
Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 1

Chapter 2

Boolean Arithmetic

From Nand to Tetris
Building a Modern Computer from First Principles

These slides support chapter 2 of the book
The Elements of Computing Systems

(1st and 2nd editions)
By Noam Nisan and Shimon Schocken

MIT Press

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 2

hardware platform

computer

abstraction

ALU, RAM

abstraction

elementary
logic gates

abstraction

Nand

Building
gates

Building
chips

Building a
computer

Nand to Tetris Roadmap: Hardware

abstraction

assembler

machine
language

p1

p2

p3

p4

p5

p6

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 3

hardware platform

computer

abstraction

ALU, RAM

abstraction

elementary
logic gates

abstraction

Nand

Building
gates

Building
chips

Building a
computer

Nand to Tetris Roadmap: Hardware

abstraction

assembler

machine
language

p1

p2

p3

p4

p5

p6

Project 1
Build 15 elementary logic gates

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 4

hardware platform

computer

abstraction

ALU, RAM

abstraction

elementary
logic gates

abstraction

Nand

Building
gates

Building
chips

Building a
computer

Nand to Tetris Roadmap: Hardware

abstraction

assembler

machine
language

p1

p2

p3

p4

p5

p6

Project 2
Building chips that do arithmetic,

ending up with an ALU

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 5

Input

Computer system

Memory Output

CPU

Registers

ALU

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 6

Input

Computer system

Memory Output

CPU

ALU

Registers

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 7

Arithmetic Logical Unit

ALU

+
1001111001001001

0000000000010001

(40521)

(17)
1001111001011010

(40538)

ALU functions (f)
• Arithmetic: x + y, x – y, x + 1, x – 1, ...
• Logical: x & y, x | y, !x , ...

Challenges
• Use 0’s and 1’s for representing numbers
• Use logic gates for realizing arithmetic functions.

The ALU computes a given function
on two given n-bit values, and
outputs an n-bit value

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 8

Practice

• Arithmetic Logic Unit (ALU)

• Project 2: Chips

• Project 2: Guidelines

Theory

• Representing numbers

• Binary numbers

• Boolean arithmetic

• Signed numbers

Chapter 2: Boolean Arithmetic

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 9

Practice

• Arithmetic Logic Unit (ALU)

• Project 2: Chips

• Project 2: Guidelines

Theory

• Representing numbers

• Binary numbers

• Boolean arithmetic

• Signed numbers

Chapter 2: Boolean Arithmetic

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 10

Representation

This is not a pipe
(by René Magritte)

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 11

Representation

17
This is not seventeen.

Rather, it’s an agreed-upon code (numeral)
that represents the number seventeen.

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 12

A brief history of numeral systems

Twenty seven
goats

Unary:

Roman: XXVII

Egyptian:

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 13

A brief history of numeral systems

Old numeral systems:
• Don’t scale
• Cumbersome arithmetic
• Used until about 1000 years ago
• Blocked the progress of Algebra

(and commerce, science, technology)

Unary: . . .

Roman: MMMMMMDVII

Egyptian:

. . .
Six thousands,
five hundreds,
and seven goats

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 14

Positional numeral system

!
!

"#$

𝑑% # 10% =

Where n is the
number of
digits in the
numeral, and di
is the digit in
position i

6 5 0 7

+ + + = 65076 # 10& 5 # 10' 0 # 10$ 7 # 10!

3 2 1 0

A most important innovation, brought
to the West from the East around 1200Positional representation

• Digits: A fixed set of symbols, including 0
• Base: The number of symbols
• Numeral: An ordered sequence of digits
• Value: The digit in position i (counting from right to left, and starting at 0)

encodes how many copies of base i are added to the value.

The method mentions
no specific base.

. . .
Six thousands,
five hundreds,
and seven goats

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 15

Practice

• Arithmetic Logic Unit (ALU)

• Project 2: Chips

• Project 2: Guidelines

Theory

• Representing numbers

• Binary numbers

• Boolean arithmetic

• Representing signed numbers

Chapter 2: Boolean Arithmetic

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 16

Positional number system

+ + + = 70537 # 10& 0 # 10' 5 # 10$ 3 # 10!

3 2 1 0

!
!

"#$

𝑑% # 10% =

7 0 5 3 10

. . .
Seven thousands
and fifty three
goats

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 17

Positional number system

1 1 0 1 1 1 0 0 0 1 1 0 1 2

7053++ + + =!
!

"#$

𝑑% # 2% = 1 # 2$' 1 # 2$$ 0 # 2$! … 1 # 2!

. . .

3 2 1 012 11 10 . . .

7 0 5 3 10

+ + + = 70537 # 10& 0 # 10' 5 # 10$ 3 # 10!

3 2 1 0

!
!

"#$

𝑑% # 10% =

. . .
Seven thousands
and fifty three
goats

Decimal (base 10) system:
Human friendly

Binary (base 2) system:
Computer friendly

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 18

Binary and decimal systems

0
1

1 0
1 1

1 0 0
1 0 1
1 1 0
1 1 1

1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1

...

Binary Decimal

0
1
2
3
4
5
6
7
8
9

10
11
12
13
...

Humans are used to enter and view numbers in base 10;

Computers represent and process numbers in base 2;

Therefore, we need efficient algorithms for converting
from one base to the other.

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 19

Decimal binary conversions

5 4 3 2 1 0

binary (53 10) =

Decimal to binary:

=decimal (1101012)

Binary to decimal:

2! + 2" +2# +2$ = 53 10

20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
210 = 1024
. . .

Powers of 2: (aids in calculations)

1101012
5 4 3 2 1 0

=2! + 2" +2# +2$

Algorithm: What is the largest power of 2 that “fits into” 53? It’s 32 = 25.
We still have to handle 53 – 32, so, what is the largest power of 2 that fits
into 21? It’s 16 = 24, and so on.

Practice:

decimal (10110102)

binary (52310)

=

=

?
?

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 20

Decimal binary conversions

5 4 3 2 1 0

binary (53 10) =

Decimal to binary:

=decimal (1101012)

Binary to decimal:

2! + 2" +2# +2$ = 53 10

20 = 1
21 = 2
22 = 4
23 = 8
24 = 16
25 = 32
26 = 64
27 = 128
28 = 256
29 = 512
210 = 1024
. . .

Powers of 2: (aids in calculations)

1101012
5 4 3 2 1 0

=2! + 2" +2# +2$

Algorithm: What is the largest power of 2 that “fits into” 53? It’s 32 = 25.
We still have to handle 53 – 32, so, what is the largest power of 2 that fits
into 21? It’s 16 = 24, and so on.

Practice:

decimal (10110102)

binary (52310)

=

=

90 10

10000010112

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 21

The binary system

G.W. Leibnitz
(1646 – 1716)

Worshipped
binary numbers

Inside computers,
everything is binary

Binary numerals are easy to:
q Compare
q Add
q Subtract
q Multiply
q Divide
q ...

q Store
q Transmit
q Verify
q Correct
q Compress
q ...

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 22

Theory

• Representing numbers

• Binary numbers

• Boolean arithmetic

• Signed numbers

Chapter 2: Boolean Arithmetic

Practice

• Arithmetic Logic Unit (ALU)

• Project 2: Chips

• Project 2: Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 23

Boolean arithmetic

• Addition

• Subtraction

• Multiplication

• Division

We have to figure out efficient ways to perform, on binary numbers:

We’ll implement it using logic gates

Based on addition

We’ll get it for free

Addition is the foundation of all arithmetic operations.

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 24

Addition

1

3

7 57 8

6 25
+

Decimal addition

1

4

1 01 0

1 1
+

Binary addition

7

0

8

0

0

1

1

0

1

0

1

0

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 25

Addition

1 01 0

1 10 0

1

0 11 1

+

Binary addition

0 00

1 10 1

1 01 1
+

Overflow

1 1 1

1 0 10 1

0

Handling overflow
• Our decision: Ignore it
• As we will soon see, ignoring the overflow bit is not a bug, it’s a feature.

0 10 0

0 10 1
+

1

1 00 1

00

Another example

Computers represent integers using a fixed number of bits,
sometimes called “word size”. For example, let’s assume n = 4:

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 26

...

Addition

0 00 ... 0 00 0 0 11 1 0 10 1

0 00 0 00 0 0 10 1 0 01 1

0 00 0 10 0 1 11 0 0 01 0

0 00 0 10 0 1 10 0 0 10 0

+
...

...

Hardware implementation
We’ll build an Adder chip that
implements this addition algorithm,

Using the chips built in project 1.
How? Later.

Word size n = 16, 32, 64, …

Same
addition
algorithm
for any n

Teaching Note

In Nand to Tetris we always separate
abstraction from implementation

First we present the abstraction,
leaving the implementation to a later
stage in the lecture.

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 27

Practice

• Arithmetic Logic Unit (ALU)

• Project 2: Chips

• Project 2: Guidelines

Theory

• Representing numbers

• Binary numbers

• Boolean arithmetic (addition)

• Signed numbers

Chapter 2: Boolean Arithmetic

(x + y, –x + y, x + –y, –x + –y)

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 28

Signed integers

Therefore …
Efficient algorithms for handling arithmetic operations on signed integers hold
the key to building efficient computers.

• Positive
• 0
• Negative

In most programming languages, the short, int, and long data types use 16, 32,
and 64 bits for representing signed integers
Arithmetic operations on signed integers (x op y, –x op y, x op –y, –x op –y,
where op = {+, –, *, /}) are by far what computers do most of the time

Teaching Note: All the algorithms presented in this course can be
implemented efficiently in either hardware of software.

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 29

Signed integers

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 10
1011 11 11
1100 12 12
1101 13 13
1110 14 14
1111 15 15

code(x) x

This particular example: word size is n = 4

In general, n bits allow representing all the unsigned
integers 0 … 2n – 1

What about negative numbers?

We can use half of the code space for representing
positive numbers, and the other half for negatives.

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 30

Signed integers

Issues

• – 0: Huh?

• code(x) + code(– x) ≠ code(0)

• The codes are not monotonically increasing

• more complications.

Representation:

Left-most bit (MSB): Represents the sign, +/-

Remaining bits: Represent a positive integer

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 – 0
1001 9 – 1
1010 10 – 2
1011 11 – 3
1100 12 – 4
1101 13 – 5
1110 14 – 6
1111 15 – 7

code(x) x

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 31

Two’s complement

The representation
• Assumption: Word size = n bits
• The “two’s complement” of x is defined to be 2n – x
• The negative of x is coded by the two’s complement of x

if x ≥ 0 return binary(x)
else return binary(2n – x)

From decimal to binary:

if MSB = 0 return decimal(bits)
else return “–” and then (2n – decimal(bits))

From binary to decimal:

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 – 8
1001 9 – 7
1010 10 – 6
1011 11 – 5
1100 12 – 4
1101 13 – 3
1110 14 – 2
1111 15 – 1

code(x) x

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 32

Two’s complement: Addition

6

–2
+

20

6

14
+=

% 16 = 4 codes 4

3

–5
+

14

3

11
+=

% 16 = 14 codes –2

–2
–5
+

25

14

11
+=

% 16 = 9 codes –7

Algorithm: Regular addition, modulo 2n

Compute x + y where x and y are signed
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 – 8
1001 9 – 7
1010 10 – 6
1011 11 – 5
1100 12 – 4
1101 13 – 3
1110 14 – 2
1111 15 – 1

code(x) x

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 33

Two’s complement: Addition

6

–2
+

20

6

14
+=

% 16 = 4 codes 4

Algorithm: Regular addition, modulo 2n0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 – 8
1001 9 – 7
1010 10 – 6
1011 11 – 5
1100 12 – 4
1101 13 – 3
1110 14 – 2
1111 15 – 1

code(x) x

Practice:

4
–7
+

–2
–4
+ =

?

?

=

Compute x + y where x and y are signed

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 34

Two’s complement: Addition

6

–2
+

20

6

14
+=

% 16 = 4 codes 4

Algorithm: Regular addition, modulo 2n0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 – 8
1001 9 – 7
1010 10 – 6
1011 11 – 5
1100 12 – 4
1101 13 – 3
1110 14 – 2
1111 15 – 1

code(x) x

Practice:

4
–7
+

13

4

9
+=

% 16 = 13 codes –3

14

12
+

26 % 16 = 10 codes –6

–2
–4
+ =

Compute x + y where x and y are signed

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 35

Two’s complement: Addition

6

–2
+

10100

0110

1110
+=

codes 4

3

–5
+

1110

0011

1011
+=

codes –2

–2
–5
+

11001

1110

1011
+=

codes –7

At the binary level (same algorithm):
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 – 8
1001 9 – 7
1010 10 – 6
1011 11 – 5
1100 12 – 4
1101 13 – 3
1110 14 – 2
1111 15 – 1

code(x) x

Ignoring the overflow bit
is the binary equivalent of
modulo 2n

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 36

Two’s complement: Addition

6

–2
+

10100

0110

1110
+=

codes 4

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 – 8
1001 9 – 7
1010 10 – 6
1011 11 – 5
1100 12 – 4
1101 13 – 3
1110 14 – 2
1111 15 – 1

code(x) x

5
7

+

1100

0101

0111
+=

codes –4

–7
–3
+

10110

1001

1101
+=

codes 6

More examples:

Overflow detection
When you add up two positives (negatives) and get a negative
(positive) result, you know that you have overflow

5 + 7 = –4 ???

–7 + –3 = 6 ???

At the binary level (same algorithm):

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 37

Two’s complement: Subtraction

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 – 8
1001 9 – 7
1010 10 – 6
1011 11 – 5
1100 12 – 4
1101 13 – 3
1110 14 – 2
1111 15 – 1

code(x) x

• x – y is the same as x + (–y)
• So… convert y and add up the two values

(we already know how to add up signed numbers)

Compute x – y where x and y are signed

But … How to convert a number (efficiently)?

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 38

Two’s complement: Sign conversion

Algorithm: To convert bbb...b:
Flip all the bits and add 1 to the result

Compute –x from x

= 1 + (1111) – x
code(–x) = (2n – x)Insight: = 1 + (2n – 1) – x

= 1 + flippedBits (x)

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 – 8
1001 9 – 7
1010 10 – 6
1011 11 – 5
1100 12 – 4
1101 13 – 3
1110 14 – 2
1111 15 – 1

code(x) x

1101 (flipped)

1110 (–2)

1+

Example: Convert 0010 (2)

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 39

Two’s complement: Sign conversion

Algorithm: To convert bbb...b:
Flip all the bits and add 1 to the result

Compute –x from x

= 1 + (1111) – x
code(–x) = (2n – x)Insight: = 1 + (2n – 1) – x

= 1 + flippedBits (x)

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 – 8
1001 9 – 7
1010 10 – 6
1011 11 – 5
1100 12 – 4
1101 13 – 3
1110 14 – 2
1111 15 – 1

code(x) x

Practice: Convert 1010 (–6)

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 40

Two’s complement: Sign conversion

Algorithm: To convert bbb...b:
Flip all the bits and add 1 to the result

Compute –x from x

= 1 + (1111) – x
code(–x) = (2n – x)Insight: = 1 + (2n – 1) – x

= 1 + flippedBits (x)

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 – 8
1001 9 – 7
1010 10 – 6
1011 11 – 5
1100 12 – 4
1101 13 – 3
1110 14 – 2
1111 15 – 1

code(x) x

0101 (flipped)

0110 (6)

1+

Practice: Convert 1010 (–6)

But… How to compute x + 1 (efficiently)?

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 41

Two’s complement: Add 1

Compute x + 1 (efficiently)

Given bbb...b, compute bbb...b + 1

Algorithm: Flip bits from right to left,
stop when the flipped bit becomes 1

Example: Compute 0101 + 1 (5 + 1)

0110 (6)

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 – 8
1001 9 – 7
1010 10 – 6
1011 11 – 5
1100 12 – 4
1101 13 – 3
1110 14 – 2
1111 15 – 1

code(x) x

Compute 0110 + 1 (6 + 1)

Compute 0011 + 1 (3 + 1)

Compute 1000 + 1 (-8 + 1)

Compute 1011 + 1 (-5 + 1)

Practice:

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 42

Two’s complement: Recap
Observations
• The method represents all the integers in the range

–2n–1, ..., –1, 0, 1, ..., 2n–1 – 1
• code(x) + code(– x) = code(0)
• The codes are monotonically increasing
• Arithmetic on signed integers is the same as arithmetic

on unsigned integers
• Simple! Elegant! Powerful!

Implications for hardware designers
Arithmetic on signed integers can be implemented
using the same hardware used for handling arithmetic of
unsigned integers

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 – 8
1001 9 – 7
1010 10 – 6
1011 11 – 5
1100 12 – 4
1101 13 – 3
1110 14 – 2
1111 15 – 1

code(x) x

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 43

Practice

• Arithmetic Logic Unit (ALU)

• Project 2: Chips

• Project 2: Guidelines

Theory

• Representing numbers

• Binary numbers

• Boolean arithmetic

• Signed numbers

Chapter 2: Boolean Arithmetic

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 44

Practice

• Arithmetic Logic Unit (ALU)

• Project 2: Chips

• Project 2: Guidelines

Theory

• Representing numbers

• Binary numbers

• Boolean arithmetic

• Signed numbers

Chapter 2: Boolean Arithmetic

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 45

Input

Von Neumann Architecture

Memory Output

CPU

Registers

ALU

Computer System

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 46

The Arithmetic Logical Unit

ALU
f (input1, input2)

input1

input2

f

f : one out of a family of
pre-defined arithmetic functions
(add, subtract, multiply…) and
logical functions (And, Or, Xor, …)

The ALU computes a given
function on its two given data
inputs, and outputs the result

Design issue: Which functions should the ALU perform?
A hardware / software tradeoff: Any function not implemented by the ALU
can be implemented later in system software
• Hardware implementations: Faster, and more expensive
• Software implementations: Slower, less expensive

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 47

The Hack ALU

zx no

zr

nx zy ny f

ALU

ng

16 bits

16 bits

x

y 16 bits
out

• Operates on two 16-bit, two’s complement values

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 48

The Hack ALU

zx no

zr

nx zy ny f

ALU

ng

16 bits

16 bits

x

y 16 bits
out

• Operates on two 16-bit, two’s complement values

• Outputs a 16-bit, two’s complement value

out
0
1
-1
x
y
!x
!y
-x
-y
x+1
y+1
x-1
y-1
x+y
x-y
y-x
x&y
x|y

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 49

The Hack ALU

zx no

zr

nx zy ny f

ALU

ng

16 bits

16 bits

x

y 16 bits
out

• Operates on two 16-bit, two’s complement values

• Outputs a 16-bit, two’s complement value

• Also outputs two 1-bit values (later) out
0
1
-1
x
y
!x
!y
-x
-y
x+1
y+1
x-1
y-1
x+y
x-y
y-x
x&y
x|y

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 50

The Hack ALU

zx no

zr

nx zy ny f

ALU

ng

16 bits

16 bits

x

y 16 bits
out

• Operates on two 16-bit, two’s complement values

• Outputs a 16-bit, two’s complement value

• Also outputs two 1-bit values (later)

• Which function to compute is set by six 1-bit inputs
out
0
1
-1
x
y
!x
!y
-x
-y
x+1
y+1
x-1
y-1
x+y
x-y
y-x
x&y
x|y

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 51

The Hack ALU

To cause the ALU to compute a function:
Set the control bits to one of the binary
combinations listed in the table.

zx no

zr

nx zy ny f

ALU

ng

16 bits

16 bits

x

y 16 bits
out

zx nx zy ny f no out
1 0 1 0 1 0 0
1 1 1 1 1 1 1
1 1 1 0 1 0 -1
0 0 1 1 0 0 x
1 1 0 0 0 0 y
0 0 1 1 0 1 !x
1 1 0 0 0 1 !y
0 0 1 1 1 1 -x
1 1 0 0 1 1 -y
0 1 1 1 1 1 x+1
1 1 0 1 1 1 y+1
0 0 1 1 1 0 x-1
1 1 0 0 1 0 y-1
0 0 0 0 1 0 x+y
0 1 0 0 1 1 x-y
0 0 0 1 1 1 y-x
0 0 0 0 0 0 x&y
0 1 0 1 0 1 x|y

control bits

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 52

zx nx zy ny f no out
1 0 1 0 1 0 0
1 1 1 1 1 1 1
1 1 1 0 1 0 -1
0 0 1 1 0 0 x
1 1 0 0 0 0 y
0 0 1 1 0 1 !x
1 1 0 0 0 1 !y
0 0 1 1 1 1 -x
1 1 0 0 1 1 -y
0 1 1 1 1 1 x+1
1 1 0 1 1 1 y+1
0 0 1 1 1 0 x-1
1 1 0 0 1 0 y-1
0 0 0 0 1 0 x+y
0 1 0 0 1 1 x-y
0 0 0 1 1 1 y-x
0 0 0 0 0 0 x&y
0 1 0 1 0 1 x|y

The Hack ALU in action: Compute y-x

To cause the ALU to compute a function:
Set the control bits to one of the binary
combinations listed in the table.

zx no

zr

nx zy ny f

ALU

ng

16 bits

16 bits

x

y 16 bits
out

control bits

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 53

The Hack ALU in action: Compute y-x

Load
tools/builtInChips/ALU.hdl

2. Evaluate the chip logic

3. Inspect the
ALU outputs

1. Set the ALU’s inputs and control
bits to some test values
(000111 codes “output y-x”) The built-in ALU

implementation has
GUI side-effects

Built-in ALU
implementation

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 54

The Hack ALU in action: Compute x & y

zx nx zy ny f no out
1 0 1 0 1 0 0
1 1 1 1 1 1 1
1 1 1 0 1 0 -1
0 0 1 1 0 0 x
1 1 0 0 0 0 y
0 0 1 1 0 1 !x
1 1 0 0 0 1 !y
0 0 1 1 1 1 -x
1 1 0 0 1 1 -y
0 1 1 1 1 1 x+1
1 1 0 1 1 1 y+1
0 0 1 1 1 0 x-1
1 1 0 0 1 0 y-1
0 0 0 0 1 0 x+y
0 1 0 0 1 1 x-y
0 0 0 1 1 1 y-x
0 0 0 0 0 0 x&y
0 1 0 1 0 1 x|y

To cause the ALU to compute a function:
Set the control bits to one of the binary
combinations listed in the table.

control bits

zx no

zr

nx zy ny f

ALU

ng

16 bits

16 bits

x

y 16 bits
out

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 55

The Hack ALU in action: Compute x & y

Set the ALU’s inputs and control
bits to some test values
(000000 codes “compute x&y”)

Inspect the
ALU outputs

Set to binary
I/O format

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 56

The Hack ALU operation
pre-setting
the x input

pre-setting
the y input

selecting between
computing + or &

post-setting
the output

Resulting
ALU output

zx nx zy ny f no out

if zx
then
x=0

if nx
then
x=!x

if zy
then
y=0

if ny
then
y=!y

if f
then out=x+y
else out=x&y

if no
then
out=!out out(x,y)=

zx no

zr

nx zy ny f

ALU

ng

16 bits

16 bits

x

y 16 bits
out

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 57

The Hack ALU operation
pre-setting
the x input

pre-setting
the y input

selecting between
computing + or &

post-setting
the output

Resulting
ALU output

zx nx zy ny f no out

if zx
then
x=0

if nx
then
x=!x

if zy
then
y=0

if ny
then
y=!y

if f
then out=x+y
else out=x&y

if no
then
out=!out out(x,y)=

1 0 1 0 1 0 0
1 1 1 1 1 1 1
1 1 1 0 1 0 -1
0 0 1 1 0 0 x
1 1 0 0 0 0 y
0 0 1 1 0 1 !x
1 1 0 0 0 1 !y
0 0 1 1 1 1 -x
1 1 0 0 1 1 -y
0 1 1 1 1 1 x+1
1 1 0 1 1 1 y+1
0 0 1 1 1 0 x-1
1 1 0 0 1 0 y-1
0 0 0 0 1 0 x+y
0 1 0 0 1 1 x-y
0 0 0 1 1 1 y-x
0 0 0 0 0 0 x&y
0 1 0 1 0 1 x|y

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 58

The Hack ALU operation: Compute !x
pre-setting
the x input

pre-setting
the y input

selecting between
computing + or &

post-setting
the output

Resulting
ALU output

zx nx zy ny f no out

if zx
then
x=0

if nx
then
x=!x

if zy
then
y=0

if ny
then
y=!y

if f
then out=x+y
else out=x&y

if no
then
out=!out out(x,y)=

1 0 1 0 1 0 0
1 1 1 1 1 1 1
1 1 1 0 1 0 -1
0 0 1 1 0 0 x
1 1 0 0 0 0 y
0 0 1 1 0 1 !x
1 1 0 0 0 1 !y
0 0 1 1 1 1 -x
1 1 0 0 1 1 -y
0 1 1 1 1 1 x+1
1 1 0 1 1 1 y+1
0 0 1 1 1 0 x-1
1 1 0 0 1 0 y-1
0 0 0 0 1 0 x+y
0 1 0 0 1 1 x-y
0 0 0 1 1 1 y-x
0 0 0 0 0 0 x&y
0 1 0 1 0 1 x|y

Example: compute !x
x: 1 1 0 0
y: 1 0 1 1 (irrelevant)

Following pre-setting:
x: 1 1 0 0
y: 1 1 1 1

Computation and post-setting:
x&y: 1 1 0 0
!(x&y): 0 0 1 1 (!x)

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 59

The Hack ALU operation: Compute y-x
pre-setting
the x input

pre-setting
the y input

selecting between
computing + or &

post-setting
the output

Resulting
ALU output

zx nx zy ny f no out

if zx
then
x=0

if nx
then
x=!x

if zy
then
y=0

if ny
then
y=!y

if f
then out=x+y
else out=x&y

if no
then
out=!out out(x,y)=

1 0 1 0 1 0 0
1 1 1 1 1 1 1
1 1 1 0 1 0 -1
0 0 1 1 0 0 x
1 1 0 0 0 0 y
0 0 1 1 0 1 !x
1 1 0 0 0 1 !y
0 0 1 1 1 1 -x
1 1 0 0 1 1 -y
0 1 1 1 1 1 x+1
1 1 0 1 1 1 y+1
0 0 1 1 1 0 x-1
1 1 0 0 1 0 y-1
0 0 0 0 1 0 x+y
0 1 0 0 1 1 x-y
0 0 0 1 1 1 y-x
0 0 0 0 0 0 x&y
0 1 0 1 0 1 x|y

Example: compute y-x
x: 0 0 1 0 (2)
y: 0 1 1 1 (7)

Following pre-setting:
x: 0 0 1 0
y: 1 0 0 0

Computation and post-setting:
x+y: 1 0 1 0
!(x+y): 0 1 0 1 (5)

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 60

The Hack ALU operation: Compute x|y
pre-setting
the x input

pre-setting
the y input

selecting between
computing + or &

post-setting
the output

Resulting
ALU output

zx nx zy ny f no out

if zx
then
x=0

if nx
then
x=!x

if zy
then
y=0

if ny
then
y=!y

if f
then out=x+y
else out=x&y

if no
then
out=!out out(x,y)=

1 0 1 0 1 0 0
1 1 1 1 1 1 1
1 1 1 0 1 0 -1
0 0 1 1 0 0 x
1 1 0 0 0 0 y
0 0 1 1 0 1 !x
1 1 0 0 0 1 !y
0 0 1 1 1 1 -x
1 1 0 0 1 1 -y
0 1 1 1 1 1 x+1
1 1 0 1 1 1 y+1
0 0 1 1 1 0 x-1
1 1 0 0 1 0 y-1
0 0 0 0 1 0 x+y
0 1 0 0 1 1 x-y
0 0 0 1 1 1 y-x
0 0 0 0 0 0 x&y
0 1 0 1 0 1 x|y

Example: compute x|y
x: 0 1 0 1
y: 0 0 1 1

Following pre-setting:
x: 1 0 1 0
y: 1 1 0 0

Computation and post-setting:
x&y: 1 0 0 0
!(x&y): 0 1 1 1

Practice:

See if you get
0 1 1 1 (bitwise Or)

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 61

The Hack ALU operation: Compute y-1
pre-setting
the x input

pre-setting
the y input

selecting between
computing + or &

post-setting
the output

Resulting
ALU output

zx nx zy ny f no out

if zx
then
x=0

if nx
then
x=!x

if zy
then
y=0

if ny
then
y=!y

if f
then out=x+y
else out=x&y

if no
then
out=!out out(x,y)=

1 0 1 0 1 0 0
1 1 1 1 1 1 1
1 1 1 0 1 0 -1
0 0 1 1 0 0 x
1 1 0 0 0 0 y
0 0 1 1 0 1 !x
1 1 0 0 0 1 !y
0 0 1 1 1 1 -x
1 1 0 0 1 1 -y
0 1 1 1 1 1 x+1
1 1 0 1 1 1 y+1
0 0 1 1 1 0 x-1
1 1 0 0 1 0 y-1
0 0 0 0 1 0 x+y
0 1 0 0 1 1 x-y
0 0 0 1 1 1 y-x
0 0 0 0 0 0 x&y
0 1 0 1 0 1 x|y

Example: compute y-1
x: 0 1 0 1 (irrelevant)
y: 0 1 1 0 (6)

Following pre-setting:
x: 1 1 1 1
y: 0 1 1 0

Computation and post-setting:
x+y: 0 1 0 1
x+y: 0 1 0 1 (5)

Practice:

See if you get
0 1 0 1 (5)

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 62

The Hack ALU operation

zx no

zr

nx zy ny f

ALU

ng

16 bits

16 bits

x

y 16 bits
out if (out == 0) then zr = 1, else zr = 0

if (out < 0) then ng = 1, else ng = 0

The zr and ng output bits will come into play when we’ll build the
complete CPU architecture, later in the course.

One more detail:

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 63

Practice

• Arithmetic Logic Unit (ALU)

• Project 2: Chips

• Project 2: Guidelines

Theory

• Representing numbers

• Binary numbers

• Boolean arithmetic

• Signed numbers

Chapter 2: Boolean Arithmetic

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 64

Project 2
Given: All the chips built in Project 1

• HalfAdder

• FullAdder

• Add16

• Inc16

• ALU

Goal: Build the chips:

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 65

Half Adder

a b sum carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

/** Computes the sum of two bits. */
CHIP HalfAdder {

IN a, b;
OUT sum, carry;

PARTS:
// Put your code here:

}

HalfAdder.hdl

Implementation tip
Can be built from two
gates built in project 1.

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 66

Full Adder

Implementation tip
Can be built from two
half-adders.

/** Computes the sum of three bits. */
CHIP FullAdder {

IN a, b, c;
OUT sum, carry;

PARTS:
// Put your code here:

}

FullAdder.hdl

a b c sum carry

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 67

16-bit adder

/* Adds two 16-bit, two’s-complement values.
The most-significant carry bit is ignored. */

CHIP Add16 {
IN a[16], b[16];
OUT out[16];

PARTS:
// Put you code here:

}

Add16.hdl

• The bitwise additions are done in parallel
• The carry propagation is sequential
• Yet… it works fine, as is.

How? Stay tuned for chapter 3.

Implementation note
If you need to set a pin x to 0 (or 1) in HDL,
use: x = false (or x = true)

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 68

16-bit incrementor

Inc16.hdl

Implementation:
Simple.

/** Outputs in + 1. */
CHIP Inc16 {

IN in[16];
OUT out[16];

PARTS:
// Put you code here:

}

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 69

ALU
zx no

zr

nx zy ny f

ALU

ng

16 bits

16 bits

x

y 16 bits
out

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 70

ALU

ALU.hdl

/** The ALU */
// Manipulates the x and y inputs as follows:
// if (zx == 1) sets x = 0 // 16-bit true
// if (nx == 1) sets x = !x // 16-bit Not
// if (zy == 1) sets y = 0 // 16-bit true
// if (ny == 1) sets y = !y // 16-bit Not
// if (f == 1) sets out = x + y // 2's-complement addition
// if (f == 0) sets out = x & y // 16-bit And
// if (no == 1) sets out = !out // 16-bit Not
// if (out == 0) sets zr = 1 // 1-bit true
// if (out < 0) sets ng = 1 // 1-bit true
...

zx no

zr

nx zy ny f

ALU

ng

16 bits

16 bits

x

y 16 bits
out

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 71

ALU

ALU.hdl

Implementation tips
We need logic for:
• Implementing “if bit == 0/1” conditions
• Setting a 16-bit value to 0000000000000000
• Setting a 16-bit value to 1111111111111111
• Negating a 16-bit value (bitwise)
• Computing Add and Or on two 16-bit values

Implementation strategy
• Start by building an ALU

that computes out
• Next, extend it to also

compute zr and ng.

/** The ALU */
// Manipulates the x and y inputs as follows:
// if (zx == 1) sets x = 0 // 16-bit true
// if (nx == 1) sets x = !x // 16-bit Not
// if (zy == 1) sets y = 0 // 16-bit true
// if (ny == 1) sets y = !y // 16-bit Not
// if (f == 1) sets out = x + y // 2's-complement addition
// if (f == 0) sets out = x & y // 16-bit And
// if (no == 1) sets out = !out // 16-bit Not
// if (out == 0) sets zr = 1 // 1-bit true
// if (out < 0) sets ng = 1 // 1-bit true
...

zx no

zr

nx zy ny f

ALU

ng

16 bits

16 bits

x

y 16 bits
out

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 72

Relevant bus tips

...

// Suppose that x, y, z are 8-bit bus-pins:

chipPart(..., x = true, y = false, z[0..2] = true, z[6..7] = true);

...

Unassigned bits are set to 0

5 47 6 1 03 2

1 11 1 1 11 1x:

0 00 0 0 00 0y:

0 01 1 1 10 1z:

Using multi-bit truth / false constants:
We can assign values to sub-buses

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 73

Relevant bus tips

/* 16-bit adder */
CHIP Add16 {

IN a[16], b[16];
OUT out[16];

PARTS:
...

}

CHIP Foo {
IN x[8], y[8], z[16]
OUT out[16]
PARTS
...

Add16 (a[0..7] = x, a[8..15] = y, b = z, out =…);
...

Add16 (a =…, b =…, out[0..3] = t1, out[4..15] = t2);
...

}

Creating an n-bit bus (internal pin)

Sub-bussing:

• We can assign n-bit values to sub-buses, for any n
• We can create n-bit bus pins, for any n

Another example of assigning
a multi-bit value to a sub-bus

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 74

ALU: Recap

“Simplicity is the
ultimate sophistication.”

― Leonardo da Vinci

The Hack ALU is:

• Simple

• Elegant

zx no

zr

nx zy ny f

ALU

ng

16 bits

16 bits

x

y 16 bits
out

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 75

Practice

• Arithmetic Logic Unit (ALU)

• Project 2: Chips

• Project 2: Guidelines

Theory

• Representing numbers

• Binary numbers

• Boolean arithmetic

• Signed numbers

Chapter 2: Boolean Arithmetic

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 76

Project 2
Given: All the chips built in Project 1

• HalfAdder

• FullAdder

• Add16

• Inc16
• ALU

Goal: Build the chips:

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 77

Guidelines: www.nand2tetris.org/project02

www.nand2tetris.org

http://www.nand2tetris.org/project02

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 78

Resources

Project 2 folder (.hdl, .tst, .cmp files): nand2tetris/projects/02

Tools
• Text editor (for completing the given .hdl stub-files)
• Hardware simulator: nand2tetris/tools

Guides
• Hardware Simulator Tutorial
• HDL Guide
• Hack Chip Set API

https://b1391bd6-da3d-477d-8c01-38cdf774495a.filesusr.com/ugd/44046b_02055f8bb5ac47648c0ab642f01c1919.pdf
https://drive.google.com/file/d/1dPj4XNby9iuAs-47U9k3xtYy9hJ-ET0T/view
https://drive.google.com/file/d/1IsDnH0t7q_Im491LQ7_5_ajV0CokRbwR/view

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 79

Chip interfaces: Hack chip set API

Add16 (a= ,b= ,out=);

ALU (x= ,y= ,zx= ,nx= ,zy= ,ny= ,f= ,no= ,out= ,zr= ,ng=);

And16 (a= ,b= ,out=);

And (a= ,b= ,out=);

Aregister (in= ,load= ,out=);

Bit (in= ,load= ,out=);

CPU (inM= ,instruction= ,reset= ,outM= ,writeM= ,addressM= ,pc=);

DFF (in= ,out=);

DMux4Way (in= ,sel= ,a= ,b= ,c= ,d=);

DMux8Way (in= ,sel= ,a= ,b= ,c= ,d= ,e= ,f= ,g= ,h=);

Dmux (in= ,sel= ,a= ,b=);

Dregister (in= ,load= ,out=);

FullAdder (a= ,b= ,c= ,sum= ,carry=);

HalfAdder (a= ,b= ,sum= , carry=);

Inc16 (in= ,out=);

Keyboard (out=);

Memory (in= ,load= ,address= ,out=);

Mux16 (a= ,b= ,sel= ,out=);

Mux4Way16 (a= ,b= ,c= ,d= ,sel= ,out=);

Mux8Way16 (a= ,b= ,c= ,d= ,e= ,f= ,g= ,h= ,sel= ,out=);

Mux8Way (a= ,b= ,c= ,d= ,e= ,f= ,g= ,h= ,sel= ,out=);

Mux (a= ,b= ,sel= ,out=);

Nand (a= ,b= ,out=);

Not16 (in= ,out=);

Not (in= ,out=);

Or16 (a= ,b= ,out=);

Or8Way (in= ,out=);

Or (a= ,b= ,out=);

PC (in= ,load= ,inc= ,reset= ,out=);

PCLoadLogic (cinstr= ,j1= ,j2= ,j3= ,load= ,inc=);

RAM16K (in= ,load= ,address= ,out=);

RAM4K (in= ,load= ,address= ,out=);

RAM512 (in= ,load= ,address= ,out=);

RAM64 (in= ,load= ,address= ,out=);

RAM8 (in= ,load= ,address= ,out=);

Register (in= ,load= ,out=);

ROM32K (address= ,out=);

Screen (in= ,load= ,address= ,out=);

Xor (a= ,b= ,out=);

Open the API in a window, and copy-paste
chip signatures into your HDL code, as needed

https://drive.google.com/file/d/1IsDnH0t7q_Im491LQ7_5_ajV0CokRbwR/view

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 80

Best practice advice

• Implement the chips in the order in which they appear in the project guidelines

• If you don’t implement some chips, you can still use their built-in implementations

• No need for “helper chips”: Implement / use only the chips we specified

• In each chip definition, strive to use as few chip-parts as possible

• You will have to use chips implemented in Project 1;
• For efficiency and consistency’s sake, use their built-in versions, rather than your

own HDL implementations.

That’s It!
Go Do Project 2!

Nand to Tetris / www.nand2tetris.org / Chapter 2 / Copyright © Noam Nisan and Shimon Schocken Slide 81

hardware platform

computer

abstraction

ALU, RAM

abstraction

elementary
logic gates

abstraction

Nand

Building
gates

Building
chips

Building a
computer

What’s next?

abstraction

assembler

machine
language

p1

p2

p3

p4

p5

p6

Next lecture / chapter / project:
Build the computer’s RAM

This lecture / chapter / project:
Build the computer’s ALU

