From Nand to Tetris

Building a Modern Computer from First Principles

Chapter 6

Assembler

These slides support chapter 6 of the book
The Elements of Computing Systems

By Noam Nisan and Shimon Schocken
MIT Press, 2021

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 1

Nand to Tetris Roadmap: Hardware

abstraction

machine
language

-

In project 4 we wrote some
low-level symbolic programs

In this lecture we will learn
how to write an assembler

abstraction

computer

o

@%
4

building a

computer

abstraction

ALU, RAM

building

chips

abstraction

elementary
logic gates

hardware platform

building

gates

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 2

Program translation

Symbolic low-level program

Binary code

(LOOP)

// Program: SumlToN (R@ represents N)
// Computes R1=1+2+3+...+R0O
// Usage: put a value>=1 in RO

//1i=1
@i

M=1

// sum = @
@sum

M=0

// if (i > R@) goto STOP
@i

D=M

@RO

D=D-M

@STOP

D;JGT

// sum= sum + i
@sum

D=M

@i

D=D+M

@sum

M=D

// i=1+1

@i

M=M+1

// goto LOOP
@LOOP

0;IMP

assembler

0101111100111100
l1010101010101010
1100000010101010
1011000010000001
0101111100111100
l1010101010101010
1100000010101010
0101111100111100
l1010101010101010
1100000010101010
1011000010000001
0101111100111100
l1010101010101010
1100000010101010
0101111100111100
l1010101010101010
1100000010101010
1011000010000001
0101111100111100
l1010101010101010
1100000010101010

Computer

Memory CPU

program

ALU

—
e

load and

execute

data

registers

The assembler is...

* The “linchpin” that connects the hardware
platform and the software hierarchy

* The lowest rung in the set of translators
developed in Part II of the course

* A simple example of key software
engineering techniques (parsing, code
generation, symbol tables, ...)

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 3

Lecture plan

 OQverview * Assembler architecture

» Translating Hack code: * Assembler API

o A-instructions . Project 6

o C-instructions
 Translating programs

* Handling symbols

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 4

Translating A-instructions

Symbolic syntax: Binary syntax:

@ xxx OVVVVVVVVVVVVVVVY
Where xxx is a non-negative Where:
decimal value, or a symbol 0 is the A-instruction op-code, and
bound to such a value vv v .. v isthe value in binary
Example:

@17 P000000000010001
Implementation

Translate the decimal value into its 16-bit representation;

What about @ symbol instructions? Later.

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 5

Translating C-instructions

Symbolic syntax: dest = comp ; jump

Binarysyntax: |111acccccecdddjjj

comp c ¢ ¢ ¢ ¢ c dest d d d effect: the value is stored in:
) 1 © 1 @ 1 o null | @ @ o | the value is not stored
1 1 1 1 1 1 1 M 0 o 1|RAM[A]
-1 1 1 1 © 1 oo D © 1 o | Dregister
D e e 1 1 e o DM @ 1 1 [Dregisterand RAM[A]
A M 1 1 © © o o A 1 © 0| Aregister
D @ o 1 1 e 1 AM 1 0 1| Aregister and RAM[A]
IA M 1 1 e @ o 1 AD 1 1 o | Aregister and D register
-D e o 1 1 1 1 ADM | 1 1 1 | Aregister, D register, and RAM[A]
-A -M 1 1 o o 1 1
D+1 e 1 1 1 1 1 Jump j j j effect:
A+l M+1 1 1 o 1 1 1 null @ o o|nojump
D-1 6 e 1 1 1 @ 1GT | e e 1|ifcomp>0jump
Al M1 1 1 e e 1 @ JEQ | @ 1 e ifcomp=0jump
D+A b+ (@ @ e o6 1 o JGE | @ 1 1 |[ifcomp=>0;jump
D-A [D-M @& 1 @ o 1 1 IT |1 e e|ifcomp<0jump
A-D M-D | 6 6 © 1 1 1 INE |1 e 1| ifcomp+#0jump
D&A D&M 6 o o0 o0 o o JLE |1 1 e | ifcomp <0 jump
D|A DM [e 1 e 1 e 1 JMP |1 1 1| Unconditional jump
a==0 a==1

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 6

Translating C-instructions

Symbolic syntax: dest = comp ; jump

Binarysyntax: |111acccccecdddjjj

comp c ¢ ¢ ¢ ¢ c dest d d d effect: the value is stored in:

) 1 © 1 @ 1 o null | @ @ o | the value is not stored
1 1 1 1 1 1 1 M 0 o 1|RAM[A]
-1 1 1 1 © 1 oo D © 1 o | Dregister
D e e 1 1 e o DM @ 1 1 [Dregisterand RAM[A]
A M 1 1 © © o o A 1 © 0| Aregister
D @ o 1 1 e 1 AM 1 0 1| Aregister and RAM[A]
IA M 1 1 e @ o 1 AD 1 1 o | Aregister and D register
-D e o 1 1 1 1 ADM | 1 1 1 | Aregister, D register, and RAM[A]
-A -M 1 1 o o 1 1

D+1 e 1 1 1 1 1 Jump j j j effect:

A+l M+1 1 1 o 1 1 1 null @ o o|nojump

D-1 6 e 1 1 1 @ 1GT | e e 1|ifcomp>0jump

Al M1 1 1 e e 1 @ JEQ | @ 1 e ifcomp=0jump

D+A b+ (@ @ e o6 1 o JGE | @ 1 1 |[ifcomp=>0;jump

D-A [D-M @& 1 @ o 1 1 IT |1 e e|ifcomp<0jump

A-D M-D | 6 6 © 1 1 1 INE |1 e 1| ifcomp+#0jump

D&A D&M 6 o o0 o0 o o JLE |1 1 e | ifcomp <0 jump

D|A DM [e 1 e 1 e 1 JMP |1 1 1| Unconditional jump

a==0 a==1
Binary:

Example: D=D+1; JLE »

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 7

Translating C-instructions

Symbolic syntax: dest = comp ; jump

Binarysyntax: |111acccccecdddjjj

comp c ¢ ¢ ¢ ¢ c dest d d d effect: the value is stored in:

) 1 © 1 @ 1 o null | @ @ o | the value is not stored
1 1 1 1 1 1 1 M 0 o 1|RAM[A]
-1 1 1 1 © 1 oo D © 1 o | Dregister
D e e 1 1 e o DM @ 1 1 [Dregisterand RAM[A]
A M 1 1 © © o o A 1 © 0| Aregister
D @ o 1 1 e 1 AM 1 0 1| Aregister and RAM[A]
IA M 1 1 e @ o 1 AD 1 1 o | Aregister and D register
-D e o 1 1 1 1 ADM | 1 1 1 | Aregister, D register, and RAM[A]
-A -M 1 1 o o 1 1

D+1 e 1 1 1 1 1 Jump j j j effect:

A+l M+1 1 1 o 1 1 1 null @ o o|nojump

D-1 6 e 1 1 1 @ 1GT | e e 1|ifcomp>0jump

Al M1 1 1 e e 1 @ JEQ | @ 1 e ifcomp=0jump

D+A b+ (@ @ e o6 1 o JGE | @ 1 1 |[ifcomp=>0;jump

D-A [D-M @& 1 @ o 1 1 IT |1 e e|ifcomp<0jump

A-D M-D | 6 6 © 1 1 1 INE |1 e 1| ifcomp+#0jump

D&A D&M 6 o o0 o0 o o JLE |1 1 e | ifcomp <0 jump

D|A DM [e 1 e 1 e 1 JMP |1 1 1| Unconditional jump

a==0 a==1
Binary:

Example: D=D+1; JLE » 111

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 8

Translating C-instructions

Symbolic syntax: dest = comp ; jump

Binarysyntax: |111acccccecdddjjj

comp c ¢ ¢ ¢ ¢ c dest d d d effect: the value is stored in:

) 1 © 1 @ 1 o null | @ @ o | the value is not stored
1 1 1 1 1 1 1 M 0 o 1|RAM[A]
-1 1 1 1 © 1 oo D © 1 o | Dregister
D e e 1 1 e o DM @ 1 1 [Dregisterand RAM[A]
A M 1 1 © © o o A 1 © 0| Aregister
D @ o 1 1 e 1 AM 1 0 1| Aregister and RAM[A]
IA M 1 1 e @ o 1 AD 1 1 o | Aregister and D register
-D e o 1 1 1 1 ADM | 1 1 1 | Aregister, D register, and RAM[A]
-A -M 1 1 o o 1 1

D+1 e 1 1 1 1 1 Jump j j j effect:

A+l M+1 1 1 o 1 1 1 null @ o o|nojump

D-1 6 e 1 1 1 @ 1GT | e e 1|ifcomp>0jump

Al M1 1 1 e e 1 @ JEQ | @ 1 e ifcomp=0jump

D+A b+ (@ @ e o6 1 o JGE | @ 1 1 |[ifcomp=>0;jump

D-A [D-M @& 1 @ o 1 1 IT |1 e e|ifcomp<0jump

A-D M-D | 6 6 © 1 1 1 INE |1 e 1| ifcomp+#0jump

D&A D&M 6 o o0 o0 o o JLE |1 1 e | ifcomp <0 jump

D|A DM [e 1 e 1 e 1 JMP |1 1 1| Unconditional jump

a==0 a==1
Binary:

Example: D =[D+1]; JLE » 1110011111

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 9

Translating C-instructions

Symbolic syntax: dest = comp ; jump

Binarysyntax: |111acccccecdddjjj

comp c ¢ ¢ ¢ ¢ c dest d d d effect: the value is stored in:

) 1 © 1 @ 1 o null | @ @ o | the value is not stored
1 1 1 1 1 1 1 M 0 o 1|RAM[A]
-1 1 1 1 © 1 oo D © 1 o | Dregister
D e e 1 1 e o DM @ 1 1 [Dregisterand RAM[A]
A M 1 1 © © o o A 1 © 0| Aregister
D @ o 1 1 e 1 AM 1 0 1| Aregister and RAM[A]
IA M 1 1 e @ o 1 AD 1 1 o | Aregister and D register
-D e o 1 1 1 1 ADM | 1 1 1 | Aregister, D register, and RAM[A]
-A -M 1 1 o o 1 1

D+1 e 1 1 1 1 1 Jump j j j effect:

A+l M+1 1 1 o 1 1 1 null @ o o|nojump

D-1 6 e 1 1 1 @ 1GT | e e 1|ifcomp>0jump

Al M1 1 1 e e 1 @ JEQ | @ 1 e ifcomp=0jump

D+A b+ (@ @ e o6 1 o JGE | @ 1 1 |[ifcomp=>0;jump

D-A [D-M @& 1 @ o 1 1 IT |1 e e|ifcomp<0jump

A-D M-D | 6 6 © 1 1 1 INE |1 e 1| ifcomp+#0jump

D&A D&M 6 o o0 o0 o o JLE |1 1 e | ifcomp <0 jump

D|A DM [e 1 e 1 e 1 JMP |1 1 1| Unconditional jump

a==0 a==1
Binary:

Example: [D|=D+1 ; JLE » 1110011111010

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 10

Translating C-instructions

Symbolic syntax: dest = comp ; jump

Binarysyntax: |111acccccecdddjjj

comp c ¢ ¢ ¢ ¢ c dest d d d effect: the value is stored in:

) 1 © 1 @ 1 o null | @ @ o | the value is not stored
1 1 1 1 1 1 1 M 0 o 1|RAM[A]
-1 1 1 1 © 1 oo D © 1 o | Dregister
D e e 1 1 e o DM @ 1 1 [Dregisterand RAM[A]
A M 1 1 © © o o A 1 © 0| Aregister
D @ o 1 1 e 1 AM 1 0 1| Aregister and RAM[A]
IA M 1 1 e @ o 1 AD 1 1 o | Aregister and D register
-D e o 1 1 1 1 ADM | 1 1 1 | Aregister, D register, and RAM[A]
-A -M 1 1 o o 1 1

D+1 e 1 1 1 1 1 Jump j j j effect:

A+l M+1 1 1 o 1 1 1 null @ o o|nojump

D-1 6 e 1 1 1 @ 1GT | e e 1|ifcomp>0jump

Al M1 1 1 e e 1 @ JEQ | @ 1 e ifcomp=0jump

D+A b+ (@ @ e o6 1 o JGE | @ 1 1 |[ifcomp=>0;jump

D-A [D-M @& 1 @ o 1 1 IT |1 e e|ifcomp<0jump

A-D M-D | 6 6 © 1 1 1 INE |1 e 1| ifcomp+#0jump

D&A D&M 6 o o0 o0 o o JLE |1 1 e | ifcomp <0 jump

D|A DM [e 1 e 1 e 1 JMP |1 1 1| Unconditional jump

a==0 a==1
Binary:

Example: D=D+1 ;[JLE » 11100111110101180

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 11

Translating C-instructions

Symbolic syntax: dest = comp ; jump

Binarysyntax: |111acccccecdddjjj

comp c ¢ ¢ ¢ ¢ c dest d d d effect: the value is stored in:

) 1 © 1 @ 1 o null | @ @ o | the value is not stored
1 1 1 1 1 1 1 M 0 o 1|RAM[A]
-1 1 1 1 © 1 oo D © 1 o | Dregister
D e e 1 1 e o DM @ 1 1 [Dregisterand RAM[A]
A M 1 1 © © o o A 1 © 0| Aregister
D @ o 1 1 e 1 AM 1 0 1| Aregister and RAM[A]
IA M 1 1 e @ o 1 AD 1 1 o | Aregister and D register
-D e o 1 1 1 1 ADM | 1 1 1 | Aregister, D register, and RAM[A]
-A -M 1 1 o o 1 1

D+1 e 1 1 1 1 1 Jump j j j effect:

A+l M+1 1 1 o 1 1 1 null @ o o|nojump

D-1 6 e 1 1 1 @ 1GT | e e 1|ifcomp>0jump

Al M1 1 1 e e 1 @ JEQ | @ 1 e ifcomp=0jump

D+A b+ (@ @ e o6 1 o JGE | @ 1 1 |[ifcomp=>0;jump

D-A [D-M @& 1 @ o 1 1 IT |1 e e|ifcomp<0jump

A-D M-D | 6 6 © 1 1 1 INE |1 e 1| ifcomp+#0jump

D&A D&M 6 o o0 o0 o o JLE |1 1 e | ifcomp <0 jump

D|A DM [e 1 e 1 e 1 JMP |1 1 1| Unconditional jump

a==0 a==1
Binary:

Example: D=D+1;JLE» 1110011111010110 J

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 12

Translating C-instructions

Symbolic syntax: dest = comp ; jump

Binarysyntax: |111acccccecdddjjj

comp c ¢ ¢ ¢ ¢ c dest d d d effect: the value is stored in:

) 1 © 1 @ 1 o null | @ @ o | the value is not stored
1 1 1 1 1 1 1 M 0 o 1|RAM[A]
-1 1 1 1 © 1 oo D © 1 o | Dregister
D e e 1 1 e o DM @ 1 1 [Dregister and RAM[A]
A M 1 1 © © o o A 1 © @ | Aregister
D @ o 1 1 e 1 AM 1 0 1| Aregister and RAM[A]
IA M 1 1 e @ o 1 AD 1 1 o | Aregister and D register
-D e o 1 1 1 1 ADM | 1 1 1 | Aregister, D register, and RAM[A]
-A -M 1 1 o o 1 1

D+1 e 1 1 1 1 1 Jump j j j effect:

A+l M+1 1 1 o 1 1 1 null @ @ o|nojump

D-1 6 e 1 1 1 @ 1GT | e e 1|ifcomp>0jump

Al M1 1 1 e e 1 @ JEQ | @ 1 e ifcomp=0jump

D+A b+ (@ @ e o6 1 o JGE | @ 1 1 |[ifcomp=>0;jump

D-A [D-M @& 1 @ o 1 1 IT |1 e e|ifcomp<0jump

A-D M-D | 6 6 © 1 1 1 INE |1 e 1| ifcomp+#0jump

D&A D&M 6 o o0 o0 o o JLE |1 1 e | ifcomp <0 jump

D|A DM [e 1 e 1 e 1 JMP |1 1 1| Unconditional jump

a==0 a==1
Binary:

Example: A=-1 » 1110111010100000 J

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 13

Translating C-instructions

Symbolic syntax: dest = comp ; jump

Binarysyntax: |111acccccecdddjjj

comp c ¢ ¢ ¢ ¢ c dest d d d effect: the value is stored in:
0 1 © 1 @ 1 o null | @ @ @ | the value is not stored
1 1 1 1 1 1 1 M 0 o 1|RAM[A]
-1 1 1 1 © 1 oo D © 1 o | Dregister
D e e 1 1 e o DM @ 1 1 [Dregister and RAM[A]
A M 11 e o o o A 1 © 0o | Aregister
D e 0 1 1 o 1 AM 1 o 1| Aregister and RAM[A]
IA M 1 1 e @ o 1 AD 1 1 o | Aregister and D register
-D e o 1 1 1 1 ADM | 1 1 1 | Aregister, D register, and RAM[A]
-A -M 1 1 e o0 1 1
D+1 e 1 1 1 1 1 Jump j j j effect:
A+l M+1 1 1 e 1 1 1 null @ @ o|nojump
D-1 6 e 1 1 1 @ 1GT | e e 1|ifcomp>0jump
Al M1 1 1 e e 1 @ JEQ | @ 1 e ifcomp=0jump
D+A b+ (@ @ e o6 1 o JGE | @ 1 1 |[ifcomp=>0;jump
D-A [D-M @& 1 @ o 1 1 IT |1 e e|ifcomp<0jump
A-D M-D | 6 6 © 1 1 1 INE |1 e 1| ifcomp+#0jump
D&A D&M | 6 © e o o o JLE |1 1 e | ifcomp <0 jump
D|A DM [e 1 e 1 e 1 JMP |1 1 1| Unconditional jump
a==0 a==1

Implementation: Translate each field of the symbolic instruction (dest, comp, jump)

into its binary code, and assemble the codes into a 16-bit instruction.

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 14

Chapter 6: Assembler

* Overview * Assembler architecture
* Translating instructions * Assembler API
- Translating programs * Project 6

* Handling symbols

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 15

Program translation

Symbolic code

// Computes R1=1+ ... +RO

//i=1
@i
M=1
// sum = ©
@sum
M=0
(LOOP)
// if i>R@ goto STOP
@i
D=M
@RO
D=D-M
@STOP
D;JGT
// sum += 1
@i
D=M
@sum
M=D+M
// i++

@i —

M=M+1
@LOOP
9;IMP
(STOP)
@sum
D=M

Need to handle:

* White space
e Instructions

* Symbols

Binary code

We’ll start with programs
that have no symbols,

\and handle symbols later

0000000010000
1110111111001000
000000000V010001
1110101010001000
000000010000
1111110000010000
0000000LVRVRVLO
1111010011010000
0000000010010
1110001100000001
000000010000
1111110000010000
000000000V010001
1111000010001000
000000010000
1111110111001000
0000000100
1110101010000111
000000000V010001
1111110000010000

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 16

Program translation

Symbolic code

// Computes R1=1+...+RO
//i=1
@16
M=1
// sum = ©
@17
M=0

// if i>R@ goto STOP
@16

D=M

@0

D=D-M

@18

D;JGT

// sum += i
@16

D=M

@17

M=D+M

// i++

@16

M=M+1

@4

9;IMP

@17

D=M

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Need to handle:

* White space
e Instructions

* Symbols (later)

Binary code

Slide 17

Program translation

Symbolic code

//1=1
@16

M=1

// sum = ©
@17

M=0

@16

D=M

@0

D=D-M

@18

D;JGT

// sum += i

M=D+M
// i++
@16
M=M+1
@4

0; IMP
@17
D=M

// Computes R1=1+...

+ RO

// if i>R@ goto STOP

@16
D=M
@17

\/W

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Need to handle:

* White space

hite space:

Empty lines,
Comments,

Indentation

- /

Ignore it

Binary code

Slide 18

Program translation

Symbolic code

@16
M=1
@17
M=0
@16
D=M
@0
D=D-M
@18
D; JGT
@16
D=M
@17
M=D+M
@16
M=M+1
@4

0; IMP
@17
D=M

Nand to Tetris / www.nand2tetris.org / Chapter

Need to handle:

v/ White space

e Instructions

* Symbols (later)

6 / Copyright © Noam Nisan and Shimon Schocken

Binary code

Slide 19

Program translation

Symbolic code Binary code

@16
M=1
@17
M=0
@16
D=M
@@ Need to handle:
D=D-M
@18

D;JGT

@16 Translate,
D=M

@17 Instructions one by one
M=D+M
@16
M=M+1
@4
0;IMP
@17
D=M

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 20

Program translation

Symbolic code

@16
M=1
@17
M=0
@16
D=M
@0
D=D-M
@18
D;JGT
@16
D=M
@17
M=D+M
@16
M=M+1
@4
0;IMP
@17
D=M

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Need to handle:

Instructions

Translate,
one by one

Binary code

0000000010000
1110111111001000
000000000V010001
1110101010001000
000000010000
1111110000010000
0000000LVRVRVLO
1111010011010000
0000000010010
1110001100000001
000000010000
1111110000010000
000000000V010001
1111000010001000
000000010000
1111110111001000
0000000100
1110101010000111
000000000V010001
1111110000010000

Slide 21

Program translation

Symbolic code

@16
M=1
@17
M=0
@16
D=M
@0
D=D-M
@18
D;JGT
@16
D=M
@17
M=D+M
@16
M=M+1
@4
0;IMP
@17
D=M

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Need to handle:

v/ White space
v Instructions

* Symbols

Binary code

0000000010000
1110111111001000
000000000V010001
1110101010001000
000000010000
1111110000010000
0000000LVRVRVLO
1111010011010000
0000000010010
1110001100000001
000000010000
1111110000010000
000000000V010001
1111000010001000
000000010000
1111110111001000
0000000100
1110101010000111
000000000V010001
1111110000010000

Slide 22

Program translation

Symbolic code

@16
M=1
@17
M=0
@16
D=M
@e Need to handle:
D=D-M
@18
D;JGT
@16
D=M
@17
M=D+M
@16
M=M+1
@4

0; JMP
@17
D=M

* Symbols

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Binary code

0000000010000
1110111111001000
000000000V010001
1110101010001000
000000010000
1111110000010000
0000000LVRVRVLO
1111010011010000
0000000010010
1110001100000001
000000010000
1111110000010000
000000000V010001
1111000010001000
000000010000
1111110111001000
0000000100
1110101010000111
000000000V010001
1111110000010000

Slide 23

Program translation

Symbolic code

// Computes R1=1+...+RO
//i=1
@i
M=1
// sum = @
@sum
M=0
(LOOP)
// if i>Re goto STOP
@i
D=M
@RO
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;IMP
(STOP)
@sum
D=M

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Need to handle:

* Symbols

Original program,
with symbols

Binary code

Slide 24

Handling symbols

Symbolic code

// Computes R1=1+...+RO
//i=1
@i
M=1
// sum = 0@
@sum
M=0
(LOOP)
// if i>Re goto STOP
@i
D=M
@RO
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;IMP
(STOP)
@sum
D=M

Symbols

* Predefined symbols
e Label symbols

* Variable symbols

Original program,
with symbols

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 25

Handling symbols

Symbolic code
// Computes R1=1+...+RO

//i=1 Symbols
@i
M=1
// sum = @ * Predefined symbols
@sum
M=0

(LOOP)
// if i>Re goto STOP
@i
D=M
@R0
D=D-M
@STOP
D;IGT
// sum += i
@i
D=M
@sum
M=D+M This particular program uses
// i++

@i one predefined symbol: re
M=M+1
@LOOP
0;IMP
(STOP)
@sum
D=M

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 26

Handling symbols

Symbolic code

// Computes R1=1+...+RO
//i=1
@i
M=1
// sum = 0@
@sum
M=0
(LOOP)
// if i>Re goto STOP
@i
D=M
@RO
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;IMP
(STOP)
@sum
D=M

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

The Hack language features

23 predefined symbols:
symbol value
RO 0
R1 1
R2 2
R15 15
SCREEN 16384
KBD 24576
SP 0
LCL 1
ARG 2
THIS 3
THAT 4

This particular program uses
one predefined symbol: re

Slide 27

Handling symbols

Symbolic code
// Computes Rl=1+ ... +R0 The Hack language features
/] i=1 23 predefined symbols:
@i
M=1 symbol value
// sum = 0@ RO 0
gf;m R1 1
(LOOP) R2 2
éi if i>R@ goto STOP R1S 15
D=M SCREEN 16384
@r_ae KBD 24576
D=D-M >P 0
@STOP LCL 1
D;IGT ARG 2
// sum += i THIS 3
@i THAT 4
D=M
l\@:l)f;TM Translating @preDefinedSymbol :
é/ i+t Replace preDefinedSymbol with its value
1
M=M+1
@LOOP
0;IMP Examples: @R15 » P000000000001111
(STOP)
@sum
" @SCREEN » 0100000000000000

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 28

Handling symbols

Symbolic code
// Computes R1=1+...+RO

/] i=1 Symbols

@i

M=1

o - 0 v Predefined symbols

@sum

M=0 * Label symbols
(LOOP)

éi 1 1>R0 goto STOP * Variable symbols

D=M

@RO

D=D-M

@STOP

D;JGT

// sum += i

@i

D=M

@sum

M=D+M

// i++

@i

M=M+1

@LOOP

9; IMP
(STOP)

@sum

D=M

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 29

Handling symbols

Symbolic code
// Computes R1=1+...+RO

s Symbols

@i

M=1

// sum = 0@

@sum

M=0 e Label symbols
(LOOP)

// if i>Re goto STOP

@i

D=M

@R@

D=D-M

@STOP

D;JGT

// sum += i

@i

D=M . .

@sum This particular program uses two

M=D+M

// i++

@i

M=M+1

@LOOP

0;IMP
(STOP)

@sum

D=M

label symbols: Loop, sTOP

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 30

Handling symbols

Symbolic code

// Computes R1=1+...+RO
//i=1
@i
M=1
// sum = 0@
@sum
M=0
(LOOP)
// if i>Re goto STOP
@i
D=M
@R@
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;IMP
(STOP)
@sum
D=M

Label symbols

» Used to label destinations of goto instructions
* Declared by the pseudo-instruction (label)

* The (label) directive defines the symbol label to refer
to the memory location holding the next instruction in
the program,

* Which corresponds to the instruction’s line number

This particular program uses two
label symbols: Loop, sTOP

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 31

Handling symbols

Symbolic code

// Computes R1=1+...+RO

//i=1
@i

M=1

// sum = @
@sum

M=0

(LOOP)

// if i>Re goto STOP
@i

D=M

@R@

D=D-M

@STOP

D;JGT

// sum += i
@i

D=M

@sum

M=D+M

// i++

@i

M=M+1

@LOOP

0;IMP

(STOP)

@sum
D=M

Label symbols

» Used to label destinations of goto instructions
* Declared by the pseudo-instruction (label)

* The (label) directive defines the symbol label to refer
to the memory location holding the next instruction in
the program,

* Which corresponds to the instruction’s line number
Example: symbol value

LOOP 4
STOP 18

Translating @labelSymbol :

Replace labelSymbol with its value

Example: @LOOP» 0000000000000 100

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 32

Handling symbols

Symbolic code

// Computes R1=1+...+RO
//i=1
@i
M=1
// sum = 0@
@sum
M=0
(LOOP)
// if i>Re goto STOP
@i
D=M
@R@
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;IMP
(STOP)
@sum
D=M

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Symbols

\/ Predefined symbols

v’ Label symbols

* Variable symbols

Slide 33

Handling symbols

Symbolic code Symbols

// Computes R1=1+...+RO

//i=1

@i

M=1

// sum = @

@sum

M=0 .
(LOOP) * Variable symbols

// if i>Re goto STOP

@i

D=M

@R@

D=D-M

@STOP

D;JGT

// sum += i

@i

D=M . .

@sum This particular program uses two

M=D+M

// i++

@i

M=M+1

@LOOP

0;IMP
(STOP)

@sum

D=M

variable symbols: i, sum

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 34

Handling symbols

Symbolic code

// Computes R1=1+...+RO
//i=1
@i
M=1
// sum = 0@
@sum
M=0
(LOOP)
// if i>Re goto STOP
@i
D=M
@R@
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;IMP
(STOP)
@sum
D=M

Variable symbols

* Any symbol xxx which is neither predefined,
nor defined elsewhere using an (xxx) label
declaration, 1s treated as a variable

* Hack convention: Each variable 1s bound to a
running memory address, starting at 16

This particular program uses two
variable symbols: i, sum

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 35

Handling symbols

Symbolic code

// Computes R1=1+...+RO
//i=1
@i
M=1
// sum = 0@
@sum
M=0
(LOOP)
// if i>Re goto STOP
@i
D=M
@R@
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;IMP
(STOP)
@sum
D=M

Variable symbols

* Any symbol xxx which is neither predefined,
nor defined elsewhere using an (xxx) label
declaration, 1s treated as a variable

* Hack convention: Each variable 1s bound to a
running memory address, starting at 16

Example: symbol value
i 16
sum 17

Translating @variableSymbol :

1. If variableSymbol is seen for the first time,
bind to it to a value, from 16 onward
Else, it has a value

2. Replace variableSymbol with its value.

Example: @sum » 0000000000010001

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 36

Handling symbols

Symbolic code

// Computes R1=1+...+RO
//i=1
@i
M=1
// sum = 0@
@sum
M=0

(LOOP)

// if i>Re goto STOP

@i

D=M

@RO

D=D-M

@STOP

D;JGT

// sum += i

@i

D=M

@sum

M=D+M

// i++

@i

M=M+1

@LOOP

0;IMP
(STOP)

@sum

D=M

Symbol table
symbol value
RO 0
R1 1
R2 2
R15 15
SCREEN | 16384
KBD | 24576
SP 0
LCL 1
ARG 2
THIS 3
THAT 4
LOOP 4
STOP 18
i 16
sum 17

A data structure that the
assembler creates and uses
during the program translation

Contains the predefined symbols,
label symbols, variable symbols,
And their bindings.

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 37

Handling symbols

Symbolic code Symbol table

! C(/)Tpli’tiislﬂ v ¥RO symbol value A data structure that the

@i assembler creates and uses
"/"715um) during the program translation
@sum
M=0
(LOOP)
// if i>Re goto STOP
@i
D=M
@RO
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
9; JMP
(STOP)
@sum
D=M

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 38

Handling symbols

Symbolic code

// Computes R1=1+...+RO
//i=1
@i
M=1
// sum = 0@
@sum
M=0
(LOOP)
// if i>Re goto STOP
@i
D=M
@RO
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;IMP
(STOP)
@sum
D=M

Symbol table
symbol value
RO 0
R1 1
R2 2
R15 15
SCREEN | 16384
KBD | 24576
SP 0
LCL 1
ARG 2
THIS 3
THAT 4

A data structure that the
assembler creates and uses
during the program translation

Initialization:
Creates the table and adds the
predefined symbols to the table

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 39

Handling symbols

14
15
16
17

18
19

Symbolic code

// Computes R1=1+...+RO
//i=1
@i
M=1
// sum = 0@
@sum
M=0

(LOOP)

// if i>Re goto STOP

@i

D=M

@RO

D=D-M

@STOP

D;JGT

// sum += i

@i

D=M

@sum

M=D+M

// i++

@i

M=M+1

@LOOP

0;IMP
(STOP)

@sum

D=M

Symbol table
symbol value
RO 0
R1 1
R2 2
R15 15
SCREEN | 16384
KBD | 24576
SP 0
LCL 1
ARG 2
THIS 3
THAT 4
LOOP 4
STOP 18

A data structure that the
assembler creates and uses
during the program translation

Initialization:
> Creates the table and adds the
predefined symbols to the table

First pass: Counts lines and adds
the label symbols to the table

—\

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 40

Handling symbols

Symbolic code

// Computes R1=1+...+RO
//i=1
@i
M=1
// sum = 0@
@sum
M=0

(LOOP)

// if i>Re goto STOP

@i

D=M

@RO

D=D-M

@STOP

D;JGT

// sum += i

@i

D=M

@sum

M=D+M

// i++

@i

M=M+1

@LOOP

0;IMP
(STOP)

@sum

D=M

Symbol table
symbol value
RO 0
R1 1
R2 2
R15 15
SCREEN | 16384
KBD | 24576
SP 0
LCL 1
ARG 2
THIS 3
THAT 4
LOOP 4
STOP 18
i 16
sum 17

Y

A data structure that the
assembler creates and uses
during the program translation

Initialization:
Creates the table and adds the
predefined symbols to the table

First pass: Counts lines and adds
the label symbols to the table

Second pass: Generates binary code; In the
process, adds the variable symbols to the table

(details, soon)

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 41

Lecture plan

* Overview »Assembler architecture
J * Translating instructions * Assembler API

* Translating programs * Project 6

* Handling symbols

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 42

Assembler: Usage

Input (Prog.asm): a text file containing a
sequence of lines, each being a string
representing a comment, an A-instruction,
a C-1instruction, or a label declaration

Output (Prog.hack): a text file containing
a sequence of lines, each being a string
of sixteen e and 1 characters

Usage: (if the assembler is implemented in Java)

$ java HackAssembler Prog.asm

// Computes R1=1+...

//i=1
@i
M=1
// sum = @
@sum
M=0

(Loor)

// if i>Re goto STOP

@i
D=M
@R
D=D-M

+ RO

Assembler

Action: Creates a Prog.hack file, containing the translated Hack program.

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

0000000000010000
1110111111001000
0000000000010001
1110101010001000
0000000000010000
1111110000010000
0000000000000000
1111010011010000
0000000000010010
1110001100000001
0000000000010000
1111110000010000
0000000000010001

Slide 43

Assembler: Algorithm

Initialize
Opens the input file (Prog.asm),
and gets ready to process it

Constructs a symbol table,
and adds to it all the predefined symbols

First pass

Reads the program lines, one by one,

focusing only on (label) declarations.
Adds the found labels to the symbol table

Second pass (main loop)

(starts again from the beginning of the file)
While there are more lines to process:
Gets the next instruction, and parses it

If the instruction is @symbol

// Computes R1=1+...

//1i=1
@i
M=1
// sum = @
@sum
M=0

(LOOP)

// if i>Re goto STOP

@i
D=M
@Rre
D=D-M

+ RO

Assembler

0000000000010000
1110111111001000
0000000000010001
1110101010001000
0000000000010000
1111110000010000
0000000000000000
1111010011010000
0000000000010010
1110001100000001
0000000000010000
1111110000010000
0000000000010001

Assembler implementation options

If symbol is not in the symbol table, adds it to the table

Translates the symbol to its binary value

If the instruction is dest =comp ; jump

Translates each of the three fields into its binary value

Assembles the binary values described above into a string of sixteen @’s and 1’s

Writes the string to the output file.

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 44

Assembler: Architecture

()

drives the

HackAssembler .
translation process

. J
Parser Code SymbolTable
reads and parses generates handles
an instruction binary codes symbols

Proposed architecture

* Four software modules

* Can be realized in any programming language

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 45

HackAssembler

Initialize:
Opens the input file (Prog.asm) and gets ready to process it
Constructs a symbol table, and adds to it all the predefined symbols

First pass:

Reads the program lines, one by one
focusing only on (label) declarations.
Adds the found labels to the symbol table

Second pass (main loop):

(starts again from the beginning of the file)
While there are more lines to process:
Gets the next instruction, and parses it
If the instruction is @symbol
If symbol is not in the symbol table, adds it to the table
Translates the symbol into its binary value
If the instruction is dest=comp ; jump
Translates each of the three fields into its binary value
Assembles the binary values into a string of sixteen @’s and 1’s

Writes the string to the output file.

J

The HackAssembler
implements this
assembly algorithm,
using the services of:

* Parser
* Code
 SymbolTable

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 46

Assembler API

HackAssembler drives the
process
Parser Code SymbolTable
reads and parses generates handles
an instruction binary codes symbols

- J

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 47

Parser API

Routines

Constructor / initializer: Creates a Parser and opens the source text file

* QGetting the current instruction:

hasMoreLines(): Checks if there is more work to do (boolean)

advance(): Gets the next instruction and makes it the current instruction (string)
* Parsing the current instruction:

instructionType(): Returns the current instruction type, as a constant:

A_INSTRUCTION for @xxx, where xxx is either a decimal number or a symbol

C_INSTRUCTION for dest = comp ; jump

L_INSTRUCTION for (label)

current instruction

Examples: @17 instructionType() returns A_INSTRUCTION
@sum instructionType() returns A_INSTRUCTION
D=0 instructionType() returns C_INSTRUCTION
(END) instructionType() returns L_INSTRUCTION

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 48

Parser API

Routines

* Constructor / initializer: Creates a Parser and opens the source text file

* Getting the current instruction:
hasMoreLines(): Checks if there is more work to do

advance(): Gets the next instruction and makes it the current instruction

* Parsing the current instruction:

instructionType(): Returns the instruction type

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 49

Parser API

Routines

* Constructor / initializer: Creates a Parser and opens the source text file

* Getting the current instruction:
hasMoreLines(): Checks if there is more work to do

advance(): Gets the next instruction and makes it the current instruction

* Parsing the current instruction:

instructionType(): Returns the instruction type

symbol(): Returns the instruction’s symbol (string) . . o
Used if the current instruction is

@symbol or (symbol)
current instruction

Examples: @sum symbol() returns "sum"

(LOOP) symbol() returns "LOOP"

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 50

Parser API

Routines

* Constructor / initializer: Creates a Parser and opens the source text file

* Getting the current instruction:
hasMoreLines(): Checks if there is more work to do

advance(): Gets the next instruction and makes it the current instruction

* Parsing the current instruction:

instructionType(): Returns the instruction type

symbol(): Returns the instruction’s symbol (string)

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 51

Parser API

Routines
* Constructor / initializer: Creates a Parser and opens the source text file

* Getting the current instruction:
hasMoreLines(): Checks if there is more work to do

advance(): Gets the next instruction and makes it the current instruction

* Parsing the current instruction:
instructionType(): Returns the instruction type
symbol(): Returns the instruction’s symbol (string)

dest(): Returns the instruction’s dest field (string)

comp(): Returns the instruction’s comp field (string) Used if the current instruction is

jump(): Returns the instruction’s jump field (string) dest=comp ; jump

current instruction

ExampleS: D=D+1; JLE dest() returns "D" comp() returns "D+1" jump() returns "JLE"

M=-1 dest() returns "M" comp() returns "-1" jump() returns null

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 52

Implementation

drives the
process

HackAssembler

Parser

reads and parses
an instruction

4

Code

generates
binary code

SymbolTable

handles
symbols

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 53

Code API

Deals only with C-instructions: dest = comp ; jump

Routines:

dest(string) : Returns the binary representation of the parsed dest field (string)

comp (string) : Returns the binary representation of the parsed comp field (string)

jump (string) : Returns the binary representation of the parsed jump field (string)

According to the language specification:

comp cccecece c dest d d d
) 106 1 0 1 o null [@ e e
1 11 1 1 1 1 M 2 0 1
-1 11 1 o 1 o D 2 1 ©
D e 061 1 o o DM 2 1 1
A M 110 0 8 0 A 1 0 o
D e 061 1 0 1 AM 1 o0 1
1A M 11 0 0 o0 1 AD 1 1 o
-D e 6 1 1 1 1 ADM 1 1 1

-A -M 110 0 1 1
D+1 11 1 1 1 jump j j]
A+l M+1 110 1 1 1 null 1o o o
D-1 0 1 1 1 @ 16T 0o o 1
A-1 M-1 110 0 1 0 1 e 1 o
D+A D+M @ 0606 0 1 0 JGE IO
D-A D-M 16 0 1 1 ILT 1 0 o
A-D M-D @ 0 6 1 1 1 INE 1 0 1
D&A D&M @ 06 06 0 0 0 JLE 101 e
D|A D|M 2 1 0 1 0 1 IMP 1 1 1

a==0 a==1

Examples:

dest("DM") returns "@11"
comp("A+1") returns "0110111"

comp ("D&M") returns "1000000"

jump("JINE") returns "101"

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 54

Implementation

drives the
N HackAssembler
process
Parser Code SymbolTable
reads and parses generates handles
an instruction binary code symbols

4

4

_

~

J

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 55

SymbolTable API

Routines

Constructor / initializer: Creates and initializes a SymbolTable

addEntry(symbol (string), address (int)): Adds <symbol, address> to the table (void)
contains(symbol (string)) : Checks if symbol exists in the table (boolean)

getAddress (symbol (string)) : Returns the address (int) associated with symbol

symbol address

Symbol RO 0
table: R1 1
(example) R2 2
R15 15

SCREEN | 16384

KBD | 24576

SP)

LCL 1

ARG 2

THIS 3

THAT 4

LOOP 4

STOP 18

i 16

sum 17

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 56

HackAssembler: Drives the translation process

drives the
N HackAssembler J
process
Parser Code SymbolTable
reads and parses generates handles
an instruction binary code symbols

4

4

4

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 57

Assembler API (detailed)

Parser module:

Routine Arguments Returns Function
Constructor / Input file — Opens the input file/stream and gets ready to parse it.
initializer or stream
hasMoreLines — boolean Are there more lines in the input?
advance — — Skips over whitespace and comments, if necessary.
Reads the next instruction from the input, and makes it the current instruction.
This method should be called only if hasMoreLines is true.
Initially there is no current instruction.
instructionType | — A_INSTRUCTION, | Returns the type of the current instruction:
C_INSTRUCTION, o)
L_INSTRUCTION | A_INSTRUCTION for @xxx, where xxx is either a decimal number or a symbol.
(constants) C_INSTRUCTION for dest=comp ; jump
L_INSTRUCTION for (xxx), where xxx is a symbol.
symbol _ string If the current instruction is (xxx), returns the symbol xxx. If the current
instruction is @xxx, returns the symbol or decimal xxx (as a string).
Should be called only if instructionType is A_INSTRUCTION or
L_INSTRUCTION.
dest — string Returns the symbolic dest part of the current
C-instruction (8 possibilities).
Should be called only if instructionType is C_INSTRUCTION.
comp — string Returns the symbolic comp part of the current C-instruction (28 possibilities).
Should be called only if instructionType is C_INSTRUCTION.
jump — string Returns the symbolic jump part of the current C-instruction (8 possibilities).

Should be called only if instructionType is C_INSTRUCTION.

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 58

58

Assembler API (detailed)

Code module:

Routine Arguments Returns Function

dest string 3 bits, as a string | Returns the binary code of the dest mnemonic.
comp string 7 bits, as a string | Returns the binary code of the comp mnemonic.
jump string 3 bits, as a string | Returns the binary code of the jump mnemonic.

SymbolTable module:

Routine Arguments Returns Function
Constructor | — — Creates a new empty symbol table.
addEntry symbol (string), | — Adds <symbol, address> to the table.
address (int)
contains symbol (string) boolean | Does the symbol table contain the given symbol?
getAddress | symbol (string) int Returns the address associated with the symbol.

HackAssembler module:

Implement the main program as you see fit.

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 59

Chapter 6: Assembler

* Overview * Assembler architecture
* Translating instructions * Assembler API

* Translating programs - Project 6

* Handling symbols

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 60

Developing a Hack Assembler

Contract

Develop a program that translates symbolic Hack programs into binary Hack instructions
The source program (input) is supplied as a text file named Prog.asm

The generated code (output) 1s written into a text file named Prog.hack

Assumption: Prog.asm 1s error-free

Usage (if the assembler is implemented in Java):

$ java HackAssembler Prog.asm

Staged development plan

1. Develop a basic assembler that translates programs that have no symbols
2. Develop an ability to handle symbols

3. Morph the basic assembler into an assembler that translates any program.

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 61

Testing

eoe CPU Emulator (28) -

File View Run Help

Sy duL G o il gamton B - B o B

CPU

Prog.asm Prog.hack
// Computes R1=1+... + RO 0000000000010000
Ji=1 1110111111001000
@i 0000000000010001
M=1 1110101010001000
// sum = 0 Your 0000000000010000
@sum 1111110000010000
M CEECIISIEIN | eoeooe0e00000000
(LOOP) 1111010011010000
o 0000000000010010
// I 1> R0 goto STOP 1110001100000001
ng 0000000000010000
@Ee 1111110000010000
D=D-M 0000000000010001
@sTOP 1111000010001000
D;IGT 0000000000010000
Test programs
* Add.asm
* Max.asm * MaxL.asm
* Rect.asm * RectL.asm
* Pong.asm * PonglL.asm
(with symbols) (same programs, without symbols,

for unit-testing the basic assembler)

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 62

Testing

Add.asm
// [] File View Run Help
Com p utes RAM|© = = Animate: View: Format:

// 2 + 3 Q » » « ? 5|“,w| ‘ ‘Fa‘s(No animation E Scr... E D... E

@ -Bap® D& :

D=A ROI:: 0000000000000010 = Testlng on the CPU emulator:
1110110000010000

@3 T110000010010000 1. Translate Add.asm

D=D+A 0000200000000008]
1110001100001000 using your assembler

@9

M=D 2. Load the translated Add.hack

3. Run the code, inspect Re.

ALU
D Input:

NNNNRNNNRNRN S R e e e e
PNOUAWNROOLOINOUNEWNREPO®NU A WN R
NNRNNNNRNRNN R e e et b pd e b b

BN RURNNS RN RiREsvoNonswnre |2
D0 0000000000000 WM

M/A Input :

]

32767

>
S

Note: When loading a binary Prog.hack file into the CPU emulator, the
emulator may translate it back to symbolic code (depending on the
emulator’s version).

To inspect the binary code, select “binary” from the ROM menu.

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 63

Testing

Max.asm
[] [] CPU Emulator (2.5) - /Users/shimonschocken/Desktop/nand?2tetris/projects/06/max/Max.asm
// Computes RAM[2] = File View Run Help
= \ Animate: View: Format:
// max(RAM[@],RAM[1]) SP0LBY .. e B B o
@RO
D=M rom - B 0 & RAM 0 &8
0 0000000000000000) 19 .
@R1 1 s : K Testing on the CPU emulator:
—N_ 3 1111010011010000 3 0
D=D-M s oomooooo000000 ‘ o Translate and load, then:
@OUTPUT_RAMO 6 0000000000000001 6 0 .
D; JGT 5 ooooosoo0aonn1oo { ’ Put test values in Ro and R1,
16 sesecessseesases N - run the code. inspect R2.
// Output RAM[1] 11 1111110000010000 1 0 ’ p
12 0000000000000010 12 0
@R1 13 1110001100001000 13 0
14 0000000000001110 14 0 e
= 15 1110101010000111 15 0
D=M 16 16 0 e
@R2 18 18 0
M=D 20 20 o ° E
@END 2 2 b
23 23 0 ALU
0; JMP 24 24 0 D Input:
ig 52 z 19 ALU output : .
(OUTPUT_RAMO) 27 27 0 M/A Input :
28 28 0 14
@R@ PC 15 A 14
D=M
@R2
M=D
(END)
@END
0; JMP

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 64

Testing

Max.asm

// Computes RAM[2] =
// max(RAM[@],RAM[1])
@RO
D=M
@R1
D=D-M
@OUTPUT_RAM@
D;JGT
// Output RAM[1]
@R1
D=M
@R2
M=D
@END
0;IMP
(OUTPUT_RAMO)
@RO
D=M
@R2
M=D
(END)
@END
0;IMP

with symbols

MaxL.asm

// Computes RAM[2] =
// max(RAM[@],RAM[1])

@0

D=M

@1

D=D-M

@12

D;JGT

// Output RAM[1]

@1

D=M

@2

M=D

@16

0;IMP

@0
D=M
@2
M=D

@16
0;IMP

without symbols

For unit-testing the
basic assembler

(Each symbol was
replaced with its value)

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 65

Testing

Rect.asm

// Draws a rectangle.

@RO

D=M

@n

M=D

@i

M=0
@SCREEN
D=A
@address
M=D

(LOOP)
@i
D=M
@n
D=D-M
@END
D;JGT

File View Run Help

G>>nLBY

Animate:

LI I

View: Format:

Slow Fast Noanimaton [J scr.. BJ | D...

rom - B8 D & RAM 0 &
0 0000000000000000 0 50
1 1111110000010000 1 0
2 0000000000010111 2 0
3 1110001100000110 3 0
4 00P0ROGO0RO10000 4 0
5 1110001100001000 5 0
6 0100000000000000 6 0
7 1110110000010000 7 0
8 0000000000010001 8 0
9 1110001100001000 9 0
10 0000000000010001 10 0
11 1111110000100000 1 0
12 1110111010001000 12 0
13 0000000000010001 13 0
14 1111110000010000 1 0
15 0000000000100000 15 0
16 1110000010010000 16 0
17 0000000000010001 17 17984
18 1110001100001000 18 0
19 0000000000010000 19 0
20 1111110010011000 20 0
21 0000000000001010 21 0
22 1110001100000001 2 0
23 0000000000010111 23 0
24 1110101010000111 24 0
25 25 0
2% 2 0
27 27 0
28 28 0
PC 24 A 3

Testing on the CPU emulator:

Translate and load, then:
Put a non-negative value in Re,

run the code, inspect the screen.

=)

D 0
ALU
D Input :
] ALU output :
M/A Input : U
23

Draws a rectangle, 16 pixels wide and Re lines high

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 66

Testing

Rect.asm RectL.asm

// Draws a rectangle. // Draws a rectangle.
@RO @0
D=M D=M
@n @16
M=D M=D
gie @17 For unit-testing the

- M=0 basic assembler

@SCREEN @16384
D=A D=A
@address @18
M=D M=D

(LOOP) (LOOP)
@i @17
D=M D=M
@n @16
D=D-M D=D-M
@END @27
D;JGT D;JGT
with symbols without symbols

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 67

Testing

Pon g.asm
File View Run Help
// Pong .asm @ > » . « ? ./ Animate View: Format:
@256 = Slow East No animation Scr... B D... B
D=A .
o D& D& " AN Pong game
@sP @ 0000000100000000 [) 267
1 1110110000010000 1 266
M=D 2 0000000000000000 2 261
3 1110001100001000 3 [}
@133 4 0000000010000101 4)
5 1110101010000111 5 [} Game Over
(%) 5 IMP 6 0000000000001111 6)
7 1110001100001000 7 [}
@R 15 8 0000000000000000 8)
9 1111110010101000 9 [}
M=D 10 1111110000010000 10]
11 1110110010100000 1 [}
@SsP 12 1111000111010000 12 [} . —
13 1110101010001000 13) SooroT 1
AM=M-1 14 0000000000010011 14 27177 o
15 1110001100000101 15 9717 Ere]
D=M 16 0000000000000000 16 4872
17 1111110010100000 17 2050
A=A-1 18 1110111010001000 18 2068
19 0000000000001111 19) D 0
—Mo 20 1111110000100000 20 16384
D=M-D 21 1110101010000111 21 -1
M=0 22 0000000000001111 22 3570
- 23 1110001100001000 23 18 ALU
24 0000000000000000 24 2105 DInput :
@END_EQ 25 1111110010101000 25 2118) ALU output:
. 26 1111110000010000 26 3495 =
D; INE 27 1110110010100000 27 16384 M/A Input :
@SP 28 1111000111010000 28 -1 0
A=M-1 PC [) A)
M=-1
(END_EQ)
R15 .
@ Translate and load, and then play the game:
A=M
13 : :) : 113 1)
Select “no animation”, set the speed slider to “fast”, and run the code.

Move the paddle using the left- and right-arrow keys.

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken

Slide 68

Testing

Pong.asm

Background

// Pong.asm
@256 The original pong program was written in the high-level Jack language
D=A
@sp The computer’s operating system 1s also written in Jack
8223 The pong code + the OS code were compiled by the Jack compiler,
0;IMP creating a single Pong.asm file

@R15
M=D
@sp The compiled code (Pong.asm) has compiler-generated addresses and

QD_II;M_l symbols (which may be hard to read).

A=A-1
D=M-D
M=0
@END_EQ
D; INE
@spP
A=M-1
M=-1
(END_EQ)
@R15
A=M
28,374 instructions

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 69

Testing option II: Using the hardware simulator

1. Use your assembler to translate Prog.asm, generating the executable file Prog.hack

2. Put the Prog.hack file in a folder containing the chips that you developed in project 5:
Computer.hdl, CPU.hdl1, and Memory.hdl

3. Load computer.hdl into the Hardware Simulator
4. Load Prog.hack into the ROM32k chip-part

5. Run the clock to execute the program.

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 70

Testing option III: Using the supplied assembler

e fun_Help Prog.hack file, Prog.hack file,
SoprT) |
G@>>eCh = translated by the translated by your
supplied assembler assembler
Source Destination Comparison
// Computes RAM[1] = 1 + ... + RAY 0000000000010000 10000
@i 1110111111001000 1110111111001000
M=l /7 i=1 0000000000010001 0000000000010001
@sum 1110101010001000 1110101010001000
M=0 // sum =0 0000000000010000 0000000000010000
1111110000010000 1111110000010000
(LOOP) 0000000000000000 0000000000000000
@ // if i>RAM[@] goto STOF 1111010011010000 1111010011010000
D=M 0000000000010010 0000000000010010
@RO 1110001100000001 1110001100000001
D=D-M 0000000000010000 0000000000010000
@sToP 1111110000010000 1111110000010000
D;J6T 0000000000010001 0000000000010001
@ // sum 4= i 1111000010001000 I 1:1:000010001000
D=M 0000000000010000 0000000000010000
@sum 1111110111001000 I 000111001000
Source M=D+M 0000000000000100 0000000000000100
@ // it 1110101010000111 1110101010000111
Prog. asm M=M+1 0000000000010001 0000000000010001
@LOOP // goto LOOP 1111110000010000 1111110000010000
0; IMP 0000000000000001 0000000000000001
test file (sTOP) 1110001100001000 1110001100001000
@sum 0000000000010110 0000000000010110
D=M 1110101010000111 1110101010000111
@R1
M=D // RAM[1] = the sum
(END)
@END
0;IMP
[(File compilation & comparison succeeded

1. Use your assembler to translate Prog.asm, generating the executable file Prog.hack

2. Load Prog.asm into the supplied assembler, and load Prog.hack as a compare file
3. Translate Prog.hack, and inspect the comparison feedback messages.

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 71

