Init nand2tetris

This commit is contained in:
Sven Riwoldt
2023-03-22 19:51:12 +01:00
commit 4c52d4ba55
496 changed files with 88269 additions and 0 deletions

BIN
projects/04/.DS_Store vendored Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

14
projects/04/fill/Fill.asm Normal file
View File

@@ -0,0 +1,14 @@
// This file is part of www.nand2tetris.org
// and the book "The Elements of Computing Systems"
// by Nisan and Schocken, MIT Press.
// File name: projects/04/Fill.asm
// Runs an infinite loop that listens to the keyboard input.
// When a key is pressed (any key), the program blackens the screen,
// i.e. writes "black" in every pixel;
// the screen should remain fully black as long as the key is pressed.
// When no key is pressed, the program clears the screen, i.e. writes
// "white" in every pixel;
// the screen should remain fully clear as long as no key is pressed.
// Put your code here.

11
projects/04/fill/Fill.tst Normal file
View File

@@ -0,0 +1,11 @@
// This file is part of www.nand2tetris.org
// and the book "The Elements of Computing Systems"
// by Nisan and Schocken, MIT Press.
// File name: projects/04/fill/Fill.tst
load Fill.asm;
echo "Make sure that 'No Animation' is selected. Then, select the keyboard, press any key for some time, and inspect the screen.";
repeat {
ticktock;
}

View File

@@ -0,0 +1,4 @@
|RAM[16384]|RAM[17648]|RAM[18349]|RAM[19444]|RAM[20771]|RAM[21031]|RAM[22596]|RAM[23754]|RAM[24575]|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

View File

@@ -0,0 +1,37 @@
// This file is part of www.nand2tetris.org
// and the book "The Elements of Computing Systems"
// by Nisan and Schocken, MIT Press.
// File name: projects/04/fill/FillAutomatic
// This script can be used to test the Fill program automatically,
// rather than interactively. Specifically, the script sets the keyboard
// memory map (RAM[24576]) to 0, 1, and then again to 0. This simulates the
// acts of leaving the keyboard untouched, pressing some key, and then releasing
// the key. After each on of these simulated events, the script outputs the values
// of some selected registers from the screen memory map (RAM[16384]-RAM[24576]).
// This is done in order to test that these registers are set to 000...0 or 111....1,
// as mandated by how the Fill program should react to the keyboard events.
load Fill.asm,
output-file FillAutomatic.out,
compare-to FillAutomatic.cmp,
output-list RAM[16384]%D2.6.2 RAM[17648]%D2.6.2 RAM[18349]%D2.6.2 RAM[19444]%D2.6.2 RAM[20771]%D2.6.2 RAM[21031]%D2.6.2 RAM[22596]%D2.6.2 RAM[23754]%D2.6.2 RAM[24575]%D2.6.2;
set RAM[24576] 0, // the keyboard is untouched
repeat 1000000 {
ticktock;
}
output; // test that the screen is white
set RAM[24576] 1, // a keyboard key is pressed
repeat 1000000 {
ticktock;
}
output; // test that the screen is black
set RAM[24576] 0, // they keyboard in untouched
repeat 1000000 {
ticktock;
}
output; // test that the screen is white

12
projects/04/mult/Mult.asm Normal file
View File

@@ -0,0 +1,12 @@
// This file is part of www.nand2tetris.org
// and the book "The Elements of Computing Systems"
// by Nisan and Schocken, MIT Press.
// File name: projects/04/Mult.asm
// Multiplies R0 and R1 and stores the result in R2.
// (R0, R1, R2 refer to RAM[0], RAM[1], and RAM[2], respectively.)
//
// This program only needs to handle arguments that satisfy
// R0 >= 0, R1 >= 0, and R0*R1 < 32768.
// Put your code here.

View File

@@ -0,0 +1,7 @@
| RAM[0] | RAM[1] | RAM[2] |
| 0 | 0 | 0 |
| 1 | 0 | 0 |
| 0 | 2 | 0 |
| 3 | 1 | 3 |
| 2 | 4 | 8 |
| 6 | 7 | 42 |

74
projects/04/mult/Mult.tst Normal file
View File

@@ -0,0 +1,74 @@
// This file is part of www.nand2tetris.org
// and the book "The Elements of Computing Systems"
// by Nisan and Schocken, MIT Press.
// File name: projects/04/mult/Mult.tst
load Mult.asm,
output-file Mult.out,
compare-to Mult.cmp,
output-list RAM[0]%D2.6.2 RAM[1]%D2.6.2 RAM[2]%D2.6.2;
set RAM[0] 0, // Set test arguments
set RAM[1] 0,
set RAM[2] -1; // Test that program initialized product to 0
repeat 20 {
ticktock;
}
set RAM[0] 0, // Restore arguments in case program used them as loop counter
set RAM[1] 0,
output;
set PC 0,
set RAM[0] 1, // Set test arguments
set RAM[1] 0,
set RAM[2] -1; // Ensure that program initialized product to 0
repeat 50 {
ticktock;
}
set RAM[0] 1, // Restore arguments in case program used them as loop counter
set RAM[1] 0,
output;
set PC 0,
set RAM[0] 0, // Set test arguments
set RAM[1] 2,
set RAM[2] -1; // Ensure that program initialized product to 0
repeat 80 {
ticktock;
}
set RAM[0] 0, // Restore arguments in case program used them as loop counter
set RAM[1] 2,
output;
set PC 0,
set RAM[0] 3, // Set test arguments
set RAM[1] 1,
set RAM[2] -1; // Ensure that program initialized product to 0
repeat 120 {
ticktock;
}
set RAM[0] 3, // Restore arguments in case program used them as loop counter
set RAM[1] 1,
output;
set PC 0,
set RAM[0] 2, // Set test arguments
set RAM[1] 4,
set RAM[2] -1; // Ensure that program initialized product to 0
repeat 150 {
ticktock;
}
set RAM[0] 2, // Restore arguments in case program used them as loop counter
set RAM[1] 4,
output;
set PC 0,
set RAM[0] 6, // Set test arguments
set RAM[1] 7,
set RAM[2] -1; // Ensure that program initialized product to 0
repeat 210 {
ticktock;
}
set RAM[0] 6, // Restore arguments in case program used them as loop counter
set RAM[1] 7,
output;

View File

@@ -0,0 +1,20 @@
@R0
D=M
//WHAT_DOES_THIS_DO --> NOT_EQUAL_TO_1
@WHAT_DOES_THIS_DO
D-1;JNE
@R1
M=0
@END
0;JMP
(WHAT_DOES_THIS_DO)
@R1
M=1
(END)
@END
0;JMP

View File

@@ -0,0 +1,19 @@
// wenn R0>0 springe zu 8 und setze R1=1
// sonst R1=0
@R0 // an 0 steht 42
D=M // D=42 also RAM[0] (M)
@8 // Adresse 8
D;JGT // wenn D > 0 dann gehe zu 8 (D = R0)
@R1
M=0 // RAM[1] = 0
@10
0;JMP // Endeschleife
@R1
M=1 // R1 wird 1
@10
0;JMP // Endeschleife

View File

@@ -0,0 +1,23 @@
// wenn R0>0 springe zu 8 und setze R1=1
// sonst R1=0
// @LABEL übersetzt zu @n, n ist die Anweisungnummer
// gefolgt von der (LABEL) Deklaration
@R0 // an 0 steht 42
D=M // D=42 also RAM[0] (M)
@POSITIVE
D;JGT // wenn D > 0 dann gehe zu 8 (D = R0)
@R1
M=0 // RAM[1] = 0
@END
0;JMP // Endeschleife
(POSITIVE)
@R1
M=1 // R1 wird 1
(END)
@10
0;JMP // Endeschleife