\documentclass{article}% \usepackage{amsmath} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{graphicx}% \setcounter{MaxMatrixCols}{30} %TCIDATA{OutputFilter=latex2.dll} %TCIDATA{Version=5.50.0.2953} %TCIDATA{CSTFile=40 LaTeX article.cst} %TCIDATA{Created=Saturday, December 30, 2006 12:55:45} %TCIDATA{LastRevised=Saturday, January 06, 2007 22:30:18} %TCIDATA{} %TCIDATA{} %TCIDATA{BibliographyScheme=Manual} %TCIDATA{} %TCIDATA{ComputeGeneralSettings=0,10,6,0,0,0,0} %BeginMSIPreambleData \providecommand{\U}[1]{\protect\rule{.1in}{.1in}} %EndMSIPreambleData \newtheorem{theorem}{Theorem} \newtheorem{acknowledgement}[theorem]{Acknowledgement} \newtheorem{algorithm}[theorem]{Algorithm} \newtheorem{axiom}[theorem]{Axiom} \newtheorem{case}[theorem]{Case} \newtheorem{claim}[theorem]{Claim} \newtheorem{conclusion}[theorem]{Conclusion} \newtheorem{condition}[theorem]{Condition} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{criterion}[theorem]{Criterion} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{exercise}[theorem]{Exercise} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{notation}[theorem]{Notation} \newtheorem{problem}[theorem]{Problem} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{solution}[theorem]{Solution} \newtheorem{summary}[theorem]{Summary} \newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}} \begin{document} Aufgabe 120 Sei $x=% %TCIMACRO{\dsum \limits_{k=0}^{\infty}}% %BeginExpansion {\displaystyle\sum\limits_{k=0}^{\infty}} %EndExpansion \left( -1\right) ^{k}\frac{1}{k};$ \ $\widetilde{x}=% %TCIMACRO{\dsum \limits_{k=0}^{4}}% %BeginExpansion {\displaystyle\sum\limits_{k=0}^{4}} %EndExpansion \left( -1\right) ^{k}\frac{1}{k!}$ \begin{description} \item[a.] Mit Hilfe von welcher speziellen Funktion l\"{a}\ss t sich $x$ genau beschreiben? Wie? (Tip: 3.3.5) \item[b.] Berechnen Sie $\widetilde{x}$. \item[c.] Geben Sie einen absoluten H\"{o}chstfehler von $\widetilde{x}$ an. (Tip: 3.2.7) \end{description} L\"{o}sung: \begin{description} \item[a.] $\exp(z)=% %TCIMACRO{\dsum \limits_{k=0}^{\infty}}% %BeginExpansion {\displaystyle\sum\limits_{k=0}^{\infty}} %EndExpansion \frac{1}{k!}z^{k}$ \ $\Longrightarrow$ \ \ $x=% %TCIMACRO{\dsum \limits_{k=0}^{\infty}}% %BeginExpansion {\displaystyle\sum\limits_{k=0}^{\infty}} %EndExpansion \frac{1}{k!}(-1)^{k}=\exp(-1)=\underline{\underline{\frac{1}{e}}}$ \item[b.] $\widetilde{x}=% %TCIMACRO{\dsum \limits_{k=0}^{4}}% %BeginExpansion {\displaystyle\sum\limits_{k=0}^{4}} %EndExpansion \frac{1}{k!}(-1)^{k}=\allowbreak1-1+\frac{1}{2}-\frac{1}{6}+\frac{1}{24}% =\frac{12-4+1}{24}=\allowbreak\frac{9}{24}=\frac{3}{8}=\allowbreak \underline{\underline{0.375}}\,$ \item[c.] Da die vorliegende Reihe eine alternierende Reihe ist, gilt $|x-\widetilde{x}|\leq\frac{1}{5!}=\frac{1}{120}=8.\overline{3}\cdot 10^{-3}$.\\ Damit ist $\underline{\underline{\alpha_x=8.\overline{3}\cdot 10^{-3}}}$ ein absoluter Höchstfehler von $\widetilde{x}$ \end{description} \end{document}