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1 Lineare Algebra

1.1 Vektoren in der Ebene - Ubersicht

1.1.1 Veranschaulichung von Vektoren in der Ebene

Y Y
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ag——————— ———— 35 ar{——————— — — —
N |
' Punkt Vektor ("Pfeil”’)
2T (a1, a2) 27T a |
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1. Koordinate
Abbildung 1.1: Punkt (aj, as) Abbildung 1.2: @ = (a1, az)
a= (a1, az) auch iiblich @ = < Zl > < Geordnetes Paar
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1.1.2 Menge aller Vektoren in der Ebene

Die Menge aller Vektoren in der Ebene heifit IR?; dabei ist IR die Menge der reellen Zahlen. Also:
R ={d = (a1,a2)|a; € R,as € R}

1.1.3 Addition von Vektoren in der Ebene

Die Addition von Vektoren liefert als Ergebnis wieder einen Vektor.

rechnerisch: @ = (a1,a2),b=(by,bs)
a+b=((a1+ b1,a2 + b2))
zeichnerisch:
Rechenregeln: a+b=0b+ a,
a+ (5+E = (a+b) +é



1 Lineare Algebra

Parallelogramm
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Abbildung 1.3: Addition von Vektoren a + b

1.1.4 Nullvektor in der Ebene
0= (0,0)

Rechenregel: i+0=ad

1.1.5 Subtraktion von Vektoren in der Ebene

Die Subtraktion von Vektoren liefert wieder einen Vektor.

rechnerisch: @ = (a1,a2),b= (b1, by)
a—b= (a1 —by,az — bo)

zeichnerisch:

Rechenregel: a—a=0



1.1 Vektoren in der Ebene - Ubersicht

Abbildung 1.4: Subtraktion von Vektoren a — b
1.1.6 Multiplikation von einem Vektor mit einem Skalar (einer Zahl)

Liefert wieder einen Vektor.

rechnerisch: a=(a,a2), ke R
k-da=(k-a1,k-az)
k=0:0-a=0
zeichnerisch:
Y k> Strecken/Stauchen um Faktor k
hier: k=3
3- aQ+r———————— = — = — = — — — — =7
-7
/// ‘
2+ e |
-7 3-d |
a + —— — — — — /// }
i~ |
‘ !
: 1 } 1 e
—4 -2 2 4 6
ay 3-a
—2 4

Abbildung 1.5: Multiplikation von Vektoren a - b

Rechenregeln: (k1-ko)-ad=ky-(ko-d);



1 Lineare Algebra

Zusammenhang mit der Subtraktion:
a—b=d+(-1)-b

1.1.7 ,,Kanonische* Basisvektoren in der Ebene
e1 =(1,0); e3 = (0,1)

Darstellung von @ = ay - €1 + ag - €3

1.1.8 Lineare Abhingighdngigkeit (Kollinearitat)

@ und b sind linear abhénging falls gilt:

es gibt k1 mit @ = ky - b oder
es gibt ko mit b= ko - @

e Anschauung fiir @ = (a1, az), b = (by, by): die Punkte (a1, as) und (by, by) liegen auf einer Geraden
durch den Nullpunkt.

e Gegenteil: lineare Abhéngigkeit

1.1.9 Lange (Norm) eines Vektors in der Ebene

Lénge /a% + ag nach Pythagoras

|
|

2+ d |
}(1,2
|

1+ [
|
|

Abbildung 1.6: Linge (Norm) eines Vektors in der Ebene

o |d| = \/m. Auch tiblich: ||@]|

e ist auch der Abstand zwischen den Punkten (0,0) und (a1, ag)



1.1 Vektoren in der Ebene - Ubersicht

Rechenregeln: |@| = 0 gilt nur fir @ =0
|k -] = |k| - |al;
\m b‘ <a + ‘b‘

o fiir d = (a1,a9), b= (b1, by) ist ‘d’— (_)" der Abstand der Punkte (a1, a2) und (b1, b2).

1.1.10 Einheitsvektoren

Einheitsvekotren sind Vektoren der Lénge 1.

1.1.11 Skalarprodukt von zwei Vektoren in der Ebene

o liefert wieder einen Skalar

e Berechnung fiir @ = (a1, az), b = (b1, bs);

<Ei, 5> = a1b1 + asby auch iibliche Schreibweise: (Ei, E) bzw. @- b
Rechenregeln: a, E> = <5,Ei :
i+ *,5> = a’,B> + <5,5>;
k-a,5> :k-<d,5 :
(@ d) >0 fiir @ +#0
(&< §

)
g1 b
2 £
U (s ‘
1 1 1 T
1 2 3

Abbildung 1.7: Offnungswinkel zwischen zwei Vektoren in der Ebene

cos (a ((i, 5)) _ (ah) wobel 0 < o (Ei, E) <7

lal-[]’

im BogenmaB (d.h. 0° < o (a’, 6) < 180° im Gradmas)



1 Lineare Algebra

1.2 Aufgaben

1.2.1 Aufgabe 1
1. Gegeben sind: a=(3,4), b= (10,5), c¢=d-—

a) Bestimmen Sie ¢ durch Zeichnung und Rechnung!
b, |a.

¢) Bestimmen Sie den Offnungswinkel o (@,¢) und o (d’, b)

b) Bestimmen Sie |d|,

2. Welche Gegenkraft F hebt die folgenden vier Einzelkriifte, die an einem Massepunkt angreifen, in
der Wirkung auf?

F} = (200N, 110N) Fy = (=10N,30N)
Fy = (40N, 85N) Fy = (30N, —50N)
a) Von welchem Betrag ist F?

b) Unter welchem Winkel greifen Fi und F den Massepunkt an?

3. Gegeben sind: @ = (3,—-1,2), b= (1,2,4)



1.3 Vektoren im Raum und n-dimensionale Vektoren - Ubersicht

1.3 Vektoren im Raum und n-dimensionale Vektoren - Ubersicht

1.3.1 Veranschaulichung von Vektoren im Raum

Abbildung 1.8: Punkt(ai,az,as) Abbildung 1.9: @ = (a1, a2, as)
ay
a= (a1, as,a3) auch iiblich @ = | ay | < Tripel
as



1 Lineare Algebra

1.3.2 Menge aller Vektoren im Raum / Menge aller n-dimensionalen Vektoren

o Die Menge heifit R® / R™;
° Dabei ist n eine natiirliche Zahl, n € IV.
° Also: R? = {(a1,a2,a3)|a1,az2,a3 € R}

o ]RSZ{(al,...,an) |a1,...anEJR}
n—Tupel\J

1.3.3 Addition von n-dimensionalen Vektoren

Die Addition liefert wieder einen Vektor.
Berechnung: a=(ay,...,ap), b= (b1y...,bp)
G+b=(ar+b1,...,an~+by)

Rechenregeln wie fiir n = 2.

1.3.4 n-dimensionaler Nullvektor
0=(0,...,0)

Rechenregeln wie fiir n = 2.

1.3.5 Subtraktion von n-dimensionalen Vektoren

Die Subtraktion liefert wieder einen Vektor.
Berechnung: a=(ay,...,ap), b= (b1,...,bp)
a—b= (a1 —b1,...,an —by)
Rechenregeln und Zusammenhang mit der Subtraktion wie fiir n = 2.

1.3.6 Multiplikation von einem n-dimensionale Vektor mit einem Skalar

Die Multiplikation liefert wieder einen Vektor.
Berechnung: a=(ay,...,ap), keR
k-a=(k-a1,...,k-ayp)

Rechenregeln und Zusammenhang mit der Subtraktion wie fiir n = 2.

10



1.3 Vektoren im Raum und n-dimensionale Vektoren - Ubersicht

1.3.7 ,,Kanonische" n-dimensionale Basisvektoren

i. Koordinate

Darstellung von @ = (aq,...,a,):
n
d=ai€l+...+ané, = > a6
i=1
1.3.8 Eine Linearkombination von m n-dimensionalen Vektoren a1, ..., a,,
ist ein Ausdruck der Form
m
ki-ai+...+ky-ayn=> kja;
j=1
1.3.9 Lineare Abhdngigkeit von n-dimensionalen Vektoren
ai,...,am sind linear abhéngig, falls sich einer der Vektoren als Linearkombination der restlichen

darstellen lésst.
Gegenteil: lineare Unabhingigkeit

e Lineare Abhéingigkeit fiir drei Vektoren im Raum:

— anderer Name: Komplanaritét

— Anschauung fiir @ = (a1, az, as), b= (b1,be,b3), €= (c1,c2,c3):
die pUNKTE (ay, a9, as), (b1, bz, b3) und (c1, c2, c3) liegen auf einer Ebene durch den Nullpunkt.

1.3.10 Lange (Norm) eines n-dimensionalen Vektors
e Berechnung:

- cT:(al,...,an)

n
—lal=vVaZ+.. . +a2= /> a?
\/ =1

7

e Rechenregeln wie fiir n = 2
e fiir n = 3 ist |a@|| auch der Abstand der Punkte (0,0,0) und (ai, as, as)

o fiir n = 3, @(a1,a2,a3), b(b1,by,bs) ist ||@ — b|| auch der Abstand der Punkte (a1, as,a3) und
(b17627b3)

1.3.11 n-dimensionale Einheitsvektoren

e sind Vektoren der Lénge 1

11



1 Lineare Algebra

1.3.12 Skalarprodukt von zwei n-dimensionalen Vektoren

e liefert einen Skalar

e Berechnung: d =

12



2 Loésungen

2.1 Aufgabe 1

1. Gegeben sind: a=(3,4), b= (10,5), c=a— %5

a) Bestimmen Sie ¢ durch Zeichnung und Rechnung!

Zeichnung:
Yy
bo b +—-————————————————————————
|
|
az 4 +——————— }
| \
- |
3+ } b |
|
2+ g - | ‘
%) | 1 }
| | |
1+ | [ |
| | |
| | |
| | | | | | | | | | | ; | x
302 -1 1 2 3 4 5 6 7 8 9 10
1L ai %b'[ by
Rechnung

E=d—3b=(3,4)—1(10,5) = (3,4) - (10- 1,5-3) = (3,4) — (5,3) =
)
ﬂ@a

(38-5.4-3) = (=2

\G][V]

b) Bestimmen Sie |d],

@ =[(3.4)| = V37 + 22 =0+ 16 = V25 = 5
5| = 1(10,6)] = VIO? 752 = VI00 + 25 = vI%5 = V525 = 55

11,18033988

¢) Bestimmen Sie den Offnungswinkel « (@, &) und a ((i, b)

2.2 Aufgabe 120

X k 4 k
Sei o= 5 (1) F= 3 (1)
k=0 k=0

13



2 Lésungen

a. Mit Hilfe von welcher speziellen Funktion 148t sich « genau beschreiben? Wie? (Tip: 3.3.5)
b. Berechnen Sie 7.

c. Geben Sie einen absoluten Hochstfehler von z an. (Tip: 3.2.7)

2.2.1 Loésung
o 1k 1 k 1
a. exp(z) = > 72" = x= ) p(-1)'=exp(—1) =
k=0 k=0 =

4
b= 2 f(-1)f =114 35—+ g = Mgt = 5 = § = 0305

c. Da die vorliegende Reihe eine alternierende Reihe ist, gilt |z — 2| < % = ﬁlo = 8.3-1073. Damit ist
ay = 8.3-1073 ein absoluter Hochstfehler von 7.

2.3 Aufgabe 125

_>
Gegeben sei das eindeutig 16sbare lineare Gleichungssystem A -2 = b mit

4 -1 0 -1 0 O 2
-1 4 -1 0 -1 O 1
o -1 4 0 0 -1 — 2
A= -1 0 0 4 -1 O » b= 2
0O -1 0 -1 4 -1 1
0o 0 -1 0 -1 4 2

a. Sei 70 = 6) Berechnen Sie die Ndherungsosung Z®) des Systems, die man nach 3 Schritten des
Gesamtschrittverfahrens erhélt.

b. Zeigen Sie, dal das Gesamtschrittverfahren konvergiert.
c. Fiihren Sie eine Apeoteriori-Fehlerabschitzung fiir 7 ® durch.

d. Fiihren Sie eine Apriori-Fehlerabschitzung fiir 2 (19 durch.

2.3.1 Loésung

a. Rechenvorschriften:

oO = (24620 4 o) = Ly Jol N 4 Rl
ng) :% 1—|—:L'§Z_1)+ gZ_l)—i-l'éZ_l)) —%‘*’i gZ_l)—f—i gZ_l)‘i’i gZ—l)
P =1 (2427 42l ) = 4 Jol 0 4 4ol
oD = 1 (207D 42D = o QalZ) 4 1
:L‘éz) _ % (1+xngl)+ é(lzfl)_l_ ((52 1)) _%+imngl)+% 4(1271)*'% ((3271)
o =} (4o 42 0) = g a4 ol

H xgz> ng) xéZ) xELZ) ng) méZ)

Z

1405 0.25 0.5 0.5 0.25 0.5

2] 0.6875 0.5625 0.6875 0.6875 0.5625 0.6875
3 0.8125 0.734325 0.8125 0.8125 0.734375 0.8125

7 =73 = (0.8125; 0.734325; 0.8125; 0.8125; 0.734375; 0.8125)

14



2.4 Aufgabe 127

b. Berechnung der Kontraktionszahl A

aij
ail

P o

=1
G4

6 6

=05, > |92 =075 ) |2 =05
j=1 j=1
J#2 j#
6 6

=05 Y |32 =075 ) |8 =05
=1 j=1
#5 j#6

A =max{0.5;0.75} = 0.75
A < 1 = das Gesamtschrittverfahren konvergiert fiir jeden Startvektor

C max ‘.’E(g)—$
. i i

i=1,...,6
d. max |z,
i=1,...,6

(10

.

A
S T—x ‘max

=16 % ~0.25

2 - 1:(2)‘ — 0.75.(.171875 = 0.515 625

10
< 1’\7—)\ max
i=1,...,6

otV — 2| = 97505 = 0.1126270204

2.4 Aufgabe 127

Die Geschwindigkeit v(t) eines Teilchens werde durch ein Polynom vom Grad < 3 beschrieben. Folgende

Werte sind bekannt:

t(ns) JO[1]|2]3
v(t) (in Z) [[0 4] 18 |48

Bestimmen Sie v(t). Wie grofl sind v(1.5s) und v(2.5s).

2.4.1 L6sung
1. Schritt

2. Schritt

Insbesondere

Wegen v(0s) = 0™ geniigt es, die Lagrangeschen Grundpolynome L, Lz und L3 zu
bestimmen.
Li(t) = t(t=2s)(t=3s) _ t(t?—3st—2st+6s%) _ 3-5st246s2t _ 1 S%t:a _b.d42y 3%15

T 1s(—1s)-(—2s) — 2s3 - 253 2 2" s2
Lo(t) = H(t—=2s)(t—3s) _ t(t*+3st=2st465%) 43,342 924652 1 143 19142 3 1,
2\M) = Tosds(—1s) —23 - —2s3 — 238 52 22
_ t(t—1s)(t—2s) _ t(t2—28t—18t+252) _ t3-2st2—1st242st 1 1.3 1142 11
Lg(t) - 35-25-1s - 653 - 6s3 6 st” — 2 th + 3 st

v(t) =42 Ly(t)+ 18" - Ly(t) + 482 - Ly(t) = 2%¢° — 10512 + 125¢ — 9%44° 4+ 36531 —
275t + 8% 13 — 24747 + 1651 = 15¢% + 2534 + 15¢

<

(1,5s) = 3,375 + 4,5 4 1,5 = 9 375
v (2,55) = 15,625™ 4 12,5™ 4 2,5™ — 30, 6252

|3

15
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