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Vorwort 

Jeder Lemende und auch jeder Anwender der Mathematik wird gem auf cine Formelsamm­
lung oder auf einen Wissensspeicher zuriickgreifen, urn Fakten zu uberpriifen, wenn das Ge­
dlichtnis uberfordert ist, oder urn neue Informationen zu erhalten. Der vorliegende Band ent­
hlilt neben grundlegenden mathematischen Formeln auch verbal beschriebenes Wissen, nlimlich 
zentrale Definitionen und Slitze ausgewlihlter mathematischer Fachgebiete. 

Zielgruppe sind vor allem Studierende an Universitliten und Fachhochschulen, die mit der Ma­
thematik konfrontiert sind. Deshalb wurde der Inhalt dieses Bandes der Reihe "Mathematik fUr 
Ingenieure und Naturwissenschaftler" streng auf die Anforderungen des Grundstudiums in in­
genieurwissenschaftlichen Studienglingen ausgerichtet. In Verbindung mit dem Besuch von 
Vorlesungen und Seminaren, der Arbeit mit LehrbUchem und der Nutzung mathematischer 
Software wird diese Sammlung von Grundwissen der Hoheren Mathematik sowohl dem Ler­
nenden als auch dem Ingenieur in der Praxis hilfreich sein. 

Bei der Arbeit am Manuskript haben mich viele Mathematiker beraten. Mein Dank gilt zuerst 
den Herausgebem der Reihe, von denen ich konstruktive Hinweise erhielt, insbesondere Herm 
Prof Ch. GroBmann und Herm Prof K Manteuffel. 

Die thematische Breite - von der Analysis uber die Geometrie und Lineare Algebra bis zur Op­
timierung, Stochastik und Nurnerik - war nur durch die kritische Beteiligung zahlreicher Fach­
kollegen dieser Gebiete zu bewiiltigen. Dafiir danke ich besonders meiner Kollegin Frau 
Dr. R. Storm und meinen Kollegen Herm Dr. W.-D. Klix und Herm Dr. H. SchOnheinz. FUr 
die kritische Durchsicht bin ich den Herren Prof H.-G. Roos und Prof W. Schirotzek sowie 
Herm J. Weill vom Teubner-Verlag mit Dank verbunden. 

Dresden, im Juni 1996 Klaus Vetters 

In dieser zweiten, neubearbeiteten Auflage wurden inhaltliche Erglinzungen und Druckfehler­
berichtigungen vorgenommen. FUr die dazu von Studenten und Kollegen ergangenen vielen 
freundlichen Hinweise bedanke ich mich sehr herzlich. FUr besonders ausfiihrliche Bemerkun­
gen danke ich den Herren Prof K Niederdrenk (FH MUnster) und Prof V. Nollau (TU 
Dresden). 

Dresden, im Juni 1998 Klaus Vetters 

vetters@math.tu-dresden.de 
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Bezeichnungen, Konstanten, elementare Gesetze 

Bezeiehnungen im dekadisehen System 

Einheit umgangs- Vorsilbe Abk. Einheit Vorsilbe Abk. 
sprachl Bez. 

101 Zehn Deka da 10-1 Dezi d 

102 Hundert Hekto h 10-2 Zenti c 

103 Tausend Kilo k 10-3 Milli m 

106 Million Mega M 10-6 Mikro ~ 

109 Milliarde Giga G 10-9 Nano n 

1012 Billion Tera T 10-12 Piko P 
1015 BiIIiarde Peta P 10-15 Femto f 
1018 Trillion Exa E 10-18 Atto a 

1m eng1isch-amerikanischen Sprachraum wird fUr eine MiIIiarde "one billion" gebraucht. 

Auswahl mathematiseher Zeiehen 

siehe auch Relationen, Mengen, Zahlen, Funktionen, Lineare Algebra, Differential- und 
Integralrechnung 

Zeichen Bedeutung Zeichen Bedeutung 
gleich +-, Vorzeichen plus, minus 

.- definierend gleich ± ZIlerst plus, dann minus 

'* ungleich + ZIlerst minus, dann plus 
stets gleich, identisch 0 Grad -

i= nicht stets gleich, nicht identisch I 

Minute (:0 Grad) 

::::: etwa gleich Sekunde ( :0 Minute) 

< kleiner (a, b) offenes IntelVall a<x<b 
:5: kleiner oder gleich [a, b) abgeschlossenes Intervall a:5:x:5:b 
« wesentlich kleiner (a, b) links offenes, rechts abgeschlossenes 
> grOBer Intervall a<x:5:b 
~ groBer oder gleich [a, b) links abgeschlossenes, rechts offenes 
» wesentlich groBer Intervall a:5:x<b 

proportional, iihnlich und so weiter / Platz fUr Substitution 
.l senkrecht auf a(s)e Aufzihlung mit Anfang a, 
- kongruent Schrlttweite s und Ende e 

parallel C,N,Q,IR,Z ~ Zahlen 

K. Vetters, Formeln und Fakten
© B. G. Teubner Stuttgart · Leipzig 1998



10 Bezeichnungen, Konstanten, element are Gesetze 

Mathematische Konstanten (gerundet) 

1t = 3.141592653590 

e = 2.718281828459 

C = 0.577215664902 

1· = 0.017453292520 

l' = 0.000290888209 

1" = 0.000004848137 

1 =57.29577951· 

1 = 3437.746771' 

1 =206264.8062" 

Potenzen der Zahl 2 und Fakultiiten 

n 2n n! n 2n n! 

2 11 2048 39916800 

2 4 2 12 4096 479001600 

3 8 6 13 8192 6227020800 

4 16 24 14 16384 87178291 200 

5 32 120 15 32768 1 307674368 000 

6 64 720 16 65536 20 922 789 888 000 

7 128 5040 17 131072 355 687 428 096 000 

8 256 40320 18 262144 6 402 373 705 728 000 

9 512 362880 19 524288 121 645 100408832000 

10 1024 3628800 20 1048576 2 432 902 008 176 640 000 

Bernoullische Zahlen 

B - )n-l[ 2n-l ,ni;l k Bk ] 
n - (-1 2(2n + 1) + (2n). lr-l (-1) (2n - 2k+ 1)!(2k)! (n=1,2, ... ) 

n Bn n Bn n Bn n Bn 

1 1 4 1 7 7 10 174611 
"6 30 "6 33() 

2 1 5 5 8 3617 11 854513 
30 66 510 ~ 

3 1 6 691 9 43867 12 236364091 
42 2730 """798 2730 

Eulersche Zahlen 

En = (-W-1ni;,<_l)k ( 2n)E 
lr-O 2k k 

(n = 1,2, ... ;mit EO = 1) 

n En n 

o 3 

1 4 

2 5 5 

En n 
61 6 

1385 7 

50521 8 

En 

2702765 

199360981 

19391512145 
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Auswahl mathematischer Funktionen 

siehe auch Abbildungen und Funktionen, Lineare Algebra, Stochastik 

Symbol Bedeutung Symbol Bedeutung 

+-·*1+ Grundrechenoperationen n! 1·2···· ·n (F akultiit ) 

jX nicht negative Zahl y mit y2 = x n,[X nicht negative Zahl y mit yn = X 

( Quadratwurzel) (n-te Wurzel) fur x ~ 0 

n n 
LXi xI+x2+···+ xn (Summe) II xi xl ·x2···· ·Xn (Produkt) 
i-I i=l 

min {a,b} afura:<=;b 
(Minimum) max {a,b} afura~b 

(Maximum) 
bfura~b bfura:<=;b 

LxJ groJ3te gauze Zahl y mit y :<=; x Ixl kleinste gauze Zahl y mit y ~ x 
(Abrundung auf gauze Zahl) (Aufrundung auf gauze Zahl) 

sgn(x) lfurx>O Ixl x furx~O 
(Betrag) 

Ofurx=O (Signum) -x fur x < 0 
-1 furx<O 

[ Elementare mathematische Gesetze I 
Ungleichungen (mit x,y, z, u, V E IR{) 

• Aus x < y und y < z folgt x < z . • Aus 0 < x <y folgt ~ > ~ . 

• Aus x <y und z> 0 folgt X· z <y. z . • Aus x < y und z < 0 folgt X· z > y . z . 

• Aus x <y folgt x+z <y+z fur aIle z E IR{. 

• Aus O<x<y und O<u<v folgt x·u<y·v. 

• Aus ! <!! und y > 0 und v > 0 folgt ! < x + U <!! . Y v. Y y+v v 

Bernoullische Ungleichung: (l+x)n~l+nx fur x>-1 und nEN 

Cauchy-Schwarzsche Ungleichung: (x I y I + ... + xnyn)2 :<=; (xi + ... + x~)(Yi + ... + y~) 

Betriige (mit x,y E IR{) 

I-xl = Ixl Ix ·yl = Ixl·lyl 

Dreiecksungleichungen 

Ix+yl:<=; Ixl + Iyl (Gleichheit gilt fur gleiches Vorzeichen von x undy.) 

Ilxl-lyll:<=; Ix+yl (Gleichheit gilt furverschiedenes Vorzeichen von x undy.) 



12 Bezeichnungen, Konstanten, elementare Gesetze 

Potenzen mit ganzzahligem Exponenten (a, b E R ; n E lid u {O} ; p, q E l) 

Potenz mit positivem Exponenten: an := fl· a ....• ~ fUr n E lid, und aO = 1 

n Faktoren 

Potenz mit negativem Exponenten: 

Rechenregeln: 

a- n .= ..!.. ·an 

aP ·bP = (a·b)p 

Wurzeln, Potenzen mit reeUem Exponenten (a, belt; a, b > 0; m, n E lid ) 

Wurzel: u = '!/7i ist gleichbedeutend mit un = a und u ~ 0 

Rechenregeln: 

10· {f -= n - (b:;eO) 
':/b b 

Potenz mit ralionalem Exponenten: a ~ := '!/7i, a rg. := ~ 

Potenz mit reel/em Exponenten: 

• Fiir Potenzen mit reellem Exponenten gehen die gleichen Rechenregeln wie fUr Potenzen 
mit ganzzahligem Exponenten. 

Mittelwerte 

Arithmelisches Mittel: 

Geometrisches Mittel: 

Harmonisches Mittel: 

Quadralisches Mittel: 

h . n 
.= 1 1 1 

iil+ a2 + ... + an 

Beziehungen zwischen den Mittelwerten 

• Sind aile a k positiv, so gilt: 

mit ak>O fUr k=l, ... ,n 
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Binomialkoeffazienten 

BinomialkoeJjizient 

( n) .=n(n-I) ... (n-k+l) fUr 
k· 1.2 ..... k k,nEII\!,kS,n 

Erweiterte Definition fUr k, nEil\! u {O} : 

Spezialfiille: 

fUr kS,n, mit O! = 1 

fUr k>n 

(~)=I, (~)=I, n 

0 

Binomia1koeffizient 

k=O 
It 

1 k=1 It k=2 (~)=n, (:)=1. 
1 1 1 

/ J,tk=3 

(~)=(n:k) 
2 1 2 

1 k=4 3 3 3 
4 4~J,t6 4 t k=5 

t? 

Symmetriesatz: 

(~)+(k:I)=(n;1 ) 
5 1 5 10 10 5 1 

Pascalsches Dreieck Additionssatz: 

Additionstheoreme: ( ~ ) + ( n; 1 ) + ( n; 2 ) + ... + ( n: m ) = ( n +: + 1 ) 

(~ ) ( ~ ) + ( ~ ) (k: 1 ) + ... + (~ ) ( ~ ) = ( n ~m ) 
• Die Definition des Binomia1koeffizienten wird auch fUr n E lit benutzt. Der Additionssatz 

und die Additionstheoreme gehen dann auch fUr n E R. 

Termumformungen 

(a±b)2=a2 ±2ab+b2 

(a±b)3 = a3 ±3a2b +3ab2 ±b3 

(a+b)(a-b) =a2 -b2 

(a±b)(a2 +ab +b2) = a3 ±b3 

an - bn = an-1 +an-2b +an-3b2 + ... +abn-2 + bn-1 fUr b 2 3 a-b a* ,n= , , ... 

Binomischer Satz 

(a+b)n =an+( ~ )an-1b+ ... +(~ )an-kbk+···+(n: 1 )abn- 1 +bn fUrn E II\! 

=! (~ )an-kbk 



I Relationen 

Wahrheitswert w: 

AussageA: 

Relation: 

wahr, falsch 

Satz, der wabr oder falsch ist. 
A falsch: w(A) = 0 
A wabr: w(A) = 1 

Verkniipfung von Aussagen. sogenannten Priimissen, die je nach den 
Walnheitswerten der Priimissen einen zugeordneten Walnheitswert 
besitzt. 

Wahrheitswertetafel: Wertetabelle der Zuordnung Priimissen ~ Relation 

Tautologie: Relation, die fiir alle Wahrheitswerte der Priimissen stets wabr ist. 

I 

Aussageformen A(x): Aussagen A, die von Variablen x abbingen; sie haben selbst keinen 
Wabrheitswert. Erst nach Einsetzen von Werten der Variablen hat eine 
Aussageform einen Wabrheitswert. 

"Ix : A(x) bedeutet: for aile x ist A(x) wabr. 
3 x: A(x) bedeutet: es gibt mindestens ein x, so dafi A(x) wabr ist. 

Relationen 

Negation "Dicht A": 
Konjunktion "A undB": 
Disjunktion "A oder B": 

W ahrheitswertetafel 

...,A 
A/\B 
AvB 

Implikation "aus A folgt B": 
Aquivalenz "A iiquivalent zu B": 

A=>B 
A<;:::>B 

w(A) w(B) w(...,A) w(A /\B) w(A v B) w(A =>B) w(A <;:::>B) 

o 1 

o 
o 

Tautologien 

Av...,A 
...,(A /\ ...,A) 
...,...,A<;:::>A 

o 

o 

o 
1 

...,(A /\B) <;:::>...,A v...,B 

...,(AvB)<;:::>...,A/\...,B 

(A => B) <;:::> (...,B => ...,A) 

(A => B) /\ A => B 
(A => B) /\...,B => ...,A 

o 
o 
o 

(A => B) /\ (B => C) => (A => C) 
A /\ (B v C) <;:::> (A /\ B) v (A /\ C) 
A v (B /\ C) <;:::> (A v B) /\ (A v C) 

1 

o 

o o 
o 
1 

Satz vom ausgeschlossenen Dritten 
Satz vom Widerspruch 

doppelte Vemeinung 

Regel von de Morgan 

Regel von de Morgan 

Kontraposition 

modus ponens 

modus tollens 

modus barbara 

Distributivgesetz 

Distributivgesetz 
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[Mengen I 
MengeM: Zusammenfassung bestimmter unterschiedlicher Objekte zu einem Gan­

zen. Dieser klassische Mengenbegriff reicht praktisch aus, kann aber zur 
Formulierung paradoxer Aussagen fiihren. Ein Ausweg ist die axiomati­
sche Mengenlehre. 

Elemente: Objekte einer Menge 
a EM¢:> a ist Element der Menge M 
a ~ M ¢:> -,(a E M) ¢:> a ist nicht Element der Menge M 

Beschreibung: 1. durch Aufziihlung der Elemente M = {a, b, c, ... } 
2. durch charakterisierende AussageformA(x): M = {x E n 1 A(x) wahr} 

Gleichheit: M = N ¢:> Vx: x EM¢:> X E N 

Teilmenge: MeN ¢:> Vx: x EM=> X EN 

Leere Menge: die Menge, die keine Elemente enthiilt; Bezeichnung: 0 

Disjunkte Mengen: zwei Mengen M,N, die kein Element gemeinsam haben, d.h. M n N = 0. 

Ordnungseigenschaft 

MeM MeN /\ NeM => M=N MeN /\ NeP => MeP 

Verkniipfungen 

M uN:= { x 1 x E M v X EN} 

M n N := { x 1 x E M /\ X EN} 

M \ N := { x 1 x EM /\ X ~ N } 

MxN :={(x,Y)1 x E M /\ YEN} 

p(M) :={XIXeM} 

Mehrfache Verkniipfungen 

n 

Vereinigung 

Durchschnitt 

DifJerenz 

Kartesisches Produkt 

Potenzmenge 

U M; =MI uM2 u ·· · uMn := {x 13 i E {l, ... ,n}: x EM;} 
;=1 

n 
nM; =MI nM2 n··· nMn := {x 1 Vi E {l, ... ,n}: x E Md 
;=1 

n 

N 

OM; =MI xM2 x··· xMn := {(xI, ... ,xn)1 ViE {l, ... ,n}: x; EM;} 
;=1 

M 
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[zahlen I 
Natiirliche, ganze, rationale, reelle Zahlen 

Natiirliche Zahlen: N = {1, 2, 3, ... } 

Teiler: Eine natiirliche Zahl mEN heillt Teiler von n EN, falls es eine natiir­

Iiche Zahl kEN gibt mit n = m . k . 
Primzahl: Eine Zahl n E N mit n > 1 und den einzigen Teilem 1 und n. 

• Jede Zahl n EN, n > I, laBt sich eindeutig als Produkt von Primzahlpotenzen schreiben: 

Pj ... Primzahlen, rj ... natiirliche Zahlen. 

gr6jJter gemeinsamer Teiler: ggT(n,m) = max{k EN I kteilt n und m} 

kleinstes gemeinsames Vielfaches: kgV(n,m) = min{k E N In und m teilen k} 

Ganze Zahlen: 7L = { ... , -3, -2, -1, 0,1,2,3, ... } 

Rationale Zahlen: Q = { W I m E 7L, n EN} 

• Die Dezimaldarstellung einer rationalen Zahl ist endlich oder periodisch. Jede endliche oder 
periodische Dezimalzahl ist eine rationale Zahl. 

Reelle Zahlen: ~ = {IEIWeiterung" von Q durch die nichtperiodischen unendlichen 
Dezimalzahlen } 

g-adische 
Darstellung 

Umrechnung dezimal ~ g-adisch 

g = 2 . .. Dualdarste/lung 
g = 8 . .. Oktaldarstellung 
g = 10 ... Dezimaldarste/lung 

1. Positive Dezimalzahl x in ganzzahligen und nicht ganzzahligen Teil zerlegen: x = n + xo. 

2. Umrechnung des ganzzahligen Teils n mit iterierter Division durch g: 

qo =n, 05,rj<g, j=I,2, ... 

3. Umrechnung des nicht ganzzahligen Teils Xo durch iterierte Multiplikation mit g: 

o <Xj < 1 j= 1,2, ... 

Umrechnung g-adisch ~ dezimal 

(rk·· ·r2r l· s l s2·· ·sp)g = (-. ·«rkg+ rk-l)g+rk-2)g+··· +r2)g+rl (Homer-Schema) 

+( .. . «sP/g+Sp-l)/g+Sp-2)/g+··· +Sl)/g (Homer-Schema) 
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I Komplexe Zahlen 

lmaginiire Einheit i: 

Komplexe Zahl: 

kartesische Form: 
polare Form: 

I 

ze([ 

z = a + i b, a, b e ~ 
z = r(cos<p + isin<p) = re i<p 

Komplexe Zahlen 17 

3! 
komplexe Ebene 

~ 

ar 
E r 

<p reelie Achse 
Realteil von z: 
lmaginiirteil von z: 

Betrag von z: 

... Eulersche Relation 
Re(z) = a = rcos<p 
Im(z)=b=rsin<p 

Izl = Ja2 +b2 =r 

:~Jib a+ib 

e> 
a 

Argument von z: arg(z) = <p 

Konjugiert komplexe Zahl z : z = a + i b =:> z = a - i b 

Spezielle komplexe Zahlen: e i 0 = I 

±"x 
e 12 =±i 

Umrechnung kartesisch ~ polar 

r= Ja2 +b2 { 
f! 

<p ist Losung von c~s<p = ~ 
sm<p = r 

Umrechnung polar ~ kartesisch 

a = rcos<p b =rsin<p 

zl . z2 = rl r2(cos(<P 1 + <P2) + i sin(<p 1 + <P2» = rlr2e i(<PI +<P2) 

:.!. = ~(COS(<PI -<P2)+ isin(<pI -<P2» = ~ei(<PI':"<P2) 
z2 r2 r2 

zl ZlZ2 ala2 +b 1b2 + i(a2b l -alb2) 

z2 = IZ212 = a~ +b~ 

1 z z = j;j2 

LOsung von z" = a 

l. Zahl a in polarer Form darstellen: a = rei <P " 

" cp+2klt 
2. Die n Losungen sind: Zk = 'iT e 1-,,-

k= 0, 1, ... ,n-l x 

" 3 
Zo .• 



I Kombinatorik I 
I Permutationen I 
Gegeben:.n verschiedene Elemente 
Gesucht: Anzahl Pn der verschiedenen Anordnungsmoglichkeiten (z.B. Tischordnung). 

Pn=n! ... Permutationen 

Gegeben: n Elemente, bestehend aus p Gruppen von gleichen Elementen; die Anzahl der Ele­
mente in der i-ten Gruppe ist ki . 

Gesucht: Anzahl Pn der verschiedenen Anordnungsmoglichkeiten (z.B. Tischordnung fur 
Kamevals-Masken). 

. .. Permutationen mit Wiederholung 

I Variationen I 
Gegeben: n verschiedene Elemente und k Pliitze. 

Gesucht: Anzahl 0n der verschiedenen Anordnungsmoglichkeiten von Elementen auf den k 
Pliitzen. 

~ n! 
n = (n-k)! ... Variationen 

Gegeben: n verschiedene Elemente, jedes in beliebiger Anzahl, und k Pliitze. 

Gesucht: Anzahl ~ der verschiedenen Anordnungsmoglichkeiten von Elementen auf den k 
Pliitzen. 

. .. Variationen mit Wiederholung 

I Kombinationen I 
Gegeben: n verschiedene Elemente. 

Gesucht: Anzahl C~ der Moglichkeiten, verschiedene Mengen von k Elementen zu bilden, 
ohne die Anordnung zu beriicksichtigen . 

... Kombinationen 

Gegeben: n verschiedene Elemente, jedes in beliebiger Anzahl, und Menge fur k Elemente. 

Gesucht: Anzahl C~ der Moglichkeiten, verschiedene Mengen von k Elementen zu bilden . 

... Kombinationen mit Wiederholung 

K. Vetters, Formeln und Fakten
© B. G. Teubner Stuttgart · Leipzig 1998



[ Koordinatensysteme 

I Ebene Koordinatensysteme I 
Kartesische ebene Koordinaten X, y 

Die rechtwinklig stehenden Achsen sind so orientiert, daJl die po­
sitive y-Richtung die im mathematisch positiven Sinn (Gegenuhr­
zeigersinn) urn 90° gedrehte positive x-Richtung ist. 

Koordinaten-Einheitsvektoren: 

Darstellung des Punktes P(x,y): x =xex +yey 

Polarkoordinaten r, <p 

r ... Abstand vom Nullpunkt 
<p ... Winkel von der x-Achse zum Ortsvektor im 

Gegenuhrzeigersinn 

Koordinaten-Einheitsvektoren: er = (C?s<p ), eq> = (-sin<P ) 
sm<p cos<p 

Darstellung des Punktes P(r, <p) in kartesischen Koordinaten: 

x=rer in Komponenten: 
x=rcos<p 
y=rsin<p 

I Riumliche Koordinatensysteme I 
Kartesische Koordinaten x, y, Z 

Die Achsen stehen paarweise senkrecht aufeinander, die x- und 
y-Achse sind wie im ebenen System orientiert. Bei 900 -Drehung 
der positiven x-Achse zur positiven y-Achse zeigt die positive 
z-Achse in Rechtsschraubenrichtung. 

Koordinaten-Einheitsvektoren: 

Darstellung des Punktes P(x,y, z): x = xex + yey + zez 

I 

y 
y .........• P 

1~ 

ey . x 
o ex 1 x 

y 

z 

r, 

e 
r 

ep! X 

z 
.... , .. 

• p 

e.z 1 y Y 
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20 Koordinatensysteme 

Zylinderkoordinaten 

r .,. Abstand von z-Achse 
<p ... Winkel von x-Achse zum Ortsvektor der Projek­

tion von P in die x,y-Ebene 
z ... Abstand von x,y-Ebene 

Koordinaten-Einheitsvektoren: 

[ cos<PJ [-sin<PJ [OJ er = ~<P , elJl = co;<p , ez = ~ 

Darstellung des Punktes p(r, <p,z) in kartesischen Koordinaten: 

x=rer+zez, in Komponenten: 

l(ugeUkoordUmaten 

p ... Abstand vom Koordinatenursprung 
3 ... Winkel von z-Achse zorn Ortsvektor 

x=rcos<p 
y=rsin<p 
z=z 

<p ... wie Winkel <p der Zylinderkoordinaten 

Koordinaten-Einheitsvektoren: 

[ 
sin 3 cos<p J [COS3COS<P J 

ep = sin 3 sin<p , es = cos~ sin<p , 
cos3 -sm3 

Darstellung des Punktes pcp, 3, <p) in kartesischen Koordinaten: 

x=pep in Komponenten: 

I Verschiebung des Koordinatensystems I 

x = p sin 3 cos<p 
y= psin3sin<p 
z= pcos3 

Der Ursprung des ebenen oder riiumlichen Koordinatensystems 
wird vom Punkt ° zorn Punkt V verschoben. Zwischen den or­
spriinglichen Koordinaten x,y,z und den neuen Koordinaten 
x',y~z' besteht die Beziehung 

x= x' +v 

in Komponenten: 

x=x' +Vx 
y= y' +vy 
z=z'+vz 

bzw. x' = x-v, 

x' =X-Vx 
bzw. y' =y-Vy 

z, = Z-Vz 

X 

x 

x 

p;;;,.l 

···~ ... I~elJl 
3"'~ ... es 

p 
k--+--~Y 

z' 
z 

y' 

Y 



Drehung des Koordinatensystems 21 

I Drehung des Koordinatensystems I 

Drebuog eines ebeoeo kartesiscbeo Koordinateosystems 

Ein ebenes kartesisches x,y-Koordinatensystem werde Un mathe­
matisch positiven Sinn um den Winkel <p um den Ursprung ge­
dreht. Dann bestehen zwischen den urspriinglichen Koordinaten 
x,y,z und den neuen Koordinaten x',y',z' die Beziehungen 

x = Ax' bzw. x' = AT x mit A = (C?s<p -sin<p ) . 
sm<p cos<p 

• Die Drehmatrix A ist eine orthogonale Matrix mit det(A) = I . 

• Jede Koordinatentransformation x = Ax' mit AA T = E und det(A) = I ist eine 
Drehung. 

Drebung eines riiumlicben kartesiscben Koordinatensystems 

Ein raumliches kartesisches x,y,z-Koordinatensystem werde im 
mathematisch positiven Sinn (in Rechtsschrauben-Richtung) um 
den Winkel <p um eine Achse g gedreht, die durch den Ursprung 
geht. Die Lage und Orientierung der Drehachse wird durch die 
Kosinus der Winkel (Richtungskosinus) beschrieben, die sie mit 
den Koordinatenachsen einschliefit: 

cos ~(x,g) = a, cos~(y,g)=b , cos ~(z,g) = c. 

Dann bestehen zwischen den urspriinglichen Koordinaten x,y,z und den oenen Koordinaten 
x',y',z'die Beziehungen 

x = Ax' bzw. x' = AT x , 

[ 
cos<p +a2(1- cos<p) -c sin <p +ab(l- cos<p) b sin <p +ac(l- cos<p) 1 

A = c sin <p +ab(1 - cos<p) cos<p + b2(1- cos<p) -a sin <p + bc(1 - cos<p) . 
-b sin <p +ac(l- cos<p) asin<p +bc(l- cos<p) cos<p +c2(1 - cos<p) 

• Die Drehmatrix A ist eine orthogonale Matrix mit det(A) = I. 

• Die Drehmatrix A kann auch durch die Richtungskosinus der Winkel zwischen den Achsen 
des urspriinglichen und des gedrehten Koordinatensystems beschrieben werden: 

[ 
cos ~(x,x') cos ~(x,y') cos ~(x,z') 1 

A = cos ~(y,x') cos ~(y,y') cos ~(y,z') . 
cos ~(z,x') cos ~(z,y') cos ~(z,z') 



I Geometrie 

I Ebene Geometrie I 
Dreieck 

Winkel a + 13 +y = 1800 sin(13 +y) = sin a cos(13 +y) = -cosa 

sin a = ;cJs(s-a)(s-b)(s-c) mit s = ~(a+b+c) 

b2 +c2 _a2 
cosa = 2bc 

Sinussatz a: b : c = sin a : sin 13 : siny 

Kosinussatz a2 = b2 + c2 - 2bc cosa 

a-f3 
a-b tan-2-

Tangenssatz -- = ---
a+b a+f3 tan-2-

Flache F= lchc = lab sin y = rs = abc 
2 2 4R 

A 

= Js(s - a)(s - b)(s - c) = a2 s~~ sin y = 2R2 sina sin 13 sin y 
sma 

H6he h ab. 
c=csmy 

R = -c:- = abc = s 
2sma 4F 4cos~cos~cos.r 

2 2 2 

Umkreis 

Inkreis 4R · a . 13 . y 
r= Sill 1 Sill "Z Sill"Z 

Schwerpunkt 

Mittelpunkt des Inkreises 

Mittelpunkt des Umkreises 

Schnittpunkt der Seitenhalbierenden 

Schnittpunkt der Winkelhalbierenden 

Schnittpunkt der Mittelsenkrechten 

Rechtwinkliges Dreieck 

Pythagoras 

H6hensatz h 2 =p.q 

Kathetensatz a2 = c· p, b2 = c· q 

c B 

I 
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Ebene Geometrie 23 

Gleichschenkliges Dreieck (a = b, a = 13) 

. 2 2 
F= .!a2siny = e2sm. a = f..- tana 

2 2smy 4 

Gleichseitiges Dreieck (a = b = e, a = 13 = y = 60°) 

Viereck 

Winkel a + 13 +y + I) = 3600 

r= !i 
2 

Flache F= tejsin q> = J(s-a)(s- b)(s- e)(s -d) -abedcos2q> 

mit s= t(a+b+e+d) 

• Ein Viereck hat genau dann einen Inkreis, wenn a + e = b + d gilt. 

.~ . 
U A c B 

a 

• Ein Viereck hat genau dann einen Umkreis, wenn a + y = 13 + 8 = 180" gilt. 

ParaUelogramm (Viereck mit gegenfiberliegend parallelen Seiten) 

F= aha = bhb e2 +j2 = 2(a2 +b2) 

Rhombus (Parallelogramm mit vier gleichen Seiten) 

Flache F= ah = a2sina = .!ej 
2 

b 'h G' 
a f . a 

a 

• Ein Parallelogramm ist genau dann ein Rhombus, wenn die Diagonalen aufeinander senk­
recht stehen. 

• Ein Parallelogramm ist genau dann ein Rhombus, wenn die Diagonalen die Winkel halbieren. 

Kreis (Flache F, Umfang U, Radius r, Durchmesser d) 

Sehnensatz 

Sekantensatz 

T angentensatz 

U = 21tr = 1td 

IpBI·lpcl = IpA 1·lpDI 
ISA I·ISBI = ISCI · ISDI 
ISA I·ISBI = Isrl2 

D 

• mer einer Sehne ist der Mittelpunktswinkel das Doppelte des 
Peripheriewinkels: 13 = 2a . 

• Der Sehnentangentenwinkel ist gleich dem Peripheriewinkel : y = a . 
• Satz des Thales: Ein Peripheriewinkel fiber dem Durchmesser ist 900 • 

Kreissektor (Flache F, Bogenlange b) 

F = .!b r b = ra (a im BogenmaB) 
2 

Kreissegment 

F= .![br-s(r-h)] 
2 

b = ra (a imBogenmaB) 

s 



24 Geometrie 

[ Analytische Geometrie der Ebene I 
Strecken 

A bstand d der Punkte PI und P 2 gleich Lange der Strecke PIP 2 : 

fUr kartesische Koordinaten PI (xI,y!) und P2(x2,Y2) 

d = J ri +r~ - 2rl r2cos(<Jl1 - <Jl2) fUr Polarkoordinaten PI (rl' <JlI) und P2(r2, <Jl2) 

lnnere Teilung der Strecke PIP2 durch Punkt T(XT,YT) im Verhiiltnis A = ',PIT" : 
TP2 

YI +AY2 
YT= 1 +A 

Geraden (siehe auch Analytische Geometrie des Raumes) 

Allgemeine Form der 
Geradengleichung 

Explizite Form 

Punkt-Richtungs-Form 

ZweipunktJorm 

Achsenabschnittsform 

Schnittwinkel zweier Geraden 

Parallelitiit gill g2: m I = m2 

Ax+By+C=O 

y=mx+b mit m=tana 

Y-YI =m(x-xI) 

Y-YI Y2 -YI --=---
X-XI x2 -xl 

.!. +~ = 1 
a b 

Orthogonalitiit gl 1. g2 : 

Kurven zweiter Ordnung, Kegelschnitte 

Wird ein Kreiskegel K mit einer Ebene E geschnitten, die nicht 
durch seine Spitze geht, so ist die Schnittkurve eine 

Hyperbel: 
Ellipse: 

Parabel: 

wenn die Ebene E beide Halbkegel schneidet; 
wenn E nur einen Halbkegel schneidet und zu kei­
ner erzeugenden Geraden des Kegels parallel ist; 
wenn E nur einen Halbkegel schneidet und zu ei­
ner erzeugenden Geraden des Kegels parallel ist. 

Legt man in E ein rechtwinldiges x,y-Koordinatensystem so, 
daB seine Achsen die Symmetrieachsen des Kegelschnitts sind 
(bei der Parabel, die nur eine Symmetrieachse hat, wird die Y­
Achse durch den Scheite1punkt ge1egt), so erfiillen die Punkte 

y 

1 
m2 =- ml 

P(x,y) des Kege1schnitts die in der folgenden Tabelle stehenden Normalformen. 



Analytische Geometrie der Ebene 25 

Ellipse Hyperbel Parabel 

~ ~ 
Yt, 

x ~ ) a\ 
Nonnalform 2 2 x2 y2 

y 2 == 2px ~+L = I ---=1 
a2 b2 a2 b2 

Parameter- x = acost ° :S « 21t 
x = acosht 

darsteUung y== bsin t y== bsinht 
- 00<1 < 00 

Asymptoten b 
y=±ax 

Breunpunkte F I(e, O) F2(-e, 0) FI(e,O) F2(- e,0) p 
Exzentrizitat e 

e= Ja 2 -b2 e = Ja 2+b2 
F(O, "2) 

Scheite\punkte S I (a, 0) S2(-o, 0) S I(a, O) S2(- a, 0) S(O, O) 
S3(O, b) S4(O,- b) 

numerische £. « I) £. (> I) 1 
Exzentrizitat £ 

a a 

Halbparameter p b2 p 
a 

PolargJeichung r ... Abstand von einem Brennpunkt F 
r = p cp 4: (FS, FP), S ist nachster Scbeitel zum 

I +£coscp 
.. . 

Brennpunkt F 

Leitgeraden x == +!! x= _E - £ 2 
Brennpunkts-

IPF11 + IPF21 = 2a IPF21- lpF 1 1 =±2a IPFj = Ipil eigenschaft 
=x+l!. 

2 

Leitgeraden- IPFd IPF21 

eigenschafi -- = --=£ 
Ipl d IpI21 

p 

~ r: ~ ~ ~ 
l~ .-fi~ A ~ 2 

Scheitelkriim- b2 a2 b2 R=p 
IDWlgsradien R 1,2 =a R34=- R 1,2=a , b 

Transformation auf Normalform (Hauptachsentransformation) 

Die Transformation aufNormalform der allgemeinen Gleichung einer Kurve 2. Ordnung 

allx2 + 2a 12.ry +a22Y2 +2ao1x+2a02Y+aOO = ° 
erfolgt analog wie die der Aachen 2. Ordnung (~ Analytische Geometrie des Raumes). 



26 Geometrie 

[ Raumliche Geometrie I 
Korper mit ebenen Begrenzungen 

Beschreibung Volumen 

Parallelepiped durch 6 Parallelogramme Ch 
(Spat) begrenzt tc:1J h C 

t ' G b 
a 

Quader Spat mit senkrecht abc 

U C 

aufeinander stehenden 
Kanten 

a 

WiiIfel Quader mit gleich langen 
a3 

Kanten 

Pyramide Grundflache ist Vieleck, 
lCh 4t Seitenfliichen sind 3 

ci. ~ Dreiecke mit 
gemeinsamem Scheitel 

gewohnlicher dreiseitige Pyramide 
lCh 

~t 
Tetraeder 3 

Pyramidenstumpf Schnitt einer Pyramide 
~(C+ JCD +D) (ty parallel zur Grundfliiche , h 

G.- W 

Reguliire Polyeder (KantenIange a) 

Begrenzung Kantenzah1 Eckenzah1 Oberfliiche Volumen 

Tetraeder (reg.) 4 Dreiecke 6 4 l. 7321 a2 0.1l79a3 

Wiirfel 6 Quadrate 12 8 6a2 a3 

Oktaeder 8Dreiecke 12 6 3.4641a2 0.4714a3 

Dodekaeder 12 Fiinfecke 30 20 20.6457a2 7.6631a3 

Ikosaeder 20 Dreiecke 30 12 8.6603 a2 2.1817 a3 
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Korper mit gekriimmten Begrenzungen 

Mantelflache M Volumen V 

gerader Kreiszylinder 27tRh 7tR2h E} 
schrag 7tR(hl +h2) t 7tR2(h ) + h2) 
abgeschnittener 

h ~h' KreiszyLinder 
2 • R-

Zylinderabschnitt, 
2Rh[(b - R)a. + a] I ha3 {J J - RM- -

h Zylinderhuf b 2 3b • a 
Ra. l' 
-? b ~ 

gerader Kreiskegel reRk ! reR2h 

~ 
3 

gerader Kegelstumpf rek(R +r) reh(R2 +Rr+r2) 

~ 
3 

R~ 

Kugel 4reR2 1reR3 
3 

Kugelausschnitt reR(2h+a) l:.reR2h 

~~ h (Gesamtoherflache) 3 

~ a -E-

Kugelkappe 2reRh reh2(R- !!) -.v 3 ~ h 
R. t 

Torus 
4re 2Rr 2re 2Rr2 ..;.. r -E- R~ 

~ 
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I Analytische Geometrie des Ranmes I 
Ger3den und Ebenen im ~3 

Punkt-Richtungs-Form der Geradengleichung: gegeben Punkt 
Po(xoYo,zo) der Geraden und Richtungs-Vektor 3 = (ax, ay, az)T 

x = Xo +A3 
-oo<A<oo 

x=xo+Aax 
in Komponenten: Y = Yo + Aay 

z=zo+Aaz 

Zweipunktform der Geradengleichung: gegeben zwei Punkte 
PI (XI ,YJ,zl) und P2(x2,Y2,Z2) der Geraden g 

X=XI +A(x2-xI) 
X=XI+A(x2- XI) 

in Komponenten: Y=YI +A(Y2-YI) 

Kurzester Vektor d von der Geraden g (in Punkt-Richtungs-Form) 
zumPunktP: 

(p -xo)· 3 
d = P - Xo - 3 . 3 3 

LotfufJpunkt Q des Lotes (der Projektion) vom Punkt P auf die 
Gerade g (Gerade g gegeben in Punkt-Richtungs-Form): 

(P-xo)· 3 
q = Xo + 3'3 3 

Kurzester Vektor zwischen zwei windschiefen Geraden: 

p 

W x1 

X 

0 

P 

~ q Q 

0 

Gegeben Gerade gl : x = x I + A3 I, Gerade g2 : x = X2 + J.l32, 92 
wobei 3 I X 32 *- 0 (1m Fall 3 I X 32 = 0 sind die Geraden parallel.) 
Der kiirzeste Vektor d vongl zug2 ist 

Parameterform der Ebenengleichung: 

x = Xo + A3 + J.lb 
-00 < A < 00 in Komponenten: 
-00< J.l <00 

x = Xo +Aax + J.lbx 

Y = Yo +Aay + J.lby 

z = Zo + Aaz + J.lbz 

Normalenvektor der Ebene x = Xo + Aa + J.lb : 

n=3xb 

Normalenform der Ebenengleichung: 

n·x=D mit D=n·xo, n={A,B,C)T 

in Komponenten: Ax + By + Cz = D 



Hessesche Normalform der Ebenengleichung: 

n -x - D = 0 in Komponenten: 
Inl 

Analytische Geometrie des Raumes 

Ax+By+Cz-D 0 

JA2+B2 +C2 

Kiirzester Vektor d zwischen Ebene n -x = D und Punkt P: 

n-p-D 
d= n 

Inl2 

Kiirzester (vorzeichenbehafteter) Abstand 0 zwischen Ebene n -x = D 
Wld PunktP: 

n-p-D 
0= Inl 

DurchstojJpunkt P der Geraden g : x = xo + A8 mit Ebene n -x = D 

D-n -xo 
p = xo+ n - 8 8 

Flachen zweiter Ordnung 

Die allgemeine GleichWlg einer Hache zweiter OrdnWlg im ~3 ist 

Hauptachsentransformation (Transformation aufNormalform) 

Schritt 1: Drehung des Koordinatensystems, neue Koordinaten x',y',z' 

29 

x = Cx' mit C = ( c/ ? C? ), Ci ___ System orthonormierter Eigenvektoren 
- - - von A, zugehorige Eigenwerte Ai -

Die Ci werden so numeriert, daB Al Wld A2 gleiches Vorzeichen haben oder, wenn ein Ei­
genwert Null ist, daB Al > 0, A3 = 0 gilt oder, wenn zwei Eigenwerte Null sind, daB 
A 2 :t: 0 gilt. Es ergibt sich 
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Schritt 2: Verschiebung des Koordinatensystems, bzw. Drehung und Verschiebung 

a) Sind aIle Eigenwerte von Null verschieden, so ergibt die Koordinaten-Verschiebung 

b 
xl = x" + d mit d j = - Al (i = 1,2,3) 

I 

(neue Koordinaten x",y",z") die Normalform 

AIX" 2 +A2Y" 2 +A3Z"2 + ago = 0 mit ago =aOO +bTd. 

A\ . A3 " A\ ·aoo Name Al . A3 A " I ·aoo Name 

>0 >0 keine reellen Punkte <0 >0 zweischaliges Hyperboloid 

>0 <0 Ellipsoid <0 <0 einschaliges Hyperboloid 

>0 =0 einzelner Punkt <0 =0 elliptischer Kegel 

b) 1st genau ein Eigenwert gleich Null, A3 = 0, und gilt b3 * 0, so ergibt die Verschiebung 

x/=x"+d mit d --!:! d __ b2 d __ aoo+b ld l +b2d2 
1 - AI' 2 - A2' 3 - 2b3 

des Koordinatensystems (neue Koordina­
ten xll,yll,zll) die Normalform 

>0 

<0 

Name 

elliptisches Paraboloid 

hyperbolisches Paraboloid 

c) 1st genau ein Eigenwert gleich Null, A3 = 0, und gilt b3 = 0, so ergibt die Verschiebung 

b l b2 
xl = x" + d mit d l = - Xl' d2 = - A2' d3 = ° 

des Koordinatensystems (neue Koordinaten x",y",z") die Normalform 

AIX"2+A2Y"2+ago =0 mit ago=aoo+bTd. 

A2 a" 00 Name A2 a" 00 Name 

>0 >0 keine reellen Punkte <0 *0 hyperbolischer Zylinder 

>0 <0 elliptischer Zylinder <0 =0 Ebenenpaar 

>0 =0 reelle Gerade 

d) Sind zweiEigenwerte gleich Null (AI = A3 = O)undgilt y:= bi +b~ * 0, so ergIbt 

x' = (b I x" - b3zll)/ JY + b I aoo/y 

y' = yll - b2/A2 

zl = (b 3x" +blz")/ JY 
(Drehung in der x',z'-Ebene und Verschiebung) die 
Normalform Name 

parabolischer Zylinder 
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e) Sind zwei Eigenwerte gleich Null 0 "1 = A3 = 0) und gilt b l = b3 = 0, so ergibt 

X' = x" , b 
/ = /'- A~ , Zl = z" 

(Verschiebung des Koordinatensystems liings der 
y'-Achse) die Normalform 

mit 

, " "'2 oaOO 

> 0 

< 0 

=0 

Name 

keine reellen Punkte 

zwei parallele Ebenen 

eine Ebene 

Ellipsoid zweischaliges Hyperboloid einschaliges Hyperboloid 

elliptischer Doppelkegel elliptisches Paraboloid hyperbolisches Paraboloid 

elliptischer Zylinder hyperbolischer Zylinder parabolischer Zylinder 



[ Abbildungen, reelle Funktionen 

Eine Abbildung f I D ~ V ist eine Zuordnungsvor­
schrift, die jedem Element x einer Menge D genau ein 
Element y einer Menge V zuordnet. 

Schreibweise: 

Definitionsbereich: 

reellwertige Funktion: 

y=f(x), x ED 

D 

V= IR 
W= {y E VI3 xED mity=f(x)} 
Dc C, V= C 
Dc IR, V= IR 
V=W 
Zu jedem YEW existiert genau ein xED mit y = f(x) . 
eine smjektive und injektive Abbildung 

I 

Wertebereich: 
komplexe Funktion: 
reeUe Funktion: 
surjektive Abbildung: 
injektive Abbildung: 
bijektive Abbildung: 
inverse Abb.lFunkt.: 1st f injektiv, so ist die AbbiidungIFunktion y ~ x mit y = f(x) 

wieder eine injektive AbbildungIFunktionjll W ~ D . 
miltelbare Abb.lFunkt.: Sind It I DI ~ VI und h I V I ~ V 2 AbbildungenlFunktionen, so 

ist fl DI ~ V2 mit f(x) = h(1t (x» die aus ItJ2 gebildete mit­
telbare AbbildungIFunktion (auch verkettete Abb.IFkt.) 

[ Begriffe bei reellen Funktionen I 
monoton wachsende Funktion: f(xI) ~f(x2) fiir alle XloX2 ED mit xl <x2 
monoton fallende Funktion: f(XI) ~f(X2) fiir alle xI,x2 ED mit xl <x2 
streng monoton wachsende Funktion: f(XI) <f(x2) fiir alle xI,x2 ED mit xl <x2 
streng monoton fallende Funktion: f(xI) > f(x2) fiir alle xlox2 ED mit xl <x2 
gerade Funktion: f(-x) =f(x) fiiralle x E (-a,a), a>O 
ungerade Funktion: f(-x) = -f(x) fiir alle X E (-a, a) , a> 0 
periodische Funktion mit Periode p: f(x+p) = f(x) fiir alle x,x+p ED 

Grenzwert: 

uneigentlicher Grenzwert: 
rechtsseitiger Grenzwert: 

linksseitiger Grenzwert: 

Eine in einer Umgebung von Xo mit eventueller Ausnahme von Xo 
definierte Funktionfhat an der Stelle Xo den Grenzwert g, falls 
fiir jede Zahlenfolge {Xn} mit Xn ED, xn :;!:xo, lim xn =xo 

n--.oo 
gilt: lim f(xn) = g . 

n--.oo 

Grenzwert g ist +00 oder -00 • 

lim f(x) = g (Anniiherung von x an Xo von rechts) 
x--+xo+o 

lim f(x) = g (Anniiherung von x an Xo von links) 
x--+xo-o 

NullsteUe: Eine Zahl Xo mit f(xo) = 0 . 
Nullstelle der Ordnung p: Eine Zahl xo, fiir die der Grenzwert lim (x - xo)-Pf(x) exi­

X--+XO 
stiert, endlich und nicht Null ist, wobei p natiirliche Zahl ist. 

K. Vetters, Formeln und Fakten
© B. G. Teubner Stuttgart · Leipzig 1998
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PolsteUe: Eine Zahl xo, fUr welche die Grenzwerte lim f(x) und 
x--+xo+o 

lim f(x) beide existieren und mindestens einer uneigentlich ist. 
x~xo-o 

PolsteUe der Ordnung p: Eine Zahl Xo , fUr die der Grenzwert lim (x - xo)Pf(x) existiert, 
X~XO 

endlich und von Null verschieden ist, wobei p natiirliche Zahl ist. 

Lucke: Eine Zahl xo, fUr die lim f(x) existiert, jedochf(xo) Dicht defi-
X--+XO 

Diert ist. 

stetige Funktion: Eine Funktion f hei6t an der Stelle x ° stetig, wenn 

1. der Funktionswertf(xo) erkliirt ist, 
2. der Grenzwert lim f(x) existiert und 

X--+XO 
3. beide Werte - Funktionswert und Grenzwert - libereinstimmen. 

I Spezielle Grenzwerte 

lim x =1 
X~ J1+x2 

limr=l 
x-++o 

lim aX - 1 = Ina 
x--+O x 

I Regel von de I'Hospital 

I 
lim xn - 1 =n 

x--+l x-I 

lim (1+1Y=e 
X~ x 

lim Inx =0 
X~ x 

I 

lim sinx = 1 
x--+O x 

lim (1 +l)x = e 
x-+-oo x 

. loga(1 + x) 1 
lim =-

x--+O x Ina 

Voraussetzung: Die Funktionenfund g seien differenzi.erbar in der Umgebung von xo, even­
tuell mit Ausnahme der Stelle Xo selbst. 

• lim J(x)=O, lim g(x)=O, r J'(x) existiere 1m --
X~Xo X~Xo X~Xo g'(x) 

~ 
lim f(x) = 

x--+xo g(x) 
lim f'(x) 

x--+xo g/(x) 

• lim J(x) = ±CO, lim g(x) = ±oo, r J'(x) existiere 1m --
X~Xo X~Xo X~Xo g'(x) 

~ 
lim f(x) = lim f'(x) 

x--+xo g(x) X--+Xo g/(x) 

• Ausdriicke der Form 0·00 oder 00 - 00 werden durch Umformung 
auf die Form % oder ~ gebracht. 

[J 

0·00,00-00 I 
• Ausdriicke der Form 0° oder 00° oder 100 werden liber die Urn- [ 0°,00°, 100 I 

formung f(xYJ (x) = eK (x) Inf(x) auf die Form 0·00 gebracht. . • 
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I Elementare Funktionen 

Exponentialfunktion 

y==ax mit aE~, a>O 
fur a == e : y == eX == exp(x) 

Logarithm usfunktion 

I 

(a heillt Basis) 

y == logax mita>O undx > O 0 . - ... ------ -_. + 
Umkehrfunktion der Exponentialfunktion, 

0 
fura==e : y == lox (natUrlicher Logarithmus) 

Rechengesetze: 
loga(uv) == logau + loga v 

log a (~) == logau -loga v 

logauV == V ·logau 
0 -

logau 
Umrechnungsformel logbu=lb 

oga auf andere Basis 

Hyperbelfunktionen 0 1 

Y = sinhx := t(eX - e-X) .. . Hyperbelsinus , , , 
(Sinus hyperbolicus) , , , , 

y = cosh x := t( eX + e -X) ••• Hyperbelcosinus 
....... .... 

(Cosinus hyperbolicus) 
X -x 

y=tanhx:=e -e Hyperbeltangens eX +e X -2 -1 

(Tangens hyperbolicus) 
X -X 

y=cothx := e +e Hyperbelcotangens eX -e X , , 
fur x ;t:O (Cotangens hyperbolicus) 

, , , 
'. -2 

Umrechnung hyperbolischer Funktionen untereinander 
fur X>O 

sinh x coshx tanh x cothx 

sinh x tanh x 1 -
Jcosh2x- 1 b -tanh2x Jcoth2x-l 

cosh x 
1 cothx 

b +sinh2x 
-

b -tanh2x Jcoth2x-l 

tanh x 
sinh x Jcosh2x-l 1 

b +sinh2x 
-

cothx 
coshx 

cothx b +sinh2x cosh x 1 

Jcosh2x-l tanh x 
-

sinh x 

loga x 

a> 1 

sinh x 
cosh x 
tanh x 
cath x 



Additionstheoreme fur Hyperbelfunktionen 

sinh(x±y) = sinhxcoshy±coshxsinhy 

tanh(x± ) = tanhx±tanhy 
y 1 ±tanhxtanhy 

Doppelwinkelformeln fur Hyperbelfunktionen 

sinh2x = 2 sinh x cosh x 

tanh 2x = 2 tanh x 
1 +tanh2x 

Halbwinkelformeln fur Hyperbelfunktionen 

sinh!. = Jl(coshX - 1) fur x;:: 0 
2 2 

cOshf = ji(coshX+ 1) 

tanh!. = sinh x 
2 coshx+ 1 

coshx- 1 
sinh x 

Summe und Differenz von Hyperbelfunktionen 

inh inh inh x+y shx-y 
S x+s y= 2s -2- cO -2-

x+y x-y 
coshx + coshy = 2 cosh -2- cosh -2-

sinh(x+y) 
tanhx±tanhy= -

coshxcoshy 

Elementare Funktionen 

cosh (x ±y) = coshx co shy ± sinh x sinhy 

coth(x ± ) = 1 ±cothxcothy 
Y cothx ± cothy 

cosh2x = sinh2x+cosh2x 

coth2x = 1 +coth2x 
2cothx 

sinh!. = -J1.(coshX - 1) fur x ~ 0 
2 2 

coth !. = sinh x 
2 coshx- 1 

cosh x + 1 
sinh x 

sinh sinh 2 sinh x-y sh x+y x- y= -2- cO -2-

coshx-coshY=2sinhx;y sinh x;y 

th + th _ ±sinh(x±y) 
co x - co y - sinh inh xs y 

35 

Formel von Moivre: (coshx±sinhx)n = coshnx±sinhnx 

Areafunktionen 

Die Umkehrfunktionen (inversen Funktionen) des Hyperbelsinus, Hyperbehangens, Hyperbel­
cotangens und des rechten Teils des Hyperbelcosinus werden als Areafunktionen bezeichnet: 

Aus x = sinhy entsteht 
y = arsinhx ... Areasinus 

(Area sinus hyperbolicus) 

Aus x = coshy entsteht fur y ~ 0 
y = arcoshx ... Areacosinus 

(Area cosinus hyperbolicus) 

Aus x = tanh y entsteht 
y = artanhx ... Areatangens 

(Area tangens hyperbolicus) 

Aus x = cothy entsteht 
y = arcothx ... Areacotangens 

(Area cotangens hyperbolicus) 

- 2 

- 1 

-2 

"'rsinh x-­
arcosh x -----­
artanh x-­
arcoth x ------
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Darstellung der Areafunktionen dureh Logarithmus-Funktionen 

arsinhx=In(X+Jx2+1 ) 

artanh x = In J ~ ~~ fur Ixl < 1 

areoshx=In(X+Jx2_1) fur x~l 

areoth x = In Jx+ 1 fur Ixl > 1 
x-I 

Umkehrfunktion des linken Teils des Hyperbe!cosinus: 

Aus x = co shy entsteht fur y ~ 0 

y =-areoshx=ln(x-Jx2-1) fur x~l 
Umrechnung von Areafunktionen untereinander 

arsinhx areoshx 

arsinhx - sgn(x)areosh Jx2 +1 

areosh x arsinh Jx2 - 1 -

artanh x arsinh R sgn(x) areosh b 
1-x2 1-x2 

areothx arsinh ~ sgn(x) areosh ~ 
x2 -1 x2 -1 

Summe und DifJerenz von Areafunktionen 

arsinh x ± arsinh y 

artanhx 

artanh x 
Jx2 + 1 

Jx2-1 
artanh x 

-

artanh.! x 

areosh x ± areosh y areosh (XY ± J(x2 - 1)(y2 - 1) ) 

areothx 

th Jx2+1 
areo x 

areoth ~ 
x2- 1 

areoth ~ 

-

x±y 
artanh x ± artanh y = artanh 1 ± xy 

l±xy 
areoth x ± areoth y = areoth -+­x_y 

Trigonometrische Funktionen (Winkelfunktionen) 

Wegen des Strahlensatzes herrschen in kongruenten Dreieeken 
gleiche Verhii1tnisse zwischen den Seiten, die in reehtwinkligen 
Dreiecken eindeutig dureh einen der nieht reehten Winkel be­
stimmt sind. Man setzt 

. a 
sm x :=c eosx:= ~ 

tanx '= f! eotx '= !!. . b . a 
Fiir Winkel x zwischen ~ und 21t werden die Streeken a,b vorzei­

ehenbehaftet entspreehend ihrer Lage in einem reehtwinkligen 
Koordinatensystem 

c 

\. 
X ' 

a 

x 
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Vorzeichen-. Verschiebungs- und Spiegelungseigenschajten 

sin (~+ x) = sin (~ - x) = cosx 

cos(~+x) =-COs(~-x) =-sinx 

tan(~+x) =-tan(~-x) =-cotx 

cot(~+x) =-cot(~-x) =-tanx 

Periodizitiit (kleinste Perioden) 

sin (x + 2n) = sinx 

tan (x +n) = tanx 

cos (x + 2n) = cosx 

cot (x +n) = cotx 

sin(n +x) = -sinx 

cos(n +x) = -cosx 

tan(1t +x) = tanx 

cot (n + x) = cotx 

. (37t ) SID T +x = -cosx 

cos (3; +x) = sinx 

tan e; +x) = -cotx 

cot(3;+X) =-tanx 

37 

• spezielle Funktionswerte - 2J1 -lftl'l -" -1V2 0 1tf2 11; 3'ft12 21t 

BogenmaB 0 7t 7t ~ -7t 
"6 "4 3 2" 

GradmaB 0° 30° 45° 60° 90° 

sin x 0 I lfi 1[3 1 
2 2 2 

cosx 1 1[3 lfi I 0 
2 2 2 

tanx 0 1[3 1 [3 -
3 

cotx - [3 1 1[3 0 
3 

Umrechnung von Winkelfunktionen untereinander 

Fiir 0 ~ x ~ ~ gilt: 

sin x 

smx -

cosx Jt - sin2x 

tan x sin x 

Jt - sin2x 

cotx Jt - sin2x 
sin x 

sin x 
tanx = cosx 

cosx tan x 

tan x 
JI- cos2x Jt +tan2x 

1 
-

JI +tan2x 

JI-cos2x -

cosx 
cosx 

JI-cos2x 
1 

tan x 

10 .... , --~---.~, ----,,,-----, 
t :, 
, I 
, I 
I 

5 \ 

o 

· 5 

I , , 
, 

- ........ 

tan. _ 

cot x .-

, , , 

~0~L--~~_--~--n~/2~~ 

cotx = C?SX 
smx 

cot x 

1 

Jl +cot2x 
cot x 

JI +cot2x 

_1_ 
cot x 

-
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Additionstheoreme der Winkelfunktionen 

sin(x±y) = sinxcosy±cosxsiny 

( +) tanx±tany tan x _ y = --:=:-----"-

1 +tanxtany 

Doppelwinkelformeln der Winkelfunktionen 

sin2x = 2 sinxcosx = 2tan~ 
1 +tan x 

tan2x = 2tanx = 2 
I-tan2x cotx-tanx 

cos(x±y) = cosxcosy =+= sinxsiny 

( +) cotxcoty+ 1 
cot x_y = coty±cotx 

cos2x = cos2x - sin2x = I-tan2x 
1 +tan2x 

cot2x= cot2x-l cotx-tanx 
2 cot x 2 

Halbwinkelformeln der Winkelfunktionen fur 0 ~ x < 1t 

. x _ JI-COSX 
sm"Z- 2 

cos!. = J 1 +cosx 
2 2 

Summe und Differenz von Winkelfunktionen 

. . . x+y x-y 
smx + smy = 2 sm -2- cos -2-

.. x+y . x-y 
smx - smy = 2 cos -2- sm -2-

+ _ sin(x±y) 
tanx_tany- cosxcosy 

Produkte von Winkelfunktionen 

sinxsiny = i(COS(X-y) - cos(x+y)) 

tan x tan = tan x +tany 
y cotx+coty 

sin x cosy = ~(sin (x - y) + sin (x + y)) 

sin (x + y)sin (x - y) = cos2y - cos2x 

Potenzen von Winkelfunktionen 

sin2x = ~(l- cos2x) 

sin 3x = t(3 sinx - sin 3x) 

sin4x = i(3 - 4 cos2x + cos4x) 

tan!' = 1- cosx sin x l-cosx 
2 1 +cosx 1 +cosx sin x 

cot!' = 1 +cosx sinx 1 +cosx 
2 l-cosx l-cosx 

x+y x-y 
cosx + cosy = 2 cos -2- cos -2-

2 . x+y . x-y 
cosx - cosy = - sm -2- sm -2-

sin (x+y) 
cotx±coty=±. ~ 

smxsmy 

sin x 

cosxcosy = i(cos(x - y) + cos (x +y)) 

cotx+coty 
cotxcoty = t t anx+ any 

tanx+coty 
tanx coty = -:--c-:---"­

cotx+tany 

cos (x +y)cos(x-y) = cos2y- sin2x 

cos2x = ~(l +cos2x) 

cos3x = t(3 cosx+cos3x) 

cos4x = i(3 + 4 cos2x + cos4x) 



Elementare Funktionen 39 

Arkusfunktionen 

Die Umkehrfunktionen (inversen Funktionen) der Winkelfunktionen werden als Arkusjimktio­
nen oder zyklometrische Funktionen bezeichnet. 

Aus x = siny entsteht 

y = arcsin x ... Arkussinus 

Aus x = cosy entsteht 

y = arccos x ... Arkuskosinus 

Aus x = tan y entsteht 

y = arctanx ... Arkustangens 

Aus x = cot y entsteht 

y = arccot x .. . Arkuskotangens 

Definitions- und Wertebereiche 

------------ r ----
I ---- \ ----- .......... : " 
' " , " , ' , , ------------.-- -

-3 -2 

arcsin x--

arccos x -----

arctan x --

arccot x -----

Arkusfunktion Definitionsbereich Wertebereich 

y = arcsinx -l~x~l 

y= arccos x -l~x~l 

y= arctanx -oo<x<oo 

Y = arccotx -oo<x<oo 

Symmetrieeigenschaften der Arkusfunktionen 

arcsin x = -arcsin(-x) 

arctan x = -arctan(-x) 

Umrechnung von Arkusfunktionen untereinander 

arcsinx = I -arccosx = arctan p 
l-x2 

arctan x = I - arc cot x = arcsin ~ 
1 +x2 

arcsin x = arccos J 1 - x2 

arctan x = arc cot { 

(O~x~ 1) 

(x> 0) 

Additionstheoreme der Arkusfunktionen 

-~<y<~ 2 - - 2 

O~y~1t 

-~<y<~ 
2 2 
o <y < 1t 

arccos x = 1t - arccos(-x) 

arccotx = 1t - arccot(-x) 

1t. x 
arccos x = "2 - arcSlllX = arccot r::---;;-

..j l-x2 

arccotx = I -arctan x = arccos ~ 
1 +x2 

arccosx = arcsin J 1 - x2 

arccot x = arctan { 

(O~x~l) 

(x> 0) 

arcsinx± arcsiny = arcsin (xb -y2 ±yh -x2 ) 

x+y 
arctan x + arctan y = arctan -1-- (xy < 1) 

-xy 
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Ganze rationale Funktionen (Polynome) 

Funktionen der Gestalt pn I IR!. ~ IR!. mit 

hellien ganze rationale Funktionen oder Polynome n-ten Grades. Betrachtet man sie als Funk­
tionen pn I <C ~ <C (<C ... Menge der komplexen Zahlen), mit aj E <C, so kann nach dem 
Fundamentalsatz von Gaufi jedes Polynom n-ten Grades in der Form (Produktdarstellung) 

Pn(x) = an(X-Xl)(X-X2)",(X-Xn_l)(X-Xn) 

dargestellt werden. Die Zahlen Xi sind die reellen oder komplexen Nullstellen des Polynoms. 
Sind alle Koeffizienten ai reell., so treten komplexe Nullstellen stets paarweise in konjugiert 
komplexer Form auf Die Nullstelle XI ist p-fache Nullstelle oder Nullstelle der Ordnung P, 
wenn der Faktor (x-x) in der Produktdarstellungp-mal vorkommt. Funktions- und Ableitungs­
werte von Polynomen berechnet man im 

Horner-Schema: 

bi :=ai+l +abi+1 (i=n-I, ... ,O) 

Pn(a) = ao +abo 
Ci := bi+1 +aci+l (i =n-2, ... ,0) 

p~(a) = bo +aco 

Es gilt 

Vietascher Wurzelsatz: 

a 

a 

an an-l an-2 
- abn- 1 abn-2 

bn- 1 bn- 2 bn- 3 

aCn-2 aCn-3 

Cn-2 Cn-3 Cn-4 

n 
~ X· = -an-l 

i=l I 
n 
~ X,X, = an-2 

i,j=l I J 
(i<J) 
n 
~ xixJ,xk = -an-3 

i,j,k=l 
(i<j<k) 

Nullstellen des Polynoms P2(x) = x2 + px + q bzw. 
Losungen der quadratischen Gleichung x2 + px + q = 0 : 

=> Xl'2=-~±J(~r-q 
=> x12 =_E-, 2 

=> xl,2 =-~± iJq- (~r 

... a2 al aO 

... ab2 ab 1 abo 
b1 bo Pn(a) 

aCl ac 
I 

Co Pn(a) 
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Gebrochen rationale Funktionen, Partialbrucbzerlegung 

Funktionen der Gestalt y = r(x) , 

r(x) = amxm +am_lXm- 1 + ... +alx +ao mit am * 0, bn * 0 
bnxn +bn_1Xn-l + ... +blX+bo 

heillen gebrocfren rationale Funktionen, und zwar 

echt gebrochen, wenn m < n ist, 
unecht gebrochen, wenn m ~ n ist. 

• Eine unecht gebrochen rationale Funktion kann durch Polynomdivision auf die Form 

r(x) = p(x) + s(x) 

gebracht werden, wobei p(x) ein Polynom ist und s(x) eine echt gebrochen rationale 
Funktion. 

Nullstellen von r(x) sind aile Nullstellen des Ziihlerpolynoms, die keine Nullstellen des Nen­
nerpolynoms sind. 

Polstellen von r(x) sind aile Nullstellen des Nennerpolynoms, die keine Nullstellen des Ziib­
lerpolynoms sind und aile gemeinsamen Nullstellen von Ziihler- und Nennerpoly­
nom, deren Vielfacbheit im Ziihlerpolynom kleiner als ihre Vielfacbheit im Nenner­
polynom ist. 

Lucken von r(x) sind aile gemeinsamen Nullstellen des Ziihler- und Nennerpolynoms, deren 
Vielfacbheit im Ziihlerpolynom groBer oder gleich ihrer Vielfacbheit im Nennerpoly­
nomist. 

Partialbrucbzerlegung echt gebrochen rationaler Funktionen r(x) = pm«x» 
qn X 

Schritt 1: Darstellung des Nennerpolynoms als Produkt von linearen und quadratischen Poly­
nomen mit reellen Koeffizienten, wobei die quadratischen Polynome konjugiert 
komplexe Nullstellen besitzen: 

qn(X) = (x-a)(X(x- b)Il .. ·(x2 +cx+d)Y(x2 +ex+fl'··· 

Schritt 2: Ansatz 

Schritt 3: Bestimmung der (reellen) KoeffizientenAj,Bj, ... ,Fj des Ansatzes 

a) Ansatz aufHauptnenner bringen 
b) mit Hauptnenner mnltiplizieren 
c) Einsetzen von x = a, x = b, ... liefert A(X,BIl, ... 
d) Koeffizientenvergleich liefert lineare Gleichungen fUr die restlichen unbekannten 

Koeffizienten. 
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I SpezieUe Funktionen I 
Bernstein-Polynome 

Definition: 

im besonderen: 

n = 0: Bg(x):; 1 

n = 1 : B~(x) = I-x B~(x)=x 
Bi(x) = 2(1 - x)x B~(x) = x2 n = 2: B~(x) = (1 - x)2 

n=3: B~(x)=(I-x)3 Bf(x) = 3(I-x)2x B~(x) = 3(I-x)x2 B~(x) =x3 

• Rekursionsfonnel: B7 (x) = (1 - x)B7-1 (x) + xB7~l (x) 

• Eigenschaften: 
n n LB. (x):; 1 

i=O I 

Tschebyscheff-Polynome 

Definition: Tn(x)=cos(narccosx) fUr -1~x~1 

im besonderen: To(x) = 1 Tl(X)=X T2(x) = 2x2 - 1 
T3(x) = 4x3 - 3x T4(x) = 8x4 - &x2 + 1 T5(x) = 16x5 -20x3 +5x 

• Rekursionsfonnel: T n+ 1 (x) = 2xT n(x) - T n-l (x) fUr n = 1,2, ... 

• Eigenschaften: ITn(x)I~1 fUr -1~x~1 

f Tm(x)Tn(x)dx=1 ~:: m:::o 
-1 J 1 - x 2 It fUr m = n = 0 

(Orthogonalitiit) 

Gammafunktion 

Definition: 
I x-I 

r(x) := lim n. n fUr x * 0, -1, -2, ... 
n~ x(x+ 1)·· ·(x+n-l) 

00 

.Esgiltfurx>O: r(x) = fe- tf'- l dt. 
o 

• Eigenschaften: r(x + I) = xr(x) fur x * 0, -1, -2, ... 

r(x)r(1 - x) = -:--(TC ) fur x * 0, ±1, ±2, ... 
smltx 

• Spezielle Funktionswerte 

r(l) = 1 r(n + 1) = n! fur n E N 
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[ Determinanten I 
Die Determinante D einer quadratischen (n,n)-Matrix A ist die rekursiv definierte Zahl 

D=detA= 
ann 

wobei Aik die dUTch Streichen der i-ten Zelle und k-ten Spalte aus A geblldete Matrix ist. Die 
Determinante einer (l,l)-Matrix ist gleich dem Wert ihres einzigen Elementes. Die Berech­
nung einer Determinante gemii6 dieser Definition wird Entwicklung nach der i-ten Zelle 
genannt. 

• Der gleiche Wert D ergibt sich dUTch Entwicklung nach der k-ten Spalte: 

D=detA= 

• Die Entwicklung nach beliebiger Zelle oder Spalte ergtot den gleichen Wert D. 

• Spezialflille (Regel von SamJS): 

I au a121 = au a22 - a12a 21 
a21 a22 

au a12 a13 

a21 a22 a23 

a31 a32 a33 

au a22a 33 +a12a 23a 31 +a13a 21 a32 

-a13a 22a 31 -aUa 23 a 32 -a12a 21 a 33 

Eigenschaften und Rechengesetze fUr n-reihige Determinanten 

zweireihige 
Determinante 

dreireihige 
Determinante 

• Eine Determinante wechselt ihr Vorzeichen, wenn man zwei Zellen oder zwei Spalten mit­
einander vertauscht. 

• Sind zwei Zellen (Spalten) einer Determinante einander gleich, hat sie den Wert Null. 

• Addiert man das Vielfache einer Zelle (Spalte) zu einer anderen Zelle (Spalte), so iindert 
sich der Wert der Determinante nicht. 

• Multipliziert man eine Zelle (Spalte) mit einer Zahl, so multipliziert sich der Wert der Deter­
minante mit dieser Zahl. 

• detA = detAT det(AB) = detA· detB 

K. Vetters, Formeln und Fakten
© B. G. Teubner Stuttgart · Leipzig 1998
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all aln all aln all aln 

• ail + bil .. . ain +bin ail ain + bil bin 

anI ann anI ann ani . .. ann 

I Vektoren I 
Ein Vektor ist im Raum ~J mit einem festen Koordinatensystem eindeutig durch drei Kompo­
nenten beschreibbar. 

[ ax 1 [ qx - px 1 
a= ay = qy-Py 

az qz -pz 

z 

Koordinateneinheitsvektoren: 

y 

x 

• Ein Vektor kann als ein durch Lange, Richtung und Orientierung definiertes Objekt interpre-­
tiert werden. 

Ded ... "" 11.. ;" d" Raum d" ... ,"""""owoIeo Ve"'"" ,= [}: 1 = a lei + ... +a.e • . 

Koordinateneinheitsvektoren: 

Recbenoperationen 

Produkt mit reeller Zahl: "'v 
/. (A>l ) 

Addition: 

Skalarprodukt: 

andere Schreibweise: aT = (aJ, . . . ,an) 
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Betrag: FUr n = 2, 3 ist I a I die Lange des Vektors a. 

Rechenregeln uod Eigeoschaften von Skalarprodukt und Betrag (A reelle Zahl) 

IAal = IAIIal 

a Tb = lal ' lbl . cOSql (a, b E ~2,1I~?) 

la + bl ~ lal + Ibl (Dreiecksungleichung) 
laTbl ~ lallbl (Cauchy-Schwarzsche Ungleichung) 

Vektorprodukt (nur fur Vektoren des ~3) 

ay az ax az ax ay 
( ax 1 ( bx 1 I I I I I I a x b = : x :~ := by bz ex - bx bz ey + bx by ez 

symbolische Schreibweise (man entwickle die Determinante nach der ersten Zeile): 

ex ey ez 
a x b= ax ay az 

bx by bz 

Recheoregelo (a, b, c E ~3) 

a x b=-bxa axa=O (Aa) x b = A(a x b) 

(a+b) x c =a x c+b x c (a x b) x c= (a ·c)b-(b ·c)a (Zerlegungssatz) 

laxbl=lal ' lbl ' sinql mitql=~a,b, O~qI~1t 

(a x b)·a=O (axb) · b=O 

• Der Vektor a x b steht senkrecht (orthogonal) zu a und zu b. 

• Die Vektoren a, b, a x b bilden einRechtssystem, d.h., wenn 
a zu b gedreht wird, zeigt a x b in Richtung der Rechtsschraube. 

aX b~ 
a 

• la x bl ist der Aacheninhalt A des durch die Vektoren a und b 
aufgespannten Parallelogramms. 

Spatprodukt (nur fur Vektoren des ~\ (abc) := (a x b)· c 

• Das Volumen V des durch die Vektoren a,b,c aufgespannten 
Spates (Parallelepipeds) ist 

V = l(abc)1 . 

~- - -

a 

c~ 
a 

. 
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• Das Volumen V des durch die Vektoren a,b,c aufgespannten 
Tetraeders ist gleich il(abc)l . 

Berechnung: 
ax ay az 

(abc) = bx by bz 

Cx Cy Cz 

Lineare Abhiingigkeit 

£ a 

Die m Vektoren al, ... , am E ~n heillen linear abhiingig, wenn es Zahlen 1"1 , ... , Am gibt, 
die nicht aIle gleichzeitig Null sind, so daB 

Al a 1 + ... + Amam = 0 

gilt. Andemfalls heillen die Vektoren al, .. . , am linear unabhiingig . 

• Die Maximalzahllinear unabhangiger Vektoren im ~ n ist n . 

• Sind die Vektoren al, .. . , an E ~ n linear unabhangig, so bilden sie eine Basis des ~ n, d.h., 
jeder Vektor a E ~ n liiBt sich eindeutig darstellen als 

a = Alai + ... +Anan . 

I Vektornormen I 
Euklidische Norm (Betrag, im ~3 Lange): Ilalh := lal = l~1 af 

Maximumnorm: lIall oo := max lail 
i=I , ... ,n 

Betragssummennorm: 

Eigenschaften 

lIall = 0 ¢:> a = 0 lIall~O IIAall = IAlllal1 (A reelle Zahl) 

Iia + bll :::; lIall + Ilbll (Dreiecksungleichung) 

la Tbl :::; lIallzllbliz (Cauchy-Schwarzsche Ungleichung) 

Illall-lIblll :::; lIa - bll 
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I Matrizen I 
Eine (m,n)-Matrix A ist ein Schema von m· n reellen oder komplexen Zahlen (Elemente) aij 
(i=l, ... ,m;j=l, ... ,n): 

Zeilenindex 

Bezeichnungen: 
j Spwtenindex 
aij = (A)ij Element 

(m, 1) - Matrix··· Vektor 

• Der Zeilenrangvon A ist die MaximalzJlhllinear unabhiingiger Zeilenvektoren, der Spalten­
rang die Maximalzahllinear unabhiingiger Spaltenvektoren . 

• Es gilt: Zeilenrang = Spaltenrang. Also: rang(A): = Zeilenrang = Spaltenrang . 

Rechenoperationen 

Identitat: A=B wenn aij = bij V i,j 

Produkt mit reeller Zahl Ie: 

Addition: 

Subtraktion: 

Transponieren: 

Konjugieren: 

Adjungieren: 

Multiplikation: 

Voraussetzung: 
Ergebnis: 

Rechenregelo 

A+B=B+A 

(AB)C = A(BC) 

(AT)T =A 

(AB)T =BTAT 

A+B:=(aij+bij) 

A-B:=(aij-bij) 

AT = (aij)T := (aji) 

A = (aij) := (aij) 

A* :=AT 

A ist (m,p)-Matrix und B ist (p,n)-Matrix 
AB ist (m,n)-Matrix 

(A + B) + C = A + (B + C) 

(A+B)C = AC+BC 

(A+B)T =AT +BT 

(leA)B = Ie(AB) = A(leB) 

(leA) T = leA T 
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SpezieUe Matrizen 

quadratische Matrix: 

Einheitsmatrix E: 

Diagonalmatrix D: 

symmetrische Matrix: 

Hermitesche Matrix: 

reguliire Matrix: 

singuliire Matrix: 

zu A inverse Matrix: 

orthogonale Matrix: 

unitiire Matrix: 

positiv definite reelle Matrix: 

gleiche Anzahl von Zeilen und Spalten 

quadratische Matrix mit e ii = I, e ij = 0 fUr i '* j 
quadratische Matrix mit dij = 0 fUr i '* j 
Bezeichnung: D = diag (di ) mit di := dii 

reelle quadratische Matrix mit AT = A 

komplexe quadratische Matrix mit A * = A 

quadratische Matrix mit det A '* 0 

quadratische Matrix mit det A = 0 

Matrix A -I mit AA -I = E 

regulare reelle Matrix mit AA T = E 

regulare komplexe Matrix mit AA * = E 

symmetrische Matrix mit x TAx> 0 'if x '* 0, X E ~ n 

" komplexe Matrix: Hermitesche Matrix mit x* Ax> 0 'if x,* 0, X E en 

positiv semidefinite reelle Matrix: symmetrische Matrix mit x T Ax ~ 0 'if x E ~n 

" komplexe Matrix: Hermitesche Matrix mit x* Ax ~ 0 'if x E en 

negativ definite reelle Matrix: symmetrische Matrix mit x T Ax < 0 'if x '* 0, X E ~ n 

semidefinite reelle Matrix: symmetrische Matrix mit x T Ax ::; 0 'if x E ~ n 

Rechenregeln und Eigenschaften spezieller regularer quadratischer Matrizen 

AE=EA=A 

detE = 1 

(-I)l+ndetAnl 1 
: :: (-1)n+n:det Ann 

(A-I)-I=A 

det (A-I) = _1_ 
detA 

Dabei ist Aik die aus A 
durch Streichen der i-ten 
Zeile und k-ten Spalte 
gebildete Teilmatrix 
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I Lineare Gleichungssysteme I 
Das lineare Gleichungssystem 

Ax=b in Komponenten: 

heillt 
homogen. wenn b = 0, in Komponenten: wenn b i = 0 fur alle i = 1, ... , n, 
inhomogen. wenn b * 0, in Komponenten: wenn b i * 0 fur wenigstens ein i = 1, ... , n. 

Existenz von LOsungen 

• Das inhomogene Gleichungssystem Ax = b ist genau dann eindeutig losbar, wenn det A * O. 

• Das inhomogene Gleichungssystem Ax = b mit detA = 0 ist genau dann losbar, wenn 
rang(A) = rang(A, b) gilt . 

• Das homogene Gleichungssystem Ax = 0 hat stets die triviale Losung x = o. 

• Das homogene Gleichungssystem Ax = 0 hat genau dann nicht triviale Losungen, wenn 
detA = O . 

• Effektive Losung linearer Gleichungssysteme ~ Numerische Methoden, GauB-Algorithmus 

Cramersche Regel 

1st A eine reguliire Matrix, so lautet die LOsung des inhomogenen Gleichungssystems Ax = b 
in Komponenten: 

mit 
al,~-l ~l a1f+l ... a~n 1 ' 
an,k-l bn an,k+l ann 

k=I, ... ,n. 

SpezialfaU n = 2: 

de-bf af-ee 
~ Losung: X = ad _ be' Y = ad - be 

2. ad = be und af = ee und bf=de 

a*O ~ Losung: X=!!..-P..A 
a a ' Y=A, -OO<A<oo 

b*O ~ Losung: X=A, Y= ~-~A, -OO<A<oo 

e*O ~ Losung: 
f d 

X= c-cA, Y=A, -OO<A<oo 

d*O ~ LOsung: X=A, y=l.-~A 
d d ' 

-OO<A<oo 

3. sonst (weder 1. noch 2.): Gleichungssystem hat keine Losung. 



50 Lineare Algebra 

I Eigenwertaufgaben bei Matrizen I 
Eine Zahl A eC heillt Eigenwert der quadratischen (n,n)-Matrix A, wenn es einen Vektor 
f '* 0 gibt, fUr den gilt: 

Ar=Af, in Komponenten: 

Ein zum Eigenwert A gehOriger Vektor f mit dieser Eigenschaft heillt Eigenvektor von A. 

• Sind fi, ... ,fk zumEigenwert A gehOrige Eigenvektoren, so ist auch 

f :=Uifi + ... +ukfk 

ein zum Eigenwert A gehOriger Eigenvektor, falls nicht aIle Uj verschwinden. 

• Eine Zahl A ist genau dann Eigenwert der Matrix A, wenn gilt: 

Pn(A) := det(A - AE) = 0 . 

Pn(A) ist ein Polynom n-ten Grades, genannt charakteristisches Polynom der Matrix A. Die 
Vielfachheit der Nullstelle A des charakteristischen Polynoms heillt algebraische Vielfach­
heit des Eigenwertes A. 

• Die Anzahl der zum Eigenwert A gehOrenden linear unabhangigen Eigenvektoren ist 

n- rang(A-AE). 

und heillt geometrische Vielfachheit des Eigenwertes A. Sie ist nicht grofier als die algebrai­
sche Vielfachheit des Eigenwertes A. 

• Sind Aj U = 1, ... , k) paarweise voneinander verschiedene Eigenwerte und fj U = 1, ... , k) 
zugehOrige Eigenvektoren, so ist das System der Eigenvektoren {f b ... , f k} linear unab­
hangig . 

• Die Matrizen A und AT haben die gleichen Eigenwerte . 

• Die zu verschiedenen Eigenwerten gehOrigen Eigenvektoren der Matrizen A und A T sind 
zueinander orthogonal. 

• Eine (n,n)-Diagonalmatrix D = diag(dj ) hat die n Eigenwerte Aj = dj U = 1, ... ,n). Ein 
zum Eigenwert Aj = dj gehOriger Eigenvektor ist der j-te Einheitsvektor: 

(O~ 

mit 
'j = l; j Ho.t;~j 
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Ahnliche Matrizen 

Die durch 

beschriebene Matrizenoperation A ~ B heillt A"hnlichkeitstransjormation. Zwei durch eine 
Almlichkeitstransformation verkniipfte Matrizen heillen iihnliche Matrizen. 

• Almliche Matrizen haben die gleichen Eigenwerte. 

• Almliche Matrizen haben zu gleichen Eigenwerten die gleiche Anzahl linear unabhiingiger 
Eigenvektoren. 

Diagonaliihnliche Matrizen 

Eine zu einer Diagonalmatrix iihnliehe Matrix heillt diagonaliihnlich. 

• Eine (n,n)-Matrix ist genau dann diagonaliihnlieh, wenn sie n linear unabhiingige Eigenvek­
toren hat. 

• Zu jeder diagonaliihnliehen (n,n)-Matrix A liillt sieh ein linear unabhiingiges System von Ei­
genvektoren r h ... , r n von A und ein ebensolehes System t h ... , tn von Eigenvektoren 

von AT angeben, so daB rJ tk = 0jk (j = 1, ... ,n;k = 1, ... ,n) gilt. Die spalten- bzw. zeilen­

weise aus solehen Eigenvektoren rj bzw. tk aufgebauten Matrizen R und T vermitteln die 

Almliehkeitstransformation von A aufDiagonalform, d.h., es gelten 

Falls A nur reeDe Eigenwerte hat, kann TreeD gewiihlt werden, R ist dann aueh reeD. 

Symmetrische Matrizen 

• Die Eigenwerte einer reeDen symmetrischen Matrix sind stets reeD. Jeder ihrer Eigenvekto­
ren kann in reeDer Form dargestellt werden. Zu versehiedenen Eigenwerten gehOrige Eigen­
vektoren sind zueinander orthogonal. 

• Eine reelle symmetrische Matrix ist diagonaliihnlieh. 

• Jede reelle symmetrische (n,n)-Matrix besitzt n paarweise orthogonale Eigenvektoren und 
kann dureh eine Ahnllehkeitstransformation mit einer reellen orthogonalen Matrix C auf 
Diagonalform gebraeht werden. 

• Eine reeDe symmetrische Matrix ist genau dann positiv definit (positiv semidefinit), wenn ih­
re siimtlichen Eigenwerte positiv (nieht negativ) sind. 

• Der Ausdruek R(x):= x T,:x heillt Rayleigh-Quotient. Der kleinste Eigenwert A.min einer 
x x 

reellen symmetrischen (n,n)-Matrix A ist das Minimum, der groBte Eigenwert A.maxdas Ma-
ximum des Rayleigh-Quotienten R(x). Dieses Minimum bzw. Maximum nimmt der Ray-
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leigh-Quotient fUr jeden zorn ldeinsten Eigenwert gehOrigen Eigenvektor r min bzw. zum 
grOfiten Eigenwert gehOrigen Eigenvektor rmax an, d.h., es gilt fUr aUe reellen Vektoren x: 

Amin = min R(u) = R(r min) ~ R(x) ~ R(rmax) = max R(u) = Amax . 
u~n u~n 

Jordansche Normalform 

Zujeder reellen (n,n)-Matrix A gibt es eine regulare, i. aUg. komplexe (n,n)-Matrix C, die die 
AImlichkeitstransformation 

mit 

vennittelt, wobei die Diagonalblocke J(Aj,nj)der Matrix J Jordanbl6cke heillen und Matrizen 

vom Typ (nj,nj) sind. Dabei gilt nl + ... +ns = n, und die '0 sind die Eigenwerte von A. Die 
Zahl der Jordanblocke zum Eigenwert Aj ist gleich der geometrischen Vielfachheit von Aj. Die 
Matrix J helit Jordansche Normalform der Matrix A. 

• Die Matrix J ist bis auf die Anordnung der Diagonalblocke eindeutig bestimmt. 

• Falls A nur reelle Eigenwerte hat, kann die Transformationsmatrix C reell gewiihlt werden. 

• Die Anzahl s der Jordanblocke ist gleich der Anzahl der linear unabhiingigen Eigenvektoren 
der Matrix A. Diese stehen in denjenigen Spalten von C, die den ersten Spalten der Jordan­
blOcke entsprechen. 

Singularwertzerlegung 

Zujeder reellen (m,n)-Matrix A gibt es eine orthogonale (m,m)-Matrix U und eine orthogonale 
(n,n)-Matrix V, so daB 

( al 1 

UTAV="= l 0 cr,.: J mit 

gilt. Dabei konnen die beiden rechten oder die beiden unteren Nullblocke fehlen. Treten alle 
drei NuliblOcke auf; so setzt man ar+l = ... = at = 0, mit 1= min(m, n). Durch A sind die 
Zahlen a 1 , ... , at eindeutig festgelegt, sie helien Singuliirwerte von A. 

• Es gilt r = rang(A) und A = m:vT . 

• Die Zahlen a~, ... , a; sind die positiven Eigenwerte sowohl von AT A als auch von AA T , 
die restlichen n - r bzw. m - r Eigenwerte von AT A bzw. AA T sind null. 

• Die SpaIten von U sind die normierten Eigenvektoren von AA T , die Spalten von V die nor­
mierten Eigenvektoren von AT A. 



[FOlgen I 
[ Zablenfolgen I 
Eine Abbildung a I K ~ ~ , KeN, wird Zahlenfolge genannt. Die Zahlenfolge heillt endlich 
oder unendlich, je nachdem, ob die Menge K endlich oder unendlich ist. Eine unendliche Zah­
lenfolge wird Folge genannt. 

Bezeichnungen: an := a(n) 
{an> 

Elemente der Folge, n = 1,2, ... 
Zusammenfassung aIler Elemente, Folge 

beschriinkte Folge: Es gibt eine Zahl p E ~ mit Ian I ::; p fur aIle n EN. 

Monotonie: 

Konvergenz: 

Divergenz: 

Hiiufungspunkt: 

Konvergenzsiitze 

Eine Folge heillt monoton wachsend, monoton fal/end, streng monoton 
wachsend oder streng monoton fal/end, wenn die Abbildung a die ent­
sprechende Eigenschaft hat. 

Eine Zahl g heillt Grenzwert der Folge {an}, wenn es zu jeder Zahl E > 0 
einen Index n(E) gibt mit Ian - gl < E fur aIle n:2: n(E) . Die Folge {an} 
heillt dann konvergent gegen g. 
Schreibweise: lim an = g oder an ~ g fur n ~ (Xl • 

n~ 

Hat eine Folge keinen Grenzwert, so heillt sie divergent. Die Folge {an} 
heillt bestimmt divergent gegen +00, wenn es zu jeder Zahl p einen Index 
n(p) gibt mit an> p fur aIle n:2: n(p). Die Folge {an} heillt bestimmt 
divergent gegen -00, wenn die Folge {-an} bestimmt divergent gegen 
+00 ist. Eine Folge, die weder konvergent noch bestimmt divergent ist, 
heillt unbestimmt divergent. 

Eine Zahl h heillt Hiiufungspunkt der Folge {an}, wenn es zu jeder Zahl 
E > 0 unendlich viele Elemente an gibt mit Ian - hi < E . 

• Eine Folge kann hOchstens einen Grenzwert haben. 

• Eine monotone Folge konvergiert genau dann, wenn sie beschriinkt ist. 

• Aus A ::;an::;B und lim an =g folgt A ::;g::;B. 
n~ 

• Aus lim an = g, lim bn = h, a, 13 E ~ folgen 
n~ n~ 

lim (aan + I3bn) = ag + I3h, 
n~ 
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54 Folgen 

• Aus lim an = g folgt n--..x> 

lim lanl = Igl , 
n--..x> 

• Eine beschrinkte Folge besitzt mindestens einen Hiufungspunkt. 

• 1st h Hiufungspunkt von {an}, so gt."bt es eine gegen h konvergente Tei1folge von {an} . 

Grenzwerte spezieUer Folgen 

I Funktionenfolgen 

Folgen der Form 

lim _n_= 1 
n--..x> n + 1 

I 

11'/2, ... Schreibweise: {In}, nEild, 

lim'ff,=1 fUr 1..>0 
n--..x> 

lim (1 + ~) n = eA 
n--..x> n 

bei denen die Glieder {fn} auf einem InteIVaIl D E IR definierte reellwertige Funktionen sind, 
werden Funktionenfolgen genannt. AIle Werte xED, fUr die die Folge {fn(X)} einen Grenz­
wert besitzt, bilden den Konvergenzbereich der Funktionenfolge {fn}. 1m weiteren wird an­
genommen, daB D mit dem Konvergenzbereich iibereinstimmt. Durch 

f(x):= n~n(X), xED, 

wird die GrenzJunktion f der Funktionenfolge {In} definiert. 

• Die Funktionenfolge {In}, nEild, konvergiert gleichmiiftig in D gegen die Grenzfunktionf, 
wenn es zu jeder reellen Zahl E > 0 eine Zahl n(E) gibt, die nicht von x abhiingt, so daB fur 
aIle n ~ n(E) und aIle xED gilt: 

Ifn(x) - f(X) I < E • 

• Cauchy-Kriterium. Die Funktionenfolge {fn}, nEild, ist genau dann im JnteIVall DE IR 
gleichmiiBig konvergent, wenn es zu jeder reellen Zahl E > 0 eine nicht von x abhiingige 
Zahl n(E) gibt, so daB fur aIle n ~ n(E) und aIle m ~ 1 gilt: 

Ifn+m(x) - fn(x) I < E fur aIle xED. 



Differentialrechnung f"tir Funktionen mit einer Variablen 

[ Begriffe I 
Differenzenquotient: 

dy f(x + dx) - f(x) 
dx:= dx 

Differentialquotient: dy.= lim f(x + dx) - f(x) (*) 
dx· ~x~O dx 

Falls der Grenzwert (*) existiert, heillt die Funktion f 
an der Stelle x differenzierbar. Der Grenzwert heillt 

y+£l y 

y 

Differentialquotient oder Ableitung der Funktion f an x x+ £lx 

der Stelle x und wird mit : bezeichnet (auch ~ , 
y'(x),j'(x». Der Differenzenquotient ist der Anstieg tan 13 der Sekante s zwischen den Kur­
venpunkten P(x,f(x» und Q(x+dx,f(x+dx» . Der Differentialquotient ist der Anstieg tan a 
der Tangente tim Kurvenpunkt P(x,f(x». 

[ Differentiationsregeln I 
• Summe: (f+g)' =f' +g' • Faktor: (V)' = AI' (A. E IR, konstant) 

• Produktregel: (f . g)' = f' . g + f· g' • Quotientenregel: (f.)' =f'· g-f- g' 
g g2 

• Kettenregel: Es sei y = fa(z) mit z = /;(x) (fa ... iiufiere Funktion,/; ... innere Funktion). 
Dann gilt 

: = t . ~ oder: y'(x) = (fa(/;(X»' = df~t) . df~x) 

• Differentiation mittels Umkehrfunktion 
Es sei x = f-l(y) die Umkehrung von y = f(x). Dann gilt 

I '<x) - 1 
- (f-l)'(f(x» 

oder: 
dy 1 
dx=dx· 

dy 

• Logarithmische Differentiation (falls lnf(x) leichter zu differenzieren ist alsf(x» 

f'(x) = (lnf(x»' -J(x) . 

• 1st eine Funktion y = f(x) in impliziter Form F(x,y) = 0 gegeben, so gilt 

f'(x) = _ Fx(x,y) . 
Fy(x,y) 
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56 Differentialrechnung fUr Funktionen mit einer Variablen 

I Ableitungen elementarer Funktionen I 
Funktion Ableitung Funktion Ableitung Funktion Ableitung 

C (Konst.) 0 10ga Ixl 
1 
x10gae sinh x cosh x 

x 1 Iglxl ~lge cosh x sinh x 

xn nxn- I sin x cosx tanh x I-tanh2x 
1 1 cos x -sinx cothx 1- coth2x 
X --

x2 
1 n 

1 +tan2x 1 
xn xn+1 tan x arsinhx 

b+x2 

JX 
1 cotx -1-cot2x arcoshx 1 

2jX Jx2 -1 

'!/X 
1 arcsin x 1 artanhx _I_ 

n ~xn-l b-x2 l-x2 

eX eX arccos x - 1 arcothx 1 

Jl-x2 x2 -1 

1 00 
aX aX Ina arctan x -- f(x) (x> 0) f e-ltx-1Intdt 

1 +x2 0 

In Ixl 
1 arccotx 1 
x 1 +x2 

I Mittelwertsatze I 
Mittelwertsatz der Differentialrechnung 

Die Funktionf sei auf [a, b] stetig und auf (a, b) differenzierbar. Dann gtbt es (mindestens) ein 
~ E (a, b) , so daB gilt 

f(b)-f(a) =f'(~). 
b-a 

Erweiterter Mittelwertsatz der Differentialrechnung 

Die Funktionenfund g seien auf dem IntelVall [a, b] stetig und auf (a, b) differenzierbar. Es 
sei g'(x).= 0 fUr jedes x E (a, b). Dann gibt es (mindestens) ein ~ E (a, b) , so daB gilt 

f(b) - f(a) f'@ 
g(b) - g(a) = g'@ . 



NiiherungsformeIn 57 

I Taylorentwickiung I 
Satz von Taylor: Die Funktionf sei in einer Umgebung U der Stelle Xo (n+ I)-mal differen­
zierbar, und es sei x E U. Dann gtbt es eine zwischen x und Xo gelegene Zahl~, so da6 gilt 

T aylorformel: 

Taylorpolynom: 

Restglied: 

f(x) = Pn(X) + Rn(x) 

f'(xo) f"(xo) j<n)(xo) 
Pn(x) = f(xo) + -I!-(x - xo) + -v(x - xO)2 + ... + -n-!-(x - xo)n 

j<n+l)@ 
Rn(x) = (n+ I)! (x-xo)n+l 

Rn(x) = lj (x_t)nj<n+l)(t)dt 
n!xo 

(Lagrange-Form) 

(Integral-Form) 

• Andere Schreibweise (Entwicklungsstelle x statt x 0, Zwischen stelle x + Sh, 0 < S < I): 

f '(x) I"(x) An) (x) An+l)(X+ Sh) 
f(x+h)=f(x)+--h+--h2+ ... +J-'-hn +J' hn+l 

I! 2! n! (n+ I)! 

• MacLaurin-Form der Taylorformel (Spezia1fa11 Xo = 0 , Zwischenstelle Sx, 0 < S < I): 

f '(O) 1"(0) f(n)(o) An+l)(sx) 
f(x) = f(O) + --x + --x2 + ... + --xn +J ' xn+l 

I! 2! n! (n+I)! 

Taylorformeln elementarer Funktionen mit Entwicklungsstelle Xo = 0 

Funktion Taylorpolynom 

sin x 

cosx 

In(1 +x) 

I Niherungsformeln I 

Restglied 
Sx _e_xn+l 

(n+ I)! 

(_l)n cosSx x2n+1 
(2n+ I)! 

(_1)n+l cosSx x2n+2 
(2n+2)! 

(-I)n xn+l 
(1 +Sx)n+l 

( a )(I+SX)a-n-lxn+l 
n+1 

FUr "kleine" Werte von lxi, (fUr Ixl« I), ergeben die ersten Summanden der Taylorpolyno­
me mit der Entwicklungsstelle Xo = 0 fUr viele Anwendungen ausreichende Niihenmgen: 

_1_I':jI_x ~I+x I':jl+~ __ I_I':jI_!. (l+x)al':jl+ax 
I+x "JI+x n 

sinx I':jX 
2 

coshxl':j I +x2 

x2 
COSXI':j 1--

2 
tanxl':jx sinhxl':jx 

aX I':j I +xIna 



Integralrechnung rur Funktionen mit einer Variablen 

I Unbestimmtes Integral I 
Jede Funktion F I (a, b) -4 R mit der Eigenschaft 

F'<x) = f(x) fUr aIle x E (a, b) 

heillt Stammfunktion der Funktion f I (a, b) -4 R . 1st F irgendeine Stammfunktion von f auf 
(a, b), so ist jede andere Stammfunktion von der Form F + c, wobei c eine reelle Zahl (die In­
tegrationskonstante) ist. Die Menge aIler Stammfunktionen {F +cl c E R} heillt unbestimmtes 
Integralvonfauf(a, b); man schretOt dafiir 

Jf(x) dx = F(x) + C • 

Integrationsregeln 

• Multiplikative Konstante: J v(x) dx = A Jf(x) dx (A E R, konstant) 

• Summe: 

• Substitution: 

• Partielle Integration: 

J(f(x) + g(x» dx = Jf(x) dx + J g(x) dx 

Jf(x) dx = Jf(CP(u»q>'(U)dUi 
u=<p-l(x) 

J u(x)v' (x) dx = u(x)v(x) - J u' (x)v(x) dx 

Integration gebrocben rationaler Funktionen 

Vorauss.: x = cp(u) 
streng monot. Fkt. 

Polynomdivision und Partialbruchzerlegung fuhren auf Integrale fiber Polynome und spezielle 
Partialbriiche. Die Partialbruche konnen durch i.allg. mehrfache Anwendung folgender For­
melo integriert werden (Voraussetzungen: x - a*-O ,k > 1 bzw. p2 < 4q). 

J x~a = 10 Ix-al +c 

J~=- I +c 
(x-a)k (k-l)(x-a)k-l 

f dx = 2 arctan 2x+p +c 
x 2 +px+q J4q_ p 2 J4q_ p 2 
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Unbestimmtes Integral 59 

fAx+B dx=41n(x2+px+q)+(B-!Ap)f dx 
x2 +px+q 2 2 x2 +px+q 

f dx = I { 2x+p +(4k-6)f dx } 
(x2+px+q)k (k-I)(4q-p2) (x2+px+q)k-l (x2+px+q)k-l 

fAx+B dx=- A +(B-!Ap)f dx 
(x2 +px+q)k 2(k-I)(x2 +px+ q)k-l 2 (x2 +px+q)k 

Integrale weiterer Funktionenklassen 

Unter R(j(x),g(x» versteht man eine rationale Funktion inf(x) und g(x), d.h. eine Funktion, 
die sich durch endlich viele Additionen, Subtraktionen, Muhiplikationen und Divisionen aus 
Konstanten, ausf(x) und aus g(x) darstellen liillt. 

Riick-
Integrand Substitutionen substitution Bedingung 

t= 

sinnxcosmx sinx = t cosxdx= dt sin x mungerade 
cos2x = l-t2 

cosx= t -sinxdx=dt cosx nungerade 
sin2x=l_t2 

sin2x=L 
dx=-.J!L 

tanx n,m gerade I-ttl 
cos2x= _I_ I +t2 

1+t2 

R~,iax+b ) x = ~(tn - b) dx = !!tn-1dt a iax+b 

R(eX ) x=lnt dx= !dt t eX 

R(sin x, cosx) 
• 2t 

tan~ SlllX=- dx=_2_ dt 1+t2 

cosx = 1--12 I +t2 2 
1+t2 

R(sinh x, coshx) x=lnt dx=!dt eX 
t 

R(x, Jx2 +a2 ) x=asinht dx = a cosh tdt sinh x ar -a a;tO 

R(x, Jx2 -a2 ) x=acosht dx=asinhtdt arcosh ~ a;tO 

R(X, Ja2 _x2 ) x=asint dx =acost dt arcsin ~ a;tO a 

R(X, Jax2 +2bx+c ) Jac-b2 b dx= Jac;;b2 dt 
ax+b 

Jac-b2 b2 <ac X= at-a 

Jb2 -ac b dx= jb2 -ac dt 
ax+b 

b2 >ac 
Jb2-ac X= at-a a 



60 Integralrechnung fiir Funktionen mit einer Variablen 

Elliptiscbe Integrale 

Integrale der Form 

JR(x, Jax3 +bx2 +CX+d)dx und JR(x, Jax4 +bx 3 +cx2 +dx+e )dx 

heillen elliptische Integrale. Nach Substitutionen und Integrationen elementarer Art verbleibt 
eine der sogenannten elliptischen Normalformen 

J dt J (1- k2t2)dt 

J(1-P)(1-k2P) , 
J dt 

Die Substitution t = sin \If, 0 < \If < ~ , ergibt die drei Legendreschen Normalformen erster, 

zweiter und dritter Gattung, deren zugehOrige bestimmte Integrale 

j b-k2sin2\1fd\lf=E(k,cp) , 
o 

liber Tafeln oder liber mathematische Systemsoftware erhiiltlich sind. 

I Bestimmtes Integral I 
Es sei 

(n) (n) (n) (n) (n) (n) 
[xo ,xl ], [XI 'X2 ], ... , [XN(n)-1'XN(n)]' 

wobei X6n) = a , xt{n) = b fiir aIle n gilt, eine immer feiner werdende Folge von Zerlegungen 

des Intervalls [a, b], d.h., es gelte max (Xkn) - xkn\) ~ 0 fur n ~ 00. Ferner sei in jedem 
k -

Teilintervall eine Stelle ~kn) ausgewiihlt. Falls fur jede solche Zerlegungsfolge undjede Wahl 

der Stellen ~ (n) E [x(n) x(n)] der Grenzwert lim Nt) f(~ (n»(x(n) - x(n» existiert nennt man 
k k-I' k n __ k= I k k k-l ' 

ihn das bestimmte (Riemannsche) Integral der Funktionf liber dem Intervall [a, b]: 

b N(n» () 
fj(x) dx = lim ~ f(~kn )l1xt a n __ k=l 

• A .. (n)._ (n) (n) 
nnt '-Uk ,-xk -Xk-l' 

und die Funktionfnennt man uber [a,b] integrierbar. 

• Jede auf [a, b] stlickweise stetige Funktionfist liber [a, b] integrierbar. 
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Eigenschaften und Rechenregelo 

• Der Fliicheninhalt A des durch die vier Kmven y = 0, x = a, y 
x = b, Y = J(x) mit J(x) ~ 0, begrenzten Flachenstiicks ist f(x) 

b 

A = fj(x)dx . A 
a 

• 
a 

fj(x)dx= 0 
b a 
fj(x) dx = -fj(x) dx 

a b x 
a a b 

b b b b b 

f(f(x) + g(x» dx = fj(x) dx + f g(x) dx f Af(x) dx = "A fj(x) dx ("A E ~, konstant) 
a a a a a 

b c b 

fj(x) dx = fJ(x) dx + fj(x) dx 
a a c 

• Erster Mittelwertsatz der Integralrechnung: 1st J auf [a, b] stetig, so gibt es mindestens eine 
Stelle ~ E [a, b] mit der Eigenschaft 

b 
fj(x) dx = (b - a)J@ . 
a 

• Verallgemeinerter erster Mittelwertsatz der Integralrechnung: 1st J stetig auf [a, b], g inte­
grierbar iiber [a, b] und entweder g(x) ~ 0 fur alle x E [a, b] oder g(x) sO fur aIle x E [a, b], 
so gibt es mindestens eine Stelle ~ E [a, b] mit der Eigenschaft 

b b 

fj(x)g(x) dx = J@fg(x)dx . 
a a 

• Zweiter Mittelwertsatz der Integralrechnung: 1st J monoton und beschriinkt auf [a, b] und g 
integrierbar iiber [a, b], so gibt es mindestens eine Stelle ~ E [a, b] , so daB gilt 

b ~ b 
fj(x)g(x) dx = J(a)f g(x) dx + J(b)f g(x) dx 
a a ~ 

x 
• 1st J stetig auf [a,b], so ist JJ(t)dt fur x E [a,b] eine in x stetige und differenzierbare 

a 

Funktion F, fur die gilt 

x 

F(x) = fj(t) dt ~ F' (x) = J(x) . 
a 

• Hauptsatz der Differential- und Integralrechnung: 1st J auf [a, b] stetig und F irgendeine 
Stammfunktion vonJauf[a,b], so gilt 

b 

fj(x) dx = F(b) - F(a) . 
a 
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I Tabelle unbestimmter Integrate I 
Allgemeiner Hinweis: Die Integrationskonstante ist stets weggelassen. 

Grundintegrale 

Potenzen 

f xn+l 
xndx= -­

n+l 
(n E l, n ;t -1, 

x;tOfUrn<O) 

(a E ~, a ;t -1, x > 0) 

f~ =Inlxl (x;t 0) 

Trigonometrische Funktionen 

f sinxdx = -cosx 

f cosxdx = sinx 

f tanxdx = -In Icosxl (x;t (2k+ I)~) 

f cotxdx = In Isinxl 

Rationale Funktionen 

f dx 2 = arctanx 
I+x 

f dx 2 = artanhx 
I-x 

(x;t 1m) 

(lxl < 1) 

f ~ = -arcothx (Ixl> 1) 
x 2 -1 

Arkusfunktionen 

Ewonentialfunktion und Logarithmus 

f ax 
aXdx=­

Ina 

fInxdx =xInx-x 

Hyperbelfuoktionen 

f sinhxdx = coshx 

f coshxdx = sinhx 

f tanhxdx = In coshx 

Irrationale Funktionen 

(a E~, a> 0, a;t 1) 

(x> 0) 

f n = arcsinx (Ixl < 1) 
I-x2 

f rb = arsinhx 
1 +x2 

f ~ = arcoshx (Ixl > 1) 
x2 -I 

Areafunktionen 

f arcsinxdx = x arcsin x + b -x2 (lxl:5: 1) farsinhxdx = xarsinhx- b +x2 

f arccosxdx = xarccosx- J I-x2 (lxl:5: 1) farcoshxdx = xarcoshx- Jx2 -1 (x> 1) 

f arctanxdx = x arctan x- tIn(1 +x2) fartanhxdx=xartanhx+tln(l-X2) (lxl<l) 

farccotxdx = x arccotx+t In(1 +x2) farcothxdx = xarcothx + tln(x2 -1) (lxl>I) 
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Integrale rationaler Funktionen 

f(m;+b)ndx= (m;+b)n+l 
a(n+ I) 

f~=.!lnlm;+bl 
m;+b a 

(m;+ b)n+2 
f x(m; + b)n dx = -'--;:-----!.'----

a2(n+2) 

f xdx =!.- ~lnlm;+bl 
m;+b a a2 

b(m; + b)n+l 

a2(n+ I) 

f xdx = b +...Llnlm;+bl 
(m;+b)2 a2(m;+b) a2 

(n * -I) 

(n*-I, n*-2) 

f x2dx =...L[.!(m;+b)2-2b(m;+b)+b2lnlm;+bl] 
m;+b a3 2 

f x2dx =...L[m;+b-2blnlm;+bl-~] 
(m;+b)2 a3 m;+b 

fm;+b dx = m; + bf-ag In Ifx+gl 
fx+g f f2 

f dx __ I_Inlfx+gl 
(m;+b)(fx+g) - bf-ag m;+b (bf*ag) 

m;+b I 

{ 
_2_ arctan 2ax-tb fUr b2 < 4ac m;2 + bx + c I f dx = j4ac--b2 j4ac--b2 

m;2 + bx + c - -2-artanh 2ax-tb fUr 4ac < b2 
jb2--4ac jb2--4ac 

f dx = 2m;+b + (4n-2)a f dx 
(m;2+bx+c)n+l n(4ac-b2)(m;2+bx+c)n n(4ac-b2) (m;2+bx+c)n 

f xdx = bx+2c + (2n-l)b f dx 
(m;2 +bx+c)n+l n(b2 -4ac)(m;2 +bx+c)n n(b2 -4ac) (m;2 +bx+c)n 

f dx = ...Lin x2 ~ f dx 
x(m;2 +bx+c) 2c 1m;2 +bx+cl 2c m;2 +bx+c 

f dx = 1 ~f dx +'!f dx 
x(m;2+bx+c)n+l 2cn(m;2+bx+c)n 2c (m;2+bx+c)n+l c x(m;2+bx+c)n 

f ~ = .!S mit S = artanh; fUr das Vorzeiehen "-" und 
a2 ±x2 a 

{
arctan x fUr das Vorzeiehen "+" 

areoth ~ fUr das Vorzeiehen "-" und 

f dx - x +2n- 1 f dx 
(a2 ±x2)n+l - 2na2(a2 ±x2)n 2na2 (a2 ±x2)n 

f ~ = ±.!In la2 ±x2 1 
a2 ±x2 2 

f xdx - 1 
(a2 ±x2)n+l = + 2n(a2 ±x2)n 

Ixl < lal 
Ixl> lal 

I 
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J x2dx = ±x +as 
a2 ±x2 

J x2dx = + x +.l J dx 
(a2 ±x2)n+l 2n(a2 ±x2)n - 2n (a2 ±x2)n 

J dx = _I_In x2 

x(a2 ±x2) 202 la2 ±x2 1 

( + )2 -J~=+_I_1n a_x +_I_aretan 2x +a 
a3 ±x3 - 6a2 a2 +ax+x2 a2 ./3 a./3 

J ~ =.lln a2 +ax+x2 ±-I-aretan 2x+a 
a3 ±x3 6a (a±x)2 a./3 a./3 

J x(a3~x3) = 3!3 In I a3 ~x31 
J 4dx 4 = 31 ",[artanh a;.fi2 +arctan(xf! +1) +aretan(xf! -I)] 

a +x 2a ,,2 a +x 

J dx 1 Inla+xl I x -4 4 = -3 a-x +-3 aretana 
a -x 4a 2a 

Integrate irrationaler Funktionen 

fUr Vorzeichen "+" 

fUr Vorzeichen "-" 

f J(ax+b)n dx= _2-J(ax+b)n+2 (n;,;-2) 
a(2 +n) 

f dx = { A- In I ~ :~ I fUr b > ° 
x J ax + b _2_ arctan J ax+b fUr b < ° 

P; -b 

f ~ dx=2Jax+b +bf ~ 
x"ax+b 

f J(ax+b)n - ~J n f Jr-(ax-+-b)-n---=-2 
x dx- n (ax+b) +b x dx (n;,;O) 

f dx = 2 +If dx 
xJ(ax + b) 11 (n-2)bJ(ax+b)I1-2 b xJ(ax+b)I1-2 

(n;,; 2) 

I 

I 

I 

f<ll+bl 
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Jfx+g 1 ~ ~ bf-agf dx 
f J(iX+iJ dx= (j.;ax+b "fx+g -~ Jax+b Jfx+g ax+b 

I ;=,JTx+i I 
j 2sgn(a)artanh f(ax-tb) fur af>O und 1/1 (ax + b) < lal(fX+g) 

.}al a(fx+g) f dx -
Jax + b Jfx + g - 2sgn(a) arctan _f(ax-tb) fur af < 0 

R a(fx+g) 

bf-ag+2a(fx+g) ~ ~ (bf-ag)2 f dx 
f Jax+b Jfx+g dx = 4af .;ax+b "fx+g- Saf Jax+b Jfx+g 

f Ja2 -x2 dx = t(x~ +a2arcsin~) 

fxJa 2 -x2 dx = - tJ(a2 _x2)3 

f .; a-x- x- dx = "a2 - x2 - a In x ~a2 x2 ~ la+~1 

f dx = arcsin ~ 
Ja2 -x2 

f x dx = - J a2 - x 2 

Ja2 -x2 

f dx =_~lnla+?1 
xJa2 -x2 

fxJx 2 +a2 dx = tJ(x2 +a2)3 

Jx2 +a2 ~ a+~ f x dx = "x2 + a~ - a In Ixl 

f dx = arsinh ~ 
Jx2 +a2 

f xdx = Jx2 +a2 
Jx2 +a2 

dx 1 a+~ 
f ~ =-(jln Ixl x.;x- +a-

f Jx2 - a2 dx = t(x ~ - a2arcosh~) 

fxJx 2 -a2 dx = tJ(x2 _a2)3 

~ ~ a f x ; a dx = "x2 - a2 - a arccos x 

~I 

~I 

~I 
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f dx = aroosh!: 
Jx2 -a2 a 

f xdx = Jx2 -a2 
Jx2 -a2 

f dx = !arcoos ~ 
~ a x 

XYX2 -a2 

Integrate trigonometrischer Funktionen 

f sinaxdx = -~cosax 

f sin2axdx= !x-...Lsin 2ax 
2 4a 

f sinnaxdx = -,!a sinn- l ax cosax+ n~ 1 f sinn- 2axdx 

Ix sinaxdx = ~sinax- ~xcosax 
a 

I xnsinaxdx = - ~xncosax + ~ I xn-1cosaxdx 

(n E~) 

. ( )3 ( )2n-1 f smaxdx- _~+ ... (_I)n-1 ax + ... - S·( ) 
x - ax 3. 3! - + (2n -1)(2n _ I)! - tax 

sin ax 

x sint . 00 (_1)n-Ix2n-I. . 
Das Integral l-t- dt = St(x) = n~l (2n _ 1)(2n _ I)! heilltIntegralsmus (vertafeIt). 

f sinax dx= __ l_sinax +~ I cos ax dx 
xn n-l x n- I n-l xn-I 

(n> 1) 

f~=!ln I tan ax I smax a 2 

I 
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f~=- cos ax +n-2 f dx 
sinnax a(n-I)sinn-lax n-I sinn-2ax 

(n> I) 

f xdx =!:+...L f 2(22n- l -I)Bn(ax)2n+l 
sinax a a2 =1 (2n+I)! 

(Bn sind die Bemoullischen Zahlen) 

f xdx = _!:cotax-...L1n I sin ax I 
sin2ax a a2 

f :~ = _1_[_ x~o~ax _ I. _ +(n-2)f. x~ ] 
sm ax n-l asm n lax a2(n-2)smn 2ax sm n 2ax 

f dx -It (n-ax) 
I±sinax =+(j an "4 + 2 

{ 

2 c-tbtan!!! 
---arctan---2 

dx a Jb 2-c2 Jb 2-c2 

f b+csinax = __ I_In Ic-~ +btanT I 
a Jc2--b 2 c+Jc2 --b2 -tbtan T 

f . . b dx _ sin(a - b)x _ sin(a + b)x 
smaxsm X - 2(a-b) 2(a+b) 

f cosaxdx = ~sinax 

f cos2ax dx = ~x + 4~ sin 2ax 

f dx 1 1 . 
xcosax = 2 cosax + (jxsm ax 

a 

f xncosaxdx = ~xnsinax- ~ fxn-lsinaxdx 

(Ial "* Ibl) 

f cos ax dx = In laxl- (ax)2 + (ax)4 + ... + (-I)n (ax)2n ± ... = Ci(ax) - C 
x 2 ·2! 4 ·4! 2n(2n)! 

(n > 2) 

cosax 

Ci(x) = - f COtt dt heillt Integralkosinus, C ist die Eulersche Konstante. 
x 

f cosax dx = - cosax -~ f sin ax dx 
xn (n-l)xn-l n-I xn- l (n "* 1) 

f co~ax = ~In Itan( ~ +~) I 
f ~ = _1_[ sinax +(n-2)f dx ] 

cosnax n - 1 a cosn-lax cosn-2ax 
(n> I) 

f xdx - 1 2 + 1 f 1 E ( )2n+2 
cosax - ZX a2 11=1 (2n + 2)(2n)! n ax (En sind die Eulerschen Zahlen) 

f x~ = ~tanax+~1n Icosaxl 
cos ax a 

f ~ = _1_[ xsinax _ 1 +(n-2)f xdx ] 
cosnax n - 1 a cosn-lax a2(n - 2)cosn-2ax cosn-2ax 

(n > 2) 

I 
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f dx = Itan ax 
1 +cosax a 2 

f dx =_lcotax 
l-cosax a 2 

( 

2 arctan (b-c)tan T fUr c2 < b2 

dx a b 2-c2 J b2-c2 

f b+ccosax = 1 In(C-b)tan!?+2X Jc2-b2 
----~~==== fUr b2 <c2 

a Jc2-b2 (c-b)tan!!LJc2-b2 
2 

f sin(a-b)x sin(a+b)x 
cosaxcosbxdx= 2(a-b) + 2(a+b) (lal * Ibi) 

{ 

. n-l m+l 1 
_SID axcos ax+l!::-Jsinn-2axcosmaxdx 

a(n+m) n+m f sinnaxcosmaxdx = 
. n+l m-l 

SID axcos ax +m-l Jsinnaxcosm-2axdx 
a(n+m) n+m 

f. dx = lIn Itanaxl 
smaxcosax a 

(n * I) 

(m> I) 

(n * I) 

(n * 1) 

f cosnax cosn-Iax n-Ifcosn-2ax --dx=- - -- dx (m> I) 
sin max a(m-l)sinm-1ax m-I sin m- 2ax 

f . dx = 1 In Itan(l(ax + arcsin c »1 
bsmax+ccosax aJb2 +c2 2 Jb2 +c2 

f . b dx - - cos(a + b)x cos(a - b)x (Ial ... Ibl) 
smaxcos x - 2(a+b) 2(a-b) .,.. 

f tanaxdx = - ~ In Icosaxl 

(n "* I) 

senken der 
Potenzn 

senken der 
Potenzm 

senken der 
Potenzn 

senken der 
Potenzm 

(n,m 

> 0) 

(m>O, 
n> I) 

tan ax I 
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f cotaxdx = ~ In I sin ax I 

f cotnaxdx= ___ I_cotn-lax_ fcot n- 2axdx (n,* 1) 
a(n-l) 

Integrate weiterer transzendenter Funktionen 

fsinhnaxdx= a~sinhn-laxcoshax- n~ 1 fsinh n- 2axdx (n>O) 

f coshnaxdx = a~ sinh axcoshn-1ax + n~ 1 f coshn-2axdx (n> 0) 

f s!ax = ~In I tanh ~I 
f ~ = l. arctan eQX 

coshax a 

f tanh ax dx = ~ In cosh ax 

f cothaxdx = ~ In I sinh axl 

f xeQX dx = ax - 1 eQX 
a2 

f eQX ax (ax)2 (ax)n . 
-X dx = In laxl + 1-1T + 2. 2! + ... + n .n! + ... = El(ax)- C 

cot ax 

sinh ax 
cosh ax 
tanh ax 
cothax 

x t 
Ei(x) = f et dx heiSt Integralexponentialfonktion, C ist die Eulersche Konstante 

-00 

(n,* 1) 

f dx Inx 1n2x Innx . 
- =lnllnxl +--+--+ ... +--+ ... = El(lnX)-C 
In xl· I! 2 . 2! n . n! 

f dxln = In Ilnxl 
x x 

(n,* 1) 

f lnnx dx = _1_lnn+lx 
x n+ 1 

f E!... dx -In lin I (n + 1)lnx (n + 1)21n2x ... (n + l)klnkx ... 
Inx - x+ 1·1! + 2·2! + + k.k! + 

I 
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I Tabelle bestimmter Integrate I 
f xCX{l- x)13 dx = r(a + 1)r(f3 + I) 1) 

o r(a+f3+2) 

1 dx ,fit r(ix) f - n 
o JI-xCX - ar(;:) 

(a*O) 

7tlf2. 2M1 213+1 dx_ r (a+l)r(f3+ I ) 1) 
o SIll xcos x - 2r(a + f3 +2) 

(a* 0) 

f sinax dx = 1tas-1 1) 

o r 2r(s)sin SO; 
(0 <s < 2) 

oof cosax 1tas-1 1) 

o ~ dx = 2r(s)cos SO; 
(O<s<l) 

1 sin(x2) dx = 1 cos(x2) dx = if 
7tl2 1t/2 
J Insinxdx = J Incosxdx = - ~ In2 
o 0 

f xne-ax dx = r(n + I) 1) 

o an+1 
(a>O, n>-l) 

(a> 0) 

(a>O, n>-l) 

00 dx 2 J _x_ = (3 =+= 1)1E.... 
oex ±1 24 

7tl2 . dx 11k J Sill X =-In--±-
o h -k2sin2x 2k l-k 

(Ikl < 1) 

1t12 dx J cosx 1· k 
= karcsm 

o b-k2sin2x 
(Ikl < 1) 

1) r ist die Gammafunktion ~ Spezielle Funktionen 
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I Uneigentliche Integrate I 
Unbeschrankte Integranden 

Die Funktionfhabe an der Stelle x = b eine Polstelle und sei beschriinkt und integrierbar iiber 
jedem Intervall [a, b - &] mit 0 < & < b - a . Wenn das Integral vonfiiber [a, b - &] fur & ~ 0 
einen Grenzwert besitzt, wird dieser uneigentliches Integral vonf iiber [a, b] genannt: 

b b-E 
fj(x) dx = lim f f(x) dx . 
a E~+O a 

Hat die Funktionf an der Stelle x = a eine Polstelle, ist sie beschriinkt und integrierbar iiber 
jedem Intervall [a+&, b] und besitzt das Integral vonfiiber [a+&, b] fur & ~ 0 einen 
Grenzwert, so wird dieser Grenzwert ebenfalls uneigentliches Integral von f iiber [a,b] 
genannt: 

b b 
ff(x) dx = lim f f(x) dx . 
a E~+Oa+E 

Hat die Funktion fan einem inneren Punkt c des Intervalls [a, b] eine Polstelle, so ist das unei­
gentliche Integral von f iiber [a, b] die Summe der uneigentlichen Integrale von f iiber [a, c) 
und [c,b] : 

b C-E b 
fj(x) dx = lim f f(x) dx + lim f f(x) dx . 
a E~+O a o~+Oc+o 

Fallt man beide Grenzwerte zusammen, so kann sich das Ergebnis iindem. Der resultierende 
Grenzwert wird als Cauchyscher Hauptwert "V.p." bezeichnet: 

V.p.fj(x)dx = lim f f(x)dx+ f f(x)dx . 
b [C-E b ] 

a E~+O a C+E 

Unbeschrankte IntervaUe 

Die Funktionf sei fur x 2 a definiert und iiber jedem Intervall [a, b] integrierbar. Wenn der 
Grenzwert des Integrals vonfiiber [a, b] fur b ~ 00 existiert, so wird er uneigentliches Inte­
gral von f iiber [a, 00) genannt. Analog wird fur a ~ - 00 verfahren. 

00 b b b 
f f(x) dx = lim ff(x) dx , 
a b~a 

f f(x) dx = lim fj(x) dx . 
-00 a~-OOa 

Sind beide Intervallgrenzen unbeschriinkt, so definiert man das uneigentliche Integral und den 
Cauchyschen Hauptwert als 

00 C b 
f f(x) dx = lim ff(x) dx + lim fj(x) dx , 

-00 a~-OOa b~c 

00 b 
v.p. f f(x) dx = lim f f(x) dx . 

-00 b~-b 
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I Parameterintegrale I 
1st I(x, t) fUr a::; x::; b, c::; t::; d fUr festes t beziiglich x iiber [a, b] integrierbar, so ist 

b 
F(t) = Jj(x, t) dx 

a 

eine Funktion von t, die als Parameterintegral - Parameter ist t - bezeicbnet wird. 

• 1st j{x, t) fUr a ::; x ::; b, c::; t ::; d stetig, so ist auch F(t) fUr c ::; t ::; d stetig. 

• Ist/nach t partiell differenzierbar und die partielle Ableitung atf stetig, so ist die Funktion 
F(t) nach t differenzierbar und es gilt 

b 
F(t) = fa tf(x, I) dx . 

a 

• Sind <p und \jI zwei fUr c::; I ::; d stetige und differenzierbare Funktionen und ist die Funk­
tion/(x, I) in dem durch <pet) < x < \jI(t), c::; t::; d bestimmten Gebiet partiell nach t diffe­
renzierbar mit stetiger partieller Ableitung, so ist das Parameterintegral iiber I mit den Gren­
zen <pet) und \jI(/) flir c::; t ::; d nach t differenzierbar und es gilt 

",(I) 

F(t) = f I(x, I) dx =:> 
",(I) 

x 
• Spezialfall: F(x) = Jj@ d~ =:> 

o 

I Linienintegrale 1. Art 

",(I) 

F(/) = f atf(x, t) dx + 1(\jI(t), t)\jJ(t) - I(<p(t), t)cj>(/) . 
",(I) 

F'(x)=/(x) 

I 
Analog der Definition des bestimmten Integrals einer Funktion I fiber einem IntelVall [a, b 1 
durch beliebig feine Zerlegungen des IntelValls gelangt man durch Betrachtung beliebig feiner 
Zerlegungen einer KUlVe zum Begriff des Kurvenintegrals oder Linienintegrals 1. Art einer 
Funktion 1= I(x,y,z) iiber einer KUlVe K: 

I=fjds. 
K 

• 1st K eine stiickweise glatte raumliche KUlVe mit der Parameterdarstellung x = x(t) , y = y(t) , 
z = z(t), u ~ t ~ v, so gilt (flir KUlVen in der x,y-Ebene ist z == 0 zu setzen): 

fj(x,y,z) ds = fl(x(t),y(t),z(t»Jx2(t) +y2(t) +z2(t) dt. 
K U 

• 1st K eine stiickweise glatte KUlVe der x,y-Ebene der Darstellung y = y(x) , a ~ x ~ b, so ist 

b 
fj(x,y) ds = fJ(x,y(x» b + (y'(x» 2 dx. 
K a 
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I Linienelemente I 
ebeneKurve kartesische Koordinaten x, y = y(x) ds = b + (y/(x»2 dx 
in x,y-Ebene 

Polarkoordinaten <p, r = r( <p) ds= Jr2(<p) + (r/(<p»2 d<p 

Parameterdarstellung in kartes.Koordinaten 
x = x(t), y= y(t) ds=Jx2(t)+y2(t) dt 

Raumkurve Parameterdarstellung in kartes. Koordinaten 
x = x(t), y = y(t), z =z(t) ds = Jx2(t) +y2(t) +z2(t) dt 

I Anwendungen I 
Korven 

Lange L (Bogenliinge) L= jds MasseM M=jdm=fpds 
K (p ... Massendichte) K K 

Schwerpunktskoordinaten 

homogene Kurve Xs= 1 j xds 
LK 

ys=lfyds 
LK 

zs=lfzds 
LK 

Kurve mit Massendichte p xs=..Ljxpds 
MK 

ys=..Lfypds 
MK 

zs=..Ljzpds 
MK 

Triigheitsmomente bzgl. der Koordinatenachsen (p ... Massendichte) 

ebene Kurve der x,y-Ebene Jx = fy2pds Jy = f x2pds 
K K 

Raumkurve Jx = f (y2 +z2)pds Jy = f{x2 +z2)pds Jz = f (x2 +y2)pds 
K K K 

homogene Kurve setze p = 1 

Flachen (Fliicheninhalt A) 

ebene Fliiche zwischen x-Achse und Kurve y(x) b 
A = jy(x)dx 

a 

Sektorfliiche zwischen Nul1punkt und Kurve x(t) A = H(xY-ft)dt 
(Flache zur Linken c1er Kurve liegend) u 

Sektorfliiche zwischen Nul1punkt und Kurve r( <p ) 13 
A =! f r2(<p)d<p 

im Winkelbereich zwischen a und 13 a 

Rotationstliiche bei Rotation urn x-Achse A = 21t fyds 
K 

erste Guldinsche Regel fur Rotationstliichen A =21tYSL 
Ys .. Schwerpunkt, L .. Liinge der rotierenden Kurve 

Kiirper (Volumen V) 

Rotationskorper bei Rotation der Kurve y(x) urn b 

diex-Achse V= 1t fy2(x)dx 
a 

zweite Guldinsche Regel fur Rotationskorper V=21tYSA 
Ys .. Schwerpunkt, A .. Inhalt der rotierenden Fliiche 



Gewiihnliche Differentiaigieichungen 

!Begriffe I 
Die allgemeine Form einer gewohnlichen Differentialgleichung n-ter Ordnung ist 

F(x,y,y', ... ,y(n» = 0 implizite Form, 

y(n) = f(x,y,y', ... ,y(n-l» exp/izite Form. 

Jede Cn-Funktion (eine n-mal stetig differenzierbare Funktion) y(x), die die Differentialglei­
chung fUr alle x, a S x S b, erfiillt, heillt Uisung der Differentialgleichung Un Intervall [a, b]. 
Sind fUr mehrere unbekannte Funktionen mehrere Gleichungen, die deren Ableitungen enthal­
ten, gegeben, so spricht man von einem System gewohnlicher Differentialgleichungen. Die Ge­
samtheit aller Losungen einer Differentialgleichung oder eines Systems wird a1s allgemeine 
L6sung bezeichnet. 

• Eine Differentialgleichung oder ein System hei6t autonom, fa1ls die Differentialgleichung 
oder das System nicht expJizit von x abhiingt. Die Uisungskurven werden daun Trajektorien 
genaunt. 

• Sind an der Stelle x = a zusiitzIiche Bedingungen an die Losung gestellt, so spricht man von 
einer Anfangswertaufgabe. 

• Sind an den Stellen a und b zusiitzliche Bedingungen an die Uisung gestellt, so spricht man 
von einer Randwertaufgabe. 

! ZuriickfUhrung auf Systeme 1. Ordnung I 
Eine gewohnliche Differentialgleichung 

y(n) = f(x,y,y', ... ,y(n-l» 

kann durch die folgenden Substitutionen auf ein System gewohnlicher Differentialgleichungen 
1. Ordnung transformiert werden: 

Yl (x) := y(x) , 

Es ergibt sich das System , 
y\ =Y2 , 
Y2 =Y3 

Y2(X) := y'(x) , 

, . 
Yn = f(x,YbY2, ... ,yn) . 

Y3(X) := y"(x) , ... , Yn(x) := y<n-l)(x) . 

vektorielle Schreibweise: y' = f(x,y) 

K. Vetters, Formeln und Fakten
© B. G. Teubner Stuttgart · Leipzig 1998
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[ Differentialgleichungen 1. Ordnung I 
y' = f(x,y) oder P(x,y) + Q(x,y)y' = 0 oder P(x,y) dx + Q(x,y) dy = 0 

Ordnet man jedem Punkt der x,y-Ebene die durchf(x,y) gegebene Tangentenrichtung der Lo­
sungskurven zu, so entsteht das Richtungsfeld Die Kurven gleicher Richtungen des Rich­
tungsfeldes sind die Isoklinen. 

Die Differentialgleichung y' = fey) 

Auf einem Intervall, wo die LOsung y(x) dieser autonomem Differentialgleichung existiert und 
monoton ist, erhiilt man iiber die Differentialgleichung der inversen Funktion x(y) die Losung 
in expIiziter Form beziiglich x, falls man die Integration ausfiihren kann: 

x'(y)=f~) ~ x=ff&) = q>(y) +C . 

Separierbare Differentialgleichungen 

1st die Differentialgleichung von der Form 

y' = r(x)s(y) bzw. P(x) + Q(y)y' = 0 bzw. P(x)dx+Q(y) dy= 0, 

so kann sie stets zu 

R(x) dx = S(y) dy Trennung der Veriitukrlichen 

umgeformt werden. Durch "formales Integrieren" erhiilt man die allgemeine LOsung: 

f R(x) dx = f S(y) dy ~ q>(x) = \jI(y) + C . 

Differentialgleichungen mit homogenen KoefflZienten 

Eine Funktion q>(x,y) heillt homogen vom Grad n, wenn q>(Ax,A.y) = A. nq>(x,y) gilt. Sind die 
Koeffizienten P(x,y), Q(x,y) der Dgl. homogen vom gleichen Grad, so kann man sie zu 

F(~) dx+dy = 0 

umformen. Nach der Substitution v = ~ entsteht die separierbare Differentialgleichung 

dx dv 0 
-x+ v+F(v) = . 

Differentialgleichungen mit linearen KoefflZienten 

1st die Differentialgleichung von der Form 

(ax + by) dx+(th+ey) dy = 0 , 

so ist sie eine Differentialgleichung mit homogenen Koeffizienten, denn die Koeffizienten­
Funktionen P(x,y) = ax + b und Q(x,y) = th + ey sind beide homogen vom Grad l. 
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Differentialgleichung mit aKm Iinearen Koeff'lZienten (ar+by+c)dx+(dr+ey+j)dy = 0 

• Sie wird fUr D := ae - bd '* 0 durch die Substitution 

x = ~+h 
y = 11 +h 

mit 
h = (bj-ce)ID 
k = (cd-aj)ID 

auf die Differentialgleichung mit linearen Koeffizienten 

transformiert. 

• 1m Fall D = 0 fiihrt die Substitution z = ar + by auf eine separierbare Dgl. 

Lineare Differentialgleichungen erster Ordnung y' + a(x)y = r(x) 

Diese Differentialgleichung heillt fUr r(x) '* 0 inhomogen und fUr r(x) == 0 homo gen. Ihre allge­
meine L6sung hat die Form 

y(x) = Yh(x) +Yp(x) 
mit 

Yh(x) ... allgemeine L6sung der zugeMrigen homogenen Dgi. y' +a(x)y = 0 
yp(x) ... spezielle (partikuliire) L6sung der inhomogenen Dgi. y' +a(x)y = r(x) 

• Die L6sung Yh(x) der zugeMrigen homogenen Differentialgleichung wird durch Trennung 
der Veriinderlichen ermittelt. Man eIhiilt 

Yh(x) = C e -J a(x) dx . 

• Eine spezielle Losung yp(x) der inhomogenen Differentialgleichung erhiilt man durch den 

Ansatz yp(x) = C(x)e-J a(x)dx. Es ergibt sich fUr die unbekannte Funktion C(x) des 
Ansatzes 

C(x) = f r(x)eJ a(x)dxdx . 

Bernoullische Differentialgleichung y' + p(x)y = q(x)yn 

• Sie wird fUr n = 1 durch Trennung der Veriinderlichen geiost. 

• Sie geht fUr n,* 1 durch die Substitution v(x) = yl-n in die lineare Dgl. erster Ordnung 

v' + (1- n)p(x)v = (1- n)q(x) 

tiber. 
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Riccatische Differentialgleichung y' + p(x)y + q(x)y2 = r(x) 

1st eine partikulare Losung yp bekannt, so laBt sieh aueh die allgemeine LOsung bestimmen. 

Die folgende lineare Differentialgleiehung entsteht dureh die Substitution u(x) = () 1 (): 
y x -yp x 

u' - [p(x) + 2q(x)yp(x)]U = q(x) . 

Exakte Differentialgleichungen 

Eine Differentialgleiehung der Form P(x,y) dx + Q(x,y) dy = 0 hellit exakt, wenn das 
Vektorfeld 

v(x,y) = ( P(x,y) ) 
Q(x,y) 

ein Potential </> hat. Das ist fur stetig differenzierbare P,Q genau dann der Fall, wenn gilt: 

Integrabilitiitsbedingung. 

Gilt die Integrabilitatsbedingung, so kann die Potentialfunktion </> auf untersehiedliehe Arten 
bestimmt werden: 

• Aus v = grad </>, d.h. aus P = ax</> , Q = ay</> dureh Vergleieh von 

</>(x,y) = f P(x,y) dx + C 1 (y) und </>(x,y) = f Q(x,y) dy + C 2 (x) . 

• Dorch das Linienintegral 2. Art 

(x,y) 

</>(x,y) = f v· dx 
(xo,yo) 

liber eine die Punkte P(xo,Yo) und P(x,y) verbindende stiiekweise C1-Kurve. 

Die LOsung der Differentialgleiehung lautet </>(x,y) = C . 

Integrierender Faktor fur die Differentialgleiehung P(x,y) dx + Q(x,y) dy = 0 

Die Differentialgleiehung sei nieht exakt. In den folgenden beiden Fallen (es gtllt weitere) laBt 
sieh ein Faktor m(x,y) so bestimmen, daB die mit ihm muItiplizierte Differentialgleiehung ex­
akt ist und anschlieBend a1s solehe gelost werden kann: 

. . axQ-ayp 
• Die FunktlOn a:= Q hangt nur von x abo Dann lautet der integrierende Faktor 

m(x) = e -J a(x) dx . 

axQ-ayp 
• Die Funktion b:= P hangt nur vony abo Dann lautet der integrierende Faktor 

me}') = ef b(y)dy. 
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[ Differentialgleichungen 2. Ordnung I 
Die Differentialgleichung y" = f(x,y') 

Die Substitution z(x) = y' (x) fiihrt auf die Differentialgleichung erster Ordnung z, = f(x, z). 
Kann man diese lOsen, so gilt mit ihrer Losung z = z(x, c 1) : 

y(x) = fz(x, Cl)dx = <p(x, Cl) +C2 

Die Differentialgleichung y" = fey) 

Nach Multiplikation mit y' laBt sich diese autonome Differentialgleichung einmal integrieren. 
Man erhalt eine Differentialgleichung erster Ordnung vom Typ y' = <p(y) : 

y' =±J2(F(y)+Cl) mit ff(y)dy=F(y)+Cl. 

Die Differentialgleichung y" = f(Y,y') 

Auf einem mtervall, wo die Losung y(x) dieser autonomen Dgl. monoton ist, existiert die in­
verse Funktion x(y). Die Substitution v(y) = y'(x(Y» fiihrt aufdie Dgl. 1. Ordnung 

v'(y) = v~/(y' v(y» . 

Kann man diese losen, so erhiilt man aus ihrer Losung v = v(y, Cl) die allgemeine Losung in 
expliziter Form bzgl. x: 

f dy 
x = v(y, Cl) = <p(y, Cl) + C2 . 

[ Lineare Differentialgleichungen I 
an(x)y(n) + ... + a, (x)y' + ao(x)y = rex) ... lineare Differentialgleichung n-ter Ordnung 

• Fiir rex) '" 0 hellit die Differentialgleichung homogen, andemfalls inhomogen. 

• 1st Yh(x) die allgemeine Losung der homogenen Dgl. und yp(x) eine spezielle (partikulare) 
Losung der inhomogenen Dgl., so ist die allgemeine Losung der inhomogenen Dgl. 

y(x) = Yh(X) + yp(x) . 

• Sind aIle Koeffizientenfunktionen ak stetig, so gibt es n Funktionen Yb k = 1, ... ,n, so daB 
die allgemeine LosungYh der homogenen Dgl. die folgende Form hat: 

Yh(X)=C,y,(X)+C2Y2(X)+oo,+CnYn(X) . 

Das Funktionensystem {Y' ,yz, ... ,Yn} hellit Fundamentalsystem der Differentialgleichung. 
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• Die Funktionen YI, ... ,Yn bilden genau dann ein Fundamentalsystem, wenn jede dieser 
Funktionen Y k Losung der homogenen Differentialgleichung ist und wenn es mindestens ei­
ne Stelle Xo E ~ gibt, fur die die sogenannte Wronski-Determinante 

W(x) := 
. . 

Yn(X) 
y~(x) 

(n-I)() (n-I)() (n-I)( ) YI X Y2 x··· Yn X 

von Null verschieden ist. 

• Ein Fundamentalsystem {Yl, ... ,Yn} Hillt sich durch Losung der folgenden n Anfangswert­
aufgaben (k= 1, ... ,n) gewinnen: 

(i)(X ) = { 0 rur i "" k - 1 
Yk 0 1ruri=k-1 

(i = 0, 1, ... ,n-1) 

• Erniedrigung der Ordnung. 1st eine spezielle LosungYI der homogenen Dgl. n-ter Ordnung 
bekannt, so fiihrt die Substitution y(x) = YI (x)J z(x) dx von .der Dgl. n-ter Ordnung 
(homogen oder inhomogen) auf eine lineare Dgl. (n-1 )-ter Ordnung fur z(x). 

• Variation der Konstanten. 1st {YI, ... ,Yn} ein Fundamentalsystem, so erhalt man liber den 
Ansatz 

yp(x) = CI (x)y I (x) + ... +Cn(X)Yn(X) 

eine spezielle Losung der inhomogenen Differentialgleichung, indem man die Ableitungen 
der Funktionen C I, ... , Cn als Losungen des linearen Gleichungssystems 

ylci + Y2 c i +.+ YnC~ 0 

yiCi + yiCi +.+ y~C~ 0 

(n-2)C' 
YI I + An-2)ci (n-2) , 

+·+Yn Cn 0 
(n-I)C' + (n-l)C' (n-I) , rex) 

YI I Y2 2 +.+ Yn Cn a.(x) 

bestimmt und anschlieBend durch Integration die Funktionen C I, ... , C n . 

Eulersche Differentiaigieichung 

anxny(n) + ... + apy' + aoY = r(x) mit Konstanten ao, ... , an 

• Die Substitution x =e~ fiihrt auf eine lineare Dgl. mit konstanten Koeffizienten fur die Funk­
tiony(~). Nach deren Losung ist die Rlicksubstitution ~ = lux anzuwenden. 

• Die charakteristische Gleichung der entstehenden Dgl. mit konstanten Koeffizienten lautet 

anA(A-1)···(A-n+ 1)+··· +a2A(A-l)+aIA+ao = o. 
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Lineare Differentialgleichungen mit konstanten Koeff'lZienten 

any(n) + ... +alY' +aO = r(x) mit Konstanten ao, ... ,an 

• Allgemeine Liisung Yh der homogenen DifJerentialgleichung. Die n Funktionen Yk des 
Fundamentalsystems werden iiber den Ansatz Y =eAx bestimmt. Die n Werte Ak sind die 
Nullstellen des charakteristischen Polynoms 

... charakteristische Gleichung. 

Zu den n Nullstellen Ak der charakteristischen Gleichung lassen sich die n Funktionen des 
Fundamentalsystems nach folgender Tabelle bestimmen 

Art der Nullstelle Ordnung der Funktionen des Fundamentalsystems 
Nullstelle 

Ak reell einfach eAJcX 

p-fach eAJcX, xeAJcX, ... , xfT1eAJcX 

Ak =a± ib 
einfach eaxsinbx, eaxcosbx 

konjugiert komplex 

p-fach eaxsinbx, x eaxsin bx, .. " xfT 1 eaxsin bx 

eaxcosbx, x eaxcos bx, ... , xfT1eaxcosbx 

Die allgemeine Losung der homogenen Di1ferentialgleichung ist 

Yh(x) = C 1Yl(X)+C2Y2(x)+", +CnYn(x) 

• Spezielle Liisung YP der inhomogenen DifJerentialgleichung. Fiir einfache Struktur der In­
homogenitat r kannyp durch einen Ansatz gema/3 folgender Tabelle bestimmt werden. 

r(x) Ansatz fUr Yp(x) Ansatz im Resonanzjall 

A mxm + ... + A 1 x + A 0 bmxm + ... +bJx+bo Wenn ein Summand des Ansatzes 

A e= ae= Losung der homogenen Differential-

A sinrox 

} a" ""+bo.,,,,, 
gleichung ist, so wird der Ansatz so 
oft mit x multipliziert, bis kein Sum-

Bcosrox mand mehr Losung der homogenen 
A sin rox + B cosrox Di1ferentialgleichung ist. 

Kombination dieser entsprechende Kombina- Obige Regel ist nur auf den Tell des 
Funktionen tion der Ansatze Ansatzes anzuwenden, der den Re-

sonanzfall enthalt. 

Weitere Methoden: Variation der Konstanten, Greensche Funktion, ZUrUckfiihrung auf Sy­
stem erster Ordnung, formale Operatortechnik. 

• Die allgemeine Losung der Differentialgleichung is! 

y(x) = Yh(x) +Yp(x) . 



Systeme 1. Ordnung mit konstanten Koeffizienten 81 

Systeme 1. Ordnung mit konstanten Koeffizienten 

, . 
Yn = anIYI + ... + annYn + rn(x) 

Vektorielle Schreibweise: 

y' ~ Ay +r am y =(;:J. 

aij 

Yj=yix) 

Konstanten 

gesuchte Funktionen 

• Die allgemeine Losung hat die Form y(x) = Yh(x) +Yp(x). Dabei ist Yh die allgemeine Lo­
sung des homogenen Systems y' = Ay und YP eine spezielle LOsung des inhomogenen Sy­
stems y' =Ay+r . 

• Fall 1: A sei diagonalisierbar und habe nur reelle Eigenwerte Ak, k = 1, ... , n (mehrfache Ei­
genwerte werden entsprechend mehrfach geziihlt). Es seien v k , k = 1, .. " n, zugehorige reeI­
Ie Eigenvektoren. Dann ist die allgemeine LOsung des homogenen Systems 

Yh(x)=CleA1Xvl +···+CneA"xVn . 

• Fall 2: A diagonalisierbar. Es konnen konjugiert komplexe Eigenwerte Ak = ex + ij3, 
Ak+l = ex - iJ3 mit zugehorigen konjugiert komplexen Eigenvektoren Vk = a + ib, 
Vk+l = a - ib auftreten. Dann sind in der allgemeinen Losung Yh des homogenen Systems 
die Terme mit den Indizes k und k + 1 wie folgt zu ersetzen: 

Yh(X) = ... +Ckeax(a cosf3x- bsinf3x) +Ck+l eax(a sin f3x+ b cosf3x) +... . 

• Fall 3: A nicht diagonalisierbar. Es sei V die Matrix, die die Almlichkeitstransformation der 
Matrix A auf die Iordansche Normalform vermitteh. Unter Beachtung der Dimensionen nk 
der Iordanblocke J(Ak,nk) , k = 1, ... ,s, wird V spahenweise geschrieben: 

V = (Vll, ... , Vln" ... , Vkl, ... , Vknp ... , Val, ... , Van,) . 

Die allgemeine Losung des homogenen Systems lautet dann: 

Yh(X) = ... +CkleAkXvkl +Ck2eAkX[ f! Vkl +Vk2J + ... 

+CknleAkX[(~n~-~)!Vkl + ... + f!Vk,nl-1 +Vknl]+'" 

Berechnung der Eigenvektoren V kl: (A - AkE)v kl = 0 
Berechnung der Hauptvektoren v/g": (A - AkE)vlif = Vkj-l (j=2, ... ,nk) 

Treten komplexe Eigenwerte aut: so ist entsprechend Fall 2 zu verfahren. 

• Die spezielle LOsungyp des inhomogenen Systems ist durch Variation der Konstanten oder 
durch Ansatz entsprechend der Tabelle fUr DgIn. mit konstanten Koeffizienten zu ermitteln. 
Dabei sind in allen Komponenten aile Antei1e des Vektors r(x) zu beriicksichtigen. 
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I Endliche Reihen I 
Arithmetische Reihe: an+l =an+ c ~ 

Geometrische Reihe: 

SpezieUe endliche Reihen 

n(n+ 1) 
1+2+3+···+n=---

2 

I 

1 + 3 + 5 + ... + (2n - 1) = n2 

2 +4+6+··· +2n = n(n+ 1) 12 +22 +32 + ... +n2 = n(n+ 1)(2n+ 1) 
6 

2 2 2 n(4n2 - 1) 
1 + 3 + ... + (2n - 1) = --'---=-----L 

3 

13 +3 3 + ... +(2n-l)3 = n2(2n2 -1) 

(geometrische Reihe, ~ Potenzreihen) 

cos:! - cos(n + !)x 
sinx+sin2x+ ... +sinnx= 2 2 

2 sin:! 
2 

. ( 1)x . x smn+ 2 -sm 2 
cosx + cos 2x + ... + cos nx = --2--='.---::x"------=' 

5m 2 

I Unendliche Reihen 

00 

al +02 +a3 + ... = ~ Ok 
k=1 

00 

I 
Partialsummen: 

al +a2 +···+an = Sn 

Die unendliche Reihe ~ ak heillt konvergent, wenn die Folge {sn} der Partialsummen kon­
k=1 

vergiert. Gegebenenfalls heillt der Grenzwert s der Partialsummen Summe der Reihe: 
00 

s:= ~ 0k:= lim sn 
k=1 n~ 

00 

1st die Folge {sn} der Partialsummen divergent, so heillt die Reihe ~ Ok divergent. 
k=1 

K. Vetters, Formeln und Fakten
© B. G. Teubner Stuttgart · Leipzig 1998
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I Konvergenzkriterien I 
Alternierende Reihen 

<Xl 

Die Reihe I: an heillt altemierend, wenn ihre Glieder abwechselnd positiv und negativ sind. 
n=1 

• Leibniz-Kriterium: Gilt fUr die Glieder einer ahernierenden Reihe Ian I ~ lan+ 11 fUr 
n = 1,2, ... und lim Ian I = 0 , so ist sie konvergent. 

n~ 

Reihen mit nichtnegativen Gliedern 
<Xl 

Betrachtet werden Reihen der Form I: an mit an ~ 0 fUr n = 1,2, ... 
n=1 

• Eine Reihe mit nichtnegativen Gliedem konvergiert genau dann, wenn die Folge {sn} der 
Partialsummen nach oben beschriinkt ist. 

• Vergleichskriterium. Aus 0:;; an :;; bn fUr n = 1,2, ... folgt: 
<Xl <Xl 

1. Wenn I: bn konvergent, dann auch I: an konvergent. 
n=1 n=1 

<Xl <Xl 

2. Wenn I: an divergent, dann auch I: bn divergent. 
n=1 n=1 

• Quotientenkriterium. 
<Xl 

Variante 1. Gilt a~~1 :;; q mit 0 < q < 1 fUr n = 1,2, ... , so konvergiert die Reihe I: an, 
n=1 

gilt an+l > 1 fUr - 1 2 div·ert . ~_ n- " ... ,so ergt Sle. 

Variante 2. Gilt lim a~+1 < 1 , so konvergiert die Reihe ~ an , 
n~ n n=1 

gilt lim aan+ 1 > 1 , so divergiert sie. 
n~ n 

• Wurzelkriterium. 
<Xl 

Variante 1. Gilt ':f{i; :;; A. mit 0 < A. < 1 fUr n = 1,2, ... , so konvergiert die Reihe I: an, 
n=1 

gilt '!/7i7I ~ 1, fUr n = 1, 2, . .. , so divergiert sie. 
<Xl 

Variante 2. Gilt lim '!/7i7I < 1 , so konvergiert die Reihe I: an , 
n~ n=1 

gilt lim '!/7i7I > 1, so divergiert sie. 
n~ 

<Xl 

• Integralkriterium. FUr die Glieder der Reihe I: an gelte al ~ a2 ~ ... ~ 0 , und sie seien 
n=1 

darstellbar als an = a(n) mit einer monoton fallenden, stetigen Funktion a I [1,(0) ~R . 
<Xl 

Unter diesen Voraussetzungen ist die Reihe I: an genau dann konvergent, wenn das unei­
n=1 

<Xl 

gentliche Integral J a(x) dx konvergiert. 
1 
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Reihen mit beliebigen Gliedern 

00 

• Konvergiert die Reihe L an , so gilt notwendig lim an = 0 _ 
n=1 n~ 

00 

• Cauchy-Kriterium_ Die Reilie L an ist genau dann konvergent, wenn es zu jeder reellen 
n=1 

Zahl & > 0 eine Zahl n(&) EN gibt, so daB fUr aile n > n(&) undjede Zahl kEN gilt: 

00 00 

• Eine Reihe L an heillt absolut konvergent, wenn die Reihe L Ian I konvergiert_ 
n=1 n=! 

00 

• Die Reihe L an ist konvergent, wenn sie absolut konvergent ist_ 
n=1 

Umformung von Reihen 

• Werden endlich viele Glieder einer Reihe entfemt oder hinzugefiigt, so iindert sich das Kon­
vergenzverhalten der Reihe nicht. 

• Konvergente Reihen bleiben konvergent, wenn man sie gliedweise addiert, subtrahiert oder 
mit einer Konstante multipliziert: 

00 

Lan =S, 
n=! 

00 

L bn =1 ~ 
n=! 

00 

L (an ±bn) = s±t, 
n=! 

00 

L (can) =cs 
n=! 

• In einer absolut konvergenten Reihe kann die Reihenfolge der Glieder beliebig veriindert 
werden_ Sie bleibt dabei konvergent, und die Summe bleibt gleich_ 

Summen spezieUer Reihen 

1 1- (_1)n+! 
1--+-+---+---+--- =ln2 2 3 n 

1 1- (-I)n+! 1t 
1--+-+---+---+---=-

3 5 2n-1 4 
1 1 _ (_1)n 1 

1--+-+---+--+---=-
I! 2! n! e 

_1_+_1_+ ___ + __ 1_+ ___ = 1 
1 -2 2 -3 n(n + 1) 

1 I- (_1)n 2 
1--+-+---+--+---=-

2 4 2n 3 
_1_+_1_+ ___ + __ 1_+ ___ = l 
1 -3 2 -4 n(n + 2) 4 

1 1 1 1t2 
\ +-+-+---+-+---=-

22 32 n 2 6 
_1_+_1_+ ___ + 1 + ___ =1 
1 -3 3 -5 (2n - 1 )(2n + I) 2 

\ \ _ (_l)n+l 1t2 
\--+-+---+---+---=-

22 32 n2 12 
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I Funktionenreihen I 
Eine unendliche Reihe, deren Glieder Funktionen sind, wird Funktionenreihe genannt: 

00 n 
It (x) + h(x) + ... = L fk(x) , Partialsummen: Sn(X):= L fk(x) . 

k=1 k=1 

Der Durchschnitt aller Definitionsbereiche der Funktionen fk ist der Definitionsbereich D der 
Funktionenreihe. Die Funktionenreihe heiSt konvergent fUr einen Wert xED, wenn die Folge 
{Sn(X)} der Partialsummen fUr xED konvergiert, andernfalls heillt sie divergent. Gegebe­
nenfalls wird der Grenzwert mit s(x) bezeichnet. AIle xED, fUr welche die Funktionenreihe 
konvergiert, bilden den Konvergenzbereich der Funktionenreihe. Vereinfachend sei angenom­
men, daB D der Konvergenzbereich ist. Die Zuordnung x ~ s(x) wird GrenzjUnktion 
siD ~ ~ genannt: 

00 

L Ik(x) = lim Sn(x) = s(x) . 
k=1 n~ 

00 

Die Funktionenreihe L Ik(x) heiSt gleichmiiftig konvergent in D, wenn die Folge {Sn} der 
k=1 

Partialsummen gleichmiiBig konvergiert. 

00 

• Kriterium von Weierstraft. Die Funktionenreihe L In(x) konvergiert gleichmii6ig in D, 
n=1 

00 

wenn es eine konvergente Reihe L an gibt, so daB fUr aile n E N und aile xED gilt: 
n=1 

Eigenschaften gleichmii6ig konvergenter Reihen 

00 

• Sind an der Stelle Xo ED alle Funktionen In, n EN, stetig, und ist die Reihe L In(x) 
n=1 

gleichmii6ig konvergent in D, so ist auch die Summe s(x) der Reihe an der Stelle Xo stetig. 

00 

• Sind die Funktionen In, n EN, im Intervall [a,b] stetig und ist die Reihe L In(x) in [a, b] 
n=1 

gleichmiiBig konvergent mit der Summe s(x), so kann die Reihe gliedweise integriert 
werden: 

b boo oob 
f s(x) dx = f L In (x) dx = L ffn(x) dx . 
a an=l n=1 a 

• Es seien die Funktionen In, n EN, im Intervall [a, b] stetig differenzierbar, die Reihe 

~ In(x) konvergent mit der Summe s(x) und die Reihe ~ fl,(x) in [a,b] gleichmii6ig 
n=1 n=1 

00 

konvergent. Dann ist s stetig differenzierbar, und die Reihe L In(x) kann gliedweise dif­
n=1 

ferenziert werden: 

d 00 00 
s I (x) = dx L In(x) = L fl,(x) . 

n=l n=1 
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[ Potenzreihen I 
Funktionenreihen, deren Glieder die Form /n(x) = an (x - xO)n, n E f'lid, haben, werden Potenz­
reifren mit dem Mittelpunkt Xo genannt. Durch die Verschiebung x:= x - Xo entstehen Po­
tenzreihen mit dem Mittelpunkt Null, die im weiteren dargestelli werden. 1m Konvergenzge­
biet stelli die Potenzreihe eine Funktion s(x) dar: 

00 

ao +alx +a2x2 + ... '" !: anxn = s(x) . 
n=0 

1st diese Potenzreihe weder fUr alle x "* 0 divergent und noch fUr alle x konvergent, so gibt es 
genau eine reelle Zahl r> 0, genannt Konvergenzradius, so daB die Potenzreihe fUr Ixl < r 
konvergiert und fUr Ixl > r divergiert. Zusiitzlich wird gesetzt: r = 0, wenn die Potenzreihe 
nur fUr x = 0 konvergiert,oder r = 00, wenn sie fUr alle x E R konvergiert. 

Berechnung des Konvergenzradius 

• 1st die Folge{ I a~:l I} 
konvergent , so gilt 

bestimmt divergent gegen +00, so gilt 

• 1st die Folge { '{/ Ian I } 
konvergent gegen Null, so gilt 

konvergent nicht gegen Null, so gilt 

bestimmt divergent gegen +00, so gilt 

Eigenschaften 

r=n~la~:ll, 
r= 00 . 

r= 00, 

r= 1 
lim ~Ianl ' 
n~ 

r=O. 

Es sei r > 0 der Konvergenzradius der betrachteten Potenzreihe. 

• Eine Potenzreihe ist fUr jede Zahl x E (-r, r) absolut konvergent. 

• Eine Potenzreihe konvergiert gleichmiiBig in jedem abgeschlossenen Intervall, das ganz im 
offenen Intervall (-r,r) liegt. 

• Die Summe s(x) einer Potenzreihe ist im Intervall (-r,r) beliebig oft differenzierbar. Die 
Ableitungen ktinnen durch gliedweise Differentiation erhalten werden: 

00 

s(x) = L anxn 
n=O 

00 

=> s' (x) = L nanxn-l . 
n=! 
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• Eine Potenzreihe kann im Intervall [0, t] oder [t,O] mit It I < r gIiedweise integriert werden: 

toot 00 f!+1 
Js(x)dx= 1: anJxndx= 1: an--1 . 
o n=O 0 n=0 n+ 

00 00 
• Wenn die Potenzreihen :E anxn und :E bnxn im gleichen Intervall Ixl < r konvergieren 

n=0 n=0 

und dort die gleichen Summen haben, so sind beide Potenzreihen identisch, d.h., es gilt 
an = bn fUr n = 0, 1, ... 

I Analytische Funktionen, Taylorreihe I 
Eine Funktionf I D ~ lit , D c R , hei6t im Punkt Xo analytisch, wenn sie Summe einer Po­
tenzreihe mit Mittelpunkt Xo und Konvergenzradius r> 0 ist: 

• Sind die Funktionenf und g analytisch in Xo, so sind auch die Funktionen f ±g, f· g und im 
Fall g(xo) "* 0 auch die Funktion f /g analytisch in Xo. 

• 1st die Funktion f in Xo analytisch, so ist f in xo beliebig oft differenzierbar, und es gilt 
f(n)(xo) = n!an und 

00 f(n)(xo) n . 
f(x) = 1: --I -(x-xo) ... Tayio"elhe. 

n=0 n. 

• 1st f in einer Umgebung von Xo beliebig oft differenzierbar und konvergiert das RestgIied 
der Taylor-Formel fUr alle x einer Umgebung von Xo gegen null, so hat die Taylorreihe ei­
nen Konvergenzradius r> 0 und die Funktion f ist im Punkt Xo analytisch. 

TabeUe einiger Potenzreiben 

Funktion Potenzreihe, Taylorreihe Konvergenz-
bereich 

(1 +X)IX 1 a(a-l) 2 a(a-l)(a-2) 3 
+ax+ 2! x + 3! x + ... (a >0) Ixl =s; 1 

JI+x 
1 1 1·12 1·1·3 3 1·1·3·5 4+ 
+ix -2.4x +2.4.6x -2·4·6·8x _ ... Ixl =s; 1 

3Jl+x 
1 1 1·22 1·2·5 3 1·2·5·8 4+ 

+ 3x - 3 ·6x + 3 . 6 . 9x - 3 . 6 . 9 . 12x _ ... Ixl =s; 1 

1 1-ax+ a(a + l)x2 _ a(a + 1)(a +2)x3 + ... (a >0) Ixl < 1 (1 +X)IX 2! 3!-
1 1-x+x2 -x3 +x4 -xS ± ... Ixl < 1 l+x 

1 
1 - 2x + 3x2 - 4x3 + 5x4 - 6xS ± ... Ixl < 1 

(1 +x)2 

_I_ 
I - !(2 . 3x - 3 . 4x2 + 4 . 5x3 - 5 . 6x4 ± .. -) Ixl < 1 

(1 +x)3 
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Funktion 

I 

JI+x 
I 

YI+x 

sin x 

cosx 

tanx 

cot x 

arcsin x 

arccosx 

arctan x 

arctan x 

arccotx 

1n(1 +x) 

sinhx 

cosh x 

tanh x 

cothx 

arsinhx 

arcoshx 

artanhx 

arcothx 

Reihen 

Potenzreihe, Taylorreihe 
Bft sind die BernoullischEll ZahlEIl ~ Konstanten 

1 1 1·3 2 1·3·5 3 1·3·5·74-
-2"x+ 2 .4x -2.4·6x +2.4.6.8x + ... 

I 1 1·4 2 1·4·7 3 1·4·7·10 4-
- 3x + 3 ·6X - 3 ·6 . 9x + 3 ·6 .9 . 12x + ... 

x_..Lx3 +..Lx5 _ ..Lx 7 + ... + (_l)n I x2n+l + ... 
3! 5! 7! - (2n+ I)! -

1_..Lx2+..Lx4_..Lx6 + ... +(-I)n_I - x2n + ... 
2! 4! 6! - (2n)!-

I 3 2 5 22n(22n -I) 2n-l x+-x +-x + ... + Bnx + ... 
3 15 (2n)! 

! _ !x- ...Lx3 _ ~x5 _ ... _ 22n Bnx2n-1 _ ... 
x 3 45 945 (2n)! 

x+_I-x3+~x5+ ... + 1·3···(2n-l) x2n+l+ .. 
2·3 2·4·5 2·4···(2n)(2n+l) 

1!. _ x __ 1_x3 _ ... _ I· 3· . ·(2n - I) x2n+ 1 _ ... 
2 2·3 2 ·4· ··(2n)(2n+ I) 

x- !x3 +!x5 - !x7 + ... + (_I)n_l_x2n+l + ... 
3 5 7 - 2n+ I -

1!._! +_1 ___ 1_+ ... + (_l)n+l I + ... 
2 x 3x3 5x5 - (2n+ 1)x2n+l -

1!.-x+!x3 _!x5 + ... +(_I)n+l_l_x2n+l + ... 
2 3 5 - 2n+l-

I + ..Lx + ..Lx2 + ... + ..Lxn + ... 
l! 2! n! 

Ina 1n2a 2 Inna n I+-x+-x +···+-x + ... 
I! 2! n! 

x- !x2 + !x3 - !x4 + ... + (_I)n+l !xn + ... 
2 3 4 - n -
I 3 I 5 I 2n+l 

x+3Tx + 5!x + ... + (2n+ I)!x + ... 

I +..Lx2 +..Lx4 + ... +_I_x2n + ... 
2! 4! (2n)! 

I 2 22n(22n I) x--x3+-x5+ ... +(_1)n+l - B x2n-l+ ... 
3 15 (2n)! n -

! + !x- ...Lx3 + ... + (_1)n+l 22n Bnx2n-1 + ... 
x 3 45 - (2n)! -

1 3 n 1·3···(2n-l) 2n+l 
x- 2 · 3x ±···+(-I) 2.4 ... (2n)(2n+l{ ± ... 

1n(2x) __ I_- 1·3 _ ... _ 1·3···(2n-l) 
2·2x2 2·4· 4x4 2·4·· ·(2n)(2n)x2n 

x+!x3 +!x5 + ... +_I_x2n+! + ... 
3 5 2n+ 1 

!+_I_+_I_+ ... + 1 + ... 
x 3x3 5x5 (2n + 1 )x2n+ 1 

Konvergenz­
bereich 

Ixl < 1 

Ixl < I 

Ixl < ex> 

Ixl < ex> 

Ixl<~ 

0< Ixl <1t 

Ixl < I 

Ixl < I 

Ixl < I 

x> I 

Ixl < I 

Ixl < ex> 

Ixl < ex> 

-1<x~1 

Ixl < ex> 

Ixl < 00 

Ixl <~ 

0< Ixl < 1t 

Ixl < I 

x> 1 

Ixl < 1 

Ixl> 1 



Fourierreihen 89 

I Fourierreihen I 
Reihen der Form 

00 

ao +al cosx+b 1sinx+··· +akcoskx+bksinkx+··· = aO + l: (akcoskx + bksinkx) 
k=1 

hei6en trigonometrische Reihen. Notwendig fUr die Darstellung einer Funktionf als trigono­
metrische Reihe 

ist die Periodizitatsbedingung f(x + 21t) = f(x) . Bereits unter schwachen Voraussetzungen an 
die Konvergenzart der Reihe oder an die Funktion f erweist sich, daB Funktion und Reihe 
durch die Beziehungen 

1 2~ 2~ 2~ 
ao = -2 f f(x)dx, ak = k f f(x)coskxdx, bk = k f f(x)sinkxdx 

1t 0 0 0 

verknupft sind. Die so gebildeten Koeffizienten der Reihe hei6en Fourierkoeffizienten, die mit 
ihnen gebildete Reihe heillt Fourierreihe. Die Partialsummen der Fourierreihe sind 

Symmetrie-Eigenschaften 

• f gerade Funktion, d.h . f(-x) = f(x) => bn = 0 fUr n = 1,2, ... 

• f ungerade Funktion, d.h. f(-x) = -f(x) => an = 0 fUr n = 0, 1,2, ... 

Periode ¢ 21t 

Hatf die Periode 2/, so fiihrt die Substitution x = ~auf eine Funktion in ~ mit der Periode 21t. 
Es entsteht die allgemeinere Fourierreihe 

00 krcx krcx 
f(x)=ao+ ;;1(akcos-I-+bksin-I-) 

mit 
1 21 1 21 krcx 1 21 krcx 

aO=2I fJ(x)dx, ak=-I ff(x)cos-1-dx, bk=-ff(x)sin-dx· 
o 0 10 1 
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Konvergenzeigenschaften 

21t 
• Existiert J J2(X) dx , so konvergiert die Fourierreihe im quadratischen Mittel gegenJ: 

o 
21t 

lim f (f(x) - Sn(X» 2 dx = 0 . 
n-wl 0 

• IstJim Intervall [0,21t] differenzierbar, wobei endlich viele Stellen ausgenommen sein kon-
21t 

nen, und existiert J (f/(x»2 dx , so konvergiert die Fourierreihe zuJfUr aIle x E [0, 21t). 
o 

• Satz von Dirichlet. Das IntervaIl [0, 21t] sei in endlich viele TeilintervaIle zedegbar, in denen 
die FunktionJ stetig und monoton ist. Ferner sollen an den Unstetigkeitsstellen x der links­
und rechtsseitige Grenzwert 

J(x - 0) = lim J(u) und J(x + 0) = lim J(u) 
u~x-o u~x+o 

existieren. Dann konvergiert die Fourierreihe zu J fUr aIle x E [0,21t] , und es gilt 

. { J(x) faIls J in x stetig 
n~Sn(X)= t(f(x-O)+J(x+O» sonst 

Approximationseigenschaft 

21t 
• Existiert J J2(x) dx , so sind die Fourierkoeffizienten LOsung der Extremwertaufgabe 

o 
21t 
J (f(x) - Sn(X»2 dx ~ min . 
o ao ,· . . ,an,b l ,·· ·,bn 

TabeUe einiger Fourierreihen 

Die Funktionen sind in einern GrundintervaIl der Lange 21t definiert und mit der Periode 21t 
fortgesetzt. 

y={~ fUr -1t<x<1t 
fUr x = 1t 

y = Ixl fUr -1t ::; X ::; 1t 

= ~ _ i(cosx + cos3x + cos5x + . .. ) 
2 1t 32 52 



= { x fur 0 < x < 21t 
Y 1tfurx=O 

= 1t - 2( S~x + Sin22x + S~3X + ... ) 

{
-a fur -1t<x<O 

y= a fur O<x<1t 

o fur x = 0,1t 

y = x(1t -Ixl) fur -1t::; x::; 1t 

_8(sinx+sin3x+sin5x+ 1 -1t\13 33 53 .. ) 

{ 
-cosx fur -1t <x < 0 

y = cosx fur 0 < x < 1t 
o fur x = 0,1t 

= i(2sin2x + 4sin4x + 6 sin 6x + .. . ) 
1t 1·3 3 · 5 5 · 7 
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[ Funktionen mit mehreren Variablen I 
[ Punktmengen des Raumes lin I 

Die Punkte P(x}, ... ,xn), Q(Yl, ... ,Yn) des n-dimensionalen Raumes ~n werden mit den 

Vektoren x = (x}, ... ,Xn)T, Y = (Yl, ... ,Yn? identifiziert. Mit IIxll wird eine ~Vektomorm 
(Euklidische Norm, Maximumnorm, Betragssummennorm) bezeichnet. 

Abstand: Die Zahlllx - yll heillt Abstand der zwei Punkte x,y des ~ n. 

Die folgenden Begriffe sind unabhiingig von der verwendeten Vektomorm. 

beschriinkte Eine Menge D eRn heiBt beschriinkt, falls es eine Zahl R gibt, so da6 
Menge: IIxll :S: R fUr aIle xED gilt. 

Umgebung: Eine Menge U(x) heiBt Umgebung des Punktes x E R,n, falls sie eine kugel­
formige Umgebung Us(x):= {yilly-xil < E} desPunktesx enthilt. 

Inneres: Ein Punkt x heillt innerer Punkt von D, wenn es eine Umgebung U(x) gibt, 
die in der Menge D enthalten ist. Die Menge aIler inneren Punkte von D 
wird Inneres von D genannt und mit int(D) bezeichnet. 

offene Menge: Eine Menge D c ~ n heiBt offen, wenn int(D) = D gilt. 

Hiiujungspunkt: Ein Punkt x heiBt Hiiujungspunkt von D, wennjede Umgebung U(x) Punkte 
aus D enthiUt, die von x verschieden sind. 

abgeschlossene Eine Menge D eRn heiBt abgeschlossen, wenn sie jeden ihrer Hiufungs-
Menge: punkte enthiUt . 

• Jede unendliche beschriinkte Punktmenge des ~n hat mindestens einen Hiufungspunkt. 

Punktfolgen 

Eine Abbildung x I ~ ~ ~n heillt Punktfolge des ~n. Fiir ihre Elem.ente x(k) wird xk und 
fUr die gesamte Folge {xk} geschrieben. Die Komponenten des Folgenelem.entes xk werden 

. (k) . 1 b· hn unt xi ,I = , ... , n, ezeJ.c et. 

Konvergenz: Die Punktfolge {xk} heiBt /convergent gegen den Grenzwert X, wenn 

lim Ilxk - xii = 0 gilt. 
k~ 

• Eine Punktfolge {xk} konvergiert genau dann gegen den Grenzwert x, wennjede Kompa­

nentenfolge {x~k)}, i = 1, ... ,n, gegen die Komponentexi von x konvergiert. 

K. Vetters, Formeln und Fakten
© B. G. Teubner Stuttgart · Leipzig 1998
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[Funktionen im IRft I 
Eine Abbildung fl D ~ R mit Dc Rn heillt reellwertige (reel/e) Funktion von mehreren 
Variablen (Veranderlichen). Der Funktionswert im Punkt xeD wird mit f(x) = f(xb ... ,xn) 
bezeichnet. 

Darstellung im (x,y,z)-Koordinatensystem. 

Funktionen von zwei Variablen lassen sich 
in einem (x,y,z)-Koordinatensystem gra­
phisch darstellen, indem z = f(x,y) gesetzt 
wird. Die Menge der Punkte (x,y,z) bildet 
eine Flache, falls die Funktion f stetig ist. 

Hohenlinien im (x,y)-Koordinatensystem. 

Funktionen von zwei Variablen lassen sich 
in einem (x,y)-Koordinatensystem gra­
phisch darstellen, indem die Hohenlinien 
f(x,y) = C fur verschiedene Werte von C 
dargestellt werden (vgl. die Hohenlinien in 
Landkarten). 

. , '---~-----==--~-""=------~----' 
.2 . 1-5 .1 45 1.5 

Stetigkeit: Es sei x ein in D liegender Hiiufungspunkt von D. Eine Funktion f 1 D ~ ~ 
heillt im Punkt xeD stetig, wenn fur jede gegen x konvergierende Punktfolge 
{xk} e D gilt: lim f(xk) = f(x) . k ___ 

• Summe, Differenz und Produkt stetiger Funktionen sind stetige Funktionen. Der Quotient 
stetiger Funktionen ist stetig, falls der Nenner von Null verschieden ist. 

• 1st die Funktion f in einer Umgebung U(xo) des Punktes Xo partiell differenzierbar und 
sind alle partiellen Ableitungen 8;/(x) dort beschriinkt, so ist f im Punkt Xo stetig. 

• 1st die Funktion f im Punkt Xo stetig und gilt f(xo) > 0, so gibt es eine Umgebung U(xo), 
in der f uberall positiv ist: f(x) > 0 fur aIle x e U(xo). 

• E-o-Dejinition der Stetigkeit. Es sei Xo ein in D liegender Hiiufungspunkt von D. Eine 
Funktion fl D ~ ~ ist genau dann stetig im Punkt Xo, wenn es zu jeder positiven Zahl E 

eine positive Zahl 0 gibt, so daB gilt: 

Ii(x) - f(xo) I < E fur aIle xeD mit Ilx - xoll < 0 . 



Differentialrechnung fUr Funktionen mit mehreren Variablen 

I Partielle Ableitungen I 
Es sei f I D ~IR , Dc IR" , eine reelle Funktion mit Werten f(x) = f(Xl, ... ,Xn). Existiert 
der folgende Grenzwert, so hei6t er partielle Ableitung der Funktionfnach der i-ten Variab­
len im Punkt x: 

8;/(x):= lim f(xt, ... ,xi-t,xi +L\xi,xi+l> ... ,Xn)-f(Xb ... ,Xn) 
Axj~ L\xi 

Andere Bezeichnungen: 8x;f(x), f4x), ! (x) 
I 

Wenn die Funktionfim Punkt x partielle Ableitungen nach allen Variablen besitzt, so bezeich­
net man den Vektor der partiellen Ableitungen als den Gradienten vonfim Punkt x: 

(
8d (X) 1 

gradf(x) := : 
8nf(x) 

Andere Bezeichnung: Vf(x). 
Da die partiellen Ableitungen selbst wieder Funktionen von n Variablen sind, besitzen sie ge­
gebenenfalls wiederum partielle Ableitungen. 

partielle Ableitungen zweiter Ordnung: 
partielle Ableitungen dritter Ordung: 

8 iJ(x) := 8 i (8kf)(x) 
8ijJ(x) := 8i (8j kf)(x) 

Satz von Schwarz liber die Vertauschbarkeit der Differentiations-ReihenfoIge: Sind die par­
tiellen Ableitungen 8 iJ und 8kif in einer Umgebung des Punktes x vorhanden und stetig, so 
gilt 

8 iJ(x) = 8kif(x) . 

I Totales Differential I 
Es sei flU ~ IR, U c IR n , eine in der Umgebung U von x erkliirte Funktion von n Veriinderli­
chen. Sie hei6t im Punkt x total differenzierbar, wenn es einen Vektor a(x) gibt, so daB 

lim f(x + h) - f(x)-a(x)· h = 0 
h-+O Ihl 

gilt. Die Zahl a(x)· h hei6t totales Differential vonfim Punkt x zum Zuwachs h. Die Zuord­
nung h ~ a(x)· h wirdAbleitungf'(x) genannt:f'(x)(h) := a(x)· h. Besitzt die Funktionfin 
einer Umgebung des Punktes x stetige partielle Ableitungen, so ist sie im Punkt x auch total 
differenzierbar, und es gilt 

n 
f'(x)(h) = gradf(x)· h = L 8;/(x)h i . 

i=1 

K. Vetters, Formeln und Fakten
© B. G. Teubner Stuttgart · Leipzig 1998
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I Richtungsableitung I 
Es sei fl U ~ lit, U c lit", eine Funktion von n Veriinderlichen, die mindestens auf einem Ge­
radenstiick x + ts urn den Punkt x definiert ist. Dann wird der folgende Grenzwert, falls er 
existiert, Richtungsableitungvonfim Punkt x beziiglich der Richtung s genannt: 

aj(x) :=lim f(x + ts) - f(x) 
as (-Xl t 

Besitzt die Funktion f in einer Umgebung des Punktes x stetige partielle Ableitungen, so exi­
stieren die Richtungsableitungen im Punkt x beziiglich jeder Richtung s, und es gilt: 

!(x) = s·gradf(x) . 

I Taylorformel I 
Taylorformel fUr zwei Variable: Die Funktion f(x) = f(x,y) sei in einer Umgebung U des 
Punktes Po(xo,Yo) mindestens (n+l)-mal stetig partiell differenzierbar, und es gehe 
P(x,y) E U. Dann gibt es einen auf der Strecke PoP gelegenen Punkt Q(~, Y)), so daB mit 
h = x - xo, k = Y - Yo, ~ = Xo + 3(x - Xo), Y) = Yo + 3(y - Yo), 0 < 3 < 1 gilt: 

mit 

f(x,y) = j(XO,Yo) + 11, (a d(xo,yo)h + a2f(xo,Yo)k) + i, (ad(xo,Yo)h + a2f(xo,Yo)k) (2) 

+ .. + ~(a d(xo,yo)h + a2f(Xo,yo)k)(n) + Rn(x,y) 
n. 

Rn(x,y) = (n J J)' (ad(~, Y))h +a2f(~, Y))k) (n+l) 

und mit der Abkiirzung 

(ad(u, v)h+a2f(u, v)k) (i) = j~O 0)a U ?::.:;!/(u, v)hi-jkj . 

i-j j 
Spezialfall n = 0 (Mittelwertsatz): 

f(x,y) =j(xo,Yo) +ad(~, Y))h+a2f(~, Y))k 

Spezialfall n = 1 : 

f(x,y) = j(xo,Yo) + ad(xo,Yo)h + a2f(xo,yo)k + R J (X,y) 
mit 

R J (X,y) = Hallf(~, Y))h 2 +2a12f(~, Y))hk+a22f(~, Y))k2) 

Spezialfall n = 2: 

f(x,y) = f(xo,yp) + ad(xo,Yo)h + a2f(xo,Yo)k 

+t~ald(xo,Yo)h2 + 2al2f(XO,yo)hk+ a22f(xO,Yo)k2 ) +R2(x,y) 
mit 
R 2(x,y) = Hal11f(~, Y))h 3 +3all2f(~, Y))h2k+3a122f(~, Y))hk2 +a222f(~, Y))k3) 



96 Differentia1rechnung 6ir Funktionen mit mehreren Variablen 

I Kettenregel I 
Es seif eine Funktion von m Verinderlichen, und g}, ... ,gm seien m Funktionen von n Ver­
anderlichen. FUr die zusammengesetzte Funktion 

gilt: Sind die Funktionen g}, ... ,gm an der Stelle x = (x}, ... ,xn) und die Funktionfan der 
Stelle u = (u}, ... , Um) mit Uk = gk(xt. ... ,Xn) total differenzierbar, so ist die Funktion F an 
der Stelle u total differenzierbar mit der Ableitung 

F' (x)(h) = fl (u)(gl (x)(h» 

[ 
olg.l (x) ... On~l (x) 1 [~l 1 

= (oJ!(u), . .. , o"J(u» : ...: :' 
0lgm(X) ... ongm(X) hn 

, . 

oder: gradF(x) = (G/(x»T gradf(u), 

komponentenweise: 

m 
0iF= L OifOigk (i= 1, ... ,n) oder: 

k=l 

= G/(x) ....... Funktionalmatrix des Funktio-
nensystems g}, ... ,gm 

of = ~ of ogk (1 ) 
axi ~logkaxi i= , ... ,n . 

Spezialfall m = 2, n = 1; Funktionf(x,y) mit x = x(t), y = y(t): 

df ofdx ofdy 
-=--+--
dt ax dt ay dt 

oder: i=fxx+/yj; 

Spezialfall m = n = 2 ; Funktionf(u, v) mit u = u(x,y), v = v(x,y) : 

of of ou of av 
-=--+--ay ou ay av ay 

Polarkoordinaten (Spezialfa1l m = n = 2, x = r cos<p, y = r sin <p, f(x,y) = g(r, <p) ) 

of og sin<p og 
-=cos<p-----
ax or ro<p 

of . og cos<p og 
-=SID<p-+--­
oy or ro<p 

og at. of 
-=cos<p-+sm<p-
or ax ay 
og . of at 
o<p = -rsm <p ox +rcos<p ay 

Zylinderkoordinaten (Spezia1fa1l m = n = 3, x = r cos <p, y = r sin <p , Z = Z 

f(x,y,z) = g(r, 3, <p) ) 

Formelsiitze wie bei Polarkoordinaten, aber zusatzlich 

at og 
oz = oz 

og aj 
oz = az 
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Kugelkoordinaten (Spezialfall m = n = 3, x = psin3coscp, y = p sin3sincp, z = pcos3, 
f(x,y,z) =g(p,3,cp» 

of _ og . n og cos3coscp og sincp 
Ox - op SIn~COScp + 03 P - Ocp psin3 

of og. n • og cos3sincp og coscp 
Oy = op SIn ~ Slncp + 03 P + ocp -p-sin-3 

of = og cos3 _ og sin3 
oz op 03 P 

I Fehlerfortpflanzung I 
Die Fehlerfortpflanzung behandelt den Einflufi von Fehlem der Veranderlichen einer Funktion 
auf das Ergebnis der Funktionswertberechnung. 

exakte GroBen: 

N iiherungswerte: 

absolute Fehler: 

absolute F ehlerschranken A: 

relative Fehler: 

relative Fehlerschranken: 

loyl ::>Ay, IOxll ::>Ax1,···, loxnl ::>Axn 

oy Oxl Oxn 
y' Xl' ••. , xn 

Falls die Funktionftotal differenzierbar ist, so gilt fUr die Fortpflanzung der absoluten Fehler 
der Veranderlichen auf den absoluten Fehler der Funktionf 

Ay ~ 10d(i)IAx l + ... + 10nf(i)IAxn 1) 

und fUr die Fortpflanzung der relativen Fehler 

Ay < Ix 10 d(i) I. Axl + ... + Ixnonf(i) I. Axn 1) 

Iyl- Y Ixd Y IXnl· 

1) Das Zeichen ~ bedeutet kleiner oder etwa gleich 



I Extremwertaurgaben und Optimierung I 
I Begriffe I 
Es sei / I D ~ R, D eRn, eine Funktion von n Variablen mit Welten /(x) =/(xI, ... ,xn) 
und Xo ED. 

Infimum 

Supremum 

globales 
Minimum 

Eine Zahl m wird Infimum von / genannt, wenn sie die gr06te Zahl m ist, fiir 
welche gilt: 

/(x) :2: m fiir alle xED. Bezeichnung: m = inf /(x) 
XED 

Eine Zahl M wird Supremum von / genannt, wenn sie die kleinste Zahl Mist, 
fUr welche gilt: 

/(x) ~ M fUr alle xED. Bezeichnung: M = sup/(x) 
XED 

Die Funktion/ hat an der Stelle Xo ein globales Minimum, falls gilt: 

/(x) :2:/(xo) fiir alle xED. Bezeichnung: /(xo) = min/(x) 
XED 

Die Funktion/ hat an der Stelle Xo ein strenges globales Minimum, falls gilt: 

/(x»/(xo) fiirallex ED\{xo}. 

lokales Die Funktion / hat an der Stelle Xo ein lokales Minimum, falls fUr eine Umge-
Minimum bung U(xo) gilt: 

/(x) :2:/(xo) fiir alle x E U(xo) n D . 

Die Funktion/ hat an der Stelle Xo ein strenges lokales Minimum, falls fur eine 
Umgebung U(xo) gilt: 

/(x) > /(xo) fur alle x E (U(xo) nD) \ {xo} . 

Ein globales Minimum wird auch kurz Minimum, ein lokales Minimum auch relatives Mini­
mum genannt. Analog werden diese Begriffe fiir Maximum definiert. Minimum und Maximum 
werden im Begriff Extremum oder Extremwert zusammengefaBt. Andert sich die Punktmen­
ge D, so andem sich i.allg. der Wert des Extremums und die Extremstelle Xo; dann muB den 
Bezeichnungen die Formulierung "beziiglich D" beigefugt werden. 

• LaBt man die Welte -00 fur das Infimum und t<XJ fur das Supremum zu, so besitzt jede 
Funktion ein Infimum und ein Supremum 

• Falls die Funktion / ein Minimum hat, stirnmt dieses mit dem Infimum iiberein. 

• Falls die Funktion / ein Maximum hat, stirnmt dieses mit dem Supremum iiberein. 
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Extrema von Funktionen mit mehreren Variablen 99 

I Extrema von Funktionen mit einer Variablen I 
• Existenz. Eine stetige Funktion I I [a, b] ~ It hat mindestens ein Minimum und Maximum. 

• Notwendige Bedingung fi1r Iomle Extremwerte. Hat die Funktion I I [a,b] ~ Ran der 
Stelle Xo E (a, b) ein lokales Extremum und ist I an der Stelle Xo differenzierbar, so gilt: 

I'(xo) = 0 . 

• Hinreichende Bedingung for Iomle Extremwerte. 1st die Funktion I I [a, b] ~ IR an der 
Stelle Xo zweimal stetig differenzierbar, so gilt 

a) Xo E [a,b] A 1'(xo)=O A 1"(xo»O => Ihatinxo 10kalesMinimum, 

b) Xo E [a,b] A I'(xo) = 0 A I"(xo) <0 => I hat inxo 10kalesMaxitnum, 

Fiir die Randstellen a, b gilt zusiitzIich, falls I dort stetig differenzierbar ist: 

c) I'(a) > 0 =>1 hat in a lokales Minimum, I'(a) < 0 => I hat in a lokales Max:imum, 

d) I'(b) < 0 => I hat in b lokales Max:imum, I'(b) > 0 => I hat in b lokales Minimum 

Extrema von Funktionen mit mehreren Varia bIen 

Gegeben: Funktion II D ~ R, Dc Rft, mit Funktionswerten I(x) = I(xt. ... ,Xn) . 
Gesucht: Extremstellen Xo ED. 

• Existenz: 1st die Punktmenge D beschriinkt und abgeschlossen und die Funktion I in jedem 
Punkt von D stetig, so hat I auf D mindestens ein globales Minimum und mindestens ein 
glob ales Maximum. 

Fiir die weiteren Aussagen wird vorausgesetzt, daB die Punktmenge D ein nicht leeres Inneres 
hat und da13 die Funktion I hinreichend oft stetig partiell differenzierbar ist. Die symmetrische 
(n,n)-Matrix 8(x) der zweiten partiellen Ableitungen von I hei6t Hessematrix: 

( 
Bll/(x) ... Blnl(x) J 

8(x) := (Bijl(x» = : . . . : 
Bntf(x) ... Bnnl(x) 

• Notwendige Bedingung I for Iomle Extremwerte. Hat die Funktion I an der Stelle 
Xo E int(D) einen lokalen Extremwert, so gilt 

grad/(xo)=0 , in Komponenten: Bi/(xo)=::'(x?, ... ,X~)=O (i=l, ... ,n). 
I 

• Die Punkte Xo Eint(D) mit grad/(xo) = 0 hei6en stationiire Punkte der Funktionf 

• Hat jede Umgebung des stationaren Punktes Xo Punkte x,y mit I(x) </(xo) </(y), so 
hei6t Xo Sattelpunkt. 



100 Extremwertaufgaben und Optimierung 

Notwendige Bedingung II for lokale Extremwerte 

• Hat f an der Stelle Xo eint(D) ein lokales Minimum, SO gilt gradf(xo) = 0 , und die Hes­
sematrix H(xo) ist positiv semidefinit. 

• Hat f an der Stelle Xo eint(D) ein lokales Maximum, so gilt gradf(xo) = 0 , und die 
Hessematrix H(xo) ist negativ semidefinit. 

Hinreichende Bedingungenfor lokale Extremwerte. Es sei Xo ein stationiirer Punkt von f 

• 1st zusatzlich H(xo) positiv definit, so hat f an der Stelle Xo ein strenges lokales Minimum. 

• 1st zusatzlich H(xo) negativ definit, so hat fan der Stelle Xo ein strenges lokales Maximum. 

Kriterienfor Dejinitheit (s.auch Lineare Algebra, Eigenwertaufgaben bei Matrizen) 

• Die reelle symmetrische (n,n)-Matrix A = (aij) ist genau dann positiv definit, wenn jede ih­
rer n Hauptabschnitts-Determinanten positiv ist: 

>0 fur k= l, ... ,n. 

• Die reelle symmetrische (n,n)-Matrix A = (aij) ist genau dann negativ definit, wenn die Fol­
ge der n Hauptabschnitts-Determinanten beginnend mit Minus alternierendeVorzeichen hat: 

>0 fur k=l, ... ,n. 

Hinreichende Bedingungfor Sattelpunkte 

• 1st xo ein stationarer Punkt der Funktionfund hat die Hessematrix H(xo) Eigenwerte "i, 
"k von unterschiedlichem Vorzeichen "i < 0, "k > 0, so ist x 0 ein Sattelpunkt von f 

SpezialJall n = 2 

• Es sei P(xo,Yo) e int(D) stationarer Punkt, d.h. ax/(xo,Yo) = 0 ,ayf(xo,yo) = O. Dann 
sind die in den erst en beiden Spalten der Tabelle eingetragenen Eigenschaften beide zusam­
men hinreichend fur die angegebene Art des stationaren Punktes. 

axx/(XO,Yo) . aY.Yf(xo,yo) - (axyf(xO,yo»2 axxf(xo,Yo) Art des Punktes P(xo,Yo) 

> 0 > 0 relative Minimumstelle 

> 0 < 0 relative Maximumstelle 

< 0 beliebig Sattelpunkt 



Nichtlineare Optimierung 101 

[ Extrema mit Gleichungsrestriktionen I 
Gegeben: Funktion fl D ~ IR, D c IRn, mit Werten f(x) =f(xl, ... ,Xn), 

Funktionen gi I D ~ IR , D c IRn, mit Werten gi(X) = gi(x}", .,Xn), i = 1, ... , m 
Gesucht: Extremstellen Xo von f beziiglich der Punktmenge 

G ={ xED I gl (x) = 0 , ... ,gm(x) = O} 

Nebenbedingungen, Restriktionen: gl (x) = 0, ... ,gm(x) = 0 

Lagrange-Funktion: L(1, A) := f(x) + AlgI (x) + ... + Amgm(X) 

Lagrange-Multiplikatoren: AI, ... , Am 

Notwendige Bedingungfor lokale Extremwerte (Lagrange-Multiplikatoren-Regel). 

• Die Funktionen f,g}, ... ,gm seien stetig partiell differenzierbar, der Punkt Xo E G sel el­
ne 10kale Extremstelle der Funktion f unter den Nebenbedingungen gi(x) = 0, i = 1, ... ,m, 
und fur die Funktionalmatrix G' des Funktionensystemsgl, ... ,gm gelte rang(G/(xo» = m. 
Dann gibt es Lagrange-Multiplikatoren A}, ... , Am, so dafi aile n +m partiellen Ableitungen 
(beziiglich Xi und Aj) der Lagrange-Funktion im Punkt (xo, A) verschwinden: 

akf(XO)+Ala~l(XO)+"'+Amakgm(XO)=O fur k= 1, ... ,n, 

gi(xO) = 0 fur i = 1, ... ,m . 

[ Nichtlineare Optimierung I 
Gegeben: Funktion fl D ~ IR, D c IRn, mit Werten f(x) = f(Xl, ... ,Xn), 

Funktionen gi I D ~ IR, D c IRn, mit Werten gi(X) = g;(x}, ... ,Xn) , i = 1, ... , m 

Funktionen hjl D ~ IR, D c IRn, mit Werten hJ<x) = hJ<Xl, ... ,xn) ,} = 1, ... ,p 
Gesucht: Minimumstellen Xo von f beziiglich der Punktmenge 

G = { xED I gi(x) = 0 (i = 1, ... , m), hJ<x)::; 0 U = 1, .. . ,p)} 

Notwendige Bedingung for lokale Minimumstellen (Kuhn-Tucker-Bedingungen) 

• Die Funktionen j,gl, ... ,gm,hl , ... ,hp seien stetig partiell differenzierbar, der Punkt xosei 
eine lokale Minimumstelle der Funktion f unter den Nebenbedingungen gi(x) = 0, 
i = 1, ... , m, hJ<x)::; O,} = 1, ... ,p, und im Punkt Xo sei die Regularitiitsbedingung 

rang(G/(xo» = m , 
::J Z E IRn: zT gradgi(xo) = 0 fur i = 1, ... ,m , 

z T grad hJ<xo) < 0 fur alle} mit hJ<xo) = 0 

erfiillt. Dann gibt es Multiplikatoren Ai, i = 1, ... ,m, und Ilj ~ O,} = 1, ... ,p, so daB gilt: 

akf(xo) + ~ A;akgi(xO) + f IljakhJ<xo) = 0 fur k = 1, ... , n , 
i=l j=l 

h;(xo)::; 0, Iljh;(xo) = 0 fur} = 1, .. . ,p , 

gi(xO)=O fur i= 1, ... ,m. 



[ Doppelintegrale 

v = ff J(x,y) dx dy ist das Volumen des Zylinders Z zwi-
B 

schen dem Bereich B der x,y-Ebene und der Flache 
z = J(x,y) (Voraussetzung:J(x,y) 20) 

• Spezialfall J(x,y) ;; 1 : 

A = ff dx dy ... Flacheninhalt des Bereiches B 
B 

Eigenschafteo 

ff V(x,y) dxdy = A, ffJ(x,y) dxdy (A, E 1Rt, konst.) 
B B 

ff J(x,y)dxdy = II J(x,y)dxdy+ ff J(x,y)dxdy 
BluB2 BI B2 

x 

II (I(x,y) + g(x,y»dxdy = ffJ(x,y)dxdy + IIg(x,y)dxdy 
B B B 

Berechnung (iterierte Integration) 

I. Bereich B ist Normalbereich beziiglich x-Achse 

{ a<x<b 
P(x,y) E B ¢:> ( ) - - () 

y\ x :$y :$Y2 x 

Dann kann das Doppelintegral berechnet werden durch 

ffJ(x,y) dx dy = J [ Y2t J(x,y) dY ] dx . 
B a y,(x) 

2. Bereich B ist Normalbereich beziiglichy-Achse 

P( ) B { X\(y):$X:$X2(y) 
x,y E ¢:> d 

c:$y:$ 

Y 
d 

Dann kann das Doppelintegral berechnet werden durch 

ffJ(x,y)dxdy= I[X2
tJ(X,y)dx]dY . 

B C xI(Y) 

e 

• Spezialfall: Bereich B ist Rechteckbereich 

{ a<x<b 
P(x,y) E B ¢:> - - d 

c:$y:$ 

d 

Dann kann das Doppelintegral berechnet werden durch 
bd db 

IJf(x,y)dxdy= f fj(x,y)dydx= f fj(x,y)dxdy 
e 

B ac ca 

I 
~_.--- FUiche 

z=f(x.y) 

z 
y 

B 

Y2(X 

B i; 
I 1 (x) 

a b x 

x1(Y) ( x2(y) 

B -

\ 
\ / x 

Y2 
x 

a b 
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Oberllichenintegrale 1. Art 103 

I Substitution I 
x=x(u, v) 

Substitutionsregel fUr die Koordinatentransformation 
y=y(u, v) 

oder 

mit 

rr rr I B(x,y) I JJf(x,y)dxdy = JJ f(x(u, v),y(u, v» -B( ) dudv 
B B* u,v 

db = dx dy = I ~~::~ I du dv ... Transformation des OberjIachenelements db 

I Ox ax I B(x,y) _ au Ov 
--- Oy Oy 
B(u, v) au Ov 

Funktionaldeterminante des Funktionensystems x = x(u, v) 
y=y(u,v) 

• Spezialfall Polarkoordinaten x = r cos q> , y = r sin q> : 

Hf(x,y) dx dy = H f(r cosq>, r sin q»r dr dq> 
B B* 

• Spezialfall Ellipsenkoordinaten x = au cosv, y = bu sin v : 

Hf(x,y) dx dy = H f(au cos v, bu sin v)abu du dv 
B B* 

I Oberfiichenintegrale 1. Art I 
Es seien F ein i allg. gekriimmtes Fliichenstiick mit der Parameterdarstellung 

r = r(u, v) 
(u, v) E B 

x=x(u, v) 
komponentenweise: y = y(u, v), (u, v) E B 

z=z(u, v) 
und f eine auf B definierte Funktion. Das zugeordnete OberjIachenintegral erster Art ist 

fJdb = Hf(u, v) db mit db = JEG-F2 dudv und 
F B 

E=(:r +(Zr +(:Y, G=(~)2 +(:r +(~)2 , 
F= Ox Ox + ayay + Bz Bz 

auav Buav BuBv· 

• Spezialfall f;: 1 : A = f db . . . Fliicheninhalt des Fliichenstiicks F 
F 

• Spezialfall Fliichenstiick z = f(x,y) mit (x,y) E B ... Bereich der x,y-Ebene 

fJ db = Hf(x,y) db mit db = 1 + (!y + (!r dx dy 
F B v)' 



104 Doppelintegrale 

I FUichenelemente I 
kartesische Koordinaten x,y 

ebene Fliiche Polarkoordinaten r,<p 
in x,y-Ebene 

Ellipsenkoordinaten u, v 

allgemeine u, v-Koordinaten 

gekriimmte 
kartesische Koordinaten x,y 

Fliiche Zylindermantel Radius R, Koordinaten <p, z 

Kugeloberfl1iche Radius R, Koordinaten 8,<p 

allgemeine u, v-Koordinaten 

I Anwendungen 

Flacheninhalt A 

Masse M (p ... Flachen-Massendichte) 

Volumen V zwischen ebenem Bereich B der 
x,y-Ebene und Fliiche z = f(x,y) 

I 
A= fdb 

F 

M=fdm=fpdb 
F F 

V= Hfdb 
B 

db= dxdy 

db=rdrd<p 

db=abududv 

db = I O(x,y) I du dv 
O(u, v) 

db= b+fi+f; dxdy 

db=Rd<pdz 

db = R 2sin 8 d8 d<p 

db= JEG-F2 dudv 

Schwerpunktskoordinaten (p .. , Fliichen-Massendichte) 

homogene Fliiche xs=l fxdb 
AF 

ys= 1 fydb 
AF 

zs=l fZdb 
AF 

Fliiche mit Massendichte p xs=.lfxpdb 
MF 

ys=..!.. fypdb 
MF 

zs=.l fzpdb 
MF 

Triigheitsmomente bzgl. der Koordinatenachsen (p ... Fliichen-Massendichte) 

ebene Flache der x,y-Ebene Jx = f y2p db Jy = f x 2p db 
F F 

homogene Fliiche setze p = 1 

Triigheitsmomente bzgl. anderer Achsen 

polares Tragheitsmoment einer ebenen Fliiche J 0 = f (x2 + y2)p db 
der x,y-Ebene F 

Tragheitsmoment bzgl. beliebiger Achse A JA = f r~ p db rA ... Abstand von A 
F 

Satz von Steiner a ... Abstand Achse A - Schwerpunkt 
S ... zu A parallele Achse durch Schwerpkt. 



I Dreifachintegrale 

Jldt = Hff(x,y,z)dxdydz 
K K 

Spezialfall f(x,y,z):; 1 : 

V= fdt = fdxdydz 
K K 

Eigenscbaften 

fVdt=AJldt fiirAE~ 
K K 

J (f+g)dt = Jldt+ J gdt 
KKK 

I 
K ... Korper im Raum ~3 

dt ... Raumelement (Volumenelement) 

.. . Volumen des Korpers K 

J fdt = J fdt+ J fdt falls Kl nK2 = 0 
Kl uK2 KJ K2 

Berechnung (iterierte Integration) 

I. Integrationsreihenfolge z,y,x y 

2. Integrationsreihenfolge z,x,y 

z 

x 

3. Integrationsreihenfolge y,z,x 
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106 Dreifacbintegrale 

4. Integrationsreihenfolge y ,x,z 

( 
I 

t 

5. Integrationsreihenfolge x,z,y 

6. Integrationsreihenfolge x,y,z 

[ Substitution I 
x=x(u,v,w) 

Substitutionsregel fUr die Koordinatentransfonnation y = y(u, v, w) 
z = z(u, v, w) 

z 

.fiff(x,y, z)dxdydz = .fiff(x(u, v, w),y(u, v, w),z(u, v, W»I :t,y,Z~ I dudvdw 
K K* u, v,w 

oder 

mit 

d, = dx dy dz = I :(~:~: ~) I du dv dw ... Transfonnation des Raumelements d, 

J(x, y, z) 
J(u, v, w) 

ax ax ax 
au Ov Ow 
0> oy 0> Funktionaldeterminante 
au Ov Ow .. . des Funktionensystems 
oz oz oz 
au Ov Ow 

x=x(u, v, w) 
y=y(u, v, w) 
z =z(u, v, w) 

(X,z) 

y 
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Spezialfall Zylinderkoordinaten x = rcos<p, y = rsin <p, z = z : 

JIff(x,y,z)dxdydz = JIff(rcos<p,rsin<p)rdrd<pdz 
K K* 

SpeziaIfall Kugelkoordinaten x = r sin 8 cos <p , y = r sin 8 sin <p , z = r cos 8 : 

JIff(x,y,z)dxdydz = JIff(rsin 8cos<p ,rsin 8 sin<p ,rcos8)r2sin8drd8d<p 
K K* 

[ Raumelemente I 
kartesische Koordinaten x,y,z 

Zylinderkoordinaten r, <p ,z 

Kugelkoordinaten r,8,<p 

allgemeine u, v, w-Koordinaten 

[ Anwendungen I 
Volumen 

Masse 

V= fdt 
K 

M= f pdt 
K 

dt = dxdydz 

dt =r drd<pdz 

dt = I 8(x,y,z) I dudvdw 
8(u, v,w) 

p = p(x,y,z) ... Massendichte 

Schwerpunktskoordinaten (p ... Massendichte) 

homogener Korper xs=l fxdt 
V K 

ys=lfYdt 
V K 

zs=lfzdt 
V K 

Korpermit xs= ~fxpdt Ys= ~fypdt zs= ~fzpdt 
Massendichte p 

Tragheitsmomente (p ... Massendichte) 

Triigheitsmomente bzgl. Jx = f(y2 +z2)pdt Jy = f(x2 +z2)pdt I Jz = f(x2 +y2)p dt 
Koordinatenachsen K K K 

Triigheitsmoment bzgl. JA = f r~pdt r A ... Abstand von Achse A 
beliebiger Achse A K 

homogener Korper setze p = 1 

Satz von Steiner 
JA =a2V+Js a ... Abstand Achse A - Schwerpunkt homogener Korper 

Satz von Steiner 
JA =a2M+Js S ... zu A parallele Achse 

Korpermit durch Schwerpunkt 
Massendichte p 



I Vektoranalysis 

[ Vektorfelder I 
Slwlaif,ldo I lilt' -> D!. mit I(x) ~ I(x.",) und x ~ [~ 1 
Vektorfeld: v I ~3 ~ ~3 mit v(x)=[~~l =[~~~~~l =Pex+Qey+Rez 

R(x) R(x,y,z) 

Anwendung: FlufJmodelle (Gase, Aiissigkeiten, Elektrizitiit) 

Einheitsvektor in Aufirichtung: 

Flufistiirke: 
vektorielles Aiichenelement dA: 

v 
ev = Ilvll 
Ilvll 

Fliicheninhah: IldAll 
Normalenvektor: dA 

Massenflufi pro Zeiteinheit von Stro-
mung v durch Aiichenelement dA: v . dA 

I Parameterableitungen von Vektoren I 
Ein parameterabhiingiger Vektor 

[ 
x(/) 1 

x(/) = y(/) = X(/) ex + y(/) ey + z(/) ez 
z(/) 

stellt eine Raumkurve dar. Sind x, y, Z differenzierbar, 
so gilt 

[ 
i(/) 1 . () '= dx.= lim x(t+M) - x(t) = ;,/) x t. d . M .nt. 

1 ~HO z(t) 

i(t) 
• Tangenteneinheitsvektor der Raumkurve x im Kurvenpunkt x(t): et = Ili(t)11 . 
Recbenregeln 

ft(x+y)=x+ y 

d ( ) . . dt x·y =x·y+x·y 

:I(q>x)=ci>x +q>i 

~(x x y) = i x y+x x y 

:/x, y xz) = i·y xz+x'y xz+x'y xi 

:t[x x (y x z)] = i x (y x z) +x x (y x z) +x x (y x i) 

v 

I 

x 
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[ Gradient 

Gradient eines Skalarfeldesf 

Richtungsableitung eines Skalarfeldesf 

I 
[axf] 

gradf= ayf 
az/ 

:(x) = s . gradf(x) 

Divergenz 109 

• gradfhat die Richtung maximaler Zunahme der Funktionf 

• gradf(xo) steht senkrecht zur Tangentialebene T der Niveau­
Hache f(x) = f(xo) im Punkt xo, d.h. fUr jeden Punkt x der 
Tangentialebene gilt gradf(xo)' (x - xo) = 0 

• Rechenregeln (u = (p(u),Q(u),R(u)l, v = (p(v),Q(v),R(v»T) 

grad (f+g) = gradf+gradg grad (V) = Agradf (A E~, konstant) 

grad (u . v) = (u . grad)v + (v· grad)u + u . rotv +V· rotu 

[ 
p(u)axp(v) ] [ p(v)axp(u) ] 

mit (u· grad)v = Q(u)ayQ(v) , (v . grad)u = Q(v)ayQ(u) 
R(u)8zR(v) R(v)8zR(u) 

• Vektorfeld v heillt konservatives Feld oder Potentialfeld, wenn es ein Skalarfeld q> gibt mit 
v(x) = grad q>. Die Funktion q> heillt die zum Vektorfeld v gehOrige Potentialfunktion. 

8 8 a 
• Der Operator V:= ax ex + ay ey + 8z ez heillt Nabla-Operator. Es gilt Vf = gradf· 

• Zylinderkoordinaten if = f(r, q>, z»: 

Kugelkoordinaten if = f(r, », q»): 

I Divergenz 

Diw<'g,m om" V_deld" V" [ ~ ]. 

I 

gradf = er8rf + eq>}8q>f + ez8z/ 

gradf= erarf+es}8sr+eq>---J.-.naq>f 
rsm" 

• Der MassenfluB einer Stromung v aus einem Volumenelement dt heraus ist (div v )dt . 

• Rechenregeln 

div(u +v) = div u + div v 

div (fv) = v . gradf + f div v 

• Es gilt V· v = div v . 

div(AV) = A div v (A E~, konstant) 

div(u xv) =v . rot u-u ·rot v 



110 Vektoranalysis 

• Zylinderkoordinaten (v = Rer + <De<p + Zez ): 

Kugelkoordinaten (v = Rer +®es +<De<p): 

div v = 12 8r(r2 R) + ~-n-aS(® sin 8) + ---J..-.n8<p<D 
r rsm~ rsm~ 

I Rotation I 

Rotation "'" V ,ktorieldo, v = (~ 1 

• Die Wirbeldichte ws(x) = lim ~I f v· dx eines Vektorfeldes v im Punkt x beziiglich 
A~(I,s) 8(A) 

der Achse s ist ws(x) = es . rot v . 

• RechenregeJn 

rot(u +v) = rot u +rot v rot(A.v) = A. rot v 

rot(fv) = frot v - v x gradf 

rot(u x v) = (v· grad)u - (u· grad)v+udiv v -vdiv u 

• Es gilt 
ex ey ez 

Vxv= -- VT -
- v T --

ex ey ez 
8x 8y 8z =rotv. 
P Q R 

• Zylinderkoordinaten (v = Rer + <De<p + Zez ): 
1 1 rot v = (,8<pZ - 8z<D)er + (8zR - 8rZ)e<p + ,(8r(r<D) - 8<pR)ez 

Kugelkoordinaten (v = Rer + ®es + <De<p ): 

(A. E IR , konstant) 

rot v = ---J-n(8s(<D sin 8) - 8<p®)er +}( .1 n 8<pR - 8r(r<D»es + }(8r(r®) - 8sR)e<p 
rsm~ sm~ 

• Ein stetig differenzierbares Vektorfeld v ist genau dann ein Potentialfeld, wenn es wirbelfrei 
ist, d.h. wenn gilt 

8yR=8zQ, 8zP=8xR, 8x Q=8yP. 

• Hauptsatz der Vektoranalysis: Zu jedem stetig differenzierbaren Vektorfeld v, das zusam­
men mit seinen partiellen Ableitungen erster Ordnung im Unendlichen null ist, gIbt es Vek­
torfelder u und w mit 

v = u + w, rot u = 0, div w = 0 . 

Dabei sind u und w bis auf eine vektorielle Konstante eindeutig bestimmt. 



Linienintegrale 2. Art III 

I Differentialoperatoren 2. Ordnung I 
• rot(grad f) = 0 Ein Potentialfeld ist wirbe1frei 

• div(rot v) = 0 Ein reines Wirbelfeld ist quellenfrei 

• div(gradf) = !if 

Der Operator !i:= 8xx + 8yy + 8zz heillt Delta-Operator oder Laplace-Operator. 

• rot(rotv)=grad(divv)-!iv mit !iv:=8xxP+8yyQ+8zzR 

• Zylinderkoordinaten: 

Kugelkoordinaten: 

I Linienintegrale 2. Art I 
[

X(t) 1 
Es seien C eine stiickweise glatte Raumkurve mit der Parameterdarstellung x(t) = y(t) , 

z(t) 

a < ,< b • und v = [ i 1 em.tetiges V .... mId. Dos LtnI'nintegrai (K""""'''''gra/) 2. A" 

ist 

L:= f v ·dx 
c 

b 

[ dx 1 [x(t) 1 mit dx = dy = y(t) dt. 
dz z(t) 

• Es gilt L = f {P(x(t),y(t), z(t»X(t) + Q(x(t),y(t),z(t»y(t) + R(x(t),y(t), z(t»Z(t)}dt . 
a 

• 1st v ein Kraftfeld, SO ist L die Arbeit fUr die Verschiebung eines Massenpunktes von x(a) 
nach x( b) Iangs der Kurve C. 

• 1st vein elektrisches Feld, so ist L der Spannungsabfall zwischen x(a) und x(b) . 

• Fiir stetig partiell differenzierbare Vektorfelder v ist das Linienintegral L genau dann weg­
unabhiingig, d.h. nur vom Anfangspunkt x(a) und Endpunkt x(b) abhiingig, wenn das Vek­
torfeld v ein Potentialfeld ist. 
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[ OberOachenintegrale 2. Art I 
Es seien F em iallg. gekriimmtes Flichenstiick mit der Parameterdarstellung x(u, v), 
(u, v) E B, und v em stetiges Vektorfeld. Das Oberj1achenintegraI2. Art ist 

1= f v·db 
F 

mit db =(aux x avx) du dv 

=n ... Normalenvektor von F 

• Berechnung: f v·db = H 
F B 

P Q R (P 1 8ux 8uY 8uz du dv mit V = Q (
X(U,V) 1 

und x(u, v) = y(u, v) 
avx avY avz R z(u, v) 

• 1st V eine Stromung, so ist I die pro Zeiteinheit durch das Flichenstiick hindurch tJieJ3ende 
Menge (Vorzeichen im Siune der Orientierung der Fliche). 

[ Integralsatze I 
Integralsatz von Gaufi: Es seien K ein Korper mit stiickweise glatter, nach auBen orientierter 

Obertliiche Fund v ein stetig partiell differenzierbares Vektorfeld. Dann gilt 

P Q R 
fv.db=f(divv)d't oder: H 8ux 8uY 8uz dudv=iff(8xp+8yQ+azR)dxdydz 
F K B avx avY avz K 

Integralsatz von Gaufi for die Ebene: Es seien B ein ebenes Flichenstiick mit stiickweise glat­
ter Randkurve C, die das Fliichenstiick zur Linken hat, und v ein stetig partiell 
differenzierbares ebenes Vektorfeld. Dann gilt 

f(Pdx + Qdy) = ff(axQ - ayp)dxdy , wobei v = ( ~) . 
C B 

lntegralsatz von Stokes: Es seien F eine stiickweise glatte Fliiche mit einer stiickweise glatten, 
beziiglich F positiv orientierten Randkurve C und v ein stetig partiell differenzierbares 
Vektorfeld. Dann gilt 

f v . dx = f (rot v) . db . 
C F 

Greensche Integralsatze: Es seien K ein Korper mit stiickweise glatter, nach auBen orientierter 
Oberfliiche Fund f, g zwei stetig partiell differenzierbare Skalarfelder. Dann gelten 

f (gradf . grad g+ ftlg)d't = ffa8g db 1. Greenscher Satz, 
K F n 

f U tlg - g tlf)d't = fUaag - g aaf )db 2. Greenscher Satz, 
K F n n 

I (gradf . gradf + f tlf)d't = if :~ db 3. Greenscher Satz. 



I Partielle Differentiaigieichungen I 
Die Darstellung erfolgt nur fUr Funktionen u von zwei Veranderlichen mit Werten u = u(x,y). 
Statt beliebiger Konstanten bei gewohnlichen Differentialgleichungen treten in den allgemeinen 
Liisungen partieller Differentialgleichungen beliebige differenzi.erbare Funktionen auf 

Partielle Differentialgleichungen 1. Ordnung 

Die allgemeine partielle Differentialgleichung erster Ordnung hat die Form 

F(x,y, u, 8xu, 8yu) = O. 

Die quasilineare partielle Differentialgleichung erster Ordnung 

a(x,y, u)8xu + b(x,y, u)8yu = c(x,y, u) 

hat die LOsung in impliziter Form cp ({(x,y, u),g(x,y, u» = 0, wobei cp eine beliebige partiell 
differenzi.erbare Funktion von zwei Variablen ist, und die Funktionenf,g durch die zwei fol­
genden gewohnlichen Differentialgleichungen definiert sind: 

dy b(x,y, u) ~ Losung f(x,y, u) = C 1, 
dx = a(x,y, u) 

du c(x,y, u) L" g( ) C 
dx = ( ) ~ osung x,y,u = 2· ax,y,u 

Partielle Differentialgleichungen 2. Ordnung 

Die allgemeine partielle Differentialgleichung zweiter Ordnung hat die Form 

F(x,y, u, 8xu, 8yu, 8xxu, 8xyu, 8'y'yu) = O. 

Normalformen linearer partieUer Differentialgleichungen zweiter Ordnuog 

Die allgemeine Iineare partielle Differentialgleichung zweiter Ordnung 

all (x,y)8xxu + 2aI2(X,y)8xyu + a22(x,y)8,Y.Yu 

+b I (x,y)8xu + b2 (x,y)8yu + c(x,y)u = r(x,y) 

kann mit dem Nabla-Operator V, den Substitutionen 

b I (x,y) ~ b 1 (x,y) - 8xall (x,y) - 8ya22(X,y) , 

b2(x,y) = b2(x,y) - 8xa}2(x,y) - 8ya22(x,y) , 

der symmetrischen Matrix A = (aij(x,y» und dem Veldor b = (bj(x,y» in der Form 

K. Vetters, Formeln und Fakten
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(VT A V)u + (i)TV)u + eu = r 

geschrieben werden. Durch die Drehung des (x.y}-Koordinatensystems in ein (1;,11}-Koordina­
tensystem mitte1s der Drehmatrix S, deren Spahen die orthonormierten Eigenvektoren der Ma­
trix A sind, 

und den Bezeichnungen beziiglich der neuen Koordinaten 

u(I;,11):= u(slll; +S1211,S211; +S2211), entsprechend: h(I;,11), c(l;, 11), r(I;,11) 

V := (:~ ) , p = (p;(I;, 11» := STh 

entsteht die partielle Differentialgleichung beziiglich der Koordinaten 1;,11 

(VTSTASV)u+(pTV)u+Cu =r, 

in Komponenten: 

Alas~,u+A2~T\T\U+plasU+p2BT\u+Cu =r . 

Diese und die Ausgangs-Differentialgleichung heillen im Punkt P(x,y) = P(I;, 11) fur 

Al . 1..2 > 0, also fur 

Al . 1..2 = 0, also fur 

Al . 1..2 < 0, also fur 

alla22 -ai2 > 0, elliptisehe Differentia1gleichung, 
2 alla22 -a12 = 0, parabolisehe Differentialgleichung, 
2 alla22 -a12 < 0, hyperbolische Differentialgleichung. 

1m elliptischen und hyperbolischen Fall dUTch Substitutionen (fur Al > 0 dUTch x = 1;1 j'):l, 
Y = 111 JIi;T) und im parabolischen Fall dUTch einfache Umformung (fur Al '* 0 Division 
dUTch p 2) entstehen die Normalformen. 

• Yerwendet man wieder x,y fur die Yariab1en, so lauten die Normalformen 

Bxxu + Byyu +a 1 (x,y)axu + a2(x,y)Byu + c(x,y)u = r(x,y) elliptische Normalform, 

Bxxu - ayyu + a 1 (x,y)axu + a2(x,y)Byu + e(x,y)u = r(x,y) hyperbolische Normalform, 
8yu = b2(x,y)8xxu + b 1 (x,y)8xu + c(x,y)u + r(x,y) parabolische Normalform 

• Yom Typ der elliptischen Normalform sind 

!::.u = 0 Potentialgleichung, 

!::.u = r(x,y) POisson-Gleichung . 

• Yom Typ def hyperbolischen Differentialgleichung ist die Wellengleichung 

8ttu - c28xxu = 0 . allgemeine Losung: u(x, t) = f(x - ct) + g(x + ct) . 



I Stochastik I 
I Zufallige Ereignisse I 
Ein Versuch, der unter Betbehahung aIler Bedingungen beliebig oft wiederholbar ist, dessen 
Ergebnis aber innerhalb gewisser Grenzen unbestimmt ist, heiBt zujalliger Versuch Das Er­
gebnis eines zufiilligen Versuchs heillt zujalliges Ereignis. Ein Ereignis, das stets eintritt, heiBt 
sicheres Ereignis Q; eines, das nie eintritt, heiBt unmogliches Ereignis 0. 

Verkniipfungen 

AcB 
AuB 

AnB 

AnB=0 
A 

Rechenregelo 

Ereignis A zieht Ereignis B nach sich. 
ist das Ereignis, das eintritt, wenn A oder B oder beide eintreten; 
Vereinigung der Ereignisse A und B 
ist das Ereignis, das eintritt, wenn A und B beide eintreten; 
Durchschnitt der Ereignisse A und B 
Ereignisse A und B unvereinbar oder disjunkt. 
entgegengesetztes oder komplementares Ereignis; tritt genau 
dann ein, wenn A nicht eintritt. 

A u(BnC) = (A uB)n(A uC) 

A n(BuC)=(A nB)u(A nC) 

AuB=AnB 

AnB=AuB 

• Ein System von Ereignissen, das sich durch Anwendung von Verkniipfungen nicht erweitern 
Iafit, heiBt Ereignisjeld E. Ereignisse, die sich in E nicht zerlegen lassen, heillen atomare 

Ereignisse von E. 

• Ein Systetn {A i } paarweise disjunkter Ereignisse Ai heiBt vollstandig, wenn U Ai = Q gih. 

I Wahrscheinlichkeit 

Relative Hiufigkeit 

Hn(A) = hn~A) 

I 

relative Hiiufigkeit des Ereignisses A in einer Reihe von 

n Versuchen, bei der A genau hn-mal eintritt 

K1assischer Wahrscheinlichkeitsbegriff 

Das Ereignisfeld E sei endlich und besitze ein vollstiindiges Systetn gleichmoglicher atomarer 
Ereignisse. Bezeichnet man die atomaren Ereignisse dieses Systems, die ein Ereignis A impli­
zieren, als die "fUr das Ereignis A giinstigen Ereignisse", so gih 

Zahl der fUr A giinstigen atomaren Ereignisse. ... 
P(A) = ahl d "gIi hE" ... klasslsche Wahrschembchkelt 

Z er mo c en atomaren relgntsse 

K. Vetters, Formeln und Fakten
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Geometrischer Wahrscheinlichkeitsbegriff 

P(A) = Lange von i 
Lange von I 

P(A) = Fliiche von b 
Fliiche von B 

Ereignis A: Eine zufiillig aus 
dem Intervall I gewiihlte Zahl 
liegt im Intervall i. 

Ereignis A: Ein zufiillig aus B 
gewiihlter Punkt liegt in b. 

Axiomatischer Wahrscheinlichkeitsbegriff 

I ~ ,~i~, 'I 
.~ I > . 

I~I 
Es sei IE ein Ereignisfeld. Eine Funktion P I IE~IR heillt Wahrscheinlichkeit, wenn sie die 
folgenden Axiome erfiillt: 

o :$;P(A):$; 1 

P(Q) = 1 

P(A u B) = P(A) + P(B) 

(00 1 00 
P~}dt Ai) = i~l P(Ai) 

Eigenschaften 

fUr alle A E IE 

fUr das sichere Ereignis Q 

fUr alle disjunkten Ereignisse A,B E IE 

fUr alle paaiweise di$mkten Ereignisse Ai E IE 

P(0) = 0 P(A) = 1 - P(A) 

A c B => P(A) :$;P(B) 

P(A u B) = P(A) + P(B) - P(A n B) 

• Ereignisse A,B heillen unabhiingig, falls P(A n B) = P(A) . P(B) gilt, andernfalls abhiingig. 

• Die Wahrscheinlichkeit fUr das Eintreten des Ereignisses Bunter der Voraussetzung, daB 
das Ereignis A bereits eingetreten ist, heillt bedingte Wahrscheinlichkeit P(BIA) . Es gilt 

P(A nB) =P(A) ·P(BIA) =P(B) ·P(AIB) . 

• Satz von der totalen Wahrscheinlichkeit: Es sei {Ai, i = 1, ... , n} ein vollstandiges System 
von Ereignissen. Dann gilt 

• Formel von Bayes: Es sei {Ai,i = 1, ... ,n} ein vollstandiges System von Ereignissen. 
Dann gilt 

P(Ai/B) = :(Ai)P(BIAJ 

L P(Aj)P(BIA j) 
]=1· . 
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[ Verteilungsfunktioo Dod Dichte I 
Wird ein zufiilliges Ereignis durch eine Zahl dargestelIt, so wird diese Zahl ZufallsgrojJe X ge­
nannt. Die Verteilungsfunktion einer ZufallsgroBe X ist die Funktion 

F(x) := P(X < x) , X E IR. 

Eigenschaften 

o :;; F(x) :;; 1 fUr alle x E R lim F(x) = 0 
x~-oo 

lim F(x)= 1 
x~oo 

P(a:;;X < b) =F(b) -F(a) 

• Jede Verteilungsfunktion Fist eine monoton wachsende Funktion. 

• Eine ZufallsgroBe heiJ3t diskret, wenn sie nur endlich oder abziihlbar unendlich viele Werte 
annehmen kann. Sind Xi die Werte von X fUr ein vo11stiindiges System von Elementarereig­
nissen und P(X = Xi) = Pi die Einzelwahrscheinlichkeiten der ZufallsgroBe X, so gilt 

F(x)= L Pi. 
Xj<JC 

Die Verteilungsfunktion F einer diskreten ZufallsgroBe ist eine Treppenfunktion. 

• Eine ZufallsgroBe heiJ3t stetig, wenn sich ihre Verteilungsfunktion Finder Form 

x 
F(x) = J f(/) dt 

-00 

darstellen liiBt. Die Funktion f heiJ3t Dichtefunktion der ZufallsgroBe X. Die Verteilungs­
funktion F einer stetigen ZufallsgroBe ist eine fUr alle x definierte stetige Funktion. 

Eigenschaften 

f(t) ~ 0 fUr alle 1 E IR 

b 
P(a:;;X:;; b) = Jf(t)dt 

a 

lim f(/) = 0 
t~-oo 

limf(t) = 0 
t~oo 

00 

J f(/)dt= 1 f(t) =F'(/) 
-00 

• Transformation von ZufallsgrojJen. Die ZufallsgroBe Xhabe die Dichtefunktionj. Dann hat 
die transformierte ZufallsgroBe Y = g(X) die Dichtefunktion (falls g streng monoton ist) 

fr(/) = f(g-l (/»(g-l (t» , . 
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I ErwartuDgsWert uDd StreuuDg I 
Definition diskrete Zufallsgro6e X stetige Zufallsgro6e X 

00 00 

Erwartungswert Il = E(X) L XiPi 
i=1 

f xf(x)dx 
.:;,., 

• Die GrOfie 0" = J D2(X) wird als Standardabweichung bezeichnet. I) 

• Es gilt 

{ 
.~ x~ Pi - 112 fUr diskrete Zufallsgro6e X 

D2(X) = E(X2) - (E(X)2 = 00 1=1 

f x2j(x) dx - 112 fUr stetige Zufallsgro6e X 
-<fJ 

• Tschebyscheffsche Ungleichung 

2 
p(IX - III ~ a) ~ 0"2 fUr a > 0 

a 

• Standardisierte ZufallsgrojJen. Zufallsgro6en mit Erwartungswert Il = 0 und Streuung 
0"2 = 1 werden als standardisierte Zufallsgrofien bezeichnet. 1st X eine Zufallsgro6e mit Er­
wartungswert Il und Streuung 0"2, so hat die transformierte ZufallsgroBe 

y=X-1l 
0" 

den Erwartungswert Ily = 0 und die Streuung O"~ = 1. 

I Spezielle diskrete Verteilungen I 
Einzelwahr- Erwartungs- Streuung Rekursionsfonnel 

scheinlichkeit P k wert cl Pk+1 = 
k= 0, I, ... Il 

Binomialverteilung (~ )pk(1 _ py-k np np (I-p) n-k P 
0:5. p:5. I, 0:5. k:5. n k+I'I_p Pk 

Hypergeometrische (~)(~~~) Verteilung np np(l_p)N-n n-k iIJ-k 
k+1 . N-M-n+k+IPk 

M:5.N, n:5.N, k:5.n 

(~) mitp= M 
N-I 

k:5.M, n-k:5.N-M 
N 

Poissonverteilung Ak -Ie A 
T!e A A k+ 1 Pk 

A>O I 

I) Die Bezeichnungen fur 0" und 0"2 sind in der Literatur nicht einheitlich. 
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I Spezielle stetige Verteilungen I 

G1eichverteilung 

Exponential-
verteilung 

ormalverteilung 
N(Il,<i) 

standardisierte 
Normalverteilung 

N(O,I) 

t-Verteilung 
mit m Freiheits-
graden (m~ 3) 

"1:-Verteilung 
mit m Freiheits-
gradeD (m~ J) 

F-Verteilung mit 
(m.n) Freiheits-
graden 
(m ;:: 1, n ;:: 1) 

Weibull-
Verteilung 

Dichtefunktion ElWartungs Streuung 
wert 0 2 

0 fur x:S; a 
(b - a)2 t!- fur a<x < b 

a + b 
- a 2 12 

0 furx~b 

0 furx:S;O 1 ~ 
A,.e-Ax fUr x> 0 I 1.2 

einseitige und zweiseitige Quantile 
(siehe auch ~ Statistische Tabellen) 

q 0.950 0.990 0.999 

Zq 1.645 2.326 3.090 

Wq 1.960 2.576 3.291 

r(m+ l) ( 2 j-m+1 m 
2 1 x 2 0 m - 2 fiWiT(!f) \ + til) 

0 fUr x:S; O 
ItL l _~ m 2m 

x 2 e 2 fiir x> O m 
22r(!f) 

0 x:S;O n 
2n 2 m+n- 2 

!!! !!. !!!-I 
n-2 

n- 4 . m(n- 2)2 
r( mt)m 2 n 2x 2 

x> O (n ;:: 3) m+n 
f(!f)f(¥)(n+mx) 

- 2- (n ~ 5) 

0 fur x:S;O prel + t ) p2(r(1 + f ) 
l.(~)"I- le -(~)Y furx>O - r2(I+ t » p p 

Graph der 
Dichtefunktion 

- ;- 1-- ---~ 
a b 

~~ 
--ct-- -. . __ . .- .-., .- _.-

A 
0 

~ 
0 

~ 
0' 

~ 
0 
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[ Funktionen von Zufallsgro8en I 
Funktion Voraussetzung Verteilung 
n 

Xi normalvert. mit N(lli ' af) und unabhiingig NV n 2 TJ L: aiXi E ailli, i~ ai a i i=l 

Xl +X2 Xl,X2 binomialvert. mit (p, nl), (p,n2), unabh. Binomialvert. mit (p,nl +n2) 

Xl +X2 X b X 2 poissonvert. mit 1"l,A2 und unabh. Poissonvert. mit A = Al + A2 

[ Zweidimensionale Zufallsgro8en I 
Sind X; Y ZufallsgroBen, so hellit das Tupel (X, Y) zweidimensionale ZUfal/sgrojJe. Ihre Ver­
teilungsfunktion ist 

F(x,y) = P«X < x) n (Y <y» . 

Sie hellien unabhiingig, wenn {X <x und {Y <Y} fur aIle x,Y E IR1. unabhiingige Ereignisse 
sind. 

• SindXund Ybeide diskrete ZufallsgroBen, die dieWertex;,i = 1,2, ... , undYj,j= 1,2, ... , 
annehmen, so ist (X, Y) eine diskrete zweidimensionale ZufallsgroBe mit 

Pij = P«X = xi) n (Y = Yj» 

F(x,y) = L: Pij 
Xj<x 

Yj<Y 

Einzelwahrscheinlichkeiten, 

Verteilungsfunktion 

• Eine zweidimensionale ZufallsgroBe hellit stetig, wenn fur ihre Verteilungsfunktion gilt 
x y 

F(x,y) = f f f(s, t) dtd mit f(s, t) ... Dichtefunktion. 
-00 -00 

Randverteilungen 

• Aus den Einzelwahrseheinliehkeiten Pij einer diskreten zweidimensionalen ZufallsgroJ3e 
(X, Y) erhiilt man die Einzelwahrseheinliehkeiten der einzelnen Komponenten als sogenannte 
Randverteilungen: 

P(X=Xi)=L:Pij , 
j 

P(Y = Yj) = L:Pij . 
i 

• Aus der Diehtefunktion f(s, t) einer zweidimensionalen stetigen ZufallsgroJ3e (X, Y) erhiilt 
man die Diehte der einzelnen Komponenten als Randverteilungen 

00 00 

fx(s) = f f(s, t) d , fret) = f f(s, t) d . 
-00 -00 

• Die diskreten bzw. stetigen ZufallsgroBen X; Y sind unabhiingig, wenn gilt 

Pij = P(X = xi) . P(Y = Yj) bzw. f(x,y) =fx(x) ·fr(y) 



KorreIation und Regression 121 

Momente zweidimensionaler ZufaUsgriiOen 

I diskret I stetig 

erste Momente 

Ilx =E(X) 
00 00 

J J xf(x,y)dxdy 
-00-00 

Ily =E(Y) 
00 00 

J J yf(x,y)dxdy 
-00-00 

zweite zentrale Momente 

O"xx = E«X - Ilx)2) 

=D2(X) = O"~ 

O"xy =E «X - Ilx)(Y - Ily» 
Kovarianz von X, Y 

O"Y.)! = E«Y - lly)2) 

=D2(Y) = 0"; 

[ Korrelation ond Regression I 

00 00 

J J (x - Ilx)Y(x,y) dxdy 
-00-00 

00 00 

J J (x - Ilx)(Y - Ily)f(x,y) dxdy 
-00-00 

00 00 

J J (Y-lly)2f(x,y)dxdy 
-00-00 

• Die GroBe p xy = O":~ y hellit Korrelationskoefjizient der ZufallsgroBen X, Y. 

• Es gilt -I:S; pxy :s; I . 

• Zwei ZufallsgroBen X, Y hellien unko"eliert, weun Pxy = 0 gilt. Unabhiingige Zufallsgros­
sen sind unkorreliert. 

• Die liber die bedingten Erwartungswerte E(Y IX = x) und E(XIY = y) definierten Kurven (im 
diskreten Fall Punktfolgen) 

y(x) = E(Y IX = x) und x(y) = E(X IY = y) 

hellien die Regressionslinien oder Regressionsfunktionen von Y beziiglich X bzw. von X 
beziiglich Y. Dieses beziiglich X, Y symmetrische Regressionsmodell wird Modell II genannt. 
1m Modell I sind die Xi feste Werte und die zugehOrigen Yi ZufallsgroBen. 

bedingte Erwartungswerte zweidimensionaler ZufallsgroBen 

E(YIX=Xi) 

diskret 

Pi) 
mit P(Y=YJIX=Xi)=~ 

":-Pi) 
} 

E(XIY = Yj) LXtP(X= x/Y = Yj) 
I 

stetig 

E(YIX=x) 
00 

J yf(ylx)dy 
-00 

mit f(ylx) = oof(x,y) 

f f(x,y)dy 
-00 

00 

E(XIY=y) J xf(xly)dx 
-00 

mit f(xly) = oof(x,y) 

f f(x,y)dx 
-00 
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Lineare Regression (Modell II) 

• Die ZufallsgrOfien X; Y heillen linear korreliert, wenn die RegressionsIinien Geraden sind. 
Diese Regressionsgeraden haben folgende Gleichungen. 

Regression von Y beziiglich X: y= J3x+y mit 

Regression von Xbeziiglich Y: x = oy + E mit 0 = ~x pxy , E = Ilx - Oily 
y 

Die Koeffizienten J3 und 0 heillen Regressionskoeffizienten. 

• Sind X; Y nicht linear korreliert, werden diese Geraden ebenfalls Regressionsgeraden ge­
nannt. Sie sind dann lineare Approximationen der Regressionslinien. 

• Unter der Aonahme, dafi fUr aIle x die Streuung von Y beziiglich der Regressionsgeraden 
gleich ist, wird diese als Reststreuung bezeichnet: 

a2 =E«Y-(J3x+y»2/X=x) ... Reststreuung 

I Punktschatzungen I 
Es liege eine Grundgesamtheit vor, deren Objekte ein interessierendes Merkmal als Zufalls­
gro6e X aufweisen. Unter einer Stich probe vom Umfang n versteht man eine zufallige Aus­
wahl von n Objekten der Grundgesamtheit, verbunden mit der Ermittlung der Werte Xi, 

i = 1, ... , n . Dabei solI die Auswahl der einzelnen Objekte voneinander unabhiingig erfolgen. 
Aus den Werten Xi bzw. (Xi,Yi) der Stichprobe lassen sich Schiitzungen fUr die Parameter der 
Grundgesamtheit berechnen. 

zu schiitzender Parameter 

Erwartungswert Il =E(X) 

Streuung (J2 = D2 (X) 

p =P(A) 

Kovarianz (J xy von X, Y 

Korrelationskoeffizient Pxy 

Schiitzwert 

1 n 
X= - LXi 

n i=1 

p = ~hn(A) 

Sxy = _1_ I. (x; -x)(y; - y) 
n-l ;=1 

Sxy 
rxy = SxSy 

Bemerkung 

x ... Mittelwert der Stichpro­
be oder arithmetisches Mittel 

falls Il bekannt 

falls Il unbekannt 

hn(A) ist absolute Hiiufigkeit 
von Ereignis A in n Versuchen 

s(x,y) .. empirische Kovarian:: 
oder Stichprobenkovarian:: 

Sx ... Schiitzung fur D(X) 
Sy ... Schiitzung fur D(Y) 

Regressionskoeffizient J3 b = Sxy Y = bx + c ist die aus der 
__________ +-__ S-2; ________ -i Stichprobe (xiJl), i = 1, ... ,n, 
Konstante y in Regr.gerade c = y - bx geschiitzte Regressionsgerade 

Reststreuung a2 
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I Konfidenzintervalle I 
Mit Hilfe von Punktschiitzungen und Kenntnissen uber die Verteilungsfunktion der Grundge­
samtheit werden Intervalle berechnet, die mit der Wahrscheinlichkeit 1- a, genannt Konfi­
denzniveau, den interessierenden Parameter enthalten. Die f01gende Tabelle enthiilt Konfi­
denzintervalle fUr Erwartungswert !.l und Streuung 0"2 einer normalverteilten Grundgesamt­
heit N(J!,0"2) sowie fUr die Regressionsparameter zweidimensional-normalverteilter Zufalls­
grOBen (X,Y). Die GToBen Zq, tm,q und X;,q sind die sogenannten Quantile der Normalver­
teilung, t-Verteilung und X 2 -Verteilung ( ~ Statistische Tabellen). 

Parameter Situation untere Intervallgrenze obere Intervallgrenze 

0"2 bekannt - 0" X+~Zl a J! X- rn Zl_¥ rn -"2 

0"2 unbekannt x-~t lla 
- S 

J! rn n-'-"2 X + rn tn-l,l-¥ 

0"2 J! bekannt 
n *2 n *2 -2-- S -2- S 

Xn,l-¥ XnJ 

0"2 J! unbekannt 
n-1 S2 2!.=...L s 2 
2 2 

Xn-l,l-¥ Xn-q 

i3 b- S 
tn-2,1-¥ b+ S 

tn-2,1-¥ 
J(n-1)s; J(n-1)s; 

y )1 -2 C+S 1 x2 
C-S -+ X t a -+--t a 

n (n _ 1)s; n-2,1-"2 n (n-l)y; n-2,l-"2 

0'2 
(n-2)s2 (n-2)s2 

2 2 
Xn-2,1-¥ Xn-2,¥ 

I Signifikanztests I 
Unter der Annaltme, daB eine zu prUfende Hypothese H 0 wahr ist, wird fUr eine von der Stich­
probe vom Umfang n abhiingende Prilfgrofte T ein kritischer Bereich B so ermittelt, daB 

P(T E B I Ho wahr) ~ a 

gilt. Die im voraus gewiihlte kleine Zaltl a heillt Signijikanzniveau. Liegt die aus der Stichpro­
be berechnete Realisierung t von T im kritischen Bereich B, so wird die Hypothese H 0 

abgelehnt. 
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Hypothese Voraussetzung Priifgro6e t Ablehnung, falls 

Il= Ilo X E N(Il,u2) X-Ilo It I ~zl_~ 
u 2 bekannt -u-In 2 

1l=llo X E N(Il,U2) X-Ilo It I ~ tn_l l-~ 
u 2 unbekannt -s-In ' 2 

Ilx=lly 2 x-ji X E N(llx,Ux) 
Itl~zl_~ 2 Y E N(lly,Uy) a; ali 2 

2 2 m+n ux, Uy bekannt 

Ilx= Ily X E N(llx, u;) (X-ji) Jmn(m+n-2) Itl~ tm+n-2 l-~ 
Y E N(lly, a;) 

J(m+n)(m-I)s; +(n-I)s;) 
, 2 

2 2 Ux = Uy 

u;, u; unbekannt 

u 2 = u~ X EN(Il,U2) .2 t -::;, "1.2 IX 

~ n'2 
Il bekannt u 2 oder 0 

t> 2 - Xn l-~ , 2 

u 2 = u~ X EN(Il,U2) (n-l)s2 t< 2 -Xn- l ~ 
'2 

Il unbekannt u 2 oder 0 
t> 2 

- Xn- l l-~ , 2 

Fx=Fo k Klassen [ai,ai+l) k (m2) t> 2 ~ -' -n - Xk-l,l-a mi Hiiufigkeit i=l nPi 
in Klasse i mit 

npi ~ 5 (i = 1,00 ok) Pi =FO(ai+I)-Fo(ai) 

P(A) =po n groB hn(A)-npo 
It I ~ zl_~ 

Jnpo(1-po) 2 

f3 = f30 b }oJ(n-l)s; It I ~ tn- 2 I-~ 
s ' 2 

Y =Yo C-Yo 
It I ~ tn_2 I-~ -JI x2 ' 2 

s -+--
n (n-l)s; 

~ 1 2 n(mllm22 -mI2m2I)2 t> 2 x,y - X I)-a 

unabhiingig 1 mll m12 m}. m}.m2.m.Im.2 

2 m2I m22 m2. 

m.l m.2 n 

m ik .. 0 absolute Hiiu-
figkeiten der Klassen 
in der Stichprobe 
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I Statistische Tabellen I 
z .,,2 

Verteilungsfunktion cl>(z) = b J e-T dx der standardisierten Normalverteilung N(O, 1) 
,,21C --00 

z 0 1 2 3 456 7 8 9 
0.0 .500000 .503989 .507978 .511966 .515953 .519939 .523922 .527903 .531881 .535856 
0.1 .539828 .543795 .547758 .551717 .555670 .559618 .563559 .567495 .571424 .575345 
0.2 .579260 .583166 .587064 .590954 .594835 .598706 .602568 .606420 .610261 .614092 
0.3 .617911 .621720 .625516 .629300 .633072 .636831 .640576 .644309 .648027 .651732 
0.4 .655422 .659097 .662757 .666402 .670031 .673645 .677242 .680822 .684386 .687933 

0.5 .691462 .694974 .698468 .701944 .705401 .708840 .712260 .715661 .719043 .722405 
0.6 .725747 .729069 .732371 .735653 .738914 .742154 .745373 .748571 .751748 .754903 
0.7 .758036 .761148 .764238 .767305 .770350 .773373 .776373 .779350 .782305 .785236 
0.8 .788145 .791030 .793892 .796731 .799546 .802337 .805105 .807850 .810570 .813267 
0.9 .815940 .818589 .821214 .823814 .826391 .828944 .831472 .833977 .836457 .838913 

1.0 .841345 .843752 .846136 .848495 .850830 .853141 .855428 .857690 .859929 .862143 
1.1 .864334 .866500 .868643 .870762 .872857 .874928 .876976 .879000 .881000 .882977 
1.2 .884930 .886861 .888768 .890651 .892512 .894350 .896165 .897958 .899727 .901475 
1.3 .903200 .904902 .906582 .908241 .909877 .911492 .913085 .914657 .916207 .917736 
1.4 .919243 .920730 .922196 .923641 .925066 .926471 .927855 .929219 .930563 .931888 

1.5 .933193 .934478 .935745 .936992 .938220 .939429 .940620 .941792 .942947 .944083 
1.6 .945201 .946301 .947384 .948449 .949497 .950529 .951543 .952540 .953521 .954486 
1.7 .955435 .956367 .957284 .958185 .959070 .959941 .960796 .961636 .962462 .963273 
1.8 .964070 .964852 .965620 .966375 .967116 .967843 .968557 .969258 .969946 .970621 
1.9 .971283 .971933 .972571 .973197 .973810 .974412 .975002 .975581 .976148 .976705 

2.0 .977250 .977784 .978308 .978822 .979325 .979818 .980301 .980774 .981237 .981691 
2.1 .982136 .982571 .982997 .983414 .983823 .984222 .984614 .984997 .985371 .985738 
2.2 .986097 .986447 .986791 .987126 .987455 .987776 .988089 .988396 .988696 .988989 
2.3 .989276 .989556 .989830 .990097 .990358 .990613 .990863 .991106 .991344 .991576 
2.4 .991802 .992024 .992240 .992451 .992656 .992857 .993053 .993244 .993431 .993613 

2.5 .993790 .993963 .994132 .994297 .994457 .994614 .994766 .994915 .995060 .995201 
2.6 .995339 .995473 .995604 .995731 .995855 .995975 .996093 .996207 .996319 .996427 
2.7 .996533 .996636 .996736 .996833 .996928 .997020 .997110 .997197 .997282 .997365 
2.8 .997445 .997523 .997599 .997673 .997744 .997814 .997882 .997948 .998012 .998074 
2.9 .998134 .998193 .998250 .998305 .998359 .998411 .998462 .998511 .998559 .998605 

3.0 .998650 
3.1 .999032 
3.2 .999313 
3.3 .999517 
3.4 .999663 

3.5 .999767 
3.6 .999841 
3.7 .999892 
3.8 .999928 
3.9 .999952 

Quantile Zq der Normalverteilung N(O,I) 

q I 0.9 I 0.95 I 0.975 I 0.99 I 0.995 I 0.999 I 0.9995 

Zq I 1.282 I 1.645 I 1.960 I 2.326 I 2.576 I 3.090 I 3.291 
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Quantile tm,q der t -Verteilung 

I m,q 

J /t ,m(X) dx = q 
-«; 

0 t 
m,q 

m q 0.9 0.95 0.975 0.99 0.995 0.999 0.9995 
1 3.078 6.314 12.706 31.821 63.657 318.309 636.619 
2 1.886 2.920 4.303 6.965 9.925 22.327 31.599 
3 1.638 2.353 3.182 4.541 5.841 10.215 12.924 
4 1.533 2.132 2.776 3.747 4.604 7.173 8.610 

5 1.476 2.015 2.571 3.365 4.032 5.893 6.869 
6 1.440 1.943 2.447 3.143 3.707 5.208 5.959 
7 1.415 1.895 2.365 2.998 3.499 4.785 5.408 
8 1.397 1.860 2.306 2.896 3.355 4.501 5.041 
9 1.383 1.833 2.262 2.821 3.250 4.297 4.781 

10 1.372 1.812 2.228 2.764 3.169 4.144 4.587 
11 1.363 1.796 2.201 2.718 3.106 4.025 4.437 
12 1.356 1.782 2.179 2.681 3.055 3.930 4.318 
13 1.350 1.771 2.160 2.650 3.012 3.852 4.221 
14 1.345 1.761 2.145 2.624 2.977 3.787 4.140 

15 1.341 1.753 2.131 2.602 2.947 3.733 4.073 
16 1.337 1.746 2.120 2.583 2.921 3.686 4.015 
17 1.333 1.740 2.110 2.567 2.898 3.646 3.965 
18 1.330 1.734 2.101 2.552 2.878 3.610 3.922 
19 1.328 1.729 2.093 2.539 2.861 3.579 3.883 

20 1.325 1.725 2.086 2.528 2.845 3.552 3.850 
21 1.323 1.721 2.080 2.518 2.831 3.527 3.819 
22 1.321 1.717 2.074 2.508 2.819 3.505 3.792 
23 1.319 1.714 2.069 2.500 2.807 3.485 3.768 
24 1.318 1.711 2.064 2.492 2.797 3.467 3.745 

25 1.316 1.708 2.060 2.485 2.787 3.450 3.725 
26 1.315 1.706 2.056 2.479 2.779 3.435 3.707 
27 1.314 1.703 2.052 2.473 2.771 3.421 3.690 
28 1.313 1.701 2.048 2.467 2.763 3.408 3.674 
29 1.311 1.699 2.045 2.462 2.756 3.396 3.659 

30 1.310 1.697 2.042 2.457 2.750 3.385 3.646 
40 1.303 1.684 2.021 2.423 2.704 3.307 3.551 
50 1.299 1.676 2.009 2.403 2.678 3.261 3.496 

100 1.290 1.660 1.984 2.364 2.626 3.174 3.390 
200 1.286 1.653 1.972 2.345 2.601 3.131 3.340 

00 1.282 1.645 1.960 2.326 2.576 3.090 3.291 

Niiherung fur groBe m: tm,q =Zq (Quantil der Normalverteilung N(O, 1)) 



Quantile X~,q der x2-Verteilung 

~ 0.01 
1 0.00016 
2 0.0201 
3 0.115 
4 0.297 

5 0.554 
6 0.872 
7 1.24 
8 1.65 
9 2.09 

10 2.56 
11 3.05 
12 3.57 
13 4.11 
14 4.66 

15 5.23 
16 5.81 
17 6.41 
18 7.01 
19 7.63 

20 8.26 
21 8.90 
22 9.54 
23 10.20 
24 10.86 

25 11.52 
26 12.20 
27 12.88 
28 13.56 
29 14.26 

30 14.95 
40 22.16 
50 29.71 
60 37.48 
70 45.44 
80 53.54 
90 61.75 

100 70.06 
200 156.43 

0.025 0.05 
0.00098 0.0039 
0.0506 0.103 
0.216 0.352 
0.484 0.711 

0.831 1.15 
1.24 1.64 
1.69 2.17 
2.18 2.73 
2.70 3.33 

3.25 3.94 
3.82 4.57 
4.40 5.23 
5.01 5.89 
5.63 6.57 

6.26 7.26 
6.91 7.96 
7.56 8.67 
8.23 9.39 
8.91 10.12 

9.59 10.85 
10.28 11 .59 
10.98 
11.69 
12.40 

13.12 
13.84 
14.57 
15.31 
16.05 

16.79 
24.43 
32.36 
40.48 
48.76 
57.15 
65.65 

74.22 
162.73 

12.34 
13.09 
13.85 

14.61 
15.38 
16.15 
16.93 
17.71 

18.49 
26.51 
34.76 
43.19 
51.74 
60.39 
69.13 

77.93 
168.28 

Niiherung rur grofie m: 

0.1 
0.0158 
0.211 
0.584 
1.06 

1.61 
2.20 
2.83 
3.49 
4.17 

4.87 
5.58 
6.30 
7.04 
7.79 

8.55 
9.31 

10.09 
10.86 
11 .65 

12.44 
13.24 
14.04 
14.85 
15.66 

16.47 
17.29 
18.11 
18.94 
19.77 

20.60 
29.05 
37.69 
46.46 
55.33 
64.28 
73.29 

82.36 
174.84 
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0.9 0.95 0.975 0.99 
2.71 3.84 5.02 6.63 
4.61 5.99 7.38 9.21 
6.25 7.81 9.35 11.35 
7.78 9.49 11 .14 13.28 

9.24 11.07 12.83 15.08 
10.64 12.59 14.45 16.81 
12.02 14.07 16.01 18.47 
13.36 15.51 17.53 20.09 
14.68 16.92 19.02 21.67 

15.99 18.31 20.48 23.21 
17.28 19.68 21.92 24.72 
18.55 21 .03 23.34 26.22 
19.81 22.36 24.74 27.69 
21.06 23.68 26.12 29.14 

22.31 25.00 27.49 30.58 
23.54 26.30 28.85 32.00 
24.77 27.59 30.19 33.41 
25.99 28.87 31 .53 34.81 
27.20 30.14 32.85 36.19 

28.41 31 .41 34.17 37.57 
29.62 32.67 35.48 38.93 
30.81 33.92 36.78 40.29 
32.01 35.17 38.08 41.64 
33.20 36.42 39.36 42.98 

34.38 37.65 40.65 44.31 
35.56 38.89 41.92 45.64 
36.74 40.11 43.19 46.96 
37.92 41.34 44.46 48.28 
39.09 42.56 45.72 49.59 

40.26 43.77 46.98 50.89 
51.81 55.76 59.34 63.69 
63.17 67.51 71 .42 76.15 
74.40 79.08 83.30 88.38 
85.53 90.53 95.02 100.42 
96.58 101.88 106.63 112.33 

107.57 113.15 118.14 124.12 

118.50 124.34 129.56 135.81 
226.02 233.99 241.06 249.45 



IN umerische Methoden 

[ Lineare Gleichungssysteme I 
Eliminationsverfahren von Gau6 

Gegeben: regulare (n,n)-Matrix A und Vektor b E ~n. 
Gesucht: Vektor x E ~n mit Ax = b . 

Elimination: Berechne die (n,n)-Matrizen A = A (I), ... , A(k), ... ,A(n) und Vektoren 
b = b(l), ... , b(k), ... , ben) durch Uberspeicherung gemiiB 

Schritt I: 

Schritt 2: 

Ruckrechnung: 

LR-Zerlegung 

falls notig, Zeilenvertauschung i B k (i > k), so daB ai~ '* 0 
(k) 

a'k 
lik := i0, (i = k+ I, ... ,n) 

akk 

b(k+I)·_b(k)_I. b(k) (k ) 
i .- i Ik k i,j= +1, ... ,n 

Gegeben: reguliire (n,n)-Matrix A. 

I 

Gesucht: linke untere (n,n)-Dreiecksmatrix L mit Iii = 1 (i = 1, ... ,n) und rechte obere Drei­
ecksmatrix R, so daB P . A = L . R gilt. Die Matrix P ist die zu den Zeilenvertau­
schungen gehOrende Permutationsmatrix. 

Berechnung der Matrix L: Die unterhalb der Hauptdiagonalen von L stehenden Elementesind 
die Zahlen lik aus dem Eliminationsverfahren von GauB. 

Berechnung der Matrix R: Die in und oberhalb der Hauptdiagonalen von R stehenden Elemen­
te sind die entsprechenden Elemente der Matrix A (n) aus dem Eliminationsverfahren 
von GauB. 

Cholesky-Verfahren 

Gegeben: symmetrische, positiv definite (n,n)-Matrix A und Vektor b E ~n. 
Gesucht: Vektor x E ~n mit Ai = b. 

Elimination: Berechne die obere (n,n)-Dreiecksmatrix C und den Vektor d E ~n gemaB 

k-I 2 (k-I) 
ckk:= akk -1: cik' ckj:= akj - .1: CikCij /ckk , 

1=1 1=1 
( k-I ) 

dk := bk - I: Ci~i /ckk 
1=1 

(k= I, ... ,n; j=k+l, ... ,n). 

Ruckrechnung: 

K. Vetters, Formeln und Fakten
© B. G. Teubner Stuttgart · Leipzig 1998



I Matrizen-Eigenwerte I 
Jacobi-Verfahren 

Gegeben: Reelle symmetrische (n,n}-Matrix A. 
Gesucht: AIle Eigenwerte Ai von A. 
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Verfahren: Bildung einer Folge zu A iihnlicher Matrizen A = A (1), .•• , A (k), ... , die gegen 
diag(Ai) konvergiert, nach folgender Vorschrift fUr den Ubergang von A (k) zu A (k+I) : 

1. Bestimme das betragsgroBte Nichtdiagonalelement a~~) der Matrix A (k) . 

2. { 

1 2a~). (k) (k) 
2" arctan"""(i)(i) fUr arr ¢ ass 

</lk= a.,--aTr 
1t. (k) fUr (k) (k) 
4"S1gnars arr = ass 

(k+I) (k+I) (k) (k) • ( 
air =ari =airCOS</lk-aisSln</lk i=I, ... ,n; 

(k+I) (k+I) (k). (k) ( 
a is =asi = air sm</lk+ais COS</lk i= 1, ... ,n; 

a~+I) = a~)cos2</lk - a~)sin2</lk +a~!)sin2</lk 

a~~+I) = a~)sin2</lk +a~)sin2</lk +a~~)cos2</lk 

aWl) = a~~+I) = 0 

Vektoriteration (potenzmetbode) 

Gegeben: Diagonaliihnliche (n,n}-Matrix A. 
Gesucht: BetragsgroBter Eigenwert A 1 von A. 
Voraussetzung: BetragsgroBter Eigenwert Al ist reell und einfach. 

Verfahren: Wiihle Startvektor Xo E !Rn. Berechne die Vektorfolge x(O),x(1), ... ,x(k), ... nach 
folgender Vorschrift fUr den Ubergang von x(k) zu x(k+I) : 

y(k+I) = Ax(k) , 

(k+I) _ y(k+I) 
x -lly(k+I)11 . 

• Falls der Startvektor xo eine nicht verschwindende Komponente beziiglich des zum Eigen­
wert Al gehOrigen Eigenvektors r 1 besitzt, so gilt 

• Schnellere (quadratische) Konvergenz gegen Al liefert der Rayleigh-Quotient: 

(x(k»Ty(k+I) 
.>..-~=-=- ~ A 1 fUr k ~ 00 • (x(k» T x(k) 
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I Nichtlineare Gleichungen I 
Gleichungen einer Unbekannten der Form J(x) = 0, x e R . 

Bisek!ionsverfahren: Startwerte xo,Yo mit J(xo) ·J(yo) < 0 

1 { xk fUr J(xk) I(xk+l) < 0 
xk+l = -2(Xk +Yk) Yk+l = fUr '"'(y ) ji( ) 0 Yk . J. k' xk+l < 

(k= 0, 1, ... ) 

• Das Verfahren konvergiert gegen eine Nullstelle x* von J, fallsJ in [xo,yo1 stetig ist. 

Newtonverfahren: Startwert xo. 

J(xk) 
xk+l = xk - J'(Xk) (k = 0, 1, ... ) 

RegulaJalsi: Startwerte xO,xI. 

1 J(xk)+J(xk-l) 
xk+l = "2(Xk +xk-l) - J(xk) _ J(Xk_I)(Xk -xk-l) 

(k= 1,2, ... ) 

• Newtonverfahren und Regula falsi konvergieren fUr 
hinreichend gute Startwerte gegen eine Nullstelle x* 

y 

y=f(x) 

y 

y=f(x) 

vonJ, falls J in einer Umgebung von x* zweimal differenzierbar ist und J'(x*)"* 0 gih. 

Gleichungen einer Unbekannten der Form x = g(x), x e ~ 

x 

Gewohnliches IterationsverJahren (Verfahren der sukzessiven Approximation): Startwert xo. 

(k=O,I, ... ) 

• Die Funktion g sei auf dem Intenrall [a, b 1 stetig differenzierbar, und fUr alle x e [a, b] seien 
die beiden Bedingungen a::S; g(x) ::s; b und It (x) I < 1 erfiillt. Dann konvergiert das ge­
wohnliche Iterationsverfahren gegen eine Losung x* e [a, b] der Gleichung x = g(x). 

Gleichungssysteme der Form f(x) = 0 mit f I ~ n ~ ~ n 

Gleichungssystem in Komponentenschreibweise: 

NewtonverJahren: Startwert x(O) e ~n. 

x(k+l) = x(k) +u(k) mit F'(x(k»u(k) = -f(x(k» (k=O,I, ... ) 

in Komponenten: 
lineares Gleichungssystem fur u(k) 

(k+l) (k) (k) n (k) (k) (k) (k) (k) 
Xl· = Xl· +Ul· mit L 8,fi(X I , ... ,xn )UJ. =-/i(X I , ... ,xn ) 

i=l . 
(i = I, ... ,n) 
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I Approximationsprobleme I 
Interpolation durch Polynome 

Gegeben: Datenpaare (xo,Yo), ... , (xn,yn) 
Gesucht: Polynom Pn(x) mit Pn(Xj) = Yj (i = 0, ... ,n) 

Lagrange-Interpolation 

Newton-Interpolation 

Pn(X) = [xo] + [XO,xI1(x -xo) + ... + [xO, . .. ,xn](x-xo)·· ,(x-Xn-l) 

mit den rekursiv definierten Steigungen 

._ [Xj+l> ""Xj+r] - [Xj, ... ,Xj+r-I1 
[xd :=yj (i=O, ... ,n), [Xj,Xj+b···,Xj+r]·- X· -x. 

z+r z 

Kubische Spline-Interpolation 

Gegeben: Datenpaare (Xo,yo), ... ,(xn,Yn) 
Gesucht: Polynome pj(X) = Uj + I3j(x-Xj) +Yj(X-Xj)2 +OJ(x-Xj)31 [Xj,Xj+I1 ~R 

(i = 0, ... , n - 1), so daB die aus diesen stiickweise zusammengesetzte Funktion 
s I [xo,Xn] ~~ aIle Daten interpoliert, zweima1 stetig differenzi.erbar ist und 

s" (xo) = S" (Xn) = ° erfiillt. 

Verfahren: 1. LOsung des linearen Gleichungssystems 

hj_1mj-l +2(hj_1 +hj)mj +hjmj+l = Cj (i = 1, ... ,n-I) 
mit 

2. 

Diskrete Quadratmittelapproximation 

Gegeben: Datenpaare (Xj,yj), (i = 1, ... , m) und Funktionen <l>j I ~~ ~ (i = 1, ... , n < m) 
Gesucht: Koeffizienten c 1, ... , cn der Funktion g(x) = ct <I> 1 (x) + ... + Cn <I> n(x) mit der 

Eigenschaft 
m 
L (g(Xj) - Yj)2 ~ min 
j=l C 

Veifahren (Normalgleichungsverfahren): Losung des linearen Gleichungssystems 

ATAc=ATy 

mit der (m,n)-Matrix A = (aij) = (<I>lXj» und c = (Cj) ERn, y = (yj) E ~m . 

• c heillt QuadratmittellOsung des iiberbestimmten linearen Gleichungssystems Ac = y . 
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I Numerische Differentiation I 
Bezeichnungen: Yi = y(xi), hi = xi+l -x;, [xi,xi+I1 ... Steigungen, 

vorwiirtiuer Dlifjierenzenquotient: y'(x·) - [x· x. ] - Yi+l - Yi 
0' 1 - I' HI - h. 

1 

rUckwiirtiger DifJerenzenquotient: y'(Xi) ~ [Xi-I,X;] =Yi ;Yi-l 
i-I 

hOhere Ableitungen: y(n)(Xi) ~ n![xi-h ... ,Xi-k+n] 

Formeln fiir gleicbabstiindige StiitzsteUen 

zentrale DifJerenzenquotienten: y'(Xj) ~ Yi+l ;:i-l 
ylI(Xj)~Yi+l-~;+Yj-1 

unsymmetrische Formel: y'(Xj) ~ -Yi+2 +i,:+l - 3yj 

I Numerische Integration I 

R ... Restglied 

R= O(h) 

R= O(h) 

R= O(h) 

B . hn h b-a 'h ezelC ungen: = ---,:;--, Xj = a + J , Yj = Y(Xj), j = 0, ... ,n, R ... Restglied 

Quadraturformeln vom Interpolations-Typ 

b 
Trapezregel: lY(x)dx~ b;a(y(a)+y(b» , 

Zusammengesetzte Quadraturformeln 

Trapezregel: 
b h 
!y(x)dx ~ 2(YO +2YI + ... +2Yn-1 +Yn) 

(b -a)3 
R = - -1-2 _yll@, ~ E (a, b) 

b h 
Simpson-Regel: !y(x)dx~3(yo+4YI +2Y2+ 4Y3+···+ 4Yn-1 +Yn) 

Quadraturformeln vom Gaull-Typ 

Gaufll: Jy(x)dx~ b-a{y(a+b _ b-a)+ (a+b + b-a)} 
a 2 2 2/3 Y 2 2/3 

Gauflll: 
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I Numerik mr Anfangswertaufgaben I 
Gegeben: Gewohnliche Differentialgleichung Y' (x) = f(x,y(x)) und Anfangswert y(a) = Ya. 

Taylorreihen-Verfahren 

Gesucht: Niiherungsfunktion y I [a, b] ~ ~ fUr die LOsungsfunktion Y der Differentialglei­
chung, die den Anfangswert annimmt. 

Verfahren: Y(x) = Ya +Y'(a)(x_a) +/'(a) (x-a)2 + ... +y(P)(a) (x-a)p 
I! 2! p! 

mit 
/(a) = f(a,ya) 
y"(a) = 8xJ(a,Ya) +8yf(a,Ya)Y'(a) 
ylll (a) = 8xxJ(a,Ya) + 28xyf(a,Ya)Y' (a) + 8yyf(a,ya)(y1 (a)) 2 + 8yf(a,Ya)Y" (a) 
usw. 

Einschrittverfahren 

Gesucht: Niiherungswerte Yn fUr die Funktionswerte der Losungsfunktion an den Stellen Xn: 

Yo=Ya,Yn~y(xn), mit xn=a+nh fUr n=O, ... ,N undmit h=b;/. 

Explizite Einschrittverfahren (F ... FeWer) 

Euler (Polygonzugverfahren): 

Halbschritt: kl = J(xn,Yn) 

Yn+l = Yn +hk2 

Heun: kl = f(xn,Yn) 

2h 2h 
k3 = f(xn + )" ,Yn + )"k2) 

Runge-Kutta: kl = f(xn,yn) 

h h 
k3 = J~n + 2,Yn + 2k2) 

Taylor: 

lmplizite Einschrittverfahren 

Euler riickw.: kl = f(xn +h,Yn +hk1) 

Trapezregel: kl = j(xn,Yn) 

h 
Yn+l =Yn+ 2 (k l +k2) 

Yn+l = Yn +hf(xn,Yn) F= O(h) 

h h 
k2 = f(xn + 2,yn + 2kl) 

F=O(h2) 

h h 
k2 = f(xn + 3,Yn +3kl) 

h 
Yn+l =Yn+ 4(kl +3k3) F= O(h3) 

h h 
k2 = f(xn + 2,Yn + 2kl) 

k4 = f(Xn + h,Yn + hk3) 

F= O(hP) 

Yn+l = Yn +hkl F= O(h) 

h k2 = f(Xn +h,Yn + 2(kl +k2)) 

F= O(h2) 
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GauB­
Legendre 

Mehrschrittverfahren 

Gesucht: Niiherungswerte Yn ~ y(xn) fUr die Losung der Differentialgleichung yl = f(x,y) 

an den Stellen Xn = a+nh , n = 0, ... ,N, mit h = t;a und mit Yo = Ya . 

Bezeichnung:fn = f(xn,Yn) , F ... Fehler 

Explizite Verfahren vom Adams-Bashforth-Typ 

h 
Yn+1 = Yn + 2(3fn - fn-I) 

h 
Yn+1 = Yn + 12(23fn - 16fn-1 + Sfn-2) 

h 
Yn+1 =Yn + 24 (SSfn -S9fn-1 + 37fn-2 -9fn-3) 

Priidiktor-Korrektor-Verfahren von Adams-Bashforth-Moulton 

(P) h 
Yn+1 =Yn+24(SSfn-59fn-1 +37fn-2- 9fn-3) 

Yn+1 = Yn + ;4[9j{Xn+I'Y~I) + 19fn - Sfn-I +fn-2 ] 

Nystrom- Verfahren (explizites 2-Schritt -Verfahren) 

F=O(h2) 

F=O(h3) 

F= O(h4) 

Yn+1 =Yn-I +~(7fn-2fn-1 +fn-2) F=O(h3) 

Adams-Moulton-Verfahren (implizite Verfahren) 

Yn+1 =Yn+ ~(5f(Xn+I'Yn+I)+8fn-fn-r) F=O(h3) 

Yn+1 = Yn + ~[9j{Xn+I'Yn+l) + 19fn - 5fn-l + fn-2] F= O(h4) 

Milne-Simpson-Verfahren (implizites 2-Schritt-Verfahren) 

Yn+1 =Yn-I +~[/(Xn+I'Yn+I)+4fn+fn-r1 F=O(h4) 

Riickwiirtsdifferentiationsmethoden (BDF-Methoden, implizite Verfahren) 

I 2 2 
Yn+1 =3(4Yn-Yn-r)+3hf(xn+l,Yn+l) F=O(h) 

I 6 3 
YI1+1 = IT(l8Yn -9Yn-1 +2Yn-2) + lThf(xn+l,Yn+r) F= O(h ) 

I 12 4 
YI1+1 = 2S(48Yn-36Yn-1 + 16Yn-2- 3Yn-3)+2S hf(xn+I,YI1+I) F=O(h) 
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Dreh-,21 
Eigenwerte, 129 
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quadratisches, 12, 90 

Mittelpunktswinkel, 23 
Mittelsenkrechte, 22 
Mittelwert einer Stichprobe, 122 
Mittelwertsatz 

Differentialrechnung, 56, 
95 
Integralrechnung, 61 

modus barbara, 14 
modus ponens, 14 
modus tollens, 14 
Moivre, Formel von, 35 
Momente 

erste,120 
zweite zentraie, 121 

Monotonie, 53 
Multiplikation 

iterierte, 16 
Matrix, 47 

Multiplikator 
Lagrange-, 101 

Nabla-Operator, 109 
Niiherungsfunktion,133 
Nano,9 
Nebenbedingung, 10 1 
Negation, 14 
Newton-Interpolation, 131 
Newtonverfabren,130 
Niveauf)ilche, 109 
Norm 

Betragssummen-,46 
Euklidische, 46 
Maximum-,46 

Normalbereich,102 
NOrmalenvektor, 108 

Ebene,28 
NOrmalform,30 

elliptische, 60 
Jordansche, 52, 81 
Legendresche, 60 

Normalgleichungsverfahren, 131 
N ormalverteilung, 119 

Quantile, 125 
standardisierte, 119, 125 

Nullstelle, 32, 130 
der Ordnung p, 32, 40 
gebrochen rat. Fkt., 41 
Polynom,40 

Numerik, 128 
Nystrom-Verfahren, 134 

Oberfl1tchenelement, 103 
Oberfl1tchenintegral 

1. Art, 103 

2. Art, 112 
Oktaeder,26 
Oktaldarstellung, 16 
Operator 

Delta-, III 
Laplace-, 111 

Optimierung, nichtlineare, 101 
Ordnung 

einer Nullstelle, 32 
einer Polstelle, 33 

Orthogonalitiit, 
Geraden,24 
Vektoren, 45 

Parabel, 24, 25 
Paraboloid, 30 
parallel, 9 
Parallelepiped, 26, 45 
ParaIIelitiit von Geraden, 24 
ParaIIelogramm, 23, 26, 45 
Parameterableitung, 108 
Parameterintegral, 72 
Partialbruchzerlegung, 41, 58 
Partialsumrne, 82 
Pascalsches Dreieck, 13 
Periode,32 
Periodizitiit, 37 
Peripheriewinkel, 23 
Permutationen, 18 
Peta, 9 
Piko,9 
Poisson-Gleichung, 114 
Poissonverteilung, 118 
Polardarstellung, 17 
Polargleichung, 25 
Polarkoordinaten, 19,24,96,103 
Polstelle, 33 

der Ordnung p, 33 
gebrochen rat. Fkt., 41 

Polyeder, regulare, 26 
Polygonzugverfahren,133 
Polynom,40 

Bernstein-, 42 
charakteristisches, 50, 80 
Homer-Schema, 40 
Interpolation, 131 
Taylor-,57 
Tschebyscheff-,42 
Vietascher Wurzelsatz, 
40 

Potential, 77 
Potentialfeld, 109, 110, III 
Potentialfunktion, 77, 109 
Potentialgleichung, 114 
Potenz,I2 
Potenzmenge, 15 
Potenzmethode, 129 
Potenzreihe, 86 
Priimisse, 14 
Primzahl,16 



Produkt 
Cartesisches, 15 
Skalar-,44 

Produktregel, 55 
Projektion, 28 
proportional, 9 
PriifgroBe, 123 
Punkt,29 

DurchstoB-,29 
Haufungs-, 92 
innerer,92 
stationarer,99, 100 

Punktfolgen, 92 
Pyrarnide, 26 
Pyramidenstumpf, 26 
Pythagoras, Satz, 22 

Quader,26 
Quadratmittelapproximation 

diskrete, 131 
Quadraturformeln, 132 
Quantil, 119 
Quantile 

chi-Quadrat-Vert., 127 
Normalverteilung, 119, 
125 
t-Verteilung, 126 

quellenfrei, III 
Quotientenkriterium, 83 
Quotientenregel, 55 

Randverteilungen, 120 
Randwertaufgabe, 74 
Rang, 47 

Spalten-,47 
Zeilen-,47 

Raum,44 
n-dimensionaler, 92 

Raumelement, 105 
Raumintegral, 105 
Raumkurve, 73, 108, III 
Rayleigh-Quotient, 51, 129 
Realteil, 17 
Rechteckbereich, 102 
Rechtsschraube, 45 
Rechtssystem, 45 
Regel 

Crarnersche, 49 
Guldinsche, 73 
Simpson-, 132 
Trapez-, 132 
von de I'Hospital, 33 
von de Morgan, 14 

Regression, 121 
lineare, 122 

Regressionsfunktionen, 121 
Regressionsgerade, 122 
Regressionskoeffizient, 122 
Regressionslinien, 121 

Regula falsi, 130 
Regularitatsbedingung, 101 
Reihe 

absolut konvergente, 84 
altemierende, 83 
arithmetische, 82 
divergente, 82 
enclliche, 82 
Fourier-, 89 
Funktionen-,85 
geometrische, 82 
konvergente, 82 
Konvergenzkriterien, 83 
Taylor-,87 
trigonometrische, 89 
Umformung, 84 
unenclliche, 82 

Rekursionsformel 
Bemstein-Polynome, 42 
Tschebyscheff-Polyn., 42 

Relation, 14 
Resonanzfall, 80 
Restglied 

Differenzenquotient, 132 
Quadraturformel, 132 
Taylorformel, 57 

Restriktion, 10 1 
Reststreuung, 122 
Rhombus, 23 
Richtungsableitung, 95, 109 
Richtungsfeld, 75 
Richtungskosinus, 21 
Rotation, 11 0 
Rotationsfiiiche, 73 
Rotationskorper, 73 
Runge-Kutta-Verfahren,133 

Sattelpunkt, 99, 100 
Satz 

binomischer, 13 
des Pythagoras, 22 
des Thales, 23 
Mittelwert-,95 
von Dirichlet, 90 
von Schwarz, 94 
von Steiner, 104, 107 

Scheitelpunkt, 25 
Schnittwinkel von Geraden, 24 
Schwarz, Satz von, 94 
Schwarzsche Ungleichung, 45, 46 
Schwerpunkt, 73, 104, 107 

Dreieck, 22 
Sehnensatz, 23 
Sehnentangentenwinkel, 23 
Seitenhalbierende, 22 
Sekante,55 
Sekantensatz, 23 
Sektorfliiche, 73 
Sekunde,9 
Signifikanzniveau, 123 

Sachregister 

Signifikanztest, 123, 124 
Simpson-Regel, 132 
Singuliirwerte, 52 
Singuliirwertzerlegung, 52 
Sinus hyperbolicus, 34 
Sinussatz, 22 
Skalarfeld, 108, 109 
Skalarprodukt, 44 
Spalte (Matrix), 47 
Spaltenrang, 47 
Spannungsabfall, III 
Spat, 26, 45 
Spatprodukt,45 
Spline-Interpolation, 131 
Starnmfunktion, 58 
Standardabweichung, 118 
Steigungen, 131, 132 
Stetigkeit, 93 
Stichprobe, 122 
Stichprobenkovarianz, 122 
Stochastik, 115 
Stokes, Integralsatz, 112 
Strecke,24 
Streuung, 118, 122 
Stromung, 108, 109, 112 
Substitution, 58 

Summe 

Doppelintegral, 103 
Dreifachintegral, 106 

Integrate, 58 
Matrizen, 47 
Reihen-,82 
Vektoren,44 

Supremum, 98 
System, dekadisches, 9 

t-Verteilung, 119, 126 
Tangens hyperbolicus, 34 
Tangenssatz, 22 
Tangente, 55 
Tangenteneinheitsvektor, 108 
Tangentensatz, 23 
Tangentialebene, 109 
Tautologie, 14 
Taylor-Verfahren, 133 
Taylorentwicklung, 57 
Taylorformel, 95 
Taylorreihe, 87 
Teiler, 16 
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groBter gemeinsamer, 16 
Teilfolge, 54 
Teilmenge, 15 
Teilung einer Strecke, 24 
Tern, 9 
Tetraeder, 26, 46 
Thales, Satz, 23 
Torus, 27 
Triigheitsmoment, 104, 107 

polares, 104 
Trajektorie, 74 
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Transformation 
Ahnlichkeits-, 51 
ZufaIlsgrOfie, 117 

Trapezregel, 132, 133 
Trennung c1er Veriinclerlichen, 75 
Trigonometrische Funktionen 

Additionstheareme, 38 
Periodizitiit, 37 
Potenzen, 38 
Produkte,38 
spezielle Werte, 37 
Surnme, Differenz, 38 
Urnrechnungstabelle,37 
Vorzeichen,37 

Trillion, 9 
Tschebyscheffsche 

Polynome, 42 
Ungleichung, 118 

Umgebung, 92 
Umkreis 

Dreieck,22 
Viereck, 23 

Ungleichung 
Bernoullische, 11 
Cauchy-Schwarzsche, 11, 
45,46 
Dreiecks-, 11,45,46 
Tschebyscheffsche,118 

Varianz, 118 
Variation c1er Konstanten, 79 
Variationen,18 
Vektoren, 44, 47 

orthogonale, 45 
Vektoranalysis, 108 
Vektorfeld, 77, 108 
Vektoriteration, 129 
Vektornorm, 46, 92 
Vektorprodukt,45 
Vereinigung, 15, 115 
Verfahren 

Adams-Bashforth-, 134 
Adams-MouIton-, 134 
Bisektions-, 130 
Einschritt-, 133 
Euler-, 133 
Euler rUckw, 133 
Halbschritt-, 133 
Iterations-, 130 
Mehrschritt-, 134 
Newton-, 130 
Normalgleichungs-, 131 
Nystrom-, 134 
Polygonzug-, 133 
Priidiktor-Korrektor-, 134 
Taylor-, 133 
Taylorreihen-, 133 
von Heun, 133 

von Runge-Kutta, 133 
Vergleichskriterium, 83 
Verschiebungsarbeit, 111 
Versuch, zufiilliger " 115 
Verteilung 

Binomial-, 118, 120 
chi-Quadrat-, 119, 127 
diskrete, 118 
Exponential-, 119 
F-,119 
Gleich-, 119 
hypergeometrische, 118 
Normal-, 119, 120, 
123-125 
Poisson-, 118 
stetige, 119 
t-, 119, 126 
WeibuIl-, 119 

Verteilungsfunktion, 117 
Vielfaches 

kleinstes gemeinsames, 
16 

Vielfachheit 
algebraische, 50 
geometrische, 50 

Viereck, 23 
Vietascher Wurzelsatz, 40 
Volumen, 26, 27, 73, 104, 105 
Volumenelement, 105, 109 

Wahrheitswert,14 
WahrscheiuIichkeit, 116 

bedingte, 116 
geometrische, 116 
klassische, 115 

WeibuIl-Verteilung, 119 
Weierstrafi, Kriterium von, 85 
Wellengleichung, 114 
Wertebereich, 32 
Winkel, 29 

Dreieck,22 
Winkelfunktionen, 36 
Winkelhalbierende, 22 
Wirbeldichte, 110 
Wirbelfeld, III 
wirbelfrei, 11 0, 111 
Wiirfel,26 
Wurzelkriterium, 83 

Zahl 
Bernoullische, 10 
Eulersche, 10 
ganze, 16 
komplexe, 17 
konjugiert komplexe, 17 
natiirliche, 16 
Prim-, 16 
rationale, 16 
reeIIe, 16 

Zahlenfolge, 53 
Zeichen,mathematische,9 
Zeile (Matrix), 47 
Zeilenrang, 47 
Zenti,9 
Zerlegungssatz, 45 
ZnfallsgrOfien, 117 

diskrete, 117, 120 
standardisierte, 118 
stetige, 117, 120 
unabhangige, 120, 121 
unkorrelierte, 121 
zweidimensionale, 120, 
123 

Zylincler, 30, 102 
Zylinclerabschnitt, 27 
Zylinclerhuf, 27 
Zylinclerkoordinaten, 20, 96, 107, 
109, 110, 111 
Zylindermantel, 104 


