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Vorwort

Wihrend der Student zu Beginn der Differential- und Integralrechnung in der
Regel bereits iiber Grundkenntnisse in diesen Stoffgebieten verfiigt, tritt er in das
Studium der algebraischen Strukturen — hier speziell der Gruppentheorie — ohne
schulische Vorkenntnisse und ohne Motivierungen ein. Lehrveranstaltungen zu
Symmetriegruppen vor Chemikern haben gezeigt, daB dieser Start zudem u. a. mit
Schwierigkeiten bei der stirkeren Hinwendung zu begrifflichem und strukturellem
Denken — besonders hinsichtlich des Abstraktionsvermdgens — verbunden ist.

Die den Gruppenbegriff betreffende naturwissenschaftlich orientierte Literatur,
die dem Studierenden gegenwirtig zur Verfiigung steht, tragt diesem Umstand wenig
Rechnung. Deshalb haben wir uns im vorliegenden Band bemiiht, Theorie und
,,Praxis® nicht nacheinander, sondern in gegenseitiger Durchdringung gleichzeitig
zu entwickeln. Dabei werden Begriffe, Operationen, Strukturen usw. im wesentlichen
von einem immer wieder benutzten, geniigend représentativen Beispiel abgeleitet
oder an diesem ausprobiert und erlautert. Deshalb sollte der Abschnitt 2.3.1. auf-
merksam durchgearbeitet werden. In ihm wird dieses Beispiel vorgestellt und dabei
in heuristischer Weise auf den Gruppenbegriff hingearbeitet. Die mit {iberméBiger
Kiirze in der Darstellung verbundenen Schwierigkeiten wurden anfénglich bewuft
vermieden - zum Nachteil der Reichweite dieser Einfiihrung in die Theorie. Fiir wei-
tergehende Studien steht ausreichend Literatur zur Verfiigung, die entsprechend zitiert
wird.

DaB wir die Hinfiihrung zum Gruppenbegriff an Symmetriebetrachtungen fiir Mole-
kiile bzw. Kristalle gebunden haben, beruht einerseits auf der Interessenlage in
der Chemie und Physik, bedeutet andererseits jedoch keine Einschrankung. Denn die
Kerngeriiste von Molekiilen bzw. die Kristallgitter konnen auch als Massenpunkt-
systeme oder geometrische Anordnungen betrachtet werden und sind in der Regel
sogar Standardfiguren der Stereometrie.

Die Beweistitigkeit steht, dem Zwecke dieses Bandes entsprechend, im Hinter-
grund. Die meisten Beweise wurden gefiihrt, aufwendigere durch Literaturhinweise
ersetzt. Dain manchen anderen Darstellungen versdumt wurde, die Gleichheit zwischen
Symmetrieoperationen ausreichend zu kldren, wodurch sich letztlich die Ordnung
von Symmetriegruppen nicht genau feststellen 1aBt, haben wir diesen Gesichtspunkt
besonders herausgearbeitet. An mathematischen Vorkenntnissen zum Verstdndnis
dieses Bandes gentigt bis zum Kapitel 7. elementares Wissen, das im wesentlichen
in den Bénden 1 und 13 dieser Reihe zu finden ist. Das Studium von Kapitel 8.
bedarf an verschiedenen Stellen auch der Einsichtnahme in die zitierte Literatur.

Die Autoren danken dem Herausgeber, Herrn Prof. Dr. Manteuffel, Magdeburg,
sowie den Gutachtern, Herrn Prof. Dr. Engels, Leuna-Merseburg, und Herrn Prof.
Dr. Pazderski, Rostock, fiir hilfreiche Ratschldge zur Abfassung des Bandes, Frau
Ziegler vom Teubner-Verlag fiir die auBerordentlich aufmerksame und kritische
Durchsicht des Manuskriptes und dem Verlag fiir sein Entgegenkommen in verschie-
densten Fragen.

Leipzig, im April 1980 Die Verfasser
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1. Anwendungsaspekte der Theorie

Der Studierende tut gut daran, das Studium der Gruppentheorie von vornherein
im BewulBtsein der Tatsache aufzunehmen, dafl diese Theorie in der Hand des
Naturwissenschaftlers ldngst zu einem unentbehrlichen Instrument bei der mathe-
matischen Erfassung und Losung verschiedenster Problemstellungen geworden ist,
insbesondere solcher, bei denen das Auftreten oder Fehlen von Symmetrien in einem
physikalischen System Einflup auf dessen Verhalten nimmt. Derartigen Anwendungen
der Gruppentheorie liegt das von Neumannsche Prinzip') zugrunde:

,,Wenn ein System eine gewisse Gruppe von Symmetrieoperationen besitzt, dann muf3
Jede physikalische Beobachtungsgrofie dieses Systems ebenfalls dieselbe Symmetrie
besitzen.*

Auf dieser Grundlage lassen sich z. B. die Eigenschwingungen eines Molekiils
klassifizieren und Aussagen tiber deren Infrarot- und Raman-Aktivitit machen.

Die Uberginge zwischen den verschiedenen Zustinden eines physikalischen Sy-
stems konnen durch Auswahlregeln beschrieben werden. Ein Beispiel hierfiir ist der
mit Strahlung verbundene Ubergang der Elektronen in einem Atom. Die Anwendung
der Gruppentheorie auf die Quanteniibergénge liefert diese Regeln nahezu zwanglos.
Gruppentheoretisch beschreibbar sind auch die physikalischen Erscheinungen der
Aufhebung der Entartung von Energieniveaus unter dem EinfluB duBerer Storungen
bei gleichzeitiger Anderung der Symmetrie des physikalischen Systems.

In die Vielfalt der Elementarteilchen haben erst gruppentheoretische Betrachtun-
gen Systematik gebracht, und die Ubersicht wurde so weit getrieben, daB neue Teil-
chen vorhergesagt werden konnten.

Bedeutsame Ergebnisse der Physik sind des weiteren durch gruppentheoretische
Untersuchungen in der speziellen Relativitdtstheorie und der Quantenfeldtheorie
erzielt worden. )

Zum Gegenstand der Theorie der Symmetriegruppen gehért das Gebiet der Mole-
kiilsymmetrien. Wir wissen z. B., daB die optische Aktivitdt von Molekiilen mit der
Frage zusammenhingt, welche Punktsymmetriegruppen zu deren Kerngeriisten auf-
treten. In dhnlicher Weise nehmen diese Gruppen auch EinfluB auf die Struktur der
Spektren in der Spektroskopie oder auf das Auftreten von Dipolmomenten bei
symmetrisch angeordneten Molekiilen usw. (vgl. [1]).

Thre bedeutendste Rechtfertigung erfahrt die Anwendung der Theorie der Sym-
metriegruppen nach wie vor in der Kristallographie, ja auf diesem Gebiet hat die
Theorie erst ihre klassische Auspriagung erfahren.

Fiir die Erfassung des Symmetrieverhaltens von Kristallen mit eindimensionaler
Lagefehlordnung ist der Gruppenbegriff nicht mehr ausreichend. Man arbeitet
mit dem Begriff des Gruppoides, der mit Erfolg auch auf anderen Gebieten, wie der
mathematischen Linguistik, bei der Beschreibung von Datenstrukturen in der Infor-
mationsverarbeitung usw. benutzt wird.

Mit dieser Auswahl von Beispielen ist das Anwendungsfeld der Gruppentheorie
bei weitem nicht erschopft; wir denken z. B. auch an die mit dem Kleinschen Erlan-
ger Programm verbundenen Entwicklungen in der Geometrie. Dennoch mag uns diese
Auswahl bereits zu der Uberzeugung fiihren, daB es sich bei der Gruppentheorie
nicht nur um eine mathematische Theorie handelt, sondern um ein Gebiet, das in Physik,
in Chemie und in anderen Wissenschaftsdisziplinen erfolgreich angewendet wird.

1) John von Neumann (1903-1957), Mathematiker, wirkte in Berlin, Hamburg, Princeton,
Los Alamos.



2. Symmetriebetrachtungen

2.1. Zielstellung

Gruppentheorie in der Physik und Chemie — das ist insbesondere im Sinne des von
Neumannschen Prinzips die Theorie der Symmetriegruppen physikalischer Systeme
(Molekiile, Festkorper usw.). Auf die Einfiihrung dieses Gruppenbegriffes bereiten wir
uns hier deshalb durch das Studium der Symmetrie einiger solcher Systeme vor.
Genauer: Wir werden uns mit der Handhabung ihrer drei Bestandteile

(S) Symmetrieelement, Symmetrielage, Symmetrieoperation

und deren Formulierung in der SchénflieBsymbolik vertraut machen.

2.2. Grundannahmen

2.2.1.  Zu Molekiilen und Kristallen

Um den Schwierigkeiten des variablen Aufenthaltsortes der Elektronen und des
(allerdings geringeren) Spielraumes der Atomkerne auszuweichen, beziehen sich
unsere Symmetriestudien am Molekiil auf dessen Kerngeriist (Bild 2.1). Wir studieren
also ein Massenpunktsystem aus endlich vielen starr verbundenen Atomen. Die
Atome denken wir uns dabei mit ihren Kernen in den Punkten des Systems angehef-
tet. Zum Beispiel bilden der Stickstoffkern und die drei Wasserstoffkerne des Am-
moniakmolekiils NH; die vier Ecken eines Tetraeders.

Auf diese Weise lauft das Symmetriestudium an Molekiilen haufig auf dasjenige
von geometrischen Standardfiguren der Stereometrie hinaus — auch dann, wenn das
Kerngertist (wie z. B. das von NH3;) durch seine Besonderheiten innerhalb der Figur
dieser Symmetriebeschrankungen auferlegt. So kénnten wir die Symmetrien z. B.
von Kohlendioxid (CO,), Bortrifluorid (BF;), Xenontetrafluorid (XeF,), Benzen
(C¢Hg), Ammoniak (NHj;), Allen (C3H,) und Schwefelchloropentafluorid (SFsCl)

€) NH;

Bild 2.1. Kerngeriiste in geometrischen Standardfiguren
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an der Geraden, am gleichseitigen Dreieck, Quadrat, regelmaBigen Sechseck, Tetra-
eder, Quader, Oktaeder (Bild 2.1(a) bis (g)) erortern.

Analoge Annahmen gelten fiir Kristalle. Symmetrieuntersuchungen beziehen wir
auf Idealkristalle ohne Riicksicht also auf thermische Schwingungen der Gitter-
bausteine usw.

2.2.2.  Zu Operationen an Molekiilen und Kristallen

Die Objekte unserer Symmetrieuntersuchungen sollen sich im dreidimensionalen
euklidischen Raum E3 befinden. Vorerst geniigt es, ,,den E3* als den Raum unserer
naiven Anschauung (,,Anschauungsraum®) aufzufassen; spéter entspricht er der in
Bd. 1, 7.8., gegebenen Definition. Die an den Objekten nachfolgend ausgefiihrten
vier Arten von Operationen:

(i) Drehungen um Geraden (eigentliche Drehungen)

®) (ii) Drehspiegelungen an Drehspiegelachsen (uneigentliche Drehungen)
(iii) Spiegelungen an Ebenen (Reflexionen) .
(iv) Parallelverschiebungen (Translationen)

sind ausdriicklich als solche des ganzen Raumes zu betrachten'). Sie heifien die
Bewegungen des E2. Sie sind seine abstandserhaltenden Transformationen und werden
von uns zuerst auch gemaB unserer Anschauung bzw. Schulkenntnis iiber sie gehand-
habt. Wird bei der Bewegung @ der Punkt P € E* in den Punkt P’ e E? iiberfiihrt,
so schreiben wir P’ = @(P). Fiir den Abstand d(P, Q) beliebiger Punkte P, Q € E?
gilt dann: d(P, Q) = d(P', Q’).

2.3. Erarbeitung der Symmetriebegriffe (S) an Beispielen,
SchonflieBsymbolik*), Symmetriemengen, Produkttafeln

Auf der Suche nach einem Molekiil, dessen Kerngeriist als Beispiel fiir ein endliches
Massenpunktsystem mit leicht iiberschaubarem, dennoch aber reprisentativem?)
Symmetrieverhalten studiert werden kann, stoen wir auf Allen (Bild 2.1(f)):

2.3.1. Symmetriestudien am Massenpunktsystem ,,Allen*

In einem rechtwinkligen x,y,z-Koordinatensystem betrachten wir einen Quader
in achsenparalleler Mittelpunktslage. Seine Héhe sei 24, seine Grundfliche quadra-
tisch von der Kantenlinge 2g < 2h. Dem Quader 148t sich dann z. B. gemaB Bild 2.2(a)
das Kerngeriist eines Allen-Molekiils einbeschreiben: Die vier H-Atomkerne werden
kontrapunktisch auf die Ecken H,:(g, —g, —h), H,:(g, g, h), H3:(—g, & —h),
H,:(—g, —g, h) verteilt und die C-Kerne auf die Punkte (0, 0 —d), (0,0, 0), (0,0, d)
(0 < d < h) der z-Achse.

2.3.1.1. Die Drehsymmetrien C,

Drehen wir den Raum E3 um 180° um die z-Achse, so kommt das Allen-Kern-
geriist mit sich zur Deckung: Die drei C-Atomkerne bleiben fest. H; mit H; sowie

1) Nichtbeachtung dieser Absprache kann zu MiBverstindni: iber die Gleichheit zweier
Symmetrieoperationen fithren und von daher zu unterschiedlichen Ordnungen fiir die Symmetrie-
gruppe ein und desselben Massenpunktsystems.

2) Arthur SchonflieB (1853-1928), Mathematiker, wirkte in Konigsberg, Frankfurt. 1923: ,, Theorie
der Kristallstruktur*.

3) bis auf Inversionen und Translationen
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H, mit H, tauschen ihre Pldtze aus (Bild 2.2(c), rechts unten). Anfangs- und Endlage
des Molekiils sind dabei nicht unterscheidbar'), wenn auch nicht identisch. Sie heilen
Symmetrielagen, die Drehachse hei3t ein Symmetrieelement (Drehsymmetrieachse)
und die zugehdrige Drehung eine Symmetrieoperation (Drehsymmetrieoperation)
fiir das Allen-Molekiil.
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Bild 2.2. Allen-Molekiil

(a) Kerngeriist und Symmetrieelemente

(b) Projektion des Kerngeriistes auf die x,y-Ebene
(c) Symmetrielagen

Wenn das Kerngeriist eines Molekiils durch eine Bewegung des E* mit sich zur
Deckung gelangt, sagt man auch, ,.das Molekiil gestattet diese Bewegung* (Deck-
bewegung, Decktransformation, Deckabbildung, Symmetrieoperation, Symmetrie-
abbildung usw.).

So gestattet das Allen-Molekiil offensichtlich auch noch eine Drehung um 180°
um die x- und eine solche um die y-Achse, wodurch wir zwei weitere Symmetrie-
lagen, Symmetrieelemente und Symmetrieoperationen erkannt haben (Bild 2.2).

Drehsymmetrieachsen bzw. Drehsymmetrieoperationen um sie werden in der
Schonfliefsymbolik durchweg mit dem gleichen Buchstaben C bzw. C (bei mehreren
solchen Achsen auch mit C’, C" ..., bzw. C’, C", ...) bezeichnet. Speziell schreiben
wir dabei C,, wenn n die Zdihligkeit oder auch Ordnung der Achse C ist, d. h., wenn
nach n-maliger Hintereinanderausfiihrung der Drehsymmetrieoperation C um die
Achse C das Molekiil zum erstenmal wieder in seine Ausgangslage (zu seiner ,,Identitdit*)
zuriickkehrt. Die x-, y- bzw. z-Achse sind als Drehachsen fiir das Allen-Molekiil
2-zéhlig (von zweiter Ordneng). Deshalb bezeichnen wir sie mit C3, C3' bzw. C, und
die zu ihnen gehdrigen Drehsymmetrieoperationen mit C;, C5 bzw. C, (Bild 2.2).

In diesen Bezeichnungen gilt C3(H,) = H,, Cy(H3) = H,, C,(H,) = H; usw.
2.3.1.2. Die Drehspiegelsymmetrien S,

AuBer C3, C5 und C, besitzt das Allen-Molekiil keine weiteren Drehsymmetrien.
Wenn wir den Raum E3 jedoch nur um 90° im Gegenuhrzeigersinn (mathematisch
positiv) um die C,-Achse drehen und ihn anschlieBend an der x,y-Ebene spiegeln,
nimmt H, den Platz von H, ein, H, den von H;, H; den von H,, H, den von H,,
und das untere C-Atom tauscht mit dem oberen seinen Platz; das mittlere C-Atom

') Denn die H-Atome sind in der Realitéit nicht (wie hier zur kiinstlichen Unterscheidung von
1 bis 4) ,,durchnumeriert.
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bleibt fest (ist ein Fixpunkt). Das Kerngeriist kommt so mit sich zur Deckung. Es
nimmt also eine weitere neue Symmetrielage ein. Deshalb zdhlen die mit S, bezeichnete
Drehspiegelachse, bestehend aus z-Achse und x,y-Ebene (Bild 2.3) und die an S,

Bild 2.3. Drehspiegelachse

ausgefiihrte mit S, bezeichnete Drehspiegelung des E zu den Symmetrieelementen
bzw. Symmetriecoperationen des Molekiils. Eine Drehspiegelachse ist keine bloBe
Drehachse, sondern eine Stellungsgerade S, zu deren Bestimmungsstiicken die
(Spiegel-)Ebene gehort, auf der S per Definition senkrecht steht, und der DurchstoB3-
punkt durch diese Ebene. Das Molekiil gestattet weder die Drehung fiir sich allein
noch die Spiegelung, aus denen sich S4 zusammensetzt, sondern nur deren Zusam-
mensetzung. Dies muf} aber nicht so sein (vgl. Bild 2.4 hinsichtlich Cg, o, und Sg).
DaB das Molekiil auch jene mit S3 bzeichnete Drehspiegelung gestattet, die durch
die Drehung des E* um die z-Achse um 270° und anschli¢Bender Spiegelung an der
x,y-Ebene entsteht, zeigt Bild 2.2. Weitere Drehspiegelungen besitzt Allen nicht.

Es gilt: S,(H,) = H,, S3(H,) = H,, S3(Hy) = Hj usw.

Drehspiegelsymmetrieachsen werden in der SchonflieBsymbolik durchweg mit
dem Buchstaben S bezeichnet, und die auf diese beziiglichen Drehspiegelsymmetrie-
operationen mit S. Speziell schreiben wir dabei S,, wenn n die Zéhligkeit (Ordnung)
von § ist. Diese ist wie bei Drehsymmetrieachsen definiert (2.3.1.1.). Fiir Allen
ist n = 4. Als Referenzachse zeichnen wir nun unter den Drehsymmetrieachsen und
Drehspiegelsymmetrieachsen des Molekiils diejenige (oder eine unter mehreren) mit
der hochsten Zahligkeit aus. Wir zeichnen diese dann stets vertikal. Bei Allen ist S,
die Referenzachse. Ist bei einem Molekiil die Referenzachse selbst eine Drehsymme-
trieachse (wie z. B. bei Benzen, Bild 2.4), so kann sie auch als Hauptdrehachse be-
zeichnet werden.

Bild 2.4. Benzen-Molekiil; Spiegelsymme-
trieebenen der Typen o, o4, o,; Dreh-
achsen vom Typ C,, Referenzachse Cy bzw.
Drehspiegelachse Sg ; Inversionszentrum i

2.3.1.3.  Die Spiegelsymmetrien oy, 04, 0,
Es ist offensichtlich, dal das Molekiil die mit o} bezeichnete Spiegelung des E* an
der durch die C,-Achse und H, bestimmten Ebene o} gestattet. Gleiches gilt bez.
4 (s. Bild 2.2(a)). o4 und o} sind also Symmetrieoperationen (Spiegelsymmetrie-
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operationen), oy und oj die zugehdrigen Symmetrieclemente (Sptegels}mmett ie-
elemente) fiir das Molekiil. Bild 2.2(c) zeigt die unter der Wirkung von o oder o}
entstehenden Symmetrielagen des Molekiils. Es gilt unter anderem o4(H,) = H,,
04(H;) = Hy,04(H,) = Hj.

Spiegelungssymmetrieebenen werden in der SchonflieBsymbolik stets mit ¢ bezeich-
net, um mehrere unterscheiden zu kdnnen, auch mit o', 6", 6'”” usw. Die zugehorigen
Spiegelungen des E* bezeichnen wir dann durch o bzw. ¢’, ¢, ¢’"". Die Stellung von ¢
zur Referenzachse des Molekiils bringen wir gegebenenfalls durch einen Index an o
zum Ausdruck: v bedeutet, daf o, vertikal steht, d. h., o, enthilt die stets vertikal zu
zeichnende Referenzachse. Zwei solcher Spiegelebenen o) und o besitzt z. B. das
H,O-Molekiil (Bild 2.5). Jene Spiegelebenen unter den o, die den Winkel zwischen

Bild 2.5. H,0-Kerngeriist, Symmetrieelemente

zwei benachbarten, bez. der Referenzachse C, orthogonalen, d. h. in der Molekiil-
ebene liegenden horizontalen C,-Drehachsen halbieren, bezeichnen wir speziell mit o,
(d: dihedral). Die vertikalen Spiegelebenen oy und o} beim Allen-Molekiil sind von
dieser Art (Bild 2.2). Wir schreiben im iibrigen auch dann o4, wenn diese Spiegelsym-
metrieebene den von benachbarten o-Ebenen eingeschlossenen Winkel halbiert (Bild 2.4).
Eine Spiegelsymmetrieebene, auf der die Referenzachse senkrecht steht, liegt horizontal
und wird deshalb mit o, (h: horizontal) bezeichnet. Die Molekiilebenen des Benzen-
molekiils (Bild 2.4) oder des H,0,-Molekiils (Bild 2.6) sind o,-Ebenen. Genaueres
zum Auftreten von o,-, g4- und o,-Ebenen erfahren wir in 5.4.2. bis 5.4.5.

AuBler o} und oy besitzt Allen keine weiteren Spiegelsymmetrieebenen.

2.3.1.4. Die Identitiit £ als Symmetrieoperation

Fiihrt man S, viermal oder eine der Operationen C;, C3, C,, 0y, o4 jeweils zwei-
mal hintereinander am Allen-Molekiil aus, so nimmt dieses Jedesmal dieselbe, in
Blld22(c) Bildmitte skizzierte Symmetrielage ein — ndmlich seme Ausgangslage
(Identitat). Die Wirkung all dieser mit S,‘i, C2, Cy?, C2, 02, 64> bezeichneten
Symmetrieoperationen ist die gleiche, wie die jener Operationen, die darin besteht,
den Raum einfach festzulassen. Das Allen-Molekiil (wie jedes andere Molekiil auch)
gestattet dieses mit E bezeichnete ,,Verharren* des E? in seiner Identitit. E ist dem-
nach eine Symmetrieoperation fiir das Molekiil und heifit Identitit (identische Be-
wegung des E3). Es gilt

E(P)= P fiir alle Pe E>.
2.3.1.5. Die Gleichheit von Symmetrieoperationen

Am Allen-Molekiil gilt z. B. C,(P) = S3(P) fiir alle P e E3.

Zwei Symmetrieoperationen A, B heifien gleich (A = B), wenn jede den ganzen
Raum E3 (und nicht nur das Massenpunktsystem) in dieselbe Lage bewegt, d.h.,
wenn

A(P) = B(P) fiir alle Pe E?
gilt.
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Demnach ist C, = S3. Obwohl die Identitit E das H,0,-Molekiil (s. Bild 2.6) in
die gleiche Symmetrielage bewegt (es festldBt) wie die Spiegelung g, des E* an der
Molekiilebene, gilt doch E #* o, da E(P) = ¢,(P) nur fiir Punkte P der Molekiil-
ebene gilt.

Bild 2.6. H,0,-Molekiil (vgl. Bild 5.1)
(a) Kerngertist
(b) Symmetrieelemente

2.3.1.6. Die Symmetriemenge D,4 des Allen-Molekiils

Sie besteht aus allen verschiedenen Bewegungen des Raumes E3, die das Molekiil
gestattet, also aus dessen verschiedenen Symmetrieoperationen. Wir bezeichnen sie
aus spater ersichtlichen Griinden (5.4.5.) mit D,,4; also gilt

D, = {E, S, S%, 53, C3, C3, 04, 04}

Wegen C, = S7 wurde nur S2 in D, als Element notiert.
Bemerkung: Die Elemente von D,, sind keine Symmetrieelemente. In [10] hat der
Begriff Symmetrieelement gerade die Bedeutung von Symmetrieoperation.

2.3.1.7. Die Hintereinanderausfiihrung ,, - *“ von Symmetrieoperationen aus D,

Beispiel 2.1: Fithren wir die Symmetrieoperation S, € D,; am Allen-Molekiil aus,
so nimmt dieses die in Bild 2.2(c) unten links skizzierte Symmetrielage ein. Wenden
wir auf das in dieser neuen Lage befindliche Molekiil sofort ¢ € D,4 an, so nimmt es
die in Bild 2.2(c) Mitte rechts angegebene Symmetrielage ein. Die durch diese
Hintereinanderausfiihrung von S, und o}, Bezeichnung o} - Sy, erreichte Symmetrie-
lage wird jedoch bereits durch eine einzige Symmetrieoperation, ndmlich durch
C3 € Dyq erreicht. Da die Bewegung oy - S, und Cj nicht nur das Molekiil selbst,
sondern auch den ganzen Raum E? in dieselbe Lage transformieren, gilt 0§+ S,
= C%. Genauso findet man z. B. C - o = S3, 040y = S3,

Fiir A, Be D,q4 heifit A+ B auch Produkt aus A (1. Faktot) und B (2. Faktor). Die
Hmteremanderausfuhrung - heifft (wegen gewisser Analogien zur Zahlenmulti-
plikation) auch Multiplikation in Dyy. Wir vereinbaren ein fiir allemal die Symmetrie-
operation A - B so auf das Molekiil anzuwenden, daf$ zuerst der 2. Faktor B und dann
der 1. Faktor A angewendet wird. Fiir einen beliebigen Punkt P € E* bedeutet dies

A - B(P) = A(B(P)),

und dies ist die allgemeine Definition fiir 4 - B.

Indem wir alle Produkte 4 - B von Symmetrieoperationen A, B € D,, des Allen-
Molekiils bilden, stellen wir fest: D, ist bez. - abgeschlossen, d. h., fiir alle 4, Be D4
ist auch 4 - Be Dyg.

2.3.1.8. Die Produkttafel zu D,

Die letzte Feststellung ist am besten an der Produkttafel von D,, zu ersehen:
Diese ist nach der Art des Ergebnisspiegels eines Turniers, in welchem jeder gegen
jeden (in unserem Falle auch ,.gegen sich selbst*) spielt, aufgebaut (Tafel 2.1).
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Eingangsspalte bzw. Eingangszeile der Tafel heiBen deren Spalte bzw. Zeile Nr. 0.
Am Schnittort der i-ten Spalte mit der j-ten Zeile (i,j = 1,2, ..., 8) der Tafel steht
das Produkt aus dem j-ten Element der Eingangsspalte mit dem i-ten Element der Ein-
gangszeile. Wir stellen fest, daB alle diese Produkte — sie bilden in der Tafel eine
8 x 8-Matrix — in D,4 liegen. Da sich die Eingangsspalte in der Spalte unter der
Identitat E (also in der Spalte Nr. 1) wiederholt, kann sie einfachheitshalber auch
weggelassen werden. Entsprechend ist die Eingangszeile als Zeile Nr. 1 noch ein-
mal vorhanden und i. allg. Giberfliissig.

Tafel 2.1. Produkttafel zur Symmetriemenge D,q des Allen-Molekiils
E S. |83 |83 |G | Ccy J oy | oy 0.
E E S, |S: | S |G| CY ey |of

Se |, |sz|s2|E ot | ||y

S |82 |S; |E |S. |Cy|Cy ey |ok
S3 |83 |E |S, |82 |oh |of |Cy|Ch

oy o |cy ey |Cy sz |s. |E |82

2
3
4
C; C, | a4 Cy |od | E S; | S |83 5.
6
7
8.

Zeile
0. 1. 2. 3. 4. 5. 6. 7. 8. Spalte

2.3.1.9. Die inversen Symmetrieoperationen in D,

Die Drehspiegelung S, kénnen wir wieder riickgidngig machen, d. h. das Molekiil
in seine Ausgangslage zuriickfiihren, indem wir es um 90° im Uhrzeigersinn (mathe-
matisch negativ) um die z-Achse zuriickdrehen und an der x,y-Ebene spiegeln. Das
Molekiil gestattet diese zu S, entgegengesetzte, mit Sz* bezeichnete Drehspiegelung.
Sz! heift zu Sy inverse Symmetrieoperation und gehért wie S, zu D,q. Fiir S3* gilt
definitionsgemaB S, - Sz = S;' - Sy = E, und aus der Produkttafel liest man damit
ab: S3! = S3.

Wie fiir S, finden wir mit Hilfe der Produkttafel fiir jedes Element 4 € D,, ein
eindeutig bestimmtes inverses Element 4~' e D,y mit der definierenden Gleichung
A A = A" A4 = E Es gilt E°' = E, S;' = S3, (S)1 =53, (S~ = S,
(C)' = C3, (CI)" = C3, 04" = 0q, 047" = 0y

Die Produkttafel zeigt, daB A - B = B - A nicht fiir alle A, B € D,4 gilt. Die Multi-
plikation in D4 ist nicht kommutativ. Ferner erkennen wir E-A = A-E = A fiir
alle Elemente A€ D,y.

2.3.2. Die Symmetriemenge und Produkttafel des Wasserstoffperoxid-
Molekiils H,O0,

Mit dem H,0,-Molekiil der in Bild 2.6 angegebenen speziellen Gestalt und Lage
bez. eines rechtwinkligen x,y,z-Koordinatensystems beschéftigen wir uns hier vor
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allem mit dem Ziel, die beim Allen-Molekiil nicht vorhandenen Drehspiegelsymme-
trien vom Typ S, zu erdrtern.

Wir wollen nun beim H,0,-Kerngeriist entsprechende Betrachtungen anstellen
wie beim Allen-Modell.

2.3.2.1. Drehsymmetrie

Die einzige symmetrische Drehung ist die Drehung C, um 180° um die z-Achse,
die als Hauptdrehachse C, der Zihligkeit 2 vertikal zu stehen hat (senkrecht zur
Molekiilebene o).

2.3.2.2. Spiegelsymmetrie

Es gibt auch nur eine Spiegelung, die Spiegelung o, an der x,y-Ebene, die die
Molekiilebene o, bildet.

2.3.2.3. Identitit
Natiirlich existiert die identische Bewegung (Identitét) E.
2.3.2.4. Die Drehspiegelung S, — Inversion

Nun betrachten wir die Drehspiegelung S, = g, - C, an der aus der Drehachse
C, und der Spiegelebene o, bestehenden Drehspiegelachse S, = o, - C, durch
(0, 0).

Diese Symmetrieoperation S, bildet einen beliebigen Punkt P € E? auf jenen Punkt
P’ € E3 ab, fiir den der Koordinatenursprung (0, 0, 0) Mittelpunkt der Strecke PP’
ist: P’ = S,(P). Zum Beispielist H, = S,(H,), H, = S,(H,),aberauch 0, = 5,(0,),
0, = S,(0,). Man sagt auch, S, bewirkt eine Spiegelung des E> am Punkt (0, 0) oder
auch eine Inversion i des E* am Inversionszentrum i (i: (0, 0)). P und P’ liegen bez.
i € E® zueinander invers. Als Inversionszentrum ist i Symmetrieelement, als Inversion
ist i Symmetrieoperation fiir das H,0,-Molekiil. Dieses gestattet also die Inversion
bez. i. Das Allen-Molekiil dagegen besitzt kein Inversionszentrum.

Wir betrachten jetzt eine beliebige Drehspiegelachse S5 durch # mit durch i gehen-
der Spiegelebene. Die zugehdrige Drehspiegelung S5 des E® bewirkt offensichtlich
die gleiche Inversion i wie S,. Also sind alle diese Drehspiegelungen Sy gleich: S,
= S} = i, obwohl die Drehspiegelachsen S5 alle voneinander verschieden sind.

Es gilt i i = i* = E. Damit gehort i — wie auch die Drehungen und Drehspiege-
lungen S5 der Zéhligkeit 2 sowie die Spiegelungen zu den sog. Involutionen ¢ des E3,
die die Eigenschaft ¢ + ¢ - ¢ = E haben.

Als weiteres Beispiel fiir ein Inversionszentrum erkennen wir in Bild 2.4 den Mittel-
punkt i des Benzenringes.

2.3.2.5. Die Symmetriemenge C,;, des H,0,-Molekiils
Sie lautet
Con = {E, C;, 04,1}
Uber die Bezeichnung C,, informieren wir uns in 5.4.2.
2.3.2.6. :Die Produkttafel zu C,y,

Sie wird wie die Produkttafel von D,, aufgestellt und ist in Tafel 2.2 angegeben.
Eingangszeile und Eingangsspalte sind weggelassen worden. Die Tafel ist beziiglich
ihrer Hauptdiagonalen symmetrisch, d. h., fiir alle 4, Be C,, gilt A4- B = B- A.
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Im Unterschied zur Multiplikation in D, (Allen-Molekiil) ist die Multiplikation in
C,, kommutativ.

Tafel 2.2. Produkttafel zur Symmetriemenge C,, des H,0,-Molekiils

E C, o i
C, E i oy
o, I E C,
i o, C, E

2.3.2.7. Die inversen Elemente in C,,

Fir das zu A4 inverse Element A~' muB 4-A~' = A"+ A = E gelten. Aus der
Produkttafel liest man demgemdB ab: E-!' = E, C3' = C,, o' =0, i7' = i.
Alle Symmetrieoperationen des H,0,-Molekiils sind also ,,selbstinvers*.

2.3.2.8. Das Symmetriezentrum, Fixpunkte

Das Inversionszentrum i: (0, 0, 0) des H,0,-Molekiils bleibt unter der Wirkung
der Drehsymmetrieoperation C, unbewegt: C,(i) = i. i heiBt daher Fixpunkt bez. C,.
Aber auch alle Punkte P der Drehachse C, sind demnach Fixpunkte bez. C,: C,(P)
= P. Beziiglich der Inversion des Raumes E* an i jedoch ist 7 der einzige Fixpunkt.
ie E3 ist daher der einzige Punkt, der bez. aller Symmetrieoperationen aus C,,
Fixpunkt ist. Ein solcher Punkt heiB3t Symmetriezentrum des Molekiils. Zum Beispiel
ist der mittlere C-Kern des Allen-Molekiils (der Koordinatenursprung) Symmetrie-
zentrum dieses Molekiils (Bild 2.2). Ein Punkt O € E3, der als einziger Punkt bez. aller
Elemente der Symmetriemenge eines Massenpunktsystems M Fixpunkt ist, heifit Sym-
metriezentrum von M. Inversionszentren sind immer auch Symmetriezentren, aber nicht
umgekehrt, wie der Vergleich zwischen C;H, und H,0, zeigt. Das H,0O-Molekiil
(Bild 2.5) hat weder ein Symmetrie- noch ein Inversionszentrum, der Benzenring
(Bild 2.4) hat in seinem Mittelpunkt beides zugleich. Ein Koordinatensystem legt
man wvorteilhaft mit seinem Ursprung in das Symmetriezentrum, sofern ein solches
vorhanden ist.

Es sei noch bemerkt, daB3 alle bisher betrachteten Symmetrieoperationen als Be-
wegungen der Typen () (i), (ii), (iii) mindestens einen Fixpunkt haben, einen sogar
gemeinsam.

2.3.3.  Die Translationssymmetrien des ebenen Natriumchloridgitters (NaCl)

a) Bausteine des NaCl-Gitters sind nicht Atome, sondern Ionen: Die Na*- bzw.
Cl--Tonen bilden je ein ,kubisch allseitig flichenzentriertes Gitter*, d. h. sie zeigen
die in Bild 2.7(a) bez. eines rechtwinkligen x,y,z-Koordinatensystems skizzierten und
zum NaCl-Gitter ineinandergestellten Anordnungen, die durch die Translation
Ty, = 4(a + b) auseinander hervorgehen. Wir betrachten davon nur das ebene Gitter
in der x,y-Ebene (Bild 2.7(b)). Als dessen Einheitstranslationen gelten zwei nicht

: y
/’['
C 3 Na*
) % % Bild 2.7. NaCl-Gitter
5 N . (a) riumlich
[fI" (b) eben, Elementarzelle
¢
a) b)

2 Belger, Symmetriegruppen
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kolineare Vektoren a, b, die von einem Cl-- (oder Na*-)lon aus zu zwei unmittelbar
benachbarten Cl-- (oder Nat*-)lonen fiihren. Als Elementarzelle bezeichnen wir
das kleinste Quadrat, aus dem durch die Translationsvektoren 7 = ra + sb das
gesamte Gitter erzeugt wird, wenn r, s die Menge Z aller ganzen Zahlen durch-
laufen. Da der Vektor ra + sb hier als Symmetricoperation aufgefat wird, be-
zeichnen wir ihn durch 7 und nicht durch t.

b) Die Symmetriemenge der Dreh-, Spiegel- und Drehspiegelsymmetrien (einschl.
Inversion an i) mit dem Koordinatenursprung O = i als Fixpunkt jst nach den ent-
sprechenden Vorbildern in 2.3.1. und 2.3.2. leicht am Quadrat abzulesen.

c) Die Translationssymmetriemenge . Wegen der Kleinheit der Ionenabstinde
konnen wir uns das Gitter als unbeschrankt ausgedehnt denken. Verschieben wir
also den Raum E3® um einen beliebigen Translationsvektor 7 = ra + sb (r, s€ Z),
so kommt das Gitter wieder mit sich zur Deckung. Das Gitter gestattet also diese
Translationen 7 des E3, die deshalb Symmetrieoperationen fiir das Gitter sind und
dieses in neue Symmetrielagen verschiebt.

Die Rolle der identischen Symmetrieoperation spielt hier der Nullvektor O = 0Oa
+ Ob, der den E® und damit das Gitter festlaBt. (Hier ist der Nullvektor als Symme-
trieoperation ausnahmsweise mit O genauso wie der Koordinatenursprung bezeich-
net. Spiter sei O = 0.) Als zu T inverse Symmetrieoperation, die die durch 7" bewirkte
Verschiebung des Gitters wieder riickgdngig macht, erweist sich der zu T entgegen-
gesetzte Vektor —7 = (—r)a + (—s)b.Es gilt 7 + (=T) = 0. Mit T gehért auch
—T zur Menge T aller Translationssymmetrieoperationen des ebenen Gitters, da —r,
—seZ. Die Hintereinanderausfiihrung zweier Translationen 7, = r,a + s,b (v = 1,2)
am Gitter wird ganz natiirlich durch die Vektoraddition ,,+ realisiert: 7, + 7,
=(ry+r)a+ (s, +s)b. Mit T,, T, e T ist auch Ty + T, €%, dary + r,eZ
und s, + s, € Z gilt. T ist also gegeniiber + abgeschlossen. Da3 T als Symmetrie-
operation eine Translation des ganzen Raumes bedeutet, ist klar.

2.3.4. Symmetrieoperationen mit und ohne Fixpunkt

Wir beobachten, daB es im E* beziiglich jeder der Symmetrieoperationen Be D,
bzw. B € C,;, mindestens einen Fixpunkt O gibt: Ja, es gibt sogar stets einen fiir alle B
gemeinsamen Fixpunkt O: B(0) = 0. O wird zweckmiBigerweise als Koordinaten-
ursprung verwendet (Bild 2.2(a), 2.4, 2.5, 2.6(b)). Dagegen sind die Translationen
Te®q, T+ 0 samtlich fixpunktfrei. Fiir deren Hintereinanderausfithrung hatte sich
auf natiirliche Weise die Vektoraddition + in ¥ ergeben, wihrend wir dafiir in D,
bzw. C,, die Multiplikation - eingefiihrt hatten. Symmetriemengen, deren Elemente
einen gemeinsamen Fixpunkt besitzen, werden Anla3 zu den sogenannten Punki-
gruppen (s. 5.1.) geben.

Aufgaben

.2.1. Das Massenpunktsystem P < E? gestatte die Bewegung ¢ des E3. Was bedeutet diese Aussage

(far P und fiir ¢)?

2.2. Ein gleichseitiges Dreieck A < E® gestattet die Drehung C, um 180° um die Achse C, durch
einen Eckpunkt und den Mittelpunkt von A sowie die Spiegelung o, an der Ebene o, durch C,,
senkrecht auf A. C, tberfiihrt A in die gleiche Symmetrielage wie o,. Gilt deshalb C, = 0,?

2.3. Wir betrachten ein gleichseitiges Dreieck A und ein Quadrat [J als Punktmengen des Raumes
E3. Gib in der SchonflieBsymbolik an:

a) alle Symmetrieelemente von A und von [J,

b) die Symmetriemenge von A bzw. von [J (Bezeichunng: D3, bzw. Dyy).
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2.4. Uberlege auf der Grundlage der Losung der Aufgabe 2.3.:

a) Das’ Bortrifluorid-Molekiil (Bild 2.1.(b)) bzw. das Xenontetrafluorid-Molekiil (2.1.(c)) hat die
gleiche Symmetriemenge wie A < E3 bzw. [J < E3 (also D3, bzw. Dyy).

b) Das Ammoniak-Molekiil (Bild 2.1.(e)) bzw. das SFsCl-Molekiil (2.1.(g)) hat die gleiche Sym-
metriemenge wie A < E2 bzw. [] < E? (Bezeichnung: Cs, bzw. Cg,), d. h. wie die (entgegen der
Absprache in 2.2.2.) nur noch in der euklidischen Ebene E? betrachtete Punktmenge A bzw. [].



3. Elemente der Gruppentheorie

3.1. Gruppenbegriff

3.1.1.  Beispiele von Symmetriegruppen

3.1.1.1.  Die Symmetriegruppe des Allen- bzw. des H,O,-Molekiils

Aus den Produkttafeln zu den Symmetriemengen D, und C,,, fiir diese Molekiile
(Tafel 2.1 und 2.2) lesen wir iibereinstimmend die nachfolgend nur fiir D,, formu-
lierten gemeinsamen RegelmaBigkeiten ab:

Die Hintereinanderausfithrung ., - von Symmetrieoperationen als Multiplikation in
D,, weist jedem geordneten') Paar solcher Operationen A, Be D,y als ,,Produkt*
aus A und B wieder eine eindeutig bestimmte Operation A - B€ D,y zu. Beziiglich
beliebiger Elemente A, B, C € D4 gelten fiir - dabei die ,,Rechenregeln‘

(A) A-(B-C)=(4-B)-C,
(E) E-A=AE=A,
) A At =A"'-4A=E,

wobei es mit der Eigenschaft (E) nur ein neutrales Element E € D,y (die Identitdt,
hier auch Einselement genannt) gibt und mit (1) zu jedem A nur ein inverses A=* € Dq.
Ausgestattet mit einer solchen Verkniipfungsvorschrift -, die den Regeln (A), (E), (I)
folgt, heift D,, (multiplikativ geschriebene) Gruppe. Man nennt sie die Symmetrie-
gruppe des Allen-Molekiils. Entsprechend ist C,, die Symmetriegruppe des H,O,-
Molekiils. Wir sagen dann auch, die Symmetriemengen D,4 bzw. C,y, sind jeweils mit
einer Gruppenstruktur ausgestattet, und schreiben, um dies anzuzeigen, anstelle der
geschweiften Klammern eckige. Zum Beispiel lautet die Menge C,, = {E, C,, 0y, i}
als Gruppe C,, = [E, C,, oy, i].
3.1.1.2. Die Gruppe der Translationssymmetrien des ebenen NaCl-Gitters
Die Hintereinanderausfiihrung + von Translationssymmetrieoperationen als ,,Addi-
tion* in T weist jedem Paar solcher Operationen X, Y eine eindeutig bestimmte solche
Operation X + Y €2 als Summe aus X und Y zu, so daf fiir beliebige X, Y, ZeZ
gilt:
(A) X+(Y+2)=X+Y)+ Z,
0) O+X=X+0=X,
I X+ (-X)=-X+X=0,

wobei es mit der Eigenschaft (0) nur ein neutrales Element O € T (Nullelement ge-
nannt) gibt und mit (1) zu jedem X nur ein inverses — X € T. Ausgestattet mit einer solchen
Verkniipfungsvorschrift +, die den Regeln (A), (0), (I) folgt, heifft T (additiv ge-
schriebene) Gruppe der Translationssymmetrien des ebenen NaCl-Gitters; T = [T: T
= ra + sb fiir alle r, s€ Z].

3.1.2.  Abstraktion

Auf die in 3.1.1.1. oder 3.1.1.2. beschriebene Weise 1aft sich auch die Symmetrie-
menge S eines beliebigen Massenpunktsystems, eines Festkorpers, einer geometrischen

1) Das Paar 4, B ist ein anderes als B, A.



3.2. Weitere Beispiele von Gruppen 21

Anordnung usw. mit einer solchen Gruppenstruktur -, (A), (E), (I) bzw. +, (A), (0),
(1) ausstatten. Deshalb ist es zweckmdfig, von der konkreten Natur der Elemente von S
und jener der Multiplikation - bzw. Addition + abzusehen und den Gruppenbegriff
fiir alle Beispiele gemeinsam zutreffend — also abstrakt — zu formulieren; anstelle von
der Multiplikation oder Addition zweier Elemente (Zahlen, Symmetrieoperationen,
Vektoren usw.) werden wir dann allgemein von deren Verkniipfung sprechen und
ersetzen - und + durch das gemeinsame Zeichen o fiir die Verkniipfung. Ferner
werden wir S durch G (G: Gruppe), E oder O neutral durch N sowie A~' oder -4
durch A* bezeichnen.

3.1.3.  Gruppenaxiome

Definition 3.1: Eine nichtleere Menge heifst Gruppe G, wenn in ihr eine Verkniipfung
L0 existiert, durch die jedem geordneten Paar von Elementen A, B € G ein eindeutig
bestimmtes Element A Be G als Ergebnis der Verkniipfung zugeordnet ist. Dabei
sollen folgende Verkniipfungsregeln (Gruppenaxiome) fiir beliebige Elemente A, B,
C e G erfillt sein:

(A) das Assoziativgesetz Ao (B> C) = (4> B)o C,

(N) die Existenz des neutralen Elementes, d. h., es gibt genau ein Element N € G,
das neutrale Element der Gruppe, mit der Eigenschaft Ac N = No A = A,
(I) die Existenz des inversen Elementes, d. h., zu A € G gibt es genau ein soge-

nanntes inverses Element A'€ G mit der Eigenschaft A A = Ao A' = N.
Gilt dariiber hinaus in der Gruppe G das
(K) Kommutativgesetz A< B = Bo A,

so heifft G kommutative oder abelsche') Gruppe.

Deutet man (z. B. im Sinne von 3.1.1.1.) die Verkniipfung - als Multiplikation -,
das neutrale Element N als Einselement E und schreibt fiir das inverse Element A*
jetzt A=, so spricht man von G als von einer multiplikativ geschriebenen oder mul-
tiplikativen Gruppe. Analog heiBt G additiv geschriebene oder additive Gruppe, wenn
wir (z. B. im Sinne von 3.1.1.2.) o als Addition + deuten, N als Nullelement O und A*
= —A als zu A entgegengesetztes Element. Additive abelsche Gruppen heiffen auch
Moduln.

3.1.4.  Endliche Gruppe, Ordnung einer Gruppe

Definition 3.2: Eine Gruppe G, die als Menge aus endlich vielen Elementen besteht,
heifpt endlich, die Anzahl g ihrer Elemente heift ihre Ordnung. Andernfalls heifit G
unendlich, auch Gruppe unendlicher Ordnung.

Beispiel 3.1: Die Symmetriegruppe C,, = [E, C,, 0y, i] des H,0,-Molekiils. hat
vier Elemente. Sie ist also endlich, und zwar von der Ordnung g = 4. Die Gruppe &
der Translationssymmetrieoperationen des NaCl-Gitters ist von unendlicher Ord-
nung.

3.2. Weitere Beispiele von Gruppen

Das Rechnen mit komplexen Zahlen, Matrizen, Vektoren setzen wir als bekannt
voraus (Bd. 1 und Bd. 13 dieser Reihe).

') Niels Henrik Abel (1802-1829), norwegischer Mathematiker.

D.3.1

D.3.2
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3.2.1.  Gruppenstruktur verschiedener Zahlbereiche

a) Die Menge K der komplexen Zahlen z = x + iy (i* = —1; x, y € R) bildet
offensichtlich bez. der Addition + als Rechenoperation o in K, bez. N = 0 =
0 + i0 € K als Nullelement und z' = —z = —x + i(—y) € K als dem zu z inversen
Element einen Modul.

b) Beziiglich der Multiplikation - von komplexen Zahlen als Verkniipfung o in K,
bez N=E=1=1 + i0eK als Einselement und der zu z # 0 reziproken Zahl
1/ze K als dem zu z inversen Element z-! bildet K ohne Null eine multiplikative
abelsche Gruppe.

¢) Unter den gleichen Voraussetzungen bzw. Annahmen wie in a) und b) fir K
bildet die Menge R der reellen Zahlen — wie K selbst — eine additive wie gleichzeitig
multiplikative abelsche Gruppe, letzteres ohne die Zahl Null. Da iiberdies in K und R
die Addition mit der Multiplikation durch das Distributivgesetz

(D) a-b+c)=a-b+a-c

verbunden ist, nennt man K und R Zahlkérper und allgemein jede Menge dieser
Struktur Korper.

Algebraische Struktur nennen wir jede nichtleere Menge mit einer (oder mehreren)
Verkniipfungen einschlieBlich der dafiir giiltigen Rechenregeln, z. B. Gruppenstruk-
tur, Korperstruktur u. a. (vgl. Bd. 13, 3.4.).

d) Die Menge der ganzen Zahlen Z bildet beziiglich der Addition +, bez.
N = 0 = 0 als Nullelement und g* = —g als dem zu g € Z entgegengesetzten Ele-
ment einen Modul. Beziiglich der Multiplikation - kann Z keine Gruppe bilden, da
die zu ge Z inverse Zahl g = ¢! = 1/g (g # 0) fir g & 1 keine ganze Zahl ist.
Also gilt g=' ¢ Z, entgegen der Forderung (I).

3.2.2.  Moduln aus n-Tupeln reeller Zahlen und aus Vektoren

a) R? sei die Menge der geordneten Paare reeller Zahlen. Z = (x, y) und W = (u, v),
x, y, u, v € R, heilen gleich, Z = W, genau dann, wenn x = u und y = v gilt. Als
Verkniipfung o in R? betrachten wir die Addition + gemdBZ + W = (x + u, y +v).
Wir stellen fest: Mit Z, We R? ist auch Z + We R2. Die Neutralititseigenschaft
(N) besitzt das Paar N = O = (0, 0) € R? (das Nullelement) und nur dieses. Invers
(entgegengesetzt) zu Z ist allein das Paar —Z = (—x, —y) € R%. Ferner gelten
offensichtlich das Assoziativgesetz (A) und das Kommutativgesetz (K) fiir + in R2.
R? bildet also bez. +, N = (0,0), Z' = —Z eine additive abelsche Gruppe, d. h.
einen Modul.

Unter den gleichen Annahmen wie fiir R? gilt diese Aussage auch fiir die Menge
R3 aller geordneten Zahlentripel (x, y, z) reeller Zahlen x, y, z und allgemein fiir den
sogenannten R" (n = 1,2,3,...;R! =

b) Von Interesse (vgl. 2.3.3. a)) ist auch dle Menge Z* < R? aller geordneten Paare

= (u, v) ganzer Zahlenu, v e Z. DaB Z? (wie auch Z? und allgemein Z") unter den
gleichen Annahmen wie jene fiir R? (bzw. R® oder R") einen Modul bildet, ist offen-
sichtlich.

¢) Die Menge der Vektoren z der Ebene E? bildet einen Modul V2, wenn wir die
bekanntlich assoziative und kommutative Vektoraddition gemaBl dem Krifteparal-
lelogramm in V2 betrachten, fiir N den Nullvektor o € V? setzen und als zu z entge-
gengesetzten Vektor —z € V2 betrachten.

Die gleiche Aussage gilt fiir die Menge V* der Vektoren des Raumes R3.
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3.2.3. Matrizengruppen

Eine quadratische Matrix A heifit regulir, wenn die Determinante det A = 0 ist,
also zu A die inverse Matrix A=" existiert (vgl. Bd. 13, 1.). Wenn eine Menge M,
aus reguldren n-reihigen Matrizen hinsichtlich der Matrizenmultiplikation - als Ver-
kniipfung o in M, eine Gruppe bildet, heifit diese lineare Matrizengruppe — kurz
Matrizengruppe. Im folgenden betrachten wir die klassischen Matrizengruppen,
die uns interessieren. K sei dabei die Menge der komplexen Zahlen, die R umfaft.

3.2.3.1.  Die allgemeine lineare Gruppe GL(n, K)

M, sei die Menge aller reguliren Matrizen 4 = [a,,], a,,€K; v,u =1,...,n.
Mit 4, Be M, ist auch das Matrizenprodukt A - B reguldr. Nach dem Multiplika-
tionssatz fiir Determinanten ist ndmlich det (4 - B) = det 4 det B + 0. Ferner
folgt aus 4eM, auch 4~'eM,, denn wegen A-A~'=E ist det (4-47")
=det Adet A~ = det E = 1, also det A~! = 0.

Bekanntlich ist die Matrizenmultiplikation - assoziativ, also gilt Axiom (A).
Ferner stellen wir fest, daB die Einheitsmatrix £ € M, und nur diese die in (N) ge-
forderte Neutralitdtseigenschaft bez. - besitzt und die zu 4 € M, inverse Matrix
A~' e M, Axiom (1) erfiillt.

Beziiglich -, N = E, A' = A~ bildet M,, eine multiplikative Gruppe - die soge-
nannte allgemeine lineare Gruppe GL(n, K). Schrinken wir K auf R ein, so kénnen
wir fiir sie auch kiirzer GL(n) schreiben.

3.2.3.2. Die orthogonale Gruppe O(n)

Die Matrix A" = [a,,] nennen wir zu A = [a,,] transponiert. Eine n-reihige qua-
dratische Matrix A heifit orthogonal, wenn A - AT = E ist (E: Einheitsmatrix). Wegen
det (4 A") = det A det AT, det AT = det 4 und det E =1 gilt det4 = +1 % 0.
Eine orthogonale Matrix A ist also reguldr: A € GL(n).

Es sei O(n) = GL(n) die Menge aller n-reihigen orthogonalen Matrizen. Mit
A,BeO(n) ist auch A-BeO(n). Wegen A-AT = B-B" = E ist ndmlich
(A*B)(A-B)"=(A-B)-(B"-A") = A (B- B")- AT = E. Ferner ist mit AeO(n),
auch 4~' e O(n) denn wegen AT = 47" und (AN)T = A4 ist A - (AHT =
AL (AT =

Da die Matrlzenmulupllkatlon auch in O(n) assoziativ ist, da ferner N = E€O(n)
die einzige Matrix mit der Neutralitdtseigenschaft (N) und 4! € O(n) die einzige
gemiB (I) zu A € O(n) inverse Matrix ist, bildet O(n) eine multiplikativ geschriebene
Gruppe. O(n) heifit orthogonale Gruppe (auch vollstindige orthogonale Gruppe).

3.2.3.3. Die eigentlich orthogonale Gruppe O*(n)

Es sei O*(n) = O(n) die Menge aller orthogonalen n-reihigen Matrizen 4 mit
det A = 1. Sie heiBen eigentlich orthogonal.

Mit 4, Be O*(n) ist auch 4 - Be O*(n). Mit A und B ist ndmlich auch 4 - B ortho-
gonal, und wegen det 4 = det B = 1 gilt det (4 - B) = det 4 det B = 1. Ferner
ist mit 4 € O*(n) auch 4-'e O*(n), denn A~! ist orthogonal und det (4 - A~Y)
=detAdet A =ldetA™' = 1.

In O*(n) gelten offensichtlich das Axiom (A), fir N = Ee O*(n) das Axiom (N)
und fiir A=* € O*(n) als inverse Matrix zu A4 auch (I). O*(n) besitzt diesbeziiglich
die Struktur einer multiplikativen Gruppe. O*(n) heifit eigentlich orthogonale Gruppe.

3.2.3.4. Die unitire Gruppe U(n)

Es sei U = [u,,] eine n-reihige quadratische Matrix, deren Elemente u,, = xv“
+ iy, € K komplexe Zahlen sind. Die zu u,, konjugiert komplexen Zahlen u,, =

— iy,, bilden dann die zu U konjugiert komplexe Matrix U = [u,,]. U hetﬁt umtar,
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wenn U- U™ = E gilt. Wegen det U" = det U = det U und det E = 1 folgt aus
det (U- U") = det Udet U fiir den Betrag von det U: |det U| = 1. det U ist also
eine unimodulare Zahl. U ist eine reguldre Matrix, also U € GL(n, K).

Es sei U(n) = GL(n, K) die Menge aller n-relhxgen unitiren Matrizen. Mit U,, U,
e U(n) ist auch U, - U,e U(n), denn mit U, - Uf = U,- U} = E gilt (U, U,)
x (U - Uz)T = (U;- Uz)'(Ux : (72)T = (U, U,)- (UT UD =U - (Uz Uz)_ UT
= E. Ferner folgt U~' € U(n) aus Ue U(n): DaB U unitir ist, bedeutet U =
U, und damit gilt U7 = (U = (0" =(U)' =U. Also ist U?

SO = -U=E.

In U(n) gllt das Assoziativgesetz (A), fiir N = Ee U(n) ist (N) erfiillt, und U-'
€ U(n) ist die einzige gemiB (I) zu U e U(n) inverse Matrix. U(n) ist also eine multi-
plikative Gruppe — die unitire Gruppe.

3.2.3.5. Die eigentlich unitire Gruppe SU(n)

Eigentlich unitdr heift eine Matrix U e U(n), wenn fiir sie det U = 1 ist. Ganz so
wie die eigentlich orthogonale Gruppe bildet auch die Menge der eigentlich unitiren
Matrizen SU(n) < U(n) eine multiplikative Gruppe — die eigentlich unitérd Gruppe.

3.2.3.6. Die reelle und die komplexe spezielle lineare Gruppe SL(») und SL(n, K)

Nach dem Vorbild der Gruppen SU(n) bzw. O*(n) bildet auch die Menge der
Matrizen A € GL(n, K) mit det 4 = 1 bez. der Matrizenmultiplikation eifie multi-
plikative Gruppe. Fiir K bzw. R heifit sie komplexe bzw. reelle spezielle lineare
Gruppe und tragt die Bezeichnung SL(n, K) bzw. SL(n, R) = SL(n).
3.2.3.7. Die Enthaltenseinsbeziehungen zwischen den Matrizengruppen

Es gilt offensichtlich fiir R (und analog fiir K):

O*(n) = SL(n)
n n
O(n) < GL(n).

Als Mengendiagramm ist dieser Sachverhalt in Bild 3.1 dargestellt.

ey
V/In) SLin) }
_L/ 1 Bild 3.1. Enthaltenseinsbeziechungen zwischen Matrizen-
[ — . gruppen

3.2.4. Permutationsgruppen
Einzelheiten zu Permutationen sind in Bd. 1 dieser Reihe, 6.2., dargestellt.
a) Begriff der Permutation

Beispiel 3.2: Im Allen-Molekiil bezeichnen wir die vier H-Atome H,, H,, H;, H,
nur noch mit 1, 2, 3, 4 (Bild 2.2(a), (c)). Wir betrachten die Drehspiegelung S, € D,,.
Durch S, geht tiber: 1 auf den Platz von 2 (S4(1) = 2), 2 auf 3 (S4(2) = 3), 3 auf 4
(S4(3) = 4), 4 auf 1 (S4(4) = 1). In tbersichtlicher Weise 148t sich die Wirkung von
S, auf das Molekiil dann durch das Schema z, = (]2 § i ?) beschreiben. Dieses
bezeichnen wir deshalb nicht mit S,, weil es nur den Wechsel der Plitze der Atome
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beschreibt, nicht aber die Bewegung des Raumes. In =z, ist es allein wichtig zu wis-
sen, welches Atom Nr.« durch S, den Platz von welchem Atom Nr. § eingenom-
men hat, also daB in 7, « iber f steht (x, = {1, 2, 3, 4}).

Dabher sind als gleich zu betrachten die Schemata

. _(3241 _(2413 _(4321)
1 4312)‘ 3124)‘ 1432

Definition 3.3: Die durch das Scheman = » 12] ; Z erklirte eineindeutige D.3.3
1 P2 -oe Px-oo P

Abbildung n(x) = p, der Zahlenmenge {1,2, ..., «, ..., n} auf sich heifit eine Permu-

tation der Elemente 1, ..., n. Die Permutationen m und o nennen wir gleich,

12..
7 =0, genau dann, wenn n(x) = o(x) fir alle x = 1,...,n gilt. ¢ = ( n)

12...n
heift identische Permutation,n~' = (lp ! {2]2 i:") heift die zu 7v inverse Permutation.

Beispiel 3.3: Nach dem Vorbild von Beispiel 3.2 stellen wir zu jeder der Symmetrie-
operationen E, S,, S7, S3, Cj;, ... € D,y die entsprechende Permutation von
1,2, 3, 4 fest und notieren sie in der Tafel 3.1. Ferner ermitteln wir die zugehorigen

. 4
inversen Permutationen. Zu =z, z. B. gehért a7! = (2 . 1) = (l 23 ) = 73.

1234/ 4123

Tafel 3.1

Symmetrie- Permutation Zyklen- Inverse Inverse

operation darstellung Symmetrie- Permutation
Operatlon

E e =153 [Fooo@|E :

S, 7,=(;§3‘1‘) —(1234) s -

sz - (;i?;‘) —(13)e4 |s2 -

s nss(ifgg) = (1432 S, 2

¢ n=(133 |=0269 | 7

oy n=(43a1) |=09ey o 72

o n=(1335) [~WeHO |4 o

o 6y = (; ; ? :) —AHQ@ |as o

b) Verkniipfung von Permutationen

L (1234 (1234
Beispiel 3.4: 7, y, = (2 14 1) (2 143
1, 2, 3, 4 bedeuten: Durch y, wird 1 in 2, durch 7, 2 in 3 iberfiihrt. 7, - y, liberfithre
dann 1 in 3. Analog gilt y,:2 > 1, 7;: 1 - 2, also gelte jetzt , - y,: 2 — 2 usw.

) soll folgende Permutation der Zahlen
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; ; ? 2) = ¢,, und dem entspricht das Produkt
S4+ C; = o} der zugehdrigen Symmetrieoperationen (Tafeln 2.1, 3.1). Wir kénnen
leicht feststellen, daB solche Entsprechungen fiir alle Permutatlonen bzw. Symmetrie-

operationen zum Allen-Molekiil gelten (benutze Tafeln 2.1 und 3.2).
Definition: Unter dem Produkt der Permutationen m und T der Zahlen 1,2, ...,
, ..., n verstehen wir jene Permutation 7 -t von 1, ..., n, die wir erhalten, wenn wir
zuerst die Abbildung © und daraufhin z ausfiihren: z - ©(x) = a(r(x)) fira = 1,2, ..., n.
Bemerkung: Mit Riicksicht auf die gleiche Absprache fiir das Produkt aus Symmetrie-
operationen in 2.3.1.7. fithren wir in 7 - 7 ausdriicklich zuerst T aus und dann 7.

Wir stellen fest (Tafel 3.2):

Insgesamt erhalten wir 7z, -y, = (

(1) Das Permutationsprodukt ist i.allg. nicht kommutativ. Wir finden z. B.
Y1 @y = oy abweichend von 7, -y, = 0,.

2) Die identische Permutation, und nur sie, verhilt sich neutral:
e =m- ¢ = m gilt fiir jede beliebige Permutation 7.

3) Das Produkt aus 7w und 7" liefert stets e: n-n' =n~' 7w =¢e Nurn'

ist zu 7 invers (Tafel 3.1).

¢) Permutationsgruppen

Es gibt bekanntlich n! verschiedene Moglichkeiten, die Elemente 1, 2, ..., n neben-
einander anzuordnen, d. h., es gibt genau n! verschiedene Permutationen der Zahlen
1,2, ..., n. Die Menge dieser Permutationen bezeichnen wir allgemein mit €,.

Tafel 3.2. Gruppentafel der Gruppe I, der Permutationen, die das Allen-
Molekiil gestattet

&€ Ty My T3 Yy Y2 01 O

Ty Ty A3 € Oy Oy Yy Y2

Ty T3 € T Y2 Y1 02 Oy

T3 € Wy T Op Oz Y2 Vi

Y1 Oy Y2 0 & T Ty T3

Y2 02 Y1 01 Ty € T3 T

Oy Y2 02 Y1 T3 Ty & T

Oy Y1 Oy Y2 Ty T3 Ty &

Nach b) wissen wir: mit &, 7 € €, ist auch z - 7€ €,. Wir lberpriifen ferner, dal
diese Multiplikation assoziativ ist: z - (7-9) = (m- 7)o gilt fir alle 7, 7,0€&,.
Nach b), (1), (2) und (3) wissen wir daher: beziiglich der Multiplikation von Permu-
tationen, der identischen Permutation ¢ als Einselement und z~* als der zu v inversen
Permutation bildet &, eine multiplikative nichtkommutative Gruppe.

Definition 3.5: &, heifit symmetrische Gruppe (der Ordnung n!)

Beispiele 3.5: Die 3! = 6 verschiedenen Permutationen der Dinge 1, 2, 3 bilden die
symmetrische Gruppe &;. — Vier Dinge verursachen die Gruppe €, der Ordnung
4! = 24. — Greifen wir aus &, jene Permutationen heraus, die das Allen-Molekiil
gestattet (Tafel 3.1), so bilden diese bereits eine Gruppe /1, < &, fiir sich — eine
sogenannte Untergruppe von @,. Die Gruppentafel von /7, zeigt Tafel 3.2.

Bemerkung: Ein Molekiil, das u. a. n gleichartige Atome besitzt, gestattet also i. allg.
nicht die Gesamtheit aller n! Permutationen der o,. Es kann Permutationen geben,

die wie z.B. p = ({ i ; ;‘) € o, bei Allen (Bild 2.2) Bindungen zwischen Atomen
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zerreifien und so keiner Deckbewegung des Kerngeriists entsprechen. Deshalb ist

4
d) Gerade und ungerade Permutationen

Definition: Die Spalten  ? in der Permutation m stehen in Inversion, wenn « < 8, D.3.6

Po Pp
aber p, > p; gilt. 7w heift (un-)gerade, wenn inx eine (un-)gerade Anzahl von Inversionen

auftritt.

Beispiel 3.6: m, (Tafel 3.1) besitzt drei Inversionen, ist also ungerade. Ferner sind
7y, 04,0, ungerade, &, 7,,y,,y, dagegen gerade Permutationen. Letztere entspre-
chen den (eigentlichen) Drehungen, erstere den Drehspiegelungen und Spiegelungen
am Allen-Molekiil.

Ohne Beweis — aber am Beispiel der Gruppe &, leicht zu demonstrieren — nehmen
wir zur Kenntnis: Die geraden Permutationen in der Gruppe €, bilden eine Gruppe
der Ordnung n!|2, die sogenannte alternierende Gruppe ,,.

e) Zyklenschreibweise von Permutationen

Beispiel 3.7: Wir beobachten (Tafel 3.1), daBl in 7, 1 -2, 2-3, 354, 41
ineinander tbergehen, was wir kurz durch 7, = (123 4) bezeichnen und einen
Zyklus nennen wollen. In 7, liegen demgemalB zwei Zyklen vor: 1 — 3, 3 - 1 ver-
ursacht den Zyklus (1 3) und 2 — 4, 4 - 2 den Zyklus (2 4). Deshalb schreiben wir
7, = (13)(24). In der Tafel 3.1 sind sdmtliche Elemente von /1, in dieser Zyklen-
schreibweise angegeben.

3.3. Die Verkniipfung der Gruppenelemente

3.3.1.  Rechnen in multiplikativ geschriebenen Gruppen G

a) Produkte aus n Elementen

Produkte aus drei Elementen 4, B, C € G erhalten dadurch ihren Sinn, daf} wir
sie auf die bereits erklarten Produkte aus zwei Faktoren zuriickfiihren: Wir kénnen
definieren

A-B-C=A-(B-C) oder A-B-C=(4-B)-C,
was aber nach dem Assoziativgesetz (A) zum gleichen Resultat fiihrt. Allgemein
gilt (nach induktiven Uberlegungen) fiir beliebige 4,, 4,, ..., 4,€ G,neN:

A Ay ... A, = A, (A5 ... 4,).
b) Potenz
Falls A, = A, = ... = A, = A ist, schreiben wir obiges Produkt als Potenz
A Ay .. A, =A-A...A=A"
Dann gelten offensichtlich die Potenzgesetze
AT AT = A (AT =A™ moneN.
Definieren wir ferner
A° = E (Einselement von G) und 4™ = (4~')", meN,
so diirfen n, m € Z auch ganze Zahlen sein. Aus X = (4 B)~! folgt X- A-B =E,d. h.
X =B 4" Also gilt
(A-B)"' = B! - A"! fiir beliebige 4, B G.
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¢) Gleichungen

Ein unbekanntes Element (Unbekannte) X € G, das fiir gegebene Elemente 4, Be G
der Gleichung A4 - X = B geniigt, bestimmen wir durch Multiplikation der Gleichung
von links hermit A=': 4=' - (A-X)=(A"'-A)-X=E-X=X= A" B. Analog
wird die Gleichung X - 4 = B durch X = B- A" erfiillt. Die Lsungen sind jeweils
eindeutig bestimmt.

3.3.2.  Rechnen in additiv geschriebenen Gruppen G

Alles vollzieht sich so wie bei den Produkten in 3.3.1.; wir definieren fiir beliebige
A, B, C,A;jeG(j=1,....n;neN):

a)A+ B+ C=A+ (B+ C)bzw. allgemein 4, + A, + ... + 4, =Y 4,
=A, + (4, + ... + 4,), v=1

b) A+ A+ ...+ A =nA fir n Summanden A(= A, = A4, ... = 4,). Dann
gelten die Rechenregeln

mA + nd = (m + n)A und m(nA) = mnA; m,neN.

Definieren wir noch
04 = O (O: Nullelement von G,0€ Z) und —mAd = m(—A), meN,

so gelten diese Regeln auch fiir m, n € Z. Ferner kénnen wir zeigen:
—(A+B)=-B-4
und fiir abelsche Gruppen #(4 + B) = nA + nB, neZ.

¢) Die Auflésung einer Gleichung 4 + X = B fiir gegebene Elemente 4, Be G
nach der Unbekannten X € G erfolgt durch die Addition von —4 von links zu
beiden Seiten der Gleichung. X = —4 + B ist die eindeutig bestimmte Ldsung.
Analog 16sen wir X + 4 = B.

3.3.3.  Gruppentafeln

a) Wir betrachten noch einmal die Produkttafeln (Tafeln 2.1, 2.2, 3.2) der Sym-
metriemengen D,4, C,;, und der Permutationsgruppe /7,. Ubereinstimmend lesen
wir an ihnen u. a. folgende RegelmaBigkeiten ab, die wir nachfolgend nur fiir D,
notieren:

(1) In jeder Zeile und in jeder Spalte der Matrix aus den Produkten A - Be D,q
tritt jedes Element aus D4 genau einmal auf.

(2) Es gibt genau eine Zeile und genau eine Spalte in dieser Matrix, die mit der
Eingangszeile bzw. Eingangsspalte der Produkttafel iibereinstimmt.

3) Das durch (2) festgelegte Element E € D, (die Identitit bzw. das Einselement)
tritt in der Matrix symmetrisch zur Hauptdiagonalen auf.

4) Multipliziert man die Zeile hinter dem Element B der Eingangsspalte ele-

mentweise von links mit A € D4, so erhdlt man die Zeile hinter dem Ele-
ment A - B der Eingangsspalte.

D.3.7 Definition 3.7: Eine Produkttafel aus den Elementen einer endlichen Menge G, die die
Eigenschaften (1) bis (4) besitzt, nennen wir Gruppentafel oder (Cayleysche) Struktur-
tafel fiir G.

Folgerung 3.1: Eine endliche Menge G, die mit einer Gruppentafel ausgestattet ist,
besitzt die Struktur einer Gruppe.



3.3. Verkniipfung der Gruppenelemente 29

Beweis: Das Assoziativgesetz (A) folgt aus (4), die Existenz des Einselementes (E)
aus (2), jene des inversen Elementes — also Axiom (I) - folgt aus (1) und (3). &
Gilt fiir die Produkttafel von G — so wie z. B. fiir jene der Symmetriemenge C,;
von H,0, - iiberdies noch die Eigenschaft:
(5) Die Matrix aus den Produkten A - Be G ist (bez. ihrer Hauptdiagonalen)
symmetrisch,

so gilt in G das Kommutativgesetz (K). G ist dann also eine abelsche Gruppe. D,4
ist demnach keine abelsche Symmetriegruppe.

Die Eigenschaften (1) bis (5), die Definition 3.7 und die Folgerung 3.1 gelten auch,
wenn wir ,,Multiplikation‘ durch ,,Addition‘* und E durch O ersetzen.

Sind wir im Besitz der Gruppentafel fiir eine endliche Gruppe G, so beherrschen wir
das Rechnen in G vollstindig. G kann also durch diese Tafel als gegeben angesehen
werden. Beispiel :

b) Die Kleinsche Vierergruppe: Zu der endlichen Menge {4, B, C, D} geben wir
uns den Forderungen (1) bis (5) gemaB folgende Produkttafel vor und konstruieren
dadurch auf dieser Menge eine abelsche Gruppenstruktur (Tafel 3.3). Mit dieser
Gruppentafel ausgestattet heit diese Menge die Kleinsche Vierergruppe
V =[4, B, C,D]. A = N = Eist das Einselement in V.

3.3.4. Isomorphie - abstrakte Gruppe - Homomorphie

a) Das Kerngertist des H,0-Molekiils (vgl. Bild 2.5) gestattet die Drehung C,
des E* um 180° um die (Haupt-)Drehachse C,, die beiden Spiegelungen o, o} an
den Spiegelebenen o), o} des Molekiils und natiirlich die Identitdt E. Ausgestattet
mit Tafel 3.4 als Gruppentafel bildet die Symmetriemenge {E, C,, oy, ¢!’} dann die
Symmetriegruppe C, = [E, C,, oy, ¢7/] des H,O-Molekiils.

Tafel 3.3. Gruppentafel der Kleinschen Vierergruppe

A B C D
A A B C D
B B A4 D C
C C D A B
D D C B 4

Tafel 3.4. Gruppentafel der Symmetriegruppe C,, des H,O-Molekiils
E C, o, o)

E E C, o, o
C, C, E o' o,
v "

o, o o E C,
a) o o C, E

b) Auf diese Tafel 3.4 legen wir nun passend (erste Zeile bzw. erste Spalte auf
erste Zeile bzw. erste Spalte) die Tafel 2.2 der Symmetriegruppe C,, des H,O,-Mole-
kiils. Ferner abstrahieren wir von der konkreten Bedeutung der Gruppenelemente,
indem wir diese nach der Reihenfolge ihres Eingangs in die Tafeln neutral durch
A, B, C, D umbezeichnen.

Dabei stellen wir fest: (1) Die Gruppentafeln von C,; und C,, stimmen iiberein
(sie sind deckungsgleich); (2) sie stellen gerade die Gruppentafel (Tafel 3.3) der
Kleinschen Vierergruppe V dar.

Definition 3.8: Zwei endliche Gruppen G, G’ heifien zueinander isomorph, in Zeichen:
G =~ G', wenn ihre Gruppentafeln iibereinstimmen — gegebenenfalls nach geeigneter

D.3.8
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Vertauschung der Elemente ihrer Eingangszeilen bzw. Eingangsspalten und Abstrak-
tion von der konkreten Bedeutung ihrer Elemente.

Die Tafeln 3.3 und 3.4 sind so angegeben, daB3 fiir (1) eine solche Vertauschung
unndtig ist; allgemein ist jedoch keine Reihenfolge fiir die Elemente einer Tafel
vorgeschrieben.

Beispiele 3.8: Demnach gilt also C,, =~ C,,. Weitere I[somorphismen lauten:
Co, = Chy, Cyy = Cyy, Cy, 2 D,,Ch, = D,,Coy @ D,. Dabei  bedeuten C,q
= [E, C,,04,0/]und D, = [E, C,, C;, C5] jene Gruppen, die wir als Teilmengen
der Symmetriegruppe D,, des Allen-Molekiils nach deren Gruppentafel (Tafel 2.1)
erhalten (C, = S3; vgl. auch Tab. 3.4.2. b)). Die Feststellung (2) trifft offenbar auch
auf die Gruppen C,,4 und D, zu. Die Kleinsche Vierergruppe V ist also der gemein-
same Vertreter der Gruppen C,q4, C,p,, C,,, D, und in diesem Sinn der Vertreter der
Klasse aller zueinander isomorphen Gruppen C,4 = C,, = C,, = ..

Diese nennen wir eine Isomorphieklasse und die Kleinsche Vlerergruppe als Reprisen-
tant der Klasse abstrakte Gruppe. In dieser Bedeutung verwenden wir die beiden am
Beispiel eingefiihrten Begriffe ganz allgemein.

Der Vergleich der Tafeln 2.1 und 3.2 zeigt: Die Symmetriegruppe des Allen-
Molekiils ist isomorph zur Gruppe 71, der Permutationen, die dieses Molekiil ge-
stattet. Es ist nicht schwer, die Symmetriegruppe C,, des Molekiils SF;Cl (Bild 2.1g)
zu ermitteln und festzustellen, daB auch sie zu D,4 isomorph ist: I7, =~ D,y = C,,
liegen in einer Isomorphieklasse.

¢) Aufgrund des Gleichheitsbegriffes fiir Symmetrieoperationen bzw. Permutationen
konnen zwei verschiedene solche Operationen mitunter die gleiche Permutation der
Atome an einem Molekiil hervorbringen (wie z. B. an H,O in Bild 2.5 C, und ¢/
oder E und ¢¢). Dann ist die Eineindeutigkeit der Abbildung zwischen der Sym-
metriegruppe und der entsprechenden Permutationsgruppe, die das Molekiil gestat-
tet, gestort, und statt eines Isomorphismus zwischen diesen beiden Gruppen kann
man gemaB 3.3.4.f) i. allg. nur noch von emem Homomorphismus sprechen (Bei-
spiel: H,O oder CO,).

d) Das Rechnen in zueinander isomorphen Gruppen — also in einer Isomorphieklasse —
vollzieht sich nach ein und demselben Rechenschema (Kalkil). Wir sagen auch, die
Gruppen einer Klasse haben die gleiche Gruppenstruktur. Es geniigt also z. B., Grup-
pentheorie in der Kleinschen Vierergruppe V zu treiben, um sogleich iiber die grup-
pentheoretischen Eigenschaften aller Gruppen der Isomorphieklasse zu V Bescheid
zu wissen, und dies gilt ganz allgemein. Molekiilen, deren Symmetriegruppen zur
gleichen abstrakten Gruppe gehéren, gleichen sich in jenen Eigenschaften, die allein
von diesen Gruppen abhéngen, und konnen so zu einer (Isomorphie-)Klasse zusam-
mengefal3t werden.

Eine Gruppe, in der nicht wie in V gerechnet wird, die also nicht in die Isomorphie-
klasse {C,4, Con, Csy, Dy, ...} gehort, ist z. B. S, = [E, S,, S7, S7] < Dy, deren
Gruppentafel durch die linke obere Teilmatrix innerhalb der Tafel 2.1 zu D,, ge-
bildet wird. S, liegt in einer Isomorphieklasse, zu der als abstrakte Gruppe die zykli-
sche Gruppe Z, der Ordnung 4 (vgl. 3.5.1.) gehort.

Zu vorgegebener natiirlicher Zahl g gibt es eine endliche Anzahl n = n(g) verschie-
dener abstrakter Gruppen der Ordnung g, z. B.:

g‘12345678122448

ne) | 11121215 515 3%

e) Isomorphie zwischen unendlichen Gruppen: Legen wir die Gruppentafeln von zwei
endlichen Gruppen G =~ G’ iibereinander, z. B. die von C,, (Tafel 3.4) auf jene von
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C,, (Tafel 2.2), so bewirkt dies eine eineindeutige Abbildung') ¢: G — G'. Jeweils
libereinanderliegende Elemente werden aufeinander abgebildet; z. B. ist ¢: C,, —» C,y
durch @(E) = E, ¢(C,) = Cs, ¢(0y) = gy, ¢(i) = oy definiert. ¢ hat offenbar die
Eigenschaft:

@p(XoY)=g@X)oqY) firalleX, YeG.

Wir sagen dann, die Abbildung ¢ ist relationstreu. Zum Beispiel gilt ¢(oy, - i)
= @(on) - (i), p(E - i) = (E) - ¢(i) (Tafel 3.4).

Umgekehrt bedeutet die Existenz einer solchen relationstreuen eineindeutigen
Abbildung ¢: G - G’, daB G zu G’ isomorph ist.

G und G’ seien jetzt endliche oder unendliche Gruppen.

Definition 3.9: G heifit zu G' isomorph, in Zeichen G =~ G', wenn es eine eineindeutige
relationstreue Abbildung ¢: G — G’ von G auf G’ gibt. ¢ heifSt Isomorphismus.

Man kann nun zeigen, daf die Gesamtheit aller Gruppen in Isomorphieklassen zer-
fallt, deren jede durch eine abstrakte Gruppe représentiert wird. Es gibt also den
Rechenschemata nach nur so viele verschiedene Gruppen, wie es abstrakte Gruppen gibt.

Beispiel 3.9: Der Modul V2 der Vektoren der Ebene E? ist isomorph zum Modul R?
der geordneten Paare reeller Zahlen: V2 =~ R? (vgl. 3.2.2.2)). Die Komponenten-
zerlegung z = xa + yb des Vektors ze V2 bez. der Basis {O;a, b} bewirkt durch
@(z) = (x,y) eine eineindeutige relationstreue Abbildung ¢:V? — R? (Bild 3.2).
Analog ergibt sich: V2 ~ K bzw. R?* ~ K (K: Modul der komplexen Zahlen).

Bild 3.2. Komponentenzerlegung des Vektors z in der
Basis {O; a, b}

) Automorphismus, Homomorphismus: (1) Ist in Definition 3.9 G = G/, so ist ¢

ein Isomorphismus von G auf sich selbst und heiBt dann Autemorphismus. (2) Ist
in der Definition ¢ nicht eineindeutig, sondern nur eindeutig und relationstreu, so
heiBt ¢: G > G’ Homomorphismus von G auf G', Bezeichnung G = G'.
Beispiel 3.10: Es seien S bzw. IT die Symmetrie- bzw. Permutationsgruppe, die das
Molekiil M gestattet. Ordnen wir der Symmetrieoperation A € S jene Permutation
7 € II zu, die die Atome von M auf die gleichen Plétze vertauscht wie A4, so ist diese
Abbildung ein Homomorphismus, S ~ II (vgl. auch 3.3.4.c)).

3.4. Untergruppen

3.4.1. Komplexe, Komplexprodukt

Es sei G eine Gruppe.

Definition 3.10: (1) Eine nichtleere Teilmenge A = G heifit Kamplex.

(2) A' = G bezeichne dann den Komplex aller zu den Elementen A € A inversen
Elementen A' € G.

(3) Komplexprodukt (oder Komplexsumme) aus den Komplexen A, B < G nennen
wir den Komplex A B < G aller Elemente A > Be G fiir A€ A und Be B. Fiir ein
festes Element F € G sei speziell F o A der Komplex aller Elemente F o A. Entsprechend
ist A o F definiert.

1) Abbildungsbegriff: s. Bd. 1 dieser Reihe.

D.3.9

D.3.10
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Beispiel 3.11: Es sei G = C,, = [E, C,, 0y, i] mit Tafel 2.2 als Produkttafel die

Symmetriegruppe von H,0,, A = {E, C,}, B = {E, 0}, F = i. Dann gilt: A-B
={E-E,E-0,,C,"E C, 0.} ={E,0,,C,,i}=G und F-A={i"E i C)}
={E,o;} = B.

3.4.2.  Begriff der Untergruppe, Beispiele

D.3.11 Definition 3.11: Der Komplex U = G heifst Untergruppe der Gruppe G, wenn U bez.
oder uneigentlichen der Rechenvorschrift - von G bereits fiir sich eine Gruppe bildet.

Als Komplexe in der Gruppe G bilden demnach G selbst und die Menge {N} = G
aus dem neutralen Element N € G allein stets Untergruppen von G — die sog. trivialen
oder uneigentliche Untergruppen [N] und G. Beispiele von Untergruppen:

a) Anhand der Gruppentafel der Symmetriegruppe C,, des H,O,-Molekiils
(Tafel 2.2) konnen wir simtliche Untergruppen von C,, feststellen. Zur Ordnung
u = 3 kann es keine Untergruppe U geben, weil mit je drei Elementen immer gleich
alle vier in U liegen. (Die Ordnung einer Untergruppe ist stets Teiler der Ordnung
der Gruppe.) Zur Ordnung u = 1, 2, 4 treten auf:

u Untergruppe (zu deren Bezeichnung siehe 5.1.)

1 C, = [E] triviale Untergruppe

2 C, = [E, C,] Drehsymmetriegruppen von H,0,, C, = [E, 0,],
C = [E i]

4 C,, = [E, C,, 0y, i] triviale Untergruppe

b) Analog zu a) entnehmen wir der Gruppentafel zur Symmetriegruppe D,4 des
Allen-Molekiils in Tafel 2.1 sdmtliche Untergruppen zur Ordnung u = 1,2,4,8;
zu den Ordnungen 3, 5, 6, 7 gibt es keine Untergruppen:

u Untergruppen von D,y (zu deren Bezeichnung vgl. 5.; C, = S3)

1 C, = [E] triviale Untergruppe

2 C, = [E, C,], C, = [E, C3], C5 = [E, C5] Untergruppen der Dreh-

[E, 04], [E, 04] *  symmetriegruppe D,
4 D, = [E, C,, C3, C;] Drehsymmetriegruppe des Allen-Molekiils
S, = [E, S,4, S3, S3] = Z4 zyklische') Gruppe der Ordnung 4
Cyy = [E, Cy, 04, 04]
8 D,y = [E, S4, S2, S3, C5, C%, 04, 4] triviale Untergruppe

Einen ganz entsprechenden Bestand an Untergruppen besitzt die Gruppe Il,
der Permutationen, die das Allen-Molekiil gestattet.

c) Aus den Enthaltenseinsbeziehungen zwischen den Matrizengruppen 3.2.3.7.
folgt sofort, daf die allgemeine lineare Gruppe GL(n) die orthogonale, eigentlich
orthogonale und spezielle lineare Gruppe O(n), O*(n), SL(n) zu Untergruppen hat.
Dabei ist O*(n) wieder Untergruppe von O(n) und SL(n) (s. Bild 3.1).

Analog ist die Situation fiir GL(n, K).

') siehe 3.5.1.
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3.4.3.  Untergruppenkriterium
Satz 3.1: Der Komplex U < G ist genau dann Untergruppe der Gruppe G, wenn gilt:
() UeUcU und (2) U <cU.
Bemerkung: Ist G endlich, gilt der Satz bereits, wenn (1) erfiillt ist.

Beweis: (=) Gelten (1) und (2), so ist U eine Gruppe: (1) bedeutet Abgeschlossenheit
von U bez. o; (A) gilt in G, also ebenfalls in U; (N) gilt, da mit B € U nach (2) auch
B'e U ist und nach (1) dann Bo B* = B'> B = E€ U als einziges neutrales Element
auftritt; (I) folgt aus (2). («) Ist umgekehrt U eine Untergruppe, also eine Gruppe,
so sind (1) und (2) als Teilforderungen der Gruppendefinition automatisch erfiillt. m

Folgerung 3.2: Das neutrale Element N € U jeder Untergruppe von G ist gerade das-
Jjenige von G. Das zu A € U inverse Element A* € U ist gerade das zu A inverse bez. G.

Folgerung 3.3: Fiir eine Untergruppe U < G gilt stets
(I UoU=U und (2) U =U.

Beweis: Wegen N e U gilt nach (1): U= [N]oU < U-U < U, und dies ist (1').
(2) gilt, weil aus (2) folgt: (U*)* = U’; d. h. wegen (U) = U gilt neben (2) auch
noch U = U, und dies bedeutet (2'). m

Folgerung 3.4: Der Komplex aller Elemente A € G der Gruppe G, die mit allen Ele-
menten X € G vertauschbar sind: Ao X = X o A, bildet eine Untergruppe 3 von G.

Beweis: Fir A,Be3 gilt: (AcB)oX =AcXoB=Xo(4d-B) fir alle XeG,
also 3o 3 = 3. Ferner ist (s. 3.3.1b)) A'c X = (X'o A) = (4o X) = (X) o4
=XoAdhalsoJ <3 m

Definition 3.12: 3 = [A€G: 4 X = X o A fiir alle X € G] heift das Zentrum der
Gruppe G.

Bemerkung: Eine abelsche Gruppe stimmt mit ihrem Zentrum tiberein.

Beispiel 3.12: Der Gruppentafel (Tafel 2.1) geméB lautet das Zentrum von D,4:
3 = Cz = [E- Sﬂ-

3.4.4. Satz von Lagrange, Nebenklassenzerlegung

a) Die Symmetriegruppe C,, des H,0,-Molekiils hat die Ordnung g = 4. Sie
besitzt nach 3.4.2. a) Untergruppen nur zu den Ordnungen u = 1, 2, 4, also Zahlen,
die Teiler von g sind: g = j- u. Den gleichen Sachverhalt beobachten wir an der
Symmetriegruppe D,4 des Allen-Molekiils, deren Ordnung g = 8 nach 3.4.2.b) nur
Untergruppenordnungen - gestattet, die Teiler von 8 sind, also u = 1, 2, 4, 8.

b) Die an diesen beiden Beispielen beobachtete Regel gilt allgemein:

Satz 3.2 (Lagrange')): Die Ordnung u einer Untergruppe U der endlichen Gruppe G
ist ein Teiler der Ordnung von G, d. h., zu U gibt es eine natiirliche Zahl j, fiir die gilt
g=ju

Definition 3.13: j heifft Index von U, Bezeichnung: j = [G: U].

Bemerkung: Die Ordnung der trivialen Untergruppe [N] ist 1. Deshalb gilt:

g=[G:[N]]'1 und u = [U:[N]]-1. Folglich lautet der Satz 3.2.: [G :N]
=[G : U] [U : N] (fiir [N] schreibt man auch N).

1) Joseph Louis Lagrange (1736-1813), Mathematiker und Physiker, wirkte in Turin, Berlin,
Paris.

3 Belger, Symmetriegruppen
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c) Nebenklassenzerlegung. Beweis des Satzes von Lagrange.

Definition 3.14: Der Komplex L - U < G heifit die vom Element L € G reprdsentierte
Linksnebenklasse nach U, U - R Rechtsnebenklasse zu R € G nach U.

() Zwei Linksnebenklassen L, o U, L, o U (L, L, € G) sind entweder gleich oder
elementfremd. Denn fiir L € L, - U gilt nach Folgerung 3.3, (1'): Lo U = L; o U. Aus
LeL oUNnL,oU folgt demgemdB LoU =L, oU und Lo U = L, - U. Haben
die beiden Klassen ein Element L gemeinsam, so sind sie als Mengen gleich.

(B) Die Anzahl der Elemente in einer Linksnebenklasse nach U ist gleich u. Denn wére
LioU=0Ly,oU fiir UyU'eUmit U+ U/, sowire Li'!oL, o U=Lj*oL, o U,
EoU = E- U, U= U'im Widerspruch zur Voraussetzung.

(v) Nach (x) und (f) kann man formulieren:

Satz 3.3: Eine endliche Gruppe G lift sich als Vereinigung ihrer j verschiedenen Links-
nebenklassen L, o U (v = 1, ...,j) nach U schreiben:
(L) G=LoUVL,oUv...VL;oU (0.B.d.A.L, =N)
wobei offensichtlich g = j - u sein mup.

Damit ist der Satz von Lagrange bewiesen. Fiir v wird in (L) oft auch + ge-
schrieben. )

Definition 3.15: (L) heifit Zerlegung der Gruppe G in Linksnebenklassen nach der
Untergruppe U von G, die Elemente L, (v =1, ...,J) heiffen die Linksrepriisentan-
ten der Zerlegung.

Bemerkung: Wegen (A4 o B)' = B'> A* (3.3.1.b), 3.3.2.b)) und U* = U, Folgerung
3.3 (2), gilt (LoU)y =U'eL' =Ue-R (R =L". Aus einer Linksnebenklasse wird
durch die Invertierung ¢ eine Rechtsnebenklasse. Wir erhalten so aus (L) eine Rechts-
nebenklassenzerlegung (R) von G nach U und damit den

Satz 3.4: Eine endliche Gruppe G besitzt die gleiche Anzahl j von Links- und Rechts-
nebenklassen nach der Untergruppe U, und zwar ist j = [G: U].

Beispiel 3.13: Als Linksnebenklassenzerlegung der Symmetriegruppe D,4 des Allen-
Molekiils nach der Untergruppe C, = [E, C,], C, = SZ, mit den Linksreprisen-
tanten E, Sy, C3, o4’ finden wir in der Gruppentafel (Tafel 2.1) gemdf
Dyy=E-C,uS,-C,uC;-Couo;-C,
={E, C,} V{84, S3} v {C;, C} v oy, o}

Die Anzahl der verschiedenen Linksnebenklassen betrigt j = 4 in Ubereinstimmung
mit j = [Dq: C,] = 8:2 = 4 nach dem Lagrangeschen Satz. Die Rechtsnebenklas-
senzerlegung behandeln wir als Ubungsaufgabe.

3.5. Zyklische Gruppen und Systeme erzeugender Elemente

3.5.1.  Zyklische Gruppen

Beispiel 3.14: Offensichtlich wird die Untergruppe S, = [E, S,, 57, S3]'< Dy
der Symmetriegruppe D,4 des Allen-Molekiils (vgl. Tafel 2.1 bzw. 3.3.4.d) oder
3.4.2.b)) von den Potenzen der Drehspiegelung S, € D,y gebildet (vgl.2.3.1.2.):
S = E, S} = S4, S%,S3. Da die Achse S, vierzihlig (von der Ordnung vier) ist,
gilt S¢ = S9, und vier ist die kleinste unter jenen natiirlichen Zahlen n, fiir die
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S5 = 83 gilt. Das Element S, heit dann selbst von der Ordnung vier, und daraus
kénnen wir folgern: S5 = S3-Si = S,, S§ = S§-82 = S7,...,58; = St~ St- S}
= S,,... Ferner gilt wegen S3!' =83 (vgl. 2.3.1.9.): S7" = (S;!)" = Si"e S,
n=12..).

Wir ersetzen nun D,y durch eine beliebige Gruppe G und S, durch ein Element
AeG.

Definition 3.16: A € G heifit von der endlichen Ordnung a genau dann, wenn A° = A°
= E gilt und dabei a die kleinste natiirliche Zahl dieser Eigenschaft ist. Existiert ein
solches a nicht, so heifit A von unendlicher Ordnung.

Folgerung 3.5: A € G sei ein Element der endlichen Ordnung a. Dann sind die Po-
tenzen A° = E, A' = A, ..., A*' zur Basis A untereinander verschieden. Fiir alle
anderen gilt A*™ = A", 0 < m £ a— 1,k = *1,+2,... Ist A von unendlicher
Ordnung, sind alle Potenzen von A untereinander verschieden.

Beweis: — Es sei A von der Ordnung a. Befinden sich unter den A4°, ..., 4% * zwei
gleiche: A" = A'mit0 < h < I £ a — 1,dann wiirde gelten: A"+ 4" = E = A" A}
= A'"" 0 < 1—h < a— 1, was aber der Ordnung a von 4 widerspriche. - Es gilt
Ak = (A% = E* = E (k € Z) und also A**™ = g% - 4™ = A™. - Es sei 4 von un-
endlicher Ordnung. Wire A" = A* (h,ke Z, h < k), so wiirde dies A™"- A" = E
= A"+ A¥ = A*" also eine endliche Ordnung fiir A bedeuten. m

Definition 3.17: Eine Gruppe G, die aus allen Potenzen A* (k € Z) eines ihrer Elemente
A € G besteht, heifit zyklische oder auch von A erzeugte Gruppe. A heifit erzeugendes
(auch primitives) Element von G, und wir schreiben dann G = {A).

Beispiel 3.15: S, = {S,) = [S3, Si, 83, S3], (S = E, S} = S,), ist eine zyklische
Gruppe — die zyklische Untergruppe der Ordnung 4 von D,g.

Satz 3.5: Der Komplex aus allen Potenzen A* zur Basis A € G bildet eine Untergruppe
{4y = G - die von A erzeugte Untergruppe. Ist A von der endlichen Ordnung a, so gilt
{4y =[4°% A, ..., A°71], (4° = E, A* = A), und {A) ist selbst von der Ordnung a.
Mit A ist auch (A von unendlicher Ordnung. {A) heift dann freie zyklische Gruppe.
Beweis: (A (AY = {A) gilt wegen A"- A* = A"¥ (4>~1 < (A4) wegen (4")!
= A" (h, k,h + k ganzzahlig, vgl. 3.3.1. b)). Die Voraussetzungen (1), (2) des
Untergruppenkriteriums 3.4.3. sind also erfiillt. Die tibrigen Aussagen des Satzes
sind obiger Folgerung zu entnehmen. ®

Wir kénnen damit die folgenden Aussagen formulieren, deren Richtigkeit der
Leser selbst nachpriifen kann:

Folgerungen: (1) Zyklische Gruppen sind stets abelsch.

(2) Die Ordnung a eines jeden Elementes A € G ist Teiler der Ordnung g der endlichen
Gruppe G.

(3) In (2) gilt A* = E.

(4) Jede Gruppe von Primzahlordnung g = p ist zyklisch.

Beispiel 3.16: Die Gruppe C; der Drehungen C§ = E, Ci = C;, C} des Ammoniak-
Molekiils NH; (Bild 2.1(e)) ist von der Primzahlordnung p = 3 : C; = (C;).
Isomorphie: Zyklische Gruppen {A), (B) von gleicher Ordnung n haben iiber-

einstimmende Gruppentafeln (Tafel 3.5). Dies gilt auch fiir die Ordnung unendlich.
Sie sind also zueinander isomorph und bilden eine Isomorphieklasse. Die sie reprdisen-

3%
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tierende abstrakte Gruppe — die ,,zyklische Gruppe der Ordnung* n — bezeichnen wir
mit Z,, bei unendlicher Ordnung mit Z, .

Tafel 3.5. Isomorphie zwischen zyklischen Gruppen der Ordnung »

| A% .4 A | B°..B" .. B
A° : B° :
A AR B B
A" : B" :

3.5.2. Bemerkung zu additiv geschriebenen zyklischen Gruppen

Diese werden von den Vielfachen k4 (k ganzzahlig) eines Elementes 4 einer ad-
ditiven Gruppe G erzeugt. Anstelle der Potenzen 4* hat man dann in 3.5.1. iiberall
Vielfache kA zu schreiben und gemaB 3.3.2. zu rechnen.

3.5.3.  Systeme von Erzeugenden

In einer zyklischen Gruppe G = {A4) ist jedes Element G ein Produkt aus endlich
vielen 4 und A': G=A...A-A'... A" = A"* = 4'. Wir verallgemeinern:

Definition 3.18: Es sei A = G ein Elementekomplex der Gruppe G. Ist jedes Element
G e G ein Produkt (eine Summe) aus endlich vielen Elementen aus A und aus A', so
heifit A ein System von Erzeugenden von G, und wir schreiben dann G = (A).

Beispiel 3.17: In der Symmetriegruppe D,, bildet (nach Tafel2.1) der Komplex
{S4, C3} ein Erzeugendensystem, d.h. D,y = {S,, C;>. Zum Beispiel gilt:
E=C,-Cy, Sy =84-S,-S:1,Cy=8%2-C5,0/ =S,-C, usw. Aber auch
{C3, o4} bildet ¢in Erzeugendensystem: D,y = {C3, 04).

Von Bedeutung ist die Frage nach einem minimalen Erzeugendensystem M < G:
Fiir M gilt G = (M), aber alle echten Teilkomplexe L = M erzeugen nur echte
Untergruppen <Ly = G. {C;, a4}, {S., C3} sind offensichtlich minimale Erzeugen-
densysteme fiir D,q4.

3.6. Klassen, Normalteiler, Faktorgruppen

3.6.1. Zerlegung einer Gruppe in Klassen konjugierter Elemente

a) Beispiel 3.18: Die Elemente der Symmetriegruppe D,q = [E, S4, S3, S3, Cs,
CY, a4, 04] unterscheiden wir nach Spiegelungen o, Drehspiegelungen S, Drehungen
C. Anders und genauer ausgedriickt: Wir nennen zueinander ,,dhnlich* jeweils die
beiden Spiegelungen o}, o, die beiden Drehspiegelungen S, S3 und die Drehungen
C%, C4 um die horizontalen Achsen. Getrennt davon zu betrachten ist die Drehung
C, = S% um die vertikale Achse und E selbst (vgl. Bild 2.2(a)). Danach kdénnen wir
D,, gemil

D, = {E} U {Si} U {Ss, S3}V {Cs, C3} v {os, o4}

als Vereinigung von elemen.t.frémden Klassen zueinander dhnlicher Elemente schrei-
ben (Zerlegung von D,, in Ahnlichkeitsklassen).

1) Genaueres zu dieser Zerlegung siehe in 4.2.3.¢).
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Der Zerlegungsmechanismus ist von einfacher Natur: Bilden wir z. B. zum Element
o, alle Produkte X~1 - o} - X fiir X € D,q, so erhalten wir die Klasse {og, 0y'}. Genauso
entsteht die Klasse {C3, Cy'} durch alle Produkte X=' - C3 - X usw. Die Elemente
X-'- Cj - X sind dann also zu Cj dhnlich, wir sagen auch konjugiert zu C;.

b) Wir ersetzen nun D, durch eine beliebige Gruppe G und C; durch ein beliebiges
Element 4 € G.

Definition 3.19: 4 € G heifit zu einem Element B e G konjugiert oder #hnlich, in
Zeichen A ~ B, wenn es ein Element X € G gibt, so daf B = X'o A~ X gilt. Wir
sagen dann auch, B entsteht durch Transformation mit X aus A.

Die Relation ~ hat beziiglich beliebiger Elemente 4, B, C € G die drei Eigenschaf-
ten der Reflexivitit (R), Symmetrie (S) und Transitivitdt (T) und wird Aquivalenz-
relation génannt:

(R) A~ A(denn A = N'o Ao N, N = N neutrales Element von G),

(S) Mit A ~ B gilt auch B ~ A (denn aus B = X'o Ao X folgt A = X- B X'
= (X')'e Bo (X)),

(T) Mit A ~ B und B~ C gilt auch A ~ C (denn B = X'cAoX und C
= Y'oBoY hat zur Folge C = Y'o(X'c Ao X)oY = (XoY)oA
o (X Y)).

Entsprechend Bd. 1 dieser Reihe, 7.4.1., zerfillt demnach die Gruppe G in soge-
nannte Aquivalenzklassen: Wir bilden zu einem beliebigen Element A € G den
Komplex {X*o 4 o X} aller zu A konjugierten Elemente (man benutze dazu insbe-
sondere (S) und (T)).

Definition 3.20: {X*° 4 - X} heifit die Klasse konjugierter Elemente, kurz Klasse von
A, A ein Reprisentant dieser Klasse, Bezeichnung: (A).

Beispiel 3.19: In Tafel 3.6 wird mit Hilfe der Gruppentafel der Symmetriegruppe
G = D,, des Allen-Molekiils (Tafel 2.1) die Klasse von 4 = S, € D,4 aufgestellt:
(Se) = {54, 53).

Schépft nun (4) die Gruppe G noch nicht vollkommen aus (wie z. B. (Sy) Daqy
nicht ausschopft), so gibt es ein Element B ¢ (4) in G, dessen Klasse (B) zu (4)
elementfremd ist. Ist (4) v (B) immer noch eine echte Teilmenge von G, so gibt es
ein Element C ¢ (4) v (B) usw.

Tafel 3.6. Bildung der konjugierten Klasse von 4 = S, in der Symmetrie-
gruppe G = Dy,

X X1 | XLSgX
E E S,
A 52 S,
S? S2 S
53 S, S,
5 C; S3
v la s
o o S3
o st
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Satz 3.6: Eine Gruppe G lift sich als Vereinigung von elementfremden Klassen zu-
einander konjugierter Elemente schreiben. Mit dem Reprdsentantensystem A, B, ... € G,
lautet sie: G = (A) v (B)\v...(A, B, ... paarweise nicht konjugiert). G ,,zerfallt
in Klassen.

Bemerkung: Jedes Element Fe (A) eignet sich als Reprisentant anstelle von 4:

(A4) = (F).
Beispiel 3.20:
D,y = {E} {83}V {Ss, S}V {Cs, Cy} v {oy, of}
= (E)V (S5 v (Sa) v (C3) Y (00)-

c) Die Klassen dieser Zerlegung der Gruppe G haben u. a. folgende Eigenschaften:

(Ey) Jedes Zentrumselement Z € 3 = G, insbesondere also das neutrale Element
N €3, bildet eine Klasse, in der aufer ihm kein weiteres Element vorkommt:
@ =xez-x}={z}
(E,). Ist G abelsch, also G =3, so bildet nach E,) jedes Element A € G allein
eine Klasse: (4) = {4}.

(E3) Alle Elemente einer Klasse & von G haben die gleiche Ordnung n (denn fiir
A,BeR,d. h. B= X'c A4 X, folgt aus A" = N:
B"=(X‘oAoX)o(X‘oAoX)o...o(X'oAdoX)=X'>A"oX=X'oNoX=N).

Definition 3.21: Der Komplex jener Elemente F € G, die mit einem festen Element
A € G vertauschbar sind: Ao F = Fo A (oder F'oAoF = A, d. h. A ist ,selbst-
konjugiert*) heifft Normalisator N, von A. N ist eine Untergruppe von G (denn fiir
X,YeN, gilt XoYoA=XoAoY=AoXoY, und aus Xo A = A- X folgt
Ao X = X' o A).

Beispiel 3.21: In D,4 lautet der Normalisator von S, € D,q: Ngu = [E, S4, S7, S3]
= S, (s. Tafel 2.1).

(ii,) Die Ordnung (Anzahl der Elemente) der Klasse (A) = G, A€ G, ist gleich
dem Index j = [G: N,] des Normalisators von A, also ein Teiler der Ordnung
von G.

Beweis: P, Q € G gehoren genau dann zu derselben Rechtsnebenklasse von G nach
N, wenn P'o Ao P = Q' Ao Q gilt. Also ist die Anzahl der Elemente von (4)
gleich der Anzahl j der Nebenklassen und nach dem Satz von Lagrange Teiler der
Gruppenordnung. ®

Beispiel 3.22: — Die Eigenschaften (E;) und (E,) finden wir in der Zerlegung der Sym-
metriegruppe D,, in Beispiel 3.20 realisiert. — Zu (E,) sei daran erinnert, dal das
Zentrum von D, lautet: § = C, = [E, S7] (vgl. 3.4.3.). In der Zerlegung von D,
bilden E und S Klassen fiir sich. — (E,) 4Bt sich an der Zerlegung der Symmetrie-
gruppe C,;, des H,0,-Molekiils demonstrieren: C,, = (E)V (C,) V (o) v (i) = {E}
V{C} o} v {i}

In einer Menge werden ggf. mehrfach auftretende Elemente eigentlich nur einmal
aufgefiihrt. Fiir Zwecke der Darstellungstheorie (Kap. 7) ist es jedoch notwendig zu
notieren, wie oft ein Element in einer Menge vorkommt. Ist also A = G ein Komplex
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einer Gruppe G, so schreiben wir zukiinftig A\ A = 2A und allgemein fiir die
k-fache Vereinigung: AV ... UA = kA.

Beispiel 3.23: Das Komplexprodukt der Klassen (S,) und (C3) von D,4 (vgl. 3.6.1. b))
lautet nach Tafel 2.1: (S,,) - (cz) {4, 83} {C3, C3} = {84~ €5, 5+ €, 83 C3,
S3 Cz} = {Ud, 04, 04, Ud} = Ud, 0'4} v {Uds 0'4} = 2{0'45 o4 } - 2(0'«1)

Dieses Beispiel 148t sich folgendermafBen verallgemeinern:
(Es) Es sei G = (4,) v (4,) V...V (4,) die Zerlegung von G in ihre Klassen,

A, € G. Das Komplexprodukt zweier solcher Klassen ldfit sich dann als Vereinigung
gewisser Klassen (A,) schreiben, die dabei ggf. mehrfach auftreten:

(A) () = Kia(A)  Kia(A) oo ) = O Kol

Die ganzen Zahlen k;,, = 0 heiflen Klassenmultiplikationskoeffizienten.

Beweis: Entsteht ein Element 4 bei der Komplexmultiplikation in (4;) o (4,) k-mal,
so muB es 2k verschiedene Elemente A5 € (4;) und A5 e (4,) geben, so daB gilt:
A= Afo Aj(x = 1, ..., k). Aliegein der Klasse (4,), also (4,) = (4) = {Xio Ao X,:

x=1,.. m} Dann gllt XiodoX, =X, 0A5 oA o X, = X0 Af o X, 0 X oA 0 X,
€(4y) e (A,,) (x =1,...,k), und die Elemente X ‘o Ao X, bilden die Klasse (45)
k-mal (k = ky,,). &

Beispiel 3.24: Nach Beispiel 3.20 gilt: D,g = (E) U (S3) v (S4) v (C5) U (04). Dem-
nach haben die in (Es) eingefithrten Bezeichnungen im Beispiel 3.23 folgende Be-
deutung: G = Dyy; Az = Sy, Ay = Cj, As =045 m = 5; k3 4,5 = 2. Also gilt:
(A3) - (A4) = k3 4,5(As); k3 4, = O fiir alle » & 5.

Bemerkung: Zwischen den Klassenmultiplikationskoeffizienten bestehen gewisse
Relationen, die deren Bestimmung erleichtern.

3.6.2. Konjugierte Untergruppen

Beispiel 3.25: In 3.4.2.b) betrachten wir die Untergruppen C5 = [E, C3] und
Cy = [E, C3] der Symmetriegruppe D,q. Der Gruppentafel von D,q (Tafel 2.1)
entnehmen wir fiir X = S, € D,y (also X~ = 83), daB X' - Cy- X =[S} - E- S,,
S3-C, - S,4] = [E, C¥] = CY gilt,und nennen C) dann zu C3 konjugiert.

Wir ersetzen nun D,y bzw. C5 und C% durch eine beliebige Gruppe G bzw. Unter-
gruppen U’ und U” von G.

Definition 3.22: U’ heifit zu U" konjugiert, wenn es ein Element X € G gibt, fiir das
U’ =X'oU o Xgilt.

Bemerkungen: 1) Diese Konjugiertheit hat die Eigenschaften (R), (S), (T) einer
Aquivalenzrelation (3.6.1.b)). 2) Mit U’ ist auch der zu U’ konjugierte Komplex
U” = X'oU o X eine Untergruppe von G. 3) Konjugierte Gruppen sind zuein-
ander isomorph. Sie haben die gleiche Ordnung und gehoren zur gleichen abstrakten
Gruppe.

3.6.3. Normalteiler

Ein besonders wichtiger Fall der Konjugiertheit liegt in folgendem Beispiel vor:

Beispiel 3.26: Fiir die Untergruppe S, der Symmetriegruppe D,, gilt nach Tafel 2.1
fiiralle XeDyg: X~ 1S, X = S,.

D.3.22
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Definition 3.23: Stimmt eine Untergruppe U der Gruppe G mit allen zu ihr konjugierten
Untergruppen iiberein: U = X'c U X fiir alle X€ G, so heifst U eine invariante
Untergruppe oder auch ein Normalteiler von G, und wir schreiben dann N fiir U.

Beispiel 3.27: S, ist also ein Normalteiler von D,4, aber auch die Untergruppen
D,, C,q4, C, sind solche (3.4.2.b); Tafel 2.1).

Beispiel 3.28: Die alternierende Gruppe , bildet einen Normalteiler in der symme-
trischen Gruppe &, ([11],1, § 17).

Satz 3.7: Die Untergruppe N der Gruppe G ist genau dann ein Normalteiler von G,
wenn eine der folgenden Forderungen erfiillt ist:

a) N enthdlt. mit jedem A € N auch die ganze Klasse (A).

b) Jede Rechtsnebenklasse N o F stimmt fiir alle Fe G, mit der Linksnebenklasse
F o N nach N iiberein (so daf wir nur noch von Nebenklassen zu reden haben).

Beweis: a) und b) sind Definition 3.23 unmittelbar zu entnehmen. B

Beispiel 3.29: Da nach Beispiel 3.27 C, ein Normalteiler von D, ist, stellt die Links-
nebenklassenzerlegung von D,y nach C, in 3.4.4. ¢) gleichzeitig eine Rechtsneben-
klassenzerlegung (mit den gleichen Rechts- wie Linksreprdsentanten) dar.

Bemerkung: In Abelschen Gruppen sind das Zentrum von G sowie die trivialen Unter-
gruppen [N]und G selbst stets Normalteiler von G. Letztere heifjen triviale Normalteiler,
und eine Gruppe, die nur triviale Normalteiler besitzt, heifit einfach.

3.6.4. Faktorgruppen

Esseinun F = {N,No 4, No B, ...} die Menge aller Nebenklassen der Gruppe G
nach dem Normalteiler N von G. Das Komplexprodukt zweier Elemente von F
liegt wieder in F; z. B. gilt (No4)o(NoB) =NoNoA4doB=No(4°B) (3.43.
(1)). Ferner ist mit N o 4 auch (No 4)'€ F, denn es gilt: (N o A)' = A*'e N* = A'> N
= No A4' (3.4.3, (2)). Das Komplexprodukt ist durch das Produkt in G assoziativ.
N ibernimmt die Aufgabe des neutralen Elementes: No(No 4) = Ne A4 (3.4.3.
(1")). Auf diese Weise erhilt die Menge F die Struktur einer Gruppe.

Definition 3.24: F = [N, No 4, No B, ...] heift Faktorgruppe der Gruppe G nach
ihrem Normalteiler N und wird durch G|N bezeichnet.

Beispiel 3.30: Die Nebenklassen der Symmetriegruppe D,, des Allen-Molekiils
nach dem Normalteiler N = C, = [E, C,] lauten (vgl.3.44.¢)): C,-E C,- S,
= {S,, 83}, C3 - C; = {C3, C3}, C, -0y = {05, 04}. Anstelle der Reprisen-
tanten E, S, C3, o4 fiir die Nebenklassen kdnnten wir auch C, = S2, S3, Cy, oy
wihlen. Die Produkte aus diesen Nebenklassen koénnen wir dann reprisen-
tantenweise bilden. Zum Beispiel gilt: (C, -+ Sy) * (C, - C3) = C,- S, Cj
= C, 0y = C,+0y. In der Gruppentafel (Tafel 3.7) von D,4/C, = [C,, C, * S,,
C,- C;,C,o,]finden wir dann S, - C; = g; anstelle von (C, - S,) - (C, - C3) = C, * 75.
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Tafel 3.7. Gruppentafel der Faktorgruppe D,4/C, (reprisentantenweise
notiert)

| E 5. G d

E | E S, ¢ d
M Se E gy C
C; C, oy E S,
ay g, C;, S, E

3.7. Direktes Produkt

Beispiel 3.31: Das Komplexprodukt aus den Untergruppen C, = [E, C,] und
C, = [E, 0,] der Symmetriegruppe C,, = [E, C,, 0y, i] des H,0,-Molekiils lautet
(Tafel 2.2): C, - C; = C,, (vgl. auch Beispiel 3.11). Dabei ist C, n C, = [E], und
alle Elemente von C, sind mit allen von C, vertauschbar. Dann heiit C,, direktes Pro-
dukt aus seinen Untergruppen C, und C,.

Definition 3.25: Eine Gruppe G heifit direktes Produkt ihrer Untergruppen U,, U,,

in Zeichen G = U; x U,, wenn gilt:

(a) Jedes A € G lift sich eindeutig als Produkt A = U, - U, schreiben, U, € U,
U, eU,.

(b) Fiiralle Uy e Uy, U,e U, gilt U, - U, = U, - U,.

(c) U, nU, = [E] (laBt sich aus (a) ableiten).

Wegen b) kénnen wir auch G = U, x U, schreiben. In obigem Beispiel ist also
C,, = C, x Cg = C x C,. Dabei sind C, und C; einfache Gruppen. Als direktes
Produkt einfacher Gruppen heifit C,y, vollstindig reduzibel.

Folgerung 3.6: Die Ordnung g des direkten Produktes U; x U, ist gleich dem Produkt
g = uyu, aus den Ordnungen u, und u, der Faktoren U, und U, (denn die Produkte
U, - U, sind fiir verschiedene U, € U,, U, € U, simtlich verschieden).

Ohne Beweis formulieren wir noch’):

Folgerung 3.7: a) In G = U, x U, ist jede konjugierte Klasse & das Komplexprodukt
aus je einer konjugierten Klasse (U,) von U, mit einer solchen Klasse (U,) aus U,.
b) Die Ordnung k von ® ist gleich dem Produkt k = k.k, aus den Ordnungen k,
bzw. k, von (Uy) bzw. (U,). ¢) Die Anzahl h der Klassen von G ist gleich dem Produkt
h = hyh, aus der Anzahl h, bzw. h, der Klassen von Uy bzw. U,.

Folgerung 3.8: In einer vollstindig reduziblen Gruppe G gibt es zu jedem Normalteiler
N eine direkte Zerlegung von G in einfache Faktoren: G = N x U.

Wir kénnen uns diese Folgerungen noch einmal am Beispiel C,, = C, x C, vor
Augen fiihren.

Aufgaben

3.1. Auf der Grundlage der Losung der Aufgabe 2.4. b) und Bild L 2.1. a), b) sind die Symmetrie-
gruppen Cj, und C,, des gleichseitigen Dreiecks A < E2 (des NH;-Molekiils) und des Quadrates
] < E? (des SFsCl-Molekiils) durch ihre Gruppentafeln anzugeben. Ferner sind alle inversen
Elemente von Cj, und von C,4, anzugeben.

1) vgl. [8] oder [18].

D.3.25
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3.2. Beschreibe die sechs Symmetrielagen des gleichseitigen Dreiecks A < E2 (des NH;3-Molekiils)
durch die Permutationen der Ecken 1, 2, 3 von A in Zyklenschreibweise und stelle daraus die sym-
metrische Gruppe ,;63 auf, die A gestattet; (mit Bezug auf 3.3.4.b) ist die Losung dieser Aufgabe auch
fiir (] < E3, d. h. fiir das SFsCl-Molekiil zu empfehlen!).

3.3. a) Die Leerstellen in den folgenden drei Produkttafeln sind so durch Elemente E, 4, B, C zu
besetzen, daBl daraus Gruppentafeln werden (d. h., daB8 die Forderungen (1) bis (4) bzw. (5) in 3.3.3.
erfiillt sind).

E A B C E A B C E A B C
A E . A C . A C .

B . E B E B C

C C C

b) Sind die zur ersten und dritten Tafel gehdrigen Gruppen G, = [E, 4, B, Clund G; = [E, 4, B, C]
zueinander isomorph?

c) Welche davon ist die Kleinsche Vierergruppe, welche isomorph zur Gruppe S, (siehe 3.3.4. d))?

3.4. Definition 3.26: Eine vierreihige quadratische Matrix L heift Lorentzmatrix, wenn fiir sie

100 0
E- =LY E -Lgilt; E- = g (1) (l) g . Ly sei die Menge dieser Matrizen.
000 —1

Zeige: a) det L = +1; b) L, bildet eine Untergruppe — die Lorentzgruppe in der Gruppe GL(4);
c) die Teilmenge L < L, aller eigentlichen Lorentzmatrizen L* (d. h. solcher mit det L* = 1)
bilden einen Normalteiler in L, — die eigentliche Lorentzgruppe.

Hinweis: Man zerlege L,in Nebenklassen nach L und berechne den Index [Ly : Li](vel. 4.2.1.0)).

Hinsichtlich der Symmetriegruppe Cs, des gleichseitigen Dreiecks A in der Ebene E? (d. h. fiir
das NHj-Molekiil) sind mit Hilfe der Gruppentafel, Tafel L 3.1., folgende Aufgaben zu losen
(Empfehlung: Man 18se die gleichen Aufgaben fiir [] < E2, d. h. fiir das SFsCI-Molekiil nach Tafel
L3.2):

3.5. Gib alle Untergruppen und deren Indizes von Cj, an (benutze dazu den Satz von Lagrange).
Welche der Untergruppen ist ein nichttrivialer Normalteiler von Cj,?

3.6. Zerlege die Gruppe Cs, in ihre Links- und Rechtsnebenklassen nach ihrem Normalteiler Cs
(siehe Losung der Aufgabe 3.5). Wie lautet die Faktorgruppe Cs,/C; von C;, nach C; (Gruppen-
tafel).

3.7. Zerlege C; in ihre Klassen konjugierter Elemente und bestimme die Klassenmultiplikations-
koeffizienten.



4. Bewegungsgruppe

4.1. Die Bewegungsgruppe des dreidimensionalen euklidischen Raumes E?

Bei der Anwendung der Symmetrieoperationen (z. B. auf Molekiile) haben wir
uns bisher nur von unserer Anschauung leiten lassen. Bewegungen des E3 waren
einfach die in unseren Schulkenntnissen vorkommenden Transformationen (B)
(i) bis(iv) in 2.2.2. Im folgenden bediirfen diese nun auch der analytischen Beschrei-
bung:

4.1.1. Die Seitzschen Raumgruppensymbole

Es sei {O;e,,e,, e5} (kurz: {O;e,}) eine orthonormierte Basis im Ursprung O
des E® mit den Basisvektoren e, (» = 1, 2, 3). Wir betrachten nur Rechtssysteme.

Dann gehort zum Punkt PeE* der Ortsvektor x = (713 = X;€; + X;€, + X3€3
= (X, X3, X3), und P hat daher die rechtwinkligen Koordinaten x,, x,, x5 (Bild 4.1;
vgl. auch Bd. 13, 2.2.5.). Mitunter bedient man sich auch der Bezeichnungen:

e, =i,e; =j,es=k und x;, =x,x,=y,x; =z

-

- —_
X8~ X Bild 4.1. Komponentenzerlegung von x = OP bez. {O; e,}

Zu einer vorgegebenen orthogonalen Matrix A4 = (a,) und zu vorgegebener
Translation T = (¢,, t,, t;) betrachten wir nun die durch die Gleichung
(B) X' =Ax+T
bez. {O;e,} definierte eineindeutige Abbildung (Transformation) des E* auf sich,
wenn X, x’ und 7 in (®B) als Spaltenmatrizen aufgefaBt werden: Der Ortsvektor

— —_—

X = OP = (xy, x,, x3) wird durch () auf X’ = OP’ = (x{, x5, x3) und damit der
Urbildpunkt P € E® auf den Bildpunkt P’ e E? abgebildet (Bd. 13, 3.5.). Die Trans-
formationsgleichung (B) wird - insbesondere in der Festkorperphysik — auch in fol-
gender Form geschrieben:

(B) x' ={A|T} x.

Definition 4.1: Das Matrizenpaar {A| T} heifit Seitz-Symbol. Bezogen auf eine
orthonormierte Basis {O; e,} des E?, nennen wir {A | T} eine Bewegung des E*, die
orthogonale Matrix A ihren Drehanteil, das Zahlentripel T ihren Translationsanteil.
Eigentlich /eifit eine solche Bewegung, wenn det A =1 gilt, uneigentlich fiir
det4 = —1.

4.1.2. Die Bewegungsgruppe %; des Raumes

Es sei durch
(®): x"=B:x"+U={B|U} x (B:orthogonal)

D.4.1
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eine weitere Bewegung des E3 gegeben. Dann gilt fiir die Hintereinanderausfithrung
von (¥') nach (B) die Gleichungx” =B (4 x+T)+ U=B-A-x+B- T+ U

={B-A|B-T+ U}, was fiir die zu (%') und (¥) gehdrigen Se1tz-Symbole als
Multiplikation

{BI|U}-{4|T}={B-4|B-T+ U} (B-A: orthogonal)

interpretiert werden kann. Wir beachten wieder, dafl zuerst der zweite Faktor {4 | '}
auf x anzuwenden ist und auf {4 | T} - x dann {B| U}. Beziiglich dieser Multipli-
kationsvorschrift besitzt die Menge aller Seitz-Symbole die Struktur einer Gruppe,
in der zwangsldufig {E| O} (E: Einheitsmatrix, O: Nulltranslation) die Rolle des
Einselementes spielt und

MITy = (4 a7y

(A~ wieder orthogonal) zu {4 | T} invers ist. Die Gruppe ist wegen der Matrizen-
multiplikation nichtabelsch.

Definition 4.2: Die Gruppe der Seitz-Symbole {A|T} (A: orthogonal) — auf eine
orthonormzerte Basis {O; e,} bezogen, sind das die Bewegungen des euklidischen Raumes
— heif3it Bewegungsgruppe B, des E3.

Satz 4.1: Bei Bewegungen bleibt der Abstand If’él zwischen zwei Punkten P,Q € E3
ungedndert.

Beweis: Mit x' = OB’ und y = 0~Q)’ lautet das Abstandsquadrat fiir die Bildpunkte
—

PLOPOP =y =xP=Ay+T—Ax-TP =[4d-(y = x)|* = [4(y — X)]
Ay =0 =1[4" 0 - )]y = x)"- ATl = Ay = x> 4T = [y ~ x|?
+A- AT = |y — x|* = |PQ|* (T: transponiert, 4 - 4" = E). &

Umgekehrt erweisen sich abstandstreue Transformationen als Bewegungen, und wegen
der in diesem Beweis erkennbaren Invarianz des Skalarproduktes bleiben auch alle
Winkelverhdltnisse ungedndert.

4.1.3. Normalformen der Bewegungsgruppe %;

Wir wollen untersuchen, ob sich obiger Bewegungsbegriff nun tatsachlich in den
von uns bereits praktizierten Formen (¥), (i) bis (iv), vollzieht. Indem die Frage
nach der Existenz von Vektoren x # o diskutiert wird, die bei einer Bewegung
{A| O} auf ein Vielfaches von sich iibergehen, x’ = Ax, stellt sich das folgende
Resultat ein ([17], I, § 21):

Satz 4.2: Es findet sich fiir jede Bewegung eine passende orthonormierte Basis
{0; ¢} des B3, in der ihre Transformationsgleichung x' = {A | T} X von einer der
folgenden Normalformen ist:

[i] x{ =x,cos¢ — x,sing, [ii] xi = x,cosp — x, sing,
X5 = x; sing + X, cos g, X3 = Xx; sing + X, cos ¢,
X3 = X3 + 133 X3 = —X3;
(3)
[ii] x3 = x; + 1, ' [iv] x§ = x; + 14,
Xy =X, + 15, Xy = X3 + 15,
X3 = —x3; X3 = X3 + t3.
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Beachten wir, daB im x,,x,-Koordinatensystem die ersten beiden Gleichungen
von [i] bzw. [ii] eine Drehung der x,,x,-Ebene in sich um den Winkel ¢ und den
Ursprung O beschreiben, so kénnen wir feststellen: Die Bewegung vom Typ

[i] fiir #; = O ist eine Drehung des E® um die x;-Achse um den Winkel ¢ mit fiir
t3 + 0 anschlieBender Parallelverschiebung 7 = (0, 0, #3) in x;-Achsen-
richtung; die Bewegung {4 | T} heiBt dann eine Schraubung und ist wegen
det A = 1 eigentlich;

[ii] ist eine Drehung des E® um den Winkel ¢ um die x;-Achse mit anschlie-
Bender Spiegelung an der x,,x,-Ebene; sie ist also eine Drehspiegelung
und wegen det A = —1 uneigentlich (uneigentliche Drehung);

[iii] fir 1, = t, = 0 ist eine Spiegelung des E* an der x,,x,-Ebene mit fiir

(t;,t;,) # (0,0) anschlieBender Translation T = (¢,1,,0) parallel zur
x;,x,-Ebene; die Bewegung heilt dann Gleitspiegelung und ist wegen
det A = —1 uneigentlich;

[iv] ist eine Translation des E® mit T = (,, ,, t3); sie ist wegen det 4 = 1 eine
eigentliche Bewegung.

Die in 4.1.1. analytisch definierte Bewegung {4 | T’} des E* entspricht damit in allen
ihren vier Normalformen (), [i] bis [iv], unseren Vorstellungen von (), (i) bis (iv),
in 2.2.2.

4.2 Untergruppen der Bewegungsgruppe %, des E*

4.2.1. Die Gruppe 33 der eigentlichen Bewegungen ‘

a) Die Elemente {4 |7T}e %3 gehoren wegen det 4 =1 zur Normalform [i]
(bzw. fiir ¢ = 0 auch zu [iv]). Sie sind also Schraubungen, speziell eigentliche Drehun-
gen oder Translationen des E3.

b) Nach 3.2.3.3. ist mit 4, Be O*(3) auch 4 - B, A~' € 0*(3), und dies sichert
uns bereits die Gruppeneigenschaft von %3.

c) Zerlegen wir die Bewegungsgruppe %5 nach ihrer Untergruppe B3 in Rechts-
nebenklassen, so erhalten wir deren zwei, die Klasse %% der eigentlichen und die
Klasse ®3 © {4 | T} (det 4 = —1) der uneigentlichen Bewegungen: ¥B; =
B35 U B3 - {4|T}. Sie sind zugleich Linksnebenklassen, also ist 83 ein Normalteiler
von B . Der Index von B3 lautet [B; : B3] = 2 (vgl. auch[17], 11, § 6, oder Aufgabe 3.4.).

4.2.2. Die Gruppe 3 der eigentlichen Drehungen (eigentliche Drehgruppe)

a) D besteht aus den Elementen {4 | T} mit det 4 =1 und T = O = (0, 0, 0).
Diese gehoren offensichtlich zur Normalform [i] mit 7; = 0. Es handelt sich also um
(eigentliche) Drehungen um Geraden.

b) Die Gruppeneigenschaft von D3 folgt aus jener von O*(3) in Verbindung mit
{410} -{B| 0} ={A4-B|O}jund {4|0}" ={4""| O} fiir 4, Be O*(3).

¢) Bilden wir durch {4 | O} - 4 die Gruppe ®j eineindeutig auf O*(3) ab, so
folgt aus b), daB diese Abbildung relationstreu ist. Die eigentliche Drehgruppe ist
also zur eigentlich orthogonalen Gruppe isomorph: ®3 = O*(3). {4 | O} und sein
Drehanteil A werden deshalb gelegentlich identifiziert.
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4.2.2.1. Parameterdarstellung der eigentlichen Drehgruppe mit Hilfe der Eulerschen Winkel

Wir bedienen uns der Tatsache, daB uns eine Drehung des E? vollstindig bekannt
ist, wenn wir die Basis {O; e,} kennen, die bei dieser Drehung aus {O; e,} entsteht!

Wir benétigen dazu im folgenden: («) die Knotenlinie, d. h. die Schnittgerade der
e;,e,- und ej,ey-Ebene; sie kann durch das Vektorprodukt k = e; x e3 orientiert
und beschrieben werden, (8) die Eulerschen Winkel, d.h. der Prizessionswinkel
p = ¥(e;,k) (0 =<y < 2m), der Nutationswinkel O = ¥(es,e3) (0 <0 < x),
der Winkel der reinen Drehung ¢ = ¥(e,k) (0 < ¢ < 2x), (y) zwei Hilfsbasen
{0;y,} und {0; z,}.

Die Uberfiihrung von {O; e,} in {O; e} vollziehen wir in drei Schritten:

I) Drehung von {O; e,} um e; mit dem Winkel y, bei der e, in k iibergeht und die
Basis {O; y,} erreicht wird, die als Rechtssystem durch y; = k und y; = e, fest-
gelegt ist (Bild 4.2(a)). Ein Ortsvektor transformiert sich dabei gemdB y = D, - x
(D, : siche unten (D)).

IT) Drehung von {O; y,} um die Knotenlinie mit dem Winkel @, bei der y; = e
in e} ibergeht und die Basis {0;z} (z, =y, =k, z; = e3) erreicht wird
(Bild 4.2(b)). Die Transformation des Ortsvektors y lautet hier z = D, -y (D,:
siehe (D)).

III) Drehung von {O; z,} um z; mit dem Winkel —g, bei der z, = kin e} und z,
in e; libergeht und die Basis {O; e} erreicht ist (Bild 4.2(c)). Die letzte Transfor-
mation lautet X' = D; - z (D siehe (D)).

Bild 4.2. Eulersche Winkel

(a) Prézessionswinkel (I))
(b) Nutationswinkel (II))
(c) Winkel der reinen Drehung (III))

Die Hintereinanderausfithrung der Drehungen-I), II), III) ergibt
(D) x' =D-x, wobei D = D3+ D, D,
ist und .
(D) x' = D-x,wobei D= D3 D,*D,

cosy sin yp 0 1 0 0 cosp —sing 0
D, =[—sin1p cosy 0], D, =[O cos @sin@}, D, *I:sinqz cos ¢ OJ_
0 0 1 0 —sin & cos O, 0 0 1

Die Transformationsmatrizen D liegen offensichtlich in O*(3).

Beispiel 4.1: Wir betrachten das Kerngeriist von Allen so, wie es in 2.3.1. bzw.
gemdl Bild 2.2(a) im x,y,z-Koordinatensystem fixiert wurde. Wir iiben darauf die
Drehsymmetrieoperation C, € D,4 aus. Zeigen die Basisvektoren e, e,, e; in Rich-
tung der positiven x-, y-, z-Achse, so erhalten wir nach der Drehung C, die neue
Basis {O; e;} mit e} = —e, =k, e, = —e,, e; = e;. Die Eulerschen Winkel lauten
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dahery = 7,0 = 0, ¢ = 0,und die Drehung C, wird in (®) durch die Gleichung

-1 007 X' = —x
x’=[ 0 —1 0]»)(, d.h. ) -y

0 01 = z

beschrieben (x = x;,y = y,,z = x3; X' = x},)’ = x5,z = x3). Analog konnen
wir C3, C5 € D,4 darstellen. Die den Drehungen C,, Cj3, Cy' auf diese Weise zu-
geordneten Transformationsmatrizen D, D', D" € O*(3) lauten

-1 00 1 0 0 =10 0
CZ;D=l: O—lO}C;;D':[O =1 0},C;’;D"=[ 01 0},
0 01 0 0-1 00 -1

Sie bilden zusammen mit der Einheitsmatrix E eine Untergruppe M3 = [E, D, D', D"']
sowohl von O*(3) als auch von der speziellen linearen Gruppe SL(3) (vgl. 3.2.3.)).
3 ist isomorph zur Drehsymmetriegruppe D, = [E, C,, C3, C5'] von Allen (3.4.2.b)).

4.2.2.2.  Klassen konjugierter Drehungen in 3

{4 O} = 4 €D} drehe den Raum im Sinne einer Rechtsschraube um die durch
den Einheitsvektor a bestimmte Achse, {B| O} = Be ®} drehe entsprechend um
die ,,Achse* b.

Satz 4.3: Zwei Drehungen A, B € D% des Raumes um beliebige Achsen a und b sind S.4.3
genau dann konjugiert zueinander, d. h. es gibt ein Xe€®% mit B=X"'-A4-X,

wenn sie gleiche Drehwinkel besitzen. Dabei ist X jene Drehung um die Achse

X = a x b, die durch X - b = a die Achse b in die Achse a iiberfiihrt.)

Beweis: Wird die Drehung A bez. der BaSJS{O e,} durch die Matrix [a,,,] dargestellt
so stellt dieselbe Matrix bez. der mit X~* gedrehten Basis {0 e, = X!
gerade dxe kon]uglerte Drehung B dar: Brej=X'1-A-X-e,=X"1-4- e

=X Z a,e, = Z a,X1- Z a,, ¢,. Daher gehoren zu 4 und B gleiche
Drehwmkel und b hat in{0; e } dle g]elchen Koordinaten wie a in {O; ¢,}. m

4.2.3. Die Gruppe 9; der Drehungen (volistindige Drehgruppe)

a) D, besteht aus allen Elementen {4 | T} mit 4 € O(3) und 7 = O. Die Gruppen-
eigenschaft von ®; ist wegen jener von O(3) gesichert. Wie in 4.2.2.c) gilt hier ganz
analog die Isomorphie ®; = O(3). Mitunter werden deshalb die Bewegungen {A | O}
mit ihren Drehanteilen A identifiziert.

b) Wegen 7' = 0, 4 € O(3) gehort jedes Element von D3 zu einer der Normal-
formen (%) [i] (det A = 1, eigentliche Drehung), [ii] (det 4 = —1, Drehsplegelung,
also uneigentliche Dr ehung) oder [iii] (det 4 = —1, Spiegelung).

4.2.3.1. Parameterdarstellung der Spiegelungen von ®;

Wie fiir die eigentlichen Drehungen geben wir jetzt auch fiir die Spiegelungen eine
solche Darstellung an.

An einer (Spiegel-)Ebene F durch den Ursprung O € E® werde ein beliebiger
Punkt Pe E3 gespiegelt' Spiegelbild sei P’. Beziiglich der Basis {O;e,} sei F durch

die Glelchung Z a,y, = 0 festgelegt, und P, P’ sowie der LotfuBBpunkt Q € F von P
seien durch dle Ortsvektoren X=3yxe, X =>xe, Yy=2ne (v=12,3)



48 4. Bewegungsgruppe

gegeben. Dann ist m = Y ne, mit den Richtungskosinussen n, = cosx,
= a,\/ @ + a3 + a3 (x, = ¥(n, e,) der Normaleneinheitsvektor von F. Mitd = IQ—;’I
und QP = dn gilt dann x' = x — 2dn (Bild 4.3). Wegen y=x—dn, n-y =0
und n?> = listdabeid =n-x =Y n,x,. Also gilt X' = x — 2(n-x)n, d. h.

n}  nyn, nyng
() X' = (E—2H)x mit H = [nznl n3 nznsJ.

nany nyn, n3

Bild 4.3. Spiegelung an einer Ebene

Die Normalform (%) [iii] fiir z, = ¢, = 0 erhalten wir hieraus fiir den Normalen-
einheitsvektor n = (0, 0, 1) der x,,x,-Ebene F (n, = n, = 0, n; = 1).

Beispiel 4.2: Die Matrix E — 2H, die durch (c) die Spiegelsymmetricoperation sz D,4
(vgl. 2.3.1.3.)) darstellt, liegt fest, wenn der Normaleneinheitsvektor n = (n,, n,, n3)
der Spiegelebene o} bekannt ist. GeméB Bild 2.2(a) ist n = (\/5/2, \/5/2, 0). Fiir 6/
finden wir entsprechend n = (—+/2/2, \/5/2, 0). Es werden also o} und o darge-
stellt durch die Matrizen aus O(3):

0—-10 010
oy X = [—1 0 OJ und of: 2" = [l 0 O:I‘

0 01 001

Diese beiden Matrizen X', 2" € O(3) erzeugen zusammen mit den drei Matrizen
D, D', D" e O(3) aus Beispiel 4.1 (4.2.2.1.), die die Drehungen C,, C;, C5y € Dy
darstellen, eine lineare Matrizengruppe My = [D, D', D", X', X"'], die zu D,4 iso-
morph ist: D,q = M;. Die beiden Matrizen aus Mj;, die die Drehspiegelungen
Sy, 83 € Dy darstellen, finden wir wegen S, = C5 - o4 und S3 = C3)- o4 als Produkte
der Matrizen P’, D", 2", durch die Cj, C5 und o} dargestellt werden:

0 -1 0 01 0
S4:S=D"Z’=[l 0 0}, Si:S’:D’“Z’:{—l 0 0}.
0 0 -1 00 -1

M, lautet also vollstindig: M3 = [E, S, D, S, D', D", 2", X"'].

4.2.3.2.  Die Inversion i € D; beziiglich des Inversi ums i = O e E?
Wir beachten auch, was wir durch 2.3.2.4. dariiber wissen. i ist jene Bewegung

i = {I| O} €®;, die jeden Ortsvektor x = OPinx = —x = OP' uberfiihrt und dabei
P auf P’ = i(P) abbildet (P und P’ liegen bez. des Inversionszentrums i = O ,,spiegel-
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bildlich*). Beziiglich {O; e,} ist X' = —x = I - X. Demnach wird i durch

-1 0 0
1=[ 0 -1 0}e0(3)
0 0 -1

dargestellt. Wegen det I = —1 ist i ¢ D} eine uneigentliche Drehung. i ist gleich der
Drehspiegelung an jeder beliebigen Drehspiegelachse durch O mit durch O gehender
Spiegelebene, fiir die die zugehirige Drehung 180° betrdgt (s. Bild 4.4, vgl. 2.3.2.4.).
Aus i?(x) = i(i(x)) = —(—x) = x folgt, daB i involutiv ist: i* = Ee®; (ent-
sprechend ist /? die Einheitsmatrix). Wir identifizieren jetzt einfachheitshalber
wieder {B| O} mit B. Aus /-x = —x folgt, daB 7 mit allen Drehungen A€ ®j
vertauschbarist: /- 4 = A - .

Bild 4.4. Die Inversion i ani = O
als Drehspiegelung

Diese uneigentlichen Drehungen /- A liefern offensichtlich alle méglichen Dreh-
spiegelungen. Spiegelungen liefern sie dann, wenn eine Drehung 4 um 180° erfolgt.
Vervollstindigen wir ® durch die Elemente /- A (4 € D}), so erhalten wir die
vollstdndige Drehgruppe ®;. Sie kann sogar als direktes Produkt ®; = 35 x {I)
aus D3 und der durch I erzeugten Untergruppe <{I) = [E, I] von ®; geschrieben
werden.

4.2.3.3.  Klassen konjugierter Drehungen von D5

Unter Benutzung des Beweisverfahrens des Satzes 4.3 verallgemeinern wir dessen
Aussage:

Satz 4.4: Drehungen bzw. Drehspiegelungen aus D um beliebige Achsen sind genau
dann zueinander konjugiert, bilden also gerade eine Klasse, wenn sie zum gleichen
Drehwinkel gehiren. Eigentliche und uneigentliche Drehungen liegen niemals in einer
Klasse.

Bemerkung: Spiegelungen sind als Drehspiegelungen zum Drehwinkel 0° aufzufassen.
Drehungen um eine durch einen Vektor gegebene Achse erfolgen im Sinne einer
Rechtsschraube. Einen Beweis des Satzes finden wir in [10], § 6.

4.2.4. Die Translationsgruppe Z; des E* und Untergruppen

a) X, besteht aus allen Bewegungen {E | T} aus ¥ (bzw. 83). Wir nennen sie wegen
X' ={E|T} x=E-x+ T =x+ T die Translationen des E*. Sie gehoren zur
Normalform (8) [iv] der Bewegungen (4.1.3.) und bilden eine abelsche Gruppe.
Letzteres ergibt sich aus dem folgenden Satz:

4 Belger, Symmetriegruppen

S.4.4
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Satz 4.5: Es sei B = {{X|Y}:XeX < OQ3),YeY < R’} B, eine beliebige
Bewegungsgruppe, ® = {{X | O}: Xe X} = 8 die Teilmenge der Drehanteile,
T ={{E|Y}: YeY} = % die der Translationsanteile. ® und ¥ bilden Untergruppen
von B; T ist abelsch.

Beweis: a) {E| Y1} {E|Y,} = {E| Y, + Y,} und {E| Y} = {E| — Y} miissen
fiir beliebige Y,, Y,, Y€ Y Elemente von ® sein, d. h., Y; + Y, und — YliegeninY.
Daher gilt T - = und ' = 2. Fernerist ¥; + Y, = Y, + Y, also T abelsch.

b) Fiir die Drehungen {X | O} verlduft der Beweis ganz wie in a). ®

Offensichtlich ist T isomorph zum Vektormodul V® und zum Modul R® der ge-
ordneten Tripel reeller Zahlen (vgl. Beispiel 3.9): €5 =~ V3 = R3. Deshalb wollen wir
einfachheitshalber {E |T} mit T identifizieren.

b) Beziiglich einer nicht notwendig orthonormierten Basis {O:a,, a,, a;} von
E3 mit Basisvektoren a, € V2 im Ursprung O € E? kénnen wir T als Vektor eindeutig
als Linearkombination

T =ta, + t,a, + t3a; = (t;,1,,13), t,€R,

schreiben. :

Fiir kristallographische Zwecke sind jene Translationen des E* von Bedeutung, die
durch ganzzahlige ¢, = g, charakterisiert sind (g, = 0, £1, +2,...). Die Teilmenge
2y = T, dieser Translationen T = (g,, g», g3) bildet ganz wie die Menge %5 der
Translationssymmetrien des ebenen NaCl-Gitters (2.3.3./3.1.1. 2.) eine Gruppe —
eine Untergruppe von ;.

Beispiel 4.3: Wihlen wir gemidB Bild 2.7(a) a, = a, a, = b, a; = ¢ als Einheits-
translationen der rdumlichen NaCl-Gitters, so ist 23 die Gruppe der Translations-
symmetrien des raumlichen NaCl-Gitters.

¢) Von groBer Bedeutung, insbesondere in der Kristallographie, sind die folgenden
Aussagen:

Satz 4.6: In jeder Bewegungsgruppe ¥ bildet die Untergruppe ¥ der Translationen
einen abelschen Normalteiler.

Beweis: Nach Satz 4.5 ist T eine abelsche Untergruppe von 8. Die Normalteiler-
eigenschaft von ¥ folgt aus {X|Y} ' -{E|T} {X|Y}={X"'|-X"*'Y}
{E|T} - {X|Y}={E| X' - T}, wenn X alle Elemente von X und Y sowie T
alle Elemente von Y durchlaufen. Fiir X = E durchlduft dann X-* - T ganz Y, also
{E|X}und {E| X~'-T}ganz%. m

Ohne Beweis nehmen wir noch zur Kenntnis den

Satz 4.7: Die Faktorgruppe %/ einer Bewegungsgruppe nach der in ihr enthaltenen
Translationsgruppe  ist zur orthogonalen Gruppe X < O(3) ihrer Drehanteile isomorph:
B/T = X,

In der Kristallographie treten nun gerade solche Bewegungsgruppen % auf, die die
Gitter, welche von drei linear unabhéngigen Erzeugenden ihrer translativen Normalteiler
¥ aufgespannt werden (vgl. Bild 2.7(a)) mit sich zur Deckung bringen. Fiir diese Gruppen
ist die Faktorgruppe %|T =~ X stets eine endliche, wir sagen auch diskrete Bewegungs-
gruppe.
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Aufgaben

4.1. Durch die Punkte O: (0,0, 0), H: (2,2, 0), H,: (2,0, 2), H5: (0, 2, 2) (rechtwinklige Koordina-
ten) sei ein Tetraeder (ein NH3-Molekiil mit dem N-Kern in O, den H-Kernen in H;) gegeben.

a) Durch x” = A - x werde das Tetraeder um 120° um die Drehsymmetrieachse durch O und den
Mittelpunkt des O gegeniiberliegenden Dreiecks in eine neue Symmetrielage gedreht (von O aus
gesehen, mathematisch positiv). Wie lautet die Drehmatrix 4? b) Welche Koordinaten haben die
Ecken O, H; des Tetraeders nach einer Drehung um die Eulerschen Winkel ¢ = 60°, y = 210°,

@ = 30°? Handelt es sich dabei um eine Drehsymmetrieoperation?

4.2. Die Symmetrieoperationen der Symmetriegruppe C; .von A < E? (NHj;-Molekiil, siche #
Aufgabe 2.4 b) bzw. 3.1) sind durch Bewegungen {4 | 0} (x" = 4 - x) zu realisieren. Wie lauten die
entsprechenden Transformationsmatrizen 4? (Empfehlung: Lose die gleiche Aufgabe fiir [] < E2!).
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5. Punktgruppen, Symmetriegruppen von Molekiilen

5.1. Begriff der Punktgruppe

Wir informieren uns in 2.3.4. noch einmal iiber Symmetriemengen, deren Elemente
einen gemeinsamen Fixpunkt besitzen, und fiihren folgenden Begriff ein:

Definition 5.1: Eine Untergruppe der (vollstindigen) Drehgruppe ®; heift Punktgruppe.
Sie heifit von erster Art, wenn sie keine uneigentliche Drehung (Drehspiegelung bzw.
Spiegelung) enthilt, sonst von zweiter Art.

Beispiel 5.1: Die Symmetriegruppe C,;, von H,0, (Bild 2.6 bzw. Bild 5.1, wenn dort
« = 7/2 wire) ist nach 2.3.2.2. und 2.3.2.3. eine Punktgruppe zweiter Art. In seiner
Gleichgewichtskonfiguration jedoch gestattet das H,0,-Molekiil nach Bild 5.1
(0 < x < 90°) offensichtlich nur eine Drehung C, um 180° um die Mittelachse
C,. Die Symmetriegruppe lautet dann C, = [E, C,] und ist eine Punktgruppe von
erster Art. Die Symmetriegruppe D,4 und C,, von Allen und H,O sind Punktgruppen
zweiter Art.

Bild 5.1. H,0, (Gleichgewichts-Konfiguration,
0 < o < 7/2; vgl. Bild 2.6)

Nach diesem Beispiel soll der Begriff Symmetriegruppe fiir den Fall, daB deren
Elemente einen gemeinsamen Fixpunkt O € E? besitzen, endlich auch streng und ganz
allgemein formuliert werden:

Definition 5.2: Gestattet ein physikalisches System (Molekiil, Festkorper usw.) eine
Punktgruppe (d. h., sind die Elemente dieser Gruppe Symmetrieoperationen des Systems),
so heifit diese eine Symmetriegruppe des Systems, im vorliegenden Fall genauer eine
Punktsymmetriegruppe, weil ein Punkt O € E® Fixpunkt der Gruppe ist. Wir nennen
sie volle oder einfach ,,die* Punktsymmetriegruppe des Systems, wenn sie alle moglichen
Symmetrieoperationen des Systems zum gemeinsamen Fixpunkt O enthilt.

Bemerkung: Punktgruppen konnen wegen der Existenz eines Fixpunktes keine
Translationen enthalten, so daB der Begriff der Punktsymmetriegruppe der passende
Begriff zur Erfassung der Symmetrien endlich ausgedehnter Systeme (z. B. von
Molekiilen) ist oder solcher, bei denen wir uns nur fiir Dreh-, Drehspiegel- oder
Spiegelsymmetrieen interessieren. Anstelle von Punktsymmetriegruppe sagt man
mitunter auch kiirzer Punktgruppe des Systems.

5.2 Achsen einer Gruppe
Um bei der Klassifikation der Punktsymmetriegruppen gleich auch die Klassen

konjugierter Drehungen angeben zu konnen, ist noch folgende Uberlegung bzw.
Definition niitzlich :
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Es sei C, eine Drehung des E* um die n-zihlige Drehachse C,. Wegen Ci = E
gilt fiir die zu C, (v =1,2,...,n — 1) inverse Drehung die Beziehung (C;)~'
=C’ = Ci C” = Cpr (vgl. 3.3.1. b)); d. h., die Drehung um (»/n) 360° im ma-
thematisch negativen Sinn stimmt mit jener um ((n — »)/n) - 360° im positiven Sinn
tiberein. Wichtig ist dabei, daB fir » = 1,2,...,n — 1 C; zu C,” konjugiert ist.
Notwendig und hinreichend dafiir ist die Konjugiertheit von C, zu C;*; denn es gilt:
X Xx=Xx"CXx)XxX'¢ XxX).X"C -x)=¢t-Ct.c*
=C.”.

Definition 5.3: Enthdlt eine Punktgruppe eine Drehung C, um die Achse C,, so heifit
C, eine Achse der Gruppe. C, heifit zwei- oder einseitig, je nachdem, ob die zugehérigen
Drehungen C, und C;* zueinander konjugiert sind oder nicht.

Beispiel 5.2: a) In der Punktsymmetriegruppe D,4 gilt nach Tafel 2.1 (X = C; und
n=2):C5'-C,-Cy=Cy Cy-C; =C, = C;3'. Also ist die Achse C, des Allen-
Molekiils zweiseitig (bilateral).

b) Das ebene Borsiure-Molekiil (Bild 5.2) gestattet die Drehung C;, C% um 120°
und 240° um die senkrecht zur Molekiilebene o, stehende, durch den Borkern ver-
laufende C;-Achse der Ordnung (Zdhligkeit) n = 3, ferner die Spiegelung o}, und
auBler E noch die Drehspiegelungen S; = oy, - Cs, S5 = oy, - C3. Die Gruppentafel
der mit Cj, bezeichneten Symmetriegruppe, Cs, = [E, C;, C3, S5, S, 03], des
Molekiils stelle der Leser selbst auf. Wir ersehen aus der Tafel, daB es kein X € Cyy,
gibt, so daB X~ - Cy - X = C3' gilt. C; ist also eine einseitige Achse.

Bild 5.2. Ebenes Borsaure-Molekiil

DaB eine Achse C, zweiseitig ist, hangt offensichtlich damit zusammen, daB es
eine zu C, senkrechte Achse C, gibt oder eine Spiegelebene a,, die C, enthilt.-Aus
Satz4.3 folgt ndmlich fir X = C,: C3'-C,C, = C3' (und daraus noch
C3!- Cy- C, = C;”). Analog iiberlegen wir den Fall fir o, .

5.3. Klassifikation der Punktsymmetriegruppen erster Art

5.3.1. Die Gruppen C,

Punktgruppen erster Art, die lediglich eine Drehachse C, der Zahligkeit n be-
sitzen, heiBen vom Typ C,.

Eine C,-Gruppe ist von der Ordnung n; ihre Elemente sind die Drehun-
gen C0 = E, C! = C,, C2, ..., Ci~! des E® um die Achse C, um 0, 360/n,
2-360/n, ..., (n — 1) 360/n Grad. C, ist also erzeugendes Element der Gruppe; C,
ist damit eine zyklische Gruppe der Ordnung n,

C, = <Gy,
und gehért zur abstrakten Gruppe Z, (3.5.1.).

C, ist offenbar abelsch, so daB jedes Element C, (v = 0, 1, ..., n — 1) eine Klasse
konjugierter Elemente fiir sich bildet. C, zerfillt also in 7 Klassen (s. 5.4.4.).

D.5.3
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Beispiel einer C,-Gruppe ist die Symmetriegruppe C, von H,O, fiir 0 < & < 90°
(vgl. Beispiel 5.1 und Bild 5.1).

Besitzt eine Punktgruppe erster Art mehrere Drehachsen C,, C,,, so verursacht
jede fiir sich eine Untergruppe vom Typ C,, C,,.

5.3.2. Die Gruppen D, (Diedergruppen)

Punktgruppen erster Art, die eine (vertikale Haupt-)Drehachse C, der Zahligkeit
n = 2 und n dazu senkrechte (durch einen gemeinsamen Punkt von C, verlaufende)
zweizdhlige Drehachsen C$V, C$, ..., CP besitzen, heiBen vom Typ D,.

Da wir diese Achsenkonstellation gerade in der Drehsymmetriegruppe des regel-
méBigen zweiseitigen n-Ecks (Dieder) antreffen (Bild 2.4, n = 6), nennen wir die
D,-Gruppen auch Diedergruppen. Sie sind von der Ordnung 2n. Die 2n Gruppen-
elemente von D, sind gegeben: (1) durch die » Drehungen C, (v = 0,1,...,n — 1)
um die Achse C,, die eine Untergruppe C, von D, bilden; (2) durch die » Drehungen
C§P, CH, ..., CP um jeweils 180° um die Achsen C$, C?,..., C{, von dehen
benachbarte einen Winkel von 180/n Grad einschlieBen.

a) Ist n = 2, so liegen drei zueinander senkrechte Drehachsen der Zahligkeit
zwei vor. Die Gruppe D, haben wir als Drehsymmetriegruppe des Allen-Molekiils
in 3.4.2. b) kennengelernt; in 3.3.4. b) haben wir festgestellt, daB sie zur Kleinschen
Vierergruppe V als abstrakter Gruppe gehoren.

Da diese abelsch ist, bildet jedes der vier Elemente von D, eine Klasse fiir sich
(s. 3.6.1.c), (E,)); D, besitzt vier Klassen.

b) Fiir n = 3 haben wir zwei unterschiedliche Achsenkonstellationen bez. der
C¥’-Achsen zu studieren:

n = 2m: Durch die Drehungen C, (» =0,1,...,n — 1) wird die Achse C{"
in die Achsen C$, C¥, ..., C§~? iibergefiihrt und analog CPin CP, CP, ..., CP.
Bezelchnungsmaﬁlg driicken  wir dies durch CcP = (3, C‘3’ Cy, C‘s’ C’”
bzw. C® = C,,C¥ = C,, CP = C,,... aus und nennen die Achsen jeder der
beiden Sorten untereinander dquivalent (Bild 2.4). Zu jeder Klasse gehért dann eine
Klasse konjugierter Drehungen

(Cé) = {Cés C;’, }7 (Cz) = {Cz; Czs }
Ferner verteilen sich die Drehungen C, (v = 0,1,...,n — 1) um C, offenbar auf
die Klassen

CO) = {E} (Cl) — {Cn’ C2m 1} Cm-l) — {Cm—l Cm+1} (Cm) = {Cm}

Dies ergibt sich nach 5.2. bzw. dem Satz 4.4 aus der Tatsache, daB die Achse C,
wegen der zweizihligen Achsen C$ zweiseitig sein muB.

n = 2m + 1: Durch die Drehungen C; (» =0, 1,...,n — 1) wird bereits eine
einzige der Achsen C¥” (u € {1, ..., n}) in alle anderen dieser Art iibergefiihrt (Bild 5.3)

Bild 5.3. Zur Diedergruppe fiir ungerades n (= 3)
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d. h., alle C$” sind dquivalent und bilden eine Klasse, zu der eine Klasse konjugierter
Drehungen

{C2, €Y.}

gehort (CP = C5, C¥ = Cy usw.). Die Drehungen C;, verteilen sich entsprechend
diesen Ausfithrungen nun auf die Klassen

(C) ={E}, (C}) ={Cy. C2}, ..., (C) = {C, ™3,

Die Anzahl der Klassen konjugierter Elemente, also die Klassenzahl k(D,) lautet
demnach

m+ 3 firn =2m,

kD,) = "
m+2 firn =2m+ 1.
Als ein minimales Erzeugendensystem fiir Gruppen vom Typ D, stellen wir {C,, C3}
(ve{l,...,n}) fest, so daB wir die Diedergruppe D, z. B. durch

D, = <G, C£>

beschreiben kénnen.
Beispiel einer Gruppe vom Typ D, ist die Drehsymmetriegruppe der eigentlichen
Drehungen des Benzenringes (Bild 2.4) oder jene des Allen-Molekiils vom Typ D,.

5.3.3.. Die Gruppen T (Tetraedergruppen)

T ist durch die Drehsymmetriegruppe eines regelmaBigen Tetraeders gegeben.

Es ist zu beachten, daB die Tetraedergruppe bei Klassifikationen, die von der
Unterteilung in Punktgruppen 1. und 2. Art absehen, durch die volle Symmetrie-
gruppe des Tetraeders erklirt ist und dann statt 12 doppelt so viele, nimlich 24 Ele-
mente besitzt. Die 12 Drehsymmetrien des Tetraeders sind folgendermaBen zu finden:
Offensichtlich (Bild 5.4) gibt es vier dreizdhlige Achsen Cj, Cy, C3’, C¥ — durch
jeden Eckpunkt und den Mittelpunkt des gegeniiberliegenden Dreiecks jeweils eine.
Dazu gehoren die Drehungen Cj, Cy, C3’, C$ um 120° und C%2, Cy?, C3'?, (C§¥)*
um 240°. Ferner existiert zu jedem der drei Paare gegeniiberliegender Kanten eine
zweizéhlige Achse durch deren Mittelpunkte: C;, C5, C5’. Dazu gehoren die Dreh-
symmetrien C5, Cy, C5’ um 180°.

103 Bild 5.4. Zur Tetraedergruppe

Nach Satz 4.4 erhalten wir somit die vier Klassen
(E), (C3) = {C3, C3, €3, €57}, (CF) = {C2, €52, €572, (C§)*}
(C3) ={C3, C3, 7"},
Es ist also k(T) = 4.
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5.3.4. Die Gruppen O (Oktaedergruppen)

Gruppen vom Typ O sind durch die Drehsymmetriegruppe eines Wiirfels gegeben.
Diese ist von der Ordnung 24. Folgende Achsenkonstellation am Wiirfel liegt ndm-
lich vor: Es gibt drei zweiseitige dquivalente C,-Achsen Cy, Cy, C4"' (durch die Mittel-
punkte einander gegeniiberliegender Quadrate) mit den neun dazugehorigen Drehun-
gen C7, Cy”, CJ" (v =1, 2, 3); vier zweiseitige dquivalente C;-Achsen Cj, C¥,
Cy’, C§¥ (durch je zwei gegeniiberliegende Ecken stets eine) mit den acht zugehorigen
Drehungen C¥, C3*, C3"”, (C§)" (v = 1,2); sechs #quivalente C,-Achsen Cj,
Cy, ..., C® (durch die Mittelpunkte gegeniiberliegender Kanten) mit den sechs
Drehungen C3, C%, ..., C¥. Zusammen mit dem Einselement haben wir also 24 Dreh-
symmetrieoperationen festgestellt. Nach geeigneter Orientierung der Drehachsen
finden wir in O folgende fiinf Klassen:

(E), (Cy) ={CP,(CP)*:v =1,
(C3) = {CP, (CP) u'=1,2,3,

Es gilt K(0) = 5.

2,3}, (C; )—{(wa)2 r=123,
4, (cy o).

) ={Cs ...

5.3.5. Die Gruppen Y (Ikosaedergruppen)

Y ist durch die Drehsymmetriegruppe des Pentagondodekaeders gegeben. Sie
besitzt 60 Drehsymmetrien, die sich zu fiinf Klassen zueinander konjugierter zu-
sammenschlieBen: k(Y) = 5 (siehe [10]).

5.3.6. Die unendlichen Punktgruppen C, und D,

Beispiel einer Gruppe vom Typ C, ist die Drehsymmetriegruppe des HCN-
Molekiils (Bild 5.5). Sie besitzt eine C,,-Drehachse durch den H-, C- bzw. N-Kern,
um die das Molekiil um jeden beliebigen Winkel drehbar ist.

0 Bigs.5. HON-Molekil

Die Gruppen C,, sind also Punktgruppen erster Art mit nur einer Achse, und
zwar einer vom Typ C,, (um die der E* um beliebige Winkel gedreht werden kann).

Beispiel einer Gruppe vom Typ D, ist die Drehsymmetriegruppe des CO,-Mole-
kiils (Bild 2.1(a)). Sie besitzt eine C,-Drehachse durch den C-Kern bzw. durch die
O-Kerne, die eine Untergruppe vom Typ C, verursacht, und unendlich viele C,-
Drehachsen.senkrecht zur Achse C,, durch den C-Kern.

Die Gruppen D, sind also Punktgruppen erster Art mit einer C,-Achse und
unendlich vielen C,-Achsen senkrecht zur Achse C,, und durch einen Punkt von ihr.

5.3.7. Klassifikationstabelle fiir Punktsymmetriegruppen erster Art

Da wir die Symmetrieverhéltnisse z. B. bei einem Molekiil, Kristall usw. zuerst
durch deren Symmetrieelemente wahrnehmen, erweist es sich als zweckméBig, die
Anzahl der Drehachsen und deren Zéhligkeit zu einer Gruppe zu notieren. Ferner
sollte fiir die Belange der Darstellungstheorie die Klassenzahl zu einer Gruppe an-
gegeben werden (um die Anzahl der irreduziblen Darstellungen ansagen zu konnen).
Diese Erfordernisse erfiillen z. B. die in [10] gegebenen Aufstellungen, auf die wir
uns hier und in Tafel 5.1 beziehen.
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Tafel 5.1. Punktgruppen erster Art der verschiedenen Achsenkonstellationen;;
ihre Klassenzahlen

Typ X | Ord- | Klassenzahl k(X) Anzahl der Achsen der Zahligkeit z

nung
z=2|z=3|z=4|z=5|z=n|z=0

C, n n 1

n

3 +3

fir n gerade
D, 2n n 1

n+3

2

fiir n ungerade
T 12 4 3 4
(0] 24 5 6 4 3
Y 60 5 15 10 6
C, [e5) 0 1
D © o) (o4 1

5.4. Klassifikation der Punktsymmetriegruppen zweiter Art

Satz 5.1: Punkigruppen P zweiter Art, unter deren Elementen sich keine Inversion S.5.1
befindet, sind zu Punktgruppen P’ erster Art isomorph.

Beweis: Ist P = P* U P~ die Nebenklassenzerlegung von P nach dem Normalteiler
P+ der eigentlichen Drehungen von P (vgl. 4.2.1.¢)), so ist P’ = P+ Ui - P~ eine Punkt-
gruppe erster Art, wobei i - B¢ P* fiir Be P~ gilt. Die Abbildung ¢: P —» P’ mit
@(4) = A fir AeP* und @(B) =i- B ist dann ein Isomorphismus, denn es gilt
@(A-B)=i-(A-B)=A"(i*B) = ¢(4) - p(B) usw. m

Neue Gesichtspunkte werden also solche Punktgruppen P zweiter Art bringen, die
eine Inversion enthalten. Sie sind von der Gestalt

P =P+ x C,.

C, ist die Punktgruppe C; = [E, i] von zweiter Art, P* der Normalteiler der eigent-
lichen Drehungen von P.

5.4.1. Die Gruppen S, fiir n = 2mund n = 2m — 1

Punktgruppen zweiter Art, die lediglich eine Drehspiegelachse S, der Zéhligkeit n
besitzen, heien vom Typ S,.
n = 2m: Die Elemente von S,,, werden von den Potenzen eines Elementes gebildet:

S = E, S}n = Soms Sim,..., S5m-1; §,, ist eine Drehspiegelung an S,, zum
Drehwinkel 180/m. S,,, ist also zyklisch von der Ordnung 2m und offensichtlich zu
C,,, isomorph:

Som = <S2m> = Cop-

S, gehort also zur abstrakten Gruppe Z,,,. Die Potenzen S3%,, mit geradzahligem
Exponenten bilden eine Untergruppe vom Typ C,, = {C,).
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Spezielle Aufgaben 16st die Gruppe
S, = [E, S;] = [E,i] = <i).

Sie wird mit C; bezeichnet.

Beispiele von S,,-Gruppen sind die S, des Allen-Molekiils (3.4.2. b)) oder die Sg
des Benzenringes (Bild 2.4).

n = 2m — 1: DieS,,,_,-Gruppen (m = 1, 2, ...) sind zyklisch von der Ordnung 2n,
gehdren also zur abstrakten Gruppe Z,, . Erzeugendes Element ist die Drehspiegelung
S,, die durch S, = C, - o, entsteht, wobei C,, 6;, € S,,,_; selbst Symmetrieoperationen
sind; g, bedeutet die Spiegelung an der zur Drehspiegelachse S, gehorigen horizon-
talen Ebene a,. Daher gilt

Sam-1 = {S2m-1) = {Cam-1,03).

Die Gruppen S,,,; sind in den Gruppen C,;, bzw. C, mit erfait. Die Klassenzahlen
lauten
n firn = 2m,

k(S,) =
S 2n fiirn=2m—1,

denn die Gruppen sind abelsch.

5.4.2. Die Gruppen C,, und C,

Punktgruppen mit nur einer (vertikalen Haupt-)Drehachse C, und einer (dazu
senkrechten) horizontalen Spiegelebene o, heifien vom Typ C,y.

Sie sind von der Ordnung 2n, besitzen die Drehungen C? = E, C} = C,,
CZ, ..., Cr-', die Spiegelung o,, die Drehspiegelungen S, = oy, - C,, S? =
ot C2, ..., 8"V = g, - C™? und haben deshalb das minimale Erzeugenden-
system {C,, 0y}

Con = (G, 04

Speziell gilt C,, = {oy,». Fiir Cy, schreiben wir C;, = C,. Wegen C.- o}, = 6y, C,
»=0,1,...,n — 1) und C, ~ C, = {E} 1aBt sich daher C,, als direktes Produkt

Cun=C,xC,
schreiben,
Fiir ungerades n ist C,;, vom Gruppentyp S, (5.4.1.), gehért also zur abstrakten
Gruppe Z,,.

Fiir gerades n ergibt sich ein neuer Geswhtspunkt da dann die Inversion i e C,,
auf das direkte Produkt

G =C, x C; =<C,, i)

fithrt und {C,, i} ein minimales Erzeugendensystem bildet.
Fiir die Klassenzahl & gilt

k(Cyp) = 2n,
da C,; offenbar abelsch ist.
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Als Beispiel sehen wir uns Bild 2.6 bzw. 3.1.1.1. nochmals an und beachten auch
die Isomorphien in 3.3.4. b) sowie Beispiel 5.2 b).

5.4.3. Die Gruppen C,,

Punktgruppen zweiter Art, die nur eine Drehachse C, besitzen und n vertikale
Spiegelebenen o'V, 6, ..., 6%, die C, enthalten, heiBen vom Typ C,,,.

Die Konstellation zwnschen C, und den o®-Ebenen ist hier offenbar die glelche
wie bei den Gruppen D, zwischen C, und den C¥-Achsen:

n = 2m: Die Drehungen C:(v =1,...,n — 1) fiihren die Spiegelebene oV = GL
iiber in o = g, 6! = o}’, ... und die Spiegelebene ¢! = g in o' = o}
o® =ay’, ... (s. Bild 2. 4). Der Index d bedeutet, daB3 o, den kaelberelch benach-
barter ov Ebenen halbiert. Die o,-Ebenen und dle og-Ebenen bleiben jeweils unter
sich.

n=2m + 1: Hier geht o{” vermdge der Drehungen C; (» = 1,...,n — 1) in
alle anderen 6% (u = 2, ..., n) iiber. Wir bezeichnen daher nur: o{¥’ = o}, 6 = o}
usw.

Die Gruppen D, und C,, sind vermdge der eineindeutigen Abbildung ¢: D, — C,,
mit ¢(C;) = C, und p(C4*?) = 0¥V (v = 0, 1, ..., n — 1) zueinander isomorph. C,,
hat also die Ordnung 2n, ist fiir n > 2 nichtabelsch und hat wie D, die Klassenzahlen

%+3 fir n = 2m,
k(Cy) = n 43

2

fir n=2m + 1.

C,, besitzt z. B. {C,, o;} als ein minimales Erzeugendensystem, also gilt
Cw =Gy, 00).

Beispiel einer C,,-Gruppe ist die Gruppe C,, des H,O-Molekiils (Bild 2.5). In
3.3.4.a) bzw. b) finden wir dazu Ausfihrungen, insbesondere zur Isomorphie
C,, = D,.

5.4.4. Die Gruppen D,

Eine Punktgruppe, die eine (vertikale Haupt-)Drehachse C,, n dazu orthogonale
(durch einen gemeinsamen Punkt von C, verlaufende) C,-Achsen und eine (diese
C,-Achsen enthaltende) o,-Spiegelebene besitzt, heiit vom Typ D,;.

Sie ist als volle Symmetriegruppe eines regelmiBigen n-Ecks anzusehen und ent-
steht aus der Gruppe D, = {C,, C3) dadurch, daB jetzt auch die Spiegelung o, an
der Ebene o, des n-Ecks zugelassen wird. {C,, C3, a,,} bilden ein minimales Erzeu-
gendensystem fir D, :

D, = {C,, C2, 04).

D, ist von der Ordnung 4n; als Elemente treten auf: die 2n Drehungen C} (» =
0,1,....n = 1) und C¥ (u = 1, ..., n), n Spiegelungen o/ = C¥ - o, jeweils
an einer Ebene 6% durch C¥° und C,, n Drehspiegelungen S® (x = 1,...,n) an
der Drehspiegelachse aus C, und 6, (o, ist eines der S¥).
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Da das minimale Erzeugendensystem der D, jenes der Gruppen D, C,;, und C,,
enthilt, treten diese als Untergruppen von D, auf und als Untergruppe von D,,
C,;, und C,, auch noch C,.

Die Klassenzahl von D, lautet

K(D,y) n + 6 fir gerades n,
™+ 3 fiir ungerades 1.

Da die Achse C, zweiseitig ist, bilden die Drehungen in bekannter Weise die Klassen
{C,, Ci=*},{C2, Ci-*} usw., und analog verhalten sich die Drehspiegelungen (Sétze 4.3
und 4.4 in Verbindung mit 5.2.). Die n Drehungen C%” bilden ebenso wie in den
Diedergruppen D, fiir gerades n zwei Klassen {C3, C5, ...} und {C,, C,,...} und
fiir ungerades n eine Klasse. Ganz analog verhalten sich die Spiegelungen ¢%: Sie
bilden aus den gleichen Griinden die Klassen {oy, 0V’ ...}, {04, 9, ...} fiir gerades n
und sonst nur eine Klasse.

Ein Beispiel dafiir findet man in [12], 2.7., Beispiel 3b, ein weiteres in Aufgabe 5.2 ¢).

5.4.5. Die Gruppen D,,

Sie besitzen das Erzeugendensystem {C,, C,, o,}, konnen also fiir n > 2 durch
D,y = <Gy, Cy, 04)

charakterisiert werden. o, ist dabei eine vertikale Spiegelebene, die die Hauptdreh-
achse C, enthilt und den Winkel zwischen benachbarten C,-Achsen halbiert, die
bei den Drehungen C, (v =0,1,...,n — 1) um C, um 360/n Grad aus der C,-
Achse entstehen.

D,, kann als volle Symmetriemenge des n-seitigen Doppelprismas interpretiert
werden, das entsteht, wenn wir ein n-seitiges Prisma horizontal zerschneiden und die
eine Hélfte um 180°/n Grad gegen die andere verdrehen.

D, ist von der Ordnung 4n, die Klassenzahl lautet

k(Dy) = n +3

(vgl. Beispiel 3.24). Wir beachten dabei, daB die Referenzachse vom Typ S,, und
zweiseitig ist. DemgeméB haben wir eine Klasse (C) aus den Drehungen um die
horizontalen Achsen, eine Klasse (g,) aus den Spiegelungen an den n vertikalen
Spiegelebenen und n + 1 Klassen (S%,), (S3,), ..., (S3.); (S3, = E) aus den Dreh-
spiegelungen.

Beispiel 5.3: Die (volle) Symmetriegruppe D,4 des Allen-Molekiils (Bild 2.2) haben
wir genauestens studiert und finden unsere allgemeinen Festlegungen tiber D,  be-
stitigt (vgl. 2.3.1.; 3.6.1. Beispiel 3.18, 3.20).

5.4.6. Die Gruppen T,

Eine Punktgruppe, die als direktes Produkt aus der Tetraedergruppe T (der Dreh-
symmetriegruppe eines Tetraeders) und der Punktgruppe C; = (i) aufgefalt werden
kann, heiBt vom Typ T,:

T, =T x C,

i = 0 ist der Mittelpunkt des Tetraeders.
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Wir beziehen uns jetzt auf die Bezeichnungen in 5.3.3. Die vier Produkte C$” - i
(1 = 1,2, 3, 4) liefern vier Drehspiegelungen (S¢)° um 300° bez. der als Drehspiegel-
achsen S¢ aufzufassenden Drehachsen C§” (mit dazu senkrechten Spiegelebenen
durch #). Dazu kommen vier Drehspiegelungen S¢ = (C%°)* - i zum Winkel 60°
bez. S¥. Ferner haben wir noch die drei Spiegelungen Cj - i, C3 - i, C3"* i, so daB
wir 24 Symmetrieoperationen haben und zu den Klassen der Gruppe T zusitzlich
noch die vier Klassen (i), (S&), (S&”)° und (C3 - i). Also gilt

K(T,) = 8.

5.4.7. Die Gruppen T, (volle Tetraedergruppe)

Alle Punktgruppen, die als volle Symmetriegruppe eines regelmaBigen Tetraeders
auftreten kénnen, heilen vom Typ Ty.

Die Ordnung der T, ist 24. Zu den 12 schon vorhandenen Drehsymmetrien der
Untergruppe T von Ty kommen noch sechs Drehspiegelungen und sechs Spiegelungen.
Alle Achsen von T, sind zweiseitig, so daB gilt:

k(T,) = 5.

Die Gruppen vom Typ T, sind zu denen vom Typ T, nicht isomorph.

5.4.8. Die Gruppen O, (volle Oktaedergruppe)

Alle Punktgruppen, die als direktes Produkt O, = O x C; geschrieben werden
konnen, heiBen vom Typ Oy, Sie treten als Symmetriegruppe eines Oktaeders auf.

Die Ordnung der Oy, ist 48. Die Gruppe O ist eine Untergruppe von Oy. Zu den
24 Drehsymmetrien am Wiirfel finden wir weitere 24 uneigentliche Drehsymmetrien
(bzw. Spiegelungen), die fiinf Klassen bilden, so daB mit denen von O insgesamt
10 Klassen entstehen:

k(0,) = 10.

5.4.9. Die Gruppen Y, (volle Ikosaedergruppe)

Punktgruppen, die sich als direktes Produkt Y x C, schreiben lassen, heillen vom
Typ Y. Sie treten als volle Symmetriegruppe der Ordnung 120 eines Ikosaeders auf
und zerfallen in zehn Klassen:

k(Y,) = 10.

5.4.10. Die Gruppen C,,, C,, D,

Die volle Symmetriegruppe eines CO,-Molekiils (Bild 2.1(a)) ist vom Typ D
jene des HCN-Molekiils (Bild 5.5) vom Typ C,,.

C,, enthilt also eine C,-Achse und jede Ebene durch diese Achse als Spiegel-
ebene o,. Analog 146t sich die Gruppe C,;, aus C,, und D, aus D,, bzw. D, er-
klaren.

wvs
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5.4.11. Klassifikationstafel fiir Punktsymmetriegruppen zweiter Art

Tafel 5.2. Punktsymmetriegruppen zweiter Art, Ordnungen, Klassenzahlen

Typ X Ordnung Klassenzahl k(X)
s { n { n  fiir gerades n
" 2n 2n fiir ungerades n
Cin 2n 2n
243 fir gerades n
c 2 2
" n+3

fiir ungerades n

2

n + 6 fir gerades n
Dy 4n ’n + 3 fiir ungerades n
D,y 4n n+3
Ty 24 8
Ty 24 5
0, 48 10
Y, 120 10
th
C.. ]oo o3

5.5.  FluBschema fiir Punktsymmetriegruppen

In 5.3. und 5.4. sind alle auftretenden Punktgruppen, die als Symmetriegruppen
von Molekiilen bzw. endlich ausgedehnten Systemen auftreten, aufgestellt worden.
Warum es keine weiteren gibt, wird hier nicht erdrtert.

Um nun auf einfache Weise z. B. zu einem Molekiil die zugehérige Symmetrie-
gruppe zu finden, bedienen wir uns eines FluBschemas nach Harris/Bertolucci ([5]),
welches wir fiir den Fall formulieren, daB es sich nicht um die Symmetriegruppen der
regelmdBigen raumlichen Korper, also um T, T,, Ty, O, Oy, Y, Y, handelt. Die
Punktgruppen zum Dodekaeder und Ikosaeder kommen ohnehin nur vereinzelt als
Symmetriegruppen von Molekiilen vor. Ferner beriicksichtigt das Schema die Grup-
pen mit einer C,-Achse nicht. Es ist nicht schwer, ein Schema aufzustellen, in wel-
chem alle Punktsymmetriegruppen vorkommen. Das FluBschema (Tafel 5.3) funk-
tioniert folgendermaBen:

Beispiel 5.4: Das H,O-Molekiil hat als Symmetrieclemente eine (vertikale) C,-Achse
und zwei o,-Ebenen (Bild 2.5). Diese Elemente geheén in das Schema ein, und wir
haben deshalb von der Frage ,,C,-Achse? ab folgende Streckenfithrung zu durch-
laufen: ja, ja, nein, nein, ja. Wir finden die richtige Symmetriegruppe C,,.
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Fingabe

Symmetrieelemente
des Systems

C,-Achse(n>1)?

Jo

nein

zuCy parallele
Sn -Achse 2

Inversions >
zentrum i 2

nein

Ausgabe

unktsymmetriegrup
des Systems

Tafel 5.3. Klassifikationsschema fiir Punktsymmetriegruppen ([5])

Aufgaben

5.1. Zeige: Die Cg-Achse des Benzen-Molekiils (Bild 2.4) ist zweiseitig.
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5.2. Mit Hilfe des Punktgruppen-FluB-Schemas (Tafel 5.3) ist festzustellen, zu welchem Punkt- #

gruppentyp folgende Molekiile bzw. geometrische Figuren gehoren: a) Das gleichseitige Dreieck A
im E3 bzw. im E? (BF3- bzw. NH;-Molekiil; Bild 2.1(b) bzw. (e); vgl. Aufgabe 2.4 a), b)); b) das

Quadrat [J im E3 bzw. E? (XeF,- bzw. SFsCl-Molekiil; Bild 2.1(c), (g); vgl. Aufgabe 2.4 a), b));

¢) das Benzen-Molekiil (Bild 2.4); d) H,O, (Bild 2.6); e) FCISO (Bild L 5.1); f) F,SO (Bild L 5.2).

5.3. Ein Massenpunktsystem, Korper, Molekiil besitze keine Symmetrie. a) Von welchem Punkt-
gruppentyp ist die zugehorige Symmetriegruppe? b) Gib Beispiele hierzu an.



6. Die kristallographischen Gruppen

6.1. Grundbegriffe der Kristallographie

Wie schon aus den bisherigen Kapiteln hervorgeht, spielen die Symmetriegruppen
eine zentrale Rolle. AuBerlich erkennbare Symmetrien sind bei Kristallen besonders
ausgeprigt. Der regelmifige duBlere Bau frei gewachsener Kristalle, verbunden mit
anderen physikalischen Eigenschaften wie Spaltbarkeit, Ritzfestigkeit, Firbung und
Polarisation des durchgehenden Lichtes oder elektrische und Wirmeleitfahigkeit,
die ebenfalls einen Zusammenhang mit der duBeren Form erkennen lassen, fiihren
zu der Annahme, daB die innere Struktur der Kristalle einen hohen Grad an Regel-
maBigkeit aufweisen muB.

6.1.1.  Der Begriff des Raumgitters

Gehen wir davon aus, dafl die chemische Zusammensetzung der kristallinen Sub-
stanzen bekannt ist und in der Mehrzahl nur aus wenigen Elementen besteht, dann
miissen die Ionen, die Atome, die Molekiile oder die Molekiilgruppen im Kristall
regelmédBig, d. h. rdumlich periodisch angeordnet sein. Ersetzen wir die Ionen, die
Atome, die Molekiile oder die Molekiilgruppen, deren Anordnung sich rdumlich
periodisch wiederholt (im weiteren auch Basis des Kristalls genannt), durch einen
Punkt, so bedeutet der Begriff ,,regelmédBig* die Anordnung dieser Punkte in Gestalt
eines Raumgitters. Die einzelnen Gitterpunkte gehen dabei durch fortgesetzte
Translation ldngs dreier, linear unabhéngiger Basis-Vektoren a, , a, und a5 aus einem
gegebenen Punkt im E3 hervor. Bei der Translation ldngs des ersten Vektors, dann
lings des zweiten Vektors und zum SchluB langs des dritten Vektors entstehen nach-
einander ein lineares, ein ebenes und ein Raumgitter (Bild 6.1). Jeder Punkt P des
Raumgitters ist von einem festen Punkt durch die Translation 7 = n,a, + n,a,
+ nia; erreichbar, wobei die Koeffizienten n,, n, und n; ganze Zahlen sind.

B B e
] [l [T ]

’r';-i. .'.’.'

Bild 6.1. Lineares Gitter, ebenes Gitter und Raumgitter
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Mit dieser Betrachtungsweise haben wir uns in die Bereiche der Mikrostruktur
begeben. Die Abstinde zwischen zwei Punkten im Raumgitter eines Kristalls liegen
in der GréBenordnung von 10-'° m. Die Kleinheit dieser Abstéinde berechtigt zu
der Vereinfachung, fiir die Untersuchung der Symmetrien den Kristall und damit
das Raumgitter als unendlich ausgedehnt zu betrachten. Die einzelnen Punkte des
Raumgitters sind untereinander gleichwertig. Jeder Gitterpunkt hat die gleiche
Umgebung und kann als Ausgangspunkt fiir den Aufbau des Gitters liber Trans-
lationen aus den drei Gittervektoren dienen. Der betrachtete Kristall entsteht aus
dem Raumgitter durch Verheftung der ihm entsprechenden Basis an den einzelnen
Gitterpunkten. Wir konnen so aus einem Raumgitter durch Wahl anderer Basen
beliebige Kristalle aufbauen. Verschiedene Kristalle konnen demnach das gleiche
Raumgitter haben, wenn sie sich nur in der Basis, aber nicht in deren rdumlicher
Anordnung unterscheiden.

Abstraktionsvorschrift: Zu einem gegebenen Kristall finden wir das zugehorige Raum-
gitter, indem wir in zweierlei Hinsicht Abstraktionen vornehmen:

1. Der Kristall wird in seiner Ausdehnung auf den gesamten Raum erweitert.
2. Seine Basis wird durch einen Punkt des Anschauungsraumes ersetzt.

Das Raumgitter ist durch die Angabe der drei Vektoren a, , a, und a (Grundvektoren)
vollstindig charakterisiert und wird, von einem beliebigen Punkt ausgehend, durch
die Translationen T = nya, + n,a, + nya; aufgebaut, wobei die Koeffizienten n,, n,
und ny alle ganzen Zahlen durchlaufen.

Die drei Vektoren a,, a, und a; werden auch primitive Translationen genannt,
da man tber sie von einem Gitterpunkt zu den benachbarten Gitterpunkten gelangt.
Die Konstruktion des Raumgitters macht deutlich, daB wir es auch durch wieder-
holtes Aneinanderlegen einer Elementarzelle aufbauen kénnen. Dabei ist die Ele-
mentarzelle das von den primitiven Translationen aufgespannte Parallelepiped.

Definition 6.1: Die Elementarzelle eines Raumgitters ist das von den primitiven Trans- D.6.1
lationen a,, a, und as aufgespannte Parallelepiped. Es wird vereinbart, daf von den
acht Gitterpunkten als Eckpunkte der Elementarzelle jeweils nur ein ,,Achtel* zur
Elementarzelle gehort — die Elementarzelle also insgesamt nur einen Gitterpunkt ent-
halt. Elementarzellen mit mehr als einem Gitterpunkt heifen nichtprimitiv.

Als symmetrische Elementarzelle — oder Wigner-Seitz-Zelle — bezeichnen wir jene
Zelle, die entsteht, wenn wir, ausgehend von einem Gitterpunkt, alle Punkte des E?
zur Elementarzelle rechnen, deren Abstand von dem Gitterpunkt kleiner ist als zu
Jedem anderen Gitterpunkt. Die symmetrische Elementarzelle ist ein Polyeder, gebildet
aus den auf den Verbindungsvektoren benachbarter Gitterpunkte in halbem Abstand
errichteten Normalflichen.

Bild 6.2. Verschiedene Wahl der
Elementarzelle am ebenen Gitter,
Wigner-Seitz-Zelle

5 Belger, Symmetriegruppen
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Wihrend die Wigner-Seitz-Zelle') durch die Konstruktion eindeutig festgelegt ist,
hat die unterschiedliche Wahl der primitiven Translationen verschiedene Elementar-
zellen zur Folge. Dieser Sachverhalt soll an einem ebenen Gitter verdeutlicht werden
(Bild 6.2).

6.1.2. Netzebenen im Raumgitter, Millersche Indizes

Bevor wir die Symmetrieeigenschaften eines Raumgitters untersuchen, wollen wir
noch den Zusammenhang zwischen dem Raumgitter und der duBeren Kristallform
herstellen. Zur Vereinfachung beschrinken wir uns auf Idealkristalle ohne Verzer-
rungen oder Storungen der Kristallstruktur. Ein Idealkristall ist als Polyeder von
ebenen Flachen begrenzt. Diese Flichen entstehen durch bevorzugtes Wachstum
in bestimmten Richtungen wiahrend des Prozesses der Kristallbildung. Fiir die
physikalischen Ursachen dieses Verhaltens verweisen wir auf die Spezialliteratur

Die Begrenzungsflichen des Idealkristalls finden wir als Gitterebenen oder Netz-
ebenen im Raumgitter wieder.

Bedingt durch den Aufbau des Gitters liegen in jeder Ebene, die mindestens drei
Gitterpunkte enthélt, zugleich unendlich viele Gitterpunkte, und sie wird deshalb
zu einer Netzebene des Gitters. Die Bedeckungsdichte verschieden gelagerter Netz-
ebenen mit Gitterpunkten ist unterschiedlich und kann zur Charakterisierung einer
Netzebene verwendet werden.

Die Lage der Netzebene 148t sich in bezug auf ein geeignetes Koordinatensystem
festlegen. Wir nehmen einen Gitterpunkt als Ursprung und die Richtungen der
primitiven Translationen zu Koordinatenachsen. Da alle Gitterpunkte aus dem
Ursprung durch die Translationen 7 = n,a, + n,a, + nia; hervorgehen, konnen
wir den so erhaltenen Gitterpunkt tiber die drei ganzzahligen Koeffizienten beschrei-
ben [[n; n, n3]]. Eine kristallographische Richtung ist durch zwei Gitterpunkte be-
stimmt, dem Ursprung [[0 0 0]] und dem Punkt [[m n p]], und erhélt folglich das
Dreiersymbol [m n p]. Die Achsenrichtungen haben die speziellen Dreiersymbole

a;-Achse: [100],
a,-Achse: [010],
az-Achse: [00 1] (vgl. Bd. 13, 2.2.5).

Eine Netzebene erhélt ebenfalls ein Dreiersymbol (h, k, [), gebildet aus den drei Ach-
senabschnitten 4, k, I. Da es fiir kristallphysikalische Probleme nicht erforderlich ist,
zwischen parallelen Netzebenen zu unterscheiden, werden die Zahlen im Dreier-
symbol immer ganzzahlig genommen, indem ein gemeinsamer Hauptnenner weg
gelassen wird.

Der Zusammenhang zwischen der Netzebene (A k I) und ihrer Normalenrichtung
[m n p] ist durch die Proportionalbeziehung

hik:l=

1.1
i

3=

1) Eugene Paul Wigner (amerikanischer Physiker): Uber die elastischen Eigenschwingungen
symmetrischer S ysteme.
Wilhelm Seitz (deutscher Physiker) : Die Reduktion der Raumgruppen (1936).
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gegeben. So gehort zum Beispiel zu der Richtung [368] die Normalfliche (843):

111 8 4

3 .
hik:l= = i3s3 (vl Bild63).

“3'%'%

Die Zahlen in den Dreiersymbolen sind als Millersche Indizes') bekannt.

Punkt « ([3681]
a;-Achse

Normale (3667
a,-Achse

Bild 6.3. Die Flache (843) und ihre Normale [368]

6.1.3. Die Elementarzelle und die Symmetrie des Kristalls

Der einfachste Kristall entsteht, wenn seine Begrenzungsflichen denen der Ele-
mentarzelle parallel sind. Der Kristall ist dann der Elementarzelle dhnlich. Die
Begrenzungsflichen der Elementarzelle spiegeln in einfacher Weise die Symmetrie
des Kristalls wider. Sie sind durch die Symmetrie des Kristalls einander zugeordnete
Fliachen. Nehmen wir eine beliebige; von diesen Verschiedene Fliche, so erfordert
die Kristallsymmetrie die Existenz einer bestimmten Anzahl zugeordneter Fldchen.
Die durch die Symmetrie voneinander abhéngigen Flachen heiBen gleichwertig. Sie
verhalten sich beziiglich ihrer physikalischen Eigenschaften gleichwertig und bilden
zusammen die einfache Kristallfform. Treten an einem Kristall ungleichwertige
Flachen oder, was dasselbe ist, gleichzeitig mehrere einfache Formen auf, so bilden
sie Kombinationen.

In der Literatur werden die einfachen Formen der einzelnen Kristallklassen aus-
fiihrlich behandelt. Wir weisen Interessenten u. a. auf [15] hin (s. auch Abschnitt
6.2.8.). -

Praktisch wihlen wir beim ,,kristallographischen Achsenkreuz* die Richtungen so,
daB alle Flachen derselben einfachen Form des Kristalls (also die gleichwertigen
Fldchen) auch gleiche Achsenabschnitte bzw. Indizes erhalten. Das geschieht dadurch,
daB wir vorhandene Symmetrieachsen oder Schnittgeraden von Symmetrieebenen
zu Achsen wihlen. Die Flichen einer einfachen Form unterscheiden sich dann nur
durch die Richtungsvorzeichen und die Reihenfolge der Indizes.

Da die Elementarzelle geometrisch dhnlich unter den einfachen Formen einer
Kristallklasse auftritt, ist es ausreichend, sich bei der Untersuchung der duBeren
Symmetrien des Kristalls auf die Elementarzelle zu beschrianken. Die Symmetrien an
einem endlichen geometrischen Korper werden wie Symmetrien von Molekiilen durch
Symmetrieoperatoren des Raumes E* beschrieben, bei denen ein Punkt des Raumes
ortsfest bleibt. Bei den Kristallen ist dieser Punkt O durch den Schwerpunkt der
Elementarzelle gegeben; bei der symmetrischen Wigner-Seitz-Zelle ist es der Gitter-
punkt im Mittelpunkt der Zelle.

1) William Hallowes Miller (1801-1880), englischer Mineraloge und Kristallograph.

5%
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6.1.4.  Raumgitter und Punktgruppen

Die Symmetrieoperationen des Raumes mit Fixpunkt sind im Kapitel 5. klassi-
fiziert worden. Nach Ausfiihrung einer Symmetrieoperation des Raumes befindet
sich der Kristall in einer zur Ausgangslage dquivalenten Lage.

Definition 6.2: Zwei Lagen des Kristalls oder des Raumgitters heiflen zueinander
dquivalent oder Symmetrielagen des Kristalls, wenn sie beziiglich der Lage und An-
ordnung der Gitterpunkte nicht zu unterscheiden,. aber nicht notwendig identisch sind
(vgl. 2.3.1.1).

Wenden wir die Symmetrieoperationen der Punktgruppe auf die Elementarzelle
an, so miissen wir fordern, daB neben der Elementarzelle auch das Raumgitter in
eine dquivalente Lage iibergehen muB. Diese Forderung schrinkt die Symmetrie-
operationen erheblich ein. Wir koénnen uns iiberlegen, daB Spiegelungen an einer
Ebene und die Inversion an einem Gitterpunkt jedes Gitter in eine dquivalente Lage
uberfiihren. Dagegen sind bei den Drehungen und den Drehspiegelungen nicht alle
Winkelwerte zuldssig.

Wir formulieren diese Einschridnkungen in

Satz 6.1: Bei den Drehungen, die ein gegebenes Raumgitter in eine dquivalente Lage
iiberfiihren, sind nur Drehachsen der Zdhligkeit 1, 2, 3, 4 und 6 zuldssig.

Beweis: Die Gleichwertigkeit der Gitterpunkte untereinander erlaubt es, jeden Gitter-
punkt zum Fixpunkt einer Drehachse zu nehmen. Weiterhin sind die Drehungen
um die Winkel ¢ = x und ¢ = —« gleichwertig, fithren sie doch das Gitter aus der
Ausgangslage in die Endlage und wieder in die Ausgangslage zuriick. Wir betrachten
eine Netzebene des Raumgitters und eine Drehung um eine zu dieser Ebene senkrech-
ten Achse. Die Netzebene ist in Bild 6.4 dargestellt. Nehmen wir den Punkt 4 zum
Fixpunkt und drehen das Gitter senkrecht zur Ebene um den Winkel ¢ = «, so geht
der Nachbarpunkt B in den Punkt B’ iiber. Bei der Drehung um den Fixpunkt B
um den Winkel ¢ = —« geht der Punkt 4 in den Punkt A’ iiber. Bilden die Punkte
A" und B’ eine Parallelreihe zur Gittergeraden durch die Punkte 4 und B, so muf}
wegen der Gittereigenschaft der Abstand d(A4’, B’) ein ganzzahliges Vielfaches des
Abstandes d(A4, B) sein:

d(4', B') = nd(A, B).

Bild 6.4. Gitterbedingung und Drehung

Aus der Abbildung kénnen wir ablesen, da3 folgende Beziehung zwischen den beiden
Abstianden gilt:

d(4, B) = d(A', B') + 2(d(A, B) — d(A, B) cos ).
Daraus erhalten wir die Gleichung
d(4', B') = d(4, B) (2 cosx — 1).
Die Gitterbedingung stellt an den Winkel x die Forderung
d(A’, B') = d(4, B) (2 cosx — 1) = nd(A, B)
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oder
2cosx — 1 =n.

Die Gleichung cosx = 4(n + 1) 14Bt unter Beachtung des Wertebereiches fiir die
Kosinusfunktion, —1 < cos x £ +1, nur die folgenden Werte fiir die ganze Zahl
nzu:

Tafel 6.1.

n -3 -2 -1 0 +1
cos & -1 -1 0 1 1
x T n im im0

Die zulédssigen Drehwinkel schranken sich auf finf Werte ein:

Drehwinkel 0° oder 360° 60° 90° 120° 180°

Zihligkeit der Drehachse 1 6 4 3 2

Diese Bedingung ist auf alle Netzebenen des Kristalls gleichermafien anwendbar
und hat gleiche Einschrankungen des Drehwinkels zur Folge. Es ist eine interessante
SchluBfolgerung, daB Kristalle keine fiinf-, sieben-, acht- oder héherzédhlige Sym-
metrieachsen besitzen kénnen, obwohl diese Symmetrien in der Biologie (z. B. Bliiten-
strukturen), in der Chemie (Strukturen von Einzelmolekiilen) sowie bei Metall-
clustern (bis zu Abmessungen von 8 bis 10 mm) relativ haufig auftreten.

6.1.5.  Die stereographische Projektion

Die Untersuchung des Symmetrieverhaltens von Kristallen ist besonders iibersicht-
lich, wenn wir uns einer speziellen Abbildung bedienen.

Zunichst ersetzen wir eine Kristallfliche durch ihre Normale und kennzeichnen
diese durch das Dreiersymbol fiir eine Richtung [k k /]. Wir legen den Ursprung
eines Koordinatensystems so ins Innere eines Kristalls oder der dem Kristall ent-
sprechenden Elementarzelle, daB er maximal symmetrisch liegt, d. h. in den Schnitt-
punkt aller Drehsymmetrieachsen oder ins Inversionszentrum (bei homogenen
Kristallen ist das der Schwerpunkt). Wir betrachten die Einheitskugel um den Ur-
sprung und verschieben jede Kristallfliche parallel zu sich, bis sie die Kugelfliche
tangiert. Der Beriihrungspunkt wird als Flichenpol bezeichnet. Die Flichenpole
aller zu einer gegebenen Richtung parallelen Kristallflichen liegen bei dieser Kon-
struktion auf einem GrofBkreis. Die betrachtete Richtung ist der Pol zu diesem GroB-
kreis. Diese Zuordnung von Flachen und Richtungen mit Punkten der Einheitskugel
erlaubt die Anwendung der stereographischen Projektion. Mit dem Siidpol der
Einheitskugel als festgehaltenen und invarianten Projektionspunkt werden alle
Punkte der Nordhalbkugel auf innere Punkte des Einheitskreises der Aquatorebene
abgebildet (siehe Bild 6.5). Die stereographische Projektion hat bemerkenswerte
Eigenschaften:

1. Kreise werden auf Kreise oder Geraden abgebildet. Dabei ist das Bild eines Grof-
kreises ein Kreisbogen iiber einem Durchmesser des Einheitskreises.
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2. Die Projektion ist winkeltreu, d. h., die Winkel der sphdrischen Dreiecke erscheinen
nach der Projektion in richtiger Grife (vgl. Bd. 9, 2.3.).

Bild 6.5. Zur stereographischen Projektion

Veranschaulichen wir uns im kubischen Kristallsystem, auf welchen Punkt des
Einheitskreises eine gegebene kristallographische Richtung abgebildet wird. Die
Richtung mit dem Dreiersymbol [/ k I] verbindet den Ursprung mit dem Punkt P,
dessen kartesische Koordinaten gerade die einzelnen Indizes sind:

xp=h, yp=k, zp=1

Die Umrechnung in Kugelkoordinaten ergibt die beiden Winkel, die den Durch-
stoBpunkt der Richtungsgeraden mit der Einheitskugel beschreiben:

!
Xp = I cos @ sin & oS = — e
Aus {y,, = r sin ¢ sin 19} folgt \/h + K+

zp = rcos tang = —

e
Wihlen wir in der Aquatorebene fiir den Projéktionspunkt die kartesischen Koordi-

naten x, y und fiir die Polarkoordinaten g, ¢, so konnen wir den Strahlensatz (siche
Bild 6.6) anwenden und erhalten fiir den Radius o die Bezichung

sin &

¢ = Trcosd”

Bild 6.6
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Aus den Formeln fiir die Kugelkoordinaten lassen sich die endgiiltigen Beziehungen
ableiten:

X =pcosp, y=opsing,

= ——th + K singp = ——___.k cosp = ko
N2 e N2 N2

Diese Formeln gelten natiirlich nur fiir das kubische Kristallsystem, bei dem die

drei primitiven Translationen paarweise senkrecht aufeinander stehen und alle die

gleiche Lange haben (Bild 6.7). Fiir andere Kristallsysteme ist der Zusammenhang
nicht so einfach.

4

0107

Bild 6.7. Hauptrichtungen im kubischen
077 System in stereographischer Projektion

6.2. Die Symmetriegruppen der Kristalle

Nach den bisherigen Vorbetrachtungen wenden wir uns den Symmetriegruppen
der Kristalle zu. Die Raumgitter der Kristalle gestatten als Symmetrieoperationen
gewisse Translationen, Drehungen um Achsen, Drehspiegelungen an Drehspiegelach-
sen oder Spiegelungen an Ebenen oder Punkten. Die Symmetrieeigenschaften der
Raumgitter von Kristallen lassen sich folglich durch Untergruppen der Bewegungs-
gruppe B3 des Raumes beschreiben. Dazu informieren wir uns noch einmal im
Kapitel 4. iiber Seitzsymbole, insbesondere in 4.1.2. iiber die Gruppe 8.

6.2.1. Die Raumgruppen
Wir beginnen mit einer Definition der Raumgruppe eines Kristalls.

Definition 6.3: Eine Untergruppe der Bewegungsgruppe % des euklidischen Raumes E?
heifit Raumgruppe.

In der Regel sprechen wir von einer Raumgruppe im Zusammenhang mit einem
Festkorper und meinen dann dessen Symmetriegruppe, hier auch kristallographische
Raumgruppe genannt.

Definition 6.4: Gestattet ein physikalisches System eine Raumgruppe, so heifit diese
eine Raumgruppe oder Symmetriegruppe des Systems. Volle Symmetriegruppe oder
einfach ,,die* Symmetriegruppe des Systems nennen wir sie, wenn sie alle Symmetrie-
operationen des Systems enthilt.

D.6.3

D.6.4
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In diesem Sinne sprechen wir hier von den kristallographischen Raumgruppen als
von den Symmetriegruppen der Kristalle und bezeichnen sie mit G.

Die Elemente der Translationsgruppe €5 als einer Untergruppe der %; sind von
der Form {E | T} = T, also ganzzahlige Linearkombinationen

T = nyay + nya, + nzay = (ny, ny, n3)

aus den drei linear unabhéngigen primitiven Basisvektoren a;, a, und a; (siehe auch
2.3.3,3.1.1.2,, 4.2.4)).

Den Vektorraum aller ganzzahligen Linearkombinationen nennen wir das zur
Raumgruppe des Kristalls gehérige Gitter. Die Drehanteile 4 der Raumgruppenele-
mente {4 | T} bilden als Untergruppe der Raumgruppe die Punktgruppe G, des
Kristalls. Das Gitter einer Raumgruppe wird von allen Elementen der zur selben Raum-
gruppe gehdrigen Punktgruppe invariant gelassen. Aus der Normalteilereigenschaft der
Gruppe ¥, der primitiven Translationen (Satz 4.6) folgt, daB mit einem beliebigen
Gitterpunkt P und einem beliebigen Raumgruppenelement {4 |T} der Punkt
{A~' | O} (P) wieder ein Gitterpunkt ist.

Diese Eigenschaft der Raumgruppen hat die uns schon bekannten Einschrinkun-
gen in der Wahl der Elemente der Punktgruppen zur Folge, indem Dehungen nur
um bestimmte Winkel das Gitter in Symmetrielagen tiberfiihren. Umgekehrt erlaubt
diese Eigenschaft die Klassifizierung der Gitter nach den Punktgruppen.

6.2.2. Die Bravais-Gitter

Die Gruppe der primitiven Translationen wird durch die primitiven Basistrans-
lationen a,, a,, a5 erzeugt.

Je nach Wahl der Basistranslationen entstehen sieben primitive und sieben nicht-
primitive Gitter, die 14 Bravais-Gitter.")

Diese 14 Gitter und die 32 Punktgruppen werden wir in den folgenden Abschnitten
noch ausfiihrlich untersuchen.

An dieser Stelle wollen wir unsere Betrachtungen zu den Raumgruppen fortsetzen.
Wie wir oben ausgefiihrt haben, enthilt die Raumgruppe G die Gruppe %, der pri-
mitiven Translationen als Normalteiler. Wir kénnen folglich die Gruppe G in Neben-
klassen nach der Translationsgruppe ; zerlegen. Zwei Elemente der gleichen Neben-
klasse haben denselben Drehanteil 4. Folglich ist die Faktorgruppe G/%; der Punkt-
gruppe G, isomorph (siche auch 4.2.4.c)). Wir kénnen die Nebenklassenzerlegung
der Raumgruppe G in der Form

G=U zs{A | VA}
AeGq

schreiben, wobei das Element {4 | v,} ein Reprasentant der Nebenklasse zu A ist
(die Schreibweise ;{4 | v,} entspricht dem Komplexprodukt im Abschnitt 3.4.1.).
Ein beliebiges Raumgruppenelement kénnen wir so darstellen:

{AIT} ={E| To} {A|va} = {4 | V4 + To}.

Dabei durchlduft A alle Matrizen der Punktgruppe, v, ist die durch 4 bestimmte
nichtprimitive Translation, und T, durchlduft unabhéngig von 4 alle Gittervektoren.

Eine Raumgruppe ist dann vollstindig bestimmt, wenn man auBer Punktgruppe
und Gitter noch die nichtprimitiven Translationen kennt. Die nichtprimitiven
Translationen v, hangen von der Wahl des Ursprunges ab, durch den die Drehachsen
gelegt werden. Gelingt es durch geeignete Wahi des Ursprunges die Translationen v

1) Auguste Bravais (1811-1863), franzdsischer Physiker.
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fir alle 4 € G, zum Verschwinden zu bringen, so nennt man den entsprechenden
Kristall und die dazu gehdrige Raumgruppe symmorph. Unter den 230 Raumgruppen,
die durch Kombination der 14 Gitter mit den 32 Punktgruppen gebildet werden
konnen, sind 73 symmorph, bei dem Rest gelingt es nicht, gleichzeitig alle Trans-
lationen v, zu null werden zu lassen.

Nun betrachten wir ein bestimmtes Gitter und bauen daraus einen Kristall auf,
dessen Raumgruppe dieses Gitter hat. Das Gitter teilt den Raum in Elementarzellen,
z. B. symmetrische Wigner-Seitz-Zellen. Wird jede Wigner-Seitz-Zelle in gleicher
Weise mit Kristallbausteinen besetzt, erhalten wir den Kristall. Die Besetzung der
Wigner-Seitz-Zelle kann in verschiedener Weise erfolgen, jedesmal erhalten wir
einen anderen Kristall. Setzt man nur einen Kristallbaustein, der die Symmetrie der
Holoedrie (siehe Definition 6.5) haben muB, in die Mitte der Wigner-Seitz-Zelle,
so hat man einen Kristall ohne Basis. Die Basis kann die Symmetrie der Holoedrie
haben oder gegeniiber der Punktgruppe symmetrisch sein. Kristalle ohne Basis oder
Kristalle mit gegeniiber der Punktgruppe symmetrischer Basis sind symmorph.
Kristalle mit nichtsymmetrischer Basis sind nicht symmorph.

Die Unterscheidung zwischen den von den Raumgruppen beschriebenen Sym-
metrien und den Symmetrien der Punktgruppen hat auch physikalische Konsequen-
zen.

So beschreiben die Raumgruppen die Symmetrien der Kristallstruktur unter Be-
riicksichtigung der interatomaren Abstinde, wihrend die Punktgruppen die Symmetrien
der dufieren Kristallformund damit ihre makroskopischen Eigenschaften charakterisieren.

6.2.3. Die 32 Punktgruppen als Kristallklassen

Aus den vier Symmetrieoperationen (Drehungen um Drehachsen und Drehspiege-
lungen an Drehspiegelachsen der Zahligkeit n, Spiegelungen an Ebenen und Inversion
am Ursprung) lassen sich unter Beachtung der Einschrankung der Ordnung auf die
Werte 1,2,3,4 und 6 insgesamt 32 Punktgruppen aufbauen. Diese 32 kristallo-
graphischen Punktgruppen oder Kristallklassen sind in der Menge aller Punktgrup-
pen, wie sie fiir die Symmetrien endlich ausgedehnter Systeme (Molekiile) abgeleitet
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Bild 6.8. Stereogramme der Punktgruppen 1. Art
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wurden, enthalten (siche Abschnitte 5.3., 5.4.). Es ist {iblich, diese 32 Punktgruppen
in Punktgruppen 2. Art und 1. Art zu teilen, je nachdem, ob die Punktgruppen
uneigentliche Drehungen enthalten oder nicht. Die Punktgruppen 2. Art lassen
sich nochmals danach unterscheiden, ob unter den Gruppenelementen die Inversion
vorkommt .oder nicht. Es gibt unter den 32 Punktgruppen der Kristallo-
graphie 11 Punktgruppen 1. Art und 21 Punktgruppen 2. Art, davon 10 Punkt-
gruppen ohne Inversion und 11 Punktgruppen mit der Inversion als Gruppenelement.
In dieser Einteilung sind die 32 Punktgruppen in der Tafel 6.3 aufgefiihrt, geordnet
nach der Anzahl der Gruppenelemente. Die drei Bilder 6.8, 6.9 und 6.10 geben die

v ™ o
y \
!/ \Y
1 | L
\ z i
\ /
\ /
N
q [bh
D?h DM
Z kennzeichnetein
Symmefrie-
zentrum
th

Bild 6.10. Stereogramme der Punktgruppen 2. Art mit Inversion
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32 Punktgruppen in stereographischer Projektion wieder. Die Drehachsen oder
Drehspiegelachsen werden in der stereographischen Projektion tiber ihre Richtungen
als Punkte innerhalb des Einheitskreises wiedergegeben und entsprechend ihrer Ord-
nung mit den in Tafel 6.2 angegebenen Symbolen versehen.

Tafel 6.2.
n 7 2 3 & 7
Orehachse der Ordnung  n - 0 A B O
Drehspiegelachse der Ordnung n A &

Da die Schnitte der Spiegelebenen mit der Einheitskugel GroBkreise ergeben und
diese bei der Projektion als Kreisbogen iiber einem Durchmesser wiedergegeben
werden, lassen sich auch Spiegelebenen in den Stereogrammen darstellen. Es ist
iiblich, Ebenen ohne Spiegelungscharakter gestrichelt und Spiegelebenen ausgezogen
zu zeichnen.

Den 32 Punktgruppen entsprechen 32 Kristallklassen. Unter den 32 Punktgruppen
gibt es 7 Gruppen, denen alle anderen Punktgruppen als Untergruppen zugeordnet
werden konnen. Diese 7 Punktgruppen haben in der Menge ihrer Untergruppen die
hochste Symmetrie.

Definition 6.5: Wir bezeichnen eine Punkigruppe als Holoedrie oder Kristallsystem,
wenn sie keine Untergruppe einer anderen Punktgruppe ist, aber weitere Punktgruppen
als Untergruppen enthiilt.

In der Tafel 6.3 sind die 7 Kristallsysteme, die 32 Kristallklassen und die Symmetrie-
elemente der Holoedrien im Vergleich dargestellt. Bei den Symmetrieelementen
bedeutet z. B. die Formel 3C,4C;6C,90i 3 Drehachsen 4. Ordnung, 4 Drehachsen
3. Ordnung, 6 Drehachsen 2. Ordnung, 9 Symmetricebenen und das Inversions-
zentrum.

Tafel 6.3.

Kristallsystem Kristallklasse Symmetrie-

(Holoedrie) (Punktgruppe) elemente

G C,..C i

Ca C,, G, Cyy C,oi

Dy, Cyy, D, Dyy 3C, 30i

D3, C3.Ss,D; C;3C, 3oi
C3v ’ D3d

Dy Cs, Cay, Con Cs 6C, Toi
DS > C6v7 D3h9 D6|I

D,y C4,S4, Cyy C,4C, 5oi
D4 ) C4V5 DZd ) D4h

O, T,T,, T, 3C, 4C; 6C, 9oi

, Oy

D.6.5
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Beispiel 6.1: Fir das H,0,-Molekiil mit der Symmetriegruppe C,;, (Bild 2.6) kénnen
wir fiir die Symmetrieelemente schreiben: C,oi.

6.2.4. Die 7 Kristallsysteme und die Bravais-Gitter

Es ist verstandlich, daB zwischen den méglichen Translationsgruppen, unterschie-
den durch die Basisvektoren, und den Holoedrien Zusammenhinge bestehen miissen.
Beschreiben doch die Punktgruppen die Symmetrieeigenschaften der von den Basis-
vektoren aufgespannten Elementarzellen. Die moglichen Variationen der drei Basis-
vektoren beziiglich ihrer Lange und der paarweise zugeordneten Winkel ergeben
unter Beriicksichtigung der besonderen Winkel von 90° und 120° sieben verschiedene
Typen von Elementarzellen. Mit den Bezeichnungen:

a, b, ¢ als Langen der Basisvektoren a,, a,, as,
o, B,y als Winkel zwischen diesen Vektoren

haben wir die 7 Elementarzellen und die ihnen entsprechenden Gitter:

Tafel 6.4.

Typ der Elementarzelle Léngen der Vektoren i Winkel zwischen Vektoren
triklin a+b+c xF By +90°
monoklin a+b+c x=y=90°%*p
rhombisch a¥b*c a=f=y=90°

trigonal a=b=c a=f =y < 120° (+ 90°)
hexagonal a=b%*c a=f=90°%y = 120"
tetragonal a=b#*c a=p=y=90°

kubisch a=b=c x=p=y=90°

Diese sieben Elementarzellen und die aus ihnen aufgebauten Gitter zeigen die
Symmetrie der sieben Holoedrien, so daB man die Kristallsysteme auch nach den
moglichen Gittertypen bezeichnen kann. In Bild 6.11 sind die primitiven Elementar-

&

1+ B4
0y

re[RI

hexagona

rhombisch monoklin fetragonal

Bild 6.11. Die primitiven Elementarzellen der sieben Kristallsysteme
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zellen dargestellt. Zu diesen sieben primitiven Elementarzellen lassen sich durch
Hinzufiigen von weiteren Gitterpunkten, wobei die Symmetrie der primitiven Ele-
mentarzelle erhalten bleiben soll, noch sieben weitere nichtprimitive Elementar-
zellen konstruieren. Die Einschrinkung der Symmetrieerhaltung erlaubt das Ein-
fiigen weiterer Gitterpunkte nur an den Schnittpunkten der Fliachen- oder Raum-
diagonalen. Zur Unterscheidung werden die Gitter durch einen Buchstaben be-
zeichnet:

fir primitive Gitter,

fiir einseitig flichenzentrierte Gitter,

fir innenzentrierte Gitter,

fiir allseitig flichenzentrierte Gitter,

fiir das trigonale (rhomboedrische) primitive Gitter.

xE=Ar

Die 14 mit den Punktgruppen vertriglichen Gitter hat erstmals Bravais aus all-
gemeinen Uberlegungen abgeleitet [3]. Sie sind deshalb unter seinem Namen in die
internationale Literatur eingegangen. Die 14 Bravais-Gitter verteilen sich auf die
sieben Kristallsysteme in folgender Weise:

Tafel 6.5.
Kristallsystem Bravais-Gitter

P C 1 F R
triklin : X
monoklin X X
rhombisch X X X X
trigonal X
hexagonal X
tetragonal X X
kubisch X X X

Zu den sieben Holoedrien gehoren jeweils eine primitive Elementarzelle. Dariiber
hinaus gibt es in vier Kristallsystemen weitere nichtprimitive Elementarzellen, die
gleichfalls die Symmetrie der Holoedrie besitzen. Etwas genauer mufl die Wahl
der Elementarzelle im trigonalen und im hexagonalen Kristallsystem untersucht
werden. Kennzeichnend fiir die Holoedrie D4 ist das Symmetrieelement Dreh-
achse dritter Ordnung. Die Netzebenen senkrecht zu dieser Drehachse sind als ebene
Gitter von gleichseitigen Dreiecken aufgebaut. Eine so gestaltete Netzebene gestattet
als Symmetrieelement automatisch eine Drehachse sechster Ordnung. Wir sind damit
im hexagonalen Kristallsystem. Auf zweierlei Weise 146t sich die trigonale Symmetrie
beim Raumgitter wieder herstellen. Entweder belegen wir jede parallele Netzebene
in der gleichen Weise mit drei verschiedenen Arten von Gitterpunkten entsprechend
Bild 6.12., oder tibereinanderliegende Netzebenen werden mit gleichwertigen Gitter-
punkten so belegt, daB ein Gitterpunkt der ndchsten Netzebene immer iiber dem
Mittelpunkt des aus drei benachbarten Gitterpunkten der vorhergehenden Netz-
ebene gebildeten gleichseitigen Dreiecks liegt. Jede vierte Netzebene liegt dann
genau iber der ersten.
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Bild 6.12. Die Lage der Gitterpunkte im tri-
gonalen System

Im ersten Fall der Punktbelegung der Netzebenen haben wir es mit einem primiti-
ven Gitter der Gestalt Basisfliche mal Hohe zu tun. Im zweiten Fall entsteht die
typische rhomboedrische Elementarzelle des Bildes 6.13.

Bild 6.13. Zusammenhang zwischen den
Basisvektoren und den Elementarzellen
im trigonalen und hexagonalen Kristall-
system

a; =a; —a
a = a, — a;
a3 =a; +a, +a;

Da fiir den Aufbau des Raumgitters gleichwertige Gitterpunkte die Voraussetzung
sind, ist die Elementarzelle im trigonalen System die rhomboedrische Elementarzelle.

Die andere Art der trigonalen Elementarzelle kommt erst bei den Raumgruppen
nach Einfiihrung von Kristallen mit Basis zur Wirkung.

6.2.5. Die kristallographischen Raumgruppen

Die Kombination der 14 Bravais-Gitter mit den 32 Punktgruppen und die Beriick-
sichtigung von zwei weiteren Symmetrieelementen — der Schraubung und der Gleit-
spiegelung — liefert 230 verschiedene Raumgruppen.

Bei den Schraubungsachsen ist die Operation der Drehung um eine n-zihlige
Drehachse mit einer Translation in Achsenrichtung gekoppelt. Betrachten wir
benachbarte Gitterebenen senkrecht zur Drehachse, so sind verschiedene Schrau-
bungsachsen méglich, je nachdem, ob tibereinander liegende Gitterpunkte in benach-
barten Gitterebenen gleichwertig sind oder nicht.

Wird die Schraubung durch eine Drehachse n-ter Ordnung erzeugt, so sind die
nichtprimitiven Translationen langs dieser Achse rationale Bruchteile der primitiven
Translationen mit dem Nenner n. Diese Aussage ist die Folge eines allgemeineren
Satzes.
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Satz 6.2: Ist n die Ordnung der endlichen Gruppe G, so konnen wir durch eine Ver-
schiebung des Ursprunges erreichen, dafi nicht nur die Darstellungsmatrizen
A, B,C,...,L der Elemente von G, ganzzahlig werden, sondern auferdem noch,
daf} die Spalten a, b, c, ..., 1 der dazugehirigen Translationen aus der Raumgruppe G
Spalten aus rationalen Zahlen mit dem Nenner n sind. Dabei miissen natiirlich die
primitiven Translationen des Raumgitters als Koordinatenvektoren gewdhlt werden
[16].

Bei den Gleitspiegelungen wird die Symmetrieoperation einer Spiegelebene mit
einer nichtprimitiven Translation gekoppelt. Die Translation liegt in der Spiegel-
ebene und kann beziiglich des Achsensystems des Kristalls verschieden orientiert
sein. Dadurch ergeben sich verschiedene Gleitspiegelungen.

Die 230 Raumgruppen verteilen sich auf die 7 Kristallsysteme und die Typen der
Bravais-Gitter entsprechend der Tafel 6.8. In der letzten Spalte dieser Tafel ist der
Anteil der Raumgruppen einer Kristallklasse an der Gesamtzahl 230 aufgefiihrt.
Die Tafel 6.9 enthilt die Verteilung von 8716 realen Kristallen auf die 32 Kristall-
klassen. Im allgemeinen zeigt ein Vergleich mit den Anteilen von Tafel 6.8, daf die
Haufigkeit realer Kristalle mit der Anzahl der Raumgruppen in einer Kristallklasse
korrelliert sind. Es gibt aber auch Abweichungen davon, z. B. die Kristallklasse
C,.

Die Ableitung der einzelnen Raumgruppen ist nicht Gegenstand unserer Betrach-
tungen. Dazu verweisen wir auf die Spe21alhteratur [10]. Als Beispiel betrachten wir
die Raumgruppe des Diamantkristalls.

6.2.6. Die Raumgruppe des Diamantkristalls

Das Gitter des Diamantkristalls gehort zum kubischen Kristallsystem. Die Ele-
mentarzelle ist kubisch-flichenzentriert. Die Wigner-Seitz-Zelle als symmetrische
Elementarzelle ist das Rhombendodekaeder. Die Holoedrie ist die volle Oktaeder-
gruppe O,. Die Punktgruppe des Diamantkristalls ist die Holoedrie O, . Sie besteht
aus 48 Elementen und ist als Punktgruppe 2. Art ein direktes Produkt mit der Gruppe
C;: 0, =Ty x C;. Ty x C; ergibt die gleichen Elemente wie O x C; (s. 5.4.8.).

Die volle Tetraedergruppe T, zerfillt in fiinf Klassen zueinander konjugierter
Elemente; entsprechend zerféllt die Gruppe Oy, in zehn Klassen (siehe auch Tafel 5.2).
Die primitiven Basistranslationen des Gitters haben die Gestalt (der Wiirfel habe die
Kantenldnge 2a):

a; =a(0,1,1), a,=4a(,0,1), a;=a(,10).
Nichtprimitive Translationen ergeben sich aus der Tatsache, daB der Diamant-

kristall ein Kristall mit Basis ist. In der Wigner-Seitz-Zelle befinden sich zwei Kohlen-
stoffatome an den Stellen

t,=0 und t, =t =%(1,1, 1.

Diese Basis ist nicht mehr gegentiber der Holoedrie Oy, sondern nur noch gegeniiber
der Tetraedergruppe T, invariant. Die nichtprimitiven Translationen haben die
Gestalt
{0 fir 4 €Ty,
Tt fir A¢T,.

Man kann die beiden Atome auch symmetrisch zum Ursprung anordnen, d. h., man

S.6.2
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wihlt die Orte der beiden Atome in der Form
t, = —4t und t, = it.

Dann haben die nichtprimitiven Translationen nach der Transformation des Ur-
sprungs die Gestalt

(At —t) fir AeT,,
T4t +t) fir A¢T,.
Diese so vollstindig charakterisierte Raumgruppe des Diamantkristalls tragt die
Bezeichnung O; oder Fd3m in der internationalen Bezeichnungsweise.

Diesen Abschnitt wollen wir mit einer Ubersicht der Verteilung der 230 Raum-
gruppen auf die Kristallsysteme, die Kristallklassen und Gittertypen beenden.

’
A

6.2.7. Internationale Symbolik der Raumgruppen der Kristallographie

Zur Erleichterung des Studiums moderner Literatur geben wir in der Tafel 6.6
eine Ubersicht iiber die internationale Symbolik der Raumgruppen.

Tafel 6.6.
Kristall- Position
system
1 2 3 4
triklin Typ des bestimmendes
Bravais- Symmetrie-
Gitters element

monoklin bestimmendes zur z-Achse

Symmetrie- normale

element Ebene

2 oder 2,
rhombisch Ebene normal oder Achse parallel zur

x-Achse y-Achse z-Achse
trigonal Achse hochster | Koordinaten- | Diagonal-
tetragonal Ordnung (oder | ebene oder ebene oder
hexagonal dazu normale Achse Achse

Ebene)
kubisch Koordinaten- 3

ebene oder

Achse "

z. B. Diamant Fd3m  kubisch
BaTiO; Pm3m kubisch
SiO, P6,22  trigonal

Bei der internationalen Nomenklatur fiir die Raumgruppen werden die Dreh-
achsen entsprechend ihrer Zahligkeit mit den Zahlen 1, 2, 3, 4 und 6 und die Dreh-
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inversionsachsen (d. h. die Drehung des E® um eine Achse und anschlieBend die
Inversion am Ursprung) mit den Symbolen I, 2 oder m, 3, 4, 6 oder 3/m bezeichnet.
Die Schraubungsachsen (d. h. Achsen, um die der E3 gedreht und anschlieBend
parallel zu ihnen verschoben wird) (vgl. auch 4.1.3. (%) [i]) erhalten die Symbole
(d.h.2,,3,,3,,4,,4,,45,6,,6,, 63, 64, 65), wobei die Zahl n die Zdhligkeit der
Drehachse bedeutet und der Index k angibt, daB die Verschiebung nach det Drehung

um den Winkel ¢ = Zn%erfolgt. Die Gleitspiegelebenen (vgl. 4.1.3. (%) [iii]) werden

auf den Gleitvektor (d. h. der Vektor, lings dem verschoben wird) bezogen und er-
halten im Gitter mit den Basisvektoren a,, a, und a5 die Bezeichnungen:

Gleitvektor Bezeichnung
Ja, a

1a, b

3a, c

1(a; + a,) oder 4(a, + aj;)

oder 4(a, + a;) oder n

3(a; + a, + a3)

i(a; + a,) oder }(a, + a;)
oder %(a; + a;) oder ]
Ha, +a, + a;)

6.2.8. Reine Formen von Kristallen

Die Elemente der Punktgruppe eines Kristalls tiberfiihren eine gegebene Richtung
in eine andere. Die n Elemente der Punktgruppe transformieren deshalb eine gegebene
Richtung in maximal # Richtungen. Bei spezieller Lage der Ausgangsrichtung kénnen
nach Anwendung der Gruppenelemente die neuen Richtungen teilweise zusammen-
fallen. Ist die gegebene Ausgangsrichtung die Normalenrichtung einer Netzebene,
so entstehen nach den Transformationen mit den Gruppenelementen » Normalen-
richtungen mit den dazu gehorigen Netzebenen. Die auf diese Weise tiber die Grup-
penelemente zusammenhédngenden Flachen bilden eine reine Form des Kristalls.

Definition 6.6: Ein Kristall bildet eine reine oder einfache Form, wenn die Normalen
aller seiner Flichen aus der Normalen einer Fliche durch Anwendung aller Elemente
seiner Punktgruppe auf diese Normalenrichtung entstehen. Bei Punkigruppen niedriger
Symmetrie braucht kein geschlossener Korper zu entstehen. Die so entstandene offene
reine Form ist dann durch weitere Netzebenen abzuschlieflen, die paarweise symmetrisch
zueinander liegen.

Bei spezieller Wahl der Ausgangsfliche kénnen die transformierten Fldchen teil-
weise zusammenfallen, und es entsteht eine reine Form mit weniger als n Flidchen.

In einem Kristallsystem liefert die Punktgruppe mit der héchst moglichen Sym-
metrie — Holoedrie genannt — als reine Form bei einer Ausgangsfliche in allgemeiner
Lage einen Kristall mit maximaler Flichenzahl, einen Holoeder (Ganzflichner).
Werden Symmetrieelemente systematisch weggelassen, so treten unter den reinen
Formen Polyeder mit geringerer Flachenzahl auf, speziell auch welche mit der
halben Zahl von Flidchen — Hemieder. In der Mineralogie spricht man bei allen
niedriger symmetrischen Klassen als die Holoedrie von Hemiedrien.

Am Beispiel des kubischen Kristallsystems sollen die reinen Formen der Holoedrie
0, fiir die sieben moglichen verschiedenen Lagen der Ausgangsfliche angegeben

6 Belger, Symmetriegruppen
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werden. Diese Lagen sind mit den Zahlen 1 bis 7 im Bild 6.14 des Stereogramms der

Holoedrie O, gekennzeichnet.

e

Tafel 6.7

(Klasse Op)

Bild 6.14. Spezielle Normalenrichtungen im kubischen System

Normalenrichtung der Fliche

reine Form

1 [hkl] Hexakisoktaeder — 48 Flichen
(ungleichseitige Dreiecke)
2 [l h>1 Ikositetraeder — 24 Flachen
(Drachenvierecke)
3 [hhDl h>1 Trisoktaeder — 24 Flidchen
(gleichschenklige Dreiecke)
4 [hkO] Tetrakishexaeder — 24 Flidchen
(gleichschenklige Dreiecke)
5 [111] Oktaeder — 8 Flichen
(gleichseitige Dreiecke)
6 [110] Rhombendodekaeder — 12 Flichen
(Rhomben)
7 [100] Hexaeder - 6 Flichen
(Quadrate)
Tafel 6.8
Kristall- Kristall- | Gittertyp Bezeichnung An- | Anteil (%)
system klasse zahl
P |[C|F R der Gruppen
triklin C, 1 Ct 2 0,43
C; 1 C! 0,43
monoklin C, 211 cy-» 13 1,30
Cs 212 Cc{-* 1,74
Copn 412 C4y® 2,61
rhembisch D, 412]1 Dg-2 59 3,91
C,, 1072 CY-22 9,56
D,, 16|6]|2 D29 12,17
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Tafel 6.8. (Fortsetzung)

Kristall- Kristall- | Gittertyp Bezeichnung | An- | Anteil (%)
system klasse zahl
P |C|F|I|R der Gruppen
tetragonal C, 4 2 C{-® 68 2,61
S, 1 1 S{-» 0,87
Can 4 2 CL-® 2,61
D, 8 2 Dy-1o 4,35
Cyy 8 4 Y12 5,22
D,y 8 4 DY 12 5,22
D, 16 4| | pi-20 8,70
trigonal C, 3 1| C¢-* 25 1,74
Se 1 1| S§-2 0,87
D, 6 1| Dy~ 3,04
C,, 4 2| cgr® 2,61
D.g 4 2| Do 2,61
hexagonal Cs 6 Cy-® 27 2,61
Can 1 cl, 0,43
Con 2 ca-» 0,87
D, 6 DY-® 2,61
Co, 4 o 1,74
Do 4 Do 174
Dgp, 4 Dy 1,74
kubisch T 2 1]2 T4- 36 2,17
T, 3 202 -7 3,04
T, 4 2|2 T{-® 3,48
o 2 212 0o1-9 2,61
0, 4 412 Ofl-10 4,35
230 | 100,00

Tafel 6.9. Die Verteilung natiirlicher Kristalle auf die 32 Kristallklassen

Kristallklasse Gesamtzahl | Anteil %,
C, 41 0,47
C; 249 2,86
C, 367 -, 4,21
Cs 70 0,80
Con 1908 21,89
D, 596 6,84
Cyy 226 2,59
D,, 1158 13,29

6*
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Tafel 6.9. (Fortsetzung)

Kristallklasse Gesamtzahl | Anteil (%)
C, 17 0,19
Sa 47 0,54
Cun 135 1,55
D, 68 0,78
Cay 14 0,16
D,y 107 1,23
D,y 579 6,64
C; 25 0,29
Se 152 1,74
D, 72 0,83
Cs, 106 1,22
Diy 444 5,09
Cs 18 0,21
Csp 1 0,01
Cen 97 1,11
D¢ 52 0,60
Cey 80 0,92
D,y 42 0,48
Dy 355 4,07
T 95 1,09
T, 212 2,43
Ty 21 0,24
o 219 2,51
0, 1223 14,03
8716 aus [15].

* Aufgabe 6.1

D.6.7 Definition: 6.7: Zur Gitterbasis {a,, a,, a3} heift {a*, a2, a3} mit

L@ XA , 23X s A XA

- a? = 2% =
[a,2,25]" [aia,a;]’ [a1a225]

Basis des zugehorigen reziproken Gitters, wobei mit [a,a,a;] das Spatprodukt der drei Vektoren
bezeichnet wird (vgl. Bd. 13,2.3.7.2.).

Man betrachte die Gitterbasis {a,, a,, a3} des allseitig flichenzentrierten kubischen Gitters in der
orthonormierten Basis {O; ey, €,, €3}.
Stelle die Basis des zugehdrigen reziproken Gitters auf!



7. Darstellungen

7.1. Begriff, Beispiele
7.1.1.  Eine Darstellung der Drehsymmetriegruppe D, des Allen-Molekiils

Wir sehen uns nochmals Beispiel 4.1 (4.2.2.1.) zur Drehung um die Euler-
schen Winkel an: Wir hatten dort festgestellt, daB die Drehsymmetriegruppe
D, = [E, C,, C;, Cy] (E: Drehung um 0°) isomorph ist zur Matrizengruppe

3 = [E, D, D', D"'] (E: Einheitsmatrix). Dem liegt die Uberlegung zugrunde, daB die
Drehungen E, C,, C5, C3 bez. der Basis {O; e,} des E* durch die Transformationen
X =E'x, X =D-x,Xx =D'x,x = D"-x, also durch die Matrizen E, D, D',
D" ,dargestellt* werden, m. a. W., wir haben eine eineindeutige Abbildung
#:D, - M3, die durch Z(E) = E, #(C,) = D, #(C3) = D', #(C%) = D" definiert
und solcherart relationstreu ist: Z(X - Y) = Z(X)- Z(Y) gilt fir alle X, YeD,.
Zum Beispiel ist nach Tafel2.1 C,- Cj = C4 (beachte: C, = S7). Ferner gilt
DD = D". Also ist Z(C, + C3) = #(C,) - #(C5).

Als isomorphe Abbildung #: D, - M3 heilt # eine Matrizendarstellung der

Drehsymmetriegruppe des Allen-Molekiils. Wir sagen auch, D, wird vermige #
durch Mj dargestellt. Da Mj eine Untergruppe der orthogonalen Gruppe ist, heif3t
diese Darstellung auch orthogonal.
Bemerkung: DaBl # eine eineindeutige Abbildung ist, ist fiir den Darstellungsbegriff
an sich unerheblich. Es gentigt zu fordern: Z ist eindeutig und relationstreu, d. h., #
ist ecin Homomorphismus von D, auf M3. Da Mj eine Untergruppe der allgemeinen
linearen Gruppe GL(3, K) (vgl. 3.2.3.) ist, sprechen wir auch von einem Homomor-
phismus von D, in GL(3, K), also von einer Darstellung von D, durch eine Unter-
gruppe von GL(3, K). 3 legt dabei die Dimension der Darstellung fest. K ist hier
speziell durch R zu ersetzen.

7.1.2.  Begriff der Darstellung

Wir ersetzen nun D,, wieder durch eine beliebige Gruppe G und M3 durch eine
beliebige Matrizengruppe R, (vgl. 3.2.3.).

Definition 7.1: Ein Homomorphismus Z#: G — R, einer Gruppe G auf eine Untergruppe
R, der allgemeinen linearen Gruppe GL(n, K) heifjt eine n-dimensionale Matrizendarstel-
lung von G durch R,Y). Ist Z speziell ein Isomorphismus von G auf R,, so nennen wir die
Darstellung treu. Ist R, = U(n), so heift sie unitir, fiir K = R reell, fiir R, = O(n)
dann orthogonal. Die dem Gruppenelement A € G durch # zugeordnete n x n-Matrix
A(A) € R, heifit Darstellungsmatrix von A.

Ordnen wir jedem Gruppenelement 4 € G als Darstellungsmatrix die Einheits-
matrix E der Ordnung n zu, so erhalten wir den trivialen Homomorphismus
#y:G — [E]von G auf die triviale Untergruppe [E] = GL(n). %, heiBt Einsdarstellung
der Ordnung » von G.

Ist G = GL(n, K) selbst eine Matrizengruppe, so ist die identische Abbildung von
G auf sich ein Automorphismus von G (vgl. 3.3.4.f)), also eine treue Darstellung von
G - die identische Darstellung.

1) Da das iibliche Symbol D fiir Darstellungen bei den D,~ und Drehgruppen schon zu oft benutzt
wurde, weichen wir auf #Z bzw. R, (Représentation) aus. h

7 Belger, Symmetriegruppen
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7.1.3.  Eine Darstellung der Symmetriegruppe D., des Allen-Molekiils

In Beispiel 4.2 (4.2.3.1.) haben wir festgestellt, dal D,, zur Matrizengruppe
M; =[E,D,D',D", S, 5,2, 2"] « GL(n) isomorph ist. D,y wird also durch
R; = M; treu und reell dargestellt. Es handelt sich iiberdies um eine orthogonale
Darstellung der Dimension drei, da alle Matrizen von M; orthogonal und von der
Ordnung drei sind. Die Zuordnung # der Darstellungsmatrizen Z(X)e M; zu den
Symmetrieoperationen X € D, bez. der Basis {O; e,} von E* zeigen wir in Tafel 7.1.

Tafel 7.1. Darstellung der Symmetriegruppe D,, des Allen-Molekiils

X |E |G |G | ¢ [S. |S2 o |0
2x) | |p |po |p |s |s |z |z

7.2 Regulire Darstellung

Zu jeder Gruppe G der endlichen Ordnung g finden wir auf folgende Weise eine
g-dimensionale treue Darstellung #: G — R,: Die Gruppentafel von G wird derart
umgeordnet, daB das Einselement E nur noch in der Hauptdiagonalen auftritt. Die
dem Element A4;e€G zugeordnete Darstellungsmatrix @(AA) = (ﬁ,,,(Al)) € ﬁ,
(,u=1,...,8; 2e{l,...,g}) erhalten wir dann aus der Gruppentafel dadurch,
daB wir in ihr tberall 4, durch 1 und alle anderen Elemente durch 0 ersetzen. Wir
sagen dann, G wird durch ﬁ, reguldr dargestellt.

Beispiel 7.1: Um eine reguldre Darstellung fiir die Symmetriegruppe D,4 des Allen-
Molekiils zu finden, haben wir in der Tafel 2.1 die zweite mit der vierten Spalte zu
vertauschen.

J(E) erhalten wir, indem wir E durch 1 und sonst alles durch 0 ersetzen: dies ergibt
die Einheitsmatrix der Ordnung g = 8. Als Darstellungsmatrix Z(S,) € Ry von
S, € D,y erhalten wir nach Ersetzung von S, durch 1 und X # S, durch 0:

00010000
10000000
01000000
R 00100000
#S)=100000010
00000001
00000100

00001000

Die Angabe der iibrigen sechs Darstellungsmatrizen aus Ry ist damit ausreichend
erklart.

DaBl Z: G — R, eine eineindeutige Abbildung, # also eine treue Darstellung ist,
folgt sofort aus der Eigenschaft (1) fiir Gruppentafeln (3.3.3.a)). Die Relationstreue
folgt aus der Definitionsgleichung

£
Ay A,l = Zx R,”(A;) A,

fiir die Darstellungsmatrizen %A(A ,) der reguldren Darstellung, wenn man das Produkt
(A, - A4;) - A, untersucht ([18], 1.3.3.).
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7.3.  Aquivalente Darstellungen

DaB es zu einer Gruppe mehrere Darstellungen gibt, zeigen die beiden Darstel-
lungen #Z: D,y - M3 (7.1.3.) und A D,y — ﬁs der Symmetriegruppe D,, von
Allen. Die wichtige Aufgabe, alle Darstellungen zu einer Gruppe anzugeben, kann
durch den Aquivalenzbegriff vereinfacht werden. Dazu vergegenwirtigen wir uns
noch einmal den Inhalt der Abschnitte 3.6.1./2. Durch folgenden Satz gewinnen wir
aus einer gegebenen Darstellung neue Darstellungen.

Satz 7.1: Ist Z#: G > R, eine Darstellung der Gruppe G und X eine regulire Matrix S.7.1

(det X = 0), so ist auch Zx: G —» R, = X~' - R, - X mit
R(A) = X~ - HA(A) - X fiir beliebige A€ G
eine Darstellung von G.

Definition 7.2: Die Darstellungsmatrizen R(A) und Ry(A) von A heifflen @hnlich
oder wie die Darstellungen R und Ry selbst, iquivalent zueinander; Bezeichnung:
R(A) ~ R(A) bzw. R ~ Ry.

Beweis des Satzes 7.1: (a) Nach 3.6.2., Bemerkung 3), ist R, ein isomorphes Bild
der Gruppe R, und als solches selbst eine Gruppe. (b) %y entsteht aus der Hinter-
einanderausfihrung des Homomorphisms #Z: G — R,, und des Isomorphismus
R, - R;, ist also ein Homomorphismus von G auf R;.

Den Ausfiithrungen in 3.6.1.b) bzw. 3.6.2., Bemerkung 1), gemdB, zerfallt nun die
Gesamtheit aller Darstellungen % von G in Aquivalenzklassen. Gleiches gilt fiir die
einem Element zugeordneten Darstellungsmatrizen Z(A4). Mit einer Darstellung
Z von G kennen wir die ganze Klasse (#) dquivalenter Darstellungen und mit
A(A) die ganze Klasse (#(A)) = (X' - Z(A) - X) der zu A gehorigen dquivalenten
Darstellungsmatrizen. Es geniigt also, ein vollstindiges System indquivalenter Dar-
stellungen zu kennen. Fiir eine endliche Gruppe kann man sich dabei auf unitire Dar-
stellungen beschrinken, da jede Klasse wenigstens eine solche Darstellung enthdlt
([10], § 15).

Erfolgt die Uberfihrung R, » R, = X-'- R, X der Darstellungsgruppe R,
von G auf eine dazu dquivalente Darstellungsgruppe R, durch eine unitére Transfor-
mationsmatrix X, so sprechen wir von einer unitiren Transformation.

7.4. Irreduzible Darstellungen

Die Suche nach den Darstellungen einer Gruppe kann auf solche von irreduzibler
Art beschrinkt werden. Dazu sei zuerst bemerkt, dal zwei Matrizen von derselben
,»Blockdiagonalform*

PO ... 0 0,0 ...

0 P... 0 00,.. 0
P=1. - |, @=]: -

00 ...P,| 00 ...0,

(Ordnung P, = Ordnung Q,; fiir jedes » = 1,2, ..., m kann diese Ordnung eine
andere sein) so miteinander multipliziert werden konnen, als wéren die quadratischen
Blockmatrizen P,, Q, Zahlen: P-Q = (P, Q,) ist eine Matrix von der gleichen
Blockdiagonalform wie P und Q. In dieser Diagonalform schreiben wir fiir P und Q
symbolisch: P=P, @ P, ®...®P,, 0=0,90,® ... ®Q,. Man nennt P

7*

D.7.2
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bzw. Q auch direkte Summe von P, ..., P, bzw. Qy, ..., Q,. Damit ist P - Q
=P, 0, ®P,'Q0,®...® P, 0Q,. Wegen dieser Multiplikationsvorschrift kén-
nen wir sagen: Ist M, eine Gruppe aus Matrizen P,Q, ..., die alle die gleiche Block-
diagrammform  haben, so sind auch M} = [P,,Q,,...], M2 = [P,,0,,...],
.M =[P, Q,, ...] Matrizengruppen.

Definition 7.3: Eine Darstellung #: G — R, der Gruppe G heift reduzibel'), wenn in
einer ihrer dquivalenten Darstellungen Zy: G — X~ - R, - X die Darstellungsmatrix
RAx(A) = X~ - R(A)- X fiir alle AeG in dieselbe Blockdiagonalform ZRy(A)
= AHA) @ RUA) @ ... ® #2(A) zerlegt werden kann. Gibt es keine Transformations-
matrix X, die diese Zerlegung ermoglicht, so heifit Z irreduzibel.

Aus dieser Definition ergibt sich in Verbindung mit der obigen Bémerkung tiber
die Gruppen M, die

Folgerung 7.1: Ist die Darstellung # der Gruppe G vermdge der Transformations-
matrix X reduzibel, so sind R%, R%, ..., B3 auch Darstellungen — sogenannte Teil-
darstellungen von G.

Das Aufsuchen solcher Teildarstellungen heit Reduktion, die fortgesetzte Reduk-
tion sich ergebender Teildarstellungen bis zur Irreduzibilitit das Ausreduzieren der
Darstellung #. Sich ergebende irreduzible (Teil-)Darstellungen von G heifen ir-
reduzible Bestandteile von . Bis auf die Reihenfolge und Aquivalenz dieser Bestand-
teile liefert das Ausreduzieren ein eindeutiges Ergebnis. Bei abelschen Gruppen stoft
man auf eindimensionale irreduzible Darstellungen, und diese sind stets unitdr.

Da wir fiir das Ausreduzieren schon in Besitz einer Darstellung sein miissen, emp-
fiehlt es sich, bei einer endlichen Gruppe G von deren reguldrer Darstellung A aus-
zugehen. Diese ist von geniigend groBer Dimension und von solcher Beschaffenheit,
so daB, wie gezeigt werden kann, alle irreduziblen Darstellungen von G aus #
mindestens einmal gewonnen werden kénnen — sogar bei Einschrinkung auf unitire
Transformationen.

Eine der wichtigsten Aussagen der Darstellungstheorie beinhaltet der folgende
Satz, dessen Beweis z. B. in [18], 1.3.4., zu finden ist.

Satz 7.2: Die Anzahl der indquivalenten irreduziblen Darstellungen einer (endlichen)
Gruppe G ist gleich der Anzahl der Klassen konjugierter Elemente von G.

Beispiel 7.2: Wir betrachten die Symmetriegruppe D,4. In 3.6.1.b), Beispiel 3.20,
ist ihre Zerlegung in finf Klassen konjugierter Symmetricoperationen angegeben.
D,, muB also fiinf indquivalente irreduzible Darstellungen besitzen. Die in 7.1.3.
angegebene Darstellung Z von D, ist offensichtlich in zwei Teildarstellungen 2%
und %3 (Transformationsmatrix: X = E) reduzibel. Sehen wir uns die acht Dar-
stellungsmatrizen E, D, D', D", S, S', X", X" in 4.2.2.1. und 4.2.3.1. an, so stellen
wir fest, daB sie alle die gleiche Blockdiagonalform haben. Die Teilmatrizen zweiter
Ordnung in den linken oberen Ecken bilden eine zweidimensionale Teildarstellung
A%, diejenigen der Ordnung eins in den rechten unteren Ecken bilden eine Teil-
darstellung %3 der Dimension eins:

1) fiir m = 2 vollreduzibel oder zerfillbar



7.5. Charaktere 89

Tafel 7.2. Zwei irreduzible Darstellungen der Symmetriegruppe D,q

X E G, c; cy Sa S3 g oy
HEX) a1 [-11  [-11 [-11 [-1] (] (]
10} -1 0] 1 0] [=10]7(0 —1 01 0 -1 01
3
A0 [0 1] [ 0 ~1] [O —1] [ 0 1] [I 0] [—1 0] [——l 0] [l 0]
2% und Z% sind irreduzibel. Wir stellen fest, daB die Dimension 3 der Darstellung

Z von D,, nicht hoch genug ist, um alle irreduziblen Darstellungen zu erhalten. Die
reguldre Darstellung von D,, hat vergleichsweise die Dimension 8.

7.5. Charaktere

Die Transformationsmatrizen zur Reduktion von Darstellungen zu finden ist oft-
mals schwierig. Man kann aber zeigen, daB Darstellungen durch die Spuren ihrer
Darstellungsmatrizen bis auf Aquivalenz festgelegt sind. Deshalb kommt es héu-
fig nicht so sehr auf die Darstellungsmatrizen selbst, sondern nur auf deren Spuren
an, und wir kénnen uns darum bemiihen, eine Tafel von Spuren aller irreduziblen
Darstellungen einer Gruppe aufzustellen. Wir werden uns die Verfahrensweise am
Beispiel der Symmetriegruppe D,4 von Allen klarmachen.

7.5.1.  Charakter einer Darstellung, Eigenschaften

Ordnen wir jedem Element 4 einer Gruppe G eine eindeutig bestimmte reelle oder
komplexe Zahl y = ¢(A4) zu, so nennen wir ¢ (genauer ¢: G — K) eine Funktion
auf G.

Definition 7.4: Als Charakter y der Darstellung #: G — R, der Gruppe G bezeichnen D.7.4
wir die Funktion y = y(A) = Sp #(A) auf G. Sp Z(A) bedeutet die Spur der Dar-
stellungsmatrix von A € G, d. h. die Summe der Zahlen der Hauptdiagonale von #(A).
Wir stellen fest:
(a) Aquivalente Darstellungen haben gleiche Charaktere;
denn Sp Zx(4) = Sp (X~ - #(4) - X) = Z (X_l)/xu (R(A))y (X, = Z Ou(R(A)),

=3 (#(A)),, = Sp Z(4) (8,,: Kroneckersymbol (X),,: Element der v-ten Zeile

und «-ten Spalte der Matrix X).
(b) Auf konjugierten Elementen A, B der Gruppe G hat der Charakter iibereinstim-
mende Werte;
denn es gilt y(B)=(Y~'-4-Y)=Sp(#(Y~'-A-Y))=Sp (R(Y~*) %(A)- R(Y));
ferner ist Z(Y~') = (%(Y))!, und nach dem SchluB von (a) folgt dann
#(B) = z(A).
Die Funktion y = y(A) ist demnach auf jeder Klasse konjugierter Elemente von G
konstant und wechselt ihre Funktionswerte hdchstens von Klasse zu Klasse. y heilit
deshalb Klassenfunktion.

In einer Gruppe G der Ordnung g seien (4,), ..., (4,,) die Klassen konjugierter
Elemente, 4, , ..., a,, deren Ordnungen, k;, , die zugehdrigen Klassenmultiplikations-
koeffizienten, 4, € G. Wir betrachten nun die A-te irreduzible Darstellung der Di-
mension 7, vom Charakter y*. Auf der Klasse (4,) habe x* den Funktionswert
2"(4,) = z#. Nach einem Resultat von Burnside') ([18], 1.3.4., (1.13) und (1.14))

) William Burnside (1852-1927), Mathematiker, wirkte in Cambridge, Greenwich.
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gelten zwischen diesen GroBen die folgenden Zusammenhange:

m
(1) y, Zlkzu,vavxﬁ = Qa0

(72) i a7t = g6, (7 zu yz Konjugiert komplex).
v=1

Wir benutzen jetzt das angekiindigte Beispiel, um daran die Bestimmung der Charak-
tere der irreduziblen Darstellungen zu demonstrieren.

7.5.2. Die Charaktertafel der Symmetriegruppe D,, des Allen-Molekiils

Wir betrachten in 3.6.1. die Beispiele 3.18, 3.19, 3.20, 3.23, 3.24 zur Zerlegung
G =Dy = (E) Y (S3) U (Ss) v (C3) V(00
= (4,) VY (4,) v (43) Y (44) Y (45)

von D, in ihre konjugierten Klassen (4,) (v = 1, 2, 3,4, 5; m = 5) der Ordnungen
a, =1,a, =1,a3 = 2,a, = 2,as = 2 (vgl. Beispiel 3.20). Aus der Kenntnis der
zugehorigen Klassenmultiplikationskoeffizienten und der Ordnungen der Klassen
heraus versuchen wir mittels der Formel (x,), die Funktionswerte y* in Abhéngigkeit
von der Dimension n, der A-ten irreduziblen Darstellung zu bestimmen: Nach dem
Vorbild von Beispiel 3.24 konnen wir alle Koeffizienten k,,, bestimmen. Sie sind
in der Tabelle 7.3 angefiihrt. Wir finden dort z. B. zu A = 4, u = 4, » = 2 den Wert
ks, = 2 usw. Alle nicht aufgefiihrten k,, ,-Werte sind gleich null. Wir folgen nun
der Verfahrensweise von Cracknell ([4] 2.8.):
1° Esist kyy,, =1, kyy, = 0 flirv & 1. Aus (x,) folgt daher fir 2 =» = 1:

mgt = ()% also zi =n,.
2° kysy =1, kpp, = Ofiirv # 1. Fiir A = u = 2 folgt aus (x,): nmyh = mm, = (13)%,

1B o= tm. .

3% kysy = kazp =2, k33, =0 fir v+ 1,2, (x,) liefert dann n,2¢% + 2x53)
_ A2(h)2 . wo_ [Em furyh = m,
= 2%(y4)%, alsoist x5 = 0 firgh = —n

o M . +ny, fiir % = n,,
4° Mit kg4, = kaa» = 2 erhalten wir x4 = { 0” fiir ;CCE _ _"nh.

5° Mit Hilfe von ks4,5 = 2, ks, = 0 fiir v + 5 folgt aus (v,): 74 = xhyhi/n,.
Tafel 7.3. Werte der Klassenmultiplikationskoeffizienten der Symmetrie-
gruppe Dq
P 1 2 3 5
A v »
1 2 1 1 501
2 2 1 1 1 5001
3 301 3o 12 4 2
2 :2
4 401 41 s 2 |12 |32
‘ 2 12
5 51 5 4 12 32 12
282
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Stellen wir alle moglichen Vorzeichenkonstellationen zusammen, so kommen wir
auf finf Varianten:

Tafel 7.4. Charaktere der fiinf irreduziblen Darstellungen von D,g,
ausgedriickt durch die Dimensionen

(4,) (42) (43) (44) (4s)
dl dl dl dl dl
d, d, d, —d, —d,
d, dy  —d, d,  —d,
d, d, —d, —d, d,
dy —d, 0 0 0

Die Funktionswerte y* sind alle reell. (x,) lautet daher Z a 'yt = 80, (g = 8).
Fiir A = p ist 0;, = 1 und also Zay(x = 8. Daraus folgt dl =d,=dy=dy =1

und ds = 2. Die Charaktertafel der Symmetriegruppe D,4 des Allen-Molekiils lautet

also fur die fiinf irreduziblen Darstellungen %, ..., #s:

Tafel 7.5. Charaktertafel der Symmetriegruppe D,4 des Allen-Molekiils

(E) (8D (Sa) (C) (o0)
2, 1 1 1 1 1
2, 1 1 -1 -1
&y 1 1 -1 1 -1
2, 1 1 -1 -1 1
R 2 -2 0 0 0

Beispiel 7.3: Tm Beispiel 7.2 wurden durch Ausreduzieren der Darstellung # von
D, zwei irreduzible Darstellungen Z% (Dimension 1) und £3 (Dimension 2) gefunden.
Wir {iberpriifen nun durch Spurbildung in den Darstellungsmatrizen von Tafel 7.2,
daB die in obiger Charaktertafel fiir Z, und #Z5 ausgerechneten Charaktere gerade
jene von Z% und #3 sind.

7.6. Zur Darstellung direkter Produkte

Definition 7.5: Von drei beliebigen Darstellungen %, #,, #, einer Gruppe G heit D.7.5
X das (Kroneckersche ) Produkt aus #, und #, , und wir schreiben dann Ry = R, x &, ,
wenn fiir die zugehorigen Charaktere 3y, 3, , 33 gilt

73(A) = 11(A) y2(4), A€G.

Auf die Frage nach der Existenz und Eindeutigkeit bzw. Konstruierbarkeit des
Produktes #; aus gegebenen Darstellungen %, , Z, wollen wir hier nicht eingehen. Es
interessieren uns nur die folgenden beiden Eigenschaften des Produktes:

Ist die Gruppe G das direkte Produkt G = U; x U, aus zwei ihrer Untergruppen
U,, U,, so ruft jede Darstellung von U, dadurch eine Darstellung #, von G hervor,
daB #, auf U, mit der vorgegebenen und auf U, mit der Einsdarstellung zusammen-
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fallt. Dabei muB Z,(U, - U,) = #Z,(U,) - Z,(U,) = #,(U,) sein. Analog 148t sich
fiir G eine Darstellung %, erkldren.

S.7.3 Satz 7.3: Das Produkt einer auf U, irreduziblen Darstellung #, mit einer auf U,
irreduziblen Darstellung &, ist eine irreduzible Darstellung von G = U, x U,.

Fiir spatere Anwendungen nehmen wir noch zur Kenntnis ([10], § 21):

S.7.4 Satz 7.4: Das Produkt Z, x R, aus dquivalenten irreduziblen Darstellungen £, ~ %,
enthdlt die Einsdarstellung genau einmal; sind Z, und R, indquivalent, so enthdlt das
Produkt die Einsdarstellung jedoch nicht.

7.7. Die Basis einer Darstellung

Die.von uns bisher verwendeten Matrixdarstellungen der Gruppen lassen sich auch
so interpretieren, dafl in Form einer linearen Transformation die n-dimensionale Dar-
stellungsmatrix Z(4) eines bestimmten Gruppenelementes A eine Wirkung von 4 auf
einen Spaltenvektor @ aus n Funktionen fi(x, y,z), k = 1, ..., n, der drei Ortsko-
ordinaten x, y, z erklart wird:

D.7.6 Definition 7.6: Der Spaltenvektor @ aus den n Funktionen f,(x, y, z) heifit eine Basis
der n-dimensionalen Matrixdarstellung % der Gruppe G, wenn die Wirkung der einzel-
nen Gruppenelemente A € G auf @ durch die Beziehung

AD = (Afy) mit Af; = ;ﬂ;“(A)f“

beschrieben wird.
Bemerkung: Symbolisch schreiben wir dafiir kurz
AD = R(A)D.

Aus der Definition wird deutlich, daB es zu einer Darstellung beliebig viele verschie-

dene Basen gibt. Fiir viele Anwendungen ist es ausreichend, die einzelnen Funktionen

Jfi(x, , z) in eine Taylor-Reihe nach den Koordinaten zu entwickeln und nach Basis-

funktionen unter den Polynomen n-ter Ordnung in den Ortskoordinaten zu suchen.
Die ersten Glieder der Taylor-Reihe haben die Gestalt

S5 3,2 = F00, Y0r 20) + 3 (o> o1 20) (3 = o)

0, 0
+a_§(xo,.)’0szo) =0 +a—_{(xo,J’o’zo) (z—2z) +....

Basisfunktionen nullter Ordnung sind Konstante und gehdren nur zur Einsdarstel-
lung, solche erster Ordnung sind Linearkombinationen in den Ortskoordinaten.

Als Demonstrationsbeispiel bieten sich dreidimensionale Darstellungen an, bei
denen der Ortsvektor als Basis aus Funktionen erster Ordnung angesehen werden
kann.

Wir betrachten wieder die Symmetriegruppe D,4 von Allen. Wir wiéhlen die Refe-
renzachse des Molekiils zur z-Achse eines Koordinatensystems (vgl. Bild 2.2a)).
Die acht Gruppenelemente haben folgende Wirkung auf den Ortsvektor, die wir
zunéchst symbolisch schreiben

A, y,2) = (55 ),
d. h., aus dem Vektor (x, y, z) entsteht nach Anwendung des Gruppenelementes A
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der Vektor (., ., .). Bezeichnen wir mit X die Koordinate —x, so ist
Ex,y,2) = (5, 0,2, Cy(x,0,2) = (%, 7,2),
Gy 2= (x5, Cxy2)=(%y3),
Sa(x,y,2) = (1, %.2),  Six,,2) = (§,%,2),
oi(x,y,2) = (»,x,2),  dux,,2) =X 2).
Die Wirkung der Gruppenelemente auf den Ortsvektor kénnen wir dann durch eine
dreidimensionale Matrix beschreiben, z. B.:

“[-[-8 S1E -

Mit dem Spaltenvektor @ lautet diese Gleichung
S.D = A(S,) D.

Die so gewonnenen acht Matrizen #(A) bilden eine dreidimensionale Matrixdar-
stellung der Gruppe D,, mit den Komponenten des Ortsvektors als Basisfunktion
erster Ordnung. Aus Beispiel 7.3 wissen wir, daB3 diese Darstellung reduzibel sein
muB, und aus der Charaktertafel (Tafel 7.5) lesen wir ab, daB sie die Summe aus
den beiden Darstellungen #, und % ist.

Die Transformationseigenschaften beliebiger Funktionen der Ortskoordinaten
finden wir, indem wir die J'ransformation des Ortsvektors unter dem EinfluB} der
Gruppenelemente in die Funktion eintragen, symbolisch geschrieben:

Af(x, y, 2) = f((4) (x, 3, 2)).

Bei beliebigen Funktionen ist es im allgemeinen schwierig, zu einer gegebenen Dar-
stellung eine Basis zu finden, denn die transformierte Funktion darf sich nur um
einen konstanten Faktor von der Ausgangsfunktion unterscheiden, d. h.

S(R(A) (x, 7, 2)) = kf(x, , 2).

Dagegen ist dies fiir Polynome niedriger Ordnungen als Basisfunktion bedeutend
leichter.

Die Darstellungen einer Gruppe werden auf diese Weise mit den zugehorigen
Basisfunktionen der niedrigsten Ordnung in den Ortskoordinaten, die das Transfor-
mationsverhalten noch richtig beschreiben, identifiziert und gewinnen so eine kon-
krete physikalische Bedeutung.

Die in der Physik iiblichen Bezeichnungen &, &, , %, und 4, fiir eindimensionale,
& fiir zweidimensionale und &, und &, fiir dreidimensionale Darstellungen kenn-
zeichnen ein bestimmtes Transformationsverhalten der Basisfunktionen gegeniiber
den Elementen der Gruppe und werden auch hier verwendet. Zum Beispiel lauten
demnach die Darstellungen Z,, ..., Z5 der Symmetriegruppe D,;, von Allen in der
Charaktertafel: &7, , &/,, %,,%#,,6.

Aufgaben

7.1. Auf der Grundlage der Losungen der Aufgaben 3.1 und 4.2 ist fiir die Symmetriegruppe Cj, des
gleichseitigen Dreiecks A <= E? (des NH3-Molekiils) eine Matrizendarstellung anzugeben.
7.2. Wieviele indquivalente irreduzible Darstellungen besitzt die Symmetriegruppe Cs, (Aufgabe 7.1)?

*

7.3. Stelle die Charaktertafel der Symmetriegruppe Cs, des NH;-Molekiils auf. Benutze die Losung #

der Aufgabe 3.7.
Die Losung der Aufgaben 7.1. bis 7.3. ist auch fiir das Quadrat [J < E?, d. h. fiir das SFsCl-Molekiil
zu empfehlen.



8. Anwendung der Gruppentheorie in der Quantenmechanik

Dem Charakter dieses Buches entsprechend kénnen wir keine Einfiihrung in den
mathematischen Apparat der Quantenmechanik geben. Wir verweisen zum Studium
auf die Lehrbiicher der Quantenmechanik [9] und stiitzen uns auf Band 13 ,,Lineare
Algebra* dieser Reihe.

8.1. Einfiihrung quantenmechanischer Begriffe

Fiir unsere Betrachtungen ist es ausreichend, sich auf die Schrédinger-Gleichung
und deren Losungen zu beschrianken.

Ein stationdrer Zustand eines physikalischen Systems aus N Teilchen wird durch
eine Funktion aller Raumkoordinaten der Teilchen

S5 Y15 215 oons Xns Vs 28)

beschrieben. Diese Funktion ist Losung der stationdren Schrodinger-Gleichung!'),
d. h. der partiellen Differentialgleichung zweiter Ordnung,

o

Hf = Ef, ¢

unter Beriicksichtigung gewisser physikalisch begriindeter Randbedingungen. In
dieser Gleichung ist die GréBe H ein Differentialoperator und E (nicht zu verwech-
seln mit dem Einselement E) die Gesamtenergie des Systems im Zustand f. Der
Differentialoperator H heiBt Hamiltonoperator?) und wird aus der Hamilton-
funktion der klassischen Mechanik durch ein Quantisierungsverfahren gewonnen.
Fiir ein Teilchen der Masse m im duBeren Feld V(x) hat bei eindimensionaler Be-
wegung die Hamiltonfunktion die Gestalt

1
H(p, x) = %I’z + V(x),

mit dem Impuls p und der potentiellen Energie ¥(x).

Bei dem Quantisierungsverfahren wird der Impuls p durch einen Differential-
operator ersetzt, und die Ortskoordinate x bleibt multiplikativ:

Der Impuls p wird ersetzt durch den OperatorTh aq)—c s

der Ort x wird ersetzt durch den Operator x;
h ist dabei das Plancksche Wirkungsquantum.®)

Aus der Hamiltonfunktion entsteht im Ergebnis der Ersetzung der Hamilton-

operator:
1 . . 2 d?
H =—p? + V(x) gehtiberin H = e

5 + V().

1) Erwin Schrodinger (1887-1961), dsterreichischer Physiker.
2) Sir William Rowan Hamilton (1805-1865), irischer Mathematiker und Physiker.
3) Max Karl Ernst Ludwig Planck (1858-1947), deutscher Physiker.
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Die eindimensionale Schrédinger-Gleichung lautet nach Umformung

& 2 ey 0

T E = VW) =0,
Ist die Bewegung des Teilchens auf das Intervall [a, b] der reellen Achse beschrankt
(eindimensionale Bewegung), so muBl gefordert werden, dal die Funktion f und
ihre erste Ableitung an den Randpunkten des Intervalls verschwindet.

Damit wird die Schrédinger-Gleichung zu einer Eigenwertgleichung, d. h. zu einer
Gleichung, die nur fiir bestimmte Werte der Gesamtenergie E Losungen besitzt.
Bei mehrdimensionaler Bewegung und N Teilchen wird das Verfahren analog er-
weitert. Die Schrédinger-Gleichung ist dann eine partielle Differentialgleichung
zweiter Ordnung.

Definition 8.1: Ein Zustand eines physikalischen Systems heifit entartet, wenn zu einem
Energie-Eigenwert mehrere linear unabhdngige Zustandsfunktionen oder Eigenvektoren
gehdren. Die Dimension des von den verschiedenen Eigenvektoren aufgespannten Unter-
raumes des Losungsraumes der Schridinger-Gleichung ist gleich dem Entartungsgrad
des Energieeigenwertes.

Der Entartungsgrad der Energieeigenwerte ist Ausdruck der Symmetrie des
physikalischen Systems. Wird das physikalische System durch eine duflere Storung
anderer Symmetrie beeinflut, kommt es im allgemeinen zu einer teilweisen Auf-
hebung der Entartung, d. h. zu einer Aufspaltung der Energieniveaus (s. 8.2.1.).

8.2. Anwendungsbeispiele aus der Quantenmechanik

8.2.1.  Aufhebung der Entartung

Gehen wir von einem physikalischen System bestimmter Symmetrie aus, so ist
die Schrodinger-Gleichung dieses Systems gegeniiber allen Symmetrieoperationen der
Symmetriegruppe des Systems invariant, da sich die Symmetrie des Systems in der
Symmetrie der potentiellen Energie duflert.

Die Eigenvektoren zu einem Energieeigenwert bleiben nach Anwendung der
Gruppenelemente der Symmetriegruppe des Systems auf sie Eigenvektoren zum glei-
chen Energieeigenwert. Mit anderen Worten, die Eigenvektoren zu ein und demselben
Energieeigenwert werden bei den Symmetrieoperationen ineinander transformiert.
Die Eigenvektoren bestimmen folglich eine Darstellung der Gruppe, die im allgemei-
nen irreduzibel ist. Jedem Energieeigenwert des Systems entspricht eine irreduzible
Darstellung der Symmetriegruppe. Die Dimension der Darstellung bestimmt den
Entartungsgrad des gegebenen Niveaus.

Wird das physikalische System einer dufleren Stérung mit einer bestimmten Sym-
metrie unterworfen, so kommt es zu keiner Aufspaltung der Energieeigenwerte,
wenn die Symmetrie der Storung gleich der Symmetrie des Systems oder hoher ist,
d. h., wenn die Symmetriegruppe des Systems eine Untergruppe der Symmetriegruppe
der Storung ist. Ist die Symmetriegruppe der Storung eine echte Untergruppe der
Symmetriegruppe des Systems, d. h. die Symmetrie der Stérung ist niedriger als die
Symmetrie des Systems, so hat der neue Gesamt-Hamilton-Operator, gebildet aus
dem ungestorten Hamilton-Operator und dem Storoperator, die Symmetrieder Stérung.
Dann bestimmen die Eigenvektoren zur irreduziblen Darstellung der Symmetrie-
gruppe des ungestorten Hamilton-Operators auch eine Darstellung zum neuen
Hamilton-Operator. Diese Darstellung kann aber reduzibel sein und so eine Auf-
spaltung der Niveaus zur Folge haben.

D.8.1
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Beispiel 8.1: Die Symmetriegruppe des ungestérten Hamilton-Operators sei die
Tetraedergruppe Ty. Wir betrachten ein dreifach entartetes Niveau mit der Dar-
stellung %,

Charaktertafel der Darstellung:

E 8C; 3C, 60, 6S,

30 -1 1 -1
Die Storung habe die Symmetrie der Punktgruppe Cj,. Sie ist eine Untergruppe
der Tetrasdergruppe Ty. Die Eigenvektoren des entarteten Energieniveaus liefern eine
Darstellung der Gruppe Cs,, wobei die Charaktere dieser Darstellung gleich den

Charakteren der Elemente in der Ausgangsdarstellung der Gruppe sind, d. h., die
Charaktere der Darstellung lauten

E 20, 3o,
2 3 0 1

Diese Darstellung ist reduzibel, wie wir aus der Charaktertafel der Gruppe Cj,

E 2C; 3o,
o 1 1 1
oA 1 1 -1
& 2 -1 0

ersechen kénnen. Die oben angegebene Darstellung 2 ist die Summe zweier Dar-
stellungen der Gruppe Cs,:

9 =9 + 6.
Das urspriinglich dreifach entartete Niveau wird unter dem EinfluB der Stoérung
in ein einfach und ein zweifach entartetes Niveau aufgespaltet.

Hat die Stérung die Symmetrie der Punktgruppe C,,, so haben ihre Elemente in der
Ausgangsdarstellung die Charaktere

E C, a, ay
' 3 -1 1 1

Die Charaktere der Darstellungen der Punktgruppe C,, haben die Werte
E C, oy a,

o, 1 1 1 1
B, 1 -1 -1 1
o, 1 1 -1 -1
2, 1 -1 1 -1

Die Ausgangsdarstellung ist wieder reduzibel und erlaubt die Zerlegung
D =oA, + B, +B,.

Das Ausgangsniveau spaltet sich unter dieser Stérung in drei verschiedene Niveaus
auf.
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Symbolisch kénnen wir die Niveauaufspaltung folgendermaBen veranschaulichen
(Bild 8.1).

4 L Gy
Bild 8.1

Die Gruppentheorie kann dabei nur etwas iiber die Art der Aufspaltung, nicht aber
iber die GroBe der Aufspaltung und damit die Lage der neuen Energieniveaus aus-
sagen. Die Berechnung der GroBe der Niveauaufspaltung ist Sache der quanten-
mechanischen Storungsrechnung. Eine weitere Anwendung der Gruppentheorie
soll die Aufspaltung der Energieniveaus der Elektronen eines Atoms beim Einbringen
in ein starkes Feld mit Kristallsymmetrie bringen.

8.2.2.  Aufspaltung der Elektronenterme im Kristallfeld

Die quantenmechanische Behandlung der Elektronenzustinde in einem Atom
zeigt, daB3 die Eigenzustinde der Elektronen und die Energieeigenwerte durch drei
Quantenzahlen, die Hauptquantenzahl n, die Drehimpulsquantenzahl / und die
magnetische Quantenzahl m charakterisiert werden kénnen: f,,;,,, Eup-

Zu jeder Hauptquantenzahl » sind die moglichen Werte der Drehimpulsquanten-
zahl ] auf die ganzzahligen Werte zwischen null und n — 1 eingeschrinkt:

0 <7 < n — 1. Die magnetische Quantenzahl m durchlduft die Werte zwischen —/
und +/: —I £ m £ I Jeder Zustand zur festen Quantenzahl / ist (2/ + 1)-fach
entartet, da die Energie bei fehlendem duBeren Magnetfeld nicht von der Quanten-
zahl m abhingt. Dariiber hinaus ist die Energie auch beziiglich der Quantenzahl /
entartet, so daBl die Gesamtentartung des Energieniveaus mit der Hauptquantenzahl n

n—-1
S+ 1) =n
1=0

betragt. Fiir die Bezeichnung der Elektronenzustinde im Atom ist es iblich, die
Hauptquantenzahl n und die Drehimpulsquantenzahl als kleinen Buchstaben einzu-
fiihren:

fiir die Drehimpulsquantenzahl / [ o 1 2 3 4 5

den Buchstaben l s p d f g h

so daBl zum Beispiel das Symbol 2s bedeutet: n = 2 und / = 0. Die Untersuchung
der Aufhebung der Entartung ist ein komplizierter Vorgang. Bei einem Vielelektro-
nenatom treten zahlreiche Wechselwirkungen auf. Die Bahndrehimpulse und die
Elektronenspins sind gekoppelt und fiihren zu komplizierten Abhéngigkeiten in den
Energieniveaus. Je nach der Starke des Kristallfeldes beziiglich der inneratomaren
Wechselwirkungen kommt es zu unterschiedlichen Aufspaltungen oder Aufhebungen
der Entartung.

Beispiel 8.2: Zur Demonstration betrachten wir die Aufspaltung eines d-Niveaus
(I = 2) an einem Wasserstoffatom in einem starken Kristallfeld mit der Symmetrie
der Punktgruppe D;. Dabei bedeutet der Terminus ,,stark, daB das duBere Feld
alle anderen Wechselwirkungen im Wasserstoffatom {ibersteigt und dem Energie-
niveau seine Symmetrie aufzwingt.
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Die Punktgruppe Dj ist durch eine Drehachse dritter Ordnung und drei Drehachsen
zweiter Ordnung charakterisiert. Die Gruppe zerfillt in drei konjugierte Klassen
(vgl. Tafel 5.1). Es ergeben sich deshalb drei irreduzible Darstellungen. Die Dimen-
sion der Darstellungen finden wir aus dem Zusammenhang, dal die Ordnung g
einer Gruppe G sich als Summe von Quadraten ganzer Zahlen schreiben 146t, wobei
die Anzahl der Summanden gleich der Zahl der konjugierten Klassen ist. Die ganzen
Zahlen sind dann die Dimensionen der Darstellungen. Im Fall der Gruppe D, ist
die Ordnung g = 6, und es miissen drei Summanden vorkommen. Das fiihrt auf die
Zerlegung: 12 + 1% + 22 = 6, d. h., zwei Darstellungen sind eindimensional und eine
zweidimensional. Die Charaktertafel ist von der Form:

E 2C; 3G,

o, 1 1 1
o, 1 1 -1
& 2 —1 0

Die Drehgruppe, nach der sich die Drehimpulse transformieren, hat zu festem
Drehimpuls / eine (2/ + 1)-dimensionale Darstellung, wobei der Charakter zur
Drehung um den Winkel ¢ in dieser Darstellung aus der Formel

sin (I + )¢ .
1 = —————l
20 =51y (siehe [10])
errechnet wird.
Fiir die beiden Drehungen C; und C, ergeben sich die Charaktere in der fiinf-

dimensionalen Darstellung zum Drehimpuls / = 2:
| E 26, 3G

D | 5 -1 1

Do (s. 8.2.4.). Wie wir sehen, ist diese Darstellung reduzibel und hat nach Analyse
der Charaktertafel der irreduziblen Darstellungen der Gruppe D, die Gestalt

Dy =1 + 26.

Das finffach entartete Niveau des Wasserstoffatoms spaltet sich im Kristallfeld in
ein nichtentartetes und zwei zweifach entartete Niveaus auf.

Dieses Beispiel deutet die Mdoglichkeiten der Anwendung der Gruppentheorie
an. Ausfiihrlichere Darstellungen zu diesem Gegenstand sind in der entsprechenden
Spezialliteratur zu finden.

Eine weitere Anwendung der Gruppentheorie bildet die Klassifikation der Wahr-
scheinlichkeiten fiir den Ubergang zwischen zwei Zustinden eines physikalischen
Systems, wobei der Ubergang unter dem EinfluB einer phy51ka11schen GroBe erfolgt.
So wird zum Beispiel der Ubergang eines Elektrons von einem Energieniveau zu
einem anderen unter Aussendung oder Aufnahme von Strahlung durch das elektri-
sche Dipolmoment gesteuert.

8.2.3.  Auswahiregeln fiir Matrixelemente
Ein Matrixelement der Gestalt

M, = J‘FMf,‘f’dx dy dz
v
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beschreibt den Ubergang des Systems aus dem Zustand mit der Wellenfunktion
/¥ in den Zustand mit der Wellenfunktion f{® oder umgekehrt unter dem EinfluB
der physikalischen GrofBe M (V ist das Gebiet des E?, in dem sich das physikalische
System befindet). Ist dieses Matrixelement von null verschieden, so ist der Ubergang
zwischen den beiden Zustinden méglich. Aussagen iiber die Moglichkeit von Uber-
gangen sind als Auswahlregeln in der Physik bekannt. Die Gruppentheorie kann
zwar keine Aussage liber die GroBe der Matrixelemente machen, kann aber unter-
scheiden, ob das Matrixelement gleich null wird oder von null verschieden ist. Dieses
Ergebnis ist als Auswahlregel bereits von Nutzen.

Die gruppentheoretische Methode beruht auf folgendem Satz, den wir nur ohne
Beweis angeben.

Satz 8.1: f{ sei eine der Basisfunktionen einer irreduziblen Nicht-Eins-Darstellung
einer Symmetrlegruppe eines physikalischen Systems. Dann ist das Integral iiber den
Ortsraum des physikalischen Systems identisch gleich null:

[f®dxdydz=0
Vv

Umgekehrt gilt: Ist f eine zu irgendeiner irreduziblen Darstellung einer Gruppe
gehorige Basisfunktion, so ist das Integral

[ fdxdydz
14

nur dann von null verschieden, wenn diese Darstellung in sich die Eins-Darstellung
enthalt.

Nun bilden wir mit dem Operator R einer skalaren physikalischen Grofle das
Matrixelement,

Ry = j 7@ RfP dx dy dz,

wobei die Indizes 7, k die Energieniveaus unterscheiden, zu denen die Darstellungen
2 und 9® gehoren. Da der Operator R gegeniiber Symmetrieoperationen invariant
ist, liefern die Produkte die Darstellung

@(i) X @(k).

Das direkte Produkt zweier verschiedener irreduzibler Darstellungen enthélt keine
Eins-Darstellung. Dagegen enthdlt das direkte Produkt einer irreduziblen Dar-
stellung mit sich selbst immer die Eins-Darstellung. Das Matrixelement R;, ist folg-
lich ungleich null, also ist der Ubergang erlaubt, wenn der Ubergang zwischen Zu-
stinden zum gleichen (entarteten) Energieniveau erfolgt.

S sei ein Vektor mit den Komponenten S,, S,, S;, die bei den Symmetrieopera-
tionen in Linearkombinationen voneinander transformiert werden und eine Dar-
stellung P der Symmetriegruppe bilden. Die Matrixelemente

Si = [TPSfP dx dy dz

v
sind von null verschieden, falls die Produktdarstellung
9“) X gs % @(k)

die Eins-Darstellung enthélt. Man zerlegt zweckmidBig 2 x Zg in irreduzible
Darstellungen und vergleicht mit der Darstellung 2®. Enthilt die Produktdarstellung

S.8.1
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2" x g die Darstellung 9®, so ist das Matrixelement Sy von null verschieden,
und der damit verbundene Ubergang ist erlaubt. R

Beispiel 8.3: Wir betrachten ein physikalisches System mit der Symmetrie der
Oktaedergruppe O und fragen nach erlaubten Ubergingen aus einem Zustand des
Systems in einen anderen, wenn der Ubergang durch einen polaren Vektor gesteuert
wird. Ein polarer Vektor dndert bei Spiegelung am Nullpunkt seine Orientierung wie
eine Strecke. Polare Vektoren sind z. B. die Geschwindigkeit, die Beschleunigung,
die Kraft, der Radiusvektor und die Drehgeschwindigkeit. In der Oktaedergruppe O
transformieren sich polare Vektoren wie die irreduzible Darstellung &, . Wir kénnen
dies nachweisen, indem wir die einzelnen Gruppenelemente durch dreidimensionale
Matrizen darstellen und damit den Radiusvektor transformieren. Die Spuren dieser
Matrizen liefern die Charaktere der dreidimensionalen Darstellung &, . Die Charak-
tertafel der irreduziblen Darstellungen der Oktaedergruppe O hat die folgende
Gestalt:

| E 8Cy 3C, 6C, 6C,

o, 1 1 1 1 1
oA, 1 1 1 -1 -1
& 2 -1 2

F, 3 0 -1 1 -1
F, 3 0o -1 -1 1

Nun bilden wir die Produktdarstellungen aus der Darstellung &, mit allen Dar-
stellungen der Oktaedergruppe O. Wir gewinnen die Zerlegungen dieser Produkt-
darstellungen nach irreduziblen Darstellungen der Oktaedergruppe, indem wir die
Charaktere mit denen der irreduziblen Darstellungen vergleichen. Zum Beispiel
gewinnen wir die Charaktere des Produktes &, x &, als Produkt der Charaktere
der Darstellungen &, und & ,:

E  8C, 3C, 6C, 6C,
Z, 3 0 1 -1 1
Z, 3 0 -1 1 -1
FixF, | 9 0 1 -1 -1

Vergleichen wir diese Charaktere mit der Charaktertafel der Oktaedergruppe, so
entsteht die Zerlegung

FxXFry=d, +E+F, + F,.

Alle Produkte der Darstellung % ; mit den Darstellungen der Oktaedergruppe haben
folgende Zerlegungen in irreduzible Darstellungen:

Fiox ol =F,,
Fiox Ay, =F,,

FixXE =F +F,,

Fiyx Fr=Ad, +E+F, +F,,
FIXF =A, +E+F, +F,.

Die Ubergiinge sind erlaubt, wenn die Produktdarstellungen die Darstellung des
Endzustandes enthilt. Da wir uns fiir alle moglichen Uberginge in diesem System
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interessieren, durchlduft der Ausgangsstand alle Darstellungen der Oktaedergruppe

Die Matrixelemente sind fiir die folgenden Uberginge von null verschieden:

F, geht iiber in &7, denn F, x &, = F;
F, geht iiber in &7,, denn F| X A, = F,;
F L F, geht liberin &, denn F, x € = F + F,;

oAy, 6, F,F, gehtiiberin F,, denn F, x F, = A, +E+F | +F,;
oA, 8, F,,F, gehtiiberin #, denn F, x F, = A +E+F | +F,.

Die Diagonalelemente der Ubergangsmatrix sind von null verschieden, wenn die
Darstellung &, in der symmetrischen Produktdarstellung [27] enthalten ist. Dabei
sind die Charaktere in dieser Darstellung aus der Formel

[°1(4) = H(x(4)* + »(4%)}

zu bilden. Zum Beispiel erhalten wir die Charaktere der Produktdarstellung [#7]
in folgender Weise:

E 8C; 3C, 6C, 6C,
F, 3 0 -1 -1 1
(x(4)) 9 0 1 1 1
2(4?) 3 0 3 30 -1
[#11 6 0 2 0 0

und damit nach Vergleich mit der Charaktertafel der Oktaedergruppe die Zerlegung
[g;ﬂ=ﬂl+éa+?z-

Alle so gebildeten Diagonalelemente haben die Form

[3] = o,
[M%] =y,
[67] =ty + 6,

['g-f]=ﬂt+‘5n+9-z,
[y§]=ﬂl+0@+=gz

Wie wir sehen, enthélt keine dieser Darstellungen die Darstellung %, und die
Matrixelemente in der Diagonale der Ubergangsmatrix sind alle gleich null. Die
Ubergangsmatrix hat symbolisch folgende Gestalt, wenn wir die erlaubten Uber-
ginge mit der Zahl Eins belegen:

00001 o\
00010 A
Sw=|00011 [, (ik=|é&
01101 F,
L10110 7,

Zum AbschluBl unserer Beispiele fiir Anwendungen der Gruppentheorie in der
Quantenmechanik wollen wir uns der Klassifizierung der Schwingungszustinde
eines Molekiils zuwenden. Die Anwendung der Gruppentheorie bildet die not-
wendige Grundlage zur Deutung der Ergebnisse der Spektroskopie aller Wellen-
bereiche.

8  Belger, Symmetriegruppen
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8.2.4. Klassifizierung der Molekiilschwingungen

Die duBlere Symmetrie der Molekiile ist Ausdruck der Struktur der Molekiil-
orbitale, die die Bindungen zwischen den einzelnen Atomen des Molekiils vermitteln.

Die Gesamtwellenfunktion des Molekiils als Uberlagerung der einzelnen Orbitale
ist invariant gegeniiber allen Elementen der Symmetriegruppe des Molekiils. Diese
Wellenfunktion gehort demzufolge zur irreduziblen Eins-Darstellung der Punkt-
gruppe des Molekiils. Ein aus N Atomen bestehendes nichtlineares Molekiil hat
3N — 6 Schwingungsfreiheitsgrade. Ein Molekiil nennen wir dann linear, wenn alle
Atome langs einer Geraden angeordnet sind. Betrachten wir kleine harmonische
Schwingungen der Atome um ihre Ruhelagen, so ist die Energie des schwingenden
Molekiils eine quadratische Form in den Verschiebungen u, aus der Ruhelage und
deren erster Zeitableitungen u,:

E= %g Myl + % E kg

dabei sind die GréBen m;, und &y, konstante Koeffizienten (Ausdriicke fiir die Massen
und die Riickstellkréfte), und die Summation erfolgt in jedem Index von 1 bis 3N
(uy,u,,us sind die drei Koordinaten des Verschiebungsvektors des ersten Atoms
usw.).

Die beiden Summen sind als kinetische und potentielle Energie positiv definite
quadratische Formen. Sie lassen sich deshalb gleichzeitig als Summen aus reinen
Quadraten neuer Koordinaten g% und deren Zeitableitungen g% darstellen. Diese
Koordinaten werden so gewéhlt, daB die Koeffizienten bei der kinetischen Energie
gleich eins werden:

E= %g‘ (48)* + %g‘wi(qﬁ)z-
Die neuen Koordinaten nennt man Normalkoordinaten. In diesen Normalkoordinaten
sind die Schwingungen unabhéngig voneinander und ihre Frequenzen sind die Zahlen
w,. Der Index x unterscheidet die verschiedenen Freqenzen, wihrend der Index k&
den Entartungsgrad jeder Frequenz durchlduft: k = 1, ..., f,. Ist der Ausdruck fiir
die Energie eines schwingenden Molekiils gegeniiber allen Symmetrieoperationen
invariant, dann bedeutet das, daB3 die Normalkoordinaten g% zu einer festen Frequenz
w, in Linearkombinationen voneinander transformiert werden, wobei die Summe der
Quadrate Y. (¢%)? ungeéndert bleibt. Die Normalkoordinaten bilden eine irreduzible
k

Darstellung der Symmetriegruppe des Molekiils. Der Ubergang von der Darstellung
der Energie durch die Komponenten der Verschiebungsvektoren w, zu der Dar-
stellung durch Normalkoordinaten entspricht einer Schwingungsdarstellung oder
totalen Darstellung und ihrer Zerlegung in irreduzible Darstellungen.

Die totale Darstellung gewinnen wir dadurch, daB wir den 3N-dimensionalen
Vektor aller Komponenten der Verschiebungsvektoren allen Klassen von Symmetrie-
operationen der Symmetriegruppe unterwerfen und den Ubergang durch eine
(3N x 3N)-Matrix herstellen. Da wir fiir die Zerlegung einer Darstellung in irredu-
zible nur die Kenntnis der Charaktere (Spuren) der Ubergangsmatrizen benétigen,
gibt es ein einfacheres Verfahren zu ihrer Ermittlung. Wir geben die Formeln der
einzelnen Charaktere an, ohne deren Herleitung zu begriinden. In der totalen Dar-
stellung haben die Symmetrieelemente der Punktgruppen folgende Charaktere:

das Einselement E: 2(E) = 3N - 6,

die Drehung C(¢): 2(C) = (N, —2)(1 + 2cos ),
die Drehspiegelung S(¢p): 2(S) = N2 cosgp — 1),

die Spiegelung o: 2(0) = N,,

die Inversion i: 20) = Ny,
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dabei ist die Zahl Ny gleich der Zahl der bei der Symmetrieoperation R festbleibenden
Atome, C(p) und S(¢) sind Dreh- bzw. Drehspiegelachsen mit dem Drehwinkel ¢.
Als Anwendungsbeispiel wollen wir die Schwingungen des Methanmolekiils CH,
untersuchen. .

Beispiel 8.4: Die Symmetriegruppe des CH,-Molekiils ist die volle Tetraedergruppe
Ty. Wir erinnern uns, daB diese Gruppe durch drei S;-Achsen, vier C;-Achsen und
sechs Spiegelebenen charakterisiert ist, 24 Elemente enthdlt und fiinf konjugierte
Klassen besitzt:

ein Element E,

acht Rotationen C; und C3,

sechs Spiegelungen o an den Ebenen,
sechs Drehspiegelungen S, und S3,
drei Rotationen C, = S%.

Die Gruppenordnung g = 24 ldBt sich in eine Summe von fiinf Quadraten ganzer
Zahlen zerlegen:

24 =12 + 12 + 2% + 32 4+ 3%
Aus dieser Zerlegung ersehen wir, dafl die Tetraedergruppe zwei eindimensionale,

eine zweidimensionale und zwei dreidimensionale irreduzible Darstellungen besitzt.
Die Charaktertafel der Tetraedergruppe hat die folgende Form:

E 8C; 3C, 60 65,4

2 1 1 1 1 1
o, 1 1 1 -1 -1
& 2 -1 2

Z, 3 0o -1 1 -1
7, 3 0 -1 -1 1

Die Charaktere zu den Elementen der konjugierten Klassen in der totalen Dar-
stellung gewinnen wir aus den oben angegebenen Formeln:

- Das Molekiil enthilt fiinf Atome, hat also 9 Schwingungsfreiheitsgrade, und der
Charakter des Einselementes ist ebenfalls 9: y(E) = 9.

- Bei den Drehungen um die C;-Achsen bleiben zwei Atome, das zentrale Kohlen-
stoffatom und eines der Wasserstoffatome ortsfest (N¢ = 2), und mit ¢ = 120°
wird der Charakter der Drehungen C; und C3 gleich null: %(C;) = 0.

- Bei den Drehungen um die C,-Achsen bleibt nur das zentrale Kohlenstoffatom
ortsfest (N = 1), und der Charakter wird gleich eins: x(C,) = 1.

- Bei den Spiegelungen o sind immer drei Atome ortsfest, das zentrale Kohlenstoff-
atom und zwei Wasserstoffatome, und der Charakter ist gleich drei: y(o) = 3.

- Bei den Drehspiegelungen S, bleibt nur das Kohlenstoffatom ortsfest, und der
Charakter wird gleich minus eins: x(S) = —1.

Wir haben damit die Charaktere in der totalen Darstellung gefunden:
I E 8C; 3C, 6o 6S,
Do |9 0 1 3 -1

Vergleichen wir diese Charaktere mit der Charaktertafel der irreduziblen Dar-
stellungen der Tetraedergruppe, so ergibt sich die Reduzibilitit der totalen Dar-
stellung. :
ge
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Um die Zerlegung in irreduzible Darstellungen zu finden, benutzen wir entweder
die Formel

17 .
ny = r 2 ay"(4,) 1°(4,), mit
y=1

ny — Faktor der Héufigkeit, mit dem die A-te Darstellung in der totalen
Darstellung enthalten ist,

2" - Charakter der /-ten Darstellung,

x*t — Charakter der totalen Darstellung,

(4,) - ein Repréasentant der »-ten Klasse,

a, - Anzahl der Elemente in der »-ten Klasse,

m - Anzahl der Klassen und

g - Gruppenordnung,

oder wir finden die Zerlegung durch einfaches Probieren:

E  8C, 3C, 604 684
2 1 1 11 1
& 2 -1 20 0
2, | 6 -2 2 -2
D 9 0 1 3 -1

d. h.:
D =, + 6+ 2F,.

S
gat

& &

Bild 8.2. Die Normalschwingungen des Methanmolekiils
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Das Methanmolekiil hat demnach 4 Eigenschwingungen, eine nichtentartete,
eine zweifach entartete und zwei dreifach entartete. Die Eigenschwingungen transfor-
mieren sich nach den Darstellungen <7, € und % ,. Die Kenntnis der Transforma-
tionseigenschaften der irreduziblen Darstellungen gestattet sogar die Analyse der
Schwingungszustinde beziiglich ihrer rdumlichen Symmetrie. Zur Ableitung der
Schwingungszustinde aus den Eigenschaften der Darstellungen verweisen wir auf die
Spezialliteratur [4] [10]. Bei der Einsdarstellung &/, muB die volle Symmetrie des
Molekiils erhalten bleiben; folglich kann das Molekiil nur so schwingen, daB es
sich dhnlich bleibt. Bei dieser Schwingung bleibt das Kohlenstoffatom ortsfest und
die vier Wasserstoffatome schwingen ldngs ihrer Bindungen gleichzeitig nach auflen
oder nach innen. Alle Schwingungszustinde des Methanmolekiils sind in Bild 8.2
zusammengestellt.
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2.1. P wird durch ¢ in eine seiner Symmetrielagen iibergefiihrt. Beschreiben wir diese Symmetrie-
lage durch das Bild ¢(P) von P bei der Abbildung ¢: P — @(P), so heiBt dies, P und ¢(P) sind un-
unterscheidbar (was nicht heiBen muB identisch); ¢ ist also eine Symmetrieoperation fir P.

2.2. Nein! Es ist C, # oy. Ein Punkt Pe E?® oberhalb der durch A bestimmten Ebene wandert
durch C, nach unten, durch o, aber nicht.

2.3. A: a) Drehsymmetrieachsen sind C; (als Referenzachse durch den Mittelpunkt O von A und
senkrecht auf A)und C3, C5, C3” (durch die Ecken und 0); Spiegelsymmetrieebenen sind o5, oy, o5
(durch C; sowie C3, C7, C;”) und oy, (als Ebene, in der A liegt); einzige Drehspiegelsymmetrieachse
ist s (bestehend aus C; und oy,). b) D3y, = {E, C3, C3, C3, C5, C3’, 05,0y, 0y, Se, Sa, S§}; zu be-
achten sind die Beziehungen S¢ = C; - oy, S2 = C3, S3 = oy, S¢ = C3, 5§ = C3 -0y, S§ = E.
[O: a) Drehsymmetrieachsen sind C, (als Hauptdrehachse durch den Mittelpunkt O von [J und
senkrecht darauf), C3, C5 (durch O und die Ecken von []) sowie C; und C, (durch O und die Mittel-
punkte der Seiten von []); Spiegelsymmetrieebenen sind oy, oy, 04, o4 (Ebenen durch C, und
C;,C5, C,, Cy)und oy, (Ebene, in der [J liegt); Drehspiegelsymmetrieach sind S, (bestehend
aus C, und o) und S, (beliebige Achse durch O, senkrecht auf einer Spiegelebene durch 0); In-
versionszentrum ist i = 0. b) Da) = {E,Cy,C2,C3,Cs,C5 ,Ca, Ca,0y,04,04,04,0ns i, Say S3}.

2.4. a) Die drei F-Kerne des BF3-Kerngeriistes sitzen in den Ecken eines gleichseitigen Dreiecks A,
tauschen also bei allen Symmetrieoperationen von A ihre Plitze aus, wihrend der B-Kern im Mittel-
punkt von A Fixpunkt ist. Analog verhilt es sich mit XeF, in[J. b) Das NH;3-Kerngeriist gestattet
nur solche Bewegungen, bei denen der N-Kern Fixpunkt ist und die H-Kerne als Ecken eines gleich-
seitigen Dreiecks A ihre Plitze wechseln. Die Symmetriemenge von NHj ist demnach eine Teilmenge
der Symmetriemenge Dy, von A < E3, nimlich C3, = {E, Cs, C3, 6}, 05, 6'}. Dies ist aber gerade
die Symmetriemenge von A, wenn man nur Bewegungen des E? D A zuldBt (Bild L 2.1., a)). Die
Uberlegung bez. [] < E? und SF;Cl verliuft analog: Csy = {E, C4, C2, C3, 0}, 05, 6y, 6.}, wobei
ay, 0y bzw. 0y, 6, als Spiegelungen an den Geraden durch gegeniiberliegende Ecken bzw. durch
gegeniiberliegende Seitenmitten von [] anzusehen sind (Bild L 2.1., b)). Die Inversion i am Ursprung
O = iist durch C3 erfaBt: C3 = i.

Xz
J, h 5
/
C, 6,
1IN o
PN
. 6|6, N
a) Gleichseitiges Drejeck bzw. b) Quadrat bzw.
NHy~Molekil SksCl=Molekil

Bild L 2.1. Symmetrieelemente von A, [] < E?

3.1. Unter Wegl der Eir ile bzw. -spalte lauten die Gruppentafeln von C3, bzw. Cyy

Tafel L 3.1. Gruppentafel der Symmetriegruppe Csy des NH;-Molekiils bzw. von A < E2

E C; C o, o o) Inverse Elemente:
C; C3 E o o o)
C} E C; o o) o
o o o E C C
g, oy oy C3 E G
¢ oy o Cy C}3 E
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Tafel L 3.2. Gruppentafel der Symmetriegruppe C,, des SF5Cl-Molekiils bzw. von [] < E?

E:5 Cyl'Cq 'C3 05 06y - Oy Inverse Elemente:

C. C: C3 E & 6, d o E' =E C;'=¢},
C; G E G o o, & o (cy=cy,

C3 E C C; 6, 6, oy oy (€™ = Cq,

o o o &6 E Ci C; Ca ot =oy,

oy 6 o & Ci E C, C3 oyt =dl,

6, o & o Ci C3 E C ot =4,

G, o 6, o C} Ci C} E ;1 =0,.

3.2. GemaB der Numerierung in Bild L 2.1., a)) entsprechen folgenden Symmetrieoperationen von
Cs, (vgl. Losung der Aufgabe 3.1) die folgenden Permutationen: E =1@2@A), C3=my
=(123),C3za,=(0132,0,20,=(1)(23),0y 20, =(13)(Q), o3 = (12) (3). Bilden
wir alle Permutationsprodukte aus €; = [e, @y, 7,, 0, 65, 03] und ersetzen in der Tafel L 3.1 die
Symmetrieoperationen durch die ihnen entsprechenden Permutationen, erhalten wir die Gruppen-
tafel von €;.

3.3.a) .

E 4 B C Die mittlere Produkttafel 1Bt sich nicht zu einer E A B C
A E C B Gruppentafel vervollstindigen. A C E B
B C E A B E C A4
C B A E C B A E

b) Nein!, ¢) G, ist die Kleinsche Vierergruppe (vgl. Tafel 3.3), G; = S, (Gruppentafel von S,:
Tafel 2.1, linke obere Teilmatrix).

3.4.a) Aus E- = LT - E~ - Lfolgtdet E- = det L™ det E~ det L, und wegen det E~ = —1 gilt deshalb
(detL)?=1. b) Fir L;,LyeL, gilt (L, L))" E~+(Ly Ly) =LY -(LT-E~-L,)-L;
=LY E--L, = E-,alsoistLy Ly © Ly;mit Le Ly istauch L' € Ly, dennaus L - E~ - L = E~
folgt E- = (LT)™'- E-- L' = (L"Y'- E-- L, also gilt L* < L. ¢) Fir L{,L} eLi < L, gilt
det (L] - Li) = det L detLj = l,also L} - Li < Lj; wegen det (L)™' = (detL*)' =1"1=1
lst ferner (L)™' < Lj, d. h. L] ist eine Untergruppe von Ly, und zwar ein Normalteiler: L™ sei eine

liebige, Lg eine feste unei liche Lorentzmatrix (detL™ = detLg = —1).Esgilt L~ -Ly =L*eL},
also L~ = L* - (L) *mit det (Lg)™* = —1. Deshalb ist Ly = Li v Lj - (Lg)~* die Linksneben-
klassenzerlegung von L, nach L und [L,:Lj] = 2. Die Rechtsnebenklassenzerlegung nach L
hat also zwei Klassen; eine davon ist Lj, die andere muB demnach Lj - (Lg)~* sein. Rechts- und
Linksnebenklassen stimmen also iiberein.

3.5. Die Gruppenordnung ¢ = 6 von Cs, hat die Teiler 1, 2, 3 und 6. Es gibt also nur Untergruppen
zu den Ordnungen u = 1,2,3,6. Sie lauten [E], [E, 03], [E, 0y], [E, 07"], [E, C5, C3] = C; und
C;, und haben die Indizes j = 6, 3, 3, 3, 2. Cj ist der einzige nichttriviale Normalteiler von Cj, .

)
3.6. Firr Normalteiler stimmen Links- und R legung iiberein. Cs,

= E-C3v - C;3 = {E, C3, C3} v {0}, 07, 6)"}. Reprisentanten der Zerlegung sind z. B. E und
;. Die Produkte aus den Klassen E, oy lauten reprasentantenweise und gleich als Gruppentafel der
Faktorgruppe Cs,/C5 notiert (benutze Tafel L 3.1):

| E o,
E E o,
oy |oy E
3.7. Mit Hilfe von Tafel L 3.1. finden wir: C3, = {E} v {C3, C3} v {0y, 0y, 07’} = (E) v (C3) v (07)
= (4y) v (43) v (43). Aus (4y) (Ay) = k)./;.l(/‘h) e kAy,z(Az) ~ kly.a(Aa) folgt dann kyy,1 = ki2,2
= kiz,s = ka1,2 = ka2p =ksi3 = 1, koo, = kaa3 = kazs = 2, kaz = kis,2 = 3; alle anderen
ki, sind null.
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—
4.1. Durch die Drehung C; geht tiber: H; - H,, H, > H3, Hy » H;.Sind x; = OH; (i = 1,2,3)
die Ortsvektoren der H;, so muf3 dabei gelten x, = 4 X;,X3 = A X,,X; = A X3. Zusammen
bilden diese drei Gleict ein li Gleichungssystem aus neun Gleichungen in den neun
Unbekannten a,,; 4 = (a,,). Dessen Losung lautet a;, 5 a3 = a3; = 1 und q,, = 0 fir alle
anderen Indizes », u. A ist also eine Matrix aus O*(3) bzw. aus SL(3).

b) D = D,D,D,
=Bl [t 0 0] [-VE —1o] [-3-23 —2433 —2\/3
=3 |3 10—2-0\/3 17 1 =3o|=5|-6+ V3 -3-2/3

o o1l lo-13 0 01 -2 2/3 4\/3

Sind x; = OH die Ortsvektoren der Bildpunkte H; von H; (O = O’ ist Fixpunkt), so erhalten wir
ausx; = D - x;, also H{: (— 5/4+ V34, =9/ = \[3]a, 172 + /3/2), Hs: (=3/4 — /3, -1
+ \/3/4, -1/2 + \/3), Hi: (—12 + \/3/4, —1/4 — \/3/2, 3 \/3/2). Das Tetraeder nimmt also
keine seiner Symmetrielagen ein!

4.2. W_ir beziehen uns auf Bild L 2.1. Die Koordinaten der Ecken 1,2, 3 sind (~1/2 \/5 —1/2),
(1/24/3, =1/2), (0, 1). Drehungen: Sie werden gemiB 4.13. (®) [i] durch Matrizen

cosx —sin«

Alx) = [

; ] beschrieben. Demgemill gehoren fir « = 0° 120° 240° zusammen:
sina coso

10 -1 -\/5
. — A = 2. A7 /T
E'E—[() l},(g.A ~4}[ 3 l:l und C3: 4”7 =4

Spiegelungen: Nach dem Vorbild der Losung der Aufgabe 4.1 finden wir fiir oy (1 - 1,2 - 3,
3 2), firoy (1->3,2-2,3- 1) und fiirr ;" (1 » 2,2 > 1,3 - 3) die Matrizen

Gt O B I R

5.1. Wir zeigen, daB Cg zu Cg* konjugiert ist: Es gilt Cg ' = C3. Es sei C; eine zweizihlige Dreh-
symmetrieachse senkrecht auf Cq. Dann gilt: C;™! - C - C5 = C3+ Cs - Cy = C§ = Cg L.

5.2. Den vorhand Symmetrieel gemdl haben wir Tafel 5.3 folgendermaBen zu durch-
laufen: a) ja - ja - ja - ja, A < E3 gehort zur Gruppe Dsy; ja — ja — nein — nein - ja, A < E? ge-
hortzu Cs, . b) ja - ja - ja — ja, [] < E® gehort zu Dgy,; analog: [ < E2 gehort zu Cg,. ¢) ja — ja -
ja - ja, Dgp. d) ja — ja — nein - ja, C,y. €) nein - nein — nein, C; . f) nein - ja, C,.

Bild L 5.1. FCISO-Molekiil Bild L 5.2. F,SO-Molekiil

5.3.a) C;, b) FCISO (Bild L 5.1).

6.1. Die Basisvektoren haben in der orthonormierten Basis die Gestalt
a;=He +e) ay=3de +e) az=1I(e; +ey)

Nach den Regeln der Vektorproduktbildung erhélt man fiir das Spatprodukt

[a;13,25] = a,(a; x a3) = §(e; + e)) (e, + € —e3) =%
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und die Vektorprodukte
a; xa, =4e; —e€ +e), axaz=4j(e +e —e3), a3xa =i(—e +e+ey)
und damit fiir die Basisvektoren des reziproken Gitters

al =¢ +e — e,

a2 = —e; +e,+e;,

a’=e —e, + e;.

7.1. In der Losung der Aufgabe 4.2 sind den Symmetrieoperationen E, Cs, C3, oy, 6y, 0y € Cs, in .
dieser Reihenfolge die Matrizen E, A’, A", ¢’, 6"/, ¢’’’ zugeordnet. Diese Matrizen bilden eine Gruppe
M,. Die durch die Zuordnung definierte Abbildung #:C3,—M, ist eineindeutig und relationstreu. #
ist also eine reelle treue Darstellung durch die orthogonalen Matrizen von M, . Es gilt Z(E) = E,
R(C3) = A, R(C3) = A7, R(0) = ¢/, R(0)) = 6", R(0y") = 7.

7.2. Nach Aufgabe 3.7 zerfillt Cs, in drei konjugierte Klassen, besitzt also drei solcher Darstellungen.

7.3. Man benutze die Formeln (i) bzw. (y) von Burnside. GemiB Losung Aufgabe 3.7 ist in (y;):

ay =1,a, =2,a3 =3, m=3. Wir werten (y,) aus fir: 1) ky, =1L ky, =0 (% 1);

2) kaay =2, kazy =1, k22,3 = 0; 3) k33,1 = k33,2 = 3, k33,3 = 0 und erhalten: ad 1) A=,

ad2) 7% = nyund y4 = —3n,, ad3) yh = +my, wenn yh = myistund g4 = O fiir g4 = —3n,. Daraus

ergibt sich in den Dimensionen d , d,, d; der drei irreduziblen Darstellungen von Cj, die Tafel L 7.1

3

(4, = E, Ay = C;, A = 0,). Wegen (1,), d.h. wegen Y a,(})? = 6 (A=, g = 6) gilt hier
v=1

dy=1,d,=1undd; = 2.

Tafel L 7.1. Charaktertafel des NH;-Molekiils

(41) 1 (42) I (45)

d, dy d,

d, d, | —d,

dy —4d; 0
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Symbeolverzeichnis

o jons-, Relati und . .

° Verkniipfung in einer Gruppe

X direktes Produkt zweier Gruppen

@ direkte Summe

~ Aquivalenz, Konjugiertheit,
Ahnlichkeit

= Isomorphie

s Homomorphie

2 Bildung des inversen Elements
(==

k(X) Klassenzahl der Punktgruppe X

SchonflieBsymbolik

C,, C,  Drehsymmetrieoperation C, an
n-zahliger Drehsymmetrieachse C,

Sns Sy Drehspiegelsymmetrieoperation S,
an n-zihliger Drehspiegelsymmetrie-
achse S,

oy, 0, Spiegelsymmetrieoperation o, an

. vertikaler Spiegelsymmetrieebene o,

Gy, Og Spiegelsymmetrieoperation o4 an
dihedraler Spiegelsymmetrieebene oy

Ohy Op Spiegelsymmetrieoperation oy, an
horizontaler Spiegelsymmetrie-
ebene oy

ii Inversion i am Inversionszentrum i

Internationale Symbolik

(s. Seite 80)

Abstrakte Gruppen

G Gruppe

U Untergruppe

N Normalteiler

N, Normalisator von 4

z, zyklische Gruppe der Ordnung n

z, zyklische Gruppe unendlicher
Ordnung

3 Zentrum

{M) von M erzeugte Untergruppe

Ay von A erzeugte zyklische Gruppe
[A4, B, ...] Gruppe aus den Elementen 4, B, ...
A\ Kleinsche Vierergruppe

F = G/N Faktorgruppe von G nach N

Klassen, Komplexe
A, B, ... © G Komplexe von G

At inverser Komplex

(A) Klasse konjugierter Elemente
8 Klasse konjugierter Elemente

LoU Linksnebenklasse nach U

UoR Rechtsnebenklasse nach U

Matrizengruppen

M, beliebige lineare Matrizengruppe

GL(n, K) allgemeine lineare Gruppe iiber K

GL(n) = GL(n, R) allgemeine lineare Gruppe
iber R

Oo(n) orthogonale Gruppe

O*(n) eigentlich orthogonale Gruppe
U(n) unitire Gruppe

SU(n) eigentlich unitire Gruppe

SL(n, K) komplexe spezielle lineare Gruppe
SL(n) = SL(n, R) reelle spezielle lineare

Gruppe
L, Lorentzgruppe
L} eigentliche Lorentzgruppe
Permutationsgruppen
G, symmetrische Gruppe der Ordnung n!
A,y alternierende Gruppe
Bewegungsgruppen
B, Bewegungsgruppe des E3
B‘; eigentliche Bewegungsgruppe
B < ®B; beliebige Bewegungsgruppe
D3 (vollstindige) Drehgruppe
D% eigentliche Drehgruppe
D <D, Dbeliebige Drehgruppe
T Translationsgruppe des E3
2 =%, beliebige Translationsgruppe
B/T Faktorgruppe von %8 nach £
Pt Normalteiler aus den eigentlichen

Drehungen einer Punktgruppe 2. Art
P = P* v P~ Nebenklassenzerlegung der
Punktgruppe 2. Art nach P*
G Raumgruppe eines Kristalls
Go Punktgruppe eines Kristalls

Punktsymmetriegruppen 1. Art

G,

D, Diedergruppe

T Tetraedergruppe

o Oktaedergruppe

Y Ikosaedergruppe

C, unendliche Punktsymmetriegruppen
D, unendliche Punktsymmetriegruppen

Punktsymmetriegruppen 2. Art

S, =<{S»
Con = {Ca, 0n)
Cw = <Gy, 05y

D, = <Gy, C3, 00>
D,q = Gy, C3, 04
T, =T x C;
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Symbolverzeichnis

Ty volle Tetraedergruppe

Oy volle Oktaedergruppe

Y, volle Tkosaedergruppe

Con }

C,n ¢ unendliche Punktsymmetriegruppen

D,

C =<0y

Cy =Cp

C, =<E)

Darstellungen

#: G — R, n-dim. Matrizendarstellung der
Gruppe G

Zo: G — [E] Einsdarstellung

A(A) e R" Darstellungsmatrix

R, Darstellungsgruppe

72:G > 5}, reguldre Darstellung,
g-dimensional
R(A) Darstellungsmatrix, regulire

Darstellung

#.:G->R,=X"1R, X

zu 4 dquivalente Darstellung
AAA) = X1 R(A)- X

zu #(A) dhnliche Darstellungsmatrix
(%) Klasse dquivalenter Darstellungen,
Repridsentant #
Aquivalenzklasse dhnlicher Dar-
stellungsmatrizen
RYA) @ #XA) @ ... direkte Summe

(Z(A))

(Blockdiagonalform)

R Teildarstellungen

R, x AR, direktes Produkt der Darstellungen
A1, Ry

Sp #(A) Spur von #(A)

2(A) Charakter von 4

7% = #"(4,) Charakter auf der Klasse (4,)
der A-ten irreduziblen Darstellung

23] symmetrisierte Produktdarstellung

%, physikalische Darstellungen

y ie-, Per ions-, Dar und
Faktorgruppen, Normalteiler zu speziellen Mole-
kiilen oder Kristallen

2,,%;  Translationssymmetriegruppe des
ebenen bzw. raumlichen NaCl-Gitters

C, (Punkt-) Symmetriegruppe des
FCISO-Molekiils

Cs (Punkt-) Symmetriegruppe des

F,SO-Molekiils

C,y (Punkt-) Symmetriegruppe des
H;O-Molekils

Cyy (Punkt-) Symmetriegruppe des
NH;-Molekiils

Cyy (Punkt-) Symmetriegruppe des
SFsCl-Molekiils

Cun (Punkt-) Symmetriegruppe des
H,0,-Molekiils

Cip (Punkt-) Symmetriegruppe des

ebenen Borsdure-Molekiils

Dyy (Punkt-) Symmetriegruppe des
C3H4-Molekiils

Diy, (Punkt-) Symmetriegruppe des
BF;-Molekiils

Dapn (Punkt-) Symmetriegruppe des
XeF4-Molekiils

Den (Punkt-) Symmetriegruppe des
CeHg-Molekiils

D, Drehsymmetriegruppe des
C;H4-Molekiils

C, Drehsymmetriegruppe des
H,0,-Molekiils oder Normalteiler
von D,y

C; Drehsymmetriegruppe und Nor-
malteiler in Cj,

D,4/C,  Faktorgruppe von D,4 nach C,

C;3,/C;  Faktorgruppe von Cj, nach C;

M+ Darstellungsgruppe von D,

M; Darstellungsgruppe von D, 4

Rg Darstellungsgruppe von D,g4, bei
reguldrer Darstellung

M, Darstellungsgruppe von Cs,

Spezielle Bezeichnungen

N neutrales Element
E Einselement
[ Nullelement
12 ...n .
( ) Permutation
Py P2 .- Pn
€ identische Permutation
E Einheitsmatrix
I =-E
100 O
010 0
E=1loo01 o
000 —1
(X)py Element der Zeile u, Spalte » der
Matrix X
{0;e;}  Basis des E* mit Ursprung O und

Basisvektoren e;

H= [”;;"v] = (ny, ny, n3)
Normaleneinheitsvektor)

E — 2H Darstellungsmatrix fiir Spiegelungen

D,, D,, D; Transformationsmatrizen zu den
Eulerschen Winkeln y, 0, ¢
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E,D,D',D", S, S, 2", 2" Darstellungs-
matrizen der Darstellung der Gruppe
D24

E, A, A", 0,6, 0" Darstellungsmatrizen der
Darstellung der Gruppe Cs,

{4 T}  Seitzsymbol

Jj = [G: U] Index der Untergruppe U von G

Ky Klassenmultiplikationskoeffizienten

[[nynzn3]] Millersche Indizes eines Punktes

[mnp] Millersche Indizes einer Richtung
(hkl) Millersche Indizes einer Fliache

Namen- und Sachregister
Abel, N. H. 21

abgeschlossen 14, 18
Achse, bilaterale 53

— einer Gruppe 53ff.

-, einseitige 53

—, Ordnung einer 11

—, Zéhligkeit einer 11

-, zweiseitige 53
Achsenkreuz, kristallographisches 67
Addition 20f., 28
dhnlich 36, 37
Ahnlichkeitsklassen 36
Allen 10
Aquivalenzklassen 37, 87
Aquivalenzrelation 37
Assoziativgesetz 21, 28
ausreduzieren 88
Automorphismus 31, 85

Basis des zugehorigen reziproken Gitters 84
- einer Darstellung 92

- eines Kristalls 64
Bewegungen 10ff., 43fT.
—, eigentliche 43fT.

-, Gruppe eigentlicher 45
-, uneigentliche 43ff.
Bewegungsgruppe 44, 50
-, diskrete 50

—, endliche 50

—, Normalformen der 44
Blockdiagonalform 87fF.
Blockmatrizen 87
Bravais-Gitter 72
Bravais, A. 72

Burnside, W. 89

Cayleysche Strukturtafel 28
Charakter einer Darstellung 891.
Charaktertafel 90, 91
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Physikalische GroBien
H(p,x) Hamiltonfunktion

Hamiltonoperator
h Plancksches Wirkungsquantum
E Energie eines physikalischen Systems
V(x) Potential

Volumen des physikalischen Systems
nl,m Quantenzahlen der Elektronen-

zustdnde im Atom
s, p, d, f, & h Drehimpulswerte der Elektronen
im Atom

Darstellung 85fF.

—, Basis einer 92

—, Charakter einer 89ff.

-, identische 85

—, irreduzible 88ff.

—, orthogonale 85ff.

—, reduzible 88

—, reelle 85fT.

—, regulire 86

-, totale 102

-, treue 85fF.

—, unitdre 85fF.

—, vollreduzible 88

—, zerfillbare 88

Darstellungen, dquivalente 87ff.

Darstellungsmatrix 85ff.

Darstellungsmatrizen, dhnliche bzw. dquiva-
lente 87

Deckabbildung 11ff.

Diedergruppen 54

dihedral 13

direkte Summe 88

direktes Produkt 41, 49, 58, 60, 61, 91

Distributivgesetz 22

Doppelprisma, n-seitiges 60

Drehanteil 43, 45, 47

Drehgruppe, eigentliche 45

—, Parameterdarstellung der eigentlichen 46

—, vollstandige 47

Drehimpulsquantenzahl 97

Drehspiegelung 12, 45, 49

Drehspiegelsymmetrie 11

Drehspiegelsymmetrieoperation 12ff.

Drehsymmetrie 10

Drehsymmetrieachse 11

Drehsymmetriegruppe 32, 47, 54ff.

Drehsymmetrieoperation 11

Drehung 45fF.
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Drehungen, konjugierte 47, 54fT. Gruppe, symmetrische 26, 40
Dreiersymbol 66 —, unendliche 21

-, unitére 23
Eigenwertgleichung 95 -, vollstindig reduzible 41
Einheitstranslation 17 -, vollstindige orthogonale 23
Einsdarstellung 85, 91 -, von A erzeugte 35
Einselement 20, 27, 28 — — Primzahlordnung 35
Elektronenterme im Kristallfeld 97 -, zyklische 35, 53, 57, 58
Element, entgegengesetztes 21ff. Gruppen C, 53
-, erzeugendes 35 - Cy 58
-, inverses 20ff., 28 - Cy 59
—, neutrales 21 - G 58
—, primitives 35 - Cppn 61
— von endlicher Ordnung 35 - Cpy 61
— — unendlicher Ordnung 35 - D, 54
Elementarzelle 18, 65 ~ D,q 60
—, symmetrische 65 - Dy 59
—, Typ der 76 — Dgy 61
Energieniveaus, Aufspaltung des 95 -0 56
entarteter Zustand 95 - 0y 61
Entartungsgrad 95 - S, 57
Erzeugendensystem 36 -T55
—, minimales 55, 581F. - Tq 61
Eulersche Winkel 46 - Ty 60

- Y56
Faktor 14, 27 -Y, 61
Faktorgruppe 40, 50 Gruppenaxiome 21
Fixpunkt 12, 17, 18 Gruppenstruktur 20ff., 30
Flichenpol 69 —, abelsche 29
Form, reine oder einfache 81 Gruppentafel 28, 86
Funktion 89

Hamilton, W. R. 94
Ganzfléchner 81 Hamiltonfunktion 94
Gitter, kubisch allseitig flichenzentriertes 17 Hamiltonoperator 94
Gitterbedingung 68 harmonische Schwingungen 102
Gitters, Basis des zugehdrigen reziproken 84 Hauptdrehachse 12ff., 54,59
Gleichungen, Auflésung von 27, 28 Hauptquantenzahl 97
Gleitspiegelung 45, 79 Hemieder 81
Gruppe 21 Hintereinanderausfithrung 14, 18, 20, 44
-, abelsche 21, 22, 33 Holoeder 81
-, abstrakte 30, 36, 53, 54, 57ff. Holoedrie 75
-, Achse einer 53fT. Homomorphismus 31, 85
—, additiv geschriebene 20ff., 28 -, trivialer 85
—, allgemeine lineare 23, 32, 85
-, alternierende 27, 40 Identitat 11, 13, 20
— der Seitz-Symbole 44 Tkosaedergruppe 56
—, eigentlich orthogonale 23, 32, 45 -, volle 61
-, — unitire 24 Index 33, 38
- eigentlicher Bewegungen 45 Invarianz des Skalarproduktes 44
—, einfache 40 Inversion 16fF., 26, 48, 57
—, endliche 21 Inversionszentrum 16fF., 48
—, freie zyklische 35 Involution 16
—, kommutative 21fF. irreduzible Bestandteile 88
—, multiplikativ geschriebene 20ff., 27 isomorph 29, 45, 47, 50, 57, 59
—, Ordnung einer 21 Isomorphie 29, 35
—, orthogonale 23, 32 Isomorphieklasse 30, 35

—, spezielle lineare 24, 32 Isomorphismus 31, 85
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Kalkiil 30
Kerngeriist 9
Klasse dquivalenter Darstellungen 87
— konjugierter Drehungen 47, 49
— — Elemente 37, 53fF., 88ff.
—, Ordnung einer 38
Klassenfunktion 89
Klassenmultiplikationskoeffizienten 39, 89ff.
Klassenzahl 53fF.
Klassifizierung der Molekiilschwingungen 102
Kleinsche Vierergruppe V 29, 54
Knotenlinie 46
Kommutativgesetz 21, 29
Komplex 31
-, konjugierter 39
Komplexprodukt 31
Komplexsumme 31
konjugiert 37, 39
Korper 22

" Kristallfeld, Elektronenterme im 97
Kristallform, einfache 67
Kristallklassen 75
kristallographisches Achsenkreuz 67
Kristalls, Basis eines 64
-, Symmetrielagen des 68
Kristallsystem 75
Kroneckersches Produkt 91

Lagrange, J. L. 33
Linksnebenklasse 34, 40, 45
Linksreprasentanten 34
Lorentzgruppe 42
Lorentzmatrix 42

magnetische Quantenzahl 97

Matrix, eigentlich orthogonale 23

-, — unitire 24

-, konjugiert komplexe 23

—, orthogonale 23

-, reguldre 23

-, transponierte 23

-, unitare 23

Matrixelement 98

Matrixelemente, Auswahlregeln fiir 98
Matrizendarstellung, n-dimensionale 85
Matrizengruppe 23, 88

-, lineare 23, 48

Methanmolekiils, Schwingungszustinde des 105
Miller, W. H. 67

Millersche Indizes 67

minimales Erzeugendensystem 55, 581T.
Modul 21ff.

Molekiilschwingungen, Klassifizierung der 102
Multiplikation 20ff.

- von Seitz-Symbolen 44

multiplikativ geschriebene Gruppe 20ff.

115

n-Eck, regelmaBiges 54, 59
n-seitiges Prisma 60
Natriumchloridgitter 17
Nebenklassenzerlegung 34
Netzebene 66

Neumann, J. v. 8
Neumannsches Prinzip 8
Normalformen der Bewegungsgruppe 44
Normalisator 38
Normalkoordinaten 102
Normalteiler 40, 45, 57

-, abelscher 50

-, trivialer 40

Nullelement 20ff.
Nullvektor 18
Nutationswinkel 46

Oktaedergruppe 56

-, volle 61

Ordnung des direkten Produktes 41
— einer Achse 11

— — Gruppe 21

- - Klasse 38

— — Untergruppe 33

-, endliche 35

-, Gruppe unendlicher 21

-, unendliche 35

Parameterdarstellung der eigentlichen Dreh-
gruppe 46

— — Spiegelungen 47

Pentagondodekaeder 56

Permutation 24

-, gerade 26

-, identische 25

-, inverse 25

—, ungerade 26

Permutationsgruppe 24

Permutationsprodukt 26

Planck, M. K. E. L. 94

Potenz 27, 35

Potenzgesetze 27

Prizessionswinkel 46

Primzahlordnung, Gruppe von 35

Prisma, n-seitiges 60

Produkt 14, 20,27

-, direktes 41, 49, 58, 60, 61, 91

—, Kroneckersches 91

Produktes, Ordnung des direkten 41

Produkttafel 14fF., 28

Projektion, stereographische 69
Punkt, Spiegelung am 16
Punktgruppe 52fF.

- erster Art 52ff.

- zweiter Art 52fF.
Punktgruppen, unendliche 56
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Punktsymmetriegruppe 52
-, volle 52

Quantenzahl, magnetische 97
Quantenzahlen 97
Quantisierungsverfahren 94

Raumgitter 65

Raumgruppe 71

— des Diamantenkristalls 79

—, symmorphe 73

Raumgruppen, internationale Symbolik der 80
Rechtsnebenklasse 34, 40, 45
Reduktion 88

Referenzachse 12f.

regelmaBiges n-Eck 54, 59
relationstreue Abbildung 31, 45, 85
Reprisentant 30, 37
Reprisentantensystem 38

Satz von Lagrange 33

SchonflieB, A. 10

SchonflieBsymbolik 11fF.

Schraubung 45

Schraubungsachsen 78

Schrodinger, E. 94
Schrodinger-Gleichung 94
Schwingungen, harmonische 102
Schwingungszustinde des Methanmolekiils 105
Seitz, W. 66

Seitz-Symbol 43 fF.

Seitz-Symbolen, Multiplikation von 44
selbstkonjugiert 38

Skalarproduktes, Invarianz des 44
Spiegelsymmetrie 12
Spiegelsymmetrieelement 13
Spiegelsymmetrieoperation 12, 13
Spiegelung 451F.

— am Punkt 16

Spiegelungen, Parameterdarstellung 47
Spiegelungssymmetrieebenen 13

Spur 89

Stellungsgerade 12

Stereogramm 73

stereographische Projektion 69
Struktur, algebraische 22
Strukturtafel, Cayleysche 28

Summe 20

— direkte 88

Symbolik der Raumgruppen, internationale 80
Symmetrie 9, 37

—, hohere bzw. niedrigere 95
Symmetrieabbildung 11ff.
Symmetrieelement 111, 16

Symmetriegruppe 20

~ eines Systems 71
Symmetrielage 11ff.
Symmetrielagen des Kristalls 68
Symmetriemenge 14, 16
Symmetrieoperation 11ff., 16, 18
—, inverse 15, 18
Symmetriezentrum 17
symmorphe Raumgruppe 73
Systeme von Erzeugenden 36

Teildarstellung 88

Tetraeder 55, 60
Tetraedergruppe 55

—, volle 61

Transformation 37

—, unitire 87
Transformationsmatrix 46, 87ff.
Transitivitit 37

Translation 17, 45, 49

—, nichtprimitive 72

-, primitive 65
Translationsanteil 43 ff.
Translationssymmetrie 17
Translationssymmetrieoperation 18
Translationsvektor 18

Ubergangswahrscheinlichkeiten 98
Untergruppe 32, 50

-, invariante 40

—, Ordnung einer 33

-, triviale 32

-, zyklische 35

Untergruppen, konjugierte 39
Untergruppenkriterium 33
Ursprung 17

Vektoraddition 18
Vektoren, polare 100
Verkniipfung 21fF.
Verschiebungen 102

Wasserstoffperoxid-Molekiil 15
Wigner, E. P. 66
Wigner-Seitz-Zelle 65

Zahligkeit einer Achse 11

Zahlkorper 22

Zentrum 33

Zerlegung in Klassen konjugierter Elemente 36
— von G in einfachen Faktoren 41

Zustand eines physikalischen Systems 94

-, entarteter 95

Zyklendarstellung 25, 27



