wahrscheinlichkeit, mit der der Eigenzustand
(stationdrer Zustand) y, in g enthalten ist. Bei einer Energiemessung findet man dann mit der Wahr-
scheinlichkeit |c,|?> die Energie E,.
Wir berechnen Y |c,/2. Da das Orthonormalsystem {y,(x)} vollstindig ist, gilt dic Vollstindig-
keitsrelation [s. (2.66)], und es ist
el = llgl* = 1. (1.94)
Die Wahrscheinlichkeit, irgend eines der Energieniveaus E, zu messen, ist also 1. Man erhalt somit
mit Wahrscheinlichkeit 1 bei einer Energiemessung einen der Eigenwerte des Operators 5 [Diese
einfache Interpretation geht nur, da § (und auch 5) ein reines Punktspektrum mit einfachen Eigen-
werten hat.]
Die mathematische Erwartung (der quantenmechanische Mittelwert) bei der Energiemessung
wire dann (Bd. 17, Def. 2.28)

§ I leal? (1.95)
n=0

und ist endlich, da diese Reihe konvergent ist [36]. Es besteht ein enger Zusammenhang zur quadra-
tischen Form <(9¢ | ¢ (¢ € D()):

_ 0
Dgled =2 Mleal® (1.95)
n=
Die quadratische Form (g | g erweist sich im Definitionsbereich von 5’5 gerade als der quanten-
mechanische Mittelwert bei der Energiemessung im Zustand g. Auf Beziehungen zur Streuung
gehen wir unten in 5.1.3. ein.
1.2.4.  Ein volkswirtschaftliches Verflechtungsmodell als Fixpunktproblem

Im einfachsten volkswirtschaftlichen Verflechtungsmodell werden in einem be-
stimmten Zeitraum N Produktionszweige betrachtet, die je eine Produktart produ-
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zieren. Der i-te Zweig produziere von seinem Produkt die Menge x;, an den j-ten
Zweig liefere er die Menge p;; und an dullere Bedarfstrager die Menge ;. Es sei p;;
der Gesamtproduktion des j-ten Zweiges proportional :

Dij = myx;, (1.96)
dann ergibt sich folgendes Gleichungssystem als Bilanz:

N
xp=Ymyx;+a (=1,..,N). (1.97)
i=1

Entsprechend A) in 1.2.1. lautet die Aufgabe: Gesucht ist ein Vektor
x = (xy, ..., xy) € RY, so daB bei gegebener Verflechtungsmatrix M = (m;;) und
gegebenem output a = (ay, ..., ay) € RY folgende Gleichung erfiillt ist:

x = Mx + a. (1.98)

Wir formulieren jetzt diese Aufgabe funktionalanalytisch entsprechend B) in
1.2.1. In (1.98) kommt die gesuchte GréBe x sowohl ,,rechts vor als auch ,,isoliert*
auf der linken Seite. Wir fassen die rechte Seite in (1.98) als Abbildungsvorschrift
auf, einem Vektor x € RY den Vektor Mx + a als Bild zuzuordnen. Wir sehen, daB
(1.98) gelost ist, wenn wir einen solchen Vektor x* e R haben, daB das Bild
Mx* + a von x* gerade wieder x* ist, also Mx* + a = x* gilt. Ein solcher Vektor
x* € RN heiBt ein Fixpunkt der beschriebenen Abbildung. Ist allgemein A eine Ab-
bildung, die einem Vektor x € R¥ den Vektor y = A(x) € R zuordnet (man sagt
auch, daB 4 den RY ,,in sich abbildet), so heiBt ein Vektor x* € RY ein Fixpunkt
von A, wenn A(x*) = x* ist.

Jetzt sind zwei Fragen zu beantworten: Welche Forderungen miissen an A ge-
stellt werden, damit ein Fixpunkt existiert (die Abbildung 4 mit A(x) = x + 1 hat
keinen Fixpunkt fiir x € R), und, wie kann ein existierender Fixpunkt berechnet
werden? Eine Antwort gibt der sehr allgemeine Fixpunktsatz von Banach (s. 4.3.2.).
In ihm ist 4 ,,kontrahierend*. Eine Abbildung 4 von R in sich heiBt kontrahierend,
wenn es eine Konstante & gibt mit 0 < k£ < 1, so daB fiir je zwei Elemente x, y € RY
gilt (d sei die Metrik in RY):

d(A(x), A(y)) < kd(x,y) (x,y€R"). (1.99)

(1.99) bedeutet, daB der Abstand der Bilder zweier Elemente aus RY kleiner oder
gleich ist dem mit einem festen Faktor k& (0 < k£ < 1) multiplizierten Abstand der
Urbilder. Da in (1.99) nur die Metrik d von R gebraucht wird, kann eine kontra-
hierende Abbildung auch in allgemeinen metrischen Raumen E (oder Teilmengen E,
von E) definiert werden [vgl. (4.83)]. In unserem Beispiel ist E, = E = (R", d),
Ax = Mx + a, x € R". Unten geben wir vier Moglichkeiten an, einen Faktor i
fir A = M- + a zu berechnen. Ist dann 0 < k& < 1 erfiillt, so weil man, daf}
genau ein Fixpunkt x* existiert, denn es gilt

Satz 1.2 (Fixpunktsatz von Banach): Eine kontrahierende Abbildung A einer nicht-

leeren abgeschlossenen') Teilmenge E, eines vollstindigen metrischen Raumes E in
sich hat genau einen Fixpunkt. Dieser kann mit folgendem Iterationsverfahren berech-
net werden: Man wdhlt ein Anfangselement x, € E,. Dann bestimmt man sukzessive
Xy = A(xo), x5 = A(xy), ..., ¢ = A(xy_y), ..., und die so gewonnene Folge {x;}
(j=1,2,...) konvergiert gegen den Fixpunkt x*.

1) Vel (2.4).

S.1.2
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Wir realisieren C) von 1.2.1. und geben vier Moglichkeiten zur Bestimmung eines
Kontraktionsfaktors & fiir (1.99) an. Dazu sei ||.| eine Norm in R". Folglich gilt
mit der durch diese Norm festgelegten Metrik d:

d(A(x), A(y)) = |A(x) — AW)] = |(Mx + a) — (My + a)|| = IIM(X(T i‘g(”))
Wir setzen x — y = ze RV, z = (zy, ..., z,).
a) Wahl der euklidischen Norm im RY (s. Bsp. 1.2):
|Mz]|} = "L (% mikzk)2 = ; (% mi) (% z/%)
= |zl3 (Z Em,-i) =k}, k= (_Z mii)”z- (1.101)
Tk ik
b) Wahl der Norm |z||, = ng |z;] (ze RY):

[ Mz], = M?X [% Myzy| < M?;XZ [l 2
i 1

IIA

Max 3 [my| Max |z| = (Max X lmikl) [B41P
i k ik

= kallzl2, ka2 = Max X [y (1.102)

N
c) Wahl der Norm |z|[; = Y |zj|:
i=1
[Mz]|; = Z,% myzi| = Z % [mi] |zl
= kZ [z X Imul = kZ |zl MfXZ [l
= llzlls ks, ks = M';”‘Z [my . (1.103)

d) Wahl der euklidischen Norm, aber andere Abschitzung der Matrix: Es gilt
niamlich, wenn 7 der groBte Eigenwert der Matrix MTM ist (es ist stets 1 = 0)

I1Mz]13 < Zlizl13, (1.104)

und damit ist auch \/ 7 eine Konstante (ks) gemaB (1.99).

Die fiir eine gegebene Matrix M berechenbaren Zahlen k,, k,, ks, ks sind
,,Matrixnormen* und heiBen ,,euklidische Norm* (k,), ,.Zeilenbetragssummen-
norm* (k,), ,,Spaltenbetragssummennorm* (ks), ,,Spektralnorm* (k,). Die letztere
ist auch die Norm von M als Norm einer linearen beschrinkten Abbildung im Sinne
der Funktionalanalysis (s. Def. 3.6); [7].

Bemerkung 1.4: Die Zahlen ki, ..., k, konnen bei einer gegebenen Matrix ver-
schieden ausfallen.

Bemerkung 1.5: In Bd. 18, 2.3., Bsp. 2.5, wird ein lineares Gleichungssystem mit dem
oben angegebenen Iterationsverfahren geldst. Die dabei berechnete Kontraktions-
konstante ist gerade k5. Im allgemeinen wird die Fixpunktmethode auf nichtlineare
Gleichungen angewandt, z. B. werden mit Satz 1.2 im Lehrbuch [14] der Existenz-
satz fiir gewShnliche Differentialgleichungssysteme (s. auch Bd. 7/1) und auch der
groBe Aufldsungssatz (s. auch Bd. 4) bewiesen.
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1.2.5. Zeitoptimale Steuerung einer erzwungenen gedimpften Schwingung

In der kybernetischen Betrachtungsweise von Systemen ist es iiblich und zweck-
miBig, sogenannte Ubertragungsglieder zu betrachten, die ein Eingangssignal x(f)
(t 2 0: Zeitparameter) in ein Ausgangssignal y(¢) verwandeln. Eine Frae der
Steuerung entsteht, wenn fiir das Ausgangssignal bestimmte Vorgaben durch ge-
eignete Wahl des Eingangssignals erzielt werden sollen. Wird verlangt, daB das Aus-
gangssignal y(¢) in kiirzester Zeit T, einen bestimmten Endwert y.,q = 3(7,) errei-
schen soll, so liegt eine Aufgabe der zeitoptimalen Steuerung (s. Bd. 16) vor. Opti-
malitdtsforderungen konnen aber auch hinsichtlich anderer KenngroBen gestellt
werden, z. B. in bezug auf minimalen Energieaufwand fiir das Eingangssignal.

FaBt man die Eingangssignale x(t) als Elemente eines linearen Raumes E, die
Ausgang551gnale als Elemente eines linearen Raumes F auf, so 1aBt sich die Wirkung
eines Ubertragungsgliedes mittels eines Ubertragungsoperators U:E—- F, d h.:

Ux) () =y(t) 0=t< ) (1.105)

beschreiben. Fiir die Praxis interessant sind vor allem lineare und gleichzeitig zeit-
invariante Ubertragungsglieder. Sie sind durch folgende Eigenschaften gekennzeich-
net:

1) Uleyxy + %) = ¢, Uxy + ¢,Ux, : (1.106)
fiir beliebige x,, x, € E; ¢, ¢, bel. Konstanten (Linearitat).
2) Ist y(t) = (Ux) (¢) und ist X(¢) = x(t — 7), so gilt
(UX) (t) = y(t — 7) (Zeitinvarianz). (1.107)

Mit anderen Worten, ein lineares Ubertragungsglied ist ein Umwandlungsmechanis-
mus, fiir den das Superpositionsgesetz gilt. Die Zeitinvarianz bedeutet, dal das
Ubertragungsglied auf gleichartige, nur zeitlich gegeneinander vetschobene Eingangs-
signale in gleicher Weise reagiert, abgesehen von einer (gleichgroBen) zeitlichen Ver-
schxebung Als Beispiel eines solchen Ubertragungsgliedes kann das mathematische
Modell eines Wassereinzugsgebietes dienen. Dabei bedeutet x(¢) die zur Zeit ¢ durch
Regen pro Zeiteinheit zugefithrte Wassermenge und y(7) die zur Zeit ¢ an einem
AbfluBkanal pro Zeiteinheit abflieBende Wassermenge.

Lineare zeitinvariante Ubertragungsglieder lassen sich unter geeigneten Voraus-
setzungen durch einen Ubertragungsoperator der folgenden Gestalt beschreiben:

(Ux) (1) = y(t) = | h(t —7)x(r)dr (t = 0). (1.108)
0

Dabei ist A(t) die sog. Impulsantwortfunktion, die als Reaktion (= Ausgangssignal)
auf einen Nadelimpuls x(¢) = d(¢) (0-Distribution, s. 1.2.2. oder 4.1.) auftritt. Ist die
Impulsantwortfunktion A(t) bekannt, so ergibt sich fiir stetige Eingangssignale x(r)
aus Linearitit, Zeitinvarianz und Stetigkeit (in einem geeigneten Sinne) des Uber-
tragungsoperators die Darstellung (1.108) [s. auch (1.62)].

Bemerkung 1.6: In der Kybernetik bezeichnet man die Impulsantwortfunktion auch
als StoBantwort bzw. (bei geeigneter Festlegung der Dimension) als Gewichtsfunktion
(s [37, 8. 857).

Wir gehen im folgenden von der Darstellung (1.108) des Ubertragungsoperators
aus. Als Beispiel eines solchen Ubertragungsgliedes betrachten wir eine schwingende
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Punktmasse, die durch eine Zwangskraft x(¢) zu einer geddmpften Schwingung y(¢)
aus der Ruhelage heraus (y(0) = 0, »(0) = 0) angeregt wird. Das Ausgangssignal
»(t) (= Amplitude der Schwingung) bestimmt man aus dem Eingangssignal hierbei
durch die Losung der Differentialgleichung (s. Bd. 7/1)

my(t) + oyp(t) + ay(t) = x(t) (1.109)

mit den Anfangsbedingungen y(0) = 0, y(0) = 0. Die Schwingung erfolge schwach
geddmpft, d. h., es gelte p> < 4am. Dann ist (s. Bd. 7/1, S. 96-99, S. 133, Losung
der Aufgabe 3.21) die Losungsformel

W) = fwl—me“"“"’ sinw(t — 1) x(r)de (r 2 0), (1.110)

wobei
ﬁ:%— und au=—2im-\/4am—g2 (1.111)

gilt.

Aus dem Vergleich der Formel (1.110) und der GL. (1.108) erkennen wir, daB die
Antwort y(¢) des schwingungsfahigen Systems ,,Punktmasse an Feder auf das Ein-
gangssignal (Zwangskraft) x(f) einem linearen, zeitinvarianten Ubertragungsglied ent-
spricht, wobei die Impulsantwortfunktion /(¢) durch den speziellen Ausdruck

h(t) = wLme‘ﬂ’ sinwt (¢ 2 0) (1.112)

gegeben ist.
Bemerkung 1.7: Durch Vergleich der Ausdriicke (1.112) oben und den Betrachtun-
gen in Bd. 7/1 (S.98) erkennen wir, daB8 die Impulsantwortfunktion A() tiber die
Gleichung

G(t,7) = h(t — 7)
mit der Greenschen Funktion G(¢,7) der Anfangswertaufgabe (1.109) zusammen-

héangt (s. auch 1.2.2.).
Im weiteren sei h(t) stetig und in keinem Intervall [0, #,] identisch gleich null.
Es sei nun #, > 0 ein fester Zeitpunkt. Dann gilt nach (1.108)

W) = f h(ty — 7) x(z) dz. (1.113)
0
Wir benutzen (der grundlegenden Arbeit [20] folgend) die Schwarzsche Unglei-

chung (Satz 1.1) im Pré-Hilbertraum CRr[0, #,] (s. Bsp. 1.4) der auf [0, 7,] stetigen
Funktionen mit dem Skalarprodukt {f| g) und der zugehorigen Norm:

to tg 1/2
Slo=[f@emdr, |Ifl = Iif(f(l'))2 d'f] .
0 0
Es gilt wegen (1.113) und der Schwarzschen Ungleichung (vgl. S. 11)
to 12 1y 1/2
< [l (h(ty — 7))? dr] [f (x(7))? dr] . (1114
0

0

[ ()| =

_foh( to — 7) x(7) dr
)
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Nach der Substitution s = #, — 7 ergibt sich

o 0 to
f(h(to —7)?dr = — f(h(s))2 ds = f(h(s))2 ds = |2 (1.115)
0 I 0
Also erhalten wir mittels (1.114)
[¥(t)l = foh(to =) x(@) dr| £ [A] . ]x]. 1.116)
0

Das Gleichheitszeichen in dieser Ungleichung gilt genau dann (s. Satz 1.1), wenn die
Funktionen unter dem Integralzeichen linear abhangig sind. In unserem Fall bedeutet
dies, daB3
x(@) = Kh(to —7) 0= 7= 1), (1.117)
K eine beliebige Konstante, gilt.
Aus (1.113) ergibt sich fiir ein x(z) dieser Form [vgl. (1.115)]

to
W(to) = K [ (h(to — 7)* dv = K|h|2. (1.118)
0
Ist nun p(f) = Yenq €in vorgegebener, zu erreichender Wert, so folgt aus (1.118)
Yena
K=o 1.119
Thi? (1)

und fiir das zugehorige Eingangssignal, das wir von jetzt ab mit %(.) bezeichnen,
ergibt sich mittels (1.117)

(@) = —%}—:—ﬁ%h(z‘o -7 0=<7TSt). (1.120)
Es gilt fiir dieses spezielle Eingangssignal [s. (1.115)]
o — |YVendl [ Vendl
x| = hl| = —="—. 1.121
%1 T2 [l Tl (1.121)
Fiir jedes andere beliebige Eingangssignal x(z) gilt nach (1.116) die Ungleichung
| Yena| <
e o (1.122)

wenn wir fordern, daB fiir dieses Eingangssignal ebenfalls die Beziehung y(¢,) = Venq
gilt. Aus (1.121) und (1.122) folgt

lx1 < llx[, (1.123)

d. h., das Eingangssignal %(z) ist von allen Eingangssignalen x(z), die zum Zeit-
punkt 7, den gleichen Wert des Ausgangssignals y(fo) = Yenq liefern, dasjenige mit
ty 1/2

der kleinsten Norm. Da die Norm |x| = f (x(x))* dv als ein MaB fiir die

0
Energie des Eingangssignals angesehen werden kann, lautet unser Ergebnis:
N Yena
*() = Wh(to - 1)

3 Gépfert, Funktionalanalysis
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erzielt den Wert y.,q des Ausgangssignals (,,Schwingungsausschlag®) zum Zeit-
punkt #, mit minimalem Energieaufwand. Damit ist eine spezielle Aufgabe der opti-
malen Steuerung geldst. Uns interessiert im folgenden die Frage, wie das Eingangs-
signal x(f) gewdhlt werden muB, um unter der Energieaufwandsbeschrinkung

x> £ E (E> 0, gegeben) (1.124)
den vgrgegebenen Wert y(ty) = Vena des Ausgangssignals in kiirzester Zeit
" to - Minimum! (1.125)

zu erreichen.

Wir kénnen die obigen Betrachtungen zur Losung dieser Aufgabe verwenden. Es
sei x() ein Eingangssignal, welches unter der Bedingung (1.124) zu einem gewissen,
nicht notwendig minimalen Zeitpunkt f#, den geforderten Endwert y(fo) = Vena
liefert. Dann gilt wegen (1.122), (1.124)

14l = 'ﬁT“’ < Ixl s VE. (1.126)

Daraus folgt als notwendige Bedingung
Dl <y (1.127)
VE
o

1/2
Die rechte Seite |A] = [ [ (h())? d-r] héngt von dem Endzeitpunkt z, ab; wir
setzen 0

x(to) = ||A]. (1.128)
Wegen (1.112) gilt daher fiir «:

x(0) =0,

05t <t,=>uat) < oc(tz),] (1.129)

a(t,) hangt stetig von 7, ab.

Es gibt somit genau einen oder keinen kleinsten Wert t, = T = inf |z = 0| x(7)

JVE

7] = «(To) = l\y/—f"l (1.130)

Wir setzen voraus, dal der Wert 7, existiert. Nach den Eigenschaften (1.129) gilt
fir ¢, < T, die Ungleichung

lyendl

hl| = «(ty) < (Tp) = —=,

2] = o(to) < (To) JE
d. h., die notwendige Bedingung (1.127) ist fiir ¢, < T, nie erfiillt. Fir #, = T, wird
die Bedingung (1.127) und die Bedingung y(fy) = Yenq durch die Losung %(z) aus
(1.120) erfiillt, d. h., T, ist die minimale Endzeit, zu der unter der Energiebeschrin-
kung (1.124) ein Eingangssignal (eine Steuerung) existiert mit x(7%) = Yenq, und
dieses Eingangssignal ist eindeutig bestimmt durch die Gleichung

x() = £(r) = ﬁ%hm -7 0<7<Ty),
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welches wegen der Gl. (1.130) die Form

%) = %/:(To -7 0S1£Ty (1.131)

Jend
hat. Also ist die gestellte Aufgabe 16sbar [eben mittels des Eingangssignals (1.131)],
und die Minimalzeit T;, ermittelt man aus der Gleichung [vgl. (1.130)]

To
[ ac = L (L13)
0

(wobei T, der kleinste Wert ist, der diese Gleichung erfiillt). Fiir unser Beispiel der
erzwungenen gedimpften Schwingung lautet diese Gl. (1.132)
T,

o
e 2 Vena
fwzmz sin or dr = 222 (1.133)
0
oder nach ausgefiihrter Integration und nach Einsetzen der Konstanten
_2r _Ler
T e 1 oem?
E 2ap a 4am — p?
x (osin2 T, + v/4am — ¢*sin 0T, cos wTy). (1.134)

Aus (1.134) ist T, zu berechnen (durch ein Néherungsverfahren). Das zugehdrige x(1)
hat die Form

(1) = ~B(To-1) gj — <r<
X(2) Vocam e sinw(Ty—1) 0=t=T,). (1.135)
Es gilt stets die Ungleichung
To w
112 = [ (h)? dr < [ (o) dr,
0 0

vorausgesetzt, daB3 das rechtsstehende Integral existiert. In unserem Beispiel hat es
den Wert

0
1
f(h(z))2 at = - (1.136)
0 2
Zufolge der Gleichheit (1.132) folgt die Ungleichung h—g" < Etlz—g oder
E 112
[Venal < [%] s
d. h., ein Endzustand y.,q = ¥(7,) mit
| Venal > “/2—1;9 (1.137)

ist durch kein Eingangssignal x(r) mit [x| < /E realisierbar! Fiir groBe Werte
von p und a wird (bei festem E) der Wert von 2—50 sehr klein, so dafl dann bereits
g%
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relativ kleine Werte von |y.,q| nicht ,,ansteuerbar* sind (dies ist von Interesse bei der
Dimensionierung von Dampfungsgliedern). Fir E = + o0 ist (1.137) nie erfiillt,
d. h., jeder Endzustand y.,, ist erreichbar, wenn beliebig viel Energie zur Verfiigung
steht.

Alle Betrachtungen lassen sich mit geringfiigigen Modifikationen auch auf andere
lineare zeitinvariante Systeme iibertragen.

1.3. Mefibare Funktionen, Lebesgue-Integral

An den verschiedensten Stellen dieses Bandes sind die Grundbegriffe der Theorie
des Lebesgue-Integrals unumginglich. Sie werden hier — ausschlieBlich auf der Grund-
lage der vorangehenden Binde — nur soweit entwickelt, wie es die weiteren Dar-
legungen erfordern. Der Leser, der sich iiber dieses notwendige Minimum hinaus
weiter informieren mdochte, sei auf die Darstellungen in [27], [35], [19], [14] ver-
wiesen.

Im einzelnen gehen wir nur auf die Theorie im R! ein. Unsere Darstellung ist so
gewihlt, daB der Ubergang zur Lebesgue-Integration im R" unmittelbar méglich ist.
Zum Teil ist der hier gewahlte Zugang an [31] bzw. an [33] orientiert, unterscheidet
sich aber hinsichtlich der gewéhlten Funktionenmenge, von der man ausgeht (stetige
Funktionen anstelle von Treppenfunktionen).

Definition 1.6: Es sei [a, b] ein Intervall der Zahlengeraden, (a < b). Eine Teilmenge
A < [a, b] dieses Intervalls heifst eine Menge vom MaB Null, wenn es zu jedem ¢ > 0
eine Folge offener Intervalle J, gibt (J, = (a,, b,)), deren Gesamtlingensumme nicht
grofer ist als ¢ und deren Vereinigungsmenge die Menge A enthdlt:

S —a) S, (L138)

J,. (1.139)

Cs

A<

n=1

Beispiel 1.13: Eine Menge A < [a, b], die aus endlich vielen Punkten x;, ..., x, besteht, hat das
MaB Null. Eine Menge 4 = {xy, ..., X, ...}  [a, b], die sich als Folge schreiben 148t (eine sog.
abzihlbar unendliche Menge), hat das MaB Null. Zum Beweis wihlt man (es geniigt, den zweiten
Fall zu betrachten) zum gegebenen ¢ > 0 die Intervalle J, = (ay, b,) in der Form

€ £
J,.=(x,, _'znT’X"_*—_znT‘) n=12,..).

O & » 1 1 1 . ©
DannglltZ(b —a,) = 2 > =¢ Z = Sy EﬁssowxeA {X1y ey Xpy e} S UJ
=1 - n
Also smd dxe Bedmgungen (1 138) und (1.139) fiir jedes ¢ > 0 erfiillbar. Somit hat 4 das MaB
Null. Analog zu Bsp. 1.13 kann man zeigen, da3 die Vereinigungsmenge einer Folge von Mengen
vom MaB Null wieder das Maf3 Null hat. Das Intervall [a, b] (a < b) hat andererseits nicht das
MaB Null.

Definition 1.7: Es gelte eine gewisse Eigenschaft P = P(x) fiir alle Punkte x des
Intervalls [a, b] mit Ausnahme der Punkte x, die zu einer Menge vom Maf} Null ge-
horen. Dann sagt man: Die Eigenschaft P gilt fiir fast alle x € [a, b] oder: P gilt in
[a, b] fast iiberall.
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Zum Beispiel kann man durch Verwendung dieser Definition sagen, daB es in der
Integrationstheorie auf Mengen vom Maf3 Null nicht ankommt, sie sind ,,vernach-
lassigbar klein®.

Definition 1.8: Eine (reellwertige) Funktion f(x), definiert auf dem Intervall [a, b), D.1.8
heifit meBbare Funktion, wenn es eine Folge stetiger Funktionen {g,(x)} (a < x £ b)
gibt, die fast tiberall in [a, b] gegen f(x) konvergiert; m. a. W., es gilt f(x) = llm g,,(x)

fx €la, b]\ A), wobei A eine Menge vom Maf3 Null ist. (Die Menge A Izangt von
((x) ab.)

Man iiberzeugt sich leicht davon, daB die Summe zweier meBbarer Funktionen
wieder eine meBbare Funktion ist und daB die Multiplikation mit einem (reellen)
Zahlenfaktor nicht aus dem Bereich der meBbaren Funktionen herausfiihrt, m. a. W.,
die meBbaren Funktionen bilden einen linearen Raum. Man bezeichnet ihn mit
S[a, b] oder mit Ly[a, b].

Definition 1.9 (Lebesgue-Integral fiir beschrinkte meffbare Funktionen): Es sei f(x) D.1.9
eine (reellwertige) beschrénkte mefibare Funktion auf [a, b]; d. h., es gibt ein M > 0

mit |f(x)] £ M fiir a £ x < b. Ist {g,(x)} eine Folge stetiger Funktionen, die auf

[a, b] fast iiberall gegen f(x) konvergiert (Def. 1.7), so setzen wir

b b
[ f(x)dx = lim ( [ &) dx). (1.140)

Hierbei stehen rechts gewohnliche Riemann-Integrale fiir stetige Funktionen (s. Bd. 2).

Bemerkung 1.8: Die obige Definition 1.9 ist korrekt, da gezeigt werden kann, dall
der Grenzwert (1.140) unabhdngig von der gewahlten Folge (g,(x)) ist.

Definition 1.10 (Nichtnegative summierbare Funktionen): Es sei f(x) eine nichtnegative D.1.10

mefbare Funktion: f(x) = 0 (a £ x < b). Wir bilden die Folge beschrinkter mefs-
barer Funktionen
’f(x) xela,b] und 0= f(x) < n,

Sl = ln xelad] wd n<f(x).

Die Funktion f(x) heifit (Lebesgue-) summierbar iiber [a, b], wenn die Folge der Inte-
b

(n=1,2..)

grale { ' Ju(x) dx; nach oben beschrinkt ist. Man setzt
a J

b b b
[f(x)dx = lim [ f,,(x)dx( = sup [ £,(x) dx) (1.141)

und bezeichnet diesen Ausdruck als das Lebesgue-Integral von f(x) iiber [a, b]").

Definition 1.11 (Summierbare Funktionen beliebigen Vorzeichens): Es sei f(x) eine
(reellwertige) mefibare Funktion auf [a, b]. Wenn es zwei nichtnegative summierbare
Funktionen fy(x), f>(x) gibt, fiir die D.L11

Jx) = fi(x) = fo(x) (x € [a, b]) (1.142)

1) Henri Lebesgue 1875-1941
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gilt, so heifst f(x) ierbar ((L)- ierbar) iiber [a, b]. Die Zahl

b

b b
[ f®dx = [ fix) dx = [ fo(x) dx (1.143)

a a

wird das (L)-Integral von f(x) iiber [a, b] genannt ((L)- bedeutet Lebesgue-).

Bemerkung 1.9: 1) Der Leser zeige als Ubung, daB der Wert (1.143) des Integrals
einer summierbaren Funktion von der speziellen Darstellung (1.142) unabhingig ist.
2) Statt ,,summierbar sagt man gelegentlich auch ,,integrierbar*.

Bemerkung 1.10: Komplexwertige summierbare Funktionen f(x) erhilt man genau
in der Form

f(x) =ulx) +iv(x) @<x=b), (1.144)

wobei u(x), v(x) reellwertige summierbare Funktionen sind.

Das Lebesgue-Integral hat analoge Eigenschaften wie das Riemann-Integral
(s. Kap. 2.). Insbesondere bildet die Menge aller (reell- oder komplexwertigen)
summierbaren Funktionen einen linearen Raum, und die Zuordnung

b
= [fe)dx (1.145)
ist linear, d. h.,
?1 b b
[(fx) + g(x)) dx = [ f(x) dx + [ g(x) dx, (1.146)
b b
[Of6)dx = A[ fx)dx (AeR oder 2€K). (1.147)

Oben hatten wir Mengen mit dem Lebesgue-MaB Null betrachtet. MeBbare Men-
gen beliebigen Lebesgue-MaBes lassen sich iiber die Betrachtung ihrer Indikator-
funktion einfiihren. Ist 4 = [a, b], so heiBt die durch die Vorschrift

o fir x¢A4,

<x=<bh
1 fir xed @sx<b

74 = {

definierte Funktion y, die charakteristische Funktion (Indikatorfunktion) von A.

Definition 1.12: Eine Menge A < [a, b] heifit meBbar (Lebesgue-mefbar), wenn ihre
Indikatorfunktion y 4 summierbar ist. Die Zahl

b
[ 2a(x) dx (1.148)

heift das MabB ((L)-Maf3) von A und wird mit mes A bezeichnet.

Beispiel 1.14: Es sei A = [c,d] £ [a, b]. Dann gilt mes A = d — ¢. Das Lebesgue-MaB ist also
eine Verallgemeinerung des elementargeometrischen Lingenbegriffs.
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Satz 1.3: Sind A < [a, b) und B < [a, b] zwei mefbare disjunkte Teilmengen von
[a,b), d. h. gilt A~ B =0, so ist auch A\v B mefbar, und es gilt (Additivitit des
Mafes)

mes (A B) = mes A + mes B. (1.149)

Im Rahmen der bisherigen Betrachtungen war das Intervall [a, b] beliebig, aber

fest. Man kann zeigen, daf} alle obigen Definitionen, Séitze usw. von der Wahl eines
solchen Intervalls unabhingig sind. Man erhalt also allgemein beschrinkte (L)-mefB-
bare Mengen und summierbare Funktionen auf beschrinkten Definitionsintervallen.
Die Erweiterung der obigen Begriffe auf den Fall von Funktionen, die auf un-
beschriankten Intervallen erklart sind, wird wiederum mittels eines Grenziiberganges
durchgefiihrt. Nichtnegative summierbare Funktionen erhdlt man durch die Forde-
rungen:

Sfi(=o, +0) >R, fx) 20 (xeR),

f summierbar iiber jedes Intervall [—n,n] (n =1,2,...),

lim [ f(x)dx existiert.

no Oy . )

Letzterer Grenzwert wird mit | f(x) dx bezeichnet.

-
Danach ist es moglich, wie in Def. 1.11 summierbare Funktionen beliebigen Vor-
zeichens auf (— oo, +0) einzufithren und unbeschrinkte meBbare Mengen analog
zu Def. 1.12 zu erkldren. Die Betrachtungen im k-dimensionalen Raum R* verlaufen
analog. Es kénnen auch beliebige meBbare Mengen als Definitionsbereiche summier-
barer Funktionen verwendet werden.
SchlieBlich fiihren wir noch folgenden wichtigen Satz an:

Satz 1.4: Ist f(x) (komplex- oder reellwertig) summierbar iiber dem Intervall [a, b]
und gilt

b
[1/@)ldx =0,
a

so ist f(x) = O fast iiberall in [a, b]. -

Der groBie Fortschritt, der mit der Einfiihrung des Lebesgue-Integrals erreicht wurde, liegt vor
allem in der Moglichkeit, Grenziiberginge unter sehr allgemeinen Voraussetzungen durchfiihren
zu konnen. Wir nennen hier nur zwei wichtige Sitze vom Typ ,,Grenziibergang unter dem Inte-
gralzeichen‘:

Satz 1.5 (B. Levi): Es sei {f,(x)} eine nicht fallende Folge nichtnegativer summierbarer Funk-
tionen auf dem Intervall [a,b), und es existiere eine (von n unabhingige) reelle Zahl C > 0 mit

b
ff,,(x) dx = Cm=1,2,...). Dann ist die Funktion f(x) = lim f,(x) iiber [a, b] summierbar, und
a n— o0

es gilt
!7 ‘b b
[ fx)dx = | (lim f,,(x)) dx = lim [ £, (x) dx. (1.150)
@ g \n>® n-w g
Satz 1.6 (Lebexgue): Es sei {fu(x)} eine Folge summierbarer Funktionen auf [a,b], die dort fast
iiberall gegen eine (miefbare) Funktion f(x) konvergiert: f(x) = lim f, (x) (x € [a, b] mit evtl. Aus-
n- o
nahme einer Menge vom MaB Null). Es existiere eine iiber [a, b] summierbare Funktion g(x) = 0
mit |f(x) | £ g(x) (x&[a, b]) fiir n = 1,2, ... . Dann gilt (1.150).
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2. Riume

2.1. Volistéindige metrische Riiume, Banachriume

2.1.1.  Konvergenz von Folgen in metrischen Riumen. Abgeschlossene und offene
Mengen. Vollstindigkeit und Kompaktheit

Da zahlreiche Probleme zur Berechnung praxiswichtiger GroBen, die bei der
mathematischen Behandlung angewandter Aufgaben vorkommen, erfahrungsgemaf
naherungsweise gelost werden miissen, ist es erforderlich, exakte MaBstibe an den
Begriff ,,ndherungsweise* anzulegen. Dies geschieht erstens durch den in Kap. 1.
eingefiihrten Begriff einer Merrik, die imstande ist, den Unterschied zwischen exakter
Lésung und Naherungslosung zu erfassen, und zweitens mittels des Begriffs einer
(beziiglich der gegebenen Metrik) konvergenten Folge. Die Existenz einer Folge von
Niherungsldsungen, die gegen die exakte Losung konvergiert, sichert, da§ die Nihe-
rungslosung beliebig genau gewihlt werden kann.

Definition 2.1: Es sei (X, d) ein metrischer Raum (s. Def. 1.1). Eine Folge {f,} von
Elementen aus X heif3it konvergent, wenn ein Element f € X existiert mit

limd(f,,f) =0, 2.1)

d. h., wenn die (Zahlen-)folge der Abstinde zwischen f und f, eine Nullfolge bildet.
Das Element f heift der Grenzwert der Folge {f,}, in Zeichen

f=1limf,. 22)

Bemerkung 2.1: DaB3 wir in obiger Definition von dem Grenzwert f einer Folge {/,}
sprechen, ist dadurch begriindet, daB} eine konvergente Folge nur einen einzigen
Grenzwert besitzt.

Giibe es nidmlich noch ein weiteres Element g € X mit lim d(g, f,) = 0, so folgt mittels der Drei-

ecksungleichung (M 3) und mittels (M2) (s. Def. 1.1) di:_’Uu;lgleichung
0=d(f,e) =d(fy,/) +d(fn,8) (=12 .). *)
Fiihren wir in (*) den Grenziibergang n — co durch, so folgt, da sich Ungleichungen der Form ,,<*
zwischen den Elementen konvergenter Zahlenfolgen auf deren Grenzwerte {ibertragen,
0=d(f,e)=0+0=0,
also ist d(f, g¢) = 0 und somit [nach (M1)] f = g.

Definition 2.2: Es sei A S X eine Teilmenge des metrischen Raumes (X, d). Die
Menge A heifit abgeschlossen, wenn aus f=lim f, und f,e A (n =1,2,...) folgt,
noo

daf$ auch f € A gilt. Mit anderen Worten, eine Menge A heifit abgeschlossen, wenn der
Grenzwert jeder konvergenten Folge von Elementen aus A ebenfalls zu A gehort. Ist
A = 0 (leere Menge), so wird A definitionsgemdf als abgeschlossen bezeichnet.

Beispiel 2.1: Es sei X = R und d(x,y) = |x — y| (x,y € R). Es sei 4; die Menge aller rationalen
Zahlen, A, die Menge A, = [0,1]1 = {x€ R |0 = x < 1}. Die Menge 4, ist nicht abgeschlossen;
die Menge A, ist abgeschlossen (Beweis als Aufgabe).
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Definition 2.3: Es sei fe X ein Element des metrischen Raumes (X, d) und r eine
positive reelle Zahl. Weiter sei (s. Bd. 1, 7.8.)

B(fir)={geX|d(f,8) <r},
K(fir)={geX|d(f g =1},
S(fir)={geX|d(f,g) =r},
dann heift B(f; r) die offene Kugel, K(f; r) die abgeschlossene Kugel mit dem Mittel-

punkt f und dem Radius r sowie S(f;r) die Kugeloberfliche (Sphdre) dieser Kugeln
(vgl. Bsp. 2.9).

Bemerkung 2.2: Die Mengen S(f;r) und K(f,r) sind abgeschlossene Mengen im
Sinne der Def. 2.2. Dies rechtfertigt die Bezeichnung ,,abgeschlossene Kugel* fiir
die Menge K(f; r).

Definition 2.4: Es sei G = X eine Teilmenge des metrischen Raumes (X, d). Die
Menge G heift offen, wenn sie mit jedem ihrer Elemente f eine Kugel B(f; r) enthilt.
Mit anderen Worten, G heift offen, wenn es zu jedem fe G ein r = r(f) > 0 gibt
mit B(f; r) < G. Die leere Menge 0 ist nach Definition eine offene Menge.

Beispiel 2.2: TIst ro > 0, so ist die Menge B(fo; ro) fiir jedes f € X eine offene Menge (dies recht-
fertigt die Bezeichnung ,,offene Kugel*).
Beweis: Ist f€ B(fy; ro) ein beliebiges Element von B(fy; o), so gilt d(f, fo) < ro. Wir setzen
r=ro — d(f, fo). Es gilt r > 0. Ist h € B(f; r) beliebig, so ist d(h,f) < r. Nach der Dreiecksunglei-
chung (M 3) folgt

d(h, fo) = d(f, fo) + d(h, f) < d(f, fo) + r = d(f, fo) + ro — d(f,fo) = ro.
Also ist d(h,fy) < ro, und somit gilt & € B(fy, ro). Jedes Element von B(f;r) gehort somit zu
B(fo; ro), somit ist B(f; r) < B(fy, ro). Es gibt also zu jedem Element f von B(fy; ro) eine (offene)
Kugel mit Mittelpunkt f, die ganz zu B(fy; ro) gehort. Daher ist B(fo; ro) eine offene Menge.
Beispiel 2.3: Es sei X = Rund d(x, y) = |x — y| (x, y € R). Die Menge [0, 1] ist nicht offen, ebenso
sind die Mengen (0,1]={x eR|0<x =1} und [0,1) = {x€R|0 = x < 1} keine offenen
Mengen (Beweis als Ubungsaufgabe).

Der Zusammenhang zwischen den Begriffen ,,abgeschlossene Menge* und ,,offene
Menge* wird durch den folgenden Satz geklart:

Satz 2.1: Eine Teilmenge F eines metrischen Raumes (X, d) ist genau dann abgeschlos-
sen, wenn die Komplementdrmenge G = X \ F eine offene Menge ist.
(Beweis z. B. in [17].)

Die folgende Aussage tiber die Eigenschaften der Gesamtheit aller offenen bzw.
abgeschlossenen Mengen eines metrischen Raumes gilt wie fiir Mengen des euklidi-
schen R" (s. Bsp. 1.3).

Satz 2.2: A) Die Vereinigungsmenge beliebig vieler, der Durchschnitt je endlich vieler
offener Mengen eines metrischen Raumes X sind stets (wieder) offene Mengen.

B) Der Durchschnitt beliebig vieler, die Vereinigungsmenge je endlich vieler ab-
geschlossener Mengen eines metrischen Raumes X sind stets (wieder) abgeschlossene
Mengen.

C) Die leere Menge O und der ganze Raum X sind beide sowohl abgeschlossene als
auch offene Mengen.

D.2.3
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Bemerkung 2.3: Die Eigenschaften A) und C) [bzw. B) und C)] sind der Ausgangs-
punkt der Theorie der topologischen Raume (vgl. [17]), die die Theorie der metri-
schen Raume als Spezialfall enthélt.

Jede Teilmenge A eines metrischen Raumes X besitzt eine abgeschlossene Ober-
menge, z. B. X selbst. Der Durchschnitt aller die Menge A4 enthaltenden abgeschlos-
senen Mengen ist nach dem vorhergehenden Satz, Aussage B) selbst wieder abgeschlos-
sen und ist (nach Definition des Durchschnitts) in jeder 4 enthaltenden abgeschlos-
senen Menge enthalten; also ist dieser Durchschnitt die kleinste abgeschlossene
Menge, welche die gegebene Menge A enthélt. Man bezeichnet diese Menge auch
als Abschliefung von A.

Definition 2.5: Es sei (X, d) ein metrischer Raum und A < X eine Teilmenge von X.
Die Menge A = N\{F| F abgeschlossen und A < F} bezeichnet man als AbschlieBung
(abgeschlossene Hiille von A).

Satz 2.3: Es sei A eine Teilmenge des metrischen Raumes X. Ein Element f von X
gehdrt genau dann zu A, wenn es eine Folge { Ju} aus A gibt mit llm h=r

Die AbschlieBung einer Menge A stimmt also mit der Menge aller Grenzwerte
konvergenter Folgen von Elementen aus A iiberein. Stets gilt die Enthaltensein-
beziehung

Ac 4. (2.3)
Eine Menge 4 ist genau dann abgeschlossen, wenn gilt

A=A 2.4)

Beispiel 2.4: Es sei X = R und d(x,y) = [x — y|. Die Menge A = {xeR|x =1/n;n=1,2,...}
ist nicht abgeschlossen, weil 4 = 4 v {0} 2 4 gilt. (Der Beweis dafiir, daB 4 die angegebene Form
hat, ergibt sich mittels Satz 2.3; Aufg. fiir den Leser.)

Hinsichtlich ihrer Konvergenzeigenschaften kénnen sich die Folgen in metrischen
Réiumen wesentlich unterscheiden. Es erweisen sich die Begriffe Cauchy-Folge, Kom-
paktheit, Vollstindigkeit als sehr niitzlich (s. auch Bd. 1):

Definition 2.6: Eine Folge von Elementen {f,} eines metrischen Raumes (X, d) heift
eine Cauchy-Folge, wenn es zu jedem ¢ > 0 ein ny = ny(e) gibt mit d(fy,fm) < € fiir
alle n,m = no(e).

Satz 2.4: Jede konvergente Folge ist eine Cauchy-Folge.

Beweis: Die Folge {f,} konvergiere, d.h., es existiert ein f€ X mit: hm d(f,,f) = 0. Bei vor-

gegebenem & > 0 gibt es daher ein ny mit d(f,,f) < ¢/2 fiir alle n = no Aus der Dreiecksunglei-
chung (M 3) erhalten wir fiir n, m = ng

d(fos f) = d(fus f) +d(f fu) = —+ —=c H

Die Umkehrung dieses Satzes gilt jedoch nicht! Mit anderen Worten, es gibt
metrische Riume, in denen nicht jede Cauchy-Folge konvergiert (s. Bsp. 2.8).
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Bemerkung 2.4: Es sei {f,} eine Cauchy-Folge in einem metrischen Raum (X, d).
Die Folge {f,} besitze eine konvergente Teilfolge {f,}. Dann ist {,} eine konver-
gente Folge, und es gilt
lim £, = lim £, .

o

now
Beweis: Wir setzen f = lim f,, und geben ein ¢ > 0 beliebig vor. Da {fn} eine Cauchy-Folge ist,
Jjoo

gibt es ein no mit d(f,, f,,) < /2 fir n,m = no. Da die Teilfolge {f,} gegen f konvergiert, gibt
es ein jo mit d(fu;,f) < /2 fiir j Z jo. Fiir j— oo gilt aber n; — o0, und es existiert ein j; = jo
mit n; = ng fir j = j;. Fir n = ny gilt dann auf Grund der Dreiecksungleichung (M3) (weil
nj, Z no und jy 2 jo ist)

dfonf) S dhofy) + (s, ) S 5+ 5= e,
d. h. die Folge {f,} konvergiert gegen f. [l
Definition 2.7: Ein metrischer Raum (X, d) heifit kompakt, wenn jede Folge {f,} aus X

eine konvergente Teilfolge besitzt. Eine Teilmenge eines metrischen Raumes heifit kom-
pakt, wenn sie, als Teilraum aufgefaft, ein kompakter metrischer Raum ist.

Definition 2.8: Ein metrischer Raum (X, d) heifit vollstindig, wenn jede Cauchy-Folge
aus X eine konvergente Folge ist.

Den Zusammenhang zwischen beiden Begriffen liefert
Satz 2.5: Jeder kompakte metrische Raum ist vollstindig.

Beweis: Ist {f,} eine Cauchy-Folge des kompakten metrischen Raumes X, so besitzt
diese (wegen der Kompaktheit) eine konvergente Teilfolge. Nach Bem. 2.4 ist {f,}
daher selbst konvergent. B

Die Umkehrung dieser Aussage gilt nicht! Dies zeigt

Beispiel 2.5: Der Raum C[0, 1] (s. Bsp. 1.5) ist mit der Metrik d(f,g) = max |[f(r) — g(#)| voll-
0=t=1

standig (s. [17) und Bd. 1: gleichmiBige Konvergenz). Die Folge {f,} mit f(f) =n (0 < ¢ < 1)
besitzt aber keine gegen ein Element von C[0, 1] konvergierende Teilfolge (Beweis als Aufgabe).

Hinsichtlich des Verhaltens von Teilmengen (als Teilrdume aufgefaBit) gelten die
folgenden Aussagen:

Satz 2.6: Es sei (X, d) ein vollstindiger metrischer Raum. Eine Teilmenge Y = X
von X ist (als Teilraum von X aufgefafit) genau dann vollstindig, wenn Y abgeschlos-
sen ist.

Satz 2.7: Es sei (X, d) ein kompakter metrischer Raum. Eine Teilmenge Y < X von X
ist (als Teilraum von X aufgefafit) genau dann kompakt, wenn Y abgeschlossen ist.

Das einfachste Beispiel eines vollstindigen metrischen Raumes ist die Menge R
der reellen Zahlen, versehen mit der Metrik d(x, y) = |x — y|. Die Eigenschaft der
Vollstandigkeit wird hier durch das bekannte Cauchysche Konvergenzkriterium ge-
liefert. Betrachtet man den Teilraum P < R dieses Raumes, der aus allen rationalen
Zahlen besteht, so ist dieser Teilraum nicht vollstindig.
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Der Ubergang von den rationalen Zahlen zu den reellen Zahlen, also von einem
nicht vollstindigen Raum zu einem vollstdndigen Raum, der den ersteren als dichte
Teilmenge enthilt (,,jede irrationale Zahl ist Grenzwert einer Folge rationaler Zah-
len®), ist ein spezielles Beispiel fiir einen allgemeinen Sachverhalt, den man ,,Vervoll-
standigung™ nennt.

Definition 2.9: Es sei (X, d) ein metrischer Raum. Die Teilmenge A < X heifft dicht
in X, wenn A = X gilt.

Beispiel 2.6: Die Menge P der rationalen Zahlen liegt dicht in der Menge R der reellen Zahlen
(beziiglich der Metrik d(x, y) = |x — »}). Diese Tatsache ergibt sich daraus, daBl jede reelle Zahl x
als Grenzwert einer Folge rationaler Zahlen x, (z. B. der nach der n-ten Stelle nach dem Komma
abgebrochenen Dezimalbruchentwicklung x, von x; n = 1,2, ...) dargestellt werden kann.

Definition 2.10: Es seien (X, d) und (Y, o) metrische Riume. Der Raum (X, d) heifit
(eine) Vervollstindigung von (Y, 0), wenn folgende Bedingungen erfiillt sind:
1) (Y, o) ist ein Teilraum von (X, d); d. h., Y ist eine Teilmenge von X und o(f, g)
=d(f,g) fir f,geY.
1) Y ist eine dichte Teilmenge von X; d.h., die Abschliefung (in X!) von Y ist
gleich X.
11I) Der Raum (X, d) ist vollstindig.

Satz 2.8: Jeder metrische Raum besitzt eine Vervollstindigung [17].

Bemerkung 2.5: Immer dann, wenn ein gegebener (nicht vollstindiger) metrischer
Raum (X, d;) Teilraum eines vollstindigen Raumes (X, d) ist, 1aBt sich eine Ver-
vollstaindigung von (X, d,) in einfacher Weise angeben. Als eine solche kann man
niamlich die AbschlieBung X, < X von X, in X, versehen mit der auf X, eingeschrink-
ten Metrik d, nehmen.

Definition 2.11: Zwei metrische Riume (X, dy) und (X, d,) heifjen isometrisch, wenn
es eine Abbildung ¢: X, — X, von X, auf X, (d. h., p(X,) = X,) gibt mit
d(p(f), 9(@) = di(f.g) (fgeX)). 2.5)

Jede solche Abbildung ¢ heifit eine Isometrie von X, auf X,.

Beispiel 2.7: Es sei X; = X, = R" (bzw. = K") mit der euklidischen Metrik
n 1/2
d(x,y) = (Z € =) & — 771)) s
j=1

und es sei A eine orthogonale Matrix, d.h. A"4 = AA" = I (bzw. A sei eine unitire Matrix

A*A = AA* = I, wobei A* = AT). Dann ist die durch A erklirte Abbildung eine Isometrie von
X; auf X,. Der Beweis dieser Aussage ergibt sich sofort aus der Invarianz des Skalarprodukts bei
der Anwendung orthogonaler (bzw. unitirer) Matrizen:

d(Ax, Ay) = {Ax — Ay | Ax — ApD'? = (A(x — )] A(x — p)H'?
= (AT Ax = Y | x = = (e —yix = P = d(x, y).

Satz 2.9: Je zwei Vervollstindigungen eines metrischen Raumes sind isometrisch.

Identifiziert man also isometrische Rdume untereinander, so kann man in diesem
Sinne von ,,der* Vervollstindigung eines metrischen Raumes sprechen. Die Vervoll-
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stindigung eines metrischen Raumes (X, ) hangt in entscheidendem MaBe davon ab,
welche Metrik auf der Trigermenge X dieses Raumes verwendet wird. Das folgende
Beispiel soll dies zeigen: Versehen wir die Menge X = Cr[—1, 1] mit der Metrik
d(f,g) = max [ f(t) — g(2)],so erhalten wir einen vollstandlgen metrischen Raum

(X, d). Verwenden wir aber in X = Cr[—1, 1] die Metrik
1 1/2
(£, 9 ={ [(f@) = a@)? dt} (/. geX),
-1

so ist der entstehende metrische Raum (X, d;) nicht vollstindig und besitzt daher
eine von (X, d) verschiedene (nicht zu (X, d) isometrische) Vervollstindigung. Der
Beweis fiir die Tatsache, daB (X, d,) nicht vollstindig ist, ergibt sich daraus, daB es
in (X, d,) Cauchy-Folgen gibt, die nicht konvergieren:

Beispiel 2.8: ITm Raum (Cr[—1, 1], d,) definieren wir eine Folge {f,} durch

[1 fir —1<t<0,

1
1l—m fir 0<t=—, (n=1,2,..)
H(t) = n

1
|0 fir —<t=1.
( n
(Der Leser zeichne eine Skizze des Funktionsverlaufes von f,.) Fiir n < m gilt (kurze Zwischen-

rechnung)

m—n
a\(fus fn =
x(ff)>\/”( )

m

1
— (=1,2,...; m=n).
\/Sn

1
Da \/3_ (n = 1,2, ...) eine Nullfolge ist, ist {f,} eine Cauchy-Folge beziiglich d;. Es kann gezeigt
n

werden, daB es kein Element f€ Cj[—1, 1] mit lim d,(f,,f) = 0 gibt. Die Cauchy-Folge {f,} ist

n-o
somit nicht konvergent. Also ist der Raum (Cr[—1, 1], d;) nicht vollstindig. Seine Vervollstindi-
gung ist der Raum Li[—1, 1], wobei sich in diesemm Raum als Grenzwert der obigen Folge {f,}
die Funktion

1 fir —1<7<0,

0 fir 0<t=1

ergibt (s. 2.2.2.).

fn =

2.1.2. Banachriume

Definition 2.12: Einen normierten Raum (E, | . |) nennt man einen Banach-Raum D.2.12
(auch: Banachraum bzw. (B)-Raum), wenn er beziiglich der durch die Norm induzier-
ten Metrik d(f,g) = |f — gl (f, g € E) ein vollstindiger metrischer Raum ist.

Bemerkung 2.6: Die Bezeichnung ,,Banach-Raum‘ wurde zu Ehren von Stefan
Banach (1892-1945) gewihlt, dessen Buch ,,Theorie des operations linéaires* (1932)
den Grundstein fiir alle weiteren Entwicklungen der Funktionalanalysis in normier-
ten Rédumen legte.
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Der einfachste Banachraum ist der Raum R" der n-dimensionalen Vektoren
x = (&, ..., &) (bzw. (&1, ..., &)T) (& reell, j = 1, ..., n), verschen mit der euklidi-
schen Norm

=28 @6)

bzw. der komplexe endlichdimensionale Raum K", dessen Elemente Vektoren
x = (&, ..., &) (bzw. (&4, ..., &)") mit komplexen Koordinaten & (j=1,...,n)
sind, versehen mit der euklidischen Norm

Il = (£ |5,-|2}”2 qp 5,-5‘,}”2. @7

Weitere wichtige konkrete Banachriume werden im Abschnitt 2.2. behandelt. Hier
werden nur einige grundsitzliche Konstruktionen in Banachriumen besprochen:
aquivalente Normen, Produktraum, Quotientenraum.

Definition 2.13: Es sei E ein linearer Raum (Vektorraum). Auf E seien zwei Normen
I[.lly und ||.||, gegeben. Die Norm | .|, heift #dquivalent zur Norm |.|,, wenn es
Zahlen m > 0, M > 0 gibt, so dafy die Ungleichungen

mix|y = [x]2 = M|x],
fiir alle x € E gelten.

Der Ubergang zu einer dquivalenten Norm bringt oft gewisse Rechenvorteile.
Beim Ubergang von einer Norm |.|; zu einer dquivalenten Norm | .|, bleiben
konvergente Folgen konvergent (genau darauf beruht Bemerkung 1.4, denn es erweist
sich, daB in endlichdimensionalen Raumen alle Normen %iquivalem sind). Dabei gilt:
(E, || 1) ist genau dann ein Banachraum, wenn (E, |.|,) ein Banachraum ist. Die
Aquivalenz von Normen hat die iiblichen (vgl. Bd. 1) Eigenschaften einer Aqui-
valenzrelation: Reflexivitit, Symmetrie, Transitivitit.

Eine lineare Abbildung S eines normierten Raumes E in den normierten Raum F
(vgl. Def. 3.1) heiBt ein Normisomorphismus, wenn S den Raum E auf F abbildet
und ||Sx|; = ||x|g fiir alle x € E gilt.

Beispiel 2.9: Im K" sind folgende Normen (s. auch 1.2.4.) dquivalent:

§
? n l1/2
Iy = | 3 \s,-:zj .
712 i=1
J I, = max (&), 2.8)
1<jsn
5 Il = Z €.
For)
Bild 2.1

Dieselben Normen sind auch im (reellen) Raum R" dquivalent. Dies erkennt man auch an der Ge-
stalt der Einheitskugeln (fiir n= 2 s. Bild 1. 2), d. h. der Mengen {x e R"|\]xHJ S13(=123).
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Definition 2.14: Es seien endlich viele normierte Riume (Ey, | . [1), (E2, | - 12)s .-
(Ey, || 1ln) gegeben. Weiter sei E = Ey x E, X ... x E, das Produkt der Mengen
Ey, ..., E,, d. h. die Menge aller n-Tupel x = (&, ..., &) mit &€ E; (j=1,...,n).
Beziiglich der Operationen (y = (94, ...,n,) € E)

x+y=E+ 0,0+ M),

Ax = (A1, 485, ..., A&, AeR bzw. 1eK,

wird E zu einem (reellen bzw. komplexen) Vektorraum. Versehen wir E rr_zit der Norm
Il = 216, (<),
so nennen wir den Raum (E, ||.||) den Produktraum der Riume (Ej; ||.|;) (j =1, ..., n).
Bezeichnung: (£, |.) =jlj[l 5 1.1,
Es seien (E;, ||.|;) (j =1, ...,n) Banachrdume. Dann ist auch der Produktraum
(E . =j]£{ (E;; ||.1,) ein Banachraum.

Beispiel 2.10: Da der Ubergang zu einer 4quivalenten Norm nichts an der Struktur eines Banach-
raumes dndert, konnen wir mittels der Aussage von Bsp. 2.9 sagen, daB8 der Raum K" der (n-fache)
Produktraum der Rdume K (mit der euklidischen Norm) ist.

Eine weitere Operation, die aus einem gegebenen Banachraum weitere Banach-
rdume zu bilden gestattet, ist die Konstruktion von Quotientenriumen. Hierzu be-
trachten wir zunichst einen beliebigen linearen Raum E sowie einen linearen Teil-
raum E, S E. Wir fiihren eine (zweistellige) Relation ~ auf E durch die Gleichung

x~y<ex—yek, (2.9)
ein. Wie leicht zu sehen ist, erfiillt ~ die Eigenschaften einer Aquivalcnzrelation
(Refleivitxat, Symmetrie und Transitivitit). Die Menge

[X]={yeE|x—yeE}={yeE|x~y} (2.10)
bezeichnen wir als die zu x gehorende Aquivalenzklasse (Restklasse). In der Menge
aller dieser Aquivalenzklassen fithren wir die Vektorraumoperationen Addition und
Multiplikation mit einem Zahlenfaktor durch die Definitionsgleichungen

] + DI =[x + 51,

Alx] = [Ax]
ein, die, wie man zeigen kann, eindeutig definierte Operationen in der Menge der
Aquivalenzklassen liefern und den Axiomen fiir die Rechenoperationen eines Vektor-
raumes (s. 1.1.) geniigen. Den auf diese Weise entstehenden Vektorraum nennt man
den Quotientenraum von E beziiglich E, (bzw. ,nach E,“) und bezeichnet ihn mit
dem Symbol

E|E,. (2.11)
Beispiel 2.11. Es sei E= K" und Ey = {x € E|{x|xo) = 0}, wobei xo € K" ein fest gegebener
von o verschiedener Vektor aus K" ist. E, ist ersichtlich ein linearer Teilraum von E (Beweis als
Ubung). Die Menge (Aquivalenzklasse) [x] hat fiir beliebiges x € K" folgendes Aussehen:

[x]1={yeE|x—yeE}={yeE|{x—yl|xo> =0}
={yeE|<x| x> = {ylxo)}.

(x,y € E; 2€R bzw. K)

D.2.14
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Ist x € K" gegeben, so besteht [x] also aus allen Elementen y € K, fiir die das Skalarprodukt <y | xo)
den konstanten Wert ¢(x) = {x | xo) hat. In anschaulicher Interpretation heiBt dies, daB [x] eine
zu E, parallele (Hyper-) Ebene darstellt, deren Normalenvektor die Richtung von x, hat.

Ist (E, ||.|]) ein normierter Raum und E, ein abgeschlossener Teilraum von E, so
kann man auf den Quotientenraum E/E, durch die Gleichung

0%l 7, = inf {Il¥]l | y € [x]} 2.12)

eine Norm einfiihren (s. [17], [24]), womit der Quotientenraum E/E, zu einem nor-
mierten Raum wird.

Satz 2.10: Ist (E, || . ||) ein Banachraum, so ist (E/E;,, I . lz/e,) ebenso ein Banach-
raum (Bewelis s. [9]).

2.2, Funktionenriume

Die fiir die Anwendungen wichtigsten normierten Rdume sind Funktionenriume,
d. h. lineare Rdume, deren Elemente (Vektoren) Funktionen (mit reellen bzw. kom-
plexen Werten) sind, die einen gemeinsamen Definitionsbereich besitzen. Ist X dieser
gemeinsame Definitionsbereich, so sind die algebraischen Grundoperationen in
einem Funktionenraum stets, wie tiblich, durch die Gleichungen (punktweise)

(f+ ) =fx) +8(x) (xeX),
) x =4 (xeX; 2eR bzw. 2 e K)

erklart. Hinzu kommen gewisse Eigenschaften, die die Funktionen des betrachteten
Funktionenraumes auszeichnen, wie z. B. Stetigkeits-, Differenzierbarkeits- bzw.
Integrierbarkeitseigenschaften. Einen gewissen Sonderfall stellen die Folgenriume
dar, die als Funktionenriume, bestehend aus Funktionen mit dem gemeinsamen
Definitionsbereich N (Menge der natiirlichen Zahlen), aufgefalt werden konnen
(s. 2.2.4.).

2.2.1. Riume stetiger und stetig differenzierbarer Funktionen
Definition 2.15: Es sei K = R" eine nichtleere Teilmenge des R". Die Menge aller

komplexwertigen (bzw. nur reellwertigen) Funktionen, die auf K stetig sind (s. Bd. 4)
bezeichnet man mit C(K) (bzw. mit Cr(K)).

Satz 2.11: Es sei K = R" nichtleer, abgeschlossen und beschrinkt (K ist daher kom-
pakt). Dann ist die Menge C(K) (bzw. Cr(K)) versehen mit der iiblichen Vektorraum-
struktur (s. oben, Beginn von 2.2.) beziiglich der Norm (Supremum-Norm, Maximum-

Norm)
1flea = max [f(x)] = sup /@] (feCK)), (2.13)

ein Banachraum.
(Beweis und weitere Einzelheiten in [36].)

Im folgenden sei £ ein Gebiet des R", d.h. cine offene zusammenhingende?)
Teilmenge des R" (z. B. der R* selbst). Mit 02 = 2 2 bezeichnen wir den Rand

1) Dabei heifit eine Teilmenge des R" (allgemeiner: eines metrischen Raumes) zusammenhéngend,
wenn sie nicht die Vereinigungsmenge zweier disjunkter, nicht leerer, abgeschlossener Mengen ist.
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des Gebietes 2. Der Index R weise stets darauf hin, daB nur reellwertige Funk-
tionen zugelassen sind.
Ein geordnetes n-Tupel & = (&4, ..., &,) von nichtnegativen ganzen Zahlen nennen

wir einen Multiindex. Mit |x| bezeichnet man die zugehdrige Summe Eocj der

Komponenten des Multiindex «. Die Einfiihrung eines Multiindex dlent zur iiber-
sichtlichen Schreibweise partieller Ableitungen von Funktionen mehrerer Verinder-
licher (s. 4.1.). Man setzt (s. Bd. 4) fiir eine Funktion f mit

SG) =fE &) (x = (1, &)

. of
R e

Definition 2.16: Es sei 2 ein beschrinktes Gebiet im R" und k = 0, 1, 2, ... eine nicht-
negative ganze Zahl. Die Menge aller komplexwertigen Funktionen, die auf der Ab-
schliefung 2 (= 2 0Q) stetig sind und in Q stetige partielle Ableitungen bis zur
Ordnung k einschlieflich besitzen und die simtlich auf ganz Q stetig fortgesetzt wer-
den konnen, bezeichnen wir mit CX2).

X* = Enfsn . £ (2.14)

Bemerkung 2.7: Fiir k = 0 gilt die Gleichung C(2) = C(2) (s. Def. 2.15). Die For-
derung der stetigen Fortsetzbarkeit der partiellen Ableitung_en auf ganz O ist nicht
unwesentlich. Ist z. B. im R? die Funktion f(x;, x,) = \/ X + \/;2_ auf dem Ge-
biet 2: 0 <x, <1, 0 <x, <1 gegeben, so 1Bt sich zwar f(x,, x,) auf O:
0<x,£1, 0=<x, £1 stetig fortsetzen (mit derselben Zuordnungsvorschrift),
jedoch 148t sich z. B. die erste partielle Ableitung von f(x,, x,) nach der ersten
Variablen, die in £ erklirte Funktion

o 1
0x; 2 \/ X1 ’
nicht stetig auf 2 (als Funktion mit Werten aus R) fortsetzen, da fiir x; — 0 die

Funktionab—){-keinen (endlichen) reellen Grenzwert besitzt (Skizze!).
1

Satz 2.12: Die Menge C¥(Q) ist beziiglich der Norm
Ifllevay = X (max lb”f(x)l) (2.15)
|le|sk \ xe@

ein Banachraum (das Symbol Y.  bedeutet, dafs iiber simtliche Multiindizes o« mit
|k
|x| £ k zu summieren ist).

Definition 2.17: Mit C*(£) bezeichnen wir die Menge aller im Gebiet 2 < R" be-
liebig oft di ﬂerenz:erbaren komplexwertigen Funktionen. Mit C3(Q) (oder auch mit
C*(Q)) bezeichnen wir die Menge aller Funktionen, die EIemente von C*(R) sind und
deren Triger, d. h. die Menge supp f = {x € 2 f(x) # 0}, beschréinkt ist und ganz
in Q liegt. Mit CX2) bezeichnen wir die Menge aller im Gebiet Q < R" insgesamt
k-mal stetig differenzierbaren Funktionen.

4 Gopfert, Funktionalanalysis

D.2.16

S.2.12

D.2.17
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Die Untersuchung von Operatoren auf Funktionenrdumen erfordert hiufig die
Kenntnis kompakter Mengen in diesen Réumen. Daher geben wir das folgende
Kompaktheitskriterium (Satz von Arzela und Ascoli [2], [17]) an:

Satz 2.13: Es sei  ein beschrinktes Gebiet des R" (m. a. W., die Menge £ ist kom-
pakt). Es sei weiter M < CX{) eine abgeschlossene Teilmenge des Raumes
(CHQ), || lcw@) [vel. (2.15)]. Dafiir, dap M eine kompakte TeilmengeS2 von CX() ist,
ist notwendig und zugleich hinreichend, dafi M beschrdnkt und gleichgradigstetig zur
Ordnung k ist; m. a. W., M ist genau dann kompakt, wenn es eine feste Zahl Q > 0

gibt mit
Ifllexmy £ Q (feM)
und wenn es zu jedem ¢ > 0 ein 6 = d(¢) > 0 (welches nicht von f e M abhingt) gibt,
so daf3 aus der Beziehung
[x = xS0 (x,x €Q)
stets die Beziehung
[0%(x) — 0%f(x)| = &
fiir jeden Multiindex « mit |x| = k und fiir alle fe M folgt.

2.2.2. Riume integrierbarer Funktionen (Lebesgue-Riume)

Eine wichtige Klasse von Funktionenrdumen stellen die sog. Lebesgue-Raume
dar. Thre Elemente sind Funktionen (genauer: Mengen [s. Bem. 2.10] von (L)-fast
iiberall iibereinstimmenden Funktionen), die auf einem Gebiet 2 < R" meBbar sind
und zusitzlich Integrierbarkeitseigenschaften besitzen.

Definition 2.18: Es sei p eine positive reelle Zahl. Der Raum L*(Q) ist die Menge
aller auf dem Gebiet 2 definierten meﬂbaren komplexwertigen Funktionen f(x) (genauer:
die Menge aller Klassen zueinander (L)-dquivalenter Funktionen), fiir welche

9

(1P dx < + (2.16)
2

gilt. Die Funktionen, die Elemente von L(2) sind, nennt man die zur p-ten Potenz
iiber 2 absolut integrierbaren Funktionen. Mir L (£2) bezeichnet man die Menge aller
auf dem Gebiet Q definierten mefbaren komplexwertigen Funktionen f(x), fiir welche
eine (von der betrachteten Funktion abhdngende) Konstante a > 0 existiert mit

mes ({x € 2 |f(x)| Z a}) = 0.

Jedes solche a heift eine ,,wesentliche Schranke* von f(x), und f(x) heift dann im
wesentlichen beschrinkt. Man nennt L®(2) den Raum der auf Q fast iberall be-
schrankten Funktionen.

Satz 2.14: Fiir 1 < p < + o ist der Raum L*() beziiglich der Norm
1
1115 = ([17P ax) @17
Q
ein Banachraum. Der Raum L* () ist beziiglich der Norm
£l := vrai thx /G0 := ess sup | /()

= inf {a > 0] mes ({x € Q| |/(x)| = a}) = 0} (2.18)
ein Banachraum.
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Bemerkung 2.8: Ist 2 = (a,b) < R ein Intervall der reellen Zahlengeraden, so
schreibt man fiir den Ausdruck L?(2) auch L”(a, b). Betrachtet man Funktionen,
die auf dem abgeschlossenen Intervall [a, b] definiert und, dort zur p-ten Potenz
absolut integrierbar sind, so bezeichnet man den entstehenden Raum auch mit
L”[a, b]; dieser unterscheidet sich (im Sinne der Normisomorphie normierter Rdume)
nicht von L?(a, b). Entsprechendes gilt allgemein beim Ubergang von 2 < R" zu 2.

Bemerkung 2.9: Der Beweis dafiir, dal durch den Ausdruck auf der rechten Seite
von (2.17) eine Norm gegeben ist, ergibt sich aus den Ungleichungen von Holder
bzw. Minkowski (s. [17]):

Ist p> 1 und p~' + ¢g°* =1 und sind fe L?(Q), ge LY2), so ist fge L(Q),
und es gilt

[ () g(x) dx| < 1f1, - gl (Hélder)
Q

Ist p = 1 und sind fe L7(R2), g € L*(2), so ist
If+ gl = 11 + gl (Minkowski)

Bemerkung 2.10: Aus Platzgriinden konnen wir die exakte Definition der Raume
L7(©2) als Raume von Klassen zueinander (L)-dquivalenter Funktionen nur beschrei-
ben und nicht vollstindig logisch durchkonstruieren. Zur Erginzung seien aber die
folgenden Bemerkungen angefiihrt. Mittels der Minkowskischen Ungleichung ergibt
sich zunéchst, dafl die Menge aller Funktionen (komplexwertig, mefbar), die der
Ungleichung (2.16) gentigen, einen Vektorraum bilden; er werde mit #” bezeichnet.
Die Menge N, aller Funktionen, die auf £ fast iiberall gleich null sind, bildet einen
linearen Teilraum von #”. Der Raum L?(R) ist dann der Quotientenraum #?/N,
[s. (2.11)]. Diese Quotientenraumbildung wird ausschlieBlich durch den Umstand
veranlaBt, daBB der Ausdruck (2.17) auf #” keine Norm liefert, da er fiir alle Ele-
mente von N, gleich null ist (also auch fiir Funktionen, die nicht dberall auf 2
gleich null sind). Das praktische Rechnen im Raum L?(2) wird aber auf das Rech-
nen in %7 zuriickgefiihrt (man rechnet mit Funktionen, nicht mit den Elementen
des Quotientenraumes).

Definition 2.19: Unter Lf,. (©2) (0 < p < o0) versteht man die Menge aller auf dem
Gebiet 2 definierten meﬁbaren komplexwertigen Funktionen (genauer: die Menge aller
Klassen zueinander (L)-dquivalenten Funktionen) mit

[1f@Pdx < +o0
s

fiir jedes beschriinkte Gebier 2' < 2 (s. 1.2.2. und 4.1.).

Bemerkung 2.11: Lf,.(2) ist ein Vektorraum (Funktionenraum). Ist £ beschrinkt,
so gilt L (2) = L*(2); sonst sind diese Rdume verschieden. L},.(2) wird auch als
der Raum der ,Jokal integrierbaren Funktionen auf 2 bezeichnet. Zum Beispiel
liegt f(x) = x~* nicht in LL(R?).
Satz 2.15: Fiir | < p £ oo gilt die Beziehung (2 < R", beliebiges Gebiet)
L(Q) € Li(Q). (2.19)

Uber die Struktur der kompakten Mengen im Raum L?(®) gibt der folgende Satz
Auskunft.
4*

D.2.19

S.2.15
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S.2.16 Satz 2.16: Es sei M < L?(Q2) eine abgeschlossene Teilmenge des Raumes L*(£).
Dafiir, dafp M kompakt ist, ist das gleichzeitige Bestehen der folgenden Bedingungen
sowohl notwendig als auch hinreichend:

(1) M ist beschrinkt; d. h., es existiert ein K > 0 mit || f|, < K fiir alle fe M;
(2) Zu jedem & > 0 gibt es ein 6 > 0 und eine abgeschlossene beschrinkte Teilmenge
G c 2 mit

2.0 [If@Irdx <e (feM) und
26

@2 JIfc+h)-f@Prdxse
2

fiir alle f € M und alle h € R* mit ||h||gs < 0, wobei f(x) die durch

_ [ (xe),
f(x)_{o (xeR"\ Q)
erklirte Funktion bezeichnet.

Zum Verhiltnis der Riume C*({2) und L?(2) ist zu sagen, daB fiir ein beschrinktes

Gebiet 2 die Beziehung
CH@) = L(Q)

in dem Sinne gilt, daB die von den Elementen von C¥({2) erzeugten Klassen [(L)-fast
liberall tbereinstimmender Funktionen] Elemente von L"(Q) sind. Im Sinne der
AbschluBbildung im Raum L?(9) gilt die Gleichung C*({ 5) = L?(2), d. h., der Raum
CKQ) liegt dicht in LP(2) (2 beschrinkt).

Ist das Gebiet £2 nicht beschrinkt, so gilt in entsprechendem Sinn die folgende
Aussage.

S.2.17 Satz 2.17: Die Menge C*(Q) (s. Def. 2.17) liegt dicht in L*(Q2) fiir | £ p < +00.
2.2.3.  Sobolew-Riume

In diesem Abschnitt fiithren wir Sobolew-Rédume (ganzzahliger Ordnung & = 0)
ein. Diese Ridume sind Riume von (Klassen (L)-fast iiberall iibereinstimmender)
Funktionen, die auf einem Gebiet 2 < R" definiert sind und gewisse Differenzier-
barkeitseigenschaften besitzen; sie sind iiberdies Teilriume der Ridume L*(2) und
haben sich insbesondere bei der theoretischen und numerischen Behandlung par-
tieller Differentialgleichungen als niitzlich erwiesen (s. auch 5.3.). Es gibt verschie-
dene Moglichkeiten, die Sobolew-Réume einzufiihren:

a) als Vervollstindigung des Raumes C*(2) beziiglich einer speziellen Metrik (s. u.);
b) als Riume von Funktionen, deren verallgemeinerte Ableitungen (s. auch 4.1.) bis
zur Ordnung k einschlieBlich existieren und zusétzlich Elemente des Raumes

LP(9) sind.

Es zeigt sich, daB diese verschiedenen Zuginge fiir 1 < p < + o stets die gleichen
Riume liefern. Im einzelnen definieren wir folgende Begriffe (vgl. [2], [22], [35]).

D.2.20 Definition 2.20: Ist fe C¥2) und 1 < p < ®, so setzen wir
1
1 lisp = { Y 0InT, k=0.1.2,..; (2.20)
0<|a sk J
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Sferner sei
[flke = max [0, k=01,2,.., @21
0 |al=k
wobei ||, (1 £ p < ) die Norm im Raum L*(Q) bezeichnet [s. (2.17), (2.18)].
Definition 2.21: Mit H*?(Q) bezeichnet man die Vervollstindigung der Menge
{f11eCHD), | fln, < 2} beziiglich der durch | f|,, erzeugten Metrik.

Der Raum H*7?(£) ist bereits ein Sobolew-Raum fiir (I < p < o) (s. Satz 2.19).
Seine Elemente sind aber nur sehr unkonkret erfaBbar. Die zweite Moglichkeit,
Sobolew-Raume einzufiihren, ist wesentlich anschaulicher. Allerdings kommt sie
ohne Benutzung des Begriffs der verallgemeinerten Ableitung (= Distributions-
ableitung) nicht aus (s. auch 4.1.).

Vorbereitend sei dazu bemerkt, daB fiir jedes feste fe CX(2) und beliebiges
@ e C*(@Q) nach den Regeln der partiellen Integration (GaufBischer Integralsatz!)
immer gilt

f f(x) 0%¢(x) dx = (—=1)i _l' @(x) 0% (x) dx,

Q2 Q
wobei 0%p, 0°f die Ableitungen im tiblichen Sinne sind. Diese Eigenschaft der , klas-
sischen® Ableitungen bildet die Grundlage fiir folgende Verallgemeinerung:

Definition 2.22: Es sei f € LL (). Eine Funktion g, die zu L},(£2) (vgl. Bem. 2.11)
gehort, heifit schwache Ableitung oder verallgemeinerte Ableitung (Distributions-
ableitung) von f beziiglich des Multiindex x, wenn die Gleichung

[f6)0°¢(x) dx = (=1 [ g(x) p(x) dx @222
Q2 Q

fiir jede Funktion ¢(x) gilt. die zu C*(Q) gehért. Wir schreiben dann
g=DYf. (2.23)

Wegen der vorbereitenden Bemerkung folgt, daB fiir jedes fe CKQ) die verall-
gemeinerte und die klassische Ableitung iibereinstimmen (im Sinne der Gleichheit
im Raum LP()). [Beziiglich der Motivation dieser Definition s. (1.51).]

Definition 2.23: Mir W*?(£) bezeichnen wir den linearen Raum

Whkr(Q) = {fe /(Q)| D’feL(Q) fir 0 < |« <k} (2.24)
(andere Bezeichnung: WE(Q); WEQ)).
~ Zum Beispiel gehért die Funktion f(x) = x| (xe 2 < R", Q offen und be-

schrinkt), wobei [x| = /& + ... + & ist, fiir 0 <a < (32’— - 1) 2w W2(Q), falls
n = 3 ist [6].

Satz 2.18: Der Raum W¥r(Q) ist, versehen mit der Norm
1
ISk, = " ;(kul)"fﬂﬁ;”, (2.25)

ein Banachraum.

D.2.21

D.2.22

D.2.23

S.2.18
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Definition 2.24: Mit W**(2) (auch W§»(Q)) bezeichnet man die Abschliefung der
Menge C*(8) im Raum W*?(Q) [versehen mit der Norm (2.25)].

W P(Q) ist somit ein abgeschlossener linearer Teilraum von W*?(Q).
Der folgende, wichtige Satz zeigt, da beide geschilderten Mdoglichkeiten der Ein-
fiihrung von Sobolew-Raumen im wesentlichen dquivalent sind.

Satz 2.19 (N. Meyers, J.Serrin, 1964): Fiir 1 < p < oo gilt die Gleichheit (k =0,1,2,...)
H*P(Q) = Whr(Q). ! (2.26)
Bemerkung 2.12: Tm Sinne der mengentheoretischen Enthaltenseinsrelation < gilt

stets
C2(Q) € Wh(Q) £ Whn(Q) € LXQ). (227

Fiir £ = 0 ist dabei speziell
Wor(Q) = Wor() = L»(2) (1 £p < ). (2.28)

Fiir p = oo gilt die GI. (2.26) nicht! (Siehe [2].)

Fiir andere Varianten der Definition der Riume H*? bzw. W*? vergleiche man
das inhaltsreiche Buch [22] iiber Funktionenraume, S. 250-273. Fiir die Beziehungen
zwischen diesen Rédumen ergeben sich dann vom Satz 2.19 abweichende Resultate.

2.2.4. Folgenriume

In vielen funktionalanalytischen Betrachtungen lassen sich zur Darstellung eines
Sachverhalts einfache unendlichdimensionale Rdume, nidmlich Folgenraume be-
nutzen. Thre Elemente (Vektoren) sind Folgen komplexer (bzw. reeller) Zahlen bzw.
allgemeiner Folgen von Elementen eines Banachraumes. Die folgende Definition
fiihrt einige wichtige Folgenridume ein.

D.2.25 Definition 2.25: Im folgenden sei x = {£,} eine Folge komplexer Zahlen &, (n = 1,2,...).

Wir setzen (s. [29]):
° = {x | sup |&,| < +oo} (Raum der beschrénkten Folgen),

c = ‘x} lim &, existiert) (Raum der konvergenten Folgen),

n—oo

¢ = {x| lim &, = 0} (Raum der Nullfolgen),

n—ow

P = {xl DIRINLEES +oo} (1 =p <) (Raum der zur p-ten Potenz
n=1 summierbaren Folgen),

s = {xl lim n*&, = 0 fiir alle k = 1, 2, ;

n—w

(Raum der rasch fallenden Folgen),

So = {x| &, = 0 fiir alle n, bis auf endlich viele}
(Raum der finiten Folgen).
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Bemerkung 2.13: Es gelten die Enthaltenseinsbeziehungen
SocssclPcccecci® (2.29)
(ebenso richtig fiir sor, SR, /R, ..., also Rdume reeller Zahlenfolgen).

Satz 2.20: 1) Mit der Norm || x|, = sup |&,| ist I° ein Banachraum, ebenso ¢ und Co

mit der gleichen Norm.
0

2) Mit der Norm |x|, = { > |5,,|"}7 ist 1" ein Banachraum.
n=1

2.3. Lineare Funktionale, schwache Konvergenz, dualer Raum
2.3.1. Lineare Funktionale

Zu den einfachsten Funktionen, die man auf Vektorrdumen betrachten kann, ge-
horen die haufig auftretenden linearen Funktionen. Linearitét ist hierbei eine Eigen-
schaft, die in den Anwendungen vor allem als ,,Superpositionsprinzip zutage tritt.
Lineare Funktionen mit Werten in R oder K heilen lineare Funktionale oder Linear-
formen. Die Elemente von (normierten) Vektorraumen werden im folgenden mit
X, J, Z, ... bezeichnet.

Definition 2.26: Es sei E ein Vektorraum. Eine Abbildung f: E - R (bzw. K) heifit
lineares Funktional (Linearform), wenn die folgenden Bedingungen erfiillt sind (s. Bd.1,
8.4.):

S+ ) =fx) +f(») (x,y€E), (2.30a)

fOx) = M(x) (x € E; 2 €R bzw. K). (2.30b)

Beispiel 2.12: Es sei E = R" (bzw. K") mit den tiblichen Vektoroperationen, und es seien ay, ..., a,
feste reelle (bzw. komplexe) Zahlen. Fiir x = (&, ..., &,) € E setzen wir

n .
fx) =Y ag;. (2.31)
j=1
f(x) ist ein lineares Funktional auf E. Iste; = (1,0, ...,0);e, = (0, 1,0, ...,0); ...; ¢, = (0,0, ..., 1)
die ausgezeichnete Basis von E, so gilt ersichtlich die Gleichung

fl)=a (k=1,..,n). ' (2.32)
Wegen (2.30) ist

f) =3 a;= ‘El flep & (2.33)
s

Sind umgekehrt die Werte f(e;) = a; (j = 1, ...,n) vorgegeben, so definiert (2.31) ein lineares
Funktional auf E mit (2.32). Mit anderen Worten, jedes lineare Funktional auf E hat die Form
(2.31), und durch die Vorgabe der Werte f(e;) (j = 1, ..., n) ist das lineare Funktional f(x) ein-
deutig bestimmt.

Beispiel 2.13: Es sei E = Cla, b] (s. Def. 2.15). Die Elemente von C[a, b] bezeichnen wir jetzt mit
X, ¥, ... bzw. x(1), (1), ... oder auch x(.), y(.), ... Es sei
b
@)= [x0dt (xeE). @.34)

a

S.2.20
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Es gilt (x,y € E; e R; K):
’ b b i’
fe+ )= [+ n@Odr= [ G0+ y0) di = [ x0de+ [y

a a

. , =f(x) +f(»);
fx) = J" (x) (1) dt = j Ax(f)dt = 4 J’ x(0) dt = f(x);

a a

also ist f ein lineares Funktional auf E. ’

Beispiel 2.14: Es sei E = Cla, b] und c € [a, b] ein Punkt aus dem Intervall [a, b]. Wir setzen
f(x) = x(c) (x€E). (2.35)

Wie durch Einsetzen in (2.30a), (2.30b) sofort ersichtlich wird, ist f ein lineares Funktional auf

E = Cla, b]; s. auch Bsp. 1.10 und (1.58).

Beispiel 2.15: Es sei E = L?[a, b] (Bezeichnung der Elemente wie in Bsp. 2.13). Wir setzen
b
fe) = [ x(r)dr. (2.36)
a

Zufolge der Enthaltenseinsbeziehung

L*[a, b] € L'[a, b]
ist das Funktional f tatsichlich auf L*[a, b] definiert (der Leser tiberlege sich dies!) und (s. Bsp. 2.13)
linear.
Definition 2.27: Ein (lineares) Funktional f auf dem normierten Raum (E, || . |) heift
stetig, wenn aus der Beziehung

limx, =x (x,,x€E)

stets die Beziehung
lim f(x,) = f(x) (2.37)
folgt.

Bevor wir zu Beispielen stetiger linearer Funktionale kommen, soll die Stetigkeits-
eigenschaft noch eingehender diskutiert werden.

Hilfssatz 2.1: Ist f: E > R (K) ein lineares Funktional auf dem normierten Raum
(E, ||.||) mit der Eigenschaft (x, € E):

lim x, = 0= lim f(x,) =0,

n— o n—>w

so ist | f(x)| auf jeder Kugel K(o; r) = {x € E| |x| < r} (r > 0) beschréinkt.

Beweis: Wir zeigen zuerst, daB |f(x)| auf der Kugeloberfliche S = S(o;r) = {x € E||Ix]| = r}

beschriinkt ist. Angenommen, dies wire nicht der Fall, dann gibt es zu jedem n = 1,2, ..., ein
1

X, €S mit |f(x,)| = n. Mittels der Linearitit von f(x) folgt daraus|f (-;x,,)

11 1

r
|—x,, Ix,] = — (mn=1,2,...) folgt durch Grenziibergang lim (—x,) = o; aber es gilt
n n n noow \M

= 1. Wegen
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nicht lim f(n x,.) = 0; Widerspruch! Es gibt also ein M > 0 mit Jf(x)\ < M (x € S).Ist x € K(o;r),

n-wo

so gilt fiir x & o die Relation (W tx) es (well J:J]
X L

/
f (ﬁx)‘ M, und wir erhalten (Linearitéit von f) die Ungleichung (man beachte, da —

= W lx]| =r gllt) Also st
IIx| H

gllt) el = 2L {1l M= M,
die auch fiir x = o gllt. -]

Hilfssatz 2.2: Ist /: E — R (K) ein lineares Funktional auf dem normierten Raum
(E, ||.]), welches auf einer gewissen Kugel K(o; r) (r > 0) beschrankt ist, d. h., es
existiere ein M > 0 mit |f(x)] £ M (x € K(o; r)), so gilt die Ungleichung |f(x)|
< A| x| (x e E), A = Mr~* auf ganz E, und das Funktional f(x) ist auf dem (ganzen)
Raum E stetig.

f( ]l )

woraus sofort die Ungleichung |f(x)] < — “x|| folgt (die fiir x = o trivialerweise wegen f(0) =0

Beweis: Fir gegebenes x € E (x + o) liegt das Element —‘ x in K(o; r), daher gilt =M,

erfiillt ist). Ist weiter {x,} eine Folge aus E mit lim x, = x, so erhalten wir aus der Abschitzung

n—ow

(f ist linear) [f(x,) — f00] = If (6 — )| < ’—"—m =l r=1,2, ...) wegen lim flx, — x| =0
die Bezichung lim f(x,) = f(x). B it

n—>o

Aus den beiden Hilfssatzen ergeben sich eine Reihe wichtiger Folgerungen, deren
Beweis wir dem Leser iiberlassen.

Satz 2.21: Ist f: E —» R (bzw. E > K) ein lineares Funktional auf dem normierten
Raum (E, |.|), so ist f(x) genau dann stetig, wenn es an der Stelle x = o stetig ist.

Definition 2.28: Ein lineares Funktional f: E —» R (K) auf dem normierten Raum
(E, | . ||) heifit beschrinkt, wenn es ein M > O gibt mit
[f) = Mlx|| (xeE). (2.38)

Satz 2.22: Ein lineares Funktional f: E — R (K) auf dem normierten Raum (E, | . |)
ist genau dann stetig, wenn es beschrinkt ist.

Definition 2.29: Es sei f: E — R (K) ein beschrinktes lineares Funktional auf dem
normierten Raum (E, | . ||). Die Zahl

I = ”Shlgllf(X)i (2.39)
heifit die Norm von f.

Satz 2.23: Ist f: E — R (K) ein beschrinktes lineares Funktional auf dem normierten
Raum (R, |.|), so gilt die Ungleichung

[fOI = 11 Xl (x e E). (2.40)
Ist M > 0 eine Zahl, fiir die (2.38) gilt, so ist | f|| £ M.

Mit anderen Worten, die Zahl | /]| ist die kleinste Dehnungskonstante von f.

S.2.21
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Satz 2.24: Ist f: E — R (bzw. K) ein beschrinktes lineares Funktional auf dem nor-
mierten Raum (E, ||.||), so gilt

171 = sup [f(x)].
Il =1

Beispiel 2.16: Es sei E = K" der n-dimensionalen komplexe Vektorraum mit der Norm |lx||
= { i ] 3 ,lz]m(x = (&, ..., &»)). Mit gewissen komplexen Zahlen ay, ..., a, bilden wir durch die
Vorschnft flx) = Za_,é ; ein lineares Funktional f(x) (Bsp. 2.12). Mittels der Schwarzschen Un-
gleichung folgt desse:J Beschrinktheit und damit Stetlgkelt fir x e K" ist

fe)l = ‘ Z [ §{ 2 [ﬂhiz} { Z [5k|2} = M
k=1 k=1 k=1

n 1/2

mit M = { > |a,‘12} .Ist M > 0 und wihlt man fiir x speziell den Vektor x” mit den Koordinaten

a k=1
= —k( =1, ...,n),so gilt [x]| = 1 und

2

a,a; M
i __2 ia,‘\z_—M =M.

£5

Also ist [Ifll = sup [f()] = [f(x)] = M. Aus der zuvor bewiesenen Ungleichung folgt fiir
1Ix]|=

x|l = 1 die Abachatzung |f(x)] = M und somit [[f|| = sup [f(x)| = M. Insgesamt erhalten wir

die Glelchhext lIx]l=1

1f&) =

n
akEk

1/2
Ifll =M = { > Iak!’} . (2.41)
k=1
Beispiel 2.17: Es sei E = C[a, b] mit der Maximum-Norm ||x|| = max [x(f)|. Das lineare Funk-
tional (s. Bsp. 2.13) astsh
b

f@) =[x dt (xeCla,b)
a
ist stetig, wir geben sogar seine Norm an:
b b b
[ xde| < [ 1xyiar = [ sup lx(r)ldr
a

a 4 astsh

1fG) =

b b
= [ Ixllde = s [ de =6 - a) x| (xeE).

Wir erhalten die Ungleichung ||f]| < (b — a). Fiir die Funktion x'(t) = 1 (a £ ¢ £ b) wird ||x'|| = 1
b

und|f(x)| = _[1 dt{= b — a und somit ||f] = snlxp |f(x)| = b — a (= |f(x)]). Insgesamt erhalten
lIxll=1 .

a
wir die Beziehung ||f]| = b — a.

b 1/2
Beispiel 2.18: Es sei E = L*[a, b] mit der Norm |lx]| = { j (x(1))? dt} und g(.) € L?[a, b]. Das
lineare Funktional

fo= f (1) g(t) dt 242)
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ist, wie man mittels der Schwarzschen Ungleichung erkennt, beschrinkt und daher stetig. Analoge
Betrachtungen wie in Bsp. 2.17 zeigen, daB die folgende Gleichung gilt:

b 1/2
Il = {f OIS dt} = llgllg2. (2.43)

Die letztgenannten Beispiele 2.17 und 2.18 sind Spezialfille allgemeinerer grund-
legender Aussagen iiber die Form stetiger linearer Funktionale im Raum C[a, b]
bzw. in einem Hilbértraum?).

Satz 2.25 (Stetige Linearform in Crla, bl): Ist E = Cgla, b, versehen mit der max-
Norm, so lidft sich jedes stetige lineare Funktional f(x) auf Crla, b] als Riemann-
Stieltjes-Integral

b

f&) = [ x(t)dg(t) (x € Cyla, b)) (2.44)
mit einer gewissen Belegungsfunktion g(t) (a <t < b) von beschrinkter Variation
darstellen (die bis auf eine additive Konstante und fast iiberall bestimmt ist).
Bemerkung 2.14: Beziiglich der Definition des Riemann-Stieltjes-Integrals. vgl. [17,
S. 176/77].

Der folgende wichtige Satz stammt von F. Riesz.

Satz 2.26 (Stetige Linearformen im Hilbertraum): Ist H ein Hilbertraum®) mit dem
Skalarprodukt {.|.) und f(x) ein stetiges lineares Funktional auf H, so gibt es genau
ein Element g € H, so dafi die Gleichheit

fx) =gl x>
fiir alle x € H gilt. Zusdtzlich gilt die Beziehung
11 = lgla = /e Te>- (243)

2.3.2. Dualer Raum

Definition 2.30: Es sei E ein Vektorraum. Die Menge E* aller linearen Funktionale
auf E, die mittels der Operationen

(f+g ) =fx) +gx) (xekE), (2.462)
) (x) =) (x€E) (2.46b)

(f, g € E*, A € K bzw. R) zu einem Vektorraum wird, nennt man den algebraisch dualen
bzw. algebraisch konjugierten Raum von E.

Definition 2.31: Es sei (E, | . |g) ein normierter Raum. Denjenigen linearen Teil-
raum E’ von E*, der aus allen stetigen linearen Funktionalen auf E besteht, versehen
mit der Norm

I£1e = ?‘UEI [ /)], (2.47)

nennt man den Dualraum von (E, ||.|g) (bzw. den dualen oder konjugierten Raum
von (E, ||| ))-

1y (s. Def. 2.37 weiter unten).

S.2.25
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Satz 2.27: Der Dualraum (E', || . | g’) eines normierten Raumes (E, | . ||g) ist stets ein
Banachraum.

" 1/2
Beispiel 2.19: Es sei E = K"mit der Norm ||x|| = { > \51\2; (x = (&, ..., &) € K"). Jedes fe E*
hat die Form J=1

fx) = Z aéy (xe K (2.48)

mit eindeutig besnmmten a; (j=1,...,n) (vgl. Bsp. 2.12) und ist stetig. Das heiBt, im vorliegen-
den Fall gilt die Beziehung E* = E’. Weiter ist [s. (2.41)] die Gleichung

n 1/2
ILfll = {2 iaﬁ} (2.49)
i=1

erfiillt. Ordnet man jedem f€ E’ den zugehdrigen Vektor (ay, ..., a,) € K" zu, so erhilt man eine
eineindeutige lineare Abbildung T von E’ auf K", die wegen (2.49) sogar ein Normisomorphismus
ist. (Beweis der Linearitit und der Surjektivitit der Abbildung 7 als Ubung.) Im Sinne der Gleich-
setzung normisomorpher Riume gilt also die Beziehung

(K" = K" (2.50)

Es sei noch bemerkt, daB — wiederum im Sinne der Gleichsetzung normisomorpher
Réume - die Beziehung (L?(2)) = LY() gilt, wobei 1 < p < oo und L + L. 1
ist (¢ heift der zu p konjugierte Exponent) (vgl. [24], S. 125). 9 7

Beispiel 2.20: Es sei E ein (komplexer) Hilbertraum. Nach dem Satz von F. Riesz hat jedes f E’
die Form

fx) =<{glx} (x€E) (2.51)
mit einem eindeutig bestimmten g € E, fiir welche die Gleichung
ILAIF = ligl (2.52)

gilt. Die Zuordnung 7 f— g ist eine eineindeutige Abbildung von E’ auf E, die aber nicht linear,
sondern antilinear ist in folgendem Sinn (Beweis als Ubung):

T(fy + £2) = T(H) + T(f)
T(f) = ATf.
Wegen (2.52) ist T ein antilinearer Normisomorphismus von E’ auf E. Ist E ein reeller Hilbertraum,

so ist T linear, und es gilt (im Sinne der Identifizierung normisomorpher Riume) E’ = E.

Definition 2.32: Es sei (E, | . ||) ein Banachraum und (E', || . | ') sein Dualraum. Den

Dualraum von (E', | . | g’) bezeichnet man als Bidualraum (bidualen Raum) (E"”, |.|g)
von (E, |.]).
Satz 2.28: Der biduale Raum (E", | . |g~) enthdlt einen linearen Teilraum, der zu

(E, ||l normisomorph ist. Es gilt also (im Sinne der Gleichsetzung normisomorpher
Rdiume) die Relation E < E". Dabei wird jedem x € E dasjenige Element I, € E" zu-
geordnet, das durch die Glelrhung

I(f)=f(x) (feE") T (2.53)

definiert ist (kanonische Einbettung).
Fiir einen Beweis dieses Satzes vgl. [17].
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Definition 2.33: Der normierte Raum (E, || . ||) heifit reflexiv, wenn die kanonische
Einbettung x — I, (x € E) (s. Satz 2.28) ein Normisomorphismus von E auf E'' ist.

Zu den reflexiven Rdumen gehoren die Rdume R", K" sowie die Rdume L?(2)
(1 <p < ) und alle Hilbertrdume.

2.3.3. Fortsetzung stetiger linearer Funktionale. Satz von Hahn und Banach.
Trennungssiitze
Die Fortsetzung von Funktionen auf gréBere Definitionsbereiche spielt an vielen
Stellen in der Funktionalanalysis eine Rolle. Die Forderung der Linearitit und der
Stetigkeit eines Funktionals ermdglichen unter geringen zusétzlichen Voraussetzun-
gen weitreichende Aussagen iiber die Existenz von Fortsetzungen.

Satz 2.29 (Hahn-Banach-Theorem). Es sei (E, | . ||) ein normierter Raum und E, ein
linearer Teilraum von E. Auf E, sei ein stetiges lineares Funktional f, definiert. Dann
gibt es (mindestens) ein stetiges lineares Funktional f auf E, welches auf E, mit f,
tibereinstimmt (f(x) = fo(x) fiir x € Ey) und fiir das die Gleichung

; 1A =1l (2.54)
ilt.
¢ (Beweis s. [17].)

Bemerkung 2.15: Im Hinblick auf die Gl. (2.54) heilt / eine normerhaltende Fort-
setzung (Erweiterung) von f;.

Eine wichtige Folgerung aus dem Hahn-Banach-Theorem ist der folgende Satz,
der die Existenz nichttrivialer stetiger linearer Funktionale sichert.

Satz 2.30: Es sei (E, || . ||) ein normierter Raum und x, + o ein (beliebiges) Element
von E. Dann existiert ein stetiges lineares Funktional f auf E mit |f| =1 und
f(xo) = l|x0ll. (In der Ungleichung |f(x)| < |Ifl | x|, die generell fiir alle x € E gilt,
steht also fiir x = x, das Gleichheitszeichen). .

Beweis (s. [17]): Mit E, bezeichnen wir die Menge E, = {x € E| x = tx,, ¢ belicbig
komplex}. Dann ist E, ein linearer Teilraum von E. Durch die Vorschrift

Jo(x) = tllxoll  (x = txo € Ey)
ist ein lineares Funktional auf E, gegeben. Es gilt

[fo@)l = 1t] X0l = ltxoll = x| (x € Eo).
Hieraus ergibt sich die Gleichung ||y = 1, und aus Satz 2.29 folgt die Behaup-
tung. B

Fiir die Belange der Optimierungstheorie ist eine geometrische Form (bzw. Fol-

gerung) des Hahn-Banach-Theorems wesentlich, die zu den sog. ,, Trennungssitzen*
gehort.

Definition 2.34: Es sei E ein reeller linearer Raum und f + o ein stetiges lineares
Funktional auf E, sowie c eine (reelle) Konstante. Die Menge [f=cl:i={xeE|
f(x) = ¢} heift die Hyperebene bezuglzch f zum Niveau c.

Beispiel 2.21: Es sei E = R® und f(x) = — + T + i ,x = (8,8, &), (a,b, creell und + 0).
Die Hyperebene [f = 1] stimmt mit derjemgen Ebene im R3 iiberein, die durch die Punkte (a, 0, 0),
(0, b,0), (0,0, c) geht.
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Zwei konvexe Mengen des R" kann man als ,,voneinander getrennt ansehen,
wenn sie auf verschiedenen Seiten einer (Hyper-) Ebene liegen. In Bd. 15 werden
Trennungssétze fiir konvexe Teilmengen des R" aufgefiihrt. Die folgende Definition
verallgemeinert diesen Sachverhalt auf konvexe Mengen in beliebigen linearen nor-
mierten Rdumen. Eine Teilmenge M eines Vektorraumes heift konvex, wenn mit
je zwei Punkten x,yeM auch alle Punkte der Verbindungsstrecke [x,y]
={z=Ax+(1-2)y|0=<A=<1}von xund y zu M gehdren (s. Bd. 4, 2. Aufl.,
S. 12).

Definition 2.35: Es seien (E, || . ||) ein reeller normierter Raum, A < E und B < E
zwei konvexe Teilmengen von E. Man sagt, daff A und B trennbar sind, wenn es ein
stetiges lineares Funktional f auf E und eine reelle Konstante ¢ gibt mit

f(X) S c firalle xe A,

. . (2.55)
f(x) = ¢ fiiralle xe B (s. Bild 2.2).
Falls sogar die Ungleichungen '
fx) <c firalle xe A, (2.56)

f(x) > ¢ firalle xe B (s.Bild 2.3)

gelten, so heiffen die Mengen A und B strikt trennbar. [/ = c] heifit dann die A und B
trennende bzw. strikt trennende Hyperebene.

flx)zc
fla=c fl<c s:&
27\ \
P>
i E/
[f=c]

[f=c]

flx)>c

Bild 2.2 Bild 2.3

Ein fiir die Optimierung wichtiger Satz lautet dann:

Satz 2.31: Es seien (E, | . ||) ein normierter Raum und A < E eine konvexe Menge,
die innere Punkte besitzt, d. h., es gibt eine offene Kugel (s. Def. 2.3), die ganz in A
liegt. Ist x beliebiges Element von E, das nicht zu A gehort oder hichstens Randpunkt
(d. h., in jeder Umgebung von x liegen sowohl Punkte von A als auch solche nicht
aus A) von A ist, so sind A und {x} trennbar. Sind A und B nichtleere offene konvexe
Mengen mit leerem Durchschnitt, so sind A und B strikt trennbar.

(Fiir einen Beweis auf der Grundlage des Hahn-Banach-Theorems s. [32, S. 108].)
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2.3.4. Schwache Konvergenz

In vielen Untersuchungen reichen Grenziibergange ,,beziiglich der Norm* in einem
linearen Raum nicht aus [siehe z. B. (1.57)]. Neben der Norm-Konvergenz betrach-
tet man auch die sog. schwache Konvergenz. In diesem Kapitel werden nur die
Definition und einige wesentliche Eigenschaften der schwachen Konvergenz an-
gegeben.

Definition 2.36: Es sei (E, | . ) ein normierter Raum und {x,} eine Folge von Ele-
menten von E. Die Folge {x,} heifit schwach konvergent gegen das Element X € E,
wenn fiir jedes stetige lineare Funktional f auf E die Gleichheit hm f(x) = f(X) gilt;
abgekiirzt x, = X (n — ).

Aus dieser Definition folgt sofort, daB jede (norm)konvergente Folge {x,} auch
schwach konvergent ist. Die Umkehrung gilt jedoch i. allg. nicht. Hierzu betrachten
wir das folgende Beispiel:

Beispiel 2.22: Es sei (H,<.|.)) ein Hilbertraum (s. Def. 2.37) und (e,) ein vollstindiges ONS
(s. Def. 2.41) in H. Dann gilt
e, o0 (n—> ),

obwohl alle e, die Norm 1 haben (|le,| = 1) und daher die Folge {e,} in H nicht gegen o konver-
giert.
Zum Beweis betrachte man ein beliebiges Element x € H. Dann gilt x = Z {ey| x) e,. Fir
=1

ein beliebiges stet]ges Funktional f auf H folgt daraus (wegen der Stetigkeit von f) die Gleichung
) = Z Cen| x> flen). ()
n=1
Nach dem Satz von F. Riesz (Satz 2.26) hat das Funktional f(x) die Gestalt

f@)=<ylx> (xeH) (%

mit einem eindeutig bestimmten y € H, fiir welches ||| = ||yl gilt. Einsetzen von (**) in (*) ergibt
die Gleichheit

Glxdy =Y Aelxd{yley (xeH). (%
n=1
Setzen wir in (***) fiir x speziell x = y, so erhalten wir
P =1y =Xl <yiey = Zl<en [ el > = X IKea | DI
n=1 n= n=1

Die rechtsstehende Reihe ist somit konvergent. Daher bilden (s. Bd. 3) ihre Glieder |{e, | y)|? eine
Nullfolge. Daher ist aber auch die Zahlenfolge f(e,) = {y|e,» (n=1,2,...) eine gegen null
konvergente Folge, womit alles gezeigt ist.

Satz 2.32: Es sei (E, || . ||) ein normierter Raum und {x,} eine Folge aus E, die gegen
das Element X schwach konvergiert. Dann gilt die Ungleichung

I%] = lim [x,], (2.57)

und es existiert eine Konstante K > 0 mit ||x,| < K (n = 1,2,...) (m.a. W., jede
schwach konvergente Folge ist beschrdinkt).

In speziellen Rdumen 1aBt sich die schwache Konvergenz genauer kennzeichnen,
wie der folgende Satz am Beispiel des Raumes Cla, b] zeigt. Der Raum Cla, b] sei
hierbei wie iiblich mit der Maximum-Norm versehen.

D.2.36
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Satz 2.33 (s. [17, S.226]): Eine Folge {x,(.)} aus Cla, b] konvergiert genau dann
schwach gegen ein Element X(.) aus Cla, b], wenn folgende Bedingungen beide (gleich-
zeitig) erfiillt sind

1) x| £ M(tela,bl; n=1,2,...) fiir ein M > 0;

2) lim x,(t) = X(t) (¢ € [a, b]) (punktweise Konvergenz).

Sehr wichtig ist noch der Satz iiber die Chal.'akterisierung der reflexiven Banach-
raume durch die schwache (Folgen-) Kompaktheit ihrer (Norm-) Kugeln, der auf
W. F. Eberlein, L. Alaoglu, W. Schmuljan zuriickgeht:

Satz 2.34 (s. [21, S. 50]): Ein Banachraum ist genau dann reflexiv, wenn seine ab-
geschlossene Einheitskugel K = {x | ||x|| < 1} schwach folgenkompakt ist, d. h., wenn
Jede Folge aus K eine schwach konvergente Teilfolge enthiilt.

2.4. Hilbertriume, Orthogonalentwicklungen

2.4.1.  Grundbegriffe, Beispiele

Nach Def. 1.3 hatten wir den Begriff des Pra-Hilbertraumes H eingefiihrt. Dessen
Skalarprodukt erzeugt eine Norm vermoge

Ixl =/<x Ty (xeH). (2.58)

Definition 2.37: Ein Prd-Hilbertraum heifit ein Hilbertraum, wenn er beziiglich der
durch die Norm (2.58) erzeugten Metrik (s. 1.1.) ein vollstindiger metrischer Raum
ist. Allgemeine Hilbertrdume bezeichnen wir mit dem Buchstaben H.

(D. Hilbert, 1862—1943, schuf die Grundlagen der Theorie linearer Operatoren in
speziellen Hilbertraumen.)

Bemerkung 2.16: Jeder Hilbertraum ist ein Banachraum, aber nicht umgekehrt. Ein
Banachraum (E, ||.|)) ist genau dann ein Hilbertraum, wenn die Norm von E die
sog. Parallelogrammgleichung

lx = yI? +lx + 1% = 201> + |¥I*) v,y E) (2.59)

erfullt. Ist die Gl (2.59) erfiillt, so existiert auf E ein Skalarprodukt (x| y), fir
welches die Gl. (2.58) gilt (wobei auf der linken Seite dieser Gleichung die gegebene
Norm von E steht).

Die rechts stehende Liste nennt Beispiele fiir Hilbertraume mit dem jeweiligen Skalar-
produkt. Alle aufgefiihrten Rdume sind komplexe lineare Ridume. Ist z = a +ib
eine komplexe Zahl, so bezeichnet Z = a — ib die konjugierte komplexe Zahl.

Das Skalarprodukt (x| p) ist eine stetige Funktion von x und y. Dies zeigt der
folgende Satz.

Satz 2.35: Es seien H ein Prd-Hilbertraum (speziell: ein Hilbertraum) und {x,} bzw.
{yu} zwei Folgen aus H, die gegen bestimmte Elemente x bzw. y aus H konvergieren:
lim x, = x, lim y, = y. Dann gilt

nco

nos o
lim (x, [y = x| ). (2.60)
o N
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Elemente des Raumes x, y; f, g Bezeich- Skalarprodukt
nungdes  {x|y) bzw. {f]g>
Raumes

n-tupel komplexer Zahlen &; (1 <j < n) cn Z":
= Ery oo by ¥ = 05 o) P

Folgen komplexer Zahlen &; (j = 1,2, ...) mit

0

X IE1 < +oo, 2=

=1 r x &
i=

x =182 06, ),

¥ =011,725 oo 7lny )

(Klassen) komplexwertiger quadratisch abso-

lut summierbarer Funktionen f, g, ..., die auf

cinem Gebict £ £ R" definiert sind LX(Q) [ &) gx) dx
Q

(112 dx < +o0
Q2

(Klassen fast iiberall iibereinstimmender) kom-

plexwertiger quadratisch summierbarer Funk-

tionen f, g, ..., die im Gebiet £ < R" verall-

gemeinerte Ableitungen bis zur Ordnung m wm(Q) fD“f(x) Dg(x) dx
besitzen (m = 1,2, ...; fest) und fiir die diese 0s I“[

verallgemeinerten Ableitungen zu L*(2) ge-

horen

(Klassen fast iiberall iibereinstimmender) kom-

plexwertiger (bzw. reellwertiger) absolut qua- —

dratisch summierbarer Funktionen, die auf L?[a, b] f Sx) g(x) dx
dem Intervall [a, b] definiert sind @

Beweis: Es gilt (Rechenregeln fiir {x | y), s. 1.1.)
0= Kx [l = <xalywl =Ky = x, 13> + x|y =yl
SIx =X+ Kxaly =yl S 1% = xll 171+ 1%l |30 = ¥ = &0
(n=1,2,...) [Dreiecksungleichung fiir komplexe Zahlen und (1.10)]. Wegen

lx = x, =0, [y, — ¥l =0, |Ix,]| = [[x] fiir » > co bilden die Zahlen «, eine
Nullfolge (].lm &, = 0), und daher ist auch [(x|p) — {(x,|y,p| eine Nullfolge,

woraus die Behauptung folgt.

2.4.2.  Orthogonalentwicklungen

Definition 2.38: Es sei H ein Prd-Hilbertraum. Die Elemente x,y € H heifien (zu- D.2.38
einander) orthogonal, wenn {x | y) = 0 gilt. Eine Teilmenge von H heifit ein Ortho-
gonalsystem, wenn je zwei ihrer Elemente orthogonal sind. Ein Orthogonalsystem,

5 Goplert, Funktionalanalysis
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welches nur Elemente x mit ||x| = 1 enthdlt, heifit ein Orthonormalsystem kurz:
ein ONS.

Satz 2.36 (Pythagoras): Ist G < H ein Orthogonalsystem im Pri-Hilbertraum H und
sind zy, ..., z, Elemente von G, so gilt

lzs + 22 + oo+ zall? = Nzal® + Nzal® + ..+ lzal™ (2.61)

2 n
=<24
i=1

P RADESALIEY

Beweis: Es gilt

|

2z

j=1

=1r=1

PEARS AP

Satz 2.37 (Schmidtsches Orthogonalisierungsverfahren): Ist x,, x,, ... eine (endliche
oder unendliche) Folge linear unabhingiger Vektoren eines Pri- Hzlbertraumes H, S0
gibt es ein ONS ey, e,, ..., welches den gleichen lmearen Teilraum von H erzeugr

d. h., die Menge aller endlichen Lmearkambmatwnen Z oje; stimmt mit der Menge
aller endlichen Linearkombinationen Zﬂkxk ube:em (n m=1,2,.. ;8 belie-

k=1
bige komplexe Zahlen). Das ONS ey, e,, ... kann auf die folgende Weise berechnet
werden:

1

B
n—1
= X el x) e
k=1

e =

e, =

=T firn=2,3,.... (2.62)
—kgl e | X e

Wie man leicht nachrechnet, gilt <e,|e,) =0 fir n+ m sowie e, =1
(n =1,2,...). Mittels vollstindiger Induktion ergeben sich die weiteren Aussagen
des Satzes.

Wie wir bereits in den einfithrenden Beispielen gesehen haben, spielen die ONS
bei der Darstellung von Elementen eines (Pra-) Hilbertraumes im Hinblick auf die
Approximation allgemeiner Vektoren (= Funktionen, die Elemente eines Funk-
tionenraumes sind) durch besonders iibersichtliche und einfache Elemente eine wich-
tige Rolle (s. auch Bd. 12, Kap. 1.). P

Im folgenden treten unendliche Reihen ) x, auf, deren Glieder x, Elemente

n=1
eines Hilbertraumes sind. Die Konvergenz dieser Reihen wird analog zur Kon-
vergenz von Zahlenreihen (Bd. 3) erklért:

Definition 2 39: Es sei {x,} eine Folge von Elementen eines Hilbertraumes H. Der
Ausdruck Zxk bezeichnet einerseits die Folge der zugehorigen Partialsummen

s, = Z X (n = 1,2, ...) und wird unendliche Reihe genannt. Die unendliche Reihe
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Z x; heifit konvergent, wenn die Folge {8,} der Partzalsummen konvergiert. In die-
sem Fall schreibt man s = lim s, = Z X, und nennt s = Z X, andererseits auch
den Wert der unendlichen Eﬁ:e f ;,. 1Eme unendliche Rezhe, die nicht konvergent
ist, heift divergent.

Satz 2.38: Es sei H ein H:lbertraum und die Folge {z,} sei em Orthogonalsystem in H.
Dle unendliche Reihe Z z, konvergiert genau dann, wenn Z ||z,]1? konvergiert. Gilt

Zz,, = z, so ist
n=1

Ia1? = S jal® @63)

3
Beweis: Fir n > m gilt mit s, = Y z;, (k = 1,2, ...) die Gleichheit (Satz des Pytha-
goras) =1

"
X oz

J=m+1

I = sl =

2 n n m
= Z lz;* = Z lz;l* = .Z llz;l1>.
J=mt I= =
Daher ist die Fo]ge{ >z ' = {s,} genau dann eine Cauchy-Folge in H (s. Def. 2.6),

wenn die Folge { > uz,([lz; eine Cauchy-Folge (in R) ist. Wegen der Vollstandlgken
von H ergibt sich dxe erste der obigen Behauptungen Es gelte jetzt 2 zk =z, d.h,

die Folge {s,} = { Zz,‘} konvergiert gegen z. Nach Pythagoras (Satz 2.36) gilt
IIsall? = Z ||zl Wegen 11m lls, — z|| = 0 gilt auch hm I[sa]l = |lz]| (Dreiecks-

unglelchung, Stetigkeit der Norm) Also ist auch lim Hs 1[2 |z||?, woraus die
zweite Behauptung sofort folgt. B Lt

Definition 2.40: Es sei (e,) ein ONS im Hilbertraum H. Ist x ein beliebiges Element
von H, so heifit die Zahl

lelxy (k=12 (2.64)
der k-te Fourierkoeffizient von x beziiglich des gegebenen ONS.

Bei der Entwicklung nach Orthogonalfunktionen (s. Bd. 11) ist wesentlich, daB
das vorliegende ONS umfangreich genug ist, um alle Elemente des betrachteten Rau-
mes approximieren zu konnen. Zum Beispiel bildet das System {e,,e,} mit
e, =(1,0,0), e; = (0, 1, 0) zwar ein ONS im (reellen Hilbertraum) R3. Der Vektor

2
xo = (1,1, 1) hat jedoch von allen Linearkombinationen Y e = ey + xje,
i=1
=V =)+ — D2+ 121,
kann also durch dieses ONS nicht belleblg genau approximiert werden. Die ent-

scheidende Eigenschaft eines ONS, die eine solche Approximierbarkeit gewihr-
leistet, ist die sog. Vollstindigkeit des ONS.

5%

= (ovy, 5, 0) einen Abstand ||x, — Zoc,e

S.2.38
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Definition 2.41: Es sei (e,) ein ONS im Hilbertraum H. Das ONS (e,) heifit voll-
stindig, wenn es keinen vom Nullvektor verschiedenen Vektor z gibt, der zu_allen
Vektoren e, orthogonal ist.

Der entscheidende Entwicklungssatz lautet (s. [8, S. 130/132]):

Satz 2.39 (von der Orthogonalentwicklung): Es sei H ein Hilbertraum und (e,) ein
ONS in H. Dann sind die folgenden Aussagen gleichwertig:

(1) Das ONS (e,) ist vollstindig.
(2) Fiir jedes x € H gilt (Fourierentwicklung von x)

x =Y {e,| x) ey (2.65)
n=1
(3) Fiir jedes x € H gilt (Parsévalsche Gleichung)

517 = % Keo | P 266

Beispiel 2.23: Es sei H = L*[0,2r]. Dann ist das folgende Funktic y ein vollstd
ONS:

e—ivu
V=
Weitere Beispiele vollstindiger ONS erhélt man (Bd. 12, S. 14-19) durch Ortho-

gonalisierung der Funktionenfolge f,(x) = x" \/ p(x), wobei p(x) = 0 eine sog. Be-
legungsfunktion bezeichnet. Auf diese Weise erhélt man z. B. im Raum LZ[—1, 1]
und fiir p(x) = 1 die normierten Legendreschen Polynome

(n=0,+1, +2,..). (2.67)

N ETER N )
P,,(x)~A/TWW(x —1y (1=0,1,2,..); (2.68)

und im L(R) fiir p(x) = e** die normierten Hermiteschen Funktionen
x2
(=" o2 d(e*)
NZZINGS dx"
als ONS [s. auch (1.81)].

Hyx) = (n=0,1,2.) (2.69)

2.4.3. Orthogonales Kompl t, orthogonale direkte S

r

Definition 2.42: Es sei H ein Prd-Hilbertraum und E eine Teilmenge von H. Die
Menge aller Elemente x € H, die auf allen Vektoren aus E senkrecht stehen, bezeichnet
man mit HO E; sie heifit das orthogonale Komplement von £ beziiglich H (bzw.
in H):

HOE={xeH|{x|y)=0 firalle yeE}. (2.70)

Satz 2.40: Unter den Voraussetzungen der obigen Definition ist H © E ein abgeschlos-
sener linearer Teilraum von H.
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Beweis: Ist xe HO E, so gilt fiir beliebiges komplexes 4: (Ax | y) = I{x|y) =0
fiir alle y € E, also ist auch Ax e H © E. Sind x,,x, € H© E, so auch x; + x,,
weil (x; + x, | 3> = x|y + <{x, |y =0 fiir alle y e E gilt. Gilt schlieBlich
X, € H® E und x = lim x,, so ist {(x|y) = lim {x,|y)> =0 fiir alle yc E. |
noo nooo
Beispiel 2.24: Es sei H ein Hilbertraum und (e,) ein vollstindiges ONS in H. Es sei E = {ey, ..., €,}
die Teilmenge dieses ONS, die aus den ersten m Elementen e, besteht.
Dann besteht H © E aus allen Elementen x der Form

0 0
x= Y e mit Y |el® < +oo. 2.71)
k=m+1 k=m+1
@
Denn {(x|ey = Y &<eley =0 fir r=1,..,m; also liegt jedes x der Gestalt (2.71) in
k=m+1
H © E. Ist umgekehrt x € H © E, so gilt nach dem Entwicklungssatz (Satz 2.39)
)
x =Y {ex|x)e.
k=1
Weil x e HO E ist, muB <{e; | x) = 0 fir k = 1, ..., m gelten. Also ist
0 0
x= Y Lelxdey= Y o mit ¢ = e | x>
k=m+1 k=m+
@
(k=m+ 1,m + 2, ...). Aus dem Entwicklungssatz folgt weiter,daB + o0 > [lx|> = > [{e | xD|?
S k=m+1
= 3 |exl? gilt, woraus die Konvergenz der rechtsstehenden Reihe folgt. Mit anderen Worten, das
k=m+1

orthogonale Komplement einer Menge endlich vieler Elemente eines (vollstindigen) ONS besteht
aus allen (Fourier-) Reihen, in denen nur die restlichen Elemente des ONS auftreten.

Definition 2.43: Es seien H ein Hilbertraum und H, bzw. H, abgeschlossene lineare

Teilrdume von H. Ist x, € H, und x, € H,, so gelte stets {x, | x,» = 0 (man sagt

dann: die Teilrdume H, und H, sind zueinander orthogonal). Die Menge
{xeH|x=x, + x;,x, € H, x, € Hy}

heift die orth le direkte S von Hy und H, und wird bezeichnet mit

5!

H, ® H>. 2.72)

Satz 2.41: Unter den in Def.2.43 getroffenen Voraussetzungen ist die orthogonale
direkte Summe von H; und H, stets ein abgeschlossener linearer Teilraum von H.

Es ist in Analogie zu Def. 2.43 klar, wie die orthogonale direkte Summe
H, & H, ® ... ® H, endlich vieler, paarweise orthogonaler linearer Teilrdiume zu
definieren ist.

Satz 2.42: Es sei H, ein abgeschlossener linearer Teilraum eines Hilbertraumes H und
H, = HO© H, das orthogonale Komplement von H, in H. Dann ist H die ortho-
gonale direkte Summe von H, und H,: H = H, @ H,.

Dieser und der folgende Satz zeigen, daf die Bildung des orthogonalen Komple-
ments und der orthogonalen direkten Summe zueinander invers (komplementir)
sind.

D.2.43
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Satz 2.43: Es sei H ein Hilbertraum, und es gelte H = H, ® H,, wobei H,, H,
zwei abgeschlossene lineare Teilriume von H bezeichnen. Dann gelten die Gleichungen

H, ~nH, = {0},
H =HOH,, (2.73)
H,=HQOH,.
Auflerdem lapt sich jedes x € H auf genau eine Weise in der Form
x=x +x, (x;eH,x,eH,) (2.74)
darstellen.

Beweis: Wir zeigen nur die erste der Gln. (2.73) sowie die Gl. (2.74). Da H, und H,
lineare Teilriume von H sind, gilt 0 € H; N H,. Ist andererseits x € H; \ H,, so
gilt nach Def. 2.43 der orthogonalen direkten Summe, daB (x| x) = 0 sein muB;
d. h. aber x = o. Somitist H; N H, = {o}. Wegen H = H, ® H, gibt es fiir jedes
x € H stets mindestens eine Darstellung der Form

X =Xy + X,, x,€H;,x,eH,.
Gilt zusatzlich

X =X} + x5, xieH, xyeH,,

so wird wegen

X; + X, =x7 +x3 auch x; —x} =x) — x,.
x; — X ist ein Element von H,, x, — x, gehort zu H,. Da diese beiden Elemente
gleich sind, gehoren sie sowohl zu H, als auch zu H,, also zu H, n H,, und daher
gilt nach dem zuvor bewiesenen, daB x, — x{ = x5 — x, = o sein muB, woraus

schlieBlich x; = x}, x, = x} folgt. Es gibt also nur eine Zerlegung von x in der
Form (2.74). B4

Satz 2.44: Es sei H, ein abgeschlossener linearer Teilraum des Hilbertraumes H. Zu
Jedem x € H gibt es genau ein Element x, € H,, welches von x einen minimalen Ab-
stand (beziiglich H,) besitzt (die Projektion von x auf H,):

[ = x| = inf [x — y|. @75
YeH,

Der Vektor x — x| = x, gehort dann zum orthogonalen Komplement HQ H, .
(Zum Beweis s. [17].)

Zur Veranschaulichung des Satzes 2.44 betrachten wir im reellen Hilbertraum
H =1%[a,b] (a=0,b= 27r) das Vollstiindige ONS

1
—CO0S t,—=-sint,. —-—cos nt,

NN ﬁ i m

H, bestehe aus allen trigonometrischen Polynomen der Ordnung < n:

sinm, o (021 27).

) =32+ > (xLcoskt + fLsinks) (0 <1< 27). 2.76)
k=1
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Ist xe H beliebig, so 1aBt sich x (s. den Entwicklungssatz 2.39) in der Form

x(t) = \/_ + g ( coskt + b sil/lTl:t)
—70 + Z (axcos kt + B sinkt) (0 <t <2n) 2.77)
=1

darstellen, wobei diese Reihe im Sinne des Raumes L?[0, 2] gegen x konvergiert
(die Folge der Partialsummen s,(f) konvergiert im quadratischen Mittel gegen x(t),

d.h,
2

lim [ (s,() — x(0)* dt = 0).
n—w g

Es gelten die Beziehungen

2 A ) by
Xo = do =’ 0‘:(:\//;, .Bk=\/'7; k=12.)
und
2n 2
1 1
ay, = —— | x(¢)dt, a, = —= | x(t)cos kt dt,
6 \/zﬁf 0 . \/ﬂf 0
0 0
2

fx(t)smktdt k=12 ).

1
=7
)

Das Element x, € H,, welches gemiB Satz 2.44 den kiirzesten Abstand zwischen
H, und x realisiert, ist dann genau die n-te Partialsumme der Reihe (2.77):

5 =x() =2 +k"§ (s cos ki + Bysinki) (0 < 1 < 7).

Das Element x, = x — x; hat die Form

Xy = x,(1) = Z (a,, cos kt + fsinkt) (0 <t < 2x)

k=n

und gehort (offensichtlich) zum orthogonalen Komplement von H, .
Zur Erganzung der Ausfiihrungen iiber Hilbert-Rdume erwihnen wir noch folgen-
den Satz von F. Riesz und E. Fischer.

Satz 2.45: Es sei H ein Hilbert-Raum und {e,} ein vollstindiges ONS in H. Kon- S.2.45
vergiert fiir eine Zahlenfolge {a} die Reihe ¥ |ay|?, dann gibt es genau ein Element
k=1

x € H, dessen Fourierkocffizienten beziiglich {e,} gerade mit den gegebenen Werten a
iibereinstimmen; @, = {e;|x) (k = 1,2,

Aus diesem Satz (zum Beweis s. [17]) folgt die Normisomorphie aller (separablen)
Hilbert-Réume.
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3. Lineare Operatoren

Im Zusammenhang mit der Losung sog. ,,linearer Probleme®, d. h. von Proble-
men, in denen die wesentlichen Zusammenhinge ein lineares Verhalten zeigen,
untersucht die Funktionalanalysis lineare Operatoren und Gleichungen, in denen
lineare Operatoren auftreten. Die einfachste Grundaufgabe dieser Art ist die Frage
nach den Losbarkeitseigenschaften eines linearen Gleichungssystems mit endlich
vielen Unbekannten &, ..., &,

Saubi=by (=1, 3.1

wobei die Koeffizienten a;, und die absoluten Glieder b; gegebene (reelle oder kom-
plexe) Zahlen sind.

Kennzeichnend fiir die funktionalanalytische Denkweise ist die Auffassung, daf3
der Koeffizientenmatrix (ay) ein Operator T entspricht, der jeden Vektor
x = (&4, ..., &) in einen Vektor y = (3, ..., ,,) tberfiihrt:

un =kglajk§k (G=1..m G2

oder
y =T(x) (oder: y = Tx). (3.3)

Die Aufgabe, das lineare Gleichungssystem (3.1) zu 16sen, kann also in der folgen-
den Weise formuliert werden:
Man bestimme alle x, die die Gleichung

Tx =b (3.4)

(b = (b, ..., b)) erfiillen.
Der Operator T hat ersichtlich folgende Eigenschaften

Additivitdt:  T(xP + x®) = T(xP) + T(x®),
Homogenitdt: T(Ax) = AT(x) (A reell oder komplex).
Diese Tatsache veranlaBit die folgende Definition.

(3.5)

Definition 3.1: Eine Abbildung (ein Operator) T: E — F, die einen linearen Raum E
in einen linearen Raum F abbildet, heifit linear, wenn fiir alle xV, x®, x aus E, und
alle (reellen bzw. komplexen) Zahlen 1 die Gleichungen (3.5) gelten.)

Ein Operator der Form (3.3) ist ersichtlich ein linearer Operator, der den Raum K”
(n-dimensionaler komplexer Vektorraum) in den Raum K™ abbildet. Die Auffassung
des linearen Gleichungssystems (3.1) als lineare Operatorgleichung (3.4) (s. auch
1.2.4.) ist deshalb von so grundsatzlicher Bedeutung, weil sich die wichtigsten Ergeb-
nisse iiber lineare Gleichungen mit endlich vielen Unbekannten auf allgemeinere
Operatorengleichungen {iibertragen lassen, welche insbesondere solche Differential-
bzw. Integralgleichungen umfassen, die in der Praxis hiufig auftreten. Beispiele fiir
lineare Operatoren werden in den folgenden Abschnitten eingefiihrt.

1) Vgl. auch Bd. 1, 8.4.
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3.1.  Das Rechnen mit linearen Operatoren

Ein linearer Operator 7: E — F, der den linearen Raum E in den linearen Raum F
abbildet, legt folgende Teilrdume fest:

den Kern') von 7, abgekiirzt Ker 7, der aus allen Nullstellen von 7 besteht, d. h.
(or bezeichne das Nullelement von F)

KerT={x€eE|Tx = o}, (3.6)

den Rang oder Wertebereich von 7, abgekiirzt Ran 7" oder R(T) oder T[E], der
aus allen Elementen von F besteht, die als Werte der Abbildung auftreten:

RanT = {yeF|y = Tx fiir ein x € E}. 3.7

Zufolge der Linearitit von 7 sind Ker T und Ran T lineare Teilriume von E bzw.
von F.

SchlieBlich muf3 man (vor allem fiir die Theorie unbeschrankter Operatoren) den
Fall vorsehen, daB ein linearer Operator 7 nur auf einem linearen Teilraum E, von E
definiert ist, T: E, — F, deutlicher, T: E, < E — F. In diesem Fall hebt man den
Definitionsbereich £, = D(T) von T besonders hervor.

Im folgenden seien T, S, U, ... lineare Operatoren von E in F. Ist F = E, so
spielt der identische Operator /, erklart durch

Ix=x (xeE) (3.8)
eine besondere Rolle.

Definition 3.2: Die Summe 7 + S der (linearen) Operatoren T und S wird durch die D.3.2
Gleichung

(T+8)(x)=T(x) + S(x) (xeE) (3.9)

erkldrt. Die Multiplikation des Operators T mit der (komplexen bzw. reellen) Zahl 4
wird definiert durch die Gleichung

(OT)(¥) = MT(x) (x€E). (3.10)

Satz 3.1: Mittels der in Def. 3.2 eingefiihrten Operationen fiir lineare Operatoren S.3.1
T: E - F wird die Menge dieser Operatoren zu einem Vektorraum (linearen Raum).

Definition 3.3: Sind E, F, G lineare Réiume und T: E — F; S: F — G lineare Opera- D.3.3
toren, dann wird das Produkt ST der Operatoren T und S durch die Zuordnungs-
vorschrift

(ST)(x) = S(T(x)) (x€E) 3.11)
erklrt.
Satz 3.2: Das Produkt ST (im Sinne der Def. 3.3) ist ein linearer Operator von E in G: S.3.2
ST: E-G.

1) Synonym: Nullraum von T: N(T).
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Definition 3.4: Es sei T: E — E ein linearer Operator, der E in sich abbildet. Man
definiert (rekursiv) die Potenzen T" von T fiir n = 0, 1, 2, ... durch die folgenden Glei-
chungen

70 = J,

T' =T, (3.12)

T =TT" (n=1,2..),

wobei in der Gl. (3.12) rechts das Produkt der Operatoren T und T" im Sinne der
Def. 3.3 steht.

Der aus der linearen Algebra bekannte Begriff der inversen Matrix wird durch die
folgende Definition auf allgemeine lineare Operatoren iibertragen.

Definition 3.5: Es sei T: E — F ein linearer Operator. Falls es einen linearen Opera-
tor S: F — E gibt, so daf} folgende Gleichungen gelten

ST=1I;, TS=I, (3.13)

wobei Iy bzw. I die identischen Abbildungen von E bzw. F sind, so heifit S der zu T
inverse Operator (Umkehroperator, reziproker Operator), und man bezeichnet ihn mit

S§=T" (3.14)

Bemerkung 3.1: Man weist leicht nach, daB es nur einen einzigen solchen Operator
S = T geben kann. Hat T einen Umkehroperator 7-1, so ist T eine lineare ein-
eindeutige Abbildung von E auf F und T-' eine lineare eineindeutige Abbildung
von F auf E (vgl. auch Bem. 3.3).

Satz 3.3: Es seien T,: E — F, T,: F — G lineare Operatoren, die Umkehroperatoren
T1t, T3 besitzen. Dann hat auch der Operator T,T,: E — G einen Umkehroperator,
und es gilt

(T,Ty) ™t = T{iT; (3.15)

(Beweis der Sitze 3.1-3.3 als Ubungsaufgabe.)

3.2. Beschriinkte lineare Operatoren in Banachriumen

Fiir die physikalischen Anwendungen ist es vor allem erforderlich, lineare Opera-
toren in Hilbertrdumen zu betrachten. Zur Klidrung einiger allgemeiner Begriffe ist
es jedoch giinstiger, zundchst lineare Operatoren in Banachrdumen zu behandeln,
soweit es die Theorie beschrinkter Operatoren betrifft. Unbeschréinkte lineare Ope-
ratoren werden wir von vornherein nur in Hilbertraumen untersuchen (s. 3.3. und 5.).
Im folgenden bezeichnet (E, ||.||) einen komplexen Banachraum.

Definition 3.6: Es sei T: E — E eine lineare Abbildung von E in sich. T heif3t beschrinkt,
wenn es eine Konstante K > 0 gibt mit

ITx| £ Klx| (xeE). (3.16)
Das Infimum dieser Werte K, fiir die die Ungleichung (3.16) gilt, wird mit |T| be-
zeichnet.

Satz 3.4: Eine lineare Abbildung (ein Operator) T ist genau dann stetig (d. h., aus
X, = x folgt stets Tx, — Tx), wenn T beschrinkt ist.



3.2. Beschrinkte lineare Operatoren 75

Bemerkung 3.2: Ein vollig analoger Satz gilt fiir lineare Abbildungen eines normier-
ten Raumes in einen anderen normierten Raum, wenn die Definition der Beschrinkt-
heit analog zur Gl. (3.16) getroffen wird; vgl. die entsprechende Aussage fiir lineare
Funktionale (2.3.1.).

Beispiel 3.1: Es sei Cla, b] (s. Bsp. 1.5) versehen mit der Maximum-Norm [x| = max |x(t)|. Mit
ast<h
K(s,t) werde eine fir a = 5, t < b definierte stetige komplexwertige Funktion bezeichnet. Dann
wird durch die Zuordnungsvorschrift [s. (3.3)]
b
(Tx) () = y5) = [ K(s,) x()dt (@ =5 =b) (3.17)
a

eine beschrinkte lineare Abbildung von Cla, b] in Cla, b] definiert; T ist ein sog. linearer Integral-
operator mit dem Kern K(s, £). Das Wort ,,Kern® wird hier in anderem Sinn als in (3 6), S.73, ge-
braucht. Als Ubung zeige der Leser, daB durch die Vorschrift (3.17) tatsichlich eine Abbildung
von Cla, b] in Cla b] definiert 1st Die Beschrianktheit von 7" erkennt man so:

b
(T ()] = 1)) —| k050 dr\ IK(s, 1) (1) d
b b
| |K(s, t)] max |x(#)| dt = [lx]| f |K(s,t)|dt (@< s £ b).
a astsh a
Durch Ubergang zum Maximum folgt
|ITx|l = max |(Tx) (s)] = |lxl| max f[K(S» nidt (xeCla,b)).
asssb ass<b
Also ist T beschrankt, denn es gilt fiir alle x € Cla, b] eine Ungleichung [7x| £ M|x| mit
b
M = max j |K(s, t)| dt. Eine genauere Betrachtung zeigt, daB3 sogar M = [T/ gilt.

asssba

3.2.1.  Spektrum und Resclvente
Wesentliche Eigenschaften eines linearen Operators 7 treten erst zutage, wenn man
ihn mit anderen linearen Operatoren vergleicht; speziell hat sich der Vergleich mit
Vielfachen AI des identischen Operators als entscheidend erwiesen. 7 ist die durch
Ix=x (x€kE) (3.18)
erklirte (lineare, stetige) identische Abbildung [s. (3.8)]. Man untersucht hierzu die
Menge (Schar, Familie) von Operatoren
A =T (2 komplex), (3.19)
die fiir jedes fest gewihlte komplexe A einen linearen (stetigen, falls 7 stetig ist)
Operator auf E (von E in sich) liefert.

Definition 3.7: Es sei T ein linearer stetiger Operator auf E mit Werten in E. Die
Menge o(T) aller komplexen Zahlen A, fiir die die Abbildung .1 — T surjektiv (d. h.
eine eindeutige Abbildung von E auf sich: T[E] = E) ist und fiir die die Umkehr-
abbildung (die Reziproke)

R(A;T)=R(T)= @M —-T)! (3.20)
ein stetiger (linearer) Operator ist, heifjt die Resolventenmenge o(T) von T. Der inverse
Operator Ry(T) = (M — T)™* des Operators 2. — T heifit die Resolvente von T im
Punkt 7.

D.3.7
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Bemerkung 3.3: Ist T: E; — E, eine stetige lineare Abbildung, die den normierten
Raum E, eineindeutig (injektiv) auf sich abbildet, so existiert eine Umkehrabbil-
dung S: E,; —» E, der Abbildung 7, d. h., die Gleichung Tx = y ist dquivalent zur
Gleichung x = Sy fiir x € E,, y € E;. Der Operator S ist notwendig linear, aber
nicht notwendig stetig. Ist aber zusitzlich E; ein Banachraum, dann mufl S not-
wendig auch stetig sein (Satz von Banach iiber den inversen Operator). Eine kom-
plexe Zahl A gehort daher genau dann zur Resolventenmenge eines auf einem Banach-
raum definierten linearen stetigen Operators 7, wenn die Abbildung Al — T eine
injektive Abbildung von E auf sich ist. Die Gleichung

x—-Tx=y (3.21)

ist dann fiir jedes y € E 1osbar mit genay einem x € E, und dieses x héngt stetig
von y ab (wenn y als variabel betrachtet wird).

Definition 3.8: Es sei T: E — E ein linearer, stetiger Operator. Die Komplementdr-
menge der Resolventenmenge o(T) (beziiglich K), die Menge
o(T) = K\ o(T) 3.22)
heifit das Spektrum von T. Die Zahl
r(T) = sup || (3.23)
2ea(T)

heifst der Spektralradius von T.

Satz 3.5: Die Resolventenmenge o(T) ist eine (in K) offene Menge, das Spektrum o(T)
ist eine nichtleere, abgeschlossene und beschrinkte Menge. Es gilt die Gleichung
r(T) = lim 3/|T"| = inf 3/|7"| (3.24)
N neN
sowie die Ungleichung
T s |T). (3.25)
Satz 3.6: Fiir Zahlen p, /. aus der Resolvent ge gilt die sog te 1. Resolventen-
gleichung:
R(;T) = R(us T) = (u — 2) R(G; T) Ru; T). (3.26)

Beweis: Mit R(A; T) = (Al — T)™', R(u; T) = (ul — T)~* gilt wegen der Vertausch-
barkeit von A/ — T und uI — T die Gleichheit (ul — T) (Al — T) [R(A; T) — R(u; T)]
= (ul —T)— (M —T) = (u— %) I. Multipliziert man beide Seiten letzterer Glei-
chung mit R(%; T) R(u; T), so erhilt man unmittelbar die Gl. (3.26). B

Mittels eines gegebenen stetigen linearen Operators 7: E — E, der den vorliegen-
den Banachraum in sich abbildet, kann man durch Linearkombination der Potenzen
von T [s. (3.12)] mit komplexen Konstanten oy, oy, ..., o, ...

Operatorpolynome: > &, 7% = ol + &,T + «,7% + ... + &, T"  (3.27)
K=o

bzw. "
Operatorpotenzreihen: Y o, T* (3.28)
k=0
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gewinnen, wobei im letzteren Fall die Konvergenz geeignet erkldrt werden muB. Es
sind diese Ausdriicke Spezialfille der allgemeineren Operatorfunktionen, auf deren
nihere Beschreibung wir hier verzichten (s. aber 5.1.4.). Von Interesse in diesem
Zusammenhang ist vor allem der sog. Spektralabbildungssatz, der aussagt, daB fiir
eine komplexe Funktion f(z), die in einer offenen Obermenge des Spektrums o(7)
holomorph ist, die folgende Gleichung gilt:

a(f(T) = fle(T)). (3.29)
Beispiel 3.2: Es sei E = K" der n-dimensionale komplexe Vektorraum mit der iiblichen Norm und
T: K"— K" eine lineare Abbildung. Dann ist T stetig (Beweis als Ubungsaufgabe). Die Abbildung T'
1aBt sich als Matrix darstellen: T = (fi))y<s,j=a; ist x € E gegeben, x = (&, ..., &), so ist
Tx = (ny, ...,7,) mit,

n
=2ty (k=1,..,m). (3.30)
i=1
Der Abbildung AI — T (komplex) entspricht die Matrix
0 fir i j
301y = tidr<i,55n 0y = e
1firi=j

und diese Abbildung besitzt, wie aus der linearen Algebra bekannt, genau dann eine Inverse
(A — T)* (diese ist dann automatisch stetig), wenn die Determinante der entsprechenden Matrix
von null verschieden ist. Also gilt die Beziehung

Aeo(T) < det (A0;; — 1;;) =0,
und deshalb ist
Aea(T) < det (A0;; — t;;) = 0« det (1;; — 29;;) = 0.
Eine komplexe Zahl gehort also genau dann zum Spektrum o(7’), wenn die Gleichung

ty = At clin
21 ty = Aty —0 (3.31)
Int a2 vty — A

gilt. (3.31) ist aber die bekannte Gleichung zur Bestimmung der Eigenwerte 4, der Matrix (;;);
d. h., die Losungen 4,, 4, ... der Gl. (3.31) stellen die Eigenwerte von (#;;) dar. Mit Beriicksichti-
gung ihrer Vielfachheit hat die GI. (3.31) n Losungen A, ..., 4,. Im vorliegenden Fall gilt somit

o(T) = {Ays ooy 2} (3.32)
Nicht in jedem Fall 1dBt sich das Spektrum eines linearen stetigen Operators in

so einfacher Weise kennzeichnen wie im Bsp. 3.2, sondern o(7) zerféllt in mehrere
qualitativ verschiedene Teile.

Definition 3.9: Es sei (E, | . ||) ein Banachraum, T: E — E eine lineare beschrinkte
Abbildung. Eine komplexe Zahl ) heifit Eigenwert von T, wenn es ein Element x % o0
in E gibt mit

Tx = Ax. (3.33)
Das Element x heifit ein zugehoriger Eigenvektor zum Eigenwert A.

Definition 3.10: Es sei (E, | . ||) ein Banachraum; T: E — E ein linearer beschrinkter
Operator. Die Menge aller Eigenwerte von T bezeichnet man als das Punktspektrum
0o(T). Die Menge aller 4 € o(T), die nicht in op(T) liegen und fiir die der Wertebereich

D.3.9

D.3.10
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von Ml — T in E dicht liegt, (I — T)[E] = E, bildet das kontinuierliche Spektrum
oder Stetigkeitsspektrum o(T) von T. Alle iibrigen Punkte des Spektrums werden zum
Restspektrum (auch: Residualspektrum) o(T) = o(T)\ (0p(T) v 6(T)) zusammengefaft.

Bemerkung 3.4: Es gilt die Gleichung o(7T) = 0p(T)\V 0c(T) Vo (T), und die ein-
zelnen Bestandteile dieser Vereinigungsmenge sind paarweise elementfremd. Fiir die
Punkte 4, die zuo(T) oder zu o,(7) gehoren, ist die Abbildung (A1 — T) zwar ein-
eindeutig, aber die Umkehrabbildung (47 — T)~* 148t sich nicht auf ganz E definie-
ren, da in diesem Fall der Wertebereich von (A7 — T') eine echte Teilmenge von E ist.

Beispiel 3.3: Es sei E = C[0,1]; [lx|| = max |x(#)| (x € E). Wir definieren den linearen Opera-
tor T: E — E durch die Gleichung 1€[0,1]
t
(Tx) (1) = x(0) + fx(s) ds 0=r=1; x€E). (3.34)
0

(Man erhilt T durch formale Integration (vgl. Bd. 7/1, 2.5.1.) der Differentialgleichung x" = x;
s. auch [4, Kap. 3, §2.2.], dort wird das Spektrum dieser Differentialgleichung nach einer Stérung
benétigt (vgl. 3.3.3. unten). Ein schwierigeres Beispiel zur Ermittlung des Spektrums geht tiber
unseren Band hinaus; s. aber auch Kap. 5.)

Durch die Gl. (3.34) wird jeder auf dem Intervall [0, 1] stetigen Funktion x(.) eine Funktion Tx(.)
zugeordnet. (Die folgenden Tatsachen beweise der Leser als Ubung.) Diese Funktion ist wieder
stetig, d. h., 7' bildet den Raum E wieder in den Raum E ab. T ist linear und beschrinkt; [|T] = 2.

Zur Ermittlung des Spektrums betrachten wir den Operator A1 — T fiir beliebiges komplexes 4.

Es gilt fir xe E
t

(I = T) (%) (£) = x(t) — x(0) — J x(s)ds O=t=1).
0

Wir geben ein y € E vor und untersuchen die Gleichung (mit der Unbekannten x):
(Al —=T)x=y. (3.35)
Ausgeschrieben lautet diese Beziehung
t
Ax(t) — x(0) — j Xs)ds=y(1) O=r=1). (3.36)
0
Fiir 7 = 0 folgt aus dieser Gleichung

Ax(0) — x(0) = ¥(0), d.h. (- 1)x(0) = ¥(0). 3.37)

Wir setzen zunichst voraus, daB y(¢) eine differenzierbare (nicht nur stetige) Funktion ist. Unter
der Annahme, daB die GI. (3.35) eine Losung hat, gilt fiir 2 & 0

t
x(1) =% x(0) + fx(s) ds+y)) ©0O=r=1). .
0 .

Auf der rechten Seite stehen nur differenzierbare Funktionen, also ist auch x(¢) auf der linken Seite
eine differenzierbare Funktion. Durch Differentiation beider Seiten von (3.36) erhalten wir mit

2x(1) = x(t) = y'(1) (3.38)

eine gewdhnliche lineare Differentialgleichung erster Ordnung fiir die gesuchte Funktion x(7), in
der vor der hochsten Ableitung der Parameter A auftritt! Mittels Standardmethoden (s. Bd. 7/1)
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erhalten wir die allgemeine Losung der Differentialgleichung (3.38):

t
l_r 1 —l(s—l)
x(t)=Ke + 5 fy’(s)e Pds 011, K= x0).
0
Ist A % 1, so konnen wir aus (3.37) den Wert K = x(0) bestimmen:

»0)
A-1

K = x(0) =

und erhalten
1

7 ‘ L=
0 1 -l
x(t) = X0e +——fy’(s)e A s,
1 pA F

A—

und aus dieser Formel mittels partieller Integration und Zwischenrechnung
1 t
ell 1 1 f ":T(’_’)
1) = y(0) —— + = ¥(1) + — ds 0O=r=1). 3.39
X(0) = 30) 37— + 770 lzoyme s 0=r=1) (3.39)
Wie man durch Einsetzen in die Gleichung (nach einer Zwischenrechnung) erkennt, stellt die rechte
Seite der GI. (3.39) fiir 4 + 0, 2 & 1 die Auflosung der GI. (3.35) nach der Funktion x(.) dar. Man
stellt dabei fest, daB die Voraussetzung, daB y(¢) differenzierbar sein soll, nirgends benétigt wird.
Die Formel (3.39) stellt somit eine Losung der Gl. (3.35) fiir eine beliebige (stetige) rechte Seite y(f)
aus E dar. Wie wir weiter unten nachweisen werden, ist es auch die einzige Lsung von (3.35). Da
die Zuordnung y(.) — ,,Ausdruck auf der rechten Seite von (3.39)* ersichtlich einen linearen steti-
gen Operator in E definiert, der E in E abbildet, stellt die rechte Seite von (3.39) die Resolvente
R(2; T)von T dar,d.h, fir A+ 0,A+ 1gilt (0=t =<1;y€E):
RA;TY(0) (1) = AL =T ()@
L, t

CJ. ~l-n

1 1 f 2 '
= —_— =) + = . X
y(0)1(1—1)+ }‘y()+lzo »s)e ds (3.40)
Nachzutragen ist noch der Beweis dafiir, daB (3.39) die einzige Losung von (3.35) darstellt. An-
genommen, es gibe zwei Losungen x; =+ x, der GI. (3.35). Dann gilt (0 = 7 = 1):
t t
(1) = 2xy(t) = x,(0) - J.xx(s) ds = Axz(t) — x,(0) — fxz(s) ds.
0 0

Fiir ¢ = 0 folgt speziell

@ - l)xl(OZ = (A = 1) x2(0),
also (4 # 1): x;(0) = x2(0) und damit

t

() = x(0) = [ (4(6) = 22D ds @1 =1).
0

Die rechte Seite letzterer Gleichung ist differenzierbar, also ist es auch die linke Seite, und wir erhal-
ten durch Differentiation

d
la; (ey(8) = x2(1) = x1(£) — x2(1)

bzw. mit der Abkiirzung x;(f) — x,() = u(®) 0 <t £ 1)
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1
Diese Differentialgleichung fiir # hat die allgemeine Losung (s. Bd. 7/1) u(f) = Ket ! mit einer
Konstanten K. Es gilt einerseits (s. 0.) #(0) = x;(0) — x,(0) = 0 und andererseits #(0) = K. Also
gilt K = 0 und damit ist u(f) = 0 (0 < ¢ < 1), d. h. aber
M =x() 0=t=1).

Also stimmen je zwei Losungen von (3.35) [bei gegebenem y(.)] iiberein, und (3.39) liefert fiir
A% 0,4 = 1 die einzige Losung von (3.35). Alle 4 = 0, 1 gehoren somit zu o(T).

Zur Bestimmung der einzelnen Bestandteile des Spektrums- untersuchen wir zunichst die Frage
nach den Eigenwerten von T. Es gelte also die Gleichung 7x = Ax mit x # 0. Ausgeschrieben
lautet diese Gleichung

t
x(0) + fx(x) ds = Ax(1). (3.41)
0

Fiir 2 =0 erhélt man, wie durch Differentiation sofort ersichtlich ist, die Gleichung x(¢) = 0
(0 < ¢ = 1); also ist 4 = 0 kein Eigenwert. Nach den obigen Betrachtungen ist nur noch der Wert
t

A =1 zu untersuchen. Die Gleichung x(0) + _fx(s) ds = x(¢) liefert nach Differentiation (erlaubt,
0

weil die linke Seite differenzierbar ist) x(f) = x'(¢), woraus x(¢f) = Ce' (0 = ¢ = 1) folgt. Ist C # 0,
so liegt, wie die Probe zeigt, tatsichlich ein Eigenvektor x(.) zum Eigenwert 1 vor. Somit gilt
op(T) = {1}. Die Untersuchung der Gleichung (I — T)x = y fiihrt fiir 2 = 0 sofort auf die Be-

ziehung
t

—x0) - [*()ds =3 O=sr=1). (3.42)
0
Auf der linken Seite steht eine differenzierbare Funktion von ¢ [wenn wir voraussetzen, daB die
Gl. (3.42) eine Losung hat]. Also muB auch die Funktion y(¢) auf der rechten Seite von (3.42) dif-
ferenzierbar sein (0 = 7 < 1). Da es aber stetige Funktionen y(#) gibt, die nicht in jedem Punkt
des Intervalls [0, 1] differenzierbar sind (z. B. y(¢) = |¢ — 1]), ist die GI. (3.42) nicht fiir jedes stetige
y(t) nach x(¢) aufldsbar. Also gehdrt 4 = 0 nicht zur Resolventenmenge von 7. Eine genauere Unter-
suchung zeigt, daB fir A = 0 (Al — T [E] = (—T[E]) = E gilt.
Somit gehort der Wert 4 = 0 zum kontinuierlichen Spektrum von ‘7. Zusammenfassend haben
wir folgendes Ergebnis:

o) = K\{0,1};  o(T)={0,1}; op(T) ={1}, oc(T)={0}, o(T)=0,

rT)=suwp Al =1; [T|=2.
Aeo(T)
Im folgenden gehen wir zu einer speziellen Darstellung der Resolvente iiber, die
vor allem fiir die Lésung von Integralgleichungen von Interesse ist.

Satz 3.7: Die Reihe Y ;in T" sei konvergent im Sinne der Operatornorm, das heifst,
n=0 A
es existiert ein linearer stetiger Operator S auf E mit:
k1
lim —T" - §||=0.
ko ,.z=:o n
Dann gilt die Gleichung
0 I 1 -1
s=z;—nrn=(1—7r) O + 0). (.43
n=0 /4 4
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Beispiel 4.3: Die Entwicklung eines Polynoms nach Legendreschen Polynomen.
Wir wollen eine Formel fiir die Entwicklung von " nach Legendreschen Polynomen angeben
und setzen an:

n
=3 ald). (4.32)
k=0

Dann ergibt sich wegen (4.29)
+1

ft"Pk(t)dt fir k=0,1,2,...,n.

-1

2%k +1

ag =

Eine kurze Rechnung ergibt

o= "—'_1) [PO) + @n — 3)%?,,_,(:) ten-n2=

1
T35 0n 74 Po_4@) + ..]. (4.33)

Diese Formel hat bereits Legendre angegeben.
Kurvenbild

Aus der Formel (4.31) kénnen wir mit dem Satz von Rolle [Band 2] auf die Lage
der Nullstellen von P,(f) schlieBen. Das Polynom (2 — 1)* = (¢t — 1)* (¢ + 1)" hat
je eine n-fache Nullstelle bei # = +1. Mithin hat seine 1. Ableitung je eine (n — 1)-
fache bei +1 und eine einfache dazwischen. Die 2. Ableitung besitzt je eine (n — 2)-
fache Nullstelle bei +1 und zwei einfache dazwischen. SchlieBlich besitzt die n-te
Ableitung — also P,(f) — genau n einfache reelle Nullstellen zwischen —1 und +1.

-1 - +1
% 7. Ableitung
X 2. Ableitung
% Ty n-te Ableitung

an
Bild 4.3. Lage der Nullstellen von o @2 -1

Die Werte der Nullstellen (auf 6 Dezimalstellen genau) ergeben sich im Intervall
[0, 1] fiir die ersten 6 Polynome P,(f):

n=1:14=0

n=2:t =0,577350

n=31=0 1, = 0,774597

n=4:1 =0339981 1, =0,861136

n=>51=0 t, = 0,538465 15 = 0,906180

n=06:1t =0238619 ¢, =0,661209 t; =0,932470.

6  Sieber, Funktionen
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Die Kurven der Polynome P,(#) haben folgenden Verlauf:

Bild 4.4. Kurvenverlauf der
Legendreschen Polynome

7k

4.2.3. Integraldarstellungen

Weitere Darstellungen der Legendreschen Kugelfunktionen erhélt man — analog
zum Vorgehen in Kapitel 3 —, wenn die Betrachtungen zu den Funktionen auf
komplexe Verdnderliche ausgedehnt und Sétze der Funktionentheorie ‘genutzt wer-
den. Insbesondere wird ¢ im folgenden als komplexe Verdnderliche aufgefaBt.

So erhalten wir durch Anwendung der Cauchyschen Integralformel [Band 9] auf
die Rodrig.lessche Formel

dn \
P = 2"n’ G (4.34)
eine erste Integraldarstellung fiir die Funktionen P,(f), ¢ komplex:
2°_ 1y 2 _ 1y
P = @-D df = ! (i) dz, (4.35)

21:x 7C = o 7 | =
[
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wobei der Integrationsweg € in der komplexen {-Ebene den Punkt { = ¢ einmal im
positiven Sinne umléuft. Dieser Ausdruck stammt von Schlafli (1881).

5

Bild 4.5. Integrationsweg ©

Ebenso ergibt sich durch Anwendung der Cauchyschen Integralformel auf die
Potenzreihenentwicklung
1 20
—_——= Y P()z"
\/1 —2zt4 22 n=0
eine weitere Integraldarstellung
1 dé
Pn(f) = _Zﬁi J C"“\/——_l —r 1 )
wobei €' eine Kurve ist, die den Nullpunkt der komplexen Zahlenebene einmal im

1
(4.36)

1
positiven Sinne umliuft, ohne einen singuliren Punkt von (1 — 2¢ + (2)"Z zu
umschlieBen.

Aufgabe 4.6: Man leite (4.35) aus (4.36) durch die Substitution \/'l — 2 + &% ={z — 1 furdie
neue Variable z her.

Wie betrachten wieder die Darstellung (4.35) und wihlen € als Kreis mit dem
1
Mittelpunkt ¢ und dem Radius |12 —1|Z (¢ + + 1), so daB lings € gesetzt werden
kann:
C=t+\/t2—l e?, —n<p< +m.
Die Wahl des Zweiges von /7> — I ist fiir die weiteren Betrachtungen ohne Be-
deutung. Nach der Substitution erhalten wir fiir alle Werte von 7 & +1

+7

2 _ 2 _ ip 2 _ 2ip \"
1 J‘(: 1+20/12 =1 &%+ (¢ Ue)idrp

2+ log N

P() =

-n

+7
-1

+n

=JT f (¢ +\/12 — 1 cos )" dg.

6%
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Definition 3.13: Es seien E, F normierte Riume; E', F' ihre Dualriume (s. 2.3.2). Ist
T: E — F eine lineare stetige Abbildung, so wird die Abbildung T': F' — E' durch die
Gleichung

T'f=fT (feF’) (3.49a)
gegeben, d. h., fiir jedes lineare stetige Funktional f auf F wird (ein lineares stetiges)
Funktional T'f auf E erklirt mittels der Beziehung

(T'f)(x) = f(Tx) (x€E). (3.49b)

Die Zuordnung T": f — T'f heift die zu T adjungierte oder duale Abbildung (7" ist der
zu T duale Operator).

Bemerkung 3.6: Die Tatsache, daB 7'f zu E’ gehdrt, ergibt sich sofort aus der De-
hnit}onsgleichung (3.49a): T'fist die Zusammensetzung (Hintereinanderausfiihrung)
zweier stetiger linearer Abbildungen und daher selbst stetig und linear.

Satz 3.14: Ist T e L(E, F), so ist T' € L(F'. E"), und es gilt
17 = IT]. . (3.50)

Beispiel 3.6: Es seien £ = R", F = R™ (mit der euklidischen Norm), T € L(E, F) eine gegebene
lineare Abbildung. Beziiglich (gegebener) Basen in E bzw. F wird T dargestellt durch eine (m, n)-
Matrix
A=l jzm; (3.51)
1=k=n,
Die zu T duale Abbildung 7" ist dann durch die (1, m)-Matrix
A =[thlizjen mit 1, =1y
1=sk=m
gegeben, die F/ = F = R™in E' = E = R" abbildet.
A’ entsteht also aus 4 durch Vertauschung von Zeilen und Spalten, ist also die zu A transponierte
Matrix (hdufig mit A" bezeichnet).
Beispiel 3.7:Es seiK(s,t) (¢ =t = b; ¢ = 5 = d)eine reellwertige stetige Funktion zweier Variabler.
Der lineare Operator T
b

(T () = [ Ks,n x(t)dr (¢ <5 £ d) (x € Lia, b])
bildet den Raum Lﬁ[(l, b] stetig in den Raum Li[c, d] ab. Der zu T duale Operator 7~ ist dann

durch die Gleichung
d

(T)(s)= [ K(t,$) x(n)dr (a <5 £ b) (x e Lyle,d)
.
gegeben und bildet den Raum F' = Lﬁ[c, d] = F in den Raum E’ = Lﬁ[a, b] = E ab. (Man be-
achte, daB entsprechend Bsp. 2.20 in 2.3.2. stetige lineare Funktionale auf L und Elemente von L,{
identifiziert werden.) K(t,s) heiBt der zu K(s, t) transponierte Kern.

Fiir den Ubergang zur dualen Abbildung gelten die folgenden Rechenregeln (es
gelte T, Se L(E, F)):

H(T+S8)=T+S5"

(2) (AT)" = AT’ (% reell oder komplex);

(3) (Ig)' = Ig:

@ (T =(T")Y )

(5) ist Te L(E, Fy und S € L(F, G), so ist ST € L(E, G), und es gilt (ST)' = T'S".
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langs dieser Wegeinschnitte ebenfalls gegen null gehen und somit die Deformation
nach dem Cauchyschen Integralsatz erlaubt ist:
+9

eiln+1y

i(n+§)¢
- ’ dp =
V1= 2e%cosd + el??

P,(cosit) = d
/ V2(cos ¢ — cos ) N

-

— +P
dp 4 i [Sn@+ D7)

_— —d¢
SN0 .
Jcos g — cos 2r | Jcosgp — cos @ v
9 -

2z

_ \/_2_ Jf cos (1 + D)

Das zweite Integral verschwindet, da der Integrand ungerade in ¢ ist, somit wird

9
cocos(n+ e

2
Py(cos d) = X2 J - = (4.392)
g \/cos ¢ — cos
0
Substituieren wir ¢ = = — ¢’ und ersetzen # durch = — ', so ergibt sich nach Weg-
lassen der Striche bei ¢’ und ¢’ aus (4.39a)
P
/ c s p
Pieos ) = X2 ’ _sin+ P4, (4.39b)

J V/cosﬂ — cos ¢

Die letzten beiden Formeln stammen von Mehler (1872).

4.3. Zugeordnete Kugelfunktionen

Wir hatten im vorangegangenen Abschnitt fiir die Differentialgleichung (4.7) zu-
néchst nur solche Lésungen gesucht, die lediglich von ¢ abhéingen. Um allgemeinere
Losungen zu finden, die zudem auch von ¢ abhdngen, machen wir den Separations-
ansatz S,(d. ¢) = O(9) D(¢), wobei O nur von ¢ und @ nur von ¢ abhingen soll.
Setzen wir diesen Ansatz in (4.7) ein so ergibt sich

(smﬂ d@) 6 00

nn+1) 0P + ——— P m&—z

@
Sind bz?

oder nach Multiplikation mit 2
Verinderlichen bedingt:

n(n + 1)sin?9 +

0(1) und einer Umstellung, die die Trennung der

sind d de 1 d*@
6 d9 dﬂ) T @ g7

Beide Seiten miissen somit konstant sein. Wir setzen die Konstante gleich m?. So
erhidlt man fiir @ die einfache gewohnliche Differentialgleichung

(sm =

d-df +m*® =0,
de?
deren allgemeine Losung
D, (¢) = A, cosmg + B, sinmg mit konstantem A4,,. B,, (4.40)
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3.3. Lineare Operatoren in Hilbertriumen

3.3.1.  Grundlegende Begriffe, Siitze und Beispiele
3.3.1.1.  Einfithrende Beispiele

Die linearen Operatoren, die mit der Diskussion physikalischer Probleme auf-
treten, sind haufig Operatoren, die auf einem dichten linearen Teilraum eines Hilbert-
raumes definiert und unbeschrankte Operatoren sind. Dabei heifit ein linearer Opera-
tor unbeschrinkt, wenn er nicht beschrankt ist im Sinne der Definition 3.6, ein sol-
cher Operator ist nicht stetig. Es sei z. B. E der lineare Raum aller stetig differenzier-
baren (komplexwertigen) Funktionen, die auf dem Intervall [0, 1] definiert sind. E ist
ein dichter Teilraum des Hilbertraumes L?[0, 1]. Auf E erkldren wir den (linearen)
Operator 7" durch die Zuordnungsvorschrift: jedem x € E, d. h. jeder stetig diffe-

. d

renzierbaren Funktion x(7) (0 < ¢ £ 1) ordnen wir die stetige Funktion x'(7) = d—): (1)
zu:

(Tx)(t) =x'(t) O<t1=1:x€kE). (3.58)
Da jede stetige Funktion (hier: x(r)) zu L? gehért, ist 7 eine Abbildung (ein Opera-
tor) von E in den Raum L2?[0, 1],

T: E— L*0,1].
Man sagt auch:,,7 ist ein linearer Operator im Hilbertraum L?[0, 1] mit D(T) = E
und R(T) < L?*[0, 1]*.

Dieser Operator ist unbeschrinkt. Das folgt z. B. daraus, daB3 die Elemente x, € E mit x,(¢) = ¢
O=r=1),n=12,.., die Norm x,/z2 = 2n + 1) < 1 (n=1,2,...) besitzen, fiir ihre
T-Bilder jedoch [[Tx,lr2 = n(2n — 1)~1/2 gilt; fiir diese speziellen x, folgt also ||Tx,/lz2 = + oo fiir
n— +00, und dabei existiert keine endliche Konstante K derart, daBl ||Tx,/z2 = K|lx,|| gilt. Also
ist 7 unbeschrénkt.

Zum anderen betrachten wir eine stetige Funktion ¢(7) (0 < 7 < 1) und erklaren
den folgenden (linearen) Operator S: L?[0, 1] —» L?[0, 1]
(Sx) (1) = p()x(t) (0=1=1; xeL?0,1]). (3.59)

S ist ein linearer Operator, der auf dem ganzen Hilbertraum L2[0, 1] erklért ist. Es
gilt fiir ein beliebiges x e L*[0, 1]

‘l 1/2 1 1/2
ISx] = {AO lp(t) x(D)]? df} = {_I le(®)1? |x(1)]? df}
0 0

1 1/2
= {J (,max le(O) 1x(0]* dr}
0 \0=r=s1 /

1/2 1 1/2
={(max |g)]?) [ [x()>dry = max |g(r)]?) ‘/25 [ x(r)|? dt
(0§1§1 )0' (0—_<.r§1 ) 10‘

= K| x|
mit K = ( max lq"(l)!z)”z = max |g(r)|. Da ¢(r) stetig ist, gilt 0 £ K < + o0.
0=r=1 ] 0=r=1
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Es gilt also [|Sx| < K|x|| (x € L*[0, 1]), d. h., S ist ein beschrinkter (stetiger)
linearer Operator.

3.3.1.2. Die Matrixdarstell eines li Operators

Es sei H ein Hilbertraum und 7: H — H ein auf dem ganzen Raum definierter
linearer Operator. Weiter bezeichne (e,) ein vollstindiges ONS (s. Def. 1.5) in H.
Dann 143t sich jedes Bildelement 7e, nach den e, entwickeln:

Tee = 3. ae, (3.60)
n=1
mit
ay = <e,| Ty (nk=1,2,..). (3.61)

Ist x eine endliche Linearkombination von ey, ..., e,
x =Y &e; (& komplexe Zahlen),
j=1

so gilt zufolge der Linearitat von 7' und wegen (3.61) die Gleichung

m 0

n m
Tx = T( > Ejej) =3 8Te; =3 &% aye,
V=1 i=1 J=1 n=1

m e 0 m kel m
=»21 Elanjgj()n = El > anjfjen =3 ('Zlanjfj) [
j=1n= n= =

j=1 =1\

Bezeichnen wir das Element 7x mit y und stellen y durch seine Fourierreihe dar,

Tx =y = 3 titas
n=1
so gilt daher
m
Nn = _Zlar{ffj (n=12.)
i=
oder

U 'El<e" | Tej> 51"
i=

Beachtet man noch, da3 &; = {e; | x) und n, = <{e, | y) = <e,| Tx) gilt, so erhilt
man die Beziehung

(e Ty = z<e | Tep) ey x> (0= 1,2, ). (3.62)

Ist der Operator T zusatzlich beschrdnkt, so gilt, wie man mittels eines Grenziiber-
gangs zeigen kann, fir jedes x € H die Gleichung

0

e | Txy = T e, | Tepy Ces | xy (n=1,2,..). (3.63)

i=1
0

Zufolge der Gleichung Tx = Y (e, | Tx) e, ist die Abbildung T durch die (kom-

n=1

plexen) Zahlen a,; = {e,| Te;) (n,j = 1,2, ...) festgelegt. Die (unendliche) Ma-
trix [a,;] bezeichnen wir als die zum Operator 7 zugehdrige Koordinatenmatrix
beziiglich des gegebenen (vollstindigen) ONS.
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3.3.1.3. Der adjungierte Operator eines beschrinkten Operators im Hilbertraum
Es sei 7 ein linearer, beschrinkter Operator im Hilbertraum mit D(T) = H, der

H wieder in H abbildet. Fiir jedes y € H und jedes x € H setzen wir
Sx) =y Tx). (3.64)

Fiir festes y und variables x ist f,(x) ein lineares Funktional auf H. Mittels der
Schwarzschen Ungleichung erhalten wir unter Benutzung der Beschrinktheit von 7°

A=Ky I T < vl 1Tx] < W IIT] Ixl = Klx| (x e H).

Also ist das lineare Funktional f, beschrinkt (stetig). Nach dem Satz 2.26 (von Riesz)
gibt es genau ein Element z € H mit

fix) =<z x) (xeH), (3.65)

wobei die Gleichung | f,| = |z|| besteht. Das Element z werde mit 7%y bezeichnet
(dies bringt zum Ausdruck, daBl z durch y eindeutig bestimmt ist). Es gilt also die
Gleichung [beachte (3.64) und (3.65)]

I Txy =<LT*y| x> (3.66)

fiir alle x, y € H. In Abhéngigkeit von y ist 7%y linear und stetig (Beweis als Auf-
gabe), d. h., die Zuordnung y — T*y definiert einen (stetigen) linearen Operator
auf H.

Definition 3.14: Der Operator T*, der durch die Gleichung (3.66) erkldrt wird, heifit
der zu T adjungierte Operator (auch: die Adjungierte von T).

Wichtige Eigenschaften des Ubergangs zum adjungierten Operator sind die fol-
genden (7 und S bezeichnen beschrinkte lineare Operatoren, die auf H definiert
sind):

(1) (T+ S*=T*+ 5%, @ 1+ =1

2 @n* =T ) (TH*=T,

(3)  (ST)*  =T*S*, ©) T =T,

(7) (T7Y* = (T*)""' (falls einer dieser Operatoren existiert).

Zufolge dieser Rechenregeln gilt speziell fiir beliebige komplexe 7 die Gleichung

(T = 2% = T* — 7I
und

(T = Ay Yy* = (T* = 1),

falls eine der beiden Inversen als vorhanden vorausgesetzt wird, m. a. W., gehort 4
zur Resolventenmenge o(7), so gehort 7 zur Resolventenmenge o(7*) (s. Def. 3.7)
und umgekehrt. Wecen a(T) = K\ o(T) gilt dieselbe Aussage fiir das Spektrum:
(T*) besteht genau aus den komplexen Zahlen, die zu den Zahlen aus o(7") kon-
jugiert komplex sind.")

1) Im Hilbertraum tibernimmt der adjungierte Operator die Rolle des dualen Operators (s. 3.2.3.).
Auf den einfachen Zusammenhang zwischen beiden Begriffen gehen wir nicht weiter ein.
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Beispiel 3.8: Es sei A = [ay] eine komplexe (n, n)-Matrix, Dann wird durch die Zuordnung
n
my=2 apfe G=1,..,n)
k=1

eine (stetige) lineare Abbildung T des Hilbertraumes K" in sich erklart, die jedem n-dimensionalen
komplexen Vektor x = (&, ..., &,) einen ebensolchen Vektor y = (7, ..., 7,) zuordnet. (In Matri-
zenschreibweise gilt ' = Ax’.) Die zugehorige adjungierte Transformation 7* wird durch die zu 4
hermitesch-konjugierte Matrix A* geliefert, wobei 4 = [a] gilt mit

ak = ;. (3.67)

Mit anderen Worten, gilt y = T*x, so ist
n

=X Ggfe (G =1,..,m) (velBsp.3.6).

Beispiel 3.9: Es sei T ein stetiger Integraloperator im Hilbertraum L?[a, b],
b
(Tx) (s) = f K(s,t) x(t)dt (a < s = b; x € L?[a, b)).
a

Die adjungierte Abbildung 7* hat dann die Form
b

(T*x) (s) = f K(t,5)x(t)dt (a < s < b; x€L?[a, b]). (3.68)
a
Der Kern K(#, s) heiBt auch der zu K(s, #) adjungierte Kern.

Wir geben schlieBlich noch einige Aussagen tiber vollstetige Operatoren in Hilbert-
rdumen an, darunter die Fredholmsche Alternative in der Fassung fiir diese Opera-
toren [s. auch Bemerkung bei (3.47)].

Satz 3.16: Ist H ein Hilbertraum und T: H — H ein linearer vollstetiger Operator,
so ist auch T* vollstetig.

Satz 3.17: Ist H ein Hilbertraum und T: H — H ein linearer vollstetiger Operator,
so gilt:

(1) Das Spektrum von T* besteht aus den zu den im Spektrum von T liegenden kon-
Jugiert komplexen Zahlen:

o(T*) = {AeK|1lea(D)}.

(2) Der ganze Raum H lift sich als orthogonale direkte Summe des Wertebereichs
des Operators T* — I und des Nullraumes [vgl. (3.7), (3.6) und Def. 2.42] von T — AI
fiir 2 + 0 darstellen:

H=(T*-I)[H®NT~-2M) (+0)

3.69

(M(T — ) ={xeH|Tx — Ax = o}). (369)

(3) Die Nullrdume N(T — AI) und N(T* — A1) haben fiir . # 0 die gleiche, endliche
Dimension.

Bemerkung 3.7: Die Eigenschaft (1) in obigem Satz gilt auch ohne die Forderung
der Vollstetigkeit von 7 fiir lineares beschrinktes 7.

7 Gopfert, Funktionalanalysis

S.3.16

S.3.17
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Satz 3.18 (Fredholmsche Alternative in der Fassung fiir Hilbertrdume): Es sei
T: H — H ein vollstetiger linearer Operator. Dann gilt:

(1) Ist 2 € K kein Spektralwert des Operators T, so hat die Gleichung Tx — Ax =y
fiir jede rechte Seite y € H (vorgegeben) genau eine Losung. Diese Losung hingt stetig
von y ab.

(2) Ist 2 % 0 ein Element des Spektrums des Operators T, so hat die Gleichung
Tx — Ax = y genau dann Liosungen, wenn der Vektor y zu allen Losungen der Glei-
chung T*x — Ix = o orthogonal ist. In diesem Fall hat die Gleichung Tx — Ax =y
unendlich viele Losungen; diese haben die Gestalt

n
X =X + X X,
k=1

wobei x, eine spezielle Losung der (inhomogenen) Gleichung Tx — Ax = y bezeichnet
und die x, die (endlich vielen) linear unabhiingigen Lisungen der (homogenen) Glei-
chung Tx — Ax = o sind.

3.3.1.4. Der adjungierte Op eines unbeschriink (o) s im Hilbertraum

Fiir unbeschrinkte Operatoren ist die Definition des adjungierten Operators kom-
plizierter, da unbeschrinkte Operatoren in der Regel nicht auf dem ganzen Raum
definiert sind.

Definition 3.15: Es sei T ein auf einem dichten Teilraum D(T) des Hilbertraumes H
definierter linearer Operator mit Werten in H. Es sei D(T*) die Menge aller x € H,
zu denen ein y € H existiert, so daf die Gleichung

x| Tz) =<yl 2 (3.70)

fiir alle z € D(T) gilt.
“Fiir jedes x € D(T*) setzen wir dann [wenn (3.70) erfiillt ist]

y = T*x. 3.71)
Der Operator T* heifit der zu T adjungierte Operator.

Bemerkung 3.8: Es zeigt sich, daBB D(T*) ein linearer Teilraum von H ist und daB
das Element y gemaB Formel (3.70) eindeutig festgelegt ist, so daB die Gl. (3.71)
sinnvoll ist. Auf D(T*) ist dann T* ein linearer Operator, der D(T*) in H abbildet
(aber nicht ste.g zu sein braucht). Ist D(7) = H und ist T beschrankt, so gilt auch
D(T*) = H, und T* ist der zu T adjungierte Operator im Sinne der Def. 3.14.

Fir die Anwendungen in der (Quanten-) Physik sind vor allem symmetrische,
speziell selbstadjungierte Operatoren von Interesse. Wir bringen hier die Defini-
tionen, Anwendungen folgen in Kap. 5.

Definition 3.16: Es sei T ein auf einem dichten Teilraum des Hilbertraumes H definier-
ter linearer Operator. T heifit symmetrisch (oder auch hermitesch), wenn D(T) < D(T*)
und T*x = Tx fiir alle x € D(T) gilt; m. a. W.: T heift symmetrisch, wenn die Glei-
chung

(x| Tyy = {(Tx|y)y firalle x,yeD(T) (3.72)
gilt.

In diesem Zusammenhang ist der folgende Satz von E. Hellinger und O. Toeplitz
von besonderem Interesse.
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Satz 3.19: Es sei T ein auf D(T) = H (Hilbertraum) definierter linearer Operator, S.3.19
der D(T) in H abbildet. Falls die Gleichung

x| Tyy =<Tx|y>

fiir alle x,y € H gilt, so ist T notwendig beschrinkt (stetig).

Mit anderen Worten, ein iberall auf H definierter symmetrischer linearer Operator
ist (automatisch) beschrankt.

Eine im allgemeinen stirkere Forderung als die Symmetrie ist die Selbstadjungiert-
heit eines linearen Operators.

Definition 3.17: Ein auf einem dichten linearen Teilraum D(T) eines Hilbertraumes H D.3.17
definierter linearer Operator heifit selbstadjungiert, wenn T symmetrisch ist und zu-
sdtzlich

D(T) = D(T*)

gilt, d. h., wenn T* = T ist.

Der Nachweis fiir die Selbstadjungiertheit ist fiir unbeschrankte Operatoren relativ
aufwendig, die Symmetrie 148t sich oft sehr viel leichter zeigen. Fiir beschrinkte
lineare Operatoren, die auf dem ganzen Raum (= Hilbertraum) definiert sind, fallen
jedoch die Begriffe Symmettie und Selbstadjungiertheit zusammen. Fiir unbeschrinkte
Operatoren kann man folgende Kriterien fiir Selbstadjungiertheit benutzen.

Satz 3.20: Es sei T ein auf einem dichten linearen Teilraum des Hilbertraumes H S.3.20
definierter linearer symmetrischer Operator. T ist genau dann selbstadjungiert, wenn

die Bildmengen der Operatoren T + il und T — il, also die Mengen (T + iI) [D(T)]

und (T — iI) [D(T)] beide mit ganz H iibereinstimmen.

Satz 3.21: Es sei T ein auf einem dichten linearen Teilraum des Hilbertraumes H S.3.21
definierter (linearer) selbstadjungierter Operator. Weiter sei S ein symmetrischer Opera-

tor mit D(T) < D(S). Fiir gewisse reelle Zahlen 6 und ¢ mit 0 £ 6 < 1 und ¢ = 0 sei

die Ungleichung

[Sx]l = 6 Tx]l + clxll  (x e D(T))
erfiillt. Dann ist der Operator T + S mit D(T + S) = D(T) selbstadjungiert.

Dieser Satz, der auf T. Kato zuriickgeht, ist vor allem in der Quantenmechanik
niitzlich (Beweis: [36, S. 209]).

Ein Beispiel fiir einen selbstadjungierten, unbeschrankten Operator erhilt man in
folgender Weise.

Beispiel 3.10: Es sei H = L*(R) der Hilbertraum der (Klassen von) quadratisch summierbaren
(komplexwertigen) Funktionen x(f)(—o0 < ¢ < +0c0) und W??2(R) der zugehdrige Sobolew-
Raum der verallgemeinert zweimal differenzierbaren Funktionen. W?2'2(R) liegt in H dicht [vgl.
(2.27) und Satz 2.19]. Der Operator T: W?'%(R) — H, der durch die Vorschrift

Tx(t) = —x"(t) (=00 <t< +00; xe W>»*(R))

erklart ist, ist selbstadjungiert in H (Beweis: [36, S. 287]).

7%
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3.3.2. Vollstetige selbstadjungierte Operatoren im Hilbertraum

Die Eigenschaft der Vollstetigkeit hat fiir die Gestalt eines auf dem ganzen Raum
definierten selbstadjungierten Operators wesentliche Konsequenzen, die zuerst von
D. Hilbert erkannt wurden.

Satz 3.22: Es sei H ein (separabler)*) Hilbertraum und T: H — H ein selbstadjungier-
ter, vollstetiger Operator. Dann besitzt T Eigenwerte Ay, Ay, ..., A, ..., und es existiert
ein in H vollstindiges ONS von zugehdrigen Eigenvektoren ex, €y iaey €y onnt

ey =Aey (n=1,2,..).
Ist H unendlichdimensional, so gilt lim A, = 0.

o
Unter den Bedingungen des Satzes 3.22 hat die dem Operator 7" zugeordnete
Matrix die folgende Gestalt [s. (3.61)]:
2, fir j=n,
ay; = <en| Tey) = ey | djey = Aen| €> = 0 fiirj+n

Dem Operator T entspricht somit eine (i. allg. unendliche) Diagonalmatrix, in der in
der Diagonale die Eigenwerte des Operators stehen; m.a. W., vollstetige selbst-
adjungierte Operatoren lassen eine ,,Hauptachsentransformation zu, wie dies von
reellen symmetrischen Matrizen her bekannt ist. Die Bedingung der Selbstadjungiert-
heit ist dabei wesentlich. Es gibt nicht-selbstadjungierte voIlstetlge Operatoren, z.B.
den Operator

(Tx) (s) = j x()dt (0<s<1) xeLj0,1]
0

im Hilbertraum Lg[0, 1], die keinen einzigen Eigenwert besitzen.
Wie fiir reelle symmetnsche Matrizen gilt die folgende Aussage tiber die Eigenwerte
und Eigenvektoren eines (nicht notwendig beschriankten) symmetrischen Operators.

Satz 3.23: Es sei T ein symmetrischer Operator im Hilbertraum. Dann gilt

(I) Jeder Eigenwert von T ist reell;
(II) Eigenvektoren zu verschiedenen Eigenwerten sind zueinander orthogonal.

Beweis. Ist Tx = Ax mit x # o, so folgt mittels der Symmetrie von T die
Gleichheit A(x | x) = (x| Ax) = (x| Txy = (Tx|x) = x| x) = XKx|x) mit
[x]? = (x| x) > 0. Folglich muB 1 =1 gelten; 1 ist reell. Gilt zum anderen
Tx =Axund Ty = py mit x % o, y + o und 2 % p, so sind A, u reell, und wir er
halten udx | y) = x| pyd =<x | Tyy = (Tx|y) = Gx|y) = (x| ) = x| )
also<{x|y) =0. @&

3.3.3.  Storungsrechnung

In der Storungsrechnung (allgemeiner: in der Storungstheorie) beschiftigt man sich mit der
Frage des Verhaltens von Eigenwerten und Eigenvektoren (bzw. allgemeinen Operatoreigenschaften)
eines Operators in Abhingigkeit von sog. ,,Stérungen‘ eines gegebenen festen Operators. Zum
Beispiel sei T, ein sel bstadjungierter Operator im Hilbertraum H, S ein weiterer selbstadjungierter

1) Ein Hilbertraum H heiBt separabel, wenn es eine Folge {x,} € H gibt, so daB zu jedem x € H
eine Teilfolge {x»} von {x,} existiert, so daB x = lim x, ist.
koo
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Operator mit dem gleichen Definitionsbereich wie Ty, der (wie ;) Werte in H besitzt. Mit ¢ werde
cine (beliebige) reelle Zahl bezeichnet. Der Operator

To + &S (3.73)
kann (insbesondere fiir betragsméBig kleine ¢) als eine ,,Storung* von T, angesehen werden. Der
Operator Ty besitze einen Eigenwert A, mit zugehorigem Eigenvektor xo; (x¢ % 0)

ToXo = AoXo.

Man fragt nach den ,gestorten* Eigenwerten A(e) bzw. Eigenvektoren x(¢), die die Gleichungen
(T + &S) x(e) = A(e) x(e), (3.74)
limx(e) = xo,  limA(e) = 2o 3.75)
-0 -0

erfiillen. Die Forderung (3.75) besagt, daB fiir kleine Werte von ¢ der gestorte Eigenwert (bzw. der
gestorte Eigenvektor) in der Nihe des ungestorten Eigenwertes (bzw. Eigenvektors) liegt und fiir
& - 0 in diesen iibergeht (Stabilitatseigenschaft). Derartige Aufgabenstellungen haben u. a. bei der
quantenmechanischen Erklirung der Aufspaltung von Spektrallinien durch ein Magnetfeld groBe
Bedeutung erlangt [4]. Es sei ndmlich T, der selbstadjungierte Hamilton-Operator eines quanten-
mechanischen Systems, 4 ein Eigenwert (Energieniveau) des stationiren Zustandes xo (s. 1.2.3.).
Wirken nun duBere Felder, die durch den Storoperator S beschrieben werden, so besteht ein wich-
tiges Problem darin, zu 4, und x, ,,benachbarte [s. (3.74)] stationire Zustinde bzw. Energie-
niveaus zu finden, die zu T, + &S ,,gehoren*; die Gln. (3.75) beschreiben die ,,Aufspaltung® in
benachbarte Zustinde und Niveaus.

Im folgenden sei vorausgesetzt, dal3 der Operator 7, ein vollstindiges ONS von Eigenvektoren
€0, €1,€2, ...y €y, ... Z0 den Eigenwerten Ag, 2y, ..., A, ... besitzt. Es sei e, (bis auf Vielfache) der
cinzige Eigenvektor zum Eigenwert /. Mit den obigen Bezeichnungen sei xo = €q.

Zur Losung der Gl. (3.74) wird ein (formaler) Potenzreihenansatz beziiglich ¢ aufgestellt [der
bereits (3.75) erfiillt]:

o0
Me) =20 + e + pa8? + . =ho + X me®,
k=1
© (3.76)
X(e) = eo + €2, + 22, + ... = eg + D &z,
k=1

wobei die Koeffizienten s, und die Vektoren z; aus (3.74) zu bestimmen sind. Fiir die weitere Rech-
nung fordert man noch die Gleichung

(@) [ x@e) =1, (3.77)
die nur eine Normierung von x(¢) beinhaltet. Ferner werden die Vektoren z; nach den Vektoren
des ONS (e,) entwickelt:

o0
=3 oPe; (k=1,2,.)). (3.78)
j=0
Einsetzen von (3.76), (3.77) und (3.78) in die GI. (3.74) sowie anschlieBender Koeffizientenvergleich
liefert die sog. Formeln der Stiirungstheorie fiir die wesentlichen Bestandteile 1, 23 21, 25
[{Seq | e;)‘z

= {Seq eg); 2 = 2 7 (3.79)
j lo = Ajs
2 (e; S
n-y oS, (3.80)
=1 fo— 4
L& el Seq)y el Sexy &L {Seq | eo) ey | Seo)
,r; k§1 =29 (o — A é jgl (ho — 2y? /

ey \Seo>'1)
|-

(hg — Aj)?

N|
‘—\

(5
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Damit sind A(¢) und x(e) fiir betragsmiBig kleine ¢ niiherungsweise berechenbar.

Tritt, im Gegensatz zu unserer bisherigen Voraussetzung, der Fall ein, daB8 zum Eigenwert 4o
mehrere linear unabhingige Eigenvektoren gehdren, so muB der Ansatz fiir x(¢) modifiziert werden.
Es gelte z. B.

Ao =2 = ... =241 (A istein n-facher Eigenwert),
dann wird der Ansatz
Me) = 2o + e + pag® + ..., (3.81)
n—1

xX(e) = Y cer + &2y + 225 + ...

r=

anstelle des Ansatzes (3.76) mit unbekannten Koeffizienten c, (r = 0, ..., n — 1) gemacht.

Fiir die Besti der Koeffizi ¢, und des Wertes 4 erhilt man [mittels Einsetzen in (3.74)
und Koeffizientenvergleich] ein Matrizen-Eigenwertproblem, die sog. Sikulargleichungen:
{eo | Seo) <eq | Sey) ... <eo | Sen_1 Co Co
S
ey | .eo> . ¢y - c{ ) 6.82)
{en_y | Seo) en_y | Ses) ... {en_y | Sen_y) Cn-1 Cn-1

Mit anderen Worten, x4, ergibt sich als Eigenwert und (co, ¢, ..., ¢,_1) als Eigenvektor der ,,Sékular-
matrix* [{e; | Sex»] (0 = j, kK = n — 1). Hat diese Matrix verschiedene Eigenwerte, so erfolgt die
bereits erwihnte ,,Aufspaltung der Eigenwerte‘ fiir den Eigenwert 4, des Operators T, bei Ein-
schaltung der Stérung &S.

Beispiel 3.11. Im reellen Hilbertraum H = R3 seien T, bzw. S die durch die Matrizen
121 000

To=[211} bzw. S={000

113 001

beschriebenen linearen Operatoren '(selbstadjungiert). Der Operator To besitzt die Eigenwerte
Jo=3+ \/2; p=3— \/2; A2 = —1 mit einem zugehorigen (vollstindigen) ONS von Eigen-

vektoren.
1/2 1/2 1/\/5
=12 |5 ex=| 12 [; e=|-1//2]
0

1/4/2 -1/4/2

Nach den Formeln (3.79) ergibt sich durch die Entwicklung des Eigenwertes Ao(¢) des gestorten
Operators To + &S nach Potenzen von ¢ bis zu Gliedern mit ¢? die Naherung (fiir kleine Werte
von |e]) Ao(€) R Ao + p1e + pag® =3 + \/E + —;—s + % 2. Fiir den zugehdrigen (normierten)

Eigenvektor x(¢) erhdlt man nach (3.80) niherungsweise

i ﬁez

—_ & —

LRNENE TR
2 16 128
2 e 1 2 1

x(e) X eq + €z, + €22, = ey — ~— — ey = - NZe ¢
(e) X eo + ez + €%z = e e 64e0 3 m I

1

7=+

V2 128



4. Ausgewiihlte Anwendungen

4.1. Distributionen

In Abschnitt 1.2.2. waren schon Distributionen als lineare (stetige) Funktionale
iiber dem linearen Raum C§ der iiber dem R" definierten, finiten, beliebig oft diffe-
renzierbaren Funktionen erklart worden. Sie spielen in der modernen Theorie der
Differentialgleichungen eine iiberragende Rolle [38], [39], [42]. Wir gehen jetzt genauer
darauf ein.

4.1.1.  Distributionen als lineare stetige Funktionale
Definition 4.1: Unter einer Distribution L verstehen wir ein lineares stetiges Funk-

tional L iiber dem Grundraum D = C=( (R") (s. Def. 2.17), wobei in D die Konver-
genz einer Elementfolge {,} gegen ¢ gegeben ist durch [s. (2.14)]

{D*¢n} - D*p (x 2 0, ganz);?) 4.1)
{pm} = @<>{ es existiert unabhiingig von m eine beschrinkte Menge
U < R" mit supp ¢,, < U. 4.2)

D ist nichtleer [38, S. 69]. Die Menge der Distributionen bezeichnen wir mit D’;
D’ ist nichtleer: denn jede lokalsummierbare (s. Def. 2.19) Funktion f liefert ein
Element L, aus D', indem wir f das Integral

Lig = [ f®)ex)dx =(f,¢) (peD) . “3)
o

zuordnen. Dieses L; ist bei festem f iiber D linear und stetig, also eine Distribution.
Distributionen, die eine Darstellung (4.3) gestatten, heifen regulir, andernfalls
singular. Die reguldren Distributionen sind eineindeutig den lokalsummierbaren
Funktionen zugeordnet, wenn man &quivalente Funktionen als gleich ansieht
(s. 2.2.2.). Wenn wir in der Menge L\ (R") jeweils f durch L, ersetzen und bis auf
Mengen vom MaB 0 gleiche Funktionen als gleich ansehen, die so gewonnene Menge
sei M, so gilt M < D'. Da das beziiglich 0 e R" gebildete Dirac-Funktional
[s. (1.49)] do:

(%, ¢) = Ls(9) = ¢(0) (peD) 44
auch ein lineares stetiges Funktional {iber D ist, was nicht durch ein lokalintegrables
[ reprasentierbar ist [38, S. 74], so ist M ¢ D', weswegen Distributionen auch ,,ver-
allgemeinerte Funktionen* heiBen. Man kann jeder von ihnen auch einen Triger
(fiir Funktionen s. Def. 2.17) zuordnen: Wir sagen nimlich zunichst, daB eine ver-
allgemeinerte Funktion L in einem Gebiet G £ R" (G habe nichileeres Inneres,
int G+ 0, s. Satz 2.31) verschwindet, wenn gilt Lp = 0 fiir alle ¢ € D mit
supp ¢ < int G, und nun wird definiert:

Definition 4.2: Ein Punkt x € R" gehort zum Triiger von L, supp L, falls in keiner
Umgebung von x gilt L = 0.

Beispielsweise ist daher supp L,, = {0}, und zwei Distributionen L,, L, heiBen
gleich, wenn L, — L,p = 0 gilt; sie heiBen gleich iiber G (wobei G wie oben ein
Gebiet mit nichtleerem Inneren ist), falls L, — L, = 0 iiber G gilt.

1) GleichmiBige Konvergenz fiir jeden Multiindex «.

D.4.1

D.4.2
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4.1.2. Rechenregeln

Definition 4.3 (Differentiationsregel): Ist die Distribution L gegeben, so ist die (distri-
butionelle) Ableitung der Ordnung:-« von L die Distribution D*L mit [s. auch (1.50),
(2.23), (2.14)]

D°L) (p) = (=DM L(D*) (peD). 4.5)

Die Reihenfolge der Ableitungen (bei n > 1) spielt keine Rolle.

Beispiel 4.1: Es sei L die Delta-Distribution dy. Dann ist
(D%) (p) = (—=1)5o(D%) = (-D¥ID*p(0) (¢ € D). (4.52)

Die Ladungsdichte fiir einen im Punkt x = 0 liegenden Dipol mit dem elektrischen Moment +1
auf einer Geraden (x-Achse) entspricht —df, [38].

Ist f stetig differenzierbar bis auf die Stelle X € R, an der endliche Grenzwerte
von fund f’ von rechts und links existieren, so berechnet sich fiir die dieser lokal-
integrablen Funktion f zugeordneten Distribution L, die 1. Ableitung wie folgt:

+®

( [ 76 9(x) dX> =— [ /)¢ (x)dx

- -

(L}, ) = Li(p)

x

= [ f®) ¢’ dx ~ f S(x) ¢'(x) dx

I

=G =0 e@®] + [ () () dx + (& + 0) g(X)

-0

+ [ £ plx) dx

I

[ £/0) 90 dx + (5 + 0) — (& — 0) (3),
also: i
(L) = Ly + (& +0) = (& — 0)) 83, )

bei der o-Distribution steht gerade die Sprunghdhe von f an der Stelle X als Faktor.
Ist also f'an der Stelle X stetig, so ist (L;)" = L,.

Definition 4.4 (Konvergenz einer Folge {L,} von Distributionen): {L,} heifit kon-
vergent gegen die Distribution L, wofiir wir kurz {L,} — L schreiben, falls

¢{Lu} > Ly (p€D) (4.6)
gilt (schwache Konvergenz der Funktionale iiber D).
Beispiel 4.2: {E,} - S0, von 1.2.2. bei (1.57).
Gilt fiir die Folge {L,,} von Distributionen, daf {L,¢} fiir jedes ¢ € D konvergent

ist gegen die Zahl G(g), so ist G eine Distribution (Satz von Banach-Steinhaus fiir D).
Umgekehrt gilt: D ist dicht in D’ eingebettet. Jede verallgemeinerte Funktion ist
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also Grenzwert [im Sinne von (4.6)] reguldrer Distributionen. Ferner ist D' mit der
Konvergenz in (4.6) vollstindig. {L,} — L zieht auch die Konvergenz der Folge der
Ableitungen {D*L,,} - DL nach sich.

@(x)
x

Beispiel 4.3: Der Hauptwert (Bd. 2, S. 231) von f dx ist in Abhéngigkeit von ¢ € D eine

Distributionen: Man setze in (4.3)
1
S CEr!
.k
L (o
= - X > —].
x k

P ist eine singulire Distribution. Sie tritt in den Anwendungen (Quantenphysik) bei den Formeln
von Sochozki auf:

1
———— = —indy + P,
x+1i0 ° x—i

Die Zeichen +0 und —0 auf der linken Seite sollen auf die Herkunft durch Grenzwertbildung im

R X
Distribution P: Denn er ist der (existierende) Grenzwert der Folge { f q:i_) dx} reguldrer
k21

1
x> &

f

=indy + P. (4.6, b)

1
Sinne von (4.6) hinweisen: Betrachtet man nimlich die den Funktionen prarn

lim &, = 0 zugeordneten reguldren Distributionen, also
n—on

—fiir ¢, > 0,
ie,

1
Ly = f T @(x) dx,
R
so konvergiert die Folge {L,p} fir jedes ¢:
{Lup} > (=im ¢(0) + Pp) (peD),
und das ist gerade die rechte Seite von (4.6a) [39].

Definition 4.5 (Multiplikation einer Distribution L mit einer Funktion f): Ist fe C*,
so definiert man das Produkt f+ L durch
(fD¢ = L(fp) (peD). 4.7)
Tatséchlich ist die rechte Seite der letzten Zeile sinnvoll, da f- ¢ € D.

Beispiel 4.4: Es sei fe C. Wir bilden fd,:
(f00) @ = do(fp) = f(0) @(0), also fdo = f(0) do. 4.7a)
Ferner sei f(x) = x. Wir bilden xP:

(xP) ¢ = P(xp) = Hauptwert f x@ dx = fl(p(x) dx =1, (4.7b)
x

wobei I die von f = 1 erzeugte Distribution ist.

Definition 4.6 (Faltung zweier Distributionen): Es sei L, eine beliebige Distribution
und L, eine Distribution mit kompaktem Trdger G, d. h., supp L, ist eine kompakte
Teilmenge G < R". Dann versteht man unter der Faltung L, x L, von L, mit L, die
Distribution

Li*Ly:(Ly*Ly) ¢ = LiLeg(y + .)) (peD). (4.8)

D.4.5

D.4.6
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Durch (4.8) ist tatsichlich eine Distribution definiert [39, S. 69], weil Log(y + .)
eine Funktion aus D ist.

Beispiel 4.5: Es seien Ly, L, regulire Distributionen, die von den Funktionen L, (x), L,(x) erzeugt
werden: (L;, ) = jL,(x) @(x) dx, und G = supp L, sei kompakt. Dann ist
Rn

ELisL)p= [L0) [ [ L) oy + ) dx] dy
R" Rn .

= [L) [ [ L = » 9 ds] dy
R" R™

(Satz von Fubini [36] fir die Vertauschung der Integrationen)

= [o® [ [ L) Lo = ») dy]ds,
R" R"

und da das zweite Integral gerade die Faltung der beiden Funktionen L,(x), L,(x) ist, konnen wir

Ly*Ly) 9= [Li()*Lo() 9§ d,

Rn
= L) *L() @ 49

schreiben, d.h., die Faltung zweier reguldrer Distributionen ist (unter der Bedingung supp L,
kompakt) gerade die von der Faltung der beiden Funktionen erzeugte Distribution.
Beispiel 4.6: Es sei L eine beliebige Distribution. Dann existiert die Faltung mit der Delta-Distri-
bution dy, und es gilt

(L % 60) p = LB(p(y + .))),
und nach Definition der Delta-Distribution folgt:

(L*do) ¢ = L(p(y)) = L(p), (peD),
und daher ist

Lsdy=L. @.10)

Da die Faltung zweier Distributionen, wenn sie existiert, kommutativ ist, ist auch
do*L =L, (4.10")

Die beiden letzten Formeln korrespondieren zu Bd. 10: ,,beziiglich der Faltung ist
die Delta-Distribution das Einselement*.

Da Distributionen differenzierbar sind, kann auch die Faltung L, = L, zweier
Distributionen differenziert werden:

D*(Ly % Ly) = (D*L,) * L, = L, x (D*L,), (4.11)
und das ergibt wegen (4.10) mit L, = 4, die interessante Formel
(D*0o) * L, = 0o * D°L, = D°L,; 4.12)

Differentiation kann durch eine Faltung mit der entsprechenden Ableitung der
do-Distribution (die wie d, selbst kompakten, nimlich einpunktigen Triger hat)
ersetzt werden. Man benétigt daher bei Benutzung der Faltung vom Differentiations-
kalkiil nur die Ableitungen von dy.

Hat weder L, noch L, kompakten Tréger, so muB (4.11) nicht gelten! Dazu sei
© die der Heaviside-Funktion [s. (1.44)], 1 die der Funktion /=1 und 0 die der
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Funktion f = 0 zugeordnete Distribution. Dann (existiert @ * I nicht, und es) gilt
O x1=0x1=1, Ox1=0x0=0,

wobei sich 1’ so berechnet (¢ € D):

( 1 ~<pdx)’ =— [1-¢/dx =0 (Integration!).
R R

Fiir einen partiellen Differentialoperator P(D) mit konstanten‘ Koeffizienten folgt
wegen der Linearitat aus (4.12)

P(D) = z a,D*: (aa = azx,az.,.a,,);

|| =m
P(D)L = (P(D) o) * L. (4.13)
Eine Distribution G, die der distributionellen Differentialgleichung
P(D)G = b, (4.14)

geniigt, heiBt eine ,,Grundlosung® des Differentialoperators P(D). In 1.2.2. hatten wir
zum Differentialausdruck D, in (1.35)

D,J =PD)J=LJ + %J (4.15)
gine Greensche Funktion J gefunden; die ihr zugeordnete Distribution geniigte der
distributionellen Gleichung P(D) J = 9, als Funktion ihres ersten Arguments, als
Funktion der Differenz ihrer Argumente geniigt sie der Gl. (4.14) (und weil sie den
homogenen Anfangsbedingungen geniigte, war sie auch eindeutig bestimmt) und ist
daher eine Grundlésung von P(D).

Es sei nun E eine Distribution mit kompaktem Trager. Dann gilt folgende Dar-
stellungsformel fiir Losungen einer Differentialgleichung im distributionellem Sinne:

Satz 4.1: Ist P(D) ein beliebiger Differentialausdruck mit konstanten Koeffizienten,
und G eine Grundlosung von P(D), also

P(D) G = 0, (4.16)

so gibt es eine Losung L der distributionellen Differentialgleichung P(D)L = E der
Gestalt
L=ExG. C(4.17)

L heift auch eine verallgemeinerte Losung der Differentialgleichung P(D) L = E.

Zur Frage, wann eine verallgemeinerte Losung eine klassische ist, vgl. z. B.
[41/11], [39].

Die physikalische Bedeutung der Losungsdarstellung (4.17) besteht in der Super-
position E* G der punktweisen Wirkungen des duBeren Einflusses E: G ist die
Antwort des Systems auf einem punkthaften EinfluB der Stirke 1 an der Stelle 0,
G « E die richtige Uberlagerung der mit E gewichteten punkthaften Wirkungen.

Die Losungsdarstellung des homogenen Anfangswertproblems

Li+5J = E@),  J0)=0) =0

S.4.1
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lautet (s. 1.2.2.; E stetige Funktion)
1
J(t) = [J@; &) E@) dg;
0
und wenn wir beriicksichtigen, daB J(z; &) nur von der Argumentedifferenz t — &
abhangt, und J(t; &) = G(¢t — &) schreiben:

J@) = [ Gt — &) E() dé,

0
s0 entspricht dies wegen (4.9) gerade der Faltung
J=G*E

in (4.17). (G(t — &) verschwindet fiir & = ¢).
Beweis von (4.17):
P(D)(ExG) = Ex(P(D)G) = Exd, = E. 4.17")
@.11) (4.16) (4.10)

Wir wollen die Rechenregeln durch die Fouriertransformation erginzen (und
zugleich eine Moglichkeit angeben, zu einem gegebenen Differentialausdruck P(D)
eine Grundlésung G zu ermitteln). Damit die Fouriertransformierte FL einer Distri-
bution L wieder eine Distribution ist und durch

FL: (FL) () = L(Fy) (g € D) @18)

erklart werden kann, muBl Fp in D liegen. Man weiB aber [s. auch (4.21)], daBB Fop
eine beliebig oft differenzierbare Funktion ist, die nur dann einen kompakten Tra-
ger haben kann (also in D liegt), wenn gilt = 0. Man muB daher eine Funktionen-
menge © als Grundmenge zulassen, die umfassender als D ist. Als Grundmenge ©
wird jetzt die Menge der iiber dem R" beliebig oft differenzierbaren Funktionen ¢
gewihlt, fiir die gilt

lim (1 + |x|?¥|D*| =0 (4.19)
| %] >

fiir jedes ganze k und fiir jeden Multiindex «. Es ist dann die lineare Abbildung F
ein Isomorphismus von € auf &, der wegen (4.20) auch stetig ist.

Um lineare stetige Funktionale (sog. Distributionen schwachen Wachstums) tiber
© bilden zu konnen, braucht man in © einen Konvergenzbegriff: Fiir Funktionen v,
und yp aus © gilt:

(Pdezo = p = (D)= = XDy (4.20)

fiir jedes o, f und fiir jedes x € R" [vgl. zu x# (2.14)].

Dann ist © 2 D, und aus der Konvergenz in D folgt die in &; schlieBlich folgt,
daB jede Distribution iiber € erst recht eine iiber D, also €@ < D’,ist. Zu den Ele-
menten aus € gehdren:

— Distributionen aus D’ mit kompaktem Triger;

- Distributionen, die von lokalintegrablen Funktionen f erzeugt werden, wobei
( /()] (1 + x)™dx < oo fiir ein gewisses m = 0 gilt (als f kénnen somit z. B.
f(x) =0), f(x) =1, f(x) = e f(x)eL?(R" fiir 1 £p £ w0, feD oder
f(x) ein Polynom gewihlt werden);
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- jede Ableitung D*L einer Distribution L € @ und schlieBlich

- jede Faltung L, * L, mit L, £ &', supp L, kompakt.

(Jede Distribution aus &’ ist distributionelle Ableitung einer stetigen Funktion, die
wie eine Potenz wichst [38, S. 112].)

Mit den Distributionen liber ©, also den L € @', werden die Fourier-Transforma-
tionen F ausgefiihrt. F bildet & auf &' (linear und stetig) ab. Ebenso gilt das von
F~*, Die Distributionen aus & heiflen auch ,,verallgemeinerte Funktionen schwachen
Wachstums*.

Definition 4.7: Ist L € €', so heifit FL Fouriertransformierte von L, und es gilt
(FL) (y) = L(Fy) (y€©®), @21
wobei .
Fyp = [p(x) e dx (pe @)
A
aus © ist*). F ist ein linearer stetiger Integraloperator iiber © (und €').
Eigenschaften: Es sei L € €. Dann ist:
D*(FL) = F((ix)* L); 4.22)
F(D’L) = (—ié)* F(L)*); (4.23)
FO =md, +iP; (4.24)
Fd, =1 (die vonf = I erzeugte Distribution); (4.25)
FLop(x + %) = e<6% FLo(x); (4.26)
FI = (2m)" 6o, wobei I die von f(x) =1, x e R,
erzeugte Distribution ist; 4.27)
Foo = €125, wobei Q = (X, ..., %,)T der charakteristische
Punkt von 4, sei; (4.28)
F ) = f §E) &7 08 = o ) (=) @29)
F( Hxll‘z) = 27': |&1-* bei x,&eR3; (4.30)
F1(|&I7%) = (d=|x[)~* bei x,&eR3. (4.31)

Wird schlieBlich die Distribution L € & von einer lokalintegrablen Funktion f er-
zeugt, so wird FL von Ff erzeugt.

Bemerkung 4.1: Ist G eine Grundlgsung schwachen Wachstums (d. h. G € @) von
P(D) = Y a.D*, so gilt

P(D) G = by, (4.32)

1) Manchmal (vgl. z. B. [36, S. 98] und (4.29)) steht —i{& | x) statt i(£ [ x) in der Definition von
F und der Faktor (2z)™" bei F bzw. als (2z)~"/2 bei F und F-'.

1 @\ 1
2) Also F(( -7 D) L} = &F(L), daher wird in der Physik statt D oft der Operator — — D

benutzt. Die Formel ergibt sich durch partielle Integration.

D.4.7
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Fburier-Transfomation liefert
F(P(D) G) = Y a,(—i8)* F(G) = Fo, = 1, (4.33)

P(—i&) F(G) = 1. (434

Diese Gleichung fiir F(G)ist in € stets losbar [38]. Es gibt also zu jedem Differen-
tialausdruck P(D) mit konstanten Koeffizienten eine Grundlésung schwachen Wachs-
tums! Die Konstruktion der Lésung héngt von der Lage der Nullstellen von P ab.
G selbst ist iiber die inverse Transformation F~! durch F-!(F(G)) prinzipiell be-
stimmbar [38, S. 134].

In 1.2.2. hatten wir fiir die Differentialgleichung

P(D)J =LJ + iCJ =0 (4.35)

die Greensche Funktion zu homogenen Anfangsbedingungen gefunden:
o fC L t—t
J(t; to) = */L Ot — t,) sin \/FC

Diese Funktion erzeugt wegen der Hinweise unter (4.20) eine Distribution G aus &',
da (t — t, = T gesetzt)

J16@I (1 + 7)) dv < 0 (4.37)
R

=Gt — 1,). (4.36)

gilt. G 16st (4.34) fir P(D) in (4.35).

Wir wollen jetzt umgekehrt eine Grundldsung nach (4.34) konstruieren. Dazu be-
trachten wir den Laplace-Operator P(D) = 4 in 3 Dimensionen. Eine Grund-
16sung G muB also der GI. (4.34) geniigen:

P(-i§) F(G) =1, (4.34)
wobei wegen P(D) = A gelten muﬁ

P(=if) = (=i&))* + (=i&)* + (=i&5)* = — €)% (4.38)
Zuniéchst ist F(G) gesucht, also ist die Gleichung

— &2 F(G) = 1 (4.39)

nach F(G) aufzuldsen. (4.39) ist eine Gleichung vom Typ (4.7). Da — | £[|-2 eine im
R? integrable Funktion ist (dies gilt auch fiir mehr als drei Raumdimensionen, nicht

aber fiir n = 2, dort hat die Grundlésung mit 2__1:1 In ||x| gegeniiber (4.43) fiir

n = 3 auch eine ganz andere Gestalt; die Losung von (4.39) hangt dann mit der
singuldren Distribution P zusammen), gilt fiir die von —||&]|~2 erzeugten Distri-

bution
— &% (= 1&172, %) = (=112, = 1&1* v)
=y =1, (4.40)
folglich 16st F(G) = (— ]2, ) die Gl. (4.39), daher ‘
G = F'(= &% y) = (FH (= &2, ), (4.41)
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und aus (4.31) folgt

1
= (= ), 4.42
(7w _ G
daher ist eine Grundldsung gefunden; sie wird erzeugt von
1
Gi(x) = ——-— (xeR3). 4.43
) = — = ) @)

Dies ist die bekannte Fundamentallosung des Laplace-Operators 4 im R3.

Bemerkung 4.2: Eine lineare stetige Abbildung A eines Hilbertraumes E; auf einen Hilbertraum E,
mit der Eigenschaft {f|g)g, = {Af| Ag)E, fir f, g € E; heilt unitir. Fund F-1sind als Abbildun-
gen mit D(F) = L*(R"), D(F-') = L*(R") unitire Abbildungen [36].

Dies kann man ausnutzen, um eine Variante des Sobole hen Einbet zu beweisen.
Es ist im Sinne der Ersetzung von L?-Funktionen durch Distributionen aus €':
L*(R") € €'(RY, . (4.44)
damit erst recht
W*2(R") < ©'(R"), (4.45)

wobei W*?2 in 2.2.3. definiert wurde. Fist dann eine Abbildung von W*2(R") auf Ly,p), wobei
p(x) = (1 + IXP*? und L3, der Hilbertraum L3(R") = {f(x) | p(x) f(x) € L*(R")} mit dem
Skalarprodukt

{fledr,am = <pflpedrz (4.46)

ist, und F ist sogar unitéir, wenn in L2 ., zu einer dquivalenten Norm iibergegangen wird. Ist C'(R")
die Vervollstindigung von C°'°°(R") in der Norm
Iflcr= X sup ID%(x)l, (4.47)
|o|=! xeR®

so gilt

Satz 4.2 (Sobolewscher Einbettungssatz) [36]: Ist k = 0 ganz, | > % eine natiirliche

Zahl, dann ist der Hilbertraum H, = W"*%2(R") stetig in den Banachraum CX(R")
eingebettet. Es gibt daher eine Zahl c, so dap fiir alle fe W'*2(R") gilt

Ifllex £ clflwrera. (4.48)

n
Beispiel 4.7: n =3, k =0, [ = 2. Dann ist / > 7 also sind die verallgemeinerten Ableitungen
nullter Ordnung (d. h. die Funktionen f aus W?2:3(R%) selbst) stetige Funktionen (im Sinne der
Gleichheit fast iiberall mit einer stetigen Funktion).
4.2, Differentialrechnung und Anwendungen

4.2.1.  Ableitungsbegriffe

Die wichtigsten Sitze der gewo6hnlichen Differentialrechnung (s. Bd. 4) beruhen
auf dem Begriff des totalen Differentials: Eine Funktion f mit Definitionsbereich
D(f) = R" heiBit im Punkt X total differenzierbar, falls

SGE A+ h) = (%) = V& h + o(lal) (heR) (4.49)

S.4.2
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gilt. Dabei bedeutet o(||%]]), daB gilt
lim A= o([lA]) = 0. (4.50)
[14]|-0

Definition 4.8: Der lineare Anteil des Funktionswertezuwachses in (4.49), der durch
o = U h = 5 sk @sh
i=1 i

gegeben ist, heifit das totale oder Fréchet-Differential von f an der Stelle x.

Der Vektor Vf(%) ,.erzeugt* diese lineare Funktion. Er heit (Fréchet-) Gradient
von f an der Stelle X. (4.50) heiBit, daB das Fréchet-Differential den Funktionswerte-
zuwachs f(X + h) — f(X) ,,von hoherer als erster Ordnung* beziiglich der Norm des
Argumentzuwachses approximiert.

Bemerkung 4.3: Ist der Definitionsbereich D(f) nicht der Gesamtraum, so muB stets
(% + h) € D(f) sein in (4.49), (4.50). Die eindeutige Bestimmtheit des Gradienten
Vf(%) ist noch gesichert, wenn der Definitiorisbereich D(f) die Form

I+M={%+ylyeM} (4.52)
hat, wobei x fest ist und M eine offene Nullumgebung ist (d. h., eine offene Menge,
die den Nullpunkt enthallt).

Es sei nun B ein reeller Banachraum: B = (B, ||. ), und f ein iiber B definiertes
Funktional; ist fein iiber B lineares stetiges Funktional (s. Def. 2.29), so schreiben
wir statt f(x) auch (f; x) in Anlehnung an die Schreibweise von Distributionen
[s. (4.4)] oder die Schreibweise von linearen stetigen Funktionalen als Skalarprodukte
(s. Satz 2.26) in Hilbertraumen.

Definition 4.9: f heifst im Punkte % Fréchet-differenzierbar, falls ein (von X abhdngiges)
Element f*(X) aus dem Dualraum B’ existiert, so daf} gilt
S@ + B = fX) + (F*X), h) + o(lAl) (7 e B). (4.53)
Die GroBle (f*(%), h) stellt den linearen Anteil in der Zerlegung (4.53) dar und
wird Fréchet-Differential von f an der Stelle ¥ genannt. f*(X) € B’ heiBit Fréchet-
Gradient oder Fréchet-Ableitung von f an der Stelle X. Wir behalten auch die im
R~ iibliche Bezeichnung bei: f*(X) = Vf(x). Gilt Bem. 4.3, soistin (4.53)he M < B
zu nehmen.!)
Beispiel 4.8: Es sei H ein reeller Hilbertraum, A ein selbstadjungierter (s. Def. 3.17) linearer steti-
ger Operator von H in sich, g ein festes Element aus H. Dann sei
f(x) = (Ax | x> —2g|x>. (4.54)

fist iiberall auf dem Hilbertraum definiert. Wir wollen priifen, ob das Funktional f Fréchet-diffe-
renzierbar ist. Es sei X ein Element aus H. Wir bilden die Zerlegung (4.53):

fE+ R =<AE+ D x+h)—2Kg|x+h)
=(Ax| %) — 24g| %) + <Ah| %) + (A% | h) — 2{g| Iy + {Ah|h),
und weiter gilt insbesondere, da A selbstadjungiert ist,
S+ h) =f(X) + 2{Ax | hy — 2{g | h) + {Ah|h). (4.55)

1) Das Fréchet-Differential kann man natiirlich fiir jedes 4 € B bilden.
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Die Schwarzsche Ungleichung und die Beschrinktheit von A ergeben

C(Ah|ky < 1Al 4P, (4.56a)

folglich ist
2{A%x — g | h) (4.56b)
der lineare Anteil des Zuwachses f(x + h) — f(%), also ist f in % Fréchet-differenzierbar, und es gilt
FHH) = 2(4% - g). (4.56¢)

Neben der Fréchet-Differenzierbarkeit studiert man noch einen weiteren Ab-
leitungsbegriff: Wir wollen dazu in (4.53) fiir /4 setzen & = «s, wobei « ein reeller
Parameter und s ein festes Element aus B sei. Es sei wieder f ein Funktional iiber B.
Ist f Fréchet-differenzierbar an der Stelle X, so folgt aus (4.53)

Jim L&+ 29) — f(X)

=0 3

= (%), s) + liil‘l,%o(llocsll) =(f(),9, (457

und dies ist gerade die Ableitung von f an der Stelle % beziiglich der Geraden in
s-Richtung.

Definition 4.10: Ist f ein Funktional mit D(f) = % + M = {% + s| se M3}, M lineare
Teilmenge von B, und existiert

lin}li(f()'é + as) — (X)) d;féf(fc, s) A (4.58)

fiir jedes s € M, so heift 0f (%, s) das Gateaux-Differential (1. Variation) von f an der
Stelle X in Richtung s; f heift dann Gateaux-differenzierbar an der Stelle X.

Bei (4.57) folgte: ist fan X Fréchet-differenzierbar, so auch Gateaux-differenzier-
bar. Umgekehrt gilt (mit D(f) = B)

Satz 4.3: Existiert das Gateaux-Differential in einer Normumgebung von % in B und
ist Of (x, s) gleichmapig stetig in x und stetig beziiglich s, so stimmt es mit dem Fréchet-
Differential von f an der Stelle % iiberein [24, S. 310].

Beispiel 4.9: Ist A in (4.54) nur linear, selbstadjungiert und nicht beschrinkt, so ist sein Defini-
tionsbereich D(4) & H eine lineare in H dichte Teilmenge (s. Def. 3.17) und D(4) = D(f). Wir
wollen das Gateaux-Differential berechnen. Es ist fir X € D(4), s € D(4) wegenw-
= é(Z(AX los) — 2{g | as) + a*(As | s):

Of(%,5) = 2{Ax — g |s). (4.59)

In diesem Falle ist das Gateaux-Differential of(x, s) ein beziiglich s lineares stetiges Funktional.
Dann heiBit das ,,erzeugende** Element 2(4% — g) der Gateaux-Gradient. Er sieht freilich genau so
aus wie in (4.56¢), aber diesmal ist die Giiltigkeit der Zerlegung (4.53) nicht gegeben, wir haben
nur aus (4.59) den Gradienten formal so abgelesen wie in (4.53). [(4.56a) gilt fiir 4 jetzt nicht.]

4.2.2. Anwendungen der Ableitungsbegriffe
4.2.2.1. Beziel zur Variati h

An einem wichtigen Beispiel soll erliutert werden, wie in der Variationsrechnung
notwendige Bedingungen fiir relative Extremalstellen eines Funktionals f hergeleitet
werden konnen (vgl. auch Lemma 5.1-5.3).

8 Gopfert, Funktionalanalysis

D.4.10
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Uber dem Einheitskreis K = {(x, y) | x> + y* < 1} werde der reelle Hilbertraum
H = L}(K) betrachtet. Die Menge der iiber K zweimal stetig differenzierbaren Funk-
tionen u, die auf dem Kreisrand 0K gleich einer dort vorgegebenen Funktion
@ € CR(0K) sind, ist dann eine Teilmenge B von H. Fiir jedes u aus B gilt also,
wenn der Kreisrand durch Polarkoordinaten r = 1, 0 < 7 < 2= beschrieben wird:

u(cos7,sin7) = (), 0= 7 < 2=, (4.60)
Wir betrachten das Funktional f (Dirichlet-Integral):
fu) = H (w2 + u2)dxdy, D(f)=$9. (4.61)
K

Wir stellen die Aufgabe, relative (= lokale) Extremalstellen von f zu charakterisieren.
Eine Stelle @ € B heibt relative Extremalstelle von f iiber B, wenn bei hinreichend
kleinem & > O fiir alle # € B mit |u — 1|y < ¢ gilt

Sfw) z f@). (4.62)
In der Variationsrechnung betrachtet man diese zu i benachbarten » in der Form

u =1+ oanmityeM = {ne CiK)|n =0 auf 0K} und fiir |x| hinreichend klein;
o1 wird variiert”. In der Tat ist bei vorgegebenem ¢ > 0 und 7 = o € H

lu =l = & +on — il = o] - ]l <e,
falls nur |«| < [g]~!e, und fiir solche « lautet (4.62)

S +on) 2 f@), neM. (4.63)
M ist eine lineare Teilmenge von H. Ist nun # eine relative Extremalstelle von f
iiber B, so muB sie notwendig (4.63) erfiillen. Wir fassen daher die Menge i + M < H

als neuen Definitionsbereich von f auf. Ist f an der Stelle # Gateaux-differenzierbar
in Richtung # (fiir jedes n € M), so muBl

of(,m) =0, neM, (4.64)
sein; denn wir brauchen nur die Vorzeichen des Quotienten
[JPPN o
+ G+ o) = f@), 7 fest, (4.65)

zu studieren: wegen (4.63) ist (4.65) gréBer gleich null fiir (kleine |x| bei) x > 0,
kleiner gleich null fiir (kleine || und) & < 0; da der Grenzwert df(if, ) fiir x — 0
existiert (Gateaux-Differenzierbarkeit) und Ungleichungen beim Grenziibergang
erhalten bleiben (s. Bem. 2.1), muf3

0< 6f(,m) <0 (4.66)

sein; das ist gerade (4 64). (4.64) heilBt auch: die erste Variation (erzeugt durch den
Ubergang von # zu @ + &) von f an der Stelle # muBl verschwinden.

Wir berechnen jetzt das Gateaux-Differential df(i, ) von f an der Stelle # in
n-Richtung'

[ f f (s + om)? + (8 + amy)?) dx dy — f f @2 + i?) dx dy] 4.67)

= [[ 20k + ) + (72 + 53] dx dy (4.68)
K
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und wegen der 1. Greenschen Formel (vgl. Bd. 8, S. 97),

ff (thvy + thvy) dx dy = — 'H. (vAw)dxdy + fu %dr, (4.69)

K K oK

wobei 7 die (normierte) AuBennormale beziiglich 0K ist, folgt aus (4.68), wobei
v = 7 gesetzt werde,

of (i, n) = liﬂ%(f(ﬁ +am) = f(@) = —2 f f ndidxdy (eM). 4.70)
K

Dabei verschwand das Randintegral, weil 7 auf dem Rand verschwindet, und die
Normalableitung von # (unter unseren Voraussetzungen) existieri. Also existiert das
Gateaux-Differential. Wegen (4.66) muB3 es verschwinden:

0= 0f(,n) = =2 [[ndidxdy (neM).
K

Da nun M ein in H = Li(K) sogar dichter (vgl. Satz 2.17)> linearer Teilraum ist,
muB A# selbst verschwinden.) Damit haben wir folgende norwendige Bedingung fiir #
erhalten, welches Losung der Extremalaufgabe (4.62) war:

i =o. (4.71)

Eine Losung @ der Extremalaufgabe (der Klasse CE(K)) ist also notwendig Losung
des Dirichlet-Problems:

A = 0 im Kreisinnern,
i(x, y)lox = ¢(r) auf dem Kreisrand. 4.72)

Gleichung (4.71) heift Eulersche Gleichung zum Variationsproblem (4.62). (4.72) sind
fiiir eine relative Extremalstelle notwendige Bedingungen. Bei ¢ € C3(0K) gilt auch:
das Dirichlet-Problem (4.72) ist eindeutig I6sbar, die Losung gehdrt zu Cx(K) und
ist die eindeutige (sogar globale) Losung des Variationsproblems, f von (4.61) tiber
D(f) = B zu minimieren:

f(u) = Min! (ue D). (4.73)

Man kommt bei Verwendung anderer Beweismittel mit geringeren Regularitits-
voraussetzungen aus: Dirichletsches Prinzip (fiir den Einheitskreis): g sei tiber K
stetig und in K\ 0K (stiickweise) stetig differenzierbar, so daB f(g) [s. (4.61)] exi-
stiert. Die Klasse aller Funktionen @, die in K stetig, in K\ 0K (stiickweise) stetig
differenzierbar sind und dieselben Randwerte wie g haben, enthélt genau eine Funk-
tion #%, so dal gilt

f@) £ f(D). (4.74)
Diese Funktion i 16st das Dirichlet-Problem fiir 4u = 0 mit u = g auf 0K; 4 liegt
dann in C%(K\0K) (sogar in C*(K\0K)). Lit. s. z. B. [12], [28], [18], [41/IIT].

1) Das Funktional df(#,7) von (4.70) ist in 7 linear und stetig auf M. Da M dicht liegt in H
ist jedes Element von H Grenzwert einer Folge aus M. Somit kann df(i, ) auf ganz H mit Wert 0
stetig fortgesetzt werden. Das nach dem Satz 2.26 von Riesz eindeutig existierende erzeugende Ele-
ment f* € H kann also nur das Nullelement o € H sein. Das ist (4.71), da nach (4.70) das erzeu-
gende Element —24i heiBt; da i in Ci(K) liegen und Randbedingungen geniigen sollte, folgt
daraus (4.72).

8%
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4.2.2.2. Beziek zur k Analysit

Analysis beinhaltet das Studium von Rdumen und von Abbildungen zwischen sol-
chen Raumen unter Verwendung von Grenzwertbegriffen. Man spricht von kon-
vexer Analysis, wenn bei der Gewinnung von Aussagen Konvexititseigenschaften
von Mengen oder Abbildungen eine wichtige Rolle spielen. Dies ist z. B. bei Fix-
punktsitzen der Fall, die vom Schauderschen Typ sind:

Satz 4.4 (Schauderscher Fixpunktsatz [17], [30]: Es sei E ein normierter Raum und
M < E eine nichtleere abgeschlossene und konvexe Teilmenge von E. Es sei T: M — E
eine stetige Abbildung mit T[M] S M, und der Abschluf T[M] der Bildmenge T[M]
sei kompakt (s. Def. 2.7). Dann hat T (mindestens) einen Fixpunkt, d.h., es gibt ein
x €M mit Tx = x.

Man kann sich fiir E etwa den R? (oder den Banachraum Cla, b]) und fiir M die Einheitskreis-
scheibe im R? (oder eine kompakte konvexe Menge in Cla, b], vgl. Satz 2.13) denken. Dieser Satz
wird u. a. zur Losung von Randwertproblemen ausgenutzt (vgl. z. B. [41/1]).

In der mathematischen Optimierung in allgemeinen Rdumen spielt die konvexe
Analysis eine besonders wichtige Rolle, denn fiir konvexe Optimierungsaufgaben
kénnen Hauptziele der Optimierungstheorie wie das Aufstellen von dualen Auf-
gaben, von Optimalitatsbedingungen, von Losungsverfahren usw. recht zufrieden-
stellend gelost werden (siche z. B. Bd. 15 im R" oder [41/III], [13]), wihrend fiir
nicht mehr konvexe Aufgaben sich die Resultate oft stark ,,am konvexen Fall orien-
tieren* (s. z.B. [45] oder [48]). Dabei spielen —als Gegenstinde der konvexen Analy-
sis — Trennungssitze fiir konvexe Mengen (s. 2.3.3.), Differenzierbarkeitsbegriffe (oft
noch allgemeinere als oben behandelt) und (vor allem in der Steuertheorie, vgl. [23])
die WP*k-Réume die Hauptrolle.

Wir wollen auf einige Beziehungen zwischen Fréchet-Differenzierbarkeit und ,,stark-
und beschrinkt-konvexen‘ Funktionalen eingehen, die bei Abstiegsverfahren der Opti-
mierung und bei der Losung von Operatorgleichungen (vgl. auch [30]; s. 5.3. und
z. B. in [18], [13]) wichtig sind.

Ein tber einer offenen Menge D eines reellen Hilbertraumes gegebenes Funk-
tional f(x) heiBt stark konvex (mit der Schranke m > 0) und beschréinkt konvex (mit

der Schranke M > 0), falls V¥, x € D < H und VA,, 7, = 0 mit 4, + 4, = 1 gilt
1 2|12 1 1 2
%m/‘»llz“x - x” < llF(x) + le(x) - F(le + lzx)

< iMidx — A @.75)

F ist damit erst recht streng konvex. F sei fernerhin stetig. Diese stark und be-
schrankten konvexen stetigen Funktionale lassen sich wie folgt durch Fréchet-Ab-
leitungen charakterisieren :

Satz 4.5: Das auf einer offenen konvexen Menge D erklirte stetige (reelle) Funk-
tional F ist genau dann stark und beschrinkt konvex, wenn F in allen Punkten von D
eine Fréchet-Ableitung VF(x) besitzt und fiir diese die Monotonie-Bedingung gilz:
(siehe z. B. in [13])
mllx — 2| <<VF(x) - VFG)|x - % < Mlx - Ff', (% 2eD).
(4.76)
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Die Bedeutung dieser Klasse von konvexen Funktionalen liegt u. a. darin, daB der
,,Durchhang* [d.i. die Differenz in der Mitte der Ungleichungskette (4.75)] nach

oben und unten durch den Abstand Hé - ,\2'“ abgeschétzt wird oder (unter Benutzung
des folgenden Satzes 4.6) daB3 der Graph des Funktionals z = F(x) — F(x) im Raum
R' x H zwischen den beiden, sich in x = X berithrenden Hyperparaboloiden

z=(VFR)|x — %> + m|x — £|?, @.77)
Z=(VER) | x — %> + IM||x — % (4.78)

liegt. Wenn also F auf ganz H definiert ist, so wéchst es fiir (Jx — x||) » oo starker
als z (stérker als linear) und ,,zwischen* z und z gegen + oo.

Satz 4.6: Das auf einer offenen konvexen Menge D < H erklirte stetige Funktional F S.4.6
ist genau dann stark und beschrinkt konvex, wenn F Fréchet-differenzierbar ist und
folgende Bedingung gilt:

|t = 3P < FG) - FD) = <VF®) |4 - B
<Ml -3 (% xeD). 4.79)

4.3.  Anwendungen von Fixpunktsitzen

4.3.1. Gleichgewichtspunl:te und Fixpunkte in Okonomie und Spieltheorie

Bei der mathematischen Behandlung 6konomischer Modelle ergibt sich oft fol-
gende Situation: Gegeben seien ein kompakter konvexer Bereich Z = R" (zuldssiger
Bereich, nichtleer) und 7 beteiligte Parteien (Spieler), denen je eine Funktion f;, ..., f,
zugeordnet ist (Auszahlungsfunktionen), die Z in R abbildet. Der »-te Spieler
(v = 1, ..., n) mochte seine Auszahlung f,(z), z € Z, maximieren, hat aber nur Ein-
fluB auf die »-te Komponente des Vektors z € Z. Er muB sich daher mit der Auf-
gabe

@) = A, s xons £ Xy e, X,) = max!,

(4.80)
z= (X150 X1 6 Xigs e X)) EZ

beschaftigen, in der die restlichen n — 1 Komponenten des Vektors z fest sind.
Wird also ein Punkt z aus Z fest angenommen (damit ist jedem Spieler eine Mog-
lichkeit der Wahl seiner Komponente von z vorgeschlagen), so wird jeder Spieler
die Aufgabe (4.80) 16sen wollen. Sind die f, (v = 1, ..., n) stetig, so existiert auch
fiir jedes » eine Losung, i. allg. eine Menge F, von Lsungen, die von dem vor-
gegebenen z abhédngt! Es wird somit jedem z € Z ein Vektor (Fy(z), ..., F,(z)) zu-
geordnet, dessen »-te Komponente die Losungen von (4.80) enthalt. Wir wollen den
Vektor der Losungsmengen mit F(z) bezeichnen. Es wird dann jedem z e Z das
Bild F(z) zugeordnet, es ist eine Teilmenge des R".

Wenn es nun gelingt, ein z* zu finden, daB gilt

z* € F(z¥), : (4.81)
d. h. daB zf ein Element von F,(z*), z§ cin Element von F,(z¥) ist usw., so ist eine

solche Wahl der von jedem Spieler beeinflubare Komponente von z vorgeschlagen,
daB3 die Auszahlungsfunktion f; fiir jedes » im Sinne von (4.80) maximiert wird.
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z* heiBt dann ein Gleichgewichtspunkt des n-Personenspieles, welches durch £, ..., f,
und Z £ R" beschrieben ist (s. auch Bd. 21/1).

Die Existenz eines solchen Gleichgewichtspunktes kann durch den Fixpunktsatz
von Kakutani gesichert werden, wenn F gewisse Voraussetzungen erfiillt.

Definition 4.11: Es sei Z eine kompakte nichtleere Teilmenge des R" und f eine Ab-
bildung von Z in die Menge 2% der Teilmengen von Z. Fiir jedes z € Z sei die Menge
f(2) abgeschlossen in R". Dann heift f stetig, falls die Menge (der Graph von f)

G(f)={zyzeZ yef@2)} (4.82)
abgeschlossen in R" x R" ist.

Satz 4.7 (Fixpunktsatz von Kakutani) [41/1]: Es sei F eine stetige (s. Def. 4.11)
(Punkt-Mengen-) Abbildung der kompakten, konvexen nichtleeren Menge Z < R" in 2%
(Menge aller Teilmengen von Z). Fiir jedes z € Z sei F(z) konvex, abgeschlossen und
nichtleer. Dann besitzt F einen Fixpunkt z*;d. h., es gibt ein z* € Z mit z* e F(z*).

In [26] wird das 6konomische Modell von Arrow und Debrou mit Satz 4.7 be-
handelt.

Bemerkung 4.4: Fir die Anwendungen ist neben der Existenz (mindestens) eines
Gleichgewichtspunktes (Fixpunktes) die numerische Bestimmung von Bedeutung.
Wihrend bei Anwendbarkeit des Fixpunktsatzes von Banach (s. Satz 1.2) eine
iterative Berechnung des (dann eindeutig bestimmten) Fixpunktes mdglich ist
(s. 4.3.2.), sind fiir Fixpunktsitze vom Schauderschen Typ (Satz 4.4, vgl. auch
[41/1]) erst in jiingster Zeit konstruktive Beweise und iterative Berechnungsméglich-
keiten gefunden worden, die auf Lemke und Scarf zuriickgehen, vgl. z. B. [25].

4.3.2. Banachscher Fixpunktsatz und zugehoriges Iterationsverfahren

In 1.2.4. hatten wir den Banachschen Fixpunktsatz (Satz 1.2) in Zusammenhang
mit einem linearen Gleichungssystem (in der Form x = Mx + a, x und a aus RY)
genannt. Weitere Anwendungen findet man z. B. in [41/I]. Wir stellen jetzt den
Beweis dieses Satzes dar, da er konstruktiv ist, d. h. ein konvergentes Verfahren
[s. (4.84)] zur Bestimmung des Fixpunktes liefert, der unter den Bedingungen des
Satzes existiert. Es sei d die Metrik eines vollstindigen metrischen Raumes E und
A eine Abbildung, die eine fest vorgegebene abgeschlossene Teilmenge E, < E in
sich abbildet und die auf E, kontrahierend ist:

d(A(x), A(y)) < kd(x,y), (x,y€Eo), 0 <k <1. (4.83)

Wir untersuchen, unter welchen Bedingungen die Gleichung x = A(x) fir x € E,
durch sukzessive Approximation

Xo € Eo, Xp = A(x,), 120, ganz, )
gelost werden kann. Die Antwort gibt der

Satz 4.8 (Fixpunktsatz von Banach): Eine kontrahierende Abbildung A einer nicht-
leeren abgeschlossenen Teilmenge E, (aus E) in sich hat genau einen Fixpunkt x*. Die
Folge {x,} mit x, € Ey, Xy, = A(x,) konvergiert gegen x* fiir jedes x, € E.
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Beweis. Die Folge {x,} ist eine Cauchy-Folge (s. Def. 2.6). Denn es ist, indem ab-
wechselnd (4.84) und (4.83) verwendet werden,

d(Xy, Xpi1) = d(A(x,-1), A(x,)) S kd(xy1, Xn)
= kd(A(X, ), A(X,1)) S K2d(Xy2, Xpo1) S oo
o = k"1 d(A(x0), A(xy)) £ k"d(xo, Xy). (4.85)
Fiir 0 < n < m ist dann (Dreiecksungleichung)
d(xys Xp) S d(Xy, Xnp1) + oo + dXpo1s Xn),
und nach Einsetzen von (4.85) mit den entsprechenden Indizes:
d(xy, X)) < k"d(xo, x1) + k" 'd(xg, X1) + ... + k" 'd(xo, X,)
=d(xo, x)) k" (1 + k + ... + k"™1)
< d(xg, x1) (1 — k)~ k" (4.86)

Da die Folge {k"} wegen 0 < k <1 gegen null konvergiert, ist {x,} wegen (4.86)
eine Cauchy-Folge. Da E vollsténdig ist, liegt der (eindeutig bestimmte) Grenzwert x*
von {x,} in E, da alle x,, n 2 0, in E, liegen und E, abgeschlossen ist, liegt x*
in Ey. Da A eine stetige Abbildung ist [wegen (4.83), s. Satz 3.4] ergibt Grenzwert-
bildung in der Beziehung x,,, = A(x,), n = 0:
x* = lim X,y = lim A(x,) = A(lim x,,) = A(x¥). (4.87)
n— o n— oo 11— 00
Damit ist x* als Losung erkannt: x* € E, und x* = A(x*).

Die Eindeutigkeit folgt so: Waren x*, X zwei verschiedene Fixpunkte, so miifite
d(x*, X) = d(Ax*, AX) < kd(x*, X) sein; dies ist aber fiir d(x*, X) + 0 unmdglich,
weil k£ < 1. Da es somit nur einen Fixpunkt gibt, ist dieser auch vom gewihlten An-
fangselement x, unabhingig. &

Die Voraussetzungen des Banachschen Fixpunktsatzes lassen sich in verschieden-
ster Hinsicht abschwéchen (vgl. hierzu [30]). Wir nennen reprasentierend die fol-
gende Aussage.

Satz 4.9 (Verallgemeinerung des Banachschen Fixpunktsatzes): Es sei E ein vollstin~ S.4.9
diger metrischer Raum (Metrik d) und E, eine nichtleere abgeschlossene Teilmenge von

E. Die Abbildung A bildet die Menge E, stetig in sich ab, und es sei eine gewisse Po-

tenz A" von A eine kontrahierende Abbildung (d.h., d(A"(x), A"(»)) < kd(x,y)x,y € E,,

0 < k < 1 fest). Dann hat A genau einen Fixpukt x* € E,,. Fiir jedes x, € E, konver-

giert die Folge {x,,} mit X, = A(x,) (n=0,1,2,...) gegen x*.
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5.1. Halbbeschrinkte Operatoren in Hilbertriumen

5.1.1. Der Satz von Friedrichs

Ein linearer Operator 4, dessen Definitionsbereich D(4) dicht in einem Hilbert-
raum H liegt, der D(4) in H abbildet und symmetrisch ist,

{Au|vy = (u| Av) (u,v € D(4)), (5.1
und fiir den gilt
es gibt ein reelles y mit  {Au | u) = y*||ul|* (u € D(A4)), (5.2)

heiBt halbbeschriinkt (stark positiv definit).

Beispiel 5.1: Es sei H = LR[0, 1], D(4) = {u € C§[0, 1], u(0) = u(1) = 0}, und A sei der Operator
dZ

A= — 4= (53)

A ist halbbeschrinkt. Denn es ist D(4) = H, A symmemsch wie durch partielle Integration folgt,
x 2

und (5.2) gilt wegen u2(x) = ( { u’(t)dt) < j dr ju*(r) dr = ju’Z(z)dt 0<x=1:
0

1
2y < f W) dt = (Au u. 54)

Bemerkung 5.1: Gleichwertig zu (5.2) ist, daB

. (Au|uy
= inf —>=>0 5.2"
= enimusa Tl ‘ ©2)
gilt, d. h., dic untere Grenze g von A ist positiv.
Der zu A adjungierte Operator 4* ist definiert (vgl. Def. 3.15) fiir alle v € H, fiir
die ein v* existiert mit

(o] Auy = {v* |u) (ue D(A)). (5.5)
Die Abhangigkeit v — v* wird gerade mit v* = 4*v bezeichnet. Wenn man (5.5) mit
(5.1) vergleicht, siecht man, daf

D(4*) 2 D(4) : (5.6)
gilt. Wenn man also fiir 4 die Eigenschaft der Selbstadjungiertheit haben mdéchte
((5.1) zusammen mit D(4) = D(4*)), so muB D(4) wegen (5.6) vergroBert werden.
Eine solche Erweiterung des Definitionsbereiches von A fordert daher, 4 auf ge-

wissen weiteren Elementen in H zu definieren, und zwar soll dabei die untere Grenze
[vgl. auch (5.2')]

g =inf {{du|u) | |ull =1, ue D(4)} (€Y
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von A (und damit die starke positive Definitheit) erhalten bleiben. Ist das gelungen, so
hat man A fortgesetzt. Es gilt der folgende Satz von Friedrichs:

Satz 5.1 (Fortsetzung halbbeschrinkter Operatoren): Jeder halbbeschrinkte Opera-
tor A gestattet cine Fortsetzung A, d. h., es ist D(A) 2 D(A), Au = Au (u € D(A)),
und dieser Operator A ist selbstadjungiert, hat dieselbe untere Grenze wie A, und sein
Wertebereich ist der gesamte Raum H. Es existiert sogar (A) Y und ist symmetrisch
und beschrdinkt.

Wir wollen zuerst diesen Fortsetzungsproze3 erldutern und dann auf zwei An-
wendungen eingehen: Operatoren der Quantenmechamk Losung elliptischer Diffe-
rentialgleichungen.

5.1.2.  Der Fortsetzungsprozefi

Hitten wir die Fortsetzung (= Erweiterung) von 4 zu 4 schon erledigt, so miiBte
fiir ein # € D(A) das Bild Az auch in H liegen. Wir nehmen so umgekehrt ein be-
liebiges fe H (es soll ja R(4) = H sein) und versuchen nach einer einheitlichen
Verfahrensweise solche u zuzuordnen, daB fiir fe R(4) gerade u € D(A) gilt, also

Au=f (5.8)

ist, und daf fiir die weiteren '€ H\ R(A) auch u zugeordnet werden, die dann nicht
mehr in D(A) liegen, also D(A) ,erweitern®, und daB die gesamte Zuordnung die
im Satz genannten Eigenschaften hat. Wir konnen sagen, dal wir A so erweitern
wollen, daB (5.8) fiir jedes fe H 16sbar wird. Daraus folgt auch, daB die ins Auge
gefaBite Erweiterung ,,maximal® ist, da H der groBtmdogliche Wertebereich eines
,,in H abbildenden Operators ist.

Wir fiihren einige Gedanken des Beweises fiir reelle Hilbertrdume hier durch, da
sich interessante Beziehungen zur Variationsrechnung und konvexen Analysis und
eine schone Anwendung des Satzes von Riesz ergeben [28]; beziiglich des allgemeinen
Falles vgl. etwa [16], [36].

Es sei zundchst fe R(4). Dann gibt es dazu eindeutig ein u, € D(4) mit Au, = f.
Denn hatte die homogene Gleichung Au = 0 Losungen u = 0, so widersprache das
(5.2). Fiir u, gilt:

Lemma 5.1: u, lost die Optimierungsaufgabe (das Variationsproblem)

Fu)= (Au|uy — 2u|f> = min! (5.9)

ueD(4)
Beweis: Wir variieren u, mit 7 0 beliebig aus D(4). Dann ist
Fluy + ) = Fluy) + 2{duy — 0y + {dAn|n) (5.10)

wie bei (4.55), da 4 symmetrisch ist; da u, die Operatorgleichung (5.8) 16st, und
(5.2) gilt, folgt

Fluy +1) > F(u;) (n€D(4)). (5.11)

Es ist also u, sogar ,,globale” Minimalstelle von F, dies ist auch klar, da F konvex
iber D(A) ist. u, ist ferner, wie aus (5.11) folgt, eindeutige Minimalstelle von F. Auch
dies ist klar, denn F ist [wegen (5.2)] streng konvex (s. Bd. 15). [l

S.5.1

L.5.1
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Es gilt auch die Umkehrung:

Lemma 5.2: Ist i Minimalstelle von (5.9) bei gegebenem f, so lost @ die Gleichung
Au = f.

Beweis: Da F Gateaux-differenzierbar ist [s. (4.58)], muBl Vz e D(4) das Gateaux-
Differential 0F(u, ) = 2{Au — f|n) an der Stelle u = # notwendig verschwinden.
Wie schon bei (4.66) folgte, ist also 4t — f = 0 (Au = fist die Eulersche Gleichung
zu (5.9)). B

Wir lassen jetzt ein beliebiges f e H zu. Ist fe H\ R(4), so kann keine Minimal-
stelle von (5.9) existieren, denn sie wiirde die Eulersche Gleichung lésen, also f € R(A4)
nach sich ziehen. Es gilt aber, daB auch bei beliebigem festem f die untere Grenze J,-
der Menge der F-Werte stets endlich ist, wenn u den Bereich D(4) durchlduft:

Jp = inf F(u) > —o. (5.12)
ueD(4)

Denn es ist, falls nur p2|u| — 2| f| = 1 ist, wegen (5.2) und der Schwarzschen Un-
gleichung

{Auluy = 2§fluy z llull @*llul = 21£1) 2 [ul 20,
und im anderen Falle, d. h. y?|ul| — 2| f]| <1, ist
2 1wyl £ 20110 ul < y=2(1 + 2171 QI£1)
{Auluy = 2{fuy Z y?[ull®> = 2y72(1 + 2|fI) [ fI< K (5.13)
K= =2y72(L + 2I£DID-

Das Variationsproblem (5.9) hat also fiir jedes /'€ H einen endlichen Minimalwert,
aber nur fiir '€ W(4) eine Minimalstelle. Jetzt konstruieren wir durch VergroBerung
des zuldssigen Bereiches D(A4) des Variationsproblems Minimalstellen fiir f € H \ R(4),
wobei der Minimalwert J, ungedndert bleibt(!):

Wir fiihren dazu in der Menge D(4) < H ein neues Skalarprodukt ein durch

{u|vypey = CAu|v) (u,v € D(4)). (5.14)

Wegen der Halbbeschrinktheit ist das ein Skalarprodukt. Dieses induziert eine Norm
in D(4): \

Ilullzz;w = u|wpuy = {Au|uy, (5.15)
und wegen der Halbbeschrinktheit gilt (vgl. auch Def. 2.13)
lullbeay Z 721ull*>  (u e D(4)). (5.16)

Fundamentalfolgen in D(4) im Sinne der Norm | . ||p4 sind wegen (5.16) erst recht
welche in H, und da H vollstindig ist, gehort zu ihnen eindeutig ein Grenzelement.
Wir nehmen zu D(4) alle diese Grenzelemente von || . || pc4y-Fundamentalfolgen hinzu.
Die entstandene Menge heile H, und ist AbschlieBung von D(4) im Sinne der
| IIpcay-Norm. H 4 ist selbst ein Hilbertraum (energetischer Raum), und es gilt natiir-
lich H, € H.

Die Norm eines Elements u in H, ist, falls u € D(4) < H, gilt:

lulf, = <Aulup; C(5.17)
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falls u € H,\ D(4), so ist u Grenzwert etwa der Fundamentalfolge {u,}, also

lllfr, = lim CAuy | uy). (5.18)

Beispiel 5.2: Es seien A, H, D(A) wie in Bsp. 5.1. Dann ist (H+H,)
H, = {u| u absolut stetig') auf [0, 1], u, € LR[0, 1], u(0) = u(1) = 0} < H = LR[0, 1].
(5.18

Da zum zuldssigen Bereich D(4) nur Grenzwerte von Folgen aus D(A) hinzu
genommen werden, bleibt J, wirklich ungeandert. Wir setzen nun in (5.9) fiir u € D(4)
gerade (5.17) ein:

Flu) = lullfr, — 2ulf> (5.19)
und (5.19) kann sogar fiir alle « € H, gelesen werden! Jetzt hat die Aufgabenstellung
F(u) = |ul#, — 2<u|f> = min! (5.20)

ueH ,

einen Siny, und es gilt das bemerkenswerte

Lemma 5.3: Fiir beliebig fest vorgegebenes f € H existiert genau ein u, € H, mit
F(uy) = inf F(u), und verschiedenen f e H entsprechen verschiedene u, € H .

Bemerkung 5.2: Fir A gemiB (5.3) lautet F(u) aus (5.9)

1 1
F(u) = — [uuy dx — 2 [ fudx,
0 0

und in der Form (5.19) hat es die Gestalt
1 1
F(u) = | w'?dx — ,'fou dx, (5.21)
0 0

und dies kann wegen u € H, [s. (5.18')] ausgewertet werden. )
Wir fiihren den Beweis von Lemma 5.3 an, da er eindrucksvoll den Satz von Riesz
ausniitzt:

Beweis von Lemma 5.3: Der Term <{u|f) in (5.20) ist ein lineares beschrinktes
Funktional in H,, denn es gilt wegen (5.16)

Kul 1< Null 11 < v~ lulla, 111 (5.22)

zunéchst in D(4) und wegen der Stetigkeit von . | f) und | .|z, auch fiir die Grenz-
elemente, also in H,. Somit gibt es nach dem Satz von Riesz genau ein Element
uy € Hy, so daB gilt

ulfom=<ulupn, (weHy, (5.23)

1) u(x) heiBt absolut stetig auf [a, b], wenn ein v existiert, v EL}‘[a, b], so daB u(x) = Iz‘(r)dt
+ const. (@ < x = b) gilt. a

L5.3
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wenn mit <. |.>y, das Skalarptodukt in H, bezeichnet wird. Damit ist fiir belie-
biges festes u € H,

Fu) = lulfr, — 2ulupdn, + <uplupdn, — <uplupdm,

=u—uplu—upg, — lulk, (5.24)
und folglich, da der erste Summand in (5.24) nichtnegativ ist,
min F(u) = —||usll,. (5.25)
ueH 4

Da fiir u = u, gilt |u — ug|F, > 0, gibt es keine weitere Minimalstelle. B

Definition 5.1: Das Element u, € H, (s. Lemma 5.3.) heift verallgemeinerte Lisung
von Au = f. Liegt Uy bereits in D(A), so ist u, gewohnliche Losung von Au = f. Die
Gesamtheit der verallgemeinerten Losungen sei der Definitionsbereich D(A) eines
Operators A. Er wird wie folgt deﬁmert Zu ii € D(A) existiert gemdf3 Lemma 5.3
genau ein fe H mit der Eigenschaft, daf i verallgemeinerte Losung von Au = Fist;
die Abbildung ii — f definiert den Operator A: Aii =f. Dieser Operator ist die Friedrichs-
sche Erweiterung von A.

Die weiteren Aussagen des Satzes von Friedrichs sind erfiillt. Die Gleichheit der
unteren Grenzen bedeutet

(Auluy _ . lullz,

wentyuto U7 uepiyuso ul?

(5.26)

5.1.3. Einige Operatoren der Quantenmechanik

In (1.71)=(1.73) waren die Hamilton-Operatoren als wichtige Hilfsmittel der
Quantenmechanik genannt worden. Sie fithren auf lineare selbstadjungierte Opera-
toren. Das frithere Oszillatorbeispiel ergab als Hamilton-Operator zunéchst den
Operator (1.78). Er war noch nicht selbstadjungiert. Dies kann aber gerade nach dem
Satz von Friedrichs erreicht werden. Man studiert dazu die Operatoren folgender
Art, die dem Hermiteschen Operator von (1.79) verwandt sind:

Cu= —u" +pu mit D(C)={ueC=(R)} < L*(R), p(x) reell,
und p(x) > oo fir |x| > oo, p(x) = 1. (5.27)
Nachweis der Symmetrie und Halbbeschréinktheit:

{Culv) = f(—u” + pu)vdx
R

I

_]~ (@'v' + piv) dx
R

| a(—v" + pv)dx = (Cv|u)y (u,ve D)), (5.28)
R .

(Culuy = [(W]* + plul)dx 2 [|ul* dx = |ulixwm (5.29)
R R

und D(C) = H = L*(R).
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Wir denken uns C nach dem Satz von Friedrichs zu C fortgesetzt. C ist dann
selbstadjungiert und hat reines Punktspektrum und leeres Stetigkeitsspektrum. Ist
insbesondere p(x) = x> + 1, so ist folgender Zusammenhang zum Hermiteschen
Operator H gegeben:

C=H+1, H=D, von (1.79) (5.30)
(1 ist der identische Operator), und (5.30) bleibt bei der Fortsetzung bestehen:
C = H + I Das Spektrum o(H) kennen wir bereits aus (1.81). Es gilt dann iiber
dem Bereich D(H), wenn 4; = 2j + 1,j = 0, 1,2, ... die Eigenwerte, {H,} die ortho-
normierten Eigenfunktionen sind (sie bilden als Eigenfunktionen eines selbstadjun-

gierten Operators mit reinem Punktspektrum und leerem Stetigkeitsspektrum ein
vollstandiges Orthogonalsystem, [36]):

« D@ =ulueH ¥ 2FKu| HY* < o), (5.31)
=0

und dies gilt fiir jeden selbstadjungierten Operator mit reinem Punktspektrum,
leerem Stetigkeitsspektrum und {4;} nach der GroBe der Betrdge geordnet.

Wir wollen noch einen inter Z ) zur Theorie der Distributionen (Kap. 4.1.)
angeben.
Sind ¢ und « aus D(C) in (5.27), so ist wegen der Selbstadjungiertheit von C: C = C* somit
(Culpy =<C*ulg) =<u|Cp) (peC(R). (5.32)
Die rechte Seite kann fiir € L(R) als Distribution L aufgefaBt werden (Cp = Cg):
L:Lp=<u|Cp) (peC(R)). (5.33)

Diese Distribution wird fiir u € H; gerade von Cu erzeugt, und folglich kann der Operator C im
Sinne der Distributionen ausgerechnet werden.

Der Operator
Au = xu mit D(4) = {u e L*(R) | xu(x) e L*(R)} < L*(R) (5.34)
tritt ebenso in der Quantenmechanik auf und ist selbstadjungiert und nicht beschrénkt:
Unbeschrinktheit :

4| = sup [[Au| = sup /[ x*uP(x)dx. (5.35)
[luf]=1 llul|=1N R
ueD(A) ueD(A)

Mit der Folge {,} mit u, = 1 fir xe [n,n + 1] und u, = 0 sonst wird |Au,|
beliebig groB.

Selbstadjungiertheit: Stets war D(4) < D(4*) fiir symmetrische Operatoren. Es
sei v € D(A*) und A*v = v*. Dann gilt nach der Definitionsformel fiir adjungierte
Operatoren

CAu| vy = u|v*y (ue D(A)). (5.36)

Dies bedeutet
0 = [ [x(@(x) v(x) - a(x) v*(x)] dx
R

= | u(x) (xv(x) — v*(x)) dx, (5.37)
R
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insbesondere fiir alle u € C=(R), folglich fast iiberall xv(x) = v*(x); da v*(x) € L*(R),
ist xv(x) € L*(R), also v € D(4). Somit ist D(4*) < D(A), also D(4) = D(A*).
Auch der Operator B mit
d%u

Bu=—m

D(B) = {ue C*(R)} = L*(R) (5.38)
tritt in der Quantenmechanik auf. Er fillt in die bei (5.27) behandelte Klasse. Als
Hj im Sinne von (5.17) fungiert W*-*(R). Wird D(B) = W**(R) und H = L*(R)
gewihlt, so ist B selbstadjungiert tiber /?*(R) und kann fortgesetzt werden zu B
mit D(B) = Hy = WY2(R).

Das Modell ,,Atomkern im Koordinatensprung, ein Elektron im Abstand r mit
der Ladung e und der Masse m sowie der Kernladungszahl 1 des Atoms* fithrt im
R? auf den Hamilton-Operator

@u——(h24+ez)u (h— k66210727 er s) (5.39)
= m r BT es) :
In der Klammer steht ein elliptischer Differentialoperator. Etwa bei homogenen
Dirichlet-Randvorgaben ist er halbbeschrinkt (s. 5.1.6.), also tiber den Friedrichs-
schen Formalismus fortsetzbar zu einem selbstadjungierten Operator 9.

5.1.4. Instationiire Zustinde und Schrodinger-Gleichung

Es sei $ der (selbstadjungierte) Hamilton-Operator (vgl. 1.2.3.) eines quanten-
mechanischen Systems. Befindet sich das System zur Zeit 7 = 0 im Zustand # € D(9),
[#] = 1, so gilt, daB sein Zustand zum Zeitpunkt # > 0 durch u(r) mit [[u(t)| = 1,
u(+) € D(D) gekennzeichnet ist, wobei u(r) fiir 1 > O der abstrakten Differentialglei-
chung (Schrodinger-Gleichung)

u(t) = —ih~'u(r) (5.40)
geniigt. Zusammen mit der Anfangsbedingung u(0) = # ist (5.40) ein abstraktes
Cauchysches Anfangswertproblem.

Die Losung dieses Cauchyschen Anfangswertproblems ist eindeutig bestimmt und
gegeben durch [vgl. (5.51) und (5.99)]

u(t) = e %, ¢ >0, (5.41)

Der Operator rechts in (5.41) kann [vgl. (3.28)] als Potenzreihe nach den Potenzen
von $ dargestellt werden:

[>¢]
i = (2 %A")ﬁ, A= i1, (5.41")
k=0 K!

wobei die Konvergenz geméB (3.43) zu verstehen ist und die Reihe (,,in der Operator-
norm®, also erst recht fiir jedes sie H konvergiert [vgl. auch (5.51)] .

Stationaritat von # bedeutet: Der Anfangszustand des Systems, charakterisiert
durch #, dndert sich nicht mit der Zeit. Da e"*® 3 mit «(¢) reell, endlich, denselben
eindimensionalen Unterraum wie #, also denselben Zustand erzeugt, ist die Gleichung

e—ith=15 5 — eiat) (5.42)

notwendig und hinreichend fiir Stationaritat.
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Wir wollen (5.40) deuten. Fiir das bei (5.39) beschriebene Modell lautet (5.40) fiir
Funktionen u € D(9), wobei u jetzt noch von der Zeit abhingt,

s h?
ih = — WAM + V(x)u, (5.43)

und da 9 iiber die Friedrichssche Fortsetzung eindeutig bestimmt ist, miissen die
quantenmechanischen Informationen schon in (5.43) enthalten sein. Man kann
Losungen in Gestalt von Fourierreihen nach den orthonormierten Eigenfunktionen
(= stzationﬁren Zustanden!) w,(x) und Eigenwerten 4, des Operators Lu =

- —%—Au + V(x) uerhalten, wenn man, wie bei einer parabolischen Differentialglei-

chung in dem zylindrischen Gebiet [0, 7] x G, ein Randanfangswertproblem stellt, etwa
u(0,x) = u(x) (xeG, Zeit t = 0),

5.44
u(t,x) =0 (20, xe0G). (©.44)

Es ist dann k
ut;x) = 2 <yl iy e A () (5.45)

eine formale Losung (und sogar klassische Lésung bei #(x) € C%(G) und hinreichend
glattem Rand 0G); [38], [14/4].

Diese Deutung von (5.40) bezog nicht den erweiterten Operator $ ein. Dazu be-
trachten wir folgende, von einer Variablen ¢ abhidngige Menge von Elementen u(f)
eines Hilbertraumes H: {u(t) | u(t) € H fiir jedes t € (x, f) mit —o0 < & <f < +o0}.
u(t) heiBt auch Funktion von 7 mit Werten in einem Hilbertraum. Diese heilt stetig
im Punkte y € (x, f), falls es zu jedem & > 0 ein 6 = d(¢) > 0 gibt mit

[u(®) = u@)]l <& fir |y —1] < de); (5.46)
sie heiBt stetig differenzierbar in y, falls ein Element u'(y) € H existiert mit
i [P =) e
B0 h

=0 (5.47)

und #'(t) auch in einer Umgebung von y existiert und in y stetig ist.

Wir betrachten nun folgende Aufgabenstellung: Es seien ein selbstadjungierter
Operator 4 und ein Element @ € D(4) gegeben. Weiter werde das Intervall [0, o)
betrachtet. Gesucht sei eine stetige und stetig differenzierbare Funktion') u(f), die
fiir jedes t € [0, c0) im Definitionsbereich von A4 liegt, bei # = 0 den Wert # an-
nimmt und so beschaffen ist, daB «'(¢) fiir jedes # gerade gleich i4u(z) ist. Wir wollen
also die folgende Aufgabe 16sen:

Verallgemeinertes Cauchysches Anfangswertproblem
u(t) e D(A) firalle >0, u(0) =,
u'(t) = idu(t). (5.48)

Eine weitere Verallgemeinerung wére ein von ¢ abhingiger Operator A (vgl. [23],
parabolische Differentialgleichungen).

1) In ¢ = 0 sind dann (5.46), (5.47) rechtsseitig erfiillt.
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Satz 5,2 (Existenz- und Unitiitssatz): Aufgabe (5.48) besitzt genau eine Losung. Sie
ldpt sich in der Form

ut) = e, 0=1<ow, ' (5.49)

darstellen. Die Operatoren e*i'4 sind unitdr. Die Losung hingt stetig von den Anfangs-
werten ab [36, S. 280].

Es sei 4 ein Operator mit reinem Punktspektrum, und das System der Eigenfunktionen ¢, zu
den Eigenwerten ;, 4,, ..., sei vollstindig. Dann ist fiir y € D(A4)

Ay =2 Ape | 4> o = 2 {Ape | > o«

=2 4] 7> i (5.50)
Fiir den Operator e'*4 gilt dann (fiir jedes ¢ = 0)
eltdy =3 e {gy | ) . (5.51)

Diese Reihe konvergiert im Sinne der Norm. Es ist D(e'*4) = R(e'**) = H. Man erkennt sofort,
daB e'*4 unitér ist:

et 4yl> =33 e“(l“—,’") @i 1> e | ) <@y | 91>
ik ‘
=3 Kes |12 = IyI? (5.52)
J
wegen der Vollstindigkeitsrelation. Unter Verwendung von (5.47) und der Tatsache, daB A mit

el*4 vertauscht werden darf, erkennt man, daB u(¢) in (5.49) der Differentialgleichung (5.48) geniigt.
Nachweis der stetigen Abhéngigkeit von den Anfangswerten: Es seien uo(f) und u,(f) die Losun-

[ 1
gen von (5.48) mit u(0) = u bzw. u;(0) = u. Dann ist wegen (5.52)
lluo(t) = usy (Ol = llup — uyll (2 > 0), (5.53)
und somit ist die Losungsdifferenz klein, wenn die Differenz der Anfangswerte klein ist.

Die Gl. (5.48) ist die abstrakte Fassung der Schrédinger-Gleich der Q heorie [vgl.
(5.40)].

5.1.5. Beziehungen zur quantenmechanischen Streuung. Unschirferelation

Es sei  der selbstadjungierte Hamilton-Operator eines quantenechanischen
Systems; f€ D() mit | f| = 1 sei der Zustand des Systems. In (1.95") war (9f|f)
gerade der quantenmechanische Mittelwert der Energiemessung. Die Streuung wird
dann (wie in der Wahrscheinlichkeitsrechnung, vgl. auch Bd. 17) durch

d*(f18) = 18 - B 1> 11 (5.54)

definiert. Eine ,,scharfe* Energiemessung ist fiir einen Zustand moglich genau dann,
wenn gilt 6> = 0:

& =<SfINS. (5.55)

Dies bedeutet, daB f Eigenwert von 9, also stationdrer Zustand ist. Man gelangt
mit dem Streuungsbegriff (5.54) in folgender Weise funktionalanalytisch zur Heisen-
bergschen Unscharferelation: Es sei fmit || f|| = 1 der Zustand eines quantenmechani-
schen Systems, und A, B seien zwei beobachtbare GréfBen, also zwei lineare selbst-
adjungierte Operatoren. Es sei

e D(4) ~ D(B), Af € D(B), Bf € D(A). (5.56)
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Dann ist ([36, S. 474])

o(f|4) o(f|B) 2 IK(BA — AB)f| /). (5.57)
Ist nun (BA — AB) f = of (¢ komplexe Zahl), so folgt
o(f]4) o(f|B) 2 Helf 171 = lel. (5.58)

(5.58) mit ¢ + 0 zieht nach sich, daB ein f [welches (5.56) geniigt] nur existieren
kann, wenn o'(f/A) und o(f/B) nicht verschwinden. f kann dann nicht Eigenelement
von A oder B sein, bzw. im f entsprechenden Zustand des quantenmechanischen
Systems kann weder 4 noch B scharf gemessen werden.

Die praktische Bedeutung liegt darin, daB fiir einen Zustand f, firr den die be-
obachtbare G168e A eine Messung mit kleiner Streuung o( f/4) erlaubt, die Streuung
a(f]B) die Relation (5.58) erfiillen muB. Fiir den Fall des Oszillators (4, B seien die
der Impuls- bzw. Ortskoordinate zugeordneten Operatoren)

=xf,  D(B)={f|feL*(R),xfeL*(R)}, (5-59)
Af = E% ,  D(4) = W'*(R)) (5.60)
ist dann fiir fe (f°°(R)
- apr=2x8 Ly Dy (s:61)
in die rechte Seite von (5.57) einzusetzen, so daB sich
o(f]4) o(f]B) =z 3h, (5.62)

also die bekannte Unschiirferelation ergibt.

5.1.6.  Fortsetzung elliptischer Differentialoperatoren
T sei ein partieller linearer selbstadjungierter Differentialausdruck 2. Ordnung,
der in einem beschrinkten Gebiet £ mit stiickweise glattem Rand 02 elliptisch ist:

Tu= — Z (a,k(x —a—u> + cu, c=c(Xy, .0y x,) 20, (5.63)

mit @ € CA(2), c e CR(Q), Y ap(Xys ooy X0) M 2 0 X A2, (ay) = A (symmetrisch,

u> 0). i=1
Als u kann das Infimum p* der Eigenwerte der quadratischen Form A74(x) 4 Vx
dienen, falls u* > 0 ist. Als Randbedingung sei u(x) = 0 (x €02) gestellt. Damit ist
D(T) = {u|ue Cy®), u =0 fiir x €02} (5.64)

dicht in LE(Q). T ist dann symmetrisch, wie aus der Greenschen Formel')
0 0
f...f(vTu—uTv)dx— - f...f(ku—usﬁv)df, (5.65)
22

folgt, wobel—awdle Konormalenableitung

0 0

V= Zoc,ma—;_—, & = Ek:aki cos (n, x;), (5.66)

1) Vgl. Bd. 5 und 8.

9  Gopfert, Funktionalanalysis
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und n die AuBennormale beziiglich 02 ist. T ist aber auch halbbeschriinkt in L3(2),
denn es ist (partielle Integration)

(Tu|ud =ff(— %‘;blxt(aiksbx—ku)u+cuu) dx (5.67)
N ;

ou
par:In( f f(i,zkaih 0Xy
Q

und wegen der Elliptizitit A7TA4 = pu||? folgt
Tuluy zp [ [TluglPdx + [ [ e, oo x,) u? dx (5.69)
Q2 2

)ux, + cuu) dx + 0, (5.68)

und hieraus wegen der Ungleichung von Friedrichs und ¢ = 0 die Halbbeschrinkt-
heit.
Die Ungleichung von Friedrichs lautet ([36], [28])

[ Jur(x) dx < comst [ ... [ ¥ uk(x) dx. (5.70)
Q Q

Die Bildung der Fortsetzung nach Friedrichs gestattet leicht, Aussagen tiber das
Eigenwertproblem zum 1. Randwertproblem zu machen: Es lautet

Tu —Ju =0 im Gebiet 2mitdQ2 =S,  u(S) =0. (5.71)

Zu T sei T die Friediichssche Fortsetzung (T ist ein Operator mit reinem Punkt-
spektrum, der Raum Hy ist gleich Wg2). T hat eine lineare selbstadjungierte voll-
stetige Inverse G. Wendet man G auf die mit T’ gebildete Eigenwertgleichung an, so
erhdlt man 76, 0, (s) =0. (5.72)

Dieses EWP ist vollstindig zu iibersehen, da G vollstetig ist. Die Eigenwerte (4;)
von (5.72) haufen sich also héchstens bei 0, sind reell, haben endliche Vielfachheit,
Eigenfunktionen zu verschiedenen Eigenwerten stehen orthogonal zueinander, und
es gilt der Fredholmsche Alternativsatz (s. 3.3.2. und 3.3.1.3.).

Es ist interessant, daB das System der Eigenfunktionen volistiindig ist, denn G besitzt eine Inverse:
Gy = 0= @ = 0. Deshalb gilt, daB wirklich unendlich viele Eigenfunktionen da sind, da der Grund-
raum L} unendlichdimensional ist. Ein zugehdriges vollstindiges ONS kann man zur Losung der
Gleichung

Tu— Ju= (5.73)
bei gegebenem g € L} (.Q) anwenden:

Es sei 4 nicht Eigenwert und {4;} das System der Eigenwerte, {g,} das System der Eigenfunk-
tionen als ONS. Fiir die gesuchte Losung u von Tu — Au = g machen wir folgenden Ansatz:

u= '21 {pj |l u) @;. (5.74)
j=

Da G ein beschrankter linearer Operator ist, folgt
Gu =3 ;| uy Gp; =3 {p; | w) 27" ;. (5.75)

Da die inhomogene Operatorgleichung erfiillt sein soll, ergibt Einsetzen in die mittels G umgeformte
Gleichung u — AGu = Gg

1
YAy luy gy =AY g5——<o; | u) = Gg,
7 T
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und nach Skalarmultiplikation mit ¢;, i = 1,2, ..., erhilt man
1
Z<% Lo <ps 1wy — 12 {g;! ”>T<¢1 95> = <pi | Gg>.
i i j

Die Orthonormalitiit des Systems {@;} ergibt
Cpilwy (U= 271 ={pi 1 Gg) (i=1,2,..);
durch Koeffizientenvergleich mit dem Ansatz folgt

| G
-5 @ ;2 P G,

und wegen der Symmetrie von G und Gg; = 7'¢; erhilt man schlieBlich

{pilg>
Z h—a (5.76)

Im Falle, daB 2 = A* Eigenwert ist, muB laut Theorie (Fredholmscher Alternativsatz, Satz 3.15)
mit der rechten Seite Gg der umgerechneten Eigenwertgleichung gelten (damit eine Losung existiert)
{Gg|g*)> =0 firalle ¢* mit ¢* — AGg* = 0. (5.77)
Dies heifit:
0= <{Gglg*) =g |Gp*) = <g

1
F"’*> =<gl¢*, (5.78)

also g L ¢* Das ist die Losbarkeitsbedingung fiir elliptische Differentialgleichungen bei Vorhanden-
sein von Eigenwerten bei der homogenen 1. Randwertaufgabe.

Das Spektrum von T (erst recht das von T) ist ein reines Punktspektrum, da das
Lésen von Tu — Au = g mit dem Lésen von u — AGu = Gg gleichwertig war. Nun
gehért in der Gleichung uu — Gu = 0 zwar u = 0 als Haufungspunkt der Eigen-
werte zum Spektrum, ist aber nicht Eigenwert, da Gu = 0 nach sich zieht u = 0.
Da fiir T die u~* die Eigenwerte sind, hat T reines Punktspektrum.

Ist also A nicht Eigenwert Z;, so ist Tu — Au = g fiir jedes g l6sbar. Folglich ist
fiir 4 + A; die Resolvente R, = (T — AI)~! iiberall erklirt. Sie ist auch beschrinkt:

Die Losung von Tu — Au = g fiir 2 (nicht Bigenwert) lautete:

_ 2Ll
K=t A — A

weil R, = (T — AI)~'. Da {g,} vollstindig ist, gilt fir g,

7= Rig, (5.76")

g= 2 Aol & o>
k=1
die Vollstandigkeitsrelation [= Parsevalsche Gleichung, vgl. (2.66)]:
gl =k§l Kew 1%
In der Losungsdarstellung (5.76) ergibt Normbildung
2 Kol @l?
2 < 2
Ii® £ 3 G Ll (5.79)

9%
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Nun sei mm |A — 2| =d (A fest, 2 nicht Eigenwert). Dann ergeben die beiden
letzten Resultate
K% | g>|

b 1
IRgl? = llul® = P lgl? (g eLr(©),

also
R, = d'. (5.80)

Folglich gehoren alle 4 zur Resolventenmenge, nur die Eigenweite nicht. (Das gilt
auch fiir komplexe 4, g € L*(£2), s. [24].) Eigenwertprobleme fiir elliptische Diffe-
rentialoperatoren treten z. B. bei Eigenschwingungen einer eingespannten Membran
auf [35/2].

5.2. Spektralzerlegung selbstadjungierter Operatoren in Hilbertriumen
5.2.1.  Vollstetige Operatoren

In separablen Hilbertraumen H gilt fiir vollstetige, vom Nulloperator verschie-
dene, symmetrische Operatoren 7: H — H der Entwicklungssatz (s. auch Sitze 2.39
und 3.22): Ist A = 0 nicht Eigenwert, so ist das zu den Eigenwerten 4; % 0
(j=1,2,...) gehorige Orthonormalsystem von Eigenfunktionen {¢;} vollstindig.
Fir jedes u € H gilt

u= T g lwe,  Tu= 5 ALp 0 (5.81)
F il J=

Wir formen die Reihendarstellung von u um, um eine Gestalt zu erhalten, die auch
allgemeine (d. h. 7 nur selbstadjungiert, H beliebiger Hilbertraum) Giiltigkeit hat.
Dazu fiihren wir folgende Operatoren E, ein, wobei 4 ein reeller Parameter sei:

Bu= 3 <pilwyy;, weH). (5.81")

Offenbar ist E, fir A < —||T| der Nulloperator, denn der Spektralradius von T
ist |7]|. Ebenso erkennt man E, = I, falls A > |7 ist, denn wegen der Vollstindig-
keit ist fur A > | T

0
Eu = Z] $pjluy g; =Tu=u.
j=

Deshalb hei3t die Schar der Operatoren E; eine Zerlegung der Einheit. Diese Opera-
toren E, haben bemerkenswerte Eigenschaften:

a) Sie sind (fiir jedes 1) linear, symmetrisch, itempotent, d. h., E;(E;u) = Eu fiir
jedes u € H, und es ist Ey(E.(u)) = Eyinca (). E; ist Projektionsoperator von H
in R(E,); es gilt liberdies | E;| = 1, ferner ist E, positiv (denn {E;u | uy = || Eu|? = 0).

b) Die Funktion p(4) = {E,u | u) fiir jedes (beliebige) u € H,und —c0 <1 < +c0
ist eine Treppenfunktion mit (hochstens) abzahlbar unendlich vielen Sprungstellen:

<2 @iy 9 5 <ol uy ¢k>
51 K=
T Koy lwl?, (5.82)

=
Py

o) = (Eu|uy
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und fiir 4 = 2 ist
ow) — o) = T Ke;jlw]z0; (5.83)
i<l;su
es ist also o(4) eine monoton wachsende Funktion (und g ist rechtsseitig stetig:
lim o(2) = 0(4)).

7oA +0
Fiir stetige Funktionen f(4) existiert somit das Stieltjes-Integral [14/2] mit der Be-
legungsfunktion o(2):
b
[ £72) do(2). (5.84)
a

Es gilt nun der umgeformte Entwicklungssatz [vgl. (5.81)]:

Satz 5.3: Fiir jedes v € H (0 ist nicht Eigenwert von T, sonst s. Satz 5.4) ist
il Iiil )
Tuluy = | Adod) = | AdEu|up. (5.85)
-1i7iI-0 -lirli-o0 .
Man schreibt kurz (und diese Kurzschreibweise 1aBt sich ebenso durch einen Zer-
legungsprozeB wie bei einem Stieltjes-Integral erkldren [16]):
i) 5]
T= | 4dE;: Tu = | Ad(Eu). (5.86)
-|IT-0 —ITj|-0

Da im Stieltjes-Integral in (5.84) nur die Sprungstellen von o einen Anteil zum
Integral liefern (weil o eine Treppenfunktion nach (5.82) ist), wird 7 in (5.86) genau
durch seine Eigenwerte, also sein Punktspektrum (o(7) = op(T) v {0}, vgl. Satz 3.13)
bestimmt. Der Satz heiflt daher auch der Spektralsatz, die Darstellung (5.85) bzw.
(5.86) die Spektralzerlegung von 7 und die Schar {E,} die Spektralschar von 7.

5.2.2.  Selbstadjungierte Operatoren in Hilbertriumen

Analog gilt fir selbstadjungierte nicht notwendig beschrinkte (vgl. Def. 3.17 und
Abschnitt 5.1.1.) Operatoren T

Satz 5.4 (Aligemeiner Spektralsatz in Hilbertriumen')): Ist T ein selbstadjungierter
Operator mit D(T) < H, R(T) < H, so gibt es eine eindeutig durch T festgelegte
Spektralschar {E,} mit den Eigenschaften

a) wie im vollstetigen Fall.

b) o(A) = (Eu|u) ist fiir jedes u e H monoton wachsend, rechtsseitig stetig, und
es ist lim o(4) = 0, lim o(2) = ||[ul|* (o wird i. allg. nicht mehr Treppenfunktion

Ao — 0 s+ w
sein). Ferner ist fiir jedes reelle p: E,.ou = lim Eu = E,u fir jedes ue H und
A-p+0
lim |[Eu| = 0. lim |Eul| = |u| fiir jedes u e H.
PR Ao+

1) Ein Beweis wurde zuerst von J. v. Neumann gegeben, s. a. [1].

S.5.3

S.5.4
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) Fiir alle u € D(T) gilt die Spektraldarstellung

(Tuluy = To Ad<Eu | u) (5.87)

-

oder auch analog abgekiirzt wie in (5.86) geschrieben.

Interessanterweise kann auch der Definitionsbereich D(T) durch das Stieltjes-
Integral mit o(4) charakterisiert werden; es ist nimlich

+o
ueD(T)< [ 2*do?) < oo, (5.88)
und es ist E;u € D(T) fiir jedes u € H und jedes 2 sowie
+ o
{Tu|vy = f Ad{Eu|vy (ueD(T), veH). (5.89)

-

Die Kenntnis der Spektralschar {E;} eines selbstadjungierten Operators 7' ge-
'stattet, die frither vorgenommenen Anwendungen der Funktionalanalysis in der
Quantenmechanik zu verallgemeinern, denn wir hatten uns in Kap. 4. stets auf
Operatoren mit reinem Punktspektrum bezogen. Ganz dhnlich wie bei beschrankten
Operatoren lassen sich tiber die Spektralschar {E,} jetzt die Begriffe Spektrum von T,
GroBe a Resolventenmenge usw. erklaren (vgl. [16], [1]; s. auch bei (5.110)).

5.2.3. Anwendungen auf die Quantenmechanik

A sei ein selbstadjungierter Operator, der eine beobachtbare GroBe a der Quanten-
mechanik beschreibt. Befindet sich nun das quantenmechanische System im
Zustand a, so ist der quantenmechanische Mittelwert beziiglich der beobachtbaren
GroBe a durch {Au | u) definiert. Es ist daher

+ 00
CAu|u)y = J Ad{Eu|uy, (5.90)
-0
wenn {E,} die zugehorige Spektralschar ist; es muB folglich, o(4) als Verteilungs-
funktion einer ZufallsgroBe a betrachtet, sein:

P(4; [, L w) = {(Ep — Ex) uuy, (5.91)
wenn links die Wahrscheinlichkeit dafiir steht, daB die Messung der dem Operator A

zugrunde liegende physikalische GroBe a im Zustand u zwischen « und f liegt. Die
Sprungpunkte von E, (d. h. A mit lim E,u + E,u) sind gerade Werte von a, denen
A-i=0 =

stationdre Zustinde (normierte Eigenvektoren von A) entsprechen, denen also eine
Wahrscheinlichkeit {(E;, — E,_o) | u) > 0 zukommt.

Als Beispiel studieren wir den Operator 4, der der Ortskoordinate ¢ zugeordnet
wird: Ist der Definitionsbereich D(4) = {u € L*(R) | tu(t) € L*(R)}, so ist A selbst-
adjungiert, jedoch nicht beschrinkt [s. (5.35)]. 4 hat keine Eigenwerte, denn wire
fur fast alle ¢

(4 = A)u(t) = (t — Hult) =0, (5.92)
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so folgt (2 fest, reell) u = o € L?>(R). Trotzdem muB der Spektralsatz gelten. Wir
erraten die zugehdrige Spektralschar:
Eu = (-0, ) u, (5.93)

wobei y(—o0,4) die charakteristische Funktion (s. Text vor Def. 1.12) fiir das
Intervall (— oo, 4) ist. Tatséchlich ist auch

+ o + 00 + 0
[ 2dEuluy = | ld( / x(—oo,l)ﬁ(f)u(f)df)

- ~+w A
/ zd( I lu(§)|’d£>
+ 0

[ Hui? da

-

-®

+o
| thu()? dt

-

{tuluy = CAu|u). (.5.94)

o(#) ist somit in diesem Beispiel von der Gestalt

A
o) = [ |u@)?d&

und offenbar monoton wachsend. Es kann keine Eigenwerte geben, denn
lim [(E; — E;_s) ul®
540
= lim ||[y(=o0,2) — z(= 0,2 = 0)]ul*
540
A

= lim |30 — 0, ) ul?=1lim [ Ju@Pdé=0, (5.95)
040 5=0,%,

weil das Lebesgue-Integral stetig von der Lange des Integrationsintervalls abhéngt.
Auch (5.88) 148t sich explizieren, denn wegen

f 4o
D(A) = {u [ 22 d|Eul? < oo}

4+ p
- {u [72d [ @) ds < oo}

+ o
[ 22 @) dr < oo}

={u

erhilt man gerade fu(t) e L wie in (5.34).
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Quantenmechanisch gedeutet heifit (5.95), daB der beobachtbaren Grofie 4 kein
stationdrer Zustand zukommt. Eine Wahrscheinlichkeit ist aber wie in (5.91) fiir
jedes (abgeschlossene)') Intervall (und einen Zustand u € D(A4)) angebbar:

P(4; [&, f, u) = {(Es — E)u|uy

+ 0
[ ale, Bl u(®)]? d&

B
[ lu@)? dé. (5.96)

a

Man erkennt so auch 0 < P < 1, da u als Zustand stets mit [u| = 1 anzusehen war.
Als quantenmechanische Streuung der beobachtbaren GroBe im Zustand u ergibt

sich wegen (¢ stiickweise stetige Funktion)

+ o0

[ o d(Ew

-

2 +o
= | le®I* d|Eu|?:

-

2

o*(u/A) = (4 = (Au|u) Du|? = {

| G = CAu | uy) d(E;u)

|
+ 00
= [ |4 = <Au| up|Pd|Eul?. (5.97)

Man erkennt weiter leicht, daB im Falle 4 = $ von 1.2.3. aus (5.96) wieder die
Interpretation der |¢;|*> wie im Text nach (1.94) folgt. Denn man setzt die Spektral-
schar aus (5.81) ein und erhilt mit & = 2; (Eigenwert) wie in (5.82)

P(3; [Z'_Z—U’ }g]s u) = —(Ejo — Ejuluy = [Kul ‘P_j)[z = IQ|2~ (5.98)

SchlieBlich kommen wir nochmals zur zeitabhangigen Schrédinger-Gleichung.
Jetzt konnte im Beweis des Existenz- und Unititssatzes auf die dort gemachte Ein-
schriankung eines reinen Punktspektrums verzichtet werden, wenn mit der Spektral-
darstellung eines Operators wie in (5.87) gerechnet wird.

Dem Operator e~'*4 entspricht dann mit {E,} als Spektralschar von A

eitdy = f et d(E,y). (5.99)

-

5.2.4. FEigendifferentiale

Wenn man die Spektralschar zu einem Operator kennt, so ist also die quantenmechanische Inter-
pretation vollstindig durchfiihrbar. Das Auffinden der Spektralschar ist aber in jedem Fall ein
schwieriges Problem. Wir haben auch nur fiir den vollstetigen Fall allgemein und fiir den Orts-
operator die Spektralschar angegeben (5.81%), (5.93). Als weiteres Hilfsmittel zur Analyse von Opera-
toren dienen die sog. Eigenpakete, die auch Wellenpakete oder Eigendifferentiale werden.
Sie stehen in enger Beziehung zur Spektralschar. Wir betrachten wieder einen selbstadjungierten
(eventuell sogar nur symmetrischen) Operator 4 mit D(4) S H, R(4) & H. Wir fassen eine feste
Stelle 4, € R ins Auge. Gibt es ein vom Parameter 4 € R normstetig abhingiges Element @; € D(4),

1) Unwesentlich, da ¢ stetig ist fiir den Operator A.
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welches fiir 2 = 2o mit dem Nullelement zusammenféllt und dessen Bild unter A sich durch Stieltjes-
Integration tber die reelle Achse von 4y (Bezugspunkt) bis A darstellen 14Bt:
i
AD, = J’ wdd,, (5.100)
%o
50 heiBit @; (—0 < 4 < +00) ein Eigenpaket. Fiir einen Eigenvektor ¢ zum Eigenwert 2 von A
wiirde Ap = Ag gelten; (5.100) bedeutet, daB AP; mit allen @, (von A, bis ) darstellbar ist.
Das Rechnen mit Stieltjes-Integralen gestattet, (5.100) umzuformen:
2
AP, =19, — [ B, dp, (5.101)
AO
und diese Gleichung zeigt, daB8 @; nicht Eigenvektor ist fiir festes 2. Man kann aber (5.101) auch
in Differentialform schreiben, denn

i i
[ wd@, — D) = (D~ 19;) - | D, dp, (5.102)
7o o

und formal in 1. Ndherung (das Integral rechts verschwindet von hoherer als 1. Ordnung) ist
AdDy) = AdPy), (5.103)

woraus der Name Eigendifferential abgeleitet ist.

Der Zusammenhang zur Spektralschar {E;} von A, wenn A selbstadjungiert ist, ist in folgender
Weise herstellbar [16]: Man 16st die Sprungstellen aus {£;} heraus (denn @; ist normstetig, {E;} hat
Sprungstellen). Dies geschieht in folgender Weise: Da o(4) = {E;u | u) rechtsseitig stetig und
monoton wachsend ist, 148t es sich als Summe einer Treppenfunktion 7(4) und einer stetigen mono-
tonen Funktion o(4) darstellen [14]. Entsprechend sei

E=T,+S; (5.104)
mit
=X (Ezy = Eij-0), (5.105)
Eh
Si=E— Y (Elj - E;_j_o) =E, —-T, (5.106)
e

wobei die /; die Eigenwerte von A sind. Dann gilt [16]

Satz 5.5: Ist A selbstadjungierter Operator mit D(A) < H und u € H ein beliebiges Element, so ist S.5.5
Dy = (S, — S u (5.107)
ein Eigenpaket von A in D(A) beziiglich Ay . Ist ®, ein Eigenpaket von A beziiglich Ay, so kann es in
Jjedem Intervall —c0o < o < A = fi < 00 mit x = g =< f durch
D, = (S)= S3,) (Pg — D) (5.108)
dargestellt werden.

Eigenpakete kann man im allgemeinen einfacher finden als die Spektralscharen. Ist z. B. 4 ein
symmetrischer Differentialoperator mit leerem Punktspektrum!) und @(x, Z) = 0 eine Lsungs-
schar von Au = Au mit —c0 < 2 < +00, so muB [lpll,, = oo fiir jedes A sein, denn sonst wire ¢
Eigenfunktion fiir festes 2. Dann kann man versuchen, Eigenpakete in der Form

2
D, = f @(x, w) dpe (5.109)
)'0
oder auch in Form eines Stieltjes-Integrals zu finden.

d " N
1) Zum Beispiel Ay = ih~* e dann ist Ay = Ay durch y(x, ) = e7ih2x [gsbar fiir jedes 2,

aber|lyll L2(r) = + c0. Durch einen IntegrationsprozeB &hnlich (5.109) werden dann ,,Wellenpakete*
in der Quantenmechanik aufgebaut. (siche z. B. [10, Aufg. Nr. 2]).
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Beispiel 5.3: Der schon bei (5.92) behandelte Multiplikationsoperator A hat leeres Punktspek-
trum, und jedes reelle A gehdrt zum Stetigkeitsspektrum.
Die Spektralschar war nach (5.93)
{Ez} = {(— 0, M)}, 2eR (5.110)
wobei auch rechts Operatoren stehen.
Wir bestimmen ein Eigenpaket zu 4, = 0. GemiB (5.104) ist E; = S;, gemiB (5.107) ist
Dy = (S — Spo) u = [x(—00,2) = 7(—00,0)] u (5.111)
= +(sgn ) x4, 0) u,
also

Vs (sgn 4) u fiir x zwischen 0 und 2

7 }—oo<;.< 0. (5.112)

70 fiir die sonstigen x.
Wir wenden zur Kontrolle 4 auf @; an; @; liegt offenbar in D(4). Es sei 4 > 0. Dann ist bei festem x
i 2 2
[ nad, =10, — [ ,du= +i3G,0u~ [ x(n,0mdp
o 0 0
2
= 470, 0) u — < [ dﬂ) 20,0 u
x
= 42,00 u — (A — x) 7(4,0) u
= xy(4,0) u

= 4d,. (5.113)

5.3. Weitere Anwendungen von Operatoren

Wir nennen hierzu noch Problemkreise, die in den naturwissenschaftlichen und
ingenieurtechnischen Anwendungen groBe Bedeutung haben.

(1) Ergodensiitze

Die Ergodentheorie befaBt sich mit der Existenz von Grenzwerten zeitlicher Mit-
tel und Darstellungsmdéglichkeiten dieser Grenzwerte. Ein einfaches Beispiel ist:

Zum Zeitpunkt ¢ = 0 sei der Zustand eines Systems durch x € H, ||x| = 1 dar-
gestellt. In den folgenden diskreten Zeitpunkten » = 1, ... werde der Zustand durch
U"x beschrieben, wobei U ein in H unitirer Operator sei. Dann besagt eine Variante
des Ergodensatzes von von Neuman, dal im Normsinne gilt

1 N=1
lim — Y U"x = Px, (5.114)
N-oo n=0
wobei P die (orthogonale) Projektion von x in den Raum der Eigenvektoren von U
zum Eigenwert 1 ist. Links in (5.114) steht der Grenzwert des zeitlichen Mittels tiber
die Zustinde langs einer Trajektorie. Einen kurzen Beweis von F. Riesz findet man
in [15]. Weiteres siche z. B. in [29], [8, Bd. 2].
(2) Ritzsches Verfahren
Oft lassen sich Bestimmungsgleichungen fiir eine GréBe x eines reellen separa-
blen Hilbertraumes H in der Form Tx = y (y € H, y gegeben) schreiben, wobei 7T ein
linearer stetiger selbstadjungierter halbbeschrinkter Operator mit D(T) = H ist.
Dannist R(T) = H, und es existiert fiir festes y e H eine eindeutige Losung x* (s. [40]).
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x* ist (s. 5.1.2.) eindeutige Minimalstelle von

F(x) =<{Tx|x) — §&x |y (5.115)
Jede Minimalfolge, d. i. eine Folge {x,} mit
lim F(x,)= inf {F(x) | x € H} (5.116)

erfiillt wegen (5.115)

lim F(x,) = inf F(x) = min F(x) = F(x*)

nooo xeH xeH
und konvergiert unter unseren Voraussetzungen an 7 sogar selbst (in der Norm von
H) gegen x*. Eine solche Minimalfolge gewinnt man folgendermaBen (Ritzsches Ver-
fahren): Es sei {g,} ein vollstindiges ONS in H. Man betrachtet nun eine echt auf-
steigende Folge endlichdimesionaler Raume H, < H, < ... £ H, dabei ist H, der li-
neare Teilraum von H, der aus den ersten # Elementen des ONS gebildet werden kann.
Auf jedem H, bestimmt man ein minimales Element x, von F. x, ist unter unseren
Voraussetzungen an T eindeutig bestimmt, wird durch Losen eines linearen Glei-
chungssystems gewonnen, und es gilt

F(x*) £ ... £ F(x)) £ F(Xy_1) £ ... £ F(x,) £ F(x,). (5.117)

Die Folge {x,} ist eine Minimalfolge (Beweis s. [40]).

Ist T'nur symmetrisch und halbbeschrankt aber nicht beschrinkt, so ist D(7') in der
Regel nur eine dichte Teilmenge in H. Dann gilt: Fiir jedes y € R(T) existiert eindeu-
tig eine Losung x,€D(T) von Tx =y, und x, minimiert F iiber D(T) eindeutig;
jede Minimalfolge {x,} (x,€D(T)) von F konvergiert gegen x, (in der Norm von
H). Das Ritzsche Verfahren zur Gewinnung einer Minimalfolge muB jetzt D(T) = H
beriicksichtigen und ist in [40] erkldrt. Fiir weitere Anwendungen und die Verfah-
ren von Trefftz und Galerkin s. [42].

(3) Finite-Elemente-Methode

In (2) wurde zur Approximation der Losung einer Operatorgleichung ein ONS
benutzt. Es bildet eine Basis des benutzten Raumes. Als Basis kann man auch stiick-
weise polynomiale Funktionen benutzen (finite Elemente), die in der modernen
Numerik eine hervorragende Rolle spielen. Man gewinnt sie, indem das Grund-
gebiet £ des zugrunde liegenden Funktionenraumes geeignet trianguliert wird, und
dann (etwa durch Vorgabe von Funktionswerten in den Eckpunkten und auf Punk-
ten der Seitenflichen der durch die Triangulation entstandenen Teilbereiche) auf
jedem Teilbereich, Polynome festgelegten Grades bestimmt werden. Zum Verhalten
des Ritzschen VErfahrens bei solchen Basisfunktionen, angewendet auf das erste
Randwertproblem der elliptischen Differentialgleichung du = —fin 2, u = 0 auf
00, ue W), fe L,(Q) vgl. [41/11; S. 47]. Weiteres z.B. in [51].
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