
Beschreibung der Simulation 16 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Das zugrundeliegende Programm:

Programm zur Umwandlung einer vorzeichenbehafteten Ganzzahl in das IEEE
754 Format

Wie im HowTo beschrieben, wird Simulation16.asm im MARS geöffnet. Das Programm wandelt
eine vorzeichenbehaftete 32-Bit-Integer in das IEEE 754 Format, legt das Ergebnis an der
Speicherstelle dst ab und gibt es zusätzlich aus.

Im .data Teil des Codes werden die zu wandelnde Zahl src=0xFFFFFF85, einige benötigte Masken
und 2 Strings, die die Ausgabe begleiten sollen, hinterlegt. Zusätzlich wird die Speicherstelle dst
erschaffen.

Empfehlenswert ist es, nach dem Assemblieren Schritt für Schritt durch das Programm zu gehen,
das geschieht durch Klicks auf den „Run one step at a time“ Button:

Der .text Teil beginnt damit, die hinterlegten Werte in die Register zu laden:

Nach Ausführen dieses Codefragments liegen src und die Masken 1-3 in den Registern $t1-$t4 vor:

.data
src: .word 0xFFFFFF85
dst: .word 0xDEADBEEF
mask1: .word 0x80000000
mask2: .word 0xFFFFFFFF
mask3: .word 0x7FFFFF

message1: .asciiz "\nDie 32-Bit-IEEE-754-Darstellung ist binär: "
message2: .asciiz " und hexadezimal: "

.text
Laden der zu wandelnden Zahl und der Masken in die Register

lw $t1, src
lw $t2, mask1
lw $t3, mask2
lw $t4, mask3

Beschreibung der Simulation 16 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Als nächstes wird der Wert in src mit der Maske mask1 bitweise UND-verknüpft. Das entspricht
einem Vorzeichentest: Wenn in src ein positiver Wert liegt, ist das erste Bit, also das Vorzeichenbit,
eine 0, wenn die Zahl negativ ist, eine 1. In mask1 liegt eine 1 an erster Stelle, die UND-
Verknüpfung speichert also das Vorzeichenbit unserer zu wandelnden Zahl in $t5:

Wenn in $t5 nun eine 0 liegt, ist src positiv und es wird zu Marke m1 gesprungen mit dem beqz:
branch if equal zero Befehl:

In unserem Fall (src=0xFFFFFF85) gilt nun $t5=80000000 und entsprechend wird der Sprung
nach m1 nicht ausgeführt, sondern mit den folgenden Codezeilen fortgefahren:

Die XOR-Verknüpfung der Zahl src in $t1 mit der Maske mask2 in $t3 entspricht der bitweisen
Negation. Die anschließende Addition von 1 vollendet die Berechnung des Zweierkomplements der
Zahl in $t1, wo nun also Folgendes steht:

In Marke m1 wird die Maske mask1 so verschoben, dass sie nun das Bit 30 (statt 31) extrahiert, in
$t6 wird ein Zähler eingerichtet und mit 0 initialisiert:

Es folgt die Schleife m2, in der der Inhalt von $t1 (also unsere in das Zweierkomplement
gewandelte Zahl src) so lange links geschoben wird, bis an Bit 30 eine 1 vorliegt. Die Anzahl dieser
Verschiebungen wird im Register $t6 gezählt.

Bitweise UND-Verknüpfung mit Maske 1, Vorzeichentest, wenn Zahl positiv ist, springe zu m1
and $t5, $t1 , $t2
beqz $t5, m1

Die beiden folgenden Zeilen werden nur ausgeführt, wenn die Ursprungszahl negativ ist:
Bitweise Negation durch die Verwendung von Maske 2, danach Addition von 1,
berechnet also das Zweierkomplement

xor $t1, $t1, $t3
addi $t1, $t1, 0x1

m1: srl $t2, $t2, 1
and $t6, $zero, $zero

Beschreibung der Simulation 16 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Sobald ein 1-Bit an Stelle 30 entdeckt wird, wird zur Marke m3 gesprungen.

Das ist hier der Fall:

In $t1 wurde geschoben, bis an Stelle 30 ein 1-Bit steht, die Anzahl der Verschiebungen (1816 =
2410) steht in $t6. Im m3 werden nun erst Charakteristik, dann Mantisse berechnet:

Hier wird der ermittelte Wert in $t6 von 30 subtrahiert, dann 127 addiert, um die Charakteristik zu
erzeugen. Die wird dann an die korrekte Stelle geschoben und mit $t5 kombiniert, das schon das
Vorzeichen enthält.

Für die Berechnung der Mantisse werden $t1 und $t4 UND-verknüpft, sodass die unteren 23 Bits
erhalten bleiben, und die oberen auf 0 gesetzt werden, dann erfolgt die ODER-Verknüpfung mit $t5,
wo dann unser Ergebnis steht:

m2: and $t7, $t1, $t2
bnez $t7, m3
addi $t6, $t6, 1
sll $t1, $t1, 1
j m2

m3: # Berechnung der Charakteristik und Verknüpfung mit $t5
addi $t7, $zero, 30
sub $t6, $t7, $t6
addi $t6, $t6, 127
sll $t6, $t6, 0x17
or $t5, $t5, $t6

Berechnung der Mantisse und Verknüpfung mit $t5
srl $t1, $t1, 0x7
and $t1, $t1, $t4
or $t5, $t5, $t1

Beschreibung der Simulation 16 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Die Berechnung ist abgeschlossen, es folgt die Ausgabe. Zunächst wird der String message1
ausgegeben:

Der Wert 4 für den syscall bedeutet print string, und die Adresse dieses Strings muss dafür in
Register $a0 geladen werden. Die Ausgabe des Ergebnisses in Binärdarstellung erfolgt durch
folgende Codezeilen:

Das Ergebnis in $t5 wird in $a0 geschrieben, dann der Wert 35 (print integer in binary) in $v0
geladen, der syscall gibt die Zahl aus. Es folgt die Ausgabe des Strings message2 und des
Ergebnisses in Hexadezimaldarstellung, der Wert 34 für den syscall bedeutet print integer in
hexadecimal:

Die ursprüngliche Version der Aufgabenstellung forderte statt einer Ausgabe, dass das Ergebnis an
der Speicherstelle dst abgelegt werden sollte, dies erfolgt hier nun:

 vorher nachher

Ausgabe des Ergebnisses binär
move $a0, $t5
li $v0, 35
syscall

Ablage des Ergebnisses an der Speicherstelle dst
sw $t5, dst

Ausgabe des Strings message2
la $a0, message2
li $v0, 4
syscall

Ausgabe des Ergebnisses hexadezimal
move $a0, $t5
li $v0, 34
syscall

Ausgabe des Strings message1
la $a0, message1
li $v0, 4
syscall

Beschreibung der Simulation 16 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Dann ist das Programm nur noch zu beenden, was wie bei den anderen Simulationen dieser Reihe
auch, über den Wert 10 für den syscall passiert:

Die Ausgabe ist im Fenster Run I/O unterhalb des Data Segments im execute Fenster zu finden:

Dieses Programm war ursprünglich in DLX-Assembler verfasst und diente erst als Klausuraufgabe,
später als Einsendeaufgabe. Es wurde übersetzt und leicht modifiziert, um dieser Reihe
Simulationen mit dem MARS Simulator als Beispielaufgabe anzugehören.

exit
li $v0, 10 # der Wert 10 für den syscall bedeutet: exit (terminate execution)
syscall

