This commit is contained in:
2020-10-24 13:47:37 +02:00
commit 2149d34295
790 changed files with 338714 additions and 0 deletions

View File

@@ -0,0 +1,39 @@
\BOOKMARK [0][-]{chapter.1}{Lineare Algebra}{}% 1
\BOOKMARK [1][-]{section.1.1}{Vektoren in der Ebene - \334bersicht}{chapter.1}% 2
\BOOKMARK [2][-]{subsection.1.1.1}{01\1371 Veranschaulichung von Vektoren in der Ebene}{section.1.1}% 3
\BOOKMARK [2][-]{subsection.1.1.2}{01\1371 Menge aller Vektoren in der Ebene}{section.1.1}% 4
\BOOKMARK [2][-]{subsection.1.1.3}{01\1371 Addition von Vektoren in der Ebene}{section.1.1}% 5
\BOOKMARK [2][-]{subsection.1.1.4}{01\1372 Nullvektor in der Ebene}{section.1.1}% 6
\BOOKMARK [2][-]{subsection.1.1.5}{01\1372 Subtraktion von Vektoren in der Ebene}{section.1.1}% 7
\BOOKMARK [2][-]{subsection.1.1.6}{01\1372 Multiplikation von einem Vektor mit einem Skalar \(einer Zahl\)}{section.1.1}% 8
\BOOKMARK [2][-]{subsection.1.1.7}{02\1371 \214Kanonische\215 Basisvektoren in der Ebene}{section.1.1}% 9
\BOOKMARK [2][-]{subsection.1.1.8}{02\1371 Lineare Abh\344ngigkeit \(Kollinearit\344t\)}{section.1.1}% 10
\BOOKMARK [2][-]{subsection.1.1.9}{02\1371 L\344nge \(Norm\) eines Vektors in der Ebene}{section.1.1}% 11
\BOOKMARK [2][-]{subsection.1.1.10}{02\1372 Einheitsvektoren}{section.1.1}% 12
\BOOKMARK [2][-]{subsection.1.1.11}{02\1372 Skalarprodukt von zwei Vektoren in der Ebene}{section.1.1}% 13
\BOOKMARK [2][-]{subsection.1.1.12}{02\1372 \326ffnungswinkel zwischen zwei Vektoren =0, =0 in der Ebene}{section.1.1}% 14
\BOOKMARK [2][-]{subsection.1.1.13}{Aufgaben - Vektoren in der Ebene}{section.1.1}% 15
\BOOKMARK [1][-]{section.1.2}{Vektoren im Raum und n-dimensionale Vektoren - \334bersicht}{chapter.1}% 16
\BOOKMARK [2][-]{subsection.1.2.1}{03\1371 Veranschaulichung von Vektoren im Raum}{section.1.2}% 17
\BOOKMARK [2][-]{subsection.1.2.2}{03\1371 Menge aller Vektoren im Raum / Menge aller n-dimensionalen Vektoren}{section.1.2}% 18
\BOOKMARK [2][-]{subsection.1.2.3}{03\1371 Addition von n-dimensionalen Vektoren}{section.1.2}% 19
\BOOKMARK [2][-]{subsection.1.2.4}{03\1371 n-dimensionaler Nullvektor}{section.1.2}% 20
\BOOKMARK [2][-]{subsection.1.2.5}{03\1372 Subtraktion von n-dimensionalen Vektoren}{section.1.2}% 21
\BOOKMARK [2][-]{subsection.1.2.6}{03\1372 Multiplikation von einem n-dimensionale Vektor mit einem Skalar}{section.1.2}% 22
\BOOKMARK [2][-]{subsection.1.2.7}{03\1372 \214Kanonische\215 n-dimensionale Basisvektoren}{section.1.2}% 23
\BOOKMARK [2][-]{subsection.1.2.8}{03\1372 Eine Linearkombination von m n-dimensionalen Vektoren ,\203,}{section.1.2}% 24
\BOOKMARK [2][-]{subsection.1.2.9}{03\1372 Lineare Abh\344ngigkeit von n-dimensionalen Vektoren}{section.1.2}% 25
\BOOKMARK [2][-]{subsection.1.2.10}{04\1371 L\344nge \(Norm\) eines n-dimensionalen Vektors}{section.1.2}% 26
\BOOKMARK [2][-]{subsection.1.2.11}{04\1371 n-dimensionale Einheitsvektoren}{section.1.2}% 27
\BOOKMARK [2][-]{subsection.1.2.12}{04\1371 Skalarprodukt von zwei n-dimensionalen Vektoren}{section.1.2}% 28
\BOOKMARK [2][-]{subsection.1.2.13}{04\1371 \326ffnungswinkel zwischen zwei n-dimensionalen Vektoren \040= und \040=}{section.1.2}% 29
\BOOKMARK [2][-]{subsection.1.2.14}{04\1371 Vektorprodukt zwischen zwei Vektoren im R3}{section.1.2}% 30
\BOOKMARK [0][-]{chapter.2}{23\1371 Differentialrechnung in R}{}% 31
\BOOKMARK [1][-]{section.2.1}{Grenzwertbildung bei Funktionen und Stetigkeit: \334bersicht}{chapter.2}% 32
\BOOKMARK [2][-]{subsection.2.1.1}{Grenzwertbildung bei Funktionen}{section.2.1}% 33
\BOOKMARK [0][-]{chapter.3}{L\366sungen}{}% 34
\BOOKMARK [1][-]{section.3.1}{Aufgabe 1}{chapter.3}% 35
\BOOKMARK [2][-]{subsection.3.1.1}{L\366sung}{section.3.1}% 36
\BOOKMARK [1][-]{section.3.2}{Aufgabe 2}{chapter.3}% 37
\BOOKMARK [2][-]{subsection.3.2.1}{L\366sung}{section.3.2}% 38
\BOOKMARK [1][-]{section.3.3}{Aufgabe 107}{chapter.3}% 39

View File

@@ -0,0 +1,47 @@
\select@language {ngerman}
\contentsline {chapter}{\numberline {1}Lineare Algebra}{3}{chapter.1}
\contentsline {section}{\numberline {1.1}Vektoren in der Ebene - \IeC {\"U}bersicht}{3}{section.1.1}
\contentsline {subsection}{\numberline {1.1.1}01\_1 Veranschaulichung von Vektoren in der Ebene}{3}{subsection.1.1.1}
\contentsline {subsection}{\numberline {1.1.2}01\_1 Menge aller Vektoren in der Ebene}{3}{subsection.1.1.2}
\contentsline {subsection}{\numberline {1.1.3}01\_1 Addition von Vektoren in der Ebene}{3}{subsection.1.1.3}
\contentsline {subsection}{\numberline {1.1.4}01\_2 Nullvektor in der Ebene}{4}{subsection.1.1.4}
\contentsline {subsection}{\numberline {1.1.5}01\_2 Subtraktion von Vektoren in der Ebene}{5}{subsection.1.1.5}
\contentsline {subsection}{\numberline {1.1.6}01\_2 Multiplikation von einem Vektor mit einem Skalar (einer Zahl)}{6}{subsection.1.1.6}
\contentsline {subsection}{\numberline {1.1.7}02\_1 "`Kanonische"' Basisvektoren in der Ebene}{7}{subsection.1.1.7}
\contentsline {subsection}{\numberline {1.1.8}02\_1 Lineare Abh\IeC {\"a}ngigkeit (Kollinearit\IeC {\"a}t)}{7}{subsection.1.1.8}
\contentsline {subsection}{\numberline {1.1.9}02\_1 L\IeC {\"a}nge (Norm) eines Vektors in der Ebene}{7}{subsection.1.1.9}
\contentsline {subsection}{\numberline {1.1.10}02\_2 Einheitsvektoren}{8}{subsection.1.1.10}
\contentsline {subsection}{\numberline {1.1.11}02\_2 Skalarprodukt von zwei Vektoren in der Ebene}{8}{subsection.1.1.11}
\contentsline {subsection}{\numberline {1.1.12}02\_2 \IeC {\"O}ffnungswinkel zwischen zwei Vektoren $\mathaccentV {vec}17E{a}\not =0$, $\mathaccentV {vec}17E{b}\not =0$ in der Ebene}{8}{subsection.1.1.12}
\contentsline {subsection}{\numberline {1.1.13}Aufgaben - Vektoren in der Ebene}{9}{subsection.1.1.13}
\contentsline {subsubsection}{\nonumberline Aufgabe 1}{9}{section*.2}
\contentsline {subsubsection}{\nonumberline Aufgabe 2}{9}{section*.3}
\contentsline {subsubsection}{\nonumberline Aufgabe 3}{9}{section*.4}
\contentsline {subsubsection}{\nonumberline Aufgabe 4}{9}{section*.5}
\contentsline {subsubsection}{\nonumberline Aufgabe 5}{10}{section*.6}
\contentsline {section}{\numberline {1.2}Vektoren im Raum und n-dimensionale Vektoren - \IeC {\"U}bersicht}{10}{section.1.2}
\contentsline {subsection}{\numberline {1.2.1}03\_1 Veranschaulichung von Vektoren im Raum}{10}{subsection.1.2.1}
\contentsline {subsection}{\numberline {1.2.2}03\_1 Menge aller Vektoren im Raum / Menge aller n-dimensionalen Vektoren}{11}{subsection.1.2.2}
\contentsline {subsection}{\numberline {1.2.3}03\_1 Addition von n-dimensionalen Vektoren}{11}{subsection.1.2.3}
\contentsline {subsection}{\numberline {1.2.4}03\_1 n-dimensionaler Nullvektor}{11}{subsection.1.2.4}
\contentsline {subsection}{\numberline {1.2.5}03\_2 Subtraktion von n-dimensionalen Vektoren}{12}{subsection.1.2.5}
\contentsline {subsection}{\numberline {1.2.6}03\_2 Multiplikation von einem n-dimensionale Vektor mit einem Skalar}{12}{subsection.1.2.6}
\contentsline {subsection}{\numberline {1.2.7}03\_2 "`Kanonische"' n-dimensionale Basisvektoren}{13}{subsection.1.2.7}
\contentsline {subsection}{\numberline {1.2.8}03\_2 Eine Linearkombination von m n-dimensionalen Vektoren $\mathaccentV {vec}17E{a_1},\ldots ,\mathaccentV {vec}17E{a_m }$}{13}{subsection.1.2.8}
\contentsline {subsection}{\numberline {1.2.9}03\_2 Lineare Abh\IeC {\"a}ngigkeit von n-dimensionalen Vektoren}{13}{subsection.1.2.9}
\contentsline {subsection}{\numberline {1.2.10}04\_1 L\IeC {\"a}nge (Norm) eines n-dimensionalen Vektors}{13}{subsection.1.2.10}
\contentsline {subsection}{\numberline {1.2.11}04\_1 n-dimensionale Einheitsvektoren}{14}{subsection.1.2.11}
\contentsline {subsection}{\numberline {1.2.12}04\_1 Skalarprodukt von zwei n-dimensionalen Vektoren}{14}{subsection.1.2.12}
\contentsline {subsection}{\numberline {1.2.13}04\_1 \IeC {\"O}ffnungswinkel zwischen zwei n-dimensionalen Vektoren $\mathaccentV {vec}17Ea \not =\mathaccentV {vec}17E0$ und $\mathaccentV {vec}17Eb \not =\mathaccentV {vec}17E0$}{14}{subsection.1.2.13}
\contentsline {subsection}{\numberline {1.2.14}04\_1 Vektorprodukt zwischen zwei Vektoren im $\mathbb R^3$}{14}{subsection.1.2.14}
\contentsline {chapter}{\numberline {2}23\_1 Differentialrechnung in $\mathbb R$}{17}{chapter.2}
\contentsline {section}{\numberline {2.1}Grenzwertbildung bei Funktionen und Stetigkeit: \IeC {\"U}bersicht}{17}{section.2.1}
\contentsline {subsection}{\numberline {2.1.1}Grenzwertbildung bei Funktionen}{17}{subsection.2.1.1}
\contentsline {chapter}{\numberline {3}L\IeC {\"o}sungen}{19}{chapter.3}
\contentsline {section}{\numberline {3.1}Aufgabe 1}{19}{section.3.1}
\contentsline {subsection}{\numberline {3.1.1}L\IeC {\"o}sung}{19}{subsection.3.1.1}
\contentsline {subsubsection}{\nonumberline Zeichnung}{19}{section*.7}
\contentsline {subsubsection}{\nonumberline Rechnung}{19}{section*.8}
\contentsline {section}{\numberline {3.2}Aufgabe 2}{20}{section.3.2}
\contentsline {subsection}{\numberline {3.2.1}L\IeC {\"o}sung}{20}{subsection.3.2.1}
\contentsline {section}{\numberline {3.3}Aufgabe 107}{21}{section.3.3}

BIN
mathefhtw/01_1_1.pdf Normal file

Binary file not shown.

3151
mathefhtw/01_1_1.ps Normal file

File diff suppressed because it is too large Load Diff

BIN
mathefhtw/01_1_2.pdf Normal file

Binary file not shown.

3057
mathefhtw/01_1_2.ps Normal file

File diff suppressed because it is too large Load Diff

BIN
mathefhtw/01_1_3.pdf Normal file

Binary file not shown.

3372
mathefhtw/01_1_3.ps Normal file

File diff suppressed because it is too large Load Diff

BIN
mathefhtw/04_1_1.pdf Normal file

Binary file not shown.

121
mathefhtw/04_2_2.pdf Normal file
View File

@@ -0,0 +1,121 @@
%PDF-1.4
%<25>
5 0 obj
<</Length 6 0 R/Filter /FlateDecode>>
stream
x<EFBFBD>u<EFBFBD><EFBFBD>n<EFBFBD>@ <0C><>{
<EFBFBD><EFBFBD> <20>H<1E><>Z<EFBFBD>Э<>7#C<><43>^<5E>!<21>Э<EFBFBD>^<5E><>6<EFBFBD><36>BdS<1F><>~<7E>/P<><50><EFBFBD>ky<6B><79><EFBFBD>Ã<EFBFBD><C383>G<19><08>_
<EFBFBD>v<02><><EFBFBD><1C><>3<>/"C<>ϯ<>Tdm#<23>*<2A><>7̹4 'a<><61><>/<2F><><11><0F>n$<24> <0B><>k@o<>V%<25><11><>н<EFBFBD>IBܳ;e<><65>s<> <09>z<1F><><EFBFBD>Zl<05>o+gC<67>+<06>J<EFBFBD>WlC<6C><43>i<EFBFBD>h<EFBFBD>k wNZL0%<25><>5<EFBFBD>H\IJ}<7D>HMmD<6D> <20>l<>4G<34><47>*(<28><02>XE<58>1<15><16>M7<4D>U<EFBFBD><55>J<EFBFBD><4A><EFBFBD><EFBFBD>ӪJ<D3AA><4A><EFBFBD><EFBFBD>*Oe9<65><39>7}<7D><>Et<45><74>}<7D>KBQ<1B><>k˴<05>IܦV<DCA6>QK<13>s<><73><1E><><EFBFBD><EFBFBD><EFBFBD>*<2A><>h<EFBFBD><68><EFBFBD><7F>W<EFBFBD><57>T<EFBFBD><54><EFBFBD>R^
<EFBFBD><EFBFBD><03><>t<EFBFBD><74><EFBFBD><EFBFBD>!<21><><EFBFBD><E89C9A>2 <02><><EFBFBD>X<13><><03>õ<1C>~<7E><><04><><EFBFBD><EFBFBD><EFBFBD>D(!<21><0F><><EFBFBD>;<3B><><06><><EFBFBD>$<24><>><3E><><EFBFBD><EFBFBD>;<3B><>[<5B>F0<11><><08><>'E<> <0C><>ku<6B>8<EFBFBD><38><EFBFBD>Q<EFBFBD>̷<EFBFBD>԰<EFBFBD>z <0C>ӡ|<7C><>7l<37><6C><EFBFBD>endstream
endobj
6 0 obj
436
endobj
4 0 obj
<</Type/Page/MediaBox [0 0 196.59 91.71]
/Parent 3 0 R
/Resources<</ProcSet[/PDF /Text]
/ExtGState 10 0 R
/Font 11 0 R
>>
/Contents 5 0 R
>>
endobj
3 0 obj
<< /Type /Pages /Kids [
4 0 R
] /Count 1
>>
endobj
1 0 obj
<</Type /Catalog /Pages 3 0 R
/Metadata 14 0 R
>>
endobj
7 0 obj
<</Type/ExtGState
/OPM 1>>endobj
10 0 obj
<</R7
7 0 R>>
endobj
11 0 obj
<</R8
8 0 R>>
endobj
8 0 obj
<</BaseFont/OTTFWH+CMMI10/FontDescriptor 9 0 R/Type/Font
/FirstChar 97/LastChar 126/Widths[ 529 429 433 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 500]
/Encoding 13 0 R/Subtype/Type1>>
endobj
13 0 obj
<</Type/Encoding/BaseEncoding/WinAnsiEncoding/Differences[
126/vector]>>
endobj
9 0 obj
<</Type/FontDescriptor/FontName/OTTFWH+CMMI10/FontBBox[0 -11 625 714]/Flags 4
/Ascent 714
/CapHeight 714
/Descent -11
/ItalicAngle 0
/StemV 93
/MissingWidth 333
/CharSet(/a/b/c/vector)/FontFile3 12 0 R>>
endobj
12 0 obj
<</Filter/FlateDecode
/Subtype/Type1C/Length 730>>stream
x<EFBFBD>%<25>[HSq<1C><>7<7F>hcZ0H<30><48>Jid<69>C<EFBFBD>E<><><05>4<EFBFBD><34>t<EFBFBD>]<5D>E<EFBFBD>ts<74><73><EFBFBD>~
<EFBFBD>n<EFBFBD><EFBFBD>eMs<EFBFBD>2/M<>R<EFBFBD>IJ<EFBFBD>C><3E>K<0F><EFBFBD>s<EFBFBD>y<EFBFBD>Io<49><6F>×χ/F<><14>1N<31>H<EFBFBD><48><EFBFBD>'vb.<2E><1F>R؃<<3C>&R5<> <20><><EFBFBD><EFBFBD>8qa/S<><53>9<EFBFBD>ɜ<EFBFBD>B|<7C>/<2F>ߐI<DF90><1A>V<EFBFBD>Ш<EFBFBD><D0A8>$<24>TaQ<61>)꼒<><EABC92><EFBFBD>d*J*<2A>7<EFBFBD>J<EFBFBD>>Y<><59>+<2B>:9<>7<1E><>75Q<35>; UI<55>hm3]<5D>-Q+5=<3D><><EFBFBD><EFBFBD>zZ<7A>j<EFBFBD><6A><EFBFBD>j-B<>_'<27><> T<><54><EFBFBD>{PjR<17>!އ<><DE87><EFBFBD>m,<2C><><EFBFBD><EFBFBD>x<EFBFBD>%<25>F<EFBFBD>طx<04>o1<6F>_<<3C>b<EFBFBD>D<EFBFBD>`<06><><EFBFBD><EFBFBD>m;<3B><1B><><<3C><><EFBFBD>WnΖp<CE96><70>l.<2E>;T<><54><EFBFBD>&<26><><EFBFBD><EFBFBD>G<><47><EFBFBD>v<EFBFBD><1C>3y<1C>v <20>5+<1B><>߱<EFBFBD><DFB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD>5<EFBFBD><35><EFBFBD>n<>d<05>,<2C> <20><><EFBFBD><6<><15><><EFBFBD><EFBFBD>h
\:<3A><><1D><17><>~<0E>von<6F>}<7D>i<EFBFBD>2L<32><4C><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><1B><12>Npux<75><78>.<2E><><EFBFBD>XQ <0B><>5<1E>x<EFBFBD><78><EFBFBD>dp<64><1B><>
<EFBFBD><EFBFBD> <09><>N<EFBFBD><17><><EFBFBD><EFBFBD><EFBFBD>I<EFBFBD>f0<66><30>e\<5C><>iw<><77><EFBFBD><EFBFBD><EFBFBD>V5U<><55>'<27>SL<53><4C>3r<33><72><EFBFBD>l<1C><0F><><0E><><EFBFBD>$<24><>Ď<EFBFBD><C48E>dn/<2F><><1B><><13><><>A<EFBFBD><41>/<2F><><EFBFBD><EFBFBD>m<1E><07>D<EFBFBD>B<>^{<7B><>S<EFBFBD>lq_ګ<5F>Z<EFBFBD>1<EFBFBD><31> <0B><16><>d2<64>L<EFBFBD><4C><EFBFBD>OWת<57><D7AA><EFBFBD><E296B3>x<><78><EFBFBD>K<>q f<><66><EFBFBD>
.<2E>H<EFBFBD><48>K<EFBFBD>
<EFBFBD>@<40>ѭ|G
Y;<3B><>U<EFBFBD>u<18>1<EFBFBD><31><EFBFBD>lQ<6C><51><EFBFBD><EFBFBD>@G<><47><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>C<EFBFBD><13><><EFBFBD><EFBFBD><EFBFBD><0F>!`<60><>}<7D><>u<EFBFBD>6<EFBFBD><36>w
<EFBFBD><EFBFBD>0;,6gߝ<67>f<EFBFBD><66><EFBFBD><EFBFBD>d<EFBFBD><64><EFBFBD>a"<22><>H<EFBFBD>\<5C><><06><03>8Y0m2<6D><32>nq<06>TX<54><58><EFBFBD>G @<40>T<>B<EFBFBD>
endstream
endobj
14 0 obj
<</Type/Metadata
/Subtype/XML/Length 1326>>stream
<?xpacket begin='' id='W5M0MpCehiHzreSzNTczkc9d'?>
<?adobe-xap-filters esc="CRLF"?>
<x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='XMP toolkit 2.9.1-13, framework 1.6'>
<rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#' xmlns:iX='http://ns.adobe.com/iX/1.0/'>
<rdf:Description rdf:about='4bd1c581-3d66-11dd-0000-97230e8e4dc7' xmlns:pdf='http://ns.adobe.com/pdf/1.3/' pdf:Producer='MiKTeX GPL Ghostscript 8.60'/>
<rdf:Description rdf:about='4bd1c581-3d66-11dd-0000-97230e8e4dc7' xmlns:xap='http://ns.adobe.com/xap/1.0/' xap:ModifyDate='2008-06-15T18:42:25Z' xap:CreateDate='2008-06-15T18:42:25Z'><xap:CreatorTool>dvips\(k\) 5.96dev Copyright 2007 Radical Eye Software</xap:CreatorTool></rdf:Description>
<rdf:Description rdf:about='4bd1c581-3d66-11dd-0000-97230e8e4dc7' xmlns:xapMM='http://ns.adobe.com/xap/1.0/mm/' xapMM:DocumentID='4bd1c581-3d66-11dd-0000-97230e8e4dc7'/>
<rdf:Description rdf:about='4bd1c581-3d66-11dd-0000-97230e8e4dc7' xmlns:dc='http://purl.org/dc/elements/1.1/' dc:format='application/pdf'><dc:title><rdf:Alt><rdf:li xml:lang='x-default'>2dgrafiken.dvi</rdf:li></rdf:Alt></dc:title></rdf:Description>
</rdf:RDF>
</x:xmpmeta>
<?xpacket end='w'?>
endstream
endobj
2 0 obj
<</Producer(MiKTeX GPL Ghostscript 8.60)
/CreationDate(D:20080615184225Z)
/ModDate(D:20080615184225Z)
/Creator(dvips\(k\) 5.96dev Copyright 2007 Radical Eye Software)
/Title(2dgrafiken.dvi)>>endobj
xref
0 15
0000000000 65535 f
0000000755 00000 n
0000003655 00000 n
0000000696 00000 n
0000000540 00000 n
0000000015 00000 n
0000000521 00000 n
0000000820 00000 n
0000000921 00000 n
0000001219 00000 n
0000000861 00000 n
0000000891 00000 n
0000001438 00000 n
0000001130 00000 n
0000002252 00000 n
trailer
<< /Size 15 /Root 1 0 R /Info 2 0 R

3273
mathefhtw/06_2.eps Normal file

File diff suppressed because it is too large Load Diff

BIN
mathefhtw/06_2.pdf Normal file

Binary file not shown.

2759
mathefhtw/08_1_1.eps Normal file

File diff suppressed because it is too large Load Diff

BIN
mathefhtw/08_1_1.pdf Normal file

Binary file not shown.

2832
mathefhtw/08_1_1.ps Normal file

File diff suppressed because it is too large Load Diff

2413
mathefhtw/08_1_2.eps Normal file

File diff suppressed because it is too large Load Diff

BIN
mathefhtw/08_1_2.pdf Normal file

Binary file not shown.

3217
mathefhtw/08_1_2.ps Normal file

File diff suppressed because it is too large Load Diff

BIN
mathefhtw/09_2_1.pdf Normal file

Binary file not shown.

3133
mathefhtw/09_2_1.ps Normal file

File diff suppressed because it is too large Load Diff

BIN
mathefhtw/09_2_2.pdf Normal file

Binary file not shown.

3145
mathefhtw/09_2_2.ps Normal file

File diff suppressed because it is too large Load Diff

BIN
mathefhtw/11_1_1.pdf Normal file

Binary file not shown.

BIN
mathefhtw/11_1_2.pdf Normal file

Binary file not shown.

20
mathefhtw/1_1.tikz Normal file
View File

@@ -0,0 +1,20 @@
\begin{tikzpicture}[scale=1.5]
\draw [triangle 45-triangle 45] (0,3) node (yaxis) [above] {$y$}|- (3,0) node (xaxis) [right] {$x$};
\draw [color=red](0,0) -- +(2.5,2.5);
\draw plot[only marks, mark=x, mark options={blue}] coordinates{(2.5,2.5)}
node[above, color=blue] {Punkt $(a_1,a_2)$};
\foreach \y in {0,2,4}
\draw (1pt,\y*0.5 cm) -- (-1pt,\y*0.5 cm) node[anchor=east] {$\y$};
\foreach \x in {0,2,4}
\draw (\x*0.5 cm,1pt) -- (\x*0.5 cm,-1pt) node[anchor=north] {$\x$};
\draw [color=green, dashed] (-0.1,2.5) -- (2.5,2.5);
\draw [color=green, dashed] (2.5,-0.1) -- (2.5,2.5);
\node[green] at (-0.25,2.5) {$a_2$};
\node[green] at (2.5,-0.25) {$a_1$};
\node[right] at (0.05,2.2) {\tiny{2. Koordinate}};
\node[right] at (1,0.2) {\tiny{1. Koordinate}};
\end{tikzpicture}

20
mathefhtw/1_1_1.tikz Normal file
View File

@@ -0,0 +1,20 @@
\begin{tikzpicture}[scale=1.5]
\draw [triangle 45-triangle 45] (0,3) node (yaxis) [above] {$y$}|- (3,0) node (xaxis) [right] {$x$};
\draw [color=red](0,0) -- +(2.5,2.5);
\draw plot[only marks, mark=x, mark options={blue}] coordinates{(2.5,2.5)}
node[above, color=blue] {Punkt $(a_1,a_2)$};
\foreach \y in {0,2,4}
\draw (1pt,\y*0.5 cm) -- (-1pt,\y*0.5 cm) node[anchor=east] {$\y$};
\foreach \x in {0,2,4}
\draw (\x*0.5 cm,1pt) -- (\x*0.5 cm,-1pt) node[anchor=north] {$\x$};
\draw [color=green, dashed] (-0.1,2.5) -- (2.5,2.5);
\draw [color=green, dashed] (2.5,-0.1) -- (2.5,2.5);
\node[green] at (-0.25,2.5) {$a_2$};
\node[green] at (2.5,-0.25) {$a_1$};
\node[right] at (0.05,2.2) {\tiny{2. Koordinate}};
\node[right] at (1,0.2) {\tiny{1. Koordinate}};
\end{tikzpicture}

18
mathefhtw/1_1_2.tikz Normal file
View File

@@ -0,0 +1,18 @@
\begin{tikzpicture}[scale=1.5]
\draw [triangle 45-triangle 45] (0,3) node (yaxis) [above] {$y$}|- (3,0) node (xaxis) [right] {$x$};
\draw [color=red, thick, -triangle 45](0,0) -- +(2.5,2.5) node[midway,sloped,above] {Vektor $\vec a$};
\draw [thick, -triangle 45](2.8,2.2) node[anchor=west] {''Pfeil''} -- (2.5,2.5) ;
\foreach \y in {0,2,4}
\draw (1pt,\y*0.5 cm) -- (-1pt,\y*0.5 cm) node[anchor=east] {$\y$};
\foreach \x in {0,2,4}
\draw (\x*0.5 cm,1pt) -- (\x*0.5 cm,-1pt) node[anchor=north] {$\x$};
\draw [color=blue, dashed] (-0.1,2.5) -- (2.5,2.5);
\draw [color=blue, dashed] (2.5,-0.1) -- (2.5,2.5);
\node[blue] at (-0.25,2.5) {$a_2$};
\node[blue] at (2.5,-0.25) {$a_1$};
\end{tikzpicture}

37
mathefhtw/1_1_3.tikz Normal file
View File

@@ -0,0 +1,37 @@
\begin{tikzpicture}[scale=1.5]
\draw [triangle 45-triangle 45] (0,5.5) node (yaxis) [above] {$y$}|- (7.5,0) node (xaxis) [right] {$x$};
\draw [color=red, thick, -triangle 45](0,0) -- (5,1) node[midway,sloped,above] {$\vec b$};
\draw [color=red, dashed, thin] (5,-0.1) -- (5,1);% node[pos=-0.05]{$b_1$} ;
\draw [color=red, dashed, thin] (-0.1,1) -- (5,1);% node[pos=-0.05]{$b_2$};
\node[red] at (5,-0.25) {$b_1$};
\node[red, left] at (-0.05,1) {$b_2$};
\draw [color=red, thin, -triangle 45, dashed](2,4) -- (7,5);
\draw [color=orange, thick, -triangle 45](0,0) -- (2,4) node[midway,sloped,above] {$\vec a$};
\draw [color=orange, dashed, thin] (2,-0.1) -- (2,4);
\draw [color=orange, dashed, thin] (-0.1,4) -- (2,4);
\node[orange] at (2,-0.25) {$a_1$};
\node[orange, left] at (-0.05,4) {$a_2$};
\draw [color=orange, thin, -triangle 45, dashed](5,1) -- (7,5);
\draw [color=blue, thick, -triangle 45](0,0) -- (7,5) node[midway,sloped,above] {$\vec a + \vec b$};
\draw [color=blue, dashed, thin] (7,-0.1) -- (7,5); %node[pos=-0.025]{$a_1+b_1$} ;
\draw [color=blue, dashed, thin] (-0.1,5) -- (7,5); %node[anchor=west, pos=-0.1]{\fbox{$a_2+b_2$}};
\node[blue] at (7,-0.25) {$a_1+b_1$};
\node[blue, left] at (-0.05,5) {$a_2+b_2$};
\foreach \y in {0,3}
\draw (1pt,\y cm) -- (-1pt,\y cm) node[anchor=east] {$\y$};
\foreach \x in {0,3,6}
\draw (\x cm,1pt) -- (\x cm,-1pt) node[anchor=north] {$\x$};
\node[right] at (3.0,5.5) (x) {Parallelogramm};
\node[right,color=white] at (3.0,3.3) (y) {xx};
\draw[-open triangle 45,gray] (x) .. controls +(down:1cm) and +(left:1cm) .. (y);
\end{tikzpicture}

19
mathefhtw/1_2.tikz Normal file
View File

@@ -0,0 +1,19 @@
\begin{tikzpicture}[scale=1.5]
\draw [triangle 45-triangle 45] (0,3) node (yaxis) [above] {$y$}|- (3,0) node (xaxis) [right] {$x$};
\draw [color=red, thick, -triangle 45](0,0) -- +(2.5,2.5) node[midway,sloped,above] {Vektor $\vec a$};
\draw [thick, -triangle 45](2.8,2.2) node[anchor=west] {''Pfeil''} -- (2.5,2.5) ;
\foreach \y in {0,2,4}
\draw (1pt,\y*0.5 cm) -- (-1pt,\y*0.5 cm) node[anchor=east] {$\y$};
\foreach \x in {0,2,4}
\draw (\x*0.5 cm,1pt) -- (\x*0.5 cm,-1pt) node[anchor=north] {$\x$};
\draw [color=blue, dashed] (-0.1,2.5) -- (2.5,2.5);
\draw [color=blue, dashed] (2.5,-0.1) -- (2.5,2.5);
\node[blue] at (-0.25,2.5) {$a_2$};
\node[blue] at (2.5,-0.25) {$a_1$};
%\node[right] at (1.4,2.1) {Vektor $\vec a$};
\end{tikzpicture}

37
mathefhtw/1_2_1.pikz Normal file
View File

@@ -0,0 +1,37 @@
\begin{tikzpicture}[scale=1.5]
\draw[-triangle 45] (-4.5,0) -- (5.5,0) node[right] {$x$};
\foreach \x in {-4,-2,-1,1,3,4}
\draw (\x cm,1pt) -- (\x cm,-1pt) node[anchor=north] {$\x$};
\draw[-triangle 45] (0,-1) -- (0,4) node[above] {$y$};
\foreach \y in {2}
\draw (1pt,\y cm) -- (-1pt,\y cm) node[anchor=east] {$\y$};
%Vector a
\draw [color=red, thick, -triangle 45](0,0) -- (2,3) node[midway,sloped,above] {$\vec a$};
\draw [color=red, dashed, thin] (2,-0.1) -- (2,3);
\draw [color=red, dashed, thin] (-0.1,3) -- (2,3);
\node[red] at (2,-0.25) {$a_1$};
\node[red] at (-0.25, 3) {$a_2$};
%Vector b
\draw [color=green!65!black, thick, -triangle 45](0,0) -- (5,1) node[midway,sloped,above] {$\vec b$};
\draw [color=green!65!black, dashed, thin] (5,-0.1) -- (5,1);
\draw [color=green!65!black, dashed, thin] (-0.1,1) -- (5,1);
\draw [color=green!65!black, thick, -triangle 45, dashed](2,3) -- (-3,2) ;
\node[green!65!black] at (5,-0.25) {$b_1$};
\node[green!65!black, left] at (-0.05,1) {$b_2$};
%Vector a b
\draw [color=blue, thick, -triangle 45](0,0) -- (-3,2) node[midway,sloped,above] {$\vec a - \vec b$};
\draw [color=blue, dashed, thin] (-3,-0.1) -- (-3,2);
\draw [color=blue, dashed, thin] (-0.1,2) -- (-3,2);
\draw [color=blue, thick, -triangle 45, dashed](5,1) -- (2,3) ;
\node[blue, right] at (0,2) {$a_2-b_2$};
\node[blue] at (-3,-0.25) {$a_1-b_1$};
\end{tikzpicture}

37
mathefhtw/1_2_1.tikz Normal file
View File

@@ -0,0 +1,37 @@
\begin{tikzpicture}[scale=1.5]
\draw[-triangle 45] (-4.5,0) -- (5.5,0) node[right] {$x$};
\foreach \x in {-4,-2,-1,1,3,4}
\draw (\x cm,1pt) -- (\x cm,-1pt) node[anchor=north] {$\x$};
\draw[-triangle 45] (0,-1) -- (0,4) node[above] {$y$};
\foreach \y in {2}
\draw (1pt,\y cm) -- (-1pt,\y cm) node[anchor=east] {$\y$};
%Vector a
\draw [color=red, thick, -triangle 45](0,0) -- (2,3) node[midway,sloped,above] {$\vec a$};
\draw [color=red, dashed, thin] (2,-0.1) -- (2,3);
\draw [color=red, dashed, thin] (-0.1,3) -- (2,3);
\node[red] at (2,-0.25) {$a_1$};
\node[red] at (-0.25, 3) {$a_2$};
%Vector b
\draw [color=green!65!black, thick, -triangle 45](0,0) -- (5,1) node[midway,sloped,above] {$\vec b$};
\draw [color=green!65!black, dashed, thin] (5,-0.1) -- (5,1);
\draw [color=green!65!black, dashed, thin] (-0.1,1) -- (5,1);
\draw [color=green!65!black, thick, -triangle 45, dashed](2,3) -- (-3,2) ;
\node[green!65!black] at (5,-0.25) {$b_1$};
\node[green!65!black, left] at (-0.05,1) {$b_2$};
%Vector a b
\draw [color=blue, thick, -triangle 45](0,0) -- (-3,2) node[midway,sloped,above] {$\vec a - \vec b$};
\draw [color=blue, dashed, thin] (-3,-0.1) -- (-3,2);
\draw [color=blue, dashed, thin] (-0.1,2) -- (-3,2);
\draw [color=blue, thick, -triangle 45, dashed](5,1) -- (2,3) ;
\node[blue, right] at (0,2) {$a_2-b_2$};
\node[blue] at (-3,-0.25) {$a_1-b_1$};
\end{tikzpicture}

42
mathefhtw/1_2_2.tikz Normal file
View File

@@ -0,0 +1,42 @@
\begin{tikzpicture}[scale=1.2]
% \draw[step=0.1, color=lightgray] (-5,-2.5) grid(7,5);
\draw[-triangle 45] (-4.5,0) -- (6.5,0) node[right] {$x$};
\foreach \x in {-4,-2,2,4,6}
\draw (\x cm,1pt) -- (\x cm,-1pt) node[anchor=north] {$\x$};
\draw[-triangle 45] (0,-2.5) -- (0,4) node[above] {$y$};
\foreach \y in {-2,2}
\draw (1pt,\y cm) -- (-1pt,\y cm) node[anchor=east] {$\y$};
\draw [color=red, thick, -triangle 45](0,0) -- (2,1) node[midway,sloped,above] {$\vec a$};
\draw [color=red, dashed, thin] (2,-0.1) -- (2,1);
\draw [color=red, dashed, thin] (-0.1,1) -- (2,1);
\node[red] at (2,-0.5) {$a_1$};
\node[red, left] at (-0.1, 1) {$a_2$};
\draw [color=green!65!black, thick, -triangle 45](0,0) -- (-4,-2) node[midway,sloped,above] {$-2 \cdot \vec a$};
\draw [color=green!65!black, dashed, thin] (-4,0.1) -- (-4,-2);
\draw [color=green!65!black, dashed, thin] (0.1,-2) -- (-4,-2);
\node[green!65!black, right] at (0.25,-2) {$-2\cdot a_2$};
\draw [color=blue, thin, -triangle 45, dashed](0,0) -- (6,3) node[midway,sloped,above] {$3 \cdot \vec a$};
\draw [color=blue, dashed, thin] (6,-0.1) -- (6,3);
\draw [color=blue, dashed, thin] (-0.1,3) -- (6,3);
\node[blue] at (6,-0.5) {$3 \cdot \vec a_1$};
\node[blue,left] at (-0.1,3) {$3 \cdot \vec a_2$};
\draw (-0.5,2.5) node[left, text width=4cm, color=green!65!black]{$k<0$: Richtung \"andern und Strecken/Stauchen um Faktor $-k$ \underline{hier: $-k=2$}};
\draw (1.5,3.2) node[right, text width=4cm, color=blue]{$k>0$: Strecken/Stauchen um Faktor k \underline{hier: $k=3$}};
\end{tikzpicture}

5
mathefhtw/23_1.tex Normal file
View File

@@ -0,0 +1,5 @@
\section{Grenzwertbildung bei Funktionen und Stetigkeit: Übersicht}
\subsection{Grenzwertbildung bei Funktionen}
\begin{enumerate}
\item Es ist \inlineFormel{\mathop {\lim }\limits_{x \to {x_0}} f(x) = c}
\end{enumerate}

32
mathefhtw/2_1_1.tikz Normal file
View File

@@ -0,0 +1,32 @@
\begin{tikzpicture}[scale=1.2]
%\begin{tikzpicture}[scale=3]
%\draw[step=0.1, color=lightgray] (-1,-1) grid(4.5,4.5);
% \draw[help lines] (0,0) grid (4,4);
\draw[-triangle 45] (0,0) -- (4,0) node[right] {$x$};
\foreach \x in {1,2,3}
\draw (\x cm,1pt) -- (\x cm,-1pt) node[anchor=north] {$\x$};
\draw[-triangle 45] (0,0) -- (0,4) node[above] {$y$};
\foreach \y in {1,2,3}
\draw (1pt,\y cm) -- (-1pt,\y cm) node[anchor=east] {$\y$};
\draw [color=blue, thick, -triangle 45](0,0) -- (3,3) node[midway,sloped,above] {$\vec a$} ;
\draw [color=blue, dashed, thin] (0,3) -- (3,3);
\draw [color=blue, dashed, thin] (3,0) -- (3,3);
\draw[snake=brace, mirror snake, color=red] (0,-0.1) -- (3,-0.1) node[midway,sloped,below] {$a_1$};
\draw[snake=brace, mirror snake, color=green!65!black] (3.1,0) -- (3.1,3) node[midway, right] {$a_2$};
\draw [fill=black](2.8,0.2) circle (0.25mm);
\draw (0.25,3.8) node[right, text width=35mm, color=orange](y){L\"ange $\sqrt{a_1^2+a_2^2}$ nach Pythagoras};
\draw[->,orange] (y) .. controls +(down:1cm) and +(up:1cm) .. (2,2);
% \draw[draw=green!50!black] (3,0) -- (3mm,0mm) arc (3:90:3mm); %-- cycle;
\draw (3,0) +(90:5mm) arc (90:180:5mm);
\end{tikzpicture}

View File

@@ -0,0 +1,11 @@
\vspace{-15mm}
\subsection{03\_1 Addition von n-dimensionalen Vektoren}
\begin{tabbing}
\tabumg%
Die Addition liefert wieder einen Vektor.\\ \\
Berechnung:\>\>$\vec{a}=\left(a_1,\ldots, a_n\right)$,\hspace{10mm} $\vec{b}=\left(b_1,\ldots, b_n\right)$\\ \\
\>\>$\vec{a}+\vec{b}=\left(a_1+b_1, \ldots, a_n+b_n\right)$\\ \\
Rechenregeln wie für $n=2$.
\end{tabbing}

Binary file not shown.

View File

@@ -0,0 +1,27 @@
\subsection{01\_1 Addition von Vektoren in der Ebene}
\begin{tabbing}
\tabumg
Die Addition von Vektoren liefert als Ergebnis wieder einen Vektor.\\ \\
rechnerisch:\>\>$\vec{a}=\left(a_1,a_2\right),\vec{b}=\left(b_1,b_2\right)$ \\
\>\>$\vec{a}+\vec{b}=\left((a_1+b_1, a_2+b_2)\right)$\\
\end{tabbing}
\newpage
zeichnerisch:
\begin{figure}[h]
\begin{center}
%\fbox{
%\includegraphics{AdditionVektorenInEbene}%}
%\includegraphics{01_1_3}%}
\input{1_1_3.tikz}
\end{center}
\caption{Addition von Vektoren $\vec{a}+\vec{b}$}
\end{figure}
\begin{tabbing}
\tabumg Rechenregeln:\>\>$\vec{a}+\vec{b}=\vec{b}+\vec{a};$\\
\>\>$\vec{a}+\left(\vec{b}+\vec{c}\right)=\left(\vec{a}+\vec{b}\right)+\vec{c}$\\
\end{tabbing}

BIN
mathefhtw/Aufgabe006.pdf Normal file

Binary file not shown.

BIN
mathefhtw/Aufgabe010.pdf Normal file

Binary file not shown.

BIN
mathefhtw/Aufgabe011.pdf Normal file

Binary file not shown.

BIN
mathefhtw/Aufgabe019.pdf Normal file

Binary file not shown.

BIN
mathefhtw/Aufgabe026.pdf Normal file

Binary file not shown.

BIN
mathefhtw/Aufgabe029.pdf Normal file

Binary file not shown.

View File

@@ -0,0 +1,118 @@
\clearemptydoublepage
\subsection{Aufgaben - Vektoren in der Ebene}
\subsubsection{Aufgabe 1}(Lösung siehe\ref{A001})
Gegeben sind: \hspace{10mm}$\vec a = \left( {3,4} \right)$,\hspace{5mm}$\vec b = \left( {10,5} \right)$,\hspace{5mm}$ \vec c =
\vec a - \frac{1} {2}\vec b$
\begin{list}{\ding{42}}
{\setlength{\topsep}{0.5cm}
\setlength{\itemsep}{0.5cm}
\setlength{\leftmargin}{6mm}
\setlength{\labelwidth}{4mm}
\setlength{\parsep}{2mm}
\setlength{\labelsep}{2mm}
\renewcommand{\makelabel}[1]{\textbf{#1}}}
\item[a.]Bestimmen Sie $\vec c$ durch Zeichnung und Rechnung!
\item[b.]Bestimmen Sie $\left|\vec a\right|$, $\left|\vec b\right|$, $\left|\vec c\right|$.
\item[c.]Bestimmen Sie den Öffnungswinkel $\alpha \left( {\vec a,\vec c} \right)$ und $\alpha \left( {\vec a,\vec b} \right)$.
\end{list}
\subsubsection{Aufgabe 2}
Welche Gegenkraft $\vec F$ hebt die folgenden vier Einzelkräfte, die an einem Massepunkt angreifen, in der Wirkung
auf?\\
\hspace{10mm}$ \vec F_1 = \left( {200N,110N} \right)$\hspace{10mm}$\vec F_2 = \left( { - 10N,30N} \right)$
\hspace{10mm}$ \vec F_3 = \left( {40N,85N} \right)$\hspace{14mm}$\vec F_4 = \left( { - 30N, - 50N} \right)$\\ \\
Von welchem Betrag ist $\vec{F}$? Unter welchem Winkel greifen $\vec{F_1}$ und $\vec{F_2}$ den Massepunkt an?
\subsubsection{Aufgabe 3}
Gegeben sind: $\vec{a}=\left(3,-1,2\right)\text{, }\vec{b}=\left(1,2,4\right)\text{, }\vec{c}=\left(1,1,1\right)$.
Berechnen Sie:
\begin{list}{\ding{42}}
{\setlength{\topsep}{0.5cm}
\setlength{\itemsep}{0.5cm}
\setlength{\leftmargin}{6mm}
\setlength{\labelwidth}{4mm}
\setlength{\parsep}{2mm}
\setlength{\labelsep}{2mm}
\renewcommand{\makelabel}[1]{\textbf{#1}}}
\item[a.]$\vec{a}+\vec{b}\text{, }\vec{a}-\vec{b}\text{, }4\cdot\vec{a}\text{, }-\frac{1}{4}\cdot\vec{b}\text{, }-5\cdot\vec{c}$,
\item[b.]$\left|\vec{a}\right|\text{, }\left|\vec{b}\right|\text{, }\left|\vec{c}\right|$,
\item[c.]$\alpha\left(\vec{a},\vec{b}\right)$,
\item[d.]$\vec{a}\times\vec{b}$ und den Flächeninhalt des von $\vec{a}$ und $\vec{b}$ aufgespannten Parallelogramms,
\item[e.]$\left[\vec{a},\vec{b},\vec{c}\right]$ und das Volumen des von $\vec{a},\vec{b}$ und $\vec{c}$ aufgespannten Spats.
\end{list}
\subsubsection{Aufgabe 4}
Eine Kraft $\vec F$ mit $\left | \vec F \right | = 85 N$ verschiebt einen Massenpunkt um eine Strecke $\vec s$ mit $\left | \vec s \right | = 32m$; dabei wird eine Arbeit von $W=1360J$ verrichtet.
Unter welchem Winkel greift die Kraft an?
\subsubsection{Aufgabe 5}
Gegeben sind die folgenden Matrizen:
% MathType!MTEF!2!1!+-
% feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGbb
% Gaeyypa0ZaaeWaaeaafaqabeGadaaabaGaaGymaaqaaiaaicdaaeaa
% caaIYaaabaGaaGimaaqaaiaaiodaaeaacaaIWaaaaaGaayjkaiaawM
% caaaqaaiaadkeacqGH9aqpdaqadaqaauaabeqaciaaaeaacaaI0aaa
% baGaaGynaaqaaiaaicdaaeaacaaIWaaaaaGaayjkaiaawMcaaaqaai
% aadoeacqGH9aqpdaqadaqaauaabeqaciaaaeaacaaIWaaabaGaaGym
% aaqaaiaaicdaaeaacqGHsislcaaIXaaaaaGaayjkaiaawMcaaaqaai
% aadseacqGH9aqpdaqadaqaauaabeqaciaaaeaacaaIXaaabaGaaG4m
% aaqaaiaaicdaaeaacaaIYaaaaaGaayjkaiaawMcaaaqaaiaadAeacq
% GH9aqpdaqadaqaauaabeqaciaaaeaacaaIXaaabaGaeyOeI0YaaSaa
% aeaacaaIZaaabaGaaGOmaaaaaeaacaaIWaaabaWaaSaaaeaacaaIXa
% aabaGaaGOmaaaaaaaacaGLOaGaayzkaaaabaGaamyqaiabgUcaRiaa
% dkeaaeaacaWGcbGaey4kaSIaam4qaaqaaiaadoeacqGHsislcaWGeb
% aabaGaaGinaiabgwSixlaadAeaaeaacaWGcbGaeyyXICTaamyqaaqa
% aiaadgeacqGHflY1caWGcbaabaGaamOqaiabgwSixlaadoeaaeaaca
% WGdbGaeyyXICTaamOqaaqaaiaadseacqGHflY1caWGgbaabaGaamOr
% aiabgwSixlaadseaaeaacaWGebaabaGaamiramaaCaaaleqabaGaey
% OeI0IaaGymaaaaaOqaaiaadgeadaahaaWcbeqaaiaadshaaaaakeaa
% caWGcbWaaWbaaSqabeaacaWG0baaaaaaaa!8437!
\[
\begin{array}{l}
A = \left( {\begin{array}{*{20}c}
1 & 0 & 2 \\
0 & 3 & 0 \\
\end{array}} \right) \\
B = \left( {\begin{array}{*{20}c}
4 & 5 \\
0 & 0 \\
\end{array}} \right) \\
C = \left( {\begin{array}{*{20}c}
0 & 1 \\
0 & { - 1} \\
\end{array}} \right) \\
D = \left( {\begin{array}{*{20}c}
1 & 3 \\
0 & 2 \\
\end{array}} \right) \\
F = \left( {\begin{array}{*{20}c}
1 & { - \frac{3}{2}} \\
0 & {\frac{1}{2}} \\
\end{array}} \right) \\
A + B \\
B + C \\
C - D \\
4 \cdot F \\
B \cdot A \\
A \cdot B \\
B \cdot C \\
C \cdot B \\
D \cdot F \\
F \cdot D \\
D \\
D^{ - 1} \\
A^t \\
B^t \\
\end{array}
\]

Binary file not shown.

View File

@@ -0,0 +1,56 @@
\subsection{11\_1 Der Betrag in $\mathbb R$}
\begin{tabbing}
\tabumg
\>wird f<>r $x\in\mathbb R$ mit $|x|$ bezeichnet\\
\>ist definiert durch $
\left| x \right| = \left\{ {\begin{array}{*{20}c}
{x\text{ falls }x \ge 0} \\
{ - x\text{ falls }x < 0} \\
\end{array}} \right.$\\
\\
Veranschaulichungen:\\
\>auf der Zahlengeraden:
\end{tabbing}
%\vspace{-10mm}
\begin{figure}[h]
\begin{center}
%\includegraphics{11_1_1}
\begin{tikzpicture}[scale=1.2]
\draw [thick](-2.5,0) -- (3.5,0);
\draw [thick, style=dotted](3.5,0) -- (4,0);
\draw [thick, style=dotted](-3,0) -- (-2.5,0);
\foreach \x/\xtext in {-2/x_2,0,1, 3/x_1}
\draw[xshift=\x cm, thick] (0pt,1pt) -- (0pt,-1pt) node[below,fill=white]
{$\xtext$};
\draw[snake=brace, mirror snake, color=blue] (-2,-0.4) -- (0,-0.4) node[midway,sloped,below] {$|x_1|$};
\draw[snake=brace, mirror snake, color=red] (0,-0.4) -- (3,-0.4) node[midway,sloped,below] {$|x_2|$};
\end{tikzpicture}
\end{center}
\end{figure}
\vspace{-15mm}
\begin{tabbing}
\tabumg
\>\>\>$x$ ist der Abstand von $x$ vom Nullpunkt\\
\\
\>durch den Funktionsgraphen:
\end{tabbing}
\vspace{-10mm}
\begin{figure}[h]
\begin{center}
\includegraphics{11_1_2}
\end{center}
\end{figure}
\vspace{-10mm}
\begin{tabbing}
\tabumg
Rechenregeln:\\
\>$|x\cdot y|=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx$
\end{tabbing}

View File

@@ -0,0 +1,17 @@
\subsection{08\_1 Determinanten von $2\times 2$-Matrizen}
\begin{itemize}
\item Berechnung:
$
\begin{array}{*{20}l}
{A = \left( {\begin{array}{*{20}c}
{a_{11} } & {a_{12} } \\
{a_{21} } & {a_{22} } \\
\end{array}} \right)} \\
\\
{\det (A) = a_{11} a_{22} - a_{12} a_{21} } \\
\end{array}$
\item Schema: \includegraphics{08_1_2}
\end{itemize}

View File

@@ -0,0 +1,10 @@
\subsection{12\_1 Die Addition komplexer Zahlen}
\begin{tabbing}
\tabumg%
\\
ist die Vektoraddition: \>\>\>$z_1=(a,b)$, $z_2=c,d$.\\
\>\>\>$z_1+z_2=(a+c, b+d)$\\ \\
Regeln und Veranschaulichungen aus 1.1.3-1.1.5 gelten sinngem<65><6D>\\
\end{tabbing}

View File

@@ -0,0 +1,6 @@
\subsection{08\_1 Die Determinante einer Matrix}
\begin{itemize}
\item ist f<>r $m\times n$-Matrizen, also f<>r "`quadratische"' Matrizen, erkl<6B>rt
\item ist eine Zahl
\end{itemize}

View File

@@ -0,0 +1,11 @@
\subsection{07\_1 Ein lineares Gleichungssystem \label{Ein_lineares_GS}}
aus $m$ Gleichungen mit $n$ Unbekannten (Unbestimmten, L<>sungsvariablen) $x_1, \ldots, x_n \in \IR$ ist von der Form
\[
\begin{array}{*{20}c}
{a_{11} x_1 } & { + \ldots + } & {a_{1n} x_n } & = & {b_1 } \\
\vdots & {} & \vdots & {} & \vdots \\
{a_{m1} x_1 } & { + \ldots + } & {a_{mn} x_n } & = & {b_m } \\
\end{array}
\]
wobei $a_{11},\ldots,a_{1n},\ldots, a_{m1}, \ldots, a_{mm}, b_1, \ldots, b_m \in \IR$ gegeben sind.
Ist $b_1=\ldots=b_n=0$, so hei<65>t das System \underline{homogen}, sonst \underline{inhomogen}.

Binary file not shown.

View File

@@ -0,0 +1,7 @@
\newpage
\subsection{02\_1 "`Kanonische"' Basisvektoren in der Ebene}
\hspace{10mm} $\vec{e_1}=\left(1,0\right)$; $\vec{e_2}=\left(0,1\right)$
\vspace{4mm}
\hspace{10mm}Darstellung von $\vec{a}=a_1\cdot\vec{e_1}+a_2\cdot\vec{e_2}$

Binary file not shown.

View File

@@ -0,0 +1,14 @@
\newpage
\subsection{03\_2 "`Kanonische"' n-dimensionale Basisvektoren}
\begin{tabbing}
\tabumg%
\includegraphics{KanonischeVektorenImRaum}\\ \\
\>Darstellung von $\vec{a} = \left( {a_1 , \ldots ,a_n } \right)$:\\
\>$\vec{a} = a_1 \vec{e_1 } + \ldots + a_n \vec{e_n } = \sum\limits_{i = 1}^n {a_i \vec{e_i } }
$
\end{tabbing}

Binary file not shown.

View File

@@ -0,0 +1,35 @@
\subsection{02\_1 Länge (Norm) eines Vektors in der Ebene}
\begin{figure}[h]
\begin{center}
%\includegraphics{LaengeVektorInEbene}
\input{2_1_1.tikz}
\end{center}
\caption{Länge (Norm) eines Vektors in der Ebene}
\end{figure}
\begin{itemize}
\item $\left|\vec{a}\right|=\sqrt{a^2_1+a^2_2}$. Auch üblich: $\left\|\vec{a}\right\|$
\item ist auch der Abstand zwischen den Punkten $\left(0,0\right)$ und $\left(a_1, a_2\right)$
\end{itemize}
\begin{tabbing}
\tabumg Rechenregeln:\>\>$\left|\vec{a}\right|=0$ gilt nur für $\vec{a}=\vec{0}$\\
\>\>$\left|k\cdot\vec{a}\right|=\left|k\right|\cdot\left|\vec{a}\right|$;\\
\>\>$\left|\vec{a}+\vec{b}\right|\leqslant\left|\vec{a}\right|+\left|\vec{b}\right|$
\end{tabbing}
\begin{itemize}
\item für $\vec{a}=\left(a_1,a_2\right)$, $\vec{b}=\left(b_1,b_2\right)$ ist $\left|\vec{a}-\vec{b}\right|$ der Abstand der
Punkte $\left(a_1, a_2\right)$ und $\left(b_1, b_2\right)$.
\end{itemize}
\subsection{02\_2 Einheitsvektoren}
Einheitsvekotren sind Vektoren der Länge 1.

View File

@@ -0,0 +1,15 @@
\subsection{04\_1 Länge (Norm) eines n-dimensionalen Vektors}
\begin{tabbing}
\tabumg
\>Berechnung:\\
\>\>$\vec{a}=\left( a_1, \ldots, a_n \right) $\\
\>\>$\left| \vec{a} \right| = \sqrt{{a_1}^2+\ldots + {a_n}^2} = \sqrt{\sum\limits_{i=1}^n a_i^2}$\\ \\
\>Rechenregeln wie für $n=2$\\ \\
\>für $n=3$ ist $|\vec{a}\|$ auch der Abstand der Punkte $\left(0,0,0\right)$ und $\left(a_1,a_2,a_3\right)$\\ \\
\>für $n=3$, $\vec{a}\left(a_1,a_2,a_3\right)$, $\vec{b}\left(b_1,b_2,b_3\right)$\\
\>ist $\|\vec{a}-\vec{b}\|$ auch der Abstand der Punkte $\left(a_1,a_2,a_3\right)$\\
\>und $\left(b_1,b_2,b_3\right)$
\end{tabbing}

View File

@@ -0,0 +1,9 @@
\subsection{03\_2 Eine Linearkombination von m n-dimensionalen Vektoren $\vec{a_1},\ldots,\vec{a_m }$}
\begin{tabbing}
\tabumg%
\>ist ein Ausdruck der Form\\
\>$k_1 \cdot \vec{a_1} + \ldots +k_m \cdot \vec{a_m} = \sum\limits_{j = 1}^m {k_j \cdot } \vec{a_j}
$\\
\end{tabbing}

View File

@@ -0,0 +1,14 @@
\subsection{02\_1 Lineare Abhängigkeit (Kollinearität)}
\begin{tabbing}
\tabumg
\>$\vec{a}$ und $\vec{b}$ sind linear abhänging falls gilt:\\ \\
\>\>es gibt $k_1$ mit $\vec{a}=k_1\cdot\vec{b}$ oder\\
\>\>es gibt $k_2$ mit $\vec{b}=k_2\cdot\vec{a}$\\
\end{tabbing}
\begin{itemize}
\item Anschauung für $\vec{a}=\left(a_1, a_2\right)$, $\vec{b}=\left(b_1, b_2\right)$: die Punkte $\left(a_1, a_2\right)$ und $\left(b_1, b_2\right)$ liegen auf einer Geraden durch den Nullpunkt.
\item Gegenteil: \underline{lineare Abhängigkeit}
\end{itemize}

View File

@@ -0,0 +1,16 @@
\subsection{03\_2 Lineare Abhängigkeit von n-dimensionalen Vektoren}
\begin{tabbing}
\tabumg%
\>$\vec{a_1},\ldots,\vec{a_m}$ sind linear abhängig, falls sich einer der Vektoren als Linearkombination der restlichen\\ \>darstellen lässt.\\
\>Gegenteil:\underline{ lineare Unabhängigkeit}\\
\end{tabbing}
\begin{itemize}
\item Lineare Abhängigkeit für drei Vektoren im Raum:
\begin{itemize}
\item anderer Name: Komplanarität
\item Anschauung für $\vec{a}=\left(a_1, a_2, a_3 \right)$, $\vec{b}=\left(b_1, b_2, b_3 \right)$, $\vec{c}=\left(c_1, c_2, c_3 \right)$:\\
die Punkte $\left(a_1, a_2, a_3 \right)$, $\left(b_1, b_2, b_3 \right)$ und $\left(c_1, c_2, c_3 \right)$ liegen auf einer Ebene durch den Nullpunkt.
\end{itemize}
\end{itemize}

View File

@@ -0,0 +1,126 @@
\chapter{Lineare Algebra}
\section{Vektoren in der Ebene - Übersicht}
\input{VektorenVeranschaulichung.tex}
\input{MengeVektorenInEbene.tex}
\input{AdditionVektorenInEbene.tex}
\input{NullVektorEbene.tex}
\input{SubtraktionVektorInEbene.tex}
\input{MultiplikationVektorSkalarInEbene.tex}
\input{KanonischeBasisvektorenInDerEbene.tex}
\input{LineareAbhaengigkeitVektorenInDerEbene.tex}
\input{LaengeVektorInEbene.tex}
\input{SkalarproduktVektorenInEbene.tex}%
\input{OeffnungswinkelZwischenZweiVektorenInEbene.tex}
%%\clearemptydoublepage
\input{AufgabenVektorenInEbene.tex}
%
%\clearemptydoublepage
%
\section{Vektoren im Raum und n-dimensionale Vektoren - Übersicht}
\input{VeranschaulichungVektorenImRaum.tex}
\input{MengeAllerVektorenImRaum.tex}
\input{AdditionVektorenImRaum.tex}
\input{NullvektorImRaum.tex}
\input{SubtraktionVektorenImRaum.tex}
\input{MultiplikationVektorImRaumMitSkalar.tex}
\input{KanonischeVektorenImRaum.tex}
\input{LinearKombination_von_m_n_dimensionalenVektoren.tex}
\input{LineareAbhaengigkeit_von_n_dimensionalen_Vektoren.tex}
\input{Laenge_eines_n_dimensionalen_Vektors.tex}%%04_1%%
\input{N_Dimensionale_Einheitsvektoren.tex}%%04_1%%
\input{Skalarprodukt_von_zwei_n_dimensionalen_Vektoren.tex}%%04_1%%
\input{Oeffnungswinkel_zw_zw_n_dim_Vektoren.tex}
\input{Vektorprodukt_zw_zw_Vektoren_im_R3.tex}%%04_1%%
%\subsection{04\_2 Spatprodukt von drei Vektoren im $\mathbb R^3$}
%
%\clearemptydoublepage
%
%\section{05\_1 Matrizenrechnung - Übersicht}
%\subsection{05\_1 Eine $m\times n$-Matrix}
%\subsection{05\_1 Menge aller $m\times n$-Matrizen}
%\subsection{05\_1 Ein Vektor $\vec a \in \mathbb R^n$ läßt sich als Matrix auffassen}
%\subsection{05\_1 Addition von zwei $m\times n$-Matrizen (also von Matrizen \framebox{gleichen} Formats)}
%\input{Nullmatrix}
%\subsection{05\_2 Subtraktion von zwei $m\times n$-Matrizen}
%\subsection{05\_2 Multiplikation einer $m\times n$-Matrix mit einem Skalar}
%\subsection{05\_2 Multiplikation einer $r\times n$-Matrix mit einer $m\times n$-Matrix}
%Falksches Schema
%\subsection{06\_1 $n\times n$-Einheitsmatrix}
%\subsection{06\_1 Eine invertierbare Matrix $A$}
%\subsection{06\_1 Transponieren einer $m\times n$-Matrix}
%\subsection{06\_2 Elementare Zeilen(Spalten)umformungen einer Matrix}
%\subsection{06\_2 Den Rang einer $m\times n$-Matrix $A$}
%\subsection{07\_1 Invertierbare $m\times n$-Matrizen}
%\subsection{07\_1 Bestimmung von $A^{-1}$ für invertierbares $A$}
%
%\clearemptydoublepage
%
%\section{07\_1 Lineare Gleichungssysteme - Übersicht}
%\input{Ein_lineares_Gleichungssystem.tex}%07-1
%\subsection{07\_1 Formulierung in Matrixsprache}
%\subsection{07\_2 Die Lösungsmenge des Systems aus \ref{Ein_lineares_GS}}
%\subsection{07\_2 Bestimmung der Anzahl der Lösungen des Systems aus \ref{Ein_lineares_GS} durch Rangbetrachtungen}
%\input{Strategie_Loesung_eindeutig_loesbares_lineares_Gleichungssystem.tex}%07-2 08-1
%
%\clearemptydoublepage
%
%\section{08\_1 Determinanten - Übersicht}
%\input{DieDeterminanteEinerMatrix.tex}
%\input{DeterminantenVon2x2Matrizen}
%\subsection{08\_2 Determinanten von $3\times 3$-Matrizen}
%\subsection{08\_2 Determinanten von $n\times n$-Matrizen $(n\geq3)$}
%\subsection{09\_1 Rechenregeln für Determinanten}
%\subsection{09\_1 Invertierbare Matrizen}
%\subsection{09\_2 Lösung von linearen Gleichungssystemen}
%\subsection{09\_2 Das Vektorprodukt}
%\subsection{09\_2 Das Spatprodukt}
%
%\clearemptydoublepage
%
%\chapter{10\_1 Zahlen}
%\section{10\_1 Reelle Zahlen - Übersicht}
%\subsection{10\_1 Grundrechenarten in $\mathbb R$}
%\subsection{10\_1 Ungleichungen in $\mathbb R$}
%\subsection{10\_2 Intervalltypen}
%\subsection{10\_2 Beschränkte Mengen, obere und untere Schranken}
%\subsection{10\_2 Infinium, Supremum, Minimum, Maximum}%10-2
%\input{Der_Betrag_in_R.tex}
%\subsection{11\_1 Betragsgleichungen}
%\subsection{11\_2 Betragsungleichungen}
%\section{11\_2 Komplexe Zahlen - Übersicht}
%\subsection{11\_2 Die Menge der komplexen Zahlen}%11-2
%\input{DieAdditionkomplexerZahlen.tex}
%\subsection{12\_1 Die Multiplikation komplexer Zahlen}
%\subsection{12\_1 Die reellen Zahlen als Teilmenge der komplexen Zahlen}
%\subsection{12\_1 Die rein imaginären Zahlen als Teilmenge der komplexen Zahlen}
%\subsection{12\_1 Die Darstellung komplexer Zahlen durch Real- und Imaginärteil}
%\subsection{12\_2 Die Die Multiplikation komplexer Zahlen vgl. 3}
%\subsection{12\_2 Der Kehrwert einer komplexen Zahl $z \neq 0$}
%\subsection{12\_2 Der Quotient von zwei komplexen Zahlen}
%\subsection{12\_2 Die zu einer komplexen Zahl konjugiert komplexe Zahl}
%\subsection{13\_1 Der Betrag einer komplexen Zahl }
%\subsection{13\_1 Beim Lösen von Betrags(un)gleichungen in $\mathbb C$}
%\subsection{13\_1 Die Polarform}
%\subsection{13\_2 Umrechnung: Polarkoordinaten $\leftrightarrow$ Kartesische Koordianten}
%\subsection{14\_1 Produktbildung in Polarkoordinaten}
%\subsection{14\_1 Kehrwertbildung in Polarkoordinaten}
%\subsection{14\_1 Potenzen und Polarkoordinaten}
%\subsection{14\_2 n. Wurzeln in Polarkoordinaten}
%\subsection{14\_2 Komplexe Zahlen in der Elektrotechnik}
%
%\chapter{15\_1 Folgen, Reihen, Potenzreihen}
%\section{15\_1 Folgen: Übersicht}
%\subsection{15\_1 Eine reelle Folge}
%\subsection{15\_1 Monotonie}
%
\chapter{23\_1 Differentialrechnung in $\mathbb R$}
\input{23_1}
%\chapter{29\_2 Integralrechnung in $\mathbb R$}
%\chapter{35\_1 Differentialrechnung in $\mathbb R^n$}
%\chapter{41\_1 Gewöhnliche Differentialgleichungen}
%\chapter{45\_1 Integralrechnung in $\mathbb R^3$}
%\chapter{49\_1 Integraltransfoemationen}
%\chapter{56\_2 Numerische Mathematik}
%\input{NumerischeMathematik.tex}
%\chapter{63\_1 Wahrscheinlichkeitsrechnung und Statistik}

Binary file not shown.

BIN
mathefhtw/Loesung0001.pdf Normal file

Binary file not shown.

62
mathefhtw/Loesung001.tex Normal file
View File

@@ -0,0 +1,62 @@
\section{Aufgabe 1}\label{A001}
Gegeben sind: \hspace{10mm}$\vec a = \left( {3,4} \right)$,\hspace{5mm}$\vec b = \left( {10,5} \right)$,\hspace{5mm}$ \vec c =
\vec a - \frac{1} {2}\vec b$
\begin{list}{\ding{42}}
{\setlength{\topsep}{0.5cm}
\setlength{\itemsep}{0.5cm}
\setlength{\leftmargin}{6mm}
\setlength{\labelwidth}{4mm}
\setlength{\parsep}{2mm}
\setlength{\labelsep}{2mm}
\renewcommand{\makelabel}[1]{\textbf{#1}}}
\item[a.]Bestimmen Sie $\vec c$ durch Zeichnung und Rechnung!
\item[b.]Bestimmen Sie $\left|\vec a\right|$, $\left|\vec b\right|$, $\left|\vec c\right|$.
\item[c.]Bestimmen Sie den Öffnungswinkel $\alpha \left( {\vec a,\vec c} \right)$ und $\alpha \left( {\vec a,\vec b} \right)$.
\end{list}
\subsection{Lösung}
\subsubsection{Zeichnung}
\begin{list}{\ding{42}}
{\setlength{\topsep}{0.5cm}
\setlength{\itemsep}{0.5cm}
\setlength{\leftmargin}{6mm}
\setlength{\labelwidth}{4mm}
\setlength{\parsep}{2mm}
\setlength{\labelsep}{2mm}
\renewcommand{\makelabel}[1]{\textbf{#1}}}
\item[a.]\includegraphics{Loesung0001}
\end{list}
\subsubsection{Rechnung}
\begin{list}{\ding{42}}
{\setlength{\topsep}{0.5cm}
\setlength{\itemsep}{0.5cm}
\setlength{\leftmargin}{6mm}
\setlength{\labelwidth}{4mm}
\setlength{\parsep}{2mm}
\setlength{\labelsep}{2mm}
\renewcommand{\makelabel}[1]{\textbf{#1}}}
\item[a.]$\underline{\underline{\vec c}} = \vec a - \frac{1} {2}\vec b = \left( {3,4} \right) - \frac{1} {2}\left( {10,5}
\right) = \left( {3,4} \right) - \left( {10 \cdot \frac{1} {2},5 \cdot \frac{1} {2}} \right) = \left( {3,4} \right) - \left({5,\frac{5}{2}} \right) =\left( {3 - 5,4 - \frac{5} {2}} \right) = \underline{\underline {\left( { - 2,\frac{3} {2}} \right)}}$
\item[b.]$\underline{\underline {\left| {\vec a} \right|}} = \left| {\left( {3,4} \right)} \right| = \sqrt {3^2 + 4^2 } = \sqrt {9 +
16} = \sqrt {25} = \underline{\underline 5}$\\ \\%
$\underline{\underline {\left| {\vec b} \right|}} = \left| {\left( {10,6} \right)} \right| = \sqrt {10^2 + 5^2 } = \sqrt
{100 + 25} = \sqrt {125} = \sqrt {5 \cdot 25} = 5\sqrt 5 \cong \underline{\underline {11.18033988}}$\\%
$\underline{\underline {\left| {\vec c} \right|}} = \left| {\left( { - 2,\frac{3}{2}} \right)} \right| = \sqrt {\left( { - 2} \right)^2 + \left( {\frac{3}{2}} \right)^2 } = \sqrt {4 + \frac{9}{4}} = \sqrt {\frac{{16 + 9}}{4}} = \sqrt {\frac{{25}}{4}} = \underline{\underline {\frac{5}{2}}} $
\item[c.]$\alpha = \alpha \left( {\vec a,\vec c} \right)\text{, }0 \le \alpha \le \pi$\\
\vspace{2mm}
\hspace{-1.5mm}$\cos \left( \alpha \right) = \frac{{\left\langle {\vec a,\vec c} \right\rangle }}{{\left| {\vec a} \right| \cdot \left| {\vec c} \right|}}\mathop = \limits_{vgl.b.} \frac{{\left\langle {\left( {3,4} \right),\left( { - 2,\frac{3}{2}} \right)} \right\rangle }}{{5 \cdot \frac{5}{2}}} = \frac{{3 \cdot \left( { - 2} \right) + 4 \cdot \frac{3}{2}}}{{\frac{{25}}{2}}} = \frac{{ - 6 + 6}}{{\frac{{25}}{2}}} = 0 \Rightarrow \underline{\underline {\alpha = \frac{\pi }{2}}} \left( { \entspricht 90^ \circ } \right)$
\\
\vspace{5mm}
$\beta = \alpha \left( {\vec a,\vec b} \right)$, $0 \le \beta \le \pi$\\
\vspace{2mm}
\hspace{-1.5mm}$\cos \left( \beta \right) = \frac{{\left\langle {\vec a,\vec b} \right\rangle }}{{\left| {\vec a} \right| \cdot \left| {\vec b} \right|}}\mathop = \limits_{vgl.b.}\frac{{\left\langle {\left( {3,4} \right),\left( {10,5} \right)} \right\rangle }}{{5 \cdot 5 \cdot \sqrt 5 }} = \frac{{3 \cdot 10 + 4 \cdot 5}}{{25 \cdot \sqrt 5 }} = \frac{{50}}{{25 \cdot \sqrt 5 }} = \frac{2}{{\sqrt 5 }} $.\\
Es folgt:\\
$\beta = \cos^{-1} \left(\frac{2}{\sqrt 5}\right)= \arccos\left(\frac{2}{\sqrt 5}\right) \cong \underline{\underline{0.463647609}} \left( \entspricht 26.565051177078^\circ \right)$
\end{list}

45
mathefhtw/Loesung002.tex Normal file
View File

@@ -0,0 +1,45 @@
\section{Aufgabe 2}
Welche Gegenkraft $\vec F$ hebt die folgenden vier Einzelkräfte, die an einem Massepunkt angreifen, in der Wirkung
auf?\\
\hspace{10mm}$ \vec F_1 = \left( {200N,110N} \right)$\hspace{10mm}$\vec F_2 = \left( { - 10N,30N} \right)$
\hspace{10mm}$ \vec F_3 = \left( {40N,85N} \right)$\hspace{14mm}$\vec F_4 = \left( { - 30N, - 50N} \right)$\\ \\
Von welchem Betrag ist $\vec{F}$? Unter welchem Winkel greifen $\vec{F_1}$ und $\vec{F_2}$ den Massepunkt an?
\subsection{Lösung}
$ \overrightarrow F = - \left( {\overrightarrow {F_1 } + \overrightarrow {F_2 } + \overrightarrow {F_3 } + \overrightarrow {F_4 } } \right)\\
= - \left( {200N - 10N + 40N - 30N,110N + 30N + 85N - 50N} \right)\\
= - \left( {200N,175N} \right) \\
= \underline{\underline {\left( { - 200N, - 175N} \right)}}$\\
$\underline{\underline {\overrightarrow F }} = \sqrt { - \left( {200} \right)^2 + \left( { - 175} \right)^2 } N =\sqrt {\left( {8 \cdot 25} \right)^2 + \left( {7 \cdot 25} \right)^2 } N =25\cdot \sqrt{113}N \entspricht \underline{\underline{265.7536453 N}} $\\
\\
Der gesuchte Winkel sei $\alpha \text{, } 0\leq\alpha\leq \pi$.
\\
Dann gilt: $\cos\left(\alpha \right)=\frac{{\left\langle {\overrightarrow {F_1 } ,\overrightarrow {F_2 } } \right\rangle }}{{\left| {\overrightarrow {F_1 } } \right| \cdot \left| {\overrightarrow {F_2 } } \right|}}$. ${\Huge \otimes}$
$ \left\langle {\vec F_1 ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
\over F} _2 } \right\rangle = \left\langle {\left( {200N,110N} \right),\left( { - 10N,30N} \right)} \right\rangle = - 2000N^2 + 3300N^2 = 1300N^2 $
$\left| {\vec F_1 } \right| = \sqrt {\left( {200} \right)^2 + \left( {110} \right)^2 } N \cong 228.2542442N$
$\left| {\vec F_2 } \right| = \sqrt {\left( { - 10} \right)^2 + \left( {30} \right)^2 } N \cong 31.6227766N$\\
Das Einsetzen in ${\Huge \otimes}$ ergibt:
$\cos \left( \alpha \right) \cong 0.1801044696 \Rightarrow \arccos \left( \alpha \right) \cong \underline{\underline{1.38970367}} \left( {{\rm 79}{\rm .62415508}^ \circ } \right) $
\section{Aufgabe 107}
\hspace{10mm} $\mathbb{R} \rightarrow \mathbb{R}$ sei definiert durch
\hspace{20mm} $f(x) = \left\{ {\begin{array}{rll}
x & {\text{für}} & { - 1 \le x \le 1} \\
0 & {\text{sonst}} & . \\
\end{array}} \right.
$;
\begin{description}
\item[a] Skizzieren Sie den Graphen von $f$.
Zeigen Sie, daß $f$ die Voraussetzungen aus 9.3.2 erfüllt.
\item[b] Berechnen Sie das Fourierintegral $I(x)$ von $f$.
\item[c] Für welche $x \in \mathbb{R}$
\end{description}

View File

@@ -0,0 +1,41 @@
\section{Aufgabe 2}
Welche Gegenkraft $\vec F$ hebt die folgenden vier Einzelkräfte, die an einem Massepunkt angreifen, in der Wirkung
auf?\\
\hspace{10mm}$ \vec F_1 = \left( {200N,110N} \right)$\hspace{10mm}$\vec F_2 = \left( { - 10N,30N} \right)$
\hspace{10mm}$ \vec F_3 = \left( {40N,85N} \right)$\hspace{14mm}$\vec F_4 = \left( { - 30N, - 50N} \right)$\\ \\
Von welchem Betrag ist $\vec{F}$? Unter welchem Winkel greifen $\vec{F_1}$ und $\vec{F_2}$ den Massepunkt an?
\subsection{Lösung}
$ \overrightarrow F = - \left( {\overrightarrow {F_1 } + \overrightarrow {F_2 } + \overrightarrow {F_3 } + \overrightarrow {F_4 } } \right)\\
= - \left( {200N - 10N + 40N - 30N,110N + 30N + 85N - 50N} \right)\\
= - \left( {200N,175N} \right) \\
= \underline{\underline {\left( { - 200N, - 175N} \right)}}$\\
$\underline{\underline {\overrightarrow F }} = \sqrt { - \left( {200} \right)^2 + \left( { - 175} \right)^2 } N =\sqrt {\left( {8 \cdot 25} \right)^2 + \left( {7 \cdot 25} \right)^2 } N =25\cdot \sqrt{113}N \entspricht \underline{\underline{265.7536453 N}} $\\
\\
Der gesuchte Winkel sei $\alpha \text{, } 0\leq\alpha\leq \pi$.
\\
Dann gilt: $\cos\left(\alpha \right)=\frac{{\left\langle {\overrightarrow {F_1 } ,\overrightarrow {F_2 } } \right\rangle }}{{\left| {\overrightarrow {F_1 } } \right| \cdot \left| {\overrightarrow {F_2 } } \right|}}$. ${\Huge \otimes}$
$ \left\langle {\vec F_1 ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}
\over F} _2 } \right\rangle = \left\langle {\left( {200N,110N} \right),\left( { - 10N,30N} \right)} \right\rangle = - 2000N^2 + 3300N^2 = 1300N^2 $
$\left| {\vec F_1 } \right| = \sqrt {\left( {200} \right)^2 + \left( {110} \right)^2 } N \cong 228.2542442N$
$\left| {\vec F_2 } \right| = \sqrt {\left( { - 10} \right)^2 + \left( {30} \right)^2 } N \cong 31.6227766N$\\
Das Einsetzen in ${\Huge \otimes}$ ergibt:
$\cos \left( \alpha \right) \cong 0.1801044696 \Rightarrow \arccos \left( \alpha \right) \cong \underline{\underline{1.38970367}} \left( {{\rm 79}{\rm .62415508}^ \circ } \right) $
\section{Aufgabe 107}
\hspace{10mm} $\mathbb{R} \rightarrow $\mathbb{R}$ sei definiert durch
\hspace{20mm} $f(x)=\left\{\left(
\begin{array}{crc}
&$x$ & für & $-1\leq x \leq$\\
&$0$ & sonst & $.$\\
\end{array}
\right)
\right$

29
mathefhtw/Loesung003.tex Normal file
View File

@@ -0,0 +1,29 @@
\section{Aufgabe 3}
Gegeben sind: $\vec{a}=\left(3,-1,2\right)\text{, }\vec{b}=\left(1,2,4\right)\text{, }\vec{c}=\left(1,1,1\right)$.
Berechnen Sie:
\begin{list}{\ding{42}}
{\setlength{\topsep}{0.5cm}
\setlength{\itemsep}{0.5cm}
\setlength{\leftmargin}{6mm}
\setlength{\labelwidth}{4mm}
\setlength{\parsep}{2mm}
\setlength{\labelsep}{2mm}
\renewcommand{\makelabel}[1]{\textbf{#1}}}
\item[a.]$\vec{a}+\vec{b}\text{, }\vec{a}-\vec{b}\text{, }4\cdot\vec{a}\text{, }-\frac{1}{4}\cdot\vec{b}\text{, }-5\cdot\vec{c}$,
\item[b.]$\left|\vec{a}\right|\text{, }\left|\vec{b}\right|\text{, }\left|\vec{c}\right|$,
\item[c.]$\alpha\left(\vec{a},\vec{b}\right)$,
\item[d.]$\vec{a}\times\vec{b}$ und den Fl<46>cheninhalt des von $\vec{a}$ und $\vec{b}$ aufgespannten Parallelogramms,
\item[e.]$\left[\vec{a},\vec{b},\vec{c}\right]$ und das Volumen des von $\vec{a},\vec{b}$ und $\vec{c}$ aufgespannten Spats.
\end{list}
\subsection{L<EFBFBD>sung}
\begin{list}{\ding{42}}
{\setlength{\topsep}{0.5cm}
\setlength{\itemsep}{0.5cm}
\setlength{\leftmargin}{6mm}
\setlength{\labelwidth}{4mm}
\setlength{\parsep}{2mm}
\setlength{\labelsep}{2mm}
\renewcommand{\makelabel}[1]{\textbf{#1}}}
\item[a.]$\underline{\underline{\vec{a}+\vec{b}}}=\left(3,-1,2\right)+\left(1,2,4\right)=\left(3+1,-1+2,2+4\right)=\underline{\underline{\left(4,1,6\right)}}$
\end{list}

9
mathefhtw/Loesung004.tex Normal file
View File

@@ -0,0 +1,9 @@
\section{Aufgabe 4}
Die Kraft $\vec{F}$ mit $\left|\vec{F}\right|=85N$ verschiebt einen Massenpunkt um eine Strecke $\vec s$ mit $\left|\vec{s}\right|=32m$; dabei wird eine Arbeit von $W=1360J$ verrichtet.
Unter welchen Winkel greift die Kraft an?
\subsection{L<EFBFBD>sung}
Gesucht ist $\alpha = \alpha\left(\vec{F},\vec{a}\right)$. \\
Es gilt $0\leq\alpha\leq\pi$ und $\cos\left(\alpha\right)=\frac{\left\langle \vec{F},\vec{s}\right\rangle}{\left| \vec{F} \right| \cdot \left| \vec{s} \right|}=\frac{W}{\left| \vec{F} \right| \cdot \left| \vec{s} \right|}=\frac{1360J}{32 \cdot 85 N\cdot m}=\frac{1360}{2720}=\frac{1}{2}$. \\
Es folgt: $\underline{\underline{\alpha=\frac{\pi}{3}}}$ in Bogenma<6D> bzw. $\underline{\underline{\alpha = 60^ \circ }}$
im Gradma<6D>.

87
mathefhtw/Loesung005.tex Normal file
View File

@@ -0,0 +1,87 @@
\section{Aufgabe 5}
Gegeben sind die folgenden Matrizen:\\
$A = \left( {\begin{array}{*{20}c}
1 & 0 & 2 \\
0 & 3 & 0 \\
\end{array}} \right) \text{, } B = \left( {\begin{array}{*{20}c}
4 & 5 \\
0 & 0 \\
\end{array}} \right) \text{, } C = \left( {\begin{array}{*{20}c}
0 & 1 \\
0 & { - 1} \end{array}} \right) \text{, } D = \left( {\begin{array}{*{20}c}
1 & 3 \\
0 & 2 \\
\end{array}} \right) \text{, } F = \left( {\begin{array}{*{20}c}
1 & { - \frac{3}{2}} \\
0 & {\frac{1}{2}} \\
\end{array}} \right) $
\begin{list}{\ding{42}}
{\setlength{\topsep}{3mm}
\setlength{\itemsep}{3mm}
\setlength{\leftmargin}{6mm}
\setlength{\labelwidth}{4mm}
\setlength{\parsep}{2mm}
\setlength{\labelsep}{2mm}
\renewcommand{\makelabel}[1]{\textbf{#1}}}
\item[a.]Berechnen Sie die folgenden Matrizen bzw. begr<67>nden Sie das Nichterkl<6B>rtsein:\\
$A+B\text{, }B+C\text{, }C-D\text{, }4\cdot F$
\item[b.]Berechnen Sie die folgenden Matrizen bzw. begr<67>nden Sie das Nichterkl<6B>rtsein:\\
$B\cdot A\text{, }A\cdot B\text{, }B\cdot C\text{, }C\cdot B$\\
\item[c.]Berechnen Sie $D\cdot F$ und $F\cdot D$. Folgern Sie, da<64> $D$ invertierbar ist und geben Sie $D^{-1}$ an.
\item[d.]Berechnen Sie $A^t$ und $B^t$.
\end{list}
\subsection{L<EFBFBD>sung}
\begin{list}{\ding{42}}
{\setlength{\topsep}{3mm}
\setlength{\itemsep}{3mm}
\setlength{\leftmargin}{6mm}
\setlength{\labelwidth}{4mm}
\setlength{\parsep}{2mm}
\setlength{\labelsep}{2mm}
\renewcommand{\makelabel}[1]{\textbf{#1}}}
\item[a.]\underline{\underline{$A+B$ ist nicht erkl<6B>rt}}, da $A$ und $B$ unterschiedliches Format haben.\\
$ \underline{\underline {B + C}} = \left( {\begin{array}{cc}
4 & 5 \\
0 & 0 \\
\end{array}} \right) + \left( {\begin{array}{cc}
0 & 1 \\
0 & { - 1} \\
\end{array}} \right) = \left( {\begin{array}{cc}
{4 + 0} & {5 + 1} \\
{0 + 0} & {0 + \left( { - 9} \right)} \\
\end{array}} \right) = \underline{\underline {\left( {\begin{array}{cc}
4 & 6 \\
0 & { - 1} \\
\end{array}} \right)}} $ \\
$\underline{\underline {C - D}} = \left( {\begin{array}{cc}
0 & 1 \\
0 & { - 1} \\
\end{array}} \right) - \left( {\begin{array}{cc}
1 & 3 \\
0 & 2 \\
\end{array}} \right) = \left( {\begin{array}{cc}
{0 - 1} & {1 - 3} \\
{0 - 0} & { - 1 - 2} \\
\end{array}} \right) = \underline{\underline {\left( {\begin{array}{cc}
{ - 1} & { - 2} \\
0 & { - 3} \\
\end{array}} \right)}} $\\
$\underline{\underline {4 \cdot F}} = 4 \cdot \left( {\begin{array}{cc}
1 & { - \frac{3}{2}} \\
0 & {\frac{1}{2}} \\
\end{array}} \right) = \left( {\begin{array}{cc}
{4 \cdot 1} & {4 \cdot \left( { - \frac{3}{2}} \right)} \\
{4 \cdot 0} & {4 \cdot \frac{1}{2}} \\
\end{array}} \right) = \underline{\underline {\left( {\begin{array}{cc}
4 & { - 6} \\
0 & 2 \\
\end{array}} \right)}} $
\end{list}

53
mathefhtw/Loesung006.tex Normal file
View File

@@ -0,0 +1,53 @@
\section{Aufgabe 6}
%\begin{floatingfigure}[l]{72mm}
%\begin{wrapfigure}[1]{l}{72mm}
% \includegraphics{Aufgabe006}
%\end{wrapfigure}
%\end{floatingfigure}
\begin{figure}[htbp]
\begin{minipage}{0.5\textwidth}
\centering
\includegraphics{Aufgabe006}
\end{minipage}\hfill
\begin{minipage}{0.48\textwidth}
Gegeben ist der folgende Vierpol:\\
\begin{list}{\ding{42}}
{\setlength{\topsep}{0.3cm}
\setlength{\itemsep}{0.3cm}
\setlength{\leftmargin}{6mm}
\setlength{\labelwidth}{4mm}
\setlength{\parsep}{2mm}
\setlength{\labelsep}{2mm}
\renewcommand{\makelabel}[1]{\textbf{#1}}}
\item[a.]Bestimmen Sie eine Matrix\\$A$ mit $
A \cdot \left( {\begin{array}{*{20}c}
{I_1 } \\
{I_2 } \\
\end{array}} \right) = \left( {\begin{array}{*{20}c}
{U_1 } \\
{U_2 } \\
\end{array}} \right)$
($A$ hei<65>t Widerstandsmatrix)
\item[b.]Berechnen Sie $U_1$ und $U_2$ mit Hilfe von a. f<>r folgende Werte:
$R_1 = 10\Omega\text{, }R_2 = 20\Omega \text{, }I_1 = 0.5A\text{, }I_2 = 2A.$
\end{list}
\end{minipage}
\end{figure}
\subsection{L<EFBFBD>sung}
Vorab:
\begin{list}{\ding{42}}
{\setlength{\topsep}{0.2cm}
\setlength{\itemsep}{0.1cm}
\setlength{\leftmargin}{6mm}
\setlength{\labelwidth}{4mm}
\setlength{\parsep}{2mm}
\setlength{\labelsep}{2mm}
\renewcommand{\makelabel}[1]{\textbf{#1}}}
\item[1)]$I_1+I_2-I=0$
\item[2)]$U_1-R_2I-R_1I_1=0$
\item[1)]$U_2-R_2T-R_1I_2=0$
\end{list}

3
mathefhtw/Loesung007.tex Normal file
View File

@@ -0,0 +1,3 @@
\section{Aufgabe 7}
xyz
\subsection{L<EFBFBD>sung}

2
mathefhtw/Loesung008.tex Normal file
View File

@@ -0,0 +1,2 @@
\section{Aufgabe 8}
xyz

2
mathefhtw/Loesung009.tex Normal file
View File

@@ -0,0 +1,2 @@
\section{Aufgabe 9}
xyz

43
mathefhtw/Loesung010.tex Normal file
View File

@@ -0,0 +1,43 @@
\section{Aufgabe 10}
%\begin{floatingfigure}[l]{72mm}
%\includegraphics{Aufgabe010}
%\end{floatingfigure}
%\begin{wrapfigure}[5]{l}{75mm}
% \includegraphics{Aufgabe010}
%\end{wrapfigure}
\begin{figure}[htbp]
\begin{minipage}{0.5\textwidth}
\centering
\includegraphics{Aufgabe010}
\end{minipage}\hfill
\begin{minipage}{0.48\textwidth}
Gegeben ist die folgende Schaltung:\\
wobei $U_2=20V\text{, }U_1=-10V\text{, }R_1=6\Omega\text{, }R_2=2\Omega\text{, }R_3=3\Omega\text{.}$\\
Stellen Sie ein lineares Gleichungssystem zur Bestimmung von $I_1\text{, }I_2\text{, }I_3$ in Matrixform auf.\\ \\
L<>sen Sie es mit dem Gau<61>algorithmus.
\end{minipage}
\end{figure}
%\parpic[l]{\framebox{\includegraphics{Aufgabe010}}}
\subsection{L<EFBFBD>sung}
\begin{list}{\ding{42}}
{\setlength{\topsep}{0.2cm}
\setlength{\itemsep}{0.1cm}
\setlength{\leftmargin}{6mm}
\setlength{\labelwidth}{4mm}
\setlength{\parsep}{2mm}
\setlength{\labelsep}{2mm}
\renewcommand{\makelabel}[1]{\textbf{#1}}}
\item[Knotengleichung A:]$I_1+I_2-I_3=0$
\item[Maschengleichung I:]sdfsdfsdfsdfsd
\item[Maschengleichung II:]fsdfsd
\end{list}

3
mathefhtw/Loesung011.tex Normal file
View File

@@ -0,0 +1,3 @@
\section{Aufgabe 11}
\includegraphics{Aufgabe011}
xyz

4
mathefhtw/Loesung012.tex Normal file
View File

@@ -0,0 +1,4 @@
\section{Aufgabe 12}
xyz
\subsection{L<EFBFBD>sung}

3
mathefhtw/Loesung013.tex Normal file
View File

@@ -0,0 +1,3 @@
\section{Aufgabe 13}
xyz
\subsection{L<EFBFBD>sung}

2
mathefhtw/Loesung014.tex Normal file
View File

@@ -0,0 +1,2 @@
\section{Aufgabe 14}
xyz

3
mathefhtw/Loesung015.tex Normal file
View File

@@ -0,0 +1,3 @@
\section{Aufgabe 15}
xyz
\subsection{L<EFBFBD>sung}

2
mathefhtw/Loesung016.tex Normal file
View File

@@ -0,0 +1,2 @@
\section{Aufgabe 16}
xyz

4
mathefhtw/Loesung017.tex Normal file
View File

@@ -0,0 +1,4 @@
\section{Aufgabe 17}
xyz
\subsection{L<EFBFBD>sung}

4
mathefhtw/Loesung018.tex Normal file
View File

@@ -0,0 +1,4 @@
\section{Aufgabe 18}
xyz
\subsection{L<EFBFBD>sung}

5
mathefhtw/Loesung019.tex Normal file
View File

@@ -0,0 +1,5 @@
\section{Aufgabe 19}
\includegraphics{Aufgabe019}
xyz
\subsection{L<EFBFBD>sung}

3
mathefhtw/Loesung020.tex Normal file
View File

@@ -0,0 +1,3 @@
\section{Aufgabe 20}
xyz
\subsection{L<EFBFBD>sung}

3
mathefhtw/Loesung021.tex Normal file
View File

@@ -0,0 +1,3 @@
\section{Aufgabe 21}
xyz
\subsection{L<EFBFBD>sung}

3
mathefhtw/Loesung022.tex Normal file
View File

@@ -0,0 +1,3 @@
\section{Aufgabe 22}
xyz
\subsection{L<EFBFBD>sung}

4
mathefhtw/Loesung023.tex Normal file
View File

@@ -0,0 +1,4 @@
\section{Aufgabe 23}
xyz
\subsection{L<EFBFBD>sung}

3
mathefhtw/Loesung024.tex Normal file
View File

@@ -0,0 +1,3 @@
\section{Aufgabe 24}
xyz
\subsection{L<EFBFBD>sung}

4
mathefhtw/Loesung025.tex Normal file
View File

@@ -0,0 +1,4 @@
\section{Aufgabe 25}
xyz
\subsection{L<EFBFBD>sung}

4
mathefhtw/Loesung026.tex Normal file
View File

@@ -0,0 +1,4 @@
\section{Aufgabe 26}
\includegraphics{Aufgabe026}
xyz
\subsection{L<EFBFBD>sung}

4
mathefhtw/Loesung027.tex Normal file
View File

@@ -0,0 +1,4 @@
\section{Aufgabe 27}
xyz
\subsection{L<EFBFBD>sung}

4
mathefhtw/Loesung028.tex Normal file
View File

@@ -0,0 +1,4 @@
\section{Aufgabe 28}
xyz
\subsection{L<EFBFBD>sung}

4
mathefhtw/Loesung029.tex Normal file
View File

@@ -0,0 +1,4 @@
\section{Aufgabe 29}
\includegraphics{Aufgabe029}
xyz
\subsection{L<EFBFBD>sung}

3
mathefhtw/Loesung030.tex Normal file
View File

@@ -0,0 +1,3 @@
\section{Aufgabe 30}
xyz
\subsection{L<EFBFBD>sung}

3
mathefhtw/Loesung031.tex Normal file
View File

@@ -0,0 +1,3 @@
\section{Aufgabe 31}
xyz
\subsection{L<EFBFBD>sung}

2
mathefhtw/Loesung032.tex Normal file
View File

@@ -0,0 +1,2 @@
\section{Aufgabe 32}
xyz

2
mathefhtw/Loesung033.tex Normal file
View File

@@ -0,0 +1,2 @@
\section{Aufgabe 33}
xyz

Some files were not shown because too many files have changed in this diff Show More