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Vorwort

Die vorliegenden Übungsaufgaben sind fiir den Einsatz im Direkt— und Fernstudium
an Universitäten und Hochschulen gedacht. Da die Aufgaben inhaltlich an die Bände 4, 5

und 7/1 der Reihe „Mathematik für Ingenieure, Naturwissenschaftler, Ökonomen und
Landwirte“ angeschlossen sind, können sie vom Leser auch zum Selbststudium herange-
zogen werden. Zum Zwecke der Motivation wird neben innermathematischen Problem-
stellungen auch mit einfachen naturwissenschaftlichen, technischen und ökonomischen
Sachverhalten gearbeitet.

Bei der Erarbeitung dieses Übungsheftes Wurden die Erfahrungen aus den Mathematik-
lehrveranstaltungen ab der Technischen Universität Dresden und an anderen Hochschu-
len der DDR genutzt. Wir danken für die eingegangenen Hinweise, die alle sorgfältig ge-
prüft und in der Regel berücksichtigt wurden,

Unser besonderer Dank gilt den Herren Oberlehrer Dipl.-Math. Helmut Ebmeyer
(Technische Universität Dresden, Mitarbeit bei den Abschnitten 17.—21.) und Dr.-Ing.
Ralf Kuhrt (Humboldt-Universität Berlin, Mitarbeit bei den Abschnitten 22.-26.). Sie ha-
ben wertvolle Hinweise aus der Sicht des Fernstudiums gegeben.

Aufgaben mit höherem Schwierigkeitsgrad oder umfangreicherem Rechenaufwaud sind
mit einem Stern gekennzeichnet. '

Für Hinweise und Vorschläge, die der Verbesserung der Aufgabensammlung dienen,
sind wir stets dankbar.

Dresden, April 1986 H. Wenzel
— G. Heinrich
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17. Funktionen mehrerer unabhängiger Variabler,
partielle Ableitungen und totales Differential

(Bd. 4, 1., 2.1.—2.5., 3.1.—3.6.)

17.1. Gesucht sind alle Punkte P(x;y;z) des R’, für welche gilt:

a)y=14, b)x1+y1+(z—4)1=O,
C) zx=l, d)z+y=0,
e) (x+5)2+zZ‘—‘8, I) ]x|+[y{+|z|§1,
g) 19+4(x—6)1+y7—81 20, h) max{x2,yz,z’}§4.
(Geometrische Interpretation!)

17.2. Skizzieren Sie die folgenden Flächen! Überlegen Sie vorher, welche Kurven sich er-

geben, wenn die Flächen mit Ebenen x = const, y = const, z = const geschnitten werden.

a) x7+z’=9, b) z2+9x7+4y’=1,
c) y’=x2+z2, d) z’—4x’+y7=1,
e) z’=x’+y1+1, . i) z=x1+1—y1.

17.3. Von der Funktion z = f(x, y) sind die Niveaulinien zu bestimmen. Von der in der
x,y-Ebene skizzierten zugehörigen „Karte der Fläche“ schließe man auf die Gestalt der
durch f bestimmten Fläche F im R3.

a) z=x—6‚ b) z=J1—y2‚ Lvlgl, c) z=x1—y’+4‚
d)z=l0- x’+y’‚ e)z=x’+(y+2)1-4,
0 z=(x+1)(y-3)‚ g)z=3-4x’-9y’-
17.4. Für die durch z = f(x, y) gegebene Funktion zeichne man die Projektionen einiger
Höhenlinien in die x,y-Ebene.

xy _ 1 _x2+y2
a)z"x1+1, b)z—e’ ,y#=0, c) z— 2y ,y=¥=0,

1 1 1 .

d) z=xTy;, e)‘ z=exp(-xyl), D’ z=—;+7;(xy*0md),0).

17.5. Für die Funktion z = f(x‚ y) ist der größtmögliche Definitionsbereich D, c R’ zu er-

mitteln. Man skizziere D, und gebe jeweils den Wertevorrat W} an. Welche der Mengen
D,, W, sind beschränkt?

a) z=x+y+sin(xy)‚ b) z=y/1—y+e"‘2,

c) z=1r, d) z=3+vx7-y’,
_i

e) z=(4‚-x1-y’) z, 0 z=Vy-x’ ‘MM-y.
17.6. Skizzieren Sie den größtmöglichen Definitionsbereich von z = f(x,y)‘!

1
a) z=1n(x2~y2), b) z=\/x’+3y’-9+3,
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c)z=l‘—°’_—")‚ u)z=(2—eX)"%Jx+3»Ly1‚

__ . _ = x)’
e) z — arcsin (5 2y + 2x), i) z e- .
l7.7. Man bestimme lim f(x‚y), wenn sich P längs

P->(0,0)

a) der x-Achse; ß) der y-Achse; y) der Geraden y = Ix, t = const,

bewegt. Läßt sich aus den erhaltenen Ergebnissen etwas über die Existenz von

lirn f(x,y)fo1gern?
(x,y)~><o,o>

_ sin(xy) _ y’sin2x
a) f(x‚y) - xbry; ‚ b) f(X‚y)-7:f‚

_ y’ - x _ 2x +y2
C) f(X,y)—Tx2+y2 ‚ l‘1)f(X,y) 4x_y t

17.8. Die folgenden Grenzwerte sind — falls sie existieren — zu berechnen.

. . sin 8
a) 11m e”"cos x, b) 11m -~—x—y-,

(x.y)-(n.0) (M)-*(0.0) 2x3’

. xi . x - 3
c) hm e!y z ‚ d) 11m ,

<>m—><n.o> X + J’ (x‚y)-><3‚3) X ‘Y

1- cos (x’ + y’) ‚ 4(x + y)ln (yzx)
e I'm e, f)‘ 11m exe

) <x.y)l—»<o.o> (X1 + W)’ (Jay)->(2,-2) p X2 — Y1

17.9. Welche der Funktionen z = f(x, y) sind im Ursprung stetig?

für (x,y) * (0,0),

für (XJ) = (0,0).

2xy(y’-x’) -

r» r<x,y>={“W fl“ ""”"‘°‘°”
0

_.’l’_
8) f(X..V) =[ x2 +y’

0

für (X‚y)=(0‚0)‚

3211951 rm |x]+[y|>0,
c)*f(x,y)= |x|+[y|

0 für |x]+[y|=0‚

expx%F für xZ+y1>Ü,

e für x2+y2=0.
d) f(x‚y) =

17.10.’ Zeigen Sie, daß von der Funktion

L fiir x2+y’>0,
f(x,y) = x2 + y‘

0 für x’ +y’ = 0

die partiellen Ableitungen j}, f; im Nullpunkt existieren - aber f(x, y) dort nicht stetig
ist.
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17.11. Alle partiellen Ableitungen erster Ordnung sind zu bestimmen.
1 .

a) z(x,y)=xtany+;xy’-6, b) h(x1,x2)=ln%‚
1

c)g<x,y,z)=1nx,v+21n%—1nzx.
z)’

+t
d) w(x‚z) = z3cosh-:7, e) u(s‚t) =%e2‘+ arcta.n1s_ st,

0 e(¢.w) =%cos(¢2’ - w’).

17.12. Für die folgenden Funktionen sind die partiellen Ableitungen erster Ordnung all-
gemein und an der Stelle (xo;y„) zu ermitteln:

a) z =1/2x+3x.v + 4 ‚ (Xoäyo) = (1;1)‚
b) z=cos<ev+xy>‚ (x„;y.‚>=<o;1>‚ ’

c) z= x”. (xo;‚vo) = (2;1)‚
d) z = ln(2 - e”), (xmyo) = (0;0)‚

2.. 2

e) nm-‘jfifiä, <x.‚;y.‚>=(4;3).

‚L
17.13. Die Funktion g(t‚ x) = (1 - 2tx + t2) Z genügt der Beziehung % = h(t, x) g(t, x). ‘

Geben Sie h(t, x) an!

y + 3

x - 1
17.14. a) Von der Funktion z = f(x, y) = arctan ist der größtmögliche Definitions-

bereich im R’ anzugeben.

b) Welche Werte ergeben sich für lim f(x,y), wenn yo E R‘ ist’?
. (x..v)*(1,,vn)

c) Man gebe einige Höhenlinien an.
d) Nach der Berechnung aller partieller Ableitungen bis zur 2. Ordnung ist der Ausdruck

Az = z,“ + 2,, zu bilden.

17.15. Von der Funktion z = f(x, y) sind alle partiellen Ableitungen erster und zweiter
Ordnung zu bilden.

J’

a) z=sin(ax+by)‚ b) z=x+yz‚ c) z=xe7,

d) z=ln(x’+y), e) z=xyarcsinx, i) z=x+y~[x~y|,

g) z=y].n%—tany+ :—_31y, h) z=y"+xV.

17.16. Ist die Funktion z = x- exp Lösung der Differentialgleichung

xz_1 + 2(z, + 2,) =yz„?

17.17. Man bestimme aeR‘ in w= (x7+y2+ 27)“, (x;y;z)*(0;0;0), so, daß w der
Gleichung wx, + w” + w„ = 0 genügt.
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17.18. Berechnen Sie das vollständige Differential von

a)z=x:y, b)z=1/x1+y1+5,

c) z=ln(y+1/x2+y2), d)z=w/x-y+1nw/3,

e) z=ysin(x+y)- , f) z=lntan%.

17.19. Für die Funktion z = 4 lnä vergleiche man im Punkt P(%;2) die Differenz der

Funktionswerte Az mit dem Wert des vollständigen Differentials dz und berechne
|Az - dz|, falls

a) dx=dy=0,5; ß) dx= -0,1, dy=0,3; y) dx=0,02, dy=0‚16
gilt. Die Ergebnisse sind zu interpretieren.

17.20. Man untersuche, ob die folgenden Ausdrücke vollständige Differentiale sind und
bestimme gegebenenfalls eine zugehörige Funktion z = d5(x,y).

a) (2x + Zxy‘) dx + (4y3x2 + 3y’) dy,

b) xsinydx + xzcosydy, . —

c) (2e3’ - 4cos3 xsin x) dx + (6x + y) e3”dy,

2y 2x

d) (x+y)1 dx- (x+y)’ dy,

e) v/;e"“7(% +ycosxy>dx + xy/;[cos xy]e“""dy.

17.21. Für Welche reellen Werte von o: ist der Ausdruck

1
1 __ x4 - ye”) dx

vollständiges Differential einer Funktion z = f(x, y)?
Geben Sie in diesem Fall z =f(x,y) an.

acxe""’dy +(

17.22. Berechnen Sie das Differential dlz für

a) z(x,y)=xy‚ b) z(s,t)=sin(s+ t),
c) w(u,v)=e'"’, d) z(x,y)=x2]n\/;+xsin‘y.

17.23. Bestimmen Sie die Gleichung der Tangentialebene an die durch z = f(x, y) gege—

bene Fläche im Punkt Po (xu; yo; zu).

a) z = xi + y’ ‚

b) z = x’ + 4xy — 2y’ mit Po(2;1;zo),

1 .

c) z=7V4-(x1+y’) mit Po(1§1/2—§Zo)-

17.24. Wie lautet die Gleichung der Tangentialebene in einem beliebigen Punkt der
durch z = /‘(x, y) = xi + y gegebenen Fläche F? Man bestimme alle Punkte von F, für die
die zugehörige Tangentialebene parallel zur x-Achse liegt, und skizziere F.
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17.25. Für 0 < a = const ist durch z =f(x‚y) = (a - y/—- 1/)7); mit D,= {(x;y)|x g 0 /\ y
g 0} eine Fläche F gegeben. Man bestimme alle Punkte von F, für welche die Tangential-
ebene r existiert, gebe deren Gleichung an und zeige, daß die Summe der Achsenab<
schnitte von r mit den Koordinatenachsen gleich a’ ist.

17.26. An einem geraden Kreiskegel ergaben sich aus einer Messung die Werte r = 30 cm

für den Grundkreisradius und h = 40 cm für die Höhe. Wie groß sind absoluter und relati-
ver Fehler der Mantelfiäche höchstens, wenn [Ar] = {Ah} g 0,1 cm angenommen werden
kann?

17.27. Man bestimme den relativen Fehler des Volumens eines geraden Kreiskegels, falls
dessen Radius einen relativen Fehler von 2 % und die Höhe einen relativen Fehler von 3 %

aufweisen.

. l
17.28. Welcher relative Fehler ist bei der Berechnung von R gemäß R = c - 77, c = const,

zu erwarten, wenn l=100m, r=10"m gemessen wurden und 1Al|§5cm, |Ar|
g 10“ mm gilt?

17.29. Zwei Widerstände sind parallelgeschaltet. Für den Ersatzwiderstand gilt
R _ R1~R;
' R, + R2 '

satzwiderstandes, wenn R1 = (450 i 2)!) und R2 = (150 i 1)!) gemessen wurde!

Man berechne den größtmöglichen absoluten und relativen Fehler des Er-

17.30.. Zur Bestimmung der Brennweite f eines Kugelspiegels wurden Gegenstandsweite
a = (12 i 0,1) cm und Bildweite b = (5 i 0,05) cm gemessen. Welcher absolute und wel-

r . 1 1
cher relative Fehler ergibt sich für die gemäß i = 7 + I berechnete Brennweite?

f

17.31. Das Volumen einer Kugel soll mit einer Genauigkeit von 0,1 % bestimmt werden.
Wie groß darf dabei der relative Fehler des Radius r höchstens sein, wenn für n = 3,141 59
einmal der Näberungswert 3,14 und zum anderen 3,142 verwendet wird?

17.32. Mit welchem absoluten und relativen Fehler muß man bei der Ermittlung des Vo-
lumens eines geraden Kegelstumpfes rechnen, wenn der Grundkreisradius r, = 5 cm, der
Deckkreisradius rz = 4 cm und die Höhe h = 6 cm gemessen und alle Größen mit einem
absoluten Fehler von höchstens 0,1 cm abgelesen wurden?

17.33. Von einem Dreieck ist die Basis c = 1400 m genau bestimmt worden. Die beiden
anliegenden Winkel a und ß betragen etwa 51° und 48°. Mit welcher Genauigkeit kann
man die Länge der Seite a angeben, wenn at und ß einen absoluten Fehler von 0,5” auf-
weisen?

17.34. Bei der Vermessung eines ebenen dreieckigen Geländes erhielt man a = (84,3
i 0,1) m und b = (73,2 t 0,2) m fiir zwei Seiten und 48,6° i 0,2° fir den Winkel zwischen
a und b. Gesucht ist die Länge der dritten Seite c. Welcher prozentuale Fehler tritt auf?

17.35.‘ Von einem gleichschenkligen Dreieck wurden die Basis und der gegenüberlie-
gende Winkel or mit einem Fehler von 1 % bzw. 0,5“ gemessen. Welcher relative Fehler er-

' gibt sich für den Flächeninhalt des Umkreises des Dreiecks’! Wann ist dieser Fehler rnini—

mal?
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17.36. Für die mittelbare Funktion z =f(x‚y) mit x = x(t), y =y(t) ist z’ = g zu be-

rechnen.

a) z=3x2+2xy+y1 mit x=sint‚y=cost‚
b) z=1n[(x+y)xy],x=t1— 1‚y= t1+1 (|z|>1),

L
c)z=xe",x=-1t—,y(t)=1nt (t>l).

17.37. Von der mittelbaren Funktion z = f(x, y) mit x = x(t) , y = y(t) ist z‘(t) zu ermit-
teln (z‚„ 2„ m), y(t) sollen existieren und stetig sein).

a) z=1’:::, b) z=tan(xy)‚ c) z=x’.

17.38. Von z = f(x, y) sollen alle partiellen Ableitungen bis zur zweiten Ordnung stetig
existieren, y = g(x) sei zweimal differenzierbar.

a) Man bilde F’(x) und F”(x) von F(x) =f[x,g(x)].

b) Was ergibt sich speziell fiir z = ln (x + y) und g(x) = sin x im Punkt P(%; >?

17.39. Von F(x‚y) =f[x(u, v),y(u‚ 11)] mit x = %,y = uv bilde man den Ausdruck

TI= u’F„„ - v2F,,,, + uF,, — vF.,, u =t= O.

(Die benötigten partiellen Ableitungen sollen stetig existieren.)

17.40. Von z = f(x, y) ist die Ableitung im Punkt P(xg,;yo) in der vorgegebenen Richtung
zu bestimmen. (Der orientierte Winkel zwischen der Richtung und der positiven x-Achse
sei a: mit —rr< a: g n.)

a) z= x’y’.P(1;-2)‚ar= ä, u‚=—’6‘-‚ b>z=1/x1+y2,P<3;4),u=%,

__3.___
x1+y2’

TI5
9) z: P(‘/311), 0‘1='g7l'» 0‘2="T«

17.41. Ma.n bestimme die Richtung u (siehe auch Aufgabe 17.40.), in welcher die durch
z = f(x, y) gegebene Fläche im Punkt P(x„; yo) am stärksten ansteigt. Wie groß ist der An-
stieg tan a: der Fläche in dieser Richtung?

a) z=x‘-xZy+2(x*y),P(0;0),

b)z=2x’-3xy+y1+(1+»/3_)y—«/T Pan),
c) z=(fi—i)x1+y1—2x+2y+3fi‚" P(—l;0),

d) z=2x1—xy2+151n(y2+i)—5‚/37cos(2x—3), P(%;

17.42. Für die durch z = c(x’ + y’), c >O‚ bestimmte Fläche ist die Konstante c so zu

bestimmen, daß der steilste Anstieg der Fläche im Punkt P(1; 2) unter dem Anstiegswin-
n

kel a: = -4- erfolgt.
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17.43. Berechnen Sie Az = 2„ + 2„ fiir

a) z=g<x+y)‚ b) z=g(xy), c) z=g(—;—>‚

d) z = g(1/x’ + y’ ) , dabei sei g zweimal differenzierbar.

17.44. Man weise nach, daß fiir eine differenzierbare Funktion g gilt:

a) z = yg(x2 - y’) erfüllt die Gleichung yz, + xz, = zxy‘1,

b) z = xy + xg(%) ist eine Lösung von x2, + yz, = z + xy,

z(x,y)
y

c)" z = xg( ) genügt der Beziehung xz, + yz, = z.

17.45. Durch die Substitution x = uv, y =-ä—(u’ - v’) geht z = f(x, y) in eine Funktion

z = np(u, v) über. Man berechne zi + z; in Abhängigkeit von u und u.

17.46.‘ Der Laplacesche Differentialoperator AU = U,“ + U” ist in Polarkoordinaten r, q:

darzustellen (U = U(x‚y)‚ x = rcos c2, y = rsin m).

17.47.‘ Man zeige, daß die Funktion

um) =i,[g<r+ r) + h(r— n]

der Gleichung u,“ + u” + u„ = u,, genügt, wenn die benötigten Ableitungen von g und h

existieren (r =1/xz + y? + z’

17.48.‘ Es seien x = x(t) , y = y(t), z = z(t) die kartesischen Koordinaten eines Moleküls

zur Zeit t mit der kinetischen Energie T= g (xi + yl + z"). Geben Sie T in Kugelkoordi-

naten x= rsin19cos<p, y= rsinösinrp, z= rcosu? an (r= 7(1), 19= «9(t), (p = 9(1)‘).



18. Implizite Funktionen, der Satz von Taylor
und Extremwertaufgaben

(ad. 4, 2.5., 3.1-3.3‘, 4.)

18.1. Gegeben ist die Gleichung _

F(x,y)Ex3+y’+xy=0~ (*)

a) Welche der Punkte P‚(0;0)‚ P2(—% 3/2—; —% 3/I), P3(—%;

1 1 „ .P4(-71?; -172:) genugen der Gleichung (*)?

b) Für die in a) ermittelten Punkte untersuche man, ob in einer gewissen Umgebung
solch eines Punktes (*) eindeutig nach x bzw. nach y auflösbar ist und gebe in diesem
Fall die 1. Ableitung der so entstehenden Funktionen in diesen Punkten an.

18.2. Für die Funktion y = f(x), die durch F(x, y) = 0 in impliziter Form gegeben ist, be-
rechne man y’(x). Welchen Wert hat y’(x) speziell in P„(x„;y0)?

n’ ‘rrT, Po(0, f),
b) F(x‚y) = e5tany+%- 3(x1 -1)-Tr, Po(1;7'r)‚

a) F(x,y) = xcoty+yarccotx—

c) F(x,y)=sin(xy)—e"’-x2y—1+%+e7=0, Po<1;-72:),

x 4
d) F(x,y) —2mfi+ytm(2y- x)-111-3-, P„(2,1)‚

x-y _rr_
e) F(x,y)=arcta.n1+xy— 4 + um, 1>„(1;o).

18.3. Durch die Gleichung y e’ ”‘ - 1 = 0 ist in einer Umgebung von x = 1 eine Funktion
y = f(x) mit f(1) = 1 bestimmt. Berechnen Sie die l. und 2.Ab1eitung von f und bestim-
men Sie die Konstante c so, daß y’(l) = cy”(1) erfüllt ist,

18.4. Man ermittle die Gleichung der Tangente an die Kurve

a) 2x3 — xzy’ — 3x +y + 7 = 0 im Punkt P1(1; -2),

b) 1+y+ xy- e7~cos2y= 0 imPunktPl(x,;0)!
Wie lautet die Tangente, wenn x1 = 0 ist?

18.5.‘ Für die durch ye’: + x’ ~ 3x + 2 = 0 implizit gegebene Funktion y =f(x) be-
rechne man die ersten beiden Ableitungen. An Welchen Stellen x > 0 hat f relative Ex-
tremwerte? Welcher Art sind diese Extremwerte? *

18.6. a) Es ist nachzuweisen, daß für eine durch F(x, y) = 0 implizit gegebene Funktion
y = y(x) gilt:
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1 0 F, F,

y"(x) = F F, F,“ F„ ‚ (Fy ä: 0).

’ F‚ F. n.

b) Im Punkt P(xo;%) ist die zweite Ableitung der durch x — y + 2 sin y = 0 implizit ge-

gebenen Funktion y = y(x) zu bestimmen.

18.7. Durch F(x, y, z) = 0 ist eine Funktion z = f(x‚ y) in impliziter Form gegeben, Wel-
chen Wert haben die partiellen Ableitungen 1, Ordnung von z = f(x, y) im Punkt
Po(xo;yo; 2o) ?

a) F(x,y,z) = x’ +y1+ z’ - 2xz-25 =0, Po(4;3;0),

b) F(x,y,z) = 2+ xlnz+y=0‚ P0(5; —1;1),

c) F(x.y.z) =y’ - 2"(x - z) = 0, Po(7;4; -1)-

18.8. Mit Hilfe der Taylorentwicklung ordne man das Polynom P(x, y) = 3x‘y — 4y2 + 2x
nach Potenzen von (x + 1) und (y - 3). Welche Gleichung ergibt sich für die Tangential-
ebene an die durch P gegebene Fläche in A (—1;3; -29)?

18.9. Mit Hilfe der Taylorschen Formel approximiere man die durch z = f(x, y) gegebene
Fläche an der Stelle P(x„‚y„) durch eine Fläche 2. Ordnung

a) z=yln(y-3x), P(0;1), b) z=xl11(2x-y), P(1;1),

c) z=1n(x1+y), P(0;1), d) z=arctan%, P(1',1),

x-3y’
e) z= x_ +xtany, P(2;0), f) z=cosxcosy, P(0;0).

18.10.‘ Man entwickle z = (x- y)e"*’ in einer Umgebung des Nullpunktes nach der
Taylorformel; dabei soll das Restglied die partiellen Ableitungen 3. Ordnung enthalten.
1m Punkt P(0‚1;0‚2) bestimme man die quadratische Näherung für z(P) und deren Ge-
nauigkeit.

18.11. a) Man bestimme Lage und Art der relativen Extremwerte für die Funktion
z = (x3 + 3x2 +1)coshy.

b) Für die Extremwertstellen gebe man die Taylorentwicklung von z(x‚ y) bis zu den qua-
dratischen Gliedern an.

18.12. Gegeben ist die Fläche mit der Gleichung

z = 89x2 - 96xy + 61y2 — 260x + 70y + C.

Wie muß die Konstante C gewählt werden, damit diese Fläche die x, y-Ebene berührt?

18.13. Man bestimme Lage und Art der relativen Extremwerte der Funktion z = f(x, y)
und gebe die zugehörigen Funktionswerte an.

a) z=%(x’+l)-2y(2x+7)+3x+9y’‚ b) z=x’+y1+xy+x+5y‚

c) z=2xy(x+y—6)‚ d) z=x2(2—y)—y3+3y1+9y‚

e) z=e-x’(4y+x2—y1), f) z=(x’-3x)(y+3)+y(v+6).
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18.14. Untersuchen Sie die Funktion z = f(x‚ y) auf relative Extrema!

a) z=(x’-4)7+1001+(4+x’)y2, b) z=3axy-x3-y’, a>0,

c) z=x’y-2xy+%e’, d) z=x‘+y“—4a’x_y+8a‘, a¢0,

e) z=x’y—3xy+y’+1, i) z=2(y-3)z-5(x+2)3,

g) z = e“"“"’(x’ + 2y7).

18.15.‘ Für die Funktion z = (x3 — 3x)cos y bestimme man Lage und Art der Extrem-
werte.

l 1
18.16.’ Die Funktion z=f(x‚y) =x’+7y1+7(y—x)—%sei aufB= {(x,y)||x| gl
/\ Ly| g 1} erklärt. Man bestimme Lage und Größe der absoluten Extrema von f und m.

18.17. Für welchen Punkt P(x‚ y) ist die Surnme der Quadrate der Entfernungen von den
Punkten P,«(x,;y,-), i= 1, ...‚ n, möglichst klein?

18.18.‘ Durch z =f(x,y; c) =

ter c, [cl < 1, gegeben.

a) Art und Lage der Extremwerte von f(x, y; c) sind bei festem Wert von c zu bestimmen.
b) Welche Kurve der Gestalt g(x‚ y) = 0 ergibt sich fiir die Extremstellen der ganzen

Schar?

x 1 . . .. .

e”‘«V"°” ist eine Flachenschar mit dem Parame-
xz + 1 - c’

18.19. Nach der Multiplikatorenregel von Lagrange bestimme man alle Punkte, die als
Extremstellen für die gegebene Funktion unter den jeweiligen Nebenbedingungen in
Frage kommen.

a)z=x7+y2 mit 5x2+5y’—8xy—18=0‚
b) z=x1+y1 mit x3+y3+1=0,
c) u=x+y+z mit x+z=1 und x’+y2=4,
d)u=xyz mit x1+y2+z2=3,
e) z = 3x’y mit 4x’ + 9y7 = 36.

18.20. Bestimmen Sie die relativen Extremwerte von

a) z = x’ - 2x +y2 — 3 unter der Bedingung 3y + 2x =15 ‚

b) z = x’ + y’, falls (x ——2)1 +y7 — 9 = O gelten soll,

c) z = 2x’ + y’ unter der Nebenbedingung x -y‘ + 1 = 0.
Die Art der Extreme ist mit Hilfe der Karte der Fläche zu bestimmen.

18.21. Warum ist P(1;2) von der Fläche z = x’ +y’ — 10x - 8y + 4xy + 10 ein Sattel-
punkt? Man bestimme m so, daß die Schnittkurve dieser Fläche mit der Ebene y = 2

+ m(x - 1) in P ein Maximum bzw. ein Minimum hat.

18.22. xi + 21/; xy — y’ — 8 = 0 ist die Gleichung einer Hyperbel, deren Mittelpunkt im
Nullpunkt liegt. Gesucht sind diejenigen Hyperbelpunkte, die vom Mittelpunkt die klein-
ste Entfernung haben.
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18.23. Welche Punkte der durch die Gleichung x’ + y? + xy = 1 gegebenen Ellipse haben
vom Koordinatenursprung extremalen Abstand? Mit Hilfe des Ergebnisses skizziere man

die Ellipse.

2 2

13.24. Welche von den Ellipsen %+%= 1,(a,b >0), die durch den festen Punkt

P(u, v), (u, v > 0) gehen, hat den kleinsten Inhalt, und wie groß ist dieser?

18.25. Gesucht sind der höchste und der tiefste Punkt der Schnittkurve, die entsteht,
wenn das elliptische Paraboloid z = x’ + 4y2 von der Ebene 4x — Sy — z + 24 = O geschnit-
ten wird.

18.26. Man bestimme die Extremwerte der Funktion f(x‚y‚ z) = 31c- + g + ä, (x, y, z > 0)

für alle Punkte, die auf der Ebene x + y + z = l2 liegen.

18.27. Man bestimme den kürzesten Abstand des Punktes P„(2;2t/7— vom Rota-

tionsparaboloid z = xi + yz.

18.28. Wie groß ist der kürzeste Abstand der Fläche 4x1 + y‘ + 162 = 0 von der Ebene
2x + 42 + y = 12?

18.29. Ein quaderförmiger, geschlossener Behälter soll bei gegebenem Volumen V mit
möglichst geringem Materialaufwand hergestellt werden. Wie sind seine Kantenlängen zu
wählen?

18.30. Welche Kantenlängen hat der Quader mit größtem Volumen, der dem Ellipsoid

x’ y’ z’ . .

—a—2 + —b—2— + —c—2— = 1 einbeschrieben werden kann?

18.31. Eine Strecke der Länge a soll mit ihren Endpunkten C und D so auf die Schenkel
eines Winkels a: mitdem Scheitel B gelegt werden, daß der Inhalt A des Dreiecks BCD
maximal wird. Wie groß ist Am“?

18.32. Auf einem Kreiszylinder (Radius r, Höhe h) werde eine Halbkugel (Radius r, Mit-
telpunkt auf der Zylinderachse) aufgesetzt. Für welche Werte von r und h wird die Ober-
fläche 0 des Gesamtkörpers bei gegebenem Volumen V minimal?

18.33. Von allen gleichschenkligen Dreiecken, deren Spitzen im Punkt P,(1;O) liegen
und deren Basisecken auf dem Kreis x’ + y’ = 1 liegen, ist dasjenige mit größtem Inhalt
gesucht. Welche Koordinaten haben die Basisecken? Man benutze die Lagrangesche Mul-
tiplikatorenregel!

18.34. Für eine feste natürliche Zahl n g 3 soll M„ die Menge aller n—Ecke sein, die
einem gegebenen Kreis mit Mittelpunkt (0;0) und Radius r einbeschrieben werden kön-
nen und die den Punkt (r; 0) stets als Eckpunkt haben. Gibt es in Mn Elemente mit größ—

tem Flächeninhalt?
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ll

18.353’ Von‘der Funktion z= Xx}, ist das Minimum unter der Nebenbedingung
k=1

n

Za,,xk=1, (ak Konstanten) zu berechnen. Man weise nach, daß an der ermittelten
k=1

Stelle (i1, i2, ..., in) tatsächlich ein Minimum vorliegt.

18.36. Mit Hilfe der Methode der kleinsten Quadrate bestimme man für die folgenden
Wertepaare P(x‚-;y‚-) eines Meßvorganges die Ausgleichskurve y =f(x) der angegebenen
Art.

a) Pi(0; 1), Pz(1;4). Pa(2;7). P4(3; 8), _Ps(4; 10); y = ax +„b,

b) P1(0;15). P2(1;5). P3(2;1), P4(3;1), Ps(4;3); y = do + aix + 42x1.

c) Pi(1; 12), P2(2; 14), Pz(3; 18). P.(4; 16); y = a + g,
3

d) Px(—1;—5). P2(0;0), Ps(1;0.7).P4(2;2). Ps(3;10); y1= ax + b, ‚v2 = 289C‘-
i=0

18.37. Ein zeitabhängiger Vorgang werde durch g(t) = Ar“ beschrieben (A > 0). Zur
Bestimmung von A und B stehen die Daten

i.- 20 40 60 80

g,~ 2,70 1,50 0,80 0,43

zur Verfügung. Durch welche Transformation y = y(g), x = x(t) wird die Gleichung fiir
g(t) in eine Geradengleichung y = ax + b überführt? Man ermittle nach der Fehlerqua-
dratmethode a und b und gebe g(t) an.

18.38. Nähern Sie die Kurve y = lnx, x > 0, durch eine Hyperbel y = %+ b so an, daß

x, = jfi-, x3 = i minimal wird.die Summe der Fehlerquadrate für die Stellen x1 = 8i
2 ‚

Wie groß ist die Fehlerquadratsumme fiir die Lösung?

18.39. Von einem Gas wurden der Druck p und das Volumen V gemessen; man erhielt
als Maßzahlen:

V| 54,3 61,8 72,4 88,7 118,6 194,0

p I 61,2 49,5 37,6 28,4 19,2 10,1

Bestimmen Sie die Konstanten x und C für die adiabatische Zustandsänderung pV" = C
mit Hilfe der Methode der kleinsten Quadrate (Aufg. 18.37. beachten).

18.40. Für die Funktion y = ax + b ermittle man diejenigen Werte von a und b, für wel-
l

che J(a, b) = j [g(x) — y]? dx minimal wird.
x=0

a) g(x)=e*‚ b) g<x>=fi<7.
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18.41. Für welche Gerade mit der Gleichung y = txx + fl wird
I00

F(vafi)== I (»/§—.v)’dx
x=0

minimal?

1!/2

18.42.‘ Wie sind a und b zu wählen, damit f {sin x - ax - bx’]2dx minimal wird?
—1I/1

2 2

18.43.‘ Die Ellipse —:7+-:—,=1 mit 0 < b < a soll in den durch x = as + rcos a1,

y = rsinqz (r 2 0, 0 g oz < 211; ea = da’ — b’) gegebenen krumrnlinigen Koordinaten
(r, (u) dargestellt werden. (Welcher bekannte Sachverhalt ergibt sich für a—> b + 0?)

18.44. Für die durch die angegebenen Abbildungen eingeführten krummlinigen Koordi-
naten bestimme man die Koordinatenflächen und die Koordinatenlinien und gebe eine
geometrische Interpretation.

a) x=urcosqJ, y=brsinqz, z=z(a,b>0konstant) für r;0,(pe[0,2rr), zeR‘,
b)x=rcosqzsin«9, y=rsinqzsin0, z=rcos19 fir r;0, u9e[0,1r], (p€[0,21t).

18.45. Für die angegebenen Abbildungen berechne man die Jacobische Determinante D.

a) x= aucosv, y= businv(u :0, 0§v <21r; a,b =const)‚

1
b) x=uv,y=—2-(u1—v’),z=z (u,v,zeR‘),

c) x=ucoshv,y=2+sinhu,z=1—v+e"tanw,

(ueR1,ueR1,|w|<%),

d) x=u‘sinu,y=5—2ucosv, z=e""1+tanw1,

<u,v€R‘,|w|<



l9. Skalare Felder und Vektorfelder
(134.4, 3.9.)

19.1. Das Skalarfeld U = xyz(x’ + y’ - z’) ist im R’ erklärt.

a) Für welche Punkte gilt grad U = o?
b) Wo ist grad U parallel zur x,y—Ebene?

19.2. Für das Vektorfeld v = “V7521 + äe; + ge}, (x, y, z > 0) berechne man

a) div v, b) rotv, c) grad div v,

d) div rot v, e) rot rot v, i) div grad div v.

19.3. Man berechne folgende Feldfunktionen:

a) grad U für U= (x2 —y’)z + em, b) div v fir v = x’y‘z1(e1 + e; + c3),

c) irotv fiir v = arcran(xy) (e, + xez] — 23 , d) rot rot v’ fiir v = (xz;yz; xyez)’,
T

e) divv für v=(1n’[yz2];e°°“;%yz’) .

19.4. Für das Skalarfeld U = U(x,y,z) berechne man grad U (es sei r= xe, + ye, + Z93,

|r] = r, a ein konstanter Vektor) und bestimme in a) bis l) die Gestalt der Niveauflächen,
(r$o und r#=a).

a) U=2x+5y—6z, b) U=ar, c) U=r‚
1d)U=xyz, e) U=-7, i) U=z-x’—y’,

g) U=r2, h) U=r", i)U=lJ1r,
i) U=|r‘a|‚ k) U=(z'ea-r)r‚

1) U=f mit f=%e1+%e‚+%e3,

m)U=a(r><fl)‚ l1) U=(fl><f)’‚ 0) U=(w‘)r"~

19.5. Von dem Skalarfeld U(x, y, z) = 2x — y + (z - 5) bestimme man die Niveauflächen
und gebe das zugehörige Gradientenfeld an. Welchen Anstieg hat das Skalarfeld im
Punkt P(1;2;5) in Richtung

rx) Ö7’; ß) grad U; Y) s=(-1;3;5)‘?

19.6. Von dem skalaren Feld U= U(x,y,z) = x’y +y’z + 22x bestimme man im Punkt
P(1;2;l)

a) grad U, b) ä]- fiir a = (1;2;3)‘,

c) % in Richtung grad U.

Z Wenzcl. Ueb. Analysis Z
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19.7. Für das Skalarfeld U = U(x,y,z) bestimme man im Punkt P(x0;y„;z„) die Rich-
a

tungsableitung T? in Richtung des Vektors a.

a) U=sinxsiny+ 2’,P(—5;10;—1),a=(2;2;1)‘,
2+ 1+ 2

b) U="2i,P<2;3;1),a=<1;2;1)*,
X

c) U=e‘*’*‘‚P(0;0;0)‚a=(1;2;-2)’‚
2 2 2

d) U=xT+yT+—zLf,abc=#0,P(u;b;c),a=(a;b;c)T.

x’ y’ z’ . . . .

19.8. Von dem Skalarfeld U= y + F+ 21-, a > b > z: > 0, bestimme man diejenigen

Punkte der Niveaufläche U(x, y, z) = 1, in denen grad U extremale Länge besitzt.

19.9. Für das Potential U = 3r2 + r = (x; y; z)‘, berechne man die Feldstärke

E I= —grad U. Für welche Punkte wird |E| am kleinsten?

19.10. Geben Sie an, ob die ebenen Vektorfelder a in den nachstehend skizzierten Ge-
bieten Quellen bzw. Wirbel besitzen, und entscheiden Sie dementsprechend, ob jeweils
die Divergenz bzw. die Rotation verschwindet oder nicht!

a)——>————+———> b)
-—————o-———>—————>

——-—->—:——-5-:-——>

T>———->———-——> H
H 1 1

L‘) —o —> —> I“ ‘-— ‘i "—‘

m ._... j. o- <- <-

__. __. ____. -> -D —>

‚im n.’ n. —> ——> —-5

E) f) —> ——>

:> —:>

——> —-—->

————> ——-:5

19.11. Welche der Ausdrücke

a) a~rot (a >< b), b) 91x X 8l'3d(l1b),

c) x X grad (ab), d) elx >< grad (a X b) ,

e) cXgrad(e,-f), i) rot(r:><(e1divf)),
g) 1'o[(c >< gmdj), h) divrot (c X 23-1’)

sind sinnvoll, welche sinnlos? Warum? Berechnen Sie die sinnvollen Ausdrücke für
a=ze1~3e3,b=xye2,c=2e;—xye3undf=f(x,y,z)=x+y+z!
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19.12. Man begründe, welche der folgenden Ausdrücke erklärt sind, wenn u = u(x, y, z),
t= t(x,y,z) Skalarfelder und v(x‚y‚z), w(x,y,z) Vektorfelder sind. (Die benötigten Ab-
leitungen sollen existieren.)

a) grad w, b) rot (v X grad t), c) div(uv), d) grad (rot w>< v),

e) rot (vt), f) (v div w) >< grad t, g) grad div(v X w), h) grad (rot v)2.

19.13. Für r = (x;y; z)‘ mit |r| = rund einen konstanten Vektor a berechne man:

a) divr, b) rot r, c) div (a X r), d) rot(a >< r),

e) gradl’, f) div ‚ g) div gradflrm i h) div r3.

v

19.14. Für das Vektorfeld v = v(x‚y‚ z) berechne man rot v. Welche Werte müssen gege-
benenfalls die Konstanten a, b, n, 1 annehmen, damit ein wirbelfreies Feld n vorliegt?

_2.x_’ _._1’1_ _ _ J.a)v—(z,2z+(y z)’, 22, z)’ e ) fur z>O,

b) v=(x1+5uy+3yz)e,+(5x+3axz-2)ez+([2+a]xy—4z)e,,
c) v=(xz+uy"+bz’)e,+(xy+az"+bx’)ez+(yz+ax"+by’)e,,
d) v = (3x’y’z + 6y’) e1 + (2x3yz + ‚lxy - 8yz’) e; + (x3y’ — 1y’z’)e3.

19.15. Zeigen Sie, daß für die Skalarfelder U = U(x,y,z), V= V(x,y,z) und die. Vektor-
felder

a = (ax(x‚y‚ z); az(x.y‚ z); aa(x,y, 2))’. b = (b1(x,y, z); b2(x‚y. z); bs(x‚y‚ 2))’
folgende Beziehungen gelten:

a) div(a + b) =diva + divb‚ b) grad(UV) = Vgrad U+ Ugrad V,

c) div(Ua)= Udiva+agrad U, d) rot(Ua)= Urota+gradU>< a,
e) divrota=0, i) rotgradU=o,
g) divgradU=AU‚ h) div(a><b)=brota-arotb.
(Alle benötigten Ableitungen sollen existieren.)

19.16. Berechnen Sie rnit Hilfe des Nablaoperators V die folgenden Ausdrücke!

a) V~r, b)VXr, c) V~r’, d)VXr’,

er V-r3. nvä (mo), g>v-f (wo),

h) v-7’; (we), i) V(r-7), j) V><(a><r)

sowie vergleichsweise die Ausdrücke 2V (a r) bzw, ar—rzV v1! Es bedeuten:

V 6 a ar=xe1+ye‚+ze3‚ r=|r|, V=e,~é;+e,-a7+e3-5;

und a einen konstanten Vektor. Geben Sie an, ob es sich bei den angeführten Operatio-
nen jeweils um die Operation grad, rot oder div handelt!

2.
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19.17. Durch v = 4U’ — x’ — y’) e, ist das Geschwindigkcitsfeld einer laminaren Rohr-
strömung gegeben (Rohrachse ist z—Achse‚ Rohrdurchmesser ist 2r). Zeigen Sie, daß die
Strömung quellenfrei‚ aber nicht Wirbelfrei ist.

19.18. Das Magnetfeld eines in Richtung e; verlaufenden geradlinigen unendlich dünnen
Stromfadens wird durch

__J_ __.___»V i. x . .H‘ 27T x2+y2 41+ 2“, x2+y; 92 (X..V)*(0,0)

beschrieben. Berechnen Sie rotH und div H!

19.19. Ermitteln Sie flit das Vcktorfeld

Q xe +ye + eE=m (X;y;z)*(0;0;0)

(elektrisches Feld der in r=o konzentrierten Ladung Q) rotE und div E.

19.20. Für einen konstanten Vektor a° und r = xe, + ye; + ze, berechne man

a) div(a°-r)a°, b) rot(a°-r)a°‚ c) div[(a°><r)><a°], d) rot[(a°><r)><a°].

19.21. Bestimmen Sie alle Funktionen f=f(r), für die das Vektorfeld v = rf(r)

a) quellenfrei, b) Wirbelfrei ist (r = xel + ye; + 22„ |r| = r).
1

19.22. Ermitteln Sie diejenigen Funktionen f(r), die der Gleichung

‚ 1
a) grad (rZf(r)) = f, b) d1v(f(r) - r) = 7
mit r = xe, + ye, + ze,, |r| = rund f(r) als einer nur von r abhängigen, differenzierbaren
Skalarfunktion genügen (r $ 0).

19.23. Für eine zweimal differenzierbare Funktion f= f(r), f2 = xi +y1 + z’, berechne
man Af(r). Welche Gestalt muß f(r) haben, damit Af(r) = 0 für r #= 0 gilt?

19.24.’ Ermitteln Sie jene differenzierbare Skalarfunktion f(r), für welche die Laplace-
Differentialgleichung

1
a) Af(r)r‘ = rllnr, b) Af(r)r = 73-

. . ' A a2 a2 a1

gilt (r 9s 0)! Hierbei bedeutet A = V’ = —a—x—‚ + W + ä.



20. Parameterintegrale und Doppelintegrale —

Integrale über ebene Bereiche
(Bd.5, 1., 2., 4.)

20.1. Von den folgenden Parameterintegralen ist die erste Ableitung nach dem Parameter
in integralfreier Gestalt anzugeben:

I‘ J"

1 d
a) h<z>=_f1,+,dr (wo), b)g(y>=_]l;,i. (v>1),

Z . 2

c) G(t)= '[ dx‚ d) F(x)= Iaman(i)c1y,
xi] X-2 y=1 y

e) w(x)= [lijdn

20.2. Berechnen Sie jeweils f’(x) für

a)f(x)= Ie”"dt (x*0)‚ b) f(x)= Illüttzaxdt,
1x0 i=o

x x

c) f(x)= {mm (1<x§3), cl) f(x)= J‘/1+u‘du,
= 1I

x:

e) f(x) =J

t
l u‘

K
.

ln(tx)
11+:1n(1+xy)dy (x>0), f) f(x)=

I

dt (x>1),

u
q

j,l
y

-x 1+x‘

g)f(x)‘= I »/1+cv+2x>‘dy, h)f(x)= [Tar (wo).
y=-2x

20.3. Von der im R1 stetigen Funktion f(x‚ y) sollen L, f„ fy, existieren und stetig sein.

Y

a) Ermitteln Sie rm fiirF(y)= j f(x‚y)dx.
X = C0115!

b) Wie lautet F” (y), falls f(x,y) =yJ2 + sinx gilt?

x+al

20.4. Für welche Werte von a ist u(x‚ t) =% I h(z) dz Lösung der Gleichung
z=x-ut -

81a 81a ‚ ‚ ‚ _-57 = 5;,-? (h(z) sei stetig differenzierbar.)

20.5. Die partiellen Ableitungen erster Ordnung der Funktion F(u, v, w) := I f(x‚ w)dx

sind zu berechnen. Man benutze das Ergebnis, um für
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11(1)

F[u<r>,v<z),'w<r>]== I f(x.t)dx
14(1)

F
die Ableitung % zu ermitteln. Wie lautet

„

F‚(t) für F‚(t) I=I
r

(Die auftretenden Funktionen und ihre Ableitungen sollen stetig existieren.)

ihfldx (2=r0)?
X

20.6.‘ Man zeige, daß w„‚ ~ w = 0>(Telegrapheng1eichung) durch w(x, y) = I f(t)¢p(u)du
y u=a

+ If(t)w(u)du erfüllt wird, wobei t= (u‚— x) (u —y) gilt und f(t) der Gleichung tf”(t)
u=b

+f’(t) —f(t) = O genügt.
x

d:
20.7.* Berechnen Sie I (x) = I ————— durch Differentiation von

1 {=0 V1 ‘ 72 3

x dtI( , )= Ii nachy.
xy 1=0 Vy2"’Z

20.8. Die folgenden Doppelintegrale sind zu berechnen, und der Integrationsbereich soll
skizziert werden: ‘

1 1 e 9}’

a) I Iewdxdy, i) I I1n(i>dxdy,
y=0 x=0 w} F1 y

In 1 n/1 «/2 V

b) I I(1-r’)rdrdqz, j) I Ie"*’sin(x+y)dxdy,
w=0 r=0 y=0 x=o

‘ "V1 3 zu:

c) I Icos(l>ayax, k) I I 2»/y—x2dyc1x,
x=0 y=D X ""‘ F"

‘ "/3 7r/2 aJ:iu2¢a

d) I Ix’sinydydx, 1) I I rdrdqz (a>0),
x=1y=-W ¢»=0 r-0

2 y” a (nun-q:
e) I Ixlnydxdy, my I I (x’+y1)dydx (a,b>0),

y=x x=0 x=0 .v=0

4 z U R JE;
o I _Is1n(2x+y)dxdy, n). J- I /?_—R2_xz_yzdydx Übe),

y=0 x=l xnx x:_‘/F?
e’ vr/zy l ‘E

s) I Icos(xy)dxdy‚ 1+x+y+xy
y=1 x=1I/4y o) I I dxdy.

.v=0 x:1/./3' X y xyl 1 1

h) I _Ix’e*’*’dydx,
x=0 y=0



20. Parameterintegrale 2 3

20.9. Man skizziere den Integrationsbereich und vertausche die Integrationsreihenfolge
(f(P) sei stetig): '

Dry 2 x+2

a) I ‘I /<P>dxdy, b) I I f(P)dydx,
0 y —l x’

2 2—y 2 0

c) I r(P>dxdy, d>I I f(P)d.vdx.
—e yT2_1 o 42:7;

M Ijx’ für —1§x§0,
-x für 02x51,

l

e)__[
x)

f(P) dydx mit yo(x) = {l

o

2a

o ‘H r1_y1

2a X„(y) a

i) J I/(P)dxdy+I I f(P)dxdy
v_*
Zn

mit x„(y)={>“a‘*laZ-y’ fiir0§.v§a.
2 fifiu‘a§y§2a,a>0.

20.10. Skizzieren Sie den Bereich B, und berechnen Sie das Bereichsintegral H f(x, y) db
E

fiir

a}f(x,y)=xy2‚ B:0§x§1A0§y§3-2x,

b) f(x,y) = xy, B ist in Polarkoordinaten durch 0 < a g r g b, 0 g (p g g- ge-

geben, '

Z

c) f(x‚ y) = x + y’, B Wird durch x = “VT undy = 2x -12 begrenzt,

d) f(x,y) = x7 +y7‚ B wird durch die Geradeny = 0, x = 5 und 3y = (x + 2) be-
grenzt,

e>I(x‚y>=x-‚v‚— B={(X;y)|1/J7§x§6—y/\0§y§4},

0 f(X..V) = B ist das Dreieck mit den Eckpunkten (l; 1), (1;2), (2;2),

S) f(X,.V)=X.V: Bwirddurch‘/;+I/;=1,x=0,y=0begrenzt,
h) f(x,y) = 8 - xzy, B ist das Rechteck mit den Eckpunkten (0; 2), (—l;2),

(- 1; -2), (0; —2)‚ an welches die Halbkreisscheibe
x’ + y’ = 4 (x _2‚ O) angesetzt ist,

i) f(x‚y)=E-%:5‚-‚ B={(x;y)|1§y§2/\2§x+y§5}.

j) f(x,y) = x + y, B ist die von der Ellipse x’ + 3y’ = 4 und der Geraden x = 1

begrenzte Punktmenge, welche den Ursprung enthält.

20.11. Welches Volumen wird man der Punktmenge M zuordnen, für deren Punkte

P(x‚y,z) gilt: |x+y[§»T2£, Ix—yI§%und 0g zgcosxcosy?
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20.12. Man skizziere den Grundriß des gegebenen Körpers in einer geeigneten Koordina-
tenebene und berechne das Volumen des Körpers, wenn er begrenzt wird von

a) denFlächeny=cosx‚y=x+1‚x=-g,z=0undz=sinx,

b) den Ebenen x=1,y=1‚ x+y=1‚ z=0und der Fläche z=xy‚

c) der Ebene z = 0, der Zylinderfläche |x| + [y] = -T21 und der Fläche z = cos y,

d) der x,y—Ebene, den Ebenen x + y = 2, y + 2 = z und der Fläche y“ = x,

e) dem Bereich B = {(x;y)[xz +y‘ g 1} und den Flächen xi + y’ =1 und z =1+ xy,

f) den Ebenen z = 0, 2x - y — z + 5 = 0 und der parabolischen Zylinderfläche
y = x2 + 2 ,

g) den Flächen x-y’ + 3 = 0, 2(x +y) + z = 8, x=1, z = O; der Punkt P(0/0/1) ge-
höre zum gegebenen Körper,

h) der Ebene z = O, den Flächen z= x‘+ 3, x’+y1=2 und xi +y2= 4,

i) der Zylinderfläche (x - 2)’ + y’ = 4, der Ebene z = 0 und z = 3 x2 +y1 ‚

j) der x‚y—Ebene und den Flächen x’ + y’ = 1, z = 40y’ + 4 im 1. Oktanten,

k) den Ebenen z = 0, y = 0, der Fläche z = 4x’ + 3y und der Halbzylinderfläche
x’+y7=1mity;0,

1) der Zylinderfläche x’ + y’ = 9, den Ebenen x = 1, y = 0 und den Flächen z =

und z = 2xy e’: im 1.0ktanten‚

m)‘ den Ebenen x = 0, y = x -— 5 und der Fläche y’ + 22’ = 2,

‚Y

x+1

" = v =Tun) den Flachen y N4 2x und z x2_ 2x + 2

o)‘ den Ebenen z = 0, x = 0, y = 0, y = %y/2—, der Zylinderfläche x’ +y1 = 1 und der

Fläche z = x(x + y) im 1. Oktanten.

im 1. Oktanten,

20.13. Die parabolischen Zylinderflächen x2 + z = 4 und y’ + z = 4 sowie die Ebene z = 0
begrenzen einen räumlichen Bereich. Bestimmen Sie sein Volumen.

20.14. Der Bereich B: 0 g x grr, 0 gy g sinx ist mit Masse der Dichte g(x‚y) = 1 + x
+ 4y belegt. Man bestimme seine Gesamtmasse.

7,
zen ein Flächenstück, welches mit Masse der Flächendichte g = g(x‚ y) = x + y cos x be-
legt ist. Berechnen Sie die Gesamtmasse. ‚

20.15. Das Kurvenstiick y = sin x, x e [n n] und die Geraden x = rt und y = 1 begren-

20.l6. Das von den Kurven x=2y’ e 1 und x=2y+ 3 begrenzte Flächenstück B der
x,y~Ebene (Skizze!) sei mit Masse belegt. Die Flächendichte betrage g(x, y) = 3 + 2y.
Wie groß ist die auf B liegende Gesamtmasse m?

20.17. Berechnen Sie fiir den auf der Ebene z = 0 durch die Kurven x = yZ und x = 3

- Zy’ begrenzten Bereich, der mit Masse der Dichte g = g(x, y) = xy’ belegt ist, mit Hilfe
von Beteichsintegralen

a) die Fläche, b) die Masse, c) den Schwerpunkt!
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20.18. Die Kurven y = x7 und y = f; begrenzen eine Fläche. Diese sei mit der Flächen-
dichte g(x‚ y) = x + y belegt. Berechnen Sie für die Fläche: '

a) den Inhalt, b) die Gesamtmasse, c) die statischen Momente
bezüglich der x- und y-Achse, d) die Schwerpunktskoordinaten (Skizzen.

2 2

20.19. Auf der Ellipsenfläche -25; + % g 1 ist die Flächendichte durch

9(xy)=al+2z 1- 3‘3+’—22’ a2 b2

gegeben, 9,42, = const. Wie groß ist die Gesamtmasse?

20.20. Gegeben sind im 1. Quadranten die Parabelbögen y’ = px, yl = qx, xi = ay,
x2 = by (0 < p < q, 0 < a < b). Man berechne den Inhalt des von diesen Bögen begrenz-
ten Vierecks durch Einführung krummliniger Koordinaten (u, v) gemäß x’ = uy, yl = vx.

20.21. Durch die nachfolgend angegebenen Kurven wird im ersten Quadranten ein Flä-
chenstück B begrenzt. Dieses sei mit Masse der Dichte g = g(x, y) belegt (skizzet). Zur
Beschreibung von B sind geeignete krummlinige Koordinaten einzuführen. Man be-
rechne den Inhalt und die Masse von B (vgl. Aufg. 20.20.).

2 2a)‚v=;. y= ‚ y=2x‚ y=3x‚ o(x.y)=7y,Y
1b)y=x’‚ .v=;x’, .v=~5, J’=2\/;, Q(x,y)=xy,

c)xy=a, xy=b, y’=px. y‘=qx. a<b, q<p, o(x.y)=y’.

20.22. Berechnen Sie für das Blatt der Lemniskate r = a vcos 2o: (—§— g a) g mit der

Flächendichte

x2 yz
Q=Q(X.y)= 147+?

a) die Fläche, b) die Gesamtmasse,
c)‘ das Trägheitsmoment in bezug auf die z-Achse! Skizzieren Sie den Bereich!

20.23. 1(01) sei das Trägheitsmoment eines homogenen Kreissektors (Radius a, Zentri-
winkel 20c) bezüglich seiner Symmetrieachse.

1 .71
4 ’ 2

b) Wie groß ist c in J(rr) = cI, wenn I das polare Trägheitsmoment einer homogenen
Kreisscheibe mit Radius a ist (g = go = const)?

a) Man berechne J(oc) für 0 _<._ a g n und diskutiere die Fälle a: = , n.

20.24. Es sei B ein Bereich der x, y-Ebene. Durch u = x’, u = y wird er eineindeutig auf
den Bereich B‘ der u, v-Ebene abgebildet. Dann gibt es eine von der Gestalt von B unab-
hängige Konstante c, so daß das c-fache Trägheitsmoment von B bezüglich der y-Achse
gleich dem Flächeninhalt von B‘ ist. Welchen Wert hat c (g = 1)?



26 20, Parameterintegrale

20.25. Im R2 ist der Ringbereich 8,: 12 g Vx’ + y’ g 13 flächengleich dem Kreisbereich
B2: x’ + y7 g 25. (Wieso?) Gibt es eine Konstante c mit T, = cTz, wenn T1, T, die polaren
Trägheitsmomente (g = 1) von B, bzw. B; sind?

20.26. Mit Hilfe des Steinerschen Satzes sind die Trägheitsrnornente J,x,.I,’ des durch
x = O, y =1 und y = x’ (x >0) begrenzten ebenen Bereiches bezüglich der durch den
Schwerpunkt gehenden und zur x- bzw, y-Achse parallelen Achsen zu bestimmen (g = 1).

20.27. Gesucht ist das polare Trägheitsmoment bezüglich des Schwerpunktes S von

einem

a) gleichseitigen Dreieck mit der Seitenlänge a (Hinweis: Man berechne zunächst das
Trägheitsmoment des Dreiecks bezüglich des Punktes P0(0/0) und beachte dann den
Satz von Steiner), ‘

b) regelmäßigen Sechseck mit der Seitenlänge a; dabei läßt sich ein Teilergebnis von a)
verwenden.

In beiden Fällen gelte g = go = const (Bild 20.1).

y n

5

_£ _

Z t g X BiId20‘1

20.28. Man berechne das polare Trägheitsmoment eines regelmäßigen n—Ecks, welches
einem Kreis mit dem Radius r einbeschrieben ist, bezüglich des Kreismittelpunktes,
g = 1. Welcher Sachverhalt ergibt sich fiir n -> 0°?

20.29. a) Das polare Trägheitsmoment des zwischen den Ellipsen
X2 yz v x2 yz

a1 + b’ "1 “d (zu): + (ab):

liegenden Bereiches ist zu berechnen (geeignete Koordinaten einführen!)

=1(a>0,b>0,0<‚1<1)

b) Welcher Wert ergibt sich fiir das Trägheitsmoment im Falle a = b und Ä—> +0? Man
interpretiere das Ergebnis.

20.30. Das Zentrifugalmoment 1,, des durch die Kardioide r = 1 + cos (p (0 g «pg Tr/2;

r, q) Polarkoordinaten) und die Geraden x = 0, y = O begrenzten ebenen Flächenstückes
ist zu berechnen.

20.31.‘ Durch die Kurve x‘ + y‘ = x2 + yi wird ein ebener Bereich B begrenzt.

a) Es ist zu zeigen, daß die Begrenzungskurve von B in Polarkoordinaten r = ro((u)

=———2-—- lautet. Man skizziere B.
J3 + cos 4a:

b) Gesucht sind die Trägheitsmomente Jx,J,. (Hinweis: Zuerst das polare Trägheitsrno-
ment bezüglich des Ursprungs J0 berechnen und dann einen Zusammenhang mit J,,,./,
herstellen!)



21. Integrale über räumliche Bereiche
(Bd. s, 3., 4.)

21.1. Man berechne die dreifachen Integrale:
m2 l l-y’ 1 o 10(r°+I)

a) I I _[2y’(yZ+2z)sin2xdzdydx, b) j I j ritdzdtdr,
,=o yzg ,=o r=01=1—r :=0

,.,. 4.75 {ä 1 l-x’ z—x=/y‘

c)_[ I Isdzdsdt, d)*I f I fldzdydx. ”

:=o s=0 z=fl x=D .v=0 z= x’+y‘

21.2. Berechnen Sie das Raumintegral der Funktion f(x, y, z) = xyz für den von den fol-
genden Flächen eingeschlossenen räumlichen Bereich:

z=-2x1‚ z=x’+y’, y=O, x=2, y=1, (2;x;0), x=0, (1§y§2),
y=2, (0;x; -2), x=-2.
a) Fassen Sie den Bereich als eine Vereinigung von räumlichen Normalbereichen jenes

Typs auf, dessen Projektion auf die x‚y<Ebene einen ebenen Normalbereich bezüglich
der x-Achse liefert. '

Skizzieren Sie diese Projektion auf die x,y~Ebene!
b) Der Bereich soll als eine Vereinigung von räumlichen Norrnalbereichen jenes Typs

aufgefaßt werden, dessen Projektion auf die x‚y-Ebene einen ebenen Normalbereich
bezüglich der y-Achse darstellt.

(Beachten Sie bei der Berechnung der Integrale, daß die Integration über ungerade Funk-
tionen mit symmetrisch zu 0 gelegenen Grenzen den Wert 0 liefert!)

21.3. Welches Volumen hat der Körper, der von den folgenden Flächen begrenzt wird?

a) x=0, x=21r. .v=0, y=1, z=y. z=y’.
b) x=0, y=0, y=x+1, z= —xy-1, z=x2+y2+1.

Z Z

21.4. Berechnen Sie für den durch die Flächen z = l und x7 + ‘v? =

nen räumlichen Bereich (Skizze!) das Raumintegral der Funktion f(x‚y‚ z) = z!

5 — z eingeschlosse~

21.5. Wie groß ist das Volumen desjenigen Teiles der Kugel x’ + y’ + z’ g a’, der inner-
Z 2

halb des Zylinders (x- +y1 = “T liegt (a > o)?

(Man arbeite mit Zylinderkoordinaten!)

21.6. Unter Benutzung geeigneter Koordinaten berechne man das Volumen

a) des Teiles der Kugel (x - a)’ +y2 + z’ g a’, der durch die Zylinderfiäche (x - a)’
+ y’ = b1 (a? > b’) herausgeschnitten wird, -

b) des Körpers, der von der Ebene z=0 und den Flächen z=1/x’+-yz und
1 2

(x--f) +y2=—‘1‘-begrenzt wird.
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21.7. Wie groß ist das Volumen desjenigen Teiles der Kugel xi + y’ + z: g 2az‚ der zwi-

schen den Kegelflächen x’ + y’ = zztan’ a und x2 + y’ = zZtanZfl liegt (a > 0;

0 < u < ß < 7 Verwenden Sie Kugelkoordinaten!

21.8.‘ Welches Volumen hat der von den Flächen z = 4x2 + (y — 1)’ und z = 5 e 2y be-
grenzte Körper? Man verwende in geeigneter Weise elliptische Zylinderkoordinaten.

1
21.9. Ein Körper der Dichte g(xy z) = y wird durch Ogxgl ggy

” l+z1 4’‚/1+xz
< ——-—3——'—, tanx g z g 1 begrenzt. Wie groß ist seine Masse?Ü];
21.10. Welche Masse hat der Körper, der von den Koordinatenebenen und den Ebenen
x + ay = a und brx + my + abz = abc (b > 1; a, c > 0) begrenzt wird, wenn die Massen—

dichte durch g(x, y, z) = 1 — f + ä gegeben ist‘?

21.11. Ein Körper mit der Dichte Q(x‚y‚ z) = z wird von den Flächen y = 0, z = 0, z = 2,
x + 1

x + 2

x, y-Ebene und berechne die Gesamtmasse des Körpers.

y=3—x, y=3~ begrenzt, Man skizziere den Grundriß des Körpers in der

21.12. Aus dem Zylinder x’ + y’ g 4 wird durch die x, y-Ebene und durch die Fläche
z = e"2*”2 ein Körper herausgeschnitten. Welche Masse hat dieser Körper, wenn seine
Dichte durch g(x, y, z) = y’ gegeben ist‘!

21.13. Berechnen Sie das Volumen des räumlichen Bereiches, der durch die Flächen
z = 0 und z = e“"“”2’ begrenzt wird! (Die zuletzt genannte Fläche entsteht durch Rota-
tion der Gaußschen Glockenkurve e“’ um die z-Achse.) Wie groß ist die Masse des Kör-
pers von der oben genannten Form und der Dichte g = 900c’ + y’) ?

21.14. Man bestimme die Masse desjenigen Körpers, der von den Flächen z=0‚
xi + y’ = 4 und x — y — z = O mit z g 0 begrenzt wird. Für die Dichte gelte g(x,y, z)
= 3(x2 + y’) z.

21.15. Ein gerader Kreiskegel mit der Grundfläche in der x, y-Ebene — gegeben durch x’
+ y’ g 3 —— und der Spitze im Punkt P(O;0;4), besitze die Raumdichte g = x1 + y’ + 22.
Bestimmen Sie die Masse des Kegels.

21.16. Die Punktmenge M sei der Durchschnitt der beiden Zylinder

Z1:(x—a)2+y1§a’, 0gzgz„ und

Z2:(x—2a)’+y2§a’, 0§z.<_.zo mit a>0 und zo>0.

Welche Masse hat der durch M bestimmte Körper, wenn fiir die Dichte g = Q(x, y, z) = 3z
gilt?

21.17. Berechnen Sie die Gesamtladung Q des Körpers, der durch die Flächen

z = 1/3—(x’ + y’) und z = J4 — x2 — y’ begrenzt wird, wenn die Ladungsdichte mit
g = g(x,y, z) = goz angegeben wird. Fertigen Sie eine Skizze des Bereiches an!
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21.18. Ein homogener Körper K werde durch die Zylinder x’ + y’ = 1, x’ + y’ = 4, den

Kegel z = V x’ + y’ und die Ebene z = -2 begrenzt. Die Koordinaten des Schwerpunktes
von K sind gesucht.

21.19. Bei Rotation der Geraden z = 2x um die z-Achse entsteht eine Kegelfläche. Diese
und die Ebene z = 8 begrenzen für z g 0 einen Körper, von dem

a) das Volumen, b) die Koordinaten des geometrischen Schwerpunktes zu berech-
nen sind.

21.20. Gesucht sind Volumen und Schwerpunkt des homogenen Körpers, der von der Pa-
raboloidfläche x’ + y’ = 2z und der Kugelfläche x’ + y’ + z’ = 3 begrenzt wird (z g 0).

21.21. Ein endlicher Körper K wird durch die Rotationsparaboloide z = x’ + y’ und
1 . . . .

z =7(x1 + y’) + a, a > 0, begrenzt. Gesucht sind die Koordinaten des geometrischen

Schwerpunktes von K.

21.22. Welche Punktmenge M — beschrieben in Kugelkoordinaten — wird durch
0§r§R, 0§8§ 19., (0<19o§rr), 0§q2§21r im R’ bestimmt? Man gebe die Schwer-

Tl’
punktkootdinaten von M im Fall g = const an und behandle speziell 19., = 2 , 8., = 1r.

21.23. Wo liegt der Schwerpunkt desjenigen Teiles der Kugel x’ + y’ + z’ g a’, der zwi-
schen den Ebenen z = h und z = a liegt (0 ä h ä a)? '

21.24.’ Die Punktmenge B sei der im 1. Oktanten gelegene Teil des Ellipsoids

51 + L’ + Z_’ < 1
a2 bl ‘.2 = '

Wie lauten bei Integration über B die Integrationsgrenzen in

a) kartesischen Koordinaten, b) Zylinderkoordinaten,
c) elliptischen Zylinderkoordinaten, d) Kugelkoordinaten,
e) krummlinigen Koordinaten (u, v, w) mit x = au cos vsin w, y = bu sin v sin w,

z = cu cos w?

f) Berechnen Sie (mit möglichst Wenig Aufwand bezüglich der Integration) Volumen
und geometrische Schwerpunktkoordinaten von B.

21.25. Wie groß ist das Trägheitsmoment des Kegels z = 1 — x’ + y’ , z g 0, bezüglich
der x-Achse für g = 1?

21.26. Durch die Flächen z = 54x’ + y’ und z = 8 — (2x’ + y’) wird über dem Bereich
B = {(x‚y) | x’ + y’ g 1} der x,y-Ebene ein endlicher Körper begrenzt. Man bestimme das
geometrische Trägheitsmoment dieses Körpers bezüglich der z-Achse.

21.27. Welches geometrische Trägheitsmoment besitzt der von den Flächen x = 0, y = 0,

z = 0 und ä + % + ä = 1 begrenzte Körper bezüglich der x-Achse (a, b, c > 0)?
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21.28. Berechnen Sie das Trägheitsmoment einer homogenen Viertelkreisplatte mit dem
Radius R und der Dicke D für g = 1

a) in bezug auf die Kante der Länge D, die im Kreismittelpunkt senkrecht zur Platten-
ebene steht, ‘

b) in bezug auf eine Kante der Länge R.

21.29. Das Trägheitsmoment eines geraden Kreiskegels (Höhe h, Grundkreisradius R) ist
bezüglich eines Grundkreisdurchmessers zu berechnen (g = 1).

21.30. Von dem durch die angegebenen Flächen begrenzten Körper berechne man das
Trägheitsmoment bezüglich der z-Achse:

a) x+y+z=ay5, x’+y2=a’‚(a>O) und z=0 mit g=1‚
b) x-y-z=0, 2:0, x’+y‘=4 und z=0 mit g(x‚y,z)=3z.

21.31.‘ Aus dem Zylinder (x — (1)1 + y’ g a’, 0 ä z ä c, wird der Zylinder (x — b)2 + y?

ä b’, 0 ä z ä d, ausgebohrt (a > b > c, c; d, Dichte g = 1). Wie groß ist das Trägheits-
moment des entstehenden Hohlkörpers bezüglich der z-Achse?

21.32. Für den durch x2 +y2 + z: = R1, z :0 und z= (tanoz)1/x’ +yZ ,0 < oc<%, be-

grenzten Bereich B gebe man die Integrationsgrenzen fiir I = m f(P) db in
B

a) kartesischen, b) Kugel-, c) Zylinderkoordinaten an.

Zur Berechnung für I im Fall f(P) E 1 benutze man geeignete Koordinaten. Welcher be—

kannte Wert ergibt sich fiir oc—> +0’?

21.33. Durch xi +y7 + z’ = a’, x’ +y’ + z’ = b’, 0 < a < b, z z 0 und die x‚y-Ebene
wird eine Halbkugelschale begrenzt. Man berechne ihr statisches Moment bezüglich der
x‚y-Ebene und gebe die Schwerpunktkoordinaten an (g =1). Welche Lage des Schwer-
punktes erhält man in den Spezialfällen

a) a—>+0‚ b) a—>b-0?

21.34.‘ In der x‚z-Ebene ist der Kreis K mit dem Radius R und dem Mittelpunkt (a;0)
gegeben, wobei a > R > 0 gelte. Durch Rotation der von K begrenzten Kreisfläche um die
z-Achse entsteht ein Torus.

a) Man beschreibe den Torus mit Hilfe von Zylinderkoordinaten.
b) Welches geometrische Trägheitsmoment hat der Torus bezüglich der z-Achse?



22. Kurven- und Oberflächenintegrale
(ms, 5., 6.)

22.1. Man berechne die Bogenlänge folgender Kurven:

a) x=e’cos:, y=e’sint, z=e‘‚ 05t5b,
b) x=(t’/2)—t+2, y=(4/3)t3”, 15:55,
c) y=(x2/4)—in./I‚ 15x52,
d) x=acos’t, y=asin’t, a>0, 05:527r(Astroide)‚
e) y=acosh(x/a). a>0, 05x5b,
f) x=6:7+4‚ y=2:’—2, 05:52,
g) x=41nt, y=2t+(2/I), 2§t§4,
h) x=1nt,y=21/t_, 35:58,
i) y=aln[a’/(a’—x’)], 05x5b<a, j)y=x3”, 05x5b‚
k) x=ln(2t+(1+4t’)"2)—2‚ y=(1+4:’)“1‚ a5t5b,
l) y=3+1n(sinx)‚ rr/25x521r/3‚
m) x=2a’t‚y=3abt2‚ z=3b2t3, 0§t§c,
n) y=x’‚z=(4/3)x”’, 05x517,
o) x=a'(cost+tsint), y=u(sint-tcost), a>0‚O5t5b‚
p)’ y=1nx‚ 15x53.

22.2. Man berechne die Bogenlänge folgender Kurven, wobei (r, a2) ebene Polarkoordina-
ten bezeichnen:

a) r = aexp (flqz), (pl 5 q) 5 e22, a > 0, ß =# 0 (logarithmische Spirale),

b) r=a(:p’-l)‚ a>0, 05qi5b‚
c) r=2Rcosq2‚ R>0, (—n/2)5<p5rr/2‚
d) r=a(1+cosrp), a>0, 05112521: (Kardioide),

e)‘ r=a(e"-1)/(e"+1), a>O, 0§¢I§¢J,.

22.3. Für folgende Kurven sind die Koordinaten des geometrischen Schwerpunktes zu

berechnen:

a) x=acost‚ y=asint‚ z=(h/21r)t‚ a>0, 05t5b‚
b) x=acos’:, y=asin3t, a>0, 05:5rr/2,
c) y=acosh(x/a), 05x5a‚
d) C= C1 u C2, C1=x=Rcosq1, y=Rsinxp, R >0, —rr/2 5 <p5n/2‚ C‚=x= t,

y = -R, -a 5 t5 0, a derart, daß der Schwerpunkt von C auf der y-Achse liegt,
e) Kreisbogen, Radius R, Öffnungswinkel u,
f)‘ x=cost, y=sint, z=cosht, 05t52n.

22.4. Mit einer Guldinschen Regel bestimme man den Inhalt der Rotationsflächen A:

a) A wird erzeugt von einem. in der (x‚y)-Ebene liegenden Rechteck (Seitenlängen a

und b, der Mittelpunkt hat die x-Koordinate c > 0, die x-Koordinaten der Eck—

punkte seien alle positiv) durch Rotation um die y~Achse.
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b)

c)

d)‘

e)’

22. Kurven- und Oberflächenintegrale

A wird erzeugt von der folgenden in der (x, y)—Ebene liegenden Kurve C durch Rota-
tion um die y-Achse. C entsteht aus dem Streckenzug, der mit a > d > O, b > 0, c > 0

nacheinander zu den Eckpunkten P1(c,0), P2(c,d/2), P3(c + b,d/2), P,,(c + b, a/2),
P5(c + b + a, 0) fiihrt, durch Vereinigung mit dessen Spiegelbild an der x-Achse.
Zahlenwerte a = 9, b = 6, c = 4, d = 5 (Bild22.1).

*1

F: F:

Bild 22.1
u/
’ Bild 22.2

f

Man behandle b) mit C, = C, u C2, wobei C‚=y = a, 0g x g2a, C‚:(x -2a)7 +y’
= a’, x g 2a, y g 0 ist und C aus der Vereinigung von C3 mit dessen Spiegelbild an

der x-Achse entsteht.
A wird erzeugt von der Randkurve C eines in der (x,y)-Ebene liegenden Flächen-
stücks B durch Rotation um die y-Achse. B entsteht durch Wegnehmen der Sektor-
fläche x = rcos:p,y = rsinqz, 0 g rg a, 0 < (rt/2) ~ D! g a: gn/2 von der Vereinigung
einer Dreiecksfläche D (Eckpunkte von D: P‚(0;0), Pz(0; (d/2) cot DC), P3(d/2;
(d/2)cot 11)) ((d/2)cotu > a; der Winkel von D bei P1 ist also gleich u) mit einer
Rechteckfläche (Eckpunkte: P2, P3, P4 (d/2; h + (d/2)cotu)‚ P5(0;h + (d/2) cot ll)
[h > 0]). Zahlenwerte h = 20, d =10, a = 2, 1x = 45° (Bild 22.2).
A wird erzeugt durch Rotation der Kurve x = q: cos up, y = Q) sin qz, — 31!/2 g «p g 311/2

um die Gerade x = 5 (Bild 22.3).

I

N
H

Bild 22.3
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22.5. a) Längs eines in der vertikalen (x, y)-Ebene (y-Achse nach oben) liegenden Kreis-
bogenstücks C: g = r = Rcos qze, + Rsin qzey, 11/4 ä o? ä 7T Wirkt - etwa infolge daf-
überstehenden Wassers x = R cos zp, R sin tp é y g 2R — die Linienbelastung F =

*a(2R - y)n mit n = r/R, a > 0. Gesucht sind der absolute Betrag und die Richtung

einerseits von der resultierenden Kraft I Fds und andererseits vom resultierenden

Moment I r >< Fds(Bi1d 22.4).

7 n:

=
t

>55 ' r L
X

ffus Bild 22.4 Bild 22.5

b) Längs C: g = r = a(cos «ye, + sin (m2,) (a > 0), 0 g q: g n/2 wirkt F= (Zp/rr) 4122„

p = const > 0. Man berechne R = I Fds und M= I r X Fds. Die Wirkungslinie W
von R ist durch rWX R = M (rW: Ortsvektoren der Punkte von W) festgelegt. Wo
durchstößt Wdie (x, y)—Ebene (Bild 22.5)?

22.6. Man berechne die folgenden Kurvenintegrale:
(l;l;l)

a) I ((x +y + z)dx + (3x + 2y e z)dy + (5x —y + z)dz) längs (X) einer Geraden;
<o;o;o>

ß) längs eines in (1; 0; 0) und (1; 1; 0) gebrochenen Streckenzuges,

(1:0)

b) I (v2 dx - x’ dy) längs (x) einer Geraden; ß) des Einheits-Viertel-Kreisbogens,
(0:1)

(1:1)

c) I (ydx+(y—x)dy) längs der Kurven 1x) x=t‚ y=t; |3) x=t1‚ y=t; y) x=t,
(0:0)

y= t‘;5) x= t‚y= t’;e)y=x";€)‘y=sin(nx/2)‚
(l;1:1)

d) I (ydx - (x -y)dy + xdz) (X) geradlinig; fl) längs des in (0;1;0) und (0;1;1) ge-
(0:0;0)

brochenen Streckenzuges; y) längs des in (0; 1; 1) gebrochenen Streckenzuges,
(0:1) (0:1)

I Fdx= I Fdr mit F: (x +y) e, + (xi +y1) e, 4x) geradlinig; ß) längs des in
(1:0) (1:0)
(0; 0) gebrochenen Streckenzuges; y) längs des Viertelkreisbogens mit dem Mittel-

‘ punkt (0; 0); ö) längs des Dreiviertelkreisbogens mit dem Mittelpunkt (0; 0); e)‘ längs
3 y = (1 - x)".

6 \_
/

'22.7. Aus den folgenden Kurvenintegralen greife man diejenigen heraus, deren Integran-
den totale Differentials einer Funktion <I> sind. Man bestimme (b und berechne hiemrit
das jeweilige Integral. Die übrigen Kurvenintegrale werte man unmittelbar aus.

3 Wenzel, Ueb.Analysis 2
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b)

c)

d)

e)

s)

h)

k)’

m)

22. Kurven- und Oberflächenintegrale

(1:4)

I (xdx + ydy) längs oz) y = x’; ß) der geradlinigen Verbindung; y) des in (2;0) ge-
(m)
brochenen Streckenzuges.

I ((x2 + y) dx + (x -y’)dy) mit dem Integrationsweg

a) a”x2 + b’2y2 = 1 (mathematisch positiv orientiert);
ß) geradlinig von (1; 1; -7) nach (a; a;a);
y) g = r= 2cos(3t)e„ + 4sin(3t)e‚ + m2„ 0 g t g 211.

I (cos x coshydx + sin x sinhydy) mit dem Integrationsweg 1x) a ’ 2x1 + b "Zyz = 1

(mathematisch positiv orientiert); ß) geradlinig von (0; 2; -4) nach (1r/2;1n 2; 9).

_[ (xeydx -— ye‘ dy)‘ mit dem Integrationsweg a) geradlinig von (O;1;2) nach
(1;0; -1); ß) Streckenzug von (0;1;2) über (1;1;O) nach (1;0; -1);
y) g: r= coste, + sinte, +(-1 +(6/1r)t)e,,1'r/2 g t; 0.

I (x’(1 — y)dx + (y -— (x3/3) dy) mit dem Integrationsweg a) Streckenzug von (0;O)

über (1;0) nach (1;1); ß) geradlinig von (0;O) nach (1;1); y) geradlinig von (0;O)
nach (2;0) und anschließend längs y = (x — 2)1 bis zu (1; 1); ö) längs des Dreiecks-
randes von (0; 0) über (1;0) und (1; 1) nach (0;O).

_[((3x2 + 2y’) dx + (4x_y — 323) dy - 9yz’dz) geradlinig von (1;1;1) bis (2;2;2).

‚f Fdi = I F117, F=J7fe, + fie, + fie, geradlinig von (0; 0; 0) bis (x;y; g).

IFdx = _[Fdr, F= xyz“e, + (x’(2z)“ + (y - Z)2)€y ' (2‘1X2yZ'2 + 0’ ‘ Z)’
+ e ‘ ‘)e, mit dem Integrationsweg oz) stückweise parallel zu den Koordinatenachsen

von (-2;0; 3) nach (0; 3;3); ß) geradlinig von (-2;0; 3) nach (a; b; c) (c > 0).

fFdr, F= 2m, + (2x — llz +1)y-Iz-=e‚ — syze, längs r=t1e, + (t + 1)e, + (x

—2)e„0gtg1.

I F(r") df, F(r') = KP’? (r'= |F|). Der Integrationsweg — auf dem (O, 0, 0) nicht
liegt — beginnt in (x.,,y.,,zo) und endet in (x, y, z) mit oz) (xo,yg,zo) = (1;1;0); ß)

mindestens eine der Koordinaten von (x,,,yo, zo) strebt nach +00 oder —co. (Das Er-
gebnis ist — eventuell abgesehen vom Vorzeichen — das Potential einer Punktmasse
bzw. Punktladung.)

J‘(-y(x’ +y’)"dx + x(xZ +y’)"dy + coszdz) längs r= a coste, + bsin te, + te,
(a > 0, b > 0) mit a) -1r/2 g tg rr/2; ß) rr/2 g 1g 311'/2', y) -1r/2 g tg 3n/2.

_rF(F) dr", F= [(exp z')sin)7+ (2/;E)] e, + [i(exp z')„cosi + (1/‚\7)] e,

+ [)?(exp z") sin i] e, Der Integrationsweg, auf dem kein Punkt der i-Achse liegt, be»

ginnt im Punkt (1; l; 0) und endet in (x,y, z).

—f F(r') df, F = (3;z1y'1z' + 6y'1) e, + (2)23): +12:2y' — 8,62”) e, + (i351 —12y1z'1)e,.
Der Integrationsweg beginnt im Punkt (—1/6;1;0) und endet in (x‚y,z), (vgl.
19.14.d)).
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22.8. Es ist der Flächeninhalt der Flächenstücke gesucht, deren Punkte (x, y, z) den Rela-
tionen genügen:

A) 45x55, 2§y§x/2, z=-2x+y-2,
b) 4gxg5, 2gy:gx/2‚ z=(2xy)"’,

c) 02x51, -xgygx, z=(2/3)1/2—(x+y)“,

d) |x| + M g 1, z = x’, beachte: j (1 + x’)"’dx =(1/2)(x(1+ xi)“
+ ln(x +(1+ x’)"’)) ‚ ‘

e) x’ +y’ g a’, a > 0, z = xya“ (zylinderkoordinatem),
i)’ x’ + y’ = 4, 0 g z g x’|y| (Zylinderkoordiuatem),
g) x+y+z=2, OgygS, —1gzg1,
h) r(u,v)=u1e,,—uve,+(v1/2)e,, -2gug0‚ ugvg-u,
i) z = 5 — (1/9) (x’ +y’), z g 1 (lylinderkoordinateul), (Bild 22.6),

I

y Cf";f . ‚

l Bild 22.6 ä; / I Bild 22.7

j)‘ z’ g a’(x’ +y’)‚ a > 0, z g 0, x’ +y’ + (z — c)’ = c’, c > 0. Kugelkoordinaten
(r, l9, m) mit r = c einführen, wobei r = O den Punkt mit den kanesischen Koordina-
ten 0; 0; c angibt (Bild 22.7).

22.9. Gesucht ist die Masse der Oberfläche x’ + y’ + z’ = R’, z g 0, die folgende Dichte
besitzt:

a) g = go arccos (z/R), b)‘ g = g„(x’ + y’) arccos (HR) (lylinderkoordinatenl).

22.10.’ Gesucht ist das geometrische Trägheitsmoment (Dichte gleich 1 Einheit) bezüg-
lich der z-Achse des Flächenstücks —R g d1 g z g d; g R, x’ + y’ + z’ = R’ (Kugelkoor-
dine_1ten!).

22.11. Man berechne das Oberflächenintegral 2. Art (dA = df= ndA = ndf) H FdA für
das Oberflächenstück

a) z = x’ + y’, 0 g z g 4, e, - dA < 0 (Zylinderkoordinatenl, Bild 22.8) mit

a) F= (xi + y‘2>“e,; s) F= xe. + ye, + (z -1>e,;
v) F= xyex +yze, + Cy’ - x’)e,;
ö) F= (2mp — q1’)e„ wobei x = rcosqa, y = rsin (p, e, = cos zpe, + sin m2„

b) z = (x + 1)’ + y’, z g 2 + 2x, e, - dA < O (lylindetkoordinaten!) mit
(X) F=xe,+ye,+ze,; ß) F=-2e„-xe„ '
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c) (xZ/16) + (y1/9) = zz, x ä 0 ‚ y ä 0, 0 g z g 2 (Parameteldarstellung der Ellipse (x2/a’)
+ (yz/b2)=1istx= acoszp, y= bsinqz), e,-dA <0 mit F= (4x+ z)ex— (4z+ 1)e,

(Bild 22.9).

Bild 22.8 Bild 22.9

22.12. Man berechne das Oberflächenintegral 2.Art (dA = df= ndA = ndf)

j] FdA = f} FdA für die geschlossene Oberfläche (dA nach außen gerichtet)

a) des Würfels |x| g 1, Lyl g l, |z| g 1 mit F= xe, +yey +yz2e,,

b)‘ A =A, UA1, wobei A1: z=5 -(1/9)(xZ+y2), zgl und A2: z= 1, (xZ+y7)§36
(Bild 22.6) mit
a) F= 4x1yze, + (Sy - xy’)ze, ~ (2 + 3xy)z1e,;

ß) F= (xy - x’)ex + (x’ + y’)e,;
y) F= x(x’ + yZ)"Ze, + xyzey; ö) F= xe, —yey + 2(z - 5)e,.



23. Integralsätze
(BdA 5, 7.)

23.1. Man behandle 22.12.21) mittels des Integralsatzes von Gauß.

23.2. A sei die Oberfläche desjenigen räumlichen beschränkten Bereiches, der von den
Flächen y = xi + 1, y = 2x + 4, z = 0, z = —x + 6 begrenzt wird. Man berechne mittels

des lntegralsatzes von Gauß ß FdA = ä FndA = g Fdf= ß Fmi/' (dA weist nach
außen) mit F= (4x2 — 2yz)e„ + (x — 2y(cos z) 'Z)e, + (3y + 2 tanz - 3xz)e‚.

23.3. Der Rauminhalt von V: (x/a)? + (y/b)’ + (z/c)2 g 1, (a > 0, b > 0, c > 0) kann

durch (1/3) m div(xe, + ye, + ze,) dVangegeben werden (warum?) Das Integral ist mit-
tels des Integralsatzes von Gauß auszuwerten und hierbei die Parameterdarstellung
x = asin n9cos qz, y = bsin Ssinrp, z = ccosö zu benutzen.

23.4. Durch direktes Ausrechnen bestätige man den Integralsatz von Gauß beim Vorlie-
gen der Kugel (Mittelpunkt (0;0;0), Radius R) und des Vektorfeldes

a) r = xex + yey + zen b) rr(r = lrl). c) f(r)r.

23.5. Man berechne ä FdA (dA nach außen gerichtet) mittels des Integralsatzes von

Gauß:

a) F= (xz + (x’/3))e„ + 2ze"’ey + (zyz — (22/2) - xz’e"’)e, mit A = A1 u A1, wobei

A1:z=(x1+y1)1’1‚ Ogzén/2—; A1: x’+y1;2‚ z=1/2_,(Bild23.1),

Bild 23_1 Bild 23.2

b)Fwieina); A=A1uA1 mit A,:z=(x1+y’)"2, 0_S_Z.S_1;

A2:z=2—(x’+y1)m, 1§z§2, (Bild23.2),
c) F wie in a); A=A1uA1 mit A1: z=(x’+y’)"’‚ 0:222; A1: z=6-x’-y’,

2 g z g 6, (Bild 23.3),

d) F wie in a); A=A1uA1uA3 mit A1: z=(x’+yZ)“2, O§z§2; A1: z=-1,
x2+y1§4; A3:x2+y1=4, -1§z§2,(Bild23.4),

E) 22.12.bo()‚

D F=xze,,+ze,‘+yze,, A=A1UA2, A1: z=(x-l)2+(_y—2)2‚ 0§z§4; A1: z=4,
(x -1)1 + (y — 2)7 ä 4, (Bild 23.5),
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II,I.fl)

X X

Bild 23‚‘4 Bild 23.5 Bild 23,6

g) F= (2y cosx'+. 4x1)ex + (yzsin x - 3xz2)e‚ + (exp(xy7) - 6xz)e„ A = Oberfläche
eines Körpers, der begrenzt wird von den Ebenen y = x + 2 , y = 2 , x = 4, z = 0,
3x + 6y + z = 60, (Bild 23.6),

h) F= [(lny) cos (z’)]e,, + Sxzyz e, - [sinh(e’) + cosh(xy2)]e,, A = Oberfläche eines Kör-
pers, der begrenzt wird von den Flächen z = 2, z = 3, xi +y2 = 16,

i) F= (1n(yz1))3e,‘ + exp(cosx)e, + (1/3)yz3e,, A wie in h),

j) F=f(r) (r X e‚), r = |r|‚ r = xe, + yey + 22„ f(r) differenzierbar, A = Oberfläche
eines beliebigen beschränkten Körpers.

23.6. Man formuliere für

a) F = UC (U: beliebiges Skalarfeld, C: beliebiges konstantes Vektorfeld) den Integralsatz
von m) Gauß; ß) Stokes, _

b) F = B X C (B ein beliebiges, C ein konstantes Vektorfeld) den Integralsatz von Gauß.

e) Aus den Ergebnissen von au), aß) und b) folgere man Formeln, die C nicht mehr ent-
halten,

23.7. a) Mittels des Integralsatzes von Gauß zeige man, daß der Vektorfluß

ß (r/r’) dA (r = |r}) durch jede geschlossene Fläche A, die (0;0;0) umfaßt, stets den
gleichen Wert liefert.

b) Man berechne den in a) genannten Wert durch Wahl einer hierzu günstigen Fläche A.

23.8. Man berechne H rot FdA a) mittels des Integralsatzes von Stokes; D)‘ direkt für

a) F= —e,+ (x/2)z2e‚+xe„ A: x2+y=+ z2=4, z; als", e‚-d‚4 >o‚ '

b) Fwieina), z=\/§,x2+y’§1, e,~dA<0.
c) Man behandle b) unter Benutzen des Ergebnisses von a) mittels des Gaußschen Inte-

gralsatzes. '

d) r=fixyz-*e‚+(y1—x1)e‚+x2ze„ A: x2+y’;_zä2, y=x‚ x20, e,-dA<o,
(Bild23.7),

e) F=xze,—xye,+3xyz2e,, A: (x2/4)+(y’/9)—(z’/16)=1, x;0, y;0, 0§z§4,
e,~dA < o, (Bild 23.8),
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Gerade y:X

deI!x,y}-Ehzne 7 I H7 1'

Bild 23.7 Bild 23.8

i) F=(x+y)e‚„-4xzey+yze„ A: (X2/16)+(y1/9)-z1=0, xg0, y_Z_0, O§z§2,
e,-dA<0 (Bild22.9),

g)F=x1y3ex+3x3y’ey, A:z=(R’—x’—y2)‘”, x2+y’§RZ, e,~dA>0.

23.9. ä (x(1 - z)dx + (y + z)dy — (y - z2)dz) ist längs derjenigen geschlossenen Kurve C

zu erstrecken, die sich als Schnitt der Flächen z = (x + 1)1 + yz und z = 2(x + 1) ergibt
und deren Projektion in die (x,y)-Ebene im mathematisch positiven Sinn orientiert ist.
Die Berechnung erfolge a) direkt, b) mittels des Integralsatzes von Stokes.

23.10. Man berechne ff Fdr für F=f(r)r (r = |r|‚ r = xe, +ye‚ + ze‚) längs der Kanten
eines achsenparallelen Quadrates der (x‚y)-Ebene mit der Kantenlänge 1 und dem Zen-
trum (0; 0) (mathematisch positiv orientiert) mittels des Integralsatzes von Stokes.

23.11:‘ In einer Flüssigkeitsströmung mit dem Geschwindigkeitsfeld

v = i uk(x1, X2, x3)e,, ist zum Zeitpunkt t = 0 ein Bereich V0 durch die kartesischen Koor-

dinakten (n1, uz, a3) seiner Punkte gegeben. Diese wandern längs der Bahnkurven

r(u„ a1, a3, t) = i xk(u,, a2, 113, t)ek (Sr/at = v) und bilden zum Zeitpunkt t den Bereich
k=l

V, (Bild 23.9).

Bild 23.9
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a) Man zeige:

T‘; _[|]' U(x1, x2, x3)dV, = fl] (vgrad U+ Udiv o)dV, = j]] div(Uv)dV, = j] UvdA.
Vv V.

Zum Beweis gehe man von

1]] Udv, = [U U(X1(U1,“2,143a1)»Xz(-«-)a
V. Vu

311S.

30% X2 ‚X0
x3(m)) 3041» "z. V3) dVD

b) Wie ist das Ergebnis von a) im Fall U = U(x,, xz, x3, t) zu erweitern?

c) Man identifiziere in b) das U mit der Dichte g der Strömung und benutze, daß die
Masse von V, sich bei variablen t nicht ändert.

d) Da V, beliebig ist, folgt aus m (...)dV‚ = 0 das Verschwinden des Integranden. Wel-

cher partiellen Differentialgleichung genügt daher g aus c)?

e) Wie spezialisiert sich d), falls eine inkompressible, d. h. unzusammendrückbare Flüs-

sigkeitsströmung vorliegt, also m dV, = const(t ä 0) gilt?



24. Gewöhnliche Differentialgleichungen 1. Ordnung
(au. 7/1, 2.)

24.1. Welche der folgenden Gleichungen sind gewöhnliche Differentialgleichungen
1. Ordnung für y = y(x)?

a) y’=i/;y‚ b) y’=xi/;‚ c) lny’+ln(e/y-’)+xy=0‚
1 1

d) y'= Ie*"*xy<x>du, e).v'= Ie*“y(u>du,
u=0 u=0

0* (F01, z) — z ) = C = const mit F(y, z) = y(1 + i)“, y > o (durch Rota-
1 =y’

tion von y= y(x) (a g xg b) um die x-Achse entsteht Rotationskörper kleinster
Oberfläche),

g)‘
Iemperatur-He/ioryebnis

Wrmabpabe Ay

Energiequelle

Cy’ = [L- Äy, y: Temperatur; x: Zeit; c: Wärmekapazität; ‚i: Koeffizient der Wärme-
abgabe;_N: zugeführte Leistung. Es ist entweder N = No („eingeschaltet“) oder N = 0
(„ausgeschaltet“), Mit den Konstanten y1 und y; (0 <y1 < y; < No//1) gilt: Die Lei-
stung N wird (oder ist) eingeschaltet, wenn y g „v1, ausgeschaltet, wenn y g y; ist.

24.2. Man skizziere in der (x, y)-Ebene für die folgenden Differentialgleichungen einige
Kurven, in deren Punkten durch die Differentialgleichung jeweils der gleiche Anstieg y’
vorgeschrieben wird, d. h., man skizziere einige Isoklinen und versehe sie mit zugehörigen
Richtungselementen. Weiterhin sind in den Fällen a) bis d) jeweils alle Lösungen zu be-
stimmen und einige in das skizzierte Richtungsfeld einzutragen.

a) .v'=1+.v7, b) .vy’= 1, c) xy'=y‚ d) yy’= ~x,
e)‘ y” + 2My’ — 1 = 0 mit M= (ax — o',)/21”, wobei a, = y{(l/h)x + 2(l/h)2y},

1„ = —y(l/h)y‚ a, = yy(0 g x g l; -(h/l)x g y g O) ist. (Die Kurven y(x) sind Haupt-
spannungslinien einer längs x =I eingespannten Konsole unter Eigengewicht (y:
spezifisches Gewicht).) Zahlenwerte: I = 10, h = 4 (vgl. 24.14.e)* und 24.14.0‘).

24.3. Man bestimme eine Differentialgleichung 1. Ordnung für differenzierbare Funktio-
nen, deren grafische ‘Bilder auf der folgenden Kurvenschar liegen:

a) Alle Kreise, die durch (0; 0) gehen und deren Mittelpunkte auf der x-Achse liegen,

b) y=aexp(x/a)‚ c) ‚v=x+ ax" (a*0), d) y’=(x+ a)x;
e) y=ln(1+ ae"),
0' ä: = a + t+ sin t, y = 1 — cost (t: Kurvenparameter der Parameterdarstellung der

Kurven; a: Scharparameter).

24.4. Gesucht sind die orthogonalen Trajektoren der Kurvenschar (a: Scharparameter)

a) yz-ax=0, b)x’—y’=a.
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24.5. Man gebe ein möglichst großes t-_Interva1l derart an, dal3 dort die Funktion h(t)
= (g/2) (t - e)“, (g > 0, c: Konstanten); h = —(2gh)"’ erfüllt.

24.6. Man gebe die allgemeine Lösung der folgenden Differentialgleichungen an:

a) y’ = x16‘, b) y’ = 2xexp(x’).
c) y’(l + x2) = arctan x, cl)‘ y’ = ]x|3.

24.7. Man bestimme alle Lösungen der folgenden Differentialgleichungen:

a) 24.1.a), b) 24.1.13),

c) 24.1.11), d) 2x7y’ +y2 = 0,

e) y’=xy(1-X2)". f) y'=2x’(1+y’)‚
s) y’=e‘y“. ‚ h) y'=(v-3)cosx‚
i) x=sinx, j) )E=exp(t—x),
k) z(z+1)x+(z—2)x1=0, 1) xx+r1=0,
m) m’ = 4x42’, n) r’ + r” =1(r= r(oI)),
o) w’ = exp(-y’), p) y’ = 9y’ - 4,

q)‘ 24.1.0, beachte: _f(xZ —1)“” dx = arcoshx.

24.8. Man gebe die Lösungen y = y(x) der folgenden Differentialgleichungen in der Ge-
stalt x.= x(y) an: -

a) x2y2y'+1=y, b) xy’+2y=xyy’, c) x’y’.v'=y’+1-

24.9. Man löse folgende Anfangswertaufgaben:

a)y'=xy+2x; y(0)=2, b) y’=(1+y)"’2, y(1)=3,
c)(x2-3)y’-21/3‘y=0, y(0)=1, d) zz’=exp(-z’)‚ z(0>=’1.
e) xyy’+y2+1=0, y<—1/2)=»/T f) x+yy’=0‚ y<1)=—»/T
s) y’=2é’y’. y(0)= -1,
h) y’=1-y’ mit o<)y(0)=0; B)y(0)=1; v)y(0)= -1-

24.10. Man bestimme die allgemeine Lösung der linearen homogenen Differentialglei-
chung:

a) y'+x’y=0, b) y'=ytanx,
c) tX+x=0, d) 2)'c+5x=0,
e) (2+x’)y’+xy=0. f) (x’+x-2).v’=3y-

24.11. Man bestimme die allgemeine Lösung der linearen Differentialgleichung

a) (x7 + 2)y' + xy — x(x2 + 2) = 0, ‘b) (x2 +1)y’+ xy — x(x2 + 1) = o,

c) xy’+y=xsinx, d) y’+(x+1)“y=4e2",
e) y'+ysinx=3x3exp(cosx), i f) 2xcos(x’) =xy’+y,
g) y’ -ycosx = 2exp(sin x), h) y’ + 2y = 25x’e3".

i) LI + RI = U9 sin (wt), (I: Stromstärke, R: Ohmscher Widerstand, L: Induktivität,
U0 sin (wt): Wechselspannung). In der Ergebnisformel sind alle additiven Glieder weg-
zulassen, die fiir t—> 0° nach Null streben. Was ergibt sich speziell für L-> + 0?
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24.12. Die folgenden Anfangswertaufgaben sind zu lösen:

a) y=x(1-x)y’+x2+1, y(2)=5, b) xy’+(y+1)lnx=0, y(1)=-1,
c) (x’+2)y’—2xy=3(x1+2)’, y(—1)=6,
d) (t’+t—2))'c—3x—(z—-1)‘=0, x(0)=—1,

e) y'=ytanx+1, y(1r/4)=1+a/2_,

0 xy’+y+xe‘=0, y(1)=0, E) y’+x’y=x1‚ y(2)=1.
h) (t1 —~ 1)3é = x + (t’ -1)“, x(2) = 1,

i) y’+ycosx—sinxcosx=0, y(0)=1,
j)‘ 24.1.g) mit y(0) = 0. Es gibt x0 derart, daß y(x+ T) =y(x) (xog x< 0°) gilt. Wie

groß ist T?

24.13. Welche Lösungskurve y = y(x) genügt y’ + 2xy = gf(x) und geht durch P, falls z(x)
bzw. P gleich sind:

a) 2x exp(—x2), P(0; 1), b) 2x, P(1;1+(2/e)),
c) exp(-X2), P(1;e") , d)‘2x(x2 +1), P(0;1)?

25.14. Man zeige, daß die folgenden Differentialgleichungen in der Gestalt y’ =f(y/x)
(Ahnlichkeits-Differentialgleichung) angebbar sind. Mit y(x) = x - z(x) leite man jeweils
eine Differentialgleichung für z(x) her. In den Fällen a) bis d)‘ ist danach z = z(x) und
damit y = y(x) zu berechnen.

a) xi + xy'+y1 - xzy’ = 0, y(-—e) = -etan 1,

b) X50" = xiv’ + y‘. c) xy' = y(lny - In x),
d)" (x -y)y’ = x + y (Ergebniskurven y =y(x) in der Gestalt r= r(q1) angeben, wobei

(r, qz) ebene Polarkoordinaten sind),

e)* _ (vgl. 24.2.e)*): y’ = —M+ (M? +1)“ mit M= —(l/2)(x/y) - (23/10), (0 g x g 10;

-(4/10)x g y g o). Die Lösung y = y(x) ist in der Gestalt x = x(z) = cexp{f [R(z)

+ (Q (z))m/P(z)] dz} , y = z ~ x(z) (P(z) Polynom dritten Grades, Q(z) zweiten Gra-
des, R(z) rationale Funktion) anzugeben. Wie lauten P, Q, R?

f)‘ Man zeige: In 24.14.e)“ lassen sich die Lösungskurven y=y(x;C) (C: Scharpara-
meter) in der Parameterdarstellung

x = x(z) = x(z; C), y = y(x(z; C); C) = 2- x(z; C) (z: Kurvenparameter)

angeben durch x = x(z; C) = Cf(z) (-4/10 g z g b < 0 mit x(b; C) = Cf(b) = l0;
0 < c < l0/f(—4/10))‚

wobei f(z)=|z!""(P1(z))m(P2(z)) <P.<z>)

ist mit 1=,(2) = 5o + 2302 +1o(Q(2))‘”, P1(z)=1200 + 6 5202 + 260(Q(2))“,
P3(z) = -4200 — 27 3202 +1160(Q(z))‘/2.
Hierbei gilt 9(2) = 62922 + 2302 + 25 und
10//(-4/10) = 101/210013/1713 4567““ = 372,952.. (Bild 24.1).

'13/Z7 -29/108

24.15. Von den folgenden Differentialgleichungen löse man diejenigen, die

I. mit der Methode der Trennung der Veränderlichen gelöst werden können,
II. linear sind,
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III.

a)

c)

e)

s)

i)
k)

m)

o)

q)

s)"

24. Gew. Differentialgleichungen 1. Ordnung

Bemoullische Differentialgleichungen sind:

b) y’ = 2x + 5y,

d) y’-y+xy2=0.
f) y’-4y/x=x\/)7,
h) t1x+2rx—3=0,
j) x - tx= (t- 3)exp(3t),
l) y’ = tan xtany

(0<x<1r/2; 0<y<1r/2)‚
n) y’=tan(xy)‚
p) y’ + (x +1)"y= 4e“,
r) (4flx’y)’ = axzy,
t) y’ = e‘ —y2 .

y’=xy,
y’+2xy=x,
x’+y-xy’=0,
(t2+3);e+tx=3t,
y+1+eY=0,
(1-x2)y’-xy-axy’=0,

X=exp(t—x),
x’y’+2xy—3=0,
xy’+(y+1)lnx=0, y(1)= -l,
2x.vy’+x-.vZ=0‚

24.16. Von den folgenden Differentialgleichungen sind die exakten zu lösen. Die übrigen
sollen mittels eines integrierenden Faktors der Gestalt u = u(x) oder ‚u = u(_y) gelöst wer-

den (keine Auflösung nach y in g) und k)):

a)

c)

e)‘

s)

h)

i)
k)

1)

m)

(yZ + ZXyNX + (x2 + 2xy)dy = 0,

y3y'+x3+x2yy’+xy1=0, d) xu’=2xcos(x1)-u,
(x-y)y’dx+(1-xy’)dy=0, 0_(x’+y)dx-xdy=0,
(3x2y—1)dx+(x3+2ysin(2y))dy=0,
(1 - x’)y’ = xy + (x/y).
x2+y2+2x+2yy’=0,
y—2xsiu(x1)+(x+cosy)y'=0,
(y’~2x—2)dx+2ydy=0, y(1)=—1,
(3x—_v+4)dx-(x+2y+1)dy=0, y(1)=1.

b) 3x(x + y)2 + (ZX3 + 3x’y)y' = 0,

i) 2xyy'+y’-x’=0.

24.17. Nach dem Verfahren von Runge—Kutta sind mit der angegebenen Schrittweite h

die folgenden Anfangswertaufgaben zu lösen. Parallel hierzu führe man die Rechnung
mit der doppelten Schrittweite durch und Verbessere damit laufend die Näherungswerte
der ursprünglichen Rechnung. Man nehme jeweils 6 Dezimalstellen mit.

a)

b)

c)

d)

e)

f)

s)‘

h)’

y’ =,(Y/10) Ü)’ ’ X)“. y(0)=1, h = 0,5.
24.15. n) mit y(0) = 2, h = 0,2, zwei Schritte,

24.15. t) mit y(-1) = e ' m, h = 0,4, zwei Schritte,

y’ = x’ + yz, y(0) = l, h = 0,1, vier Schritte,

y’ = y - 2xjy‘1, y(0) = 1, h = 0,2, zwei Schritte,

y’ = (2x)“(x1 + yl), y(2) = 0, h = 0,2, vier Schritte,

y’ =f(x), y(a) = 0, Bezeichnung der Schrittweite durch 2h mit h = (2n)“(b — a),
b

zwei Schritte,

n Schritte. Folgerung für I f(x)dx?

Dgl. aus 24.14.e)‘ mit y(5) = -2‚ h = 0,1 (oder 0,2), einen Schritt. Man bilde y(5
+ h)/(5 + h) = zu und prüfe, ob mit z= zu das Ergebnis aus 24.14.f)‘ zu
dem hier gefundenen Ergebnis führt.
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(34.7/1, 3.; 13a.7/2, 5.; ms, 4.5.5.)

25.1. Man löse die folgenden Differentialgleichungen und Anfangs- bzw. Randwertaufga-
ben:

a) y" = 2x, y(0) = y’(0) = 0, b) y" = 4C05(2X), y(0) = 0, y'(0)=1.
c) (2 +y”)’ = x’, d) (1 + x)‘y“’ = 1

e) y”cos’x =1, y(1'r/4) = (1/2)ln2, y'(1'r/4) = 1,

f) w“’= (EJ)“q(x) [w(x): Balkendurchbiegung, EJ: konstante Biegesteifigkeit, q(x):
senkrecht zur Balkenachse 0 g x gl wirkende Streckenlast], w(0) = 0, w’(0) = 0,
w(l) = 0, w”(l) = 0 (d. h. Einspannung an der Stelle x = 0 und gelenkige Lagerung
bei x = I). Wie lautet der größte Wert von |w(x)[(0 g x g I)? Zahlenwerte: I = 3 m,
EJ = 6,5-10‘Nm’, q = const = 1500 N/m (Bild 25.1),

W

Bild 25.1 Bild 25.2

g) w“) = 0, Randbedingungen und Zahlenwerte wie in f), jedoch w(l) = 0 durch w”’(l)
= —(EJ)“F ersetzen (d. h. an der Stelle x = I keine Lagerung, jedoch dort Belastung
durch Einzelkraft F senkrecht zur Balkenachse), Zahlenwert F = 1 SOÖ N (Bild 25.2),

h)‘ 5c’ + kJ'c|x| + g = 0, x(O) = 0, 36(0) = vo > 0, k > 0 (senkrechter Wurf mit Luftreibung).
Im Ergebnis mache man anstatt v0 die Steigzeit I, und die Steighöhe x, sichtbar. Es
gilt x(t) = A + B(t — 2,) + R(t) mit R(t)—>0 für t—> w. Wie lauten die Konstanten
A und B’!

25.2. Mittels der Energiemethode oder auch gemäß 25.3. löse man:

a) y” =y“”‚ y(1)=1‚ y’(1)= 2,
b) )E—2x’=0, x(-2)=1, ;‘c(—2)=1,

c) y” =2e’‚ y(0) = 0, y'(0) = -2‚
d) u" = u’, u(0) = 1, u'(0) = (2/3)“,
e) y” = 2y(y’ +1)‚ y(0) = 0. y'(0)=1‚
i) 2'c‘=2x(1+21nx), x(0)=e‚ x(0)=2e,
g)’ m)? = —kx“ (k > 0), (die Punktmasse m wird vorn festen Punkt x = O angezogen),

x(0) = x0 > 0, 36(0) = 0. Man gebe x = x(t) in der Gestalt t = r(x) an und berechne
no

T= lim t(x) für x—-> +0, indem man einerseits im Integral z! = I e"t'dt die Substi-
0

tution u = e" durchführt und andererseits (—1/2)! = y]; beachtet.

h)‘ my’ = —qy(1 + syi) (c > 0,3 > 0) , y(0) =yo,y(0) = v.) > 0 (freie nichtlineare Schwin-

gung mit überlinearer Charakteristik). Ergebnis in der Gestalt t = I f(y)dy angeben.

Die Schwingungsdauer ist T= A I [(a + y’) (b — yz)]’m dy mit der unteren bzw. obe-

ren Integrationsgrenze — b“ bzw. b". Welche Werte haben A, a, b?
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25.3. Man zeige, daß die folgenden Differentialgleichungen die Struktur y” = f(y‚ y’) be-
sitzen. Man stelle jeweils für p = y’ als Funktion von y, also für p = p(y)‚ eine Differen-
tialgleichung auf, löse sie und bestimme danach y = y(x).

a) y.v"=y'1‚ b) w”=2(v)’‚
C) }7=)'J?, y(0) =)‘(0) = 1‚ d) y” = eyy’, y(0) = 0, y’(0) = 2,

e) y"=y’(1+tan‘y), y(0) = Tr/4, y'(0)=1,
vi) 5c‘ = JE(1+1nx), x(0) = x(0) = e‘,

g)’ m)? + kJ&|X| + cx = 0, (k > 0, c > 0), x(0) = x0 > O, x(0) = 0 (freie Schwingung,
Dämpfung durch Newtonsche Reibung). Dgl. für p = p(x) (p = X) in der Gestalt pdp
+ g(x,p)dx = 0 schreiben und zunächst einen integrierenden Faktor u = u(x) be-

stimmen. Endergebnis in der Gestalt t = f f(x)dx angeben. ‘

25.4. Gegeben ist das Funktionensystem (y‚(x)‚ ...‚y„(x)): I) x, x’; II) Le", e"; III)
e"‚coshx‚sinhx; IV) 5,1 - x; V) x‚x+ l‚x + 2; VI) x“sin x,x"‘cosx; VII) x,[x|;
VIII)y,=xz fiirx§0,y1=O fiirxg0,y1=0fiirx§0,y1=x’fiirx;0.
a) Man bestimme jeweils den gemeinsamen größtmöglichen Definitionsbereich,
b) man bilde die Wronskische Determinante,

c) man bilde für die Funktion y(x) =y,,+1(x) die Differentialgleichung det (y‘„”’(x))
=0(k=1,...,n + l; v=0,...,n),

d) man folgere - falls möglich - aus b) und c) oder beweise direkt die lineare Unabhän-
gigkeit bzw. Abhängigkeit des Funktionensystems bezüglich des Definitionsbereiches
aus a). -

25.5. Wie lautet die allgemeine Lösung der folgenden linearen homogenen Differential-
gleichungen mit konstanten Koeffizienten?

a)‚v”+2y’-3y=0‚ b) y”’-y”-2y’=0‚
c) 2y"+3y'+3y=0, d) y'"+y=0,
e) x‘”—7:E—6x=0, f) y"+4y'+8y=0,
g) )':'+2X+10x=0, h) y“’+8y”+16y=0,
i) y”'—3y”+3y’-y=0, j) y“’—3y”’—2y”+2y’+12y=0.

25.6. Man löse die folgenden Anfangswertaufgaben:

a) y" + 2y’ +.v = 0, y(0) = 3, y’(0) = 0,
b) 4y" +y = 0, y(0) = 0, 2y'(0) = 1.
c) z” + 42’ + 292 = 0, 2(0) = 0, z’(0) = 15,

d) 4y"' + 12y" + 9y’ = 0, y(0) = y'(0)=1, .v"(0) = '3,
e) y'" — 3y" + 4y = 0, y(0) = 0, y’(0) = 4. y"(0) = 7‚
f) m)? + kx + cx = 0, x(0) = x0, x(0) = O, Zahlenwerte: m =50 g, k = 0,5 Ns/m,

c = 0,45 N/m, x0 = 2 cm, (N = kgms'7). Nach welcher Zeit T ist der Ausschlag x(t)
auf (1/100) mm zurückgegangen?

g) Wie f), jedoch k = (1/6) Ns/rn. Für welches (möglichst kleine) T gilt |x(t)|
g (1/100) mm für alle I mit t g T?
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25.7. Man löse die folgenden linearen inhomogenen Differentialgleichungen mit kon—

stanten Koeffizienten:

a)

c)

e)

g)

i)
i)
k)

l)

b) y... _y, = _2x‘

d) y‘-2y+2y=2t,
y” + 4y’ - 5y = 2x,

y“” + 4y” = x(1- x’),
y”’-7y”+6y’=cosx, t) y”’+2y”+y’=2sinx‚
ji+9y=cos(3t)‚ h) r“”+2r”+r=cosqz,
y<4> + 2y”' + 5y” + 8y’ + 4y = cos (2x),
52'-y—6y=4cosh(2t),
y" — 4y’ + 13y = e" sin (3x),
y” — 2y' - 8y = 4 + 3e"‘ —18xe‘2" + 20sin(2x),

m)‘ y” — 4y = (x2 + 1) cos x,

n)‘ y" + 2y’_+y = cos2x- sinx.

25.8. Man löse die folgenden Anfangswertaufgaben:

a)

b)

c)

d)

e)

D:

g)‘

16y" + 8y’ +y = -30, y(0) = 1, y’(0) = o,
y"+2y'+ 5y= 5x+2, y(0)=0, y’(0)=1,
y'" — 4y” — 3y’ + 18y = 8e” — 54x2 + 63, y(0)=10, y'(0) = o,

y'” + 4y’ = 4x — s,
y”(0) = 5.

y(rr/2) = (1/s)n2‚ y'(1l’/2) = n/2, y"(1r/2) = o,
I mit’ + kx = F(t), m > 0, k > 0, x(0) = 0, x(0) = 0 (erzwungene Schwingung), wobei (x)

F= const= 17.,; ß) F= ut(a >0);y) F= Foexp(—azt), a: >0,
(m,+ m,)y'+ ky+ cy=(m, + m,)g+ Zcos(wt), c= 3EJ/I3, k>0, Z= mzrwz,
y(0) = 0, y(0) =0 [Auf dem Balken von 25.1. g) wird die Kraft F im Schwerefeld
durch einen Motor mit der Masse m, und von einer Punktmasse m, erzeugt, die sich
auf der Motorschwungscheibe im Abstand r von der Achse befindet. Der Rotor des
Motors dreht sich mit der Kreisfrequenz w. Die Durchbiegung y(t) an der Stelle
x =l fiihrt erzwungene Schwingungen aus, wobei der Balken wie eine (masselose)
Feder mit der Federkonstanten c (siehe Ergebnis von 25.1. g)) wirkt, und die Rei-
bungskraft ky und die Zentrifugalkraft Z vorliegen] Zahlenwerte:
I = 1 m, EJ = 6,5 - 10‘ Nmz, m1 =12 kg, m; = (1/2) kg, r = 30 cm, g = 9,81 ms”,
k = 156,125 Ns/m, w = 21m mit n = 3 600 Umdrehungen pro Minute.

m2?+ cx = g(x,;‘c)(c>0,R >0), wobei g(x,:‘c) = —R(x/[J&|) für — w < x< +oo‚
X¢0; g(x,:':) = cx für |x| §(R/c), )'(=0; g(x,x)=0 für ]x| >(R/L‘), >2=0;
x(O) = xo > (R/c), x(0) = 0 (freie Schwingung, Dämpfung durch Coulombsche Rei-
bung).

25.9. Welchen Ansatz macht man jeweils für eine panikuläre Lösung von

a)

b)

c)

d)

y“) -y”’ + 3y” + Sy’ = g(x), wobei g(x) gleich ist Ix) 2x’ + 3x3; ß) 2e“;
y) (4x - 5)e”‘; ö) 3x cos (2x); e) e" sin x; C) e"(4 sin (2x)-3 cos (2x));
r|) 4x e‘ cos (2x); S) 2 + cosh x; l) sinh’ x,
y”’ + 4y” + 13y’ = g(x), wobei g(x) gleich ist 1x) 36-x e“; ß) e‘Z"cos (3x);
y) 2sinh (2x) - sin (3x); ö) {e" + e”‘}’cos (3x) - n“,
x“) + 5c‘ + 4;? + 4x = g(t), wobei g(t) gleich ist oz) tie”; ß) e"cos (21);
y) e" + cos (21); ö) 't2sin(2t),

y”’ + y" - Sy’ + 3y = g(x), wobei g(x) gleich ist or) x’exp(—-3x); ß) 2e"; y) —4xe",
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e)’ Z my") = g(x), v = 0,1, av reel], wobei Z am," = 0 die Lösung

y„ = xlexp (2x) cos (3x) besitzt und g(x) gleich ist (X) exp (2x) sin (3x);
b) exp (2x) + sin (3x); y) x exp (2x) cos x; ö) xzexp (2x) cos (3x);
e) cos (3x) + sin (2x).

25.10. Die folgenden Eulerschen Differentialgleichungen und Anfangswertaufgaben sind
zu lösen. Die unabhängige Variable der Lösungsfunktion wird stets als positiv vorausge-
setzt.

a) xly" — 3xy‘ + 4y = 2x, b) x2y’" — xy” + y’ = 3x’,
c) 4x‘y” - xy’ +y = x2 + lnx, d) x‘y(" + 3x1y" — 7xy’ + 8y = 0,

e) x1y”+ 5m’ + 3y =0. y(1)=y’(1)= 1,

0 x’y” + xy’ -y = 2x, y(1) = y’(1)= 2 ‚

g) tZ:E—tx+x=1nt.

25.11. Mittels der Methode der Variation der Konstanten löse man:

a) y"-4y’+4y=9xe“lnx, b) y”+2y'+y= —e"‘x“7,

c) y"’+y=2(cosx)",|x|<1r/2, d) y”+3y’+2y=(1+e")"‘-
e) y”-2y'+5y=e"{cos(2x)}A1, i) xZy”~2xy’+2y=x3cosx,
g) xy”+2y’=sinx, h) y”—6y’+9y=x'3(9x1+6x+2),
i) x1y”+4xy’+2y=cosx, j)’ ;'c‘~4;é+4x=9te"lnt,
k)‘ mit’ + kx = F(t), m > 0, k > 0, x(0) = x(0) = 0 (erzwungene Schwingung), wobei

oc)F(t)=Fofi‘u0§t§T, F(t)=0fi'1rt>T;
fi)F(t)=(Fo/T): fir 0§t§T, F(t)=Fofiirt>T;
y)F(t)=(F0/T)t für 0§t§T, F(1)=0f.'1rt>T.

25.12. Man löse die folgenden Randwertaufgaben:

a) y”+rr’y=0 mit a) y(0)=0‚ y(3/4) =0; ß)y(0)= 1, y(1)=0;
v)y(0) = 0. y(1) = 0,

b) EJw“’ + Fw’ = 0, w(0) = O, w’(0) = D, E.Iw”(0) — Fw(I) = Fa (Druckkraft F > O, kon-
stante Biegesteifigkeit EJ, Einspannung an der Stelle x = 0, außermittiger Angriff
von F an der Stelle x = I; Angriffshebellänge a). Für welches a liegt eine Eigenwert-
aufgabe vor (Bild 25.3)?

c) EJwW + Fw" = q, sin(7'rx/I) + q1sin(21!x/I), w(0) = w”(0) = w(I) = w”(I) = 0 (beider-
seits gelenkig gelagerter Druckstab mit spezieller Querbelastung, Bild 25.4).

4,5m rJrx/ll

X X

£11 sin (Imr/II

F F

Bild 25-3 Ü T Bild 25.4
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d)* EJ(a‘w/ax‘) + ;4(a1w/afl)-—— 0, (a2w/8x’),=„ = (am/axöm, = ‚ (aw/ax),,, , = 0,
w(1, t) = usin(wt), wobei w(x‚ t) = y(x)sin (wt) ist. (Balken, unbelastet, keine Lage-

’ I
z Bild 25.5

W

rung an der Stelle x = O, eingespannt an der Stelle x = I, die periodisch bewegt wird.
EJ konstante Biegesteifigkeit, u konstante Masse pro Längeneinheit, Bild 25.5).

25.13. Mittels der Methode der Variation der Konstanten löse man die folgenden Rand-

wertaufgaben fiir Greensche Funktionen y(x) = G.(x‚ i) [i Parameter, f f(x)ö(x
- 7E)dx = f(2E), falls ein bestimmtes Integral vorliegt und JE sich im Integrationsintervall

befindet, I f(x)6(x — )?)dx = O, falls f nicht im Integrationsintervall liegt).

a) -y" = 6(x - f) mit ¢x)y(0) =y(I) = 0; B)y(0) =y'(I) = 0-,

b) W’ = Ö(x - i) mit Ix) .v(0) = y'(0) = y"(l) = y'”(1)= 0;
ß) y(0) =y"(0) = y(/) =y"(l) = 0.

C ("(1 + x‘)y')' = t5(x - f) mit 0Oy(0) =y'(l) = 0; [5)y(0) =y(l) = 0,
d) ~y” + y = 6(x — J?) , limy(x) soll für x-> - 00 und für x—> +00 existieren,
e) -xy” - y’ = ö(x - f), y(1) = 0, limy(x) soll für x—> +0 existieren,

f) -y" r Izzy = 5(x - f), y(0) =y(I) = 0.

V

25.14. Wie lauten die Eigenwertgleichungert der folgenden Eigenwertaufgaben? Man
gebe den kleinsten positiven Eigenwert — falls möglich — exakt an, andernfalls näherungs-
weise. Wie lauten die zum kleinsten positiven Eigenwert gehörigen Eigenfunktionen?

a) EJw” + Fw = 0 mit (X) w(0) = w'(l) = 0; ß) w(0) = w(I) = 0 [Druckstab‚ der a) in
einem Randpunkt (x = I) eingespannt; ß) beiderseits gelenkig gelagert ist; Bild 25.6],

ß

u x=l X

Y

a!) F I x
F I“ K

W x=l
1:1 y

F ’ k
ß) F X 1) k X

y x=l

Bild 25.6

6/ Fl Ä

Bild 25 7 ’

b) E/y"" r uw’y = 0 mit ox) y(0) = y”(0) = y(1) = y”<1)= 0; ß)‘ y(0) = y’(0) = y”(1)
= y”’(l) = 0; v)" y(0) = y'(0) = y(1)= y'(l) = 0; Ö)‘ y(0) = y'(0) = y(1) = y"(l) = 0 [Ei-
genschwingungen w(x, t) = y(x) cos(wt) eines Stabes, der oc) beiderseits gelenkig ge-
lagert; ß) einseitig (x = 0) eingespannt; y) beiderseits eingespannt; ö) für x = 0 einge-
spannt und fiir x = I gelenkig gelagert ist; u: Masse pro Länge; Bild 25.7],

4 Wenzel, Ueb, Analysis 2
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c)‘ EJw“) + Fw” + cw = 0, w(0) = w"(0) = w(l) = w”(l) = 0, Eigenwertparameter: F> 0
(beiderseits gelenkig gelagerter Druckstab, gebettet mit der Bettungsziffer c,
Bild 25.8); {Zahlenwert-Bsp: c = 10‘ (EJ/l“)].

25.15. Mittels eines Potenzreihenansatzes löse man:

a) y” = (x1 + 2)y, y(0) = 1, y’(0) = 0. Entwicklungsstelle x = 0, Berechnung bis zum
Glied mit der achten Potenz.

b) EJw”’ + yxw’ = 0, w(0) = (0), w” (0) = 0, w’ (I) = 0, I: Eigenwertpararneter, [Knickung
des vertikalen einseitig eingespannten (x = I) Stabes infolge seines Eigengewichtes (y:
Gewicht pro Längen, Entwicklungsstelle x = 0. Abbruch nach dem Glied mit der sie-
benten Potenz. Hiermit Näherungswert fiir den kleinsten Eigenwert I ermitteln
(Bild 25.9).

c) 25.2. g)‘, Entwicklungsstelle t= 0, Abbruch nach dem Glied mit der vierten Potenz.
Hiermit Näherungswert für T herstellen und mit dem Ergebnis von 25.2. g)‘ verglei-
chen.

d) y" - xy’ - y = 0, y(0) = 1, y’(0) = 0, Entwicklungsstelle x = 0. Das Ergebnis ist gleich
welcher elementaren Funktion?



26. Systeme von gewöhnlichen Differentialgleichungen
(Bd.7/1‚ 4.)

26.1. Man bestimme die allgemeine Lösung der linearen homogenen Differentialglei-
chungssysteme:

a) x—2x—8y=0, y—3x+8y=0‚ b) x=—Sx+3y, y=—15x+7y,
c) X-2x=0, y-2x—-y+2z=0, z'+x—2z=0,
d) 2y’{ + 2y} + y1- 5‘”y2 = 0. 2.vé’ + 2y’. + 5"’y1 +11yz = 0,

3 _ ‚

e)‘ y„ = —(EJ)“ Z {G(x,,,x,)m,y',} (u = l‚2‚3) mit der Greenschen Funktion G(x,>E)
v= l

aus 25.13.bß) und x, = v(l/4), (v = l‚2,3). Zahlenwerte: m1= m; =10 kg, m;
= 21 kg, EJ = 6,4 ' 10‘ Nm’, I= 3 m. Es ist zweckmäßig, bei der Bestimmung von Ä

und d des Ansatzes y = dexp(At) zunächst /T= /I”-768 E11” und J= Md zu be-
stimmen, wobei die Elemente der quadratischen Matrix M in der Hauptdiagonale
gleich m, bzw. m; bzw. m3 und außerhalb der Hauptdiagonale gleich null sind. Eine
Lösung fiir I ist gleich -6 kg. [Beiderseits gelenkig gelagerte. (masseloser) Balken
mit der konstanten Biegesteifigkeit EJ, der an den Stellen x, Punktmassen m„ trägt,
die jeweils nach dem Weg-Zeit-Gesetz y‚(t) freie gekoppelte Schwingungen ausfüh-
ren.]

26.2. Man bestimme die allgemeine Lösung der linearen inhomogenen Differentialglei-
chungssysteme:

a) ‚v1+y;=yi+yz+ 1‚ yi-y’z=7y1-yz.
b) )'c=y, y=x+e'+e“,
c) -5y; = 5y1+ 6y2 + 9sin(2x), 3y; = 5y, + 3y, —15xe"‘,

d) L11} + M1, + R11, = U, Mi, + L21, + R112 = 0, U= asin(wt), L‚L‚ — M’ > 0 (Trans-
formator, d. h. elektrisches Netzwerk, das aus zwei induktiv gek- ppelten Schwingungs-
kreisen besteht). In der Ergebnisformel sind einerseits alle additiven Glieder wegzulas-
sen, die fiir t—> m nach null streben, andererseits ist zum idealen Transformator
iiberzugehen, d. h. M’ = L‚L‚ - s zu setzen und die Grenzübergänge s—-> +0 und
R,—> +0 vorzunehmen. Welche Folgerung ergibt sich schließlich fiir die Amplitude
der Spannung U; = R212 am Widerstand R1 (Bild 26.1)?

%:>x+<m:a,,>v x«»=<%2>V
i) 5r‘+y+x=e‘, y'+x=e*'.

I
+

f
\ Ö ._

_.
'—

“
e: r\
*

O II IT „ ..

I: l l2 - I, I;
it lz

"1

Bild 26.1 - Bild 26.2
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26.3. Man löse folgende Differentialgleichungssysteme durch Überfiihren in eine Diffe-
rentialgleichung höherer Ordnung:

a)

b)

c)

d)

e)
D!

g)

i)

x+2y=3z, y—2x=4, x(0)=2,
)€=x+2y+2t, y= -2x‘-3y+3t,
y1=2y1+ Zys. y; =2)'1 + Zyz. y; = *2yz+2ya‚
2‘c‘1=3x,+4x1—3t+2, )'c'2= -x,—x;+5t,

,;'c'=4x—y—12, y'=10x+y—7,
L11 + u’, + RI; = U, LI; + RI, + (1/C) (I, — 11): 0, U= a sin (wt) (elektrischer Fil-
ter, d. h. Netzwerk, das nur für bestimmte Frequenzbereiche durchlässig ist und die
anderen Frequenzen sperrt). In der Ergebnisformel sind alle additiven Glieder weg-
zulassen, die für t—> 0° nach null streben. Welche Folgerung ergibt sich für die Am-
plitude der Spannung U; = RI; am Widerstand R (Bild 26.2)?

zy’-y3=0‚ 2z’—y=0‚ h)xy'+z=0‚ xz’+y=0‚
xy’+2(y—z)=x, xz’+y+5z=x2.

y(0)=3.
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e)

a)

C

e
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c
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v
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Lösungen und Lösungshinweise

Ebene. b) P(0; 0; 4). c) Hyperbolische Zylinderfläche.
Ebene. e) Kreiszflylinder. f) Oktaeder.
Kreiszyljnder und Außeres davon. h) Würfel.

Kreiszyliuder. b) Ellipsoid. c) Doppelkreiskegel.
Einschaliges Rotationshyperboloid.
Zweischaliges Rotationshyperboloid.
Hyperbolisches Parabolold.

Geradenschar — Ebene, b) Geradenschar — halber Kreiszylinder.
Hyperbeln — hyperbolisches Paraboloid.
Kreisschar — Kreiskegel. e) Kreisschar -— Rotationsparaboloid.
Hyperbeln - hyperbolisches Paraboloid.
Ellipsen — elliptisches Paraboloid.

1 x

y“ ‘("*7)- m:
Kurvenschar (y — c)’ + x’ = c’ mit Mittelpunkt M(0; c) und Radius |c| ohne die Punkte
der x-Achse.

b) Geradenschar y = , c > 0, c 4: e“.

Kreisscha: x’ +y7 =%‚ c > 0.

I lnc=+ ———— 'y _ x mit

i[1+—1——]‚ „o, „i.
c cx-l c

i‘; g 0, fiir die Koordinatenachsen gilt z = c = 1.

y:

D,=R1, W,=R.

D;=R2, W/= {Tr}-

b) D;={(x;y)|y§1),W;=(0.°°)-
d) D;={(x;y)|-lxléyélxl}. “?=[3;°°).

D/={<x;y)|x2+y2<4}. W;= w).

D‚= {(x;y)Lv=x’l‚ W‚= {o}.

X2 2

9 +yT=1 und Äußeres, außer den Punkten((x;y)|~|x|<.v<lxl}» b) Ellipse

der Koordinatenachsen.

{(x;y)lx:0Ay>\/;Ay>x}»
((x;y)|-3§x<l.n2A -(x+3)§y§x+3}.
((x,;y)lx + 2 gy; x + 3); f) {(x;y)|x*.v}-

In der Reihenfolge a), |5), v) ergibt sich:

a)

d)

a)

a)

00% b)000 c)-112"In?" "2¢+1'

i, 0, T, t* 4. In den Fällen a), c), d) existiert lim f(x,y) nicht.
2 4 “ ’ <x..v)~>(0.o)

-1. b) 4. c) 0. d) Existiert nicht. e) i) 8.

Unstetig. b) Stetig. c) Stetig. d) Unstetig.

5 Wenzel, Ueb. Analysis 2
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17.10:

17.11:

17.12:

17.13:

17.14:

17.15:

Lösunge und Lösungshin 1;»

fl,(0, 0) =f,(0, 0) = 0; man betrachte linäflx, m

l
a) zx=tany+?y’, z,=x(y’+1+tan’y).

1
b) hx,:*-£1‘. X;——x: C) 8x=£,=E;‘0-

d) w,=zsinni, w,=3z1cosn—"-—2xsinhi.
z’ z’ z’

r 1 l 1
e) u,=-2-e“+fi, u,=:e2'+1+t2.

_1 z 2 ‘P1 - 2 2f) aw-;¢0S(w ‘w)-27sm(¢ -w).

9.. = “f; cosw’ - w’) + 291 sin <0’ - w’)

= 2 + 3y _ _ i
801x 2,-——-—iy+4y, Zx(1,1)-6.

3x + 4 7
, 1; 1 = —.

z’; 2J2x+3xy+4y z“ ) 5

b) z, = -y(e">‘ +1)sin(e"’ + xy), z‚(O; 1) = -1,683‚

z, = —x(e"’ + 1) sin(e">‘ + xy), z,(0; 1) = 0.

c) z, = 2yx7”1, z,,(2;1)= 4, z, = 2(lnx)x”, z,(2; 1) = 5,55.

_ "exw . _ _ er‘). . _(1)2:-'2"_*;;j, Zx(0>0)”"1;?y— a 2y(0,0)-1'

2
e) z:=)c,T_"y2—)(,%y,, z.<4;3)=o,9s3.

-2z,=T;--gm, z,(4;3)=~0,977.

h(t, x) = (x — t)(l — 2rx + :1)“.

a) D, = R’ \ {(1; y)|y E R ‘}. b) Der Grenzwert existiert für kein yo E R 1.

c)y=-3+(x~1)tanc, [c|<1, x*1. d) Az=D.

a) z,,,= -a2 sin(ax+ by),

_ Gxzy - 2y3 _ éxy’ - 2x’
ZN’ (x2 +yZ)3 v ZW (x2 +y2)3 ‘

2x’ - 61y’
b) zu: (X2+y2)s ’

L 1 l
c) z„‚=y’x’3e", z‚.‚=-;e ‚ z,,=z,,,=—yx’1e".

_2(y—x2) _ —2x _ *1
d) "‘ <x1+y>2’ ""(x1+y)1’ Z” <x2+y)2

_ 2

e) "ya x) z‚.‚=arcsinx+——x ‚ z„‚=0
V1-x’

1) x<y: zx=2, z,=0;x>y:z,,=0,z,=2.

z,,= —absin(ax+ by), z„= -b’ sin(ax + by).
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___.V__2(3}’—1) =i _3_ :__

s) z""_ x’ (x—l)3 ’ 2x’ X+(x—1)” z" y cos’y'
h) z,,=y"l.ny+yxY“, z,=xy*‘1+x’lnx,

z,u=y"ln‘y+y(y-1)x”’, z,,=x(x-1)y"’7+x>‘ln‘x,
z,,=z,,,=x"‘(1+y1nx)+y""‘(1+xlny).

1_ Zsiuy

Ja.

a=0vu=—%.

a) dz_ydx—xdy b) d ___ xdx+ydy
(x+y)1 ./x1+y2+5'

dz = “gdx + gdy. Für |Az — dzt ergibt sich: oz) 2,347; ß) 0,144; v) 0,006 (dz = 0 exakll).

a) ¢(x,y) = x’ + x’y‘ +y3. h) Nein. e) <1)(x,y)=%e3Y[3y + 18x — 1] + cos‘x.

-2 .

d) <I><x‚y>= „ü. e) <b<x‚y)= 5e“.

rx= —1, z=e"’-%ln%l+%arctanx+C‚

a) dlz = Zdxdy. b) d’: = -[Sin(.v + t)][ds + dtl’.
c) d1: = e'"’([vdu + udv}? + Zdudu).

d) d’: = (lny)dx7 + 2B + sin2y] dxdy + g [4cos2y — dy7.

a) 2x„x+2y„y—z=xä+yä. b) 8x+4y-z=10.
c) x+fiy+2z=4.

2xx., + y — z = xä; P(0; t; t), 1e R‘; Fist ein parabolischer Zylinder.

1

‚ («-73-¢;xx—x.,>—#<a—7;-J;><y—y..>=z~<a—¢:;-7;):
x/5.? JE

unter der Bedingung x0 > 0, yo > O. Gilt weiter R + ‚f; 4= a, so läßt sich die Gleichung

__+L+
0 Xo l1 yo

von f in der Form L=I angeben. Hieraus ist die Be-
a(a - JE — JE)

hauptung ablesbar.

|AM| = |dM| g 23,9cm1, m“ ='dT’;“ g 0,006 2.
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7 %.

0,2.
dR

|dR| g 0,6880, —R—- - 100% = 0,61 %.

|A/1 g 0,034, g 0,01%.

0,164 5 %o bzw. 0,289 8 %n.

AV dV
|AV| = |dV| _s_ 23,4 01113,‘? z [7 g 0,061.

a =(1101,6 i 10,73) m.

c = (65,5 i 0,4) m, 5 g 0,51%.
C

(2 + 1,745 4 [cot or!) %, minimal für o: =

4_
a) z‘=2[sin2t+cos2t}. b) z=%. c) z'=l"’[tln(te)-1].

‚ {x- xywiy . _.v>?+xy'
a) z(t)= b) z(t)— cosixy .

c) z'(t)=yx"‘x+yx”1nx.

a) F"(x) = z,“ + 2z„g' + zyg" + zwg”.

‚l = 2 „1 __2(7r+4)
b) F(2) 2+11’ F(2) (n+2)1‘

T=f,y1

' a a
a) az,:—a—:P=~8—6‘/3-, a,:a—:P=6—8\/3..-

b) 0,7-./2-. c) oz,=1,at,=0.

a) a:=-%, ta.nw=2q/2-1 b) a=-g, tanW=2

c) oz=%n, tan¢2=4. d) n:=-%7r, tan¢2=2\/'3‘.

tano:.,=6, c=fi
1+ 1 II 2 ‚

a) Az=2g". b) Az=(x’+y1)g”. c) Az=X—;4y—g +y—§g.

d) AZ = g" + (x2 +y’)‘1’2g'.

c) S X18z,=W, @= und z=xg beachten.

1-73
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1
z§+ z§=m-(zfi+

a) Nur P1, P; , P, erfiillen (‘).

b) P‚: Wegen F,(P1) = F,(P,) = 0 ist die Auflösbarkeit so nicht zu entscheiden;
P1: F,(P‚) = 0, F‚(Pz) * 0, somit ist (") nach y auflösbar, y'|‚.‚ = 0;

P3: F,(P3) = F‚(P3) = %‚ Auflösbaxkeit von (‘) nach x und y ist gesichert,

s: =2 - _‚
dy p, dx r, '

T‘ ll/1 2
, ‚ n+6 , 7(e + )

8)y(Ü)=1- b)y(1)=e+1« ÜYW-‘W.
‚ _i ‚ __ (x+y)(1+y’) ‚ =;d).v(2) 3- e).v(x) x(1+x2)[(1+y2)lnx_1], y(1) 2.

‚ _ y ll _ Y „.V(X)-'1‘,:.y (X.)-W. C‘

8% . 1
a) y=x-3. b)y=fi(x-X1). fur x1=0:y=7x.

6x 18y(x‘ - 1)’(3 + 2y’)f‘(x) =-i-L;f besitzt bei x = 1 ein relatives Maximum
am + 2y2) am + 2y2)=

mit [(1) = o.

„ _ Zsiny .,g_ :v

b) y (x)_(2cosy—1)3’ y (2 2) 2"

a) z,(4;3)=1,z,<4;3)=%. b) z,<s;—1>=o,z,(s;—1>=—%.

1 1

°) kam" (x~z)1n2+1 (7;4:—1)— 81n2+1’

. _ —2y = -4
”(7’4)" 2“[(x-z)1n2+1](1;4;—1; 81.n2+1'

P(x, y) = -29 - 34(x + 1) - 21(y - 3) + 54(x +1)‘ —12(x + 1)(y - 3)

— 4(y — 3)’ — 36(x +1)’ +18(x + 1)2(y - 3) + 9(x +1)‘
-12(x +1)3(y — 3) + 3(x +1)‘(y v 3),

Tangentialebene: z = —34x - 21y.

a) z=-3x+(y-1)-%x7+%(y—1)1.

b)z=2(xv1)—(y—1)+(x-1)(y-1)-%(y—1)2.

c) z=(y-1)+x2-%(v-l)’.

l-4 x+y+%(x’-y‘).d) z= e)z=2-(xA2)+2y+(x—2)’+(x—2)y—3y’.

1) z=1-%(x‘+-y’).
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z=x—y+x’—y1+R; mit
1Rz=;e"""[[3 + 9(x-y)lx’ + 3[1+ «9(x-y)Jx’y+ 3[-1+ 8(x *y)lxy2

+ [-3 + 19(x ~y)]y’], 0< n9< I, z(0,1; 0,2) = -0,13 + R2,

0,004 5 < |R‚(8)[ < 0,004 95 ~ e“.

. ‚ 1
a) In P(0i0) rel. Mm. mit z(0; 0) = 1. b) z(x, y) = 1 + 3x’ + Ty’ + R2.

Für C= 225 ist die x,y-Ebene Tangentialebene in (2; 1; 0).

a) Rel. Min. in P(1;1)mitz(P)= -5.
b) Rel. Min. in P(1; -3) mit z(}’) = -7.
c) Rel. Min. in P(2; 2) mit z(P) = -16.
d) Rel. Max. in P,(0; 3) mit z(P‚) = 27, rel. Min. in P;(0; *1) mit z(P;) = -5.
e) Re1.Max. in P(0; 2) mit z(P) = 4.

D Rel. Min. in P,(1; -2) und P,(—1;+4)mitz(P,)= z(P,) = -10.

a) Rel. Minima in P,/2(i2; 0) mit z(P„‚) = 1001.

b) Rel. Max. in P(a; a) mit z(P) = a’.

c) Rel. Min. in P(1;ln%) mit z(P)=1-ln~:-,

d) Rel. Min. in ma; a), P2(-a; — u) mit z(Pm) = 6:1‘.

e) Rel. Min. in P,(1; 1), P‚(—1; -1) mit z(P„‚) = 0.

D f hat keine relativen Extrema.

. . . . 2
g) Rel. Mm. m P,(0; 0), z(P,) = Ü, rel. Max. m P3/3(0; i!) mit z(P;‚3) = —.

e

2 ’ 2

Es ergeben sich rel. Minima für P,(1;2k1r), P2(~ 1; [2k + 1]n) mit z(P„) = -2, und rel. Ma-
xima fiir P;,(1; [2k +1111), P4(-1; 2k7r) mit z(P‚„) z 2 und k e G.

Als kritische Punkte erhält man Q,(:1; mm, Q2(0; 1 + mrt), Q,(:J3’- 1 + mu), m e G.

zmnx=1 fir P<—1;1), z....=—f—; rm Q(§; ¢z|.....=% fur a, 5z|m=0 für

{(x;y)|(x;y)eBA(x*%)2+%(y+%)2=%}.

1 " 1 "P(’; 212x)» 7 gyi)‘

, 1
a) Rel. Max. rm P1(-/1-c’ ;c) mit z(l’,)=7,

reLMin. f'1irP2(-1/1-c1;L‘) mit z(Pz)=-%.

b) x7 +y1 — 1 = 0 ohne die Punkte (0; 1) und (0; -1).

a) P.<3;3>‚ Im-m-s), Pan-i), P.<~1;1>.

b) P1(0;‘1)‚P2(‘1}0)‚ P3(—%; c) P.<o;2;1),P2<0;—2;1).
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d) Pmufiuno), rm0; t J70), P5/o(0§0§ i J3’),

P7/s(i1§ i1; i1), P9/Mil? i 1? :1). P11/Mil? :19 i1), P13/1.x(¢1§ i 1; i1).

e) two; :2), P3/.(:J6';%J3_ Pm(:»/3; —%\/3’

a) Abs. Min. bei P(3; 3) mit z(P) = 9.

b) Abs. Min. bei P,(—1;0) mit z(P,) = 1,

abs. Max. bei P‚(5; 0) mit z(P2) = 25.

c) Rel. Max. bei P‚(-1; 0) mit z(P1) = 2,

\/3-
abs. Minima bei P„,(—%; i—-2-) mit z(P,,,) =—;-.

Fi'1rP(1;2)gilt z,,{,==z,|p=0 und z,“z,,,-z§,|p=-12<0,

Max.f.ir -2-‘/?<m<—2+./3',Min.fi1r m<—2—./3_vm>—2+,/3.

: P1/2(iV/3-? :1).

_ 1 1 .Pm(i1; +1), P3,,(i73=; if);(Blld13.1).

a=\/5—I1, b=y/2—u‚A„,i„=2uvn.

Pz(6; -3; 72). Pz(’2; 1; 8)~

P(2; 4; 6).

1 7 9
Pmin(7; "/5:; 2). dmin=7'

41

4«/H ‘

Würfel mit Kantenlänge

Kantenlängen: -21, -21, i.
J5 J? J3’

a azc
4

a, A„‚„= ot% (Bild 18.2).

Zsin?

33V
511’

r=h= o,,,i,,=i/451/17:.

F(x,y;,{) =y(1 — x) + ‚m? +y1 — 1), Basisecken («ä i-ä-yfi).

z n n

F(¢n,¢2. ....a2,.;/1) =~’2- Zsinw.+1[(Z¢,)—2n],
l l

man erhält das regelmäßige n-Eck (Bild 18.3).
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Bild 18.1

18.35:

18.36:

18.37:

18.38:

18.39:

18.40:

18.41:

18.42:

18.43:

18.45:

19.1:

Bild 18.2 Bild 18.3

i‚= nu‘ ,(I=1(1)n).DaB z'(i1,...,)?,)=

Z a: Z a:
k r 1 k 2 1

folgt mit der Schwarzschen Ungleichung.

absolutes Minimum ist,

a) y = 2,2x +1,6.
_ _ 6,65

c) y—l8‚46 ——x .

b) y = 14,6 -10,8x + 2x’.

d) y1= 3.41 ' 2,1;

y, = 0,0l + 2,34x — 2,67x’ + x’,

a = —o,o13 3, b = 0,702 7, g(t) = 5,o431e*°-0396'.

= -LP- 0,346 6, Sm = 0,0343.

p~V1»4°5 = 16032.

a) a=6(3—e)‚b=2(2e-5). b) a=§—:, b=-%.

2
y Em?

a=0,988, b=-0,142.

Einsetzen in die Ellipsengleichung ergibt eine quadratische Gleichung in r. Daraus erhält
man

r: b’(a—Ja1—b‘ cosqz) _ b‘
a2sin’¢2+ b’ cos’qz _ a(1+ scosw)"

cosh’ v
b) D== -(u7 + vi). wslw .a) D==abu. c) D=e"-

d) D = 4u7w(l 242m1 v)

cos w

grad U= (yz[3x’ +y’ - 27]; xz[x7 + 3y’ - z‘]; xy[x’ +y‘ — 321])‘;

a) fiir die Punkte der Koordinatenachsen und die Punkte I’(0; y; z) mit [y| = 1:1 bzw.

P(x; 0; z) mit IXI = III;
b) für die Punkte der Ebenen x = 0 und y = 0 und die Mantelpunkte des Doppelkegels mit

der Gleichung x’ +y1 = 32’.
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. _ yz xz E
a) dwv—-<?+7+ Z1).

. 2yz z y 2xz z x_ 2xy y x ‘
c) graddrvv=(—3-—y—‚—-z7; --yT-7-7‚ —Z',’“‘x—;“F

. z y x z . y _i ‘d) dxvrotu=0 e) rotrotu=<—?- Z2, -7*-F, ‘Y; yz)

, . yz XZ X)’
l) d1vgradd|vv=—6(-;‘-+7+7).

‚

a) gradU=(2xz+yz'e’”; —2yz+xze"‘; (x’-.v‘)+x,ve"”)‘-
_ T

b) diVu=2xyz(_yz+xy+xz). c) rotv=(0; 0;fiy_TC2:1+arctan(xy)).

d) rot rotv = (ye‘; xe'; 2)‘. e) div u = yz’.

Ergebnisse für grad U:

„ 1
a) [2;5; -6]‘. b) a. c) r. d) [yz;xz;xy]‘. e) -7r.

_ _ 1 ,, . r-—a k

g) 2r. h) nr" Zr. 1) fr. _|) |'_al .

x y z ‘
k) (4x; -2y;0l‘. l) 47,-. -b-5; 7]-
n) 2[a’r - (ar)a]. o) r""7[r’a + n(ar)r].
Als Niveauflächen ergeben sich in:
a), b) Parallele Ebenen. e) Konzentrische Kugeln mit M(O; O; 0).

d) z = e) Konzentrische Kugeln mit M(0; o; o).

f) Rotationsparaboloide um z-Achse mit Scheitel S(O; O; c).
g), h), i) Konzentrische Kugeln mit M(0; 0; 0).
j) Konzentrische Kugeln mit ((1,; a2; a3).

k) Koaxiale Zylinder um z-Achse.
1) Konzenlrische Ellipsoide.

5
Die Niveauflächen sind parallele Ebenen; grad U = {2; -1; 1]‘; a) ß) ‘/6-; y) 0.

b) c) M.

b);—,1,«/F. e) d)

a) grad U(P) = l5; 5; 6]‘.

2(a+b+c)
l„z+b2+c2‘

2P,,2(ta; 0; 0) mit minimaler Länge I, P3‚.(0; 0; ic) mit maximaler Länge

a) %(sin5 ~ l).

E = - 6)r; (|rl = r), Kugel um Ursprung mit n, =

a) Keine Quellen: diva = 0, kein Wirbel: rota = a
b) Quellen: diva * 0, keine Wirbel: rota = (l
e), d, e) Keine Quellen: diva = 0, Wirbel: rota * 0
l) Quellen: diva $ 0, Wirbel: rota * 0
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19.12:

19.13:

19.14:

19.16:

19.18:

19.19:

19.20:

19.21:

19.22:

19.23:

19.24:

20.1:

20.2:
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a) x(z2 + 9). b) 0. c) Sinnlos, denn für x als Skala! ist das Kreuzprodukt nicht er-

klärt. d), e) Sinnlos, der Gradient eines Vektors ist nicht bildbar. f) Sinnlos, die
Divergenz eines Skalarfeldes ist nicht erklärt. g) -(x + y)e‚. h) D.

Nicht definiert: a), d).

1
a) 3. b) 0. c) 0. d) 2a, e) -?r. i) 0. g) 0.

l1) div r’ = div(r2 r) = rgrad f2 + r’ divr= rlre + 311 = Sr’.

a) mtuaa. b)u=1_ c)a=%, b=0, „=2_ d)‚;=12_

8) divr = 3. b) rotr =0. c) grad r’ = 2r. d) rot r’ =0.

e) div r3 = 51’ (siehe Lösung 191311)). f) gradi, = -izr.
I‘

. o _ 2 ‚ r ‘

E) dlVr - h) d1v7= 0. i) grad (ar) = a.

j) rot (a >< r) = 2V(ar) = a’—’;Vr1 = 2a.

rotH=0‚ divII= 0.

rotE =0, divE = 0.

a) 1. b) 0. c) 2. d) 0.

C . . . .

a) f(r) = 7 (r * 0). b) f(r) beliebig, wenn gradf(r) existiert.

a) m) + 3/<r> = i m) = 3 + i
I I2 ’ r’ r Ä

b) m) + 3,/(r) = m) = %<c + In r).

‚ 2 C1A/'=/'(r) +-;f'(r). Af(r) =0: f(I) =-7+ Cz-

z ‚ _ _ 1 1 9 1
a) r f'(r)+10r/'(r)+ 20f(r) —1nr, f(r) —7;C‚ +—’;C2—T(fi+W1nr.

b) r1r'<r)+ wo) + 2m) = (r) =%c. + ä c2 - äm r.

‚ 1 ‚ 1 ‚ ' h
a) h(t)=7. b)g(y)=—,. c) G(1)=fll—t.

y t

, _ 1 XZ+4 ‚ Ad)F(x)—21nx1+1. e) W(X)—X.

1 _ z _ ‚ l 3a)f'(x)=F(e"-1)+2e". b) f'(x)=1+Tlri[1+x[.
2 _

c) rm = d) m) =1/1 + x‘.

3 2 1 1 + x’ lnx
¢)f'(X)=;1I1(1+ X’)—:111(1+X2)- f) f(x)=:1flT+6x'1+xz-
s) m) = J1 + x‘. h) /'(x) = 1x++5:: sin(x + x5) — sinx’.
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‚V

I x;,<x, wax + 2mm) +r‚(y‚y).
x x cum!

ycosy+4siny+8
N2 + siny

Für h(z) = C12 + Cg (C1, Co Konstanten) ist a 4= 0 beliebig, andernfalls Int = 1.

a) F"(y) =

b) Wo) =

11(1)

F(t) = -rI(t)f[u(t), t]+ v(t)f[v(t), t]+ I f,(x, l)dx.
um

l . .

F,(t) = 7 (3 s1n t3 — 2 s1n 1’).

BI x -

I1<x)~—a—yy=l— h)‘,

1 63 1 s9
a) (e-l)’. b) c) 7. d) -7. e) ?(131n2—fi>.

1 . . 1

g) 2—«/2". l1)—3—(l—e)’. 1)e. j) äw-n. k) sn. 1)

J3’ 1

ab1r 2rrR3 l+x 1+y N

m) 16 (..2+bz)_ n) 3 . o) "IL 1+x2dx PIG 1+yzdy~1,214S.

ß _

1o ma X für 05x; 4,

a) I If(P)dydx mit y„(x)= 4 rm 4§x§ 6, (Bi1d20.2).
xx!) =0

’ 105:: rm 6§x§l0,

a 5
. — r’ o- _‚

b) I I f(P)dxdy nut Xo(y)={ ‘I; ‘f’ 351 (‘Bi1d20.3).
‚wo x=x..<y) y—2 fur 1§y§4,

c) Bild 20.4.

Bild 20.4

o 1+5?
d) I I f(P)dxdy.

y= -1 x-1-W
1 1—y Zn 1/27

e) I I f(P)dxdy (Bild 20.5). r) I I f(P)dydx (Bi1d20.6).
r=° vor-Ja?
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Bild 20.5 Bild 20.6 Bud m 7 _ 7

1+5
6 2

1250 7105
20.10: 10%. b)%(b‘—a‘). c) I I (x+y1)dxdy=f. d) ——8——1—.

w’! „T

112 z 2 x-y 3
——. —d d =—+31n3—71n2=—o,osa.

e) 3 ox;l“y=xx+y y x 2

1 (1-5)‘ 1 2 Ivy‘
g) I I xydyax=—. 11) I I (8-x2y)dxdy=16(2+1r).

x=0 y=0 280 y=—2 x=—1

4-X’
l

1) T115. j) I I (x+y)dydx=-2.
3

X=*1 4 x
r-- 3

20.11: n.

3 5 n/1 (n/2)*x

20.12: a) V=—. b) V=—. c) v=4I I cosydydx=4‘
2 24 x-D y=0

1 2-!

a) V= I (y+2)dxay=?T7.
y=—z xxy‘

l 21l

e) V= I I(1+r’cosqpsin4p)rd¢dr=1r.
r==0 w-0

i) 1131i: (Bild20.7).

2 l
1472

g) V= I I (8-2x-2y)dxdy=T.
Y‘-2 x=y'~J

27l 1

h) V= I I (r2cos1.p+3)rdrd¢=9n.
v=0 r=‚/z—

1!/1 4005W

i) V=2I I 3r-rdrdqz=-2-ii.
.==o v=0

1:/1 1

j) V= I I(4or1sin2qz+4)rdrdqz=%n.
wo r=0



20.13:

20.14:

20.15:

20.16:

Bild 20.8

20.17:

20.18:

20.19:

20.20:
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1| 1 T‘

k) V= I I(4r’cos11p+3rsin1p)rdrdqz=2+7.
w=o r=0

3 J9-X‘ y 1

1) V=j f (2xyeJ”-w)dydx=7(e“-7-81n2).
x-1 yno

m) Mit elliptischen Polarkoordinaten y = «[21. cos u, z = u sin u wird
21| 1

V=_[ I (5 + 1/2—ucosv)y/2—ududv=5\/2-1:. n) V=211.
u -0 u =0 ‘

n/4 l J2‘/2 J?/2 n 17

o) V= I I(r’cos’q2+r1cosazsinqa)rdrdq2+ I I (x‘+xy)d,vdx=32—+§6—.
¢:=o r-0 x=0 ,u=x

2 X

Unter Beachtung der Symmetrie erhält man V= 8 J I (4 — x7)dydx=32.
x=n yxo

m=2(1'r+1).

m=%1'r’-n+-

X | x

Bild 20.9 Bild 20.10

a) A=4.
1

6
b) m=3f(3y‘-4y‘+y‘)dy=§—5.

0

l
‘ 164 41)M=2 (9 =~1x4+126—3 8m =--, ‚=—‚ =o.Cygyyyyymsxnys

1 3 71 71 71
a) 3. b) Ü. c) M,—M‚—F0‚ d) S<m, 126).

1 1
m=21rab[7g, +391].

" "1 1
A= I J-?dudu=?(b-a)(q-p).

u=p u=A
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20.21: a) Transformation:x= i, y= uv,
v

1 ’ ’ dudv 1 3
‚ Funktionaldeterminante:D=E, = I IT-=7ln—2-, m=1 (Bild 20.9).

142l 11x2

_3’v_2 _3 v‘ __ 2v 2 m zu’ 15b) „z, ‚V‘ u ‚ D“Tu;, A-1, m=—*3-“;[1v;[l-uTdvdu=T

(Bild 20.10).

Bild 20.11 Bild 20.12

=_L
311‘ ‘

” I’ z- 2 _

——%j j'ududu—(" by q’ (Bi1d20.11).
v=u u=q

rm

.2o.22: a) A=a2I cos2q:da:=
0

a2
2 .

2 71/A Z

b) m=-3-41’! (a/(1+cos2q;)= —1)d¢=‘1’—8(2o—3n).
0

1|‘/C

_ ' 5 2J? 1 _a_‘c) ./,—4a"fiI'( 3 cos’rp+ 5 cos5¢+—15—)d.p— 255 (8+15rr).

O

20.23: a) J(u)=aT[u—isin2u]g0. b) c=i
2 2 '

20.24: c = 3.

20.25: c =

20.26: Flächeninhalt A = ä; Schwerpunkt S(%; ä), I, =%, J, =T25-, 1,1 = -£7, J,’ — -4%

W ä r r_ _ _ 5 __ i A z 5 3 ‚
20.27. a) Jp_,—g.,y;[u I (x’+y1)dxdy— 16¢; a‘gn, Jg‘ 48 a go. b) J5 8 a go.

x= A—3.v
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20.29:

20.30:

20.31:

21.1:

21.2:

21.3:

21.4:

21.5:
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Ist J das polare Trägheitsmoment des Teildreiecks (Bild 20,13), dann erhält man J, aus

x" rr 1 1x 3 nr‘ 2n Zn.I,,=n'J=2n_[ x3~tan—+—x3 tan— dx=:sin-- 2+cos— ,
„o n 3 n 12 n n

lim J, = -g-nr‘.
n—~..

Zn 1

a) J, = j f (a7u
v = 0 u = A

b) Man erhält das polare Trägbeitsmoment eines Kreises mit dem Radius u bezüglich des

Mittelpunktes (vgl. Aufgabe 20.28).

3 coszv + bzu’ sin’v)abu dudv = aI%(a’ + l72)(1- 1.)‘.

1 7|/2

1,, =—4—A-0 (1 + cos4p)‘sinwcosq:dqa =W.

1|/I
. z drp _ 3./3

a) Bild 20.14. b) Jg 32 o e+ 00340)): ———4 n,

wegen Jo = J, + J, und der Symmetrie von

N2’B ergibt sich J, = J, = Tn.

x,=r tas%’ Bild 20.13 W1. Bild 210.14

1 13 71' 5 4 11
a) z. b)——-13-6-. c) 1—2+3—T/2-. d) T3425 1).

o z ‚an: 2 1 ‚au:

a>J=JJ
x=—z y=U z

I xyzdzdydx+ I I I xyzdzdydx=~—;-.
=v2x’ x=D y=D z=~2x’

1 2

’ b) J= j I ixy[(x2+y2)2—4x']dxdy
y-ox- .22

‘ "1 3
_ z2„ a =__+y;[l X;|:22xy[(x’+y) 4x]dxdy 2.

n o x+l x7+,V’+1 9

a) V=-2-. b) V= I I I ldzdydx=?.
xx-1y=0 zx-xy»

J = 168 11 (mit Zylindexkoordinateub.

r"",;_,:m}; J rdzdrdqz =—:—a3
w=0 I‘0 ,,_‘/,,T,7
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21.6:

21.7:

21.8:

21.9:

21.10:

21.11:

21.12:

21.13:

21.14:

21.15:

21.16:

21.17:
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u «au»Zn

a) V= I I rdzdrd¢1=%7r(a3-‘/a1-b’3).
¢‘0 r=0 ‚g- 41-,:

l
z my r

4
b) V=2f j’ _[rdzdrdq2=3.

no r-0 1-0

21l I IUCMO 4

V= I I r7sinu9drd0dq1=37m’(cos‘a—cos‘fi).
w=o an r-0

27l 1

V= f
v-o u=0 z=4u’—4usinu+1

5—4u:inu

2udzdudu=41r.

3W

T Jun Z

Tl TI 7Tm=Jo I‘ y<-Z--x)dydx=1rarctanT-21.n(1+75).

. 1-? ‘("%‘%
= _i L =a_c „L

2 Svy 2

m=f f Izdzdxdy=2[8-31113];(Bild21.1).
y-0 x_3_i;_2 2:0

Bild 21.1

Zn J
I I r’sin‘4pdzda2dr=%(3e‘+ 1).

I-0 w-0 1x0
m=f

V= n; m = gun (Zylinderkoordinaten verwenden).

ä Z V(c0!p*s|n41)

m= j j _f 3r3zdzdrdap=161r.
J r=0 IE0«:7.

zu 5 ‘(l ‘TD
m=IIJ

9:0 ‚so z=O
(r’ + z’)rdzdrdaz = 1011.

w .„ j 1

m=2 I I I3zdzdxdy=j“2Zg(47T‘3‘/3—)-
y-0 x=2a-«F? ‘=9

‘ s
Q=1rg„ Ir(4-r’-3r‘)dr=7ng„.

‚eo



21.18:

21.19:

21.20:

21.21:

21.22:

21.23:

21.24:

21.25:

2 1 .26:

21.27:

21.28:

21.29:

21.30:

21.31:
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S(0;0;

a) V= %8n. b) S(0;0;6).

Zn ‚fi 13T n 5

11:10 „In „f! rdzdrdqz=-3-(6~/3_— 5), s(o;o;:T_:-5-).

S(0;0;u). 2

M ist ein Kugelsektor, S(0; 0;%R cos’%); für :90 = -1% erhält man die obere Halbkugel

m1is(o;o;%R).

n 2 1 2n gum (E7
V=7(a-h),(2a+h), z,=7:f f rdzdrdtp, so;o

p o r=0 zxh

_3(a+h)’)
’ 4(2a+h) '

1

sinzqz 7
. b; )] .

f) Rechnung günstig gemäß e) V= abc; S(ifl;—b;i(‘).
zu 1 1—r

9‚=j' f fo(r2sin1.p+z1)rdzdrd¢=
.1-o r=0 z-

_"_
12'

G, = äflt (Zylinderkoordinaten benutzen).

a "(*9 ("f-ß
0x= J I I

x-O y~u .=n
(y? + z1)dzdydx = -2302(1)’ + c2).

1x nDR’ R’ D’
a) 8 DR‘. b) 4 [T+TJ

x zu "("70 Rum
a=o‚= j’ j J (r’sin‘¢p+z7)rdzdq1dr= (3R1+2h’).

‚so ‚so z=0 60

J5a) 8‚=—2—1m5. b) 8,=16n.

a, = m,“ — 9;11;%1r(a‘c — b‘d) mit

ä 1110069 . 3

6;“ =2 I I I r’dzdrda2=7na‘c, 9§”ana1og.
U‘0 i=0 I'D

6 Wenzel, Ueb. Analysis 2
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21.32:

21.33:

21.34:

22.1:

22.2:

22.3:
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Rconx ‚lxlcoslaufi JR’-x’-7

en! I I
x- ‘Rm! y- —JR‘cn:‘A~x’ z=(l|nar)y/x’+y'

f(P)dzdydx.

R Zn %‘°‘
b) j _[f(...)r‘sinn9d8dqadr.

r-0 O°=fl 8=0

m") 21r
c) I I f(...)rdzdrdqz, 1= V=—3—R’(1—sinoc), (zweckmäßig mit w); für

w-0 (=0 I-(lInu)r
oz—+ +0 ergibt sich das Volumen der Halbkugel.

21! Rcosnr

1
znbz

M„=j' f I(rcos-9)(r’sinu9)d«9drda2=%(b‘-—a‘), s(o;o
u-o r-a axe

gb‘-a‘
’8 b3-a3 ‘

8 ~
_
/

Für a—> +0: Vollhalbkugel, S(0; O;%b).

b Für a—> b — 0: Halbkugelfläche, S(0;0;-£1).

a) 0§q1§21t, 11-R§r_s_a+R, -1/R’-(r—a)2gzéy/R’-(r-n)1.
«+1:

b) a,=4n _|' 731/R‘—~(r—a)’ dr= fl1§2a(4a’+3R’).
I-IVK

a) i’ +y’+ z”= 3e".

b) (X2 +y1)"1 ist Polyuom, l= 16.

c) (1 + y”)"’ ist rationale Funktion, I= 1,09657...

d) (‚i3 +j’)m = 3a|cos1sint] = (3u/2)|sin(2t)|, I= 6a.

e) coshzx - sin.h’x = 1, I= asinh(b/a).

i) Gestalt des lntegranden: ag'(t)(g(t))1/2, 1= 16(2 ,/2- — 1) = 29,254 s...
g Integrand ist rationale Funktion, I = 9/2. -

h) Integrand ist rationale Funktion R(u‚ v) wobei u = t ist und v die Gestalt (at + b)“ hat,
I = 2 + ln(3/2) = 2,405 465...

i) Integrand ist rationale Funktion, I = —b + aln[(a + b)/(:1 — b)].

j) (8/27) [(1 + (91;/4)}’” — 1] = (1/27) [{4 + 9b)” — s].
k Integrand ist identisch konstant. l) (1/2)ln3 =0,549 306...

m) lntegrand ist Polynom, l= Zazc + Sbzc’. n) b(b + 1).

o I = (1/2)ab1.

p Integralsubstitution x = sinht fuhrt auf ein Integral über eine rationale Funktion von e‘,
I = 2,301 987 5...

\
J

a I= (M) (1 + 19')“ [exp(/ion) - exp(/3%)].

b I=a[b+(b3/3)].
c) Integraud ist eine Konstante.

d l+cosaz=2cos’(np/2), l=8a.
e Integrand ist rationale Funktion von e‘, l= a{qa‚ + [(1 - exp qzo/(l + exp qa,)]} .~

.
r
~

/

a z; = hb/4rr.

b

x5 = (a/b)sin b,

x; =ys = (2/5)a.

ys=(a/b)(1-cosb),

\
/
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22.5:

22.6:

22.7:
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C

d)

e

R v

b v

c

d

e)

v
v

B v

b

a)

c)

d)

e)

a

b

c)

d

v
v

C v

s)
h v

j)
k)

I=asinhl‚ zx‚=j°xcosh(x/a)dx‚ Iyg=aIcosh’(x/a)dx, x5=a<0‚53788...,
0 0

y5= a‘1,196999...
a=2R, ys= -2R/(2 +7r).

71

Falls x = Rcosq1,y = Rsinaz, —(tx/2) g (p g (oz/2), dann x5 = (ZR/1x)sin(a/2), y5= 0.

ds = cosh tdt, J, = Ix; und I; = lys führen nach zweimaliger partieller Integration jeweils
auf eine Gleichung für J, und J2. xx = 1/2, y5= -0,498136..., z; =133‚885...

47rc(a + b).

Inhalt von A = Znlx, = 27r I xds, wobei der Integrationsweg C ist. Also ist der Inhalt von

A gleich

2;t{2bc+ b7 + ac+ ab- db + a‚/5"[c+ b + (11/2)]} = 2738355 3...

41141’ (3 + n).
21r{(hd/2) + (d1/8) [1 + (1/sin 11)] - (111/2) sin ll + a’(1 - cos oz)} = 816,405 86...

x; = 0. Im lntegranden für die Bogenlinge fuhrt die Substitution a: = sinh t zu einer ra-

tionalen Funktion von exp(2t). 784,000 7...

[ids = aR 1{[./" — (1/4)]e, + [—(7/4) — ‚[2‘ +(3'rr/8)]‘y}.

|_|'1=ds|=aR1-2,3o21x...;Ir>< Fds=0.
R = pa(n/4)e,, M = 2p(a‘/n) {e, - ¢,[(7r/2) — 1]} ,

r„ = x.‚e„ +y„e‚ + z„e„ x,,, = 4a(n - 2)/11’ = u-0,46267...,
y, = am! = a-0,810569...

oz) 6; ß) 9. b) or) 2/3; ß) 4/3.

1x) l/2; ß) 5/6; y) l/6; ö) 0;

e) (3 - n)/(2n + 2); C) —(1/2) + (4/Tr) = 0,7732395...
IX) 1; ß) 3/2; y) 1/2.

oz) -1/3; ß) —1/6; y) (1/2)—(1r/4)= ~0,285398...;
ö) (1/2) + (311/4) = 2,85619-1...; s) —(1/6) — {n/[(11 +1)(n + 2)]}.

d5 = (1/2) (x7 + y’), ox) bis y) 10.

<I> = (1/3) (X3 -y’) + xy, a) 0; ß) a’ -1;
ID = sinxcoshy, oz) 0; ß) 5/4.

dßexistien nicht, a) 2e -4; ß) e;

y) Substitution u gleich cost bzw. sin t, 2.

O = (x3/3) (1 -y) + (y’/2), (x) bis v) l/2; Ö) 0.

(D = x3 + Zxy’ — 3yz’, -24.
IP = i372", xyz.

KP = x2y(2z)" + (1/3)(y - z)’ + q", a) 9;

ß) a’b(2c)" + (l/3) (b - c)’ + e“ + 9 - e".
(34/5) + 6in2 = 10,958 883...

rozF= a (i* w, u) K(2“"’ — H); p) -K/r.
(D. = sin z - arctan (x/y) oder <1), = sin z — arccot (y/x) ‚

IX) d>,(+o, b, 11/2) — ¢,(+o, —b, —n/2) = {<z>,(0, b,1t/2)—<1>1(a, +0, 0)} + (Oma, -0, o)

- <l>l(0, -b, -n/2)} = 2 +11; fl) -2 +11; y) 211.

v) 0.
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22.8:

22.9:

22.10:

22.11:

22.12:

23.1:

23.2:

23.3:

23.4:

23.5:
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1) xe’ sin y + 1n(x’Lv$) - Sin 1. (Das Potential existiert, obwohl sein Definitionsbereich
nicht einfach-zusammenhängend ist.)

m) vx3y‘z — 6xy2 + 4y1z3 -1.

a) ./6"/4 = 0,612 372...

b) Der Integrand ist eine rationale Funktion von (y/x)”, (85/4) — (28/3) ./5- = 0,38003...
c) 37/20 = 1,85.

d) Symmetriel, (1/3)(1+ g/5—) + ln(2 + c/5-) = 2,522 32... (Bild 22.10).

Bild 22.10 Bild 23.10

e) (2/3)n(2‚/"— 1)a= = 3,s294...a2.

i) 64/3.

g) eJ3'= 10,392 3...

h) Der Integrand ist ein Polynom bezüglich u und v, 56/3,

i) 497i = 153,938 0...

j) 0 g 9 g 0o, C0509 = (a? ~1)/(a1 +1), 4rrc’/(«:7 +1).

a) 2nR2g.,. b) (14/9)nR‘g.,=4,88692...R‘go.

(21!/3)R (d? A d2) + 21lR3(d; v d‚) .

a) ox) 0; ß) 127r = 37,6991...; v) (64/3)rr = 67,020 6...; ö) (64/9)rr’ = 220,489...

b Projektion der Schnittkurve von z = (x + 1)1 + y’ und z = 2 + 2x in der (x, y)-Ebene be-
stimmen, danach Zylinderkoordinaten, a) -1r/2; D) —4rr.

c 8 + 10811 = 347,292...

a) l6.
b a) 4,: 967:, 4,: 721:, 16871 = 527‚7s7...;

y) A,: (1728/5)7r =1085,734..., A110;

ö) A1: -1441!, A1: 28817; 1447! = 452,389...

v

ß) A‚: 0, A1: 0;

divF = 2 + 2yz.

Bei allen Integrationen sind die lntegranden Polynome, 224 (Bild 23.10).

div(...) = 3, (411/3)abc.

a) 4rrR3. b) 41m‘, c)41rR’f(R).

a) divF= x2+y’, (21:/5)‘/2—=1,7771s3...

b) 1!/5. c) (2081!/15)=43,5634...

a) (104n/5)=65,345l... e) 1681r=527,787„.
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23.9:

23.10:

23.11:

24.1:

24.2:

24.3:
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$
8

5
5

3
3

5
1

5
3

5
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Zylinderkoordinaten (r, (v, z) einführen, wobei r = 0 Punkte mit den karlesisehen Koor-
dinaten x = 1, y = 2 angibt, (112/3)1r = 117,2861...

1230. h) 800rr=2513,274...
o. j) 0.

a) [l] CgradUdV= 4] UCdA; p) j] (gmdU>< C)dA = 45 UCdr.

[I] CratBdV= ß (3 >< C)dA.

c{_[[[gmwdV— ß UdA} = o =>speziell,

C= e. (k = 1,2,3): e,,{...} =0 2 _[[[gradQdV= § UdA;

(gradllx C)dA = ~c(gradU>< clA), J](gradUx an) = —g5 Udr,

fl]mxndv= —§BxdA.

Wegen div(r/I’) = 0 (r =t= O) ändert sich bei stetiger Deformation von A der lntegralwert
nicht, falls beim Deformationsprozeß der Koordinatenursprung (r= 0) nicht überstri-
chen wird.

Kugel, 41:.

31:/2. b) -3n/2.

div(mtF)=0. d) (1/3)(4+ .E)=1,s047...
(14/3) + 12 f2’ = 21,637 2...

8+108n=347,292... g) (1:/4)m.

(d/dz) j]]' UdV, 2 [1] [(a/az)u- {8(x1,x;,x;)/3(l41.142,'41)}

+ U(a/at) {a(x,, X2, X3)/3011, uz. V3)” dVo. BU/81= (xradU)-1, (8/3!) (Bx;/Sm) = (3/8u:>v1

= 2 (av./ax.) (ax,/au.>, <6/an {am x2, 19/3041. "2, an}
= (div v) {3(x„ x2, x3)/3(u„ M1, 143)} .

(d/dt) 1]] UdV, = [I] «au/eo + div(Uv)} dV,.

(d/dt) [fl gdV, = o.

(89/at) + div(g_w) = 0.

b) Ja.

Ja, y’ = (1 — e"‘)y.
Ia‘ y = C(1_+_yI2)1/2‘

Nein. cw’ =f(y) - Lv mit f(y) = No für y ä y. und f(y) = 0 für y 2 yz. Für y1<.v <yz
keine unmittelbare Angabe von f(y) möglich, da dort f(y(x)) von der Geschichte von
y(x) (d.l1. von yo?) mit £< x) abhängt,

y=tan(x+C). b) y=i(2x-+-C)".
y=Cx. d) x’+y2=C(y#=0).
y’ = —M i(M1 +1)" mit M= -(1/2) (x/y) - (23/10),

Isoklinen sind Geraden durch den Koordinatenursprung (Bild 24.1).

e) diva = 0.

c) Nein, y’ hebt sich weg.

e) Nein.

x‘+y2—2Rx=0,
y=xy'/lny’.

2x+2yy'~2R=0, y’—x1-2xyy’=0.
C) xy'+y=2x.
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d)

a)

b)

Bild 24.1

Bild 24.3

y1+x’~2xyy'=g_ e) y’=e'>‘—1.

(xz/C’) + (yl/ZC1) = 1, Ellipsenschar (Bild 24.2).

xy = C, H,, rbelschar (Bild 24.3).

(a’)‘/7 = |a| beachten.

a)

c)

d)

a)

c)

e)

y=(x1-2x+2)e"+C.
y = (1/2) (arctanx)1 + C.

y = (1/4)x‘ + C, falls x g 0, y = -(1/4)x‘ + C, falls x g 0.

b) y = exp(x’) + C.

y=Cexp{(3/4)x"3}. b) ya {(x2/3)+ c)” und yEO.
y=Cexp{x+e"}. d) y=2x/(Cx—1) und yEO.
y=C]1—x’|"”. D y=tan{(x‘/2)+C}.
y=i(2e"+C)“. h) y=3+Cexp(s'mx).
x=2arctan(Ce')+2k71, C4=0, (k=0,il,...), xEkn.

x=l_n(e'+C). k) x={3ln|!+l|-2ln|t|+C}“.
x = :{(2/1)+ cf”. m) q) = (c- 2x1)‘ 1 und (p s o.

r=isin(4p+C) und rEiI. o) y=:{1u(2x+c)}"’.
2

y =(2/3)[(1+ Ce"")/(1- Ce“")} nnd y s :7.
y = C(1 +y’2)1’2‚ y E 0, falls C = 0. lm Fall C 4= 0 ist y = Ccosh {(x + c,)/Q.

t) dy/dx =y/x, y" =y/(2 w)»
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a) x= —{m(y—1|+y+(y2/2)+c}"‚ ys1.
b) x = CLy|'“’ exp (y/2), y E 0.

c) x‘: [-—y+arctany+ C)“.

a) y=‘2+49XP(X’/2)« b) y--1+(1/4)(X+3)’. Xä-l
c) y=(‚/5—x)/(‚/3'+x). d) z=—{m(2x+e)}"’.

e) y ={~1+<1/x1>}"’. t) y = —<4 — x2)“
g) y = —{1 — (2/3)x’}_m-

h) a) y=(e"-1)/(e"+ 1); ß) yEI; v) ya '1.

a) y=Cexp[(-1/3)x’]. b) .v=C(cosx)".
c) x = C/I. d) x = Cexp ((-5/2)t}.
e) y=C(x’+2)’“7. f) y=C(x-l)/(x+2).

a) y = Cod + 2)-W + (1/3)(x1 + 2). b) y = (1/3) (x2 + 1) + c(x2 +1)*1/1.

c) y = -cosx + (1/x)sinx + Cx". d) y = (x + 1)"‘{C+ (2x +1)e”‘}.

e) y = {(3/4)x‘ + C} exMcosx). D y = x“{C + sin(x‘)}~
g) y = (2x + c) exp(sinx). n) y = {5x’ — 2x + (2/5)}e_” + CexP<—2X)-

i) I= I,, + Ip, I), = Cexp{—(R/L)t}—>0 für t-wo.

I, = U„(R’ + w’L1)"(Rsin(wt)— wL cos (wt))—>(U.,/R)sin (w!) für L—> +0.

a) y=1+{x2/(x-1)}. b) y=—1.
c) y=3x’+5JÄ1+6x+l0. d) x=z—1.
e) y = (1 + sin x)/cosx. t) y = e"{(1/x) — l}.
s) .vE1.

h) x = ((r— 1)/(1+ 1);"’{J3_+ ln(t- 1)}.
i) y= -1 + sinx + 2exp(—sinx).

J) y = (No/1) (1 ‘ eXD[(—/1/€)X}) [0 ä X ä Xn m“ Xo = (d1) 1n{No/(No— 1.vz)}],

‚v =.vzexp{(-/Vc) (x - xo)} [xu ä x é Xx mit x) = xo + (d1)1n(yz/yo],

y = (No/1-) + {yx - (No/1)} eXP {(-4/C) (X - X1)}

[x, _s_ x g x; mit X; = x1+(c/,1)ln{(N(, - ).y,)/(No - .1y2)}] ,

y(x) mit x; g x < w entsteht aus y(x) (x9 g x g x2) durch periodische Fortsetzung mit
der Periode

T= X2 ‘ Xn = (6//1)1n{(y2[No — /U11)/(y1[No - /1}'2})} ; (Bild 24-4)-

r
N0/it ————————— ——/—,————————————--

I] /

I, \\1\

x, n, I, x

Bild 24.4
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24.13-. a) y=(x=+1)exp(»x2). ' b) y=1+2exp(-X‘).
c) y=xexp(~x1). d) y=x2+exp(—x1).

24.14: a) y=xtan{ln(—x)). b) y=:x{-2m[x|+c}“”‚ yso,
c) y=ex-exp(Cx). d) r=Ce'.
e) Wegen z :0 ist z = —]z| = —(z2)"1,

P(Z)=10z’ - 462’ - 202, Q(z) = 62921 + 2302 + 25,
Im) = (P(z))"{—1oz= +'23z + 5}.

24.15: a) ‚v = Cexp(x’/2). b) y = -(2/5)x — (2/25) + Cexp (5x).

c> y=%+C=xv<~x’). a) y=l-1+x+Ce“}"„vE0.
e) y=x<x+c). o y=x*(c+<1/2>1n|xI}’‚ yeo.
g) x=3+C(1’+3)’“’. h) x=(3/I)+(C/I’).
i) y= —ln{Ce‘- 1}. j) x = —exp(3t) + Cexp(t’/2).

k>y={~a+cI1~x2I"=}“, y=o.
1) y = a1-csin{C(cosx)‘ ‘}. m) x = 1n(e‘+ C).

n) WederI noch II noch III, vgl. 24.17.b).

o) y=(3/x)+(0x2). p) y=(x+1)“{(2x+1)e"+C}.
q) yE *1. r) y= (C/x’) exp {(a/4rr)x].

s) y = i{x(C-1n|x|)}1/2.
t) Weder I noch II noch III, vgl. 24.17.0).

24.16: a) y = -(x/2) x {(x1/4) gr (C/x)}“’, x(y) s o.

b y= -(2/3)xi (1/3){—(x2/2) + (C/x’)}m.
c y = :(c— xi)“. a) u =(1/x){C+ sin(x’)}.

e) p = um =y”, y = (4x)"{-(2C- x’) x [(2c— x=)2 —1sx]"’}.
i) u=u(x)=x"’‚ y=x’-Cx.
g x’y - x ~ycos(2y) + (1/2)sin(2y) = C.

h) u =y‚ y= tux’ + c)/<1 — x=))"’.
i) u =e", y = :{—x1+ Ce-x}"’. j) y= i{C/x + (1/3)x1}"’.

k yx+cos(x’)+siny=C. 1) y= -[2x-exp(1-x)}m.
) y = (1/2) {-(1 + x) + (7x: +18x—~ 9)"’].B

v

24.17: a) y(0,5) = l,069754‚ y(1)=1,136253. Die Korrektur hat keinen Einfluß auf die mitge-
führten Stellen.

b y(0‚2) = 2,041 585, y(0,4) = 2,193135 + ö mit ö = -9,6-10".
c) y(—0,6)=0,6356l5, y(-0,2)=0,723444+6 mit ö= -1,9~10“.
d) y(0,1)=1,111463, y(0,2)=1,25301S+6 mit 6=2-10“,

y(0,3)=1,439668, y(0,4)=1,69610l + ö mit ö = 9~10“.
e) y(0,2) = 1,183 229, y(0,4) = 1,341 667 + ö mit ö = —2,7-10”.
1) y(2‚2) = 0,210 670, y(2,4) = 0,445 442 + ö mit ö = -3,3-10”’,

y(2,6) = 0,708 803, y(2,8) = 1,006 005 + ö mit ö = 2,5 - 10".
b

g) _[f(x)dx =y(b) —y(a) =y(b). x, = a + v-2h (v = 0, n), x„ = b, ‚v, ist Näherungs-
a

wert füry(x‚), speziell y„ fiiry(b), y‚„ =y, + k mit k = (1/6) (k, + 2k; + 2k, + h), wo-
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bei k, = 2hf(x‚.), k; = k; = 2I(f(x, + h), k. = 2hf(x,, + 2h) ist. Folglich ist y, = (h/3) {f(a)
+ 4f(a + h) +f(a + 21:); , y, =y, + (h/3){f(a + 2h) + 4f(a + 3h) +f(a + 41)}
= (h/3){f(a) + 4f(a + h) + 2f(a + 2h) + 4f(n + 3h) +f(a + 4h)), Ein Näherungswert

In

für y(b) ist (h/3) Z c‚f(a + vh) mit co = C1,, = 1 und sonst c, = 4, falls v ungerade
v= D

(v = 1,3, ...,2n -1), c, 2 2, falls v gerade (v = 2,4, ...,2n - 2) ist (SimpsomRegel).

a) y=x3/3. b)y=1+x-cos(2x).
c) y = i(1/6)x’ - x2 + Clx + C1.

d) y = —(1/6) ln|1 + x| + 61x3 + Qx’ + C32: + C4.

e) y = -ln(cosx).
i) w(x) = (48 EJ)"qx‘(2xZ — Sb: + 311), w'(x) = 0=?(x/I) {8(x/l)7 —15(x/l)+ 6} = 0=>x/l

= 0 (uninteressant) oder x = (1/16) {l5 t 1/3—3}I (Pluszeichen unbrauchbar). Maxi-
mum von 1w| wird an der Stelle x = l- 0,578 4648... angenommen. Sein Wert ist gleich
l,012‚.. cm.

g) w(x) = (6E.I)"x1(3I - x)F‚ größte Durchbiegung liegt an der Stelle x = I vor. Ihr Wen
ist gleich 20,769..‚ cm.

h) x(t) = x, + (1/k)1n [cos[(gk)"2(t A t,)]} (0 g I; 1,),

x(t) = x. H (1/k)1n(cosh[(gk)"’<! - 0]) (I. g t< m),
A = x, + (1/k)ln2‚ B = —(g/k)“; (Bild 25.10).

X

15¢!’/kiln? ———————— __

‚v, ______._

lunar:-Iglkli

Bild 25.10
S

a) y = [(3/2)x- (1/2)]"’. b) x: ‘(1+1)".
c) y: -2ln(1+x). d) u=4[(2/3)V2x—2]".
e) y=tanx. f) x=exp{(t+1)’}.

g) zu) = ~(m/2k)"2_[ {—1n(;2/x.,)}’“’d;z, T= x.,((mn)/(2k))‘”.

h) y1=(c/2m)e(a+y7)(b—y7), a=c“+ W1”, ‚

b = 451+ W“ > 0 mit W= (2/e)(m/c)vä + (‚v3 + 5")’, A = 23”e"”(m/C)“.

a) y = Cz°XP(C1X)- b) y =(C1x + C2) ".
c) y=tan{(t/2)+(rr/4)}. d) y=x-ln(2-e‘).
e) y = arcsin{(1/2) -/2—e"} . i) x = exp (e').
g) u(x) = exp{i(2k/m)x} (oberes bzw, unteres Vorzeichen, falls p > 0 bzw. p < 0),

117 =(2c/m)(m/2k)1{1¥(2k/m)x + Cexp[¥(2k/m)x]).
Zu Beginn (rechtsseitige Umgebung von t = O) ist x = p < 0 und damit

p = ‘(Zc/m)"‘(m/2k){1+(2k/m)x — [1 + (2k/m)x.,] exp [(2k/m) (x — x.,)]}“’
mit xo g x g x1, wobei x, die von x), verschiedene Nullstelle der letzten geschweiflen
Klanuner ist.
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r= l(x) = -(m/2c)"‘(2k/m)_f{1+(2k/m):E~[1+(2k/m)xo]exp[(2k/m)(:E — xo)]}'“d:
mit der unteren bzw. oberen Integralionsgrenze a? = x, bzw. x = x (x0 g x g x,).
Mit t, = t(x,) isr »

t==11+(m/2c)“2(2k/m)_[{1\—(2k/m)2E — [1 — (2k/m)x,] exp[—(2k/m)()E — x,)]}‘“’d;z
mit der unteren bzw. oberen Iuiegratiousgrenze i = x, bzw. i = x, wobei x, g x g x, gilt
und x, die von x, verschiedene Nullstelle der letzten geschweiften Klammer ist. Mit
I, = t(x2) wird die Diskussion in analoger Weise {angesetzt (Bild 25.11).

l vflk/ml if
___ 7-I21:/mi
I-m//n/x. I v llklmlxy

up[I2lrlIn)(i-m] IxpI- IZkl/n)Iir'-.r,I

Bild 25.11

|

I

i
I

4': h:

I a) —w<x<+m;
II b) 2;

III b) 0;

IV c

b) x7;

e) 2y'" — 2y’ = o.

c) 0-y”'=0; d) coshx+sinhx-e"=0.
—(1/2) (x"‘ + x‘ "w" + (1/4) (‚r W — x-W)y' — (1/4)x' my = o

-(1/4)x””{2x(x +1)y" +(1—- x)y’ +y) = 0;

e) x’y” — 2xy' + 2y = 0; d) unabhängig.

v

d) unabhängig.

V b) 0; d) abhängig.

VI b) '-X"; c) ~x“ y"-2x"y'—x‘y=O.
VII b) O(x4=0); c) 0‘y”=0;

d) c,x+ c,|x|=0 (-°°<x< +co) => speziellx= i1: c,+ c,=0 und ~c1+ c,=0
= c, = c2 = 0, unabhängig.

VIII b) 0; c) O-y" = 0; d) unabhängig.

Es wird hier in den folgenden Fällen eine Lésuug der zugehörigen charakteristischen Glei-
chung angegeben

d) —1. e) -1. h) 2i. i) 1. j)2und3.

a y = 3e“(i + x).
c) z = 3e""sin (5x).
e) y = -e"‘ + (1 + x)e“.
f) x = C,e" + C,e‘“‚ C, = (9/4) cm, C, = —(l/4) cm, T= ln2250 = 7‚7l8...s,

(exp(-9t) hat keinen Einfluß auf die rnitgefiihrte Dezimalstellenanzahl).

v b) y = sin (x/2) .

d) y =1+ xexp[(-3/2)x].

g) x = exp[-(5/3)t] {c,cos[(2/3),/'1T:] + C,sin[(2/3),/’1-4—I]} , c, = 2 cm,

c, = (5/14”) cm, (c; + cg)!/I = (9/141/1) cm, T= 4‚671.„x.

a) y = —(s/2s) — (2/5)x + C,e‘ + C,e'5".

b) y = x7 + C, + C,e" + Cge“.

c y = (5/48)x’ - (1/80)x’ + C, + Cgx + C,cos (2x) + C.sin(2X)-

d) y=1+t+e'(C1c0st+C;sinl).

\
/
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y = (1/74) {7 cos x + 5 sin x} + C12" + C16“ + C3.

0 y= -sinx + (C, + C,x)e"‘ + C3.

g) y x C1cos(3t) + (C2 + (1/6)t)sin (31).

h) r = -(1/8)q:7cosqz + (C, + C,<p)cosq2 + (C; + C4¢)sinq1.

y = -(1/100)x{4cos(2x) + 3sin(2x)} + (C, + C2x)e'* + C3cos(2x) + C. sin (2x)-

j) y = («I/2)e"—(2/5)1e'“+ c, e" + C26“.
k) y = -(1/6)xe”‘cos (3x) + e”‘(C1C05(3X) + C.sin(3x)).

I) y'= —(1/2) + (1/2)xe"‘ + (x/2) (3x + 1)e”"
+ (1/2) {cos(2x) e 3sin(2x)} + C19“ + C;e"".

m) y = —{(1/5)x1 + (27/125)} cosx + (4/25)xsinx + Cie" + C2e“".
n) y = - (1/8) cos x - (3/200) cos (3 x) — (1/50) sin (3 x) + (C, + Cgx) e".

o v
.
.
.

a) y = -80 +{81+(81/4)x)exp(—(1/4)x}. b) y= x.

c) y = (3 - 6x)e”‘ + 3e"" + 2e“ - 3x7 - x + 2.

d) y = (1/2)x’ - 2x + 1! -(1/4)—(1/4)cos(2x)— sin (2x).
e) IX) x = (Fa/k) {l — cos[(k/m)"1t]};

ß) x = (a/k) {t - (m/It)” sin[(k/m)"21]};
y) x = F„(k + maz’)“{exp(-nzt) ‘ cos [(k/m)"2t] + tx(m/k)"2sin[(k/m)‘”t]}.

l) y = e"’{C,cos(m„t) + C1sin(wot)} + A + Bcos (wt — az)

mit ö = k/(Zm, + 2in2) = 6,245 s",
mo = {3EJl’3(m, + m2)“ — (1/4)k’(m, + mz)'2}1/2 =124,743 7... s",
A =(m1+ m2)gc" = 0,6288... mm, m= 21!-3600min“‘ = 376,9911...s",

B = mzm’ {[0 - (ml + m1)w’]2 + k’w‘}_m =1,347...cm,

q» = arccot {[c — (m, + m‚)w’]/kw} = arccot(-26,870 36...} = 3,10439... =177,868...°,

C;=-A-Bcos(p=1,283...cm, ‘

C, = w„“{öC‚ — wB sin a1} = —0,87l 55 mm.

v Für x = 0 ist mit‘ 2 —cxo, also i < 0, d.h., x fällt, und damit ist i < 0 in einer rechtsseiti-
gen Umgebung von t = 0, dort gilt somit mi + cx = R, und damit ist x = (R/c) + [x0

- (R/c)] cos (wt) mit w = (c/m)"’ fiir 0 g t g 1r/w. Speziell ist x, = x(rr/w) = (2R/c) — x9

<R/c. Ist Ixfl g R/c, so gilt x E x, für rr/to g t< +w . Andernfalls ist x, < -R/cund da-

rnit Im? = -cx‚ > 0 fiir t = rr/w. Hieraus folgt schließlich x = -R/c - [(3R/c)
- x0] cos (wt) für rr/w g z; 21:/w. Mit x; = x(27r/w) wird die Diskussion in analoger
Weise fortgesetzt (Bild 25.12). —

RI:

-Ric

Bild 25.12
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25.9: a) ß) y‚=E„xe";
5) Yp=3ReY.n Yp=(Bo+B1x)exp(2ix).

YE," - Y;," + 3Y',' + S)’; = xexp(2ix);
o y, = 41mY,,— 3Re Y‚„' Y, = Boxexp[(1+ 2i)x],

YE," — Y;," + 3Y",’ + 5}’; = exp[(l + 2i)x];
n) y, = 4Re )’„ Y, = (B0 + B,x)xexp[(1+ 2i)x],

YE,” - Y1," + 3}’; + S)’; = xexp[(l + 2i)x];

3) y, = 2Y1+ (1/2)y2 +(1/2)ys. Y1: Box. 93" + = I,
y; = B022‘, yg" + =e", y; = Bmxe", y‘,"+ = e".

b) 00 Y; =35.Y1‘Y2y Y1‘ Box)‘. Y)" ‘V =1»
y, = (B0, + B,x)e3*, yg" + = xe";

ß) y, = Re Y„ Y, = Boxexp {(-2 + 3i)x},
Y1," + = exp{(-2 + 3i)x);

V)yp=.V1'y2y y1=ImY;, Y1=3ux3XP{(2 + 301L
Y{'+ =exp{(2 + 3i)x}, y; =Im Y1,

Y; = Bmxexp [(-2 + 3i)x} , Y] + = exp {(-2 + 3i)x) .

25.10: y=2x+(C,+C,lnx)x1. b)y=x’+C,+(C1+Cg1nx)x2.
y=5+1nx+(1/7)x1+C1x+C;x"‘.
y = (C, + Czlnx)x7 + x{C‚cos(ln x) + C4 sin(ln x)} .

y=(2/x)-(1/x’). D y=xlnx+(1/2)(3x+x").
y=(C1+C1lnt)t+lnt+2."£

5
1
3
3
5

25-11: y =[C1+ Czx — (5/4)x= +(3/2)x31nx}e”‘.
y = (C1 + C2): + ln|x|)e"‘.
y = C,cosx + C,sinx + 2(cosx)1n(cosx) + 2xsinx.
y = C,e"‘ + C1e"" + (e"‘ + e'7")1n(1+ e‘).
y = {[C1 + (1/4) ln |cos (2x)| ] cos (2x) + [C2 + (1/2)x] sin (2x)}e".

y=-xcosx+C,x+C2x’. g) y=-x"sinx+C‚+C,x".
‚v = x“ + (C, + C;x)e3". i) y = —x‘1cosx + Clx“ + C2x‘2.

j) x = {(3/2)t3lnt - (5/4)t3 + C, + C‚t}e”‚
k) a) x(t) = x„(t) = u,(t)cos[(k/m)"’t] + u;(t)sin[(k/m)"1t];

um) = (Folk) {cos [(k/m)"’t] — 1} für 0 g t g T,

111(1) = (Folk) {cos[(k/m)"’T] ~ 1} für t> T,

u‚(t) = (F„/k)sin[(k/m)"’t] für 0 g t g T,

u,(z) = (Fa/k) sin[(k/m)"’T] fiir :> T,

x(t) = (F0/k) {l - c0s[(k/m)"71]} für 0 g t < T,

x(t) = (AF.,/k) cos[(k/m)"‘t — qz] für t g T mit

A =(2(1 — cos [(k/m)"’T])}m = 2 sin[(k/m)"’(T/2)],
cosaz = A“(cos[(k/m)"‘T] — 1), sinqz = ;

ß) x(t) = (F0/kT) {t - (m/k)"’sin[(k/m)"’t]} fill: 0 é K; T,

x(t) = (F0/k) + (2170/kT) (m/k)"’sin [(k/m)"’(T/2)] cos [(k/m)m! - m] für t> T;

5
0

3
3

5
3

5
8
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a)

d)

81

y) x(t) = (F0/kT) {r ~ (m/k)"Zsin[(k/m)"’t]} an o _s_ z g T,

x(t) = (F0/kT){1’ + (2m/k) (1 — cos [(k/m)"’T]) « 2(m/k)"’Tsin [(k/my/2r]}‘”‘
-cos[(k/m)"’t - 4p] für t > T.

a) y E 0; ß) keine Lösung; y) y = Csin(1rx).

w = a{cos [(p/u)v2r]}" {1 — cos [(F/EJ)‘”x]}, falls F* EJ{(n/2!) + um/1))’,
(k = 0,1,2,...) und u * 0; keine Lösung, falls F= EJ{(rr/2I) + (krr/l)}2 und a $ 0, Im
Fall u = 0 (mittiger Angriff von F) liegt Eigenwenaufgabe vor. Eigenwerte sind

F = EJ{(n/21) + (kn/I))1 [für die Siabilitätstheorie ist nur der Fall k = 0 (Knicklast)
brauchbar], zugehörige Eigenfunktionen sind w,,(x) = C,,{cos[(2k + 1)1'r(x/21)] - 1},

w = (I‘/1'r‘){(Elr:‘ — FI’)“q1sin(1Ix/I) + (1/4) (451711 - FI2)"q2sin (21rx/1)} ,

falls F#= Elklrrz/11 (k = 1,2, ...) ist. In den Fällen ‚F: EJrr’/I2 mit q, * 0" und
„F = 4EJ1r7/l7 mit q, 4= 0“ gibt es keine Lösung. In den restlichen Fällen liegen un-

endlich viele Lösungen vor,

Mit ‚l = (w’u/El)” und N = 4(l + cos (AI) cosh (11)) ist

y = C‚cos(‚1x) + C, sin (Ax) + C3exp(,lx) + C.exp (—lx) mit
NC, = 2a{cos(.1l) + cosh (11)) , NC; = 2a{sin (/II) - sinh (1.1)) ,

NC, = a{exp (-1.1) + cos (,4!) + sin 0.1)},

NC, = a(exp (A!) + cos(1l) — sin AI}, falls N 4= 0.

Im Fall N = 0 gibt es keine Lösung (die Kreisfrequenz w der Einspannschwingung ist
gleich einer Eigenfrequenz des Balkens, also liegt Resonanz vor).

\

Es gilt stets G(x,i) = G(i,x). Für x g i ist G(x,:E) gleich

a

b

C)

d)

v
‘
;

a)

b

a) X11-(J?/1)]; ß) x.

(X) (1/6)x’(3i - x); ß) (1/6I)x(J? - l)(x7 + i’ - 213?),

IX) arctanx; ß) a.rcta.nx{1—(arctanl)"arc!ani},
(I/2)exp(x-i). e) —1n:Z.

sin (ax)sin [a(l- ma-‘[sin(aI)]".

F= EJ(11/21)“, w = Csin(rrx/2!);
ß) sin[(F/EJ)‘”l] = 0, F= EJOI/l)’, w = Csin(rrx/I).
oz) siz1[(p/E.l)"‘w"’I] = 0, LU =(EI//1)"’I‘7n’, y = Csin(1'rx/I);

p) cosh [(;4/EJ)"‘w W1] = -{cos [(14/£1)‘/‘wW1]}" ,

a) = (EJ/u)"7l’z'p7, p =1,875 104... ,

y = C{acos(px/I) + bsin (px/I)
-(1/2) (a + b)exp(px/I) v (1/2) (u ' b)exp(px/I)

mit a = sinp + sinhp = 4,13813... ;

b = -(cosp + coshp) = -3,037 78...;
-(1/2) (a + b) = -0,55O l... , -(1/2)(a - b) = -3,5879...;

cos11[()1/E./)"°w“’I] = {cos [(1/E1)!/4»!/2z]}"‘,
w = (El//4)"2I’7 177, 4,73004 <p < 4,73005,

y = C(acos (px/I) + bsin(px/I)
—(1/2) (a + b) exp (px/I) A (1/2) (a e b) exp(px/1)}

mit a = sinp — sinhp, -57,64605 < a < —57,645 4;
b = -(cosp - coshp), 56,6368 < l7’< 56,6374;

0,504 33 < -(1/2) (a + b) < 0,504 34; 57,14114 < -(1/2) (a - b) < 57,141 71;

a) cos[(F/EJ)"’l] = 0,

V
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ö) canh[(/4/EJ)""w“’l] =tan[(;4/EJ)"‘w"’I],
w = (El/u)"’l"1p‘, 3,9266 < p < 57:/4 < 3,927,

y = C{acos (px/I) + bsin (px/I)
—(1/2)(a + b)exp(px/I) — (1/2) (a — b)exp (px/1)]

mit a = sinp - sinhp, ~26,075 < a < ~26,064;

b = —(cosp - coshp), 26,004 < b < 26,094.

Mit A = (2EJ)'“7 {F—- (F1 — 4EJc)W}“, B =(2EJ)‘“1(F+(F’ — 4EJc)W)"’ lautet die
Eigenwengleichung sin (AI)~sin(Bl) = 0, falls A at B. Hieraus folgen die Eigenwerte F
= Elk’-fir’ + ck"rr"l‘ (k =1,2,...). Aus (dF/dk) = 0 folgt k = Irr“c"‘(EJ)‘“‘. Da
diese Formel wegen A * B keine ganze Zahl liefert (es wäre sonst F = 2(EJc)"’ und da-
mit A = B), ist zu prüfen, welche der beiden zu l1r“c"‘(EJ)"" (im Zahlen-Bsp; 10/7:)
benachbarten ganzen Zahlen den kleineren’ Eigenwert liefert (im Bsp; k = 3.
F= 201,4... (El/11)). Gilt für den Eigenwert sin (AI) = 0 bzw. sin (BI) = 0, so lauten die
zugehörigen Eigenfunktionen Csin (Ax) bzw. Csin (Bx). Im Fall’ A = B, d. h.
F = 2(EJc)‘”, wird nur dann ein Eigenwert geliefert — er ist dann der kleinste —‚ wenn

lrr"c"‘(EJ)"" eine ganze Zahl k ist, die zugehörigen Eigenfunktionen lauten dann
Csin [k7r(x/1)] .

y =1+ x’ +(1/4)x‘ + (1/20)x‘ + (1/160)x‘ +

w = C{x — (y/EJ) (4!)“x‘ + (y/£1)14(7!)-1x7 + ...};
o = w’(l) = c{1 — (y/El) (39413 + (y/EJ)14(6!)“I5 + ,..},
z= (EJ/y)‘” {l5 — (45)W}"’ = 2,024...(EJ/y)‘/3.

X = xo - (1/2)k(mxo)“t2 i (1/24)k’m'1x.§3t‘ +.... , x(T) = 0,

T= x„(m/k)"7 - {-6 + 2 - 151/2}“ =1,321...x.,(m/k)“=, (n/2)“ =1,2s3...

exp(x’/2).

x = 4C, exp (M) - 2C,exp(-10!) ,

y = C, exp(41) + 3C2 exp(—10t).

x = e'{C‚ cos (31) + C,sii1 (31)) ,

y = e'{[2C‚ + C1] cos(3t) + [—C, + 2C2]sin(3t)}.

x = -C;e"‚ y = C‚e’- 2(C‚t + C3)e2', z = (C21 + C,)e“.

y, = (-5‘”C‚ + 2C‚)cosx + (-2C‚ — 5"’C‚)sinx - 3C3cos(2x) - 3C.sin(2x),

y; = C, cos x + C2 sin x + (5"’C3 + 4C.) cos (2x) + (~40, + 5"‘C.)sin (2x).

—IM"J=AJ mit A=(u„,)‚ a„=9, a„=11‚ a„:16,
a,,=11, a3,=9.
13+ 516/1" +12860I+ 58800 =0, I, = -6, I, =

y,(t) = (1/10) {Gens (um) + C2sin(w,l) + C3cos(w,t)
+C. sin (um) + C5 cos (um) + C6 sin (w,t)} ‚

y;(t) = -(1/15) {C,cos(w1t) + C, sin (w,t)} + (1/7) {C5cos(w3I)

+C., sin (w3t)} ,

y3(r)=(1/10){C,cos(w,t)+ C, sin (um) - C3 cos (m21)

-C. sin(w‚t) + C, cos (€03!) + C6sin(w,t)} ,

wobei w, = (EJ)‘”I‘3”768"’(6 kg)’“‘ = 550,82... s“,
w, = 301,69... *1, w, = 60,95... s" (Bild 26.3).

0kI=01x. 331:7.

-20, ‚i‘; = -490.
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k” 10kg 27k}; kg „l

' *7’

I" i’ 1" f’

‘ I2
Y
' ” :,=[,.-£,=t.=n

_1_ L
70 7

X

t.=t, =5,-t.——a

4h Am.
V7 '

a) yl = ~(1/8) + Cz¢XP(4X)- .V2 = -(7/8) + Cie’ - C2exI>(4x)-

b) x = C,e' + Cze" + (I/2)!(e'— e"),
y = C,e’ - C;e"+ (1/2)t(e' + e") + (1/2) (e'- e").

c) =~6C,{cosx + sinx} + 6C,(cosx- sin x}
—(3/5)sin(2x) + (6/5) cos(2X) + 3(1+ J09“,

y, = 10C1cosx +10C,sinx + sin (2x) — (5/2)c"‘.
d) Die allgemeine Lösung des zugehörigen homogenen Systems strebt für t—><=° nach 0,

Weil die Realteile der Lösungen Ä der charakteristischen Gleichung kleiner als 0 sind.
I, = (a/Rz) (L‚/L,) sin (w!) - a(L,w)"‘ cos (wt),

I2 = -(I1/R2)(L2/L1)”’Sin(wt).
U; = -u(L;/L,)"’ sin (wt);

(durch den Transformator Spannungserhühaug bzw. —emiedrigung fiir L, > L, bzw
L, < L,).

e) x=2( *:)e4x_.3(:>e2:+ < -3+§e1xp(3t)).

x = C, + C21 + CM + e'+ e“, y = C. — (C, + 263): ~ (1/2)C,t1 — (1/3)C,x3 — e’ + 2e”.

X = “(5/4) + (13/4) cos(21) e 3sin(2t),
y = (3/2)! + (13/4) sin (2!) + 3 cos (21).

b) x = -22 + 121+ (C, + C;t)e",
y =17 - 71+ (iC, + (1/2)C; - C2t)e".

c) y, = C, + exp (3x) {Czcos (3"’x) + C,sin(3"’x)} ,

‚v; = -C1+ exp(3x) {(1/2)[C; - 3mC3]cos(3"1x)+(1/2)[C3 + 3"’C2]sin (3"’x)} ,

‚v3 = -C, + exp (3x) {(1/2) [C2 + 3‘”C,] cos (3"1x) + (1/2) (C, — 3"‘C2] sin (3‘”x)} .

d) X, =x3, xfi"-2563+ x3= 17,

x, = (C, - C, + Czt)e’+ (-C3 - C4 - C.l)e”+17t+ 2 ‚

X1 = [(-1/2)C, + C1 - (1/2)C2t]e‘+ [(1/2)C, + C, +(1/2)C4t]e"- 121* 2.

e) x = 3 + C, sin t — Czcost + (1/2)C,sin (21) — (1/2)C4 cos (Zt),
y: 7 - 5C,cosr— 5C2sin1A 2C;cos(2t) - 2C.sin(2t).

Bild 26.3

D
3
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f) L113” + LRI} + (21./C)I, + (R/C)I2 = (a/C) sin (mt),

HA3 + LRA1 + (21./C)}. + (R/C) x 0. Da alle Koeffizienten positiv sind, die linke Seite
der letzten Gleichung für /1 =0 den Wert (R/C)>0 und fiir /1 = —R/L den Wert
-(R/C) < 0 liefert, gibt es keine Lösung A > 0 und indestens eine Lösung ‚l = ‚i, mit
—(R/L) < A, < 0. Die beiden weiteren Lösungen lauten

/1,_, = — (1/2) {(R/L) + 1,); i {(1/4) [(R/L) + 1,1’ — [2(CL)" + (R/L)J., + am" und
haben daher negative Realteile. Also strebt die allgemeine Lösung des zugehörigen ho-

Systems für t~> m nach O.

12m = (a/C.) {[(R/C) — Lm.:1]’ + w1[(2uc) — L1u1]’}"”sin(wz — a), a; =

I,(1) ergibt sich mit dem bekannten I‚(t) z.B. aus der zweiten gegebenen Dgl. Wenn w

klein, dann U; == asin(w1 — (p) [Durchlaß].
Wenn u: groß, dann U; z a(R/C)L‘2w"sin (wt — a2) [Sperrung].

E) Z = _(C1x ‘l’ C2)” v ‚Y = 2Cl(Clx + C2)‘:-
h) z = Clx + 62x"; y = -C‚x + Czx".
i) z = -(1/20)x + (2/15)x1 + C,x'3 + Clx";

y = (3/10)x+ (1/15)x’ - 263x” - Czx“.
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