Beschreibung der Simulation 16 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hagen

auf Grundlage des Kurstextes Computersysteme II

Das zugrundeliegende Programm:

Programm zur Umwandlung einer vorzeichenbehafteten Ganzzahl in das IEEE
754 Format

Wie im HowTo beschrieben, wird Simulationl6.asm im MARS gedffnet. Das Programm wandelt
eine vorzeichenbehaftete 32-Bit-Integer in das IEEE 754 Format, legt das Ergebnis an der
Speicherstelle dst ab und gibt es zusétzlich aus.

.data
src: .word OxFFFFFF85
dst: .word 0OxXDEADBEEF
maskl: .word 0x80000000
mask2: .word OxFFFFFFFF
mask3: .word Ox7FFFFF

messagel: .asciiz "\nDie 32-Bit-IEEE-754-Darstellung ist binar: "
message?2: .asciiz " und hexadezimal: "

Im .data Teil des Codes werden die zu wandelnde Zahl sre=0xFFFFFFS5, einige bendtigte Masken
und 2 Strings, die die Ausgabe begleiten sollen, hinterlegt. Zusétzlich wird die Speicherstelle dst
erschaffen.

Empfehlenswert ist es, nach dem Assemblieren Schritt fiir Schritt durch das Programm zu gehen,
das geschieht durch Klicks auf den ,,Run one step at a time* Button:

096 @
—| Run one step at a time I—

Der .text Teil beginnt damit, die hinterlegten Werte in die Register zu laden:

text
Laden der zu wandelnden Zahl und der Masken in die Register
lw $tl1, src
Iw $t2, mask1
Iw $t3, mask2
Iw $t4, mask3

Nach Ausfiihren dieses Codefragments liegen src und die Masken 1-3 in den Registern $¢/-3¢4 vor:

sLu (] (N AN NN]
[0 g OuEfEEEEES
stz 10 0x80000000
st 11 DxfEEEEEEE
|5t 12 Dx00TEEEEE
ilsts 13 0x00000000

Beschreibung der Simulation 16 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n HHEEﬂ

auf Grundlage des Kurstextes Computersysteme II

Als néchstes wird der Wert in src mit der Maske maskl bitweise UND-verkniipft. Das entspricht
einem Vorzeichentest: Wenn in src ein positiver Wert liegt, ist das erste Bit, also das Vorzeichenbit,
eine 0, wenn die Zahl negativ ist, eine /. In maskl liegt eine [an erster Stelle, die UND-
Verkniipfung speichert also das Vorzeichenbit unserer zu wandelnden Zahl in $¢5:

Bitweise UND-Verkniipfung mit Maske 1, Vorzeichentest, wenn Zahl positiv ist, springe zu ml
and $t5, $t1 , $t2
beqz $t5, m1

Wenn in $z5 nun eine 0 liegt, ist src positiv und es wird zu Marke m/ gesprungen mit dem begz:
branch if equal zero Befehl:

L Tadrems mam TTRITI_T7 =3 iy Frarme min & Mesale= 1 Trimprmr s =l e o= mmymymy T oaly] ayemmn T o8 oad aymnae e ey omn)
D1CWElse erEnupr Masgke 1, VOrzZeldllentest, Wemn 44010 PositlVy 180, sprindge ZU Bl

and $th, §tl , §tZ
]JEII[ZI stS, ml

LALYL SO T LG BT L

:-;‘Iquz £tl,lebel Branch ifEQual Zero : Branch to statement at [abel if 1 is equal to zero l;_;-dfiT- iat:

In unserem Fall (sre=0xFFFFFF85) gilt nun $t5=80000000 und entsprechend wird der Sprung
nach m/ nicht ausgefiihrt, sondern mit den folgenden Codezeilen fortgefahren:

Die beiden folgenden Zeilen werden nur ausgefiihrt, wenn die Ursprungszahl negativ ist:
Bitweise Negation durch die Verwendung von Maske 2, danach Addition von 1,
berechnet also das Zweierkomplement

xor $t1, $t1, $t3

addi $t1, $t1, 0x1

Die XOR-Verkniipfung der Zahl src in $¢/ mit der Maske mask2 in $t3 entspricht der bitweisen
Negation. Die anschlieBende Addition von 1 vollendet die Berechnung des Zweierkomplements der
Zahl in $¢1, wo nun also Folgendes steht:

o | A1) o URUUUULUUY
| 9 0x0000007b
etz 10 0xE0000000

In Marke m1 wird die Maske maskl so verschoben, dass sie nun das Bit 30 (statt 3/) extrahiert, in
$t6 wird ein Zahler eingerichtet und mit 0 initialisiert:

ml: srl $t2, $t2, 1
and $t6, $zero, $zero

Es folgt die Schleife m2, in der der Inhalt von $¢/ (also unsere in das Zweierkomplement
gewandelte Zahl src) so lange links geschoben wird, bis an Bit 30 eine / vorliegt. Die Anzahl dieser
Verschiebungen wird im Register $¢6 gezaihlt.

Beschreibung der Simulation 16 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hagen

auf Grundlage des Kurstextes Computersysteme II

Sobald ein 1-Bit an Stelle 30 entdeckt wird, wird zur Marke m3 gesprungen.

m2: and $t7, $t1, $t2

bnez $t7, m3

addi $t6, $t6, 1

sl $t1, $t1, 1

jm2

Das ist hier der Fall:

LU L] UxuUuUuUUUUuy
B g 0x7b000000
stz 10 0x40000000
|st3 11 OxEEEEEEEE
|std 12 Ox00TEEEEE
|5t5 13 0x80000000
B 14 0x00000018
L 15 0x40000000
llss0 16 0x00000000

In $¢1 wurde geschoben, bis an Stelle 30 ein 1-Bit steht, die Anzahl der Verschiebungen (186 =
24,) steht in $76. Im m3 werden nun erst Charakteristik, dann Mantisse berechnet:

m3: # Berechnung der Charakteristik und Verkniipfung mit $t5
addi $t7, $zero, 30
sub $t6, $t7, $t6
addi $t6, $t6, 127
sll $to, $t6, 0x17
or $t5, $t5, $t6

Hier wird der ermittelte Wert in $t6 von 30 subtrahiert, dann 127 addiert, um die Charakteristik zu
erzeugen. Die wird dann an die korrekte Stelle geschoben und mit $£5 kombiniert, das schon das
Vorzeichen enthilt.

Fiir die Berechnung der Mantisse werden $¢/ und $#4 UND-verkniipft, sodass die unteren 23 Bits
erhalten bleiben, und die oberen auf 0 gesetzt werden, dann erfolgt die ODER-Verkniipfung mit $t5,
wo dann unser Ergebnis steht:

Berechnung der Mantisse und Verkniipfung mit $t5
srl $t1, $t1, 0x7
and $tl, St1, $t4
or $t5, $t5, $tl

ists 12 0x00TEEEEE
:|5e5 13 0xc2£60000
lsta 14 0x42800000

Beschreibung der Simulation 16 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hagen

auf Grundlage des Kurstextes Computersysteme II

Die Berechnung ist abgeschlossen, es folgt die Ausgabe. Zunidchst wird der String messagel
ausgegeben:

Ausgabe des Strings messagel
la $a0, messagel
1i $v0, 4
syscall

Der Wert 4 fiir den syscall bedeutet print string, und die Adresse dieses Strings muss dafiir in
Register $a0 geladen werden. Die Ausgabe des Ergebnisses in Binidrdarstellung erfolgt durch
folgende Codezeilen:

Ausgabe des Ergebnisses bindr
move $a0, $t5
li $v0, 35
syscall

Das Ergebnis in $¢5 wird in $a0 geschrieben, dann der Wert 35 (print integer in binary) in $v0
geladen, der syscall gibt die Zahl aus. Es folgt die Ausgabe des Strings message? und des
Ergebnisses in Hexadezimaldarstellung, der Wert 34 fiir den syscall bedeutet print integer in
hexadecimal:

Ausgabe des Strings message2
la $a0, message2
1i $v0, 4
syscall

Ausgabe des Ergebnisses hexadezimal
move $a0, $t5
1i $v0, 34
syscall

Die urspriingliche Version der Aufgabenstellung forderte statt einer Ausgabe, dass das Ergebnis an
der Speicherstelle dst abgelegt werden sollte, dies erfolgt hier nun:

Ablage des Ergebnisses an der Speicherstelle dst
sw $t5, dst

Data Segment

Data Segment

] s
Address Value Value (+4) Address Value (4 Value (+4)
0x10010000 OxfENE LS Oxdeadbeef 0x10010000 Oxff fa85 Oxc2fe0000
oxlooloo2a 0x4 54545 4 —Gyglgpie 0x10010020 0x4 5454 5 I — il T

vorher nachher

Beschreibung der Simulation 16 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hagen

auf Grundlage des Kurstextes Computersysteme II

Dann ist das Programm nur noch zu beenden, was wie bei den anderen Simulationen dieser Reihe
auch, iiber den Wert 10 fiir den syscall passiert:

exit
li $v0, 10 # der Wert 10 fiir den syscall bedeutet: exit (terminate execution)

syscall

Die Ausgabe ist im Fenster Run I/O unterhalb des Data Segments im execute Fenster zu finden:

Mars Messages Run IiQ |

Die 32-Bit-IEEE-754-Darstellung ist bindr: 11000010111101100000000000000000 und hexadezimal: OxcZf&0000

-— program 13 finished running --

Dieses Programm war urspriinglich in DLX-Assembler verfasst und diente erst als Klausuraufgabe,
spiter als FEinsendeaufgabe. Es wurde {ibersetzt und leicht modifiziert, um dieser Reihe
Simulationen mit dem MARS Simulator als Beispielaufgabe anzugehdren.

