\subsection{11\_1 Der Betrag in $\mathbb R$} \begin{tabbing} \tabumg \>wird für $x\in\mathbb R$ mit $|x|$ bezeichnet\\ \>ist definiert durch $ \left| x \right| = \left\{ {\begin{array}{*{20}c} {x\text{ falls }x \ge 0} \\ { - x\text{ falls }x < 0} \\ \end{array}} \right.$\\ \\ Veranschaulichungen:\\ \>auf der Zahlengeraden: \end{tabbing} %\vspace{-10mm} \begin{figure}[h] \begin{center} %\includegraphics{11_1_1} \begin{tikzpicture}[scale=1.2] \draw [thick](-2.5,0) -- (3.5,0); \draw [thick, style=dotted](3.5,0) -- (4,0); \draw [thick, style=dotted](-3,0) -- (-2.5,0); \foreach \x/\xtext in {-2/x_2,0,1, 3/x_1} \draw[xshift=\x cm, thick] (0pt,1pt) -- (0pt,-1pt) node[below,fill=white] {$\xtext$}; \draw[snake=brace, mirror snake, color=blue] (-2,-0.4) -- (0,-0.4) node[midway,sloped,below] {$|x_1|$}; \draw[snake=brace, mirror snake, color=red] (0,-0.4) -- (3,-0.4) node[midway,sloped,below] {$|x_2|$}; \end{tikzpicture} \end{center} \end{figure} \vspace{-15mm} \begin{tabbing} \tabumg \>\>\>$x$ ist der Abstand von $x$ vom Nullpunkt\\ \\ \>durch den Funktionsgraphen: \end{tabbing} \vspace{-10mm} \begin{figure}[h] \begin{center} \includegraphics{11_1_2} \end{center} \end{figure} \vspace{-10mm} \begin{tabbing} \tabumg Rechenregeln:\\ \>$|x\cdot y|=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx$ \end{tabbing}