Beschreibung der Simulation 06 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n HHEEﬂ

auf Grundlage des Kurstextes Computersysteme II

Das zugrundeliegende Programm:

Demonstration des Aufrufs von Unterprogrammen
Wie im HowTo beschrieben, wird Simulation06.asm im MARS geotfnet.

Der Code zeigt den Aufruf eines Unterprogrammes, der folgende High-Level Code wird in
Assembler umgesetzt:

int main ()

{

inty;

y = diffofsum (2,3,4,5);

int diffofsums (int f, int g, int h, int 1)
(
t

int result;

result = (f+g)-(h+i);

return result;

Die main-Methode ruft also die Funktion diffofsums mit 4 integer-Parametern f,g,h und i auf, die
dann den Integer-Wert result = (f+g)-(h+i) zuriickgibt.

main:
Laden der f,g h,i in die Ubergaberegister a0-a3
addi $a0, $zero, 2
addi $al, $zero, 3
addi $a2, $zero, 4
addi $a3, $zero, 5

Zuerst werden die Beispielwerte 2,3,4 und 5 in die Parameter-Ubergabe-Register a0-a3 geschrieben,
hierzu wird der Befehl addi in Kombination mit dem zero Register genutzt, das die Konstante 0
enthalt.

Aufruf der Unterprozedur diffofsum, Speichern der Riicksprungadresse in $ra
jal diffofsums

Es folgt der Aufruf der Unterprozedur diffofsum durch den Befehl jal: jump and link

B ArsFrrrF Mo TTnE crrmee sz A9 FFmForim Crmd mlarn Aar PhamlFernpimnmasdrscos 1m0 &)
#F AUITUl der uUnterproZedur diifolsum, opeldlern der RUCEKsprundadiesse 1n qbd

jal diffofsums

“ q| jal target Jump and link: Set $rato Program Counter (return address) then jump to statement at target address

Wesentlich hierbei ist, dass die Riicksprungadresse im Register ra gespeichert wird.

Beschreibung der Simulation 06 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hagen

auf Grundlage des Kurstextes Computersysteme II

Empfehlenswert ist es, Schritt fiir Schritt durch das Programm zu gehen, das geschieht durch Klicks
auf den ,,Run one step at a time* Button:

| O |G @
—| Run one step at a time I—

So kann man schon sehen, dass zunichst die Integerwerte in die Register geschrieben werden:

“|sa0 4 0x00000002
|sa1 5 0x00000003
|52z & 0x00000004
523 7 0x00000005

und dann, nach dem jal-Befehl, wie die Riicksprungadresse in ra geschrieben wurde:

e - - o o

tra 31 0x00000000 tra 31 0x00400014

pe 0x00400010 oc 0x00400020

c ToTTTTEET LT fAwfAfAfAnAnnnn
vorher nachher

Woher kommt diese Riicksprungadresse? Es ist der Inhalt des PC (program counter), zudem 4
addiert wird. Wiirde als Riicksprungadresse der Inhalt von PC eingetragen, ohne, dass 4 addiert
wird, wiirde jeder Riicksprung wieder zum jal-Befehl fiihren und wir steckten in einer
Endlosschleife fest. Also ist die Riicksprungadresse die des ndchsten Befehls nach jal.

Was passiert gleichzeitig in PC? Vor Ausfiithrung des jal-Befehls steht in PC 0x004000010, also die
Adresse des jal-Befehls. Nach Ausfiihrung steht dort 0x004000020, also 16, mehr, warum?

Weil wir durch den Sprung, den jal ausgelost hat, nicht mit dem Befehl nach jal (also PC+4)
sondern mit der Unterprozedur diffofsums weitermachen, und der erste Befehl dieser Prozedur liegt
unter der Adresse 0x004000020. Sehen kann man das sehr gut im Text Segment:

Text Segment

Bkpt Address Code Basic Source
L] | oxoo400000| 0x20040002|addi £4,20,2 24: addi $a0, Szero, 2
[] | ox00d4o0004| 0x20050003|addi £5,£0,3 25: zddi £al, Szero, 3
L] | oxoodo0008| ox20060004|addi 26,50, 4 26: addi %a?, &zero, 4
L] 0x0040000¢c| 0x20070005|addi £7,£0,5 27: addi %a3, $zeroc, 5
: 0x00400010| 0x0cl0000&|(jal O0x00400020 30z jal diffofsums
: 0x00400014| 0x00408020/add $£16,82,50 33: add %30, %v0, %zero
[] | oxoo400012| 0x2402000a/addiu 52,50, 10 36: 1i sv0, 10
: 0x0040001c| 0x0000000c|3yscall 37 ayscall
QO:{DUMUGEU 0x00854020/add $8,$4,55 12: add §t0, sa0, $al # t0 = f+g <u—
: 0x00400024| 0x00cT4820/add £9,56,57 43: add §tl, %a2, £a3 # tl = ht+i
L] | oxoo400023| 0x01095022|sub £10, 58,59 44: sub 5t2, 5t0, 5tl # 30 = (f+g)- (hti)
: 0x0040002c| 0x01401020(add $2,410,50 45: add sv0, &t2, &zeroc # v0 = result
: 0x00400030(0x03e200008(Jr £31 L1H jr Sra # Ricksprung

Beschreibung der Simulation 06 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hagen

auf Grundlage des Kurstextes Computersysteme II

I

HtH R Unterprogramm diffofsums ##HHHH T

diffofsums:
add $t0, $a0, $al #10 = f+g
add $tl, $a2, $a3 #tl =hH
sub $t2, $t0, $t1 # 50 = (f+g)-(h+i)
add $v0, $s0, $zero # v0 = result
jr $ra # Riicksprung

Im Unterprogramm diffofsums schlieBlich findet die Berechnung result = (f+g)-(h+i) statt, hier flir
werden die tempordren Register t0, t1 und t2 benutzt. Dann wird die Variable result im Register vO
abgelegt und es folgt der Riicksprung mit dem Befehl jr: jump register unconditionally:

] rl $ra # Ricksprung

J jr £tl Jump register unconditionally : Jump to statement whose address is in $t1 L::r

es wird also zu dem Befehl gesprungen, dessen Adresse im Register ra liegt, wie wir oben gesehen
haben, ist das die Adresse des Befehls, der direkt auf jal folgt.

Benutzen des Riickgabewertes, der in $v0 liegt, $s0 =y
add $s0, $v0, $zero

exit

1i $v0, 10
syscall

Dieser Befehl schreibt den Riickgabewert der Unterprozedur in das Register sO, danach bleibt nur
noch, das Programm zu beenden. Der Wert 10 fiir den syscall bedeutet ,,ferminate execution *.

Abschlieende Registerbelegung (hexadezimal):

||5v0 2 0x0000000a
|lsv1 3 0x00000000
520 4 0x00000002
521 5 0x00000003
522 6 0x00000004
523 T 0x00000005
|lst0 B 0x00000005
|lst1 E 0x00000009
lst2 10 OxfEEEEEEC
|lst3 11 0x00000000
lste 12 0x00000000
|l5t5 13 0x00000000
|lst6 14 0x00000000
|lst7 15 0x00000000
|ls=0 16 Oxfffffffc
lls=1 17 0x00000000

Beschreibung der Simulation 06 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fgmu“iuersitﬁt i“ Hauen

auf Grundlage des Kurstextes Computersysteme II

AbschlieBende Registerbelegung (dezimal):

gvo 2 10
5wl 3 i
|| #a0 4 2
|#al 5 3
|| #a2 & 4
|53 7 5
|50 g 5
f5e1 9 9
[st2 10 -4
[5t3 11 0
[st4 12 0
[5ts 13 0
| 14 0
57 15 0
i IEED 16 -4
Mes1 17 0

Der verwendete Code entstammt (leicht modifiziert) dem Kapitel 6 des Buches
Harris & Harris: Digital Design and Computer Architecture, Elsevier, 2012

