\psset{xunit=1cm, yunit=1cm} %\psline[linecolor=lila, linewidth=0.5pt](C)(A) %\psframebox{ \begin{pspicture}(-0.5,-0.5)(5,2.1) %\psgrid(0,0)(5,2) %\begin{pspicture}(0,0)(12, 2) \SpecialCoor \pscustom[linecolor = blue]{ \code{/x1 30.23 cos 4 mul def %x= r*cos phi und y=r*sin phi /y1 30.23 sin 4 mul def %/r 30.23 sin 30.23 cos div 4 mul def %tan x = sin x /cos x %/x2 90 cos r mul def %/y2 90 sin r mul def /x2 4 30.23 cos div def } \psline(!0 0)(!x1 y1) \closepath \psline(!0 0) (!x2 0)\closepath \psline(!x2 0) (!x1 y1)\closepath} %\psline(0,0)(4,3) %\psline[linecolor=blue](4;30.23|4.6295690655178304211198499881141,0) %\psline[linecolor=blue](0,0)(4.6295690655178304211198499881141,0) %cos \alpha = b/c %\psline[linecolor=blue](4.6295690655178304211198499881141,0)(4;30.23) \psarc(3.42,2){0.5cm}{210}{305} \psarc(0,0){1cm}{0}{30.23} \uput[r](0.5;20){$\alpha$} \rput[c](3.35,1.7){\Huge{$\cdot$}} \rput[c](2.3,-0.25){c} \rput[c](4.3,1){a} %\psarc(0,0){2.5cm}{19}{71} %(2.3308602987736;59.77) %3,9284742244794781932242365314914 %(0,0)(6;40)(2;10|6;40)%(4;40|0,0) %(0,0) (5;30.23) %Länge(Radius), Winkel % nächster Winkel wäre 59,77° %(!50 cos 4 mul 0) %\rput[c](6,1.5){$\vec{e_1}=\left(1,0,\ldots,0\right)$\hspace{5mm}\ldots\hspace{5mm}$\vec{e_i}=\left(0,\ldots,1,\ldots,0\right)$\hspace{5mm}\ldots\hspace{5mm}$\vec{e_n}=\left(0,\ldots,0,1\right)$} %\rput[c](6,1.5){\psframebox{$\cdot$}} %\rput[c](4.3,1.5){\psframebox{$\vec{e_1}=\left(1,0,\ldots,0\right)$\hspace{5mm}\ldots\hspace{5mm}$\vec{e_i}=\left(0,\ldots,1,\ldots,0\right)$\hspace{5mm}\ldots\hspace{5mm}$\vec{e_n}=\left(0,\ldots,0,1\right)$}} %\psline[arrows=->](7.9,0.5)(7.9,1.2) %\psline[arrowlength=3, arrowinset=0.1, linecolor=red]{->}(6.37,0.5)(6.37,1.3) %\rput[c](6.37,0.2){\color{red}{i. Koordinate}} %\rput[c](0.5,0.5){.} %\rput[c](12,2){.} \end{pspicture}%} %rput center --> Koordianten werden um die x-Koordinate ausgerichtet