
Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 1

Chapter 6

Assembler

From Nand to Tetris
Building a Modern Computer from First Principles

These slides support chapter 6 of the book
The Elements of Computing Systems

By Noam Nisan and Shimon Schocken
MIT Press, 2021

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 2

Nand to Tetris Roadmap: Hardware

Nand

hardware platformabstraction

computer abstraction

ALU, RAM abstraction

elementary
logic gates

building a

computer
building

chips building

gates

p3

abstraction

machine
language

p2

p1

assembler

p4

p5

In project 4 we wrote some
low-level symbolic programs

In this lecture we will learn
how to write an assemblerp6

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 3

Program translation

load and
execute

// Program: Sum1ToN (R0 represents N)
// Computes R1 = 1 + 2 + 3 + ... + R0
// Usage: put a value >= 1 in R0

// i = 1
@i
M=1
// sum = 0
@sum
M=0

(LOOP)
// if (i > R0) goto STOP
@i
D=M
@R0
D=D-M
@STOP
D;JGT
// sum = sum + i
@sum
D=M
@i
D=D+M
@sum
M=D
// i = i + 1
@i
M=M+1
// goto LOOP
@LOOP
0;JMP
...

0101111100111100
1010101010101010
1100000010101010
1011000010000001
0101111100111100
1010101010101010
1100000010101010
0101111100111100
1010101010101010
1100000010101010
1011000010000001
0101111100111100
1010101010101010
1100000010101010
0101111100111100
1010101010101010
1100000010101010
1011000010000001
0101111100111100
1010101010101010
1100000010101010
...

Binary code

assembler

Symbolic low-level program Computer

The assembler is…
• The “linchpin” that connects the hardware

platform and the software hierarchy

• The lowest rung in the set of translators
developed in Part II of the course

• A simple example of key software
engineering techniques (parsing, code
generation, symbol tables, …)

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 4

• Overview

• Translating Hack code:
q A-instructions
q C-instructions

• Translating programs

• Handling symbols

Lecture plan

• Assembler architecture

• Assembler API

• Project 6

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 5

Translating A-instructions

Where xxx is a non-negative
decimal value, or a symbol
bound to such a value

Binary syntax:
0 v v v v v v v v v v v v v v v v@ xxx

Symbolic syntax:

Where:
0 is the A-instruction op-code, and
v v v … v is the value in binary

Implementation
Translate the decimal value into its 16-bit representation;

What about @ symbol instructions? Later.

translate 0000000000010001@17

Example:

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 6

Translating C-instructions

comp c c c c c c
0 1 0 1 0 1 0
1 1 1 1 1 1 1
-1 1 1 1 0 1 0
D 0 0 1 1 0 0
A M 1 1 0 0 0 0
!D 0 0 1 1 0 1
!A !M 1 1 0 0 0 1
-D 0 0 1 1 1 1
-A -M 1 1 0 0 1 1
D+1 0 1 1 1 1 1
A+1 M+1 1 1 0 1 1 1
D-1 0 0 1 1 1 0
A-1 M-1 1 1 0 0 1 0
D+A D+M 0 0 0 0 1 0
D-A D-M 0 1 0 0 1 1
A-D M-D 0 0 0 1 1 1
D&A D&M 0 0 0 0 0 0
D|A D|M 0 1 0 1 0 1

a==0 a==1

jump j j j effect:
null 0 0 0 no jump
JGT 0 0 1 if comp > 0 jump
JEQ 0 1 0 if comp = 0 jump
JGE 0 1 1 if comp ≥ 0 jump
JLT 1 0 0 if comp < 0 jump
JNE 1 0 1 if comp ≠ 0 jump
JLE 1 1 0 if comp ≤ 0 jump
JMP 1 1 1 Unconditional jump

dest d d d effect: the value is stored in:
null 0 0 0 the value is not stored
M 0 0 1 RAM[A]
D 0 1 0 D register
DM 0 1 1 D register and RAM[A]
A 1 0 0 A register
AM 1 0 1 A register and RAM[A]
AD 1 1 0 A register and D register
ADM 1 1 1 A register, D register, and RAM[A]

Symbolic syntax:

1 1 1 a c c c c c c d d d j j jBinary syntax:

dest = comp ; jump

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 7

comp c c c c c c
0 1 0 1 0 1 0
1 1 1 1 1 1 1
-1 1 1 1 0 1 0
D 0 0 1 1 0 0
A M 1 1 0 0 0 0
!D 0 0 1 1 0 1
!A !M 1 1 0 0 0 1
-D 0 0 1 1 1 1
-A -M 1 1 0 0 1 1
D+1 0 1 1 1 1 1
A+1 M+1 1 1 0 1 1 1
D-1 0 0 1 1 1 0
A-1 M-1 1 1 0 0 1 0
D+A D+M 0 0 0 0 1 0
D-A D-M 0 1 0 0 1 1
A-D M-D 0 0 0 1 1 1
D&A D&M 0 0 0 0 0 0
D|A D|M 0 1 0 1 0 1

a==0 a==1

jump j j j effect:
null 0 0 0 no jump
JGT 0 0 1 if comp > 0 jump
JEQ 0 1 0 if comp = 0 jump
JGE 0 1 1 if comp ≥ 0 jump
JLT 1 0 0 if comp < 0 jump
JNE 1 0 1 if comp ≠ 0 jump
JLE 1 1 0 if comp ≤ 0 jump
JMP 1 1 1 Unconditional jump

dest d d d effect: the value is stored in:
null 0 0 0 the value is not stored
M 0 0 1 RAM[A]
D 0 1 0 D register
DM 0 1 1 D register and RAM[A]
A 1 0 0 A register
AM 1 0 1 A register and RAM[A]
AD 1 1 0 A register and D register
ADM 1 1 1 A register, D register, and RAM[A]

Symbolic syntax:

1 1 1 a c c c c c c d d d j j jBinary syntax:

dest = comp ; jump

Translating C-instructions

Binary:

Example: D = D+1 ; JLE

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 8

comp c c c c c c
0 1 0 1 0 1 0
1 1 1 1 1 1 1
-1 1 1 1 0 1 0
D 0 0 1 1 0 0
A M 1 1 0 0 0 0
!D 0 0 1 1 0 1
!A !M 1 1 0 0 0 1
-D 0 0 1 1 1 1
-A -M 1 1 0 0 1 1
D+1 0 1 1 1 1 1
A+1 M+1 1 1 0 1 1 1
D-1 0 0 1 1 1 0
A-1 M-1 1 1 0 0 1 0
D+A D+M 0 0 0 0 1 0
D-A D-M 0 1 0 0 1 1
A-D M-D 0 0 0 1 1 1
D&A D&M 0 0 0 0 0 0
D|A D|M 0 1 0 1 0 1

a==0 a==1

jump j j j effect:
null 0 0 0 no jump
JGT 0 0 1 if comp > 0 jump
JEQ 0 1 0 if comp = 0 jump
JGE 0 1 1 if comp ≥ 0 jump
JLT 1 0 0 if comp < 0 jump
JNE 1 0 1 if comp ≠ 0 jump
JLE 1 1 0 if comp ≤ 0 jump
JMP 1 1 1 Unconditional jump

dest d d d effect: the value is stored in:
null 0 0 0 the value is not stored
M 0 0 1 RAM[A]
D 0 1 0 D register
DM 0 1 1 D register and RAM[A]
A 1 0 0 A register
AM 1 0 1 A register and RAM[A]
AD 1 1 0 A register and D register
ADM 1 1 1 A register, D register, and RAM[A]

Symbolic syntax:

1 1 1 a c c c c c c d d d j j jBinary syntax:

dest = comp ; jump

Translating C-instructions

111
Binary:

D = D+1 ; JLEExample:

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 9

comp c c c c c c
0 1 0 1 0 1 0
1 1 1 1 1 1 1
-1 1 1 1 0 1 0
D 0 0 1 1 0 0
A M 1 1 0 0 0 0
!D 0 0 1 1 0 1
!A !M 1 1 0 0 0 1
-D 0 0 1 1 1 1
-A -M 1 1 0 0 1 1
D+1 0 1 1 1 1 1
A+1 M+1 1 1 0 1 1 1
D-1 0 0 1 1 1 0
A-1 M-1 1 1 0 0 1 0
D+A D+M 0 0 0 0 1 0
D-A D-M 0 1 0 0 1 1
A-D M-D 0 0 0 1 1 1
D&A D&M 0 0 0 0 0 0
D|A D|M 0 1 0 1 0 1

a==0 a==1

jump j j j effect:
null 0 0 0 no jump
JGT 0 0 1 if comp > 0 jump
JEQ 0 1 0 if comp = 0 jump
JGE 0 1 1 if comp ≥ 0 jump
JLT 1 0 0 if comp < 0 jump
JNE 1 0 1 if comp ≠ 0 jump
JLE 1 1 0 if comp ≤ 0 jump
JMP 1 1 1 Unconditional jump

dest d d d effect: the value is stored in:
null 0 0 0 the value is not stored
M 0 0 1 RAM[A]
D 0 1 0 D register
DM 0 1 1 D register and RAM[A]
A 1 0 0 A register
AM 1 0 1 A register and RAM[A]
AD 1 1 0 A register and D register
ADM 1 1 1 A register, D register, and RAM[A]

Symbolic syntax:

1 1 1 a c c c c c c d d d j j jBinary syntax:

dest = comp ; jump

Translating C-instructions

1110011111
Binary:

D = D+1 ; JLEExample:

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 10

Symbolic syntax:

1 1 1 a c c c c c c d d d j j jBinary syntax:

dest = comp ; jump

Translating C-instructions

1110011111010
Binary:

D = D+1 ; JLE

comp c c c c c c
0 1 0 1 0 1 0
1 1 1 1 1 1 1
-1 1 1 1 0 1 0
D 0 0 1 1 0 0
A M 1 1 0 0 0 0
!D 0 0 1 1 0 1
!A !M 1 1 0 0 0 1
-D 0 0 1 1 1 1
-A -M 1 1 0 0 1 1
D+1 0 1 1 1 1 1
A+1 M+1 1 1 0 1 1 1
D-1 0 0 1 1 1 0
A-1 M-1 1 1 0 0 1 0
D+A D+M 0 0 0 0 1 0
D-A D-M 0 1 0 0 1 1
A-D M-D 0 0 0 1 1 1
D&A D&M 0 0 0 0 0 0
D|A D|M 0 1 0 1 0 1

a==0 a==1

jump j j j effect:
null 0 0 0 no jump
JGT 0 0 1 if comp > 0 jump
JEQ 0 1 0 if comp = 0 jump
JGE 0 1 1 if comp ≥ 0 jump
JLT 1 0 0 if comp < 0 jump
JNE 1 0 1 if comp ≠ 0 jump
JLE 1 1 0 if comp ≤ 0 jump
JMP 1 1 1 Unconditional jump

dest d d d effect: the value is stored in:
null 0 0 0 the value is not stored
M 0 0 1 RAM[A]
D 0 1 0 D register
DM 0 1 1 D register and RAM[A]
A 1 0 0 A register
AM 1 0 1 A register and RAM[A]
AD 1 1 0 A register and D register
ADM 1 1 1 A register, D register, and RAM[A]

Example:

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 11

Symbolic syntax:

1 1 1 a c c c c c c d d d j j jBinary syntax:

dest = comp ; jump

Translating C-instructions

1110011111010110
Binary:

D = D+1 ; JLE

comp c c c c c c
0 1 0 1 0 1 0
1 1 1 1 1 1 1
-1 1 1 1 0 1 0
D 0 0 1 1 0 0
A M 1 1 0 0 0 0
!D 0 0 1 1 0 1
!A !M 1 1 0 0 0 1
-D 0 0 1 1 1 1
-A -M 1 1 0 0 1 1
D+1 0 1 1 1 1 1
A+1 M+1 1 1 0 1 1 1
D-1 0 0 1 1 1 0
A-1 M-1 1 1 0 0 1 0
D+A D+M 0 0 0 0 1 0
D-A D-M 0 1 0 0 1 1
A-D M-D 0 0 0 1 1 1
D&A D&M 0 0 0 0 0 0
D|A D|M 0 1 0 1 0 1

a==0 a==1

jump j j j effect:
null 0 0 0 no jump
JGT 0 0 1 if comp > 0 jump
JEQ 0 1 0 if comp = 0 jump
JGE 0 1 1 if comp ≥ 0 jump
JLT 1 0 0 if comp < 0 jump
JNE 1 0 1 if comp ≠ 0 jump
JLE 1 1 0 if comp ≤ 0 jump
JMP 1 1 1 Unconditional jump

dest d d d effect: the value is stored in:
null 0 0 0 the value is not stored
M 0 0 1 RAM[A]
D 0 1 0 D register
DM 0 1 1 D register and RAM[A]
A 1 0 0 A register
AM 1 0 1 A register and RAM[A]
AD 1 1 0 A register and D register
ADM 1 1 1 A register, D register, and RAM[A]

Example:

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 12

Symbolic syntax:

1 1 1 a c c c c c c d d d j j jBinary syntax:

dest = comp ; jump

Translating C-instructions

1110011111010110
Binary:

D = D+1 ; JLE

comp c c c c c c
0 1 0 1 0 1 0
1 1 1 1 1 1 1
-1 1 1 1 0 1 0
D 0 0 1 1 0 0
A M 1 1 0 0 0 0
!D 0 0 1 1 0 1
!A !M 1 1 0 0 0 1
-D 0 0 1 1 1 1
-A -M 1 1 0 0 1 1
D+1 0 1 1 1 1 1
A+1 M+1 1 1 0 1 1 1
D-1 0 0 1 1 1 0
A-1 M-1 1 1 0 0 1 0
D+A D+M 0 0 0 0 1 0
D-A D-M 0 1 0 0 1 1
A-D M-D 0 0 0 1 1 1
D&A D&M 0 0 0 0 0 0
D|A D|M 0 1 0 1 0 1

a==0 a==1

jump j j j effect:
null 0 0 0 no jump
JGT 0 0 1 if comp > 0 jump
JEQ 0 1 0 if comp = 0 jump
JGE 0 1 1 if comp ≥ 0 jump
JLT 1 0 0 if comp < 0 jump
JNE 1 0 1 if comp ≠ 0 jump
JLE 1 1 0 if comp ≤ 0 jump
JMP 1 1 1 Unconditional jump

dest d d d effect: the value is stored in:
null 0 0 0 the value is not stored
M 0 0 1 RAM[A]
D 0 1 0 D register
DM 0 1 1 D register and RAM[A]
A 1 0 0 A register
AM 1 0 1 A register and RAM[A]
AD 1 1 0 A register and D register
ADM 1 1 1 A register, D register, and RAM[A]

Example:

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 13

Symbolic syntax:

1 1 1 a c c c c c c d d d j j jBinary syntax:

dest = comp ; jump

Translating C-instructions

1110111010100000
Binary:

comp c c c c c c
0 1 0 1 0 1 0
1 1 1 1 1 1 1
-1 1 1 1 0 1 0
D 0 0 1 1 0 0
A M 1 1 0 0 0 0
!D 0 0 1 1 0 1
!A !M 1 1 0 0 0 1
-D 0 0 1 1 1 1
-A -M 1 1 0 0 1 1
D+1 0 1 1 1 1 1
A+1 M+1 1 1 0 1 1 1
D-1 0 0 1 1 1 0
A-1 M-1 1 1 0 0 1 0
D+A D+M 0 0 0 0 1 0
D-A D-M 0 1 0 0 1 1
A-D M-D 0 0 0 1 1 1
D&A D&M 0 0 0 0 0 0
D|A D|M 0 1 0 1 0 1

a==0 a==1

jump j j j effect:
null 0 0 0 no jump
JGT 0 0 1 if comp > 0 jump
JEQ 0 1 0 if comp = 0 jump
JGE 0 1 1 if comp ≥ 0 jump
JLT 1 0 0 if comp < 0 jump
JNE 1 0 1 if comp ≠ 0 jump
JLE 1 1 0 if comp ≤ 0 jump
JMP 1 1 1 Unconditional jump

dest d d d effect: the value is stored in:
null 0 0 0 the value is not stored
M 0 0 1 RAM[A]
D 0 1 0 D register
DM 0 1 1 D register and RAM[A]
A 1 0 0 A register
AM 1 0 1 A register and RAM[A]
AD 1 1 0 A register and D register
ADM 1 1 1 A register, D register, and RAM[A]

Example: A = – 1

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 14

Symbolic syntax:

1 1 1 a c c c c c c d d d j j jBinary syntax:

dest = comp ; jump

Translating C-instructions

comp c c c c c c
0 1 0 1 0 1 0
1 1 1 1 1 1 1
-1 1 1 1 0 1 0
D 0 0 1 1 0 0
A M 1 1 0 0 0 0
!D 0 0 1 1 0 1
!A !M 1 1 0 0 0 1
-D 0 0 1 1 1 1
-A -M 1 1 0 0 1 1
D+1 0 1 1 1 1 1
A+1 M+1 1 1 0 1 1 1
D-1 0 0 1 1 1 0
A-1 M-1 1 1 0 0 1 0
D+A D+M 0 0 0 0 1 0
D-A D-M 0 1 0 0 1 1
A-D M-D 0 0 0 1 1 1
D&A D&M 0 0 0 0 0 0
D|A D|M 0 1 0 1 0 1

a==0 a==1

jump j j j effect:
null 0 0 0 no jump
JGT 0 0 1 if comp > 0 jump
JEQ 0 1 0 if comp = 0 jump
JGE 0 1 1 if comp ≥ 0 jump
JLT 1 0 0 if comp < 0 jump
JNE 1 0 1 if comp ≠ 0 jump
JLE 1 1 0 if comp ≤ 0 jump
JMP 1 1 1 Unconditional jump

dest d d d effect: the value is stored in:
null 0 0 0 the value is not stored
M 0 0 1 RAM[A]
D 0 1 0 D register
DM 0 1 1 D register and RAM[A]
A 1 0 0 A register
AM 1 0 1 A register and RAM[A]
AD 1 1 0 A register and D register
ADM 1 1 1 A register, D register, and RAM[A]

Implementation: Translate each field of the symbolic instruction (dest, comp, jump)
into its binary code, and assemble the codes into a 16-bit instruction.

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 15

• Overview

• Translating instructions

• Translating programs

• Handling symbols

Chapter 6: Assembler

• Assembler architecture

• Assembler API

• Project 6

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 16

Program translation
Symbolic code

// Computes R1=1 + ... + R0
// i = 1
@i
M=1
// sum = 0
@sum
M=0

(LOOP)
// if i>R0 goto STOP
@i
D=M
@R0
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;JMP

(STOP)
@sum
D=M
...

Translate
0000000000010000
1110111111001000
0000000000010001
1110101010001000
0000000000010000
1111110000010000
0000000000000000
1111010011010000
0000000000010010
1110001100000001
0000000000010000
1111110000010000
0000000000010001
1111000010001000
0000000000010000
1111110111001000
0000000000000100
1110101010000111
0000000000010001
1111110000010000
...

Binary code

Need to handle:

• White space

• Instructions

• Symbols

We’ll start with programs
that have no symbols,
and handle symbols later

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 17

Program translation

Need to handle:

• White space

• Instructions

• Symbols (later)

Translate

Binary codeSymbolic code
// Computes R1=1 + ... + R0

// i = 1
@16
M=1
// sum = 0
@17
M=0

// if i>R0 goto STOP
@16
D=M
@0
D=D-M
@18
D;JGT
// sum += i
@16
D=M
@17
M=D+M
// i++
@16
M=M+1
@4
0;JMP
@17
D=M
... no symbols

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 18

Program translation

Need to handle:

• White space

• Instructions

• Symbols (later)

Translate

Binary code
// Computes R1=1 + ... + R0

// i = 1
@16
M=1
// sum = 0
@17
M=0

// if i>R0 goto STOP
@16
D=M
@0
D=D-M
@18
D;JGT
// sum += i
@16
D=M
@17
M=D+M
// i++
@16
M=M+1
@4
0;JMP
@17
D=M
...

Symbolic code

Ignore it

no symbols

White space:
Empty lines,
Comments,
Indentation

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 19

Need to handle:

• White space

• Instructions

• Symbols (later)

Program translation

Translate

Binary codeSymbolic code

no symbols

@16
M=1
@17
M=0
@16
D=M
@0
D=D-M
@18
D;JGT
@16
D=M
@17
M=D+M
@16
M=M+1
@4
0;JMP
@17
D=M
...

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 20

Need to handle:

• White space

• Instructions

• Symbols (later)

Program translation

Translate

Binary codeSymbolic code

no symbols

@16
M=1
@17
M=0
@16
D=M
@0
D=D-M
@18
D;JGT
@16
D=M
@17
M=D+M
@16
M=M+1
@4
0;JMP
@17
D=M
...

Translate,
one by one

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 21

Program translation

Translate

Binary code

Translate,
one by one

0000000000010000
1110111111001000
0000000000010001
1110101010001000
0000000000010000
1111110000010000
0000000000000000
1111010011010000
0000000000010010
1110001100000001
0000000000010000
1111110000010000
0000000000010001
1111000010001000
0000000000010000
1111110111001000
0000000000000100
1110101010000111
0000000000010001
1111110000010000
...

Symbolic code

no symbols

@16
M=1
@17
M=0
@16
D=M
@0
D=D-M
@18
D;JGT
@16
D=M
@17
M=D+M
@16
M=M+1
@4
0;JMP
@17
D=M
...

Need to handle:

• White space

• Instructions

• Symbols (later)

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 22

Program translation

Need to handle:

• White space

• Instructions

• Symbols

Translate

Binary code
0000000000010000
1110111111001000
0000000000010001
1110101010001000
0000000000010000
1111110000010000
0000000000000000
1111010011010000
0000000000010010
1110001100000001
0000000000010000
1111110000010000
0000000000010001
1111000010001000
0000000000010000
1111110111001000
0000000000000100
1110101010000111
0000000000010001
1111110000010000
...

Symbolic code

no symbols

@16
M=1
@17
M=0
@16
D=M
@0
D=D-M
@18
D;JGT
@16
D=M
@17
M=D+M
@16
M=M+1
@4
0;JMP
@17
D=M
...

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 23

Program translation

Need to handle:

• White space

• Instructions

• Symbols

Translate

Binary code
0000000000010000
1110111111001000
0000000000010001
1110101010001000
0000000000010000
1111110000010000
0000000000000000
1111010011010000
0000000000010010
1110001100000001
0000000000010000
1111110000010000
0000000000010001
1111000010001000
0000000000010000
1111110111001000
0000000000000100
1110101010000111
0000000000010001
1111110000010000
...

Symbolic code

no symbols

@16
M=1
@17
M=0
@16
D=M
@0
D=D-M
@18
D;JGT
@16
D=M
@17
M=D+M
@16
M=M+1
@4
0;JMP
@17
D=M
...

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 24

Program translation

Translate

Binary code

no symbols

Symbolic code
// Computes R1=1 + ... + R0

// i = 1
@i
M=1
// sum = 0
@sum
M=0

(LOOP)
// if i>R0 goto STOP
@i
D=M
@R0
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;JMP

(STOP)
@sum
D=M
...

Original program,
with symbols

Need to handle:

• White space

• Instructions

• Symbols

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 25

Handling symbols
Symbolic codeSymbolic code
// Computes R1=1 + ... + R0

// i = 1
@i
M=1
// sum = 0
@sum
M=0

(LOOP)
// if i>R0 goto STOP
@i
D=M
@R0
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;JMP

(STOP)
@sum
D=M
...

Symbols

• Predefined symbols

• Label symbols

• Variable symbols

Original program,
with symbols

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 26

Symbolic codeSymbolic code
// Computes R1=1 + ... + R0

// i = 1
@i
M=1
// sum = 0
@sum
M=0

(LOOP)
// if i>R0 goto STOP
@i
D=M
@R0
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;JMP

(STOP)
@sum
D=M
...

Handling symbols

Symbols

• Predefined symbols

• Label symbols

• Variable symbols

This particular program uses
one predefined symbol: R0

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 27

Handling symbols
Symbolic code
// Computes R1=1 + ... + R0

// i = 1
@i
M=1
// sum = 0
@sum
M=0

(LOOP)
// if i>R0 goto STOP
@i
D=M
@R0
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;JMP

(STOP)
@sum
D=M
...

The Hack language features
23 predefined symbols:

symbol value
R0 0
R1 1
R2 2

... ...
R15 15

SCREEN 16384
KBD 24576
SP 0

LCL 1
ARG 2

THIS 3
THAT 4

This particular program uses
one predefined symbol: R0

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 28

Handling symbols
Symbolic code
// Computes R1=1 + ... + R0

// i = 1
@i
M=1
// sum = 0
@sum
M=0

(LOOP)
// if i>R0 goto STOP
@i
D=M
@R0
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;JMP

(STOP)
@sum
D=M
...

Translating @preDefinedSymbol :
Replace preDefinedSymbol with its value

The Hack language features
23 predefined symbols:

symbol value
R0 0
R1 1
R2 2

... ...
R15 15

SCREEN 16384
KBD 24576
SP 0

LCL 1
ARG 2

THIS 3
THAT 4

@R15 0000000000001111Examples:

@SCREEN 0100000000000000

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 29

Handling symbols
Symbolic code
// Computes R1=1 + ... + R0

// i = 1
@i
M=1
// sum = 0
@sum
M=0

(LOOP)
// if i>R0 goto STOP
@i
D=M
@R0
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;JMP

(STOP)
@sum
D=M
...

Symbols

• Predefined symbols

• Label symbols

• Variable symbols

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 30

Handling symbols
Symbolic code
// Computes R1=1 + ... + R0

// i = 1
@i
M=1
// sum = 0
@sum
M=0

(LOOP)
// if i>R0 goto STOP
@i
D=M
@R0
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;JMP

(STOP)
@sum
D=M
...

Symbols

• Predefined symbols

• Label symbols

• Variable symbols

This particular program uses two
label symbols: LOOP, STOP

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 31

Handling symbols
Symbolic code
// Computes R1=1 + ... + R0

// i = 1
@i
M=1
// sum = 0
@sum
M=0

(LOOP)
// if i>R0 goto STOP
@i
D=M
@R0
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;JMP

(STOP)
@sum
D=M
...

Label symbols
• Used to label destinations of goto instructions
• Declared by the pseudo-instruction (label)
• The (label) directive defines the symbol label to refer

to the memory location holding the next instruction in
the program,

• Which corresponds to the instruction’s line number

This particular program uses two
label symbols: LOOP, STOP

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 32

Handling symbols
Symbolic code

0
1

2
3

4
5
6
7
8
9

10
11
12
13

14
15
16
17

18
19

...

// Computes R1=1 + ... + R0
// i = 1
@i
M=1
// sum = 0
@sum
M=0

(LOOP)
// if i>R0 goto STOP
@i
D=M
@R0
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;JMP

(STOP)
@sum
D=M
...

Translating @ labelSymbol :

Replace labelSymbol with its value

@LOOP 0000000000000100Example:

symbol value
LOOP 4
STOP 18

Example:

Label symbols
• Used to label destinations of goto instructions
• Declared by the pseudo-instruction (label)
• The (label) directive defines the symbol label to refer

to the memory location holding the next instruction in
the program,

• Which corresponds to the instruction’s line number

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 33

Handling symbols
Symbolic code
// Computes R1=1 + ... + R0

// i = 1
@i
M=1
// sum = 0
@sum
M=0

(LOOP)
// if i>R0 goto STOP
@i
D=M
@R0
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;JMP

(STOP)
@sum
D=M
...

Symbols

• Predefined symbols

• Label symbols

• Variable symbols

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 34

// Computes R1=1 + ... + R0
// i = 1
@i
M=1
// sum = 0
@sum
M=0

(LOOP)
// if i>R0 goto STOP
@i
D=M
@R0
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;JMP

(STOP)
@sum
D=M
...

Handling symbols
Symbolic code Symbols

• Predefined symbols

• Label symbols

• Variable symbols

This particular program uses two
variable symbols: i, sum

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 35

Handling symbols
Symbolic code
// Computes R1=1 + ... + R0

// i = 1
@i
M=1
// sum = 0
@sum
M=0

(LOOP)
// if i>R0 goto STOP
@i
D=M
@R0
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;JMP

(STOP)
@sum
D=M
...

Variable symbols
• Any symbol xxx which is neither predefined,

nor defined elsewhere using an (xxx) label
declaration, is treated as a variable

• Hack convention: Each variable is bound to a
running memory address, starting at 16

This particular program uses two
variable symbols: i, sum

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 36

Handling symbols

symbol value
i 16

sum 17

Translating @ variableSymbol :

1. If variableSymbol is seen for the first time,
bind to it to a value, from 16 onward

2. Else, it has a value

2. Replace variableSymbol with its value.

Symbolic code
// Computes R1=1 + ... + R0

// i = 1
@i
M=1
// sum = 0
@sum
M=0

(LOOP)
// if i>R0 goto STOP
@i
D=M
@R0
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;JMP

(STOP)
@sum
D=M
...

@sum 0000000000010001Example:

Example:

Variable symbols
• Any symbol xxx which is neither predefined,

nor defined elsewhere using an (xxx) label
declaration, is treated as a variable

• Hack convention: Each variable is bound to a
running memory address, starting at 16

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 37

Handling symbols
Symbolic code
// Computes R1=1 + ... + R0

// i = 1
@i
M=1
// sum = 0
@sum
M=0

(LOOP)
// if i>R0 goto STOP
@i
D=M
@R0
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;JMP

(STOP)
@sum
D=M
...

symbol value
R0 0

R1 1
R2 2

... ...
R15 15

SCREEN 16384
KBD 24576
SP 0

LCL 1
ARG 2

THIS 3
THAT 4
LOOP 4
STOP 18

i 16
sum 17

Symbol table

A data structure that the
assembler creates and uses
during the program translation

Contains the predefined symbols,
label symbols, variable symbols,
And their bindings.

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 38

Handling symbols

symbol value

Symbol tableSymbolic code
// Computes R1=1 + ... + R0

// i = 1
@i
M=1
// sum = 0
@sum
M=0

(LOOP)
// if i>R0 goto STOP
@i
D=M
@R0
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;JMP

(STOP)
@sum
D=M
...

A data structure that the
assembler creates and uses
during the program translation

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 39

Handling symbols

symbol value
R0 0

R1 1
R2 2

... ...
R15 15

SCREEN 16384
KBD 24576
SP 0

LCL 1
ARG 2

THIS 3
THAT 4

Symbol tableSymbolic code
// Computes R1=1 + ... + R0

// i = 1
@i
M=1
// sum = 0
@sum
M=0

(LOOP)
// if i>R0 goto STOP
@i
D=M
@R0
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;JMP

(STOP)
@sum
D=M
...

Initialization:
Creates the table and adds the
predefined symbols to the table

A data structure that the
assembler creates and uses
during the program translation

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 40

Handling symbols

symbol value
R0 0
R1 1
R2 2

... ...
R15 15

SCREEN 16384
KBD 24576
SP 0

LCL 1
ARG 2

THIS 3
THAT 4
LOOP 4
STOP 18

Symbol tableSymbolic code
// Computes R1=1 + ... + R0

// i = 1
@i
M=1
// sum = 0
@sum
M=0

(LOOP)
// if i>R0 goto STOP
@i
D=M
@R0
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;JMP

(STOP)
@sum
D=M
...

0
1

2
3

4
5
6
7
8
9

10
11
12
13

14
15
16
17

18
19

...

Initialization:
Creates the table and adds the
predefined symbols to the table

First pass: Counts lines and adds
the label symbols to the table

A data structure that the
assembler creates and uses
during the program translation

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 41

Handling symbols

symbol value
R0 0

R1 1
R2 2

... ...
R15 15

SCREEN 16384
KBD 24576
SP 0

LCL 1
ARG 2

THIS 3
THAT 4
LOOP 4
STOP 18

i 16
sum 17

Symbol table

Second pass: Generates binary code; In the
process, adds the variable symbols to the table

(details, soon)

Symbolic code
// Computes R1=1 + ... + R0

// i = 1
@i
M=1
// sum = 0
@sum
M=0

(LOOP)
// if i>R0 goto STOP
@i
D=M
@R0
D=D-M
@STOP
D;JGT
// sum += i
@i
D=M
@sum
M=D+M
// i++
@i
M=M+1
@LOOP
0;JMP

(STOP)
@sum
D=M
...

Initialization:
Creates the table and adds the
predefined symbols to the table

First pass: Counts lines and adds
the label symbols to the table

A data structure that the
assembler creates and uses
during the program translation

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 42

• Overview

• Translating instructions

• Translating programs

• Handling symbols

Lecture plan

• Assembler architecture

• Assembler API

• Project 6

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 43

Input (Prog.asm): a text file containing a
sequence of lines, each being a string
representing a comment, an A-instruction,
a C-instruction, or a label declaration

Output (Prog.hack): a text file containing
a sequence of lines, each being a string
of sixteen 0 and 1 characters

Assembler: Usage

Usage: (if the assembler is implemented in Java)

$ java HackAssembler Prog.asm

Action: Creates a Prog.hack file, containing the translated Hack program.

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 44

Assembler: Algorithm

Assembler implementation options

• Manual

• Program-based

Initialize
Opens the input file (Prog.asm),
and gets ready to process it
Constructs a symbol table,
and adds to it all the predefined symbols

First pass
Reads the program lines, one by one,
focusing only on (label) declarations.
Adds the found labels to the symbol table

Second pass (main loop)
(starts again from the beginning of the file)
While there are more lines to process:

Gets the next instruction, and parses it
If the instruction is @ symbol

If symbol is not in the symbol table, adds it to the table
Translates the symbol to its binary value

If the instruction is dest =comp ; jump
Translates each of the three fields into its binary value

Assembles the binary values described above into a string of sixteen 0’s and 1’s
Writes the string to the output file.

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 45

Assembler: Architecture

Parser Code SymbolTable

reads and parses
an instruction

generates
binary codes

handles
symbols

Proposed architecture
• Four software modules
• Can be realized in any programming language

HackAssembler
drives the
translation process

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 46

HackAssembler

The HackAssembler
implements this
assembly algorithm,
using the services of:

• Parser

• Code

• SymbolTable

Initialize:
Opens the input file (Prog.asm) and gets ready to process it
Constructs a symbol table, and adds to it all the predefined symbols

First pass:
Reads the program lines, one by one
focusing only on (label) declarations.
Adds the found labels to the symbol table

Second pass (main loop):
(starts again from the beginning of the file)
While there are more lines to process:

Gets the next instruction, and parses it

If the instruction is @ symbol

If symbol is not in the symbol table, adds it to the table
Translates the symbol into its binary value

If the instruction is dest =comp ; jump
Translates each of the three fields into its binary value

Assembles the binary values into a string of sixteen 0’s and 1’s
Writes the string to the output file.

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 47

Assembler API

Parser Code SymbolTable

reads and parses
an instruction

generates
binary codes

handles
symbols

HackAssembler drives the
process

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 48

Routines

• Constructor / initializer: Creates a Parser and opens the source text file

• Getting the current instruction:
hasMoreLines(): Checks if there is more work to do (boolean)
advance(): Gets the next instruction and makes it the current instruction (string)

• Parsing the current instruction:
instructionType(): Returns the current instruction type, as a constant:

A_INSTRUCTION for @ xxx, where xxx is either a decimal number or a symbol
C_INSTRUCTION for dest= comp; jump
L_INSTRUCTION for (label)

Parser API

D=0

(END)

instructionType() returns C_INSTRUCTION

instructionType() returns L_INSTRUCTION

@17 instructionType() returns A_INSTRUCTIONExamples:
current instruction

@sum instructionType() returns A_INSTRUCTION

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 49

Routines

• Constructor / initializer: Creates a Parser and opens the source text file

• Getting the current instruction:
hasMoreLines(): Checks if there is more work to do
advance(): Gets the next instruction and makes it the current instruction

• Parsing the current instruction:
instructionType(): Returns the instruction type

Parser API

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 50

Routines

• Constructor / initializer: Creates a Parser and opens the source text file

• Getting the current instruction:
hasMoreLines(): Checks if there is more work to do
advance(): Gets the next instruction and makes it the current instruction

• Parsing the current instruction:
instructionType(): Returns the instruction type
symbol(): Returns the instruction’s symbol (string)

Used if the current instruction is
@ symbol or (symbol)

Parser API

Examples:
current instruction

@sum

(LOOP)

symbol() returns "sum"

symbol() returns "LOOP"

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 51

Routines

• Constructor / initializer: Creates a Parser and opens the source text file

• Getting the current instruction:
hasMoreLines(): Checks if there is more work to do
advance(): Gets the next instruction and makes it the current instruction

• Parsing the current instruction:
instructionType(): Returns the instruction type
symbol(): Returns the instruction’s symbol (string)

Parser API

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 52

Routines

• Constructor / initializer: Creates a Parser and opens the source text file

• Getting the current instruction:
hasMoreLines(): Checks if there is more work to do
advance(): Gets the next instruction and makes it the current instruction

• Parsing the current instruction:
instructionType(): Returns the instruction type
symbol(): Returns the instruction’s symbol (string)
dest(): Returns the instruction’s dest field (string)
comp(): Returns the instruction’s comp field (string)
jump(): Returns the instruction’s jump field (string)

Used if the current instruction is
dest=comp; jump

Parser API

D=D+1;JLEExamples:
current instruction

dest() returns "D" comp() returns "D+1" jump() returns "JLE"

M=-1 dest() returns "M" comp() returns "-1" jump() returns null

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 53

Implementation

Parser Code SymbolTable

reads and parses
an instruction

generates
binary code

handles
symbols

HackAssemblerdrives the
process

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 54

Deals only with C-instructions: dest = comp ; jump

Routines:
dest(string): Returns the binary representation of the parsed dest field (string)
comp(string): Returns the binary representation of the parsed comp field (string)
jump(string): Returns the binary representation of the parsed jump field (string)

According to the language specification:

CodeAPI

dest("DM") returns "011"

Examples:

comp("A+1") returns "0110111"

comp("D&M") returns "1000000"

jump("JNE") returns "101"

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 55

Implementation

Parser Code SymbolTable

reads and parses
an instruction

generates
binary code

handles
symbols

HackAssemblerdrives the
process

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 56

Routines

Constructor / initializer: Creates and initializes a SymbolTable

addEntry(symbol (string), address (int)): Adds <symbol, address> to the table (void)

contains(symbol (string)): Checks if symbol exists in the table (boolean)

getAddress(symbol (string)): Returns the address (int) associated with symbol

Symbol
table:

(example)

SymbolTable API

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 57

Parser Code SymbolTable

reads and parses
an instruction

generates
binary code

handles
symbols

HackAssemblerdrives the
process

HackAssembler: Drives the translation process

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 58

Assembler API (detailed)

58

Parser module:

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 59

Code module:

SymbolTable module:

HackAssembler module:

Implement the main program as you see fit.

Assembler API (detailed)

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 60

• Overview

• Translating instructions

• Translating programs

• Handling symbols

Chapter 6: Assembler

• Assembler architecture

• Assembler API

• Project 6

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 61

Developing a Hack Assembler
Contract

Develop a program that translates symbolic Hack programs into binary Hack instructions

The source program (input) is supplied as a text file named Prog.asm

The generated code (output) is written into a text file named Prog.hack

Assumption: Prog.asm is error-free

Usage (if the assembler is implemented in Java):

$ java HackAssembler Prog.asm

Staged development plan

1. Develop a basic assembler that translates programs that have no symbols

2. Develop an ability to handle symbols

3. Morph the basic assembler into an assembler that translates any program.

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 62

Testing

// Computes R1 = 1 + ... + R0
// i = 1
@i
M=1
// sum = 0
@sum
M=0

(LOOP)
// if i > R0 goto STOP
@i
D=M
@R0
D=D-M
@STOP
D;JGT
...

0000000000010000
1110111111001000
0000000000010001
1110101010001000
0000000000010000
1111110000010000
0000000000000000
1111010011010000
0000000000010010
1110001100000001
0000000000010000
1111110000010000
0000000000010001
1111000010001000
0000000000010000
...

Prog.hackProg.asm

Your
assembler

Load /
Run

Test programs
• Add.asm
• Max.asm

• Rect.asm

• Pong.asm

(same programs, without symbols,
for unit-testing the basic assembler)

(with symbols)

• MaxL.asm

• RectL.asm

• PongL.asm

CPU
Emulator

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 63

Testing

// Computes RAM[0] =
// 2 + 3

@2
D=A
@3
D=D+A
@0
M=D

Add.asm

Testing on the CPU emulator:
1. Translate Add.asm

using your assembler
2. Load the translated Add.hack
3. Run the code, inspect R0.

Note: When loading a binary Prog.hack file into the CPU emulator, the
emulator may translate it back to symbolic code (depending on the
emulator’s version).
To inspect the binary code, select “binary” from the ROM menu.

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 64

Testing

// Computes RAM[2] =
// max(RAM[0],RAM[1])

@R0
D=M
@R1
D=D-M
@OUTPUT_RAM0
D;JGT

// Output RAM[1]
@R1
D=M
@R2
M=D
@END
0;JMP

(OUTPUT_RAM0)
@R0
D=M
@R2
M=D

(END)
@END
0;JMP

Max.asm

Testing on the CPU emulator:
Translate and load, then:
Put test values in R0 and R1,
run the code, inspect R2.

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 65

Testing

// Computes RAM[2] =
// max(RAM[0],RAM[1])

@R0
D=M
@R1
D=D-M
@OUTPUT_RAM0
D;JGT

// Output RAM[1]
@R1
D=M
@R2
M=D
@END
0;JMP

(OUTPUT_RAM0)
@R0
D=M
@R2
M=D

(END)
@END
0;JMP

Max.asm

with symbols without symbols

// Computes RAM[2] =
// max(RAM[0],RAM[1])

@0
D=M
@1
D=D-M
@12
D;JGT

// Output RAM[1]
@1
D=M
@2
M=D
@16
0;JMP

@0
D=M
@2
M=D

@16
0;JMP

MaxL.asm

For unit-testing the
basic assembler

(Each symbol was
replaced with its value)

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 66

Testing

// Draws a rectangle.
@R0
D=M
@n
M=D
@i
M=0

@SCREEN
D=A
@address
M=D

(LOOP)
@i
D=M
@n
D=D-M
@END
D;JGT
...

Rect.asm

Draws a rectangle, 16 pixels wide and R0 lines high

Testing on the CPU emulator:
Translate and load, then:
Put a non-negative value in R0,
run the code, inspect the screen.

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 67

Testing

// Draws a rectangle.
@0
D=M
@16
M=D
@17
M=0

@16384
D=A
@18
M=D

(LOOP)
@17
D=M
@16
D=D-M
@27
D;JGT
...

RectL.asm

without symbols

// Draws a rectangle.
@R0
D=M
@n
M=D
@i
M=0

@SCREEN
D=A
@address
M=D

(LOOP)
@i
D=M
@n
D=D-M
@END
D;JGT
...

Rect.asm

with symbols

For unit-testing the
basic assembler

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 68

Testing

// Pong.asm
@256
D=A
@SP
M=D
@133
0;JMP
@R15
M=D
@SP
AM=M-1
D=M
A=A-1
D=M-D
M=0
@END_EQ
D;JNE
@SP
A=M-1
M=-1
(END_EQ)
@R15
A=M
...

Pong.asm

Translate and load, and then play the game:
Select “no animation”, set the speed slider to “fast”, and run the code.
Move the paddle using the left- and right-arrow keys.

Pong game

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 69

Testing

// Pong.asm
@256
D=A
@SP
M=D
@133
0;JMP
@R15
M=D
@SP
AM=M-1
D=M
A=A-1
D=M-D
M=0
@END_EQ
D;JNE
@SP
A=M-1
M=-1
(END_EQ)
@R15
A=M
...

Pong.asm
Background
The original Pong program was written in the high-level Jack language
The computer’s operating system is also written in Jack
The Pong code + the OS code were compiled by the Jack compiler,
creating a single Pong.asm file

The compiled code (Pong.asm) has compiler-generated addresses and
symbols (which may be hard to read).

28,374 instructions

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 70

Testing option II: Using the hardware simulator

1. Use your assembler to translate Prog.asm, generating the executable file Prog.hack

2. Put the Prog.hack file in a folder containing the chips that you developed in project 5:
Computer.hdl, CPU.hdl, and Memory.hdl

3. Load Computer.hdl into the Hardware Simulator

4. Load Prog.hack into the ROM32K chip-part

5. Run the clock to execute the program.

Nand to Tetris / www.nand2tetris.org / Chapter 6 / Copyright © Noam Nisan and Shimon Schocken Slide 71

Testing option III: Using the supplied assembler

Source
Prog.asm
test file

Prog.hack file,
translated by your

assembler

Prog.hack file,
translated by the

supplied assembler

1. Use your assembler to translate Prog.asm, generating the executable file Prog.hack

2. Load Prog.asm into the supplied assembler, and load Prog.hack as a compare file
3. Translate Prog.hack, and inspect the comparison feedback messages.

