
Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 1

Chapter 3

Memory

From Nand to Tetris
Building a Modern Computer from First Principles

These slides support chapter 3 of the book
The Elements of Computing Systems

(1st and 2nd editions)
By Noam Nisan and Shimon Schocken

MIT Press

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 2

hardware platform

computer

abstraction

ALU, RAM

abstraction

elementary
logic gates

abstraction

Nand

Building
gates

Building
chips

Building a
computer

Nand to Tetris Roadmap: Hardware

abstraction

assembler

machine
language

p1

p3

p2

p4

p5

p6

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 3

hardware platform

computer

abstraction

ALU, RAM

abstraction

elementary
logic gates

abstraction

Nand

Building
gates

Building
chips

Building a
computer

Nand to Tetris Roadmap: Hardware

abstraction

assembler

machine
language

p1

p3

p2

p4

p5

p6

Project 1: Build basic logic gates
Project 2: Build the ALU

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 4

hardware platform

computer

abstraction

ALU, RAM

abstraction

elementary
logic gates

abstraction

Nand

Building
gates

Building
chips

Building a
computer

Nand to Tetris Roadmap: Hardware

abstraction

assembler

machine
language

p1

p3

p2

p4

p5

p6

Project 1: Build basic logic gates
Project 2: Build the ALU

This lecture / chapter / project:
Build the computer’s Memory system

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 5

A common theme in computer science

• We present a simple model (the simpler, the better)

• We explore the model’s power:

q What the model can do

q What it cannot do

• We then extend the model, to make it more powerful

Case in point:

Logic gates.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 6

Logic gates

Model: And, Or, Not, …

• Simple, and powerful:
• Logic gates can realize any Boolean function, and can be combined to form

powerful chips, like an ALU

• But, as a general model of computation, logic gates fall short

Limitations

• Logic gates cannot store information (bits) over time
• Feedback loops are not allowed: A chip’s output cannot serve as its input
• Logic gates can handle only inputs of a fixed size.

For example, we can build an Or3 gate, and an Or4 gate, and so on, but we
cannot build a single gate that computes Or for any given number of inputs

Extension

Allow logic gates to be sensitive to the progression of time.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 7

Time-independent logic

• So far we ignored time

• The chip’s inputs were just “sitting there” – fixed and unchanging

• The chip’s output was a function (“combination”) of the current inputs,
and the current inputs only

• This style of gate logic is sometimes called:

q time-independent logic
q combinational logic

• All the chips that we discussed
and developed so far were combinational

ALU

+
0101

1000

1101

ALU: The “topmost”
combinational chip

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 8

Hello, time

Software needs:

x = 17

Example (variables):

for i in range(0, 10):
print(i)

Example (iteration):

• The hardware must handle
the physical time delays
associated with computing
and moving data from one
chip to another.

Hardware needs:

• The hardware must be able to
remember things, over time:

• The hardware must be able to do
things, one at a time (sequentially):

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 9

Hello, time

• The hardware must handle
the physical time delays
associated with computing
and moving data from one
chip to another.

Hardware needs:

ALU

+
5

8

13Now compute
7 + 11 ...

It will take some time before 7 and 11 will settle down in
the input ports, and before the sum 7 + 11 will stabilize.
Till then, the ALU will output nonsense.

Software needs:

x = 17

Example (variables):

for i in range(0, 10):
print(i)

Example (iteration):

• The hardware must be able to
remember things, over time:

• The hardware must be able to do
things, one at a time (sequentially):

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 10

Hello, time
Solution: We can neutralize the time delays if we decide to use discrete time

• Set the cycle length to be slightly > than the maximum time delay, and…

• Decide to use the chips’s outputs only at the end of cycles (time-steps),
ignoring what happens within cycles

• Details later.

cycle length

Chip’s input:

Chip’s output:

Clock:
tick

tock
Clock:

a

f (a)

b

f (b)

c

f (c)

d

f (d)

e

f (e)

time-step: As it turns out, the
clock can also be used
to help implementing
chips that behave like
memory devices.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 11

Memory

Memory is time-based:
We remember now what was
committed to memory earlier.

11

Memory: The faculty of the brain by
which data or information is encoded,
stored, and retrieved when needed.
It is the retention of information over
time for the purpose of influencing
future action (Wikipedia)

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 12

Memory

loading

x = 21

(cycles)

1 2 3 4 5 6 7 205 206 207 208 209 210 211 ... time...

loading

x = 17

storing

, 17, 17, 17, 17, 17, 17, ... ,

storing

, 21, 21, 21, 21, 21, 21, ...

The challenge: Building chips that realize this functionality.

Basic abstractions:

• “Loading” a value

• “Storing” a value
Register

in

16

out

16

load

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 13

Memory

1-bit
register

Bit

Data
Flip-Flop

DFF

0

1

n-1

...

Register

RAM

RAMn

Register

Register

multi-bit
register

...

Register

BitBitBit?DFF

The challenge: Building chips that realize this functionality.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 14

Implementation

• Data Flip Flop

• Registers

• RAM

• Project 3: Chips

• Project 3: Guidelines

Abstraction

• Representing time

• Clock

• Registers

• RAM

• Counters

Chapter 3: Memory

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 15

Implementation

• Data Flip Flop

• Registers

• RAM

• Project 3: Chips

• Project 3: Guidelines

Abstraction

• Representing time

• Clock

• Registers

• RAM

• Counters

Chapter 3: Memory

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 16

Chip behavior over time (example: Not gate)

1

0

0

1

clock:

time: 1 2 3 4 5 . . .

0

1

physical
time:

in:
(arbitrary
values)

(example)

out:
(Not(in))

Desired / idealized behavior of the in and out signals:
That’s how we want the hardware to behave

Arrow of time:
Continuous

Discrete time:
Design decision:
Track state changes only
when advancing from
one time-step to another

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 17

Chip behavior over time (example: Not gate)

1

0

0

1

clock:

time: 1 2 3 4 5 . . .

0

1

physical
time:

(example)

Arrow of time:
Continuous

out:
(Not(in))

in:
(arbitrary
values)

Actual behavior of the in and out signals:
Influenced by physical time delays

Discrete time:
Design decision:
Track state changes only
when advancing from
one time-step to another

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 18

Chip behavior over time (example: Not gate)

1

0

0

1

clock:

time: 1 2 3 4 5 . . .

0

1

physical
time:

Cycle length
• Design parameter
• Set to be slightly > max(time delays)

(example)

out:
(Not(in))

Time delays
• Propagation delays
• Computation delays

in:
(arbitrary
values)

Arrow of time:
Continuous

Discrete time:
Design decision:
Track state changes only
when advancing from
one time-step to another

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 19

Chip behavior over time (example: Not gate)

1

0

0

1

clock:

time: 1 2 3 4 5 . . .

0

1

physical
time:

Resulting effect:
• Combinational chips react “immediately” to their inputs
• Facilitated by the decision to track changes only at cycle ends

out:
(Not(in))

(example)

in:
(arbitrary
values)

Arrow of time:
Continuous

Discrete time:
Design decision:
Track state changes only
when advancing from
one time-step to another

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 20

Implementation

• Data Flip Flop

• Registers

• RAM

• Project 3: Chips

• Project 3: Guidelines

Abstraction

• Representing time

• Clock

• Registers

• RAM

• Counters

Chapter 3: Memory

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 21

Clock: Simulated implementation

...

// Sets inputs, advances the clock, and
// writes output values as it goes along.
set in 19,
set load 1,
tick,
output,
tock,
output,

tick, tock,
output,
...

Interactive simulation
A clock icon can be used to generate a
sequence of tick-tock signals:
0, 0+, 1, 1+, 2, 2+, 3, 3+, ...

Script-based simulation
“tick” and “tock” commands

can be used to advance the clock:

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 22

Clock: Physical implementation

Physical clock
• An oscillator is used to deliver an ongoing train of “tick/tock” signals

“1 MHz electronic oscillator circuit which uses the
resonant properties of an internal quartz crystal to
control the frequency. Provides the clock signal for
digital devices such as computers.” (Wikipedia)

• The oscillator’s output is connected to all the time-based (clocked) chips in the computer

Chip diagram convention:
A triangle icon represents a clock signal input

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 23

Abstraction

• Representing time

• Clock

• Registers

• RAM

• Counters

Chapter 3: Memory

Implementation

• Data Flip Flop

• Registers

• RAM

• Project 3: Chips

• Project 3: Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 24

Combinational logic / Sequential logic

Combinational logic:

Sequential logic:

The output depends
on the current inputs

The clock is used to
stabilize outputs

f (a,b) f (b,c) f (c,d) f (d,e)

The output depends on:
• Previous inputs
• Current inputs (optionally)

This behavior can be used
to build chips designed to
maintain state: Registers.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 25

Input

Registers

Memory
(many

registers)
Output

CPU

Registers

ALU

Computer Architecture

(a few)

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 26

Registers

Designed to:

• “Store” / “remember” / “maintain” / “persist” a value , until...

• “Instructed” to “load”, and then “store”, another value.

outin

load

Bit

1-bit register

Register
in

w

out

w

load

multi-bit register

x = 17, 17, 17, 17, 17, 17, 17, ..., 17

x = 21, 21, 21, 21, 21, 21, ..., 21

time:

loading maintaining state

loading maintaining state

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 27

1-Bit Register

out:

in:

load:

0
1

0
1

1

0

time: 1 2 3 4 5 6 7 8

“storing” “storing”“loading” “loading”Resulting behavior:

outin

load

Bit if load(t–1) then out(t) = in(t–1)
else out(t) = out(t–1)

examples
of arbitrary

input values

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 28

1-Bit Register

To read:
probe out (out always emits the register’s state)

To write:
set in = v
set load = 1

Result: The register’s state becomes v;
From the next time-step onward, out will emit v

outin

load

Bit

Usage:

if load(t–1) then out(t) = in(t–1)
else out(t) = out(t–1)

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 29

Multi-bit Register

Register
in

w

out

w

load

if load(t–1) then out(t) = in(t–1)
else out(t) = out(t–1)

Load / store behavior: Exactly the same as a 1-bit register

Read / write usage: Exactly the same as a 1-bit register

We’ll focus on word width w = 16,
without loss of generality

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 30

Abstraction

• Representing time

• Clock

• Registers

• RAM

• Counters

Chapter 3: Memory

Implementation

• Data Flip Flop

• Registers

• RAM

• Project 3: Chips

• Project 3: Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 31

Input

Computer architecture

Memory
(RAM) Output

CPU

Registers

ALU

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 32

RAM

Practice question:
Suppose that the RAM size n = 8 registers.
What should be the value of k?

Answer:
k = log 2n

out

in

load

w
Register0

1

n-1

...

RAMn

Register

Register

address

k

Abstraction: A sequence of n addressable, w-bit registers, with addresses 0 to n-1

Word width: Typically 16, 32, 64 bits (Hack computer: w = 16)

w

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 33

RAM

If load == 0, the RAM maintains its state
If load == 1, RAM[address] is set to the value of in
The loaded value will be emitted by out from the
next time-step (cycle) onward, until the next load

out

in

load

w
Register0

1

n-1

...

RAMn

Register

Register

address

k
(Only one RAM register is selected;
All the other registers are not affected)

(out always emits the value of RAM[i])

Usage: To read register i :
set address = i,
probe out

To write v in register i :
set address = i,
set in = v,
set load = 1

Result: RAM[i] ← v
From the next time-step onward, out will emit v

Behavior

w

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 34

RAM

out

in

load

w
Register0

1

n-1

...

RAMn

Register

Register

address

k

Why “Random Access Memory”?
Irrespective of the RAM size (n),
every randomly selected register can be
accessed “instantaneously”,
at more or less the same speed.

w

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 35

Implementation

• Data Flip Flop

• Registers

• RAM

• Project 3: Chips

• Project 3: Guidelines

Abstraction

• Representing time

• Clock

• Registers

• RAM

• Counters

Chapter 3: Memory

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 36

Input

Computer architecture

Memory Output

CPU

Registers

ALU

One of the CPU
registers acts as a
“program counter”

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 37

Counter

• Later in the course (chapter 5), we will see that the computer must
keep track of which instruction should be fetched and executed next

• This task is regulated by a register typically called Program Counter

• We’ll use the PC to store the address of the instruction that should be
fetched and executed next

• The PC should support three abstractions:

q Reset: fetch the first instruction

q Next: fetch the next instruction

q Goto: fetch instruction n

PC = 0

PC++

PC = n

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 38

Counter

To read:
probe out

To reset:
assert reset,
set the other control bits to 0

To count:
assert inc,
set the other control bits to 0

To set:
set in to v,
assert load,
set the other control bits to 0

Usage:

if reset(t) out(t+ 1) = 0
else if load(t) out(t + 1) = in(t)
else if inc(t) out(t+ 1) = out(t) + 1

else out(t+ 1) = out(t)

PC (counter)
in

16

out

16

load inc reset

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 39

Implementation

• Data Flip Flop

• Registers

• RAM

• Project 3: Chips

• Project 3: Guidelines

Abstraction

• Representing time

• Clock

• Registers

• RAM

• Counters

Chapter 3: Memory

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 40

Implementation

• Data Flip Flop

• Registers

• RAM

• Project 3: Chips

• Project 3: Guidelines

Abstraction

• Representing time

• Clock

• Registers

• RAM

• Counters

Chapter 3: Memory

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 41

DFF

1 2 3 4 5 6 7 8

0

1

1

0

time:

examples
of arbitrary

inputs

in:

out:

out(t) = in(t– 1)outin
DFF

Data Flip Flop (aka latch)

The most elementary sequential
gate: Outputs the input in the
previous time-step

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 42

From DFF to a 1-bit register

1 2 3 4 5 6 7 8

0

1

1

0

time:

examples
of arbitrary

inputs

in:

out:

How can we “load” and then “maintain” a value (0 or 1) over time,
without having to feed the value in every cycle?

out(t) = in(t– 1)outin
DFF

Data Flip Flop (aka latch)

The most elementary sequential
gate: Outputs the input in the
previous time-step

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 43

From DFF to a 1-bit register

We have to realize a “loading” behavior and a ”storing” behavior,
and be able to select between these two states

out(t) = in(t– 1)outin
DFF

How can we “load” and then “maintain” a value (0 or 1) over time,
without having to feed the value in every cycle?

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 44

From DFF to a 1-bit register

if load(t–1) then
out(t) = in(t–1)

else
out(t) = out(t–1)

Behavior
if load == 1 the register’s value becomes in
else the register maintains its current value

in

load

out
DFF

1-bit Register
Stores one bit
over time

We have to realize a “loading” behavior and a ”storing” behavior,
and be able to select between these two states

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 45

Register

if load(t–1) then
out(t) = in(t–1)

else
out(t) = out(t–1)

in

load

out
DFF

1-bit Register
Stores one bit
over time

Bit

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 46

Register

if load(t–1) then
out(t) = in(t–1)

else
out(t) = out(t–1)

load

outin
1-bit Register
Stores one bit
over time

zoom out...

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 47

Register

if load(t–1) then
out(t) = in(t–1)

else
out(t) = out(t–1)

load

outin
1-bit Register
Stores one bit
over time

w

out

load

w

in
...

w-bit Register:
Stores w bits
over time

Partial diagram, showing
some of the chip-parts,
without connections

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 48

Implementation

• Data Flip Flop

• Registers

• RAM

• Project 3: Chips

• Project 3: Guidelines

Abstraction

• Representing time

• Clock

• Registers

• RAM

• Counters

Chapter 3: Memory

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 49

Memory hierarchy

49

1-bit
register

Bit

Data
Flip-Flop

DFF

0

1

n-1

...

Register

RAMn

Register

Register

16-bit register

...

Register

BitBitBit?DFF

Random Access Memory

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 50

RAM: Abstraction

(out always emits the state of RAM[i])

Usage: To read register i :
set address = i,
probe out

To write v in register i :
set address = i,
set in = v,
set load = 1

Result: RAM[i] ← v
From the next time-step onward, out emits v

RAM of n
registers:

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 51

RAM: Implementation

DMux
(1 to n)

Register
in

w

load

out

w

Register
in

w

load

out

w

Register
in

w

load

out

w

...

Mux
(n to 1)

out

w

in

w

address

k

load

RAM of n
registers:

Partial diagram,
showing some of
the chip-parts,
without
connections

Reading: Can be realized using a Mux

Writing: Can be realized using a DMux
Connections?
You figure it out

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 52

RAM: Implementation

DMux
(1 to n)

Register
in

w

load

out

w

Register
in

w

load

out

w

Register
in

w

load

out

w

...

Mux
(n to 1)

Observations
• The addressing/selection/reading logic is combinational
• The writing logic is (i) sequential (clocked)
• (ii) embedded in the Register logic.

out

w

in

w

address

k

load

RAM of n
registers:

Partial diagram,
showing some of
the chip-parts,
without
connections

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 53

RAM: Implementation

...

RAM8

Register

Register

Register ...

RAM64

RAM8

RAM8

RAM8

Same technique can be
used to implement RAM
devices of any size

…

...

RAM512

RAM64

RAM64

RAM64

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 54

Hack RAM

chip name n k

RAM8 8 3

RAM64 64 6

RAM512 512 9

RAM4K 4096 12

RAM16K 16384 14

Why these particular RAM chips?
Because that’s what we need for
building the Hack computer.

out

in

load

16

Register0

1

n-1

...

RAMn

Register

Register

address

k

16

A family of 16-bit RAM chips:

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 55

Implementation

• Data Flip Flop

• Registers

• RAM

• Project 3: Chips

• Project 3: Guidelines

Abstraction

• Representing time

• Clock

• Registers

• RAM

• Counters

Chapter 3: Memory

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 56

Project 3
Given:
• All the chips built in projects 1 and 2
• Data Flip-Flop (built-in DFF gate)

Build:
• Bit

• Register

• PC

• RAM8

• RAM64

• RAM512

• RAM4K

• RAM16K

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 57

1-bit Register

outin

load

Bit

/** 1-bit register:
if load(t – 1) then out(t) = in(t – 1)
else out(t) = out(t – 1)) */

CHIP Bit {
IN in, load;
OUT out;

PARTS:
// Put your code here:

}

Bit.hdl

in

load

out

Implementation tip:
Follow the chip diagram

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 58

16-bit Register
Register.hdl

Register
in

16

out

16

load /** 1-bit register:
if load(t – 1) then out(t) = in(t – 1)
else out(t) = out(t – 1)) */

CHIP Bit {
IN in[16], load;
OUT out[16];

PARTS:
// Put your code here:

}

16

out

load

16

in
...

Implementation tip:
Follow the chip diagram

Partial diagram, showing some of
the chip-parts, without connections

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 59

16-bit Counter

Implementation tip: Can be built from a Register, an Incrementer, and Mux’s

/**
A 16-bit counter with control bits.
if reset(t – 1) out(t) = 0 // resetting
else if load(t – 1) out(t) = in(t – 1) // setting
else if inc(t – 1) out(t) = out(t – 1) + 1 // incrementing
else out(t) = out(t – 1) // maintaining

*/
CHIP PC {

IN in[16], load, inc, reset;
OUT out[16];

PARTS:
// Put your code here:

}

PC (counter)
in

16

out

16

load inc reset

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 60

Project 3
Given
• All the chips built in projects 1 and 2
• Data Flip-Flop (built-in DFF gate)

Build the following chips
• Bit

• Register

• PC

• RAM8

• RAM64

• RAM512

• RAM4K

• RAM16K

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 61

8-Register RAM: Abstraction

/*
Let M stand for the state of the register
selected by address.
if load(t – 1) then {M = in(t), out(t) = M}
else out(t) = M

*/
CHIP RAM8 {

IN in[16], load, address[3];
OUT out[16];

PARTS:
// Put your code here:

}

RAM8.hdl

out

in

load

Register

...

RAMn

Register

Register

address

3

16

16

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 62

8-Register RAM: Implementation

DMux
(1 to 8)

Register
in

16

load

out

Register
in

load

out

Register
in

load

out

...

Mux
(8 to 1)

out

16

in

16

address

3

load

Partial diagram, showing some of the chip-parts, without connections

Implementation tip:
Follow the chip diagram

16

16

16

16

16

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 63

Project 3
Given
• All the chips built in projects 1 and 2
• Data Flip-Flop (built-in DFF gate)

A family of RAM chips

Build the following chips
• Bit

• Register

• PC

• RAM8

• RAM64

• RAM512

• RAM4K

• RAM16K

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 64

out

in

load

16

Register

...

RAMn

Register

Register

address

k

16

n-Register RAM

/*
Let M stand for the state of the register
selected by address.
if load(t – 1) then {M = in(t), out(t) = M}
else out(t) = M

*/
CHIP RAMn {

IN in[16], load, address[k];
OUT out[16];

PARTS:
// Put your code here:

}

RAMn.hdl

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 65

chip name n k

RAM8 8 3

RAM64 64 6

RAM512 512 9

RAM4K 4096 12

RAM16K 16384 14

out

in

load

16

Register

...

RAMn

Register

Register

address

k

16

n-Register RAM

Implementation tips
• Think about the RAM’s address input

as consisting of two fields:
– One field selects a RAM-part;
– The other field selects a register

within that RAM-part
• Use logic gates to effect this

addressing scheme.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 66

Implementation

• Data Flip Flop

• Registers

• RAM

• Project 3: Chips

• Project 3: Guidelines

Chapter 3: Memory

Abstraction

• Representing time

• Clock

• Registers

• RAM

• Counters

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 67

Project 3

www.nand2tetris.org

All the necessary project 3
files are available in:
nand2tetris / projects / 03

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 68

Resources

Project 3 folder (.hdl, .tst, .cmp files): nand2tetris/projects/03

Tools
• Text editor (for completing the given .hdl stub-files)
• Hardware simulator: nand2tetris/tools

Guides
• Hardware Simulator Tutorial
• HDL Guide
• Hack Chip Set API

https://b1391bd6-da3d-477d-8c01-38cdf774495a.filesusr.com/ugd/44046b_02055f8bb5ac47648c0ab642f01c1919.pdf
https://drive.google.com/file/d/1dPj4XNby9iuAs-47U9k3xtYy9hJ-ET0T/view
https://drive.google.com/file/d/1IsDnH0t7q_Im491LQ7_5_ajV0CokRbwR/view

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 69

Best practice advice

• Implement the chips in the order in which they appear in the project guidelines

• If you don’t implement some chips, you can still use their built-in implementations

• No need for “helper chips”: Implement / use only the chips we specified

• In each chip definition, strive to use as few chip-parts as possible

• You will have to use chips implemented in previous projects;
• For efficiency and consistency’s sake, use their built-in versions, rather than your

own HDL implementations.

That’s It!
Go Do Project 3!

For technical reasons, the chips of project 3 are organized in two sub-folders
named projects/03/a and projects/03/b
When writing and simulating the .hdl files, leave this folder structure as is.

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 70

Implementation

• Data Flip Flop

• Registers

• RAM

• Project 3: Chips

• Project 3: Guidelines

Chapter 3: Memory

Abstraction

• Representing time

• Clock

• Registers

• RAM

• Counters

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 71

hardware platform

computer

abstraction

ALU, RAM

abstraction

elementary
logic gates

abstraction

Nand

Building
gates

Building
chips

Building a
computer

What’s next?

abstraction

assembler

machine
language

p1

p2

p3

p4

p5

p6

This lecture / chapter / project:
Build the computer’s RAM

Nand to Tetris / www.nand2tetris.org / Chapter 3 / Copyright © Noam Nisan and Shimon Schocken Slide 72

hardware platform

computer

abstraction

ALU, RAM

abstraction

elementary
logic gates

abstraction

Nand

Building
gates

Building
chips

Building a
computer

What’s next?

abstraction

assembler

machine
language

p1

p2

p3

p4

p5

p6

Next lecture / chapter / project:
• Get acquainted with the computer architecture
• Write machine language programs

