\documentclass{article} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %TCIDATA{OutputFilter=LATEX.DLL} %TCIDATA{Version=5.50.0.2890} %TCIDATA{} %TCIDATA{BibliographyScheme=Manual} %TCIDATA{Created=Saturday, December 30, 2006 12:55:45} %TCIDATA{LastRevised=Saturday, December 30, 2006 13:08:01} %TCIDATA{} %TCIDATA{} %TCIDATA{CSTFile=40 LaTeX article.cst} \newtheorem{theorem}{Theorem} \newtheorem{acknowledgement}[theorem]{Acknowledgement} \newtheorem{algorithm}[theorem]{Algorithm} \newtheorem{axiom}[theorem]{Axiom} \newtheorem{case}[theorem]{Case} \newtheorem{claim}[theorem]{Claim} \newtheorem{conclusion}[theorem]{Conclusion} \newtheorem{condition}[theorem]{Condition} \newtheorem{conjecture}[theorem]{Conjecture} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{criterion}[theorem]{Criterion} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{exercise}[theorem]{Exercise} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{notation}[theorem]{Notation} \newtheorem{problem}[theorem]{Problem} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{solution}[theorem]{Solution} \newtheorem{summary}[theorem]{Summary} \newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}} \input{tcilatex} \begin{document} Aufgabe 125 Gegeben sei das eindeutig l\"{o}sbare lineare Gleichungssystem $\ A\cdot \overrightarrow{x}=\overrightarrow{b}$ mit $A=\left( \begin{array}{cccccc} 4 & -1 & 0 & -1 & 0 & 0 \\ -1 & 4 & -1 & 0 & -1 & 0 \\ 0 & -1 & 4 & 0 & 0 & -1 \\ -1 & 0 & 0 & 4 & -1 & 0 \\ 0 & -1 & 0 & -1 & 4 & -1 \\ 0 & 0 & -1 & 0 & -1 & 4% \end{array}% \right) $, $\overrightarrow{b}=\left( \begin{array}{c} 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2% \end{array}% \right) $ a.\qquad Sei $\overrightarrow{x}^{\left( 0\right) }=\overrightarrow{0}$. Berechnen Sie die N\"{a}herungsl\"{o}sung $\overrightarrow{x}^{\left( 3\right) }$\ des Systems, die man nach 3 Schritten des Gesamtschrittverfahrens erh\"{a}lt. b. \end{document}