From Nand to Tetris

Building a Modern Computer from First Principles

Chapter 2

Boolean Arithmetic

These slides support chapter 2 of the book
The Elements of Computing Systems
(15t and 2 editions)

By Noam Nisan and Shimon Schocken
MIT Press

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 1

assembler

Nand to Tetris Roadmap: Hardware

abstraction

machine
language

[y

abstraction

computer

Building a
computer

o

>

abstraction

ALU, RAM |

Building
chips

hardware platform \

' abstraction

Building

elementary
logic gates

gates
=

/

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 2

Nand to Tetris Roadmap: Hardware

abstraction

machine
language

assembler

[y

abstraction

computer

Building a
computer

o

>

abstraction

ALU, RAM |

Building
chips

' abstraction

elementary
logic gates

hardware platform \

Building

gates
—_— @o
®

/

Project 1

Build 15 elementary logic gates

Nand to Tetris / www.nand?2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 3

Nand to Tetris Roadmap: Hardware

abstraction
machine
language
assembler
/ v ildi hardware platform \
abstraction | Buildinga
computer
chips -
ALU, RAM | - abstraction Building
@ gates
elementary |. = A
logic gates

o

/

Project 2

Building chips that do arithmetic,
ending up with an ALU

Nand to Tetris / www.nand?2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 4

Computer system

Input

Output

Registers

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 5

Computer system

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 6

Arithmetic Logical Unit

(40521)

1001111001001001
—

(40538)

1001111001011010 The ALU computes a given function
on two given n-bit values, and
outputs an n-bit value

(17)
0000000000010001
—

ALU functions (f)
e Arithmetic: x+y,x—y,x+1,x—1, ...

* Logical: x&y, x|y, Ix, ...

Challenges

* Use @’s and 1’s for representing numbers

* Use logic gates for realizing arithmetic functions.

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 7

Chapter 2: Boolean Arithmetic

Theory Practice

* Representing numbers Arithmetic Logic Unit (ALU)
* Binary numbers * Project 2: Chips

* Boolean arithmetic * Project 2: Guidelines

* Signed numbers

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 8

Chapter 2: Boolean Arithmetic

Theory

» Representing numbers

* Binary numbers
* Boolean arithmetic

* Signed numbers

Nand to Tetris / www.nand?2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 9

Representation

Leci nest nos une fufie.

This is not a pipe
(by René Magritte)

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 10

Representation

This is not seventeen.

Rather, 1t’s an agreed-upon code (numeral)
that represents the number seventeen.

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 11

A brief history of numeral systems

i ,, Z«M
ﬁ}; ﬂ ﬁﬁﬂﬁ ﬁ ﬁ ;“(\:;irslty seven
'?‘
unary: DOMEIRORUINIM

Egyptian: nl I I I
ey

Roman: XXVII

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 12

A brief history of numeral systems

; P ; 3
B W ?15@?5 e G B g %%E?E P Six thousands,

% & 3
% &;5%\?4% W}SZ’ ;5 v 5 &FS%W% §E§ j .+« &% five hundreds,
éwﬁ %}3 i@m &?5 m‘ﬁ 3%3 % 5 % % &?g % % and seven goats

Unary: nuannmanm ... 1

Egyptian: iﬁQQQI I I |

iii QQ Old numeral systems:

* Don’t scale

Roman: MMMMMMDVII

e Cumbersome arithmetic
e Used until about 1000 years ago
* Blocked the progress of Algebra

(and commerce, science, technology)

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 13

Positional numeral system

s &% 7 &; ar & s S
P SN -

é‘“ &Fg% k- W%Z S %@s% %wﬁ L

Six thousands,

%}a éfm gfﬁ'iv HE§ ew EE BN °
3210
6507

NN

Zdi'loi = 6-10° + 5-102 +0-101+ 7-10° = 6507

A most important innovation, brought

Where # is the to the West from the East around 1200

number of Positional representation

digits in the))

numeral, and d; * Digits: A fixed set of symbols, including 0 .

is the digit in The method mentions
position i * Base: The number of symbols

no specific base.
* Numeral: An ordered sequence of digits

* Value: The digit in position i (counting from right to left, and starting at 0)
encodes how many copies of base'’ are added to the value.

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 14

Chapter 2: Boolean Arithmetic

Theory Practice
J Representing numbers Arithmetic Logic Unit (ALU)
Binary numbers * Project 2: Chips
* Boolean arithmetic * Project 2: Guidelines

* Representing signed numbers

Nand to Tetris / www.nand?2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 15

Positional number system

'* £%
ﬁﬁ%ﬁﬁﬁ
7053,

P AN

Zd +10" = 7.10% + 0-102 + 5-101 +

“ Seven thousands
2, and fifty three
"F goats
3.10° = 7053

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 16

Positional number system

* ﬁ ﬁ ﬁ Sezifeglfthoillsands
N ﬁ ﬂ ﬁ ﬂ ” ” Zr;atsl ty three
2¢ ﬁﬁ%ﬁﬁﬁ

Decimal (base 10) system: 3210
Human friendly 7053,

AN

Zd 108 = 7.10% + 0-10% +5.101+3-10° = 7053

12 11 10 3 2 1
Binary (base 2) system: 1101110001101,

0
1
Computer friendly /
n-—1
1-

d;-2t = 1-2124+1-21140-2"0 4+ - +
0

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 17

Binary and decimal systems

Binary Decimal
o 0
1 1
10 2
11 3
100 4 Humans are used to enter and view numbers in base 10;
tel > Computers represent and process numbers in base 2;
1 1 i j Therefore, we need efficient algorithms for converting
from one base to the other.
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 18

Decimal = binary conversions

Powers of 2: (aids in calculations)

20= 1 Binary to decimal:

2= 2 543210 c 4 5 0

22 =4 decimal (110101,) = 2° + 2% +2°+27 =53,

22 =8

24 = 16
Decimal to binary:

25 = 32 e

6 ea . 543210

= binary (53,,) = 25+ 2% +2%2 +2° = 110101,

27 = 128

28 = 256 Algorithm: What is the largest power of 2 that ““fits into” 53? It’s 32 = 25,

29 = 512 We still have to handle 53 — 32, so, what is the largest power of 2 that fits
into 21? It’s 16 = 2%, and so on.

210= 1024

Practice:

decimal (1011010,) = 7

binary (523,,) = 2

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 19

Decimal = binary conversions

Powers of 2: (aids in calculations)

20= 1 Binary to decimal:

2= 2 543210 c 4 5 0

22 =4 decimal (110101,) = 2° + 2% +2°+27 =53,

22 =8

24 = 16
Decimal to binary:

25 = 32 e

6 ea . 543210

= binary (53,,) = 25+ 2% +2%2 +2° = 110101,

27 = 128

28 = 256 Algorithm: What is the largest power of 2 that ““fits into” 53? It’s 32 = 25,

29 = 512 We still have to handle 53 — 32, so, what is the largest power of 2 that fits
into 21? It’s 16 = 2%, and so on.

210= 1024

Practice:

decimal (1011010,) = 90,

binary (523,,) = 1000001011,

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 20

The binary system

Memory CPU
0101110011100110 Inside computers,
1011000101010100 . . .
1110001011111160 everything 1s binary
0100101010110101

0010100101010101 _> ALU

1101001010101010 b o
input =P co10100101010010 4_ AupUt gX6Lellb7rilg

1100101010010161

1100100101100111 .
0011001010101011 (EECIEE 'WOI‘Shlp ped
CATEC GG | 6010110010100111 | binary numbers
1111110010110161

\. 1001001100011001 |

Binary numerals are easy to:

o Compare o Store
o Add o Transmit
o Subtract o Verify

o Multiply o Correct

o Divide o Compress

a ... a

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 21

Chapter 2: Boolean Arithmetic

Theory

v Representing numbers
v/ Binary numbers

» Boolean arithmetic

 Signed numbers

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 22

Boolean arithmetic

We have to figure out efficient ways to perform, on binary numbers:
» Addition We’ll implement it using logic gates

e Subtraction
We’ll get it for free

* Multiplication

Based on addition
e Division

Addition 1s the foundation of all arithmetic operations.

Nand to Tetris / www.nand?2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 23

Addition

© 0 1 o © 1 1 0o
1 o 1 o 7 8 7 5
+ +
1 1 5 6 2
1 1 o 1 8 4 3 7
Binary addition Decimal addition

Nand to Tetris / www.nand?2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 24

Addition

Computers represent integers using a fixed number of bits,

sometimes called “word size”. For example, let’s assume n = 4:

%)

%)

1

® 0 1 o 9
1 0 1|60 (%]
+ +
o 0 1 1 (%]
1 1 o0 1 (%]
Binary addition

Handling overflow

* Our decision: Ignore it

Another example

1

+

1 ©

1|1

1|1

1 0
Overflow

* As we will soon see, ignoring the overflow bit is not a bug, it’s a feature.

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 25

Addition

Word size n =16, 32, 64, ...

(%] © 6 6 0 ©6 1 1 © 1 1 1 o o o

9 ... 6 6 6 06 0 ©0/1 1 06 1 0 1|0 1 Same
addition

(%] © 6 6,0 © 06 606 1 0 1 1,1 o060 algorithm
for any n

(%] O 6 6,06 06 1 06,0 1 1 06 0 0 1

Hardware implementation Teaching Note

We’ll build an Adder chip that In Nand to Tetris we always separate

implements this addition algorithm, abstraction from implementation

Using the chips built in project 1. First we present the abstraction,

How? Later. leaving the implementation to a later
stage in the lecture.

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 26

Chapter 2: Boolean Arithmetic

Theory

v Representing numbers
v/ Binary numbers

\/ Boolean arithmetic (addition)

» Signed numbers

(X +y, =X +), X+, =X +-y)

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 27

Signed integers

 Positive
0
* Negative

In most programming languages, the short, int, and long data types use 16, 32,
and 64 bits for representing signed integers

Arithmetic operations on signed integers (x op y, —x op), X op —), —X op —,
where op = {+, -, *, /}) are by far what computers do most of the time

Therefore ...

Efficient algorithms for handling arithmetic operations on signed integers hold
the key to building efficient computers.

Teaching Note: All the algorithms presented in this course can be
implemented efficiently in either hardware of software.

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 28

Signed integers

code(x)
0000 ©
0001 1
0010 2
0011 3
0100 4
9101 5
0110 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

O 0 3 &N D A W N — O =

e e e e
whn B W N = O

This particular example: word size is n =4

In general, n bits allow representing all the unsigned
integers 0 ... 2" — 1

What about negative numbers?

We can use half of the code space for representing
positive numbers, and the other half for negatives.

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 29

Signed integers

cqde(x) X
0000 N | ¢ Representation:
0001 1[N\ _ :
0010 2 3 Left-most bit (MSB): Represents thg#sign, +/-
011 3| 3 Remaining bits: Represent a pésitive integer
0100 4 4
0101 5 5
Issue
0110 6 6
9111 7| 7 e —(0: Huh®
1000 8| -0
° a + %,
1001 9| _1 codgti) + coddNX) # code(0)
1010 10| -2 o T'he codes are not mdwgtonically increasing
1011 11| -3 o
1100 12| _4 more complications.
1101 13
1110 147 -6
111115 | — 7

Nand to Tetris / www.nand?2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 30

Two’s complement

code(x)
0000 0
001 1
0010 2
0011 3
0100 4
0101 5
91106 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

AN L AW = O =

The representation

e Assumption: Word size = n bits
e The “two’s complement” of x is defined to be 2" —x

* The negative of x is coded by the two’s complement of x

From decimal to binary:

if x> 0 return binary(x)

else return binary (2" — x)

From binary to decimal:

if MSB = 0 return decimal(bits)

else return “=" and then (2" — decimal(bits))

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 31

Two’s complement: Addition

code(x) x Compute x + vy where x and y are signed
o000 0B 0 : .
Algorithm: Regular addition, modulo 2"

o001 1| |1
010 2| 2

6 6
011 3| 3 + = +
o100 4| 4 -2 14
101 5| 5 20 % 16 = 4 codes 4
110 6| 6

3 3
o111 7| 7 N _ 4
1000 8| -8 _5 11
teel 9 7 14 % 16 = 14 codes —2
1010 10| -6
1011 11| -5 -2 14
1100 12| 4 oo T T
el 131 - 25 % 16 = 9 codes -7
1110 14| -2
1111 15| — 1

Nand to Tetris / www.nand?2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 32

Two’s complement: Addition

code(x) x Compute x + vy where x and y are signed
0000 (%] 0 . ..
Algorithm: Regular addition, modulo 2"
0001 1 1
0010 2 2
6 6
0011 3 3 + = +
0100 4| 4 -2 14
@101 5| 5 20 % 16 = 4 codes 4
0110 6 6 .
Practice:
0111 7 7
1000 8| —8
4

1001 9| —7 - = 7
1010 10| 6 -7
1011 11| -5
1160 12| —4

-2
1101 13| -3 + = 7
1110 14| -2 -4 -
1111 15| -1

Nand to Tetris / www.nand?2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 33

Two’s complement: Addition

code(x) x Compute x + vy where x and y are signed
0000 (%] 0 . ..
Algorithm: Regular addition, modulo 2"
0001 1 1
0010 2 2
6 6

0011 3 3 + = +
0100 4| 4 -2 14
@101 5| 5 20 % 16 = 4 codes 4
0116 6\ © Practice:
0111 7 7
1000 8| —8

4 4
1001 9| -7 + = +
1010 10| 6 -7 2
1011 11| -5 13 % 16 = 13 codes -3
1160 12| —4 14

-2

1101 13| -3 N -
1110 14| -2 -4 12
1111 15| —1 26 % 16 = 10 codes -6

Nand to Tetris / www.nand?2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 34

Two’s complement: Addition

code(x) ¥ At the binary level (same algorithm):
0000 (%] 0
0001 1 1 + 6 = 4+ jiiz 1g1t11(1)ri;1g the ovel.rﬂolw l:;)itf
— 1S tn€ binary equivalent O
0ol10 2 2 2 modulo 27
0011 3| 3 He1ee codes 4
0100 4 4
p101 5| 5 N
9110 6| 6 _5 1011
o111 71 7 1110 codes -2
1000 8| —8
1001 9| -7 -2 1110
+ et +
1010 10| 6 _5 1011
1011 11| -5
1101 13| -3
1110 14| -2
1111 15| -1

Nand to Tetris / www.nand?2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 35

Two’s complement: Addition

code(x)
0000 0
001 1
0010 2
0011 3
0100 4
0101 5
91106 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

AN N WD =R O =

At the binary level (same algorithm):
6 0110

/@1@@ codes 4

More examples:

5 0101
- = +
7 0111

1100 codes -4 5+7=-4 977

7 1001
+ = +
-3 1101
/49119 codes 6 T+-3=6 977

Overflow detection

When you add up two positives (negatives) and get a negative
(positive) result, you know that you have overflow

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 36

Two’s complement: Subtraction

code(x) X Compute x —y where x and y are signed
@000 ©| 0 _
ool 1| 1 * x—yisthe same as x + (-)
o910 2| =2 * So... convert y and add up the two values
0011 3| 3 (we already know how to add up signed numbers)
o But ... How to convert a number (efficiently)?
0101 5 5
01106 6 6
0111 7 7
10006 8| -8
1601 9| -7
10106 10| -6
1011 11| -5
1160 12| -4
1101 13| -3
1110 14| -2
1111 15| -1

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 37

Two’s complement: Sign conversion

code(x)
0000 ©
0001 1
0010 2
0011 3
0100 4
9101 5
0110 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

AN N WD =R O =%

Compute —x from x

Insight: code(—x)=(2"-x) =1+ 2"—1)— x
=1 + (1111)— x
= 1 + flippedBits(x)

Algorithm: To convert bbb...b:
Flip all the bits and add 1 to the result

Example: Convert 0010 (2)
1101 (flipped)
T

1110 (-2)

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 38

Two’s complement: Sign conversion

code(x)
0000 0
001 1
0010 2
0011 3
0100 4
0101 5
91106 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

AN L AW = O =

Compute —x from x

Insight: code(—x)=(2"-x) =1+ 2"—1)— x
=1 + (1111)— x
= 1 + flippedBits(x)

Algorithm: To convert bbb...b:
Flip all the bits and add 1 to the result

Practice: Convert 1010 (—6)

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 39

Two’s complement: Sign conversion

code(x)
0000 0
001 1
0010 2
0011 3
0100 4
0101 5
91106 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

AN L W= O =

Compute —x from x

Insight: code(—x)=(2"-x) =1+ 2"—1)— x
=1 + (1111)— x
= 1 + flippedBits(x)

Algorithm: To convert bbb...b:
Flip all the bits and add 1 to the result

Practice: Convert 1010 (—6)

0101 (flipped)
T oo

0110 (6)

But... How to compute x + 1 (efficiently)?

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 40

Two’s complement: Add 1

code(x)
0000 0
001 1
0010 2
0011 3
0100 4
0101 5
91106 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

Compute X + 1 (efficiently)

Given bbb...b, compute bbb...b+ 1

Algorithm: Flip bits from right to left,
stop when the flipped bit becomes 1

Example: Compute 101+1 (5+1)
0110 (6)

Practice: Compute 9110 +1 (6 +1)
Compute 0011 +1 (3 +1)

Compute 1000 +1 (-8 + 1)

Compute 1011 +1 (-5+1)

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 41

Two’s complement: Recap

code(x)
0000 ©
0001 1
0010 2
0011 3
0100 4
9101 5
0110 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

Observations

* The method represents all the integers in the range
21, -1,0,1,..,2"1-1

* code(x) + code(—x) = code(0)
* The codes are monotonically increasing

* Arithmetic on signed integers is the same as arithmetic
on unsigned integers

* Simple! Elegant! Powerful!

Implications for hardware designers

Arithmetic on signed integers can be implemented
using the same hardware used for handling arithmetic of
unsigned integers

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 42

Chapter 2: Boolean Arithmetic

Theory Practice

* Representing numbers Arithmetic Logic Unit (ALU)
/ * Binary numbers * Project 2: Chips

* Boolean arithmetic * Project 2: Guidelines

Signed numbers

Nand to Tetris / www.nand?2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 43

Chapter 2: Boolean Arithmetic

Practice
- Arithmetic Logic Unit (ALU)
* Project 2: Chips

* Project 2: Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 44

Von Neumann Architecture

Input

Computer System

‘ Registers I

Output

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 45

The Arithmetic Logical Unit

The ALU computes a given
function on its two given data inputl
inputs, and outputs the result '
f(inputl, input2)
f : one out of a family of
pre-defined arithmetic functions
input2

(add, subtract, multiply...) and
logical functions (4nd, Or, Xor, ...)

Design issue: Which functions should the ALU perform?

A hardware / software tradeoff: Any function not implemented by the ALU
can be implemented later in system software

* Hardware implementations: Faster, and more expensive

* Software implementations: Slower, less expensive

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 46

The Hack ALU

* Operates on two 16-bit, two’s complement values

N
I/ \
I \
1 1
I 1
X —“——>
I | 16 bits
| 1
‘. i AL U ——» out
1 +—<—»p 16 bits
VY T
\ /16 bits
\ 7
\\ /,

zZr ng

Nand to Tetris / www.nand?2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 47

The Hack ALU

* Operates on two 16-bit, two’s complement values

* Qutputs a 16-bit, two’s complement value

zx nx zy ny f no

blldiy

X+}

16 bits

ALU
y —~—»

16 bits

Vo

zZr ng

Nand to Tetris / www.nand?2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

X+y

Slide 48

The Hack ALU

* Operates on two 16-bit, two’s complement values

* Qutputs a 16-bit, two’s complement value

* Also outputs two 1-bit values (later) out
(%]
1
-1
X
zx nx zy ny f no y
b4
ly
-X
-y
X +’ X+1
16 bits
ALU o i1
. X_
y / > 16 bits =
16 bits Y-
X+y
X-y
PN
(\\ zr ng ,) X&y
SN =" ‘ le

Nand to Tetris / www.nand?2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 49

The Hack ALU

Operates on two 16-bit, two’s complement values

Outputs a 16-bit, two’s complement value

Also outputs two 1-bit values (later)

Which function to compute is set by six 1-bit inputs

- -~

- ~

(zx nx zy ny f no)
X fffff
16 bits ; ,/ \\\‘
ALU —Drou)
y A 16 bits \\ S
16 bits
zZr ng

Nand to Tetris / www.nand?2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

X+y

Slide 50

The Hack ALU

To cause the ALU to compute a function:

Set the control bits to one of the binary

combinations listed in the table.

o o e
——— il
- -~

(zx nx zy ny f no :)
X ——~<—Pp .
16 bits s
AL U ﬁﬂl—b out
y +’ 16 bits \\~ .
16 bits

zZr ng

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

control bits

A

zx nx zy ny f no out
10 |1|e|1]|6@e 0

1 1 1 (111 1

1(1])1)0e|1]|6@e -1
| 0|1|1]|]0]|0 X

1(1|0|0|0]| o0 y

e | 011|061 I'x
1 (1|0 |0|0|1 ly
(%) (%] 111|111 -X
1 (1|0 |06|1|1 -y
(%) 1 1 (111 X+1
1 (1|0 |1|1(1 y+1
(%) (%] 1]1(1]60 X-1
1 (1|0 |0|[1]|6@e y-1
0|10 |06|0|[1|0 X+y
o111 |06|6(1(1 X-y
ol |06 |1(1(1 y-X
O | o0 |0|0|lo|o X&y
@ | 1|0 |1|0]|1]| x|y

Slide 51

The Hack ALU 1n action: Compute y-x

To cause the ALU to compute a function: control bits
Set the control bits to one of the binary ' A N\
combinations listed in the table. zx_nx zy ny f no out
1le[1[e[1]e]| o
11222 2] 12
1|1 [1ef1]e]| -1
e |oe|1|1]e[0] x
zx nx zy ny f no 1 1] o0lolo]loe y
i i i i i i e |e|1|1]|e]|1] !x
1|1[e|ele]|1] Iy
oo |1 [1]1]1] -x
1(1lelel1]|21] -y
X ——7—3 @ | 1|1 |1]1]1] xt1
1o s ALU L ot Tl1le|1|1]1] vyt
% N 16 bits %) %) 111|160 x-1
’ 16 bits 1]1]ejejlje]| y-1
0|10 |06|0|[1|0 X+y
0|11 |0[|0|[1(1 X-y
i i Ol oo f[1|1]1 y-X
ng 0ol o0 |o0|0]|0|0] x&
@ | 1|0 |1|0]|1]| x|y

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 52

The Hack ALU in action: Compute y-x

| > » S |q)|—. gAnimate: Format: View:
m - Slow Fast - | Program flow 1] M—] —
Ch Nam.. ALU 2. Evaluate the chip logic

Inpu Output pins

| Nama Valua

Name Value

out[16]
Load zr 3. Inspect the

tools/builtInChips/4LU.hdl | ™ ALU outputs

zy ‘

ny

f

no

1. Set the ALU’s inputs and control
bits to some test values
« » The built-in ALU

i (e eaetes it o) implementation has
// This file is part of the mate 1Y
// "The Elements of Computing Sy GUI side-effects

// MIT Press. Book site: www.idc
// File name: tools/builtIn/ALU.

/¥

* The ALU. Computes a pre-defi
* where x and y are two 16-bit o

* by a set of 6 control bits de Bullt n ALU L
* The ALU operation can be desc implementation D Input :

if zx=1 set x = 0@ / 30
if nx=1 set x = !Ix /
if zy=1 set y = 0 / PAUA I gt :
if ny=1 set y = ly /

* € ¥ ¥

20

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

ALU output:

Slide 53

The Hack ALU in action: Compute x &y

To cause the ALU to compute a function: control bits
Set the control bits to one of the binary ' A N\
combinations listed in the table. zx_nx zy ny f no out
1le[1[e[1]e]| o
11222 2] 12
1|1 [1ef1]e]| -1
e |oe|1|1]e[0] x
zx nx zy ny f no 1 1] o0lolo]loe y
i i i i i i e |e|1|1]|e]|1] !x
1|1[e|ele]|1] Iy
oo |1 [1]1]1] -x
1(1lelel1]|21] -y
SO ' @ | 1|1 |1]1]1] xt1
" ALU L ot Tl1le|1|1]1] vyt
% N 16 bits %) %) 111|160 x-1
’ 16 bits 1]1]ejejlje]| y-1
0|10 |06|0|[1|0 X+y
o111 |06|6(1(1 X-y
i i 0|10 [0 ([1]1]1 y-X
2 ng © 0| 0|0|0]| 0| x&
@ | 1|0 |1|0]|1]| x|y

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 54

The Hack ALU 1n action: Compute x &y

File View Run Help

m>D N

‘ Chip Nam... ALU

Input pins /\utput pins

@ ? 5 [C)l i gAnimate: Format: View:
F : : \f : A B A A
== Slow Fast . | Programflow 7| | Bi.. 7| | Scr.. ¢

Name alue
x[16] 1110101110000110
y[16] 0001100001101101
ZX 0
nx
zy
ny
:f
no

e
out[16]
zr

ng

'HDL

// This file is part of the mate
// "The Elements of Computing Sy
// MIT Press. Book site: www.idc¢
// File name: tools/builtIn/ALU.

[k

* The ALU. Computes a pre-defi
* where x and y are two 16-bit
* by a set of 6 control bits de
* The ALU operation can be desc

* if zx=1 set x = 0 /
* if nx=1 set x = !x /
* if zy=1 set y = 0 /
* if ny=1 set y = ly /

Time: 0
Set to binary
Value I/ O format
0000100000000100
0
0
Inspect the
ALU outputs
Set the ALU’s inputs and control
bits to some test values
(e@0000 codes “compute X&y”)
'ALU
D Input:
-5242 ALU output :
M/A Input : 2052
6253

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 55

The Hack ALU operation

pre-setting pre-setting selecting between post-setting Resulting
the x input the y input computing + or & the output ~ ALU output
zXx nx zy ny f no out
if zx | if nx | if zy | if ny [if if no
then | then then then | then out=x+y | then
X=0 x=Ix | y=0 y=ly | else out=x&y | out=!out | out(x,y)=
zx nx zy ny f no
X ——~—Pp
16 bits
ALU ——<— out
y £ > 16 bits
16 bits

Nand to Tetris / www.nand?2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

‘o

zZr ng

Slide 56

The Hack ALU operation

pre-setting pre-setting selecting between post-setting Resulting
the x input the y input computing + or & the output ~ ALU output
zXx nx zy ny f no out
if zx | if nx | if zy | if ny [if if no
then | then then then | then out=x+y | then
X=0 x=Ix | y=0 y=ly | else out=x&y | out=!out | out(x,y)=
1 0 1 0 1 0 (%]
1 1 1 1 1 1 1
1 1 1 (9] 1 0 -1
0 0 1 1 (%] 0 X
1 1 0 0 0 0 y
0 0 1 1 (%] 1 Ix
1 1 0 0 0 1 ly
0 0 1 1 1 1 -X
1 1 0 0 1 1 -y
0 1 1 1 1 1 x+1
1 1 0 1 1 1 y+1
0 0 1 1 1 0 x-1
1 1 0 0 1) y-1
0 0 (%] (%] 1 0 X+y
(%] 1 0 0 1 1 X-y
0) 0 1 1 1 y-X
(%] (%] 0 0 0 %] xX&y
0 1 0 1 0 1 x|y

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 57

The Hack ALU operation: Compute !x

pre-setting pre-setting selecting between post-setting Resulting
the x input the y input computing + or & the output ~ ALU output
zXx nx zy ny f no out
if zx | if nx | if zy | if ny [if if no
then | then then then | then out=x+y | then
X=0 x=Ix | y=0 y=ly | else out=x&y | out=!out | out(x,y)=
1 0 1 (9] 1 0 (%]
1 1 1 1 1 1 1
1 1 1 (9] 1 0 -1
0 0 1 1 (%] 0 X
1 1 0 0 0 0 y
(%] 0 1 1 (%] 1 Ix
1 1 7 o 7 1 ly
0 0 Example: compute !x ~X
1 1 =
5 n X: 1100 y1
y: 10 1 1 (irrelevant) Xt
1 1 y+1
0 0 Following pre-setting: x-1
1 1 X: 1100 y-1
0 0 y: 1111 X+y
(%] 1 . . X-
5 5 Computation and post-setting: 4
y-X
)) X&Yy : 1100 X&Yy
0 1 I'(x&y): @011 (!x) x|y

Nand to Tetris / www.nand?2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 58

The Hack ALU operation: Compute y-x

pre-setting pre-setting selecting between post-setting Resulting
the x input the y input computing + or & the output ~ ALU output
zXx nx zy ny f no out
if zx | if nx | if zy | if ny [if if no
then | then then then | then out=x+y | then
X=0 x=Ix | y=0 y=ly | else out=x&y | out=!out | out(x,y)=
1 0 1 0 0 0
1 1 1 1 1 1
1 1 1 9
0 0 1 1 Example: compute y-x
1 1 0 9 x: 0010 (2
0 0 1 1 y: o111 S
1 1 0 a : . !
Following pre-setting:
0 0 1 1 &b & K
1 1 9 l X: 00160 Y
2 1 1 1 y: 1000 1
1 1 0 1 Computation and post-setting: [
0 0 1 1 1
n T 5 % X+y: 1010 A
I(x+y): ©101(
> . . 7 1Oy) (5) y
(%] 1 0 0 1 1 X-y
0 0 0 1 1 1 y-X
(%] (%] 0 0 0 %] xX&y
0 1 0 1 0 1 x|y

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 59

The Hack ALU operation: Compute x|y

pre-setting pre-setting selecting between post-setting Resulting
the x input the y input computing + or & the output ~ ALU output
zXx nx zy ny f no out
if zx | if nx | if zy | if ny [if if no
then | then then then | then out=x+y | then
X=0 x=Ix | y=0 y=ly | else out=x&y | out=!out | out(x,y)=
1 0 0 (%]
1 1 1 1 1 1
1 1 il Practice:
5 5 Example: compute x|y ”
1 1 X: 0101 y See 1f you get
)) y: 6011 Ix .
_ _ : © 11 1 (bitwise Or)
1 1 Following pre-setting:)
2 2 : 1010 —
1 1 X3 B
y: 1100
0 1 X+1
1 1 Computation and post-setting: y+1
© © X&y 1000 x-1
1 1 I(x&): ©0 111 y-1
0 0 X+y
(%] 1 0 0 1 1 X-y
0) 0 1 1 1 y-X
(%] (%] 0 0 0 %] xX&y
0 1 0 1 0 1 x|y

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 60

The Hack ALU operation: Compute y-1

pre-setting pre-setting selecting between post-setting Resulting
the x input the y input computing + or & the output ALU output
zXx nx zy ny f no out
if zx | if nx [if zy | if ny [if f if no
then | then then then | then out=x+y | then
X=0 x=1x y=0 y=ly else out=x&y | out=!out Example: compute y-1
1 0 1 0 1 0 X: © 1 0 1 (irrelevant)
1 1 1 1 1 1 y: 0110 (6)
1 1 1) 1) _ _
9 9 1 1 0 9 Following pre-setting:
1 1 0) 0 0 X: 1111
0 0 1 1 0 1 y: 9110
= = 0 0 0 = Computation and post-setting:
0 0 1 1 1 1
1 1 0) 1 1 X+y: 0101
9 1 1 1 1 1 X+Yy: ©101()
1 1 0 1 1 1 VFI
0 0 1 1 1 0 x-1
1 1 0 0 1 0 y-1
)) 0 0 1) X+y Practice:
0 1 (%] (9] 1 1 X-y .
0)) 1 1 1 y-X See 1f you get
(%] 0 0 0 0 (%] x&
4 9101 (5
0 1 0 1 0 1 x|y

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 61

The Hack ALU operation

One more detail:

zx nx zy ny f no

b4l

X —~4—Pp
16 bits ALU | it if (out ==0) then zr =1, else zr = 0
A > 16 bits
T e if (out <0@) thenng=1,¢clseng=0

The zr and ng output bits will come into play when we’ll build the
complete CPU architecture, later in the course.

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 62

Chapter 2: Boolean Arithmetic

Practice

/ Arithmetic Logic Unit (ALU)

» Project 2: Chips

* Project 2: Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 63

Project 2

Given: All the chips built in Project 1
Goal: Build the chips:

* HalfAdder
* FullAdder
* Addi6
* Incl6

* ALU

Nand to Tetris / www.nand?2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 64

Half Adder

a—» — SuUMm
HalfAdder
b — — carry
HalfAdder.hdl

a b sum carry
0 0 0 0

0 1 1

1 0 1 0

1 1 0 1

/** Computes the sum of two bits. */

CHIP HalfAdder {
IN a, b;
OUT sum, carry;
PARTS:
// Put your code here:

Implementation tip

Can be built from two
gates built in project 1.

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 65

Full Adder

a b C sum carry
Q=" — » sum ol o]| o 0 0
b —| FullAdder 0| o0 1 1
o = Gellly o| 1| o 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
FullAdder.hdl
/** Computes the sum of three bits. */
CHIPIEUi}Ag?eE;{ Implementation tip
OUT sum, carry; Can be built from two
PARTS: half-adders.
// Put your code here:
}

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 66

16-bit adder

%) %) 1 9 | 1 %)
\ \ X X X a L a

Add16 7]?»

///////// veeleee| 2| 2|12 | e |1 |e@e | e |1 |out

a
— 4>

16

b
16

Add16.hdl
/* Adds two 16-bit, two’s-complement values. * The bitwise additions are done in parallel
The most-significant carry bit is ignored. */ « The carry propagation is sequential

CHIP Add16 {
IN a[16], b[16];
OUT out[16];
PARTS:

// Put you code here:
} If you need to set a pin x to e (or 1) in HDL,

use: x = false (Or x = true)

e Yet... it works fine, as is.
How? Stay tuned for chapter 3.

Implementation note

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 67

16-bit incrementor

S

in ﬁ%’ Incl6 416 » out

i

Incl6.hdl

/** Outputs in + 1. */
CHIP Incl6 {

IN in[16]; Implementation:
OUT out[16]; Slmple

PARTS:

// Put you code here:

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 68

ALU

zx nx zy ny f no

by

I "
if zx
X then
16 bits
ALU out
y 16 bits
16 bits

Vo

zZr ng

pre-setting pre-setting selecting between post-setting Resulting
the x input the y input computing + or & the output ALU output
nx zy ny f no out
if nx [if zy | if ny | if f if no
then | then then [then out=x+y | then
x=0 x=Ix | y=0 y=!y | else out=x&y | out=!out | out(x,y)=
1 0 1 0 1 0 0
al 1 1 1 1 1 1
1 il 1 0 1 0 -1
0 0 1 1 0 0 X
1 il 0 0 0 0 y
0 0 1 1 0 il Ix
1 1 0 0 0 1 ly
0 0 1 1 1 il =X
il 1)) 1 d -y
0 1 1 1 1 1 X+1
1 1 0 1 1 1 y+1
0 0 1 il 1 0 x-1
1 1 0 0 1 0 y-1
0 (] (] 0 1 (] X+y
0 al 0 (%] 1 1 X-y
0 0 0 1 1 il y-X
0 0 0 0 0 0 x&y
0 1 0 1 0 il x|y

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 69

ALU

zx nx zy ny f no

Iy

l i i l zZXx nx zy ny f no out
if zx [if nx | if zy | if ny | if f if no
X . then | then | then then | then out=x+y | then
16 bits ALU X x=0 x=Ix | y=0 y=ly [else out=x&y | out=!out | out(x,y)=
ou
y 16 bits
16 bits

Vo

pre-setting pre-setting selecting between post-setting Resulting
the x input the y input computing + or & the output ALU output

zr ng
ALU.hdl
/** The ALU */
// Manipulates the x and y inputs as follows:
// if (zx == 1) sets x=0 // 16-bit true
// if (nx == 1) sets x=!x // 16-bit Not
// if (zy == 1) sets y=0 // 16-bit true
// if (ny == 1) sets y=ly // 16-bit Not
// if (f == 1) sets out=x+y //2's-complement addition
// if (f == 0) sets out=x&y //16-bitAnd
// if (no == 1) sets out=!out //16-bitNot
// if (out == @) sets zr=1 // 1-bit true
// if (out < @) sets ng=1 // 1-bit true

Slide 70

ALU

ZX NnX

zy

ny f

no

il
:j:’ ALU Wmout
Vo

ALU.hdl

r

ng

Implementation tips

We need logic for:

Implementing “if bit == 8/1” conditions
Setting a 16-bit value to eeeoceeo00000000
Setting a 16-bit value to 1111111111111111
Negating a 16-bit value (bitwise)

Computing Add and or on two 16-bit values

/** The ALU */
// Manipulates the x and y inputs as follows:

//
//
//
//
//
//
//
//

//

if
if
if
if
if
if
if
if
if

(zx == 1)
(nx == 1)
(zy ==1)
(ny ==1)
(F =1
(F ==0)
(no ==1)
(out == 09)
(out < 9)

sets
sets
sets
sets
sets
sets
sets
sets

sets

X=0
x=Ix
y=0
y=1ly
out=x+y
out=x&y
out = lout
zr=1

ng=1

// 16-bit true
// 16-bit Not
// 16-bit true
// 16-bit Not

// 2's-complement addition

// 16-bit And
// 16-bit Not
// 1-bit true
// 1-bit true

Implementation strategy

 Start by building an ALU
that computes out

* Next, extend it to also
compute zr and ng.

Slide 71

Relevant bus tips

Using multi-bit truth / false constants:
We can assign values to sub-buses

// Suppose that X, y, z are 8-bit bus-pins:
chipPart(..., x=true, y=false, z[0..2]=true, z[6..7]=true);

Unassigned bits are set to o

Nand to Tetris / www.nand?2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 72

Relevant bus tips

Sub-bussing:
* We can assign n-bit values to sub-buses, for any »

* We can create n-bit bus pins, for any n

/* 16-bit adder */

CHIP Add16 {
IN a[1l6], b[16];
OUT out[16];

PARTS:

CHIP Foo { -
IN x[8], y[8], z[16] Another example of assigning
; OUT out[16] a multi-bit value to a sub-bus

PARTS

Addi6 (a[@..7]=x, a[8..15]=y, b=z, out=...);

Add16 (a=..., b=..., out[0..3]=t1, out[4..15]=12);

Creating an n-bit bus (internal pin)

Nand to Tetris / www.nand?2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 73

ALU: Recap

zx nx zy ny f no

Ll

X ——~—p
16 bits
AL U —— out
y —~—>» 16 bits
16 bits
zZr ng
The Hack ALU is: “Simplicity is the
. Simple ultimate sophistication.”
— Leonardo da Vinci
* Elegant

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 74

Chapter 2: Boolean Arithmetic

Practice

/ Arithmetic Logic Unit (ALU)

/ Project 2: Chips

» Project 2: Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 75

Project 2

Given: All the chips built in Project 1
Goal: Build the chips:

 HalfAdder
* FullAdder
* Addl6

* Inclé

* ALU

Nand to Tetris / www.nand?2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 76

Guidelines: www.nand2tetris.org/project0?2

www.nandZ2tetris.org

Project 2: Combinational Chips

| Background

The centerpiece of the computer’s architecture is the CPU, or Central Processing Unit, and the centerpiece of the
CPU is the ALU, or Arithmetic-Logic Unit. In this project you will gradually build a set of chips, culminating in the
construction of the ALU chip of the Hack computer. All the chips built in this project are standard, except for the ALU
itself, which differs from one computer architecture to another.

| Objective

Build all the chips described in Chapter 2 (see list below), leading up to an Arithmetic Logic Unit - the Hack
computer’s ALU. The only building blocks that you can use are the chips described in chapter 1 and the chips that you
will gradually build in this project.

| Chips
Chip (HDL) Description Test script Compare file
HalfAdder Half Adder HalfAdder.tst HalfAdder.cmp
FullAdder Full Adder FullAdder.tst FullAdder.cmp
Add16 16-bit Adder Add16.tst Add16.cmp
Inc16 16-bit incrementer Inc16.tst Inc16.cmp
ALU Arithmetic Logic Unit ALU.tst ALU.cmp

Slide 77

http://www.nand2tetris.org/project02

Resources

Project 2 folder (.hdl, .tst, .cmp ﬁles): nand2tetris/projects/02

Tools

» Text editor (for completing the given .nd1 stub-files)

e Hardware simulator: nand2tetris/tools

Guides

e Hardware Simulator Tutorial
* HDL Guide

 Hack Chip Set API

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 78

https://b1391bd6-da3d-477d-8c01-38cdf774495a.filesusr.com/ugd/44046b_02055f8bb5ac47648c0ab642f01c1919.pdf
https://drive.google.com/file/d/1dPj4XNby9iuAs-47U9k3xtYy9hJ-ET0T/view
https://drive.google.com/file/d/1IsDnH0t7q_Im491LQ7_5_ajV0CokRbwR/view

Chlp interfaces: Hack chip set API

Open the API in a window, and copy-paste

Add16 (3= b= Loute); chip signatures into your HDL code, as needed

ALU (x= ,y= ,zX= ,nx= ,zy= ,ny= ,f= ,no= ,out= ,zr= ,ng=);

Andl16 (a= ,b= ,out=);

And (a= ,b= ,out=); Mux8Way (a= ,b= ,c= ,d= ,e= ,f= ,g= ,h= ,sel= ,out=);
Aregister (in= ,load= ,out=); Mux (a= ,b= ,sel= ,out=);
Bit (in= ,load= ,out=); Nand (a= ,b= ,out=);
CPU (inM= ,instruction= ,reset= ,outM= ,writeM= ,ad Notl6 (in= ,out=);
DFF (in= ,out=); Not (in= ,out=);
DMux4Way (in= ,sel= ,a= ,b= ,c= ,d=); Orl6 (a= ,b= ,out=);
DMux8Way (in= ,sel= ,a= ,b= ,c= ,d= ,e= ,f= ,g= ,h4 Or8Way (in= ,out=);
Dmux (in= ,sel= ,a= ,b=); Or (a= ,b= ,out=);
Dregister (in= ,load= ,out=); PC (in= ,load= ,inc= ,reset= ,out=);
FullAdder (a= ,b= ,c= ,sum= ,carry=); PCLoadlLogic (cinstr= ,j1= ,j2= ,j3= ,load= ,inc=);
HalfAdder (a= ,b= ,sum= , carry=); RAM16K (in= ,load= ,address= ,out=);
Inclée (in= ,out=); RAM4K (in= ,load= ,address= ,out=);
Keyboard (out=); RAM512 (in= ,load= ,address= ,out=);
Memory (in= ,load= ,address= ,out=); RAM64 (in= ,load= ,address= ,out=);
Mux16 (a= ,b= ,sel= ,out=); RAM8 (in= ,load= ,address= ,out=);
Mux4Waylé (a= ,b= ,c= ,d= ,sel= ,out=); Register (in= ,load= ,out=);
Mux8Way16 (a= ,b= ,c= ,d= ,e= ,f= ,g= ,h= ,sel= ,of ROM32K (address= ,out=);
Screen (in= ,load= ,address= ,out=);
Xor (a= ,b= ,out=);

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 79

https://drive.google.com/file/d/1IsDnH0t7q_Im491LQ7_5_ajV0CokRbwR/view

Best practice advice

* You will have to use chips implemented in Project 1;

For efficiency and consistency’s sake, use their built-in versions, rather than your
own HDL implementations.

That’s It!
Go Do Project 2!

Nand to Tetris / www.nand?2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 80

What’s next?

abstraction
machine
language . .
This lecture / chapter / project:
assembler Build the computer’s ALU
/ v L hardware platform \
abstraction | Buildinga
computer
computer P abstraction Building
chips o
ALU, RAM | ' abstraction Building

o

elementary
logic gates

gates
=

/

Next lecture / chapter / project:

Build the computer’s RAM

Nand to Tetris / www.nand?2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken

Slide 81

