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Vorwort

Während der Student zu Beginn der Diflerential- und Integralrechnung in der
Regel bereits über Grundkenntnisse in diesen Stofigebieten verfügt, tritt er in das
Studium der algebraischen Strukturen — hier speziell der Gruppentheorie — ohne
schulische Vorkenntnisse und ohne Motivierungen ein. Lehrveranstaltungen zu
Symmetriegruppen vor Chemikern haben gezeigt, daß dieser Start zudem u. a. mit
Schwierigkeiten bei der stärkeren Hinwendung zu begrifilichem und strukturellem
Denken — besonders hinsichtlich des Abstraktionsvermögens — verbunden ist.

Die den Gruppenbegrifi" betreffende naturwissenschaftlich orientierte Literatur,
die dem Studierenden gegenwärtig zur Verfügung steht, trägt diesem Umstand wenig
Rechnung. Deshalb haben wir uns im vorliegenden Band bemüht, Theorie und
„Praxis“ nicht nacheinander, sondern in gegenseitiger Durchdringung gleichzeitig
zu entwickeln. Dabei werden Begriffe, Operationen, Strukturen usw. im wesentlichen
von einem immer wieder benutzten, genügend repräsentativen Beispiel abgeleitet
oder an diesem ausprobiert und erläutert. Deshalb sollte der Abschnitt 2.3.1. auf-
merksam durchgearbeitet werden. In ihm wird dieses Beispiel vorgestellt und dabei
in heuristischer Weise auf den Gruppenbegriff hingearbeitet. Die mit übermäßiger
Kürze in der Darstellung verbundenen Schwierigkeiten wurden anfänglich bewußt
vermieden- zum Nachteil der Reichweite dieser Einführung in die Theorie. Für wei-
tergehende Studien steht ausreichend Literatur zur Verfügung, die entsprechend zitiert
wird.

Daß wir die Hinführung zum Gruppenbegriff an Symmetriebetrachtungen für Mole-
küle bzw. Kristalle gebunden haben, beruht einerseits auf der Interessenlage in
der Chemie und Physik, bedeutet andererseits jedoch keine Einschränkung. Denn die
Kerngerüste von Molekülen bzw. die Kristallgitter können auch als Massenpunkt-
systeme oder geometrische Anordnungen betrachtet werden und sind in der Regel
sogar Standardfiguren der Stereometrie.

Die Beweistätigkeit steht, dem Zwecke dieses Bandes entsprechend, im Hinter-
grund. Die meisten Beweise wurden geführt, aufwendigere durch Literaturhinweise
ersetzt. Da in manchen anderen Darstellungen versäumt wurde, die Gleichheit zwischen
Symmetrieoperationen ausreichend zu klären, wodurch sich letztlich die Ordnung
von Symmetriegruppen nicht genau feststellen läßt, haben wir diesen Gesichtspunkt
besonders herausgearbeitet. An mathematischen Vorkenntnissen zum Verständnis
dieses Bandes genügt bis zum Kapitel 7. elementares Wissen, das im wesentlichen
in den Bänden 1 und l3 dieser Reihe zu finden ist. Das Studium von Kapitel 8.
bedarf an verschiedenen Stellen auch der Einsichtnahme in die zitierte Literatur.

Die Autoren danken dem Herausgeber, Herrn Prof. Dr. ManteulTel, Magdeburg,
sowie den Gutachtern, Herrn Prof. Dr. Engels, Leuna-Merseburg, und Herrn Prof.
Dr. Pazderski, Rostock, für hilfreiche Ratschläge zur Abfassung des Bandes, Frau
Ziegler vom Teubner-Verlag für die außerordentlich aufmerksame und kritische
Durchsicht des Manuskriptes und dem Verlag für sein Entgegenkommen in verschie-
densten Fragen.

Leipzig, im April 1980 Die Verfasser
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1. Anwendungsaspekte der Theorie

Der Studierende tut gut daran, das Studium der Gruppentheorie von vornherein
im Bewußtsein der Tatsache aufzunehmen, daß diese Theorie in der Hand des
Naturwissenschaftlers längst zu einem unentbehrlichen Instrument bei der mathe-
matischen Erfassung und Lösung verschiedenster Problemstellungen geworden ist,
insbesondere solcher, bei denen das Auftreten oder Fehlen von Symmetrien in einem
physikalischen System Einfluß auf dessen Verhalten nimmt. Derartigen Anwendungen
der Gruppentheorie liegt das von Neumannsche Prinzip‘) zugrunde:

„Wenn ein System eine gewisse Gruppe von Symmetrieoperationen besitzt, dann muß
jede physikalische Beobachtungsgräße dieses Systems ebenfalls dieselbe Symmctrie
besitzen.“

Auf dieser Grundlage lassen sich Z. B. die Eigenschwingungen eines Moleküls
klassifizieren und Aussagen über deren Infrarot- und Raman-Aktivität machen.

Die Übergänge zwischen den verschiedenen Zuständen eines physikalischen Sy-
stems können durch Auswahlregeln beschrieben werden. Ein Beispiel hierfür ist der
mit Strahlung Verbundene Übergang der Elektronen in einem Atom. Die Anwendung
der Gruppentheorie auf die Quantenübergänge liefert diese Regeln nahezu zwanglos.
Gruppentheoretisch beschreibbar sind auch die physikalischen Erscheinungen der
Aufhebung der Entartung von Energieniveaus unter dem Einfluß äußerer Störungen
bei gleichzeitiger Änderung der Symmetrie des physikalischen Systems.

In die Vielfalt der Elementarteilchen haben erst gruppentheoretische Betrachtun-
gen Systematik gebracht, und die Übersicht wurde so weit getrieben, daß neue Teil-
chen vorhergesagt werden konnten.

Bedeutsame Ergebnisse der Physik sind des weiteren durch gruppentheoretische
Untersuchungen in der speziellen Relativitätstheorie und der Quantenfeldtheorie
erzielt worden, _

Zum Gegenstand der Theorie der Symmetriegruppen gehört das Gebiet der Mole-
külsymmetrien. Wir wissen z. B., daß die optische Aktivität von Molekülen mit der
Frage zusammenhängt, welche Punktsymmetriegruppen zu deren Kerngerüsten auf-
treten. In ähnlicher Weise nehmen diese Gruppen auch Einfluß auf die Struktur der
Spektren in der Spektroskopie oder auf das Auftreten von Dipolmomenten bei
symmetrisch angeordneten Molekülen usw. (vgl. [1]).

Ihre bedeutendste Rechtfertigung erfährt die Anwendung der Theorie der Sym-
metriegruppen nach wie vor in der Kristallographie, ja auf diesem Gebiet hat die
Theorie erst ihre klassische Ausprägung erfahren.

Für die Erfassung des Symmetrieverhaltens von Kristallen mit eindimensionaler
Lagefehlordnung ist der Gruppenbegrifi’ nicht mehr ausreichend. Man arbeitet
mit dem Begriff des Gruppoides, der mit Erfolg auch auf anderen Gebieten, wie der
mathematischen Linguistik, bei der Beschreibung von Datenstrukturen in der Infor-
mationsverarbeitung usw. benutzt wird.

Mit dieser Auswahl von Beispielen ist das Anwendungsfeld der Gruppentheorie
bei weitem nicht erschöpft; wir denken z. B. auch an die mit dem Kleinschen Erlan-
ger Programm verbundenen Entwicklungen in der Geometrie. Dennoch mag uns diese
Auswahl bereits zu der Überzeugung führen, daß es sich bei der Gruppentheorie
nichtnur um eine mathematische Theorie handelt, sondern um ein Gebiet, das in Physik,
in Chemie und in anderen Wissenschaftsdisziplinen erfolgreich angewendet wird.

‘) John von Neumann (1903-1957), Mathematiker, wirkte in Berlin, Hamburg, Princeton,
Los Alamos.
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2. 1 . Zielstellung

Gruppentheorie in der Physik und Chemie — das ist insbesondere im Sinne des von
Neumannschen Prinzips die Theorie der Symmetriegruppen physikalischer Systeme
(Moleküle, Festkörper usw.). Aufdie Einführung dieses Gruppenbegrifles bereiten wir
uns hier deshalb durch das Studium der Symmetrie einiger solcher Systeme vor,

Genauer: Wir werden uns mit der Handhabung ihrer drei Bestandteile

(S) Symmetrieelemenz, Symmetrielage, Symmetrieoperatian

und deren Formulierung in der Schönfiießsymbolik vertraut machen.

2.2. Grundannahmen

2.2.1. Zu Molekülen und Kristallen

Um den Schwierigkeiten des variablen Aufenthaltsortes der Elektronen und des
(allerdings geringeren) Spielraumes der Atomkerne auszuweichen, beziehen sich
unsere Symmetriestudien am Molekül auf dessen Kerngerüst (Bild 2.1). Wir studieren
also ein Massenpunktsystem aus endlich vielen starr verbundenen Atomen. Die
Atome denken wir uns dabei mit ihren Kernen in den Punkten des Systems angehef»
tet. Zum Beispiel bilden der Stickstoffkern und die drei Wasserstoffkerne des Am-
moniakmoleküls NH3 die vier Ecken eines Tetraeders.

Auf diese Weise läuft das Symmetriestudium an Molekülen häufig auf dasjenige
Von geometrischen Standardfiguren der Stereometrie hinaus — auch dann, wenn das
Kerngerüst (wie z. B, das von NH3) durch seine Besonderheiten innerhalb der Figur
dieser Symmetriebeschränkungen auferlegt. So könnten wir die Symmetrien z. B.
von Kohlendioxid (CO2), Bortrifluorid (BF3), Xenontetrafiuorid (XeF4), Benzen
('C6H¢,), Ammoniak (NH3), Allen (C31-I4) und Schwefelchloropentafiuorid (SFsCl)

e) NH3

Bild 2.1. Kerngerüste in geometrischen Standardfiguren
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an der Geraden, am gleichseitigen Dreieck, Quadrat, regelmäßigen Sechseck, Tetra-
eder, Quader, Oktaeder (Bild 2.1 (a) bis (g)) erörtern.

Analoge Annahmen gelten für Kristalle. Symmetrieuntersuchungen beziehen wir
auf Idealkristalle ohne Rücksicht also auf thermische Schwingungen der Gitter-
bausteine usw.

2.2.2. Zu Operationen an Molekülen und Kristallen

Die Objekte unserer Symmetrieuntersuchungen sollen sich im dreidimensionalen
euklidischen Raum E’ befinden. Vorerst genügt es, „den E3“ als den Raum unserer
naiven Anschauung („Anschauungsraum“) aufzufassen; später entspricht er der in
Bd. 1, 7.8., gegebenen Definition. Die an den Objekten nachfolgend ausgeführten
vier Arten von Operationen:

(i) Drehungen um Geraden (eigentliche Drehungen)
CB) (ii) Drehspiegelungen an Drehspiegelachsen (uneigentliche Drehungen)

(iii) Spiegelungen an Ebenen (Reflexionen) _

(w) Parallelverschiebungen (Translatiunen)

sind ausdrücklich als solche des ganzen Raumes zu betrachten‘). Sie heißen die
Bewegungen des E3. Sie sind seine abstandserhaltenden Transformationen und werden
von uns zuerst auch gemäß unserer Anschauung bzw. Schulkenntnis über sie gehand-
habt. Wird bei der Bewegung (p der Punkt P e E’ in den Punkt P’ e E’ überführt,
so schreiben wir P’ = q:(P). Für den Abstand d(P, Q) beliebiger Punkte P, Q eE3
gilt dann: d(P, Q) = d(P’‚ Q’).

2.3. Erarbeitung der Symmetfiebegrilfe (S) an Beispielen,
Schönfließsymbolik’), Symmetriemengen, Produkttafeln

Auf der Suche nach einem Molekül, dessen Kerngerüst als Beispiel für ein endliches
Massenpunktsystem mit leicht überschaubarem, dennoch aber repräsentativem3)
Symmetrieverhalten studiert werden kann, stoßen wir auf Allen (Bild 2.1 (f)):

2.3.1. Symmetriestudien am Massenpunktsystem „Allen“
In einem rechtwinkligen x,y,z-Koordinatensystem betrachten wir einen Quader

in achsenparalleler Mittelpunktslage. Seine Höhe sei 2h, seine Grundfläche quadra-
tisch von der Kantenlänge 2g < 2h. Dem Quader läßt sich dann z. B. gemäß Bi1d2.2(a)
das Kerngerüst eines Allen-Moleküls einbeschreiben: Die vier H-Atomkerne werden
kontrapunktisch auf die Ecken H1: (g, —g, —h), H2: (g, g, h), H3: (—-g, g, —h),
H4: (—g, —g, h) verteilt und die C-Kerne auf die Punkte (0, 0, ——d), (O, 0, 0), (O, 0, d)
(0 < d < h) der z-Achse.

2.3.1.1. Die Drehsymmetrien C„

Drehen wir den Raum E’ um 180° um die z-Achse, so kommt das A1len—Kern-
gerüst mit sich zur Deckung: Die drei C—Atomkeme bleiben fest. H, mit H, sowie

1) Nichtbeachtung dieser Absprache kann zu Mißverständnissen über die Gleichheit zweier
Symmetrieoperationen führen und von daher zu unterschiedlichen Ordnungen für die Symmetrie-
gruppe ein und desselben Massenpunktsystems.

2) Arthur Schönfließ (18534928), Mathematiker, wirkte in Königsberg, Frankfurt. 1923: „Theorie
der Kristallstruktur“.

3) bis auf Inversionen und Translationen
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H5 mit H4 tauschen ihre Plätze aus (Bild 2.2(c), rechts unten). Anfangs- und Endlage
des Moleküls sind dabei nicht unterscheidbar‘), wenn auch nicht identisch. Sie heißen
Symmetrielagen, die Drehachse heißt ein Symmetrieelement (Drehsymmetrieachse)
und die zugehörige Drehung eine Symmetrieaperation (Drehsymmetrieaperalion)
für das Allen-Molekül.

Ja/‘egelungen

2 3 4 7 3 4

7 4 3 2 2 7 c

‚ t „ t
o Imam MW ‘Ä 75a 52
ounrrres 4 3 7 5

7 2 C; 4 J
s s“ s’ =c

. ‘/“+ ‘\’
.3 2 l 4 2 7

4 7 2 3 3 4
Drehspiegelangen

E)

fir
eh

un
ge

Bild 2.2. Allen-Molekül
(a) Kerngerüst und Symmetrieelemente
(b) Projektion des Kerngerüstes auf die x,y-Ebene
(c) Symmetrielagen

Wenn das Kerngerüst eines Moleküls durch eine Bewegung des E3 mit sich zur
Deckung gelangt, sagt man auch, „das Molekül gestattet diese Bewegung“ (Deck-
bewegung, Decktransfarmation, Deckabbildung, Symmetrieoperation, Symmetrie-
abbildung usw.).

So gestattet das Allen-Molekül offensichtlich auch noch eine Drehung um 180°
um die x- und eine solche um die y-Achse, wodurch wir zwei weitere Symmetrie-
lagen, Symmetrieelemente und Symmetrieoperationen erkannt haben (Bild 2.2).

Drehsymmetrieachsen bzw. Drehsymmetrieoperationen um sie werden in der
Schönfließsymbolik durchweg mit dem gleichen Buchstaben C bzw. C (bei mehreren
solchen Achsen auch mit C’, C” ...‚ bzw. C’, C”, ...) bezeichnet. Speziell schreiben
wir dabei C‚„ wenn n die Zähligkeit oder auch Ordnung der Achse C ist, d. h., wenn

nach n-maliger Hintereinanderausführung der Drehsymmetrieoperatian C um die
Achse C das Molekül zum erstenmal wieder in seine Ausgangslage (zu seiner „ldenrität“)
zurückkehrt. Die x—, y- bzw. z—Achse sind als Drehachsen für das Allen—Molekül
2—zählig (von zweiter Ordnsng). Deshalb bezeichnen wir sie mit C5, C5’ bzw. C5 und
die zu ihnen gehörigen Drehsymmetrieoperationen mit C5, C5’ bzw. C5 (Bild 2.2).

In diesen Bezeichnungen gilt C5(H1) = H5, 5’(H3) = H5, C5(H‚) = H3 usw.

2.3.1.2. Die Drehspiegelsymmetrien 5„

Außer C5, C5’ und C5 besitzt das Allen-Molekül keine weiteren Drehsymmetrien.
Wenn wir den Raum E’ jedoch nur um 90° im Gegenuhrzeigersinn (mathematisch
positiv) um die C5-Achse drehen und ihn anschließend an der x,y—Ebene spiegeln,
nimmt H1 den Platz von H5 ein, H5 den von H3, H3 den von H4, H4 den von H„
und das untere C-Atom tauscht mit dem oberen seinen Platz; das mittlere C-Atom

‘) Denn die H-Atome sind in der Realität nicht (wie hier zur künstlichen Unterscheidung von

l bis 4) ,,durchnumeriert“.
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bleibt fest (ist ein Fixpunkt). Das Kerngerüst kommt so mit sich zur Deckung. Es
nimmt also eine weitere neue Symmetrielage ein. Deshalb zählen die mit S4 bezeichnete
Drehspiegelachse, bestehend aus z-Achse und x‚y—Ebene (Bild 2.3) und die an S4

Bild 2.3. Drehspiegelachse

ausgeführte mit S4 bezeichnete Drehspiegelung des E: zu den Symmetrieelementen
bzw. Symmetrieoperationen des Moleküls. Eine Drehspiegelachse ist keine bloße
Drehachse, sondern eine Stellungsgerade S, zu deren Bestimmungsstücken die
(Spiegel-)Ebene gehört, auf der S per Definition senkrecht steht, und der Durchstoß-
punkt durch diese Ebene. Das Molekül gestattet weder die Drehung für sich allein
noch die Spiegelung, aus denen sich S4 zusammensetzt, sondern nur deren Zusam—
mensetzung. Dies muß aber nicht so sein (Vgl. Bild 2.4 hinsichtlich C6, m, und S5).

Daß das Molekül auchjene mit S2 bzeichnete Drehspiegelung gestattet, die durch
die Drehung des E3 um die z-Achse um 270° und anschließender Spiegelung an der
x,y-Ebene entsteht, zeigt Bild 2.2. Weitere Drehspiegelungen besitzt Allen nicht.

Es gilt: S4(H1) = H2, S2(H,) = H4, SZ(H4) = H3 usw.

Dre/wpiegelsymmezrieachsen werden in der Schönfließsymbolik durchweg mit
dem Buchstaben S bezeichnet, und die auf diese bezüglichen Drelupiegelryntrnetrie-
operationen mit S. Speziell schreiben wir dabei S„‚ wenn n die Zähligkeit (Ordnung)
von S ist. Diese ist wie bei Drehsymmetrieachsen definiert (2.3.1.l.). Für Allen
ist n = 4. Als Referenzachse zeichnen wir nun unter den Drehsymmetrieachsen und
Drehspiegelsymmetrieachsen des Moleküls diejenige (oder eine unter mehreren) mit
der höchsten Zähligkeit aus. Wir zeichnen diese dann stets vertikal. Bei Allen ist S4
die Referenzachse. Ist bei einem Molekül die Referenzachse selbst eine Drehsymme-
trieachse (wie z. B. bei Benzen, Bild 2.4), so kann sie auch als Hauptdre/mclise be-
zeichnet werden.

Bild 2.4. Benzen-Molekül; Spiegelsymme-
trieebenen der Typen av, ad, ah; Dreh-
achsen vom Typ C2 , Referenzachse C5 bzw.
Drehspiegelachse S5 ; Inversionszentrum i

2.3.1.3. Die Spiegelsymmetrien ab, m, , L7,,

Es ist offensichtlich, daß das Molekül die mit of, bezeichnete Spiegelung des E3 an
der durch die Cz-Achse und H, bestimmten Ebene a; gestattet. Gleiches gilt bez.
0;’ (s. Bild 2.2(a)). a; und 17;’ sind also Symmetrieoperationen (Spiegelsymmelrie-
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operationen), a; und 0;’ die zugehörigen Symmetrieelemente (Spiegelsymmetrie-
elemenre) für das Molekül. Bild 2.2(c) zeigt die unter der Wirkung von o’; oder crf,‘

entstehenden Symmetrielagen des Moleküls. Es gilt unter anderem a,;(H,) = H1,
Uc;(1'/2) = H4; 03'011) = H3-

Spiegelungssymmetrieebenen werden in der Schönfiießsymbolik stets mit a bezeich-
net, um mehrere unterscheiden zu können, auch mit a’, o”, o”’ usw. Die zugehörigen
Spiegelungen des E3 bezeichnen wir dann durch o‘ bzw. o’, o”, 0"’. Die Stellung von a

zur Referenzachse des Moleküls bringen wir gegebenenfalls durch einen Index an o

zum Ausdruck: v bedeutet, daß o, vertikal steht, d. h., av enthält die stets vertikal zu
zeichnende Referenzachse. Zwei solcher Spiegelebenen a; und 0',’ besitzt z. B. das
HzO-Molekül (Bild 2.5). Jene Spiegelebenen unter den av, die den Winkel zwischen

Bild 2.5. HzO-Kerngerüst, Symmetrieelemente

zwei benachbarten, bez. der Rsaferenzachse C„ orthogonalen, d. h. in der Molekül—
ebene liegenden horizontalen Cz-Drehaehsen halbieren, bezeichnen wir speziell mit ad
(d: dihedral). Die Vertikalen Spiegelebenen a; und of,’ beim Allen-Molekiil sind von
dieser Art (Bild 2.2). Wir schreiben im übrigen auch dann ad, wenn diese Spiegelsym-
metrieebene den von benachbarten a,,«Ebenen eingeschlossenen Winkel halbiert (Bild 2.4).
Eine Spiegelsymmetrieebene, auf der die Referenzachse senkrecht steht, liegt horizontal
und wird deshalb mit ah (h: horizontal) bezeichnet. Die Molekülebenen des Benzen-
moleküls (Bild 2.4) oder des HZOZ-Moleküls (Bild 2.6) sind oh-Ebenen. Genaueres
zum Auftreten von 0,-, Gd‘ und 0,,-Ebenen erfahren wir in 5.4.2. bis 5.4.5.

Außer o; und of,’ besitzt Allen keine weiteren Spiegelsymmetrieebenen.

2.3.1.4. Die Identität E als Symmetrieoperation

Führt man S4 viermal oder eine der Operationen C3, C3’, CZ, 0'5. af,’ jeweils zwei-
mal hintereinander am Allen-Molekül aus, so nimmt dieses jedesmal dieselbe, in
Bild 2.2(c) Bildmitte skizzierte Symmetrielage ein — nämlich seine Ausgangslage
(Identität). Die Wirkung all dieser mit S2, 3’, C3”, Ci, 0;‘, zrf," bezeichneten
Symmetrieoperationen ist die gleiche, wie die jener Operationen, die darin besteht,
den Raum einfach festzulassen. Das Allen-Molekül (wie jedes andere Molekül auch)
gestattet dieses mit E bezeichnete „Verharren“ des E3 in seiner Identität. E ist dem-
nach eine Symmetrieoperotion für das Molekül und heißt Identität (identische Be-
wegung des E3). Es gilt

E(P) = P für alle Pe E3.

2.3.1.5. Die Gleichheit von Symmetrieoperationen

Am Allen-Molekül gilt z. B. C2(P) = Si(P) für alle Pe E3.
Zwei Symmetrieoperationen A, B heißen gleich (A = B), wenn jede den ganzen

Raum E3 (und nicht nur das Massenpunktsystem) in dieselbe Lage bewegt, d. h.,
wenn

A(P) = B(P) für alle P s E3
gilt.
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Demnach ist C2 = S2. Obwohl die Identität E das H2O2»Molekül (s. Bild 2.6) in
die gleiche Symmetrielage bewegt (es festläßt) wie die Spiegelung 0„ des E’ an der
Molekülebene‚ gilt doch E 4: oh, da E(P) = o„(P) nur für Punkte P der Molekül-
ebene gilt.

Bild 2.6. HZOZ-Molekül (vgl. Bild 5.1)
(a) Kerngerüst
(b) Symmetrieelemente

2.3.1.6. Die Symmetriemenge D2,, des Allen-Moleküls

Sie besteht aus allen verschiedenen Bewegungen des Raumes E3, die das Molekül
gestattet, also aus dessen verschiedenen Symmetrieoperationen. Wir bezeichnen sie
aus später ersichtlichen Gründen (5.4.5.) mit Did; also gilt

Dzd = {Ea S4» Si» S2, C3: Cf» 02i, 0:}.

Wegen C2 = Sä wurde nur S} in D“ als Element notiert.
Bemerkung: Die Elemente von Dm sind keine Symmetrieelemente. In [10] hat der

Begrifi Symmetrieelement gerade die Bedeutung von Symmetrieoperation.

2.3.1.7. Die Hintereinanderausfiihrung „ ~ “ von Symmetrieoperationen aus D“

Beispiel 2.1: Führen wir die Symmetrieoperation S4 e Dgd am Allen-Molekül aus,
so nimmt dieses die in Bild 2.2(c) unten links skizzierte Symmetrielage ein. Wenden
wir auf das in dieser neuen Lage befindliche Molekül sofort o; e D2,, an, so nimmt es

die in Bild 2.2(c) Mitte rechts angegebene Symmetrielage ein. Die durch diese
Hintereinanderausführung von S4 und 0;, Bezeichnung o;- S4, erreichte Symmetrie-
lage wird jedoch bereits durch eine einzige Symmetrieoperation, nämlich durch
Cfe Dm erreicht. Da die Bewegung a; - S4 und cg nicht nur das Molekül selbst,
sondern auch den ganzen Raum E3 in dieselbe Lage transformieren. gilt 05-54
= C3’. Genauso findet man z. B. C; - cf,’ = S2, 0,’, - of,’ = S},

Für A, B E D“ heißt A ' B auch Produkt aus A (l. Faktor und B (2. Faktor). Die
Hintereinanderausführung „ - “ heißt (wegen gewisser Analogien zur Zahlenmulti-
plikation) auch Multiplikation in Dzd. Wir vereinbaren ein für allemal die Symmetrie—
operation A - B so auf das Molekül anzuwenden, daß zuerst der 2. Faktor B und dann
der l. Faktor A angewendet wird. Für einen beliebigen Punkt Pe E3 bedeutet dies

A ' BU’) = A(B(P)),

und dies ist die allgemeine Definition für A - B.
Indem wir alle Produkte A ~ B Von Symmetrieoperationen A, Be D“ des Allen-

Moleküls bilden, stellen wir fest: Dm ist bez. ~ abgeschlossen, d. h., für alle A. B e D“
ist auch A - Be Dm.

2.3.1.8. Die Produkttafel zu D“

Die letzte Feststellung ist am besten an der Produkttafel von D“ zu ersehen:
Diese ist nach der Art des Ergebnisspiegels eines Turniers, in welchem jeder gegen
jeden (in unserem Falle auch „gegen sich selbst“) spielt, aufgebaut (Tafel 2.1).
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Eingangsspalre bzw. Eingangszeile der Tafel heißen deren Spalte bzw. Zeile Nr. 0.
Am Schnittort der i-zen Spalte mit der j-ten Zeile (i,j = l, 2, ..., 8) der Tafel steht
das Produkt aus dem j—ten Element der Eingangsspalte mit dem i-ten Element der Ein-
gangszeile. Wir stellen fest, daß alle diese Produkte — sie bilden in der Tafel eine
8 x 8’-Matrix — in D2‘, liegen. Da sich die Eingangsspalte in der Spalte unter der
Identität E (also in der Spalte Nr. 1) wiederholt, kann sie einfachheitshalber auch
weggelassen werden. Entsprechend ist die Eingangszcile als Zeile Nr, 1 noch ein-
mal vorhanden und i. allg. überflüssig.

Tafel 2.1. Produkttafel zur Symmetriemenge Dzd des Allen-Moleküls

‘E S4 S} S2 cg | cg l 0,’, cg’ 0.

E E S4 S} S2 C; C5’ a; cf,’ 1.

S4 S4 S} S} E a5,’ o; C; cg’

S} S} S2 E S4 c; C5 0;’ o;

s: s: E S4 s: u; a: c; c;

a; a; c; a: c; s: s‘ E s:

2

3

4

C; C; a; C5’ of,’ E Si S4 S2 5.

6

7

8

2.3.1.9. Die inversen Symmetrieoperationen in D2,,

Die Drehspiegelung S4 können wir wieder rückgängig machen, d. h. das Molekül
in seine Ausgangslage zurückführen, indem wir es um 90° im Uhrzeigersinn (mathe-
matisch negativ) um die z-Achse zurückdrehen und an der x‚y-Ebcne spiegeln. Das
Molekül gestattet diese zu S4 entgegengesetzte, mit 5;’ bezeichnete Drehspiegelung.
S;’ heißt zu S4 inverse Symmetrieaperarion und gehört wie S4 zu D24. Für S1‘ gilt
definitionsgemäß S4 - 5;‘ : 5;‘ ~ S4 = E, und aus der Produkttafel liest man damit
ab: S" : S3.

Win: für S: finden wir mit Hilfe der Produkttafel für jedes Element A ED“ ein
eindeutig bestimmtes inverses Element A“ eD2d mit der definierenden Gleichung

A-A" = A"-A = E. Es gilt E" = E, S4‘ = S2, (S,§)“ = S2, (S2)“’ = S4.

(C£)" = C5, (C£')“ = C3203" = 03. 05" = ä’.

Die Produkttafel zeigt. dal3 A - B : B’ A nicht für alle A, Be D2‘, gilt. Die Multi-
plikarion in D2, ist nicht kommumtiv. Ferner erkennen wir E - A = A ' E = A für
alle Elemente A 6 D34.

2.3.2. Die Symmetiiemenge und Produkttafel des Wasserstoflperoxid-
Moleküls H203

Mit dem HzOz-Molekül der in Bild 2.6 angegebenen speziellen Gestalt und Lage
bez. eines rechtwinkligen x,y.z—Koordinatensystems beschäftigen wir uns hier vor
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allem mit dem Ziel, die beim Allen-Molekül nicht vorhandenen Drehspiegelsymme-
trien vom Typ S2 zu erörtern.

Wir wollen nun beim HzOz-Kerngerüst entsprechende Betrachtungen anstellen
wie beim Allen-Modell,

2.3.2.1. Drehsymmetrie

Die einzige symmetrische Drehung ist die Drehung C2 um 180° um die z-Achse,
die als Hauptdrehachse C2 der Zähligkeit 2 vertikal zu stehen hat (senkrecht zur
Molekülebene ah).

2.3.2.2. Spiegelsymmetrie

Es gibt auch nur eine Spiegelung, die Spiegelung 0„ an der x‚y-Ebene‚ die die
Molekülebene ah bildet.

2.3.2.3. Identität

Natürlich existiert die identische Bewegung (Identität) E.

2.3.2.4. Die Drehspiegelung S, — Inversion

Nun betrachten wir die Drehspiegelung S; = oh - C2 an der aus der Drehachse
C2 und der Spiegelebene oh bestehenden Drehspiegelachse S2 = an - C2 durch
(0, 0).

Diese Symmetrieoperation S2 bildet einen beliebigen Punkt P e E3 aufjenen Punkt
P’e E3 ab, für den der Koordinatenursprung (0, 0, 0) Mittelpunkt der Strecke T”
ist: P’ = Sz(P).Zum Beispielist H2 = S;(H1),H, = S2(H2),aberauch 02 = S2(0,),
01 = S2(02). Man sagt auch, S2 bewirkt eine Spiegelung des E3 am Punk! (0, 0) oder
auch eine Inversion i des E3 am Inversionrzentrum i (i: (0, 0)). P und P’ liegen bez.
i e E3 zueinander invers. Als Inversionszentrum ist i Symmetrieelement, als Inversion
ist i Symmetrieoperation für das HZOZ-Molekül. Dieses gestattet also die Inversion
bez. i. Das Allen-Molekül dagegen besitzt kein Inversionszentrum.

Wir betrachten jetzt eine beliebige Drehspiegelachse S; durch i mit durch i gehen-
der Spiegelebene. Die zugehörige Drehspiegelung S; des E3 bewirkt offensichtlich
die gleiche Inversion i wie S2. Also sind alle diese Drehspiegelungen S; gleich: S3

= S; = i, obwohl die Drehspiegelachsen S; alle voneinander verschieden sind.
Er gilt i- i = i’ = E. Damit gehört i — wie auch die Drehungen und Drehspiege-

Iungen S; der Zähligkeit 2 sowie die Spiegelungen zu den sog. Invalurionen (P des E3,
die die Eigenschaft o: 4: (p - o: = E haben.

Als weiteres Beispiel für ein Inversionszentrum erkennen wir in Bild 2.4 den Mittel-
punkt i des Benzenringes.

2.3.2.5. Die Symmetriemenge C2„ des l-lzOrMoleküls

Sie lautet

C2,, = {E, CZ, a,,,i}.

Über die Bezeichnung C2,, informieren wir uns in 5.4.2.

2.3.2.6. iDie Produkttafel zu Cn,

Sie wird wie die Produkttafel von D2,, aufgestellt und ist in Tafel 2.2 angegeben.
Eingangszeile und Eingangsspalte sind weggelassen worden. Die Tafel ist bezüglich
ihrer Hauptdiagonalen symmetrisch, d, h.‚ für alle A, Be C2,, gilt A - B = B - A.
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lm Unterschied zur Multiplikation in D2,, (Allen-Molekül) ist die Multiplikation in
C3,, kommutativ.

Tafel 2.2. Produkttafel zur Symmetriemenge C2,, des HzOz-Moleküls

E C2 0,, i
C2 E i (1„

oh i E CZ

i oh C2 E

2.3.2.7. Die inversen Elemente in C2,,

Für das zu A inverse Element A" muß A - A" = A" -A = E gelten. Aus der
Produkttafel liest man demgemäß ab: E" = E, C5‘ = C2, 5;‘ = ah, i“ = i.
Alle Symmetrieoperationen des HZOZ-Moleküls sind also „selbstinziers“.

2.3.2.8. Das Symmetriezentrum, Fixpunkte

Das lnversionszentrum i: (0, 0, 0) des HzOz-Moleküls bleibt unter der Wirkung
der Drehsymmetrieoperation C3 unbewegt: C2(i) = i. i heißt daher Fixpunkt bez. C2.
Aber auch alle Punkte P der Drehachse C2 sind demnach Fixpunkte bez. C2: C2(P)
= P. Bezüglich der Inversion des Raumes E3 an ijedoch ist i der einzige Fixpunkt.
ieE3 ist daher der einzige Punkt, der bez. aller Symmetrieoperationen aus C2,,
Fixpunkt ist. Ein solcher Punkt heißt Symmetriezentrum des Moleküls. Zum Beispiel
ist der mittlere C-Kern des Allen-Moleküls (der Koordinatenursprung) Symmetrie-
zentrum dieses Moleküls (Bild 2.2). Ein Punkt O e E3, der als einziger Punkt bez. aller
Elemente der Symmetriemenge eines Massenpunktsystems M Fixpunkt ist, heißt Sym-
nzetriezentrum von M. Inversianszentren sind immer auch Symmelriezentren, aber nicht
umgekehrt, wie der Vergleich zwischen C3H4 und H102 zeigt. Das HzO-Molekül
(Bild 2.5) hat weder ein Symmetrie- noch ein lnversionszentrum, der Benzenring
(Bild 2.4) hat in seinem Mittelpunkt beides zugleich. Ein Koordinatensystem legt
man vorteilhaft mit seinem Ursprung in das Symmetriezemrum, sofern ein solches
vorhanden ist.

Es sei noch bemerkt, daß alle bisher betrachteten Symmetrieoperationen als Be-
wegungen der Typen (Q3) (i), (ii), (iii) mindestens einen Fixpunkt haben, einen sogar
gemeinsam.

2.3.3. Die Translationssymmetrien des ebenen Natriumchloridgitters (NaCl)

a) Bausteine des NaCl-Gitters sind nicht Atome, sondern Ionen: Die Na+- bzw.
CF-Ionen bilden je ein „kubisch allseitig flächenzentriertes Gitter“, d. h. sie zeigen
die in Bild 2.7(a) bez. eines rechtwinkligen x,y,z-Koordinatensystems skizzierten und
zum NaCl-Gitter ineinandergestellten Anordnungen, die durch die Translation
T0 = §(a + b) auseinander hervorgehen. Wir betrachten davon nur das ebene Gitter
in der x‚y-Ebene (Bild 2.7(b)). Als dessen Einheitstranslationen gelten zwei nicht

Z

Bild 2.7. NaCl-Gitter
(a) räumlich
(b) eben, Elementarzelle

a) b)

2 ßeIgei-‚symuretriegruppen
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kolineare Vektoren a, b, die von einem Cl‘- (oder Na*—)Ion aus zu zwei unmittelbar
benachbarten Cl’- (oder Na+—)lonen führen. Als Elementarzelle bezeichnen wir
das kleinste Quadrat, aus dem durch die Translationsvektoren T = ra + sb das
gesamte Gitter erzeugt wird, wenn r, s die Menge Z aller ganzen Zahlen durch-
laufen. Da der Vektor ra + sb hier als Symmetrieoperation aufgefaßt wird, be-
zeichnen wir ihn durch T und nicht durch t.

b) Die Symmetriemenge der Dreh-, Spiegel- und Drehspiegelsymmetrien (einsehl.
Inversion an i) mit dem Koordinatenursprung 0 = i als Fixpunktist nach den ent-
sprechenden Vorbildern in 2.3‚l. und 2.3.2. leicht am Quadrat abzulesen.

c) Die Translationssymmetriemenge I. Wegen der Kleinheit der Ionenabstände
können wir uns das Gitter als unbeschränkt ausgedehnt denken. Verschieben wir
also den Raum E3 um einen beliebigen Translationsvektor T = ra + sb (r, s e Z),
so kommt das Gitter wieder mit sich zur Deckung. Das Gitter gestattet also diese
Translationen T des E3, die deshalb Symmetrieoperationen für das Gitter sind und
dieses in neue Symmetrielagen verschiebt.

Die Rolle der identischen Symmetrieoperation spielt hier der Nullvektor O = 0a
+ 0b, der den E3 und damit das Gitter festläßt. (Hier ist der Nullvektor als Symme-
trieoperation ausnahmsweise mit 0 genauso wie der Koordinatenursprung bezeich-
net. Später sei O = o.) Als zu Tinverse Symmetrieoperation, die die durch Tbewirkte
Verschiebung des Gitters wieder rückgängig macht, erweist sich der zu T entgegen-
gesetzte Vektor —T = (—r) a + (—s) b. Es gilt T + (—T) = O. Mit T gehört auch
— T zur Menge T aller Translationssyntmetrieoperarianen des ebenen Gitters, da —r,
—-seZ. Die Hintereinanderausführung zweier Translationen T, = r„a + s,b (v = 1,2)

am Gitter wird ganz natürlich durch die Vektoraddition „ +“ realisiert: T, + T2

= (F1 + r;)a + (s, + s2)b. Mit T„T2e S ist auch T, + Tzei, da r, + rzeZ
und s, + s2 e Z gilt. I ist also gegenüber + abgeschlossen. Daß T als Symmetrie-
operation eine Translation des ganzen Raumes bedeutet, ist klar.

2.3.4. Symmetrieoperationen mit und ohne Fixpunkt

Wir beobachten, daß es im E3 bezüglich jeder der Symmetrieoperationen Be DM
bzw. B e C2,, mindestens einen Fixpunkt 0 gibt: Ja, es gibt sogar stets einen für alle B
gemeinsamen Fixpunkt O: B(O) = 0. O wird zweckmäßigerweise als Koordinaten-
ursprung verwendet (Bild 2.2(a), 2.4, 2.5, 2.6(b)). Dagegen sind die Translationen
Tei, T4: O sämtlich fixpunktfrei. Für deren Hintereinanderausführung hatte sich
auf natürliche Weise die Vektoraddition + in S ergeben, während wir dafür in D“,
bzw. C2„ die Multiplikation - eingeführt hatten. Symmetriemengen, deren Elemente
einen gemeinsamen Fixpunkt besitzen, werden Anlaß zu den sogenannten Punkt-
gruppen (s. 5.1.) geben,

Aufgaben

_2.l. Das Massenpunktsystem P C E3 gestatte die Bewegung q; des E3. Was bedeutet diese Aussage
(für P und für up)?

2.2. Ein gleichseitiges Dreieck A C E3 gestattet die Drehung C2 um 180° um die Achse C; durch
einen Eckpunkt und den Mittelpunkt von A sowie die Spiegelung UV an der Ebene a, durch C2,
senkrecht auf A. C2 überführt A in die gleiche Symmetrielage wie av. Gilt deshalb C2 = av?

2.3. Wir betrachten ein gleichseitiges Dreieck A und ein Quadrat [l als Punktmengen des Raumes
E3. Gib in der Schönfließsymbolik an:

a) alle Symmetricelemente von A und von E],
b) die Symmetriemenge von A bzw. von [l (Bezeichunng: D3,, bzw. D“).
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2.4. Überlege auf der Grundlage der Lösung der Aufgabe 2.3.:

a) Das Bortrifiuorid-Molekfil (Bild 2.l.(b)) bzw. das Xenontetrafiuorid-Molekül (24l‚(c)) hat die
gleiche Symmetriemenge wie A C E3 bzw. E} C E3 (also D3,, bzw. D“).
b) Das Ammoniak-Mblekül (Bild 2.l.(e)) bzw. das sFgCl-Molekül (2.J.(g)) hat die gleiche Sym-
metriemenge wie A C E2 bzw, [j C E’ (Bezeichnung: C_„ bzw. C4„)‚ d. h. wie die (entgegen der
Absprache in 2.2.2,) nur noch in der euklidischen Ebene E’ betrachtete Punktmenge A bzw. E].



3. Elemente der Gruppentheorie

3.1. Gruppenbegrifl’

3.1.1. Beispiele von Symmetriegruppen

3.1.1.1. Die Symmetriegruppe des Allen- bzw. des H202-Molekiils

Aus den Produkttafeln zu den Symmetriemengen Du und C1,, für diese Moleküle
(Tafel 2.1 und 2.2) lesen wir übereinstimmend die nachfolgend nur für D“ formu-
lierten gemeinsamen Regelmäßigkeiten ab:

Die Hintereinanderausführung ., - “ von Syrn/netrieoperationen als Multiplikation in
D24 weist jedem geordneten‘) Paar solcher Operationen A, BED“ als „Produkt“
aus A und B wieder eine eindeutig bestimmte Operation A r BEI)“ zu. Bezüglich
beliebiger Elemente A, B, C E Du gelten für ' dabei die „Rechenregeln“

(A) A*(B-C):(A-B)-C.
(E) E~A:A-E=A,
(I) A'A"=A"*A=E.

wobei es mit der Eigenschaft (E) nur ein neutrales Element Es Dzd (die Identität,
hier auch Einselement genannt) gibt und mit (l) zu jedem A nur ein inverses A“ e D“.

Ausgestattet mit einer solchen Verknüpfungsvorschrift -, die den Regeln (A), (E), (l)
folgt, heißt D2,, (multiplikariv geschriebene) Gruppe. Man nennt sie die Symmetrie-
gruppe des Allen-Moleküls. Entsprechend ist C2,, die Symmetriegruppe des HZOr
Moleküls. Wir sagen dann auch, die Symmetriemengen Dzd bzw. C2,, sindjeweils mit
einer Gruppenstruktui" ausgestattet, und schreiben, um dies anzuzeigen, anstelle der
geschweiften Klammern eckige. Zum Beispiel lautet die Menge C2,, = {E, C2, ah, i}
als Gruppe C2,, = [E, C2. oh, i].

3.1.1.2. Die Gruppe der Translationssymmetrien des ebenen NaC1—Gitters

Die Hintereinanderauyührung + von Translationssymmetrieoperationen als „Addi-
lion“ in 2 weist jedem Paar solcher Operationen X, Y eine eindeutig bestimmte solche
Operation X + Ye! als Summe aus ‘X und Y zu. so daß für beliebige X, Y, ZeI
gilt:
(A) X+(Y+Z)=(X+Y)+Z.
(0) 0+X=X+0=X,
(1) X+(—X)=—X+X=0,
wobei es mit der Eigenschaft (0) nur ein neutrales Element O e Z (Nullelement ge-
nannt) gibt und mit (l) zu jedem Xnur ein inverses —- X e I. Ausgestattet mit einer solchen
Verknüpfungsvorschrifl +, die den Regeln (A), (0). (I) folgt, lief/lt I (additiv ge-
schriebene) Gruppe der Translationssymmetrien des ebenen NaCl-Gitters; 2 = [T2 T
= ra + sb für alle r, se Z].

3.1. 2. Abstraktion

Auf die in 3.1.1.1. oder 3.1.1.2. beschriebene Weise läßt sich auch die Symmetrie-
menge S eines beliebigen Massenpunktsystems, eines Festkörpers, einer geometrischen

‘) Das Paar A, B ist ein anderes als B, A.



3.2. Weitere Beispiele von Gruppen 21

Anordnung usw. mit einer solchen Gruppenstruktur ~, (A), (E), (1) bzw. +, (A), (0),
(1) ausstatten. Deshalb ist es zweckmäßig, von der konkreten Natur der Elemente l'on S
und jener der Multiplikation ' bzw. Addition + abzusehen und den Gruppenbegrifl
für alle Beispiele gemeinsam zutreffend — also abstrakt — zu formulieren; anstelle von

der Multiplikation oder Addition zweier Elemente (Zahlen, Symmetrieoperationen,
Vektoren usw.) werden wir dann allgemein von deren Verknüpfung sprechen und
ersetzen - und + durch das gemeinsame Zeichen e für die Verknüpfung. Ferner
werden wir S durch G (G: Gruppe), E oder O neutral durch N sowie A“‘ oder —A

durch A‘ bezeichnen.

3.1.3. Gruppenaxiome

Definition 3.1: Eine nichtleere Menge heißt Gruppe G, wenn in ihr eine Verknüpfung
„o“ existiert, durch die jedem geordneten Paar von Elementen A, B e G ein eindeutig
bestimmtes Element A e Be G als Ergebnis der Verknüpfung zugeordnet ist. Dabei
sollen folgende Verknüpfungsregeln (Gruppenaxiome) für beliebige Elemente A, B,
C e G erfüllt sein:

(A) das Assoziativgesetz A o (B c C) = (A o B) o C,

(N) die Existenz des neutralen Elementes, d. 17., es gibt genau ein Element N e G,
das neutrale Element der Gruppe, mit der Eigenschaft A o N = N o A : A.

die Existenz des inversen Elementes, d. h., zu A e G gibt es genau ein sage-
nanntes inverses Element A‘ e G mit der Eigenschaft A‘ o A = A o A‘ = N.

Gilt darüber hinaus in der Gruppe G das

(K) Kommutativgesetz A o B = B o A,

so heißt G kommutative oder abelschel) Gruppe.

Deutet man (z. B. im Sinne von 3.1.1.1.) die Verknüpfung c als Multiplikation -,

das neutrale Element N als Einselement E und schreibt für das inverse Element A‘
jetzt A", so spricht man von G als von einer multiplikativ geschriebenen oder mul-
tiplikativen Gruppe. Analog heißt G additiv geschriebene oder additive Gruppe, wenn
wir (z. B. im Sinne von 3.1.1.2.) o als Addition + deuten, Nals Nullelement 0 und A‘

—A als zu A entgegengesetztes Element. Additive abelsche Gruppen heißen auch
Moduln.

3.1.4.

(i)

Endliche Gruppe, Ordnung einer Gruppe

Definition 3.2: Eine Gruppe G, die als Menge aus endlich vielen Elementen besteht,
heißt endlich, die Anzahl g ihrer Elemente heißt ihre Ordnung. Andernfalls heißt G
unendlich, auch Gruppe unendlicher Ordnung.

Beispiel 3.1: Die Symmetriegruppe C2,, = [E‚ C2,a,,,i] des H20,-Molekiils hat
vier Elemente. Sie ist also endlich, und zwar von der Ordnung g = 4. Die Gruppe I
der Translationssymmetrieoperationen des NaC1-Gitters ist von unendlicher Ord-
nung.

3.2. Weitere Beispiele von Gruppen

Das Rechnen mit komplexen Zahlen, Matrizen. Vektoren setzen wirals bekannt
voraus (Bd. 1 und Bd. 13 dieser Reihe).

‘) Niels Henrik Abel (1802~I829), norwegischer Mathematiker.

D.3.l

D.3.2
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3.2.1. Gruppenstruktur verschiedener Zahlbereiche

a) Die Menge K der komplexen Zahlen .z = x + iy (i’ = —l;x,ye R) bildet
offensichtlich bez. der Addition + als Rechenoperation o in K, bez. N = 0 =

0 + i0 e K als Nullelement und z‘ = —z = —x + i(—y) e K als dem zu z inversen
Element einen Modul.

b) Bezüglich der Multiplikation - von komplexen Zahlen als Verknüpfung o in K,
bez. N = E = 1 x l + iOe K als Einselement und der zu z 4: 0 reziproken Zahl
lyze K als dem zu z inversen Element 2*‘ bildet K ohne Null eine multiplikative
abelsche Gruppe. .

c) Unter den gleichen Voraussetzungen bzw. Annahmen wie in a) und b) für K
bildet die Menge R der reellen Zahlen — wie K selbst — eine additive wie gleichzeitig
multiplikative abelsche Gruppe, letzteres ohne die Zahl Null. Da überdies in K und R
die Addition mit der Multiplikation durch das Distribuzivgesetz

(D) a~(b+c)=a-b+a‘c

verbunden ist, nennt man K und R Zahlkörper und allgemein jede Menge dieser
Struktur Körper.

Algebraische Struktur nennen wir jede nichtleere Menge mit einer (oder mehreren)
Verknüpfungen einschließlich der dafür gültigen Rechenregeln, z. B. Gruppenstruk—
tur, Körperstruktur u. a. (vgl. Bd. l3, 3.4.).

d) Die Menge der ganzen Zahlen Z bildet bezüglich der Addition +, bez.
N = 0 = 0 als Nullelement und g‘ = —g als dem zu ge Z entgegengesetzten Ele-
ment einen Modul. Bezüglich der Multiplikation ' kann Z keine Gruppe bilden, da
die zu ge Z inverse Zahl g’ = g" = l/g (g + 0) für g ¢ l keine ganze Zahl ist.
Also gilt g" e Z, entgegen der Forderung (l).

3.2.2. Moduln aus n-Tupeln reeller Zahlen und aus Vektoren

a) R’ sei die Menge der geordneten Paare reeller Zahlen. Z = (x, y) und W = (u, v),
x, y, u, U e R, heißen gleich, Z = W, genau dann, wenn x = u und y = v gilt. Als
Verknüpfung o in R’ betrachten wir die Addition + gemäß Z + W = (x + u, y + u).
Wir stellen fest: Mit Z, We R’ ist auch Z + We R’. Die Neutralitätseigenschaft
(N) besitzt das Paar N = 0 = (0, 0) e R’ (das Nullelement) und nur dieses. Invers
(entgegengesetzt) zu Z ist allein das Paar —Z z (—x, —y) e R’. Ferner gelten
oflensichtlich das Assoziativgesetz (A) und das Kommutativgesetz (K) für + in R’.
R’ bildet also bez. +, N = (0,0), Z‘ : —Z eine additive abelsche Gruppe, d. h.
einen Modul.

Unter den gleichen Annahmen wie für R’ gilt diese Aussage auch für die Menge
R3 aller geordneten Zahlentripel (x, ‚v, z) reeller Zahlen x, y, z und allgemein für den
sogenannten R" (n = l, 2, 3, R‘ = R).

b) Von Interesse (Vgl. 2.3.3. a)) ist auch die Menge Z’ c R’ aller geordneten Paare
T = (u, v) ganzer Zahlen u, v e Z. Daß Z’ (wie auch Z3 und allgemein Z") unter den
gleichen Annahmen wie jene für R’ (bzw. R3 oder R") einen Modul bildet, ist offen-
sichtlich.

c) Die Menge der Vektoren z der Ebene E’ bildet einen Modul V’, wenn wir die
bekanntlich assoziative und kommutative Vektoraddition gemäß dem Kräfteparal-
lelogramm in V’ betrachten, für N den Nullvektor o e V’ setzen und als zu z entge-
gengesetzten Vektor ——z e V’ betrachten.

Die gleiche Aussage gilt für die Menge V3 der Vektoren des Raumes R3.
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3.2.3. Matrizengruppen

Eine quadratische Matrix A heißt regulär, wenn die Determinante det A # 0 ist,
also zu A die inverse Matrix A“ existiert (Vgl. Bd. 13, 1.). Wenn eine Menge M„
aus regulären n-reihigen Matrizen hinsichtlich der Matrizenmultiplikation ~ als Ver-
knüpfung o in M„ eine Gruppe bildet, heißt diese lineare Matrizengruppe — kurz
Matrizengruppe. 1m folgenden betrachten wir die klassischen Matrizengruppen,
die uns interessieren. K sei dabei die Menge der komplexen Zahlen, die R umfaßt.

3.2.3.1. Die allgemeine lineare Gruppe GL(n, K)

M„ sei die Menge aller regulären Matrizen A = [aw], awe K; v,,u = 1, ...‚n.
Mit A, Be M,, ist auch das Matrizenprodukt A - B regulär. Nach dem Multiplika-
tionssatz für Determinanten ist nämlich det (A ' B) = detA det B # 0. Ferner
folgt aus AEM„ auch A“ eM‚„ denn wegen A-A“ = E ist det (A~A“)
= detA det A“ = detE = l, also detA" + 0.

Bekanntlich ist die Matrizenmultiplikation - assoziativ, also gilt Axiom (A).
Ferner stellen wir fest, daß die Einheitsmatrix Ee M„ und nur diese die in (N) ge-
forderte Neutralitätseigenschaft bez. - besitzt und die zu A e M„ inverse Matrix
A“ s M„ Axiom (I) erfüllt.

Bezüglich - , N = E, A‘ = A“ bildet M„ eine multiplikative Gruppe v die soge—

nannte allgemeine lineare Gruppe GL(n, K). Schränken wir K auf R ein, so können
wir für sie auch kürzer GL(n) schreiben.

3.2.3.2. Die orthogonale Gruppe O(n)

Die Matrix AT 2 [aw] nennen wir zu A = [aw] transportiert. Eine n-reihige qua-
dratische Matrix A heißt orthogonal, wenn A ‘ AT = E ist (E: Einheitsmatrix). Wegen
det (A A AT) = detA det AT, det AT = detA und det E = l gilt detA = i-1 ¢ 0.
Eine orthogonale Matrix A ist also regulär: A e GL(n).

Es sei O(n) c: GL(n) die Menge aller n-reihigen orthogonalen Matrizen. Mit
A, Be0(n) ist auch A - Be O(n). Wegen A - AT = B v BT = E ist nämlich
(A ' B) (A - B)T = (A - B) v (BT ' AT) = A - (B- BT) < AT = E. Ferner ist mit AeO(n),
auch A“ e O(n), denn wegen AT = A" und (AT)T = A ist A" - (A")T =

A“ ~ (AT)T = E.
Da die Matrizenmultiplikation auch in O(n) assoziativ ist, da ferner N = Es O(n)

die einzige Matrix mit der Neutralitätseigenschaft (N) und A" e O(n) die einzige
gemäß (1) zu A e O(n) inverse Matrix ist, bildet O(n) eine multiplikativ geschriebene
Gruppe. O(n) heißt orthogonale Gruppe (auch tollständige orthogonale Gruppe).

3.2.3.3. Die eigentlich orthogonale Gruppe O+(n)

Es sei O+(n) c O(n) die Menge aller orthogonalen n-reihigen Matrizen A mit
det A = 1. Sie heißen eigentlich orthogonal.

Mit A, B e O*(n) ist auch A - B e O*(n). Mit A und B ist nämlich auch A - B ortho-
gonal, und wegen det A = det B = l gilt det (A - B) = det A det B = l. Ferner
ist mit A eO*(n) auch A" eO*(n), denn A“ ist orthogonal und det (A - A")
= detAdetA" z ldetA“ = .

In O*(n) gelten offensichtlich das Axiom (A), für N = Es O*(n) das Axiom (N)
und für A“ E 0+(n) als inverse Matrix zu A auch (I). O*(n) besitzt diesbezüglich
die Struktur einer multiplikativen Gruppe. O*(n) heißt eigentlich orthogonale Gruppe.

3.2.3.4. Die unitäre Gruppe U(n)

Es sei U = [um] eine n-reihige quadratische Matrix, deren Elemente uw = xv“
+ iyw, e K komplexe Zahlen sind. Die zu u,.,, konjugiert kor_nplexen Zahlen aw, = x„„
— iy„„ bilden dann die zu U konjugiert komplexe Matrix U = [aw]. U heißt unitär,
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wenn UA_ÜT = E gilt. Wegen det Ü‘ = det Ü = det U und det E = 1 folgt aus
det (U' UT) = det Udet UT für den Betrag von det U: ldet Ul = l. det U ist also
eine unimodulare Zahl. U ist eine reguläre Matrix, also U6 GL(n, K).

Es sei U(n) <: GL(n, K) die Menge aller n-reihigen unitären_Matrizen. Mit U1, U2

e U(n) ist auch U1-U2 e U(n), denn mit U, - U1‘ = U2_- U} = E gilt ((-/1-U2)

X (UI ' U2)T = (U1 ' U2)'(U1' UzlT = (U1 ' U2) ' U?) = U1 "(U2 ' UiT
= E. Ferner folgt U“ e U(n) aus Us U(n): Daß U Lmitär ist, bedeutet UT =

U", und damit gilt UT” = (F/“)7 = (l—/T)" = (U")“ = U. Also ist U"
-FT=U—‘-U=E.

ln U(n) gilt das Assoziativgesetz (A), für N = Es U(n) ist (N) erfüllt, und U"
e U(n) ist die einzige gemäß (I) zu Ue U(n) inverse Matrix. U(n) ist also eine mum'-
plikative Gruppe — die unitäre Gruppe.

3.2.3.5. Die eigentlich unitäre Gruppe SU(n)

Eigentlich unitär heißt eine Matrix U e U(n), wenn für rie det U = l ixt. Ganz so

wie die eigentlich orthogonale Gruppe bildet auch die Menge der eigentlich unitären
Matrizen SU('n) c U(n) eine multiplikative Gruppe — die eigentlich unitärd Gruppe.

3.2.3.6. Die reelle und die ‘ ' e spezielle lineare Gruppe SL(n) und SL(n‚ K)

Nach dem Vorbild der Gruppen SU(n) bzw. 0*(n) bildet auch die Mlcnge der
Matrizen A eGL(r1, K) mit det A = l bez. der Matrizenmultiplikation eine multi-
plikative Gruppe. Für K bzw. R her/fit sie komplexe bzw. reelle spezielle lineare
Gruppe und trägt die Bezeichnung SL(n‚ K) bzw. SL(n, R) = SL(n).

3.2.3.7. Die Enthaltenseinsheziehungen zwischen den Matrizengruppen

Es gilt offensichtlich für R (und analog für K):
O*(n) c SL(n)

fl fl
0(n) c GL(n).

Als Mengendiagramm ist dieser Sachverhalt in Bild 3.1 dargestellt.

‚___ .

j W7"? Jllnli_.W //.l . Bild 3.l. Emhallenseinsbeziehungen zwischen Matrizen-
Üllnl L"""""J gruppen

3.2.4. Permutationsgruppen

Einzelheiten zu Permutationen sind in Bd. l dieser Reihe, 6.2., dargestellt.

a) Begrifi" der Permutation

Beispiel 3.2: Im Allen-Molekül bezeichnen wir die vier l-l—Atome l-I1, Hz, H3, H4
nur noch mit l, 2, 3, 4 (Bild 2.2(a)‚ (c)). Wir betrachten die Drehspiegelung S4 e D“.
Durch S4 geht über: 1 auf den Platz von 2 (S4(l) = 2), 2 auf} (S4(2) = 3), 3 auf4
(S4(3) = 4), 4 auf 1 (S4(4) = 1). In übersichtlicher Weise läßt sich die Wirkung von

S. auf das Molekül dann durch das Schema n1 = (1 2 3 4) beschreibenDieses
2 3 4 I

bezeichnen wir deshalb nicht mit S4, weil es nur den Wechsel der Plätze der Atome
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beschreibt, nicht aber die Bewegung des Raumes. In n, ist es allein wichtig zu wis-
sen, welches Atom Nr. 0c durch S4 den Platz von welchem Atom Nr. ß eingenom-
men hat, also daß in n, ac fiber 1b’ steht (34,13 = {1, 2, 3, 4}).
Daher sind als gleich zu betrachten die Schemata

n _(324l _(24l3 _(432l)
‘M 43l2)— 3]24)_1432

Definition 3.3: Die durch das Scheman = p 12] erklärte eineindeutige D.3.3
1 2 K n

Abbildung n(oc) = n, der Zahlenmenge {l, 2, .... cc, ...‚ n} auf sich heißt eine Permu-
tation der Elemente 1, ...‚ n. Die Permutalionen n und g nennen wir gleich,

l 2
n = g, genau dann, wenn n(a) = g(o.') für alle x = l, .‚.,n gilt. e = (1 2

I71 P2 ~heißt identische Permutation, n" = (1 " i") heiß! die zu n inverse Permutation.
2

Beispiel 3.3: Nach dem Vorbild von Beispiel 3.2 stellen wir zu jeder der Symmetrie-
operationen E, S4, Si, S2, C3, e D2, die entsprechende Permutation von
l. 2, 3, 4 fest und notieren sie in der Tafel 3.1. Ferner ermitteln wir die zugehörigen

inversen Permutationen. Zu n, z. B. gehört n,‘ = (2 3 4 I) = (l 2 3 4) = n3.
l 2 3 4 4 1 2 3

Tafel 3.1 I

Symmetrie- Permutation Zyklen- Inverse Inverse
operation darstellung Symmetrie- Permutation

operation

l 2 3 4
E e =(1234) =(l)(2)(3)(4) E s

l 2 3 4
S4 7,42341) =(l234) s2. n3

i 2 3 4
s: v. = (3 41 2) = <1 3) <2 4) s2 n.

l 2 3 4
s2 n3:(4123) =(l432) s, n,

‚ 1 2 3 4 ‚c, y, =(2143) = (1 2).(3 4) c, y,

„ l 2 3 4 „

C. n : (4321) = <14>(23> C3 V2

, 1 2 3 4 ‚

a. a, : (1432) =1I><24)(3) u. a.

„ l 2 3 4 ‚

o. u. = (3 21 4) =(13><2><4) ad 0'2

b) Verknüpfung von Permutationen

. . 1 2 3 4 I 2 3 4
Beispiel 3.4:n,-y, = (2 3 4 1)-(2 1 4 3

l, 2, 3, 4 bedeuten: Durch y, wird 1 in 2, durch n, 2 in 3 überführt. n, "y, iiberführe
dann l in 3. Analog gilt y,:2 —> I, 71,2] —> 2, also gelte jetzt n, -y,: 2 —> 2 usw.

) soll folgende Permutation der Zahlen
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' 2 3 4) = 172, und dem entspricht das Produkt
3 2 l 4

S4 - C; = 0;’ der zugehörigen Symmetrieoperationen (Tafeln 2.1, 3.1). Wir können
leicht feststellen, daß solche Entsprechungen für alle Permutationen bzw. Symmetrie-
operationen zum Allen-Molekül gelten (benutze Tafeln 2.1 und 3.2).

Definition: Unter dem Produkt der Permutatiorien n und z der Zahlen l, 2, ...‚

a, ...‚ n verstehen wir jene Permutation n - T von l, ...‚ n, die wir erhalten, wenn wir
zuerst die Abbildung: und daraufhin n ausführen: n - 1:(oc) :z(‘r(o.'))fi4'rc\' 1, 2, ...‚ n.

Bemerkung: Mit Rücksicht auf die gleiche Absprache für das Produkt aus Symmetrie-
Operationen in 2.3.l.7. führen wir in n - z ausdrücklich zuerst r aus und dann n.

Wir stellen fest (Tafel 3.2):

Insgesamt erhalten wir n, -y, = (
x

(1) Das Permutationsprodukr ist i. allg. nicht kommutariv. Wir finden z. B.
y, -n‚ = a, abweichend von n, -yl = a2.

(2) Die identische Permutation, und nur sie, verhält sich neutral:
s ~ n = n - a = n giltfür jede beliebige Permulation n.

(3) Das Produkt aus n und n“ liefert stets s: n -n" = n" -n = e. Nur n“
ist zu n invers (Tafel 3.1).

C) Permutationsgrupperi

Es gibt bekanntlich n! verschiedene Möglichkeiten, die Elemente l, 2, ...‚ n neben-
einander anzuordnen, d. h., es gibt genau n! verschiedene Permutationen der Zahlen
l, 2, .‚., n. Die Menge dieser Permutationen bezeichnen wir allgemein mit 6,.

Tafel 3.2. Gruppentafel der Gruppe I74 der Permutationen, die das Allen-
Molekül gestattet '

5 751 752 753 7i 72 0'! 572

751 752 753 5 ‘T2 0'1 7i 72
752 753 5 7'51 72 71 0'2 0'1

-"53 5 751 7'52 0'1 U2 72 71

7| 0'! 72 0'2 5 752 751 7'53

72 0'2 71 0'1 7'52 5 7'53 751

U! 72 0'2 71 753 751 '9 7'52

U2 7i (71 "/2 7'51 753 752 3

Nach b) wissen wir: mit n, r 62„ ist auch n - T e 3,, Wir überprüfen ferner, daß
diese Multiplikation assoziativ ist: n - (1-g) = (n - -r)‘g gilt für alle n, r,Qe©„.
Nach b), (l), (2) und (3) wissen wir daher: bezüglich der Multiplikation von Permu-
tationen, der identischen Permutation 5 als Einselement und n“ als der zu n inversen
Permutation bildet 3„ eine multiplikative nichtkommutative Gruppe.

Definition 3.5: 5„ heißt symmetrische Gruppe (der Ordnung n!)

Beispiele 3.5: Die 3! = 6 verschiedenen Permutationen der Dinge l, 2, 3 bilden die
symmetrische Gruppe 63. — Vier Dinge verursachen die Gruppe (i4 der Ordnung
4! = 24. — Greifen wir aus C54 jene Permutationen heraus, die das Allen-Molekül
gestattet (Tafel 3.1), so bilden diese bereits eine Gruppe IL c 54 für sich — eine
sogenannte Untergruppe von 64. Die Gruppentafel von H4 zeigt Tafel 3.2.

Bemerkung: Ein Molekül, das u. a. n gleichartige Atome besitzt, gestattet also i. allg.
nicht die Gesamtheit aller n! Permutationen der a„. Es kann Permutationen geben,

die wie z. B. g = i ä e a4 bei Allen (Bild 2.2) Bindungen zwischen Atomen
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zerreißen und so keiner Deckbewegung des Kerngerüsts entsprechen. Deshalb ist
4.

d) Gerade und ungerade Permutationen

Definition: Die Spalten zu z” in der Permutation 7: stellen in Inversion, wenn o: < ß, D.3.6
aber p,‘ > p), gilt, n heißt (un-)gerade‚ wenn in n eine (un-)gerade Anzahl von Inversionen
auftritt.

Beispiel 3.6: n, (Tafel 3.l) besitzt drei lnversionen, ist also ungerade. Ferner sind
n3, 41„ oz ungerade, a,7:2, y,,y2 dagegen gerade Permutationen. Letztere entspre-
chen den (eigentlichen) Drehungen, erstere den Drehspiegelungen und Spiegelungen
am Allen-Molekül.

Ohne Beweis — aber am Beispiel der Gruppe C53 leicht zu demonstrieren — nehmen
wir zur Kenntnis: Die geraden Permularionen in der Gruppe 6„ bilden eine Gruppe
der Ordnung n!/2, die ‚mgenannie alternierende Gruppe ‘!I„.

e) Zyklensclzreibweise von Permuralionen

Beispiel 3.7: Wir beobachten (Tafel 3.1), daß in n, 1 —> 2. 2 —> 3, 3—> 4, 4 —> 1

ineinander übergehen, was wir kurz durch 7:, = (l 234) bezeichnen und einen
Zyklus nennen wollen. In. n2 liegen demgemäß zwei Zyklen vor: l —> 3, 3 —> l ver-

ursacht den Zyklus (l 3) und 2 —+ 4, 4 —> 2 den Zyklus (2 4). Deshalb schreiben wir
n; = (1 3) (2 4). In der Tafel 3.1 sind sämtliche Elemente von H4 in dieser Zyklen-
schreibweise angegeben.

3.3. Die Verknüpfung der Gruppenelemente

3.3.1. Rechnen in multiplikativ geschriebenen Gruppen G

a) Produkte aus n Elementen

Produkte aus drei Elementen A, B, Ce G erhalten dadurch ihren Sinn, daß wir
sie auf die bereits erklärten Produkte aus zwei Faktoren zurückführen: Wir können
definieren

A-B-C=A~(B‘C) oder A~B'C=(A'B)~C.
was aber nach dem Assoziativgesetz (A) zum gleichen Resultat führt. Allgemein
gilt (nach induktiven Überlegungen) für beliebige A,, A2, ..., A,, E G, n e N:

A, -A2 A„ : A, ~(A2 A„).

b) Potenz

Falls A, = A2 2 2 A„ = A ist, schreiben wir obiges Produkt als Potenz

A, -A2...A,,=A‘A...A =A".

Dann gelten offensichtlich die Potenzgeselze

A"‘ - A" = A"‘*", (A"')" = Am"; m,ne N.

Definieren wir ferner

A° : E(Einselement von G) und A‘"’ = (A“)”', m E N,

so dürfen n, m e Z auch ganze Zahlen sein. Aus X = (A - B)“ folgt X- A -B =E‚ d. h.
X = B" ' A”. Also gilt

(A - B)" = B" "A" für beliebige A, B e G.
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c) Gleichungen

Ein unbekanntes Element (Unbekannte) X e G, das für gegebene Elemente A, B e G
der Gleichung A ' X = B genügt, bestimmen wir durch Multiplikation der Gleichung
vonlinkshermitA“: A“ -(A - X) = (A4 ~A) - X = E- X = X = A“ - B. Analog
wird die Gleichung X- A = B durch X = B- A" erfüllt. Die Lösungen sind jeweils
eindeutig bestimmt.

3.3.2. Rechnen in additiv geschriebenen Gruppen G

Alles vollzieht sich so wie bei den Produkten in 3.3.1.; wir definieren für beliebige
A, B, C‚A‚—eG(j= 1.....n;neN):

a)A +B+C:A +(B+C)bzw.allgemeinA‚ +A2 +..,+A,,=iA,.
= A. + (A2 + + A„)‚ "=‘

b) A + A + + A = nA für n Summanden A(= A, = A2 = A„). Dann
gelten die Rechenregeln

mA + nA = (m + n)A und m(nA) = mnA; m, ne N.

Definieren wir noch

0A = O (0: Nullelement von G,0e Z) und —mA z m(—A), me N,

so gelten diese Regeln auch für m, n e Z. Ferner können wir zeigen:

—(A + B) = —B — A

und für abelsche Gruppen n(A + B) 2 nA + nB, n e Z.

c) Die Auflösung einer Gleichung A + X = B für gegebene Elemente A, BE G
nach der Unbekannten Xe G erfolgt durch die Addition von —A von links zu

beiden Seiten der Gleichung. X = —A + B ist die eindeutig bestimmte Lösung.
Analog lösen wir X + A = B.

3.3.3. Gruppentafeln

a) Wir betrachten noch einmal die Produkttafeln (Tafeln 2.1, 2.2, 3.2) der Sym-
metriemengen D“, C2,, und der Permutationsgruppe U4. übereinstimmend lesen
wir an ihnen u. a. folgende Regelmäßigkeiten ab, die wir nachfolgend nur für D2‘,
notieren:

(1) In jeder Zeile und in jeder Spalte der Matrix aus den Produkten A - Be DM
tritt jedes Element aus Dzd genau einmal auf.

(2) Es gibt genau eine Zeile und genau eine Spalte in dieser Matrix, die mit der
Eingangszeile bzw. Eingangsspalte der Pradukttafel übereinstimmt.

(3) Das durch (2) festgelegte Element E e DM (die Identität bzw. das Einselement)
tritt in der Matrix symmetrisch zur Hauptdiagonalen auf

(4) Multipliziert man die Zeile hinter dem Element B der Eingangsspalte ele-
mentweise von links mit A e Dm, so erhält man die Zeile hinter dem Ele-
ment A - B der Eingangsspalte.

D.3.7 Definition 3.7: Eine Produkltafel aus den Elementen einer endlichen Menge G, die die
Eigenschaften (1) bis (4) besitzt, nennen wir Gruppentafel oder (Cayleysche) Struktur-
tafelfiir G.

Folgerung 3.1: Eine endliche Menge G, die mit einer Gruppentafel ausgestattet ist,
besitzt die Struktur einer Gruppe.
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Beweis: Das Assoziativgesetz (A) folgt aus (4), die Existenz des Einselementes (E)
aus (2)‚jene des inversen Elementes — also Axiom (I) — folgt aus (l) und (3). I

Gilt für die Produkttafel von G — so wie Z. B. für jene der Symmetriemenge C2„
von H202 A überdies noch die Eigenschaft:

(5) Die Matrix aus den Produkten A - Be G ist (bez. ihrer Hauptdiagonalen)
symmetrisch,

so gilt in G das Komrnuralizzgesetz (K). G ist dann also eine abelsche Gruppe. D2d
ist demnach keine abelsche Symmetriegruppe.

Die Eigenschaften (l) bis (5), die Definition 3.7 und die Folgerung 3.1 gelten auch,
wenn wir „Multiplikation“ durch „Addition“ und E durch O ersetzen.

Sind wir im Besitz der Gruppenrafel für eine endliche Gruppe G, so beherrschen wir
das Rechnen in G vollständig. G kann also durch diese Tafel als gegeben angesehen
werden. Beispiel:

b) Die Kleinsche Vierergruppe: Zu der endlichen Menge {A, B, C. D} geben wir
uns den Forderungen (l) bis (5) gemäß folgende Produkttafel vor und konstruieren
dadurch auf dieser Menge eine abelsche Gruppenstruktur (Tafel3.3). Mit dieser
Gruppentafel ausgestattet heißt diese Menge die Kleinsche Vierergruppe
V = {A, B, C, D]. A = N = Eist das Einselement in V.

3.3.4. Isomorphie — abstrakte Gruppe — Homomorphie

a) Das Kemgerüst des H2O-Moleküls (vgl. Bild 2.5) gestattet die Drehung C2

des E3 um 180° um die (Haupt-)Drehachse C2, die beiden Spiegelungen 0;, 0',’ an
den Spiegelebenen 0;, 0;’ des Moleküls und natürlich die Identität E. Ausgestattet
mit Tafel 3.4 als Gruppentafel bildet die Symmetriemenge {E‚ C2, 0;, 0;’} dann die
Symmetriegruppe C2 = [E‚ C2, 0;, 0;’] des H2O-Moleküls.

Tafel 3.3. Gruppentafel der Kleinschen Vierergruppe

A B C D

A A B C D
B B A D C
C C D A B
D D C B A

Tafel 3.4. Gruppentafel der Symmetriegruppe C2; des H20-Moleküls
E C2 0; 0;’

E E C2 a; 0;’
C2 C2 E 0;’ 0;
o"; 0; 0;’ E C2

0;’ 0;’ 0; C2 E
b) Auf diese Tafel 3.4 legen wir nun passend (erste Zeile bzw. erste Spalte auf

erste Zeile bzw. erste Spalte) die Tafel 2.2 der Symmetriegruppe C2„ des H202-Mole-
küls. Ferner abstrahieren wir von der konkreten Bedeutung der Gruppenelemente,
indem wir diese nach der Reihenfolge ihres Eingangs in die Tafeln neutral durch
A, B, C, D umbezeichnen.

Dabei stellen wir fest: (l) Die Gruppentafeln von C2„ und C2; stimmen überein
(sie sind deckungsgleich); (2) sie stellen gerade die Gruppentafel (Tafel 3.3) der
Kleinschen Vierergruppe V dar.

Definition 3.8: Zwei endliche Gruppen G, G’ heißen zueinander isomorph, in Zeichen:
G 3 G’, wenn ihre Gruppentafeln übereinstimmen — gegebenenfalls nach geeigneter

D. 3.8
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Vertauschung der Elemente ihrer Eingangxzeilen bzw, Eingangsspalten und Abstrak-
tion von der konkreten Bedeutung ihrer Elemente.

Die Tafeln 3.3 und 3.4 sind so angegeben, daß für (1) eine solche Vertauschung
unnötig ist; allgemein ist jedoch keine Reihenfolge für die Elemente einer Tafel
vorgeschrieben.
Beispiele 3.8: Demnach gilt also C2„ 2 C2„. Weitere lsomorphismen lauten:
C2,, 2 C22, C2, 2 C2d, C2„ 2 D2, C2, 2 D2, C22 2 D2. Dabei bedeuten C2d
= [E, C2, a5, a,’,’] und D2 = [E, C2, C2, C’2’] jene Gruppen, die wir als Teilmengen
der Symmetriegruppe D2„ des Allen-Moleküls nach deren Gruppentafel (Tafel 2.1)
erhalten (C2 = Si; vgl. auch Tab. 3.4.2. b)). Die Feststellung (2) trifft offenbar auch
auf die Gruppen C2,, und D2 zu. Die Kleinsche VierergruppeV ist also der gemein-
same Vertreter der Gruppen C2d, C2„, C2„ D2 und in diesem Sinn der Vertreter der
Klasse aller zueinander isomorphen Gruppen C22 2 C2„ 2 C2,, 2

Diese nennen wir eine Isomorphieklasse und die Kleinsehe Vierergruppe als Repräse/r
tant der Klasse abstrakte Gruppe. In dieser Bedeutung verwenden wir die beiden am
Beispiel eingeführten Begriffe ganz allgemein.

Der Vergleich der Tafeln 2.1 und 3.2 zeigt: Die Symmetriegruppe des Allen-
Moleküls ist isomorph zur Gruppe IL, der Permutationen, die dieses Molekül ge-
stattet. Es ist nicht schwer, die Symmetriegruppe C4, des Moleküls SF5Cl (Bild 2.lg)
zu ermitteln und festzustellen, daß auch sie zu D2„ isomorph ist: H 2 D2„ 2 C4,
liegen in einer Isomorphieklasse.

e) Aufgrund des Gleichheitsbegriffes für Symmetrieoperationen bzw. Permutationen
können zwei verschiedene solche Operationen mitunter die gleiche Permutation der
Atome an einem Molekül hervorbringen (wie z. B. an H2O in Bild 2.5 C2 und a;
oder E und 0;’). Dann ist die Eineindeutigkeit der Abbildung zwischen der Sym-
metriegruppe und der entsprechenden Permutationsgruppe, die das Molekül gestat-
tet, gestört, und statt eines Isomorphismus zwischen diesen beiden Gruppen kann
man gemäß 3.3.4.f) i. allg. nur noch von einem Homomorphismus sprechen (Bei-
spiel: H2O oder CO2). ‘

d) Das Rechnen in zueinander isamorphen Gruppen — also in einer Isomorphieklasse —

vollzieht sich nach ein und demselben Rechenschema (Kalkül). Wir sagen auch, die
Gruppen einer Klasse haben die gleiche Gruppensrruktur. Es genügt also Z. B., Grup-
pentheorie in der Kleinschen Vierergruppe V zu treiben, um sogleich über die grup-
pentheoretischen Eigenschaften aller Gruppen der Isomorphieklasse zu V Bescheid
zu wissen, und dies gilt ganz allgemein. Molekülen, deren Symmetriegruppen zur
gleichen abstrakten Gruppe gehören, gleichen sich in jenen Eigenschaften, die allein
von diesen Gruppen abhängen, und können so zu einer (lsomorphie-)Klasse zusam-
mengefaßt werden.

Eine Gruppe, in der nicht wie in V gerechnet wird, die also nicht in die Isomorphie-
klasse {C2d, C2“, C2„, D2, gehört, ist Z. B. S4 = [E‚ S4, Sf, Sf] C D2d, deren
Gruppentafel durch die linke obere Teilmatrix innerhalb der Tafel 2.1 zu D2„ ge-
bildet wird. S4 liegt in einer lsomorphieklasse, zu der als abstrakte Gruppe die zykli-
sche Gruppe Z4 der Ordnung 4 (vgl. 3.5.1.) gehört.

Zu vorgegebener natürlicher Zahl g gibt es eine endliche Anzahl n = n(g) Verschie-
dener abstrakter Gruppen der Ordnung g, z. B.:

gl12345678l22448
n(g)|lll2l2l55l532

e) Isomorphie zwischen unendlichen Gruppen: Legen wir die Gruppentafeln von zwei
endlichen Gruppen G 2 G’ übereinander, z. B. die von C2, (Tafel 3.4) aufjene von
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C2,, (Tafel 2.2), so bewirkt dies eine eineindeutige Abbildung‘) <7»: G —» G’. Jeweils
übereinanderliegende Elemente werden aufeinander abgebildet; z. B. istzpz C2,, —> C2.
durch zp(E) = E, <p(Cz) = C2, (floh) = aß, <;(i) = oL’ definiert. a» hat olTenbar die
Eigenschaft:

<p(Xo Y) = q0(X)orp(Y) für alle X, YeG.
Wir sagen dann, die Abbildung q: ist relationstreu. Zum Beispiel gilt (A0„ r i)

= War.) ' <P(i)»<r(E‘ i) = ¢(E)‘¢(I') (T=1fe13-4)-
Umgekehrt bedeutet die Existenz einer solchen relationstreuen eineindeutigen

Abbildung (p: G —> G’, daß G zu G’ isomorph ist.
G und G’ seien jetzt endliche oder unendliche Gruppen.

Definition 3.9: G heißt zu G’ isomorph, in Zeichen G 2 G’, wenn es eine eineindeutige
relationstreue Abbildung (p: G —> G’ von G auf G’ gibt. (p heißt Isomorphismus.

Man kann nun zeigen, daß die Gesamtheit aller Gruppen in lsomorphieklassen zer-

fällt, deren jede durch eine abstrakte Gruppe repräsentiert wird. Es gibt also den
Rechenschemata nach nur so viele verschiedene Gruppen, wie es abstrakte Gruppen gibt.

Beispiel 3.9: Der Modul V2 der Vektoren der Ebene E‘ ist isomorph zum Modul R2
der geordneten Paare reeller Zahlen: V2 g R2 (vgl. 3.2.2.a)). Die Komponenten-
zerlegung z = xa + yb des Vektors z e V2 bez. der Basis {0; a, b} bewirkt durch
<p(z) = (x, y) eine eineindeutige relationstreue Abbildung o: V2 —> R2 (Bild 3.2).
Analog ergibt sich: V2 E K bzw. R2 K (K: Modul der komplexen Zahlen).

Bild 3.2. Komponentenzerlegung des Vektors z in der
Basis {0; u, b}

f) Automorphismus, Homomorphismus: (1) Ist in Definition 3.9 G = G’, so ist z;

ein Isomorphismus von G auf sich selbst und heißt dann Autemorphismus. (2) Ist
in der Definition o: nicht eineindeutig, sondern nur eindeutig und relationstreu, so

heißt (p: G —> G’ Homomorphismus von G auf G’, Bezeichnung G 3 G’.
Beispiel 3.10: Es seien S bzw. H die Symmetrie- bzw. Permutationsgruppe, die das
Molekül M gestattet. Ordnen wir der Symmetrieoperation A e S jene Permutation
n e H zu, die die Atome von M auf die gleichen Plätze vertauscht wie A, so ist diese
Abbildung ein Homomorphismus, S g H (vgl. auch 3.3.4.c)).

3.4.

3.4.1.

Es sei G eine Gruppe.

Definition 3.10: (l) Eine nichtleere Teilmenge A c: G heißt Komplex.
(2) A‘ C G bezeichne dann den Komplex aller zu den Elementen A e A inversen

Elementen A‘ e G.
(3) Komplexprodukt (oder Komplexsumme) aus den Komplexen A, B c G nennen

wir den Komplex A o B c G aller Elemente A o B e Gfür A e A und BE B. Für ein
festes Element F e G sei speziell F o A der Komplex aller Elemente F o A. Entsprechend
ist A o F definiert.

Untergruppen

Komplexe, Komplexprodukt

‘) Abbildungsbegriff: s. Bd. 1 dieser Reihe.

D.3.9

D.3.l0
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Beispiel 3.11: Es sei G = C2„ = [E, C2,a„‚ i] mit Tafel 2.2 als Produkttafel die
Symmetriegruppe von H202, A = {E, C2}, B = {Roh}, F = i. Dann gilt: A < B
= {E~E, E~o,,, C2~E, C2'Uh} = {E,a,,,C2,i}= G und F-A={i‘E, i-C2}
: {E, ah} = B.

3.4.2. Begriff der Untergruppe, Beispiel

D.3.ll Definition 3.11: Der Komplex U c G heißt Untergruppe der Gruppe G, wenn U bez.
oder uneigenrlichen der Reclienvorschrift a von G bereits für ‚riclz eine Gruppe bildet.

Als Komplexe in der Gruppe G bilden demnach G selbst und die Menge {N} c G
aus dem neutralen Element N e G allein stets Untergruppen von G A die sog. trivialen
oder u/ieigentliche Untergruppen [N] und G. Beispiele von Untergruppen:

a) Anhand der Gruppentafel der symmetriegruppe C2„ des H2O2-Moleküls
(Tafel 2.2) können wir sämtliche Untergruppen von C2„ feststellen. Zur Ordnung
u : 3 kann es keine Untergruppe U geben, weil mit je drei Elementen immer gleich
alle vier in U liegen. (Die Ordnung einer Untergruppe ist stets Teiler der Ordnung
der Gruppe.) Zur Ordnung u = l, 2, 4 treten auf:

u Untergruppe (zu deren Bezeichnung siehe 5.1.)

l C, = [E] triviale Untergruppe

2 C2 = [E, C2] Drehsymmetriegruppen von H202, Cs = [E, cr„],

C: = [E i]

4 C2,, = [E, C2,o'„, i] triviale Untergruppe

b) Analog zu a) entnehmen wir der Gruppentafel zur symmetriegruppe 02d des
Allen-Moleküls in Tafel 2.1 sämtliche Untergruppen zur Ordnung u = 1, 2,4, 8;
zu den Ordnungen 3, 5, 6, 7 gibt es keine Untergruppen:

u Untergruppen von D22 (zu deren Bezeichnung vgl. 5.; C2 = Si)

l C2 = [E] triviale Untergruppe

2 C2 = [E, C2], C'2 = [E, C2], C’2’ = [E, C2’] Untergruppen der Dreh-
[E, 47;], [E, aß] ' symmetriegruppe D2

D2 = [E, C2, C2, C2’] Drehsymmetriegruppe des Allen-Moleküls
S4 z [E, S4. Si, S2] = Z4 zyklische‘) Gruppe der Ordnung 4

Czd = [Es C2» 01,1: ‘7./1/]

8 D2,, = [E, S4, S}, S}, C}, C2’, 17;, 03'] triviale Untergruppe

Einen ganz entsprechenden Bestand an Untergruppen besitzt die Gruppe H4
der Permutationen, die das Allen-Molekül gestattet.

c) Aus den Enthaltenseinsbeziehungen zwischen den Matrizengruppen 3.2.3.7.
folgt sofort, daß die allgemeine lineare Gruppe GL(n) die urthoganale, eigentlich
orthogonale und spezielle lineare Gruppe 0(n),0+(n),SL(n) zu Untergruppen hat.
Dabei ist O*(n) wieder Untergruppe von O(n) und SL(n) (s. Bild 3.1).

Analog ist die Situation für GL(n, K).

4k

‘) siehe 3.5.1.
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3. 4. 3. Untergruppenkriterium

Satz 3.1: Der Komplex U c G ist genau dann Untergruppe der Gruppe G, wenn gilt: S.3.l

(l) UoUC U und (2) U‘ C U.

Bemerkung: Ist G endlich, gilt der Satz bereits, wenn (1) erfüllt ist.

Beweis: (—>) Gelten (l) und (2), so ist U eine Gruppe: (1) bedeutet Abgeschlossenheit
von U bez. o; (A) gilt in G, also ebenfalls in U; (N) gilt, da mit Be U nach (2) auch
B‘ e U ist und nach (1) dann B o B‘ = B’ o B = Ee U als einziges neutrales Element
auftritt; (I) folgt aus (2). («—) Ist umgekehrt U eine Untergruppe, also eine Gruppe,
so sind (l) und (2) als Teilforderungen der Gruppendefinition automatisch erfüllt. I

Folgerung 3.2: Das neutrale Element N e U jeder Untergruppe von G ist gerade das-
jenige von G. Das zu A e U inverse Element A‘ e U ist gerade das zu A inverse bez. G.

Folgerung 3.3: Für eine Untergruppe U c: G gilt stets

(l’) UoU = U und (2’) U‘ = U.

Beweis: Wegen NeU gilt nach (1): U z [N] o U c U a U c U, und dies ist (1’).
(2’) gilt, weil aus (2) folgt: (U')‘ c U‘; d. h. wegen (U‘)‘ = U gilt neben (2) auch
noch U z: U‘, und dies bedeutet (2’). I

Folgerung 3.4: Der Komplex aller Elemente A e G der Gruppe G, die mit allen Ele-
menten X e G vertausehbar sind: A o X = X o A, bildet eine Untergruppe 3 von G.

Beweis: Für A,Be3 gilt: (A oB)oX= A oXoB = Xo(A DB) für alle XeG,
also 3 e 3 c S. Ferner ist (s. 3.3.l.b)) A‘ o X = (X‘ o A)‘ = (A o X‘)' = (X‘)‘ o A‘
= XoA‘,also3'c3. I

Definition 3.12: 3 = [A E G: A o X = X ° A für alle XE G] heißt das Zentrum der D.3.l2
Gruppe G.

Bemerkung: Eine abelsche Gruppe stimmt mit ihrem Zentrum überein.

Beispiel 3.12: Der Gruppentafel (Tafel 2.1) gemäß lautet das Zentrum von DM:
3 = C2 = [Es Sil-

3.4.4. Satz von Lagrange, Nebenklassenzerlegung

a) Die Symmetriegruppe C2,, des H202-Molekiils hat die Ordnung g : 4. Sie
besitzt nach 3.4.2. a) Untergruppen nur zu den Ordnungen u = 1, 2, 4, also Zahlen,
die Teiler von g sind: g =j- u. Den gleichen Sachverhalt beobachten wir an der
Symmetriegruppe D24 des Allen-Moleküls, deren Ordnung g = 8 nach 3.4.2. b) nur

Untergruppenordnungen gestattet, die Teiler von 8 sind. also u = l, 2, 4, 8.

b) Die an diesen beiden Beispielen beobachtete Regel gilt allgemein:

Satz 3.2 (Lagrange‘)): Die Ordnung u einer Untergruppe U der endlichen Gruppe G S.3.2
ist ein Teiler der Ordnung von G, d. h., zu U gibt es eine itatürliclie Zahl j, für die gilt
g = ‚i - u.

Definition 3.13: j heißt Index von U, Bezeichnung: j = [G : U]. D.3.13

Bemerkung: Die Ordnung der trivialen Untergruppe [N] ist l. Deshalb gilt:
g = [G : [N]]‘ l und u = [U : [N]] - l. Folglich lautet der Satz 3.2.: [G : N]
= [G : U] - [U : N] (für [N] schreibt man auch N).

l) Joseph Louis Lagrange (17364813), Mathematiker und Physiker. wirkte in Turin, Berlin,
Paris.

3 Helger, Fymmetriegnxppen
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c) Nebenklassenzerlegung. Beweis des Satzes von Lagrange.

Definition 3.14: Der Komplex L v U c G heißt die vom Element L e G repräsentierte
Linksnebenklasse nach U, U e R Rechtsnebenklasse zu R e G nach U.

(a) Zwei Linksnebenklassen L, o U, L2 o U (L2, L2 e G) sind entweder gleich oder
elementfremd. Denn fürL eLl o Ugilt nach Folgerung 3.3, (l’):L o U = L2 o U. Aus
LsL1oUnL2 oU folgt demgemäß LoU = L1 oU und LoU = L2 oU. Haben
die beiden Klassen ein Element L gemeinsam, so sind sie als Mengen gleich.

(fl) Die Anzahl der Elemente in einerLinksneben/classe nach U ist gleich u. Denn wäre
L1 o U=L‚e U’ für U, U’eU mit U+ U’, so wäre L;‘oL‚ e U=L;1oL, a U’,
Eo U = Eo U’, U = U’ im Widerspruch zur Voraussetzung.

(y) Nach (xx) und (fi) kann man formulieren:

Satz 3.3: Eine endliche Gruppe G läßt sich als Vereinigung ihrer j verschiedenen Links-
nebenklassen L, o U (v = 1, ..., j) nach U schreiben:

(L) G=L1oUuL2oU\/...uL‚-oU (o.B.d.A.L,=N)
wobei oflensichtlich g = j- u sein muß.

Damit ist der Satz von Lagrange bewiesen. Für u wird in (L) oft auch + ge-
schrieben. '

Definition 3.15: (L) heißt Zerlegung der Gruppe G in Linksnebenklassen nach der
Untergruppe U von G, die Elemente L, (v = 1, ..., j) heißen die Linksrepräsentan-
ten der Zerlegung.

Bemerkung: Wegen (A o B)‘ = B‘ o A‘ (3.3.1.b), 3.3.2.b)) und U‘ = U, Folgerung
3.3 (2’)‚ gilt (L o U)‘ U‘ oL‘ = U o R (R = L‘). Aus einer Linksnebenklasse wird
durch die Invertierung t eine Rechtsnebenklasse. Wir erhalten so aus (L) eine Rechts-
nebenklassenzerlegung (R) von G nach U und damit den

Satz 3.4: Eine endliche Gruppe G besitzt die gleiche Anzahl j von Links- und Rechts-
nebenklassen nach der Untergruppe U, und zwar ist j = [G1 U].

Beispiel 3.13: Als Linksnebenklassenzerlegung der Symmetriegruppe D22 des Allen-
Moleküls nach der Untergruppe C2 = [E, C2], C2 = S}, mit den Linksrepräsen-
tanten E, S4, C2, ufyfinden wir in der Gruppentafel (Tafel 2.1) gemäß

D24: E-C2vS4-C2UC2-C2UaQ-C2
= {E, C2} u {S4, S2} u {C2, 2'} u {(75, 11g}.

Die Anzahl der Verschiedenen Linksnebenklassen beträgt j = 4 in Übereinstimmung
mitj = [D2dz C2] = 8 : 2 = 4 nach dem Lagrangeschen Satz. Die Rechtsnebenklas-
senzerlegung behandeln wir als Ubungsaufgabe.

3.5. Zyklische Gruppen und Systeme erzeugender Elemente

3.5.1.

Beispiel 3.14: Offensichtlich wird die Untergruppe S4 = [E‚ S4, S2, Si]: D2,,
der Symmetriegruppe D2„ des Allen-Moleküls (vgl. Tafe12.1 bzw. 3.3.4. d) oder
3.4.2. b)) von den Potenzen der Drehspiegelung S4eD2„ gebildet (vgl.2.3.l.2.):
S2 E, Si = S4, S}, S2. Da die Achse S4 vierzählig (von der Ordnung vier) ist,
gilt S‘ = S2, und vier ist die kleinste unter jenen natürlichen Zahlen n, für die

Zyklische Gruppen
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S: = 2 gilt. Das Element S4 heißt dann selbst von der Ordnung vier, und daraus
können wir folgernuS’ Si- Si = S4, S2 = S2: S}, = S2, ..., S2 = S2-S2~ S}
= S4, Ferner gilt wegen S;‘ = S2 (vgl. 2.3.1.9.): 5;" = (S;‘)" S2"e S4

(n =1, 2,
Wir ersetzen nun D2,, durch eine beliebige Gruppe G und S4 durch ein Element

A e G.

Definition 3.16: A e G heißt von der endlichen Ordnung a genau dann, wenn A“ = A°
= E gilt und dabei a die kleinste natürliche Zahl dieser Eigenschaft ist, Existiert ein
solches a nicht, so heißt A von unendlicher Ordnung.

Folgerung 3.5: A E G sei ein Element der endlichen Ordnung a. Dann sind die Po-
tenzen A“ = E, A‘ A, ..., A"“ zur Basis A untereinander verschieden. Für alle
anderen gilt A"""'" = A"', 0 g m g a — 1, k = 1-1, i2, Ist A von unendlicher
Ordnung, sind alle Potenzen von A untereinander verschieden.

Beweis: — Es sei A von der Ordnung a. Befinden sich unter den A°, ..., A"" zwei
gleiche: A“ = A’ mitO g h < lg a —- 1, dann würde gelten: A"' - A" = E = A"'~A‘
= A"", 0 < l — h < a -— 1, was aber der Ordnung a von A widerspräche. — Es gilt
A““ = (A”)" = E" = E (k e Z) und also A"“+"‘ = A“ ~ A"' = A"'. — Es sei A von un-
endlicher Ordnung. Wäre A” = A" (h, k e Z, h < k), so würde dies A“" - A“ = E
: A“" - A“ = A""‘, also eine endliche Ordnung für A bedeuten. I

Definition 3.17: Eine Gruppe G, die aus allen Potenzen A" (k e Z) eines ihrer Elemente
A E G besteht, heißt zyklische oder auch von A erzeugte Gruppe. A heißt erzeugendes
(auch primitives) Element von G, und wir schreiben dann G = (A).

Beispiel 3.15: S4 = (S4) = [S2, S}, S}, S2], (S° = E, S}, = S4), ist eine zyklische
Gruppe — die zyklische Untergruppe der Ordnung 4 von D“.

Satz 3.5: Der Komplex aus allen Potenzen A" zur Basis A e G bildet eine Untergruppe
(A) c G — die von A erzeugte Untergruppe. Ist A von der endlichen Ordnung a, so gilt
(A) = [A°, A‘, ..., A“‘1], (A° = E, A‘ = A), und (A) ist selbst von der Ordnung a.

Mit A ist auch (A) von unendlicher Ordnung. (A) heißt dann freie zyklische Gruppe.

Beweis: (A)~ (A) c (A) gilt wegen A“ - A" = A"+", (A)“1 c (A) wegen (A")"
z A”' (h, k,/1 + k ganzzahlig, vgl. 3.3.1. b)). Die Voraussetzungen (l), (2) des
Untergruppenkriteriums 3.4.3. sind also erfüllt. Die übrigen Aussagen des Satzes
sind obiger Folgerung zu entnehmen. I

Wir können damit die folgenden Aussagen formulieren, deren Richtigkeit der
Leser selbst nachprüfen kann:

Folgerungen: (1) Zyklische Gruppen sind stets abelsch.
(2) Die Ordnung a eines jeden Elementes A e G ist Teiler der Ordnung g der endlichen

Gruppe G.
(3) In (2) gilt A“
(4) Jede Gruppe von Primzahlordnung g = p ist zyklisclz.

Beispiel 3.16: Die Gruppe C3 der Drehungen C° : E, C; = C3, C§ des Ammoniak-
Moleküls NH3 (Bild 2.1(e)) ist von der Primzahlordnung p = 3 : C3 = (C3).

Isomorphie: Zyklische Gruppen (A), (B) von gleicher Ordnung n haben über-
einstimmende Gruppentafeln (Tafel 3.5). Dies gilt auch für die Ordnung unendlich.
Sie sind also zueinander isomorph und bilden eine Isomorphieklasse. Die sie repräsen-
3*

D.3.l6

D.3.l7

S.3.5
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tierende abstrakte Gruppe — die „zyklische Gruppe der Ordnung“ n — bezeichnen wir
mit Z„, bei unendlicher Ordnung mit Z‚_.

Tafel 3.5. Isomorphie zwischen zyklischen Gruppen der Ordnung n

l A° .A" . A" I B° B" B"

A° E B° E

A}: Alu-H: _ Bk Bk-H:

A" g B" I

3.5.2.

Diese werden von den Vielfachen kA (k ganzzahlig) eines Elementes A einer ad-
ditiven Gruppe G erzeugt. Anstelle der Potenzen A" hat man dann in 3.5.1. überall
Vielfache kA zu schreiben und gemäß 3.3.2. zu rechnen.

Bemerkung zu additiv geschriebenen zyklischen Gruppen

3.5.3. Systeme von Erzeugenden

In einer zyklischen Gruppe G = (A) ist jedes Element G ein Produkt aus endlich
vielen A und A“: G = A A r A“ A“ = A""‘ = A’. Wir verallgemeinern:

Definition 3.18: Es sei A c G ein Elementekomplex der Gruppe G. Ist jedes Element
G e G ein Produkl (eine Summe) aus endlich vielen Elementen aus A und aus A’, so

heißt A ein System von Erzeugenden von G, und wir schreiben dann G = (A).
Beispiel 3.17: In der Symmetriegruppe DM bildet (nach Tafel2.l) der Komplex
{S4, Cg} ein Erzeugendensystem, d. h. D24 = (S4, Cg). Zum Beispiel gilt:
E = C; - C5, S4 = S4 - S4 - S;1, C3’ = S} r C§,a{,’ = S4 ~ C5 usw. Aber auch
{C;‚ af,’} bildet ein Erzeugendensystem: D24 = <03, 0;’).

Von Bedeutung ist die Frage nach einem minimalen Erzeugendensystem M <: G:
Für M gilt G = (M), aber alle echten Teilkomplexe L c M erzeugen nur echte
Untergruppen (L) c G. {C;.,a(,’}, {S4, cg} sind offensichtlich minimale Erzeugen-
densysteme für D24.

3.6. Klassen, Normalteiler, Faktorgruppen

3.6.1. Zerlegung einer Gruppe in Klassen konjugierter Elemente

a) Beispiel 3.18: Die Elemente der Symmetriegruppe D24 = [E, S4, Si, S2, C2’.
cg’, <73, aß] unterscheiden wir nach Spiegelungen a, Drehspiegelungen S, Drehungen
C, Anders und genauer ausgedrückt: Wir nennen zueinander „ähnlich“ jeweils die
beiden Spiegelungen 04;, 0;’, die beiden Drehspiegelungen S4, S} und die Drehungen
Cg, Cf,’ um die horizontalen Achsen. Getrennt davon zu betrachten ist die Drehung
C2 = Si um die vertikale Achse und E selbst (vgl. Bild 2.2(a)). Danach können wir
D2‘, gemäß

D24 = {ElV {Si} v {$4. Si} U {CL C9} U {ein <7£{}‘)

als Vereinigung von elementfremden Klassen zueinander ähnlicher Elemente schrei-
ben (Zerlegung von D24 in Ähnlichkeitsklassen).

‘) Genaueres zu dieser Zerlegung siehe in 423e).
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Der Zerlegungsmechanismus ist von einfacher Natur: Bilden wir z. B. zum Element
a; alle Produkte X" ~ a; - Xfür X6 Du, so erhalten wir die Klasse {(73, 03'}. Genauso
entsteht die Klasse {C;‚ C;’} durch alle Produkte X“ - C; ~ X usw. Die Elemente
X" r C; - X sind dann also zu C; ähnlich. wir sagen auch konjugiert zu C;.

b) Wir ersetzen nun D2,, durch eine beliebige Gruppe G und C; durch ein beliebiges
Element A e G.

Definition 3.19: A eG heißt zu einem Element BEG konjugiert oder ähnlich. in
Zeichen A ~ B, wenn es ein Element XeG gibt, so daß B = X‘o A o X gilt. Wir
sagen dann auch, B entsteht durch Tranvormatiotr mit X aus A.

Die Relation ~ hat bezüglich beliebiger Elemente A, B, C E G die drei Eigenschaf-
ten der Reflexiuität (R), Symmetrie (S) und Transitivität (T) und wird Aquivalenz-
relation genannt:

(R) A ~ A (denn A = N‘ e A o N, N’ : Nneutrales Element von G),

(S) MitA ~BgiItauchB~ A(dennausB=X‘oAeXfolgtA =XoBoX‘
= (X‘)‘° 3°(X')).

(T) Mit A ~ B und B~ C gilt auc/1 A ~ C (denn B= X‘oAoX und C
= Y‘oBo Yhat zur Folge C: Y'o(X‘oAoX)oY=(Xo Y)‘oA
°(X°Y))-

Entsprechend Bd. 1 dieser Reihe, 7.4.1., zerfällt demnach die Gruppe G in soge-
nannte Aquiualenzklassen: Wir bilden zu einem beliebigen Element A eG den
Komplex {X‘o A o X} aller zu A konjugierten Elemente (man benutze dazu insbe-
sondere (S) und (T)).

Definition 3.20: {X‘ ° A ° X} heißt die Klasse konjugierter Elemente, kurz Klasse von

A, A ein Repräsentant dieser Klasse, Bezeichnung: (A).

Beispiel 3.19: In Tafel 3.6 wird mit Hilfe der Gruppentafel der Symmetriegruppe
G = D2,, des Allen-Moleküls (Tafel 2.1) die Klasse von A = S4eDzd aufgestellt:
(S4) = {S4: Si}-
Schöpft nun (A) die Gruppe G noch nicht vollkommen aus (wie z. B. (S4) Da,
nicht ausschöpft), so gibt es ein Element B ¢ (A) in G, dessen Klasse (B) zu (A)
elementfremd ist. Ist (A) u (B) immer noch eine echte Teilmenge von G, so gibt es

ein Element C ¢ (A) U (B) usw.

Tafel 3.6. Bildung der konjugierten Klasse von A = S4 in der Symmetrie-
gruppe G = Dzd

X | X“ | X“~S,,'X

E <E S4
S4 S2 S4

Si S3. S4
Si S4 S4

3 C3 S3
a’ c; s;

Ulla 17¢ S4

D.3.19

D.3.20
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Satz 3.6: Eine Gruppe G laßt sich als Vereinigung von elementfremden Klassen zu-

einander konjugierter Elemente schreiben. Mit dem Repräsentantensystem A, B, ... e G,
lautet sie: G = (A)u (B)u (A, B, paarweise nicht konjugiert). G „zerfällt“
in Klassen.

Bemerkung: Jedes Element F 6(14) eignet sich als Repräsentant anstelle von A:
(A) = (F)-

Beispiel 3.20:

D22, = {E} U {Si} u {S4, S2} u {C2‚ C’2’} u {(75, aß}

= (E) V (Si) V (S4) V (C5) V (0.2).

c) Die Klassen dieser Zerlegung der Gruppe G haben u. a. folgende Eigenschaften:

(Er) Jedes Zentrumselement Z e3 c G, insbesondere also das neutrale Element
N 63, bildet eine Klasse, in der außer ihm kein weiteres Element vorkommt:
(Z) = {X‘oZo X} =

(E2) Ist G abelsch, also G = 3, so bildet nach E2) jedes Element A e G allein
eine Klasse: (A) = {A}.

(E2) Alle Elemente einer Klasse s? von G haben die gleiche Ordnung n (denn für
A‚BeS‘P,d.h. B=X‘cAoX,folgtausA" = N:
B":(X‘oAoX)u(X‘oAoX)a___o(X‘eAoX)=X‘aA"oX=X‘oNoX=N)_

Definition 3.2l: Der Komplex jener Elemente Fe G, die mit einem festen Element
A e G vertauschbar sind: A o F = Fa A (oder F‘ o A o F = A, d. h. A ist „seIbst-
konjugiert“) heißt Normalisator NA von A. NA ist eine Untergruppe von G (denn für
X, YeN2 gilt Xe YoA =XoAo Y=AoXo Y, und aus XoA =A<=Xfolgt
A a X‘ = X‘ o A).

Beispiel 3.2]: In D22, lautet der Normalisator von S2 e D22: N54 = [E, S4, S2, S2]
= S4 (s. Tafel 2.1).

(E4) Die Ordnung (Anzahl der Elemente) der Klasse (A) c G, A e G, ist gleich
dem Index j = [G : NA] des Normalisators von A, also ein Teiler der Ordnung
von G.

Beweis: P, Q e G gehören genau dann zu derselben Rechtsnebenklasse von G nach
NA, wenn P‘o A o P = Q’ o A o Q gilt. Also ist die Anzahl der Elemente von (A)
gleich der Anzahl j der Nebenklassen und nach dem Satz von Lagrange Teiler der
Gruppenordnung. I

Beispiel 3.22: — Die Eigenschaften (E3) und (E2) finden wir in der Zerlegung der Sym-
metriegruppe D22 in Beispiel 3.20 realisiert. — Zu (E1) sei daran erinnert, daß das
Zentrum von D“ lautet: 3 = C2 = [E, S2] (vgl. 3.4.3.). In der Zerlegung von D22
bilden E und S}, Klassen für sich. — (E2) läßt sich an der Zerlegung der Symmetrie-
gruppe C2„ des H202-Moleküls demonstrieren: C2„ = (E)u (C2) u (a„)u(i) = {E}
u {C2} u {oh} U

In einer Menge werden ggf. mehrfach auftretende Elemente eigentlich nur einmal
aufgeführt. Für Zwecke der Darstellungstheorie (Kap. 7) ist es jedoch notwendig zu

notieren, wie oft ein Element in einer Menge vorkommt. Ist also A c G ein Komplex
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einer Gruppe G, so schreiben wir zukünftig AVA = 2A und allgemein für die
k-fache Vereinigung: A u u A = kA.

Beispiel 3.23: Das Komplexprodukt der Klassen (S4) und (C3) von D2,, (vgl. 3.6.1. b))
lautet nach Tafel 2.1 : (S4) ~ (Cg) = {S4, S2} ' {C5, CZ} = {S4 - C§,IS4 ' C3’, S2 - C5,

S3 'AC£'} = {U33 U3‚ U3, 03'} = {UL 03'} V {U3‚ 03'} = 2{U3‚ 03'} = 2(63)
Dieses Beispiel läßt sich folgendermaßen verallgemeinern:

(E5) Es sei G = (A1)\J (A2) U v (Am) die Zerlegung von G in ihre Klassen,

A, E G. Das Kamplexprodukt zweier solcher Klassen laßt sich dann als Vereinigung
gewisser Klassen (A„) schreiben, die dabei ggf. mehrfach auftreten:

<A.> o m.) = k.„‚.<A‚> u km14.) v u k.,...<A.> = kAu.v(A:)-

Die ganzen Zahlen k,1,,_.. ä 0 heißen Klassenmultiplikationskoeflizienten.

Beweis: Entsteht ein Element A bei der Komplexmultiplikation in (A‚1)o (A„) k-mal,
so muß es 2k verschiedene Elemente Afe(A„) und Af}e(A,,) geben, so daß gilt:
A = A3‘ o A;(zx = 1, ..., k). A liege in der Klasse (Av), also (A,,) = (A) = {X‚; o A o X„:
z: 1,...,m‚}. Dann gilt X; oAoX„= X; oAfi‘ oA;; oX,, = X,;oAi ox,‘ eX,: m; oX„
e(A;) o (Au) (o: = 1, ..., k), und die Elemente X‚fc A o X, bilden die Klasse (A)
k-mal (k = k„„_„). I

Beispiel 3.24: Nach Beispiel 3.20 gilt: D2‘, = (E) u (S2) u (S4) u (C5) v (U3). Dem-
nach haben die in (E5) eingeführten Bezeichnungen im Beispiel 3.23 folgende Be-
deutung: G = D“; A3 = S4, A4 = C5, A5 = 0;; m = 5; k3 4,5 = 2. Also gilt:

(/13)’ (A4) = ks 4.s(/45)} ks 4.: = 0 für alle 7’ 4‘ 5-

Bemerkung: Zwischen den Klassenmultiplikationskoeffizienten bestehen gewisse
Relationen, die deren Bestimmung erleichtern.

3.6.2. Konjugierte Untergruppen

Beispiel 3.25: In 3.4.2. b) betrachten wir die Untergruppen C’; = [E, cg] und
g’ = [E, CZ] der Symmetriegruppe Dgd. Der Gruppentafel von Du (Tafel 2.1)

entnehmen wir für X = S4 e D24 (also X“ = S2), daß X4 - C’, - X = [S2 - E- S4,
S2 - C; - S4] = [E, C5’ = C3’ gilt, und nennen C’; dann zu C’; konjugiert.

Wir ersetzen nun Du bzw. C’, und cg durch eine beliebige Gruppe G bzw. Unter-
gruppen U’ und U” von G.

Definition 3.22: U’ heißt zu U” konjugiert, wenn es ein Element X e G gibt, für das
U” = Xw» U’ o X gilt.

Bemerkungen: 1) Diese Konjugiertheit hat die Eigenschaften (R), (S), (T) einer
Äquivalenzrelation (3.6.l.b)). 2) Mit U’ ist auch der zu U’ konjugierte Komplex
U” = X’ o U’ oX eine Untergruppe von G. 3) Konjugierte Gruppen sind zuein-
ander isomorph. Sie haben die gleiche Ordnung und gehören zur gleichen abstrakten
Gruppe.

3.6.3. Normalteiler

Ein besonders wichtiger Fall der Konjugiertheit liegt in folgendem Beispiel vor:

Beispiel 3.26: Für die Untergruppe S4 der Symmetriegruppe D“ gilt nach Tafel 2.1
für alle XeDzd:X‘1-S4-X _4_

D.3.22
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Definition 3.23: Stimmz eine Untergruppe U der Gruppe G mit allen zu ihr konjugierten
Untergruppen überein: U = X’o Uo X für alle X e G, so heißt U eine invariante
Untergruppe oder auch ein Normalteiler von G, und wir schreiben dann N für U.

Beispiel 3.27: S2 ist also ein Normalteiler von D2d, aber auch die Untergruppen
D2, C22, C2 sind solche (3.4.2. b); Tafel 2.1),

Beispiel 3.28: Die alternierende Gruppe 91„ bildet einen Normalteiler in der symme-
trischen Gruppe 3„ ([11], l, § 17).

Satz 3.7: Die Untergruppe N der Gruppe G ist genau dann ein Normalteiler von G,
wenn eine der folgenden Forderungen erfüllt ist:

a) N enthält. mit jedem A E N auch die ganze Klasse (A).

b) Jede Rechtsnebenklasse N o F stimmt für alle F e G, mit der Linksnebenklasse
F o N nach N überein (so daß wir nur noch von Nebenklassen zu reden haben).

Beweis.‘ a) und b) sind Definition 3.23 unmittelbar zu entnehmen. I

Beispiel 3.29: Da nach Beispiel 3.27 C2 ein Normalteiler von D22 ist, stellt die Links-
nebenklassenzerlegung von D2d nach C2 in 3.4.4. c) gleichzeitig eine Rechtsneben-
klassenzerlegung (mit den gleichen Rechts- wie Linksrepräsentanten) dar.

Bemerkung: In Abelschen Gruppen sind das Zentrum von G sowie die trivialen Unter-
gruppen [N] und G selbst stets Normalteiler von G. Letztere heißen triviale Normalteiler,
und eine Gruppe, die nur triviale Normalteiler besitzt‚ heißt einfach.

3.6.4. Faktorgruppen

Es sei nun F = {N‚ N o A, N o B, die Menge aller Nebenklassen der Gruppe G
nach dem Normalteiler N von G. Das Komplexprodukt zweier Elemente von F
liegt wieder in F; z. B. gilt (N o A) o (N o B) = No No A oB = N o (A oB) (3.4.3.
(l’)). Ferner ist mitN o A auch (N o A)‘ e F, denn es gilt: (N o A)‘ = A‘ o N‘ = A‘ o N
= N o A‘ (34.3, (2’)). Das Komplexprodukt ist durch das Produkt in G assoziativ.
N übernimmt die Aufgabe des neutralen Elementes: N o (N o A) = N o A (3.4.3.
(1')). Auf diese Weise erhält die Menge F die Struktur einer Gruppe.

Definition 3.24: F = [N, Na A, No B, ...] heißt Faktorgruppe der Gruppe G nach
ihrem Normalteiler N und wird durch G/N bezeichnet.

Beispiel 3.30: Die Nebenklassen der Symmetriegruppe D22 des Allen-Moleküls
nach dem Normalteiler N = C2 = [E‚ C2] lauten (vgl. 3.4.4. c)): C2 - E, C2 - S4
= {S4, S2}, C’, - C2 = {C2‚ Cf}, C2 - o; = {a;, 02'}. Anstelle der Repräsen-
tanten E, S2, C2, a; für die Nebenklassen könnten wir auch C2 = S}, S2, C2’, cf,’

wählen. Die Produkte aus diesen Nebenklassen können wir dann repräsen-
tantenweise bilden. Zum Beispiel gilt: (C2 - S4) - (C2 - C2) = C2 - S4 - C2
= C2 - of,’ = C2 - a2. In der Gruppentafel (Tafel 3.7) von D2„/C2 = [C2‚ C2 - S4,
C2 - C2,C2 '02] finden wir dann S4 - C; = a; anstelle von (C2 - S..)- (C2 - C2) = C2 - a2.
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Tafel3.7.Gruppentafel der Faktorgruppe D2d/C2 (repräsentantenweise
notiert)

| E S4 C2 o‘;

E E s4 c; a;
S4 S4 E of, C2

C2 C2 a; E S.
u; «I; C2 S4 E

3.7. Direktes Produkt

Beispiel 3.31: Das Komplexprodukt aus den Untergruppen C2 = [E, C2] und
Cs = [E, i711] der Symmetriegruppe C21, = [E, C2, 61„ i] des H2O2—Moleküls lautet
(Tafel 2.2): C2 - Cs = C21, (vgl. auch Beispiel 3.11). Dabei ist C2 AC, = [E], und
alle Elemente von C2 sind mit allen von C, vertauschbar. Dann heißt C21, direktes Pro-
dukt aus seinen Untergruppen C2 und C‚.

Definition 3.25: Eine Gruppe G heißt direktes Produkt ihrer Untergruppen U1 ‚ U2,
in Zeichen G = U1 x U2, wenn gilt:
(a) Jedes A e G läßt sich eindeutig als Produkt A = U1 - U2 schreiben, U1 e U1,

U2 e U2.
(b) Füralle U1eU1, U2eU2 gilt U1-U2 = U2-U1.
(c) U1 n U2 = [E] (läßt sich aus (a) ableiten).

Wegen b) können wir auch G = U2 x U1 schreiben. In obigem Beispiel ist also
C21, = C2 x C, = C, x C2. Dabei sind C2 und C, einfache Gruppen. Als direktes
Produkt einfacher Gruppen heißt C21, vollständig reduzibel.

Folgerung 3.6: Die Ordnung g des direkten Produktes U1 x U2 ist gleich dem Produkt
g = u1u2 aus den Ordnungen u, und u2 der Faktoren U1 und U2 (denn die Produkte
U1 - U2 sindfür verschiedene U1 e U1, U2 e U2 sämtlich verschieden).

Ohne Beweis formulieren wir noch‘):

Folgerung 3.7: a) In G = U1 >< U2 ist jede konjugierte Klasse 5%‘ das Komplexprodukt
aus je einer konjugierten Klasse (U1) von U1 mit einer solchen Klasse (U2) aus U2.
b) Die Ordnung k von Q ist gleich dem Produkt k = k1k2 aus den Ordnungen k1

bzw. k2 von (U1) bzw. (U2). c) Die Anzahl h der Klassen von G ist gleich dem Produkt
h = h1h2 aus der Anzahl h1 bzw. h2 der Klassen von U1 bzw. U2.

Folgerung 3.8: In einer vollständig reduziblen Gruppe G gibt es zu jedem Normalteiler
N eine direkte Zerlegung von G in einfache Faktoren." G = N >< U.

Wir können uns diese Folgerungen noch einmal am Beispiel C2,, = C2 x C, vor
Augen führen.

Aufgaben

3.1. Auf der Grundlage der Lösung der Aufgabe 2.4. b) und Bild L 2.]. a), b) sind die Symmetrie-
gruppen C31, und C41, des gleichseitigen Dreiecks A C E1 (des NH3-Moleküls) und des Quadrates
E] C E2 (des SFSCI-Moleküls) durch ihre Gruppemafeln anzugeben. Ferner sind alle inversen
Elemente von C3,, und von C.„ anzugeben.

‘) vgl. [8] oder [I8].

D.3.25
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3.2. Beschreibe die sechs Symmetrielagen des gleichseitigen Dreiecks A C E2 (des NH3—Moleküls)
durch die Permutationen der Ecken 1, 2, 3 von A in Zyklenschreibweise und stelle daraus die sym-
metrische Gruppe §3 auf, die A gestattet; (mit Bezug auf 3.3.4.b) ist die Lösung dieser Aufgabe auch
für 1:] C E3, d. h. für das sFsCl-Molekül zu empfehlenl).

3.3. a) Die Leerstellen in den folgenden drei Produkttafeln sind so durch Elemente E, A, B, C zu

besetzen, dal3 daraus Gruppentafeln werden (d. h., daß die Forderungen (1) bis (4) bzw. (5) in 3.3.3.
erfüllt sind).

E A B C E A B C E A B C
A E . A C . A C .

B E B E B C
C C C

b) Sind die zur ersten und dritten Tafel gehörigen Gruppen G1

zueinander isomorph?

c) Welche davon ist die Kleinsche Vierergruppe, welche isomorph zur Gruppe S4 (siehe 3.3.4. d))?

[E, A, B, C] und G; [E, A, B, C]

3.4. Definition 3.26: Eine vierreihige quadratische Matrix L heißt Larentzmatrix, wenn für sie

l 0 0 0

E‘ = LT- E“ - L gilt; E" = (ä (I) (I) g . L4 ‚rei die Menge dieser Matrizen.

0 0 O —l

Zeige: a) det L = i1; b) L4 bildet eine Untergruppe — die Lorentzgruppe in der Gruppe GL(4);
c) die Teilmenge L2’ C L4 aller eigentlichen Lorentzmatrizen U (d. h. solcher mit det L+ = 1)

bilden einen Normalteiler in L4 — die eigentliche Lorentzgruppe.
Hinweis: Man zerlege L4in Nebenklassen nach LI und berechne den Index [L4: LI ] (vgl. 4.2.1. c)).

Hinsichtlich der Symmetriegruppe C3„ des gleichseitigen Dreiecks A in der Ebene E’ (d. h. für
das NH,-Molekiil) sind mit Hilfe der Gruppentafel, TafelL3.l.‚ folgende Aufgaben zu lösen
(Empfehlung: Man löse die gleichen Aufgaben für I] C E’, d. h. für das SF5Cl-Molekül nach Tafel
L 3.2):

3.5. Gib alle Untergruppen und deren Indizes von C3„ an (benutze dazu den Satz von Lagrange).
Welche der Untergruppen ist ein nichttrivialer Normalteiler von C3,,?

3.6. Zerlege die Gruppe C3, in ihre Links- und Rechtsnebenklassen nach ihrem Nonnalteiler C3
(siehe Lösung der Aufgabe 3.5). Wie lautet die Faktorgruppe C3‚/C3 von C3,, nach C3 (Gruppen-
tafel).

3.7. Zerlege C3 in ihre Klassen konjugierter Elemente und bestimme die Klassenmultiplikations-
koeffizienten.



Bewegungsgruppe

4.1. Die Bewegungsgmppe des dreidimensionalen euklidischen Raumes E3

Bei der Anwendung der Symmetrieoperationen (z. B. auf Moleküle) haben wir
uns bisher nur von unserer Anschauung leiten lassen. Bewegungen des E3 waren
einfach die in unseren Schulkenntnissen vorkommenden Transformationen (1))
(i) bis (iv) in 2.2.2. Im folgenden bedürfen diese nun auch der analytischen Beschrei-
bung:

4.1.1.

Es sei {O; e„ ez, c3} (kurz: {0;e„}) eine orthonormierte Basis im Ursprung 0
des E’ mit den Basisvektoren e, (v = 1, 2,3). Wir betrachten nur Rechtssysteme.

—->

Dann gehört zum Punkt PEE3 der Ortsvektor x = 0P = x1e1 + x222 + x3e3
= (x, ‚ x2 ‚ x3), und P hat daher die rechtwinkligen Koordinaten xi, x2 , x3 (Bild 4.1 ;

vgl. auch Bd. 13, 2.2.5.). Mitunter bedient man sich auch der Bezeichnungen:

Die Seitzschen Raumgruppensymbole

e, =i,e2=j,e3=k und x, =x,x2 =y,x3=z.

V‘:
X3 23*»_7e__/7E‘Ee Z/(Zg\ X

Bild 4.1. Komponentenzerlegung V011 x : 315 bez. {O; e-‚}

Zu einer vorgegebenen orthogonalen Matrix A = (am) und zu vorgegebener
Translation T = (t1, t2, t3) betrachten wir nun die durch die Gleichung

(Q3) x’ = A - x + T

bez. {O; e„} definierte eineindeutige Abbildung (Transformation) des E3 auf sich,
wenn x, x’ und T in (SB) als Spaltenmatrizen aufgefaßt werden: Der Ortsvektor

——> ~——>

x = 0P : (x1, x2, x3) wird durch (*5) auf x’ = OP’ = (x’,,x§,,x’,) und damit der
Urbildpunkt Pe E’ auf den Bildpunkt P’ e E3 abgebildet (Bd. l3, 3.5.). Die Trans-
formationsgleichung (Qä) wird — insbesondere in der Festkörperphysik — auch in fol-
gender Form geschrieben:

(W x’={A]T}-x.
Definition 4.1: Das Matrizenpaar {A I T} heißt Seitz-Symbol. Bezogen auf eine
arrhonormierte Basis {O; e‚} des E3, nennen wir {A | T} eine Bewegung des E3, die
orrhogonale Matrix A ihren Drehanteil, das Zahlentripel T ihren Translationsanteil.
Eigentlich heißt eine solche Bewegung, wenn det A = l gilt, uneigentlich für
det A = -1.

4.1.2.

Es sei durch

(‘B’): x” = B- x’ + U = {B} U} - x’ (B: orthogonal)

Die Bewegungsgruppe Q33 des Raumes

D.4.l
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eine weitere Bewegung des E3 gegeben. Dann gilt für die Hintereinanderausführung
von (E3’)nach(%)dieGleichungx” = B-(A-x + T) + U = B-A ~x + B~T+ U
= {B- A l B- T+ U}, was für die zu (‘B’) und (2%) gehörigen Seitz-Symbole als
Multiplikation .

{B| U}-{A l T} = {B~A I B" T+ U} (B-A: orthogonal)

interpretiert werden kann. Wir beachten wieder, daß zuerst der zweite Faktor {A | T}
auf x anzuwenden ist und auf {A l T} - x dann {B} U}. Bezüglich dieser Multipli-
kationsvorschrift besitzt die Menge aller Seitz-Symbole die Struktur einer Gruppe,
in der zwangsläufig {E l 0} (E: Einheitsmatrix, O: Nulltranslation) die Rolle des
Einselementes spielt und

{A:r}—1={A-1:—A—1-T}
(A-1 wieder orthogonal) zu {A J T} invers ist. Die Gruppe ist wegen der Matrizen-
multiplikation nichtabelsch,

Definition 4.2: Die Gruppe der Seitz-Symbole {A | T} (A: orthogonal) — auf eine
orthonormierte Basis {0; e‚} bezogen, sind das die Bewegungen des euklidischen Raumes
E3 — heißt Bewegungsgruppe $3 des E3.

Satz 4.1: Bei Bewegungen bleibt der Abstand |T’§| zwischen zwei Punkten P.Q e E3
ungeändert.

Beweis: Mit x’ = 0-1;’ und y’ z 03’ lautet das Abstandsquadrat für die Bildpunkte
4)

1”‚Q'I|P'Q’|2 |y’- X’|2 = |A‘y + T’ A'X - TI’ = |A'(Y - X)|2 = [A ‘(Y - X)]
-[A-<y— vor = [A-Ly; x>1~[<y — x)*-AT] = A-Iy — xv-AT = Iy — xv
- A - AT = |y —— xl’ = IPQI’ (T: transportiert, A - AT E). I

Umgekehrt erweisen sich abstandstreue Transformationen als Bewegungen, und wegen
der in diesem Beweis erkennbaren Invarianz des Ska/arprodukies bleiben auch alle
Winkelverhältnisse ungeändert.

4.1.3. Normalformen der Bewegungsgruppe $3

Wir wollen untersuchen, ob sich obiger Bewegungsbegrifl nun tatsächlich in den
von uns bereits praktizierten Formen (‘l‘),'(i) bis (iv). vollzieht. Indem die Frage
nach der Existenz von Vektoren x + o diskutiert wird, die bei einer Bewegung
{A l 0} auf ein Vielfaches von sich übergehen, x’ = Ax, stellt sich das folgende
Resultat ein ([17], I, §21):

Satz 4.2: Es findet sich für jede Bewegung eine passende orthonormierte Basis
{O; 2,} des E3, in der ihre Transformationsgleichung x’ = {A | T} - x von einer der
folgenden Normalformen ist:

[i] x’, = x, cost}: — x2 Sinai, [ii] x’, = x, coscp — x2 simp.
x';=x1sintp+x2cosqJ, x’,=x1sinzp+x2cos<p.
X3 = x3 + t3; xi: = ‘x3;

Q‘)
[iii] x’, = x, + t„ [iv] x’, = x, + 1„

x'z=x2+t1, x’,=x2+t2,
x'3= —x3; x§,=x3+t3.
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Beachten wir, daß im x1,x2-Koordinatensystem die ersten beiden Gleichungen
von [i] bzw. [ii] eine Drehung der x,,x2-Ebene in sich um den Winkel (p und den
Ursprung 0 beschreiben, so können wir feststellen: Die Bewegung vom Typ

[i] für t3 = 0 ist eine Drehung des E3 um die x3-Achse um den Winkel tr mit für
t3 4: 0 anschließender Parallelverschiebung T = (0, 0, t3) in xs-Achsen-
richtung; die Bewegung {A I T} heißt dann eine Schraubung und ist wegen
det A = l eigentlich;

[ii] ist eine Drehung des E3 um den Winkel (p um die x3—Achse mit anschlie-
ßender Spiegelung an der x,,x2-Ebene; sie ist also eine Drehspiegelung
und wegen det A : —l uneigentlich (uneigentliche Drehung);

[iii] für t1 = t2 = 0 ist eine Spiegelung des E’ an der x,,x2-Ebene mit für
(t„ t2) + (0,0) anschließender Translation T = (t1, I2, 0) parallel zur
x1,x2-Ebene; die Bewegung heißt dann Gleitspiegelung und ist wegen
detA = —l uneigentlich;

[iv] ist eine Translation des E3 mit T = (ti, t2, t3); sie ist wegen det A = l eine
eigentliche Bewegung.

Die in 4.1.1. analytisch definierte Bewegung {A I T} des E3 entspricht damit in allen
ihren vier Normalformen (SB), [i] bis [iv], unseren Vorstellungen von (Q3), (i) bis (iv),
in 2.2.2.

4.2. Untergruppen der Bewegungsgruppe ‘S3 des E3

4.2.1. Die Gruppe S; der eigentlichen Bewegungen i

a) Die Elemente {A I T}e‘83' gehören wegen detA =l zur Normalform [i]
(bzw. für (p = 0 auch zu [iv]). Sie sind also Schraubungen, speziell eigentliche Drehun-
gen oder Translationen des E3.

b) Nach 3.2.3.3. ist mit A, Be O*(3) auch A - B, A" e 0+(3), und dies sichert
uns bereits die Gruppeneigenschaft von 28;.

c) Zerlegen wir die Bewegungsgruppe $3 nach ihrer Untergruppe ß; in Rechts-
nebenklassen, so erhalten wir deren zwei, die Klasse 23; der eigentlichen und die
Klasse ‘B; - {A I T} (det A = — 1) der uneigentlichen Bewegungen: $3 =

‘B; U ‘B; ' {A I T}. Sie sind zugleich Linksnebenklassen, also ist ‘S; ein Normalteiler
von $3. Derlndex von ‘B; lautet D83 I‘ 5 = 2 (vgl. auch [l7], II, § 6, oderAufgabe 3.4.).

4.2.2. Die Gruppe ‘D; der eigentlichen Drehungen (eigentliche Drehgruppe)

a) ‘E; besteht aus den Elementen {A I T} mit det A = 1 und T : O = (0,0, O).

Diese gehören offensichtlich zur Normalform [i] mit r, = 0. Es handelt sich also um
(eigentliche) Drehungen um Geraden.

b) Die Gruppeneigenschaft von 95 folgt aus jener von 0*(3) in Verbindung mit
{A I 0} - {B I O} = {A - BI 0} und {A l 0}“ 2 {A“‘ I O} für A, BeO*(3).

c) Bilden wir durch {A | O} —> A die Gruppe E; eineindeutig auf O*(3) ab, so
folgt aus b), daß diese Abbildung relationstreu ist. Die eigentliche Drehgruppe ist
also zur eigentlich arthogonalen Gruppe isomorph: T’; g 0*(3). {A I 0} und sein
Drehanteil A werden deshalb gelegentlich identifiziert.
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4.2.2.1. Parameterdarstellung der eigentlichen Drehgruppe mit Hilfe der Eulerschen Winkel

Wir bedienen uns der Tatsache, dal3 uns eine Drehung des E3 vollständig bekannt
ist, wenn wir die Basis {O; eL} kennen, die bei dieser Drehung aus {O; e„} entsteht!

Wir benötigen dazu im folgenden: (a) die Knotenlinie, d. h. die Schnittgerade der
e„e2- und e’,,e’2-Ebene; sie kann durch das Vektorprodukt k = e, >< e’, orientiert
und beschrieben werden, (B) die Eulerschen Winkel, d. h. der Präzesrionswinkel
w = §:(e1, k) (0 g 1/2 < 27:), der Nutationswinkel 9 = %:(e3, eQ) (O g 0 < 7:),
der Winkel der reinen Drehung (p = <):(e’1, k) (0 g (p < 27c), (y) zwei Hilfsbasen
{O; y‚.} und {O; z„}.

Die Überführung von {O; e„} in {O; e’,} vollziehen wir in drei Schritten:

I) Drehung von {O; e„} um es mit dem Winkel w, bei der e, in k übergeht und die
Basis {O; y„} erreicht wird, die als Rechtssystem durch yl = k und y3 = e3 fest-
gelegt ist (Bild 4.2(a)). Ein Ortsvektor transformiert sich dabei gemäß y = D, -x

(D1: siehe unten (53)).
II) Drehung von {O; y‚} um die Knotenlinie mit dem Winkel 0, bei der y3 = e3

in e; übergeht und die Basis {O; 2,} (z, = y, = k, 13 = eg) erreicht wird
(Bild 4.2(b)). Die Transformation des Ortsvektors y lautet hier z = D; - y (D2:
siehe (3)).

III) Drehung von {O; z„} um z, mit dem Winkel —t‚v, bei der z, = k in e’, und z,
in e; übergeht und die Basis {O; eL} erreicht ist (Bild 4.2(e)). Die letzte Transfor-
mation lautet x’ = D3 - z (D3: siehe (59)).

Bild 4.2. Eulersche Winkel

(a) Präzessionswinkel (I))
(b) Nutationswinkel (Il))
(c) Winkel der reinen Drehung (III))

Die Hintereinanderausführung der Drehungen-I), Il), III) ergibt
(E) x’ = D-x, wobeiD =D3~D2-D,
ist und _

(D) x’:D-x,wobeiD=D3-D2'D1
costp sin1p0 l 0 0 coszp —sin<p0

D1=[—sin1/J cosy; 0J, D2 =[0 cos 0sin0J, D3 : sing: cosgv Ü}
0 0 1 0—sin@cos0 0 0 1

Die Transformationsmatrizen D liegen ofiensichtlich in O+(3).

Beispiel 4.1: Wir betrachten das Kerngerüst von Allen so, wie es in 2.3.1. bzw.
gemäß Bild 2.2(a) im x,y,z-K00rdinatensystem fixiert wurde. Wir üben darauf die
Drehsymmetrieoperation C2 E Dm, aus. Zeigen die Basisvektoren e1, ez, e3 in Rich-
tung der positiven x—,y», z—Achse, so erhalten wir nach der Drehung C2 die neue
Basis {O; ef,} mit e; = —e1 = k, e’; = —e2, e; = es. Die Eulerschen Winkel lauten
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daher lp = TE, 0 = 0, zp : 0, und die Drehung C2 wird in (E) durch die Gleichung

—l 00’ x’=—x
x’=[ 0-10]-x, d.h. y’ —y

001 z’=z

beschrieben (x = x1, y = yz, z : x3; x’ : x',, y’ = x’2, z’ = xg). Analog können
wir cg, C§’eD2d darstellen. Die den Drehungen C2, Cg, C2” auf diese Weise zu-
geordneten Transformationsmatrizen D, D’, D” e O+(3) lauten

—1 0o 1 0 0 -10 o

c,;D=[ o—1o],c;;DI=[o—1 o],c;;p~=[ 01 o],
o 01 o o—1 oo—1

Sie bilden zusammen mit der Einheitsrnatrix E eine Untergruppe M* = [E, D, D’, D”]
sowohl von O+(3) tzls auch von der speziellen linearen Gruppe SL(3) (vgl. 3.2.3.)).

3m isomorph zur Drehsymmetriegruppe D2 = [E, C2, Cg, Cf] von Allen (3.4.2.b)).

4.2.2.2. Klassen konjugierter Drehungen in 23"

{A I 0} = A E S; drehe den Raum im Sinne einer Rechtsschraube um die durch
den Einheitsvektor a bestimmte Achse, {Bl 0} = B693; drehe entsprechend um
die „Achse“ b.

Satz 4.3: Zwei Drehungen A, B e 9; des Raumes um beliebige Achsen a und b sind S.4.3
genau dann konjugiert zueinander, d. h. es gibt ein X 65D; mit B = X“ ~ A - X,
wenn sie gleiche Drehwinkel besitzen. Dabei ist X jene Drehung um die Achse
x = a x b, die durch X - b = a die Achse b in die Achse a überführt!

Beweis: Wird die Drehung A bez. der Basis {0; e‚} durch die Matrix [am] dargestellt,
so stellt dieselbe Matrix bez. der mit X" gedrehten Basis {0; e; = X" - e„}
gerade die konjugierte Drehung B dar: B - e; = X" - A - X- e,’, = X" -A - e„

3 3 3

= X" 2 a„„e„ = 2 a,,,,X" - e,, = 2 a„‚.e‚’‚. Daher gehören zu A und B gleiche
=1 =1 =1

Drehwinkel, und b liiat in {Og eL} die gleichen Koordinaten wie a in {0; e,.}. I

4.2.3. Die Gruppe $3 der Drehungen (vollständige Drehgruppe)

a) 933 besteht aus allen Elementen {A l T} mit A e 0(3) und T = O. Die Gruppen-
eigenschaft von ‘D3 ist wegen jener Von 0(3) gesichert. Wie in 4.2.2. c) gilt hier ganz
analog die Isomorphie ‘£3 2 0(3). Mitunter werden deshalb die Bewegungen {A I O}
mit ihren Drehanteilen A identifiziert.

b) Wegen T = 0, A e 0(3) gehört jedes Element von 93 zu einer der Normal-
formen (xi) [i] (detA = l, eigentliche Drehung), [ii] (detA = ——l‚ Drehspiegelung,
also uneigentliche Drehung) oder [iii] (det A = —- l, Spiegelung). '

4.2.3.1. Parameterdarstellung der Spiegelungen von ‘D;

Wie für die eigentlichen Drehungen geben wir jetzt auch für die Spiegelungen eine
solche Darstellung an.

An einer (Spiegel—)Ebene F durch den Ursprung 05133 werde ein beliebiger
Punkt Pe E3 gespiegelt; Spiegelbild sei P’. Bezüglich der Basis {0; e„} sei F durch

3

die Gleichung 2 a„y„ = 0 festgelegt, und P, P’ sowie der LotfußpunktQ e F von P
v=l ‘

seien durch die Ortsvektoren x = 2 x„e‚., x’ = 2x‚’‚e„. y = 2‚v„e„ (v = l, 2, 3)
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gegeben. Dann ist n = Zme, mit den Richtungskosinussen n, = cos 0c,

= m15? + aä + a§ (IX, = <):(n, e„)) der Normaleneinheitsvektor von F. Mitd = lQ—}:|

und QP = dn gilt dann x’ = x — Zdn (Bild 4.3). Wegen y = x — dn, n - y = 0
und n2 : l ist dabei d = n - x = Z n,x„. Also gilt x’ = x — 2(n - x) n, d. h.

n7,’ n‚n3 n1n3

(a) x’ = (E— 2H)x mit H = [mm n% "2”3:‘.
113/11 113113 nä

Bild 4.3. Spiegelung an einer Ebene

Die Normalform (58) [iii] für t, = t3 = 0 erhalten wir hieraus für den Normalen—
einheitsvektor n = (0, 0, 1) der x„x3-Ebene F(n‚ = n2 = 0, n3 = l).

Beispiel 4.2: Die Matrix E — 2H, die durch (a) die Spiegelsymmetrieoperaiion age D2,,
(vgl. 2.3.l.3.)) darstellt, liegt fest, wenn der Normaleneinheitsvektorn = (n. , n3, n3)

der Spiegelebene a; bekannt ist. Gemäß Bild 2.2(a) ist n = (\/5/2, \/E/2, 0). Für of,’

finden wir entsprechend n = (—\/§/2, \/5/2, 0). Es werden also a; und 0;’ darge-
stellt durch die Matrizen aus 0(3):

0-10 0 l 0

af,:Z"=[—1 00:’ und o'Q’:Z"=[100j.
O01 00l

Diese beiden Matrizen Z",Z"'e0(3) erzeugen zusammen mit den drei Matrizen
D, D’, D” e 0(3) aus Beispiel 4.1 (4.2.2.l.), die die Drehungen C3, C3, C5’ e D23
darstellen, eine lineare Matrizengruppe M3 = [D, D’, D”, E’, 2"], die zu D“ iso-
morph ist: Du ä M3. Die beiden Matrizen aus M3, die die Drehspiegelungen
S4, S2 e D“ darstellen, finden wir wegen S4 = C; - a; und S2 = C3’, - cg, als Produkte
der Matrizen D’, D”, Z’, durch die C3, C3’ und a; dargestellt werden:

0—l 0 0l 0

S4:S=D’~Z’=[1 o o], S2:S’=D”~E’=[-1 0 o].
0 0-1 00-1

M3 lautet also vollständig: M3 = [E‚ S, D, S’, D’, D”, E’, E”].
4.2.3.2. Die Inversion 1' 5'53 bezüglich des Inversionszentrums i = 0 e E3

Wir beachten auch, was wir durch 2.3.2.4. darüber wissen. i ist jene Bewegung

i z {I| O} e Q3, die jeden Orrsvektor x = 07’>in x’ = —x = O-P)’ überführt unddabei
P auf P’ z i(P) abbilder(P und P’ liegen bez, des Inversionszentrums i 2 0 „spiegel-
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bildlich"). Bezüglich {0; e„} ist x’ = —x = I- X. Demnach wird i durch

—1 0 0

I=[ 0-1 0Je0(3)
0 0-1

dargestellt. Wegen det I = -1 ist i ¢ ‘D; eine uneigehtliche Drehung. i ist gleich der
Drehspiegelung an jeder beliebigen Drehspiegelachse durch 0 mit durch O gehender
Spiegelebene, für die die zugehörige Drehung 180° beträgt (s. Bild 4.4, vgl. 2.3.2.4.).
Aus i2(x) : z'(i(x)) = —(—x) = x folgt, daß i involuziv ist: i’ = E6593 (ent-
sprechend ist I2 die Einheitsmatrix). Wir identifizieren jetzt einfachheitshalber
wieder {B} 0} mit B. Aus Iex = —x folgt, daß I mit allen Drehungen A63;
vertauschbar ist: I. A = A ~ I.

Bild 4.4. Die Inversion [an i = O
als Drehspiegelung

Diese uneigentlichen Drehungen I - A liefern offensichtlich alle möglichen Dreh-
spiegelungen. Spiegelungen liefern sie dann, wenn eine Drehung A um 180° erfolgt.
Vervollständigen wir $3 durch die Elemente I ' A (A e935), so erhalten wir die
vollständige Drehgruppe ‘b3. Sie kann sogar als direktes Produkt ‘E3 = ‘D; >< (I)
aus ‘E; und der durch I erzeugten Untergruppe (I) = [E‚ I] von ‘D3 geschrieben
werden.

4.2.3.3.

Unter Benutzung des Beweisverfahrens des Satzes 4.3 verallgemeinern wir dessen
Aussage:

Klassen konjugierter Drehungen von 93

Satz 4.4: Drehungen bzw. Drehspiegelungen aus T; um beliebige Achsen sind genau
dann zueinander konjugiert, bilden also gerade eine Klasse, wenn sie zum gleichen
Drehwinkel gehören. Eigentliche und uneigentliche Drehungen liegen niemals in einer
Klasse.

Bemerkung: Spiegelungen sind als Drehspiegelungen zum Drehwinkel 0° aufzufassen.
Drehungen um eine durch einen Vektor gegebene Achse erfolgen im Sinne einer
Rechtsschraube. Einen Beweis des Satzes finden wir in [I0], §6.

4.2.4. Die Translationsgruppe I; des E3 und Untergruppen

a) i, besteht aus allen Bewegungen {El T} aus {i3 (bzw. Es“). Wir nennen sie wegen
x’ = {E| T} - x = E- x + T : x + T die Translationen des E3. Sie gehören zur
Normalform (ß) [iv] der Bewegungen (4.l.3.) und bilden eine abelsche Gruppe.
Letzteres ergibt sich aus dem folgenden Satz:

4 meager,symmemegmppeu

S.4.4
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Satz 4.5: Es sei S6 = {{Xl Y}:XeX c: 0(3), YeY c R3} c ‘B; eine beliebige
Bewegungsgruppe, i = {{X l 0}: X e X} c Q3 die Teilmenge der Drehanteile,
i = {{EI Y}: Ye Y} c Qü die der Translationsanteile. i) und i bilden Untergruppen
von R i ist abelseh.

Beweis: a) {EI Y1} v {El Y2} = {El Y1 + Y2} und {El Y}“ = {El —Y} müssen
für beliebige Y1, Y1, Ye Y Elemente vom/B sein, d. h.‚ Y1 + Y; und — Yliegen in Y.
Daher gilt i - i c i und i“ C i. Ferner ist Y1 + Y; = Y2 + Y1, also i abelsch.

b) Für die Drehungen {X I 0} verläuft der Beweis ganz wie in a). I

Oflensichtlieh ist i3 isomorph zum Vektormodul V3 und zum Modul R3 der ge-
ordneten Tripel reeller Zahlen (vgl. Beispiel 3.9): i3 2 V3 g R3. Deshalb wollen wir
einfachheitshalber {E IT} mit T identifizieren.

b) Bezüglich einer nicht notwendig orthonormierten Basis {0; a1 , a, , a3} von
E3 mit Basisvektoren a, e V3 im Ursprung O e E3 können wir T als Vektor eindeutig
als Linearkombination

T = t1a1 +123; + tsa, = (t1, t2, ta), t‚e R,

schreiben. *

Für kristallographische Zwecke sind jene Translationen des E3 von Bedeutung, die
durch ganzzahlige t, = g, charakterisiert sind (g, = 0, i1, _-L 2, ...). Die Teilmenge
i; c i3 dieser Translationen T = (g1,g,, g3) bildet ganz wie die Menge i’; der
Translationssymmetrien des ebenen NaCl-Gitters (2.3.3./3.].l.2.) eine Gruppe —

eine Untergruppe von i3.

Beispiel 4.3: Wählen wir gemäß Bild 2.7(a) a1 = a, a, = b, as = c als Einheits-
translationen der räumlichen NaCl-Gitters, so ist i; die Gruppe der Translations—
symmetrien des räumlichen NaCl-Gitters.

e) Von großer Bedeutung, insbesondere in der Kristallographie, sind die folgenden
Aussagen:

Satz 4.6: In jeder Bewegungsgruppe 2E bildet die Untergruppe i der Translationen
einen abelschen Normalteiler.

Beweis: Nach Satz 4.5 ist i eine abelsche Untergruppe von 25. Die Normalteiler-
eigenschaft von i folgt aus {XI Y}’1 - {El T} - {Xl Y} = {X“ l —X" - Y}
~ {El T} - {Xl Y} = {El X“ - T}, wenn X alle Elemente von X und Y sowie T
alle Elemente von Y durchlaufen. Für X = E durchläuft dann X“ - T ganz Y, also
{EI X} und {El X“ - T} ganzi. I

Ohne Beweis nehmen wir noch zur Kenntnis den

Satz 4.7: Die Faktorgruppe WE einer Bewegungsgruppe nach der in ihr enthaltenen
Translationsgruppeiist zur arthogonalen GruppeX c 0(3) ihrer Drehanteile isomorph:
‘B/i g X.

In der Kristallographie treten nun gerade solche Bewegungsgruppen *8 auf, die die
Gitter, welche von drei linear unabhängigen Erzeugenden ihrer translativen Normalteiler
i aufgespannt werden (vgl. Bild 2.7(a)) mit sich zur Deckung bringen. Für diese Gruppen
ist die Faktorgruppe ä/i 2 X stets eine endliche, wir sagen auch diskrete Bewegungs-
gruppe.
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Aufgaben

4.1. Durch die Punkte O: (0, 0, 0), H1: (Z, 2, 0), H2: (2, 0, 2), H3: (0, 2, 2) (rechtwinklige Koordina-
ten) sei ein Tetraeder (ein NI-I3-Mulekiil mit dem N-Kern in 0, den H-Kemen in Hg) gegeben,

a) Durch x’ = A ' x werde das Tetraeder um 120° um die Drehsymmetrieachse durch O und den
Mittelpunkt des O gegenüberliegenden Dreiecks in eine neue Symmetrielage gedreht (von 0 aus

gesehen, mathematisch positiv). Wie lautet die Drehmatrix A? b) Welche Koordinaten haben die
Ecken 0, H, des Tetraeders nach einer Drehung um die Eulerschen Winkel (p = 60°, 1/1 = 210°,
G) = 30°? Handelt es sich dabei um eine Drehsymmetrieoperation?

4.2. Die Symmetrieoperationen der Symmetriegruppe C3 .von A C E’ (NH3-Molekül, siehe
Aufgabe 2.4 b) bzw. 3.1) sind durch Bewegungen {A i0} (x’ = A ex) zu realisieren. Wie lauten die
entsprechenden Transformationsmatrizen A? (Empfehlung: Löse die gleiche Aufgabe für Ei C E’ Y).

nu

as



D.5.2

5. Punktgruppen‚ Symmetriegruppen von Molekülen

5.1. Begrifl der Punktgruppe

Wir informieren uns in 2.3.4. noch einmal über Symmetriemengen, deren Elemente
einen gemeinsamen Fixpunkt besitzen, und führen folgenden Begrifl“ ein:

Definition 5.1: Eine Untergruppe der (vollständigen) Drehgruppe 23 heißt Punktgruppe.
Sie heißt von erster Art, wenn sie keine uneigentliche Drehung (Drehspiegelung bzw.
Spiegelung) enthält, sonst von zweiter Art.

Beispiel 5.1: Die Symmetriegruppe C2„ von H202 (Bild 2.6 bzw. Bild 5.1, wenn dort
zx = 7:/2 wäre) ist nach 2.3.2.2. und 2.3.2.3. eine Punktgruppe zweiter Art. In seiner
Gleichgewichtskonfiguration jedoch gestattet das H2O2-Molekül nach Bild 5.1
(0 < u < 90°) offensichtlich nur eine Drehung C2 um 180° um die Mittelachse
C2. Die Symmetriegruppe lautet dann C2 = [E, C2] und ist eine Punktgruppe von
erster Art. Die Symmetriegruppe D2d und C2V von Allen und H2O sind Punktgruppen
zweiter Art.

Bild 5.l. H202 (Gleichgewichts-Konfiguration,
O < o; < rt/2; vgl. Bild 2.6)

Nach diesem Beispiel soll der Begriff Symmetriegruppe für den Fall, daß deren
Elemente einen gemeinsamen Fixpunkt 0 e E3 besitzen, endlich auch streng und ganz
allgemein formuliert werden:

Definition 5.2: Gestattet ein physikalisches System (Molekül, Festkörper usw.) eine
Punktgruppe (d. h., sind die Elemente dieser Gruppe Symmetrieoperationen des Systems),
so heißt diese eine Symmetriegruppe des Systems, im vorliegenden Fall genauer eine
Punktsymmetriegruppe, weil ein Punkt O e E3 Fixpunkt der Gruppe ist. Wir nennen

sie volle oder einfach „die“ Punktsymmetriegruppe des Systems, wenn sie alle möglichen
Symmetrieoperatianen des Systems zum gemeinsamen Fixpunkt O enthält.

Bemerkung: Punktgruppen können wegen der Existenz eines Fixpunktes keine
Translaiionen enthalten, so daß der Begriff der Punktsymmetriegruppe der passende
Begriff zur Erfassung der Symmetrien endlich ausgedehnter Systeme (z. B. von

Molekülen) ist oder solcher, bei denen wir uns nur für Dreh-‚ Drehspiegel- oder
Spiegelsymmetrieen interessieren. Anstelle von Punktsymmetriegruppe sagt man

mitunter auch kürzer Punktgruppe des Systems.

5.2. Achsen einer Gruppe

Um bei der Klassifikation der Punktsymmetriegruppen gleich auch die Klassen
konjugierter Drehungen angeben zu können. ist noch folgende Überlegung bzw.
Definition nützlich:
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Es sei C„ eine Drehung des E3 um die n-zählige Drehachse C„. Wegen C‚'‚' = E
gilt für die zu C; (v = l,2,...,n — l) inverse Drehung die Beziehung (C‚"‚)’1
= C;” C,§" C;’ C,’,"” (vgl. 3.3.1. b)); d. h., die Drehung um (v/n) - 360° im ma-
thematisch negativen Sinn stimmt mit jener um ((n — v)/n) - 360° im positiven Sinn
überein. Wichtig ist dabei, daß für v = 1,2, ..., n — 1 C; zu C;” konjugiert ist.
Notwendig und hinreichend dafür ist die Konjugiertheit von C„ zu C;1; denn es gilt:
X" -C‚‘‚'-X = (X“-C,,-X)(X" ~ C„ - X) (X" - C„ - X) = C„’1-C;1...C;1
= C;".

Definition 5.3: Enthält eine Punktgruppe eine Drehung C„ um die Achse C„, so heißt
C„ eine Achse der Gruppe. C„ heißt zwei- oder einseitig, je nachdem, ob die zugehörigen
Drehungen C„ und C;1 zueinander konjugiert sind oder nicht.

Beispiel 5.2: a) In der Punktsymmetriegruppe Du gilt nach Tafel 2.1 (X = C; und
n = 2): C21 - C2 - C; = C; - C2 - C; = C2 2 C21. Also ist die Achse C2 des Allen-
Moleküls zweiseitig (bilateral).

b) Das ebene Borsäure-Molekül (Bild 5.2) gestattet die Drehung C3, C§ um 120°
und 240° um die senkrecht zur Molekülebene 0„ stehende, durch den Borkern ver-

laufende C3-Achse der Ordnung (Zähligkeit) n = 3, ferner die Spiegelung 0,, und
außer E noch die Drehspiegelungen S2 = 0„ - C3, S; = 0„ - C3’. Die Gruppentafel
der mit C3„ bezeichneten Symmetriegruppe, C3„ = [E, C3, Cä, S3, 5;, ah], des
Moleküls stelle der Leser selbst auf. Wir ersehen aus der Tafel, daß es kein Xe C3,,
gibt, so daß X"1 - C3 ~ X = C31 gilt. C3 ist also eine einseitige Achse.

Bild 5.2. Ebenes Borsäure-Molekül

Daß eine Achse C„ zweiseitig ist, hängt offensichtlich damit zusammen, daß es

eine zu C„ senkrechte Achse C2 gibt oder eine Spiegelebene av, die C,, enthéilt.<Aus
Satz 4.3 folgt nämlich für X = C2: C21 - C„ - C2 = C21 (und daraus noch
C21 - Cf,“ C2 C;"). Analog überlegen wir den Fall für av.

5.3. Klassifikation der Punktsymmetriegruppen erster Art

5.3.1.

Punktgruppen erster Art, die lediglich eine Drehachse C„ der Zähligkeit n be-
sitzen, heißen vom Typ C„.

Eine C„—Gruppe ist von der Ordnung n; ihre Elemente sind die Drehun-
gen C3 r E, C„1 C„‚ C,,2,...,C;"1 des E3 um die Achse C„ um 0, 360/n,
2- 360/n‚ ..„ (n — l) 360/n Grad. C„ ist also erzeugendes Element der Gruppe; C„
ist damit eine zyklische Gruppe der Ordnung n,

C„ = <C‚.>‚

und gehört zur abstrakten Gruppe Z„ (3.5.l.).
C„ ist offenbar abelsch, so daß jedes Element C: (v = 0, 1, ..., n — 1) eine Klasse

konjugierter Elemente für sich bildet. C„ zerfällt also in n Klassen (s. 5.4.4.).

Die Gruppen C„

D.5.3
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Beispiel einer C„-Gruppe ist die Symmetriegruppe C5 von H505 für 0 < DC < 90°
(vgl. Beispiel 5.1 und Bild 5.1).

Besitzt eine Punktgruppe erster Art mehrere Drehachsen C„ C„„ so verursacht
jede für sich eine Untergruppe vom Typ C„ C„‚.

5.3.2. Die Gruppen D„ (Diedergruppen)

Punktgruppen erster Art, die eine (vertikale Haupt—)Drehachse C„ der Zähligkeit
n g 2 und n dazu senkrechte (durch einen gemeinsamen Punkt von C„ verlaufende)
zweizählige Drehachsen Cf’, C5”, ...‚ C5" besitzen, heißen vom Typ D„.

Da wir diese Achsenkonstellation gerade in der Drehsymmetriegruppe des regel-
mäßigen zweiseitigen n-Ecks (Dieder) antreffen (Bild 2.4, n = 6), nennen wir die
D„-Gruppen auch Diedergruppen. Sie sind von der Ordnung 2n. Die 2n Gruppen-
elemente von D„ sind gegeben: (1) durch die n Drehungen C,’‚' (v = O, 1, ...‚ n — 1)
um die Achse C„‚ die eine Untergruppe C„ von D„ bilden; (2) durch die n Drehungen
Cf’, C5”, ...‚ C5" um jeweils 180° um die Achsen Cf’, C5”, ...‚ C5”, von denen
benachbarteeinen Winkel von l80/n Grad einschließen.

a) Ist n = 2, so liegen drei zueinander senkrechte Drehachsen der Zähligkeit
zwei vor. Die Gruppe D5 haben wir als Drehsymmetriegruppe des Allen-Moleküls
in 3.4.2. b) kennengelernt; in 3.3.4. b) haben wir festgestellt, daß sie zur Kleinschen
Vierergruppe V als abstrakter Gruppe gehören.

Da diese abelsch ist, bildet jedes der vier Elemente von D5 eine Klasse für sich
(s. 3.6.1.c), (E5)); D5 besitzt vier Klassen.

b) Für n g 3 haben wir zwei unterschiedliche Achsenkonstellationen bez. der
C5"’-Achsen zu studieren:

n = 2m: Durch die Drehungen C: (v = 0‚1,...,n — 1) wird die Achse C5“
in die Achsen CE”, C‘5’, C5"‘“ übergeführt und analog C?’ in C5", C56’, ...‚ C5”.
Bezeichnungsmäßig drücken wir dies durch Cf," = C5, Cf’ = C5’, C55’ = C5”,

bzw. C?’ = C5, C5‘) = C5, C55’ = C5, aus und nennen die Achsen jeder der
beiden Sorten untereinander äquivalent (Bild 2.4). Zu jeder Klasse gehört dann eine
Klasse konjugierter Drehungen

(C5) = {C5, ca’, ...}, (C2) = {C232, m}.
Ferner verteilen sich die Drehungen C,”, (r = 0, 1, ...‚ n — 1) um C„ offenbar auf
die Klassen

(C3) = {E}. (C3) = {Cm C3'"“}, (C.’."") = {CI."", C.’."“}, (C5?) = {Cir}-

Dies ergibt sich nach 5.2. bzw. dem Satz 4.4 aus der Tatsache, daß die Achse C„
wegen der zweizähligen Achsen C5”) zweiseitig sein muß.

n = 2m + 1: Durch die Drehungen C; (v = 0, 1, ...,n — 1) wird bereits eine
einzige der Achsen C5“ (‚u e {L ..., n}) in alle anderen dieser Art übergeführt (Bild 5.3)

Bild 5.3. Zur Diedergruppe für unzerades n (= 3)
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d. h., alle C5” sind äquivalent und bilden eine Klasse, zu der eine Klasse konjugierter
Drehungen

{Ch C2’, m}

gehört (C? = C2’, Cf’ = cg’ usw.). Die Drehungen C; verteilen sich entsprechend
diesen Ausführungen nun auf die Klassen

(C.‘?)={1='}, (C3) = {C1l3CI?m}’ (C‚’.”) = {C.’.". C.'.'“‘}-

Die Anzahl der Klassen konjugierter Elemente, also die Klassenzahl k(D„) lautet
demnach ,

m+3 fürn =2m,
k(D„) = ..m+2 furn =2m+l.

Als ein minimales Erzeugendensystem für Gruppen vom Typ D„ stellen wir {C„, C5}
(v e {l‚ ..., n}) fest, so daß wir die Diedergruppe D„ z. B. durch

13.. = <C..‚ C£>

beschreiben können.
Beispiel einer Gruppe vom Typ D„ ist die Drehsymmetriegruppe der eigentlichen

Drehungen des Benzenringes (Bild 2.4) oder jene des Allen-Moleküls vom Typ D2.

5.3.3. Die Gruppen T (Tetraedergruppen)

T ist durch die Drehsymmetriegruppe eines regelmäßigen Tetraeders gegeben.
Es ist zu beachten, daß die Tetraedergruppe bei Klassifikationen, die von der

Unterteilung in Punktgruppen 1. und 2. Art absehen, durch die volle Symmetrie-
gruppe des Tetraeders erklärt ist und dann statt 12 doppelt so viele, nämlich 24 Ele-
mente besitzt. Die 12 Drehsymmetrien des Tetraeders sind folgendermaßen zu finden:
Offensichtlich (Bild 5.4) gibt es vier dreizählige Achsen Cg, cg’, C3”, Cf’ ~ durch
jeden Eckpunkt und den Mittelpunkt des gegenüberliegenden Dreiecks jeweils eine.
Dazu gehören die Drehungen cg, C3’, cg", C3” um 120° und C32, cg”, C;’,”‘, (C§,")2
um 240°. Ferner existiert zu jedem der drei Paare gegenüberliegender Kanten eine
zweizählige Achse durch deren Mittelpunkte: C3, cg’, 5". Dazu gehören die Dreh-
symmetrien C5, C3’, C5” um 180°.

15i’ Bild 5.4. Zur Tetraedergruppe

Nach Satz 4.4 erhalten wir somit die vier Klassen

(E)‚(Cä) = {C5, C2’, C5”, C‘3‘“}, (C32) = {C3, C3", CQ”’‚(C‘5”)’}

(C5) = {C5, C3’, C£"}-

Es ist also k(T) = 4.
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5.3.4. Die Gruppen O (Oktaedergruppen)

Gruppen vom Typ O sind durch die Drehsymmetriegruppe eines Würfels gegeben.
Diese ist von der Ordnung 24. Folgende Achsenkonstellation am Würfel liegt näm»
lich vor: Es gibt drei zweiseitige äquivalente C..-Achsen C1, Cg’, Cf,”(durch die Mittel-
punkte einander gegenüberliegender Quadrate) mit den neun dazugehörigen Drehun— _

gen C2, CZ”, CZ” (v = 1, 2, 3); vier zweiseitige äquivalente Ca-Achsen Cg, Cg’,
C3”, cg” (durch je zwei gegenüberliegende Ecken stets eine) mit den acht zugehörigen
Drehungen cg", C3”, 3”", (C§“’)” (v = l, 2); sechs äquivalente C2-Achsen Cg,
cg’, ..., Cf’ (durch die Mittelpunkte gegenüberliegender Kanten) mit den sechs
Drehungen C3, Cg’, ..., Cf’. Zusammen mit dem Einselement haben wir also 24 Dreh—

symmetrieoperationen festgestellt. Nach geeigneter Orientierung der Drehachsen
finden wir in O folgende fünf Klassen:

(E), (cg) = {c;:*,(c::>)3: v = 1,2, 3}, (C13 = {(c::-)2» = 1,2, 3},
(C5) = {crntcröeu = 1.2. 3.4}, (Cé) = {CL CF}.

E} gilt k(O) = 5.

5.3.5. Die Gruppen Y (Ikosaedergruppen)

Y ist durch die Drehsymmetriegruppe des Pentagondodekaeders gegeben. Sie
besitzt 60 Drehsymmetrien, die sich zu fünf Klassen zueinander konjugierter zu-

sammenschließen: k(Y) = 5 (siehe [l0]).

5.3.6. Die unendlichen Punktgruppen Cw und D“,

Beispiel einer Gruppe vom Typ Cw ist die Drehsymmetriegruppe des HCN-
Moleküls (Bild 5.5). Sie besitzt eine C„-Drehachse durch den H-‚ C- bzw. N-Kern,
um die das Molekül um jeden beliebigen Winkel drehbar ist.

/.,' 5' N i’ C” Bild5.5.HCN-Molekül

Die Gruppen Cm sind also Punktgruppen erster Art mit nur einer Achse, und
zwar einer vom Typ Cw (um die der E3 um beliebige Winkel gedreht werden kann),

Beispiel einer Gruppe vom Typ Dm ist die Drehsymmetriegruppe des COZ-Mole-
küls (Bild 2.1(a)). Sie besitzt eine Cw-Drehachse durch den C-Kern bzw. durch die
O-Kerne, die eine Untergruppe vom Typ Cw verursacht, und unendlich viele C2-
Drehachsensenkrecht zur Achse Cw durch den C-Kem.

Die Gruppen Da, sind also Punktgruppen erster Art mit einer Cw-Achse und
unendlich vielen Cz-Achsen senkrecht zur Achse Cm und durch einen Punkt von ihr.

5.3.7. Klassifikationstabelle für Punktsymmetriegruppen erster Art

Da wir die Symmetrieverhältnisse z. B. bei einem Molekül„Kristall usw. zuerst
durch deren Symmetrieelemente wahrnehmen, erweist es sich als zweckmäßig, die
Anzahl der Drehachsen und deren Zähligkeit zu einer Gruppe zu notieren. Ferner
sollte für die Belange der Darstellungstheorie die Klassenzahl zu einer Gruppe an-
gegeben werden (um die Anzahl der irreduziblen Darstellungen ansagen zu können).
Diese Erfordernisse erfüllen z. B. die in [10] gegebenen Aufstellungen, auf die wir
uns hier und in Tafel 5.1 beziehen.
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Tafel 5.1. Punktgruppen erster Art der verschiedenen Achsenkonstellationen;
ihre Klassenzahlen .

Typ X Ord- Klassenzahl k(X) Anzahl der Achsen der Zähligkeit z

Dung z=2 z=3 z=4 z=5 z=n z=oo

C„ n n l

g + 3

für n gerade
D„ 2n n l

n + 3

2

für n ungerade
T 12 4 3 4

0 24 5 6 4 3

Y 60 5 15 10 6

CI, oo oo l
Dm oo 0o 0o l

5.4. Klassifikation der Punktsymmetriegruppen zweiter Art

Satz 5.1: Punktgruppen P zweiter Art, unter deren Elementen sich keine Inversion S.5.l
befindet, sind zu Punktgruppen P’ erster Art isomorph.

Beweis: Ist P = P+ u P‘ die Nebenklassenzerlegung von P nach dem Normalteiler
P+ der eigentlichen Drehungen von P (vgl. 4.2.1. c)), so ist P’ = P+ v i ' P‘ eine Punkt-
gruppe erster Art, wobei i- Bé P+ für BEP‘ gilt. Die Abbildung (p: P —> P’ mit
qJ(A) = A für A eP+ und q2(B) = i- B ist dann ein Isomorphismus, denn es gilt
<p(A-B)= i-(A-B)= A-(i-B) =<p(A)-q2(B)usw. I

Neue Gesichtspunkte werden also solche Punktgruppen P zweiter Art bringen, die
eine Inversion enthalten. Sie sind von der Gestalt

P = P+ >< C...

C,- ist die Punktgruppe C,- = [E‚ i] von zweiter Art, P" der Normalteiler der eigent-
lichen Drehungen von P. I

5.4.1. Die Gruppen 5„ für n = 2m und n = 2m — l

Punktgruppen zweiter Art, die lediglich eine Drehspiegelachse S„ der Zähligkeit n

besitzen, heißen vom Typ S„.
n = 2m: Die Elemente von S„„ werden von den Potenzen eines Elementes gebildet:

32m = E, 521m = S2„„ S§,,,, ..., §$“; S2,, ist eine Drehspiegelung an S2,, zum
Drehwinkel l80/m. S2,, ist also zyklisch von der Ordnung 2m und offensichtlich zu
C2,, isomorph:

Szm = <S2m> g Czm-

Szm gehört also zur abstrakten Gruppe Z2,,,. Die Potenzen S;,,, mit geradzahligem
Exponenten bilden eine Untergruppe vom Typ C„, = (C„,).



58 5. Punktgruppen, Symmetriegruppen von Molekülen

Spezielle Aufgaben löst die Gruppe

S2 = [E S2] = [E i] = <i>-

Sie wird mit C, bezeichnet.
Beispiele von S2,,-Gruppen sind die S4 des Allen—M0leküls (3.4.2. b)) oder die S5

des Benzenringes (Bild 2.4).
n = 2m — 1: Die S2,,,_,-Gruppen (m = 1, 2, ...) sind zyklisch von der Ordnung 2n‚

gehören also zur abstrakten Gruppe Z„‚. Erzeugendes Element ist die Drehspiegelung
S‚„ die durch S„ = C„ - ah entsteht, wobei C„, 0,, e S2,,,_1 selbst Symmetrieoperationen
sind; 0,, bedeutet die Spiegelung an der zur Drehspiegelaehse S„ gehörigen horizon-
talen Ebene oh. Daher gilt

Szm-l = <SZm—1> = <C2m—1s0'h>-

Die Gruppen S2,,,_1 sind in den Gruppen C,,,, bzw. C, mit erfaßt. Die Klassenzahlen
lauten

n für n = 2m,

Ms") = 2n fürn = 2m —l

denn die Gruppen sind abelsch.

5.4.2. Die Gruppen C„„ und C,

Punktgruppen mit nur einer (vertikalen Haupt-)Drehachse C„ und einer (dazu
senkrechten) horizontalen Spiegelebene ab heißen vom Typ C„„.

Sie sind von der Ordnung 2n‚ besitzen die Drehungen Cf,’ = E, C} = C,.,
C}, ...‚ C,’,"‘, die Spiegelung ah, die Drehspiegelungen S„ = 0„ - C„, Sf,” =

o',,- C}, ..., S,‘,"‘” = 0,, - C,‘,"“’ und haben deshalb das minimale Erzeugenden-
system {C„, ah}:

Cm: = <Cn, (Tn)-

Speziell gilt Cu, = (ah). Für C“, schreiben wir C„‚ = C‚. Wegen C; - ah = o',,- C;
(v = 0, 1, ..., n — 1) und C„ n C, = {E} läßt sich daher C„„ als direktes Produkt

CM, = C„ x CV

schreiben.
Für ungerades n ist C„„ vom Gruppentyp S„ (5.4.l.), gehört also zur abstrakten

Gruppe Zz„.
Für gerades n ergibt sich ein neuer Gesichtspunkt, da dann die Inversion i e C„„

auf das direkte Produkt v

Cnh = C’. >< C: = <C..‚ i)

führt und {C„‚ i} ein minimales Erzeugendensystem bildet.
Für die Klassenzahl k gilt

k(C..».) = 2n‚

da C„„ offenbar abelsch ist.
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Als Beispiel sehen wir uns Bild 2.6 bzw. 3.1.1.1. nochmals an und beachten auch
die Isomorphien in 3.3.4. b) sowie Beispiel 5.2 b).

5.4.3. Die Gruppen C,"

Punktgruppen zweiter Art, die nur eine Drehachse C„ besitzen und n vertikale
Spiegelebenen aß", 05,”, ..., a2", die C„ enthalten, heißen vom Typ C‚„‚.

‘Die Konstellation zwischen C„ und den aP-Ebenen ist hier offenbar die gleiche
wie bei den Gruppen D„ zwischen C„ und den C‘{’—Achsen: '

n = 2m: Die Drehungen C; (v = 1, ..., n — 1) führen die Spiegelebene a5,“ = o;
über in a?’ = 01,’, 03,5’ = aß", und die Spiegelebene a?’ = a; in 11$" = ag’,
of," = 0;”, (s. Bild 2.4). Der Index d bedeutet, daß ad den Winkelbereich benach-
barter m-Ebenen halbiert. Die av-Ebenen und die «Ja-Ebenen bleiben jeweils unter
sich.

n = 2m + 1: Hier geht cf,“ vermöge der Drehungen C; (1x = 1, ...,n — 1) in
alle anderen a9"(‚u = 2, ..., n) über. Wir bezeichnen daher nur: aß" = a2, of’ z oi,’
usw.

Die Gruppen D„ und Cm, sind vermöge der eineindeutigen Abbildung (p: D„ —> C,”
mit <p(C,‘,') = C,‘,’ und <p(C;*’) = af,”*" (v x 0, l, ...,/1 —— 1) zueinander isomorph. C,”
hat also die Ordnung 2n, ist für n > 2 nichtabelsch und hat wie D„ die Klassenzahlen

%+3 für n=2m,
/<(C‚„)= „+3

2
für n=2m+l.

Cm. besitzt z. B. {C,,, 0;} als ein minimales Erzeugendensystem, also gilt

Cnv = <C..,<r$>-

Beispiel einer Cm,-Gruppe ist die Gruppe C2, des HZO-Moleküls (Bild 2.5). In
3.3.4. a) bzw. b) finden wir dazu Ausführungen, insbesondere zur lsomorphie
C2, 2 D2.

5.4.4. Die Gruppen D„„

Eine Punktgruppe, die eine (vertikale Haupt—)Drehachse C„‚ n dazu orthogonale
(durch einen gemeinsamen Punkt von C„ verlaufende) C2-Achsen und eine (diese
C2-Achsen enthaltende) oh-Spiegelebene besitzt, heißt vom Typ D„„.

Sie ist als volle Symmetriegruppe eines regelmäßigen n-Ecks anzusehen und ent-
steht aus der Gruppe D„ = <C„, cg) dadurch, daß jetzt auch die Spiegelung an an
der Ebene 0„ des n-Ecks zugelassen wird. {C„, cg, ah} bilden ein minimales Erzeu-
gendensystem für D‚„‚:

Duh = <Cns C5, (Tn)-

D„„ ist von der Ordnung 4n; als Elemente treten auf: die 2n Drehungen C; (v =

O. 1, n — 1) und C§“’ (‚u = 1, ..., n), n Spiegelungen o?” = C2" ' 6„ jeweils
an einer Ebene a?" durch C5” und C„, n Drehspiegelungen S,‘,"’ (‚u = 1, ..., n) an
der Drehspiegelachse aus C„ und 6‚_ (ah ist eines der S,‘,“’).
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Da das minimale Erzeugendensystem der Dm, jenes der Gruppen D„, Cm, und Cm
enthält, treten diese als Untergruppen von Dm, auf und als Untergruppe von D„,
Cm, und Cm, auch noch C,.

Die Klassenzahl von Dm, lautet

MD )_ n + 6 für gerades n,

"h _ n + 3 für ungerades n.

Da die Achse C„ zweiseitig ist, bilden die Drehungen in bekannter Weise die Klassen
{C,, C,’,"‘ }, {C}, C,’,"2} usw., und analog verhalten sich die Drehspiegelungen (Sätze 4.3
und 4.4 in Verbindung mit 5.2.). Die n Drehungen Cg“ bilden ebenso wie in den
Diedergruppen D„ für gerades n zwei Klassen {C;, g’, und {C2, C2, und
für ungerades n eine Klasse. Ganz analog Verhalten sich die Spiegelungen a3": Sie
bilden aus den gleichen Gründen die Klassen {aL, d’, {(73, cg, für geradesn
und sonst nur eine Klasse.

Ein Beispiel dafür findet man in [1 2], 2.7., Beispiel 3 b, ein weiteres in Aufgabe 5.2 e).

5.4.5. Die Gruppen Dm,

Sie besitzen das Erzeugendensystem {C,, C2, ad}, können also für n g 2 durch

Dnd = <Cm C2: 0d)

charakterisiert werden. ad ist dabei eine vertikale Spiegelebene, die die Hauptdreh-
achse C„ enthält und den Winkel zwischen benachbarten Cz-Achsen halbiert, die
bei den Drehungen C: (v = 0,1‚...‚n — 1) um C„ um 360/n Grad aus der C2-
Achse entstehen.

Dm, kann als volle Symmetriemenge des n-seitigen Doppelprismas interpretiert
werden, das entsteht, wenn wir ein n-seitiges Prisma horizontal zerschneiden und die
eine Hälfte um 180°/n Grad gegen die andere verdrehen.

Dm, ist von der Ordnung 4n, die Klassenzahl lautet

k(Dm,) = n + 3

(vgl. Beispiel 3.24). Wir beachten dabei, daß die Referenzachse vom Typ S2, und
zweiseitig ist. Demgemäß haben wir eine Klasse (C2) aus den Drehungen um die
horizontalen Achsen, eine Klasse (ad) aus den Spiegelungen an den n vertikalen
Spiegelebenen und n + 1 Klassen (S2,), (S5,), ..., (S3,); (S2, = E) aus den Dreh-
Spiegelungen.

Beispiel 5.3: Die (volle) Symmetriegruppe D2,, des Allen-Moleküls (Bild 2.2) haben
wir genauestens studiert und finden unsere allgemeinen Festlegungen über Dm, be-
stätigt (vgl. 2.3.1.; 3.6.1. Beispiel 3.18, 3.20).

5.4.6. Die Gruppen T,

Eine Punktgruppe, die als direktes Produkt aus der Tetraedergruppe T (der Dreh-
symmetriegruppe eines Tetraeders) und der Punktgruppe C, = (i) aufgefaßt werden
kann, heißt vom Typ Th:

T,,=T><C,,

i = 0 ist der Mittelpunkt des Tetraeders.
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Wir beziehen uns jetzt auf die Bezeichnungen in 5.3.3. Die vier Produkte C‘,"’- i
(‚u = 1, 2, 3, 4) liefern vier Drehspiegelungen (Sg*>)5 um 300° bez. der als Drehspiegel-
achsen S2" aufzufassenden Drehachsen Cg” (mit dazu senkrechten Spiegelebenen
durch i). Dazu kommen Vier Drehspiegelungen 5g" = (C’3'")’ -i zum Winkel 60°
bez. S3". Ferner haben wir noch die drei Spiegelungen C; - i, Cg“ i, C§”- i, so daß
wir 24 Symmetrieoperationen haben und zu den Klassen der Gruppe T zusätzlich
noch die vier Klassen (i), (sgv),(s;1>)5 und (C; - i). Also gilt

k(T„) = 8.

5.4.7. Die Gruppen T, (volle Tetraedergruppe)

Alle Punktgruppen, die als volle Symmetriegruppe eines regelmäßigen Tetraeders
auftreten können, heißen vom Typ Ta.

Die Ordnung der Td ist 24. Zu den l2 schon vorhandenen Drehsymmetrien der
Untergruppe T von Td kommen noch sechs Drehspiegelungen und sechs Spiegelungen.
Alle Achsen von Ta sind zweiseitig, so daß gilt:

k(T„) z 5.

Die Gruppen vom Typ Td sind zu denen vom Typ Th nicht isomorph.

5.4.8. Die Gruppen 0„ (volle Oktaedergruppe)

Alle Punktgruppen, die als direktes Produkt 0„ = O x C,- geschrieben werden
können. heißen vom Typ Oh. Sie treten als Symmetriegruppe eines Oktaeders auf.

Die Ordnung der 0„ ist 48. Die Gruppe O ist eine Untergruppe von Oh. Zu den
24 Drehsymmetrien am Würfel finden wir weitere 24 uneigentliche Drehsymmetrien
(bzw. Spiegelungen), die fünf Klassen bilden, so daß mit denen von O insgesamt
l0 Klassen entstehen:

k(0,,) = 10.

5.4.9. Die Gruppen Yb (volle Ikosaedergruppe)

Punktgruppen, die sich als direktes Produkt Y x C,- schreiben lassen, heißen vom
Typ Yh. Sie treten als volle Symmetriegruppe der Ordnung 120 eines Ikosaeders auf
und zerfallen in zehn Klassen:

k(Y„) = 1o.

5.4.10. Die Gruppen CM, Cm, Dm

Die volle Symmetriegruppe eines COz-Moleküls (Bild 2.l(a)) ist vom Typ D
jene des HCN-Moleküls (Bild 5.5) vom Typ Cm.

Cw enthält also eine Cg-Achse und jede Ebene durch diese Achse als Spiegel-
ebene av. Analog läßt sich die Gruppe CM aus C„„ und Dwh aus D,,,, bzw. Dm, er-
klären.

ocv:
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5.4.11. Klassifikationstafel für Punktsymmetriegruppen zweiter Art

Tafel 5.2. Punktsymmetriegruppen zweiter Art, Ordnungen, Klassenzahlen

Typ X Ordnung Klassenzahl k(X)

S [ n { n für gerades n

" 2n 2n für ungerades n

Cm, 2n 2n

1 + 3 für gerades n
2C,” 2n n + 3

2 für ungerades n

n + 6 für gerades n
D"“ 4" in + 3 für ungerades n

DM 4n n + 3

Th 24 8

T„ 24 5

0„ 48 10

Y,, I20 10

Caen
Cm J00 oo

5.5. _ Flußschema für Punktsymmetriegruppen

In 5.3. und 5.4. sind alle auftretenden Punktgruppen, die als Symmetriegruppen
von Molekülen bzw, endlich ausgedehnten Systemen auftreten, aufgestellt worden.
Warum es keine weiteren gibt, wird hier nicht erörtert.

Um nun auf einfache Weise z. B. zu einem Molekül die zugehörige Symmetrie-
gruppe zu finden, bedienen wir uns eines Flußschemas nach Harris/Bertolucci ([5]),
welches wir für den Fall formulieren, daß es sich nicht um die Symmetriegruppen der
regelmäßigen räumlichen Körper, also um T, Th, Td, O, Oh, Y, Yh handelt. Die
Punktgruppen zum Dodekaeder und Ikosaeder kommen ohnehin nur vereinzelt als
Symmetriegruppen von Molekülen vor. Ferner berücksichtigt das Schema die Grup-
pen mit einer Cw-Achse nicht. Es ist nicht schwer, ein Schema aufzustellen, in wel-
chem alle Punktsymmetriegruppen vorkommen. Das Flußschema (Tafel 5.3) funk-
tioniert folgendermaßen:

Beispiel 5.4: Das HgO-Molekül hat als Symmetrieelemente eine (vertikale) C2-Achse
und zwei 0,,-Ebenen (Bild 2.5). Diese Elemente gehen in das Schema ein, und wir
haben deshalb von der Frage „C„-Achse?“ ab folgende Streckenführung zu durch-
laufen: ja, ja, nein, nein, ja. Wir finden die richtige Symmetriegruppe C“.
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Eingabe Ausgabe

Syume/r/ee/em:/zie .., , “V, , ,

des Sysiem: de: Systems

Tafel 5.3. Klassifikationsschema für Punktsymmetriegruppen ([5])

Aufgaben

5.1. Zeige: Die C6-Achse des Benzen-Molekiils (Bild 2.4) ist zweiseitig. m

5.2. Mit Hilfe des Punktgruppen-FluB-Schemas (Tafel 5.3) ist festzustellen, zu welchem Punkt- n

gruppentyp folgende Moleküle bzw. geometrische Figuren gehören: a) Das gleichseiiige Dreieck A
im E3 bzw. im E’ (BF3- bzw. NH3-Molekül; Bild 2.l(b) bzw. (e); vgl. Aufgabe 2.4 a), b)); b) das
Quadrat El im E3 bzw. E2 (XeF,,- bzw. SF5Cl~Molek1'1l; Bild 2.l(c), (g); vgl. Aufgabe 2.4 a), b));
c) das Benzen-Molekül (Bild 2.4); d) H202 (Bild 2.6); e) FClSO (Bild L 5.1); f) FzSO (Bild L 5.2).

5.3. Ein Massenpunktsystem, Körper, Molekül besitze keine Symmetrie. a) Von welchem Punkt- x:

gruppentyp ist die zugehörige Symmetriegruppe? b) Gib Beispiele hierzu an.



6. Die kristallographischen Gruppen

6.1. Grundbegrilfe der Kristallographie

Wie schon aus den bisherigen Kapiteln hervorgeht, spielen die Symmetriegruppen
eine zentrale Rolle. Außerlich erkennbare Symmetrien sind bei Kristallen besonders
ausgeprägt. Der regelmäßige äußere Bau frei gewachsener Kristalle, verbunden mit
anderen physikalischen Eigenschaften wie Spaltbarkeit, Ritzfestigkeit, Färbung und
Polarisation des durchgehenden Lichtes oder elektrische und Wärmeleitfähigkeit,
die ebenfalls einen Zusammenhang mit der äußeren Form erkennen lassen, führen
zu der Annahme, daß die innere Struktur der Kristalle einen hohen Grad an Regel-
mäßigkeit aufweisen muß.

6.1.1. Der Begriff des Raumgitters

Gehen wir davon aus, daß die chemische Zusammensetzung der kristallinen Sub-
stanzen bekannt ist und in der Mehrzahl nur aus wenigen Elementen besteht, dann
müssen die Ionen, die Atome, die Moleküle oder die Molekülgruppen im Kristall
regelmäßig, d. h. räumlich periodisch angeordnet sein. Ersetzen wir die Ionen, die
Atome, die Moleküle oder die Molekülgruppen, deren Anordnung sich räumlich
periodisch wiederholt (im weiteren auch Basis des Kristalls genannt), durch einen
Punkt, so bedeutet der Begriff „regelmäßig“ die Anordnung dieser Punkte in Gestalt
eines Raumgitters. Die einzelnen Gitterpunkte gehen dabei durch fortgesetzte
Translation längs dreier, linear unabhängiger Basis-Vektoren a, , a, und a3 aus einem
gegebenen Punkt im E3 hervor. Bei der Translation längs des ersten Vektors, dann
längs des zweiten Vektors und zum Schluß längs des dritten Vektors entstehen nach-
einander ein lineares, ein ebenes und ein Raumgitter (Bild 6.1). Jeder Punkt P des
Raumgitters ist von einem festen Punkt durch die Translation T = nlal + nza,
+ n3a3 erreichbar, wobei die Koeffizienten n, ‚ n2 und n3 ganze Zahlen sind.

Bild 6.1. Lineares Gitter, ebenes Gitter und Raumgitter
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Mit dieser Betrachtungsweise haben wir uns in die Bereiche der Mikrostruktur
begeben. Die Abstände zwischen zwei Punkten im Raumgitter eines Kristalls liegen
in der Größenordnung von 10““ rn. Die Kleinheit dieser Abstände berechtigt zu
der Vereinfachung, für die Untersuchung der Symmetrien den Kristall und damit
das Raumgitter als unendlich ausgedehnt zu betrachten. Die einzelnen Punkte des
Raumgitters sind untereinander gleichwertig. Jeder Gitterpunkt hat die gleiche
Umgebung und kann als Ausgangspunkt für den Aufbau des Gitters über Trans-
lationen aus den drei Gittervektoren dienen. Der betrachtete Kristall entsteht aus
dem Raumgitter durch Verheftung der ihm entsprechenden Basis an den einzelnen
Gitterpunkten. Wir können so aus einem Raumgitter durch Wahl anderer Basen
beliebige Kristalle aufbauen. Verschiedene Kristalle können demnach das gleiche
Raumgitter haben, wenn sie sich nur in der Basis, aber nicht in deren räumlicher
Anordnung unterscheiden.

Abstraktionsvorschrift: Zu einem gegebenen Kristall finden wir das zugehörige Raum-
gitter, indem wir in zweierlei Hinsicht Abstraktionen vornehmen:

l. Der Kristall wird in seiner Ausdehnung auf den gesamten Raum erweitert.
2. Seine Basis wird durch einen Punkt des Anschauungsraumes ersetzt.

Das Raumgitter ist durch die Angabe der drei Vektoren a, , a2 und a3 (Grundvektoren)
vollständig charakterisiert und wird, von einem beliebigen Punkt ausgehend, durch
die Translationen T = n,a1 + nzaz + n3a3 aufgebaut, wobei die Koejfizienten n, , n2

und n 3 alle ganzen Zahlen durchlaufen.

Die drei Vektoren a1, a, und a3 werden auch primitive Translationen genannt,
da man über sie von einem Gitterpunkt zu den benachbarten Gitterpunkten gelangt.
Die Konstruktion des Raumgitters macht deutlich, daß wir es auch durch wieder-
holtes Aneinanderlegen einer Elementarzelle aufbauen können. Dabei ist die Ele-
mentarzelle das von den primitiven Translationen aufgespannte Parallelepiped.

Definition 6.1: Die Elementarzelle eines Raumgitters ist das von den primitiven Trans- D.6.l
latianen a1, a2 und a3 aufgespannte Parallelepijted. Es wird vereinbart, daß von den
acht Gitterpunkten als Eckpunkte der Elementarzelle jeweils nur ein „Achtel“ zur

Elementarzelle gehört „- die Elementarzelle alsa insgesamt nur einen Gitterpunkt ent—

hält. Elementarzelle}: mit mehr als einem Gitterpunkt heißen nichtprimitiv.
Als symmetrische Elementarzelle — oder Wigner-Seitz-Zelle — bezeichnen wir jene

Zelle, die entsteht, wenn wir, ausgehend von einem Gitterpunkt, alle Punkte des E3
zur Elementarzelle rechnen, deren Abstand von dem Gitterpunkt kleiner ist als zu

jedem anderen Gitterpunkt. Die symmetrische Elementarzelle ist ein Polyeder, gebildet
aus den auf den Verbindungsvektoren benachbarter Gitterpunkte in halbem Abstand
errichteten Normalflächen.

Bild 6,2. Verschiedene Wahl der
Elementarzelle am ebenen Gitter,
Wigner-Seitz-Zelle

a BeJKer,S3‘mmemegruppen
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Während die Wigner-Seitz-Zelle‘) durch die Konstruktion eindeutig festgelegt ist,
hat die unterschiedliche Wahl der primitiven Translationen verschiedene Elementar-
zellen zur Folge. Dieser Sachverhalt soll an einem ebenen Gitter verdeutlicht werden
(Bild 6.2).

6.1.2. Netzebenen im Raumgitter, Millersche Indizes

Bevor wir die Symmetrieeigenschaften eines Raumgitters untersuchen, wollen wir
noch den Zusammenhang zwischen dem Raumgitter und der äußeren Kristallform
herstellen. Zur Vereinfachung beschränken wir uns auf Idealkristalle ohne Verzer-
rungen oder Störungen der Kristallstruktur. Ein Idealkristall ist als Polyeder von

ebenen Flächen begrenzt. Diese Flächen entstehen durch bevorzugtes Wachstum
in bestimmten Richtungen während des Prozesses der Kristallbildung. Für die
physikalischen Ursachen dieses Verhaltens verweisen wir auf die Spezialliteratur
l6]-

Die Begrenzungsflächen des Idealkristalls finden wir als Gitterebenen oder Netz-
ebenen im Raumgitter wieder.

Bedingt durch den Aufbau des Gitters liegen in jeder Ebene, die mindestens drei
Gitterpunkte enthält, zugleich unendlich viele Gitterpunkte, und sie wird deshalb
zu einer Netzebene des Gitters. Die Bedeckungsdichte verschieden gelagerter Netz-
ebenen mit Gitterpunkten ist unterschiedlich und kann zur Charakterisierung einer
Netzebene verwendet werden.

Die Lage der Netzebene läßt sich in bezug auf ein geeignetes Koordinatensystem
festlegen. Wir nehmen einen Gitterpunkt als Ursprung und die Richtungen der
primitiven Translationen zu Koordinatenachsen. Da alle Gitterpunkte aus dem
Ursprung durch die Translationen T = nla, + nzaz + n3a3 hervorgehen, können
wir den so erhaltenen Gitterpunkt über die drei ganzzahligen Koeffizienten beschrei-
ben [[n‚ n2 n3]]. Eine kristallographische Richtung ist durch zwei Gitterpunkte be-
stimmt, dem Ursprung [[00 0]] und dem Punkt [[m np]], und erhält folglich das
Dreiersymbol [m n p]. Die Achsenrichtungen haben die speziellen Dreiersymbole

al-Achse: [l 0 0],

az-Achse: [O l 0],

as-Achse: [001] (vgl. Bd. l3, 22.5.).

Eine Netzebene erhält ebenfalls ein Dreiersymbol (h, k, l), gebildet aus den dreiAch—
senabschnitten h, k, l. Da es für kristallphysikalische Probleme nicht erforderlich ist,
zwischen parallelen Netzebenen zu unterscheiden, werden die Zahlen im Dreier-
symbol immer ganzzahlig genommen, indem ein gemeinsamer Hauptnenner weg
gelassen wird.

Der Zusammenhang zwischen der Netzebene (h kl) und ihrer Normalenrichtung
[m n p] ist durch die Proportionalbeziehung

h:k:l=—1—:
m
Li
n'p

‘) Eugene Paul Wigner (amerikanischer Physiker): Über die elastischen Eigenschwingungen
symmetrischer S ysteme.
Wilhelm Seitz (deutscher Physiker): Die Reduktion der Raumgruppen (1936).
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gegeben. So gehört zum Beispiel zu der Richtung [368] die Normalfläche (843):

ll_l 84 3 .h.k.l=§.€.§ E‘-.2—4.fi (vg1.B1ld6.3).

Die Zahlen in den Dreiersymbolen sind als Millersche Indizesl) bekannt.

Punkt o [[363]]
a, -Arh.re

Nurmu/a [355]

az-Arhre

Bild 6.3. Die Fläche (843) und ihre Normale [368]

6.1.3. Die Elementarzelle und die Symmetrie des Kristalls

Der einfachste Kristall entsteht, wenn seine Begrenzungsflächen denen der Ele-
mentarzelle parallel sind. Der Kristall ist dann der Elementarzelle ähnlich. Die
Begrenzungsflächen der Elementarzelle spiegeln in einfacher Weise die Symmetrie
des Kristalls wider. Sie sind durch die Symmetrie des Kristalls einander zugeordnete
Flächen. Nehmen wir eine beliebigefvon diesen Verschiedene Fläche, so erfordert
die Kristallsymmetrie die Existenz einer bestimmten Anzahl zugeordneter Flächen.
Die durch die Symmetrie voneinander abhängigen Flächen heißen gleichwertig. Sie
verhalten sich bezüglich ihrer physikalischen Eigenschaften gleichwertig und bilden
zusammen die einfache Kristallform. Treten an einem Kristall ungleichwertige
Flächen oder, was dasselbe ist, gleichzeitig mehrere einfache Formen auf, so bilden
sie Kombinationen.

In der Literatur werden die einfachen Formen der einzelnen Kristallklassen aus-
führlich behandelt. Wir weisen Interessenten u. a. auf [15] hin (s. auch Abschnitt
6.2.8.). »

Praktisch wählen wir beim „kristallographischen Achsenkreuz“ die Richtungen so,
daß alle Flächen derselben einfachen Form des Kristalls (also die gleichwertigen
Flächen) auch gleiche Achsenabschnitte bzw. Indizes erhalten. Das geschieht dadurch,
daß wir vorhandene Symmetrieachsen oder Schnittgeraden von Symmetrieebenen
zu Achsen wählen. Die Flächen einer einfachen Form unterscheiden sich dann nur

durch die Richtungsvorzeichen und die Reihenfolge der Indizes.
Da die Elementarzelle geometrisch ähnlich unter den einfachen Formen einer

Kristallklasse auftritt, ist es ausreichend, sich bei der Untersuchung der äußeren
Symmetrien des Kristalls auf die Elementarzelle zu beschränken. Die Symmetrien an

einem endlichen geometrischen Körper werden wie Symmetrien von Molekülen durch
Symmetrieoperatoren des Raumes E3 beschrieben, bei denen ein Punkt des Raumes
ortsfest bleibt. Bei den Kristallen ist dieser Punkt 0 durch den Schwerpunkt der
Elementarzelle gegeben; bei der symmetrischen Wigner-Seitz-Zelle ist es der Gitter-
punkt im Mittelpunkt der Zelle.

1) William Hallowes Miller (18014880), englischer Mineraloge und Kristallograph.
5*
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6.1.4. Raumgitter und Punktgruppen

Die Symmetrieoperationen des Raumes mit Fixpunkt sind im Kapitel 5. klassi-
fiziert worden. Nach Ausführung einer Symmetrieoperation des Raumes befindet
sich der Kristall in einer zur Ausgangslage äquivalenten Lage.

Definition 6.2: Zwei Lagen des Kristalls oder des Raumgitters heißen zueinander
äquivalent oder Symmetrielagen des Kristalls, wenn sie bezüglich der Lage und An-
ordnung der Gitterpunkte nicht zu unterscheiden, aber nicht notwendig identisch sind
(vgl. 2.3.1.1).

Wenden wir die Symmetrieoperationen der Punktgruppe auf die Elementarzelle
an, so müssen wir fordern, daß neben der Elementarzelle auch das Raumgitter in
eine äquivalente Lage übergehen muß. Diese Forderung schränkt die Symmetrie-
operationen erheblich ein. Wir können uns überlegen, daß Spiegelungen an einer
Ebene und die Inversion an einem Gitterpunkt jedes Gitter in eine äquivalente Lage
überführen. Dagegen sind bei den Drehungen und den Drehspiegelungen nicht alle
Winkelwerte zulässig.

Wir formulieren diese Einschränkungen in

Satz 6.1: Bei den Drehungen, die ein gegebenes Raumgitter in eine äquivalente Lage
überführen, sind nur Drehachsen der Zähligkeit 1, 2, 3, 4 und 6 zulässig.

Beweis." Die Gleichwertigkeit der Gitterpunkte untereinander erlaubt es, jeden Gitter-
punkt zum Fixpunkt einer Drehachse zu nehmen. Weiterhin sind die Drehungen
um die Winkel o". = o: und q) = -0: gleichwertig, führen sie doch das Gitter aus der
Ausgangslage in die Endlage und wieder in die Ausgangslage zurück. Wir betrachten
eine Netzebene des Raumgitters und eine Drehung um eine zu dieser Ebene senkrech-
ten Achse. Die Netzebene ist in Bild 6.4 dargestellt. Nehmen wir den Punkt A zum

Fixpunkt und drehen das Gitter senkrecht zur Ebene um den Winkel (p = o4, so geht
der Nachbarpunkt B in den Punkt B’ über. Bei der Drehung um den Fixpunkt B
um den Winkel (p = —oc geht der Punkt A in den Punkt A’ über. Bilden die Punkte
A’ und B’ eine Parallelreihezur Gittergeraden durch die Punkte A und B, so muß
wegen der Gittereigenschaft der Abstand d(A’, B’) ein ganzzahliges Vielfaches des
Abstandes d(A‚ B) sein:

d(A’, B’) = nd(A, B).

Bild 6.4. Gitterbedingung und Drehung

Aus der Abbildung können wir ablesen, daß folgende Beziehung zwischen den beiden
Abständen gilt:

d(A, B) = d(A’, B’) + 2(d(A, B) — d(A‚ B) cos a).

Daraus erhalten wir die Gleichung

d(A’, B’) = d(A, B) (2 cosa — 1).

Die Gitterbedingung stellt an den Winkel x die Forderung

d(A’, B’) = d(A, B) (2 eos at — l) = nd(A, B)
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oder
Zcosac — 1 : I1.

Die Gleichung cosoc = fin + 1) läßt unter Beachtung des Wertebereiches für die
Kosinusfunktion, —-I g cosx g +1, nur die folgenden Werte für die ganze Zahl
n zu:

Tafel 6.1.

n —3 -2 -1 0 +1

coszx —l —-} 0 -1; l

o» 7- 57: 5x $71 0

Die zulässigen Drehwinkel schränken sich auf fünf Werte ein:

Drehwinkel 0° oder 360° 60° 90° 120° 180°

Zähligkeit der Drehachse l 6 4 3 2

Diese Bedingung ist auf alle Netzebenen des Kristalls gleichermaßen anwendbar
und hat gleiche Einschränkungen des Drehwinkels zur Folge. Es ist eine interessante
Schlußfolgerung. daß Kristalle keine fünf—, sieben-, acht- oder höherzählige Sym-
metrieachsen besitzen können, obwohl diese Symmetrien in der Biologie (z. B. Blüten-
strukturen), in der Chemie (Strukturen von Einzelmolekülen) sowie bei Metall-
clustern (bis zu Abmessungen von 8 bis 10 mm) relativ häufig auftreten.

6.1.5. Die stereographische Projektion

Die Untersuchung des Symmetrieverhaltens von Kristallen ist besonders übersicht-
lich, wenn wir uns einer speziellen Abbildung bedienen.

Zunächst ersetzen wir eine Kristallfläche durch ihre Normale und kennzeichnen
diese durch das Dreiersymbol für eine Richtung [hk I]. Wir legen den Ursprung
eines Koordinatensystems so ins Innere eines Kristalls oder der dem Kristall ent-
sprechenden Elementarzelle, daß er maximal symmetrisch liegt, d. h. in den Schnitt-
punkt aller Drehsymmetrieachsen oder ins lnversionszentrum (bei homogenen
Kristallen ist das der Schwerpunkt). Wir betrachten die Einheitskugel um den Ur-
sprung und Verschieben jede Kristallfiäche parallel zu sich, bis sie die Kugelfläche
tangiert. Der Berührungspunkt wird als Flächenpol bezeichnet. Die Flächenpole
aller zu einer gegebenen Richtung parallelen Kristallflächen liegen bei dieser Kon-
struktion aufeinem Großkreis. Die betrachtete Richtung ist der Pol zu diesem Groß-
kreis. Diese Zuordnung von Flächen und Richtungen mit Punkten der Einheitskugel
erlaubt die Anwendung der stereographischen Projektion. Mit dem Südpol der
Einheitskugel als festgehaltenen und invarianten Projektionspunkt__ werden alle
Punkte der Nordhalbkugel auf innere Punkte des Einheitskreises der Aquatorebene
abgebildet (siehe Bild 6.5). Die stereographische Projektion hat bemerkenswerte
Eigenschaften :

l. Kreise werden auf Kreise oder Geraden abgebildet. Dabei ist das Bild eines Groß-
kreises ein Kreisbogen über einem Durchmesser des Einheitskreises.
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2. Die Projektion ist winkeltreu, d. h., die Winkel der sphärischen Dreiecke erscheinen
nach der Projektion in richtiger Große (vgl. Bd. 9, 2.3.).

Bild 6.5. Zur stereographischen Projektion

Veranschaulichen wir uns im kubischen Kristallsystem, auf welchen Punkt des
Einheitskreises eine gegebene kristallographische Richtung abgebildet wird. Die
Richtung mit dem Dreiersymbol [h kl] verbindet den Ursprung mit dem Punkt P,
dessen kartesische Koordinaten gerade die einzelnen Indizes sind:

x‚=h, y,.=k‚ z‚=l.

Die Umrechnung in Kugelkoordinaten ergibt die beiden Winkel, die den Durch-
stoßpunkt der Richtungsgeraden mit der Einheitskugel beschreiben:

I

„N12 + k2 +12
x, = rc0s<psir119 C0529 =

} folgt k
z.

Aus {yr = r sin (p sind
z, =rcos19 tanrp =

Wählen wir in der Äquatorebene für den Projektionspunkt die kartesischen Koordi-
naten x, y und für die Polarkoordinaten g, Lp, so können wir den Strahlensatz (siehe
Bild 6.6) anwenden und erhalten für den Radius g die Beziehung

sin 19

9=‘1'Tco@'

Bild 6.6
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Aus den Formeln für die Kugelkoordinaten lassen sich die endgültigen Beziehungen
ableiten:

x=gcos<p‚ y=gsin<p,

g = eeghz+ k; sin q: =T; costp = TL.

\/hz + k’ +12’ V/h’ + k’ ’ \/h’ + k’

Diese Formeln gelten natürlich nur für das kubische Kristallsystem, bei dem die
drei primitiven Translationen paarweise senkrecht aufeinander stehen und alle die
gleiche Länge haben (Bild 6.7). Für andere Kristallsysteme ist der Zusammenhang
nicht so einfach.

Bild 6.7. Hauptrichtungen im kubischen
System in stereographischer Projektion

6.2. Die Symmetriegruppen der Kristalle

Nach den bisherigen Vorbetrachtungen wenden wir uns den Symmetriegruppen
der Kristalle zu. Die Raumgitter der Kristalle gestatten als Symmetrieoperationen
gewisse Translationen, Drehungen um Achsen, Drehspiegelungen an Drehspiegelach—
sen oder Spiegelungen an Ebenen oder Punkten. Die Symmetrieeigenschaften der
Raumgitter von Kristallen lassen sich folglich durch Untergruppen der Bewegungs-
gruppe $83 des Raumes beschreiben. Dazu informieren wir uns noch einmal im
Kapitel 4. über Seitzsymbole, insbesondere in 4.1.2. über die Gruppe SR3.

6.2.].

Wir beginnen mit einer Definition der Raumgruppe eines Kristalls.

Die Raumgruppen

Definition 6.3: Eine Untergruppe der Bewegungsgruppe $3 des euklidischen Raumes E3
heißt Raumgruppe.

In der Regel sprechen wir von einer Raumgruppe im Zusammenhang mit einem
Festkörper und meinen dann dessen Symmetriegruppe‚ hier auch kristallugraphische
Raumgruppe genannt.

Definition 6.4: Gestartet ein physikalisches System eine Raumgruppe, so heißt diese
eine Raumgruppe oder Symmetriegruppe des Systems. Volle Symmetriegruppe oder
einfach „die“ Symmetriegruppe des Systems nennen wir sie, wenn sie alle Symmetrie-
aperationen des Systems enthält.

D.6.3

D.6.4
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In diesem Sinne sprechen wir hier von den kristallographischen Raumgruppen als
von den Symmetriegruppen der Kristalle und bezeichnen sie mit G.

Die Elemente der Translationsgruppe SE3 als einer Untergruppe der ‘S3 sind von
der Form {E} T} : T, also ganzzahlige Linearkombinationen

T = "131 + "232 + "333 =("1» "2: 7'3)

aus den drei linear unabhängigen primitiven Basisvektoren a, ‚ a2 und a3 (siehe auch
2.3.3., 3.1.1.2., 4.2.4.).

Den Vektorraum aller ganzzahligen Linearkombinationen nennen wir das zur
Raumgruppe des Kristalls gehörige Gitter. Die Drehanteile A der Raumgruppenele-
mente {A I T} bilden als Untergruppe der Raumgruppe die Punktgruppe G0 des
Kristalls. Das Gitter einer Raumgruppe wird von allen Elementen der zur selben Raum-
gruppe gehörigen Punktgruppe invariant gelassen, Aus der Normalteilereigenschaft der
Gruppe ‘I3 der primitiven Translationen (Satz 4.6) folgt, daß mit einem beliebigen
Gitterpunkt P und einem beliebigen Raumgruppenelement {A | T} der Punkt
{A4 | 0} (P) wieder ein Gitterpunkt ist.

Diese Eigenschaft der Raumgruppen hat die uns schon bekannten Einschränkun-
gen in der Wahl der Elemente der Punktgruppen zur Folge, indem Dehungen nur

um bestimmte Winkel das Gitter in Symmetrielagen überführen. Umgekehrt erlaubt
diese Eigenschaft die Klassifizierung der Gitter nach den Punktgruppen.

6.2.2. Die Bravais-Gitter

Die Gruppe der primitiven Translationen wird durch die primitiven Basistrans-
lationen a, ‚ a2, a3 erzeugt.

Je nach Wahl der Basistranslationen entstehen sieben primitive und sieben nicht-
primitive Gitter, die l4 Bravais-Gitter?)

Diese 14 Gitter und die 32 Punktgruppen werden wir in den folgenden Abschnitten
noch ausführlich untersuchen.

An dieser Stelle wollen wir unsere Betrachtungen zu den Raumgruppen fortsetzen.
Wie wir oben ausgeführt haben, enthält die Raumgruppe G die Gruppe I3 der pri-
mitiven Translationen als Normalteiler. Wir können folglich die Gruppe G in Neben-
klassen nach der Translationsgruppe i3 zerlegen. Zwei Elemente der gleichen Neben-
klasse haben denselben Drehanteil A. Folglich ist die Faktorgruppe G/$3 der Punkt-
gruppe G0 isomorph (siehe auch 4.2.4.c)). Wir können die Nebenklassenzerlegung
der Raumgruppe G in der Form

G = U $a{/4 I VA}
AEGD

schreiben, wobei das Element {A | VA} ein Repräsentant der Nebenklasse zu A ist
(die Schreibweise i3{A | VA} entspricht dem Komplexprodukt im Abschnitt 3.4.1.).
Ein beliebiges Raumgruppenelement können wir so darstellen:

{A|T}={EITO}{A|VA}={AJVA+T„}.
Dabei durchläuft A alle Matrizen der Punktgruppe, VA ist die durch A bestimmte
nichtprimitive Translation, und To durchläuft unabhängig von A alle Gittervektoren.

Eine Raumgruppe ist dann vollständig bestimmt, wenn man außer Punktgruppe
und Gitter noch die nichtprimitiven Translationen kennt. Die nichtprimitiven
Translationen VA hängen von der Wahl des Ursprunges ab, durch den die Drehachsen
gelegt werden. Gelingt es durch geeignete Wahl des Ursprunges die Translationen vA

1) Auguste Bravais (1811-1863), französischer Physiker,
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für alle A e G0 zum Verschwinden zu bringen, so nennt man den entsprechenden
Kristall und die dazu gehörige Raumgruppe symmorph. Unter den 230 Raumgruppen,
die durch Kombination der 14 Gitter mit den 32 Punktgruppen gebildet werden
können, sind 73 symmorph, bei dem Rest gelingt es nicht, gleichzeitig alle Trans‘
lationen VA zu null werden zu lassen.

Nun betrachten wir ein bestimmtes Gitter und bauen daraus einen Kristall auf,
dessen Raumgruppe dieses Gitter hat. Das Gitter teilt den Raum in Elementarzellen,
z. B. symmetrische Wigner-Seitz-Zellen. Wird jede Wigner-Seitz-Zelle in gleicher
Weise mit Kristallbausteinen besetzt, erhalten wir den Kristall. Die Besetzung der
Wigner-Seitz-Zelle kann in verschiedener Weise erfolgen, jedesmal erhalten wir
einen anderen Kristall. Setzt man nur einen Kristallbaustein, der die Symmetrie der
Holoedrie (siehe Definition 6.5) haben muß, in die Mitte der Wigner—Seitz—Zelle,
so hat man einen Kristall ohne Basis. Die Basis kann die Symmetrie der Holoedrie
haben oder gegenüber der Punktgruppe symmetrisch sein. Kristalle ohne Basis oder
Kristalle mit gegenüber der Punktgruppe symmetrischer Basis sind symmorph.
Kristalle mit nichtsymmetrischer Basis sind nicht symmorph.

Die Unterscheidung zwischen den von den Raumgruppen beschriebenen Sym-
metrien und den Symmetrien der Punktgruppen hat auch physikalische Konsequen-
zen.

So beschreiben die Raumgruppen die Symmetrien der Kristallstruktur unter Be-
rücksichtigung der interatomaren Abstände, während die Punktgruppen die Symmetrien
der äußeren Kristallform und damit ihre makroskopischen Eigenschaften charakterisieren.

6.2.3. Die 32 Punktgruppen als Kristallklassen

Aus den vier Symmetrieoperationen (Drehungen um Drehachsen und Drehspiege—
lungen an Drehspiegelachsen der Zähligkeit n, Spiegelungen an Ebenen und Inversion
am Ursprung) lassen sich unter Beachtung der Einschränkung der Ordnung auf die
Werte l, 2, 3, 4 und 6 insgesamt 32 Punktgruppen aufbauen. Diese 32 kristallo—
graphischen Punktgruppen oder Kristallklassen sind in der Menge aller Punktgrup-
pen, wie sie für die Symmetrien endlich ausgedehnter Systeme (Moleküle) abgeleitet

‘ l

i ‚i l ‘ i l ‘ ‘i ' l
\ i z \ \ I\\ // \\ // \\ // \\\ //
c w’ C7 W C F.

xx „an. x x x x‚ \ \

x’ \ i r’ i A Ä xi i i \ ‚ ‘ i

Q l — — — — — e’ ' Ä i ~-' ***

\ ‘t i’ i \/’:\’ i‚i\’( / \ l / x i f \ / l \ 1
\ / x i / \ i K l )4
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55 p, l7 m

T‘ /’/W‘\\ ’ u/‘X z , \ l/ r Ix x /1‘ ,\\
‚xxi/‚x‘ l/ +54, mit, u
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~’i\/ \ x51 / Vt I)_d__x V, -

175 a

Bild 6.8. Stereogramme der Punktgruppen 1. Art
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wurden, enthalten (siehe Abschnitte 5.3., 5.4.). Es ist üblich, diese 32 Punktgruppen
in Punktgruppen 2. Art und 1.Art zu teilen, je nachdem, ob die Punktgruppen
uneigentliche Drehungen enthalten oder nicht. Die Punktgruppen 2. Art lassen
sich nochmals danach unterscheiden, ob unter den Gruppenelementen die Inversion
vorkommt oder nicht. Es gibt unter den 32 Punktgruppen der Kristalle-
graphie 11 Punktgruppen 1. Art und 21 Punktgruppen 2. Art, davon 10 Punkt-
gruppen ohne Inversion und 1 1 Punktgruppen mit der Inversion als Gruppenelement.
In dieser Einteilung sind die 32 Punktgruppen in der Tafel 6.3 aufgefühn,’ geordnet
nach der Anzahl der Gruppenelemente. Die drei Bilder 6.8, 6.9 und 6.10 geben die

/’ \

/ \\\ / \\\
r y / x

\ Z l1 [ A ; I
\\ // \\\ //
\\_ ‚ \_H//

f. 55 [M

0.7 t [Eh DA»,

z kennze/‘c/msrem

Jymmetr/‘e—

Zentrum

"n E oh

Bild 6.10. Stereogramme der Punktgruppen 2. Art mit Inversion
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32 Punktgruppen in stereographischer Projektion wieder. Die Drehachsen oder
Drehspiegelachsen werden in der stereographischen Projektion über ihre Richtungen
als Punkte innerhalb des Einheitskreises wiedergegeben und entsprechend ihrer Ord-
nung mit den in Tafel 6.2 angegebenen Symbolen versehen.

Tafel 6.2.

l7 7 Z 3 A 5

Dre/Inc/752 der Ordnung n - 0 A I O

Drehspiegelnchse I16!‘ Drdnuny n A O

Da die Schnitte der Spiegelebenen mit der Einheitskugel Großkreise ergeben und
diese bei der Projektion als Kreisbögen über einem Durchmesser wiedergegeben
werden, lassen sich auch Spiegelebenen in den Stereogrammen darstellen. Es ist
üblich, Ebenen ohne Spiegelungscharakter gestrichelt und Spiegelebenen ausgezogen
zu zeichnen.

Den 32 Punktgruppen entsprechen 32 Kristallklassen. Unter den 32 Punktgruppen
gibt es 7 Gruppen, denen alle anderen Punktgruppen als Untergruppen zugeordnet
werden können. Diese 7 Punktgruppen haben in der Menge ihrer Untergruppen die
höchste Symmetrie.

Definition 6.5: Wir bezeichnen eine Punktgruppe als Holoedrie oder Kristallsystem,
wenn sie keine Untergruppe einer anderen Punktgruppe ist, aber weitere Punktgruppen
als Untergruppen enthält.

In der Tafel 6.3 sind die 7 Kristallsysteme, die 32 Kristallklassen und die Symmetrie-
elemente der Holoedrien im Vergleich dargestellt. Bei den Symmetrieelementen
bedeutet z. B. die Formel 3C44C36C29ai 3 Drehachsen 4. Ordnung, 4 Drehachsen
3. Ordnung, 6 Drehachsen 2. Ordnung, 9 Symmetrieebenen und das Inversions-
zentrum.

Tafel 6.3.

Kristallsystem Kristallklasse Symmetrie-
(Holoedrie) (Punktgruppe) elemente

C,- C1 , C,- i

Czh C2: Cs: Czh Czai

Dzn CZV: D2, DZh 3C2 30i

D3,, C3, S6, D3 C3 3C2 30i
C3v: Daa

Dfih C69 C311, Csn C6 6C: 70i
D6 v Cfiv: D3h9 D6I|

Da. C4, S4: C41; C4 4C2 517i

D49 C4Vs D2419 D4h

0., T, Th, Ta 3C4 4C3 6C2 901'

‚ 0».

D.6.5
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Beispiel 6.1: Für das H202-Molekiil mit der Symmetriegruppe C2,, (Bild 2.6) können
wir für die Symmetrieelemente schreiben: Czai.

6.2.4. Die 7 Kristallsysteme und die‘ Bravais-Gitter

Es ist verständlich, daß zwischen den möglichen Translationsgruppen, unterschie-
den durch die Basisvektoren, und den Holoedrien Zusammenhänge bestehen müssen.
Beschreiben doch die Punktgruppen die Symmetrieeigenschaften der von den Basis-
vektoren aufgespannten Elementarzellen. Die möglichen Variationen der drei Basis-
vektoren bezüglich ihrer Länge und der paarweise zugeordneten Winkel ergeben
unter Berücksichtigung der besonderen Winkel von 90° und 120° sieben verschiedene
Typen von Elementarzellen. Mit den Bezeichnungen:

a, b, c als Längen der Basisvektoren a, ‚ a2, a3,

m, ß, y als Winkel zwischen diesen Vektoren

haben wir die 7 Elementarzellen und die ihnen entsprechenden Gitter:

Tafel 6.4.

Typ der Elementarzelle Längen der Vektoren i Winkel zwischen Vektoren

triklin a#b#c oc+ß#y#90°
monoklin a=t=b=l=c zx=y=90°+ß
rhombisch a4=b+c a:ß=y=90°
trigonal a = b = c ac = ß = y < 120° H: 90°)
hexagonal a = b ä: c o: = ß = 90°, y 2 120°
tetragonal a = b ä c a = ß = y = 90°
kubisch a=b=c a=ß=y=v90°

Diese sieben Elementarzellen und die aus ihnen aufgebauten Gitter zeigen die
Symmetrie der sieben Holoedrien, so daß man die Kristallsysteme auch nach den
möglichen Gittertypen bezeichnen kann. In Bild 6.1 l sind die primitiven Elementar-

Ü:

r/mmbisch mnmzk//n /e/ragomzl

Bild 6.11. Die primitiven Elementarzellen der sieben Kristallsysteme
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zellen dargestellt. Zu diesen sieben primitiven Elementarzellen lassen sich durch
Hinzufügen von weiteren Gitterpunkten, wobei die Symmetrie der primitiven Ele-
mentarzelle erhalten bleiben soll, noch sieben weitere nichtprimitive Elementar-
zellen konstruieren. Die Einschränkung der Symmetrieerhaltung erlaubt das Ein-
fügen weiterer Gitterpunkte nur an den Sehnittpunkten der Fläehen- oder Raum-
diagonalen. Zur Unterscheidung werden die Gitter durch einen Buchstaben be-
zeichnet:

für primitive Gitter,
für einseitig flächenzentrierte Gitter,
für innenzentrierte Gitter,
für allseitig fiächenzentrierte Gitter,
für das trigonale (rhomboedrische) primitive Gitter.N

’T
H

"O
"U

Die 14 mit den Punktgruppen verträglichen Gitter hat erstmals Bravais aus all-
gemeinen Überlegungen abgeleitet [3]. Sie sind deshalb unter seinem Namen in die
internationale Literatur eingegangen. Die l4 Bravais-Gitter verteilen sich auf die
sieben Kristallsysteme in folgender Weise:

Tafel 6. 5.

Kristallsystem Bravais-Gitter

P C I F R

triklin ' ><

monoklin >< ><

rhombisch x x x x
trigonal x

hexagonal ><

tetragonal >< x

kubisch x >< x

Zu den sieben Holoedrien gehören jeweils eine primitive Elementarzelle. Darüber
hinaus gibt es in vier Kristallsystemen weitere nichtprimitive Elementarzellen, die
gleichfalls die Symmetrie der Holoedrie besitzen. Etwas genauer muß die Wahl
der Elementarzelle im trigonalen und im hexagonalen Kristallsystem untersucht
werden. Kennzeichnend für die Holoedrie Du ist das Symmetrieelement Dreh-
achse dritter Ordnung. Die Netzebenen senkrecht zu dieser Drehachse sind als ebene
Gitter von gleichseitigen Dreiecken aufgebaut. Eine so gestaltete Netzebene gestattet
als Symmetrieelement automatisch eine Drehachse sechster Ordnung. Wir sind damit
im hexagonalen Kristallsystem. Auf zweierlei Weise läßt sich die trigonale Symmetrie
beim Raumgitter wieder herstellen. Entweder belegen wir jede parallele Netzebene
in der gleichen Weise mit drei verschiedenen Arten von Gitterpunkten entsprechend
Bild 6.12., oder übereinanderliegende Netzebenen werden mit gleichwertigen Gitter-
punkten so belegt, daß ein Gitterpunkt der nächsten Netzebene immer über dem
Mittelpunkt des aus drei benachbarten Gitterpunkten der vorhergehenden Netz-
ebene gebildeten gleichseitigen Dreiecks liegt. Jede vierte Netzebene liegt dann
genau über der ersten.
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o a

\ l t A - 1 „

. ‘ ‘ Bild 6‚l2. Die Lage der Gitterpunkte im tri-
O ‘ O ) D gonalen System

i z

Im ersten Fall der Punktbelegung der Netzebenen haben wir es mit einem primiti-
ven Gitter der Gestalt Basisfläche mal Höhe zu tun. Im zweiten Fall entsteht die
typische rhomboedrische Elementarzelle des Bildes 6.13.

Bild 6.13. Zusammenha zwischen den
Basisvektoren und den Elementarzellen
im trigonalen und hexagonalen Kristall-
system

a’1 = a, — a;
a’; = a2 — a3

a; = a; + a; + a3

Da für den Aufbau des Raumgitters gleichwertige Gitterpunkte die Voraussetzung
sind, ist die Elementarzelle im trigonalen System die rhomboedrische Elementarzelle.

Die andere Art der trigonalen Elementarzelle kommt erst bei den Raumgruppen
nach Einführung von Kristallen mit Basis zur Wirkung.

6.2.5. Die kristallographischen Raumgruppen

Die Kombination der 14 Bravais—Gitter mit den 32 Punktgruppen und die Berück-
sichtigung von zwei weiteren Symmetrieelementen — der Schraubung und der G1eit—

Spiegelung — liefert 230 verschiedene Raumgruppen.
Bei den Schraubungsachsen ist die Operation der Drehung um eine n-zählige

Drehachse mit einer Translation in Achsenrichtung gekoppelt. Betrachten wir
benachbarte Gitterebenen senkrecht zur Drehachse, so sind verschiedene Schrau-
bungsachsen möglich, je nachdem, ob übereinander liegende Gitterpunkte in benach-
barten Gitterebenen gleichwertig sind oder nicht.

Wird die Schraubung durch eine Drehachse n-ter Ordnung erzeugt, so sind die
nichtprimitiven Translationen längs dieser Achse rationale Bruchteile der primitiven
Translationen mit dem Nenner n. Diese Aussage ist die Folge eines allgemeineren
Satzes.
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Satz 6.2: Ist n die Ordnung der endlichen Gruppe Go, so können wir durch eine Ver-
schiebung des Ursprunges erreichen, daß nicht nur die Darstellungsmatrizen
A, B, C, ...‚L der Elemente von Go ganzzahlig werden, sondern außerdem noch,
daß die Spalten a, b, c, ...,l der dazugehörigen Translationen aus der Raumgruppe G
Spalten aus rationalen Zahlen mit dem Nenner n sind. Dabei müssen natürlich die
primitiven Translationen des Raumgitters als Knordinatenvekroren gewählt werden
[16].

Bei den Gleitspiegelungen wird die Symmetrieoperation einer Spiegelebene mit
einer nichtprimitiven Translation gekoppelt. Die Translation liegt in der Spiegel-
ebene und kann bezüglich des Achsensystems des Kristalls verschieden orientiert
sein. Dadurch ergeben sich Verschiedene Gleitspiegelungen.

Die 230 Raumgruppen Verteilen sich auf die 7 Kristallsysteme und die Typen der
Bravais-Gitter entsprechend der Tafel 6.8. In der letzten Spalte dieser Tafel ist der
Anteil der Raumgruppen einer Kristallklasse an der Gesamtzahl 230 aufgeführt.
Die Tafel 6.9 enthält die Verteilung von 8716 realen Kristallen auf die 32 Kristall-
klassen, Im allgemeinen zeigt ein Vergleich mit den Anteilen von Tafel 6.8, daß die
Häufigkeit realer Kristalle mit der Anzahl der Raumgruppen in einer Kristallklasse
korrelliert sind. Es gibt aber auch Abweichungen davon, z. B. die Kristallklasse
C4.

Die Ableitung der einzelnen Raumgruppen ist nicht Gegenstand unserer Betrach-
tungen. Dazu verweisen wir auf die Spezialliteratur [10]. Als Beispiel betrachten wir
die Raumgruppe des Diamantkristalls. -

6.2.6.

Das Gitter des Diamantkristalls gehört zum kubischen Kristallsystem. Die Ele-
mentarzelle ist kubisch-fiächenzentriert. Die Wigner-Seitz-Zelle als symmetrische
Elementarzelle ist das Rhombendodekaeder. Die Holoedrie ist die Volle Oktaeder-
gruppe 0.,. Die Punktgruppe des Diamantkristalls ist die Holoedrie Oh. Sie besteht
aus 48 Elementen und ist als Punktgruppe 2. Art ein direktes Produkt mit der Gruppe
C‚: 0,, = Td x C,-. Td x C, ergibt die gleichen Elemente wie O x C, (s. 5.4.8.).

Die volle Tetraedergruppe Td zerfällt in fünf Klassen zueinander konjugierter
Elemente; entsprechend zerfällt die Gruppe 0„ in zehn Klassen (siehe auch Tafel 5.2).
Die primitiven Basistranslationen des Gitters haben die Gestalt (der Würfel habe die
Kantenlänge 2a):

a1 = d(0,1,1),

Die Raumgruppe des Diamantkristalls

a2 = a(1‚O‚ 1), a3 = a(1, 1,0).

Nichtprimitive Translationen ergeben sich aus der Tatsache, dal3 der Diamant-
kristall ein Kristall mit Basis ist. ln der Wigner-Seitz-Zelle befinden sich zwei Kohlen—
stoffatome an den Stellen

t, =o und t2 = t =%(1,1‚ 1).

Diese Basis ist nicht mehr gegenüber der Holoedrie Oh, sondern nur noch gegenüber
der Tetraedergruppe Td invariant. Die nichtprimitiven Translationen haben die
Gestalt

o für A e Td,

" t für A e Td.

Man kann die beiden Atome auch symmetrisch zum Ursprung anordnen, d. h., man

VA

S.6.2
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wählt die Orte der beiden Atome in der Form

ti = —<}t und t2 = Zt.

Dann haben die nichtprimitiven Translationen nach der Transformation des Ur-
sprungs die Gestalt

‚ _ {>(At ~ t) fürA eTd‚

‘ §(At+t) fiirA¢Td.

Diese so vollständig charakterisierte Raumgruppe des Diamantkristalls trägt die
Bezeichnung 0;’ oder Fd3m in der internationalen Bezeichnungsweise.

Diesen Abschnitt wollen wir mit einer Übersicht der Verteilung der 230 Raum-
gruppen auf die Kristallsysteme, die Kristallklassen und Gittertypen beenden.

6.2.7.

Zur Erleichterung des Studiums moderner Literatur geben wir in der Tafel 6.6
eine Übersicht über die internationale Symbolik der Raumgruppen.

Internationale Symbolik der Raumgruppen der Kristallographiq

Tafel 6.6.

Kristall- Position
System

l 2 3 4

triklin Typ des bestimmendes
Bravais- Symmetrie-
Gitters element

monoklin bestimmendes zur z—Achse

Symmetrie normale
element Ebene
2 oder 2,

rhombisch Ebene normal oder Achse parallel zur
x-Achse y-Achse z-Achse

trigonal Achse höchster Koordinaten- Diagonal-
tetragonal Ordnung (oder ebene oder ebene oder
hexagonal dazu normale Achse Achse

Ebene)

kubisch Koordinaten- 3

ebene oder
Achse’

z. B. Diamant Fd3m kubisch
BaTiO3 Pm3m kubisch
SiO2 P6222 trigonal

Bei der internationalen Nomenklatur für die Raumgruppen werden die Dreh-
achsen entsprechend ihrer Zähligkeit mit den Zahlen l, 2, 3, 4 und 6 und die Dreh-
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inversionsachsen (d. h. die Drehung des E3 um eine Achse und anschließend die
Inversion am Ursprung) mit den Symbolen I, i oder m, 3, 4, 6 oder 3/m bezeichnet.
Die Schraubungsachsen (d. h. Achsen, um die der E3 gedreht und anschließend
parallel zu ihnen verschoben wird) (vgl. auch 4.1.3. (2?) [i]) erhalten die Symbole m‘
(d. h. 2„ 3,, 32, 41,42, 43, 6,, 62, 63, 64, 65), wobei die Zahl n die Zähligkeit der
Drehachse bedeutet und der Index k angibt, daß die Verschiebung nach der Drehung

um den Winkel (f = 27-cgerfolgt. Die Gleitspiegelebenen (vgl. 41.3. (23) [iii]) werden

auf den Gleitvektor (d. h. der Vektor, längs dem verschoben wird) bezogen und er-

halten im Gitter mit den Basisvektoren a1, a; und a3 die Bezeichnungen: y

Gleitvektor Bezeichnung

‘hal a

i“: b
%a3 c

gar ‘l’ 32) oder ilaz ‘l’ as)
oder §(a1 + a3) oder n

iüi ‘l’ a2 ‘l’ 33)
‘ilai ‘l’ a2) oder H32 ‘l’ 33)
oder {(211 + a3) oder I d

flan ‘l’ 32 ‘l’ 33)

6.2.8. Reine Formen von Kristallen

Die Elemente der Punktgruppe eines Kristalls überführen eine gegebene Richtung
in eine andere. Die n Elemente der Punktgruppe transformieren deshalb eine gegebene
Richtung in maximal n Richtungen. Bei spezieller Lage der Ausgangsrichtung können
nach Anwendung der Gruppenelemente die neuen Richtungen teilweise zusammen-
fallen. Ist die gegebene Ausgangsrichtung die Normalenrichtung einer Netzebene,
so entstehen nach den Transformationen mit den Gruppenelementen n Normalen-
richtungen mit den dazu gehörigen Netzebenen. Die auf diese Weise über die Grup-
penelemente zusammenhängenden Flächen bilden eine reine Form des Kristalls.

Definition 6.6: Ein Kristall bildet eine reine oder einfache Form, wenn die Normalen
aller seiner Flächen aus der Normalen einer Fläche durch Anwendung aller Elemente
seiner Punktgruppe auf diese Normalenrichtung entstehen. Bei Punktgruppen niedriger
Symmetrie braucht kein geschlossener Körper zu entstehen. Die so entstandene oflene
reine Form ist dann durch weitere Netzebenen abzuschließen, die paarweise symmetrisch
zueinander liegen.

Bei spezieller Wahl der Ausgangsfläche können die transformierten Flächen teil-
weise zusammenfallen, und es entsteht eine reine Form mit weniger als n Flächen.

In einem Kristallsystem liefert die Punktgruppe mit der höchst möglichen Sym-
metrie — Holoedrie genannt — als reine Form bei einer Ausgangsfläche in allgemeiner
Lage einen Kristall mit maximaler Flächenzahl, einen Holoeder (Ganzfiächner).
Werden Symmetrieelemente systematisch weggelassen, so treten unter den reinen
Formen Polyeder mit geringerer Flächenzahl auf, speziell auch welche mit der
halben Zahl von Flächen — Hemieder. In der Mineralogie spricht man bei allen
niedriger symmetrischen Klassen als die Holoedrie von Hemiedrien.

Am Beispiel des kubischen Kristallsystems sollen die reinen Formen der Holoedrie
0„ für die sieben möglichen verschiedenen Lagen der Ausgangsfiäche angegeben

6 ]'kclger,Symmetricsrmppen
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werden. Diese Lagen sind mit den Zahlen 1 bis 7 im Bild 6.14 des Stereogramms der
Holoedrie 0h gekennzeichnet.

‚ Bild 6.14. Spezielle Normalenrichtungen im kubischen System
(Klasse 0,.)

Tafel 6.7

Normalenrichtung der Fläche reine Form

1 [h k I] Hexakisoktaeder — 48 Flächen
(ungleichseitige Dreiecke)

2 [h I I] h > I Ikositetraeder — 24 Flächen
(Drachenvierecke)

3 [h h I] h > I Tnsoktaeder — 24 Flächen
(gleichschenklige Dreiecke)

4 [h k 0] Tetrakishexaeder — 24 Flächen
5 [1 1 I] ggll<eich;cheni1;(111':g1elireiecke)

tae er — äc en

(gleichseitige Dreiecke)
6 [1 1 0] Rhombendodekaeder — 12 Flächen

(Rhomben)
7 [1 0 0] Hexaeder — 6 Flächen

(Quadrate)

Tafel 6.8

Kristall- lläristall- Gittertyp Bezeichnung Ar}1!-1 Anteil (%)
system asse za

P C F R der Gruppen

triklin C1 1 C} 2 0,43
C, 1 C,‘ 0,43

monoklin C2 2 I C‘z“3’ 13 1,30
C5 2 2 C§“" 1,74
C2,, 4 2 C‘2‘,,'°’ 2,61

rhombisch D2 4 2 l D‘2“9’ 59 3,9l
ch 10 7 2 025.22, 9,56
D2,, 16 6 2 Dglh-zs) 12,17
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Tafel 6.8. (Fortsetzung)

Kristall- Kristall- Gittertyp Bezeichnung An— Anteil (%)
system klasse zahl

P C F I R der Gruppen

tetragonal C4 4 2 Cf,“" 68 2,61
s. 1 1 sir” 0,87
C“, 4 2 Cfßh“) 2,61
D, 8 2 Dy-W 4,35
C4, 8 4 c<,1;m 5,22
D2,, 8 4 931,412) 5,22
B4„ 16 4 Df,‘,,‘2°’ 8,70

trigonal C3 3 1 C514’ 25 1,74
s, 1 1 s1,‘-D 0,87
D, 6 1 ngl-7* 3,04
C3,, 4 2 cg1;6> 2,61
D3,, 4 2 D§‘;5‘ 2,61

hexagonal C6 6 C94’ 27 2,61
C3„ 1 Cäh 0,43
C6, 2 Cgg“ 0,87
1),, 6 D?“ 2,61
c5, 4 C{,‘;“’ 1,74
D3,, 4 D‘3‘,,"’ 1,74
Da, 4 Dy,-4’ 1,74

kubisch T 2 l 2 T“'5’ 36 2,17
T, 3 2 2 Tg-n 3,04
Td 4 2 2 T31-8) 3,48
o 2 2 2 0<1~6’ 2,61
0,, 4 .4 2 0;}-1°> 4,35

230 100,00

Tafel 6.9. Die Verteilung natürlicher Kristalle auf die 32 Kristallklassen

Kristallklasse Gesamtzahl Anteil %

C 1 41 0,47
C, 249 2,86

C2 367 <‚ 4,21
C5 70 0,80
C2,, 1 908 21,89

D2 596 6,84
C2, 226 2,59
D2,, 1 1 58 13,29
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Tafel 6.9. (Fortsetzung)

Kristallklasse Gesamtzahl Anteil (%)

C4 17 0,19
S4 47 0,54
C“, 135 1,55
D4 68 0,78
CM, 1,4 v 0,16
D2,, 107 1,23
D4,, 579 6,64

C3 25 0,29
S6 152 1,74
D, 72 0,83
Cm, 106 1,22
D3, 444 5,09

C6 18 0,21
C3,, I 0,01
Cm, 97 1,11
D6 52 0,60
C6,, 80 0,92
D3,, 42 0,48
Da, 355 4,07

T 95 1,09
Th 212 2,43
T,, 21 0,24
0 219 2,51
0,, 1 223 14,03

8 716 aus [l 5].

n Aufgabe 6.1

D.6.7 Definition: 6.7: Zur Gitterbasi: (21„ a2, a_,) heißt {a‘, a’, a3} mit

a2><a3 2 a3><a1 3 a‚><a‚
= ‚ = ‚ a = ‚

[alazasl lalazaal laiazasl

Basis des zugehörigen reziproken Gitters, wobei mit [a,a2a3] das Sparpradukt der drei Vektoren
bezeichnet wird (vgl. Bd. 13, 2.3.7.2.).

Man betrachte die Gitterbasis (a, ‚ a2, a3} des allseitig flächenzentrierten kubischen Gitters in der
orthonormierten Basis {0;e1 ‚ e; , c3}.

Stelle die Basis des zugehörigen reziproken Gitters auf!



7. Darstellungen

7.1. Begrifl", Beispiele

7.1.1. Eine Darstellung der Drehsymmetriegruppe D2 des Allen-Moleküls

Wir sehen uns nochmals Beispiel 4.1 (4.2.2.1.) zur Drehung um die Euler-
schen Winkel an: Wir hatten dort festgestellt, daß die Drehsymmetriegruppe
D2 : [E, C2, Cg, Q] (E: Drehung um 0°) isomorph ist zur Matrizengruppe

3 = [E, D, D’‚D"] (E: Einheitsmatrix). Dem liegt die Überlegung zugrunde‚daßdie
Drehungen E, C2, C’2, Cg’ bez. der Basis {O; 9,} des E3 durch die Transformationen
x’ = E~ x, x’ = D < x, x’ z D'- x, x’ = D" - x, also durch die Matrizen E, D, D’,
D" „dargestellt“ werden, m. a. W., wir haben eine eineindeutige Abbildung
.1’: D2 —> M5, die durch 9?(E) = E, 3i’(C2) = D, 3€(C;) : D’, mag’) = D” definiert
und solcherart relationstreu ist: fi(X- Y): .%(X)-J€(Y) gilt für alle X, YeD2.
Zum Beispiel ist nach Tafel 2.1 C2 - C; r Cg’ (beachte: C2 = Si). Ferner gilt
D - D’ : D”. Also ist %(C2 - Cg) : .%(C2) - J/?(C§).

Als isomorphe Abbildung Q: D2 —> M; heißt ü” eine Matrizendarstellung der
Drehsymmetriegruppe des Allen—M0leküls. Wir sagen auch, D2 wird vermiige .%

durch M; dargestellt. Da M; eine Untergruppe der orthogonalen Gruppe ist, heißt
diese Darstellung auch orthogonal.
Bemerkung." Daß .9? eine eineindeutige Abbildung ist, ist für den Darstellungsbegrifl‘
an sich unerheblich. Es genügt zu fordern: .072 ist eindeutig und relationstreu, d. h., Q
ist ein Homomorphismus von D2 auf M3. Da M; eine Untergruppe der allgemeinen
linearen Gruppe GL(3‚ K) (vgl. 3.2.3.) ist, sprechen wir auch von einem Homomor-
phismus von D2 in GL(3‚ K), also von einer Darstellung von D2 durch eine Unter-
gruppe von GL(3, K). 3 legt dabei die Dimension der Darstellung fest. K ist hier
speziell durch R zu ersetzen.

7.1.2. Begrill der Darstellung

Wir ersetzen nun D2„ wieder durch eine beliebige Gruppe G und M; durch eine
beliebige Matrizengruppe R„ (Vgl. 3.2.3.).

Definition 7.1: Ein Homomorphismus fiz G —> R,. einer Gruppe G aufeine Untergruppe
R„ der allgemeinen linearen Gruppe GL(n‚ K) heißt eine n-dimensionale Matrizendarstel-
lung von G durch R„ 1). Ist Ä speziell ein Isomorphismus von G aufR„‚ so nennen wir die
Darstellung treu. Ist R„ <: U(n), so heißt sie unitär, für K = R teell, für R„> c: O(n)
dann orthogonal. Die dem Gruppenelement A e G durch J? zugeordnete n x n-Matrix
.%(A) E R„ heißt Darstellungsmatrix von A.

Ordnen wir jedem Gruppenelement A e G als Darstellungsmatrix die Einheits-
matrix E der Ordnung n zu, so erhalten wir den trivialen Homomorphismus
‚i730 2G —> [E] von G auf die triviale Untergruppe [E] c GL(n). .520 heißt Einsdarstellung
der Ordnung n von G.

lst G c GL(n, K) selbst eine Matrizengruppe, so ist die identische Abbildung von

G auf sich ein Automorphismus von G (vgl. 3.3.4.f)), also eine treue Darstellung von
G — die identische Darstellung.

') Da das übliche Symbol D für Darstellungen bei den D,‘ und Drehgruppen schon zu oft benutzt
wurde, weichen wir auf 9? bzw. R„ (Repräsentation) aus.

. llclgcr,Symmetriegruppen
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7.1.3. Eine Darstellung der Symmetriegruppe Dgd des Allen-Moleküls

In Beispiel 4.2 (4.2.3.1.) haben wir festgestellt, daß DM zur Matrizengruppe
M3 = [E, D, D’, D”, S, S’, Z", Z”] c GL(n) isomorph ist. Dzd wird also durch
R3 = M3 treu und reell dargestellt. Es handelt sich überdies um eine orthogonale
Darstellung der Dimension drei, da alle Matrizen von M3 orthogonal und von der
Ordnung drei sind. Die Zuordnung 9? der Darstellungsmatrizen .’Z’(X) e M3 zu den
Symmetrieoperationen XE D2, bez. der Basis {0; e‚} von E3 zeigen wir in Tafel 7.1.

Tafel 7.1. Darstellung der Symmetriegruppe Dzd des Allen-Moleküls

X I E I C; I cg I C5’ I S4 I S} I a; u’;

am I E I D I D’ I D" I S I s’ I E’ I

7.2. Reguläre Darstellung

Zu jeder Gruppe G der endlichen Ordnung g finden wir auf folgende Weise eine

g-dimensionale treue Darstellung 37?: G —> 13,: Die Gruppentafel von G wird derart
umgeordnet,_daß das Einselement E nur noch in der Hauptdiagonalen auftritt. Die
dem Element Ale G zugeordnete Darstellungsmatrix .fi‘(A,1) = (§,#(A1)) e fl,
(v,/.1 = 1, ...,g; Ze{1, ...,g}) erhalten wir dann aus der Gruppentafel dadurch,
daß wir in ihr überall A, durch 1 und alle anderen Elemente durch 0 ersetzen. Wir
sagen dann, G wird durch fl, regulär dargestellt.

Beispiel 7.1." Um eine reguläre Darstellung für die Symmetriegruppe D2,, des Allen-
Moleküls zu finden, haben wir in der Tafel 2.1 die zweite mit der vierten Spalte zu
vertauschen.

&?(E)erha1ten wir, indem wir E durch l und sonst alles durch 0 ersetzen; dies ergibt
die Einheitsmatrix der Ordnung g = 8. Als Darstellungsmatrix 9(54) e 158 von
S4 e D“ erhalten wir nach Ersetzung von S4 durch 1 und X + S4 durch 0:

00010000
10000000
01000000

- 00100000
“G0: 00000010

00000001
00000100
00001000

Die Angabe der übrigen sechs Darstellungsmatrizen aus R5 ist damit ausreichend
erklärt.

Daß 9?: G -—> R, eine eineindeutige Abbildung, ß? also eine treue Darstellung ist,
folgt sofort aus der Eigenschaft (1) für Gruppentafeln (3.3.3.a)). Die Relationstreue
folgt aus der Definitionsgleichung

A»1'Ay = ävp(AJ.)’Av

für die Darstellungsmatrizen ZÜAÄ) der regulären Darstellung, wenn man das Produkt
(A„-A‚1)-A„ untersucht ([18], 1.3.3.).
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7.3. Äquivalente Darstellungen

Daß es zu einer Gruppe mehrere Darstellungen gibt, zeigen die beiden Darstel-
lungen ü: D„—> M3 (7.l.3.) und Ä: D„—> fig der Symmetriegruppe DM von

Allen. Die wichtige Aufgabe, alle Darstellungen zu einer Gruppe anzugeben. kann
durch den Äquivalenzbegrifl" vereinfacht werden. Dazu vergegenwärtigen wir uns

noch einmal den Inhalt der Abschnitte 3.6.l./2. Durch folgenden Satz gewinnen wir
aus einer gegebenen Darstellung neue Darstellungen.

Satz 7.1: Ist ü‘: G —> R„ eine Darstellung der Gruppe G und X eine reguläre Matrix S.7.l
(det X # 0), so ist auch fix: G —> R1,: X" - R„ ' Xmit

9l„(A) = X“ -3?(A) - X für beliebige A e G

eine Darstellung von G.

Definition 7.2: Die Darstellungsmatrizen .74(A) und .%’x(A) van A heißen ähnlich
oder wie die Darstellungen Q und 9„ selbst, äquivalent zueinander; Bezeichnung:
?1(A) ~ .7/?X(A) bzw. .9? ~ fix.
Beweis des Satzes 7.1: (a) Nach 3.6.2., Bemerkung 3), ist Rf, ein isomorphes Bild
der Gruppe R„ und als solches selbst eine Gruppe. (b) FIX entsteht aus der Hinter-
einanderausführung des Homomorphisms ß: G —> R„ und des Isomorphismus
R„ —> R1„ ist also ein Homomorphismus von G auf R1,. I

Den Ausführungen in 3.6.l.b) bzw. 3.6.2., Bemerkung l), gemäß, zerfällt nun die
Gesamtheit aller Darstellungen ü’ von G in Äquivalenzklassen. Gleiches gilt für die
einem Element zugeordneten Darstellungsmatrizen Z(A). Mit einer Darstellung
ä von G kennen wir die ganze Klasse (ü) äquivalenter Darstellungen und mit
.@(A) die ganze Klasse (?2’(A)) = (/Y" ‘.‘%?(A) - X) der zu A gehörigen äquivalenten
Darstellungsmatrizen. Es genügt also, ein vollständiges System inäquivalenter Dar-
stellungen zu kennen. Für eine endliche Gruppe kann man sich dabei auf uniläre Dar-
stellungen beschränken, da jede Klasse wenigstens eine solche Darstellung enthält
([10], § 15).

Erfolgt die Überführung R„ —+ R1, = X"' -R„ ' X der Darstellungsgruppe R„
von G auf eine dazu äquivalente Darstellungsgruppe R1, durch eine unitäre Transfor-
mationsmatrix X, so sprechen wir von einer unitären Tramformatiorz.

7.4. Irreduzible Darstellungen

Die Suche nach den Darstellungen einer Gruppe kann auf solche von irreduzibler
Art beschränkt werden. Dazu sei zuerst bemerkt, daß zwei Matrizen von derselben
„Blockdiagonalform“

P10 ...0 _Q,0 ...0_
0P2...0 0Q2...0

P= : *. z i Q= : '. :

0 0 .P„‚_ _o o ...Q„‚_
(Ordnung P, = Ordnung Q„; für jedes v = 1,2, ...,m kann diese Ordnung eine
andere sein) so miteinander multipliziert werden können, als wären die quadratischen
Blockmatrizen P„,Q„ Zahlen: P- Q = (P,-Q,,) ist eine Matrix von der gleichen
Blockdiagonalform wie P und Q. In dieser Diagonalform schreiben wir für P und Q
symbolisch: P = P169 P2 (+3 (9 P„„ Q = Q1® Q2 ® (+3 Q‚„. Man nennt P
7*

D. 7.2
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bzw. Q auch direkte Summe von P1, ..., P„‚ bzw. Q1, ..., Q„‚. Damit ist P r Q
= P1 A Q1 (43 P2 - Q1 e ® P„‚ - Q,„. Wegen dieser Multiplikationsvorschrift kön-
nen wir sagen: Ist M‚1 eine Gruppe aus Matrizen P, Q, ..., die alle die gleiche Block-
diagrammform haben, so sind auch M} [P1, Q1, ...], M3 = [P2, Q3, ...],
..‚ Mg" = [P,,,, Q„„ ...] Matrizengruppen.

Definition 7.3: Eine Darstellung Q: G —> R„ der Gruppe G heißt reduzibel‘), wenn in
einer ihrer äquivalenten Darstellungen QX: G —» X‘l ~ R‚1 ~ X die Darstellungsmatrix
Q,,(A) = X‘l -Q(A)-X für alle AeG in dieselbe Blockdiaganalform Q,,(A)
= Q§(A) 6-) Q§(A) (B E) Q}(A) zerlegt werden kann. Gibt es keine Transformations-
matrix X, die diese Zerlegung ermöglicht, so heißt Q irreduzibel.

Aus dieser Definition ergibt sich in Verbindung mit der obigen Bemerkung über
die Gruppen M: die

Folgerung 7.1: Ist die Darstellung Q der Gruppe G vermäge der Transformations-
matrix X reduzibel, so sind Q,1{,Q},, ...,Q’; auch Darstellungen — sogenannte Teil-
darstellungen von G.

Das Aufsuchen solcher Teildarstellungen heißt Reduktion, die fortgesetzte Reduk-
tion sich ergebender Teildarstellungen bis zur lrreduzibilität das Ausreduzieren der
Darstellung Q. Sich ergebende irreduzible (Teil-)Darstellungen von G heißen ir-
reduzible Bestandteile von Q. Bis auf die Reihenfolge und Älquioalenz dieser Bestand-
teile liefert das Ausreduzieren ein eindeutiges Ergebnis. Bei abelschen Gruppen stößt
man auf eindimensionale irreduzible Darstellungen, und diese sind stets unitär.

Da wir für das Ausreduzieren schon in Besitz einer Darstellung sein müssen, emp-
fiehlt es sich, bei einer endlichen Gruppe G von deren regulärer Darstellung aus—

zugehen. Diese ist von genügend großer Dimension und von solcher Beschaffenheit,

so daß, wie gezeigt werden kann, alle irreduziblen Darstellungen von G aus Q
mindestens einmal gewonnen werden können — sogar bei Einschränkung auf unitäre
Transformationen.

Eine der wichtigsten Aussagen der Darstellungstheorie beinhaltet der folgende
Satz, dessen Beweis z. B. in [l8], 1.3.4., zu finden ist.

Satz 7.2:'Die Anzahl der inäquivalenten irreduziblen Darstellungen einer (endlichen)
Gruppe G ist gleich der Anzahl der Klassen konjugierter Elemente von G.

Beispiel 7.2: Wir betrachten die Symmetriegruppe D211. In 3.6.l.b), Beispiel 3.20,
ist ihre Zerlegung in fünf Klassen konjugierter Symmetricoperationen angegeben.
D211 muß also fünf inäquivalente irreduzible Darstellungen besitzen. Die in 7.1.3.
angegebene Darstellung Q von D211 ist offensichtlich in zwei Teildarstellungen .32’;

und P3151 (Transformationsmatrix: X z E) reduzibel. Sehen wir uns die acht Dar-
stellungsmatrizen E, D, D’, D”, S, S’,Z",E” in 4.2.2.1. und 4.2.3.1. an, so stellen
wir fest, daß sie alle die gleiche Blockdiagonalform haben. Die Teilmatrizen zweiter
Ordnung in den linken oberen Ecken bilden eine zweidimensionale Teildarstellung
r/2;, diejenigen der Ordnung eins in den rechten unteren Ecken bilden eine Teil-
darstellung Qf. der Dimension eins‘:

1) für m = 2 vollreduzibel oder zerfällbar



7.5 . Charaktere 89

Tafel 7.2. Zwei irreduzible Darstellungen der Symmetriegruppe Dzd

X E C; C; cg’ S4 S2 a; 0;’

11200 [1] [1] [-1] [-1] [-1] [-1] [1] [1]

1 0 —l 0 l 0 —1 0 0 —l 0 l 0 —l 0 l

/2:00 im] i 0 —li [0 -1] i 01i [1 Oi [-1 Oi [~1 Oi [I 0]

‚n; und .922 sind irreduzibel. Wir stellen fest, daß die Dimension 3 der Darstellung
3? von D“ nicht hoch genug ist, um alle irreduziblen Darstellungen zu erhalten. Die
reguläre Darstellung von D2,, hat vergleichsweise die Dimension 8.

7.5. Charaktere

Die Transformationsmatrizen zur Reduktion von Darstellungen zu finden ist oft-
mals schwierig. Man kann aber zeigen, daß Darstellungen durch die Spuren ihrer
Darstellungsmatrizen bis auf Aquivalenz festgelegt sind. Deshalb kommt es häu-
fig nicht so sehr auf die Darstellungsmatrizen selbst, sondern nur auf deren Spuren
an, und wir können uns darum bemühen, eine Tafel von Spuren aller irreduziblen
Darstellungen einer Gruppe aufzustellen. Wir werden uns die Verfahrensweise am
Beispiel der Symmetriegruppe Dzd von Allen klarmachen.

7.5.1. Charaktereiner Darstellung, Eigenschaften

Ordnen wir jedem Element A einer Gruppe G eine eindeutig bestimmte reelle oder
komplexe Zahl y = q:(A) zu, so nennen wir q; (genauer (p: G —> K) eine Funktion
auf G.

Definition 7.4: Als Charakter x der Darstellung 3€: G —> R„ der Gruppe G bezeichnen D.7.4
wir die Funktion y = ;g(A) = Sp @(A) auf G. Sp fl(A) bedeutet die Spur der Dar-
stellungsmatrix von A e G, d. h. die Summe der Zahlen der Hauptdiagonale von Z41’(A).

Wir stellen fest:
(a) Äquivalente Darstellungen haben gleiche Charaktere;

denn SP 9?x(A) = SP (X‘1 '9/7(A) ' X) = Xv(X“—),w (=%(A)),.» (XL, = XV 6/A1/(‘fl(A));w

= Z (fl(A)),,,, = Sp .3i‘(A) (am: Kroneclxfsymbol, (X),a: Element d2} v-ten Zeile

und zx-ten Spalte der Matrix X).
(b) Auf konjugierten Elementen A, B der Gruppe G hat der Charakter übereinstim-

mende Werte;
denn es gilt ;g(B) =;g(Y“~A- Y) = Sp (.92(Y" -A~ Y)) z Sp (5?(Y“)~5£(A)-3?(Y));
ferner ist 9i’(Y“) = (9?(Y))‘1, und nach dem Schluß von (a) folgt dann

2(3) = MA).
Die Funktion y = ;g(A) ist demnach auf jeder Klasse konjugierter Elemente von G
konstant und wechselt ihre Funktionswerte höchstens von Klasse zu Klasse. x heißt
deshalb Klarsenfunktion.

In einer Gruppe G der Ordnung g seien (A,), ..., (Am) die Klassen konjugierter
Elemente, a1, ..., a„‚ deren Ordnungen, km, die zugehörigen Klassenmultiplikations-
koeffizienten, A„e G. Wir betrachten nun die h-te irreduzible Darstellung der Di-
mension m, vom Charakter x". Auf der Klasse (A„) habe z" den Funktionswert
z"(A„) = x1‘. Nach einem Resultat von Burnside‘) ([18], 1.3.4., (1.13) und (1.14))

‘) William Burnside (1852-1927), Mathematiker, wirkte in Cambridge, Greenwich.
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gelten zwischen diesen Größen die folgenden Zusammenhänge:
m

(x1) m, akawavx’; = 411mm,

(x2) E‘; a,,;g,’};f’,‘ = go,” (7: zu 1 konjugiert komplex).

Wir benutzen jetzt das angekündigte Beispiel, um daran die Bestimmung der Charak-
tere der irreduziblen Darstellungen zu demonstrieren.

7.5.2. Die Charaktertafel der Symmetriegruppe D“ des Allen-Moleküls

Wir betrachten in 3.6.1. die Beispiele 3.18, 3.19, 3.20, 3.23, 3.24 zur Zerlegung

G = Dzu = (E) U (S?) U (S4) U (C2) V (US)

‘r: (A1)V(A2)V (A3)V(A4)V(A5)
von B3„ in ihre konjugierten Klassen (A„) (v = 1, 2, 3, 4, 5; m z 5) der Ordnungen
a, = l, a, z 1,113 = 2, a4 = 2, as z 2 (vgl. Beispiel 3.20). Aus der Kenntnis der
zugehörigen Klassenmultiplikationskoeffizienten und der Ordnungen der Klassen
heraus versuchen wir mittels der Formel (x1), die Funktionswerte 1',‘ in Abhängigkeit
von der Dimension m, der h—ten irreduziblen Darstellung zu bestimmen: Nach dem
Vorbild von Beispiel 3.24 können wir alle Koeffizienten km, bestimmen. Sie sind
in der Tabelle 7.3 angeführt. Wir finden dort z. B. zu i. = 4, /4 = 4, v = 2 den Wert
k“; = 2 usw. Alle nicht aufgeführten k„„_„-Werte sind gleich null. Wir folgen nun

der Verfahrensweise von Cracknell ([4] 2.8.):

1° Es ist k,“ =1, kn, = 0 für v =k l. Aus (34,) folgt daher für}. z v =1:
m’: = 061)”, also z? = m.

2° km, =1, kn’, 2 Ofürv +1.1-‘iirl =‚u = 2folgt aus (1,): n,,;(',' = n,,n,, = (x’;)2,

Z2 = inlv _

3° k33,1 = k3“ = 2, kn, z 0 fürf v f‘ 1,2. (x1) liefert dann n,,(21’{ + 2x2)
. + " = ‚

= 220/5)2, also ist z’; = *8" =

o - - + f" h = ‚4 Mit k44_1 = k“; = 2 erhalten WlI‘ x’; = -ä" z Tn,“

5° Mit Hilfe von km5 = 2, k34_, = 0 für v =l= 5 folgt aus (x1): z’; = xfixi/n,,.

Tafel7.3. Werte der Klassenmultiplikationskoeffizienten der Symmetrie-
gruppeDza

‚u l 2 5

Ä v v

1 2 5 %1

2 2 .1 1 1 5

3 3 3 1 4 ;2

4 42 1 4 1

5 I 5 1 ..‘.‘....:2 2 I

2 e32
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Stellen wir alle möglichen Vorzeichenkonstellationen zusammen, so kommen wir
auf fünf Varianten:

Tafel 7.4. Charaktere der fünf irreduziblen Darstellungen von D111,

ausgedrückt durch die Dimensionen

(A1) (A2) (A3) (A4) (As)

d1 d1 d1 d1 d1
dz d2 dz -112 -112
d3 d3 -113 d3 -11,
d4 d4 ‘d4 "d4 dd
d5 ~45 o o o

Die Funktionswerte z’; sind alle reell. (x1) lautet daher i a,x‘x’,‘ = 861,, (g = 8).
5 V-1

Für Ä : ‚u ist 61„ = l und also Z a,(xf)Z : 8. Daraus folgt d1 = dz = d3 = d4 = 1

Il“l
und d5 = 2. Die Charaktertafel der Symmetriegruppe D211 des Allen-Moleküls lautet
also für die fünf irreduziblen Darstellungen Q1, Q5:

Tafel 7.5. Charaktertafel der Symmetriegruppe D211 des Allen-Moleküls

(E) (S3) (S4) (C2) (05)

zu, 1 1 1 1 1

.222 1 1 1 —1 — 1

5%’, 1 1 -1 1 -1
524 1 1 — 1 —1 1

925 2 —2 0 0 0

Beispiel 7.3: Im Beispiel 7.2 wurden durch Ausreduzieren der Darstellung Q von
D2,; zwei irreduzible Darstellungen 92; (Dimension l) und 92155(Dimension 2) gefunden.
Wir überprüfen nun durch Spurbildung in den Darstellungsmatrizen von Tafel 7.2,
daß die in obiger Charaktertafel für J94 und .995 ausgerechneten Charaktere gerade
jene von ß; und 3€; sind.

7.6. Zur Darstellung direkter Produkte

Definition 7.5: Von drei beliebigen Darstellungen .@1,.@2, $3 einer Gruppe G heißt D.7.5
Q3 das (Kroneckersche) Produkt aus 3531 und Q2, und wir schreiben dann Q3 = Q 1 x 9?, ‚

wenn für die zugehörigen Charaktere x1, x2 , x3 gilt

'/.3(A) = z1(A)zz(A)‚ A e G-

Auf die Frage nach der Existenz und Eindeutigkeit bzw. Konstruierbarkeit des
Produktes 5€; aus gegebenen Darstellungen Q1 ‚ ü’; wollen wir hier nicht eingehen. Es
interessieren uns nur die folgenden beiden Eigenschaften des Produktes:

lst die Gruppe G das direkte Produkt G = U1 x U; aus zwei ihrer Untergruppen
U1 , U1 ‚ so ruft jede Darstellung von U, dadurch eine Darstellung 931 von G hervor,
daß 9€, auf U1 mit der vorgegebenen und auf U2 mit der Einsdatstellung zusammen-
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fällt. Dabei muß .9?1(U1 ' U2) = 9Z1(U,) ~ 5t’,(U2) = %,(U1) sein. Analog läßt sich
für G eine Darstellung Q2 erklären.

Satz 7.3: Das Produkt einer auf U, irreduziblen Darstellung .9, mit einer auf U2
irreduziblen Darstellung Q2 ist eine irreduzible Darstellung von G = U, >< U2.

Für spätere Anwendungen nehmen wir noch zur Kenntnis ([10], § 21):

Satz 7.4: Das Produkt ü, x ß; aus äquivalenten irreduziblen Darstellungen J91 ~ ü’;
enthält die Einsdarstellung genau einmal; sind Z1 und .492 inäquivalent, so enthält das
Produkt die Einsdarstellung jedoch nicht.

7.7. Die Basis einer Darstellung

Die. von uns bisher verwendeten Matrixdarstellungen der Gruppen lassen sich auch
so interpretieren, daß in Form einer linearen Transformation die n-dimensionale Dar-
stellungsmatrix fl(A) eines bestimmten Gruppenelementes A eine Wirkung von A auf
einen Spaltenvektor <1) aus n Funktionen f,,(x, y, z), k = 1, ..., n, der drei Ortske-
ordinaten x, y, z erklärt wird:

Definition 7.6: Der Spaltenvekior CD aus den n Funktionen j"„(x, y, z) heißt eine Basis
der n-dimensionalen Matrixdarstellung fl der Gruppe G, wenn die Wirkung der einzel-
nen Gruppenelemente A e G auf Q5 durch die Beziehung

Aas = (Afi) mit Afi = §9?,1,‘(A) f,
beschrieben wird.

Bemerkung: Symbolisch schreiben wir dafür kurz

A45 = 9?(A)<I>.

Aus der Definition wird deutlich, daß es zu einer Darstellung beliebig viele verschie-
dene Basen gibt. Für viele Anwendungen ist es ausreichend, die einzelnen Funktionen
f„(x, y, z) in eine Taylor-Reihe nach den Koordinaten zu entwickeln und nach Basis-
funktionen unter den Polynomen n-ter Ordnung in den Ortskoordinaten zu suchen.

Die ersten Glieder der Taylor-Reihe haben die Gestalt

f(x‚ y, z) = flxo, yo, 20) + S; (x0. yo, 20) (x — x0)

+%(x0>y0vz0) Ü’ ‘,Vo) +%§(x0ay0sz0) (Z ’ Z0) ‘l’

Basisfunktionen nullter Ordnung sind Konstante und gehören nur zur Einsdarstel-
lung‚ solche erster Ordnung sind Linearkombinationen in den Ortskoordinaten.

Als Demonstrationsbeispiel bieten sich dreidimensionale Darstellungen an, bei
denen der Ortsvektor als Basis aus Funktionen erster Ordnung angesehen werden
kann.

Wir betrachten wieder die Symmetriegruppe D“ von Allen. Wir wählen die Refe-
renzachse des Moleküls zur z-Achse eines Koordinatensystems (vgl. Bild 2.2a)).
Die acht Gruppenelemente haben folgende Wirkung auf den Ortsvektor, die wir
zunächst symbolisch schreiben

A(x‚ y, z) = (.‚ .‚ .)‚
d. h.‚ aus dem Vektor (x, y, z) entsteht nach Anwendung des Gruppenelementes A
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der Vektor (., ., .). Bezeichnen wir mit 7 die Koordinate —x, so ist

E06,)’, z) = (x, y, z), Cz(x,y, z) = (5,9, z),
C3(x, y, z) = (x, i, z), Cé’(x, y, z) = (i, y, z),
5406,)’, z) = (y, >15), S306, y, z) = (J7, X, z),
Ué(x,y, z) = (y, x, z), 0210€, y, z) = (J7, f, z)-

Die Wirkung der Gruppenelemente auf den Ortsvektor können wir dann durch eine
dreidimensionale Matrix beschreiben, z. B.:

siiHeiä illäklil’
Mit dem Spaltenvektor 1P lautet diese Gleichung

S495 = 3?(S4) (D.

Die so gewonnenen acht Matrizen 9?(A) bilden eine dreidimensionale Matrixdar—
stellung der Gruppe Dzd mit den Komponenten des Ortsvektors als Basisfunktion
erster Ordnung. Aus Beispiel 7.3 wissen wir, daß diese Darstellung reduzibel sein
muß, und aus der Charaktertafel (Tafel 7.5) lesen wir ab, daß sie die Summe aus
den beiden Darstellungen 334 und 925 ist.

Die Transformationseigenschaften beliebiger Funktionen der Ortskoordinaten
finden wir, indem wir die Transformation des Ortsvektors unter dem Einfluß der
Gruppenelemente in die Funktion eintragen, symbolisch geschrieben:

Af(x, y, z) = f(9304) (x, y, z))-

Bei beliebigen Funktionen ist es im allgemeinen schwierig, zu einer gegebenen Dar-
stellung eine Basis zu finden, denn die transformierte Funktion darf sich nur um
einen konstanten Faktor von der Ausgangsfunktion unterscheiden, d. h.

f(WA) (x, y, z)) = kf(x, y, z).

Dagegen ist dies‘ für Polynome niedriger Ordnungen als Basisfunktion bedeutend
leichter.

Die Darstellungen einer Gruppe werden auf diese Weise mit den zugehörigen
Basisfunktionen der niedrigsten Ordnung in den Ortskoordinaten, die das Transfor-
mationsverhalten noch richtig beschreiben, identifiziert und gewinnen so eine kon-
krete physikalische Bedeutung.

Die in der Physik üblichen Bezeichnungen M1, 412,33, und 33’, für eindimensionale,
6" für zweidimensionale und f, und .92 für dreidimensionale Darstellungen kenn-
zeichnen ein bestimmtes Transformationsverhalten der Basisfunktionen gegenüber
den Elementen der Gruppe und werden auch hier verwendet. Zum Beispiel lauten
demnach die Darstellungen fil, ..., 9135 der Symmetriegruppe D2,, von Allen in der
Charaktertafel: 42/1, .212, 37, , 922, d”.

A ufgabe/z

7.1. Auf der Grundlage der Lösungen der Aufgaben 3.1 und 4.2 ist für die Symmetriegruppe Ch des

gleichseitigen Dreiecks A C E‘ (des NH3-Moleküls) eine Matrizendarstellung anzugeben.
7.2. Wieviele inäquivalente irreduzible Darstellungen besitzt die Symmetriegruppe C3,, (Aufgabe 7.1)?
7.3. Stelle die Charaktertafel der Symmetriegruppe C3„ des NHJ-Moleküls auf. Benutze die Lösung
der Aufgabe 3.7.
Die Lösung der Aufgaben 7.1. bis 7.3. ist auch für das Quadrat EI C E’, d. h. für das SFSCI-Molekül
zu empfehlen.

er
-1

-
er



8. Anwendung der Gruppentheorie in der Quantenmechanik

Dem Charakter dieses Buches entsprechend können wir keine Einführung in den
mathematischen Apparat der Quantenmechanik geben. Wir verweisen zum Studium
auf die Lehrbücher der Quantenmechanik [9] und stützen uns auf Band 13 „Lineare
Algebra“ dieser Reihe.

8.1. Einführung qnantenmechanischer Begriffe

Für unsere Betrachtungen ist es ausreichend, sich auf die Schrödinger-Gleichung
und deren Lösungen zu beschränken.

Ein stationärer Zustand eines physikalischen Systems aus N Teilchen wird durch
eine Funktion aller Raumkoordinaten der Teilchen

f(xi‚y1‚Z1‚---‚Xzva‚VN‚zN)

beschrieben. Diese Funktion ist Lösung der stationären Schrödinger-Gleichung‘),
d. h. der partiellen Differentialgleichung zweiter Ordnung,

Hf=Efi i."

unter Berücksichtigung gewisser physikalisch begründeter Randbedingungen. In
dieser Gleichung ist die Größe H ein Differentialoperator und E (nicht zu verwech-
seln mit dem Einselement E) die Gesamtenergie des Systems im Zustand f. Der
Differentialoperator H heißt Hamiltonoperatorz) und wird aus der Hamilton-
funktion der klassischen Mechanik durch ein Quantisierungsverfahren gewonnen.
Für ein Teilchen der Masse m im äußeren Feld V(x) hat bei eindimensionaler Be-
wegung die Hamiltonfunktion die Gestalt

Ho», x) = 217122 + V(x).

mit dem Impuls p und der potentiellen Energie V(x).
Bei dem Quantisierungsverfahren wird der Impuls p durch einen Differential-

operator ersetzt, und die Ortskoordinate x bleibt multiplikativ:

Der Impuls p wird ersetzt durch den Operator? ad; .

der Ort x wird ersetzt durch den Operator x;
h ist dabei das Plancksche Wirkungsquantum?)

Aus der Hamiltonfunktion entsteht im Ergebnis der Ersetzung der Hamilton-
operator:

1 „ . h’ dzH=—p2+ V(x) gehtubermI~l= -53-?2m + V(x).

‘) Erwin Schrödinger (18874961), österreichischer Physiker.
z) Sir William Rowan Hamilton (1805-1865), irischer Mathematiker und Physiker.
3) Max Karl Ernst Ludwig Planck (1858-1947), deutscher Physiker.
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Die eindimensionale Schrödinger-Gleichung lautet ‚nach Umformung

dz’ + 2'" (E V<x>>/*0dxz h’ E '

Ist die Bewegung des Teilchens auf das lntervall [a, b] der reellen Achse beschränkt
(eindimensionale Bewegung), so muß gefordert werden, daß die Funktion f und
ihre erste Ableitung an den Randpunkten des Intervalls verschwindet.

Damit wird die Schrödinger-Gleichung zu einer Eigenwertgleichung, d. h. zu einer
Gleichung, die nur für bestimmte Werte der Gesamtenergie E Lösungen besitzt.
Bei mehrdimensionaler Bewegung und N Teilchen wird das Verfahren analog er-
weitert. Die Schrödinger-Gleichung ist dann eine partielle Differentialgleichung
zweiter Ordnung.

Definition 8.1: Ein Zustand eines physikalischen Systems heißt entartet, wenn zu einem
Energie-Eigenwert mehrere linear unabhängige Zustandsfunktionen oder Eigenvektoren
gehören. Die Dimension des von den verschiedenen Eigenvektoren aufgespannten Unter-
raumes des Läsungsraumes der Schrödinger-Gleichung ist gleich dem Entartungsgrad
des Energieeigemvertes.

Der Entartungsgrad‘ der Energieeigenwerte ist Ausdruck der Symmetrie des
physikalischen Systems. Wird das physikalische System durch eine äußere Störung
anderer Symmetrie beeinfiußt, kommt es im allgemeinen zu einer teilweisen Auf-
hebung der Entartung, d. h. zu einer Aufspaltung der Energieniveaus (s. 8.2.1.).

8.2. Anwendungsbeispiele aus der Quantenmechanik

8. 2.]. Aufhebung der Entartung

Gehen wir von einem physikalischen System bestimmter Symmetrie aus, so ist
die Schrödinger-Gleichung dieses Systems gegenüber allen Symmetrieoperationen der
Symmetriegruppe des Systems invariant, da sich die Symmetrie des Systems in der
Symmetrie der potentiellen Energie äußert.

Die Eigenvektoren zu einem Energieeigenwert bleiben nach Anwendung der
Gruppenelemente der Symmetriegruppe des Systems auf sie Eigenvektoren zum glei-
chen Energieeigenwert. Mit anderen Worten, die Eigenvektoren zu ein und demselben
Energieeigenwert werden bei den Symmetrieoperationen ineinander transformiert.
Die Eigenvektoren bestimmen folglich eine Darstellung der Gruppe, die im allgemei-
nen irreduzibel ist. Jedem Energieeigenwert des Systems entspricht eine irreduzible
Darstellung der Symmetriegruppe. Die Dimension der Darstellung bestimmt den
Entartungsgrad des gegebenen Niveaus.

Wird das physikalische System einer äußeren Störung mit einer bestimmten Sym-
metrie unterworfen, so kommt es zu keiner Aufspaltung der Energieeigenwerte,
wenn die Symmetrie der Störung gleich der Symmetrie des Systems oder höher ist,
d. h., wenn die Symmetriegruppe des Systems eine Untergruppe der Symmetriegruppe
der Störung ist. Ist die Symmetriegruppe der Störung eine echte Untergruppe der
Symmetriegruppe des Systems, d. h. die Symmetrie der Störung ist niedriger als die
Symmetrie des Systems, so hat der neue Gesamt-Hamilton-Operator, gebildet aus
dem ungestörtenHamilton-Operator und demStöroperatondie Symmetriederstörung.
Dann bestimmen die Eigenvektoren zur irreduziblen Darstellung der Symmetrie-
gruppe des ungestörten Hamilton-Operators auch eine Darstellung zum neuen

Hamilton-Operator. Diese Darstellung kann aber reduzibel sein und so eine Auf-
Spaltung der Niveaus zur Folge haben.

D.8.1
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Beispiel 8.1: Die Symmetriegruppe des ungestörten Hamilton-Operators sei die
Tetraedergruppe Td. Wir betrachten ein dreifach entartetes Niveau mit der Dar-
stellung 572:

Charaktertafel der Darstellung:

E 803 3C; 66d 654

30 -11 -1

Die Störung habe die Symmetrie der Punktgruppe Csv. Sie ist eine Untergruppe
der Tetraadergruppe Td. Die Eigenvektoren des entarteten Energieniveaus liefern eine
Darstellung der Gruppe C3v, wobei die Charaktere dieser Darstellung gleich den
Charakteren der Elemente in der Ausgangsdarstellung der Gruppe sind, d. h.‚ die
Charaktere der Darstellung lauten

E 2c3 30",,

9 3 O l

Diese Darstellung ist reduzibel, wie wir aus der Charaktertafel der Gruppe C3„

E 2C, 3U,

M, 1 I 1

‚x1 l I —l
6’ 2 —l 0

ersehen können. Die oben angegebene Darstellung 9 ist die Summe zweier Dar-
stellungen der Gruppe C3„:

.02 = M1 + <5”.

Das ursprünglich dreifach entartete Niveau wird unter dem Einfluß der Störung
in ein einfach und ein zweifach entartetes Niveau aufgespaltet.

Hat die Störung die Symmetrie der Punktgruppe CM so haben ihre Elemente in der
Ausgangsdarstellung die Charaktere

E c, av o",

9' 3 —1 1 1

Die Charaktere der Darstellungen der Punktgruppe C“ haben die Werte

E C, 0„ a;

„w, 1 1 1 1

1992 1 —1 —1 1

„o1, 1 1 —1 -1
„e, 1 —1 1 -1

Die Ausgangsdarstellung ist wieder reduzibel und erlaubt die Zerlegung

.@’=„d1 +53, +912.

Das Ausgangsniveau spaltet sich unter dieser Störung in drei verschiedene Niveaus
auf.
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Symbolisch können wir die Niveauaufspaltung folgendermaßen veranschaulichen

(Bild 8.1).

Ü 53v 52v

Bild 8.1

Die Gruppentheorie kann dabei nur etwas über die Art der Aufspaltung, nicht aber
über die Größe der Aufspaltung und damit die Lage der neuen Energieniveaus aus-

sagen. Die Berechnung der Größe der Niveauaufspaltung ist Sache der quanten-
mechanischen Störungsrechnung. Eine weitere Anwendung der Gruppentheorie
soll die Aufspaltung der Energieniveaus der Elektronen eines Atoms beim Einbringen
in ein starkes Feld mit Kristallsymmetrie bringen.

8.2.2. Aufspaltung der Elektronenterme im Kristallfeld

Die quantcnmechanische Behandlung der Elektronenzustände in einem Atom
zeigt, daß die Eigenzustände der Elektronen und die Energieeigenwerte durch drei
Quantenzahlen, die Hauptquantenzahl n, die Drehimpulsquantenzahl l und die
magnetische Quantenzahl m charakterisiert werden können: f„_„„„ E„„„.

Zu jeder Hauptquantenzahl n sind die möglichen Werte der Drehimpulsquanten-
zahl l auf die ganzzahligen Werte zwischen null und n — 1 eingeschränkt:
0 g I g n — l. Die magnetische Quantenzahl m durchläuft die Werte zwischen -1
und +1: —l g m g l. Jeder Zustand zur festen Quantenzahl I ist (2l + I)-fach
entartet, da die Energie bei fehlendem äußeren Magnetfeld nicht von der Quanten-
zahl m abhängt. Darüber hinaus ist die Energie auch bezüglich der Quantenzahl I
entartet, so daß die Gesamtentartung des Energieniveaus mit der Hauptquantenzahl n

"§(21+ 1) = n’
I=O

beträgt. Für die Bezeichnung der Elektronenzustände im Atom ist es üblich, die
Hauptquantenzahl n und die Drehimpulsquantenzahl als kleinen Buchstaben einzu-
führen:

für die Drehimpulsquantenzahll I 0 l 2 3 4 5

den Buchstaben l s p d f g h

so daß zum Beispiel das Symbol 2s bedeutet: n = 2 und l = 0. Die Untersuchung
der Aufhebung der Entartung ist ein komplizierter Vorgang. Bei einem Vielelektro-
nenatom treten zahlreiche Wechselwirkungen auf. Die Bahndrehimpulse und die
Elektronenspins sind gekoppelt und führen zu komplizierten Abhängigkeiten in den
Energieniveaus. Je nach der Stärke des Kristallfeldes bezüglich der inneratomaren
Wechselwirkungen kommt es zu unterschiedlichen Aufspaltungen oder Aufhebungen
der Entartung.

Beispiel 8.2: Zur Demonstration betrachten wir die Aufspaltung eines d-Niveaus
(l = 2) an einem Wasserstoffatom in einem starken Kristallfeld mit der Symmetrie
der Punktgruppe D3. Dabei bedeutet der Terminus „stark“, daß das äußere Feld
alle anderen Wechselwirkungen im Wasserstoffatom übersteigt und dem Energie-
niveau seine Symmetrie aufzwingt.
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Die Punktgruppe D, ist durch eine Drehachse dritter Ordnung und drei Drehachsen
zweiter Ordnung charakterisiert. Die Gruppe zerfällt in drei konjugierte Klassen
(vgl. Tafel 5.1). Es ergeben sich deshalb drei irreduzible Darstellungen. Die Dimen-
sion der Darstellungen finden wir aus dem Zusammenhang, daß die Ordnung g
einer Gruppe G sich als Summe von Quadraten ganzer Zahlen schreiben läßt, wobei
die Anzahl der Summanden gleich der Zahl der konjugierten Klassen ist. Die ganzen
Zahlen sind dann die Dimensionen der Darstellungen. Im Fall der Gruppe D3 ist
die Ordnung g : 6, und es müssen drei Summanden vorkommen. Das führt auf die
Zerlegung: l2 + l2 + 22 = 6, d. h., zwei Darstellungen sind eindimensional und eine
zweidimensional. Die Charaktertafel ist von der Form:

E 2C3 3C2

M, 1 1 1

.91 1 1 -1
a) 2 —1 o

Die Drehgruppe, nach der sich die Drehimpulse transformieren, hat zu festem
Drehimpuls l eine (21 + l)-dimensionale Darstellung, wobei der Charakter zur

Drehung um den Winkel (p in dieser Darstellung aus der Formel

sin (I + l) q? _

z'(<P) = figgm (siehe i101)

errechnet wird.
Für die beiden Drehungen C3 und C2 ergeben sich die Charaktere in der fünf-

dimensionalen Darstellung zum Drehimpuls I = 2:

| E 2C3 3C;

gm [5 —1 1

9,0, (s. 8.2.4.). Wie wir sehen, ist diese Darstellung reduzibel und hat nach Analyse
der Charaktertafel der irreduziblen Darstellungen der Gruppe D3 die Gestalt

9.„ = .91, + 2a.

Das fünffach entartete Niveau des Wasserstoffatoms spaltet sich im Kristallfeld in
ein nichtentartetes und zwei Zweifach entartete Niveaus auf.

Dieses Beispiel deutet die Möglichkeiten der Anwendung der Gruppentheorie
an. Ausführlichere Darstellungen zu diesem Gegenstand sind in der entsprechenden
Spezialliteratur zu finden.

Eine weitere Anwendung der Gruppentheorie bildet die Klassifikation der Wahr-
scheinlichkeiten für den Übergang zwischen zwei Zuständen eines physikalischen
Systems, wobei der Übergang unter dem Einfluß einer physikalischen Größe erfolgt.
So wird zum Beispiel der Übergang eines Elektrons von einem Energieniveau zu
einem anderen unter Aussendung oder Aufnahme von Strahlung durch das elektri-
sche Dipolmoment gesteuert.

8.2.3. Auswahlregeln für Matrixelemente

Ein Matrixelement der Gestalt

Mik = jf¥“’Mf£’9’dx dy dz
V
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beschreibt den Übergang des Systems aus dem Zustand mit der Wellenfunktion
f,f”’ in den Zustand mit der Wellenfunktion f,~“"’ oder umgekehrt unter dem Einfluß
der physikalischen Größe M (V ist das Gebiet des E’, in dem sich das physikalische
System befindet). Ist dieses Matrixelement von null verschieden, so ist der Übergang
zwischen den beiden Zuständen möglich. Aussagen über die Möglichkeit von Über-
gängen sind als Auswahlregeln in der Physik bekannt. Die Gruppentheorie kann
zwar keine Aussage über die Größe der Matrixelemente machen, kann aber unter-
scheiden, ob das Matrixelement gleich null wird oder von null verschieden ist. Dieses
Ergebnis ist als Auswahlregel bereits von Nutzen.

Die gruppentheoretische Methode beruht auf folgendem Satz, den wir nur ohne
Beweis angeben.

Satz 8.1: ff" sei eine der Basigfunktionen einer irreduziblen Nicht-Eins-Darstellung
einer Symmetriegruppe eines physikalischen Systems. Dann ist das Integral über den
Ortsraum des physikalischen Systems identisch gleich null:

m” dx dy dz s o.
V

Umgekehrt gilt: Ist f eine zu irgendeiner irreduziblen Darstellung einer Gruppe
gehörige Basisfunktion, so ist das Integral

ffdx dy dz
V

nur dann von null Verschieden, wenn diese Darstellung in sich die Eins-Darstellung
enthält.

Nun bilden wir mit dem Operator R einer skalaren physikalischen Größe das
Matrixelement„

Rik : Rf?) dx d)’ dz»
V

wobei die Indizes i, k die Energieniveaus unterscheiden, zu denen die Darstellungen
9"’ und 9"" gehören. Da der Operator R gegenüber Symmetrieoperationen invariant
ist, liefern die Produkte die Darstellung

Q0) X 9(11).

Das direkte Produkt zweier verschiedener irreduzibler Darstellungen enthält keine
Eins-Darstellung. Dagegen enthält das direkte Produkt einer irreduziblen Dar-
stellung mit sich selbst immer die Eins-Darstellung. Das Matrixelement R‚.„ ist folg-
lich ungleich null, also ist der Übergang erlaubt, wenn der Übergang zwischen Zu-
ständen zum gleichen (entarteten) Energieniveau erfolgt.

S sei ein Vektor mit den Komponenten SX, Sy’ S„ die bei den Symmetrieopera-
tionen in Linearkombinationen voneinander transformiert werden und eine Dar-
stellung 9s der Symmetriegruppe bilden. Die Matrixelemente

5„ : |'7sT>sf;fi> dx dy dz
V

sind von null verschieden, falls die Produktdarstellung
9(1) X gs X 90:)

die Eins-Darstellung enthält. Man zerlegt zweckmäßig 9"’ >< 9s in irreduzible
Darstellungen und vergleicht mit der Darstellung 9"". Enthält die Produktdarstellung

S.8.l
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9“’ >< 9s die Darstellung 2"", so ist das Matrixelement S„, von null verschieden,
und der damit Verbundene Übergang ist erlaubt, .

Beispiel 8.3: Wir betrachten ein physikalisches System mit der Symmetrie der
Oktaedergruppe O und fragen nach erlaubten Übergängen aus einem Zustand des
Systems in einen anderen, wenn der Übergang durch einen polaren Vektor gesteuert
wird. Ein polarer Vektor ändert bei Spiegelung am Nullpunkt seine Orientierung wie
eine Strecke. Polare Vektoren sind z. B. die Geschwindigkeit, die Beschleunigung,
die Kraft, der Radiusvektor und die Drehgeschwindigkeit. In der Oktaedergruppe O
transformieren sich polare Vektoren wie die irreduzible Darstellung .9", . Wir können
dies nachweisen, indem wir die einzelnen Gruppenelemente durch dreidimensionale
Matrizen darstellen und damit den Radiusvektor transformieren. Die Spuren dieser
Matrizen liefern die Charaktere der dreidimensionalen Darstellung F1 . Die Charak-
tertafel der irreduziblen Darstellungen der Oktaedergruppe 0 hat die folgende
Gestalt:

| E 8C; 3C, 6C; 6C‘,

d, 1 1 l l l
d; 1 l l —l -1
é" 2 -1 2

.971 3 0 —l l —l
9'2 3 0 —1 —l l

Nun bilden wir die Produktdarstellungen aus der Darstellung fl mit allen Dar-
stellungen der Oktaedergruppe O. Wir gewinnen die Zerlegungen dieser Produkt-
darstellungen nach irreduziblen Darstellungen der Oktaedergruppe, indem wir die
Charaktere mit denen der irreduziblen Darstellungen vergleichen. Zum Beispiel
gewinnen wir die Charaktere des Produktes 9'1 >< ß", als Produkt der Charaktere
der Darstellungen 371 und 92:

E 8C3 3c, 6C2 6C4

.9", 3 0 -1 -1 1

.92 3 o —1 l —1

z X9‘; 9 o l -1 -1

Vergleichen wir diese Charaktere mit der Charaktertafel der Oktaedergruppe, so

entsteht die Zerlegung

5nxf2=d2+ä+fi,+9,.
Alle Produkte der Darstellung 9', mit den Darstellungen der Oktaedergruppe haben
folgende Zerlegungen in irreduzible Darstellungen:

9',><.s11=9',,
.9”1><.:2/2:372,
.¥'1><é” =.%+?2,
ß‘, xß'2=az/2+cä”+.71+9„
.9‘1><9'1=.<:/,+6"+91+$72.

Die Übergänge sind erlaubt, wenn die Produktdarstellungen die Darstellung des
Endzustandes enthält. Da wir uns für alle möglichen Übergänge in diesem System
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interessieren, durchläuft der Ausgangsstand alle Darstellungen der Oktaedergruppe
O

‚Die Matrixelemente sind für die folgenden Übergänge von null verschieden:

ß, geht1‘iberin,ei1,denn,?, ><,s¥1=.9‘1;
ß"; gehtüberind2‚denn 9'1 x¢z(2=.§“z;
$1,?) gehtfiberiné”, denn9'1xé"=?1+.9];
.;%2,é”,.:'/71,.71 geht überinfl}, denn ß", >< 9', =.;/2+é"+.$’,+.§"2;
m'1,é”,.97,,9'2 gehtüberinßl, denn .9", X .97-'1 =.szI,+r$”+9'1+9'2.

Die Diagonalelemente der Übergangsmatrix sind von null verschieden, wenn die
Darstellung .71 in der symmetrischen Produktdarstellung [9,3] enthalten ist. Dabei
sind die Charaktere in dieser Darstellung aus der Formel

[x2] (A) = %{(x(A))Z + x(A‘)}

zu bilden. Zum Beispiel erhalten wir die Charaktere der Produktdarstellung [ff]
in folgender Weise:

E 8C; 302 6C, 6c.

„an 3 0 — 1 — 1 1

(;g(A))2 9 0 1 1 1

x042) 3 0 3 3 — 1

127i] 6 0 2 0 0

und damit nach Vergleich mit der Charaktertafel der Oktaedergruppe die Zerlegung

{f} =.e/1+é“+.9'2.

Alle so gebildeten Diagonalelemente haben die Form

531mm
=y ‚

1651 = J1 +
['9-}]=fl1+‘Y+=g-2:
L7§]=M,+&+92.

Wie wir sehen, enthält keine dieser Darstellungen die Darstellung 97,, und die
Matrixelemente in der Diagonale der Übergangsmatrix sind alle gleich null. Die
Übergangsmatrix hat symbolisch folgende Gestalt, wenn wir die erlaubten Über-
gänge mit der Zahl Eins belegen:

00001 .9;/1

00010 w’,
(S‚—„)s 00011 ‚ (mg); a"

01101 92
10110 9,|_

Zum Abschluß unserer Beispiele für Anwendungen der Gruppentheorie in der
Quantenmechanik wollen wir uns der Klassifizierung der Schwingungszustände
eines Moleküls zuwenden, Die Anwendung der Gruppentheorie bildet die not-
wendige Grundlage zur Deutung der Ergebnisse der Spektroskopie aller Wellen-
bereiche.

s BelgenSymmeti-iegruppen
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8.2.4. Klassifizierung der Molekiilschwingungen

Die äußere Symmetrie der Moleküle ist Ausdruck der Struktur der Molekül-
orbitale, die die Bindungen zwischen den einzelnen Atomen des Moleküls vermitteln.

Die Gesamtwellenfunktion des Moleküls als Überlagerung der einzelnen Orbitale
ist invariant gegenüber allen Elementen der Symmetriegruppe des Moleküls. Diese
Wellenfunktion gehört demzufolge zur irreduziblen Eins-Darstellung der Punkt-
gruppe des Moleküls. Ein aus N Atomen bestehendes nichtlineares Molekül hat
3N — 6 Schwingungsfreiheitsgrade. Ein Molekül nennen wir dann linear, wenn alle
Atome längs einer Geraden angeordnet sind. Betrachten wir kleine harmonische
Schwingungen der Atome um ihre Ruhelagen, so ist die Energie des schwingenden
Moleküls eine quadratische Form in den Verschiebungen u,, aus der Ruhelage und
deren erster Zeitableitungen u„:

E = mxnüzüic + i‘ Z ktkuiuk}
I.k Lk

dabei sind die Größen m„, und k‚„ konstante Koeffizienten (Ausdrücke für die Massen
und die Riickstellkräfte), und die Summation erfolgt in jedem Index von 1 bis 3N
(ul, uz, us sind die drei Koordinaten des Verschiebungsvektors des ersten Atoms
usw.).

Die beiden Summen sind als kinetische und potentielle Energie positiv definite
quadratische Formen. Sie lassen sich deshalb gleichzeitig als Summen aus reinen
Quadraten neuer Koordinaten qf; und deren Zeitableitungen z]; darstellen. Diese
Koordinaten werden so gewählt, daß die Koeffizienten bei der kinetischen Energie
gleich eins werden:

E = i2 (1152 + i2 w.3(qZ)’-
a.k .x.k

Die neuen Koordinaten nennt man Normalkoordinaten. In diesen Normalkoordinaten
sind die Schwingungen unabhängig voneinander und ihre Frequenzen sind die Zahlen
w“. Der Index 0c unterscheidet die verschiedenen Freqenzen, während der Index k
den Entartungsgrad jeder Frequenz durchläuft: k = 1, ...,fi„. Ist der Ausdruck für
die Energie eines schwingenden Moleküls gegenüber allen Symmetrieoperationen
invariant, dann bedeutet das, daß die Normalkoordinaten q: zu einer festen Frequenz
co, in Linearkombinationen voneinander transformiert werden, wobei die Summe der
Quadrate 2 (qfi)’ ungeändert bleibt. Die Normalkoordinaten bilden eine irreduzible

k
Darstellung der Symmetriegruppe des Moleküls. Der Übergang von der Darstellung
der Energie durch die Komponenten der Verschiebungsvektoren uk zu der Dar-
stellung durch Normalkoordinaten entspricht einer Schwingungsdarstellung oder
totalen Darstellung und ihrer Zerlegung in irreduzible Darstellungen.

Die totale Darstellung gewinnen wir dadurch, daß wir den 3N—dimensionalen
Vektor aller Komponenten der Verschiebungsvektoren allen Klassen von Symmetrie-
operationen der Symmetriegruppe unterwerfen und den Übergang durch eine
(3N x 3N)-Matrix herstellen. Da wir für die Zerlegung einer Darstellung in irredu-
zible nur die Kenntnis der Charaktere (Spuren) der Übergangsmatrizen benötigen,
gibt es ein einfacheres Verfahren zu ihrer Ermittlung. Wir geben die Formeln der
einzelnen Charaktere an, ohne deren Herleitung zu begründen. In der totalen Dar-
stellung haben die Symmetrieelemente der Punktgruppen folgende Charaktere:

das Einselement E: x(E) = 3N —- 6,
die Drehung C(zp): x(C) = (N, — 2) (l + 2 cos (p),
die Drehspiegelung S(<p): x(S) = N,(2 cos q; — 1),
die Spiegelung a: 5(0) = N„,
die Inversion i: x0") = N„
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dabei ist die Zahl NR gleich der Zahl der bei der Symmetrieoperation R festbleibenden
Atome, C(<p) und S(<p) sind Dreh— bzw. Drehspiegelachsen mit dem Drehwinkel q).

Als Anwendungsbeispiel wollen wir die Schwingungen des Methanmoleküls CH4
untersuchen. .

Beispiel 8.4: Die Symmetriegruppe des CH4—Mo1ekii1s ist die volle Tetraedergruppe
Td. Wir erinnern uns, daß diese Gruppe durch drei S4-Achsen, Vier C3-Achsen und
sechs Spiegelebenen charakterisiert ist, 24 Elemente enthält und fünf konjugierte
Klassen besitzt:

ein Element E,
acht Rotationen C3 und Cä,
sechs Spiegelungen a an den Ebenen,
sechs Drehspiegelungen S4 und S2,
drei Rotationen C2 = S}.

Die Gruppenordnung g = 24 läßt sich in eine Summe von fünf Quadraten ganzer
Zahlen zerlegen:

24=1’+12+22+32+3’.
Aus dieser Zerlegung ersehen wir, daß die Tetraedergruppe zwei eindimensionale,
eine zweidimensionale und zwei dreidimensionale irreduzible Darstellungen besitzt.
Die Charaktertafel der Tetraedergruppe hat die folgende Form:

E 8C; 3C; 60' 6S4

„a, 1 1 1 l 1

„a, 1 1 1 —1 -1
5 2 -1 2
9, 3 o —1 1 —1

an 3 o —1 -1 1

Die Charaktere zu den Elementen der konjugierten Klassen in der totalen Dar-
stellung gewinnen wir aus den oben angegebenen Formeln:

—— Das Molekül enthält fünf Atome, hat also 9 Schwingungsfreiheitsgrade, und der
Charakter des Einselementes ist ebenfalls 9 : x(E) = 9.

— Bei den Drehungen um die C3-Achsen bleiben zwei Atome, das zentrale Kohlen-
stolfatom und eines der Wasserstoffatome ortsfest (NC = 2), und mit (p = 120°
wird der Charakter der Drehungen C3 und C3’ gleich null: ;g(C3) = 0.

~ Bei den Drehungen um die CZ-Achsen bleibt nur das zentrale Kohlenstoffatom
ortsfest (NC = 1), und der Charakter wird gleich eins: 1(C2) = 1.

— Beiden Spiegelungen a sind immer drei Atome ortsfest, das zentrale Kohlenstoff-
atom und zwei Wasserstoffatome, und der Charakter ist gleich drei: x(o) = 3.

— Bei den Drehspiegelungen S4 bleibt nur das Kohlenstoffatom ortsfest, und der
Charakter wird gleich minus eins: 1(5) = — l.

Wir haben damit die Charaktere in der totalen Darstellung gefunden:

I E 8C3 3C2 6a 6S4

9.0. | 9 0 1 3 -1

Vergleichen wir diese Charaktere mit der Charaktertafel der irreduziblen Dar-
stellungen der Tetraedergruppe, so ergibt sich die Reduzibilität der totalen Dar-
stellung.
a.
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Um die Zerlegung in irreduzible Darstellungen zu finden, benutzen wir entweder
die Formel

1 m .

m = E Z ü„1"(A„)x'°‘(A„)‚ mit
v=l

m. ~ Faktor der Häufigkeit, mit dem die h-te Darstellung in der totalen
Darstellung enthalten ist,

x" — Charakter der h—ten Darstellung,
f" — Charakter der totalen Darstellung,
(Av) — ein Repräsentant der v-ten Klasse,
av — Anzahl der Elemente in der v-ten Klasse,
m — Anzahl der Klassen und
g — Gruppenordnung,

oder wir finden die Zerlegung durch einfaches Probieren:

d. h.:

E 8C; 3C; 60,. 6S4

M’. l 1 1 l l
6” 2 —l 2 0 0
2.9‘, 6 -2 2 -2

9... 9 0 1 3 —1

9m =42/. + 6E + 2?}.

efifiufi
@

@@@
Bild 8.2. Die Normalschwingungen des Methanmoleküls
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Das Methanmolekül hat demnach 4 Eigenschwingungen, eine nichtentartete,
eine zweifach entartete und zwei dreifach entartete. Die Eigenschwingungen transfor-
mieren sich nach den Darstellungen M, , <5’ und f2. Die Kenntnis der Transforma-
tionseigenschaften der irreduziblen Darstellungen gestattet sogar die Analyse der
Schwingungszustände bezüglich ihrer räumlichen Symmetrie. Zur Ableitung der
Schwingungszustände aus den Eigenschaften der Darstellungen verweisen wir auf die
Spezialliteratur [4] [l0]. Bei der Einsdarstellung .52/1 muß die volle Symmetrie des
Moleküls erhalten bleiben; folglich kann das Molekül nur so schwingen, daß es

sich ähnlich bleibt. Bei dieser Schwingung bleibt das Kohlenstoffatom ortsfest und
die vier Wasserstoffatome schwingen längs ihrer Bindungen gleichzeitig nach außen
oder nach innen. Alle Schwingungszustände des Methanmoleküls sind in Bild 8.2
zusammengestellt.



Lösungen der Aufgaben

2.1.‘ P wird durch «p in eine seiner Symmetrielagen übergeführt. Beschreiben wir diese Symmetrie-
lage durch das Bild q2(P) von P bei der Abbildung qzz P —+ q2(P), so heißt dies, P und (p(P) sind un-

unterscheidbar (was nicht heißen muß identisch); tr ist also eine Symmetrieoperation für P.

2.2. Nein! Es ist C2 # 6,. Ein Punkt PEE3 oberhalb der durch A bestimmten Ebene wandert
durch C2 nach unten, durch :1, aber nicht,

2.3. A: a) Drehsymmetrieachsen sind C3 (als Referenzachse durch den Mittelpunkt 0 von A und
senkrecht auf A) und C; ‚ cg’, cg" (durch die Ecken und O); Spiegelsymmetrieebenen sind a’,, a’,’, 0:,"
(durch C3 sowie C; , C5’, C5") und ab (als Ebene, in der A liegt); einzige Drehspiegelsymmetrieachse
ist S5 (bestehend aus C3 und ah). b) D3,, = {E, C3 ‚ Cä, C; , cg’, cg’, a}, cr',', o',',”, S5, S2, Sä); Zll b9-
achten sind die Beziehungen S5 = C3 - an, S2 = Cä, S3 = ah, S2 = C3, S2 = C§ - Uh, S‘ = E.
D: a) Drehsymmetrieach cu sind C4 (als Hauptdrehachse durch den Mittelpunkt O von D und

senkrecht darauf), C; , C5’ (durch O und die Ecken von D) sowie C; und C2 (durch 0 und die Mittel-
punkte der Seiten von D); Spiegelsymmetrieebenen sind a',, a’,’, a,',, cg,’ (Ebenen durch C4 und

C}, C5’, C2, CZ) und ah (Ebene, in der D liegt); Drehspiegelsymmetriea L sind S4 (bestehend
aus C4 und ah) und S2 (beliebige Achse durch 0, senkrecht auf einer iegelebene durch 0); In-
versionszentrum ist i: 0. b) D4; = {E,C..,C§,C3,C§,C§',C2,C2,a,,crC,<7(,,a'§,o',,, i, S4, S3).

2.4. a) Die drei F-Kerne des BF3-Kerngeriistes sitzen in den Ecken eines gleichseitigen Dreiecks A,
tauschen also bei allen Symmeirieoperationen von A ihre Plätze aus, während der B-Kern im Mittel-
punkt von A Fixpunkt ist. Analog verhält es sich mit XeF4 in D. b) Das NH3-Kemgerüst gestattet
nur solche Bewegungen, bei denen der N-Kern Fixpunkt ist und die H-Kerne als Ecken eines gleich-
seitigen Dreiecks A ihre Plätze wechseln. Die Symmetriemenge von NH3 ist demnach eine Teilmenge
der Symmetriemenge D3,, von A C E3, nämlich C3, = {E, C3, Cä, 0,, 0,’, 0","). Dies ist aber gerade
die Symmetriemenge von A, wenn man nur Bewegungen des E’ 3 A zuläßt (Bild L 2.1., a)). Die
Überlegung bez. D C E’ und SFSCI verläuft analog: C4, = {E‚ C4, C2, C2, U}, 0;’, c'r,, 1),}, wobei
cr,',, oi,’ bzw. 51,, ii, als Spiegelungen an den Geraden durch gegenüberliegende Ecken bzw. durch
gegenüberliegende Seitenmitten vonD anzusehen sind (Bild L 2.1., b)). Die Inversion iam Ursprung
0 = iist durch C}, erfaßt: C} = i.

X:
J 4 / 7

//
C 5V

1\ „
i; 6x577

7 /v‚ In \ 2

u) file/threlnyesüre/brk bzw 17) üuadrm‘ bzw
NH‘; ~M17/£m)/ 5561- Ma/Ekzlz‘

Bild L 2.1. Symmetrieelemente von A, D C E’

3.1. Unter Weglassung der Eingangszeile bzw. -spalte lauten die Gruppentafeln von C3, bzw. C4,

Tafel L 3.1. Gruppentafel der Symmetriegruppe C3, des NH3-Molekiils bzw. von A C E2

E C3 C5 0’, 0C,’ 11'," Inverse Elemente:
C3 C§ E a'," a’, a',' E" = E,

C3 E C3 G: U: U; (C§)" “

a’, u’; 0;" E C3 C§ a§,"‘ = 17,’, tr,’ " = 0',"
0,’ 0'," o‘; Cä E C3

ct, o’, a’; C3 C§ E
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Tafel L 3.2. Gruppentafel der Symmetriegruppe C4,, des SF5Cl-Molekiils bzw. von D C E2

E C4 C2 Ci o‘; o; a, "d. Inverse Elemente:
C4 C2 C2 E ö’, ö’, o‘: 0,’, E" l = E, Cf‘ = C2,

C3 C3 E C4 U} 17$ 5», Üv (C94 = C3,
C3 E C4 Cä Ö} 57v 0;: vi.’ W2)" = Ca.
ü} 77v 03' in E C3 C3 C4 UT 1 = 0'»,

G; in 0v Üv C3 E C4 C3 17;’ 1 = 07,
in 09 it U?’ C4 C3 E C3 Ü; ‘ = in.
ö", 0',’ «'7, u; C2 C4 C} E ii?‘ = 6,.

3.2. Gemäß der Numerierung in Bild L 2.1., a)) entsprechen folgenden Symmetrieoperationen von

C3,, (vgl. Lösung der Aufgabe 3.1) die folgenden Permutationen: E = (1) (2) (3), C3 2 n1
=(123), Cä 2 n3 = (13 2), a; 2 0'1 z (l)(2 3), a,',' 2 a; = (1 3) (2), a3 = (1 2) (3). Bilden
wir alle Permutationsprodukte aus G3 = [5, n, , n2, u, ‚ oz, a3] und ersetzen in der Tafel L 3.1 die
Symmetrieoperationen durch die ihnen entsprechenden Permutationen‚ erhalten wir die Gruppen-
tafel von 53.

3.3. a) ‘

E A B C Die mittlere Produkttafel läßt sich nicht zu einer E A B C
A E C B Gruppentafel vervollständigen. A C E B
B C E A" B E C A
C B A E C B A E

b) Neinl, c) G1 ist die Kleinsche Vierergruppe (vgl. Tafel 3.3), G3 ä S4 (Gruppentafel von S4:
Tafel 2.1, linke obere Teilmatrix).

3.4. a) Aus E’ : LT - E’ - L folgt det E’ = det LT det E’ det L, und wegen det E’ = -1 gilt deshalb
(detL)2 = 1. b) Für L1,L2 EL4 gilt (L, ~L3~)T < E‘ ' (L, ~L3) = L} e (LI - E‘ ‘L,) -L2
= L} - E’ -L3 = E’, alsoistL4 - L4 C L.,;mitLe L.,istauchL'1 eL4, denn aus LT ~ E‘ ‘L = E‘
folgtE’ = (LT)" - E’ -L" = (L‘1)T ~ E’ - L", also gilt Lg‘ C L4. c) Für Lf,L3* EL; C L4 gilt
det(Lf -L3‘) = detLf detL; = l‚also L1 -L2 C LI; wegen det (L+)" = (detL*)“ = l" = l
ist ferner (L1)” C LI, d. h. L; ist eine Untergruppe von L4, und zwar ein Normalteiler: L’ sei eine
beliebige‚L5 eine feste uneigentliche Lorentzmatrix (detL’ = detLa = —1). Es gilt L’ -L5 =L*eL:‚
also L’ = L’ -(L5)“ mit det (L5)“ = -1. Deshalb ist L4 = L1 v L; -(L5)“ die Linksneben-
klassenzlerlegung von L4 nach L; und [L42 L1] = 2. Die Rechtsnebenklassenzerlegung nach LI
hat also zwei Klassen; eine davon ist L4‘, die andere muß demnach L3,‘ i (L5)" sein. Reehts- und
Linksnebenklassen stimmen also überein.

3.5. Die Gruppenordnung g = 6 von C3„ hat die Teiler 1, 2, 3 und 6. Es gibt also nur Untergruppen
zu den Ordnungen u = 1, 2, 3, 6. Sie lauten [E], [E, 0;], [E, a','], [E, a;"], [E, C3, C§] = C3 und
C3,, und haben die Indizes j = 6, 3, 3, 3, 2. C3 ist der einzige nichttriviale Normalteiler von C3.‚.

l

3.6. Für Normalteiler stimmen Links- und Rechtsnebenklassenzerlegung überein. C3.
= E - C3 u a’, e C3 =‚ (E, C3, C§} u {o;, 0;’, cr’,,"}. Repräsentanten der Zerlegung sind z. B. E und
0;. Die Produkte aus den Klassen E, G; lauten repräsentantenweise und gleich als Gruppentafel der
Faktorgruppe C3‚/C3 notiert (benutze Tafel L 3.1):

IE a;

E E o;
o’, G; E

3.7. Mit Hilfe von Tafel L 3.1. finden wir: C3,, = {E} v {C3, C3} u {a}, o"‚'‚ o","} = (E) v (C3) u 07;)

= (Ar) V (A5) b’ (/13)» AUS (A1) ' (Au) = 15)./4.1(/41) V 15A4a,2(A2) V 1‘1u.3(/43) folgt dann k1r.1 = 1512.2

= 1513.3 = 1521.2 = 1522.2 = kam = 1» 1522.1 = 1523.3 = 1532.3 = 2. 1533.1 = 1533.2 = 3; 311° finden“
k,1,,_, sind null.
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4.]. Durch die Drehung C3 geht über: H, ~> H2, H2 —> H3, H3 —r H‘. Sind x,- = OH,- (i = l, 2, 3)
die Ortsvektoren der H„ so muß dabei gelten x, = A - x1, x3 = A - x2, x1 = A ~ x3. Zusammen
bilden diese drei Gleichungen ein lineares Gleichungssystem aus neun Gleichungen in den neun

Unbekannten am; A = (a,.„). Dessen Lösung lautet an =, an = a3, = I und 11,,” = 0 für alle
anderen Indizes v, ‚u. A ist also eine Matrix aus O*(3) bzw. aus SL(3).

b)D=D;‚D2D‚

11/501 1 <_> 0 1 —\/E —1o l —3—2\/3 —2+3\/3 -2‘/3

3 «/3 103°‘/3 i: 1—~/3° =§ *6+v’3" *3-N5. 2 _

o o1 0—1\/3 o 0| -2 2\/3 4x/3

Sind x} = die Ortsvektoren der Bildpunkte H,’ von H, (0 = 0’ ist Fixpunkt), so erhalten wir
aus x; = D - x‚«‚ also H1: (—5/4 + „fi/4, —9/4 — \/3/4, 1/2 + \/3/2), Hg: (-3/4 — \/5, —1

+ \/3/4, -1/2 + \/3), H3’: (-1/2 + \/3/4, -1/4 e \/3/2, 3 Das Tetraeder nimmt also
keine seiner Symmetrielagen ein!

4.2. Wirbeziehen unsaufBildL 2.1. Die Koordinaten der Ecken l, 2, 3 sind (—1/2\/3, 41/2),
(1 /2 \/3, -1/2), (o, l). Drehungen: sie werden gemäß 4.1.3. (n) [i] durch Matrizen

cos 1x — sin zx ‚ l

] beschrieben. Demgemäß gehören fur no = 0°, l20°,24-0° zusammen:

no ‚ «e45 „ ‚E.E=[ol],C3.A =<}~L/3. -1] undC§.A =AT.

Spiegelungen: Nach dem Vorbild der Lösung der Aufgabe 4.1 finden wir für a; (l —~ I, 2 —> 3,
3 —> 2), für o‘; (l —> 3, Z —> 2, 3 —> l) und für 17;." (l —> 2, 2 —> l, 3 ~> 3) die Matrizen

in,
5.1. Wir zeigen, daß C5 zu Cg‘ konjugiert ist: Es gilt Cg 1 = C2. Es sei C5 eine zweizählige Dreh-
Symmetrieachse senkrecht auf C5. Dann gilt: C5" ~ C5 ' C} = C; - C5 - C; = C2 = Cg‘.

A(oc) = [
sin 0c cos oz

5.2. Den vorhandenen Symmetrieelementen gemäß haben wir Tafel 5.3 folgendermaßen zu durch-
laufen: a) ja —ja —ja —ja, A C E3 gehört zur Gruppe Du; ja —ja ~ nein ~ nein —ja, A C E’ ge-
hört zu Cgy. b) ja —ja —ja —ja, I] C E’ gehört zu Dnh; analog: EI C E’ gehört zu C4,. c) ja —ja —

ja —ja, D5,, d) ja —ja — nein — ja, C2,, e) nein — nein — nein, C1. f) nein —ja, C‚.

Bild L 5.1 . FCISO-Molekül Bild L 5.2. FzSO-Molekül

5.3. a) C„ b) FCISO (Bild L 5.1).

6.1. Die Basisvektoren haben in der orthonormierten Basis die Gestalt

a, = «fiel + 92) a, = {(22 + ea) a; = «}(e3 + cl).

Nach den Regeln der Vektorproduktbildung erhält man für das Spatprodukt

[a‚a‚a3] = a1(a‚ x as) = fiel + ez) (e, + e, — a3) = 31
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und die Vektorprodukte

31 X 32 = H91‘ 92 ‘i’ 93), 32 X 33 : Her + 92 — es), as X 31 = i(‘°i 7L 92 + es)

und damit für die Basisvektoren des reziproken Gitters

a‘=e1+e2—e3‚
a’=—e‚+ez+e3,
a3=e‚—e,+e3.
7.1. In der Lösung der Aufgabe 4.2 sind den Symmetrieoperationen E, C3, C}, 5;, 5;’, UQ" e C3, in _

dieser Reihenfolge die Matrizen E, A’, A”, a’, a”, a”’ zugeordnet. Diese Matrizen bilden eine Gruppe
M2. Die durch die Zuordnung definierte Abbildung 9? :C3,,—>M; ist eineindeutig und relationstreu.
ist also eine reelle treue Darstellung durch die orthogonalen Matrizen von M2. Es gilt 9?(E) = E,
.%’(C3) = A’, 3?(C§) = A”, fl(a§,) = a’, .%(z7;') z a”‚5t’(a;‚”) = 0"’.

7.2. Nach Aufgabe 3.7 zerfällt CM in drei konjugierte Klassen, besitzt also drei solcher Darstellungen.

7.3. Man benutze die Formeln (1,) bzw. (1,) von Burnside. Gemäß Lösung Aufgabe 3.7 ist in (1,):
a, = l,a2 = 2, a3 = 3, m: 3. Wir werten (1,) aus für: 1) k,“ = l,k„_‚ = 0 04:1);
2) k,“ = 2, kzu =1‚ kn_3 = 0; 3) 1:334 = k33_2 = 3,k33,3 = 0 und erhalten: ad l) = n,,,
ad Zn’; = n,,und1','= —§n,,, ad 3)x';1 = im, wennz’; = nhist undz’; = Ofürx’; = —§n,,. Daraus
ergibt sich in den Dimensionen d, , dz, d3 der drei irreduziblen Darstellungen von C3, die Tafel L 7.1

(A; = E, A; = C3, A3 = (IQ). Wegen (12), d. h. wegen ia,(;;:.')2 = 6 (i. = ‚u‚g = 6) gilt hier

d1=l,d2=1undd3=2. ml

Tafel L 7.1. Charaktertafel des NH3-Moleküls

(A1) l (A2) I (A3)

d, d, d,
4, d, ~d2
d3 —%da 0
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Symbolverzeicltnis

Operations-‚ Relations- und Funktionszeichen

Verknüpfung in einer Gruppe
direktes Produkt zweier Gruppen
direkte Summe
Äquivalenz, Konjugiertheit,
Ähnlichkeit
Isomorphie
Homomorphie
Bildung des inversen Elements

(t = -1)
Klassenzahl der Punktgruppe X

“V
II

?
1
6
x
“

k(X)

Schönflielisymbolik

C„, C,, Drehsymmetrieoperation C„ an

n-zähliger Drehsymmetrieachse C„
Drehspiegelsymmetrieoperation 5„
an n-zähliger Drehspiegelsymmetrie—
achse S„
Spiegelsymmetrieoperation a. an

vertikaler Spiegelsymmetrieebene a,
Spiegelsymmetrieoperation a}, an

dihedraler Spiegelsymmetrieebene o,
Spiegelsymmetrieoperation 0„ an

horizontaler Spiegelsymmetrie-
ebene oh

i, i Inversion i am lnversionszentrum i

S... 5..

m. m

‘7¢.°c1

“In Gr.

Internationale Symbolik

(s. Seite 80)

Abstrakte Gruppen

G Gruppe
U Untergruppe
N Normalteiler
NA Normalisalor von A
Z„ zyklische Gruppe der Ordnung n

Zw zyklische Gruppe unendlicher
Ordnung

3 Zentrum
(M) von M erzeugte Untergruppe
(A) von A erzeugte zyklische Gruppe
[A‚ B, ...] Gruppe aus den Elementen A, B,
V Kleinsche Vierergruppe
F = G/N Faktorgruppe von G nach N

Klassen, Komplexe

A, B, C G Komplexe von G
A‘ inverser Komplex
(A) Klasse konjugierter Elemente

V 9 Klasse konjugierter Elemente
L o U Linksnebenklasse nach U
U o R Rechtsnebenklasse nach U

Matrizengruppen

M„ beliebige lineare Matrizengruppe
GL(n‚ K) allgemeine lineare Gruppe über K
GL(n) = GL(n‚ R) allgemeine lineare Gruppe

über R
O(n) orthogonale Gruppe
O*(n) eigentlich orthogonale Gruppe
U(n) unitäre Gruppe
SU(n) eigentlich unitäre Gruppe
SL(n, K) komplexe spezielle lineare Gruppe
SL(n) = SL(n, R) reelle spezielle lineare

Gruppe
L4 Lorentzgruppe
L: eigentliche Lorentzgruppe

Permutationsgruppen

G„ symmetrische Gruppe der Ordnung nl
91„ alternierende Gruppe

Bewegungsgruppen

$3 Bewegungsgruppe des E3
Ü’; eigentliche Bewegungsgruppe
Ü C Ü, beliebige Bewegungsgruppe
$3 (Vollständige) Drehgruppe
13; eigentliche Drehgruppe
‘D C $3 beliebige Drehgruppe
i, Translationsgruppe des E3
52 C Z3 beliebige Translatiorisgruppe
ß/i Faktorgruppe von Ü nach S
I” Normalteiler aus den eigentlichen

Drehungen einer Punktgruppe 2. Art
P = P+ v P’ Nebenklassenz/erlegung der

Punktgruppe 2. Art nach P*
G Raumgruppe eines Kristalls
Go Punktgruppe eines Kristalls

Punktsymmetriegruppen l. Art

C„
D„ Diedergruppe
T Tetraedergruppe
O Oktaedergruppe
Y Ikosaedergruppe
Cm unendliche Punktsymmetriegruppen
Dm unendliche Punktsymmetriegruppen

Punktsymmetriegruppen 2. Art

5.. = <S..>
C... = <C... an)
C... = <C‚.‚ Üv>

Duh = (C... C§,Ux.>
Dnd = (C... C5,t7.s>
T„ = T >< C,



l l2 Symbolverzeichnis

T‘, volle Tetraedergruppe
0,, volle Oktaedergruppe
Y„ volle lkosaedergruppe
Cmh

Cwh unendliche Punktsymmetriegruppen
D“),
C: = <i>
Cs z Cm
C. = <E>

Darstellungen

A’: G —> R„ n-dim. Matrizendarstellung der
Gruppe G

2o: G -> [E] Einsdarstellung
.327(A) E R" Darstellungsmatrix
R„ Darstellungsgruppe

d: G —> 3?, reguläre Darstellung,
g-dimensional

%(A) Darstellungsmatrix, reguläre
Darstellung

.9/zx;G—»R;,=X"~R,,~X
zu 9€ äquivalente Darstellung

32,01) = X" ~.9?(A) - X
zu §€(A) ähnliche Darstellungsmatrix

(Q) Klasse äquivalenter Darstellungen,
Repräsentant .9?

Äquivalenzklasse ähnlicher Dar»
stellungsmatrizen

5421M) ® 5?§(A) ® direkte Summe

(917/4))

(Blockdiagonalform)
Teildarstellungen

3?, >< 91’, direktes Produkt der Darstellungen

971,92
Sp QM) Spur von .9€(A)

;5(A) Charakter von A

z: = z"(A‚) Charakter auf der Klasse (A‚)
der h-ten irreduziblen Darstellung

[92] symmetrisierte Produktdarstellung

£2 physikalische Darstellungen

Symmetrie-‚ Permutations-, Darstellungs- und
Faktorgruppen, Normalteiler zu speziellen Mole-
külen oder Kristallen

T2, ‘I13 Translationssymmetriegruppe des

ebenen bzw. räumlichen NaCl-Gitters
C, (Punkt-) Symmetriegruppe des

FClSO-Moleküls
C, (Punkt-) Symmetriegruppe des

FQSO-Moleküls

C3, (Punkt-) Symmetriegruppe des
HzO-Moleküls

C3, (Punkt-) Symmetriegruppe des
NH3-Moleküls

CM (Punkt-) Symmetriegruppe des

SF5Cl-Moleküls
C2,, (Punkt-) Symmetriegruppe des

Hzoz-Moleküls
C33. (Punkt-) Symmetriegruppe des

ebenen Borsäurc-Moleküls
D33 (Punkt-) Symmetriegruppe des

C3H4-Moleküls
B3„ (Punkt-) Symmetriegruppe des

BF3-Moleküls
D4,, (Punkt-) Symmetriegruppe des

XeF4-Moleküls
B5„ (Punkt-) Symmetriegruppe des

CsHö-Moleküls
D; Drehsymmetriegruppe des

C3H4-Moleküls
C3 Drehsymmetriegruppe des

H202-Molekijls oder Normalteiler
von D23

C3 Drehsymmetriegruppe und Nor-
malteiler in C3,

D”/C2 Faktorgruppe von D23 nach C2

C3,,/C3 Faktorgruppe von C3, nach C3
M* Darstellungsgruppe von D,
M3 Darstellungsgruppe von D23

R3 Darstellungsgruppe von D“, bei
regulärer Darstellung

M; Darstellungsgruppe von C3,

Spezielle Bezeichnungen

N neutrales Element
E Einselement
0 Nullelement

l 2 n .

( ) Permutation
P1 P2 Pr.

e identische Permutation
E Einheitsmatrix
I = —E

l 0 0 0

0 1 0 0
E = o o 1 o

0 0 0 -1
(X)1‘, Element der Zeile u, Spalte v der

Matrix X
«[0; e,} Basis des E’ mit Ursprung 0 und

Basisvektoren e,

H = [nun] (H = ('11, "2, '13)
Normaleneinheitsvektor)

E — ZH Darstellungsmatrix für Spiegelungen
D, , D2, D3 Transformationsmatrizen zu den

Eulerschen Winkeln w, (9, (p



Namen- und Sachregister

E, D, D’, D”, S, S’, Z’, E” Darstellungs-
matrizen der Darstellung der Gruppe
Du

E, A’, A”, a’, a", 0”’ Darstellungsmatrizen der
Darstellung der Gruppe CM

{A 1 T) Seitzsymbol
j = [G : U] Index der Untergruppe U von G
kÄ„_„ Klassenmultiplikationskoeffizienten
[[n,n2n3]] Millersche Indizes eines Punktes
[mnp] Millersche Indizes einer Richtung
(hkl) Millersche Indizes einer Fläche

Namen- und Sachregister

Abel, N. H. 21

abgeschlossen 14, 18

Achse, bilaterale 53

— einer Gruppe 531T.

—, einseitige 53

-, Ordnung einer 11

—‚ Zähligkeit einer 11

—, zweiseitige 53

Achsenkreuz, kristallographisches 67

Addition 201i, 28
ähnlich 36, 37
Ähnlichkeitsklassen 36

Allen 10

Äquivalenzklassen 37, 87
Äquivalenzrelation 37

Assoziativgesetz 21, 28

ausreduzieren 88

Automorphismus 31, 85

Basis des zugehörigen reziproken Gitters 84
— einer Darstellung 92
— eines Kristalls 64

Bewegungen lOfiI, 43 ff.
—‚ eigentliche 43 ff.
—, Gruppe eigentlicher 45
—, uneigentliche 43 (T.

Bewegungsgruppe 44, S0

», diskrete 50

—, endliche 50
—, Normalformen der 44
Blockdiagonalform 87ff.
Blockmatrizen 87

BravaisGitter 72

Bravais, A. 72

Burnside, W. 89

Cayleysche Strukturtafel 28
Charakter einer Darstellung 891T.

Charaktertafel 90, 91

l l3

Physikalische Größen

H(p, x) Hamiltonfunktion
H Hamiltonoperator
h Plancksches Wirkungsquantum
E Energie eines physikalischen Systems
V(x) Potential
V Volumen des physikalischen Systems
n, I, m Quantenzahlen der Elektronen-

zustände im Atom
s, p, d, f, g, h Drehimpulswerte der Elektronen

im Atom

Darstellung 8511“.

w, Basis einer 92

—, Charakter einer 89H".

—, identische 85

—, irreduzible 88fi".
—, orthogonale 85ff.
A, reduzible 88
-‚ reelle 85fl".

-, reguläre 86
~, totale 102

—‚ treue 85 fl‘.

—, unitäre 851T.

—, vollreduzible 88

—, zerfällbare 88

Darstellungen, äquivalente 87 ff.
Darstellungsmatrix 85 ff.
Darstellungsmatrizen, ähnliche bzw. äquiva-

lente 87
Deckabbildung llfi’.
Diedergruppen 54

dihedral 13

direkte Summe 88

direktes Produkt 41, 49, 58, 60, 61, 91

Distributivgesetz 22
Doppelprisma, n-seitiges 60
Drehantei143, 45, 47
Drehgruppe, eigentliche 45

—, Parameterdarstellung der eigentlichen 46

—, vollständige 47
Drehimpulsquantenzahl 97

Drehspiegelung 12, 45, 49
Drehspiegelsymmetrie 11

Drehspiegelsymmetrieoperation llfi.
Drehsymmetrie 10

Drehsymmetrieachse l1
Drehsymmetriegruppe 32, 47, 5-HT.

Drehsymmetrieoperation l l

Drehung 45 ff.
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Drehungen, konjugierte 47, 541T.

Dreiersymbol 66

Eigenwertgleichung 95

Einheitstranslation 17

Einsdarsteilung 85, 91

Einselement 20, 27, 28
Elektronenterme im Kristallfeld 97

Element, entgegengesetztes 2111’.

—‚ erzeugendes 35
—, inverses 2011., 28

-, neutrales 21

—, primitives 35

— von endlicher Ordnung 35

— — unendlicher Ordnung 35

Elementarzelle 18, 65

~, symmetrische 65

—, Typ der 76
Energieniveaus, Aufspaltung des 95

entarteter Zustand 95

Entartungsgrad 95

Erzeugendensystem 36
—, minimales 55, 5811.

Eulersche Winkel 46

Faktor 14, 27
Faktorgruppe 40, 50
Fixpunkt 12, 17, 1S

Flächenpol 69

Form, reine oder einfache 81

Funktion 89

Ganzfiächner 81

Gitter, kubisch allseitig fiächenzentriertes 17

Gitterbedingung 68

Gitters, Basis des zugehörigen reziproken 84
Gleichungen, Auflösung von 27, 28
Gleitspiegelung 45, 79

Gruppe 21

w, abelsche 21, 22, 33

—‚ abstrakte 30, 36, 53, 54, 571T.

—, Achse einer 53 ff.
—, additiv geschriebene 20112, 28
—, allgemeine lineare 23, 32, 85
—, alternierende 27, 40
— der Seitz-Symbole 44
—, eigentlich orthogonale 23, 32, 45
—‚ — unitäre 24
— eigentlicher Bewegungen 45

H, einfache 40
—, endliche 21

—‚ freie zyklische 35
—‚ kommutative 21 H.

—, multiplikativ geschriebene 2011., 27

—, Ordnung einer 21

—‚ orthogonale 23, 32

—, spezielle lineare 24, 32

Gruppe, symmetrische 26, 40
—, unendliche 21

—, unitäre 23
—‚ vollständig reduzible 41

—, vollständige orthogonal»: 23

—, von A erzeugte 35

— — Primzahlordnung 35

-, zyklische 35, 53, 57, 58

Gruppen C„ 53

— C„„ 58

— C,,., 59

— C, 58

— Cm, 61

— Cm, 61

— 1)„ 54
— Dm, so
— D„„ 59
— Dm 61

— 0 56

— 0„ 61

— S„ 57
— T 55

— T, 61

— T„ 60
— Y 56
— Y„ 61

Gruppenaxiome 21

Gruppenstruktur 2011., 30
—‚ abelsche 29

Gruppentafel 28, 86

Hamilton, W. R. 94
I-Iamiltonfunktion 94
Hamiltonoperator 94
harmonische Schwingungen 102
Hauptdrehachse 12fl°., 54,59
Hauptquantenzahl 97
Hemieder 81

Hintereinanderausführung 14, 18, 20, 44
Holoeder 81

I-Ioloedrie 75

Homomorphismus 31, 85
—‚ trivialer 85

Identität l1, 13, 20
Ikosaedergruppe 56
—, volle 61

Index 33, 38

Invarianz des Skalarproduktes 44
Inversion 1611., 26, 48, 57

Inversionszentrum 1611., 48
Involution 16

irreduzible Bestandteile 88

isomorph 29, 45, 47, 50, 57, 59

Isomorphie 29, 35

Isomorphieklasse 30, 35

Isomorphismus 31, 85
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Kalkül 30
Kemgerüst 9

Klasse äquivalenter Darstellungen S’
— konjugierter Drehungen 47, 49
— — Elemente 37, 53fl'., 88fi'.
—‚ Ordnung einer 38
Klassenfunktion 89
Klassenmultiplikationskoeffizienten 39, 891T.

Klassenzahl 53H.
Klassifizierung der Molekülschwingungen 102
Kleinsche Vierergruppe V 29, 54
Knotenlinie 46
Kommutativgesetz 21, 29
Komplex 31

—‚ konjugierter 39
Komplexprodukt 31

Komplexsurnme 31

konjugiert 37, 39
Körper 22

' Kristallfeld, Elektronenterme im 97
Kristallform, einfache 67
Kristallklassen 75

kristallographisches Achsenkreuz 67

Kristalls, Basis eines 64
—, Symmetrielagen des 68
Kristallsystem 75

Kroneckersches Produkt 91

Lagrange, J. L. 33

Linksnebenklasse 34, 40, 45
Linksrepräsentanten 34
Lorentzgruppe 42
Lorentzmatrix 42

magnetische Quantenzahl 97

Matrix, eigentlich orthogonale 23

—, — unitäre 24
—-, konjugiert komplexe 23

—, orthogonale 23

—‚ reguläre 23

—, transportierte 23

-‚ unitäre 23

Matrixelement 98
Matrixelemente, Auswahlregeln für 98
Matrizendarstellung, n-dimensionale 85

Matrizengruppe 23, 88

—, lineare 23, 48
Methanmoleküls, Schwingungszustände des 105

Miller, W. H. 67

Millersche Indizes 67
minimales Erzeugendensystem 55, 58 fl‘.

Modul 21 fl".

Molekülschwingungen, Klassifizierung der 102

Multiplikation 201T.

— von Seitz-Symbolen 44
multiplikativ geschriebene Gruppe 20ff.
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n-Eck, regelmäßiges 54, 59

n-seitiges Prisma 60
Natriumchloridgitter 17

Nebenklassenzerlegung 34
Netzebene 66

Neumann, J. v. 8

Neumannsches Prinzip 8

Normalformen der Bewegungsgmppe 44
Normalisator 38

Norrrialkoordinaten 102

Normalteiler 40, 45, 57
—, abelscher 50
—, trivialer 40
Nullelement 2011”.

Nullvektor 18

Nutationswinkel 46

Oktaedergruppe 56

-, volle 61

Ordnung des direkten Produktes 41

— einer Achse 11

— —— Gruppe 21

— — Klasse 38
— — Untergruppe 33

—, endliche 35
—‚ Gruppe unendlicher Z1

~, unendliche 35

Parameterdarstellung der eigentlichen Dreh-
gruppe 46

— — Spiegelungen 47

Pentagondodekaeder 56
Permutation 24
—, gerade 26
—‚ identische 25

—‚ inverse 25
—, ungerade 26
Permutationsgmppe 24
Permutationsprodukt 26
Planck, M. K. E. L. 94
Potenz 27, 35

Potenzgesetze 27

Präzessionswinkel 46
Primzahlordnung, Gruppe von 35
Prisma, n-seitiges 60

Produkt 14, 20, 27 ‚

—, direktes 41, 49, 58, 60, 61, 91

-, Kroneckersches 91

Produktes, Ordnung des direkten 41

‚Produkttafel 14m, 2s
Projektion, stereographische 69

Punkt, Spiegelung am I6
Punktgruppe 52H’.

— erster Art 5211‘.

- zweiter Art 521T.

Punktgruppen, unendliche 56
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Punktsymmetriegruppe 52

—, volle 52

Quantenzahl, magnetische 97

Quantenzahlen 97

Quantisierungsverfahren 94

Raumgitter 65
Raumgruppe 71

— des Diamantenkristalls 79
—, symmorphe 73

Raumgruppen, internationale Symbolik der 80
Rechtsnebenklasse 34, 40, 45
Reduktion 88

Referenzachse 12fl’.
regelmäßiges n-Eck 54, 59
relationstreue Abbildung 31, 45, 85

Repräsentant 30, 37

Repräsentantensystem 38

Satz von Lagrange 33

Schönfiieß, A. 10

Schönfließsymbolik 111T.

Schraubung 45

Schraubungsachsen 78

Schrödinger, E. 94
Schrödinger-Gleichung 94
Schwinmmgen, harmonische 102

Schwingungszustände des Methanmoleküls 105

Seitz‚ W. 66
Seitz-Symbol 43 Ff.

Seitz-Symbolen, Multiplikation von 44
selbstkonjugiert 38

Skalarproduktes, lnvarianz des 44
Spiegelsymmetrie 12

Spiegelsymmetrieelement 13

Spiegelsymmetrieoperation 12, 13

Spiegelung 451T.

4 am Punkt 16

Spiegelungen, Parameterdarstellung 47
Spiegelungssymmetrieebenen 13

Spur 89
Stellungsgerade 12

Stercogramm 73

stereographische Projektion 69
Struktur, algebraische 22
Strukturtafel, Cayleysche 28
Summe 20
— direkte 88

Symbolik der Raumgruppen, internationale 80
Symmetrie 9, 37
—‚ höhere bzw. niedrigere 95

Symmetrieabbildung 1 1 IT.

Symmetrieelernent 1 1 17., 16

Symmetriegruppe 20
—— eines Systems 71

Symmetrielage 11 fl‘.

Symmetrielagen des Kristalls 68
Symmetriemenge 14, 16

Symmetrieoperation 11ff., 16, l8
—, inverse 15, 18

Symmetriezentrum 17

symmorphe Raumgruppe 73

Systeme von Erzeugenden 36

Teildarstellung 88

Tetraeder 55, 60
Tetraedergruppe 55

—, volle 61

Transformation 37

—‚ unitäre 87
Transformationsmatrix 46, 87ff.
Transitivität 37
Translation 17, 45, 49
—, nichtprimitive 72

-‚ primitive 65
Translationsanteil 43 E.
Translationssymmetrie 17

Translationssymmetrieoperation 18

Translationsvektor 18

Ubergangswahrscheinlichkeiten 98
Untergruppe 32, 50
—, invariante 40
—, Ordnung einer 33

—, triviale 32
—, zyklische 35

Untergruppen, konjugierte 39
Untergruppenkriterium 33

Ursprung 17

Vektoraddition I8
Vektoren, polare 100

Verknüpfung 21 ff.
Verschiebungen 102

Wasserstoffperoxid-Molekül 15

Wigner, E. P. 66
Wigner-Seitz-Zelle 65

Zähligkeit einer Achse 1 1

Zahlkörper 22
Zentrum 33

Zerlegung in Klassen konjugierter Elemente 36
— von G in einfachen Faktoren 41

Zustand eines physikalischen Systems 94
e, entarteter 95

Zyklendarstellung 25, 27


