Beschreibung der Simulation 15 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n HHEEﬂ

auf Grundlage des Kurstextes Computersysteme II

Das zugrundeliegende Programm:

Programm zur Berechnung der ersten n Fibonacci-Zahlen

Wie im HowTo beschrieben, wird Simulationl5.asm im MARS gedffnet. Das Programm liest eine
Ganzzahl n ein und berechnet die ersten n Fibonacci-Zahlen.

.data
fibs: .word 0:25 #'array' fiir die berechneten Fibonaccizahlen
size: .word 25 # Grofe dieses 'arrays'
prompt: .asciiz "\nBitte geben Sie eine Zahl (n <=25) an, n

Im .data Teil des Codes wird Platz geschaffen fiir die maximal 25 Zahlen, die abgelegt werden
miissen, sowie ein String hinterlegt, der die Ausgabe begleiten soll.

Empfehlenswert ist es, nach dem Assemblieren Schritt fiir Schritt durch das Programm zu gehen,
das geschieht durch Klicks auf den ,,Run one step at a time* Button:

O G @
—| Run one step at a time I—

Der .text Teil beginnt damit, diese hinterlegten Werte in die Register zu laden:

text

main:
la $s0, fibs # Adresse des 'arrays' laden
la $s5, size # Adresse der size Variable laden
Iw $s5, 0($s5) # Arraygrofe laden

Dann wird n eingelesen:

input:

# Einlesen und Uberpriifen von n
la $a0, prompt # Adresse des Strings laden
li $v0, 4 # der Wert 4 fiir den syscall bedeutet print string
syscall # String ausgeben
li $v0, 5 # der Wert 5 fiir den syscall bedeutet: read integer
syscall # n einlesen, gelesener Wert steht in $v0

Der Wert 4 fiir den syscall bedeutet print string, und die Adresse dieses Strings muss dafiir in
Register $a0 geladen werden. Nach Ausgabe der Nachricht prompt kann dann » eingelesen werden,
dazu dient der Wert 5. read integer fiir den syscall. Wird dann eine Zahl eingegeben und mit Enter
bestitigt, liegt sie in $v0 vor und kann wie folgt iiberpriift werden:



Beschreibung der Simulation 15 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hagen

auf Grundlage des Kurstextes Computersysteme II

bgt $v0, $s5, input # Falls der eingegebene Wert grofer als 25 ist, neu einlesen
blt $v0, $zero, input # Falls der eingegebene Wert kleiner Null ist, neu einlesen

Gilt 0 < n < 25, dann wird fortgefahren, ansonsten erneut zur Eingabe einer giiltigen Zahl
aufgefordert durch Sprung zur Marke input. Ein korrekt eingegebener Wert wird dann mithilfe des
Additionsbefehls und der konstanten 0 im Register $zero in das Register 855 geschrieben:

add $s5, $zero, $v0# korrekt eingelesenen Wert in $s5 speichern

Die ersten beiden Fibonacci-Zahlen sind 1, deshalb konnen die direkt in das 'array' dessen
Startadresse in $s0 liegt, geschrieben werden:

# Da die ersten beiden Fibonacci-Zahlen 1 sind, wird 1 direkt gespeichert

li $s2, 1

sw $s2, 0($s0) # F[0]=1

sw $s2, 4($50) # F[1]=1

addi $s1, $s5, -2 # dient als Counter fur die Schleife, lauft n-2 mal

Das kann man schon im Text Segment des Execute Fensters nachverfolgen. Zuerst schauen wir
rechts in der Register-Ubersicht, welchen Wert $s0 enthlt:

|st7 15 0200000000
|30 16 0x10010000
Az=1 17 Mxnnnannnn

Unser 'array’ fibs beginnt also bei der Adresse 0x/0010000 und nach Ausfiihren der Befehle sw $s2,
0($s0) und sw $s2, 4(8s0) finden wir dort len vor:

Data Segment

Address Value (+0) WValue (+4) Yalue (+8)
0x10010000 0x00000001 0x00000001 O0x00000000
0x10010020 0x00000000 0x00000000 0x00000000

Folgende Schleife /oop wird solange wiederholt, bis der Counter in $s/ 0 erreicht hat:

loop:
# Schleife zur Berechnung der Fibonaccizahlen
Iw $s3, 0($s0) # Wert aus F[x-2] holen
lw $s4, 4($s0) # Wert aus F[x-1] holen
add $s2, $s3, $s4 # F[x] = F[x-2] + F[x-1]
sw $s2, 8($s0) # F[x] speichern
addi $s0, $s0, 4 # Inkrementieren der Adresse
addi $s1, $s1, -1 # Dekrementieren des Counters

bgtz $s1, loop # wiederholen der Schleife loop, solange $s1>0




Beschreibung der Simulation 15 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

@ FernUniversitat in Hagen

Danach liegen die ersten n (hier im Beispiel gilt n=10) Fibonacci-Zahlen vor ....

[] Data Seagment
Address Walue (+0) Value (+4) Walue (+8) Value (+c) Value (+10) Value (+14) Walue (+18) Walue (+1c)
0x10010000 0x00000001 0x00000001 0x00000002 0x00000003 0x00000005 0x00000008 0x00000004 0x00000015
0x10010020 0x00000022 0x00000037 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x10010040 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

... und es wird mit folgendem Codefragment fortgefahren:

# Nach der Schleife liegen die Fibonacci-Zahlen vor und miissen noch ausgegeben werden

la $a0, fibs # Erster Parameter fiir die print Funktion ist das gefiillte array
add $al, $zero, $s5 # Zweiter Parameter ist n (gespeichert in $s5)
jal print # Aufruf des Unterprogramms print

Es wird das Unterprogramm print aufgerufen, dem tiber die Register $a0 und $al die berechneten
Zahlen sowie n iibergeben werden. Im Unterprogramm print findet sich wieder ein .data und
ein .text Teil, im .data Teil werden Strings hinterlegt, die zur Ausgabe bendtigt werden:

.data
space:
message:

.asciiz " "# Leerstelle, die zwischen den Zahlen eingefiigt wird
.asciiz "\nDie Fibonacci-Zahlen sind: \n"

Im .fext Teil werden Die Startadresse des 'arrays' fiir die Ausgabe, sowie n als counter geladen, dann
der String message ausgegeben:

text

print:
add $t0, $zero, $a0
add $t1, $zero, $al
la $a0, message
1i $v0, 4
syscall

# Startadresse des arrays flir Ausgabe

# counter

# Adresse des Strings 'message' laden

# Der Wert 4 fiir den syscall bedeutet print string
# Ausgabe des Strings

Danach wird die Schleife /oop2 durchlaufen, die der Reihe nach die berechneten Zahlen, getrennt
durch eine Leerstelle, ausgibt:

loop2:
# Schleife zur Ausgabe der Zahlen

Iw $a0, 0($t0) # Laden der aktuellen Fibonaccizahl

li $v0, 1 # der Wert 1 fiir den syscall bedeutet: print integer
syscall # Ausgabe der Zahl

la $a0, space # Laden der Adresse des Leerstellenstrings

1i $v0, 4 # Der Wert 4 fiir den syscall bedeutet: print string
syscall # Leerstelle ausgeben

addi $t0, $t0, 4
addi $t1, $tl, -1
bgtz $t1, loop2

# Inkrementieren der Adresse der auszugebenden Daten
# Dekrementieren des counters
# wiederholen der Schleife loop2, solange $t1>0




Beschreibung der Simulation 15 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hagen

auf Grundlage des Kurstextes Computersysteme II

Diese Schleife lauft, bis der counter in 87/ herunter gezihlt ist, also alle n Fibonacci-Zahlen
ausgegeben sind, dann erfolgt der Riicksprung zum Hauptprogramm main:

jr $ra # Riicksprung zu main

Dort ist das Programm nur noch zu beenden, was wie bei den anderen Simulationen dieser Reihe
auch, tiber den Wert 10 fiir den syscall passiert:

# exit
1i $v0, 10 # der Wert 10 fiir den syscall bedeutet: exit (terminate execution)

syscall

Die Ausgabe ist im Fenster Run 1/O unterhalb des Data Segments im execute Fenster zu finden:

Bitte geben Sie eine Zahl (n <= 23) an, n = 10

Die Fikonacci-Zahlen sind:
11235813 21 34 55
-— program is finished running —-

Clear

Dieses Programm ist eine leicht modifizierte Version der Datei fibonacci.asm, die von den
Entwicklern des MARS auf dessen Homepage zum Download bereitgestellt wird.



