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Vorwort

Das vorliegende Übungsheft schließt sich an die Bände 13 „Lineare Algebra“ und l4
„Lineare Optimierung“ der Lehrbuchreihe „Mathematik für Ingenieure, Naturwissen-
schaftler, Ökonomen und Landwirte“ an. Hinweise in den Übungsaufgaben bzw. den zu-

gehörigen Ibsungen beziehen sich auf diese Bände.
Bei der Erarbeitung dieses Übungsheftes wurden die Erfahrungen in den Mathematiklehr-
Veranstaltungen an der Technischen Universität Dresden und einer Reihe anderer Hoch-
schulen genutzt.

Wir danken für die eingegangenen Hinweise, die alle sorgfältig geprüft und in der Re-
gel berücksichtigt wurden. In diesem Zusammenhang möchten wir besonders die Anre-
gungen von Herrn Doz.Dr.H.Bia1y (Dresden) erwähnen.

Zu besonderem Dank sind wir Herrn Oberlehrer J. Läßig (Leipzig) verpflichtet. Er hat
das gesamte Ausgangsmanuskript gründlich gesichtet und wertvolle Hinweise aus der
Sicht des Fernstudiums gegeben.

Für Vorschläge, die der Verbesserung der Aufgabensammlung dienen, sind wir stets
dankbar

Dresden, Januar 1986
E.—A. Pforr
L. Oehlschlaegel
G. Seltmann



1. Matrizen und Determinanten

1.1. Rechnen mit Matrizen

Addition, Subtraktion, Multiplikation, Multiplikation einer Matrix mit einer Zahl, transponierte Ma-
trix, Matrizengleichungen, Permutationsmatrizen, Blockmatrizen (Bd. 13, 2.1., 2.2.)

1.1.1. Folgende Matrizen seien gegeben:

l v2 3 -3 7 -2 l1 -25 12

A-[s 0 6]’ B" o1 3]’ “[10 -3 3]‘

a) Man berechne: A + B, A — B, A + B+ C, 3A ~ 4B.
b) Man ermittle (falls möglich) zwei Zahlen ‚i und u, für welche die Gleichung

M + „B = C gilt. (Was kann man allgemein über die Lösbarkeit dieser Gleichung aus-
sagen, wenn A,B‚C vorgegebene Matrizen sind?)

1.1.2. Man addiere unter den folgenden Matrizen diejenigen, deren Summe erklärt ist:

3-1
20 -11 637 193

A-1 1’ B’[1—1]’ “[441]” D'[27 2]’
o2

13 1113 —— 123F-13, 0-22, H—[456].
-11

13
1.1.3. Man bestimme die Lösung X der Matrizengleichung

A+3(X—A—E)=2B+X—E
a) allgemein,

b) m1cA=B B=[_: 43], E: Einheitsmatrix.

(Zusatzfrage: Welche Voraussetzung müssen die Matrizen A, B, E, X erfüllen, damit
die vorgegebene Matrizengleichung sinnvoll ist?)

1.1.4.

Man berechne:

a) AB, BA; AC, CA; BC, CB; ATC, CTA. (Welche allgemeinen Gesetzmäßigkeiten wer-

den durch diese Ergebnisse bestätigt?)
b) ABC, CBA.

1.1.5. Gegeben seien die Matrizen mit komplexen Elementen

_2+a 1 _ 5 3-21 _1+1
A—[1—i1+i]’ B_[3+2: 7 “[1-1]‘



.b) Welche geometrischen Gebilde werden durch cTx=1 bzw,

6 l, Matrizen und Determinänten

a) Man berechne (falls möglich): AB, Ab, bA; A‘, B‘, b".
b) Besitzt Ax = b eine reelle Lösung?
c) Besitzt Ax = b eine komplexe Lösung?
d) Sind die Matrizen A und B hermitesch?
e) Sind die Matrizen A und B unitär?

1.1.6.

2 1 -1
3 o 1 2 o 3

21% B=[ c=3 -1, d= .

2 1 5 4 o 1 4 3 2

Man berechne (falls die entsprechenden Ausdrücke definiert sind):

.a) A+B,A+c,,4c,Bc,{A+B)c,
b) All}, BTA, Bd, dTBT,

c) 2A — 3B, Ad, (A + B) d. Cd, dTC.

*1? i1» still x=[:;}
a) Man berechne: cTx, x’Cx, cxT, xTx.

1.1.7.

xTCx = 1 bzw.
xTCx + cTx = 1 bzw. xTx = 1 beschrieben?

.c) Welche Gebilde beschreiben die in b) angegebenen Gleichungen, wenn C eine
(3, 3)-Matrix ist und c bzw. x (3, l)—Matrizen sind?

1.1.8. A sei eine (m, n)-Matrix‚ x eine (n, 1)»Matrix‚ y eine (m, l)—Matrix. Vor.: n ¢ m,

m > 1, n > 1.

a) Welche der folgenden Ausdrücke sind definiert? Was stellen sie da1- (Zahl, Matrix)?
Zwischen welchen Ausdrücken besteht ein Zusammenhang? Zwischen welche Aus—

drücke kann man das Gleichheitszeichen setzen?
yAx, yTAx, xTAy, xTA Ty, (Ax)Ty, x‘(yTA)‘, Axy, AxyT, yxTA T, A Tyx‘, xyTA.

b) Man berechne diese Ausdrücke fiir

1

A4: 221 Fm].
1

1.1.9.

12 -1 -1 3 2 4

A=40 3, B=510, C=0-1.
5 1-4 -3 2 4 5 -3

Mit Hilfe des Falkschen Schemas berechne man:

4a) (A +B)CundAC+ BC,

b) (AB)C und A(BC),
c) (AB)T und B'A l.

Welche Gesetzmäßigkeiten sind zu erkennen? Man versuche, diese Gesetzmäßigkeiten
allgemein zu beweisen! (Welche Voraussetzungen über den Typ von A, B, C müssen er-

fiillt sein?)
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g 1.1.15. Es gelte A = [
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1.1.10.

v3 2 0 1-4 ä i?)
A= 041.2 0, B=5 0—3.

-1 3 2 0 5

4 0 0 1-2 3 1 2
0 4 0

Man berechne (mit Hilfe des Falkschen Schemas): AB, BA, BTAT.

_ 1.1.11. Gegeben seien die Matrizen

O 1 0 an an '11:

C= 0 0 1 ‚ A: an an an .

I 0 0 as, an 1133

Man bilde die Produkte CA und AC und vergleiche sie mit A. Welche Gesetzmäßigkeit
ist zu erkennen?

(Bemerkung: Die Matrix C entsteht aus der Einheitsmatrix E durch Vertauschung der
Zeilen bzw. der Spalten. C ist eine sogenannte Permutationsmatrix.)

1.1.12. Gegeben sei eine Matrix A = [a,-„] vom Typ (5, 5). Man bestimme eine Matrix P
(Permutationsmatrix), so daß PA die gleichen Zeilen wie A, aber in der Reihenfolge 3, 2,
1, 4, 5 enthält.

(Hinweis: Man orientiere sich an Aufgabe 1.1.11.)

1.1.13. A sei eine Matrix vom Typ (n, n), Man bestimme eine Matrix P so, daß PA sich
von A nur durch Vertauschung der i-ten und k-ten Zeile unterscheidet. Wie wird eine
Vertauschung der i-ten und k—ten Spalte von A erreicht?

. 1.1.14. u,, ..., a‚„ c seien (n, 1)<Matrizen. Man beweise:
cya, + 62'112 + + c,,~a,, = [a,, a1, ...‚ a„]c.

(c,-: Elemente von c; [a„ ...‚ a„]: Matrix mit den Spalten 11„

P Q] „d „im
.a‚.<)

RS VW"
(A und B sind Sogenannte Blockmatrizen (Hypermatrizen); sie setzen sich aus Teilmatri-
zen (Untermatrizeu) zusammen!)

Von: TYP (P) = TYP (T) = (I. I).
Typ (S) = Typ (W) = (m, m)‘

Man zeige:
AB = PT+ QV PU + Q

RT+ SV RU + SW ‘

1.1.16. Es gelte

.Y1 = A11x1+ 412x: ‘i’ "z,
yz = A21x1+ -4123521‘ a2

["H"“ “‘”H"‘H"‘]J72 A21 A22 X2 ü: .

(I)

(H)
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Man zeige, daß die Darstellungen (I) und (II) äquivalent sind. (Bemerkung: (II) nennt
man die Blockschreibweise von (1),)

1.1.17. a) A sei die in 1.1.15. angegebene Blockmatrix. Man berechne A’ als Blockma<
trix. (Von welchem Typ müssen die Matrizen P und S sein?)

. b) Unter Benutzung einer geeigneten Blockbildung berechne man das Quadrat der Ma-
trix

3 0 O 0 0

0 -1 0 0 0

A= 0 0 4 0 0 .

0 0 0 1 2

0 0 0 —1 3

11.18.
an ...a1,, [cu ch] x,

A= 5 3 , C= E E , x= E .

“mrmamn Cni-ucnn X»-

Manbeweise:

a) AxEo=>A=0, b) xTCxE0<=>CT=#C.
(Hinweis: E o bzw. E 0 heißt: = o bzw, = 0 für alle x.)

1.1.19. a) Von der Matrizengleichung AX + XAT = E
1 0 2 0

mit E = [ ] und A = [_ ] ermittle man eine-Lösung X. Gibt es mehrere Lö-
0 1 1 1

sungen?
b) Man bestimme sämtliche Lösungen X der Matrizengleichung

2 0
X’ — X = .

[s 6]

1.1.20. In einem Betrieb werden aus vier Rohstoffen R1, R1, R3, R4 fünf Zwischenpro-
dukte Z„ Z2, Z3, Z4, Z5 hergestellt, aus diesen Zwischenprodukten werden schließlich
drei Endprodukte 15„ E2, E3 gefertigt, In den Tabellen sind die Rohstoff- bzw. Zwischen-
produktverbrauchsnormen zur Produktion einer Einheit von Z, bzw. einer Einheit von E,-

angegeben.

Mit Hilfe der Matrizenrechnung beantworte man die Frage:
Wieviel Einheiten von R1, R2, R3, R. sind bereitzustellen, wenn der Betrieb 100 Einheiten
von E1, 200 Einheiten von E; und 300 Einheiten von E; herstellen soll?
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1.2. Berechnung von Deterrninanten

Adjunkte, Entwicklungssatz, Deterrninantengesetze (Bd.13‚ 2.4.2., 2.4.3.)

1.2.1. Von der Matrix
2 3 0

A = -1 2 4

0 5 l
berechne man: V

a) die Adjunkten (Kofaktoren) A“, An, Au,
b) det A.

1.2.2. Man berechne folgende Determinanten:

-2 3 1 x sinaz costx

a) -1 5|’ b) 3 y ’ c) —cosaz sinaz‘

3 1 0 A-1 1 1 1 x y

d) *1 2 4, e) 1 1-‚1 0 ‚ f) 1 1 0.
4 1 5 3 0 1-1. 1 4 l

1.2.3. Unter Ausnutzung von bestimmten Eigenschaften der Determinanten berechne
man die folgenden Determinanten möglichst einfach:

1200 3-102 1012
2120 0-215 1234

‘Q0212’ M0014’ °)4321’
0021 0006 2140

31-104
—22015 _1_i_:_:

d)20~1213,e)7150
1330-2 501
20312

1.2.4. Man bestimme alle Lösungen der folgenden Gleichungen:

1 - x 1 2 1 — x — 1 — 1

a) 2 2—x 2 =0, b) 1 l—x 0 =0.
2 2 5 — x 3 0 1 - x

1.2.5. Man beweise:

1 x y

1 X1 Y1 = 0

1 X2 }’2

ist die Gleichung der durch die Punkte (x1, yl) und (X1, y1) aufgespannten Geraden. (Wel-
che Voraussetzung muß für die Punkte (x1, y‚), (x2, yz) erfüllt sein?)
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1.2.6. Man beweise, daß die Gleichung

x y z 1

X1 yl Z1 1 = 0

x2 ‚V2 Z2 1

X3 ‚V3 Z3 1

a) in der Form Ax + By + Cz + D = 0 geschrieben werden kann und
b) (x, y, z) = (X), y,, z,v)(i = 1, 2, 3) als Lösung hat. (Welcher geometrischer Sachverhalt

verbirgt sich hinter dieser Aussage?)

1.2.7. Gegeben sei die dreireihige Vandermondesche Determinante
1 1 1

V(x1‚x1‚xg)= x1 X; x3 .

xi x§ xä „

a) Man zeige: V(x„ x1, x1) = (x3 - x1) (x1 — x1) (x1 — x1).

b) Man gebe eine notwendige und hinreichende Bedingung für V(x1‚ x1, x3) 4: 0 an.

c) Man berechne die vierreihige Vandermondesche Determinants V(x,, x1, x1, x4).

(Hinweis: V(x1‚ x1, x3, x4) hat einen zu V(x1‚ x1, x1) analogen Aufbau.)

1.2.8. Gegeben ist die Matrix
- — l -2 1 3

1 0 3 2 .

A ’ 3 2 4 -1 ‘ ' ;

_—2 6 -2 ~2 "

Man bestimme Matrizen
-1 Ü 0 0 C11 C12 4'15 C14

b1, 1 0 0 0 cu e13 cu
B = d C =

b1, bu 1 o u“ o o c3, e14

_b,,, bu b4, 1 0 0 0 c“
so, daß A = B- C gilt. Wie läßt sich damit det A einfach berechnen?

1.2.9. Man berechne x aus den folgenden Beziehungen:

x 2 2 —1 x x

a) 2 -1 2 =27, b) 2 -1 2 =27,
2 2 x 2 2 —1

x 1 2 1 x 2

c) 3 x —1=2, d) x 3 1 =13.
4 x -2 —2 -1 x

1.2.10.
a) Man beweise:

a.x + a1 a1 a1 an

-1 x 0 0

0 -1 x 0

0 0 -1 x

= an + alx + 111x’ + a3x3 + a.,x“.
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b) Wie lauten entsprechende Gleichungen für

zx) a0 + alx + azxz + a3x3 und ß) a0 + 111x + 02X2 + + a„x"?

c) Man beweise den allgemeinen Fall ß) durch vollständige Induktion.

1.2.11. Die Matrix M setze sich aus den Teilmatrizen F, G, H und 0 zusammen:

F G
M _ [0 H].

Voraussetzung: F und H quadratisch. 0 eine Nullmatrix. Man zeige: det M = detF< det H.
(Anleitung: Man stelle M als Produkt von zwei geeigneten Matrizen A und B dar; siehe
1.1.15.)

1.2.12. Man zeige: Für eine quadratische Matrix A vom Typ (n, n) gilt:

det(}.A) =,1"‘det(A).-

1.2.13. Vorgegeben seien die (3, 1)-Matrizen
a1 b, c,

u=l12, b=b1a 0:02‘
(13 b3 c3

Ausgehend von der Definition

a; bl

a ba1 b] 3 .1

a; b3
aXb = a, x b;

b a, b,
a

3 3‘ a, b,

a; b,

beweise man die folgenden Rechenregeln:

a) aT(a><b)=0‚ bT(a><b)=0‚ b><a= -(a><b)‚
b) a><(b+(:)=a><b+a><c,
c) a >< (b >< c) = (aTc)b — (aTb)c‚

d) (a >< b)T(u >< b) =(a'a) (b’b) -(H717)?

Hinweis: Beim Beweis werden einfache Rechenregeln für Matrizen und Determinanten
benötigt!

1.3. Inverse Matrix

(Bd. 13, 2.4.4.1.)

1.3.1. Welche der folgenden Matrizen A besitzt eine inverse Matrix A“?
1 0 3 2 *3 1 1 3 -2

a) 4 1 2 ‚ b) 3 4 -2 ‚ c) 0 2 4 ‚

0 1 1 5 1 -1 0 0 -1

f)
v" H 3]» °> i’? 31»
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1.3.2. Von den in 1.3.1. angegebenen Matrizen berechne man nach der Formel

A„.„A„‚ ‘

71H ' '

A,„ A...

die zugehörige inverse Matrix, sofern sie existiert.

1.3.3. Man bestimme mit Hilfe des Gauß-Algorithmus bzw. des Austauschverfahrens die
inverse Matrix von

213-1 3020
132

4310 0102“>212-2’b)2010‘°)_§_:_i’
—2—112 0302

200 42-3 14-1
d)63—5, e)531, 0012.

—4—22 20-7 001

1.3.4. A sei die Matrix aus 1.3.3.c), B die Matrix aus 1.3.l.b)‚ E die Einheitsmatrix vom
Typ (3, 3). Man bestimme (falls möglich) die Lösung X der Matrizengleichung

a) AX=B, b) BX=A‚ c) BX=E, d) XA=B.

1.3.5. Gegeben seien die Matrizen

10-12 1 02
2-1-23 2 20

A——122—4’ "_1’ 3'3-1
012-5 2 42

a) Man berechne A".
b) Man bestimme die Lösung von Ax= b,
c) Man bestimme die Lösung von AX = B.

1.3.6. A sei die Matrix aus 1.3.1.a), B sei die Matrix aus 1.3.1.0). Man bestimme (AB)".
(Zusatzfrage: Kann man auch (AB)‘1 bestimmen, wenn man für B die Matrix aus 1.3.1.b)
nimmt?)

1.3.7. Man beweise die Gleichung (AB)" = B“‘A“. (Welche Voraussetzungen müssen
dabei die Matrizen A und B erfüllen?) '

‚ 1.3.8. A sei eine reguläre (n, rt)-Matrix, B = [A,-k] die aus den Adjunkten Au. von A gebil-
dete (n, n)-Matrix. Man zeige: det B= (det A)"".

1.3.9. Unter welchen Voraussetzungen ist die Matrizengleichung AXB= C eindeutig lös-
bar? (A, B, C, X seien (n, n)-Matrizen vom gleichen Typ.) Wie lautet die Lösung im Falle:
A Matrix aus 1.3.1.a), B Matrix aus 1.3.1‚c)‚ C Matrix aus 1.3.1.b). (Zusatzfrage: Ist die
Matrizengleichung AXB= C im Falle

-L: 1:1 -1: :1» v1-2-2]
lösbar?)
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1.3.10. Unter welchen Voraussetzungen sind die folgenden Matrizengleichungen eindeu-
tig lösbar? Wie lautet die Lösung? (Alle auftretenden Matrizen sollen quadratisch und
vom gleichen Typ sein! E: Einheitsmatrix.)

a) XA+2X=A, b) (XTB)"C-%D+2E=0

(Wie lautet die Lösung im Falle

2 1 2 -2 —4 15

B"[5 3]’ “[0 1]’ D'[14 —22]?)’

c) C‘X(A’B)* + (xTc)* — E = —% BTA + scTx.

1.3.11. Wann besitzt die Matrix

a, 0 0...0
A: a, 0...0

0 0 0...a„

eine Inverse und wie lautet diese?

1.3.12. Von der Matrix

212000
120000

141001000
432100
324010
243001

berechne man die inverse Matrix.
(Anleitung: Man unterteile die Matrix A in geeignete Teilmatrizen und mache einen für
A“ charakteristischen Ansatz; vgl. hierzu auch 1.1.15.)

1.3.13. Man beweise: Die inverse Matrix einer (regulären) symmetrischen Matrix ist
ebenfalls symmetrisch.

1.4. Besondere Matrizen

Orthogonale Matrizen, symmetrische Matrizen, Diagonalmatrizen, Dreiecksmatrizen, vertauschbare
Matrizen (Bd. l3, 2.3.)

1.4.1. Welche der folgenden Matrizen sind orthogonal?

a>[‘3’§ 3?} M"; 5]» °>[-i 3]»

1 2 ~1 2 3 0 0 costx —sina 0

d) F —1 2 2 , e) 0 1 0 ‚ f) sinu cosoz 0 .

2 2 -1 0 0 2 0 0 1
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1.4.2. Welche der folgenden Aussagen sind bei jeder orthogonalen Matrix A richtig?

a) AAT= E, b) A =AT, c) AT:A“1‚ d) detA =1.

(Bei Nichtgültigkeit der Aussage gebe man ein Gegenbeispiel an!)

1.4.3. Man zeige, daß bei einer orthogonalen Matrix A für je zwei „Vektoren“ x1, x, und
ihre „Bildvektoren“ yl : Axl, y; = Ax; gilt: -

U’: ‘ .V1)T(.Vz ‘.V1) = (x2 “ X1)T(x2 ’ x1)-

(Wie ist diese Aussage geometrisch zu deuten?)

1.4.4. Jede quadratische Matrix A kann in eine Summe aus einer symmetrischen Matrix
B und einer antisymmetrischen Matrix C zerlegt werden,

a) Man gebe die Zerlegung in allgemeiner Form an!
(Ist diese Darstellung eindeutig?)

b) Man berechne B und C für

1 5 0

J
s
\l
J
:-

‚
d

a
n

n
;

2 1

3 1

1 2

1.4.5. Gegeben sei die Matrix

0 0 0

A = 1 0 0 ‚

O 1 0

Man beweise: Eine Matrix X ist mit A genau dann vertauschbar, wenn sich X in der Form
X = caE + c,A + c,A’ darstellen läßt (E: Einheitsmatrix).

1.4.6. Man beweise: Das Produkt von zwei oberen Dreiecksmatrizen ist wieder eine obere
Dreiecksmatrix.

(Bemerkung: Eine Matrix A heißt obere Dreiecksmatrix, wenn für jedes a‚-„ mit i> k gilt:
am : 0-)

1.4.7. Gegeben sei eine Diagonalmatrix

4.00
A=0d‚0

00d,
Unter der Voraussetzung, daß die drei Zahlen d1, d1, d, paarweise verschieden sind, zeige
man: Eine Matrix X ist dann und nur dann mit A vertauschbar, wenn X eine Diagonal-
matrix ist. (Von welchem Typ muß X sein?)

1.4.8. Man zeige: Für jede antisymmetrische Matrix A mit ungerader Zeilenzahl gilt:
det A = 0.

1.4.9. Man bestimme alle reellen symmetrischen (2, 2)—Matrizen X, die der folgenden
Gleichung genügen (E: Einheitsmatrix):

5 o 1 o
a)X’=E, b)X’=[0 S], c)X’=[0 4].



2. Vektorrechnung in der Ebene und im Raum

2.1. Rechnen mit Vektoren

Addition, Subtraktion, Multiplikation eines Vektors mit einer Zahl, Betrag, skalares Produkt, Vekto-
rielles Produkt, Spatprodukt, gemischte Produkte, Projektion eines Vektors, Richtungskosinus
(Bd.13, 1.2., 1.3,)

Hinweise: Die Koordinatenangaben beziehen sich in diesem und den folgenden Ab-
schnitten — wenn nicht ausdrücklich anders vermerkt — auf ein rechtsorientiertes kartesi-
sches Koordinatensystem in der Ebene (K = [0; e1, e11) bzw. im Raum (K = [0; eh c1, e31).

Die Schreibweise X (x1, x1, x3) bzw. X (x1, x1) bringt zum Ausdruck, daß X ein Punkt
des Raumes bzw. der Ebene ist, der bezüglich des zugrunde gelegten Koordinatensystems
K = [0; e1, 21, e‚] bzw. K = [0; e1, e11 die Koordinaten x1, x1, x1 bzw. x1, x2 hat.

Bei einigen Aufgaben verwenden wir ein Parallelkoordinatensystem (affines Koordina-
tensystem, schiefwinkliges Koordinatensystem) K = [0; v1, oz, v3], bei dem nur die line-
are Unabhängigkeit von v1, v1, u, vorausgesetzt wird.

2.1.1. Vorgegeben seien die Vektoren des Raumes

a=3e,+2e2, b=~2e,+4e,, c=e1—3e1.

a) Man schreibe als Spaltenvektoren: a, b, e, a°, b°, 0°, a + b, b - c, a + b + c,

a - 2b — 3c.

b) Von den in a) angegebenen Vektoren berechne man die Länge (den Betrag).

2.1.2. Gegeben ist ein Viereck (in der üblichen Anordnung!) mit den Ecken
A(—1, -1), B(3, 0), C(3, 3), D(—1, 2). Man bestimme:

a) die „Seitenvektoren“ ‚T3, FC Ü), ÜÄ, die ,,Diagona1vektoren“ZZ‘, B_I)' und die Länge
dieser Vektoren,

b) die Winkel u, fl. y, ö.

2.1.3. Gegeben ist ein Dreieck mit den Ecken A(1, 0), B(5, 1), C(2, 6). Man bestimme
Vektoren u, v, w mit u || w), v s„, w || h,.

2.1.4. a, b seien zwei Vektoren (in der Ebene oder im Raum). Der Vektor 11,, sei die Pro-
jektion von a auf b (vgl. Anhang A1).
Man berechne ab in den folgenden Fällen:

a) a: e1+ 4e1, b: 3e1+ 21,

b)a= -3e1+ 2e1, = 3e1+ e1‚
c) a= 2e1+ e1+ 3:23, b: 5e1- e2+e,,
d) a: 0‘191+05z92 + W393: b: 91,
e) a= 4e1+ e1+ 293, b=—e1+2e1+e3.

Zusatzaufgabe: Man beweise allgemein, daß a, || b und (a, - a) J. b gilt.

2.1.5. Man zeige, daß folgende Gesetzmäßigkeiten bei der Projektion eines Vektors auf
einen anderen Vektor gelten (vgl. Anhang A1):

a) am) = ab: b) (M); = (Sa)(u:) = 5' €11»

c) (u+b)‚=a‚+b„ d) (Äa+ub)‚=}.a‚+pb‚.
(Voraussetzungen: b a: o, tat 0 bei a) und b); c # o bei c) und d).)
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2.1.6. A, B, C seien drei Punkte des Raumes; sie sollen nicht auf einer Geraden liegen.
Man betrachte A, B, C als Eckpunkte eines Dreiecks und bestimme Vektoren t, u, v‚w
mit

Ills“ MIIW... vllh... Wllmb

(n: Seitenhalbierende von c; w„: Winkelhalbierende von u; ha: Höhe von a; m„: Mittel-
senkrechte von b).

Hinweis: Bei der Ermittlung des Vektors v kann 2.1.4. verwendet werden!
Zahlenbeispiel: Man berechne t, u, v, w für A (1, 1, O), B (5, O, 1), C(2, 2, 7).

2.1.7. Von dem Vektor a = 2e, + Se, + 623 berechne man die Richtungskosinus
cos(e1; a), cos(e1; a), cos (e3; u) und die Riehtungswinkel <t(e,-; a), i= 1, 2, 3.

2.1.8. Für die Richtungswinkel eines Vektors a mit der Länge 4 gelte: <):(e,; a) = 50°,

<I(e;; a) = 60° und -g*< <t(e3; a) <rr. Wie groß ist <1: (e3;a)? Wie lauten die Koordi-

ä < <t(e3; u) < rr nicht fordert?)

2.1.9. Von einem Vektor a = me] + 112e; + age; sei bekannt: |a1= 7, 411 = 5, [X3 = 2. Man
ermittle alle Vektoren u, die diese Bedingungen erfüllen! Welche Winkel schließt ein der-
artiger Vektor a mit den Vektoren e„ c2, e, ein?

naten von a? (Gibt es fiir a weitere Lösungen, wenn man

2.1.10. Welche Vektoren a = 4x121 + uze, + rage, erfüllen die Bedingungen |a| = 20,

<I(e1; a) = <I(e1:a)= 60°?

2.1.11. Man bestimme den Winkel zwischen den Vektoren a und b:

a) a=2e1- e,+2e,, b=-2e,+2e;,
b) a=4e,—2e,+3e,, b= 4e1+5e1—2e3,

c) a= e1+2e2+2e,, b= 3e1—4e3.

2.1.12. Gegeben seien die Vektoren

1 l 1

a "2 , b" 0 , c 0

1 1 ~1

Man berechne:

a) la!’ !b!. Ich b) ab. bc. ac.
c)a><c,b><c,(a><b)c, d) (a+c)><(b+c),(a><c)(b><c),
e) a >< (b >< c), (a X b) >< c, f) das Spatprodukt [a‚ b, c],

2.1.13. Vorgegeben seien die Vektoren a = e, — 2e, + 3e, und b = 2e] + 3e; + c3. Man cl-
mittle zwei Vektoren x und y, fiir die gilt: x|| b, yJ.b und x +y = a.

2.1.14. Gegeben sind die Vektoren a = 3e, — e, + e, und b = e, + e; — e‚. Man ermittle
Einheitsvektoren, die senkrecht auf a stehen und mit b einen Winkel von 30° einschlie-
ßen.

2.1.15. Man bestimme zwei Zahlen an, und u; so, daß der Vektor a = e, + 0:12, + 013e; auf
den Vektoren b = —e‚ + 4e, + 2e, und c = 32, ~ 3e; - e, senkrecht steht.

2.1.16. Man zeige, daß die drei Vektoren a = 21+ 2e; + 2e3, b = 2e1 + e, - 2e3‚
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c = -2e, + 2e; — e; paarweise aufeinander senkrecht stehen und in der angegebenen Rei-
henfolge ein Rechtssystem bilden.

2.1.17. a und b seien zwei Einheitsvektoren des Raumes, die einen Winkel von 60° ein-
schließen.

a) Stehen die beiden Vektoren x = 2a - 3b und y = 4a + b aufeinander senkrecht?

b) Man bestimme |x|, |y| und [y — x].
c) Man bestimme die Winkel <I (-x,y - x) und <I(‘y. x —y).
d) Man veranschauliche sich die Ergebnisse von a), b), c).

2.1.18. Man bestimme die Projektionen des Vektors x = 3e, - 4e; + e3 auf die Koordina-
tenachsen, deren Längen und die Summe dieser Projektionen.

2.1.19. Zwei Vektoren a und b des Raumes sind durch ihre Beträge La} = 15, [bl = 10 und
je zwei Richtungskosinus cos (2,; a) = 0,6 und cos (e‚; a) = 0,8 bzw. cos(e‚; b) = 0,4 und
cos (e2; b) = 0,6 gegeben.

Man berechne:

a) Die Koordinaten von a und b,

b) die Richtungswinkel <I (e,-; a) und <I (e,-; b) (i = 1, 2, 3),

c) das Skalarprodukt ab,

d) den Winkel zwischen a und b,

e) die Projektion von a auf b.

2.1.20. Man beweise:

a) a+b+c=o=a><b=b><c=c><a,

b) aJ.b=>a>< (ax (ax (a>< m) = |a|‘b‚

2.1.21. a( 4: o) und c( is o) seien zwei nichtparallele Vektoren des Raumes. Für welche
Vektoren b gilt

a><(b><c)=(a><b)><c?

2.1.22. Man beweise mit Hilfe von Vektoren den Satz des Thales: Der Umfangswinkel
über dem Durchmesser eines Kreises ist ein rechter Winkel.

2.1.23. Man beweise mit Hilfe von Vektoren den Kosinussatz der ebenen Trigonometrie
(c7 = a’ + b’ — 2:117 cos y) und den Satz des Pythagoras (cl = a’ + b’).

2.1.24. A, B, C seien die Ecken eines gleichschenkligen Dreiecksinit a = b. Man beweise
mit Hilfe von Vektoren: s, = h, = w,. (Anleitung: Man setze u = CA, v = Ü}, und ermittle
Vektoren s, h, w mit s||s„, h||h„ w||w,.)

2.1.25. a und b seien zwei vom Nullvektor verschiedene Vektoren.

a) Unter welcher Bedingung ist das Skalarprodukt ab positiv, negativ bzw. gleich null?

b) Wann gilt |ab| = |aj |b|? Wann gilt ab = |a| |b|'!

2.1.26. Mit Hilfe des Vektorprodukts bestimme man den Oberflächeninhalt der durch
A(0‚ O, 0), B(4, 1, -1), C(1, 6, 1) und S(2, 2, 6) bestimmten Pyramide.

2 Pfau, Algebra ü 3
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2.1.27. Vorgegeben seien zwei Winkel a und ß mit O g ß < Ix g Man betrachte Ix bzw.

fl als Winkel eines Einheitsvektors a° bzw. b“ mit der positiven x-Achse (in einer
x, y-Ebene) und beweise mit Hilfe der Richtungskosinus von a° und b°:

cos (o: - ß) = cos accosfi + sin azsinfi.

2.1.28. A, B, C, D seien die Ecken eines Vierecks (in der üblichen Reihenfolge!) mit
]E[= |lTC‘| und |ÜÖ| = | DA |. Mit Hilfe von Vektoren beweise man, daß die Diagonalen
dieses Drachenvierecks aufeinander senkrecht stehen.

2.1.29. Von einem positiv orientierten rechtwinklig-kartesischen Koordinatensystem
K = [0; e], e21 gehen wir zur einem Parallalkoordinatensystem K’ = [0; v], v2] mit v, = 3e]
und v; = -e, - 2e, über. (Koordinatenursprung von K’ ist gleich dem Koordinatenur-
sprung von K in diesem Falle!) Bezüglich des Koordinatensystems K gelte:

43]» bifäl "llfil diliäl
a) Man bestimme die Koordinatenvektoren a’, b’, e’, d’ von a, b, c, d bezüglich des Ko-

ordinatensystems K’.
b) Man berechne a’Tb’, a’Tc’, a’Ta’.

2.1.30. Von einem positiv orientierten rechtwinklig-kartesischen Koordinatensystem
K = [0; e], 22, e3] gehen wir zu einem Parallelkoordinatensystem K’ = [0; v1, v2, v3] mit
v,=3e1, v2=2e,, v3= ~e3 über.
Bezüglich des Koordinatensystems K gelte:

3 4 -1
a:l‚ b:0‚ c: 2.

Z 5 -3

Man bestimme die Koordinatenvektoren von a + b, a - b, 2a - 5c, a >< b bezüglich K
und K’.

2.1.31. Vorgegeben ist ein Parallelkoordinatensystem K = [0; v], v2, v3]. G = {g‚-„] sei die
aus den g‚-„: = v‚-v„ gebildete (3, 3)-Matrix. Man beweise, daß für je zwei Vektoren
a = am), + am); + 4x303 und b = 5101+ fizv, + [im gilt: ab = aTGb.

Bemerkung: Die Größen g,-„ werden auch metrische Koeffizienten oder metrische Funda-
mentalgrößen genannt.

2.1.32. Man beweise, daß für das Spatprodukt . [a, b, c] der drei Vektoren
l1 = 9510i ‘i’ 95202 + W393, b : 5191+ I32’-'2 ‘L flsuay C = 71”) + V2”: i’ V3”: 8m:

lü, 11,6] =[v;. v2. vs]‘d€t[a, b. c]-

(Hinweis: Man berechne zunächst b >< c.)

2.2. Lineare Abhängigkeit von Vektoren a f’- “v

Lineare Abhängigkeit und Unabhängigkeit, Linearkombination, Basis (Bd. 13, 1.2.7.)

2.2.1. Gegeben sind die Vektoren v1 = 4e, + 4e; - 2e}, v, = 421' 22; + 4e;,
' v3: —2e1 +4e,+4e3.
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a) Man zeige, daß die Vektoren v1, o1, v, linear unabhängig sind. (Welche besondere Ei-
genschaft haben diese Vektoren bezüglich Länge und gegenseitiger Lage?)

b) Man stelle die Vektoren e,» als Linearkombinationen der Vektoren v], v1, u; dar.

2.2.2. Die folgenden Vektortripel sollen auf lineare Abhängigkeit untersucht werden:

3 2 5

a)a: -1, b:0, c'-3,
2 1 4'

2 2 1

b)a:1‚ b:3, (322,
1 1 4

2 -2 -2
c) a: -1 , b: 1 , c: l ‚

-3 1 -3

2 -1 5

d) a: 1 , b: 3 ‚ c: .

-2 5 -3

Im Falle der linearen Abhängigkeit bestimme man drei Zahlen /1, u, v mit
(,1, u, v)*(0‚ 0, 0) so, daßM+ub+vc=ogilL

2.2.3. Gegeben sind die Vektoren a = 5e1- 3e; - 2e3, b = 2e, + 2e; - 3e3‚
c = e, ~ 4e2 + 2e, Man zeige, daß diese Vektoren eine Basis bilden und stelle den Vektor
p = 2e] + 4e, — 3e, mittels dieser Basis dar.

/2.’2.4. Man zeige, daß die Vektoren a = e, — e1, b = e, + c3, z: = e; ~ e; linear unabhängig
sind und stelle den Vektor v = 3e, - 2e, + e; als Linearkombination von a, b, c dar.

/222.5. Unter der Voraussetzung, daß es sich bei a, b, c um linear unabhängige Vektoren
handelt, untersuche man die folgenden Vektortripel auf lineare Unabhängigkeit:

a)a+2b‚b-a‚c‚ b)a—-b,a~c,b'c,
c)a-b,b+c,b—c, d)2u+b,a-b+2c,9u+3b+2c,
e)b‘a,c-b,a~c, f)b—a,c-u,b+c—2a.
Im Falle der linearen Abhängigkeit des Vektortripels u, v, w bestimme man Zahlen ‚i. ‚u, v

mit (Ä. u, v) * (0, 0, 0) so, daß gilt: Au + m) + vw= o.

2.2.6. a, b seien zwei linear unabhängige Vektoren des Raumes, c = la + yb sei eine Li-
nearkornbination von a und b. Man berechne die Faktoren ‚1 und u (in Abhängigkeit von
a, b und c).

2.2.7. Man beweise, daß die Vektoren a >< b, a >< c, a >< d komplanar sind. (a, b, c, d: be-
liebige Vektoren des Raumes.)

><2.2.8. Man bestimme E so, daß die drei Vektoren

x= 321+ E2, -2e„ u = —e, + 4e, + 2e„ b = 221+ Se, + 4e,

komplanar sind.

2o
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2.2.9. Lassen sich alle Vektoren des Raumes als Linearkombinationen des folgenden
Vektortripels x, y, z darstellen?

1 2 1

a)x:1, y:0‚ z:2,
2 2 4

1 2 3

b)x:1, y:0‚ z:2.
2 2 5

Können die Vektoren

0 2

a: 2 und b: 2

2 1

als Linearkombination von x, y, z dargestellt werden’!

2.2.10. a, b, c seien drei linear unabhängige Vektoren des Raumes. Welche der folgen-
den Angaben sind mit dieser Voraussetzung verträglich?

la)lal=lbl=l‚ |€|=2‚ ab=--2-‚ ac=bc=0.

b)|al=|b|=1, ]c)=2, ub=—%, bc=-2, ac=0.

2.2.11. Es ist die Zahl u, so zu bestimmen, daß der Vektor a = 2e, + am - 2e; mit den
Vektoren b = —e1 + 4e, + 2e, und c = 2e] + Se, + 6e, in einer Ebene liegt. Welchen Wert
hat 11,? ‚



3. Lineare Gleichungssysteme

3.1. Homogene und inhomogene Systeme

(Bd. 13, 3.1.)

3.1.1. Man gebe alle Lösungen x der folgenden Gleichungen an:

a) —2x=o‚ b) (2—./I)x=1, c) G/7-3) x=0.

3.1.2. In welchen Fällen hat die Gleichung ax = b

a) genau eine Lösung x, b) keine Lösung x, c) unendlich viele Lösungen x?

3.1.3. Vorgegeben werden die folgenden Gleichungssysteme:

a)x—y=1, b)x—y=1, c) x- y=l‚
x+y=2‚ 2x—2y=y/I, 2x-2y=0‚

d) x-3y=0‚ e) 2x,-2x‚+2x;=0, f) 9x-l2y=2l,
-x+ y=0, 5x,- x1+7x,=O, 6x- 8y=14,

g) 6x+15y=9, h) x,+2x1+3x3=1, i) 2x+ y-3z=0‚
4x+l0y=8, 2x1- x‚+ x3=2, X‘4y+3Z=0,

3x1 + x3=2, 3x+6y~9z=0.
a) Welche der Gleichungssysteme a) bis i) sind homogen? Welche spezielle Lösung ist

Lösung eines jeden homogenen Gleichungssystems?
ß) Mit elementaren Verfahrensweisen berechne man Weitere Lösungen der homogenen

Gleichungssysteme a) bis i), falls solche existieren. Eventuelle Lösungen sind in Ma-
trizenschreibweise mit ganzzahligen Matrizenelementen anzugeben.

y) Mit elementaren Verfahren berechne man die Gleichungssysteme a), f) und g).
ö) Mit elementaren Verfahren berechne man die Gleichungssysteme b), c) und h).
e) Welche Aussage kann man über die Koeffizientendeterminante eines homogenen

Gleichungssystems mit ebensoviel Gleichungen wie Unbekannten hinsichtlich der
Existenz nichttrivialer Lösungen machen?
Gilt diese Aussage auch für inhomogene Gleichungssysteme? Man überprüfe die Ant-
worten anhand der Gleichungssysteme a) bis i).

3.1.4. Man bestimme den Vektor x, der die Gleichung Ax = b erfüllt:

2 1 4A = =

[-1 3]’ b [-9] '

3.1.5.

a) Für welche Werte /I e R besitzt das homogene lineare Gleichungssystem

(1 - Ä)x, + 2x2 + 3x3 = 0,

2X1‘(4+Ä)Xz‘ 2X3=0‚
3x1- 2x‚+(1-‚l)x;=0

nichttriviale Lösungen?

b) Man gebe die allgemeine Lösung fiir den größten Ä-Wert an.
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3.2. Allgemeine Lösung eines linearen Gleichungssystems

Cramersche Regel, Gauß-Algorithmus, Austauschverfahren (Bd. 13, 3,2., 3.3., 3.4., 5.3.)

3.2.1. Man bestimme alle nichttrivialen Lösungen der homogenen linearen Gleichungs-
Systeme:

a) x1‘ x1+3x,=O‚ b) 2x1+ x1+ x‚=0‚
2x1+3x1- x3=0, —x1+2x1+ x1=0‚
3x1+7x1-5x1=O, 3x1+4x1+3x3=0,

c) x1+3x1+2x1=0, d) 2x1—4x1+3x‚—4x.=0‚
2x1—2x1+5x1=0‚ 4x1+ x‚—3x,+ x4=0‚

—3x1+3x1-2x3=Ü‚ x1- x1+5x1+8x4=0‚
3x1+ x1—2x3+2x4=0‚

e) 2x1+5x1+x,— x„=0‚ f) x1+2x1—2x3— 5x4+ x5=0‚
x1—4x1 + x.=0, x1+3x;+2x3— 6x4+10x5=0,

-3x,+7x,+x3-6x.,=0, -2x1-4x1+2x3+ 9x,— 6x5=0,
-2x1- 4x; + 6x,+11x.+ 2x5 =0.

3.2.2. Für welche reellen Werte von ‚l haben die folgenden homogenen linearen Glei-
chungssysteme nichttriviale Lösungen? Man berechne diese Lösungen mit dem Aus-
tauschverfahren oder mit Hilfe des Gauß-Algorithmus.

a) Äx1+ x1— x;=0‚ b) -2x1+ x1+(6—‚1)x_-‚=0‚
x1 + Ax, + 2x, = 0, 5x1 — (4 + /1)x, = 0,

x1 + 2x1- Ax, = 0, (2 - Ä)x1+ 8x1 = 0,

c) (1~A)x1- %x,-11x3~5x.=0,
2x1 + (4 - ,1)x; + 13x1 + 3x4 = 0,

x1 + Ax; =0,
2x; + 9x1 + 3x. = 0.

3.2.3. Man bestimme

a) zu 3.2.2.a) diejenige Lösung, die durch die zusätzliche Gleichung x1 + x1+ 2x3 =l
festgelegt wird,

b) zu 3.2.2.0) die Lösungen mit x. = 1.

3.2.4. Man berechne, falls das möglich ist, mit Hilfe der Cramerschen Regel die Lösun»
gen der folgenden Gleichungssysteme:

a) 2x1+4x2+3x3=l, b) 2x,+2xz+5x3=3,
3x1-6x1-2x1= -2, x,—3x2—6x3=5,

-5x1+8x,+2x3=4, 7x,-5x;-8x3=15,
c) 3x1+ x1- x3=2‚ _ d) x1—3x;+2x3=1,

2x1 - x2 + 4x3 = 0, 2x1 - 5x1+ 3x, = 3,

x1+5x1*2x3=1‚ 3x1+ x1—2x1=9.
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3.2.5.

a) Man bestimme mit der Cramerschen Regel die Izösung x(t)‚ y(l) und z(t) des nachfol-
genden Gleiehungssystems:

1x + y + z = ,/Z

\/t‘x+ ty- tz= -13,
x-\/;y— t2z=t für t>0,teR.

b) Gegen welchen Grenzwert strebt die Lösung für t->0? Wie lautet die Lösung für
t= 0?

3.2.6. Mit dem Austauschverfahren oder mit Hilfe des Gauß-Algorithmus löse man die
folgenden Gleichungssysteme (falls sie eine Lösung haben):

a) 3x,+2xz+2x,= -1, b) x,~2x2+3x,=4,
x,+6x1— x,=3, 3x1+ x1-5x,=5,

4x,+ xz+5x,=-6, 2x,-3x2+4x3=7,
C) 2x1" xz- x3+2x4=3, d)-x,*2x;+ x3+3x,,=1,

6x,-2x,+3x,— x4=—3, x1 +3x3+2x4=3,
—4x1+2xz+3x,—2x.=-2, 3x,+2xz+4x3— x,,=1,

2x1 +4x3~3x4= —1, -2x,+6x,—2x3-2x.=16,

e) X1+2Xz+2Xs = -1, f) x,—2x2+2x3+3x..=3,
2x,+4x,+3x3- x4=1, x,+3x1+ x,+3x4=13,
‘X1‘2Xz+ X3+2X4=-8, 2x,+ xz+5x3—4x.=6,

-3x1-6x;+2x3+3x4=-21, 2x,—4x,+6x,—4x,=—4,

g) 6x, + 4x2 + 8x3+17x., = —20‚ h) 3x1 + x; - x3 + 4x5 = 5,

3X1+2X2+sX3+ 8x.,= -8, —2x1+2x, + x.+5x5=0,
3x,+2x2+7x3+ 7x.= ~4, — x, +2x,-3x.,—4x5=—5,

2x3- x,=4‚ x,+3x2+3x, —2x5=3,

" 2x, + 3x, + x. + 2x5 =18,

i) x1+2xz+3x3+ x„+ x5=3, j) x,+ 3xz+2x3=19,
x,+3xz+3x3+2Jc4+ x5=6, 2x,-18x2+ x3= -85‚
x,+4x,-+-3x3+2x.+2x5=5, -6x1+ 2x2+3x3=1,
x,+ x2+2x3+ x4+ x5=1, 3x,+ x2+5x3=16,
x, + 5x2 + 4x3 + 2x4 + 2x5 = 7,

k) 3x,— x‚+ 2x3=l‚ l) 3x1- x‚+ 2x3=1‚ ‘3
7x1-4x1- x3=0, 7x1-4x2- x3: -2,
-x,A3x2~12x3=-5, —x1-3x1-12x3=-5,
—x1+2xZ+ 5x3=2, —x,+2x1+ 5x3=2,

5x; +17x3= 7, 5x2 +17x3 = 7,

m) x,+2x2 -3x4=10, n) 3x,+ x1- x3-5x4=1,
2x,+ x1—3x3+2x.,=1, x,—4x1+3x3—2x,,=0,
-x,+ x;+ 3x,-2x¢= 3,
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o) x1+2x1— x3+3x,~ x5=1, p) -x1+ xz+ x, — x5=0‚
3x,— x1+4x3- x4+5x5=2, x14 x2-3x3-+-2x,,— x5=2,

3x2- x3-5x.-7x5=9,
3x,-3x,-5x,+2x4+5x5=2,

q) x,+2x;- x3 +4x5=2‚ r) x1+x2 =3,
x,+4xz— 5x3+ x,,+3x5=1, x1+x3 =1,

2x,-2x1+10x3+ x,,- x5=11, x3+ x.=1,
3x,+2x;+ 5x3+2x,,+2x5=12, x, +x3 =1‚

x3 + 2x4 = 3,

x,+x1+x3+ x..=0.

3.2.7. Wie lautet diejenige spezielle Lösung des in 3.2.6.0 angegebenen Gleichungssy-
stems, die der Zusatzbedingung x, + x, + x3 + x, = 1 genügt?

3.2.8. Von dem linearen Gleichungssystem Ax=b bestimme man - falls das Glei-
chungssystem lösbar ist — die allgemeine Lösung:

'12 2-14 -1
a)A=35 2 11,b= 7,

_—11—2 03 7

'20 3-1 1

b)A=12—12,b=2,
_4413 1

'15 2 15 2

c)A=51,b=3. d)A=51,b=3,
13-7 5 32 6

‘-2-3-5 -1 „

e 7 o —9

e“- 0-1 -9"" -6’
_4 5 3 -4

'13 211 11

f)A=25 321,b=18.
_—1o-112 -3

3.2.9. Man löse das Gleichungssystem Ax = cm + ßb mit

1 0 3 18 10

A= 2 1 1, a= 8, b= '1.
1 3 2 4 3

3.2.10. Man bestimme die Werte Ä (I. reell), fiir die die folgenden Gleichungssysteme
keine eindeutige bzw. gar keine Lösung besitzen:
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a) 2x, + x3 =1, b) — (3 + Ä)x, +x, + 3x, = 2,

6x,+‚Lx2 =5, -5x1+(2~/1)x2 +4x3=1,
7x,+ x,+‚lx3=6‚ 43x, +x,+(3—/1)x,=3.

3.2.11. Man bestimme die Werte ‚i (Ä reell), fiir die das nachfolgende Gleichungssystem
eindeutig lösbar ist.

(4-Ä)x,+ x, +2x,=2‚
—x,v}.x2 - x3=0,

2x2 + (2 — ,1)x3 =1.

3.2.12. Gegeben ist das Gleichungssystem

2x,+ x,+ x,=0,
—2).x, + Ax; + 9x3 = 6,

2x, + 2x, + Ax; = 1.

a) Für welche Werte ‚i (‚l reell) ist das Gleichungssystem eindeutig lösbar?
b) Für welche Werte ‚l (Ä reell) existieren unendlich viele Lösungen?
c) Für welche Werte A (‚i reell) existieren keine Lösungen?
d) Man berechne die Lösung für /1 = 1.

e) Man berechne die Lösung zu b).
f) Wie können die Ergebnisse von a), b) und c) geometrisch gedeutet werden?

3.2.13. Gegeben ist das Gleichungssystem

x,-2x,+3x,+4=0,
2x,+ x2+ x3-2=0,
x1+ax2+2x3+b=0.

a) Mit Hilfe des Austauschverfahrens oder des Gaußschen Algorithmus entscheide man,
fiir welche Werte a und b das System
(x) genau eine Lösung,
ß) keine Lösung,
y) unendlich viele Lösungen
besitzt.

b) Man gebe die Lösung des Systems für die speziellen Werte a = 1 und b = 4 an.

c) Man betrachte jede Gleichung des Systems als Gleichung einer Ebene. Was bedeutet
dann der Fall y) geometrisch, und wie lautet der geometrische Ort aller Lösungs-
punkte?

3.2.14. Man kann ein Gleichungssystem mit bekannter Lösung erhalten, indem man zum

Beispiel in die Ausdrücke

x, + 2x2 - x3,

x, - x2 + x3,

x, + 14x, - 9x3 (l)
die gewünschte Lösung x, = 1, x, = 2 und x, = 3 einsetzt. Damit erhält man das Sy-

stem (2): '

x, + 2x2 - x, = 2,

x, - x, + x, = 2,

x, + 14x, - 9x3 = 2. (2)
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Nun ist aber, wie man leicht überprüfen kann, auch 21 = 2, f; = 0 und i, = 0 eine Lösung
von (2).

Warum hat das System (2) mehrere Lösungen?

3.2.15. Ein Betrieb stellt die Erzeugnisse E1, E2 und E, her, die auf den Maschinen M1,

Mzlund M, bearbeitet werden müssen. Aus der nachfolgenden Tabelle ist zu ersehen, wie-
viel Stunden aufjeder Maschine benötigt werden, um eine Einheit von E, (i =1, 2, 3) her-
zustellen.

E1 E, E1 Wieviel Einheiten eines jeden Erzeugnisses
werden produziert, wenn aufjeder Maschine
genau 120 Stunden gearbeitet wird?

3.2.16. Nach einem Lehrgang sollen 30 Personen mit je einem Buch prämiiert werden. Es

stehen genau 600 M zur Verfügung, um Bücher im Wert von 30 M, 24 M und 18 M zu

kaufen.
Welche Möglichkeiten für den Kauf dieser 30 Bücher gibt es, wenn von jedem Buch

mindestens ein Exemplar verwendet werden soll?

3.2.17. Die Zahl 23 ist so in drei positive, ganzzahlige Summanden zu zerlegen, daß das
Dreifache des ersten, das Achtfache des zweiten und das Elffache des dritten Summanden
die Summe 200 ergibt.

3.2.18. Durch Anwendung des vollständigen Austauschverfahrens gebe man die x, in Ab-
hängigkeit der y1(i = 1, 2, 3) an.

3) y1= X1‘ 2x31 b) y1= X1+3X2 ‘ 2x3:

1
y, = 3x1+ 7x1, y; = “2-x1 - 2x1+ 3x3,

1
y1= 6x2 + 5x3, y1= x1 + ?x2 + x1.

3.2.19. Man löse mit Hilfe des Austauschverfahrens oder mit dem Gaußschen Algo-
rithmus das nachfolgende Gleichungssystem nach x1, x1, x1. x4 auf und berechne die x1

(i = 1, ..., 4), falls y1= 3,y‚ = —6,y3 = 7 und y. = 1 gilt.

y1= 2x1- x2~2x3+ x.+2,
y2= 'x1+ x2+2x3+ x1-4,
y, = 3x1 - 2x1 + 2x3 — 3x1 +1,
y,,= -2x1+ x1—3x1+ x,,+2.

3.2.20. Von dem nachfolgenden Gleichungssystem bestimme man

a) die allgemeine Lösung des zugehörigen homogenen Systems,
b) die allgemeine Lösung des inhomogenen Systems.

-2 1 3 -1 x. 2

4 -2 -1 2 . x2 = —9

-2 1 s -1 x. —3

—1o s 25 -5 x. o
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3.2.21. Gegeben ist das inhomogene lineare Gleichungssystem

x1 + x; + x, = 1,

x, + x2 ~ x, = 1,

x, - x2 + x3 = 1,

-x1+x2+x3=1‚
a) Man untersuche das System auf Lösbarkeit.
b) Durch welche Zahl ist die Eins auf der rechten Seite der ersten Gleichung zu ersetzen,

damit das System lösbar wird?

3.2.22. Man bestimme ein lineares Gleichungssystem Ax: b mit zwei Gleichungen und
vier Unbekannten, welches

1 3 1

x: Ü +t, +10 =x+t-x+t-x0 O 22 0 1 l 2 2

4 2 0

als allgemeine Lösung besitzt.

3.2.23. Man bestimme den Rang rder Koefflzientenmatrix und den Rang r, der erweiter-
ten Koeffizientenmatrix. Auf der Grundlage dieser Ergebnisse entscheide man über die
Lösbarkeit der folgenden linearen Gleichungssysteme. Wieviel — geeignet ausgewählte —

Unbekannte können beliebig festgelegt werden?

a) x‚+ x,+ x3=2‚ b) 2x,-2x,+2x,'= 0,

3x1+2x2+ x3=2, 5x,- x1+7x3=0,
2x,+3x2+4x3=3, 3x1- x1+4x;=0,

c) 6x1+ 4x2 + 8x, +17x,, = ~20, d) X1+ x, = 3,

3x1+2x2+5x,+ 8x..=—8, x1 +x4=5,
3x1+2x,+7x,+ 7x4=*4, x1 +x,+x4=8,

2x3‘ x4=4, 2x1 +x3-x4= 1,

e) 3x,+4x,-x3= 1, f) 3x,+2x, — x.=5,
x1- x2+x3=0, 4x2+2x3~3x.,=3,

5x,+2x1+x3=2, x,~5x2— x3+3x.,=2,
2x, - x, =1.

3.3. Systeme von linearen Ungleichungen

(Bd.13, 3.6.)

3.3.1. Bei den folgenden Ungleichungssystemen für x, y ermittle man die Lösungsmenge
graphisch. (Die Lösungsmenge soll in der x, y—Ebene eingezeichnet werden!)

a) -x :0, b) x :4.
x+ .v§2, x+4y§8,

—3x+2y§9, -2x+ y§2,
C) x 24, d) -yä*4‚

x+4y§8, ~3x+ y§2,
--x~4y§~8, -3x+2y§9.
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3.3.2. Von der Ißsungsmenge der folgenden Ungleichungssysteme für x, y, z bzw. x1, xz,
x3 sollen Grund- und Aufriß oder ein Schrägriß angefertigt werden.

a) -x§0, b) —2§x§3,
-y§0, —1§y§4,
—z§0, 0§z§x+3,

6x+3y+2z§6,
C) X12 0,352 ä o. d) _ X15 2.

-2; x3§4, X120,

X1+ X123. X320,
x,+ x255, 2x;+x,§6.

3.3.3. Man bestimme den Durchschnitt der Geraden g mit den in 3.3.2. c), d) angegebe-
nen Bereichen.

x1 2

g: x2 =l2‚-°°<t<°°.
x3 1

3.3.4. Man beweise, daß die Menge M= {x I Ax; b} konvex ist. (Eine Menge MCR”

heißt konvex, wenn mit JICG M und Jzce M auch die gesamte Verbindungsstrecke

s={y|y=ä+2(‚’c—}),0;2g 1} zu M gehört.)

3.3.5. Man ermittle die Menge aller Punkte (x, y), die der Ungleichung |xl + 2M § 4 ge-
nügen.

(Hinweis: Die vorgegebene Ungleichung kann in jedem der vier Quadranten der x,y-
Ebene durch eine lineare Ungleichung ersetzt werden.)

3.3.6. In welchen Punkten trifft die Halbgerade h zum ersten Mal auf die in 3.3.2.a)‚ b)
angegebenen Bereiche?

x 5 -5
h: y = 5 +t -5 ‚ IäO.

z 1 1

3.4. Lineare Abhängigkeit von Spaltenvektoren; Rang einer Matrix

(Bd.13‚ 1_2.7.,3.3.)

3.4.1. Die folgenden Systeme von Spaltenvektoren sind auf lineare Abhängigkeit zu un-

tersuchen! Bei welchen Aufgaben kann der jeweils letzte Spaltenvektor als Linearkombi-
nation der übrigen Spaltenvektoren dargestellt werden?

1 0 2

°)
3 __

a>‘[’§]’[-§]v b) [Mi],
10 4 -l 4 ~14 l0

d)0,1,5, e) 2,~3, 13, f)1‚ 2,0,
2 3 6 3 0 6 4 0 O
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'3 -1 4 4 -2 16

1 -2 2 *2 1 —892.0.1. h) 1.5,_18.

_4 3 5 6 —18

3.4.2. Die folgenden Systeme von Spaltenvektoren erzeugen einen Unterraum im R5.

Man ermittle die Dimension dieses Unterraumes!

'2 1 1 1 2 1 1 3 1 2 1

1 0 1 -1 1 -1 2 0 1 1 0

a)0‚1‚0‚ 1, b)0‚ 1‚*‚1‚ 1‚ c)0‚0 2-
0 0 2 -4 0 -4 4 —4 2 0 2

_3 0 1 1 3 1 -2 4 1 3 1

3.4.3. Man bestimme den Rang der folgenden Matrizen:

'1 2 2 1 4 0 4 10 1

a) 2 5 7 1 8 ) b) 4 8 l8 7 )

1 3 4 3 Z 10 18 40 17

_3 4 1 2 9 1 7 17 3

_ 1 4 0 2 -3 -1
2 1 11 2
1 0 4 _1 0 2 1 3 4 0

c) 11 4 56 S‘, d) -2 10-1 2 4,
2 _1 5 _6 -3 -1 1 0 9 5

' -1 7 1 4 3 3

' 3 2 4 1 0 1 2 1 A1 -2 1

e) -1 0 2 4 1 f) 2 5 1 1 4 3

0 1 -4 3 —1 ’ -1 0 2 3 2 A2 '

_ 1 3 0 2 -1 2 7 4 3 0 2

3.4.4.

1 3 0 2

_ 3 _ 4 5 _ 0 _

V1 0 ‚ "2 1 s Us 2 a „4 1 s

2 0 6 5

1 0 0 0

e = 0 _ 1 e 0 e = 0
1 0 y 92 0 y 3 1 y 4 0 -

0 O 0 1

a) Man zeige, daß die Vektoren v1, ..., v, und e„ ..., e‚.jeweils eine Basis des R‘ bilden.
b)

c)

Man stelle jeden Vektor e,»(i = 1,

dar.
Man stelle jeden Vektor v,(i = 1, ..., 4) als Linearkombination der Vektoren e,, ‚.., e,.

dar.

..., 4) als Linearkombination der Vektoren v1, ..., v4



4. Analytische Geometrie

(Vorbereitungsband 7., 8., Bd. 13, 1,4,)

4.1. Gleichungen von Geraden und Ebenen

Parameterdarstellung, parameterfreie Darstellung, Hessesche Normalform, Plückersche Darstellung,
Achsenabschnittsform ‚

4.1.1. Man gebe die Gleichung einer Geraden g des zweidimensionalen Raumes
(x, y-Ebene bzw. x‘, xz-Ebene) in Parameterdarstellung und in parameterfreier Darstel—

lung an, wenn jeweils gefordert wird:

1. g ist die x-Achse.
2. g ist die y-Achse.
3. g geht durch den Ursprung, verläuft im 1. und 3. Quadranten und bildet mit der

x-Achse einen Winkel (p mit lamp =

4. g geht durch den Ursprung, verläuft im l. und 3. Quadranten und bildet mit der
y-Achse einen Winkel (p = 30°.

5, g geht durch den Punkt P(‘/3', 3), verläuft im 1. und 3. Quadranten und bildet mit
der x-Achse einen Winkel q: = 60°.

6. ggeht durch die Punkte P(-1,9) und Q(5, -3)‚ Y
7. g geht durch die Punkte A(2‚ -3) und B(0, -6).
8. g schneidet auf der negativen x-Achse die Strecke s = 4 und auf der positiven y-Achse

die Strecke t= 12 ab.
9. g hat den Richtungsvektor q = -4e, + 2e, und geht durch den Ursprung.

10. g ist zur Geraden 2x -y = 3 parallel und geht durch den Punkt P(l, -3).

4.1.2. Man gebe die Gleichung einer Geraden g des dreidimensionalen Raumes (des
x, y, z-Raumes bzw. des ‚n, x2, xyRaumes) in Parameterdarstellung an, wenn jeweils ge-

fordert wird:

1. g ist die x-Achse;
2. g ist die z-Achse;
3. g verläuft parallel zur y-Achse und geht durch Punkt P(l, 2, 3);
4. g ist parallel zu dem Vektor a = e, + 2e; — 2e; und geht durch den Punkt Q(1,Q, 1);

5. g geht durch die Punkte P1(1, -2, 2) und P2(3, -2,1); .

6. g geht durch die Punkte A(1, 2, 3) und B(4‚ 5, 6);
7. g geht durch den Schnittpunkt S der Geraden

r = (5, -2, 1)’ + I(- 1, 7, 4)’, - 0° < t< w, mit der y, z-Ebene und verläuft parallel zur
z-Achse.

4.1.3. Von der Geraden g (in der x‚y-Ebene) mit der Gleichung 8x + 15y + 170 = 0 be-
stimme man eine Hessesche Nomialform.

4.1.4. Gegeben seien die Gerade g (in der x, y-Ebene) mit der Gleichung
4x— 3y+ 15 = 0 sowie die Punkte P,(2, 1), P‚(-3‚ 6) undP3(-6, -3). Man überprüfe,
welche Lage die Punkte P‚<(i = 1, 2, 3) und 0(0, 0) gegenüber g einnehmen und bestimme
den Abstand e, des Punktes P, von der Geraden g.

4.1.5. Man bestimme die Gleichung einer Geraden g, die durch den Punkt P(-1, 3) geht
und vom Punkt Q(2, ~ 1) den Abstand e = 4 hat.
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4.1.6. Man überprüfe, ob die Punkte P, und P2 auf der angegebenen Geraden liegen. (Für
tgilt jeweils -°° < t< 0°.)

1. P‚(5,2, 11), P2(3,4, 1,), r= (1, 0, 3)‘ + t(2, 1, 4)‘.
2. P,(2, 3, 0), Pz(2, 3, 6), r= (1,2, 3)‘ +t(1,1,3)’.
3. P1(6, 2, 0), P1(9, 4, 0), r= (6, 2, 0)’ + t(3, 2, 0)‘.

4.1.7. Man bestimme die Zahlen a und b so, dal3 der Punkt P(5‚ 3, 1) auf der Geraden
r= (6, a, 4)‘ + [(1, 2, b)T, —oo < t< w, liegt.

4.1.8. Gegeben sind eine Gerade g mit der Gleichung
r= (1 + 3t)e1 + (1 + t)e„ —°° < t< 0°, und der Punkt P(3, —4). Man bestimme den
Schnittpunkt S von g mit der y-Achse sowie den Abstand von P zu g.

4.1.9. Die Gerade g gehe durch die Punkte P1 und P1. (g ist die durch P, und P, ,,aufge—

spannte“ Gerade.) Man errnittle eine parameterfreie Darstellung von g:

a) „Fortlaufende“ Gleichung (g als Schnitt zweier Ebenen),
ß) „Plückersche Darstellung“ (siehe Anhang A2).

1- P10. *2. 3), Pz(4, 2. 8).

2- P10. 2. 3), P2(4. 5. 5)
3- P101. 4. 5). P20. 4. 6)-

4.1.l0. Man bestimme eine parameterfreie Gleichung der durch die nachfolgenden Anga-
ben jeweils festgelegten Ebene E:

1. In E liegen die Punkte P1(0, 0, 1), P;(1, -1, 0) und P3(-2, 1, 1).

2. In E liegen die Punkte A(1, O, -1), B(2‚ -1, 1) und C(—1, 1, 2).
3. In E liegt der Punkt P„(1, —2, 1), der Ortsvektor Wgist senkrecht zu E gerichtet.
4. In E liegen die Punkte P‚(1, 2, 3) und P‚(3‚ 2, 1), E steht senkrecht auf der Ebene

4x - y + 22 = 7.
. In E liegt der Punkt P„(2‚ 1, — 1), die Schnittgerade g der Ebenen 2x + ‚v ~ z = 3 und

x + 2y + z = 2 steht senkrecht auf E.
6. In E liegt der Punkt A(1, 1, — 3), E verläuft parallel zu den Vektoren

a = (-3‚ -2, 2)’ und b = (1, -3, -8)‘.
. In E liegt der Punkt P„(2, 4, 3), der Vektor a steht aufE senkrecht. a = 3e, + 2e; + e3.

. In E liegt der Punkt Q(l, —1, 3), E verläuft parallel zur Ebene 3x1+ x, + x3 = 7.

. In E liegt der Punkt Fo(O, O, 4); der Einheitsvektor u, der mit der positiven x- bzw. y-
bzw. z-Achse den Winkel 120° bzw. 45° bzw. 60° bildet, steht senkrecht auf E.

10. E enthält die Gerade g, und ist zur Geraden g. parallel.
g‚: r= e, + 3e, + t(2e‚ + Se, + 42,), —oo < t< w; g; wird bestimmt durch die Punkte
P,(3, -1, 0) und P‚(4, 0, 1).

u
.

0
0

0
x
:

4.1.11. Gesucht ist eine Gleichung der Ebene E in Parameterform, die durch die jeweils
angegebenen Bestimmungen festgelegt ist.

1. E enthält den Punkt P(1, -1, 2) und verläuft parallel zu den Vektoren a = (1, 3, 1)’
und b = (1,4, 2)’.

2. E geht durch den Ursprung und ist parallel zu den Geraden
r, = (1, 2, 3)‘ + t(4, 5, 6)‘, —oo < t< oo,und r. = (7, 8, 9)‘ + s(10,11,12)T,*°° < s < m.

3. In E liegen die Punkte P,(4, v 2, - 11), P‚(2, 3, 4) und P3(6, 8, 10).

4. In E liegen die Punkte A(1, -3, 0), B(2, 1, -2), C(-1, 3, 1).
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5. E enthält die Punkte P‚(1, —3, -8) und P‚(4, -1, -6) und verläuft parallel zu dem
Vektor r = (0, l, 3)’,

6. E geht durch den Schnittpunkt der drei Ebenen 2x +y — z = 2, x — 3y + z = -1,
x + y + z = 3 und verläuft parallel zur Ebene x + 2y + z = 0.

4.1.12. Von den vorgegebenen Ebenengleichungen bestimme man die Achsenabschnitts-
form und eine Hessesche Normalform.

1.6x+3y+2z=6; 2. 2x-2y+z=—4.

4.1.13. Man bestimme den Abstand des Punktes P von der Ebene E.

1. P(4, —3‚1),E:x—8y+32z+6=0;
2. P(1,1,1),E:2x+6y+ 9z—6=0;
3. P(—2‚ -6, 1), E: —x +12y + 72z = 2.

4.1.14. Gegeben sind die beiden parallelen Ebenen Ax + By + Cz + D, = 0 und
Ax + By + Cz + D, = 0. Man weise nach, daß der Abstand zwischen diesen Ebenen gege-

ben ist durch

|D1—D2

1/A2+B2+c1’

4.1.15. Die Gleichung n = 0(P variabel) stellt eine Ebene durch P, senkrecht zu n

dar. Man mache eine Aussage über die Ungleichung n> O und begriinde diese!

e:

4.1.16. Man bestimme die Gleichung einer Ebene, die den Schnittpunkt S der beiden Ge-
raden

gl: r, = -ex + 3e, + 3e, + u(—e„ + 2a,), -°° < u < 0°, und

g1: r; = -e,,+ 3e, -2e, + v(2e,+ e,), - 0° < v< 0°,

sowie die Schnittgerade der Ebenen El: 3x - 5y - 4z = 11 und E2: 3x — 3y + z = 5 ent-
hält.

4.1.17. Durch den Schnittpunkt S der Ebenen E,: 2x +y - z = 2, E2: x - 3y + z = -1
und E3: x + y + z = 3 soll parallel zu der Ebene E4: x + y + 2z = 0 eine Ebene E gelegt
werden, deren Gleichung gesucht ist.

4.2. Geometrische Grundaufgaben

Schnitt, Verbindung, Abstand, Winkel, Projektion, Lot, Spiegelung, Gemeinlot

4.2.1. Von den Geraden g, und g, der x‚y-Ebene bestimme man den Schnittpunkt S und
den Schnittwinkel qz(0° g q) g 90°). Falls die Geraden zueinander parallel sind, bestimme
man deren Abstand.

1. g; geht durch P,(0, 1) und P2(3, 2), g, geht durch P‚(1, -1) und P.(3, -4).
2. g, geht durch P‚(0‚ 2) und P2(1, O), g, geht durch P3(—4, 2) und hat den Anstieg m = 2.

3. g, geht durch P‚(0‚ -3) und P‚(3‚ 0), g, hat die Gleichung y = x + 7.

4. g, bzw. g; haben die Gleichungen 5x + 3y = 6 bzw. 3x + Sy = 10.

4.2.2. Die zwei Geraden g,: r, = a + tb, -0° < t< 0°, und g2: r; = c + sd, —w < s < 0°, des
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x, y, z-Raumes haben genau dann einen Punkt gemein, wenn ein Wertepaar (t, s) alle drei
Gleichungen

tb, - sdl = c, ~ (1,,

‘I72 ‘ 5d: = C1 ‘ 01; (1)

tb3—sd3=c3-a3 '

erfüllt. Man deute den Fall, daß ein Wertepaar (t, s) nur die zwei letzten, nicht aber die er-
ste der Gleichungen (1) erfüllt.

4.2.3. Falls die unter a) bis k) vorgegebenen Geraden n und r, des dreidimensionalen
Raumes (x, y, z-Raum bzw. x„ x1, x3~Raum) einander schneiden, so berechne man die
Koordinaten des Schnittpunktes S und den Winkel q: zwischen diesen Geraden. Falls die
Geraden windschief oder zueinander parallel sind, dann berechne man deren Abstand d
und, fiir windschiefe Geraden, deren Winkel qz.

Für den Winkel soll jeweils gelten: 0° < q: ä 90°.
Für jede der Geraden gilt: -°° < t< 0° bzw. -°° < s < w.

"l 1 2 -1
a)r,=3+t 2, r1=O+s 1,

_1 -1 1 0

" l l 2 -1
b) r,= 2 +t 0 , T]: -4 +s 3 ,

—l —3 v1 15

4 2

c) r1= 4 +t 3 , r;= 3

l 2 2

-1 2 O ~1
d)rl= 2+t0, r1=3+s 2,

1

‚ 2 1 2 1

e) r,=2 +13, r2= 3 +54,
1 2_3 4

' l -l 0 3

f) r1= 2 +1 0, r,= -2 +s0,
_—2 2 0 6

g) r, = 2(2 + t)e‚„ + 6e, + (1 - t)e„
r, = (5 - 2s)e‚ + (5 + 4S)ey + se,,

h) r1= 7e, -12e, + 4e, + t(—e, + 4e, ~ 2,),

r; = -8e„ + 6e, + e, + 5(-3e, + 4e, + e‚)‚

i) r1 = —e, + e, ‘ e, + t(2e, + 2,),

r, = 3e, + e, + s(—e, + 2e, + e‚),

j) r, = (-5 + 20c, + (2 + t)e‚ + (5 + t)e„
r; = 3(l - s)e‚ + (1 + s)e', + (—4 + 5s)e„

3 Prorr, Algebra 0 3
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\‘k) r, = (6 + 4t)e, +(1— 4t)e‚ + 2(2 + t)e„
r; = (10 + 6s)e, — 3(1+ 2s)e‚ + 3(2 + s)e,.

4.2.4. Falls die unter a) bis k) vorgegebenen Ebenen E1 und E, des dreidimensionalen
Raumes (x, y, z-Raum bzw. x1, x1, x,-Raum) einander schneiden, so bestimme man eine
Parameterdarstellung der Schnittgeraden g sowie den Winkel q: zwischen E1 und E2, wobei
0° g qr g 90° gelten soll.

Falls die Ebenen zueinander parallel sind, dann berechne man deren Abstand d.

a) E1:4x+11y—9z=6, E,:x+14y—6z=9,

b) E1: 2x,—5x,+3x3=5, E2: —4x1+10x;-6x3=8,

c) E1:x1-3x,+3x3= A2, E;:3x1+2x2+x,=5,
d) E1 wird aufgespannt durch die Punkte P,(—1, ~3, -1), P2(1, l, —4)‚

P3(2, 4, -6); E1: 4x- 3y— z = 4,

e) E,:x+y+3z=1, E1:3x—z+3=0,

f) E,:x+y=3, Ez:2x+3y~z=3,
g) E1:x1+2x2~x3=1, E2:2x1-x3+x,=0,
h) E,:3x1+7x2+x,=1, Ez:2x,+x2-4x3=2,

'3" 1 0

i) E1:r,=4+t-1 +u2, -°°<t,u<°°,
_1‘ 2 1

‘ 1 3 1

Ez:rz= -1+v 2 +w 1, '°°<u,w<°°,
1 1 -2

‘o’ o 1

j) E,:r,=0+t4+u3,~°°<t,u<°°,
_0‘ 1 0

'1' -1 3

E,:r2= 2 +1; 1+w 5,-°°<v,w<°°,
_l_ 1 -1

'2' 5 3

k)E1:r,=0+t-2 +u1,—°°<t,u<°°,
_7_ 6 8

" 2 2 1

E,:r1= -1 +v -3 +w0‚-°°<v,w<°°.
_ 5 —2 2

4.2.5. Mit den Mitteln der Vektorrechnung weise man nach, daß für den Abstand d eines
Punktes Po von einer Geraden durch die Punkte P, und P2 gilt:

__Ifi'Tz _\TQ><P17’od= P f .

"’° war Incl
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>
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P, Bild 4.1

Q ist der Fußpunkt des Lotes von Po auf die durch P, und P, aufgespannte Gerade (vgl.

Bild 4.1).

4.2.6. Welchen Winkel (p bildet die Schnittgerade g der Ebenen E,:2x+ y= z und
E,: x + y + 22 = 0 mit der x-Achse?

4.2.7. Von der durch die Punkte P,(2, 1, 1) und P,(5‚ 2, 3) aufgespannten Geraden g be-
stimme man:

a) eine Parameterdarstellung,
b) die Koordinaten des Schnittpunktes S mit der y‚z-Ebene,
c) die Koordinaten des Fußpunktes Q des Lotes von Po(—l‚ 3, —1) auf g,

d) den Abstand d des Punktes P„(- 1, 3, -1) von der Geraden g.

4.2.8. g, sei die Schnittgerade der Ebenen x + y — z = 1 und 2x + y — z = 2, g, sei die
Schnittgerade der Ebenen x + 2y — z = 2 und x + 2y + 2z + A = 0. Man ermittle:

a) eine Parameterdarstellung des Gemeinlotes lvon g, und g„
b) den Schnittpunkt F, bzw. F, von l mit g, bzw. gz,

c) den (kürzesten) Abstand d von g, und g,

Hinweis: Das Gemeinlot von zwei Geraden g, und g; des Raumes ist eine Gerade I, die
beide Geraden g, und g, schneidet und auf beiden Geraden g, und g, senkrecht steht. Das
Gemeinlot ist für je zwei nichtparallel verlaufende Geraden erklärt.

4.2.9. Gegeben sind die durch r, = (1 + De, -(1+ 2/i)e, + (2 + A)e,, -00 < ‚l < m, und
r, = ;4e,, -0° < ‚u < 00, dargestellten Geraden. Man bestimme diejenigen zwei Punkte auf
den Geraden, die den kleinsten Abstand haben, und berechne diesen Abstand.

4.2.10. Auf der Schnittgeraden der Ebenen E,: x + y + z = 2 und E2: x + 2y - z = l
suche man denjenigen Punkt P, der von den Ebenen E3: x + 2y + z = 3 und
E4: x + 2y + z = —1 den gleichen Abstand hat, für den also PT, = T,.gi1t (vgl. Bild 4.2).
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4.2.11. Man berechne eine Hessesche Normalform derjenigen Ebene, die zu den Vekto-
ren a = —3e‚ - 2e; + 2e; und b = e1 - 3e; - 8e, parallel ist und den Punkt P(1, 1, — 3)

enthält. Weiterhin bestimme man den Abstand e dieser Ebene vom Nullpunkt.

4.2.12. Gegeben seien die Punkte A(1‚ 0, 0), B(0, 2, 0) und C(0, 0, 3), die eine Ebene E
aufspannen. Man bestimme
a) eine Parameterdarstellung von E,
b) eine parameterfreie Darstellung von E,
c) eine Hessesche Normalform von E,

d) den Abstand des Punktes P(4, 4, 2) von E,
e) eine Parameterdarstellung der Schnittgeraden von E mit der x, y-Ebene.

4.2.13. Gegeben sind die Ebenen E1: x —y + z = 0, E2: 3x -y — z + 2 = 0 und
E3:4x-y-2z+‚1=0.
a) Man bestimme, falls das möglich ist, die Zahl Ä so, daß sich diese drei Ebenen in einer

gemeinsamen Geraden schneiden.
b) Man gebe eine Parameterdarstellung dieser Geraden an.

4.2.14. Gegeben sind eine Gerade g und eine Ebene E. Man bestimme die Koordinaten
des Durchstoßpunktes (des Schnittpunktes) S und den Schnittwinkel q).

1. g: r=(1+,{)ex+i.e,+).e,, -00<Ä<00, E:2x+y-z=2.
2. g: Die durch die Punkte P( e 2, O, 3) und Q(0, 4, — 1) aufgespannte Gerade. E: x = z.

3. g: r= —(2,3,4)T+ [(1, -2, S)‘. — on < t< 00,

E: r=(3‚ -2, 5)T+ u(2, 3, — 12)T+ v(49,1,6)T, - 00 < u, v< 00.

4. g:r=(1, '1,0)T+t(2, -1,3)‘, -°°<t<°°,E:3x+2y—z=5.

5. g: r=eX+ e,+e,+t(3e,—%e,), -00<t<00,

E: die durch die Punkte P,(6, -2, -3), P1(3, 0, 3) und P3(4, 2, 1) aufgespannte Ebene.

4.2.15. In welchem Punkt durchstößt eine Gerade g, die auf der Ebene E: x — 2y + 22 = 3

senkrecht steht und den Punkt P(6, — 8, 13) enthält, die Ebene E?

4.2.16. Man bestimme die Fußpunkte der Lote, die von den Punkten Pund Q auf die Ge-
rade g zu fällen sind!

1. g: r= e, + e, + e, + t(3e‚ + 4e, + 52,), - 00 < t< 00; P(4, 0, 0), Q(8, 2, 6).

2. g: Die durch die Punkte A(—1, 2, -1) und B(-1‚ 3, -2) aufgespannte Gerade;

P(1‚0‚6)‚ Q(0‚0.0)-
3. g:r=(0,0,1)T‚+t(—1‚1,1)7,—00 < t< 00; P(~2,1,1), Q(4, ~4, -3).

4.2.17. Vom Punkt Pist das Lot auf die Ebene E zu fällen. Man bestimme die Koordina-
ten des Lotfußpunktes F.

1, E:2x—y+4z=—16,P(1‚0,6); 2. E:x+z¥1,P(2,5,3).

4.2.18. Gegeben seien die Ebene E: x — 2y + 2z = -1 und die durch die Punkte
P1(1, 0, 0) und P‚(0, -1, v1) aufgespannte Gerade gl.
a) Man bestimme diejenige Gerade g„ die in E liegt und g, senkrecht schneidet.
b) Welche Punkte P3 und P4 auf der Geraden g, haben von E den flstand 1?

c) Man bestimme die Länge d der (orthogonalen) Projektion von PIP, auf einen Norma-
lenvektor von E (vgl. Bild 4.3).
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Bild 4.3

4.2.19. Man bestimme die Koordinaten des Spiegelpunktes P,’, vom Punkt Po(x„‚ yo, zu)

bezüglich einer Ebene E: ax + cz = d.

1. P„(x„‚y„‚ zo), Eur’ n = q (Hessesche Normalform).
2. P0(2,3,1), E: x+2y—z=1.
3. Po(—7,9, 1), E: 5x1— 4x2~ x3 =12.
4. P0(3, 6, -6), E: 2x, + xz — 2x, = 6.

4.2.20. P‚(0‚ -1‚ -1) und P;(—2‚ 3, 3) seien Spiegelpunkte bezüglich einer Ebene E.

Man bestimme deren Gleichung.

4.2.21. Die Punkte P1 (2, -1, 1) und P‚( *1, 3, 1) bestimmen eine Strecke P1P, Im
Punkt Q( 1, 0, 2) befindet sich eine punktformige Lichtquelle, die einen Schatten auf die
Ebene E: ax + 3y - z = 6 wirft.

Bild 4.4

Man bestimme die Länge des Schattens der Strecke P1P; auf E fiir a) a = 4, b) a = 2

(vgl. Bild 4.4).

4.2.22. Im Punkt Q(5‚ 7, 10) befindet sich eine punktförmige Lichtquelle. Man bestimme
den Flächeninhalt A des Schattens, der von dem Dreieck mit den Eckpunkten
P1 (7, 8, 13), P2 (6, 10,14) und P,(4, 10, 13) auf der Ebene E: 2x + 3y ~ 2z = 14 erzeugt
wird.

4.2.23. Ein in Richtung a = -e‚ durch den Punkt P1 (1, 2, 4) im Medium M, verlaufender
Lichtstrahl wird an der Ebene E: x + y — z = 2 gebrochen und verläuft im Medium M;
durch den Punkt P; (2, 3, -3).
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a) Man bestimme die Koordinaten desjenigen Punktes A, in dem der Lichtstrahl die
Ebene E trifft.

b) Man gebe eine Gleichung des Lichtstrahls im Medium M1 an.

c) Man bestimme das Brechungsverhältnis sin oz, I sin D91, wobei 1x1 und w; diejenigen Win-
kel sein sollen, die der Lichtstrahl in den Medien M1 und M; mit der Ebenennormalen

bildet < 0 g 0:1, (X2 g.
4.2.24. Die Punkte P(—l, 0, 1), Q(0, 1, Ü), R(0, 1, 1) seien die Eckpunkte eines
Dreiecks. Bei einer Parallelprojektion auf die Ebene E: x - y + 2z = 2 sei P’ (0, 0, 1) die
Projektion von P auf E und D’ die Projektion des Dreiecks D auf E. Man bestimme die
Flächeninhalte von D und D’.

4.2.25. Aus der durch a = 2e, - 3e, - 8e, gegebenen Richtung falle paralleles Licht auf
die x, y-Ebene. Das Dreieck mit den Ecken P„ P2 und P3 wirft dann einen Schatten auf
die x, y-Ebene. Man bestimme den Flächeninhalt dieses Schattens für P1(3, 2, 5),

P2(—1, 2, 3), P3(4, -2, 2).

4.3. Anwendungen

Seitenhalbierende, Winkelhalbierende, Höhen, Flächeninhalt, Rauminhalt, geometrischer Schwer-
punkt, Umkreis, Inkreis

4.3.1. Man berechne den Flächeninhalt der folgenden, durch ihre Ecken A, B, C bzw.
durch ihre paarweise einander schneidenden Begrenzungsgeraden g„ g1, g; bestimmten
Dreiecke.

a) A(3‚ —3, 0), B(-1, 1, Ü), C(2‚ 0, 0),

b) A(1, -1, 0), B(2‚ 1, -1), C(-1, 1,2),
c) A(1, O, 1), B(2, 2, 0), C(0, 0, 3),

d) A(0, 0, 3), B(-1,0, 6), C(5,0,1),
e) A(1, -1, 2), B(2, 0, -1), C(O,2,1),
f) A(0,1,1), B(0,2, 3), C(0, -4, 6),

g) g1: x +y = 6, gz: 7x + l3 = 4y, g3: 3x — By = 7 (drei Geraden der x, y-Ebene),

h) 8137i: (‘1‚1‚Ü)T+?(‘2‚1‚2)T‚ 82172 = (Ä 3, ‘3)T+ 14(1a3.‘1)T,
g3: r, = (0, 4, -1)T+ v(2, 3, -2)‘, —°° <1, ll, U <°°«

i) gii n: (1,0. Ü)T+ !(‘1‚2‚0)T‚ 82i V2 = (Q 27 Ü)T+ “(Os ‘2»3)T:
g3: r3= (0, 0, 3)T+ v(l, 0, -3)T, - 0° < t, u, v < 0°.

4.3.2. Man berechne alle reellen Werte von a, für die ein Dreieck mit den Eckpunkten
P1, P2 und P3 den Flächeninhalt A hat.

a) ma. o, 1). P. <0. -1. 2), m1. —1‚o).A =§J6",

b) m1. a, s). P.<2.1.0>. P.<3,2.1>, A = JE.

4.3.3. Man berechne das Volumen eines Parallelepipeds (eines Spats), das durch die Vek-
toren a, b c aufgespannt wird.
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a) a=—2e1+3e,—2e3, b=e,+ez+e3, c=3e,—5e1+6e,,
b) a=4e1—8e2+e3, b=2e,+e2—2e3, c=3e1~4e2+12e3.

4.3.4. Für Welche reellen Werte von q hat das durch die Vektoren a, b, c aufgespannte
Parallelepiped (Spat) das Volumen V (vgl. Bild 4,5)?

-
C

If Bild 4.5

a) a=e1+2e,-e3, b=2e,+3e2+qe,, c=-3e1—e;+3e3, V=40,
b) a=—3e,+2ez+7e3,b=5e,+eZ-e3,c=qe,+4e2+2e3,V=78.

4.3.5. Gegeben sind die Vektoren a = 3e, + qez — 2423, b = —e‚ + 4e, + 2e; und
c = 2e, + 5e; + 6e, Man bestimme alle reellen Werte von q so, daß

a) die Vektoren a, b und c in einer Ebene liegen,
b) das Volumen des von den Vektoren a, b und c aufgespannten Parallelepipeds (Spats)

gleich 98 ist, ’

c) Vektor a auf Vektor b senkrecht steht.

4.3.6. Für die folgenden Dreiecke mit den Ecken P1, P2, P3 bestimme man die Seitenvek—

toren, die Seitenlängen, die Koordinaten der Seitenmitten und, nur für c) bis f), die Glei-
chung der durch P1, P, und P, aufgespannten Ebene.

ü) P1(1» 0). P2 (5‚ 1), P3 (4‚ 4)‚

b) P1(2, 3)>P1(7;4),P3(5.8),
c) P1(2, -1, 3), Pz(1, 1, 1), P3 (0, 0, 5),

d) P, (6, 42, —3), P2 (3, 0, 3), P, (4, 2, 1),

e) P, (1, 0, 1), P; (0, -1, 2), P3(1, v1, 0),

f) P1(3, 1, 0), P‚(0, 5, 2), P,(0‚ 0, 7).

4.3.7. Für die in Aufgabe 4.3.6.a) bis f) vorgegebenen Dreiecke bestimme man die Glei-
chungen der Seitenhalbierenden, der Mittelsenkrechten, der Winkelhalbierenden und der
Höhen.

4.3.8. Für die Aufgabe 4.3.6.41) bis t) vorgegebenen Dreiecke bestimme man die Ko-
ordinaten des (geometrischen) Schwerpunktes, des Umkreismittelpunktes‚ des Inkreismit-
telpunktes und des Höhenschnittpunktes.

4.3.9. Gegeben seien eine Ebene E und zwei Diagonalpunkte P, und P, eines ganz in E
liegenden Quadrats. Man bestimme die beiden anderen Eckpunkte P; und P. dieses Qua—

drats.

a) E: 2x+ 2y- z =1,P,(1,0,1),P3(5, -3,3),
b) EI x + 2y +2z= 9, P1(3> -2. 5). Ps(-1‚ 2, 3).
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Zusatzaufgabe zu b): Man bestimme zwei weitere, nicht in E liegende Punkte, die mit
den Eckpunkten des Quadrats ein regelmäßiges Oktaeder bilden.

4.3.10. Von einem Parallelograrnm sind die einander gegenüberliegenden Eckpunkte
P1 (—3, 1) und P3 (5, 1) sowie ein Weiterer Eckpunkt P, (2, -2) bekannt.
Man bestimme

a) die Koordinaten des vierten Eckpunktes,
b) die Geradengleichungen der Diagonalen,
c) die Geradengleichungen durch P1P4 und P4P3.

4.3.11. In einem x, y, z-Raum bestimmen die Ortsvektoren a = 0—P1 und b =(?3 eindeu—

tig ein Parallelogramm mit den (im mathematisch positiven Sinne zu durchlaufenden)
Eckpunkten 0, P1, P2, P3.

a) Man bestimme die Ortsvektoren des Punktes P, und des Halbierungspunktes P4 derje-
nigen Parallelogrammseite, die dem Vektor b gegenüberliegt.

b) Man gebe eine Parameterdarstellung derjenigen Geraden an, auf der die Punkte
Ound P4 liegen. '

c) Man löse a) und b) für P1 (3, 1, 1) und P3(—1, 2, 4).

4.3.12. Von einem Viereck sind die Eckpunkte P1 (0, 0), P1 (1, 2), P3 (*2, 1) und
P4 (-3, —a) bekannt. Man bestimme die Konstante a so, daß der Flächeninhalt des Vier-
ecks A = 7 wird (a > 0).

4.3.13. Die Punkte P1, ..., P4 seien die Ecken eines Tetraeders. Man berechne den Raum-
inhalt und die Oberfläche des Tetraeders.

a) P1 (0, 0, Ü), P2(3. 1, -2), P3 (2, 2, 0), P4(1,0,2),

b) P1(_1s 2, 3), P20, 3, 2), P:('5. 1, 6), P4(-1, 0, 5),

4.4. Kurven und Flächen 2. Ordnung

4.4.1. In der Form F(x, y) = 1 sind die Gleichungen a) eines Kreises, b) einer Ellipse und
c) einer Hyperbel (Achsen parallel zu denen des kartesischen Koordinatensystems) mit
dem Mittelpunkt M(x11, yo) und dem Radius r bzw. den Halbachsen a und b anzugeben.

4.4.2. Verbal ist zu formulieren, wann eine Gleichung der Form ax’ + by’ + cx + dy + e

= 0 einen Kreis, wann eine Ellipse und wann eine Hyperbel repräsentiert. Von Entar-
tungsfällen ist abzusehen.

4.4.3. Unter Verwendung der Ergebnisse von Aufgabe 4.4.2. sage man aus, welche Kurve
die nachfolgend vorgegebenen Gleichungen repräsentieren. Weiterhin forme man diese
Gleichungen in die allgemeine Form um, bestimme Mittelpunkte und Radien bzw. Halb-
achsen und skizziere die Kurven:

a) x’+y’-10x+4y+13=0,
b) 25x2 + 150x + 49y2-196y - 804 = Ü,

c) 100x’ - 49y1 -1000x - 392y = 3184,

d) 4x2-y’-16x-2y+19=0,
e) —4x’—4y’=28y-51,
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f) x’ + 2y’ = 1,

g) y’—x’—8x=12.

4.4.4. Die in Bild 4.6 skizzierten Parabeln sollen die Scheitelkoordinaten S(x„, yo) und
Halbparameter p haben. Man gebe die zugehörigen Normalgleichungen an!

Y ‚V Y Y

5 S

5

X X X X

Bild 4.6

4.4.5. Die nachfolgend vorgegebenen Parabelgleichungen sind in die Normalform zu

überführen (vgl. Aufgabe 4.4.4.). Weiterhin sind die Scheitelkoordinaten zu bestimmen
und die Kurven zu skizzieren.

a) y2—8x-4y+100=0, b) x1+2x+3y+10=0,
c) 2y’~8y+3x+ 17=0, d) x’—4y +1=0.

4.4.6. Gesucht ist die Gleichung desjenigen Kreises, der durch die drei Punkte geht, die
die Kurven mit den Gleichungen x’ v 6x - 12y + 9 = 0 und x1 +12y’ - 6x - 48y + 9 = 0
gemein haben.

4.4.7. Man bestimme die Schnitte der in a) bis g) vorgegebenen Flächen mit den Ebenen
x = x0 = const, y = yo = const, z = 2„ = const und skizziere die Flächen mit Hilfe der
Schnitte.

a) z2+9x2+4y2= , b) z1—4x2+y2= ‚

c)z2=1+x1+y7, d) z=1+x’+y1,
€)z=1+x’~y2, f)x1+z’=9, g) z1=x2+y1.

4.4.8. Die nachfolgend vorgegebenen Gleichungen stellen Kurven zweiter Ordnung dar.
Man überprüfe, ob eine Ellipse, eine Hyperbel, eine Parabel oder ein Geradenpaar (zerfal-
lende Kurve zweiter Ordnung) vorliegt (vgl. Anhang A 3).

a) x}-3x‚x‚+xä=5‚
b)2x2—2‚/3’xy+4y1=1,
c) x{+4x1x1+4x§+6x2+5=0,
d) 2x’+6xy+y1+2x+8y+5=0,
e) 2x§+4x,xZ+x§+1/2—x,=1,

1 1
f) ?x2-4xy+9y’+3x—14y+7=0,

g) ~3x§+2x,x1-2x§+2x,+4xz+3=0,
h) 2x7 + 4y7 = 6.
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4.4.9. Mit den in Aufgabe 4.4.8. verwendeten Bezeichnungen bestimme man die Art der
in Matrizenschreibweise vorgegebenen Kurve und schreibe die Kurvengleichung in der

Form c,1xf+ 2c„x1x‚ + 022x; + Zcwx, + 2c1ox2 + cm, = 0

nieder.
- 1

1 3 i
a) C: 1 , c= 2 , c„„=5‚

-7 0 1

- 1 3
1 i T

2
WC: 1 2 ‚ f: 3 ‚ Coo 4,

j 1 ‘7

1 g -3
C) C: 3 > i’: i y 5uo"5‚

j 3 2

._7 i i

d>C= 5 2 , c= 2 . 50o‘2‚

.7 ‘1 -3
-5 1 2e)C= 1 _2], c=[2], cm-—4,

0 l
2 -1oc= ‚ c=[ 50a:L 1 -1

2

4.4.10. Die Gleichungen

a) x§ — 4x§ + x§ = 1 (vgl. Aufgabe 4.4.7. b)),

b) x§ = 1 + x} + x§ (vgl. Aufgabe 4.4.7. c)),

c) z’ = x1 + y? (vgl. Aufgabe 4.4.7. g))‚

d) x2+y2+2z1—2xz-2yz-%x-%y-%z=0,

e) xi + xi + 2x§ + 2x1x3 + 2x;x3 +12x2 + 4 = 0,

f) 2x} + xä + 2x§ - 2x,x3 - 2x2x3 + 3x, + x3 + 5 = 0

stellen Flächen zweiter Ordnung dar. Anhand der in Anhang A 4 angegebenen Kriterien
bestimme man deren Gestalt.

4.4.11. Eine Fläche zweiter Ordnung habe die Gleichung
14 8 10

xTCx= 1 mit C= 8 29 38 .

10 38 50
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a) Man bestimme, was für eine Fläche damit vorgegeben ist.
b) Wie lautet der Norrnalenvektor an diese Fläche im Punkt P„(xo‚ yo, 20)?

4.4.12. Man bestimme die Schnittpunkte der Kegelschnitte

Ii _ :3 _ 1 L? . X_%
a2 b2 _ t a2 b2

mit der Ferngeraden.

= 1, Xi = 2px.

4.5. Geometrie im R"

4.5.1. H1: x1 - x; + x3 - x4 = l,
H2: 2x1 r x3 + x4 = 0,

H3: x2 + 2x3 = 2

sind drei Hyperebenen des R‘. Man ermittle eine Parameterdarstellung der Schnittmenge

a) H, n H; n H, und b) H, n H2.

(Mit welchen geometrischen Gebilden könnte man diese Durchschnitte identifizieren?
Siehe Anhang A 5.)

4.5.2.

1 2 -4 3

-2 1 -7 0
a: 5. b— —4‚ c= 22. p: 1.

0 2 —6 '2
4 5 -7 0

a) Man berechne: a + b, a - b, 2a + 3b — 2c, |a|, |b|, |c|, aTb‚ (aTb)c, a(bTc)‚ ü.
b) Gibt es eine Darstellung der Form c = t,a + 12b? (t1, t; reelle Zahlen.)
c) Man bestimme den Schnittpunkt von x = a + to (Gerade im R5) mit alx = 230 (Hy-

perebene im R5).
d) Man ermittle den kürzesten Abstand des Punktes P(3, 0, l, -2, 0) von der Hyperebene

H: a’x = 31 auf zwei Arten:
a) man schneide H mit der durch P gehenden und auf H senkrecht stehenden Gera-

den g;
ß) mit Hilfe einer „verallgemeinerten Hesseschen Normalform“ im R".

e) Man löse die Aufgabe d) mit den Mitteln der Differentialrechnung fur Funktionen mit
mehreren Variablen.

4.5.3. v, w seien zwei n-dimensionale Spaltenvektoren (Elemente des R"), Man zeige:

|v+w|=|v~w| c: uTw=0.

4.5.4.

x = lxi. x2, X3. X41’. a =[3. 1.0.21’, c =[1, *1. *1. 11T.

Man bestimme die Schnittpunkte von x: a + tc (Gerade im R“) mit x2 =14 (Hyper-
kugelfläche im R‘) (x3: = xTx).
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2 CikXiXk ‘i’ zzciflxi + Coo = O (V013 Ck: = Cik)
1,‘! = 1 i: 1

ist die Gleichung einer Hypeifiäehe 2. Ordnung des R". Wie lautet diese Gleichung in
Matrizenschreibweise’?

(Hinweis: Man orientiere sich an Aufgabe 1.1.7. Siehe auch Anhang A 4.)

4.5.6. Welche Gestalt nimmt die Gleichung einer Hyperiläche 2. Ordnung (siehe 4.5.5.)
und die Gleichung einer Hyperebene co + clxl + + c,,x,, = 0 in homogenen Koordina-
ten Eo, fl, ..., 5„ an? (Siehe Anhang A 6.)

Man weise nach, daß eine Hyperfläche 2.0rdnung durch ETDE = 0 mit D7 = D beschrie-
ben werden kann, wobei E = (Eo, E}, ...‚ E„)T der „homogene Koordinatenvektor“ ist.

4.5.7.

3x} - x; + 2x; — xi e 4x,x3 + 2x1x4 - 6x, + 5 = 0

definiert eine Hyperfläche 2. Ordnung des R‘. Wie lautet die Gleichung dieser Hyperfiä-
che in Matrizenschreibweise

a) bei inhomogenen Koordinaten,
b) bei homogenen Koordinaten?



5. Weitere Bestandteile der linearen Algebra

5.1. Lineare Räume

(Bd. 13, 4.1.)

5.1.1. Man zeige, daß die Menge der reellen (n, 1)-Matrizen

a1 b, c,

an . ‚ b: E . i‘: . ‚

an bn c.

bezüglich der Operationen a+bt= [a1+b1, ..., a,,+b,,]T und aca==[au,,..., auf
(1x: reelle Zahl) einen n-dimensionalen linearen Raum bildet.

5.1.2. Man zeige, daß die reellen (m, n)-Matrizen bezüglich der Operationen A +B und
mA einen m- n-dimensionalen linearen Raum bilden.

5.1.3. R3 sei der Jdimensionale lineare Raum der reellen (3, 1)»Matrizen (vgl. 5.1.1.). Für
ein festes u e R’ (u * o) und ein festes c e R ist E = {x| uTx = c} eine Teilmenge (eine
Ebene) des R3. Man beweise:

a) E ist im Falle c: 0 ein Zdimensionaler Unterraum von R3. (Eine Teilmenge M eines
linearen Raumes L heißt Unterraum von L, wenn mit x, y e M auch jede Lineark0m-
bination von x, y ein Element von M ist; vgl. Band 13, Abschnitt 4.1.)

b) E ist im Falle cä 0 eine lineare Mannigfaltigkeit von R3. (Eine Teilmenge M eines li-
nearen Raumes L heißt (q-dimensionale) lineare Mannigfaltigkeit von L, wenn ein
x0 e L und ein (q-dimensionaler) Unterraum L’ von L existieren, so daß gilt:

M=x0+L'={x}x0+l, leL’}.)

5.1.4. Man zeige, daß die Lösungsmenge I des folgenden linearen Gleichungssystems
eine 2dimensionale lineare Mannigfaltigkeit des R5 ist, und beschreibe dieselbe:

x1+3x,— x3+2x,,+ x5=2,
2x1 + x3 + 4x4 = 1,

x1—2x3— x4—2x5=0.

Hinweis: Man beachte die Definitionen in 5.1.3.

5.2. Lineare Abbildungen

(B1113, 4.2.)

5.2.1. Durch

Y1 = 3x1 ‘i’ X2.

Yz: X1+4X1a (y=Ax)
Y3 = Xi ‘i’ 5x2

wird eine lineare Abbildung d): R’—>R3 beschrieben.
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a) Man ermittle <15(R’) (Wertebereich von <15) und ¢"(0) (Kern von (D).
b) Man beweise, daß (D regulär ist.
c) Von g: x1+ x2 = 0(g c R’) bestimme man das Bild <b(g).

d) Von E: y, —y, + y; = 2 (E <: R3) bestimme man das Urbild <I>“‘(E).

5.2.2. Durch

x; = -x1+ 3x2 + 2x3,

x; = 2x, + x3, (x’ = Ax)

x; = 4x1 - 2x2

wird eine lineare Abbildung ID: R3—* R“ beschrieben.

a) Ist Öregulär?
b) Man bestimme den Wertebereich und den Kern von (D.

c) Man bestimme das Bild <I>(E) von E: x, + x2 + x3 =1.
d) Man bestimme das Urbild <D’1(E’) von E’: x; — 2x; + x; = 0.

‘ T

5.2.3. Für ein festes a e R3(u x o) werden durchf(x) = a + x, g(x) = a >< x, h(x) = %a
drei Abbildungen ß g, h: R3—>R3 definiert. Welche dieser Abbildungen ist linear’!

(Hinweis: Bei der Abbildung g ist das Kreuzprodukt im Sinne der in Aufgabe 1.2.13. an-

gegebenen Definitionen zu verstehen.)

5.2.4. Durch y = Ax mit

4 1 0

A= 0 3 1

3 -3 -1

wird eine lineare Abbildung f: R3—> R’ beschrieben,

a) Ist die Abbildung f regulär?
b) Man bestimme alle Fixpunkte der Abbildung fl d.h. alle Punkte x mit f(x) = x.

5.3. Quadratische Formen

(Bd. 13, 5.1.)

5.3.1. Vorgegeben seien die symmetrischen Matrizen

a> H 1]» b> [i 5]’ °> [ä i} e [ä 35l»
1 2 0 3 1 0 1 0 0 1 0 2

e)251,f)124,g)010,h)010.
0 1 4 0 4 1 0 0 —1 2 0 5

Mit Hilfe der sog. Hauptabschnittsdeterminanten

C11 C11

A,=E E (i=l‚2‚...)
Q1 Cu‘:
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untersuche man, welche der zu den obigen Matrizen C gehörigen quadratischen Formen
xTCx positiv definit sind.

5.3.2. Ist x’Cx eine der in,5.3.1. gegebenen quadratischen Formen, so beschreibt die
Gleichung xTCx = 1 eine Kurve 2. Ordnung [a) bis d)] bzw. eine Fläche 2. Ordnung (e) bis
h)]. (Siehe Anhang A 3, A 4.)
Um welche Typen handelt es sich?
Man vergleiche die Ergebnisse von 5.3.2. mit denen von 5.3.1.

5.3.3. Welche der folgenden quadratischen Formen Q(x„ x2, x3) sind positiv definit?

a) x§+x§+x§, b)x§+x§—x§, c)xfAx§4x§,
d) x} + 6x§ + 4x§ + 4x1x2 — 6x‚x3, e) 3x} + x; + Sxä + 2x,x2.

Welche Flächen werden durch Q(x,, X1, X3) = —1 beschrieben’!

5.4. Eigenwerte und Eigenvektoren; Hauptachsentransformation

(Bd.13, 5.2.)

5.4.1. Von der symmetrischen Matrix

15 1 0

A271 5 0

0 0-8

bestimme man die Eigenwerte und alle Eigenvektoren.

5.4.2. Man bestimme die Eigenwerte der in 5.3.1. angegebenen Matrizen und vergleiche
die Ergebnisse von 5.3.1. mit den jetzt gefundenen Ergebnissen.

5.4.3. Von den folgenden Matrizen bestimme man die Eigenwerte und ein maximales Sy-
stem linear unabhängiger Eigenvektoren:

aliil b>[i§]= “Li 1]» d>[é‘f]2
(Hinweis: Ein „maximales System“ erhält man, wenn man zu jedem Eigenwert ein Sy-

stem von d=n* r linear unabhängigen Eigenvektoren bestimmt. (Siehe Band 13,

Satz 5.5))

5.4.4. Von den folgenden Matrizen bestimme man die Eigenwerte und ein maximales Sy-
stem linear unabhängiger Eigenvektoren:

100 3—1o—1o 221
a)33~4,b)03 o,c)o21.

—21—2 [o -5 ~2 0—1o

5.4.5. Man ermittle die Eigenwerte und ein maximales System linear unabhängiger nor-

mierter Eigenvektoren von folgenden symmetrischen Matrizen:

l 2 3 l l 3 2 —l 2

a)2—4—2, b)151, c)~12-2.
3 A2 1 3 1 1 2 -2 5
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5.4.6. Man bestimme alle (komplexen) Eigenwerte und ein maximales System linear un-

abhängiger (komplexer) Eigenvektoren der folgenden Matrizen:

. . 1i 0a>[21]‘ b)[2+1,/5'+21], G) 10 Ai’
-2 4 —./5_+2i 2+i _i 1 0

5.4.7. A sei eine der in 5.4.5. angegebenen Matrizen mit dem Orthonormalsystem
x„ x2, x3 von Eigenvektoren. Man entwickle einen beliebigen Vektor y e R3 nach diesen

Eigenvektoren. Zahlenbeispiel: y = [1, 0, —2]’‚

5.4.8. Man weise nach, daß die folgenden Matrizen hermitesch sind und bestimme die
Eigenvektoren und ein maximales System linear unabhängiger Eigenvektoren:

402i 2i2i
21—2i ‚b ‚ —‘a)[1+2i G] ) goo c) r22

-2i01 -2125

5.4.9. Gegeben sei die allgemeine Eigenwertaufgabe Ax=}.Bx. Man bestimme — falls
vorhanden — Eigenwerte und zugehörige Eigenvektoren des folgenden Matrizenpaares A,
B: ‘

a>A=[-Z -2]. a-i: -21.

bw-li 3]» s4: z].

wer: 21. kn ‘:1.

5.4.10. Man bestimme eine Transformation x = Ry, die die quadratische Form xTCx in
ihre metrische Normalform überführt (Hauptachsentransformation). Als Matrizen C ver-

wende man die symmetrischen Matrizen der Aufgabe 5.4.5.

5.4.11. Die folgenden Kegelschnittsgleichungen bringe man durch eine geeignete Trans-
formation auf eine Form, in der alle gemischt-quadratischen Glieder fehlen, Um welchen
Kegelschnittstyp handelt es sich?

a) 13x} -/10x,xz +13x§— 288 = 0,

b) 9x1 v 24x32 +16y2 A 130x + 90y +175 = 0,
c) 5x’ - 6xy—3y7 + 2x +18y ~ 43 = Ü.

5.5. Weitere Anwendungen

5.5.1. Die durch die Punkte P(1, 2, 1) und Q(3‚ —1‚ 4) aufgespannte Gerade g sei die
Drehachse eines starren Körpers, der mit konstanter Winkelgeschwindigkeit w um g ro-

tiert. R(-1, 2, 1) sei ein Punkt des starren Körpers, die skalare Geschwindigkeit von R be-

trage v = 3 m - s“. Man bestimme die Winkelgeschwindigkeit w und den Winkelgeschwin-
digkeitsvektor u. (Die Koordinateneinheit sei 1cm.)
(Hinweis: Ist r der Ortsvektor des Punktes R, gerechnet von einem Punkt der Drehachse
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aus, so gilt für den Geschwindigkeitsvektor v des Punktes R die Gleichung v = u >< r. Für
u gilt: |u[ = w, u||g.)

5.5.2. An einem Knotenpunkt von 3 Seilen wirkt eine Kraft von 10 kN in Richtung — e3.

Die Richtungen der Seile (vom Kraftangriffspunkt zu den Befestigungspunkten der Seile)
sind durch folgende Vektoren gegeben:

a1= ~15e1+ e3, a; = -1022+ e3, a; = 5e,+10e2 + 223.

Welchen Belastungen sind die einzelnen Seile ausgesetzt?

5.5.3. Vorgegeben seien die vier Punkte A1(—4, 0, Ü), A2(1, -2, 0), A3(1, 2, 0), Q(1, 0, 5).
/1,Q,A,Qo A3Q seien die drei Stäbe S1, S2, S3 eines Bockgerüstes; S1, S2, S3 sind in A„
A2, A3 befestigt. In der Spitze Q des Bockgerüstes sollen die Kräfte F1= 3e, + e, und
F2 = e, + 2e3 angreifen. Man berechne die in S1, S2, S3 wirkenden Stabkräfte.

5.5.4. Von einem Punkt P(3, 3,5) fallt ein Lichtstrahl in Richtung des Vektors
a=-e,-e2A2e3 auf einen Planspiegel, dessen Oberfläche durch die Ebene
x + 2y + 3z = 6 beschrieben wird.

a) Gesucht ist die Gleichung der Geraden, auf der der reflektierte Strahl liegt.
b) Wie groß ist der Winkel zwischen dem einfallenden Strahl und dem reflektierten

Strahl?

5.5.5. Vorgegeben seien die Vektoren m = —l7e, + 13ez + 7e; und r = 2e, + e, + 3e}.

Man bestimme jenen Vektor k, fiir den gilt: m = r >< k und rk = 5.

(Hinweis: m: Vektor des Drehmoments; k: Kraftvektor; r: Radiusvektor.)

5.5.6. u sei ein n-dimensionaler (reeller) Spaltenvektor mit |a]= 1. Daraus werde die
(n, n)—Matrix A = E — 2uaT gebildet. (A ist eine sog. Householder-Matrix; E: Einheits-
matrix)

a) Man berechne A’.
b) Was folgt hieraus für A“ und damit für AP (p ganze Zahl)?
c) Wie lautet A für das Zahlenbeispiel

=l_1iiT‚
" 5’ 5’5’5'

4 Pfmr, Algebra Ü 3



6. Lineare Optimierung

6.1. Aufstellung linearer und linearer ganzzahliger Modelle

Produktionsplan, Schichtplan, Zuschnittproblem, Transportproblem (Bd, 14, 2.)

6.1.1. Man stelle für die folgende Aufgabe ein mathematisches Modell auf: Ein Betrieb
produziert aus drei Rohstoffen die Produkte P1 und P1. Mit Hilfe der technologischen Da-
ten der folgenden Tabelle ist ein Produktionsplan gesucht, der maximalen Gewinn s?-

chert:

Verbrauch pro Verbrauch pro Verfügbare
Einheit P1 Einheit P1 Rohstoffmenge

Rohstoff l 2 4 16

Rohstoff 2 2 1 10

Rohstoff 3 4 0 20
Gewinn (in GE) 2 3

6.1.2. Man erarbeite für die folgende Aufgabe ein mathematisches Modell: Ein Betrieb
exportiert drei Produkte P1, P1, P3, die aus Materialien M1, M1, M1, M4 hergestellt wer-

den. Der Absatz von 1 kg P1, P1 bzw. P3 bringt 2, 3 bzw. 1 Deviseneinheiten. Der Material-
bedarf bei der Produktion und die zur Verfügung stehenden Materialmengen sind in der
folgenden Tabelle angegeben. Man bestimme die zu produzierenden Mengen von P1, P1

und P1 so, daß der Devisengewinn möglichst groß wird.

M1 M1 M3 M.

Materialbedan’ für 1 kg P1

Materialbedarf für 1 kg P1

Materialbedarf fiir 1 kg P,
Zur Verfügung stehende Mengen ‚_

-
N

r
o

u
o

‚_
-

m
m

m
w

»—
—

u
.»

-«
n
o
»
-—

»
-

o
»
-
o
-
>

6.1.3. Man erstelle für die folgende Aufgabe ein mathematisches Modell: In einem Tex-
tilbetrieb werden in einem bestimmten Planungszeitraum zwei verschiedene Stoffe S1 und
S1 hergestellt. Dabei sind folgende Beschränkungen zu beachten: Die Kapazität der Web-
automaten fin; beide Stoffe beträgt 50 Einheiten für S1 und 40 Einheiten für S1; im Teilbe-
trieb A erfordert die Erzeugung einer Einheit S1 2 % und einer Einheit S1 4/3 % der Pro-
duktionskapazität, im Teilbetrieb B beansprucht die Erzeugung einer Einheit S1 und einer
Einheit S1 jeweils 5/3 % der Produktionskapazität, Beide Stoffe müssen die Teilbetriebe A
und B durchlaufen. Weiterhin besteht die Forderung, daß von S1 mindestens 20 Einheiten
hergestellt werden sollen.

Es soll ein Produktionsplan ermittelt werden, der maximalen Produktionsumfang ga-
rantiert. Dieser Umfang soll durch den Betriebsabgabepreis gemessen werden, der pro
Einheit S1 600,- M, pro Einheit S1 500,- M beträgt.

6.1.4. Für die folgende Aufgabe soll ein mathematisches Modell aufgestellt werden: Ein
Betrieb soll die drei Erzeugnisse A, B, C produzieren. Dazu stehen ihm 205 Arbeitsstun-
den zur Verfügung. Folgende Daten sind gegeben:
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A B C

l-lerstellungsze' pro Stück (in Std.) 1 3 2

Gewinn pro Stück (in GE) 4 6 3

An Bedingungen ist einzuhalten: Von A sollen höchstens 100 Stück, von C mindestens
1

30 Stück hergestellt werden, außerdem soll von B mindestens y der Stückzahl von C vor—

banden sein. Wie muß der Betrieb produzieren, damit sein Gewinn möglichst groß wird?

6.1.5. Man stelle für die folgende Aufgabe ein mathematisches Modell auf: Ein Schiff
mit einer Ladefahigkeit von 7 000 t und einer Laderaumkapazität von 10 000 m’ soll 3 Gü-
ter G1, G1 und G, in solchen Mengen laden, daß der Frachtertrag möglichst groß wird. Die
folgende Tabelle enthält für jedes Gut die angebotene Menge M in t, den benötigten La-
deraum R in m’/t und den Frachtertrag F in Mark/t:

G1 G; G1

M 3 500 4000 2 000
R 1,2 1,1 1,5
F 25 30 35

6.1.6. Man erarbeite für die folgende Aufgabe ein mathematisches Modell: Zur Produk-
tion von mindestens 100 Bauteilen einer Sorte B1 und mindestens 150 Bauteilen einer
Sorte B1 stehen 3 Maschinen M1, M1, M, zur Verfügung. Jede Sorte kann aufjeder Ma-
schine hergestellt werden, allerdings mit unterschiedlichem Zeitaufwand. Die folgende
Tabelle gibt die Herstellungszeit (in Stunden) an, die für ein Bauteil der Sorte B; auf der
Maschine Mk benötigt wird; die mögliche Einsatzzeit beträgt für M1 180 Stunden, für M1

150 Stunden, für M1 100 Stunden.

M: M2 M:

B1 2 (‘) l
B; 3 1,5 1

(") bedeutet: B, kann auf M1 nicht hergestellt werden.

Wieviel Bauteile jeder Sorte hatjede Maschine zu produzieren, damit die Gesa.mtherstel-
lungszeit ein Minimum wird’?

6.1.7. Man stelle fur die folgende Aufgabe ein mathematisches Modell auf: Auf zwei Ma-
schinen M1 und M1 können zwei Produkte P1 und P1 hergestellt werden. Dabei beträgt die
Stundenleistung von M1 60 Mengeneinheiten von P1 oder 60 Mengeneinheiten von P1,

diejenige von M1 90 ME P1 oder 60 ME P1, und beide Maschinen sollen höchstens je
8 Stunden eingesetzt werden. Die produzierte Menge von P1 muß genau doppelt so groß
sein wie diejenige von P1. Wie ist die Produktion auf die Maschinen zu verteilen, damit
eine möglichst große Gesamtmenge von P1 und P1 hergestellt wird?

6.1.8. Gesucht ist ein mathematisches Modell fiir die folgende Aufgabe: Zwei Werften
W1 und W1 können Schiffe von 4 verschiedenen Typen T1, ..., T, bauen. Jede Werft kann
jeden Typ herstellen.

4.
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T1 T, T; T,

GE: 2 5 3 6

Die Tabelle gibt den Gewinn beim Verkauf eines Schiffes des jeweiligen Typs an. Es sol-
len in W1 höchstens 4 Schiffe und in W2 höchstens 6 Schiffe gebaut werden; außerdem
muß gesichert sein, daß mindestens 3 Schiffe des Typs T1 sowie von den Typen T; und T3

zusammen mindestens 4 Schiffe hergestellt werden.
Wie ist zu produzieren, damit ein größtmöglicher Gesamtgewinn erzielt wird?

6.1.9. Aus den Rohstoffen R1 und R2 werden die Produkte P1 und P, hergestellt. Die fol-
gende Tabelle gibt die Menge der benötigten Rohstoffe (in kg) und den Gewinn (in GE)
für 1 kg des jeweiligen Produktes, sowie die Vorräte an Rohstoffen (in kg) an. Für 1 kg des
Produktes P, benötigt man außerdem 4 kg eines weiteren Rohstoffes R3, von dem 2 000 kg

vorrätig sind. Bei der Produktion von 1 kg P1 fallen jedoch zusätzlich 2 kg dieses Rohstof-
fes R3 als Nebenprodukt an, die sofort mit verwendbar sind. Der Produktionsplan soll
einen maximalen Gewinn garantieren.

R1 R1 Gewinn

P1 3 6 l5
P1 2 7 20

Vorrat l3 000 40 000

a) Man stelle für diesen Plan ein mathematisches Modell auf.
b) Im Plan sollen weiterhin folgende Zusatzbedingungen Berücksichtigung finden:

Produkt P1 wird in Packungen zu 25 kg, Produkt P1 in Packungen zu 50 kg hergestellt,
und von P, müssen mindestens 150 Packungen geliefert werden, Wie lautet nunmehr
das mathematische Modell?

6.1.10. Man erarbeite für folgende Aufgabe ein mathematisches Modell: Zur Herstellung
eines Mischfutters für die Fütterung einer bestimmten Tierart stehen drei Futtermittel F1,

F, und F3 zur Verfügung. Die folgende Tabelle enthält die Preise der Futtermittel sowie

deren Gehalt an Eiweiß (A), Kohlenhydraten (B) und Fett (C):

Fr F: F:

Einheiten von A pro kg Futtermittel 2 3 1

Einheiten von B pro kg Futtermittel 3 1 2

Einheiten von C pro kg Futtermittel l l 1

Preis [GE] pro kg Futtermittel 36 24 18

Eine Mischung aus den drei Futtermitteln soll mindestens 80 Einheiten von A und min-
destens 70 Einheiten von B, jedoch höchstens 60 Einheiten von C enthalten.

Man stelle unter diesen Bedingungen eine möglichst billige Mischung her.

6.1.11. Ein Konfektionsbetrieb bekommt Stoffballen von 200 cm Breite geliefert. Daraus
sollen zur Weiterverarbeitung mindestens 30 Ballen von 110 cm Breite, 40 Ballen von

75 cm Breite und 15 Ballen von 60 cm Breite hergestellt werden. Man gebe je ein mathe-
matisches Modell für die folgenden drei Aufgaben an:

a) Der beim Zuschnitt auftretende Stoffabfall soll möglichst gering werden,
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b) der Stoffabfall einschließlich der über die geforderte Mindestanzahl hinaus entstehen-
den Teilballen soll möglichst gering werden,

c) die Anzahl der zu zerschneidenden Grundballen soll möglichst gering werden.

6.1.12. Man stelle für die Aufgaben a) und b) je ein mathematisches Modell auf: Aus
Grundblechen der Größe 100 cm >< 100 cm sollen durch Zerschneiden mindestens 10 Ble-
che der Größe 100 cm >< 40 cm und mindestens 20 Bleche der Größe 60 cm X 30 cm her-
gestellt werden. Wie ist der Zuschnitt vorzunehmen, damit

a) die Anzahl der zu zerschneidenden Grundbleche‚
b) der Schnittabfall

möglichst gering bleibt? Dabei sollen die Schnitte nur parallel zu den Kanten der Grund-
bleche verlaufen.

6.1.13. Für die folgende Aufgabe erarbeite man ein mathematisches Modell: Zur Herstel-
lung eines bestimmten Gegenstandes werden drei Eisenstäbe benötigt. Zwei von ihnen
müssenje 2 m, der dritte 2,50 m lang sein. Zur Verfügung stehen 100 Stäbe zu je 5 m und
140 Stäbe zu je 4m Länge. Wie sind diese Stäbe zu zerschneiden, damit eine möglichst
große Stückzahl der genannten Gegenstände hergestellt werden kann?

6.1.14. Gesucht ist ein mathematisches Modell für die folgende Aufgabe: Ein Verkehrs-
betrieb hat auf Grund der verschiedenen Verkehrsdichte einen tageszeitlich wechselnden
Bedarf an Arbeitskräften. Er ist aus der folgenden Tabelle ersichtlich:

Uhrzeit 1-5 5-9 9-13 13-17 17-21 21-1

benötigte Arbeitskräfte 15 20 16 22 20 9

Die Arbeitszeit beträgt 8 Stunden und kann um 1, 5, 9, 13, 17 und 21 Uhr begonnen wer-

den. Dabei müssen die beiden Halbschichten zusammenhängend sein. Man ermittle
einen Schichtplan, der mit einer möglichst geringen Anzahl von Arbeitskräften aus-

kommt.

6.1.15. Für die folgende Aufgabe erarbeite man ein mathematisches Modell: Nach Ab-
schluß von Montagearbeiten stehen auf einer Baustelle A vier Kräne, auf einer zweiten
Baustelle B sechs Kräne zur Verfügung. Auf zwei anderen Baustellen C und D werden
drei bzw. fünf Kräne benötigt. Die Bewegung eines Kranes kostet pro Kilometer 10 Mark,
die Entfernungen der Baustellen voneinander betragen: E = 40 km, E = 70 km,
W = 90 km, E = 50 km. In welcher Anzahl müssen Kräne von A und B nach C bzw. D
umgesetzt werden, damit die entstehenden Gesamtkosten minimal werden?

6.1.16. Für die folgende Aufgabe ist ein mathematisches Modell anzugeben: m Erdbewe-
gungsmaschinen M,- (i= 1, ...‚ m) sollen auf n Baustellen B,‘ (k= 1, ..., n) eingesetzt wer-

den. Betriebskosten und Leistungen der Maschinen sind verschieden und vom Einsatzort
abhängig. Jede Maschine kann auf jeder Baustelle eingesetzt werden, die Umsetzung
einer Maschine auf eine andere Baustelle soll in den Zeitfonds und in die Kosten nicht
eingehen. Gegeben sind dazu folgende Daten:

K‚: maximal mögliche Arbeitszeit (in Stunden) der Maschine M,,
Qk: auf der Baustelle Bk zu bewegende Kubikmeter Erde,
b,-k: Stundenleistung (in Kubikmetern) der Maschine M, auf der Baustelle Bk,
C,-kt Kosten je Arbeitsstunde für die Maschine M, auf der Baustelle Bk.
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Wie müssen die Maschinen eingesetzt werden, damit die Gesamtkosten für die Erdbewe—

gung minimal werden’!

6.1.17. In einem Landschaftsgebiet sollen m verschiedene Kulturen K, angebaut werden,
deren Emteerträge lt. Plan in einem vorgeschriebenen Verhältnis p1: p11... :p„‚ stehen
müssen. Das Landschaftsgebiet zerfällt in n Bezirke A1 der Fläche qk (in ha), die auf
Grund klimatischer Bedingungen und weiterer natürlicher Faktoren eine unterschiedliche
Eignung fir den Anbau der verschiedenen Kulturen aufweisen. Die in dem k-ten Bezirk
zu erwartende Ernte je ha der i-ten Kultur ist a,-k. Man erstelle ein mathematisches Mo-
dell für die Ermittlung eines optimalen Anbauplanes, d. h. zur Erzielung einer maxima-
len, dem Plan entsprechenden Ernte im gesamten Landschaftsgebiet.

6.2. Graphische Lösung linearer und einfacher
nichtlinearer Aufgaben

6.2.1. Man löse die folgenden Optimierungsaufgaben graphisch:

a) ZF: z=2x,-i-Sxzémax;
NB: x,+2x2§ S, x1ä0,

2x1 + x1; 10, x220;

X25 3s

b) ZF: z = 2x1 + 4x‚imax‚ NB wie bei a).

.6.2.2. Man löse die folgenden Optimierungsaufgaben graphisch:

a) ZF: z=10x1+20x;;min‚

b) ZF: z=12x,+ 6x2+10émin,

c) ZF: z = —5x1 + éxzémin,

NB fiira), b), c): 6x1+ X1218, x120,
x1 +4x2 g 12, x2 g 0,

2x1 + x; ä 10.

6.2.3. Man löse die folgenden Optimierungsaufgaben graphisch:

a) z = 3x1; max, b) z = 3x15 min, c) z = 3x1; max,

d) z=3x,é min, e) z: —3x,+3x,+3émax,

f) z= ~3x, +3x2+3$ min,

NBjeweils: —2;x1—x1;4,x1—5x1;0‚x1+x1:1‚
x1ä0,x1;0.

6.2.4. Man löse die folgende Optimierungsaufgabe graphisch:

z =10x1+ 25x2 + 20x34mm;
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1700 g 1000x‚ + 2 000x, + 1500x‚ g 2 000,

6x, + 2xz+ 3x‚g2‚8,
x1+ x,+ x3=1‚ x‚g0‚ i=1‚2‚ 3.

6.2.5. a) Man löse die folgende Optimierungsaufgabe graphisch:

z = 3x, + 4x; = max;

x‚+2x;g11, x1g0‚

2x1+3X2.5.18(‘)» Xzio»
10 g 5x1+ 2x; g 30.

b) Wie lautet die Lösung, wenn zusätzlich gefordert wird: x, ganzzahlig, i = 1, 2?

c) Wie lautet das Ergebnis, wenn in a) bei den Nebenbedingungen die Ungleichung (")
durch die Ungleichung x1 + x; g 8 ersetzt wird?

6.2.6. Man löse graphisch:

a) Aufgabe 6.1.1., b) Aufgabe 6.1.3., c) Aufgabe 6.1.9.21), b).

6.2.7. Man löse die folgenden Optimierungsaufgaben graphisch:

a) z= x, — 10x12 min; b) Aufgabe 6.3.1a)‚

x1+ 2x; g 7, c) Aufgabe 6.3.1b).

2x1 + x1 g 10,

‘X1 + x; g 12,

X1+ Xzä L
x, frei, x, g 0,

6.2.8. Bei den folgenden einfachen nichtlinearen Optimierungsaufgaben ermittle man

zunächst graphisch den zulässigen Bereich und verschaffe sich dann durch geeignete
Uberlegung die Lösung:

a) ZF: z = x, + x, i max;

NB: x} + x; g 9, x, g 0, ganzzahlig, i= 1, 2.

Wie lautet die Lösung bei Wegfall der Ganzzahligkeitsforderung?

b) ZF: z = xi + xi; min;

NB: x, + x; g ä, x, g 0, ganzzahlig, i= 1, 2.

Wie lautet die Lösung bei Wegfall der Ganzzahligkeilsforderung?

c) ZF: z = 5x, + x, 4 max;

V NB: x} + x; g 7, X; g 0, ganzzahlig, i= 1, 2.

Wie lautet die Lösung bei Wegfall der Ganzzahligkeitsforderung?

d) ZF: z = |x1| — |x, e m ä min;

Nßzxigxz, x‚-x‚+6g0.
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x + ‚

e) ZF: z=ä=max;
NB: (x|-1)x‚;3‚ x120‘ X220‘

X1+X2§5,

6.3. Aufgaben zum Simplexverfahren

Simplexverfahren, duales Simplexverfahren, Aufgaben mit mehreren Optimallösungen, Aufgaben
mit einem Parameter (Bd.14, 3.)

6.3.1. Man gebe zu den folgenden Optimierungsaufgaben die Normalform an:

l . 5

a) z=-3x‚+x1-x‚+3=m1n; b) z=-3x‚+x‚-x‚=max;
x,+ x1+x3=5, x1+ xz+x,.=5,
x,-2x2 §3, x,-2x; :3,

2x,+ x2~x3:1, 2x,+ x1-x3§1,
x1:0, x1g0, x3frei, x,§0, x;§0, x3 frei,

c) z = 20x, + 8x3 -v- 9x. 4 max; d) z = x, + 3x, + 3x3 - x4 = max;

X, +x3 §3, x,+4x,+3x3 =38,
x,+2x2-x, :1, 2x,+5x2+5x3 =51,

2x, + x,,=2, x1+ x2+ x3+X4=15, X1:’28,0§X2§10,
0 § X1‘ x3 + 2x4 g 5, 5x2 + x3 + x. ä 49, x3 frei, x. frei.

X1: 0, x; frei, x3 g Ü, x4 frei,

6.3.2. Man löse die folgenden Optimierungsaufgaben mit dem Simplexverfahren:

a) z= —13x1+37x;+12x3+48$min; b) z=3x,+7x2—2x3¥max;

x,—2x,—x3§2, 5x,+3x2~x3§30,
2x,-5x2-x3§4, 8x,+4x2-x3§44,
x1—3x;—x3§1, 5x,+ x,—x3§ 6,

x,-;0,i=1,2,3, x,;0,i=1,2,3,

c) z=2x1-2):;-x3-x,,$min; d) z=3x1—x,+x3+x4;max;
—x,+2x2+x3— x.§1, 2x,+xz~3x3— x4§4,

x,+4x1 -2x.,§1, —x,+x2+3x3—2x,,§4,
x,— x, + x424, -x, +2x3+ x454,

x,;0,i=1,...,4, x,;0,i=1,...,4,

e) z=2x‚+6x‚-2x3+l;max; —2x1+4x,+4x,§ 25,

2x2+ X3§ 12, ‘xi +2X33'12:
x,+2x2-2x3§ 18, x.-ä0,i=1‚2,3,
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f) z=5x,+2x,+4x3-+-Zémax;
2x, + 2x, g 12,

2x, + 4x, - 2x3 g 28,

g) z = 10x, + 2x, v 5x, f 2 5 max;

2x, + x, K 2x3 g 3,

—8x, - 2x, + 5x3 g2,

4x, — 2x, + 4x3 g 30,

3x, — x, g 20,

X. :0,i=1,2.3.

h) z = 4x, — 17x, — 5x, 5 min;

x, - 3x, — 2x3 g 3,

2x, — 7x, - 3x3 g 8,
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-x, +2x,-3x3 :7, 2x, - 8x,- x3g13‚

x,;0,i=1,2,3, x,;0,i=1,2,3,

i) z=x,+x2—3x3—6x.$max; j) z=2x,Ax1—x3—x..$min;

x, -3x.‚g 4, 2x,

x,*x,- x,+ x,,=-3,
+x‚—2x.‚g 8,

x,'x,+x3— x,, ~3,

x,+x,-2x‚-4x.‚= 8, *x, +x3* x,= 5,

x,-:0,i=1,...,4, x,;0,i=1,...,4,

k)z=3x1+x2—x,+x.,$max; 1) z=x,—xZ+x3—x4émin;

2x,-4x1+x3' x.= 6, 2x,- 4x,+ Xg- x..= 6,

x1-6x1-x3+2x,,=-1, x,- 6x,- x3+2x.‚=—1,
-x,+2x, + x.,= 17, x1+10x;+5x,~8x..= 15,

x,-:0,i=1,...,4, x,-;0,i=1...,4.

6.3.3. Man löse mit dem Simplexverfahren:

a) Aufgabe 6.2.7. a), b) Aufgabe 6.3.1. b), c) Aufgabe 6.3.1. d).

6.3.4. Man behandle folgende Aufgaben mit dem Simplexverfahren:

a) z = 2x, * 6x, i min;

2x, - X, 0 S10,

x, — 3x, g 15,

3x, + x, =12,

‘x,;0,i=1,2,3,

c) z=x,+x,—x,=min;

X1 ‘ IX: ä 0.

3x, - x, - 4x3g0,
x, + 2x, g 10,

X2 ‘1’ 3x3 ä 4,

x‚20‚i=1‚2,3‚
e) Aufgabe 6.3.1. a).

s Pfm-r. Algebra ü 3

b) z = -15x, — 7x, + 28x, = min;

x, + x, - 5x, g12‚

2x, + x, - 4x3 g 10,

9x, + 4x, -18x; g 44,

x;§0,i=1,2,3,

d) z=2x1—x2+x3$max;

x,+ x,- x3~ x,,=4,
2x,+3x,- x3—2x4=9,

X2 + 2x3 ä 3,
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6.3.5. Man löse mit dem Simplexverfahren:

a) Aufgabe 6.1.1., b) Aufgabe 6.1.2., c) Aufgabe 6.1.3„
d) Aufgabe 6.1.4., e) Aufgabe 615., f) Aufgabe 6.1.7.,
g) Aufgabe 6.1.9. a). -

6.3.6. Man wende auf die folgende Aufgabe das Simplexverfahren an und vergleiche die
einzelnen Basislösungen mit der Optimailösung:

z = 40x3 — 40x, A 30x3 + 10x3 = max;

x, - x, + x3 g 10,

x, -2x3 g20,
4x1-2xz~ x3 g40‚

—2x,+ xz42x,+x,.=20, x,:0,i=1,...,4.

6.3.7. Bei den folgenden Optimierungsaufgaben bestimme man alle Lösungen:

a) z=8x‚-8x3+2x3=max; b) z=2x,~xz¥max;
x,—2x2+ x3g 0, 2x,’ x3+2x3g5,

—xpi2x,;—2, 2x,-2xz+ x3g2‚
xl- x2+ x3g 1, x,~ x3+ x3g2,

x,§0,i=1,2,3, x,:0,i=1,2,3,

C) z=x1+2x,-x3+20$min; d)z=3x1—x3¥max;

x1A2x2+ X3 g 4, 0gx3—2gx3-3gx3*4g7.
x1-3x,+ x3+x3g12,

-3x3 - 4x; + 5x3 + x4 g 26,

x, :0, i: 1, „,4,

6.3.8. Gegeben ist die Optimierungsaufgabe

‚

z=x‚+2x3+x3=max;
x, + x3 §10,

X, + x3 g 14,

x1 +x3;15‚ x‚g0,i=1‚2,3.
a) Man bestimme alle Lösungen.
b) Gibt es unter ihnen eine Lösung mit x3 = x3?

6.3.9. Gegeben ist die Optimierungsaufgabe

z=x1~3xz+2x3=min;

xrx; :1.
Xz’2X3§1,

x1 - x3g4‚ x‚;0,i=1‚2,3.
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Man bestimme

a) alle Lösungen,
b) alle ganzzahligen Lösungen.

6.3.10. Man löse mit dem Simplexverfahren und gebe jeweils alle Lösungen an:

a) Aufgabe 6.3.1.c), b) Aufgabe 6.1.8., c) Aufgabe 6.1.13.

6.3.11. Man gebe zu den folgenden Optimierungsaufgaben die jeweils zugehörige duale
Aufgabe an:

a) z=4x‚+3x,-x3%max; b) z=2xz—x3=max;

x,+xz §11, x1+ x2+ x3; 4,

2x‚-x,+x3g 7, 3x2+5x3= 15,

xz*x3§ Ü, —x1+ x; g 0,

x, +x3§10, x;— x3= 2,

x,:0,i=1,2,3, x,- xz- x3g*2‚
x, g 0, x2 frei, x3 g 0,

c) Aufgabe 6.3.2.h), d) Aufgabe 6.3.4.b).

6.3.12. Bei den folgenden Aufgaben ermittle man durch Anwendung des Simplexverfah-
rens auf die primale Aufgabe die Lösung (bzw. das Lösungsverhalten) von primaler und
dualer Aufgabe:

a) Aufgabe 6.3.11.a), b) Aufgabe 6.3.11.c), c) Aufgabe 6.3.11.d).

6.3.13. Man behandle die folgenden Aufgaben mit dem dualen Simplexverfahren:

a)z=x1+x2+2x3$min; b)z=x,+x2+2x3¥min;
3x,+3xz- x3; 7, 3X1+3Xg+ x3; 7,

2x,+4xz— x3§10, 2x,+4x,— x3§l0,
x,-3):;-3x3§ 1, x1-3x1-3x3: 1,

x,’ x2’ x3; 2, x,’ xz- x3; 2,

x,:0,i=1,2,3, x,;0,i=1,2,3.

6.3.14. Man löse mit dem dualen Simplexverfahren und gebe ggf. alle Lösungen an:

a) Aufgabe 6.1.6., b) Aufgabe 61.10., c) Aufgabe 6.1.11.a)‚
d) Aufgabe 6.1.14.

6.3.15. Gegeben sind die parametrischen Optimierungsaufgaben:

ü) Z=2X1*3x2*x3;max; b) z=3x‚+5x‚+8x3=min;
xl- x2’ x323, x1+ xZ-XJ; 5,

2x, +2x3§7, 2x2+x3§10,

X1‘2X2+ X3§4= X1 +X3§t,
2x2+ x3§t,

X,§0,i=1,2,3, x,§0,i=1,2,3,
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c) z=(t—3)x,— txzémax; d) z= tx,—x2$min;
x,+x2-X3 +2=0, x1‘x2§t,

2x1Ax; —x4+1=0, '-2x,+x2§2t,
x,;0,i=1,...,4, x,;0,i=1,2,

e) z:(2—z)x,+2x1—(2—z)x3+1—2z2émin;

~xx+xz—x3;t’, ‘

x1 -x3§2-t, X,-;0,i=1,2,3.

Man bestimme jeweils alle Werte t, fiir welche diese Aufgaben lösbar sind, und gebe die
zugehörigen Lösungen an.

6.4. Transportprobleme

Abgesättigte Transportprobieme, nicht abgesättigte Transportprobleme, Transportprobleme mit Zu-
satzbedingungen (Bd. 14, 4.1.)

Hinweis zur Bezeichnungsweise:

an
T

Grundschema: 7%, a= E mit af: Vorrat des Erzeugers E„

am

bT= [b,, „.‚ b„] mit bk: Bedarf des Verbrauchers Vk,

C11-«-51..

C= E E mit c,k: spezifische

c„„...c,„„

Transportkosten auf dem Weg von E, nach Vk,

Xll'*'xln
X: S E mit x,k: zu transportierende Menge

Xm---Xmn

Von E, nach Vk, i: l, ..., m, k= l, ...‚ n.

6.4.1. Gegeben ist das abgesättigte Transportproblem mit dem Gmndschema:

30 10 20

20142
'40231

Man löse das Problem

a) mit dem Simplexverfahren,
b) mit dem Transportalgorithmus.
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6.4.2. Gegeben sind die folgenden Transportprobleme (Angabe der Grundschemata):

a) ————j———— b)————————
1 5 3 4 15 21 7 13 3

5 4 3 5 8 14 2o 1s 1s 2o 17

3 2 s 2 1 s 12 15 13 15 1o

s 1 3 3 4 22 s 1o 17 11 13

12 5 12 15 1s 17

5 13 14 1s 12 1s

c>———— d>—
7o 7o so 4o s 12 1o s 4

so 2 3 s s s s 2 s 7 5

so 9 7 3 4 14 4 4 7 5 9
50 1 7 2 5 12 2 1 3 s 4

so 5 4 7 s s 5 s 4 s 3

e) -——— r)—
2o so 3o 7o 2 4 s 2 1 1

so 3 2 s11 3 5 3 7 3 s s

so s 1 7 7 s 5 s 12 s 7 11

5o 2 5 2 4 2 2 s 3 4 s 2

4o 3 2 7 5 7 9 s 1o 5 1o 9

Man ermittle einen ersten Transportplan

oz) nach der Nordwesteckenregel oder
B) nach der Regel des einfachen Vorzugs (Spaltenminimumregel) oder
y) nach der Regel des doppelten Vorzugs (Regel der minimalen Kosten) oder
ö) nach der Methode von Vogel
sowie die zugehörigen Transportkosten z und bestimme die optimale Lösung (ggf. die Ge-
samtheit aller optimalen Lösungen).

6.4.3. Gegeben ist das Transportproblem mit dem Grundschema:

3 3 2 2 4

3 1 2 4 l 4

5 3 1 2 4 5

4 3 5 4 2 3

2 7 6 4 4 4

a) Man ermittle mit der Nordwesteckenregel einen ersten Transportplan und wende dann
den Transportalgorithmus an. Was zeigt der Vergleich zwischen der so erhaltenen opti-
malen Lösung und dem ersten Plan?

b) Man behandle die Aufgabe als entartetes Transportproblern.

6 Pfon, Algebn Ü 3



62 6. Lineare Optimierung

6.4.4. Gegeben ist das Transportproblem mit dem Grundschema:

30 10 10 10 30 40

10 2 1 5 5 3 11

20 2 2 4 4 5 2

30 1 3 5 5 5 2

70 4 6 6 1 1 10

und den Zusatzbedingungen (Bezeichnungen s.o.):

(x) E. hat V1, V, und V3 maximal zu beliefern,
ß) der Weg von E3 nach V5 ist gesperrt,
y) der Weg von E; nach V5 ist gesperrt,
ö) von E; nach V6 sollen höchstens 15 Einheiten transportiert werden,
e) von E; nach V6 sollen höchstens 15 Einheiten transportiert werden.
Man bestimme optimale Transportpläne und die zugehörigen Transportkosten z für fol-
gende Fälle:

a) Es gelten keine Zusatzbedingungen,
b) es gelte Zusatzbedingung o<)‚

es gelten die Zusatzbedingungen oz) und ß),

d) es gelten die Zusatzbedingungen a), ß) und y),
es gelten die Zusatzbedingungen 1x) und ö),

f) es gelten die Zusatzbedingungen (x), ö) und e),

o \.
/

(b V

6.4.5. Man löse die Aufgabe 6.1.15.

6.4.6. Vier Fabriken A, (i = 1, ..., 4) beliefern drei Baustellen Bk (k = 1, 2, 3) mit Baton-
platten. Die Anzahl der pro Tag von den Fabriken bereitgestellten bzw. von den Baustel-
len benötigten Lieferungen sowie die jeweiligen Transportkosten pro Lieferung sind dem
Schema zu entnehmen:

Bk 30 40 25

A.-

50 6 6 9

25 10 4 8

10 6 5 3

10 3 8 4

a) Man bestimme den kostenoptimalen Transportplan und die zugehörigen Transportko-
sten.

b) Aus Witterungsgründen muß die Montagearbeit auf der Baustelle B3 für einige Tage
eingeschränkt werden, deshalb verringert sich ihr Bedarf auf 15 Lieferungen. Außer-
dem kann sie von A; und A, aus nicht mehr beliefert werden. Eine Lagerung ist nur in
A, und A, möglich. Lagerkosten treten dort nicht auf. Wie ist jetzt der Transport ko-
stenoptimal durchzuführen?

6.4.7. Vier Auslieferungsstellen A, (i = 1, ‚.., 4) beliefern vier Verkaufsstellen V„

(k =1, ...‚ 4) mit einem Produkt. Der Vorrat der A„ der Bedarf der K und die spezifi-
schen Transportkosten sind in der Tabelle angegeben:
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V. 50 25 35 20

A.

55 6 1o 3 11

2s 7 6 5

15 2 3 9 6

35 1o 9 4 11

a) Man bestimme den kostenoptimalen Transportplan und die zugehörigen Transportko-
sten.

b) Die Verkaufsstelle V4 bleibt für eine gewisse Zeit geschlossen, ohne daß sich der Be-
darf von V1, V, und V, erhöht. Spezifische Lagerkosten treten in A, von 4, in A4 von

3 GE auf, und in A; besteht nur eine Lagermöglichkeit von 5 Einheiten des Produkts.
Wie lautet nunmehr ein kostenoptimaler Transportplan, wie die allgemeine Lösung?

6.4.8. Aus drei Steinbrüchen S,- (i = 1, 2, 3) ist Schotter auf 5 Baustellen Bk (k = 1, ..., 5)

zu transportieren. Das Angebot der S,- (in t), "der Bedarf der B,‘ (in t) und die spezifischen
Transportkosten (in GE pro t) sind in der Tabelle angegeben:

Bk 12 4 6 7 11

S.

3 12 7 13 9 6

22 9 16 17 4 7

15 4 9 11 6 6

a) Man bestimme den kostenoptimalen Transportplan und die zugehörigen Transportko-
sten.

b) Durch Witterungseinfluß ist die Straße von S; nach B3 unpassierbar geworden. Da die
Baustelle B3 die schnelle Reparatur übernehmen soll, erhöht sich ihr Bedarf um 2 Ton-
nen, Ihr nunmehriger Gesamtbedarf wird ihr voll zugesichert. Wie lautet jetzt der ko-
stenoptimale Transportplan? Welche Baustelle kann demnach zunächst nicht mit voll-
ständiger Belieferung rechnen?

6.4.9. Vier Erzeuger E, (i = 1, ..., 4) beliefern vier Verbraucher V,, (k = 1, ..., 4) mit einem
Produkt. Die Kapazität der 15,-, der Bedarf der V, und die spezifischen Transportkosten
sind in der Tabelle angegeben:

Vk 110 50 70 60

E:

80 6 1 5 6

60 1 5 7 4

70 3 6 6 5

80 5 1 8 4

a) Man bestimme einen kostenoptimalen Transportplan und die zugehörigen Transport-
kosten,

b) Wie lautet die allgemeine Lösung des Problems?
c) Zum Transport werden Lastkraftwagen mit einem Fassungsvermögen von 100 Einhei-

5.
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ten des Produkts eingesetzt, die jeweils nur einmal von einem Erzeuger E,- zu einem
Verbraucher Vk fahren sollen.

0c) Wie viele Lastkraftwagen werden zur Realisierung des Transportplans aus a) benö-
tigt?

ß) Man überlege sich einen Transportplan, der mit möglichst wenig Fahrzeugen aus-

kommt. Wie groß wären allerdings dann die Transportkosten?

6.4.10. Bei einem Transportproblem mit drei Erzeugem E,- und vier Verbrauchern V„ (Da-
ten s. Tabelle) entsteht bei einem Verbraucher ein schwankender Bedarf t. Man bestimme
einen kostenoptimalen Transportplan und die zugehörigen Transportkosten in Abhängig-
keit von t für 0 g tg 20. Im Falle der Nichtabsättigung sollen keine Lagerkosten entste-
hen.

V,‘ 10 10 10 t

Er

20 2 3 6 1

20 2 1 5 3

Z0 1 5 2 3

6.5. Ganzzahlige Optimierungsaufgaben

Gomory-Verfahren (Bd. 14, 3.4.)

6.5.1. Gegeben ist die Optimierungsaufgabe

z = 9x,-13x3; max;

x. - x; - x, g 2,

2x2 " X3 ä 2,

x; + 2x; - 2x, g 4,

2x; + x; - 2x, g 7, x; g 0, ganzzahlig, i = 1, 2, 3.

a) Man löse die Aufgabe zunächst ohne Berücksichtigung der Ganzzahligkeitsforderung
und runde die erhaltenen Ergebnisse vorschriftsmäßig auf ganze Zahlen. Was ist zu

der so gewonnenen „Lösung“ zu sagen?

b) Man löse die Aufgabe mit dem Gomory-Verfahren.

6.5.2. Man löse die folgenden Optimierungsaufgaben mit‘ dem Gomory-Verfahren:

a) z=6x1—Sx1é max; b) z=3x,+2x,—2x3é max;

3x; - x; g 10, 4x; - x; 215,
3x;-2x;g 8, x;+ x;-x‚g 8,

x, g 0, ganzzahlig, i= 1, 2, 4x1 i’ 2x2 + X3 ä 25:

xi g 0, ganzzahlig, i= 1, 2, 3.

6.5.3. Man löse mit dem Gomory-Verfahren und gebe ggf. alle Lösungen an:

a) Aufgabe 6.1.9.b), b) Aufgabe 6.1.11.c).

6.5.4. a) Man löse die Aufgaben 6.1.12.a)‚ b). b) Die Forderung der Aufgaben-
stellung 6.1.12.b) werde wie folgt abgeändert: Es sollen genau 10 Bleche der ersten
Größe und genau 20 Bleche der zweiten Größe hergestellt werden. Wie lautet nun-
mehr die Lösung?
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1.1.2:

1.1.3:

1.1.4:

1.1.5:

1.1.6:

1.1.7:

1.1.8:

1.1.10:

1.1.11:

1.1.14:

1.1.15:
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b) 1=2‚„=—3.

NurA+F‚B+D,B+G, C+H,D+Gdefiniert.

a) X=A+B+E b) X=E

0 0

AB=[o o
J (A, B sind Nullteiler).

a) AB= 13+“ 15” ‚ Ab= “Z114 nichtdefs,
6 8+2i 4

„z 2-1 1+1’ 8,: 5 3-21]! b„=u‚i_l+ü_
1 1—1 3+2: 7

b) Nein. c) x =%[3 + i, -1 - 11T. d) A nein, B ja. e) A nein, B nein.

a) A + B = 5 0 4] ‚ A + C nicht definiert,
6 -1 4

10 6 16 11

“"121 181’ B014 1]‘
26 17

(A+B)C—[25 19].

—x —x
a) -x1+4x,; 3x§+2x,x2+2x§; L”: 4);]; x§+x§.

b) Gerade, Kurve 2.0rdnung (zweimal), Kreis.

c) Ebene, Fläche 2. Ordnung (zweimal), Kugel.

a) 1. und 3. und 7.Ausdruck: nicht definiert.

b) yTAx = xTATy = (Ax)Ty = x7(y‘A) = 5.

5 -8
a) (A+B)C= 51 8.

8 1

s -22 74' B

27 6 1

AB- 21 20 -4
7 5 -6

an azz an an an an

CA = an an a3: ‚ AC‘ an an an «

an an a1: an a31 a3:

Hinweis: Man setze a,- = [a,,, ...‚ a‚„]T und berechne die linke und rechte Seite der zu be-
weisenden Gleichung.

Hinweis: Zwei Matrizen sind gleich, wenn sie im Typ und in allen entsprechenden Ele-
meinten übereinstimmen.
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1.1.17:

1.1.18:

1.2.1:

1.2.2:

1.2.3:

1.2.4:

1.2.5:

1.2.6:

1.2.8:

1.2.9:

1.2.11:

1.2.13:

1.3.1:

1.3.2:

1.3.3:

Ausgewählte Lösungen und Lösungshinweise

Fallunterscheidung für die Elemente 0.„ von C : AB:
1.) i=1,...,I; k: 1, ..., I. 2.) i: 1, ..., I; k= 1+ 1, ...‚ m; usw.

Hinweis zu b): Man betrachte die Blockmatrix

3 0 0

A=[$ mit P= 0 v1 0 und S=[_:
0 0 4

Hinweis: Beim Beweis der Richtung „,2“ verwende man für x Spaltenvektoren, die ein-
mal oder zweimal die Zahl 1 enthalten und sonst lauter Nullen.

a) A„= -3, /122=2, A1,=-10. b) detA= -33.

d) 39. e) (Ä-1)(Ä’*2Ä—3)‚ f) 1-x-3y.

a) 5. b) —36. c) 70. d) 0. e) 0.

a) x,:0, x,=1, x,=7.
b) x111, x2=l+2i‚ x;=1—2i.

Hinweis: Man entwickle nach der 1. Zeile!

Hinweis zu a): Man entwickle nach der 1. Zeile!

Hinweis: Man berechne BC und vergleiche mit A.

a) X,=-1, X;=—7. b) x=2.

c) x1=0, x1=—2. d) x,=0, x;=i, x;:*i.

E l6
Hinweis: Man wähle A = 2 . Wie muß dann B gewählt werden, damit AB = M

O H
gilt?

. . “z b2 as 3 “t b1 a‘ “Z a}
Hinweis: uT(a >< b) = a, + + a, = a, a; a3

a b3 a, b a, b,
b1 bl b3

A" existiert bei a), c), d) und f). (Vor.: ad - bc at 0)
A“ existiert nicht bei b) und e).

1 -1 3 *3 1 -2 3 16

a)fi~4 110. a)”; 0—1—4.
4 -1 1 0 0 2

1 9 v4 1 d -b
d) 1712 11' f) ad-bc[—c a1"

18 ~3 -20 -11 —4 0 8 0

a)l—24626 14 mioz 02
6 0 0 2 2 4 8 0 —12 0

6 0 -8 -2 0 3 0 ~1
-4 4 1 I -4 0 0 1 —4 9

C) 1 -2 -1 . d) -? 8 4 10 . f) 0 1 2

1 l 1 0 4 6 0 0 1

e) Existiert nicht.



1.3.4.:

1.3.5:

1.3.8:

1.3.9:

1.3.10:

1.3.12:

1.4.1:

1.4.3:

1.4.4:

1.4.9:

2.1.1:

2.1.2:

2.1.3:

2.1.4:

2.1.6:
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Hinweise: a) X: A“B. b) Keine Lösung.

4-2 -2 2 1 -1 7

l0 1 2—1 1 2—2
a)? l0 ~22 —e 4' b)“ —2 °)X' —9 17

4~3—2 1 —1 —4 s

Hinweis: v‘g1‚ Formel in Aufg.1.3.2.

1 1
Zusatzfrage: Gleichung hat unendlich viele Lösungen, z. B. X= [0 o] .

‚ T

a)X:A(A+2E)". b)X=<C(%D-2E) IR").

Hinweis:.Man schreibe A und die gesuchte Mzitrix A" als Blockmalrivzeri!

_ C O _‘ _ F 0

‘"10 E1’ A {G H1’

a), d), f) orthogonal; b), c), e) nicht orthogonal.

Hinweis: Rechenregeln für Matrizen benutzen!

1 3 6 2

3 6 3 1
6 3 3 1 , C—A B.

2 1 l 2

‚ . a b _ .

Hinweis zu a): Man setze X: b und bestimme a, b, c aus der Gleichung X’ = E;
c

dabei ist eine Fallunterscheidung erforderlich,

3 -2 1 o 1 3

.1 43]. „i 3]. „M. „fiki
b) IaI=«/17, IbI=»/5. |cI=»/W, 1a°|=1.

a>fiz:[‘1‘], is?::[g]; |m=./F, (B'c‘|=3.

b) 0! = v = 75,96"; ß = Ö = 104,04°.

"=[‘Z:§§1’ «[3]» “[33]-

u:A_3°+.A—C°, u=lfl—I§:i§; .
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2.1.7:

2.1.8:

2.1.9:

2.1.11:

2.1.12:

2.1.14:

2.1.15:

2.1.17:

2.1.19:

2.1.20:

2.1.21:

2.1.22:
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2 1,08 -172 194
Zahlenbeispiett: -3 , u: —0,09 ‚ v: 53 ‚ w: -61 .

-13 1,21 ~97 -19

i.7.

<t(e3;a):31,0°.

c0s(e,; a) = ä; cos(ez; a) = %; cos(e3; a) =

<1(e1;a)= 73.4“; 4(e2; a) = 64‚6°;

0,64
a : 4 0,50 .

*0,8

5 5

a: [4,47:| bzw. Q:[—4,47J (zwei Lösungen);
2 2

<t(e,, a) = 144,52",

<i(e1, n) = 44,4“; <K(e,, a) = 50‚3° (bzw. 129‚7°); {(23, a) = 73,4“.

a) 135°. b) 90°. c) 109,5°.

a> Ian=¢7 ibt=~/2’. |c|=./5.
b) ab=2, bc=0, nc=0.

2 0 0
c) axe: 2 , b><c: 2 , (a><b)c=-4. cl) 0 , 4.

2 0 4

-2 o

e)aX(bXc):[ 0], (a><b)><c:[0]. f)[a,b,c]=—4.
2 0

0,37 0,37
n: 0,23 bzw. n: '0,90 .

-0,90 —0,23

=Ä :‚2
112 2. 0!: 2-

a) xybilden! b) |x|’=x2=7, |y|’=21, |y~x|’=28.

c) cosu=cos4(‘x‚y*x)=%, M1600.

9 4 4

a) a: 12 ‚ b: 6 bzw. 6 .

0 6,9 -6‚9
b) 53,1“; 36,9“; 90° (Richtungswinkel von a), 66,4“; 53,1“; 46,1° bzw. 133,8° (Rich-

tungswinkel von b).
c) 108. d) 51°. e) 3,29; 4,94;i5,68.

Hinweis: Entwicklungssatz für das Vektorprodukt verwenden!

b muß parallel a><c sein.
verwenden!)

(Hinweis: Entwicklungssatz für das Vektorprodukt

Hinweis: Man führe zwei Vektoren ein, die vom Scheitelpunkt des Winkels zu den End-
punkten des Durchmessers führen.



2.1.25:

2.1.26:

2.1.27:

2.1.28:

2.1.29:

2.1.30:

2.2.1:

2.2.2:

2.2.3:

2.2.4:

2.2.5:

2.2.6:

2 .2.7:

2.2.8:

2.2.9:

2.2.10:

2.2.11:

3.1.1:

3.1.2:

3.1.3:
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Hinweis: Man gehe von der Definition des Skalarprodukts aus.

62,93.

Hinweis: cos(ac — ß) = cos<X (a°, b“).

Hinweis: Man führe die Vektoren r =3, s =B_C, t =ÜD und u =ÜÄ ein! Wie lassen sich
dann die Diagonnlvektoren beschreiben?

% L -: %
a) a’= l ‚ b’= 3 ‚ e’: 3 , d’: 3 ‚

*7 1 ° 7
‚ -1 ‚L i

9: 1s’ 1s‘

Man zeige zunächst [w1, w; , w; Koordinaten von w bez. K]

w w, ‚ ä wz, —w, Koordinaten von w bez. K].

1 1
b) e, = F (211, + 2o; — Da). e; = E01), - v, + 21);),

1
e3=1—8( - u‚+2v‚+2v‚).

a), b): Lin. unabhängig. c), d): Lin. abhängig.

p = ~14a + 25b + 22c.

det[u,b,c]=-2*0, 1J=2a+b+0'c.

a) }.,(a + 2b) + 1, (b — a) + 13c = o=>(i.1, 1„ 1;) = (0, 0, 0).

b) Für (11.12.13) =(1. -1, 1) * (0, 0. 0) gilt
Ä,(u ~ b)'+ l.z(a — c) + Ä‚(b - c) = o.

c) Lin. unabhängig. d), e), f): Lin. abhängig.

Hinweis: Man multipliziere die Gleichung c z la + ab mit a und b (Skalarprodukt).

Hinweis: Man unterscheide die Fälle a = o und a * o.

a) Lin. unabhängig. b) Lin. abhängig.

Angaben sind mit der Voraussetzung verträglich (bei a)), nicht verträglich (bei b)). Bei b)
gilt: bllc,

= J_7ü; 5 .

a) x = 0. b) Kein x erfüllt die Gleichung. c) x beliebig.

a) a*0, bbeliebig. b) a=0, b¢0. c) a=0, b=0.

zu u) d), e), i); zu ß) e) x=r(3,1, -2)’, i) x= t(1, 1, l)‘, tjeweils beliebig,
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3.1.4:

3.1.5:

3.2.1:

3.2.2:

3.2.3:

3.2.4:

3.2.5:

3.2.6:

3.2.7:

3.2.8:
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aber 1* 0; zu y) a) x = 1,5, y=0,5; f) x =%y +%, y be1., reell;

g) keine Lösung; zu ö) b) x = y + 1, y be1., reell;

c) keine Lésung; h) x : 1% (9, 11, *7)’; zu e) D = O, nur für homogene Systeme,

x 2 (3, -2)‘.

a) 1, = 0, 2, = -5,/1, = 4. b) x=t(1,0,1)T,tbe1.,ree11.

a) x : t(*8, 7, S)? b) x = [(1, 3, *5)‘. c) Es existiert keine Lösung.

d) x : [(1, 3, 2, *1)’. e) x =t(*1,0,3,1)T.
f) x,= -2u -3v,x‚=3u-v,x,= *0,5u*2v,x„=u,x5= u.

(Alle Parameter t, u, v beliebig, reell.)

a) 2:0; x:t(*2, 1,1)’. b) }.1=6; x1=2u, x2=u, x3:v

sowie /12 = -8; x1: *4t, X1 z St, x, : *21.

c) /1,:o, 12:1, /13:2; x,:7’(0, 6, ~3,5)T, x,:§'(3,6, -3.5)’,

x, = 1(2, 3, *1, 1)’. (Alle Parameter t, u, v beliebig, reell, H; 0.)

a) x: (-2, 1, 1)’. b) Folgt aus 3.2.2.c) mit n: 1.

a) x = (2, 3, *5)‘, b) Cramersche Regel nicht anwendbar,

c) x=5—71(—33,2,17)T. a) x=(2,-1,-2)’.

a) x<z>= r,y<z>= -21. zu): ß. b) x:y=z=o;
für t= 0 gilt: (x, y, z)1= M0, *1, 1)‘, ‚1 beliebig, reell. ‚n l2 q

a) x=(1,0,*2)1. b) x=t(1,2,1)1+(2, —1,0)T. c) x=(8,21,*2,3)1.
d) x=(—1,3.0,2)T. e) X=t(—2,1.0,0)1+(5,0. *3,0)1A
f) x,:15*11r, x1:1+t, x3=*5+5I, x.=t.
g) x= u(2, *3, 0, 0)T+ v(0, -21, 2, 4)T+ (0, l2, 0, *4)T.

h) x=(2,—2.3,3,1)1‘ i) x=!(-3, *1. 1. 1,1)1+(—3,1,3.4.0)’.

j) x=(2,s,1)*. k) x= :(9, -17, 5)T+%(4‚ 7, o)’.

l) Keine Lösung. m) x = t(2, -1, 1,0)T+(2,1, O, *2)’,
n) x = u(-22, 1,0, -13)T + v(17,0,1,10)7 + (2, Ü, 0,1)T.

0) x=t(1,1,0, -7, 0)T+ u(-11, Ü, l, 7, 0)T+ v(*14,0,0,8,1)‘ +-1—1o*(7, 0, 0, I, Ü)‘.

p) x = «s, 2. 1, 1, o)*+ §<s, s, —3‚ o, o)’,

q) x = u(*3, 2, 1, 0, 0)T+ v(*2, *1, 0, 3, 1)1+ (4, *1,0, 1, 0)’.
r) Keine Lösung.

Wegen x, + x1 + x3 + x, = 11 - 4!, also t= 2,5, gilt: X1: *12,5, x; = 3,5, x3 = 7,5.

x4 = 2,5.

a) x: t(*8, 4,l1,12,0)T + u(30, -14, -13, 0, 6)1+ (*11, 2,*3, 0, 0)T.
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b) Keine Lösung. c) X=%(13, 7)’. d) Keine Lösung.

e) x = t(21, -18, 1)’ - (8, 5, 6, 0)’.

f) x= u(0. -1. l, 1,0)’ + v(2‚ *1,0.0. 1)’ + (1. 2. 2. 0, 0)’»

Alle Parameter beliebig, reell.

x1=3tz—2fl, x2=—3oz-5, x3:5:z+4fl.

Keine eindeutige Lösung: Ä, = 1 für a), 1, = 1, = 1 für b).

Keine Lösung: 1, = 2, 1, = —3 flit a), Ä, = 0 für b).

1:1,1:2,1:3.

a)1:3, 1::1,5. b)Ä=3. c)l.=-1,5. d) X,=—T7O‚ x,=1‚ x3=%.

e) x= [(1, -4, 2)’+ (0, :1, 1)’. tbeliebig, reell.

a) o()a*-1,bbel.; ß)a=:1‚b=t=2; y)u=-1,b=2.
b) x=(3,-1, -3)’. c) x=t(-1,1,1)’+(0, 2, 0)’.

(1) ist linear abhängig. Deshalb erhält man für (2) unendlich viele Lösungen, auch die ge-
nannte.

x, = l0, x, =15, x, : Z0.

Ganzzahlige Lösungen: x, : (1, 8, 21)’, x, = (2, 6, 22)’, x, = (3, 4, 23)’,
x4 2 (4, 2, 24)’.

(1, 15, 7) und (4, 7,12).

a) x, = -35y,+12y, -14y, b) x, = 7y, + Sy, —10y3

X2 = 15.V1 ‘ 5}’: 1’ 5)’: X: = ‘5Y1 ‘ 6J’: 1' s)’:

X3 = _18y1+ 5)’: ’ 7}’3« X3 = ‘%}’1‘ 5)’: + 7Y3»

x,:9, xz=16, x,= -2, m: —5.

x = u(l, 2, 0, 0)’ + v(0, 1, 0, 1)’ + (0, 5, 71, 0)’, u, v beliebig reell
(Lösung des inhomogenen Systems).

a) System nicht lösbar. b) Lösung der Gleichungen (2), (3) und (4): x, = x, : x, = 1. Also
ist die Eins der ersten Gleichung durch eine Drei zu ersetzen.

Die unbekannten Koeffizienten a„ und b, ermittelt man aus den Gleichungen Ax, = o,

Ax, : a, und Axq = b.

Eine Lösung ist zum Beispiel: 2x, — 6x, - x, = 2

2x, —4x, A x3~x.= —2.

a) r = 2, r, = 3. Nicht lösbar.
b) r = 2( = r‚). Neben der trivialen Lösung existieren weitere Lösungen, für die eine Un-

bekannte (z. B. x3) beliebig wählbar ist.
c) r= r, = 2. Lösbar, zwei Unbekannte beliebig wählbar.
d) = 4. Eindeutig lösbar.
e) r = 2, r, = 3. Nicht lösbar. f) r = r, : 4. Eindeutig lösbar.
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3.3.1: Lösungen zu a), b) und c) vgl. Bilder 3.1, 3.2 und 3.3. Zu d): Die Lösungsmenge ist leer.

Lösungsmenge unbeschränkt Bild 3.2

Bild 3.3

3.3.2: Lösungen zu a), b), c) und d) vgl, Bilder 3.4, 3.5, 3.6 und 3.7.

Bild 3.4
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(3,~1,5) ’ (3.46)

\
\
\

(-34,1) ‚- — — — — — (—2,1.,1)

(-2 ,—1,o),I_ — —- — — — r-2‚ 4.0)// _

/ .V

(3-10}
’ ’/ (3,4,o)

x Bild 3.5

( O, 5,1‘)

—>
V

(0.5,—2)

Bild 3.6

funbeschrénkfes
Prisma)

x Bild 3.7

3.3.3: c) Strecke Ü mitP, , P,(%, Ä
12

3.3.4: Vor.: A)1(_5_ b,A)1(§b.
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3.3.5:

3.3.6:

3.4.1:

3.4.2:

3.4.3:

3.4.4:

4.1.1:

4.1.2:

4.1.3:

4.1.5:
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Beh; A(:1(+1()2(—1l())§ b
fiiralle}.mit0§1§1.

Bew.:A(;‘:+.4(}.—;‘.))=(1—/z)A&+/1.4§g(1—2)b+/1b=b
(wegen1v}.;0und/1:0).

Vgl. Bild 3.8.

Bild3.8

-11. fl1_°3_4 -2 -3 __5_l3.
a) "43’ (43’43’43)‘ b) ‘"6’s( 6’ 6’ 6)

-14 A1 4 A1: _: ‘f
e) 13 =2 2 -3 -3. n) :2 —4

6 3 0 -18 1 5

-18 3 6

a) d=3. b)d=2. c)d:3.

a) 3. b) 2. c) 2. d) 3. e) 4. f) 4.

9 22 23 24
b) e,:fia/,+mv;-T2703-+T2Tu4.

.r:t(1,0)7, y=0; 2. r=r(0,1)T, x=0;

.r::(5,2)T, 2x=5y; 4. und 5. y=¢?x;

.r: (—~l,9)T+ t(1, -2)T, 2x+y=0;

. r=(2, ~3)*+:(2,3)*, 3x-2y=12;

. r=(0,12)T+ t(1,3)T, ~3x+y: l2;

.r=t(-2,1)T, x+2y=0; 10. 2xAy=5.~
o

o
o

\n
a

\L
.z

»
—

-

. r:z(1,o,o)*; 2. r=:(o,o,1)T;

. r:(1,2,3)T+r(o,1,0)T; 4. r=(1,o,1)T+z(1,2, -2)’;

. r=(1,— 2,2)'+z(2,o,—1)*; s. r:(1,2, 3)T+:(1,1, 1)T;

. r=(0,33,21)*+:(o,o,1)T, s(o,33,21).\
n
u
.
w

»
—

-

: 1—17(8x+1Sy+170):0.

P, und der Ursprung liegen auf derselben Seite der Geraden, e = 4. P, und der Ursprung
liegen auf verschiedenen Seiten der Geraden, e : 3. P3 liegt auf der Geraden, e I 0.

g,:y=3, g,:24x—7y+45=0.
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4.1.13:

4.1.14:

4.1.15:

4.1.16:

4.1.17:
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1.P1 liegt auf der Geraden, P2 nicht. 2.P‚ liegt auf der Geraden, P1 nicht, 3.Beide Punkte
liegen auf der Geraden.

x—1 3 0

1.01) "gl-ifii; ß)_y+2 X 4 = o 3

2*} 5 0

2. 4x)x-1=y-2=z-3; 3.01) x;1=zA5,y=4.

1. x,+2xz—x3+1=0; 3.x*2y+z=6;
4.x+6y+z=16; 5.x-y+z=0; 6. 2x~2y+z+3=0;
7.3x,+2x2+x3=17; 8.3x,+x;+x3=5; 9,—x+‘/2—y+z=4;
10. 4x-y-3z+10=0.

2. 5x,+7x1+x3:4;

1. r= (l, *1, 2)T+ u(1,3,1)T+ u(l, 4, 2)T; 2. r= u(4, 5, 6)T+ v(10,11,12)T;

3. r= (6, 8, 10W + u(2,10, 21)‘ + v(4‚ 5, 6)T;

4. r: (1, — 3, o)*+ u(—1,—4,2)T+ u(2, -6, -1)’;
5. r= (1, -3‚ -8)T+ u(3, 2, 2)’ + 11(0,1,3)T;

5. r=(1,1,1)Y + u(1,0, —1)Y + „a, —1‚1)T.
-m < u, v < w für alle Teilaufgaben.

1
1. %+—2y~+§—1, 7<sx+3y+2z-6)=o;

2 ~;+%—§=1,%(—2x+2y~z—4)=o.

1.e:2; 2.e=1‘ 3.e:0.

Man bestimme die Schnittpunkte S, und S, der Geraden g: r = I(A, B, C)’ mit den beiden
Ebenen.

Die Ungleichung stellt die Menge aller Punkte desjenigen Halbraumes dar, die auf der
Seite der Ebene liegen, nach der r? gerichtet ist. Zum Nachweis verwende man fiir ü

die Definition des Skalarprodukts und beachte, daß cos(r?‚ 7375) > 0 gilt.

21x + 3y + 672 = ~37.

X + y + 22 = 4.

' Ü’ H
3. e = 5,5; 4. s(0,2), tp = 2s,1°.

1.s( 3 m), .p:74,4°; 2. s(—2,6),az:53,1°;

Die Projektionen der Geraden auf die y, z-Ebene schneiden einander in einem Punkt die-
ser Ebene.

a) d = 0.60. (v = 73,22”.

d) d = 0,56, a: : 79,48”.

b) s(o,2,2), q) = 5o,2o°.

e) s(1, — 1,2), q: : 9,27°.

c) d=7, ¢=0°.
1) 4:4, <p=0°.
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g) d = 0,45, q: = 60,79°. h) d = 6, a: = 33,39? i) S(1,1,0), a: = 79,48“.

j) S( — 3,3,6), q: = 90°. k) g, und g, beschreiben dieselbe Gerade.

a) r = ( - 3,0, — 2)T+ t(4,1‚3)1, q) =19,84°. b) e = 2.

c) r = (1,1,0)T + z( — 9,s,11)T, q: = 90°. d) r = (3,5, — 7)‘ +1(5,9,— 7)‘, a: = 85,41°.

e) r=(-1.2.0)’ +t(1,-10,3)‘. a1 = 90°- 0 r = (2‚1‚4)T +t(‘1,1.1)’. w =19,1°«

g) r= ( — 1,0, — 2)T + :(—1,3,5)T‚ up = 80,40°.

h) r= ( — 12,6, — s)? + r( — 29,14, — 11)’, (p = 75,18“.

1) r= (4,1,2)T + r(3,1,8)1‚ (p = 65,06“. j) d = 7.

k) e = 0 , (p = 0°.

dZIWHm-PTQL
_ W FF’ __

wobe1 PTQ =flm’,

Po

P, Q P Bild 4.7

oder über den Flächeninhalt des Dreiecks (P1, Q, Po):

1 —. 1 _.

A‘7|mXP1Po‘ = '

¢2=59,53°

2 3 1 1a)r=1+z ,~oo<t<oo. b) S(0,?,v-3~).
1 2

C) Q(—0,36; 0,21; —0,57). d) d=2,89.

4 4 4 2
b) Fl(l, ’?‚ -7). F1<?‘, *'?, *2). C) l.

P.(—%‚ 2, P.(0,2,o>, d=%»/2‘.

P(3, —1,o).

%(2x-2y+z)+1=0, e=1.

-1 -1
+u 2+1; 0 ,-°°<u,v<°°.

0 3

b) 6x+3y+2z=6‚ c) {——"”‘+3y7+2"5 =0.

l
0

0

a) r:
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4.2.23:
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1 1

d) e=374‚ e) r= 0 +1—2},—rx><1<°°.
0 0

0 1

a) /1=3 b)r:1+z ,—oo<z<<».
1 1

a. _i 2 ‚i _ o.1. S(1,0,0),q1—28,l, 2.s( 3, 3, 3>,q2—45‚

541 963 2603 „A
3. S(-7‚ v, —T>,(p 89,47,

4. s(9, —5, 12), q1=85,90°; 5. s(4,%,1>, a1=45,77°.

s(1,2, 3).

1- Fp(1. 1. 1). Fq(4. 5. 6); 2. F;-(-1; -2.5; 3. 5). Fa(*1;0.5;0.5);
3. F,.(~1, 1, -2), Q liegt auf der Geraden!

1. F(—3, 2, v2); 2. F(0,5, 1).

a) r= (-1, —2, ~2)T+ 1(A4, 1, 3)‘, —oo < t< eo.

b) P3(—4,—5, v5),P,(2, 1, 1). c) 11:?

1. r[,=r0+2(q~ron)n;
2. 1>;,(o,—1,3); 3. 1=;,(13, -7, -3); 4. P;,(—5, 2, 2).

—x+2y+2z=5.

a) 10. b) 0.

A=7,5./F.

a) A(1,2,1). b) y=(1,2,1)T+z(1,1,~4)‘. c) :+:= 2.

D=-ä-1/2—, D’=%«/6-.

1:571.

a) 4. b) 3./2'. c) cl) 6,5. (3)21/6-. 1) 7,5. g) 22.

h) 2./E. 1) 3,5.

a) a1=0,a,=1. b) a1=8,a;=-2.

a) 1/=13. b) v=245.

8
a) (I1=5.‘I2=‘10< b) q.=20.q2=7

7 Pforr. Algebra Ü 3
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7
a) q=-6‚8. b) q1=3,q;=-16,6. c) q=?.

a> [i], {i} H} (3%) (M 6%)-
—3 -2 1 9 7

d) [ [ i], [ 2]; 7,6,3; (7,-1,0), (5,0,—1), <7,1,2>;
-2

2x+z=9.

“>[$]+'[Z]’ [iH‘i]» [3]“[§]‘»

o,§H‘i]» [2f]“[’§» [;‘:§]+'[i];

+t

+äHfl» [ÜHPÄL [1H-i]~1

2 4 2

‚ +1 5 , 2 +t 15 .

—4 1 -4

Für sämtliche in Aufgabe 4.3.7. auftretenden Parameter tgilt: ice < t < 00.

a) E i 2 fl 2 ä
3’3’ 26’26’ 13’13‘

E
3

l 89 —11 1 1 41 11 4
d)< 10,7), <*2‘o‘,‘*‘f,fi). (‘V2-.1), (fi,—4‘,3')‘

(3,63; 1,76), (

17 -1 26 19 -17 —2
a) (T‚T‚T)‚ b) <—1,—1,6>, 0,1,2).

Zusatzaufgabe: (0, -2, 2), (2, 2, 6).

a) (0,4). b)y=1, y=—3x+4. c)y:x+3, y=—%x+4.

b) r:t<a+%b), c) (fi,=(%,2,3)T, r=u(5,4,6)*,

—m<t<w, -°°<u<w.

]

éJ~[2:::E]» ü N11211:]:
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a=3.

a) V=2, 0=13,97. b) V=-3-, 0=19,67.

_ 2 _ Z

K161 gleichung: (x ff’) + jayfly") = 1,

7 2 _ Z

Ellipsengleichung: 3L) (y bf”) l,

_ 2 7 Z

Hyperbelgleichung: 9% v Ly-jii = 1 oder

ii + Ole’ z 1,
a2 bl

Kreis: Koeffizienten der quadratischen Glieder gleich,
Ellipse: Koeffizienten der quadratischen Glieder mit gleichem Vorzeichen, dem Betrag
nach aber ungleich.
Hyperbel: Koeffizienten der quadratischen Glieder mit ungleichem Vorzeichen.

K. ' ' ' L 'a) und e), an; ' ' L -b) und t), Hyy=.hr=~' ' ' c), d)
undg). a) M(5,—2), r:4. b) M(*3,2), a=7, b=5.
c) M(5,—4), a=7‚ b=10. d) M(—1,2), «:2, b=1. e) M(0;3,5), r=5.
f)M(0,0), a=1, 17:./o,_5. g) M(—4,0), a=b=2.

a) (x r x02 = 2120 - yo).

c) (v -yo)’ =2p(x r x0).
b) (x A Xo)2 = ‘2PU"y0)-
d) 0/—y»’: *2p(x~ X0)»

a) (y—2)’:8(x—12). b) (x+1)2=—3(y+3).
c) (y—2)1=—1,5(x+3). d) x1=4(y—o,25).

(x—3)1+(y—7,5)1=2%.

a) X = x“: Ellipse für 9x3 < l;
1 1 .z,+4y2:1_9X5Q P1(?‚0, 0), P2(‘?.0,0> fur9x§=1;

keine reelle Kurve für 9x3 > 1.

b) x = x.,I z’ + y’= 1+ 4x3 2KIeis für alle x0,

y = yo: Hyperbel mit Brennpunkten auf
X=0. y=.Vn für |Yoi<1;

z’ i 4x7 =1—yäQ zwei Gerade für |yo| = 1;

Hyperbel mit Brennpunkten auf
Z=0‚ .V=.Vo für LVo|>1-

Ellipsen: b). D. g). h);
den: e).

Hyperbeln: a), d); Parabel: c); ein Paar sich schneidender Gera-

2 ’ 2 7‘ 2

Mittelpunkt: M (—2, 1), Drehwinkel: n: = 22,5°,

x§+x1x,+3x,+2x,+5=0.

a) Hyperbel, Scheitelkoord.: S,(—l 2), S2(- 1 A~5—>,
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4.5.3:

4.5.4:
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b) Ellipse, x} + x,x2 + xi + 3x, — 3x, + 4 = 0. c), d) Ellipsen. e) Punkt. i) Hyperbel.

Ellipsoid: f); Hyperboloid: a), b), e); Paraboloid: d); Kegel: c),

14x„ + 8y„ +1020

8X3 + 29y” + 3820 A

l0x„ + 38y,, + 502,,

a) Ellipsoid. b) n=

Lösungshinweis: Man beschreibe die Kegelschnitte durch homogene Koordinaten 5„ E2,

E, (vgl. Anhang A6) und setze anschließend E‘, = 0.

1 -2
2 —6 _

a) x = x0 + tx, 2 0 + t 3 (Gerade im R‘).

-2 7

1 1 -1
2 3 —3 „

b) x = x0 + 1,x, + 12x, = 2 + t, 2 + 1, 0 (Ebene im R‘).

0 0 2

b) t,:2, t,=—3. c) (-7, -16‚49,-12‚ -10).

1 7 7
d) 7,/ZE(gnH.(7,~1,7,—2,2)).

Hinweis: ‘:12 = z?

5'1(3.1.0.2). $2(1,3,2,0)-

Hinweis: Man weise nach, daß bezüglich der angegebenen Operationen die Axiome des li-
nearen Raumes erfüllt Sind. (Siehe Band 13, 4.1., bzw. Bronstein, 2.4.4.)

Siehe Hinweis zu 5.1.1.

Hinweis zu a): Es ist nachzuweisen: 1.) Aus x, ye E folgt ax + flye E: 2.) E läßt sich be-

schreiben durch x : 1,1/,+ 2,11,, wobei 11,, u, linear unabhängige Elemente aus E sind,

L
X1 3 5 7

x2 ä 1 -10
x, z 1 + z, 2 + t, ~14

X4 3 -3 0

x5 0 0 9

0

a) Wertebereich: y, - 14y, + 11y,= 0; Kem = {o}.
yl 2

c) y, = x, -3 (Gerade des R’) d) 3x, + 2x; = 2.

‚V3 ’4
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a) det A = 2 * 0=> <15 regulär,
h) W(<b) = R”; „Kern von <1?“ = {(0, 0, 0)"}.

c) ¢(E): X; = 2 - 3x1+ x2, (Ebene)

X5=1+ X1’ X2.
x;= 4x, -2x„

d) <15"(E'):—x1 + x2 2 0

fnicht linear, g und h linear.

X1

a) Ja. b) x; =1 -3.

X3

a), c), e), h) Positiv definit; b), d, D, g) nicht positiv definit.

a) Ellipse. b) Hyperbel. c) Ellipse. d) Hyperbel. e) Ellipsoid.
i) I-lyperboloid(einscl1alig). g) Hyperboloid (einschalig). h) Ellipsoid.
Vergleich: Positiv definiten quadratischen Formen entsprechen Ellipsen (n = 2) bzw.
Ellipsoide (n = 3).

a), e) Positiv definit; b), c), d) nicht positiv definit. x.

Zusatzfrage: a) Imaginäres Ellipsoid. b) Zweischaliges Hyperboloid.

O l 1

A1=-4,l.z=2, 1,=3;x,=t, 0 , x;=t; '1 ,x3=t, 1.
1 0 0

Hinweis: Bei den Aufgaben e) und f) besitzt die charakteristische Gleichung p(Ä) =0
keine ganzzahlige Lösung, daher hoher Rechenaufwand.

1a)1,,1:2i«/2*. b)‚1„=7(3:«/F). c) 1‚=z,=1. a) »1,=1,z.=—1.

e) l1(/1)=1-3-101’ ’241- 3 =0; M0): -3. M1): 12. M3) =6‚ M4): '3.
17(6) = -3 , p(7) = 18. Lösungen 1.„ Äq, Ä, können durch Einschaehteiung bzw. ein ge-
eignetes Näherungsverfahren ermittelt werden.

i) p(‚l) = i.’ — 6,1’ - 6,1 + 43 = 0; man bestimme mit dem Taschenrechner (nach dem
Vorbild des Homerschemas) p(— 3), p(—2)‚ p(2), p(3)‚ p(5)‚ p(6).

g)11:,l1:l,/13:-1. n)/1,=1,/1,,3=3¢‘/7

1 1a)).,=3,).2=—2;x,=[1], x2: [_4].

b) A.=4, A,=—1; x.= X2:

l
c) }.1=,1,=3; x,=[1].

1
d)}.1=A1=1; x,=[0],x;= o].

[1

2 0

a) A1=1, A1:2,1,=—1;x1={17], x1= [4], x3=[
7 1

2 l 0

b)Ä1=*2,Ä1=Ä3=3; x1=[0], x,=[0:|,x,=[1}.
1 0 -l



82

5.4.5:
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C) 11:21 12:13:12

1111:0 m1--.. X:—1'— i „L31 .4‘l x 2 v 3 s l J; 711 1 J2‘ 1: 3 ‘/8‘

1 1
1 1 1

b /1=3,/1=6,/1=—2; =— —1, =—2, =—) 1 2 3 X1 I] X2 X3 ‘/{[-
1 1 —

1 1 1
Ä =7,fi. 2/1 =6; =— -1 , =— 1, =—C) 1 2 3 X1 z] x2 X3

. . 1 1
a) Ä1=3+I‚/1z=3-1; x1=[1+i, xz-[him

l>)A,=2+4i,/1,=2—2i; x,=[2”3‘/5—‘],x,A[‘2:‘/5-1.

e) }.,=1, }.1=,{;=0;

Hinweis: Man ermittle allgemein c = [c,, C2 , c3]T aus y = cm + czxz + C3253.

_ 1 ~ 2i = 1

x” —1’ "’ 1+21'
0 —i

x; = 1 ‚ x3 = 0 .

0 2

1 3
a) /I,=9,).2=-1; x,:[1], x,=[_2].
b) Die verallgemeinerte charakteristische Gleichung hat keine Lösung.

2
c) ‚11=).‚=-1; x,=

a)/h=1./12=7;

2i

b)11=5»12=}-3:0; X1: 01
l

a) R = [x,, x1, x3] (vgl. 5.4.5.); 4y§ - 6y}. b), c) analog.

a) Durch die Transfonnation (Hauplachsentransformation)

1

X1 = WW1 ” h)

T: (x = Ry)
1

x1 = 72:01 + yz)

. . .. . l 2 1 2 _

geht die Ausgangsgleichung uber m 35,121 + fiyz — 1

(Ellipse).

1 _ _ 1 _ .

b) T: x=§(4x- 3y). .v=§(3x+4y);

(y- + s)! = 2o; + 1) (Parabel),

»
—

-O
N

»
-o

u
-—

>
-a

m
»

-—
1
.
1
1
.
1
.
1
:
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(3i+}7)‚
1 l

— :——'+3'>;
1o y m” y

l (:2 — Ly — l (‚t7 - H2 = 1 (Hyperbel).
4 ,/1_0 6 JE

2 70,7

w=so«/1_1=1s5,s; 14:25‘/3 -3 = -106,1.
3 106,1

F,=15,03kN; F,=30,l5kN; F3=34,07kN.

F,=3J2'=4,24; F,:%‘/2—:2,15; F,=% 29=3,23.

a) Hinweis: Man kann z‚B. die Projektion des Vektors 57ml‘ den Norrnalenvektor n der
Ebene verwenden (S: Schnittpunkt des Lichtstrahls mi! der Ebene).

b) 21,78 °.

k: [3, 5, ~2]T.

Hinweis: Bei der Berechnung von A’ = AA beachte man die Voraussetzung 1 = lai = aTa.

Hinweis: Einführung von x‚k: herzustellende Anzahl von B, auf Mk, i= 1, 2, k = 1, 2, 3.

Hinweis: Aufstellung aller möglichen (sinnvollen!) Zuschnittvarianten Vi, Einführung von

x,: Anzahl der nach Variante V, zu zerschneidenden Gmndballen.

Hinweis: Einführung von x‚: Anzahl der zur i-ten Halbsehicht beginnenden Arbeitskräfte,
i= 1, 6.

Hinweis: Einführung von x‚»k: Menge der Arbeitsstunden von M,- auf Bk, i=1, ...,m,
k = 1, „.‚ n,

x„„: Menge der ha der im Gebiet Ak anzubauenden Kultur K„ damit

ml n l

ZF: z =**-'21}, Z a,kx,k = max,
P1121 k=1

M
:

|3
: „

NB: a‚kx,k = Z aux”, i= 2, ..., m,
lkl‘Ek=1

m

Zxazqk, k=1,...,n, x,,;0, i=1,...,m, k=1,...,n.
i=1

a1xf=4, x;:2, z‘=14.
b)x,=2+21, x1‘=3-/1,0§1§1,z*=16.

a) xf:4, x,‘=2, z*=80.
b)x1‘=2+2A, x2 =6—4A, 0§1§1,z‘=70.
c) Keine Lösung, da Zielfunktion nach unten nicht beschränkt.

a) Keine Lösung, da Zielfunktion nach oben nicht beschränkt,

b) xf=0, x;=1+/1, ogtgi, z‘=0.
c) Keine Lösung, da Zielfunktion nach oben nicht beschränkt.
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5 1 1

d) Xf‘Z»X§=?,Z':7.
e)Xf=1.X§=2+/L/1:0,z*=9
f) x1=5+1,xz‘=1+/1./1;o,z*:—9

xf:0,1, x{=0,5, x§‘=0,4, z‘=21,5.

54 30 282
a) xf=fi, x;=fi, z’=T.
c) Keine Lösung, da zulässiger Bereich leer.

b) x,=3, x;‘=4, z"=2S.

a) 4 ME P, und 2 ME P; ergeben maximalen Gewinn von 14 GE.

b) Je 30 Einheiten von S, und S, erzielen maximalen Preis von 33 000 M.

c) a) 3000 kg P, und 2 000 kg P, ergeben maximalen Gewinn von 85 000 GE.

b) 150 Packungen von P, und 17 Packungen von P, ergeben maximalen Gewinn von

73 250 GE.

a) x,=~5, X116, z'=—65.
b) Keine Lösung, da Zielfunktion nach unten nicht beschränkt.

_i _3
2 ‘ 2 ’

a) Ganzzahlige Lösung: x, 2 2, x,‘ = 2, z‘ = 4;

al1g.:x,'=x;=-:-y5, z’=3vfi‚

b) Ganzzahlige Lösungen: xf = 2, x; = l und x, =1, x§=3, z’ =5.

c) xf=0, x;‘= x§‘= z’=—8.

a11g.: xf : x{=%‚ 2* :2—:-.

c) Ganzzahlige Lösung: x§=2, x, = 3, z"= 13;

5 3 53
allg.: x, =7, x,‘=T, z"=T.

d) xf=0, x{=6, z‘=~6. e) xf:2,x,’=3,z‘=5.

a) xf—5, x§=1, x3'=1, z‘=32
b) x,=0‚ x;= 4, x§=12, z‘=74

c) x,‘=0‚ x;=%, x}=%, x:=12—7, z'=-18

d) x1=17, x2'=0, x§=9, xj‘=3, z"‘=63
e) xf=24, x§=3, x§=6, z’=5S.

g) xf=7,x2'=61,x§=36, z"=10
h) xf=12,x§=1,x§‘=3,z’=16.
i) x'=7‚ x;=13‚ x;=0, x:=3, z*=2.
j) x =1,x2'=10,x§=6 xf=0, z’=—14.

1

i‘ .

k) xf=75, x,‘=26, x§=0, x:=40, z“=291.
1) x,‘=5, x§=1,x§:0,xj’=0,z"=4.

a) Siehe 6.2.7.a). b) Siehe 6.2.7.0).

c) xf = -22, X; = 3, x3‘ = 16, xf= 18, z" =17.
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a), b), c), e): Keine Lösung, da Zielfunktion nach unten nicht beschränkt.

d) Keine Lösung, da zulässiger Bereich leer.

a) Siehe 616a). c) Siehe 6.2.6.b).

b) 1 ME P, und 6 ME P, ergeben maximalen Gewinn von 20 DE. P, wird nicht herge-
stellt.

d) 100 Stück A, 15 Stück B und 30 Stück C ergeben maximalen Gewinn von 580 GE.

e) l000t G1, 4 000t G, und 2 000t G; ergeben maximalen Frachtertrag von 215 000 M.

i) M1 stellt 8 Std. lang P; her, M; stellt 4 Std. lang P, und 4 Std. lang P, her.

g) Siehe 6.2.64:) a).

Die Optirnallösung xf = 10, x, = 0, x5‘ = 0, x} = 40, z‘ = 800 ist identisch mit der im
vorletzten Simplexschritt erzeugten Basislösung.

a) x{‘=2_+l, x,’=1+t, Oétél, x,=0, z"=8.
1

b) xf=4+7z,x;=3+1,t;0,x§=0,z‘=5.
c) xf=0, x§‘=s, x§=4+2s, x,=t, 0§s§1, 0§r§6(1vs), z‘=16.
d) x‚=9-t‚ 02:27, x‚=10‚ x‚=11‚ z"=19.

t— t_ _ 9 k- 'a)1-10-I,xz—t,x3~14—r,0§t§7,z -24. b) Nem.

a) x1=6—t,x;=5—z,x3=2—t,0§z§2,z*=-5.
b) Ganzzahlige Lösungen für r, =0‚ t, = 1, r;=2.

a) xf=0, x;‘=%r+2, x§=3, x2‘=2, 0§t§4, z*=42.

b) x,k: Anzahl der Schiffe vom Typ T„ gebaut in der Werft Wk. Damit:

xf,= ~:+1+1, xf,:s*t+2, x;,=s, x§‘1= —s+4, x§,=0,
x§z=0, xf,= —t+3, x:,=t, 0§s§4, 0§t§3, s*1§l§.r+2,
s, tganzzahlig (13 verschiedene Lösungen). Maximaler Gewinn: 44 GE.

c) Zuschnittvarianten V,»:

5 m-Stab 4 m-Stab

V1 V2 Vs V4 Vs

2 m-Stäbe 2 l — 2 —

2,5 m-Stäbe — 1 2 — 1

Zuschnitt von t Stäben nach V,, 40-21 nach V2, 60+: nach V3, 140 nach V‘,
0 g r g 20, ganzzahlig,
Maximale Anzahl der Gegenstände: 160.

a) w =11y‚+ 7y, +1oy. é min; b) w=4y,+1sy, + 2y. — 2y5 é min;

y1+2y2 +y.g4, Y1 -ya +ys;o,
Y1’ .V2'*'.V3 :3. yx+3y2+.V3+.Vo’ys=2,

.V2‘.V3+.V4§‘1, )’1+5.V2 ‘.V4“ys§'1,
Y: äo. 5:1. ‚4. yxioayz f1'9i,}’3§0,y4 ffeiuysio»
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d) w = -12y1—1Oy1 ~44y, é max;

y1+2J’2+ 9.V3;1S,
y1+ y2+ 415:7,

5y, +4y1 +18y3 ä 28,

y:;0,i=1,2,3.

c) w=-3yi+8yz-13ya emax;
yl’2y2+2y3ä—4»

‘3y1+7.Vz‘8.V3§17.
'2y1+3yz- ya:5,

y.:0, i:1,2,3.

a) Primale Aufgabe: x} = ä, 173, 13

duale Aufgabc:y1=0, y;=1, y§=4, yf=2, w‘=27.

b) Primale Aufgabe: siehe 6.3.2.11),

duale Aufgabe: y, = 10, ‚v; = 9, y; = 2, w‘= 16.

c) Prirnale Aufgabe: siehe 6.3.4.b),

duale Aufgabe: keine Lösung, da zulässiger Bereich leer.

z'=27,x2‘:

1 -=17’ z 2 '

b) Keine Lösung, da zulässiger Bereich leer.

a) X1=%. X;=0a X§=

a) M, stellt 50 B1, M, stellt 100 B1, M, stellt 50 B, und 50 B; her, Minimale Herstellungs-
zeit: 350 Std.

b) Mischung aus 18 kg F; und 26 kg F; mit minimalem Preis von 900 GE.

c) Es werden 30 Grundballen in je einen 110 em- und einen 75 cm-Ballen sowie
10 Grundballen in je einen 75 cm- und zwei 60 cm-Ballen zerschnitten. Dann minima-
ler Stoffabfall insges. 500 cm,

d) Die erste Halbschicht beginnen 15 — u, die zweite 5 + u, die dritte 11 - u, die vierte
11 + u, die funfle 9 i u, die sechste u Arbeiter, 0 § u g 9, ganzzahlig. Minimale Zahl
der Arbeitskräfte: 51.

a) xf x; x} z‘

10§2<T 1+3 0 z 6+:

l 13 0 1 25
t:- — — —

4 4 y 4 4

t< 0 keine Lösung

b) xf x§‘ x3‘ z‘

05255 t 5—z 0 25-21
1:5 5 0 0 15

t<0 keineLösung

c) xf x; x; X: z‘

t:—3 ‚l 2/1+1 3A+3 0 3 /1:0
— <t<0 0 1 3 0 —t
=0 0 ,4 „+2 1-‚4 0 Osysl

0<t<3 0 0 2 1 0

t=3 Q 0 9+2 2g+1 0 9:0
{t| >3 keine Lösung
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d) xf X3‘ z"

t>2 0 2t -2t
=2 i. 21+4 -4 2:0

t < 2 keine Lösung

e) x,‘ x; x} z"

t=0 0 A A 1 .120
0<t§2 0 z’ 0 1

r>2 0 z7+z—2 1-2 (1—1)2
t < 0 keine Lösung

20 0 0
6.4.1. X‘—[10 10 20], z"—90.

0 10 4 0 0

0 5 0 0 0 0 3 0 3

6.4.2: a) X”= 0 0 0 3 ,z*:35. b)X*= 3 l1 0 8 0 ‚z’=643.
1 1 3 1 12 0 0 0 0

0 0 0 5 0

-40 20 0 0 0 8 0 0 0

6
c) „n- 3g g 3g 4g „k... d)X*= g g g g g ,z*=l28.

_0 50 O 0 0 0 2 0 4

‘20 20+! 10-1 0

o — o

e) X‘: 0 600: 20+: 30,-: ’°§'§1°’Z':58°'
_o o o 4o

' 2-s s 0 0 1

1+: o 2-: 1 o
r x*=) 0 o ‚

o

0

2

0 0 2 0

_01+s—t6—s z 0

0§s§2,0;z§2,t§s+1,z‘=116.

6.4.3: X‘ = , z‘ = 28.

o
w

o 0 0 0

2 0 0

0 2 2

00002

Der nach der Nurdwesteckenregel aufgestellte erste Plan ist bzgl. der von Null verschiedenen Basisve-
riablen identisch mit X ’*, erfüllt aber noch nicht das Optlmalitätskriterium.

6.4.4:

o 1o o o o o

o o 2o

a)”: 1g E g o o 2o ”‘=28°'
20 0-1010 30 0
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0 0 0 0 10 0

0 0 0 10 0 10

b) F" o o 0 o o 3o ‘"410’
_30 l0 10 0 20 0

' 0 0 0 0 0 10

c) X‘: f) 3 E (i 300_t 2E ,0§t§10,z‘=650.

_30 10 10 10—t t 10

d) Problem unlösbar

‘ 0 0 0 0 5 5

e) x’: E g E (i 15°‘! ,02r;l0,z'=475.

_30 l0 10 10-r 10+: 0

' 0 0 0 0 0 10

o o o 5 0 1s ‚
= - _ =525.

f) X‘ o o o z 15-: 15 ’°5’55‘Z
_30 10 10 5-2 15+: 0

6.4.5: Von A werden 3 Kräne nach C, von B 5 Kräne nach D umgesetzt. Je 1 Kran bleibt in A und B

6.4.6:

6.4.7:

6.4.8:

6.4.9:

zurück. Minimale Kosten: 3 700 M,

'30 15 5

0 25 0
a) X’ = .

0 0 10

_ 0 0 l0

minimale Kosten: 485 GE‘

'35 0 20 0

0 5 0 20
a) X’ = ,

15 0 0 0

L 0 20 15 0

minimale Kosten: 670 GE.

'0 3 0 0 0

a)X‘= 4 0 0 7 11 ,

_8 1 6 0 0

minimale Kosten: 269 GE.

‘O 30—t 50+:

60 0 0
b)X*=

50 0 20—t

_0 20+! 0 60-2

'20 5 15

0 25 0
b) ' = ‚

0 10 0

10 0 0

l0 Lieferungen bleiben in A, zurück;
minimale Kosten: 465 GE.

'35 0 20

0 20+: 0
b)X‘= ‚

15 0 0

0 S-t 15

Lagerung i.nA1: 5 — t, in A.:15 +1,
0 g t; 5, minimale Kosten: 570 GE.

'oo3oo

b)X‘=005710,
_122o01

B, wird zunächst nicht voll beliefert;
minimale Kosten: 294 GE.

0 2 t g 20,
’ minimale Kosten: 870 GE‘
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c) a) Für t: 0 bzw. t = 20 sind 7 Lkw notwendig, sonst 8;

ß) man kann mit 5 Lkw auskommen, z. B. bei

30 50 0 0

0 0 0 60
X = ‚ zugehörige Kosten: 1290 GE.

0 0 70 0

80 0 0 0

0 0 0 t Lagerung bei E1: 20 — t, bei E1: 10,

6.4.10: X*= 0 10 0 0 , 09520,
10 0 10 0 minimale Kosten: 40 + tGE.

8
6.5.1: a) xf = T, X; =%, x; = 0, z" = 24; die gerundeten Werte

x1 = 3, x1 = 1 , x1 = 0 erfüllen nicht alle Nebenbedingungen.

b) xf=4,x§=1,x, = l,z‘=23.

6.5.2: a) x1'=4,x,=2,z'=14. b) xf:5,x1=2,x§=0,z"=19.

6.5.3: a) Siehe 6.2.6.c).

b) Zuschnittvarianten V,- V1 V1 V3 V. V5

für einen Grundballen:

110 cm-Ballen 1 l — —_ —

75 cm-Ballen 1 — 2 1 —

60 cm-Ballen — 1 — 2 3

‚ 1.Lsg.: Zuschnitt v. 29 Grundballen nach V1, l nach V1, 2 nach V1, 7 nach V1;

2.Lsg.: Zuschnitt v. 30 Grundballen nach V1, 2 nach V1, 6 nach V4, l nach V5;

3.Lsg.: Zuschnitt v. 30 Grundballen nach V1, 1 nach V1, g nach V41

Minimale Anzahl der benötigten Grundballen: 39.

6.5.4: Zuschnittvarianten V, V1 V1 V1

für ein Grundblech:

40 >< 100 cm-Blech 2 1 —

60 >< 30 cm-Blech — 3 4

a) 1. Lsg.: Zuschnitt v. 3 Grundblechen nach V1, 4 nach V1, 2 nach V1;

2. Lsg.: Zuschnitt v. 2 Grundblechen nach V1, 6 nach V1, 1 nach V3;

3. Lsg.: Zuschnitt v. 2 Grundblechen nach V1, 7 nach V1;

4.Lsg.: Zuschnitt v. l Grundblech nach V1, 8 nach V1.

Dann minimale Anzahl der benötigten Grundbleche: 9.

Dagegen minimaler Schnittubfall von 6000 cm7 bei Zuschnitt von 10 Blechen nach V1.

b) Zuschnitt von 3 Grundblechen nach V1, 4 nach V1, 2 uach V1.

Zugeböriger Schnittabfall: 14 000 cm’.



Anhang

A 1: Sind n und b zwei Vektoren (in der Ebene oder im Raum), so nennt man den Vektor

b b ‚ . .

a, 2%;- fib“ die Projektion von a auf b. (Siehe Bild A 1)

a
I

I

I

T. b
Bild A 1

An Stelle von „Projektion von a auf b“ benutzt man manchmal auch die Sprechweise „vekto-
. ‚ ‚ b . . .

rielle Komponente von a in Richtung b“; “Tl wird dann die „skalare Komponente von a in

Richtung b“ genannt.

A2: (x ~ a) >< v 2 o nennt man eine Plückersche Darstellung der Geraden x = a + m.

A 3: Die allgemeine Gleichung einer Kurve 2. Ordnung lautet

131x} + cux} + 2cux|xz + 2cmx1+ Zcmx, + cw = 0,

2 2

in Summenschreibweise 2 c,-kx,-xk + 2 Z c,-ax, + cm = 0,
I, k 1 1 i: l

in Maui enschreibweise xTCx + ZcTx + cm = 0

. C11 C12 €10 X1
Vorauss.:c,,(=c,(,-,1,k=1,2;C= ;c= J; x=[ .

C21 C22 C20 X2

Aus der folgenden Tabelle kann man ablesen, von welchem Typ die Kurve 2‚Ordnung ist.

Tabelle (In = det r, lc| = det C)

lF| $ 0 |F| = 0
(reguläre Kurve) (singuläre Kurve)

|C| > 0 Ellipse‘) imaginäres Geradenpaar
(mit einem reellen Punkt)

|C| < 0 Hyperbel reelles nichtparalleles Gem‘
denpaar

= ara e para e es era enpaarC O P b l ll l G d 3)

1) Ellipse ist reel], falls lF| - (c1, + cu) < 0 ist, andernfalls imaginär,
1) Paralleles Geradenpaar für e170 v cucoo > 0;

reelle Doppelgerade für cf‘, — cncoo = 0;

paralleles imaginäres Geradenpaar für cfo — cncoo < 0.

Coo Cm C02
c cT

Dabei ist Fdie symmetrische (3, 3)-Matrix I“: [cw C] = cw cu cu .

920 C21 €22
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A4: Die allgemeine Gleichung einer Fläche 2.0rdnung lautet

cnx} + czzxä + c3,x§ + Zcuxlx, + 2c,,x,x3 + 2c;3x2x3 + Zcwx,
+ 2c‚„x‚ + 2c3ox3 + cm = 0,

in Summenschreibweise

3 3

Z 9ikX.Xk + 2261M + cm = 0,
i‚k=i i=1

in Matrizenschreibweise

x7Cx + 2cTx + cw = 0

Cu €12 C13 ‘in Xi
Vorauss.: c,-,, = c‚„‚ i, k = 1, 2, 3; C: g“ cu cu * 0; C : cm ä X = x1

53i 532 C33 530 X3

Aus der folgenden Tabelle kann man ablesen, von welchem Typ die Fläche 2.0rdnung ist.

Tabelle (|F‘| = det 1"‘, |C| : det C)

1m + 0 |m = 0

(reguläre Fläche) (singuläre Fläche)

|C| at 0 S‘ |C| und T: Ellipsoid‘) imaginärer Kegel
beide > 0 (mit reeller Spitze)
S>|C[ und T: nicht l-Iyperboloid’) Kegel
beide > 0

|C| = 0 Paraboloid’) Zylinderfläche

‘) Ellipsoid ist reell, falls |I'*1 < 0 ist, andernfalls imaginär.
z) l-lyperboloid ist zweischalig, falls [I’*| < 0 ist, andernfalls einschalig,
3) Paraboloid ist elliptisch, falls |1"'| < 0 ist, andernfalls hyperbolisch.

Coo "m €02 003
r

Dabei gilt: rar” ‘J: ‘w ‘H ‘I2 ‘w
c C :20 '-'21 C22 C23

can €31 €32 033

»

‚ __ _ z _ z _ zS‘Cu+C22+C33‚ T—CuCz2+522C33+€33C11 "12 €23 531‘

A 5: Die Elemente (Punkte) des R" sind n-dimensionale Spaltenvektoren x = (x, ‚ .„‚ x„]T‚ Der R" ist

ein Vektorraum (vgl. Aufgabe 5.1.1.) mit Skalarprodukt (x, y) = xTy und Norm
1

]|x||= (xTx)2 =Ix|. Eine Hyperebene H im R" wird durch eine Gleichung c,,+ cTx= ca + 01x1

+ + c„x„ = 0 mit c 2 (c1, ..., c,,]T * a beschrieben; c nennt man einen Normalenvektor von

(Eine Hyperebene im R2 ist eine Gerade des R’, eine Hyperebene im R3 ist eine Ebene des R 3!)

Die Zahl (x, —y,)1 + + (x„ —y„)7 liefert den „Abstand“ von zwei Punkten x und y des R".

A 6: Die „inhomogenen Koordinaten“ x,» sind rnit den „homogenen Koordinaten“ E, durch die Bezie-

hung x, = (i = 1, 2, .„‚ n) verknüpft. Bei den eigentlichen Punkten (endlichen Punkten) gilt
0

ED t 0, bei den uneigentlichen Punkten (Fempunkten) gilt 5„ = 0. Die Gleichung fa = 0 liefert
im R2 die Femgerade, im R3 die Fernebene, im R" die Fernhyperebene.
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