Files
mathematikfhtw/Aufgaben/Aufg120.tex
2020-10-24 13:47:37 +02:00

96 lines
3.3 KiB
TeX
Raw Blame History

\documentclass{article}%
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx}%
\setcounter{MaxMatrixCols}{30}
%TCIDATA{OutputFilter=latex2.dll}
%TCIDATA{Version=5.50.0.2953}
%TCIDATA{CSTFile=40 LaTeX article.cst}
%TCIDATA{Created=Saturday, December 30, 2006 12:55:45}
%TCIDATA{LastRevised=Saturday, January 06, 2007 22:30:18}
%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
%TCIDATA{<META NAME="SaveForMode" CONTENT="1">}
%TCIDATA{BibliographyScheme=Manual}
%TCIDATA{<META NAME="DocumentShell" CONTENT="Standard LaTeX\Blank - Standard LaTeX Article">}
%TCIDATA{ComputeGeneralSettings=0,10,6,0,0,0,0}
%BeginMSIPreambleData
\providecommand{\U}[1]{\protect\rule{.1in}{.1in}}
%EndMSIPreambleData
\newtheorem{theorem}{Theorem}
\newtheorem{acknowledgement}[theorem]{Acknowledgement}
\newtheorem{algorithm}[theorem]{Algorithm}
\newtheorem{axiom}[theorem]{Axiom}
\newtheorem{case}[theorem]{Case}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{conclusion}[theorem]{Conclusion}
\newtheorem{condition}[theorem]{Condition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{criterion}[theorem]{Criterion}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{exercise}[theorem]{Exercise}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{notation}[theorem]{Notation}
\newtheorem{problem}[theorem]{Problem}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{solution}[theorem]{Solution}
\newtheorem{summary}[theorem]{Summary}
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\begin{document}
Aufgabe 120
Sei $x=%
%TCIMACRO{\dsum \limits_{k=0}^{\infty}}%
%BeginExpansion
{\displaystyle\sum\limits_{k=0}^{\infty}}
%EndExpansion
\left( -1\right) ^{k}\frac{1}{k};$ \ $\widetilde{x}=%
%TCIMACRO{\dsum \limits_{k=0}^{4}}%
%BeginExpansion
{\displaystyle\sum\limits_{k=0}^{4}}
%EndExpansion
\left( -1\right) ^{k}\frac{1}{k!}$
\begin{description}
\item[a.] Mit Hilfe von welcher speziellen Funktion l\"{a}\ss t sich $x$ genau
beschreiben? Wie? (Tip: 3.3.5)
\item[b.] Berechnen Sie $\widetilde{x}$.
\item[c.] Geben Sie einen absoluten H\"{o}chstfehler von $\widetilde{x}$ an.
(Tip: 3.2.7)
\end{description}
L\"{o}sung:
\begin{description}
\item[a.] $\exp(z)=%
%TCIMACRO{\dsum \limits_{k=0}^{\infty}}%
%BeginExpansion
{\displaystyle\sum\limits_{k=0}^{\infty}}
%EndExpansion
\frac{1}{k!}z^{k}$ \ $\Longrightarrow$ \ \ $x=%
%TCIMACRO{\dsum \limits_{k=0}^{\infty}}%
%BeginExpansion
{\displaystyle\sum\limits_{k=0}^{\infty}}
%EndExpansion
\frac{1}{k!}(-1)^{k}=\exp(-1)=\underline{\underline{\frac{1}{e}}}$
\item[b.] $\widetilde{x}=%
%TCIMACRO{\dsum \limits_{k=0}^{4}}%
%BeginExpansion
{\displaystyle\sum\limits_{k=0}^{4}}
%EndExpansion
\frac{1}{k!}(-1)^{k}=\allowbreak1-1+\frac{1}{2}-\frac{1}{6}+\frac{1}{24}%
=\frac{12-4+1}{24}=\allowbreak\frac{9}{24}=\frac{3}{8}=\allowbreak
\underline{\underline{0.375}}\,$
\item[c.] Da die vorliegende Reihe eine alternierende Reihe ist, gilt $|x-\widetilde{x}|\leq\frac{1}{5!}=\frac{1}{120}=8.\overline{3}\cdot 10^{-3}$.\\
Damit ist $\underline{\underline{\alpha_x=8.\overline{3}\cdot 10^{-3}}}$ ein absoluter H<>chstfehler von $\widetilde{x}$
\end{description}
\end{document}