From Nand to Tetris

Building a Modern Computer from First Principles

Chapter 3

Memory

These slides support chapter 3 of the book
The Elements of Computing Systems
(15t and 2 editions)

By Noam Nisan and Shimon Schocken
MIT Press

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 1

assembler

Nand to Tetris Roadmap: Hardware

abstraction

machine
language

[y

abstraction

computer

Building a
computer

o

>

abstraction

ALU, RAM |

Building
chips

hardware platform \

' abstraction

Building

elementary
logic gates

gates
=

/

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 2

Nand to Tetris Roadmap: Hardware

abstraction

machine
language

assembler

[y

abstraction

computer

Building a
computer

o

>

abstraction

ALU, RAM |

Building
chips

hardware platform \

' abstraction

Building

elementary
logic gates

gates
—_— @o
®

/

Project 1: Build basic logic gates

Project 2: Build the ALU

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 3

Nand to Tetris Roadmap: Hardware

abstraction
machine .)
language This lecture / chapter / project:
Build the computer’s Memory system
assembler P y sy
/ v L hardware platform \
abstraction | Buildinga
computer
computer P abstraction Building
chips o
ALU, RAM | ' abstraction Building

o

elementary

O lement
e ogic gates

gates
—_— @o
®

/

Project 1: Build basic logic gates

Project 2: Build the ALU

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 4

A common theme 1n computer science

* We present a simple model (the simpler, the better)
* We explore the model’s power:

o What the model can do

o What it cannot do

* We then extend the model, to make it more powerful

Case in point:

Logic gates.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 5

Logic gates

Model: And, Or, Not, ...

* Simple, and powerful:

Logic gates can realize any Boolean function, and can be combined to form
powerful chips, like an ALU

* But, as a general model of computation, logic gates fall short

Limitations

* Logic gates cannot store information (bits) over time
* Feedback loops are not allowed: A chip’s output cannot serve as its input

* Logic gates can handle only inputs of a fixed size.
For example, we can build an Or3 gate, and an Or4 gate, and so on, but we
cannot build a single gate that computes Or for any given number of inputs

Extension

Allow logic gates to be sensitive to the progression of time.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 6

Time-independent logic

So far we i1gnored time
* The chip’s inputs were just “sitting there” — fixed and unchanging

* The chip’s output was a function (“combination”) of the current inputs,
and the current inputs only

* This style of gate logic is sometimes called: +
me-i / 0101
o time-independent logic l
o combinational logic
1101
* All the chips that we discussed
and developed so far were combinational 1000
—

ALU: The “topmost”
combinational chip

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 7

Hello, time

Software needs:

* The hardware must be able to
remember things, over time:

* The hardware must be able to do

things, one at a time (sequentially):

Hardware needs:

* The hardware must handle
the physical time delays
associated with computing
and moving data from one
chip to another.

Example (variables):

X =17

Example (iteration):

for i in range(9, 10):
print(i)

i R —
i ! T
gl QJ" BHTRS :
| ; O~y
|

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 8

Hello, time

Software needs:

Example (variables):

 The hardware must be able to
remember things, over time:

X =17

Example (iteration):

* The hardware must be able to do

things, one at a time (sequentially): for 1in range(®, 16):

print(i)
Hardware needs: +
* The hardware must handle l
: : 5
the physical time delays —
associated with computing
. Now compute 13
and moving data from one
. 7+11 ..
chip to another.
8
—

It will take some time before 7 and 11 will settle down in
the input ports, and before the sum 7 + 11 will stabilize.
Till then, the ALU will output nonsense.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 9

Hello, time

Solution: We can neutralize the time delays if we decide to use discrete time

tick
Clock:
tock

time-step:

Chip’s input:

Chip’s output:

@)

f(b)

cycle length

f()

f(d)

fle)

As 1t turns out, the
clock can also be used
to help implementing
chips that behave like
memory devices.

» Set the cycle length to be slightly > than the maximum time delay, and...

* Decide to use the chips’s outputs only at the end of cycles (time-steps),
ignoring what happens within cycles

e Details later.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 10

Memory

Memory: The faculty of the brain by
which data or information 1s encoded,
stored, and retrieved when needed.

It 1s the retention of information over
time for the purpose of influencing
future action (Wikipedia)

Memory is time-based:

o

7 i1

G AT ;
od a e
Jorita

I kA VAL
OIS () g

We remember now what was

committed to memory earlier. t's a poor sort o memo?
tﬁat 01’1[\/ WOTES acﬁwar S.

-Lewis Carroll, through the White Queen

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 11

11

Memory

load Basic abstractions:
in out . - ey
, .‘ - | | * “Loading” a value
16 16 (44 : 29
* “Storing” a value
1 2 3 4 5 6 7...205206 207 208 209 210 211 ... m

x=17, 17, 17, 17, 17, 17, 17, ...,

(cycles)

loading storing
x= 21,21, 21, 21, 21, 21, 21, ..

loading storing

The challenge: Building chips that realize this functionality.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 12

Memory

RAM

0 | Register

. J

1 | Register

Data I-bit multi-bit L J
Flip-Flop register register ces

D » - » Bl't)(Bit]-- [Blt]] » n-1| Register |
Register RAMN

The challenge: Building chips that realize this functionality.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 13

Chapter 3: Memory

Abstraction Implementation

* Representing time Data Flip Flop

* Clock * Registers

* Registers « RAM

« RAM * Project 3: Chips

* Counters * Project 3: Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 14

Chapter 3: Memory

Abstraction

» Representing time

Clock

Registers

RAM

Counters

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 15

Chip behavior over time (example: Not gate)

physical . Arrow of time:
time: Continuous
clock: Discrete time:

) Design decision:

Track state changes only
when advancing from

time: 1 2 3

4 5 one time-step to another
(arbitrary g ,_
values)
i oin & out
out: 1 e
(Not(in)) © .
(example)

Desired / idealized behavior of the in and out signals:

That’s how we want the hardware to behave

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 16

Chip behavior over time (example: Not gate)

physical . Arrow of time:
time: Continuous
clock: Discrete time:

0 _ _ Design decision:

Track state changes only
when advancing from

time: 1 2 3 4 5 one time-step to another
in: 1

(arbitrary g

values)

in @ out

out: 1

Not(i (%]

Horen) (example)

Actual behavior of the in and out signals:

Influenced by physical time delays

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 17

Chip behavior over time (example: Not gate)

physical Arrow of time:
time: Continuous

clock: (\

Discrete time:
0 _ _ Design decision:
: : : : : : Track state changes only

: : : : : when advancing from
time: 1 2 3 4 5 o \OHC time-step to another

_/

in: 1
(arbitrary g
values)

in = out
out:

(Not(in)) ©

(example)

Time delays

Cycle length

* Propagation delays * Design parameter

* Computation delays * Set to be slightly > max(time delays)

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 18

Chip behavior over time (example: Not gate)

physical . Arrow of time:

time: Continuous

clock: (Dlscrete time: N
0 _ _ Design decision:

Track state changes only
when advancing from

time: 1 2 3 4 5 \One time-step to another)
(arbitrary g
values)
i oin & out
out: 1 : e
Not(in) ©
(Not(in)) : examie

Resulting effect:

* Combinational chips react “immediately” to their inputs

 Facilitated by the decision to track changes only at cycle ends

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 19

Chapter 3: Memory

Abstraction

v Representing time

#Clock

* Registers
« RAM

e Counters

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 20

Clock: Simulated implementation

clock:
time: 1 2 3 4 5

Interactive simulation

Script-based simulation

A clock icon can be used to generate a
sequence of tick-tock signals:

“tick” and “tock” commands

can be used to advance the clock:
9, 0+, 1, 1+, 2, 2+, 3, 3+, ...

// Sets inputs, advances the clock, and

TN
mO>DEL D wdl // writes output values as it goes along.

set in 19
Chip Nam... DRegister (Clocked) Time: 12 g

set load 1,
tick,

HW Simulator output,
tock,
output,
tick, tock,
output,

Clock demo

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 21

in

Clock: Physical implementation

clock:

time: 1 2 3 4 5

Physical clock

* An oscillator 1s used to deliver an ongoing train of “tick/tock” signals

“l1 MHz electronic oscillator circuit which uses the
resonant properties of an internal quartz crystal to
control the frequency. Provides the clock signal for
digital devices such as computers.” (Wikipedia)

* The oscillator’s output is connected to all the time-based (clocked) chips in the computer

lload

Register
A w A triangle icon represents a clock signal input

out . . .
Chip diagram convention:

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 22

Chapter 3: Memory

Abstraction

v Representing time

e Counters

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 23

Combinational logic / Sequential logic

C . . clock:
Combinational logic: 0
The output depends time: 1 2 3 E 3
on the current inputs
The clock is used to in: a b c | d e

stabilize outputs l l l l l

out: | f@ | (B | fl© | f@ | fe

Sequential logic: dock:

The output depends on: :

* Previous inputs time: 1 2 3 4 5

* Current inputs (optionally) |

in: a | b c | d e

This behavior can be used \ i \\ i \ i \ i
to build chips designed to H H .
maintain state: Registers. out:

flab) f(be) fled) flde)

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 24

Registers

Input

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

CPU
Memory
(many
registers)

Registers

Computer Architecture

Output

Slide 25

Registers

lload

in out
Register
w /\ w
1-bit register multi-bit register

Designed to:

* “Store” / “remember” / “maintain” / “persist” a value , until...

e “Instructed” to “load”, and then “‘store”, another value.

v

time:
x=17,17,17,17,17, 17,17, ..., 17

x=21,21,21,21, 21,21, ..,21

loading maintaining state

loading maintaining state

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 26

1-Bit Register

if load(z—1) then out(¢) =in(z—1)
else out(?) =out(z—1)

time: 1 2 3 4 5 6 7 8

load:

examples
of arbitrary <
input values

\in:@ \

N AN
L .
out.@ K)k)k]

A A

Resulting behavior: “loading” “storing” “loading” “storing”

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 27

1-Bit Register

if load(z—1) then out(¢) =in(z—1)

else out(f) =out(z—1)
Usage: To read:
probe out (out always emits the register’s state)
To write:
set in=v Result: The register’s state becomes v;
set load =1 From the next time-step onward, out will emit v

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 28

Multi-bit Register

iload
. . | |
. Register > if load(7—1) then out(#) = in(¢—1)
W A w else out(?) =out(t—1)

We’ll focus on word width w = 16,
without loss of generality

Load / store behavior: Exactly the same as a 1-bit register

Read / write usage: Exactly the same as a 1-bit register

HW Simulator

Register demo

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 29

Chapter 3: Memory

Abstraction

v Representing time

\/ Clock

v Registers

) RAM

e Counters

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 30

Computer architecture

Input

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

‘ Registers l

Output

Slide 31

RAM

lload

in

——>

w

address

k

RAMn

0 [Register

]

1 [Register

J

n-1 [Register

JAN

out

7

>

Practice question:

Suppose that the RAM size n = 8 registers.

What should be the value of £?

Answer:

k=log,n

Abstraction: A sequence of n addressable, w-bit registers, with addresses 0 to n-1

Word width: Typically 16, 32, 64 bits (Hack computer: w = 16)

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 32

RAM

lload

RAT Behavior
in 0 [Register]
—<—) If 1load == @, the RAM maintains its state
w
1 [Register] Olit > If load==1, RAM[address] is set to the value of in
7
address w The loaded value will be emitted by out from the
TD . next time-step (cycle) onward, until the next load
. (Only one RAM register is selected;
n-1 [Register] All the other registers are not affected)
JAN

Usage: To read register i :
set address =,
probe out (out always emits the value of RAM[1])

To write v in register i :

set address = I,
set in = v, Result: RAM[I] ¢« Vv

set load = 1 From the next time-step onward, out will emit v

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 33

RAM

lload

in
——— b

w

address

k

RAMn

0[Register]

1[Register]

n—1[Register]

JAN

Why “Random Access Memory’?

Irrespective of the RAM size (n),

every randomly selected register can be
accessed “instantaneously”,

at more or less the same speed.

HW Simulator

RAM chip demo

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 34

Chapter 3: Memory

Abstraction

v Representing time

\/ Clock

v Registers

» Counters

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 35

Computer architecture

Input

‘ Registers I

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Output

One of the CPU
registers acts as a
“program counter”

Slide 36

Counter

Later in the course (chapter 5), we will see that the computer must
keep track of which instruction should be fetched and executed next

This task is regulated by a register typically called Program Counter

We’ll use the pc to store the address of the instruction that should be
fetched and executed next

The pc should support three abstractions:

Reset: fetch the first instruction PC = ©
Next: fetch the next instruction PC++
Goto: fetch instruction n PC = 1

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 37

Counter

load inc reset

. ¢ ¢ ¢ if r'e.set(t) out(t+1) = 0
in out else if load(#) out(f+1) = in(¢)
16 PC (counter) 16 else if inc(?) out(f+1) = out(?) + 1
A else out(t+1) = out(?)
Usage: To read:
probe out
To set:
set in to v,
assert load,
set the other control bits to @ .
HW Simulator

To reset:

assert reset,
set the other control bits to 0

To count:

assert inc, .
set the other control bits to © PC chip demo

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 38

Chapter 3: Memory

Abstraction

Representing time

Clock

Y

Registers

RAM

Counters

Implementation

Data Flip Flop

Registers

RAM

Project 3: Chips

Project 3: Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 39

Chapter 3: Memory

Implementation

» Data Flip Flop

* Registers

« RAM
* Project 3: Chips

* Project 3: Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 40

DFF

Data Flip Flop (aka lazch)

The most elementary sequential in out . ' |
gate: Outputs the input in the DFF out(?) =in(z-1)
previous time-step A

time: 1 2 3 4 5 6 7
fexa]ljrpples { in: 1
t :
TR TN AR

out:

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 41

From DFF to a 1-bit register

Data Flip Flop (aka lazch)

The most elementary sequential

in out .
gate: Outputs the input in the DFF out(#) =in(¢-1)
previous time-step A
time: 1 2 3 4 5 6 7 8

oy 4 N N N
LR N
RN N N N o

out:

How can we “load” and then “maintain” a value (0 or 1) over time,
without having to feed the value in every cycle?

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 42

From DFF to a 1-bit register

= DFF out out(?) =1in(1—1)

/\

We have to realize a “loading” behavior and a “’storing” behavior,
and be able to select between these two states

How can we “load” and then “maintain” a value (0 or 1) over time,
without having to feed the value in every cycle?

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 43

From DFF to a 1-bit register

‘ : if load(z—1) then
: out(t) =in(t—1)

1-bit Register

Stores one bit in
over time

» clse
out(?) =out(t—1)

Mux DFF

C

out

We have to realize a “loading” behavior and a “’storing” behavior,
and be able to select between these two states

Behavior

if load == 1 the register’s value becomes in

else the register maintains its current value

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 44

Register

load
— D
. . if load(z—1) then
1-bit Register out (1) = in(r1)
Stores one bit in Bit —— clse
over time ou out(?) = out(t—1)

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 45

Register

) _ load if load(z—1) then
1-bit Register . . out (1) = in(r1)
Stores one bit m else
over time out(#) =out(f—1)

Z0Om out...

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 46

Register

. . load
1-bit Register

) in out
Stores one bit A

over time
lload
. . . load load load
W_blt Rengter: n in . out in out in out out
. I T
Stores w bits W A A A W
over time A

Partial diagram, showing
some of the chip-parts,
without connections

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

if load(z—1) then
out(t) =in(t—1)
else
out(?) =out(t—1)

Slide 47

Chapter 3: Memory

Implementation

J Data Flip Flop

J Registers
) RAM

* Project 3: Chips

* Project 3: Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 48

Memory hierarchy

/Random Access Memory\

0 | Register
Regist |
Data L-bit 1 | Register |
Flip-Flop register 16-bit register voe

O = D e &g w| |- (e
DFF Bit Register \ RAMn /

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 49

RAM: Abstraction

load
RAM of n l
registers: RAMn
in 0 [Register]
—FP
Y 1 [Register out
g — >
address w
+>k .
n-1 [Register]
A

Usage: To read register i :
set address =,

probe out (out always emits the state of RAM[1])

To write v in register i :

set address = I,
set in = v, Result: RAM[I] ¢« Vv

set load = 1 From the next time-step onward, out emits v

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 50

RAM: Implementation

RAM of n
. ¢ load
registers:
in _ out
. Register]7;,
in A W
7) ¢ load
w
in Reqist out
load . . egister [. p
> ux /\ w
(1ton)
address)
— ¢ load
k in out
Register | .3
w /\ w
A

Partial diagram,
showing some of
the chip-parts,
without
connections

Mux out
(nto 1) 7 .

Reading: Can be realized using a Mux

Writing: Can be realized using a DMux

Connections?

You figure it out

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 51

RAM: Implementation

RAM of n
. ¢ load
registers:
in _ out
. Register]7;;
in A W
7 ’ ¢ load
w
in Reqist out
eqister - »
load DMUX w /\ w MUX
I (1 to n) (n to 1)
address *
— ¢ load
k in out
Register | .3
W /\ W
JAN
Observations

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Partial diagram,
showing some of
the chip-parts,
without
connections

out

e The addressing/selection/reading logic is combinational

e The writing logic is (1) sequential (clocked)

(i1) embedded in the Register logic.

Slide 52

RAM: Implementation

RAM64

RAM8

RAMS
[Register]
[Register]
[Register]

RAM8

RAM8

RAM512

4)
RAM64

\- J

4)
RAM64

- J
RAM64

Same technique can be
used to implement RAM
devices of any size

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 53

Hack RAM

lload

in
16

address

RAMn

0 [Register

1 [Register

n-l[Register

JAN

out

16

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

A family of 16-bit RAM chips:

chip name n k
RAM8 8 3
RAM64 64 6
RAM512 512 9

RAMAK 4096 12

RAM16K | 16384 14

Why these particular RAM chips?

Because that’s what we need for
building the Hack computer.

Slide 54

Chapter 3: Memory

Implementation

J Data Flip Flop

* Project 3: Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 55

Project 3

Given:
 All the chips built in projects 1 and 2
 Data Flip-Flop (built-in prr gate)

Build:
mm) Bit

* Register

* PC

* RAMS8

* RAM64

* RAM512

* RAM4K

* RAM16K

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 56

1-bit Register

Bit.hdl
load /** 1-bit register:
if load(t—1) then out(t) = in(t—1)
— _ %
in | out else out(t) = out(t—1)) */
Bit ’ CHIP Bit {
/\ IN in, load;
OUT out;
PARTS:
// Put your code here:
}
load
. Implementation tip:
L Mux DFF : > . .
in § . R | out Follow the chip diagram

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 57

16-bit Register

Register.hdl
/** 1-bit register:
Load if load(t—1) then out(t) = in(t—1)
in out else out(t) = out(t—1)) */
Register
16 16 CHIP Bit {
A IN in[16], load;
OUT out[16];
PARTS:
// Put your code here:
}
lload
. load load load M :
in | | & ” . _|out Implementation tip:
SCE CL) o
16 A A A 16 Follow the chip diagram

A

Partial diagram, showing some of
the chip-parts, without connections

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 58

16-bit Counter

load 1inc reset [x*
. ¢ ¢ ¢ A 16-bit counter with control bits.
1n out if reset(t— 1) out(t) =0 // resetting
P PC (counter) e else if load(t—1) out(t)=in(t— 1) // setting
A else if inc(t—1) out(t)=out(t— 1)+ 1 //incrementing
else out(t) = out(t— 1) // maintaining

*/
CHIP PC {

IN in[16], load, inc, reset;
OUT out[16];

PARTS:
// Put your code here:

Implementation tip: Can be built from a Register, an Incrementer, and Mux’s

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 59

Project 3

Given
 All the chips built in projects 1 and 2
 Data Flip-Flop (built-in DFF gate)

Build the following chips
v’ Bit
/ Register

v’ PC

» RAMS

* RAM64

* RAM512
* RAM4K

* RAM16K

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 60

8-Register RAM: Abstraction

lload

RAM~n
in [Register
—FF >
16 [Register out
g <)
address . 16
+> []
3
[Register
JAN

RAM8.hd1

/*

Let M stand for the state of the register
selected by address.

if load(t— 1) then {M = in(t), out(t) = M}
else out(t)=M

*/
CHIP RAM8 {

IN in[16], load, address[3];
OUT out[16];

PARTS:
// Put your code here:

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 61

8-Register RAM: Implementation

in

16

load

address

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

¢ load

in _ out
Register - »
16 A 16
¢ load
in _ out
Register [-
DMux 16 A 16
(1t0 8)

load

in _ out
Register | .3
16 A 16

A

Mux
(8 to 1)

out

16

Partial diagram, showing some of the chip-parts, without connections

Implementation tip:

Follow the chip diagram

Slide 62

Project 3

Given
 All the chips built in projects 1 and 2
 Data Flip-Flop (built-in DFF gate)

Build the following chips
v’ Bit
v Register
v’ PC
v rRAME

* RAM64

¢ RAM512 > A family of RAM chips

* RAM4K

* RAM1l6K _

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 63

n-Register RAM

lload

RAMn
in [Register]
—FF >
16 [Register] out
g <)
address . 16
+> []
k .
[Register]
JAN

RAM~n.hdl

/*
Let M stand for the state of the register
selected by address.
if load(t— 1) then {M = in(t), out(t) = M}
else out(t)=M
*/
CHIP RAMn {
IN in[16], load, address[k];
OUT out[16];

PARTS:
// Put your code here:

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 64

n-Register RAM

lload

RAMn
in [Register]
—>
16 [Register] out
g .)
address . 16
——> .
k .
[Register]
A

Implementation tips

* Think about the RaM’s address input
as consisting of two fields:

— One field selects a ram-part;

— The other field selects a register
within that ram-part

» Use logic gates to effect this
addressing scheme.

chip name n k
RAMS 8 3
RAM64 64 6
RAM512 512 9
RAM4K 4096 12
RAM16K 16384 14
RAM64
)
RAM8
| —
RAM8 —
RAM8
|
I:> -
:)
RANS

RAM512

RAM64

RAM64

| RAM64

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Chapter 3: Memory

Implementation

J Data Flip Flop

J Registers
 RAM
{ Project 3: Chips

- Project 3: Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 66

Project 3

www.nand2tetris.org

Project 3: Sequential Chips

| Background

The computer's main memory, also called Random Access Memory, or RAM, is an addressable sequence of n-bit
registers, each designed to hold an n-bit value. In this project you will gradually build a RAM unit. This involves two
main issues: (i) how to use gate logic to store bits persistently, over time, and (ii) how to use gate logic to locate
("address”) the memory register on which we wish to operate.

| Objective

Build all the chips described in Chapter 3 (see list below), leading up to a Random Access Memory (RAM) unit. The
only building blocks that you can use are primitive DFF gates, chips that you will build on top of them, and chips
described in previous chapters.

| Chips
Chip (HDL) Description Test script Compare file
DFF Data Flip-Flop (primitive)
Bit 1-bit register Bit.tst Bit.cmp
Register 16-bit register Register.tst Register.cmp All the necessary pI'OjGC'[3
RAM8 16-bit / 8-register memory RAMB.tst RAM8.cmp files are available in:
RAM64 16-bit / 64-register memory RAM64.tst RAM64.cmp
RAM512 16-bit / 512-register memory ~ RAMS512.tst RAM512.cmp nand2tetris / projects / 03
RAM4K 16-bit / 4096-register memory ~ RAM4K.tst RAM4K.cmp
RAM16K 16-bit / 16384-register memory RAM16K.tst RAM16K.cmp
PC 16-bit program counter PC.tst PC.cmp

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 67

Resources

Project 3 folder (.hdl, .tst, .cmp ﬁles): nand2tetris/projects/03

Tools

* Text editor (for completing the given .hd1 stub-files)

e Hardware simulator: nand2tetris/tools

Guides
 Hardware Simulator Tutorial
« HDL Guide

e Hack Chip Set API

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 68

https://b1391bd6-da3d-477d-8c01-38cdf774495a.filesusr.com/ugd/44046b_02055f8bb5ac47648c0ab642f01c1919.pdf
https://drive.google.com/file/d/1dPj4XNby9iuAs-47U9k3xtYy9hJ-ET0T/view
https://drive.google.com/file/d/1IsDnH0t7q_Im491LQ7_5_ajV0CokRbwR/view

Best practice advice

* You will have to use chips implemented in previous projects;

For efficiency and consistency’s sake, use their built-in versions, rather than your
own HDL implementations.

For technical reasons, the chips of project 3 are organized in two sub-folders
named projects/03/a and projects/03/b

When writing and simulating the .nd1 files, leave this folder structure as is.

That’s It!
Go Do Project 3!

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 69

Chapter 3: Memory

Abstraction Implementation

* Representing time Data Flip Flop
{ * Clock * Registers

* Registers { « RAM

« RAM * Project 3: Chips

* Counters * Project 3: Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 70

assembler

What’s next?

abstraction

machine
language

[y

abstraction

computer

Building a
computer

o

abstraction

ALU, RAM |

Building
chips

hardware platform \

' abstraction

Building

elementary
logic gates

gates
=

/

This lecture / chapter / project:
Build the computer’s RAM

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 71

assembler

What’s next?

abstraction

machine
language

-~

o

abstraction | Buildinga
computer
>
computer 0

abstraction

ALU, RAM |

Building
chips

hardware platform \

' abstraction

Building

elementary
logic gates

gates
=

/

Next lecture / chapter / project:

* Get acquainted with the computer architecture

* Write machine language programs

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken

Slide 72

