\begin{pspicture}(-0.5,-0.5)(10.5,8) \rput[c](3.5,3.5){\includegraphics[scale=0.8]{reHa.eps}} %\psgrid(0,0)(10,7.5) \psline[arrowlength=3, arrowinset=0.1, linecolor=red, linewidth=1mm]{->}(3.7,5.65)(3.7,7) \rput[c](3.7,7.3){\Large\textbf{$\color{red}\vec{a}$}} \psline[arrowlength=3, arrowinset=0.1, linecolor=blue, linewidth=1mm]{->}(2.2,2.2)(1.4,0.5)%(1.2,0.5) \rput[c](1.3,0.25){\Large\textbf{$\color{blue}\vec{b}$}} \psline[arrowlength=3, arrowinset=0.1, linecolor=green, linewidth=1mm]{->}(5.15,4.1)(6.15,5.2) \rput[c](6.15,5.4){\Large\textbf{$\color{green}\vec{a}\times\vec{b}$}} %\rput[c](6.37,0.2){\color{red}{i. Koordinate}} \rput[l](5,3){Sind $\vec{a}$ und $\vec{b}$ linear unabh\"angig,} \rput[l](5,2.6){so ist $\vec{a}\times\vec{b}$ so orientiert, dass $\vec{a}$, } \rput[l](5,2.2){$\vec{b}$ und $\vec{a}\times\vec{b}$ der "Rechte Hand} \rput[l](5,1.8){Regel" gen\"ugen.} \end{pspicture}