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1 Lineare Algebra

1.1 Vektoren in der Ebene - Übersicht

1.1.1 Veranschaulichung von Vektoren in der Ebene

0
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1. Koordinate

x

2. Koordinate

y

a1

a2

Punkt
(a1, a2)

Abbildung 1.1: Punkt (a1, a2)

0 2 4
0
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V ektor (”‘Pfeil”′)
�a

Abbildung 1.2: ~a = (a1, a2)

~a = (a1, a2) auch üblich ~a =

(
a1
a2

)
← Geordnetes Paar

1.1.2 Menge aller Vektoren in der Ebene

Die Menge aller Vektoren in der Ebene heißt IR2; dabei ist IR die Menge der reellen Zahlen. Also:
IR = {~a = (a1, a2)|a1 ∈ IR, a2 ∈ IR}

1.1.3 Addition von Vektoren in der Ebene

Die Addition von Vektoren liefert als Ergebnis wieder einen Vektor.

rechnerisch: ~a = (a1, a2) ,~b = (b1, b2)

~a+~b = ((a1 + b1, a2 + b2))

zeichnerisch:

Rechenregeln: ~a+~b = ~b+ ~a;

~a+
(
~b+ ~c

)
=
(
~a+~b

)
+ ~c
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1 Lineare Algebra

0 3 6
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2
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�a

�a+�b

�b

a1

a2

b1

b2

a1 + b1

a2 + b2

Parallelogramm

Abbildung 1.3: Addition von Vektoren ~a+~b

1.1.4 Nullvektor in der Ebene

~0 = (0, 0)

Rechenregel: ~a+~0 = ~a

1.1.5 Subtraktion von Vektoren in der Ebene

Die Subtraktion von Vektoren liefert wieder einen Vektor.

rechnerisch: ~a = (a1, a2) ,~b = (b1, b2)

~a−~b = (a1 − b1, a2 − b2)

zeichnerisch:

Rechenregel: ~a− ~a = ~0
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1.1 Vektoren in der Ebene - Übersicht

2 4−2−4
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y

�a

a1
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�b

b1

b2�a−�b

a1 − b1

a2 − b2

Abbildung 1.4: Subtraktion von Vektoren ~a−~b

1.1.6 Multiplikation von einem Vektor mit einem Skalar (einer Zahl)

Liefert wieder einen Vektor.

rechnerisch: ~a = (a1, a2) , k ∈ IR
k · ~a = (k · a1, k · a2)
k = 0 : 0 · ~a = ~0

zeichnerisch:

2 4 6−2−4

2

−2

x

y

�a

a1

a2

3 · �a

3 · a1

3 · a2

k > 0: Strecken/Stauchen um Faktor k
hier: k = 3

−2 · a1

−2 · a2

k < 0: Richtung ändern
und Strecken/Stauchen
um Faktor −k
hier: −k = 2

Abbildung 1.5: Multiplikation von Vektoren ~a ·~b

Rechenregeln: (k1 · k2) · ~a = k1 · (k2 · ~a) ;
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1 Lineare Algebra

1 · ~a = ~a;

k ·
(
~a+~b

)
= k · ~a+ k ·~b;

(k1 + k2) · ~a = k1 · ~a+ k2 · ~a

Zusammenhang mit der Subtraktion:

~a−~b = ~a+ (−1) ·~b

1.1.7
”

Kanonische“ Basisvektoren in der Ebene

~e1 = (1, 0); ~e2 = (0, 1)

Darstellung von ~a = a1 · ~e1 + a2 · ~e2

1.1.8 Lineare Abhängighängigkeit (Kollinearität)

~a und ~b sind linear abhänging falls gilt:

es gibt k1 mit ~a = k1 ·~b oder

es gibt k2 mit ~b = k2 · ~a

• Anschauung für ~a = (a1, a2), ~b = (b1, b2): die Punkte (a1, a2) und (b1, b2) liegen auf einer Geraden
durch den Nullpunkt.

• Gegenteil: lineare Abhängigkeit

1.1.9 Länge (Norm) eines Vektors in der Ebene

1 2 3

1

2

3

x

y

�a

a1

a2

�

Länge
√

a21 + a22 nach Pythagoras

Abbildung 1.6: Länge (Norm) eines Vektors in der Ebene

• |~a| =
√
a21 + a22. Auch üblich: ‖~a‖

• ist auch der Abstand zwischen den Punkten (0, 0) und (a1, a2)
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1.1 Vektoren in der Ebene - Übersicht

Rechenregeln: |~a| = 0 gilt nur für ~a = ~0
|k · ~a| = |k| · |~a|;∣∣∣~a+~b

∣∣∣ 6 |~a|+
∣∣∣~b
∣∣∣

• für ~a = (a1, a2), ~b = (b1, b2) ist
∣∣∣~a−~b

∣∣∣ der Abstand der Punkte (a1, a2) und (b1, b2).

1.1.10 Einheitsvektoren

Einheitsvekotren sind Vektoren der Länge 1.

1.1.11 Skalarprodukt von zwei Vektoren in der Ebene

• liefert wieder einen Skalar

• Berechnung für ~a = (a1, a2), ~b = (b1, b2);〈
~a,~b
〉

= a1b1 + a2b2 auch übliche Schreibweise:
(
~a,~b
)

bzw. ~a ·~b

Rechenregeln:
〈
~a,~b
〉

=
〈
~b,~a
〉

;〈
~a+ ~c,~b

〉
=
〈
~a,~b
〉

+
〈
~c,~b
〉

;〈
k · ~a,~b

〉
= k ·

〈
~a,~b
〉

;

〈~a,~a〉 > 0 für ~a 6= ~0∣∣∣
〈
~a,~b
〉∣∣∣ 6 |~a| ·

∣∣∣~b
∣∣∣

1.1.12 Öffnungswinkel zwischen zwei Vektoren ~a 6= 0, ~b 6= 0 in der Ebene

1 2 3

1
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3

x

y

α
(
�a,�b

)
�a

�b

Abbildung 1.7: Öffnungswinkel zwischen zwei Vektoren in der Ebene

cos
(
α
(
~a,~b
))

=
〈~a,~b〉
|~a|·|~b| , wobei 0 6 α

(
~a,~b
)
6 π

im Bogenmaß (d.h. 0◦ 6 α
(
~a,~b
)
6 180◦ im Gradmaß)
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1 Lineare Algebra

1.2 Aufgaben

1.2.1 Aufgabe 1

1. Gegeben sind: ~a = (3, 4), ~b = (10, 5), ~c = ~a− 1
2
~b

a) Bestimmen Sie ~c durch Zeichnung und Rechnung!

b) Bestimmen Sie |~a|,
∣∣∣~b
∣∣∣, |~c|.

c) Bestimmen Sie den Öffnungswinkel α (~a,~c) und α
(
~a,~b
)

.

2. Welche Gegenkraft ~F hebt die folgenden vier Einzelkräfte, die an einem Massepunkt angreifen, in
der Wirkung auf?

~F1 = (200N, 110N) ~F2 = (−10N, 30N)
~F3 = (40N, 85N) ~F4 = (−30N,−50N)

a) Von welchem Betrag ist ~F?

b) Unter welchem Winkel greifen ~F1 und ~F2 den Massepunkt an?

3. Gegeben sind: ~a = (3,−1, 2), ~b = (1, 2, 4)
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1.3 Vektoren im Raum und n-dimensionale Vektoren - Übersicht

1.3 Vektoren im Raum und n-dimensionale Vektoren - Übersicht

1.3.1 Veranschaulichung von Vektoren im Raum
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Abbildung 1.8: Punkt(a1, a2, a3)
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Abbildung 1.9: ~a = (a1, a2, a3)

~a = (a1, a2, a3) auch üblich ~a =




a1
a2
a3


← Tripel
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1 Lineare Algebra

1.3.2 Menge aller Vektoren im Raum / Menge aller n-dimensionalen Vektoren

• Die Menge heißt IR3 / IRn;

• Dabei ist n eine natürliche Zahl, n ∈ IN .

• Also: IR3 = {(a1, a2, a3) |a1, a2, a3 ∈ IR}
• IR3 =

{
(a1, . . . , an) |a1, . . . an ∈ IR

}

n-Tupel

1.3.3 Addition von n-dimensionalen Vektoren

Die Addition liefert wieder einen Vektor.

Berechnung: ~a = (a1, . . . , an), ~b = (b1, . . . , bn)

~a+~b = (a1 + b1, . . . , an + bn)

Rechenregeln wie für n = 2.

1.3.4 n-dimensionaler Nullvektor

~0 = (0, . . . , 0)

Rechenregeln wie für n = 2.

1.3.5 Subtraktion von n-dimensionalen Vektoren

Die Subtraktion liefert wieder einen Vektor.

Berechnung: ~a = (a1, . . . , an), ~b = (b1, . . . , bn)

~a−~b = (a1 − b1, . . . , an − bn)

Rechenregeln und Zusammenhang mit der Subtraktion wie für n = 2.

1.3.6 Multiplikation von einem n-dimensionale Vektor mit einem Skalar

Die Multiplikation liefert wieder einen Vektor.

Berechnung: ~a = (a1, . . . , an), k ∈ IR

k · ~a = (k · a1, . . . , k · an)

Rechenregeln und Zusammenhang mit der Subtraktion wie für n = 2.
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1.3 Vektoren im Raum und n-dimensionale Vektoren - Übersicht

1.3.7
”

Kanonische“ n-dimensionale Basisvektoren

~e1 = (1, 0, . . . , 0) . . . ~ei = (0, . . . , 1, . . . , 0) . . . ~en = (0, . . . , 0, 1)

i. Koordinate

Darstellung von ~a = (a1, . . . , an):

~a = a1 ~e1 + . . .+ an ~en =
n∑
i=1

ai~ei

1.3.8 Eine Linearkombination von m n-dimensionalen Vektoren ~a1, . . . , ~am

ist ein Ausdruck der Form

k1 · ~a1 + . . .+ km · ~am =
m∑
j=1

kj ·~aj

1.3.9 Lineare Abhängigkeit von n-dimensionalen Vektoren

~a1, . . . , ~am sind linear abhängig, falls sich einer der Vektoren als Linearkombination der restlichen
darstellen lässt.
Gegenteil: lineare Unabhängigkeit

• Lineare Abhängigkeit für drei Vektoren im Raum:

– anderer Name: Komplanarität

– Anschauung für ~a = (a1, a2, a3), ~b = (b1, b2, b3), ~c = (c1, c2, c3):
die pUNKTE (a1, a2, a3), (b1, b2, b3) und (c1, c2, c3) liegen auf einer Ebene durch den Nullpunkt.

1.3.10 Länge (Norm) eines n-dimensionalen Vektors

• Berechnung:

– ~a = (a1, . . . , an)

– |~a| =
√
a12 + . . .+ an2 =

√
n∑
i=1

a2i

• Rechenregeln wie für n = 2

• für n = 3 ist |~a‖ auch der Abstand der Punkte (0, 0, 0) und (a1, a2, a3)

• für n = 3, ~a (a1, a2, a3), ~b (b1, b2, b3) ist ‖~a − ~b‖ auch der Abstand der Punkte (a1, a2, a3) und
(b1, b2, b3)

1.3.11 n-dimensionale Einheitsvektoren

• sind Vektoren der Länge 1
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1 Lineare Algebra

1.3.12 Skalarprodukt von zwei n-dimensionalen Vektoren

• liefert einen Skalar

• Berechnung: ~a =

12



2 Lösungen

2.1 Aufgabe 1

1. Gegeben sind: ~a = (3, 4), ~b = (10, 5), ~c = ~a− 1
2
~b

a) Bestimmen Sie ~c durch Zeichnung und Rechnung!

Zeichnung:

1

2

3

4

5

-1

1 2 3 4 5 6 7 8 9 10-1-2-3
x

y

�a

a1

a2

�b

b1

b2

1
2
�b

1
2b1

1
2b2

�c

c2

1
2c1

Rechnung:

~c = ~a− 1
2
~b = (3, 4)− 1

2 (10, 5) = (3, 4)−
(
10 · 12 , 5 · 12

)
= (3, 4)−

(
5, 52
)

=

(
3− 5, 4− 5

2

)
=
(
−2, 32

)

b) Bestimmen Sie |~a|,
∣∣∣~b
∣∣∣, |~c|.

|~a| = |(3, 4)| =
√

32 + 42 =
√

9 + 16 =
√

25 = 5

∣∣∣~b
∣∣∣ = |(10, 6)| =

√
102 + 52 =

√
100 + 25 =

√
125 =

√
5 · 25 = 5

√
5

∼= 11, 18033988

c) Bestimmen Sie den Öffnungswinkel α (~a,~c) und α
(
~a,~b
)

.

2.2 Aufgabe 120

Sei x =
∞∑
k=0

(−1)k 1
k ; x̃ =

4∑
k=0

(−1)k 1
k!
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2 Lösungen

a. Mit Hilfe von welcher speziellen Funktion läßt sich x genau beschreiben? Wie? (Tip: 3.3.5)

b. Berechnen Sie x̃.

c. Geben Sie einen absoluten Höchstfehler von x̃ an. (Tip: 3.2.7)

2.2.1 Lösung

a. exp(z) =
∞∑
k=0

1
k!z

k =⇒ x =
∞∑
k=0

1
k!(−1)k = exp(−1) = 1

e

b. x̃ =
4∑

k=0

1
k!(−1)k = 1− 1 + 1

2 − 1
6 + 1

24 = 12−4+1
24 = 9

24 = 3
8 = 0.375

c. Da die vorliegende Reihe eine alternierende Reihe ist, gilt |x− x̃| ≤ 1
5! = 1

120 = 8.3 · 10−3. Damit ist
αx = 8.3 · 10−3 ein absoluter Höchstfehler von x̃.

2.3 Aufgabe 125

Gegeben sei das eindeutig lösbare lineare Gleichungssystem A · −→x =
−→
b mit

A =




4 −1 0 −1 0 0
−1 4 −1 0 −1 0
0 −1 4 0 0 −1
−1 0 0 4 −1 0
0 −1 0 −1 4 −1
0 0 −1 0 −1 4




,
−→
b =




2
1
2
2
1
2




a. Sei −→x (0) =
−→
0 . Berechnen Sie die Näherungsösung −→x (3) des Systems, die man nach 3 Schritten des

Gesamtschrittverfahrens erhält.

b. Zeigen Sie, daß das Gesamtschrittverfahren konvergiert.

c. Führen Sie eine Apeoteriori-Fehlerabschätzung für −→x (3) durch.

d. Führen Sie eine Apriori-Fehlerabschätzung für −→x (10) durch.

2.3.1 Lösung

a. Rechenvorschriften:
x
(Z)
1 = 1

4

(
2 + x

(Z−1)
2 + x

(Z−1)
4

)
= 1

2 + 1
4x

(Z−1)
2 + 1

4x
(Z−1)
4

x
(Z)
2 = 1

4

(
1 + x

(Z−1)
1 + x

(Z−1)
3 + x

(Z−1)
5

)
= 1

4 + 1
4x

(Z−1)
1 + 1

4x
(Z−1)
3 + 1

4x
(Z−1)
5

x
(Z)
3 = 1

4

(
2 + x

(Z−1)
2 + x

(Z−1)
6

)
= 1

2 + 1
4x

(Z−1)
2 + 1

4x
(Z−1)
6

x
(Z)
4 = 1

4

(
2 + x

(Z−1)
1 + x

(Z−1)
5

)
= 1

2 + 1
4x

(Z−1)
1 + 1

4x
(Z−1)
5

x
(Z)
5 = 1

4

(
1 + x

(Z−1)
2 + x

(Z−1)
4 + x

(Z−1)
6

)
= 1

4 + 1
4x

(Z−1)
2 + 1

4x
(Z−1)
4 + 1

4x
(Z−1)
6

x
(Z)
6 = 1

4

(
2 + x

(Z−1)
3 + x

(Z−1)
5

)
= 1

2 + 1
4x

(Z−1)
3 + 1

4x
(Z−1)
5

z x
(Z)
1 x

(Z)
2 x

(Z)
3 x

(Z)
4 x

(Z)
5 x

(Z)
6

1 0.5 0.25 0.5 0.5 0.25 0.5
2 0.6875 0.5625 0.6875 0.6875 0.5625 0.6875
3 0.8125 0.734325 0.8125 0.8125 0.734375 0.8125

−→x = −→x (3) = (0.8125; 0.734325; 0.8125; 0.8125; 0.734375; 0.8125)

14



2.4 Aufgabe 127

b. Berechnung der Kontraktionszahl λ

6∑

j=1
j 6=1

∣∣∣a1ja11

∣∣∣ = 0.5;

6∑

j=1
j 6=2

∣∣∣a2ja22

∣∣∣ = 0.75;

6∑

j=1
j 6=3

∣∣∣a3ja33

∣∣∣ = 0.5;

6∑

j=1
j 6=4

∣∣∣a4ja44

∣∣∣ = 0.5;
6∑

j=1
j 6=5

∣∣∣a5ja55

∣∣∣ = 0.75;
6∑

j=1
j 6=6

∣∣∣a6ja66

∣∣∣ = 0.5;

λ = max{0.5; 0.75} = 0.75
λ < 1 =⇒ das Gesamtschrittverfahren konvergiert für jeden Startvektor

c. max
i=1,...,6

∣∣∣x(3)i − xi
∣∣∣ ≤ λ

1−λ max
i=1,...,6

∣∣∣x(3)i − x
(2)
i

∣∣∣ = 0.75
0.25 · 0.171875 = 0.515 625

d. max
i=1,...,6

∣∣∣x(10)i − xi
∣∣∣ ≤ λ10

1−λ max
i=1,...,6

∣∣∣x(1)i − x
(0)
i

∣∣∣ = 0.7510

0.25 · 0.5 = 0.112 627 029 4

2.4 Aufgabe 127

Die Geschwindigkeit v(t) eines Teilchens werde durch ein Polynom vom Grad ≤ 3 beschrieben. Folgende

Werte sind bekannt:
t (in s) 0 1 2 3

v(t) (in m
s ) 0 4 18 48

Bestimmen Sie v(t). Wie groß sind v(1.5s) und v(2.5s).

2.4.1 Lösung

1. Schritt Wegen v(0s) = 0ms genügt es, die Lagrangeschen Grundpolynome L1, L2 und L3 zu
bestimmen.
L1(t) = t(t−2s)(t−3s)

1s(−1s)·(−2s) = t(t2−3st−2st+6s2)
2s3

= t3−5st2+6s2t
2s3

= 1
2 · 1

s3
t3 − 5

2 · 1
s2
t2 + 31

s t

L2(t) = t(t−2s)(t−3s)
2s·1s·(−1s) =

t(t2+3st−2st+6s2)
−23 = t3+3st2−2st2+6s2t

−2s3 = −1
2 · 1

s3
t3 + 2 1

s2
t2 − 3

2 · 12 t

L3(t) = t(t−1s)(t−2s)
3s·2s·1s =

t(t2−2st−1st+2s2)
6s3

= t3−2st2−1st2+2st

6s3
= 1

6 · 1
s3
t3 − 1

2 · 1
s2
t2 + 1

3 · 1s t

2. Schritt v(t) = 4ms ·L1(t) + 18ms ·L2(t) + 48ms ·L3(t) = 2m
s4
t3− 10m

s3
t2 + 12m

s2
t− 9m

s4
t3 + 36m

s3
t2−

27m
s2
t+ 8m

s4
t3 − 24m

s3
t2 + 16m

s2
t = 1m

s4
t3 + 2m

s3
t2 + 1m

s2
t

Insbesondere
v (1, 5s) = 3, 375ms + 4, 5ms + 1, 5ms = 9, 375ms

v (2, 5s) = 15, 625ms + 12, 5ms + 2, 5ms = 30, 625ms
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