
Beschreibung der Simulation 06 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Das zugrundeliegende Programm:

Demonstration des Aufrufs von Unterprogrammen

Wie im HowTo beschrieben, wird Simulation06.asm im MARS geöffnet.

Der Code zeigt den Aufruf eines Unterprogrammes, der folgende High-Level Code wird in
Assembler umgesetzt:

Die main-Methode ruft also die Funktion diffofsums mit 4 integer-Parametern f,g,h und i auf, die
dann den Integer-Wert result = (f+g)-(h+i) zurückgibt.

Zuerst werden die Beispielwerte 2,3,4 und 5 in die Parameter-Übergabe-Register a0-a3 geschrieben,
hierzu wird der Befehl addi in Kombination mit dem zero Register genutzt, das die Konstante 0
enthält.

Es folgt der Aufruf der Unterprozedur diffofsum durch den Befehl jal: jump and link

Wesentlich hierbei ist, dass die Rücksprungadresse im Register ra gespeichert wird.

int main ()
 {

int y;
...

 y = diffofsum (2,3,4,5);
 ...
 }
 int diffofsums (int f, int g, int h, int i)
 {
 int result;
 result = (f+g)-(h+i);
 return result;
 }

main:
Laden der f,g,h,i in die Übergaberegister a0-a3
addi $a0, $zero, 2
addi $a1, $zero, 3
addi $a2, $zero, 4
addi $a3, $zero, 5

Aufruf der Unterprozedur diffofsum, Speichern der Rücksprungadresse in $ra
jal diffofsums

Beschreibung der Simulation 06 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Empfehlenswert ist es, Schritt für Schritt durch das Programm zu gehen, das geschieht durch Klicks
auf den „Run one step at a time“ Button:

So kann man schön sehen, dass zunächst die Integerwerte in die Register geschrieben werden:

und dann, nach dem jal-Befehl, wie die Rücksprungadresse in ra geschrieben wurde:

vorher nachher

Woher kommt diese Rücksprungadresse? Es ist der Inhalt des PC (program counter), zudem 4
addiert wird. Würde als Rücksprungadresse der Inhalt von PC eingetragen, ohne, dass 4 addiert
wird, würde jeder Rücksprung wieder zum jal-Befehl führen und wir steckten in einer
Endlosschleife fest. Also ist die Rücksprungadresse die des nächsten Befehls nach jal.

Was passiert gleichzeitig in PC? Vor Ausführung des jal-Befehls steht in PC 0x004000010, also die
Adresse des jal-Befehls. Nach Ausführung steht dort 0x004000020, also 1610 mehr, warum?
Weil wir durch den Sprung, den jal ausgelöst hat, nicht mit dem Befehl nach jal (also PC+4)
sondern mit der Unterprozedur diffofsums weitermachen, und der erste Befehl dieser Prozedur liegt
unter der Adresse 0x004000020. Sehen kann man das sehr gut im Text Segment:

Beschreibung der Simulation 06 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Im Unterprogramm diffofsums schließlich findet die Berechnung result = (f+g)-(h+i) statt, hier für
werden die temporären Register t0, t1 und t2 benutzt. Dann wird die Variable result im Register v0
abgelegt und es folgt der Rücksprung mit dem Befehl jr: jump register unconditionally:

es wird also zu dem Befehl gesprungen, dessen Adresse im Register ra liegt, wie wir oben gesehen
haben, ist das die Adresse des Befehls, der direkt auf jal folgt.

Dieser Befehl schreibt den Rückgabewert der Unterprozedur in das Register s0, danach bleibt nur
noch, das Programm zu beenden. Der Wert 10 für den syscall bedeutet „terminate execution“.

Abschließende Registerbelegung (hexadezimal):

####################### Unterprogramm diffofsums ##############################

diffofsums:
add $t0, $a0, $a1 # t0 = f+g
add $t1, $a2, $a3 # t1 = h+i
sub $t2, $t0, $t1 # s0 = (f+g)-(h+i)
add $v0, $s0, $zero # v0 = result
jr $ra # Rücksprung

Benutzen des Rückgabewertes, der in $v0 liegt, $s0 = y
add $s0, $v0, $zero

exit
li $v0, 10
syscall

Beschreibung der Simulation 06 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Abschließende Registerbelegung (dezimal):

Der verwendete Code entstammt (leicht modifiziert) dem Kapitel 6 des Buches
Harris & Harris: Digital Design and Computer Architecture, Elsevier, 2012

