\section{Aufgabe 1}\label{A001} Gegeben sind: \hspace{10mm}$\vec a = \left( {3,4} \right)$,\hspace{5mm}$\vec b = \left( {10,5} \right)$,\hspace{5mm}$ \vec c = \vec a - \frac{1} {2}\vec b$ \begin{list}{\ding{42}} {\setlength{\topsep}{0.5cm} \setlength{\itemsep}{0.5cm} \setlength{\leftmargin}{6mm} \setlength{\labelwidth}{4mm} \setlength{\parsep}{2mm} \setlength{\labelsep}{2mm} \renewcommand{\makelabel}[1]{\textbf{#1}}} \item[a.]Bestimmen Sie $\vec c$ durch Zeichnung und Rechnung! \item[b.]Bestimmen Sie $\left|\vec a\right|$, $\left|\vec b\right|$, $\left|\vec c\right|$. \item[c.]Bestimmen Sie den Öffnungswinkel $\alpha \left( {\vec a,\vec c} \right)$ und $\alpha \left( {\vec a,\vec b} \right)$. \end{list} \subsection{Lösung} \subsubsection{Zeichnung} \begin{list}{\ding{42}} {\setlength{\topsep}{0.5cm} \setlength{\itemsep}{0.5cm} \setlength{\leftmargin}{6mm} \setlength{\labelwidth}{4mm} \setlength{\parsep}{2mm} \setlength{\labelsep}{2mm} \renewcommand{\makelabel}[1]{\textbf{#1}}} \item[a.]\includegraphics{Loesung0001} \end{list} \subsubsection{Rechnung} \begin{list}{\ding{42}} {\setlength{\topsep}{0.5cm} \setlength{\itemsep}{0.5cm} \setlength{\leftmargin}{6mm} \setlength{\labelwidth}{4mm} \setlength{\parsep}{2mm} \setlength{\labelsep}{2mm} \renewcommand{\makelabel}[1]{\textbf{#1}}} \item[a.]$\underline{\underline{\vec c}} = \vec a - \frac{1} {2}\vec b = \left( {3,4} \right) - \frac{1} {2}\left( {10,5} \right) = \left( {3,4} \right) - \left( {10 \cdot \frac{1} {2},5 \cdot \frac{1} {2}} \right) = \left( {3,4} \right) - \left({5,\frac{5}{2}} \right) =\left( {3 - 5,4 - \frac{5} {2}} \right) = \underline{\underline {\left( { - 2,\frac{3} {2}} \right)}}$ \item[b.]$\underline{\underline {\left| {\vec a} \right|}} = \left| {\left( {3,4} \right)} \right| = \sqrt {3^2 + 4^2 } = \sqrt {9 + 16} = \sqrt {25} = \underline{\underline 5}$\\ \\% $\underline{\underline {\left| {\vec b} \right|}} = \left| {\left( {10,6} \right)} \right| = \sqrt {10^2 + 5^2 } = \sqrt {100 + 25} = \sqrt {125} = \sqrt {5 \cdot 25} = 5\sqrt 5 \cong \underline{\underline {11.18033988}}$\\% $\underline{\underline {\left| {\vec c} \right|}} = \left| {\left( { - 2,\frac{3}{2}} \right)} \right| = \sqrt {\left( { - 2} \right)^2 + \left( {\frac{3}{2}} \right)^2 } = \sqrt {4 + \frac{9}{4}} = \sqrt {\frac{{16 + 9}}{4}} = \sqrt {\frac{{25}}{4}} = \underline{\underline {\frac{5}{2}}} $ \item[c.]$\alpha = \alpha \left( {\vec a,\vec c} \right)\text{, }0 \le \alpha \le \pi$\\ \vspace{2mm} \hspace{-1.5mm}$\cos \left( \alpha \right) = \frac{{\left\langle {\vec a,\vec c} \right\rangle }}{{\left| {\vec a} \right| \cdot \left| {\vec c} \right|}}\mathop = \limits_{vgl.b.} \frac{{\left\langle {\left( {3,4} \right),\left( { - 2,\frac{3}{2}} \right)} \right\rangle }}{{5 \cdot \frac{5}{2}}} = \frac{{3 \cdot \left( { - 2} \right) + 4 \cdot \frac{3}{2}}}{{\frac{{25}}{2}}} = \frac{{ - 6 + 6}}{{\frac{{25}}{2}}} = 0 \Rightarrow \underline{\underline {\alpha = \frac{\pi }{2}}} \left( { \entspricht 90^ \circ } \right)$ \\ \vspace{5mm} $\beta = \alpha \left( {\vec a,\vec b} \right)$, $0 \le \beta \le \pi$\\ \vspace{2mm} \hspace{-1.5mm}$\cos \left( \beta \right) = \frac{{\left\langle {\vec a,\vec b} \right\rangle }}{{\left| {\vec a} \right| \cdot \left| {\vec b} \right|}}\mathop = \limits_{vgl.b.}\frac{{\left\langle {\left( {3,4} \right),\left( {10,5} \right)} \right\rangle }}{{5 \cdot 5 \cdot \sqrt 5 }} = \frac{{3 \cdot 10 + 4 \cdot 5}}{{25 \cdot \sqrt 5 }} = \frac{{50}}{{25 \cdot \sqrt 5 }} = \frac{2}{{\sqrt 5 }} $.\\ Es folgt:\\ $\beta = \cos^{-1} \left(\frac{2}{\sqrt 5}\right)= \arccos\left(\frac{2}{\sqrt 5}\right) \cong \underline{\underline{0.463647609}} \left( \entspricht 26.565051177078^\circ \right)$ \end{list}