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Vorwort

Jeder Lemende und auch jeder Anwender der Mathematik wird gemn auf eine Formelsamm-
lung oder auf einen Wissensspeicher zuriickgreifen, um Fakten zu iiberpriifen, wenn das Ge-
dichtnis iiberfordert ist, oder um neue Informationen zu erhalten. Der vorliegende Band ent-
hilt neben grundlegenden mathematischen Formeln auch verbal beschriebenes Wissen, nimlich
zentrale Definitionen und Sitze ausgewihlter mathematischer Fachgebiete.

Zielgruppe sind vor allem Studierende an Universititen und Fachhochschulen, die mit der Ma-
thematik konfrontiert sind. Deshalb wurde der Inhalt dieses Bandes der Reihe "Mathematik fiir
Ingenieure und Naturwissenschaftler” streng auf die Anforderungen des Grundstudiums in in-
genieurwissenschaftlichen Studiengingen ausgerichtet. In Verbindung mit dem Besuch von
Vorlesungen und Seminaren, der Arbeit mit Lehrbiichern und der Nutzung mathematischer
Software wird diese Sammlung von Grundwissen der H6heren Mathematik sowohl dem Ler-
nenden als auch dem Ingenieur in der Praxis hilfreich sein.

Bei der Arbeit am Manuskript haben mich viele Mathematiker beraten. Mein Dank gilt zuerst
den Herausgebern der Reihe, von denen ich konstruktive Hinweise erhielt, insbesondere Herm
Prof. Ch. GroBmann und Hermn Prof. K. Manteuffel.

Die thematische Breite - von der Analysis iiber die Geometrie und Lineare Algebra bis zur Op-
timierung, Stochastik und Numerik - war nur durch die kritische Beteiligung zahlreicher Fach-
kollegen dieser Gebiete zu bewiltigen. Dafiir danke ich besonders meiner Kollegin Frau
Dr. R. Storm und meinen Kollegen Herrn Dr. W.-D. Klix und Hermn Dr. H. Schénheinz. Fiir
die kritische Durchsicht bin ich den Herren Prof. H.-G. Roos und Prof. W. Schirotzek sowie
Herm J. Weil vom Teubner-Verlag mit Dank verbunden.

Dresden, im Juni 1996 Klaus Vetters

In dieser zweiten, neubearbeiteten Auflage wurden inhaltliche Ergiinzungen und Druckfehler-
berichtigungen vorgenommen. Fiir die dazu von Studenten und Kollegen ergangenen vielen
freundlichen Hinweise bedanke ich mich sehr herzlich. Fiir besonders ausfiihrliche Bemerkun-
gen danke ich den Herren Prof K. Niederdrenk (FH Miinster) und Prof. V. Nollau (TU
Dresden).

Dresden, im Juni 1998 Klaus Vetters
vetters@math tu-dresden.de
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Bezeichnungen, Konstanten, elementare Gesetze

Bezeichnungen im dekadischen System

Einheit | umgangs- Vorsilbe | Abk. || Einheit | Vorsilbe | Abk.
sprachl. Bez.
10! Zehn Deka da || 1071 Dezi d
102 Hundert Hekto h 102 Zenti c
103 Tausend Kilo k 1073 Milli m
106 Million Mega M 10~ Mikro m
10° Milliarde Giga G 10-° Nano n
1012 | Billion Tera T 10712 | Piko p
1015 | Billiarde Peta P 1015 Femto f
1018 |  Trillion Exa E 10-18 Atto a

Im englisch-amerikanischen Sprachraum wird fiir eine Milliarde "one billion" gebraucht.

Auswahl mathematischer Zeichen

siche auch Relationen, Mengen, Zahlen, Funktionen, Lineare Algebra, Differential- und

Integralrechnung
Zeichen Bedeutung Zeichen Bedeutung
gleich +,- Vorzeichen plus, minus

= definierend gleich + zuerst plus, dann minus

# ungleich + zuerst minus, dann plus

= stets gleich, identisch ° Grad

+ nicht stets gleich, nicht identisch ||’ Minute (6‘—0 Grad)

~ etwa gleich " Sekunde (313 Minute)

< kleiner (a,b)  offenes Intervall a<x<b

< kleiner oder gleich [a,b]  abgeschlossenes Intervall a<x<b
<< wesentlich kleiner (a,b] links offenes, rechts abgeschlossenes
> groBer Intervall a<x<b

> groBer oder gleich [a,b) links abgeschlossenes, rechts offenes
>> wesentlich groéBer Intervall a<x<b

~ proportional, dhnlich und so weiter / Platz fiir Substitution
1 senkrecht auf a(s)e Aufzihling mit Anfang a,

= kongruent Schrittweite s und Ende e

I parallel CN,Q,R,Z » Zahlen

K. Vetters, Formeln und Fakten
© B. G. Teubner Stuttgart - Leipzig 1998



10 Bezeichnungen, Konstanten, elementare Gesetze

Mathematische Konstanten (gerundet)

n =3.141592653 590
e =2.718281828459
C =0.577215664902

1° =0.017 453292 520
1' =0.000290888209
1" =0.000004848 137

Potenzen der Zahl 2 und Fakultiiten

1=57.29577951°
1=3437.746 771
1 =206264.8062"

n 2n n! n 2n n!

1 2 1 11 2048 39916 800
2 4 2(| 12 4 096 479 001 600
3 8 6 13 8 192 6 227 020 800
4 16 24 14 16 384 87 178 291 200
5 32 120} 15 32768 1307 674 368 000
6 64 720 16 65 536 20 922 789 888 000
7 128 5040f 17 131072 355 687 428 096 000
8 256 40320 18 262 144 6 402 373 705 728 000
9 512 362880 19 524 288 121 645 100 408 832 000
10 1024 | 3628800 20 1048 576 2 432 902 008 176 640 000

Bernoullische Zahlen

— n=1 B
Ba=(-11 2=l 4 oy T bk =
n=C1) | 22n+1) ( ),El( )(2n~2k+1)!(2k)! #=12.)
n|Bn | n[Bn | n| B | n| 8
1 1 7 174611
118 4 |3 7 |8 10 | 330
1 5 3617 854513
2 |35 5 % 8 | %0 11 138
1 691 43867 236364091
& 6 | 2736 ° 798 12 2730
Eulersche Zahlen
n—1 2n
E:-l"*lZ—lk( )E =1,2,...mit Eg=1
n ( ) k:O( ) 2k k (n Pt} 7m1tE0 )
n | En | n | En | n | En
0 1 3 61| s 2702 765
1 1| 4 1385( 7 199 360 981
2 5/ 5 50521f 8 19 391 512 145



Elementare mathematische Gesetze

Auswahl mathematischer Funktionen
siche auch Abbildungen und Funktionen, Lineare Algebra, Stochastik

11

Symbol Bedeutung Symbol Bedeutung
+ —- * / + | Grundrechenoperationen n! 1-2----- n (Fakultit)
Jx nicht negative Zahl y mit y2 = x % nicht negative Zahl y mit y” =x
(Quadratwurzel) (n-te Wurzel) fiir x > 0
n
ﬁ x; x)+xg+-+xn, (Summe) I-lei Xy Xy xn (Produkt)
i1 =
min a,b a fir a<b . . max a,b a fiir azb .
{a, b} b fir a>b (Minimum) {a,b} b fiir a<b (Maximum)
|x] grofte ganze Zahl y mit y <x [x] kleinste ganze Zahl y mit y > x
(Abrundung auf ganze Zahl) (Aufrundung auf ganze Zahl)
1 fir x>0 x fir x>0
sgn(x) Ix| =
0 fiir x=0 (Sigoum) x fir x<o Betras)
-1 fir x<0

Elementare mathematische Gesetze I

Ungleichungen (mit x,y,z,u,v €R)

+ Aus x<y und y<z folgt x<z. ¢ Aus O0<x<y folgt%>yl.

¢ Aus x<y und z>0 folgt x-z<y-z. * Aus x<y und z<0 folgt x-z>y-z.

s Aus x<y folgt x+z<y+z firalle zeR.

¢ Aus O0<x<y und O<u<v folgt x-u<y-v.

x_u X _xtu _u
* Aus y<v und y>0 und v>0 folgt y<y+v<V'
Bernoullische Ungleichung: (1+x)">1+nx fiir x>-1 und neN

Cauchy-Schwarzsche Ungleichung: (xy1 +---+Xnyn)* < (x% +- +x%)(y% +o-0 y%)

Betrige (mit x,y €R)

Il = I e y1 = bel -] 5= i y=o

Dreiecksungleichungen
lx+y| < Ixl+ |y (Gleichheit gilt fiir gleiches Vorzeichen von x und y.)
lixl = |y|] < [x+y|  (Gleichheit gilt fiir verschiedenes Vorzeichen von x und y.)



12 Bezeichnungen, Konstanten, elementare Gesetze

Potenzen mit ganzzahligem Exponenten (¢, eR ;neN L {0}; p,q €Z)

Potenz mit positivem Exponenten:

Potenz mit negativem Exponenten:

Rechenregeln:
aP a9 = aPt
a _ rq
a? “

a":=a-a-----a fir neN, und a®=1
— e ——
n Faktoren

R |

a .—a—n

aP -bP = (a-byP @) = @9 =ard
P P
=(3)

Wurzeln, Potenzen mit reellem Exponenten (4,6 eR ;a,6>0;, myneN)

Wurzel:

Rechenregeln:

e =y na = mya

Potenz mit rationalem Exponenten:

Potenz mit reel/lem Exponenten:

u=Ya

ist gleichbedeutend mit %" =a und # >0

¥a _ [a
%_,ﬁ (5%0)

am = (yay"
a¥ = o

a* = lim a% mit q; €Q, lim g;=x
k—0 k—0

¢ Fiir Potenzen mit reellem Exponenten gelten die gleichen Rechenregeln wie fiir Potenzen

mit ganzzahligem Exponenten.

Mittelwerte

Arithmetisches Mittel:
Geometrisches Mittel:

Harmonisches Mittel:

Quadratisches Mittel:

1
m:=4(ay+ay+---+an)

g:= ";alaz---an mit ak>0 ﬁir k:l,...,n

mit a;>0 fir k=1,...,n

1
Fl-+a—2-+-~-+a‘n-

q:= J%(a%+a§+---+a§)

Beziehungen zwischen den Mittelwerten

+ Sind alle a;, positiv, so gilt:

min{a,) <h < g <m=<gq<max(ay)



Elementare mathematische Gesetze 13

Binomialkoeffizienten

Binomialkoeffizient

):=n(n—1)~-~(n—k+l) fir k,neN, k<n

Erweiterte Definition fiir £,n € N U {0}:

Spezialfille: ( 8

Symmetriesatz:
Additionssatz:

Additionstheoreme:

n! - . _
)z{m‘_k—), fiir kSn, mit 0l =1

0 fir k>n
n
) =1, (0 ) =1, n Binomialkoeffizient
k=0
4
(n)”, (n)zl' ° Uy
1 n 1 1 1 k=2
/72
2 1 2 1 K8
(ij( ”k) 3 1 3 3 1z=45
n-— =
4 1 4\Z6 4 1 %
501 5 10 10 5 1
n n n+1
( k ) +( k-1 ) =( k ) Pascalsches Dreieck
(n) (n+1)(n+2) (n+m) (n+m+1)
+ + oot =
0 1 2 m m

-+

I )G -(3)

+ Die Definition des Binomialkoeffizienten wird auch fiir » € R benutzt. Der Additionssatz
und die Additionstheoreme gelten dann auch fiir n e R.

Termumformungen

(a+b)? =a?+2ab +b? (a+b)a-b)=a*-b?

(a+b)? = a® +3a%b +3ab? £ b3 (@xb)a® Fab+b?)=a®+p3

n_ pn
%:a"‘l+a”‘2b+a"‘3b2+---+ab”‘2+b"‘1 fir azb, n=23,...
=

Binomischer Satz

(a+b)”=a"+('ll )a”‘1b+-~-+(z)a”"‘b"+--~+(nfl )ab”_1+b”ﬁirn e N



Relationen I

Wahrheitswert w: wabhr, falsch

Aussage A: Satz, der wahr oder falsch ist.
A falsch: w(A4)=0
A wahr:  w(4)=1
Relation: Verkniipfung von Aussagen, sogenannten Prdmissen, die je nach den

Wahrheitswerten der Primissen einen zugeordneten Wahrheitswert
besitzt.

Wahrheitswertetafel: Wertetabelle der Zuordnung Primissen — Relation
Tautologie: Relation, die fiir alle Wahrheitswerte der Primissen stets wahr ist.

Aussageformen A(x). Aussagen A, die von Variablen x abhingen; sie haben selbst keinen
Wabhrheitswert. Erst nach Einsetzen von Werten der Variablen hat eine
Aussageform einen Wahrheitswert.

Vx:A(x) bedeutet: fiiralle x ist A(x) wahr.
Jx:A(x) bedeutet: es gibt mindestens ein x, so dafh A(x) wahr ist.

Relationen

Negation "nicht 4" -4 Implikation "aus 4 folgt B": A=>B
Konjunktion "4 und B": AnB Aquivalenz "4 iquivalent zu B": A<B
Disjunktion "A oder B": AvB

Wahrheitswertetafel

wd) wB) |w=4) WAAB) WAVB) wd=B) wd=B)

1 1 0 1 1 1 1
1 0 0 0 1 0 0
0 1 1 0 1 1 0
0 0 1 0 0 1 1
Tautologien
Av -4 Satz vom ausgeschlossenen Dritten
—(A A= A) Satz vom Widerspruch
—A A4 doppelte Verneinung
—(AnB)yeo-Av-B Regel von de Morgan
—(AvB)yeo-A~r-B Regel von de Morgan
A=>B) = (-B=-4) Kontraposition
A=BrA=>B modus ponens
A=>Br-B=>-4 modus tollens

A=>BAB=>C)=(A=C) modusbarbara
ANBvVC)(AAB)v(AAC) Distributivgesetz
AVv(BAC) o (Av ByA(Av () Distributivgesetz

K. Vetters, Formeln und Fakten
© B. G. Teubner Stuttgart - Leipzig 1998



lMengen

Menge M-

Elemente:

Beschreibung:

Gleichheit:
Teilmenge:

Leere Menge:

Zusammenfassung bestimmter unterschiedlicher Objekte zu einem Gan-
zen. Dieser klassische Mengenbegriff reicht praktisch aus, kann aber zur
Formulierung paradoxer Aussagen fiihren. Ein Ausweg ist die axiomati-
sche Mengenlehre.

Objekte einer Menge

aeM <& aist Element der Menge M

agM <& —(aeM) <& aistnicht Element der Menge M

1. durch Aufzihlung der Elemente M= {a,b,c,...}

2. durch charakterisierende Aussageform A(x): M = {x € Q | A(x) wahr}

M=N & Vx:xeM&oxeN
McN & Vx:xeM = xeN
die Menge, die keine Elemente enthilt; Bezeichnung: &

Disjunkte Mengen: zwei Mengen M, N, die kein Element gemeinsam haben, dh. MAN= Q.

Ordnungseigenschaft

McM McNANcM => M=N McNANcCP => McP
Verkniipfungen

MUN={x|xeMvxeN} Vereinigung

MAN={x|xeMAxeN} Durchschnitt

M\N ={x|xeMAxeN} Differenz

MxN ={(x,))[ xeM AyeN} .. Kartesisches Produkt

M) ={X|XcM} Potenzmenge

Mehrfache Verkniipfungen

_L"le\/1,-=M1 UMy U UMy = {x|3ie(l,...n}: x € M;}
=

(n\M,-=M1r\M2n~--r\Mn ={x|Vie{l,...,n}: x e M;}
i=1

lﬂIM,- =My xMyx - xMp:= {(x1,....,xn)| Vi €{l,....,n}: x; € M;}
i=1

K. Vetters, Formeln und Fakten

© B. G. Teubner Stuttgart - Leipzig 1998



‘ Zahlen

‘ Natiirliche, ganze, rationale, reelle Zahlen

Natiirliche Zahlen: N = {1,2,3,...}

Teiler: Eine natiirliche Zahl m € N heifit Teiler von n € N, falls es eine natiir-
liche Zahl k e N gibt mit n=m -k .
Primzahl: Eine Zahl » e N mit n> 1 und den einzigen Teilern 1 und n.

¢ Jede Zahl n € N, n> 1, 1aBt sich eindeutig als Produkt von Primzahlpotenzen schreiben:
n=p;1 _pgz ----- p,rck, pj - Primzahlen, r; ... natiirliche Zahlen.

gropter gemeinsamer Teiler geT(n,m) =max{k e N | k teilt nund m}

kleinstes gemeinsames Vielfaches: kgV(n,m) =min{k € N | nund m teilen k}

Ganze Zahlen: Z={...,-3,-2,-1,0,1,2,3, ...}

Rationale Zahlen: Q = { % |meZ,neN}

* Die Dezimaldarstellung einer rationalen Zahl ist endlich oder periodisch. Jede endliche oder
periodische Dezimalzahl ist eine rationale Zahl.

Reelle Zahlen: R = {"Erweiterung" von @ durch die nichtperiodischen unendlichen

Dezimalzahlen}
g - adische k A g£=2 .- Dualdarstellung
Darstellun x= % rig/ g=8 .- Oktaldarstellung
¢ e g=10 --- Dezimaldarstellung

Umrechnung dezimal — g-adisch
1. Positive Dezimalzahl x in ganzzahligen und nicht ganzzahligen Teil zerlegen: x = 7 +x.
2. Umrechnung des ganzzahligen Teils n mit iferierter Division durch g:
qo=n, qj-1=9;-g+r, 0<r;<g, Jj=12,..
3. Umrechnung des nicht ganzzahligen Teils x( durch iterierte Multiplikation mit g:
g% =5 +%; 0<x;<1 Jj=12,...
4. Ergebnis:  x=(ry---rar1.5182--)g
Umrechnung g-adisch — dezimal

(rg--rari.s152-Sp)g = (- ((rx€ +rp—1)8 +ryp_2)g +--- +ry)g +ry (Homer-Schema)
+--((splg +Sp1)/g +5,-2)/g+:--+51)/g (Homer-Schema)

K. Vetters, Formeln und Fakten
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Komplexe Zahlen

Komplexe Zahlen I
Imagindgre Einheit i: iZ2=-1
o komplexe Ebene
Komplexe Zahl: zeC -g
kartesische Form: z=a+ib, abelR ;
polare Form: z=r(cos@ + isingp) =re!? Te » a+ib
... Eulersche Relation g
Realteil von z: Re(z) =a=rcoso E
Imagindrteil von z: Im(z)=b=rsing reelle Achse
Betrag von z: |z} = ,/a"’+b2 =r
Argument von z: arg(z) = o
Konjugiert komplexe Zahlz: z=a+ib = z=a-ib
) . iz
Spezielle komplexe Zahlen: ei0=1 etim=—1 e'3 =%(liiﬁ)
. E . E . 1['
17— 4 ei14=%ﬁ(1ii) ei16=%(ﬁil)

Umrechnung kartesisch — polar
r=Ja?+b2

Umrechnung polar —> kartesisch

cosQ
sing

T[S i 1Y

¢ ist Losung von {

a=rcosQ b=rsing

Rechenregeln (zk=ak+ibk=rk(cos¢k+isin(pk)=rkeiq’k, k=1,2)
Z] iz2=(a1 ia2)+i(bli-b2)

z1-z2=(a1ay - b1by) +i(a1by +azhy)

21 ~29 = F1ra(cos(p) +@2) +1sin(Q1 +@2)) = rree! @179

21 n P r1 i
75 =7, Cos(01-92) + 18m(¢1-¢2))=72'e'((”1_q’2)
Z_1= 2122 =a1a2 +b1b2+i(¢12b1 —a1b2)
V4
2 zy)? al+b3 2 2, e z, ]
L s »
1z S 1 .
z7 S=64] .
' 3
z :
iy 0 3A .5.z°<

Losung von z” =a

1. Zahl a in polarer Form darstellen: a=rei®. r

.(p+2lm -2 z PR Tz

2. DienLosungensind: z; = %re'” 7@
k=0,1,...,n—1 2 - g !

N



Kombinatorik I

Permutationen I

Gegeben:.n verschiedene Elemente
Gesucht: Anzahl P, der verschiedenen Anordnungsméglichkeiten (z.B. Tischordnung).

Pp=nl ... Permutationen

Gegeben: n Elemente, bestehend aus p Gruppen von gleichen Elementen; die Anzahl der Ele-
mente in der i-ten Gruppe ist £;.
Gesucht: Anzahl P, der verschiedenen Anordnungsméglichkeiten (z.B. Tischordnung fiir

Karnevals-Masken).

p,—___n . g,

Py = PR ... Permutationen mit Wiederholung
Variationen ]

Gegeben: n verschiedene Elemente und % Plitze.
Gesucht: Anzahl V% der verschiedenen Anordnungsméglichkeiten von Elementen auf den %
Plitzen.

nl

= m ... Variationen

Gegeben: n verschiedene Flemente, jedes in beliebiger Anzahl, und & Plitze.
Gesucht: Anzahl V% der verschiedenen Anordnungsméglichkeiten von Elementen auf den &

Plitzen.
I_/i‘, =nk ... Variationen mit Wiederholung
[ Kombinationen l

Gegeben: n verschiedene Elemente.
Gesucht: Anzahl C% der Mboglichkeiten, verschiedene Mengen von £ Elementen zu bilden,
ohne die Anordnung zu berticksichtigen.

C’,ﬁ = (Z ) ... Kombinationen

Gegeben: n verschiedene Elemente, jedes in beliebiger Anzahl, und Menge fiir £ Elemente.
Gesucht: Anzahl C% der Moglichkeiten, verschiedene Mengen von & Elementen zu bilden.

C k= (n +2 -1 ] ... Kombinationen mit Wiederholung

K. Vetters, Formeln und Fakten
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‘ Koordinatensysteme

‘ Ebene Koordinatensysteme ]

Kartesische ebene Koordinaten x, y

Die rechtwinklig stehenden Achsen sind so orientiert, daf} die po-
sitive y-Richtung die im mathematisch positiven Sinn (Gegenuhr-
zeigersinn) um 90° gedrehte positive x-Richtung ist.

Koordinaten-Einheitsvektoren: ex= [ (1) ), ey = ( (1) )

Darstellung des Punktes P(x, y): X =Xex +yey

Polarkoordinaten r, @

r...  Abstand vom Nullpunkt
¢ ... Winkel von der x-Achse zum Ortsvektor im
Gegenuhrzeigersinn

Koordinaten-Einheitsvektoren: e, = ( coso ] , ep= ( —smo )
sm @ cos

Darstellung des Punktes P(r, @) in kartesischen Koordinaten:

X =FrCcosQ

xX=re in Komponenten: .
’ e y=rsing

Riumliche Koordinatensysteme I

Kartesische Koordinaten x, y, z

Die Achsen stehen paarweise senkrecht aufeinander, die x- und
y-Achse sind wie im ebenen System orientiert. Bei 90°-Drehung
der positiven x-Achse zur positiven y-Achse zeigt die positive
z-Achse in Rechtsschraubenrichtung.

Koordinaten-Einheitsvektoren:

1 0 0
ex=|(0 , €y = 1 , €z= 0
0 0 1

Darstellung des Punktes P(x,y,z):  x = xex +yey +ze;

K. Vetters, Formeln und Fakten
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20 Koordinatensysteme

Zylinderkoordinaten

r..  Abstand von z-Achse
¢ ... Winkel von x-Achse zum Ortsvektor der Projek-
tion von P i die x,y-Ebene

z... Abstand von x,y-Ebene
Koordinaten-Embheitsvektoren:
cosQ —sin @ 0
er=| sing |, ep=| cosp |, e:=|0
0 0 1

Darstellung des Punktes P(r, 9, z) in kartesischen Koordinaten:

X=rcosQ
X =rey+zez in Komponenten: =rsin
s Yy ¢
z=z

Kugelkoordinaten

p... Abstand vom Koordinatenursprung
9... Winkel von z-Achse zum Ortsvektor
¢ ... wie Winkel ¢ der Zylinderkoordinaten

Koordinaten-Einheitsvektoren:

sin 8 cos cos 9 cosg —sin ¢
ep=| sin8sing [, eg=]| cosYsing |, ep=| coso
cosd -~sin 9 0

Darstellung des Punktes P(p, 3, @) in kartesischen Koordinaten:

x = psin 8 cos@

X =pep in Komponenten: y=psin9sine
z=pcosY

FVerschiebung des Koordinatensystems I

Der Ursprung des ebenen oder riumlichen Koordinatensystems
wird vom Punkt 0 zum Punkt /' verschoben. Zwischen den ur-
spriinglichen Koordinaten x,y,z und den neuen Koordinaten
x'y"z' besteht die Beziehung

x=x"+v bzw. x'=x-v,
in Komponenten:

x=x" +vy x! =x—vy

y:y’+vy bzw. y/=y—vy

Z:Z/+Vz z" =




Drehung des Koordinatensystems 21

Drehung des Koordinatensystems I

Drehung eines ebenen kartesischen Koordinatensystems

Ein ebenes kartesisches x,y-Koordinatensystem werde im mathe-
matisch positiven Sinn um den Winkel ¢ um den Ursprung ge-
dreht. Dann bestehen zwischen den urspriinglichen Koordinaten
x,y,z und den neuen Koordinaten x'y’,z’ die Beziehungen

x=Ax’ bzw. x’=ATx mit A=[c?sq) _qu)j.
sing cosQ

+ Die Drehmatrix A ist eine orthogonale Matrix mit det(A)=1 .

* Jede Koordinatentransformation x=Ax/ mit AAT=E und det(A)=1 ist eine
Drehung.

Drehung eines riumlichen kartesischen Koordinatensystems

Ein riumliches kartesisches x,y,z-Koordinatensystem werde im
mathematisch positiven Sinn (in Rechtsschrauben-Richtung) um
den Winkel ¢ um eine Achse g gedreht, die durch den Ursprung
geht. Die Lage und Orientierung der Drehachse wird durch die
Kosinus der Winkel (Richtungskosinus) beschrieben, die sie mit
den Koordinatenachsen einschliefit:

cosx(x,g)=a, cos<(y,2)=b, cos<(z,g@=c.

Dann bestehen zwischen den urspriinglichen Koordinaten x,y,z und den neuen Koordinaten
x'y"z' die Beziechungen

x=Ax" bzw. x/=ATx,

cos@+a2(1-cosQ) —csin@+ab(l—cosg) bsing+ac(l—cosp)
A=| csing+ab(l-cosg) cos+b2(1-cos@) —asin@+bc(l—cosg)
—bsin @ +ac(l —cos@) asin@+bc(l-cosg) cosq+c2(1—-cosg)

¢ Die Drehmatrix A ist eine orthogonale Matrix mit det(A) = 1.

¢ Die Drehmatrix A kann auch durch die Richtungskosinus der Winkel zwischen den Achsen
des urspriinglichen und des gedrehten Koordinatensystems beschrieben werden:

cos x(x,x’) cos ¢(x,y’) cos x(x,z’)
A=| cos 2(»,x’) cos x(»,y’) cos x(,z’)
cos %(z,x’) cos ¥(z,)’) cos x(z,z’)



Geometrie

Ebene Geometrie I

Dreieck

Winkel a+p+y=180°

sina = 325 JsG-a)G-b)s-o)

5% +c2-a?

cosa = 2be

Sinussatz  a:b:c=sna:sinf: siny

Kosinussatz a® = b2 +¢2 - 2bccosa

sin(B+1) = sinct

cos(B +y) =—cosa

mit s=%(a+b+c)

tan &P
Tangenssatz 4= b 2
a+b 9B
an
2
Fldche = %chc = %ab siny=rs= ‘f‘—l;ac
_ — — — _ 2 S]IlBS]Il'Y _ 2 .. . .
Js(s a)(s-b)(s—c) =a eno 2R“sin o sin B sin y
Hohe he=%Lsiny
Umbkreis R=,L=gl’£=—5____
2sino 4F 4cos%cos%cosl
. _ Lo E . l/_
Inkreis r=4Rsn 5 S sy
Schwerpunkt = Schnittpunkt der Seitenhalbierenden

Mittelpunkt des /nkreises = Schnittpunkt der Winkelhalbierenden
Mittelpunkt des Umkreises = Schnittpunkt der Mittelsenkrechten

Rechtwinkliges Dreieck

Pythagoras a?+b%=c2

Hohensatz h=p.q

Kathetensatz a’l=c-p, bl=c.q

K. Vetters, Formeln und Fakten
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Gleichschenkliges Dreieck (a=5,0=0)

= Lp2gny - asinle_c2 Ry
F pd sy CZsiny 4tanot he 2 4a“ -c

Gleichseitiges Dreieck (a=b=c, a=p=y=60°)
F-lB@  he-iffa R-1Ba o-E

Viereck

Winkel o+f+y+8=360"

Fliche F= %efsin 0= JZ?—a)(s—b)(s—c)(s—d)—abcdcoszq)

mit 5= %(a+b+c+d)

+ Ein Viereck hat genau dann einen Inkreis, wenn a+c=>56+d gilt.
+ Ein Viereck hat genau dann einen Umkreis, wenn o +y=+6=180° gilt.

Parallelogramm (Viereck mit gegeniiberliegend parallelen Seiten)
F =ahg = bhy, €2 +f2=2a?+b?%)

Rhombus (Parallelogramm mit vier gleichen Seiten)

Fliche F=ah=a%sina= %ef

¢ Ein Parallelogramm ist genau dann ein Rhombus, wenn die Diagonalen aufeinander senk-
recht stehen.
+ Ein Parallelogramm ist genau dann ein Rhombus, wenn die Diagonalen die Winkel halbieren.

Kreis (Fliche F, Umfang U, Radius r, Durchmesser d )

F=Ttr2=%d2 U=2rnr=nd
Sehnensatz |PB| - |PC| = |PA| - |PD|
Sekantensatz |S4| -|SB| = |SC| - |SD|
Tangentensatz |§Z| . |ﬁ| = |S_T|2

¢ Uber einer Sehne ist der Mittelpunktswinkel das Doppelte des
Peripheriewinkels: § = 2o .

¢ Der Sehnentangentenwinkel ist gleich dem Peripheriewinkel : y=o .

¢ Satz des Thales: Ein Peripheriewinkel iiber dem Durchmesser ist 90°.

Kreissektor (Fliche F, Bogenlinge b)
F= %br b=roa (o im Bogenmall)
Kreissegment

F= %[br—s(r—h)] b=ra (o im Bogenmaf)
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Analytische Geometrie der Ebene I

Strecken

Abstand d der Punkte P und P, gleich Linge der Strecke PP, :

d= \/(xz -x)%+ (2 -11)? fiir kartesische Koordinaten P (x1,y1) und P5(x5,y5)

d= ‘/r% +r% —2ryracos(@g —@2) fir Polarkoordinaten Pj(ry,¢1) und Py(rs,¢2)

S PT
Innere Teilung der Strecke PP, durch Punkt 7(x7,y7) im Verhiltnis A = :%{ :
2
o= ¥1HA ity
=71+ TS
Geraden (siche auch Analytische Geometrie des Raumes)
Allgemeine Form der
Geradengleichung Ax+By+C=0
Explizite Form y=mx+b mit m=tanaq
Punkt-Richtungs-Form y=y1=m(x-xy)
) Y=y1_JYa=nN
Zweipunktform X=¥] = X, =X
Achsenabschnittsform % +% =1
. . 2-m
Schnittwinkel zweier Geraden tang =
1+m 1ms
Parallelitit g(||gy: my=m, Orthogonalitidt gy Lg,: my= ~,—n1—1

Kurven zweiter Ordnung, Kegelschnitte

Wird ein Kreiskegel X mit einer Ebene £ geschnitten, die nicht
durch seine Spitze geht, so ist die Schnittkurve eine

Hyperbel:  wenn die Ebene £ beide Halbkegel schneidet;

Ellipse: wenn £ nur einen Halbkegel schneidet und zu kei-
ner erzeugenden Geraden des Kegels parallel ist;

Parabel:  wenn E nur einen Halbkegel schneidet und zu ei-
ner erzeugenden Geraden des Kegels parallel ist.

Legt man in £ ein rechtwinkliges x,y-Koordinatensystem so,
daB seine Achsen die Symmetrieachsen des Kegelschnitts sind
(bei der Parabel, die nur eine Symmetricachse hat, wird die y-
Achse durch den Scheitelpunkt gelegt), so erfiillen dic Punkte
P(x,y) des Kegelschnitts die in der folgenden Tabelle stehenden Normalformen.



Analytische Geometrie der Ebene

Transformation auf Normalform (Hauptachsentransformation)

Die Transformation auf Normalform der allgemeinen Gleichung einer Kurve 2. Ordnung
a11x2 +2ayxy +c122y2 +2ag1x+2agpy+agy =0

erfolgt analog wie die der Flichen 2. Ordnung (™ Analytische Geometrie des Raumes).

25
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LRiiumliche Geometrie

Korper mit ebenen Begrenzungen

Reguldre Polyeder (Kantenlinge a)

Begrenzung | Kantenzahl | Eckenzahl | Oberfliche Volumen
Tetraeder (reg.) | 4 Dreiecke 6 4 1.732142 0.117943
Wiirfel 6 Quadrate 12 8 6a2 a3
Oktaeder 8 Dreiecke 12 6 3.464142 0.471443
Dodekaeder 12 Fiinfecke 30 20 20.6457a2 | 7.6631a3
Tkosaeder 20 Dreiecke 30 12 8.6603 a2 2.1817a3



Korper mit gekriimmten Begrenzungen

Riumliche Geometrie

27
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Analytische Geometrie des Raumes I

Geraden und Ebenen im R®

Punkt-Richtungs-Form der Geradengleichung: gegeben Punkt
Py(xg,y0,z0) der Geraden und Richtungs-Vektor a = (ax,ay,az)T

x=xq+\ay
x=xg+Aa in Komponenten: y=yq+Aa
—00 < A < ™p Cr=Xo 4
z=z¢+A\a;

Zweipunktform der Geradengleichung: gegeben zwei Punkte
P(x1,y1,21) und Py(x3,y2,23) der Geraden g
X=X +>\,(X2 —xl)
in Komponenten: y=y; +A(y, -y)
z=z1+Mzy—z1)

X=X1+7\,(X2—X1)
-0 <A <0

Kiirzester Vektor d von der Geraden g (in Punkt-Richtungs-Form)
zum Punkt P;
(P-x0)-a

d=p-Xo-——3,

Lotfufpunkt Q des Lotes (der Projektion) vom Punkt P auf die
Gerade g (Gerade g gegeben in Punkt-Richtungs-Form):

Kiirzester Vektor zwischen zwei windschiefen Geraden:

Gegeben Gerade g1 : x =x; +Aa, Gerade g5 : x =x5 +pa,,
wobei aj xap #0 (ImFall a; xa; =0 sind die Geraden parallel.)
Der kiirzeste Vektor d von g, zu g5 ist

(x2—x1)-(a; xap)
d= 3 (a; xay) .
laIX32|

Parameterform der Ebenengleichung:

Xx=Xg+Aa+ub X =xg+Aay + by
-0 <A< in Komponenten: y=yo+2Xiay+uby
—00 < U < 00 z=zg+Aaz +ub;

Normalenvektor der Ebene x =x¢+2Aa+pb :
n=axbh
Normalenform der Ebenengleichung:
n-x=D mit D=n-x9, n=(4,BCT
in Komponenten: Ax+By+Cz=D
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Hessesche Normalform der Ebenengleichung:
Ax+By+Cz-D

n-x-D_j in Komponenten: —— =

Inl JA2 BT+ C?

Kiirzester Vektor d zwischen Ebene n-x =D und Punkt P:

a=2p- D
In|?

Kiirzester (vorzeichenbehafteter) Abstand & zwischen Ebene n-x=D
und Punkt P:

5= p-D
n|

Durchstofpunkt P der Geraden g: x =xo +Aa mit Ebenen-x=D

D-n-xg

P=Xo+—Fpa—

Winkel zwischen Ebene E| : n -x=D; und Ebene E5 : np -x = Dj:
np-nj

COSOL = ———=
[y [[nz]

Fliichen zweiter Ordnung
Die allgemeine Gleichung einer Fliche zweiter Ordnung im R ist

a11x2 +2ay5xy +2a3xz +a22y2 +2ay3yz +a3322 +2ag1x+2agy +2ag3z+agy =0,

in vektorieller Form

x a1 412 413 aol
xTAx+2aTx+agp=0 mit x= y |, A=|ap axn a3 |, a=| agp
z aiz azs 4asz ao3

Hauptachsentransformation (Transformation auf Normalform)

Schritt 1: Drehung des Koordinatensystems, neue Koordinaten x/,y/, z/

. cp ey ¢ . .
x=Cx/ mit C= ( 15253 j , € ... System orthonormierter Eigenvektoren
o von A, zugehorige Eigenwerte A;.
Die ¢; werden so numeriert, dal A und A, gleiches Vorzeichen haben oder, wenn ein Ei-

genwert Null ist, daB Ay >0, A3 =0 gilt oder, wenn zwei Eigenwerte Null sind, daB
A =0 gilt. Es ergibt sich

?»lx/2+k2y’2 +k3z’2+2bTx’+a00 =0 mit b=CTa.
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Schritt 2: Verschiebung des Koordinatensystems, bzw. Drehung und Verschiebung
a) Sind alle Eigenwerte von Null verschieden, so ergibt die Koordinaten-Verschiebung
X=x"+d mit d; =—% (i=1,2,3)
i
(neue Koordinaten x”/y”, z! die Normalform

Ax 240" 24032 2 4+ alf =0 mit alfy=ag+bTd.

A Az Ay -alhy Name MoA3 [ -ally Name

>0 >0 keine reellen Punkte | <0 >0 zweischaliges Hyperboloid
>0 <0 Ellipsoid <0 <0 einschaliges Hyperboloid
>0 =0 einzelner Punkt <0 =0 elliptischer Kegel

b) Ist genau ein Eigenwert gleich Null, A3 = 0, und gilt 53 # 0, so ergibt die Verschiebung

b b agy +b1d; +byd.
Iy it di=-21 =_22 g __900%019) 1023,
X X d miy 1 )\‘1 > d2 }\.2 s 3 2b3
des Koordinatensystems (neue Koordina-
ten x*/, y” ! ) die Normalform A2 b3 Name

>0 #0 | elliptisches Paraboloid
<0 #0 | hyperbolisches Paraboloid

A 24y 2 42032 =0 .

c) Ist genau ein Eigenwert gleich Null, A3 = 0, und gilt 53 = 0, so ergibt die Verschiebung

b b
X =x"+d mit d1=—x—1, d2=—k—2, d3=0
1 2

des Koordinatensystems (neue Koordinaten x”/, y// z/'} die Normalform

Ax? 2 +kly”2+a6’0 =0 mit “{)IO =agy+bTd.

A2 ago Name A2 a{)lo Name

>0 [>0 | keine reellen Punkte <0 #0 | hyperbolischer Zylinder
>0 |<0 elliptischer Zylinder |[<0 =0 Ebenenpaar

>0 |=0 reelle Gerade

d) Sind zwei Eigenwerte gleich Null (A} = A3 = 0) und gilt v:= 52 +53 # 0, so ergibt
x!/ = (blx”— b3z”)/ﬁ +bjagyly
y' =y =ik,
2 =3 +b,2) [y
(Drehung in der x',z-Ebene und Verschiebung) die

Normalform | Name

Ao 2+ Ned =0 I parabolischer Zylinder
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e) Sind zwei Eigenwerte gleich Null (A} = A3 =0) und gilt 5; = b3 =0, so ergibt

b

Ay’
(Verschiebung des Koordinatensystems lings der
y'-Achse) die Normalform

}\.Qy” 2 +a6/0 =0 mit a6’0 =dago +b2d2 .

A ~a6/0 Name

>0 keine reellen Punkte
<0 zwei parallele Ebenen
=0 eine Ebene




Abbildungen, reelle Funktionen I

Eine Abbildung f |D — V ist eine Zuordnungsvor-

schrift, die jedem Element x einer Menge D genau ein D v
Element y einer Menge V' zuordnet. f

Schreibweise: y=fx), xeD

Definitionsbereich: D

reellwertige Funktion: V=R

Wertebereich: W= {yeV|3xeD mity=f(x) }

komplexe Funktion: DcC,V=C

reelle Funktion: Dc R V=R

surjektive Abbildung: V=W

injektive Abbildung: Zujedem y € W existiert genau ein x € D mit y =£(x) .
bijektive Abbildung: eine surjektive und injektive Abbildung

inverse Abb./Funkt.: Ist f injektiv, so ist die Abbildung/Funktion y — x mit y =f(x)

wieder eine injektive Abbildung/Funktion /=1 — D .

mittelbare Abb./Funkt.:  Sind f1| D; - V¥ und f5| V1 > V, Abbildungen/Funktionen, so
ist f| Dy =V, mit f(x) =fo(f1(x)) die aus f},/> gebildete mit-
telbare Abbildung/Funktion (auch verkettete Abb./Fkt.)

Begriffe bei reellen Funktionen I

monoton wachsende Funktion: Sf(x1) =f(xp) fiiralle x;,x3 € D mit x; <xy
monoton fallende Funktion: f(x1)2f(xy) furalle x1,xy € D mit x; <xp
streng monoton wachsende Funktion: f(x) <f(x;) firalle x1,x, € D mit x; <xj
streng monoton fallende Funktion: S(x1)>f(x3) fiiralle x1,x3 €D mit x; <xj
gerade Funktion: f(x)=f(x) firalle x € (-a,a), a>0
ungerade Funktion: S(=x)=—f(x) firalle x € (—a,a), a>0
periodische Funktion mit Periode p:  f(x+p)=f(x) fiir alle x,x+p € D

Grenzwert: Eine in einer Umgebung von xy mit eventueller Ausnahme von xq
definierte Funktion f hat an der Stelle x; den Grenzwert g, falls
fiir jede Zahlenfolge {x;} mit x, € D, xn #xy, ']'jﬁl;mxn =xg

gitt: lim f(on) =g -

uneigentlicher Grenzwert: Grenzwert g ist +oo oder —oo .
rechtsseitiger Grenzwert:  lim o f(x) =g (Anniherung von x an x; von rechts)
x—»x o+

linksseitiger Grenzwert: lim o f(x) =g (Anniherung von x an x( von links)
X=X~

Nullstelle: Eine Zahl x¢ mit f(xg)=0.
Nullstelle der Ordnung p:  Eine Zahl x¢, fiir die der Grenzwert xilgcl (x~x0)Pf(x) exi-
0

stiert, endlich und nicht Null ist, wobei p natiirliche Zahl ist.

K. Vetters, Formeln und Fakten
© B. G. Teubner Stuttgart - Leipzig 1998
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Polstelle: Eine Zahl xo, fir welche die Grenzwerte lim o f(x) und
x—xo+
lim o f(x) beide existieren und mindestens einer uneigentlich ist.
X=X~

Polstelle der Ordnung p: Eine Zahl x , fiir die der Grenzwert xing (x—x0)Pf(x) existiert,
0

endlich und von Null verschieden ist, wobei p natiirliche Zahl ist.

Liicke: Eine Zahl xq, fiir die xgng f(x) existiert, jedoch f(xg) nicht defi-
niert ist. 0
stetige Funktion: Eine Funktion f heifit an der Stelle x, stetig, wenn

1. der Funktionswert f(x¢) erklirt ist,
2. der Grenzwert xitg f(x) existiert und
0

3. beide Werte - Funktionswert und Grenzwert - iibereinstimmen.

lSpezielle Grenzwerte I
2 fim X=l_p, lim SBX_{

x>0 [0 x> x—1 -0 *

N . Lyx_ . Lix_

xh_glox =1 xh_I,‘ﬁn(l'*'x) e x@q)(1+x) e

Loa -1 _ . Inx _ . log,(1+x) 1

x——>hn}J %~ = ha A, 5 =0 xh:%) x " na
Regel von de I'Hospital I

Voraussetzung: Die Funktionen fund g seien differenzierbar in der Umgebung von x, even-
tuell mit Ausnahme der Stelle x( selbst.

®)

X

A
X=X g/( )

. }1—1;‘: . f(x)=0, xllg\o g(x)=0, existiere

i 1O _ g G

X—>X( g(x) - X—Xq gl(x)

. _ . _ . flx .
. xllgclo Sf(x) =10, xllg\o g(x) =tvo, xligc‘o g—’(x) existiere

i 19 L0

XX g(x) _x—>xo g/(x)

¢ Ausdricke der Form 0.0 oder wo—o werden durch Umformung | 0-c0, c0o—o0
auf die Form % oder ¥ gebracht.

| 8]8 oo

¢ Ausdriicke der Form 00 oder «° oder 1®° werden iiber die Um- 00 o0 ]
formung f(x)8 ™) = e8®) /™) auf die Form 0-c0 gebracht. >
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J

Elementare Funktionen

Exponentialfunktion

y=a* mit aeR, a>0
fir a=e: y=e*=exp(x)

(a heiBt Basis)

Logarithmusfunktion

y=log,x mit >0 und x>0
Umkehrfunktion der Exponentialfunktion,
fir a=e: y=Inx (natirlicher Logarithmus)

Rechengesetze:
log,(uv) =log u +log,v

loga(@
log,u” =v-log,u

=log,u ~log,v

log u
log,u= . Umrechnungsformel
log b auf andere Basis
Hyperbelfunktionen
y=sinhx := %(ex — ¢7¥) ... Hyperbelsinus
(Sinus hyperbolicus)
y=coshx = %(ex + e7)... Hyperbelcosinus
(Cosinus hyperbolicus)
X _a=X
y=tanhx = Zx " :_x .. Hyperbeltangens
(Tangens hyperbolicus)
X —X
y=cothx = Zx f:_x .. Hyperbelcotangens
flirx=0 (Cotangens hyperbolicus)

Umrechnung hyperbolischer Funktionen untereinander
fir x>0

sinhx coshx tanhx cothx
. tanh x 1
sinhx - f 2. _
cosh®x—1 1/1 —tanh2x 1/coth2x -1
coshx — B 1 cothx
1+sinh®x J]—tanhzx Jcoth2x—1
tanhx —_sinhx __ JeoshZx —1 - :h
V1 +sinh2x coshx cothx
N 1
cothx 1 + sinh2x coshx -
sinh x Jcoshzx -1 tanhx




Additionstheoreme fiir Hyperbelfunktionen
sinh (x +y) = sinhx coshy + coshx sinh y

tanhx * tanhy

tanh (x £) = 1 ttanhxtanh y

Doppelwinkelformeln fiir Hyperbelfunktionen
sinh 2x = 2 sinh x cosh x

2tanhx

tanh 2x =
1 +tanh2x

Halbwinkelformeln fiir Hyperbelfunktionen

sinh £ = f%(coshx—l) fiir x> 0
X /l

coshz— 2(coshx+1)
X

t 2

sinhx _ coshx~-1
coshx+1 sinh x

Summe und Differenz von Hyperbelfunktionen
sinhx + sinh y = 2sinhxzﬂcosh¥
coshx +coshy =2 cosh %X cosh%

sinh (x +y)

+ =
tanhx ttanhy coshx coshy

Elementare Funktionen 35

cosh (x +y) = coshx coshy * sinh x sinh y

1 £ cothx cothy

coth (x £) = cothx £ cothy

cosh 2x = sinh2x + cosh?x

1+ coth2x
coth 2x = 2 cothx

sinh§=— f%(coshx—- 1) fiirx<0

x _ _sinhx _ coshx+1
COch—coshx—l_ sinhx

sinhx-sinhy=2sinh’—‘;—ycosh%
coshx—coshy=2sinh%sinh%

tsinh (x +y)

cothx +cothy = Sinh x smh

Formel von Moivre: (coshx * sinhx)” = cosh rzx + sinh nx

Areafunktionen

Die Umkehrfunktionen (inversen Funktionen) des Hyperbelsinus, Hyperbeltangens, Hyperbel-
cotangens und des rechten Teils des Hyperbelcosinus werden als Areafunktionen bezeichnet:

Aus x = sinhy entsteht
y = arsinhx ... Areasinus
(Area sinus hyperbolicus)
Aus x = coshy entsteht fur y > 0
y = arcoshx ... Areacosinus
(Area cosinus hyperbolicus)
Aus x = tanhy entsteht
y = artanhx ... Areatangens
(Area tangens hyperbolicus)
Aus x=cothy entsteht
y = arcothx ... Areacotangens

(Area cotangens hyperbolicus)
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Darstellung der Areafunktionen durch Logarithmus-Funktionen

arsinhx=ln(x+Jx2+l)

1+x

arcosh x = 1n(x+Jx - ) fir x>1

artanh x =In fiir x| <1 arcothx =In fiir |x| > 1
Umbkehrfunktion des linken Teils des Hyperbelcosinus:
Aus x = coshy entsteht fiir y <0
y=—arcoshx= ln(x—Jx - ) fiir x>1
Umrechnung von Areafunktionen untereinander
arsinh x arcosh x artanh x arcoth x
. ) Jx2+1 | artanh —X 2
arsinh x sgn(x) arcosh x* + 25 |arcoth x x+ 1
arcosh x | arsinh - x2 -1 | arcoth X
artanh X ’ x2 -1
artanh x | arsinh sgn(x) arcosh 1 - arcoth 315
1-x2 1-x2
arcoth x | arsinh 1 sgn(x) arcosh artanh < -
[.2 2_ x
x“-1 x—1

Summe und Differenz von Areafunktionen

arsinh (x,/ 14+y2 +yJ1+x2 )
arcosh (xy + 1/(x2 -Do2-1) )

x+y

arsinh x * arsinh y

arcosh x + arcosh y

artanh x *+ artanh y

I

artanh

Trigonometrische Funktionen (Winkelfunktionen)

Wegen des Strahlensatzes herrschen in kongruenten Dreiecken
gleiche Verhiltnisse zwischen den Seiten, die in rechtwinkligen
Dreiecken eindeutig durch einen der nicht rechten Winkel be-
stimmt sind. Man setzt

sinx := cosx =

tanx ;=

>R OIR

QS oo

cotx ;=
Fiir Winkel x zwischen g und 21t werden die Strecken a,b vorzei-

chenbehafiet entsprechend ihrer Lage in einem rechtwinkligen
Koordinatensystem.

arcoth x + arcoth y = arcoth

1+xy
xty

bR

a<0 |
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Vorzeichen-, Verschiebungs- und Spiegelungseigenschaften

( x) (—— ) = COoSx sin (% +x) = —sinx sin (37 +x) =-CosXx
cos( +x) = —Cos (—— ) = —sinx cos(m+x) = —cosx cos (37” +x) =sinx

( +x | =—tan (—- ) =—cotx tan (7 +x) = tanx tan (37" +x) =—cotx
cot (5 +x) =~ cot (—-— ) =—tanx cot(m +x) = cotx cot (37“ +x) =—tanx

Periodizitdt (kleinste Perioden)

sin(x+2n)=sinx  cos(x+2x) = cosx

tan(x + 1) = tanx cot (x +7) = cotx

¢+ spezielle Funktionswerte

T T T T
Bogenmal} 0 s i 3 7
GradmaB 0° 30° 45° 60° 90°
i 0 1 1 1 1
sinx 2 27?2 |33
1 1 1 1 0
cosx 5 J3 52 >
1 -
tanx 0 3 J3 1 J3
cotx - NE) 1 .;. NE) 0
Umrechnung von Winkelfunktionen untereinander
2 2, _ _ sinx _ cosXx
sin“x +cos“x =1 tanx = COSY cmx_?u;;
Fiir 0 <x < 7 gilt:
sin x cos x tan x cot x
. tanx 1
sinx - o | ——— | —
I-cos™ | 1 tanZx J1+cot2x
cosx ) _ 1 cotx
1-sin"x J1+tan2x \/1+cot2x

tanx —_Smx | J1-cosx - 1
J1—sin2x CosX cotx

) COosX

cotx 1 — sSm-x ‘/-]—(;sz‘ ta:lx -

S x
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Additionstheoreme der Winkelfunktionen

sin (x £ y) = sinxcosy +cosxsiny

tanx ttany

tan(x+y)=—
*<£5) 1 +tanxtany

Doppelwinkelformein der Winkelfunktionen

sin2x=2sinxcosx=ﬁn-’—;——
1+tan“x

_ 2tanx _ 2
tan2x = l—tanzx_ cotx —tanx

cos(x ty) = cosxcosy F sinxsiny

cotxcoty+ 1

cot(x+y) = cotytcotx

—tan2
x — sin2x = 1 tanzx
1 +tan“x

cos 2x = cosZ

cot 2x = cot?x—1 - cotx—tanx
2cotx 2

Halbwinkelformeln der Winkelfunktionen fiir 0 <x <n

- x _ |1-cosx

smz— ,—2
X _ }1+cosx

cos2— >

Summe und Differenz von Winkelfunktionen

sinx +siny = ZSin%cosi_—y

sinx ~siny = 200s%sin%

tanx ftany = %
Produkte von Winkelfunktionen

sinxsiny = %(cos (x—y)—cos(x+y))

tan x +tany

tanxtany = cotx+coty

sinxcosy = %(sin(x —y) +sin (x +))

sin (x + y)sin (x - y) = cos2y — cos2x
Potenzen von Winkelfunktionen
2

sin“x = %(1 —cos2x)

3

sin”x = %(3 sinx — sin 3x)

sinx = %(3 ~ 4 ¢cos2x + cos4x)

x_ |l1-cosx _ sinx _ 1-cosx
tan= = f = = ——

2 1+cosx 1+cosx sin x

x _ [l+cosx _ sinx _ 1+cosx
cot= = = = -

2 l1-cosx 1-cosx sin x

cosx+cosy=200s%cos’ﬂ
L Xty . x-
cosx-—cosy=—25musmx——y
2 2

sin (x y)

cotxtcoty == sinxsm y

COSX COSy = %(cos (x—-y)+cos(x+y))

cotx oty = SOLEHCoLy
r= tanx +tany
tanx coty = ¥ TCOLY
V= cotx +tany

cos (x +y)cos (x ~y) = cos2y — sin2x

cos2x = %(1 +¢082x)
cos3x = %(3 cosx + cos 3x)

cos*x = -};(3 +4 cos2x + cos 4x)
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Arkusfunktionen

Die Umkehrfunktionen (inversen Funktionen) der Winkelfunktionen werden als Arkusfunktio-
nen oder zyklometrische Funktionen bezeichnet.

Aus x=siny entsteht

y=arcsinx ... Arkussinus

Aus x=cosy entsteht

y =arccosx ... Arkuskosinus

Aus x=tany entsteht

y=arctanx ... Arkustangens

Aus x=coty entsteht

y = arccot x ... Arkuskotangens

Definitions- und Wertebereiche

Arkusfunktion Definitionsbereich Wertebereich
= arcsinx -1<x<1 —_L<cy<E
Y 25V%5
¥y = arccosx -1<x<1 0<y<nm
y = arctanx 00 <X <00 —%<y<12t-
y = arccotx - <X <®© O<y<m

Symmetrieeigenschaften der Arkusfunktionen
arcsin x = —arcsin(--x) arccos x = T — arccos(—x)

arctan x = —arctan(—x) arccotx = 1t — arccot(—x)

Umrechnung von Arkusfunktionen untereinander

arcsinx = g— — arccosx = arctan % arccosx = % —arcsinx = arccot
1-x

n

arctanx = E — arccotx = arcsin X arccotx = L_ arctanx = arccos

J14x2 2 J1+x2
arcsinx = arccos y 1 -x2  (0<x<1)  arccosx=arcsin y 1 —x2 0<x<1

arctanx = arccot % (x>0) arccotx = arctan% (x>0)

Additionstheoreme der Arkusfunktionen

arcsin x T arcsin y = arcsin (x,/ 1-p2 tyf1-x2 ) 2 +y2<1)

+
arctan x + arctany = arctan % <1
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Ganze rationale Funktionen (Polynome)

Funktionen der Gestalt pn | R > R mit

pn(¥)=anx" +a,_ X" 1 +...+ajx+ay, an#0, a;eR, ne NU{0}

heiflen ganze rationale Funktionen oder Polynome n-ten Grades. Betrachtet man sie als Funk-
tionen pn | C > € (C ... Menge der komplexen Zahlen), mit a; € C, so kann nach dem
Fundamentalsatz von Gauf} jedes Polynom n-ten Grades in der Form (Produktdarstellung)

Pn(x) = an(x = x1)(x = x3)...(¢ = Xp_ )X~ Xn)

dargestellt werden. Die Zahlen x, sind die reellen oder komplexen Nullstellen des Polynoms.
Sind alle Koeffizienten a, reell, so treten komplexe Nullstellen stets paarweise in konjugiert
komplexer Form auf Die Nullstelle x, ist p-fache Nullstelle oder Nullstelle der Ordnung p,
wenn der Faktor (x-x,) in der Produktdarstellung p-mal vorkommt. Funktions- und Ableitungs-

werte von Polynomen berechnet man im

Horner-Schema:

) an Gp-1 4pp ... 43 a4 4
bi =il +abi+1 (l=n—1""’0) al| - abn_l abn_2 ab2 abl abo
pr(@) =ag+aby but buz bns . b1 by pal@
c,»/.:b,—H +aciy (=n-2,...,0) a| - acny acys .. acy acy
pn(a) = bo +acy 7

Cpn2 Cp-3 Cp-g co pn(a)

Es gilt

Pn(%) = pn(@) + (@~ a)(by1x" 1 +b,_px" 2 + ... +b1x+bg).

Vietascher Wurzelsatz:

n
X1 +xy+:-+xn = _lei =
i=
n
X)X +X1X3+ - +Xp1Xn = X XX =
ij=1
(<)
n
X1X9X3 +X1X2Xg 4 +Xp 20Xy 1Xn = _%:lx,-xjxk =
ij,
(i<y<k)
x1x2. . .xn = —

Nullstellen des Polynoms p(x)=x%+px+q bzw.

Losungen der quadratischen Gleichung x2 +px +q =

H+
~
[STj]
—
[ 5]
|
R

4q<p2 = x1’2-—-—

4q=p2 = Xjp2=-

NS NSNS

H+
-
o]
|
N
NS
—
[ 84

4q>p2 > Xip2=-

0:

—Ap-1

an-2

—qp-3

.(—1)"00
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Gebrochen rationale Funktionen, Partialbruchzerlegung

Funktionen der Gestalt y =r(x) ,

amX™ + dpy_1x" 1+ +ax+ag
bux" + b, x" 1 4. +bx+bg

r(x)= mit a,#0, b,#0

heiBen gebrochen rationale Funktionen, und zwar

echt gebrochen, wenn m <n ist,
unecht gebrochen, wenn m > n ist.

+ Eine unecht gebrochen rationale Funktion kann durch Polynomdivision auf die Form
r(x) = p(x) +s(x)

gebracht werden, wobei p(x) ein Polynom ist und s(x) eine echt gebrochen rationale
Funktion.

Nullstellen von r(x) sind alle Nullstellen des Zihlerpolynoms, die keine Nullstellen des Nen-
nerpolynoms sind.

Polstellen von r(x) sind alle Nullstellen des Nennerpolynoms, die keine Nullstellen des Zih-
lerpolynoms sind und alle gemeinsamen Nullstellen von Zihler- und Nennerpoly-
nom, deren Vielfachheit im Zihlerpolynom kleiner als ihre Vielfachheit im Nenner-
polynom ist.

Liicken von r(x) sind alle gemeinsamen Nullstellen des Zihler- und Nennerpolynoms, deren
Vielfachheit im Zihlerpolynom groBer oder gleich ihrer Vielfachheit im Nennerpoly-
nom ist.

pm(x)
qn(x)

Schritt 1: Darstellung des Nennerpolynoms als Produkt von linearen und quadratischen Poly-
nomen mit reellen Koeffizienten, wobei die quadratischen Polynome konjugiert
komplexe Nullstellen besitzen:

gn(®) = -a)*(c-b)P- (2 +ex+ad) (2 +ex+8 -

Partialbruchzerlegung echt gebrochen rationaler Funktionen r(x) =

Schritt 2;: Ansatz

41 4, Aa B, By Bp
= + 44 + +.o 4 +...
e € R ey A L
L CixtDy | Cx+Dy | EwxtFy o Esx+Fs
x2+ex+d &2 +ex+d)y xZ+ex+f (2 +ex+f)°

Schritt 3: Bestimmung der (reellen) Koeffizienten 4, B;, ..., F'; des Ansatzes

a) Ansatz auf Hauptnenner bringen

b) mit Hauptnenner multiplizieren

c) Einsetzen von x=a, x=5,... liefert Aq,Bp,...

d) Koeffizientenvergleich liefert lineare Gleichungen fiir die restlichen unbekannten
Koeffizienten.
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Spezielle Funktionen ]

Bernstein-Polynome

Definition: Bl(x):= (?)xi(l -xy"7 (i=0,....n).

im besonderen:

By =1

: By0)=1-x  Blm=x

By =(1-9? Biw=201-0x Bix)=x2

: By =(1-x3 Bj0)=31-0)2 Bi(x)=3(1-xx2 Bl)=x>

S N S 3
o
W N =D

+ Rekursionsformel:  B7'(x) = (1-)B"! (x) +xB" | (x)

. n j
+ Eigenschaften: EOB;'(x) =1 [max. B}(x)=B](%)
Tschebyscheff-Polynome
Definition: Tn(x) = cos(narccosx) fiir -1<x<1
im besonderen: To(¥) =1 T1(x)=x To(x)=2x2-1

T3(x)=4x3 —3x  T4(x)=8x*-8x2+1 Ts(x) = 16x5 ~20x3 + 5x
¢ Rekursionsformel: 7,41 (%) = 2xTn(x) - Tp_1(x) fiir n=1,2,...

+ Eigenschaften: [Th(x)| <1 fir —-1<x<1

L r fir m=#n
| m)Tn(x) dx = fir m=n=0 (Orthogonalitit)

_ [ 2
I Jl-x n fiir m=n=0

[SIE ]

Gammafunktion

x—1

|
Definition: I'(x) := lim nn

n—e0 x(x+ 1) -(x +71—1) fir x#0,-1,-2,...

o0}
*Esgiltfirx>0: T(x)=fe'rldr.
0

+ Eigenschaften: I'x+1)=xI'(x) fiir x#0,-1,-2,...
FEI(1-x) = —— fiir x#0,+1,42, ...
OIr'(1-x) S r x

* Spezielle Funktionswerte

rb=-2um r(%): T r(1)=1 T(n+1)=n! fir ne N



Lineare Algebra

Determinanten

\y

Die Determinante D einer quadratischen (n,n)-Matrix A ist die rekursiv definierte Zahl

ay - dy _ ,
D=detA=| : . i |=au(-DMldetAy +- - +ay,(-1)*detA,, ,

a1 -+ anmn

wobei A;;, die durch Streichen der i-ten Zeile und A-ten Spalte aus A gebildete Matrix ist. Die
Determinante einer (1,1)-Matrix ist gleich dem Wert ihres einzigen Elementes. Die Berech-
nung einer Determinante gemiBl dieser Definition wird Entwicklung nach der i-ten Zeile
genannt.

¢ Der gleiche Wert D ergibt sich durch Entwicklung nach der 4-ten Spalte:

aipp - Ain
D=detA=| : .. |=agD)**detAy+- +au-1)"*det Ay .
anl <+ apn

+ Die Entwicklung nach beliebiger Zeile oder Spalte ergibt den gleichen Wert D.

¢ Spezialfille (Regel von Sarrus):

A2 s —ara Zweireihige
az) ax %22 = 412921 Determinante
a a a - g o

ali a12 a; = 91922833 +a)2a33a31 +a13a21a3; dreireihige
na ~a13a3,a3] ~a11a33a3) ~a12a31a33  Determinante
az) azp ass

Eigenschaften und Rechengesetze fiir n-reihige Determinanten

* Eine Determinante wechselt ihr Vorzeichen, wenn man zwei Zeilen oder zwei Spalten mit-
einander vertauscht.

¢ Sind zwei Zeilen (Spalten) einer Determinante einander gleich, hat sie den Wert Null,

¢ Addiert man das Vielfache einer Zeile (Spalte) zu einer anderen Zeile (Spalte), so indert
sich der Wert der Determinante nicht.

¢ Multipliziert man eine Zeile (Spalte) mit einer Zahl, so multipliziert sich der Wert der Deter-
minante mit dieser Zahl.

. detA = detAT det(AB) = det A - det B det (AA) = A"det A

K. Vetters, Formeln und Fakten
© B. G. Teubner Stuttgart - Leipzig 1998
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aig o an apy - ayy apy - aiy

. ail%bil a,-,,%b,-,, = a:,-l a:,-n + b:“ b:in

a;ll a;m agy - a;m a;l a;m
Vektoren I

Ein Vektor ist im Raum R mit einem festen Koordinatensystem eindeutig durch drei Kompo-
nenten beschreibbar.

Qax qx —Px
a=|ay |=| qy—py
a: qz —p:z

Koordinateneinheitsvektoren:

1 0 0
€x = 0 5 ey= 1 , €z= 0
0 0 1

+ Ein Vektor kann als ein durch Lange, Richtung und Orientierung definiertes Objekt interpre-
tiert werden.
aj
Der Raum R" ist der Raum der n-dimensionalen Vektoren a= . | =ajey+---+anen .
an
Koordinateneinheitsvektoren:

O QO

®
X
I
——
—
—_—

Rechenoperationen

Produkt mit reeller Zahl: Aa=Al @ |=

7
a @

a bl ay +b1
Addition: a+b=| @ [+ @ |[= : b
an bn an +bn
a
ay b, . a+b
Skalarprodukt: a-b=| : [-| 1 =2 ab;
an bn i=1

andere Schreibweise: a-b=aTbh mit aT-= @y,...,an)



Vektoren

Betrag: la| .= JaTa = ’g ai2 Fiir n=2,3 ist |a| die Linge des Vektors a.

Rechenregeln und Eigenschaften von Skalarprodukt und Betrag (A reelle Zahl)

alb=bTa aT(Xb)=7»aTb aT(b+c)=aTb+aTc |[Aa] = |Al|a]
aTb=a]-|b|-coso (a,b eR%R?) &
|a+b| <la[+|b| (Dreiecksungleichung) ¢
|aTb| <la||b|  (Cauchy-Schwarzsche Ungleichung) b
Vektorprodukt (nur fiir Vektoren des R®)
ax bx ay a ar a ax a
. y 4z x az x ay
4 '= —_— +

axb ay X by by bz X bx bz €y bx by €z

az bz

symbolische Schreibweise (man entwickle die Determinante nach der ersten Zeile):

€x ey €z
axb=|ax ay a:
by by b,

Rechenregeln (a, b, ¢ € R?)

axb=-bxa axa=0 (La) xb=2A(axb)
(a+b)xc=axec+bxc (axb)xec=(a-c)b—-(b-c)a (Zerlegungssatz)
laxb|=|a]-|b|-sing mito=<xab, 0<¢<n

(axb)-a=0 (axb)-b=0
¢ Der Vektor a x b steht senkrecht (orthogonal) zu a und zu b.
axb\ b
¢ Die Vektoren a,b,a xb bilden ein Rechtssystem, d.h., wenn :
a zu b gedreht wird, zeigt a x b in Richtung der Rechtsschraube. a

¢ |a x b| ist der Flicheninhalt A des durch die Vektoren a und b

aufgespannten Parallelogramms. &1
a

Spatprodukt (nur fiir Vektoren des R*):  (abc) :=(axb)-c

¢ Das Volumen V des durch die Vektoren a,b,c aufgespannten
Spates (Parallelepipeds) ist

V'=|(abe)| . Clpy, V
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¢ Das Volumen / des durch die Vektoren a,b,c aufgespannten
Tetraeders ist gleich %](abc)l .

ax ay a;
Berechnung;: (abc) = | bx by b,
Cx Cy Cz

Lineare Abhéingigkeit

Die m Vektoren ay,...,a, € R" heiBen linear abhdngig, wemn es Zahlen Aj,...,An gibt,
die nicht alle gleichzeitig Null sind, so daf3

Mal + - +Amam=0
gilt. Andernfalls heilen die Vektoren ai,...,a, [linear unabhdngig.

+ Die Maximalzahl linear unabhingiger Vektoren im R" ist .

+ Sind die Vektoren aj,...,a, € R" linear unabhingig, so bilden sie eine Basis des R”, d.h.,
jeder Vektor a e R"14Bt sich eindeutig darstellen als

a=Ajay+---+Anan .

Vektornormen I

Euklidische Norm (Betrag, im R® Lange): lall, := |a] = | ﬁ‘,laiz
i=

Maximumnorm: llalle := max |a]
i=l,...,n
n
Betragssummennorm: lally = % |a]
i=1
Eigenschaften
lal=0 < a=0 (lall > 0 [Aall= |Alllall (A reelle Zahl)

la+b| < llall +|bl| (Dreiecksungleichung)
|aTh| <llall, Ibll, (Cauchy-Schwarzsche Ungleichung)

lllall - Ibll] < |la - bl
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Matrizen I

Eine (m,n)-Matrix A ist ein Schema von m - n reellen oder komplexen Zahlen (Elemente) a;;
(i=1,...m; j=1,...n):

. . i ... Zeilenindex
1 1n 1
. ... Spaltenindex
A=l . = (ay; B hy :
: .o (aj) , Bezeichnungen a;; = (A); ... Element
aml e amn

(m, 1) — Matrix --- Vektor

¢ Der Zeilenrang von A ist die Maximalzahl linear unabhingiger Zeilenvektoren, der Spalten-
rang die Maximalzahl linear unabhingiger Spaltenvektoren.

* Es gilt: Zeilenrang = Spaltenrang. Also : rang(A): = Zeilenrang = Spaltenrang .

Rechenoperationen
Identitit: A=B wemn a;=>b;Vij

Produkt mit reeller Zahl A: 1A := (Aa;))

Addition: A+B:=(a; +by)

Subtraktion: A-B:=(a;-by)

Transponieren: AT = (a,-j)T = (a;;)

Konjugieren: A= (@) = @)

Adjungieren: A* = AT

Multiplikation: AB=(a;) - (by) = (él airb,j)
Voraussetzung: A ist (m,p)-Matrix und B ist (p,72)-Matrix
Ergebnis: AB ist (m,n)-Matrix

Rechenregeln

A+B=B+A A+B)+C=A+B+0) A+WA=2A+pA

(AB)C = A(BC) (A+B)C=AC+BC (LA)B = A(AB) = A(AB)

AHT=A A+B)T =AT + BT AA)T = 2AT

(AB)T = BTAT
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Spezielle Matrizen

quadratische Matrix:

Einheitsmatrix E.:

Diagonalmatrix D:

symmetrische Matrix:
Hermitesche Matrix:
reguldre Matrix:
singuldre Matrix:

zu A inverse Matrix:

gleiche Anzahl von Zeilen und Spalten
quadratische Matrix mit e;; =1, e;; = 0 fiir i # j

quadratische Matrix mit dj; = 0 fiir i #
Bezeichnung: D = diag(d;) mit d; :=d;

reelle quadratische Matrix mit AT = A
komplexe quadratische Matrix mit A* = A
quadratische Matrix mit det A # 0
quadratische Matrix mit detA =0

Matrix A~! mit AA"l=E

orthogonale Matrix: regulire reelle Matrix mit AAT = E

unitdre Matrix: regulire komplexe Matrix mit AA* = E
positiv definite reelle Matrix: symmetrische Matrix mit xTAx>0V x#0, x € R"
" " komplexe Matrix: Hermitesche Matrix mit x*Ax>0Vx#0,xe C"
positiv semidefinite teelle Matrix: symmetrische Matrix mit xTAx>0 V x € R"
" " komplexe Matrix: Hermitesche Matrix mit x*Ax>0V x € C"
negativ definite reelle Matrix:  symmetrische Matrix mit xTAx <0V x#0, x € R"

"

semidefinite reelle Matrix: symmetrische Matrix mit xTAx<0V x € R"

Rechenregeln und Eigenschaften spezieller regulirer quadratischer Matrizen

ET=E detE =1 El-E
AE=FEA=A ATA=E A DH1=A
AT = (AT)"! AB)"! =B-1A"! det (A1) =
AHT = @A) (AB) et (A=

Dabei ist A, die aus A
durch Streichen der i-ten
Zeile und k-ten Spalte
gebildete Teilmatrix

1 (-D*ldetA;; - (1)!*detA,,
" detA

(=) ldetAq, - (~1)""detAny
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Lineare Gleichungssysteme J

Das lineare Gleichungssystem
apxy+ - Hpxn = b
Ax=b in Komponenten: : : :
anIXI+ oo HapnXn = bn
heifit
homogen, wenn b =0, in Komponenten: wenn b; =0 fiirallei=1,...,n,
inhomogen, wenn b # 0, in Komponenten: wenn b; = 0 fiir wenigstens eini=1,...,n.

Existenz von Lésungen
¢+ Das inhomogene Gleichungssystem Ax =b ist genau dann eindeutig 16sbar, wenn det A = 0.

¢ Das inhomogene Gleichungssystem Ax=b mit detA =0 ist genau dann 16sbar, wenn
rang(A) = rang(A,b) gilt.

+ Das homogene Gleichungssystem Ax =0 hat stets die triviale Losung x=0.

¢ Das homogene Gleichungssystem Ax=0 hat genau dann nicht triviale Losungen, wenn
detA=0.

+ Effektive Losung linearer Gleichungssysteme » Numerische Methoden, GauBl-Algorithmus
Cramersche Regel

Ist A eine regulire Matrix, so lautet die Losung des inhomogenen Gleichungssystems Ax =b
in Komponenten:

ay a1 by arger o anp
detA; . | - . . ", . _
Xj = de‘tA mit Ak.— : : : : : 5 k-—-l,. ,n
Ap1 * App-1 bn Apper - ann
Spezialfall n= 2 : ‘;‘IZ z; mit |a| +|B] + ] +|d] % 0
. .. _de-bf _af-ce
1. ad+ bc — Losung: X= i’ V= ad—be
2. ad=bc und af=ce und bf=de
a#0 —  Losung: x=§—§k, y=Ai, —o<A<®
b+0 — Losung: x=2, y=§—%x, -0 <A <
c#0 — Losung: x=£—gk, y=A, —0 <A<
d#0 — Losung: x=X\, y=§—f—ik, —0 <A <o

3. sonst (weder 1. noch 2.): Gleichungssystem hat keine Losung.
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Eigenwertaufgaben bei Matrizen ]

Emme Zahl A e C heiBt Eigenwert der quadratischen (1,n)-Matrix A, wenn es einen Vektor
r =0 gibt, fiir den gilt:

apry +---+ ayprn 7\."1

Ar=A2r, in Komponenten:

anri + -+ apnrn Mn

Ein zum Eigenwert A gehoriger Vektor r mit dieser Eigenschaft heiBt Eigenvekfor von A.
¢ Sind ry,...,r; zum Eigenwert A gehorige Eigenvektoren, so ist auch
r:=o)ry+---+oir;
ein zum Eigenwert A gehoriger Eigenvektor, falls nicht alle o; verschwinden.

¢ Eine Zahl A ist genau dann Figenwert der Matrix A, wenn gilt:
pn(d) =det(A-AE)=0.
pn(d) ist ein Polynom n-ten Grades, genannt charakteristisches Polynom der Matrix A. Die
Vielfachheit der Nullstelle A des charakteristischen Polynoms heiBt algebraische Vielfach-
heit des Eigenwertes A.
¢ Die Anzahl der zum Eigenwert A gehorenden linear unabhingigen Eigenvektoren ist
n— rang(A - AE) .

und heiBt geometrische Vielfachheit des Eigenwertes A. Sie ist nicht grofer als die algebrai-
sche Vielfachheit des Eigenwertes A.

¢ Sind A; (j=1,...,k) paarweise voneinander verschiedene Eigenwerte und r; (=1..4
zugehorige Eigenvektoren, so ist das System der Eigenvektoren {ry,...r;} linear unab-
hingig.

* Die Matrizen A und AT haben die gleichen Eigenwerte.

+ Die zu verschiedenen Figenwerten gehorigen Eigenvektoren der Matrizen A und AT sind
zueinander orthogonal.

¢ Eine (n,n)-Diagonalmatrix D = diag(d;) hat die n Eigenwerte A;=d; (j=1,...,n). Ein
zum Eigenwert A; =d; gehoriger Eigenvektor ist der j-te Einheitsvektor:
(0)

r;=ej, mit ;= 1 | < Position;.
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Ahnliche Matrizen
Die durch
B:=C!AC

beschriebene Matrizenoperation A —> B heilt Ahnlichkeitstransformation. Zwei durch eine
Ahnlichkeitstransformation verkniipfte Matrizen heiflen dhnliche Matrizen.

+ Ahnliche Matrizen haben die gleichen Eigenwerte.

¢ Ahnliche Matrizen haben zu gleichen Eigenwerten die gleiche Anzahl linear unabhingiger
Eigenvektoren.

Diagonalihnliche Matrizen
Eine zu einer Diagonalmatrix dhnliche Matrix heiBt diagonaldhnlich.

« Eine (n,n)-Matrix ist genau dann diagonalihnlich, wenn sie » linear unabhingige Eigenvek-
toren hat.

¢ Zu jeder diagonaldhnlichen (n,n)-Matrix A 1iBt sich ein linear unabhingiges System von Ei-
genvektoren rq,...,r, von A und ein ebensolches System ti,...,t» von Eigenvektoren

von AT angeben, so dafl rotk = Sjk G=1,...,mk=1,...,n) gilt Die spalten- bzw. zeilen-
weise aus solchen Eigenvektoren r; bzw. t; aufgebauten Matrizen R und T vermitteln die
Ahnlichkeitstransformation von A auf Diagonalform, d.h., es gelten

TAR =diag(};), T=R"!, Ar;=ar;, AT =Mt
Falls A nur reelle Eigenwerte hat, kann T reell gewihlt werden, R ist dann auch reell.
Symmetrische Matrizen
+ Die Eigenwerte einer reellen symmetrischen Matrix sind stets reell. Jeder ihrer Eigenvekto-
ren kann in reeller Form dargestellt werden. Zu verschiedenen Eigenwerten gehorige Eigen-
vektoren sind zueinander orthogonal.
¢ Eine reelle symmetrische Matrix ist diagonalihnlich.
¢ Jede reelle symmetrische (n,n)-Matrix besitzt n paarweise orthogonale Eigenvektoren und
kann durch eine Ahnlichkeitstransformation mit einer reellen orthogonalen Matrix C auf

Diagonalform gebracht werden.

* Eine reelle symmetrische Matrix ist genau dann positiv definit (positiv semidefinit), wenn ih-
re simtlichen Eigenwerte positiv (nicht negativ) sind.

T
+ Der Ausdruck R(x):=% T{Ax

X' X
reellen symmetrischen (r,7)-Matrix A ist das Minimum, der grofte Eigenwert Amax das Ma-
ximum des Rayleigh-Quotienten R(x). Dieses Minimum bzw. Maximum nimmt der Ray-

heiBit Rayleigh-Quotient. Der kleinste Eigenwert A, ener
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leigh-Quotient fiir jeden zum kleinsten Eigenwert gehorigen Eigenvektor r,;, bzw. zum
groften Eigenwert gehorigen Eigenvektor rmax an, d.h., es gilt fiir alle reellen Vektoren x:

Amin = min R(1) = R(r i) < R(X) < R(rmax) =max R(u) = Amax .
ueR” ueR”

Jordansche Normalform

Zu jeder reellen (n,n)-Matrix A gibt es eine reguliire, i allg. komplexe (n,n)-Matrix C, die die
Ahnlichkeitstransformation
(a1 )

J(hy,n1)

-1 Y . A_ °.
C'AC=J= mit J()\.],n])— xj 1

A
vermittelt, wobei die Diagonalblécke J(Aj, nj)der Matrix J Jordanblécke heiBen und Matrizen
vom Typ (n;,n;) sind. Dabei gilt 7y +---+ns =n, und die A; sind die Eigenwerte von A. Die
Zahl der Jordanblocke zum Eigenwert A; ist gleich der geometrischen Vielfachheit von A ;- Die
Matrix J heiBt Jordansche Normalform der Matrix A.

J ()\,s, ns)

* Die Matrix J ist bis auf dic Anordnung der Diagonalblécke eindeutig bestimmt.
¢ Falls A nur reelle Eigenwerte hat, kann die Transformationsmatrix C reell gewiihlt werden.

¢ Die Anzahl s der Jordanblocke ist gleich der Anzahl der linear unabhingigen Eigenvektoren
der Matrix A. Diese stehen in denjenigen Spalten von C, die den ersten Spalten der Jordan-
blécke entsprechen.

Singuldrwertzerlegung

Zu jeder reellen (m,n)-Matrix A gibt es eine orthogonale (7,m)-Matrix U und eine orthogonale
(n,n)-Matrix V, so daB
( (s3] \
UTav=x-| ~~ © mt G;2--20r>0
gr..

0 0
gilt. Dabei konnen die beiden rechten oder die beiden unteren Nullblocke fehlen. Treten alle
drei Nullblécke auf, so setzt man o,,)=---=0;=0, mit /=min(m,»). Durch A sind die
Zahlen o1, ...,0; eindeutig festgelegt, sie heiBen Singuldirwerte von A.

¢ Esgilt r= rang(A) und A =UZVT.

+ Die Zahlen 0'% e 0'3 sind die positiven Eigenwerte sowoh! von ATA als auch von AAT,
die restlichen n — r bzw. m — r Eigenwerte von ATA bzw. AAT sind null.

* Die Spalten von U sind die normierten Eigenvektoren von AAT | die Spalten von V die nor-
mierten Eigenvektoren von ATA.



Folgen I

Zahlenfolgen I

Eine Abbildung a| K >R, K cN, wird Zahlenfoige genannt. Die Zahlenfolge heifit endlich
oder unendlich, je nachdem, ob die Menge K endlich oder unendlich ist. Eine unendliche Zah-
lenfolge wird Folge genannt.

Bezeichnungen: an :=a(n) ... Elemente der Folge, n=1,2, ...
{an} ... Zusammenfassung aller Elemente, Folge

beschrdnkte Folge: Es gibt eine Zahl p e R mit |a|<p fiiralle neN .

Monotonie: Eine Folge heilt monoton wachsend, monoton fallend, streng monoton
wachsend oder streng monoton fallend, wenn die Abbildung a die ent-
sprechende Eigenschaft hat.

Konvergenz: Eine Zahl g heiBt Grenzwert der Folge {an}, wenn es zu jeder Zahl € > 0

einen Index n(e) gibt mit |a, —g| <e fiir alle 7> n(g) . Die Folge {an}
heibt dann konvergent gegen g.
Schreibweise: nli_x)ni)0 an=g oder ap—>g fir n>w.

Divergenz: Hat eine Folge keinen Grenzwert, so heibt sie divergent. Die Folge {ax}
heiBt bestimmt divergent gegen +oo, wenn es zu jeder Zahl p einen Index
n(p) gibt mit an >p fir alle n>n(p). Die Folge {an} heilt bestimmt
divergent gegen —o, wenn die Folge {—an} bestimmt divergent gegen
+oo ist. Eine Folge, die weder konvergent noch bestimmt divergent ist,
heiBit unbestimmt divergent.

Héufungspunkt.  Eine Zahl h heiBt Hdaufungspunkt der Folge {an}, wenn es zu jeder Zahl
€ >0 unendlich viele Elemente a, gibt mit |ay —h| <t .

Konvergenzsitze
+ Eine Folge kann hochstens einen Grenzwert haben.
+ Eine monotone Folge konvergiert genau dann, wenn sie beschrénkt ist.

*Aus A<ap, <B und n]j_xg)a,,:g folgt A<g<B.
* Aus nh_?éoa”:g’ nh_t&b,,:h, o, B eR folgen

. . . a,
Jim (0 +Bbn) = ag+Bh, Jim anbn = gh, nh_%—"=§fans h%0.

K. Vetters, Formeln und Fakten
© B. G. Teubner Stuttgart - Leipzig 1998
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* Aus n]in%oan =g folgt

n]i_l)%olan|=|g|, nli_x&%:@ﬁirg>0, n]i_%o%(al+-~-+an)=g.
* Eine beschrinkte Folge besitzt mindestens einen Hiufungspunkt.

* Ist 2 Hiufungspunkt von {ax}, so gibt es eine gegen h konvergente Teilfolge von {a,} .

Grenzwerte spezieller Folgen

. ]_ . n__ . n _ .
nh—lgo-ﬁ_o nh—1>9x7n+l—1 nh—l)%o‘/x—l fir A>0
. 1)” _ . 1" _1 . A" _
nhi%o(“ﬁ ¢ n“é‘éo(l"ﬁ) =e Ho(”ﬁ) =¢
‘ Funktionenfolgen I

Folgen der Form

f1,/2,-.. Schreibweise: {fn}, neN,

bei denen die Glieder {f,} auf einem Intervall D € R definierte reellwertige Funktionen sind,
werden Funktionenfolgen genannt. Alle Werte x € D, fiir die die Folge { f:(x)} einen Grenz-
wert besitzt, bilden den Konvergenzbereich der Funktionenfolge { f,}. Im weiteren wird an-
genommen, dafl D mit dem Konvergenzbereich iibereinstimmt. Durch

f6) = lim fux), xeD,
wird die Grenzfunktion f der Funktionenfolge { f; } definiert.

+ Die Funktionenfolge { /»}, 7 € N, konvergiert gleichmdfig in D gegen die Grenzfunktion f,
wenn es zu jeder reellen Zahl € >0 eine Zahl n(g) gibt, die nicht von x abhingt, so daB fiir
alle n > n(e) und alle x € D gilt:

[fn() —f ()] <.

¢ Cauchy-Kriterium. Die Funktionenfolge {f»}, n €N, ist genau dann im Intervall D e R

gleichmiBig konvergent, wenn es zu jeder reellen Zahl & >0 eine nicht von x abhingige

Zahl n(g) gibt, so daB fir alle n> n(e) und alle m> 1 gilt:

| frtm() —fu(x)| <& firalle xe D .



Differentialrechnung fiir Funktionen mit einer Variablen I

Begriffe
Differenzenquotient: % ;=W
Differentialquotient: Y _ lim M_&)_ *)

Ax—-)O

Falls der Grenzwert (*) existiert, heifit die Funktion f
an der Stelle x differenzierbar. Der Grenzwert heifit
Differentialquotient oder Ableitung der Funktion f an

der Stelle x und wird mit % bezeichnet (auch Y R

(%), f/(x)). Der Differenzenquotient ist der Anstieg tanp der Sekante s zwischen den Kur-
venpunkten P(x,f(x)) und Q(x + Ax, f(x + Ax)). Der Differentialquotient ist der Anstieg tana
der Tangente ¢ im Kurvenpunkt P(x, f(x)).

Differentiationsregeln I
+ Summe: (f+g) =f"+g * Faktor: )Y =2 (A eR, konstant)
/.o
* Produktregel: (f-g) =f!-g+f-g’ * Quotientenregel: (g) g 2f g
g
¢ Kettenregel: Es sei y =f4(z) mit z = f;(x) (fa... dubere Funktion, f;... innere Funktion).
Dann gilt
dy _dy dz dfa(fi) dfix)

2-2.L oder:  y/(x) = (fa(fi®)) = df; dx

* Differentiation mittels Umkehrfunktion
Essei x=/"1(y) die Umkehrung von y =/ (x). Dann gilt

s 1 . d_
7= yGey O dx

&8 [

* Logarithmische Differentiation (falls Inf(x) leichter zu differenzieren ist als f'(x))
10 =(f@) 6.
¢ Ist eine Funktion y =f(x) in impliziter Form F(x,y)=0 gegeben, so gilt

YO il x(x,))
f (x) - Fy(x,y) .

K. Vetters, Formeln und Fakten
© B. G. Teubner Stuttgart - Leipzig 1998
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Ableitungen elementarer Funktionen I

Differentialrechnung fiir Funktionen mit einer Variablen

Funktion Ableitung || Funktion Ableitun Funktion Ableitun;
g g
C (Konst) |0 log,, || %logae sinh x cosh x
x 1 g Ix| %lge coshx sinh x
x" nx"1 sinx cosx tanhx 1 - tanh2x
% - Lz cos x —sinx cothx 1-coth?x
X
1 __n 2 . 1
= il tanx 1+ tan“x arsinh x
x x 1+x2
1 2 1
cot -1- sh
Jx 15 x 1 - cot“x arcoshx =
1 . 1 1
nx arcsin x artanh x
nYxn1 1-x2 1-x2
e e* arccos x - 1 arcoth x -1
1-x2 x2-1
o0
a* a*lna arctan x 1 3 ') x>0) | fe~ ' lnrds
1+x 0
1 1
In |x ¥ arccotx -
i x 1+4x2
b’[ittelwertsiitze ]

Mittelwertsatz der Differentialrechnung

Die Funktion f'sei auf [a, 5] stetig und auf (a, b) differenzierbar. Dann gibt es (mindestens) ein
§ € (a,b) , so daB gilt

f®) -f@
b-a

=f'®) .

Erweiterter Mittelwertsatz der Differentialrechnung

Die Funktionen fund g seien auf dem Intervall {a, 8] stetig und auf (@, b) differenzierbar. Es
sei g/(x)#0 fiirjedes x € (a, b). Dann gibt es (mindestens) ein & € (a,b) , so daB gilt

[0 -f@ f'®
gd)-g@ g’
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Taylorentwicklung I

Satz von Taylor: Die Funktion f sei in einer Umgebung U der Stelle xy (r+1)-mal differen-
zierbar, und es sei x € U. Dann gibt es eine zwischen x und x gelegene Zahl &, so daB gilt

Taylorformel: Jx) =pn(x) +Rn(x)

Taylorpolynom:  pn(x) =f(x0) +f « 0)( —x0) +

n+1)
Rn(x) = % _Jf -+ D () dr (Integral-Form)
. xo

1 )
i §TO)(x_x0)2 P +%(x -x0)"

Restglied: Rn(x) = (Lagrange-Form)

* Andere Schreibweise (Entwicklungsstelle x statt x, Zwischenstelle x + 84, 0 <8 <1):

fOx+h)=f(%) +f (x) h +f (x) W2+ f (n)(x) "y I (n;’ll)ixlg—'Sh) 2+l

* MacLaurin-Form der Taylorformel (Spezialfall xg =0 , Zwischenstelle 9x, 0 <3 < 1):

f’() 7"(0) D), , D
TO=FO 3 _2!_x2+"'+f P (n+1)|x) ml

Taylorformeln elementarer Funktionen mit Entwicklungsstelle x = 0

Funktion Taylorpolynom Restglied
x2 X3 xM 9x
x x° X" (5 n+l
e 1+x+2|+3|+ +X P (n+1)'x
) 35 x2n-1 089X on+1
_ x_ X~ _ _ n—-1 1 n n
sinx | x= TG () | O g
2 44 x2n cos 8x
Ccosx X< . x7 _1\n _1yn+1 _COS9X  on+2
1- 2! TR 41 —+ (D (2,,)1 D @2n+2)!
n(1+x) | o2, 2 | X
x —— —_—— RS — - ——— .- - T 1
X- AT +(=1)" (1+ 901
o (x) (a) 2, ... (Ol) n ( ) a-—n—-1,n+1
(1+x) 1+(1 x+ 5 )% +o+ ) Jx ntl (1+98x) x
Niéherungsformeln I

Fiir "kleine” Werte von [x|, (fiir |x| << 1), ergeben die ersten Summanden der Taylorpolyno-
me mit der Entwicklungsstelle xy =0 fiir viele Anwendungen ausreichende Niherungen:

1 n X 1 X
=1- l+x =1+ =r1-= 1+0)%=1+
e x V1+x 5 e 5 (1+x) ox
2
sinx = x cosle—x? tanx = x sinhx =~ x

2
coshxz1+’—52— ex1+x a“z1l+xhha m(l+x)~x



Integralrechnung fiir Funktionen mit einer Variablen |

Unbestimmtes Integral '

Jede Funktion F|(a,b) - R mit der Eigenschaft

Fl(x)=f(x) firalle xe (a,b)
heiBt Stammfunktion der Funktion f'|(a,d) >R . Ist F irgendeine Stammfunktion von 7 auf
(a, b), so ist jede andere Stammfunktion von der Form F+c, wobei ¢ eine reelle Zahl (die In-
tegrationskonstante) ist. Die Menge aller Stammfunktionen {F +c|c € R} heiit unbestimmtes
Integral von f auf (a, b); man schreibt dafiir

[f(x)dx = F(x)+c .
Integrationsregeln
* Multiplikative Konstante: [Af(x)dx=A[f(x)dx (A € R, konstant)

o Summe: [(7(0) + () dx = [ £(x) dx + [ g(x) dx

Vorauss.: x = ¢(u)

. . . - /
¢ Substitution: I £() dx = [f(@(u))o’ (u) du w100 streng monot. Fkt,

¢ Partielle Integration: _[u(x)v’ (x) dx = u(x)v(x) — _fu’ (x)v(x) dx

Integration gebrochen rationaler Funktionen

AmX" + @y X"+ raxtag

bux" +b,_1x" L+ .. +bix+b

Polynomdivision und Partialbruchzerlegung fiihren auf Integrale iiber Polynome und spezielle
Partialbriiche. Die Partialbriiche konnen durch i.allg. mehrfache Anwendung folgender For-
meln integriert werden (Voraussetzungen: x—a # 0 ,k > 1 bzw. p? <4q).

jxd_’ca=MIx—al+c
f dx  _ 1

c-af G- Da—afFl "

2x+
dx = 2 arctan P

[ -
x24prrq  [ag-p? Jaq-p?

+c

K. Vetters, Formeln und Fakten
© B. G. Teubner Stuttgart - Leipzig 1998
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(2 +px+q)¢! }

Ax+B A 2 1 dx
2T E dx =S In(x? +px+q)+ (B - <Ap)| ————
xX+px+q 2 " +pr+g)+( 2 p)IxZ +px+q
dx 1 [ 2x+p dx
= +(4k-6
G2 +pe+@t (k- D@g-pd) | (P +px+g)*! (@h-0f
Ax+B A 1 dx

=- +(B-iap)| —I

(x2 +px+ q)k 2(k— 1)(x2 +px +q)""1 ( 2 P)I (x2 +px + q)k

Integrale weiterer Funktionenklassen

Unter R(f(x),g(x)) versteht man eine rationale Funktion in f(x) und g(x), d.h. eine Funktion,
die sich durch endlich viele Additionen, Subtraktionen, Multiplikationen und Divisionen aus
Konstanten, aus /(x) und aus g(x) darstellen 1aft.

Riick-
Integrand Substitutionen substitution | Bedingung
t:
sin"x cos™x sinx = ¢ cosx dx = dt sin x m ungerade
cos?x=1-1¢2
cosx =1 —sinx dx = dt cosx n ungerade
sinZx=1- 12
.2 2
sin®x = 1:7 @ tanx n,m gerade
2, -1 - 2
cosx =15 1+t
R(x "ax+b) x=l(t”—b) dx=2m1q; ax+b
> a a
R(e*) x=Int dxz%dt e*
. . _ X
R(sin x, cosx) sinx = =7 de=—2 - dt tan%
cosx = % 1+¢
1+
R(sinh x, coshx) x=Int dx = %dt e*
R(x, \/x2+a2) x =asinh ¢ dx = a cosh zdt arsinhg az0
R(x, sz—az) x=acosht dx=asinh ¢ dt arcosh%ci az0
R(x,,/az—xz) x=asint dx=acost dt arcsin%cl- a#0
'y [ 2 +b
2 _ ac—b? b _ ac - b? _to_ b2 < ac
R(x,vax +2bx+c) x=—pf —t-g |&x=—7]f—d W
Jbr—ac b b2 -ac ax+b 2>
x=——pg —t-g |dx=—F—dt | 7, ae
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Elliptische Integrale

Integrale der Form
_[R(x, Jax3 + bx?2 +cx+d)dx und jR(x, Jax4 +bx3 +ex? +dx+e )dx

heiBlen elliptische Integrale. Nach Substitutionen und Integrationen elementarer Art verbleibt
eine der sogenannten elliptischen Normalformen

[ dt | (1-k*2)dt i dt _
Ja-Da-22 = T Ja-2a-2)  a+kd)]1-2a-23)

Die Substitution #=siny, 0 <y <Z | ergibt die drei Legendreschen Normalformen erster,
zweiter und dritter Gattung, deren zugehorige bestimmte Integrale

@ d ¢ -
j—“’2=F(k,<p) : [ J1-k2sin2y dy = Bk, 0) ,
0 J1-kZsin?y 0

P d\V

| =Tl(h, k, )

0 (1+hsin2y) |1 - k2sin2y

iiber Tafeln oder iiber mathematische Systemsoftware erhiltlich sind.

Bestimmtes Integral I

Es sei

(m (mq (1) (n) )
Leg xy 1 Dy :xz I, > PN G-1:% NGy )

wobei xé )=a xg(;()n) = b fiir alle n gilt, eine immer feiner werdende Folge von Zerlegungen
des Intervalls [a, b], d.h., es gelte m]iix (x,(( —x,({n)l) — 0 fir n— . Ferner sei in jedem
Teilintervall eine Stelle &,(cn) ausgewihlt. Falls fiir jede solche Zerlegungsfolge und jede Wahl
der Stellen F,,((n) € [x,(::)l,x,((n)] der Grenzwert hm §‘, f(ﬁ(n))( ,((n) xk_l) existiert, nennt man

ihn das bestimmte (Riemannsche) Integral der Funktlon fuber dem Intervall [a, b]:
j S0 dx = lim z f(g(”))A @ it A = x

und die Funktion f nennt man éiber [a, b] integrierbar.

¢ Jede auf [a, b] stiickweise stetige Funktion f'ist iiber [a, ] integrierbar.
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Eigenschaften und Rechenregeln

¢ Der Flicheninhalt A des durch die vier Kurveny=0,x=a, |y,
x=>5,y=f(x) mit f(x)=0,begrenzten Flichenstiicks ist f(x)
b ~
A=[fe)dx . A
a b a a b %x
* [f@d=0 [ty e =]/ dx
b b b b b
! (f(x) +g(x)) dx = ! () dx+ ! g(x)dx £ M) de =2 £ f()dx () €R, konstant)
b c b b b
[f(dx = [£0)dx + [ /() dx ‘gf(x)dx <[lre)ldx

+ Erster Mittelwertsatz der Integralrechnung: Ist f auf [a, b] stetig, so gibt es mindestens eine
Stelle & € [a,b] mit der Eigenschaft

b
[f@)ydc=-a)fE) .

* Verallgemeinerter erster Mittelwertsatz der Integralrechnung: Ist f stetig auf [a, b], g inte-
grierbar tiber [a, 5] und entweder g(x) > 0 fiir alle x € [a, b] oder g(x) < 0 fiir alle x € [a, 5],
so gibt es mindestens eine Stelle £ € [a,b] mit der Eigenschaft

b b
!f (x)g(x) dx =f(§)£ gx)dx .

* Zweiter Mittelwertsatz der Integralrechnung: Ist f monoton und beschrinkt auf [a, 5] und g
integrierbar iiber [a, 5], so gibt es mindestens eine Stelle & € [a, 5] , so daB gilt

b & b
/0980 v = F@] £ x4/ ®)[ ()
+ Ist f stetig auf [a,b], so ist E f(Hdt fiir x € [a,b] eine in x stetige und differenzierbare
Funktion F, fiir die gilt
F(x) =If(t)dt = F)=fF) .

* Hauptsatz der Differential- und Integralrechnung: Tst f auf [a,b] stetig und F' irgendeine
Stammfumktion von f auf [a, ], so gilt

b
[f@) dx = Fb) - F(@) .
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Tabelle unbestimmter Integrale I

Allgemeiner Hinweis: Die Integrationskonstante ist stets weggelassen.

Grundintegrale
Potenzen Exponentialfunktion und Logarithmus
—_— xn+l _ 1
Jx dx—n_’_1 (neZ n=+-1, [efdx=e
x#0firn<0)
fx“dx:xaH (@eR az-1, x>0) jaﬁix:i @eR,a>0,a%1)
a+1 ? ? Ina ’ ’

[E-mxl 20 [mxdr=xlx-x  (x>0)
Trigonometrische Funktionen Hyperbelfunktionen
fsinxdx = —cosx | sinhx dx = coshx
Jcosxdx = sinx J coshx dx = sinh x
ftanxdx = —In |cosx| (x# (2k+ D3) ftanh x dx = In cosh x
[cotxdx=In|sinx|  (x#kn) [cothxdx=In|sinhx| (x#0)
Rationale Funktionen Irrationale Funktionen

dx dx .

= arctanx = arcsinx x| <1
J 1+x2 I 122 (bl <)
| dv 5 = artanhx (IxI<1) | d¥  _ arsinhx
1-x 1+x2

dx dx

j =-—arcothx  (Jx|> 1) I = arcoshx  (Jx|> 1)
x? -1 VxZ-1

Arkusfunktionen Areafunktionen

farcsinxdx =xarcsin x+ y1-x2 (lx|]<1) [arsinhxdx = xarsinhx — y 1 +x2

Jarccosxdx = xarccosx— y1-x2 (x| < 1) Jarcoshx dx = xarcoshx — yx2 — 1 x>1)

Jarctanx dx = xarctan x — %ln(l +x2) fartanhx dx = xartanh x + % In(1-x2) (x<1)

Jarccot x dx = xarccot x +% In(1 +x2) Jarcothx dx = x arcothx + % In(x2-1) (x>1)
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Integrale rationaler Funktionen

n+l
f(ax+b)"dx=% (n=-1) b
J—E— Linjax+b|
[ox(ae + By"dx = (@+h)™? bax+h™ e

a*(n+2)  a*(n+1)

x_ b
Iax+b a—a—zlnlax+b|
b 1
+—In|ax+b
f(ax+b)2 al(ax+b) a® | !

2
xdv _ L[l(ax+b)2—2b(wc+b)+b21n |ax+b|:|

ax+b a3
2 2

_xdx__ 1[ax+b 2b1n |ax +b| - ]
(ax+b)? o° +b
ax+bg _ax bf-ag
ffx+g _f+ 2 ]nlfx+gl

dx 1 fx+g
I(ax+b)(fx+g)_bf—agln ax+b’ & #ag)

i J_arctan‘/ﬂ fiir 52 <4ac I ax? +be+c I
jax2+bx+c= artanh 22 fir  4gc < b2

‘/32—_ Jo?~4ac

| dx _ 2ax+b L 4n=2a | dx
(@?+bx+c)™!  n(dac—b2)(ax? +bx+c)" n(4ac—b2)" (ax®+bx +c)"

f xdx - bx+2¢ i 2n-1)b dx
(@?+bx+c)™!  n(b?-4ac)ax? +bx+c)" n(b?-4ac)” (ax*+bx+c)"

[ S W< I S
x(@?+bx+c) 2¢  |ax?+bx+c| 2¢ ax2+bx+c

. W—— S —
x(@? +bx+c)"™1 2en(ax +bx+0)" 20 (ax?+ bx +c)™1 € x(ax? +bx +c)"

arctanZ  fiir das Vorzeichen ™+”
| de _ %S mit S=14 artanh% fiir das Vorzeichen >-"und |x| < |a|
arcothZ fiir das Vorzeichen ”-"und |x| > |a|

| dx _ x y2n= IJ- dx
(a2 +x2)"+1 2na?(a? ixz)" 2na? ° (a* £x%)" a? +x?
1 242
=+t +
O oy et
j‘ xdx - 1

=7
(@2 +x2)r+l 2n(a? +x2)n
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=+x Fas
Ia2 +x2
| x2dx -7 x + 1 dx
(@? £x2yntl 2n(a? £x2)" " 2n7 (g2 +x2)n
J' dx -1 x2
x@?+x?) 2a?  |a?+x2|
dx 1 _(atx)? 1 2%a 3
=+t——In—— arctan a3 +x3
ja3 +x3 6a? a’?Fax+x? a3 a3
xdx 1, a?Fax+x? 1 2x+a
— arctan
a’+x3 6a (@+x)? a3 af3
[ W
x@ tx3) 3a3 |ad+x3
dx ax|2 (xﬁ J (xﬁ )
rtanh + arctan +1| +arctan| —— -1
Ia4 +x4 243 J_ [ a? +x2 a a
dx 1 a+x 1 x
=—=In [-—| +—arctan =
J.a“—x“ 4a3 |a—xl 243 a at +xt
Integrale irrationaler Funktionen
Jxdx 2 JX _2a arctan bf fiir Vorzeichen ™+”
I 2 = —2 F= T mit 7= 1 a+h %
+b2 b2 B3 > l fiir Vorzeichen »-”
a-b [x
\/x_3dx ZJ_ 2q2 J% Jx 2a 2a°
2+b2 T 3p2 b4 b5 Jx, a2 +b2x
| I S
(a2 +b2x)2 b2(@% +b%x)  ab3
J‘L— 27
JxX(@®+b2x) ab
ax +b)" dx = —=2 ax + by't2 n#-2
a0 dx= 52 (@t ) (n=-2) —

N R L

—_ fiir 5>0

PP i vl e
+b 2 ax+b .

xyax = arctan /=== fiir <0
j‘a);er dr=2Jax+b +b[—dx—;
ax +

n-2
[l aHb) = +b) +bj———“ @D

j dx - 2 +lj dx
x/(ax+b)" (n—2)b,/(ax+b)”’2 b XW

(n=0)

(n+2)



Tabelle unbestimmter Integrale 65

Jax+b, [fx+g

WA L e f ag dx
Iax+b ~a Terg J +b [fx+g

2sgn(a) Slax+b .
T artanh e fiir af>0 und |[f](ax+5) < |al(fc+g)

dx
I————:
2 ax+b
Vax+b [fx+g i_(;)arctan iéfxm)) fir af<0

bf- ag+20(fX+g) [y (f—ag) dx
I,/ fx+gdx= b Jfx+g- 8af ,/—E‘/fx——l-g_

[Va?-x?dx = (x\/az—xz +a’arcsin )

a’-x
fx az—xzdx=——1/(a2—x2)3
I,/a —x? dre J@2 -2 —aln a+Ja?—x?
x

j . =arcsing

at—x
j- xde _ _ a2 —x2

22 _x2
i de  __ 1, a+Ja?-x?
xya? ~x? - x
| x2+a2dx=%(x,)x2+a2 +a2arsinh§)

x? +a?
fx\/x2+a2dx=% (2 +a?)’
) xz;az dx = Jx2 +a? _a]n__a+.ic2|+a2
x

| d _ _ arsinh X

x? +a? a
| xdx  _ [y2142

xI+a
i dx =—llna+’/x2+a2
xyx% +a? Il

2_ 2 :1( 2_.2 _ .2 £)
fVx a® de=5\xyx*-a’ —a’arcosh 5

j'x,/xz—a2 dx=l‘/(xz—a2)3
I‘/x —-a?

dx = yx?2 - a? —aarccos—
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[——dx = arcosh %
2 _a2
I xdx _ [2_,2
2 _ g2
- =%arccos%
xyx2-a?
& %lnIZ,/EJax2+bx+c +2ax+bl fir a>0

= 1 - 2axtb . 2
2 - arcsin —=——— fir a<0, dac<b
ax“+bx+c —a '52—aac

[Vax? +bx+cdx= 2“:"’1’ ax? +bx+c +4“8“b2j
7 Na?+bxte l Ztbx+c I
dx /
Ix— ax? +bx+c ——I
Jax?2 +bx+c Jax +bx+c¢

hl'—'

Ix ax2+bx+cdx=[ax2';bx+c—2abx;b ax2+bx+c +b3—4abcI dx
a 8 16a2 " [ i bxte
1 In 2c+bx—2,/_ Jaxibxte fir ¢>0
=y
xyax2 +bx+c Larcsinb’”—% fir ¢<0, dac < b?

/= xyb2—4ac
jye& XL +bx+c de=Jax? +bx+c +bj +cf dv

\/ax +bx+c xJax2+bx+c

Integrale trigonometrischer Funktionen

o

) _l _L .
jsm axdx—zx 4astax

. _ 1 . »n1 n-—1 )
[sin"ax dx = - o= sin"lax cosax + L= [sin"2ax dx (neN)
Ixsinaxdx:%sinax—éxcosax

a

Jx"sin ax dx = - lx”cosax+%j'x”‘lcosaxdx

sinax ;. _ (ax) a1yl (ax)z____n_l +.o.= S
[FFdr=ae - £ 4 (D) @n-Dan-1yi = Si@)
_nyn—1 2n~1
Das Integral I§lltl—tdt= Si(x) = §1 (z(nl)l)m heiit Integraisinus (vertafelt).
0 n= -

Isinax ___1 sinax  _a Icosaxdx

I T . (n>1)

e _1 ‘ ax
Ismax alntanz
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dx_ _ _ cosax =2
“.sm "ax  a(n—1)sin" ' ax Tn- 1" "2 @>1
x 202311 L
J sfnd;x Z+L2 Zl ((2n+ D! ')Bn(“x)zwr1 (B, sind die Bernoullischen Zahlen)
a“ n= :
xdx x 1 .
= =—=cotax— — In|sinax
ISillztu a |, 112 I
xdx 1 X cosax 1 xdx
= - - +(n-2) ——— n>2
J‘Slll "ax n—lL asin™ lax az(n—Z)Silln—zax ( )ISM"_Zax:I ( )
=zl - ax
I1+smax Fgtan (4 2)
+h tan &
2 arctanc, 22 fir c?<b?
.‘ dx a/b2—c? Jb2=c?
b+esinax L e~ Jc2 b7 +btan & i b2 <c?
ac?-b? c+yci-b? +htan &
[ sinoe sin b dx = sin(@—b)x sin(a+b)x (lal # |b])

2a-b) 2(a+b)

1.
fcosaxdx = 5 sinax cosax
1

2 =Lilg
fcos axdx—2x+4asm2ax

| cos™ax dx = % sin ax cos™ lax + 2= L [cosm2axdx

xcosaxdx = chosax+%xsinax
a

[x"cosaxdx = %x"sinax -2 [x"lsinaxdx
cosax i.. _ _ (ax) (ax) _1\ (ax)
[ dx = In |ax]| IR (=1 o (2n)| .= Ci(ax)-C
Cix)=-| %St dt heibt Integralkosinus, C ist die Eulersche Konstante.

cosax cosax a Sin ax
Ty BT - dx #1
I (n-1x"! I (n=1)
ax . T
-‘.cosax aln|tan(?+z)‘
& 1 [ sinax _ dx
‘[cos "ax  n-1lacos™ ax +0-2)f cos"‘zax] > 1)
e8]
I cosax 2" + aL El mE”(ax) 2l (E, sind die Eulerschen Zahlen)
n=
xdx _x
= —tanax+——1n cosax
Icoszax a al lcos x|
xde _ _1 |— xsinax _ 1
Icos "ox n- lLacos" o a2(n-2)cos™2ax +(n— Z)I n_2 ] n>2)
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1.,
J‘1+cosax gtan 2
 __1..9%
J.l—cosax_ a ot :
2 (b—c)tan fiir 2 b2
f dx a,/b2—c2 Jb2—02 o=
b+ccosax 1 ]n(c—b)tan—z-h)c 2-p2 fir b2 <c?
ayc2-p2 (&-b)tan“;— c2-p2
[cosaxcosbxdx = sm(a—b)x+ sin(a + b)x

Na=b) T 2@+b) (lal = [5)
sinax, cosax
. __]_ .2
[sinaxcosaxdx = 2g S Q
m+l

in"1 - senken der
_sin"""axcos +1 1 Ism axcos 7 o de
a(n+m) +atm Potenz n (n,m

Jsin"ax cos™ax dx = " . onken d > 0)
sin" axcos™ "ax 4ol m—2 senken der
et + 7= [sin"ax cos™ Zax dx Potenz m
IL = %h [tan ax|
sin ax cos ax
_ 1 Lmm=2 dx senken der
J- dx _ a(-1sin"laxcos™ lax "1 ' sin"2axcos™ax  Potenz n (m>0,
sin”ax cos™ax 1 ntm=2 dx senken der n>1)
a(m-1)sin" laxcos™ lax = m-1 “gin"axcos™ 2ax Potenz m
S g, _ L (n=1)
cos"ax a(n— )cos" " ax
s h san—1 n-2
sin”ax . _ sin" lax | sin" “ax
cosax ¥ = a(n—1) +) Zcosax 9¥ (n=1)
Ismaxdx= sin” lax _n-—1 sm"zaxdx m>1)
cos”ax a(m—1)cos” lax m—1" cosm2qx
J-cosaxdx__ 1. : (1)
sin" ax a(n—1)sin" ‘ax
| cos"ax 4. _ cos"” 1ax cos”” 2axdx n=1)
sin ax a(n- ) sin ax
J‘cosaxdx__ cos" lax ~1jco axdx (m>1)
sin” ax a(m — 1)sin™~ loxe m- sin™ 2ax
dx 1 1 . c
| — = In |tan(=(ax + arcsin ——))
bsin ax + ¢ cosax a\/m 2 W

cos(a+b)x cos(a-b)x

| sinaxcosbxdx =~ 2a+b) 2a=5) (lal # |b])

_[ tanaxdxz—%lnlcosaxl tanax
n _ 1 n-1, _ n-2

ftan axdx~a(n_1)tan ax - [ tan"2axdx (n#1)
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1

n - — n-1_. _ n—-2
fcot"ax dx = a(n—l)COt ax—[cot"2axdx (n#1)

Integrale weiterer transzendenter Funktionen
[ sinhax dx = aln inh "1 ax coshax — n—’;_l fsinh"_zaxdx (n>0)

j'cosh"axdx=alnsinhaxcosh" 1ax+——fcosh"_ axdx (n>0)

x _1 ax
Isinhax_aln|tanhZ‘
J' dx

osha - %arctan e
c

[tanhax dx = %lncoshax

fcothaxdc = 1 In |sinhax|

&
freotax= 251

a?
e @), @ i) -
(& dx= ln|ax[+1 Tty ort o T = Ei@)=C
x ot
Ei(x)= | eT dx heiBt Integralexponentialfunktion, C ist die Eulersche Konstante
—00
e . e* a_e*™
jxn dx = (n-1)x"—1+n—1 xn_ldx (n=1)
dx _ Inx %, In"x
J& iy + 25 B0, 0 RiGu-C
dx _
jxlnx_lnunx|
dx x dx
1
I nx ( —l)ln"'x n—lI]nn- (n# )
J'lll x lnrH-l
n+1

21,2 kink
(n+l)lnx+(n+1) In X, +(n+1) In"x

22 4y = In|inx| + :
nx 1 2.21 kR

xm+1 In”x

Ix"’ln"xdx=
m+1 m+1

1 [x"In™ lxdx (m#=-1, n#-1)
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[Tabelle bestimmter Integrale

x*(1-x)P dx=

O ey

o )

F(ot + l)F(B + l) 1)
I'o+B+2)

1
f = (a+#0)
—xa 2+o
0 /15 ar(32)
w2 To+DI@+1)
- 2004+1 2B+1 - h
!) sin xcos x dx T @+B+2)
T sinax T tanax i1
[ B dx = [ BEE gx = sgn(a)> (@#0)
0 0 2
T sinx T cosx T
[ [Rrae- 5
@ -1
sin ax na )
dx= 0<s<2
£ x5 ZF(s)sin% ( )
© s—1
cosax na )
= 0<s<l1
(J; x* 2L (s)cos 5 O<s<l)
[o0) oQ
[ sin(c2)dx= | cos(r2)dx= F
—00 —0 2
/2 n/2
_[ Insinxdx = f Incosxdx=—-Z1n2
0 0 2
0
Ix"e_“xdx=w b (@a>0,n>-1)
0 a’tl
e o]
foma?s? gy = I @>0)
0 2a
rfzL
0
J’x”e_“z"‘2 ( 2 D (@>0,n>-1)
0 2an+1
[©)
xdx — 172
I &E1-67y
/2
J’ sinx dx th 1+% (lkl < 1)
o J1-k2sin2c 2k 1-
/2
| cosxdy  _ L, ieqink (&l <1

v [ ist die Gammafunktion ™ Spezelle Funktionen
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Uneigentliche Integrale I

Unbeschriinkte Integranden

Die Funktion fhabe an der Stelle x =5 eine Polstelle und sei beschrinkt und integrierbar iiber
jedem Intervall [a, b —¢€] mit 0 <€ <b—a . Wenn das Integral von fiiber [a,b—¢] fiire >0
einen Grenzwert besitzt, wird dieser uneigentliches Integral von fiiber [a, b] genannt:

b b-g
[f@)de= lim [ fx)dx .
a te—>+0 g

Hat die Funktion 1 an der Stelle x =a eine Polstelle, ist sie beschrinkt und integrierbar iiber
jedem Intervall [a+¢,b] und besitzt das Integral von f iiber [a+€,b] fir € >0 einen
Grenzwert, so wird dieser Grenzwert ebenfalls wuneigentliches Integral von f iber [a,b]
genannt:

b b
[f@dx= lim | fedx.

Hat die Funktion f an einem inneren Punkt ¢ des Intervalls [a, 5] eine Polstelle, so ist das unei-
gentliche Integral von fiiber [, 5] die Summe der uneigentlichen Integrale von f iiber [a,c]
und [c, 5] :

b c—¢& b
[fG)dx= lim [ fe)de+ lim [ f)dx .
a e>+0 a 8>+0.18

FaBt man beide Grenzwerte zusammen, so kann sich das Ergebnis dndem. Der resultierende
Grenzwert wird als Cauchyscher Hauptwert "V.p." bezeichnet:

b c—¢ b
Vp.[f@)dx= lim { [ feydx+ If(x)dx] .
a e>+0| a ot+e

Unbeschriinkte Intervalle

Die Funktion f sei fiir x>a definiert und iiber jedem Intervall [a, 5] integrierbar. Wenn der
Grenzwert des Integrals von fiiiber [a,5] fiir b — o existiert, so wird er uneigentliches Inte-
gral von fiiber [a, ) genannt. Analog wird fiir @ — —co verfahren.

0 b b b
[fe)ax= fm [fG)dx J fede= lim [reydx .

Sind beide Intervallgrenzen unbeschrinkt, so definiert man das uneigentliche Integral und den
Cauchyschen Hauptwert als

[ c b @ b
| f@dx= lm [f(dx+ lim [fG)dx Vop. [ fe)dx= lim [ fx)dx .
o a 0 g —00 ¢ —00 b0
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‘ Parameterintegrale I

Ist f(x, ) fira<x<b, c<t<d fiir festes t beziiglich x iiber [a, 5] integrierbar, so ist
b
@) = [ fexndx

eine Funktion von ¢, die als Parameterintegral - Parameter ist ¢ - bezeichnet wird.
¢ Ist fix,)Rira<x<b, c<t<d stetig, soist auch F(r) firc<r<d stetig.
¢ Ist fnach t partiell differenzierbar und die partielle Ableitung 8;f stetig, so ist die Funktion
F(f) nach ¢ differenzierbar und es gilt
. )
FO)=[0cf (e, 0)dx .
a

¢ Sind ¢ und y zwei flir ¢ <¢<d stetige und differenzierbare Funktionen und ist die Funk-
tion f(x, #) in dem durch @(f) <x <y(f), c<1<d bestimmten Gebiet partiell nach ¢ diffe-
renzierbar mit stetiger partieller Ableitung, so ist das Parameterintegral iiber / mit den Gren-
zen @(f) und y(?) fiir ¢ <t <d nach ¢ differenzierbar und es gilt

w(t) . w() )
Fo)= {t)f(x, Hdx = Fo= {t)arf(x, 1) dx +f(w(®, D) - f (@ (D, Ho(H) .
P @

* Spezalfall: F(x):T & = Fl)=f(x)
0

[Linienintegrale 1. Art I

Analog der Definition des bestimmten Integrals einer Funktion f {iber einem Intervall [a, 5]
durch beliebig feine Zerlegungen des Intervalls gelangt man durch Betrachtung beliebig feiner
Zerlegungen einer Kurve zum Begriff des Kurvenintegrals oder Linienintegrals 1. Art einer
Funktion f'=f(x,y,z) iber einer Kurve K:

I=[fds.
K

* Ist K eine stiickweise glatte rdumliche Kurve mit der Parameterdarstellung x = x(), y = y(¥),
z=2z(f), u<t<v, so gilt (fiir Kurven in der x,y-Ebene ist z = 0 zu setzen):

v
[{ Sy, 9)ds = [ 16,0, 2(0)) S0 +52(0 +22() dr.
* Ist X eine stiickweise glatte Kurve der x,y-Ebene der Darstellung y = y(x), a < x < b, so ist

b
I{f(x,y) ds= £f(x,y(x))d 1+0/())? dx.
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Linienelemente ]
ebene Kurve | kartesische Koordinaten x, y = y(x) ds= J1+@/(x)? dx
in x,y-Ebene -
Polarkoordinaten ¢, 7= r(o) ds= r2(@) +('(9))? do
Parameterdarstellung in kartes. Koordinaten ) =
x=x(@), y=yo) ds = /x“(0) +34(p) dt
Raumkurve | Parameterdarstellung in kartes. Koordinaten \/ 3 ) )
x=x(0), y =y, =20 L0 O+O &
Anwendungen I
Kurven
Linge L (Bogenlinge) L=fds Masse M M= [dm=|pds
K (p ... Massendichte) K K
Schwerpunktskoordinaten
homogene Kurve xS=-2—J'xds y5=%Iyds zs=%j'zds
K K K
Kurve mit Massendichte p | x =L [xpds =1 ds zg=L [ zpds
s M}I{o ys M}I{J’P s MII(c

Trigheitsmomente bzgl. der Koordinatenachsen (p ... Massendichte)

ebene Kurve der x,y-Ebene | J = [ y2pds Jy=[x?pds

K K
Raumkurve Jx = [0 +2)pds | Jy= [(2 +22)pds | Sz = [(x2 +y2)pds

K K K
homogene Kurve setze p =1

Fliichen (Flicheninhalt A)
ebene Fliche zwischen x-Achse und Kurve y(x) b
A= tJ; y(x)dx
Sektorfliche zwischen Nullpunkt und Kurve x(¢) = Lo — v
(Flache zur Linken der Kurve liegend) 4 2 1'£(xy %) dt
Sektorfliche zwischen Nullpunkt und Kurve #(¢) 41 ? /2 (©)d
im Winkelbereich zwischen o und B T 24 P
Rotationsfliche bei Rotation um x-Achse A=2r{yds
K

erste Guldinsche Regel fiir Rotationsflichen A=2mysL

y,-.Schwerpunkt, L..Linge der rotierenden Kurve

Korper (Volumen /)

Rotationskorper bei Rotation der Kurve y(x) um
die x-Achse

b
V=mn ‘11 y2(x)dx

zweite Guldinsche Regel fiir Rotationskorper

¥.Schwerpunkt, 4..Inhalt der rotierenden Fliche

V=2nysA




Gewdhnliche Differentialgleichungen

Begriffe |

Die aligemeine Form einer gewohnlichen Differentialgleichung #-ter Ordnung ist
Fx,3,y,...y") =0 implizite Form,
y® = £y, ...y D) explizite Form.

Jede C"—Funktion (eine n#-mal stetig differenzierbare Funktion) y(x), die die Differentialglei-
chung fiir alle x, a <x < b, erfiillt, heifit Losung der Differentialgleichung im Intervall [a, b].
Sind fiir mehrere unbekannte Funktionen mehrere Gleichungen, die deren Ableitungen enthal-
ten, gegeben, so spricht man von einem System gewohnlicher Differentialgleichungen. Die Ge-
samtheit aller Losungen einer Differentialgleichung oder eines Systems wird als allgemeine
Ldsung bezeichnet.

+ Eine Differentialgleichung oder ein System heit autonom, falls die Differentialgleichung
oder das System nicht explizit von x abhingt. Die Losungskurven werden dann 7rajektorien
genannt.

+ Sind an der Stelle x = a zusitzliche Bedingungen an die Losung gestellt, so spricht man von
einer Anfangswertaufgabe.

+ Sind an den Stellen a und b zusitzliche Bedingungen an die Losung gestellt, so spricht man
von einer Randwertaufgabe.

Zuriickfithrung auf Systeme 1. Ordnung I

Eine gewohnliche Differentialgleichung

y? =y, ... y0D)

kann durch die folgenden Substitutionen auf ein System gewoéhnlicher Differentialgleichungen
1. Ordnung transformiert werden:

Y1) = y(x), y209 =y (), y30) =70, s yn() =y ()
Es ergibt sich das System

y/1 =)2

Vvh=y3 vektorielle Schreibweise: y/ =1f(x,y)

Vo= fOY1,Y25 s Yn) -

K. Vetters, Formeln und Fakten
© B. G. Teubner Stuttgart - Leipzig 1998
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Differentialgleichungen 1. Ordnung l

V' =f(,y) oder P(x,y)+0(x,»)y =0 oder P(x,y)dx+QO(x,y)dy=0

Ordnet man jedem Punkt der x,y-Ebene die durch f(x, y) gegebene Tangentenrichtung der Lo-
sungskurven zu, so entsteht das Richtungsfeld. Die Kurven gleicher Richtungen des Rich-
tungsfeldes sind die Isoklinen.

Die Differentialgleichung ' = f(»)

Auf einem Intervall, wo die Losung y(x) dieser autonomem Differentialgleichung existiert und
monoton ist, erhilt man tiber die Differentialgleichung der inversen Funktion x(y) die Losung
in expliziter Form beziiglich x, falls man die Integration ausfithren kann:

YO =7 = x=]75=e0)+C.
Separierbare Differentialgleichungen
Ist die Differentialgleichung von der Form

¥ =r(x)s() bzw. P(x)+Q@()y’ =0 bzw. Px)dx+Q0)dy=0,
so kann sie stets zu

R(x)dx=S0)dy ..  Trennung der Verdnderlichen

umgeformt werden. Durch "formales Integrieren” erhiilt man die allgemeine Losung:

[R@)dx=[SO)dy = o) =y@)+C.

Differentialgleichungen mit homogenen Koeffizienten

Eine Funktion ¢(x,y) heit homogen vom Grad n, wenn ¢(Ax,Ay) = A"o(x,y) gilt. Sind die
Koeffizienten P(x,y), O(x,y) der Dgl. homogen vom gleichen Grad, so kann man sie zu

F&)derdy =0
umformen. Nach der Substitution v =¥ entsteht die separierbare Differentialgleichung
dx dv

x* v+Fv)

Differentialgleichungen mit linearen Koeffizienten
Ist die Differentialgleichung von der Form
(ax+by)dx+(dx+ey)dy=0,

so ist sie eine Differentialgleichung mit homogenen Koeffizienten, denn die Koeffizienten-
Funktionen P(x,y)=ax+b und Q(x,y) =dx+ey sind beide homogen vom Grad 1.
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Differentialgleichung mit affin linearen Koeffizienten (ax+ by +c)dx +(dc+ey+f)dy=0
+ Sie wird fiir D := ge — bd # 0 durch die Substitution

x=E&+h . h = (bf-ce)/D
y:n-{—h k=(cd—af)/D

auf die Differentialgleichung mit linearen Koeffizienten
(@ +m)dE + (& +en)dn =0
transformiert.

¢ Im Fall D=0 fiihrt die Substitution z =ax +by auf eine separierbare Dgl.

Lineare Differentialgleichungen erster Ordnung 3’ +a(x)y = r(x)

Diese Differentialgleichung heifit fiir r(x) # 0 inhomogen und fiir r(x) = 0 homogen. Ihre allge-
meine Losung hat die Form

Y& =yp(x) +yp(x)

mit
Yp(¥) ... allgemeine Losung der zugehorigen homogenen Dgl. y/ +a(x)y = 0
yp(x) ... spezielle (partikulire) Losung der inhomogenen Dgl. y/ +a(x)y = r(x)

¢ Die Losung yj(x) der zugehorigen homogenen Differentialgleichung wird durch Trennung
der Verinderlichen ermittelt. Man erhilt

yr(x) = CeJatds,

¢ Eine speziclle Losung yp(x) der inhomogenen Differentialgleichung erhilt man durch den

Ansatz yp(x)=C(x)e_I ax)dx  Eg ergibt sich fiir die unbekannte Funktion C(x) des
Ansatzes

Cx) = [r(ryel a0 dxgy

Bernoullische Differentialgleichung y/ +p(x)y = q(x)y"

¢ Sie wird fiir n=1 durch Trennung der Verinderlichen gelost.

* Sie geht fiir 7% 1 durch die Substitution v(x) = '™ in die lineare Dgl. erster Ordnung
v+ (1= mp(e)v = (1 - n)q(x)

iiber.
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Riccatische Differentialgleichung )/ +p(x)y +q(x)y? = r(x)

Ist eine partikulire Losung yp bekannt, so 1Bt sich auch die allgemeine Lésung bestimmen.

Die folgende lineare Differentialgleichung entsteht durch die Substitution (x) = S
) -yp(x)

u! - [p(x) + 29()yp(0)]u = q(x) .

Exakte Differentialgleichungen

Eine Differentialgleichung der Form P(x,y)dx+Q(x,y)dy =0 heilt exakt, wenn das
Vektorfeld

o) = P(x,y))
@) (Q(x,y)

ein Potential ¢ hat. Das ist fiir stetig differenzierbare P,Q genau dann der Fall, wenn gilt:
0xQ=0P .. Integrabilititsbedingung.

Gilt die Integrabilititsbedingung, so kann die Potentialfunktion ¢ auf unterschiedliche Arten
bestimmt werden:

* Aus v=grad ¢,dh. aus P=0x¢p, Q=0y¢ durch Vergleich von

0(6,)) = [P(,)) & +C1() uwnd oY) = [0, y)dy+Cy(x) .

¢ Durch das Linienintegral 2. Art
()
ey = | v-dx
(x0.0)

tiber eine die Punkte P(xg,y) und P(x,y) verbindende stiickweise C!-Kurve.

Die Losung der Differentialgleichung lautet o(x,y)=C .

Integrierender Faktor fiir die Differentialgleichung P(x,y)dx +Q(x,y)dy =0

Die Differentialgleichung sei nicht exakt. In den folgenden beiden Fiillen (es gibt weitere) 1Bt
sich ein Faktor m(x,y) so bestimmen, daB die mit ihm multiplizierte Differentialgleichung ex-
akt ist und anschliefend als solche gelost werden kann:

0xQ—-0yP
¢ Die Funktion a:= xQTy hingt nur von x ab. Dann lautet der integrierende Faktor
m(x) = efadr
0xQ - 0yP
¢ Die Funktion b := —xg}fy hingt nur von y ab. Dann lautet der integrierende Faktor

m@y) = o] 6OV
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Differentialgleichungen 2. Ordnung I

Die Differentialgleichung y” = f(x,)’)

Die Substitution z(x) =y’(x) fiihrt auf die Differentialgleichung erster Ordnung z’ = f(x,z).
Kann man diese 16sen, so gilt mit ihrer Losung z =z(x,C)) :

y(x) = [z(,C1) dx = @(x,C1) +C7 .

Die Differentialgleichung y” = f(»)

Nach Multiplikation mit y/ 1dBt sich diese autonome Differentialgleichung einmal integrieren.
Man erhilt eine Differentialgleichung erster Ordnung vom Typ )’ = () :

y =+ 2F0)+C) mit  [f()dy=F()+C,.

Die Differentialgleichung y” = f(y,)’)

Auf einem Intervall, wo die Losung y(x) dieser autonomen Dgl. monoton ist, existiert die in-
verse Funktion x(y). Die Substitution v(3) =)’(x(y)) fiihrt auf die Dgl. 1. Ordnung

V() = v—l—)f(y, V) -

Kann man diese 16sen, so erhilt man aus ihrer Losung v=w(y,C;) die allgemeine Losung in
expliziter Form bzgl. x:

S
x—IV(y,CI) _(p(Y>C1)+C2 -

ﬁineare Differentialgleichungen J

an(X)y™ +- - +a1(x)y’ +ag(x)y = r(x) ... lineare Differentialgleichung n-ter Ordnung

* Fiir r(x) =0 heiBt die Differentialgleichung homogen, andernfalls inhomogen.

¢ Ist y,(x) die allgemeine Losung der homogenen Dgl. und y,(x) eine spezielle (partikulire)
Losung der inhomogenen Dgl., so ist die allgemeine Lésung der inhomogenen Dgl.

Y(x) =yp(x) +yp(x)

+ Sind alle Koeffizientenfunktionen a; stetig, so gibt es n Funktionen y;, k=1, ..., 5, so daB
die allgemeine Losung y;, der homogenen Dgl. die folgende Form hat:

() =Cy1(x)+Cay2(x)+- -+ Cuynlx) .

Das Funktionensystem {y|,y,...,yn} heilit Fundamentalsystem der Differentialgleichung.
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¢ Die Funktionen y1i,...,y» bilden genau dann ein Fundamentalsystem, wenn jede dieser
Funktionen y;, Losung der homogenen Differentialgleichung ist und wenn es mindestens ei-
ne Stelle xo € R gibt, fiir die die sogenannte Wronski-Determinante

y/l(x) y/z(X) y7(X)
Hoye | O 70 e
W@ e e

von Null verschieden ist.

+ Ein Fundamentalsystem {y1,...,y,} liBt sich durch Losung der folgenden » Anfangswert-
aufgaben (k=1,...,n) gewinnen:

an(p" + - + a1y} + a0y =0

6) _J O fir i#k-1 . _
Yi (xo)_{l firi=k-1 (1_0’1""7" 1)

* Erniedrigung der Ordnung. st eine spezielle Losung y) der homogenen Dgl. n-ter Ordnung
bekannt, so fiihrt die Substitution y(x) =y l(x)fz(x) dc von der Dgl. n-ter Ordnung
(homogen oder inhomogen) auf eine lineare Dgl. (n-1)-ter Ordnung fiir z(x).

¢ Variation der Konstanten. Ist {yy,...,yn} ein Fundamentalsystem, so erhilt man iiber den
Ansatz

yp(x) = C1(®y1(0) + - + CalX)yn(¥)

eine spezielle Losung der inhomogenen Differentialgleichung, indem man die Ableitungen
der Funktionen C1y,...,C, als Losungen des linearen Gleichungssystems

yICh +  yCh ++ yaCh= 0
YICT +  WCh +-+  yuCh= 0
YAt 4y D o yICL = 0
y(ln—l)cll + y(zn—l)C/Z s ygln—l)cil _ )

an(x)

bestimmt und anschlieBend durch Integration die Funktionen Cy,...,Cr .

Eulersche Differentialgleichung
apx"y™ +... +ayxy’ +agy=r(x) mit Konstanten ao, ...,a»

+ Die Substitution x =e* fiihrt auf eine lineare Dgl. mit konstanten Koeffizienten fiir die Funk-
tion y(£). Nach deren Losung ist die Riicksubstitution § = Inx anzuwenden.

+ Die charakteristische Gleichung der entstehenden Dgl. mit konstanten Koeffizienten lautet
apdA—1)---(A-n+D+--+arMA-1)+ajA+ap=0.
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Lineare Differentialgleichungen mit konstanten Koeffizienten
any™ +-.-+a1y’ +ag=r(x) mit Konstanten ay,...,an
* Aligemeine Losung y; der homogenen Differentialgleichung. Die n Funktionen y; des
Fundamentalsystems werden iiber den Ansatz y =e** bestimmt. Die n Werte A sind die
Nullstellen des charakteristischen Polynoms

anA"+---+ajh+ag=0 ... charakteristische Gleichung.

Zu den n Nullstellen A; der charakteristischen Gleichung lassen sich die » Funktionen des
Fundamentalsystems nach folgender Tabelle bestimmen

Art der Nullstelle | Ordnung der Funktionen des Fundamentalsystems
Nullstelle

A‘k reell einfach exkx
p-fach eMF, xehhE | xPlehkr

Ap=azxib einfach e®sin bx, e*cos bx

konjugiert komplex
p-fach esinbx, xe%sinbx, ..., xPle®sinbx

e®coshx, xecoshx, ..., xP le®coshx

Die allgemeine Losung der homogenen Differentialgleichung ist
Yr®) = C1y1(x) +Coya () +- - + Cuyn(x)

* Spezielle Losung yp der inhomogenen Differentiaigleichung. Fiir einfache Struktur der In-
homogenitit r kann y, durch einen Ansatz gemiB folgender Tabelle bestimmt werden.

r(x) Ansatz fiir yp(x) Ansatz im Resonanzfall
Apx™ 4+ +A1x+Ag | bux™+---+b1x+by |Wenn ein Summand des Ansatzes
e P Ldsung der homogenen Differential-

gleichung ist, so wird der Ansatz so

Assin ox ' oft mit x multipliziert, bis kein Sum-
Bceosox asin ©x+bcosox |mand mehr Lésung der homogenen
A sin ox + B coswx Differentialgleichung ist.
Kombination dieser entsprechende Kombina- |Obige Regel ist nur auf den Teil des
Funktionen tion der Ansitze Ansatzes anzuwenden, der den Re-

sonanzfall enthilt.

Weitere Methoden: Variation der Konstanten, Greensche Funktion, Zuriickfiihrung auf Sy-
stem erster Ordnung, formale Operatortechnik.

¢ Die allgemeine Losung der Differentialgleichung ist

W) =yp(x) +yp(x) .
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Systeme 1. Ordnung mit konstanten Koeffizienten I

=a +---+ a + ri(x
b4 . 11 1nyn 1) a; ... Konstanten

: ;=yi(x) ... gesuchte Funktionen
= apy1 +oooF Amyn + Pa(®) Yi=yi®) ... 8

Yn =
Vektorielle Schreibweise:
Y1 " r1(x) ap - A
y=Ay+r mit y=| @ |, y/'=| : |, r=| >, A= Lo
Yn ) yﬁ: rn(x) dpl - Amn

+ Die allgemeine Losung hat die Form y(x) = y;(x) +yp(x). Dabei ist y; die allgemeine Lo-
sung des homogenen Systems y’ = Ay und y, eine spezielle Losung des inhomogenen Sy-
stems y' = Ay +r.

¢ Fall I: A sei diagonalisierbar und habe nur reelle Eigenwerte A;, k= 1,...,n (mehrfache Ei-
genwerte werden entsprechend mehrfach gezihlt). Es seien v, k= 1,---, n, zugehérige reel-
le Eigenvektoren. Dann ist die allgemeine Losung des homogenen Systems

yu(x) = C1eM vy +--- + Cretriv,
¢ Fall 2. A diagonalisierbar. Es konnen konjugiert komplexe Figenwerte A;=o + i,
Ais1 =0 —if mit zugehorigen konjugiert komplexen Figenvektoren v;=a+ib,

Vi+1 =a— ib auftreten. Dann sind in der allgemeinen Losung y; des homogenen Systems
die Terme mit den Indizes % und £+ 1 wie folgt zu ersetzen:

yp(x)=---+Cre*(acosPx—bsinfx) + Cry e™(asin Bx+bcosPx) +---

¢ Fall 3: A nicht diagonalisierbar. Es sei V die Matrix, die die Ahnlichkeitstransformation der
Matrix A auf die Jordansche Normalform vermittelt. Unter Beachtung der Dimensionen 7,
der Jordanblocke J(Ag,ny), k=1,...,s, wird V spaltenweise geschrieben:

V=(Vil, e s Vnsoees Vil o0 Vings o> Vsly o5 Ving)

Die allgemeine Lsung des homogenen Systems lautet dann:

X
Y =+ +CrieMvy +Ck2ehx|:FVk1 +Vk2:| +-e
1
+Cknge l:(nk— 1)!Vk1+ + l!vk»"k—l +ank +

Berechnung der Eigenvektoren vy : (A— A E)vy =0
Berechnung der Hauptvektoren vy;: (A-ME)yWy=vi1  (=2,...,np)

Treten komplexe Eigenwerte auf; so ist entsprechend Fall 2 zu verfahren.
¢ Die spezielle Losung y, des inhomogenen Systems ist durch Variation der Konstanten oder

durch Ansatz entsprechend der Tabelle fiir Dgln. mit konstanten Koeffizienten zu ermitteln.
Dabei sind in a/len Komponenten alle Anteile des Vektors r(x) zu beriicksichtigen.



Reihen

Endliche Reihen ]

Arithmetische Reihe: Ay =an+c =

Geometrische Reihe: a1 =qan =
Spezielle endliche Reihen
1+2+3+~--+n=§—(%1)

24+4464+---+2n=n(n+1)

N Ni
§ g, = Mar+ay)
n=1 2
N N_1
ey
Elan_al q_l (qil)

14+3+5+---+Q2n—-1)=n2

12422432 ... 42 = PO DCRH])

6
2_ 2 2
12+32+-~~+(2n—1)2=”(4_”3_L) 13+23+33+“'+n3:@
13433+ +@n-1)3 =n2@2n%-1)
2 xn+1 _1 . . .
l+x+x“+.--+x" = -7 (geometrische Reihe, ™ Potenzreihen)
cos 5 — cos(n+ %)x
sinx +sin2x +- - - +sinzx = —
2sm5
. 1 X
sin(n + )x —sin =
cosx+cost+---+cosnx=#
2sm5
Unendliche Reihen I
ay =5
«© =
ay+az+az+---= kZ ay, Partialsummen: a T . S,2
=1

ay+ay+---+an = Sy

Die unendliche Reihe 5 a;, heilbt konvergent, wenn die Folge {s»} der Partialsummen kon-
=1

vergiert. Gegebenenfalls heifit der Grenzwert s der Partialsummen Summe der Reihe:

]
s:= 2 ap = lim sy
k=1 n—»0

o0
Ist die Folge {s5} der Partialsummen divergent, so heifit die Reihe kE a;, divergent.
1

K. Vetters, Formeln und Fakten
© B. G. Teubner Stuttgart - Leipzig 1998
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KonvergenzKkriterien

Alternierende Reihen

n=1

Die Reihe X ay, heibt alternierend, wenn ihre Glieder abwechselnd positiv und negativ sind

* Leibniz-Kriterium: Gilt fir die Glieder einer alternierenden Reihe |an| 2 |a,, | fir
n=12,... und n]i_x)%0 lan| =0, so ist sie konvergent.

Reihen mit nichtnegativen Gliedern

0
Betrachtet werden Reihen der Form X a, mit a, >0 fiir n=1,2
n=1

+ Fine Reihe mit nichtnegativen Gliedern konvergiert genau dann, wenn die Folge {s»} der
Partialsummen nach oben beschriinkt ist

. Vergleichskriterium Aus 0<a, <bh, ﬁ1r n=12,.

.. folgt:
1. Wenn Z by konvergent, dann auch E an konvergent.
el

n=1
2. Wenn %021 ay divergent, dann auch § by divergent
n= -

* Quotientenkriterium.

Variante 1. Gilt Z+L<q mit 0<g<1 fir n=1,2

o]
, ..., S0 konvergiert die Reihe El an,
n=
gilta"—+1>1 fir n=1,2,..., so divergiert sie.
Variante 2. Gilt hm "

+1 <1, so konvergiert die Reihe Z an ,

gﬂt An+1

n=1
Jim 5= > 1, so divergiert sie.

* Wurzelkriterium.

Variante 1. Gilt %a, <A mit 0 <A <1 fiir n=1,2

[s.0]
., so konvergiert die Reihe X an,
git #ap, 21, fir n=1,2

, so divergiert sie.
0
Variante 2. Gilt nli_r)ni)0 nfag <1, so konvergiert die Reihe X ay ,

n=1
gilt nli—?éo nfay > 1, so divergiert sie

¢ Integralkriterium. Fir die Glieder der Reihe § an gelte ay 2ay

-2 0 , und sie seien
darstellbar als an = a(n) mit einer monoton fallenden, stetigen Funktion a | [1,00) >R

[28)
Unter diesen Voraussetzungen ist die Reihe ¥ an genau dann konvergent, wenn das unei-

gentliche Integral I a(x)dx konvergiert.

n=1
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Reihen mit beliebigen Gliedern

[re]
* Konvergiert die Reihe X ay, , so gilt notwendig lim a, =0 .
n=1 n—o

o0
¢ Cauchy-Kriterium. Die Reihe 21 ap ist genau dann konvergent, wenn es zu jeder reellen
n=

Zahl £ >0 eine Zahl n(e) eN gibt, so daB fiir alle 7> n(e) und jede Zahl k N gilt:

lan +aney +--+ap ] < .

o« o«
¢ Eine Reihe El an heiBt absolut konvergent, wenn die Reihe 3 |ay| konvergiert.
n= n=1
(o8]
¢ Die Reihe 3 a, ist konvergent, wenn sie absolut konvergent ist.
n=1
Umformung von Reihen

¢ Werden endlich viele Glieder einer Reihe entfernt oder hinzugefiigt, so indert sich das Kon-
vergenzverhalten der Reihe nicht.

¢ Konvergente Reihen bleiben konvergent, wenn man sie gliedweise addiert, subtrahiert oder
mit einer Konstante multipliziert:

0 0]
2ap=s,

00 o0
bpn=t = Z(antby)=stt, X (can)=cs .
n=1 n=1 n=1 n=1

¢ In einer absolut konvergenten Reihe kann die Reihenfolge der Glieder beliebig verindert
werden. Sie bleibt dabei konvergent, und die Summe bleibt gleich.

Summen spezieller Reihen

1—-21—+%1~--+¢+-~-=1n2 1+%+2i!+~--+ni!+~-=e
1_%+%;...+%+...=§ I_IL!+2L!¢...+%+...=%
1+%+‘1‘+ +2Ln+ =2 1—%2+£——3—+-- +n(n—1+1)+--~:1
1—%+%1~ +(_21n)n+-- :% %+ﬁ+---+mn—in+~--:%
1+2¢2+3L2+...+n%+...=% ﬁ+ﬁ+'”+m+“=%
B T I G D AR =1 el v

—F... cee= +..o= 2
22 32 n? 12 32 52 (2n-1)2 8
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Eunktionenreihen J

Eine unendliche Reihe, deren Glieder Funktionen sind, wird Funktionenreihe genannt:
AL +f2(0) + - = él [, Partialsummen: sn(x) ‘= kg £ .

Der Durchschnitt aller Definitionsbereiche der Funktionen f}, ist der Definitionsbereich D der
Funktionenreihe. Die Funktionenreihe heifit konvergent fiir emen Wert x € D, wenn die Folge
{sn(x)} der Partialsummen fiir x € D konvergiert, andernfalls heifit sie divergent. Gegebe-
nenfalls wird der Grenzwert mit s(x) bezeichnet. Alle x € D, fiir welche die Funktionenreihe
konvergiert, bilden den Konvergenzbereich der Funktionenreihe. Vereinfachend sei angenom-
men, daB D der Konvergenzbereich ist. Die Zuordnung x — s(x) wird Grenzfunktion

s|D — R genannt:

£ 1109 = Jim 5n) =569

Die Funktionenreihe kg fi(¥) heibt gleichmdifig konvergent in D, wenn die Folge {sn} der

Partialsummen gleichmiiBig konvergiert.
@€

+ Kriterium von Weierstraf}. Die Funktionenreihe 21 fn(x) konvergiert gleichmiBig n D,
n=

o0
wenn es eine konvergente Reihe Zl an gibt,sodaB fiiralle n eN und alle x e D gilt:
n=
Ifn()| <an .

Eigenschaften gleichmiiBig konvergenter Reihen

+ Sind an der Stelle xg € D alle Funktionen fy, n € N, stetig, und ist die Reihe 02021 Jn(x)
n=

gleichmiiBig konvergent in D, so ist auch die Summe s(x) der Reihe an der Stelle x¢ stetig.

+ Sind die Funktionen f, n €N, im Intervall [a, ] stetig und ist die Reihe %1 Sn(x) in [a, b]
n=

gleichmiBig konvergent mit der Summe s(x), so kann die Reihe gliedweise integriert
werden:

b b o w0 b
[sydx=] 3 fu(xydx = z ;fn(x)dx.

a n=1
¢ Es seien die Funktionen f5, n €N, im Intervall [a,b] stetig differenzierbar, die Reihe
§1 Jfn(x) konvergent mit der Summe s(x) und die Reihe §1 f3() in [a,b] gleichmiBig
n= n=
konvergent, Dann ist s stetig differenzierbar, und die Reihe 5'51 fn() kann gliedweise dif-
n=

ferenziert werden:

s'@=4 £ /9= £ /i)
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Potenzreihen I

Funktionenreihen, deren Glieder die Form fn(x) = an(x-x()”, n € N, haben, werden Potenz-
reihen mit dem Mittelpunkt x( genannt. Durch die Verschiebung x :=x-x; entstehen Po-
tenzreihen mit dem Mittelpunkt Null, die im weiteren dargestellt werden. Im Konvergenzge-
biet stellt die Potenzreihe eine Funktion s(x) dar:

o]
ag+ax+ayx?+...= ’z,oanx" =s(x) .

Ist diese Potenzreihe weder fiir alle x % 0 divergent und noch fiir alle x konvergent, so gibt es
genau eine reelle Zahl 7 > 0, genannt Konvergenzradius, so daB die Potenzreihe fiir [x| <7
konvergijert und fiir |x| > r divergiert. Zusitzlich wird gesetzt: r = 0, wenn die Potenzreihe
nur fiir x =0 konvergiert, oder 7 =co, wenn sie fiir alle x e R konvergiert.

Berechnung des Konvergenzradius

. an
* Ist die Folge{ I apil }

. _ an
konvergent , so gilt r=lim |77
bestimmt divergent gegen +oo, so gilt r=o.

¢ Ist die Folge { T lan| }
konvergent gegen Null, so gilt r=o,
konvergent nicht gegen Null, so gilt r= —1— ,
lim V|an|
n—»0
bestimmt divergent gegen +oo, so gilt r=0.

Eigenschaften
Essei >0 der Konvergenzradius der betrachteten Potenzreihe.
+ Eine Potenzreihe ist fiir jede Zahl x € (-7,7) absolut konvergent.

+ Eine Potenzreihe konvergiert gleichmiflig in jedem abgeschlossenen Intervall, das ganz im
offenen Intervall (-r, r) liegt.

¢ Die Summe s(x) einer Potenzreihe ist im Intervall (-7,7) beliebig oft differenzierbar. Die
Ableitungen koénnen durch gliedweise Differentiation erhalten werden:

2] @K 1
sM)= X anx” = sIx)= X napx" !,
n=0 n=1



Analytische Funktionen, Taylorreihe 87

+ FEine Potenzreihe kann im Intervall [0, 7] oder [¢,0] mit |¢| <r» gliedweise integriert werden:

[os] e} tn+
sx)= X anx = fs(x)dx E anjx" dx= E .
n=0 n=0 n+1

¢ Wenn die Potenzreihen )20 apx” und EO byx" im gleichen Intervall |x| <r konvergieren
n= n=
und dort die gleichen Summen haben, so sind beide Potenzreihen identisch, d.h., es gilt
an=bn fiir n=0,1,...

[Xnalytische Funktionen, Taylorreihe I

Eine Funktion / |D —>R , D cR , heiit im Punkt x( analytisch, wenn sie Summe einer Po-
tenzreithe mit Mittelpunkt xo und Konvergenzradius >0 ist:

76)= & ante-xo)" .

+ Sind die Funktionen fund g analytisch in x(, so sind auch die Funktionen f+g, /- g und im
Fall g(xg) #0 auch die Funktion f/g analytisch in x.

+ Ist die Funktion f in x( analytisch, so ist f in x( beliebig oft differenzierbar, und es gilt
S®(xo) =nlan und

r0- § f (0)

————=(x—x0)" ... Taylorreihe.

¢ Ist f in einer Umgebung von x( beliebig oft differenzierbar und konvergiert das Restglied
der Taylor-Formel fiir alle x einer Umgebung von x( gegen null, so hat die Taylorreihe ei-
nen Konvergenzradius » >0 und die Funktion f ist im Punkt x( analytisch.

Tabelle einiger Potenzreihen

Funktion Potenzreihe, Taylorreihe Konvergenz-
bereich
(1+x)* 1+oax+ oc(az'— Dy @@ ;)'(a iz N S (a>0) JxI <1
1 112 1-1-.3 3 1-1-3-54, .
Ji+x a2 468t <1
1 1-2 >, 1:2-53 1-2-5-8 4
3 = — +...
L+x 4336 *369" "3.69.12° i<l
1 afo+1) 2 oo+ Do +2) 3
A+ 1-ox+ T 31 x’t-.. (a>0) x| <1
l-t-x 1-x+x2-x3+x*-x5+... x| <1
(ITI)Z_ 1-2c+3x2 —ax3 +5x% -6 £ lxl <1
X
1
eSS 1-223¢-3-4x2+4-53 -5 - 6x4 £..) Il <1
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Funktion Potenzreihe, Taylorreihe Konvergenz-
B, sind die Bemoullischen Zahlen ™ Konstanten bereich
1 _1 132135313574
T 1= 24" 246 "2468 el <1
1 1,142 1473 1:4:7-10 47
T 1=3 436 369 *36.0.12° * bl <1
. 13,15 1 7, n__ 1 __ ont1
sinx x T +5| o E -+(-1) (2n+1)| + Ix| < o0
1 1 4 1 %6+ n_l_ on
cosx -
1 2|x +4' i t---+(-1) (2 )| + lx] < o0
2n(H2n
+2,5 2727 =D, 2p1 T
tanx x| <=
x+3 {0 ol Bpx21 4 Ix| 2
1.1, 1.3 2.5 2% 5 on O0<[x|<n
cotx ¥ 35355 518 (2n)|Bn fx|
; 13, 13 5, 1:3-Qno1)  opy <1
arcsinx X+t e T (2n)(2n+1)x + lx|
n_,__1 3_...__1&12_ 2n+1 _ <1
arceosx 2 723" 2.4 (2n)(2n+1) 4
13 ls 17, S LT NS B
arctan x X=X’ +ox Rl +(-1) 2n+1 + x| <1
n_1 1 1 1 1
arctan x Dt — Ly x>1
2 X33 55 D @n+ x2+]
B el 3 L5y Loyl _omg
arc cotx > x+3x gt +(-1) PR + x| <1
e* l+%x+2%x2+ +$x"+ |x] < o0
a* 1+Mx+ln_2ax2+...+ln_na.xn+... |x| <00
1! 21 n!
In(1 +x) x—%}c2 +%x3 i -~-+(—1)"+1%x" + -1<x<1
) 1.3, 1.5, 1 x4
sinhx x+3|x +5'x + ———(2n+1)' + [x} <o
12,1 ..
coshx 1+2I +4'x + +(2n)!x + lx| < 0
2ney2n
13,2 50 Ly 22QT - g opg T
tanhx x-3x +15x +.--4+(-1) ) Bux + |x|<2
cothx 1,1 1.3, n+1 2% 2n-1 4., O<|xl<m
x+3x 35° -+(-D an )|an
. 1 34 _qyp_1-3--2n-1) x2n+l 4 <1
arsinhx T R S s ve I
arcosh x m(h)_;__JL_..._M_... x>1
2-2x2 2.4.4x 2-4---2n)n)x2"
13 lsy v 1 omng .
artanh x x+3x +5x + +2n+1x + |x|<]
1 1 1 1
arcothx yt—+——c+-- x| > 1
Y 3x3 5y Q@n+ x2ntl b
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Fourierreihen ]

Reihen der Form

«Q
ag+ajcosx+bsinx+--- +agcoskx +bysinkx+--- =ag+ X (agcoskx + bysin kx)
k=1

heiflen trigonometrische Reihen. Notwendig fiir die Darstellung einer Funktion f als trigono-
metrische Reihe

() =aq +§1(akcoskx+bksinloc)

ist die Periodizititsbedingung f(x +2m) = f(x) . Bereits unter schwachen Voraussetzungen an
die Konvergenzart der Reihe oder an die Funktion f erweist sich, da Funktion und Reihe
durch die Bezichungen

) o 1 P 1 2 .
av=3 [/ ap=7 [ feeoskeds, by =7 | fesinkrds

verkniipft sind. Die so gebildeten Koeffizienten der Reihe heiBen Fourierkoeffizienten, die mit
ihnen gebildete Reihe heilt Fourierreihe. Die Partialsummen der Fourierreihe sind

sn(x)=ayp +k}::1(akcosloc+bksinloc) .

Symmetrie-Eigenschaften
. f gerade Funktion, d.h. f(X)=f(x) = by=0 fir n=1,2,...

. f ungerade Funktion, dh.  f(-=x)=-f(x) = an=0 fir n=0,1,2,...

Periode # 271t

Hat f die Periode 2/, so fithrt die Substitution x = %auf eine Funktion in & mit der Periode 27.
Es entsteht die allgemeinere Fourierreihe
o0
) =ag +kzl(akcos¥ +bysin %)
mit

2 o ”
ao=$jf(x)dx, @:-}-j’f(x)cos@dx, bk=%_[f(x)sin@f£dx .
0 0 :
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Konvergenzeigenschaften

2n
* Existiert | f2(x)dx , so konvergiert die Fourierreihe im quadratischen Mittel gegen 1
0

2
Jim (76 —sn)? de=0.

¢ Ist fim Intervall [0,2n] differenzierbar, wobei endlich viele Stellen ausgenommen sein kén-

2
nen, und existiert | (/(x))2dx , so konvergiert die Fourierreihe zu 1 fiir alle x € [0, 2x].
0

¢ Satz von Dirichlet. Das Intervall [0, 27] sei in endlich viele Teilintervalle zerlegbar, in denen
die Funktion f stetig und monoton ist. Ferner sollen an den Unstetigkeitsstellen x der links-
und rechtsseitige Grenzwert
S&-0= lim f@) wd fx+0)= lm f(u)
u—>x—0 u—x+0

existiecren. Dann konvergiert die Fourierreihe zu f fiir alle x € [0,27] , und es gilt

. Jx) falls £ in x stetig
i, Sn(x) = { 2(fGc=0)+/f(x+0)) sonst

Approximationseigenschaft
2n

* Existiert | f2(x)dx , so sind die Fourierkoeffizienten Losung der Extremwertaufgabe
0

2
[ (@) =sn(x))?dx > min .
0 ag,....an,by,....bn

Tabelle einiger Fourierreihen

Die Funktionen sind in einem Grundintervall der Linge 2n definiert und mit der Periode 27
fortgesetzt.

_{x fiir —t<x<m

Y710 firx=n / =
_o(sinx_sin2r  sin3x, ) /
R T

1 2 3

E

y=|x| fir —n<x<n .,.|
_n_4 cos3x  cosSx \/\/\A/
= 71,{(cosx+ ) + + ) il !

[STF]

52




] x fir 0<x<2n
| m fiir x=0

_ . _ofsinx | sin2x , sin3x
=T 2(—1 +—2 +-—3

+..

)
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—o fir - t<x<0
y=3a fir0<x<mw
0 fir x=0,m

AN 3 5

_4_a(s1nx+sm3x+sin5x+m)

y=x% fir —-nw<x<n

_n?

NE PPy 32

_4(cosx_ cos2x+cos3x+“_\

y=x(n—Ix|) fiir -n<x<mw

)

- 8( sinx sin3x | sinSx

AE 33 53 e

Lo - ow

-2

2 i(cost cos4x cos6x+_”)
nTw

1.3 7 3.5 17 5.7

—cosx fiir -mn <x <0
y=1 cosx fiir O0<x<m

0 fir x=0,n
_1(2sin2x+4sin4x 6 sin 6x
T

1.3 17 3.5 ' 5.7

)

o




[Funktionen mit mehreren Variablen

Punktmengen des Raumes R”

Die Punkte P(x,...,xn),Q(}1,...,yn) des n-dimensionalen Raumes R" werden mit den
Vektoren x=(xq,...,Xn)Y, y=(¥1,...,yn) . identifiziert. Mit [Ix|] wird eine » Vektornorm
(Euklidische Norm, Maximumnorm, Betragssummennorm) bezeichnet.

Abstand: Die Zahl ||x — y|| heiBt 4bstand der zwei Punkte x,y des R".
Die folgenden Begriffe sind unabhingig von der verwendeten Vektornorm.

beschrinkte Eine Menge D  R" heiBit beschrdnkt, falls es eine Zahl R gibt, so daff
Menge: [Ix[| £ R fiir alle x € D gilt.

Umgebung: Eine Menge U(x) heiBt Umgebung des Punktes x € R", falls sie eine kugel-
formige Umgebung Us(x) := {y| |y — x|| <€} des Punktes x enthilt.

Inneres: Ein Punkt x heilit innerer Punkt von D, wenn es eine Umgebung U(x) gibt,
die in der Menge D enthalten ist. Die Menge aller inneren Punkte von D
wird Inneres von D genannt und mit int(D) bezeichnet.

offene Menge:  Eine Menge D c R" heiBit offen, wenn int(D) =D gilt.

Haufungspunkt. Ein Punkt x heilit Hdufungspunkt von D, wenn jede Umgebung U(x) Punkte
aus D enthilt, die von x verschieden sind.

abgeschlossene Eine Menge D — R" heit abgeschlossen, wenn sie jeden ihrer Hiufings-
Menge: punkte enthilt.

¢ Jede unendliche beschrinkte Punktmenge des R™ hat mindestens einen Hiufungspunkt.
Punktfolgen

Fine Abbildung x | N = R" heift Punktfolge des R". Fiir ihre Elemente x(%) wird x; und

fiir die gesamte Folge {x;}geschrieben. Die Komponenten des Folgenelementes x; werden
)

mitx; ", i=1,...,n, bezeichnet.

Konvergenz: Die Punktfolge {x;} heilit konvergent gegen den Grenzwert x, wemn
T x| =0 gt

¢ Eine Punktfolge {x;} konvergiert genau dann gegen den Grenzwert x, wenn jede Kompo-
(k)

nentenfolge {xi }, i=1,...,n, gegen die Komponente x; von x konvergiert.

K. Vetters, Formeln und Fakten
© B. G. Teubner Stuttgart - Leipzig 1998
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Funktionen im R"

Fine Abbildung f| D — R mit D < R" heibt reelbwertige (reelle) Funktion von mehreren
Variablen (Verdnderlichen). Der Funktionswert im Punkt x € D wird mit f(x) =f(x{, ..., Xn)
bezeichnet.

Darstellung im (x,y,z)-Koordinatensystem.

Funktionen von zwei Variablen lassen sich
in einem (x,y,z)-Koordinatensystem gra-
phisch darstellen, indem z =f(x,y) gesetzt
wird. Die Menge der Punkte (x,y,z) bildet
eine Fldche, falls die Funktion f stetig ist.

Hohenlinien im (x,y)-Koordinatensystem.

Funktionen von zwei Variablen lassen sich
in einem (x,y)-Koordinatensystem gra-
phisch darstellen, indem die Hohenlinien
f(x,y) =C fiir verschiedene Werte von C
dargestellt werden (vgl die Héhenlinien in
Landkarten).

Stetigheit. Es sei x ein in D liegender Hiufungspunkt von D. Eine Funktion f| D -»R
heifit im Punkt x € D stetig, wenn fiir jede gegen x konvergierende Punktfolge
(x4} € D git: fim /(xp) =/()

¢ Summe, Differenz und Produkt stetiger Funktionen sind stetige Funktionen. Der Quotient
stetiger Funktionen ist stetig, falls der Nenner von Null verschieden ist.

¢ Ist die Funktion f in einer Umgebung U(xq) des Punktes x¢ partiell differenzierbar und
sind alle partiellen Ableitungen 0, f(x) dort beschrinkt, so ist f im Punkt x( stetig.

¢ Ist die Funktion f im Punkt x stetig und gilt f(xo) > 0, so gibt es eine Umgebung U(x,),
in der f iiberall positiv ist: f(x) >0 fiir alle x € U(xg).

* ¢-86—Definition der Stetigkeit. Es sei xo ein in D liegender Hiufungspunkt von D. Eine
Funktion f| D —> R ist genau dann stetig im Punkt x(, wenn es zu jeder positiven Zahl €
eine positive Zahl § gibt, so daB gilt:

|/(®) - f(x0)| <& fiiralle x € D mit |[x—xof <3 .



Differentialrechnung fiir Funktionen mit mehreren Variablen I

Partielle Ableitungen

Essei f| D—>R,Dc R", eine reelle Funktion mit Werten f(x) =f(x1,...,xn). Existiert
der folgende Grenzwert, so heifit er partielle Ableitung der Funktion f nach der i-ten Variab-
len im Punkt x:
o SO Xy, X A X, -, X0) —f (X, - XR)
6,/():= lim 7

1

Andere Bezeichnungen: Ox, f(x), fx;(x), %(x)
I

Wenn die Funktion fim Punkt x partielle Ableitungen nach allen Variablen besitzt, so bezeich-
net man den Vektor der partiellen Ableitungen als den Gradienten von f im Punkt x:

01/(x)
grad f(x) := :
Onf(x)
Andere Bezeichnung: Vf(x).
Da die partiellen Ableitungen selbst wieder Funktionen von n Variablen sind, besitzen sie ge-
gebenenfalls wiederum partielle Ableitungen.

partielle Ableitungen zweiter Ordnung: O f(x) == 0;(0rN)(x)
partielle Ableitungen dritter Ordung: Oy S (x) = 8;(0j.N)(x)

Satz von Schwarz iiber die Vertauschbarkeit der Differentiations-Reihenfolge: Sind die par-
tiellen Ableitungen 8,/ und 8y; f in einer Umgebung des Punktes x vorhanden und stetig, so

gilt
031 f(x) = Opif (x) .

Totales Differential |

Es sei £|U >R, UcR", eine in der Umgebung U von x erkliirte Funktion von 7 Verinderli-
chen. Sie heiit im Punkt x total differenzierbar, wenn es einen Vektor a(x) gibt, so dafi

ﬁmf(lh“h)—f(li)—ﬂl(x)'h -0
h—0 h

gilt. Die Zahl a(x)-h heiBt totales Differential von fim Punkt x zum Zuwachs h. Die Zuord-
nung h — a(x) - h wird Ableitung f(x) genannt: f/(x)(h) := a(x) - h. Besitzt die Funktion f'in
einer Umgebung des Punktes x stetige partielle Ableitungen, so ist sie im Punkt x auch total
differenzierbar, und es gilt

S/ @) = gradf(x)-h= igl 3if(h; .

K. Vetters, Formeln und Fakten
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Richtungsableitung ]

Essei f|U—->R, UcR”, eine Funktion von » Verinderlichen, die mindestens auf einem Ge-
radenstiick x+7s um den Punkt x definiert ist. Dann wird der folgende Grenzwert, falls er
existiert, Richtungsableitung von fim Punkt x beziiglich der Richtung s genannt:

oy - fim LEF1) =)
—a-;(x) ._t]J_I)I(l) 7 .

Besitzt die Funktion /' in einer Umgebung des Punktes x stetige partielle Ableitungen, so exi-
stieren die Richtungsableitungen im Punkt x beziiglich jeder Richtung s, und es gilt:

g—{(x) =s-gradf(x) .

Taylorformel I

Taylorformel fiir zwei Variable: Die Funktion f(x)=/(x,)) sei in einer Umgebung U des
Punktes Py(xg,yo) mindestens (n+1)-mal stetig partiell differenzierbar, und es gelte
P(x,y) € U. Dann gibt es einen auf der Strecke PoP gelegenen Punkt O(£, 1), so daB mit
h=x-xq9, k=y-yg, E=x0+3(x—x0), N =yo+9@¥~-y0), 0<9 <1 gilt:

J653) =/(0,70) + 1701/ (0, y0)h + 32/ (20,70 + 5,011 (X0, Yok + 02/ ko, y0)) @
-+ 101/ (0, 70y + 021 (50,9009 ™ + R, 5)

mit

Rn(:3) = Gy 157 @1/ € M+ 62/ € ™D

und mit der Abkiirzung

@1, )+ f(u, W) =j§0 (j’) d 1122 Fu, VT

Spezialfall n = 0 (Mittelwertsatz): v
Jx,y) =f(x0,y0) + 01/ (€, Mh+02f(€, nk
Spezialfall n=1:
J&x,9) =1 (x0,y0) + 01/ (x0,y0)h +02f(x0,y0)k + R1(x,y)

mit

Ri(63) = 1(010/@ m)h? +201/(6, nik+ 2/ 6 k)
Spezialfall n = 2:
J&,) = (x0,y9) +01/(x0,y0)h + 02/ (x0,0)k
4—;()51 1/ (0, ¥0)h? +2012f(x0, o)k + 3 f (xo,J’o)kz) +Ry(x,)
mit
Ry(x,y) = %(3 111/E M)A +30112/(€ M2k +30122 (€, Ak + D222 f(E, K> )
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Kettenregel I

Es sei f eine Funktion von m Verinderlichen, und gy, ...,gm seien m Funktionen von 7 Ver-
inderlichen. Fiir die zusammengesetzte Funktion

F(xy,....,xn) =f(€1(¢1, --»Xn), ..., Em(X1, ..., Xn))

gilt: Sind die Funktionen g;,...,gm ander Stelle x=(xy,...,xs) und die Funktion fan der
Stelle u=(uy,...,um) mit uyp=gy(xy,...,xn) total differenzierbar, so ist die Funktion F an
der Stelle u total differenzierbar mit der Ableitung

F/®)() =1/ (u)(g’ (x)(h))
2181(®) ... Ong1(® ([ Ay
SO, )| a8

d1gm(x) -+ Ongm(x) )\ hn

=G/ ... Funktionalmatrix des Funktio-
nensystems gy, ...,gm

oder: grad F(x) = (G/(x))T gradf(u),

komponentenweise:
o . OF _ % of Ogx .

0;F= X 04f0; i=1,...,n) oder: Z—=2 ==X (i=1,...,n).

i P kf i8k ( ) ox;  r=) Ogy ox; ( n)
Spezialfall m =2,n = 1; Funktion f(x,y) mit x=x(f), y=y():

Y_dx S e feafi

At - axdr Ty dr oder:  f=/fxk+fy
Spezialfall m = n =2 ;Funktion f(u,v) mit u=u(x,y), v=v(x,)):

o _Sou, U ov ¥ _Fou, Sov

Ox Oudx Ovox 0y Oudy Ovoy

Polarkoordinaten (Spezialfall m=n=2, x=rcosqp, y=rsino, f(x,y)=gr0))

¥ _ 502850 08 % _ oo vinod
B - COSP3 TF 30 ar—coscpax+sm(pay
¥ o8, 080 08 %o srcosod
ay—sm(par+ T Ere rsmq)ax+rcosq)ay

Zylinderkoordinaten (Spezialfall m=n=3, x=rcosp, y=rsinqp, z=z
Jx,y,2) = g(r,8,9) )

Formelsitze wie bei Polarkoordinaten, aber zusitzlich
o>_% %8 _F

0z oz 0z 0Oz
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Kugelkoordinaten (Spezialfall m=n=3, x=psnScosg, y=psinIsne, z= pcos9,
Sx,,2) =g(p,9,0) )

of _og Og cosScosg Jg smo

ax " gp SmYc0se t39 —p 3¢ psin9
of _06g .. 0g cosYsing  9g cosQ
2y~ ap SmOSmO 38 5 *3p psmd
of _og _Ogsnd
22" a8 P

o L4 oA
6p 6xsmScosq) +aysm3sm<p +a cosd
2_ LA _o
38 = ax pcosdcosp +aypcosSsm<p % psing
g—i g{:psism(p +-g§psm9005(p

Fehlerfortpflanzung I

Die Fehlerfortpflanzung behandelt den Einflu von Fehlern der Verinderlichen einer Funktion
auf das Ergebnis der Funktionswertberechnung.

exakte GroBen: Y, X1, Xn mit y=f(x) =f(xy,...,Xn)

Niherungswerte: ¥, %10, ¥p mit ¥=f@)=fF],....Xn)

absolute Fehler: dy=F-y, 8 :=%1-%X1,..., Oxn:=%Xn—xn

absolute Fehlerschranken A: [8y| <Ay, |8xq|<Axp,..., [8xn|<Axn

relative Fehler: i,—y, §:T1,---, %xf

relative Fehlerschranken: ‘S_y\ < A_y, cal < éx—l, s Bxn | o Axn
Y17yl ey [ 1 1= Tl

Falls die Funktion f total differenzierbar ist, so gilt fiir die Fortpflanzung der absoluten Fehler
der Verinderlichen auf den absoluten Fehler der Funktion /

Ay 201 /®)|Axy +--- +|0nf()|Axn
und fiir die Fortpflanzung der relativen Fehler

< |¥18/®) o |[Endnf®

Axn oy
y Yy '

fxxn |

|y| |x 1 |
b Das Zeichen < bedeutet kleiner oder etwa gleich




Extremwertaufgaben und Optimierung

Begriffe

Essei f |D— R, Dc R", einc Funktion von  Variablen mit Werten f(x) =f(xy,...,X»)
und xq € D.

Infimum Eine Zahl m wird Infimum von f genannt, wenn sie die groBte Zahl m ist, fiir
welche gilt:

f(x)=2m firalle xe D. Bezeichnung: m = mf f(x)
xeD

Supremum  Eine Zahl M wird Supremum von f genannt, wenn sie die kleinste Zahl M ist,
fiir welche gilt:

fx)SM firalle xeD. Bezeichnung: M = sup f(x)
xeD

globales Die Funktion /" hat an der Stelle x( ein globales Minimum, falls gilt:
Minimum oy f(xo) firallex € D . Bezeichnung: Jtx0) = minf(x)
XE

Die Funktion f hat an der Stelle x¢ ein strenges globales Minimum, falls gilt:
J(x)>f(xp) fiirallex € D\ {xg}.
lokales Die Funktion f hat an der Stelle x( ein lokales Minimum, falls fiir eine Umge-
Minimum  bung U(xg) gilt:
f(x)2f(xp) firallex € Uxg)D .
Die Funktion f hat an der Stelle x( ein strenges lokales Minimum, falls fiir eine
Umgebung U(x() gilt:
J(X)>f(xp) fiiralle x € (U(xg) " D) \ {x¢} .
Ein globales Minimum wird auch kurz Minimum, ein lokales Minimum auch relatives Mini-
mum genannt. Analog werden diese Begriffe fiir Maximum definiert. Minimum und Maximum
werden im Begriff Extremum oder Extremwert zusammengefaBt. Andert sich die Punktmen-

ge D, so indem sich i.allg. der Wert des Extremums und die Extremstelle xq; dann muB den
Bezeichnungen die Formulierung "beziiglich D" beigefiigt werden.

¢ LBt man die Werte —oo fiir das Infimum und +wo fiir das Supremum zu, so besitzt jede
Funktion ein Infimum und ein Supremum.

¢ Falls die Funktion f ein Minimum hat, stimmt dieses mit dem Infimum iiberein.
¢ Falls die Funktion f ein Maximum hat, stimmt dieses mit dem Supremum iiberein.

K. Vetters, Formeln und Fakten
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Extrema von Funktionen mit einer VariablenJ

* Existenz. Eine stetige Funktion f| [a,5] - R hat mindestens ein Minimum und Maximum.

* Notwendige Bedingung fiir lokale Extremwerte. Hat die Funktion f | [a,58] > R an der
Stelle xq € (a, b) ein lokales Extremum und ist / an der Stelle x( differenzierbar, so gilt:

fx0)=0.
¢ Hinreichende Bedingung fiir lokale Extremwerte. Ist die Funktion f | [a,5] > R an der
Stelle x( zweimal stetig differenzierbar, so gilt
a) xpela,bl A flxg)=0 A~ f7(xg)>0 = f hatinxg lokales Minimum,
b) xoelabl A fl(xg)=0 A f’(xg)<0 = f hatinxg lokales Maximum,
Fiir die Randstellen a,5 gilt zusitzlich, falls 1 dort stetig differenzierbar ist:

¢) f/(a)>0 = f hatin alokales Minimum, f/(a) <0 => f hat in a lokales Maximum,
d) /(b)) <0 = f hatin b lokales Maximum, f/(b)>0 => f hat in  lokales Minimum.

Extrema von Funktionen mit mehreren Variablen I

Gegeben: Funktion | D — R, D < R", mit Funktionswerten f(x)=f(x1,...,xn) .
Gesucht: Extremstellen x¢ € D.

* Existenz: Ist die Punktmenge D beschrinkt und abgeschlossen und die Funktion f in jedem

Punkt von D stetig, so hat f auf D mindestens ein globales Minimum und mindestens ein
globales Maximum.

Fiir die weiteren Aussagen wird vorausgesetzt, dal die Punktmenge D ein nicht leeres Inneres
hat und daB die Funktion f hinreichend oft stetig partiell differenzierbar ist. Die symmetrische
(n,n)-Matrix H(x) der zweiten partiellen Ableitungen von f heifit Hessematrix:

11/ (x) -+ 01/ (%)

H(x) = (0;,/(x)) = I
On f(x) -+ Onnf(x)

¢ Notwendige Bedingung I fiir lokale Extremwerte. Hat die Funktion f an der Stelle
xg € int(D) einen lokalen Extremwert, so gilt

gradf(xg) =0 , in Komponenten: &;f(xp) = %(x?, . -,xg) =0 (i=1,...,n).
1

+ Die Punkte x( eint(D) mit gradf(xg) =0 heiBen stationdre Punkte der Funktion f.

¢ Hat jede Umgebung des stationiiren Punktes x; Punkte x,y mit f(x) <f(x¢) <f(y), so
heibit xo Sattelpunkt.
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Notwendige Bedingung Il fiir lokale Extremwerte

¢ Hat f an der Stelle xo €int(D) ein lokales Minimum, so gilt gradf(x¢) = 0 , und die Hes-
sematrix H(x) ist positiv semidefinit.

¢ Hat f an der Stelle xo €int(D) ein lokales Maximum, so gilt gradf(x¢) =0 , und die
Hessematrix H(xg) ist negativ semidefinit.

Hinreichende Bedingungen fiir lokale Extremwerte. Es sei x¢ ein stationirer Punkt von £,
¢ Ist zusitzlich H(xo) positiv definit, so hat f an der Stelle x¢ ein strenges lokales Minimum.

¢+ Ist zusitzlich H(xo) negativ definit, so hat fan der Stelle x¢ ein strenges lokales Maximum.

Kriterien fiir Definitheit (s.auch Lineare Algebra, Eigenwertaufgaben bei Matrizen)

* Die reelle symmetrische (7,n)-Matrix A = (a;) ist genau dann positiv definit, wenn jede ih-
rer n Hauptabschnitts-Determinanten positiv ist:

apy - ay
o s >0 fir k=1,...,n
Qgy - Qg
* Die reelle symmetrische (r,7)-Matrix A = (a;;) ist genau dann negativ definit, wenn die Fol-
ge der n Hauptabschnitts-Determinanten beginnend mit Minus alternierendeVorzeichen hat:

ay - ay
D >0 firk=1,...n
ag - g

Hinreichende Bedingung fiir Sattelpunkte

¢ Ist xo ein stationdrer Punkt der Funktion fund hat die Hessematrix H(x() Eigenwerte A,
At von unterschiedlichem Vorzeichen A; <0, A, > 0, soist xo ein Sattelpunkt von f.

Spezialfall n=2

* Essei P(xo,y0) € int(D) stationdrer Punkt, d.h. xf(x9,y0)=0 , 8, f(xg,y0) =0. Dann
sind die in den ersten beiden Spalten der Tabelle eingetragenen Eigenschaften beide zusam-
men hinreichend fiir die angegebene Art des stationiren Punktes.

Oxxf(x0,50) - Dy f(x0,70) = (Bxy.S(x0,70))* | Oxcf(x0,y0) | Art des Punktes P(xo, o)
>0 >0 relative Minimumstelle
>0 <0 relative Maximumstelle
<0 beliebig Sattelpunkt
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Extrema mit Gleichungsrestriktionen I

Gegeben: Funktion /| D — R, D c R”, mit Werten f(x)=/(xy,...,Xn),
Funktionen g; | D > R , D c R”, mit Werten g;(x) =g;(x1,...,%n), i=1,...
Gesucht: Extremstellen xy von f beziiglich der Punktmenge

G={xeD|gi(x)=0,...gm(x)=0}
Nebenbedingungen, Restriktionen. g1(x)=0,...,gm(x)=0

m

>

Lagrange-Funktion: L(x,A) =f(x)+A181(X) ++ - + Amgm(X)
Lagrange-Multiplikatoren: Myeeer Am

Notwendige Bedingung fiir lokale Extremwerte (Lagrange-Multiplikatoren-Regel).

¢ Die Funktionen f,gy,...,Zm seien stetig partiell differenzierbar, der Punkt xg € G sei ei-
ne lokale Extremstelle der Funktion f unter den Nebenbedingungen g;(x)=0,i=1,...,m,
und fiir die Funktionalmatrix G/ des Funktionensystems g, ...,gm gelte rang(G/(xq)) =m.
Dann gibt es Lagrange-Multiplikatoren Ay, ..., Am, so da alle n+m partiellen Ableitungen
(beziiglich x; und A;) der Lagrange-Funktion im Punkt (x¢, ) verschwinden:

Orf(xg) +A 10181 (X0) +- - +AmOrgm(xp) =0 fiir k=1,....n,
gi(xg) =0 fir i=1,....m.

Nichtlineare Optimierung I

Gegeben: Funktion /| D - R, D c R”, mit Werten f(x) =/f(xy,...,Xn),
Funktionen g; | D — R, D c R”, mit Werten g;(x) =g;(x1,....,Xn) ,i=1,...,m
Funktionen ;| D — R , D c R", mit Werten A;(x) = #;(xy,...,xn) ,j=1,...,p

Gesucht: Minimumstellen xg von f beziiglich der Punktmenge

G={xeD|gx)=0@G=1,...m), (x)<0(=1,...,p)}

Notwendige Bedingung fiir lokale Mininumstellen (Kuhn-Tucker-Bedingungen)

¢ Die Funktionen f,g1,...,8m, 1, ..., Ap seien stetig partiell differenzierbar, der Punkt x sei
eine lokale Minimumstelle der Funktion f unter den Nebenbedingungen g;(x)=0,
i=1,...,m hi(x)<0,j=1,...,p,und im Punkt x sei die Regularititsbedingung

rang(G/(xo)) =m ,
3ze R": zTgradg;(xg)=0 firi=1,...m,
zTgrad hj(xo) <0 fiir alle j mit 4;(xp) =0

erfiilit. Dann gibt es Multiplikatoren A;, i=1,...,m,und pi; 20, j=1,..., p, so daB gilt:

m
O1f o)+ & hidkei(xo) +§1 Wogh (xo) =0 fir k=1,...,n,

hi(x0)<0, whi(xo)=0 fir j=1,...,p,
gi(xp)=0 fiiri=1,....m.



Doppelintegrale

V=[[f(x,y)dxdy ist das Volumen des Zylinders Z zwi-
B

schen dem Bereich B der x,y-Ebene und der Fliche
z=f(x,y) (Voraussetzung: f(x,y) = 0)
¢ Spezialfall f(x,y)=1:

A= | dxdy ... Flicheninhalt des Bereiches B
B

Eigenschaften

gkf(x,y)dxdy = ng(x,y) dxdy (A €R, konst.)

I reydedy=[f
B

Bl UBZ l
g (f(x,y) +g(x, ) dxdy = gf(x,y) dxdy+ g g(x,y)dxdy

feydedy+ [[ f(e,y)dedy falls By nBy=Q
By

‘ Berechnung (iterierte Integration)

1. Bereich B ist Normalbereich beziglich x-Achse
as<x<b
P(x,y) e B&
) {J’I(X)SYSYZ(X)
Dann kann das Doppelintegral berechnet werden durch

b| y2x)
Jreyacdy=[| | feydy|dc.
B al yi®)
2. Bereich B ist Normalbereich beziiglich y-Achse

X1 (M) £x<x(y)
P(x,y)eB@{ c<y<d

Dann kann das Doppelintegral berechnet werden durch

d|x2(»
gf(x,y) dxdy = | { [ )f(x,y) dx} dy .

clxy
+ Spezialfall: Bereich B ist Rechteckbereich
as<x<bh
c<y<d
Dann kann das Doppelintegral berechnet werden durch

P(x,y) e B {
bd db
gf(X,J’)dXdy = ‘{gf(x,y) dydx = ggf(x,y)dxdy -

K. Vetters, Formeln und Fakten
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Oberflichenintegrale 1. Art 103
| Substitution ]
Substitutionsregel fiir die Koordinatentransformation x=x(u,v) :
y=xyu,v)
o(x,

[17669) ey = ([ 765500 ) | S22 |

3 B o(u,v)
oder

db= dxdy = %‘ dudv ... Transformation des Oberfldchenelements db
mit ’

P Ox Ox

oxy) _ g g Funktionaldeterminante des Funktionensystems * X(u,v)

owy) |22 y=y@m,v)

+ Spezialfall Polarkoordinaten x =rcos¢@ , y=rsino :

2|;_ff(x,y)dxdy =gj;f(rcos¢,rsin(p)rdrd(p

¢ Spezialfall Ellipsenkoordinaten x =aucosv, y =businv :

lfCe,y)dxdy = [J f(aucosv, busin v)abu du dv
B B*

‘ Oberflichenintegrale 1. Art

Es seien F ein i.allg. gekriimmtes Flichenstiick mit der Parameterdarstellung

r = r(u,v) x =x(u,v)
T komponentenweise: y=y(u,v), (,v)eB
(u,v) € B
z=2z(u,v)

und f'eine auf B definierte Funktion. Das zugeordnete Oberfldchenintegral erster Art ist
[fdb=[{f(u,v)db mit db=EG-F?dudv und
F B
_ax2(6y)2 AN _axz(ay)z oz 2
E-( 2 +(’a;) ; G-(g) 3y +(5) ;

ou ou
_Oxox  Oyo0y Bz oz
F=Suoy 3utv T oudv

* Spezialfall f=1: 4= _[db ... Flicheninhalt des Flichenstiicks F
F

+ Spezialfall Flichenstiick z=f(x,y) mit (x,y) € B ... Bereich der x,y-Ebene

[7ab =[5 mit = Jl+(g)2+(g)2dxdy



104 Doppelintegrale
Flichenelemente I
kartesische Koordinaten x,y db = dxdy
_ebene Fliche Polarkoordinaten 7, db=rdrde
in x,y-Ebene - -
Ellipsenkoordinaten #,v db = abududv
allgemeine u,v-Koordinaten db= )] dudv
o(u,v)
gekriimmite Kkartesische Koordinaten x,y db = ’1 +f2+ f}? dredy
Fliche Zylindermantel Radius R, Koordinaten ¢, z db=Rdodz
Kugeloberfliche Radius R, Koordinaten 9,9 | db = R%sin 9 d8 do
allgemeine u,v-Koordinaten db = JEG - F2 dudv
Anwendungen I
Flicheninhalt 4 A= IL db
Masse M (p ... Flichen-Massendichte) M= }J; dm = }j:‘ pdb
Volumen ¥V zwischen ebenem Bereich B der V= JI fdb
x,y-Ebene und Fliche z = f(x,y) B

Schwerpunktskoordinaten (p ... Flichen-Massendichte)

homogene Fliche xS=:}1'Ide ys=1—}1—fydb Z.S‘=/%J’Zdb
F F F
. . 1 1 1
Fliche mit Massendichte p | x5 =+ [ xpdb ys=-5|ypdb zg=+[zpdb
P M; My M;

Triigheitsmomente

bzgl. der Koordinatenachsen (p ... Flichen-Massendichte)

ebene Fliche der x,y-Ebene Jx = £ yZP db

Jy=[x2pdb
F

gekriimmte Fliche

Jx = [* +2%)pdb
F

Jy=[(x?+z2)p db
F

Jz = [ +yH)pdb
F

homogene Fliche

setze p=1

Trigheitsmomente bzgl. anderer Achsen

polares Trigheitsmoment einer ebenen Fliche

der x,y-Ebene

Jo=[(x2+yHpdb
F

Trigheitsmoment bzgl. beliebiger Achse A

J4 =}L’fﬂ)db r,... Abstand von A4

Satz von Steiner

Jy =atM+Jg

a ... Abstand Achse 4 - Schwerpunkt
S ... zu A parallele Achse durch Schwerpkt.



LDreifachintegrale

[far=[f,y,2)dedydz K .. Komper im Raum R
K K

dt ... Raumelement (Volumenelement)
Spezialfall f(x,y,z)=1:

V= [dr= [dxdydz ... Volumen des Koérpers X
kK K
Eigenschaften
[Afdi=A[fdt firdeR | fdv=[fdi+ [ fdr falls Ky nKy=0Q
K K KIUKZ Kl K2

[(f+o)dr=[fdt+[gd
K K K

‘ Berechnung (iterierte Integration) I

1. Integrationsreihenfolge z,y,x

b {y20) ] z2(xy)
Ij<fdr=j{ | [ | f(x,y,Z)dZ]dy}dx -

a iz

2. Integrationsreihenfolge z,x,y

d [x20)] z2xp)
“ 1{de=§{! [ f(x,y,z)dz}dx}dy

e x1 L2166

3. Integrationsreihenfolge y,z,x

b [z220)[ yax,2)
1{de=!{ [ [ | f(x,y,z)dy]dz}dx -

a 21 y1t2)

K. Vetters, Formeln und Fakten
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4. Integrationsreihenfolge y,x,z

t (2@ [ y2(x,2)
]{fdr=J{ j[ | f(x,y,z)dy}dx}dz -

S x1@Ly1x2)

5. Integrationsreihenfolge x,z,y

d (220 [ x2(y,2)
« If<fdr=f{ [ { ) f(x,y,z)dx}dz}dy

¢ z1() [ x1(3:2)

6. Integrationsreihenfolge x,y,z

t [y2)] x2(p.2)
[I(fdr=f{ I { | f(x,y,z)dx}dy}dz -

S V1@ [ x1(»2)

Substitution |
x=x(u,v,w)
Substitutionsregel fiir die Koordinatentransformation y = y(u, v, w)
z=z(u,v,w)
0, »,2)
jﬁf(x y,2)dxdydz = j]]f(x(u v, W), W(u, v, w), z(u, v, w)) v dudvdw
oder
dt = dxdydz = 66 ((x,y ’ Z)) du dvdw ... Transformation des Raumelements dt
mit
Ox Ox O
o ow =
0(x,y,2) _ Qu y & Funktionaldeterminante x_xg, v :3
B(u,v,w) |94 & o | ™ des Funktionensystems > 2 0"
8z &z & z=2(u,v,w)
du v ow



Spezialfall Zylinderkoordinaten x =rcos@, y=rsing, z

Anwendungen 107

=Z:

ifex,y,2)dxdydz = [[] f(rcose,rsin @)rdrdedz
K K*

Spezalfall Kugelkoordinaten x =rsin $cosqp, y=rsin9sing,

z=rcos9 :

[[[f(x,y,z)dxdydz = J]]f(rsinScosw,rsinSsm(p ,rcos9)r2sin 9 drd9 do
K K*

‘ Raumelemente

J

kartesische Koordinaten x,y,z dt = dxdydz

Zylinderkoordinaten 7, ,z dt=rdrdedz

Kugelkoordinaten ,9,¢ dt = r2sin 9 drd9 do

allgemeine u,v,w-Koordinaten | dt = 90,2 dudvdw
o(u,v,w)

Anwendungen ]
Volumen V= j dr
K
Masse M= IJ;' pdr p =p(x,y,2) ... Massendichte
Schwerpunktskoordinaten (p ... Massendichte)

homogener Kérper xg = Il/ I xdr ys= ‘117 j)’ dr zg= ‘117 IZdT

K K K
K('irper mit Xo= L d = l d = '1— d

s xpdr s ypdrt zs Zpdt
Massendichte p M I M I M I
Triigheitsmomente (p ... Massendichte)

Trigheitsmomente bzgl. | J, = [(y2 +22)pdt |Jy = [(x2 +2¥)pdt|Jz = [(x2 +y?)pdr
Koordinatenachsen K K K
Trigheitsmoment bzgl. | J, = j'rzp dr Abstand von Achse 4
belicbiger Achse A & T4 ... ADSanG von Achse
homogener Korper setze p=1
Satz von Steiner _
homogener Korper Jy=a“V+Jg a ... Abstand Achse A - Schwerpunkt
Satz von Steiner Jy=a*M+Jg S ... zu A parallele Achse

Koérper mit
Massendichte p

durch Schwerpunkt




‘ Vektoranalysis

&ektorfelder l
X
Skalarfeld:  f|R* > R mit f(x)=f(x,y,z) und x=|y
zZ
P(x) P(x,y,z)
Vektorfeld: v |R’ > Rmit v(x)=| Ox) | =| O, »,2) | =Pex+Qey+Re;

R(x) R(x.y,2)

Anwendung: Flufmodelle (Gase, Flissigkeiten, Elektrizitit)

Einheitsvektor in FluBrichtung: ey = ﬁ
Flufistirke: vl
vektorielles Flichenelement dA:
Flicheninhalt: [dAJ|
Normalenvektor: dA
MassenfluB} pro Zeiteinheit von Stro-
mung v durch Flichenelement dA: v-dA

Parameterableitungen von Vektoren I

Ein parameterabhingiger Vektor

x()
x(={ y) | =x(@)ex+y(H)ey+z(f)e;
z(®)
stellt eine Raumkurve dar. Sind x, y, z differenzierbar,
so gilt
x(®)
. dx x(t+AH —x(f) .
x() =8 = im TEEEITED | 5
At
dt A0 ()
+ Tangenteneinheitsvektor der Raumkurve x im Kurvenpunkt x(t): e; = ":g;" .
Rechenregeln
Lixty)=i+y dox=ox +ok
dr dt
i(x-y):}k-y+x-y i(xxy)=i(><y+xxy
dr dr

%(x-yxz):i-yxz+x-yxz+x-y><i

%[xx(yxz)]=Xx(yxz)+xx(yxz)+x><(y><i)

K. Vetters, Formeln und Fakten
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Gradient ]
Oxf
Gradient eines Skalarfeldes f: gradf=| 0,f
0zf
Richtungsableitung eines Skalarfeldes f: %(x) =s-grad f(x)

¢ grad f hat die Richtung maximaler Zunahme der Funktion f,

¢ grad f(x() steht senkrecht zur Tangentialebene T der Niveau-
fliche f(x)=f(xp) im Punkt xg, d.h. fiir jeden Punkt x der
Tangentialebene gilt grad f(x¢) - (x—x¢) =0

* Rechenregeln (u= (P, Q® RUNT y = p®) QW RVHTy
grad (f+g) =grad f+grad g grad A f)=Agradf (A €R, konstant)

grad(u-v) = (u-grad)v+(v-grad)u+u-rotv+v-rotu

Py, p») Py, p®)
mit (u-grad)v=| 0®35,00) |, (v-gradju= Q(")ayQ(")
RMa,RM RMa,RW)

* Vektorfeld v heit konservatives Feld oder Potentialfeld, wenn es ein Skalarfeld ¢ gibt mit
v(x) = grad ¢. Die Funktion ¢ heift die zum Vektorfeld v gehérige Potentialfunktion.

¢ Der Operator V := 2 ex+ 2 ey+ % ez heibt Nabla-Operator. Es gilt Vf=gradf.

Ox Oy 5
¢ Zylinderkoordinaten (f=f(r, ¢,2)): grad f=e,0,f+ e(,,-}-aq, S+ez0:f
Kugelkoordinaten (f=f(r, 9, 0)): grad f=e.0.f+ eséaaf + eq,;ﬁaq, J
Divergenz I
P
Divergenz eines Vektorfeldes v=| Q | : div v := 0xP+0yQ +0;R
R
¢ Der Massenfluf} einer Strémung v aus einem Volumenelement dt heraus ist (div v)d.
* Rechenregein
div(u+v)=divu+divy div(Av)=Adivv (A eR, konstant)
div(fv)=v-gradf+fdivv divuxv)=v-:rotu-u-rotv

*Esgilt V.-v=divv.
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+ Zylinderkoordinaten (v = Re, + ®eq +Ze; ) divv=18,¢R) + 10,0 +6,2

Kugelkoordinaten (v = Re, + Oeg + Deg ):

N 2 1 . 1
divv= rza,(r R)+ i 969(6 sin 9) + e Saq,d)
Rotation ]
P
Rotation eines Vektorfeldes v=| QO
R

rot v := (OyR—0.0)ex +(0.P ~ 0xR)ey +(0:0 - 0, P)e;

* Die Wirbeldichte ws(x) =, ln(n ) ﬁ § v-dx ecines Vektorfeldes v im Punkt x beziiglich
—>(x,5) ¥ o(4)

der Achse s ist ws(x) =es ‘rotv .
+ Rechenregeln

rot(u+v) =rotu+rotv rot(Av) =Arotv (A € R, konstant)
rot(fv) = frot v—v x grad f

rot(u x v) = (v - grad)u — (u - grad)v+udivv-vdivu

+ Es gilt
ex ey ez ex ey eZ
Vxv=|— VIl ——|=]|08, Oy 0; |=rotv .
— vy — P QR

¢ Zylinderkoordinaten (v = Re, + ®eq + Ze; ):
rotv= (%aq,Z— 0:D)e, +(0:R—0rZ)eq + %(6r(r<l>) —OgpR)e;

Kugelkoordinaten (v = Re, + QOeg + Qe ):

1 . 1, 1 1
rotv= n 9(c'i\c)(CI) sin 9) — 0¢O)e, + 7(Sin—86(pR - 0r(r®))es + 7(0,(r®) - OsR)ey

+ Ein stetig differenzierbares Vektorfeld v ist genau dann ein Potentialfeld, wenn es wirbelfrei
ist, d.h. wenn gilt

OyR=0:0, 0.P=0xR, 0:0=0,P .
* Hauptsatz der Vektoranalysis: Zu jedem stetig differenzierbaren Vektorfeld v, das zusam-

men mit seinen partiellen Ableitungen erster Ordnung im Unendlichen null ist, gibt es Vek-
torfelder u und w mit

V=u+w, rotu=0, divw=0 .

Dabei sind u und w bis auf eine vektorielle Konstante eindeutig bestimmt.
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Differentialoperatoren 2. Ordnung I

¢+ rot(gradf)=0 Ein Potentialfeld ist wirbelfrei.
¢+ div(rotv)=0 Ein reines Wirbelfeld ist quellenfrei.
. diV(gl'adf)=Af mit Af:= axxf'i'ayyf‘}'azzf

Der Operator A := Oxx +0yy + 02z heift Delta-Operator oder Laplace-Operator.

Oxx aw Oxz P 6xxP+6ny+6sz
. grad(dlv V) = axy 6)9; ayz Q = axyP + 6ny + ayzR
Oxz ayz Ozz R OxzP + ayzQ +0zzR

¢ rot(rot v) = grad(div v) — Av mit Av :=OxxP +0)yQ +02zzR

o Zylinderkoordinaten:  Af=mf+ oS+ ;%an+ Ounf

Kugelkoordinaten: Af=L8,(r20,1) + =L —09(Gin 9)09f) + = f
r? r2sin 9 r2sin §
Linienintegrale 2. Art I
x(?)
Es seien C eine stiickweise glatte Raumkurve mit der Parameterdarstellung x(9) = | y(?) |,
z()
P
a<t<bh,und v=| Q | ein stetiges Vektorfeld. Das Linienintegral (Kurvenintegral) 2. Art
R
ist
dx x(?)
L:=fv-dx mit dx=|dy |=| @) |dr.
¢ dz 2(f)

b
* Esgilt L= ! {P(D, (@, 2()x(@) + Q0c(0), (D), 2()(1) + R(:(), (8), 2(1))z(D) }dt .

+ Ist v ein Krafifeld, so ist L die Arbeit fiir die Verschiebung eines Massenpunktes von x(a)
nach x(b) lings der Kurve C.

+ Ist v ein elektrisches Feld, so ist L der Spannungsabfall zwischen x(a) und x(5).
+ Fiir stetig partiell differenzierbare Vektorfelder v ist das Linienintegral L genau dann weg-

unabhiingig, d.h. nur vom Anfangspunkt x(a) und Endpunkt x(b) abhingig, wenn das Vek-
torfeld v ein Potentialfeld ist.
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Oberflichenintegrale 2. Art l

Es seien F ein iallg. gekriimmtes Flichenstiick mit der Parameterdarstellung x(u,v),
(u,v) € B, und v ein stetiges Vektorfeld. Das Oberflichenintegral 2. Art ist

I=[vdb mit db =(duxxdyx)dudv
F I
=n ... Normalenvektor von F/

P O R P x(u,v)
¢ Berechnung: Iv db _[I Oux Oyy Oyz |dudv mit v=| Q | und x(u,v) =| ¥(u,v)
B 6vx 6vy avz ‘ R Z(u, V)

¢ Ist v eine Stromung, so ist / die pro Zeiteinheit durch das Flichenstiick hindurch flieBende
Menge (Vorzeichen im Sinne der Orientierung der Fliche).

{Integralsﬁtze I

Integralsatz von Gaup: Es seien K ein Korper mit stiickweise glatter, nach auBen orientierter
Oberfliche 7 und v ein stetig partiell differenzierbares Vektorfeld. Dann gilt

P QO R
§v-db= [(divv)dt oder: [J|0ux dyy duz |dudv= m(axP+6yQ+6zR)dxdydz )
F X B 6vx 6vy avZ

Integralsatz von Gaup fiir die Ebene: Es seien B ein ebenes Flichenstiick mit stiickweise glat-
ter Randkurve C, die das Flichenstiick zur Linken hat, und v ein stetig partiell
differenzierbares ebenes Vektorfeld. Dann gilt

§(Pdx+Qdy) = [[(6+Q - dyP)dxdy , wobei v = ( P J .
C B 0

Integraisatz von Stokes: Es seien F eine stiickweise glatte Fliche mit einer stiickweise glatten,
beziiglich F positiv orientierten Randkurve C und v ein stetig partiell differenzierbares
Vektorfeld. Dann gilt

§v-dx=f(rotv)-db.
C F

Greensche Integralsdtze: Es seien K ein Korper mit stiickweise glatter, nach auBen orientierter
Oberfliche Fund f, g zwei stetig partiell differenzierbare Skalarfelder. Dann gelten

j (grad f - grad g +fAg)dt = § fag db 1. Greenscher Satz,
j (fAg-gAH)Hdr = §( fa -g aﬁ =2)db 2. Greenscher Satz,

j (gradf -gradf +fANdt = § S5a o > db 3. Greenscher Satz.



Partielle Differentialgleichungen ]

Die Darstellung erfolgt nur fiir Funktionen u# von zwei Verinderlichen mit Werten u = u(x, y).
Statt beliebiger Konstanten bei gewohnlichen Differentialgleichungen treten in den allgemeinen
Losungen partieller Differentialgleichungen beliebige differenzierbare Funktionen auf.

Partielle Differentialgleichungen 1. Ordnung I

Die allgemeine partielle Differentialgleichung erster Ordnung hat die Form
F(x,y,u,0xu,0yu) = 0.

Die quasilineare partielle Differentialgleichung erster Ordnung
a(x,y, u)Oxu + b(x,y, u)oyu = c(x, y, u)

hat die Losung in impliziter Form ¢ (f(x, y, #), g(x,y,u)) = 0, wobei ¢ eine beliebige partiell
differenzierbare Funktion von zwei Variablen ist, und die Funktionen fg durch die zwei fol-
genden gewohnlichen Differentialgleichungen definiert sind:

d_y=_b_(x’y_’u) = LOSllllg f(xay7u)=Cl’

de  alx,y,u)
du _ cx,y,u) 5 -
& - a(x.y.5) = Losung g(x,y,u)=C,.

Partielle Differentialgleichungen 2. Ordnung ]

Die allgemeine partielle Differentialgleichung zweiter Ordnung hat die Form

F(x,y, u,Oxtu, Oytt, Oxxtt, Oxytt, Oyput) = 0.

Normalformen linearer partieller Differentialgleichungen zweiter Ordnung

Die allgemeine lineare partielle Differentialgleichung zweiter Ordoung
ay1 (6, )0xxu +2a12(x, y)Oxyt +an(x, y)oyyu
+b1(x,)0xu + by (x, y)oyu + c(x,y)u = r(x,y)
kann mit dem Nabla-Operator V, den Substitutionen
b1(r.y) =b1(x,y) - 0xa11 (%,y) —dyan(x.y) ,
by (x.y) = by(x,y) — Oxarn(x,y) ~ dyan(x.y) ,
der symmetrischen Matrix A = (a;;(x,y)) und dem Vektor b = (5;(x,)) in der Form

K. Vetters, Formeln und Fakten
© B. G. Teubner Stuttgart - Leipzig 1998
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VTAV)u +®TVyu+cu=r

geschrieben werden. Durch die Drehung des (x,y)-Koordinatensystems in ein (£,17)-Koordina-
tensystem mittels der Drehmatrix S, deren Spalten die orthonormierten Eigenvektoren der Ma-
trix A sind,

(§ ) =ST(") =(511x + 321)’) baw. (x) =S(F’ ) =(Su§ + 512M ) ’
n y S12% + 5229 y n 5216 + s2M
und den Bezeichnungen beziiglich der neuen Koordinaten

(g, M) 1= u(s 11§ +512M,521& +523m), entsprechend: b(E,n), F(E,m), FE M)

V= (Sg ) , p=(F:iEn)=5Th
1

entsteht die partielle Differentialgleichung beziiglich der Koordinaten &.n
(9Ts7as¥)a+ (579 )i +a =7,

in Komponenten:
A1Oggll + Ay Sqm¥l +P 10gli +Po0Onill +Cit =F .

Diese und die Ausgangs-Differentialgleichung heilen im Punkt P(x,y) = 7’(&, n) fir

A1 -Ar >0, alsofiir ajjaj —a%z >0, elliptische Differentialgleichung,
A1 -Ap =0, alsofiir ajjay —a%2 =0, parabolische Differentialgleichung,
A1 -Ap <0, alsofiir ajjay —a%z <0, hyperbolische Differentialgleichung.

Im elliptischen und hyperbolischen Fall durch Substitutionen (fiir Ay >0 durch x =&/ ‘/7»_ ,

y=n/J|A2| ) und im parabolischen Fall durch einfache Umformung (fiir A; # 0 Division
durch p, ) entstehen die Normalformen.

¢ Verwendet man wieder x,y fiir die Variablen , so lauten die Normalformen

Oxxtt + Oyt +a (X, y)Oxu +ay(x,y)0pu + c(x,yyu = r(x,y) elliptische Normalform,
Oxxtt — Oyyu +a (x, y)Oxu + az(x,y)oyu +c(x,y)u = r(x,y) hyperbolische Normalform,
Oyt = by (x, y)0xxtt + b 1 (x,y)0xtt + c(x, y)u +r(x,y) parabolische Normalform.

* Vom Typ der elliptischen Normalform sind
Au=0 Potentialgleichung,
Au=r(x,y) Poisson-Gleichung.

+ Vom Typ der hyperbolischen Differentialgleichung ist die Wellengleichung

Onu—c20pu=0, allgemeine Losung:  u(x,?) = f(x—cf) +g(x +cf) .



Stochastik I

Zufillige Ereignisse I

Ein Versuch, der unter Beibehaltung aller Bedingungen beliebig oft wiederholbar ist, dessen
Ergebnis aber innerhalb gewisser Grenzen unbestimmt ist, heiBit zufdlliger Versuch. Das Er-
gebnis eines zufilligen Versuchs heift zufdlliges Ereignis. Ein Ereignis, das stets eintritt, heifit
sicheres Ereignis Q) ; eines, das nie eintritt, heilit unmdgliches Ereignis &.

Verkniipfungen
AcB Ereignis A zieht Ereignis B nach sich.
AuB ist das Ereignis, das eintritt, wenn A oder B oder beide eintreten;
Vereinigung der Ereignisse 4 und B
AnB ist das Ereignis, das eintritt, wenn 4 und B beide eintreten;
Durchschnitt der Ereignisse 4 und B
AnB=0C Ereignisse A und B unvereinbar oder disjunkt.
A entgegengesetztes oder komplementdres Ereignis; tritt genau
dann ein, wenn A4 nicht eintritt.
Rechenregeln
AUuBNCY=(AUBNAUC) AUB=4NB Aud=0
AnBUC)=(ANBUUNC) AnB=AUB AnA=0

* Ein System von Ereignissen, das sich durch Anwendung von Verkniipfungen nicht erweitern
14Bt, heiBt Ereignisfeld F. Ereignisse, die sich in £ nicht zerlegen lassen, heilen atomare
Ereignisse von £.

¢ Ein System {4, } paarweise disjunkter Ereignisse 4; heifit volistdndig, wenn UA; =Q gilt.

Wahrscheinlichkeit ]
Relative Hiiufigkeit
Hn(A) = w relative Haufigkeit des Ereignisses 4 in einer Reihe von

n Versuchen, bei der A genau /1,-mal eintritt
Klassischer Wahrscheinlichkeitsbegriff

Das Ereignisfeld £ sei endlich und besitze ein vollstindiges System gleichméglicher atomarer
Ereignisse. Bezeichnet man die atomaren Ereignisse dieses Systems, die ein Ereignis 4 impli-
zieren, als die "fiir das Ereignis 4 giinstigen Ereignisse”, so gilt

Zahl der fiir A giinstigen atomaren Ereignisse
Zahl der moglichen atomaren Ereignisse

PA) = ... klassische Wahrscheinlichkeit

K. Vetters, Formeln und Fakten
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Geometrischer Wahrscheinlichkeitsbegriff

_ Linge von i Ereignis 4: Eine zufillig aus .
P(A) - Lange von / dem Intervall / gewa'hlte Zahl } :e ! 9: 4
liegt im Intervall /. < | >
PUA) = Fliiche von b Ereignis A: Ein zufillig aus B B
Fliche von B gewihlter Punkt liegt in b. CD

Axiomatischer Wahrscheinlichkeitsbegriff

Es sei £ ein Ereignisfeld. Eine Funktion P | £>R heiBt Wahrscheinlichkeit, wenn sie die
folgenden Axiome erfiillt:

0<PUA<1 firalle 4 € £
PQ)=1 fuir das sichere Ereignis Q
P4 U B)=P)+P(B) fiir alle disjunkten Ereignisse A,B € £
( o \ o) L. .. L
Pku1 A; )= Zl P(4)) fiir alle paarweise disjunkten Ereignisse 4; € £
i= i=
Eigenschaften
P(@)=0 P(A) = 1-P(4)

AcB = PA)LPB)
P(AUB)y=P)+P(B)-PAnB)
* Ereignisse 4,B heilen unabhdngig, falls P(A ~B) = P(A) - P(B) gilt, andernfalls abhdngig.
¢ Die Wahrscheinlichkeit fiir das Eintreten des Ereignisses B unter der Voraussetzung, daf
das Ereignis 4 bereits eingetreten ist, heiBt bedingte Wahrscheinlichkeit P(B/A) . Es gilt
P(ANBy=P(A4)-P(B/A)=P(B)-P(A/B) .

¢ Satz von der totalen Wahrscheinlichkeit: Es sei {A;,i=1,...,n} ein vollstindiges System
von Ereignissen. Dann gilt

P(B) = g P(A)P(BIA;) .

¢ Formel von Bayes: Es sei {A;,i=1,...,n} ein vollstindiges System von Ereignissen.
Dann gilt
PAHPB/A;)

n .

_,5‘1 P(4;)P(B/A))

P(4;/B) =
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Verteilungsfunktion und Dichte I

Wird ein zufilliges Ereignis durch eine Zahl dargestellt, so wird diese Zahl Zufallsgrofe X ge-
nannt. Die Verteilungsfunktion einer ZufallsgroBe X ist die Funktion

F(x) =P(X<x), xeR.

Eigenschaften
0<F(x)<1 firallex eR lim F(x)=0 lim F(x)=1
X—>—00 X—>®©

P(a < X < b)=F(b) - F(a)

¢ Jede Verteilungsfunktion F ist eine monoton wachsende Funktion.
+ Eine ZufallsgroBe heilt diskret, wenn sie nur endlich oder abzihlbar unendlich viele Werte

annehmen kann. Sind x; die Werte von X fiir ein vollstindiges System von Elementarereig-
nissen und P(X = x;) = p; die Einzelwahrscheinlichkeiten der ZufallsgroBe X, so gilt

Fi (x) = Z Pi -
X <X
Die Verteilungsfunktion F einer diskreten ZufallsgréBe ist eine Treppenfunktion.

+ Eine ZufallsgréBe heilit stetig, wenn sich ihre Verteilungsfunktion F'in der Form
X
e = { /0t

darstellen 1ifit. Die Funktion f heit Dichtefunktion der Zufallsgr6Be X. Die Verteilungs-
funktion F einer stetigen ZufallsgroBe ist eine fiir alle x definierte stetige Funktion.

Eigenschaften
f®O>=0 firalle e R tli)]llwf(t)=0 Jim f())=0
b ©
Pla<Xx<b)=[fydt [ fyde=1 fO=F/(

+ Transformation von Zufalisgrdfien. Die Zufallsgrofie X habe die Dichtefunktion /. Dann hat
die transformierte Zufallsgrofe Y =g(X) die Dichtefunktion (falls g streng monoton ist)

V(ORI () ol ()
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Erwartungswert und Streuung
Definition diskrete ZufallsgroBe X | stetige ZufallsgréBe X
Erwartungswert| u = E(X) El xiPi | xfx)dx
Streuung, 2 - DY) = -0 | 36— 1)2p. T
Var & o’ =DXX)=E(X-w?) | Z(xi-w’p; Je-wy@ar

+ Die GroBe o= /D?(X) wird als Standardabweichung bezeichnet.”

+ Es gilt

§ x?pi —-p?  fiir diskrete ZufallsgroBe X

DX(X) = E(() - (EQD) = o™
| x2f(x)dx - u? fiir stetige ZufallsgroBe X

¢ Tschebyscheffsche Ungleichung

2
P(|X—u|2a)s% fiira>0
a

* Standardisierte Zufallsgréfen. Zufallsgrofen mit Erwartungswert p=0 und Streuung
o2 =1 werden als standardisierte ZufallsgroBen bezeichnet. Ist X eine ZufallsgréBe mit Er-
wartungswert |1 und Streuung 62, so hat die transformierte Zufallsgrofe

den Erwartungswert py = 0 und die Streuung c% =1.

LSpezielle diskrete Verteilungen '

Einzelwahr- Erwartungs- |  Streuung Rekursionsformel
scheinlichkeit p wert o’ Piel =
k=0,1,... H

Binomialverteilung n) k ke
- 1-
0<p<1,0<k<n (k pr(1-p) P mp (1-p)

n—k _pP_
k+1 l—ppk
Hypergeometrische ( M )[N —M]

Verteilung k n-k np np(1 - p)ﬂ nk M-k i
M<N, n<N, k<n —N_ mit p = % N-1 | k+l  N-M-n+k+1
k<M, n—k<N-M n
Poissonverteilung Ak A A

3> 0 we * A k+1?

Die Bezeichnungen fiir 6 und ¢” sind in der Literatur nicht einheitlich.
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Spezielle stetige Verteilungen I




120 Stochastik

Funktionen von Zufallsgrifien I

Funktion Voraussetzung Verteilung
n n n

2 a;X; | X; normalvert. mit Ny, ,01-2) und unabhingig N('Z a;u;, 2, a’.zo-iz)
=1 j=1 i=1

X1 +X, | X1, X, binomialvert. mit (p, n1), (p, 73), unabh. | Binomiatvert. mit (p, n] +n57)
X1+X, | X1,X; poissonvert. mit A1, A, und unabh. Poissonvert. mit A=A; +2Ay

Zweidimensionale Zufallsgriofien

Sind XY ZufallsgroBen, so heifit das Tupel (X, Y) zweidimensionale ZufallsgrofBe. Thre Ver-
teilungsfunktion ist

Fx,y)=P((X<x)n (¥ <y)) .

Sie heiflen unabhdngig, wenn {X <x und {¥ <y} fiir alle x,y €R unabhingige Ereignisse
sind.

* Sind X und Y beide diskrete Zufallsgrofen, die die Werte x;,i=1,2, ..., undy;,j=12,...,
annehmen, so ist (X, Y) eine diskrete zweidimensionale Zufallsgrofe mit

pi=P((X=x)nT=y)) .. Einzelwahrscheinlichkeiten,
Fx,y)= 2 p i Verteilungsfunktion

X<x

Yi<y

* Eine zweidimensionale Zufallsgréfe heift stetig, wenn fiir ihre Verteilungsfunktion gilt

x Yy
Faey)= | [ fendtd  mit f(s,0) ... Dichtefunktion.

Randverteilungen

* Aus den Einzelwahrscheinlichkeiten p;; einer diskreten zweidimensionalen Zufallsgrofie
(X, Y) erhilt man die Einzelwahrscheinlichkeiten der einzelnen Komponenten als sogenannte
Randverteilungen:

P =x)=Zpy, P=y)=2py
J 1

* Aus der Dichtefunktion f(s,?) einer zweidimensionalen stetigen ZufallsgroBe (X,Y) erhilt
man die Dichte der einzelnen Komponenten als Randverteilungen

@)= [ f60d, fr®o= | fs.nd .

¢ Die diskreten bzw. stetigen ZufallsgroBen X, Y sind unabhingig, wenn gilt
py=PX=x;)-PY=y;)  bzw. J&.») =fx(®) - fy(»)
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Momente zweidimensionaler Zufallsgrofien

diskret | stetig
erste Momente
H = B0 Tk I [ofwaxey
=E(Y) Eyjpij j;o j;oyf(x,y)dxdy
zweite zentrale Momente
O = E((X— 1x)?) - 1)2ps T Tocmmo?
=D =0} Py 1 e mwydedy
Oxy =E(X- (Y- 1) | ZCi-we) 0wy | | | = mo)—py S, y) dedy
Kovarianz von X, Y W o=
_ 2 0 o
o =B~y % (7 = )Py [ [o-m) ey dxdy
- D2(Y) =0} 1/ —00 —00
Korrelation und Regression I

* Die GroBe pxy = 5,57 0 heit Korrelationskoeffizient der Zufallsgréfien X)Y.
* ESgllt —lprySI .

+ Zwei ZufallsgroBen XY heiBen unkorreliert, wenn pyy =0 gilt. Unabhingige Zufallsgros-
sen sind unkorreliert.

+ Die iiber die bedingten Erwartungswerte £E(Y /X = x) und E(X/Y = y) definierten Kurven (im
diskreten Fall Punktfolgen)

Jx)=E¥/X=x) und %()=EX/Y=y)

heiBen die Regressionslinien oder Regressionsfunktionen von Y beziglich X bzw. von X
beziiglich Y. Dieses beziiglich XY symmetrische Regressionsmodell wird Modell I genannt.
Im Modell I sind die x; feste Werte und die zugehorigen Y; ZufallsgroBen.

bedingte Erwartungswerte zweidimensionaler ZufallsgréBen

diskret stetig
E(IX=x)) | ZyP(r=ylX=x) EEIX=%) | T yromdy
mit P(Y=y/X=x;) = EPTZ mit fhy = =T
i Trene
BXIY=) | ZxP@=x/Y =) EX/Y=Y) Txf(x,y)dx
mit PXX=x,/Y=y,)= {’;,f mit fcly) = Jf;((x y;dx
A fey
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Lineare Regression (Modell IT)

¢ Die ZufallsgroBen XY heiBen linear korreliert, wenn die Regressionslinien Geraden sind.
Diese Regressionsgeraden haben folgende Gleichungen.

y=Bx+y  mit

Regression von X beziiglich Y- x=8y+e mit &= g_;p,\,y , &= Ux—Ouy
Die Koeffizienten P und & heiBlen Regressionskoeffizienten.

c
Regression von Y beziiglich X: B= G—ipw »  Y=Uy—Blx

¢ Sind XY nicht linear korreliert, werden diese Geraden ebenfalls Regressionsgeraden ge-
nannt. Sie sind dann lineare Approximationen der Regressionslinien.

¢ Unter der Annahme, daf fiir alle x die Streuung von Y beziiglich der Regressionsgeraden
gleich ist, wird diese als Reststreuung bezeichnet:

G2 =E((Y-(Px+y)*X=x) ... Reststreuung

[Punktschﬁtzungen ]

Es liege eine Grundgesamtheit vor, deren Objekte ein interessierendes Merkmal als Zufalls-
grofle X aufweisen. Unter einer Stichprobe vom Umfang n versteht man eine zufillige Aus-
wahl von n Objekten der Grundgesamtheit, verbunden mit der Ermitthing der Werte x;,
i=1,...,n . Dabei soll diec Auswahl der einzelnen Objekte voneinander unabhdngig erfolgen.
Aus den Werten x; bzw. (x;,y;) der Stichprobe lassen sich Schitzungen fiir die Parameter der
Grundgesamtheit berechnen.

zu schitzender Parameter Schitzwert Bemerkung
Erwartungswert p =E(X) %= % i X X .. Mittel.wert (%er Stichpro-
i=1 be oder arithmetisches Mittel
Streuung 62 = D2 (X) s¥ = % 3 (x; —)? falls p bekannt
i=1l
$2= . 1 l )"_jl(xi —%)2 falls 1 unbekannt
—11
p=P(4) e 1, ) ha(4) 1'st a.bsoh‘lte Hiufigkeit
n’r von Ereignis 4 in 7 Versuchen
Kovarianz 6, von X, Y __1 & o o |s(xy).. empirische Kovarianz
S El(x, i -¥) oder Stichprobenkovarianz
Korrelationskoeffizient p, |, , = % sx ... Schitzung fiir D(X)
Sy ... Schitzung fiir D(Y)
Regressionskoeffizient (3 b= SL; y = bx + cist die aus der
Sk Stichprobe (x,y), 7 = 1,...,n,
Konstante y in Regr.gerade | c =y —bx geschitzte Regressionsgerade
Reststreuung &2 2= ;zi_z 2 (i—(bx; +c))?
i=
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@nﬁdenzintervalle J

Mit Hilfe von Punktschitzungen und Kenntnissen iiber die Verteilungsfunktion der Grundge-
samtheit werden Intervalle berechnet, dic mit der Wahrscheinlichkeit 1 —c, genannt Konfi-
denzniveau, den interessierenden Parameter enthalten. Die folgende Tabelle enthilt Konfi-
denzintervalle fiir Erwartungswert p und Strewung o2 einer normalverteilten Grundgesamt-
heit N(u,62) sowie fiir die Regressionsparameter zweidimensional-normalverteilter Zufalls-
groBen (XY ). Die Grofien zg, tmgq und x,z,,,q sind die sogenannten Quantile der Normalver-
teilung, #-Verteilung und x % -Verteilung ( » Statistische Tabellen).

Parameter|  Situation untere Intervallgrenze obere Intervallgrenze
2 -=_ O -, ©
o~ bekannt X——1z;_¢a X+——z.¢
B o} 5 3
2 ¥ S X+
unbekannt | X - —¢ X+—t
P- c ‘/ﬁ n—1,1~‘21 ‘/ﬁ n—l,l—%
n 2 n 2
o2 p bekannt 7 3 * 2 ¢ "
Xn1-2 Xp2
n-1 1 n-1 o
o2 p unbekannt | 5——S 7S
Xn-1,1-2 X1,
B b-— Ip-2,1-2 b+ n-2,1-2
1/(n - l)s% (n- l)s,zr z
v 5 , 1 2 c+5 [y 2
c—S5 'ﬁ+(n—_l)gtn_2’l_% n (n—~l)s2 n 2,l~2
52 (n—2)5* (n-2)5?
2 2
n-2,1-% Xn2,2
Signifikanztests J

Unter der Annahme, daf eine zu priifende Hypothese Hy wahr ist, wird fiir eine von der Stich-
probe vom Umfang n abhiingende Priifgrofe T ein kritischer Bereich B so ermittelt, dall

P(T € B|Hywabr)<a
gilt. Die im voraus gewihlte kleine Zahl o heiBt Signifikanzniveau. Liegt die aus der Stichpro-

be berechnete Realisierung ¢ von 7 im kritischen Bereich B, so wird die Hypothese Hg
abgelehnt.
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Hypothese Voraussetzamg Priifgrofe ¢ Ablehnung, falls
k=Ko X € N, 02) X-Ho ltl2z,_a
2z, a
02 bekannt s " 2
TETPS X e N(n,02) X-uo =1, ) «
=lp,1-2
62 unbekannt 5 n S
Hx = Uy Xe N(ux,c,%) Xx-y
5 72z, _a
Ye N(uy, Gy) 0_% 0.}2] 2
0,2,,0'3 bekannt m TR
= 2 pa—
ezt | X Muxon) ®-9) Jmn(m+n-2) 121, 51
Y € N(uy, o3) > > mn=2,1-3
o2 =2 J(m +n)(m- 152+ (- 1s2)
03, c% unbekannt
2
o= 0'% X eN(u,02) ns*? t< Xn,%
i bekannt 0% oder
2
12 Xn,l %
2
o?=0; X eN(u,02) (n=1)s? = En-1.%
u unbekannt o3 oder
2
12%5 1 1-2
2
FX=F0 k Klassen [ai’ai+1) k m_; _ > 2
m; Hiufigkeit ,-=Zl mp; | 1 = Xk-1, 1
in Klasse i mit
pi250=1.B) | p, =Fo(ai1) - Fol@)
P(A)=py | ngrod _hnld) —npo_ 2z, o
Jnpo(1-po) 2
- b-By 2 t >t
B=Bo e [(n-1)s2 l#l n-2,1-%
Y=Yo £ Yo |t} > ¢ o
~ |1 22 n—2,1—7
s g+ >
(n—1)s%
Yy |12 n(myymyy = myama;)? 12 x21’1_a
unabhanglg 1 myypmiyimie M a2 Me1Me)

2 |myy|mas|ma,

Me1 Mgy | N

mjy,... absolute Hiu-
figkeiten der Klassen

in der Stichprobe
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. . 1
Verteilungsfiunktion ®(z) =
J2n

0

1

2

2

z 2
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_x2
I e 2 dx der standardisierten Normalverteilung N(0, 1)

—00

3

4

5

6

7

8

9

0.0
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8
0.9

1.0
11
1.2
1.3
1.4

1.5
1.6
1.7
1.8
1.9

2.0
21
22
23
2.4

25
2.6
27
28
29

3.0
3.1
3.2
3.3
3.4

3.5
3.6
3.7
38
39

.500000
.539828
.579260
817911
.655422

.691462
725747
.758036
.788145
.815940

.841345
.864334
.884930
.803200
.919243

.933193
.945201
.955435
.964070
.971283

.977250
.982136
.986097
.989276
.991802

.893790
.995339
.996533
.997445
.998134

.998650
.999032
.999313
.899517
.999663

.999767
.999841
.999892
.999928

999952

.503989
543795
.583166
.621720
.659097

.694974
729069
.761148
791030
.818589

.843752
.866500
.886861
.804902
.820730

.934478
.946301
.956367
.964852
.971933

977784
.982571
.986447
.989556
.992024

.993963
.995473
.996636
997523
.998193

.507978
.547758
.587064
.625516
.662757

.698468
.732371
.764238
.793892
.821214

.846136
.868643
.888768
.906582
8922196

.935745
.947384
.957284
.965620
.972571

.978308
.982997
.986791
.989830
.992240

.994132
.995604
.996736
.997599
.998250

.511966
551717
.590954
.629300
.666402

.701944
.735653
.767305
796731
.823814

.848495
.870762
.890651
.808241
.923641

.936992
.948449
.958185
.966375
973197

978822
.983414
.887126
.880097
.892451

.994297
.895731
.996833
.997673
.998305

.515953
.555670
.594835
.633072
.670031

.705401
.738914
.770350
.799546
.826391

.850830
.872857
.892512
.900877
.925066

.938220
.949497
.956070
.967116
.973810

.979325
.983823
.987455
.990358
.992656

.994457
995855
.996928
.997744
.998359

.519939
.550618
.598706
.636831
673645

.708840
742154
773373
.802337
.828944

.853141
.874928
.894350
911492
.926471

.939429
.950529
.950941
.967843
.974412

.979818
.984222
987776
.980613
.992857

.994614
.995975
.897020
.997814
.998411

.523922

.563559
.602568

.640576

677242

.712260
.745373
776373
.805105
.831472

.855428
.876976
.896165
.913085
.927855

.940620
.951543
.860796
.968557
.975002

.980301
.984614
.988089
.990863

.993053

.994766
.996093
.997110
.897882
.998462

.527903
.567495
.606420
.644309
.680822

715661
.748571
779350
.807850
.833977

.857690
.879000
.897958
.914657
929219

.941792
.952540
.961636
.969258
975581

.080774
.984997
.088396
.991106
.993244

.994915
.896207
.997197
.997948
.998511

.531881
571424
.610261
.648027
684386

.719043
.751748
.782305
.810570
.836457

.859929
.881000
.899727
.916207
.930563

.942947
.853521
.862462
.969946
.976148

.881237
.985371
988696
.991344
.993431

.895060
.996319
.897282
.898012
.998559

.535856
.575345
.614092
.651732
.687933

.722405
.754903
.785236
.813267
.838913

.862143
.882977
.901475
917736
.931888

.944083
.954486
.963273
.970621
.976705

.981691
.985738
.o88989
.991576
.993613

.995201
.896427
.997365
.998074
.998605

Quantile z, der Normalverteilung N(0,1)

0.9

0.95

0.975

0.99

0.995

0.999

0.9995

1.282

1.645

1.960

2.326

2576

3.090

3.291
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Quantile 7,4 der ¢ -Verteilung

tmg

| fentrar=g

34| 09 0.95 0.975 0.99 0.995 0.999 0.9985
1 3078 6314 12706 31.821 63.657 318.309 636.619
2 1.886 2920 4303 6.965 9925 22327 31.599
3 1.638 2353 3.182 4.541 5841 10.215 12.924
4 1633 2132 2776 3.747 4604 7173 8610
5 1.476 2015 2571 3.365 4032 5893 6.869
6 1.440 1943 2447 3143 3707 5208 5959
7 1.415 1.895 2365 2998 3499 4785 5408
8 1.397 1.860 2306 2896 3355 4.501 5.041
9 1.383 1.833 2262 2821 3250 4.297 4.781

10 1.372 1.812 2228 2764 3.169 4.144 4587
11 1.363 1.796  2.201 2718 3.106 4.025  4.437
12 1.356 1.782 2179 2681 3.065 3930 4.318
13 1.350 1.771 2160 2650 3.012 3.852 4.221
14 1.345 1.761 2145 2624 2977 3.787 4.140
15 1.341 1763 2131 2602 2947 3.733 4.073
16 1.337 1.746 2120 2583 2.921 3686 4.015
17 1.333 1.740 2110 2567 2898 3.646 3.965
18 1.330 1.734 2101 2552 2878 3610 3.922
19 1.328 1726 2093 2539 2.861 35679 3.883
20 1.325 1.725 2086 2528 2845 3552 3.850
21 1.323 1.721 2.080 2518 2.831 3.627 3.819
22 1.321 1.717 2074 2508 2819 3505 3.792
23 1318 1714 2068 2500 2807 3.485 3.768
24 1.318 1.711 2064 2492 2797 3467 3.745
25 1316 1.708 2.060 2485 2787 3.450 3.725
26 1315 1706 2056 2479 2779 3435 3.707
27 1.314 1.703 2052 2473 2771 3.421 3.690
28 1.313 1.701 2048 2467 2763 3.408 3.674
29 1.311 1.698 2045 2462 2756 3.396 3.659
30 1.310 1697 2042 2457 2750 3.385 3.646
40 1.303 1.684 2.021 2423 2704 3.307 3.551
50 1299 1676 2009 2403 2678 3.261 3.496
100 1.290 1.660 1984 2364 2626 3.174  3.390
200 1.286 1.653 1972 2345 2601 3131 3.340
00 1.282 1.645 1960 2326 2576 3.080 3.291

Niherung fiir groBe m: tmg =24 (Quantil der Normalverteilung N(0, 1))
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Quantile x2,4 der x> Verteilung
in-q
| fHam@)dx=q
2
N 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99

1 0.00016 0.00098 0.0038 0.0158 2.71 3.84 5.02 6.63

2 0.0201 0.0506 0.103 0.211 461 5.99 7.38 9.21

3 0.115 0.216 0.352 0.584 6.25 7.81 9.35 11.35

4 0.297 0.484 0.711 1.06 7.78 9.49 11.14 13.28

5 0.554 0.831 1.15 1.61 9.24 11.07 12.83 15.08

6 0.872 1.24 1.64 2.20 10.64 12.59 14.45 16.81

7 1.24 1.69 217 2.83 12.02 14.07 16.01 18.47

8 1.65 2.18 273 3.49 13.36 15.51 17.53 20.09

9 2.09 2.70 3.33 417 14.68 16.92 19.02 21.67
10| 256 3.25 394 487 1599 1831 2048 2321
1 3.05 3.82 457 5.68 17.28 19.68 21.92 24.72
12 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22
13 411 5.01 5.89 7.04 19.81 22.36 2474 27.69
14 4,66 5.63 6.57 7.79 21.06 23.68 26.12 29.14
15 523 6.26 7.26 8.55 22.31 25.00 27.49 30.58
16 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00
17 6.41 7.56 8.67 10.09 24.77 27.59 30.1¢ 33.41
18 7.01 8.23 9.39 10.86 25.99 28.87 31.53 34.81
19 7.63 8.91 10.12 11.65 27.20 30.14 32.85 36.19
20 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57
21 8.90 10.28 11.59 13.24 29.62 32.67 35.48 38.93
22 9.54 10.98 12.34 14.04 30.81 33.92 36.78 40.29
23| 10.20 11.69 13.09 14.85 32.01 35.17 38.08 41.64
24 | 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98
25| 11.52 13.12 14.61 16.47 34.38 37.65 40.65 44.31
26| 12.20 13.84 15.38 17.29 35.56 38.89 41.92 4564
27| 12.88 14.57 16.15 18.11 36.74 40.11 43.19 46.96
28 | 13.56 15.31 16.93 18.94 37.92 41.34 44.46 48.28
29| 14.26 16.05 17.71 19.77 39.09 42.56 45.72 49.59
30| 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89
40| 22.16 24.43 26.51 29.05 51.81 55.76 59.34 63.69
50| 29.71 32.36 34.76 37.69 63.17 67.51 71.42 76.15
60| 37.48 40.48 43.19 46.46 74.40 79.08 83.30 88.38
70| 45.44 48.76 51.74 556.33 85.563 90.53 95.02 100.42
80| 53.54 57.15 60.39 64.28 96.58 101.88 106.63 112.33
90| 61.75 65.65 69.13 73.29 107.57 113.15 118.14 124.12
100 | 70.06 74.22 77.93 82.36 118.50 124.34 129.56 135.81
200 {156.43 162.73 168.28 174.84 226.02 233.99 241.06 249.45

Niherung fiir grofie m: Nomg = %(Zq +2m—1)32
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[Lineare Gleichungssysteme I

Eliminationsverfahren von Gauf}

Gegeben: tegulire (n,n)-Matrix A und Vektor b € R”.
Gesucht: Vektor x eR” mit Ax=b .

Elimination: Berechne die (n,n)-Matrizen A =AM . A®  _ A® ypd Vektoren
b=bM, .. b® . b®™ durch Uberspeicherung gemiih

Schritt 1: falls nétig, Zeilenvertauschung i <> &k (i > k), so daB a(k) #0
a®
Schritt 2: Iy = 22) (G=k+1,...,n)
ek
af*™V =a ~1yal | bV =0 16 P j=k+1,..m)
Riickrechnung: (b(n) ' i ag')xj) /a(n) k=n,...,1)
J=k

LR-Zerlegung

Gegeben: regulire (n,n)-Matrix A.

Gesucht: linke untere (n,n)-Dreiecksmatrix L mit /;; =1 (i=1,...,n) und rechte obere Drei-
ecksmatrix R, so da} P-A=L-R gilt. Die Matrix P ist die zu den Zeilenvertau-
schungen gehdrende Permutationsmatrix.

Berechnung der Matrix L: Die unterhalb der Hauptdiagonalen von L stehenden Elemente sind
die Zahlen /;;, aus dem Eliminationsverfahren von Gauf.

Berechnung der Matrix R: Die in und oberhalb der Hauptdiagonalen von R stehenden Elemen-
te sind die entsprechenden Elemente der Matrix A aus dem Eliminationsverfahren
von Gaufl.

Cholesky-Verfahren

Gegeben: symmetrische, positiv definite (12, 2)-Matrix A und Vektor b € R”,
Gesucht: Vektor x e R” mit Ax=h.

Elimination: Berechne die obere (,n)-Dreiecksmatrix C und den Vektor d € R” gemiil

( k=1 k=1
Cp = akk—igl ci2k s Ok = (akj Z ckc,])/ckk , dy —(bk— )) c,kd,)/ckk

k=1,...,n; j=k+1,...,n).

n
Riickrechnung: Xj = (dk - kZ cijj) ley, (k=n,...,1)
J=k+1

K. Vetters, Formeln und Fakten
© B. G. Teubner Stuttgart - Leipzig 1998
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Matrizen-Eigenwerte I

Jacobi-Verfahren

Gegeben: Reelle symmetrische (7,7)-Matrix A.
Gesucht. Alle Eigenwerte A; von A.

Verfahren: Bildung einer Folge zu A ihnlicher Matrizen A=AM, .. A® ... die gegen
diag(A;) konvergiert, nach folgender Vorschrift fiir den Ubergang von A% zy A%+D)

1. Bestimme das betragsgroBte Nichtdiagonalelement a der Matrix A®

249 ®_, ®

1
arctan fir an’ # ass
2 =g 2Dy AT T
551gna5s) a® =l
agﬁl) = a(r’f“) = a(k)cosq)k a( )sm<pk (G=1...,n, i#r)

ffﬂ) (k”) —a( )smq)k +a( )cosq)k (i=1,...,n;, i#5)

(k+1)—a( cos? Or— ass)sm2¢k+a§s)sm O

(k+1) —a( sin? [0y +a$s)sm2(pk +a§s)cos 0

aglsc+l) _ agl;+l) -0

Vektoriteration (Potenzmethode)

Gegeben: Diagonalihnliche (r,7)-Matrix A.
Gesucht: BetragsgroBter Eigenwert A7 von A.
Voraussetzung: BetragsgroBter Eigenwert A ist reell und einfach.

Verfahren: Wihle Startvektor xo e R”. Berechne die Vektorfolge x(® xM) .. x® ... nach
folgender Vorschrift fiir den Ubergang von x® zu x*+1) :
y#+D = Ax® |
y(k+l)
fly® o]

* Falls der Startvektor x¢ eine nicht verschwindende Komponente beziiglich des zum Eigen-
wert A gehérigen Eigenvektors ry besitzt, so gilt

x®+D) =

ly®| >r1 fir k>0 und x®P>r; fir k>

+ Schnellere (quadratische) Konvergenz gegen A liefert der Rayleigh-Quotient.
(x(k))Ty(k+l)

(x("))Tx(") —>A1 fir k> .
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Nichtlineare Gleichungen I

Gleichungen einer Unbekannten der Form f(x)=0, xR .

Bisektionsverfahren: Startwerte xq,yq mit f(xq) -f(yo) <0

_1 _ ] Xk fur feg) flegir) <0 -
Xk+1 = 2(xk +yk) Y+l = { Vi fiir f()’k) 'f(xk:]) <0 (k_ 0’ 1) "')

* Das Verfahren konvergiert gegen eine Nullstelle x* von £, falls f in [x¢,y0] stetig ist.

A
Newtonverfahren: Startwert xg. y

JSCx)
X1 =X~
* o)
Regula falsi: Startwerte x¢,x1 .

_1 S+ G-,
Xpr1 = 50k +Xp-1) e -0 f(xk—l)(xk Xj-1)

k=1,2,..)
* Newtonverfahren und Regula falsi konvergieren fiir

(*k=0,1,...)

hinreichend gute Startwerte gegen eine Nullstelle x*
vonf, falls f in einer Umgebung von x* zweimal differenzierbar ist und f/(x*) =0 gilt.

Gleichungen einer Unbekannten der Form x=g(x), x eR

Gewdhnliches Iterationsverfahren (Verfahren der sukzessiven Approximation): Startwert x .

Xg+1 =g(xk) (k"_‘o’ 17)

¢ Die Funktion g sei auf dem Intervall [a, 5] stetig differenzierbar, und fiir alle x € [a, 5] seien
die beiden Bedingungen a<g(x)<b und |g’ (x)| <1 erfiillt. Dann konvergiert das ge-
wohnliche Iterationsverfahren gegen eine Losung x* € [a, 8] der Gleichung x = g(x).

Gleichungssysteme der Form f(x) =0 mit f|R"—> R”"
Gleichungssystem in Komponentenschreibweise:
fl(xl,....,xn) = 0
FaGegs.oXn) = 0
Newtonverfahren: Startwert x® eR",

x®D = x® L g®) mit F/ (x®)yu® = _f(x®)) k=0,1,..)

. lineares Gleichungssystem fiir u(®
m Komponenten:
(%)

k+1 k 3 . n k k k k .
xl(.Jr )=x§)+ul() mit Zlajf,-(x(l ),...,xg,))ul(.)=—f,v(xl ,...,x,(q)) (i=1,...,n)
J= :
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Approximationsprobleme I

Interpolation durch Polynome

Gegeben: Datenpaare (xg,¥9), ..., (Xn,yn)

Gesucht: Polynom pn(x) mit pp(x;)=y; (=0,...,n)
Lagrange-Interpolation

(c~x0)- (X1 )X =X ) (X —Xn)
(e; —x0) (% =X )0¢; = Xi41) - (x; —Xn)

pn(x) =yolo(x)+- - +ynin(x) mit /;(x)=
Newton-Interpolation

Pn(¥) = [Xo] +[X0,X1]J(x —xg) +--- +[X0, ..., Xn](x = X0) - -(x —X,_1)
mit den rekursiv definierten Steigungen

. [Xitts - osXigr ] = [Xis o 0s Xipri
Fil=yi G=0,.,1), [X;Xipg, .0 Xigp] = 22 Ix;r_[xli’ :Xivr-1]

Kubische Spline-Interpolation

Gegeben: Datenpaare (xq,y9), .-, (Xn,¥n)

Gesucht: Polynome p;(x) = a; +B;(x —x;) +7;0c —x;)% +8,(x - x;)3| [xi,xip 1] >R
(i=0,...,n—1), so daB die aus diesen stiickweise zusammengesetzte Funktion
s |[x0,xn] ~R alle Daten interpoliert, zweimal stetig differenzierbar ist und
s (eg) = 5" (xp) = 0 erfiillt.

Verfahren: 1. Losung des linearen Gleichungssystems

h,»_lm,-_l +2(hi—l +h,-)mi +h,-mi+1 =c; (l =1,..,n-1)

mit
6 6
mo=mn=0, h;=xjp —x; wnd ¢; =3 (Y1 ~yi) =5 — l(yi—yi—1)~
; _
) Vil TYi 2mi+miy _m; _mi g —m
2. a;:=y;, Bj= I+hi - +1h;, Yi=5, 8 =_L6h,-—l

Diskrete Quadratmittelapproximation

Gegeben: Datenpaare (x;,y;),({ = 1,...,m) und Funktionen ¢;| R—>R (i=1,..,n<m)

Gesucht. Koeffizienten cy,...,cn der Funktion g(x) =c;@(x)+ - +cn®n(x) mit der
Eigenschaft

m 2 .
2Z(@)-y)” —> min

Verfahren (Normalgleichungsverfahren): Losung des linearen Gleichungssystems
ATAc=ATy

mit der (m,n)-Matrix A = (a;) =(¢;(x;)) und ¢=(c,) eR", y=(y;) eR™

* c heit Quadratmittellosung des iiberbestimmten linearen Gleichungssystems Ac=y .
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Numerische Differentiation ]

Bezeichnungen: y; =y(x;), h;=x;41-%;, [X;,Xi+1] ... Steigungen, R ... Restglied

vorwdrtiger Differenzenquotient.  y/(x;) = [x;,xi11] = y,+;' i R=0)
i
riickwdrtiger Differenzenquotient.  y/(x;) =~ [x;_1,%;] = h Yi—Ji-1 R=0(h)
i-1
hohere Ableitungen: y™M(x;) = nl [Xick> o s Xigan] R=0(/)

Formeln fiir gleichabstiindige Stiitzstellen

zentrale Differenzenquotienten: Y~ )_’ILI_Z_’I)’# R=0(h?
) VL iyzx +Yi-1 R=0(2)

unsymmetrische Formel: V()= :&%ﬂ R=0(h?

[Numerische Integration I

Bezeichnungen: h=bn;a, x;j =a+jh, =y(x;), j=0,..,n, R .. Restglied

Quadraturformeln vom Interpolations-Typ

Trapezregel: [y dx = 5906 +5(0) R=-C=Dne), & e ap)

Simpson-Regel: i Yoy de~ 822 { @) +ap(* 22 by + y(b)} ,R=-C 1‘83) y®m), 1 e (a,b)

Zusammengesetzte Quadraturformeln

b
Trapezregel: fy(x) dx~ —Izz(yo +21 4+ + 2y, +yn) R=0(h?)
a

b
Simpson-Regel: fy(x) dx ~ g(yo +4y1 +2y5 +4y3+---+4y,_ 1 +yn) R= 0(h4)
a

Quadraturformeln vom GauB-Typ

: b—aJ a+b b-a a+b  b-a
Gaup I dx =~ -
auf | zj;y(x) 5 ly( 5 2‘/§)+y( 5 +2/§)

Gaup II- Iy(x)dx~—{5y(a+b Eb;a)+8y(a+2-b)+5y(a+b gb;a)}
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Numerik fiir Anfangswertaufgaben I

Gegeben: Gewdohnliche Differentialgleichung ¥ (%) =f(x,y(x)) und Anfangswert (@) = yq.
Taylorreihen-Verfahren

Gesucht: Niherungsfunktion 7 |[a,5] — R fiir die Losungsfunktion y der Differentialglei-
chung, die den Anfangswert annimmt.

Verfahren:  J(x) =ya +}@(x—a)+}iz('a2(x—a)2 +---+}—%Q(x—a)p
mit
Y@ =1(a,ya)
y"(a) =0xf(a,ya)+3yf(a,ya)y' (@)
Y"(@) = 8 f(@,ya) + 205/ (@, ya)y (@) + Oy f (@, y )/ (@))* + 851 (@, ya)y" (a)
usw.,

Einschrittverfahren

Gesucht: Niherungswerte y, fiir die Funktionswerte der Losungsfunktion an den Stellen x:

b-a

Y0 =Ya, yn #y(xn), mit xp=a+nh fir n=0,...,N und mit h=T

Explizite Einschrittverfahren (F ... Fehler)

Euler (Polygonzugverfahren): Vel =Yn +hf(en,yn) F=0(h)
Halbschritt: &y = f(xn,yn) ko =f(xn+ g’Yn + gkl)

Yn+1 =Yn +hky F=0(h?)
Heun: ky =f(xn,yn) ky =f(xn+g,yn +%k1)

k3 =fCn+ Lyn+Bhy)  ypr =yn+ B0 +3k3)  F=00)
Runge-Kutta: kq =f(xn,yn) ko =f(en+ g’y" +%k1)

k3 =fGxn+ g,)’n + %kz) kg =f(cn +h,yn +hk3)

Vet =n + B0k + 2k + 23 +kg) F= 0%

/ ®)

Taylor: Vil =¥n +}%h 4+ +Xp"|—h1’ mit y,(,k) = y®)(xn) F=O(hP)

Implizite Einschrittverfahren

Euler riickw.; kq =f(xn +h,yn +hk1) Ynsl =Yn+hky F=00)

Trapezregel: &y =/ (xn,yn) ky=fGcn+h,yn+ %(kl +k2))
Yue1 = yn + 54y +ky) F=0(?)
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Gaub- 3- J_ 3- 2,/‘
Legendre kl =f(xn + h ,ynt -—kl + hk2)
3+ 3+2
k2 f(X'n+ \/_ ,_Vn+ J_hk1+—k2)
Ynr1=yn+ E(kx +k2) F=00%
Mehrschrittverfahren

Gesucht: Nahenungswerte y, = y(x,) fiir die Losung der Differentialgleichung y/ = f(x, y)
an den Stellen x, =a+nh , n=0,...,N, mit h=% und mit yg=yg, .
Bezeichnung: f; = f(xn,yn) , F ... Fehler

Explizite Verfahren vom Adams-Bashforth-Typ

Yne1=yYn+ %(3fn =fu-1) F=0(h?
Vst =+ Lo @3 = 16fp 1 + 57 ) F=0(3)
Vs =Y+ 2550 = 5% 1 + 372~ Ys) F=0(*%

Prddiktor-Korrektor-Verfahren von Adams-Bashforth-Moulton

Yooy = 9n+ TS5 fn = 5% 1 + 372~ Yps)

Inet =9+ ] Snt, I + 190 = St | F=0(%)
Nystrom-Verfahren (explizites 2-Schritt-Verfahren)

Vet =Int + AU =21+ ) F=O(n%)
Adams-Moulton-Verfahren (implizite Verfahren)

Ve =+ (S Coni 1, 1) + 8 = F1) F=0(r%)

Pt =+ ALl 1, Y1) + 19 = Syt 2] F=0(n*)
Milne-Simpson-Verfahren (implizites 2-Schritt-Verfahren)

Vet =nt + Gt e+ A+ frcn] F=0(h*)
Riickwdrtsdifferentiationsmethoden (BDF-Methoden, implizite Verfahren)

Part = 349n = 1)+ 2hf (n i1, Ymer) F=0(h?)

Pt = 171890 = W1 + 2 2) + Thf o1, Y1) F= 00

1 12
Y1 = 5c(48Yn =36y, 1 + 16y, 5 =3y 3) + 2 2hf(Xps1,Vn41)  F= 0(h4)
25 25
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Determinante, 43
Hauptabschnitts-, 100
Wronski-, 79

Dezi, 9

Dezimaldarstellung, 16

Dezimalzahl
endliche, 16
periodische, 16
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exakte, 77
Fundamentalsystem, 78
gewohnliche, 74, 133
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Divergenz, 53, 109
Division, iterierte, 16
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Doppelintegral, 102
Oberflichenelement, 103
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Hyperbelfunktionen, 35
Winkelfunktionen, 38
Drehmatrix, 21, 114
Drehung, Koordinatensystem, 21
Dreieck, 22
gleichschenkliges, 23
gleichseitiges, 23
Pascalsches, 13
rechtwinkliges, 22
Dreiecksmatrix, 128
Dreiecksungleichung, 45, 46
Dreifachintegral, 105
Dualdarstellung, 16
Durchschnitt, 15, 115
Durchstopunkt, 29

Ebene
Tangential-, 109
Ebenengleichung
Normalenform, 28
Parameterform, 28
Eigenvektor, 50, 51
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Eigenwert, 50, 51, 129
Einheit, imaginére, 17
Einheitsmatrix, 48
Einheitsvektor, 19, 44
Tangenten-, 108
Einschrittverfahren, 133
Einzelwahrscheinlichkeit 117, 120
Element, 15
Folgen-, 53
Matrix-, 47
Elementarereignisse, 115
Eliminationsverfahren
Cholesky, 128
Gauf3, 128
Ellipse, 24, 25
Ellipsenkoordinaten, 103
Entwicklung
Determinante, 43
Taylor-, 57
Ereignisfeld, 115
Ereignisse
abhéngige, 116
atomare, 115
disjunkte, 115
entgegengesetzte, 115
komplementére, 115
sichere, 115
unabhéngige, 116
unmogliche, 115
unvereinbare, 115
zufdllige, 115
Ereignissystem, vollstiandiges, 115
Erwartungswert, 118, 122
bedingter, 121
Eulersche Zahlen, 10
Euler-Verfahren, 133
Exa, 9
Exponent, 12
Exponentialfunktion, 34
Exponentialverteilung, 119
Extremstelle, 98, 99, 101
Extremum, 98
Extremwert, 98
lokaler, 99, 100, 101
Exzentrizitat, 25

F-Veneilung, 119
Faktor, integrierender, 77
Fakultat, 10
Fehler
absoluter, 97
relativer, 97
Fehlerfortpflanzung, 97
Feld
elektrisches, 111
konservatives, 109
Potential-, 109, 111
quellenfrei, 111
wirbelfrei, 110, 111
Femto, 9

Fliche, 23, 93
2. Ordnung, 29
Dreieck, 22
ebene, 73
gekniimmte, 103
homogene, 104
Rotations-, 73
Sektor-, 73
Fliachenelement, 104
vektorielles, 108
Fldcheninhalt, 23, 45, 61, 73, 103
FluBmodelle, 108
FluBrichtung, 108
FluBstarke, 108
Folge
beschrankte, 53
bestimmt divergente, 53
divergente, 53
Funktionen-, 54
konvergente, 53
monotone, 53
Punkt-, 92
Teil-, 54
unbestimmt diverg., 53
Zahlen-, 53
Formel
von Bayes, 116
von Moivre, 35
Fourierkoeffizienten, 89
Fourierreihe, 89
Freiheitsgrad, 119
Fundamentalsystem, 78, 79, 80
Fiinfeck, 26
Funktion
analytische, 87
Arkus-, 39
differenzierbare, 55, 94
elementare, 34
Gamma-, 42
ganze rationale, 40
gebrochen rationale, 41,
58
gerade, 32, 89
Grenz-, 54
homogene, 75
hyperbolische, 34
implizite, 55
integrierbare, 60
inverse, 32
komplexe, 32
Lagrange-, 101
mehrere Variable, 92
mittelbare, 32
monoton fallende, 32
monoton wachsende, 32
Niherungs-, 133
periodische, 32, 89
Potential-, 77, 109
rationale, 59
reelle, 32

reellwertige, 32

stetige, 33, 93

total differenzierbare, 94

trigonometrische, 36

ungerade, 32, 89

zyklometrische, 39
Funktionaldeterminante, 103, 106
Funktionalmatrix, 96, 101
Funktionenfolge, 54
Funktionenreihe, 85

Gammafunktion, 42
Gaull
Eliminationsverf., 128
Fundamentalsatz, 40
Integralsatz, 112
GauBl-Legendre-Formeln, 134
Geometrie, 22
analytische, 24, 28
ebene, 22
rdumliche, 26
Geraden, 24
parallele, 28
windschiefe, 28
Geradengleichung, 24
Punkt-Richtungs-Form,
28
Zweipunktform, 28
Giga, 9
Gleichung
charakteristische, 80
nichtlineare, 130
quadratische, 40
Gleichungssystem
lineares, 49, 128
lineares homogenes, 49
lineares inhomogenes, 49
nichtlineares, 130
iberbestimmtes, 131
Gleichverteilung, 119
Grad, 9
Polynom, 40
Gradient, 94, 109
Greensche Integralsitze, 112
Grenzfunktion, 54, 85
Grenzwert, 32, 53, 92
linksseitiger, 32
rechtsseitiger, 32
Regel v. de 'Hospital, 33
uneigentlicher, 32
Grundgesamtheit
normalverteilte, 123
Grundintegrale, 62
Guldinsche Regel, 73

Halbparameter, 25

Halbschrittverfahren, 133

Halbwinkelformeln
Hyperbelfunktionen, 35



Winkelfunktionen, 38
Haufigkeit, relative, 115
Hiufungspunkt, 53, 92
Hauptachsentransformation, 25,
29
Hau,

Diff. u. Int.rechnung, 61

Vektoranalysis, 110
Hauptvektor, 81
Hauptwert, Cauchyscher, 71
Hekto, 9
Hessematrix, 99, 100
Hessesche Normalform, 29
Hoéhe eines Dreiecks, 22
Hohenlinie, 93
Hohensatz, 22
Horner-Schema, 16, 40
Hyperbel, 24, 25
Hyperbelcosinus, 34
Hyperbelcotangens, 34
Hyperbelfunktionen, 34

Additionstheoreme, 35

Doppelwinkelformeln, 35

Halbwinkelformeln, 35

Summe, Differenz, 35
Hyperbelsinus, 34
Hyperbeltangens, 34
Hyperboloid, 30
Hypothese, 123
Identitit einer Matrix, 47

Ikosaeder, 26

Imaginirteil, 17

Implikation, 14

Infimum, 98

Inhomogenitit, 80

Inkreis
Dreieck, 22
Viereck, 23

Inneres, 92

Integrabilititsbedingung, 77

Integral
bestimmtes, 60
Doppel-, 102
Dreifach-, 105
elliptisches, 60
Exponentialfktn., 69
Hyperbelfunktionen, 69
irrationaler Fktn., 64
Kurven-, 72, 111
Linien-, 72, 111
Logarithmusfktn., 69
Oberfliachen-, 103, 112
Parameter-, 72
rationaler Funktionen, 63
Riemannsches, 60
Substitution, 58
trigonometr. Fktn., 66
unbestimmtes, 58
uneigentliches, 71, 83

Integralexponentialfunktion, 69
Integralkosinus, 67
Integralkriterium, 83
Integralrechnung, 58
1. Mittelwertsatz, 61
2. Mittelwertsatz, 61
Integralsatz
von Gaul}, 112
von Green, 112
von Stokes, 112
Integralsinus, 66
Integration
gliedweise, 87
iterierte, 102, 105
numerische, 132
partielle, 58
Integrationskonstante, 58
Integrationsregeln, 58
Interpolation, 131
Lagrange-, 131
Newton-, 131
Spline-, 131
Intervall, 9
Isokline, 75
Iterationsverfahren
gewohnliches, 130

Jacobi-Verfahren, 129
Jordanblocke, 52
Jordansche Normalform, 52

Kathetensatz, 22
Kegel, 27, 30
Kreis-, 24, 27
Kegelschnitt, 24
Kegelstumpf, 27
Kettenregel, 55, 96
Kilo, 9
kleinstes gemeins. Vielfaches, 16
Kombinationen, 18
Kombinatorik, 18
Komponente, 44
Konfidenzintervall, 123
Konfidenzniveau, 123
kongruent, 9
Konjunktion, 14
Konstanten, mathematische, 10
Kontraposition, 14
Konvergenz, 53
absolute, 86
gleichmiBige, 54, 85, 86
Punktfolge, 92
Konvergenzbereich, 54, 85, 87
Konvergenzkriterium
von Weierstral}, 85
Konvergenzradius, 86

Koordinaten
Kugel-, 20, 97
Polar-, 96
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Zylinder-, 20, 96
Koordinatensystem, 19
Drehung, 21, 29, 30, 114
kartesisches, 19
Polar-, 19
Verschiebung, 30
Koordinatentransformation, 103,
106
Korper, 27, 105
homogener, 107
Rotations-, 73
Korrelation, 121
Korrelationskoeffizient, 121, 122
Kosinussatz, 22
Kovarianz, 121, 122
empirische, 122
Kraftfeld, 111
Kreis, 23
Kreiskegel, 24, 27
Kreissegment, 23
Kreissektor, 23
Kreiszylinder, 27
Kriimmungsradius, 25
Kugel, 27
Kugelausschnitt, 27
Kugelkappe, 27
Kugelkoordinaten, 20, 97, 107,
109, 110, 111
Kugeloberfliche, 104
Kuhn-Tucker-Bedingungen, 101
Kurve
ebene, 73
Raum-, 73, 108
zweiter Ordnung, 24
Kurvenintegral
1. Art, 72
2. Art, 111

Lagrange-lnterpolation, 131
Linge, 46

Kurve, 73

Vektor, 45
Laplace-Operator, 111
Leibniz-Kriterium, 83
Leitlinie, 25

linear

abhingig, 46

unabhingig, 46
Linienelemente, 73
Linienintegral

1. Art, 72

2. Art, 77, 111

wegunabhingiges, 111
Logarithmusfunktion, 34
Lot, 28
LR-Zerlegung, 128
Liicke, 33
gebrochen rat. Fkt., 41
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MacLaurin-Formel, 57

Mantelfliache, 27

Masse, 104, 107
Kurve, 73

Massendichte, 104

Massenfluf3, 108, 109

Matrix, 47
Addition, 47
adjungierte, 47
Diagonal-, 48
diagonaldhnliche, 51, 129
Dreh-, 21
Eigenwerte, 129
Einheits-, 48
Hermitesche, 48
Hesse-, 99, 100
inverse, 48
konjugierte, 47
Multiplikation, 47
negativ definite, 48, 100
negativ semidefinite, 48
orthogonale, 21, 48
positiv definite, 48, 51,
100, 128
positiv semidefinite, 48,
51
quadratische, 48
regulire, 48, 128
singulire, 48
symmetrische, 48, 129
transponierte, 47

unitire, 48
Matrizen

dhnliche, 51, 129
Maximum

globales, 98, 99

lokales, 98, 99

strenges, 98
Maximumstelle, 100
Mega, 9
Mehrschrittverfahren, 134
Menge, 15

abgeschlossene, 92

beschrinkte, 92

Differenz, 15

Durchschnitt, 15

leere, 15
offene, 92
Potenz-, 15
Teil-, 15
Vereinigung, 15

Mikro, 9

Milli, 9

Milliarde, 9

Million, 9

Minimum
globales, 98, 99
lokales, 98, 99

strenges, 98
Minimumstelle, 100

Minute, 9
Mittel
arithmetisches, 12
geometrisches, 12
quadratisches, 12, 90
Mittelpunktswinkel, 23
Mittelsenkrechte, 22
Mittelwert einer Stichprobe, 122
Mittelwertsatz
Differentialrechnung, 56,
95
Integralrechnung, 61
modus barbara, 14
modus ponens, 14
modus tollens, 14
Moivre, Formel von, 35
Momente
erste, 120
zweite zentrale, 121
Monotonie, 53
Multiplikation
iterierte, 16
Matrix, 47
Multiplikator
Lagrange-, 101

Nabla-Operator, 109
Niherungsfunktion, 133
Nano, 9
Nebenbedingung, 101
Negation, 14
Newton-Interpolation, 131
Newtonverfahren, 130
Niveaufliche, 109
Norm

Betragssummen-, 46

Euklidische, 46

Maximum-, 46
Normalbereich, 102
Normalenvektor, 108

Ebene, 28
Normalform, 30

elliptische, 60

Jordansche, 52, 81

Legendresche, 60
Normalgleichungsverfahren, 131
Normalverteilung, 119

Quantile, 125

standardisierte, 119, 125
Nullstelle, 32, 130

der Ordnung p, 32, 40

gebrochen rat. Fkt., 41

Polynom, 40
Numerik, 128
Nystrom-Verfahren, 134

Oberﬂéichenelement, 103
Oberflachenintegral
1. Art, 103

2. Art, 112
Oktaeder, 26
Oktaldarstellung, 16
Operator

Delta-, 111

Laplace-, 111
Optimierung, nichtlineare, 101
Ordnung

einer Nullstelle, 32

einer Polstelle, 33
Orthogonalitit,

Geraden, 24

Vektoren, 45

Parabel, 24, 25
Paraboloid, 30
parallel, 9
Parallelepiped, 26, 45
Parallelitidt von Geraden, 24
Parallelogramm, 23, 26, 45
Parameterableitung, 108
Parameterintegral, 72
Partialbruchzerlegung, 41, 58
Partialsumme, 82
Pascalsches Dreieck, 13
Periode, 32
Periodizitat, 37
Peripheriewinkel, 23
Permutationen, 18
Peta, 9
Piko, 9
Poisson-Gleichung, 114
Poissonverteilung, 118
Polardarstellung, 17
Polargleichung, 25
Polarkoordinaten, 19, 24, 96, 103
Polstelle, 33
der Ordnung p, 33
gebrochen rat. Fkt., 41
Polyeder, regulére, 26
Polygonzugverfahren, 133
Polynom, 40
Bernstein-, 42
charakteristisches, 50, 80
Horner-Schema, 40
Interpolation, 131
Taylor-, 57
Tschebyscheff-, 42
Vietascher Wurzelsatz,
40
Potential, 77
Potentialfeld, 109, 110, 111
Potentialfunktion, 77, 109
Potentialgleichung, 114
Potenz, 12
Potenzmenge, 15
Potenzmethode, 129
Potenzreihe, 86
Pramisse, 14
Primzahl, 16



Produkt
Cartesisches, 15
Skalar-, 44
Produktregel, 55
Projektion, 28
proportional, 9

Priifgrofie, 123

Punkt, 29
Durchstof3-, 29
Hiufungs-, 92

innerer, 92
stationdrer, 99, 100
Punktfolgen, 92
Pyramide, 26
Pyramidenstumpf, 26
Pythagoras, Satz, 22

Quader, 26
Quadratmittelapproximation
diskrete, 131
Quadraturformeln, 132
Quantil, 119
Quantile
chi-Quadrat-Vert., 127
Normalverteilung, 119,
125
t-Verteilung, 126
quellenfrei, 111
Quotientenkriterium, 83
Quotientenregel, 55

Randverteilungen, 120
Randwertaufgabe, 74
Rang, 47
Spalten-, 47
Zeilen-, 47
Raum, 44
n-dimensionaler, 92
Raumelement, 105
Raumintegral, 105
Raumkurve, 73, 108, 111
Rayleigh-Quotient, 51, 129
Realteil, 17
Rechteckbereich, 102

Rechtsschraube, 45

Rechtssystem, 45

Regel
Cramersche, 49
Guldinsche, 73
Simpson-, 132
Trapez-, 132

von de I'Hospital, 33

von de Morgan, 14
Regression, 121

lineare, 122
Regressionsfunktionen, 121
Regressionsgerade, 122
Regressionskoeffizient, 122
Regressionslinien, 121

Regula falsi, 130

Regularititsbedingung, 101

Reihe
absolut konvergente, 84
alternierende, 83
arithmetische, 82
divergente, 82
endliche, 82
Fourier-, 89
Funktionen-, 85
geometrische, 82
konvergente, 82
Konvergenzkriterien, 83
Taylor-, 87
trigonometrische, 89
Umformung, 84
unendliche, 82

Rekursionsformel
Bernstein-Polynome, 42
Tschebyscheff-Polyn., 42

Relation, 14

Resonanzfall, 80

Restglied
Differenzenquotient, 132
Quadraturformel, 132
Taylorformel, 57

Restriktion, 101

Reststreuung, 122

Rhombus, 23

Richtungsableitung, 95, 109

Richtungsfeld, 75

Richtungskosinus, 21

Rotation, 110

Rotationsfliche, 73

Rotationskérper, 73

Runge-Kutta-Verfahren, 133

Sattelpunkt, 99, 100
Satz
binomischer, 13
des Pythagoras, 22
des Thales, 23
Mittelwert-, 95
von Dirichlet, 90
von Schwarz, 94
von Steiner, 104, 107
Scheitelpunkt, 25
Schnittwinkel von Geraden, 24
Schwarz, Satz von, 94
Schwarzsche Ungleichung, 45, 46
Schwerpunkt, 73, 104, 107
Dreieck, 22
Sehnensatz, 23
Sehnentangentenwinkel, 23
Seitenhalbierende, 22
Sekante, 55
Sekantensatz, 23
Sektorfliche, 73
Sekunde, 9
Signifikanzniveau, 123
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Signifikanztest, 123, 124
Simpson-Regel, 132
Singulédrwerte, 52
Singulédrwertzerlegung, 52
Sinus hyperbolicus, 34
Sinussatz, 22
Skalarfeld, 108, 109
Skalarprodukt, 44
Spalte (Matrix), 47
Spaltenrang, 47
Spannungsabfall, 111
Spat, 26, 45
Spatprodukt, 45
Spline-Interpolation, 131
Stammfunktion, 58
Standardabweichung, 118
Steigungen, 131, 132
Stetigkeit, 93
Stichprobe, 122
Stichprobenkovarianz, 122
Stochastik, 115
Stokes, Integralsatz, 112
Strecke, 24
Streuung, 118, 122
Strémung, 108, 109, 112
Substitution, 58
Doppelintegral, 103
Dreifachintegral, 106
Summe
Integrale, 58
Matrizen, 47
Reihen-, 82
Vektoren, 44
Supremum, 98
System, dekadisches, 9

t-Verteilung, 119, 126
Tangens hyperbolicus, 34
Tangenssatz, 22
Tangente, 55
Tangenteneinheitsvektor, 108
Tangentensatz, 23
Tangentialebene, 109
Tautologie, 14
Taylor-Verfahren, 133
Taylorentwicklung, 57
Taylorformel, 95
Taylorreihe, 87
Teiler, 16
grofiter gemeinsamer, 16
Teilfolge, 54
Teilmenge, 15
Teilung einer Strecke, 24
Tera, 9
Tetraeder, 26, 46
Thales, Satz, 23
Torus, 27
Tragheitsmoment, 104, 107
polares, 104
Trajektorie, 74
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Transformation
Ahnlichkeits-, 51
Zufallsgrofie, 117
Trapezregel, 132, 133
Trennung der Verénderlichen, 75
Trigonometrische Funktionen
Additionstheoreme, 38
Periodizitit, 37
Potenzen, 38
Produkte, 38
spezielle Werte, 37
Summe, Differenz, 38
Umrechnungstabelle, 37
Vorzeichen, 37
Trillion, 9
Tschebyscheffsche
Polynome, 42
Ungleichung, 118

Unmgebung, 92

Umkreis
Dreieck, 22
Viereck, 23

Ungleichung
Bernoullische, 11
Cauchy-Schwarzsche, 11,
45, 46
Dreiecks-, 11, 45, 46
Tschebyscheffsche, 118

Varianz, 118
Variation der Konstanten, 79
Variationen, 18
Vektoren, 44, 47
orthogonale, 45
Vektoranalysis, 108
Vektorfeld, 77, 108
Vektoriteration, 129
Vektornorm, 46, 92
Vektorprodukt, 45
Vereinigung, 15, 115
Verfahren
Adams-Bashforth-, 134
Adams-Moulton-, 134
Bisektions-, 130
Einschritt-, 133
Euler-, 133
Euler riickw, 133
Halbschritt-, 133
Iterations-, 130
Mehrschritt-, 134
Newton-, 130
Normalgleichungs-, 131
Nystrom-, 134
Polygonzug-, 133
Pridiktor-Korrektor-, 134
Taylor-, 133
Taylorreihen-, 133
von Heun, 133

von Runge-Kutta, 133
Vergleichskriterium, 83
Verschiebungsarbeit, 111
Versuch, zufilliger, 115
Verteilung

Binomial-, 118, 120

chi-Quadrat-, 119, 127

diskrete, 118

Exponential-, 119

F-, 119

Gleich-, 119

hypergeometrische, 118

Normal-, 119, 120,

123-125

Poisson-, 118

stetige, 119

t-, 119, 126

Weibull-, 119
Verteilungsfunktion, 117
Vielfaches

kleinstes gemeinsames,

16
Vielfachheit

algebraische, 50

geometrische, 50
Viereck, 23
Vietascher Wurzelsatz, 40
Volumen, 26, 27, 73, 104, 105
Volumenelement, 105, 109

Wahrheitswert, 14
Wahrscheinlichkeit, 116
bedingte, 116
geometrische, 116
klassische, 115
Weibull-Verteilung, 119
Weierstraf3, Kriterium von, 85
Wellengleichung, 114
Wertebereich, 32
Winkel, 29
Dreieck, 22
Winkelfunktionen, 36
Winkelhalbierende, 22
Wirbeldichte, 110
Wirbelfeld, 111
wirbelfrei, 110, 111
Wiirfel, 26
Wurzelkriterium, 83

Zanl
Bernoullische, 10
Eulersche, 10
ganze, 16
komplexe, 17
konjugiert komplexe, 17
natiirliche, 16
Prim-, 16
rationale, 16
reelle, 16

Zahlenfolge, 53

Zeichen, mathematische, 9

Zeile (Matrix), 47

Zeilenrang, 47

Zenti, 9

Zerlegungssatz, 45

Zufallsgrofien, 117
diskrete, 117, 120
standardisierte, 118
stetige, 117, 120
unabhéngige, 120, 121
unkorrelierte, 121
zweidimensionale, 120,
123

Zylinder, 30, 102

Zylinderabschnitt, 27

Zylinderhuf, 27

Zylinderkoordinaten, 20, 96, 107,

109, 110, 111

Zylindermantel, 104



