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1. Grundbegriffe der Graphentheorie

1.1. Einführende Beispiele

Viele Objekte und Vorgänge in den verschiedensten Bereichen der Natur und Gesell-
schaft besitzen den Charakter eines Systems, d. h., sie setzen sich aus einer Anzahl von

Bestandteilen, Elementen zusammen, die in gewisser Weise miteinander gekoppelt sind.
Sollen an einem solchen System Untersuchungen durchgeführt werden, so wird es oft
zweckmäßig sein, daß wir uns den Gegenstand der Betrachtung zunächst durch ein gra-
phisches Schema veranschaulichen. Wir werden die Systemelemente etwa durch Punkte,
Kästchen, technische Symbole u.ä. darstellen und die Kopplungen durch Verbindungs1i—
nien zwischen den entsprechenden Elementen zum Ausdruck bringen. Auf diese Weise
wird deutlich sichtbar, welche Struktur das System besitzt, d. h., welche Bestandteile es

enthält und in welcher Weise diese miteinander in Beziehung stehen. Ein solches graphi-
sches Schema wird uns helfen, Struktureigenschaften des Systems zu untersuchen, etwa
die Frage zu klären, welche Konsequenzen die Zerstörung einer bestimmten Kopplung
hat, welches die kürzeste Verbindung zwischen zwei gegebenen Elementen ist usw

b) „

Bild 1.1. Technologisches Schema einer Chemieanlage

Wir wollen jetzt einige Beispiele für derartige Schemata betrachten. lm Bild l.la ist das Blockdia-
gramm eines (fiktiven) chemisch-technologischen Prozesses dargestellt. Die Elemente sind in diesem
Fall bestimmte technische Apparate (Reaktoren, Wiirmeübertrager, Stofftrennanlagen usw.), und ihre
Kopplung wird durch Rohrleitungen realisiert. Wenn wir uns lediglich für die Struktur des Systems,
d.h. für die Art der Zusammenschaltung interessieren, so können wir von der konkreten technischen
Bedeutung der Elemente absehen und das Schema zur Form des Bildes l.lb vereinfachen.

Das Bild l.lb stellt den sogenannten Graphen des betrachteten Systems dar. Er besteht aus acht
Knotenpunkten (den Sy remelementen entsprechend) und zwölf gerichteten Verbindungslinien (den
Kopplungen der Elemente entsprechend), die als Bögen bezeichnet werden. (Eine ungerichtete Ver-
bindungslinie nennt man dagegen eine Kante.) Die Verbindungslinien haben wir mit einem Rich-
tungssinn versehen. Das ist im vorliegende 1 Beispiel offenbar zweckmäßig, denn die Kopplung
zweier Elemente ist hier nicht symmetrisch (z.B. fließt der Rohstoffstrom von Knotenpunkt l zum
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Knotenpunkt 2, und nicht umgekehrt). Es leuchtet ein, daß es für einen gegebenen Graphen ver-

schiedene Möglichkeiten der zeichnerischen Darstellung gibt. Wir müssen lediglich darauf achten,
daß die Verbindungen zwischen den Knotenpunkten richtig wiedergegeben sind. So stellt Bild 1.lc
denselben Graphen dar wie Bild 1.1l), denn die kombinatorische Struktur stimmt in beiden Sche-
mata überein.

Mit Hilfe des Graphen können wir nun Eigenschaften der Systemstruktur untersuchen. Beispiels-
weise erkennt man am Bild l.l deutlich die im technologischen Prozeß vorhandenen drei Rückkopp-
lungsschleifen des Materialstromes, sie sind durch die Knotenpunktfolgen (3, 4, 8, 3), (3, 4, 5, 3) und
(4, 5, 4) gegeben. Eine andere Struktureigenschaft, die man sofort sieht, ist z.B. folgende: Streicht
man den Bogen (2, 3), so geht der „Zusammenhang“ des Graphen verloren (eine Havarie in dieser
Rohrleitung unterbricht den Produktionsprozeß!) Löschen wir dagegen die Verbindung (8, 3), so ist
dies nicht der Fall (die Produktion kann in einem gewissen Umfang aufrechterhalten werden).

Bey/‘/2/7
4A

[rdarr/gn dy-
{umMm fur
Mr/emmm A

Anleger; der
Badstraße

Anfranspnrl der 6/elien der Vpr/agen der
. ' ‘ Fundamente Ruin/errungen

Hanfaye der
flmzfe/'/E l;

Bild 1.2. Ablaufplan für den Prozeß „Bau eines Hauses“

Betrachten wir ein zweites Beispiel: Bild 1.2a zeigt den (stark vereinfachten) Ablaufplan für den
Prozeß „Bau eines Hauses“. Die Elemente des Schemas sind diesmal Teilvorgänge („Aktivitäten“)
eines in der Zeit ablaufenden Gesamtprozesses. Ein Verbindungspfeil von der Aktivität i zur Aktivi-
tätj wurde dann gezeichnet, wenn mit der Abarbeitung vonj erst begonnen werden kann, nachdem i
abgeschlossen ist (enden mehrere Pfeile in j, so müssen alle „Vorgänger“-Aktivitäten beendet sein,
ehe der Teilvorgangj beginnen kann!)

Auch hier können wir zur vereinfachten Form, Bild 1.2b, übergehen, wenn es uns lediglich um

eine Untersuchung der Struktur des Prozesses zu tun ist. Die Verbindungslinien des so entstehenden
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Graphen sind wieder gerichtet (sie sind also Bögen), denn die Reihenfolge der jeweils verbundenen
Knotenpunkte (d. h. die zeitliche Aufeinanderfolge der zugehörigen Teilvorgänge) ist ja für die Be-
schreibung des Prozesses wesentlich. Wieder gibt es viele äquivalente zeichnerische Darstellungen
des Graphen. So stellt Bild 1.2 c denselben Graphen dar wie Bild 1.2b, denn die Relationen zwischen
den Knotenpunkten stimmen in beiden Schemata überein.

Die Untersuchung von Ablaufplänen dieser Art bildet ein praktisch sehr wichtiges Anwendungsge-
biet der Graphentheorie. Wir werden später unter dem Stichwort „Netzplantechnik“ darauf zurück-
kommen.

/

iäl ‚

0)

Bild 1.3. Straßennetz

Als drittes Beispiel stellt Bild l.3a den Ausschnitt eines Stadtplanes dar. Das Straßennetz läßt
Kreuzungen und Einmündungen erkennen, die wir als Elemente des Systems auffassen können. Die
Straßen selbst bilden dann die Verbindungen zwischen den Elementen. Einbahnstraßen. sind durch
einen Pfeil gekennzeichnet, die übrigen Straßen dürfen in beiden Richtungen befahren werden.

Bei der Umzeichnung des Schemas zu einem Graphen werden wir davon ausgehen, welche Unter-
suchungen mit seiner Hilfe durchgeführt werden sollen. Besteht die Aufgabe z. B. darin, alle Wege zu

suchen, auf denen ein Fußgänger vom Punkt A zum Punkt B gelangen kann, so genügt die einfache
Form des Bildes 1.3 b, in welcher die Verbindungen zwischen den Knotenpunkten ungerichtet darge-
stellt sind. Tatsächlich wäre eine Orientierung der Verbindungen nicht sinnvoll, da alle Straßen zu

Fuß in beiden Richtungen passiert werden können. Anders verhält es sich, wenn die Bewegung mit-
tels Auto von A nach B zu untersuchen ist. Für die Einbahnstraßen ist dann eine Richtung ausge-
zeichnet, und diese werden wir den entsprechenden Bögen zuordnen. Wenn man folgerichtig die in
beiden Richtungen befahrbaren Straßen durch ein Bogenpaar darstellt, so entsteht der Graph des Bil-
des 1.3 c.

Wir sehen an diesem Beispiel, daß je nach Art der Fragestellung in manchen Fällen ein „gerichte-
ter“, in anderen Fallen ein „ungerichteter“ Graph für die Untersuchunge zweckmäßig ist.

Der Leser wird nach diesen einführenden Beispielen schon eine Vorstellung von dem
gewonnen haben, was man als einen Graphen bezeichnet. Zwei Mengen bilden seine Be-
standteile: Die Menge der Knotenpunkte (zeichnerisch dargestellt durch Punkte) und die
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Menge der Bögen oder Kanten (zeichnerisch dargestellt durch gerichtete bzw. ungerich-
tete Verbindungslinien); jedem Bogen und jeder Kante entspricht eindeutig ein geordne-
tes bzw. ungeordnetes Paar von Knotenpunkten. Es leuchtet ein, daß Graphen sehr gutge-
eignet sind, um die Struktur von Systemen zu beschreiben. Indem wir ein reales System
durch einen Graphen abbilden, abstrahieren wir von der konkreten Bedeutung und den
inneren Eigenschaften der Systemelemente. Durch den Graphen wird lediglich die Art
der Verknüpfung dieser Elemente, eben die Systemstruktur, erfaßt. Ein Gegenstand der
Graphentheorie ist es nun, die derartigen Strukturen innewohnenden Gesetzmäßigkeiten
zu erforschen und Verfahren zur Durchführung von Stmktumntersuchungen zu entwik-
keln. Es ist kein Zufall, daß die Graphentheorie in den letzten Jahren eine starke Ent-
wicklung genommen hat. Die zunehmende Komplexität der gesellschaftlichen und tech-
nologischen Prozesse und das Streben nach einer möglichst effektiven Gestaltung dieser
Prozesse erfordern die Verwendung entsprechend umfassender mathematischer Modelle.
Wenn anhand komplexer Modelle nach günstigen Lösungsvarianten gesucht wird, so ge-
hören dazu auch Fragen der optimalen Ausnutzung vorhandener Prozeßstrukturen und
der Synthese optimaler Konfigurationen für neu aufzubauende Prozesse. Dies sind Pro-
bleme, die graphentheoretische Untersuchungen herausfordern. Zweifellos wird die prak-
tische Bedeutung der Graphentheorie in den kommenden Jahren weiter ansteigen. In
dem Maße, wie sich auch Nichtmathematiker mit ihren Begriffen, Untersuchungsmetho-
den und theoretischen Ergebnissen bekannt machen, werden sich viele neue Anwen-
dungsmöglichkeiten zeigen. Andererseits werden praktische Fragestellungen Anstöße
zum weiteren Ausbau der Theorie geben.

In den folgenden Abschnitten wird eine Einführung in die Theorie der endlichen Gra-
phen gegeben. Wir werden uns dabei um eine möglichst anschauliche Darstellungsweise
bemühen und den Gesichtspunkt der Anwendung in den Vordergrund stellen. Diesem
Konzept entspricht es, wenn Beweisfuhrungen nur in geringem Umfang aufgenommen
werden, Vorwiegend werden gerichtete Graphen behandelt, da diesen in den Anwendun-
gen wohl die größere Bedeutung zukommt. Im übrigen lassen sich viele Ergebnisse unge-
ändert oder in leicht erkennbarer Modifikation auch aufungerichtete Graphen anwenden,

Im Abschnitt 1. dieser Einführung werden wichtige Grundbegriffe und Sätzezusam-
mengestellt. Der zweite Abschnitt behandelt Möglichkeiten, Graphen durch Matrizen zu

beschreiben. In den Abschnitten 3. bis 5. wird dann eine Reihe von „Standardproblemen“
der Graphentheorie besprochen, denen aktuelle praktische Aufgabenstellungen entspre-
chen. Schließlich behandelt Abschnitt 6. einige Fragen des Aufwandes bei der rechen-
technischen Realisierung graphentheoretischer Algorithmen.

1.2. Ungerichtete und gerichtete Graphen

Wie durch die Beispiele des Abschnittes 1.1. nahegelegt wurde, definieren wir einen
Graphen als Zusammenfassung zweier Mengen:

Definition 1.1: Ein Graph G besteht aus einer Menge X (deren Elemente Knotenpunkte ge-
nannt werden) und einer Menge U, wobei jedem Element u e U in eindeutiger Weise ein geordne-
tes oder ungeordnetes Paar von (nicht notwendig verschiedenen) Knotenpunkten x, ye X :uge-
ordnet ist.

Ist jedem u e U ein geordnetes Paar von Knotenpunkten zugeordnet, so heißt der Graph ge-
richtet, und wir schreiben

G=(X‚ U).

Die Elemente von U werden in diesem Fall als Bögen bezeichnet.

D. 1.1



8 l. Grundbegriffe der Graphentheorie

Istjedem u E U ein ungeardnetes Paar von Knotenpunkten zugeordnet, so hem! der Graph un-

gerichtet, und wir schreiben

G=[X, U].

Die Elemente von U bezeichnen wir dann als Kanten.

Wie wir sehen, ist diese Definition an keine geometrische Darstellung gebunden“. Es
liegt aber natürlich nahe, einen Graphen G dadurch zeichnerisch zu veranschaulichen,
daß wir seine Knotenpunkte durch Punkte, seine Bögen bzw. Kanten durch gerichtete
bzw. ungerichtete Verbindungslinien darstellen, wie wir das in den früheren Beispielen
schon getan haben. Die so entstehenden Schemata sind also genaugenommen als geome-
trische Bilder eines abstrakten Graphen aufzufassen. Wir werden aber in unserer Darstel-
lungsweise den Graphen mit seinem geometrischen Bild identifizieren.

Die allgemeine Definition l.l läßt zu, daß den Elementen u eines Graphens teils ge»

richtete, teils ungerichtete Paare von Knotenpunkten zugeordnet sind. Solche gemischten
Graphen werden wir aber im folgenden nicht betrachten.

Wir werden uns weiter auf endliche Graphen beschränken, das sind solche, bei denen
sowohl die Menge X als auch die Menge U nurje endlich viele Elemente umfaßt (die An-
zahl der Elemente von X bzw. U werden wir mit {X} bzw. lU| bezeichnen).

In Ergänzung zur Definition 1.1 fuhren wir nun noch einige Bezeichnungen ein, die im
Zusammenhang mit Graphen üblich sind.
- Die einem Element u e U zugeordneten Knotenpunkte x, y heißen Endpunkte von u.

— lst x:y, so wird der betreffende Bogen (bzw. die Kante) u als Schlinge bezeichnet,
vgl. Bild 1.4.

— Zwei Knotenpunkte x, y heißen adjazent (oder benachbart), wenn sie Endpunkte ein
und desselben Elementes ue U sind. Ist insbesondere u ein von x nach y führender
Bogen, so wird x als „Vorgänger von y“, und y als „Nachfolger von x“ bezeichnet.
Zwei Elemente u, ve U heißen adjazent‚ wenn sie einen Endpunkt gemeinsam haben.

Tabelle 1.1: Weitere Beispiele fiir Systeme und Prozesse, deren Struktur durch
einen Graphen beschrieben werden kann

System/Prozeß Knotenpunkte Bögen bzw. Kanten

Wasserleitungsnetz Zapfstellen, Rohrleitungen
Vorratstanks

Versorgungssystem ' Erzeuger und Transportwege
Verbraucher

Leitungssystem Direktionen, Informationswege
eines Kombinates Abteilungen
Strukturformel Atome Chemische Bindungen
eines chemischen
Stoffes
Elektrische Spannungsquellen, Stromwege
Schaltung Widerstände,

Schalter,

" Im Sinne der Algebra ist G ein algebraisches System, bestehend aus einer (nichtleeren) Menge
X und einer aufX erklärten binären Relation U. Die Graphentheorie befaßt sich dann mit der Unter-
suchung struktureller Eigenschaften von G in Abhängigkeit von der Art der Relation U. Man kann
die Graphentheorie deshalb auch als eine Teildisziplin der Algebra auffassen und „rein algebraisch“
ohne Verwendung geometrischer Anschauungshilfen entwickeln.
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— Ein Bogen (bzw. eine Kante) u heißt mit dem Knotenpunkt x inzident, wenn x ein
Endpunkt von u ist. Falls u ein Bogen ist, der bei x beginnt und bei y endet, so nennt
man u „mit x nach außen inzident“ und „mit y nach innen inzident“, vgl. Bild 1.4.

— Ist A c X eine Teilmenge der Knotenpunktmenge von G, so heißt ein Element ue U
mit A inzident, wenn einer der Endpunkte zu A gehört, der andere nicht. Die Menge
aller mit A inzidentcn Bögen wird mit w(A) bezeichnet. Handelt es sich speziell um

einen gerichteten Graphen, so bedeutet w'(A) die Menge aller mit A nach außen inzi-
denten (d.h. aus A herausführenden) Bögen, a2’(A) die Menge der mit A nach innen
inzidenten (d.h. nach A hineinfiihrcnden) Bögen. Es gilt dann

w(A)=w‘(A)um (A). (1,1),

Im besonderen kann die Menge A auch nur aus einem einzigen Knotenpunkt x beste-
hen. Dann heißt die Anzahl der mit x inzidenten Bögen lw(x)| die Valenz von x

(Schlingen werden dabei doppelt gezählt).

5tI7I/Ivgen //72/denz fl/717$ KM:/I5 u

O O

Mehrfamkanfen Paral/e/e rügen”
1

Jg’ ‚t
Bild 1.4. Kanten und Bögen

l der Definition 1.1 wird nicht ausgeschlossen, daß verschiedenen Elementen von U
(etwa u, und uz) dasselbe Paar x, y von Knotenpunkten zugeordnet ist. Handelt es sich bei
u, und u; um Kanten mit denselben Endpunkten, so spricht man von mehrfachen Kan-
ten. Sind ul und u, Bögen, die beide von x nach y führen, so heißen sie parallele Bögen,
vgl, Bild 1.4. (Parallele Bögen liegen aber nicht vor, wenn x #y ist und ul von x nach y,
dagegen u; von y nach x fuhrt!)

Ein Graph, der weder Schlingen noch mehrfache Kanten (bzw. parallele Bögen) enthält,
wird als schlichter Graph bezeichnet. ln einem schlichten Graphen ist demnach die Zu-
ordnung von Elementen u e U und den ihnen entsprechenden Knotenpunktpaaren x,
ye X eineindeutig. Wir können deshalb in diesem Fall die Elemente u einfach durch An-
gabe des Paares ihrer Endpunkte beschreiben. Ist u eine Kante, die x und y verbindet, so

schreiben wir unter Verwendung eckiger Klammern

u= [x‚ y] oder u: [y‚ x].

Ist dagegen u ein von x nach y gerichteter Bogen, so verwenden wir runde Klammern und
schreiben‘)

u = (x, y).

1) Die Schreibweise ist in der Literatur nicht einheitlich. Andere Autoren bezeichnen gerade um-

gekehrt mit () die Kanten und mit [] die Bögen.
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Wenn also im folgenden diese Schreibweise verwendet wird, so ist stets x? y vorausge-
setzt, und es handelt sich um einen schlichten Graphen, auch wenn dies nicht ausdrück-
lich vermerkt wird,

Es sei noch darauf hingewiesen, dal3 in praktischen Anwendungen auftretende Schlin-
gen, Mehrfachkanten oder parallele Bögen ggf. durch Einfügen fiktiver Knotenpunkte
leicht beseitigt werden können. Die Beschränkung bestimmter Algorithmen auf schlichte
Graphen stellt deshalb praktisch keine Einschränkung ihres Anwendungsbereiches dar.

Bei vielen Überlegungen ist es notwendig, aus G durch Streichen eines Teiles der Kno-
tenpunkte oder Bögen bzw. Kanten einen anderen Graphen G’ herzustellen. In Hinblick
hierauf führen wir jetzt noch folgende Bezeichnungen ein:

Definition 1.2: G’ = (X’, U’) heißt ein Untergraph von G = (X, U), wenn X’ E X und U’ g U
gilt. G*= (Xi U*) heißt der von X* erzeugte (aufgespannte) Untergraph von G, wenn X*c X
gilt, und U* genau alle die Elemente von U enthält, die in G Knotenpunkte der Menge X* verbin-
den.

Bei ungerichteten Graphen sind die Bezeichnungen analog.

Ist beispielsweise X die Menge aller Städte, U die Menge aller Bahnlinien (zwischen Nachbar-
bahnhöfen) innerhalb der DDR, dann stellt G= (X, U] das Eisenbahnnetz der DDR dar. Zeichnet
man in einer Landkarte nur die elektrifizierten Linien ein, so entsteht ein Untergraph von G. (Bahn-
höfen, die an keiner elektrifizierten Strecke liegen, entsprechen dabei „isolierte Knotenpunkte“) Die
Karte der Reichsbahndirektion Halle ist der von der Menge der zugehörigen Bahnhöfe erzeugte Un-
tergraph von G.

Wir fiihren noch Bezeichnungen für einige durch eine spezielle Struktur ausgezeich-
nete Graphen ein. G= (X, U) sei ein schlichter gerichteter Graph. Er heißt dann

— symmetrisch, wenn gilt:

(x, y)e U—>(y, x)E U,

d. h., wenn adjazente Knotenpunkte stets in beiden Richtungen verbunden sind,

— antisymmetrisch, wenn gilt:

(x. y)6 U->(y. x)et U,

d. h., wenn adjazente Knotenpunkte stets nur in einer Richtung verbunden sind,

— vollständig, wenn gilt:

(x. y) e Uäiy. >06 U.

d. h., wenn jedes'Paar von Knotenpunkten mindestens in einer Richtung verbunden ist.
Der Begriff der Vollständigkeit wird auch bei schlichten ungerichteten Graphen verwen-
det. Er verlangt für diese, dal3 je zwei verschiedene Knotenpunkte durch eine Kante ver-

bunden sind.

Beispiel 1.1: Wir betrachten den in Bild 1.5 gezeichneten schlichten Graphen G : (X. U) mit
X= {a, b, c, d}, U= (11„ us]. G ist weder symmetrisch (z.B. ist kein Bogen von b nach a vorhan-
den), noch antisymmetrisch (die Knotenpunkte a, e sind in beiden Richtungen verbunden), noch
vollständig (es gibt keinen Bogen zwischen u und d). Der von X‘: (b, c, d] erzeugte Untergraph
G"= (X“, U‘) mit U*= {uh ug, uh} ist dagegen antisymmetrisch und vollständig. Als Mengen mit X*
nach außen bzw. nach innen inzidenteg Bögen erkennen wir:

w‘(X*) = {“3}» w (X*)={“1»u2}-
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Planar wird ein Graph dann genannt, wenn er in einer Ebene so gezeichnet werden
kann, dal3 sich keine Bögen bzw. Kanten überschneiden. So ist der in Bild 1.5 gezeigte
Graph planar. Aber auch Bild 12c stellt einen planaren Graphen dar, denn er kann ja
kreuzungsfrei gezeichnet werden, wie aus Bild 1.2b ersichtlich ist.

Auf die besonderen Eigenschaften planarer Graphen können wir im vorliegenden Buch nicht nä-
her eingehen (vgl, hierzu etwa [1], [2], [11]). Wir weisen nur darauf hin, daß praktische Anwendungen
dieser Klasse von Graphen z.B. im Zusammenhang mit der Herstellung gedruckter Schaltungen auf-
treten. Eine theoretische Fragestellung aus dem Bereich der planaren Graphen ist das Sogenannte
Vierfarbenproblem. Man versteht darunter die Frage, ob vier Farben ausreichen, um die Gebiete je-
des eine mögliche Landkarte darstellenden „ebenen“ Graphen (die Länder jeder politischen Land-
karte) so zu farben, daß je zwei Gebiete, die eine Randkante gemeinsam haben, Verschiedenen Far-
ben erhalten.

Bild 1,5. Zu Beispiel 1.1

1.3. Folgen adjazenter Kanten und Bögen

Wenn wir die Struktureigenschaften eines realen Systems anhand seines Graphen un-

tersuchen, dann werden oft Fragen folgender Art auftreten: Ist es möglich, von einem gege-
benen Knotenpunkt a über eine Folge zusammenhängender Kanten oder Bögen zu einem ande-
ren gegebenen Knotenpunkt b zu gelangen (ist b von a aus ,,erreichbar"), welche ist bei mehreren
Möglichkeiten die kürzeste Verbindung zwischen a und b, usw. Wir wollen deshalb einige
wichtige Begriffe definieren, die zur graphentheoretischen Formulierung und Behandlung
derartiger Fragen geeignet sind.

Definition 1.3: G= [X, U] sei ein ungerichteter Graph. Als Kantenfolge wird jede Folge

u=(u„uZ,...,u‚) (1.2)

von Elementen aus U bezeichnet, in der für i = 2, 3, ‚.., k — 1 gilt, daß u,» einen Endpunkt mit
u,-,1, den anderen mit um gemeinsam hat. k heißt dann die Länge l(u) der Kantenfolge u.

Ein Kantenzug (einfache Kantenfolge) liegt vor, wenn in ‚u keine Kante mehrmals vorkommt.
Ein Weg (elementare Kantenfolge) ist ein Kantenzug, der keinen Knotenpunkt mehrmals ent-
hält.

Wenn G ein schlichter Graph ist, so kann ‚u auch durch die Folge der Knotenpunkte
eindeutig charakterisiert werden:

(1.3)

Eine Kantenfolge heißt offen, wenn x0 a; xk, geschlossen, wenn x0 = xk gilt. Ein geschlos-
sener Kantenzug wird auch als Kreis bezeichnet.

I‘: (X0: X1: ---‚ 95k)-

D. 1.3
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Ein Kantenzug, derjede Kante von G genau einmal enthält, heißt eine Eulersche Linie
des betr. Graphen. Wenn in G eine geschlossene Eulersche Linie existiert (bei zusam—

menhängenden Graphen ist dies genau dann der Fall, wenn jeder Knotenpunkt gerade
Valenz hat), so nennt man G einen Eulerschen Graphen. Als Hamiltonsche Linie wird
ein Weg bezeichnet, derjeden Knotenpunkt von G genau einmal enthält.

Beispiel 1.2: Im Bild 1.6 (die Kanten sind einfach durch Zahlen bezeichnet) stellt um = (1, 3, 2, 1, 5)

eine die Knotenpunkte x, und x3 verbindende Kantenfolge der Länge 5 dar. Sie ist kein Kantenzug,
da die Kante 1 zweimal vorkommt. 14”’ : (5, 4, 8, 6, 2, 1, 3, 7) ist eine offene Eulersche Linie (eine
geschlossene existiert nicht). 14”’ = (1, 4, S, 6, 2) ist ein l-lamiltonscher Kreis,

x5 7 x),
2 ‚

L
‚i, 3 8

1

X2 5 x3

Bild 1.6. Zu Beispiel 1.2

Die nächste Definition stellt analoge Begriffsbildungen für gerichtete Graphen zusam-

men.

Definition 1.4: Es sei G = (X, U) ein gerichteter Graph. Eine Folge von Bögen aus U

M=(ul‚u2‚..„ut) (1.-4)

heißt Kette, wenn füri = 2, 3, ..., k - 1 gilt, daß u, einen Endpunkt mit u,_ „ den anderen mit
u‚v„ gemeinsam hat. k = [(14) ist die Länge von 14. Als eine Bahn wird 14 dann bezeichnet,
wenn der Endknotenpunkt von u, gleich dem Anfangspunkt des Fulgebogens u,-„ ist
(i = 1, 2, ..., k — 1), d. h.‚ wenn beim Durchlaufen der Folge alle beteiligten Bögen im Sinne
ihrer Orientierung durchlaufen werden. Kommt in 14 kein Bogen mehrfach vor, so heißt die Kette
bzw. Bahn einfach. Eine einfache Kette, die geschlossen ist, wird als Zyklus bezeichnet. Eine
einfache geschlossene Bahn (bei der also der Endpunkt von u) mit dem Anfangspunkt von u, zu-

sammenfällt) heißt ein Kreis. Schließlich heißt 14 elementar, wenn kein Knotenpunkt mehrfach
enthalten ist.

X7

‘s

Bild 1.7. Zu Beispiel 1.3

Beispiel 1.3: Wir demonstrieren diese Begriffe an dem in Bild 1.7 dargestellten Graphen: Die Bogen-
folge 141“ = (2, 3, 4, 5, 8) LB. stellt eine einfache Kette der Länge 5 dar, die x1 mit x6 verbindet. Sie
ist nicht elementar, denn der Knotenpunkt x5 wird zweimal durchlaufen. 14”‘ I (4, 5, 8, 9, 3) ist ein
nichtelementarer Zyklus, dagegen ist der Zyklus 14"’ : (4, 5, 3) elementar. Bei 14“) : (2. 3, 4, 6) han—
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delt es sich um eine elementare Bahn der Länge 4, die von x, nach x4 fuhrt. Der Graph enthält vier
verschiedene Elementarkreise, nämlich

M”: (8. 9); /4“’=(2,8, 10); u”’= (2. 3, 1); 14“’ = (11. 13).

Auch M” : (2, 8, 9, 3, 1) stellt einen Kreis dar, der aber nicht elementar ist, da x5 zweimal durchlau-
fen wird.

Einfache Ketten und Bahnen, insbesondere also Zyklen und Kreise, lassen sich auf fol-
gende Weise durch Vektoren darstellen. G= (X, U) mit U: {u„ uz, ..., u,,,} sei gegeben,
d.h.‚ die Bögen seien durchnumeriert. Wenn wir jeder einfachen Kette

u: (u„ u], u„) (1.5)

den durch die Aufeinanderfolge der Bögen von links nach rechts festgelegten Durchlauf-
sinn zuordnen, dann können wir die an ‚u beteiligten Bögen in zwei Teilmengen zerlegen.
Es sei u‘ die Menge der im Durchlaufsinn gerichteten, 14‘ die Menge der entgegen dem
Durchlaufsinn gerichteten Bögen. Wir ordnen nun ‚u einen m-dimensionalen Vektor‘)

M1

u: bzw. ;4T=(/.¢,,,uz,...,,um) (1.6)

‚um

durch folgende Vorschrift zu:

+l‚falls u,-e‚u*,
‚u‚= —1, falls u,e,u’, (1.7)

O sonst (d. h. falls u, in u nicht vorkommt).

Bei der Vektordarstellung erkennen wir das Vorliegen einer Bahn also daran, daß alle
von Null verschiedenen Koordinaten dasselbe Vorzeichen haben. Oft wird die einfache
Kette ‚u mit ihrem Vektor ‚u identifiziert. Wenn beispielsweise von einer Summe mehrerer
Zyklen gesprochen wird, so ist die Summe der den Zyklen zugeordneten Vektoren ge-
meint. In diesem Sinne ist auch folgender Satz zu verstehen.

Satz 1.1: Jeder Zyklus u ist darstellbar als Summe von Elementarzyklen, die paarweise keinen
Bogen gemeinsam haben,

Der Beweis ist einfach: Man durchlaufe u, dargestellt in der Form (1.5) beginnend mit
u‚. Jedesmal, wenn man zu einem Knotenpunkt zurückkommt, bildet die dazwischen lie-
gende Teilfolge einen elementaren Zyklus. Je zwei so erhaltene Elementarzyklen können
auch keinen Bogen gemeinsam haben, weil u eine einfache Kette ist. Daß die Vektor-
summe der Elementarzyklen u ergibt, folgt unmittelbar aus der Vorschrift (1.7).

Auf analoge Weise ist eine Vektordarstellung für Kantenzüge a in ungerichteten Gra-
phen möglich, Natürlich ist dann eine Zerlegung von ‚u in Teilmengen ‚u‘ und u’ nicht
durchführbar, und an die Stelle von (1.7) tritt folgende Vorschrift zur Bildung des Vek-
tors u:

( 1.8)l

= l, falls u, e /4,

O sonst.

‘) „T“ bezeichnet die Transposition, d.h. den Übergang von einem Spaltenvektor zu einem Zei-
lenvektor.

S. 1.1
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Satz 1.1 legt folgende Vermutung nahe. Es wird möglich sein, eine Teilmenge B aus

der Menge der Elementarzyklen eines Graphen G so auszuwählen, daß mittels der Ele-
mente von B alle Zyklen von G durch Summenbildung darstellbar sind, während keine
echte Teilmenge von B diese Eigenschaft hat. Diese Überlegungen fiihren zum Begriff der
Zyklenbasis. Um ihn zu formulieren, übernehmen wir zunächst den aus der linearen Al-
gebra [9] bekannten Begriff der linearen Unabhängigkeit: Die Zyklen u“), u“), ..., u“)
eines Graphen heißen unabhängig, wenn gilt

riß“’+rzu"’+ + rkM""=0-> r.-=0‚ i=1,...,k. (1.9)

Definition 1.5: Eine Menge B = {;¢‘”, gt”), ..„ um} von Zyklen eines Graphen G = (X, U)
heißt Zyklenbasis von G, wenn es sich bei den am (i = 1,2, ..., k) um unabhängige Elementar-
zyklen handelt und wenn jeder Zyklenvektar u von G mittels reeller Zahlen n in der Fonn

k

u = Z du“ (1.10)
I — 1

darstellbar ist. k = k(G) gibt dann die Dimension der Zyklenbasis an und wird auch zyklo-
matische Zahl des Graphen genannt.

Im allgemeinen gibt es durchaus mehrere Möglichkeiten, für G eine Zyklenbasis zu-

sammenzustellen. Eindeutig bestimmt ist aber deren Dimension k(G). Um über den Zah-
lenwert von k(G) eine Aussage machen zu können, benötigen wir noch folgenden Begriff:

Definition 1.6: Es sei G = (X, U) bzw. G = [X, U]. Jede Teilmenge K c X, die aus einem Ele-
ment as X und allen weiteren Knotenpunkten besteht, die mit a durch eine elementare Kette
bzw. einen Weg verbunden sind, wird als eine Komponente von G bezeichnet.

Der in Bild 1.7 dargestellte Graph enthält zwei Komponenten, nämlich

K1:1X1, X2» X1.-X4, X5. Xe}, K2 =1X7: X2. X91

Dagegen besitzen die Graphen der Bilder 1.1 bis 1.3, 1.5, 1.6 nur jeweils eine Komponente, nämlich
ihre volle Knotenpunktmenge.

Für die Dimension einer Zyklenbasis gilt nun folgender

Satz 1.2: G= (X, U) besitze n Knotenpunkte, m Bögen und p Komponenten. Dann ist

k(G)=m~n+p. (1.11)

Der Beweis dieses wichtigen Satzes wird hier nicht geführt (siehe z. B. [1]). Wir wollen
ihn aber an einem Beispiel erläutern,

Beispiel 1.4: Der in Bild 1.7 gezeigte Graph hat n = 9 Knotenpunkte, m : 13 Bögen und p 2 2 Kompo-
nenten. Jede Zyklenbasis besitzt daher die Dimension

k = m — n + p 2 6.

Beispielsweise sind die Elementarzyklen

w" = <1. 2. 3), w“ = <2. s. 10>

W = <3. 4. s). 14"’ : <5. 6. 7. s) <1.12>

14"’ : <8. 9>. 14“” = <11‚ 13)

unabhängig, denn jeder enthält einen Bogen, der in den übrigen fiinfnicht vorkommt. Sie bilden des-
halb eine Basis. Eine andere Zyklenbasis erhalten wir, wenn wir in (1.12) ‚um durch u") = (1‚2,5.4)
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ersetzen. Wie der Leser durch Bilden der zugehörigen Vektoren selbst nachpriife, kann z. B. der Zy-
klus /4 2 (1, 4, 5, 8, 10) mittels der Basis (1.12) folgendermaßen als Linearkombination dargestellt
werden:

‚l = _„<1>+ „<2: + „w
Im Abschnitt 1.5. werden wir eine Methode kennenlernen, mit der man systematisch Zyklenbasen
bilden kann.

Möglichkeiten, wie wir sie hier fur die Darstellung von Zyklen erläutert haben, gibt es

in analoger Weise auch für geschlossene Kantenzüge in ungerichteten Graphen, die man

dort durch Kreisbasen darstellen kann. Wir gehen darauf nicht näher ein. Überhaupt wol-
len wir uns von jetzt an im wesentlichen auf die Behandlung gerichteter Graphen be-
schränken, da diesen in den Anwendungen der Graphentheorie auf praktische Problem-
stellungen, wie wir sie im Auge haben, die größere Bedeutung zukommt.

1.4. Arten des Zusammenhanges von Graphen

Wenn wir etwa die Bilder 1.5 und 1.7 vergleichen, so liegt es nahe, den ersten dieser
Graphen als „zusammenhängend“, den zweiten als nicht zusammenhängend zu bezeich-
nen. Wir legen diese Eigenschaft jetzt exakt in einer Definition fest.

Definition 1.7: Ein Graph G= (X, U) bzw. G= [X, U] heißt zusammenhängend, wenn je D. 1.7
zwei Knotenpunkte aus X durch eine elementare Kette bzw. einen Weg verbunden sind.

Ein Vergleich mit Definition 1.6 zeigt folgendes: Jeder zusammenhängende Graph hat
genau eine Komponente. Ist G nicht zusammehängend, so besitzt G mindestens zwei
Komponenten.

In Hinblick auf praktische Anwendungen ist die Eigenschaft des Zusammenhanges
z.B. dann wichtig, wenn G ein Versorgungsnetz, Verkehrsnetz oder ein System zur Infor-
mationsübertragung darstellt. Ein Fehlen des Zusammenhanges würde dann nämlich be»

deuten, daß zwischen bestimmten Stellen (Knotenpunkten) des betreffenden Netzes
keine Verbindung möglich ist. Von diesem Gesichtspunkt aus ist offenbar auch die Frage
interessant, welche Konsequenzen es für die gegenseitige „Erreichbarkeit“ der Knoten-
punkte hat, wenn in einem zusammenhängenden Graphen einzelne Elemente weggelas-
sen werden (Ausfall von Knotenpunkten, Bögen oder Kanten von G durch „Havarie“ in
dem durch G beschriebenen System). Um solche Eigenschaften der „Verwundbarkeit“
von Graphen beschreiben zu können, fuhren wir weitere Bezeichnungen ein.

Als Löschung (Streichung) eines Knotenpunktes xeX verstehen wir die Entfernung
von x und allen mit x inzidenten Bögen bzw. Kanten aus G. Der verbleibende Restgraph
wird mit

G’=G—{x} (1.13)

bezeichnet. Löschung eines Bogens bzw. einer Kante u bedeutet entsprechend, daß wir
das Element u aus U entfernen. Für den Restgraphen wird

G'=G-{u} (1.14)

geschrieben. G+ {u} bedeutet entsprechend das Hinzufügen eines Bogens u zu G.

Der Knotenpunkt xe X heißt eine Artikulation (Zerfallungspunkt) von G, wenn

G- {x} mehr Komponenten besitzt als G.

G heißt p-fach zusammenhängend (bezüglich der Knotenpunkte bzw. der Bögen oder
Kanten), wenn G zusammenhängend ist und der Zusammenhang erst dann verlorengeht,
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wenn mindestens p Elemente (Knotenpunkte bzw. Bögen oder Kanten) gelöscht werden.
Anschaulich ausgedrückt ist ein System um so weniger „verwundbar“ (störanfalligme grö-
ßer die Zahl p im zugehörigen Graphen ist.

Beispiel 1.5: Der Graph G im Bild 1.5 ist zusammenhängend. Er enthält keine Artikulationen. Sein
Zusammenhang bezüglich der Knotenpunkte ist 2fach, denn Löschung von b, r ergibt

G’ = G— (b, e} = (X', U’); X’= {(1, d}, U’ = IZI.

d.h. einen aus zwei Komponenten bestehenden „Punktgraphen“. Bezüglich der Bögen liegt ebenfalls
ein Zfacher Zusammenhang vor (Löschung von u, und 11;).

Der in Bild 1.1 dargestellte Graph besitzt Artikulationen, nämlich die Knotenpunkte 2 und 3.

Im Falle von gerichteten Graphen werden noch andere Arten des Zusammenhanges un-

terschieden:

Definition 1.8: G = (X, U) heißt stark zusammenhängend, wenn je zwei Knotenpunkte x, y
aus X durch eine von x nach y führende elementare Bahn verbunden sind.

In einem stark zusammenhängenden Graphen gibt es also zu je zwei Knotenpunkten a,

b sowohl eine von a nach b führende als auch eine von b nach a führende elementare
Bahn. Jeder stark zusammenhängende Graph ist auch zusammenhängend, aber nicht um-

gekehrt. Eine entsprechende Modifikation der Definition 1.6 stellt der Begriff der starken
Komponente dar.

Definition 1.9: Jede Teilmenge SC X von Knotenpunkten eines Graphen G = (X, ID, die aus

einem Element a e X und allen weiteren Knotenpunkten besteht, die mit a in beiden Richtungen
durch je eine elementare Bahn verbunden sind, hem! eine starke Komponente von G.

Starke Komponenten sind, mit anderen Worten, Knotenpunktmengen, die maximale
stark zusammenhängende Untergraphen von G aufspannen. Wenn G stark zusammen-

hängend ist, so besitzt der Graph genau eine starke Komponente, nämlich S= X. Es ist zu

beachten, daß zusammenhängende Graphen zwar stets nur eine Komponente im Sinne
der Definition 1.6 haben, im allgemeinen aber durchaus mehrere starke Komponenten
besitzen können. So liegen z. B, im Bild 1.1 fiinf starke Komponenten vor, nämlich

5x={1}; -92:9}; S3={3,4a5,3}; 54:17}: Ss={6}-

Aus der Sicht des dem Graphen zugrunde liegenden realen Systems umfaßt eine starke
Komponente jeweils alle Systemelemente, die durch Rückkopplungen miteinander ver-

bunden sind. Nehmen wir an, daß im mathematischen Modell des Systems jedem Ele-
ment eine Modellgleichung zugeordnet ist, die die „Ausgangsströme“ x, als Funktion der
„Eingangsströme“ x5 zu berechnen gestattet, vgl. Bild 1.8,

xj;>=ft'>(x‘„.“‚ ...,x‘E“); i= 1, (1.15)

Die Modellgleichungen aller einer starken Komponente angehörenden Knotenpunkte
sind dann bezüglich der Eingangs- und Ausgangsvariablen miteinander gekoppelt und
können deshalb nicht einfach nacheinander, sondern nur gemeinsam (bzw. iterativ)
durchgerechnet werden. Hier wird ein Anwendungsfeld der Graphentheorie im Zusam-
menhang mit der Simulation und Optimierung komplexer Systeme und der in diesen ab-
laufenden Prozesse sichtbar. Bei der rechentechnischen Durchführung solcher Simula-
tionen geht man meist so vor, daß fiir die Modelle der einzelnen Systemstufen
(Knotenpunkte) Unterprogramme ausgearbeitet werden, aus denen dann das Gesamtpro-
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gramm zusammengebaut werden kann. Hierbei ist es natürlich notwendig (von Hand oder
automatisch) eine Reihenfolge festzulegen, in der die beteiligten Unterprogramme nach-
einander zum Einsatz kommen müssen. Die Ermittlung einer möglichen Berechnungsrei-
henfolge kann anhand des dem System zugehörenden Graphen vorgenommen werden. Da
es i.allg. viele Möglichkeiten gibt, kann sogar nach einer optimalen Variante gesucht wer-

den, die einen minimalen Rechenzeitbedarf fiir die Simulation erwarten läßt. Eine Teil-
aufgabe bei dieser Strukturanalyse ist die Bestimmung aller starken Komponenten, da
diese — wie gesagt — die Gruppen von Systemelementen liefern, die jeweils nur gemein-
sam, etwa mittels eines Iterationsprozesses, berechnet werden können. Genaueres zu die-
sem Anwendungsgebiet findet der Leser z. B. in [4], [10].

Eine Mittelstellung zwischen dem einfachen und dem starken Zusammenhang von ge-
richteten Graphen nimmt der quasistarke Zusammenhang ein. Diese Eigenschaft bedeu-
tet folgendes:

Definition 1.10: G= (X, U) heißt quasistark zusammenhäng ", wenn es zu je zwei Kno- D. 1.10
tenpunkten a, be X ein Element ze X gibt, so dafl von z aus elementare Bahnen nach a und
nach b vorhanden sind.

In dieser Definition wird nicht ausgeschlossen, daß z mit a oder b identisch ist (im
Falle z = a fuhrt eine „Bahn der Länge Null“ von z nach a), Es gilt folgende Implikation:

Starker 7 " —> ' Im: 7 " „—-> 7 "

m
x m-5 E Ä

‚(m s- \ j ‘
-5 \X\_ m)»_xA

'/(J ‘/// -

X' * \ II)"I
5A

%,\,__/ \___J

I/‘nyanyssfrimz /myungssrri/ne

Bild 1.8. Eingangs- und Ausgangsströme eines Systemelementes

Beispiel 1.6: Der Graph G, in Bild 1.9 ist stark zusammenhängend, G; besitzt quasistarken Zusam-
menhang, denn für die Knotenpunktpaare (a, b], (a, c}, (b. e} ist gemäß Definition 1.10 jeweils z: c

geeignet. Dagegen ist G; nicht stark zusammenhängend, denn es führt z.B. keine Bahn von b nach e.

Der Graph G; schließlich ist zwar zusammenhängend, hat aber keinen quasistarken (und erst recht
keinen starken) Zu an menhang, denn zu c, b gibt es keinen Knotenpunkt z der in Definition 1.10
geforderten Eigenschaft.

u l7 l7

s, a, e,

Bild 1.9. Zu Beispiel 1.6

In enger Beziehung mit der Eigenschaft des quasistarken Zusammenhanges steht der
Begriff des Zentrums eines Graphen.

2 Bieß. Graphentheorie
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Definition 1.11: Ein Knotenpunkt ze X heißt Zentmm des Graphen G =(X‚ U), wenn von z

aus zu jedem K ‚ ’ t von Gje ( ' d ‘ l eine ' Bahn führt.

Ein Vergleich mit Definition 1.8 läßt erkennen, daß für einen stark zusammenhängen-
den Graphen jeder Knotenpunkt ein Zentrum ist. Dagegen sichert Zusammenhang
schlechthin nicht die Existenz eines Zentrums, wie G3 in Bild 1.9 zeigt. Vielmehr gilt fol-
gender Satz:

Satz 1.3: Der Graph G = (X, U) besitzt genau dann ein Zentrum, wenn er quasistark zusammen-

hängend ist.

1.5. Bäume und Gerüste

Oft besitzen die Strukturschemata realer Systeme eine Form, wie sie in Bild 1.10 an-

gedeutet ist, d. h., sie bilden reine Verzweigungsnetze ohne Kreise bzw. Zyklen. Bei-
spiele aus der Praxis sind Verteilungsnetze für Wasser oder elektrischen Strom, Leitungs-
strukturen in Kombinaten, Stammbäume, Telefonnetze, Kanalsysteme usw. Wegen des
häufigen Auftreten derartiger Graphen ist es angebracht, ihre besonderen Eigenschaften
zu untersuchen. Zunächst fuhren wir eine spezielle Bezeichnung für diesen Graphentyp
ein.

H1 H1 "a

Bild 1.10. Bäume

Definition 1.12: Ein zusammenhängender Graph H = (X, U) bzw. H = [X, U] mit mindestens
einem Knotenpunkt, der keine Zyklen bzw. Kreise enthält, heißt ein Baum. Ist H nicht zusam-

menhängend und bildet für jede seiner Komponenten der aufgespannte Untergraph einen Baum,
so wird H als Wald bezeichnet.

In Bild 1.10 stellen die Graphen H1, H2, H3 Bäume dar. Der durch Vereinigung entste-
hende Graph

H = H, u H; U H,

ist ein Wald.
Knotenpunkte eines Baumes, mit denen genau ein Bogen (bzw. eine Kante) inzident

ist, heißen hängende Knotenpunkte. Es gilt der anschaulich einleuchtende

Satz 1.4: Jeder Baum mit mehr als einem Knotenpunkt besitzt mindestens zwei hängende Kno-
tenpunkte.
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Im nun folgenden Satz sind verschiedene Möglichkeiten zusammengestellt, einen
Baum durch Eigenschaften zu charakterisieren. Wir formulieren sie für den Fall eines ge-
richteten Baumes. Ersetzt man die Worte Bogen, Zyklus, elementare Kette durch Kante,
Kreis, Weg, so ergeben sich die entsprechenden Aussagen fur ungerichtete Bäume.

Satz 1.5: Dafür, daß ein Graph H = (X, U) mit n g 1 Knotenpunkten ein Baum ist, sind fol- S. 1.5
gende Eigenschaften äquivalent:

(1) H ist zusammenhängend und zyklenfrei.
(2) H ist zyklenfrei und besitzt genau n - 1 Bögen.
(3) H ist zusammenhängend und hat genau n - 1 Bögen.
(4) H ist zyklenfrei. Fügt man aber zwischen zwei beliebigen Knotenpunkten einen Bogen hinzu,

so enthält der entstehende Graph genau einen Zyklus.
(5) H ist zusammenhängend. Löscht man aber einen beliebigen Bogen, so ist der entstehende

Graph nicht mehr zusammenhängend.
(6) Jedes Knotenpunktpaar von H ist durch genau eine elementare Kette verbunden.

Im Fall n = 1 sind die Aussagen (5) und (6) nicht sinnvoll. Die oben genannten Eigen-
schaften lassen sich leicht auseinander herleiten. Beispielsweise besagen die in (1) ge-
nannten Eigenschaften:

p= 1, k(G)=0. (1.16)

Wegen Satz 1.2 folgt dann m— n+1= 0, d. h., m: n— 1 und damit (2). Aus (2) wie-
derurn, d. h. aus

k(G)=O, m=n—1‚ (1.17)

folgt wegen k(G)=m-n+p
p=n-m=n—(n—1)=1, (1.18)

d.h. die Eigenschaft (3) usw. Einen vollständigen Beweis findet der Leser z.B. in [1].
Wir betrachten jetzt einen beliebigen Graphen G. Wenn G selbst kein Baum ist, so gibt

es aber Untergraphen, die diese Eigenschaft besitzen. Von besonderer Bedeutung sind
derartige Untergraphen dann, wenn sie alle Knotenpunkte von G erfassen.

Defmition 1.13: Ein alle Knotenpunkte erfassender Untergraph H van G, der ein Baum ist, wird D. 1.13
als Gerüst des Graphen G bezeichnet.

Betrachten wir beispielsweise den in Bild 1.5 dargestellten Graphen, so bildet H1 : (X, U,) mit
X= {a. b. c, d} und U12 {u,, u., ab} ein Gerüst, Ein anderes ist H; 2 (X U2) mit U, : {u}, a4, us).
Der Leser findet leicht noch weitere Gerüste. Es erhebt sich die Frage, wie G beschaffen sein muß,
damit ein Gerüst existiert. Es gilt:

Satz 1.6: Der Graph G besitzt genau dann ein Gerüst, wenn er zusammenhängend ist. S. 1.6

Beweis: Ist G nicht zusammenhängend, so gilt das natürlich auch fiir jeden alle Knoten-
punke von G enthaltenden Untergraphen. Also ist der Zusammenhang notwendig fiir die
Existenz eines Gerüstes. Daß diese Eigenschaft auch hinreichend ist, zeigt folgende Be-
trachtung, die zugleich einen Algorithmus zur Bestimmung eines Gerüstes darstellt. G sei
ein zusammenhängender Graph. Wir suchen nach einem Bogen, den man löschen kann,
ohne dal3 der Zusammenhang verlorengeht. Wenn es keinen gibt, so ist nach Satz 1.5, Ei-
genschaft (5), G selbst ein Baum. Existiert ein solcher Bogen, so löschen wir ihn. Im ent-
stehenden Restgraphen G’ suchen wir wieder nach einem Bogen, dessen Löschung den
Zusammenhang nicht zerstört. Gibt es keinen, so stellt der Teilgraph G’ ein Gerüst von G

2.
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dar. Anderenfalls gelangen wir zu einem neuen Graphen G”, an dem wir die Prozedur
wiederholen. Da G nur endlich viele Bögen hat, finden wir mit Sicherheit ein Gerüst von

G. Der Satz ist damit bewiesen.
In Definition 1.6 haben wir erklärt, was unter einer Zyklenbasis eines Graphen

G = (X, U) zu verstehen ist, Die Konstruktion einer solchen Basis kann mit Hilfe eines
Gerüstes von G leicht ausgeführt werden.

S. 1.7 Satz 1.7: G = (X, U) sei ein zusammenhängender Graph und H = (X, V), (Vc U) sei ein Ge-
rüst von G. Dann gilt für jeden Bogen u e U — V: Wird u zu H hinzugefügt, so enthält
H’ = H + {u} genau einen Elementarzyklus /N’. Die Menge aller so erzeugbaren Zyklen bildet
eine Zyklenbasis von G.

Beweis: U — V ist die Menge der Bögen, die wir in G löschen müssen, um das Gerüst H zu

erhalten. Ist U = V, so ist nichts zu beweisen. Es sei also V eine echte Teilmenge von U,
und sei u e U - V. Da H ein Baum ist, enthält H + {u} nach Satz 1,5 (Eigenschaft (4)) ge-
nau einen Zyklus, der dann nach Satz 1.1 auch elementar ist. Wenn |X| = n die Anzahl
der Knotenpunkte von’ G und [U| = m die Zahl der Bögen von G ist, so folgt aus Satz 1.5
(Eigenschaft (3)): |V] = n -1, und weiter: |U — V| = m — |V] = m — n +1. Wir erhalten
also auf die oben beschriebene Weise genau k(G) Elementarzyklen, wobei k(G) die Di-
mension einer Zyklenbasis von G ist, vgl. Satz 1.2. Diese m A n + 1 Zyklen sind auch un-

abhängig, denn jeder enthält einen Bogen (nämlich den zu H jeweils hinzugefügten), der
in allen übrigen Zyklen nicht vorkommt. Sie bilden deshalb tatsächlich eine Zyklenbasis
von G.

Beispiel 1.7: Im Bild 1.11 sind durch die stark gezeichneten Bögen zwei verschiedene Gerüste des
Graphen der Abb. 1.5 dargestellt, Im Beispiel a ist also U i K, I {u2, 11„ us} die Menge der aus G ge-
löschten Bögen, Wegen k(G) : m i n + 1 = 6 — 4 + 1 : 3 gehören zu einer Basis drei Zyklen. Diese
erhält man nach Satz 1.7 folgendermaßen: Bei Hinzunahme des Bogens u; zum Gerüst entsteht der
Zyklus u"’=(u„ n6, 14,). Mit u; erhält man den Zyklus u‘”= (a3, u,, us) und mit us schließlich
u") = (us, u,,, ufi). Aufganz analoge Weise ergibt sich mittels des im Beispiel b verwendeten Gerüstes
eine andere Zyklenbasis mit den Elementen

u“’=(u1,u4,us,uz); u"’=(u;.uz); u“’=(ua,us,u.).
Wenn G nicht zusammenhängend ist, dann können wir den Satz 1.7 auf jede Kompo-
nente von G anwenden und erhalten so ebenfalls eine Zyklenbasis des Graphen.

Bild 1.11. Zu Beispiel 1.7

D. 1.14 Definition 1.14: Ein Baum, der ein Zentrum besitzt, heißt ein Büschel.

Den Begriff „Zentrum“ hatten wir in Definition 1.11 erklärt. In Bild 1.10 stellt H, ein
Büschel mit dem Knotenpunkt a als Zentrum dar. Dagegen ist der Baum H, kein Büschel,
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denn dieser Graph enthält kein Zentrum. Wir wollen nun in einem zu 1.5 analogen Satz
verschiedene Eigenschaften eines Büschels zusammenstellen (eine Beweisführung findet
der Leser in [1].)

Satz 1.8: Dafiir, daß ein Graph H = (X, U) mit n g 1 Knotenpunkten ein Büschel ist, sind fol-
gende Eigenschaften äquivalent:
(1) H ist ein Baum mit einem Zentrum.
(2) H ist quasistark zusammenhängend und zyklenfrei.
(3) H ist quasistark zusammenhängend und besitzt genau n - 1 Bögen.
(4) H enthält einen Knotenpunkt a1, von dem ausje genau eine Bahn zu jedem anderen Knoten-

punkt fiihrt.
(5) H ist quasistark zusammenhängend. Löscht man aber einen beliebigen Bogen, so besitzt der

entstehende Graph diese Eigenschaften nicht mehr.
(6) H ist zusammenhängend, und es gibt in H einen Knotenpunkt a], in dem kein Bogen endet,

während in allen übrigen Knotenpunkten genau ein Bogen endet, d. h. '

|w'(ax)| = 0; |w‘(t1;)|= 1, 1' *1‘ (1-19)

Wir stellen noch die Frage, unter welchen Bedingungen ein Graph G ein Büschel als
Gerüst besitzt. Es gilt

Satz 1.9: Der Graph G = (X, U) besitzt genau dann ein Büschel als Gerüst, wenn er quasistark
zusammenhängend ist.

Der Beweis verläuft ganz analog wie bei Satz 1.6.

Beispiel 1.8: Der Graph in Bild 1.5 ist quasistark zusammenhängend, er enthält die Zentren a, b, e.

Nach Satz 1.9 muß sich also ein Büschel als Gerüst finden lassen, Tatsächlich ist das Geflist
H: (X, V) mit V= {uh uz, ui} ein Büschel, wobei der Knotenpunkt a das Zentrum ist.

1.6. Ströme und Spannungen

Die bisherigen Definitionen und Sätze sagen im wesentlichen nur etwas über die Struk-
tur eines Graphen bzw. des durch den Graphen abgebildeten realen Systems aus. Wir wer-

den jetzt andere Begriffe einführen, mit deren Hilfe man Vorgänge beschreiben kann, die
in einem solchen System ablaufen oder auch Zustände, in denen sich das System befin-
det. Dadurch eröffnen sich der Graphentheorie viele praktische Anwendungen.

Betrachten wir beispielsweise den Fall, daß G = (X, U) ein elektrisches Netzwerk dar-
stellt. Den Knotenpunkten entsprechen dann die Verzweigungspunkte der Stromleitun-
gen, den Bögen die Leiterabschnitte selbst (mit den darin befindlichen Widerständen,
Spannungsquellen usw.). G stellt zunächst nur die Struktur des Netzes dar. Wenn wir dar-
über hinaus eine im Netzwerk vorhandene Stromverteilung beschreiben wollen, so müs-
sen wir offenbar jedem Bogen noch die dort vorhandene Stromstärke zuordnen. Eine an-

dere Möglichkeit, elektrische Vorgänge im Netz zu beschreiben, wäre die, daß wir für
jeden Bogen des Graphen den dort vorhandenen Spannungsabfall angeben oder daß wir
jedem Knotenpunkt den zugehörigen Potentialwert zuordnen.

Ganz entsprechend wäre zu verfahren, wenn G etwa ein Rohrleitungssystem zur Vertei-
lung von Wasser, Gas oder Dampf abbildet, Zur Beschreibung des im Netz stattfindenden
Transportvorganges kommen wir, wenn wir den Bögen von G die zugehörigen Durchfluß-
mengen pro Zeiteinheit zuordnen (oder die Druckabfälle in den Rohrleitungsabschnit-
ten).

S. 1.8

S. 1.9



D. 1.15

22 1. Grundbegriffe der Graphentheorie

Ein weiteres Beispiel ist die Beschreibung des Verkehrsflusses in einem Straßennetz G.
Hier könnte man zu jedem Bogen die Anzahl der Fahrzeuge angeben, welche pro Zeitein-
heit den entsprechenden Straßenabschnitt (im Sinne einer festgelegten Richtung) passie-
ren. Der Leser wird leicht viele weitere Beispiele finden, bei denen es darum geht, einen
im System ablaufenden Vorgang zu beschreiben. Wie uns die Beispiele zeigen, gelingt
dies dadurch, daß wir den Bögen (oder Knotenpunkten) des Graphen geeignete Zahlen
zuordnen. In einem solchen Fall spricht man dann ganz allgemein von einem bogenbe-
werteten bzw. knotenbewerteten Graphen. Von dieser Möglichkeit machen wir im fol-
genden Gebrauch. Wir wollen uns dabei auf die Betrachtung gerichteter zusammenhän-
gender Graphen beschränken.

Definition 1.15: G = (X, U) sei ein zusammenhängender Graph, U = {u„ 14;, ...‚ u„‚}. Ist je-
dem Bogen u,- eine reelle Zahl (p, zugeordnet, so wird der Vektor

m’= (an m; mm) (1-20)

als ein Fluß auf dem Graphen G bezeichnet.
Beispielsweise kann q: einen realen Strömungsvorgang widerspiegeln, wobei (p,- die

Menge ist, die den Bogen u,- in der Zeiteinheit durchfließt. Wenn ein solcher Fall vorliegt
und w, > 0 gilt, so deuten wir dies als einen Fluß in Richtung des Bogens u,», entsprechend
entgegen der Bogenrichtung, wenn qr, < 0 ist.

Nun sei A C X eine Teilmenge der Knotenpunkte. Wir führen dann folgende Bezeich-
nungen ein:

armo- Z m.» <Ir<A>= Z on, (1.21)
u,€n/'(A) u,eu'(A)

<1>(A) =<D*(A)—<D‘(A). (1.22)

Dabei ist (vgl. Formel 1.1 und Bild 1.12) uJ*(A) bzw. u;‘(A) die Menge der mit A nach au-

ßen bzw. innen inzidenten Bögen. Wenn wir uns (p als einen Materialfluß vorstellen und
um die Knotenpunkte A einen „Bilanzkreis“ gezogen denken, dann bedeutet <D*(A) an-

schaulich die Menge, welche insgesamt über die aus A herausfiihrenden Bögen pro Zeit-
einheit nach außen abströmt. Entsprechend stellt ¢v’(A) die Stoffmenge dar, welche über
die in A hineinfiihrenden Bögen in den Bilanzkreis pro Zeiteinheit hineinströmt. Schließ-
lich gibt ¢°(A) an, wieviel insgesamt aus dem Bilanzkreis pro Zeiteinheit ausströmt (Ge-
nauer: mehr ausströmt als hineinfließt). Natürlich können wir eine solche „Mengenbi-
lanz“ auch für einen einzelnen Knotenpunkt x e X aufstellen.

s

ä

u)'(/4) nu’!/1)

Bild 1.12. Zu den Formeln (1.21) und (1.22)

S. 1.10 Satz 1.10: Fürjede Teilmenge A c: X von Knotenpunkten gilt

<1>(A)= Z <1>(x). (1.23)
XEA
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Beweis: Durch Anwenden von (1.22), (1,21) auf tD(x) können wir zunächst schreiben

2[ 2 w 2 a].
XE/1 lA‘EuJ'(X) u,EI.u (X)

Z <1>(x) = Z [<1>*(x> — d>*(x)1= (1.24)
xeAXEA

Nun kann die Bogenmenge w*(x) zerlegt werden in eine Teilmenge w{(x)‚ deren Ele-
mente zu w*(A) gehören und eine zweite w2*(x), deren Bögen in Knotenpunkten von A
enden, Entsprechend ist eine Zerlegung w’(x) = w[(x) U w{(x) möglich, wobei w[(x)
die Bögen enthält, die auch zu w'(A) gehören, während die Bögen von w;(x) ihren An-
fangspunkt in A haben. Damit wird aus (1.24)

z<mx>=z[ zmq»,+ 2mm.-
xeA xEA u,En1,‘ man};

2 aw: 2 a]L“ u,aw,'(x) xeA u‚sw‚(x)

+[2 2 wi-X 2 a].
xeA u,ew,'(x) XEA u,ew,(x)

In der ersten Doppelsumme wird gerade über alle Bögen von zu’(A), in der zweiten über
alle Bögen von w’(A) summiert. In der dritten und vierten Doppelsumme wird jeweils
über alle Bögen des von A aufgespannten Untergraphen von G summiert, deshalb heben
sich die Beträge paarweise weg. Also reduziert sich (1.25) auf

Z (MA Z WI]
u4em,(x) u,e:u,(x)

(1.25)

Z<1>(x>= Z ‘Pi’ Z o2.=<1>*(A)-<1>‘(A)=<1>(A). (1.26)
xeA u,Eu1’(A) u,EuJ(A)

Eine interessante Aussage liefert der damit bewiesene Satz 1.10 im Spezialfall A = X.

Satz 1.11: Fürjeden Fluß q) auf einem Graphen G = (X, U) gilt

<1>(X) = Z <1>(x) =0.
xeX

Beweis: Nach (1.22) ist <D(X) = <D*(X) — <1>'(X). Wegen w*(X) i w’(X) = EI ergibt sich
aus (1.21) <1>*(X) = (I? ’(X) = 0, und mit (1.23) folgt schließlich (1.27).

(1.27)

Anschaulich besagt (1,27), wenn wir (p als Materialfluß deuten, daß furjeden Fluß auf
G der „Satz von der Erhaltung der Menge“ gilt; der durch w beschriebene Strömungsvor-
gang ist so beschaffen, dal3 alles, was durch irgendwelche „Quellen“ in die Bögen des Gra-
phen hineinfließt, durch gewisse „Senken“ auch wieder abfließt. Entsprechend dieser
Deutungsmöglichkeit sind noch folgende Bezeichnungen üblich: Wenn für ein x e X gilt
<1>(x) > 0, so heißt dieser Knotenpunkt eine Quelle des Flusses mit der Ergiebigkeit <1)(x).
Im Fall <D(x) <0 liegt in x eine Senke von (p mit dem Verbrauch [<1>(x)| vor. Wenn
<I>(x) = 0 gilt, so wird x als Durchgangsknoten des Flusses bezeichnet. Besitzt der Fluß
(p genau eine Quelle ä und eine Senke 5, so spricht man auch von einem Fluß von ä nach
b. Für diesen gilt dann gemäß (1.27):

0(13) = 41X5),
d.h., die Ergiebigkeit der Quelle ist ebensogroß wie der Verbrauch der Senke. 45(6) wird
dann als Wert des Flusses bezeichnet. '

S. 1.11
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Definition 1.16: Gilt für einen Fluß (p aufG = (X, U)

<I>(x) = 0 für alle x e X,

so heißt (p ein Strom aufdem Graphen G.

(1.28)

Ein Strom besitzt demnach weder Quellen noch Senken, sondern nur Durchgangskno-
ten. Wir können (1.28) mit Hilfe von (1.21), (1.22) auch folgendermaßen schreiben:

q2,= Z q),- fiira1lexeX. (1.29)
u,euJ'(x) u,ew(x)

Diese Knaterzpunktregel besagt anschaulich, daß bei Strömen der „Satz von der Erhaltung
der Menge“ fiir jeden Knoten einzeln gilt, d. h., alles, was dem Knotenpunkt zufließt,
strömt auch wieder weg. Stellt insbesondere G ein elektrisches Netzwerk dar, so ist (1.29)
mit der Kirchhoffschen Knotenregel identisch.

Interessant und für die Anwendungen wichtig ist die Möglichkeit, daß wir die Behand-
lung von Problemen, bei denen Quellen und Senken auftreten, in jedem Fall zurückfüh-
ren können auf die Untersuchung äquivalenter Stromprobleme, ‘Dies gelingt durch den
Übergang zu einem geeignet erweiterten Graphen, wie folgende Uberlegung zeigt.
Gegeben sei ein Fluß q) auf G = (X, U) mit den Quellen ä„ ..., d), (Ergiebigkeit <D(d,»);

j = 1, ..., q) und den Senken 5„ ..., b‘, (Verbrauch |<1>(1?,)y; k =1, ‚.., s). In Bild 1.13 ist
G durch die strichpunktierte Kurve abgegrenzt. Wir konstruieren nun einen erweiterten
Graphen G‘ = (X*, U‘), indem wir zwei Knotenpunkte ä, Fzu X hinzufügen und U durch
die Bögen

(5,15)); j=1‚ --~,q,

(11,b‘); k=1,...,s, (L30)

ergänzen. Auf G* wird nun folgender Fluß cp‘ betrachtet

117(14) für u 6 U,

¢p"‘(u)= 45(0)) für u=(a=,ä‚); j=1, ‚..,q, (1.31)

-t15(5k) für u=(5k, F); k=1,...,s.

Bild 1.13. Überführung von Flußproblemen in Stromprobleme

Für q)‘ sind dann die d, und b_,, zu Durchgangsknoten geworden, und dieser Fluß besitzt
auf G‘ nur die eine Quelle ä mit der Ergiebigkeit
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ll

qma) = Z mag) (1.32)
j=1

und nur die eine Senke 5 mit dem Verbrauch |<D"(E)| = <D*(d).
In einem zweiten Schritt können wir nun sogar zu einem Strom übergehen, indem wir

nämlich zu G‘ noch den Rückkehrbagen (7 F, ä) hinzufügen und auf dem so entstehenden
Graphen G" den Fluß m" mit

¢.,,.(u) = {W*(u‘) fur u E U:*,‘
<D*(a) fur u = (b, a)

betrachten. q)" ist tatsächlich ein Strom auf G", denn auch in d und Fgiltjetzt die Kno-
tenpunktregel (1.29).

Graphen mit einer Struktur wie G“ werden oft als Transportnetze bezeichnet; ä heißt
dann der Eingangsknoten, I7 der Ausgangsknoten. Die Bögen (xi, 12,) werden Eingangsbö-
gen, (bk, b’) Ausgangsbögen und (I7, u’) wird, wie schon erwähnt, Rückkehrbogen des Net-
zes genannt. Ströme auf Transportnetzen werden uns im Abschnitt 5. noch näher beschäf-
tigen.

Da Ströme auf Graphen in den Anwendungen eine besonders wichtige Rolle spielen,
wollen wir noch einige weitere Eigenschaften besprechen. So gilt

(1.33)

Satz 1.12: Die Menge ID(G) aller Ströme aufeinem gegebenen Graphen G bildet einen linearen
Vektorraum über der Menge R der reellen Zahlen. Insbesondere gilt also: Aus m“), w”) e <D(G)

und c„ c2 e Rfolgt

<11=c1w‘”+ cz412‘2’e<1>(G). (1.34)

Beweis: Ist x ein beliebiger Knotenpunkt, so gilt nach (1.21), (1.22)

(D05): Z ‘Pi’ Z (Pi
u‚sw'(x) mew (x)

: (1) _ (l) (Z) _ (Z)C1[Z(1’; ZWi:|+C2[ZWi 207i]-
mx) w (x) w'(x) w (x)

Da an", (‚um nach Voraussetzung Stromvektoren sind, verschwinden gemäß (1.29) beide
eckigen Klammern, d. h., es gilt <1>(x) = 0. Die übrigen, einen linearen Vektorraum kennA
zeichnenden Eigenschaften [9] ergeben sich aus der Tatsache, daß <D(G) jedenfalls ein
Unterraum des m-dimensionalen reellen Vektorraumes ist.

Zur Beantwortung der Frage, welches die Dimension von <15(G) ist und wie man eine
Basis des Raumes erhält, fuhrt folgende Überlegung:

Wir können uns leicht davon überzeugen, daß jeder Zyklenvektor y ein Strom ist [vgl.
die Formeln (1.6), (l.7)]. Durch (1.7) istjedem Bogen eine reelle Zahl zugeordnet. Außer-
dem erfüllt u fiirjedes x e X die Knotenpunktregel (1.29). Um dies zu zeigen, betrachten
wir zunächst einen Elementarzyklus. Ist nun x ein beliebiger Knotenpunkt, so sind zwei
Fälle möglich: Entweder die Bogenfolge u führt nicht durch x, oder sie geht dort hin-
durch. Im ersten Fall ist keiner der Bögen von u mit x inzident, d.h., in (1.29) sind wegen
(1.7) beide Summen Null. Im zweiten Fall sind genau zwei Bögen von ‚u mit x inzident‚
wobei die in Tabelle 1.2 gezeigten Lagebeziehungen möglich sind. Bei jeder Variante ist
aber, unabhängig von der Festlegung des Durchlaufsinnes von u, die Knotenpunktregel
(1.29) in x erfüllt. Wenn der Zyklus nicht elementar ist, so kann er nach Satz 1.1 als
Summe elementarer Zyklen dargestellt werden, und deshalb ist wegen Satz 1.12 auch
dann die Stromeigenschaft gewährleistet.

S. 1.12
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Tabelle 1.2: Mit x inzidente Bögen eines Elementarzyklus u

Z/4:‘ Z//.
uflx) 1110:1

Mögliche Fälle u, u;

u, \\X// U,»
jolt?

z’ \\

*1 1 (—1)+1 O

Durchlaufsinn: — — —>— —- —-

Die Definition 1.16 zeigt, daß nicht alle m Komponenten eines Stromes «p willkürlich
festgelegt werden können, denn es müssen ja die Knotenpunktregeln (1.29) eingehalten
werden. Deshalb erhebt sich die Frage, durch welche Vorgaben ein Strom auf einem gege-
benen Graphen eindeutig bestimmt ist. Hierüber gibt der folgende Satz Auskunft.

Satz 1.13: G = (X, U) sei zusammenhängend, H = (X, V) sei ein Gerüst von G, und
U — V = {u1, uz, ...‚ uk} seien die Bögen außerhalb des Gerüstes. Schließlich sei
{;4“’, um, ..., um} die gemäß Satz 1.7 mit Hilfe der Bögen von U — V gebildete Zyklenbasis
von G (wobei der Durchlaufsinn von u“) jeweils durch den diesen Zyklus thließenden Bogen u,-

festgelegt werde). Dann ist ein Strom qzT= (m, tp‚„) durch seine Komponenten (m, ...‚ {pk

auf den Bögen von U - V eindeutig bestimmt, und es gilt

o? = wird“ + und” + + wird“. (1.35)

Beweis: Da Zyklenvektoren Ströme sind, ist nach Satz 1.12 auch der in (1.35) gebildete
Vektor (p ein Strom. Wegen

1,

"5'Ü:{o i=1 k

hat q) auf den Bögen von U — V auch die dort vorgegebenen Komponenten. Daß qz durch
die Vorgaben 412„ ‚ wk eindeutig bestimmt ist, wird durch die Vektorraumeigenschaft von

<D(G) gesichert.
Satz 1.13 besagt, daß der Freiheitsgrad eines Stromes durch die zyklomatische Zahl

k(G) des Graphen bestimmt ist. Von den m Komponenten eines Stromvektors q) können
wir k = m — n + 1 willkürlich vorgeben, die übrigen n - 1 sind dann durch die Knoten-
punktregeln (1.29) eindeutig festgelegt. Dabei dürfen aber diese Vorgaben nicht für
irgendwelche Bögen des Graphen erfolgen, sondern für diejenigen außerhalb eines Gerü-
stes von G. k(G) gibt demnach die Dimension des Vektorraumes <l>(G) an, und Zyklenba-
sen bilden Basissysteme dieses Raumes. (1.35) gibt an, wie wir mit Hilfe der Vorgabewerte
(und der zum Gerüst gehörigen Zyklenbasis) den Gesamtvektor ausrechnen können.

Wenn G speziell ein Baum ist, so gilt k(G) = 0, d. h., hier kann keine Komponente
eines Stromvektors frei gewählt werden. Auf Bäumen ist nämlich nur der Nullstrom q: = 0

möglich, der Leser möge dies mittels des Satzes 1.4 selbst nachweisen. Wenn G nicht zu

sammenhängend ist, so gilt Satz 1.13 für jeden durch eine Komponente von G aufge-
spannten Untergraphen sinngemäß.

falls j = i,

sonst; j=1,...‚k;

Beispiel 1.9: Der im strichpunktierten Gebiet des Bildes 1.14 enthaltene Graph G stelle das Kühlwas-
sernetz eines Chemiebetriebes dar. In den Rohrleitungen sollen nun Meßgeräte installiert werden, so
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@ üuellen © Senken

Bild 1.14. Stromverteilung in einem Kühlwassernetz (zu Beispiel 1.9)

daß man aus deren Durcnuußmessungen einen vollständigen Überblick über die Stromverteilung im
Netz erhält. Dabei sollen aber nicht mehr Geräte eingesetzt werden, als unbedingt nötig ist. Zu lösen
sind die Fragen, wie viele Geräte notwendig sind, aufwelchen Bögen sie eingebaut werden müssen und
wie sich aus den Messungen die vollständige Stromverteilung errechnen läßt.

Im Netz G kommen zwei Quellen (0„ Q1), und zwei Senken (5„ S2) vor. Um die Aufgabenstel»
lung als Stromproblem behandeln zu können, gehen wir entsprechend den Formeln (1.30) bis (1.33)
durch Hinzufügen der Km tenpunkte a', E und der Bögen 22 bis 26 zu einem Transportnetz G" über.
Dieses enthält dann 15 Knoten und 26 Bögen. Damit gilt k(G) = 26 — 15 + 1 : 12, und die erste
Frage kann beantwortet werden: Es sind 12 Meßgeräte notwendig. Um festzulegen, wo diese einzu-
bauen sind, müssen wir ein Gerüst in G" konstruieren. Hierfür gibt es natürlich sehr viele Möglich—
keiten. Für welche man sich entscheidet, wird im praktischen Fall auch von technologischen Ge-
sichtspunkten LL" (leichie 7 " " hkeit der " " “e usw). Wenn wir annehmen, daß das

stark ausgezeich ‘ Gerüst gewählt wurde, dann sind die Messungen auf den Bögen

6, 7, 8, 9, 11, 15

16, 18, 19, 22, 23, 25

vorzunehmen (auf 22, 23 wird die Ergiebigkeit der Quellen, auf 25 der Verbrauch der Senke S; ge-
messen; bei den übrigen Bögen handelt es sich um Durchflußmessungen). Damit ist auch die zweite
Frage beantwortet.

Um noch Formeln zur Berechnung der Durchflußmengen auf den zum Gerüst gehörigen Bögen
zu erhalten, bestimmen wir die zugehörige Zyklenbasis. Unter Verwendung des Satzes 1.7 ergeben
sich die zwölf zur Basis gehörigen Vektoren u“), ..., um’. Beispielsweise haben von u“) die Kompo-
nenten 5, 12, 6 den Wen 1, Komponente 1 hat den Wert *1, die übrigen sind Null (entsprechend
dem durch Bogen 6 geschlossenen Zyklus in Bild 1.14). Aus (1.35) erhalten wir dann die gesuchten
Formeln:

W1: “Pe+0’7+¢x+1P9“0711+W22+‘P23‘¢72s

W2: W7+lI'a“'§V9‘¢11+‘P22+0723"172s

W3 = 919’G111+G722+Wz3“l’25

W4 = ‘0711+0’22+‘Pz3’0’z5

07s: W6'W7‘4PK‘W9+'PI1 ‘4P13+W2s

‘Pm: ‘¢'x“P9'*"1’11"W1s'W19

W26 : W22 + W13

Die fehlenden Formeln ergänze der Leser selbst.
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Fragestellungen, die den im Beispiel 1.9 behandelten ähnlich sind, treten natürlich
auch für andersartige Strömungsvorgänge auf, etwa im Zusammenhang mit Dampf- und
Gasnetzen, mit Verkehrsströmen, elektrischen Strömen usw. Vom Anwendungsgebiet der
elektrischen Netzwerke wurde auch der Begriff der Spannung in die Graphentheorie über-
nommen:

Definition 1.17: Ist jedem Bogen u, eines zusammenhängenden Graphen G = (X, U) mit
U = {ul ‚ ‚ u,,,} eine reelle Zahl 19,- zugeordnet, so daßfürjeden Elementarzyklus p von G gilt

Z ‘91: Z ‘9i—
WEI!‘ M1611

(1.36)

so heißt der Vektor |9" = (191 19m) eine Spannung auf dem Graphen G.

In (1.36) bedeutet u‘ bzw. u" die Menge der im Durchlaufsinn bzw, entgegen dem
Durchlaufsinn des Zyklus gerichteten Bögen von ‚u (vgl. Formel (1.7)). Zu einer anschau-
lichen Deutung der Spannungsregel (1.36) kommen wir, wenn wir die Schreibweise

Z .9,+ Z (—s,)=0 (1.37)
ll, E u’ 11,6 u’

verwenden und uns G als ein elektrisches Netzwerk vorstellen. u entspricht dann einer
Leiterschleife. Der im Durchlaufsinn gezählte Spannungsabfall längs eines Leiterstückes
(Bogens) ist dann 8,-, falls der Bogen im Durchlaufsinn gerichtet ist, und -8, anderenfalls.
(1.37) besagt dann, daß die Umlaufspannung längs jeder Leiterschleife Null sein muß,
und dies ist ein bekanntes Gesetz der Elektrostatik (Kirchhoffsche Spannungsregel).

Ein anderer Anwendungsfall ergibt sich z. B.‚ wenn G das Rohrleitungssystem einer
Flüssigkeits< oder Gasströmung darstellt. Dann kann eine Spannung 8 verwendet werden,
um die Druckverteilung im System zu beschreiben, :9, bedeutet in diesem Fall den Druck-
abfall längs des Bogens “f.

In Analogie zu (1,34) gilt für Spannungen:

Satz 1.14: Die Menge 0(6) aller Spannungen aufeinem gegebenen Graphen G bildet einen li-
nearen Vektorraum über der Menge R der reellen Zahlen. Insbesondere gilt:
Aus 8“’, 8m e 0(6) und c„ c; E Rfolgt

3 = C18“) + c2a9‘“ E 0(6). (1.38)

Der Beweis verläuft analog wie bei Satz 1.12. Satz 1,14 entspricht dem aus der Theorie
der elektrischen Netzwerke bekannten Gesetz der Überlagerung von Spannungen. Eben-
falls aus der Elektrizitätslehre bekannt ist die Möglichkeit, Spannungsfelder durch eine
Potentialfunktion F(r) zu beschreiben (r der Ortsvektor). Die Spannung zwischen zwei
Punkten n“ und n“ ergibt sich dabei als Potentialdifferenz

V= F(r‘”) — F(r‘“).

Eine analoge Darstellungsmöglichkeit gilt für Spannungen auf Graphen:

Satz 1.15: Ein Vektor 19T = (191 8m) istgenau dann eine Spannung aufG = (X, U), wenn eine
auf der Menge X der Knotenpunkte definierte reellwertige Potentialfunktiun t(x)‚ x e X existiert,
so daß gilt

19,- = t(Endpunkt des Bogens u‚-) — t (Anfangspunkt von u,-) für alle u‚e U. (1.39)

Den Beweis findet der Leser z.B. in [1]. Aus (1.39) ergibt sich, daß jedem Potential ein-
deutig eine Spannung zugeordnet ist. Andererseits ist bei gegebener Spannung das zuge-
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hörige Potential nicht eindeutig (sondern nur bis auf eine additive Konstante) festgelegt.
Für einen beliebigen Knotenpunkt kann der Potentialwert vorgeschrieben werden.

Wir wollen als nächstes eine spezielle Sorte von Spannungsvektoren betrachten. Ist
A c X eine Teilmenge von Knotenpunkten eines Graphen G = (X, U), so haben wir mit

w(A) = a)*(A) U w’(A)

die Menge der mit A inzidenten Bögen bezeichnet, vgl. (1.1). Falls diese Menge nicht leer
ist, wird w(A) auch der von A erzeugte Kozyklus von G genannt. Jedem Kozyklus w(A)
kann nun auf folgende Weise ein Vektor

w(A)T=(w‚...w„‚) (1.40)

zugeordnet werden:

+1, falls 11,6 w’(A)‚
w‚-= —1, falls u,ew‘(A), (1.41)

0 sonst (d. h. falls u,e w(A)).

Kozyklenvektoren haben die Eigenschaft von Spannungen, wie folgende Überlegung
zeigt. Wir können durch die Vorschrift

0, falls a e A,
m’) : 1 falls aefA

ein Potential auf G festlegen. Für die zugehörige Spannung ergibt sich dann gemäß
(1.39):

+1, falls u,ew*(A),
8, = -1, falls u,e w'(A), (1.42)

0 sonst,

und der Vergleich mit (1.41) zeigt, daß dies genau der Kozyklenvektor w(A) ist.
Aus der Definition 1.17 ist zu ersehen, daß wegen der Bedingungen (1.36) nicht alle m

Komponenten eines Spannungsvektors u? willkürlich festgelegt werden können. Deshalb
tritt, ebenso wie früher bei den Strömen, die Frage auf, durch welche Vorgaben eine
Spannung eindeutig bestimmt ist. Die Antwort liefert der folgende (zu Satz 1.13 ana—

loge)

Satz 1.16: G = (X, U) sei zusammenhängend, H = (X, V) sei ein Gerüst von G. Dann ist eine
Spannung 8 auf G eindeutig festgelegt, wenn man ihre Komponenten für alle Bögen von V vor-

schreibt.

Von den rn Komponenten eines Spannungsvektors sind demnach n - 1 Komponenten
frei wählbar. Werden diese für die Bögen eines Gerüstes vorgegeben, dann sind die übri-
gen Spannungskomponenten auf Grund der Spannungsregeln eindeutig bestimmt. Ana-
log zu (1.35) kann der vollständige Spannungsvektor mit Hilfe einer Kozyklenbasis (de-
ren Dimension I(G) = n e 1 als kozyklomatische Zahl von G bezeichnet wird und die
Dimension des Vektorraumes G(G) angibt) berechnet werden. Näheres hierzu findet der
Leser in [1], wo auch der Beweis des Satzes 1.16 geführt wird.

Eine wichtige Eigenschaft von Strömen und Spannungen gibt der folgende Satz an:

Satz 1.17: Für jeden gegebenen Graphen G sind die Vektorräume <I>(G) und £}(G) orthogonal
zueinander.

S. 1.16

S. 1.17
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Beweis: Es seien q: e <P(G) und c9 e 6)(G). Für 8 gilt dann die Spannungsregel (1.37):

m

o= Z «9.+ Z <—1>«9i= 2M.-«9.-=<;4.-9)- (1.43)
u, e u’ u, e u i= l

Dabei ist u ein beliebiger Elementarzyklus und (.,.) bedeutet das Skalarprodukt‘).
Die Umformungsmöglichkeit in (1.43) zu einer Summe über alle m Bögen ergibt sich we-

gen der Definition (1,7) von Zyklenvektoren. Nun kann wegen (1.35) der Strom (p mittels
einer Zyklenbasis in der Form

>
1-

w= <11.-14"‘ (1.44)
’ l1 l)

dargestellt werden. Damit folgt weiter
k

w, s> = Z Wi(I4m» -9> =0, (1.45)
i: l

weil (1.43) für jeden Elementarzyklus u") gilt. Also ist jeder Strom zu jeder Spannung von

G orthogonal.

‘) Das Skalarprodukt (x, y) der Vektoren x = (x1, x„,)" und y = (y„ .„,y„‚)T ist bekanntlich
definiert durch die Gleichung

(LY) = I: x.~y.-



2. Die Beschreibung von Graphen mittels Matrizen

Nachdem wir im ersten Abschnitt grundlegende Begriffe und Sätze der Graphentheorie
bereitgestellt haben, wollen wir uns in den folgenden Abschnitten mit einer Reihe von

Problemen befassen, die im Zusammenhang mit Aufgabenstellungen der Praxis auftreten,
und wir werden Algorithmen angeben, die zur Lösung dieser Probleme geeignet sind. Da-
bei wird sich zeigen, daß bei der Behandlung umfangreicher Graphen eine Durchführung
der Algorithmen „von Hand“ wegen des hohen rechnerischen Aufwandes nicht möglich
ist; man muß die Hilfsmittel der elektronischen Datenverarbeitung einsetzen, Für die re-
chentechnische Realisierung graphentheoretischer Algorithmen benötigen wir eine Form
der Beschreibung von Graphen, die für die Eingabe und Speichemng in Rechenautoma-
ten geeignet ist. Hier bietet sich als eine Möglichkeit an, Graphen durch Matrizen darzu-
stellen, denn deren rechentechnische Behandlung bereitet keine Schwierigkeiten, solange
das Format der Matrizen nicht zu groß ist, (Dann allerdings treten Speicherplatzprobleme
auf, und man muß sich nach anderen Codierungsformen umsehen.) Wir wollen im folgen-
den verschiedene mögliche Matrixdarstellungen für Graphen besprechen. Dabei werden
wir uns auf die Behandlung gerichteter Graphen beschränken. Außerdem wird, wenn

nicht besonders vermerkt, das Fehlen von Schlingen und parallelen Bögen vorausgesetzt
(schlichte Graphen). Im weiteren werden wir stets annehmen, daß die Knotenpunkte und
Bögen des Graphen G = (X, U) durchnumeriert sind:

Xzixhxzyw U:{ul>uZ>-'-sum}' (2-1)‚x„};

2.1. Adjazenzmatrizen

Definition 2.1: Als Adjazenzmatrix A(G)=(a‚-‚-) des Graphen G=(X‚ U) wird die
(n, n)-Matrix mit den Elementen

{L falls (x„ xj) e U,
aU = 2.2

0 sonst, ( )

bezeichnet.

Da wir Schlichtheit voraussetzen, stehen in der Hauptdiagonale von A Nullen. Die
Summen der Zeilen- bzw. Spaltenelemente haben folgende Bedeutung:

Z "ii = 1w*<x.>z. Z “ü: |w’(x;)|, (2.3)
i=1 i=1

die Anzahl der von Null verschiedenen Elemente von A ergibt die Anzahl der Bögen
von G.

Beispiel 2.1: Für den links stehenden Teilgraphen des Bildes 1.7 (6 Knotenpunkte) lautet die Adja-
zenzmatrix

0 0 0 0 l 0

1 0 l 0 0 0

0 0 0 1 0 0
2.4

A 0 0 0 0 0 0 ( )

O l 1 0 0 1

1 O 0 1 l 0

D. 2.1
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Durch A(G) wird die Struktur des Graphen, d. h. die Art, wie die vorhandenen Knoten-
punkte durch Bögen miteinander verbunden sind, vollständig beschrieben. Deshalb müs-
sen sich im Prinzip alle Eigenschaften des Graphen aus A selbst, oder nach geeigneten
Umformungen der Matrix, ablesen lassen. Hierfür bringen wir jetzt einige Beispiele.

Satz 2‚l: Für die k-te Potenz A" = (aß?) der Adjazenzmatrix gilt (k = 1, 2, ...):

a}? = Anzahl der Bahnen mit der Länge k in G,
2.5

die vom Knotenpunkt x,- zum Knotenpunkt x/führen. ( )

Wir führen den Beweis durch vollständige Induktion. Für k =1 ist der Satz richtig,
denn laut (2.2) bedeutet 42,-,- = l, daß ein Bogen (x„ xj) vorhanden ist, d. h., daß genau eine
Bahn der Länge 1 von x,- nach X, fiihrt und a,-‚ = O bedeutet. daß keine Bahn der Länge 1

von x,— nach x,- fiihrt. Angenommen, (2.5) gilt für k. Wir bilden dann A"“‘ = A"-A und
betrachten

n

k i, kaß,’ ’— Z :1‘,-_"a:J-.
5:1

(2.6)

Aus a‘Lf’a,J ¢ 0 folgt aff’ # 0 und as, = 1. Nun gibt aff’ die Anzahl der Bahnen der Länge k
von x,- nach x, an, und as] = 1 bedeutet die Existenz des Bogens (x„ 29). Also liefert af-_f’a,,»

die Anzahl der Bahnen der Länge k + 1, die von x,- über x, als vorletzten Knotenpunkt
nach 3g führen. Folglich ergibt die Summation in (2.6) tatsächlich die Anzahl aller Bah-
nen mit der Länge k + 1 von x, nach X}.

Wenn insbesondere af-f" #0 ist, so zeigt dies an, daß durch den Knotenpunkt x, ein
Kreis geht. Die Anzahl der Kreise kann aus dem Wert von a}? allerdings i. allg. nicht ab-
gelesen werden, da in A" auch alle nicht-einfachen Bahnen mitgezählt werden.

Bilden wir die Summe B, der Einheitsmatrix und der ersten s Potenzen der Adjazenz-
matrix,

B, = 2 A": (zzgl), (2.7)
k = O

so gibt b)!” die Anzahl der von x, nach x, führenden Bahnen an, deren Länge kleiner oder
gleich s ist (wobei durch Einbeziehung der Einheitsmatrix A“ die Bahnen der „Länge
Null“ von x, nach x,- mitgezählt werden). Bei vielen Untersuchungen wird es weniger inter-
essieren, wie viele Bahnen zwischen den Knotenpunkten vorhanden sind und welche
Länge sie haben, sondern es wird um die Frage gehen, ob x,- von x‚- aus überhaupt auf
einer Bahn erreichbar ist, Zu derartigen Aussagen können wir folgendermaßen gelangen:
Wir ordnen B, eine Matrix C, zu gemäß der Vorschrift

m : {L falls bff’ #0;
. ' '= l, ..

” 0 sonst, I’!
., n. (2.8)

c3’ = 1 bedeutet dann, daß eine Bahn der Länge kleiner oder gleich s von x,- nach x,- exi-
stiert, im Fall cfij’ = 0 ist dies dagegen nicht der Fall. Bilden wir nun B„ C, der Reihe
nach fiir s: 1, 2, ..„ so gilt

Satz 2.2: Aus C”, ='C5 = Cfolgt CS”, = Cfür alle k >1.

Beweis: Angenommen, es ist C“, = C_,, aber C„2 4: CH, Dann gibt es mindestens ein
Indexpaar i,j mit e)?” = 1 und e55”) = 0. Im Graphen ist dann eine Bahn 14 der Länge
s + 2 von x,- nach x,- vorhanden. Wenn deren vorletzter Knotenpunkt x, ist, so gibt es auch
eine Bahn u’ der Länge s + 1 von x,- nach x, und eine Bahn u” der Länge 1 von x, nach xj.
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g numer/erf die
Kampunenfm

17i: Zei/e I der Matrix 0 ix!
durmzuselven. /m Fall 119--7, j -ri
wird xj 11/5 [lament /n die /(0/npr
nenie S, augyenummen

/sf x,- /rare/is [/em:/7f
e/nerziergefuntiene/I
/(amponenfen .7

Bild 2.1. Algorithmus zur Ermittlung der starken Komponenten eines Graphen G = (X, U)

Hieraus folgt cßf") = 1 und wegen CH1 = C, weiter cf? = 1. Das letzte bedeutet die Exi-
stenz einer Bahn ‚u"’ mit einer Länge kleiner oder gleich s von x,- nach x‚. Durch Aneinan-
dersetzen von ‚u”’‚ u” entsteht dann eine Bahn der Länge kleiner oder gleich s + 1 von x,
nach xj, woraus e‘; * " = 1 folgt, Dies ergibt aber einen Widerspruch zu der oben getroffe-
nen Annahme. Der Fall C“, = C5 tritt spätestens für s = m ein (m ist die Anzahl der Bö-
gen des Graphen).

Wir können C als Erreichbarkeitsmatrix bezeichnen. Ihre Elemente geben an, ob x,
von x, aus über eine Bahn erreichbar ist (cu = 1) oder nicht (c‚-‚- = 0). Insbesondere kann
aus C abgelesen werden, ob zwei Knotenpunkte in beiden Richtungen durch eine Bahn
verbunden sind. Dies ist genau dann der Fall, wenn cu» = c,,- = 1 gilt. Wir erhalten deshalb
weiter die Möglichkeit, die starken Komponenten des Graphen zu bestimmen, vgl. Defi-
nition 1.9. Zu diesem Zweck bilden wir mittels C die symmetrische Matrix D = (dfi):

1 fll ~=v=1'dU:{, ascu 9. ‚
0 Sonst i‚j=1,„.,n. (2.9)

Im Falle dü = 1 sind die Knotenpunkte x‚-‚ x,- in beiden Richtungen durch eine Bahn ver-

bunden, gehören also zur selben starken Komponente. Wenn dagegen db’ = 0 gilt, so ist

3 Bieß, Graphentheorie
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von den Elementen qj, g, mindestens eines Null, d, h., die Knotenpunkte gehören ver-

schiedenen starken Komponenten an. Mit dem in Bild 2.1 als Ablaufplan beschriebenen
Algorithmus können die starken Komponenten des Graphen explizit ermittelt werden.

Beispiel 2.2: Durch Potenzieren der zu Bild 1.7 gehörenden Adjazenzmatrix (2.4) erhalten wir

0 1 l 0 0 1 2 0 1 2 1

0 0 0 1 1 0 O l 1 0 0 1

A2 = 0 0 0 0 0 0 _ A; = 0 0 0 0 O 0

0 0 O 0 0 0 ' 0 0 0 0 0 0

2 0 1 2 1 0 O 1 1 1 2 1

0 1 1 0 1 1 2 1 2 2 1 1

Durch Summation gemäß (2.7) und Anwendung der Vorschrift (2.8) ergibt sich weiter

3 1 2 2 2 1 1 1 l 1 1 1

1 2 2 1 1 1 1 1 l 1 l 1

B3 = 0 0 1 1 0 0 ‘ C3 _ 0 0 1 1 0 0

0 Ü 0 1 0 0 0 0 0 1 0 0

Z 2 3 3 4 2 1 1 l 1 l 1

3 2 3 3 3 3 1 1 l 1 1 1

Der Leser überzeuge sich durch Hinzunahme der vierten Potenz, dal3 C, = C3 gilt, d.h., C, = C stellt
bereits die Erreichbarkeitsmatrix dar.

Beispielsweise besagt b5’: 3, dal3 im linken Teilgraphen des Bildes 1.7 drei Bahnen mit einer
Länge kleiner oder gleich 3 von x5 nach x3 führen. Es sind dies die Bogenfolgen

n‘“= (5), entsprechend as, = 1,

um I (3, 4), entsprechend 1122,’: 1,

um = (8, 9, 5), entsprechend aß’ = 1.

Die nach der Vorschrift (2.9) gebildete Matrix D hat im Beispiel folgende Form:

110011
110011
001000

D‘0001o0
110011
110011

Durch Abarbeitung des in Bild 2.1 dargestellten Algorithmus erhalten wir die drei starken Kompo-
nenten des Graphen: S, = {x,, x2, x5, x5}; S2 = (x3); S3 = {x4}.

Bei Strukturuntersuchungen in Netzwerken wird oft die Frage auftreten, welches die
kürzeste Verbindung zwischen zwei Knotenpunkten ist. Wir führen zu diesem Zweck den
Begriff der Entfernung zweier Knotenpunkte ein.

Definition 2.2: Als Entfernung e,,- des Knotenpunktes x, vom Knotenpunkt x,- wird erklärt
(i,j= 1, ..., n)

0, falls x, = x] Lrt,

l. falls x, =# x, ist, mindestens eine Bahn vom Knotenpunkt
x, zum Knotenpunkl xj existiert und l die Länge einer
kürzesten Bahn van x, nach x, bezeichnet,

falls x,- 4: x,- ist und keine Bahn von x, nach xjführt.

e‚.‚ = (2.10)



2.2. Inzidenzmatrizen 35

Die (n, n)-Matrix E = (e„-) wird als Entfemungsmatrix des Graphen bezeichnet.

Verfahren für die Berechnung von E, ausgehend von der Adjazenzmatrix A, findet der
Leser z.B. in [8].

2.2. Inzidenzmatrizen

Anstelle der Adjazenzmatrix wird zur Beschreibung von Graphen häufig auch eine an-

dere Matrixdarstellung verwendet:

Definition 2.3: Als Inzidenzmatrix S(G) = (5,,-) des n Knotenpunkte und m Bögen enthalten-
den Graphen G = (X, U) bezeichnen wir die (n, m)-Matrix mit den Elementen

+1, falls x,- Anfangspunkt des Bogens uJ ;

5,-,- = - 1, falLs x,- Endpunkt des Bogen: uj; i = 1, ..., n , (2.11)
0, falls u,- nicht mit x,~ inzidiert; j = 1, ..., m.

Die Spalten von S entsprechen also den Bögen, die Zeilen den Knotenpunkten des
Graphen. In jeder Spalte stehen genau ein Element +1, genau ein Element v1 und sonst
Nullen. In jeder Zeile i gibt die Anzahl der Elemente +1 an, wieviel Bögen vom betreffen-
den Knotenpunkt wegfuhren, d.h., sie ist gleich |w* (x,)1. Entsprechend ist die Anzahl der
(-1)-Elemente der Zeile i gleich lw’ (x,-)|.

Ein Vergleich mit (1.40/41) zeigt, daß der i-te Zeilenvektor von S gerade den Vektor
des vom Knotenpunkt x,- erzeugten Kozyklus darstellt. Die Anzahl der in der Zeile i ste-
henden von Null verschiedenen Elemente ist die Valenz des Knotenpunktes x,-.

Beispiel 2.3: Für den linken Teilgraphen des Bildes 1.7 ergibt sich als Inzidenzmatrix

-1 1 0 0 0 0 o 0 o -1
1 0 —1 1 0 0 o 0 o o

S: 0 0 o —1 ~1 1 o 0 o o

0 0 0 0 0 —1 —1 0 o o

0 —1 1 o 1 0 o 1 —1 o

0 0 o 0 0 o 1 -1 1 1

Mit Hilfe der Inzidenzmatrix kann überprüft werden, ob ein vorgelegter Vektor tp die
Eigenschaften eines Stromes (vgl. Def. 1.16) besitzt, dies zeigt der folgende Satz:

Satz 2.3: Ein Vektor tpT = (q), 1p,,,) ist genau dann ein Strom auf G, wenn er die Bedingung

S -qa = 0 (2.12)

erfüllt.

Beweis: Gilt (2.12), so folgt

(5¢1J)1=ZS.~,~l17,-= Z 1-1171+ Z (—1>~q»,=0; (2.13)
/=1 u,ew'(x,) u,Ew'(x.)

i=1, ..., n.

Dies ist aber nichts anderes als die Knotenpunktregel (1,29), d‚h.‚ (p ist dann ein Strom.
Wenn andererseits (p einen Strom darstellt, so gilt (2.13) und damit auch (2.12).

D. 2.3

S. 2.3
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Aus Satz 1.17 ergibt sich übrigens in Verbindung mit (2.12), daß jeder Zeilenvektor der
Inzidenzmatrix die Eigenschaft einer Spannung auf G besitzt. Weiterhin gilt

Satz 2.4: Ein Vektor 8T = (x9, 8M) ist genau dann eine Spannung auf G, wenn es einen Vek-
tor t’ = (t, 1,.) gibt, so daß gilt

9= -ST-t. (2.14)

Zum Beweis nehmen wir an, daß ein derartiger Vektor t existiert. Dann folgt
n

91" ‘ Z Sn’;
1'=1

= t (Endpunkt des Bogens u,-) — t (Anfangspunkt des Bogens u‚-);

i=1,...,m. (2.15)

Nach Satz 1.15 ist dann 19 eine Spannung, t ein zugehöriges Potential. Wenn zum ande-
ren 8 eine Spannung darstellt, so bezeichne t ein zugehöriges Potential. Dann ist (2.15)
erfüllt und damit auch (2.14).

Aus den angeführten Sätzen wird verständlich, daß die Matrix S besonders zur Formu-
liemng von Strom- und Spannungsproblemen geeignet ist. Dies ist auch der Grund für
die Einfiihmng von „verallgemeinerten Inzidenzmatrizen“. So nennt man jede (n, m)-Ma-
trix‚ welche keine Nullzeilen und in jeder Spalte mindestens ein und höchstens zwei von
Null verschiedene Elemente (nicht notwendig +1 oder -1) hat. So kann die Matrix in
Bild 2.2 a als Beschreibung des gemischten Graphen von Bild 2.2b verwendet werden, des-
sen Kanten und Bögen noch durch die H-Elemente „Bewertungen“ an den betr. Knoten-
punkten zugeordnet sind. Mit Hilfe verallgemeinerter Inzidenzmatrizen lassen sich dann
auch verallgemeinerte Strom- und Spannungsprobleme (d.h. allgemeinere Flußprobleme)
mathematisch beschreiben. Der interessierte Leser sei auf [7], [1] verwiesen.

43 0 3 0 0

H=5O
O0

—2 0-1 o

—1—2 0-4
a)

Bild 2.2. Verallgemeinerte Inzidenzmatrizen

Bemerkung: Den Zeilen von H entsprechen die Knotenpunkte x„ xi, x3. Jede Spalte ent-
spricht einem Bogen (bei zwei von Null verschiedenen Elementen oder nur einem negati-
ven) bzw. einer Kante (zwei gleichsignierte oder nur ein positives Element). Der Zusatz-
knotenpunkt x0 faßt die l-Element-Spalten zusammen.

2.3. Fundamentalmatrizen

Gemäß Satz 1.2 enthält eine Zyklenbasis k(G) = m- n+ 1 Zyklenvektoren (wir neh-
men an, daB G zusammenhängend ist, d. h., p= 1):

u"”= (im, /4,...-); i= 1, k.
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Wenn wir diese Vektoren als Spalten einer Matrix zusammenstellen, so entsteht die zur

Basis gehörende Fundamentalmatrix. Wir wollen weiter den Satz 1.7 heranziehen, der
sagt, wie man unter Zuhilfenahme eines Gerüstes von G eine Basis konstruieren kann,

Definition 2.4: G= (X, U) sei ein zusammenhängender Graph, H = (X, V) ein Gerüst von G.

{uh ..., u,,} seien die Bögen von U- V, und {p“’, ..., um} mit

I‘(DT=(I‘lj:--->/‘rnj); j=1‚...‚k‚ (2.16)

die durch diese Bögen (gemäß Salz 1.7) erzeugte Zyklenbasis. Wir bezeichnen dann die
(m, k)-Matrix

F=(ß.‚)
als die zur Basis (zum Gerüst H) gehörende Fundamentalmatrix von G.

(2.17)

Beispiel 2.4: Für den im Bild 2.3 dargestellten Graphen mit m = 7 Bögen und n = 5 Knotenpunkten
bildet der Untergraph

H=(X. V); X:{X1, my -X5}, V: [um "s, “s: V7}

ein Gerüst. Durch die außerhalb von H liegenden Bögen u], uz, u; werden die Zyklen

/4"’= (us, us. us, I47)u‘”=(u1, m), u"’=(uz‚ us).

X; ll,

Bild 2.3. Zu Beispiel 2.4

bestimmt, und diese bilden eine Basis von G. Wenn wir die Zyklen gemäß (1.7) und unter Beachtung
der in Satz 1.13 vereinbarten Festlegung des Durchlaufsinnes durch ihre Vektoren darstellen, so ent-
steht die Fundamentalmatrix

100
010
001

1==1oo . (2.18)
00-1
o1—1
001

Bei der in Definition 2.4 verwendeten Numerierung der Bögen setzt sich F zusammen
aus einer Einheitsmatrix E des Formats (k, k) und einer weiteren Teilmatrix F des For-
mats (m- k, k):

F=(I'1_§).

Mittels F läßt sich eine zu Satz 2.3 analoge Aussage formulieren:

(2.19)

D. 2.4
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Satz 2.5: Ein Vektor 9 = (I91...19,,,)T ist genau dann eine Spannung auf G, wenn er die Bedin-
Ewig

F‘ - 8 = 0 (2.20)
erfüllt.

Beweis: Wenn 19 (2.20) genügt, so gilt

o= Z<I=*).-,«9,A= Z;«,».-8,A=<W,«9>= Z '91’ Z 9,. i=1, k. (2.21)
1:1 /=1 u,Ep’"‘ wen“

Nach (1.37) heißt dies aber nichts anderes, als daß für jeden Elementarzyklus der Basis
die Spannungsregel erfüllt ist. Nun sei u ein beliebiger elementarer Zyklus. Gemäß (1.10)
gilt fiir diesen die Darstellung

[V
].-

u = nu”,
i = l

und es folgt weiter
k

(I4.-9) = XII.-<14‘? «9> = 0.
,:

Nach Definition 1.17 ist folglich 8 ein Spannungsvektor. Ist andererseits bekannt, daß es

sich bei 8 um eine Spannung auf G handelt, so erfüllt der Vektor die Spannungsregeln
(2.21) und deshalb auch die Beziehung (2.20).

Im Abschnitt 1. haben wir den Satz 1.13 bewiesen. Dieser besagt, daß ein Strom auf G
eindeutig bestimmt ist, wenn wir seine Komponenten auf den Bögen außerhalb eines Ge—

rüstes des Graphen vorgeben. Dabei gibt die Formel (1.35) an, wie der vollständige Strom-
Vektor von diesen Vorgaben (12„ ..., (pk aus mit Hilfe der zum Gerüst gehörenden Zyklen-
basis berechnet werden kann. Wenn wir die k Komponenten zu einem Vektor
zusammenfassen,

(2.22)

dann läßt sich (1.35) unter Verwendung der Fundamentalmatrix F ersichtlich auch fol-
gendermaßen schreiben:

q) = F‘ qz’. (2.23)

Eine entsprechende Formel kann für die Berechnung von Spannungsvektoren angege-
ben werden. Nach Satz 1.16 ist eine Spannung 9 durch ihre Komponenten auf den Bögen
eines Gerüstes eindeutig bestimmt. Wenn wir die in Definition 2.4 angenommene Bo-
gennumerierung verwenden, so sind dies die Komponenten «9‚„„ ..., u9,,,. Mit

19m1
,9’ = 5 (2.24)

19m

und (2.19) kann der vollständige Spannungsvektor durch die Beziehung

.9 = 4-" ~.9' (2.25)Ei

berechnet werden. Dabei ist E‘ eine Einheitsmatrix des Forrnates (m - k. m — k).
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Nachdem in den vorangegangenen Abschnitten grundlegende Begriffe und Beschrei-
bungsarten von Graphen zusammengestellt wurden, wollen wir nun dazu übergehen, eine
Reihe von praktisch relevanten Problemen der Graphentheorie zu formulieren und geeig-
nete Lösungsverfahren anzugeben.

Bei einer ersten Gruppe derartiger „Standardprobleme“ geht es um die Bestimmung
von Bahnen. Die praktische Bedeutung solcher Aufgabenstellungen liegt auf der Hand.
Beispielsweise wird es oft notwendig sein, die „kürzeste“ oder die „billigste“ Verbindung
von einem Knotenpunkt ä zu einem anderen Knotenpunkt 5 zu ermitteln. In anderen
Fällen wird es genügen, irgendeine Bahn zu bestimmen, auf der man von ä aus nach b-ge-
langen kann. Mit dieser zuletzt genannten Aufgabenstellung wollen wir beginnen.

3.1. Das einfache Bahnproblem

Aufgabenstellung: Gegeben sind ein Graph G: (X, U) und zwei seiner Knotenpunkte ä,
b-e X; (EH7. Gesucht wird eine von ä nach E führende (elementare) Bahn.

Es kann natürlich vorkommen, daß gar keine Bahn von ä nach 5 führt, d. h., daß die
Aufgabe nicht lösbar ist. Existieren jedoch derartige Bahnen, so soll eine davon ermittelt
werden.

Daß wir in obiger Problemstellung einen gerichteten Graphen voraussetzen, bedeutet
praktisch keine Einschränkung. Wenn nämlich ein Verbindungsweg zwischen zwei gege-
benen Knotenpunkten eines ungerichteten Graphen zu bestimmen ist, so können wir
diese Aufgabe stets auf die oben formulierte zurückführen, indem wir jede Kante durch
ein Paar entgegengesetzt gerichteter Bögen ersetzen.

Fragestellungen, die sich als einfaches Bahnproblem formulieren lassen, sind z. B. die
sog. „Ein-Mann-Spiele“. Darunter wird folgende Problematik verstanden: Von einem ge-
gebenen Anfangszustand ä aus soll über eine Folge möglicher Zwischenzustände ein ge-
wünschter Endzustand 5 erreicht werden. Wenn wir die möglichen Zustände als Knoten-
punkte eines Graphen, die erlaubten Übergänge zwischen den Zuständen als Bögen
darstellen, so besteht die Aufgabe darin, eine Bahn von a’ nach 5 zu suchen. Beispiele für
derartige Spiele sind das Labyrinth (in einem gegebenen System von sich verzweigenden
Gängen wird ein Weg von einem Punkt ä zum Ausgang 5 des Labyrinths gesucht; Kno-
tenpunkte sind hier die Verzweigungs- und Endpunkte von Gängen, jeder Gang selbst
wäre durch zwei entgegengesetzt gerichtete Bögen darzustellen), und das bekannte Pro-
blem „Wolf, Ziege, Kohlkopf“ (siehe Beispiel3.l).

Natürlich gibt es auch ernsthafte Beispiele für das Bahnproblem‚ wir wollen einige an-

deuten:
- G stelle ein Netz zur Informationsübermittlung dar, z. B. einen Alarmierungsplan.

Eine Nachricht soll von ä nach 5 geleitet werden. Auf welchem Weg ist das möglich’?
— G bilde ein System von chemischen Stoffen ab, die auseinander (direkt oder über Zwi-

schenprodukte) erzeugt werden können. Auf welchem Wege, d. h. über welche Zwi-
schenprodukte, kann ein Stoff b’, ausgehend von einem Stoff ä, hergestellt werden?

— G beschreibe ein Verbundnetz zur Verteilung von Energie oder Material (Elektroener-
gie, Dampf, Heizgas, Wasser usw.). Durch Havarie fallt ein Teil des Netzes aus (Lö-
schung der entsprechenden Bögen). Gesucht wird eine Möglichkeit, um im Restgra-
phen den Verbraucher 5 von ä aus zu beliefern.
Wir wollen jetzt ein von Trémaux [1] angegebenes Verfahren zur Lösung des einfachen

Bahnproblems beschreiben.
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Algorithmus von Trémaux

Man führe von ä ausgehend in G einen Suchprozeß unter Verwendung der folgenden
vier Regeln durch:

(1) Zunächst wird von ä aus soweit wie möglich eine beliebige Bahn verfolgt. Jeder dabei
durchlaufene Bogen wird durch ein Kreuz markiert.

(2) Gelangt man zu einem Knotenpunkt, von dem kein Bogen wegfuhrt (Ende einer
„Sackgasse“), so geht man über den Ankunftsbogen zurück und markiert ihn durch
ein zweites Kreuz.

(3) Kommt man beim Vorwärtsschreiten zu einem schon vorher angetroffenen Knoten-
punkt, so wird wie bei Regel (2) verfahren.

(4) Kommt man beim Rückwärtsschreiten über einen Bogen [aufgrund von Regel (2) bzw.
(3)1 zu dessen Anfangspunkt a zurück, so wird folgendermaßen weiter verfahren:
Falls von a ein noch nicht benutzter Bogen wegfuhrt, so geht man über diesen weiter
voran.

Falls ein solcher nicht vorhanden ist, so geht man über den in a endenden Bogen, der
das erstemal dorthin geführt hat (der demzufolge mit einem Kreuz markiert ist), wei-
ter zurück.

Der Suchprozeß wird abgebrochen, wenn man in 5 ankommt (dann ist eine Lösung gefun-
den), oder wenn er gemäß den vier Regeln nicht mehr fortgesetzt werden kann (dann ist
die Aufgabe nicht lösbar, d.h., es existiert in G keine Bahn von ä nach l7).

Den Beweis für die Wirksamkeit des Algorithmus führen wir hier nicht, der Leser findet
ihn z.B. in [1]. Es sei nur noch auf folgendes hingewiesen: Wenn l7 erreicht wird, so kann
die Bahn als Folge einfach angekreuzter Bögen im Graphen abgelesen werden (alle übri-
gen Bögen tragen dann entweder kein oder zwei Kreuze). Wenn keine Lösung existiert,
dann bricht der Suchprozeß in ä ab. Alle durchlaufenen Bögen sind dann zweifach ange-
kreuzt, die übrigen gar nicht. Wir erläutern das Verfahren jetzt an einem Beispiel.

Beispiel 3.]: Das Problem „Wolf, Ziege, Kehlkopf“, Ein Wolf (W), eine Ziege (Z) und ein Kehlkopf
(K) befinden sich zusammen mit dem Fährmann (F) am Ufer eines Flusses und sollen übergesetzt
werden. Das Boot des Fährmannes ist aber so klein, daß er immer nur einen von ihnen mitnehmen
kann. Verständlicherweise kann der Fährmann Wolf und Ziege, Ziege und Kohlkopf nicht ohne Auf-
sicht allein lassen. Wie muß er das Übersetzen durchführen, damit alle drei Passagiere wohlbehalten
das andere Ufer erreichen?
Um diese Aufgabe durch einen Graphen darzustellen, suchen wir zunächst aus allen denkbaren Kon-
figurationen am Ausgangsuferjvgl. (3.1)] die „erlaubten Zustände“ heraus, Es sind dies die in (3.1)
nicht durchgestrichenen Konfigurationen.
(Beachte: FW muß gestrichen werden, da ja dann Z mit K am anderen Ufer allein sind, analoge
Überlegungen fuhren zur Streichung von FK und F; ß ist die leere Menge, d.h. der gewünschte End-
zustand, bei dem sich alle am anderen Ufer befinden).

FMZA‘:

rwz. FWK. FZK. Jaszx;

151€. FZ. K M. WAL x; (3.1)

x w. z. K.

K

Wir stellen nun die 10 erlaubten Zustände als Knotenpunkte dar und ziehen einen Bogen immer
dann, wenn der Übergang von einem Zustand zu einem anderen ohne Gefahr möglich ist. Der Leser
prüfe selbst nach, daß dies den in Bild 3.1 dargestellten Graphen (n = l0, m = 20) ergibt. Das Pro-
blem besteht nun darin, eine Bahn zu finden, die vom Anfangszustand ä (~I~'WZK) zum verlangten
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Endzustand 5 (N6) führt. Die Anwendung des Algorithmus von Tremaux liefert eine der beiden exi-
stierenden Bahnen:

FWZK~>WK—~>FWK—>W—>FWZ—>Z~>FZ->0;
FWZK—>WK—+FWK->K‘->FZK—>Z—>FZ—>B.

Im Bild 3.1 ist ein möglicher Verlauf des Suchprozesses durch die Kreuz-Markierungen beschrieben,
dieser ergibt die erste der Lösungsvarianten.

FWZK FWZ FWK FZK F]

WK W Z K 5

Bild 3.1. Zum Problem „Wolf, Ziege, Kehlkopf“

Hingewiesen sei noch auf folgende Merkmale des Algorithmus von Tremaux, die bei
Graphenalgorithmen nicht selten zu beobachten sind: Das Lösungsverfahren ist durch
verbale Regeln beschrieben und stellt einen schrittweise arbeitenden Suchprozeß mit
Markierungsvorschriften dar (Ankreuzen von Bögen; in anderen Fällen werden Färbungs-
Vorschriften verwendet). Diese Techniken spiegeln sich dann natürlich auch in der re-
chentechnischen Realisierung wider, z.B. schon in der für die Beschreibung des Graphen
gewählten Codierung (vgl. Abschnitt 6.).

3.2. Das Problem der kürzesten Bahn

Aufgabenstellung: Gegeben sind ein Graph G= (X, U) und zwei seiner Knotenpunkte a’,

be X; a‘¢ b. Die Bögen des Graphen sind mit nichtnegativen reellen Zahlen („Kosten“)
bewertet

c(u) g 0 fiir alle u e U. (3.2)

Gesucht wird aus der Menge M (d, 5) aller von ä nach I7 führenden Bahnen eine Bahn u‘
mit minimaler Kostensumme

k(ä‚ 5) = min {E cm}. (3.3)
u s M05. s) u e ,.

Falls M(a', 5) * ß ist, existiert eine Lösung. Sie muß nicht immer eindeutig bestimmt
sein, denn es kann ja durchaus mehrere Bahnen mit der gleichen Kostensumme geben.

Das Problem des kürzesten Weges tritt in der Praxis in vielfältiger Weise auf, da ja die
Bewertungen der Bögen die verschiedenste Bedeutung haben können. Wir zählen einige
Beispiele auf:
— Die Knotenpunkte von G können Ortschaften, die Bögen entsprechende Verkehrswege

zwischen den Ortschaften, c(u) die zugehörigen Kilometerentfernungen bedeuten. Ge-
sucht ist dann der kürzeste Reiseweg von ä nach b‘.

— G sei ein Transportnetz, c(u) bedeute die beim Transport der Mengeneinheit einer
Ware über den Bogen u entstehenden Kosten. Dann wird der billigste Transportweg
von ä nach 5 gesucht.

— G stelle ein Inforrnationsnetz dar, c(u) die Zeit, die zur Weiterleitung einer Nachricht
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über den Bogen u erforderlich ist. Zu bestimmen ist der schnellste Informationsweg
von ä nach E.

G beschreibe ein System von Produkten, die direkt oder indirekt auseinander herge-
stellt werden können. Ein Bogen u = (x, y) bedeutet, daß y unmittelbar aus x erzeugbar
ist. c(u) soll die Herstellungskosten pro Mengeneinheit angeben. Das Problem des kür-
zesten Weges entspricht in diesem Fall der Aufgabe, das billigste Produktionsverfahren
für den Stoff l7, ausgehend vom Rohstoff ä, zu suchen.

Es gibt eine ganze Reihe von Algorithmen, die eine explizite Ermittlung von kürzesten
Bahnen erlauben, Einen wollen wir nun beschreiben.

Algorithmus von Dantzig

Von d ausgehend werden schrittweise die Kostensummen zu anderen Knotenpunkten
des Graphen bestimmt. Der Prozeß verläuft in folgenden Schritten:
(1) Setze

1(6) = 0; A, = {d}. (3.4)

(2) Betrachte die Menge w*(A1) der mit A, nach außen inzidenten Bögen von G. Er-
mittle

min {t(ä) + c(u)} = t(ä) + c’. (3.5)
ue¢u'(A,)

Es seien

(ä, bg), (ä, bg’), (3.6)

die Bögen aus w*(A1)‚ die in (3.5) den Minimalwert liefern, für die also gilt:

c(ä‚ b5) = c(ä‚ bg’) = = c".

Alle diese Knotenpunktpaare (3.6) werden notiert.
Setze

t(b;) = t(b;’) = = 2(a) + c*

(3-7)

(r »
./

/_12=A,u{b;,b;;,..,}.

Betrachte die Menge w* (AM) der mit A,_, nach außen inzidenten Bögen von G. Er-
mittle (a, der Anfangspunkt des Bogens u)

min {t(aj) + c(u)} = t* + 5*. (3.8)
usw u. o

Es seien

(a2, bfl), (u; 17;’), (3.9)

die Bögen aus w’ (A,.,), die das Minimum hervorrufen, für die also gilt:

t(a;) + c(a’„‚ bf’) = t(a;’) + c(a;', b'a’) = =1‘ + c‘, (3.10)

Notiere alle Paare (3.9) und setze

tb’ =t b” = =t*+ *,
( ") ( ") c (3.11)

A‚= Ar—l U {b’„‚ bi], „l
Dieser Schritt wird der Reihe nach für r = 3, 4, ausgeführt.
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Der Prozeß bricht ab, wenn 5 in eine Menge A‚. einbezogen werden konnte, oder wenn

w‘ (A‚.) = 0, 5 e A‚. eintritt. In letzterem Fall hat das Problem keine Lösung, es existiert
keine Bahn von ä nach 5. Im Fall 5e A‚. ist t(5) die gesuchte minimale Kostensumme
k(ä‚ 5). Eine zugehörige kürzeste Bahn u’ erhält man dadurch, daß von b, = 5 ausgehend
aus den notierten Paaren (aq, be) jeweils die Vorgänger aufgesucht und so schrittweise bis
zum Anfangspunkt ä zurückgegangen wird.

Wir weisen noch auf folgende Eigenschaften dieses Algorithmus hin: Wenn wir von 5
aus mit Hilfe der notierten Paare alle Möglichkeiten verfolgen, die uns schrittweise nach
ä zurückführen, so erhalten wir tatsächlich alle Lösungen des Problems, d.h. alle von ü

nach 5 verlaufenden kürzesten Wege. Darüber hinaus stehen nach Abbruch des Prozesses
weitere Informationen zur Verfügung: Für alle Knotenpunkte a, e A‚. gibt t(a„) die mini-
male Kostensumme von ä aus an. Außerdem kann man fürjedes a, e A‚. auch alle kürze-
sten Wege von a" aus explizit ermitteln, indem man, wie oben beschrieben, schrittweise
über die notierten Paare von a, bis ä zurückschreitet.

Der Beweis zum Dantzig-Algorithmus ist z.B. in [1], [11] ausgeführt, Dort findet der Le-
ser auch andere Verfahren zur Lösung des Problems des kürzesten Weges und weitere
Hinweise auf die sehr umfangreiche Literatur zu diesem Aufgabentyp. Wir demonstrieren
den Ablauf des Verfahrens von Dantzig zum Abschluß noch an einem Beispiel:

Beispiel 3.2: Destillative Zerlegung eines 4-St0ffgemisches. Eine Flüssigkeit bestehe aus den Kompo-
nenten A‚ B, C, D (in dieser Reihenfolge nach steigenden Siedepunkten geordnet). Leitet man das
Gemisch einer Rektifikationskolonne (vgl. Bild 3.2 a) zu, so erfolgt dort die Zerlegung in ein leichter
siedendes „Kopfprodukt“ und ein schwersiedendes „Sumpfprodukt“. Zwischen welchen Komponen-
ten der „Schnitt“ erfolgt, kann durch Wahl der technischen Parameter bestimmt werden, z.B. A/BCD
oder AB/CD usw. Um eine vollständige Zerlegung zu erreichen, müssen drei Schnitte geführt, d. h.
drei Kolonnen verwendet werden. Es gibt dafür fünf Schaltungsvarianten; zwei sind in Bild 31c dar-
gestellt. (Bemerkung: Bei IO-Stoffgemischen gibt es bereits 4862 Varianten!) Jeder Trennschritt ist
mit bestimmten Kosten verbunden. Gesucht wird die optimale Schaltungsvariante, welche möglichst
geringe Gesamtkosten verursacht. Als graphentheoretisches Modell zeichnen wir alle möglichen
Trennungszustände als Knotenpunkte (es gibt solche mit 0, 1, 2, 3 Schnitten), die möglichen Uber-
gänge (Trennschritte) als Bögen, vgl. Bild 3.2 b. Als Bogenbewertung dieses „Zustandsgraphen“ wer-

den die Kosten für die Trennschritte verwendet (hier fiktive Zahlen). Gesucht werden kürzeste Bah-
nen vom Ausgangszustand (ABCD) zum Endzustand (A/B/C/D). Durch Abarbeiten des Algorithmus
von Dantzig erhalten wir der Reihe nach:

l. Schritt: 1(5) = o; A, = {a}.
2. Schritt: w*(A 1) = {(6, x1), (d, x2), (ä, x3)};

min {0+1,o+2,0+3}:1.
Wir notieren den Bogen (ä, x1) und setzen t(x,) 2 1, A; : {ti X1].

3. Schritt: a:*(A2) = {(x„ x4), (x1, x5), (ä, x2), (ä, x3)};
min[1+2,1+3,0+2,0+3}=2.
Notiere: (ü, x2). Setze: t(x2) = 2, A3 : (d. x1, x1}.

4~SCh1’i“i 10+(A3):{(X1y X4). (X1, X5)’ (X2. X4). (X2. X0103» 9(3)};
n1in{1+2,1+3,2+2,fl,0+3}=3.
Notiere: (x1, x4), (x2, x5), (ä. x3).
Setze: t(x.) = t(x3) = t(x5) : 3; A, : {ä‚ x„ x2, x3, x4, x6}.

5. Schritt: w*(A.) = {(x., 5), (X1, xs), (X3, x5), (x5, 5)};
min {3 +3, 1 +3, 3 +2, 3 +2} =4.
Notiere: (x„ x5). Setze: t(x5) = 4; A, = {ä‚ x„ x5}.

6. Schritt: w*(A5) = {(x., 5), (x5, 5), (x6, 5)};
min {3+3,4_+l,fl} =5.
Notiere: (x5, 5), (x6, E). Setze: t(5) = 5.

Abbruch, weil IE einbezogen wurde. Als minimale Kostensumme haben wir 1(5) = 5 erhalten. Als
Vorgänger von b lesen wir aus den im 6. Schritt notierten Bögen x5 und x6 ab. Wir verfolgen zunächst
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die erste Möglichkeit weiter, Vorgänger von x5 ist (siehe Schritt 5) der Knotenpunkt x„ dessen Vor-
gänger wiederum ä (siehe Schritt 2), Damit haben wir eine erste kürzeste Bahn gefunden:

ä -+ x, ~> X5 ~> 5.

Beim Verfolgen der zweiten Möglichkeit, d. h. Rückwärtsgehen von x6 aus, erhalten wir als zweite
kürzeste Bahn

ä ——> x2 —> x6 —> b’.

Die diesen beiden Bahnen (Folgen von Trennschritten!) entsprechenden optimalen Kolonnenschal-
tungen sind im Bild 32c dargestellt.

AB

Kopfprodukt

*3

a) Sumpfprodukt b)

A B

ABCD BC

BCD C

c) D

Bild 3.2. Zu Beispiel 3.2

In der Aufgabenstellung (3.2), ‘(3.3) wird die Bewertung der Bögen ausdrücklich als
nichtnegativ vorausgesetzt. Wenn negative Bewertungen zugelassen sind, d. h., wenn an-

stelle von (3.2)

c(u) ä 0 für alle u e U (3.12)

steht, so spricht man vom verallgemeinerten Problem der kürzesten Bahn. Dabei wird
noch vorausgesetzt, daß der Graph G keine Kreise mit einer negativen Bewertungssumme
enthält. Diese Einschränkung ist sinnvoll. Wenn nämlich ein solcher Kreis vorhanden ist
und wenn in G eine Bahn von ä nach 5 existiert, die mit dem Kreis einen Knotenpunkt x

gemeinsam hat, dann liefert (3.3) als minimale Kostensumme „-°°“ (man gehe von ä aus
bis x und durchlaufe dann den Kreis beliebig oft), d. h., es existiert dann kein endliches
Minimum,
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Falls tatsächlich negative Bewertungen vorkommen, so liefert der Algorithmus von

Dantzig im allgemeinen nicht die kürzeste Bahn, wie folgendes Beispiel zeigt, vgl.
Bild 3.3 a. Angenommen, t(a‚) ist bereits bestimmt. Dann würde der Algorithmus im fol-
genden Schritt gemäß (3.8) den Bogen (a„ ak) auswählen und t(ak) = t(a‚-) + 5 festlegen,
obwohl über die Bahn a,-, a‚-, ak eine kürzere Verbindung nach ak vorhanden ist.

/
/

Bild 3.3. Zur Anwendbarkeit des Algorithmus von Dantzig

Lösungsverfahren für das verallgemeinerte Problem werden in [1], [ll] beschrieben, wir
gehen hier nicht darauf ein.

3.3. Längste und kritische Bahnen

Bei anderen praktischen Aufgabenstellungen geht es darum, nicht die kürzesten, son-

dern die längsten Bahnen zwischen zwei Knotenpunkten ä, b eines bewerteten Graphen
zu bestimmen.

Problem der längsten Bahn: Gegeben ist ein Graph G= (X U), dessen Bögen mit reellen
Zahlen

c(u) E 0 für alle ue U (3.13)

bewertet sind, sowie zwei_Knotenpunkte ä, Fe X; ri*b_. Gesucht sind aus der Menge
M(ä‚ b) aller von ä nach b führenden Bahnen diejenigen mit maximaler Kostensumme:

I(ä,b—)= max c(u)}. (114)
ueM(vi,5) uep

Einschränkung: G enthalte keine Kreise mit einer positiven Bewertungssumme.
Die zuletzt vorgenommene Einschränkung verhindert, daß Bahnen beliebig großer

Länge auftreten,
Wir könnten zunächst vermuten, daß fiir den Fall nichtnegativer Bewertungen der Al-

gorithmus von Dantzig auch zur Bestimmung längster Bahnen geeignet ist, wenn man nur
in (3.5) und (3.8) „min“ durch „max“ ersetzt. Diese Vermutung bestätigt sich jedoch
nicht, wie folgendes Beispiel zeigt, vgl. Bild 3.3 b: Wenn t(a,-) festgelegt ist, so würde der in
der angegebenen Weise abgeänderte Algorithmus im nächsten Schritt den Bogen (a,,a,)
auswählen und dem Knotenpunkt aj als maximale Kostensumme t(a,) + 10 zuweisen.
Aber es gibt über die Bahn a„ ak, aj eine längere Verbindung von a,- nach aj.
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Zur Lösung des Problems der längsten Bahn kann folgendermaßen verfahren werden.
Offenbar ist (3.14) äquivalent mit der Aufgabe

min {Z (—c<u))}. (3.15)
;4eM(a'.5) neu

Indem wir also zu neuen Bewertungen

c’(u) = -c(u) für alle ue U (3.16)

übergehen, haben wir die Aufgabe (3.14) in ein verallgemeinertes Problem des kürzesten
Weges übergefiihrt (beachte, daß der neu bewertete Graph keine Kreise mit negativer Be-
wertungssumme enthält!) Wenn dessen Lösung die Kostensummen t'(a‚-) ergeben hat, so

erhalten wir mit

t(‘1r)= ‘!'(r1.-) (3-17)

die gesuchten maximalen Kostensummen des Problems der längsten Bahn,
Die Bestimmung längster Bahnen bildet einen wesentlichen Bestandteil moderner Me-

thoden zur Planung und operativen Lenkung von Projekten und Prozessen, die unter der
Bezeichnung Netzplantechnik bekannt sind. Worum es in diesem Anwendungsgeb" ‘ der
Graphentheorie geht, erläutern wir zunächst an einem einfachen Beispiel.

Wir betrachten einen in der Zeit ablaufenden Prozeß, der aus einer Reihe von Teilvor-
gängen a,- mit der Zeitdauer d,- besteht. Als Beispiel wählen wir (stark vereinfacht) den
Prozeß „Bau eines Hauses“. Die Teilvorgänge („Aktivitäten“) und die zugehörigen Zeit-
dauern sind in Tabelle 3.1 zusammengestellt. Dabei haben wir zu den realen Vorgängen
die beiden fiktiven Aktivitäten „Beginn“ und „Ende“ des Gesamtprozesses hinzugefügt,

Tabelle 3.1: Aktivitätenliste zum Prozeß „Bau eines Hauses“

Aktivitäten Bedeutung Zeitdauer
u, d,

a1 Beginn 0
a; Anlegen der Baustraße 6

a3 Antransport der Fertigbauteile 4
a. Erdarbeiten (Baugrube, Gräben 5

für Rohrleitungen)
a5 Gießen der Fundamente l0
as Verlegen der Rohrleitungen 32

a7 Montage der Bauteile 30
a, Ende O

denen natürlich die Zeitdauer Null zuzuordnen ist. Offenbar können die Teilvorgänge
nicht in beliebiger Reihenfolge oder gleichzeitig ablaufen, sondern es müssen bestimmte
Aktivitäten abgeschlossen sein, ehe mit anderen begonnen werden kann (z. B. setzt die
Montage der Fertigbauteile voraus, daß ihr Antransport erfolgt ist und daß die Funda-
mente fertiggestellt sind). Es ist also eine bestimmte logische Aufeinanderfolge der Akti-
vitäten beim Ablauf des Gesamtprozesses zu beachten. Diese logische Aufeinanderfolge
und gegenseitige Bedingtheit der Vorgänge können wir nun durch einen Graphen darstel-
len, den Netzplan des Prozesses. Dabei können wir zwischen zwei Arten der Darstellung
wählen, die in der Praxis gleichberechtigt verwendet werden.
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I. Möglichkeit: Aktivitätsorientierter Netzplan, Vorgangsknotennetz.
Die Aktivitäten werden als Knotenpunkte dargestellt Durch die Bögen wird die logi-

sche Aufeinanderfolge der Aktivitäten zum Ausdruck gebracht, d. h., ein Bogen (a‚», a!)
wird gezogen, wenn a, beginnen kann, sobald a,- abgeschlossen ist. In unserem Beispiel
führt dies zu dem in Bild 1.2a gezeichneten Netzplan. (Bei Vorgangsknotennetzen ist es

üblich, die Knotenpunkte durch rechteckige Kästchen darzustellen.)

2. Möglichkeit: Ereignisorientierter Netzplan, Vorgangspfeilnetz.
Die Aktivitäten werden durch Bögen dargestellt. Ihre logische Aufeinanderfolge wird

durch die Knotenpunkte, bei dieser Darstellungsart Ereignisse genannt, beschrieben. Zu
diesem Zweck werden die Knotenpunkte E, so festgelegt, daß folgende Regel eingehalten
wird:

Alle von E, wegfiihrenden Aktivitäten (Bogenmenge w‘ (E‚)) können begonnen werden,
sobald alle in E,- endenden Aktivitäten (Bogenmenge w’(E,)) abgeschlossen sind.

In unserem Beispiel kommen wir so zu dem in Bild 3.4a gezeichneten Netzplan. (Bei
Vorgangspfeilnetzen werden die Knotenpunkte meist durch Kreise dargestellt.)

471

600 *4’ 6 "I fa 6
b) 0

Bild 3.4, Ereignisorientierter Netzplan

Es leuchtet ein, daß der Übergang von der einen zur anderen Darstellungsart keine
Schwierigkeiten macht. Wir beschränken uns im folgenden auf die Betrachtung von Vor-
gangsknotennetzen.

Für das Aufstellen eines Netzplanes gibt es kein Verfahren, das man rezeptmäßig an-

wenden könnte, Vielmehr ist es notwendig, in jedem konkreten Fall den zu modellieren-
den Prozeß genau zu durchdenken, um die logische Reihenfolge und gegenseitige Be-
dingtheit der einzelnen Aktivitäten zu erkennen. Wir können aber einige Eigenschaften
angeben, die der fertige Netzplan aufweisen muß, Dabei handelt es sich zum Teil um Ver-
einbarungen, deren Einhaltung bei den noch zu besprechenden Berechnungsverfahren
vorausgesetzt wird, zum Teil sind es Eigenschaften, deren Nichtvorhandensein darauf
hinweist, daß bei der Aufstellung des Netzplanes logische Fehler unterlaufen sind.

— Der Netzplan muß genau einen Eingang (Knotenpunkt, von dem nur Bögen wegfüh-
ren) und einen Ausgang (Knotenpunkt, zu dem nur Bögen hinfuhren) haben. Bei uns

sind dies die fiktiven Aktivitäten „Beginn“ und „Ende“. In jedem anderen Knoten-
punkt beginnt und endet mindestens je ein Bogen.

— Im Netzplan dürfen keine Kreise vorkommen. Das ist logisch; denn ein Kreis würde
bedeuten, daß gewisse Aktivitäten abgeschlossen sein müssen, ehe sie beginnen kön-
nen,

— Zwei Knotenpunkte dürfen jeweils nur durch einen Bogen verbunden sein (keine paral-
lelen Bögen). Bei Vorgangsknotennetzen haben parallele Bögen tatsächlich keinen
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Sinn, denn der zweite würde nichts anderes besagen als der erste. In Vorgangspfeilnet-
zen können parallele Bögen zunächst durchaus vorkommen. Man beseitigt sie durch
Einführung einer „Scheinaktivität“ a, mit der Zeitdauer Null, vgl. Bild 3.4b.

— Jeder Knotenpunkt ist vom Eingang her auf einer Bahn erreichbar.
Die Aufstellung des Netzplanes, auch als Ablaufplanung bezeichnet, stellt die erste Phase
der Netzplantechnik dar. Sicher ist der fertige Netzplan für sich allein schon ein wertvol-
les praktisches Hilfsmittel, denn er gibt dem fiir die Planung und Durchführung des Pro-
zesses Verantwortlichen die nötige Übersicht. Der eigentliche Nutzen zeigt sich jedoch
erst in der zweiten Phase, der sogenannten Terminplanung. Zunächst sagt ja der Netzplan
noch nichts darüber aus, wie der modellierte Prozeß im einzelnen zeitlich ablaufen soll,
d.h. zu welchen konkreten Terminen die verschiedenen Aktivitäten zu beginnen und zu

enden haben. Solche Terminfestlegungen sind aber für den Leiter von größter praktischer
Wichtigkeit, denn von ihnen hängt ab, zu welchen Zeitpunkten die entsprechenden Ar-
beitskräfte, Transportmittel und Baustoffe bereitzustellen sind, welche Verträge dement-
sprechend mit den Zulieferbetrieben und Nachauftragnehmem abzuschließen sind und
vieles andere, Tatsächlich sind ja zunächst beliebig viele Varianten fiir den terminlichen
Ablauf des Prozesses denkbar. Wir werden natürlich an der Realisierung einer optimalen
Variante interessiert sein, und dies wird meist heißen, einen solchen Terminplan zu be-
stimmen, bei dessen Einhaltung der Gesamtprozeß in möglichst kurzer Zeit abgeschlos-
sen wird. Diese Zielstellung einer optimalen Terminplanung wird als Problem des kriti-
schen Weges bezeichnet, das wir in Verallgemeinerung unseres Beispiels folgendermaßen
formulieren können:

Problem des kritischen Weges: Gegeben ist ein Netzplan G = (X, U). Den Knotenpunkten
X= {(11, a,,} entsprechen die Aktivitäten eines realen Prozesses, insbesondere stellt a,
den Eingang, a„ den Ausgang des Netzplanes dar, Für jede Aktivität ist eine Zeitdauer

(1,20; i= 1, (3.18)

gegeben. Mit

z(a.-); i: 1, n, (3.19)

wird der Zeitpunkt des Beginns der Aktivität a, bezeichnet. Gesucht ist eine Terrninpla-
nung (3.19), bei welcher der Prozeß in möglichst kurzer Zeit abgeschlossen ist, d.h.

t(a„) — t(a,) = min! (3.20)

Aus graphentheoretischer Sicht können wir diese Aufgabenstellung in verschiedener
Weise interpretieren. Die Zuordnung von Werten t(a,) zu den Knotenpunkten kann als
ein Potential auf G aufgefaßt werden (vgl. Satz 1.15). Es leuchtet ein, daß wir dieses durch
die Festlegung t(a‚) = 0 norrnieren können (eine spätere Umrechnung auf Kalenderter-
mine macht offenbar keine Schwierigkeiten). Wenn a, eine Aktivität ist, die unmittelbar
an a‚- anschließt, d.h., wenn im Netzplan ein Bogen (a,-, a,-) vorhanden ist, so muß der An-
fangsterrnin von a, mindestens um die Zeitdauer d, später liegen als t(a,—). Deshalb kön-
nen wir das Problem des kritischen Weges folgendermaßen als Aufgabe zur Bestimmung
eines Potentials auf G formulieren:

t(a„) — t(a1)= min!

Nebenbedingungen:

t(aj) - t(d.) ä d,- fiir alle (ai, a1) e U, (3.21)

t(a1) = 0.

Eine andere Möglichkeit besteht darin, die Aufgabe als Problem zur Bestimmung einer
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längsten Bahn aufzufassen. Wir ordnen jedem Bogen (a,-. a‚) die Zeitdauer d,- als Bewer-
tung zu und betrachten eine beliebige Bahn u von a, nach a,,. Dann kann die gesuchte
minimale Zeit für den Abschluß des Gesamtprozesses jedenfalls nicht kleiner sein als die
Länge von u, denn es müssen ja alle auf u liegenden Aktivitäten vollständig abgearbeitet
werden. Dies gilt für jede Bahn von a, nach a„‚ insbesondere auch für die längste Bahn
/4‘. Wenn wir nun u‘ bestimmen und Anfangstermine t‘(a‚-) so festlegen, daß

von.) — t‘(a1) = t‘(an) = Z d. (3.22)
u z y‘

eingehalten wird, dann bekommen wir eine optimale Terminplanung, wie sie im Problem
des kritischen Weges gefordert ist. Jetzt wird auch die Bezeichnung „kritischer Weg“ für
p‘ verständlich. Jede Überschreitung von Terminen der auf u* liegenden Aktivitäten
fuhrt dazu, daß der frühestmögliche Termin t‘ (a„) für den Abschluß des Gesamtprozesses
überschritten wird. Wenn die Zielstellung der Prozeßdurchflihrung in minimaler Zeit ein-
gehalten werden soll, so muß das besondere Augenmerk der Verantwortlichen den auf ‚u‘
liegenden „kritischen Aktivitäten“ gelten.

Wie wir sehen, kann also die Aufgabe des kritischen Weges prinzipiell als Problem der
längsten Bahn bzw. über die Umformung (3.15) bis (3.17) als verallgemeinertes Problem
der kürzesten Bahn behandelt werden. Unter Ausnutzung der schon genannten besonde-
ren Struktureigenschaften von Netzplänen konnten aber spezielle Algorithmen entwickelt
werden, die leichter zur Lösung fuhren. Einen wollen wir kurz beschreiben:

Die Methode CPM

Der Name dieses Verfahrens stellt eine Abkürzung von Critical Path Method dar. Es

umfaßt im wesentlichen zwei Arbeitsabschnitte.

(1) Vorwärtsrechnung
(diese liefert frühestmögliche Anfangs- und Endtermine für die Aktivitäten). Im Zusam-
menhang mit dem Netzplan G = (X, U) verwenden wir folgende Bezeichnungen:
V(a‚) = {a,-|(a,-, a,~) e U} die Menge aller Vorgänger eines Knotenpunktes a,-;

d, die Zeitdauer der Aktivität a,~;

FAT(a,-) der frühestmögliche Anfangstermin von a];
FET(a‚-) der frühestmögliche Endtermin von uj.
Dann gilt offensichtlich:

FAT(a‚-) = max {FET(b)}, . (3.23)
be V(a,)

FET(a,-) = FAT(a,-) + d]. (3.24)

Für die Aktivität a1 (Beginn) mit V(a‚) = ß wird gesetzt

FAT(a1) = 0. (3.25)

Da in G keine Kreise vorkommen, kann mit den Formeln (3.23) bis (3.25) ,,vom Eingang
a, zum Ausgang a,,“ durch den Netzplan hindurchgerechnet werden. Die Mindestdauer
des Gesamtprozesses ergibt sich zu

L = max {FET(b)} = FET(a„). (3.26)
asx

L heißt auch „Dauer des Netzplanes“ oder „Länge des kritischen Weges“.

4 Bieß, Graphentheorie
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(2) Rückwärtsrechnung
(diese ergibt „spätestzulässige“ Anfangs- und Endterrnine für die Aktivitäten in folgendem
Sinne: Wann muß spätestens mit der Abarbeitung einer Aktivität begonnen werden, da-
mit die minimale Dauer L des Gesamtprozesses eingehalten wird?) Mit den Bezeichnun-
gen
N(a,-) = {a,-| (aj, af) 6 U} die Menge aller Nachfolger von aj,
SET(a‚-) der spätestzulässige Endtermin von uj,
SAT(a,~) der spätestzulässige Anfangstermin von 11,,

gilt

SET(aJ-) = min {SAT(b)}, (3.27)
b e N(a‚)

SAT(a‚-) = SET(a,-) — d)‘ (3.28)

und speziell für die Aktivität a‚. (Ende) mit N(u„) = ß

SET(a„) = L. (3.29)

Von (3.29) ausgehend, wird mit abwechselnder Verwendung der Formeln (3.27), (3.28)
„vom Ausgang 41,, zum Eingang a,“ durch den Netzplan G hindurchgerechnet.

Beispiel 3.3: Wir demonstrieren den Ablauf des Algorithmus am Beispiel des Prozesses „Bau eines
Hauses“ (vgl. Bild 1.2a und Tabelle 3.2).

Bei der Vuiwärtsrechnung ergibt sich, von (3.25) ausgehend, mit (3.24) zunächst FET(a‚) =0,
dann weiter:

FAT(a1) = max {FET(b)} 2 FET(a‚) = 0; FET(a1) = O + 6,
V(a_~)

FAT(a3) : max {FET(b)} = 6; FET(a3) = 6 + 4
m.)

usw. Als Länge des kritischen Weges erhalten wir

L = FET(u‚) = 45.

Tabelle 3.2: Terminberechnung mit der Methode CPM

a, V(a,) N(a,) _FAT FET SAT SET GP

a, Beginn 0 — a1, a. O O O 0 (kritisch) 0
a; Baustraße 6 a, a; 0 6 5 11 5

a3 Antransport 4 a; a7 6 10 ll 15 5

u, Erdarbeiten 5 a, as, 41„ 0 S 0 5 kritisch 0
as Fundamente l0 a, a7 5 15 5 15 kritisch 0
as Rohrleitungen 32 a. a, 5 37 l3 45 8

a, Montage 30 a3, a5 a. 15 45 15 45 kritisch 0
ax Ende 0 a5, a7 — 45 45 45 45 (kritisch) 0

Entsprechend verläuft die Rüukwärtsrechnung. Die kritischen Aktivitäten erkennen wir daran, daß
bei ihnen

FAT(a,») = SAT(a,) und FET(a,-) s SET(a‚)

gilt, d.h., daß bei diesen Teilv " keinerlei “ " ‘ " L’ ’ L lirh der frühe -----" " ‘ und
spätestzulässigen Termine vorhanden sind. Bei allen nichtkritischen Aktiviuhen gibt es dagegen der-
artige Spielräume. Beispielsweise kann der Antransport der Bauteile frühestens nach 6 Tagen begin-
nen. Aber auch, wenn wir ihn erst nach ll Tagen beginnen lassen, ist er am 1S.Tag noch rechtzeitig.
abgeschlossen, denn erst dann ist eine Montage der Fertigbauteile möglich. Innerhalb dieser Frist
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von 5 Tagen kann der Beginn des Arbeitsvorganges „Antransport“ verschoben werden, ohne dal3 der
Endtermin des Gesamtprozesses gefährdet wird. Solche Spielräume des zeitlichen Ablaufes werden
auch als Putferzeiten bezeichnet.

Wir konnten hier nur die Grundzüge der Netzplantechnik behandeln. Der interessierte
Leser findet Einzelheiten z.B. in [3], [6], [13]. Neuerdings werden zunehmend Netzplan-
modelle komplizierterer Art untersucht, bei denen außer den Nebenbedingungen der logi-
schen Aufeinanderfolge von Aktivitäten noch Restriktionen anderer Art erfaßt sind, z. B.
Beschränkungen für die zur Erledigung der Aktivitäten erforderlichen Ressourcen (Ar-
beitskräfte, Transportmittel ...).



S. 4.1

S. 4.2

4. Probleme der Bestimmung von Gerüsten

Daß der Bestimmung von Gerüsten (vgl. Definition 1.13) große theoretische und prakti-
sche Bedeutung zukommt, zeigte sich u, a. bei der Konstruktion von Zyklenbasen
(Satz 1.7) und bei der Berechnung von Strömen und Spannungen (Sätze 1.13 und 1.16).
Wir wollen jetzt einige weitere Problemstellungen behandeln, die im Zusammenhang mit
Gerüsten auftreten.

4.1. Die Anzahl der Gerüste eines Graphen

Zunächst wenden wir uns der Frage zu, wieviel verschiedene Gerüste ein gegebener un-

gerichteter Graph G = [X‚ Ulbesitzt. (Die irn folgenden formulierten Aussagen lassen sich
auf gerichtete Graphen übertragen, wenn man bei diesen von den Bogenrichtungen ab-
sieht, d.h. die Bögen als Kanten interpretiert.)

Für den Fall, daß G ein vollständiger Graph ist, bei dem also je zwei Knotenpunkte
durch genau eine Kante verbunden sind (die Anzahl der Kanten ist dann
m: n- (n -1)/2), gilt

Satz 4.1 (Satz von Cayley): In einem vollständigen Graphen G= [X‚ U] mit n Knotenpunkten
(n g 1) gibt es n"’1 verschiedene Geniste.

Den Beweis findet der Leser z. B. in [11]. Dieser Satz besagt auch, daß man n nume-

rierte Knotenpunkte auf n"'z verschiedene Weise mit Kanten zu einem Baum verbinden
kann. Um einen entsprechenden Satz fiir beliebige Graphen formulieren zu können, be-
darf es einiger Vorbereitungen. Der zu betrachtende Graph G= [X‚ U] besitze n Knoten-
punkte xl, ‚.., x„. Er kann Schlingen und mehrfache Kanten enthalten. Wir führen fol-
gende Bezeichnung ein:

gü- = Anzahl der Kanten von G, die x,- mit xi verbinden, (4.1)

i,j= 1, n; i*j,
und bilden die (n, n)-Matrix I‘ = (y,-,,) mit

n

y‚-„= 2g“ MIN-k ,i,k=l, ‚n. (4.2)

-g‚-‚„ falls i: k

l“ wird als Admittanzmatrix von G bezeichnet. Dann gilt folgender

Satz 4.2 (Satz von Kirchhoff-Trent): Es sei G‚= [X‚ U] ein Graph mit n Knotenpunkten. Die An-
zahl der verschiedenen Gerüste von G ist gleich der Detenninante det F,-, wabei die Matrix I‘,- aus

der Admittanzmatrix F von G durch Streichen der i-ten Zeile und der i-ten Spalte entsteht (i eine
beliebige der Zahlen 1, ..., n).

Bemerkenswert ist die Tatsache, daß der Zahlenwert von det I‘,- unabhängig von der spe-
ziellen Wahl von i ist. Auch für diesen Satz wollen wir hier keinen Beweis führen (siehe
z.B. in [11]). Ein Beispiel soll jedoch die Anwendung erläutern.
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Beispiel 4.1: In Bild 4.1 ist ein Graph mit seiner Admittanzmatrix F dargestellt. Für die Anwendung
des Satzes 4.2 wählen wir etwa i = 2. Dann ergibt sich

5 —2 -1
ae:r,= -2 3 o =8,

-1 o 1

d.h.‚ der Graph besitzt 8 verschiedene Gerüste. Sie sind in Bild 4.1 u ammengestellt.

X1

5 -.7 -Z -7

'2]-70
-2-7.70

Zierusfe:

Bild 4.1. Zu Beispiel 4.1

Es sind verschiedene Algorithmen entwickelt worden, mit denen alle Gerüste eines ge-
gebenen Graphen explizit bestimmt werden können. Näheres hierfür findet der Leser z. B,
in [2].

4.2. Das Problem des Minimalgeriistes

Aufgabenstellung: Gegeben sei ein schlichter, zusammenhängender Graph G = [X, U], des-
sen Kanten mit reellen Zahlen (Kosten)

c(u) g 0 für alle u e U (4.3)

bewertet sind. Gesucht wird aus der Menge M aller Gerüste von G ein Minimalgeriist
H = [X, V] gemäß der Forderung

Z c(u) = min! (4.4)
ueV
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Diese Problemstellung ist natürlich auch im Zusammenhang mit gerichteten Graphen
sinnvoll, wenn wir dort die Richtungen der Bögen außer acht lassen können.

Wegen Satz 1.6 besitzt die Aufgabe jedenfalls eine Lösung. Hinsichtlich der Eindeutig-
keit gilt

Satz 4.3: Wenn die Bewertungen der Kanten paarweise verschieden sind, so gibt er in G genau
ein Minimalgerüst.

Es fallt nicht schwer, praktische Aufgabenstellungen zu benennen, die auf das Problem
des Minimalgerüstes führen. Stellen wir uns beispielsweise vor, daß n gegebene Orte
durch ein neu anzulegendes Informations- oder Transportnetz miteinander verbunden
werden sollen (Telefonnetz, Netz zur Datenfemübertragung, Straßennetz, Verbundsystem
zur Übertragung von Elektroenergie usw.). Dabei sind folgende Bedingungen einzuhalten:
(1) Jeder Ort muß von jedem anderen aus erreichbar sein (direkt oder über Zwischen-

orte)‚ d.h., das Netz muß zusammenhängend sein.
(2) Verzweigungspunkte sollen nur in den Orten selbst liegen.
(3) Unter allen denkbaren die n Ortschaften verbindenden Netzen ist eine optimale Va-

riante gesucht, die minimale Baukosten verursacht.
Die zuletzt genannte Forderung besagt, daß das gesuchte Netz jedenfalls keine geschlos-
senen Kantenfolgen (keine Kreise, Zyklen) enthalten darf; denn sonst wären ja überflüs-
sige Kanten vorhanden, und man hätte keine Realisierung mit minimalen Kosten. In der
Sprache der Graphentheorie ausgedrückt, bedeuten die Forderungen (1) und (3) gemäß
Definition 1.12, daß das gesuchte Netz ein Baum sein soll. Um ihn zu finden, werden wir
die Orte als Knotenpunkte aufzeichnen, jedes Knotenpunktpaar durch eine Kante verbin-
den und dieser die jeweiligen Baukosten (für eine Direktverbindung) als Bewertung zu-

ordnen. In dem so entstehenden vollständigen Graphen G ist der gesuchte Baum als Ge-
rüst mit minimaler Kostensumme eingebettet. Wir haben also für G das Problem des
Minimalgerüstes vorliegen. Zur Lösung des Minimalgerüst-Problems sind verschiedene
Algorithmen entwickelt worden, einen davon wollen wir jetzt beschreiben (den Beweis
findet der Leser z. B. in [l]). Hinweise auf andere Algorithmen und weitere Literatur zu

dieser Problematik siehe z.B. [2], [11].

Algorithmus von Kruskal

(l) Suche in U die „billigste“ Kante, d.h. diejenige mit der kleinsten Bewertung. Dies sei
v, E U. Setze V, = {v1}. (Falls mehrere Kanten die gleiche kleinste Bewertungszahl ha-
ben, wird willkürlich eine davon als u] ausgewählt).

(i) Suche unter den Kanten aus U - V,_1, durch deren Hinzunahme zum Untergraphen
[X‚ V‚-‚ ,] kein Kreis entsteht, die billigste. (Falls es mehrere gibt, wird willkürlich eine
davon ausgewählt.) Diese sei v,-e U— V,-_,. Setze V‚-= V,-.1 U {vi}, i= 2, 3,

Der Prozeß bricht ab, falls sich zu V, keine Kante aus UA V,- mehr hinzufügen läßt,
ohne daß ein Kreis entsteht, oder falls U— V, = 0 ist. Dann bildet H= [X‚ V‚-] ein Minimal—
gerüst.

BeLrpiel 4.2: Zwischen den Orten 41,, m, as (vgl. Bild 4.2) soll ein Informationsnetz neu installiert
werden. Gesucht wird ein Netz mit minimalen Baukosten. Um alle Verbindungsmöglichkeiten zur

Konkurrenz ' ' L wir " L den vnll n" "' Graphen G. Dieser enthält
(S) = 15 Kanten, Die Bewertungen der Kanten [a,, aj] (veranschlagte Baukosten der Direktverbindun-
gen) sind in der Tabelle 4.1 u ammengestellt. Das Zustandekommen dieser Zahlen haben wir uns

folgendermaßen vorzustellen: Durch die Geländebedingungen wird für jede Direktverbindung ein
günstiger Verlauf festgelegt sein (Ausnutzung vorhandener Brücken, Umgehung von Sümpfen und
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Bild 4.2. Problem des Minimalgerüstes (zu Beispiel 4.2)

Bergen usw.). Zu jeder Verbindung können dann unter Berücksichtigung der km-Entfemungen, der
Bodenverhältnisse usw. die Teilkosten für Erdarbeiten, Kabel, l olierungsmaßnahmen und aus dic-
sen schließlich die Gesamtkosten je Direktverbindung ermittelt werden. Dabei ist noch zu bemerken,
daß fiir die in der A ‘j, L " n» geforderte ‘F * " "mdumz i, allg. relativ grobe Schätz-
wane für die Kosten ausreichen werden.

Tabelle 4.1: (Zu Beispiel 4.2) Bewertung der Kanten

a, u, u 3 zu a, a5

u] — 1307,2 683,4 850,0 l 790,8 1409,?
a; — 490,0 1 040,3 860,0 1 000,0
u, — 561,0 840,0 864,0
u. — 1 309,8 673,2
a, — 620,0
a, —

Wir können nun den Algorithmus von Kruskal anwenden. Als Kante mit der kleinsten Bewertung
entnehmen wir aus Tabelle 4.1

v, = [ab a3]; c(v,) = 490; V, = {I11}.

Entsprechend ergibt sich als billigste Kante aus U — V,:

u; = (a3, 11.]; c(v‚) = 56l; V; = {v„ oz}.

Im dritten Schritt erhalten wir

v; = (a5, ad; c(u,) = 620; V, = (11,, 112, v3}.

Weiter ergibt sich

”4=[a4y“5]§ €("4)=67-5,2; V4={”1a«~-,7“):
U5=[111y¢11]§ €(Us)=533,4§ Vs=(”h«~-yU5}-
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Danach bricht das Verfahren ab, da die Hinzunahme jeder Kante aus U - V5 einen Kreis liefert. Der
Abbruch nach 5 Schritten ist klar, denn nach Satz 145 mußja das gesuchte Gerüst n — 1 = 6 — 1 Kan-
ten enthalteni

Im Bild 4.2 ist das ermittelte Minimalgerüst stark gezeichnet. Für seine Realisierung sind Bauko-
sten in Höhe von 3027,6 TM zu veranschlageni Die Lösung ist in unserem Beispiel eindeutig, vgl.
Satz 4.3.

Verschiedene mit dem Minimalgerüst-Problem verwandte Aufgabenstellungen sind
ebenfalls praktisch bedeutsam. Dafiir seien noch zwei Beispiele angeführt.

Steiner-Weber-Problem: n gegebene Orte sollen durch ein möglichst billiges Netz ver-

bunden werden. Im Gegensatz zum Minimalgerüst-Problern dürfen Verzweigungen auch
außerhalb der Ortschaften liegen. Das gesuchte Netz ist jedenfalls ein Baum. Dieser ent-
hält zwei Sorten von Knotenpunkten: n Festpunkte (deren Lage vorgegeben ist) sowie
„Steinerpunkte“ (deren Lage zu ermitteln ist).

Manhattan-Problem: Im gegebenen zusammenhängenden Graphen G= IX, U] mit der
Bewertung C(u) :0, ue U, seien die Elemente einer Teilmenge ACX, |A| = s, |X[ = n,
s< n markiert. Gesucht wird ein Untergraph H = (Y, V) von G, der folgende Bedingungen
erfüllt:

H ist ein Baum, Y2 A, Z C(u) = min! (4.5)
us V

Hier wird also ein die Teilmenge A verbindendes Netz gesucht, wobei aber auch Orte au-

ßerhalb A einbezogen werden können, wenn dies der Kostenminimierung dienlich ist.
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Im Abschnitt 1.6. haben wir gesehen, daß es durch die Einführung von Flüssen und
Strömen auf Graphen möglich wird, Vorgänge zu beschreiben, die in realen Systemen
(deren Struktur der Graph G darstellt) ablaufen. In diesem Zusammenhang (im Anschluß
an Formel (1.33)) wurde auch der Begriff „Tansportnetz“ genannt. Wir wollen diesen Be-
griff jetzt genau festlegen und anschließend einige für praktische Anwendungen wichtige
Aufgaben zur Bestimmung von Strömen auf Transportnetzen besprechen.

Definition 5.1: Ein Graph G = (X, U) mitX= (ä, a1, ..., a,., b} und U= {u,, ..., u„‚} werde

als Transportnetz bezeichnet, wenn folgende Bedingungen erfüllt sind:

(a) (b, ä) = u, e U, (5.1)

(b) w’ (5) = {"1}» w"(a') = {u1}- (5.2)
(c) Es liegt eine Bewertung der Bögen (mit Ausnahme des Bogens u, = (b, 6)) mit reellen Zah-

len var:

c,- ä Ofüralle u, e U— {ul}. (5.3)

Man_nennt dann ä bzw. 5 den Eingang bzw. den Ausgang des Transpormetzes, w*(ä) bzw.

u) ’ (b) die Menge der Eingangs- bzw. die Menge der Ausgangsbögen, u] den Rückkehrbagen und
c,- die Kapazität des Bogen: u‚—.

Die speziell bei Transportnetzen vorhandene Struktur wird im Bild 1.13 dargestellt (der
Eingang ist dort mit äfder Ausgang mit b bezeichnet). Der durch die strichpunktierte Li-
nie abgegrenzte Untergraph des Netzes enthält, in unserer jetzigen Bezeichnung, die
Mengen

X’={a1,...,a,,}, U'=U- u1‘(d)*w’(b—)—{u,}. (5.4)

5.1. Das Maximalstromproblem

Aufgabenstellung: Gegeben ist ein Transportnetz G = (X, U) mit nichtnegativen Kapazitä-
ten. Gesucht wird ein Strom qr auf G, der folgenden Bedingungen genügt:

(1) A für alle u,»e U- {ul}, (5.5)

(2) (In = man) =maX! (5.6)

Beim Maximalstromproblem handelt es sich also um eine Optimierungsaufgabe. Jeder
Strom, der (5.5) erfüllt, heißt zulässig. Jeder zulässige Strom, der auch noch (5,6) erfiillt,
heißt Maximalstrom, das zugehörige (zahm, wird als Wert des Maximalstromes bezeichnet.

Als Beispiel für eine praktische Aufgabenstellung, die auf diesen Problemtyp führt, be-
sprechen wir ein Verteilungsproblem.

02:11.56.

Beispiel 5.1: Ein bestimmtes Produkt wird an den Orten ah a2, ..., a) in den (gegebenen) Mengen s1,

s1, ..., sk erzeugt. An den Orten a'k.„a}„„ ...,aL‚ besteht ein Bedarf für dieses Produkt. Die Be-
darfsmengen d,“ hdhz, ...,d,, seien ebenfalls bekannt. Zwischen den Erzeuger- und Verbraucheror-
ten ist ein Netz von Transportverbindungen vorhanden, d.h‚ eine gewisse Menge direkter Verbindun-
gen der Art a‚v—>a„ a; -+a,, a,—>aJ’-, u; ->aj. Dabei sei es aber so, daß über diese Verbindungen
nicht beliebig viel transportiert werden kann. Die größtmögliche von u direkt nach b transportierbare

5 Eieß, Graphenlheorie

D. 5.1
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M91180 Werde mit €(a. b) beleichflet, und diese „Durchlaßkapazitäten“ seien für alle Verbindungen
des Netzes bekannt. Nun besteht folgende Aufgabe: Die erzeugte Produktmenge soll im Rahmen der
vorhandenen Transportmöglichkeiten so verteilt werden, daß der Gesamtbedarf auf der Verbraucher-
seite soweit wie möglich gedeckt wird. Wenn

M
» „

5i< Z d1
/=k+l

gilt, ist eine volle Befriedigung des Bedarfes natürlich nicht möglich. Aber auch im Falle 25,-; 2d,-
kann es wegen der beschränkten Kapazität der Transportwege sein, daß eine vollständige Deckung
des Bedarfs nicht zu erreichen ist. Um einen möglichst großen Teil des Bedarfes zu decken, kommt
es darauf an, die Transportmöglichkeiten optimal auszunutzen.

Um diese Problemstellung mathematisch zu modellieren, werden wir die Orte als Knotenpunkte,
die direkten Verbindungen a H b als Bögen (a, b) eines Graphen darstellen. vgl. Bild 5.1. Den Bögen
ordnen wir die Durchlaßkapazitäten c(a‚ b) als Bewertungen zu. Wir ergänzen den Graphen durch
w einen Knotenpunkt a’ und Eingangsbögen (ä, a‚-) mit Bewertungen c(a’, u.) = n; i = 1, k,
— einen Knotenpunkt 5 und Ausgangsbögen (a‚'‚ b") mit Bewertungen c(aj, E) : d1; j 2 k + 1, ..., n,
— einen Rückkehrbogen (E, ä).

r 1

/————————*———-——j—v\

[ "i'm \
I "7 \ i

i / / E2 "in; \ i

&k/ X \\\

5 T f / 5

\ /
\ /
\ 11K /

/
a;, Bild 5.1. Transportnetz (zu Beispiel 5.1)

Dadurch erhalten wir ein Transponnetz G = (X, U) im Sinne der Definition 5.1. Wir betrachten jetzt
einen Strom q: auf G und deuten q7(a, b) als Produktmenge, die über den Bogen (a, b) transportiert
wird. Wegen der Durchlaßbeschränkungen muß für jeden zwei Orte verbindenden Bogen gelten

0§q2(a,b)§c(a,b). (5.7)

Aber auch fiir die Ausgangsbögen (a‚’-, E) ist (5.7) zu fordern (mit c(a‚’-, E) = dj). Auf Grund der Kno-
tenpunktregel gibt nämlich tp(a‚', b’) die Produktmenge an, die insgesamt beim Verbraucher (Iran-
kommt (oder genauer: wieviel dort mehr ankommt als weggeht), und diese muß vernünftigerweise
zwischen Null und dem Bedarf d, liegen, Für Eingangsbögen (ä, a.) besagt (5.7) schließlich (mit
c(ä, a,) = 5,), daß die vom Erzeuger a,— weg transportierte Menge nicht größer sein kann als der Vorrat
n. Also muß (5.7) für alle Bögen von G, außer dem Rückkehrbogen (I7, a’) erfüllt werden. Die auf der
Verbraucherseite insgesamt ankommende Produktmenge beträgt

n _

Z am}. b).
j= k + l

Wegen der in 5 gültigen Knotenpunktregel ist diese gleich (v(b_, ä), d.h. der Stromkomponente auf
dem Riickkehrbogen. Da das Optimierungsziel darin besteht, einen möglichst großen Teil des Ge-
samtbedarfs zu decken, besteht die Forderung

w<I>',a> =_ ‘kg lov(a,’-,5) =max! (5.8)
,- .

Also liegt mit (5.7), (5.8) ein Maximalstromproblem vor.
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Wir haben bei diesem Beispiel angenommen, daß im Transportnetz nur Erzeuger- und
Verbraucherorte vorkommen. Die Problematik kann aber dahingehend verallgemeinert
werden, daß zwischen den a,- und a} Orte ins Netz einbezogen sind, die weder Erzeuger
noch Verbraucher repräsentieren, sondern „Zwischenlager“ oder „Umladestationen“ dar-
stellen. Das Maximalstromproblem erfaßt also auch „mehrstufige“ Verteilungsprobleme.
Eine ganze Reihe weiterer praktischer Aufgabenstellungen, die sich auf ein Maximal-
stromproblem zurückführen lassen, findet der Leser in [1]. Wir formulieren jetzt ein Lö-
sungsverfahren,

Algorithmus von Ford und Fulkerson

(1) Wähle einen beliebigen zulässigen Strom qz [d.h. einen solchen, der (5.5) erfüllt] als
Ausgangslösung. (Zum Beispiel den Nullstrom o: = o.)

(2) Führe von ä aus einen Markierungsprozeß nach folgenden Regeln aus:
a) Markiere den Eingang ä.
ß) Wenn a,- bereits markiert wurde, aj aber noch nicht: Markiere a, mit dem Kennzei-
chen (i), wenn

- entweder (a‚-‚ aj) e U und 1p(a,-, a,-) < c(a,-, a,-) gilt (d.h., wenn ein Teil der Kapazität
des Bogens (a„ a1) nicht in Anspruch genommen wird; Markierung „in Bogenrich-
tung“)

— oder (a‚-‚ a,) e U und qp(a,, a,-) > 0 gilt (d.h., wenn ein Teil der Kapazität des Bogens
(a‚-‚a‚-) in Anspruch genommen wird; Markierung „entgegen Bogenrichtung“).1)

y) Der Markierungsprozeß wird beendet, wenn entweder 5 markiert werden konnte
oder wenn eine Markierung weiterer Knotenpunkte mittels der Regeln u, ß nicht
mehr möglich ist.

(3) Wurde 5 markiert? Wenn nein: q: ist ein Maximalstrom. Ende des Algorithmus.
Wenn ja: Fahre mit Schritt (4) des Algorithmus fort.

(4) Suche eine Kette u von ä nach I7, auf der nur markierte Knotenpunkte liegen, wobei
beim Durchlaufen der Kette von ä nach Fjeder folgende Knotenpunkt vom vorherge-
henden aus markiert wurde. (Wenn wir die Kette als Folge von Knotenpunkten
darstellen:

u=(a‚-„Eä‚a‚v„a‚2,...‚a‚„,a;‚ME5), (5.9)

dann rnuß bei 11,; das Kennzeichen (i,-1) stehen, r = 1, ‚.., k+ 1. Eine solche Kette
gibt es jedenfalls, da ja F markiert werden konnte.)

(5) Aufteilung der Bögen von u in die Teilmenge u‘ (diejenigen Bögen enthaltend, die
„in Bogenrichtung“ markiert wurden, für die also q) < c gilt) und die Teilmenge u‘
(die „entgegen der Bogenrichtung“ markierten Bögen enthaltend, für die (p > 0 gilt).
Berechne:

6: = min [600 - 0704)]; (5.10)
Heu’

min [qz(u)], falls u“ #0,
s; = "I" (5,11)

w, fallsp‘ =ß;

s= min [51, 22]. (5.12)

‘) Das Kennzeichen (i) bei a, gibt also die Nummer desjenigen Knotenpunktes an, von dem aus

die Markierung von a,- möglich war!

g
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(6) Bilde mit e einen „besseren“ Stromvektor q)’ gemäß

‘7(")+‘9 fiiral1eue;4*,
0701)’-9 fiiralleueu’,
qz(u)+e füru=(5,ri)‚
M“) sonst.

¢1I'(u) = (5-13)

(7) Lösche die Markierungen, verwende q)’ als neue Ausgangslösung a: und setze das
Verfahren mit Schritt (2) fort.

Den Beweis für die Wirksamkeit dieses Algorithmus führen wir hier nicht (siehe z. B.
[1]). Wir wollen uns lediglich klarmachen, daß mit (5.13) tatsächlich ein besserer Strom—

Vektor gefunden wird. Durch die Art der Bestimmung von e ist garantiert, daß der neue

Vektor cp’ die Nebenbedingungen (5.5) erfüllt. Daß m’ wieder ein Strom ist, sehen wir fol-
gendermaßen ein: Für Bögen, die mit nicht auf der Kette u liegenden Knotenpunkten a

inzident sind, gilt xp’ (u) = q2(u). Da (p ein Strom ist, gilt bei solchen a die Knotenpunktre-
gel auch für q)’. Wir betrachten jetzt einen auf y liegenden Knotenpunkt 11,, vgl. Bild 5.2.

\ / \ / x / ‘x //x,‘/I \a,/ \a,/ \q/ 7

E " " .2rK. b

war»: | wuw qmm I wuv-s wuy-z 'Iwu‘1—: um»: ilwutlv:
l ‘ | I

Bild 5.2. Zum Algorithmus von Ford und Fulkerson

Für die zu u gehörenden, mit a,- inzidenten Bögen u, u’ sind die vier in Bild 5.2 gezeich-
neten Lagebeziehungen möglich. An den Bögen sind die gemäß (5.13) gebildeten neuen

Komponenten qz’ angeschrieben. Da für die alten Größen q: die Knotenpunktregel erfüllt
war, gilt dies ersichtlich in allen Fällen auch für die neuen Größen au’. Also ist q)’ tatsäch-
lich ein Strom. Schließlich besagt (5.13) wegen qz’(5, ä) = q2(5, a") + e und s> 0, daß der
neue Strom auf dem Rückkehrbogen einen größeren Wert hat als der alte, d.h.‚ wir haben
eine Verbesserung in Richtung auf den Maximalwert erreicht.

Bemerkenswert ist noch folgendes: Häufig tritt das Maximalstromproblem in der spe-
ziellen Form auf, daß die Kapazitäten c,- (nichtnegative) ganze Zahlen sind und daß ein
Strom mit ganzzahligen Komponenten gesucht wird. Die Aufgabenstellung (5.5), (5.6) ist
dann also durch die Zusatzbedingung

q), ganzzahlig für alle u,e U (5.14)

modifiziert. Der Algorithmus von Ford und Fulkerson ist ungeändert auch für die Lösung
derartiger ganzzahliger Maximalstromprobleme geeignet, wenn im Schritt (1) als Aus—

gangslösung ein Strom q: mit ganzzahligen Komponenten gewählt wird. Die Formeln
(5.10) bis (5.12) liefern dann nämlich ein ganzzahliges e, und deshalb besitzt gemäß
(5.13) auch jeder verbesserte Strom qt’ wieder die Eigenschaft der Ganzzahligkeit.

Ein verallgemeinertes Maximalstramproblem liegt vor, wenn anstelle von (5.5) die allge-
meinere Bedingung

big 01,-; c, fiir alle u‚-e U- {m} (5.15)

besteht, wobei die Zahlen b,-, c,- auch negativ sein können. Der Algorithmus von Ford und
Fulkerson kann mit geringfügigen Änderungen auch für die Lösung dieses Problemtypes
eingesetzt werden. Schwieriger als beim einfachen Maximalstromproblern ist dann aber
i. allg. die Bestimmung einer Ausgangslösung. Näheres hierzu findet der Leser in [1].
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Beispiel 5.2: An eine Gruppe von 6 Studenten S1, ‚ S, sollen Themen fiir die Diplomarbeit verge-
ben werden. Es liegt eine Liste mit 6 Arbeitsthemen T1, T1, vor. Jeder Student hat Themen ausge-
wählt, an deren Bearbeitung er interessiert ist. Wie muß man die Verteilung vornehmen, damit mög-
lichst viele Studenten ein gewünschtes Thema erhalten?

Im Bild 5.3 sind die Studenten und Themen durch Knotenpunkte dargestellt. Ein Bogen (5.. T)
bedeutet, daß S‚- am Thema T, interessiert ist. Wir ordnen jedem Bogen die Kapazität c(.S’‚-‚ 1}) = 1 zu.

Der Graph wurde durch Eingangs- und Ausgangsbögen ergänzt, jedem ist ebenfalls die Kapazität 1

zugeschrieben. c(ä. S1) : 1 besagt, daß dem Studenten höchstens ein Wunschthema zugewiesen wer-

den darf, entsprechend sorgt 6U}, b") : l dafür, daß jedes Thema höchstens einmal Vergeben wird.

Bild 5.3. Zu Beispiel 5.2

Betrachtet wird ein Strom IP auf G= (X, U), dessen Komponentenwerte wir folgendermaßen deu-
ten

l S,- bekommt das Thema 7},s, :

"'( " ’) {O s, bekommt T, nicht.

Damit liegt das folgende ganzzahlige Maximalstromproblem vor: Zu bestimmen ist ein Strom (v auf
G, der folgende Bedingungen erfüllt

0 2 111(14); l, ganzzahlig für alle ue Uv {n1},

q2(5, ü) : max!

In Tabelle 5.1 wird ein möglicher Ablauf des FordFulkerson-Algorithmus bei der Anwendung auf
dieses Beispiel beschrieben. Es wird vorn Anfangsstrom (p = o ausgegangen. Dann ergibt sich die LÖ-
sung in fünf Durchlaufen, die der Leser nachvollziehen möge. Es wurde so verfahren, daß in jedem
Durchlauf der Schritt (2) des Algorithmus soweit ausgeführt wurde, bis keine weiteren Knotenpunkte
mehr markiert werden können. (Praktisch kann man Schritt (2) schon dann beenden, wenn E mar-

kiert ist.)
Im ersten Durchlauf erhalten wir gemäß Schritt (4) des Algorithmus die Kette y = (ü, S1, T1, b5),

weiter im Schritt (5) die Aufteilung u“ = {(21, S1), (S1, T1), (T1, 5)}, u" =fl und e1= 1, e1= m,
e: 1. Nach (5,13) ergeben sich dann neue Stromkomponenten 1 für die Bögen von u‘ und für den
Rückkehrbogen (E, ä).

Im zweiten Purchlauf ergibt sich die Kette p = (ä, S1, T1, S1, T1, b’) mit u‘ = {(ä‚ S1), (S1, T1),

(S1, T1), (T1, b)}, u’ = {(S1, T1)} und weiter s1 = 1, s1 =1, e= 1. Diesmal sind die Stromwerte auf
den Bögen p‘ und (b, a‘) um 1 zu erhöhen, auf (S1, T1) um 1 zu emiedrigen, Die übrigen Durchläufe
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rechne der Leser selbst nach, Er wird feststellen, dnß im 6. Durchlauf der Ausgang I; nicht markiert
werden kann, so daß die in der letzten Spalte von Tabelle 5.1 notierten Komponenten einen Maxi-
malstrom darstellen. Im Ergebnis zeigt sich (was man in diesem einfachen Beispiel natürlich auch
unmittelbar durch Probieren herausbekommen kann), daß maximal fiinf von den sechs Themen
wunschgemäß v ‘ werden können:

T1—’s2» T2"-91, Tags» T5—’s4y Te"s6-
Die optimale Lösung ist hier allerdings nicht eindeutig bestimmt. Auch

TlATSJa T2"’Si‚ Ts-’Ssy Ts"-92: Ts”Ss
stellt z. B. eine optimale Lösung dar.

Tabelle 5.1: Zu Beispiel 5.2

(Spalte M gibt an, welche Markierung der Endpunkt des jeweiligen Bogens nach Abschluß von

Schritt (2) des Ford-Fulkerson-Algorithmus erhalten hat. In Spalte q)’ sind die Komponenten des
„besseren“ Stromvektors nach Abschluß von Schritt (6) vermerkt. Ein Stern hebt die im jeweiligen
Durchlauf geänderten Werte hervor.)

Bogen 1. Durchlauf 2. Durchlauf 3. Durchlauf 4. Durchlauf 5. Durchlauf
Ma)’ Ma: Mq) Ma; Man
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5.2. Transportprobleme

Wir kommen zuletzt noch auf eine Aufgabe zu sprechen, die in der Graphentheorie als
eingeschränktes Tmnsportproblem oder Umladeproblem bezeichnet wird.

Aufgabenstellung: Gegeben sei ein Transportnetz G = (X, U), entsprechend Definition 5.1.
mit Kapazitäten

c‚->0‚ falls u‚-ew*(ä)‚ ~

c(u,-) = C} > 0, falls u,-e w’(I;), (5.16)

0°, falls ll,-6 U’ = U— w*(a‘) — w‘(5) — {m},

wobei gilt

Z q: Z c;=y_ (5.17)
u,su1’(a') u,Ea1 (5)

Jedem Bogen u,- aus U’ sei außerdem eine reelle Zahl I, zugeordnet, und es sei vorausge-
setzt, daß kein Knotenpunkt gleichzeitig Endpunkt eines Eingangsbogens und Anfangs-
punkt eines Ausgangsbogens ist. Gesucht wird ein Strom (p auf G mit folgenden Eigen-
schaften:

(1) (p,- g 0 für alle u‚-€ U, (5.18)

(2) (12,- = c,- fiir alle u,e w* (ä), (5.19)

(p,- = c} für alle u‚<e w’(b_),

(3) Z 1,4),- = min! i (5.20)
u‚E U’

Von der Benennung her ist zu vermuten, daß diese Aufgabe in Beziehung zu dem steht,
was in der Theorie der linearen Optimierung als „Transportproblem“ bezeichnet wird [3],
[12]. Tatsächlich können wir das eingeschränkte Transportproblem der Graphentheorie
ohne weiteres in die Form einer linearen Optimierungsaufgabe (LO) umschreiben. Wenn
wir nämlich zu den Formeln (5.18) bis (5.20) die Knotenpunktregeln (1.29) für die Varia-
blen <p,- hinzunehmen (es ist ja ein Stromvektor q: gesucht!), so steht das äquivalente LO-
Problem bereits da. Bezüglich der expliziten Form dieser Knotenpunktregeln sind vier
Fälle zu unterscheiden.

1. Fall: Der Knotenpunkt a, ist Endpunkt eines Eingangsbogens von G= (X. U), vgl.
Bild 5.4a. Dann gilt

X tr,-= Z <1I,v+<zz(-i.-1.-)
u,ew'(a.) u,ew (a.)—<a-,a,)

oder, wenn wir wegen (5.19) q2(d, a,-) = c,- setzen,

Z q», — Z qz, = c‚-. (5.21)
";€w'(u.) -eew'(a.)—(tia,)

2. Fall: Der Knotenpunkt a,- ist Anfangspunkt eines_Ausgangsbogens, vgl. Bild 5.4b. Dann
gilt, wenn wir unter Verwendung von (5.19) (p(a,-‚ b) = cf setzen:

Zq- Z <11,-=c}. (5.22)
w’ (m) Iv‘(I1.)*(I1.,5)

3. Fall: a,» ist weder Endpunkt eines Eingangsbogens noch Anfangspunkt eines Ausgangs-
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bogens. Die Knotenpunktregel lautet dann, vgl. Bild 5.4c:

Z er Z <n;=0. <5»23>
m (A1,)w‘(a,)

4. Fall: Knotenpunktregel für zi und 17-, vgl. Bild 5.4 d:

ah- ;i)‘Pj:¢71‘ 2 c‚-=0
w'(Ä)

bzw. (5.24)

971‘ Z <Pj='P1‘ Z C,,'=0-
um m5)

Wegen (5.17) reduzieren sich die beiden Bedingungen (5.24) auf

w: = y, (5.25)

d. h„ die Komponente m, ist bei vorliegender Aufgabenstellung gar keine Variable, son-

dem ein gegebener fester Zahlenwert.

/ \‘7I

e
r:

b)

Bild 5.4. Zum eingeschränkten Transportproblem

In den Formeln (5.20), (5.21) bis (5.23), (5.18) haben wir das zum eingeschränkten
Transportproblem äquivalente lineare Optimierungsproblem vor uns, In diesem treten
]U’| Variable qt, auf. Die zu den Eingangs- und Ausgangsbögen sowie zum Rückkehrbo-
gen gehörenden Komponenten des Stromvektors konnten wir durch Berücksichtigung von

(5.17) und (5.19) eliminieren. _

Wir wollen nun die Beziehungen zum Transportproblem der linearen Optimierung un-

tersuchen. Dort wird eine Menge 11,, a2, ..., a) von Erzeugern (c,- die Produktion von a‚-)

und eine Menge ajm, ..., a; von Verbrauchern betrachtet (cf der Bedarf von aß), Beim
einfachen Transportproblem wird angenommen, daß Produktion und Bedarf ausgeglichen
sind:

k n

Z c,-= _ Z e; = y. (5.26)

Zwischen den Produzenten und den Verbrauchern gibt es gewisse Transportverbindungen
(a„ a1’), die wir durch eine Menge von Indexpaaren E= {(i‚j)} beschreiben können. Wir
bezeichnen ferner mit 1,, die Kosten für den Transport der Mengeneinheit von a,- nach a}
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und mit x‚-‚ die von a,- nach a} tatsächlich transportierte Produktmenge. Gesucht werden
Optimalwerte für die xv, so daß die gesamten Transportkosten minimal ausfallen. Die
mathematische Formulierung dieser Aufgabe ergibt folgendes lineare Optimierungspro-
blem:

Z z„x‚-‚ = min! (5.27)
U.j)sE

Nebenbedingungen:

Z x,,,:c,; i=1,...,k, (5.28)

((i,hqeE)

2 x„»=cf; i=k+1,...,n. (5.29)

((1, Die E)

Vorzeichenbedingungen:

x,, ä 0 für alle (i, j) e E. (5,30)

Durch Vergleich der Formeln (5.27) bis (5.30) mit (5.20), (5.21) bis (5,23), (5,18) können
wir nun leicht feststellen, daß das einfache Transportproblem der linearen Optimierung
(TLO) ein Spezialfall des eingeschränkten Transportproblems der Graphentheorie (ETG)
ist. Der umfassendere Charakter der graphentheoretischen Aufgabe besteht in folgendem:
— Im ETG ist ein Transport zu den Erzeugern hin zugelassen (Vergleich der Formeln

(5.28) und (5.21)). Praktisch kann dies so auftreten, daß die Produktion mehrerer Er-
zeuger zunächst bei einem von ihnen gesammelt wird, ehe der Versand an die Verbrau-
cher erfolgt.

— Im ETG ist ein Transport von den Verbrauchern weg zugelassen (Vergleich der For-
meln (5.29) und (5.22)). Auch dieser Fall tritt praktisch auf, wenn nämlich ein Ver-
braucher für mehrere andere als „Zwischenlager“ fungiert.
Im TLO treten Formeln des Typs (5.23) nicht auf, d.h.‚ es gibt dort keine Orte, die we-

der Erzeuger noch Verbraucher darstellen. Solche Knotenpunkte haben praktisch die
Bedeutung von Zwischenlagem oder Umladestationen. Das ETG erfaßt also „mehrstu-
fige Transportprobleme“, wie sie in der Praxis häufig auftreten.

— Im ETG können die den Bögen zugeordneten Zahlen l,- auch negativ sein.
Auf Lösungsverfahren für das eingeschränkte Transportproblem der Graphentheorie ge-
hen wir hier nicht ein. Der Leser wird auf [1] verwiesen, wo auch noch weitere praktische
Fragestellungen erläutert werden, die auf diesen Problemtyp fuhren.



6. Zur rechentechnischen Realisierung
von Graphenalgorithmen

Bei der mathematischen Modellierung praktischer Probleme wird die Wahl auf ein gra-
phentheoretisches Modell oft dann fallen, wenn bei der Arbeit mit dem Modell Struktur-
eigenschaften des realen Systems untersucht oder für den Rechengang ausgenutzt werden
sollen. Diese Eigenschaften kommen in den Adjazenz- und Inzidenzbeziehungen zwi-
schen den Elementen des Graphen direkt zum Ausdruck. Graphentheoretische Algorith-
men haben deshalb oft die Form von Suchprozessen entlang von Bahnen, in der Nachbar-
schaft von Knotenpunkten, über die Menge von Bögen usw. Für die Effektivität der
rechentechnischen Realisierung ist es offenbar wichtig, daß man die für den nächsten Re-
chenschritt benötigten Größen „möglichst schnell bei der Hand hat“, d.h., daß man eine
dem Algorithmus angepaßte Art der Codierung des Graphen auswählt.

Nur selten wird man Adjazenz- oder Inzidenzmatrizen direkt verwenden, da sie meist
gering besetzt sind und unnötigen Speicherplatz verbrauchen. Oft wird eine Listenform
zweckmäßig sein, z.B.:
— Für jeden Knotenpunkt Angabe der Nachfolger oder/und Vorgänger,
— Liste der Bögen durch jeweilige Angabe des Anfangs- und Endpunktes.

Da bei Aufgaben praktischen Formats der Modellumfang oft sehr groß wird, ist es fir
den Entwurf bzw. die Beurteilung von Algorithmen (z. B. für die Entscheidung, ob man
sich mit Näherungsverfahren oder Heuristiken begnügt oder exakte Verfahren anstrebt)
wünschenswert, für das vorliegende Problem bzw. den Algorithmus eine Möglichkeit zur

Bewertung des Schwierigkeitsgrades bzw. Lösungsaufwandes zu haben. Solche Möglich-
keiten bietet die Komplexitätstheorie, die sich als Teildisziplin der diskreten Mathe-
matik entwickelt hat. Einige Grundgedanken sollen hier genannt werden.

Es sei P ein Problem‘), A ein Algorithmus zur Lösung von P, B(d) ein Beispiel der Di-
mension d für das Problem (d charakterisiert den Umfang des Beispiels; z.B. kann dieser
beim Minimalgerüstproblem, vgl. 4.2., durch die Anzahl der Knotenpunkte des Graphen
beschrieben werden, d.h. d = n). Mit compl (B(d)‚ A, P) wollen wir die Anzahl elementa-
rer Operationen (oder die dazu proportionale Rechenzeit) auf einem Computer bezeich-
nen, die benötigt wird, um das Beispiel B(d) des Problems P mittels des Algorithmus A
zu lösen. Ist M(d) die Menge aller Beispiele B(d) gleichen Umfangs d, so gibt

compl (A, P) = B(31a:l:(d> {compl (B (d), A, P)} (6.1)

offenbar ein (von d abhängiges) Maß für den Aufwand des Algorithmus A an, denn (6.1)
beschreibt ja die benötigte Rechenzeit für das ungünstigste Beispiel aus M(d). Deshalb
auch die Bezeichnung „worst-case-Kornplexität“. Ist a(P) die Menge aller (denkbaren)
Algorithmen zur Lösung von P, so stellt

compl (P) = Amiga) {compl (A, P)} (6.2)

ein Maß für die Schwierigkeit des Problems P dar. Auch compl (P) ist eine Funktion von

d. Handelt es sich dabei um ein Polynom, so nennt man P bzw. A „polynomial“ und gibt
als Komplexität die Ordnung des Polynoms an. Anderenfalls heißen P bzw. A „exponen-
tiell“, Man bezeichnet mit „ä? die,Klasse aller polynomialen Probleme, d. h. aller Pro-
bleme, für die es einen polynomialen (deterministischen, d.h. in jedem Schnitt ein ein-

‘) Die folgenden Begriffe der Komplexitätstheorie gelten genaugenommen nur für sog. Entschei-
dungsprobleme, Das sind solche, die als Lösung nur „ja“ oder „nein“ zulassen. Da es aber möglich
ist, kombinatorischen Optimierungsproblemen äquivalente Entscheidungsprobleme zuzuordnen,
werden diese Begriffe auch etwas unscharf allgemeiner angewendet,
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deutiges Ergebnis liefernden) Algorithmus gibt (wenn er vielleicht auch noch nicht gefun-
den wurdel).

Beispiel 6.1: Algorithmus von Kruskal zur Lösung des Minimalgerüst-Problems, vgl. 4.2. Betrachtet
wird ein Graph mit d= n Knotenpunkten, der (ungünstigster Fall!) vollständig ist, d. h.

z = g - (n - 1) Kanten besitzt. Die im ersten Schritt durchzuführende Suche einer „billigsten“ Kante

erfordert, indem man die Kanten durchgeht, z — 1 Vergleiche, d.h. eine zu dieser Zeit proportionale
Rechenzeit a, (z—1). Im zweiten Schritt (vgl. 4.2.) sind die restlichen z- 2 Kanten daraufhin zu

durchmustem, ob ihre Hinzunahme zu V, einen Kreis bildet. Von denen, die, das nicht tun, ist eine
billigste Kante zu suchen. Dieser Vorgang erfordert (im ungünstigsten Falle, d. h.‚ wenn keine der
Kanten zu einem Kreis fuhrt) einen Beitrag a, (z— 2) zur Rechenzeit usw, Insgesamt gibt es n — l
solche Schritte, der letzte mit einem zu (z— n + 1) proportionalen Zeitbeitrag. Für die gesamte Re-
chenzeit folgt die Abschätzung

n - I" n - l 1

Z a‚»<z— i) gaw Z(z-r>=am.x-7[z<z»1>—<z—n+1><z—n>1
it l i: l

=%~{n3—3n1+2n]. (6.3)

Also ist das Minimalgerüst-Problem polynomial lösbar (es gehört zur Klasse 9), und der so reali-
sierte Algorithmus ist von der Ordnung n’ (die Ordnung kann durch Verfeinerung des Algorithmus
noch reduziert werden). Polynomiale Algorithmen werden oft als „gute“ Algorithmen bezeichnet.

Wie kann man nun zwei Probleme, P, F in ihrer Schwierigkeit vergleichen? Dabei hilft
der Begriff der polynomialen Transformation. Man versteht darunter einen Algorithmus,
der jedes Beispiel B von P mit polynomialem Aufwand in ein Beispiel E von F überführt,
wobei aus der Lösung von E dann auf diejenige von B geschlossen werden kann. Wenn P
derart polynomial in 13 iiberfiihrbar ist, so schreibt man PtxF. Offenbar ist dann P als ein
Spezialfall von 15 aufzufassen, und folglich besitzt das Problem P mindestens die Schwie-
rigkeit von P. Aus Fe .9” folgt natürlich Pe Q aber nicht umgekehrt.

Die Komplexitätstheorie befaßt sich weiter mit der Klassifizierung von Problemen, bei
denen eine Zugehörigkeit zu t? bisher noch nicht nachgewiesen werden konnte. Ohne
näher darauf einzugehen sei nur die Klasse .//Z7‘€ („J/Qvollständige“ Probleme) er-

wähnt, in der die vom Aufwand her „schwierigsten“ Probleme zusammengefaßt sind. Bei
ihnen erscheint es sehr unwahrscheinlich, jemals polynomiale Algorithmen zu finden. Um-
fangreiche Zusammenstellungen von Problemen, deren Zugehörigkeit zur Klasse ./@%
feststeht, findet man in der Literatur (siehe z. B. [5], [l4])‚ wo auch Wege zum Nachweis
dieser Eigenschaft beschrieben werden. Bei .//fivollstéindigen Problemen ist es angera-
ten, sich auf die Benutzung bzw. Entwicklung polynomialer Näherungsverfahren (z. B.
beruhend auf der Greedy-Technik und ihren Varianten) oder sogar auf heuristische Ver-
fahren zu beschränken. In vielen Fällen wird bei solchen Problemen das Branch-and-
Bound-Prinzip [l4] der Ansatzpunkt fiir die Entwicklung von Näherungsverfahren sein.



[1]

[21

[3]
[4]

[5]

[61

[71

[8]

[9]

[10

[11]

[12

[13]
[141

Literatur

Berge, C; GhouiIa-Houri, A.: Programme, Spiele, Transportnetze. Leipzig: BSB B. G. Teubner
Verlagsgesellschaft 1969.
Därfler, W.; Mfihlbacher, 1.: Graphentheorie für Informatiker. Sammlung Göschen‚ Bd. 6016.
Berlin — New York: Verlag Walter de Gruytcr 1973.
Dick. W. u. a.: Mathematik für Ökonomen, Bd. 2. Berlin: Verlag Die Wirtschaft 1980.
Fischer. I-1.; Piehler, J.: Modellsysteme der Operationsforschung. Wissenschaftliche Taschenbü»
cher, Bd. 145. Berlin: Akademie-Verlag 1974.
Garey, M. R.; Jolmmn, D. S.: Computers and Intractability: A Guide to the Theory of NP-Com-
pleteness. San Francisco: Freeman 1979.
Golenka‚ D. 1.: Statistische Methoden der Netzplantechnik. Leipzig: BSB B. G. Teubner Verlags-
gesellschaft 1972.
Héssig, K.: Graphentheoretische Methoden des Operations Research. Stuttgart: B.G.Teubner
1979.
Henn, R.; Künzi, H. P.: Einführung in die Untemehmensforschung, Bd. II. Berlin — Heidel-
berg — New York: Springer-Verlag 1968.
Manteuffel, K.: Seiffurt, E.; Venen, K.: Lineare Algebra, 6.Aufl. Mathematik für Ingenieure, Na-
turwissenschaftler, Ökonomen und Landwirte, Bd. 13. Leipzig: BSB B. G. Teubner Verlagsge»
Seilschaft 1987.
Ostrowski. G. M.;. Walin, J. M; Methoden zur Optimierung komplexer verfahrenstechnischer Sy-
steme. Berlin: Akademie-Verlag 1973.
Sachs, H; Einführung in die Theorie der endlichen Graphen, Teil I und II, Leipzig: BSB
B.G.Teubner Verlagsgesellschaft 1970 und 1972.
Sei/fart, E; Mnnteuffel, K.: Lineare Optimierung. 4.Aufl. Mathematik für Ingenieure, Naturwis-
senschaftler, Ökonomen und Landwirte, Bd. 14. Leipzig: BSB B.G‚Teubner Verlagsgesellschaft
1988.
Stempell, D. u. a.: Handbuch der Netzplantechnik, Berlin: Verlag Die Wirtschaft 1970.
Terno, J.: Numerische Verfahren der diskreten Optimierung. Teubner-Texte zur Mathematik,
Bd. 36. Leipzig: BSB B.G.Teubner Verlagsgesellschaft 1981.



Namen- und Sachregister

Ablaufplanung 48
Adjazenz 8

Adjazenzmatrix 31
Admittanzmatrix S2

Aktivitäten, kritische 49
aktivitätsorientierter Netzplan 47
Algorithmus, polynomialer 66
— von Dantzig 42
— — Ford und Fulkerson 59
— — Kruskal 54, 67
— - Trémaux 40
Artikulation 15

Bahn 12, 32, 39
Bahnproblem, einfaches 39
Baum 18

Bewertung auf Graphen 22
Bögen 7

—‚ inzidente 9

—, Kapazität von 57

—, Löschung von 15
—, parallele 9

Büschel 20

Cayley, Satz von 52

CPM, Methode 49

Dantzig, Algorithmus von 42
Dimension einer Basis l4, 20
Durchgangsknoten eines Flusses 23
Durchlaufsinn 13

einfache Kantenfolge 11

einfaches Bahnproblem 39
Eingangsbögen S7

eingeschränktes Transportproblem 63
Ein-Mann-Spiele 39
elementare Kantenfolge 11

Elementarzyklen 12, 20
Endpunkte 8

Entfernungsmatrix 3 5

Entfernung zweier Knotenpunkte 34
ereignisorientierter Netzplan 47
Ereignisse 47
Ergiebigkeit 23
Erreichbarkeitsmatrix 33
Eulersche Linie 12

Eulerscher Graph 12

Fluß auf einem Graphen 22
Flusses, Quelle eines 23

—‚ Senke eines 23
Ford und Fulkerson, Algorithmus von 59
Fundamentalmatrix 37

ganzzahliges Maximnlstromproblem 60
gerichteter Graph 7

Gerüst 19, 26, 29, 52

geschlossene Kantenfolge ll
Graph 7

—‚ antisymmetrischer l0
—‚ endlicher 8

—‚ Eulerscher 12

—, gemischter 8

—‚ gerichteter 7

—‚ planarer l1
—‚ schlichter 9

—‚ symmetrischer 10

—, ungerichteter 8

—‚ vollständiger 10, 52
~, zusammenhängender 15

hängende Knotenpunkte 18

Hamiltonsche Linie 12

Inzidenz 9

Inzidenzmatrix 35
—‚ verallgemeinerte 36

Kante 8

Kantenfolge 11

—, einfache 11

—‚ elementare 11

—‚ geschlossene 11

—, Länge einer l1
—‚ offene l1
Kantenzug 11

Kapazität eines Bogens 57
Kette 12

Kirchhoffsche Knotenregel 24
— Spannungsregel 28
Kirchhoff-Trent, Satz von 52
Knotenpunkte 7

—‚ adjazente 8

—, Entfernung zweier 34
—‚ hängende l8
Knotenpunktregel 24
Kodierung eines Graphen 41
Komplexität 66
Komponente eines Graphen 14

-, starke 16, 33

Konstruktion einer Zyklenbasis 20
Kozyklenbasis 29
Kozyklenvektoren 29
kozyklomatische Zahl Z9

Kozyklus 29, 35
Kreis 11, 12

kritische Aktivitäten 49



70 Namen- und Sachregister

kritischen Weges, Problem des 48

kritischer Weg 49
Kruskal, Algorithmus von 54, 67
kürzesten Bahn, Problem der 41

- -, verallgemeinertes Problem der 44

Länge einer Kantenfolge ll
längsten Bahn, Problem der 45
Löschung eines Bogens 15
— — Knotenpunktes 15

Manhattanproblem 56
Matrixdarstellungen fiir Graphen 31

Maximalstromproblem 57
—, ganzzahliges 60
—, verallgemeinertes 60
mehrfache Kanten l1
mehrstufiges Transportproblem 65
— Verteilungsproblem 59
Minimalgerüstproblem 53

Nachfolger 8

Netzplan 46
—, aktivitätsorientierter 47
—, ereignisorientierter 47
Netzplantechnik 46
NP-Vollständigkeit 67

offene Kantenfolge l1
Optimierung 41, 43, 48, 53, 57, 63

Parallelbögen 9

p-facher Zusammenhang 15

planarer Graph ll
polynomiale: Algorithmus 66
Potentialfunktion 28, 36
Problem der kürzesten Bahn 41
- — längsten Bahn 45
— des kritischen Weges 48
— — Maximalstroms 57
— — Minimalgerüstes 53
Pufferzeiten 51

quasistarker Zusammenhang 17, 21
Quelle eines Flusses 23

Rohrleitungssystem 27

Satz von Cayley 52
— - KirchhofT-Trent 52

schlichter Graph 9

Schlinge 8

Senke eines Flusses 23
Skalarprodukt 30
Spannung 28, 36, 38
—‚ verallgemeinerte 36

Spannungsregel 28
starke Komponente 16, 33
starker Zusammenhang 16

Steinerpunkt 56
Steiner-Weber-Problem 56
Strom 24, 29, 35, 38
—, verallgemeinerte: 36

Strukturanalyse 16
symmetrischer Graph 10

Terminplanung 48
Transformation, polynomiale 67
Transportnetz 23, 57
Transportproblem 63
-, eingeschränktes 63
—, mehrstufiges 65
Tremaux, Algorithmus von 40

Umladeproblem 63
ungerichteter Graph 8

Untergraph 10

Valenz 9, 35
Vektorraum 25, 28
verallgemeinertes Maximalstromprohlem 60
— Problem der kürzesten Bahn 44
Verteilungsproblem 57

—, mehrstufiges 59
Vierfarbenproblem ll
vollständiger Graph 10, 52
Vorgänger 8

Vorgangsknotennetz 47
Vorgangspfeilnetz 47

Wald 18

Weg 11

—‚ kritischer 49

Zentrum 18, 20 _

Zerfällungspunkt 15

Zusammenhang eines Graphen 15

—, quasistarker 17, 21
—, starker 16

Zyklenbasis 14, 20, 26, 37
—‚ Dimension einer 14
-‚ Konstruktion einer 20
Zyklenvektor 13

zyklomatische Zahl 14, 20, 26
Zyklus 12



I.N. BRONSTEIN T und K. A. SEMENDJAJEW, Moskau

Taschenbuch der Mathematik
23.Auflage‚ herausgegeben von G. GROSCHE, Leipzig, V. ZIEGLER T

und D. ZIEGLER, Leipzig

XI, 840 Seiten mit 390 Abbildungen. 14,5 cm X 20 cm. 1987
Plasteinband 29,50 M; Ausland 36,- M
Bestell-Nr. 665 911 8 - Bestellwort: Bronstein, Taschenbuch

Inhalt: Tabellen und graphische Darstellungen (Iabellen - Bilder elemen-
tarer Funktionen — Gleichungen und Parameterdarstellungen elementarer
Kurven) « Elementarmathematik (Elementare Näherungsrechnung - Kom-
binatorik ~ Endliche Folgen, Summen, Produkte, Mittelwerte - Algebra -

Elementare Funktionen - Geometrie) - Analysis (Differential- und Inte-
gralrechnung von Funktionen einer und mehrerer Variabler - Variations-
rechnung und optimale Prozesse - Differentialgleichungen - Komplexe
Zahlen, Funktionen einer komplexen Veränderlichen) - Spezielle Kapitel
(Mengen, Relationen, Funktionen - Vektorrechnung - Differentialgeome-
trie - Fourierreihen, Fourierintegrale und Laplacetransforrnation) - Wahr-
scheinlichkeitsrechnung und mathematische Statistik (Wahrscheinlich-
keitsrechnung - Mathematische Statistik) - Lineare Optimierung
(Aufgabenstellung der linearen Optimierung und Simplexalgorithmus -

Transportproblem und Transportalgorithmus - Typische Anwendungen
der linearen Optimierung - Parametrische lineare Optimierung) - Numerik
und Rechentechnik (Numerische Mathematik - Rechentechnik und Da-
tenverarbeitung)

Ergänzende Kapitel zu
BRONSTEIN / SEMENDJAJEW
Taschenbuch der Mathematik
5.Auflage‚ herausgegeben von G.GROSCHE, Leipzig, V. ZIEGLER T und
D.ZIEGLER, Leipzig

VI, 234 Seiten mit Abbildungen. 14,5 cm >< 20 cm. 1988
Plasteinband 13,- M; Ausland 19,80 M
Bestell-Nr. 666 4566 - Bestellwort: Bronstein, Ergänzungsbd.

Inhalt: Analysis (Funktionalanalysis ~ Maßtheorie und Lebesgue-Stie1tjes-
Integral - Tensorrechnung - Integralgleichungen) ~ Mathematische Metho-
den der Operationsforschung (Ganzzahlige lineare Optimierung - Nichtli-
neare Optimierung - Dynamische Optimierung - Graphentheorie «

Spieltheorie - Kombinatorische Optimierungsaufgaben) -'Mathematische
Informationsverarbeitung (Grundbegriffe - Automaten - Algorithmen -

Elementare Schaltalgebra A Simulation und statistische Versuchsplanung
und -optimierung) - Dynamische Systeme (Grundideen - Dynamische Sy-
steme in der Ebene - Stabilität - Bifurkation - Ljapunovfunktion)

BSB B.G.TEUBNER VERLAGSGESELLSCHAFT ~ LEIPZIG



MATHEMATIK FÜR INGENIEURE, NATURWISSENSCHAFTLER,
ÖKONOMEN UND LANDWIRTE

I_1.WENZEL - G. HEINRICH
Übungsaufgaben zur Analysis 1

2. Auflage. 76 Seiten mit 34 Abbildungen. 16,5 cm X 23,0 cm

(Bd.Ü1). 1988
Kartoniert 6,- M
Besten-Nr. 666 369 4 Bestellwort: Wenzel, Ueb. Analysis 1

l-lWENZEL - G. HEINRICH
Übungsaufgaben zur Analysis 2
2. Auflage. 84 Seiten mit 57 Abbildungen. 16,5 cm >< 23,0 cm.
(Bd.Ü 2). 1988
Kartoniert 6,50 M
Beste1l—Nr.666 370 7 Bestellwort: Wenzel, Ueb. Analysis 2

E.—A. PFORR - L. OEHLSCHLAEGEL - G. SELTMANN
Übungsaufgaben zur linearen Algebra und linearen Optimie-
rung
2. Auflage. 92 Seiten mit 16 Abbildungen. 16,5 cm >< 23,0 cm
(Bd.U 3). 1988
Kartoniert 7,50 M
Bestell—Nr.666 372 3 Bestellwort: Pforr, Ueb. Algebra

H.GILLERT ~ V. NOLLAU
Übungsaufgaben zur Wahrscheinlichkeitsrechnung
und mathematischen Statistik
2. Auflage. 56 Seiten. 16,5 cm X 23,0 cm

(Bd. U 4). 1988
Kartoniert 4,50 M
Beste11-Nr.666 371 5 Bestellwort: Gillert, Ueb. Wahrscheinl.

BSB B.G.TEUBNER VERLAGSGESELLSCHAFT - LEIPZIG


