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1. Grundbegriffe der Graphentheorie

1.1. Einfiihrende Beispiele

Viele Objekte und Vorgidnge in den verschiedensten Bereichen der Natur und Gesell-
schaft besitzen den Charakter eines Systems, d. h., sie setzen sich aus einer Anzahl von
Bestandteilen, Elementen zusammen, die in gewisser Weise miteinander gekoppelt sind.
Sollen an einem solchen System Untersuchungen durchgefiihrt werden, so wird es oft
zweckmdBig sein, daB wir uns den Gegenstand der Betrachtung zunidchst durch ein gra-
phisches Schema veranschaulichen. Wir werden die Systemelemente etwa durch Punkte,
Kistchen, technische Symbole u. 4. darstellen und die Kopplungen durch Verbindungsli-
nien zwischen den entsprechenden Elementen zum Ausdruck bringen. Auf diese Weise
wird deutlich sichtbar, welche Struktur das System besitzt, d. h., welche Bestandteile es
enthilt und in welcher Weise diese miteinander in Beziehung stehen. Ein solches graphi-
sches Schema wird uns helfen, Struktureigenschaften des Systems zu untersuchen, etwa
die Frage zu kldren, welche Konsequenzen die Zerstorung einer bestimmten Kopplung
hat, welches die kiirzeste Verbindung zwischen zwei gegebenen Elementen ist usw....

1 2 F\\yi
b) 0)
Bild 1.1. Technologisches Schema einer Chemieanlage

Wir wollen jetzt einige Beispiele fiir derartige Schematu betrachten. Im Bild 1.1a ist das Blockdia-
gramm eines (fiktiven) chemisch-technologischen Prozesses dargestellt. Die Elemente sind in diesem
Fall bestimmte technische Apparate (Reaktoren, Wirmetibertrager, Stofftrennanlagen usw.), und ihre
Kopplung wird durch Rohrleitungen realisiert. Wenn wir uns lediglich fiir die Struktur des Systems,
d.h. fiir die Art der Zusammenschaltung interessieren, so konnen wir von der konkreten technischen
Bedeutung der Elemente absehen und das Schema zur Form des Bildes 1.1b vereinfachen.

Das Bild 1.1b stellt den sogenannten Graphen des betrachteten Systems dar. Er besteht aus acht
Knotenpunkten (den Systemelementen entsprechend) und zwolf gerichteten Verbindungslinien (den
Kopplungen der Elemente entsprechend), die als Bogen bezeichnet werden. (Eine ungerichtete Ver-
bindungslinie nennt man dagegen eine Kante.) Die Verbindungslinien haben wir mit einem Rich-
tungssinn versehen. Das ist im vorliegenden Beispiel offenbar zweckmiBig, denn die Kopplung
zweier Elemente ist hier nicht symmetrisch (z. B. flieBt der Rohstoffstrom von Knotenpunkt 1 zum
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Knotenpunkt 2, und nicht umgekehrt). Es leuchtet ein, daB es fiir einen gegebenen Graphen ver-
schiedene Moglichkeiten der zeichnerischen Darstellung gibt. Wir miissen lediglich darauf achten,
daB die Verbindungen zwischen den Knotenpunkten richtig wiedergegeben sind. So stellt Bild 1.1c
denselben Graphen dar wie Bild 1.1b, denn die kombinatorische Struktur stimmt in beiden Sche-
mata iiberein.

Mit Hilfe des Graphen kénnen wir nun Eigenschaften der Systemstruktur untersuchen. Beispiels-
weise erkennt man am Bild 1.1 deutlich die im technologischen ProzeB vorhandenen drei Riickkopp-
lungsschleifen des Materialstromes, sie sind durch die Knotenpunktfolgen (3, 4, 8, 3), (3, 4, 5, 3) und
(4, S, 4) gegeben. Eine andere Struktureigenschaft, die man sofort sieht, ist z. B. folgende: Streicht
man den Bogen (2, 3), so geht der ,Zusammenhang“ des Graphen verloren (eine Havarie in dieser
Rohrleitung unterbricht den ProduktionsprozeB!). Loschen wir dagegen die Verbindung (8, 3), so ist
dies nicht der Fall (die Produktion kann in einem gewissen Umfang aufrechterhalten werden).

Beginn
<l

Erdarberten (bau-
¥rm, Graben fir
ot leitungen )

Anlegen der
Baustrale

Antransport der Gielen der Verlegen der
erti 1 Fundamente Rohrleitungen
Montage der
Bauteile 4

Bild 1.2. Ablaufplan fiir den ProzeB ,Bau eines Hauses®

Betrachten wir ein zweites Beispiel: Bild 1.2a zeigt den (stark vereinfachten) Ablaufplan fiir den
ProzeB ,Bau eines Hauses“. Die Elemente des Schemas sind diesmal Teilvorginge (,Aktivititen®)
eines in der Zeit ablaufenden Gesamtprozesses. Ein Verbindungspfeil von der Aktivitit i zur Aktivi-
tit j wurde dann gezeichnet, wenn mit der Abarbeitung von j erst begonnen werden kann, nachdem i
abgeschlossen ist (enden mehrere Pfeile in j, so miissen alle ,Vorgidnger“-Aktivititen beendet sein,
ehe der Teilvorgang j beginnen kann!).

Auch hier konnen wir zur vereinfachten Form, Bild 1.2b, ibergehen, wenn es uns lediglich um
eine Untersuchung der Struktur des Prozesses zu tun ist. Die Verbindungslinien des so entstehenden
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Graphen sind wieder gerichtet (sie sind also Bogen), denn die Reihenfolge der jeweils verbundenen
Knotenpunkte (d. h. die zeitliche Aufeinanderfolge der zugehdrigen Teilvorgiinge) ist ja fiir die Be-
schreibung des Prozesses wesentlich. Wieder gibt es viele dquivalente zeichnerische Darstellungen
des Graphen. So stellt Bild 1.2 ¢ denselben Graphen dar wie Bild 1.2b, denn die Relationen zwischen
den Knotenpunkten stimmen in beiden Schemata iiberein.

Die Untersuchung von Ablaufplidnen dieser Art bildet ein praktisch sehr wichtiges Anwendungsge-
biet der Graphentheorie. Wir werden spiter unter dem Stichwort ,Netzplantechnik“ darauf zuriick-

)

Bild 1.3. StraBennetz

Als drittes Beispiel stellt Bild 1.3a den Ausschnitt eines Stadtplanes dar. Das StraBennetz a8t
Kreuzungen und Einmiindungen erkennen, die wir als Elemente des Systems auffassen kénnen. Die
StraBen selbst bilden dann die Verbindungen zwischen den Elementen. EinbahnstraBen sind durch
einen Pfeil gekennzeichnet, die Ubrigen StraBen diirfen in beiden Richtungen befahren werden.

Bei der Umzeichnung des Schemas zu einem Graphen werden wir davon ausgehen, welche Unter-
suchungen mit seiner Hilfe durchgefiihrt werden sollen. Besteht die Aufgabe z.B. darin, alle Wege zu
suchen, auf denen ein FuBginger vom Punkt 4 zum Punkt B gelangen kann, so geniigt die einfache
Form des Bildes 1.3b, in welcher die Verbindungen zwischen den Knotenpunkten ungerichtet darge-
stellt sind. Tatséchlich wire eine Orientierung der Verbindungen nicht sinnvoll, da alle StraBen zu
FuB in beiden Richtungen passiert werden konnen. Anders verhilt es sich, wenn die Bewegung mit-
tels Auto von 4 nach B zu untersuchen ist. Fiir die EinbahnstraBen ist dann eine Richtung ausge-
zeichnet, und diese werden wir den entsprechenden Bogen d Wenn man folgerichtig die in
beiden Richtungen befahrbaren StraBen durch ein Bc darstellt, so ht der Graph des Bil-
des 1.3c.

Wir sehen an diesem Beispiel, daB je nach Art der Fragestellung in manchen Fillen ein ,gerichte-
ter“, in anderen Fillen ein ,ungerichteter“ Graph fir die Untersuchungen zweckmaBig ist.

Der Leser wird nach diesen einfiihrenden Beispielen schon eine Vorstellung von dem
gewonnen haben, was man als einen Graphen bezeichnet. Zwei Mengen bilden seine Be-
standteile: Die Menge der Knotenpunkte (zeichnerisch dargestellt durch Punkte) und die
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Menge der Bigen oder Kanten (zeichnerisch dargestellt durch gerichtete bzw. ungerich-
tete Verbindungslinien); jedem Bogen und jeder Kante entspricht eindeutig ein geordne-
tes bzw. ungeordnetes Paar von Knotenpunkten. Es leuchtet ein, daB Graphen sehr gut ge-
eignet sind, um die Struktur von Systemen zu beschreiben. Indem wir ein reales System
durch einen Graphen abbilden, abstrahieren wir von der konkreten Bedeutung und den
inneren Eigenschaften der Systemelemente. Durch den Graphen wird lediglich die Art
der Verkniipfung dieser Elemente, eben die Systemstruktur, erfaBt. Ein Gegenstand der
Graphentheorie ist es nun, die derartigen Strukturen innewohnenden GesetzmiBigkeiten
zu erforschen und Verfahren zur Durchfiihrung von Strukturuntersuchungen zu entwik-
keln. Es ist kein Zufall, daB die Graphentheorie in den letzten Jahren eine starke Ent-
wicklung genommen hat. Die zunehmende Komplexitdt der gesellschaftlichen und tech-
nologischen Prozesse und das Streben nach einer moglichst effektiven Gestaltung dieser
Prozesse erfordern die Verwendung entsprechend umfassender mathematischer Modelle.
Wenn anhand komplexer Modelle nach giinstigen Losungsvarianten gesucht wird, so ge-
horen dazu auch Fragen der optimalen Ausnutzung vorhandener ProzeBstrukturen und
der Synthese optimaler Konfigurationen fiir neu aufzubauende Prozesse. Dies sind Pro-
bleme, die graphentheoretische Untersuchungen herausfordern. Zweifellos wird die prak-
tische Bedeutung der Graphentheorie in den kommenden Jahren weiter ansteigen. In
dem MabBe, wie sich auch Nichtmathematiker mit ihren Begriffen, Untersuchungsmetho-
den und theoretischen Ergebnissen bekannt machen, werden sich viele neue Anwen-
dungsmoglichkeiten zeigen. Andererseits werden praktische Fragestellungen AnstoBe
zum weiteren Ausbau der Theorie geben.

In den folgenden Abschnitten wird eine Einfiihrung in die Theorie der endlichen Gra-
phen gegeben. Wir werden uns dabei um eine moglichst anschauliche Darstellungsweise
bemiithen und den Gesichtspunkt der Anwendung in den Vordergrund stellen. Diesem
Konzept entspricht es, wenn Beweisfiihrungen nur in geringem Umfang aufgenommen
werden. Vorwiegend werden gerichtete Graphen behandelt, da diesen in den Anwendun-
gen wohl die groBere Bedeutung zukommt. Im iibrigen lassen sich viele Ergebnisse unge-
andert oder in leicht erkennbarer Modifikation auch auf ungerichtete Graphen anwenden.

Im Abschnitt 1. dieser Einfiihrung werden wichtige Grundbegriffe und Sitze zusam-
mengestellt. Der zweite Abschnitt behandelt Moglichkeiten, Graphen durch Matrizen zu
beschreiben. In den Abschnitten 3. bis 5. wird dann eine Reihe von ,Standardproblemen*
der Graphentheorie besprochen, denen aktuelle praktische Aufgabenstellungen entspre-
chen. SchlieBlich behandelt Abschnitt 6. einige Fragen des Aufwandes bei der rechen-
technischen Realisierung graphentheoretischer Algorithmen.

1.2. Ungerichtete und gerichtete Graphen

Wie durch die Beispiele des Abschnittes 1.1. nahegelegt wurde, definieren wir einen
Graphen als Zusammenfassung zweier Mengen:

Definition 1.1: Ein Graph G besteht aus einer Menge X (deren Elemente Knotenpunkte ge-
nannt werden) und einer Menge U, wobei jedem Element u € U in eindeutiger Weise ein geordne-
tes oder ungeordnetes Paar von (nicht notwendig verschiedenen) Knotenpunkten x, y € X zuge-
ordnet ist.

Ist jedem u € U ein geordnetes Paar von Knotenpunkten zugeordnet, so heif3t der Graph ge-
richtet, und wir schreiben

G=(X, U).

Die Elemente von U werden in diesem Fall als Bogen bezeichnet.

D. 1.1
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Ist jedem u € U ein ungeordnetes Paar von Knotenpunkten zugeordnet, so heift der Graph un-
gerichtet, und wir schreiben

G=[X, U].

Die Elemente von U bezeichnen wir dann als Kanten.

Wie wir sehen, ist diese Definition an keine geometrische Darstellung gebunden?. Es
liegt aber natiirlich nahe, einen Graphen G dadurch zeichnerisch zu veranschaulichen,
daB wir seine Knotenpunkte durch Punkte, seine Bogen bzw. Kanten durch gerichtete
bzw. ungerichtete Verbindungslinien darstellen, wie wir das in den fritheren Beispielen
schon getan haben. Die so entstehenden Schemata sind also genaugenommen als geome-
trische Bilder eines abstrakten Graphen aufzufassen. Wir werden aber in unserer Darstel-
lungsweise den Graphen mit seinem geometrischen Bild identifizieren.

Die allgemeine Definition 1.1 1468t zu, daB8 den Elementen u eines Graphens teils ge-
richtete, teils ungerichtete Paare von Knotenpunkten zugeordnet sind. Solche gemischten
Graphen werden wir aber im folgenden nicht betrachten.

Wir werden uns weiter auf endliche Graphen beschrinken, das sind solche, bei denen
sowohl die Menge X als auch die Menge U nur je endlich viele Elemente umfaBt (die An-
zahl der Elemente von X bzw. U werden wir mit |X| bzw. |U| bezeichnen).

In Ergdnzung zur Definition 1.1 fiihren wir nun noch einige Bezeichnungen ein, die im
Zusammenhang mit Graphen iiblich sind.

— Die einem Element u € U zugeordneten Knotenpunkte x, y heilen Endpunkte von u.

— Ist x=y, so wird der betreffende Bogen (bzw. die Kante) « als Schlinge bezeichnet,
vgl. Bild 1.4.

— Zwei Knotenpunkte x, y heilen adjazent (oder benachbart), wenn sie Endpunkte ein
und desselben Elementes u € U sind. Ist insbesondere u ein von x nach y fithrender
Bogen, so wird x als ,Vorgéinger von y“, und y als ,Nachfolger von x“ bezeichnet.
Zwei Elemente u, ve U heien adjazent, wenn sie einen Endpunkt gemeinsam haben.

Tabelle 1.1: Weitere Beispiele fiir Systeme und Prozesse, deren Struktur durch
einen Graphen beschrieben werden kann

System/Prozef8 Knotenpunkte Bogen bzw. Kanten
Wasserleitungsnetz Zapfstellen, Rohrleitungen
Vorratstanks
Versorgungssystem * Erzeuger und Transportwege
Verbraucher
Leitungssystem Direktionen, Informationswege
eines Kombinates Abteilungen
Strukturformel Atome Chemische Bindungen
eines chemischen
Stoffes
Elektrische Spannungsquellen, Stromwege
Schaltung Widerstande,
Schalter, ...

U Im Sinne der Algebra ist G ein algebraisches System, bestehend aus einer (nichtleeren) Menge
X und einer auf X erklirten biniren Relation U. Die Graphentheorie befaBt sich dann mit der Unter-
suchung struktureller Eigenschaften von G in Abhingigkeit von der Art der Relation U. Man kann
die Graphentheorie deshalb auch als eine Teildisziplin der Algebra auffassen und ,rein algebraisch®
ohne Verwendung geometrischer Anschauungshilfen entwickeln.
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- Ein Bogen (bzw. eine Kante) v heit mit dem Knotenpunkt x inzident, wenn x ein
Endpunkt von u ist. Falls u ein Bogen ist, der bei x beginnt und bei y endet, so nennt
man u ,mit x nach auBen inzident* und ,mit y nach innen inzident®, vgl. Bild 1.4.

— Ist Ac X eine Teilmenge der Knotenpunktmenge von G, so heifit ein Element ue U
mit 4 inzident, wenn einer der Endpunkte zu 4 gehort, der andere nicht. Die Menge
aller mit A inzidenten Bogen wird mit w(A4) bezeichnet. Handelt es sich speziell um
einen gerichteten Graphen, so bedeutet w *(4) die Menge aller mit 4 nach auBen inzi-
denten (d.h. aus A herausfithrenden) Bogen, o (4) die Menge der mit 4 nach innen
inzidenten (d.h. nach A hineinfithrenden) Bogen. Es gilt dann

w(A)=w'(A) U w (A). (1.1).

Im besonderen kann die Menge 4 auch nur aus einem einzigen Knotenpunkt x beste-
hen. Dann heiBt die Anzahl der mit x inzidenten Bogen |w (x)| die Valenz von x
(Schlingen werden dabei doppelt gezihlt).

Schlingen Inzidenz eines 3ogens u

O O TS

Mehrfachkanten Parallele Bﬂ"gen”
1

V-7

Bild 1.4. Kanten und Bogen

In, der Definition 1.1 wird nicht ausgeschlossen, daB3 verschiedenen Elementen von U
(etwa u, und u,) dasselbe Paar x, y von Knotenpunkten zugeordnet ist. Handelt es sich bei
u, und u, um Kanten mit denselben Endpunkten, so spricht man von mehrfachen Kan-
ten. Sind u, und u, Bogen, die beide von x nach y fiihren, so heifen sie parallele Bogen,
vgl. Bild 1.4. (Parallele Bogen liegen aber nicht vor, wenn x # y ist und u; von x nach y,
dagegen u, von y nach x fuhrt!)

Ein Graph, der weder Schlingen noch mehrfache Kanten (bzw. parallele Bogen) enthilt,
wird als schlichter Graph bezeichnet. In einem schlichten Graphen ist demnach die Zu-
ordnung von Elementen u€ U und den ihnen entsprechenden Knotenpunktpaaren x,
ye€ X eineindeutig. Wir konnen deshalb in diesem Fall die Elemente v einfach durch An-
gabe des Paares ihrer Endpunkte beschreiben. Ist u eine Kante, die x und y verbindet, so
schreiben wir unter Verwendung eckiger Klammern

u=[x,y] oder u=][y, x].

Ist dagegen u ein von x nach y gerichteter Bogen, so verwenden wir runde Klammern und
schreiben!)

u=(x, y).

!) Die Schreibweise ist in der Literatur nicht einheitlich. Andere Autoren bezeichnen gerade um-
gekehrt mit () die Kanten und mit [ ] die Bogen.
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Wenn also im folgenden diese Schreibweise verwendet wird, so ist stets x + y vorausge-
setzt, und es handelt sich um einen schlichten Graphen, auch wenn dies nicht ausdriick-
lich vermerkt wird.

Es sei noch darauf hingewiesen, daB in praktischen Anwendungen auftretende Schlin-
gen, Mehrfachkanten oder parallele Bogen ggf. durch Einfiigen fiktiver Knotenpunkte
leicht beseitigt werden konnen. Die Beschrinkung bestimmter Algorithmen auf schlichte
Graphen stellt deshalb praktisch keine Einschrinkung ihres Anwendungsbereiches dar.

Bei vielen Uberlegungen ist es notwendig, aus G durch Streichen eines Teiles der Kno-
tenpunkte oder Bogen bzw. Kanten einen anderen Graphen G’ herzustellen. In Hinblick
hierauf fithren wir jetzt noch folgende Bezeichnungen ein:

Definition 1.2: G’ = (X', U’) heift ein Untergraph von G = (X, U), wenn X' S X und U' € U
gilt. G*= (X* U*) heift der von X* erzeugte (aufgespannte) Untergraph von G, wenn X*c X
gilt, und U* genau alle die Elemente von U enthilt, die in G Knotenpunkte der Menge X* verbin-
den.

Bei ungerichteten Graphen sind die Bezeichnungen analog.

Ist beispielsweise X die Menge aller Stiidte, U die Menge aller Bahnlinien (zwischen Nachbar-
bahnhofen) innerhalb der DDR, dann stellt G=[X, U] das Eisenbahnnetz der DDR dar. Zeichnet
man in einer Landkarte nur die elektrifizierten Linien ein, so entsteht ein Untergraph von G. (Bahn-
hofen, die an keiner elektrifizierten Strecke liegen, entsprechen dabei ,isolierte Knotenpunkte“.) Die
Karte der Reichsbahndirektion Halle ist der von der Menge der zugehorigen Bahnhofe erzeugte Un-
tergraph von G.

Wir fiihren noch Bezeichnungen fiir einige durch eine spezielle Struktur ausgezeich-
nete Graphen ein. G = (X, U) sei ein schlichter gerichteter Graph. Er heiit dann
— symmetrisch, wenn gilt:
(x,)eU—=( x)el,
d. h., wenn adjazente Knotenpunkte stets in beiden Richtungen verbunden sind,
- antisymmetrisch, wenn gilt:
(x,y)eU—( x)&U,
d.h., wenn adjazente Knotenpunkte stets nur in einer Richtung verbunden sind,
— vollstandig, wenn gilt:
(x,»)eU—=(y, x)el,

d. h., wenn jedes‘Paar von Knotenpunkten mindestens in einer Richtung verbunden ist.
Der Begriff der Vollstindigkeit wird auch bei schlichten ungerichteten Graphen verwen-
det. Er verlangt fiir diese, daB je zwei verschiedene Knotenpunkte durch eine Kante ver-
bunden sind.

Beispiel 1.1: Wir betrachten den in Bild 1.5 gezeichneten schlichten Graphen G = (X, U) mit
X={a, b, c,d}, U={u,, ..., ug}. G ist weder symmetrisch (z.B. ist kein Bogen von b nach a vorhan-
den), noch antisymmetrisch (die Knotenpunkte a, ¢ sind in beiden Richtungen verbunden), noch
vollstindig (es gibt keinen Bogen zwischen a und d). Der von X*= {b, ¢, d} erzeugte Untergraph
G*= (X* U* mit U*= {uy, us, ue} ist dagegen antisymmetrisch und vollstindig. Als Mengen mit X*
nach auen bzw. nach innen inzidenter Bogen erkennen wir:

0 (XN = {us}, 0 (X*) = {uy, ur}.
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Planar wird ein Graph dann genannt, wenn er in einer Ebene so gezeichnet werden
kann, daB sich keine Bogen bzw. Kanten iiberschneiden. So ist der in Bild 1.5 gezeigte
Graph planar. Aber auch Bild 1.2¢ stellt einen planaren Graphen dar, denn er kann ja
kreuzungsfrei gezeichnet werden, wie aus Bild 1.2b ersichtlich ist.

Auf die besonderen Eigenschaften planarer Graphen konnen wir im vorliegenden Buch nicht né-
her eingehen (vgl. hierzu etwa [1], [2], [11]). Wir weisen nur darauf hin, daB praktische Anwendungen
dieser Klasse von Graphen z.B. im Zusammenhang mit der Herstellung gedruckter Schaltungen auf-
treten. Eine theoretische Fragestellung aus dem Bereich der planaren Graphen ist das sogenannte
Vierfarbenproblem. Man versteht darunter die Frage, ob vier Farben ausreichen, um die Gebiete je-
des eine mogliche Landkarte darstellenden ,ebenen“ Graphen (die Linder jeder politischen Land-
karte) so zu firben, daB je zwei Gebiete, die eine Randkante gemeinsam haben, verschiedenen Far-
ben erhalten.

Bild 1.5. Zu Beispiel 1.1

1.3. Folgen adjazenter Kanten und Bégen

Wenn wir die Struktureigenschaften eines realen Systems anhand seines Graphen un-
tersuchen, dann werden oft Fragen folgender Art auftreten: Ist es maglich, von einem gege-
benen Knotenpunkt a iiber eine Folge zusammenhdngender Kanten oder Bogen zu einem ande-
ren gegeb. K ipunkt b zu gel (ist b von a aus ,erreichbar”), welche ist bei mehreren
Moglichkeiten die kiirzeste Verbindung zwischen a und b, usw. Wir wollen deshalb einige
wichtige Begriffe definieren, die zur graphentheoretischen Formulierung und Behandlung
derartiger Fragen geeignet sind.

Definition 1.3: G = [X, U] sei ein ungerichteter Graph. Als Kantenfolge wird jede Folge
w= Uy, Uy, e, W) 1.2)

von Elementen aus U bezeichnet, in der fiir i =2, 3, ..., k — 1 gilt, daf u; einen Endpunkt mit
u;_,, den anderen mit u;., gemeinsam hat. k heif$t dann die Lange /(1) der Kantenfolge u.
Ein Kantenzug (einfache Kantenfolge) liegt vor, wenn in u keine Kante mehrmals vorkommt.
Ein Weg (elementare Kantenfolge) ist ein Kantenzug, der keinen Knotenpunkt mehrmals ent-
halt.

Wenn G ein schlichter Graph ist, so kann g auch durch die Folge der Knotenpunkte
eindeutig charakterisiert werden:
w= (X0, X1, ny Xg)- (1.3)

Eine Kantenfolge heiBt offen, wenn x, + x; , geschlossen, wenn x, = x; gilt. Ein geschlos-
sener Kantenzug wird auch als Kreis bezeichnet.

D. 1.3
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Ein Kantenzug, der jede Kante von G genau einmal enthilt, heiBt eine Eulersche Linie
des betr. Graphen. Wenn in G eine geschlossene Eulersche Linie existiert (bei zusam-
menhidngenden Graphen ist dies genau dann der Fall, wenn jeder Knotenpunkt gerade
Valenz hat), so nennt man G einen Eulerschen Graphen. Als Hamiltonsche Linie wird
ein Weg bezeichnet, der jeden Knotenpunkt von G genau einmal enthilt.

Beispiel 1.2: Im Bild 1.6 (die Kanten sind einfach durch Zahlen bezeichnet) stellt ¥ = (1, 3, 2, 1, 5)
eine die Knotenpunkte x; und x; verbindende Kantenfolge der Linge 5 dar. Sie ist kein Kantenzug,
da die Kante 1 zweimal vorkommt. u® = (5, 4, 8, 6, 2, 1, 3, 7) ist eine offene Eulersche Linie (eine
geschlossene existiert nicht). u® = (1, 4, 8, 6, 2) ist ein Hamiltonscher Kreis.

X 7 X
2

X, 3 “ls
1

X, 5 X3

Bild 1.6. Zu Beispiel 1.2

Die nichste Definition stellt analoge Begriffsbildungen fiir gerichtete Graphen zusam-
men.

Definition 1.4: Es sei G = (X, U) ein gerichteter Graph. Eine Folge von Bigen aus U
w=(uy, Uy, ..., Uy) (1.4)

heifit Kette, wenn fiiri =2, 3, ..., k — 1 gilt, daf3 u; einen Endpunkt mit u;_,, den anderen mit
u;., gemeinsam hat. k = 1(u) ist die Léange von u. Als eine Bahn wird y dann bezeichnet,
wenn der Endknotenpunkt von u; gleich dem Anfangspunkt des Folgeb Ui.q ISt
(i=1,2, ..., k—1), d h., wenn beim Durchlaufen der Folge alle beteiligten Bigen im Sinne
ihrer Orientierung durchlaufen werden. Kommt in u kein Bogen mehrfach vor, so heift die Kette
bzw. Bahn einfach. Eine einfache Kette, die geschlossen ist, wird als Zyklus bezeichnet. Eine
einfache geschlossene Bahn (bei der also der Endpunkt von u; mit dem Anfangspunkt von u, zu-
sammenfallt) heif3t ein Kreis. Schliefilich heifit u elementar, wenn kein Knotenpunkt mehrfach
enthalten ist.

X7

7,

Xo

Bild 1.7. Zu Beispiel 1.3

Beispiel 1.3: Wir demonstrieren diese Begriffe an dem in Bild 1.7 dargestellten Graphen: Die Bogen-
folge uV = (2, 3, 4, 5, 8) z.B. stellt eine einfache Kette der Linge 5 dar, die x, mit x4 verbindet. Sie
ist nicht elementar, denn der Knotenpunkt xs wird zweimal durchlaufen. u® = (4, 5, 8, 9, 3) ist ein
nichtelementarer Zyklus, dagegen ist der Zyklus u® = (4, 5, 3) elementar. Bei 4 = (2, 3, 4, 6) han-
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delt es sich um eine elementare Bahn der Linge 4, die von x, nach x, fiihrt. Der Graph enthilt vier
verschiedene Elementarkreise, nimlich

HO=@8,9; w9=2,810; p?=(@2,3,1; u®=(Q11,13).

Auch 4 = (2, 8,9, 3, 1) stellt einen Kreis dar, der aber nicht elementar ist, da x5 zweimal durchlau-
fen wird.

Einfache Ketten und Bahnen, insbesondere also Zyklen und Kreise, lassen sich auf fol-
gende Weise durch Vektoren darstellen. G = (X, U) mit U= {u,, u,, ..., u,} sei gegeben,
d.h., die Bogen seien durchnumeriert. Wenn wir jeder einfachen Kette

u=(u u, ... 4y) (1.5)

den durch die Aufeinanderfolge der Bégen von links nach rechts festgelegten Durchlauf-
sinn zuordnen, dann kdnnen wir die an u beteiligten Bogen in zwei Teilmengen zerlegen.
Es sei u* die Menge der im Durchlaufsinn gerichteten, x4~ die Menge der entgegen dem
Durchlaufsinn gerichteten Bogen. Wir ordnen nun u einen m-dimensionalen Vektor?)

My

p=| 2] bawe W=, iy s i) (1.6)

Hm
durch folgende Vorschrift zu:

+1,falls y;epn*,
ui=4-1fallsuepu, (1.7)
0 sonst (d. h. falls u; in # nicht vorkommt).

Bei der Vektordarstellung erkennen wir das Vorliegen einer Bahn also daran, daB3 alle
von Null verschiedenen Koordinaten dasselbe Vorzeichen haben. Oft wird die einfache
Kette 4 mit ihrem Vektor g identifiziert. Wenn beispielsweise von einer Summe mehrerer
Zyklen gesprochen wird, so ist die Summe der den Zyklen zugeordneten Vektoren ge-
meint. In diesem Sinne ist auch folgender Satz zu verstehen.

Satz 1.1: Jeder Zyklus p ist darstellbar als Summe von Elementarzyklen, die paarweise keinen
Bogen gemeinsam haben.

Der Beweis ist einfach: Man durchlaufe u, dargestellt in der Form (1.5) beginnend mit
u;. Jedesmal, wenn man zu einem Knotenpunkt zuriickkommt, bildet die dazwischen lie-
gende Teilfolge einen elementaren Zyklus. Je zwei so erhaltene Elementarzyklen konnen
auch keinen Bogen gemeinsam haben, weil 4 eine einfache Kette ist. DaB die Vektor-
summe der Elementarzyklen u ergibt, folgt unmittelbar aus der Vorschrift (1.7).

Auf analoge Weise ist eine Vektordarstellung fiir Kantenziige ¢ in vngerichteten Gra-
phen moglich. Natiirlich ist dann eine Zerlegung von u in Teilmengen x* und g~ nicht
durchfiihrbar, und an die Stelle von (1.7) tritt folgende Vorschrift zur Bildung des Vek-
tors u:

(1.8)

i

_ 1, falls y; € u,
0 sonst.

1) | T“ bezeichnet die Transposition, d. h. den Ubergang von einem Spaltenvektor zu einem Zei-
lenvektor.

S. 1.1
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Satz 1.1 legt folgende Vermutung nahe. Es wird mdglich sein, eine Teilmenge B aus
der Menge der Elementarzyklen eines Graphen G so auszuwihlen, daB mittels der Ele-
mente von B alle Zyklen von G durch Summenbildung darstellbar sind, wihrend keine
echte Teilmenge von B diese Eigenschaft hat. Diese Uberlegungen fiihren zum Begriff der
Zyklenbasis. Um ihn zu formulieren, iibernehmen wir zunichst den aus der linearen Al-
gebra [9] bekannten Begriff der linearen Unabhingigkeit: Die Zyklen p®, u®, ..., u®
eines Graphen heiBen unabhingig, wenn gilt

nu®+nu®+ . +ru®=0—r=0, i=1,..,k (1.9)

Definition 1.5: Eine Menge B = {u®, u@, ..., u®} von Zyklen eines Graphen G = (X, U)
heiBt Zyklenbasis von G, wenn es sich bei den u® (i = 1,2, ..., k) um unabhdngige Elementar-
zyklen handelt und wenn jeder Zyklenvektor u von G mittels reeller Zahlen r; in der Form

k
p=,ru® (1.10)
i=1

darstellbar ist. k = k(G) gibt dann die Di ion der Zyklenbasis an und wird auch zyklo-
matische Zahl des Graphen genannt.

Im allgemeinen gibt es durchaus mehrere Moglichkeiten, fiir G eine Zyklenbasis zu-
sammenzustellen. Eindeutig bestimmt ist aber deren Dimension k(G). Um iiber den Zah-
lenwert von k(G) eine Aussage machen zu kdnnen, benétigen wir noch folgenden Begriff:

Definition 1.6: Es sei G= (X, U) bzw. G=[X, U]. Jede Teilmenge K c X, die aus einem Ele-
ment a€ X und allen weiteren Knotenpunkten besteht, die mit a durch eine elementare Kette
bzw. einen Weg verbunden sind, wird als eine Komponente von G bezeichnet.
Der in Bild 1.7 dargestellte Graph enthilt zwei Komponenten, ndmlich
Ky ={x1, X2, X3, X4, Xs5, X¢}, Ky = {x7, xg, Xg}.
Dagegen besitzen die Graphen der Bilder 1.1 bis 1.3, 1.5, 1.6 nur jeweils eine Komponente, namlich
ihre volle Knotenpunktmenge.

Fiir die Dimension einer Zyklenbasis gilt nun folgender

Satz 1.2: G= (X, U) besitze n Knotenpunkte, m Bogen und p Komponenten. Dann ist
k(G)=m—n+p. 1.11)

Der Beweis dieses wichtigen Satzes wird hier nicht gefiihrt (siehe z.B. [1]). Wir wollen
ihn aber an einem Beispiel erldutern.

Beispiel 1.4: Der in Bild 1.7 gezeigte Graph hat n = 9 Knotenpunkte, m = 13 Bogen und p = 2 Kompo-
nenten. Jede Zyklenbasis besitzt daher die Dimension
k=m-n+p=6.
Beispielsweise sind die Elementarzyklen
u®=(1,2,3), w®=(,38,10)
u®=3,4,5), wu9=(5,6,7,8) (1.12)
u¥=@,9, w®=(1113)

unabhiingig, denn jeder enthilt einen Bogen, der in den iibrigen fiinf nicht vorkommt. Sie bilden des-
halb eine Basis. Eine andere Zyklenbasis erhalten wir, wenn wir in (1.12) #® durch @ = (1,2,5,4)
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ersetzen. Wie der Leser durch Bilden der zugehorigen Vektoren selbst nachpriife, kann z. B. der Zy-
klus = (1,4, 5, 8, 10) mittels der Basis (1.12) folgendermaBen als Linearkombination dargestellt
werden:

u=—pD+p® 4 @,

Im Abschnitt 1.5. werden wir eine Methode kennenlernen, mit der man systematisch Zyklenbasen
bilden kann.

Maoglichkeiten, wie wir sie hier fiir die Darstellung von Zyklen erldutert haben, gibt es
in analoger Weise auch fiir geschlossene Kantenziige in ungerichteten Graphen, die man
dort durch Kreisbasen darstellen kann. Wir gehen darauf nicht niher ein. Uberhaupt wol-
len wir uns von jetzt an im wesentlichen auf die Behandlung gerichteter Graphen be-
schrinken, da diesen in den Anwendungen der Graphentheorie auf praktische Problem-
stellungen, wie wir sie im Auge haben, die groBere Bedeutung zukommt.

1.4. Arten des Zusammenhanges von Graphen

Wenn wir etwa die Bilder 1.5 und 1.7 vergleichen, so liegt es nahe, den ersten dieser
Graphen als ,zusammenhéngend®, den zweiten als nicht zusammenhéngend zu bezeich-
nen. Wir legen diese Eigenschaft jetzt exakt in einer Definition fest.

Definition 1.7: Ein Graph G= (X, U) bzw. G=[X, U] heifit zusammenhingend, wenn je D. 1.7
zwei Knotenpunkte aus X durch eine elementare Kette bzw. einen Weg verbunden sind.

Ein Vergleich mit Definition 1.6 zeigt folgendes: Jeder zusammenhéngende Graph hat
genau eine Komponente. Ist G nicht zusammehidngend, so besitzt G mindestens zwei
Komponenten.

In Hinblick auf praktische Anwendungen ist die Eigenschaft des Zusammenhanges
z.B. dann wichtig, wenn G ein Versorgungsnetz, Verkehrsnetz oder ein System zur Infor-
mationsiibertragung darstellt. Ein Fehlen des Zusammenhanges wiirde dann nédmlich be-
deuten, daB zwischen bestimmten Stellen (Knotenpunkten) des betreffenden Netzes
keine Verbindung moglich ist. Von diesem Gesichtspunkt aus ist offenbar auch die Frage
interessant, welche Konsequenzen es fiir die gegenseitige , Erreichbarkeit der Knoten-
punkte hat, wenn in einem zusammenhingenden Graphen einzelne Elemente weggelas-
sen werden (Ausfall von Knotenpunkten, Bégen oder Kanten von G durch ,Havarie“ in
dem durch G beschriebenen System). Um solche Eigenschaften der ,Verwundbarkeit®
von Graphen beschreiben zu kénnen, fiilhren wir weitere Bezeichnungen ein.

Als Loschung (Streichung) eines Knotenpunktes x € X verstehen wir die Entfernung
von x und allen mit x inzidenten Bogen bzw. Kanten aus G. Der verbleibende Restgraph
wird mit

G'=G- {x} (1.13)
bezeichnet. Loschung eines Bogens bzw. einer Kante u bedeutet entsprechend, daBl wir
das Element u aus U entfernen. Fiir den Restgraphen wird

G'=G-{u} (1.14)

geschrieben. G + {u} bedeutet entsprechend das Hinzufligen eines Bogens u zu G.

Der Knotenpunkt xe X heiit eine Artikulation (Zerfdllungspunkt) von G, wenn
G — {x} mehr Komponenten besitzt als G.

G heiBt p-fach zusammenhingend (beziiglich der Knotenpunkte bzw. der Bogen oder
Kanten), wenn G zusammenhéngend ist und der Zusammenhang erst dann verlorengeht,
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wenn mindestens p Elemente (Knotenpunkte bzw. Bogen oder Kanten) geloscht werden.
Anschaulich ausgedriickt ist ein System um so weniger ,,verwundbar® (storanfillig), je gro-
Ber die Zahl p im zugehdrigen Graphen ist.

Beispiel 1.5: Der Graph G im Bild 1.5 ist zusammenhingend. Er enthilt keine Artikulationen. Sein
Zusammenhang beziiglich der Knotenpunkte ist 2fach, denn Ldschung von b, ¢ ergibt
G'=G-{b,c}=(X,U);, X'={a d}, U=0,

d.h. einen aus zwei Komponenten bestehenden ,Punktgraphen®. Beziiglich der Bogen liegt ebenfalls
ein 2facher Zusammenhang vor (Loschung von u, und us).
Der in Bild 1.1 dargestellte Graph besitzt Artikulationen, ndmlich die Knotenpunkte 2 und 3.

Im Falle von gerichteten Graphen werden noch andere Arten des Zusammenhanges un-
terschieden:

Definition 1.8: G = (X, U) heiBt stark zusammenhingend, wenn je zwei Knotenpunkte x, y
aus X durch eine von x nach y fiihrende ele Bahn verbunden sind.

In einem stark zusammenhidngenden Graphen gibt es also zu je zwei Knotenpunkten a,
b sowohl eine von a nach b fiihrende als auch eine von b nach a fithrende elementare
Bahn. Jeder stark zusammenhéingende Graph ist auch zusammenhéngend, aber nicht um-
gekehrt. Eine entsprechende Modifikation der Definition 1.6 stellt der Begriff der starken
Komponente dar.

Definition 1.9: Jede Teilmenge S < X von Knotenpunkten eines Graphen G = (X, U), die aus
einem Element a € X und allen weiteren Knotenpunkten besteht, die mit a in beiden Richtungen
durch je eine el tare Bahn verbunden sind, heifit eine starke Komponente von G.

Starke Komponenten sind, mit anderen Worten, Knotenpunktmengen, die maximale
stark zusammenhédngende Untergraphen von G aufspannen. Wenn G stark zusammen-
hingend ist, so besitzt der Graph genau eine starke Komponente, namlich §= X. Es ist zu
beachten, daB zusammenhéngende Graphen zwar stets nur eine Komponente im Sinne
der Definition 1.6 haben, im allgemeinen aber durchaus mehrere starke Komponenten
besitzen konnen. So liegen z.B. im Bild 1.1 fiinf starke Komponenten vor, ndmlich

Si={1}; S;={2}; S$={3,4,528}; S,={7}); Ss={6}.

Aus der Sicht des dem Graphen zugrunde liegenden realen Systems umfaBt eine starke
Komponente jeweils alle Systemelemente, die durch Riickkopplungen miteinander ver-
bunden sind. Nehmen wir an, daB im mathematischen Modell des Systems jedem Ele-
ment eine Modellgleichung zugeordnet ist, die die ,,Ausgangsstrome® x, als Funktion der
.Eingangsstrome“ x; zu berechnen gestattet, vgl. Bild 1.8,

xP=f0xP, . xP); i=1,.., 0L g (1.15)

Die Modellgleichungen aller einer starken Komponente angehorenden Knotenpunkte
sind dann beziiglich der Eingangs- und Ausgangsvariablen miteinander gekoppelt und
konnen deshalb nicht einfach nacheinander, sondern nur gemeinsam (bzw. iterativ)
durchgerechnet werden. Hier wird ein Anwendungsfeld der Graphentheorie im Zusam-
menhang mit der Simulation und Optimierung komplexer Systeme und der in diesen ab-
laufenden Prozesse sichtbar. Bei der rechentechnischen Durchfithrung solcher Simula-
tionen geht man meist so vor, daB fiir die Modelle der einzelnen Systemstufen
(Knotenpunkte) Unterprogramme ausgearbeitet werden, aus denen dann das Gesamtpro-



1.4. Arten des Zusammenhanges von Graphen 17

gramm zusammengebaut werden kann. Hierbei ist es natiirlich notwendig (von Hand oder
automatisch) eine Reihenfolge festzulegen, in der die beteiligten Unterprogramme nach-
einander zum Einsatz kommen miissen. Die Ermittlung einer moglichen Berechnungsrei-
henfolge kann anhand des dem System zugehorenden Graphen vorgenommen werden. Da
es i.allg. viele Moglichkeiten gibt, kann sogar nach einer optimalen Variante gesucht wer-
den, die einen minimalen Rechenzeitbedarf fiir die Simulation erwarten 148t. Eine Teil-
aufgabe bei dieser Strukturanalyse ist die Bestimmung aller starken Komponenten, da
diese — wie gesagt — die Gruppen von Systemelementen liefern, die jeweils nur gemein-
sam, etwa mittels eines Iterationsprozesses, berechnet werden konnen. Genaueres zu die-
sem Anwendungsgebiet findet der Leser z.B. in [4], [10].

Eine Mittelstellung zwischen dem einfachen und dem starken Zusammenhang von ge-
richteten Graphen nimmt der quasistarke Zusammenhang ein. Diese Eigenschaft bedeu-
tet folgendes:

Definition 1.10: G= (X, U) heifit quasistark z hi d, wenn es zu je zwei Kno-
tenpunkten a, be X ein Element z€ X gibt, so daf3 von z aus elementare Bahnen nach a und
nach b vorhanden sind.

In dieser Definition wird nicht ausgeschlossen, daB z mit a oder b identisch ist (im
Falle z = a fithrt eine ,Bahn der Linge Null“ von z nach a). Es gilt folgende Implikation:

Starker Zi hang — istarker Z hang — Z h
[
X, m
‘f”\ — X
Xp— _— x@
. <A
w ;
X T~ X0
- |
Eingangsstrime Ausgangsstrime

Bild 1.8. Eingangs- und Ausgangsstrome eines Systemelementes

Beispiel 1.6: Der Graph G in Bild 1.9 ist stark zusammenhingend. G, besitzt quasistarken Zusam-
menhang, denn fiir die Knotenpunktpaare {a, b}, {a, c}, {b, ¢} ist gemidB Definition 1.10 jeweils z= ¢
geeignet. Dagegen ist G, nicht stark zusammenhingend, denn es flihrt z.B. keine Bahn von b nach c.
Der Graph G; schlieBlich ist zwar zusammenhéngend, hat aber keinen quasistarken (und erst recht
keinen starken) Zusammenhang, denn zu ¢, b gibt es keinen Knotenpunkt z der in Definition 1.10
geforderten Eigenschaft.

a
67 ﬁ) 63

Bild 1.9. Zu Beispiel 1.6

In enger Beziehung mit der Eigenschaft des quasistarken Zusammenhanges steht der
Begriff des Zentrums eines Graphen.

2 BieB, Graphentheorie

D.1.10
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Definition 1.11: Ein Knotenpunkt z € X heifit Zentrum des Graphen G =(X, U), wenn von z
aus zu jedem K ipunkt von G je (mindestens) eine el Bahn fiihrt.

Ein Vergleich mit Definition 1.8 1Bt erkennen, daB fiir einen stark zusammenhéngen-
den Graphen jeder Knotenpunkt ein Zentrum ist. Dagegen sichert Zusammenhang
schlechthin nicht die Existenz eines Zentrums, wie G5 in Bild 1.9 zeigt. Vielmehr gilt fol-
gender Satz:

Satz 1.3: Der Graph G = (X, U) besitzt genau dann ein Zentrum, wenn er quasistark zusammen-
hdngend ist.

1.5. Bédume und Geriiste

Oft besitzen die Strukturschemata realer Systeme eine Form, wie sie in Bild 1.10 an-
gedeutet ist, d. h., sie bilden reine Verzweigungsnetze ohne Kreise bzw. Zyklen. Bei-
spiele aus der Praxis sind Verteilungsnetze fiir Wasser oder elektrischen Strom, Leitungs-
strukturen in Kombinaten, Stammbdume, Telefonnetze, Kanalsysteme usw. Wegen des
hdufigen Auftreten derartiger Graphen ist es angebracht, ihre besonderen Eigenschaften
zu untersuchen. Zunichst fithren wir eine spezielle Bezeichnung fiir diesen Graphentyp
ein.

H H K

Bild 1.10. Biume

Definition 1.12: Ein zusammenhdngender Graph H= (X, U) bzw. H= [X, U] mit mindestens
einem Knotenpunkt, der keine Zyklen bzw. Kreise enthdlt, heiit ein Baum. Ist H nicht zusam-
menhdngend und bildet fiir jede seiner Komp ten der aufs Untergraph einen Baum,
so wird H als Wald bezeichnet.

In Bild 1.10 stellen die Graphen H,, H,, H; Baume dar. Der durch Vereinigung entste-
hende Graph
H=H,UH,uU H,

ist ein Wald.
Knotenpunkte eines Baumes, mit denen genau ein Bogen (bzw. eine Kante) inzident
ist, heiBen ha de Knotenpunkte. Es gilt der anschaulich einleuchtende

Satz 1.4: Jeder Baum mit mehr als einem K ipunkt besitzt mindestens zwei hd de Kno-
tenpunkte.
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Im nun folgenden Satz sind verschiedene Moglichkeiten zusammengestellt, einen
Baum durch Eigenschaften zu charakterisieren. Wir formulieren sie fiir den Fall eines ge-
richteten Baumes. Ersetzt man die Worte Bogen, Zyklus, elementare Kette durch Kante,
Kreis, Weg, so ergeben sich die entsprechenden Aussagen fiir ungerichtete Baume.

Satz 1.5: Dafiir, daB ein Graph H= (X, U) mit n = 1 Knotenpunkten ein Baum ist, sind fol- S. 1.5
gende Eigenschaften dquivalent:

(1) H ist zusammenhdngend und zyklenfrei.

(2) H ist zyklenfrei und besitzt genau n — 1 Bagen.

(3) H ist zusammenhdngend und hat genau n — 1 Bogen.

(4) H ist zyklenfrei. Fiigt man aber zwischen zwei beliebigen Knotenpunkten einen Bogen hinzu,
so enthdlt der entstehende Graph genau einen Zyklus.

(5) H ist zusammenhdngend. Loscht man aber einen beliebigen Bogen, so ist der entstehende
Graph nicht mehr zusammenhdngend.

(6) Jedes Knotenpunktpaar von H ist durch genau eine el Kette verbund

Im Fall n =1 sind die Aussagen (5) und (6) nicht sinnvoll. Die oben genannten Eigen-
schaften lassen sich leicht auseinander herleiten. Beispielsweise besagen die in (1) ge-
nannten Eigenschaften:

p=1, k(G)=0. (1.16)

Wegen Satz 1.2 folgt dann m—n+1=0, d. h,, m=n—1 und damit (2). Aus (2) wie-
derum, d. h. aus

k(G)=0, m=n-1, (1.17)
folgt wegen k(G)=m—n+p
p=n—-m=n—(n—-1=1, (1.18)

d.h. die Eigenschaft (3) usw. Einen vollstindigen Beweis findet der Leser z.B. in [1].

Wir betrachten jetzt einen beliebigen Graphen G. Wenn G selbst kein Baum ist, so gibt
es aber Untergraphen, die diese Eigenschaft besitzen. Von besonderer Bedeutung sind
derartige Untergraphen dann, wenn sie alle Knotenpunkte von G erfassen.

Definition 1.13: Ein alle Knotenpunkte erfassender Untergraph H von G, der ein Baum ist, wird D. 1.13
als Geriist des Graphen G bezeichnet.

Betrachten wir beispielsweise den in Bild 1.5 dargestellten Graphen, so bildet H; = (X, U;) mit
X={a, b, ¢, d} und U, = {u,, uy, ug} ein Geriist. Ein anderes ist H, = (X, U,) mit U, = {u,, uy, us}.
Der Leser findet leicht noch weitere Geriiste. Es erhebt sich die Frage, wie G beschaffen sein muB,
damit ein Geriist existiert. Es gilt:

Satz 1.6: Der Graph G besitzt genau dann ein Geriist, wenn er zusammenhdngend ist. S. 1.6

Beweis: Ist G nicht zusammenhéngend, so gilt das natiirlich auch fiir jeden alle Knoten-
punke von G enthaltenden Untergraphen. Also ist der Zusammenhang notwendig fiir die
Existenz eines Geriistes. DaB diese Eigenschaft auch hinreichend ist, zeigt folgende Be-
trachtung, die zugleich einen Algorithmus zur Bestimmung eines Geriistes darstellt. G sei
ein zusammenhangender Graph. Wir suchen nach einem Bogen, den man 16schen kann,
ohne daB der Zusammenhang verlorengeht. Wenn es keinen gibt, so ist nach Satz 1.5, Ei-
genschaft (5), G selbst ein Baum. Existiert ein solcher Bogen, so l6schen wir ihn. Im ent-
stehenden Restgraphen G’ suchen wir wieder nach einem Bogen, dessen Loschung den
Zusammenhang nicht zerstort. Gibt es keinen, so stellt der Teilgraph G’ ein Geriist von G

2*
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dar. Anderenfalls gelangen wir zu einem neuen Graphen G”, an dem wir die Prozedur
wiederholen. Da G nur endlich viele Bogen hat, finden wir mit Sicherheit ein Geriist von
G. Der Satz ist damit bewiesen.

In Definition 1.6 haben wir erkldrt, was unter einer Zyklenbasis eines Graphen
G = (X, U) zu verstehen ist. Die Konstruktion einer solchen Basis kann mit Hilfe eines
Geriistes von G leicht ausgefiihrt werden.

S. 1.7 Satz 1.7: G = (X, U) sei ein zusammenhdngender Graph und H = (X, V), (V < U) sei ein Ge-
riist von G. Dann gilt fiir jeden Bogen ue U —V: Wird u zu H hinzugefiigt, so enthdlt
H' = H + {u} genau einen Elementarzyklus u“. Die Menge aller so erzeugbaren Zyklen bildet
eine Zyklenbasis von G.

Beweis: U — V ist die Menge der Bogen, die wir in G 16schen miissen, um das Geriist H zu
erhalten. Ist U = V, so ist nichts zu beweisen. Es sei also V eine echte Teilmenge von U,
und sei u € U~ V. Da H ein Baum ist, enthilt H + {u} nach Satz 1.5 (Eigenschaft (4)) ge-
nau einen Zyklus, der dann nach Satz 1.1 auch elementar ist. Wenn |X| = n die Anzahl
der Knotenpunkte von G und |U| = m die Zahl der Bogen von G ist, so folgt aus Satz 1.5
(Eigenschaft (3)): |[V]=n—1, und weiter: |U—V|=m —|V|=m —n+ 1. Wir erhalten
also auf die oben beschriebene Weise genau k(G) Elementarzyklen, wobei k(G) die Di-
mension einer Zyklenbasis von G ist, vgl. Satz 1.2. Diese m — n + 1 Zyklen sind auch un-
abhingig, denn jeder enthilt einen Bogen (ndmlich den zu H jeweils hinzugefigten), der
in allen librigen Zyklen nicht vorkommt. Sie bilden deshalb tatsdchlich eine Zyklenbasis
von G.

Beispiel 1.7: Im Bild 1.11 sind durch die stark gezeichneten Bogen zwei verschiedene Geriiste des
Graphen der Abb. 1.5 dargestellt. Im Beispiel a ist also U — V, = {u,, u3, us} die Menge der aus G ge-
16schten Bogen. Wegen k(G)=m —n+1=6—4+ 1 =3 gehoren zu einer Basis drei Zyklen. Diese
erhilt man nach Satz 1.7 folgendermaBen: Bei Hinzunahme des Bogens u, zum Geriist entsteht der
Zyklus u® = (uy, ug, uy). Mit u; erhilt man den Zyklus u® = (us, u;, ug) und mit us schlieBlich
u® = (us, ug, ug). Auf ganz analoge Weise ergibt sich mittels des im Beispiel b verwendeten Geriistes
eine andere Zyklenbasis mit den Elementen

w0 =y, gy us, wp); p® = (s, u); 1 ® = (ug, us, ug).

Wenn G nicht zusammenhéngend ist, dann konnen wir den Satz 1.7 auf jede Kompo-
nente von G anwenden und erhalten so ebenfalls eine Zyklenbasis des Graphen.

Bild 1.11. Zu Beispiel 1.7

D. 1.14 Definition 1.14: Ein Baum, der ein Zentrum besitzt, heif3t ein Biischel.

Den Begriff ,,Zentrum“ hatten wir in Definition 1.11 erklért. In Bild 1.10 stellt H, ein
Biischel mit dem Knotenpunkt a als Zentrum dar. Dagegen ist der Baum H, kein Biischel,
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denn dieser Graph enthilt kein Zentrum. Wir wollen nun in einem zu 1.5 analogen Satz
verschiedene Eigenschaften eines Biischels zusamr tellen (eine Beweisfiihrung findet
der Leser in [1].)

Satz 1.8: Dafiir, dap ein Graph H = (X, U) mit n = 1 Knotenpunkten ein Biischel ist, sind fol-

gende Eigenschaften dquivalent:

(1) H ist ein Baum mit einem Zentrum.

(2) H ist quasistark hd d und zyklenfrei.

(3) H ist quasistark ha d und besitzt genau n — 1 Baogen.

(4) H enthalt einen Knotenpunkt a,, von dem aus je genau eine Bahn zu jedem anderen Knoten-
punkt fiihrt.

(5) H ist quasistark hd d. Loscht man aber einen beliebigen Bogen, so besitzt der
entstehende Graph diese Eigenschaften nicht mehr.

(6) H ist zusammenhdngend, und es gibt in H einen Knotenpunkt a,, in dem kein Bogen endet
wdhrend in allen iibrigen Knotenpunkten genau ein Bogen endet, d. h.

o (a)]=0; |o(a)|=1, j*1. (1.19)

Wir stellen noch die Frage, unter welchen Bedingungen ein Graph G ein Biischel als
Geriist besitzt. Es gilt

Satz 1.9: Der Graph G = (X, U) besitzt genau dann ein Biischel als Geriist, wenn er quasistark
zusammenhdngend ist.

Der Beweis verlduft ganz analog wie bei Satz 1.6.

Beispiel 1.8: Der Graph in Bild 1.5 ist istark ha d, er enthilt die Zentren a, b, c.
Nach Satz 1.9 muB sich also ein Biischel als Geriist finden lassen. Tatsdchlich ist das Geriist
= (X, V) mit V= {u,, u,, us} ein Biischel, wobei der Knotenpunkt a das Zentrum ist.

1.6. Strome und Spannungen

Die bisherigen Definitionen und Satze sagen im wesentlichen nur etwas tiber die Struk-
tur eines Graphen bzw. des durch den Graphen abgebildeten realen Systems aus. Wir wer-
den jetzt andere Begriffe einfithren, mit deren Hilfe man Vorgdnge beschreiben kann, die
in einem solchen System ablaufen oder auch Zustdnde, in denen sich das System befin-
det. Dadurch er6ffnen sich der Graphentheorie viele praktische Anwendungen.

Betrachten wir beispielsweise den Fall, daB G = (X, U) ein elektrisches Netzwerk dar-
stellt. Den Knotenpunkten entsprechen dann die Verzweigungspunkte der Stromleitun-
gen, den Bogen die Leiterabschnitte selbst (mit den darin befindlichen Widerstéinden,
Spannungsquellen usw.). G stellt zundchst nur die Struktur des Netzes dar. Wenn wir dar-
iiber hinaus eine im Netzwerk vorhandene Stromverteilung beschreiben wollen, so miis-
sen wir offenbar jedem Bogen noch die dort vorhandene Stromstéirke zuordnen. Eine an-
dere Moglichkeit, elektrische Vorginge im Netz zu beschreiben, wire die, daB wir flir
jeden Bogen des Graphen den dort vorhandenen Spannungsabfall angeben oder daB wir
jedem Knotenpunkt den zugehorigen Potentialwert zuordnen.

Ganz entsprechend wire zu verfahren, wenn G etwa ein Rohrleitungssystem zur Vertei-
lung von Wasser, Gas oder Dampf abbildet. Zur Beschreibung des im Netz stattfindenden
Transportvorganges kommen wir, wenn wir den Bogen von G die zugehorigen DurchfluB-
mengen pro Zeiteinheit zuordnen (oder die Druckabfille in den Rohrleitungsabschnit-
ten).

S.1.8

S. 1.9



D.1.15

22 1. Grundbegriffe der Graphentheorie

Ein weiteres Beispiel ist die Beschreibung des Verkehrsflusses in einem StraBennetz G.
Hier konnte man zu jedem Bogen die Anzahl der Fahrzeuge angeben, welche pro Zeitein-
heit den entsprechenden StraBenabschnitt (im Sinne einer festgelegten Richtung) passie-
ren. Der Leser wird leicht viele weitere Beispiele finden, bei denen es darum geht, einen
im System ablaufenden Vorgang zu beschreiben. Wie uns die Beispiele zeigen, gelingt
dies dadurch, daB wir den Bogen (oder Knotenpunkten) des Graphen geeignete Zahlen
zuordnen. In einem solchen Fall spricht man dann ganz allgemein von einem bogenbe-
werteten bzw. knotenbewerteten Graphen. Von dieser Moglichkeit machen wir im fol-
genden Gebrauch. Wir wollen uns dabei auf die Betrachtung gerichteter zusammenhin-
gender Graphen beschrianken.

Definition 1.15: G = (X, U) sei ein zusammenhdngender Graph, U = {u,, u,, ..., u,}. Ist je-
dem Bogen u; eine reelle Zahl @; zugeordnet, so wird der Vektor

T=(91 @2 .- Pm) (1.20)

als ein FluB auf dem Graphen G bezeichnet.

Beispielsweise kann ¢ einen realen Stromungsvorgang widerspiegeln, wobei ¢; die
Menge ist, die den Bogen u; in der Zeiteinheit durchflieBt. Wenn ein solcher Fall vorliegt
und @; > 0 gilt, so deuten wir dies als einen FluB in Richtung des Bogens u;, entsprechend
entgegen der Bogenrichtung, wenn ¢; <0 ist.

Nun sei 4 ¢ X eine Teilmenge der Knotenpunkte. Wir fithren dann folgende Bezeich-
nungen ein:

D= Y g, U= Y g .21
u€ew(A) uew (A)
D(4) =D (A4)— D (4). 1.22)

Dabei ist (vgl. Formel 1.1 und Bild 1.12) w*(4) bzw. w (4) die Menge der mit 4 nach au-
Ben bzw. innen inzidenten Bogen. Wenn wir uns ¢ als einen MaterialfluB vorstellen und
um die Knotenpunkte A4 einen ,Bilanzkreis“ gezogen denken, dann bedeutet @*(4) an-
schaulich die Menge, welche insgesamt iiber die aus 4 herausfiihrenden Bogen pro Zeit-
einheit nach auBen abstromt. Entsprechend stellt @ (4) die Stoffmenge dar, welche iiber
die in 4 hineinfithrenden Bogen in den Bilanzkreis pro Zeiteinheit hineinstromt. SchlieB-
lich gibt @(A4) an, wieviel insgesamt aus dem Bilanzkreis pro Zeiteinheit ausstromt (Ge-
nauer: mehr ausstromt als hineinflieBt). Natiirlich konnen wir eine solche ,Mengenbi-
lanz* auch fiir einen einzelnen Knotenpunkt x € X aufstellen.

-

NN

w™(A) w*(A)

Bild 1.12. Zu den Formeln (1.21) und (1.22)

S. 1.10 Satz 1.10: Fiir jede Teilmenge A = X von Knotenpunkten gilt

D)= ), P(x). (1.23)

xeA
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Beweis: Durch Anwenden von (1.22), (1.21) auf @(x) kénnen wir zunéchst schreiben

2 Px)= 2 [D'(x)— D ()] = 2, [ PRSI w,]- 124
xeA xeA xeA Luew(x) uew (x)

Nun kann die Bogenmenge w”*(x) zerlegt werden in eine Teilmenge w; (x), deren Ele-
mente zu w*(4) gehdren und eine zweite w; (x), deren Bogen in Knotenpunkten von 4
enden. Entsprechend ist eine Zerlegung v (x) = w;(x) U w, (x) mdglich, wobei w; (x)
die Bogen enthilt, die auch zu w~(4) gehdren, wihrend die Bogen von w, (x) ihren An-
fangspunkt in 4 haben. Damit wird aus (1.24)

Yow-%| T ot Lo~ ¥ o T ol

XeA xed Lueao, (x) wew, (x ue o, (x) ue o, (x)
=[z D) w.]
xXeA uewr(x) XeA uew, (x)

+[Z RSN w,]. (1.25)
x€A uew; (x) XcA uew,(x)

In der ersten Doppelsumme wird gerade iiber alle Bogen von w*(4), in der zweiten {iber
alle Bogen von o (4) summiert. In der dritten und vierten Doppelsumme wird jeweils
uiber alle Bogen des von A4 aufgespannten Untergraphen von G summiert, deshalb -heben
sich die Betrdge paarweise weg. Also reduziert sich (1.25) auf

YOx)= Y @— Y =4 - D (4) = D(A). (1.26)

X€A uew(4) uew (4)

Eine interessante Aussage liefert der damit bewiesene Satz 1.10 im Spezialfall 4 = X.

Satz 1.11: Fiir jeden FluB @ auf einem Graphen G = (X, U) gilt
DX)= Y, D(x)=0. (1.27)
xeX

Beweis: Nach (1.22) ist @(X) = @*(X) — @ (X). Wegen 0*(X) = 0w (X) =0 ergibt sich
aus (1.21) @*(X) = @ (X) =0, und mit (1.23) folgt schlieBlich (1.27).

Anschaulich besagt (1.27), wenn wir @ als MaterialfluB deuten, daB fiir jeden FluB auf
G der ,Satz von der Erhaltung der Menge“ gilt; der durch @ beschriebene Stromungsvor-
gang ist so beschaffen, daB alles, was durch irgendwelche ,Quellen“ in die Bogen des Gra-
phen hineinflieBt, durch gewisse ,Senken“ auch wieder abflieBt. Entsprechend dieser
Deutungsmoglichkeit sind noch folgende Bezeichnungen iiblich: Wenn fiir ein x € X gilt
@(x) >0, so heiBt dieser Knotenpunkt eine Quelle des Flusses mit der Ergiebigkeit ®(x).
Im Fall &(x) <0 liegt in x eine Senke von @ mit dem Verbrauch |®(x)| vor. Wenn
@(x) =0 gilt, so wird x als Durchgangsknoten des Flusses bezeichnet. Besitzt der FluBl
@ genau eine Quelle @ und eine Senke b, so spricht man auch von einem Fluf von a nach

b. Fiir diesen gilt dann gemaB (1.27):
®(a)=-P(b),

d.h., die Ergiebigkeit der Quelle ist ebensogroBl wie der Verbrauch der Senke. @(a) wird
dann als Wert des Flusses bezeichnet. '

S. L.11
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Definition 1.16: Gilt fiir einen Fluf ¢ auf G = (X, U)
D(x)=0 fir alle xe X, (1.28)
so heifit @ ein Strom auf dem Graphen G.

Ein Strom besitzt demnach weder Quellen noch Senken, sondern nur Durchgangskno-
ten. Wir konnen (1.28) mit Hilfe von (1.21), (1.22) auch folgendermaBen schreiben:

@ = Z @; fir alle x € X. (1.29)
u€w(x) u€w (x)
Diese Knotenpunktregel besagt anschaulich, daB bei Stromen der ,Satz von der Erhaltung
der Menge“ fiir jeden Knoten einzeln gilt, d. h., alles, was dem Knotenpunkt zuflieBt,
stromt auch wieder weg. Stellt insbesondere G ein elektrisches Netzwerk dar, so ist (1.29)
mit der Kirchhoffschen Knotenregel identisch.

Interessant und fiir die Anwendungen wichtig ist die Moglichkeit, daB wir die Behand-
lung von Problemen, bei denen Quellen und Senken auftreten, in jedem Fall zuriickfiih-
ren konnen auf die Untersuchung dquivalenter Stromprobleme. Dies gelingt durch den
Ubergang zu einem geeignet erweiterten Graphen, wie folgende Uberlegung zeigt.
Gegeben sei ein FluB ¢ auf G = (X, U) mit den Quellen 4, ..., 4, (Ergiebigkeit @(a));
Jj=1,..., q) und den Senken b, ..., b, (Verbrauch |®(;)|; k =1, ..., 5). In Bild 1.13 ist
G durch die strichpunktierte Kurve abgegrenzt. Wir konstruieren nun einen erweiterten
Graphen G* = (X*, U*), indem wir zwei Knotenpunkte d, b zu X hinzufiigen und U durch
die Bogen

@ a); j=1,...,q,
(b, B); k=1,....s,

ergianzen. Auf G* wird nun folgender FluB ¢* betrachtet

(1.30)

@) firuel,
o*u)=49 @) firu=@@,4a); Jj=1,...,q (1.31)
—d(b) firu=(b,b); k=1,..,s.

Bild 1.13. Uberfiihrung von FluBproblemen in Stromprobleme

Fiir @* sind dann die g; und b, zu Durchgangsknoten geworden, und dieser FluB besitzt
auf G* nur die eine Quelle 4 mit der Ergiebigkeit
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q
D*(d) =Y B(a) (1.32)
I

und nur die eine Senke b mit dem Verbrauch | @*(5)| = ®*(d).

In einem zweiten Schritt konnen wir nun sogar zu einem Strom iibergehen, indem wir
nimlich zu G* noch den Riickkehrbogen (7 b, @) hinzufiigen und auf dem so entstehenden
Graphen G** den FluBl ¢** mit

* ] *
v =[50 s 6 a
@*(a) fir u=(b,a)
betrachten. @** ist tatsichlich ein Strom auf G**, denn auch in @ und & gilt jetzt die Kno-
tenpunktregel (1.29).

Graphen mit einer Struktur wie G** werden oft als Transportnetze bezeichnet; a heiBt
dann der Eingangsknoten, b der Ausgangsknoten. Die Bogen (d, a;) werden Eingangsbo-
gen, (b, b) Ausgangsbogen und (b, @) wird, wie schon erwihnt, Riickkehrbogen des Net-
zes genannt. Strome auf Transportnetzen werden uns im Abschnitt 5. noch nidher beschaf-
tigen.

Da Strome auf Graphen in den Anwendungen eine besonders wichtige Rolle spielen,
wollen wir noch einige weitere Eigenschaften besprechen. So gilt

(1.33)

Satz 1.12: Die Menge ©(G) aller Strome auf einem gegebenen Graphen G bildet einen linearen
Vektorraum iiber der Menge R der reellen Zahlen. Insbesondere gilt also: Aus @V, 9@ € ®(G)
und c;, ¢, € R folgt

=90+ 9P ®(G). (1.34)

Beweis: Ist x ein beliebiger Knotenpunkt, so gilt nach (1.21), (1.22)

D(x) = Z @i~ Z @i

u € w(x) uU€w (x)
- 1 1 2 2,
—01[2 [HEDY w‘,-’] m[Z 0P - 2 wf”]~
w (x) w (x) ' (x) w (x)

Da @, @@ nach Voraussetzung Stromvektoren sind, verschwinden gemiB (1.29) beide
eckigen Klammern, d. h., es gilt @(x) = 0. Die iibrigen, einen linearen Vektorraum kenn-
zeichnenden Eigenschaften [9] ergeben sich aus der Tatsache, daB @(G) jedenfalls ein
Unterraum des m-dimensionalen reellen Vektorraumes ist.

Zur Beantwortung der Frage, welches die Dimension von @(G) ist und wie man eine
Basis des Raumes erhiilt, fiihrt folgende Uberlegung:

Wir kénnen uns leicht davon liberzeugen, daB jeder Zyklenvektor x ein Strom ist [vgl.
die Formeln (1.6), (1.7)]. Durch (1.7) ist jedem Bogen eine reelle Zahl zugeordnet. AuBer-
dem erfiillt u fir jedes x € X die Knotenpunktregel (1.29). Um dies zu zeigen, betrachten
wir zunéchst einen Elementarzyklus. Ist nun x ein beliebiger Knotenpunkt, so sind zwei
Fille moglich: Entweder die Bogenfolge u fiihrt nicht durch x, oder sie geht dort hin-
durch. Im ersten Fall ist keiner der Bogen von x mit x inzident, d.h., in (1.29) sind wegen
(1.7) beide Summen Null. Im zweiten Fall sind genau zwei Bégen von ¢ mit x inzident,
wobei die in Tabelle 1.2 gezeigten Lagebeziehungen moglich sind. Bei jeder Variante ist
aber, unabhingig von der Festlegung des Durchlaufsinnes von u, die Knotenpunktregel
(1.29) in x erfullt. Wenn der Zyklus nicht elementar ist, so kann er nach Satz 1.1 als
Summe elementarer Zyklen dargestellt werden, und deshalb ist wegen Satz 1.12 auch
dann die Stromeigenschaft gewihrleistet.

S. 1.12
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Tabelle 1.2: Mit x inzidente Bogen eines Elementarzyklus u

Mbgliche Fille | u; > ow Yo
@ (x) w (x)
U SX 7l
ey 1 1 1 1
—— 1 -1 0 1+(-1)
N
N
—— -1 -1 -1 =il
// \\
=l -1 1 (-D+1 0
-
PN
Durchlaufsinn: — — — — —

Die Definition 1.16 zeigt, daB nicht alle m Komponenten eines Stromes ¢ willkiirlich
festgelegt werden konnen, denn es miissen ja die Knotenpunktregeln (1.29) eingehalten
werden. Deshalb erhebt sich die Frage, durch welche Vorgaben ein Strom auf einem gege-
benen Graphen eindeutig bestimmt ist. Hieriiber gibt der folgende Satz Auskunft.

Satz 1.13: G = (X, U) sei zusammenhingend, H = (X, V) sei ein Geriist von G, und
U-V={uy,uy,...,u} seien die Bogen auflerhalb des Geriistes. SchlieBlich sei
{u®, 1w, ..., u®} die gemdf Satz 1.7 mit Hilfe der Bigen von U — V gebildete Zyklenbasis
von G (wobei der Durchlaufsinn von u' jeweils durch den diesen Zyklus schlieenden Bogen u;
festgelegt werde). Dann ist ein Strom @™ = (@, ... ) durch seine Komponenten ¢, ..., @
auf den Bigen von U — V eindeutig bestimmt, und es gilt

e=0nV+ gu®+ .+ u®. (1.35)

Beweis: Da Zyklenvektoren Strome sind, ist nach Satz 1.12 auch der in (1.35) gebildete
Vektor @ ein Strom. Wegen

® {1, falls j =i,
K= . .
J 0 sonst; ji=1 ..,k i=1,..,k,

hat @ auf den Bogen von U — V auch die dort vorgegebenen Komponenten. Da3 ¢ durch
die Vorgaben @, ..., @ eindeutig bestimmt ist, wird durch die Vektorraumeigenschaft von
@(G) gesichert.

Satz 1.13 besagt, daB der Freiheitsgrad eines Stromes durch die zyklomatische Zahl
k(G) des Graphen bestimmt ist. Von den m Komponenten eines Stromvektors ¢ konnen
wir k=m — n + 1 willkiirlich vorgeben, die iibrigen n — 1 sind dann durch die Knoten-
punktregeln (1.29) eindeutig festgelegt. Dabei diirfen aber diese Vorgaben nicht fiir
irgendwelche Bogen des Graphen erfolgen, sondern fiir diejenigen auBerhalb eines Gerii-
stes von G. k(G) gibt demnach die Dimension des Vektorraumes @(G) an, und Zyklenba-
sen bilden Basissysteme dieses Raumes. (1.35) gibt an, wie wir mit Hilfe der Vorgabewerte
(und der zum Geriist gehorigen Zyklenbasis) den Gesamtvektor ausrechnen kénnen.

Wenn G speziell ein Baum ist, so gilt k(G) =0, d. h., hier kann keine Komponente
eines Stromvektors frei gewéhlt werden. Auf Biumen ist ndmlich nur der Nullstrom ¢ =0
moglich, der Leser moge dies mittels des Satzes 1.4 selbst nachweisen. Wenn G nicht zu
sammenhingend ist, so gilt Satz 1.13 fiir jeden durch eine Komponente von G aufge-
spannten Untergraphen sinngeméB.

Beispiel 1.9: Der im strichpunktierten Gebiet des Bildes 1.14 enthaltene Graph G stelle das Kiihlwas-
sernetz eines Chemiebetriebes dar. In den Rohrleitungen sollen nun MeBgerite installiert werden, so
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@ Auelien ©) senken

Bild 1.14. Stromverteilung in einem Kiihlwassernetz (zu Beispiel 1.9)

daB man aus deren DurchfluBmessungen einen vollstindigen Uberblick iiber die Stromverteilung im
Netz erhilt. Dabei sollen aber nicht mehr Gerite eingesetzt werden, als unbedingt nétig ist. Zu 16sen
sind die Fragen, wie viele Gerite notwendig sind, auf welchen Bogen sie eingebaut werden miissen und
wie sich aus den Messungen die vollstindige Stromverteilung errechnen 1d8t.

Im Netz G kommen zwei Quellen (Q;, Q,), und zwei Senken (S, S,) vor. Um die Aufgabenstel-
lung als Stromproblem behandeln zu kdnnen, gehen wir entsprechend den Formeln (1.30) bis (1.33)
durch Hinzufiigen der Knotenpunkte @, b und der Bégen 22 bis 26 zu einem Transportnetz G** iiber.
Dieses enthilt dann 15 Knoten und 26 Bogen. Damit gilt k(G) =26 — 15+ 1= 12, und die erste
Frage kann beantwortet werden: Es sind 12 MeBgerite notwendig. Um festzulegen, wo diese einzu-
bauen sind, miissen wir ein Geriist in G** konstruieren. Hierflir gibt es natiirlich sehr viele Moglich-
keiten. Fiir welche man sich entscheidet, wird im praktischen Fall auch von technologischen Ge-
sichtspunkten abha (leichie Zuginglichkeit der MeBstelle usw.). Wenn wir annehmen, daB das
stark ausgezeichnete Geriist gewahlt wurde, dann sind die Messungen auf den Bogen

6, 7, 8, 9,11, 15
16, 18, 19, 22, 23, 25

vorzunehmen (auf 22, 23 wird die Ergiebigkeit der Quellen, auf 25 der Verbrauch der Senke S, ge-
messen; bei den iibrigen Bogen handelt es sich um DurchfluBmessungen). Damit ist auch die zweite
Frage beantwortet.

Um noch Formeln zur B ng der Durchfluf} auf den zum Geriist gehdrigen Bogen
zu erhalten, bestimmen wir die zugehorige Zyklenbasis. Unter Verwendung des Satzes 1.7 ergeben
sich die zwolf zur Basis gehorigen Vektoren p©, ..., u@®®. Beispielsweise haben von x© die Kompo-
nenten 5, 12, 6 den Wert 1, Komponente 1 hat den Wert —1, die iibrigen sind Null (entsprechend
dem durch Bogen 6 geschlossenen Zyklus in Bild 1.14). Aus (1.35) erhalten wir dann die gesuchten
Formeln:

Q1 =@t @1t @5t @~ Qout et @~ @5

._

¢ = Q1T @5t @~ Qut @nt @~ @
P = @9~ Put Pt @5 Qo
Qs = —Put ot QT @
@5 = @ @1~ Py~ @9t Pn —@nt s

P10 = @3~ @9t @11~ Pis— Puo

P6= Ont P
Die fehlenden Formeln ergidnze der Leser selbst.
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Fragestellungen, die den im Beispiel 1.9 behandelten dhnlich sind, treten natiirlich
auch fiir andersartige Stromungsvorgéinge auf, etwa im. Zusammenhang mit Dampf- und
Gasnetzen, mit Verkehrsstromen, elektrischen Strémen usw. Vom Anwendungsgebiet der
elektrischen Netzwerke wurde auch der Begriff der Spannung in die Graphentheorie iiber-
nommen:

Definition 1.17: Ist jedem Bogen u; eines zusammenhdngenden Graphen G = (X, U) mit

U={uy, ..., uy} eine reelle Zahl 9, zugeordnet, so dap fiir jeden Elementarzyklus u von G gilt
2 8= 8, (1.36)
uep weu

so heift der Vektor 97 = (9,...9,,) eine Spannung auf dem Graphen G.

In (1.36) bedeutet u* bzw. - die Menge der im Durchlaufsinn bzw. entgegen dem
Durchlaufsinn des Zyklus gerichteten Bogen von u (vgl. Formel (1.7)). Zu einer anschau-
lichen Deutung der Spannungsregel (1.36) kommen wir, wenn wir die Schreibweise

s+ Y (-9)=0 1.37)
weu uEn
verwenden und uns G als ein elektrisches Netzwerk vorstellen. u entspricht dann einer
Leiterschleife. Der im Durchlaufsinn gezéhlte Spannungsabfall ldngs eines Leiterstiickes
(Bogens) ist dann 9;, falls der Bogen im Durchlaufsinn gerichtet ist, und —9; anderenfalls.
(1.37) besagt dann, daB die Umlaufspannung lings jeder Leiterschleife Null sein muB,
und dies ist ein bekanntes Gesetz der Elektrostatik (Kirchhoffsche Spannungsregel).

Ein anderer Anwendungsfall ergibt sich z. B., wenn G das Rohrleitungssystem einer
Flissigkeits- oder Gasstromung darstellt. Dann kann eine Spannung ¢ verwendet werden,
um die Druckverteilung im System zu beschreiben, 9; bedeutet in diesem Fall den Druck-
abfall ldngs des Bogens u;.

In Analogie zu (1.34) gilt fiir Spannungen:

Satz 1.14: Die Menge O(G) aller Spannungen auf einem gegebenen Graphen G bildet einen li-
nearen Vektorraum iiber der Menge R der reellen Zahlen. Insbesondere gilt:
Aus 9V, 99 € O(G) und c,, c,€ R folgt

9=0c,8V+ ,8%€ 0(G). (1.38)

Der Beweis verlduft analog wie bei Satz 1.12. Satz 1.14 entspricht dem aus der Theorie
der elektrischen Netzwerke bekannten Gesetz der Uberlagerung von Spannungen. Eben-
falls aus der Elektrizitdtslehre bekannt ist die Moglichkeit, Spannungsfelder durch eine
Potentialfunktion F(r) zu beschreiben (r der Ortsvektor). Die Spannung zwischen zwei
Punkten r¥ und r® ergibt sich dabei als Potentialdifferenz

V=F@?) - FaY).
Eine analoge Darstellungsmoglichkeit gilt fiir Spannungen auf Graphen:
Satz 1.15: Ein Vektor 87 = (9, ... 8,,) ist genau dann eine Spannung auf G = (X, U), wenn eine

auf der Menge X der Knotenpunkte definierte reellwertige Potentialfunktion t(x), x € X existiert,
so daf gilt

9; = t (Endpunkt des Bogens u;) — t (Anfangspunkt von u;) fir alle u;€ U. (1.39)

Den Beweis findet der Leser z.B. in [1]. Aus (1.39) ergibt sich, daB jedem Potential ein-
deutig eine Spannung zugeordnet ist. Andererseits ist bei gegebener Spannung das zuge-
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horige Potential nicht eindeutig (sondern nur bis auf eine additive Konstante) festgelegt.
Fiir einen beliebigen Knotenpunkt kann der Potentialwert vorgeschrieben werden.
Wir wollen als ndchstes eine spezielle Sorte von Spannungsvektoren betrachten. Ist
A c X eine Teilmenge von Knotenpunkten eines Graphen G = (X, U), so haben wir mit
w(d)=w"(4)Uu w (4)

die Menge der mit 4 inzidenten Bogen bezeichnet, vgl. (1.1). Falls diese Menge nicht leer
ist, wird w(4) auch der von A4 erzeugte Kozyklus von G genannt. Jedem Kozyklus w(A4)
kann nun auf folgende Weise ein Vektor

o) = (... 0,) (1.40)
zugeordnet werden:
+1, falls u;€ w'(4),
w;=1—1, falls ;e w (4), (1.41)
0 sonst (d.h. falls u; ¢ w(4)).

Kozyklenvektoren haben die Eigenschaft von Spannungen, wie folgende Uberlegung
zeigt. Wir konnen durch die Vorschrift

fa) = 0, fallsaeAd,
Y71, falls ae 4,

ein Potential auf G festlegen. Fiir die zugehorige Spannung ergibt sich dann gemiB
(1.39):

+1, falls y;e w*(4),
&=1-1, falls y;cw (4), (1.42)
0 sonst,

und der Vergleich mit (1.41) zeigt, daB dies genau der Kozyklenvektor w(4) ist.

Aus der Definition 1.17 ist zu ersehen, daB wegen der Bedingungen (1.36) nicht alle m
Komponenten eines Spannungsvektors ¢ willkiirlich festgelegt werden kénnen. Deshalb
tritt, ebenso wie frither bei den Stromen, die Frage auf, durch welche Vorgaben eine
Spannung eindeutig bestimmt ist. Die Antwort liefert der folgende (zu Satz 1.13 ana-
loge)

Satz 1.16: G = (X, U) sei zusammenhdngend, H = (X, V) sei ein Geriist von G. Dann ist eine
Sp & auf G eindeutig fe legt, wenn man ihre Komponenten fiir alle Bogen von V vor-
schreibt.

Von den m Komponenten eines Spannungsvektors sind demnach » — 1 Komponenten
frei wihlbar. Werden diese fiir die Bogen eines Geriistes vorgegeben, dann sind die iibri-
gen Spannungskomponenten auf Grund der Spannungsregeln eindeutig bestimmt. Ana-
log zu (1.35) kann der vollstindige Spannungsvektor mit Hilfe einer Kozyklenbasis (de-
ren Dimension /(G) =n — 1 als kozyklomatische Zahl von G bezeichnet wird und die
Dimension des Vektorraumes @(G) angibt) berechnet werden. Néheres hierzu findet der
Leser in [1], wo auch der Beweis des Satzes 1.16 geflihrt wird.

Eine wichtige Eigenschaft von Stromen und Spannungen gibt der folgende Satz an:

Satz 1.17: Fiir jeden gegebenen Graphen G sind die Vektorraume ®(G) und ©(G) orthogonal
zueinander.

S. 1.16

S. 1.17



30 1. Grundbegriffe der Graphentheorie

Beweis: Es seien @ € @(G) und 4 € O(G). Fur & gilt dann die Spannungsregel (1.37):

0= &+ 2 (~1)&%= Y wd=(n9). (1.43)
g i=1

weEn wen

Dabei ist # ein beliebiger Elementarzyklus und (.,.) bedeutet das Skalarprodukt?).
Die Umformungsmoglichkeit in (1.43) zu einer Summe iiber alle m Bogen ergibt sich we-
gen der Definition (1.7) von Zyklenvektoren. Nun kann wegen (1.35) der Strom ¢ mittels
einer Zyklenbasis in der Form

k
o= on® (1.44)
i=1
dargestellt werden. Damit folgt weiter
k
(9, 8)y=2 o(u®, 8) =0, (1.45)
i=1

weil (1.43) fiir jeden Elementarzyklus u® gilt. Also ist jeder Strom zu jeder Spannung von
G orthogonal.

') Das Skalarprodukt (x,y) der Vektoren x = (xy, ..., X,,)* und y = (yy, ..., y)" ist bekanntlich
definiert durch die Gleichung

xy) = i; XiYi-



2. Die Beschreibung von Graphen mittels Matrizen

Nachdem wir im ersten Abschnitt grundlegende Begriffe und Sitze der Graphentheorie
bereitgestellt haben, wollen wir uns in den folgenden Abschnitten mit einer Reihe von
Problemen befassen, die im Zusammenhang mit Aufgabenstellungen der Praxis auftreten,
und wir werden Algorithmen angeben, die zur Losung dieser Probleme geeignet sind. Da-
bei wird sich zeigen, daB bei der Behandlung umfangreicher Graphen eine Durchfiihrung
der Algorithmen ,von Hand“ wegen des hohen rechnerischen Aufwandes nicht moglich
ist; man muB die Hilfsmittel der elektronischen Datenverarbeitung einsetzen. Fiir die re-
chentechnische Realisierung graphentheoretischer Algorithmen bené&tigen wir eine Form
der Beschreibung von Graphen, die fiir die Eingabe und Speicherung in Rechenautoma-
ten geeignet ist. Hier bietet sich als eine Moglichkeit an, Graphen durch Matrizen darzu-
stellen, denn deren rechentechnische Behandlung bereitet keine Schwierigkeiten, solange
das Format der Matrizen nicht zu groB ist. (Dann allerdings treten Speicherplatzprobleme
auf, und man muB sich nach anderen Codierungsformen umsehen.) Wir wollen im folgen-
den verschiedene mogliche Matrixdarstellungen fiir Graphen besprechen. Dabei werden
wir uns auf die Behandlung gerichteter Graphen beschrinken. AuBerdem wird, wenn
nicht besonders vermerkt, das Fehlen von Schlingen und parallelen Bogen vorausgesetzt
(schlichte Graphen). Im weiteren werden wir stets annehmen, daB die Knotenpunkte und
Bogen des Graphen G = (X, U) durchnumeriert sind:

X={xn,x2, .., x}s U={uy, g, oo, U} 2.1

251" Adjazenzmatrizen

Definition 2.1: Als Adjazenzmatrix A(G) = (a;) des Graphen G = (X, U) wird die
(n, n)-Matrix mit den Elementen

{1, falls (x;, x;) € U,
a; =

3 ool 2.2
0  sonst, e " @2

bezeichnet.

Da wir Schlichtheit voraussetzen, stehen in der Hauptdiagonale von A Nullen. Die
Summen der Zeilen- bzw. Spaltenelemente haben folgende Bedeutung:

Yoag=lot ()l ) a5=le ()], 3)
i=1 i=1

die Anzahl der von Null verschiedenen Elemente von A ergibt die Anzahl der Bogen
von G.

Beispiel 2.1: Fiir den links stehenden Teilgraphen des Bildes 1.7 (6 Knotenpunkte) lautet die Adja-
zenzmatrix

000010
101000
000100

2.4

A 0000O0O0O0 &
011001
100110

D.2.1
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Durch A(G) wird die Struktur des Graphen, d.h. die Art, wie die vorhandenen Knoten-
punkte durch Bogen miteinander verbunden sind, vollstdndig beschrieben. Deshalb miis-
sen sich im Prinzip alle Eigenschaften des Graphen aus A selbst, oder nach geeigneten
Umformungen der Matrix, ablesen lassen. Hierfiir bringen wir jetzt einige Beispiele.

Satz 2.1: Fiir die k-te Potenz A* = (al¥’) der Adjazenzmatrix gilt (k = 1,2, ...):

a® = Anzahl der Bahnen mit der Linge k in G,

die vom K punkt x; zum K punkt x; fiihren. @3

Wir fithren den Beweis durch vollstindige Induktion. Fiir k =1 ist der Satz richtig,
denn laut (2.2) bedeutet a; = 1, daB ein Bogen (x;, x;) vorhanden ist, d.h., daB genau eine
Bahn der Linge 1 von x; nach x; fiihrt und a; = 0 bedeutet, daB8 keine Bahn der Lénge 1
von x; nach x; fiihrt. Angenommen, (2.5) gilt fiir k. Wir bilden dann A**!= A*- A und
betrachten

n

afv=3% a®a, (2.6)
s=1

Aus aPag; # 0 folgt a® # 0 und a,; = 1. Nun gibt a{¥ die Anzahl der Bahnen der Lénge k

von x; nach x, an, und a; = 1 bedeutet die Existenz des Bogens (x;, x;). Also liefert a{¥’ ag;

die Anzahl der Bahnen der Linge k + 1, die von X; iiber x; als vorletzten Knotenpunkt

nach x; fithren. Folglich ergibt die Summation in (2.6) tatsichlich die Anzahl aller Bah-

nen mit der Linge k + 1 von x; nach x;.

Wenn insbesondere al® # 0 ist, so zeigt dies an, daB durch den Knotenpunkt x; ein
Kreis geht. Die Anzahl der Kreise kann aus dem Wert von a'® allerdings i. allg. nicht ab-
gelesen werden, da in A¥ auch alle nicht-einfachen Bahnen mitgezihlt werden.

Bilden wir die Summe B, der Einheitsmatrix und der ersten s Potenzen der Adjazenz-
matrix,

B,= ). A= (bY), Q.7
k=0

so gibt b}j’ die Anzahl der von x; nach x; fiihrenden Bahnen an, deren Linge kleiner oder
gleich s ist (wobei durch Einbeziehung der Einheitsmatrix A° die Bahnen der ,Linge
Null“ von x; nach x; mitgezihlt werden). Bei vielen Untersuchungen wird es weniger inter-
essieren, wie viele Bahnen zwischen den Knotenpunkten vorhanden sind und welche
Linge sie haben, sondern es wird um die Frage gehen, ob x; von x; aus iiberhaupt auf
einer Bahn erreichbar ist. Zu derartigen Aussagen konnen wir folgendermaBen gelangen:
Wir ordnen B; eine Matrix C; zu gemiB der Vorschrift

= {1, falls b(ij) +0;

: hj=1,..,n 2.8
i 0 sonst, ij=1,..,n (2.8)

¢ =1 bedeutet dann, daB eine Bahn der Linge kleiner oder gleich s von x; nach x; exi-
stiert, im Fall cf}’ =0 ist dies dagegen nicht der Fall. Bilden wir nun B;, C; der Reihe
nach fir s =1, 2, ..., so gilt

Satz 2.2: Aus C,.,="C; =C folgt C,. =C fiir alle k > 1.

Beweis: Angenommen, es ist C,., = C, aber C;,, * C,,;. Dann gibt es mindestens ein
Indexpaar i,j mit ¢§"? =1 und ¢{{"" =0. Im Graphen ist dann eine Bahn x der Linge
s+ 2 von x; nach x; vorhanden. Wenn deren vorletzter Knotenpunkt x; ist, so gibt es auch
eine Bahn ' der Linge s + 1 von x; nach x; und eine Bahn u"” der Lange 1 von x; nach x;.
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g numeriert die
« ¢

n

Die Zeile ( der Matrix 0 ist
durchzusehen. Im Fall djj=1, j #(
wird x; als Element in die Kompo-
nente Sy aufgenommen

Ist x; bereits Flement
efperder gefundenen
Komponenten 2

Bild 2.1. Algorithmus zur Ermittlung der starken Komponenten eines Graphen G = (X, U)

Hieraus folgt ¢§*” =1 und wegen C, . = C, weiter ¢}’ = 1. Das letzte bedeutet die Exi-
stenz einer Bahn u"” mit einer Lange kleiner oder gleich s von x; nach x;. Durch Aneinan-
dersetzen von u'”, u” entsteht dann eine Bahn der Liange kleiner oder gleich s + 1 von x;
nach x;, woraus cﬁ-j- *D =1 folgt. Dies ergibt aber einen Widerspruch zu der oben getroffe-
nen Annahme. Der Fall C, , , = C; tritt spétestens fiir s = m ein (m ist die Anzahl der Bo-
gen des Graphen).

Wir kénnen C als Erreichbarkeitsmatrix bezeichnen. Ihre Elemente geben an, ob x;
von x; aus iiber eine Bahn erreichbar ist (c; = 1) oder nicht (c; = 0). Insbesondere kann
aus C abgelesen werden, ob zwei Knotenpunkte in beiden Richtungen durch eine Bahn
verbunden sind. Dies ist genau dann der Fall, wenn c; = ¢; = 1 gilt. Wir erhalten deshalb
weiter die Moglichkeit, die starken Komponenten des Graphen zu bestimmen, vgl. Defi-
nition 1.9. Zu diesem Zweck bilden wir mittels C die symmetrische Matrix D = (d;):

e {1, falls ¢;=c¢;=1;

0 sonst, Lj=1,...,n. (2.9)

Im Falle d; = 1 sind die Knotenpunkte x;, x; in beiden Richtungen durch eine Bahn ver-
bunden, gehoren also zur selben starken Komponente. Wenn dagegen dj; = 0 gilt, so ist

3 BieB, Graphentheorie
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von den Elementen c;, ¢; mindestens eines Null, d. h., die Knotenpunkte gehdren ver-
schiedenen starken Komponenten an. Mit dem in Bild 2.1 als Ablaufplan beschriebenen
Algorithmus konnen die starken Komponenten des Graphen explizit ermittelt werden.

Beispiel 2.2: Durch Potenzieren der zu Bikd 1.7 gehdrenden Adjazenzmatrix (2.4) erhalten wir

011001 2 01 21
00011 011001
A2=[0 00000 A= 000O0O0TU0
0000O0O0][ 0000O0UO0OOUO
201210 011121
0110 11 212211

Durch Summation gemaB (2.7) und Anwendung der Vorschrift (2.8) ergibt sich weiter

312221 111111
122111 111111
11 11 0

B, - 00 00 . c - 00 0
000100 000100
2 23 3 42 111111
323 333 111111

Der Leser iiberzeuge sich durch Hinzunahme der vierten Potenz, daB C, = C; gilt, d.h., C; = C stellt
bereits die Erreichbarkeitsmatrix dar.
Beispielsweise besagt %)= 3, daB im linken Teilgraphen des Bildes 1.7 drei Bahnen mit einer
Linge kleiner oder gleich 3 von x5 nach x; fiihren. Es sind dies die Bogenfolgen
=5, entsprechend as; = 1,
u®=,4), entsprechend a = 1,
u®=8,9,5), entsprechend af) =1.
Die nach der Vorschrift (2.9) gebildete Matrix D hat im Beispiel folgende Form:

110011
110011
001000

P=lo 00100
110011

1100 11
Durch Abarbeitung des in Bild 2.1 dargestellten Algorithmus erhalten wir die drei starken Kompo-
nenten des Graphen: §; = {x,, X, x5, X¢}; S, ={x3}; §5={x4}.

Bei Strukturuntersuchungen in Netzwerken wird oft die Frage auftreten, welches die
kiirzeste Verbindung zwischen zwei Knotenpunkten ist. Wir fiihren zu diesem Zweck den
Begriff der Entfernung zweier Knotenpunkte ein.

Definition 2.2: Als Entfernung e; des K ipunktes x; vom K punkt x; wird erkldrt
(L =1, n)

0, falls x; = x; ist,
I falls x; * x; ist, mindestens eine Bahn vom Knotenpunkt
e;= X; zum Knotenpunkt x; existiert und | die Linge einer (2.10)
kiirzesten Bahn von x; nach x; bezeichnet,
o, falls x; # x; ist und keine Bahn von x; nach x; fiihrt.
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Die (n, n)-Matrix E = (e;;) wird als Entfernungsmatrix des Graphen bezeichnet.

Verfahren fiir die Berechnung von E, ausgehend von der Adjazenzmatrix A4, findet der
Leser z.B. in [8].

2.2. Inzidenzmatrizen

Anstelle der Adjazenzmatrix wird zur Beschreibung von Graphen héufig auch eine an-
dere Matrixdarstellung verwendet:

Definition 2.3: Als Inzidenzmatrix S(G) = (s;;) des n Knotenpunkte und m Bigen enthalten-
den Graphen G = (X, U) bezeichnen wir die (n, m)-Matrix mit den Elementen

+1, falls x; Anfangspunkt des Bogens u;;
s;j=1 —1, falls x; Endpunkt des Bogens u;; i=1,...,n, (2.11)
0, falls u; nicht mit x; inzidiert; i=1..,m.

Die Spalten von S entsprechen also den Bogen, die Zeilen den Knotenpunkten des
Graphen. In jeder Spalte stehen genau ein Element +1, genau ein Element —1 und sonst
Nullen. In jeder Zeile i gibt die Anzahl der Elemente +1 an, wieviel Bogen vom betreffen-
den Knotenpunkt wegfiihren, d.h., sie ist gleich |o* (x;)|. Entsprechend ist die Anzahl der
(—1)-Elemente der Zeile i gleich |o ™ (x;)]-

Ein Vergleich mit (1.40/41) zeigt, daB der i-te Zeilenvektor von S gerade den Vektor
des vom Knotenpunkt x; erzeugten Kozyklus darstellt. Die Anzahl der in der Zeile i ste-
henden von Null verschiedenen Elemente ist die Valenz des Knotenpunktes x;.

Beispiel 2.3: Fur den linken Teilgraphen des Bildes 1.7 ergibt sich als Inzidenzmatrix

-1 1.0 0 0 0 0 0 0 -1
1 0-1 1 0 0 0 0 0 0
s[ 0 0 0 -1 -171 0 0 0 o0
00 0 0 0 -1 -1 0 0 0
0-1 1 0 1 0 0 1 -1 0
00 0 0 0 0 1 -1 1 1

Mit Hilfe der Inzidenzmatrix kann iiberpriift werden, ob ein vorgelegter Vektor ¢ die
Eigenschaften eines Stromes (vgl. Def. 1.16) besitzt, dies zeigt der folgende Satz:
Satz 2.3: Ein Vektor ™ = (¢, ... @) ist genau dann ein Strom auf G, wenn er die Bedingung
S-9=0 (2.12)
erfiillt.

Beweis: Gilt (2.12), so folgt
Se)=Y ;= lg+ Y (-D-g=0; 2.13)
=1 wew (x) yew (x)
i=1,...,n.

Dies ist aber nichts anderes als die Knotenpunktregel (1.29), d.h., @ ist dann ein Strom.
Wenn andererseits @ einen Strom darstellt, so gilt (2.13) und damit auch (2.12).

3
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Aus Satz 1.17 ergibt sich iibrigens in Verbindung mit (2.12), daB jeder Zeilenvektor der
Inzidenzmatrix die Eigenschaft einer Spannung auf G besitzt. Weiterhin gilt

Satz 2.4: Ein Vektor 87 = (9, ... 8,) ist genau dann eine Spannung auf G, wenn es einen Vek-
tor t* = (t, ... t,) gibt, so daf gilt
9=-ST-t. (2.19)

Zum Beweis nehmen wir an, daB ein derartiger Vektor t existiert. Dann folgt

M=

&=— 2, St
j=1
=t (Endpunkt des Bogens u;) — ¢ (Anfangspunkt des Bogens u,);

=R m® (2.15)

Nach Satz 1.15 ist dann & eine Spannung, t ein zugehoriges Potential. Wenn zum ande-
ren & eine Spannung darstellt, so bezeichne t ein zugehoriges Potential. Dann ist (2.15)
erfiillt und damit auch (2.14).

Aus den angefiihrten Sétzen wird verstdndlich, daB die Matrix S besonders zur Formu-
lierung von Strom- und Spannungsproblemen geeignet ist. Dies ist auch der Grund fur
die Einflihrung von ,verallgemeinerten Inzidenzmatrizen“. So nennt man jede (n, m)-Ma-
trix, welche keine Nullzeilen und in jeder Spalte mindest ein und hoct zwei von
Null verschiedene Elemente (nicht notwendig +1 oder —1) hat. So kann die Matrix in
Bild 2.2 a als Beschreibung des gemischten Graphen von Bild2.2b verwendet werden, des-
sen Kanten und Bogen noch durch die H-Elemente ,Bewertungen“ an den betr. Knoten-
punkten zugeordnet sind. Mit Hilfe verallgemeinerter Inzidenzmatrizen lassen sich dann
auch verallgemeinerte Strom- und Spannungsprobleme (d.h. allgemeinere FluBprobleme)
mathematisch beschreiben. Der interessierte Leser sei auf [7], [1] verwiesen.

4 3 0 3 0 0
a) H=|5 0 -2 0 -1 0
00 -1 -2 0 -4

Bild 2.2. Verallgemeinerte Inzidenzmatrizen

Bemerkung: Den Zeilen von H entsprechen die Knotenpunkte x,, x,, x3. Jede Spalte ent-
spricht einem Bogen (bei zwei von Null verschiedenen Elementen oder nur einem negati-
ven) bzw. einer Kante (zwei gleichsignierte oder nur ein positives Element). Der Zusatz-
knotenpunkt x, faBt die 1-Element-Spalten zusammen.

2.3. Fundamentalmatrizen

GemilB Satz 1.2 enthilt eine Zyklenbasis k(G) = m — n+ 1 Zyklenvektoren (wir neh-
men an, daB G zusammenhingend ist, d.h., p=1):

#OT =i s )y i=1, 0, K
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Wenn wir diese Vektoren als Spalten einer Matrix zusammenstellen, so entsteht die zur
Basis gehorende Fundamentalmatrix. Wir wollen weiter den Satz 1.7 heranziehen, der
sagt, wie man unter Zuhilfenahme eines Geriistes von G eine Basis konstruieren kann.

Definition 2.4: G= (X, U) sei ein zusammenhdngender Graph, H= (X, V) ein Geriist von G.
{uy, ..., ui} seien die Bigen von U—V, und {u®, ..., u®} mit

BOT= iy ovor by T =100, @.16)
die durch diese Bogen (gemdfy Satz 1.7) erzeugte Zyklenbasis. Wir bezeichnen dann die
(m, k)-Matrix

F= (uy) (2.17)

S nd

als die zur Basis (zum Geriist H) geho) F almatrix von G.

Beispiel 2.4: Fiir den im Bild 2.3 dargestellten Graphen mit m =7 Bogen und n=5 Knotenpunkten
bildet der Untergraph

H=XV); X={xi, ..., xs}, V={ug, us, ug, us}
ein Geriist. Durch die auBerhalb von H liegenden Bogen u;, u,, u; werden die Zyklen
O =(uy, ug), p®=(us, u)), O =(us, u, us, uy)

X U

X5

X

Bild 2.3. Zu Beispiel 2.4

bestimmt, und diese bilden eine Basis von G. Wenn wir die Zyklen gemaB (1.7) und unter Beachtung
der in Satz 1.13 vereinbarten Festlegung des Durchlaufsinnes durch ihre Vektoren darstellen, so ent-
steht die Fundamentalmatrix

0o 0

0

1

0 . (2.18)
3|
il

1

-]

[}
coor~r o O~
o~ o0 o~

Bei der in Definition 2.4 verwendeten Numerierung der Bogen setzt sich F zusammen
aus einer Einheitsmatrix E des Formats (k, k) und einer weiteren Teilmatrix F des For-
mats (m— k, k):

F= (I'-:E) @19

Mittels F liABt sich eine zu Satz 2.3 analoge Aussage formulieren:

D.2.4
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Satz 2.5: Ein Vektor & = (9,...9,,)" ist genau dann eine Spannung auf G, wenn er die Bedin-
gung

FT-9=0 (2.20)
erfiillt.

Beweis: Wenn & (2.20) geniigt, so gilt

0= (BN =) wi=(u®9)= Y 8- 3 8 i=1,...k (221
j=1 j=1 weut* weu
Nach (1.37) heiBt dies aber nichts anderes, als daB fiir jeden Elementarzyklus der Basis
die Spannungsregel erfiillt ist. Nun sei u ein beliebiger elementarer Zyklus. GemiB (1.10)
gilt fiir diesen die Darstellung

k
p= ru®,
=1
und es folgt weiter
k
(w9) =2 10, 8) =0.
i=1
Nach Definition 1.17 ist folglich & ein Spannungsvektor. Ist andererseits bekannt, daB3 es
sich bei ¢ um eine Spannung auf G handelt, so erfiillt der Vektor die Spannungsregeln
(2.21) und deshalb auch die Beziehung (2.20).

Im Abschnitt 1. haben wir den Satz 1.13 bewiesen. Dieser besagt, daB ein Strom auf G
eindeutig bestimmt ist, wenn wir seine Komponenten auf den Bogen auBerhalb eines Ge-
riistes des Graphen vorgeben. Dabei gibt die Formel (1.35) an, wie der vollstindige Strom-
vektor von diesen Vorgaben ¢, ..., @, aus mit Hilfe der zum Geriist gehorenden Zyklen-
basis berechnet werden kann. Wenn wir die k Komponenten zu einem Vektor
zusammenfassen,

[
@' = ( f )’ (2.22)
P

dann 148t sich (1.35) unter Verwendung der Fundamentalmatrix F ersichtlich auch fol-
gendermaBen schreiben:

9=F-¢'. (2.23)

Eine entsprechende Formel kann fiir die Berechnung von Spannungsvektoren angege-

ben werden. Nach Satz 1.16 ist eine Spannung & durch ihre Komponenten auf den Bogen

eines Geriistes eindeutig bestimmt. Wenn wir die in Definition 2.4 angenommene Bo-
gennumerierung verwenden, so sind dies die Komponenten 9., ..., 4,. Mit

e+
3,=( , ‘) (2249

I
und (2.19) kann der vollstindige Spannungsvektor durch die Beziehung
—FT\ ,
19=(E, )~.9 @.25)

berechnet werden. Dabei ist E* eine Einheitsmatrix des Formates (m — k, m — k).
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Nachdem in den vorangegangenen Abschnitten grundlegende Begriffe und Beschrei-
bungsarten von Graphen zusammengestellt wurden, wollen wir nun dazu iibergehen, eine
Reihe von praktisch relevanten Problemen der Graphentheorie zu formulieren und geeig-
nete Losungsverfahren anzugeben.

Bei einer ersten Gruppe derartiger ,,Standardprobleme® geht es um die Bestimmung
von Bahnen. Die praktische Bedeutung solcher Aufgabenstellungen liegt auf der Hand.
Beispielsweise wird es oft notwendig sein, die ,kiirzeste“ oder die ,billigste“ Verbindung
von einem Knotenpunkt @ zu einem anderen Knotenpunkt b zu ermitteln. In anderen
Fillen wird es geniigen, irgendeine Bahn zu bestimmen, auf der man von a aus nach b ge-
langen kann. Mit dieser zuletzt genannten Aufgabenstellung wollen wir beginnen.

3.1. Das einfache Bahnproblem

Aufgabenstellung: Gegeben sind ein Graph G = (X, U) und zwei seiner Knotenpunkte a,

be X; a+b. Gesucht wird eine von a nach b fiihrende (elementare) Bahn.

Es kann natiirlich vorkommen, daB gar keine Bahn von d nach b fiihrt, d. h., daB die
Aufgabe nicht 16sbar ist. Existieren jedoch derartige Bahnen, so soll eine davon ermittelt
werden.

DaB wir in obiger Problemstellung einen gerichteten Graphen voraussetzen, bedeutet
praktisch keine Einschrinkung. Wenn namlich ein Verbindungsweg zwischen zwei gege-
benen Knotenpunkten eines ungerichteten Graphen zu bestimmen ist, so konnen wir
diese Aufgabe stets auf die oben formulierte zuriickfiithren, indem wir jede Kante durch
ein Paar entgegengesetzt gerichteter Bogen ersetzen.

Fragestellungen, die sich als einfaches Bahnproblem formulieren lassen, sind z. B. die
sog. ,Ein-Mann-Spiele“. Darunter wird folgende Problematik verstanden: Von einem ge-
gebenen Anfangszustand a aus soll iiber eine Folge moglicher Zwischenzustidnde ein ge-
wiinschter Endzustand b erreicht werden. Wenn wir die moglichen Zustinde als Knoten-
punkte eines Graphen, die erlaubten Ubergiinge zwischen den Zustinden als Bogen
darstellen, so besteht die Aufgabe darin, eine Bahn von d nach b zu suchen. Beispiele fiir
derartige Spiele sind das Labyrinth (in einem gegebenen System von sich verzweigenden
Gingen wird ein Weg von einem Punkt @ zum Ausgang b des Labyrinths gesucht; Kno-
tenpunkte sind hier die Verzweigungs- und Endpunkte von Géngen, jeder Gang selbst
wire durch zwei entgegengesetzt gerichtete Bogen darzustellen), und das bekannte Pro-
blem ,Wolf, Ziege, Kohlkopf* (siche Beispiel 3.1).

Natiirlich gibt es auch ernsthafte Beispiele fiir das Bahnproblem, wir wollen einige an-
deuten:

— G stelle ein Netz zur Informationsiibermittlung dar, z. B. einen Alarmierungsplan.
Eine Nachricht soll von @ nach b geleitet werden. Auf welchem Weg ist das mdglich?

— G bilde ein System von chemischen Stoffen ab, die auseinander (direkt oder tiber Zwi-
schenprodukte) erzeugt werden konnen. Auf welchem Wege, d. h. iiber welche Zwi-
schenprodukte, kann ein Stoff b, ausgehend von einem Stoff d, hergestellt werden?

— G beschreibe ein Verbundnetz zur Verteilung von Energie oder Material (Elektroener-
gie, Dampf, Heizgas, Wasser usw.). Durch Havarie fillt ein Teil des Netzes aus (Lo-
schung der entsprechenden Bogen). Gesucht wird eine Mdglichkeit, um im Restgra-
phen den Verbraucher b von d aus zu beliefern.

Wir wollen jetzt ein von Trémaux [1] angegebenes Verfahren zur Losung des einfachen
Bahnproblems beschreiben.
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Algorithmus von Trémaux

Man fiihre von g ausgehend in G einen SuchprozeB unter Verwendung der folgenden
vier Regeln durch:

(1) Zunichst wird von a aus soweit wie moglich eine beliebige Bahn verfolgt. Jeder dabei
durchlaufene Bogen wird durch ein Kreuz markiert.

(2) Gelangt man zu einem Knotenpunkt, von dem kein Bogen wegfiihrt (Ende einer
»Sackgasse“), so geht man iiber den Ankunftsbogen zuriick und markiert ihn durch
ein zweites Kreuz.

(3) Kommt man beim Vorwirtsschreiten zu einem schon vorher angetroffenen Knoten-
punkt, so wird wie bei Regel (2) verfahren.

(4) Kommt man beim Riickwirtsschreiten iiber einen Bogen [aufgrund von Regel (2) bzw.
(3)] zu dessen Anfangspunkt a zuriick, so wird folgendermaBen weiter verfahren:
Falls von a ein noch nicht benutzter Bogen wegfiihrt, so geht man iiber diesen weiter
voran.

Falls ein solcher nicht vorhanden ist, so geht man {iber den in a endenden Bogen, der
das erstemal dorthin gefiihrt hat (der demzufolge mit einem Kreuz markiert ist), wei-
ter zuriick.

Der SuchprozeB wird abgebrochen, wenn man in 5 ankommt (dann ist eine Losung gefun-
den), oder wenn er geméB den vier Regeln nicht mehr fortgesetzt werden kann (dann ist
die Aufgabe nicht 16sbar, d. h., es existiert in G keine Bahn von @ nach b).

Den Beweis fiir die Wirksamkeit des Algorithmus fiihren wir hier nicht, der Leser findet
ihn z.B. in [1]. Es sei nur noch auf folgendes hingewiesen: Wenn b erreicht wird, so kann
die Bahn als Folge einfach angekreuzter Bogen im Graphen abgelesen werden (alle iibri-
gen Bogen tragen dann entweder kein oder zwei Kreuze). Wenn keine Losung existiert,
dann bricht der SuchprozeB in a ab. Alle durchlaufenen Bogen sind dann zweifach ange-
kreuzt, die iibrigen gar nicht. Wir erldutern das Verfahren jetzt an einem Beispiel.

Beispiel 3.1: Das Problem ,,Wolf, Ziege, Kohlkopf*. Ein Wolf (W), eine Ziege (Z) und ein Kohlkopf
(K) befinden sich zusammen mit dem Fiahrmann (F) am Ufer eines Flusses und sollen iibergesetzt
werden. Das Boot des Fihrmannes ist aber so klein, daB er immer nur einen von ihnen mitnehmen
kann. Verstindlicherweise kann der Fihrmann Wolf und Ziege, Ziege und Kohlkopf nicht ohne Auf-
sicht allein lassen. Wie muB er das Ubersetzen durchfiihren, damit alle drei Passagiere wohlbehalten
das andere Ufer erreichen?

Um diese Aufgabe durch einen Graphen darzustellen, suchen wir zunéchst aus allen denkbaren Kon-
figurationen am Ausgangsufer [vgl. (3.1)] die ,erlaubten Zustinde“ heraus. Es sind dies die in (3.1)
nicht durchgestrichenen Konfigurationen.

(Beachte: FW muB gestrichen werden, da ja dann Z mit K am anderen Ufer allein sind, analoge
Uberlegungen fiihren zur Streichung von FK und F; @ ist die leere Menge, d.h. der gewiinschte End-
zustand, bei dem sich alle am anderen Ufer befinden).

FWZK:

FWZ. FWK. FZK. MZE:

B FZ, BK DL WK, 3K: (€RY]
X W, 7. K:

o

Wir stellen nun die 10 erlaubten Zustéinde als Knotenpunkte dar und ziehen einen Bogen immer
dann, wenn der Ubergang von einem Zustand zu einem anderen ohne Gefahr moglich ist. Der Leser
priife selbst nach, daB dies den in Bild 3.1 dargestellten Graphen (n= 10, m = 20) ergibt. Das Pro-
blem besteht nun darin, eine Bahn zu finden, die vom Anfangszustand a@ (~ FWZK) zum verlangten
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Endzustand b (~0) fiihrt. Die Anwendung des Algorithmus von Trémaux liefert eine der beiden exi-
stierenden Bahnen:

FWZK — WK = FWK > W— FWZ— Z— FZ—0;
FWZK — WK — FWK —> K — FZK > Z— FZ—0.

Im Bild 3.1 ist ein méglicher Verlauf des Suchprozesses durch die Kreuz-Markierungen beschrieben,
dieser ergibt die erste der Losungsvarianten.

FWZK Fwz FWK FIK 174

WK w z K VA

Bild 3.1. Zum Problem ,Wolf, Ziege, Kohlkopf*

Hingewiesen sei noch auf folgende Merkmale des Algorithmus von Trémaux, die bei
Graphenalgorithmen nicht selten zu beobachten sind: Das Losungsverfahren ist durch
verbale Regeln beschrieben und stellt einen schrittweise arbeitenden SuchprozeB mit
Markierungsvorschriften dar (Ankreuzen von Bogen; in anderen Fillen werden Farbungs-
vorschriften verwendet). Diese Techniken spiegeln sich dann natiirlich auch in der re-
chentechnischen Realisierung wider, z.B. schon in der fiir die Beschreibung des Graphen
gewidhlten Codierung (vgl. Abschnitt 6.).

3.2. Das Problem der kiirzesten Bahn

Aufgabenstellung: Gegeben sind ein Graph G= (X, U) und zwei seiner Knotenpunkte g,
be X; a+ b. Die Bogen des Graphen sind mit nichtnegativen reellen Zahlen (,,Kosten®)
bewertet

c(u)z0 fiiralle ue U. (3.2)

Gesucht wird aus der Menge M (q, b) aller von d@ nach b fiihrenden Bahnen eine Bahn u*
mit minimaler Kostensumme

k(@ b)= min {2 c(u)}. (3.3)
weM@b) lucu
Falls M(d, b) + @ ist, existiert eine Losung. Sie muB nicht immer eindeutig bestimmt
sein, denn es kann ja durchaus mehrere Bahnen mit der gleichen Kostensumme geben.
Das Problem des kiirzesten Weges tritt in der Praxis in vielfdltiger Weise auf, da ja die

Bewertungen der Bogen die verschiedenste Bedeutung haben konnen. Wir zédhlen einige

Beispiele auf:

— Die Knotenpunkte von G konnen Ortschaften, die Bogen entsprechende Verkehrswege
zwischen den Ortschaften, c(u) die zugehorigen Kilometerentfernungen bedeuten. Ge-
sucht ist dann der kiirzeste Reiseweg von d nach b.

— G sei ein Transportnetz, c(u) bedeute die beim Transport der Mengeneinheit einer
Ware iiber den Bogen u entstehenden Kosten. Dann wird der billigste Transportweg
von a nach b gesucht.

— G stelle ein Informationsnetz dar, c(u) die Zeit, die zur Weiterleitung einer Nachricht
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iiber den Bogen u erforderlich ist. Zu bestimmen ist der schnellste Informationsweg
von @ nach b.

G beschreibe ein System von Produkten, die direkt oder indirekt auseinander herge-
stellt werden konnen. Ein Bogen u = (x, y) bedeutet, daB y unmittelbar aus x erzeugbar
ist. c(u) soll die Herstellungskosten pro Mengeneinheit angeben. Das Problem des kiir-
zesten Weges entspricht in diesem Fall der Aufgabe, das billigste Produktionsverfahren
fiir den Stoff b, ausgehend vom Rohstoff @, zu suchen.

Es gibt eine ganze Reihe von Algorithmen, die eine explizite Ermittlung von kiirzesten
Bahnen erlauben. Einen wollen wir nun beschreiben.

Algorithmus von Dantzig

Von a ausgehend werden schrittweise die Kostensummen zu anderen Knotenpunkten
des Graphen bestimmt. Der ProzeB verliuft in folgenden Schritten:

(1) Setze
#(a)=0; A,={a}. (3.4)
(2) Betrachte die Menge w*(A4,) der mit 4, nach auBen inzidenten Bogen von G. Er-
mittle
min {t(a) + c(u)} = t(a) + c*. 3.5
uew' (4)
Es seien
(@, by), (4 by),... (3.6)
die Bogen aus w*(4,), die in (3.5) den Minimalwert liefern, fiir die also gilt:
c(a, b)) =c(@b))=..=c*
Alle diese Knotenpunktpaare (3.6) werden notiert.
Setze
t(by) = t(by) = ... = t(d) + c*

(r

<

A= 4,0 (b}, ], ). (X))

Betrachte die Menge w* (4,-;) der mit 4,_, nach auBlen inzidenten Bogen von G. Er-
mittle (a; der Anfangspunkt des Bogens u)

min {t(a) + c(u)} = t*+ c*. (3.8)

uew (4,
Es seien

(@) (a s b 3.9
die Bogen aus w* (4,-,), die das Minimum hervorrufen, fiir die also gilt:

t(ay) + c(ay, b;) =t(ay) + c(ay, (S oen Sk s (3.10)
Notiere alle Paare (3.9) und setze

HURS RS e G (3.11)

A =40 {b,,by,...}.
Dieser Schritt wird der Reihe nach fiir r = 3, 4, ... ausgefiihrt.
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Der ProzeB bricht ab, wenn b in eine Menge A,. einbezogen werden konnte, oder wenn
w* (4,) =0, b & A,. eintritt. In letzterem Fall hat das Problem keine Losung, es existiert
keine Bahn von 4 nach b. Im Fall be A,. ist #(b) die gesuchte minimale Kostensumme
k(a, b). Eine zugehdrige kiirzeste Bahn p* erhiilt man dadurch, daB von b, = b ausgehend
aus den notierten Paaren (a,, b,) jeweils die Vorginger aufgesucht und so schrittweise bis
zum Anfangspunkt @ zuriickgegangen wird.

Wir weisen noch auf folgende Eigenschaften dieses Algorithmus hin: Wenn wir von &
aus mit-Hilfe der notierten Paare alle Moglichkeiten verfolgen, die uns schrittweise nach
a zurickfihren, so erhalten wir tatsdchlich alle Losungen des Problems, d. h. alle von a
nach b verlaufenden kiirzesten Wege. Dariiber hinaus stehen nach Abbruch des Prozesses
weitere Informationen zur Verfligung: Fiir alle Knotenpunkte a, € 4,. gibt #(a,) die mini-
male Kostensumme von @ aus an. Auerdem kann man fiir jedes a, € 4,. auch alle kiirze-
sten Wege von a aus explizit ermitteln, indem man, wie oben beschrieben, schrittweise
uber die notierten Paare von a, bis @ zuriickschreitet.

Der Beweis zum Dantzig-Algorithmus ist z.B. in [1], [11] ausgefiihrt. Dort findet der Le-
ser auch andere Verfahren zur Losung des Problems des kiirzesten Weges und weitere
Hinweise auf die sehr umfangreiche Literatur zu diesem Aufgabentyp. Wir demonstrieren
den Ablauf des Verfahrens von Dantzig zum AbschluB8 noch an einem Beispiel:

Beispiel 3.2: Destillative Zerlegung eines 4-Stoffgemisches. Eine Fliissigkeit bestehe aus den Kompo-
nenten 4, B, C, D (in dieser Reihenfolge nach steigenden Siedepunkten geordnet). Leitet man das
Gemisch einer Rektifikationskolonne (vgl. Bild 3.2a) zu, so erfolgt dort die Zerlegung in ein leichter
siedendes ,,Kopfprodukt“ und ein schwersiedendes ,,Sumpfprodukt®. Zwischen welchen Komponen-
ten der ,Schnitt“ erfolgt, kann durch Wahl der technischen Parameter bestimmt werden, z.B. A/BCD
oder AB/CD usw. Um eine vollstindige Zerlegung zu erreichen, miissen drei Schnitte gefiihrt, d. h.
drei Kolonnen verwendet werden. Es gibt dafiir fiinf Schaltungsvarianten; zwei sind in Bild 3.2 ¢ dar-
gestellt. (Bemerkung: Bei 10-Stoffgemischen gibt es bereits 4862 Varianten!) Jeder Trennschritt ist
mit besti Kosten verbunden. Gesucht wird die optimale Schaltungsvariante, welche moglichst
geringe Gesamtkosten verursacht. Als graphentheoretisches Modell zeichnen wir alle méglichen
Trennungszustinde als Knotenpunkte (es gibt solche mit 0, 1, 2, 3 Schnitten), die mdglichen Uber-
gange (Trennschritte) als Bogen, vgl. Bild 3.2b. Als Bogenbewertung dieses ,,Zustandsgraphen wer-
den die Kosten fiir die Trennschritte verwendet (hier fiktive Zahlen). Gesucht werden kiirzeste Bah-
nen vom Ausgangszustand (4BCD) zum Endzustand (4/B/C/D). Durch Abarbeiten des Algorithmus
von Dantzig erhalten wir der Reihe nach:

1. Schritt: #(d@)=0; A,={a}.
2. Schritt: w*(4,) = {(d, x)), (@, x2), (4 x3)};
min{0+1,0+2,0+3}=1
Wir notieren den Bogen (4, x,) und setzen #(x,) =1, 4, = {4, x,}.
3. Schritt: w*(4,) = {(x;, x4), (x1, X5), (4 x3), (@, x3)};
min {1+2,1+3,0+2,0+3}=
Notiere: (d, x,). Setze: t(x;) =2, 4; = {4, x;, x,}.
4. Schritt: 0" (43) = {(x1, x4), (X1, Xs), (X2, Xa), (X2, X), (4, X3)};
min {1+2,1+3,2+2,2+1,0+3}=3.
Notiere: (x;, x4), (x3, X¢), (@, x3).
Setze: t(xq) = t(x3) = t(xe) = 3;  Ays={d, X1, X3, X3, X4, X¢}.
5. Schritt: w* (44) = {(xs, b), (x1, x5), (x3, x;), (x6, B)};
min {3+3,1+3,3+2,3+2}=
Notiere: (X, Xs) Xs). Setze: t(xs) = ; As={a, xy, ..., x¢}.
6. Schritt: w* (4s) = {(x4, b), (x5, b), (xs, B)};
min {3+3,4+1,3+2}=5.
Notiere: (xs, b), (x¢, b). Setze: t(b) =S5.

Abbruch, weil IE einbezogen wurde. Als minimale Kostensumme haben wir #(b) =S erhalten. Als
Vorginger von b lesen wir aus den im 6. Schritt notierten Bogen x5 und x4 ab. Wir verfolgen zunichst
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die erste Moglichkeit weiter. Vorgédnger von x;s ist (siehe Schritt 5) der Knotenpunkt x,, dessen Vor-

gianger wiederum 4 (siehe Schritt 2). Damit haben wir eine erste kiirzeste Bahn gefunden:
a—x,—xs—b.

Beim Verfolgen der zweiten Moglichkeit, d. h. Riickwiértsgehen von x4 aus, erhalten wir als zweite
kiirzeste Bahn

a—x,—>x¢—b.
Die diesen beiden Bahnen (Folgen von Trennschritten!) entsprechenden optimalen Kolonnenschal-
tungen sind im Bild 3.2 ¢ dargestellt.
AB
Kopfprodukt

Zulauf

a) Sumpfprodukt

ABCD BC

BCD C

c)
D

Bild 3.2. Zu Beispiel 3.2
In der Aufgabenstellung (3.2), (3.3) wird die Bewertung der Bogen ausdriicklich als
nichtnegativ vorausgesetzt. Wenn negative Bewertungen zugelassen sind, d.h., wenn an-
stelle von (3.2)

c(u)Z0 furalleue U (3.12)

steht, so spricht man vom verallgemeinerten Problem der kiirzesten Bahn. Dabei wird
noch vorausgesetzt, daB der Graph G keine Kreise mit einer negativen Bewertungssumme
enthilt. Diese Einschriankung ist sinnvoll. Wenn nidmlich ein solcher Kreis vorhanden ist
und wenn in G eine Bahn von d nach b existiert, die mit dem Kreis einen Knotenpunkt x
gemeinsam hat, dann liefert (3.3) als minimale Kostensumme ,,—“ (man gehe von a aus
bis x und durchlaufe dann den Kreis beliebig oft), d. h., es existiert dann kein endliches
Minimum.
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Falls tatsdchlich negative Bewertungen vorkommen, so liefert der Algorithmus von
Dantzig im allgemeinen nicht die kiirzeste Bahn, wie folgendes Beispiel zeigt, vgl.
Bild 3.3a. Angenommen, #(a;) ist bereits bestimmt. Dann wiirde der Algorithmus im fol-
genden Schritt gemiB (3.8) den Bogen (g;, ;) auswihlen und t(a;) = t(a;) + 5 festlegen,
obwohl iiber die Bahn a;, a;, a; eine kiirzere Verbindung nach g, vorhanden ist.

//
a) \

Bild 3.3. Zur Anwendbarkeit des Algorithmus von Dantzig

Losungsverfahren fiir das verallgemeinerte Problem werden in [1], [11] beschrieben, wir
gehen hier nicht darauf ein.

3.3. Lingste und kritische Bahnen

Bei anderen praktischen Aufgabenstellungen geht es darum, nicht die kiirzesten, son-
dern die lingsten Bahnen zwischen zwei Knotenpunkten 4, b eines bewerteten Graphen
zu bestimmen.

Problem der lingsten Bahn: Gegeben ist ein Graph G = (X, U), dessen Bogen mit reellen
Zahlen

c(u)Z0 firalleueU (3.13)

bewertet sind, sowie zwei Knotenpunkte 4, be X; a+b. Gesucht sind aus der Menge
M(a, b) aller von a nach b fithrenden Bahnen diejenigen mit maximaler Kostensumme:

I(d,b) = max {Z c(u)}. (.14
ueM@,5) lucu
Einschrinkung: G enthalte keine Kreise mit einer positiven Bewertungssumme.

Die zuletzt vorgenommene Einschrinkung verhindert, daB Bahnen beliebig groSer
Lange auftreten.

Wir kdnnten zunichst vermuten, daB fiir den Fall nichtnegativer Bewertungen der Al-
gorithmus von Dantzig auch zur Bestimmung lingster Bahnen geeignet ist, wenn man nur
in (3.5) und (3.8) ,min“ durch ,max“ ersetzt. Diese Vermutung bestitigt sich jedoch
nicht, wie folgendes Beispiel zeigt, vgl. Bild 3.3b: Wenn #(a;) festgelegt ist, so wiirde der in
der angegebenen Weise abgednderte Algorithmus im néchsten Schritt den Bogen (a;, a;)
auswihlen und dem Knotenpunkt a@; als maximale Kostensumme #(a;) + 10 zuweisen.
Aber es gibt iiber die Bahn a;, a, a; eine lingere Verbindung von a; nach a;.
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Zur Losung des Problems der liangsten Bahn kann folgendermaBen verfahren werden.
Offenbar ist (3.14) dquivalent mit der Aufgabe

min {Z (—c(u))} (3.15)

neM@,b) luepn
Indem wir also zu neuen Bewertungen
c'(u)=—c(u) firalleuelU (3.16)

iibergehen, haben wir die Aufgabe (3.14) in ein verallgemeinertes Problem des kiirzesten
Weges iibergefiihrt (beachte, daB der neu bewertete Graph keine Kreise mit negativer Be-
wertungssumme enthdlt!). Wenn dessen Losung die Kostensummen #'(a;) ergeben hat, so
erhalten wir mit

t(a) = —t(a) (3.17)

die gesuchten maximalen Kostensummen des Problems der lingsten Bahn.

Die Bestimmung langster Bahnen bildet einen wesentlichen Bestandteil moderner Me-
thoden zur Planung und operativen Lenkung von Projekten und Prozessen, die unter der
Bezeichnung Netzplantechnik bekannt sind. Worum es in diesem Anwendungsgebiet der
Graphentheorie geht, erldutern wir zundchst an einem einfachen Beispiel.

Wir betrachten einen in der Zeit ablaufenden ProzeB, der aus einer Reihe von Teilvor-
gingen a; mit der Zeitdauer d; besteht. Als Beispiel wihlen wir (stark vereinfacht) den
ProzeB ,Bau eines Hauses“. Die Teilvorginge (,Aktivititen“) und die zugehdrigen Zeit-
dauern sind in Tabelle 3.1 zusammengestellt. Dabei haben wir zu den realen Vorgiingen
die beiden fiktiven Aktivititen ,Beginn“ und ,Ende“ des Gesamtprozesses hinzugefiigt,

Tabelle 3.1: Aktivitatenliste zum ProzeB ,Bau eines Hauses“

Aktivititen ~Bedeutung Zeitdauer
4 d;
a, Beginn 0
a, Anlegen der Baustrae 6
a; Antransport der Fertigbauteile 4
a, Erdarbeiten (Baugrube, Griben 5
fiir Rohrleitungen)
as GieBlen der Fundamente 10
ag Verlegen der Rohrleitungen 32
a; Montage der Bauteile 30
ag Ende 0

denen natiirlich die Zeitdauer Null zuzuordnen ist. Offenbar konnen die Teilvorgéinge
nicht in beliebiger Reihenfolge oder gleichzeitig ablaufen, sondern es miissen bestimmte
Aktivititen abgeschlossen sein, ehe mit anderen begonnen werden kann (z. B. setzt die
Montage der Fertigbauteile voraus, daB ihr Antransport erfolgt ist und daB die Funda-
mente fertiggestellt sind). Es ist also eine bestimmte logische Aufeinanderfolge der Akti-
vititen beim Ablauf des Gesamtprozesses zu beachten. Diese logische Aufeinanderfolge
und gegenseitige Bedingtheit der Vorgdnge konnen wir nun durch einen Graphen darstel-
len, den Netzplan des Prozesses. Dabei konnen wir zwischen zwei Arten der Darstellung
wihlen, die in der Praxis gleichberechtigt verwendet werden.
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1. Maglichkeit: Aktivitdtsorientierter Netzplan, Vorgangsknotennetz.

Die Aktivitdten werden als Knotenpunkte dargestellt. Durch die Bogen wird die logi-
sche Aufeinanderfolge der Aktivititen zum Ausdruck gebracht, d. h., ein Bogen (g;, @)
wird gezogen, wenn g; beginnen kann, sobald a; abgeschlossen ist. In unserem Beispiel
fiihrt dies zu dem in Bild 1.2a gezeichneten Netzplan. (Bei Vorgangsknotennetzen ist es
iiblich, die Knotenpunkte durch rechteckige Kistchen darzustellen.)

2. Moglichkeit: Ereignisorientierter Netzplan, Vorgangspfeilnetz.

Die Aktivititen werden durch Bogen dargestellt. Ihre logische Aufeinanderfolge wird
durch die Knotenpunkte, bei dieser Darstellungsart Ereignisse genannt, beschrieben. Zu
diesem Zweck werden die Knotenpunkte E; so festgelegt, daB folgende Regel eingehalten
wird:

Alle von E; wegfithrenden Aktivitdten (Bogenmenge w* (E;)) konnen begonnen werden,
sobald alle in E; endenden Aktivititen (Bogenmenge w~ (E;)) abgeschlossen sind.

In unserem Beispiel kommen wir so zu dem in Bild 3.4a gezeichneten Netzplan. (Bei
Vorgangspfeilnetzen werden die Knotenpunkte meist durch Kreise dargestellt.)

a

00@ - @, % ®

P) O

Bild 3.4. Ereignisorientierter Netzplan

Es leuchtet ein, daB dér Ubergang von der einen zur anderen Darstellungsart keine
Schwierigkeiten macht. Wir beschrdnken uns im folgenden auf die Betrachtung von Vor-
gangsknotennetzen.

Fiir das Aufstellen eines Netzplanes gibt es kein Verfahren, das man rezeptmaBig an-
wenden konnte. Vielmehr ist es notwendig, in jedem konkreten Fall den zu modellieren-
den ProzeB genau zu durchdenken, um die logische Reihenfolge und gegenseitige Be-
dingtheit der einzelnen Aktivititen zu erkennen. Wir konnen aber einige Eigenschaften
angeben, die der fertige Netzplan aufweisen muB. Dabei handelt es sich zum Teil um Ver-
einbarungen, deren Einhaltung bei den noch zu besprechenden Berechnungsverfahren
vorausgesetzt wird, zum Teil sind es Eigenschaften, deren Nichtvorhandensein darauf
hinweist, daB bei der Aufstellung des Netzplanes logische Fehler unterlaufen sind.

— Der Netzplan muf3 genau einen Eingang (Knotenpunkt, von dem nur Bogen wegfiih-
ren) und einen Ausgang (Knotenpunkt, zu dem nur Bogen hinfithren) haben. Bei uns
sind dies die fiktiven Aktivitdten ,Beginn“ und ,Ende“. In jedem anderen Knoten-
punkt beginnt und endet mindestens je ein Bogen.

— Im Netzplan diirfen keine Kreise vorkommen. Das ist logisch; denn ein Kreis wiirde
bedeuten, daB gewisse Aktivititen abgeschlossen sein miissen, ehe sie beginnen kon-
nen.

— Zwei Knotenpunkte diirfen jeweils nur durch einen Bogen verbunden sein (keine paral-
lelen Bogen). Bei Vorgangsknotennetzen haben parallele Bogen tatsichlich keinen
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Sinn, denn der zweite wiirde nichts anderes besagen als der erste. In Vorgangspfeilnet-

zen konnen parallele Bogen zundchst durchaus vorkommen. Man beseitigt sie durch

Einfiihrung einer ,,Scheinaktivitdt a, mit der Zeitdauer Null, vgl. Bild 3.4b.
— Jeder Knotenpunkt ist vom Eingang her auf einer Bahn erreichbar.
Die Aufstellung des Netzplanes, auch als Ablaufplanung bezeichnet, stellt die erste Phase
der Netzplantechnik dar. Sicher ist der fertige Netzplan fiir sich allein schon ein wertvol-
les praktisches Hilfsmittel, denn er gibt dem fiir die Planung und Durchfiihrung des Pro-
zesses Verantwortlichen die notige Ubersicht. Der eigentliche Nutzen zeigt sich jedoch
erst in der zweiten Phase, der sogenannten Terminplanung. Zunichst sagt ja der Netzplan
noch nichts dariiber aus, wie der modellierte ProzeB im einzelnen zeitlich ablaufen soll,
d.h. zu welchen konkreten Terminen die verschiedenen Aktivitdten zu beginnen und zu
enden haben. Solche Terminfestlegungen sind aber fiir den Leiter von groBter praktischer
Wichtigkeit, denn von ihnen hingt ab, zu welchen Zeitpunkten die entsprechenden Ar-
beitskrifte, Transportmittel und Baustoffe bereitzustellen sind, welche Vertrige dement-
sprechend mit den Zulieferbetrieben und Nachauftragnehmern abzuschlieBen sind und
vieles andere. Tatséchlich sind ja zunichst beliebig viele Varianten fiir den terminlichen
Ablauf des Prozesses denkbar. Wir werden natiirlich an der Realisierung einer optimalen
Variante interessiert sein, und dies wird meist heiBen, einen solchen Terminplan zu be-
stimmen, bei dessen Einhaltung der GesamtprozeB in mdglichst kurzer Zeit abgeschlos-
sen wird. Diese Zielstellung einer optimalen Terminplanung wird als Problem des kriti-
schen Weges bezeichnet, das wir in Verallgemeinerung unseres Beispiels folgendermaBen
formulieren konnen:

Problem des kritischen Weges: Gegeben ist ein Netzplan G = (X, U). Den Knotenpunkten
X={a,, ..., a,} entsprechen die Aktivititen eines realen Prozesses, insbesondere stellt a,
den Eingang, a, den Ausgang des Netzplanes dar. Fiir jede Aktivitdt ist eine Zeitdauer

dz0;, i=1,..,n, (3.18)
gegeben. Mit
t(a); i=1,...n, 319)

wird der Zeitpunkt des Beginns der Aktivitit a; bezeichnet. Gesucht ist eine Terminpla-
nung (3.19), bei welcher der ProzeB in moglichst kurzer Zeit abgeschlossen ist, d. h.

1(a,) - t(a;) = min! (3.20)

Aus graphentheoretischer Sicht konnen wir diese Aufgabenstellung in verschiedener
Weise interpretieren. Die Zuordnung von Werten #(q;) zu den Knotenpunkten kann als
ein Potential auf G aufgefaBt werden (vgl. Satz 1.15). Es leuchtet ein, daB wir dieses durch
die Festlegung #(a;) =0 normieren kénnen (eine spitere Umrechnung auf Kalenderter-
mine macht offenbar keine Schwierigkeiten). Wenn q; eine Aktivitit ist, die unmittelbar
an ag; anschlieBt, d.h., wenn im Netzplan ein Bogen (a;, a;) vorhanden ist, so muB der An-
fangstermin von a; mindestens um die Zeitdauer d; spiter liegen als #(a;). Deshalb kon-
nen wir das Problem des kritischen Weges folgendermaBen als Aufgabe zur Bestimmung
eines Potentials auf G formulieren:

t(a,) — t(ay) = min!

Nebenbedingungen:
t(a) — t(a) z d; furalle (a;, ¢) € U, (3.21)
t(ay) =0.

Eine andere Mdoglichkeit besteht darin, die Aufgabe als Problem zur Bestimmung einer
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lingsten Bahn aufzufassen. Wir ordnen jedem Bogen (a;, g;) die Zeitdauer d; als Bewer-
tung zu und betrachten eine beliebige Bahn x von a; nach a,. Dann kann die gesuchte
minimale Zeit fir den AbschluB des Gesamtprozesses jedenfalls nicht kleiner sein als die
Lénge von u, denn es miissen ja alle auf 4 liegenden Aktivitdten vollstindig abgearbeitet
werden. Dies gilt fir jede Bahn von a; nach a,, insbesondere auch fiir die langste Bahn
©*. Wenn wir nun g* bestimmen und Anfangstermine 7*(a;) so festlegen, daB

1*(a,) — t*(a) = t*(a,) = ). d; (3.22)
ueu*

eingehalten wird, dann bekommen wir eine optimale Terminplanung, wie sie im Problem
des kritischen Weges gefordert ist. Jetzt wird auch die Bezeichnung ,kritischer Weg® fiir
u* verstindlich. Jede Uberschreitung von Terminen der auf u* liegenden Aktivititen
fiihrt dazu, daB der frithestmégliche Termin ¢*(a,) fir den AbschluB des Gesamtprozesses
iiberschritten wird. Wenn die Zielstellung der ProzeBdurchfiihrung in minimaler Zeit ein-
gehalten werden soll, so muB das besondere Augenmerk der Verantwortlichen den auf u*
liegenden ,kritischen Aktivititen gelten.

Wie wir sehen, kann also die Aufgabe des kritischen Weges prinzipiell als Problem der
langsten Bahn bzw. iiber die Umformung (3.15) bis (3.17) als verallgemeinertes Problem
der kiirzesten Bahn behandelt werden. Unter Ausnutzung der schon genannten besonde-
ren Struktureigenschaften von Netzplinen konnten aber spezielle Algorithmen entwickelt
werden, die leichter zur Losung fiihren. Einen wollen wir kurz beschreiben:

Die Methode CPM

Der Name dieses Verfahrens stellt eine Abkiirzung von Critical Path Method dar. Es
umfaBit im wesentlichen zwei Arbeitsabschnitte.

(1) Vorwirtsrechnung

(diese liefert frithestmogliche Anfangs- und Endtermine fiir die Aktivitdten). Im Zusam-
menhang mit dem Netzplan G = (X, U) verwenden wir folgende Bezeichnungen:

V(a)) = {a;|(a;, a;) € U} die Menge aller Vorgiinger eines Knotenpunktes a;;

d; die Zeitdauer der Aktivitit a;;

FAT(q;) der friihestmdgliche Anfangstermin von a;;

FET(ag;) der friihestmdgliche Endtermin von g;.

Dann gilt offensichtlich:

FAT(aj) = max {FET(b)}, : (3.23)
beV(a)
FET(a)) = FAT(a) + d;. (3.24)
Fiir die Aktivitdt a, (Beginn) mit V(a,) =0 wird gesetzt
FAT(a;) =0. (3.25)

Da in G keine Kreise vorkommen, kann mit den Formeln (3.23) bis (3.25) ,vom Eingang
a, zum Ausgang a,“ durch den Netzplan hindurchgerechnet werden. Die Mindestdauer
des Gesamtprozesses ergibt sich zu

L = max {FET(b)} = FET(a,) . (3.26)
bex
L heiBt auch ,Dauer des Netzplanes“ oder ,Linge des kritischen Weges*.

4 BieB, Graphentheorie
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(2) Riickwirtsrechnung

(diese ergibt ,spitestzulédssige“ Anfangs- und Endtermine fiir die Aktivitdten in folgendem
Sinne: Wann muB spitestens mit der Abarbeitung einer Aktivitit begonnen werden, da-
mit die minimale Dauer L des Gesamtprozesses eingehalten wird?). Mit den Bezeichnun-
gen

N(a;) = {a;|(a;, a;) € U} die Menge aller Nachfolger von g,

SET(a;) der spitestzuldssige Endtermin von a;,

SAT(a;) der spitestzuldssige Anfangstermin von g;,

gilt
SET(a;) = min {SAT(b)}, 3.27)
be N(a)
SAT(a;) = SET(a)) — d; (3.28)
und speziell fiir die Aktivitit a, (Ende) mit N(a,) =0
SET(a,)=L. 3.29)

Von (3.29) ausgehend, wird mit abwechselnder Verwendung der Formeln (3.27), (3.28)
,vom Ausgang a, zum Eingang a;“ durch den Netzplan G hindurchgerechnet.

Beispiel 3.3: Wir demonstrieren den Ablauf des Algorithmus am Beispiel des Prozesses ,Bau eines
Hauses“ (vgl. Bild 1.2a und Tabelle 3.2).

Bei der Vorwirtsrechnung ergibt sich, von (3.25) hend, mit (3.24) dchst FET(a,) =0,
dann weiter:

FAT(a;) = max {FET(b)} = FET(a,) = 0; FET(a;))=0+6,
V(ay

FAT(a;) = max {FET(b)} = 6; FET(a;)=6+4
Via)
usw. Als Linge des kritischen Weges erhalten wir
L= FET(ag) =45.
Tabelle 3.2: Terminberech mit der Methode CPM

g d Va)  N(g)  FAT FET SAT SET GP
a, Beginn 0 - a,, a, 0 0 0 0 (kritisch) 0
a, BaustraBe 6 a as 0 6 5 11 5
a;  Antransport 4 a, a; 6 10 11 15 5
a, Erdarbeiten 5 a as, ag 0 5 0 5 kritisch 0
as Fundamente 10 a4 a; 5 15 5 15 kritisch 0
ag  Rohrleitungen 32 a, ag 5 37 13 45 8
a; Montage 30 as,as ag 15 45 15 45 kritisch 0
ag  Ende 0 ag a; - 45 45 45 45 (kritisch) 0

Entsprechend verlduft die Riickwirtsrechnung. Die kritischen Aktivititen erkennen wir daran, daB
bei ihnen

FAT(a)) = SAT(a;) und FET(a;) = SET(a;)

gilt, d. h., daB bei diesen Teilvorgd keinerlei Spielré hinsichtlich der frithestméglichen und
spitestzuldssigen Termine vorhanden sind. Bei allen nichtkritischen Aktivititen gibt es dagegen der-
artige Spielrdume. Beispielsweise kann der Antransport der Bauteile friithestens nach 6 Tagen begin-
nen. Aber auch, wenn wir ihn erst nach 11 Tagen beginnen lassen, ist er am 15.Tag noch rechtzeitig.
abgeschlossen, denn erst dann ist eine Montage der Fertigbauteile moglich. Innerhalb dieser Frist
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von 5 Tagen kann der Beginn des Arbeitsvorganges ,Antransport“ verschoben werden, ohne da!3 der
Endtermin des Gesamtprozesses gefdhrdet wird. Solche Spielrdume des zeitlichen Ablaufes werden
auch als Pufferzeiten bezeichnet.

Wir konnten hier nur die Grundziige der Netzplantechnik behandeln. Der interessierte
Leser findet Einzelheiten z.B. in [3], [6], [13]. Neuerdings werden zunehmend Netzplan-
modelle komplizierterer Art untersucht, bei denen auBer den Nebenbedingungen der logi-
schen Aufeinanderfolge von Aktivititen noch Restriktionen anderer Art erfaBt sind, z. B.
Beschrankungen fiir die zur Erledigung der Aktivitdten erforderlichen Ressourcen (Ar-
beitskrifte, Transportmittel ...).



S.4.1

S.4.2

4. Probleme der Bestimmung von Geriisten

DaB der Bestimmung von Geriisten (vgl. Definition 1.13) groBe theoretische und prakti-
sche Bedeutung zukommt, zeigte sich u. a. bei der Konstruktion von Zyklenbasen
(Satz 1.7) und bei der Berechnung von Strémen und Spannungen (Sitze 1.13 und 1.16).
Wir wollen jetzt einige weitere Problemstellungen behandeln, die im Zusammenhang mit
Gerlisten auftreten.

4.1. Die Anzahl der Geriiste eines Graphen

Zunichst wenden wir uns der Frage zu, wieviel verschiedene Geriiste ein gegebener un-
gerichteter Graph G = [X, U} -besitzt. (Die im folgenden formulierten Aussagen lassen sich
auf gerichtete Graphen iibertragen, wenn man bei diesen von den Bogenrichtungen ab-
sieht, d. h. die Bogen als Kanten interpretiert.)

Fiir den Fall, daB8 G ein vollstandiger Graph ist, bei dem also je zwei Knotenpunkte
durch genau eine Kante verbunden sind (die Anzahl der Kanten ist dann
m=n-(n—1)/2), gilt

Satz 4.1 (Satz von Cayley): In einem vollstindigen Graphen G = [X, U] mit n Knotenpunkten
(n= 1) gibt es n"~? verschiedene Geriiste.

Den Beweis findet der Leser z. B. in [11]. Dieser Satz besagt auch, da man n nume-
rierte Knotenpunkte auf n” 2 verschiedene Weise mit Kanten zu einem Baum verbinden
kann. Um einen entsprechenden Satz fiir beliebige Graphen formulieren zu konnen, be-
darf es einiger Vorbereitungen. Der zu betrachtende Graph G = [X, U] besitze n Knoten-
punkte xi, ..., x,. Er kann Schlingen und mehrfache Kanten enthalten. Wir fithren fol-
gende Bezeichnung ein:

g; = Anzahl der Kanten von G, die x; mit x; verbinden, 4.1)
Lj=1,..,n; i%j,
und bilden die (n, n)-Matrix I' = (y;) mit

zg,-,, fallsi=k| |
Yik = f:: s hk=1,...,n. 4.2)

—gy, fallsi*k

T wird als Admittanzmatrix von G bezeichnet. Dann gilt folgender

Satz 4.2 (Satz von Kirchhoff-Trent): Es sei G= [X, U] ein Graph mit n Knotenpunkten. Die An-
zahl der verschiedenen Geriiste von G ist gleich der Determinante detI';, wobei die Matrix T'; aus
der Admittanzmatrix T von G durch Streichen der i-ten Zeile und der i-ten Spalte entsteht (i eine
beliebige der Zahlen 1, ..., n).

Bemerkenswert ist die Tatsache, daB der Zahlenwert von det I'; unabhingig von der spe-
ziellen Wahl von i ist. Auch fiir diesen Satz wollen wir hier keinen Beweis fiihren (sieche
z.B. in [11]). Ein Beispiel soll jedoch die Anwendung erléutern.
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Beispiel 4.1: In Bild 4.1 ist ein Graph mit seiner Admittanzmatrix I” dargestellt. Fiir die Anwendung
des Satzes 4.2 wihlen wir etwa i= 2. Dann ergibt sich

5 -2 -1
deth,=|-2 3 0|=8,
-1 0 1

d.h., der Graph besitzt 8 verschiedene Geriiste. Sie sind in Bild 4.1 zusammengestellt.
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Gerdste:

Bild 4.1. Zu Beispiel 4.1

Es sind verschiedene Algorithmen entwickelt worden, mit denen alle Geriiste eines ge-
gebenen Graphen explizit bestimmt werden konnen. Niheres hierfur findet der Leser z.B.
in [2].

4.2. Das Problem des Minimalgeriistes

Aufgabenstellung: Gegeben sei ein schlichter, zusammenhidngender Graph G = [X, U], des-
sen Kanten mit reellen Zahlen (Kosten)

c(u)z0 firalleueU 4.3)
bewertet sind. Gesucht wird aus der Menge M aller Geriiste von G ein Minimalgeriist
H=[X, V] gemaB der Forderung

Y ¢(u) = min! 4.4
M

ueV
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Diese Problemstellung ist natiirlich auch im Zusammenhang mit gerichteten Graphen
sinnvoll, wenn wir dort die Richtungen der Bogen auBer acht lassen kénnen.

Wegen Satz 1.6 besitzt die Aufgabe jedenfalls eine Losung. Hinsichtlich der Eindeutig-
keit gilt

Satz 4.3: Wenn die Bewertungen der Kanten paarweise verschieden sind, so gibt es in G genau
ein Minimalgeriist.

Es fillt nicht schwer, praktische Aufgabenstellungen zu benennen, die auf das Problem
des Minimalgeriistes fithren. Stellen wir uns beispielsweise vor, daB n gegebene Orte
durch ein neu anzulegendes Informations- oder Transportnetz miteinander verbunden
werden sollen (Telefonnetz, Netz zur Datenferniibertragung, StraBennetz, Verbundsystem
zur Ubertragung von Elektroenergie usw.). Dabei sind folgende Bedingungen einzuhalten:
(1) Jeder Ort muB von jedem anderen aus erreichbar sein (direkt oder iiber Zwischen-

orte), d. h., das Netz muBl zusammenhéngend sein.
(2) Verzweigungspunkte sollen nur in den Orten selbst liegen.
(3) Unter allen denkbaren die n Ortschaften verbindenden Netzen ist eine optimale Va-
riante gesucht, die minimale Baukosten verursacht.
Die zuletzt genannte Forderung besagt, daB das gesuchte Netz jedenfalls keine geschlos-
senen Kantenfolgen (keine Kreise, Zyklen) enthalten darf; denn sonst wiren ja tiberfliis-
sige Kanten vorhanden, und man hitte keine Realisierung mit minimalen Kosten. In der
Sprache der Graphentheorie ausgedriickt, bedeuten die Forderungen (1) und (3) gema
Definition 1.12, daB das gesuchte Netz ein Baum sein soll. Um ihn zu finden, werden wir
die Orte als Knotenpunkte aufzeichnen, jedes Knotenpunktpaar durch eine Kante verbin-
den und dieser die jeweiligen Baukosten (fiir eine Direktverbindung) als Bewertung zu-
ordnen. In dem so entstehenden vollstdndigen Graphen G ist der gesuchte Baum als Ge-
riist mit minimaler Kostensumme eingebettet. Wir haben also fiir G das Problem des
Minimalgeriistes vorliegen. Zur Losung des Minimalgeriist-Problems sind verschiedene
Algorithmen entwickelt worden, einen davon wollen wir jetzt beschreiben (den Beweis
findet der Leser z. B. in [1]). Hinweise auf andere Algorithmen und weitere Literatur zu
dieser Problematik siehe z.B. [2], [11].

Algorithmus von Kruskal

(1) Suche in U die ,billigste“ Kante, d.h. diejenige mit der kleinsten Bewertung. Dies sei
v, € U. Setze V; = {v,}. (Falls mehrere Kanten die gleiche kleinste Bewertungszahl ha-
ben, wird willkiirlich eine davon als v, ausgewihlt).

(i) Suche unter den Kanten aus U — V;_,, durch deren Hinzunahme zum Untergraphen
[X, V;-1] kein Kreis entsteht, die billigste. (Falls es mehrere gibt, wird willkiirlich eine
davon ausgewihlt.) Diese sei v;e U— V;_,. Setze V;=V,_; U {v,}, i=2,3,

Der Prozef bricht ab, falls sich zu V; keine Kame aus U- V; mehr hmzufugen 14Bt,
ohne daB ein Kreis entsteht, oder falls U— V;= 0 ist. Dann bildet H [X, V;] ein Minimal-
gerlist.

Beispiel 4.2: Zwischen den Orten a,, ..., ag (vgl. Bild 4.2) soll ein Informationsnetz neu installiert
werden. Gesucht wird ein Netz mit minimalen Baukosten. Um alle Verbindungsmoglichkeiten zur
Konkurrenz 1 ich wir dchst den vollstindi Graphen G. Dieser enthilt
(5) = 15 Kanten. Die Bewertungen der Kanten [g;, a;] (veranschlagte Baukosten der Direktverbindun-
gen) sind in der Tabelle 4.1 zusammengestellt. Das Zustandekommen dieser Zahlen haben wir uns
folgendermaBen vorzustellen: Durch die Geldndebedingungen wird fiir jede Direktverbindung ein
giinstiger Verlauf festgelegt sein (Ausnutzung vorhandener Briicken, Umgehung von Siimpfen und
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Bild 4.2. Problem des Minimalgeriistes (zu Beispiel 4.2)

Bergen usw.). Zu jeder Verbindung kénnen dann unter Beriicksichtigung der km-Entfernungen, der
Bodenverhiltnisse usw. die Teilkosten fiir Erdarbeiten, Kabel, IsolierungsmaBnahmen und aus die-
sen schlieBlich die Gesamtkosten je Direktverbindung ermittelt werden. Dabei ist noch zu bemerken,
daB fur die in der Aufgab llung geforderte E heid findung i. allg. relativ grobe Schitz-
werte fir die Kosten ausreichen werden.

Tabelle 4.1: (Zu Beispiel 4.2) Bewertung der Kanten

a, a, a; a, as ag

a; - 1307,2 6834 850,0 1790,8 14097
a, - 490,0 1040,3 860,0  1000,0
a; - 561,0 840,0 864,0
a, - 1309,8 6732
as - 620,0

ag -

Wir kénnen nun den Algorithmus von Kruskal anwenden. Als Kante mit der kleinsten Bewertung
entnehmen wir aus Tabelle 4.1

vy =[ay, as]; c(vy)) =490; V= {v}}.
Entsprechend ergibt sich als billigste Kante aus U— V;:

vy=[a;, ag]; c(v) =561; V= {vy, v3}.
Im dritten Schritt erhalten wir

vy=[as, agl; c(vs) =620; V3= {vy, vy, v3}.
Weiter ergibt sich

vy =04, agl; c(vy) =673,2; Vy={vy,..., 04},
vs=[a;, as]; c(vs) =683,4; Vs={vy,...,v5}.
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Danach bricht das Verfahren ab, da die Hinzunahme jeder Kante aus U — V5 einen Kreis liefert. Der
Abbruch nach § Schritten ist klar, denn nach Satz 1.5 muB ja das gesuchte Geriist n— 1 =6 — 1 Kan-
ten enthalten.

Im Bild 4.2 ist das ermittelte Minimalgeriist stark gezeichnet. Fiir seine Realisierung sind Bauko-
sten in Hohe von 3027,6 TM zu veranschlagen. Die Losung ist in unserem Beispiel eindeutig, vgl.
Satz 4.3.

Verschiedene mit dem Minimalgeriist-Problem verwandte Aufgabenstellungen sind
ebenfalls praktisch bedeutsam. Dafiir seien noch zwei Beispiele angefiihrt.

Steiner-Weber-Problem: n gegebene Orte sollen durch ein moglichst billiges Netz ver-
bunden werden. Im Gegensatz zum Minimalgeriist-Problem diirfen Verzweigungen auch
auBerhalb der Ortschaften liegen. Das gesuchte Netz ist jedenfalls ein Baum. Dieser ent-
hilt zwei Sorten von Knotenpunkten: n Festpunkte (deren Lage vorgegeben ist) sowie
»Steinerpunkte“ (deren Lage zu ermitteln ist).

Manhattan-Problem: Im gegebenen zusammenhingenden Graphen G = [X, U] mit der
Bewertung C(u) 20, ue U, seien die Elemente einer Teilmenge A X, |4|=s, |X|=n,
s < n markiert. Gesucht wird ein Untergraph H = (Y, V) von G, der folgende Bedingungen
erfullt:

H ist ein Baum, Y24, Z C(u) = min! 4.5)
ueV

Hier wird also ein die Teilmenge 4 verbindendes Netz gesucht, wobei aber auch Orte au-
Berhalb A einbezogen werden kénnen, wenn dies der Kostenminimierung dienlich ist.



3. Probleme der Bestimmung von Strémen

Im Abschnitt 1.6. haben wir gesehen, daB es durch die Einfithrung von Fliissen und
Stromen auf Graphen moglich wird, Vorgénge zu beschreiben, die in realen Systemen
(deren Struktur der Graph G darstellt) ablaufen. In diesem Zusammenhang (im Anschlufl
an Formel (1.33)) wurde auch der Begriff , Tansportnetz“ genannt. Wir wollen diesen Be-
griff jetzt genau festlegen und anschlieBend einige fiir praktische Anwendungen wichtige
Aufgaben zur Bestimmung von Stromen auf Transportnetzen besprechen.

Definition 5.1: Ein Graph G = (X, U) mit X = {4, a;, ..., a,, b} und U= {uy, ..., u,} werde
als Transportnetz bezeichnet, wenn folgende Bedingungen erfiillt sind:
(a) (b,d)=ueU, (5.1)
(b) 0t (0)={u}, w (@ ={u}. (5.2)
(c) Es liegt eine Bewertung der Bogen (mit Ausnahme des Bogens u, = (b, a)) mit reellen Zah-
len vor:
GZ0 firalleue U— {u}. (5.3)

Man_nennt dann a bzw. b den Eingang bzw. den Ausgang des Transportnetzes, w* (@) bzw.
w~ (b) die Menge der Eingangs- bzw. die Menge der Ausgangsbigen, u, den Riickkehrbogen und
¢; die Kapazitdt des Bogens u;.

Die speziell bei Transportnetzen vorhandene Struktur wird im Bild 1.13 dargestellt (der
Eingang ist dort mit 4,"der Ausgang mit b bezeichnet). Der durch die strichpunktierte Li-
nie abgegrenzte Untergraph des Netzes enthilt, in unserer jetzigen Bezeichnung, die
Mengen

X' ={ay,...,a,}, U=U~0w"(d)—w (b)—{u}. (5.4)

5.1. Das Maximalstromproblem

Aufgabenstellung: Gegeben ist ein Transportnetz G = (X, U) mit nichtnegativen Kapazita-
ten. Gesucht wird ein Strom ¢ auf G, der folgenden Bedingungen geniigt:

(1) 0@ =¢ furalle y;e U— {uy}, (5.5)

2) @1 = @(u;) = max! (5.6

Beim Maximalstromproblem handelt es sich also um eine Optimierungsaufgabe. Jeder
Strom, der (5.5) erfiillt, heiBt zuldssig. Jeder zuldssige Strom, der auch noch (5.6) erfiillt,
heiBt Maximalstrom, das zugehorige @ ., Wird als Wert des Maximalstromes bezeichnet.

Als Beispiel fiir eine praktische Aufgabenstellung, die auf diesen Problemtyp fiihrt, be-
sprechen wir ein Verteilungsproblem.

Beispiel 5.1: Ein bestimmtes Produkt wird an den Orten ay, a,, ..., a, in den (gegebenen) Mengen s,
Sy, ..., 5 erzeugt. An den Orten a},,a%,,,...,a, besteht ein Bedarf fir dieses Produkt. Die Be-
darfsmengen d, . |, di.»,...,d, seien ebenfalls bekannt. Zwischen den Erzeuger- und Verbraucheror-
ten ist ein Netz von Transportverbindungen vorhanden, d.h. eine gewisse Menge direkter Verbindun-
gen der Art a,—a;, a;—a;, a,—aj, a; —aj. Dabei sei es aber so, daB iiber diese Verbindungen
nicht beliebig viel transportiert werden kann. Die groBtmogliche von a direkt nach b transportierbare

5 BieB, Graphentheorie

D.5.1
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Menge werde mit c(a, b) bezeichnet, und diese ,,DurchlaBkapazititen“ seien fiir alle Verbindungen
des Netzes bekannt. Nun besteht folgende Aufgabe: Die erzeugte Produktmenge soll im Rahmen der
vorhandenen Transportmoglichkeiten so verteilt werden, daB der Gesamtbedarf auf der Verbraucher-
seite soweit wie moglich gedeckt wird. Wenn

n

)Y

i
1 J=k+1

M~

i

gilt, ist eine volle Befriedigung des Bedarfes natiirlich nicht méglich. Aber auch im Falle ) 5,2 Y.d;
kann es wegen der beschrinkten Kapazitit der Transportwege sein, daB eine vollstindige Deckung
des Bedarfs nicht zu erreichen ist. Um einen mdoglichst groBen Teil des Bedarfes zu decken, kommt
es darauf an, die Transportmdglichkeiten optimal auszunutzen.

Um diese Problemstellung mathematisch zu modellieren, werden wir die Orte als Knotenpunkte,
die direkten Verbindungen a — b als Bogen (a, b) eines Graphen darstellen. vgl. Bild 5.1. Den Bogen
ordnen wir die DurchlaBkapazititen c(a, b) als Bewertungen zu. Wir ergidnzen den Graphen durch
- einen Knotenpunkt 4 und Eingangsbdgen (4, a;) mit Bewertungen c(d, a; s,, i=1,..,k,

— einen Knotenpunkt b und Ausgangsbogen (aj, b) mit Bewertungen c(a b)= 4y j =k + 1
— einen Riickkehrbogen (b, @).
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ap Bild 5.1. Transportnetz (zu Beispiel 5.1)

Dadurch erhalten wir ein Transportnetz G = (X, U) im Sinne der Definition 5.1. Wir betrachten jetzt
einen Strom ¢ auf G und deuten @(a, b) als Produktmenge, die iiber den Bogen (a, b) transportiert
wird. Wegen der DurchlaBbeschrinkungen muB fiir jeden zwei Orte verbindenden Bogen gelten

0=@(ab)=c(ab). 5.7

Aber auch fiir die Ausgangsbogen ga]’., b) ist (5.7) zu fordern (mit c(aj, b) = d;). Auf Grund der l'gno-
tenpunktregel gibt namlich ¢(a},b) die Produktmenge an, die insgesamt beim Verbraucher a; an-
kommt (oder genauer: wieviel dort mehr ankommt als weggeht), und diese muB verniinftigerweise
zwischen Null und dem Bedarf d; liegen. Fiir Eingangsbdgen (d, a;) besagt (5.7) schlieBlich (mit
c(a,a;) = s;), daB die vom Erzeuger a; weg transportierte Menge nicht groBer sein kann als der Vorrat
s;. Also muB (5.7) fiir alle Bogen von G, auBer dem Riickkehrbogen (b, a) erfiillt werden. Die auf der
Verbraucherseite insgesamt ankommende Produktmenge betragt

iz -
Y. (a).b).
j=k+1

Wegen der in b giiltigen Knotenpunktregel ist diese gleich @(b, @), d.h. der Stromkomponente auf
dem Riickkehrbogen. Da das Optimierungsziel darin besteht, einen moglichst groBen Teil des Ge-
samtbedarfs zu decken, besteht die Forderung

@(b,a)= Z = max! (5.8)
iyt

Also liegt mit (5.7), (5.8) ein Maximalstromproblem vor.
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Wir haben bei diesem Beispiel angenommen, daB3 im Transportnetz nur Erzeuger- und
Verbraucherorte vorkommen. Die Problematik kann aber dahingehend verallgemeinert
werden, daB zwischen den a; und a; Orte ins Netz einbezogen sind, die weder Erzeuger
noch Verbraucher repriasentieren, sondern ,Zwischenlager“ oder ,Umladestationen dar-
stellen. Das Maximalstromproblem erfaBt also auch ,mehrstufige“ Verteilungsprobleme.
Eine ganze Reihe weiterer praktischer Aufgabenstellungen, die sich auf ein Maximal-
stromproblem zuriickfiihren lassen, findet der Leser in [1]. Wir formulieren jetzt ein Lo-
sungsverfahren.

Algorithmus von Ford und Fulkerson

(1) Wihle einen beliebigen zuldssigen Strom ¢ [d.h. einen solchen, der (5.5) erfiillt] als
Al 16sung. (Zum Beispiel den Nullstrom ¢ = 0.)

(2) Fiihre von d aus einen MarkierungsprozeB nach folgenden Regeln aus:

o) Markiere den Eingang a.

B) Wenn a; bereits markiert wurde, a; aber noch nicht: Markiere ¢; mit dem Kennzei-

chen (i), wenn

— entweder (a;, ) € U und ¢(a;, @) < c(a;, @) gilt (d.h., wenn ein Teil der Kapazitit
des Bogens (a;, a;) nicht in Anspruch genommen wird; Markierung ,in Bogenrich-
tung®)

— oder (g, a;) € U und ¢(a;, a;) > 0 gilt (d.h., wenn ein Teil der Kapazitit des Bogens
(a;, a;) in Anspruch genommen wird; Markierung ,entgegen Bogenrichtung“).!)

y) Der MarkierungsprozeB wird beendet, wenn entweder b markiert werden konnte

oder wenn eine Markierung weiterer Knotenpunkte mittels der Regeln «, f nicht

mehr moglich ist.

(3) Wurde b markiert? Wenn nein: ¢ ist ein Maximalstrom. Ende des Algorithmus.
Wenn ja: Fahre mit Schritt (4) des Algorithmus fort.

(4) Suche eine Kette 4 von @ nach b, auf der nur markierte Knotenpunkte liegen, wobei
beim Durchlaufen der Kette von a nach b jeder folgende Knotenpunkt vom vorherge-
henden aus markiert wurde. (Wenn wir die Kette als Folge von Knotenpunkten
darstellen:

u=(a,=4d, a,a,, ..., a, a,, = b), (5.9)
dann muB bei a; das Kennzeichen (i,_;) stehen, r=1, ..., k+ 1. Eine solche Kette
gibt es jedenfalls, da ja b markiert werden konnte.)

(5) Aufteilung der Bogen von p in die Teilmenge 4* (diejenigen Bogen enthaltend, die
»in Bogenrichtung® markiert wurden, fiir die also ¢ < ¢ gilt) und die Teilmenge u~
(die ,entgegen der Bogenrichtung“ markierten Bogen enthaltend, fiir die ¢ > 0 gilt).
Berechne:

& = min [c(u) — @(u)]; (5.10)
uep*t
min [@(u)], fallsu~ +0,
g = 4 uer (5.11)
o, falls u = =0;
&£=min [y, &,]. (5.12)

) Das Kennzeichen (i) bei a; gibt also die Nummer desjenigen Knotenpunktes an, von dem aus
die Markierung von a; moglich war!

Iz
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(6) Bilde mit ¢ einen ,besseren Stromvektor ¢’ gemaB

pu)+e firalleueu*,
@(u)—¢ firalleueu,
o) +e firu=(ba,
) sonst.

o'(u) = (5.13)

(7) Losche die Markierungen, verwende ¢’ als neue Ausgangslosung ¢ und setze das
Verfahren mit Schritt (2) fort.

Den Beweis fir die Wirksamkeit dieses Algorithmus fithren wir hier nicht (siehe z. B.
[1]). Wir wollen uns lediglich klarmachen, daB mit (5.13) tatsichlich ein besserer Strom-
vektor gefunden wird. Durch die Art der Bestimmung von ¢ ist garantiert, daB der neue
Vektor ¢’ die Nebenbedingungen (5.5) erfiillt. DaB ¢’ wieder ein Strom ist, sehen wir fol-
gendermaBen ein: Fiir Bogen, die mit nicht auf der Kette x liegenden Knotenpunkten a
inzident sind, gilt ¢’ () = @(u). Da @ ein Strom ist, gilt bei solchen a die Knotenpunktre-
gel auch fiir @’. Wir betrachten jetzt einen auf u liegenden Knotenpunkt a;, vgl. Bild 5.2.

N / N s N P N o
g’ NG, AN NG _
7 u u A b
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\ ! | 1

Bild 5.2. Zum Algorithmus von Ford und Fulkerson

Fiir die zu u gehérenden, mit g; inzidenten Bdgen u, u’ sind die vier in Bild 5.2 gezeich-
neten Lagebeziehungen moglich. An den Bogen sind die gemiB (5.13) gebildeten neuen
Komponenten ¢’ angeschrieben. Da fiir die alten GroBen ¢ die Knotenpunktregel erfiillt
war, gilt dies ersichtlich in allen Fillen auch fiir die neuen GroBen ¢’. Also ist ¢’ tatséch-
lich ein Strom. SchlieBlich besagt (5.13) wegen ¢’ (b, @) = @(b, d) + £ und &> 0, daB der
neue Strom auf dem Riickkehrbogen einen groBeren Wert hat als der alte, d.h., wir haben
eine Verbesserung in Richtung auf den Maximalwert erreicht.

Bemerkenswert ist noch folgendes: Héufig tritt das Maximalstromproblem in der spe-
ziellen Form auf, daB die Kapazititen ¢; (nichtnegative) ganze Zahlen sind und daB ein
Strom mit ganzzahligen Komponenten gesucht wird. Die Aufgabenstellung (5.5), (5.6) ist
dann also durch die Zusatzbedingung

@; ganzzahlig fiir alle u;e U (5.14)

modifiziert. Der Algorithmus von Ford und Fulkerson ist ungedndert auch fiir die Losung
derartiger ganzzahliger Maximalstromprobleme geeignet, wenn im Schritt (1) als Aus-
gangslsung ein Strom @ mit ganzzahligen Komponenten gewihlt wird. Die Formeln
(5.10) bis (5.12) liefern dann ndmlich ein ganzzahliges ¢, und deshalb besitzt gemiB
(5.13) auch jeder verbesserte Strom @’ wieder die Eigenschaft der Ganzzahligkeit.

Ein verall; inertes Maximal: wproblem liegt vor, wenn anstelle von (5.5) die allge-
meinere Bedingung

bsgi=¢ furalle y;e U— {u,} (5.15)

besteht, wobei die Zahlen b;, ¢; auch negativ sein konnen. Der Algorithmus von Ford und
Fulkerson kann mit geringfiigigen Anderungen auch fiir die Losung dieses Problemtypes
eingesetzt werden. Schwieriger als beim einfachen Maximalstromproblem ist dann aber
i.allg. die Bestimmung einer Ausgangslosung. Néheres hierzu findet der Leser in [1].
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Beispiel 5.2: An eine Gruppe von 6 Studenten S, ..., S sollen Themen fiir die Diplomarbeit verge-
ben werden. Es liegt eine Liste mit 6 Arbeitsthemen T, ..., T, vor. Jeder Student hat Themen ausge-
wihlt, an deren Bearbeitung er interessiert ist. Wie muBl man die Verteilung vornehmen, damit mdg-
lichst viele Studenten ein gewiinschtes Thema erhalten?

Im Bild 5.3 sind die Studenten und Themen durch Knotenpunkte dargestellt. Ein Bogen (S;, T})
bedeutet, daB S; am Thema 7; interessiert ist. Wir ordnen jedem Bogen die Kapazitit c(S;, T)) = 1 zu.
Der Graph wurde durch Ei und At bogen ergidnzt, jedem ist ebenfalls die Kapazitit 1
zugeschrieben. ¢(q, S;) = 1 besagt, daB dem Studenten hochstens ein Wunschthema zugewiesen wer-
den darf, entsprechend sorgt c(7}, b) = 1 dafiir, daB jedes Thema hochstens einmal vergeben wird.

Bild 5.3. Zu Beispiel 5.2

Betrachtet wird ein Strom ¢ auf G= (X, U), dessen Kompo werte wir folgendermaBen deu-
ten
1 S; bekommt das Thema T}
S, T)=1 0o .
6. ) {o S bekommt T, nicht.

Damit liegt das folgende ganzzahlige Maximalstromproblem vor: Zu bestimmen ist ein Strom ¢ auf
G, der folgende Bedingungen erfiillt

0<g@(u) =1, ganzzahlig fiir alle ue U— {uy},
@(b, d@) = max!

In Tabelle 5.1 wird ein moglicher Ablauf des Ford-Fulkerson-Algorithmus bei der Anwendung auf
dieses Beispiel beschrieben. Es wird vom Anfangsstrom ¢ = o ausgegangen. Dann ergibt sich die Lo-
sung in finf Durchldufen, die der Leser nachvollziehen moge. Es wurde so verfahren, daB in jedem
Durchlauf der Schritt (2) des Algorithmus soweit ausgefithrt wurde, bis keine weiteren Knotenpunkte
mehr markiert werden konnen. (Praktisch kann man Schritt (2) schon dann beenden, wenn b mar-
kiert ist.)

Im ersten Durchlauf erhalten wir gemdB Schritt (4) des Algorithmus die Kette u = (4, S;, Ty, b),
weiter im Schritt (5) die Aufteilung x* = {(@, S;), (S;, T1), (Ty, B)}, u~ =0 und ¢, =1, &, =,
&= 1. Nach (5.13) ergeben sich dann neue Stromkomponenten 1 fiir die Bégen von #* und fiir den
Riickkehrbogen (b, d).

Im zweiten Durchlauf ergibt sich die Kette u= (4, S,, Ty, Sy, T, b) mit u* = {(@a, Sy, (S,, T,
(Sy, Tp), (Ty, b)}, u~ = {(Sy, T1)} und weiter &, = 1, &, =1, e= 1. Diesmal sind die Stromwerte auf

den Bogen x* und (b, @) um 1 zu erh6hen, auf (S;, T;) um 1 zu erniedrigen. Die {ibrigen Durchldufe
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rechne der Leser selbst nach. Er wird feststellen, daB im 6. Durchlauf der Ausgang b nicht markiert
werden kann, so daB die in der letzten Spalte von Tabelle 5.1 notierten Komponenten einen Maxi-
malstrom darstellen. Im Ergebnis zeigt sich (was man in diesem einfachen Beispiel natiirlich auch
unmittelbar durch Probieren herausbekommen kann), daB maximal fiinf von den sechs Themen
wunschgemiB vergeben werden kdnnen:

T,—S8,, T,—S8, T,—S8s, T;—S8,, T¢—Ss.
Die optimale Losung ist hier allerdings nicht eindeutig bestimmt. Auch
T,—S8;, T,—S8, T,—S8s, Ts—S,, T4—Ss

stellt z. B. eine optimale Lsung dar.

Tabelle 5.1: Zu Beispiel 5.2

(Spalte M gibt an, welche Markierung der Endpunkt des jeweiligen Bogens nach AbschluB von
Schritt (2) des Ford-Fulkerson-Algorithmus erhalten hat. In Spalte ¢’ sind die Komponenten des
,besseren“ Stromvektors nach AbschluB von Schritt (6) vermerkt. Ein Stern hebt die im jeweiligen
Durchlauf gednderten Werte hervor.)

Bogen 1. Durchlauf 2. Durchlauf 3. Durchlauf 4. Durchlauf 5. Durchlauf

M ¢ M ¢ M ¢ M ¢ M ¢
(as8) a 1* T, 1 T, 1 T, 1 T, 1
@S) a 0 a 1* T, 1 T, 1 T, 1
@S8y) a 0 a o0 a 0 a 0 a 0
@S8) da 0 a 0 i o0 a 1+ Ts 1
@Sy a o0 i 0 a 1+ T, 1 T, 1
@Sy a o0 i 0 a o0 a 0 a 1+
(8, Ty) S 1* S, 0* S; 0 S, 0 S; 0
S, T,) S 0 N b1 b 1 b 1
S, Ty S 0 S 0 Ss 0 b 0 b 0
(S;, Ty) 0 1% 1 1 1
(8, Ts) S, 0 S, 0 S, 0 Sy 0 Ss 0
(83, Th) 0 0 0 0 0
(84, T1) 0 0 0 0 0
(S, Ts) 0 0 0 1* 1
(Ss, Ty) 0 0 1* 1 1
(Ss, T1) 0 0 0 0 0
(S, Ts) 0 0 0 0 0
(S, Tg) S¢ O S¢ 0 Ss 0 Se 0 Sg 1*
(T,,0) T, 1* T, 1 T, 1 Ts 1 Te 1
(T, b) 0 1* 1 1 1
(T3, b) 0 0 0 0 0
(T4, b) 0 0 it 1 1
(Ts, b) 0 0 0 1 1
(Ts, b) 0 0 0 0 1k

(b, a) 1* 2* 3* 4* 5*
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5.2. Transportprobleme

Wir kommen zuletzt noch auf eine Aufgabe zu sprechen, die in der Graphentheorie als
eingeschrdnktes Transportproblem oder Umladeproblem bezeichnet wird.

Aufgabenstellung: Gegeben sei ein Transportnetz G = (X, U), entsprechend Definition 5.1.
mit Kapazititen
¢ >0, falls y;e w*(a), .
c(u)=14 c¢:>0, falls y;€w (b), (5.16)
o, falls uje U'= U - (@) — o™ (b) — {uy},
wobei gilt
Z = Z ¢\ =y. (5.17)
wew* (@) uew (b)

Jedem Bogen u; aus U’ sei-auBerdem eine reelle Zahl /; zugeordnet, und es sei vorausge-
setzt, daB kein Knotenpunkt gleichzeitig Endpunkt eines Eingangsbogens und Anfangs-
punkt eines Ausgangsbogens ist. Gesucht wird ein Strom ¢ auf G mit folgenden Eigen-
schaften:

) @20 firalle ye U, (5.18)

?2) @;=c¢; firalle y;e 0w*(a), (5.19)
@;=c; firalle ;€ 0 (b),

©) Y Lg;=min! ' (5.20)
wel

Von der Benennung her ist zu vermuten, daB diese Aufgabe in Beziehung zu dem steht,
was in der Theorie der linearen Optimierung als , Transportproblem“ bezeichnet wird [3],
[12]. Tatsdchlich konnen wir das eingeschriankte Transportproblem der Graphentheorie
ohne weiteres in die Form einer linearen Optimierungsaufgabe (LO) umschreiben. Wenn
wir ndmlich zu den Formeln (5.18) bis (5.20) die Knotenpunktregeln (1.29) fiir die Varia-
blen @; hinzunehmen (es ist ja ein Stromvektor @ gesucht!), so steht das dquivalente LO-
Problem bereits da. Beziiglich der expliziten Form dieser Knotenpunktregeln sind vier
Fille zu unterscheiden.

1. Fall: Der Knotenpunkt a; ist Endpunkt eines Eingangsbogens von G= (X, U), vgl.
Bild 5.4a. Dann gilt

o= ),  @te@a)

J
wew () wew (@)~ (da)

oder, wenn wir wegen (5.19) (4, a;) = ¢; setzen,

X o= Y o e-a 621

yew (@) yeo (@)-@Ga)

2. Fall: Der Knotenpunkt g; ist Anfangspunkt eines Ausgangsbogens, vgl. Bild 5.4b. Dann
gilt, wenn wir unter Verwendung von (5.19) ¢(a;, b) = ¢; setzen:

Yo- Y @=c. (5.22)

¢ j
™ (a) 0*(a) - (a,b)

3. Fall: g; ist weder Endpunkt eines Eingangsbogens noch Anfangspunkt eines Ausgangs-
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bogens. Die Knotenpunktregel lautet dann, vgl. Bild 5.4c:
Y - Y ¢=0. (5.23)

w*(a) © (a)

4. Fall: Knotenpunktregel fiir @ und b, vgl. Bild 5.4d:

o= Y e=e— ) =0

w (@) w (@)
bzw. (5.24)
[ Z Q= @1~ Z C,,':O-
w (b) w (b)

Wegen (5.17) reduzieren sich die beiden Bedingungen (5.24) auf
Q1= (5.25)

d.h., die Komponente @, ist bei vorliegender Aufgabenstellung gar keine Variable, son-
dern ein gegebener fester Zahlenwert.

/CN\%

>

b

Bild 5.4. Zum eingeschrinkten Transportproblem

In den Formeln (5.20), (5.21) bis (5.23), (5.18) haben wir das zum eingeschrinkten
Transportproblem #quivalente lineare Optimierungsproblem vor uns. In diesem treten
|U’| Variable ¢; auf. Die zu den Eingangs- und Ausgangsbdgen sowie zum Riickkehrbo-
gen gehorenden Komponenten des Stromvektors konnten wir durch Beriicksichtigung von
(5.17) und (5.19) eliminieren. .

Wir wollen nun die Beziehungen zum Transportproblem der linearen Optimierung un-
tersuchen. Dort wird eine Menge a;, a,, ..., a; von Erzeugern (¢; die Produktion von a;)
und eine Menge a;,,, ..., a, von Verbrauchern betrachtet (c; der Bedarf von a}). Beim
einfachen Transportproblem wird angenommen, daB Produktion und Bedarf ausgeglichen
sind:

k n
Ya= Y =y (5.26)

Zwischen den Produzenten und den Verbrauchern gibt es gewisse Transportverbindungen
(a;, a}), die wir durch eine Menge von Indexpaaren E = {(i,)} beschreiben kénnen. Wir
bezeichnen ferner mit /; die Kosten fiir den Transport der Mengeneinheit von a; nach a;
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und mit x;; die von g¢; nach @] tatséchlich transportierte Produktmenge. Gesucht werden
Optimalwerte fiir die x;, so daB die gesamten Transportkosten minimal ausfallen. Die
mathematische Formulierung dieser Aufgabe ergibt folgendes lineare Optimierungspro-
blem:

> lyx; = min! (527
(,J)eE
Nebenbedingungen:
Y oxp=c; i=1,..k (5.28)
((i,hh)eE)
Y om=cy i=k+1,..,n (5.29)
1

(e E)
Vorzeichenbedingungen:
x;z0 furalle (i, j) € E. (5.30)

Durch Vergleich der Formeln (5.27) bis (5.30) mit (5.20), (5.21) bis (5.23), (5.18) kénnen

wir nun leicht feststellen, da das einfache Transportproblem der linearen Optimierung

(TLO) ein Spezialfall des eingeschrinkten Transportproblems der Graphentheorie (ETG)

ist. Der umfassendere Charakter der graphentheoretischen Aufgabe besteht in folgendem:

— Im ETG ist ein Transport zu den Erzeugern hin zugelassen (Vergleich der Formeln
(5.28) und (5.21)). Praktisch kann dies so auftreten, daB die Produktion mehrerer Er-
zeuger zundchst bei einem von ihnen gesammelt wird, ehe der Versand an die Verbrau-
cher erfolgt.

— Im ETG ist ein Transport von den Verbrauchern weg zugelassen (Vergleich der For-

meln (5.29) und (5.22)). Auch dieser Fall tritt praktisch auf, wenn ndmlich ein Ver-

braucher fiir mehrere andere als ,Zwischenlager fungiert.

Im TLO treten Formeln des Typs (5.23) nicht auf, d.h., es gibt dort keine Orte, die we-

der Erzeuger noch Verbraucher darstellen. Solche Knotenpunkte haben praktisch die

Bedeutung von Zwischenlagern oder Umladestationen. Das ETG erfaBt also ,,mehrstu-

fige Transportprobleme®, wie sie in der Praxis hdufig auftreten.

— Im ETG konnen die den Bogen zugeordneten Zahlen /; auch negativ sein.

Auf Losungsverfahren fiir das eingeschrinkte Transportproblem der Graphentheorie ge-

hen wir hier nicht ein. Der Leser wird auf [1] verwiesen, wo auch noch weitere praktische

Fragestellungen erldutert werden, die auf diesen Problemtyp fiihren.



6. Zur rechentechnischen Realisierung
von Graphenalgorithmen

Bei der mathematischen Modellierung praktischer Probleme wird die Wahl auf ein gra-
phentheoretisches Modell oft dann fallen, wenn bei der Arbeit mit dem Modell Struktur-
eigenschaften des realen Systems untersucht oder fiir den Rechengang ausgenutzt werden
sollen. Diese Eigenschaften kommen in den Adjazenz- und Inzidenzbeziehungen zwi-
schen den Elementen des Graphen direkt zum Ausdruck. Graphentheoretische Algorith-
men haben deshalb oft die Form von Suchprozessen entlang von Bahnen, in der Nachbar-
schaft von Knotenpunkten, iiber die Menge von Bogen usw. Fiir die Effektivitit der
rechentechnischen Realisierung ist es offenbar wichtig, daB man die fiir den néchsten Re-
chenschritt benétigten GroBen ,,moglichst schnell bei der Hand hat“, d.h., daB man eine
dem Algorithmus angepaBte Art der Codierung des Graphen auswihlt.

Nur selten wird man Adjazenz- oder Inzidenzmatrizen direkt verwenden, da sie meist
gering besetzt sind und unnétigen Speicherplatz verbrauchen. Oft wird eine Listenform
zweckmiBig sein, z.B.:

— Fiir jeden Knotenpunkt Angabe der Nachfolger oder/und Vorginger,
— Liste der Bogen durch jeweilige Angabe des Anfangs- und Endpunktes.

Da bei Aufgaben praktischen Formats der Modellumfang oft sehr groB wird, ist es fiir
den Entwurf bzw. die Beurteilung von Algorithmen (z.B. fiir die Entscheidung, ob man
sich mit Ndherungsverfahren oder Heuristiken begniigt oder exakte Verfahren anstrebt)
wiinschenswert, firr das vorliegende Problem bzw. den Algorithmus eine Moglichkeit zur
Bewertung des Schwierigkeitsgrades bzw. Losungsaufwandes zu haben. Solche Moglich-
keiten bietet die Komplexitdtstheorie, die sich als Teildisziplin der diskreten Mathe-
matik entwickelt hat. Einige Grundgedanken sollen hier genannt werden.

Es sei P ein Problem!), 4 ein Algorithmus zur Ldsung von P, B(d) ein Beispiel der Di-
mension d fiir das Problem (d charakterisiert den Umfang des Beispiels; z. B. kann dieser
beim Minimalgeristproblem, vgl. 4.2., durch die Anzahl der Knotenpunkte des Graphen
beschrieben werden, d.h. d= n). Mit compl (B(d), 4, P) wollen wir die Anzahl elementa-
rer Operationen (oder die dazu proportionale Rechenzeit) auf einem Computer bezeich-
nen, die bendtigt wird, um das Beispiel B(d) des Problems P mittels des Algorithmus 4
zu losen. Ist M(d) die Menge aller Beispiele B(d) gleichen Umfangs d, so gibt

compl(4, P)= max {compl(B(d), 4, P)} 6.1)
B(d)e M(d)

offenbar ein (von d abhingiges) MaB fiir den Aufwand des Algorithmus 4 an, denn (6.1)
beschreibt ja die bendtigte Rechenzeit fiir das ungiinstigste Beispiel aus M(d). Deshalb
auch die Bezeichnung ,worst-case-Komplexitit“. Ist «(P) die Menge aller (denkbaren)
Algorithmen zur Losung von P, so stellt

compl (P) = min {compl(4, P)} 6.2)
Aea(P)

ein MaB fiir die Schwierigkeit des Problems P dar. Auch compl (P) ist eine Funktion von
d. Handelt es sich dabei um ein Polynom, so nennt man P bzw. 4 ,polynomial® und gibt
als Komplexitit die Ordnung des Polynoms an. Anderenfalls heiBen P bzw. 4 ,exponen-
tiell“. Man bezeichnet mit .97 die Klasse aller polynomialen Probleme, d. h. aller Pro-
bleme, fiir die es einen polynomialen (deterministischen, d.h. in jedem Schnitt ein ein-

1) Die folgenden Begriffe der Komplexititstheorie gelten genaugenommen nur fiir sog. Entschei-
dungsprobleme. Das sind solche, die als Losung nur ,ja“ oder ,nein“ zulassen. Da es aber méglich
ist, kombinatorischen Optimierungsproblemen #quivalente Entscheidungsprobleme zuzuordnen,

werden diese Begriffe auch etwas harf al g
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deutiges Ergebnis liefernden) Algorithmus gibt (wenn er vielleicht auch noch nicht gefun-
den wurde!).

Beispiel 6.1: Algorithmus von Kruskal zur Losung des Minimalgeriist-Problems, vgl. 4.2. Betrachtet
wird ein Graph mit d=n Knotenpunkten, der (ungiinstigster Fall!) vollstindig ist, d. h.

z= % - (n — 1) Kanten besitzt. Die im ersten Schritt durchzufithrende Suche einer ,billigsten“ Kante

erfordert, indem man die Kanten durchgeht, z— 1 Vergleiche, d.h. eine zu dieser Zeit proportionale
Rechenzeit a; (z—1). Im zweiten Schritt (vgl. 4.2.) sind die restlichen z—2 Kanten daraufhin zu
durchmustern, ob ihre Hinzunahme zu V; einen Kreis bildet. Von denen, die,das nicht tun, ist eine
billigste Kante zu suchen. Dieser Vorgang erfordert (im ungiinstigsten Falle, d. h., wenn keine der
Kanten zu einem Kreis fiihrt) einen Beitrag a, (z— 2) zur Rechenzeit usw. Insgesamt gibt es n— 1
solche Schritte, der letzte mit einem zu (z — n+ 1) proportionalen Zeitbeitrag. Fiir die gesamte Re-
chenzeit folgt die Abschitzung
A=l n-1

Y. (=) S e 3. (2= ) = g 312G =D =@ = n+ D (2= )]
i=1

i=1
=%~{n3—3n2+2n]. (6.3)

Also ist das Minimalgeriist-Problem polynomial 16sbar (es gehort zur Klasse .Z7), und der so reali-
sierte Algorithmus ist von der Ordnung n* (die Ordnung kann durch Verfeinerung des Algorithmus
noch reduziert werden). Polynomiale Algorithmen werden oft als ,gute“ Algorithmen bezeichnet.

Wie kann man nun zwei Probleme, P, P in ihrer Schwierigkeit vergleichen? Dabei hilft
der Begriff der polynomialen Transformation. Man versteht darunter einen Algorithmus,
der jedes Beispiel B von P mit polynomialem Aufwand in ein Beispiel B von P iiberfiihrt,
wobei aus der Losung von B dann auf diejenige von B geschlossen werden kann. Wenn P
derart polynomial in P iiberfiihrbar ist, so schreibt man PeP. Offenbar ist dann P als ein
Spezialfall von P aufzufassen, und folglich besitzt das Problem P mindestens die Schwie-
rigkeit von P. Aus Pe .97 folgt natiirlich P€ .97 aber nicht umgekehrt.

Die Komplexititstheorie befaBt sich weiter mit der Klassifizierung von Problemen, bei
denen eine Zugehdrigkeit zu .97 bisher noch nicht nachgewiesen werden konnte. Ohne
niher darauf einzugehen sei nur die Klasse _APE (, 7~ Pvollstindige“ Probleme) er-
wihnt, in der die vom Aufwand her ,schwierigsten“ Probleme zusammengefaBt sind. Bei
ihnen erscheint es sehr unwahrscheinlich, jemals polynomiale Algorithmen zu finden. Um-
fangreiche Zusammenstellungen von Problemen, deren Zugehdrigkeit zur Klasse . A%
feststeht, findet man in der Literatur (siehe z. B. [5], [14]), wo auch Wege zum Nachweis
dieser Eigenschaft beschrieben werden. Bei _ZZ2vollstindigen Problemen ist es angera-
ten, sich auf die Benutzung bzw. Entwicklung polynomialer Néherungsverfahren (z. B.
beruhend auf der Greedy-Technik und ihren Varianten) oder sogar auf heuristische Ver-
fahren zu beschrinken. In vielen Fillen wird bei solchen Problemen das Branch-and-
Bound-Prinzip [14] der Ansatzpunkt fiir die Entwicklung von Néherungsverfahren sein.
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