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Vorwort

Die vorliegenden Ubungsaufgaben sind fiir den Einsatz im Direkt- und Fernstudium
an Universitdten und Hochschulen gedacht. Da die Aufgaben inhaltlich an die Binde 4, 5
und 7/1 der Reihe ,Mathematik fiir Ingenieure, Naturwissenschaftler, Okonomen und
Landwirte“ angeschlossen sind, kénnen sie vom Leser auch zum Selbststudium herange-
zogen werden. Zum Zwecke der Motivation wird neben innermathematischen Problem-
stellungen auch mit einfachen naturwi haftlichen, technischen und 6konomischen
Sachverhalten gearbeitet.

Bei der Erarbeitung dieses Ubungsheftes wurden die Erfahrungen aus den Mathematik-
lehrveranstaltungen an der Technischen Universitéit Dresden und an anderen Hochschu-
len der DDR genutzt. Wir danken fiir die eingegangenen Hinweise, die alle sorgfiltig ge-
priift und in der Regel beriicksichtigt wurden.

Unser besonderer Dank gilt den Herren Oberlehrer Dipl.-Math. Helmut Ebmeyer
(Technische Universitit Dresden, Mitarbeit bei den Abschnitten 17.-21.) und Dr.-Ing.
Ralf Kuhrt (Humboldt-Universitit Berlin, Mitarbeit bei den Abschnitten 22.-26.). Sie ha-
ben wertvolle Hinweise aus der Sicht des Fernstudiums gegeben.

Aufgaben mit héherem Schwierigkeitsgrad oder umfangreicherem Rechenaufwand sind
mit einem Stern gekennzeichnet. '

Fiir Hinweise und Vorschlidge, die der Verbesserung der Aufgabensammlung dienen,
sind wir stets dankbar.

Dresden, April 1986 H. Wenzel
. G. Heinrich
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17. Funktionen mehrerer unabhingiger Variabler,
partielle Ableitungen und totales Differential
(Bd.4, 1., 2.1.-2.5., 3.1.-3.6)

17.1. Gesucht sind alle Punkte P(x;y;z) des R?, fiir welche gilt:

a) y=14, b) x2+y?+(z—4)?=0,
c) zx=1, d z+y=0,
e) (x+5?%+22=8, D x|+l +]zl=1,

g) 19+ y(x—6)2+y2-81 =0, h) max{x%y%,z%} <4 .

(Geometrische Interpretation!)

17.2. Skizzieren Sie die folgenden Flichen! Uberlegen Sie vorher, welche Kurven sich er-
geben, wenn die Flichen mit Ebenen x = const, y = const, z = const geschnitten werden.

a) x2+z2=9, b) z2+9x2+4y2=1,
o) yr=x2+22, d) z2—4x2+y?=1,
e) z2=x2+y?+1, . f) z=x2+1-y%

17.3. Von der Funktion z = f(x,y) sind die Niveaulinien zu bestimmen. Von der in der
x,y-Ebene skizzierten zugehorigen ,Karte der Fliche“ schlieBe man auf die Gestalt der
durch f bestimmten Fliche F im R®.

a) z=x-6, b z=y1-y%, ||sl, ¢ z=x2-y>+4,

d) z=10—yx2+y?, e) z=x2+(y+2)> -4,

f) z=(x+1)(-3), g) z=3—4x2-9y?,

17.4. Fiir die durch z = f(x, y) gegebene Funktion zeichne man die Projektionen einiger
Hohenlinien in die x,y-Ebene.

- s 5ty

a) z P b) z=e ¥ ,y*0, c) z e ,y%0,

O z=—r—r yor=ew(-n), 0 z=a+lico+0ind,n)
= e z=exp(-0?, =t . D).

17.5. Fiir die Funktion z = f(x, y) ist der groBtmégliche Definitionsbereich Dy = R? zu er-
mitteln. Man skizziere D, und gebe jeweils den Wertevorrat W, an. Welche der Mengen
Dy, W; sind beschrankt?

a) z=x+y+sin(xy), b) z=g/1—y+e"‘2,
¢) z=m, d) z=3+x2-y?,
1
e) z=(@4—-x*—y?) 2, ) z=qyy—x2+4x2—y.

17.6. Skizzieren Sie den groBtmoglichen Definitionsbereich von z = f(x, y)‘!

a) z=In(x2-y?), b) z=+4x2+3y?-9 +%,



17. Funktionen mehrerer unabhéngiger Variabler 5

In(y—x) =
) z=——=, d) z=Q2-e9) Tyx+3-p],
V=i

e) z=arcsin(5 — 2y + 2x), f) z= 4

Vxi+yr—2x
17.7. Man bestimme lim f(x,y), wenn sich P lings
P—(0,0)
«) der x-Achse; B) der y-Achse; y) der Geraden y = tx, ¢t = const,

bewegt. LBt sich aus den erhaltenen Ergebnissen etwas iiber die Existenz von
lim f(x,y) folgern?

®N—00
_ sin(xy) _ y*sin2x
a) f(xy) X ty? b) f(X,)’)——"*x2+4 >
_yi=xt _ 2x+y?
o) flxy) T d) f(x,y) dx—y
17.8. Die folgenden Grenzwerte sind — falls sie existieren — zu berechnen.
in8
a) lim e cosx, b) M—,
=m0 =00 2XY
2 —
9] d)

lim ——— im s
n—o X2+ y?’ n-6H XY

. 1 - cos(x? + y? . 4(x +y)In (y*x
o lm 1Z2SCERY) D lim  ep PO
-0  (2+y?) @922 xi-y

17.9. Welche der Funktionen z = f(x, y) sind im Ursprung stetig?

fir (x»)*(0,0),

a) flxy)= L x2+y?

0 fur (x,y)=(0,0),
(290°=X) fir (x)+00,0),
b fouy)= prw: r (x,y)*(0,0)
0 fur (x,y)=(0,0),

ST =Y) fir x|+ y|>0,
O S =1 Ixl+Dl
0

fur |x|+[y|=0,

fir x2+y2>0,

d fooy) =1

x2+y?
e fir x2+y?=0.
17.10.* Zeigen Sie, daB von der Funktion
_X° fir x*+y?>0,
fxy) =1 x2+y*
0 fir x2+y2=0

die partiellen Ableitungen f,, f, im Nullpunkt existieren — aber f(x,y) dort nicht stetig
ist.



6 17. Funktionen mehrerer unabhingiger Variabler
17.11. Alle partiellen Ableitungen erster Ordnung sind zu bestimmen.

L
3) z(xy)=xtany + 3 x’ =6, b) h(xl,x2)=ln%,
1

c) g(x,y,z)=1nxy+21nﬁ—lnzx,

X s s+t
d) w(x z) = z°cosh—= il
) w(x,z)=z 7 ©) u(s, 1) =€ +arctanT—,

H olp,w) =%005(w2 - 99).

17.12. Fiir die folgenden Funktionen sind die partiellen Ableitungen erster Ordnung all-
gemein und an der Stelle (x,;y,) zu ermitteln:

a) z=y2x+3xy+4y, (xy)=(11),
b) z=cos(e? +x), (xo:y0)=(0;1),
©) z=x¥, (xg;30)=(2;1),

d) z=In@2-e*7), (xo;3) = (0;0),

22
o z=In——2=, (xiy)=(43).
x2 + yl
1
17.13. Die Funktion g(t,x) = (1 = 2tx + 12 ? geniigt der Beziehung % =htx)g(tx).

Geben Sie h(t,x) an!

y+3
S |

17.14. a) Von der Funktion z = f(x,y) = arctan ist der groBtmogliche Definitions-

bereich im R? anzugeben.
b) Welche Werte ergeben sich fiir  lim  f(x,y), wenn y,€ R? ist?
A )= 1,50
¢) Man gebe einige Hohenlinien an.
d) Nach der Berechnung aller partieller Ableitungen bis zur 2. Ordnung ist der Ausdruck
Az = z,, + z,, zu bilden.

17.15. Von der Funktion z = f(x,y) sind alle partiellen Ableitungen erster und zweiter
Ordnung zu bilden.

Y

. X o
= + P = xe*
a) z=sin(ax + by), b) z ponw c) z=xe*,
d) z=In(x*+y), e) z= xyarcsinx, f) z=x+y—|x-y|,
X x—3y
= 2 e =pX 4 XV,
g z y]ny tany -1 h) z=y*+x

17.16. Ist die Funktion z = x- exp (——f{—) Loésung der Differentialgleichung
Xz + 2(zc + 2,) = yz,,?

17.17. Man bestimme « € R! in w = (x2+ y2 + z9)%, (x;y;z) *(0;0;0), so, daB w der
Gleichung wy, + w,, + w,, = 0 geniigt.
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17.18. Berechnen Sie das vollstindige Differential von

a) z=xiy, b) z=yx2+y2+5,

o) z=In(y+yx2+y?), d)z=1/x—y+ln‘/g,

. X - x
e) z=ysin(x+y) \/x’_—Z. ) z—lntany‘

17.19. Fiir die Funktion z =4 ln% vergleiche man im Punkt P(%ﬂ) die Differenz der

Funktionswerte Az mit dem Wert des vollstindigen Differentials dz und berechne
|Az — dz|, falls

«) dx=dy=0,5; B) dx=-0,1, dy=03; y) dx=0,02, dy=0,16

gilt. Die Ergebnisse sind zu interpretieren.

17.20. Man untersuche, ob die folgenden Ausdriicke vollstindige Differentiale sind und
bestimme gegebenenfalls eine zugehorige Funktion z = @(x,y).

a) (2x +2xy%)dx + (4y3x2 + 3y)dy,
b) xsinydx + x?cosydy, . -
c) (2¢¥” —4cos’ xsinx)dx + (6x + y)e¥dy,

2y 2
(x+y)? dx (x +y)? d,

d)
e) v/;e’“”‘y(% +ycosxy>dx + x4 [cos xy] e dy.
17.21. Fiir welche reellen Werte von « ist der Ausdruck

—ye“"’) dx

1
1-x*
vollstindiges Differential einer Funktion z = f(x,y)?

Geben Sie in diesem Fall z = f(x,y) an.

axe @dy + (

17.22. Berechnen Sie das Differential d’z fur

a) z(x,y) =xy, b) z(s,t)=sin(s+ 1),

©) w(u,v)=e", d) z(x,y) = xInyy + xsin’y.

17.23. Bestimmen Sie die Gleichung der Tangentialebene an die durch z = f(x,y) gege-
bene Fliche im Punkt Pg(xo; yo; Zo)-

a) z=x2+y?,

b) z=x2+4xy—2y? mit Py(2;1;z),

9 2= VA= G4y mit PoliyZ;z).

17.24. Wie lautet die Gleichung der Tangentialebene in einem beliebigen Punkt der
durch z = f(x,y) = x2 + y gegebenen Fliche F? Man bestimme alle Punkte von F, fiir die
die zugehorige Tangentialebene parallel zur x-Achse liegt, und skizziere F.
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17.25. Fiir 0 < a = const ist durch z = f(x,y) = (a —. J_— w/;)z mit D;={(x;y)[x=0AYy
= 0} eine Fliche F gegeben. Man bestimme alle Punkte von F, fiir welche die Tangential-
ebene 7 existiert, gebe deren Gleichung an und zeige, daB die Summe der Achsenab-
schnitte von 7 mit den Koordinatenachsen gleich a? ist.

17.26. An einem geraden Kreiskegel ergaben sich aus einer Messung die Werte r = 30 cm
fiir den Grundkreisradius und & = 40 cm fiir die H6he. Wie groB sind absoluter und relati-
ver Fehler der Mantelfliche hochstens, wenn |Ar| = |Ak| = 0,1 cm angenommen werden
kann?

17.27. Man bestimme den relativen Fehler des Volumens eines geraden Kreiskegels, falls
dessen Radius einen relativen Fehler von 2 % und die Hohe einen relativen Fehler von 3 %
aufweisen.

X i
17.28. Welcher relative Fehler ist bei der Berechnung von R geméB R = ¢+ =l ¢ = const,

zu erwarten, wenn /=100m, r=10"3m gemessen wurden und |Al|<5cm, |Ar|
=10"'mm gilt?

17.29. Zwei Widerstinde sind parallelgeschaltet. Fiir den Ersatzwiderstand gilt

R= Ri'Ry
TR +Ry’

satzwiderstandes, wenn R; = (450 £ 2) Q und R, = (150 £ 1) Q gemessen wurde!

Man berechne den gréBtméglichen absoluten und relativen Fehler des Er-

17.30.. Zur Bestimmung der Brennweite f eines Kugelspiegels wurden G tand
a=(12 £ 0,1) cm und Bildweite b = (5 £ 0,05) cm gemessen. Welcher absolute und wel-

: 8 11
cher relative Fehler ergibt sich fiir die gemiB 2y = + 5 berechnete Brennweite?

i

17.31. Das Volumen einer Kugel soll mit einer Genauigkeit von 0,1 % bestimmt werden.
Wie groB darf dabei der relative Fehler des Radius r hochstens sein, wenn fiir 7 = 3,141 59
einmal der Niherungswert 3,14 und zum anderen 3,142 verwendet wird?

17.32. Mit welchem absoluten und relativen Fehler muB man bei der Ermittlung des Vo-
lumens eines geraden Kegelstumpfes rechnen, wenn der Grundkreisradius r; = 5 cm, der
Deckkreisradius 7, =4 cm und die Hohe h = 6 cm gemessen und alle GroBen mit einem
absoluten Fehler von hochstens 0,1 cm abgel wurden?

17.33. Von einem Dreieck ist die Basis ¢ = 1400 m genau bestimmt worden. Die beiden
anliegenden Winkel o und B betragen etwa 51° und 48°. Mit welcher Genauigkeit kann
man die Linge der Seite a angeben, wenn « und f einen absoluten Fehler von 0,5° auf-
weisen?

17.34. Bei der Vermessung eines ebenen dreieckigen Geldndes erhielt man a = (84,3
+0,1) m und b = (73,2 + 0,2) m fiir zwei Seiten und 48,6° £ 0,2° fiir den Winkel zwischen
a und b. Gesucht ist die Linge der dritten Seite c. Welcher prozentuale Fehler tritt auf?

17.35.* Von einem gleichschenkligen Dreieck wurden die Basis und der gegeniiberlie-
gende Winkel & mit einem Fehler von 1% bzw. 0,5° gemessen. Welcher relative Fehler er-

" gibt sich fiir den Fldcheninhalt des Umkreises des Dreiecks? Wann ist dieser Fehler mini-
mal?
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17.36. Fir die mittelbare Funktion z = f(x,y) mit x = x(¢), y=y(¢) ist z= % zu be-
rechnen.

a) z=3x2+2xy +y? mit x=sint,y =cost,

b) z=In[(x+y) ], x=2-1,y=+1 (t|>1),

¥y
c) z=xe’,x=-17,y(t)=1nt t>1.

17.37. Von der mittelbaren Funktion z = f(x,y) mit x = x(¢), y = y(¢) ist Z(¢) zu ermit-
teln (zy, z,, (1), y(¢) sollen existieren und stetig sein).

x+y
x=y’

a) z= b) z=tan(xy), c)z=x".

17.38. Von z = f(x,y) sollen alle partiellen Ableitungen bis zur zweiten Ordnung stetig
existieren, y = g(x) sei zweimal differenzierbar.

a) Man bilde F’(x) und F"(x) von F(x) = f[x, g(x)].

b) Was ergibt sich speziell fiir z = In (x + y) und g(x) = sin x im Punkt P(%; 1) ?
17.39. Von F(x,y)=f[x(u,v),y(4,v)] mit x= %,y =uyv bilde man den Ausdruck

T:=u*F,, — v*F,,+ uF, — vF,,u*0.
(Die bendtigten partiellen Ableitungen sollen stetig existieren.)

17.40. Von z = f(x,y) ist die Ableitung im Punkt P(xy;y,) in der vorgegebenen Richtung
zu bestimmen. (Der orientierte Winkel zwischen der Richtung und der positiven x-Achse
sei @ mit —T< x <7.)

8 2=x9P(-2), 0= 3, 0=, b z=Vx )7, PG4, a=,
P(y3;1), —~1r 4x2=-%4

17.41. Man bestimme die Richtung o (siehe auch Aufgabe 17.40.), in welcher die durch
z = f(x,y) gegebene Flache im Punkt P(x;y,) am starksten ansteigt. Wie groB ist der An-
stieg tan @ der Fliche in dieser Richtung?

a) z=x’—x¥+2(x-y), P0;0),
b) z=2x2-3x+y2+ (1+43)y-43, PLD),
0 z=({3 —1)x2+y*—2x+2y+343," P(-1;0),

d) z=2x2—xp2+ 15In(y*+ 1) — 6y cos 2x — 3), P(%ﬂ)-

) zm—r
) po

17.42. Fir die durch z = ¢(x%*+y*), ¢ >0, bestimmte Fliche ist die Konstante ¢ so zu
bestimmen, daB der steilste Anstieg der Fliche im Punkt P(1;2) unter dem Anstiegswin-

kel g = -4"— erfolgt.
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17.43. Berechnen Sie Az = z,, + z,, fiir
Q) z=g(x+y), b z=glm), o z=g(—;‘—),

d) z=g(yx2+y?), dabei sei g zweimal differenzierbar.
17.44. Man weise nach, daB fiir eine differenzierbare Funktion g gilt:
a) z=yg(x?—y? erfillt die Gleichung yz, + xz, = z2xy™",

b) z=xy+ xg(%) ist eine Losung von xz, + yz, =z + xy,

o z= xg(@) geniigt der Beziehung xz, + yz, = z.
17.45. Durch die Substitution x = uv, y =—;~(u2 —v?) geht z= f(x,y) in eine Funktion

z= @(u,v) liber. Man berechne z2 + z2 in Abhiingigkeit von u und v.

17.46.* Der Laplacesche Differentialoperator AU = U,, + U, ist in Polarkoordinaten r, ¢
darzustellen (U = U(x,y), x =rcos @, y = rsin @).

17.47.* Man zeige, daB die Funktion
u(rnt)= lr[g(r-f )+ h(r—1)]

der Gleichung u,, + u,, + u,, = u, geniigt, wenn die benétigten Ableitungen von g und h
existieren (r = yx2+y2 +z2).

17.48.* Esseien x = x(¢),y =y(t), z = z(¢) die kartesischen Koordinaten eines Molekiils
zur Zeit ¢t mit der kinetischen Energie T = %(22 +y2 + 2. Geben Sie T in Kugelkoordi-

naten x =rsindcos@, y=rsindsing, z=rcosd an (r=r(t), 9=9(t), 9 = (t)).



18. Implizite Funktionen, der Satz von Taylor
und Extremwertaufgaben
(Bd.4,26.,3.7.-3.8., 4)

18.1. Gegeben ist die Gleichung .
Fxy)=x*+y’+xy=0. ®

a) Welche der Punkte Py(0;0), Pz(—% ¥2; —% %/4—), 13(—%; —%)

1
Py 5= — eniigen der Gleichung (*)?
4( TRE Y )g 2 g (¥)?

b) Fiir die in a) ermittelten Punkte untersuche man, ob in einer gewissen Umgebung
solch eines Punktes (*) eindeutig nach x bzw. nach y auflgsbar ist und gebe in diesem
Fall die 1. Ableitung der so entstehenden Funktionen in diesen Punkten an.

18.2. Fiir die Funktion y = f(x), die durch F(x,y) = 0 in impliziter Form gegeben ist, be-
rechne man y’(x). Welchen Wert hat y'(x) speziell in Py(xq; yo) ?

n bid
a) F(x,y)=xcoty+yarccotx—T, Py 0;7 :

b) F(x,y)=e&tany+%—3(xz— D-n, Pol;m),

S

o) F(x,y)=sin(xy) — ¥ — xy—1+7+ e =0, P0<1;12‘—>,

dy Flx,y) = 2111‘/—5—)65__—l +ytan(Qy - x) - lni;-, Po(2;1),

e) F(x,y)= arctan

-y _ T .
1+ 7 tnx, Po(Li0).

18.3. Durch die Gleichung ye’~* — 1 =0 ist in einer Umgebung von x = 1 eine Funktion
y =f(x) mit f(1) = 1 bestimmt. Berechnen Sie die 1. und 2. Ableitung von f und bestim-
men Sie die Konstante ¢ so, daB y'(1) = ¢y”(1) erfuillt ist.

18.4. Man ermittle die Gleichung der Tangente an die Kurve

a) 2x°— x%?—3x+y+7=0im Punkt Py(1; -2)

x
b) 1+y+xy—e?-costy=0im Punkt P(x,;0)!
Wie lautet die Tangente, wenn x; = 0 ist?
18.5.* Fiir die durch ye” + x®—3x+2=0 implizit gegebene Funktion y = f(x) be-

rechne man die ersten beiden Ableitungen. An welchen Stellen x >0 hat f relatlve Ex-
tremwerte? Welcher Art sind diese Extremwerte?

18.6. a) Es ist nachzuweisen, daB fiir eine durch F(x,y) = 0 implizit gegebene Funktion
y=y(x) gilt:
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Lo BB
Y=g | B P By (B=*0).
|E E, K,

b) Im Punkt P(xo;%> ist die zweite Ableitung der durch x — y + 2siny = 0 implizit ge-

gebenen Funktion y = y(x) zu bestimmen.

18.7. Durch F(x,y,z) =0 ist eine Funktion z = f(x,y) in impliziter Form gegeben. Wel-
chen Wert haben die partiellen Ableitungen 1. Ordnung von z=f(x,y) im Punkt
Po(x0; 30 20) ?

a) F(x,y,2)=x*+y2+2z2-2xz2-25=0, Py4;3;0),

b) F(x,y,z)=z+xlnz+y=0, Py5; -11),

©) F(x,y,2)=y*=27%(x—-2)=0, Py(7;4,-1).

18.8. Mit Hilfe der Taylorentwicklung ordne man das Polynom P(x,y) = 3x% — 4y? + 2x

nach Potenzen von (x + 1) und (y — 3). Welche Gleichung ergibt sich fiir die Tangential-
ebene an die durch P gegebene Flidche in 4(—1;3;-29)?

18.9. Mit Hilfe der Taylorschen Formel approximiere man die durch z = f(x,y) gegebene
Flache an der Stelle P(xy,y,) durch eine Fliche 2. Ordnung

a) z=yln(y—3x), P(0;1), b) z=xInQ2x-y), P(1;1),

c) z=In(x2+y), P(@0;1), d) z=arctan%, P(1;1),
x—3y? - .

e) z= ~—1 +xtany, P(2;0), f) z=cosxcosy, P(0;0).

18.10.* Man entwickle z= (x — y)e**” in einer Umgebung des Nullpunktes nach der
Taylorformel; dabei soll das Restglied die partiellen Ableitungen 3. Ordnung enthalten.
Im Punkt P(0,1;0,2) bestimme man die quadratische Naherung fiir z(P) und deren Ge-
nauigkeit.

18.11. a) Man bestimme Lage und Art der relativen Extremwerte fiir die Funktion
z=(x>+3x%+ 1)coshy.

b) Fiir die Extremwertstellen gebe man die Taylorentwicklung von z(x, y) bis zu den qua-
dratischen Gliedern an.

18.12. Gegeben ist die Fliche mit der Gleichung
z=89x2 - 96xy + 61y* — 260x + 70y + C.
Wie muB die Konstante C gewdhlt werden, damit diese Flache die x,y-Ebene beriihrt?

18.13. Man bestimme Lage und Art der relativen Extremwerte der Funktion z = f(x,y)
und gebe die zugehorigen Funktionswerte an.

a) z=%(x2+1)—2y(2x+7)+3x+9y2, b) z=x2+y2+ xy+ x+ 5y,

©) z=2xy(x+y—6), d) z=x>2-y)—y*+3y*+9y,
e) z=e F@dy+x2—y?), ) z=(*-3x)(y+3)+y(r+6).
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18.14. Untersuchen Sie die Funktion z = f(x,y) auf relative Extrema!

a) z=(x?—4)2+1001 + (4 + x?)y?, b) z=3axy—-x*-y3, a>0,
) z=x2y—2xy+%e’, d) z=x*+y*—4a’xy+8a*, a=*0,
e) z=x%-3xy+y>+1, f) z=2(y—3)?-5(x +2),

) z=e ® N (x2+2y7).

18.15.* Fiir die Funktion z = (x*— 3x)cosy bestimme man Lage und Art der Extrem-
werte.

18.16 Die Funktion z = f(x, y) =x2+%yz+%(y—x)—-;—sei auf B={(x,y)||x| =1

A | =1} erklért. Man bestimme Lage und GroBe der absoluten Extrema von f und |f].

18.17. Fiir welchen Punkt P(x,y) ist die Summe der Quadrate der Entfernungen von den
Punkten Pi(x;;y;), i =1, ..., n, moglichst klein?

18.18.* Durch z = f(x,y;c) =
ter c,|c| < 1, gegeben.

xy1 L " :
T — e~ 9" ist eine Flichenschar mit dem Parame-

a) Art und Lage der Extremwerte von f(x,y; c) sind bei festem Wert von ¢ zu bestimmen.
b) Welche Kurve der Gestalt g(x,y) =0 ergibt sich fiir die Extremstellen der ganzen
Schar?

18.19. Nach der Multiplikatorenregel von Lagrange bestimme man alle Punkte, die als
Extremstellen fiir die gegebene Funktion unter den jeweiligen Nebenbedingungen in
Frage kommen.

a) z=x*+y? mit S5x2+5y?-8xy—18=0,

b) z=x2+y? mit x*+y*+1=0,

c) u=x+y+z mit x+z=1 und x2+y?=4,

d) u=xyz mit x2+y2+z2=3,

e) z=3x% mit 4x2+9y2=136.

18.20. Bestimmen Sie die relativen Extremwerte von

a) z=x2—2x+ y?— 3 unter der Bedingung 3y + 2x =15,

b) z=x2+y?, falls (x —2)*+ y? — 9 = 0 gelten soll,

¢) z=2x?+ y?unter der Nebenbedingung x —y>+1=0.

Die Art der Extrema ist mit Hilfe der Karte der Fldche zu bestimmen.

18.21. Warum ist P(1;2) von der Fliche z = x?+ y?—10x — 8y + 4xy + 10 ein Sattel-
punkt? Man bestimme m so, daB die Schnittkurve dieser Fliche mit der Ebene y =2
+ m‘(x —1) in P ein Maximum bzw. ein Minimum hat.

18.22. x2+ 2J3_ xy —y?—8=0 ist die Gleichung einer Hyperbel, deren Mittelpunkt im
Nullpunkt liegt. Gesucht sind diejenigen Hyperbelpunkte, die vom Mittelpunkt die klein-
ste Entfernung haben.
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18.23. Welche Punkte der durch die Gleichung x? + y2 + xy = 1 gegebenen Ellipse haben
vom Koordinatenursprung extremalen Abstand? Mit Hilfe des Ergebnisses skizziere man
die Ellipse.

2 2
18.24. Welche von den Ellipsen %+%= 1,(a,b>0), die durch den festen Punkt

P(u,v), (u,v>0) gehen, hat den kleinsten Inhalt, und wie groB ist dieser?

18.25. Gesucht sind der hochste und der tiefste Punkt der Schnittkurve, die entsteht,
wenn das elliptische Paraboloid z = x2? + 4y? von der Ebene 4x — 8y — z + 24 = () geschnit-
ten wird.

. . . 4
18.26. Man bestimme die Extremwerte der Funktion f(x,,z) = —)lc- + 5 + %, x,y,z2>0)

fiir alle Punkte, die auf der Ebene x +y + z = 12 liegen.

18.27. Man bestimme den kiirzesten Abstand des Punktes Po(2;2J7— ,%) vom Rota-
tionsparaboloid z = x? + y?.

18.28. Wie groB ist der kiirzeste Abstand der Fliche 4x%+ y*+ 16z = 0 von der Ebene
2x+4z+y=12?

18.29. Ein quaderformiger, geschlossener Behilter soll bei gegebenem Volumen V¥ mit
moglichst geringem Materialaufwand hergestellt werden. Wie sind seine Kantenldngen zu
wihlen?

18.30. Welche Kantenlingen hat der Quader mit groBtem Volumen, der dem Ellipsoid

xZ y2 22 ) .

Py + e + i 1 einbeschrieben werden kann?

18.31. Eine Strecke der Lange a soll mit ihren Endpunkten C und D so auf die Schenkel
eines Winkels & mit-dem Scheitel B gelegt werden, daB der Inhalt 4 des Dreiecks BCD
maximal wird. Wie groB ist A pax?

18.32. Auf einem Kreiszylinder (Radius r, Hohe ) werde eine Halbkugel (Radius r, Mit-
telpunkt auf der Zylinderachse) aufgesetzt. Fiir welche Werte von r und A wird die Ober-
fliche O des Gesamtkorpers bei gegebenem Volumen ¥ minimal?

18.33. Von allen gleichschenkligen Dreiecken, deren Spitzen im Punkt P,(1;0) liegen
und deren Basisecken auf dem Kreis x? + y? = 1 liegen, ist dasjenige mit groBtem Inhalt
gesucht. Welche Koordinaten haben die Basisecken? Man benutze die Lagrangesche Mul-
tiplikatorenregel!

18.34. Fiir eine feste natiirliche Zahl n =3 soll M, die Menge aller n-Ecke sein, die
einem gegebenen Kreis mit Mittelpunkt (0;0) und Radius r einbeschrieben werden kén-
nen und die den Punkt (r;0) stets als Eckpunkt haben. Gibt es in M, Elemente mit groB-
tem Fldcheninhalt?
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n

18.35.* Vonder Funktion z= in ist das Minimum unter der Nebenbedingung
k=1

n
Zakxk= 1, (a; Konstanten) zu berechnen. Man weise nach, daB an der ermittelten
k=1

Stelle (%3, X,, ..., X,) tatsdchlich ein Minimum vorliegt.

18.36. Mit Hilfe der Methode der kleinsten Quadrate bestimme man fiir die folgenden
Wertepaare P(x;;y;) eines MeBvorganges die Ausgleichskurve y = f(x) der angegebenen
Art.

a) Py(0;1), Py(1;4), P3(2;7), Py(3;8), Ps(4;10); y=ax+D,

b) Pi(0;15), Py(1;5), P3(2;1), Py(3;1), Ps(4;3); y=ap+ ayx + arx?,

©) Pi(1;12), Py(2;14), Py(3;18), Py(4;16); y=a+ %

3
d) Pi(=1;-6), Py(0;0), Py(1;0,7), Pu(2;2), Ps(3;10); yi=ax+b, y, =) ax'.
i=0

18.37. Ein zeitabhingiger Vorgang werde durch g(f) = Ae® beschrieben (4 > 0). Zur
Bestimmung von 4 und B stehen die Daten

4] 20 40 60 80

g | 270 150 080 0,43
zur Verfiigung. Durch welche Transformation y = y(g), x = x(¢) wird die Gleichung fiir
g(#) in eine Geradengleichung y = ax + b uberfiihrt? Man ermittle nach der Fehlerqua-
dratmethode a und b und gebe g(¢) an.

18.38. Nahern Sie die Kurve y =Inx, x >0, durch eine Hyperbel y = %+ b so an, daB

die Summe der Fehlerquadrate fiir die Stellen x; = %, X, =ji~, X3 =% minimal wird.

Wie groB ist die Fehlerquadratsumme fiir die Losung?
18.39. Von einem Gas wurden der Druck p und das Volumen V gemessen; man erhielt
als MaBzahlen:

vV | 543 618 724 887 1186 1940
p» | 612 495 376 284 192 101

Bestimmen Sie die Konstanten » und C fiir die adiabatische Zustandséinderung pV* = C
mit Hilfe der Methode der kleinsten Quadrate (Aufg. 18.37. beachten).

18.40. Fiir die Funktion y = ax + b ermittle man diejenigen Werte von a und b, fiir wel-

1
che J(a,) = [ [g(x) — y]? dx minimal wird.
x=0

Q) gx)=e*, b gx)=yx .
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18.41. Fiir welche Gerade mit der Gleichung y = ax + f wird

100
F@p)= [ (fx-y)dx
x=0
minimal?

n/2

18.42.* Wie sind a und b zu wihlen, damit f [sin x — ax — bx*]? dx minimal wird?
-n/2

2
—%z—=1 mit 0<b<a soll in den durch x=ae+rcoso,

y=rsing (r 20,0s@<2mea=ya*— bz) gegebenen krummlinigen Koordinaten
(r, @) dargestellt werden. (Welcher bekannte Sachverhalt ergibt sich fiir a— b + 0?)

2
18.43.* Die Ellipse %+

18.44. Fiir die durch die angegebenen Abbildungen eingefiihrten krummlinigen Koordi-
naten bestimme man die Koordinatenflichen und die Koordinatenlinien und gebe eine
geometrische Interpretation.

a) x=arcosg, y=brsing, z=z(a,b>0konstant) fir r=0,9€[0,2n), zeR',
b) x=rcosgsind, y=rsingsind, z=rcosd fir r=0, #€[0,n], @el0,2n).

18.45. Fiir die angegebenen Abbildungen berechne man die Jacobische Determinante D.
a) x=aucosv,y=businv(uz0,0=v<2m a,b=const),

b) x=uv,y=—;-(u2—vz),z=z (u,v,z€ RY),
¢) x=ucoshv,y=2+sinhv, z=1-v+e“tanw,
(ueR‘,ueR1,|w|<-§'),

d) x=u?sinv, y=5-2ucosv, z=e""1+tanw?,

<u,v€R’, w| < \/%—)



19. Skalare Felder und Vektorfelder
(Bd.4,3.9)

19.1. Das Skalarfeld U = xyz(x? + y? — z?) ist im R® erklirt.

a) Fiir welche Punkte gilt grad U= 0?
b) Wo ist grad U parallel zur x,y-Ebene?

19.2. Fiir das Vektorfeld v = -‘%cz—el + %ez + %e;, (x,y,z > 0) berechne man
a) divo, b) rotwv, c) graddivoe,
d) divrotw, e) rotrotv, f) divgraddivoe.

19.3. Man berechne folgende Feldfunktionen:
a) gradU fir U= (x2-y?)z+e"?, b) dive fiir v=x%%z%e +e,+e),
¢) rotv fiir v=arctan(xy)[e; + xe;] —e;,  d) rotrotv fiir v =(xz;yz;xye?)T,

T
e) dive fir v=(ln3[yz2]; gcosx; %yz’) .
19.4. Fiir das Skalarfeld U= U(x,y, z) berechne man grad U (es sei r = xe; + ye, + ze;,

|r| = r, a ein konstanter Vektor) und bestimme in a) bis 1) die Gestalt der Niveauflichen,
(r+ound r +a).

a) U=2x+5y—6z, b) U=ar, c) U=r,

d) U=xyz, e) U=-17, f) U=z—-x2-y?,
g U=r, h U=r, i) U=lnr,

) U=|r—al, k) U=(z-e;—n)r,

D U=F mit f=Zetietle,

m)U=a(rxa), n) U=(axr)?, 0) U= (ar)r.

19.5. Von dem Skalarfeld U(x,y,z) =2x —y+ (z — 5) bestimme man die Niveauflichen
und gebe das zugehorige Gradientenfeld an. Welchen Anstieg hat das Skalarfeld im
Punkt P(1;2;5) in Richtung

® OP; P)gradU; ) s=(-13;57

19.6. Von dem skalaren Feld U= U(x,y,z) = x% + y?z + z2x bestimme man im Punkt
P1;2;1)

a) grad U, b) %— fir a=(1;2;3)7,
) % in Richtung grad U.

2 Wenzel, Ueb. Analysis 2
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19.7. Fiir das Skalarfeld U= U(x,y,z) bestimme man im Punkt P(xq;y,; o) die Rich-

9
tungsableitung a—[aJ in Richtung des Vektors a.

a) U=sinxsiny + z2, P(—5;10;-1),a=(2;2;1)7,

2 2 >

v U=212 poi31) a= @21,
2x

¢) U=e**r*2, P(0;0,0), a=(1;2;-2)T,

x2  yr 72

== 4s 4= + b =(a:b:c).

d U 2 + 5 P ,abc*0,P(a;b;c),a=(a;b;c)
19.8. Von dem Skalarfeld U ——+y—+ ,a>b>c>0 bestimme man diejenigen

b2
Punkte der Niveaufliche U(x,y, z) =1,in denen grad U extremale Lénge besitzt.
19.9. Fiir das Potential U=3r?+ 712— r=(x;y;z)", berechne man die Feldstiirke
E:= —grad U. Fiir welche Punkte wird |E| am kleinsten?
19.10. Geben Sie an, ob die ebenen Vektorfelder a in den nachstehend skizzierten Ge-

bieten Quellen bzw. Wirbel besitzen, und entscheiden Sie der echend, ob jeweils
die Divergenz bzw. die Rotation verschwindet oder nicht!

a) b} e —
- — ——
—_ — —
- — —
C) —- - — d) -—vo -— -—
— e — - - -
e — -
—_— — —_—
e) f) — —_—
—_— —
—
19.11. Welche der Ausdriicke
a) a-rot(axb), b) e;x X grad (ab),
¢) x X grad (ab), d) e;x X grad(aX b),
e) c¢Xgrad(ef), f) rot(cX (edivf)),
g) rot(cXgradf), h) divrot(c X & f)

sind sinnvoll, welche sinnlos? Warum? Berechnen Sie die sinnvollen Ausdriicke fiir
a=ze —3e;,b=xye,,c=2e,— xye;und f=f(x,y,z)=x+y+z!
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19.12. Man begriinde, welche der folgenden Ausdriicke erkldrt sind, wenn u = u(x,y,z),
t = t(x,y,z) Skalarfelder und v(x,y,z), w(x,y,z) Vektorfelder sind. (Die benétigten Ab-
leitungen sollen existieren.)

a) gradw, b) rot(v X grad ?), c) div(uv), d) grad (rot wxv),
e) rot(vt), f) (vdivw) X gradt, g) graddiv(v X w), h) grad (rot v)%.
19.13. Fiir r = (x;y;z)" mit |r| = r und einen konstanten Vektor a berechne man:
a) divr, b) rotr, c) div(a xXr), d) rot(a X r),

) grad-17, f) div (T’S> g div grad%—, b dive.

.

19.14. Fiir das Vektorfeld v = v(x,y, z) berechne man rot v. Welche Werte miissen gege-
benenfalls die Konstanten a, b, n, A annehmen, damit ein wirbelfreies Feld v vorliegt?

a) v=(—le;;—:+(y~z)2;—-;c%— —z)z—e“)T fiir z>0,

b) v=(x2+5ay +3yz)e; + (5x +3axz—2) e, + (2 + a] xy — 4z) e;,
c) v=(xz+ay"+ bz?) e, + (xp + az"+ bx?) e, + (yz + ax" + by?) e;,
d) v=(03x%2%z+6y?) e, + 2x’yz + Axy — 8yz’) e, + (x3y? — Ay?z¥)e;.

19.15. Zeigen Sie, daB fiir die Skalarfelder U= U(x,y,z), V= V(x,y,z) und die Vektor-
felder

a=(a1(65,2); a(%,%,2); 856 %,2))', b= (bi(%1,2); by(%¥,2); bs(x,5,2))7
folgende Beziehungen gelten:

a) div(a + b) =diva + divb, b) grad(UV)=Vgrad U+ Ugrad V,
¢) div(Ua)=Udiva + agrad U, d) rot(Ua) = Urota +grad U X a,
e) divrota=0, f) rotgrad U=o,

g) divgrad U= AU, h) div(a X b)=brota—aroth.

(Alle bendtigten Ableitungen sollen existieren.)

19.16. Berechnen Sie mit Hilfe des Nablaoperators V die folgenden Ausdriicke!
a) V-r, b) Vxur, ¢ V- d) Vxr,

et V-r, nvl, (r+0), g)v-f (r+0),

h)v~—r'; r+0), D V@, §)IxX@xr

sowie vergleichsweise die Ausdriicke 2V (ar) bzw. ar—rZV r?! Es bedeuten:

) 9 3 Gl
r=xe t+ye,+ze;, r=jr|, V=e1~é;+ e,—a;+e3§z—

und a einen konstanten Vektor. Geben Sie an, ob es sich bei den angefiihrten Operatio-
nen jeweils um die Operation grad, rot oder div handelt!

2
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19.17. Durch v = 4(r? — x2 — y?) e; ist das Geschwindigkeitsfeld einer laminaren Rohr-
stromung gegeben (Rohrachse ist z-Achse, Rohrdurchmesser ist 2r). Zeigen Sie, da8 die
Stromung quellenfrei, aber nicht wirbelfrei ist.

19.18. Das Magnetfeld eines in Richtung e; verlaufenden geradlinigen unendlich diinnen
Stromfadens wird durch

I y I x
2 x2+y? et 2 xt+y?
beschrieben. Berechnen Sie rot H und div H!

H=

e, (x;y)*(0;0)

19.19. Ermitteln Sie fiir das Vektorfeld

Q xe tye +ze;
E= dmey (x2+y? + 2272 (x;732) * (0;0;0)

(elektrisches Feld der in r=o0 konzentrierten Ladung Q) rot E und div E.

19.20. Fiir einen konstanten Vektor a® und r = xe, + ye, + ze; berechne man

a) div(a®-r)a®, b) rot(a®-r)a®, c) div[(@®xr)xa®], d) rot[(a’Xr)xa’].

19.21. Bestimmen Sie alle Funktionen f=f{(r), fiir die das Vektorfeld v = rf(r)

a) quellenfrei, b) wirbelfrei ist (r = xe; + ye, + zes, |r|=7r).

19.22. Ermitteln Sie diejenigen Funktionen f(r), die der Gleichung

B g ()=, b () =1

mit r=xe; + ye, + ze;, |4 = rund f(r) als einer nur von r abhéngigen, differenzierbaren
Skalarfunktion geniigen (r # 0).

19.23. Fiir eine zweimal differenzierbare Funktion f=f(r), r* = x*+ y* + z2, berechne
man Af(r). Welche Gestalt muB f(r) haben, damit Af(r) =0 fiir r + 0 gilt?

19.24.* Ermitteln Sie jene differenzierbare Skalarfunktion f(r), fir welche die Laplace-
Differentialgleichung

a) Af(r)r*=r’lnr, b) Af(r)r= 713-

. & ? &
: | Hierbei =Vl=— = —
gilt (r + 0)! Hierbei bedeutet A=V 32 + » + Py



20.  Parameterintegrale und Doppelintegrale -
Integrale iiber ebene Bereiche
Bd.5, 1., 2., 4)

20.1. Von den folgenden Parameterintegralen ist die erste Ableitung nach dem Parameter
in integralfreier Gestalt anzugeben:
y;

' d
2 )= jtlrdr (>0, b) £0) = ]-3;'; w>1),
'_2 2
9 G(t)= f “’hm_”‘) x, @) F&x) = Iarctan( )dy,
e) w(x)= l_;t

t=10

20.2. Berechnen Sie jeweils f*(x) fur

O f0= [era xx0), ) f(x)=J tixg,

0 flx)= I =386 a<xsy, @ f0- ]Jl+u‘du,
~ u=1
i len(tx)

9 0= |Sma+ oy >0, 0sw= | T x>,
x t=1
- 1+x¢

0 M= | Tormrdy, b= | B4 e,
y="2x t=x?

20.3. Von der im R? stetigen Funktion f(x,y) sollen f,, f,, f,, existieren und stetig sein.

¥y
a) Ermitteln Sie F'(y) fir Fo)= | f(xy)dx.

x = const

b) Wie lautet F”(y), falls f(x,y) = y42 + sin x gilt?

x+at

20.4. Fiir welche Werte von a ist u(x, t)=% J h(z)dz Losung der Gleichung
z=x-at B

—:% = s L) ? (h(z) sei stetig differenzierbar.)

20.5. Die partiellen Ableitungen erster Ordnung der Funktion F(u,v,w):= J' f(x,w)dx

sind zu berechnen. Man benutze das Ergebnis, um fiir
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(1)

Flu@), 00, w0)]= [ fix1)dx
u(t)

F
die Ableitung % zu ermitteln. Wie lautet

n

Fy(t) fir Fy(1) = J Si“—i’“)dx (1+0)?

t

(Die auftretenden Funktionen und ihre Ableitungen sollen stetig existieren.)

20.6. Man zeige, daB w,, —w = 0> (Telegraphengleichung) du‘rch w(x,y)= f S (u)du
+ ff(t)w(u)du erfiillt wird, wobei ¢ = (u,— x) (u — y) gilt und f(¢) der Gleichung /" (¢)
+F (- =0 gentigt,

20.7.* Berechnen Sie I;(x) = ,jo—,ﬁ%—t?—’ durch Differentiation von

x

dt

I(x,y) = I— nach y.
to Yy 1

20.8. Die folgenden Doppelintegrale sind zu berechnen, und der Integrationsbereich soll
skizziert werden: -

1 1 e ey
o | [evaxay, i) [ Iln(i)dxdy,
y=0 x=0 =1 Yy
2n 1 n2 w2 V
v [ [a-rrdrag, D [ [ersinge+y)dxdy,
=0 r=0 »=0 x=0
L 3 2x+3
c) I J.cos(l>dydx, k) J- _f 24y — x? dydx,
x=0 y=0 £ x=-1 y=x
4 n3 n/2 aysin2g
d) _[ fx’sinydydx, 1 I _[ rdrdp (a>0),
x=1y=-n 9=0 r=0
2 oyl a (blayai-x*
e [ ] xinydxdy, mr [ (rtyddydx (ab5>0),
2 ER T x=0  y=0
4 2 ) . e
f [ [sin@x+y)dxdy, o | [ R—x—ydydx R>0),
y=0 x=1 AR g
e? /2y . &
9 | [ cosGo)dxdy, s
y=1 x=may 0) I I dedy.
y=0 x=1/{3 LRI Y

: 1 1
h) _[ _[x’e‘“’dydx,

x=0 y=0



20. Parameterintegrale 23

20.9. Man skizziere den Integrationsbereich und vertausche die Integratlousrelhenfolge

(f(P) sei stetig):
4 10-y

a) I I f(P)dxdy,

2 x+2

b) I I f(P)dydx,

B) I I f(P)dxdy, d) I I f(P)dydx,
-6 y_ 1 —2x-x*
¢ 1 fir -1=xs0
e P)dydx mit x —x PRI
)_,[ff()yx J’a(){ SNl
2a X%(y)
n [ I f(P)dxdy+I I f(P)dxdy
0 0 a+yai-y?
Za
mit  x(y) = “az_y Ll A
fir asy=<2a,a>0.
20.10. Skizzieren Sie den Bereich B, und berechnen Sie das Bereichsintegral J]- flx,y)db
B
fur
a) f(x,y) =xy?, B:0=sxs1A0sys3-2x,
b) fxy) = xy,

©) flx,y)=x+y%,

d) fix,y)=x>+y?,

e) fx,y)=xy,"

D =5y

g) flx,y) =xy,

h) f(x,y) =8 - x%,

. _ 1

i) f(x,y)——*———(xw)g,
) fxy)=x+y,

B ist in Polarkoordinaten durch0<asr<b,0s@p=-— 2 ge-

geben,

2
B wird durch x = yT und y = 2x — 12 begrenzt,

B wird durch die Geraden y =0, x = 5 und 3y = (x + 2) be-
grenzt,

B={(x;») |y sxs6-ya0sys4d},
B ist das Dreieck mit den Eckpunkten (1;1), (1;2), (2;2),

\
Bwirddurch&+ ‘/;= 1, x =0, y =0 begrenzt,

B ist das Rechteck mit den Eckpunkten (0;2), (—1;2),
(—1; <2), (0; —2), an welches die Halbkreisscheibe
x2+y?=4 (x = 0) angesetzt ist,

B={(x;»)|1sys2A2=sx+ys3},

B ist die von der Ellipse x? + 3y% = 4 und der Geraden x = 1
begrenzte Punktmenge, welche den Ursprung enthilt.

20.11. Welches Volumen wird man der Punktmenge M zuordnen, fiir deren Punkte

P(x,y,z) gilt: |x +y| =+

,lx= yl<—und0<z<cosxcosy‘7
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20.12. Man skizziere den GrundriB des gegebenen Korpers in einer geeigneten Koordina-
tenebene und berechne das Volumen des Korpers, wenn er begrenzt wird von

a) denFl%icheny=cosx,y=x+1,x=—7-2r—,z=0undz=sinx,
b) den Ebenen x=1,y=1, x+y=1, z=0 und der Fliche z = xy,
c) der Ebene z =0, der Zylinderfliche |x| + |y|= ,"2_ und der Fliche z = cosy,

d) der x,y-Ebene, den Ebenen x +y =2, y + 2 =z und der Fliche y* = x,

e) dem Bereich B={(x;y)|x?+y?=<1} und den Flichen x>+ y?=1und z=1+ xy,

f) den Ebenen z=0, 2x—y—z+5=0 und der parabolischen Zylinderfliche
y=x2+2,

g) den Flichen x—y2+3=0,2(x+y)+z=8, x=1, z=0; der Punkt P(0/0/1) ge-
hore zum gegebenen Korper,

h) der Ebene z =0, den Flichen z=x2+3, x2+y2=2 und x>+ y?=4,

i)  der Zylinderfliche (x —2)? + y>=4, der Ebene z =0 und z = 3yx?+y?,

j)  der x, y-Ebene und den Flichen x2+ y?=1, z =40y? + 4 im 1. Oktanten,

k) den Ebenen z=0, y=0, der Fliche z=4x?+3y und der Halbzylinderfliche
x2+y?=1mity=0,

1) der Zylinderfliche x2 + y>=9, den Ebenen x = 1, y = 0 und den Flichen z = p i 1
und z =2xye” im 1. Oktanten,
m)* den Ebenen x =0, y=x — 5 und der Fliche y>+2z2=2,

n) den Flichen y=2y4 —2x und z = im 1. Oktanten,

D
x2=2x+2
0)* den Ebenen z=0, x=0,y=0, y= %JZ—, der Zylinderfliche x*+ y>=1 und der

Fliche z = x(x + y) im 1. Oktanten.

20.13. Die parabolischen Zylinderflichen x? + z = 4 und y? + z = 4 sowie die Ebene z =0
begrenzen einen raumlichen Bereich. Bestimmen Sie sein Volumen.

20.14. Der Bereich B: 0 = x =m, 0 <y <sinx ist mit Masse der Dichte p(x,y) =1+ x
+ 4y belegt. Man bestimme seine Gesamtmasse.

2L
2
zen ein Fliachenstiick, welches mit Masse der Fldchendichte ¢ = p(x,y) = x + y cos x be-
legt ist. Berechnen Sie die Gesamtmasse.

20.15. Das Kurvenstiick y =sinx, x € [ rr] und die Geraden x = m und y = 1 begren-

20.16. Das von den Kurven x =2y?—1 und x =2y + 3 begrenzte Flichenstiick B der
x,y-Ebene (Skizze!) sei mit Masse belegt. Die Flichendichte betrage o(x,y) =3 + 2y.
Wie groB ist die auf B liegende Gesamtmasse m?

20.17. Berechnen Sie fiir den auf der Ebene z =0 durch die Kurven x =y* und x=3
— 2y? begrenzten Bereich, der mit Masse der Dichte p = o(x,y) = xy? belegt ist, mit Hilfe
von Bereichsintegralen

a) die Flache, b) die Masse, ¢) den Schwerpunkt!
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20.18. Die Kurven y = x? und y = \f; begrenzen eine Fliche. Diese sei mit der Flichen-
dichte g(x,y) = x + y belegt. Berechnen Sie fiir die Fldche:

a) den Inhalt, b) die Gesamtmasse, c) die statischen Momente
beziiglich der x- und y-Achse, d) die Schwerpunktskoordinaten (Skizze!).

20.19. Auf der Elhpsenﬂache =T + b7 g 1 ist die Fldchendichte durch

2 2 \2
Q(X,.V)=Ql+21(1_ = +%)

gegeben, p,, 0, = const. Wie groB ist die Gesamtmasse?

20.20. Gegeben sind im 1. Quadranten die Parabelbogen y?=px, y?=gx, x?=ay,
x2=by(0<p<gq,0<a<b). Man berechne den Inhalt des von diesen Bigen begrenz-
ten Vierecks durch Einfiihrung krummliniger Koordinaten (u, v) gemiB x2 = uy, y* = vx.

20.21. Durch die nachfolgend angegebenen Kurven wird im ersten Quadranten ein Fla-
chenstiick B begrenzt. Dieses sei mit Masse der Dichte ¢ = o(x,y) belegt (Skizze!). Zur
Beschreibung von B sind geeignete krummlinige Koordinaten einzufiihren. Man be-
rechne den Inhalt und die Masse von B (vgl. Aufg.20.20.).

I T - -
Ay=T, y=7, y=2x, y=3x, exy)= ot

1
b) y=x2, y=5x%, y=vx, y=2Vx, oxy) =x,
©) xy=a, xy=b, y*=px, y’=gx, a<b, ¢<p, e(xy)=y>.

i

20.22. Berechnen Sie fiir das Blatt der Lemniskate r = avycos2¢ (-—:— s¢s=s 2 ) mit der

Flichendichte

xZ y2
e=een=q/l+ F+ 7
a) die Flache, b) die Gesamtmasse,
c)* das Triagheitsmoment in bezug auf die z-Achse! Skizzieren Sie den Bereich!

20.23. J(x) sei das Trigheitsmoment eines homogenen Kreissektors (Radius a, Zentri-
winkel 2a) beziiglich seiner Symmetrieachse.

a) Man berechne J(«) fiir 0 = & < 7 und diskutiere die Fille & = T 2 , T
b) Wie groB ist ¢ in J(rt) = cf, wenn I das polare Trigheitsmoment einer homogenen
Kreisscheibe mit Radius a ist (¢ = g, = const) ?

20.24. Es sei B ein Bereich der x, y-Ebene. Durch u = x?, v = y wird er eineindeutig auf
den Bereich B* der u, v-Ebene abgebildet. Dann gibt es eine von der Gestalt von B unab-
hingige Konstante ¢, so daB das c-fache Trigheitsmoment von B beziiglich der y-Achse
gleich dem Flicheninhalt von B* ist. Welchen Wert hat ¢ (¢ = 1)?



26 20. Parameterintegrale

20.25. Im R? ist der Ringbereich B;: 12 < yx? + y? <13 flichengleich dem Kreisbereich
B,: x*+y? = 25. (Wieso?) Gibt es eine Konstante ¢ mit T, = ¢T,, wenn T, T, die polaren
Tridgheitsmomente (¢ = 1) von B, bzw. B, sind?

20.26. Mit Hilfe des Steinerschen Satzes sind die Trégheitsmomente J, ,Jy, des durch
x=0,y=1und y=x? (x >0) begrenzten ebenen Bereiches beziiglich der durch den
Schwerpunkt gehenden und zur x- bzw. y-Achse parallelen Achsen zu bestimmen (g = 1).

20.27. Gesucht ist das polare Trigheitsmoment beziiglich des Schwerpunktes S von
einem

a) gleichseitigen Dreieck mit der Seitenlinge a (Hinweis: Man berechne zunéchst das
Trégheitsmoment des Dreiecks beziiglich des Punktes PO(O/O) und beachte dann den
Satz von Steiner),

b) regelmdBigen Sechseck mit der Seitenldnge a; dabei 148t sich ein Teilergebnis von a)
verwenden.

In beiden Fillen gelte ¢ = g, = const (Bild 20.1).

h
S
-a a x
2 . 2 Bild 20.1

20.28. Man berechne das polare Trigheitsmoment eines regelmiBigen n-Ecks, welches
einem Kreis mit dem Radius r einbeschrieben ist, beziiglich des Kreismittelpunktes,
o = 1. Welcher Sachverhalt ergibt sich fiir n— «?

20.29. a) Das polare Trﬁgheitsmoment des zwischen den Eﬂipsen
2 2 2
y x
=
pr- 1 und Gt (lb)’
llegenden Bereiches ist zu berechnen (geeignete Koordinaten einfiihren!).

'b) Welcher Wert ergibt sich fiir das Trigheitsmoment im Falle a = b und A— +0? Man
interpretiere das Ergebnis.

=1(@>0,6>0,0<4i<1)

20.30. Das Zentrifugalmoment J,, des durch die Kardioide r=1+cosp (0= @ =n/2;
r, @ Polarkoordinaten) und die Geraden x =0, y = 0 begrenzten ebenen Flichenstiickes
ist zu berechren.

20.31.* Durch die Kurve x*+ y*= x2 + y? wird ein ebener Bereich B begrenzt.

a) Es ist zu zeigen, daB die Begrenzungskurve von B in Polarkoordinaten r= ry(@)

=—2—- lautet. Man skizziere B.
V3 + cosdg

b) Gesucht sind die Trigheitsmomente J,,J,. (Hinweis: Zuerst das polare Trigheitsmo-
ment beziiglich des Ursprungs J, berechnen und dann einen Zusammenhang mit J,, J,
herstellen!)



21.  Integrale iiber rdiumliche Bereiche
(BA.5, 3., 4)

21.1. Man berechne die dreifachen Integrale:

/2 1 1-y 1 0 10073+ 1)
a) I _[ f 2y3(y*+ 2z)sin2xdzdydx, b) J' _[ r’tdzdtdr,
x=0 y=0 z=0 r=0 t=1-r z=0
/4 ycos2t |1-s? 1 Yl-x? y2-x2-y?
o [ | [ sdzasar, o [ | | zdzdydx.
=0 s=0 20 x=0 y=0 z=(xiiyt

21.2. Berechnen Sie das Raumintegral der Funktion f(x,y, z) = xyz fiir den von den fol-

genden Flachen eingeschlossenen rdumlichen Bereich:

z=-2x2, z=x+y? yp=0, x=2, y=1, 2zxz0), x=0, (1sy=s2),

y=2, 0zxz-2), x=-2.

a) Fassen Sie den Bereich als eine Vereinigung von rdumlichen Normalbereichen jenes
Typs auf, dessen Projektion auf die x, y-Ebene einen ebenen Normalberexch beziiglich
der x-Achse liefert.

Skizzieren Sie diese Projektion auf die x, y-Ebene!

b) Der Bereich soll als eine Vereinigung von rdumlichen Normalbereichen jenes Typs
aufgefaBt werden, dessen Projektion auf die x, y-Ebene einen ebenen Normalbereich
beziiglich der y-Achse darstellt.

(Beachten Sie bei der Berechnung der Integrale, daB die Integration iiber ungerade Funk-

tionen mit symmetrisch zu 0 gelegenen Grenzen den Wert 0 liefert!)

21.3. Welches Volumen hat der Korper, der von den folgenﬁen Flachen begrenzt wird?
a) x=0, x=2m y=0, y=1, z=y, z=)’
b) x=0, y=0, y=x+1, z=-xp-1, z=x2+y+1.

2 ¥
21.4. Berechnen Sie fir den durch die Fldchen z = 1 und XT + yT =5 — z eingeschlosse-

nen rdumlichen Bereich (Skizze!) das Raumintegral der Funktion f(x,y,z) = z!

21.5. Wie groB ist das Volumen desjenigen Teiles der Kugel x2 + y? + z? < a?, der inner-
2 2

halb des Zylinders (x— %) +yr= “T liegt (a > 0)?

(Man arbeite mit Zylinderkoordinaten!)

21.6. Unter Benutzung geeigneter Koordinaten berechne man das Volumen

a) des Teiles der Kugel (x — a)? + y?+ z2 < a?, der durch die Zylinderfliche (x — a)?
+y?=b? (a® > b?) herausgeschnitten wird,

b) des Korpers, der von der Ebene z=0 und den Flichen z=4x2+y? und
12, 1 .
(x 2) +y ——4-begrenzt wird.
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21.7. Wie groB ist das Volumen desjenigen Teiles der Kugel x? + y? + z% < 2az, der zwi-

schen den Kegelflichen x2 + y2 = z2tan’ @ und x2 + y2 = z2tan? § liegt (a >0;
0<a<pB< l;—) ? Verwenden Sie Kugelkoordinaten!

21.8.* Welches Volumen hat der von den Flichen z=4x2+ (y — 1)> und z =5 — 2y be-
grenzte Korper? Man verwende in geeigneter Weise elliptische Zylinderkoordinaten.

21.9. Ein Korper der Dichte o(x,y,z) = # wird durch 0sx =< %, ﬁ =y
= N tan x < z = 1 begrenzt. Wie groB ist seine Masse?

T 1+ x? ’

21.10. Welche Masse hat der Korper, der von den Koordinatenebenen und den Ebenen
x+ay=a und bcx + acy + abz = abc (b>1; a,c¢>0) begrenzt wird, wenn die Massen-

dichte durch g(x,y,z) =1—— + ; gegeben ist?

21.11. Ein Kﬁrper mit der Dichte ¢(x,y,z) = z wird von den Flichen y =0, z=0, z =2,

y=3-x, y=3- begrenzt. Man skizziere den GrundriB des Korpers in der

x+ 2
x,y-Ebene und berechne die Gesamtmasse des Korpers.

21.12. Aus dem Zylinder x?+ y? <4 wird durch die x, y-Ebene und durch die Fliche
z=¢**» ein Korper herausgeschnitten. Welche Masse hat dieser Korper, wenn seine
Dichte durch g(x,y, z) = y? gegeben ist?

21.13. Berechnen Sie das Volumen des rdumlichen Bereiches, der durch die Flichen
z=0und z=e"**» begrenzt wird! (Die zuletzt genannte Fliche entsteht durch Rota-
tion der GauBschen Glockenkurve ™" um die z-Achse.) Wie groB ist die Masse des Kor-
pers von der oben genannten Form und der Dichte g = go(x? + y?)?

21.14. Man bestimme die Masse desjenigen Korpers, der von den Flichen z =0,
x2+y?=4 und x—y—2z=0 mit z=0 begrenzt wird. Fiir die Dichte gelte p(x,y,z)
=3(x?+y)z.

21.15. Ein gerader Kreiskegel mit der Grundfliche in der x, y-Ebene — gegeben durch x?
+y?=3 - und der Spitze im Punkt P(0;0;4), besitze die Raumdichte o = x* + y2 + z2.
Bestimmen Sie die Masse des Kegels.
21.16. Die Punktmenge M sei der Durchschnitt der beiden Zylinder
Zi(x—a)+y*<a?, 0=z=z und
Zy:(x—2a)+y*<a?, 0sz=zy mit a>0 und z,>0.
Welche Masse hat der durch M bestimmte Korper, wenn fiir die Dichte ¢ = o(x,y,2z) = 3z
gilt?
21.17. Berechnen Sie die Gesamtladung. Q des Korpers, der durch die Flachen

z= J3_ (x*+y?) und z=+y4—x2>—y? begrenzt wird, wenn die Ladungsdichte mit
0 = 0(x,),z) = goz angegeben wird. Fertigen Sie eine Skizze des Bereiches an!
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21.18. Ein homogener Kérper K werde durch die Zylinder x2+ y2=1, x2+y2=4, den

Kegel z = yx? + y? und die Ebene z = —2 begrenzt. Die Koordinaten des Schwerpunktes
von K sind gesucht.

21.19. Bei Rotation der Geraden z = 2x um die z-Achse entsteht eine Kegelfliche. Diese
und die Ebene z = 8 begrenzen fiir z = 0 einen Korper, von dem

a) das Volumen, b) die Koordinaten des geometrischen Schwerpunktes zu berech-
nen sind.

21.20. Gesucht sind Volumen und Schwerpunkt des homogenen Korpers, der von der Pa-
raboloidfliche x? + y? =2z und der Kugelfliche x? + y? + z2 = 3 begrenzt wird (z = 0).

21.21. Ein endlicher Kérper K wird durch die Rotationsparaboloide z = x*+ y? und
z =%(x2 +»?) +a, a>0, begrenzt. Gesucht sind die Koordinaten des geometrischen

Schwerpunktes von K.

21.22. Welche Punktmenge M — beschrieben in Kugelkoordinaten — wird durch
0=r=R,0=9=9 0<&=n), 0= ¢@=2m im R’ bestimmt? Man gebe die Schwer-
punktkoordinaten von M im Fall ¢ = const an und behandle speziell §,= %, o=m.
21.23. Wo liegt der Schwerpunkt desjenigen Teiles der Kugel x? + yz +z2 < a?, der zwi-
schen den Ebenen z=h und z=a liegt (0sh=a)?

21.24.* Die Punktmenge B sei der im 1. Oktanten gelegene Teil des Ellipsoids
x2 oyt 22
ey b2 ER T P =1.

Wie lauten bei Integration iiber B die Integrationsgrenzen in

a) kartesischen Koordinaten, b) Zylinderkoordinaten,

c) elliptischen Zylinderkoordinaten, d) Kugelkoordinaten,

e) krummlinigen Koordinaten (u, v, w) mit x = aucosvsinw, y = busin vsinw,
z=cucosw?

f) Berechnen Sie (mit moglichst wenig Aufwand beziiglich der Integration) Volumen
und geometrische Schwerpunktkoordinaten von B.

21.25. Wie groB ist das Trigheitsmoment des Kegels z=1— yx%+ y? | z = 0, beziiglich
der x-Achse fiir g = 1?7

21.26. Durch die Flichen z =5yx2+ y? und z =8 — (2x* + y?) wird iiber dem Bereich
B = {(x,y)|x*+ y? = 1} der x, y-Ebene ein endlicher Kérper begrenzt. Man bestimme das
geometrische Trigheitsmoment dieses Korpers beziiglich der z-Achse.

21.27. Welches geometrische Tridgheitsmoment besitzt der von den Flichen x =0, y =0,
R

x
z=0und a+ b

+ % =1 begrenzte Korper beziiglich der x-Achse (a, b, c > 0)?
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21.28. Berechnen Sie das Tragheitsmoment einer homogenen Viertelkreisplatte mit dem
Radius R und der Dicke D fiir p =1

a) in bezug auf die Kante der Linge D, die im Kreismittelpunkt senkrecht zur Platten-
ebene steht, .

b) in bezug auf eine Kante der Lénge R.

21.29. Das Triagheitsmoment eines geraden Kreiskegels (Hohe h, Grundkreisradius R) ist
beziiglich eines Grundkreisdurchmessers zu berechnen (¢ = 1).

21.30. Von dem durch die angegebenen Flidchen begrenzten Korper berechne man das
Tragheitsmoment beziiglich der z-Achse:

a) x+ty+z=ay2, x?+y?=a%(a>0) und z=0 mit p=1,

b) x—y—2z=0, z=20, x*+y’=4 und z=0 mit p(x,y,z)=3z.

21.31.* Aus dem Zylinder (x — a)?* + y? < a?, 0 < z < ¢, wird der Zylinder (x — b)? + y?

<b?,0=z<=d, ausgebohrt (a > b > c, c = d, Dichte g = 1). Wie groB ist das Trigheits-
moment des entstehenden Hohlkérpers beziiglich der z-Achse?

21.32. Fiir den durch x? + y2+ z2=R?, z2 0 und z = (tan &) yx? + 2 , 0 < (x<%, be-
grenzten Bereich B gebe man die Integrationsgrenzen fiir I = .[H f(P)db in
B

a) kartesischen, b) Kugel-, ¢) Zylinderkoordinaten an.

Zur Berechnung fiir 7 im Fall f(P) = 1 benutze man geeignete Koordinaten. Welcher be-
kannte Wert ergibt sich fiir a— +07?

21.33. Durch x2+y2+z2=a?, x2+y2+2z?=5%,0<a<b, 220 und die x,y-Ebene
wird eine Halbkugelschale begrenzt. Man berechne ihr statisches Moment beziiglich der
x,y-Ebene und gebe die Schwerpunktkoordinaten an (o = 1). Welche Lage des Schwer-
punktes erhdlt man in den Spezialfillen

a) a—+0, b) a—>b-0?
21.34.* In der x,z-Ebene ist der Kreis K mit dem Radius R und dem Mittelpunkt (a;0)

gegeben, wobei a > R > 0 gelte. Durch Rotation der von K begrenzten Kreisfliche um die
z-Achse entsteht ein Torus.

a) Man beschreibe den Torus mit Hilfe von Zylinderkoordinaten.
b) Welches geometrische Trigheitsmoment hat der Torus beziiglich der z-Achse?



22.  Kurven- und Oberflichenintegrale
(Bd.S, 5., 6)

22.1. Man berechne die Bogenldnge folgender Kurven:

a) x=elcost, y=e'sint, z=¢e', 0=t=b,

b) x=(t¥2)-t+2, y=(@4/3)*?, 1=ts5,

¢ y=(x4)-Inyx, l=x=2,

d) x=acos’t, y=asin’t, a>0, 0=t=2m(Astroide),

e) y=acosh(x/a), a>0, 0=x=b,

f) x=62+4, y=21*-2, 0=sts2,

g x=4Int, y=2t+Q/t), 2st=4,

h) x=Int, y=24t, 3=ts8,

i) y=aln[a¥(a*-x?)], 0sx=sb<a, j)y=x¥?, 0=xsb,
k) x=mnQt+(1+4)"?) -2, y=(1+4t)", ast=bh,

) y=3+InGsinx), m/2=<x=2m/3,

m) x=2a’,y=3abt?, z=3b, Ostsc,

n) y=x2,z=(4/3)x*, 0=sxsb,

0) x=a(cost+tsint), y=a(sint—tcost), a>0,0=t=bh,
p* y=Inx, 1sxs3.

22.2. Man berechne die Bogenlinge folgender Kurven, wobei (r, @) ebene Polarkoordina-
ten bezeichnen:

a) r=aexp(fp), ¢;=@=@,, a>0,p*0 (logarithmische Spirale),

b) r=a(@*-1), a>0, 0=s¢@=sb,

c¢) r=2Rcosp, R>0, (—n/2)s@=sn/2,

d) r=a(l+cosg), a>0, 0= ¢ =2n(Kardioide),

e)* r=a®—-1/(*+1), a>0, 0s¢=g,.

22.3. Fiir folgende Kurven sind die Koordinaten des geometrischen Schwerpunktes zu

berechnen:

a) x=acost, y=asint, z=(h2mt, a>0, 0=st=b,

b) x=acos’t, y=asin’t, a>0, 0st=mn/2,

¢) y=acosh(x/a), 0=x=a,

d C=CuC, Ci:x=Rcosp, y=Rsing, R>0, -n2=s¢@=n/2, C:x=t,
y=-R,—-a=t=0, aderart, daB der Schwerpunkt von C auf der y-Achse liegt,

e) Kreisbogen, Radius R, Offnungswinkel e,

f)* x=cost, y=sint, z=cosht, 0=st=2m.

22.4. Mit einer Guldinschen Régel bestimme man den Inhalt der Rotationsflachen A:

a) A wird erzeugt von einem in der (x,y)-Ebene liegenden Rechteck (Seitenldngen a
und b, der Mittelpunkt hat die x-Koordinate ¢ >0, die x-Koordinaten der Eck-
punkte seien alle positiv) durch Rotation um die y-Achse.
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b)

©)

d)*

e*

22. Kurven- und Oberflichenintegrale

A wird erzeugt von der folgenden in der (x,y)-Ebene liegenden Kurve C durch Rota-
tion um die y-Achse. C entsteht aus dem Streckenzug, dermita>d>0,5>0,¢>0
nacheinander zu den Eckpunkten P(c,0), P,(c,d/2), Ps(c + b,d/2), Py(c + b,a/2),
Py(c + b+ a,0) fiihrt, durch Vereinigung mit dessen Spiegelbild an der x-Achse.
Zahlenwerte a =9, b =6, c =4,d =5 (Bild22.1).

y
[} 7
f ]
Bild 22.1 >
2
v . Bild222
? 7

Man behandle b) mit C; = C, U C,, wobei Cy:y=a, 0= x=2a, C,:(x —2a)* +y?
=a?, x=2a,y=0ist und C aus der Vereinigung von C; mit dessen Spiegelbild an
der x-Achse entsteht.

A wird erzeugt von der Randkurve C eines in der (x,y)-Ebene liegenden Flichen-
stiicks B durch Rotation um die y-Achse. B entsteht durch Wegnehmen der Sektor-
fliche x=rcos@,y=rsing,0=r=a,0 < (n/2) — « < @ = 7/2 von der Vereinigung
einer Dreiecksfliche D (Eckpunkte von D: P,(0;0), P,(0;(d/2)coter), Ps(d/2;
(d/2) cot ex)) ((d/2)cote > a; der Winkel von D bei P; ist also gleich «) mit einer
Rechteckfliche (Eckpunkte: P,, P;, P, (d/2; h + (d/2)cote), Ps(0;h + (d/2)cotex)
[A > 0]). Zahlenwerte h =20, d = 10, a = 2, « = 45° (Bild 22.2).

A wird erzeugt durch Rotation der Kurve x = g cos @, y = @ sing, —31/2 < ¢ < 3n/2
um die Gerade x = 5 (Bild 22.3).

y

NS

2
M
—— e ———m
~

Bild 22.3
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22.5. a) Lings eines in der vertikalen (x,y)-Ebene (»-Achse nach oben) liegenden Kreis-
bogenstiicks C: g =r= Rcosge, + Rsinge,, m/4 = ¢ <7 wirkt — etwa infolge dar-
iiberstehenden Wassers x = Rcosg, Rsing =y =<2R - die Linienbelastung F=
—a(2R — y)n mit n=r/R, a > 0. Gesucht sind der absolute Betrag und die Richtung

einerseits von der resultierenden Kraft I Fds und andererseits vom resultierenden
Moment | rx Fds (Bild 22.4).

y

}

=

<t , I

X

[Fis  Bild22.4 Bild 22.5

b) Lings C: g = r= a(cos e, + sin ge,) (a > 0), 0 = ¢ = n/2 wirkt F = (2p/7) pe,,
p=const>0. Man berechne R = | Fds und M= [ rx Fds. Die Wirkungslinie W

von R ist durch ry X R = M (ry: Ortsvektoren der Punkte von W) festgelegt. Wo
durchstoBt W die (x, y)-Ebene (Bild 22.5)?

22.6. Man berechne die folgenden Kurvenintegrale:
(¢ 53]
a) _f ((x+y+z)dx+ (3x+2y—z)dy+ (Sx—y+z)dz) lings «) einer Geraden;
(0;0;0)
B) lings eines in (1;0;0) und (1;1;0) gebrochenen Streckenzuges,
(1;0)
b) f (y?dx — x?dy) lings «) einer Geraden; B) des Einheits-Viertel-Kreisbogens,
©; 1
1)
c) _[ (ydx + (y — x)dy) lings der Kurven &) x=t, y=1; B) x=1, y=t,y) x=t,
(0;0)
y=10) x=ty==r;e)y=x"{)*y=sin(mx/2),
€LY
d) f (ydx — (x —y)dy + xdz) «) geradlinig; B) ldngs des in (0;1;0) und (0;1;1) ge-
(0;0;0)
brochenen Streckenzuges; y) ldngs des in (0; 1; 1) gebrochenen Streckenzuges,
©;1 ©; 1)
e) f Fdx = J Fdr mit F=(x+y)e,+(x?+y?)e, ) geradlinig; f) lings des in
;0 ;0
(0; 0) gebrochenen Streckenzuges; y) lings des Viertelkreisbogens mit dem Mittel-
~ punkt (0; 0); d) lings des Dreiviertelkreisbogens mit dem Mittelpunkt (0; 0); €)* ldngs
oy=>0-x)"
2.7, Aus den folgenden Kurvenintegralen greife man diejenigen heraus, deren Integran-
den totale Differentiale einer Funktion @ sind. Man bestimme @ und berechne hiermit
das jeweilige Integral. Die iibrigen Kurvenintegrale werte man unmittelbar aus.

3 Wenzel, Ueb. Analysis 2
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a)

b)

©)

d)

e)

g)

h)

K*

m)

22. Kurven- und Oberflédchenintegrale

24

_[ (xdx + ydy) lings ) y = x% B) der geradlinigen Verbindung; y) des in (2;0) ge-
©:0)
brochenen Streckenzuges.

_f ((x2+y)dx + (x — y?) dy) mit dem Integrationsweg
«) a 2x?+ b %=1 (mathematisch positiv orientiert);
B) geradlinig von (1;1; —7) nach (a;a; a);

y) g=r=2cos(3t)e, +4sin(3t) e, + mte,, 0 <t < 2m.

_[ (cos x coshydx + sin x sinhydy) mit dem Integrationsweg o) a 2x2+ b=2%2=1
(mathematisch positiv orientiert); f) geradlinig von (0;2; —4) nach (1/2;1n2;9).

_[ (xe’dx — ye* dy)‘ mit dem Integrationsweg o) geradlinig von (0;1;2) nach
(1;0; —1); B) Streckenzug von (0;1;2) iiber (1;1;0) nach (1;0; —1);
y)g=r=coste +sinte,+ (—1+ (6/m)t)e,, m/2=1=0.

_[ (x*(1 = y)dx + (y — (x*/3)dy) mit dem Integrationsweg ) Streckenzug von (0;0)
iiber (1;0) nach (1;1); B) geradlinig von (0;0) nach (1;1); y) geradlinig von (0;0)
nach (2;0) und anschlieBend lings y = (x — 2)? bis zu (1;1); d) lings des Dreiecks-
randes von (0;0) iiber (1;0) und (1; 1) nach (0;0).

_[ ((3x%+ 2yY) dx + (4xy — 3z%) dy — 9yz%dz) geradlinig von (1;1; 1) bis (2;2;2).
f Fdx = _[ FdF, F = yze, + Xze, + Xje, geradlinig von (0;0;0) bis (x; y; 2).

dex = _[ Fdr, F=xyz 'e, + (x*22) ' + 0 — 2)Y)e,— 2 'xWyz 2 + (y — 2)*
+ e~ ?)e, mit dem Integrationsweg o) stiickweise parallel zu den Koordinatenachsen
von (—2;0;3) nach (0; 3; 3); B) geradlinig von (—2;0; 3) nach (a; b;¢c) (¢ > 0).

| Fdr, F=12xze,+ 2x — 11z + 1)y~ 12 %¢, - 3yze, lings r = 2%, + (1 + 1)g, + (1
—2e,0=t=1.

I F(F)d7, F(F)= Ki *F (F=|F|]). Der Integrationsweg — auf dem (0,0,0) nicht
liegt — beginnt in (xo,¥0,zo) und endet in (x,y,z) mit &) (xo, Yo, Z0) = (1;1;0); B)
mindestens eine der Koordinaten von (xo, o, o) strebt nach + oder —. (Das Er-
gebnis ist — eventuell abgesehen vom Vorzeichen — das Potential einer Punktmasse
bzw. Punktladung.)

I (=y(x2+y?~tdx + x(x?+y?)~'dy + coszdz) lings r=acoste, + bsinte, + te,
@>0,b>0)mite) —n/2<t<n/2;B)n/2=<t=<3n/2;y) —n/2=t=3n/2.

I F(7)d7, F=[(expZ)siny + (2/X)] e, + [X(exp Z).cosy + (1/¥)] e,
+ [X(exp Z) sin 7] e,. Der Integrationsweg, auf dem kein Punkt der Z-Achse liegt, be-
ginnt im Punkt (1;1;0) und endet in (x,y, z).

—I F(F)dF, F=(3X%2Z+ 652 e, + Q%57+ 1235 — 8y7°) ¢, + (X352 — 125%7?) e,.

Der Integrationsweg beginnt im Punkt (—1/6;1;0) und endet in (x,y,z), (vgl
19.14.d)).
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22.8. Es ist der Flicheninhalt der Flichenstiicke gesucht, deren Punkte (x, y, z) den Rela-

tionen geniigen:

5) 4=xs5, 2sysx/2, z=-2x+y-2,

b) 4sxs5, 2sy=x2, z=Qxp)"

¢ O0sxs1, -xsysx, z=Q/3)42 x+y)%",

d) |x|+ll=1, z==x?, beachte: [ (1+x)12dx=(1/2)(x(1+x?)"
+In(x + (1 + x3)2)), N

e) x?+y*=a?, a>0, z=xya !(Zylinderkoordinaten!),

f) x2+y*=4, 0s=z<x?y|(Zylinderkoordinaten!),

g x+y+z=2, 0sy=3, -1=zs1,

h) r(uv)=u’e — uve, + (v¥/2)e,, —2=sus0, usvs-u,

i) z=5-(1/9)(x2+y?, z=1 (Zylinderkoordinaten!), (Bild 22.6),

z

Bild 22.6 __\_/___._,. Bild 22.7

)* 22z a¥(x?+y?), a>0, zz0, x2+y2+(z—c)*=c?, ¢>0. Kugelkoordinaten
(r, 9, ) mit r = ¢ einfihren, wobei r = 0 den Punkt mit den kartesischen Koordina-
ten 0;0; ¢ angibt (Bild 22.7).

22.9. Gesucht ist die Masse der Oberfliche x? + y2 + z2= R?, z = 0, die folgende Dichte
besitzt:

a) o= goparccos(z/R), b)* o = 0o(x?*+ y?) arccos (z/R) (Zylinderkoordinaten!).
22.10.* Gesucht ist das geometrische Triagheitsmoment (Dichte gleich 1 Einheit) beziig-

lich der z-Achse des Flichenstiicks ~R =d, = z=d, < R, x?+ y? + z? = R? (Kugelkoor-
dinaten!).

22.11. Man berechne das Oberflachenintegral 2. Art (d4 = df = nd4 = ndf) H FdA fur
das Oberflachenstiick
a) z=x*+y?, 0=<z=<4, e,-d4d<0 (Zylinderkoordinaten!, Bild 22.8) mit
®) F=(x*+y)"%e; B) F=xe +yg+(z=Des;
Y) F=xye, +yze, + (v — xVe,;
d) F=(2np— ¢de,, wobei x=rcosp, y=rsing, e =cosge,+sin ge,
b) z=(x+1)2+y?, z<2+2x, e,-d4 <0 (Zylinderkoordinaten!) mit
) F=xe, +ye +ze,; P) F=—2e — xe, '
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¢) (x%/16) + (»*/9)=22,x=20,y=0, 0 < z <2 (Parameterdarstellung der Ellipse (x%/a?)
+(»*/b%) =1 ist x=acosp, y=bsing), e,d4d <0 mit F= (4x + z)e, — (4z + 1)e,
(Bild 22.9).

Bild 22.8 Bild 22.9

22.12. Man berechne das Oberflichenintegral 2. Art (d4 = df = nd4 = ndf)
_[r Fd4 = @ FdA fiir die geschlossene Oberflache (d4 nach auBen gerichtet)
a) desWirfels x| =1, [y|=1, |z|=1 mit F=xe +ye +yzle,
b)* A=A4,UA4,, wobei A;:z=5—-(1/9)(x2+y?, z=z1 und 4,;z=1, (x> +y?) <36
(Bild 22.6) mit
«) F=4x%yze, + (5y — xy?) ze, — (2 + 3xy) z%€;;
B) F=(xy—xVe;+ (x> +ydey;
y) F=x(x*+y)" e, + xyze,; D) F=xe,—ye, +2(z—5e,.



23. Integralsitze
(Bd.5, 7.)

23.1. Man behandle 22.12.a) mittels des Integralsatzes von GauB.

23.2. A sei die Oberfliche desjenigen rdumlichen beschrinkten Bereiches, der von den

Flichen y=x2+1,y=2x+4, z=0, z= —x + 6 begrenzt wird. Man berechne mittels

des Integralsatzes von GauBl @ FdA = @ FndA = @ Fdf= ﬁ Fndf (d4 weist nach

auBen) mit F= (4x2 - 2yz)e, + (x — 2y(cosz) “?)e, + (3y + 2tan z — 3xz)e,.

23.3. Der Rauminhalt von V: (x/a)*+ (y/b)*+ (z/¢)*<1, (@a>0,b>0,c>0) kann

durch (1/3) _l]] div(xe, + ye, + ze;) dV angegeben werden (warum?). Das Integral ist mit-

tels des Integralsatzes von GauB auszuwerten und hierbei die Parameterdarstellung

x = asindcos @, y = bsin &sin ¢, z = ccos ¢ zu benutzen.

23.4. Durch direktes Ausrechnen bestitige man den Integralsatz von GauB beim Vorlie-

gen der Kugel (Mittelpunkt (0;0;0), Radius R) und des Vektorfeldes

a) r=xe +ye +ze, b) m(r=|r)), c) f(nr.

23.5. Man berechne @ FdA (d4 nach auBen gerichtet) mittels des Integralsatzes von

GauB:

a) F=(xz+(x%3))e, +2ze%e, + (zp> — (z%/2) — xz%e™)e, mit A=A, U 4,, wobei
Aiz=(x2+y)12, 0=z=42; Apx?+y?s2, z=42,(Bild23.1),

Bild 23.1 Bild 23.2 Bild 23.3

b) Fwieina); A=A4,U4d, mit A;z=(x>+y)"?, 0=szs1;
Apz=2—-(x*+y»)"?2, 1=z=2, (Bild23.2),

¢) F wie in a); A=A, U4, mit 4;: z=(x2+y)"?, 0sz=52; Ay z=6—-x2—y?,
2=z=6, (Bild 23.3),

d) F wie in a); A=A4,U4,Ud; mit Ay z=(x2+y)"?, 0sz=2; Ay z=-1,
x2+y?<4; Ayx*+y*=4, -1=z=2,(Bild23.4),

e) 22.12.bx),

) F=xze,+ze,+tyze,, A=A U4y, Ay: z=(x—1)2+ (-2 0=sz=4; 4,: z=4,
(x = 1)*+ (y = 2)? = 4, (Bild 23.5),
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z

/—\

O 7 .20 :

Bild 23.4 Bild 23.5 Bild 23.6

g) F=(2ycosx +4x?)e, + (y2sinx — 3xz%)e, + (exb(xy?) — 6xz)e,, A = Oberfliche
eines Korpers, der begrenzt wird von den Ebenen y=x+2, y=2, x=4, z=0,
3x + 6y +2z=160, (Bild 23.6),

h) F=[(Iny)cos(z%)]e, + Sx?yze, — [sinh (¢”) + cosh (xy?)]e,, 4 = Oberfliche eines Kor-
pers, der begrenzt wird von den Flichen z =2,z =3, x?+y2=16,

i) F=(ln (yzz))sex + exp(cos x)e, + (1/3)yz’e,, A wie in h),

) F=f(r)(rxe), r=|r|, r=xe. +ye +ze, f(r) differenzierbar, A4 = Oberfliche
eines beliebigen beschriankten Korpers.

23.6. Man formuliere fiir

a) F=UC (U: beliebiges Skalarfeld, C: beliebiges konstantes Vektorfeld) den Integralsatz
von «) GauB; B) Stokes, .

b) F= B X C(B ein beliebiges, C ein konstantes Vektorfeld) den Integralsatz von GauB.

¢) Aus den Ergebnissen von ax), a) und b) folgere man Formeln, die C nicht mehr ent-
halten.

23.7. a) Mittels des Integralsatzes von GauB zeige man, daB der VektorfluB
@ (r/r®)dA (r=|r|) durch jede geschlossene Fliche 4, die (0;0;0) umfaBt, stets den
gleichen Wert liefert.

b) Man berechne den in a) genannten Wert durch Wahl einer hierzu giinstigen Flache 4.

23.8. Man berechne J] rot FdA4 «) mittels des Integralsatzes von Stokes; B)* direkt fir
/

a) F=—e,+(x/2)z%,+xe,, A:x?+y’+z'=4, z243,e-d4>0,
b) Fwieina), z=43,x +y?<1, e -dAd<0.

¢) Man behandle b) unter Benutzen des Ergebnisses von a) mittels des GauBschen Inte-
gralsatzes. .

d) F=12 xyz7'e,+ (92— x?)e, + x’z¢,, A: x?+y2sz52, y=x, x20, ¢-d4<0,
(Bild 23.7),

e) F=xze, — xye, + 3xyzle,, A: (x*4)+(y¥9) - (z¥/16)=1, x20, y=0, 0sz=4,
e,-d4 <0, (Bild 23.8),
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berade y=x
der (x,y)- Ebene

2 n7x

Bild 23.7 Bild 23.8

f) F=(x+y)e, —4xze, +yze,, A: (x*/16)+ (*/9) —2z?=0, xz0, y20, 0sz=2,
e, dA<0 (Bild22.9),
g) F=x%%, +3x%%,, A:z=(R?*-x*—y)", x+y?=R?, e d4>0.

23.9. § (x(1 = z)dx + (y + z)dy — (y — z%)dz) ist lings derjenigen geschlossenen Kurve C
zu erstrecken, die sich als Schnitt der Flidchen z = (x + 1)2+ y? und z = 2(x + 1) ergibt
und deren Projektion in die (x,y)-Ebene im mathematisch positiven Sinn orientiert ist.
Die Berechnung erfolge a) direkt, b) mittels des Integralsatzes von Stokes.

23.10. Man berechne 43 Fdrfiit F=f(r)r (r=|r|, r=xe,+Yye, + ze,) lings der Kanten
eines achsenparallelen Quadrates der (x,y)-Ebene mit der Kantenlédnge 1 und dem Zen-
trum (0;0) (mathematisch positiv orientiert) mittels des Integralsatzes von Stokes.

23.11.* In einer Fliissigkeitsstromung mit dem Geschwindigkeitsfeld
3

v= Z v (X1, X7, X3) € ist zum Zeitpunkt ¢ = 0 ein Bereich ¥, durch die kartesischen Koor-
k=1

dinaten (u,,u,, u;) seiner Punkte gegeben. Diese wandern ldngs der Bahnkurven
3

r(uy, Uy, us, t) = Z Xy (uy, uy, us, t)e, (Ar/3t = v) und bilden zum Zeitpunkt ¢ den Bereich
k=1

V; (Bild 23.9).

U

o U s, t)

Bild 23.9
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a) Man zeige:
% T vx1, %2, x) a7, = [[] (wegrad U+ Udive)av, = [[] div(t)av, = [[ Uoda.
v v,

Zum Beweis gehe man von

A(x1, X ,X3)
V.= ) T rT Ty
Jl] vav,= [I] Ut w0350, 3540 0) 50,7 5 Vo

aus.

b) Wie ist das Ergebnis von a) im Fall U= U(xy, x,, x3, t) zu erweitern?

¢) Man identifiziere in b) das U mit der Dichte g der Stromung und benutze, daB8 die
Masse von V, sich bei variablen ¢ nicht dndert.

d) Da V, beliebig ist, folgt aus _[l] (...)d¥,=0 das Verschwinden des Integranden. Wel-
cher partiellen Differentialgleichung geniigt daher g aus c)?

e) Wie spezialisiert sich d), falls-eine inkompressible, d. h. unzusammendriickbare Fliis-
sigkeitsstromung vorliegt, also J:[[ dV, = const (¢ = 0) gilt?



24.  Gewohnliche Differentialgleichungen 1. Ordnung
(Bd.7/1,2)

24.1. Welche der folgenden Gleichungen sind gewohnliche Differentialgleichungen
1. Ordnung fiir y = y(x)?

a) y=y¥xy, b y=xily, o hy+neEr)+xy=0,
1 1
@ y'= [emy@dy, o y= [ e =ywdy,
uZo u=o0

f)* (F(y, z)— zaF—g;z-)—) = C=const mit F(y,z) =y(1+z%)"2, y >0 (durch Rota-
z=y"
tion von y=y(x)(a<x=>b) um die x-Achse entsteht Rotationskorper kleinster

Oberfldche),
8)*

Temperatur -Meflergebnis

Warmeabgabe Ay

Energiequelle

o' = N— Ay, y: Temperatur; x: Zeit; c: Warmekapazitit; A: Koeffizient der Wirme-
abgabe; N: zugefiihrte Leistung. Es ist entweder N = N, (,eingeschaltet“) oder N=0
(,ausgesehaltet“). Mit den Konstanten y, und y, (0 <y, <y, < Ny/4) gilt: Die Lei-
stung N wird (oder ist) eingeschaltet, wenn y < y,, ausgeschaltet, wenn y = y, ist.

24.2. Man skizziere in der (x, y)-Ebene fur die folgenden Differentialgleichungen einige
Kurven, in deren Punkten durch die Differentialgleichung jeweils der gleiche Anstieg y’
vorgeschrieben wird, d.h., man skizziere einige Isoklinen und versehe sie mit zugehorigen
Richtungselementen. Weiterhin sind in den Fillen a) bis d) jeweils alle Losungen zu be-
stimmen und einige in das skizzierte Richtungsfeld einzutragen.

a) y'=1+y:, b w=1, ox'=y, dp=-x

e)* y?+2My’ —1=0 mit M= (0, — 6,)/27,, wobei g, = p{(/h)x + 2(I/h)%y},
Ty =—y(/h)y, 0,=yy (0= x=1I; —(WIl)x =y =0) ist. (Die Kurven y(x) sind Haupt-
spannungslinien einer lings x = [ eingespannten Konsole unter Eigengewicht (y:
spezifisches Gewicht).) Zahlenwerte: I = 10, h = 4 (vgl. 24.14.¢)* und 24.14.1)*).

24.3. Man bestimme eine Differentialgleichung 1. Ordnung fiir differenzierbare Funktio-

nen, deren grafische ‘Bilder auf der folgenden Kurvenschar liegen:

a) Alle Kreise, die durch (0;0) gehen und deren Mittelpunkte auf der x-Achse liegen,

b) y=aexp(x/a), c) y=x+ax'(a*0), d) y?=(x+a)x;

e) y=In(l+ae %),

f)* x=a+t+sint,y=1-cost (t: Kurvenparameter der Parameterdarstellung der
Kurven; a: Scharparameter).

24.4. Gesucht sind die orthogonalen Trajektoren der Kurvenschar (a: Scharparameter)

a) y?—ax=0, b) x2-y*=a.
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24.5. Man gebe ein moglichst groBes ¢-Intervall derart an, daB dort die Funktion h(?)
=(g/2)(t - ¢)?, (g >0, c: Konstanten); h = —(2gh)"? erfiillt.

24.6. Man gebe die allgemeine Losung der folgenden Differentialgleichungen an:
a) y' = x%*, b) y'=2xexp(x?),
¢) y'(1 + x? = arctanx, d* y'=|x.

24.7. Man bestimme alle Losungen der folgenden Differentialgleichungen:

a) 24.1.a), b) 24.1.b),

¢ 24.1.d), d) 2x%"+y?*=0,

e) y=xy(1-x3)7, f) y'=2x¥1+y?,

g y=evyl, | h) y'=(y—3)cosx,

i) x=sinx, j) x=exp(t—x),

k) t@+Dx+(-2)x*=0, D xx+t2=0,

m) ¢ =4x¢@?, n) r’+rt=1(r=r(p)),
o) ' =exp(-y?, p) y'=9y*—4,

@* 24.1.0), beachte: [ (x2—1)~V2 dx = arcosh x.

24.8. Man gebe die Losungen y = y(x) der folgenden Differentialgleichungen in der Ge-
stalt x = x(y) an: .

a) xHY +1=y, b »'+2=xp, o xHY =y +1L

24.9. Man 16se folgende Anfangswertaufgaben:

a) y'=xy+2x, y0)=2, b) y'=1+y)" y1)=3,
O (x2-3)y'=2{3y=0, yO=1, & z'=exp(~2), z(0)=-1,
e oy +y2+1=0, y(-1/2)=43, D x+p'=0, y()=-13,

g y'=x%, y0=-1,
h) y'=1-y* mit 0y©0)=0; ByO=1 v)»0=-1

24.10. Man bestimme die allgemeine Losung der linearen homogenen Differentialglei-
chung:

a) y+x¥y=0, b) y' =ytanx,

c) +x=0, d) 2x+5x=0,

e) 2+x)y +x=0, H (?+x-2)y'=3y.

24.11. Man bestimme die allgemeine Losung der linearen Differentialgleichung
a) (x2+2)y"+ xp— x(x2+2) =0, b) (x2+ 1)y’ + 3y — x(x>+1) =0,
c) xy'+y=xsinx, d) y'+ (x+ 1) ly=4e*

e) y'+ ysinx = 3x3exp(cos x), ‘ f) 2xcos(xy) =xy’ +y,

g ¥'—ycosx =2exp(sinx), h) y' + 2y =25x%*.

i) LI+ RI= Uysin(wt), (I: Stromstirke, R: Ohmscher Widerstand, L: Induktivitit,
U,sin (wt): Wechselspannung). In der Ergebnisformel sind alle additiven Glieder weg-
zulassen, die fiir t— o nach Null streben. Was ergibt sich speziell fir L— + 0?
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24.12. Die folgenden Anfangswertaufgaben sind zu ldsen:

a) y=x(1-x)y'+x2+1, yQ2)=5, b) '+ @+ lnx=0, y1)=-1,

c) (x2+2)y' —2xy=3(x2+2)} y(-1)=6,

d) (P+t-2)x-3x-(t-1?%=0, x(0)=-1,

e) y' =ytanx+1, y(n'/4)=l+~/2—,

) x'+ytxe=0, y(1)=0, gy +xy=x% y@=1,

h) @-Dx=x+@-1D", xQ2)=1,

i) y' +ycosx—sinxcosx=0, y@0)=1,

j)* 24.1.g) mit y(0) =0. Es gibt x, derart, daB y(x + T) = y(x) (xo = x < =) gilt. Wie
groB ist T?

24.13. Welche Losungskurve y = y(x) geniigt y' + 2xy = g(x) und geht durch P, falls g(x)
bzw. P gleich sind:

a) 2xexp(—x?), P(0;1),  b) 2x, P(L;1+(Q/e),

) exp(—-x?, P(l;e™"), d)*2x(x2+1), P(0;1)?

24.14. Man zeige, daB die folgenden Differentialgleichungen in der Gestalt y’ = f(y/x)

(Ahnlichkeits-Differentialgleichung) angebbar sind. Mit y(x) = x - z(x) leite man jeweils

eine Differentialgleichung fiir z(x) her. In den Fillen a) bis d)* ist danach z = z(x) und

damit y = y(x) zu berechnen.

a) xX+xy+y?-x%'=0, y(-e)=-etanl,

b) Xy’ =x%+y4 ¢ x'=y(ny-Inx),

d)* (x—y)y'=x+y (Ergebniskurven y = y(x) in der Gestalt r = r(p) angeben, wobei
(r, @) ebene Polarkoordinaten sind),

e)* (vgl.24.2.)*): y'=-M+ (M?*+ 1) mit M= —(1/2)(x/y) — (23/10), 0= x=10;
~(4/10)x <y = 0). Die Losung y = y(x) ist in der Gestalt x = x(z) = Cexp{ | [R()
+(Q (z))m/P(z)] dz} ,¥y=2z-x(z) (P(z) Polynom dritten Grades, Q(z) zweiten Gra-
des, R(z) rationale Funktion) anzugeben. Wie lauten P, Q, R?

f)* Man zeige: In 24.14.e)* lassen sich die Losungskurven y = y(x;C) (C: Scharpara-
meter) in der Parameterdarstellung
x=x(z)=x(z;C), y=y(x(z;C);C)=z-x(z;C) (z: Kurvenparameter)
angeben durch x=x(z;C)=Cf(z) (-4/10=z=b<0 mit x(b;C)= Cf(b) =10;
0 < C < 10/f(—4/10)),

1/4 -13/27

wobei  f(z) =|z|V2(Pi(2))" (Pa(2)) " (Ps(2))
12

ist mit Py(z) = 50 + 230z + 10(Q(2))"?, Py(z) = 1200 + 6 520z + 260(Q(2))"”
Py(z) = —4200 — 27320z + 1160(Q(z2))"”.

Hierbei gilt Q(z) = 62922 + 230z + 25 und

10/£(—4/10) = 10V2100'2713 4562198 = 372,952...  (Bild 24.1).

—29/108

>

24.15. Von den folgenden Differentialgleichungen 16se man diejenigen, die

1. mit der Methode der Trennung der Verdnderlichen geldst werden konnen,
II. linear sind,
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IIL. Bernoullische Differentialgleichungen sind:

a). y'=x, . b) y'=2x+5y,

° y+2xy=x, d) y' -y+x?=0,

e) x*+y-xy'=0, )y —dy/x=x{y,

g) (24 3)x+tx =3¢, h) 2x+2tx—3=0,

i) y+1+e=0, j) Xx—tx=(t—3)exp(31),

kK (1-xYy —xy-axy?=0, ) y'=tan xtany
O<x<m/2; 0<y<m/2),

m) Xx=exp(/—x), n) y' =tan(xy),

0 x¥'+2xy-3=0, p) ¥+ (x+ 1)1y =de>,

qQ x'+@+DInx=0, y(1)=-1, 1 (4nx%) =ax?y,

s)* 2xp'+x-yr=0, t) y =er—y2.

24.16. Von den folgenden Differentialgleichungen sind die exakten zu 18sen. Die iibrigen
sollen mittels eines integrierenden Faktors der Gestalt u = u(x) oder u = u(y) gelost wer-
den (keine Auflosung nach y in g) und k)):

a)  (2+2xp)dx + (x2+2xp)dy =0, b) 3x(x+y)*+ Qx>+ 3x%)y =0,

o Yy +x*+xly +x?2=0, d) xu’=2xcos(x? — u,

e)* (x—y)yldx+(1-x2dy=0, ) (x2+y)dx—xdy=0,

g (3x%y—1)dx+(x?+2ysin(2y))dy =0,

h) (- xYy'=xp+(xly),

i) x2+y2+2x+2)y'=0, i) 2xp’ +yr—x2=0,

k) y-—2xsin(x?)+ (x+cosy)y’ =0,

D (?-2x-2dx+2ydy=0, y(1)=-1,

m) GBx—-y+4dx—(x+2y+1dy=0, y1)=1.

24.17. Nach dem Verfahren von Runge-Kutta sind mit der angegebenen Schrittweite h
die folgenden Anfangswertaufgaben zu lésen. Parallel hierzu fiihre man die Rechnung
mit der doppelten Schrittweite durch und verbessere damit laufend die Néherungswerte
der urspriinglichen Rechnung. Man nehme jeweils 6 Dezimalstellen mit.

a) ¥y =0/10)2y-x)"?, y0)=1, h=0,5 zweiSchritte,

b) 24.15.n) mit y(0)=2, h=0,2, zweiSchritte,

¢) 24.15.t) mit y(—1)=e"Y2, h=0,4, zweiSchritte,

d) y'=x*+y% y0)=1, h=0,1, vier Schritte,

e) y'=y-2xyY, y(0)=1, h=0,2, zwei Schritte,

) y=@Q@x)(x2+y?, y)=0, h=0,2, vierSchritte,

2* y' =f(x),y(a)=0, Bezelchnung der Schrittweite durch 2k mit h 2n)"Y(b - a),

n Schritte. Folgerung fiir _[ f(x)dx?
h)* Dgl. aus 24.14.e)* mit y(5) = —2, h=0,1 (oder 0,2), einen Schritt. Man bilde y(5

+ h)/(5+ h) =2z, und prife, ob mit z=z, das Ergebnis aus 24.14.f)* zu
dem hier gefundenen Ergebnis fiihrt.



25.  Gewohnliche Differentialgleichungen hoherer Ordnung
(Bd.7/1, 3, Bd.7/2, 6.; Bd. 3, 4.5.5.)

25.1. Man l6se die folgenden Differentialgleichungen und Anfangs- bzw. Randwertaufga-
ben:

a) y'=2x, y(0)=y(0)=0, b) y”=4cos(2x), y(0)=0, y'0)=1,

0 @+yy=xi d) 1+x)y@=1

e) y'cos’x=1, y@m/4)=1/2)In2, y'(n/4)=1,

f) w®=(EJ)"'q(x) [w(x): Balkendurchbiegung, EJ: konstante Biegesteifigkeit, g(x):
senkrecht zur Balkenachse 0 < x =</ wirkende Streckenlast], w(0) =0, w'(0) =0,
w(l)=0, w”(I) =0 (d. h. Einspannung an der Stelle x =0 und gelenkige Lagerung
bei x = I). Wie lautet der groBte Wert von |w(x)|(0 = x = /)? Zahlenwerte: / =3 m,
EJ =6,5-10* Nm?, g = const = 1500 N/m (Bild 25.1),

w
Bild 25.1 Bild 25.2

g) w®=0, Randbedingungen und Zahlenwerte wie in f), jedoch w(/) = 0 durch w"’(I)
= —(EJ) 'Fersetzen (d.h. an der Stelle x = [ keine Lagerung, jedoch dort Belastung
durch Einzelkraft F senkrecht zur Balkenachse), Zahlenwert F = 1500 N (Bild 25.2),

h)* X+ kx|x|+g=0,x(0)=0, x(0) = vy >0, k >0 (senkrechter Wurf mit Luftreibung).
Im Ergebnis mache man anstatt v, die Steigzeit £, und die Steighohe x, sichtbar. Es
gilt x(t)=A + B(t— t) + R(#) mit R(¢#)—0 fiir t— . Wie lauten die Konstanten
A und B?

25.2. Mittels der Energiemethode oder auch gemiB 25.3. lose man:

a) y'=y'2 y=1, y®=2,

b)) x*-2x*=0, x(-2)=1, %x(-2)=1,

0 y'=20, yO=0, y©O=-2,

d) u”=u? u@=1, u'0)=Q/3)"

e) y'=20*+1, y0)=0, YO)=1,

fy x=2x(1+2lnx), x(@0)=e, x(0)=2e,

2)* mx=—kx ! (k>0), (dic Punktmasse m wird vom festen Punkt x = 0 angezogen),
x(0) = x,>0, x(0) =0. Man gebe x = x(¢) in der Gestalt ¢ = #(x) an und berechne

m

T =lim t(x) fiir x— +0, indem man einerseits im Integral z! = I e~ 't*dt die Substi-

[

tution u = e~! durchfiihrt und andererseits (—1/2)! = ‘/; beachtet.
h)* mj=—-cy(1+&?(c>0,6>0), y(0)=y,y(0)=1v,>0 (freie nichtlineare Schwin-
gung mit iiberlinearer Charakteristik). Ergebnis in der Gestalt ¢ = _[ f(»)dy angeben.

Die Schwingungsdauer ist T= 4 _[ [(a+y») (- yz)]‘”2 dy mit der unteren bzw. obe-
ren Integrationsgrenze — b2 bzw. b/2. Welche Werte haben 4, a, b?
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25.3. Man zeige, daB die folgenden Differentialgleichungen die Struktur y” = f(y,»") be-

sitzen. Man stelle jeweils fiir p =y’ als Funktion von y, also fir p = p(y), eine Differen-

tialgleichung auf, 16se sie und bestimme danach y = y(x).

a) w'=y?, b) w" =207,

o y=w, y0=y0)=1, d) y"=ey, y0) =0, »(0)=2,

e) y'=y(1+tan’y), yO) =m/4, y'(0)=1,

f) x=x(1+Inx), x@O0)=x0)=e,

o)* mx+ kx|x|+ cx=0, (k> 0, ¢>0), x(0) = xo> 0, x(0) = 0 (freie Schwingung,
Déampfung durch Newtonsche Reibung). Dgl. fiir p = p(x) (p = %) in der Gestalt pdp
+ g(x,p)dx =0 schreiben und zunichst einen integrierenden Faktor u = u(x) be-
stimmen. Endergebnis in der Gestalt 1 = I f(x)dx angeben.

25.4. Gegeben ist das Funktionensystem (y;(x),...,y,(x)): D) x,x% 1) 1,eX,e7*; III)

e*, cosh x,sinh x; IV) y/—. 1-x; V) x,x+1,x+2; V) x“'sinx,x 'cosx; VII) x,]|x|;

VIII)y, x2fir x <0, y,=0fiir x=0, y,=0 fiir x <0, y, = x? fiir x 2 0.

a) Man bestimme jeweils den gemeinsamen groBtmdglichen Definitionsbereich,

b) man bilde die Wronskische Determinante,

¢) man bilde fiir die Funktion y(x) = y,.,(x) die Differentialgleichung det (y"’(x))
=0k=1,...,n+1;»=0,...,n),

d) man folgere — falls moglich — aus b) und c) oder beweise direkt die lineare Unabhin-

gigkeit bzw. Abhéngigkeit des Funktionensystems bezughch des Definitionsbereiches
aus a).

25.5. Wie lautet die allgemeine Losung der folgenden linearen homogenen Differential-
gleichungen mit konstanten Koeffizienten?

a) y"+2y'=3y=0, b) ¥y —y"=2y'=0,

) 2y"+3y'+3y=0, d) y”+y=0,

e) x¥-Tx—-6x=0, f) y'+4y +8y=0,

g) X+2x+10x=0, h) y®+8y”+16y=0,

0 y"=3y"+3y'—y=0, §) y® -3y =2y"+2y'+12y=0.

25.6. Man 16se die folgenden Anfangswertaufgaben:

a) y'+2y'+y=0, y0 =3, yO)=

b) 4y” +y=0, y(0)=0, 2y (0) SHE

c) z/+4z°+292=0, z(0)=0, z'(0)=15,

d) 4y +12y" +9'=0, y©0)=y'0)=1, y"0)=-3,

e) ¥y =3y"+4y=0, y(0)=0, y'(0)=4, y'0)=7,

f) mi+ki+cx=0, x(0)=x, x(0)=0, Zahlenwerte: m=50g, k=0,5Ns/m,
¢=0,45N/m, xo=2cm, (N = kgms2). Nach welcher Zeit T ist der Ausschlag x(t)
auf (1/100) mm zuriickgegangen?

g) Wie f), jedoch k= (1/6)Ns/m. Fiir welches (moglichst kleine) T gilt |x(¢)|
= (1/100) mm fiir alle ¢ mit ¢ = T?
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25.7. Man lése die folgenden linearen inhomogenen Differentialgleichungen mit kon-
stanten Koeffizienten:

a)
©)
e)
g)
i)
i)
k)
Y}

y'+4y' —5y=2x, by y”' —y'=-2x,

YO+ 4y” = x(1 - x?), &) j-2+2y=2,
y"'=Ty" + 6y’ =cosx, f) y"+2y"+y =2sinx,
y+ 9y =cos(31), h) r®+2r"+r=cosg,

y@+2y" + 5y" + 8y’ + 4y = cos (2x),
y—y—6y=4cosh(2t),

y” =4y’ + 13y =e*>*sin(3x),

y" =2y’ —8y=4+3e*—18xe >+ 20sin (2x),

m)* y” —4y=(x2+1)cosx,
n)* y”+2y’+y=cos’x-sinx.

25.8. Man lose die folgenden Anfangswertaufgaben:

a)
b)
)
d)
e)

f)*

2)*

16y" +8y +y=-80, y(0)=1, y'(0)=0,

Y'Y +5y=5x+2, y(0)=0, y'©0) =1,

" —4y" — 3y’ + 18y = 8e?* — 54x2+ 63, y(0)=10, y'(0)=0, »y"(0)=S5,
Y4y =4x—8, y(/2)=18)m, y@2=m2, y'@2)=0,

"mi+ kx =F(t), m>0, k>0, x(0) = 0, X(0) = 0 (erzwungene Schwingung), wobei &)

F=const=Fy;B) F=at(a>0);y) F= Fyexp(—at), x>0,

(my+ my)y + ky + ¢y = (my + my)g + Zcos (wt), c=3EJ/IP, k>0, Z= myrw?,
y(0)=0, y(0) =0 [Auf dem Balken von 25.1. g) wird die Kraft F im Schwerefeld
durch einen Motor mit der Masse m; und von einer Punktmasse m, erzeugt, die sich
auf der Motorschwungscheibe im Abstand r von der Achse befindet. Der Rotor des
Motors dreht sich mit der Kreisfrequenz w. Die Durchbiegung y(¢) an der Stelle
x = [ fuhrt erzwungene Schwingungen aus, wobei der Balken wie eine (masselose)
Feder mit der Federkonstanten ¢ (siehe Ergebnis von 25.1. g)) wirkt, und die Rei-
bungskraft ky und die Zentrifugalkraft Z vorliegen.] Zahlenwerte:

I=1m, EJ=6,5-10‘Nm? m,=12kg, m,=(1/2)kg, r=30cm, g=9,81ms?
k =156,125 Ns/m, w = 2mn mit n = 3600 Umdrehungen pro Minute.

mx + cx=g(x,%)(¢c>0,R>0), wobei g(x,%)=—-RG/|x|) fir —wo<x<+o,
Xx#+0; g(x,x)=cx fir |x|=(R/c), x=0; g(x,x)=0 fir |x|>(R/c), x=0;
x(0) = xo> (R/c), x(0) = 0 (freie Schwingung, Ddmpfung durch Coulombsche Rei-

bung).

25.9. Welchen Ansatz macht man jeweils fiir eine partikuldre Losung von

a)

b)

<)

d

y@ =" +3y" + 5y’ = g(x), wobei g(x) gleich ist &) 2x2 + 3x3; B) 2e7%;

Y) (4x — S)e™*; 8) 3x cos (2x); €) e* sin x; {) e*(4sin (2x)—3 cos (2x));

n) 4x e* cos (2x); ) 2 + cosh x; 1) sinh? x,

y" +4y” + 13y’ = g(x), wobei g(x) gleich ist «) 36— x e**; B) e **cos (3x);

y) 2sinh (2x) - sin (3x); 8) {e* + e2*}?cos (3x) — 2,

x® + % + 45 + 4x = g(t), wobei g(¢) gleich ist «) 2¢~*; B) e 'cos (21);

y) e~ + cos (2); d) t3sin (21),

y"'+y"=5y"+3y = g(x), wobei g(x) gleich ist &) x%exp (—3x); B) 2e*; y) —4xe*,
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e* Y ay¥=g(x),v=01,..6, a, reell, wobei ). a,yy’ =0 die Losung
yr = x2exp (2x) cos (3x) besitzt und g(x) gleich ist ) exp (2x) sin (3x);
B) exp (2x) + sin (3x); y) x exp (2x) cos x; &) xzexp (2x) cos (3x);
€) cos (3x) +sin(2x).

25.10. Die folgenden Eulerschen Differentialgleichungen und Anfangswertaufgaben sind
zu 16sen. Die unabhéngige Variable der Losungsfunktion wird stets als positiv vorausge-
setzt.

a) x%y"” —3xy’+4y=2x, b) x%" - xy” +y’ =3x2,

¢) 4x¥y" —xy'+y=x*>+1Inx, d) x*y®+3x%"-Txy’+8y=0,

e) xy"+ 50" +3y=0, y)=y'D=1,

H xW"+x0' -y=2x, yO=y'1=2,

g) 2X—tx+x=Int.

25.11. Mittels der Methode der Variation der Konstanten 16se man:

a) y"—4y'+4y=9xe*nx, b) y'+2y'+y=-—e*x?,

c) y'+y=2cosx) |x|<n/2, d) y'+3y'+2y=(1+e")"

€) y"—2y’+5y=e"{cos(2x)}41, f) x%"-2xy'+2y=x3cosx,

g xy”+2y =sinx, h) y"—6y'+9y=x309x2+6x+2),
i) x¥"+4xy’+2y=cosx, )* X¥—4x+4x=9te¥Int,

K* mi+kx=F(),m>0, k>0, x(0) = x(0) =0 (erzwungene Schwingung), wobei
x) F(t)=F,fur0=t<T, F@)=0firt>T;
B) F(t)=(FyT)t fir 0st=<T, F(t)=F,furt>T,
y) F(t)=(FyT)t fur 0=st=T, F(t)=0firz>T.

25.12. Man 16se die folgenden Randwertaufgaben:

a) y'+mly=0 mit o y0)=0, y3/4)=0; PyO=1, y1)=0;
vy =0, y1)=0,

b) EW"+ Fw' =0, w(0)=0, w(0)=0, EJw"(0) — Fw(l) = Fa (Druckkraft F >0, kon-
stante Biegesteifigkeit EJ, Einspannung an der Stelle x =0, auBermittiger Angriff
von F an der Stelle x = /; Angriffshebelldnge a). Fiir welches a liegt eine Eigenwert-
aufgabe vor (Bild 25.3)?

¢) EWwW®+ Fw"” = g;sin(nx/l) + q,sin 2ax/1), w(0) = w”(0) = w(l) = w"(l) = 0 (beider-
seits gelenkig gelagerter Druckstab mit spezieller Querbelastung, Bild 25.4).

gsin(mxIl)

T

X X

q,sin (2 x /1)

Bild 253 Bild 25.4
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d)* EJ@*W/Ox*)+ u@w/at?) =0, @woxHy-o=(@Wix>),-0=0, @wdx)y-;=0,
w(l t) = asin(wt), wobei w(x, t) = y(x)sin(wt) ist. (Balken, unbelastet, keine Lage-

R |

w

Bild 25.5

rung an der Stelle x = 0, eingespannt an der Stelle x = /, die periodisch bewegt wird.
EJ konstante Biegesteifigkeit, u konstante Masse pro Lingeneinheit, Bild 25.5).
25.13. Mittels der Methode der Variation der Konstanten 16se man die folgenden Rand-
wertaufgaben fiir Greensche Funktionen y(x)= G(x,X) [X Parameter, J' f(x)d(x
— X)dx = f(%), falls ein bestimmtes Integral vorliegt und x sich im Integrationsintervall
befindet, _[ f(x)6(x — X)dx =0, falls x nicht im Integrationsintervall liegt].
a) —y'=06(x-%) mit o)y =y()=0; ByO=yW)=0,

b) YO =0(x=%) mit @y(0)=y'0)=y"1)=y"1)=0;
B0 =y"0) =y =y" D=0,
O (-(+xhy)=b(x-% mit WyO=y1)=0; BYO=y()=0,

d) —y"+y=0(x—x), limy(x)sollfiir x— —o und fiir x— + < existieren,

e) —xy"—y' =d8(x—x), y(1)=0, limy(x)soll fiir x— +0 existieren,

H -y —aly=58(x-%), yO0)=y0=0.

25.14. Wie lauten die Eigenwertgleichungen der folgenden Eigenwertaufgaben? Man

gebe den kleinsten positiven Eigenwert — falls moglich — exakt an, andernfalls niherungs-

weise. Wie lauten die zum kleinsten positiven Eigenwert gehorigen Eigenfunktionen?

a) EW’+Fw=0 mit &) w(0)=w'(l)=0; B)w(0)=w()=0 [Druckstab, der «) in
einem Randpunkt (x = /) eingespannt; B) beiderseits gelenkig gelagert ist; Bild 25.6],

o)
=ttt
y
“”M
I P
) 7
w g x=l X
x=1 y
3 N
B)F - ) N7
y x=1
Bild 25.6
2 T
x=l
Bild 25.7 4

b)  ER® — pw’y =0 mit o) y(0) = y"(0) = y(1) = y"(1) = 0; B)* y(0) = y'(0) = y"())
=y"(1) = 0; V)* p(0) = y'(0) = y(1) = y'(1)) = 0; ®)* y(0) = y'(0) = y()) = y"(I) = 0 [Ei-
genschwingungen w(x, t) = y(x) cos (wt) eines Stabes, der «) beiderseits gelenkig ge-
lagert; B) einseitig (x = 0) eingespannt; y) beiderseits eingespannt; d) fiir x = 0 einge-
spannt und fiir x = / gelenkig gelagert ist; #: Masse pro Linge; Bild 25.7],

4 Wenzel, Ueb. Analysis 2
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c)* Ew®+ Fw’ +cew=0, w0)=w"(0)=w()=w"(l)=0, Eigenwertparameter: F >0
(beiderseits gelenkig gelagerter Druckstab, gebettet mit der Bettungsziffer c,
Bild 25.8); [Zahlenwert-Bsp.: ¢ = 10* (EJ/1%)].

Bild 25.8

Bild 25.9

25.15. Mittels eines Potenzreihenansatzes 16se man:

a) y'=(x2+2)y, y(0)=1, y'(0)=0. Entwicklungsstelle x =0, Berechnung bis zum
Glied mit der achten Potenz.

b) Elw" + yxw’ =0, w(0) = (0), w’(0)=0, w'(I) =0, I: Eigenwertparameter, [Knickung
des vertikalen einseitig eingespannten (x = I) Stabes infolge seines Eigengewichtes (y:
Gewicht pro Linge)], Entwicklungsstelle x = 0. Abbruch nach dem Glied mit der sie-
benten Potenz. Hiermit Néherungswert fiir den kleinsten Eigenwert / ermitteln
(Bild 25.9).

c) 25.2.g)*, Entwicklungsstelle ¢ = 0, Abbruch nach dem Glied mit der vierten Potenz.
Hiermit Naherungswert fiir T herstellen und mit dem Ergebnis von 25.2. g)* verglei-
chen.

d) y"—=xy'—y=0, y(0) =1, y'(0) = 0, Entwicklungsstelle x = 0. Das Ergebnis ist gleich
welcher elementaren Funktion?



26.  Systeme von gewOhnlichen Differentialgleichungen
(BA. /1, 4)

26.1. Man bestimme die allgemeine Losung der linearen homogenen Differentialglei-
chungssysteme:

a) x—-2x—-8y=0, y—-3x+8y=0, b) x=-5x+3y, y=-15x+7y,

c) Xx-2x=0, y—-2x-y+2z=0, z+x-2z=0,

d) 27+ 2y, +y =5, =0, 297 +2y]+ 5, + 11y, =0,

3 - =
e)* y,=—(EN?! Z {G(x,, x,)m,y,} (u=1,2,3) ndit der Greenschen Funktion G(x,X)
v=1

aus 25.13.bp) und x,=»(V/4), (v=1,2,3). Zahlenwerte: m;=m;=10kg, m,
=21kg, EJ=6,4-10°Nm?, I = 3m. Es ist zweckmiBig, bei der Bestimmung von 4
und d des Ansatzes y = dexp (At) zunichst /= 1"2-768 EJI~? und d = Md zu be-
stimmen, wobei die Elemente der quadratischen Matrix M in der Hauptdiagonale
gleich m; bzw. m, bzw. m; und auBerhalb der Hauptdiagonale gleich null sind. Eine
Losung fiir 1 ist gleich —6 kg. [Beiderseits gelenkig gelagerter (masseloser) Balken
mit der konstanten Biegesteifigkeit EJ, der an den Stellen x, Punktmassen m, trigt,
die jeweils nach dem Weg-Zeit-Gesetz y,(?) freie gekoppelte Schwingungen ausfiih-
ren.]

26.2. Man bestimme die allgemeine Losung der linearen inhomogenen Differentialglei-

chungssysteme:

a) Yi+yy=yn+yn+l, yi-y=Tn-»n,

b) x=y, y=x+e't+te!,

c) =5y} =5y, +6y,+9sin(2x), 3y,=5y,+3y,— 15xe7*,

d) LJ,+ Ml + R\, = U, Mi,+ L], + R,[,=0, U=asin(wt), L,L,— M*>0 (Trans-
formator, d.h. elektrisches Netzwerk, das aus zwei induktiv gekoppelten Schwingungs-
kreisen besteht). In der Ergebnisformel sind einerseits alle additiven Glieder wegzulas-
sen, die fiir 1—  nach null streben, andererseits ist zum idealen Transformator
iiberzugehen, d.h. M?=L,L, — ¢ zu setzen und die Grenziibergiinge ¢— +0 und
R,— +0 vorzunehmen. Welche Folgerung ergibt sich schlieBlich fir die Amplitude
der Spannung U, = R,I, am Widerstand R, (Bild 26.1)?

L (3 -1 8 (4
e)’"(—l 3)"+(8exp(31)>’ "“”'(—6)’

f i+y+x=e, jri=e™.

161-
[Py
()
&
1L
1
=

| [
I 2

yoq

L]

Bild 26.1 - Bild 26.2
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26. Systeme von gew. Differentialgleichungen

26.3. Man l6se folgende Differentialgleichungssysteme durch Uberfiihren in eine Diffe-
rentialgleichung hoherer Ordnung:

a)
b)
<)
d)
e)
Dt

8)
i)

X+2y=3t, y-2x=4, x(0)=2, y0)=3,

X=x+2y+2t, y=-2x-3y+3t,

Y= 42y, yi=20+2p, ¥i= -2+ 2y,

X =3x;+4x,-3t+2, ¥=-x,—x,+51, !

X=dx-y-12, y=10x+y-7,

LI+ LI+ RL,=U, LI+ R+ (1/C)(I,— I,) =0, U= asin(wt) (elektrischer Fil-
ter, d. h. Netzwerk, das nur fiir bestimmte Frequenzbereiche durchldssig ist und die
anderen Frequenzen sperrt). In der Ergebnisformel sind alle additiven Glieder weg-

zulassen, die fiir — o nach null streben. Welche Folgerung ergibt sich fiir die Am-
plitude der Spannung U, = RI, am Widerstand R (Bild 26.2)?

zy'—y?=0, 2z/-y=0, h) xp'+z=0, xz'+y=0,
xy'+2(y—-2)=x, xz'+y+5z=x%



17.1:

17.2:

17.3:

17.4:

17.5:

17.6:

17.7:

17.8:

17.9:

a)
d)
2

a)
d)
€)

i}

a)
©)
d)
]
g)

a

£

C,

d

e)

a)
C,

€

a,

[9
d
€

22

Losungen und Losungshinweise

Ebene. b) P(0;0;4). c) Hyperbolische Zylinderfldche.
Ebene. e) K:eisg_ylinder. f) Oktaeder.
Kreiszylinder und AuBeres davon.  h) Wiirfel.

Kreiszylinder.  b) Ellipsoid. ¢) Doppelkreiskegel.
Einschaliges Rotationshyperboloid.

Zweischaliges Rotationshyperboloid.

Hyperbolisches Paraboloid.

Geradenschar — Ebene.  b) Geradenschar — halber Kreiszylinder.
Hyperbeln - hyperbolisches Paraboloid.

Kreisschar ~ Kreiskegel e) Kreisschar — Rotationsparaboloid.
Hyperbeln — hyperbolisches Paraboloid.

Ellipsen - elliptisches Paraboloid.

,c>0,c+el.

1 x
y= c(x + ;). b) Geradenschar y = T+me

Kurvenschar (y — ¢)?* + x2 = ¢? mit Mittelpunkt M (0; c) und Radius |c| ohne die Punkte
der x-Achse.

Kreisschar x2 + y? =—i7, c¢>0.

y=1= ‘/ . —u;—c mit l—l;—c- =0, fir die Koordinatenachsen gilt z=c=1.

1 1 1
i S BEECIES S
D=R%,W;=R.  b) Dy={0x;»)|y=s1}, W;=(0, ).
Dy=R% Wi={n}. d) Dy={0x;»)|=Ix|=y=ixl}, Wy=[3; ).
D= (il 4 2 <4), W= [, .
Dy ={(x; )y = x%, W;={0}.

2 2

{(e; )| = x| <y <|x]}. b) Ellipse .’.;_erT:l und AuBeres, auBer den Punkten
der Koordinatenachsen.

{;mxz0Ay>yx Ay>x}
(G |-3=x<In2A—-(x+3)sy=sx+3}.
{snIx+2=y=x+35 D {G)lx+y)

In der Reihenfolge o), B), y) ergibt sich:

a)

d)

a)

a)

-1

00 e

t
pwrl b) 0,0,0. c -1,1,
i, 0. , t+4. In den Fillen a), c), d) existiert lim f(x, y) nicht.
2 »N=0,0

P4-1t *
—1. b) 4. ¢) 0. d) Existiert nicht. e) -;— f) 8.

Unstetig.  b) Stetig. ¢) Stetig. d) Unstetig.
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54 Lo und L6 hinweise

17.10:  £.(0, 0) = £,(0, 0) = 0; man betrachte l'mzf(x, m \/;)

1
17.11:  a) z,=tany+?y3, z,=x(y?+1+tan?y).

1 1
b) hx,=‘—x? hx;=—x:' ©) &=8=¢=0.
d) w,=zsinhiz, w,=3z’cosh—xz-—2xsinhi2.
z z z
15,0, 1 1
=4 —_ = ge2t
& w=yet oo, w=selt

) o =-1—cos( 2_ z)_2Lzsin( 2- y2)
o =~ COS(@7 — 1)~ 2" sin (97 — v,
o= -‘f,- cos (¢? — y?) + 2@ sin (p? — 9?).

17.12: a) z, =—2+L, z(1; 1) =
29y2x +3xy + 4y .
3x+4
3T T m——,
2¢y2x +3xy + 4y
b) zc=—y(e? + ) sin(e® + xp), z(0;1) = —1,683,
7= —x(e¥ + 1) sin(e” + xy), z(0;1)=0.
©) z=2yx¥"1,z,(2;1) =4, z,=2(Inx)x¥ 1z,2;1)=555.

)
T

z
6

z(L; )=

_ —e*"y ey
D z=5—55 x00=-Lz=5"7=, 30,0=1
2x x
e) L i e Ry 7,(4;3) = 0,983,
e Y4 3)= —097T.

XZ_yZ x1+y2’

17.13: A(, x)=(x— 1)1 —2tx + 2L

17.14:  a) D;=R>\{(1;»)lyeR'}. b) Der Grenzwert existiert fiir kein y,€ R'.

©) y=-3+(x—1tanc [r|<%, x+1.  d) Az=0.

17.15: @) z, = —a’sin(ax + by), 2z, = —absin(ax+by), z,=—b%sin(ax + by).

2x% — 6xy? 6x?y —2y* 6xy* —2x°
b) zo = Iy T Ty BT (ki

e

2 1 2
©) zu=y2xle*, =% Zy = 2y = —yx~2e*.

:2(y—x2) N =2x _ -1
BT PTG Py

yQ2-x?) X x
€) zxx=m, z,y=arcsmx+‘/1_—_75:, z,

D x<y: z=2, 2z=0,x>y:2=02z=2

d

=0.



17.16:

17.17:

17.18:

17.19:

17.20:

17.21:

17.22:

17.23:

17.24:

17.25:

17.26:

54

Lé und L& hinwei 55

¥ _2@y-1 _1 3 1 _ 2siny

x2 (x-17° I T BT Ty sy
h) z,=y*lny+yx’~!, z=x"'+xInx

o=y Iy +y(y - D¥"2 gz, =x(x—1)y* 2+ ¥ In’x,

2y =2 =x""Y(1+ylnx)+y*'(1+xIny).

8) Zu= "

Ja.
1
a—Ova——74
- +
a) dz:______ydx xgy b) dz:..ﬁﬂf‘y_dy.
(x+y) Yx2+y2+5

1 xdx .
¢) dz=p=———|——F—=1+dy|.
4 Vx?+y? [y+¢x2+y’ y]
1 1 1 1 1
d) dz=— +—)dx+|(—— dy|.
d(e—at i ar sl
2

dz= —%dx + %dy. Fiir |Az — dz| ergibt sich: x) 2,347; B) 0,144; y) 0,006 (dz =0 exakt!).

a) D(x,y)=x2+ x4+ b) Nein. c) D(x,y) =%e”[3y + 18x — 1] + cos* x.

-2y

D Py =55 e) D(x,y) = yx e,

a=—l,z=e"‘y——¥~ln

3 +larctanx+C‘

2

el
x+1

a) d’z=2dxdy. b) d?z = —[sin(s + #)][ds + d¢]>.
¢) d’z=e"([vdu + udv]* + 2dudv).

d) d2z=(Iny)dx?+ 2[—;— + sinZy] dxdy + § [4c052y - y—",] dy2.

a) 2xx+2yy—z=x3+y}. b) 8x+4y-z=10.
¢) x+y2y+2z=4.

2xxg+y—z=x%; P(0; t; t), te R F ist ein parabolischér Zylinder.

‘1/}‘0-(a—‘/z—,/y_,,)u—xo)—ﬁ(a—E—,/y_u)(y—yom—(a—m—ﬁ)’

unter der Bedingung x, > 0, yo > 0. Gilt weiter y/x, + 1/; * g, so 1dBt sich die Gleichung

x y z
e =1
ayxo ayyo a(a"\/;—\/;)

von 7 in der Form Hieraus ist die Be-

hauptung ablesbar.

l4M) =0,0062.

~ 2 1AM
|AM| =~ |dM| = 28,9 cm?, u M=
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17.27: 7%.

17.28: 0,2
17.29: |dR|=0,688Q, ‘%?—‘ 100% = 0,61 %.

1730:  |Af] 0,034, ]M’ <0,01%.
. f
17.31: 0,1645 % bzw. 0,2898 %.
1732 |AV]~|dV] <234 cm?, (A—;’ =’d—;' <0,061.
1733  a=(1101,6 +10,73)m.

17.34: ¢=(655+0,4)m, ]% =0,61%.

17.35: (2 +1,7454|cot «|) %, minimal fiir & = %

4_
1736: &) £=2sin2t+cos2e]. by i=h 2

T ¢) z=1t"?tIn(te) - 1].

o [y w-w Wit

17.37: a) (1) PRl b) (1) e
c) Z(1)=yx’ X +yx’Inx.

17.38:  a) F'(X)=2zqt+22,8" + 28" + 2,8

o r{f)rie r3)-
17.39: T=f,.
17.40: a) a,:—a—’l =-8-643, a,:il =6-843. -
s |p As |p
b) 07-42. ¢ a:l, &0,

1741: ) a=—%, tanp=2y2. b a=§, tang=2.

c) a=%n, tang = 4. d) u=—%1r, tang =243
37
17.42: tanep =6, c=%.

L
1743: a) Az=2g". b) Az=(x2+)9g". ©) Az== y4y g+ '2;;3"

d) Az=g"+(x*+y) %"

g xzg’

1744: c¢) z. = N = :
) 2 (1_5 ) 5" g -
€

und z=xg beachten.



17.45:

18.1:

18.2:

18.3:

18.4:

18.5:

18.6:

18.7:

18.8:

18.9:

Lo und L hinwei 57

1
] 2 2 2
Zz 0z = pra (z2 +23)-

a) Nur P, P,, P; erfiillen (*).
b) P,: Wegen F(P)) = F,(P;) =0 ist die Auflosbarkeit so nicht zu entscheiden;

P,: F(P) =0, F,(P,)) #0, somit ist (*) nach y aufldsbar, y'|p, = 0;
Py: F(P3) = F,(Py) = %‘ Auflosbarkeit von (*) nach x und y ist gesichert,
ax| &y
dy|r, dx|p, :
l(enll + 2)
) YO=1. B ym=II2 9 y0--L
3 YO=1 b yO="77- 7 e+ -
T P (x+y)A+y?) Ly
D YO=7. V™= T nr1 TP 7
I AT _
y'(x) ——l+y,y(f) AT+ c

X

B 1
a) y=x-3. b)y=-2(1e+—xl)(x—xl), fir x=0:y=7>x

: PO 2, 2
f'(x)= #(16:2 5 = 18y(:;yz(12 ;3 24)—32y ) ; f besitzt bei x =1 ein relatives Maximum
a4 € Y
mit f(1)=0.
b) "()=_2Sii__ (I _a) =
Y " Geesy -1 Y 2 o

D =L@ D= B 56-D=0,56-D= 1.

1 1
(x—z)In2+1|me-1y 8I2+1°
-2y | ___~4
27 [(x—2z)In2+1] foia;-y 8I2+1°

0 (4=

(1, 4) =

P(x,y) = =29 — 34(x + 1) = 21(y — 3) + 54(x + 1) — 12(x + 1)(y — 3)
—4(y —3)* = 36(x +1)° + 18(x + 1)}(y — 3) + 9(x + 1)*
—12(x + 1)’y = 3) + 3(x + 4y - 3),

Tangentialebene: z = —34x — 21y.

a) z=—3x+(y—1)—%xz+%(y—l)z.
b) z=2(Xv1)—(y—1)+(x-1)(y‘1)—-;—(y—1)2.

0 z=@—1)+x2—%@—1)%

AL

d)z=4

x+y+%(x’—y1). e) z=2-(x-2)+2y+(x—-2*+ (x -2y -3y~

) z=1—%(x2+y’)‘



58 * Lésungen und Lésungshinweise

18.10: z=x-y+x?—y2+ R, mit
1
R2=Fe”"‘*”[[3 +O(x = y)]x+3[1+ §(x — y)]x2y + 3[~1+ 8(x - y)]xp?

+[-3+8(x-y’],0<8<1,2(0,1;02)=-0,13+R,,
0,004 5 < |Ry(8)| < 0,004 95 - %2

18.11: &) In P(0)0) rel. Min. mit z(0;0)=1.  b) z(x,y)=1+3x2+%y’+Rz.

18.12:  Fiir C =225 ist die x, y-Ebene Tangentialebene in (2; 1; 0).

18.13: a) Rel. Min. in P(1; 1) mit z(P) =-5.
b) Rel. Min. in P(1; —3) mit z(P) = -7.
¢) Rel. Min. in P(2;2) mit z(P) = —16.
d) Rel.Max. in Py(0; 3) mit z(Py) =27, rel. Min. in Py(0; —1) mit z(P,) = —5.
e) Rel.Max. in P(0; 2) mit z(P) =4.
f) Rel.Min. in Py(1; —2) und P,(—1; —4) mit z(P,) = z(Py) = —10.

2

18.14: a) Rel Minima in P;,(+2; 0) mit z(P;;;) = 1001.
b) Rel.Max. in P(a; a) mit z(P) = a°.

2

C,

Rel. Min. in P(l; ln%) mit z(P)=1- ln—i—,

d) Rel.Min. in Py(a; a), P,(—a; —a) mit z(P,,) = 6a*.
€) Rel. Min. in Py(1; 1), Py(~1; —1) mit z(P,,) =0.
f) f hat keine relativen Extrema.

g) Rel. Min. in Py(0; 0), z(P,) =0, rel. Max. in Py;3(0; £1) mit z(Py3) = %.

18.15:  Als kritische Punkte erhilt man Q,(+1; m), Q2<0; s mrt), Q;(i V3 % + mn), meG.
Es ergeben sich rel. Minima fiir Py(1; 2km), P,(—1; [2k + 1]m) mit z(Py,) = -2, und rel. Ma-

xima fiir Py(1; [2k + 1Jm), Py(~1; 2kn) mit z(Py) =2 und k€ G.
" 27 . 1 1 27 )
e Zmin = "6 Ly Q(T; _7>’ iz|mu=ﬁ fir Q, |zlma=0 flir
1\ 1 1\2_ 27
{(X,}')ny}’)eB/\(X*T) +7(y+3‘) n_ﬁ},
1 ¢ y e
1817: P[= Y x5 — Y.
n 1 n T

18.18: a

e

Rel. Max. fiir P,(y1=¢?;c) mit z(P)= %

rel. Min. fiir P,(— y1—¢?;¢) mit z(Pz)=—%A

b) x2+y2—1=0 ohne die Punkte (0; 1) und (0; —1).
18.19: a) Py(3;3), Py(—3;-3), Py(1; —i), P(-1;1).
1 1 L. . 9.
b) Py(0; —1), Po(=1;0), PS(_W; "‘3‘7—2—) ) Py(0;2; 1), P,(0; <2;1).



18.20:

18.21:

18.22:

18.23:

18.24:

18.25:

18.26:

18.27:

18.28:

18.29:

18.30:

18.31:

18.32:

18.33:

18.34:
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Pua(4350;0), P03 £4350), Poi(0;0; £13),
Pyg(£1; £1; 1), Popno(x1; £1; F1), Pum(£1l; F1; £1), Pune(FL £1; £1).

2 2
Pyy(0; +2), Pm(i‘/s—; 7‘/3—)» P5/6<1Jg; _?\/37

a) Abs. Min. bei P(3; 3) mit z(P) =9.

b) Abs. Min. bei P;(—1;0) mit z(Py) =1,
abs. Max. bei P,(5; 0) mit z(P,) = 25.

Rel. Max. bei Py(—1;0) mit z(P)) =2,

V3

abs. Minima bei Pm(—%; i-———) mit z(Py3) =_;.,

d

€,

N

£

C,

<

2

Fiir P(1;2) gilt z|p=2]p=0 und 2z4z,—z%|p=-12<0,
Max. fir -2-y3 <m<-2+y3, Min. fir m<-2-y3 vm>-2+43.

Pia(£43; £1).

Pip(£1; F1), Pyl J_r—l—; T ; (Bild 18.1).
BT

a=ﬁu, b=\/2—u,A,,,i,,=2uvn.

Py(6; =3;72), Py(=2;1;8).

P(2; 4;6).

1 7 9
Pmin(7; 5 2>, i = -
4
41’

Wiirfel mit Kantenldnge W

2a  2b  2c
Kantenldngen: —, ——, —(=.

BB

2
x=y=—2 | A =S—cotZ (Bild 18.2).
. 4 2
2sm7

r=h= ,’/%, Omyin = V45V?11.
F(x,y; 4) =y(1 — x) + A(x? + y? — 1), Basisecken ('%; i-;—ﬁ)

s n .
F(@1, 9, ---.w,.;l)=—'2— Zsinw.‘rl[(Z%)—zn],
1 1

man erhilt das regelméBige n-Eck (Bild 18.3).
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y
A !
\ L
1 /
7 ‘Q%i\ AP
> MY
-1 ]
Bild 18.1 Bild 18.2 Bild 18.3
18.35: x= na, , (I=1(1)n). DaB 7(%,, ..., X,) = "1 absolutes Minimum ist,
Y a} Y. a}
k=1 k=1
folgt mit der Schwarzschen Ungleichung.
18.36: a) y=22x+16. b) y=14,6—10,8x +2x2.
c) y=18,46 ~—6—’:i. d) y1=34x-21;
y2=0,01 +2,34x —2,67x2 + x°.
18.37: a=-0,0133, 5=0,7027, g(t) = 5,043 100306
18.38: = —0—'2)2(2—8 —0,3466, Spin=0,0343.
18.39: p- V45 =16032.
36 4
18.40: a) a=6(3—e), b=2(2e-5). b) a=735 b= 35
8
1841: y= %5 x+ 7
18.42: a=0988, b=-0,142.
18.43: Eil in die Ellj leich ergibt eine quadratische Gleichung in r. Daraus erhlt
man
. b2(a - ya? = b? cos p) _ b2
a*sin’ @ + b? cos’ @ a(l+ecosg)”
1845: ® D=abu b) D=-(ui+vd). o D=es-SSLL
cos?w
_ 4u’w(l +sin’v)
LIk cos?w?
19.1:  grad U= (yz[3x2 + y2 = z%; xz[x2 + 3y? = 27, xp[x? + y? — 312])T;

a) fir die Punkte der Koordinatenachsen und die Punkte P(0;y;z) mit |y|=|z| bzw.
P(x;0; z) mit |x| = |z];

b) fiir die Punkte der Ebenen x = 0 und y = 0 und die M; Ipunkte des Dc lkegels mit
der Gleichung x? + y? = 3z2




19.2:

19.3:

19.4:

19.5:

19.6:

19.7:

19.8:

19.9:

19.10:

Lé und L 1

X ix z _z\T
a) divv=—(£+——+ﬂ) b) rotv=(7——;—z-—l;———>‘
»?

2 x 2 x\"
9 g,addiv.,=(%_i__y_. Lz x _I-V.ML__)A

yr z?’ y x2 22’ 3 x?
- T
; [ Z RS NS S £ B ) S
d) divrotv =0. e) rotrotv = (—? it S B y’) 8

. . yz  xz  xy
f) legl'adleﬂ=—-6(-;‘—+7+7).

.
a) grad U= (2xz + yz-e9%; — 2yz + xze¥*; (x? —yz) + xye"”)T

b) dive =2xyz(yz + xy + xz). c) rotv = (O 0; il arctan(xy))

1+x
d) rotrotv = (ye*; xe?; 2)T. e) diveo = yz2.
Ergebnisse fiir grad U:

a) [2;5; —6]". b) a. c) r°. d) [yz; xz; 1" €) —%r.

g 2r h) nr"~2r. i) —l;r". i) |":|
i

0 [-2x; =290 D 2[a2, byz;c—’,].

n) 2[a’r-(ar)al. 0) r"~?rla+n(ar)r].

Als Niveauflichen ergeben sich in:
a), b) Parallele Ebenen. c) Konzentrische Kugeln mit M(0; 0; 0).

d z= % ¢) Konzentrische Kugeln mit M(0; 0; 0).

f) Rotationsparaboloide um z-Achse mit Scheitel S(0; 0; ¢).
g), h), i) Konzentrische Kugeln mit M(0; 0; 0).

j) Konzentrische Kugeln mit (a,; a,; a3).

k) Koaxiale Zylinder um z-Achse.

1) Konzentrische Ellipsoide.

61

Die Niveauflichen sind parallele Ebenen; grad U=[2; —1;1]"; ®) JSS—O B V6; 0.

a) grad UP)=[5;5;6].  b) % o) v86.

a) —(sm5~1) b)—\/_ c)%. g Hatbro

Var+b2+c?

2
P, y(£a; 0; 0) mit minimaler Linge = P5,4(0; 0; £c¢) mit maximaler Linge —i—

2 1
E= (— - 6)r; (jr] = r), Kugel um Ursprung mit ry = -—.
& I 7

a) Keine Quellen: diva =0, kein Wirbel: rota = @
b) Quellen: diva + 0, keine Wirbel: rota = 0.

c), d, e) Keine Quellen: diva =0, Wirbel: rota + @
f) Quellen: diva + 0, Wirbel: rota + @
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19.11: a) x(z?+9). b) 0. c) Sinnlos, denn fiir x als Skalar ist das Kreuzprodukt nicht er-

kldrt.  d), e) Sinnlos, der Gradient eines Vektors ist nicht bildbar.  f) Sinnlos, die
Divergenz eines Skalarfeldes ist nicht erkldrt. g) —(x+y)e;. h) 0.

19.12:  Nicht definiert: a), d).
19.13: a) 3. b) 0. c) 0. d) 2a. €) —% T f 0. g 0.
h) divr? =div(r’r) = rgradr* + r* divr = rlr% +3r2=5r2

19.14: a) rotv=0. b) a=1. c) a—~l b=0, n=2. d) A=12.

2
19.16: a) divr=3. b) rotr=0. c) gradr?=2r. d) rotr’=0.
e) divr®=5r2 (siche Losung 19.13.h)). f) gmdi = —i;n
r r

" 2
g) divel= T h) divr—: =0. i) grad(ar) =a.
j) rot(axr)=2V(ar)= a’—';Vrz =

19.18: rotH=0, divH=0.
19.19: rotE=0, divE=0.

19.20: a) 1. b) 0. c) 2. d) o.

19.21: a) f(r)= r_C; (r+0). b) f(r) beliebig, wenn grad f(r) existiert.

2 CcC 1
19.22: a) f(r)+~;f(r)——2', f(n= 7 7
v r0+ 205, an=Lcrmn.

1923: Af=f"(n+ —;f'(r), Af(r)=0: f(r)= —Cri +G.

19.24:  a) r2f"(r) + 10rf'(r) + 20f(r) =Inr, f(r)= —1; C+ —:;Cz - TgF + %ln r

1 1
b) r’f"(r)+4rj'(r)+2f(r)=7, = —Cl IC'*FlnrA

WL Y KO=T. B 0= 9 o=
d) Fi(x)= % ;:;. &) wi(x)=x.
202:  a) f(x)=%(e"‘z—1)+26"". b) f'(x)=1+%ln[l+x’[.
<) f’(x)="‘2;xx+6lA d) fx)=+1+x*.
9 FE=2ma+ ) -+, § r@=tnlit e X

g) fx)=y1+x*. h) fi(x)= 1x++5:5‘ sin (x + x%) —%sinx’.
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Yy
203 &) F'O)= [ f,(00)dx+260.5) + A£G
X = const

e ycosy +4siny + 8
b) F'@)=—FTF—=—.
292 +siny
20.4:  Fiir h(z) = C;z + C, (C;, Co Konstanten) ist a # 0 beliebig, andernfalls lal=1.
o)

205 F(t) = —a(0fu(), (] + oo, 1+ [ fix dx.
u(t)

F(t)= l' (3sin 3 — 2sin 12).

ol x .
20.7: L(x)=——% = 5
™ Wi e
) —12 il 1 _8 1 _59
208 @ @~ B 95 & -5 o 5(Bn2-3)
1 . . 2
g 2-42. Byt De ) %(e"—l). K st “T
Ten 1
abm ., 2nR? 1+x . . 1+y .
m @+ e). w0 I) T ordx ,.Io Ty~ 1214,
e )
) x fir 0=sx=s 4,
209: 2 [ [ fPdydx mit yx)={ 4 fir 4sxs 6  (Bild20.2).

e 10-x fir 6sxs10,

-y fir 0sys1,
y-2 fir 1sys4,

(Bild 20.3).

“
v [ | fPdxdy mit xo(y)={
)

=0 x=x(y]

c) Bild 20.4.

Bild 20.2 Bild 20.3 Bild 20.4
0 1+y1-y?
o [ rpyaxay.
y=-1 x=1-y1-y%

1 1-y 2a V2ax
o | [ spaxdy ®id205. o [ [ fP)dydx (Bild20.6).
y=0 x=-JT—y7 x=0 y=\lax-x'
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Bild 20.5 Bild 20.6 B0
—+s

a2 1 g gy _ 1250 7105

20.10: a) 30 b) 3 (b*—a*). - I Iy (x+yHdxdy = 3 d) S
Yt

e) L’i. f I f" ydydx—%+31n3 7102~ —0,056.

x+y
1 (- 1 ey
g I I xydydx =—oo. I I (8 — x%y)dxdy = 16(2 + m).
RO 280 R

21 ;o
LIS RN I (x+ y)dydx = ~2.

e

20.11: m

w2 (W) -x

012 @) V=3 b V- 25 o v=4 [ [ cosydydx=4.
x=0 y=0

2 4"
-y

d V= j I(y+2)dxd

y=-2 x=y?

e V= I 5(1+”°°S¢Sinw)rd¢dr=n.

120 9=0
) V‘ﬁ (Bild 20.7).
15
2 1
g V= .[ I (8—2x—2y)dxdy=%A
y=-2 x=yi-3
2 2
h) V= .[ I (r*cos?@ + 3)rdrde = 9.
020 ;4T
72 dcosp
256
i V= ZJ VJ. 3r-rdrde =5

1

7
) V= 2 gin? _1
R4 o,;I’a ';[0(40r sin?g + 4)rdrdp =7



20.13:

20.14:

20.15:

20.16:

Lo und L6 hi is
n 1 .
¥ v=[ [@cote+3rsing)rdrdp=2+7.
=0 r=0

3 9-x? 1
y V= jl j'o (2xye?’—xil)dydx=7(e“—7—81n2).
1yt

m) Mit elliptischen Polarkoordinaten y = «/E'u cos v, z= usinv wird

2n 1
V= J' I(5+ﬁucosv)‘/2_ududv=5\/i_‘n. n) V=2m
=0 u=0 B

41 22 1 ~ 17
o) V= _[ f (r? cos?@ + r? cos g sin @)rdrdg + _[ J. (x2+ xy)dydx = —+—.
®=0 r=0 x=0 y=x 32 9%
2 x
Unter Beachtung der Symmetrie erhdlt man V=8 I I (4 — x?)dydx = 32.
x=0 y=0
m=2(n+1).

oo|w

2
S <
m ks rr+3.

2
m= _f (3+2y)2y+3-2y*+1)dy=36 (Bild 20.8).
-1

65

X |

Bild 20.8 Bild 20.9 Bild 20.10

20.17:

20.18:

20.19:

20.20:

4
36
= = 2 4 6 =
a) A=4. b) m 3;(3y 4yt +y©)dy 35

1
L 164 41
) My=26[(9y2*18y‘+12y‘—3y“)dy=m, % =7, % =0.
1 3 71 71T
)5 By 9M=M=jr s(m, 1—26->.

1 1
m=2ﬂab[7gl +T2-gl].

o 1
A= _[ _I-?dudu=T(b-a)(q—p).
v=p u=a
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20.21: a) Transformation:x=v%, y=Aquv,

2
_ Funktionaldeterminante: D = %, = I = % ln—;—, m=1 (Bild20.9).

Y Y 20 2 71 15
b)?(A PR Al Vot D=_—3u1’ A=1, mz—*s-;[ _[—dvdu=T

(Bild 20.10).

SYex
,/ rravcosZy

Bild 20.11 Bild 20.12
=L
3u’ N
L 2_ p2y(p —
m= —%j u;rqududu =—(5~—”6L‘Q (Bild 20.11).

n/4 a2
2022 &) A=a*[ cos2pdp=F-.

0 .

2 /4 az
b) m=%a? [ ({1 +cos29)’ —1)dg == (20 - 3m).
34) 18
/4 ‘/_
: 2 242 1 at
¢) J,=4a* (——cos’:p+ cos5<p+——)daz=—(8+15n).

ar 3 5 15 255 )

at 1 _1
20.23: a) J(a)~T[u—?sm2u] 0o- b) c= 7
20.24: c=3.

313

20.25: c¢= 55
20.26: Fldcheninhalt 4 = %; Schwerpunkt S(%; %), Jy =%, J =T25" I, = —13—5, I, = j}:—

ol

:1[...

R
’ i

5 5¢3
. = 2 2 = 4 =gt . 4
20.27: @) Jp, = @oy_o ’ (x2+ yY)dxdy = 16«/3_ a‘o, Js 43 ¢'00 b) Js= g 40

e
i




20.28:

20.29:

20.30:

20.31:

21.1:

21.2:

21.3:

21.4:

21.5:
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Ist J das polare Trighei oment des Teildreiecks (Bild 20. 13), dann erhilt man J, aus
Xo
= Sopan Er Lo ot am 2"
J=n-J 2nx_‘[o [x tan—-+ 3 x tan dx i sm 2+cos—

lim J, = %—m‘.

n—ow

= I I (a*u? cos?v + b2u? sin® v)abu dudv = aI?Tn((ﬂ +b)(1 - A

v=0 u=4i .

b) Man erhilt das polare Trigheitsmoment eines Kreises mit dem Radius a beziiglich des
Mittelpunktes (vgl. Aufgabe 20.28).

f a1 +cosqp)‘sinwcosq:d:p=£.
4 40

n/4
) do 342
1d 20.14. N O L

a) Bild 20.14 b) Jo=32 j' T
wegen Jo =J,+J, und der Symmetrie von

32

B ergibt sich J,=J, = s

m,

Bild 20.13 S i i
i IAE Ny Bild 210 14
1 13 5 4
DI " 91 3—36. 9 15 (z‘/— 1).
0 2 xiey xi+y? 3
a) J= f I f xyzdzdydx+ I I f xyzdzdydx = -3
x=-2 y=0 z=-2; x=0 y=0 z=-2x?

2

1
= J'%Xy[(x“y‘)’—‘*X‘]dxdy
y=0x=-2

20y 3
2 24202 gyt —1
+y;[l x;liz 3 xy[(x?+yH? - 4x*]dxdy 7

x+1 x1+yi+l

) V=F. b= _(_1 jo I dzdydx=%.
x=-1 y=0 z=-xp-1

J =168 m (mit Zylinderkoordinaten!).

n
2 acosp Vai-7

V=2_[ I I rdzdrdq;=—§—a3[%—%].
P20 120 o JaTH
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21.6:

21.7:

21.8:

21.9:

21.10:

21.11:

21.12:

21.13:

21.14:

21.15:

21.16:

21.17:

Lésungen und Losungshinweise

b Jai-r

P
a) V= f f Jf_rdzdrdq::%ﬂ(aB_mS)‘

#=0 r20 4o
n
2 cosp 1 4
b) V=2 rdzdrdp =—.
0!0 r;[ﬂ I;I.U 9
;P 2acosd

V= I _[ r’sin §drddde = %na’(cos‘a —cos*B).

=0 8=a r=0

2n 1 5 - 4usiny
v=1[ [ [ 2udzdudo=4n.
v=0 u=0 z=4u?-4usinv+1
k3 3
7 T+x* o n
'":Jo J.l Y('z'—x)dydx=narclan7—2m<l+—13-
2 y1+x?

R )
m=f [ (1——+ b)dzdydx— i [3—%

x=0 y=0 2=0

2 3-y 2

m= | ! [ zdzdxdy =28 - 31n3]; (Bild 21.1).

z=

Bild 21.1

2 m e

m= _[ _[ I r3sin? q)dzdazdr——(Se‘ +1).

r=0 ¢=0 z=0

V=m; m = g, (Zylinderkoordinaten verwenden).

r(cos g - sing)

2
_[ _f 3r’zdzdrde = 16m.
= z=0

—afa

m=

alw
)

o=

2 ﬁ‘("‘k)
m=f [ [ ¢*+z)rdzdrdp=10r.
=0 r=0 z=0
R =
m=2 _[ J- I3zdzdxdy——a t13 (471: 3~/—)
y=0 x=2g-yai-y: z=0
; 5
Q=mgy J.f(4—r’—3r‘)dr=7ngo.
r=o

)-



21.18:

21.19:

21.20:

21.21:

21.22:

21.23:

21.24:

21.25:

21.26:

21.27:

21.28:

21.29:

21.30:

21.31:
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27
S(0,0, ‘m‘)

a) V= %811. b) 5(0;0;6).

i f f rdzdrdw——(Ga/_ 5), s( 73_5——_—;)

RO

5(0;0;a).

9y
M ist ein Kugelsektor, S(O, 0; 3 R cos? 2 ) fir &= s erhilt man die obere Halbkugel

2
mit S(O 05 3 )

n A e 3(a + h)
=—(a—- h)? =— o-d ALY
3@ hQath), z V.,L jo ijh rdzdrdg, s(o 0; 4(2”,'))

1 1
2 in2 7 2 in2 T
b 0s9sT, 0§r§[ﬂ’a5,~"i+—s-‘;‘—z°i] : 0§z§c[1—rz(ﬂ’:—zl+ﬂ‘bizl)] )
¢) 0su=1, 0<v§12'- Oszscyl—u?.

e)0susl, 0§v§£, oswso
2 2
f) Rechnung giinstig gemiB e) V=% be; S(—s—a;—b;ic‘).

2 1 1-r

6= | | [ (sintg+z?)rdzdrdgp =
=0

9=0 r=0 z= 12
3 . .
6, = —2—1t (Zylinderkoordinaten benutzen).
o0 (o5
o=J J' (0?2 + z%)dzdydx = —‘;%5(1;2 +c).

x=0 y=0 z=0

a) —’8101(‘. b)

g = o7) R*hm
6=6=[ [ [ (*sing+z)rdzdpdr=
r=0 =0 z=0

V2

a) 9,=—2—1w54 b) 6,=16m.

nDR? [R’ D’]

7 R

(BR%*+2hY).

6,=00 -6 = %n(a‘c —b%d) mit
n
2 2acosp ¢

o =2 I _f r’dzdrde = —na‘c 0@ analog.
#=0 150 30

6 Wenzel, Ueb. Analysis 2
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Rcosa YR?cos’a - x* JRT=x-y
232 o [ ) | AP)dzdydx.
%= -Reose yo [ReoFa=F 2= (ane) TS

s
R m 2 °

v [ [ [ f.)rsingdsdedr.
r=0 ¢=0 8=0
2 Rcosa R'-r° m
<) | [ f.)rdzdrde, J=V=2R3(1-sina), (zweckmiBig mit b)); fiir
=0 r=0 z=(tana)r 3
o—> +0 ergibt sich das Volumen der Halbkugel
x
2n b 2

4 _ 4
2133 M= [ [ I(rcos-‘))(r’sinn‘))d«‘)drdaz=%(b‘~ﬂ‘), S(O;"'}‘%)‘

> 3
9=0 r=a 8=0 85

a,

£

Fiir a— +0: Vollhalbkugel, S(O; O;ib)A

b

Fiir a— b — 0: Halbkugelfliche, S(O 0; 2)

21.34: 'a) 0s@s=2m, a-Rsrsa+R, —yR?—(r—a)sz=yR’-(r—a)?.

a+R

B 6=tn | PYR-G-aFdr=2 "(4a2+3R2).
r=a-R
22.1:  a) x2+y*+72=3e¥.
b) (x2+y?)V2ist Polynom, [=16.
©) (1+y?)Yist rationale Funktion, I=1,09657...
d) (2 +y?)¥2=3a|costsint| = (3a/2) |sin(21)|, I=6a.
e) cosh’x —sinh®’x =1, [=asinh(b/a).

f) Gestalt des Integranden: ag’(t) (g())"?, 1=16(2y2 — 1) =29,2548...
g) Integrand ist rationale Funktion, / = 9/2.

h) Integrand ist rationale Funktion R (u, v) wobei u = ¢ ist und v die Gestalt (at + b)"2 hat,
1=2+1n(3/2) = 2,405465..

i) Integrand ist rationale Funktion, I=-b+aln[(a + b)/(a—b)].
i) @D+ ey -1]=an2n 4+ 95y -8].

k) Integrand ist identisch konstant. 1) (1/2)1n3=0,549306...

m) Integrand ist Polynom, / =2a2¢+ 3b%c3. n) b(b+1).

o) I=(1/2)ab?.

p) Integralsubstitution x = sinh ¢ fiihrt auf ein Integral iiber eine rationale Funktion von e’,

1=2,3019875...

22.2:  a) I=(a/p)(1+pY)"*[exp(Bp,) — exp(Bpy)].

b) I=a[b+ (b%/3)].

c) Integrand ist eine Konstante.

d) 1+cose=2cos*(¢/2), I=38a.

e) Integrand ist rationale Funktion von e?, I =a{p, + [(1 - exp@)/(1 + exp@))]}.
22.3:  a) xg=(a/b)sinb, ys=(a/b)(1—cosb), zg=hb/4m.

b) xs=ys=(2/5)a.
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C,

d)
€)

a,

A=

b)

2

c
d

€)

e &

a,

£

b)

a)
©)

d)
€)

a
b
©)
d

g e

€,

<

g
h

=

)
k)

z

I=asinh1, Ixs= [ xcosh(x/a)dx, bys=a [ cosh®(x/a)dx, xs=a-053788...,
0 0
ys=a-1,196999...
a=2R, ys=-2R/Q2+m).
Falls x = Rcos @, y = Rsing, —(/2) < ¢ = («/2), dann xs= (2R/a)sin(e/2), ys=0.
ds = cosh tdt, J, = Ixgund J, = lys filhren nach zweimaliger partieller Integration jeweils
auf eine Gleichung fiir J; und J,. xs=1/2, ys= —0,498136..., z; = 133,885...
4mc(a + b).
Inhalt von 4 = 2ntlxg =21 I xds, wobei der Integrationsweg C ist. Also ist der Inhalt von
A gleich
2m{2bc + b2+ ac+ab—db + a\/S—[c +b+ (@/2)]} =2738,2553...

4na*(3 +m).
2nt{(hd/2) + (d*/8) [1 + (1/sin @)] — (a*/2) sin & + a*(1 — cos &)} = 816,405 86...
xs=0.ImI den fiir die Bogenlénge fiihrt die Substitution ¢ = sinh f zu einer ra-

tionalen Funktion von exp(27). 784,0007...

[ Fas=ar*{[{2 - (4)]e, + [-(7/4) = 2 + B/®)]e },
| Fas|=ar?-2,30218...; [ rx Fds=0.

R = pa(n/4)e,, M =2p(a*/n){e,— ¢[(n/2) — 1]},

= X6t et 2,6, X, =4a(n—2)/m=a-0,46267...,
Yo =8a/m? = a-0,810569...

®) 6; B) 9. b «) 2/3; p) 4/3.

«) 1/2; B) 5/6; y) 1/6; d) 0;

€) 3—n)/(2n+2); 0 —-(1/2) + (4/7) =0,7732395...
®) 1; B) 3/2; y) 1/2.

«) —1/3; B —1/6; y) (1/2) — (/4) = —0,285398...;

d) (1/2) + (3m/4) = 2,856 1%4...; €) —(1/6) = {n/[(n+ 1) (n +2D)]}.

®=(1/2)(x2+y?), o) bisy) 10.

D=(1H(x*-y)+xy, ® 0; B) a>~1; y) 0.

@ =sinxcoshy, o) 0; B) 5/4.

@ existiert nicht, o) 2e—4; B) e;

y) Substitution u gleich cost bzw. sint, 2.

@=(x3/3)(1-y)+ (»¥2), ) bisy) 1/2; ) 0.

@ = x*+ 2xy? - 3yz3,—24.

D = 3yz, xyz.

D =xyQ2z) '+ 13y -z)P+eF, ® 9;

B) a?bQc) 1+ (1/3)(b—c)+ec+9—e3.

(34/5) + 61n2 = 10,958 883...

rotF=0F+0), o KQ2-rY; B) —K/r.

@, = sin z — arctan (x/y) oder @, = sin z — arccot (y/x),

) Dy(+0,b,7/2) = P,(+0, —b, —1/2) = {P(0, b,n/2) — P(a, +0,0)} + {Py(a, —0,0)
= @0,-b, —m/2)}=2+m; B) —2+m; y) 2m.
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1) xe*siny +In(x?|y[) —sinl. (Das Potential existiert, obwohl sein Definitionsbereich
nicht einfach-zusammenhingend ist.)

m) —x%?z - 6xy? +4y?z> — 1.

a) V6/4=0612372...

b) Der Integrand ist eine rationale Funktion von (y/x)'2, (85/4) — (28/3) ‘/5_ =0,38003...
c) 37/20=1,85.

d) Symmetrie!, (1/3)(1+y5) +In(2 + JS_) =12,52232... (Bild 22.10).

y
! y

Bild 22.10 7 Bild 23.10

-1
e) (2/3)m(Q242 - 1)a*=3,8294...a%.
f) 64/3.

g 6y3 =103923...

h) Der Integrand ist ein Polynom beziiglich  und v, 56/3.
i) 49m=153,9380...

j) 0=8=4d), cosdy=(a?-1)/(a®+1), 4nc?/(a*+1).

a) 2mR%g,.  b) (14/9)TRg,=4,88692...R*g,.
Qn/3)R(d ~ d) + 2nR3(dy — dy).

a) o) 0; B) 12m=37,6991...; ) (64/3)m=67,0206...; d) (64/9)m =220,489...

b) Projektion der Schnittkurve von z = (x + 1)> + y? und z = 2 + 2x in der (x,y)-Ebene be-
stimmen, danach Zylinderkoordinaten, «) —n/2; f) —4m.
c) 8+ 108m=347,292...

a) 16.

b) &) A: 967, Ay 72m, 168m=527,787...; B) Ay: 0, Ay: 0;
Y) Ay (1728/5)m=1085,734..., 4,: 0;
0) Ay: —144m, A,: 288m; 144m = 452,389...

divF=2+2yz.

Bei allen Integrationen sind die Integranden Polynome, 224 (Bild 23.10).
div(...) =3, (4n/3) abc.

a) 4nR>. b) 4mR*. ¢)4nR3f(R).

a) divF=x2+y?, (2n/5)y2 =1,777153...
b) w/s. ¢) (2087/15) = 43,563 4...
d) (104n/5)=65,3451...  e) 168w =527,787...
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f) Zylinderkoordinaten (r, @, z) einfiihren, wobei r = 0 Punkte mit den kartesischen Koor-
dinaten x =1, y =2 angibt, (112/3)mr =117,2861...

g) 1280. h) 800m=2513,274...
i 0. io.

a,

£

o [[] ceradvav = ucdaa; p) [[ (eradUx C)aa=§ Ucar.

v) [] crotBav=§p BxC)da.

o c{ [l eraavav - § Uda} = 0 = speziell,

C=e (k=123 ef...} = 0= [] graavav = vas;
(gradU x C)dA = —C(grad U x dA), [[ (gradUx d4)=—§ Udr,
] rotBav=— Bx a4.

a) Wegen div(r/r®) =0 (r + 0) dndert sich bei stetiger Deformation von 4 der Integralwert
nicht, falls beim DeformationsprozeB der Koordinatenursprung (r = 0) nicht iiberstri-
chen wird.

b) Kugel, 4m.

a) 3m/2. b) —3n/2.

) div(rotF)=0. d) (1/3)(4 +2)=1,8047....

e) (14/3)+1242 =21,6372...

f) 8+108m=2347,292... g (W/4)RS.

4m.

0.

a) (@dn) [[] vav,= [J [0ra0)U- {8y, Xz, x5)/8(us, Uz, us)}

+ U(3/3¢) {3(x1, X3, X3)/3(uy, Uy, u3)}] AV, 3U/3t = (grad U)v, (3/3t) (Bx,/duy) = (3/3u)) vy
=" (Bi/3x,) Bxm/Bur) , (3/31) {31, X, X3)/B(utr, Uz, )}
=(divv) {a(xh X2, X3)/3(uy, U, “3)} .

b) (@dn) [J] vav,= (] (@Uren + div(Uv)} dV..

o (@an [[ eav,=0.

d) (3o/3t) +div(ev) =0. e) dive=0.

a), b) Ja. ¢) Nein, y’ hebt sich weg.

d) Ja,y'=(1-e)y. e) Nein.

) Ja,y=CA+yH"2

g) Nein, ¢’ = f(y) — 4y mit f(y) = N, fir y <y, und f(y) =0 fiir y2 y,. Fiir y; <y <y,
keine unmittelbare Angabe von f(y) moglich, da dort f(y(x)) von der Geschichte von
y(x) (d. h. von y(X) mit X < x) abhéngt.

pag

a) y=tan(x+C). b) y=+Q2x+ C)V2.
c) y=Cx. d) x2+y2=C (y*0).
e) y'=—M=* M+ 1)V mit M= —(1/2) (x/y) — (23/10),
Isoklinen sind Geraden durch den Koordinatenursprung (Bild 24.1).

a) x2+y2=2Rx=0, 2x+2yy'—2R=0, y>-x2-2xy'=0.
b) y=xy/Iny’. ¢ xp'+y=2x.
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24.4:

24.5:

24.6:

24.7:

Bild 24.1
y
y
X
Bild 24.2 : Bild 24.3
d) y*+x2-2xy'=0. e) y=er-1. ) dydx=y/%, y?*=yQ2-y).

a) (x%/C? + (y¥/2C? =1, Ellipsenschar (Bild 24.2).
b) xy = C, Hyperbelschar (Bild 24.3).

(a®"? = |a| beachten.

a) y=(x?-2x+2)e*+C. b) y=exp(x?)+ C.
¢) y=(1/2)(arctanx)* + C.
d) y=1/4)x*+C, falls x20, y=—(1/4)x*+ C, falls x =0.

32

a) y= Cexp{(3/4)x*?}. b) y={(x¥3)+C}'"" und y=0.
c) y=Cexp{x+e>}. d) y=2x/(Cx-1) und y=0.
e) y=C|l—x¥"12, f) y=tan{(x%/2)+C}.

g) y=tQe*+ C)\2. h) y=3+ Cexp(sinx).

i) x=2arctan(Ce’)+2kn, C#0, (k=0,%1,...), x=km.

j) x=In(E+0). k) x={3In|t+1]- 2|+ C}"1.
D x==x{Q@mn+c)”. m) p=(C-2x% 'und ¢ =0.

n) r=+sin(p+C) und r=+1. o) y=+{nQx+C)}"”.

D) y=@3){A+Cem)/1-Ce) und y= £l
Q@ y=CA+y?)2, y=0,falls C=0.Im Fall C+0 ist y= Ccosh {(x + C))/C}.
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a)
b)

<)
a)
C

N3

€,

= &

g
h

=

a)
©)

€

<

a)
)
€
8
i)

a)

e)
g
h)
i)
i)

x=-{laly-1+y+0¥)+C}", y=1

x=Cly|Yexp(y/2), y=0.

x={-y+arctany+ C} .

y=-=2+4exp(x?2). b) y- -1+ 1/4)(x+3), x=-3
y=(3 =x)/(3 +x). & z=—(n@x+e)"”

y={-1+ )" D y=-@-xy
y=-{1-amxt

o) y=@E*-D/(e>+1); B y=1; Vy=-L
y=Cexp[(=1/3)x?]. b) y=C(cosx)™'.

x=Clt. d) x=Cexp{(—5/2)t}.
y=C(x2+2)"12, f) y=Cx-1/(x+2).
y=C(x*+2)" 12+ (1/3)(x*+2). b) y=(1/3)x2+1)+ C(x*+1)72,

y=—cosx +(I/x)sinx+ Cx'. d) y=(x+1)"{C+ 2x +1)e**}.
y={(3/4)x* + C}exp(cos x). ) y=xYC+sin(x?}.

y=Q2x+ C)exp(sinx). h) y={5x2—2x+ (2/5)}e* + Cexp(—2x).
I=1,+1,, I,= Cexp{—(R/L)t} =0 fiir t > .

I, = Uy(R? + w? L¥) " (Rsin (wt) — oL cos (wt))— (Uy/R) sin (wt) fir L— +0.

y=1+{x¥(x-1}. b) y=-1.
y=3x>+5x2+6x+10. d) x=t-1.
y=(1+sinx)/cos x. f) y=ex{(1/x)-1}.
y=1

x={t- 1/ + D} {3 + (-1}

y=-1+sinx+2exp(—sinx).

y=(No/A) 1 —exp{(-Ac)x}) [0=xsxp mit xo=(c/A) In{No/(No— AN
y=yexp{(~Ac) (x— xo)} [xoSx=x; mit x=x+(c/A)InO/y)],

¥ = (No/A) + {1 = (No/A)} exp {(—¢) (x = x1)}

[isxsx mit x=x+ (/) In{(No— y)/(No - p)}],

75

y(x) mit x, £ x < « entsteht aus y(x) (xp = x < x,) durch periodische Fortsetzung mit

der Periode
T'=x; = xo = (/A) In {(%2[No = )/ (N — Aal)} 5 (Bild 24.4).

Y
WA f-—— —= -
-
%
y!
<
N
=
~_
X X X x

Bild 24.4
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2413: a) y=(x2+1exp(-x?). b) y=1+2exp(-x?).
©) y=xexp(-x?). d) y=x2+exp(-x?).

24.14: a) y=xtan{ln(-x)}. b) y=tx{-2Inlx|+C} "*, y=0.
c) y=ex-exp(Cx). d) r=_Ce°.
e) Wegen z=0ist z=—|z| = —(z%)"2,

P(z) =10z° — 4622 =20z, Q(z) =629z% +230z +25,
R(z) = (P(2)) '{-10z2 + 23z + 5}..

24.15: a) y=Cexp(x%2). b) y= —(2/5)x — (2/25) + Cexp (5x).
) y=%+Cexp(—x’). d) y={-1+x+Ce® ", y=0.
e) y=x(x+C). f) y=x‘(C+(1/2)ln|x|}2, y=0.
g x=3+C(t2+3)"12, h) x=(@3/t)+ (C/1).
i) y=-In{Ce'-1}. j) x=—exp(3t) + Cexp(1%/2).
K y={-a+C1-x4"}", y=0.
1) y=arcsin{C(cosx)~'}. m) x=In(e'+ C).
n) Weder I noch II noch III, vgl. 24.17.b).
0) y=0/x) +(Cx?). p) y=(x+1)Qx + e+ C}.
q y=-1. 1) y=(C/x?exp{(a/4m)x}.

9 y=£{x(C-InjxD}”.
t) Weder I noch II noch III, vgl. 24.17.¢).

12

24.16: a) y=—(x/2) % {(x¥4) + (Cx)}"?, x()=0.

b) y=—Q3)x £ (13) {~(x¥2) + (CxD} .

c) y==1(C—xH)¥2. d) u=(1/x){C+sin(x?)}.

e u=u®=y2, y=@x{-Qc-x)t[@Cc-x»?-16x]"}.

) u=px)=x2, y=x>-Cx.

g) x’y—x—ycos(2y) + (1/2)sin(2y) = C.

W =y, y={x2+0/a-xm".

i) p=er, y=t{-x2+Ce . j) y=+{Ox+@3)xy".

k) yx +cos(x?) +siny=C. ) y=-x—exp(1-x)}".
) y=(1/2) {1+ x) + (Tx2 + 18x — 9)"2} .

Z

8

24.17:  a) y(0,5) =1,069754, y(1) =1,136253. Die Korrektur hat keinen EinfluB auf die mitge-
fiihrten Stellen.

b) »(0,2)=2,041585, y(0,4)=2,193135+8 mit 6=-9,6-10"°.
©) y(—0,6)=0,635615, »(-0,2)=0,723444+6 mit d=-19-107*.
d) y(0,1)=1,111463, »(0,2)=1253015+4 mit §=2-10"°,
¥(0,3) =1,439668, y(0,4)=1,696101+06 mit 6=9-10"5.
e) »(0,2)=1,183229, y(0,4)=1,341667+6 mit 6=-27-10"°.

) y(2,2)=0210670, y(2,4)=0,445442+3 mit 6=-33-10",
»(2,6)=0,708803, y(2,8)=1,006005+ 6 mit 6=2,5-1076.
b
g) Iﬂx)dx=y(b) ~y(@=y(b). x,=a+v2h (#=0,...,n), x,= b, y, ist Niherungs-

a
wert fiir y(x,), speziell y, fiir y(b), y,+, =y, + k mit k = (1/6) (k; + 2k, + 2k; + k4), wo-
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bei k; = 2hf(x,), ky = k3 = 2hf(x, + h), ks = 2hf(x, + 2h) ist. Folglich ist y, = (#/3) {f(a)

+4f(a+h)+ fla+2h)}, y,=y,+ (W3){f(a+2h)+4f(a+3h)+ f(a+4h)}

= (W3){f(a) + 4f(a + h) + 2f(a + 2h) + 4f(a + 3h) + f(a + 4h)}, ... Ein Niiherungswert
2n

fur y(b) ist (h/3) Z cf(a+ vh) mit ¢g=c;,=1 und sonst ¢, =4, falls » ungerade

v=0
(r=13,..,2n—-1), ¢, =2, falls v gerade (v =2,4,...,2n — 2) ist (Simpson-Regel).

a) y=x%3. b) y=1+x—cos(2x).

c) y==*(1/6)x>—x*+ Cix + C;.

d) y=—(1/6)In|l + x|+ C;x> + Cox* + C3x + Cy.

e) y=—In(cosx).

f) wix)=(48 EJ) 1gx2(2x? — 5ix + 31%), w'(x) = 0=> (x/1) {8(x/1)* — 15(x/1) + 6} = 0=>x/1
=0 (uninteressant) oder x = (1/16) {15 + 1/3_3 }I (Pluszeichen unbrauchbar). Maxi-

mum von |w| wird an der Stelle x =/-0,5784648... angenommen. Sein Wert ist gleich
1,012...cm.

g) w(x)=(6EJ) 'x*3I - x)F, groBte Durchbiegung liegt an der Stelle x = / vor. Ihr Wert
ist gleich 20,769... cm.

h) x(#) = x,+ (1/k)In {cos [(gk)"*(t — )]} O=t=1),
x(t) = x, — (1/k) In (cosh [ (gk)"(t — £,)]} (t; = 1 < ),
A=x,+(1/k)In2, B=—(g/k)"?; (Bild 25.10).

X
Xsoln2f = — — — — — —
"S _______
tan oz =-(glk)%
Bild 25.10
S
a) y=[32)x-w/2)". b) x=—(t+1)"".
¢) y=-2In(1+x). d) u=4[@/3)2x-2]".
e) y=tanx. f) x=exp{(t+1)%}.

g 1(x)=—m2k)" [ {(~In(®x)} Pd%, T=x{(mm/@K)}".

h) y2=(c/2m)e(a+y)(b—y»),a=¢e'+ W2, .
b=—e '+ W"2>0 mit W=Q/e)(m/c)vi+ (y3+e "), A=2"212(m/c)"2.

a) y=Cexp(Cix). b) y=(Cix+C)~L.
c) y=tan{(#2)+ (m/4)}. d) y=x-In(2-¢%.
€) y = arcsin {(1/2) J2_e*} . f) x=exp(e’).

g) u(x)=exp{t(2k/m)x} (oberes bzw. unteres Vorzeichen, falls p >0 bzw. p <0),
p2=(Q2c/m)(m/2k)*{(1 ¥ 2k/m)x + Cexp[F(2k/m)x]}.
Zu Beginn (rechtsseitige Umgebung von ¢ =0) ist X = p <0 und damit
p=—Qc/m)"(m/2k) {1 + 2k/m)x — [1+ (2k/m)xo] exp [(2k/m) (x — x0)]}
mit xp = x = x;, wobei x; die von x, verschiedene Nullstelle der letzten geschweiften
Klammer ist.

12
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t=1t(x) = — (m2e)"*Qk/m) [ {1+ Q@k/m)x~[1+ QK/m)xo)exp[(2K/m) (% — x9)]} d%
mit der unteren bzw. oberen Integrationsgrenze X = xo bzw. X = x (Xo = x = x7).

Mit 1, = 1(xy) ist .

t= 1, + (m/2c)22k/m) [ {1 = Qk/m)% — [1 - Qk/m)x;]exp[~Qk/m) (% — xp)]} " d%
mit der unteren bzw. oberen Integrationsgrenze x = x; bzw. X = x, wobei x; = x =< x, gilt
und x, die von x; verschiedene Nullstelle der letzten geschweiften Klammer ist. Mit
t, = t(x,) wird die Diskussion in analoger Weise fortgesetzt (Bild 25.11).

1+(2kIm)¥
14(2kIm)x,

1-(2kIm)%
1-(2kIm)xy

expl(2kIm)(%-xo)] expl-{2kIm)(F-xy)]

L 1 1
s 0 X Xi X 0 X

|
1 - Bild 25.11
X X

1 a) —o<x<+o; b) x4 ¢) x%”-2xy'+2y=0; d) unabhingig.

II b)) 2 ¢ 2y"-2y'=0.

Il b)0; ¢ 0-y”=0; d) coshx+sinhx—e*=0.

IV © —(U/2) (x2+ x™12)y" + (1/4) (x~ V2 = x =32y’ = (1/4)x =32y = 0
—(/4)x322x(x+ 1)y" + (1 = x)y' +y}=0;
d) unabhingig.
V b) 0; d) abhingig.

VI b) =x7% ¢) —x %" =2x3 —-x%=0.
VII b) 0(x+0); ¢) 0:-y"=0;
d) ax+lx|=0 (—o©<x< +x)=>speziel x=+1:¢;,+¢,=0 und —¢;+¢,=0
= ¢, = ¢, =0, unabhiingig.
VIII b) 0; ¢ 0-y"=0; d) unabhingig.
Es wird hier in den folgenden Fillen eine Lsung der zugehorigen charakteristischen Glei-

chung angegeben.
d -1 e -1 h)2i i1 j 2und3.

a) y=3e*(1+x). b) y=sin(x/2).

¢) z=3e sin(5x). d) y=1+xexp[(—3/2)x].

e) y=-—e*+(1+x)e>

f) x=Ce'+Ce™, Ci=9/4)cm, C=-(1/4)cm, T=In2250=7718...s,
(exp (—9¢) hat keinen EinfluB auf die mitgefiihrte Dezimalstellenanzahl).

g x=exp[—(5/3)]{Crcos[2/3) 14 1] + Cysin[@/3) 14 1]}, €, =2cm,
C,=(5/14")cm, (C}+ C)Y2=(9/14")cm, T=4,671...5.
a) y=—(8/25) - 2/S)x + Cie* + Cre™*.

b) y=x2+ C,+ Ce*+ Cie™*.
¢) y=(5/48)x>— (1/80)x° + C; + C;x + Cycos 2x) + Cysin (2x) .
d) y=1+t+e!(Cycost+ C,sint).

<
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e) y=(1/74){Tcos x + 5sinx} + Ce* + Ce®* + C;.

f) y=-sinx+(C;+Cx)e *+C;.

g) y=Cicos(31) + (Cy+ (1/6)t)sin (3¢).

h) r=—(1/8)p2cos @ + (C; + Cp)cos @ + (C; + Cyp) sin@.

i) y=—(1/100)x{4cos (2x) + 3sin (2x)} + (C; + Cyx)e ™™ + C;cos (2x) + Cysin (2x) .
) y=(-1/2) - 2/5)te™* + Cye* + Cre ™.

K) y=—(1/6)xe*cos(3x) + €**(C;cos 3x) + C,sin (3x)).

) y=-Q1/2)+ (1/2)xe™ + (x/2) Bx + e

+(1/2) {cos (2x) = 3sin (2x)} + Cre** + Cye 2.

m) y = —{(1/5)x2 + (27/125)} cos x + (4/25)xsin x + Cie¥ + Ce 2.
n) y=—(1/8)cos x — (3/200) cos 3 x) — (1/50)sin 3 x) + (C; + G;x)e™*.

a) y=—80+ {81+ @8l/4)x}exp{—(1/4)x}. b) y=x.
©) y=(—6x)e¥*+3e 2 +2e*~3x2—x+2.

d) y=(1/2)x*—2x+m— (1/4) — (1/4) cos (2x) — sin (2x) .
¢) ® x=(Fyk){1-cos[(k/m)"1]};

g

T

Ric}

-Rlc|
X Bild 25.12

B) x = (a’k){t — (m/k)"sin [(k/m)'t]};
Y) x = Fo(k + ma®)~{exp (—out) — cos [(k/m)"2t] + o (m/k)"*sin [(k/m)"t]} .

y=e"%{C,cos (wgt) + C;sin (wpt)} + 4 + Beos (vt — @)

mit & = k/(2my + 2my) = 6,245s7",

0o = BEJI3(my + m) ™ — (U)K (my + m) ) = 1247437571,

A= (my+ my)gc'=0,6288...mm, & =27m-3600 min~! =376,9911...s7!,

B = myw? {[c — (my + mYo?] + k20?} " =1,347... cm,

@ = arccot {[c — (m; + my)w?]/ko} = arccot {~26,87036...} = 3,10439... = 177,868...°,
Ci=—-A-Bcosp=1,283...cm, .

C, = w;'{6C, — wBsin@} = —0,87155... mm.

Fiir t = 0 ist mx = —cx,, also X <0, d.h., x fillt, und damit ist X < 0 in einer rechtsseiti-
gen Umgebung von ¢ =0, dort gilt somit mx + cx = R, und damit ist x = (R/c) + [xo
— (R/¢)] cos (wt) mit & = (¢/m)" fiir 0 < t < /w. Speziell ist x, = x(/w) = 2R/c) — x,
<R/c.Ist |x;| = R/c, sogilt x = x, fur n/w < t < + . Andernfalls ist x; < —R/cund da-
mit m¥=-cx;>0 fir t=n/w. Hieraus folgt schlieBlich x=—R/c—[(3R/c)

— Xo] cos (wt) fir m/w =t < 2m/w. Mit x, = x(2n/w) wird die Diskussion in analoger
Weise fortgesetzt (Bild 25.12). -
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a)
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a)
b
]
d)
€,

h)
i
k

R

B) ¥p = Boxe™;
d) y=3ReY,, Y,=(By+ Bix)exp(2ix),
Y® - Y, +3Y}, +5Y, = xexp(ix);
0 y,=4ImY,-3ReY,, ¥,=Byxexp[(l+2i)x],
YY - Yy +3Y, +5Y, =exp[(1 +2i)x];
n) y,=4ReY,, Y,=(Bo+ Bix)xexp[(l+2i)x],
YO — Y2 4377 +5Y, = xexp[(1 + 20)x];
9) ¥ =20+ (172y2 + (1/2)y3, y1=Box, Y +...=1,

V2= Bye*, yP+..=eX, yy=Buxe X yP+. .. =ex
®) y,=36y1—y, y1=Bux, y{'+..=1,
7= (B + Byx)e¥, yy'+...=xe¥;

B) y»,=ReY,, Y,=Boxexp{(—2+3i)x},
Y, +...=exp{(—2+3ix};
Y) »=yn-¥%, n=ImY,, Y,=Byexp{2+3ix},
Y+ ... =exp{2+3i)x}, y,=ImY,,
Y, = Bpxexp {(—2+3D)x}, Yy +..=exp{(—2+3i)x}.

y=2x+(Ci+ Glnx)x2. b) y=x*+C;+(C,+ C3lnx)x2.
y=5+Inx+ (1/T)x?+ Cx + Cox V4.

y=(C + Glnx)x?+ x{C;cos (Inx) + Cysin (In x)} .
y=@Q/x)—(1/x%. f) y=xlnx+ (1/2)Bx+x7Y).
y=(C,+CGlnt)t+1Int+2.

y={Ci+ Cx — (5/4)x* + (3/2)x*In x}e?.
y=(C; + Cx +1n|x|)e™*.
y=Cycosx + C,sin x + 2(cos x) In (cos x) + 2xsin x.
y=Ce*+Ce ¥+ (e *+e ¥ In(l +¢%).
y={[C, + (1/4) In|cos (2x)| ] cos (2x) + [C; + (1/2)x] sin (2x)}e*.
y=—xcosx + C;x + C,x2. g) y=-—xlsinx+C + Cx1.
y=x"14(C, + Cyx)e**. i) y=-x2cosx+ Cix~ 1+ Cpx~2.
x={(3/2)Int - (5/4)1* + C, + Cyt}e*.
o) x(t) = x,(t) = uy(t) cos [(k/m)V2t] + uy(t) sin [(k/m)"*t] ;

uy(t) = (Fo/k) {cos [(k/m)"?*t] -1} fir 0=t=T,

u(t) = (Fy/k) {cos [(k/m)"?T] - 1} fir ¢>T,

uy(t) = (Fo/k)sin [(k/m)V?t] fir 0=t=<T,

uy(t) = (Fo/k)sin [(k/m)"?T] fur ¢>T,

x(t) = (Fy/k) {1 = cos[(k/m)"?t]} fir 0=t<T,

x(t) = (AFy/k) cos[(k/m)"*t— @] fir t=T mit

A={2(1 - cos [(k/m)\2T])}'” = 2sin [(k/m)VX(T/2)],

cos @ = A" Y(cos[(k/m)'*T] - 1), sing=...;
B) x(t) = (Fy/kT) {t — (m/k)"2sin [(k/m)?t]} fir 0s<t=T,

x(t) = (Fo/k) + (2QFy/kT) (m/k)"?sin [(k/m)*(T/2)] cos [ (k/m)'?t — @] fiir

>3
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a)
b

2

C,

<

d)

) x(t) = (Fy/kT) {t — (m/k)"?sin [(k/m)**t]} fir 0< t < T,
x(t) = (Fy/kT) {T? + 2m/k) (1 — cos [(k/m)V2T1]) — 2(m/k)"*Tsin [(k/m)"*T1]}
-cos[(k/m)?t— @] fur ¢t>T.

12

«) y=0; P) keine Losung; y) y = Csin (mx).

w = a{cos [(F/EN"1]} " {1 - cos [(F/ENY2x)}, falls F+ ET{(/21) + (kn/D)})*,
(k=0,1,2,...) und a *0; keine Losung, falls F= EJ{(n/2]) + (krr/l)}2 und a #0. Im
Fall a = 0 (mittiger Angriff von F) liegt Eig fgabe vor. Eig te sind
F=EJ{(n/21) + (kﬂ/l))Z [fir die Stabilitétstheorie ist nur der Fall k =0 (Knicklast)
brauchbar], zugehdrige Eigenfunktionen sind wi(x) = Cy{cos [(2k + 1) (x/21)] - 1}.

w = (I/n?) {(EIm® — FI)"q; sin (nx/1) + (1/4) (4EJ7® = F1%)" g, sin 2nx/ 1)},

falls F+ EJk*n?/1* (k=1,2,...) ist. In den Fillen ,F=EJn%/I> mit ¢, +0“ und
LF=4EJn?/I*> mit g,+0“gibt es keine Losung. In den restlichen Fillen liegen un-
endlich viele Losungen vor.

Mit 4 = (w?w/EJ)V* und N = 4(1 + cos (4I) cosh (4])) ist

y = C;cos(Ax) + C,sin (Ax) + C;exp (Ax) + Coexp (—Ax) mit

NC, = 2a{cos () + cosh (A1)}, NC, = 2a {sin (Al) — sinh (A1)},

NC; = afexp (—Al) + cos (A1) + sin (A])},

NC, = afexp () + cos (4l) — sin Al}, falls N 0.

Im Fall N =0 gibt es keine Losung (die Kreisfi w der Ei hwingung ist
gleich einer Eigenfi des Balk also liegt R vor).

A

Es gilt stets G(x, X) = G(X, x). Fiir x = X ist G(x, X) gleich

a
b
)
d)

£ &

a)

b

) x[1-D]; B) x.

) (1/6)x2(3%—x); B) (/61)x(%—I)(x?+ %2 —2I%).
o) arctanx; B) arctan x{l — (arctan /) !arctan £} .
(1/2)exp(x — X). e) —Inx.

sin (ax)sin[a(l - %)]a~[sin (al)] .

o) cos[(F/EN'2I]=0, F=EI@m/2l)*, w=Csin(nx/2l);
B) sin[(F/EJ)V¥]=0, F=EI(m/1)}, w= Csin(nx/I).
o) sin[(WENY01]=0, o= (EN/p)"?1?*x?, y=Csin(nx/l);
B) cosh[(u/EN)4w"21] = —{cos [(u/ EJ) w0 2]} ",
w=(EJu)?r*-p?, p=1875104...,
y = C{acos(px/l) + bsin (px/1)
—(1/2) (a + b)exp (px/1) — (1/2) (a — b) exp (px/1)
mit a =sinp + sinhp =4,13813...;
b= —(cosp +coshp) = —3,03778...;
—(1/2)(a+ b)=-0,5501..., —(1/2)(a—b)=—3,5879...;
cosh [(u/EJ)wV21] = {cos [(w/ ET)w"21]} ",
w=(EJ/u)"212-p?, 4,73004 < p < 4,73005,
y = C{acos (px/1) + bsin (px/1)
—(1/2) (a + b) exp (px/I) — (1/2) (a — b) exp (px/1)}
mit a =sinp — sinhp, —57,64605 < a< —57,6454;
b= —(cosp — coshp), 56,6368 < b’< 56,6374;
0,50433 < —(1/2)(a + b) <0,50434; 57,14114 < —(1/2)(a — b) < 57,14171;

Y
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©)

a)
b)

- o

d)

a)

b)

c)
d)

e)

und Lo inweise

8) tanh[(W/EJ)w'l] = tan [(w/ EJ)*0'?1],
w=(EJ/u)"?I"*p?, 3,9266 < p < 5m/4 <3927,
y = C{acos (px/I) + bsin (px/I)
—(1/2) (a + b) exp (px/I) — (1/2) (a — b) exp (px/1)}
mit a=sinp —sinhp, -26,075<a< —26,064;
b= —(cosp— ct;shp), 26,004 < b < 26,094.

Mit 4 = QEJ)"V?{F — (F* - 4EJc)"}}"* | B = QEJ)"V2{F + (F* - 4EJc)"?}'” lautet die

Eigenwertgleichung sin (4/) -sin (BI) = 0, falls 4 + B. Hieraus folgen die Eigenwerte F
= EJK*m?1? + ck™*n? (k=1,2,...). Aus (dF/dk) =0 folgt k =In"'cV4(EJ)""*. Da
diese Formel wegen A + B keine ganze Zahl liefert (es wire sonst F = 2(EJc)"? und da-
mit 4 = B), ist zu priifen, welche der beiden zu /m~cV4(EJ)~"* (im Zahlen-Bsp.: 10/m)
benachbarten ganzen Zahlen den kleineren  Eigenwert liefert (im Bsp.. k=3,
F=201,4... (EJ/I?)). Gilt fiir den Eigenwert sin (47) = 0 bzw. sin (BI) = 0, so lauten die
zugehorigen Eigenfunktionen Csin(4x) bzw. Csin(Bx). Im Fall 4=B, d.h.
F=2(EJc)"?, wird nur dann ein Eigenwert geliefert — er ist dann der kleinste —, wenn
In~'cV4(EJ)"V* eine ganze Zahl k ist, die zugehdrigen Eigenfunktionen lauten dann
Csin [kn(x/1)].

y=1+x2+ (1/4)x* + (1/20)x5 + (1/160)x® + ...
w=Clx — (WEJ) (@) 'x* + (Y EI4(T)'x7 + ..} ;
0=w'(l) = C{1 = (WEJ)(3)~'1 + (EIV4E) 1S + ...},
1= (EJ/y)* {15 — (45)1%}"° = 2,024...(EJ/p)"3.

x = xo— (1/2)k(mxo)~'t? = (124)k*m 2 x 3t +...., x(T)=0,
T = xo(m/k)V2- {=6 +2- 1512} 12 = 1 321...xo(m/ k)2, (m/2)Y2=1,253...
exp (x%/2).

x =4C,exp (4t) — 2C,exp(—101),
y=C,exp(4t) + 3C,exp(—101).
x =e'{C;cos (31) + C,sin (31)},
y=¢e{[2C, + GJcos (31) + [~ C, + 2Cy] sin 31)} .
x=-Cpe¥, y=Ce'—2Cyt+Ce¥, z=(Cyt+ Ce™.
»1=(=5"C, +2C)cos x + (=2C, — 5V2Cy) sin x — 3C; cos (2x) — 3C,sin 2x) ,
y2=Cycos x + Cysinx + (512C; + 4C,) cos (2x) + (—4C; + 52C,) sin (2x) .
-IM 'd=Ad mit A=(ay), ay=ax, ay=9, ay=11, ap=16, ay=7,
ap=11, a3=9.
A3 +5164%+ 128607 + 58800 =0, 1,=-6, A=-20, A=-490.
yi(t) = (1/10) {C; cos (w1) + C;sin (wy1) + C;cos (w,1)
+Cysin (w,t) + Cscos (wst) + Cgsin (w3)},
Ya(t) = —(1/15) {Cy cos (w1t) + C,sin (w,1)} + (1/7) {Cs cos (w;t)
+Csin (w31)},
»3() = (1/10) {Cyc08 (w;2) + C,sin (w,t) — C;cos (w,1)
—Cysin (w,1) + Cscos (wst) + Cgsin (w3?)},
wobei w; = (EJ)V2I"¥2768"2(6 kg) V2 = 550,82... 57!,
w,=301,69...s7!, w;=60,95...s7! (Bild 26.3).
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10kg 21kg kg xel

x=0
-
X
Tolwlols®
)z
s % Crey=0360
i 4 1
0 7 10

/%_J_ /T_L\r,-wwwa
0 @/ i . Bild 26.3
a) y;=—(1/8) + C,exp(dx), y,= —(7/8) + Cie*— C,exp(4x).
b) x=Ce'+Ce '+ (1/2t(e' — e,
y=Ce'—Ce '+ 1/t +e )+ (1/2)(e'—e™ ).
¢) y1=-6C{cosx + sinx} + 6C,{cos x — sin x}
—(3/5)sin (2x) + (6/5) cos (2x) + 3(1 + x)e~*,
y2=10C, cos x + 10C, sin x + sin (2x) — (5/2)e™>.
d) Die allgemeine Losung des zugehdrigen homogenen Systems strebt fiir t— o nach 0,
weil die Realteile der Losungen A der charakteristischen Gleichung kleiner als 0 sind.
I, = (a/R;) (Ly/Ly) sin (wt) — a(L,w) *cos (»1) ,
L= —(a/Ry) (Ly/Ly)"?sin (wt),
U, = —a(Ly/Ly)"?*sin (wt);

(durch den Transformator Spannungserhdhung bzw. -erniedrigung fiir L, > L, bzw
Ly<Ly).

_ N o (1) —3+8exp(31)
e) x 2(*1)9.’ 3(1>e’+( 1 )

) x=Ci+Ct+ Gt +e'+et, y=Ci— (C, +2C)t = (1/2)Cyt2 — (1/3)Cyt> — e’ + 2.

a) x=—(5/4)+ (13/4) cos (21) — 3sin(21),
y=(3/2)t + (13/4)sin (21) + 3 cos (21).
b) x=-22+12t+(C,+ G)e ™,
y=17-Tt+(-C+(1/2)C,— Gyt)e~".
©) y1=C; +exp(3x) {C;cos 32x) + Cysin (3"2x)},
y2= = Cy +exp(3x) {(1/2)[C; — 325 cos (312x) + (1/2) [C; + 3V2Cy sin (3V2x)}
y3==Cy+exp(3x) {(1/2) [C, + 3"2C5] cos (3"2x) + (1/2) [C; — 3V2Cy] sin (3V2x)} .
d) % =x3, x{ - 2%+ x; =17,
X1 =(C;= G+ G)e' + (—C; — Cy— Cyt)e ™'+ 17t + 2,
X =[(=1/2)Ci + G, = (/) Gyt Je' + [(1/2)C; + Cy + (1/2)Cat]e '~ 121 - 2.
e) x=3+ Cysint— Cycost+ (1/2)Cssin (21) = (1/2)Cycos (2),
y=T7-5C,cost—5C,sint —2C;cos(2t) — 2Cysin (2¢).
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) LAY+ LRI, + QL/C)L, + (R/C)I, = (a/C)sin (wt),

L%*+ LRA?* + 2L/C)A + (R/C) = 0. Da alle Koeffizienten positiv sind, die linke Seite
der letzten Gleichung fiir A =0 den Wert (R/C)>0 und fiir A= —-R/L den Wert
—(R/C) <0 liefert, gibt es keine Losung 4 > 0 und mindestens eine Losung 4 = 4, mit
—(R/L) < 4, <0. Die beiden weiteren Losungen lauten

ha= = (U/2) {R/L) + A} £ {(1/4) [(R/L) + &) = [2(CL) " + (R/L)A; + 2]} und
haben daher negative Realteile. Also strebt die allgemeine Losung des zugehérigen ho-
mogenen Systems fur #— o nach 0.

L(t) = @O {[(RIC) - LRwT + 0?[QL/C) - L0} Vsin(wt— ), @=...
I1(¢) ergibt sich mit dem bekannten I,(?) z.B. aus der zweiten gegebenen Dgl. Wenn
klein, dann U, =~ asin(wt — @) [DurchlaB].
Wenn v groB, dann U, = a(R/C)L 2w 3sin (vt — @) [Sperrung].
) z=—(Cx+ )7, y=2G(Cx + C) 2. '
h) z=Cx+ Cx';y=—-Cix+ Cx1.
i) z=-(1/20)x + (2/15)x2 + C;x73 + C,x™%;
y=0/10)x + (1/15)x2 = 2C,;x3 — Cyx~*.
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