
Beschreibung der Simulation 15 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Das zugrundeliegende Programm:

Programm zur Berechnung der ersten n Fibonacci-Zahlen

Wie im HowTo beschrieben, wird Simulation15.asm im MARS geöffnet. Das Programm liest eine
Ganzzahl n ein und berechnet die ersten n Fibonacci-Zahlen.

Im .data Teil des Codes wird Platz geschaffen für die maximal 25 Zahlen, die abgelegt werden
müssen, sowie ein String hinterlegt, der die Ausgabe begleiten soll.

Empfehlenswert ist es, nach dem Assemblieren Schritt für Schritt durch das Programm zu gehen,
das geschieht durch Klicks auf den „Run one step at a time“ Button:

Der .text Teil beginnt damit, diese hinterlegten Werte in die Register zu laden:

Dann wird n eingelesen:

Der Wert 4 für den syscall bedeutet print string, und die Adresse dieses Strings muss dafür in
Register $a0 geladen werden. Nach Ausgabe der Nachricht prompt kann dann n eingelesen werden,
dazu dient der Wert 5: read integer für den syscall. Wird dann eine Zahl eingegeben und mit Enter
bestätigt, liegt sie in $v0 vor und kann wie folgt überprüft werden:

.data
fibs: .word 0:25 #'array' für die berechneten Fibonaccizahlen
size: .word 25 # Größe dieses 'arrays'
prompt: .asciiz "\nBitte geben Sie eine Zahl (n <= 25) an, n = "

.text
main:

la $s0, fibs # Adresse des 'arrays' laden
la $s5, size # Adresse der size Variable laden
lw $s5, 0($s5) # Arraygröße laden

input:
Einlesen und Überprüfen von n

la $a0, prompt # Adresse des Strings laden
li $v0, 4 # der Wert 4 für den syscall bedeutet print string
syscall # String ausgeben
li $v0, 5 # der Wert 5 für den syscall bedeutet: read integer
syscall # n einlesen, gelesener Wert steht in $v0

Beschreibung der Simulation 15 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Gilt 0 ≤ n ≤ 25, dann wird fortgefahren, ansonsten erneut zur Eingabe einer gültigen Zahl
aufgefordert durch Sprung zur Marke input. Ein korrekt eingegebener Wert wird dann mithilfe des
Additionsbefehls und der konstanten 0 im Register $zero in das Register $s5 geschrieben:

Die ersten beiden Fibonacci-Zahlen sind 1, deshalb können die direkt in das 'array' dessen
Startadresse in $s0 liegt, geschrieben werden:

Das kann man schön im Text Segment des Execute Fensters nachverfolgen. Zuerst schauen wir
rechts in der Register-Übersicht, welchen Wert $s0 enthält:

Unser 'array' fibs beginnt also bei der Adresse 0x10010000 und nach Ausführen der Befehle sw $s2,
0($s0) und sw $s2, 4($s0) finden wir dort 1en vor:

Folgende Schleife loop wird solange wiederholt, bis der Counter in $s1 0 erreicht hat:

bgt $v0, $s5, input # Falls der eingegebene Wert größer als 25 ist, neu einlesen
blt $v0, $zero, input # Falls der eingegebene Wert kleiner Null ist, neu einlesen

Da die ersten beiden Fibonacci-Zahlen 1 sind, wird 1 direkt gespeichert
li $s2, 1
sw $s2, 0($s0) # F[0]=1
sw $s2, 4($s0) # F[1]=1
addi $s1, $s5, -2 # dient als Counter für die Schleife, läuft n-2 mal

add $s5, $zero, $v0# korrekt eingelesenen Wert in $s5 speichern

loop:
Schleife zur Berechnung der Fibonaccizahlen

lw $s3, 0($s0) # Wert aus F[x-2] holen
lw $s4, 4($s0) # Wert aus F[x-1] holen
add $s2, $s3, $s4 # F[x] = F[x-2] + F[x-1]
sw $s2, 8($s0) # F[x] speichern
addi $s0, $s0, 4 # Inkrementieren der Adresse
addi $s1, $s1, -1 # Dekrementieren des Counters
bgtz $s1, loop # wiederholen der Schleife loop, solange $s1>0

Beschreibung der Simulation 15 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Danach liegen die ersten n (hier im Beispiel gilt n=10) Fibonacci-Zahlen vor ….

… und es wird mit folgendem Codefragment fortgefahren:

Es wird das Unterprogramm print aufgerufen, dem über die Register $a0 und $a1 die berechneten
Zahlen sowie n übergeben werden. Im Unterprogramm print findet sich wieder ein .data und
ein .text Teil, im .data Teil werden Strings hinterlegt, die zur Ausgabe benötigt werden:

Im .text Teil werden Die Startadresse des 'arrays' für die Ausgabe, sowie n als counter geladen, dann
der String message ausgegeben:

Danach wird die Schleife loop2 durchlaufen, die der Reihe nach die berechneten Zahlen, getrennt
durch eine Leerstelle, ausgibt:

.data
space: .asciiz " "# Leerstelle, die zwischen den Zahlen eingefügt wird
message: .asciiz "\nDie Fibonacci-Zahlen sind: \n"

.text
print:

add $t0, $zero, $a0 # Startadresse des arrays für Ausgabe
add $t1, $zero, $a1 # counter
la $a0, message # Adresse des Strings 'message' laden
li $v0, 4 # Der Wert 4 für den syscall bedeutet print string
syscall # Ausgabe des Strings

Nach der Schleife liegen die Fibonacci-Zahlen vor und müssen noch ausgegeben werden
la $a0, fibs # Erster Parameter für die print Funktion ist das gefüllte array
add $a1, $zero, $s5 # Zweiter Parameter ist n (gespeichert in $s5)
jal print # Aufruf des Unterprogramms print

loop2:
Schleife zur Ausgabe der Zahlen

lw $a0, 0($t0) # Laden der aktuellen Fibonaccizahl
li $v0, 1 # der Wert 1 für den syscall bedeutet: print integer
syscall # Ausgabe der Zahl
la $a0, space # Laden der Adresse des Leerstellenstrings
li $v0, 4 # Der Wert 4 für den syscall bedeutet: print string
syscall # Leerstelle ausgeben

addi $t0, $t0, 4 # Inkrementieren der Adresse der auszugebenden Daten
addi $t1, $t1, -1 # Dekrementieren des counters
bgtz $t1, loop2 # wiederholen der Schleife loop2, solange $t1>0

Beschreibung der Simulation 15 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Diese Schleife läuft, bis der counter in $t1 herunter gezählt ist, also alle n Fibonacci-Zahlen
ausgegeben sind, dann erfolgt der Rücksprung zum Hauptprogramm main:

Dort ist das Programm nur noch zu beenden, was wie bei den anderen Simulationen dieser Reihe
auch, über den Wert 10 für den syscall passiert:

Die Ausgabe ist im Fenster Run I/O unterhalb des Data Segments im execute Fenster zu finden:

Dieses Programm ist eine leicht modifizierte Version der Datei fibonacci.asm, die von den
Entwicklern des MARS auf dessen Homepage zum Download bereitgestellt wird.

exit
li $v0, 10 # der Wert 10 für den syscall bedeutet: exit (terminate execution)
syscall

jr $ra # Rücksprung zu main

