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Vorwort 

In vielen technischen Anwendungen sind Kenntnisse der Digitaltechnik unerlässlich. Die Mo-
bilfunktechnik, Mikrocomputertechnik, digitale Regelungen und viele Einrichtungen der Tele-
kommunikation sind ohne die Methoden der Digitaltechnik nicht mehr zu verstehen, ein Trend, 
der verstärkt wird durch den Einsatz integrierter mechanisch-elektronischer Systeme. Besonde-
re Bedeutung hat die Digitaltechnik auch in eingebetteten Systemen erlangt. Unter einem ein-
gebetteten System versteht man eine digitaltechnische Schaltung, die in ein technisches System 
„eingebettet“ ist. Man findet eingebettete Systeme in einer Vielzahl von Anwendungsberei-
chen, z. B. in Waschmaschinen, Kraftfahrzeugen, Kühlschränken,  in der Unterhaltungselek-
tronik, in Mobiltelefonen usw.  
 
Dieses Buch vermittelt einen fundierten Einstieg in die Digitaltechnik, indem es die Grundla-
gen bis hin zum Aufbau und der Programmierung einfacher Mikroprozessoren lückenlos dar-
stellt. Neben einer soliden theoretischen Grundlage erwirbt der Leser also Kenntnisse, die das 
Verständnis der meisten digitaltechnischen Schaltungen ermöglichen. In der vorliegenden 8. 
Ausgabe wurden zahlreiche Aktualisierungen vorgenommen. Insbesondere wurde im Kapitel 
Mikroprozessoren als Beispiel-Mikroprozessor ein Prozessor ausgewählt, der zur Zeit in der 
Industrie vielfach Anwendung findet. Neu aufgenommen wurde die Gleitpunktdarstellung von 
Zahlen.  
  

Das vorliegende Buch richtet sich hauptsächlich an Ingenieure und Informatiker an Fachhoch-
schulen und Universitäten. Da zum Verständnis des Buches keine besonderen Vorkenntnisse 
benötigt werden, eignet sich das Buch aber auch für den interessierten Laien. Lediglich für das 
Kapitel „Schaltungstechnik“ muss der Leser Grundkenntnisse in der Elektronik haben. Das 
Kapitel ist aber zum Verständnis der anderen Kapitel des Buches nicht erforderlich und kann 
übersprungen werden. Die Darstellung der booleschen Algebra und die verwendeten Symbole 
entsprechen weitgehend der geltenden DIN-Norm.  

 

Um das Selbststudium zu erleichtern, sind zu jedem Kapitel Übungsaufgaben angegeben, mit 
denen das Verständnis des behandelten Stoffs überprüft werden kann. Ein Lösungsvorschlag ist 
jeweils im Anhang zu finden.  

 

Ein Schwerpunkt des Buches liegt in der ausführlichen Darstellung der Grundlagen der Digital-
technik. Besonders die Synthese von Schaltnetzen wird detailliert erläutert. Häufig verwendete 
Standard-Schaltnetze wie Multiplexer und Code-Umsetzer werden mit Beispielen behandelt. 
Da die arithmetischen Schaltnetze für das Verständnis von Prozessoren wichtig sind, werden 
die Grundlagen der Festkomma-Arithmetik und die Hardware von arithmetisch-logischen Ein-
heiten genauer besprochen.  

 

Im Bereich der Schaltungsentwicklung stehen heute ausgereifte Entwurfswerkzeuge zur Ver-
fügung, die es dem Anwender ermöglichen komplexe digitale Schaltungen zu entwerfen, in 
Silizium zu implementieren, den Entwurf zu testen und zu verifizieren. Diese Möglichkeit hat 
dazu geführt, dass in vermehrtem Umfang anwenderspezifische Schaltungen (ASIC) angeboten 



VI Vorwort 

werden, die der Kunde selbst konfigurieren kann. Ein Kapitel ist daher dem Aufbau von an-
wendungsspezifischen integrierten Schaltungen gewidmet.  

Im nächsten Kapitel folgt eine Einführung in VHDL, eine Programmiersprache zur Beschrei-
bung, Synthese und Simulation integrierter digitaler Schaltungen, die sich als Standard heraus-
gebildet hat und häufig zum Entwurf von ASIC verwendet wird. Der Schaltungsentwurf mit 
derartigen Hardware Description Language (HDL) setzt sich immer mehr durch, da er insbe-
sondere bei komplexen Entwürfen erhebliche Vorteile gegenüber den bisherigen grafisch ori-
entierten Entwurfsmethoden bietet. 

 

Aufbauend auf den Schaltnetzen werden synchrone und asynchrone Schaltwerke besprochen. 
Es wird eine Vorgehensweise für die Entwicklung von synchronen und asynchronen Schalt-
werken dargestellt. In der neuen Auflage wurde der Fokus stärker auf die synchronen Schalt-
werke gerichtet. Die Technik der asynchronen Schaltwerke wird heute im Wesentlichen in den 
Flipflops angewendet, von denen hier die gängigen Typen vorgestellt werden. Daneben werden 
Beispiele für die Konstruktion von Zählern und Schieberegistern besprochen, sowie einige 
kommerzielle Bauelemente vorgestellt. 

 

In einem besonderen Kapitel werden die verschiedenen Technologien und Eigenschaften der 
Speicherbausteine gegenübergestellt, die die Eigenschaften moderner Rechnersysteme wesent-
lich mitbestimmen. Es werden typische Zeitdiagramme für verschiedene Speicherbausteine 
dargestellt, die die Funktion der Bausteine verdeutlichen.    

 

Das letzte  Kapitel bietet einen einfachen Einstieg in die Mikroprozessortechnik. Als Einfüh-
rung in den Aufbau von Rechnern wird das Prinzip des Von-Neumann-Rechners erklärt. Da-
rauf aufbauend werden die Vorgänge bei der Ausführung von Befehlen beschrieben. Als prak-
tisches Beispiel wird der aktuelle Mikrocontroller ATmega16 der Firma AVR in einem Kapitel 
vorgestellt. Es beschreibt die Arbeitsweise und den Aufbau des Prozessors. Ausführlich wird 
auf die Programmierung in Assembler eingegangen. Damit werden Kenntnisse vermittelt, die 
auch bei der Verwendung anderer Prozessortypen nützlich sind. 

 

 

Fulda im März 2018,   

Klaus Fricke 
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1  Einleitung 

Die Digitaltechnik hat in den letzten Jahren an Bedeutung weiter zugenommen. Dies ist auf die 
wesentlichen Vorzüge der Digitaltechnik zurückzuführen, die es erlauben, sehr komplexe Sys-
teme aufzubauen. Man erreicht dies, indem man sich auf zwei Signalzustände beschränkt, die 
in logischen Schaltungen (sogenannte Gatter) ohne Fehlerfortpflanzung übertragen werden 
können. Durch diese Einschränkung gelingt es, eine Halbleiter-Technologie aufzubauen, die 
eine Realisierung von über 107 logischen Gattern auf einem Chip ermöglicht.  

Die Voraussetzung für die einwandfreie Funktion ist allerdings eine genaue Dimensionierung 
der einzelnen Gatter, so dass die Beschränkung auf zwei Signalzustände gerechtfertigt ist. Um 
diese Vorgehensweise deutlich zu machen, soll im Folgenden der Begriff „Signal“ etwas ge-
nauer betrachtet werden, denn die Digitaltechnik hat sich die Verarbeitung von Signalen zum 
Ziel gesetzt. Signale dienen der Übermittlung von Nachrichten. Sie werden durch physikali-
sche Größen wie Spannung, Strom, Druck, Kraft usw. beschrieben. Die Amplituden dieser 
Größen sind zeitabhängig. Die zu übertragende Information steckt in den sich ändernden 
Amplitudenwerten. 

Es soll zum Beispiel der zeitabhängige Flüssigkeitsstand F in einem Behälter gemessen wer-
den. Das Bild 1-1a zeigt den Flüssigkeitsstand als Funktion der Zeit. Wenn der verwendete 
Sensor ein elektrisches Signal abgibt, dessen Spannung proportional zur Füllhöhe ist, so erhält 
man einen Zeitverlauf der Spannung Us wie in Bild 1-1b. Dieses Signal ist wertkontinuierlich, 
da alle Amplitudenwerte im Messbereich auftreten können. Systeme, die wertkontinuierliche 
Signale verarbeiten können, werden analoge Systeme genannt. 

 

t 

F 

t

Uq 

t 

Us

tA t 

Ud 

tA

0 0 0 1 1 0 1 1 1 0 

a) b) 

c) d)

Uq 

 

Bild 1-1 Beispiel für die Digitalisierung eines Signals. a) Füllstand F in einem Tank über der Zeit t aufge-
tragen. b) Zeitverlauf der Ausgangsspannung Us des Sensors. c) Quantisierter Zeitverlauf der Spannung 
Uq bei 4 Amplitudenstufen. d) Zuordnung der Amplituden zu den Codierungen 00, 01, 10 und 11. 
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Wertdiskrete Signale, die auch digitale Signale genannt werden, können dagegen nur bestimm-
te diskrete Amplitudenwerte annehmen. Ein Beispiel für ein digitales Signal ist das Signal, 
welches durch zwei unterschiedliche Spannungspegel anzeigt, ob eine Tür geschlossen oder 
offen ist. Derartige Signale können direkt von digitalen Systemen verarbeitet werden.  

Sollen wertkontinuierliche Signale mit digitalen Systemen übertragen werden, so müssen diese 
zunächst quantisiert werden. Bei diesem Vorgang wird an bestimmten Zeitpunkten, den Ab-
tastzeitpunkten, die Amplitude des Signals einer diskreten Amplitudenstufe zugeordnet. So ist 
es im Bild 1-1c für das obige Beispiel des Füllstandssensors geschehen. Man erhält die wert-
diskrete Spannung Uq. Bei der Quantisierung muss man einen Rundungsfehler in Kauf neh-
men. 

Für eine digitale Übertragung muss das Signal zuerst digitalisiert werden. Eine Amplitude wird 
dann durch eine Folge von Ziffern übertragen. Jede Ziffer ist ein wertdiskretes Signal. Im Bild 
1-1d ist ein Beispiel für eine Codierung mit 2 aufeinander folgenden Ziffern gezeigt. Die 
Amplitudenstufe 0 wird durch die Ziffern 00 dargestellt. Die Amplituden 1, 2, 3 werden zu 01, 
10, 11. Man unterscheidet auch zwischen zeitdiskreten und zeitkontinuierlichen Signalen. Zeit-
diskrete Signale können ihre Amplitude nur zu bestimmten Zeiten ändern, während zeitkonti-
nuierliche Signale zu beliebigen Zeiten ihre Amplitude ändern können. Digitale Systeme kön-
nen zeitdiskret sein, man nennt sie dann synchron. Die Synchronisierung wird über ein Takt-
signal hergestellt.  

Ein digitales System besitzt durch die Beschränkung auf endliche Amplitudenstufen eine er-
höhte Störsicherheit. Gestörte digitale Signale können den ursprünglichen diskreten Amplitu-
denwerten eindeutig zugeordnet werden. Die Störung darf aber nur maximal die Hälfte des 
Abstandes zwischen 2 Amplitudenstufen betragen, damit kein Fehler entsteht. 

 

Digitale Systeme haben gegenüber analogen Systemen eine Reihe von Vorteilen: 

• Digitale Signale unterliegen keiner Fehlerfortpflanzung, dadurch sind fast beliebig 
komplexe Systeme wie zum Beispiel Mikroprozessoren realisierbar. Es können belie-
big viele Bearbeitungsschritte nacheinander durchgeführt werden, ohne dass systema-
tische Fehler auftauchen. Auch für die Übertragung über weite Strecken ist diese Ei-
genschaft digitaler Systeme von Vorteil. 

• Eine hohe Verarbeitungsgeschwindigkeit kann durch Parallelverarbeitung erzielt wer-
den.  

• Digitale Systeme sind leicht zu konstruieren, denn die boolesche Algebra stellt eine 
sehr einfache Beschreibung dar. Die Entwicklung von komplexen Digitalschaltungen 
ist heute durch die Verwendung sehr leistungsfähiger Entwicklungswerkzeuge auto-
matisierbar geworden. 

• Digitale Systeme sind relativ einfach zu testen.  

 

Der Nachteil digitaler Systeme: 

• Digitale Systeme sind langsamer als analoge Systeme. Die in der digitalen Signalver-
arbeitung üblichen Taktfrequenzen liegen etwa bei einem Drittel der möglichen Über-
tragungsrate analoger Systeme. Deshalb dominiert die Analogtechnik im Hochfre-
quenzbereich. 



2  Codierung und Zahlensysteme 

2.1  Codes 

Codes werden in der Digitaltechnik häufig verwendet, um ein Signal für einen Anwendungsfall 
optimal darzustellen. Ein Code bildet die Zeichen eines Zeichenvorrates auf die Zeichen eines 
zweiten Zeichenvorrates ab. Sinnvollerweise soll auch eine Decodierung möglich sein, bei der 
aus dem codierten Zeichen wieder das ursprüngliche gewonnen wird. 

Ein bekanntes Beispiel für einen Code ist der Morse-Code. Die Definition eines Codes ge-
schieht durch eine Zuordnungstabelle wie sie in Tabelle 2-1 für den Morse-Code festgehalten 
ist. Dieser Code ist umkehrbar, da aus dem Buchstaben ein Morsezeichen, und daraus wieder 
der Buchstabe eindeutig ermittelt werden kann. Das gilt aber nur für einen Text, der in kleinen 
Buchstaben geschrieben ist, da der Morse-Code nicht zwischen Groß- und Kleinschreibung 
unterscheidet. Ein Text, der in Groß- und Kleinschreibung verfasst ist, kann daher strengge-
nommen aus dem Morse-Code nicht wieder decodiert werden.    

Tabelle 2-1 Morse-Code. 

Alphabet Morse-Code Alphabet Morse-Code Alphabet Morse-Code 

a ⋅ − j ⋅ − − − s ⋅ ⋅ ⋅ 
b ⋅ − ⋅ − k − ⋅ − t − 

c − ⋅ ⋅ ⋅ l ⋅ − ⋅ ⋅ u ⋅ ⋅ − 

d − ⋅ ⋅ m − − v ⋅ ⋅ ⋅ − 

e ⋅ n − ⋅ w ⋅ − − 

f ⋅ ⋅ − ⋅ o − − − x − ⋅ ⋅ − 

g − − ⋅ p ⋅ − − ⋅ y − ⋅ − − 

h ⋅ ⋅ ⋅ ⋅ q − − ⋅ − z − − ⋅ ⋅ 
i ⋅ ⋅ r ⋅ − ⋅   

 

Für jede Anwendung gibt es mehr oder weniger gut geeignete Codes. So ist für die Zahlen-
arithmetik in einem Rechner ein anderer Code sinnvoll als für die Übertragung von Zahlen 
über eine Nachrichtenverbindung.  Dieses Kapitel untersucht die Unterschiede der einzelnen 
Codes und weist auf deren spezifische Anwendungen hin.  

 

Die Kombination mehrerer Zeichen eines Codes nennt man ein Wort. Wir werden uns im Fol-
genden auf den technisch wichtigen Fall beschränken, dass alle Wörter eines Codes die gleiche 
Länge n haben. Im Morse-Code ist das nicht der Fall. Hat ein Code einen Zeichenvorrat von N 
Zeichen, so kann man Nn verschiedene Wörter der Länge n bilden. Werden alle Nn  möglichen 
Wörter eines Codes verwendet, so spricht man von einem Minimalcode. Werden weniger als 
Nn Wörter verwendet, so nennt man ihn einen redundanten Code. Im Folgenden findet man 
eine Zusammenfassung der geläufigsten Codes, ausführliche Darstellungen findet man in [7-9]. 
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2.2  Dualcode  

Der Dualcode ist der wichtigste Code in digitalen Systemen, da er sehr universell ist. Durch die 
Beschränkung auf die Zeichen 1 und 0 ist eine Verarbeitung mit Bauelementen möglich, die als 
Schalter arbeiten. Der Dualcode erlaubt auch eine Arithmetik analog der des Dezimalsystems. 
Das duale Zahlensystem kann als eine Codierung des Dezimalsystems verstanden werden. Eine 
Dualzahl besteht aus einem Wort, welches aus den Zeichen ci ∈{0,1} gebildet wird. Die Zei-
chen ci eines Worts werden in der Digitaltechnik Bits genannt. Das Wort z2 in der Dual-
Darstellung entsteht durch die Aneinanderreihung der einzelnen Bits wie im Folgenden darge-
stellt: 

z2 = cn-1 cn-2 … c1c0… c-m+1 c-m (2.1) 

Diese Dualzahl hat n Stellen vor dem Komma und m Stellen nach dem Komma. Den einzelnen 
Bits werden entsprechend ihrer Stellung i im Wort Gewichte 2i zugeordnet. Damit kann die 
äquivalente Dezimalzahl z10 berechnet werden: 

z2 = g(z10) = cn-12
n-1 + cn-22

n-2 … c12
1 + c02

0 … c-m+12
-m+1 + c-m2-m (2.2) 

Wir betrachten zum Beispiel die Dualzahl 10110,0112,  die durch den Index 2 als Dualzahl 
gekennzeichnet ist. Sie wird interpretiert als:  

g(z2) = 1⋅24 + 0⋅23 + 1⋅22 + 1⋅21 + 0⋅20 + 0⋅2-1 + 1⋅2-2 + 1⋅2-3 = z10 =22,37510 

Der Dualcode wird als gewichteter Code bezeichnet, da die weiter links im Wort stehenden 
Bits ein höheres Gewicht besitzen. Gleichung 2.2 liefert eine Vorschrift für die Umwandlung 
von Dualzahlen in Dezimalzahlen.  

Die Umwandlung von Dezimalzahlen in Dualzahlen ist komplizierter. Sie kann durch einen 
Algorithmus beschrieben werden, der für den ganzzahligen und den gebrochenen Teil der De-
zimalzahl unterschiedlich ist. Am obigen Beispiel der Zahl 22,37510 soll der Algorithmus dar-
gestellt werden: 

• Zuerst wird der ganzzahlige Anteil in eine Dualzahl umgesetzt. Dazu wird der ganzzahlige 
Anteil fortwährend durch 2 geteilt und der Rest notiert, bis sich 0 ergibt. 

 22:2 = 11         Rest 0 
             11:2 = 5        Rest 1    
     5:2=2     Rest 1        ganzzahliger Anteil der Dualzahl 
        2:2=1   Rest 0 
           1:2=0     Rest 1 
 Die zu 2210 gehörende Dualzahl ist also 101102.   

• Im zweiten Schritt wird der gebrochene Anteil in den gebrochenen Anteil der Dualzahl 
umgesetzt. Zuerst wird der gebrochene Anteil mit 2 multipliziert. Der ganzzahlige Anteil 
wird abgetrennt, er bildet die niedrigstwertige Stelle der Dualzahl.  

 Das Verfahren wird wiederholt, wie im folgenden Beispiel gezeigt. 

  0,375⋅2 = 0,75       + 0 

      0,75⋅2=0,5     + 1    gebrochener Anteil der Dualzahl 

       0,5⋅2=0    + 1 
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 Man erkennt an dieser Stelle, dass sich der Rest 0 ergibt. Das ist nicht notwendigerweise so. 
Im Normalfall wird der gebrochene Anteil der äquivalenten Dualzahl unendlich viele Stel-
len haben. Man muss sich dann mit einer bestimmten Anzahl von Stellen hinter dem Kom-
ma begnügen und damit die Genauigkeit einschränken. In unserem Fall entspricht 0,37510 
genau 0,0112. 

Aus dem ganzzahligen und dem gebrochenen Anteil ergibt sich die gesuchte Dualzahl zu 
10110,0112.  

2.3  Festkomma-Arithmetik im Dualsystem 

In diesem Kapitel wird die Arithmetik mit Festkommazahlen beschrieben. Festkomma-
Arithmetik bedeutet, dass das Komma immer an einer festen Stelle steht. Die Stelle, an der das 
Komma steht, orientiert sich dabei an der Stellung im Speicher, in dem die Zahl steht. Das 
Komma braucht dabei nicht in der Hardware des Rechners implementiert zu sein. Es existiert 
in diesem Fall nur im Kopf des Programmierers. Wir beschränken uns auf eine konstante Wort-
länge n, wie es in Rechnern der Fall ist. Dadurch kann auch das Problem der Bereichsüber-
schreitung diskutiert werden.   

2.3.1  Ganzzahlige Addition im Dualsystem 

Die ganzzahlige Addition zweier Zahlen A und B wird im Dualsystem genau wie im Dezimal-
system stellenweise durchgeführt. Wie dort müssen bei jeder Stelle die beiden Dualziffern an 
und bn und der Übertrag von der vorhergehenden Stelle cn-1 addiert werden. Bei der Addition 
(Tabelle 2-2) entsteht eine Summe sn und ein neuer Übertrag cn.  

Tabelle 2-2 Addition im Dualsystem mit den Summanden an, bn und dem Übertrag von der vorhergehen-
den Stelle cn-1. Die Summe ist sn und der neue Übertrag cn.  

an bn cn-1 cn s 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 

 

In dem folgenden Beispiel für eine Addition ist der Übertrag explizit aufgeführt: 

  0 1 1 1 1 1 1 0 

+  0 0 1 1 0 1 0 1 

Übertrag  1 1 1 1 1 0 0  

=  1 0 1 1 0 0 1 1 
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Man beachte, dass im obigen Beispiel zwei 8 Bit lange Zahlen addiert wurden und das Ergeb-
nis auch 8 Bit lang ist, so dass keine Bereichsüberschreitung stattfindet. 

2.3.2  Addition von Festkommazahlen 

Sollen zwei Festkommazahlen addiert werden, so ist es analog zum gewohnten Vorgehen im 
Dezimalsystem wichtig, dass die Kommata übereinander stehen. Daher muss bei der Addition 
von zwei 8Bit langen Zahlen das Komma bei beiden Zahlen zum Beispiel an der dritten Stelle 
stehen: 

  0 1 1 0 0, 0 1 0 

+  0 0 1 1 0, 1 1 1 

Übertrag  1 1 0 0 1 1 0  

=  1 0 0 1 1, 0 0 1 

2.3.3  Einerkomplementdarstellung 

Um den Hardware-Aufwand in Rechnern klein zu halten, hat man sich bemüht, Subtraktion 
und Addition auf einen Algorithmus zurückzuführen. Das gelingt, wenn negative Dualzahlen 
in ihrer Komplementdarstellung verwendet werden. Man unterscheidet zwischen Einer- und 
Zweier-Komplement. Das Einerkomplement wird gebildet, indem in einer Dualzahl alle Nullen 
gegen Einsen vertauscht werden und umgekehrt. Das Einerkomplement von 0001 ist also 1110. 
Das Einerkomplement einer Dualzahl A wird hier dargestellt als ¬A. 

Es gilt offenbar bei einer Darstellung in n Bit-Worten: 

¬A + A = 2n − 1 (2.3) 

Bsp. für eine Darstellung in 8 Bit-Worten: 

10110011 + 01001100 = 11111111 = 28 − 1 
Man kann Gleichung 2.3 so umformen, dass sie eine Rechenvorschrift für das Einerkomple-
ment ergibt: 

¬A = 2n − 1 − A (2.4) 

2.3.4  Zweierkomplementdarstellung 

Das Zweierkomplement AK2 entsteht aus dem Einerkomplement ¬A durch die Addition von 1: 

AK2 = ¬A + 1 (2.5) 

Also gilt mit Gleichung 2.4: 

AK2 = 2n − A (2.6) 

Man erkennt, dass hier eine Darstellung vorliegt, in der −A vorkommt, wodurch sich diese 
Darstellung für die Subtraktion eignet. Man beachte auch, dass 2n in der dualen Darstellung 
n+1 Stellen hat. Hier ein Beispiel für das Zweierkomplement aus 10101100: 

AK2 = ¬A + 1 = 01010011 + 1 = 01010100 
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0011
3

0010
2
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1

 

Bild 2-1 Darstellung von 4Bit-Wörtern in Zweierkomplementdarstellung.  

Eine kreisförmige Darstellung (Bild 2-1) der 4Bit breiten Dualzahlen verdeutlicht den Zahlen-
bereich. Die betragsmäßig größte darstellbare positive Zahl ist 710, die betragsmäßig größte 
negative Zahl ist -810. Der Zahlenbereich ist also unsymmetrisch angeordnet, da es eine negati-
ve Zahl mehr gibt als positive. Die größte und kleinste darstellbare Zahl ist:  

 
Zmax = 2n−1 −1 (2.7) 

Zmin = −2n−1 (2.8) 

Dem Bild 2-1 entnimmt man, dass man betragsmäßig kleine Zweierkomplement-Zahlen daran 
erkennt, dass sie viele führende Einsen aufweisen, wenn sie negativ sind, und dass sie viele 
führende Nullen haben, wenn sie positiv sind.  Betragsmäßig große Zweierkomplement-Zahlen 
haben eine weit links stehende Null, wenn sie negativ sind und eine weit links stehende Eins 
wenn sie positiv sind. Die Zahl 10002 (−810) ist ihr eigenes Zweierkomplement! Es ist auch 
wichtig festzustellen, dass es nur eine 0 in der Zweierkomplement-Darstellung gibt. Das er-
leichtert die Abfrage, ob ein Ergebnis 0 ist. In der Einerkomplementdarstellung gibt es dagegen 
die Dualzahl 00002 die der +010  entspricht und die Dualzahl 11112 die der −010 entspricht. 

2.3.5  Subtraktion in Zweierkomplementdarstellung 

Es sollen nun zwei positive Dualzahlen A und B voneinander subtrahiert werden. Man kann die 
Subtraktion unter Verwendung des Zweierkomplements laut Gleichung 2.6 so durchführen: 

A − B = A − B +BK2 − BK2 = A − B +BK2 − (2n − B) (2.9) 

Zusammenfassen des rechten Ausdrucks ergibt: 

A − B = A +BK2 − 2n (2.10) 

Was bedeutet die Subtraktion von 2n? Das soll am Beispiel der Subtraktion 7−3 = 4 im 4Bit-
Dualsystem dargestellt werden. Die Summe des Dualäquivalents von 7 und des Komplements 
des Dualäquivalents von 3 ergibt: 
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  0 1 1 1  710 

+  1 1 0 1  −310

= 1 0 1 0 0   

− 1 0 0 0 0   

=  0 1 0 0  410 

Die Subtraktion von 100002 = 25 entsprechend der Gleichung 2.10 ergibt das richtige Ergebnis 
01002. Das kann in einem 4-Bit-Rechner einfach dadurch geschehen, dass die höchste Stelle 
ignoriert wird. Bei der Subtraktion mit Hilfe des Zweierkomplements ist also der höchste 
Übertrag c4 nicht zu berücksichtigen. Vorsicht ist aber geboten in Zusammenhang mit einer 
Bereichsüberschreitung. 

2.3.6  Bereichsüberschreitung  

Es soll daher das Problem der Bereichsüberschreitung (Overflow) in Zusammenhang mit der 
Zweierkomplement-Darstellung betrachtet werden. Bereichsüberschreitungen können nur in 2 
Fällen auftreten. Nämlich dann, wenn zwei positive Zahlen addiert werden oder wenn zwei 
negative Zahlen addiert werden. In allen anderen Fällen ist eine Bereichsüberschreitung ausge-
schlossen. Dazu betrachten wir einige Beispiele in einer 4-Bit Darstellung: 

• Beispiel einer Bereichsüberschreitung bei der Addition zweier positiver Zahlen: 

  0 1 0 1  510 

+  0 1 0 1  510 

= (0) 1 0 1 0  −610

Das Ergebnis ist offensichtlich falsch. Der Fehler entsteht durch den Übertrag von der 3. in 
die 4. Stelle, wodurch eine negative Zahl vorgetäuscht wird. Dieser Übertrag c3 wird in ei-
ner Darstellung mit n Bits allgemein als cn-1 bezeichnet. Der Übertrag c4 (allgemein cn) von 
der 4. Stelle in die 5. Stelle heißt Carry (Cy). Er ist in diesem Beispiel nicht aufgetreten. 

• Beispiel einer Bereichsüberschreitung bei der Addition negativer Zahlen: 

  1 0 1 1  −510 
+  1 0 1 1  −510 

= (1) 0 1 1 0  610 

 Auch in diesem Beispiel entsteht ein falsches Ergebnis. Es gab keinen Übertrag cn-1 von der 
3. in die 4. Stelle aber einen Übertrag cn von der 4. in die 5. Stelle. 

• Zum Vergleich eine Addition zweier negativer Zahlen ohne Bereichsüberschreitung:  

  1 1 1 1  −110 
+  1 1 0 1  −310 

= (1) 1 1 0 0  −410 
 Es gab die Überträge cn und cn-1. 

Nun sollen diese Ergebnisse zusammen mit weiteren, hier nicht gezeigten Fällen in einer Ta-
belle zusammengefasst werden. Für zwei positive Dualzahlen A und B kann ein Überlauf bei 
der Rechnung im Zweierkomplement festgestellt werden, wenn die Überträge cn und cn-1, wie 
in der Tabelle 2-3 gezeigt, ausgewertet werden. Zusammenfassend kann festgestellt werden, 
dass ein richtiges Ergebnis vorliegt, wenn cn = cn-1 gilt, ein falsches, wenn cn ≠ cn-1 ist. 
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Tabelle 2-3 Überlauf bei der Addition in einer n Bit-Zweierkomplement-Darstellung (A, B ≥ 0). 

 Richtiges Ergebnis Überlauf 

A + B cn = 0  ,  cn-1 = 0   cn = 0  ,  cn-1 = 1    

A − B cn = cn-1    nicht möglich 

−A − B cn = 1  ,  cn-1 = 1   cn = 1  ,  cn-1 = 0   

2.3.7  Multiplikation 

Die Multiplikation wird wie im Dezimalsystem ausgeführt. Hier ein Beispiel für die Multipli-
kation im Dualsystem 1010×1110=11010: 

 1 0 1 0 × 1 0 1 1 
      1 0 1 0 
     1 0 1 0  
   1 0 1 0    
   1 1 0 1 1 1 0 

 

Das größte zu erwartende Ergebnis E der Multiplikation zweier n-Bit-Wörter ist: 

E = (2n − 1) (2n − 1) = 22n − 2n+1 +1 ≤ 22n − 1 

Das Ergebnis einer Multiplikation zweier n-Bit-Zahlen ist also 2n-Bit lang. Es ist aber kleiner 
als die mit 2n Bits maximal darstellbare Dualzahl 22n−1. Das Gesagte gilt für eine Multiplikati-
on positiver Zahlen. Für das Rechnen in der Zweierkomplement-Darstellung können spezielle 
Algorithmen verwendet werden [41], oder man muss die Zweierkomplement-Zahlen vor der 
Multiplikation in ihre Beträge zurückverwandeln und das Ergebnis entsprechend dem Vorzei-
chen wieder in die gewünschte Darstellung überführen. 

Bei der Multiplikation von Fixkommazahlen werden zunächst die Zahlen ohne Berücksichti-
gung des Kommas multipliziert. Es gilt: Die Multiplikation zweier Zahlen mit n und k Stellen 
hinter dem Komma ergibt ein Produkt mit n+k Stellen hinter dem Komma. 

2.3.8  Division 

Die Division kann mit dem gleichen Algorithmus durchgeführt werden, wie er im Dezimalsys-
tem verwendet wird. Das soll am Beispiel 1010 : 210 = 510 demonstriert werden: 

1 
1 

0 
0 

1 0 : 0 0 1 0 = 1 0 1
        

 0 1 0          
  1 0          
   0          

 

Entsprechend hat bei der Division einer Zahl mit n Stellen hinter dem Komma durch eine Zahl 
mit k Stellen hinter dem Komma, der Quotient n-k Stellen hinter dem Komma. So ergibt sich 
entsprechend dem obigen Beispiel (1,2510 : 0,510 = 2,510):  

1,010 : 00,10 = 10,1  

Die Division von Zweierkomplement-Zahlen kann auf Multiplikation und Addition zurückge-
führt werden [41]. 
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2.4  Gleitkommadarstellung von reellen Zahlen 

2.4.1  Einleitung: Gleitkommadarstellung im Dezimalsystem 

Große Zahlen werden in der Regel mit Hilfe der Gleitkommadarstellung dargestellt. Ein Bei-
spiel ist die Darstellung der Lichtgeschwindigkeit: 2,99792458 ⋅108 m/s. In allgemeiner Form: 

z = m⋅ be (2.11) 

Die Zahl m wird Mantisse genannt und e ist der Exponent. Dabei ist e eine ganze Zahl und m  
eine vorzeichenbehaftete Festkommazahl. In diesem Beispiel ist die Mantisse 2,99792458 und 
der Exponent 8. Typisch für eine Gleitkommadarstellung ist ihre Basis b. Im Beispiel ist die 
Basis b = 10. Sowohl der Exponent als auch die Mantisse haben ein Vorzeichen.  In Rechnern 
verwendet man eine Darstellung im Dualsystem mit der Basis b = 2. 

2.4.2  Gleitkommadarstellung im Dualsystem 

In diesem Kapitel wird die Gleitkommadarstellung im Dualsystem beschrieben. In der Infor-
matik heißt dieser  Zahlentyp „Real“, da damit reelle Zahlen dargestellt werden können. Die 
Darstellung nach der weitverbreiteten Norm IEEE-754 hat allgemein die Form: 

z = (−1)s · 1,m · 2e  = (−1)s · 1,m · 2 (c −  q) (2.12) 

• s ist das Vorzeichen der Mantisse, es wird durch ein Bit dargestellt.  

• 1,m ist der Betrag der Mantisse. Er wird als duale Festkommazahl mit einer Stelle vor 
dem Komma gespeichert, die immer eine Eins ist. Der Teil m nach dem Komma heißt 
Fraction. m wird durch geeignete Wahl des Exponenten so gewählt, dass  

2 > |1,m| ≥ 1 (2.13) 

gilt, was nur für Zahlen z ≠ 0 möglich ist. Daher ist die Null nicht darstellbar. Gleit-
kommadarstellungen, die die Bedingung 2.13 erfüllen, heißen normalisiert. Die Man-
tisse hat im Rechner eine feste Anzahl digitaler Stellen nm.  

• Anstelle des Exponenten e wird eine Charakteristik c = e + q gespeichert. Sie hat eine 
feste Anzahl Stellen nc. Durch die Addition des Excesses q wird der Exponent e so 
verschoben, dass nur positive Zahlen gespeichert werden müssen. Der Exzess beträgt  

q = 2nc−1 −1 (2.14) 

so dass sich z.B. mit 8 Stellen (nc = 8) ein Excess von 127 ergibt. Damit sind Expo-
nenten von −127 bis 128 darstellbar. Die kleinste Charakteristik 0 ergibt sich, wenn 
der kleinste Exponent −127 durch die Addition des Excesses 127 zu Null wird. Die 
größte Charakteristik, nämlich die größte mit 8 Bit darstellbare Zahl 255, erhält man 
durch die Summe des größten Exponenten 128 und des Exesses 127.  

Tabelle 2-4 Anzahl der digitalen Stellen für Vorzeichen, Exponent und Mantisse nach IEEE-754.  

 Anzahl der Stellen in Bit 

Vorzeichen ns Charakteritik nc Mantisse nm 
Single Precision 1 8 23 

Double Precision 1 11 52 
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Zwei häufig verwendete Zahlenformate nach IEEE-745 sind Single Precision und Double Pre-
cision. Laut Tabelle 2-4 werden 1+ nc  + nm  binäre Stellen verwendet. Zahlen im Zahlenformat 
Single Precision benötigen also 32 Bit, im Format Double Precision 64 Bit.  

 

Beispiel: 

Es soll die reelle Zahl −0,17187510 in die Single Precision-Darstellung nach IEEE-745 gewan-
delt werden. Die erste Stelle ist das Vorzeichen s. s = 1 steht für eine negative, s = 0 für eine 
positive Mantisse. In diesem Fall gilt also s = 1  

Zuerst wandelt man die Dezimalzahl in eine Dualzahl: 

−0,17187510  = −0,0010112 

Anschließend wird die Zahl normalisiert, sie hat dann die Form 1,m · 2n :  

−0,0010112 = −1,011 · 2-3 

2-3 bedeutet also analog zum Dezimalsystem eine Verschiebung um 3 Stellen. Die Mantisse 
wird ohne die 1 vor dem Komma gespeichert und durch Nullen auf 23 Bit erweitert oder gege-
benenfalls auf 23 Stellen gerundet: 

m = 1,011 0000 0000 0000 0000 0000  

Zum Exponenten e = −3 wird der Excess q addiert (für Single Precision q = 127), um die Cha-
rakteristik c zu erhalten. Sie wird als 8-stellige Dualzahl abgespeichert: 

c = e + q = −3 + 127 = 12410 = 011111002    

Nun wird durch Aneinanderreihen von  s, c und m die zu speichernde Zahl gebildet: 

s 

1 

c 

01111100 

m 

011 0000 0000 0000 0000 0000 

Die gesuchte Binärzahl ist also: 1011 1110 0011 0000 0000 0000 0000 00002. 

 

2.4.3  Spezielle Zahlendarstellungen 

• Die Null ist zunächst nicht darstellbar, da die Mantisse 1,m ist und damit immer un-
gleich 0 ist. Ersatzweise hat man dafür die Zahl mit der Mantisse 1,00... und der Cha-
rakteristik 0 definiert. Dies ist die kleinste darstellbare Zahl, die als 0 definiert wird. 
Da beide Vorzeichen zugelassen sind, erhält man zwei Darstellungen der Null. 

• Für die Darstellung von ± unendlich stehen die Zahlen mit der Mantisse 1,00… und 
der größtmöglichen Charakteristik. In der Darstellung Single Precision ist das die 255. 

• Zusätzlich gibt es eine Darstellung, die NaN (not a Number) genannt wird. Diese Zahl 
wird nicht als Gleitkommazahl betrachtet und führt in der Regel zum Abbruch der 
Rechnung.    

 Tabelle 2-5 Spezielle Darstellung von Null, Unendlich und NaN nach IEEE-754 für Single Precision.  

 Vorzeichen  Charakteristik  Fraction  
Null 0 oder 1 0 0 

± unendlich 0 oder 1 255 0 

Keine Zahl (NaN) 0 oder 1 255 ≠ 0 
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2.5  Hexadezimalcode 

In der Praxis hat sich neben dem Dualcode auch der Hexadezimalcode durchgesetzt, da er 
gegenüber langen Dualzahlen übersichtlicher ist. Die 16 Hexadezimalziffern sind definiert 
durch die Tabelle 2-6. Die Hexadezimalziffern größer als 9 werden durch die Buchstaben A-F 
dargestellt. Für die Umwandlung einer Dualzahl in eine Hexadezimalzahl fasst man jeweils 4 
Ziffern der Dualzahl zusammen, die als eine Hexadezimalstelle interpretiert werden. Dadurch 
hat eine Hexadezimalzahl nur ein Viertel der Stellen wie eine gleichgroße Dualzahl.  Bsp.: 

1011 1110 0011 0000 
B E 3 0 

Es gilt also 1011 1110 0011 00002 = BE3016. Zur Kennzeichnung einer Hexadezimalzahl sind 
auch die Zeichen H und $ üblich. Die Umwandlung einer Hexadezimalzahl in eine Dezimal-
zahl und umgekehrt geschieht am einfachsten über die entsprechende Dualzahl. Es ist aber 
auch möglich, die Umwandlung über einen Algorithmus wie bei der Umwandlung einer Dual-
zahl in eine Dezimalzahl durchzuführen. Die umgekehrte Umwandlung würde analog zur Glei-
chung 2.2 durchzuführen sein. 

Tabelle 2-6 Die Hexadezimalziffern 0 bis F. 

Dez. 0 1 2 … 9 10 11 12 13 14 15 
Dual 0000 0001 0010 … 1001 1010 1011 1100 1101 1110 1111 
Hex. 0 1 2 … 9 A B C D E F 

2.6  Oktalcode 

Der Oktalcode wird ähnlich verwendet wie der Hexadezimalcode, nur dass jeweils 3 Stellen 
einer Dualzahl zusammengefasst werden. Für den Oktalcode werden die Ziffern 0 bis 7 des 
Dezimalcodes verwendet, er wird oft auch mit dem Index O gekennzeichnet. Bsp.: 

 

1 1 0 1 0 1 1 0 0 0 1 1

6 5 4 3 

Es gilt also 110 101 100 0112  = 65438. 

2.7  Graycode 

Oft benötigt man in der Digitaltechnik eine Codierung für einen Zahlencode, bei dem beim 
Übergang von einer Zahl zur nächsten sich nur eine Ziffer ändern soll. Diese Bedingung ist 
notwendig, wenn durch technische Ungenauigkeiten der Zeitpunkt der Umschaltung nicht 
genau eingehalten werden kann. Bei einer gleichzeitigen Umschaltung von 2 Ziffern könnten 
sich daher Fehlschaltungen ergeben. Als Beispiel für einen derartigen Fehler soll die Umschal-
tung von 110 auf 210 im Dualcode betrachtet werden: 

0001

0010
0000 0011

 
Bei dieser Umschaltung ändern sich die Bits 0 und 1. Bei gleichzeitigem Umschalten wird die 
neue Zahl direkt erreicht. Wechselt erst das Bit 0, so erscheint zunächst die Zahl 0000 und erst 
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wenn sich auch Bit 1 ändert, erhält man die richtige Zahl 0010. Ändert sich zuerst das Bit 1 
und dann Bit 0, so wird zwischendurch die Zahl 0011 sichtbar. Graycodes vermeiden diesen 
gravierenden Fehler dadurch, dass sich von einem Codewort zum nächsten nur eine Stelle 
ändert. Die Tabelle 2-7 zeigt einen 3-stelligen Graycode. Der gezeigte Code hat zusätzlich die 
Eigenschaft, dass er zyklisch ist, da sich auch beim Übergang von der höchsten Zahl (710) zu 
der niedrigsten (010) nur eine Stelle ändert. Zyklische Graycodes können für alle geraden Peri-
odenlängen konstruiert werden.  

Tabelle 2-7 Beispiel für einen 3-stelligen Graycode.  

Dezimal Graycode Dezimal Graycode 

0 000 4 110 

1 001 5 111 

2 011 6 101 

3 010 7 100 

2.8  BCD-Code 

Will man zum Beispiel die Dezimal-Ziffern einer Anzeige ansteuern, so eignet sich ein Code, 
bei dem den einzelnen Dezimal-Ziffern dual codierte Code-Wörter zugeordnet sind. Dieser 
Code wird als BCD-Code (Binär-codierte Dezimalzahl) bezeichnet. Eine Möglichkeit besteht 
darin, die Dezimal-Ziffern durch jeweils eine 4-stellige Dualzahl darzustellen. Da die einzelnen 
Stellen die Wertigkeiten 8, 4, 2 und 1 haben, wird der Code 8-4-2-1-Code genannt. Es gibt 
auch die Möglichkeit, einen BCD-Code mit den Gewichten 2, 4, 2, 1 aufzubauen (Aiken-
Code). Andere BCD-Codes sind der 3-Exzess-Code und der BCD-Gray-Code [3]. 

Tabelle 2-8 BCD-Code. 

Dezimalziffer 8-4-2-1-Code Dezimalziffer 8-4-2-1-Code 

0 0000 5 0101 

1 0001 6 0110 

2 0010 7 0111 

3 0011 8 1000 

4 0100 9 1001 

2.9  Alphanumerische Codes 

Es existiert eine Vielzahl von Codes für die Darstellung alphanumerischer Zeichen durch Bin-
ärziffern. Ein bekanntes Beispiel ist der ASCII-Code (ASCII = American Standard-Code for 
Information Interchange), der auch eine Reihe von Steuerzeichen enthält (Tabelle 2-9).  
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Tabelle 2-9 ASCII-Code (ohne Steuerzeichen).  

ASCII 

 

Zei-
chen 

ASCII 

 

Zei-
chen 

ASCII Zei-
chen 

ASCII

 

Zei-
chen 

ASCII

 

Zei-
chen 

ASCII 

 

Zei-
chen 

20 SP 30 0 40 @ 50 P 60 ` 70 p 
21 ! 31 1 41 A 51 Q 61 a 71 q 
22 " 32 2 42 B 52 R 62 b 72 r 
23 # 33 3 43 C 53 S 63 c 73 s 
24 $ 34 4 44 D 54 T 64 d 74 t 
25 % 35 5 45 E 55 U 65 e 75 u 
26 & 36 6 46 F 56 V 66 f 76 v 
27 ' 37 7 47 G 57 W 67 g 77 w 
28 ( 38 8 48 H 58 X 68 h 78 x 
29 ) 39 9 49 I 59 Y 69 i 79 y 
2A * 3A : 4A J 5A Z 6A j 7A z 
2B + 3B ; 4B K 5B [ 6B k 7B { 
2C , 3C < 4C L 5C \ 6C l 7C | 
2D - 3D = 4D M 5D ] 6D m 7D } 
2E . 3E > 4E N  5E ^ 6E n 7E  
2F / 3F ? 4F O 5F _ 6F o 7F DEL 

2.10  Übungen 
Aufgabe 2.1 Wandeln Sie die folgenden Dualzahlen in Dezimalzahlen um: 
a) 1110,101      b) 10011,1101  
Aufgabe 2.2 Wandeln Sie die folgenden Dezimalzahlen in Dualzahlen um: 
a) 33,125      b) 45,33 
Aufgabe 2.3 Berechnen Sie die untenstehenden Aufgaben mit Hilfe des Zweierkomplements 
bei einer Wortlänge von 6 Bit. Geben Sie an, ob es eine Bereichsüberschreitung gibt. 
a) 010101 – 001010      b) 010111  011011 
Aufgabe 2.4 Berechnen Sie im Dualsystem: 
a) 110101 ⋅ 010101 
b) 1101110 : 110 
Aufgabe 2.5 Entwickeln Sie einen zyklischen Graycode mit der Periodenlänge 6. 
Aufgabe 2.6 Welche reelle Zahl wird durch die Single Precision Zahl C23A800016 nach IEEE-
754 dargestellt? 
 



3  Schaltalgebra 

Die Digitaltechnik hat der Analogtechnik voraus, dass sie auf einer relativ einfachen, aber 
dennoch mächtigen Theorie beruht, der booleschen Algebra, die auch Schaltalgebra genannt 
wird. In diesem Kapitel werden diese theoretischen Grundlagen der Digitaltechnik dargestellt. 
Die boolesche Algebra kann man auf fast alle bei der Entwicklung einer digitalen Schaltung 
vorkommenden Probleme anwenden, unter der Bedingung, dass einige technologische Voraus-
setzungen erfüllt sind, die im Kapitel 4 behandelt werden. 

3.1  Schaltvariable und Schaltfunktion 

In der Digitaltechnik verwendet man spezielle Variablen und Funktionen. Unter einer Schaltva-
riablen versteht man eine Variable, die nur die Werte 0 oder 1 annehmen kann.  Mit Schaltvari-
ablen können Funktionen gebildet werden. Eine Funktion: 

y =  f(x1, x2, x3,… xn)        mit xi, y ∈{0,1} (3.1) 

nennt man n-stellige Schaltfunktion oder Binärfunktion. Der Wertebereich der Funktionswerte 
enthält wieder die Elemente 0 und 1. Funktionen können durch Tabellen definiert werden, in 
denen die Funktionswerte zu den möglichen 2n Kombinationen der n Eingangsvariablen aufge-
listet sind. Derartige Tabellen werden Wahrheitstabellen genannt. 

 

Eine sehr einfache Funktion, die die Eingangsvariable x mit der Ausgangsvariablen y ver-
knüpft, ist durch Tabelle 3-1 gegeben. Man erkennt, dass Schaltfunktionen durch eine Tabelle 
definiert werden können, in der alle Werte der Eingangsvariablen enthalten sind, da ja nur die 
beiden Elemente 0 und 1 zu berücksichtigen sind.  

Tabelle 3-1 Wahrheitstabelle eines Inverters. 

x y 

0 1 

1 0 

 

 

Die durch die Tabelle 3-1 definierte Schaltfunktion y = f(x) wird Negation, Komplement, oder 
NOT genannt. Sie wird im Folgenden durch den Operator ¬ gekennzeichnet: 

y = ¬x (3.2) 

Sprich: y gleich nicht x 

Die Negation ist eine einstellige Schaltfunktion, da sie nur ein Eingangssignal besitzt. In 
Schaltplänen wird die Realisierung dieser Funktion, der „Inverter“, durch das Schaltsymbol in 
Bild 3-1 gekennzeichnet. 

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018
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x y1

 

Bild 3-1 Schaltsymbol des Inverters. 

Gibt es noch weitere einstellige Schaltfunktionen? Durch systematisches Probieren findet man 
insgesamt 4, die in Tabelle 3-2 zusammengefasst sind. Andere Kombinationen der Ausgangs-
Schaltvariablen y gibt es nicht. Man stellt fest, dass die Funktion y = x eine Durchverbindung 
darstellt. Die Schaltfunktionen y = 0 und y =1 erzeugen Konstanten, die unabhängig vom Ein-
gang sind. Nur die einstellige Binärfunktion y = ¬x ist daher für die Schaltalgebra wichtig. 

Tabelle 3-2 Einstellige Binärfunktionen. 

Wahrheitstabelle Funktion Schaltzeichen Name 

 x y 
0 0 
1 0 

 

y = 0  

 

 x y 
0 0 
1 1 

 

y = x 

 

 
1 x y

 

 

 x y 
0 1 
1 0 

 

y = ¬x 

 

 
1 x y

 

NOT, 

Komplement, 

Negation 

 x y 
0 1 
1 1 

 

y = 1 

 
 

 

3.2  Zweistellige Schaltfunktionen 

Prinzipiell kann man Binärfunktionen mit beliebig vielen Eingangsvariablen bilden. Es hat sich 
aber als praktisch erwiesen, zunächst nur Funktionen mit einer oder zwei Eingangsvariablen zu 
betrachten und Funktionen mit mehr Eingangsvariablen darauf zurückzuführen. 

 

Eine binäre Funktion mit den Eingangsvariablen x0 und x1 kann wieder durch eine Tabelle 
definiert werden. Man kann sich die Kombination der Eingangsvariablen x0 und x1 als einen 
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Vektor X = [x1, x0] vorstellen. Bei zwei Eingangsvariablen gibt es 4 mögliche Eingangsvekto-
ren X, die oft mit ihrem Dezimaläquivalent indiziert werden. So bedeutet  X2, dass x1 = 1 und x0 
= 0 gilt,  oder anders ausgedrückt, dass X2 = [x1, x0]  = [1,0]. 

Technisch wichtig sind neben der Negation die Grundverknüpfungen UND und ODER, die 
durch die Tabelle 3-3 definiert sind. Man bezeichnet UND auch als AND oder Konjunktion, 
sowie ODER als OR oder Disjunktion.  

Tabelle 3-3 Grundverknüpfungen UND und ODER. 

 

Wahrheitstabelle Funktion Schaltzeichen Name 

x1 x0 y
0 0 0
0 1 0
1 0 0
1 1 1

 

 

y = x0 ∧ x1 

 

 

 
& 

x0
y 

x1

 

 

UND, 

AND, 

Konjunktion 

x1 x0 y
0 0 0
0 1 1
1 0 1
1 1 1

 

 

y = x0 ∨ x1 

 

 

 
≥1

x0
y 

x1

 

 

ODER, 

OR, 

Disjunktion 

 

Es stellt sich die Frage nach den anderen möglichen 2-stelligen Binärfunktionen. Um diese 
Frage systematisch zu beantworten, kann man die Werte der Ausgangsvariablen y permutieren, 
welche aus den 4 möglichen Eingangsvektoren resultieren. Eine Funktion y(x1, x0) kann allge-
mein durch die Wahrheitstabelle 3-4 definiert werden.  

Tabelle 3-4 Wahrheitstabelle für eine 2-stellige Binärfunktion. 

x1 x0 y 

0 0 y(0,0) 

0 1 y(0,1) 

1 0 y(1,0) 

1 1 y(1,1) 

Man erkennt aus der Tabelle, dass man 162 2 =
n

 verschiedene binäre Funktionen mit n=2 
Eingangsvariablen bilden kann. Alle möglichen zweistelligen Binärfunktionen sind in Tabelle 
3-5 aufgelistet. Die Darstellung der binären Funktionen ist in einer DIN-Norm festgelegt [10]. 



18 3  Schaltalgebra 

Tabelle 3-5 2-stellige Binärfunktionen: Wahrheitstabelle, Darstellung durch (AND, NOT, OR), Schalt-
symbol und Funktionsname.  

Wahrheitstabelle 

 x0 1 0 1 0 

x1 1 1 0 0 
 

Funktion Schaltsymbol Name 

y 0 0 0 0  
y = 0  Null 

y 0 0 0 1  

y = ¬(x0 ∨ x1) 

y = x0  x1 
 ≥1
x0 y
x1  

NOR 

y 0 0 1 0  
y = x0 ∧ ¬x1  Inhibition 

y 0 0 1 1  
y = ¬x1  Komplement 

y 0 1 0 0  
y = ¬x0 ∧ x1  Inhibition 

y 0 1 0 1  
y = ¬x0  Komplement 

y 0 1 1 0  

y = (¬x0 ∧ x1) ∨ (x0 ∧ ¬x1)

y = x0 ↔ x1 
 =1
x0 y
x1  

EXOR 

y 0 1 1 1  

y = ¬(x0 ∧ x1) 

y = x0  x1 
 & 
x0 y
x1  

NAND 

y 1 0 0 0  
y = x0 ∧ x1 

 & 
x0 y
x1  

UND, AND 

y 1 0 0 1  

y = (x0 ∧ x1) ∨ (¬x0 ∧ ¬x1) 

y = x0 ↔ x1 
 = 
x0 y
x1  

Äquivalenz 

y 1 0 1 0  
y = x0  Identität 

y 1 0 1 1  
y = x0 ∨ ¬x1  Implikation 

y 1 1 0 0  
y = x1  Identität 

y 1 1 0 1  
y = ¬x0 ∨ x1  Implikation 

y 1 1 1 0  
y = x0 ∨ x1 

 ≥1
x0 y
x1  

ODER, OR 

y 1 1 1 1  
y = 1  Eins 
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Die technisch wichtigen Funktionen NAND, NOR, Äquivalenz, und EXOR (auch Exklusiv-
Oder, Antivalenz genannt) haben ein eigenes Schaltsymbol. Sie werden in der Praxis oft durch 
spezielle Schaltungen realisiert. 

 

Es ist in der Tabelle 3-5 auch dargestellt, wie die einzelnen Funktionen nur durch die Verknüp-
fungen AND, OR und NOT dargestellt werden können. Daher ist jede binäre Funktion durch 
diese 3 Verknüpfungen darstellbar. Auch allein durch die Funktion NOR, ebenso wie allein 
durch die Funktion NAND können alle binären Funktionen dargestellt werden. Diese Funktio-
nen nennt man daher „vollständig“. 

 

Der Beweis der Äquivalenzen kann durch das Aufstellen der Wahrheitstabellen geschehen. So 
soll zum Beispiel die in Tabelle 3-5 dargestellte Äquivalenz für die EXOR-Verknüpfung durch 
AND, OR und NOT bewiesen werden: 

     

x0 
 
↔  x1 = (¬x0 ∧ x1) ∨ (x0 ∧ ¬x1) (3.3) 

 

In Tabelle 3-6 werden zunächst die beiden Klammerausdrücke ausgewertet. Danach wird das 
logische OR der beiden Klammerausdrücke gebildet und in die 5. Spalte geschrieben. Da die 
vorletzte und die letzte Spalte übereinstimmen ist die Gleichheit bewiesen, denn in der letzten 
Spalte steht die Definition der Exklusiv-Oder-Funktion. 

 

Tabelle 3-6 Beweis durch eine Wahrheitstabelle.   

x1 x0 ¬x0 ∧ x1 x0 ∧ ¬x1 (¬x0 ∧ x1) ∨ (x0 ∧ ¬x1) x0 ↔  x1 

0 0 0 0 0 0 

0 1 0 1 1 1 

1 0 1 0 1 1 

1 1 0 0 0 0 
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3.3  Rechenregeln 

Wichtig für die Vereinfachung komplizierter Funktionen sind die Rechenregeln der booleschen 
Algebra. Die einzelnen Gesetze können durch die Verwendung von Wahrheitstabellen bewie-
sen werden. Die Rechenregeln der booleschen Algebra sind im Folgenden aufgelistet: 

Kommutativgesetze: 

x0 ∧ x1= x1 ∧ x0 (3.4) 

x0 ∨ x1= x1 ∨ x0 (3.5) 

Assoziativgesetze: 

(x0 ∧ x1) ∧ x2 = x0 ∧ (x1 ∧ x2) (3.6) 

(x0 ∨ x1) ∨ x2 = x0 ∨ (x1 ∨ x2) (3.7) 

Distributivgesetze: 

x0 ∧ (x1 ∨ x2) = (x0 ∧ x1) ∨ (x0 ∧ x2) (3.8) 

x0 ∨ (x1 ∧ x2) = (x0 ∨ x1) ∧ (x0 ∨ x2) (3.9) 

Absorptionsgesetze: 

x0 ∧ (x0 ∨ x1) = x0       (3.10) 

x0 ∨ (x0 ∧ x2) = x0 (3.11) 

Existenz der neutralen Elemente: 

x0 ∧ 1 = x0    (3.12) 

x0 ∨ 0 = x0    (3.13) 

Existenz der komplementären Elemente 

x0 ∧ ¬x0 = 0  (3.14) 

x0 ∨ ¬x0 = 1   (3.15) 

De Morgansche Theoreme: 

x0 ∧ x1 = ¬(¬x0 ∨ ¬x1) (3.16) 

x0 ∨ x1 = ¬(¬x0 ∧ ¬x1)  (3.17) 

Aus der Symmetrie der Gesetze erkennt man folgendes: 

Gilt ein Gesetz, so gilt auch das Gesetz, welches man erhält, indem man AND mit OR und die 
Konstanten 0 mit 1 vertauscht. Das so erhaltene Gesetz bezeichnet man als das duale Gesetz. 
So sind zum Beispiel die Gesetze 3.16 und 3.17 zueinander dual. Analog bezeichnet man eine 
Funktion F', die aus der Funktion F durch Vertauschen von AND mit OR und 0 mit 1 entstan-
den ist, als die zu F duale Funktion. 

Wichtig ist es auch festzustellen, dass NAND und NOR nicht assoziativ sind. Es gilt also: 

(x0  x1)  x2  ≠  x0  (x1  x2) (3.18) 

(x0  x1)  x2  ≠  x0  (x1  x2) (3.19) 
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3.4  Vereinfachte Schreibweise 

Kompliziertere Funktionen sind oft nicht leicht zu lesen: 

f(x3, x2, x1, x0) = (¬x2∧¬x1∧¬x0) ∨ (¬x2∧x1∧¬x0) ∨ (¬x2∧x1∧x0) ∨ (x2∧¬x1∧x0) (3.20) 

In einer vereinfachten Schreibweise, die aber nicht in der Norm festgehalten ist, kann man die 
Konjunktionszeichen und die Klammern weglassen. Damit vereinbart man auch gleichzeitig, 
dass die Konjunktionen zuerst gebildet werden und anschließend die Disjunktionen. Man 
schreibt daher Gleichung 3.20 folgendermaßen:  

f(x3, x2, x1, x0) = ¬x2¬x1¬x0 ∨ ¬x2x1¬x0 ∨ ¬x2x1x0 ∨ x2¬x1x0 (3.21) 

3.5  Kanonische disjunktive Normalform (KDNF)  

Jede binäre Funktion kann allein durch AND, OR und NOT dargestellt werden. Das kann auf 
systematische Art und Weise geschehen wie es am Beispiel der in Tabelle 3-7 gegebenen 
Funktion gezeigt werden soll. Man kann auf zwei verschiedene Arten vorgehen. Wir beginnen 
mit der kanonischen disjunktiven Normalform (KDNF). 

Tabelle 3-7 Wahrheitstabelle für Beispiel zur KDNF. 

x2 x1 x0 Dezimal y 

0 0 0 0 1 

0 0 1 1 0 

0 1 0 2 1 

0 1 1 3 1 

1 0 0 4 0 

1 0 1 5 1 

1 1 0 6 1 

1 1 1 7 0 

 

Man betrachtet dazu zunächst die Eingangsvektoren Xi, für die die Funktion y = f(X) den Wert 
1 annimmt. Es gilt also für diese Eingangsvektoren f(Xi) = 1. In unserem Fall sind das X0,  X2,  
X3,  X5, und X6. Nun bildet man für jeden dieser Eingangsvektoren eine Konjunktion der Ele-
mente xi, die genau für diesen Eingangsvektor den Wert 1 annimmt. Für X5 wäre das: 

m5 =  x2¬x1x0 (3.22) 

Man nennt m5 auch Minterm. Die Minterme enthalten immer alle Eingangsvariablen, sie wer-
den deshalb auch Vollkonjunktionen genannt. In einem Minterm kommen alle Eingangsvariab-
len invertiert oder nichtinvertiert vor, je nachdem, ob die entsprechende Eingangsvariable 1 
oder 0 ist. Für das Beispiel sind die anderen Minterme: 
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m0 = ¬x2 ¬x1 ¬x0 (3.23) 

m2 = ¬x2 x1 ¬x0 (3.24) 

m3 = ¬x2 x1 x0 (3.25) 

m6 = x2 x1 ¬x0 (3.26) 

Ein Minterm hat also für einen bestimmten Fall der Eingangsvariablen den Wert 1. 

 

Die gesamte Funktion muss durch die Disjunktion der Minterme dargestellt werden, denn die 
Funktion soll den Wert 1 bekommen, wenn einer der Minterme gleich 1 wird. Diese Darstel-
lungsweise heißt kanonische disjunktive Normalform (KDNF). Sie heißt kanonisch, da in je-
dem Minterm alle Variablen vorkommen. In unserem Fall kann die Funktion dargestellt wer-
den durch: 

y = m0 ∨ m2 ∨ m3 ∨ m5 ∨ m6  = 
y = ¬x2¬x1¬x0 ∨ ¬x2 x1¬x0 ∨ ¬x2 x1 x0 ∨ x2¬x1 x0 ∨ x2 x1¬x0 
 (3.27) 

3.6  Kanonische konjunktive Normalform (KKNF) 

Alternativ können für die Darstellung der Funktion die Eingangsvektoren Xi verwendet wer-
den, bei denen die Funktion den Wert 0 annimmt. Dann gilt also f(Xi) = 0. Bei der  Funktion in 
Tabelle 3-7 sind das X1, X4 und X7. 

Es werden die so genannten Maxterme Mi gebildet. Das sind die Disjunktionen, die genau dann 
gleich 0 sind, wenn der entsprechende Eingangsvektor Xi anliegt:  

 

M1 = x2 ∨ x1 ∨ ¬x0 (3.28) 

M4 = ¬x2 ∨ x1 ∨ x0 (3.29) 

M7 = ¬x2 ∨ ¬x1 ∨ ¬x0 (3.30) 

 

Es müssen also die Eingangsvariablen, die im Eingangsvektor gleich 1 sind, invertiert im Max-
term auftreten. Die Eingangsvariablen, die im Eingangsvektor gleich 0 sind, erscheinen im 
Maxterm nichtinvertiert. So wird der Maxterm M1 nur für x2 = 0, x1 = 0, x0 = 1 gleich 0. 

 

Die gesamte Funktion kann nun durch die Konjunktion der Maxterme dargestellt werden, denn 
der Funktionswert darf nur 0 sein, wenn mindestens einer der Maxterme gleich 0 ist. Die kano-
nische konjunktive Normalform (KKNF) genannte Darstellungsform ist für unser Beispiel: 

 

y = M1 ∧ M4 ∧ M7  = (x2 ∨ x1 ∨ ¬x0) ∧ (¬x2 ∨ x1 ∨ x0) ∧ (¬x2 ∨ ¬x1 ∨ ¬x0) 
 (3.31) 
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3.7  Darstellung von Funktionen mit der KKNF und KDNF 

In der Praxis stellt sich oft die Frage, wie man von einem konkreten Problem zu der dazugehö-
rigen Schaltfunktion kommt. Dazu betrachten wir das Beispiel der Funktion „Gerade Parität“ fp 

in Tabelle 3-8. Es soll eine Schaltung mit 3 Eingängen x2, x1, x0 realisiert werden, welche am 
Ausgang y  genau dann eine 1 ausgibt, wenn eine gerade Anzahl der Eingangssignale 1 ist. 
Dies ist eine Verallgemeinerung der Äquivalenzfunktion auf mehrere Eingangsvariablen, im 
Beispiel in Tabelle 3-8 werden 3 Eingangsvariablen verwendet. Als Erstes stellen wir die 
Wahrheitstabelle der Funktion y = fp(x2, x1, x0) auf. Dazu betrachten wir alle Kombinationen 
der Eingangssignale, für die der Ausgang 1 sein soll. Es sind dies die Fälle, in denen zwei oder 
keine 1 an den Eingängen anliegt. Das sind alle vorkommenden Fälle. In Tabelle 3-8 ist zusätz-
lich das Dezimaläquivalent des Eingangsvektors angegeben. 

 

Tabelle 3-8 Wahrheitstabelle für das Beispiel der Funktion „Gerade Parität“ y = fp(x2, x1, x0). 

x2 x1 x0 Dezimal- 

äquivalent 

y 

0 0 0 0 1 

0 0 1 1 0 

0 1 0 2 0 

0 1 1 3 1 

1 0 0 4 0 

1 0 1 5 1 

1 1 0 6 1 

1 1 1 7 0 

 

Dann stellen wir die KDNF auf. Wir benötigen die Minterme mi für die Eingangsvektoren mit 
den Dezimaläquivalenten 6, 5, 3, 0. Diese Minterme werden durch ein logisches ODER ver-
knüpft. Die KDNF für dieses Beispiel ist also: 

y = x2 x1¬x0 ∨ x2¬x1 x0 ∨ ¬x2 x1 x0 ∨ ¬x2¬x1¬x0  (3.32)   

 

Das entsprechende Schaltnetz besitzt 4 UND-Gatter, die ein ODER-Gatter mit 4 Eingängen 
speisen. In Bild 3-2 sind auch die Inverter eingezeichnet, die die invertierten Eingangsvariablen 
liefern. 
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x0 
x1 
x2 
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x0 
x1 
x2 
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x1 
x2  

 

Bild 3-2 Schaltnetz für die Realisierung der KDNF der Funktion „Gerade Parität“.  

Die KKNF wird durch die Maxterme mit den Dezimaläquivalenten 1, 2, 4, 7 gebildet. Diese 
werden logisch UND-verknüpft. Die KKNF für das Beispiel ergibt sich daher zu: 

y = (x2 ∨ x1 ∨ ¬x0)(x2 ∨ ¬x1 ∨ x0)(¬x2 ∨ x1 ∨ x0)(¬x2 ∨ ¬x1 ∨ ¬x0) (3.33) 

 ≥1

& y 

x0 x1 
x2 

≥1
x0 x1 
x2 

≥1
x0 x1 
x2 

≥1
x0 
x1 
x2  

Bild 3-3 Schaltnetz für die Realisierung der KKNF der Funktion „Gerade Parität“.  

Die KKNF und die KDNF sind gleichwertige Darstellungsformen für eine Funktion. Sie sind 
aber oft unterschiedlich komplex, da sich die Anzahl der Minterme nach der Anzahl der Ein-
gangsvektoren richtet, bei der die Funktion den Wert 1 annimmt, während die Zahl der Max-
terme durch die Anzahl der Eingangsvektoren bestimmt wird, für die die Funktion 0 ist. Im 
vorliegenden Fall sind die KKNF und die KDNF aber bezüglich ihres Aufwandes gleich. 

Für die Arbeit mit Normalformen ist eine Verallgemeinerung der de Morganschen Gesetze 
wichtig. Der so genannte Shannonsche Satz lautet: 

  

Für eine beliebige boolesche Funktion y  = f(x0, x1,…, xn , ∧,∨,↔,↔,1,0) gilt 

¬y = f(¬x0,¬x1,…, ¬xn, ∨, ∧ ,↔,↔, 0,1). 
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Das bedeutet, dass die Variablen invertiert werden müssen, und alle Operationen durch ihre 
dualen ersetzt werden. Gegeben ist zum Beispiel die Funktion: 

y = (x2 ∨ x1 ∨ ¬x0) ∧ (x2 ∨ ¬x1 ∨ x0) 

Dann gilt nach dem Shannonschen Satz auch: 

¬y = (¬x2 ∧ ¬x1 ∧ x0) ∨ (¬x2 ∧ x1 ∧ ¬x0)  

Mit dieser Regel kann man die KKNF auch aufstellen, indem man die KDNF der inversen 
Funktion bestimmt. Wenn man z.B. in der Tabelle 3-8 in der 5. Spalte y durch ¬y und alle 
Nullen durch Einsen ersetzt,  erhält man: 

¬y = ¬x2¬x1 x0 ∨ ¬x2 x1¬x0 ∨ x2¬x1¬x0 ∨ x2 x1 x0 (3.34)  

Nun wendet man den Shannonschen Satz an und erhält, wie man durch Vergleich mit Glei-
chung 3.33 feststellt, direkt die KKNF:  

y = (x2 ∨ x1 ∨ ¬x0)(x2 ∨ ¬x1 ∨ x0)(¬x2 ∨ x1 ∨ x0)(¬x2 ∨ ¬x1 ∨ ¬x0) (3.35)  

3.8  Minimieren mit Hilfe der Schaltalgebra 

Die KKNF und die KDNF eignen sich hauptsächlich zum Aufstellen der booleschen Gleichun-
gen. Bezüglich des Aufwandes an Gattern sind diese Formen aber nicht ideal. Zum Vereinfa-
chen eignet sich sehr gut eine Identität, die im Folgenden hergeleitet werden soll:  

   x0 x1 ∨ x0 ¬x1   

= x0 (x1 ∨ ¬x1)  

= x0 ∧ 1 

= x0  

Es gilt also: 

x0 x1 ∨ x0 ¬x1 = x0 (3.36) 

Die duale Regel ist: 

(x0 ∨ x1)(x0 ∨ ¬x1) = x0 (3.37) 

Bsp.: Es soll die folgende Funktion minimiert werden: 

y = x0¬x1 x2 x3 ∨ x0 x1 x2 x3 ∨ x0 x1¬x2 x3 ∨ ¬x0 x1 x2 x3 ∨ ¬x0 x1¬x2 x3 

Man erkennt, dass man z.B. die Terme 1 und 2, 2 und 3 sowie 4 und 5 zusammenfassen kann.  
Zuerst fasst man die beiden ersten Terme zusammen, lässt aber den zweiten bestehen, da man 
ihn noch für die Zusammenfassung mit dem dritten Term benötigt: 

y = x0 x2 x3 ∨ x0 x1 x2 x3 ∨ x0 x1¬x2 x3 ∨ ¬x0 x1 x2 x3 ∨ ¬x0 x1¬x2 x3 

Dann fasst man von diesem Ausdruck die Terme 2 und 3 sowie 4 und 5 zusammen: 

y = x0 x2 x3 ∨ x0 x1 x3 ∨ ¬x0 x1 x3  

Die letzten beiden Terme können zusammengefasst werden: 

y = x0 x2 x3 ∨ x1 x3  

Diese Darstellung ist minimal. Man benötigt für die Realisierung nur 2 AND-Gatter und ein 
OR-Gatter. Eine graphische Methode für die Minimierung wird im Kapitel 6 vorgestellt. 
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3.9  Schaltsymbole 

Die verwendeten Schaltsymbole der Digitaltechnik in diesem Buch entsprechen der DIN 
40900. In dieser Vorschrift wurden zunächst nur die alten runden Schaltsymbole durch neue 
rechteckige ersetzt, da man sicher war, dass runde Schaltzeichen von Computern nicht ge-
zeichnet werden können. Inzwischen wurde aber in die Vorschrift auch die Abhängigkeitsnota-
tion aufgenommen, die es erlaubt, das Verhalten von digitalen Schaltungen aus dem Schaltbild 
ablesen zu können.  

Hier wird eine kurze Einleitung in die verwendete Systematik gezeigt. In den einzelnen Kapi-
teln werden die verwendeten Symbole bei ihrem Auftreten in bestimmten Schaltungen erklärt. 
Im Anhang folgt eine tabellarische Zusammenfassung.  

3.9.1  Grundsätzlicher Aufbau der Symbole 

Die Symbole haben eine Umrandung, in der sich oben ein Symbol befindet, welches die grund-
sätzliche Funktion der Schaltung kennzeichnet (Bild 3-4). In den bisher besprochenen Symbo-
len waren das die Symbole &, ≥1, =1, 1. Eine Tabelle über die möglichen Symbole findet man 
im Anhang.    

 

 

Eingänge 

Symbol zur Beschreibung der Schaltung  

Ausgänge 

Symbol zur Beschreibung der Ein- und Ausgänge 
 

Bild 3-4 Generelle Struktur eines Schaltsymbols.   

Die Eingänge werden in der Regel links, die Ausgänge in der Regel rechts des Symbols ange-
ordnet. Wird von dieser Regel abgewichen, so muss die Signalrichtung durch Pfeile gekenn-
zeichnet werden. In Bild 3-4 sind auch die Stellen gekennzeichnet, an denen genauere Angaben 
über die Eingänge und Ausgänge durch zusätzliche Symbole gemacht werden können. 

Innerhalb der Umrandungen werden dadurch Aussagen über den inneren logischen Zustand der 
Schaltung gemacht.  

Außerhalb stehen Symbole wie die Inversionskreise für logische Zustände, die Inversionsdrei-
ecke für die Pegel (Pegel werden im folgenden Kapitel 4 behandelt), oder Aussagen über die 
Art des Signals. Tabellen über die möglichen Symbole findet man im Anhang.  

Wenn die Schaltung einen gemeinsamen Kontroll-Block beinhaltet, wird dies wie in Bild 3-5a 
dargestellt. Ein gemeinsamer Ausgangs-Block wird durch zwei Doppellinien wie in Bild 3-5b 
gekennzeichnet.   
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 Gemeinsamer 
 Kontrollblock 

a) 

x0 

x1 

x2 

y0

y1

y2 Gemeinsamer Ausgangsblock 

b) 

x0

x1

y0 

y1 

f(x0,x1) 

 

Bild 3-5 Generelle Struktur von Schaltsymbolen. a) Gemeinsamer Kontrollblock, b) Gemeinsamer Aus-
gangsblock für ein Array gleichartiger Schaltungen.   

3.9.2  Die Abhängigkeitsnotation 

In der Abhängigkeitsnotation wird der Einfluss eines Eingangs (oder Ausgangs) auf andere 
Ein- und Ausgänge durch einen Buchstaben beschrieben, der den Einfluss näher beschreibt. 
Dem Buchstaben folgt eine Zahl zur Identifikation. Die gleiche Zahl findet man bei den Ein- 
und Ausgängen, auf die dieser Einfluss ausgeübt wird. Dies soll an den folgenden Beispielen 
genauer erläutert werden. 

3.9.3  Die UND-Abhängigkeit (G) 

Durch ein G an einem Eingang kann die UND-Abhängigkeit gekennzeichnet werden. In Bild 
3-6 ist der Eingang x1 mit G1 genauer beschrieben. Da der Eingang x0 mit einer 1 gekenn-
zeichnet ist, wird er mit dem Eingang x1 logisch UND verknüpft. Der Eingang x2 ist durch ¬1 
gekennzeichnet. Daher wird er mit dem negierten Eingang x1 logisch UND verknüpft. Die 
Notation bezieht sich auf die inneren Zustände. Eventuelle Inversionskreise werden erst nach-
träglich berücksichtigt. Sie legen dann das externe Verhalten fest. 

 

 

 x0 

x1 

x2 
≡

1 

G1 

x0

x1

x2

&

&¬1 
 

Bild 3-6 Die UND-Abhängigkeit (G). 

Wie Bild 3-7 zeigt, kann die Abhängigkeitsnotation auch auf Ausgänge angewendet werden. 
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x0 y0 ≡1 G1 x0 & y0

x0 y0 ≡1 G1 x0 & y0 1

a)

b)
 

Bild 3-7 Die UND-Abhängigkeit (G), angewendet auf einen Ausgang a) ohne, b) mit Inversion des Aus-
gangs.  

Haben zwei Eingänge die gleiche Bezeichnung (Bild 3-8), werden diese Eingänge logisch 
ODER verknüpft. 

 x0

x1

x2

≡
1 

G1 

x0

x1

x2

&

≥1

G1 
 

Bild 3-8 Die UND-Abhängigkeit (G) bei zwei Eingängen, die mit G1 bezeichnet sind.  

3.9.4  Die ODER-Abhängigkeit (V) 

Wenn ein mit Vn gekennzeichneter Eingang oder Ausgang den internen 1-Zustand hat, so 
haben alle Ein- und Ausgänge den Wert 1, die durch die Zahl n gekennzeichnet. Hat der mit 
Vn gekennzeichnete Ein- oder Ausgang den Wert 0, so haben die von ihm beeinflussten Ein- 
und Ausgänge ihren normal definierten Wert. Zwei Beispiele findet man in Bild 3-9. 

 

 
x0 y0 ≡1 V1 

x0
≥1 y0 

y1 

y0 ≡
1 

V1 
y1

a)

b)

≥1

y0

 

Bild 3-9 Die ODER-Abhängigkeit (V).  
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3.9.5  Die EXOR-Abhängigkeit (N)  

Die mit Nn gekennzeichneten Ein- oder Ausgänge stehen mit den von ihnen beeinflussten Ein- 
und Ausgängen in einer EXOR-Beziehung. Ist der mit Nn bezeichnete Ein- oder Ausgang auf 
1, so werden die mit n gekennzeichneten Ein- und Ausgänge invertiert, andernfalls bleiben sie 
unbeeinflusst. 

 
x0 

y0 ≡

1 
N1 

x0
=1 y1 y1

y0 

 

Bild 3-10 Die EXOR-Abhängigkeit (N). 

3.9.6  Die Verbindungs-Abhängigkeit (Z) 

Ein Ein- oder Ausgang der durch Zn gekennzeichnet ist, wird mit allen Ein- und Ausgängen, 
die mit einem n gekennzeichnet sind, verbunden gedacht (Bild 3-11). 

 

 
x0 y0 ≡1 Z1 x0 y0 

x0

y0 ≡2 
G1 

y0 

a) 

b) 
x1 1Z2 

x0

x1

& 

 

Bild 3-11 Die Verbindungs-Abhängigkeit (Z). 

3.9.7  Die Übertragungs-Abhängigkeit (X) 

Wenn ein Ein- oder Ausgang, der durch Xn gekennzeichnet ist, auf 1 ist, werden alle Ein- und 
Ausgänge, die mit n gekennzeichnet sind, bidirektional verbunden (Bild 3-12). Andernfalls 
sind die mit n gekennzeichneten Ein- und Ausgänge voneinander isoliert.  

 
x0 

y01 
X1 y1

y2

Für x0= 1 sind y0 und y1 bidirektional   
verbunden 

Für x0= 0 sind y1 und y2 bidirektional 
verbunden

1/¬1 
¬1 

 

Bild 3-12 Die Übertragungs-Abhängigkeit (X). 

Weitere Abhängigkeiten (C, S, R, EN, M, A, D, J, K) werden in den entsprechenden Kapiteln 
und im Anhang beschrieben.  
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3.10  Übungen 

Aufgabe 3.1  
Beweisen Sie die Absorptionsgesetze 3.10 und 3.11 mit Hilfe einer Wahrheitstabelle. 

Aufgabe 3.2 
Minimieren Sie die folgende Funktion mit Hilfe der booleschen Algebra: 

y =  x0x1x2¬x3 ∨ x0x1x2x3 ∨ ¬x0¬x1x2x3 ∨ ¬x0¬x1¬x2x3 ∨ x0¬x1x2x3 ∨ x0¬x1¬x2x3 

Aufgabe 3.3  
Geben Sie die KKNF und die KDNF für ein System mit den Eingangsvariablen a, b und c an, 
welches an den Ausgängen s1 und s0 die Summe der 3 Eingangsvariablen a+b+c ausgibt. s1 soll 
dabei die Wertigkeit 2 und  s0 die Wertigkeit 1 haben. 
 
Aufgabe 3.4  
Können die beiden folgenden Gleichungen unter der Voraussetzung vereinfacht werden, dass 
sie weiterhin ein zweistufiges Schaltnetz ergeben? 

a) die KDNF für s1 und s0 aus Aufgabe 3.3 

b) die KKNF für s1 und s0 aus Aufgabe 3.3 

 

Aufgabe 3.5  

Beweisen Sie: 

a) a 
 
↔  ¬b = ¬(a ↔ b) 

b) Wenn gilt: f = a ↔  b 
 
↔  c dann gilt auch: ¬f = ¬a ↔ ¬b ↔ ¬c.  

 
Aufgabe 3.6  
Vereinfachen Sie die folgenden booleschen Gleichungen mit Hilfe der booleschen Algebra: 
a) y1 =  x1x2x3 ∨ ¬x2x3 
b) y2 =  ¬x1¬x2¬x3  ∨  ¬x1x2x3  ∨ x1x2x3 ∨ x1¬x2¬x3 ∨ x1x2¬x3 ∨ ¬x1x2¬x3 
c) y3 =  ¬x1x2¬x3 ∨¬(x1 ∨ x2) ∨ x1¬x2¬x3 ∨ ¬x1¬x2x3x4  
d) y4 =  ¬(¬( ¬x1¬x2¬x4 ) ¬(¬x1 ∨¬x2 ∨¬x3)) 
e) y5 =  ¬(¬x1x2¬x3 ∨ ¬(x1 ∨ x2 ∨ x3) ) (x1 ∨ ¬x2)  

 
Aufgabe 3.7 
Geben Sie eine äquivalente Schaltung bestehend aus UND, ODER und NOT-Gattern für das 
untenstehende Schaltsymbol in Abhängigkeitsnotation an. 
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4  Verhalten logischer Gatter 

In diesem Kapitel soll insoweit auf das reale Verhalten logischer Gatter eingegangen werden, 
wie es zum Verständnis der Dimensionierung digitaler Schaltungen notwendig ist. Im folgen-
den Kapitel 5 wird das Thema weiter vertieft. Es wird zunächst der Frage nachgegangen, in-
wieweit ein binäres System als Modell für ein reales System verwendet werden kann. Das soll 
am Beispiel eines Inverters geschehen. In Bild 4-1a sind binäre Signale an einem Inverter dar-
gestellt, wie sie in einem realen System typischerweise auftreten. Das Bild 4-1b zeigt x(t), eine 
Idealisierung des Eingangssignals ue(t) aus Bild 4-1a. ua(t) wird durch y(t) idealisiert (Bild 4-
1c).  

 

t 

ua(t), ue(t) 

a) 

ue(t) ua(t) 

t 

y(t) ≈ ua(t) 

 c) 

y(t) 

t 
x(t) ≈ ue(t) 

 b) 
x(t) 

 

Bild 4-1 a) Reales digitales System mit dem Eingangssignal ue(t) und dem Ausgangssignal ua(t). b) idea-
lisiertes Eingangssignal x(t). c) idealisiertes Ausgangssignal y(t). 

Dem Bild entnimmt man, dass das reale System in den folgenden Punkten vom idealisierten 
System abweicht:  

-  Das reale System zeigt ein wertkontinuierliches Verhalten. Technische Systeme haben von 
Natur aus Toleranzen und werden durch statistische Prozesse wie das Rauschen gestört, so 
dass es nicht möglich ist, ein Signal zu erzeugen, welches nur genau 2 Amplitudenwerte 
annimmt.  

-  Die  Wechsel zwischen den Werten 0 und 1 sind im realen System fließend. Die Flanken 
werden durch ihre Anstiegs- und Abfallzeit beschrieben.  

-  Das Ausgangssignal des Inverters reagiert nur verzögert auf das Eingangssignal. Dieser und 
der im letzten Punkt aufgeführte Effekt sind auf die endliche Reaktionsgeschwindigkeit rea-
ler Bauelemente zurückzuführen. 

Ein digitaltechnisches System wird so ausgelegt, dass es wie ein wertdiskretes System arbeitet, 
solange das tatsächliche Signal sich innerhalb von vorgegebenen Amplituden- und Zeitgrenzen 
bewegt: 

- Amplituden: Die Dimensionierung eines digitalen Systems muss zunächst mit den Metho-
den der Analogtechnik geschehen, um sicherzustellen, dass das Signal innerhalb der vor-
gegebenen Amplitudenbedingungen bleibt. Ist dies der Fall, so kann eine 0 und eine 1 si-
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cher unterschieden werden und das System kann mit den in Kapitel 3 beschriebenen leis-
tungsfähigen Methoden der Digitaltechnik behandelt werden.  

- Laufzeiten: Es entstehen aber auch Fehlfunktionen durch die Vernachlässigung der Signal-
laufzeiten in den Gattern. Durch die Konstruktion der Schaltung muss vermieden werden, 
dass Signallaufzeiten auf das Verhalten der Schaltung Einfluss nehmen. Geeignete Design-
Regeln werden in den entsprechenden Kapiteln angegeben. 

4.1  Positive und negative Logik 

In der Digitaltechnik arbeitet man mit Schaltern, die nur zwei unterschiedliche Spannungspegel 
erzeugen können. Ein hoher Spannungspegel wird mit H (=High) ein niedriger mit L (=Low) 
bezeichnet. In der booleschen Algebra wurden bisher die Zeichen 0 und 1 verwendet. Die bei-
den Zeichen werden in der Technik den zwei Werten der Spannung zugewiesen. In der elektri-
schen Digitaltechnik kann zum Beispiel eine hohe Spannung für 1 stehen und eine niedrige für 
0, man nennt das positive Logik. Auch die umgekehrten Verhältnisse sind denkbar. Man 
spricht dann von negativer Logik. 

Tabelle 4-1 Zuordnung der Spannungspegel zu den logischen Zuständen.   

Spannung Pegel Logischer Zustand 
positive Logik      negative Logik

≈5V H 1 0 

≈0V  L 0 1 

In Schaltbildern können auch Spannungspegel anstelle von logischen Pegeln verwendet wer-
den. Ein Beispiel ist in Bild 4-2 gezeigt.  
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L L H 
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x0 x1 y 
0 0 1 
0 1 0 
1 0 1 
1 1 1 

 

x0 x1 y 
1 1 0 
1 0 1 
0 1 0 
0 0 0 

 a) b) c)  

Bild 4-2 Schaltsymbole und Wahrheitstabellen für a) Pegeldarstellung b) positive Logik c) negative 
Logik.  

Man erkennt eine Bezeichnung mit Pegeln daran, dass statt der Inversionskreise Dreiecke ge-
zeichnet werden. Wenn mindestens ein Dreieck in einem Schaltbild erscheint, handelt es sich 
um eine Pegeldarstellung. Aus dieser kann bei positiver Logik durch das Ersetzen von Drei-
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ecken durch die Inversionskreise die gewohnte Darstellung mit logischen Größen gewonnen 
werden. Alternativ können alle Ein- und Ausgänge, die kein Dreieck aufweisen, mit einem 
Inversionskreis versehen werden und die Dreiecke weggelassen werden. Man arbeitet dann mit 
negativer Logik. 

4.2  Definition der Schaltzeiten 

Elektronische Schalter reagieren mit einer Verzögerung auf einen Wechsel der Eingangssigna-
le. Außerdem sind die Anstiegszeiten von einem Low- zu einem High-Pegel (oder umgekehrt) 
nicht beliebig kurz. Die Anstiegszeit ttLH (transition time Low-High) und die Abfallzeit ttHL 
(transition time High-Low) (Bild 4-3) werden zwischen 10% und 90% der maximalen Span-
nungsamplitude definiert. 

 U/Umax 

ttLH ttHL t 

0,9 

0,1 

 

Bild 4-3 Definition der Anstiegszeit ttLH und Abfallzeit ttHL. 

Die Verzögerungszeit von Low nach High tpLH (propagation delay time Low-High)  und die 
Verzögerungszeit von High nach Low tpHL (propagation delay time High-Low) werden ent-
sprechend Bild 4-4 durch die Zeiten zwischen 50% der Maximalspannung am Eingang bis zum 
Erreichen des gleichen Spannungspegels am Ausgang definiert. Die Signallaufzeit durch ein 
Gatter ist der Mittelwert dieser Zeiten:  

tp = (tpHL + tpLH)/2 (4.1) 
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Bild 4-4 Definition der Zeiten tpHL und tpLH. 

Außerdem sollen nun die in einem Taktsignal auftretenden Zeiten definiert werden. Taktsigna-
le werden in der Digitaltechnik für die Synchronisation verschiedener Ereignisse verwendet. 
Die Zeit in der das Taktsignal auf dem hohen Spannungspegel ist, heißt Pulsdauer tp, die Takt-
periode heißt Tp. Oft wird auch die Taktfrequenz fp  = 1/Tp verwendet. 
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Bild 4-5 Ideales Taktsignal mit der Pulsdauer tp und der Pulsperiode Tp.  

4.3  Übertragungskennlinie, Störabstand 

Die Übertragungskennlinie kennzeichnet das Amplitudenverhalten eines digitalen Gatters. Sie 
wird in der Regel nur für einen Inverter angegeben, da das Verhalten anderer Gatter darauf 
zurückgeführt werden kann. In Bild 4-6 sind eine ideale und eine reale Kennlinie eines Inver-
ters angegeben. Die ideale Kennlinie wechselt abrupt bei einer bestimmten Eingangsspannung 
Ue = Us vom hohen Ausgangspegel UH zum niedrigen Ausgangspegel UL. Die reale Kennlinie 
hat dagegen einen stetigen Übergang. Zusätzlich sind in der Realität die Kennlinien der Gatter 
temperaturabhängig und sie haben eine fertigungsbedingte Streuung.  

 
Ua Ue 
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UH 

Ue

Ua 

UL 

reale Kennlinie 

ideale Kennlinie 

UH UL 
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Bild 4-6 Reale und ideale Übertragungskennlinie eines Inverters. 

Daher führt man Grenzen ein, innerhalb derer man ein Signal als ein H oder ein L betrachtet 
(Bild 4-7). Diese Bereiche sind für Ein- und Ausgang unterschiedlich groß. Für ein L am Ein-
gang, welches ein H am Ausgang ergibt, resultiert somit der Bereich 1 in Bild 4-7, in dem die 
Inverterkennlinie liegen muss. Analog muss die Inverterkennlinie im Bereich 2 liegen, wenn 
am Eingang ein H anliegt. Im Bild ist eine typische Übertragungskennlinie eingetragen. 
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Bild 4-7 Übertragungskennlinie eines Inverters. 
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In Bild 4-8 sind die eben definierten Grenzen für die Ausgangsspannung Ua eines Gatters und 
für die Eingangsspannung Ue des folgenden Gatters eingetragen. Die Grenzen müssen folgen-
dermaßen liegen: Der Bereich in dem ein Signal am Eingang des zweiten Gatters als High 
erkannt wird, muss den Bereich überdecken, in dem das Ausgangssignal im ungünstigsten Fall 
liegen kann. Genau dann wird ein Signal immer richtig erkannt und es gibt keine Fehlerfort-
pflanzung.  
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Bild 4-8 Grenzen der Ein- und Ausgangssignale bei zwei aufeinander folgenden Invertern. 

Diese Betrachtung ist für die Digitaltechnik von fundamentaler Bedeutung. Wählt man dieses 
Verhältnis der Ein- und Ausgangspegel bei allen Gattern, so kann man beliebig komplexe 
Schaltungen aufbauen, ohne sich um die Amplitudenbedingungen kümmern zu müssen. Dabei 
muss aber noch beachtet werden, dass an ein Gatter nur eine maximale Anzahl von Gattern 
angeschlossen werden kann, da die Belastung durch mehrere Gatter am Ausgang die Pegel 
verändern kann. 

Aus Bild 4-8 ergeben sich auch die Störabstände. Der Störabstand UnH  für den High-Pegel und 
der für den Low-Pegel UnL sind definiert als die Differenzen der Spannungspegel zwischen 
dem Ausgang und dem folgenden Eingang: 

High-Pegel: Low-Pegel: 

UnH = UaHmin − UeHmin UnL = UeLmax − UaLmax 

Die Störabstände sind also die „Sicherheitsabstände“ zwischen den Gattern. Damit durch zu-
sätzliche additive Störimpulse keine Fehler auftreten, müssen sie möglichst groß sein. 

4.4  Ausgänge 

In der Digitaltechnik arbeitet man mit Transistoren im Schalterbetrieb. Es handelt sich um 
Schalter, die durch ein Signal gesteuert werden können. In Bild 4-9 sind zwei Symbole für 
gesteuerte Schalter angegeben. Der linke schließt für x = H, der rechte für x = L. 

 

 
x x

  

Bild 4-9 Symbole für Schalter. Links für x = H eingeschaltet. Rechts für x = L eingeschaltet. 
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In der Regel haben logische Gatter, ob bipolar oder unipolar realisiert, einen komplementären 
Ausgang, damit der Ruhestrom gering ist und die Ruheverlustleistung vernachlässigbar klein 
bleibt (Bild 4-10). Immer ist einer der Schalter geöffnet und der andere geschlossen. Ist x = H, 
so ist der untere Schalter geschlossen und der Ausgang y mit 0V verbunden, also auf L. Ist x = 
L, so ist der Ausgang y mit der Betriebsspannung VDD kurzgeschlossen, also auf H. Wie dieser 
Inverter haben fast alle Gatter einen derartigen komplementären Ausgang, der auch Totem-
Pole-Ausgang genannt wird. Für spezielle Anwendungen werden aber weitere Varianten des 
Ausgangs angeboten, wie sie im Folgenden dargestellt werden. 

x 

VDD 

0V 

y 

 

Bild 4-10 Komplementärer Inverter. 

4.4.1  Offener Kollektor (Open Collector) 

Bei dieser Schaltungsvariante besteht der Gatter-Ausgang nur aus einem Schalter, wie es in den 
gestrichelten Kästen des Bildes 4-11 angedeutet ist. Der eine Anschluss des Schalters ist nach 
außen geführt und wird extern über einen Widerstand R0 an die positive Versorgungsspannung 
VCC angeschlossen. Diese Schaltungsvariante ist besonders bei den bipolaren Schaltkreisfami-
lien üblich. Eine größere Anzahl von Ausgängen kann an einen gemeinsamen Widerstand R0 
angeschlossen werden. Bei positiver Logik (hoher Spannungspegel H = 1) ergibt sich eine 
UND-Verknüpfung der Ausgänge, da alle xi = 1 sein müssen, damit alle Schalter offen sind 
und der Ausgang auf einen hohen Spannungspegel (= High) geht (Tabelle 4-2). 
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x1 

VDD 
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Bild 4-11 Zwei Gatter mit Open-Collector-Ausgängen, verschaltet zu einem virtuellen Gatter. 

Die Schaltung wird „wired-or“ oder „wired-and“ genannt und dient der Einsparung von Gat-
tern, besonders wenn Gatter mit vielen Eingängen benötigt werden. Ein Beispiel ist in Bild 4-
12 gezeigt. Im Schaltzeichen wird der Open-Collector-Ausgang entsprechend Bild 4-11 durch 
eine unterstrichene Raute gekennzeichnet. Analog dazu ist der Open-Drain-Ausgang möglich, 
aber nicht üblich. 
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Tabelle 4-2 Verhalten der Open-Collector-Schaltung (Bild 4-11) bei positiver und negativer Logik.  

Spannungspegel  Positive Logik (UND)  Negative Logik (ODER) 

x2 x1 y  x2 x1 y  x2 x1 y 

L L L  0 0 0  1 1 1 

L H L  0 1 0  1 0 1 

H L L  1 0 0  0 1 1 

H H H  1 1 1  0 0 0 

 ≥1 x0 

x1 

≥1 
 

x2 

x3 

& ))(( 3210 xxxxy ∨∨=

 

Bild 4-12 Schaltzeichen für zwei ODER-Gatter mit Open-Collector-Ausgängen. 

4.4.2  Tri-State-Ausgang 

Wenn ein Kabel aus Ersparnisgründen für die wechselseitige Übertragung zwischen mehreren 
Sendern und Empfängern genutzt werden soll, so verwendet man oft Bussysteme. Um mehrere 
Bausteine mit ihrem Ausgang an einen Bus anzuschließen, müssen die nicht aktiven Bausteine 
am Ausgang hochohmig gemacht werden, also vom Bus abgekoppelt werden. Dies geschieht 
mit einer besonderen Schaltung, welche Tri-State-Ausgang oder auch Three-State-Ausgang 
genannt wird (abgekürzt TS). Arbeiten mehrere Tri-State-Ausgänge auf einen Bus, so darf 
immer nur ein Ausgang eingeschaltet („enable“) sein, die anderen müssen im hochohmigen 
Zustand verbleiben. In Bild 4-13 ist eine Schaltung gezeigt, mit der beide Ausgangsschalter mit 
einem „Enable-Signal“ E gleichzeitig hochohmig geschaltet werden können. Das Schaltsymbol 
ist in der Abhängigkeitsnotation dargestellt, die später noch ausführlicher dargestellt werden 
soll. Das Kürzel „EN“ mit der nachgestellten 1 deutet an, dass der Ausgang, der durch eine 1 
gekennzeichnet ist, durch den EN-Eingang gesteuert wird. Wenn mehrere Ausgänge vorhanden 
sind, so werden alle mit einer 1 markierten Ausgänge durch den „Enable-Eingang“ gesteuert. 
Das Dreieck kennzeichnet den Tri-State-Ausgang. 
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Bild 4-13 Tri-State-Buffer (Inverter). Links: Prinzipschaltbild mit Enable E und Eingangssignal x. 
Rechts: Schaltsymbol. 
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In Bild 4-14 sind als Beispiel drei bidirektionale Schnittstellen gezeigt, die auf einen Bus arbei-
ten, an den eine Vielzahl derartiger Schnittstellen angeschlossen werden können. Die Schnitt-
stelle n  kann mit En = 1 auf Senden geschaltet werden. Es muss aber sichergestellt werden, 
dass alle anderen Schnittstellen dann nicht senden. Empfangen kann jede Schnittstelle unab-
hängig von den anderen, da dann das Potential auf dem Bus durch den einzigen Sender einge-
prägt werden kann. 

 Busleitung

xs1 xa1 E1 xs2 xa2 E2 xs0 xa0 E0 

EN1 

1 

EN1 

1 

EN1 

1 

1 1 1 

1 1 1

 

Bild 4-14 3 Bidirektionale Bustreiber mit Tri-State-Ausgängen, die über einen Bus kommunizieren. 

4.5  Übungen 

Aufgabe 4.1 
4 verschiedene Gatter erzeugen bei positiver Logik die booleschen Funktionen: UND, ODER, 
Äquivalenz und Exklusiv-ODER. Welche boolesche Funktion erhalten sie bei negativer Logik?  

Aufgabe 4.2 
a) Vereinfachen Sie die untenstehende Schaltung. 
b) Stellen sie die Schaltbilder der vereinfachten Schaltung für positive und negative Logik dar. 
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Aufgabe 4.3 
Geben Sie das Pegeldiagramm und die Wahrheitstabellen für positive und negative Logik ana-
log zu Tabelle 4-2 für die folgende Schaltung an: 
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5  Schaltungstechnik 

Transistoren werden in digitalen Schaltkreisen als Schalter eingesetzt. Sie haben die Aufgabe, 
einen Stromkreis zu öffnen oder zu trennen. Idealerweise müssten sie daher von einem Kurz-
schluss im eingeschalteten Zustand zu einem unendlich hohen Widerstand im ausgeschalteten 
Zustand umgeschaltet werden können. Auch sollen sie gemäß Bild 4-6 bei einer definierten 
Schwellenspannung Us abrupt schalten. Reale Transistoren erfüllen diese Vorgaben jedoch nur 
unvollständig. In den nächsten Abschnitten werden die gängigen Schaltkreistechnologien so-
wie deren Eigenschaften diskutiert. 

5.1  CMOS 

Die am häufigsten verwendete digitale Schaltkreistechnologie ist die CMOS-Technologie 
(CMOS = Complementary Metal Oxide Semiconductor). Die verwendeten Feldeffekttransis-
toren haben den Vorteil, dass das Gate durch ein Oxid isoliert ist, so dass im statischen Fall 
kein Strom in den Eingang fließt. Die Anschlüsse Gate, Drain und Source sind mit G, D bzw. S 
im Schaltbild gekennzeichnet. Mit B ist der Substratanschluss bezeichnet, der in der CMOS-
Technik auf ein konstantes Potential gelegt wird. In der Regel verwendet man Anreicherungs-
MOSFET, die bei 0V am Gate sperren. In Tabelle 5-1 sind das Schaltbild, die Steuerkennlinie 
und die Ausgangskennlinie eines n-Kanal- und eines p-Kanal-Anreicherungs-MOSFET darge-
stellt [12]. n-Kanal und p-Kanal-MOSFET werden auch NMOS und PMOS-Transistoren ge-
nannt.  

Tabelle 5-1 Kennlinien von NMOS und PMOS-Feldeffekttransistoren. 

Typ 

Schaltbild 
Steuerkennlinie Ausgangskennlinie 
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In den Steuerkennlinien ist die Threshold- oder Durchschalt-Spannung Uth markiert, die die 
Spannung angibt, bei der der Transistor zu leiten beginnt. Uth ist beim NMOS-Transistor posi-
tiv und beim PMOS-Transistor negativ. 

 

Man erkennt aus den Steuerkennlinien, dass der NMOS-Transistor für positive Gate-Source-
Spannungen UGS größer als Uth anfängt zu leiten. Der PMOS-Transistor ist für Gate-Source-
Spannungen UGS  eingeschaltet, die  negativer sind als die  Threshold-Spannung Uth. Man sieht 
aber auch, dass der Übergang zwischen dem ausgeschalteten und dem eingeschalteten Zustand 
stetig ist. 

 

Der Drainstrom des NMOS-Transistors ist positiv, während der des PMOS-Transistors negativ 
ist. Man verschaltet die beiden Transistoren daher wie in Bild 5-1 gezeigt, indem man die 
Drains beider Transistoren verbindet.  Die Gates sind miteinander so verbunden, dass UGS(NMOS)  
= Ue  und UGS(PMOS)  = Ue − VDD ist. Durch geeignete Wahl von Uth und VDD ist dadurch sicher-
gestellt, dass immer ein Transistor ausgeschaltet ist und der andere eingeschaltet. 

 

Die so entstandene Schaltung wirkt als Inverter, denn für Ue = 0V  ist der NMOS-Transistor 
ausgeschaltet und der PMOS-Transistor leitet. Daher ist Ua ≈ VDD. Für Ue = VDD dagegen ist 
der PMOS-Transistor ausgeschaltet und der NMOS-Transistor leitet, so dass Ua ≈ 0V wird.  

Der Funktion der Anordnung entspricht daher dem Inverter in Bild 4-10. 
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Bild 5-1 CMOS-Inverter.  

Die Schaltung wird auch als digitaler Verstärker verwendet. Man bezeichnet sie dann als Buf-
fer. Außerdem bildet sie die Grundlage für die digitalen CMOS-Grundgatter NAND und NOR. 
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Wichtig zur Beurteilung der Qualität des Gatters ist die Übertragungskennlinie Ua = f(Ue). Die 
Übertragungskennlinie von CMOS-Gattern ist, wie im Bild 5-2 gezeigt, nahezu ideal, denn sie 
wechselt sehr abrupt zwischen den beiden Signalzuständen.  
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Bild 5-2 Übertragungskennlinie eines CMOS-Inverters bei 5V und 15V Betriebsspannung. 

5.1.1  Fan-Out 

In der Regel werden an den Ausgang eines Gatters mehrere Eingänge anderer Gatter ange-
schlossen. An ein CMOS-Standard-Gatter können eine Vielzahl (z.B. 50) Standard-
Gattereingänge angeschlossen werden, da der CMOS-Eingang rein kapazitiv ist. Man be-
schreibt dies, indem man sagt, CMOS habe einen Ausgangslastfaktor oder ein Fan-Out von 
z.B. 50. Bei einer so hohen kapazitiven Belastung eines Ausgangs erhöhen sich aber die 
Schaltzeiten, wie unten gezeigt werden wird. 

5.1.2  Grundschaltungen NAND und NOR 

Die CMOS-Grundschaltungen entstehen aus dem Inverter, indem zu dem NMOS- und dem 
PMOS-Transistor jeweils ein weiterer gleichartiger Transistor parallel oder in Serie geschaltet 
wird. Dadurch wird ein logisches UND oder ODER erzeugt. Durch die zusätzliche Invertierung 
erhält man die Grundgatter der CMOS-Technologie, nämlich das NAND- und das NOR-Gatter 
(Bild 5-3).  

 

In der NOR-Schaltung in Bild 5-3 wird das Ausgangssignal y immer dann L wenn einer der 
Eingänge auf H liegt, denn dann leitet zumindest einer der n-Kanal-FET und einer  der p-
Kanal-FET sperrt. In der NAND-Schaltung dagegen geht y nur auf L wenn beide Eingänge auf 
H liegen. Dann nämlich leiten die n-Kanal-FET und die p-Kanal-FET sperren. 

 

Es ist möglich, komplizierte logische Ausdrücke direkt in CMOS-Logik zu übersetzen. Man  
verwendet dazu statt der Serien- und der Parallelschaltung wie im Fall der NAND und NOR-
Schaltung kompliziertere Schaltungen. Der NMOS-Transistor im Inverter wird durch eine 
Schaltung aus NMOS-Transistoren ersetzt, bei der eine UND-Verknüpfung eine Serienschal-
tung und die ODER-Verknüpfung durch eine Parallelschaltung gebildet wird. Genauso wird 
der einzelne PMOS-Transistor im Inverter durch mehrere PMOS-Transistoren ersetzt, deren 
Schaltung dual zu der im NMOS-Zweig sein muss. Mit dieser Technik können Logik-
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Schaltkreise für komplizierte Funktionen konstruiert werden. Ein Beispiel findet man in Auf-
gabe 5.3 am Ende dieses Kapitels. 
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Bild 5-3 CMOS-Grundgatter: links NOR, rechts NAND.  

Der Aufbau eines realen CMOS-Gatters ist in Bild 5-4 gezeigt. Die Schaltung gliedert sich in 4 
Teile: 

1. Eine Eingangsschutzschaltung soll eine Zerstörung des Bausteins durch statische Aufla-
dung verhindern. Die obere der Dioden ist für Spannungen, die größer sind als die Betriebs-
spannung, in Durchlassrichtung geschaltet, die untere für Spannungen, die kleiner sind als 
0V. 

2. Der Eingangsbuffer reduziert, besonders bei Gattern mit mehr als 2 Eingängen, die Ver-
schiebung der Eingangspegel der in Serie geschalteten FETs des Gatters. 

3. Das eigentliche Gatter erzeugt die logische Funktion. In diesem Fall ist es die NAND-
Schaltung aus Bild 5.3  

4. Der Ausgangstreiber verbessert die Übertragungskennlinie, reduziert die Rückwirkung vom 
Ausgang auf den Eingang und erhöht den maximalen Laststrom. Der Treiber ist für den 
weitaus größten Teil der im Chip umgesetzten Verlustleistung verantwortlich. 

Die Schaltung wird im CMOS-Logikbaustein 4001verwendet, in dem 4 dieser NAND-Gatter 
enthalten sind. Wegen des niedrigen Integrationsgrades werden diese Schaltungen heute nur 
noch selten verwendet. 
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schutzschaltung  

Bild 5-4 CMOS-NOR-Gatter (4001). 

5.1.3  Transmission-Gate 

Die in Bild 5-5 gezeigte Schaltung ist als Transmission-Gate bekannt. Es handelt sich um einen 
Analogschalter, der vielseitig eingesetzt werden kann. Der Inverter, bestehend aus T3 und T4, 
erzeugt die Steuersignale für das eigentliche Transmission-Gate, bestehend aus T1 und T2. 

 

Liegt am Eingang s des Inverters ein H, so liegt an T2 ein hohes Potential und an T1 ein L. Da 
T1 und T2 symmetrisch bezüglich Drain und Source sind, sind beide Transistoren durchgesteu-
ert und das Transmission-Gate ist durchgeschaltet. Umgekehrt können T1 und T2 mit einem 
Low-Pegel am Eingang des Inverters hochohmig gemacht werden. Durch die Verwendung je 
eines n- und p-Kanal-FET wird die Schaltung symmetrischer. 

 

Das Transmission-Gate kann zum Beispiel für die Ankopplung an einen Bus als Tristate-
Schalter verwendet werden. Es wird auch zur effektiven Realisierung von Gattern eingesetzt 
[14]. Ein Beispiel für die Anwendung des Transmission-Gates ist der analoge Multiplexer und 
Demultiplexer auf Seite 119. Dort wird auch ausgenutzt, dass das Transmission-Gate eine 
elektrische Verbindung darstellt, die in beiden Richtungen verwendet werden kann.  
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Bild 5-5 CMOS-Transmission-Gate mit Schaltsymbol. 

Im Schaltsymbol wird der Steuereingang durch das interne Symbol X1 gekennzeichnet, wel-
ches andeuten soll, dass alle Ein- und Ausgänge, die mit 1 gekennzeichnet sind, bidirektional 
verbunden werden, wenn der durch X1 gekennzeichnete Eingang auf 1 liegt. 

5.1.4  Tri-State-Ausgang 

Ein CMOS-Tri-State-Ausgang kann zum Beispiel mit zwei zusätzlichen Transistoren aufge-
baut werden, welche im „Enable“-Zustand leiten und im hochohmigen Zustand sperren. Durch 
die beiden zusätzlichen Transistoren wird der Ausgang im hochohmigen Zustand von der Be-
triebsspannung und Masse abgekoppelt. Bild 5-6 zeigt die Schaltung mit Wahrheitstabelle und 
Schaltsymbol. 
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Bild 5-6 CMOS-Tri-State Ausgang a) Schaltung, b) Wahrheitstabelle, c) Schaltsymbol. 
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5.1.5  CMOS-Eigenschaften 

- Unbenutzte Eingänge müssen immer mit Masse, VDD oder einem benutzten Eingang ver-
bunden werden, da das Potential sonst undefiniert ist. 

- Der Latch-Up-Effekt kann zu einer thermischen Überlastung des Bausteins führen. Dabei 
wird  ein parasitärer Tyristor im CMOS-Inverter gezündet. Dieser Effekt tritt bei hohen 
Strömen und besonders bei hoher Umgebungstemperatur auf. 

- Die maximale Eingangsspannung darf zwischen -0,5V und VDD+0,5V liegen. 

- CMOS-Bausteine sind trotz der Eingangsschutzschaltung sehr empfindlich gegen statische 
Aufladung. 

- CMOS-Gatter können im Gegensatz zu TTL-Gattern parallelgeschaltet werden, um einen 
höheren Ausgangsstrom zu erhalten. Da mit steigender Temperatur der Drainstrom sinkt, 
hat z.B. bei der gleichzeitigen Verbindung der Eingänge sowie der Ausgänge zweier Inver-
ter der Ausgangs-Transistor mit dem größten Laststrom eine Tendenz den Laststrom zu 
verringern wodurch die Schaltung thermisch stabil wird. CMOS-Gatter sind daher ther-
misch stabil, auch wenn sie parallel geschaltet werden.  

- CMOS-Bausteine haben ein sehr hohes Fan-Out, da die Eingänge der Gatter sehr hochoh-
mig sind. Bei hohem Fan-Out steigen die Anstiegszeit und die Abfallzeit stark an, wie un-
ten gezeigt werden wird. 

- Die Impulsflanken zur Ansteuerung von CMOS-Gattern müssen eine Mindeststeilheit ha-
ben. Bei langsamem Umschalten sind die Ausgangstransistoren zu lange beide leitend, was 
zu thermischen Problemen führt. Außerdem sind CMOS-Schaltungen im Umschaltpunkt 
sehr störempfindlich, so dass es zu Fehlschaltungen kommen kann. 

Tabelle 5-2 Typische Eigenschaften verschiedener CMOS-Logikfamilien. 

Bezeichnung Standard 
 

4000 

Standard 
 

74C00 

High 
Speed 

74HC00 

High Speed
 

74HCT00 

Advanced 
 

74ACT00 

Low-
Voltage 

74LVC00 
Leistung je Gatter 0,3mW 3mW 0,5mW 0,5mW 0,8mW 0,5mW 

Laufzeit tp 90ns 30ns 10ns 10ns 3ns 6ns 

Betriebsspannung 5V 15V 2-6V 5V 5V 3,3V 

5.2  TTL 

Die früher am weitesten verbreitete Realisierung von logischen Gattern ist die bipolare Transis-
tor-Transistor-Logik (TTL) (Bild 5-7). Ihre Funktion beruht auf der Verwendung eines Multi-
Emitter-Transistors T1 im Eingang. Sind alle Eingänge auf einem Potential nahe der positiven 
Betriebsspannung (H), so wirkt der Kollektor des Eingangstransistors T1 als Emitter. Der Tran-
sistor arbeitet im Inversbetrieb. In Bild 5-7 ist dann der folgende Transistor T2 durchgesteuert, 
und damit liegt der Ausgang auf L. Damit der Eingangsstrom gering bleibt, muss die Invers-
stromverstärkung von T1 nahe bei 1 liegen. Die Kollektordotierung muss daher ungefähr gleich 
der Basisdotierung sein. 

Liegt nur ein Eingang auf L, so stellt der Eingangstransistor T1 einen durchgesteuerten Transis-
tor im Normalbetrieb (aktiv, vorwärts) dar. Die Kollektor-Emitterspannung ist bis auf eine 
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geringe Restspannung gesunken und der folgende Transistor T2 sperrt. Der Ausgang liegt dann 
auf H. Da der Eingangstransistor immer durchgeschaltet ist, entfällt das Ausräumen der Basis-
ladung. Das wirkt sich günstig auf die Schaltgeschwindigkeit aus. Das Schaltverhalten kann 
weiter verbessert werden, wenn eine Schottky-Diode zwischen Basis und Kollektor geschaltet 
wird, welche eine Flusspolung der Basis-Kollektor-Diode verhindert. Dann bleibt die Basisla-
dung gering, und Umladungen zwischen Vorwärts- und Rückwärtsbetrieb werden zusätzlich 
vermieden. TTL-Gatter mit Schottky-Dioden haben ein „S“ in der Typenbezeichnung. Die 
Transistoren im Schaltbild werden durch einen S-förmigen Balken markiert. 
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Bild 5-7  a) TTL-NAND-Gatter (74S00). b) Darstellung der Transistoren mit Schottky-Dioden. c) Wahr-
heitstabelle. 
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Bild 5-8 a) Prinzip eines TTL-Tri-State-Gatters (NAND), b) Wahrheitstabelle für positive Logik, c) 
Schaltsymbol.  
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Das TTL-Tri-State-Gatter in Bild 5-8 hat einen Enable-Eingang En mit dem der Ausgang 
hochohmig geschaltet werden kann. 

Wenn der Eingang En auf L liegt, wird der obere Ausgangs-Transistor T3 gesperrt. Der Enable-
Eingang En  bewirkt über den Emitter von T1, dass der Transistor T1 im Vorwärtsbetrieb leitet. 
Daher sperrt T2 und es gibt keinen Spannungsabfall am Emitterwiderstand von T2, so dass auch 
T4 sperrt. Da beide Ausgangstransistoren T3 und T4 sperren, ist der Ausgang im hochohmigen 
Tristate-Zustand. 

Liegt der Eingang En auf H, so sind der entsprechende Emitter und die Diode stromlos. Die 
Schaltung arbeitet dann wie eine normale NAND-Schaltung. 

5.2.1  Belastung der Ausgänge 

Auch bei TTL kann an ein Gatter nur eine begrenzte Anzahl Eingänge von Folgegattern ange-
schlossen werden. Bei TTL ist der Laststrom der Ausgangsstufe begrenzt. Für Standard TTL-
Bausteine gelten die in Tabelle 5-3 festgehaltenen maximalen Lastströme. Außerdem sind die 
minimalen Eingangsströme angegeben. 

Tabelle 5-3 Maximale Ausgangs- und minimale Eingangsströme für Standard-TTL-Bausteine. 

 maximaler Last-Strom minimaler Eingangs-Strom 

Low 16mA 1,6mA 

High 0,4mA 0,04mA 

Daraus folgt, dass bis zu 10 Standard-TTL-Gatter an ein Standard-TTL-Gatter angeschlossen 
werden können. Das Fan-Out der Standard TTL-Baureihe beträgt 10. Man kann aber auch das 
Fan-Out betrachten, welches durch gemischte Verwendung der Baureihen entsteht. Alternativ 
dazu ist auch die Verwendung der Begriffe „Drive-Factor“ und „Load-Factor“ üblich. Für alle 
TTL-Baureihen gilt: 

-  Versorgungsspannung VCC = 5V 
-  Nahezu gleiche Ein- und Ausgangspegel („TTL-Pegel“) für alle Baureihen: 

UaLmax = 0,4V 
UaHmin = 2,4V 
UeLmax = 0,8V 
UeHmin = 2,0V 

-  offene Eingänge entsprechen einem logischen High! 
-  Ausgänge dürfen nicht parallel geschaltet werden. 

Tabelle 5-4 Typische Eigenschaften der TTL-Logikfamilien. 

Bezeichnung Standard 
 
 

7400 

High 
Speed 

 
74H00 

Schottky 
 
 

74S00 

Low-Power 
Schottky 

 
74LS00 

Advanced 
 
 

74AS00 

Low-
Power-

Advanced 
74ALS00 

Leistung je Gatter 10mW 23mW 20mW 2mW 9mW 1mW 

Laufzeit tp 10ns 5ns 3ns 10ns 1,5ns 4ns 
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5.3  Emitter-Coupled Logic (ECL) 

Die Emitter-gekoppelte Logik (ECL) arbeitet mit Differenzverstärkern, welche nicht in die 
Sättigung gesteuert werden (Bild 5-9). Dadurch sind diese Schaltkreise sehr schnell. 

Im Eingangsdifferenzverstärker der Schaltung werden die Spannungen der Eingangssignale x0 
und x1 mit einem Referenzsignal verglichen. Liegen x0 und x1 auf L, dann sperren die Transis-
toren T1 und T2, dagegen leitet T3. Der Ausgang y gibt dann ein L aus. Liegt dagegen x0 oder x1 
auf H, so leitet T1 oder T2 und T3 sperrt. Das Ausgangssignal Q liegt dann auf H. Es handelt 
sich also um ein NOR-Gatter. Die Schaltschwelle kann mit dem Spannungsteiler an der Basis 
von T2 eingestellt werden. 
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Bild 5-9 ECL-NOR-Gatter: a) Schaltung, b) Schaltsymbol für positive Logik. 

Die Eigenschaften von ECL-Gattern lassen sich wie folgt zusammenfassen: 
- ECL-Gatter sind gegenüber TTL-Gattern schneller. 
- Sie verbrauchen im Ruhezustand mehr, bei hohen Schaltfrequenzen weniger Leistung als 

CMOS und TTL. 
-  Bei Low und High-Pegel haben ECL-Gatter die gleiche Verlustleistung. 
-  ECL-Gatter haben ein hohes Fan-Out 
-  Die Störsicherheit ist geringer. 

Tabelle 5-5 Typische Eigenschaften der ECL-Logikfamilien. 

Bezeichnung Standard 

10.100 

High Speed 

10E100 

High Speed 

100E100 

Leistung je Gatter 35mW 50mW 40mW 

Laufzeit tp 2ns 0,75ns 0,4ns 
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5.4  Integrierte Injektions-Logik (I2L) 

Die integrierte Injektions-Logik I2L hat den Vorteil einer sehr geringen Chipfläche. Außerdem 
kann sie mit geringen Betriebsspannungen und geringen Verlustleistungen arbeiten. Sie ist aber 
weitgehend von der CMOS-Technologie abgelöst worden. 

In Bild 5-10 ist ein typischer Inverter gezeigt. T1 wirkt als Stromquelle mit einem relativ kon-
stanten Ausgangsstrom I0. Liegt der Eingang x auf High, so fließt der gesamte Strom in die 
Basis von T2, der leitend wird. Die Ausgänge y1 und y2 liegen dann auf Low.  

Ist der Eingang Low, dann fließt der Strom I0 in das vorhergehende Gatter und die Ausgänge 
liegen auf High. 
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Bild 5-10 a) Schaltbild eines I2L-Inverters, b) Realisierung. 

I2L-Schaltkreise können mit sehr geringen Betriebsspannungen von unter 1V betrieben werden. 
Der Störabstand wird dann aber sehr klein. Bild 5-11 zeigt ein NOR-Gatter in I2L-Technik. Die 
beiden weiteren offenen Kollektoren können zur Realisierung weiterer logischer Funktionen 
genutzt werden. 
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Bild 5-11 NOR-Gatter in I2L-Technik.  
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5.5  Verlustleistung und Schaltverhalten von Transistorschaltern 

Das Schaltverhalten eines CMOS-Gatters soll im Folgenden an einer CMOS-Ausgangsstufe 
mit einer CMOS-Last untersucht werden. Dafür ist in Bild 5-12 das Modell eines Transistor-
schalters dargestellt. In diesem Modell wird ein Transistor nur durch einen Widerstand Ron oder 
Roff dargestellt, je nachdem, ob er aus- oder eingeschaltet ist. Die Leitungen, die am Ausgang 
angeschlossen sind und die folgende Eingangsschaltung werden durch die Kapazität Ci darge-
stellt. 
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Bild 5-12 a) CMOS-Inverter. b) Modell für den Einschaltvorgang. b) Modell für den Ausschaltvorgang. 

Der Kondensator Ci setzt sich aus den Eingangskapazitäten der folgenden Gatter sowie den 
Leitungskapazitäten und der Ausgangskapazität CDS des Inverters zusammen. Bei einer bipola-
ren Schaltungstechnik müsste auch der Eingangswiderstand der folgenden Gatter berücksich-
tigt werden.  

In der folgenden Berechnung ist der Widerstand des gesperrten Transistors Roff als unendlich 
groß angenommen. Man beachte, dass der On-Widerstand Ron bei gegebener Gate-Länge der 
Transistoren von der Gate-Weite der Transistoren abhängig ist, da der Drainstrom proportional 
zum Verhältnis Gateweite zu Gatelänge ist. Kleine Transistoren haben daher einen hohen On-
Widerstand. Löst man im Zeitbereich die Differentialgleichungen für die Ausgangsspannung, 
so erhält man für das Schalten von L nach H: 

( )ionCRt
DDa eVU /1 −−=  (5.1) 

und für das Schalten von H nach L: 

ionCRt
DDa eVU /−=  (5.2) 

Die Zeitkonstante dieser Funktionen ist eine Approximation der Schaltzeit des Gatters: 

ts ≈ Ron Ci  (5.3) 
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Um eine geringe Schaltzeit zu erzielen, müssen daher der On-Widerstand der Transistoren und 
die angeschlossenen Kapazitäten klein sein. 

Berechnet man aus Gleichung 5.1 und 5.2 die mittlere Verlustleistung P für periodisches Ein- 
und Ausschalten mit der Frequenz f und addiert die statische Verlustleistung (VDD

2 / (Ron+Roff))  
so erhält man: 











+

+
= i

offon
DD Cf

RR
VP

12  (5.4) 

Man zieht daraus die folgenden Schlüsse: 

− Schnelle Schaltungen benötigen niedrige On-Widerstände und daher Transistoren mit 
großer Weite W (wenn FETs verwendet werden) 

− Schnelle Schaltungen erfordern geringe Leitungskapazitäten, in schnellen Schaltungen 
dürfen daher nur relativ wenige Gatter an einen Ausgang angeschlossen werden 

− Mit steigender Schaltgeschwindigkeit steigt die Verlustleistung 

− Bei schnellen und hochintegrierten Schaltungen muss die Versorgungsspannung redu-
ziert werden (2 oder 3V). 
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Bild 5-13 Leistungsaufnahme P verschiedener Technologien über der Schaltfrequenz (schematisch). 

Bild  5-13 zeigt die Leistungsaufnahme von verschiedenen Logik-Technologien über der Fre-
quenz. Neben der CMOS- und der Silizium-ECL-Technologie sind die Ergebnisse für eine 
Technologie auf der Basis des Verbindungshalbleiters Gallium-Arsenid (GaAs) dargestellt. Die 
verwendeten Transistoren, spezielle Feldeffekttransistoren, sind High-Electron-Mobility-
Transistoren (HEMT). Das Bild zeigt, dass entsprechend Gleichung 5.4, ein statischer Anteil 
der Verlustleistung und ein frequenzproportionaler Anteil vorliegen. Bei niedrigen Frequenzen 
schneidet die CMOS-Technologie und bei hohen die GaAs-Technologie am besten ab.    

5.6  Übungen 

Aufgabe 5.1 

a) Konstruieren Sie ein CMOS-NAND-Gatter mit 3 Eingängen. 

b) Konstruieren Sie ein CMOS-NOR-Gatter mit 3 Eingängen. 
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Aufgabe 5.2 

Geben Sie die Wahrheitstabelle und das Schaltbild des TTL-Gatters in Bild 5-8 an, wenn eine 
negative Logik zugrunde gelegt wird. 

Aufgabe 5.3 

Geben Sie an, welche logische Funktion y = f (x4, x3, x2, x1, x0) durch das dargestellte Gatter 
realisiert wird, wenn man eine positive Logik zugrunde legt. 
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Aufgabe 5.4  

Geben Sie an, welche logische Funktion y = f (x1, x0) durch das dargestellte Gatter realisiert 
wird, wenn man eine positive Logik zugrunde legt. 
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6  Schaltnetze 

Ein Schaltnetz ist eine Funktionseinheit, die einen Ausgangswert erzeugt, der nur von den 
Werten der Eingangsvariablen zum gleichen Zeitpunkt abhängt. Es wird durch eine Schaltfunk-
tion beschrieben. In der Praxis stellt sich oft die Aufgabe, zu einer gegebenen Schaltfunktion 
die einfachste Realisierung zu finden. Hier werden Verfahren vorgestellt, die eine Minimierung 
mit graphischen Methoden oder mit Hilfe von Tabellen ermöglichen. Die minimierte KDNF 
wird minimale disjunktive Normalform (DNF), die minimierte KKNF wird minimale konjunk-
tive Normalform (KNF) genannt.  

6.1  Minimierung mit Karnaugh-Veitch-Diagrammen 

6.1.1  Minimierung der KDNF 

Die Methode der Minimierung von Schaltnetzen mit Karnaugh-Veitch-Diagrammen eignet 
sich gut für den Entwurf von Hand. Sie wird hier an Hand eines Beispiels erläutert. Die zu 
minimierende Schaltfunktion sei durch die Tabelle 6-1 definiert. 

Tabelle 6-1 Beispiel einer Schaltfunktion. 

Dez. x3 x2 x1 x0 y 

0 0 0 0 0 1 

1 0 0 0 1 0 

2 0 0 1 0 1 

3 0 0 1 1 0 

4 0 1 0 0 0 

5 0 1 0 1 1 

6 0 1 1 0 0 

7 0 1 1 1 0 

 

Dez. x3 x2 x1 x0 y 

8 1 0 0 0 1 

9 1 0 0 1 0 

10 1 0 1 0 1 

11 1 0 1 1 0 

12 1 1 0 0 1 

13 1 1 0 1 1 

14 1 1 1 0 0 

15 1 1 1 1 1 

 

Für die Minimierung werden Matrix-Diagramme verwendet, in denen jedes Feld genau einer 
Disjunktion der Eingangsvariablen, also einem Minterm entspricht. Diese Diagramme werden 
Karnaugh-Veitch-Diagramme (KV-Diagramm) genannt. Im Bild 6-1 sind zwei KV-Dia-
gramme gezeigt, in denen die Felder mit ihren Mintermen bzw. mit dem Funktionswert der 
zugehörigen Eingangsvariablenkombination bezeichnet sind. Das Diagramm ist so konstruiert, 
dass sich beim Übergang von einem Feld in das nächste nur eine Variable ändert. 
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f(0000) f(0100) f(1100) 
 

f(1000)

f(0001) f(0101) f(1101) f(1001)

f(0011) f(0111) f(1111) f(1011)

f(0010) f(0110) f(1110) f(1010)

x3=1 

x2=1 

x0=1 

x1=1 

m0 m4 m12 m8 

m1 m5 m13 m9 

m3 m7 m15 m11 

m2 m6 m14 m10 

x3=1 

x2=1

x0=1 

x1=1

 

Bild 6-1 Karnaugh-Veitch-Diagramme für 4 Eingangsvariable a) mit binärer Bezeichnung der Felder, b) 
mit Bezeichnung der Minterme. 

In diesem Diagramm werden zur Minimierung der KDNF die Minterme der Schaltfunktion 
markiert. Dabei ist die Verwendung der Dezimaläquivalente hilfreich. Für das Beispiel erhält 
man: 

 

1  1 1 

 1 1  

  1  

1   1 

x3 

x2 

x0 

x1 

 

Bild 6-2 Karnaugh-Veitch-Diagramm mit den Mintermen der Funktion aus Bild 6-1. 

Jetzt können benachbarte Felder, da sie sich immer nur in einer Variablen unterscheiden, nach 
der Regel (Gleichung 3.36) 

x0 x1 ∨ x0 ¬x1 = x0 (6.1)  

zusammengefasst werden. 

Daher werden möglichst große Gebiete von Feldern mit einer 1 gebildet. Es sind aber nur zu-
sammenhängende, konvexe Gebiete mit 1,2,4,8 usw. Feldern möglich. Diese Felder werden 
durch eine Konjunktion der Eingangsvariablen beschrieben, die Implikant genannt wird. Man 
denkt sich dabei die linke Seite des Diagramms anschließend an die rechte, ebenso wie die 
obere Seite mit der unteren gedanklich verbunden. Ein Implikant, der aus 4 Eingangsvariablen 
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aufgebaut ist, besteht aus einem Feld (bei einer Funktion mit 4 Variablen). Hat der Implikant 
eine Variable weniger, so verdoppelt sich jeweils die Anzahl der Felder. Um den Aufwand an 
Gattern zu minimieren, werden daher möglichst große Felder gebildet. 
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Bild 6-3 Karnaugh-Veitch-Diagramm mit den Mintermen der Funktion aus Tabelle 6-1. 

Für das Gebiet 1 findet man den Implikanten I1: 

Gebiet 1: I1 = x0¬x1x2  

Man findet keinen anderen Implikanten der I1 vollständig überdeckt. Der Implikant I1 der 
Funktion wird Primimplikant genannt, wenn es keinen Implikanten Ix gibt derart, dass I1 von Ix 
vollständig überdeckt wird. Die Implikanten der DNF werden auch Produktterme genannt. 

 

Die im Beispiel vorhandenen Primimplikanten sind mit den Zahlen 1 bis 5 markiert. Weitere 
Primimplikanten findet man nicht. Für die anderen markierten Primimplikanten kann man mit 
Hilfe der Variablen am Rand des Diagramms die Konjunktionen bestimmen, die die Gebiete 
eindeutig bezeichnen: 

Gebiet 2: I2 = x0 x2 x3 

Gebiet 3: I3 = ¬x1 x2 x3 

Gebiet 4: I4 = ¬x0 ¬x1 x3 

Gebiet 5: I5 = ¬x0 ¬x2 
In einem Diagramm für 4 Eingangsvariable entspricht ein Gebiet von 4 Feldern einem Impli-
kanten mit 2 Variablen, wie es hier für den Implikanten I5 der Fall ist. Dieser Implikant liegt in 
den 4 Ecken des Diagramms, die verbunden gedacht werden.  

Man unterscheidet zwischen: 

- Kern-Primimplikanten PK: 

 Ein Primimplikant ist ein Kern-Primimplikant, falls er durch die Disjunktion aller übrigen 
Primimplikanten nicht überdeckt wird. Die Kern-Primimplikanten haben also eine 1, die 
nur sie allein abdecken. Die Kern-Primimplikanten tauchen in der minimierten Form der 
DNF auf jeden Fall auf. 

- Absolut eliminierbare Primimplikanten PA: 
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 Ein Primimplikant ist absolut eliminierbar, falls er durch die Kern-Primimplikanten voll-
ständig überdeckt wird. Er ist überflüssig. 

- Relativ eliminierbare Primimplikanten PR: 

 alle weiteren Primimplikanten heißen relativ eliminierbare Primimplikanten. Eine Auswahl 
der relativ eliminierbaren Primimplikanten taucht in der minimierten Form der DNF auf. 

Im Beispiel ergeben sich die Mengen: 

PK = {I1, I2, I5} 

PA = {∅} 

PR = {I3, I4} 

Die minimierte Schaltfunktion setzt sich aus den Kern-Primimplikanten und einer Auswahl der 
relativ eliminierbaren Primimplikanten zusammen, so dass alle Minterme abgedeckt sind. Die 
vereinfachte Schaltfunktion lautet also, wenn man den relativ eliminierbaren Primimplikanten 
4 eliminiert: 

f(x3, x2, x1, x0) = x0 ¬x1 x2  ∨ x0 x2 x3  ∨ ¬x1 x2 x3  ∨ ¬x0 ¬x2   (6.2) 

und wenn man den Primimplikanten 3 eliminiert: 

f(x3, x2, x1, x0) = x0 ¬x1 x2  ∨ x0 x2 x3  ∨ ¬x0¬x1 x3  ∨ ¬x0 ¬x2   (6.3) 

6.1.2  Minimierung der KKNF 

Das Verfahren zur Minimierung der KKNF beruht auf den Maxtermen. An Stelle der Einsen 
werden nun die Nullen betrachtet. Für das gleiche Beispiel werden nun die Maxterme in das 
Diagramm eingetragen. 
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Bild 6-4 Karnaugh-Veitch-Diagramm mit den Maxtermen der Funktion aus Tabelle 6-1. 

Es werden wieder möglichst große Gebiete eingezeichnet, wobei nach den gleichen Regeln 
verfahren wird wie bei der Ermittlung der DNF. Die in Bild 6-4 eingezeichneten Gebiete sind 
die Primimplikanten der KNF.  Sie werden durch Disjunktionen der Eingangsvariablen darge-
stellt, die außerhalb des jeweiligen Gebietes den Funktionswert 1 erzeugen: 
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Gebiet 1: I1 = x0 ∨ ¬x2 ∨ x3  

Gebiet 2: I2 = ¬x0 ∨ x2  

Gebiet 3: I3 = ¬x1 ∨ ¬x2 ∨ x3 

Gebiet 4: I4 = ¬x0 ∨ ¬x1 ∨ x3 

Gebiet 5: I5 = x0 ∨ ¬x1 ∨ ¬x2 

Im Beispiel ergeben sich also die Mengen: 

PK = {I1, I2, I5} 

PA = {∅} 

PR = {I3, I4} 

Eine minimale Realisierung erhält man durch die Verwendung der Kern-Primimplikanten und 
des Implikanten I3: 

 

f(x3, x2, x1, x0) = (x0 ∨ ¬x2 ∨ x3)(¬x0 ∨ x2)(¬x1 ∨ ¬x2 ∨ x3)(x0 ∨ ¬x1 ∨ ¬x2) (6.4) 

 

Die zweite mögliche minimale KNF erhält man durch die Verwendung der Kern-
Primimplikanten und des Implikanten I4: 

f(x3, x2, x1, x0) = (x0 ∨ ¬x2 ∨ x3)( ¬x0 ∨ x2)(¬x0 ∨ ¬x1 ∨ x3)( x0 ∨ ¬x1 ∨ ¬x2) (6.5) 

6.1.3  Karnaugh-Veitch-Diagramme für 2 bis 6 Eingangsvariablen 

Hier finden Sie eine Zusammenstellung der verschiedenen KV-Diagramme mit den eingetra-
genen Dezimaläquivalenten. Karnaugh-Veitch-Diagramme mit mehr als 6 Variablen werden 
selten verwendet, da sie sehr unübersichtlich sind. 

 

0 2 6 4 

1 3 7 5 

x2 

x1 

0 2 

1 3 x0 

x1 

x0 

0 4 12 8 

1 5 13 9 

3 7 15 11 

2 6 14 10 

x3 

x2 

x0 

x1

 

Bild 6-5 Karnaugh-Veitch-Diagramme für 2, 3 und 4 Eingangsvariable. 
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24 28 20 16 

25 29 21 17 

27 31 23 19 

26 30 22 18 

x2

x0 

x1 

0 4 12 8 

1 5 13 9 

3 7 15 11 

2 6 14 10 

x2 

x4 

x3

 

Bild 6-6 Karnaugh-Veitch-Diagramm für 5 Eingangsvariable. 

 

x3

x0 

x3 

x5 
x4

x0 x2 

x1 

48 56 40 32 

49 57 41 33 

51 59 43 35 

50 58 42 34 

0 8 24 16 

1 9 25 17 

3 11 27 19 

2 10 26 18 

54 62 46 38 

55 63 47 39 

53 61 45 37 

52 60 44 36 

6 14 30 22 

7 15 31 23 

5 13 29 21 

4 12 28 20 

 

Bild 6-7 Karnaugh-Veitch-Diagramm für 6 Eingangsvariable. 
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6.1.4  Unvollständig spezifizierte Funktionen 

Mitunter ist eine Funktion nicht vollständig spezifiziert. Dann können manche Funktionswerte 
beliebig gewählt werden. Sie werden im KV-Diagramm mit einem d (don’t care) markiert. Die 
don’t care-Minterme können zur Minimierung der Funktion benutzt werden. Im folgenden 
Beispiel (Bild 6-8) ist eine Funktion durch ihr KV-Diagramm gegeben.  

 

0 1 d d 

1 d 1 0 

x2

x1 

x0 

 

Bild 6-8 Beispiel für eine unvollständig spezifizierte Funktion.  

Nun können die Primimplikanten unter Einbeziehung der don’t care-Felder so eingezeichnet 
werden, dass sie möglichst groß werden. Die don’t care-Felder können dabei 0 oder 1 gesetzt 
werden.  

 

0 1 d d 

1 d 1 0 

x2

x1 

x0 

 

Bild 6-9 Primimplikanten für das Beispiel aus Bild 6-8. 

Man findet für die minimierte Form daher: 

f(x2, x1, x0) = x0¬x2 ∨ x1 (6.6) 

 

Ohne die Verwendung der don’t care-Terme (d.h. mit d = 0) hätte man folgende minimierte 
Form gefunden: 

f(x2, x1, x0) = x0¬x1¬x2 ∨ ¬x0 x1¬x2 ∨ x0 x1 x2 (6.7) 

 

Die Funktion kann also mit Hilfe der don’t care-Terme einfacher dargestellt werden. 
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6.2  Das Quine-McCluskey-Verfahren 

Ein Verfahren zur Minimierung von Schaltnetzen, welches sich für die Implementierung auf 
dem Rechner eignet, ist das Verfahren von Quine-McClusky. Es beruht auf Tabellen, in denen 
wieder nach dem Prinzip der Gleichung 3.36 vorgegangen wird: 

x0x1 ∨ x0¬x1 = x0 (6.8)  

Die Darstellung der Funktion geschieht durch ihre Minterme im Binäräquivalent. Für eine im 
Minterm vorkommende Variable wird eine 1 gesetzt, für eine negierte Variable eine 0 und für 
eine nicht vorkommende ein Strich (-). Ein Beispiel: 

 

x3¬x2x0 wird geschrieben als:  10-1   

 

Das Verfahren soll im Folgenden an Hand des Beispiels aus Tabelle 6-1 dargestellt werden. 
Die Minterme der Schaltfunktion werden in eine Tabelle (Tabelle 6-2) eingetragen, in der sie 
zu Gruppen von Mintermen mit der gleichen Anzahl von 1-Elementen zusammengefasst wer-
den. In den Spalten stehen: das Dezimaläquivalent, die binäre Darstellung und die Gruppe (d.h. 
die Anzahl der Eins-Elemente des Binäräquivalents). 

 

Tabelle 6-2 Ordnung der Minterme nach Gruppen mit gleich vielen 1-Elementen. 

Dezimal x3 x2 x1 x0 Gruppe 

0 0 0 0 0 0 

2 0 0 1 0 1 

8 1 0 0 0 1 

5 0 1 0 1 2 

10 1 0 1 0 2 

12 1 1 0 0 2 

13 1 1 0 1 3 

15 1 1 1 1 4 

 

 

In der folgenden Tabelle 6-3 werden dann die Terme aufeinander folgender Gruppen, die sich 
nur in einer Stelle unterscheiden, in einer Zeile zusammengefasst. Dies ist die Anwendung der 
Gleichung 6.8. Die Stelle, in der sich die Elemente unterscheiden, wird durch einen Strich (-) 
gekennzeichnet. Für das Dezimaläquivalent werden die Dezimalzahlen der Minterme eingetra-
gen, aus denen sich der neue Term zusammensetzt. 

 

 

  
















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Tabelle 6-3 1. Zusammenfassung der Minterme nach Gruppen mit gleicher Anzahl von 1-Elementen. 

Dezimal x3 x2 x1 x0 Gruppe 

0,2 0 0 - 0 0 

0,8 - 0 0 0 0 

2,10 - 0 1 0 1 

8,10 1 0 - 0 1 

8,12 1 - 0 0 1 

5,13 - 1 0 1 2 

12,13 1 1 0 - 2 

13,15 1 1 - 1 3 

 

Im Beispiel können die Minterme 0 und 1 zusammengefasst werden, da sie sich nur in der 
Stelle x1 unterscheiden. 

Alle Terme, die sich zusammenfassen lassen, werden in der vorhergehenden Tabelle 6-2 mit 
einem  markiert. (Da z.B. die Minterme 0 und 1 verschmolzen wurden, werden sie in Tabelle 
6-2 beide mit einem  markiert). Nicht markierte Terme sind Primimplikanten, sie erscheinen 
in der minimierten Schaltfunktion (im Beispiel bisher nicht der Fall).  

In der folgenden Tabelle 6-4 wird das Verfahren wiederholt. Es werden wieder die Elemente 
aufeinander folgender Gruppen aus Tabelle 6-3 zusammengefasst. Wieder werden nur Terme 
zusammengefasst, die sich nur um eine Binärstelle unterscheiden.  Sind die Binäräquivalente 
mehrerer Terme gleich, so werden die Terme alle bis auf einen gestrichen. 

Tabelle 6-4 2. Zusammenfassung der Minterme nach Gruppen mit gleicher Anzahl von 1-Elementen. 

Dezimal x3 x2 x1 x0 Gruppe 

0,2,8,10 - 0 - 0 0 

0,8,2,10 - 0 - 0 0 

 

Das Verfahren wird fortgeführt, bis sich keine Terme mehr verschmelzen lassen. Die nicht 
abgehakten Terme sind Primimplikanten. Also sind  

8,12 

5,13 

12,13 

13,15 und 

0,2,8,10   Primimplikanten 

Nun müssen die Primimplikanten klassifiziert werden nach: Kern-Primimplikanten, absolut 
eliminierbaren Primimplikanten und relativ eliminierbaren Primimplikanten. Das wird mit 
einer weiteren Tabelle, der Primimplikantentafel, erreicht. 

  









Gestrichen (= Zeile 1) 
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Auf der Abszisse werden die Minterme der Schaltfunktion aufgetragen, auf der Ordinate die 
Primimplikanten. Die Minterme, die in einem Primimplikanten enthalten sind, werden mit 
einem × markiert. 

Tabelle 6-5 Primimplikantentafel für das Beispiel. 

Primimplikanten Minterme 

0 2 5 8 10 12 13 15 

8,12    ×  ×   

5,13   ×    ×  

12,13      × ×  

13,15       × × 

0,2,8,10 × ×  × ×    

 

Befindet sich in einer Spalte nur ein ×, so ist der dazugehörige Primimplikant ein Kern-
Primimplikant. Die durch ihn abgedeckten Minterme werden durch einen Kreis ⊗ gekenn-
zeichnet. Im Beispiel werden die Minterme 0, 2, 10  nur durch den Kern-Primimplikanten 
0,2,8,10 abgedeckt, er erscheint in der minimierten DNF. Die durch ihn abgedeckten Minterme 
0,2,8,10 werden, auch in den anderen Zeilen, gekennzeichnet (⊗). 

Tabelle 6-6 Primimplikantentafel für das Beispiel mit gestrichenen Termen ( ⊗ ). 

Primimplikanten Minterme 

0 2 5 8 10 12 13 15 

8,12    ⊗  ×   

5,13   ⊗    ⊗  

12,13      × ⊗  

13,15       ⊗ ⊗ 

0,2,8,10 ⊗ ⊗  ⊗ ⊗    

 

Auch die Implikanten 5,13 und 13,15 sind Kern-Primimplikanten, da nur sie einen der Min-
terme 5 bzw. 15 abdecken. Die abgedeckten Minterme 5,13,15 werden gekennzeichnet (⊗). 

 

Aus den verbleibenden Primimplikanten, das sind die relativ eliminierbaren Primimplikanten 
wird eine minimale Anzahl ausgesucht, um die verbleibenden Minterme abzudecken. Diese 
bilden dann zusammen mit den Kern-Primimplikanten die Minimalform der Schaltfunktion. Im 
Beispiel kann für den verbleibenden Minterm 12 entweder der Primimplikant 8,12 oder 12,13 
ausgewählt werden. 
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Tabelle 6-7 Zuordnung der Implikanten. 

Dezimal x3 x2 x1 x0 Implikant 

8,12 1 - 0 0 x3¬x1¬x0 

5,13 - 1 0 1 x2¬x1x0 

12,13 1 1 0 - x3x2¬x1 

13,15 1 1 - 1 x3x2x0 

0,2,8,10 - 0 - 0 ¬x2¬x0 

 

Man erhält also, wenn man den Primimplikanten 12,13 verwendet: 

f(x3, x2, x1, x0) = x2¬x1x0 ∨ x3x2x0 ∨ x3x2¬x1 ∨ ¬x2¬x0   (6.9) 

oder wenn man den Primimplikanten 8,12 verwendet: 

f(x3, x2, x1, x0) = x2¬x1x0 ∨ x3x2x0 ∨ x3¬x1¬x0 ∨ ¬x2¬x0 (6.10) 

 

Diese Gleichungen sind identisch zu den mit Hilfe der Karnaugh-Veitch-Diagramme gefunde-
nen minimierten Formen. 

6.3  Andere Optimierungsziele 

Ein Schaltnetz, das durch seine KDNF oder KKNF beschrieben ist oder durch die minimierten 
Formen DNF und KNF, lässt sich direkt durch ein zweistufiges Schaltwerk realisieren. Für ein 
zweistufiges Schaltwerk muss man zwei Gatterlaufzeiten veranschlagen, wenn man die Lauf-
zeit durch die Inverter vernachlässigt, oder wenn die Eingangsvariablen auch invertiert zur 
Verfügung stehen. 

 

In der Regel hat man aber bei der Realisierung auch weitere Randbedingungen zu beachten: 

 

-  Oft soll das Schaltwerk mit nur einem Gattertyp aufgebaut werden, so zum Beispiel nur mit 
NOR oder NAND. 

-  Die maximale Laufzeit ist oft vorgegeben, so dass nur ein zweistufiges Schaltwerk in Frage 
kommt. 

-  Es sollen mehrere Funktionen gemeinsam minimiert werden. 

- Die maximale Anzahl der Produktterme ist in programmierbaren Bausteinen in der Regel 
vorgegeben. 

 

Es sollen im Folgenden einige dieser Besonderheiten bei der Realisierung von Schaltnetzen 
aufgezeigt werden. 
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6.3.1  Umwandlung UND/ODER-Schaltnetz in NAND-Schaltnetz 

Es soll das in Bild 6-10a gezeigte Schaltnetz, das aus der DNF gewonnen werden kann, in ein 
Schaltnetz umgewandelt werden, welches nur aus NAND-Gattern  aufgebaut ist. Mit der de 
Morganschen Regel wandelt man zunächst das ODER-Gatter in ein UND-Gatter um (Bild 6-
10b). Dann verschiebt man die Inversionskreise vom Eingang dieses UND-Gatters an die Aus-
gänge der an den Eingängen liegenden UND-Gatter und hat dann ein reines NAND-Netz (Bild 
6-10c). Die einmalige Anwendung der de Morganschen Regel ergibt die Formel: 

y = x0x2x3 ∨ x0¬x2¬x3 ∨ x0x1¬x3 ∨ x1x2¬x3 

   = ¬(¬(x0x2x3) ¬(x0¬x2¬x3) ¬( x0x1¬x3) ¬(x1x2¬x3)) (6.11) 
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Bild 6-10 a) Schaltnetz einer DNF b) Umwandlung des ODER-Gatters c) Verschieben der Inversionskrei-
se.  
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6.3.2  Umwandlung ODER/UND-Schaltnetz in NOR-Schaltnetz 

Bei der Umwandlung eines ODER/UND-Schaltnetzes in ein Schaltnetz nur aus NOR-Gattern 
geht man entsprechend vor. In Bild 6-11 ist gezeigt, dass durch die Umwandlung des UND-
Gatters am Ausgang (Bild 6-11b) und die Verschiebung der Inversionskreise (Bild 6-11c) ein 
reines NOR-Netz entsteht. Die Formel erhält man durch einmalige Anwendung der de Morg-
anschen Regel: 

y = (x0 ∨ x2 ∨ x3)( x0 ∨ ¬x2 ∨ ¬x3)( x0 ∨ x1 ∨ ¬x3)( x1 ∨ x2 ∨ ¬x3) 

   = ¬(¬(x0 ∨ x2 ∨ x3) ∨ ¬(x0 ∨ ¬x2 ∨ ¬x3) ∨ ¬( x0 ∨ x1 ∨ ¬x3) ∨ ¬(x1 ∨ x2 ∨ ¬x3)) (6.12) 
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Bild 6-11 a) Schaltnetz einer KNF b) Umwandlung des UND-Gatters c) Verschieben der Inversionskrei-
se.  
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6.4  Laufzeiteffekte in Schaltnetzen 

6.4.1  Strukturhazards 

Bisher wurde das Laufzeitverhalten von Schaltnetzen als ideal angenommen, das heißt, dass 
die Ausgangssignale sofort anliegen. In der Praxis ist diese Annahme zu optimistisch. Wenn 
man eine endliche Gatterlaufzeit annimmt, können am Ausgang von Schaltnetzen vorüberge-
hend falsche Ausgangssignale anliegen. Diese Effekte werden Strukturhazards genannt. Es ist 
im Bild 6-12 ein Gatter gezeigt, welches die Funktion:  

y = x1x0 ∨ x2¬x0 (6.13) 

ausführt. Im Inverter habe das Signal die Laufzeit t0. Die Laufzeiten in den UND- und ODER-
Gattern sind für die Betrachtung der Laufzeitunterschiede nicht zu berücksichtigen, wenn die 
Laufzeiten der UND-Gatter gleich sind. 

 

1 

&
 x1 

x0 

x2 

redundantes Gatter 
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y2 y 

&
 

t0 

 

Bild 6-12 Schaltnetz mit Strukturhazard.  

Der Zeitverlauf der Signale x0(t), y1(t), y2(t) und y(t) ist in Bild 6-13 gezeigt. Das Ausgangssig-
nal y(t) zeigt einen Einbruch der Dauer t0, der durch die Zeitverschiebung im Inverter entsteht. 
Bei einer idealen Schaltung würde er nicht auftreten. 

 x0(t) 

t

y2(t) 
t

y1(t) 

t
y(t) 

t

t0

t0

t0

 

Bild 6-13 Zeitlicher Verlauf beim Umschalten von x0 in der Schaltung aus Bild 6-12 (x1=x2=1). 
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Betrachtet man den Vorgang im KV-Diagramm (Bild 6-14), so stellt man fest, dass ein Über-
gang zwischen zwei Primimplikanten vorliegt. Eine Korrektur des Fehlers ist mit einem Gatter 
möglich, das den Term x1x2 realisiert. 

Das Schaltnetz wird dann durch die folgende Funktion beschrieben: 

y = x1x0 ∨ x2¬x0 ∨ x1x2 (6.14) 

 

0 0 1 1 

0 1 1 0 

x2 

x1 

x0 

 

Bild 6-14 KV-Diagramm des Schaltnetzes aus Bild 6-12 mit Korrekturgatter (gestrichelt). 

Das Problem taucht immer dann auf, wenn zwei Implikanten in der DNF stehen, von denen der 
eine Implikant eine Variable in der negierten und der andere Implikant in der nicht negierten 
Form besitzt und wenn gleichzeitig der Wert der Implikanten gleich ist. Das ist in Gleichung 
6.11 für x1=x2=1 der Fall. Eine Abhilfe ist möglich durch die Einführung eines Implikanten, der 
die Schnittstelle zwischen den beiden Implikanten überdeckt. 

6.4.2  Funktionshazards 

Funktionshazards entstehen z.B., wenn zwei Eingangsvariablen sich ändern, der Ausgangszu-
stand des Schaltnetzes aber auf 1 bleiben sollte. Das Phänomen soll an einem Beispiel erläutert 
werden, welches durch sein KV-Diagramm gegeben ist (Bild 6-15). 

 

Bild 6-15 KV-Diagramm eines Schaltnetzes mit Funktionshazard. Es sind die beiden mögli-
chen Schaltwege (1) und (2) eingetragen.  
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Beim Übergang von (x3,x2,x1,x0)=(1,0,1,0) nach (x3,x2,x1,x0)=(1,1,1,1) können, je nach den 
Verzögerungszeiten der verwendeten Gatter, zwei verschiedene Schaltverhalten auftreten. 
Wenn die Wirkung von x0 zuerst erfolgt bleibt der Ausgang dauernd auf 1, wie es richtig ist 
(Weg 1 in Bild 6-15). Wirkt sich erst die Änderung von x2 aus, so tritt ein Hazard auf (Weg 2). 

 

y(t) 

t 

y(t) 

t 

Weg 2

Weg 1

 

Bild 6-16 Zeitverlauf des Ausgangssignals des Schaltnetzes entsprechend Bild 6-15 für die beiden mögli-
chen Schaltwege (1) und (2).  

6.4.3  Klassifizierung von Hazards 

Man unterscheidet zwischen den folgenden Hazard-Typen: 

 

 y(t) 

t

y (t) 

t

y(t) 

t

y(t) 

t

statischer 0-Hazard

statischer 1-Hazard 

dynamischer 1-Hazard

dynamischer 0-Hazard

 

Bild 6-17 Klassifizierung von Hazards. 
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6.5  Übungen 

Aufgabe 6.1 Eine boolesche Funktion f(x3,x2,x1,x0) ist gegeben durch ihre Funktionstabelle: 

x3 x2 x1 x0 f(x3,x2,x1,x0)

0 0 0 0 0 

0 0 0 1 0 

0 0 1 0 0 

0 0 1 1 0 

0 1 0 0 0 

0 1 0 1 1 

0 1 1 0 1 

0 1 1 1 0 

1 0 0 0 0 

1 0 0 1 0 

1 0 1 0 0 

1 0 1 1 1 

1 1 0 0 0 

1 1 0 1 1 

1 1 1 0 1 

1 1 1 1 1 

 

a) Tragen Sie die Werte der Funktion f in ein KV-Diagramm ein. 
b) Bestimmen Sie alle Primimplikanten der KDNF von f. 
c) Geben Sie die Kern-Primimplikanten, absolut eliminierbaren Primimplikanten und relativ 

eliminierbaren Primimplikanten an. 
d) Bestimmen Sie eine  minimale disjunktive Normalform von f. 
e) Ermitteln Sie die minimale DNF mit Hilfe des Verfahrens von Quine-McCluskey. 
 

Aufgabe 6.2  

Eine unvollständig spezifizierte boolesche Funktion soll durch ihre Minterme und Maxterme 
gegeben sein.  Die nicht spezifizierten Werte sind don’t care. Die Funktion f(x4, x3, x2, x1, x0) 
hat die Minterme (x4: MSB, x0: LSB): 

m0, m2, m4, m7, m16, m21, m24, m25, m28, 

und die Maxterme: 

M1, M9, M11, M13, M15, M18, M19, M26, M27, M30, M31 

a) Zeichnen Sie das KV-Diagramm und tragen Sie Minterme und die Maxterme ein. 

b) Bestimmen Sie eine möglichst einfache disjunktive sowie eine möglichst einfache kon-
junktive Normalform, wobei die don’t care-Felder optimal genutzt werden sollen. 

  



70 6  Schaltnetze 

Aufgabe 6.3  

Durch ihre Minterme mi sind die folgenden drei Schaltfunktionen (x3: MSB, x0: LSB) gegeben: 

f1(x3,x2,x1,x0) =   m0, m4, m5 

f2(x3,x2,x1,x0) =   m4, m5, m7 

f3(x3,x2,x1,x0) =   m3, m5, m7, m11, m15 

a) Geben Sie für jede Funktion getrennt eine minimale DNF an, indem Sie ein KV-
Diagramm für jede Funktion aufstellen. 

b) Zeigen Sie anhand der drei KV-Diagramme, dass die drei Funktionen gemeinsame Terme 
haben und geben Sie ein möglichst einfaches Schaltnetz an, in dem gemeinsame Terme 
nur einmal realisiert werden. 

c) Zeichnen Sie das optimale Schaltnetz. 

 

Aufgabe 6.4  

Eine Schaltfunktionen (x3: MSB, x0: LSB) ist durch ihre Minterme mi gegeben: 

f(x3,x2,x1,x0) =   m1, m4, m5, m6, m7, m9, m13, m15 

Zeigen Sie wie die Funktion nur mit NAND-Gattern realisiert werden kann. Versuchen Sie mit  
möglichst wenigen Gattern auszukommen. Nehmen Sie an, dass die Eingangsvariablen x3, x2, 
x1, x0  auch invertiert zur Verfügung stehen.  

 

Aufgabe 6.5 

Im Bild ist eine Digitalschaltung gezeigt, in der ein Strukturhazard auftritt. Die Laufzeit durch 
ein Gatter (UND, ODER, NOT) soll jeweils gleich t0 sein. 
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a) Geben Sie die boolesche Funktion y = f(x3, x2, x1, x0) an. 
b) Tragen Sie die Funktion in ein KV-Diagramm ein. 
c) Markieren Sie im KV-Diagramm die Stelle, an der ein Hazard auftritt. 
d) Schlagen Sie eine Schaltung mit der gleichen Funktion vor, in der kein Strukturhazard 

auftritt.  
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Ein asynchrones Schaltwerk kann man sich aus einem Schaltnetz entstanden denken, bei dem 
zumindest ein Ausgang auf den Eingang zurückgeführt wurde. Dieses Schaltnetz wird im Fol-
genden mit SN1 bezeichnet. Schaltwerke werden auch sequentielle Schaltungen oder endliche 
Automaten genannt. Das Verhalten eines Schaltwerks hängt neben den aktuell anliegenden 
Eingangsvariablen auch von den Eingangsvariablen xi vorhergegangener Zeiten ab. Es ist daher 
in der Lage Information zu speichern. Die gespeicherten Größen heißen Zustandsgrößen, die 
hier mit zi bezeichnet werden.  

 x 

zm 

zm+1

Verzögerung 
Schaltnetz 

SN1 

 

Bild 7-1 Asynchrones Schaltwerk: Schaltnetz mit Rückkopplung und dem Eingangsvektor x, dem Rück-
kopplungsvektor z zu den Zeitpunkten m und m+1.  

Zur Entkopplung der Ein- und Ausgänge benötigen asynchrone Schaltwerke eine Verzögerung 
in der Rückkopplung. Schaltwerke, bei denen ein Taktsignal entkoppelnde Pufferspeicher in 
der Rückkopplung kontrolliert, heißen synchrone Schaltwerke. Sie werden im nächsten Kapitel 
behandelt. Durch die Verzögerung zwischen Ein- und Ausgang ist es sinnvoll, die Zu-
standsgrößen zu zwei verschiedenen Zeitpunkten zu betrachten, die mit den Indizes m und m+1 
bezeichnet werden. 

Es sollen nur Eingangssignale xi betrachtet werden, die zu diskreten Zeiten ihre Werte ändern. 
Der Abstand zwischen zwei Änderungen der Eingangssignale soll so groß sein, dass sich in-
zwischen auf allen Verbindungsleitungen feste Werte eingestellt haben. Man nennt dies Betrieb 
im Grundmodus. 

7.1  Prinzipieller Aufbau von Schaltwerken 

Ein Schaltwerk enthält immer ein Schaltnetz, hier SN1 genannt, welches über eine Verzöge-
rungsstrecke zurückgekoppelt ist. Ein Schaltwerk hat aber auch Ausgänge, die auf zwei ver-
schiedene Arten in einem zweiten Schaltnetz  SN2 ermittelt werden können (Bild 7-2): 

• Im Moore-Schaltwerk (Moore-Automat) werden die Ausgangsvariablen y nur aus den Zu-
standsgrößen zm berechnet. 

• Der Mealy-Automat verwendet dagegen im Schaltnetz SN2 nicht nur die Zustandsgrößen 
zm, sondern auch die Eingangsvariablen x als Eingangsgrößen.  

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018
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Bild 7-2 a) Moore-Schaltwerk, b) Mealy-Schaltwerk.   

7.2  Analyse asynchroner Schaltwerke 

Als Beispiel sei die Analyse eines NOR-Flipflops durchgeführt. Es besteht aus einem idealen 
rückgekoppelten Verknüpfungsnetz (Bild 7-3). Mit dieser Schaltung können Daten gespeichert 
werden. Die Abkürzungen S und R für die Eingangssignale bedeuten „Setzen“ bzw. „Rückset-
zen“. Der Ausgang wird hier mit Q1 bezeichnet, alternativ ist auch Q üblich. Ein zweiter Aus-
gang Q2 wird auch als invertierender Ausgang ¬Q bezeichnet. Die invertierende Funktion des 
zweiten Ausgangs ist allerdings nicht immer gegeben, wie wir unten sehen werden. 

 

 
≥1

R 

S 

≥1 Q1 (Q)

Q2  (¬Q)

 

Bild 7-3 NOR-Flipflop (in Klammern: andere übliche Bezeichnung der Ausgänge).   

  



7.3  Systematische Analyse 73 

Man kann diese einfache Schaltung bereits durch die Anwendung der bei der Analyse der 
Schaltnetze gemachten Erfahrungen verstehen. 

1. Wir beginnen mit dem Fall S = 1, R = 0. Der Ausgang des oberen NOR-Gatters in Bild 7-3 
liegt dann auf Q2=0. Beide Eingänge des unteren NOR-Gatters sind dann auf 0, so dass 
Q1=1 gilt. Das Flipflop ist gesetzt. Dieses Ergebnis tragen wir in die Wahrheitstabelle 7-1 
ein. Zwei mögliche Darstellungsformen der Wahrheitstabelle sind dort gezeigt. 

2. Im umgekehrten Fall S = 0, R = 1 wird aus Symmetriegründen der Ausgang Q1 = 0 und Q2 
= 1. Das Flipflop ist zurückgesetzt. 

3. Nun soll der Fall S = 0, R = 0 betrachtet werden. Dann wird das Verhalten des Flipflops von 
der Vorgeschichte abhängig. 

War der Ausgang Q1 = 1, so ist ein Eingang des oberen NOR-Gatters in Bild 7-3 gleich 1 
und es bleibt auf Q2 = 0. Es bleibt auch Q1 = 1, da beide Eingänge dieses Gatters auf 0 lie-
gen. Dieser Zustand ist stabil und bleibt daher erhalten.  

War dagegen der Ausgang Q2 = 1, so folgt aus Symmetriegründen, dass Q1= 0 und Q2 = 1 
erhalten bleiben.  

In die Tabelle 7-1 wird daher eingetragen, dass der Vorzustand gespeichert wird 
(Qm=Qm+1). Die beiden Darstellungsformen der Tabelle 7-1 unterscheiden sich durch die 
Darstellung der Werte der Ausgänge Q und ¬Q zu den Zeiten m und m+1. 

4. Der letzte verbleibende Fall ist S = 1, R = 1. Dann gehen  beide Ausgänge auf 0. Dieser Fall 
wird ausgeschlossen, da die Ausgänge nicht mehr invers zueinander sind. 

 

Tabelle 7-1 Zwei Formen der Wahrheitstabelle eines RS-NOR-Flipflops. 

 
S R Qm+1 

0 0 Qm 

0 1 0 

1 0 1 

1 1 verboten 

 
 
 

 
S R Qm Qm+1 

0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 1 
1 0 1 1 
1 1 0 verboten 
1 1 1 verboten 

 

7.3  Systematische Analyse 

Eine systematische Analyse kann mit dem Aufstellen der booleschen Funktionen f1 und f2 
(vergl. Bild 7-2) für die Schaltnetze SN1 und SN2 durchgeführt werden. Wir zeichnen dazu das 
Schaltbild entsprechend Bild 7-4 um und führen die pauschale Verzögerungszeit t1 für die 
Schaltung ein. 
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a) b) 
Bild 7-4 a) Verknüpfungsnetz mit Rückkopplung (RS-NOR-Flipflop), b) Rückkopplung aufgetrennt. 

Die Übergangsfunktion beschreibt den Ausgang z1
m+1 des idealen Schaltnetzes SN1 als Funkti-

on der Eingangsgrößen S, R, z1
m: 

z1
m+1 = ¬(¬(S ∨ z1

m) ∨ R) = ¬RS ∨ ¬R z1
m (7.1) 

Die Ausgabefunktionen beschreiben das Verhalten des Schaltnetzes SN2, welches in der Reali-
sierung teilweise identisch mit dem Schaltnetz SN1 ist, da auch das obere NOR-Gatter ver-
wendet wird: 

Q1
m = z1

m (7.2)   

Q2
m = ¬(S ∨ z1

m) = ¬S ¬z1
m (7.3) 

Q2
m in Gleichung 7.3 ist eine Funktion der Eingangsgröße S, daher handelt es sich um ein Mea-

ly-Schaltwerk. Aus den Zustandsgleichungen könnten die Tabellen 7-1 erstellt werden. Man 
kann die Zustandsgleichungen aber auch in die so genannte Zustandsfolgetabelle eintragen 
(Tabelle 7-2). 

Tabelle 7-2 Zustandsfolgetabelle in Form eines KV-Diagramms.  

z1
m+1 Q1

m,Q2
m

z1
m ¬S¬R S¬R SR ¬SR ¬S¬R S¬R SR ¬SR

0 0 1 0 0 01 00 00 01

1 1 1 0 0 10 10 10 10

 
In das erste Diagramm wird der neue Zustand z1

m+1 eingetragen. Diese Größe beeinflusst nach 
ihrer Wertänderung am Ausgang über die Rückkopplung den Eingang. 

In das zweite Diagramm werden die Ausgabegrößen eingetragen, in diesem Fall Q1
m und Q2

m. 

 

In der Zustandsfolgetabelle werden als nächstes die stabilen Zustände durch Kreise markiert. 
Sie sind durch die Gleichung z1

m = z1
m+1 gekennzeichnet. In diesen Fällen wird sich das Netz-

werk nach dem Einstellen des Ausgangszustandes stabil verhalten. Ein Beispiel wäre die Ein-
gangskombination R = 0, S = 1, wenn gleichzeitig z1

m =1 ist. Dann ergibt sich aus der Zu-
standsfolgetabelle nach der Laufzeit t1 am Ausgang des Netzwerkes stabil z1

m+1 = 1. 
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Eine weitere Art der Darstellung ist das Zustandsdiagramm (Bild 7-5). Im Zustandsdiagramm, 
hier in der für ein Mealy-Schaltwerk üblichen Form, sind die inneren Zustände, in diesem Fall 
z1

m, durch Kreise (sog. Knoten) gekennzeichnet. Die möglichen Übergänge sind durch Pfeile 
(sog. Kanten) dargestellt. Die dafür nötigen Bedingungen der Eingangsvariablen sind an den 
Pfeilen vermerkt. Durch einen Schrägstrich sind die Werte der Ausgangsvariablen davon ge-
trennt. Es geht aus diesem Diagramm zum Beispiel hervor, dass der Übergang von z1

m = 0 nach 
z1

m = 1 mit S = 1, R = 0 bewirkt werden kann. Ein so genannter reflexiver Übergang ist bei z1
m 

= 0 für R = S = 1. Der Zustand z1
m = 1 ist reflexiv für ¬R, unabhängig von S. 

 

 

0 

¬RS/00 

1

R/10 

¬R/10 ¬S/01 
RS/00 

 

Bild 7-5 Zustandsdiagramm, in den Kreisen steht z1
m, nach dem Querstrich: Q1Q2. 

Die in diesem Abschnitt vorgestellte systematische Form der Analyse liefert die gleichen Er-
gebnisse wie die in Abschnitt 7.2 mit der einfachen Betrachtungsweise gewonnenen. 

 

7.4  Analyse unter Berücksichtigung der Gatterlaufzeit 

Im Folgenden soll gezeigt werden, dass die obige Analyse zu stark vereinfacht ist, da das Ver-
zögerungsverhalten der Gatter nicht vollständig berücksichtigt wird. Sie gibt einige der auftre-
tenden Probleme nicht wieder. Am Beispiel des NOR-Flipflops soll nun demonstriert werden, 
wie auch das Verhalten einer Schaltung analysiert werden kann, in der beide NOR-Gatter eine 
endliche Verzögerungszeit haben (Bild 7-6). 
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Bild 7-6 Verknüpfungsnetz mit Rückkopplung (RS-NOR-Flipflop) unter Berücksichtigung der Gatter-
laufzeiten t1 und t2. 
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Man erkennt, dass nun zwei Zustandsvariablen vorliegen und liest aus Bild 7-6 die  Übergangs-
funktionen: 

z1
m+1 = ¬(R ∨ z2

m) = ¬R ¬z2
m (7.4) 

z2
m+1 = ¬(S ∨ z1

m) = ¬S ¬z1
m (7.5) 

und die Ausgabefunktionen: 

Q1
m = z1

m (7.6) 

Q2
m = z2

m (7.7) 

ab. Aus den Zustandsgleichungen kann wieder ein KV-Diagramm gewonnen werden. Es gibt 
die Signale z1

m+1 und z2
m+1 als Funktion der Größen am Eingang R, S, z1

m und z2
m an (Tabelle 7-

3). Die stabilen Zustände sind durch einen Kreis gekennzeichnet. 

Ist z1
m+1 ≠ z1

m oder z2
m+1 ≠ z2

m, so erfolgt ein Übergang zu einer anderen Kombination von Ein-
gangssignalen. Diese instabilen Ausgangszustände sind durch Unterstreichen hervorgehoben. 

Tabelle 7-3 Zustandsfolgetabelle in Form eines KV-Diagramms. 

z2
mz1

m ¬R¬S ¬RS RS R¬S 

00 11 01 00 10 

01 01 01 00 00 

11 00 00 00 00 

10 10 00 00 10 

z2
m+1z1

m+1

 
Sind für eine Kombination von Eingangsvariablen beide Zustandsvariablen unterstrichen, än-
dern sich beide Zustandsgrößen. Man spricht von einem Zweikomponentenübergang. In die-
sem Fall ist es entscheidend, welche der beiden Gatterlaufzeiten kürzer ist. Diese bestimmt 
dann den nächsten Zustand, da der Übergang mit der kürzeren Gatterlaufzeit sich zuerst am 
Ausgang auswirkt.  

 

Nun soll aus Tabelle 7-3 das Zustandsdiagramm konstruiert werden. Das soll an einem Beispiel 
erläutert werden. Wir nehmen an, dass sich das Schaltwerk mit den Eingangsvariablen R=1, 
S=1 stabil im Zustand z2

mz1
m=00 befindet. In Tabelle 7-3 finden wir den stabilen Zustand 

z2
m+1z1

m+1=00 in der ersten Zeile der Tabelle. 

 

Nun sollen die Eingänge auf R=0, S=0 schalten. Die Zustände, die sich einstellen können, sind 
also in der ersten Spalte der Tabelle zu finden. Da die Zustandsvariablen z2

mz1
m=00 zunächst 

bleiben, müssen wir in der ersten Zeile der Tabelle unter der neuen Eingangsvariablenkombi-
nation die neuen Zustandsvariablen ablesen. Wir finden z2

m+1z1
m+1 = 11. Das bedeutet, dass sich 

beide Zustandsvariablen ändern wollen. Wir können 3 Fälle unterscheiden: 
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1. Ist die Verzögerungszeit des ersten Gatters geringer (t1<t2), so geht das Schaltwerk nach der 
Laufzeit t1 zunächst in den Zustand z2

m+1z1
m+1 = 01. Das weitere Verhalten richtet sich nach 

dem Größenverhältnis der Laufzeiten. Es ist eine Vielzahl von Abläufen möglich, die recht 
kompliziert sein können.  

2. Ist t1>t2, so geht das Schaltwerk in den Zustand z2
m+1z1

m+1= 10. Danach ergibt sich prinzipi-
ell die gleiche Problematik wie unter 1. 

3. Gilt t1=t2, so geht es nach z2
m+1z1

m+1=11. Es liegt wieder ein Zweikomponentenübergang 
vor. Das Schaltwerk wird also wieder zurück nach z2

m+1z1
m+1=00 schwingen, um den Vor-

gang periodisch zu wiederholen. 

Man erkennt, dass das Verhalten des Schaltwerks von den Verzögerungszeiten der Gatter ab-
hängig wird. Man nennt diesen Vorgang Lauf oder „Race“, wobei man zwischen kritischen 
und unkritischen Läufen unterscheidet, je nachdem, ob die Endzustände verschieden oder 
gleich sind. Im vorliegenden Fall ist der Lauf, der beim Schalten von RS=11 nach RS=00 auf-
tritt, ein kritischer Lauf, da das Schaltwerk dabei 3 verschiedene Verhaltensweisen zeigen 
kann.     

Dies ist in Bild 7-7a verdeutlicht. Die ersten Zustandsübergänge beim Wechsel von RS=11 (im 
Zustand z2

mz1
m=00) zu RS=00 sind entsprechend den verschiedenen Gatterlaufzeiten aufge-

schlüsselt. Dies ist der einzige kritische Lauf im RS-NOR-Flipflop. Man kann ihn z.B. vermei-
den, indem man die Eingangskombination RS=11 verbietet. 
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Bild 7-7 a) Zustandsübergänge des RS-NOR-Flipflops, die dem Übergang RS=11 (im Zustand z2
mz1

m=00)  
nach RS=00 folgen, aufgeschlüsselt nach den Gatterverzögerungszeiten. Weitere Übergänge sind möglich 
b) Zustandsdiagramm mit allen Übergängen (t1=t2). 

In Bild 7-7b ist das Zustandsdiagramm mit allen möglichen Übergängen für t1=t2 gezeigt. Man 
stellt fest, dass der Zustand 00 zentral liegt, so dass er bei jedem Übergang durchlaufen wird. 
Wenn man die Eingangskombination RS=11 verbietet, kann das Schaltwerk nicht im Zustand 
00 stabil verbleiben, dieser Zustand wird dann nur noch schnell durchlaufen. Es gibt es keine 
kritischen Läufe mehr, da es nur noch Einkomponentenübergänge gibt.  

Wenn sich das Flipflop im Zustand 10 befindet, ist es stabil für S=0. Das Flipflop ist dann 
zurückgesetzt. Wechseln dann die Eingänge auf SR=10, so geht es über den Zustand 00 zum 
Zustand 01, ohne im Zustand 00 zu verweilen. Zusammenfassend kann festgestellt werden: 
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• Der Eingangsvariablenkombination R=S=1 beim RS-NOR-Flipflop führt zu nicht-
komplementären Ausgängen. 

• Wenn nach dem verbotenen Eingangswertepaar RS = 11 das Eingangswertepaar RS = 
00 folgt, können nach Bild 7-7 drei verschiedene Verhalten resultieren: Schwingen 
zwischen 00 und 11, Stabilität in 10 oder Stabilität in 01. Dies ist der einzige kritische 
Lauf, der im Schaltwerk vorkommt. Er kann vermieden werden, wenn nach der verbo-
tenen Eingangsvariablenkombination nicht sofort RS = 00 folgt. 

• Probleme entstehen in asynchronen Schaltungen wenn die Übergangsfunktionen nicht 
hazardfrei realisiert werden. Dann können kurze Störsignale an die Eingänge des 
Schaltnetzes SN1 gelangen und ein falsches oder unvorhergesagtes Verhalten des 
Schaltwerks bewirken. 

• Zweikomponentenübergänge der Zustandsvariablen sollten möglichst vermieden wer-
den. Es besteht die Möglichkeit eines Laufes. 

7.5  Speicherglieder 

Im letzten Abschnitt wurde deutlich, dass die Verwendung asynchroner Schaltwerke problema-
tisch ist. Es werden daher nur Schaltungen verwendet, deren Verhalten gut bekannt ist. Dazu 
gehören die Flipflops (abgekürzt: FF), die in diesem Abschnitt zusammengefasst dargestellt 
werden. Alle Bausteine sind auch integriert erhältlich.   

7.5.1  RS-Flipflop 

Ein RS-Flipflop kann aus NAND- oder NOR-Gattern aufgebaut werden (Bilder 8-7 und 8-8). 
Das RS-Flipflop mit NAND-Gattern arbeitet mit negativer Logik, denn die Eingänge sind 
gegenüber dem Flipflop mit NOR-Gattern invertiert. 

Problematisch am RS-Flipflop ist, dass bereits kurze Störimpulse auf den Eingängen R und S 
zu fehlerhaftem Setzen oder Rücksetzen des Flipflops führen. Als Verbesserung dieses Flip-
flops wird daher unten ein Takt eingeführt, der die Zeit festlegt, in der die Eingänge aktiv sind.  

 ≥1 
 

R 

S 

≥1 Q
R

S

R

S

S R Qm+1 ¬Qm+1 

0 0 Qm ¬Qm 
1 0 1 0 
0 1 0 1 
1 1 verboten 

Q

¬Q 

¬Q 

Qm+1 = ¬(R ∨ ¬(S ∨ Qm))  =  ¬RS ∨ ¬RQm 

 

Bild 7-8 RS-Flipflop mit NOR-Gattern. Von oben nach unten: Schaltbild,  Schaltsymbol, Wahrheitstabel-
le und Übergangsfunktion. 



7.5  Speicherglieder 79 

 & 
 

& 

Q
Q 

R

S

¬R

¬S

¬S ¬R Qm+1 ¬Qm+1 

0 0 verboten 
1 0 0 1 
0 1 1 0 
1 1 Qm ¬Qm 

¬Q 

¬Q 

¬S 

¬R 

Qm+1 = ¬(¬S ¬(¬RQm))  =  S ∨ ¬RQm 

 

Bild 7-9 RS-Flipflop mit NAND-Gattern. Von oben nach unten: Schaltbild,  Schaltsymbol, Wahrheitsta-
belle und Übergangsfunktion. 

7.5.2  RS-Flipflop mit Takteingang 

Mit einem Takt C kann die Zeit begrenzt werden, in der das Flipflop für Eingangssignale sensi-
tiv ist. Das RS-Flipflop mit Takteingang wird auch als RS-Latch bezeichnet (Bild 7-10). Ob-
wohl das Flipflop aus NAND-Gattern aufgebaut ist, arbeitet es mit positiver Logik.  
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Bild 7-10 RS-Flipflop mit Takteingang. a) Schaltbild, b) Schaltsymbol, c) Wahrheitstabelle. 

Die Übergangsfunktion für das zustandsgesteuerte RS-Flipflop erhält man, indem man sie aus 
dem Schaltbild 7-10a abliest: 
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Qm+1 = ¬(¬(SC)(¬(¬(RC)Qm)))  =  SC ∨ (¬(RC)Qm)   

        = SC ∨ ¬RQm ∨ ¬CQm (7.8) 
 

Die Übergangsfunktion sagt aus, dass das Flipflop gesetzt wird, wenn S∧C = 1 gilt oder wenn 
der vorherige Zustand Qm=1 war und ¬R=1 oder ¬C=1 sind. Aus der Übergangsfunktion kann 
man die Zustandsfolgetabelle konstruieren. 

Bild 7-10c zeigt, dass der verbotene Zustand mit diesem Flipflop nicht vermieden worden ist. 
Allerdings werden nun Störungen auf den Eingängen S und R während der Zeit vermieden, in 
der der Takt C auf 0 ist. Nur bei hohem Taktpegel kann das Flipflop angesteuert werden. Man 
nennt diese Art der Steuerung taktpegelgesteuert oder zustandsgesteuert. 
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Bild 7-11 Typisches Verhalten eines taktpegelgesteuerten RS-Flipflops, C = Takt. 

Bild 7-11 zeigt das Verhalten eines RS-Flipflops. Es wird deutlich, dass das Flipflop während 
der Zeit, in der der Takt auf 1 ist, alle Eingangssignale durchlässt. So können Störimpulse, 
selbst bei festen Werten der Eingangsgrößen, das Flipflop unbeabsichtigt setzen oder rückset-
zen. Im Bild 7-11 sind auch die Signallaufzeiten von High nach Low und umgekehrt angege-
ben. 

Alle im Weiteren behandelten Flipflops haben einen Takteingang. 

7.5.3  Taktpegelgesteuertes D-Flipflop 

Um den verbotenen Eingangszustand des RS-Flipflops zu vermeiden verwendet man in der 
Regel andere Flipflops. Das wichtigste ist das D-Flipflop (Bild 7-12). Das D-Flipflop entsteht 
aus dem taktpegelgesteuerten RS-Flipflop, indem für den neuen Eingang D = S = ¬R gesetzt 
wird. Dadurch verschwindet der verbotene Zustand. Die Übergangsfunktion kann man ermit-
teln, indem man in Gleichung 7.8 S = D und  R = ¬D  einsetzt. Man erhält: 
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Qm+1 = DC ∨ ¬CQm (7.9) 
Die Übergangsfunktion des D-Flipflops sagt aus, dass es für C = 1 den Dateneingang D durch-
schaltet und dass es für C = 0 den alten Zustand speichert.  
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Bild 7-12 Pegelgesteuertes D-Flipflop. a) Schaltbild, b) Schaltsymbol, c) Wahrheitstabelle. 

Bild 7-13 zeigt einen typischen Zeitverlauf der Signale an einem taktpegelgesteuerten D-
Flipflop. Man erkennt, dass das D-Flipflop Änderungen des Eingangssignals während des 
hohen Taktpegels direkt an den Ausgang weitergibt. Es erscheint in diesem Zustand wie ein 
reines Verzögerungsglied (D von engl. delay). Man sagt auch, es ist transparent. Daher ist im 
Englischen auch der Name „transparent latch“ gebräuchlich.  

 

Der Zeitraum in dem die Entscheidung fällt, welche Information in einem Flipflop gespeichert 
wird, nennt man Wirkintervall tW. Ist das Eingangssignal innerhalb des Wirkintervalls nicht 
konstant, ist der gespeicherte Wert vom Zufall abhängig und daher undefiniert. Daher muss das 
Eingangssignal eine gewisse Zeit vor und nach der negativen Taktflanke konstant sein. Der 
Anteil des Wirkintervalls vor der Taktflanke heißt Setup-Zeit ts , der Anteil nach der Taktflanke 
heißt Hold-Zeit th.  

Die Verhältnisse sind in (Bild 7-14) für das ungepufferte D-Flipflop gezeigt. Zeiten, in denen 
sich das Eingangssignal ändern darf kann, sind durch die Jägerzaun-ähnliche Darstellung mar-
kiert. Das Wirkintervall liegt am Ende der High-Phase des Taktintervalls. 

Der Zeitraum, in dem sich das Ausgangssignal ändern kann, nennt man Kippintervall tK, es ist 
auch durch die Jägerzaun-Darstellung markiert. Beim ungepufferten D-Flipflop überlappt sich 
das Kippintervall mit dem Wirkintervall, nämlich während der transparenten Phase.  
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Bild 7-13 Typisches Verhalten eines taktpegelgesteuerten D-Flipflops. 
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Bild 7-14 Definition der Setup-Zeit ts, der Hold-Zeit th, des Wirkintervalls tW  und des Kippintervalls tK. 

Eine Realisierung des D-Flipflops mit der CMOS-Technologie ist in Bild 7-15 gezeigt. Das 
linke Transmission-Gate wird mit dem Takt C, das rechte mit dem invertierten Takt ¬C ange-
steuert.  

• Das linke Transmission-Gate ist bei hohem Taktpegel durchgeschaltet und lässt das 
Eingangssignal D über die beiden Inverter zum Ausgang durch. Dies ist die transpa-
rente Phase. Das rechte Transmission-Gate sperrt.  

• Wenn der Takt auf den niedrigen Taktpegel wechselt, wird das linke Transmission-
Gate gesperrt und das rechte leitet. Dadurch wird der Eingang D abgekoppelt und 
durch das rechte Transmission-Gate der Speicherkreis geschlossen. Gespeichert wird 
der Wert des Eingangssignals D, welcher am Ende des hohen Taktpegels anlag. Im 
Speicherkreis wird die Information durch den Kreis gespeichert, der durch die beiden 
Inverter gebildet wird, ähnlich wie im oben beschriebenen NOR-Flipflop, wenn für 
beide Eingänge R = S = 0 gilt.  

Wichtig für die Funktion ist die Kontrolle der Flanken des Taktes und des invertierten Taktes. 
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a) 
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Bild 7-15 Realisierung des taktpegelgesteuerten D-Flipflops: a) Prinzip b) Schaltung in CMOS-
Technologie. 

7.5.4  Flankengesteuertes D-Flipflop 

Bei taktpegelgesteuerten D-Flipflops stört oft das transparente Verhalten. Bei der Weitergabe 
von einzelnen Bits in Schieberegistern kann es dazu führen, dass sie über mehrere Stufen des 
Schieberegisters weitergegeben werden. Auch ist das Wirkintervall relativ lang. Im Wirkinter-
vall können Störungen oder Änderungen des Eingangssignals Einfluss auf die gespeicherte 
Information nehmen. Um diese Probleme zu vermeiden, verwendet man taktflankengesteuerte 
Flipflops. Bei einem taktflankengesteuerten Flipflop muss das Eingangssignal im Idealfall nur 
während der Taktflanke konstant sein. Bei diesem Flipflop spielt es keine Rolle, wie lang der 
Takt auf dem hohen Pegel ist. Für die Taktflanke wird bei einigen Technologien eine Mindest-
steilheit gefordert.  

In der Wahrheitstabelle des vorderflankengesteuerten D-Flipflops in Bild 7-16 sind die anstei-
genden Taktflanken durch Pfeile gekennzeichnet. Das durch die Tabelle beschriebene Flipflop 
hat zusätzlich einen asynchronen, invertierten Setzeingang ¬S und einen asynchronen, inver-
tierten Rücksetzeingang ¬R. Mit diesen Eingängen kann das Flipflop z.B. beim Einschalten 
unabhängig vom Takt in einen definierten Zustand gebracht werden. In der Regel verwendet 
man nur den Setzeingang oder nur den Rücksetzeingang. Dadurch vermeidet man, dass ¬S = 
¬R = 0 wird, was laut Tabelle zu undefiniertem Verhalten führt. Im Schaltsymbol (Bild 7-16b) 
ist die Vorderflankensteuerung durch das Dreieck am Takteingang dargestellt.  
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a) 
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Bild 7-16 a)Wahrheitstabelle des vorderflankengesteuerten D-Flipflops 7474 mit asynchronem Setz- und 
Rücksetzeingängen. Die ansteigende Flanke des Taktes ist durch ↑ dargestellt. b) Schaltsymbol. 

In der CMOS-Technologie wird die Flankensteuerung in der Regel durch die Schaltung in Bild 
7-17 realisiert. Es werden zwei Flipflops verwendet, wobei das linke (das Master-Flipflop) mit 
dem invertierten Takt und das rechte (das Slave-Flipflop) mit dem nichtinvertierten Takt ange-
steuert wird. Derartige Schaltungen werden Master-Slave-Flipflops genannt.  
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Bild 7-17 Schaltung des vorderflankengesteuerten D-Flipflops in CMOS-Technologie. 

• Wenn die steigende Flanke des Taktsignals kommt, beginnt der Master zu speichern. 
Es speichert das Eingangssignal D, so wie es am Ende des niedrigen Taktpegels anlag. 
Das Slave-Flipflop wird dann transparent und der Ausgang Q zeigt das gespeicherte 
Eingangssignal.   

• Wenn nun der niedrige Taktpegel kommt, wird die Speicherfunktion durch das Slave-
Flipflop  übernommen, welches weiterhin das Ausgangssignal Q ausgibt. Das Master-
Flipflop  ist transparent und leitet das jetzt anliegende Eingangssignal D an den Ein-
gang des Slaves weiter. Bei der dann folgenden steigenden Flanke beginnt der Zyklus 
von neuem. 
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Da immer eines der beiden Flipflops speichert, zeigt das flankengesteuerte Flipflop keine 
transparenten Eigenschaften. 
In Bild 7-18 ist das Zeitverhalten eines vorderflankengesteuerten D-Flipflops gezeigt. Das 
Wirkintervall ist deutlich kürzer als beim taktpegelgesteuerten D-Flipflop und liegt bei der 
ansteigenden Flanke. Man erkennt am Zeitdiagramm, dass der Ausgang erst nach dem Wirkin-
tervall seinen Wert ändert. Dieses Verhalten, welches durch ein nicht überlappendes Wirk- und 
Kippintervall gekennzeichnet ist, nennt man Pufferung. Man charakterisiert dieses Flipflop 
daher als gepuffertes, vorderflankengesteuertes D-Flipflop. 

t
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t

Q 
ts th

tW tK  

Bild 7-18 Zeitdiagramm des Verhaltens eines gepufferten, vorderflankengesteuerten D-Flipflops. 

7.5.5 Zweiflankensteuerung 

Ein Schieberegister besteht aus mehreren nacheinander geschalteten Flipflops, in denen Daten 
wie in einer Eimerkette weitergegeben werden sollen (Bild 7-19). In einer Schieberegisterkette 
dürfen nie Eingang und Ausgang der verwendeten Flipflops durchgeschaltet sein, damit die 
Daten nicht durch eine Stufe „hindurchfallen“. Daher sind für diesen Anwendungsfall nur 
Flipflops geeignet, bei denen das Wirk- und das Kippintervall genügend weit auseinander lie-
gen. Es können zum Beispiel die oben genannten gepufferten, vorderflankengesteuerten D-
Flipflops verwendet werden. Solange kein Taktversatz t0 (clock-skew) auftritt, wird die Infor-
mation richtig weitergegeben, da sich Wirk- und Kippintervall nicht überlappen. Da die beiden 
Intervalle aber nur wenig entkoppelt sind, kann es bei einem Taktversatz t0, der größer ist als 
der Abstand zwischen Wirk- und Kippintervall, zu Fehlschaltungen kommen. 
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Bild 7-19 Schieberegister mit vorderflankengesteuerten D-Flipflops. 

Besser sind für diese Anwendung zweiflankengesteuerte Flipflops geeignet, welche die Infor-
mation erst mit der fallenden Taktflanke an den Ausgang weitergeben (Bild 7-20). Derartige 
Flipflops nennt man zweiflankengesteuertes D-Flipflops. Man kann sich aus zwei vorderflan-
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kengesteuerten D-Flipflops zusammengesetzt denken, bei denen das zweite Flipflop durch 
Inversion des Taktes an der abfallenden Flanke getriggert wird. Auch diese Flipflops sind  
Master-Slave-Flipflops oder Zwischenspeicherflipflops.  
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Bild 7-20 Zweiflankengesteuertes D-Flipflop: a) Prinzip, b) Schaltsymbol.  

7.5.6  JK-Flipflop 

Das JK-Flipflop kann man sich aus dem RS-Master-Slave-Flipflop durch die Rückkopplung 
der Ausgänge Q und ¬Q auf die Eingänge R und S entstanden denken (Bild 7-21). Wenn der 
Takt auf dem hohen Pegel ist, gelten die folgenden Formeln: 

S = J¬Qm (7.14) 

R = KQm (7.15) 

Es kann also nur gesetzt werden, wenn es rückgesetzt war und nur rückgesetzt werden, wenn es 
gesetzt war. Damit ist auch sichergestellt, dass R und S nicht gleichzeitig 1 sein können, da ja 
entweder Q = 1 oder ¬Q =1 gilt. 
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Bild 7-21  Aus einem RS-Flipflop entwickeltes JK-Flipflop. 

Das JK-Flipflop entwickelt man aus der Übergangsfunktion des RS-Flipflops unter Verwen-
dung der Gleichungen 7.8, 7.14 und 7.15: 

Qm+1 = SC ∨ (¬R ∨ ¬C)Qm (7.16) 
Qm+1 = CJ¬Qm ∨ (¬(KQm) ∨ ¬C)Qm (7.17) 
Qm+1 = CJ¬Qm ∨ ¬KQm ∨ ¬CQm (7.18) 

 

Aus der Übergangsfunktion ergibt sich die Zustandsfolgetabelle in Bild 7-22.  
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Bild 7-22 a) Wahrheitstabelle und b) Schaltsymbol des JK-Flipflops. 

Das JK-Flipflop verhält sich also, solange J und K nicht gleichzeitig 1 sind, wie ein RS-
Master-Slave-Flipflop.  Ist aber J = K = 1, so wechselt der Ausgang bei jedem Taktimpuls. 
Dies macht es sehr einfach, mit dem JK-Flipflop Frequenzteiler und Digitalzähler aufzubauen. 
Es muss ein Master-Slave-Flipflop verwendet werden, damit das Flipflop bei J = K = 1 und C 
=1 nicht schwingt. Im Bild 7-23 ist das Verhalten eines zweiflankengesteuerten Flipflops an 4 
Taktimpulsen gezeigt. Das Flipflop wird im ersten Taktimpuls gesetzt, im zweiten rückgesetzt 
und in den beiden folgenden Taktimpulsen wird gewechselt. 
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Bild 7-23 Zeitverhalten des JK-Flipflops mit Zweiflankensteuerung. 

7.5.7  T-Flipflop 

Das T-Flipflop (Bild 7-24) entsteht aus dem JK-Flipflop indem ein neuer Eingang T eingeführt 
wird, der mit beiden Eingängen des JK-Flipflops verbunden wird: T = J = K. Im Englischen 
wird es Toggle-Flipflop genannt. 
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Bild 7-24 a) Wahrheitstabelle und b) Schaltsymbol eines vorderflankengesteuerten T-Flipflops. 

7.5.8  Beispiel 

Ein typisches Beispiel für ein integriertes Flipflop ist das D-Flipflop 74175. In diesem IC sind 
4 gleiche vorderflankengesteuerte D-Flipflops enthalten, die alle vom gleichen Takt gesteuert 
werden. Alle Flipflops sind an den gleichen Rücksetzeingang R angeschlossen. Man nennt 
einen derartigen Baustein auch Register. 
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Bild 7-25 a) Schaltbild und b) Schaltsymbol  integrierter Baustein 74175 mit 4 vorderflankengesteuerten 
D-Flipflops. 

7.5.9  Zusammenfassung Flipflops 

In der Tabelle 7-6 sind die gebräuchlichsten Flipflop-Typen zusammengefasst. Es fällt auf, 
dass einige der Flipflops nicht existieren. So ist zum Beispiel ein T-Flipflop ohne Takteingang 
instabil und das D-Flipflop degeneriert zu einer bloßen Durchverbindung. 

 

Alle Flipflops in Tabelle 7-6 können noch zusätzliche asynchrone Setz- und Rücksetzeingänge 
haben.  
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Tabelle 7-6 Tabellarische Zusammenfassung der wichtigsten Flipflops. 
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Tabelle 7-7 zeigt die Lage des Kipp- und Wirkintervalls bei den verschiedenen Flipflop-Typen 
relativ zur Lage der Taktflanken.  

Tabelle 7-7 Lage des Kipp- und Wirkintervalls bei den verschiedenen Flipflop-Typen. 
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• Liegt keine Taktsteuerung vor, so umfassen Wirk- und Kippintervall die gesamte Taktper-
iode. Dies ist nur für das RS-Flipflop sinnvoll. 

• Bei einer Takt-Zustandssteuerung ist das Wirkintervall mit dem hohen Taktpegel identisch 
(bei positiver Ansteuerung). Das Kippintervall überlappt sich mit dem Wirkintervall. 

• Bei der Zweizustandssteuerung wird zusätzlich die Lage des Wirkintervalls durch den 
Takt kontrolliert. Wirk- und Kippintervall folgen dicht aufeinander. 

• Die Zweiflankensteuerung legt Wirk- und Kippintervall an die positive bzw. an die negati-
ve Flanke des Taktsignals. Wichtig ist bei der Zweiflankensteuerung, dass sich durch die 
Wahl des Tastverhältnisses des Taktes, also des Verhältnisses der Dauer des hohen Pegels 
zu der des niedrigen Pegels, die Lage des Wirk- und Kippintervalls verschieben lässt. 
Wirk- und Kippintervall überlappen sich nicht.  

• Pufferung bedeutet, dass sich Wirk- und Kippintervall nicht überlappen. Der Abstand 
beträgt in der Regel etwa eine Gatterlaufzeit. Pufferung ist oft mit einer 1-
Flankensteuerung verbunden, wie es im Kapitel 7.5.4 für das D-Flipflop in CMOS-
Technologie dargestellt ist. 

7.6  Übungen 

Aufgabe 7.1 

Das asynchrone Schaltwerk mit einer Rückkopplung im untenstehenden Bild soll analysiert 
werden. 

 &

≥1

& y B 

A 

 

1. Ermitteln Sie die Übergangs- und Ausgabefunktionen. Stellen Sie die Zustandstabelle auf 
und tragen Sie alle stabilen Zustände ein. 

2. Handelt es sich um ein Moore- oder ein Mealy-Schaltwerk? 
3. Handelt es sich um eine bistabile Schaltung? 
4. Zeichnen Sie das Zustandsdiagramm. 
5. Tragen Sie den Verlauf des Ausgangssignals y in das unten gezeigte Impulsdiagramm ein.  

t A 

t B 

t y 
 

Aufgabe 7.2 

Im untenstehenden Bild ist ein asynchrones Schaltwerk mit zwei Rückkopplungen gezeigt. 
Analysieren Sie diese Schaltung, in dem sie folgendermaßen vorgehen: 
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1. Stellen Sie die Zustandstabelle auf und tragen Sie alle stabilen Zustände ein. 
2. Zeichnen Sie das Zustandsdiagramm. 
3. Welche Probleme können in der Schaltung auftreten? Geben Sie eine Verbesserung 

der Schaltung an, mit der diese Probleme vermieden werden können. 
4. Beschreiben Sie die Funktion der Schaltung.  

 

Aufgabe 7.3 

Im Bild unten ist eine Schaltung mit 3 Flipflops gezeigt. Diese Schaltung soll im Folgenden 
analysiert werden. Gehen Sie davon aus, dass die Flipflops am Ausgang eine halbe Taktperiode 
Verzögerung haben, während das NOR-Gatter keine Verzögerung aufweisen soll. Skizzieren 
Sie im untenstehenden Zeit-Diagramm die Verläufe der Signale Q0, Q1 und Q2. Kennzeichnen 
Sie die Wirk- und Kippintervalle der Flipflops im Zeitdiagramm. Alle Flipflops seien zu Be-
ginn zurückgesetzt. 
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Aufgabe 7.4 

Ändern Sie das Zeitdiagramm in Bild 7-13 für ein vorderflankengesteuertes D-Flipflop ab. 

 

Aufgabe 7.5 

Im Bild ist eine übliche Realisierung eines taktflankengesteuerten D-Flipflops in CMOS-
Technologie dargestellt. Dieses Flipflop soll im Folgenden analysiert werden. 
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Jeweils zwei der Transmission-Gates können in dieser Schaltung zu einer UND-ODER-
Schaltung nach folgendem  Muster umgewandelt werden (Signalflussrichtung nur von links 
nach rechts): 

 
 C X1 

1 1 

X1 
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x1
y 

x2

& 

≥1 =

 
Gehen Sie bei der Analyse folgendermaßen vor: 

a) Wie viele Transistoren werden für die Schaltung benötigt, wenn man davon ausgeht, 
dass der Takt auch invertiert vorliegt. 

b) Zeichnen Sie die Gesamtschaltung unter Berücksichtigung der vorgegebenen Um-
wandlung. Markieren Sie, wo die Schaltung aufgetrennt werden muss, damit Sie 
rückkopplungsfrei wird. 

c) Geben Sie die Übergangsfunktion(en) und die Ausgabefunktion(-en) an. 

d) Stellen Sie die Zustandstabelle auf. 

e) Zeichnen Sie das Zustandsdiagramm. Erklären Sie an Hand des Zustandsdiagramms 
die Funktion der Schaltung. 
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Ein Schaltwerk (auch endlicher Automat, Finite State Machine oder sequentielle Schaltung 
genannt) unterscheidet sich von einem Schaltnetz dadurch, dass es für mindestens eine Kombi-
nation von Eingangsvariablen mehrere Kombinationen der Ausgangsvariablen gibt. Die Aus-
gangsvariablen werden in diesem Fall von der Vergangenheit der Eingangswerte bestimmt. 
Diese Vergangenheit manifestiert sich in den Zustandsvariablen. Eine Kombination der Zu-
standsvariablen wird Zustand genannt. Ein System mit N Zustandsvariablen kann daher 2N 
unterschiedliche Zustände einnehmen. Diese Tatsachen treffen für asynchrone und synchrone 
Schaltwerke gleichermaßen zu. Im Gegensatz zu asynchronen Schaltwerken werden die  Zu-
standsvariablen bei synchronen Schaltwerken aber in Flipflops  gespeichert. 

Ein synchrones Schaltwerk besteht aus einem Schaltnetz (hier SN1 genannt), welches aus den  
Zustandsvariablen zm zum Zeitpunkt m und den in der Regel mehreren Eingängen x die Zu-
standsvariablen zm+1 erzeugt (Bild 8-1). Die Indizes m und m+1 kennzeichnen aufeinander 
folgende Perioden des Taktes CLK. Die Gleichungen, die dieses Schaltnetz beschreiben, wer-
den Übergangsfunktionen genannt: 

zm+1 = f1(x,zm) (8.1) 

Die neuen Zustandsvariablen zm+1 werden mit der steigenden Taktflanke in die Flipflops einge-
lesen und werden während des Kippintervalls über die Rückkopplung am Eingang des 
Schaltnetzes sichtbar. Dann beginnt der Zyklus von neuem. 

 x 

zm 

zm+1Schaltnetz 
SN1 

f1(x,zm) 
Flipflops 

CLK 

Rückkopplung N

N

 

Bild 8-1 Synchrones Mealy-Schaltwerk mit Takteingang CLK.  

Die Flipflops entkoppeln den geschlossenen Kreis, der durch die Rückkopplung entsteht. Der 
Vorteil des synchronen Schaltwerks liegt darin, dass das Ausgangssignal des Verknüpfungs-
netzes nur im eingeschwungenen Zustand auf das Verhalten des Schaltwerks Einfluss hat. 
Hazards spielen keine Rolle, solange sie bis zum Wirkintervall der Speicher abgeklungen sind. 
Auch können keine Läufe (Races) auftreten, da Eingang und Ausgang des Verknüpfungsnetzes 
durch die Speicherglieder entkoppelt sind. 

Ein wesentlicher Unterschied zu asynchronen Schaltwerken besteht darin, dass nun die Wech-
sel zwischen den Zuständen immer synchron zum Takt stattfinden, denn die Zustandsvariablen 
zm+1 werden immer synchron zum Takt in die Speicher geladen. Oft werden zweiflankenge-
steuerte Flipflops als Speicher verwendet, so dass auch die Ausgänge der Speicher synchron 
schalten. Dadurch hat man eine sehr gute Kontrolle über die zeitlichen Abläufe im Schaltwerk. 
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8.1  Beispiel 1: Schaltwerk „Binärzähler“ 

Wir betrachten das im Bild 8-2 gezeigte Beispiel. Es handelt sich um ein Schaltwerk mit zwei 
Zustandsvariablen z0

m und z1
m. Für jede der Zustandsvariablen wird ein D-Flipflop verwendet. 

Der einzige Eingang ist x. Dieses synchrone Schaltwerk soll nun analysiert werden.  

CLK 

1D

C1

1D

C1

z1
m

z0
m

z0
m 

1

z1
m

2n+1x z1
m+1

z0
m+1

 

Bild 8-2 Beispiel 1 für ein synchrones Schaltwerk.   

Schritt 1: Aufstellen der Übergangsfunktionen zm+1 = f(x, zm) 

Da es zwei Zustandsvariablen und damit 2 Rückkopplungen gibt, werden 2 Übergangsfunktio-
nen aufgestellt. Das Gatter mit der Beschriftung 2n+1 ist die Erweiterung der Exklusiv-Oder-
Funktion auf mehr als 2 Eingänge. Der Ausgang wird gleich 1, wenn eine ungerade Zahl von 
Eingängen auf  1 liegt.  

z0
m+1 = ¬z0

m (8.2) 

z1
m+1 = x 

 
↔ z0

m 
 
↔  z1

m = ¬x¬z0
mz1

m ∨ ¬x z0
m¬z1

m ∨ x¬z0
m¬z1

m∨ x z0
mz1

m (8.3) 

Schritt 2: Aufstellen der Zustandsfolgetabelle (auch Übergangstabelle).   

Aus den beiden Übergangsfunktionen wird die Zustandsfolgetabelle 8-1a aufgestellt. Sie hat 
als Eingänge die Zustandsvariablen z0

m und z1
m und den Eingang x. Ausgang sind die neuen Zu-

standsvariablen z0
m+1 und z1

m+1. Die Reihenfolge der Zeilen ist beliebig. Sinnvoll ist eine An-
ordnung im Binärcode oder wie hier in einem Gray-Code, so dass die Zustandsfolgetabelle die 
Form eines KV-Diagramms hat. Oft werden die Zustandsvariablen durch die dezimale Codie-
rung dargestellt. Dadurch erhält man die 4 dezimal codierten Zustände Zm in Tabelle 8-1b. 

Tabelle 8-1 Zustandsfolgetabelle für das Beispiel a) mit binär dargestellten b) mit dezimal dargestellten 
Zuständen. 

a)  

 

z1
m  z0

m 
z1

m+1 z0
m+1 

x = 0 x = 1 

0     0 0       1 1       1 

0     1 1       0 0       0 

1     1 0       0 1       0 

1     0 1       1 0       1 
 

b) 

 

Zm 
Zm+1 

x = 0 x = 1 

0 1 3 

1 2 0 

3 0 2 

2 3 1 
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Schritt 3: Zeichnen des Zustandsdiagramms.  

Der Inhalt der Tabelle kann auch in Form eines Diagramms dargestellt werden. Die Zustände 
werden als Knoten (Kreise) dargestellt. In sie wird die binäre oder dezimale Codierung des 
Zustandes eingetragen. Alternativ kann auch der Zustand symbolisch beschrieben werden. Die 
Übergänge zwischen den Zuständen werden als Kanten (Pfeile) bezeichnet. An den Kanten 
stehen die Bedingungen für den Eingang x, für die der Übergang stattfindet. Keine Bedingung 
an einer Kante bedeutet, dass der Übergang immer stattfindet. Alternativ sind auch andere 
Beschriftungen der Kanten üblich. So kann z.B. statt 0 auch ¬x stehen und für 1 steht x.  

 

x 
Z 

Notation: 
0 1 

0 
3 2 

1 0 1 
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0
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Bild 8-3 Zustandsdiagramm für das Beispiel 1 in Bild 8-2. 

Aus dem Zustandsdiagramm lässt sich das Verhalten gut ablesen: Das Schaltwerk durchläuft 
für x = 0 die vier Zustände zyklisch in der Reihenfolge 0,1,2,3,0 usw., während es für x = 1 die 
umgekehrte Reihenfolge durchläuft 0,3,2,1,0 usw. Es handelt sich daher um einen Vorwärts-
Rückwärts-Zähler, wobei mit dem Eingang x die Zählrichtung gesteuert werden kann.  

8.2  Moore-Schaltwerk 

In der Regel hat ein Schaltwerk auch Ausgänge. Sind die Ausgänge y nur von den Zustandsva-
riablen abhängig, so nennt man dieses Schaltwerk Moore-Schaltwerk (Bild 8-4). Die Ausgänge 
werden in einem zweiten Schaltnetz SN2 erzeugt. Die Gleichungen, die das Schaltnetz SN2 
beschreiben,  heißen Ausgabefunktionen oder Ausgangsfunktionen:  

y = f2(z
m) (8.4) 

 x 
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zm+1

y 

Schaltnetz 
SN1 
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Schaltnetz 
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f2(z
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Bild 8-4 Prinzip des synchronen Moore-Schaltwerks. 

Als Beispiel soll hier der Fall behandelt werden, dass 4 Ausgänge 4 Leuchtdioden ansteuern, 
und zwar so, dass im Zustand 0 eine, im Zustand 1 zwei, im Zustand 2 drei und im Zustand 3 
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alle Leuchtdioden brennen. Die Ausgänge heißen yi (0≤ i ≤ 3). Im Zustandsdiagramm des 
Mooreschaltwerks (Bild 8-5) ist es üblich, die Werte der Ausgänge in die Kreise für die Zu-
stände einzutragen, da die Zuordnung eindeutig ist. Die Zustandsfolgetabelle 8-2 wird durch 
eine zusätzliche Spalte für die Ausgänge ergänzt. Dieser Teil der Tabelle heißt Ausgabetabelle. 
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Bild 8-5 Zustandsdiagramm des Moore-Schaltwerks mit den Werten für die Ausgänge yi. 

Tabelle 8-2 Zustandsfolgetabelle mit Ausgabetabelle für das Mooreschaltwerk. 

 z1
m  z0

m 
z1

m+1 z0
m+1 

y3 y2 y1 y0 
x = 0 x = 1 

0     0 0       1 1       1 0  0  0  1 

0     1 1       0 0       0 0  0  1  1 

1     1 0       0 1       0 1  1  1  1 

1     0 1       1 0       1 0  1  1  1 

 

Da die Ausgänge für jeden Zustand eindeutig bestimmt sind, ist es möglich, die Ausgabefunk-
tionen als Funktion der Zustandsvariablen darzustellen. Bei einem Moore-Schaltwerk sind die 
Ausgabefunktionen nur Funktionen der Zustandsvariablen zi

m: 

 

y0 =  1 

(8.5) 

y1 =  z0
m ∨ z1

m 

(8.6) 

y2 = z1
m 

(8.7) 

y3 =  z0
m z1

m 

(8.8) 
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Bild 8-6 Moore-Schaltwerk (Ergänzung der Ausgänge zum Beispiel 1).  
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8.3  Mealy-Schaltwerk 

In einem Mealy-Schaltwerk sind die Ausgänge y nicht nur von den Zustandsvariablen zi
m, son-

dern zusätzlich auch von den Eingängen x abhängig. Daher sind die Ausgabefunktionen auch 
Funktionen der Eingangsvariablen x: 

y = f2(z
m, x) (8.9) 

Das Blockschaltbild des synchronen Mealy-Schaltwerks zeigt Bild 8-7. Es unterscheidet sich 
vom Moore-Schaltwerk nur durch die zusätzlichen Eingänge x am Schaltnetz SN2. 
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Bild 8-7 Synchrones Mealy-Schaltwerk mit Takteingang CLK.  

8.3.1  Beispiel 2: Mealy-Schaltwerk „Maschinensteuerung“ 

An einem Beispiel soll die Entwicklung eines synchronen Mealy-Schaltwerks exemplarisch 
durchgeführt werden. Es soll ein Schaltwerk mit 4 Zuständen entworfen werden, welches 3 
Maschinen über den Ausgangsvektor Y = (y1, y2, y3) ein- und ausschaltet. Das Verhalten soll 
abhängig vom Eingang r sein: 

Für r = 0 sollen die 4 Zustände zyklisch der Reihe nach durchlaufen werden. Die 3 Maschinen 
sollen entsprechend der Tabelle 8-3 in den vier möglichen Zuständen eingeschaltet sein. 

Wenn der Eingang r = 1 ist, soll das Schaltwerk in den Zustand 1 gehen. Das Schaltwerk soll 
in diesem Zustand bleiben, solange r = 1 ist.  Die Maschinen sollen in allen Zuständen so 
schnell wie möglich ausgeschaltet werden. r ist also ein Not-Ausschalter.  

Tabelle 8-3 Ansteuerung der Maschinen Y = (y1, y2,  y3) in den 4 Zuständen. 

Zustand 
y1     y2     y3 

r = 0 r = 1 

1 ein   ein   ein aus   aus   aus 

2 aus   ein   ein  aus   aus   aus 

3 aus   ein   aus aus   aus   aus 

4 ein   ein   aus aus   aus   aus 
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Aufstellen des Zustandsdiagramms 

Im Zustandsdiagramm eines Mealy-Schaltwerks werden die Werte der Ausgänge nicht in den 
Kreisen für die Zustände notiert, sondern an den Kanten. Sie werden oft durch einen Querstrich 
von den Bedingungen für die Übergänge getrennt.  

Das Zustandsdiagramm (Bild 8-8) kann ausgehend vom Zustand 1 entworfen werden. Für r = 0 
durchläuft das Schaltwerk die vier Zustände der Reihe nach, wobei wir die 3 Ausgänge ent-
sprechend der Tabelle durch einen Schrägstrich vom Wert für r trennen. Wird r = 1, so geht 
das Schaltnetz in den Zustand 1 und bleibt dort solange r = 1 ist. Die drei Ausgänge bleiben auf 
000. Dass die Werte der Ausgangsvariablen vom Wert der Eingangsvariablen r abhängen, wird 
im Zustandsdiagramm durch die zwei verschiedenen Wege für r = 0 und r = 1 deutlich, die mit 
den Ausgangswerten Y = 110 bzw. Y = 000  vom Zustand 4 zum Zustand 1 führen 
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Bild 8-8 Zustandsdiagramm eines Mealy-Schaltwerks Beispiel 2 (Notation an den Kanten: r / y1, y2,  y3). 
In den Kreisen stehen die symbolischen Bezeichnungen der Zustände.  

Da 4 Zustände durchlaufen werden, kommt man mit zwei Flipflops für die beiden Zustandsva-
riablen z1

m und z0
m aus. Die in den zwei Flipflops gespeicherten Werte müssen jetzt den 4 Zu-

ständen zugeordnet werden. Wir wählen in diesem Fall einen Gray-Code für die Zustandsco-
dierung, wie sie in Tabelle 8-4 angegeben ist. Eine andere Codierung kann unter Umständen 
eine einfachere Schaltung ergeben. 

Tabelle 8-4 Codierung der 4 Zustände. 

Zustand z1 z0 

1 0 0 

2 0 1 

3 1 1 

4 1 0 

 

Aufstellen der Zustandsfolgetabelle 

Die Zustandsfolgetabelle kann aus dem Zustandsdiagramm in Bild 8-8 abgelesen werden. Die 
einzelnen Zustände mit dem Index m und dem Index m+1 unterscheiden sich bei synchronen 
Schaltwerken um eine Taktperiode. Abhängig von den Eingangswerten r, z1

m,  z0
m werden die 

Folgezustände z1
m+1,   z0

m+1 und die Ausgänge für die 3 Maschinen y1, y2,  y3 in die Tabelle ein-
getragen. 
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Tabelle 8-5 Zustandsfolgetabelle und Ausgabetabelle der Maschinensteuerung (Beispiel 2). 

  z1
m  z0

m 
z1

m+1  z0
m+1 y1  y2  y3 

r = 0 r = 1 r = 0 r = 1 

0     0 0       1 0       0 1    1    1 0    0    0 

0     1 1       1 0       0 0    1    1 0    0    0 

1     1 1       0 0       0 0    1    0 0    0    0 

1     0 0       0 0       0 1    1    0 0    0    0 

 

Nun müssen die Übergangsgleichungen für die Ansteuerung der Eingänge der Flipflops aufge-
stellt werden. Da bei D-Flipflops die am D-Eingang anliegenden Werte bei der steigenden 
Flanke des Taktes in das Flipflop eingelesen werden, sind die Ansteuerfunktionen Di = zi

m+1. 
Die Werte aus der Zustandsfolgetabelle 8-5 werden in zwei KV-Diagramme (Tabelle 8-6) 
eingetragen. 

Tabelle 8-6 KV-Diagramme für die Ansteuerfunktionen der D-Flipflops und für die Ausgangsfunktionen.  

r 

0 1 0 0 111 000 

1 1 0 0  011 000 

1 0 0 0 010 000 

0 0 0 0 110 000 

r

D1 D0 y1 y2 y3 

z0
m

z1
m

y1 y2 y3 D1 D0 

 
Für die Ansteuerfunktionen der D-Flipflops, die das Schaltnetz SN1 beschreiben, liest man aus 
dem linken KV-Diagramm der Tabelle 8-6 ab: 

D0 = ¬r¬z1
m (8.10) 

D1 = ¬rz0
m (8.11) 

Die Ausgangsfunktionen, die im Schaltnetz SN2 realisiert sind, können aus dem rechten KV-
Diagramm der Tabelle 8-6 ermittelt werden: 

y1 = ¬r¬z0
m (8.12) 

y2 = ¬r (8.13) 

y3 = ¬r¬z1
m = D0 (8.14) 

 

An den Gleichungen 8.12 bis 8.14 kann man direkt erkennen, dass es sich um ein Mealy-
Schaltwerk handelt, da sie alle Funktionen der Eingangsvariablen r sind. Dadurch werden bei 
einem Not-Aus die Motoren ohne Zustandswechsel sofort ausgeschaltet. 
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Bild 8-9 Schaltbild der Maschinensteuerung (Beispiel 2). 

8.3.2  Realisierung der Maschinensteuerung als Moore-Schaltwerk 

Hätte man bei der Entwicklung der Schaltung ein Moore-Schaltwerk zugrunde gelegt, so hätte 
man einen zusätzlichen Zustand 5 benötigt, in den das Schaltwerk geht, wenn der Not-
Ausschalter betätigt wird (Bild 8-10). Bei einem Moore-Schaltwerk kann man die Werte der 
Ausgänge in die Kreise für die Zustände eintragen. Es sind für die Codierung der Zustände 
mindestens 3 Zustandsvariable erforderlich. Nachteilig kann sein, dass bei einem Not-Aus erst 
nach einem Zustandswechsel die Motoren ausgeschaltet werden. Das Moore-Schaltwerk rea-
giert also langsamer. Dieser Nachteil ist umso bedeutsamer, je langsamer der Takt CLK ist.  
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Bild 8-10 Alternatives Zustandsdiagramm der Maschinensteuerung (Beispiel 2) als Moore-Schaltwerk. In 
den Kreisen stehen jeweils der symbolische Zustand und die Ausgänge y1 y2 y3.   

8.4  Zustandscodierung 

Wir haben oben gesehen, dass es mehrere Alternativen für die Codierung der Zustände gibt. 
Die Auswahl der Codierung hat einen entscheidenden Einfluss auf den Aufwand. Wichtig ist 
natürlich, dass alle Zustände unterscheidbar sind. Die Auswirkungen sollen am folgenden Bei-
spiel diskutiert werden: 

Beispiel 3: Ampelsteuerung  

Es soll eine Ampelsteuerung entworfen werden, die zyklisch die Signale rot - rot und gelb - 
grün - gelb - rot ... auf 1 setzt. Die Weiterschaltung soll durch den Takt erfolgen. Die Schal-
tung hat keinen Eingang außer dem Takt CLK. Man kann das untenstehende Zustandsdia-
gramm angeben. Die Zustände werden, ohne Steuerung durch einen Eingang kreisförmig 
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durchlaufen. Die Weiterschaltung erfolgt bei jedem Takt unabhängig von einem Eingang. Man 
nennt dies einen autonomen Automat. Es handelt sich um ein Moore-Schaltwerk.  

 

1 
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010 Z 

rot gelb grün 

 
Notation 

 

Bild 8-11 Zustandsdiagramm der Ampelsteuerung (Beispiel 3) mit den Zuständen 1,2,3,4 und den Werten 
für die Ausgänge rot, gelb, grün. 

In der Praxis haben sich u.a. [19] die folgenden Strategien für die Codierung von Zuständen 
bewährt, die in der Regel nacheinander durchlaufen werden: Binäre-Codierung, Gray-Code, 
ausgangsorientierte Codierung und „One-Hot“-Codierung. Sie sind in der folgenden Tabelle 
zusammengefasst und sollen im Folgenden verglichen werden. 

 

Tabelle 8-7 Zustandscodierung: Binäre-Codierung, Gray-Code, ausgangsorientierte Codierung, „One-
Hot“-Codierung für das Beispiel 3 Ampelsteuerung. 

 Binär Gray-
Code 

Ausgangs-
orientierte  
Codierung 

One-Hot-
Codierung 

Zustand z1 z0 z1 z0 z2 z1 z0 z3 z2 z1 z0 

1 0 0 0 0 1 0 0 0 0 0 1 

2 0 1 0 1 1 1 0 0 0 1 0 

3 1 0 1 1 0 0 1 0 1 0 0 

4 1 1 1 0 0 1 0 1 0 0 0 

8.4.1  Binäre Codierung 

Diese Möglichkeit findet man im Beispiel in Kapitel 8.1 „Binärzähler“ beschrieben. Man benö-
tigt zwei Zustandsvariablen und zwei Flipflops.   

8.4.2  Codierung nach dem Gray-Code  

Diese Möglichkeit wurde bei der Schaltung  der Maschinensteuerung verwendet: Man benötigt 
zwei Zustandsvariablen und zwei Flipflops. Wenn die Zustände der Reihe nach durchlaufen 
werden ergibt dies oft einen geringeren Aufwand bei der Realisierung als die binäre Codierung.   

8.4.3  Ausgangsorientierte Codierung 

In dieser Codierung wird jedem Ausgang ein Flipflop zugeordnet. Daher steuert je ein D-
Flipflop entsprechend Bild 8-12 eine der Lampen direkt an. Man benötigt drei Flipflops, ob-
wohl für die Realisierung der vier Zustände zwei Flipflops ausgereicht hätten. Das Schaltnetz 
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SN2 ist zu Durchverbindungen degeneriert und fällt daher weg. Das ist der Vorteil dieser Co-
dierung.  
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Bild 8-12 Struktur des Schaltwerks für die Ampelsteuerung mit ausgangsorientierter Codierung. 

Das Zustandsdiagramm der Ampelsteuerung mit dieser Codierung ist in Bild 8-13 angegeben. 
Die drei Ausgänge sind im Zustandsdiagramm nicht angegeben, da ja die einfache Beziehung:  
rot = z2

m, gelb = z1
m und grün = z0

m gilt. Aus dem Zustandsdiagramm wird die Zustandsfolgeta-
belle (Tabelle 8-8) abgeleitet. Wichtig ist es festzustellen, dass nur 4 der möglichen 23 = 8 
Zustände verwendet werden. 

 

001 

010 

100 

110 

 

Bild 8-13 Zustandsdiagramm für die Ampelsteuerung (in den Zuständen z2
m, z1

m, z0
m). 

Tabelle 8-8 Zustandsfolgetabelle für die Ampelsteuerung mit ausgangsorientierter Codierung. 

 z2
m   z1

m
  z0

m     z2
m+1  z1

m+1
   z0

m+1 

1     0     0 1        1       0 

1     1     0 0        0       1 

0     0     1 0        1       0 

0     1     0 1        0       0 

 

Es wurden nur die vier Zustände eingetragen, die im Zyklus durchlaufen werden. Die vier nicht 
benutzten Zustände werden zunächst nicht berücksichtigt. Es soll aber sichergestellt werden, 
dass das Schaltwerk nach dem Einschalten, wobei es in einen beliebigen Zustand geht, nach 
einigen Takten in den normalen Zyklus übergeht. Das muss später kontrolliert werden. Für die 
Entwicklung des Schaltnetzes für die Ansteuersignale der drei D-Flipflops werden drei KV-
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Diagramme aus der Zustandsfolgetabelle entwickelt. Das ist einfach, da ein D-Flipflop den 
Wert, der am D-Eingang anliegt, als nächsten Zustand speichert: Di = zi

m+1. Die Werte für die 
nicht benötigten Zustände werden beliebig angesetzt (d). 
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Bild 8-14 KV-Diagramme zur Minimierung der Ansteuernetze für die D-Flipflops. 

Aus Bild 8-14 leitet man die folgenden Ansteuergleichungen ab:  

D2 = z2
m+1 = ¬z1

m¬z0
m ∨ ¬z2

m¬z0
m = ¬z0

m (¬z1
m ∨ ¬z2

m) =  ¬(z0
m ∨ z1

mz2
m) (8.15) 

D1 = z1
m+1 = ¬z1

m (8.16) 

D0 = z0
m+1 = z1

m z2
m (8.17) 

Mit den Ansteuergleichungen liegen nun auch die Folgezustände der zunächst nicht benötigten 
Zustände 000, 011, 101 und 111 fest. Die vollständige Zustandstabelle (Tabelle 8-9) wird  
durch Ergänzen dieser Zustände in Tabelle 8-8 unter Verwendung der Gleichungen 8.15 bis 
8.17 zusammengestellt. 

Tabelle 8-9 Vollständige Zustandsfolgetabelle für Ampelsteuerung mit ausgangsorientierter Codierung. 

z2
m  z1

m
  z0

m     z2
m+1  z1

m+1
   z0

m+1 

0     0     0 1        1       0 

0     0     1 0        1       0 

0     1     0 1        0       0 

0     1     1 0        0       0 

1     0     0 1        1       0 

1     0     1 0        1       0 

1     1     0 0        0       1 

1     1     1 0        0       1 

 

Tabelle 8-9 liefert das Zustandsdiagramm in Bild 8-15. Aus dem nun vollständigen Zustands-
diagramm geht hervor, dass alle Zustände, in die das Netzwerk zufällig beim Einschalten 
kommen kann, letztendlich in den Zyklus führen. Dazu sind maximal 2 Takte nötig. Man be-
achte, dass eine andere Wahl der don’t care-Terme im KV-Diagramm (Bild 8-14) zu einem 



104 8  Synchrone Schaltwerke 

anderen Zustandsdiagramm geführt hätte. Es kann passieren, dass die Zustände, die nicht zum 
Kreis-Zyklus des Schaltwerkes gehören, nicht automatisch nach einigen Takten in diesen Kreis 
führen. Dann kann es vorkommen, dass das Schaltwerk beim Einschalten nicht in den ge-
wünschten Zyklus geht, sondern in einem anderen Zyklus hängen bleibt. Will man das verhin-
dern, so muss man die don’t care-Terme anders festlegen. Der kreisförmige Zyklus aus den 
Zuständen 001, 010, 100 und 110 ist, unabhängig von den don’t cares, immer vorhanden.   
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010 101 110000 011 

 

Bild 8-15 Zustandsdiagramm für die Ampelsteuerung mit allen Zuständen. 
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Bild 8-16 Schaltbild der Ampelsteuerung mit ausgangsorientierter Codierung. 

8.4.4  „One-Hot“-Codierung  

Üblich ist auch die so genannte „One-Hot“-Codierung. Man benötigt nun 4 Zustandsvariablen 
z3

m, z2
m, z1

m, z0
m  von denen nur immer eine gleich 1 ist, während die anderen 0 sind. Man benö-

tigt dann 4 Flipflops. Allerdings wird das Ansteuernetzwerk SN1 sehr einfach. Die Codierung 
der Zustände ist in Tabelle 8-7 dargestellt.  

Man erhält, unter Zuhilfenahme der Tabelle 8-7 die Zustandsfolgetabelle 8-10. Es gibt sehr 
viele nicht benötigte Zustände (14). 
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Tabelle 8-10 Zustandsfolgetabelle der Ampelsteuerung mit „One-Hot“-Codierung. 

z3
m z2

m z1
m z0

m z3
m+1 z2

m+1 z1
m+1 z0

m+1 rot  gelb  grün 

0   0   0   1 0       0       1       0 1        0        0 

0   0   1   0 0       1       0       0 1        1        0 

0   1   0   0 1       0       0       0 0        0        1 

1   0   0   0 0       0       0       1 0        1        0 

 
Aus der Zustandsfolgetabelle gewinnt man die  KV-Diagramme in Bild 8-17 für die Minimie-
rung des Schaltnetzes SN1. Aus den KV-Diagrammen liest man die Gleichungen ab:    

z3
m+1 = z2

m  ;  z2
m+1 = z1

m  ;  z1
m+1 = z0

m  ;  z0
m+1 = z3

m (8.18) 
Daher ist kein Schaltnetz SN1 nötig und die D-Flipflops sind im Kreis angeordnet. Das ist 
typisch für die „One-Hot“-Codierung. Durch die vielen don’t cares wird das Schaltnetz SN1 in 
der Regel sehr einfach. Allerdings benötigt man viele Flipflops, da man mehr Zustandsvariable 
benötigt.  
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Bild 8-17 KV-Diagramme für die Ansteuernetzwerke der D-Flipflops (Kein Eintrag = don’t care). 

Für das Schaltnetz SN2 erhält man rot = z0
m∨z1

m, gelb = z1
m∨z3

m und grün = z2
m. Die Schaltung 

(Bild 8-18) benötigt ein Initialisierungssignal Init, um einen Anfangszustand z.B. 0001 einzu-
stellen. 
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Bild 8-18 Struktur der Ampelsteuerung mit „One-Hot“-Codierung. 
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8.5  Wahl der Flipflops 

Es kann vorkommen, dass z.B. nur JK-Flipflops verfügbar sind. Auch ist der Aufwand unter-
schiedlich, je nachdem welcher Flipflop-Typ verwendet wird. Wir greifen dazu das Beispiel 1 
aus Kapitel 8.1 auf, den Binärzähler, und realisieren es diesmal mit JK-Flipflops. 

Tabelle 8-11 Zustandsfolgetabelle  

 z1
m  z0

m 
z1

m+1 z0
m+1 

x = 0 x = 1 

0     0 0       1 1       1 

0     1 1       0 0       0 

1     1 0       0 1       0 

1     0 1       1 0       1 

 

Es müssen die Gleichungen für die Ansteuerung der Eingänge der JK-Flipflops, nämlich für J1, 
K1, J0 und K0 aufgestellt werden. Dazu ist es hilfreich, sich die Werte für J und K zu notieren, 
die bei einem gegebenen Wert der Zustandsvariablen zm für einen gewünschten Folgezustand 
zm+1 erforderlich sind. Wenn zum Beispiel der Zustand zm = 0 erhalten bleiben soll (in Tab. 8-
11 markiert), kann dies durch J = 0 bei beliebigem K  erreicht werden. K = 1 würde „Rückset-
zen“ bedeuten und K = 0 „Speichern“. Beides führt zum Erhalt von zm = 0. Ähnliche Überle-
gungen führen zu den anderen Tabellenwerten (Tabelle 8-12), die immer einen Freiheitsgrad 
enthalten.  

Tabelle 8-12 Ansteuerung eines JK-Flipflops abhängig von den alten und neuen Zuständen. 

zm zm+1 J    K Beschreibung 

0 0 0    d Speichern oder Rücksetzen

0 1 1    d Wechseln oder Setzen 

1 0 d    1 Wechseln oder Rücksetzen

1 1 d    0 Speichern oder Setzen 

 

Tabelle 8-13 KV-Diagramm für die Ansteuerfunktionen der JK-Flipflops.  

z1
m  z0

m J1K1  J0K0 

x = 0 x = 1 

0     0 0d       1d 1d       1d 

0     1 1d       d1 0d       d1 

1     1 d1       d1 d0       d1 

1     0 d0       1d d1       1d 
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Mit Hilfe der Tabelle 8-12 wird aus der Zustandsfolgetabelle 8-11 das KV-Diagramm 8-13 
entwickelt. (markiert ist der gleiche Übergang wie in Tabelle 8-11) 

Für die Ansteuerfunktionen der JK-Flipflops, die das Schaltnetz SN1 beschreiben, liest man 
aus dem KV-Diagramm (Tabelle 8-13) unter Ausnutzung der don’t care-Terme  ab: 

J0 = 1 K0 = 1  J1 = ¬xz0
m ∨ x¬z0

m 
= x ↔ z0

m 
K1 = J1 

(8.19) (8.20) (8.21) (8.22) 

 

Die Ausgangsfunktionen, die im Schaltnetz SN2 realisiert sind, bleiben natürlich gleich. 
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Bild 8-19 Moore-Schaltwerk (Beispiel 1) mit JK-Flipflops.   

8.6  Zeitverhalten von Schaltwerken 

Damit ein Schaltwerk (Bild 8-20) so funktioniert, wie es im letzten Abschnitt berechnet wurde, 
müssen einige Zeitbedingungen eingehalten werden. Diese Zeitbedingungen sollen nun genau-
er untersucht werden. Dazu zeichnen wir die Wirk- und Kippintervalle der Flipflops in der 
Rückkopplung relativ zum Takt CLK auf (Bild 8-21). 
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Bild 8-20 Synchrones Schaltwerk.  

Im Bild ist eine Überlappung tkrit von Wirk- und Kippintervall eingezeichnet. Werden bei ei-
nem Schaltwerk mehrere Flipflops verwendet, so ergibt sich durch die Verschiebung des Tak-
tes (clock skew) eine Verbreiterung der Wirk- und Kipp-Intervalle. Das kann dazu führen, dass 
sich auch bei einflankengesteuerten D-Flipflops die Wirk- und Kippintervalle überlappen. Bei 
zweiflankengesteuerten Flipflops überlappen sich die Wirk- und Kippintervalle nicht, so dass 
tkrit negativ wird. 
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In Bild 8-20 sind auch die Ausgänge zm der Flipflops eingezeichnet. Sie sind außerhalb der 
Kippintervalle stabil. In den Kippintervallen können sie sich dauernd ändern. Mögliche Sig-
naländerungen sind, wie es üblich ist, durch einen „Jägerzaun“ dargestellt. Die Eingangssignale 
xm wurden im Bild so eingezeichnet, dass sie zu den gleichen Zeiten wie die Ausgänge der 
Flipflops stabil sind.  
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Bild 8-21 Zeitverhalten eines Schaltwerks.  

Nun können die Ausgänge des Schaltnetzes SN1 betrachtet werden. Dazu soll kurz das gene-
relle Verhalten eines Schaltnetzes analysiert werden. 

• Wenn sich die Eingangsgrößen eines Schaltnetzes ändern, so ändert sich der Ausgang für 
eine gewisse Zeit tmin nicht. Diese Zeit tmin ist eine Totzeit. Sie wird zum Teil durch die 
Laufzeit der Gatter hervorgerufen. Der andere Teil ergibt sich durch die Laufzeit der Signa-
le auf den Leitungen zwischen Speichern und dem Schaltnetz. 

• Dann beginnen sich die Ausgangsgrößen zu ändern. Nach einer gewissen Zeit tmax sind auch 
alle Einschwingvorgänge (Hazards) abgeklungen. Dann ist das Ausgangssignal stabil. 

Die Zustandsvariablen zm+1des Schaltwerks ändern sich also frühestens nach Ablauf der Zeit 
tmin nach Beginn des Kippintervalls. Stabil sind die Ausgänge zm+1 des Schaltwerks nach der 
Zeit tmax nach dem Ende des Kippintervalls (Bild 8-21). Aus dem Bild lassen sich nun die Be-
dingungen für das Funktionieren des Schaltwerks ablesen. Eine wesentliche Bedingung für das 
Funktionieren eines Schaltwerkes ist, dass die Eingangsvariablen der Flipflops während deren 
Wirkintervall stabil sein müssen. 

• Die Zustandsvariablen zm+1 dürfen sich daher erst nach dem Ende des Wirkintervalls än-
dern. Die Zeit t1 muss also größer als 0 sein.  

t1 = tmin − tkrit > 0 (8.23) 
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Ohne Taktversatz sagt diese Bedingung, dass sich Wirk- und Kippintervall maximal um die 
minimale Laufzeit tmin des Schaltnetzes überlappen dürfen. Bei großem Taktversatz ist die 
Bedingung nur mit zweiflankengesteuerten Flipflops zu erfüllen. Durch die Wahl des Tast-
verhältnisses des Taktes können die Zeiten in einem weiten Rahmen variiert werden.  

• Nach dem Ende des Kippintervalls muss das Schaltnetz die neuen Eingangsvariablen für 
die Speicher berechnen. Dies muss, inklusive aller Einschwingvorgänge, abgeschlossen 
sein, wenn das nächste Wirkintervall beginnt. 

Die zweite Rückkopplungsbedingung lautet daher 

t2 = tWK − tmax  > 0 (8.24) 

Nun wollen wir die Verhältnisse im Schaltnetz SN2 für die Berechnung der Ausgangsfunktio-
nen y betrachten. Ist die Laufzeit dieses Schaltnetzes gleich der von SN1, so sind die Ausgänge 
y zur gleichen Zeit gültig wie die zm+1. Diese Tatsache kann ausgenutzt werden, um am Aus-
gang y Pufferspeicher anzubringen, die dafür sorgen, dass die Ausgangsgrößen synchron zu 
den xm und zm stabil zur Verfügung stehen (Bild 8-22). Die Bedingungen lassen sich noch ge-
nauer fassen, wenn man zwischen den Laufzeiten der Signale durch die Schaltnetze SN1 und 
SN2 unterscheidet. 
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Bild 8-22 Synchrones Mealy-Schaltwerk mit Pufferspeichern am Ausgang. 

8.7  Übungen 

Aufgabe 8.1 

Es soll ein Schaltwerk für eine Pumpensteuerung entworfen werden, welche den Wasserstand 
in einem Behälter kontrollieren soll (Bild unten links). Die Anordnung besteht aus einem Was-
serbehälter, der einen unregelmäßigen Abfluss hat. Gefüllt wird der Behälter mit zwei Pumpen, 
deren gemeinsame Förderleistung größer ist als der maximal mögliche Abfluss. Drei Sensoren 
mit den Ausgangssignalen x0, x1 und x2 zeigen mit dem Wert 1 an, dass der Wasserstand höher 
ist als der entsprechende Sensor angebracht ist.  

Das geforderte Verhalten der Pumpen ist im rechten Bild dargestellt. Beide Pumpen sollen 
laufen, wenn der Wasserstand geringer ist als x1. Wenn der Wasserstand weiter steigt, soll eine 
Pumpe beim Erreichen von x1 abgeschaltet werden. Beim Erreichen von x2 wird auch die letzte 
Pumpe abgeschaltet. Im Falle eines fallenden Wasserstandes soll bei x1 die erste und bei x0 die 
zweite Pumpe eingeschaltet werden.  
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Aufgabe 8.2 

Entwerfen Sie die in Kapitel 8.3.1 vorgestellte Maschinensteuerung, indem Sie an Stelle der D-
Flipflops a) RS-Flipflops oder b) JK-Flipflops verwenden. Vergleichen Sie den Aufwand bei 
den drei Realisierungen.   

 

Aufgabe 8.3 

Es soll ein synchrones Moore-Schaltwerk entworfen werden, welches einen Parkautomaten 
realisiert, der Parkscheine für € 1,50 ausgibt. Die Münzen können in beliebiger Reihenfolge 
eingeworfen werden. Ist der Betrag von € 1,50 erreicht oder überschritten, so soll ein Park-
schein ausgegeben werden und gegebenenfalls Wechselgeld zurückgezahlt werden.    

Der Parkautomat hat einen Münzprüfer, der nur 50Cent und 1Euro-Stücke akzeptiert. Der 
Ausgang des Münzprüfers gibt nach jedem Taktsignal entsprechend der folgenden Wahrheits-
tabelle an, was eingeworfen wurde. Es ist ausgeschlossen, dass der Münzprüfer M = (1,1) aus-
gibt und dass mehr als eine Münze innerhalb einer Taktperiode eingeworfen wird. Falsche 
Münzen werden automatisch zurückgegeben 

Einwurf Ausgang des Münzprüfers M = (x1, x0) 
Keine oder falsche Münze  00 
50Cent-Stück  01 
1Euro-Stück  10 

 
Ein Parkschein wird mit dem Ausgangssignal S = 1 ausgegeben, gleichzeitig wird der Münz-
einwurf mechanisch gesperrt, andernfalls ist der Münzeinwurf möglich. Mit dem Signal R = 1 
wird ein 50Cent-Stück zurückgegeben. 

a) Geben Sie das Zustandsdiagramm und die dazugehörige Zustandsfolgetabelle an. 

b) Ermitteln Sie die Übergangsfunktionen und die Ausgabefunktionen.  

 



9  Multiplexer und Code-Umsetzer 

In diesem Kapitel werden zwei Standard-Bauelemente, nämlich Multiplexer und Code-
Umsetzer, vorgestellt. Diese Bausteine sind für eine Reihe von Anwendungen, wie zum Bei-
spiel die Realisierung von booleschen Funktionen oder die Bündelung von mehreren Nachrich-
tenkanälen auf einer Leitung geeignet. 

9.1  Multiplexer 

Ein Multiplexer ist ein Baustein, der einen von n digitalen Eingängen auf den Ausgang schal-
tet. Der Eingang wird durch Selektionseingänge ausgewählt. 

Als Beispiel ist in Bild 9-1 der Baustein 74151 gezeigt. Dieser Multiplexer wird als 8:1-
Multiplexer bezeichnet, da mit ihm 8 verschiedene Eingänge Ii wahlweise auf den einen Aus-
gang y gelegt werden können. In der CMOS-Version ist der Baustein mit Transmission-Gates 
realisiert. 

Mit den Selektionseingängen x2, x1, x0 wird die Quelle ausgewählt. Nachdem sich die Adress- 
und Datensignale stabilisiert haben, kann die Quelle mit dem Aktivierungssignal En (Enable) 
durchgeschaltet werden. Der Ausgang y bleibt auf 0, solange En = 1 ist. Für En = 0 wird der 
ausgewählte Ausgang durchgeschaltet. 

 

Der Baustein enthält ein Schaltnetz mit der Verknüpfung: 

 

y = ¬En (¬x2¬x1¬x0I0 ∨ ¬x2¬x1x0I1 ∨ ¬x2x1¬x0I2 ∨ ¬x2x1x0I3 ∨ x2¬x1¬x0I4 ∨ 

                ∨ x2¬x1x0I5 ∨ x2x1¬x0I6 ∨ x2x1x0I7) (9.1) 

 

Tabelle 9-1 Wahrheitstabelle des 8:1-Multiplexers 74151 (x = Eingangssignal d. Eingangs Ii,  x ∈{0,1}). 

En x2 x1 x0 I7  I6  I5 I4  I3 I2  I1  I0 y 

1 d   d  d d  d  d  d  d  d  d  d 0 

0 0   0  0 d  d  d  d  d  d  d  x  x 

0 0   0  1 d  d  d  d  d  d  x  d  x 

0 0   1  0 d  d  d  d  d  x  d  d   x 

0 0   1  1 d  d  d  d  x  d  d  d  x 

0 1   0  0 d  d  d  x  d  d  d  d  x 

0 1   0  1 d  d  x  d  d  d  d  d  x 

0 1   1  0 d  x  d  d  d  d  d  d  x 

0 1   1  1 x  d  d  d  d  d  d  d  x 

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018
K. Fricke, Digitaltechnik, https://doi.org/10.1007/978-3-658-21066-3_9
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Bild 9-1 8:1-Multiplexer 74151 mit Schaltsymbol. 

Das Schaltsymbol in Bild 9-1 des 8:1-Multiplexers 74151 ist durch die Überschrift MUX ge-
kennzeichnet. Die Funktion des Multiplexers wird durch eine UND-Abhängigkeit (G) der 
Selektionseingänge xi und der Dateneingänge Ii beschrieben. Die Selektionseingänge xi werden 
von 0 für x0 bis 2 für x2 nummeriert.  

9.1.1  Multiplexer-Realisierung von Funktionen 

Ein Multiplexer kann verwendet werden, um ein Schaltnetz zu realisieren. Dies soll an einem 
Beispiel gezeigt werden. Das zu realisierende Verknüpfungsnetz wird durch sein Karnaugh-
Diagramm in Bild 9-2 vorgegeben. Es soll ein 8:1-Multiplexer verwendet werden. 

Ein 8:1-Multiplexer hat 3 Selektionseingänge, an die 3 der 4 Variablen angeschlossen werden 
können. Man hat für die Wahl dieser 3 Variablen 4 Möglichkeiten. Die jeweils nicht berück-
sichtigte Variable wird so an die Dateneingänge Ii angelegt, dass der vorgegebene Funktions-
wert der Funktion am Ausgang des Multiplexers erscheint. Das Vorgehen dafür soll nun erläu-
tert werden. Zunächst muss festgelegt werden, welche Variablen an den Selektionseingängen 
anliegen sollen. Hier wurden x3, x2, x1 ausgewählt. Mit diesen drei Variablen an den Selekti-
onseingängen werden in einem KV-Diagramm jeweils Bereiche von 2 Mintermen ausgewählt. 
In Bild 9-2 sind die Bereiche Ii angegeben, die einem Eingangsvektor mit dem Dezimaläquiva-
lent i zuzuordnen sind. Bei der Ermittlung des Dezimaläquivalents muss auf die Wertigkeit der 
Selektionseingänge geachtet werden. x3 hat hier die Wertigkeit 22, x2  die Wertigkeit 21 und x1 

die Wertigkeit 20. 

 

An die Dateneingänge des MUX müssen dann nur noch die entsprechenden Restfunktionen 
f(x0) angelegt werden. Enthält ein Bereich keine 1, so muss an den entsprechenden Datenein-
gang eine 0 angelegt werden. Sind zwei Einsen in einem Bereich, so wird der Dateneingang 
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mit 1 beschaltet. Ist in dem Bereich nur eine 1, so kommt es auf die Position der 1 an, ob der 
Dateneingang mit der Variablen (x0) oder der invertierten Variablen (¬x0) beschaltet wird. Zum 
Beispiel lässt sich aus Bild 9-2b ablesen, dass I0 mit 1 beschaltet werden muss, denn der Be-
reich I0 enthält nur Einsen. Dagegen muss I1 mit ¬x0 beschaltet werden, denn der Bereich I1 hat 
nur eine 1 an der Position, die von der Randbezeichnung x0 nicht überdeckt wird. Diese Be-
schaltung des Multiplexers ist in Bild 9-3 gezeigt. 
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1   1 

1  1  

 1  1 

1   1 
x1 
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I0 I2 I6 I4 

I1 I3 I7 I5 

x1

a) b) 

 

Bild 9-2 a) Karnaugh-Veitch-Diagramm der Beispielfunktion b) Definition der Bereiche Ii, die einem 
Eingangsvektor (x3, x2, x1) mit dem Dezimaläquivalent i zuzuordnen sind. 
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Bild 9-3 Beschaltung des Multiplexers für die in Bild 9-2 definierte Funktion. 

Alternativ kann auch ein 16:1-Multiplexer verwendet werden. Dessen Dateneingänge müssen 
dann nur noch mit 0 und 1 beschaltet werden. Diese Variante bringt aber bezüglich des Auf-
wandes keinen Vorteil gegenüber einem 8:1-Multiplexer. Wird ein 4:1-Multiplexer verwendet, 
so liegen an den beiden Selektionseingängen 2 der Variablen an, an den 4 Dateneingängen liegt 
jeweils eine DNF (oder KNF)  aus den anderen beiden Variablen an. Ein Beispiel ist in Bild 9-
4 gezeigt. Beschaltet man die Selektionseingänge des Multiplexers mit x3 und x2, so wird die 
Beschaltung an den Dateneingängen besonders einfach. In diesem Fall kommt man mit einem 
4:1-Multiplexer ohne weitere Gatter aus (Bild 9-5). Legt man x1 und x0 an die Selektionsein-
gänge, so muss man die Dateneingänge mit zusätzlichen Gattern beschalten.  
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Bild 9-4 a) Karnaugh-Veitch-Diagramm der Beispielfunktion b) Definition der Eingangsfelder. 
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Bild 9-5 Beschaltung des Multiplexers für die in Bild 9-4 definierte Funktion. 

9.2  Code-Umsetzer 

Ein Code-Umsetzer ist eine Schaltung, die das Codewort aus einem Code 1, welches an den m 
Eingängen anliegt, in ein Wort aus einem anderen Code 2 umsetzt. Das Codewort am Ausgang 
hat in diesem Fall eine Wortlänge von n Bits. Im Schaltsymbol in Bild 9-6 sind die beiden 
Codes in der Überschrift angegeben. 
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Bild 9-6 Schaltsymbol eines Code-Umsetzers. 
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Code-Umsetzer findet man in den folgenden Anwendungen: 

-  Integrierte Code-Umsetzer können zur Wandlung von Codes verwendet werden. Üblich 
sind zum Beispiel Umsetzer vom BCD-Code zum Hexadezimal-Code. 

-  Sie eignen sich zur Erzeugung von Funktionsbündeln. 
-  Spezielle Code-Umsetzer können als Demultiplexer eingesetzt werden. Der Demultiplexer 

ist, wie unten erläutert werden wird, das Gegenstück zu einem Multiplexer. Er dient zum 
Verteilen eines Nachrichtenkanals auf mehrere Leitungen.  

9.2.1  Der BCD/Dezimal-Code-Umsetzer 7442 

Hier soll als Beispiel der Code-Umsetzer 7442 vorgestellt werden (Bild 9-7). Er wandelt vom 
BCD-Code in den 1 aus 10-Code. Der hier verwendete 1 aus 10-Code ist ein Code, dessen 
Wörter die Eigenschaft haben, dass alle 10 Bit bis auf eins den Wert 1 haben. Der Code-
Umsetzer hat 4 Eingänge und 10 Ausgangsleitungen. Die Ausgänge liegen normalerweise auf 
1 und werden im Falle der Auswahl auf 0 geschaltet. Jeder Ausgang yi realisiert den entspre-
chenden Maxterm: 

yi = Mi  mit i = 0,1,...9 (9.2) 
Die Funktion kann auch so interpretiert werden, dass jeder Ausgang den entsprechenden inver-
tierten Minterm realisiert: 

y6 = M6 = x3 ∨ ¬x2 ∨ ¬x1 ∨ x0 = ¬(¬x3 x2 x1¬x0) = ¬m6 (9.3) 

Im Schaltsymbol des Code-Umsetzers 7442 werden die beiden Codes angegeben, zwischen 
denen gewandelt wird. In diesem Fall BCD/DEC, das heißt vom BCD-Code in den Dezimal-
code. Die Wertigkeiten des BCD-Codes sind innerhalb der linken Berandung des Symbols 
angegeben. Auf der rechten Seite ist die Wertigkeit des dazugehörigen Ausgangs angegeben. 
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Bild 9-7 Schaltbild und Schaltsymbol des BCD/Dezimal-Code-Umsetzers 7442. 
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Tabelle 9-2 Wahrheitstabelle des BCD/Dezimal-Code-Umsetzers 7442. 

Dezimal x3  x2 x1 x0 y9 y8  y7 y6  y5 y4  y3 y2  y1  y0 

0 0  0  0  0 1  1  1  1   1  1   1  1  1   0 

1 0  0  0  1 1  1  1  1   1  1   1  1  0   1 

2 0  0  1  0 1  1  1  1   1  1   1  0  1   1 

3 0  0  1  1 1  1  1  1   1  1   0  1  1   1 

4 0  1  0  0 1  1  1  1   1  0   1  1  1   1 

5 0  1  0  1 1  1  1  1   0  1   1  1  1   1 

6 0  1  1  0 1  1  1  0   1  1   1  1  1   1 

7 0  1  1  1 1  1  0  1   1  1   1  1  1   1 

8 1  0  0  0 1  0  1  1   1  1   1  1  1   1 

9 1  0  0  1 0  1  1  1   1  1   1  1  1   1 

10 1  0  1  0 1  1  1  1   1  1   1  1  1   1 

11 1  0  1  1 1  1  1  1   1  1   1  1  1   1 

12 1  1  0  0 1  1  1  1   1  1   1  1  1   1 

13 1  1  0  1 1  1  1  1   1  1   1  1  1   1 

14 1  1  1  0 1  1  1  1   1  1   1  1  1   1 

15 1  1  1  1 1  1  1  1   1  1   1  1  1   1 

9.2.2  Demultiplexer 

Code-Umwandler, die von einem binären in einen 1 aus n-Code umsetzen, können als Demul-
tiplexer verwendet werden. Der Demultiplexer soll die reziproke Aufgabe eines Multiplexers 
übernehmen. Ein Demultiplexer soll einen Eingang E auf mehrere Ausgänge verteilen, die mit 
Adressleitungen ausgewählt werden können. 

Als Beispiel soll der oben angegebene BCD/Dezimal-Code-Umsetzer verwendet werden. Dazu 
wird der höchstwertige Eingang als Dateneingang E verwendet (Bild 9-8). Die Eingänge x2, x1, 
x0 werden zu den Adresseingängen des Demultiplexers. Sie wählen den Ausgang aus. Als Aus-
gänge werden nur die Leitungen 0 bis 7 verwendet.  

1

x0

2

x1

4

x2

8

BCD/DEC0 y0

1 y1

2 y2

3 y3

4 y4

5 y5

6 y6

7 y7

8
9

E 

 

Bild 9-8 Verwendung eines Dezimal-Code-Umsetzers als Demultiplexer. 
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Die Funktion wird durch die Wahrheitstabelle 9-2 deutlich. Der höchstwertige Eingang x3 
entscheidet nämlich, ob der durch x2, x1, x0 ausgewählte Ausgang auf 0 oder 1 liegt. In diesem 
Fall hätte man auch einen Binär nach Octal-Code-Wandler mit 8 Ausgängen verwenden kön-
nen. Ein Multiplexer und ein Demultiplexer können zusammen eine Datenübertragungstrecke 
bilden, die die Übertragung von n parallelen Datenströmen über eine einzige Leitung ermög-
licht. Bild 9-9 zeigt das Prinzip.  
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Bild 9-9 Prinzip einer Datenübertragungstrecke mit Multiplexer und Demultiplexer. 

An die Adressleitungen des Multiplexers und des Demultiplexers werden die Adressen 0 bis 7 
periodisch angelegt. Dadurch wird jeder Eingang Ii in einem Achtel der Zeit auf den Ausgang 
yi übertragen. So wird jeder Leitung durch das System ein Zeitschlitz zugeteilt. Das Verfahren 
heißt auch Zeitmultiplex (Time Division Multiple Access = TDMA). 

9.2.3  Erzeugung von Funktionsbündeln 

Mit einem Code-Umsetzer, der in einen 1 aus n-Code wandelt,  können Funktionsbündel er-
zeugt werden. Als Beispiel sollen 3 boolesche Funktionen y3,  y2, y1 und y0 mit den 3 Eingängen 
x2, x1, x0 realisiert werden. Sie sind in der Wahrheitstabelle 9-3 gegeben.  

Tabelle 9-3 Wahrheitstabelle für 4 Beispielfunktionen y3, y2, y1, y0. 

Dezimal x2 x1 x0 y3  y2  y1 y0 

0 0   0  0 0  0  0  0 

1 0   0  1 0  0  1  1 

2 0   1  0 1  0  0  0 

3 0   1  1 1  1  1  1 

4 1   0  0 0  1  0  0 

5 1   0  1 0  1  0  1 

6 1   1  0 1  1  0  1 

7 1   1  1 1  0  1  0 
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Man verwendet einen Umsetzer vom Binärcode zum Octal-Code, wie er im Baustein  74138 
enthalten ist, denn dieser Code-Umsetzer hat 3 Eingänge und 8 Ausgänge. Jeder Ausgang geht 
auf 0, wenn der entsprechende Eingangsvektor an den Eingängen anliegt. Man kann daher 
sagen, dass die Ausgänge den invertierten Mintermen entsprechen. Alternativ kann man die 
Ausgänge als die Maxterme der Funktionen interpretieren. 

Es sind zwei verschiedene Realisierungen möglich, je nachdem, ob die Ausgänge als die inver-
tierten Minterme oder die Maxterme interpretiert werden. Im ersten Fall wird die DNF, im 
zweiten die KNF gebildet. Geht man von den invertierten Mintermen aus, so muss man folgen-
dermaßen vorgehen: Der Ausgang der zu einem Eingangsvektor gehört, für den der Funkti-
onswert 1 sein soll, muss an ein NAND-Gatter angeschlossen werden (Bild 9-10). Durch die 
Inversion der Ausgänge des 74138 und die Inversion des Funktionswertes durch das NAND 
ergibt sich ein logisches ODER, wie es für die Bildung der DNF erforderlich ist. 
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Bild 9-10 Realisierung der DNF von Funktionsbündeln mit einem Code-Umsetzer. 

Für die Bildung der KNF werden die Ausgänge als Maxterme interpretiert. Wir schließen also 
die Ausgänge, die zu den Eingangsvektoren gehören, deren Funktionswerte 0 sein sollen, an 
ein UND-Gatter an (Bild 9-11), da die Maxterme in der KNF UND-verknüpft werden. 
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Bild 9-11 Realisierung der KNF von Funktionsbündeln mit einem Code-Umsetzer. 
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9.3  Analoge Multiplexer und Demultiplexer 

Wenn analoge Signale gemultiplext werden sollen, können Transmission-Gates zum Schalten 
verwendet werden. Zur Ansteuerung der Transmission-Gates wird ein Multiplexer benötigt. Da 
die Transmission-Gates einen invertierten Steuereingang haben, muss der Multiplexer invertie-
rende Ausgänge haben. Die Schaltung ist in Bild 9.12 gezeigt. Weil sie in beiden Richtungen 
verwendet werden kann, ist sie sowohl als Multiplexer als auch als Demultiplexer für analoge 
und digitale Signale verwendbar. Allerdings wird das zu übertragende Signal beim Durchlau-
fen des Schaltkreises gedämpft. Es müssen also externe Buffer angeschlossen werden. 
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Bild 9-12 Analoger Multiplexer (Signalflussrichtung von links nach rechts) und Demultiplexer (Signal-
flussrichtung von rechts nach links). 

9.4  Übungen 

Aufgabe 9.1 

Eine Schaltfunktion f(a2,a1,a0) nach untenstehender Tabelle soll mit dem gezeigten Multiplexer 
realisiert werden. Geben Sie die Beschaltung der Eingänge Ii und xi des Multiplexers an. 
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Aufgabe 9.2 

Es soll ein Verknüpfungsnetz für die Funktionen F0(a1,a2,a3) und F1(a1,a2,a3) mit einem Multi-
plexer bzw. mit einem Code-Umsetzer realisiert werden. Die Funktionen sind durch untenste-
hende Wahrheitstabelle definiert.  

a) Realisieren Sie die Funktionen mit dem Baustein 74153, welcher zwei 4:1 Multiplexer 
enthält. Das Schaltsymbol des 74153 ist unten rechts dargestellt. 

b) Verwenden Sie den Code-Umsetzer 74138 (siehe S. 119), um die Funktionen zu realisie-
ren. 
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Aufgabe 9.3  

Konstruieren Sie einen Code-Umsetzer für die Umwandlung vom Oktal-Code in einen Gray-
Code nach folgender Tabelle: 

 

Eingang 

x2 x1 x0 

Ausgang 

y2 y1 y0 

 Eingang 

x2 x1 x0 

Ausgang 

y2 y1 y0 
0 0 0 0 0 0 1 0 0 1 1 0 

0 0 1 0 0 1 1 0 1 1 1 1 

0 1 0 0 1 1 1 1 0 1 0 1 

0 1 1 0 1 0 1 1 1 1 0 0 

 
 



10  Digitale Zähler 

Digitale Zähler sind asynchrone oder synchrone Schaltwerke, die in der Regel aus kettenförmig 
angeordneten Registern bestehen. Der Registerinhalt wird als der Zählstand des Zählers inter-
pretiert.  

10.1  Asynchrone Zähler 

Asynchrone Zähler sind asynchrone Schaltwerke. Das Eingangssignal ist die zu zählende Im-
pulsfolge. Sie wird direkt auf den Takteingang des ersten Flipflops gelegt. Die Takteingänge 
der folgenden Flipflops sind an die Ausgänge der vorhergehenden Flipflops angeschlossen. Im 
Gegensatz dazu werden beim synchronen  Zähler, der weiter unten besprochen wird, alle Flip-
flops vom gleichen Eingangssignal angesteuert. Im Folgenden sollen zwei einfache Schaltun-
gen als Beispiel für asynchrone Zähler vorgestellt werden. 

10.1.1  Mod-8-Binärzähler 

Ein mod-8-Binärzähler kann aus negativ flankengesteuerten JK-Flipflops aufgebaut werden, 
wie es in Bild 10-1 gezeigt ist. Die J- und K-Eingänge der JK-Flipflops sind auf 1 gesetzt. Der 
Ausgang des ersten Flipflops Q0 wird also bei jeder negativen Flanke des Eingangs seinen 
Zustand wechseln. Genauso verhält es sich mit den Ausgängen der weiteren Flipflops. 

 

 

1J 

1K 

C1 
1 1J

1K 

C1

1J

1K 

C1x1 

Q2 

1 

1

1

1

1

Q1Q0

 

Bild 10-1 Mod-8-Binärzähler aus drei JK-Flipflops. 

Daraus resultiert ein Impulsdiagramm, wie es in Bild 10-2 gezeigt wird. Nach dem Zählerstand 
111 kehrt der Zähler wieder zu 000 zurück. Man nennt ihn mod-8-Zähler, da er 8 verschiedene 
Zählerstände aufweisen kann, die periodisch durchlaufen werden (mod = modulo). 

 

Die Schaltung kann auch als Frequenzteiler verwendet werden. Wie man in Bild 10-2 erkennt, 
hat das Ausgangssignal einer jeden Stufe die halbe Frequenz der vorherigen Stufe. 
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Bild 10-2 Zeitdiagramm des mod-8-Binärzählers aus Bild 10-1. 

10.1.2  Mod-6-Zähler 

Den asynchronen mod-6-Zähler kann man durch Erweiterung eines mod-8-Zählers erhalten. 
Man benötigt dazu JK-Flipflops mit einem Rücksetzeingang R. Man setzt die Flipflops zurück, 
wenn der Zählerstand 6 (110) erreicht ist. Die Abfrage wird mit einem UND-Gatter an den 
Ausgängen Q1 und Q2 durchgeführt (Bild 10-3). In einem mod-6-Zähler darf der Zählerstand 
110 nicht auftauchen. Wie das Impulsdiagramm in Bild 10-3 zeigt, ist das aber für die Dauer 
des Rücksetzvorganges der Fall. Es entsteht also ein kurzer Störimpuls, der für manche An-
wendungen nicht tolerierbar ist. 
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Bild 10-3 Mod-6-Binärzähler aus drei JK-Flipflops. 
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Bild 10-4 Zeitdiagramm des mod-6-Binärzählers aus Bild 10-3. 

10.1.3  Asynchrone Rückwärtszähler 

Soll ein asynchroner Zähler rückwärts zählen, so müssen nicht die Ausgänge Qi der Flipflops 
an die Eingänge der nächsten Stufe angeschlossen werden, sondern die invertierten Ausgänge 
¬Qi (Bild 10-5). Dadurch schalten die JK-Flipflops immer an der positiven Flanke und man 
erhält ein Impulsdiagramm wie es in Bild 10-6 gezeigt ist.  
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Bild 10-5 Mod-8-Abwärtszähler aus drei JK-Flipflops. 
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Bild 10-6 Zeitdiagramm des mod-8-Abwärtszählers aus Bild 10-5. 
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An der fallenden Flanke des Eingangssignals schaltet das erste Flipflop und dessen Ausgang 
geht auf H. Die folgenden Flipflops schalten im Idealfall alle gleichzeitig. 

10.1.4  Zeitverhalten asynchroner Zähler 

Asynchrone Zähler verhalten sich bei Taktperioden Tp nicht mehr ideal, die in der Größenord-
nung der Gatterverzögerung tpd der Flipflops liegen. Bild 10-7 zeigt die Ausgänge der Flipflops 
eines asynchronen Zählers mit einer Gatterverzögerungszeit, die ungefähr einer halben Taktpe-
riode entspricht. Man erkennt, dass zwischen den richtigen Zählerständen zusätzliche Zähler-
stände liegen. Bei etwas größerer Verzögerungszeit der Flipflops würde der Zählerstand 100 
nicht mehr auftreten. Damit ist auch eine Abfrage von Zählerständen nicht mehr möglich. Die 
maximale Taktfrequenz fmax eines asynchronen Zählers mit n Stufen, die alle die gleiche Gat-
terverzögerung tpd haben, ist durch die Gleichung (10.1) gegeben. Reale Zähler erreichen die-
sen Wert aber bei weitem nicht. 

fmax = 1/( n tpd) (10.1) 
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Bild 10-7 Zeitdiagramm des mod-8-Binärzählers aus Bild 10-1 mit endlicher Verzögerungszeit. 

Asynchrone Zähler sind relativ einfach aufgebaut. Durch ihre Probleme bei höheren Frequen-
zen tritt dieser Vorteil aber in den Hintergrund. Die im Folgenden vorgestellten synchronen 
Zähler vermeiden durch einen Takt die Verschiebung der Schaltvorgänge in den hinteren Stu-
fen.  

10.2  Synchrone Zähler 

Ein synchroner Zähler ist ein synchrones Schaltwerk. Es unterliegt den in Kapitel 8 formulier-
ten Zeitbedingungen. In Bild 10-8 ist das Prinzip eines synchronen Zählers mit D-Flipflops 
dargestellt. Es können aber auch RS- oder JK-Flipflops verwendet werden. In synchronen 
Zählern hat jedes Register einen Takteingang, so dass alle Register fast gleichzeitig schalten. 
Die in den Registern gespeicherten Zustände werden in jeder Taktperiode aus den alten Zu-
ständen in einem Schaltnetz erzeugt.   
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Bild 10-8 Prinzip eines synchronen Zählers. 

Die Konstruktion eines synchronen Zählers kann daher mit den im Kapitel 8 dargestellten 
Methoden geschehen. Es werden im Folgenden zwei Beispiele vorgestellt. 

 

10.2.1  4-Bit-Dualzähler 

Die Aufgabenstellung: Es soll ein 4-Bit-Dualzähler mit  vier JK-Flipflops aufgebaut werden. 
Er soll ein Übertragssignal c4 liefern, wenn er von 1111 nach 0000 schaltet. Zunächst stellen 
wir die Zustandsfolgetabelle auf (Tabelle 10-1). 

 

Aus der Zustandsfolgetabelle müssen dann die Ansteuergleichungen für die 4 JK-Flipflops 
entwickelt werden. Wir verwenden dafür wieder die Tabelle 8-4, in der die Ansteuergleichun-
gen für einen Wechsel von einem Zustand zum Folgezustand festgehalten sind. Wir erhalten 
vier KV-Diagramme (Bild 10-9), in die wir die Paare der Funktionswerte JiKi eintragen.  

Tabelle 10-1 Zustandsfolgetabelle eines 4-Bit-Dualzählers.  

Q3
m Q2

m Q1
m Q0

m Q3
m+1 Q2

m+1 Q1
m+1 Q0

m+1 Q3
m Q2

m Q1
m Q0

m Q3
m+1 Q2

m+1 Q1
m+1 Q0

m+1 

0      0      0      0 0        0        0        1 1      0      0      0 1        0        0        1 

0      0      0      1 0        0        1        0 1      0      0      1 1        0        1        0 

0      0      1      0 0        0        1        1 1      0      1      0 1        0        1        1 

0      0      1      1 0        1        0        0 1      0      1      1 1        1        0        0 

0      1      0      0 0        1        0        1 1      1      0      0 1        1        0        1 

0      1      0      1 0        1        1        0 1      1      0      1 1        1        1        0 

0      1      1      0 0        1        1        1 1      1      1      0 1        1        1        1 

0      1      1      1 1        0        0        0 1      1      1      1 0        0        0        0 
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Bild 10-9 KV-Diagramme für die Ansteuerfunktionen der JK-Flipflops. 

Man liest die folgenden Ansteuergleichungen für die JK-Flipflops ab: 

J0 = K0 = 1 (10.2) 

J1 = K1 = Q0
m (10.3) 

J2 = K2 = Q0
mQ1

m (10.4) 

J3 = K3 = Q0
mQ1

mQ2
m (10.5) 

Die Gleichungen wurden mit Hilfe der KV-Diagramme abgeleitet, um die Systematik aufzu-
zeigen. Man kann die Gleichungen aber auch direkt anschreiben, wenn man in der Wahrheits-
tabelle erkennt, dass das Flipflop i immer genau dann wechselt, wenn die Ausgänge aller vor-
hergehenden Flipflops 1 sind. 
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Der Übertrag ist in der Tabelle c4 nicht angegeben. Er berechnet sich analog zu obiger Überle-
gung einfach nach der Formel: 

c4 = Q0
mQ1

mQ2
mQ3

m (10.6) 

Das Schaltbild des gesamten Zählers ist in Bild 10-10 dargestellt. 
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Bild 10-10 Schaltbild des synchronen 4Bit-Dualzählers. 

10.2.2  Mod-6-Zähler im Gray-Code 

Als zweites Beispiel soll die Konstruktion eines mod-6-Zählers im Gray-Code dargestellt wer-
den. Er soll 6 Zahlen im Gray-Code durchzählen und beim Zählerhöchststand einen Übertrag 
liefern. Wir wollen für den Zähler drei D-Flipflops verwenden. Wir beginnen mit der Kon-
struktion der Zustandsfolgetabelle (Tabelle 10-2). Dazu stellen wir einen zyklischen Gray-
Code für 6 Zustände auf. Beim Höchststand 100 wird das Übertragssignal cü gleich eins. 

Tabelle 10-2 Zustandsfolgetabelle des mod-6-Zählers im Gray-Code. 

  Q2
m Q1

m Q0
m Q2

m+1 Q1
m+1 Q0

m+1 cü 

  0      0      0 0        0        1      0 

  0      0      1 0        1        1      0 

  0      1      1 0        1        0      0 

  0      1      0 1        1        0      0 

  1      1      0 1        0        0      0 

  1      0      0 0        0        0      1 

  1      1      1 d        d        d      0 

  1      0      1 d        d        d      0 
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Aus der Zustandsfolgetabelle können die drei KV-Diagramme der drei D-Flipflops entworfen 
werden: 
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Bild 10-11 KV-Diagramme für die Ansteuerung der D-Flipflops des mod-6-Zählers im Gray-Code. 

Daraus erhält man die Ansteuerfunktionen der D-Flipflops: 

D2 = Q2
m+1 = Q1

m¬Q0
m  (10.7) 

D1 = Q1
m+1 = Q0

m ∨ Q1
m¬Q2

m (10.8) 

D0 = Q0
m+1 = ¬Q1

m¬Q2
m (10.9) 

Die don't care-Terme für D1 wurden immer als 1 interpretiert, während alle anderen don't care-
Terme 0 gesetzt wurden. Daher geht der Zähler aus den unbenutzten Zählerständen im nächs-
ten Takt zum Zählerstand 010. Der Übertrag cü kann ohne KV-Diagramm angegeben werden: 

cü = ¬Q0
m¬Q1

mQ2
m (10.10) 

Die fertige Schaltung ist in Bild 10-12 zu sehen. Das Zustandsdiagramm für die Schaltung mit 
den beiden nicht verwendeten Zuständen in Bild 10-13 zeigt, dass die Schaltung nach dem 
Einschalten auch aus diesen Zuständen den Zählzyklus im folgenden Takt beginnt. 
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Bild 10-12 Schaltung des mod-6-Zählers im Gray-Code. 
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Bild 10-13 Zustandsdiagramm des mod-6-Zählers im Gray-Code. 

10.2.3  Der synchrone 4-Bit Aufwärts/Abwärts-Binärzähler 74191 

In diesem Abschnitt wird ein synchroner 4-Bit Aufwärts/Abwärts-Binärzähler exemplarisch 
vorgestellt. Der Baustein ist typisch für diese Art von Zählern. Das Schaltsymbol ist in Bild 10-
14 gezeigt. 

¬CTEN 
D/¬U 

CLK 

¬LOAD 

MAX/MIN 

¬RCO 

2(CT=0)Z6
3(CT=15)Z6

6,1,4 

CTRDIV16 

74191 

G1 
M2[Down]
M3[UP]
1,2-/1,3+
G4
C5

5D [1] x0 Q0 

[2] x1 Q1 

[3] x2 Q2 

[4] x3 Q3 

 

Bild 10-14 Schaltsymbol des synchronen 4-Bit Aufwärts/Abwärts-Binärzählers 74191. 

Die Bezeichnung CTRDIV16 (counter dividing by 16) bedeutet, dass der Zähler ein mod-16-
Zähler ist. Mit dem Signal ¬CTEN (Counter Enable) wird der Zähler aktiviert. Mit D/¬U  
kann die Zählrichtung von Aufwärts auf Abwärts umgeschaltet werden. 

Es wird mit jeder ansteigenden Flanke des Taktes CLK weitergezählt. Am Schaltsymbol sind 
die Zeichen 1,2- und 1,3+ angegeben. Das bedeutet, dass der Takt mit dem Anschluss ¬CTEN 
(an dem G1 steht) UND verknüpft wird. Es gibt eine Betriebsartenumschaltung (Mode-
Abhängigkeit M), die mit M2 für Abwärtszählen und M3 für Aufwärtszählen an den D/¬U-
Eingängen definiert wird. Außerdem ist der invertierte Takt mit dem Anschluss ¬RCO UND-
verknüpft, was durch die Bezeichnung G4 festgelegt wird. 
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Der Ausgang MAX/MIN hat verschiedene Funktionen für Aufwärtszählen (Ziffer 3) und Ab-
wärtszählen (Ziffer 2). Es liegt also wieder eine M-Abhängigkeit vor. Beim Abwärtszählen 
geht der Ausgang MAX/MIN auf 1 wenn der Zählerstand 0 ist, was durch CT=0 gekennzeichnet 
ist. Entsprechend wird beim Aufwärtszählen der maximale Zählerstand CT=15 angezeigt. Der 
Ausgang MAX/MIN besitzt außerdem eine Z-Abhängigkeit (Z6) mit dem Ausgang ¬RCO. 

Der Ausgang ¬RCO ist also mit dem Ausgang MAX/MIN verbunden, wenn gleichzeitig der 
Takt CLK = 0 ist (wegen G4) und der Anschluss ¬CTEN = 0 ist (wegen G1). Dies wird durch 
die Ziffernfolge 6,1,4 am Anschluss ¬RCO festgelegt, die die Z- und die beiden G-
Abhängigkeiten definiert. Der Ausgang ¬RCO ist daher ein synchroner Ausgang, während 
MAX/MIN asynchron arbeitet. 

Der Zähler ist über die Eingänge x3, x2, x1, x0 parallel ladbar. Dafür muss der Eingang ¬LOAD 
auf 0 gesetzt werden. Diese Funktion ist asynchron. Der Zähler wird durch die parallele Lad-
barkeit programmierbar. Legt man zum Beispiel beim Aufwärtszählen an die Eingänge (x3, x2, 
x1, x0) = 1000, so zählt der Zähler nur 7 Stufen bis 1111. Dann sendet er das Übertragssignal 
¬RCO = 0. Wird dieses mit ¬LOAD verbunden, so wird der Zähler mit 1000 geladen und 
beginnt den Zyklus von neuem. 

Der Zähler kann natürlich auch als Frequenzteiler durch 16 verwendet werden, denn er liefert 
beim kontinuierlichen Zählen nach jeweils 16 Taktimpulsen einen Übertrag ¬RCO. 

10.3  Übungen 

Aufgabe 10.1 

1. Ist die unten abgebildete Zählerschaltung ein synchroner oder asynchroner Zähler? 
2. Ist es ein Auf- oder Abwärtszähler? 
3. Welches Teilerverhältnis weist der Ausgang Q2 bezüglich des Eingangs x1 auf? 
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Aufgabe 10.2 

Konstruieren Sie einen asynchronen Abwärtszähler, der die Folge 000, 111, 110, 101, 100, 
011, 000, usw. durchläuft. 

Aufgabe 10.3 

Konstruieren Sie einen Dualzähler mit 3 D-Flipflops , der für V = 1 die Folge 000, 001, 010, 
011, 100, 000 ... aufwärts zählt. Für V = 0 soll der Zähler die gleiche Folge rückwärts zählen.  

Aufgabe 10.4 

Wie muss der Binärzählerbaustein 74191 beschaltet werden, damit er als Dezimalteiler ver-
wendet werden kann? 



11  Schieberegister 

Schieberegister bestehen aus einer Kette von mehreren Registern, in denen der Informations-
transport wie in einer Eimerkette weitergegeben wird. Sie können z.B. aus D-Flipflops oder 
JK-Flipflops aufgebaut sein. Ein Beispiel mit 4 JK-Flipflops ist in Bild 11-1 gezeigt. Damit die 
Information kontrolliert und gleichzeitig über die Kette übertragen wird, werden flankenge-
steuerte Flipflops verwendet. 
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Bild 11-1 Schieberegisterkette aus vier JK-Flipflops. 

Das dargestellte Schieberegister hat einen seriellen Eingang Es und einen seriellen Ausgang As. 
Die parallelen Ausgänge heißen Qi. Die Funktion dieses nach rechts schiebenden Schieberegis-
ters wird durch die folgenden Gleichungen beschrieben: 

Q0
m+1 = Es

m (11.1) 

Qi
m+1 = Qi-1

m     für  0 < i ≤ 4  (11.2) 

As
m = Q4

m (11.3) 

Schieberegister finden universelle Anwendung in der CPU von Rechnern für die Multiplikation 
und Division. Sie werden aber auch für die Serien-Parallel-Wandlung und die Parallel-Serien-
Wandlung verwendet. Außerdem dienen sie als Eimerketten-Speicher (first in - first out, 
FIFO).  

 

Schieberegister können die folgenden Eigenschaften aufweisen: 

-  Umschaltung zwischen Links- und Rechts-Schieben 

-  Parallele Eingänge zum gleichzeitigen Laden der Registerkette 

-  Parallele Ausgänge  

- Serielle Ein- und Ausgänge. 
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11.1  Zeitverhalten von Schieberegistern 

Problematisch kann das Auftreten eines Taktversatzes (clock skew) sein, wenn Register mit 
geringem Abstand zwischen Wirk- und Kippintervall verwendet werden, wie das bei ungepuf-
ferten Flipflops der Fall ist. Ein Taktversatz kann dazu führen, dass die Information bei einem 
Taktimpuls über mehrere Stufen übertragen wird oder verloren geht. Das ist darauf zurückzu-
führen, dass der Taktversatz zu einer Überlappung von Wirk- und Kippintervall führt.  

Dieser Fall soll nun an Hand einer Registerkette aus zwei einflankengesteuerten, gepufferten 
D-Flipflops gezeigt werden (Bild 11-2). Das zweite D-Flipflop wird mit einem Taktversatz t0 

angesteuert. 
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Bild 11-2 Schieberegister mit vorderflankengesteuerten D-FF. 

In Bild 11-3a sind zunächst die Verhältnisse ohne Taktversatz gezeigt (t0 = 0). Die Wirk- und 
Kippintervalle der beiden Flipflops liegen gleichzeitig. Das Bild zeigt, dass die Information 
richtig von einem Flipflop zum nächsten weitergegeben wird. 
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Bild 11-3a Zeitdiagramm der Schieberegisterkette aus Bild 11-2 ohne Taktversatz (t0=0). 

In Bild 11-3b ist der Takt des zweiten Flipflops gegenüber dem ersten um t0 verzögert. 
Dadurch rückt das Wirkintervall W2 des zweiten Flipflops in das Kippintervall des ersten Flip-
flops K1, so dass es dem Zufall überlassen bleibt, was im zweiten Flipflop gespeichert ist. 
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Bild 11-3b Zeitdiagramm der Schieberegisterkette aus Bild 11-2 mit Taktversatz t0. 

Bei einer etwas größeren Verschiebung t0 würde der Ausgang Q2 des zweiten Flipflops das 
gleiche Ausgangssignal liefern wie der Ausgang Q1 des ersten Flipflops. Dann „fällt“ das Bit 
ohne Speicherung durch das zweite Flipflop. 

 

Wenn man einen großen Taktversatz tolerieren muss, wählt man deshalb oft zweiflankenge-
steuerte Flipflops. Wenn man zweiflankengesteuerte Flipflops verwendet, kann man einen 
Taktversatz fast bis zur halben Taktperiode zulassen.  

11.1.1  Schieberegister 74194 

Das Schieberegister 74194 wird hier als Beispiel in Bild 11-4 für ein 4-Bit-Schieberegister 
vorgestellt. Es ist ein flankengesteuertes Schieberegister mit mehreren Betriebszuständen, die 
mit den Signalen S0 und S1 eingestellt werden können (Tabelle 11-1). Die Betriebszustände 
werden im Schaltsymbol mit der Mode-Abhängigkeit beschrieben.   

Tabelle 11-1 Betriebsarten des Schieberegisters 74194.  

Betriebsart S0    S1 CLK ESR  ESL A B C D QA  QB  QC  QD 

Parallel Laden 1      1 ↑ d      d A B C D  A     B    C    D 

Rechts Schieben 0      1 ↑ 

↑ 

d      1 

d      0 

d  d  d  d

d  d  d  d

 1    QA  QB  QC 

 0    QA  QB  QC 

Links Schieben 1      0 ↑ 

↑ 

1      d 

0     d 

d  d  d  d

d  d  d  d

QB  QC  QD   1 

QB  QC  QD   0   

Takt ausblenden   0      0 d d     d d  d  d  d QA  QB  QC  QD 

 

Das Schieberegister ist über die Eingänge A, B, C, D parallel ladbar. Für S0 =1 und S1 =1 wird 
im Schaltsymbol die Ziffer 3 verwendet. Damit wird der Betriebszustand „parallel-Laden“  
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Bild 11-4 Schaltsymbol des 4 Bit-bidirektionalen, parallel ladbaren Schieberegisters 74194.  
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Bild 11-5 Schaltbild des 4 Bit-bidirektionalen, parallel ladbaren Schieberegisters 74194.  
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eingestellt. Konsequenterweise sind die Eingänge A, B, C, D mit dieser Ziffer versehen. Über 
die Eingänge ESL (beim Links-Schieben) und ESR (beim Rechts-Schieben) kann ein Signal 
seriell eingespeist werden. Links-Schieben wird im Schaltsymbol durch die Ziffer 2 gekenn-
zeichnet, daher ist auch der Eingang ESL mit einer 2 gekennzeichnet. Als serieller Ausgang 
kann QA oder QB verwendet werden, je nachdem, ob Links- oder Rechts-Schieben gewählt 
wurde. 

11.2  Rückgekoppelte Schieberegister 

Koppelt man die einzelnen Ausgänge einer Schieberegisterkette über ein Schaltnetz auf den 
Eingang zurück, so erhält man ein rückgekoppeltes Schieberegister. Das Prinzip ist in Bild 11-
6 gezeigt. Die Funktion des Schieberegisters kann durch die folgenden Gleichungen beschrie-
ben werden: 

Q1
m+1 = f(Q1

m, Q2
m, Q3

m)  (11.4) 

Q2
m+1 = Q1

m (11.5) 

Q3
m+1 = Q2

m (11.6) 

 

Der einzige Freiheitsgrad liegt in der Wahl der Funktion f(Q1
m, Q2

m, Q3
m). Dadurch sind in 

jedem Zustand nur zwei verschiedene Folgezustände möglich.  

 

Die Wahrheitstabelle des rückgekoppelten Schieberegisters mit 3 Speichern aus Bild 11-6 ist in 
Tabelle 11-2 dargestellt. In der linken Spalte ist der Inhalt der D-Flipflops zum Zeitpunkt m 
dargestellt. Zum Zeitpunkt m+1 befindet sich im ersten D-Flipflop der durch das Schaltnetz 
erzeugte Funktionswert. In die beiden folgenden D-Flipflops 2 und 3 wurden die Werte von 
Q1

m und Q2
m geschoben. 
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Bild 11-6 Prinzip eines rückgekoppelten Schieberegisters. 
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Tabelle 11-2 Wahrheitstabelle des rückgekoppelten Schieberegisters aus Bild 11-6.  

Q1
m

  Q2
m Q3

m      Q1
m+1

    Q2
m+1  Q3

m+1

 0      0      0    f(0,0,0)     0       0 

 0      0      1    f(0,0,1)     0       0 

 0      1      0    f(0,1,0)     0       1 

 0      1      1    f(0,1,1)     0       1 

 1      0      0    f(1,0,0)     1       0 

 1      0      1    f(1,0,1)     1       0 

 1      1      0    f(1,1,0)     1       1 

 1      1      1    f(1,1,1)     1       1 

 

Es soll zum Beispiel folgende Folge der Registerinhalte erzeugt werden: 

000, 100, 010, 001, 000 usw. 

Am seriellen Ausgang As kann die Folge 000100010001...entnommen werden. Die Schaltung 
kann also als ein Frequenzteiler durch 4 verwendet werden. Alternativ können die verschiede-
nen Registerinhalte auch als Zählerstände eines Zählers interpretiert werden, der allerdings in 
einem speziellen Code zählt. Man hätte damit einen mod-4-Zähler entworfen.   

 

Zur Realisierung dieses Schieberegisters stellt man eine Wahrheitstabelle auf, die in Tabelle 
11-3 gezeigt ist. In dieser Wahrheitstabelle sind nur die im gewünschten Zyklus vorkommen-
den Zustände berücksichtigt. 

 Tabelle 11-3 Wahrheitstabelle zur Erzeugung der Folge: 000, 100, 010, 001, 000.   

 Q1
m

   Q2
m  Q3

m    Q1
m+1

    Q2
m+1  Q3

m+1 

 0      0      0        1          0          0 

 1      0      0        0          1          0 

 0      1      0        0          0          1 

 0      0      1        0          0          0 

Es lässt sich daraus die Funktion f(Q1
m, Q2

m, Q3
m) auch ohne Verwendung eines KV-

Diagramms ablesen: 

Q1
m+1 = f(Q1

m, Q2
m, Q3

m) = ¬Q1
m¬Q2

m¬Q3
m (11.7) 

11.2.1  Moebius-Zähler, Johnson-Zähler 

Eine oft verwendete Form des Schieberegisters ist der Moebius- oder Johnson-Zähler. Bei 
diesem Zähler wird der Ausgang invertiert in den Eingang gegeben. In Bild 11-7 ist ein John-
son-Zähler mit 4 D-Flipflops abgebildet. Die Speicherinhalte sind durch die Wahrheitstabelle 
11-4 gegeben. Es werden zwei unterschiedliche zyklische  Folgen mit jeweils 8 Zuständen 
erzeugt. 
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Bild 11-7 Johnsonzähler aus vier D-Flipflops. 

Das Schaltnetz des Johnson-Zählers ist durch die folgende Formel gegeben:  

D1 = f(Q1
m, Q2

m, Q3
m, Q4

m) = ¬Q4
m (11.8) 

In das erste der 4 D-Flipflops wird immer der invertierte Inhalt des letzten Flipflops geladen. 
Es kann nun die Wahrheitstabelle (Tabelle 11-4) des Johnsonzählers aufgestellt werden. Man 
stellt fest, dass sich zwei unabhängige Zyklen ergeben, je nachdem mit welchem Anfangszu-
stand der Zähler beim Einschalten startet. Beide Zyklen sind aber gleich lang. Will man einen 
bestimmten Zyklus erzwingen, so muss man den Anfangszustand vorgeben. 

 

Tabelle 11-4 Wahrheitstabelle des Johnson-Zählers aus Bild 11-7.  

Q1
m

 Q2
m Q3

m Q4
m Q1

m+1
 Q2

m+1 Q3
m+1 Q4

m+1 Q1
m

 Q2
m Q3

m Q4
m Q1

m+1
 Q2

m+1 Q3
m+1 Q4

m+1 

 0      0      0      0    1        0         0        0  0      0      1      0    1        0         0        1 

 1      0      0      0    1        1         0        0   1      0      0      1    0        1         0        0 

 1      1      0      0    1        1         1        0  0      1      0      0    1        0         1        0  

 1      1      1      0    1        1         1        1   1      0      1      0    1        1         0        1 

 1      1      1      1    0        1         1        1  1      1      0      1    0        1         1        0 

 0      1      1      1    0        0         1        1  0      1      1      0    1        0         1        1  

 0      0      1      1    0        0         0        1  1      0      1      1    0        1         0        1 

 0      0      0      1    0        0         0        0  0      1      0      1    0        0         1        0 

 

Das Verhalten des Ringzählers kann auch in einem Zustandsdiagramm (Bild 11-8) dargestellt 
werden. 
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Bild 11-8 Zustandsdiagramm des Johnson-Zählers aus Bild 11-7. In den Kreisen steht Q1
m

 Q2
m Q3

m Q4
m. 

11.2.2  Pseudo-Zufallsfolgen  

Mit Schieberegistern können am seriellen Ausgang binäre Zahlenfolgen erzeugt werden, die 
eine Verteilung von Nullen und Einsen haben, die fast gleich einer zufälligen binären Zahlen-
folge ist. Man nennt diese Zahlenfolgen pseudo-zufällig. Pseudo-zufällige Zahlenfolgen haben 
eine Periode und sind daher deterministisch. 

Man erzeugt Pseudo-Zufallsfolgen, indem man einige Ausgänge der Schieberegisterkette über 
ein Antivalenz-Gatter zurückkoppelt. Im Bild 11-9 ist ein Beispiel für n = 7 gezeigt. 
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Bild 11-9 Schieberegister zur Erzeugung einer Pseudo-Zufallsfolge n = 7. 

Abhängig von der Position der Rückkopplungsleitungen ergeben sich unterschiedlich lange 
Folgen am seriellen Ausgang As. Besonders interessant sind die Rückkopplungen, bei denen 
sich eine maximal lange Periode der Folge ergibt. Diese maximal langen Folgen heißen M-
Sequenzen, nur sie haben pseudo-zufällige Eigenschaften. Die Periode P einer maximal langen 
Zufallsfolge, die aus einem n-Bit langen Schieberegister gewonnen werden kann, ist: 

P = 2n −1 (11.9) 
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Bei der Erzeugung von Pseudo-Zufallsfolgen enthält die Schieberegisterkette alle möglichen 
Binärzahlen mit Ausnahme der 0. Der Zustand 0 ist stabil. Er darf daher auch nicht als An-
fangszustand auftreten. Daher haben die Pseudo-Zufallsfolgen die Eigenschaft, dass in der 
Periode eine 1 mehr auftritt als Nullen. Nullen und Einsen sind nicht gleichverteilt. Auch das 
ist eine Abweichung von einer idealen Zufallsfolge. Trotzdem eignen sie sich zum Testen von 
Nachrichtenkanälen.   

Die Rückkopplungen für eine maximal lange Periode sind in  Tabelle 11-5 bis n = 8 zusam-
mengefasst. Sind mehr als zwei Rückkopplungen mit x markiert,  so wird als Verknüpfung die 
Verallgemeinerung der Exklusiv-Oder-Funktion verwendet: ihr Ausgang ist 1, wenn eine unge-
rade Anzahl der Eingänge auf 1 liegt. Die maximal lange Pseudozufallsfolge enthält alle Binär-
zahlen der Länge n mit Ausnahme der Zahl 0. Die Zahl 0 darf nicht auftauchen, da sie bei 
beliebiger Wahl der Lage der Rückkopplungen wieder in den gleichen Zustand führt. 

Tabelle 11-5 Rückkopplungen für Pseudo-Zufallsfolgen (- keine Rückkopplung, x Rückkopplung.) 

 Rückkopplungen  

n 1 2 3 4 5 6 7 8 Periode 

2 x x       3 

3 - x x      7 

4 - - x x     15 

5 - - x - x    31 

6 - - - - x x   63 

7 - - - x - - x  127 

8 - - - x x x - x 255 

 

Für n = 3 ist in Bild 11-10 ein Beispiel für die Erzeugung einer Pseudo-Zufallsfolge angege-
ben. Die erzeugte Folge kann aus der Zustandsfolgetabelle ermittelt werden. 
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Bild 11-10 Schieberegister zur Erzeugung einer maximal langen Pseudo-Zufallsfolge n = 3. 

Am seriellen Ausgang As des Schieberegisters aus Bild 11-10 bekommt man die Folge: 
1110010. Es wurde vorausgesetzt, dass der Anfangsinhalt des Schieberegisters 111 war. 
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11.3  Übungen 

Aufgabe 11.1 

Konstruieren Sie eine Schieberegisterkette aus D-Flipflops, die die Folge 010011 periodisch 
am seriellen Ausgang liefert. Wie viele D-Flipflops benötigen Sie? 

Aufgabe 11.2 

Mit einer Schieberegisterkette aus 3 JK-Flipflops soll eine möglichst lange Folge von Zustän-
den erzeugt werden.  Die Schaltung, die dafür verwendet werden soll, ist im Bild angegeben. 
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1. Geben sie eine möglichst lange Folge von Zuständen an, die mit diesem Schieberegister 

erzeugt werden kann. In der Folge sollen die Zustände 3,1,0,4,2 in dieser Reihenfolge ent-
halten sein (jeweils im Dezimaläquivalent mit Q1 als MSB angegeben). 

2. Stellen Sie die Zustandsfolgetabelle für die maximal lange Folge auf. 
3. Geben Sie das Schaltnetz SN1 für die Erzeugung dieser Zustands-Folge an. 

Aufgabe 11.3 

Geben Sie die Pseudo-Zufallsfolge an, die aus einem Schieberegister mit 4 Flipflops entsteht. 
Die Rückkopplungen sollen so gelegt sein, dass die Folge maximal lang wird. 

Aufgabe 11.4 

Das unten gezeigte, rückgekoppelte Schieberegister mit einem JK-Flipflop und zwei D-
Flipflops soll analysiert werden.  
1. Stellen Sie die Ansteuerfunktion Es = f(Q1

m,Q2
m,Q3

m) für das erste Flipflop auf. 
2. Geben Sie die daraus folgende Zustandsfolgetabelle an. 
3. Zeichnen sie das Zustandsdiagramm. 

1J 

1K 

C1 

 

CLK 

1D

C1

1D

C1
Es 

As 
Q1 Q2 Q3 

≥1 & 

& 

≥1 



 

12  Arithmetische Bausteine 

12.1  Volladdierer 

Im Kapitel 3 wurde bereits die Addition zweier Binärzahlen unter Berücksichtigung des Über-
trags definiert. Ein Schaltnetz, das diese Addition für eine Stelle durchführt, heißt Volladdierer. 
Der Übertrag von der vorherigen Stelle und die beiden Summanden werden addiert und die 
Summe und ein Übertrag zur nächsten Stelle werden ausgegeben. Der Volladdierer beinhaltet 
die Schaltfunktionen für den Summenausgang Fi und den Übertrag (carry) zur nächsten Stufe 
ci+1:  

 

Fi   = ¬ci ¬xi yi   ∨  ¬ci  xi ¬yi   ∨  ci ¬xi ¬yi   ∨  ci xi yi  =  xi ↔ yi ↔ ci     (12.1) 

 

ci +1 = xi yi   ∨  ci  (xi ∨  yi )   (12.2) 

Ein Volladdierer benötigt für die Ausführung der Addition 3 Gatterlaufzeiten tp wobei die 
Inverter hier mit einer Gatterlaufzeit veranschlagt werden. tΣ =  3tp.Der Übertrag tÜ ist schon 
nach zwei Gatterlaufzeiten berechnet: tÜ = 2tp.  
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Bild 12-1 Schaltsymbol des Volladdierers nach den Gleichungen 12.1 und 12.2. 

12.2  Serienaddierer 

Sollen Dualzahlen mit z.B. 4 Stellen addiert werden, so kann man mit zwei Schieberegistern 
(Bild 12-2) die Summanden x und y an einen Volladdierer heranführen. Der Übertrag wird in 
einem Speicher zwischengespeichert. Das Ergebnis steht hinterher im Schieberegister von x. 
Bei jedem Taktimpuls C wird eine Addition durchgeführt. 

 

Die für die Addition zweier m-stelliger Dualzahlen benötigte Zeit beträgt m mal die Zeit, die 
eine Addition mit dem Volladdierer benötigt. tΣ = m 3 tp. 

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018
K. Fricke, Digitaltechnik, https://doi.org/10.1007/978-3-658-21066-3_12
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Bild 12-2 Serienaddierer für m Stellen. Es wird gerade der i-te Schritt durchgeführt. 

12.3  Ripple-Carry-Addierer 

Auch aus m Volladdierern kann ein Addierwerk für zwei m-stellige Dualzahlen aufgebaut 
werden, indem der Übertragsausgang an den Übertragseingang des folgenden Volladdierers 
angeschlossen wird. (Bild 12-3). 
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Bild 12-3 Ripple-Carry-Addierer für 4 Bit. 

Wie groß ist nun die Ausführungszeit für eine Addition von zwei m-stelligen Binär-Zahlen? 
Der Übertrag c1 benötigt nur 2 Gatterlaufzeiten, da für die Berechnung des Übertrags kein 
Inverter benötigt wird. Die Gesamtverzögerungszeit beträgt also für den Übertrag cm:  

tÜ = 2 mtp (12.3) 

Das letzte Summenbit, welches feststeht, ist das MSB (höchstwertige Bit) der Summe Fm-1. 
Man stellt fest, dass man m-1 mal die Zeit für die Berechnung des Übertrags plus die Zeit für 
die Berechnung der höchstwertigen Stelle Fm-1  benötigt. Das MSB der Summe Fm-1 ist gültig 
nach der Verzögerungszeit:      

tΣ = (2 (m − 1) + 3) tp = (2m +1) tp (12.4) 
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Das ist eine sehr lange Ausführungszeit. Würde man eine Realisierung mit einem 2-stufigen 
Schaltwerk (mit Invertern) wählen, so erhielte man die optimale Ausführungszeit 3tp. Man 
beachte aber, dass die Wahrheitstabelle für die Addition von 2 8-stelligen Dualzahlen eine 
Länge von 217=131072 Zeilen hat (8Bit + 8Bit + 1Bit(c0) = 17). Die Realisierung eines solchen 
Schaltnetzes würde einen enormen Schaltungsaufwand bedeuten. 

12.4  Carry-Look-Ahead Addierer   

Einen Kompromiss bezüglich des schaltungstechnischen Aufwands und der Verzögerungszeit 
stellt der Carry-Look-Ahead-Addierer (CLA-Addierer) dar. Er besteht aus einem Schaltnetz 
aus Volladdierern, die wie ein Ripple-Carry-Addierer geschaltet sind. Der Übertrag für die 
einzelnen Volladdierer wird allerdings durch ein zusätzliches Schaltnetz berechnet. Durch 
mehrfache Anwendung der Gleichung 12.2 erhält man für die einzelnen Überträge: 

c1 = x0 y0 ∨ c0(x0 ∨ y0) = g0 ∨ c0p0  (12.5) 

         g0                p0 

 

c2 = x1 y1 ∨ c1 (x1 ∨ y1) = g1 ∨ c1p1 = g1 ∨ g0p1∨ c0p0p1  (12.6) 

         g1                p1 

 

c3 = x2 y2 ∨ c2 (x2 ∨ y2) = g2 ∨ c2p2 = g2 ∨ g1p2∨ g0p1p2∨ c0p0p1p2  (12.7) 

         g2                p2 

c4 = x3 y3 ∨ c3 (x3 ∨ y3) = g3 ∨ c3p3 = g3 ∨ g2p3 ∨ g1p2p3∨ g0p1p2p3∨ c0p0p1p2p3  (12.8) 

         g3                p3                                                G                                 P 

Man hat dabei gesetzt: 

gi = xi yi (12.9) 

und: 

pi = xi ∨ yi (12.10) 

gi =1 bedeutet, dass in jedem Term ci+1  ein Übertrag generiert wird. In diesem Fall sind beide 
Eingangsvariablen der jeweiligen Volladdiererstufe gleich 1 (vgl. Gleichung 12.9). Man nennt 
deshalb gn auch „carry generate“. 

Dagegen bewirkt pi nur einen Übertrag, wenn auch ci = 1 ist. pi ist 1, wenn nur eine der beiden 
Eingangsvariablen gleich 1 ist (Gl. 12.10). pi heißt auch „carry propagate“. 

In Bild 12-4 ist eine Schaltung für einen Carry-Look-Ahead-Addierer gezeigt. Man erkennt, 
dass zunächst die Funktionen gi und pi gebildet werden. Daraus erhält man mit den invertierten 
Gleichungen 12.5 bis 12.7 die Größen ¬c0 bis ¬c3. 

Da man die Funktionen gn und pn schon gebildet hat, benutzt man sie auch, um die Summen Fi  
zu berechnen. Es gilt nämlich, wie man leicht nachprüfen kann: 

xi 
 
↔  yi  =  gi 

 
↔  pi   (12.11) 

 daher ist nach Gleichung 12.1: 

Fi = xi 
 
↔ yi  

 
↔  ci = gi 

 
↔  pi  ↔ ci (12.12) 
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Bild 12-4  Addierer mit Schaltnetz zur Erzeugung der Überträge ¬ci  nach dem Carry-Look-Ahead-
Prinzip. 

  



12.4  Carry-Look-Ahead Addierer 145 

In der Schaltung wird die invertierte Ausgangsfunktion ¬Fi verwendet, die man durch Invertie-
ren von ci erhält.  

¬Fi = xi 
 
↔ yi  

 
↔  ¬ci (12.13) 

In Bild 12-4 werden daher noch zwei Exklusiv-Oder-Gatter verwendet, um die Ausgangsfunk-
tionen zu bilden.  Außerdem  werden in dem Baustein noch die Funktionen ¬P und ¬G er-
zeugt, aus denen dann der Übertrag c4 entsprechend der Gleichung 12.8 gewonnen werden 
kann.    

Man entnimmt dem Bild, dass für die Bildung der Summen Fi vier Gatter durchlaufen werden:  

tΣ = 4 tp (12.14) 

Die Gesamtverzögerungszeit zur Berechnung von ¬P und ¬G beträgt:  

tP = tG = 3 tp (12.15) 
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Bild 12-5  Schaltsymbol des Addierers aus Bild 12-4. 

Der Hardwareaufwand für die Berechnung der Überträge bei der Addition von zwei m-stelligen 
Zahlen kann an Hand der Gleichungen 12.5-12.8 (sowie für m größer als 4) ermittelt werden. 
Man erhält für die Anzahl der Gatter NG:  


=

+=+=
m

i
G

mm
iN

1 2

)7(
)3(  (12.16) 

 

und für die maximale Anzahl der Gatter-Eingänge NE: 

NE = m (12.17) 

 

12.4.1  Kaskadierung von Carry-Look-Ahead-Addierern   

Da die Zahl der benötigten Eingänge pro Gatter und die Anzahl der Gatter bei größeren Wort-
längen m stark ansteigt, wie man den Gleichungen 12.16 und 12.17 entnimmt, baut man bei 
größeren Bitlängen zunächst Blöcke aus 4-Bit-Carry-Look-Ahead-Addierern auf. Das Verfah-
ren soll zunächst an Hand eines Addierers für 16Bit-Dualzahlen gezeigt werden, welcher aus 4 
Stück der oben beschriebenen 4-Bit CLA-Addierer aufgebaut ist. 
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Die Hilfssignale ¬Pi und ¬Gi und c0 des 4-Bit-Addierers i (i = 1…4) werden entsprechend den 
untenstehenden Gleichungen einem CLA-Generator zugeleitet. Die verwendeten Gleichungen 
entsprechen den Gleichungen 12.5-12.8. Daraus werden die Überträge c4, c8 und c12 für die 
einzelnen Blöcke erzeugt. Dieser Baustein hat die Bezeichnung 74182.  

 

c4 = G0 ∨ c0P0 = ¬(¬G0¬P0 ∨ ¬c0G0)  (12.18) 

c8 = G1 ∨ c4P1 = G1 ∨ G0P1 ∨ c0P0P1 = ¬(¬G1¬P1 ∨ ¬G0¬G1¬P0 ∨ ¬c0¬G0¬G1) 

 (12.19) 

c12 = G2 ∨ c8P2 = G2 ∨ G1P2 ∨ G0P1P2 ∨ c0P0P1P2 =  

     = ¬(¬G2¬P2 ∨ ¬G1¬G2¬P1 ∨  ¬G0¬G1¬G2¬P0 ∨ ¬c0¬G0¬G1¬G2) 

 (12.20) 

c16 = G3 ∨ c12P3 = G3 ∨ G2P3 ∨G1P2P3 ∨ G0P1P2P3 ∨ c0P0P1P2P3=  

                                                      G                                     P 

 (12.21) 

¬P = ¬P0 ∨ ¬P1 ∨ ¬P2 ∨ ¬P3 (12.22) 

¬G = ¬G3¬P3 ∨ ¬G2¬G3¬P2 ∨ ¬G1¬G2¬G3¬P1 ∨ ¬G0¬G1¬G2¬G3 (12.23) 

 

c16 wird in der Schaltung des 74182 nicht erzeugt, sondern stattdessen die Signale ¬G (Block 
Generate) und ¬P (Block Propagate), aus denen dann mit zwei Gattern (nach der Gleichung 
12.21) c16 gebildet werden kann. 

 

 

In Bild 12-6 ist die komplette Schaltung des Carry-Look-Ahead-Generators gezeigt, wie sie im 
Baustein 74182 enthalten ist. Die Eingänge Pi und Gi und die Ausgänge P und G sind inver-
tiert, um die Kompatibilität mit dem Addierer in Bild 12-4 zu erhalten. 

 

 

Das Schaltsymbol für den Baustein 74182 findet man im Bild 12-7. Die Schaltung für einen 
Carry-Look-Ahead-Generator für 16 Bit kann aus 4-mal der ALU aus Bild 12-4 und einem 
74182 zusammengesetzt werden. Die Schaltung ist in Bild 12-8 gezeigt. 
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Bild 12-6 Carry-Look-Ahead-Generator  74182. 
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Bild 12-7 Schaltsymbol des Carry-Look-Ahead-Generators 74182. 
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Bild 12-8 CLA-Addierer für 16 Bit aus vier 4-Bit-CLA-Addierern und einem CLA-Generator. 
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12.4.2  Vergleich der Addierer 

Die 3 Addierer werden in der folgenden Tabelle bezüglich ihrer Laufzeit verglichen. Man 
erkennt, dass der größere Hardware-Aufwand des CLA-Addierers in einer weit geringeren 
Ausführungszeit resultiert. 

Tabelle12-1 Ausführungszeit der verschiedenen Addierer. 

 Anzahl Gatterlaufzeiten / tp 

4Bit 16Bit 64Bit 
Serienaddierer 12 48 192 

Ripple-Carry-Addierer 9 33 129 
CLA-Addierer 4 8 12 

 

12.5  Arithmetisch-logische-Recheneinheiten (ALU) 

Arithmetisch-logische Einheiten (engl.:  arithmetic logic unit =  ALU) sollen neben der Additi-
on und der Subtraktion auch bitweise logische Verknüpfungen durchführen können. Diese 
Bausteine enthalten in der Regel einen Addierer für 2 Summanden. Außerdem sind sie durch 
eine spezielle Schaltung in der Lage, logische Operationen von 2 Operanden durchzuführen, 
wie zum Beispiel die bitweise UND-Verknüpfung zwischen den Operanden. 

 

Als Beispiel wird hier die 4-Bit-ALU 74181 dargestellt. Sie führt, abhängig von einem 4-Bit-
Steuerwort S, verschiedene Operationen durch. Mit dem Eingang M kann von logischen zu 
arithmetischen Operationen umgeschaltet werden. 

 

Die Schaltung der ALU 74181 kann als eine Erweiterung der Addiererschaltung in Bild 12-4 
gesehen werden. Für die Ausführung der verschiedenen Operationen werden anstelle der Sig-
nale pi und gi die Signale pi' und gi' nach den folgenden Formeln gebildet: 

gi' = ¬(¬xi ∨ s0¬yi ∨ s1yi) (12.24) 

pi' = ¬(s3¬xi¬yi  ∨ s2¬xi yi) (12.25) 

Für das Steuerwort S = (1,0,0,1) ist pi' = pi und gi'=gi. Die Schaltung ist in Bild 12-9 gezeigt. 
Sie wird für die Erzeugung der Eingangssignale anstelle der pi und gi wie in Bild 12.4 verwen-
det. 

Die Schaltung der ALU 74181 ist in Bild 12-10 gezeigt. Man sieht, dass die Addition durch die 
EXOR-Verknüpfung nach Gleichung 12.13 realisiert werden kann. Man erhält mit der Abkür-
zung ti: 

ti   = gi' 
 
↔ pi ' = ¬(s3 ¬xi ¬yi   ∨ s2  ¬xi yi   ∨  ¬s1 xi yi   ∨  ¬s0 xi ¬yi )      (12.26) 
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Bild 12-9 Schaltnetz für die Erzeugung von 16 verschiedenen Funktionen. 

Für andere Steuerwörter S können andere Funktionen gebildet werden, wie unten gezeigt wer-
den wird. 

 

Wie werden nun die Überträge ci verarbeitet? Zunächst stellt man fest, dass die Überträge ¬ci 
nur bei den arithmetischen Verknüpfungen benötigt werden. Man führt daher einen Eingang M 
ein, der für die arithmetischen Operationen 0 gesetzt werden muss. Für eine Carry-Look-
Ahead-Logik aus den Gleichungen 12.5-12.7 erhält man durch die Berücksichtigung von M die 
folgenden Gleichungen für u0 bis u3. Die ui ersetzen für M=0 die Überträge ci: 

u0 = ¬(¬Mc0) (12.27) 

u1 = ¬(¬Mg0' ∨ ¬Mp0'c0) (12.28) 

u2 = ¬(¬Mg1' ∨ ¬Mg0' p1' ∨ ¬Mp0' p1'c0) (12.29) 

u3 = ¬(¬Mg2' ∨ ¬Mg1' p2' ∨ ¬Mg0' p1' p2' ∨ ¬Mp0' p1' p2'c0) (12.30) 

 

Für M=0 (arithmetische Funktionen) sind diese Gleichungen identisch zu den invertierten Glei-
chungen 12.5-12.7. Für M=1 sind alle ui = 1. 

Mit den ¬ci werden, wie dem Bild 12.4 zu entnehmen ist, durch eine EXOR-Verknüpfung die 
Ausgangsfunktionen  gebildet: 

¬Fi   = ui 
 
↔ ti   (12.31) 

Der Übertrag und die Block-Generate- und Block-Propagate-Signale G und P werden nach der 
Gleichung 12.8 gebildet: 

¬G = ¬(g3' ∨ g2'p3' ∨ g1'p2'p3' ∨ g0'p1'p2'p3')  (12.32) 

¬P = ¬(p0'p1'p2'p3') (12.33) 

c4   = G ∨ p0'p1'p2'p3'c0 (12.34) 
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Bild 12-10 Arithmetisch logischer Baustein (ALU) 74181. 
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Bild 12-11 Schaltsymbol der ALU 74181. 

12.5.1  Beispiele für Operationen 

Addition 

Das Steuerwort für die Addition lautet: S = (1001). Damit erhält man: 

gi' = ¬(¬xi ∨ ¬yi)  = xi yi = gi (12.35) 

pi' = ¬(¬xi¬yi) = xi ∨ yi =  pi   (12.36) 

ti   = gi 
 
↔  pi   (12.37) 

Da M=0 ist, gilt:  

u0 = ¬c0 (12.38) 

u1 = ¬(g0 ∨ p0c0) (12.39) 

u2 = ¬(g1 ∨ g0p1 ∨ p0p1c0) (12.40) 

u3 = ¬(g2 ∨ g1p2 ∨ g0p1p2∨ p0p1p2c0) (12.41) 

Daher gilt ui = ¬ci und die Summe wird, wie die Schaltung es vorgibt, durch:   

¬Fi   = ui 
 
↔ ti  = ¬ci 

 
↔  xi 

 
↔ yi  = ¬(ci ↔ xi ↔ yi) (12.42) 

berechnet. 
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Disjunktion 

Das Steuerwort ist S=(1,0,1,1) und M=1. 

Damit wird nach Gleichung 12.26: 

ti   = ¬(¬xi ¬yi)  = xi ∨ yi (12.43) 

Da M=1 ist, werden die ui=1 und am Ausgang erscheint nach Gleichung 12.31 die Disjunktion 
von xi und yi:  

¬Fi   = ui 
 
↔ ti  = ¬ti =  ¬(xi ∨ yi) (12.44) 

Es lassen sich insgesamt 32 verschiedene Funktionen bilden, von denen einige nur von gerin-
ger Bedeutung sind. In Tabelle 12-2 sind die mit der ALU 74181 möglichen Funktionen zu-
sammengefasst. 

Wenn größere Wortbreiten benötigt werden, können mit dem Carry-Look-Ahead-Generator 
74182 jeweils 4 Bausteine 74181 zusammengeschaltet werden. Eine weitere Kaskadierung ist 
möglich. Die ALU 74181 kann als Komparator oder Vergleicher verwendet werden.   
  

Tabelle 12-2 Funktionen der ALU 74181. 

Auswahleingänge Ausgänge Fi 

 
s3 

 
s2 

 
s1 

 
s0 

M = 1 
logische Funktionen

M = 0 
arithmetische Funktionen 
c0 = 0                          c0=1 

0 0 0 0 ¬x x − 1 x 

0 0 0 1 ¬(x y) (x y) − 1 x y 

0 0 1 0 ¬x ∨ y (x ¬y) − 1 x ¬y 

0 0 1 1 1 −1 0 

0 1 0 0 ¬(x ∨ y) x + (x ∨ ¬y) x + (x ∨ ¬y) + 1 

0 1 0 1 ¬y xy + (x ∨ ¬y) xy + (x ∨ ¬y) + 1 

0 1 1 0 ¬(x ↔ y) x − y − 1 x − y 

0 1 1 1 x ∨ ¬y x ∨ ¬y x ∨ ¬y + 1 

1 0 0 0 ¬x y x + (x ∨ y) x + (x ∨ y) + 1 

1 0 0 1 x ↔ y x + y x + y + 1 

1 0 1 0 y (x ¬y) + (x ∨ y) (x ¬y) + (x ∨ y) + 1 

1 0 1 1 x ∨ y x ∨ y x ∨ y + 1 

1 1 0 0 0 x + x x + x + 1 

1 1 0 1 x ¬y x y + x x y + x + 1 

1 1 1 0 x y x ¬y + x x ¬y + x +1 

1 1 1 1 x x x+1 
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12.6  Komparatoren 

Komparatoren vergleichen zwei in der Regel gleichlange Wörter, indem sie anzeigen welche 
Zahl größer ist. Komparatoren werden z.B. in Rechnern eingesetzt, um Sprungbedingungen 
abzuprüfen. 

Die Realisierung von Komparatoren erfordert in der Regel einen hohen schaltungstechnischen  
Aufwand, der ähnlich wie bei Addierern überproportional mit der Stellenzahl steigt, wenn die 
Laufzeit vorgegeben ist. Man verwendet daher bei größeren Wortbreiten kaskadierbare Kom-
paratoren. 

12.6.1  2-Bit-Komparator  

Als ein Beispiel soll ein Komparator für zwei 2-Bit-Dualzahlen x und y entwickelt werden, der 
auf Gleichheit (x = y) testet und je einen Ausgang für x > y  und x < y  haben soll. Dazu stellt 
man zunächst die Wahrheitstabelle (Tabelle 12-3) auf.  

Tabelle 12-3 Wahrheitstabelle für einen 2-Bit-Komparator.  

y1 y0 x1 x0 x = y x < y x > y  y1 y0 x1 x0 x = y x < y x > y 

0 0 0 0 1 0 0 1 0 0 0 0 1 0 

0 0 0 1 0 0 1 1 0 0 1 0 1 0 

0 0 1 0 0 0 1 1 0 1 0 1 0 0 

0 0 1 1 0 0 1 1 0 1 1 0 0 1 

0 1 0 0 0 1 0 1 1 0 0 0 1 0 

0 1 0 1 1 0 0 1 1 0 1 0 1 0 

0 1 1 0 0 0 1 1 1 1 0 0 1 0 

0 1 1 1 0 0 1 1 1 1 1 1 0 0 

 

Durch Minimieren findet man: 

Ax>y = x1¬y1 ∨ x0¬y1¬y0  ∨ x0x1¬y0   (12.45) 

Ax<y = ¬x1y1 ∨ ¬x1¬x0y0  ∨ ¬x0y0y1   (12.46) 

 

Der Ausgang Ax=y kann aus der Tatsache abgeleitet werden, dass er genau dann gleich 1 ist, 
wenn die beiden anderen Eingänge gleich 0 sind: 

Ax=y = ¬Ax>y ¬Ax<y (12.47) 

 

Durch diese Maßnahme erhöht sich die Laufzeit für diesen Eingang um die Laufzeit eines 
Gatters.  
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12.6.2  Kaskadierbare Komparatoren 

In Bild 12-12 ist das Schaltsymbol des 4-Bit-Komparators 7485 gezeigt, der Ausgänge für  
Gleichheit (x = y) und für x > y  und x < y  hat. Zusätzlich hat der Baustein 3 Eingänge,  an 
denen Überträge von einem gleichartigen Baustein übertragen werden, dessen Wertigkeit nied-
riger ist.  

 

Mit 3 dieser Bausteine kann ein 12-Bit-Komparator aufgebaut werden, wie es in Bild 12-13 
dargestellt ist. Am niederwertigsten Baustein ist der Übertragseingang für Gleichheit mit 1 
beschaltet, während die Eingänge für „größer“ und „kleiner“ mit 0 beschaltet sind. Die beiden 
höherwertigen Bausteine erhalten an den Eingängen die Ausgangssignale des vorhergehenden 
Bausteins. Man beachte, dass der Übertrag „rippelt“. Daher wächst die Ausführungszeit linear 
mit der Anzahl der Bausteine.  
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Bild 12-12 Schaltsymbol des 4-Bit-Komparators 7485. 
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Bild 12-13 Schaltung eines 12-Bit-Komparators mit 3 Bausteinen 7485. 
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12.7  Übungen 

Aufgabe 12.1 

Wie kann ein 74181 als Komparator für zwei 4Bit-Wörter verwendet werden? 

 

Aufgabe 12.2 

Leiten Sie die Funktion des 74181 für das Steuerwort M = 1 und S = 0110 aus den im Text 
hergeleiteten  Gleichungen her. 

 

Aufgabe 12.3 

Eine Alternative zum Carry-Look-Ahead-Addierer ist der Carry-Select-Addierer. Im Bild ist 
eine Version für 16Bit gezeigt. Die 5 im Schaltbild enthaltenen Addierer sind Ripple-Carry-
Addierer mit 4, 5 und 7 Bit Breite in der 1. 2. und 3. Stufe. 

a) Erklären Sie die Funktion der Schaltung. 

b) Geben Sie die Laufzeit der Ausgangssignale als Vielfaches einer Gatterlaufzeit tp an. 
(Laufzeit der Multiplexer =2tp)   
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13  Digitale Speicher 

Speicherbausteine dienen der Speicherung größerer Datenmengen. Sie werden in Digitalrech-
nern als ein wichtiger Bestandteil eingesetzt. Man unterscheidet zwischen: 

 

Halbleiterspeichern und Massenspeichern 

Halbleiterspeicher werden auf einem Halbleiterchip realisiert. Massenspeicher haben eine hohe 
Speicherdichte, sie können also viele Daten auf geringem Raum speichern. Beispiele für Mas-
senspeicher sind Festplatten, CD-ROM und Magnetbänder. Sie werden hier nicht behandelt. 

 

seriellem Zugriff und wahlfreiem Zugriff 

Serieller Zugriff bedeutet, dass die Daten nur über ein Tor seriell ein- und ausgelesen werden 
können. Damit sind Eimerkettenspeicher gemeint, die wie Schieberegister arbeiten. Sie sind 
meist nach dem FIFO-Prinzip organisiert. Wahlfreier Zugriff heißt, dass jeder Speicherplatz zu 
jeder Zeit zugänglich ist. 

 

ortsadressierten und inhaltsadressierten Speichern 

Ortsadressierte Speicher haben eine Adresse, unter der jeder Speicherplatz zugänglich ist. In 
inhaltsadressierten Speichern findet man eine Information über die Assoziation mit einem Teil 
der Information selber. Zum Beispiel kann in einer Lieferliste die Bestellnummer dazu dienen, 
Informationen über den Artikel zu finden. 

 

flüchtigen und nichtflüchtigen Speichern 

Flüchtige Speicher verlieren die Information beim Ausschalten der Betriebsspannung, nicht-
flüchtige halten sie. 

 

Festwertspeicher und Schreib/Lese-Speicher 

Festwertspeicher werden einmal programmiert und können von da an nur noch gelesen werden. 
Sie sind nicht flüchtig. Schreib/Lese-Speicher können beliebig gelesen und beschrieben wer-
den. 

 

Bit- und Wort-organisierten Speichern  

In Bit-organisierten Speichern ist jedes Bit einzeln zugänglich. In Byte-organisierten Speichern 
werden jeweils 8Bit = 1Byte gleichzeitig gelesen oder geschrieben. In Wort-organisierten 
Speichern wird immer ein Wort gleichzeitig gelesen oder geschrieben.  

 

Die Speicherkapazität wird als Produkt der Anzahl der Speicherwörter und der Wortlänge 
angegeben. Die Anzahl der Speicherwörter ist in der Regel eine Zweierpotenz. 

 

 

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018
K. Fricke, Digitaltechnik, https://doi.org/10.1007/978-3-658-21066-3_13
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13.1  Prinzipieller Aufbau von Speicherbausteinen 

Speicherbausteine werden in der Regel an ein Bussystem angeschlossen. Dadurch können eine 
Vielzahl von verschiedenen Speichern parallel angeschlossen werden. Das Bussystem muss es 
ermöglichen, dass in eine bestimmte Speicherzelle geschrieben oder aus ihr gelesen werden 
kann. Man unterscheidet zwischen: 

Adressbus 

Der Adressbus legt an jeden Speicherbaustein die Adresse, unter der das Datum abgespeichert 
oder gesucht wird.  

Steuerbus 

Der Steuerbus enthält alle Leitungen zur Bausteinsteuerung. Dazu gehört die Bausteinauswahl 
mit dem Chip-Select-Anschluss CS. Da alle Bausteine an den gleichen Adressbus angeschlos-
sen werden, muss die Auswahl des betreffenden Bausteins über diese Leitung geschehen. Über 
eine Leitung Read/¬Write (RD/¬WR) kann zwischen Lesen und Schreiben umgeschaltet wer-
den. 

Datenbus 

Der Datenbus ist an alle Bausteine angeschlossen. Seine Breite ist durch die Anzahl der Bit 
gegeben, die jeweils unter einer Adresse stehen. Die Breite wird in Bit oder Byte = 8Bit ange-
geben. Um keine Konflikte auf den Leitungen zu erzeugen müssen die Ausgänge der Speicher, 
die auf den Datenbus wirken, Tristate-Ausgänge sein. Sie werden durch die Leitung Output 
Enable (OE) des Steuerbusses freigeschaltet. 

13.2  ROM 

ROM ist die Abkürzung für read only memory. Ein ROM ist ein Speicherbaustein, dessen 
Dateninhalt schon vom Hersteller durch Masken definiert ist. Der Dateninhalt ist daher fest 
und kann nur gelesen werden. Die gespeicherten Daten sind nicht flüchtig.  

 

ROM-Bausteine unterscheiden sich durch die Anzahl der Bits, die unter einer Adresse gespei-
chert sind. Es sind Speicher mit 1, 4, 8 und 16Bit Wortlänge üblich. 

 

In einem ROM sind, wie in den meisten anderen digitalen Speichern auch, die einzelnen Spei-
cherplätze matrixförmig angeordnet (Bild 13-1). Die Speicherzellen liegen an den Schnittpunk-
ten der Leitungen. Sie werden angesprochen, wenn beide, die Zeilen- und die Spaltenleitung 
auf 1 liegen. Die Zeilenleitung wird auch Wortleitung, die Spaltenleitung auch Datenleitung 
genannt. Vorteilhaft bei dieser Anordnung ist, dass man Leitungen einspart. Man benötigt für 
n2 Speicherplätze nur 2n Leitungen, gegenüber n2 bei einer linearen Anordnung. 

 

Die Zuordnung der Wortleitungen zu den Adressen A0 bis A2 geschieht über einen Zeilendeco-
der. Der Spaltendecoder übernimmt die Auswahl der Datenleitungen. Da die Datenleitungen 
neben der Auswahl der Spalte auch die Aufgabe haben, die gespeicherte Information zum 
Ausgang zu leiten, ist ein Leseverstärker zwischen Decoder und Speichermatrix geschaltet. Im 
Bild ist ein Speicher gezeigt, der 4Bit pro Adresse speichert. Es handelt sich also um ein 
64×4Bit-ROM. 
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Bild 13-1 Prinzipschaltbild eines 64×4Bit-ROM.  

Eine Realisierung eines 16×1Bit-ROM in CMOS-Technik ist in Bild 13-2 gezeigt. Die Spei-
chermatrix besteht aus 16 n-Kanal-MOSFET. Soll in einer Speicherzelle ein H gespeichert 
sein, so wird das Drain nicht kontaktiert. Das kann technologisch mit einer einzigen Maske 
erreicht werden, die je nachdem, ob ein Transistor angekoppelt werden soll oder nicht, eine 
Leiterbahnverbindung zum Transistor herstellt oder nicht. 

 

Die Datenleitungen haben als Lastwiderstand einen p-Kanal-MOSFET. Der Spaltendecoder 
schaltet mit einem Pass-Transistor immer eine Datenleitung an den Ausgang. 

 

Wird durch den Zeilendecoder eine Zeile angewählt, indem der entsprechende Ausgang des 
Zeilendecoders auf H geht, so werden die Datenleitungen, an denen ein MOSFET kontaktiert 
ist, auf L gezogen. Andernfalls bleiben sie auf VDD. Nur die Datenleitung, deren Pass-
Transistor durch den Spaltendecoder durchgeschaltet ist, wird auf den Ausgang geschaltet. 

 

Man erkennt, dass pro Speicherzelle nur ein Transistor benötigt wird, was zu einer hohen Spei-
cherdichte führt. 
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Bild 13-2 Aufbau eines 16×1Bit-ROM.  

Das Schaltsymbol eines 1K×8Bit = 1KByte-ROM ist in Bild 13-3 gezeigt. Neben den Ad-
resseingängen hat der Baustein auch einen Chip-Select-Eingang (¬CS) und einen Output-
Enable-Eingang (¬OE). Der ¬CS-Eingang dient zur Auswahl des ROM, wenn mehrere ROM 
an einen Bus angeschlossen werden sollen. Ist zusätzlich der ¬OE-Eingang auf L, so wird der 
Ausgang niederohmig. 

 

Im Symbol des ROM wird die Adressabhängigkeit verwendet, die mit dem Buchstaben A 
gekennzeichnet wird. Die geschweifte Klammer umfasst die Adresseingänge. Der Bruch nach 
dem A gibt im Zähler die niedrigste und im Nenner die höchste Adresse des Speichers an. An 
den 8 Ausgängen des 8Bit breiten Datenwortes ist wieder der Buchstabe A angegeben zum 
Zeichen, dass die Ausgänge immer an den durch die Adressen ausgewählten Speicherplatz 
gelegt werden. Die Ausgänge sind als Tristate-Ausgänge ausgeführt. 
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Bild 13-3 ROM mit einer Speicherkapazität von 1KByte.   

13.3  PROM 

Ein PROM entspricht vom Aufbau her einem ROM, mit dem Unterschied, dass es vom An-
wender programmierbar ist. Es ist ebenfalls matrixförmig aufgebaut mit einem Spalten- und 
einem Zeilendecoder für die Adressdecodierung. Eine mögliche Realisierung kann aus Bild 13-
2 abgeleitet werden. Die Drains der Transistoren in den Speicherzellen können bei einem 
PROM anstelle mit einer Leiterbahnverbindung mit einem Fusible-Link kontaktiert werden 
(Bild 13-4). Das Fusible-Link wird zur Programmierung mit einer erhöhten Spannung unter-
brochen, wenn ein H gespeichert werden soll. Dazu ist in der Regel ein spezielles Program-
miergerät notwendig. Ein Fusible-Link entspricht einer Schmelzsicherung. Die gespeicherte 
Information ist nicht flüchtig. Ein einmal unterbrochenes Fusible-Link kann nicht wieder her-
gestellt werden. Sie werden daher auch als OTP-ROM  (OTP = one time programmable) be-
zeichnet.  

Das Schaltsymbol eines PROM gleicht dem des ROM (Bild 13-3). 

 

 

 
 
Wortleitung 

Datenleitung
 

Bild 13-4  Speicherzelle eines PROM. 
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13.4  EPROM 

EPROM steht für eraseable ROM. Ein EPROM entspricht in seinem Aufbau einem ROM oder 
PROM, nur dass an Stelle der Fusible-Links oder der maskenprogrammierten Verbindungen 
löschbare Speicherelemente liegen. 

Man verwendet für die Speicherelemente Floating-Gate-MOSFET (Bild 13-5). Diese MOSFET 
sind Anreicherungs-Typen mit einem zusätzlichen Gate, das keine Verbindung nach außen hat 
und Floating-Gate genannt wird. Dieses Gate hat zunächst ein freies Potential. Durch eine 
Ladung auf dem Floating-Gate kann Information in der Speicherzelle gespeichert werden.  

 

n+ 
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SiO2 

Wortleitung 

Floating gate 
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VCC 

Datenleitung 
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Bild 13-5 Floating-Gate-MOSFET, Aufbau und Funktion.  

Ohne Ladung auf dem Gate funktioniert der Transistor wie ein normaler n-Kanal-
Anreicherungs-MOSFET. Eine genügend große positive Spannung auf dem Gate schaltet den 
Transistor durch. Dieser Zustand führt zu einem L auf der Datenleitung, wenn die Speicherzel-
le durch die Wortleitung ausgewählt wird.   

 

Soll ein H gespeichert werden, so muss eine negative Ladung auf dem Floating-Gate gespei-
chert werden. Der Transistor sperrt dann immer und bei einer Auswahl der Speicherzelle über 
die Wortleitung bleibt die Datenleitung auf H. Die negative Ladung auf dem Floating-Gate 
wird durch Tunneln von Elektronen durch das Qxid erzeugt.  

 

Mit einer erhöhten Spannung zwischen Drain und Substrat erreicht das Feld zwischen Gate-
Elektrode und Kanal so hohe Werte, dass Elektronen durch den Avalanche-Effekt vervielfältigt 
werden. Eine gewisse Anzahl der Elektronen kann durch das Gate-Oxid auf die Floating-Gate-
Elektrode tunneln. Es entsteht eine negative Ladung auf dem Gate, die den Transistor sperrt. 
Durch eine etwa 20-minütige Bestrahlung mit UV-Licht kann das Isoliermaterial, welches 
zwischen Gate und Source liegt, ionisiert werden, wodurch die Ladung abfließen kann. Damit 
ist die Information wieder gelöscht. Die Ladungsspeicherung ist durch die guten Eigenschaften 
des Oxids auf Jahre stabil. 
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Für die Programmierung wird die Betriebsspannung VDD auf eine erhöhte Spannung gelegt. 

 

Das Schaltsymbol eines EPROM ist dem des ROM identisch (Bild 13-3), da die Art der Pro-
grammierung nicht im Schaltsymbol erkennbar ist. 

13.5  EEPROM 

EEPROM steht für electrically eraseable programmable ROM. Diese Bausteine sind elektrisch 
beschreibbar und elektrisch löschbar.  

Die einzelne Speicherzelle ist ähnlich wie beim EPROM mit einem Floating-Gate-MOSFET 
aufgebaut. Allerdings ist die Dicke des Oxids zwischen Floating-Gate und Kanal dünner. 
Dadurch ist es möglich, mit einer erhöhten Spannung zwischen Gate und Kanal Elektronen 
vom Gate in den Kanal und umgekehrt zu transportieren. Das geschieht durch Fowler-
Nordheim-Tunneln.  

 

EEPROM mit einer speziellen Speicherzelle werden manchmal auch als Flash-EEPROM be-
zeichnet. Sie sind nur insgesamt oder aber blockweise löschbar. 

 

Die kommerziell erhältlichen ROM, PROM, EPROM und EEPROM sind oft pinkompatibel, 
so dass es möglich ist, in der Entwicklungsphase EPROM oder EEPROM zu verwenden, die 
im Produkt dann durch ROM oder PROM ersetzt werden. 

 

Die Schaltsymbole von EEPROM und ROM sind identisch (Bild 13-3). 

13.6  EAROM 

EAROM steht für electrically alterable ROM. Vom Verhalten her ist ein EAROM ähnlich dem 
EEPROM. 

Zur Unterscheidung zwischen EEPROM und EAROM. Es haben sich zwei unterschiedliche 
Bezeichnungsweisen eingebürgert, die sich teilweise widersprechen: 

• Oft werden die Bausteine mit größerer Kapazität als EEPROM bezeichnet, während die mit 
kleiner Kapazität EAROM genannt werden. 

• Manchmal werden aber auch mit EEPROM, und insbesondere mit Flash-EEPROM, die 
Bausteine bezeichnet, die nur insgesamt oder blockweise gelöscht werden können. Unter 
EAROM versteht man dann einen Bit- oder Byte-weise löschbaren Speicher. 
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13.7  NOVRAM 

Das NOVRAM  (non volatile RAM) ist ein nicht flüchtiges RAM (random access memory). Es 
ist aus einem flüchtigen Schreib-Lesespeicher aufgebaut. Beim Ausschalten des Systems wird 
der Dateninhalt innerhalb von etwa 10ms in ein EEPROM gerettet. Daher sind in jeder Spei-
cherzelle eine RAM-Speicherzelle und eine EEPROM-Speicherzelle enthalten. So werden die 
Vorteile des RAM, nämlich schnelles Lesen und Schreiben in beliebige Speicherzellen, mit 
dem Vorteil des EEPROM, der Nichtflüchtigkeit vereint. 

 Tabelle 13-1 Übersicht der nichtflüchtigen Speicher. 

Bezeichnung Programmierung Löschen 

ROM (read only memory) Maske einmalig nicht möglich  

PROM (programmable ROM) 

field programmable ROM, 

one time PROM (OTP ROM) 

elektr. einmalig nicht möglich 

EPROM (erasable ROM) elektr. mehrmals UV-Licht (20 min) 

gesamter Speicherinhalt 

EEPROM (electrically erasable ROM)

Flash-EEPROM 

elektr. mehrmals elektrisch,  

gesamter Speicherinhalt 

oder Bit-weise 

 (20-100 ms) 

EAPROM (electrically alterable 
ROM) 

elektr. mehrmals elektrisch, Bit-weise 

(20-100ms) 

NOVRAM (nonvolatile RAM) elektr. mehrmals elektrisch, Bit-weise 

(100ns) 

 

13.8  Statisches RAM (SRAM) 

RAM ist die Abkürzung von random access memory. Damit ist ein Speicherbaustein gemeint, 
der beliebig beschrieben und gelesen werden kann. Ein RAM ist matrixförmig aufgebaut. Man 
unterscheidet zwischen statischen RAM (SRAM) und dynamischen RAM (DRAM). Statische 
RAM verwenden Flipflops als Speicherzellen. Höher integrierte Bausteine arbeiten meist mit 
einer dynamischen Speicherung der Information in Kondensatoren, die mit einem Transistor 
angesteuert werden können. 

13.8.1  Aufbau eines SRAM  

Die Speicherzelle eines statischen RAM ist in Bild 13-6 gezeigt. Sie ist aus zwei gegengekop-
pelten CMOS-Invertern aufgebaut. Über eine Wortleitung kann die Speicherzelle angesprochen 
werden. Für die Auswahl einer Zelle wird ein H auf die Wortleitung gegeben. Dadurch werden 
T5 und T6 niederohmig. 
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Beim Schreibvorgang kann mit einem H auf der Datenleitung DL ein H in den Speicher ge-
schrieben werden. Dann wird T3 leitend und T4 sperrt. Der rechte Inverter gibt ein L aus. Da-
raufhin wird der linke Inverter auf H gesteuert. Ebenso kann mit einem H auf der Datenleitung 
¬DL ein L in den Speicher geschrieben werden. 

 

Beim Lesevorgang wird wieder die Zelle mit der Wortleitung ausgewählt. An den Datenleitun-
gen kann das gespeicherte Bit ausgelesen werden. 
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Bild 13-6 RAM-Speicherzelle in CMOS-Technik. 

Die beiden Datenleitungen werden mit einem symmetrisch aufgebauten Leseverstärker gele-
sen. Auch der Schreibverstärker ist symmetrisch aufgebaut. 

 

13.8.2  Beispiel SRAM  

Als ein Beispiel soll ein typisches RAM vorgestellt werden. Es hat eine Speicherkapazität von 
2K×8Bit oder 2KByte. Das Schaltsymbol ist in Bild 13-7 dargestellt. 

 

Der Eingang ¬CS (chip select), der auch ¬CE (chip enable) genannt wird, dient zur Auswahl 
des Bausteins, wenn mehrere Speicher an einen Bus angeschlossen werden sollen. Wenn ¬CS 
= H ist, wird der Baustein in einem Wartezustand mit verminderter Stromaufnahme betrieben.  

 

Da er an einen Datenbus angeschlossen werden soll, hat der Baustein Tristate-Ausgänge. Diese 
können mit dem Signal ¬OE = H hochohmig gemacht werden. 
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Bild 13-7 RAM mit einer Speicherkapazität von 2K×8Bit. 

Entsprechend seiner Speicherkapazität hat der Baustein 11 Adresseingänge A0-A10. Mit 
RD/¬WR = H kann der Inhalt der Speicherzellen gelesen werden, mit RD/¬WR = L kann in sie 
geschrieben werden.  

Im Zeitdiagramm (Bild 13-8) ist der Lesezyklus dargestellt. Während des gesamten Lesezyklus 
muss RD/¬WR = H sein. Wenn die Adressen gültig auf dem Adressbus anliegen, wird zunächst 
der Baustein mit ¬CS ausgewählt. Dann kann der Ausgang mit ¬OE aktiviert werden. Nach 
der Decodierung der Adressen im RAM  liegen die gültigen Daten auf dem Datenbus. 

 

Die im Zeitdiagramm eingetragenen Zeiten sind wie folgt definiert: 

 

tRC  read cycle time / Lese-Zyklus-Zeit  

In dieser Zeit kann ein kompletter Lesezyklus durchgeführt werden. Die Zeit ist wichtig, wenn 
viele Lesezyklen nacheinander durchgeführt werden sollen. 

 

tAA address access time / Adress-Zugriffszeit 

Liegen gültige Adressen auf dem Adressbus, so sind nach der Adress-Zugriffszeit gültige Da-
ten auf dem Datenbus. 

Von dem Zeitpunkt, an dem das Signal ¬OE = L gesetzt wird, vergeht die Zeit tCO bis gültige 
Daten auf dem Datenbus anliegen. 
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tOD ist die Zeit, die die Daten noch auf dem Datenbus liegen, nachdem ¬OE wieder auf H ge-
gangen ist. 
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Bild 13-8 Lesezyklus des RAM. 

Das Zeitdiagramm eines Schreibzyklus ist in Bild 13-9 dargestellt. In einem Schreibzyklus gilt 
immer ¬OE = H, so dass der Sender (in der Regel ein Mikroprozessor) die Daten auf den Da-
tenbus legen kann. Zum Schreiben in eine Speicherzelle muss RD/¬WR = L  und ¬CS = L 
gelten. Man unterscheidet zwei Fälle: 

 

1. Early Write Bei dieser Vorgehensweise ist während des gesamten Schreibzyklus RD/¬WR 
= L, der Schreibvorgang wird durch die negative Flanke von ¬CS eingeleitet. Ein Early-
Write-Zyklus ist in Bild 13-9 dargestellt.    

2. Late Write Bei dieser Vorgehensweise ist während des gesamten Schreibzyklus ¬CS = L. 
Der Schreibvorgang wird durch die negative Flanke von RD/¬WR eingeleitet. Hier vertau-
schen also gegenüber dem Early-Write-Zyklus RD/¬WR und ¬CS ihre Rollen. 
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Bild 13-9 Schreibzyklus des RAM (Early Write). 

Im Zeitdiagramm sind die folgenden Zeiten festgehalten: 

 

tWC  Write cycle time / Schreib-Zyklus-Zeit  

In dieser Zeit kann ein kompletter Schreibzyklus durchgeführt werden. 

 

tDS und tDH entsprechen der Setup- und der Holdtime beim D-Flipflop. In der durch diese Zei-
ten festgelegten Zeitspanne müssen die Daten stabil auf dem Datenbus anliegen. 

 

tAS und tAH Address-Set und Address-Holdtime 

tAS ist die Zeit, die die Adresse vor dem ¬CS-Puls der Weite tW  stabil anliegen muss. tAH gibt 
die Zeit an, die die Adressen nach dem ¬CS-Puls anliegen müssen. Beide Zeiten sind für die 
Decodierung der Zeilen- und Spaltenadresse im RAM notwendig. 

 

  



13.9  Dynamisches RAM (DRAM) 169 

13.9  Dynamisches RAM (DRAM) 

Ein DRAM (dynamic RAM) ist ein flüchtiger Halbleiterspeicher, in dem die Information auf 
Kondensatoren gespeichert wird. Bedingt durch den einfachen Aufbau einer Speicherzelle 
haben DRAM eine sehr große Speicherdichte. 

13.9.1  Aufbau eines DRAM  

Das Speicherelement zeigt Bild 13-10. Ein H auf der Wortleitung wählt die Speicherzelle aus. 
Die auf dem Kondensator gespeicherte Ladung kann dann über die Datenleitung abfließen. 
Eine vorhandene Ladung bedeutet einen Speicherinhalt von einem H, keine Ladung entspricht 
einem L. Das Lesen zerstört die gespeicherte Ladung, so dass nach jedem Lesen die Ladung 
neu gespeichert werden muss.  

 

Dynamische RAM sind so organisiert, dass sie einen Lesevorgang automatisch mit einer Rege-
nerierung der Ladung verbinden. Wenn eine Speicherzelle eine gewisse Zeit nicht gelesen 
wird, fließt die Ladung ab, und die Information geht verloren. Deshalb müssen alle Speicherin-
halte periodisch durch einen Lesevorgang regeneriert werden. Man nennt den Vorgang auch 
Refresh. Da der Off-Widerstand des MOSFET sehr hoch ist, genügen sehr kleine Kondensato-
ren, um Entladezeiten im ms-Bereich zu erhalten. 
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Bild 13-10 Dynamische RAM-Speicherzelle. 

13.9.2  Beispiel DRAM  

Als Beispiel wird der TMS416400 vorgestellt. Dieses DRAM hat eine Speicherkapazität von 
4M×4Bit. Die Daten in jeder Speicherzelle müssen alle 64ms aufgefrischt werden.  

 

In diesem Baustein werden die Zeilen- und die Spaltenadresse über die gleichen Anschlüsse 
geladen, um den Baustein klein zu halten. Wie das Prinzipschaltbild (Bild 13-11) zeigt, benutzt 
der TMS416400 10Bit für die Auswahl der Spalten und 12Bit für die Auswahl der Zeilen. Für 
das Einlesen der Zeilenadresse wird der Anschluss ¬RAS (row address strobe) und für das 
Einlesen der Spaltenadresse ¬CAS (column address strobe) verwendet. In einem Schreib-
Leseverstärker wird das 4Bit breite Datenwort ein- und ausgelesen. 
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Das Schaltsymbol des TMS 416400 ist in Bild 13-12 abgebildet. Man erkennt aus der Abhän-
gigkeitsnotation, dass ¬RAS (mit Abhängigkeitsnotation C20) die Adressleitungen A0 bis A11 
verwendet, während ¬CAS die Adressleitungen A0 bis A9 benötigt (Abhängigkeitsnotation mit 
C21). 
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Bild 13-11 Prinzipschaltbild eines 4M×4Bit-DRAM  (TMS 416400). 

Lesen 

Das Zeitdiagramm eines Lesevorgangs zeigt Bild 13-13. Man erkennt, dass zunächst die Zei-
lenadresse (Row = Zeile) anliegen muss, die mit der fallenden Flanke von ¬RAS eingelesen 
wird. Dann wird die Spaltenadresse (Column = Spalte) angelegt und mit der fallenden Flanke 
von ¬CAS eingelesen. Im Schaltsymbol liest man diese Zusammenhänge aus den Bezeichnun-
gen C20 und C21 ab. Mit dem Anliegen von ¬WR = 1 beginnt die Adress-Zugriffszeit tAA nach 
deren Ende gültige Daten am Ausgang anliegen. Der Ausgang wird niederohmig, wenn bei der 
fallenden Flanke von ¬CAS (Ziffer 21) der Eingang ¬RAS = 0 (Ziffer 23 und 24) und der Ein-
gang ¬OE=0 (Ziffer 25) ist. Dieser Zusammenhang wird im unteren Kästchen innerhalb der 
Umrandung des Symbols dargestellt. 
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Bild 13-12 Schaltbild des TMS 416400. 

 

Der Bereich im Speicher, der unter der gleichen Zeilenadresse zu finden ist, wird auch als Seite 
(Page) bezeichnet. Es gibt ein vereinfachtes Leseverfahren (Fast Page Mode-DRAM), wenn 
man mehrere Daten auf einer Seite lesen will. Dabei bleibt ¬RAS = 0 nach dem Einlesen der 
Zeilenadresse. Für das Auffinden der verschiedenen Daten auf der Seite werden dann die ent-
sprechenden Spaltenadressen mehrfach verändert und durch die fallende Flanke von ¬CAS 
eingelesen. 

 

Eine weitere Verbesserung ist beim TMS416400 dadurch erreicht worden, dass nach der nega-
tiven Flanke von ¬RAS bereits die Auswertung der Spaltenadressen beginnt, die kurz nach der 
fallenden Flanke von ¬RAS (nach der Hold-Time) bereits anliegen dürfen. Die damit verbun-
dene Geschwindigkeitssteigerung wird als „Enhanced Page Mode“ bezeichnet. Wenn die 
fallende Flanke von ¬CAS kommt, hat die Decodierung der Spaltenadresse bereits begonnen. 
Die Zugriffszeit für das Lesen auf einer Seite mit dem „Enhanced Page Mode“ ist tCAC, eine 
Zeit, die kürzer ist als tAA. 
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Bild 13-13 Lesezyklus des TMS 416400. 

Schreiben 

Zum Schreiben wird zunächst die Zeilenadresse angelegt und mit der fallenden Flanke von 
¬RAS eingelesen. Dann wird die Spaltenadresse angelegt und mit der fallenden Flanke von 
¬CAS eingelesen. 

 

Beim Schreiben muss wegen der Ziffer 23 der Abhängigkeitsnotation ¬RAS = L sein. Die 
Daten am Dateneingang werden eingelesen, wenn einer der Eingänge ¬CAS oder ¬WR auf L 
ist und der andere eine fallende Flanke aufweist. In Bild 13-14 ist der Fall gezeigt, bei dem 
zuerst ¬WR auf L geht und dann die fallende Flanke von ¬CAS die Daten einliest. Dieser Fall 
heißt „Early Write“. Die Daten müssen wie bei einem Flipflop zwischen der Setup-Time tDS 
vor der fallenden Flanke und der Hold-Time tDH  nach der fallenden Flanke von ¬CAS stabil 
anliegen. 

Werden die Daten mit der fallenden Flanke von ¬WR eingelesen, nennt man das „Late Write“. 
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Bild 13-14 Schreibzyklus (Early Write) des TMS 416400. 

Auffrischen  

Alle 64ms muss jede Speicherzelle aufgefrischt werden, andernfalls gehen die Daten verloren. 
Eine normale Schreib- oder Leseoperation eines Bits in einer Zeile frischt alle Bits dieser Zeile 
wieder auf. Es reicht daher für ein vollständiges Auffrischen aus, alle 4096 Zeilen periodisch 
zu lesen, indem die Adressleitungen A0 bis A11 durch einen Zähler permutiert werden. Der 
TMS416400 kann mit den folgenden Verfahren aufgefrischt werden [19]: 

RAS only refresh 

¬CAS wird für diese Vorgehensweise auf H gelassen. Aus dem Schaltsymbol geht hervor, dass 
¬CAS und ¬OE auf L sein müssen, damit die Ausgänge niederohmig werden. Daher bleibt der 
Ausgang in diesem Fall hochohmig, so dass die Verlustleistung des Chips während des Auffri-
schens niedrig bleibt. Extern mit einem Zähler generierte Adressen werden für diese Refresh-
Operation verwendet. Nach jedem Adresswechsel wird mit ¬RAS die neue Adresse des aufzu-
frischenden Speicherplatzes eingelesen. 

Hidden Refresh 

Dieser Auffrischvorgang schließt sich an einen Lesevorgang an. ¬CAS bleibt aber nach Ab-
schluss des Lesevorganges auf L. Die Daten am Ausgang bleiben dadurch während der folgen-
den Refresh-Operation gültig und der folgende Auffrischvorgang wirkt nicht nach außen. Dann 
wird ¬RAS zyklisch zwischen L und H umgeschaltet. Die Wortadressen der aufzufrischenden 
Speicherzellen werden intern erzeugt.  
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CAS before RAS refresh 

Bei dieser Art des Auffrischens erfolgt zuerst die fallende Flanke von ¬CAS und dann die von 
¬RAS. Durch die umgekehrte Reihenfolge wird dem Speicherbaustein ein Refresh-Zyklus 
signalisiert. Die extern angelegten Adressen werden ignoriert und die Adressen der zu regene-
rierenden Zeilen aus dem internen Zeilenadress-Zähler verwendet. Für eine Folge von Refresh-
Operationen bleibt ¬CAS auf L und ¬RAS wird zyklisch zwischen L und H umgeschaltet. 

 

Warten 

Der Baustein kann in einen Wartezustand versetzt werden, in dem er sehr wenig Leistung auf-
nimmt (Power down mode).  

13.10  SDRAM (Synchrones DRAM) 

Bei diesem Speichertyp handelt es sich auch um ein dynamisches RAM. Es arbeitet grundsätz-
lich so wie im letzen Kapitel beschrieben. Allerdings wird ein interner Takt des Speichers mit 
einer Taktflanke des Prozessortakts synchronisiert, wodurch man eine schnellere Arbeitsweise 
erzielt. Außerdem  wird ein Burst-Mode angewendet. Intern sind zwei Speicherbänke vorhan-
den, auf die abwechselnd zugegriffen wird, so dass auch ein schneller Zugriff  über mehrere 
Seiten ermöglicht wird. Bei der Synchronisation auf eine Taktflanke spricht man auch von 
Single Data-Rate DRAM. Es gibt z.B. die SDRAM-Speichertypen PC100 und PC133. Die 
Zahl gibt die Taktrate des Busses an. Für die Übertragungsgeschwindigkeit muss die Taktrate 
noch mit der Breite des Busses multipliziert werden. So ist bei einem PC133-System mit 8Byte 
breitem Bus die Übertragungsgeschwindigkeit 133MHz × 8Byte ≈ 1000MByte/s.  

13.11  DDR-RAM (Double Data Rate DRAM)  

Eine neuere Entwicklung ist das Double Data-Rate DRAM (DDR-RAM). Es wird auch als 
DDR-SDRAM bezeichnet. Im Gegensatz zum SDRAM wird beim DDR-RAM auf zwei Takt-
flanken synchronisiert. Es wird intern immer die doppelte Datenmenge aus dem Speicher aus-
gelesen (Prefetch), die bei der steigenden Flanke ausgegeben werden kann. Der Rest der Daten 
wird zwischengespeichert und bei der fallenden Flanke ausgegeben. Dadurch arbeitet er dop-
pelt so schnell wie ein SDRAM.  DDR-RAM gibt es in die Typen PC200, PC266, PC 333, PC 
370 und PC400. Aus dieser Zahl kann wieder die Übertragungsgeschwindigkeit ermittelt wer-
den, jedoch ist zusätzlich der Faktor 2 zu berücksichtigen, da auch bei der negativen Taktflanke 
Daten übertragen werden. Weitergehende Entwicklungen (DDR2, DDR3) haben einen 4 oder 
8-fachen Prefetch.   

13.12  Eimerkettenspeicher 

Eimerkettenspeicher sind digitale Speicher in denen Daten seriell gespeichert werden können. 
In den Eingang werden Daten seriell hinein geschoben, am Ausgang können sie in der gleichen 
Reihenfolge wieder entnommen werden. Sie werden auch FIFO (First in first out) genannt.  

Eimerkettenspeicher werden als Puffer verwendet, wenn z.B. ein Datenstrom an einer Schnitt-
stelle zwischen zwei nicht synchronisierten Takten übergeben werden soll. Werden mehr Daten 
angeliefert als ausgelesen, werden die aufgelaufenen Daten zwischengespeichert. 
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Eine andere Organisationsform ist das LIFO (last in first out), das auch als Stack bezeichnet 
wird. Ein LIFO ist ähnlich aufgebaut wie ein FIFO. 

13.12.1  Beispiel eines FIFOs 

Hier soll ein FIFO mit 64 Speicherplätzen beschrieben werden (SN74ACT2226 von Texas 
Instruments). 

Um unabhängig voneinander lesen und schreiben zu können, wird ein Dual-Port-RAM als 
Herzstück des Speichers verwendet (Bild 13-15). Es ist eine RAM-Speicherzelle, die durch ein 
zweites Paar Wort- und Datenleitungen erweitert wurde. Dadurch sind zwei weitgehend unab-
hängige Tore vorhanden. Zum Beispiel kann an beiden Toren unabhängig gelesen werden. Es 
kann allerdings nicht die gleiche Zelle gleichzeitig gelesen und beschrieben werden. Bei ver-
schiedenen Speicherzellen ist das möglich. Daher ist eine Logik erforderlich, mit der solche 
Konflikte erkannt werden können.  

 

 

DL2                        DL1 
Datenleitungen 

VDD

Wortleitungen

¬DL1               ¬DL2 
Datenleitungen 

WL1 

WL2 

 
 

Bild 13-15 Prinzip einer Dual-Port RAM-Speicherzelle. 

Für das FIFO (Bild 13-16) wird als Speicher ein Dual-Port-RAM verwendet, in dem die Spei-
cherplätze ringförmig angeordnet sind. Im Blockschaltbild kann man erkennen, dass für Lesen 
und Schreiben getrennte Takte verwendet werden (RdClk und WrClk), die nicht synchron zu 
sein brauchen. Für das Schreiben von Daten am Eingang D ist es erforderlich, dass WrEn = 1 
(write enable) ist, dass das Input-Ready-Flag InRdy = 1 ist und am Schreibtakt WrClk eine 
ansteigende Flanke auftritt.  

 

Gleiches gilt für den Ausgang. RdEn = 1, OutRdy = 1 und eine ansteigende Flanke am Lesetakt 
RdClk müssen auftreten, damit am Ausgang Q ein Bit gelesen werden kann. 
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Bild 13-16 Blockschaltbild des FIFO-Speichers SN74ACT2226. 

Der Speicherplatz des Dual-Port-RAM, in den das nächste Datum geschrieben werden kann, 
wird im „Pointer Schreiben“ gespeichert. Das ist ein Halbleiterspeicher, in dem die Adresse 
des Speicherplatzes steht, in den als nächstes geschrieben wird. Es ist die Adresse, die um 1 
niedriger ist als die, in die zuletzt geschrieben wurde. 

 

Im „Pointer Lesen“ steht die Adresse des Speicherplatzes aus dem als nächstes gelesen wird. 
Nach dem Lesevorgang wird der Pointer um 1 erniedrigt. Die gespeicherten Daten stehen also 
zwischen den beiden Pointern wie es im Blockschaltbild angedeutet ist. 

 

Zusätzlich ist ein Flag (Anzeiger) für einen fast vollen oder einen fast leeren Speicher vorhan-
den (F/E). Ein halbvoller Speicher wird mit dem Flag HF angezeigt. Im Blockschaltbild wer-
den diese Flags in der Zustandsanzeige erzeugt. 

 

Mit einem Reset ¬RST  kann der Speicher zurückgesetzt, also gelöscht werden. 

 

Das Schaltsymbol des FIFOs ist in Bild 13-17 gezeigt. 
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Bild 13-17 Schaltsymbol des FIFO-Speichers SN74ACT2226. 

 

13.13  Kaskadierung von Speichern 

In vielen Fällen müssen Speicher aus mehreren Speicherbausteinen zusammengesetzt werden. 
Das ist der Fall: 

 

1. wenn ein einzelner Speicher von der Kapazität nicht ausreicht. Es ist zu unterscheiden, ob 
die Wortlänge zu klein ist oder aber die Anzahl der Speicherplätze zu gering ist. 

2. wenn der Speicherbereich aus nichtflüchtigen ROM und flüchtigen Schreib-Lesespeichern 
zusammengesetzt werden muss oder 

3. wenn aus Kostengründen ein schneller Speicher mit einem langsamen Speicher kombiniert 
werden soll. 

 

 

13.14  Erweiterung der Wortlänge 

Soll zum Beispiel eine Wortlänge von 8Bit auf  dem Datenbus realisiert werden und stehen 
aber nur Speicherbausteine mit einer Wortlänge von 4Bit zur Verfügung, so können diese ent-
sprechend Bild 13-18  verschaltet werden. Den einzelnen Speichern werden der Adress- und 
der Datenbus identisch zugeführt. Der Datenein- und Ausgang des einen Speichers wird an die 
Bits 0 bis 3 des Datenbusses angeschlossen, während der Datenein- und Ausgang des anderen 
Speicherbausteins an die Bits 4 bis 7 des Datenbusses gelegt wird.  
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Bild 13-18  Erweiterung der Wortlänge eines Speichers auf 8Bit.   

13.15  Erweiterung der Speicherkapazität 

Soll die Anzahl der Speicherplätze in einem Speicher erhöht werden, so müssen mehrere Spei-
cher geringerer Kapazität zusammengeschaltet werden. 

 

Im Folgenden sind einige Beispiele für einen Speicher mit 8K×8Bit = 8KByte Kapazität darge-
stellt. Der Speicher soll aus 4 einzelnen Speicherbausteinen mit 2KByte Speicherkapazität 
zusammengeschaltet werden. Er soll an einen Adressbus der Breite 16Bit angeschlossen wer-
den. Die Datenbusbreite beträgt 8Bit. 

 

Die einzelnen Speicherbausteine mit je 2KByte Speicherkapazität haben 11 Adressanschlüsse 
A0-A10. 

 

Das Problem, welches beim Anschluss der Speicher-Bausteine zu lösen ist, ist die Decodierung 
der Adressleitungen A11-A15, um Speicherplätze in den einzelnen Speicherbausteinen gezielt 
ansprechen zu können. Im Folgenden werden einige übliche Lösungsmöglichkeiten mit drei 
RAM und einem ROM vorgestellt. 
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13.15.1  Volldecodierung 

Bei der Volldecodierung werden alle Adressleitungen genutzt. Jeder Speicherplatz hat nur eine 
Adresse. 

 

Man erreicht dies zum Beispiel, indem man einen Demultiplexer mit 4 Ausgängen verwendet, 
die an die Chip-Select-Eingänge ¬CS der 4 Speicherbausteine angeschlossen werden (Bild 13-
19). Die Eingänge des Demultiplexers werden an die Adressleitungen A11 und A12 angeschlos-
sen. 

 

Die höheren Adressleitungen A13 bis A15 werden mit einem ODER-Gatter an den Chip-Select-
Eingang des Demultiplexers angeschlossen, damit bei Adressen, die höher sind als 1FFFH (H 
für hexadezimal) keiner der Bausteine angesprochen wird. 

 

Der Adressplan des Systems (Bild 13-19) ist in Tabelle 13-2 gezeigt. Die Adressen der Spei-
cherplätze werden in Hexadezimalschreibweise und in Binärdarstellung angegeben. Die Tabel-
le zeigt, dass die Speicherplätze dicht liegen. Der Programmierer kann also Daten nach Belie-
ben abspeichern (aber nicht in das ROM), ohne auf irgendwelche Lücken Rücksicht nehmen zu 
müssen. Die höchste Adresse ist 1FFFH= 4×2048-1, was einer Speicherkapazität von 8K ent-
spricht. 

 

Heute wird die Decodierung von Adressen für Speichersysteme oft mit programmierbaren 
Logikbausteinen durchgeführt, wie sie in Kapitel 14 besprochen werden. 
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Bild 13-19 Volldecodierung eines Systems mit 8K-Speicher. 
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Tabelle 13-2 Adressplan des Systems mit Volldecodierung aus Bild 13-19. Es ist jeweils die niedrigste 
und höchste Adresse des jeweiligen Speichers angegeben. 

Baustein Adresse 

(Hex) 

Adresse (binär) 

15 14 13 12     11 10  9  8     7  6  5  4     3  2  1  0 

1 

(ROM) 

0 0 0 0 

0 7 F F 

0  0  0  0 

0  0  0  0  

0  0  0  0 

0  1  1  1  

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1  

2 

(RAM) 

0 8 0 0 

0 F F F 

0  0  0  0 

0  0  0  0  

1  0  0  0 

1  1  1  1  

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1  

3 

(RAM) 

1 0 0 0 

1 7 F F 

0  0  0  1 

0  0  0  1  

0  0  0  0 

0  1  1  1  

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1  

4 

(RAM) 

1 8 0 0 

1 F F F 

0  0  0  1 

0  0  0  1  

1  0  0  0 

1  1  1  1  

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1  

 

 

 

13.15.2  Teildecodierung 

Bei der Teildecodierung werden nicht alle Adressleitungen genutzt. Es wurde für das System 
in Bild 13-20 ein Demultiplexer für die Decodierung der Adressleitungen A12 und A11 verwen-
det. Die höheren Adressleitungen A13 bis A15 werden nicht decodiert, um den Hardware-
Aufwand zu verringern. Die auf diesen Leitungen anliegenden Bits sind also „don’t care“. 

 

Wie der Adressplan in Tabelle 13-3 zeigt, ist jeder Speicherplatz unter 8 Adressen erreichbar, 
da die 3 MSB don’t care sind. Es ist aber sinnvoll, bei der Programmierung A15 = A14 = A13 = 0 
zu setzen. Dann können einfach hexadezimale Adressen bestimmt werden. 
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Bild 13-20 Teildecodierung eines Systems mit 8K-Speicher. 
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Tabelle 13-3 Adressplan des Systems mit Teildecodierung aus Bild 13-20. Es ist jeweils die niedrigste 
und höchste Adresse des jeweiligen Speichers angegeben. 

Baustein Adresse 

(Hex) 

Adressleitungen (binär) 

15 14 13 12     11 10  9  8     7  6  5  4     3  2  1  0 

1 

(ROM) 

0 0 0 0 

E 7 F F 

d  d  d  0 

d  d  d  0  

0  0  0  0 

0  1  1  1  

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1  

2 

(RAM) 

0 8 0 0 

E F F F 

d  d  d  0 

d  d  d  0  

1  0  0  0 

1  1  1  1  

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1  

3 

(RAM) 

1 0 0 0 

F 7 F F 

d  d  d  1 

d  d  d  1  

0  0  0  0 

0  1  1  1  

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1  

4 

(RAM) 

1 8 0 0 

F F F F 

d  d  d  1 

d  d  d  1  

1  0  0  0 

1  1  1  1  

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1  

 

13.15.3  Lineare Decodierung 

Bei der linearen Decodierung wird auf einen Decoder verzichtet. Stattdessen werden die obe-
ren Adressleitungen A11 bis A14 direkt an die Chip-Select-Eingänge CS der Speicher ange-
schlossen. In Bild 13-21 wurden Bausteine mit nichtinvertiertem Chip-Select-Eingang CS 
verwendet, um einen einfacheren Aufbau des Speicherbereichs  zu erhalten. A15 wird nicht 
verwendet und ist daher don’t care. 

 

Die lineare Decodierung schränkt den nutzbaren Speicherbereich stark ein. In diesem Fall 
können nur 5 Bausteine mit je 2K×8Bit = 16KByte angeschlossen werden, weil nur 5 Adress-
leitungen zur Verfügung stehen. Daher ist die Anwendung der linearen Decodierung auf Sys-
teme mit geringem Speicherplatzbedarf beschränkt. 

 

Der Adressplan in Tabelle 13-4 zeigt, dass im  Speicherbereich Lücken auftreten. Wird ein 
derartiger Speicher in einem Mikroprozessorsystem eingesetzt, muss der Programmierer auf-
passen, dass er nicht versucht Daten in die Lücken abzuspeichern. In der Hexadezimaldarstel-
lung des Adressplans wurde vorausgesetzt, dass A15 = 0 ist. Andernfalls ist das System sehr 
unübersichtlich. 

 

Man beachte, dass z.B. mit der Adresse 7800H alle vier Bausteine angesprochen werden. Auch 
dadurch können Fehler entstehen. Die lineare Decodierung ist nur dort üblich, wo an einen 
breiten Adressbus nur wenige Speicher mit geringer Kapazität angeschlossen werden müssen. 
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Bild 13-21 Lineare Decodierung eines Systems mit 8K-Speicher. 
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Tabelle 13-4 Adressplan des Systems aus Bild 13-21 mit linearer Decodierung. Es ist jeweils die nied-
rigste und höchste Adresse des jeweiligen Speichers angegeben. 

Baustein Adresse 

(Hex) 

Adressleitungen (binär) 

15 14 13 12     11 10  9  8     7  6  5  4     3  2  1  0 

1 

(ROM) 

0 8 0 0 

0 F F F 

d  0  0  0 

d  0  0  0  

1  0  0  0 

1  1  1  1  

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1  

2 

(RAM) 

1 0 0 0 

1 7 F F 

d  0  0  1 

d  0  0  1  

0  0  0  0 

0  1  1  1  

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1  

3 

(RAM) 

2 0 0 0 

2 7 F F 

d  0  1  0 

d  0  1  0  

0  0  0  0 

0  1  1  1  

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1  

4 

(RAM) 

4 0 0 0 

4 7 F F 

d  1  0  0 

d  1  0  0  

0  0  0  0 

0  1  1  1  

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1  

13.16  Übungen 

Aufgabe 13.1  

1. Welche der Speicherbausteine RAM, EEPROM und ROM sind flüchtig? 

2. Welche der folgenden Speicherbausteine RAM, PROM, ROM und EEPROM sind 
Festwertspeicher? 

3. Geben Sie an, wie die folgenden Speicher programmiert werden können: ROM, 
PROM, EPROM, EEPROM. 

4. Kann der Inhalt der Speicher-Bausteine ROM, EPROM, EEPROM, Flash-EEPROM. 
gelöscht werden? Geben Sie in allen Fällen an wie das geschehen kann. 

5. Was ist der Unterschied zwischen SRAM und DRAM? 

  

Aufgabe 13.2  

Es soll ein Speicher für einen 16Bit-Adressbus und 8Bit-Datenbus aufgebaut werden. Es sol-
len, beginnend bei der Adresse 0000H, ein ROM mit 4KByte dann RAM mit 2KByte, 2KByte 
und 8KByte Speicherplätzen installiert werden. 

1. Die Speicherplätze sollen „volldecodiert“ werden. Ermitteln Sie für jeden Speicher-
baustein jeweils die unterste und oberste Adresse.  

2. Die Decodierung soll mit dem gezeigten Demultiplexer durchgeführt werden. An 
welche Adressleitungen müssen die Eingänge des Demultiplexers angeschlossen wer-
den? 

3. Entwerfen Sie ein Schaltnetz, welches an den Ausgängen des Demultiplexers die ein-
zelnen Speicherbausteine richtig ansteuert. Wie werden die restlichen Adressleitungen 
angeschlossen? 
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Aufgabe 13.3  

In einem Speichersystem mit wenigen Speicherplätzen sollen an einen Adressbus von 8Bit 
Breite Speicher mit 1Byte Wortlänge angeschlossen werden. Es sollen beginnend bei niedrigen 
Adressen, Schnittstellen mit 2Byte, 4Byte und 8Byte Speicherplatz angeschlossen werden. 

Die Adressen sollen  linear decodiert werden. 
1. Geben Sie eine Schaltungsmöglichkeit an. Wie werden die Adressleitungen ange-

schlossen?  
2. Stellen Sie einen Adressplan auf. 

 

Aufgabe 13.4 

Unten ist eine Decodierschaltung für einen Mikroprozessor mit 16Bit breitem Adressbus ge-
zeigt. Die drei Speicherbausteine, die damit angesteuert werden, haben die invertierenden 
Chip-Select-Anschlüsse ¬CS1, ¬CS2 und  ¬CS3. 

1. Stellen Sie die booleschen Gleichungen der Decodierschaltung auf. 
2. Geben Sie das daraus resultierende Adressschema an. 
3. Welche Kapazität müssen sinnvollerweise die angeschlossenen Speicherbausteine ha-

ben, wenn unter jeder Adresse ein Byte angesprochen werden soll? 
4. Um welche Art von Decodierung handelt es sich?     
 

. 

 A10 ¬CS1 ≥1

&
A11 

A12 
&

&

¬CS2 ≥1

&

&
¬CS3 ≥1
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Sollen Schaltwerke oder Schaltnetze aufgebaut werden, so gibt es verschiedene Möglichkeiten 
der Realisierung. Aus Kostengründen wird man nach Möglichkeit Standardbauelemente bevor-
zugen, die in großen Stückzahlen gefertigt werden können. Es stellt sich daher die Frage, wie 
Standardbauelemente den speziellen Anforderungen der einzelnen Kunden angepasst werden 
können. Der Halbleitermarkt bietet die folgenden Alternativen: 

Kombination von niedrig integrierten Standard-IC auf einer Leiterplatte 

Hierbei werden in der Regel einzelne Gatter und niedrig integrierte SSI und MSI-IC (SSI = 
small scale integration, MSI = medium scale integration) miteinander auf einer Leiterplatte 
(PCB = printed circuit board) verschaltet. Diese Vorgehensweise hat eine sehr hohe Flexibili-
tät. Allerdings haben die Bauelemente eine sehr hohe Leistungsaufnahme, da alle Gatter am 
Ausgang einen Leitungstreiber aufweisen müssen. Außerdem sind derartige Schaltungen in der 
Fertigung sehr teuer. Sie eignen sich eher für geringe Stückzahlen. Denkbar sind auch Logiken 
aus einzelnen Dioden und Transistoren. Diese Vorgehensweise wird heute wegen des hohen 
Montage- und Prüfaufwandes nur noch in Ausnahmefällen beschritten, wie zum Beispiel bei 
der „wired or“-Verknüpfung. 

Anwenderspezifische Software 

Hierunter fällt im Wesentlichen der Mikroprozessor. Er erhält seine hohe Flexibilität durch die 
Software, mit der sein Verhalten den jeweiligen Erfordernissen angepasst werden kann.  

Anwenderspezifische Hardware 

Flexibilität kann durch die Verwendung kundenspezifischer integrierter Schaltungen erreicht 
werden. Diese Schaltungen sind unter dem Oberbegriff ASIC ( = application specific in-
tegrated circuit) zusammengefasst. Dies sind Schaltungen, die durch physikalische Verände-
rungen  oder durch ein Konfigurationsprogramm an bestimmte Anforderungen angepasst wer-
den können. ASIC umfassen sowohl kundenspezifisch hergestellte IC (Vollkundendesign) mit 
speziell für den Kunden zugeschnittener Logik als auch Standardbausteine, in denen durch den 
Kunden mit Stromstößen Verbindungen hergestellt werden können, um ein bestimmtes Verhal-
ten zu erzielen. 

14.1  ASIC-Familien 

Es existiert heute eine Vielzahl von verschiedenen ASIC-Familien. Man kann ASIC grob un-
terscheiden nach: 

Programmierbare Logik-IC (PLD) 

Die Klasse der programmierbaren Logik-IC (Bild 14-1) hat sich als erste ASIC-Familie etab-
liert. Aus der Sicht der Hersteller sind die programmierbaren Logik-IC Standard-Bausteine, da 
sie für alle Kunden identisch gefertigt werden können. Durch die Programmiermöglichkeit von 
matrixförmig angeordneten UND- und ODER-Matrizen kann der Kunde im Haus die Schal-
tung so strukturieren, wie er sie benötigt. 

Halbkundendesign-ASICs 

Hier handelt es sich um ASIC, die matrixförmig angeordnete Gatter besitzen und die vom 
Hersteller durch die Strukturierung der Verbindungsleitungen den Kundenwünschen angepasst 
werden können. Die einzelnen Gatter sind vom Hersteller getestet und ihr Verhalten ist genau 
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bekannt, so dass eine Bibliothek von Zellen vorliegt, die vom Anwender mit Hilfe von Design-
Software zu einer kompletten Schaltung zusammengesetzt werden können. Halbkundendesign 
ASIC haben geringere Entwicklungskosten als Vollkundendesign ASIC, sie sind aber auch 
langsamer. Da sie die Chipfläche weniger gut ausnutzen, sind die Kosten pro Chip höher als 
beim Vollkundendesign-ASIC. In dieser Gruppe findet man die Gate-Arrays und die Standard-
zellen-ASIC. 

Vollkundendesign-ASICs 

Bei diesem ASIC-Typ handelt es sich um ein Design, das für den Kunden speziell angefertigt 
wird. Es unterscheidet sich durch nichts von einem normalen Standard-IC. Diese Lösung bietet 
die höchstmögliche Flexibilität. Es können alle Funktionen verwirklicht werden. Selbst analoge 
Schaltungsteile sind denkbar. Wegen der hohen Entwicklungskosten lohnt sich ein Vollkun-
dendesign nur bei sehr hohen Stückzahlen. Es können sehr hohe Integrationsdichten erzielt 
werden. Die Signalverarbeitungsgeschwindigkeit kann sehr hoch sein, wenn dies erforderlich 
ist. 

 

 Anwenderprogrammierbarer 
Logikbaustein (PLD) 

Channeled 
Gate Array  

Standard-Zellen-ASIC 

 
 

Bild 14-1 Struktur verschiedener ASIC-Typen. 

Aus Tabelle 14-2 geht hervor, dass von den anwenderprogrammierbaren Logikbausteinen bis 
hin zu den Vollkunden-IC die  Entwicklungszeit, die Entwicklungskosten, die Flexibilität so-
wie die sinnvolle Mindeststückzahl zunehmen, während die Chipfläche, die die Herstellungs-
kosten pro Chip bestimmt, abnimmt. Daraus ergeben sich die unterschiedlichen Anwendungs-
gebiete der unterschiedlichen ASIC-Arten. In der Praxis können sich allerdings leicht Abwei-
chungen von dieser Regel ergeben. So sind die anwenderprogrammierbaren Logikbausteine 
heute mit Gatteräquivalenten bis zu mehreren 100000 erhältlich. Sie kommen daher auch in 
den Bereich der VLSI-Bausteine. Manche Anwendungsmöglichkeiten wurden nur durch die 
Entwicklung von ASIC erschlossen: Multifunktions-Armbanduhren, Scheckkarten-Rechner 
oder portable PC. Wesentliche Bestimmungsgrößen bei der Entwicklung digitaler Systeme 
sind: 

• Der Entwicklungsaufwand ist für verschiedene ASIC sehr unterschiedlich. 
• Bauteilekosten pro Funktion. In der Regel sind die Bauteilekosten für ASIC mit hohem 

Entwicklungsaufwand am geringsten, wodurch sich diese nur bei großen Stückzahlen loh-
nen. Dazu  gehören auch die Zusatzkosten für Gehäuse, Stromversorgung, Leiterplatte usw. 

• Lager- und Vorratskosten für Material 
• Wartungs- und Service-Aufwand 
• Realisierungszeit des Projekts 



14.1  ASIC-Familien 189 

• personelle Entwicklungskapazität 
Die verschiedenen ASIC-Typen müssen hinsichtlich dieser Punkte überprüft werden, um die 
geeignete Technologie für den jeweiligen Anwendungsfall zu finden. Die Motivation für die 
Wahl eines bestimmten ASIC kann sehr unterschiedlich sein. ASIC haben generell einige Vor-
teile: 

• Ein ASIC beinhaltet in der Regel die Funktion von vielen Standard-Bauelementen, damit 
sinkt die Fehlerwahrscheinlichkeit der Schaltung, sie wird zuverlässiger.  

• Der Entflechtungsaufwand auf der Leiterplatte ist geringer. Man kann unter Umständen 
eine billigere Leiterplatte verwenden. 

• Es ist schwierig, ein ASIC zu kopieren, da seine Funktion von außen nur schwer durch-
schaut werden kann. Damit kann ein Entwicklungsvorsprung gegenüber der Konkurrenz 
leichter aufrechterhalten werden. 

• ASIC lassen sich oft einfacher testen als eine Schaltung aus einer Vielzahl von Standard-
Komponenten, vorausgesetzt, dass entsprechende Testmöglichkeiten bei der Entwicklung  
berücksichtigt wurden. 

Tabelle 14-1 Systematik der ASIC nach der Struktur.  

ASIC-Typ 
Anwender-

programmierbare IC 
Gate-Arrays 

Standardzellen-
ASIC 

Vollkun-
den-ASIC 

Feste Struktur 
UND/ODER-Matrix, 

Logikzellen-Matrix 
Logische 
Gatter 

digitale und analo-
ge Standardzellen 

— 

programmier- 

bare Struktur 

Fuse, Antifuse,el. Ladun-
gen, programmgesteuerte 
Matrizen 

Verbindungs-
leitungen 

Alle Masken 
Alle  

Masken 

Ausführungs-
formen 

PLA, PAL, PROM, 
EPROM, FPGA  

  

Channelled 
Gate-Array, 
Sea of Gates 

Standardzellen-IC, 
Block-Zellen-IC 

— 

Tabelle 14-2 Vergleich von Standardkomponenten und verschiedenen ASIC-Familien. Angedeutet sind 
die grundsätzlichen Tendenzen des Aufwandes und der Leistungen der verschiedenen ASIC. 

Parameter 
Standard- 

Komponenten

Anwender-
programmierbare-

IC 

Halbkunden- 

design-ASIC 

Vollkunden- 

design-ASIC 

Leistung mittel-hoch mittel hoch sehr hoch 

Entwicklungskosten niedrig niedrig mittel-hoch hoch-sehr hoch 

Maskenkosten -  -  niedrig-mittel hoch 

Entwurfsdauer kurz mittel mittel mittel-hoch 

Stückkosten niedrig hoch mittel niedrig 

Integrationsdichte hoch niedrig hoch sehr hoch 
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14.2  Programmierbare Logik-IC (PLD) 

Programmierbare Logik-IC (PLD) sind im Prinzip Standard-Bauelemente, die vom Kunden für 
seine Zwecke konfiguriert werden können. Ihr elektrisches Verhalten ist genau bekannt, so 
dass sehr genaue Modelle für die Simulation vorhanden sind. Daher können programmierbare 
Logik-IC sehr einfach entwickelt werden. Ihr Stückpreis, bezogen auf die vorhandene Gatter-
zahl kann gering sein, da sie in großen Stückzahlen hergestellt werden können. Allerdings 
gelingt es bei den wenigsten Designs einen hohen Ausnutzungsgrad der Gatter zu erzielen. Sie 
eignen sich daher besonders für geringe Stückzahlen. Ihr Vorteil liegt auch darin, dass sie kurz-
fristig geändert werden können. Programmierbare Logik-IC haben auch den Vorteil, dass sie 
vom Hersteller bereits hardwaremäßig getestet wurden. Der Anwender muss nur noch die Kon-
figuration prüfen. 

Programmierbare Logik-IC werden im Folgenden mit ihrem englischen Oberbegriff „pro-
grammable logic device“  (PLD) bezeichnet. 

Durch die Möglichkeit, die Logik vom Anwender konfigurieren zu können, verknüpfen PLD 
so die Vorteile eines Standardbausteins mit kundenspezifisch hergestellten Bausteinen, die den 
Bedürfnissen des Kunden optimal angepasst sind. 

14.2.1  PLD-Typen 

Unterschieden werden kann nach der Art der Programmierung: 

• Fuse-Link, einmal elektrisch herstellbare, dann dauerhafte Trennung 

• Antifuse, einmal elektrisch herstellbare, dann dauerhafte Verbindung. 

• 1-Bit RAM-Zellen: Flipflops 

• EPROM-Zellen: dauerhafte Ladungsspeicherung, kann durch UV-Licht gelöscht werden. 

• EEPROM-Zellen: dauerhafte Ladungsspeicherung, kann elektrisch gelöscht werden. 

 

In PLD werden programmierbare UND- und ODER-Matrizen verwendet. Abhängig von deren 
Struktur kann man unterscheiden nach: 

PLA Programmierbare UND und ODER-Matrix 

PAL Programmierbare UND-Matrix, feste ODER-Matrix 

GAL Wie PLA, aber zusätzlich mit programmierbaren Ausgangsnetzwerken 

EEPROM Programmierbare ODER-Matrix, feste UND-Matrix 

FPGA, LCA Elektrisch programmierbares logisches Array, flüchtig 

CPLD, EPLD elektrisch programmierbares logisches Array, nicht flüchtig, mit UV-
Licht oder elektrisch löschbar 

 

Im Folgenden werden die in den PLD verwendeten UND- und ODER-Gatter, die in der Regel 
eine Vielzahl von Eingängen haben, vereinfacht dargestellt (Bild 14-2). 
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x0 
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x2 

&
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Darstellung 
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Darstellung 

programmierbare Verbindung 

210 xxxy ¬¬=  

1 

1 

1 

1

1

1 programmierte Verbindung 

Bild 14-2 Vollständige und vereinfachte Darstellung eines UND-Gatters in einer PLD. 

14.3  ROM, EPROM, EEPROM 

Mit nichtflüchtigen Speichern wie ROM, PROM, EPROM, EEPROM usw. können Schaltnetze 
realisiert werden. Sollen zum Beispiel zwei Funktionen mit 4 Eingangsvariablen realisiert 
werden, so benötigt man ein ROM mit 16×2Bit Kapazität. Unter jeder der 16 Adressen werden 
die Funktionswerte der beiden Funktionen gespeichert, wobei alle Funktionen möglich sind. 
Ein ROM ist also sehr universell. Es kann aber ineffektiv sein, wenn eine Funktion nur sehr 
wenige Einsen oder Nullen in der Wahrheitstabelle hat. 

 

 
x0 

x1 

x2 

& & & & &
≥1 f0 

≥1 f1 

≥1 f2 

& & &

≥1 f3 

ODER-Matrix 
(programmierbar) 

UND-Matrix 
(fest) 

1 

1 

1 

 

Bild 14-3 Darstellung eines 8×4-ROM (32Bit) mit UND- und ODER-Matrix. 
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Man verwendet ROM in den folgenden Fällen bevorzugt: 

• Wenn die Funktion als Wahrheitstabelle gegeben ist. Dann kann die Funktion ohne weitere 
Bearbeitung direkt gespeichert werden. 

• Wenn die Funktion sehr viele Produktterme benötigt. Das ist zum Beispiel der Fall bei 
arithmetischen Funktionen. 

• Wenn absehbar ist, dass die Schaltung oft geändert werden muss und der Aufwand nicht 
bekannt ist. 

• Wenn es viele Einsen in der Wahrheitstabelle gibt. 

Das ROM kann als ein Schaltnetz verstanden werden, welches eine feste UND-Matrix zur 
Adressdecodierung und eine maskenprogrammierbare ODER-Matrix hat (Bild 14-3).   

14.4  PLA 

PLA (Programmable Logic Array) bestehen aus einer programmierbaren UND- und einer pro-
grammierbaren ODER-Matrix, wie dies im Bild 14-4 festgehalten ist. Mit einem PLA kann die 
DNF direkt verwirklicht werden, wobei die Produktterme durch die UND-Matrix und die 
Summen-Terme durch die ODER-Matrix realisiert werden. Die Anzahl der Produktterme ist 
dabei kleiner als die bei n Eingängen mögliche von 2n. Gemeinsame Produktterme können 
mehreren Eingängen zugeführt werden. 

 
x0 

x1 

x2 

& & & & &
≥1 f0 

≥1 f1 

≥1 f2 

&

≥1 f3 

ODER-Matrix 
(programmierbar) 

UND-Matrix 
(programmierbar) 

1 

1 

1 

 

Bild 14-4 Allgemeines Schema eines PLA. 

Im allgemeinen Schema in Bild 14-4 können einige Verbesserungen durchgeführt werden: 

• Die Ausgänge sollten auch negiert werden können, denn bei vielen Funktionen ist das 
Komplement mit weniger Aufwand realisierbar. 

• Es werden oft Tri-State-Ausgänge benötigt. In diesem Fall ist es sinnvoll, dass einige der 
Ausgänge auch als Eingänge verwendet werden können. 
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• Die Ausgänge müssen unter Umständen zwischengespeichert werden. Daher haben viele 
PLA am Ausgang Flipflops. 

• Durch die Einführung einer invertierten Rückführung aus der ODER-Matrix können unter 
Umständen viele Produktterme gespart werden.  

An Hand der beiden folgenden Beispiele soll nun der Nutzen und die Realisierung der Verbes-
serungen diskutiert werden. Das EXOR-Gatter des PLA in Bild 14-5 dient zur Kontrolle der 
Polarität des Ausgangs. Liegt dessen zweiter Eingang auf  0, so wirkt das Gatter als Buffer, 
liegt der zweite Eingang auf 1, so wird der Ausgang invertiert. Man kann also immer zwischen 
der Realisierung einer Funktion und ihrer Invertierten wählen und so Produktterme sparen. 

Außerdem hat das PLA in Bild 14-5 Tri-State-Gatter an den Ausgängen. Die Enable-Ausgänge 
werden durch einzelne Produktterme kontrolliert. Alternativ gibt es PLA, deren Enable-
Eingänge durch extra Ausgänge an der ODER-Matrix gesteuert werden, oder es werden exter-
ne Pins verwendet. Da die Ausgänge als Tri-State-Ausgänge ausgeführt sind, die auch einen 
Eingang haben, ist es möglich sie als bidirektionale Schnittstelle zu verwenden. Die entspre-
chenden Eingänge werden auch in die UND-Matrix geführt. Die höhere Flexibilität führt zu 
einer besseren Ausnutzung des PLA. 
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x2 
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≥1 f0 
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1

1

1

1

1

1

  

Bild 14-5 PLA mit EXOR-Gatter und bidirektionalem Tri-State-Ausgang. 

Das PLA in Bild 14-7 hat eine invertierte Rückführung aus der ODER-Matrix, die auch Kom-
plement-Array genannt wird. Diese Rückführung hilft Produktterme zu sparen, wenn man 
Probleme bearbeitet, bei denen bei einer Reihe von Ausnahmen die Ausgänge einen bestimm-
ten Wert annehmen sollen. Es soll als Beispiel mit diesem PLA ein 7-Segment-Decoder für 
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BCD-Zahlen gebaut werden, der für Eingangswerte größer als 1001B ein E für Error anzeigt. 
Die Definition der Ziffern mit dem entsprechenden Code ist in Bild 14-6 gezeigt. 

bf

a

g
ce

d
 

Bild 14-6 Definition der 10 Ziffern und E für Error einer 7-Segmentanzeige. 

Man benötigt für die Ziffern 0-9 10 Produktterme. Diese werden auch an den Eingang des 
Komplement-Arrays angeschlossen. Beim Auftreten eines dieser Produktterme bleibt das 
Komplement-Array wirkungslos. Wird dagegen kein Produktterm angesprochen, weil eine 
Pseudotetrade, also eine der Binärzahlen zwischen 10 und 15 anliegt, so werden mit dem 
Komplement-Array die Segmente für den Buchstaben E angesprochen. 
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Bild 14-7 PLA mit invertierter Rückführung aus der ODER-Matrix (Beispiel für 7-Segmentanzeige). 

In Bild 14-8 ist ein PLA für die Realisierung von Schaltwerken in vereinfachter Form darge-
stellt. PLA dieser Art werden auch als Sequencer bezeichnet. Die gezeigte Schaltung hat: 
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• Zustandsregister mit den Ausgängen P0, P1 und P2. Die Register-Ausgänge werden in die 
UND-Matrix zurückgekoppelt. 

• Der Eingang P/¬E kann so programmiert werden, dass er entweder als Enable für die Tri-
State-Buffer oder aber als Preset für die D-Flipflops wirkt. 

• Das Komplement-Array kann genutzt werden, um einen bestimmten Zustand beim Ein-
schalten oder bei Fehlern einzustellen. Das Komplement-Array spricht an, wenn keiner der 
direkt verwendeten Zustände beim Einschalten auftritt. 
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Bild 14-8 PLA für die Realisierung von Schaltwerken (Sequencer), Programmierung für das Beispiel: 
mod-5-Vorwärts/Rückwärts-Binärzähler. 

Als Beispiel soll nun ein mod-5-Binär-Zähler, der für das Eingangssignal x = x0 = 0 vorwärts 
und für x = x0 = 1 rückwärts zählt, mit dem in Bild 14-8 gezeigten PLA entwickelt werden. Mit 
diesen Informationen erhält man die Tabelle 14-3. Aus der Zustandsfolgetabelle kann die An-
steuertabelle (Tabelle 14-4) für die RS-Flipflops des Bausteines entwickelt werden. 
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Tabelle 14-3 Zustandsfolgetabelle des mod-5-Binärzählers. 

   

P2
m P1

m P0
m 

x0=0 

P2
m+1 P1

m+1 P0
m+1 

x0=1 

P2
m+1 P1

m+1 P0
m+1 

  0      0      0 0        0        1      1        0        0      

  0      0      1 0        1        0      0        0        0      

  0      1      0 0        1        1      0        0        1      

  0      1      1 1        0        0      0        1        0      

  1      0      0 0        0        0      0        1        1      

Tabelle 14-4 Ansteuertabelle für die RS-Flipflops des mod-5-Binärzählers. 

   

P2
m P1

m P0
m 

x0= 0 

R2S2   R1S1   R0S0

x0 = 1 

R2S2   R1S1   R0S0 

  0      0      0 d0       d0       01   01       d0       d0    

  0      0      1 d0       01       10   d0       d0       10    

  0      1      0 d0       0d       01   d0       10       01    

  0      1      1 01       10       10   d0       0d       10    

  1      0      0 10       d0        d0  10       01        01    

 

Aus der Ansteuertabelle werden die KV-Diagramme (Bild 14-9) abgeleitet. In diesen befinden 
sich freie Felder, die zu den Zuständen gehören, die im normalen Zähl-Zyklus nicht vorkom-
men.  Aus diesen Zuständen, die sich beim Einschalten, oder aber durch eine Störung einstellen 
können, soll der Zähler in den Folgezustand (P0,P1,P2) = (0,0,0) gehen. 
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Bild  14-9 KV-Diagramme für Ansteuerung der RS-Flipflops. 
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Aus den KV-Diagrammen erhält man die Gleichungen:  

R0 = P0¬P2         S0 = ¬P0¬P1P2x ∨ ¬P0P1¬P2x ∨ ¬P0¬P2¬x 

                                                                                                                        

R1 = ¬P0P1¬P2x ∨ P0P1¬P2¬x     S1 = ¬P0¬P1P2x ∨ P0¬P1¬P2¬x 

                  

R2 = ¬P0¬P1P2x ∨ ¬P0¬P1P2¬x    S2 =  P0P1¬P2¬x ∨ ¬P0¬P1¬P2x 

                 

Die mit den Ziffern 1 bis 8 markierten Implikanten werden mit den ersten 8 UND-Gattern der 
UND-Matrix in Bild 14-8 realisiert. An die Ausgänge dieser 8 UND-Gatter wird auch das 
Komplement-Array angeschlossen, so dass das Komplement-Array bei den Zuständen des 
normalen Zyklus nicht anspricht. In allen anderen Fällen legt das Komplement-Array über das 
zehnte UND-Gatter der UND-Matrix eine 1 an die R-Eingänge der RS-Flipflops und setzt sie 
so zurück. Die ODER-Matrix wird entsprechend den Gleichungen programmiert. Der P/¬E-
Eingang wird so programmiert, dass er als Enable für die Ausgänge wirkt. Der entsprechende 
Programmierpunkt wurde offen gelassen, was einer 1 entspricht.   

14.5  PAL  

Eine PAL (Programmable Array Logic) (Bild 14-10) ist eine Vereinfachung der PLA. Sie 
besitzt nur eine programmierbare UND-Matrix. Die ODER-Matrix ist auf eine Zusammenfas-
sung von wenigen (in Bild  14-10 sind es 4) Produkttermen beschränkt. 

 x0 x1 x2 ODER-Matrix

UND-Matrix 

&

≥1 f0 &

&

&

&

≥1 f1 &

&

&

&

≥1 f2 &

&
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Bild 14-10 PAL mit 3 Eingängen und 3 Ausgängen und mit 4 Produkttermen pro Ausgang. 

Mit einer PAL können viele Funktionen mit geringerem Hardware-Aufwand als mit einer  PLA 
realisiert werden. Der Aufbau einer PAL erlaubt aber nicht, dass gemeinsame Produktterme 
mehrerer Funktionen gemeinsam genutzt werden können wie bei einer PLA. 
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Die in Bild 14-11 gezeigte PAL 18P8 hat EXOR-Gatter zur Polaritätssteuerung. Die Tri-State-
Ausgänge werden durch Produktterme gesteuert. Die Ausgänge sind auch als Eingänge nutz-
bar, wodurch das Einsatzspektrum der PAL größer wird. 

Einige PALs haben heutzutage die Möglichkeit, die Produktterme gezielt einzelnen Ausgängen 
zuzuweisen (product term steering). Das heißt allerdings nicht, dass Produktterme von ver-
schiedenen Funktionen gemeinsam genutzt werden können. 
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Bild 14-11  PAL 16L8. 
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Bei PAL ist ein einheitliches Schema zur Bezeichnung üblich: 

 

Anzahl der Ausgänge Anzahl der Eingänge

PAL  16   R   8 

R  synchroner Registerausgang 
Ra asynchroner 
 Registerausgang 
S  kombinatorischer Ausgang 
  mit „produkt term steering“ 
H Ausgang aktiv High 
L Ausgang aktiv Low 
V variable Signalausgabe  

X EXOR-Gatter und Registerausgang 
XP EXOR-Gatter und programmierbare  
 Ausgangspolarität 
XRP EXOR-Gatter und programmierbare 
 Registerpolarität 
C Komplementärausgang 
P Ausgang mit programmierbarer 
 Polarität 

 

14.6  GAL  

Mit GALs (Generic Array Logic) werden Verbesserungen der PALs bezeichnet, die an den 
Ausgängen programmierbare Zellen (OLMC = Output Logic Macro Cell) enthalten, die den 
erforderlichen Bedingungen angepasst werden können, indem sie als Eingang, Ausgang oder 
Tri-State-Ausgang programmiert werden. 

 

GALs sind in EECMOS-Technologie hergestellt, die den CMOS-Prozess mit elektrisch lösch-
barer Speichertechnologie (EEPROM) kombiniert. Sie haben daher eine relativ geringe Ver-
lustleistung und recht hohe Geschwindigkeit. Die Bausteine sind oft (typisch 2000-mal) pro-
grammierbar und löschbar. Ein Vorteil liegt auch darin, dass die Programmierbarkeit vom 
Hersteller geprüft werden kann. 

Da die Ausgänge konfigurierbar sind, genügen eine geringe Anzahl GALs, um ein großes Pro-
duktspektrum an PLD zu ersetzen. 

 

Die Struktur der GAL16V8 ist in Bild 14-12 gezeigt. Die GAL 16V8 besitzt 8 OLMC. Jedes 
OLMC kann 8 Produktterme ODER-verknüpfen.  Der Eingang x1 kann als Takteingang CLK, 
der Eingang x10  als Output Enable ¬OE verwendet werden.  

 

Ein OLMC ist in Bild 14-13 dargestellt. Einige der OLMC können bidirektional betrieben 
werden, nur die OLMC 15 und 16 können nur als Ausgang wirken. Alle OLMC haben Rück-
kopplungen in die UND-Matrix. 

Man erkennt in Bild 14-13, dass es 16 verschiedene Eingänge gibt, so dass es mit der Inversion 
32 verschiedene Spalten der UND-Matrix gibt. 

Das OLMC des GAL16V8 wird durch die Signale XOR(n), SYN, AC0, AC1(n) gesteuert. SYN, 
AC0 wirken global auf alle OLMC, XOR(n) und AC1(n) sind individuell für jedes OLMC n 
wählbar. XOR(n) steuert die Polarität des Ausgangs.  XOR(n) = 0 bedeutet aktiv LOW.  
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Bild 14-12 Struktur des GAL16V8. 
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Bild 14-13 OLMC Nr. n des GAL16V8, das benachbarte OLMC hat die Nr. m.    

Tabelle 14-5 Bedeutung der Signale SYN, AC0 und AC1(n). 

Betriebsart Funktion des 
OLMC 

SYN AC0 AC1 
(n) 

Beschreibung 

Simple Mode 

(Schaltnetz) 

Eingang 1 0 1 
- Tri-State-Ausgang  hochohmig 
- Eingangssignal in nächste Zelle  
- nur für OLMC 12-14 und 17-18  

Ausgang 1 0 0 

- Ausgang immer eingeschaltet 
- keine Rückkopplung 
- 8 Produktterme  für Logik 
- für alle OLMC möglich 

Complex Mode 

(Schaltnetz)  
Tri-State 
Ein-/Ausgang 

1 1 1 
- Freigabe über Produktterm 
- 7 Produktterme für Logik 

Registered 
Mode 

(Schaltung mit 
Registern) 

Register Tri-
State 
Ein-/Ausgang 

0 1 1 
- CLK wirksam 
- OE durch Produktterm 
- 7 Produktterme für Logik 

Register 
Tri-State 
Ein-/ Ausgang 

0 1 0 
- CLK wirksam 
- Freigabe des Ausgangs mit ¬OE 
- 8 Produktterme für Logik 
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14.7  Programmierung von PLD-Bausteinen 

Die Programmierung von PLD-Bausteinen wird mit einer Datei im JEDEC-Format durchge-
führt. In Bild 14-14 ist ein Beispiel für eine GAL16V8 gezeigt. Die Datei hat zu Beginn jeder 
Zeile eine Zeilenadresse, welche mit *L beginnt. 

In jeder Zeile stehen 32 Bits, da ein GAL16V8 zusammen mit den invertierten Eingängen 32 
Spalten in der UND-Matrix belegt, wie man in Bild 14-12 erkennt. Eine 1 bedeutet, dass die 
Verbindung an der entsprechenden Stelle unterbrochen ist; eine 0, dass sie verbunden ist. 

*L0000 1111110110111101110111111111111 
*L0032 1111010111111011111011110111111 
*L0064 1111111111010101111110101101111 
*L0096 1110111101111111110111111111111 
*L0128 1111111110111110111111111011111 

Bild 14-14 Auszug aus dem JEDEC-File des GAL16V8 

Die Zeilen des JEDEC-Files des GAL16V8 sind folgendermaßen belegt: 

 
0000-2047  Verbindungen der Logikmatrix entsprechend obigem Beispiel 
2048-2055 XOR(n)-Bit für OLMC 12-19 
2056-2119  Elektronische Signatur: 64 Bit für eigene Anwendung 
2120-2127  AC1(n)-Bit für OLMC 12-19 
2128-2191  Produkttermfreigabe PT0 bis PT63 
2192           SYN-Bit 
2193        AC0-Bit 
 

Zum Programmieren wird die GAL in einen Programmiermodus versetzt, indem an einen Pin 
eine bestimmte Spannung gelegt wird (hier Pin 2 = 16,5V). An 6 Pins (Pin 18, Pin 3 bis Pin 7) 
werden dann Zeilen der Speichermatrix angewählt und mit dem Takt SCLK (Pin 8) die Bits, die 
an SDIN (Pin 9) liegen, in das Schieberegister geschoben. 

GALs haben einen elektronischen Kopierschutz. Wenn das Sicherheitsbit gesetzt ist, kann die 
Programmierung nicht mehr gelesen werden. Nur eine Löschung ist dann möglich. Der Daten-
erhalt ist auf 10 Jahre garantiert. Der Programmiervorgang dauert wenige Sekunden. 

14.7.1  Test  

Für Schaltwerke ist es wichtig zu testen, ob die Zustände, in die das Schaltwerk im normalen 
Betrieb nicht kommen darf, ordnungsgemäß verlassen werden. Dazu ist es sinnvoll, dass man 
alle Register mit einem beliebigen Wert laden kann. 

Das GAL16V8 hat deshalb eine Schaltung, in der die Register geladen werden können. Diese 
Betriebsart wird durch Anlegen von 15V an PRLD (Pin 11) aktiviert. Über den seriellen Ein-
gang SDIN (Pin 9) können die Daten dann mit dem Takt DCLK (Pin 1) durch die Register 
geschoben werden, die als Schieberegister geschaltet sind. Am seriellen Ausgang SDOUT (Pin 
12) können die Daten wieder entnommen werden. Es werden nur die Registerzellen involviert, 
die als Registerausgang konfiguriert sind. 
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14.8  Field Programmable Gate Arrays (FPGA) 

Field Programmable Gate Arrays (FPGA) sind Standard-Logikbausteine, die vom Anwender 
für seine Zwecke konfiguriert werden müssen. Sie bestehen aus mehreren PLD, die über eine 
Verbindungsmatrix miteinander kommunizieren. Die Vorteile von FPGA sind: 

• Für FPGA werden von den Herstellern Software-Bausteine zur Verfügung gestellt,   
so genannte Intellectual Property Core (IP-Core). Es stehen z.B. Prozessorkerne, 
Schnittstellen, Speicherverwaltungen und viele andere häufig verwendete digitale 
Schaltungen z.B. im VHDL-Code (vergl. Kap 15) zur Verfügung.  

• Es ist keine Lagerhaltung beim Kunden erforderlich, da Standardbauelemente leicht 
verfügbar sind. Bei kundenspezifischen Designs muss man dagegen nach einer Bestel-
lung beim Halbleiterhersteller oft mehrere Monate Lieferzeit einkalkulieren. 

• Die Hardware des FPGA wird vom Hersteller getestet, daher braucht der Anwender 
nur noch ein reduziertes Prüfprogramm zu fahren. 

• Im Gegensatz zu einer diskreten Realisierung werden weniger Bauelemente benötigt, 
wodurch die Schaltung zuverlässiger wird. 

• Der Aufwand für das Entflechten der Leiterbahnen ist geringer. Dadurch kann unter 
Umständen eine billigere Platine verwendet werden. 

• In FPGA kann eine optimale Architektur realisiert werden. Sie sind daher sehr 
schnell. 

• Änderungen sind leicht durchzuführen, da nur das Programm geändert werden muss. 

14.8.1  Aufbau eines FPGA 

Im Folgenden wird die FPGA-Familie Spartan II des Halbleiter-Herstellers Xilinx beschrieben 
[27]. Deren FPGA enthalten bis zu 600 000 Gatter. Die FPGA sind in CMOS-Technik aufge-
baut. 

FPGA sind anwenderprogrammierbare Arrays aus logischen Blöcken, meist in Form einer 
PLA. Die logische Konfiguration wird durch ein Programm festgelegt, welches in einem 
SRAM auf dem Chip gespeichert wird. Die Konfigurierung ist also flüchtig. Das SRAM wird 
daher beim Starten aus einem ROM oder PROM geladen. FPGA anderer Hersteller können 
durch Fuses oder Antifuses programmierbar sein. Die Architektur der Spartan II-FPGA gliedert 
sich in verschiedene konfigurierbare Blöcke: 

• Die Logik ist in konfigurierbaren Logik-Blöcken (CLB) zusammengefasst. Die logi-
sche Funktion wird in RAM-Zellen gespeichert, die mit dem Konfigurationspro-
gramm programmiert werden. Die CLB sind matrixförmig in der Mitte des FPGA an-
geordnet. 

• Die Ein- und Ausgänge werden durch Input/Output-Blöcke (IO-Blocks) realisiert. Sie 
lassen sich als Eingang, Ausgang, Tri-State-Ausgang oder als bidirektionale Schnitt-
stelle schalten. Die IO-Blöcke sind am Rand des FPGA neben den Pins des Gehäuses 
angeordnet. 

• Die Verbindungsleitungen sind in einem programmierbaren Netz realisiert, welches 
die logischen Blöcke miteinander verschaltet.  

• Es gibt RAM-Blöcke mit denen sich einfach ein digitaler Speicher realisieren lässt. 

• Für die Taktversorgung stehen 4 Delay-Locked Loop (DLL) zur Verfügung. Dies sind 
Bausteine, mit denen verzögerte Takte für die verschiedenen Schaltungsteile erzeugt 
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werden können. Da man sehr große Schaltungen realisieren kann, muss man räumlich 
entfernte Schaltungsteile mit einem verzögerten Takt ansteuern wenn man hohe Takt-
frequenzen erreichen will. 

In Tabelle 14-6 sind die verschieden großen FPGA der Spartan II-Familie aufgelistet. 
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Bild 14-15 FPGA, schematisch. Konfigurierbare Logik-Blöcke (CLB), Delay-Locked Loops (DLL) 
Block-RAM und IO-Blöcke sind angedeutet. 

Tabelle 14-6 Familie der Spartan II FPGA der Firma Xilinx. 

Typ Typische Anzahl Gatter   CLB Ein- und Ausgänge Block-RAM 

XC2S50E  50 000  384 182 32K 

XC2S100E 100 000 600 202 40K 

XC2S150E 150 000 864 265 48K 

XC2S200E 200 000 1176 289 56K 

XC2S300E 300 000 1536 329 64K 

XC2S400E 400 000 2400 410 160K 

XC2S600E 600 000 3456 514 288K 
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14.8.2  Konfigurierbare Logik-Blöcke (CLB) 

Die CLB sind alle identisch. Sie sind, wie in Bild 14-15 gezeigt, in Matrizen angeordnet. So 
hat zum Beispiel der Baustein XC2S50E 384 CLB. Jedes CLB enthält 2-mal den in Bild 14-16 
gezeigten Grundbaustein. Die mit LUT (look-up table) bezeichneten Blöcke generieren eine 
beliebige Funktion mit 4 Eingangsvariablen. Sie bestehen aus einem Speicherbaustein, ähnlich 
wie in Kapitel 14.3 beschrieben, nur dass hier ein RAM verwendet wird. Durch die Werte, die 
beim Konfigurieren im RAM gespeichert werden, werden die Funktionswerte festgelegt. Das 
RAM kann alternativ auch als normaler RAM-Speicher verwendet werden. Die beiden D-
Flipflops können für die Speicherung der Zustandsgrößen verwendet werden. Sie können durch 
die Signale R und S gesetzt und rückgesetzt werden. Für die Realisierung schneller arithmeti-
scher Operationen steht ein Baustein mit einer Carry-Logik ähnlich dem in Kapitel 12 be-
schriebenen Carry-Look-Ahead zur Verfügung. Die Konfiguration der logischen Funktion des 
Schaltnetzes wird im beschriebenen Konfigurationsspeicher festgehalten. 
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Bild 14-16 Einer von 2 Grundbausteinen (Slice), der in einem konfigurierbaren Logik-Block (CLB) 
enthalten ist (vereinfacht). 

Die beiden Ausgänge des Grundbausteins (Slice) können mit einem Multiplexer ausgewählt 
werden, so dass zusammen mit dem Auswahleingang eine Funktion mit 9 Eingangsvariablen 
realisiert werden kann. Zusammen mit dem zweiten Slice auf dem CLB können sogar Funktio-
nen mit 19 Variablen mit einem CLB erzeugt werden. In Bild 14-17 ist die Verschaltung der 
beiden Slices durch die Multiplexer gezeigt. Die Programmierung der Funktionen in den LUT 
und die Konfigurierung der Multiplexer wird mit dem Konfigurationsprogramm festgelegt.  
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Bild 14-17 Konfigurierbarer Logik-Block (CLB) der Spartan II-Familie von Xilinx mit zwei Slices 
(vergl. Bild 14-16) und 3 programmierbaren Multiplexern. 

14.8.3  IO-Block 

In Bild 14-18 ist ein IO-Block der Spartan II-Familie von Xilinx vereinfacht dargestellt. Je-
weils ein IO-Block ist für einen Anschluss-Pin vorgesehen. Der Baustein XC2S50E hat zum 
Beispiel 182 IO-Pins und genauso viele IO-Blöcke. Ein ESD-Netzwerk dient dem Schutz vor 
Überspannungen. ESD ist die Abkürzung für Electrostatic Discharge, womit statische Entla-
dungen gemeint sind, die das Bauelement zerstören können.  

 

Jeder IO-Block enthält folgende Optionen, die über programmierbare Multiplexer und Buffer 
eingestellt werden können: 

• Eine Anpassung an verschiedene Logik-Pegel, die über Referenzspannungen pro-
grammiert werden können. 

• Zwei D-Flipflops als Zwischenspeicher für die Eingabe IN oder Ausgabe OUT von 
Daten. Aber auch ein direkter Ausgang kann programmiert werden. Auch das Enable-
Signal des Ausgangsbuffers kann in einem Flipflop zwischengespeichert werden.  

• Die Möglichkeit, den Ausgang als Tri-State-Ausgang zu programmieren. Der Aus-
gang wird dann mit dem Eingang OE über einen Buffer entweder aktiv oder hochoh-
mig geschaltet. Der Eingang ist immer lesbar. 

• Die D-Flipflops können mit dem Eingang S/R je nach Programmierung synchron oder 
asynchron gesetzt oder zurückgesetzt werden.  
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Bild 14-18 Vereinfachter IO-Block der Spartan II-Familie von Xilinx.  

14.8.4  Verbindungsleitungen 

Die Flexibilität des FPGA wird zu einem wesentlichen Teil durch vielseitige Programmie-
rungsmöglichkeiten der Verbindungsleitungen erreicht. Die vorhandenen Leitungen können 
durch Schaltmatrizen und „programmable interconnect points“ (PIP) in vielfältiger Weise 
miteinander verbunden werden. Die Ein- und Ausgänge der CLB und der IO-Blöcke können so 
programmiert werden, dass sie an die umliegenden Verbindungsleitungen angeschlossen wer-
den. Es gibt folgende Arten von Verbindungselementen: 

• Local Routing: Innerhalb der CLB werden die LUT sowie die Flipflops verschaltet 
und Verbindungen zu benachbarten CLB hergestellt. 

• General Purpose Routing: Die meisten Verbindungen werden durch das General Pur-
pose Routing hergestellt. Dazu sind Schaltmatrizen (General Routing Matrix = GRM) 
um die CLB herum angeordnet. Mit 24 Leitungen in jede Richtung sind Verbindun-
gen zu benachbarten GRM möglich. 96 Leitungen mit Verstärkern sind für weiter ent-
fernte GRM vorhanden. 12 Leitungen (Long Lines) dienen der Verbindung zu sehr 
weit entfernten GRM. Diese Leitungen arbeiten auch bidirektional, ähnlich wie in 
Bild 4-14 gezeigt. 

• IO-Routing: Zusätzliche Verbindungen, ringförmig um den Chip angeordnet, erlauben 
eine weitgehend freie Zuordnung der Pins, ohne dass die Anordnung der CLB geän-
dert werden muss. 

• Dedicated Routing: Hiermit sind jeweils vier Tristate-Busse gemeint, die an jedes 
CLB angeschlossen werden können. Außerdem gibt es 2 Leitungen pro CLB, die das 
Carry in Carry-Look Ahead-Schaltungen weitergeben. 
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14.8.5  Programmierung eines FPGA 

Die Programmierung eines FPGA beginnt in der Regel mit der Eingabe der Schaltung entwe-
der: 

• in schematischer Form mit einer graphischen Eingabe, 

• oder durch eine Hardware-beschreibende Programmiersprache (z.B. VHDL = very 
high speed integrated circuit hardware description language, siehe Kapitel 15) 

In der Regel stellen die FPGA-Hersteller auch Makros zur Verfügung, die oft benötigte digitale 
Schaltungen beschreiben. 

Diese Daten werden in eine genormte Netzliste konvertiert, die EDIF-File genannt wird. Sie 
enthält die Daten aller Gatter sowie die Verbindungen zwischen ihnen. Nicht berücksichtigt 
sind aber die physikalischen Daten der Verbindungsleitungen wie zum Beispiel die Laufzeit. 
Die Netzliste bildet auch die Grundlage für eine Überprüfung der Schaltung auf ihre logische 
Funktion. 

Anschließend kann aus dem EDIF-File eine Zuordnung der Gatter auf die CLB stattfinden 
(Implementation). Gleichzeitig werden die Verbindungsleitungen festgelegt. Dieser Optimie-
rungsvorgang heißt „Place and Route“. Hierbei werden Vorgaben des Benutzers berücksichtigt 
wie Lage der Pins, kritische Pfade usw. 

Mit den Daten der nun physikalisch vollständig bekannten Schaltung ist eine Simulation der 
Schaltung mit realistischen Laufzeiten möglich. Dieser Schritt heißt Verifikation.  

Aus dem Design wird abschließend ein Bitstrom generiert, welcher die Konfigurationsdaten 
enthält. Die Konfigurationsdaten werden im FPGA in RAM-Speichern gespeichert, die beim 
Konfigurierungsvorgang zu einem langen Schieberegister zusammengeschaltet werden können. 
Die Anzahl der Konfigurationsbits variiert je nach Größe des FPGA zwischen 630kBit 
(XC2S50E) und 3,9MBit (XC2S600E). Mehrere FPGA können zum Konfigurieren nacheinan-
der geschaltet werden (Daisy-Chain) wobei beim Laden der Beginn des Bitstroms zunächst das 
eine, dann das andere FPGA durchläuft und dann am Ende der Schieberegisterkette des zwei-
ten FPGA anhält. Die Anzahl der Konfigurationsbits hängt nicht von dem Ausnutzungsgrad 
des FPGA ab. 

14.9  CPLD  

CPLD (complex programmable logic device) die auch EPLD genannt werden, sind in 
EEPROM- oder EPROM-Technologie hergestellt. Sie sind daher elektrisch programmierbar 
und nicht flüchtig. Sie sind entweder elektrisch oder mit UV-Licht löschbar und daher sehr gut 
für Kleinserien und Labormuster geeignet. 

14.9.1  Aufbau einer CPLD 

CPLD werden hier am Beispiel der MAX 3000A-Familie der Firma Altera dargestellt [28]. Sie 
sind in CMOS-EEPROM-Technologie hergestellt. Es sind Versionen für Taktfrequenzen von 
über 200MHz  verfügbar. Die Architektur ist in Bild 14-19 dargestellt.   

Das Herzstück der CPLD ist eine zentrale Verbindungsmatrix PIA, die alle Baugruppen mitei-
nander verbindet. Die Logik wird in Logic Array Blocks (LAB) zusammengefasst, welche 
jeweils 16 Makrozellen enthalten.  

• 36 Leitungen gehen von der PIA in jeden LAB. Sie sind in jeder Makrozelle verfüg-
bar. 
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• Jede Makrozelle hat einen Ausgang zu den IO-Ports. Die Schaltung hat also 16  IO-
Ports pro LAB. Die IO-Ports können als bidirektionale Schnittstellen genutzt werden.  

• Jede Makrozelle hat einen Ausgang zur PIA. 

Es gibt zwei Takte (CKL1 und CKL2) und zwei globale Output-Enable-Signale  (OE1 und 
OE2) sowie ein globales Resetsignal (CLR). Die Anzahl der Makrozellen, die darin verfügba-
ren Gatter und sowie die Anzahl der Ein- und Ausgänge ist in Tabelle 14-6 für die verschiede-
nen Typen der CPLD-Familie gezeigt.  

Durch die klare Struktur der CPLD sind konkrete Angaben über die erreichbaren Takt-
Frequenzen möglich.  
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Bild 14-19 Architektur der CPLD MAX 3000A-Familie der Firma Altera. 

14.9.2  Logik-Array Blöcke (LAB) 

Die Logik ist in den Logic Array Blocks (LAB) in jeweils 16 Makrozellen angeordnet, wie es 
in Bild 14-20 schematisch gezeigt ist. Jede Makrozelle enthält ein Flipflop und die Logik in 
Form einer PAL. Daher kann jede Makrozelle zur Erzeugung eines Schaltnetzes oder zur Er-
zeugung einer Schaltung mit Register-Ausgang verwendet werden. Diese Unterscheidung wird 
durch einen programmierbaren Multiplexer in jeder Makrozelle getroffen. 
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Jeweils 36 Leitungen sind aus der zentralen Verbindungsmatrix in ein LAB geführt und stehen 
allen Makrozellen gleichermaßen zur Verfügung.  

 Die Produktterme der PLA können verwendet werden für: 

• Die Erzeugung einer booleschen Funktion mit Hilfe des Oder-Gatters. Damit entsteht 
eine PAL-Struktur wie in Bild 14-10 gezeigt. 

• für den Set- oder Reset-Eingang des Flipflops. Alternativ kann durch einen program-
mierbaren Multiplexer für den Reset der globale Reset GR) verwendet werden.  

• für den Takteingang des Flipflops. Es kann auch mit einem programmierbaren Multi-
plexer einer der beiden globalen Takte GCLK an den Flipflopeingang geführt werden. 

Jeder Makrozelle stehen im Normalfall 5 Produktterme zur Verfügung. Um die Flexibilität 
weiter zu erhöhen, können auch Produktterme von einer anderen Makrozelle geborgt werden. 
Dadurch können bis zu 20 Produktterme in einer Matrixzelle verwendet werden. Alternativ hat 
jede Makrozelle einen Expander, mit dem Produktterme in die lokale Matrix des LAB zurück-
gegeben werden und so mehreren Matrixzellen zur Verfügung stehen. Es gibt 16 Expanderlei-
tungen. Mit einem Exklusiv-Oder-Gatter kann die invertierte Funktion erzeugt werden, wenn 
dieses einfacher ist. Jede Makrozelle hat je einen Ausgang zu der zentralen Verbindungsmatrix 
PIA und zum IO-Block.  
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Bild 14-20 Makrozelle der CPLD MAX 3000A-Familie der Firma Altera (GCLK = globale Takte, GR = 
globaler Reset). 
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14.9.3   IO-Steuerung 

Jeder Logic Array Block (LAB) hat eine eigene IO-Steuerung. Dafür stehen innerhalb des 
LAB, je nach Größe des CPLD,  6 bis 10 Output-Enable-Leitungen zur Verfügung. Jeder der 
16 IO-Pins wird mit einer Schaltung entsprechend Bild 14-21 angesteuert. Es kann mit einem 
programmierbaren Multiplexer  programmiert werden: 

• nur Eingang: Es wird eine 0 an den OE-Eingang des Buffers gelegt. 

• nur Ausgang: Es wird eine 1 an den OE-Eingang des Ausgangs-Buffers gelegt. 

• bidirektionaler IO-Port. Eine der 6 bis 10 globalen OE-Leitungen wird für das Enable 
des Output-Buffers verwendet. 

• Der IO-Pin wird nicht verwendet, Es wird eine 0 an den OE-Eingang des Buffers ge-
legt.  
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Bild 14-21 IO-Steuerung der CPLD MAX 3000A-Familie für einen IO-Pin. 

14.9.4  Größe der CPLD 

Da die EEPROM-Technologie sehr viel mehr Platz auf dem Chip einnimmt als die RAM-
Technologie der FPGA sind CPLD tendenziell kleiner. In Tabelle 14-7 sind die Eigenschaften 
der MAX 3000A-Familie aufgelistet.  
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Tabelle 14-7 MAX 3000A-Familie der Firma Altera. 

Typ Anzahl Gatter   Makrozellen Ein- und Ausgänge 

EPM3032A 600  32 34 

EPM3064A 1250 64 66 

EPM3128A 2500 128 96 

EPM3256A 5000 256 158 

EPM3512A 10000 512 208 

14.10  Gate-Arrays 

Gate-Arrays sind ASIC, bei denen ein Array von Gates mit fester Geometrie vom Hersteller 
angeboten wird (sog. master-slices). Nur die Verbindungsmetallisierungen werden vom Her-
steller kundenspezifisch strukturiert. Es werden Gate-Arrays bis zu einer Komplexität von 
250000 Gates angeboten. Die Ausführung erfolgt meistens in CMOS-Technologie. 

Gate-Arrays kann man unterscheiden nach der verarbeiteten Signalform:  

• digitale Gate-Arrays 
• analoge Gate-Arrays  
• gemischt digitale und analoge Gate-Arrays 

oder nach der Struktur: 

• Channelled Gate-Arrays ( Die Verdrahtung verläuft in speziellen Kanälen) 
• Sea-of Gates (Die Verdrahtung läuft auf den Matrixzellen) 

Im Folgenden wird der Aufbau von Channelled Gate-Arrays beschrieben. 

14.10.1  Aufbau von Channelled Gate-Arrays 

Ein Gate-Array (Bild 14-22) besteht aus einer Matrix aus Matrixzellen, aus Peripheriezellen 
und Sonderstrukturen. Dazwischen liegen Verdrahtungskanäle. Ein Gate-Array kann mehrere 
100 Pins haben. 
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Verdrahtungskanal 

Matrixzellen

 

Bild 14-22 Struktur eines Gate-Arrays.  
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Die alle gleich aufgebauten Matrixzellen (Bild 14-23) sind Zellen, die jeweils einige p- und n-
MOS Transistorpaare enthalten. Diese MOSFET sind zunächst nicht miteinander verbunden. 
Das ist der Fall auf dem „Master“-Chip. In diesem Zustand wird der Wafer beim Hersteller 
vorrätig gehalten. Kundenspezifisch kann dann durch eine oder mehrere Verdrahtungsebenen 
eine Verschaltung durchgeführt werden. Damit kann aus einzelnen Matrixzellen z.B. ein 
NAND-Gatter oder ein Flipflop entstehen. Es sind 1 bis 8 kundenspezifische Masken üblich. 
Mehr Verbindungsebenen helfen Chipfläche zu sparen und verbessern die Geschwindigkeit. 

 p-Kanal n-Kanal 

VDD VSS 
 

Bild 14-23 Matrixzelle eines Gate-Arrays. Die anderen Matrixzellen schließen sich unten und oben an.  

 p-Kanal n-Kanal 

 
 

Bild 14-24 Elektrische Verbindungen der Matrixzelle aus Bild 14-23.  
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Mit einer weiteren kundenspezifischen Metallisierungsebene können nun bestimmte Biblio-
thekszellen gebildet werden. Diese Bibliothekszellen werden vom Hersteller durchgemessen 
und genau simuliert. Der Kunde kann dann am Rechner das Symbol für die entsprechende 
Bibliothekszelle (z.B. ein NAND-Gatter) abrufen und kann dies mit einem Simulationsmodell 
verbinden. Außerdem wird die Verbindungsmetallisierung festgehalten, so dass später automa-
tisch eine Maske generiert werden kann. 
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Bild 14-25 Bibliothekszelle: NAND-Gatter mit 3 Eingängen x0, x1, x2 und dem Ausgang y. 

Im Bild 14.25 ist als Beispiel die Bibliothekszelle eines NAND-Gatters mit 3 Eingängen dar-
gestellt. Die kundenspezifische Verbindungsebene ist grau dargestellt. Ein Inverter z.B. würde 
die Zelle nicht voll ausnutzen, da er nur 2 Transistoren benötigt. Für einen Leistungstreiber 
werden 2 weitere Transistoren parallel geschaltet. 
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Bild 14-26 Schaltbild der Bibliothekszelle in Bild 14-25: NAND-Gatter mit 3 Eingängen x0, x1, x2 und 
dem Ausgang y.  
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Die Peripheriezellen enthalten Leistungstreiber für die Verbindung zu den Pins. In der Regel ist 
eine Peripheriezelle pro Pin vorgesehen. Durch die anwenderspezifische Verdrahtung kann die 
Peripheriezelle als Eingang, Ausgang oder als bidirektionale Schnittstelle geschaltet werden.  

Die Sonderstrukturen enthalten z.B. das „process control module“ (PCM), Justiermarken,  die 
Chipbezeichnung und die Versionsnummer. In den Verdrahtungskanälen liegt die Verbin-
dungsmetallisierung zwischen den einzelnen Gattern. 

Komplexe ASICs lassen sich nur durch den Einsatz von computergestützen Entwicklungs-
werkzeugen kostengünstig produzieren. Die Entwicklung erfolgt in der Regel auf kundeneige-
nen Workstations oder zunehmend auch auf PCs. Der Vorteil der Gate-Arrays liegt in der Tat-
sache, dass der Hersteller Bibliotheken bereithält, in denen er getestete Verschaltungen von 
Matrixzellen gesammelt hat, die z.B. einzelne Gatter (wie SSI), Multiplexer (MSI) und kleinere 
Mikroprozessoren (LSI) enthalten. Der Anwender kann aus diesen Bibliothekszellen eigene 
Entwürfe erstellen und sich durch das präzise Modell darauf verlassen, dass die Schaltung 
(fast) immer sofort funktioniert. 

14.11  Standardzellen-ASIC 

Standardzellen-ASICs besitzen mehr Freiheitsgrade als Gate-Arrays. Ihre besonderen Kennzei-
chen sind: 

• Die Weite der Standardzellen ist beliebig, nur die Höhe liegt fest. 
• Der Inhalt der Zellen ist beliebig. 
• Analoge Funktionen sind möglich. 
• Die Verdrahtungskanäle sind bezüglich ihrer Abmessungen kundenspezifisch. 
• Sonderfunktionen: ROM, RAM in spezieller Technologie werden angeboten. 
• Alle Masken sind kundenspezifisch. 
• Die Chipgröße ist kundenspezifisch. 

Die Vor- und Nachteile von Standardzellen-ASIC sind: 
• Die Integrationsdichte ist  höher als bei Gate-Arrays, die Kosten pro Chip sind daher 

geringer. 
• Entwicklungskosten und Entwicklungszeit sind höher als bei Gate-Arrays, daher kön-

nen Standardzellen-ASIC erst ab einer Stückzahl von etwa 30 000 Stück pro Jahr ren-
tabel sein. 

• Es wird vom Hersteller Software für getestete Bibliothekszellen geliefert. 
• Die Lieferzeiten sind größer als bei Gate-Arrays. 

In Standardzellen-ASIC wird die Struktur der Bibliothekszellen nicht einem allgemeinen 
Schema angepasst, sondern den speziellen Erfordernissen der Bibliothekszelle. Daher wird eine 
geringere Chip-Fläche belegt als bei einem Gate-Array. Alternativ kann man auch die Ge-
schwindigkeit optimieren. 

14.12  Vollkundendesign-ASICs 

Vollkundendesign-ASIC unterscheiden sich nicht von normalen Standard-IC. Beim Design 
stehen dem Entwickler alle Freiheitsgrade offen. Der Hersteller bietet nur Entwurfswerkzeuge 
an, die auf die Eigenschaften des Herstellungsprozesses zugeschnitten sind. 
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14.13  Übungen 

Aufgabe 14.1 

Beschreiben Sie die Unterschiede von programmierbaren Logik-IC, Gate-Arrays und Vollkun-
den-IC bezüglich Entwicklungsaufwand, Kosten pro Chip sowie erreichbarer Komplexität. 

Aufgabe 14.2 

Die 3 booleschen Funktionen f0, f1, f2  sollen mit einer PLA realisiert werden. Kennzeichnen 
Sie im untenstehenden Schema  die nötigen Verbindungen mit Punkten und bezeichnen Sie die 
Anschlüsse der PLA. 

f0(a,b,c,d) = ad ∨ ¬a¬bcd 

f1(a,b,c,d) = ¬ab¬cd ∨ abcd ∨ a¬bcd 

f2(a,b,c,d) = ¬((a ∨ b ∨ ¬c)(¬c ∨ d)(¬a ∨ c ∨ ¬d)) 

x0 

x1 

x2 

x3 

& & & & &
≥1 f0

≥1 f1

≥1 f2 

1 

1 

1 

1 

 
Aufgabe 14.3 

Die 2 booleschen Funktionen f0 und f1  sollen mit einer PAL realisiert werden. Kennzeichnen 
Sie die nötigen Verbindungen mit Punkten und bezeichnen Sie die Anschlüsse.  

f0(a,b,c,d) = ¬a¬b¬c¬d ∨ ab¬c¬d ∨ a¬b¬c¬d ∨ ¬ab¬cd ∨ ¬a¬bcd ∨ ¬abcd  

f1(a,b,c,d) = ¬a¬b¬c¬d ∨ ab¬cd ∨ ¬a¬bcd ∨ ¬abc¬d  
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15.1  Entwurfsverfahren für digitale Schaltungen  

Zur Entwicklung digitaler Schaltungen stehen heute eine Vielzahl verschiedener Entwurfs-
werkzeuge zur Verfügung. Sie sind eine unerlässliche Voraussetzung für den Entwurf komple-
xer Schaltungen. So konnten sich ASIC nur auf dem Markt durchsetzen, weil leistungsfähige 
Software für ihren Entwurf vorhanden war. Es gibt eine Vielzahl verschiedener Sprachen für 
die Entwicklung von Hardware. Man unterscheidet zwischen Architektur-unabhängigen und 
Architektur-abhängigen Sprachen: 

• Architektur-unabhängige Sprachen können für das Design von ASIC verschiedener Her-
steller verwendet werden. Sie haben prinzipiell den Nachteil, dass die Unterstützung neuer 
ASIC-Typen erst verzögert angeboten wird. Der Vorteil liegt sicher darin, dass man einfa-
cher ein Design von einem Baustein auf einen anderen transferieren kann. Außerdem ist 
kein zusätzlicher Schulungsaufwand bei einem Wechsel des ASIC nötig. 

• Architektur-spezifische Software. Viele Hersteller bieten spezielle Software für die Ent-
wicklung ihrer Hardware an. Ein Wechsel des ASIC-Herstellers ist oft mit Problemen ver-
bunden. 

Das logische Design von Digitalschaltungen wurde in der Vergangenheit im Wesentlichen mit 
grafischen Entwurfswerkzeugen durchgeführt, mit der so genannten schematischen Schal-
tungseingabe. Dabei werden zunächst aus einzelnen Gattern einfache Module erzeugt, die dann 
zu komplexeren Modulen zusammengesetzt werden, bis das gewünschte System fertiggestellt 
ist. Man spricht hier von einem Bottom-Up-Entwurf. Der Nachteil dieses Verfahrens ist, dass 
der Entwurf bei komplexen Systemen sehr unübersichtlich wird und es somit sehr schwierig  
zu überblicken ist, ob der Entwurf die gewünschten Anforderungen erfüllt.  

Die heute immer mehr gewählte Alternative zur schematischen Schaltungsentwicklung ist die 
Verwendung von Hardware-beschreibenden Sprachen (Hardware-Description Language 
HDL). Der Top-Down-Entwurf wird mit diesen HDL-Entwurfswerkzeugen möglich, denn sie 
können ein System in mehreren Abstraktionsebenen beschreiben. Man beginnt mit der Be-
schreibung des Systems auf einer hohen abstrakten Ebene, die durch das Anforderungsprofil 
der Schaltung vorgegeben wird. Dieser Entwurf wird dann immer mehr konkretisiert, bis man 
bei einer Beschreibung angelangt ist, die sich direkt in Hardware umsetzen lässt. Die heutigen 
Synthesewerkzeuge können aus einer Verhaltensbeschreibung einer Schaltung direkt eine 
Hardware-Realisierung der Schaltung erzeugen. Wichtig ist auch, dass das komplette System 
in allen  Abstraktionsebenen simulierbar ist, so dass das Testen des Systems in einem frühen 
Stadium des Entwurfs möglich ist. 

Hier wird die Sprache VHDL vorgestellt (VHSICHDL  (VHSIC = Very High Speed In-
tegrated Circuit)). Sie wurde im Jahr 1987 als IEEE Standard eingeführt (IEEE Std 1076-
1987). 1993 wurden einige Ergänzungen hinzugefügt (IEEE Std 1076-1993). Durch die Nor-
mung wird die Wiederverwendbarkeit von Code erleichtert. VHDL ist eine technologie-
unabhängige Beschreibung, die den Top-Down- und den Bottom-Up-Entwurf gleichermaßen 
ermöglicht. Die objektorientierte Programmiersprache VHDL besitzt Konstrukte für die hierar-
chische Gliederung eines Entwurfs. Dieses Kapitel erlaubt einen kleinen Einblick in die Nut-
zung von VHDL für die Synthese von Digitalschaltungen. Der gesamte Sprachumfang von 
VHDL ist jedoch viel größer. 

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018
K. Fricke, Digitaltechnik, https://doi.org/10.1007/978-3-658-21066-3_15
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15.2  Die Struktur von VHDL 

Eine VHDL-Beschreibung besteht aus einem VHDL-File mit verschiedenen Design-Einheiten 
(Design-Units):  

• In der Design-Einheit Entity wird die Schnittstellenbeschreibung eines Schaltungs-
teils definiert. Sie ist eine Blackbox, deren Inhalt aus der Architecture besteht. 

• In der Architecture wird die Funktion der Schaltung beschrieben. 

• Die Configuration definiert die Zuordnung von Entity und Architecture, wenn es 
mehrere Architectures zu einer Entity gibt. Sie wird hier nicht näher erläutert. 

• In der Package Declaration und dem Package Body werden wichtige, oft gebrauchte 
Funktionen, Komponenten, Konstanten und Datentypen definiert. 

Einige allgemeine Hinweise: 
Kommentare werden in VHDL durch zwei Minuszeichen gekennzeichnet (--), der Rest der 
Zeile wird bei der Compilierung nicht beachtet. 
Es wird nicht nach Groß- und Kleinschreibung unterschieden. Es ist aber üblich, VHDL-
Schlüsselwörter klein und Identifier groß zu schreiben. Hier werden VHDL-Schlüsselwörter 
zusätzlich fett gedruckt. Namen und Identifier müssen mit einem Buchstaben beginnen. Da-
nach können Buchstaben, Zahlen und der Unterstrich ( _ ) folgen. Viele Synthesewerkzeuge 
begrenzen die Länge von Identifiern auf 32 Zeichen. Nach jeder Anweisung steht ein Apo-
stroph ( ; ). Bei Aufzählungen steht in der Regel ein Komma. 

15.3  Typen 

Leitungen werden in VHDL durch Signale beschrieben, die deklariert werden müssen. Bei der 
Deklaration werden Typ und Name des Signals festgelegt. Das kann im Wesentlichen an zwei 
Stellen geschehen:  

• In der Entity werden die Signale deklariert, die verschiedene Entities miteinander ver-
binden. Diese Signale dienen also als Verbindungsleitungen. Sie sind global definiert. 

• In der Architecture werden Signale deklariert, die nur innerhalb dieser Umgebung ge-
braucht werden. Sie sind in der Architektur lokal sichtbar. 

Alle verwendeten Typen müssen vorher deklariert werden. Dies kann auf verschiedene Weise 
geschehen. Man kann vordefinierte Typen verwenden, die in die Sprache integriert sind. Wei-
terhin kann man Typen aus kommerziell erhältlichen Packages (z. B. Library IEEE im Package 
std_logic_1164) verwenden oder sie selbst definieren. Die einfachen Datentypen, also die Ska-
lare, sind in VHDL denen in Programmiersprachen wie C vergleichbar. In Tabelle 15-1 sind 
die in VHDL immer verfügbaren, vordefinierten Typen aufgelistet.  

Tabelle 15-1 In VHDL vordefinierte Typen.  

Typ Beschreibung 

boolean Werte: true und false 

integer Binärdarstellung:  2#101# , oktal 8#12# , hexadezimal 16#1F# 

real  [+|-]number.number[E[+|-]number]] Bsp.: 1.894E-3 

character Standard-ASCII-Zeichensatz: '0'-'9', 'a'-'z', 'A'-'Z' 

bit Werte: '0' und '1' 
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Ein Digitalsignal kann im einfachsten Fall mit dem Signal-Typ bit beschrieben werden, der 
das Verhalten zeigt, welches durch die boolesche Algebra vorgegeben ist.  Die Elemente dieses 
Typs sind '0' und '1'. Sie werden in Apostroph eingeschlossen. Die Zuweisung von Signal-
pegeln erfolgt durch  den Operator  " <= ". Als Beispiel die Zuweisung des Wertes 0 an das 
Signal A: A <= '0'. Bei Zuweisungen müssen in VHDL generell die Typen der linken und 
rechten Seite gleich sein. Also muss A in dem Beispiel auch vom Typ bit sein. Aufzählungs-
typen können durch die folgende Syntax definiert werden: 

type FARBE is (Rot, Gelb, Blau);   

Weitere Typen entstehen durch die Verwendung von Untertypen (subtype). Sie ermöglichen 
eine Einschränkung des Bereichs der vordefinierten Typen und werden durch folgende Syntax 
definiert: 

subtype KLEINE_BUCHSTABEN is character 'a' to 'z'; 
subtype ZWEISTELLIGE_ZAHLEN is integer 10 to 99; 

Wie in anderen Programmiersprachen sind auch zusammengesetzte Typen möglich. Das sind 
zum einen Arrays, die im Beispiel unten durch die Typen BYTE und MATRIX verdeutlicht 
werden. Der Bereich des Indexes wird durch 7 downto 0 beschrieben, wodurch ein Byte 
mit 8 Bit entsteht. Zum anderen sind Records möglich. Das ist ein Datentyp, der aus verschie-
denen Typen zusammengesetzt ist. Im Beispiel des Typs ZAHL ist das Vorzeichen vom Typ 
Bit und die beiden Ziffern sind vom Typ Integer. 

type BYTE is array (7 downto 0) of bit;        -- Array 
type MATRIX is array (7 downto 0, 7 downto 0) of bit;  -- Array 
type ZAHL is                   -- Record 

Vorzeichen : bit;  
Ziffer1: integer range 0 to 9; 
Ziffer2: integer range 0 to 9; 

end record;  

Der Typ bit_vector ist ein Array von Elementen des Typs bit. Dieser Typ ist in VHDL 
vordefiniert. Für die Wertzuweisung hat man zwei Alternativen:  

A <= "0010" ; 
A <= ('0','0','1','0'); 

Auch der Typ String, ein Array vom Typ Character ist in VHDL vordefiniert. 

Unter  Verwendung eines bekannten Typs können dann Signale, Konstanten und die später 
näher erläuterten Variablen definiert werden: 

constant EIN: bit := '0';  
variable ADDRESS, INDEX: integer;  
signal WORD: bit_vector (7 downto 0); 
signal ZAEHLER: integer range 10 to 99;  

Die Konstantendefinition enthält selbstverständlich eine Zuweisung, hier des Wertes 0. Die 
beiden letzten Signaldefinitionen schränken den verwendeten Zahlenbereich bzw. die Breite 
des Vektors ein. Alternativ hätte man auch das Signal ZAEHLER unter Verwendung eines 
Subtype deklarieren können:  

subtype ZWEISTELLIGE_ZAHLEN is integer 10 to 99; 
signal ZAEHLER: ZWEISTELLIGE_ZAHLEN;  
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15.4  Operatoren 

Ausdrücke werden in VHDL mit den in der Tabelle 15-2 aufgeführten Operatoren gebildet. Die 
Priorität der Operatoren wächst von oben nach unten. Eine andere Reihenfolge muss durch 
Klammerung deutlich gemacht werden.  

Tabelle 15-2 Operatoren.  

 VHDL-
Operator 

Funktion Typ Operand 1 Typ Operand 2 Typ Ergebnis 

Boolesche 

Operatoren 

 

 

and a∧b bit, bit_vector,  
boolean 

 

wie Operand 1 

 

wie Operand 1 

or a∨b 

nand ¬(a∧b) 

nor ¬(a∨b) 

xor a exor b 

Vergleichs- 
Operatoren 

 

= a = b beliebig wie Operand 1 boolean 

/= a ≠b 

< a < b skalare Typen, 

diskrete Vekto-
ren  

 

wie Operand 1 
<= a ≤b 

> a > b 

>= a ≥ b 

Schiebe-
Operatoren 

sll, srl logisch   bit, boolean integer wie Operand 1 

sla, sra arithmetisch 

rol, ror rotieren 
additiv-  
arithmetische 
Operatoren  

+ a + b integer, real wie Operand 1 

  

wie Operand 1  

- a – b 

& a&b 

zusammen-
setzen 

bit, bit_vector, 
character, 
string 

passend 

Vorzeichen- 
Operatoren 

+ + a integer, real  - wie Operand 1 

- - a 
multiplikativ- 
arithmetische 
Operatoren 

* a*b integer, real wie links wie Operand 1 

/ a/b 

mod a div b integer 

 

wie links 

rem a mod b 

weitere  

Operatoren 

** ab integer, real integer wie Operand 1 

abs | a | integer, real  - 

not ¬a bit, bit_vector, 
boolean 

- 
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Wenn man Operanden mit anderen als den in der Tabelle angegebenen Typen verwenden will, 
hat man zwei Möglichkeiten. Durch die Verwendung von Packages werden diese Operationen 
für weitere Typen mit Hilfe des „Overloading“ möglich. Mit „Overloading“ ist hier die Mög-
lichkeit gemeint, verschiedene Typen mit den gleichen Operatoren zu verknüpfen. Alternativ 
kann man Typen konvertieren, um einen Operator anwenden zu können. Diese Typkonvertie-
rungen werden auch in Packages zur Verfügung gestellt.  

15.5  Entity 

In der Entity werden nur die Schnittstellen eines Schaltungsteils definiert. Die Funktionalität 
wird in einer oder mehreren dazugehörigen Architekturen beschrieben. Eine vereinfachte Syn-
tax der Entity in der Backnus-Naur-Form  [38] ist:   

entity  Entity_Name is  
  [Generics]  
  [Ports]  
end [Entity_Name];  

Die eckigen Klammern in der Backnus-Naur-Form bedeuten, dass das entsprechende Element 
nicht oder einmal vorkommen darf. Die Verwendung von Generics und Ports wird im 
folgenden Beispiel eines Addierers deutlich: 

entity  Addierer is  
    generic (width: integer);   
    port( A,B: in bit_vector(1 to width); 
          CIN: in bit;    
          F:   out bit_vector(1 to width));  
end Addierer; 

Die Hauptaufgabe der Entity besteht in der Definition der Ports. Ports geben die Signale an, 
mit denen die einzelnen Entities miteinander verbunden werden. Diese Signale sind aber auch 
innerhalb der Entity und der dazugehörigen Architektur sichtbar. In obigem Beispiel werden 
nach dem Schlüsselwort port die Eingangssignale des Addierers A und B vom Typ 
bit_vector mit dem Modus in definiert. Es sind 4 verschiedene Modi entsprechend Tabel-
le 15-3 möglich.  

Tabelle 15-3 Bedeutung der Modi in der Port-Definition der Entity. 

Modus Funktion Verwendung in Zuweisungen innerhalb der 
dazugehörigen Architektur 

in Eingang nur auf der rechten Seite von Zuweisungen 

out  Ausgang nur auf der linken Seite 

inout  bidirektionaler Port kann beliebig im Code benutzt werden 

buffer Ausgang einmal links, beliebig oft auf der rechten Seite 

 

Die Breite der Eingangsvektoren wird durch den Ausdruck (1 to width) beschrieben, 
wobei width ein Generic ist, der den höchsten Index festlegt. Generics sind Konstanten, die 
an anderer, oft zentraler Stelle des Codes festgelegt werden. Dadurch ist es möglich, universel-
leren Code zu schreiben. 
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15.6  Architecture  

Die Architecture ist eine Umgebung für nebenläufige Anweisungen. Sie sind gleichzeitig wirk-
sam, wie es für eine Digitalschaltung typisch ist. So können zum Beispiel die in Bild 15-1 
gezeigten nebenläufigen Signalzuweisungen in der daneben stehenden Schaltung resultieren. 
Die beiden Zuweisungen sind gleichzeitig aktiv und werden nicht wie in anderen Program-
miersprachen sequentiell verarbeitet. Daher ist auch die Reihenfolge im Code beliebig. Dieses 
Verhalten wird mit nebenläufig bezeichnet.   

 

      E <= not ((A and B) and C) 

      F <= (B and C) and D 

 & F 

E 
B

D

A
&

C

 

Bild 15-1 Beispiel für nebenläufige Signalzuweisungen und daraus generierte Hardware.  

Eine Architecture wird vereinfacht in folgender Syntax beschrieben: 
 
architecture Architecture_Name of Entity_Name is   
  [Typ_Deklaration]  
  [Subtype_Deklaration] 
  [Konstanten_Deklaration]  
  [Signal_Deklaration]  
  [Komponenten_Deklaration] 
  begin  
  [Nebenläufige_Anweisungen]  
end [Architecture_Name]; 

Architecture_Name ist ein frei wählbarer Name der Architektur, die der Entity Enti-
ty_Name zugeordnet wird. Alle Architekturen, die zu einer Entity gehören, müssen verschie-
dene Namen haben. Architekturen verschiedener Entities können gleiche Namen haben. Eine 
Architektur besteht aus einem Deklarationsteil, in dem lokale Signale, Typen, Subtypen, Kon-
stanten und Komponenten deklariert werden können. Die Deklaration von Typen, Subtypen 
und Signalen wurde in Kapitel 15.3 beschrieben.  

Die Schaltungsfunktion steht in den nebenläufigen Anweisungen. Die wichtigsten nebenläufi-
gen Anweisungen für Verhaltensbeschreibungen sind in Tabelle 15-4 zusammengefasst. An-
weisungen, die in Strukturbeschreibungen verwendet werden, sind ebenfalls nebenläufige An-
weisungen. Sie werden weiter unten im Kapitel 15.8 beschrieben. Verhaltensbeschreibung und 
Strukturbeschreibung sind unterschiedliche Stile, in denen Schaltungen beschrieben und ent-
worfen werden können.  

Wie der Name sagt, wird in der Verhaltensbeschreibung eine Schaltung durch ihr Verhalten 
charakterisiert. Die Synthese der realen Schaltung überlässt man den automatischen Entwurfs-
werkzeugen. Dagegen wird in der Strukturbeschreibung die Schaltung in ihrer Struktur vom 
Entwickler fest vorgegeben. 

Als Beispiel für eine Verhaltensbeschreibung wird im Folgenden der Code für einen  Multiple-
xer gezeigt. In der Entity wird die Schnittstellenbeschreibung für die Eingänge X0, X1, den 
Selektions-Eingang SEL und den Ausgang Y durchgeführt. Die Funktion wird in der Architek-
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tur mit dem Namen VERHALTEN beschrieben. Sie besteht im Wesentlichen aus der bedingten 
Signalzuweisung, in der der durch SEL ausgewählte Eingang auf den Ausgang Y durchge-
schaltet wird. 

 

entity MUX is 
    port ( X0, X1, SEL: in bit;  Y : out bit); 
end MUX; 
 
architecture VERHALTEN of MUX is 
begin 
  Y <= X0 when SEL = '0' else 
       X1 when SEL = '1'; 
end VERHALTEN; 

Tabelle 15-4 Nebenläufige Anweisungen für die Verhaltensbeschreibung. 

Nebenläufige Anweisung Beispiel 

Signalzuweisung Z <=  A and B; 

Bedingte Signalzuweisung: Zugewiesen wird, 
wenn die Bedingung, die nach  when steht, wahr 
ist. Die folgenden else-Zweige werden nicht 
mehr durchlaufen. Schachtelungen sind möglich. 

Z <=  A when (X = 0) else  
      B when (X = 1) else  
      C; 

Selektive Signalzuweisung: Der Wert von SEL 
(Typ bit_vector) bestimmt, welche Zuwei-
sung wirksam wird. Die Alternativen müssen 
sich ausschließen.  

with SEL select  
  Z <=  A when ('0','0'),  
        B when ('0','1'),  
        C when ('1','0'),  
        D when ('1','1');  

Prozessanweisung: Umgebung für sequentielle 
Anweisungen. Wenn sich eines der Signale A 
oder B in der Sensitivity-List ändert, werden die 
sequentiellen Anweisungen der Reihe nach aus-
geführt. Im Prozess sind Variablendeklarationen 
möglich (siehe nächstes Kapitel).  

Label: process(A,B)  
  variable TEMP : integer;  
begin  
  [Sequentielle_Anweisungen] 
end process;  

 

15.7  Prozesse  

Ein Prozess ist eine nebenläufige Anweisung. Mehrere Prozesse in einer Architektur sind also 
gleichzeitig aktiv. Innerhalb eines Prozesses werden aber Anweisungen nacheinander, also 
sequentiell bearbeitet. Die Syntax der Prozessumgebung ist: 

[Label:] process[(Sensitivity_List)]   
  [Typ_Deklaration]  
  [Subtype_Deklaration] 
  [Konstanten_Deklaration]  
  [Variablen_Deklaration]  
begin  
  [Sequentielle_Anweisungen]  
end process;  
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Es gibt 2 Alternativen, um das zeitliche Verhalten eines Prozesses zu steuern:  

• mit der Sensitivity-List: Die Sensitivity-List ist eine Liste von durch Kommata getrennten 
Signalen z.B. (CLK, D1, D2). Die sequentiellen Anweisungen werden beim Simulati-
onsbeginn einmal bis zu end process durchgeführt. Dann wird der Prozess unterbro-
chen, bis sich eines der in der Sensitivity-List stehenden Signale ändert, worauf der Ablauf 
von neuem beim Schlüsselwort begin beginnt.  

• Mit Hilfe von einer oder mehreren Wait-Anweisungen. Die sequentiellen Anweisungen 
werden der Reihe nach ausgeführt, bis eine Wait-Anweisung erreicht wird. Dann wartet 
der Prozess solange, bis die in der Wait-Anweisung gegebene Bedingung erfüllt ist. Da-
rauf werden die folgenden sequentiellen Anweisungen weiter ausgeführt. Wenn das Ende 
des Prozesses erreicht ist, wird wieder von vorne begonnen.  

Alle Prozesse können entweder mit einer Sensitivity-List oder mit Wait-Anweisungen ge-
schrieben werden.  In Tabelle 15-5 sind die beiden Möglichkeiten gegenübergestellt:  

Tabelle 15-5 Zwei gleichwertige Alternativen für die Ablaufsteuerung eines Prozesses. 

Prozess mit Sensitivity List Prozess mit Wait-Anweisung 

process (A, B)           
begin  
  C <= A and B;  
end process; 

process  
begin  
  C <= A and B;  
  wait on A, B;  
end process; 

 
Im Deklarationsteil der Prozessanweisung können Typen, Konstanten und Variablen deklariert 
werden. Dagegen ist eine Signaldefinition in der Prozess-Umgebung nicht möglich. Signale 
müssen in der übergeordneten Architektur deklariert werden. Sie sind in Prozessen innerhalb 
der Architektur sichtbar. Innerhalb von Prozessen nehmen Signale ihren neuen Wert nicht 
schon bei der Zuweisung an, sondern erst, wenn der Prozess in einen Wartezustand geht. War-
tezustände werden, wie oben beschrieben, durch die Sensitivity-List oder durch eine Wait-
Anweisung erzeugt. Auch zwei oder mehrere Zuweisungen an das gleiche Signal sind erlaubt. 
Dann werden alle bis auf die letzte überschrieben. Im folgenden Beispiel wird daher die erste 
Zuweisung durch die zweite unwirksam, so dass Z den Wert von D bekommt. 

Z <= A and B;  
Z <= D; 

In Prozessen können Variablen deklariert und initialisiert werden. Sie sind innerhalb des Pro-
zesses lokal zu verwenden. Sie haben wie Signale einen Typ. Sie unterscheiden sich von ihnen 
aber durch ihr zeitliches Verhalten: Nach einer Zuweisung nimmt die Variable sofort ihren 
neuen Wert an.  Die Zuweisung einer Variablen wird durch das Zeichen := verdeutlicht, im 
Gegensatz zu <= bei Signalen.  

C := B 
B := A; 
A := C; 

In diesem Beispiel werden durch die sofort erfolgende Wertzuweisung die ursprünglichen 
Werte der Variablen A und B vertauscht.  

Mit den in Tabelle 15-6 aufgelisteten sequentiellen Anweisungen wird die Funktionalität von  
Prozessen beschrieben.  
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Tabelle 15-6 Sequentielle Anweisungen.  

Sequentielle Anweisung Beispiel 

Signalzuweisung Z <=  A and B;  

Variablenzuweisung  Z :=  A and B; 

Wait-Anweisung 
Nur in Prozessen ohne Sensitivity-List.  
wait on: Warten bis sich A oder B ändert 
wait until: Bis die Bedingung wahr wird 

wait on A,B;  
wait until A = B; 
 

If-elsif-else-Anweisung 
Kann mehrfach geschachtelt werden. 

if A = '1' then F <= X; 
elsif B = '1' then F <= Y; 
else F <= Z; 
end if; 

Case-Anweisung 
Alle Fälle müssen aufgezählt werden. 

case B is                   
  when "00" => Y := '1'; 
  when "01" => Y := '0'; 
  when "10" => Y := '1'; 
  when "11" => Y := '1'; 
end case; 

for-loop 
für parallele Hardware. Laufvariable: in der 
Loop-Anweisung lokal, muss nicht dekla-
riert werden, Zuweisungen nicht erlaubt.  

for I in 7 downto 0 loop; 
  C(I) := A(I) and B(I); 
end loop; 
 

while-loop 
Laufvariable:  muss deklariert werden, 
Zuweisungen möglich.  

variable I: integer:= 0 
while I<8 loop 
 OUT(I) <=  IN(I); 
  I := I +1; 
end loop; 

 

Als Beispiel für eine sequentielle Schaltungsbeschreibung wird hier der Code für ein synchro-
nes Schaltwerk gezeigt. Es ist die gleiche Aufgabenstellung wie die Ampelsteuerung im Kapi-
tel 8.2. Allerdings wurde ein Eingang RESET ergänzt, mit dem man das Schaltwerk in den 
Zustand S1 (nur Rot brennt) zurücksetzen kann. 

entity AMPEL is 
    port (RESET,CLOCK: in bit; 
   ROT, GELB, GRUEN: out bit);        
end AMPEL; 
 
architecture VERHALTEN of AMPEL is 
type STATE_TYPE is (S1, S2, S3, S4); 
signal CS, NS: STATE_TYPE; 
begin 
ZUSTANDSSPEICHER: process (CLOCK, RESET) 
    begin 
      if (RESET='1') then CS <= S1; 
      elsif (CLOCK'event and CLOCK = '1') then CS <= NS; 
      end if; 
 end process; 
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 SCHALTNETZ: process (CS) 
 begin 
   case CS is 
     when S1 => NS <= S2; 
    ROT <= '1'; GELB <= '0'; GRUEN <= '0'; 
  when S2 => NS <= S3; 
   ROT <= '1'; GELB <= '1'; GRUEN <= '0'; 
  when S3 => NS <= S4; 
   ROT <= '0'; GELB <= '0'; GRUEN <= '1'; 
  when S4 => NS <= S1; 
   ROT <= '0'; GELB <= '1'; GRUEN <= '0'; 
   end case; 
 end process; 
end VERHALTEN; 

Im Deklarationsteil der Architektur wird der Type STATE_TYPE deklariert mit den 4 Zustän-
den S1 bis S4. Den beiden Signalen CS und NS wird dieser Typ zugeordnet. Diese Signale 
entsprechen den Aus- und Eingängen an den Zustandsregistern zi

m und zi
m+1. 

In diesem Code werden 2 Prozesse verwendet. Im ersten Prozess mit dem Label 
„ZUSTANDSSPEICHER“ werden die Flipflops beschrieben. In einer if-else-elsif-Anweisung 
wird im if-Zweig bei einem Reset der Zustand S1 eingestellt. Der elsif-Zweig enthält das Attri-
but 'event, welches bewirkt, dass auf eine Flanke des Signals CLOCK gewartet wird. Zu-
sammen mit der Bedingung CLOCK = '1' wird so eine positive Flankensteuerung beschrie-
ben. 

Im zweiten Prozess mit dem Label „SCHALTNETZ“ werden die Übergänge zwischen den 
Zuständen S1 bis S4 definiert und die Ausgänge in den jeweiligen Zuständen festgelegt. Da es 
sich um ein Moore-Schaltwerk handelt, ist dies leicht in einer einzigen Case-Anweisung mög-
lich. Man erkennt, dass beide Prozesse gleichzeitig aktiv sein müssen. 

In Bild 15-2 ist die durch ein Synthese-Werkzeug generierte  Schaltung zu sehen. Man erkennt, 
dass 4 D-Flipflops verwendet werden, die zu einem Kreis verbunden sind. Beim Reset wird das 
2. Flipflop gesetzt, die anderen werden zurückgesetzt. Die 1 des gesetzten Flipflops wird dann 
durch den Takt wie in einem Eimerkettenspeicher weitergereicht. Die Codierung der Ausgänge 
kann dann einfach durch 2 ODER-Gatter durchgeführt werden.  

 

CLK 

GRUEN 
1D     Q 
 
 C1 R 

1D  S  Q 
 
 C1  

1D     Q 
 
 C1 R 

1D     Q 
 
 C1 R 

RST 

≥1 

ROT 

GELB 

≥1 

 

Bild 15-2 Generierte Hardware für die Verhaltensbeschreibung  AMPEL.  
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15.8  Struktureller Entwurf 

Ein Entwurfsstil, bei dem die Schaltung aus hierarchisch gegliederten Komponenten zusam-
mengesetzt wird, nennt man strukturellen Entwurf. Dieser Stil kommt dem herkömmlichen, 
grafisch orientierten Entwurfsstil am nächsten. Man kennt dies vielleicht aus der Netzliste im 
Netzwerkanalyseprogramm SPICE. Mit einer Netzliste werden Bausteine, in VHDL compo-
nent genannt, verdrahtet. Nebenläufige Anweisungen für den strukturellen Entwurf sind in 
der Tabelle 15-7 aufgelistet. 

Tabelle 15-7 Nebenläufige Anweisungen für den strukturellen Entwurf.   

Nebenläufige Anweisung Beispiel 

Komponenteninstanzierung 
(struktureller Entwurf). Anschluss eines 
Bausteins (Component). Die lokalen Ports 
(local) werden mit der äußeren Schaltung 
(actuals) verbunden.   

Label: Component_name  
    port map (local => actual, 
              local => actual); 

Generate-Statement  
(struktureller Entwurf). Erzeugung periodi-
scher Strukturen. Es werden 8 Instanzen 
der Komponente D_Flipflop erzeugt.  

Label: for I in 0 to 7 generate  
   D_Flipflop port map 
   D(I), Q(I), CLK);  
  end generate; 

 

Als Beispiel ist hier der strukturelle Code des gleichen Multiplexers gezeigt, der oben als Ver-
haltensbeschreibung präsentiert wurde. Die Entity ist daher identisch. 

entity MUX is 
    port ( X0, X1, SEL: in bit; Y: out bit); 
end MUX; 
architecture STRUKTUR of MUX is 
signal A,B,C: bit; 
component NO_GATE 
   port (I: in bit; O: out bit); 
end component; 
component AND_GATE 
   port (I0, I1: in bit; O: out bit); 
end component; 
component OR_GATE 
   port (I0, I1: in bit; O: out bit); 
end component;  
begin  
Inst1: NO_GATE 
   port map (I => SEL, O => A); 
Inst2: AND_Gate 
   port map (I0 => X0, I1 => A, O => B); 
Inst3: AND_Gate 
   port map (I0 => X1, I1 => SEL, O => C); 
Inst4: OR_GATE 
   port map (I0 => b, I1 => C, O => Y); 
end STRUKTUR; 



228 15  VHDL 

Im Code für den Multiplexer werden im Deklarationsteil der Architektur zunächst die internen 
Signale A, B und C deklariert. Anschließend stehen die Deklarationen der 3 Komponenten 
NO_GATE, AND_GATE und OR_GATE. Die Architekturen für diese Komponenten können an 
anderer Stelle stehen. Nach dem Schlüsselwort begin folgen die nebenläufigen Anweisungen, 
die aus 3 Komponenten-Instanzierungen bestehen. Neben dem Namen der entsprechenden 
Komponente enthalten sie eine port map, in der die Tore zugeordnet werden. Die generierte 
Hardware mit den entsprechenden Verbindungen ist in Bild 15-3 gezeigt. 
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Bild 15-3 Generierte Hardware für den strukturellen Code MUX.  

15.9  Busse 

Auch Bussysteme, die mit Tristate-Gattern arbeiten, können in VHDL modelliert werden. Das 
Problem ist, dass bei Bussen mehrere Treiber-Ausgänge auf ein Signal wirken. Es gibt also 
mehr als eine Zuweisung auf ein Signal. Man benötigt für die Lösung dieses Problems ein 
mehrwertiges Logiksystem. Es bietet sich an, die in der Package STD_LOGIC_1164 enthal-
tenen Datentypen std_logic und std_logic_vector zu verwenden. Das sind 9-wertige 
Datentypen, die besser das Verhalten einer realen Digitalschaltung beschreiben, als das 2-
wertige System bit und bit_vector (Tabelle 15-8). Es sind in diesen Datentypen Werte 
für einen hochohmigen Ausgang und für nicht initialisierte Zustände von Flipflops vorhanden. 
Außerdem gibt es schwache, das heißt über einen Widerstand anliegende digitale Werte 0 und 
1. Diese werden durch eine erzwungene 1 und 0 überschrieben.  

 

Tabelle 15-8 Logiksystem std_logic in der Package STD_LOGIC_1164.  

Wert Beschreibung  Wert Beschreibung 

'U' nicht initialisiert 'W' schwach unbekannt 

'X' erzwungen unbekannt 'L' schwache 0 

'0' erzwungene 0 'H' schwache 1 

'1' erzwungene 1 '-' Don’t care 

'Z' hochohmig   

  

Wie wird nun mit bei einer doppelten Wertzuweisung auf ein Bus-Signal umgegangen? Die 
Antwort liegt in einer Auflösungsfunktion, mit der der endgültige Wert auf dem Bus berechnet 
wird. Diese Auflösungsfunktion ist hier für 2 Signale A und B dargestellt. Sie ist ebenfalls in 
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der Package STD_LOGIC_1164  enthalten. Man erkennt zum Beispiel, dass, wenn ein Signal 
hochohmig 'Z' ist, das andere Signal durchgeschaltet wird.  

Tabelle 15-9 Auflösungsfunktion für den Datentyp std_logic.  

 Signal A  

'U' 'X' '0' '1' 'Z' 'W' 'L' 'H' '-' 

S
ig

na
l B

 

'U' 'U' 'U' 'U' 'U' 'U' 'U' 'U' 'U' 'U' 

'X' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 

'0' 'U' 'X' '0' 'X' '0' '0' '0' '0' 'X' 

'1' 'U' 'X' 'X' '1' '1' '1' '1' '1' 'X' 

'Z' 'U' 'X' '0' '1' 'Z' 'W' 'L' 'H' 'X' 

'W' 'U' 'X' '0' '1' 'W' 'W' 'W' 'W' 'X' 

'L' 'U' 'X' '0' '1' 'L' 'W' 'L' 'W' 'X' 

'H' 'U' 'X' '0' '1' 'H' 'W' 'W' 'H' 'X' 

'-' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 

 

Als Beispiel für einen bidirektionalen Bus wird hier die VHDL-Beschreibung eines Schnittstel-
lenbausteins gezeigt, die die beschriebene Auflösungsfunktion aus der Package 
STD_LOGIC_1164 verwendet.  

 

library IEEE;  
use  IEEE.std_logic_1164.all;  
entity TRI_BUS is  
  port(SEND, OEN: in std_logic;  
       RECEIVE: out  std_logic;  
       BUS:  inout std_logic;  
end TRISTATEBUS;  
 
architecture VERHALTEN of TRI_BUS is  
begin  
 process (OEN, SEND, BUS)  
  begin  
    RECEIVE <= BUS;  
    if (OEN = '1') then BUS <= SEND;  
    else BUS <= 'Z';      
    end if;  
 end process;  
end VERHALTEN; 
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Bild 15-4 Schaltung des Schnittstellenbausteins.  

Die Bibliothek wird mit den ersten beiden Zeilen vor der Entity eingebunden. Damit ist der 
Typ auch in der zugehörigen Architektur bekannt. Das Bus-Signal ist mit dem Modus inout 
deklariert, so dass man auf den Bus schreiben als auch von ihm lesen kann. In der Architektur 
wird dem Signal BUS, je nach dem Wert des Signals Output Enable OEN der Wert des Signals 
SEND oder das für einen hochohmigen Ausgang stehende 'Z' zugewiesen. Der Typ 
std_logic wird sehr häufig für Digitalsignale verwendet. Die Schaltung ist in Bild 15-4 
verdeutlicht.   

15.10  Übungen 

Aufgabe 1: Welche Aufgaben haben Entity und Architecture in einer VHDL-Beschreibung?  

Aufgabe 2: Welche Werte haben die Variablen C und D sowie die Signale A und B nach dem 
folgenden Code, der sich in einem Prozess befindet?  

C := D; 

D := C; 

A <= B;  

B <= A; 

Aufgabe 3:  

a) An welcher Stelle steht der Deklarationsteil in einem Prozess? 

b) Zwischen welchen Schlüsselwörtern steht der Deklarationsteil in einer Architektur?  

Aufgabe 4: Geben Sie die boolesche Gleichung an, die durch den folgenden Code beschrieben 
wird. Alle Signale sind vom Typ bit. 

process (A,B,X,Y,Z)  
begin  
     if A = '1' then F <= X; 

elsif B = '1' then F <= Y; 
else F <= Z; 
end if; 

end process;  
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16.1  Prinzip kooperierender Schaltwerke 

Schaltwerke mit sehr vielen inneren Zuständen, die zusätzlich von einer Vielzahl von Eingän-
gen abhängig sind, können mit den bisher gezeigten Methoden nur schwer entwickelt werden. 
Die Schwierigkeit liegt im großen Umfang der benötigten Zustandsfolgetabelle. Prinzipiell 
können daher mit dem besprochenen Entwurfsverfahren nur einfache Schaltwerke konzipiert 
werden.  

Eine Lösungsmöglichkeit des Problems sind kooperierende Schaltwerke, bei denen man das 
Schaltwerk in ein Operationswerk und ein Leitwerk aufteilt. Diese können dann getrennt ent-
wickelt werden. In Bild 16-1 ist eine derartige Struktur dargestellt. Das Operationswerk kann 
mit dem Steuerbus si so konfiguriert werden, wie es der jeweiligen Aufgabe entspricht. So 
kann zum Beispiel die in Kapitel 12.5 behandelte ALU als ein einfaches Operationswerk ver-
standen werden. Der Zustandsbus zi gibt Informationen über die Ergebnisse aus dem Operati-
onswerk an das Leitwerk weiter.  
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Bild 16-1 Aufbau eines kooperierenden Schaltwerks. 

Operationswerke enthalten in der Regel eine arithmetisch-logische Einheit (ALU) sowie Regis-
ter zum Speichern der Variablen. Mit dem Operationswerk können daher eine Vielzahl von 
Problemen bearbeitet werden. Das Leitwerk leistet die Koordinierung der im Operationswerk 
durchzuführenden Operationen. Es kann zum Beispiel als Schaltwerk aufgebaut sein. 

16.2  Der Von-Neumann-Rechner 

Das Konzept des Von-Neumann-Rechners ist eine Erweiterung des oben dargestellten koope-
rierenden Schaltwerks. Der Von- Neumann-Rechner beinhaltet die Trennung des Schaltwerks 
in ein Leit- und ein Operationswerk. Darüber hinaus wird beim Von-Neumann-Rechner das 
Leitwerk durch ein Software-Programm gesteuert, dass die Folge der Operationen enthält. 
Damit wird eine noch größere Flexibilität erreicht, da man durch die Wahl eines anderen Pro-
gramms ein anderes Problem bearbeiten kann. Das Programm wird, gemeinsam mit den vom 
Operationswerk benötigten Daten, in einem Speicher gespeichert. Daher ist ein Bussystem 
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vorhanden, welches es erlaubt, die Daten und die Befehle des Programms aus dem Speicher zu 
holen und Daten in den Speicher zu schreiben. Das Programm, welches vom Mikroprozessor 
ausgeführt wird, heißt Maschinenprogramm, die auszuführenden Befehle heißen Maschinenbe-
fehle. In der Praxis entsteht das Maschinenprogramm oft durch eine Übersetzung aus dem 
Assemblercode, der weiter unten beschrieben wird. 

Das Prinzip des Von-Neumann-Rechners ist in Bild 16-2 dargestellt. Die Verbindung zwischen 
den Baugruppen wird durch drei Busse hergestellt. Auf dem Datenbus werden die Daten und 
die Befehle transportiert, der Adressbus gibt die Information weiter, wo die Daten und Befehle 
im Speicher zu finden sind. Über den Steuerbus werden Signale geleitet, die zum Beispiel den 
Speicher zwischen Lesen (RD) und Schreiben (WR) umschalten. Die Begriffe Lesen und 
Schreiben sind jeweils aus der Sicht des Mikroprozessors zu interpretieren. Auch das Taktsig-
nal, das dem gesamten Prozessor gemeinsam ist, gehört zum Steuerbus.  
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Bild 16-2 Grundstruktur eines Von-Neumann-Rechners. Der Steuerbus, der alle Bausteine miteinander  
verbindet, ist nicht gezeigt. 

Man hat mit dem Mikroprozessor einen Universalbaustein geschaffen, der mit Hilfe der Soft-
ware an viele Problemstellungen angepasst werden kann. Dadurch findet der Mikroprozessor 
Anwendung in vielen Produkten. Im Folgenden werden die Baugruppen des Von-Neumann-
Rechners genauer besprochen. Der eigentliche Mikroprozessorchip beinhaltet in der Regel das 
Leitwerk und das Operationswerk. Zusammen mit einem Speicher und den Baugruppen der 
Ein- und Ausgabe bildet er einen Computer oder Rechner. Bei so genannten Mikrocontrollern 
sind auf dem Chip zusätzlich die Speicher (RAM und ROM), Ein- und Ausgabeeinheiten und 
oft auch Analog/Digitalwandler integriert.  
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16.2.1  Operationswerk 

Das Operationswerk beinhaltet in der Regel die ALU und einen Registerblock für die Speiche-
rung von Zwischenergebnissen, wie es bereits oben besprochen wurde. Die Architektur von 
Operationswerken kann mehr oder weniger auf eine spezielle Anwendung zugeschnitten sein. 
Der Von-Neumann-Rechner ist für nahezu alle arithmetisch-logisch orientierten Problemstel-
lungen geeignet, es gibt aber auch Operationswerke für eine spezielle Aufgabe. Zum Beispiel 
gibt es Prozessoren, die für die Signalverarbeitung optimiert sind, so genannte Digitale Signal-
prozessoren (DSP = Digital Signal Processor). Sie eignen sich zum Beispiel dafür, eine FFT 
(Fast-Fourier-Transformation) effizient auszuführen.  

Ein typischer Aufbau für eine universelle Register-Arithmetik-Einheit ist in Bild 16-3 darge-
stellt. Sie besteht aus zwei Registern A und B. Das Register A wird oft als Akkumulator be-
zeichnet. Es nimmt einen der Operanden und in der Regel das Ergebnis der Operation auf. 

Mit der dargestellten Einheit können logische Operationen, Addition und Subtraktion durchge-
führt werden. Für die Multiplikation und Division kann das Rechts-Links-Schieberegister ver-
wendet werden. Im Flag-Register werden Informationen über das Ergebnis der arithmetischen 
Operationen festgehalten. So zeigt ein bestimmtes Bit im Flag-Register an, ob das Ergebnis 
gleich 0 ist, ein anderes zeigt an, ob es einen Übertrag (Carry) gab. Der Inhalt des Flag-
Registers kann als Bedingung für Programmverzweigungen verwendet werden. 
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Bild 16-3 Typische busorientierte Register-Arithmetik-Einheit. 

Konstanten, die das Operationswerk für die Ausführung arithmetischer Operationen benötigt, 
können durch die Hardware festgelegt sein oder sie werden durch einen Teil des Steuerbusses 
auf den Datenbus gegeben. 

16.2.2  Leitwerk 

Man unterscheidet zwischen Leitwerken, die als Schaltwerk aufgebaut sind und mikropro-
grammgesteuerten Leitwerken. Die ersteren sind schneller. Sie werden bevorzugt eingesetzt, 
wenn nur eine geringe Anzahl von Befehlen realisiert werden muss. Dies trifft für RISC (re-
duced instruction set computer) zu. Mikroprogrammgesteuerte Leitwerke sind sehr flexibel, sie 
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können leicht an verschiedene Anwendungsfälle angepasst werden. Auf der anderen Seite sind 
sie langsamer, da der Befehl erst aus einem Speicher geholt werden muss. 

Im Leitwerk werden Maschinen-Befehle verarbeitet. Sie bestehen in der Regel aus zwei Teilen, 
dem Befehlscode (Operationscode oder Opcode) und einem oder mehreren Operanden. Der 
Befehlscode sagt welche Operation durchgeführt werden soll, der Operand enthält Daten oder 
Adressen, unter denen Daten zu finden sind. Das Leitwerk eines Mikroprozessors besteht aus 
den folgenden Komponenten: 

Befehlszähler (Program-Counter)  

Der Befehlszähler oder Program-Counter (PC) ist ein Register im Rechner, welches die Adres-
se des nächsten auszuführenden Maschinen-Befehls enthält. Um einen Befehl aus dem Spei-
cher zu holen, wird der Inhalt des Befehlszählers auf den Adressbus gelegt, worauf der Spei-
cher auf dem Datenbus den Befehlscode sendet. Nachdem der Operationscode eines Befehls 
aus dem Speicher geholt wurde, wird der PC erhöht und zeigt dann auf den nächsten Befehl. 

Befehlsregister 

Im Befehlsregister wird der Maschinen-Befehl zwischengespeichert, nachdem er aus dem 
Speicher geholt wurde.  

Befehls-Decoder 

Im Befehls-Decoder werden aus dem Maschinenbefehl die Steuerbefehle für die einzelnen 
Register, die ALU sowie für die Bussteuerung abgeleitet. 

Stack-Pointer 

Mit Hilfe des Stack-Pointers wird der Stapel-Speicher (Stack) organisiert. Ein Stapelspeicher 
ist ein Speicher, in dem Daten seriell der Reihe nach abgelegt werden wie auf einem Papiersta-
pel. Der Stack-Pointer (SP) speichert die Adresse des ersten freien Speicherplatzes über dem 
letzten Datum, welches in den Stack geschrieben wurde. Wenn neue Daten in den Stack ge-
schrieben werden, wird der Stack-Pointer entsprechend verändert, so dass er wieder auf den 
nächsten freien Speicherplatz im Stack  (TOS = Top of Stack) zeigt.   

Interruptsteuerung 

Ein Interrupt ist die Unterbrechung eines laufenden Programms, um auf externe oder interne 
Ereignisse reagieren zu können. Das ist z.B. der Fall wenn der Prozessor vom Anwender zu-
rückgesetzt werden soll (Reset), wenn auf einer Tastatur ein Wert eingegeben wurde oder wenn 
ein neues Datenwort an einer externen Schnittstelle anliegt. In der Interruptsteuerung werden 
diese Interrupts, die auch gleichzeitig auftreten können, organisiert. 

16.2.3  Speicher  

Charakteristisch für einen Von-Neumann-Rechner ist, dass im Speicher sowohl Daten als auch 
Programme gespeichert werden. Der Speicher setzt sich aus Bausteinen verschiedener Techno-
logien zusammen. Daten werden meist in einem RAM gespeichert, wenn sie geändert werden 
müssen. Das Betriebssystem oder Teile davon werden oft in einem ROM oder EEPROM ge-
speichert.  

16.2.4  Ein- und Ausgabe 

Ein- und Ausgabeeinheiten sind Peripheriegeräte wie Drucker, Bildschirm, Datennetze, externe 
Plattenlaufwerke, Tastatur, Maus  usw.  
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16.2.5  Betrieb 

Im normalen Betrieb wird der Befehl, dessen Adresse im Befehlszähler steht, aus dem Speicher 
geholt und dann ausgeführt. Anschließend wird die Adresse des nächsten Befehls ermittelt. 
Das ist im Normalfall die Adresse des Befehls der als nächstes im Speicher steht. Anders wird 
bei Sprungbefehlen vorgegangen. Hier wird die Adresse des Sprungziels in den Befehlszähler 
geladen. Die Adresse des Sprungziels ist im Operanden des Sprungbefehls enthalten.  

Der normale Betrieb mit fortwährendem Holen und Ausführen von Befehlen kann aber auch 
unterbrochen werden. Dies ist nötig, um dem Rechner von außen Informationen mitzuteilen. 
Beispiele hierfür sind zum Beispiel bei Steuerungsrechnern, wenn sich ein Sensorsignal geän-
dert hat, beim PC, wenn eine Taste auf der Tastatur betätigt wurde, oder bei der Steuerung 
einer Waschmaschine, wenn der richtige Füllstand erreicht wurde. Dann wird über eine spezi-
elle Leitung, die Interrupt-Leitung, ein Interrupt ausgelöst. Er bewirkt, dass das normale Pro-
gramm unterbrochen wird und stattdessen eine spezielle Interrupt-Service-Routine (ISR) abge-
arbeitet wird, in der auf das durch den Interrupt signalisierte Ereignis reagiert wird. Danach 
wird wieder der normale Betrieb aus Holen und Abarbeiten von Befehlen aufgenommen.  

Die Ausführung von Befehlen und die Interrupt-Bearbeitung werden weiter unten detailliert 
beschrieben.  

16.3  Architektur des ATmega16  

Der Aufbau eines Mikroprozessors wird hier am Beispiel des weit verbreiteten Mikrocontrol-
lers ATmega16 der Firma Atmel beschrieben [48].  Mikrocontroller sind spezielle Bausteine 
für die Steuer- und Regelungsaufgaben, die neben einem Mikroprozessor die digitalen Speicher 
(ROM, RAM, EEPROM) und auch spezielle Schnittstellen für In- und Output digitaler  und 
analoger Größen auf einem Chip enthalten. Der ATmega16 dient hier als ein Beispiel für einen 
Mikroprozessor. Es stehen der grundlegende Aufbau und die Funktionsweise eines Mikropro-
zessors im Vordergrund. Es sollen darauf aufbauend die Grundzüge der Assemblerprogram-
mierung vermittelt werden. Die umfangreichen Möglichkeiten eines Mikrocontrollers werden 
nur kurz gestreift. Für die Nutzung dieser zusätzlichen Ressourcen wie digitale Ein- und Aus-
gänge, Zeitgeber (Timer), AD-Wandler usw. wird daher auf die weitergehende Literatur ver-
wiesen [44-48]. 

Der ATmega16 ist abweichend von der von Neumann-Architektur in einer Havard-Architektur 
aufgebaut (Bild 16-4). In dieser Architektur sind Programm- und Datenspeicher getrennt und 
durch eigene Busse mit dem Prozessor verbunden. Da nun das Holen eines Befehls gleichzeitig 
mit dem Laden oder Speichern eines Datums erfolgen kann, arbeitet der Prozessor deutlich 
schneller als ein Prozessor mit einer von Neumann-Architektur. Der ATmega16 ist ein 8-Bit-
Prozessor, das heißt, dass der Datenbus 8Bit breit ist.  
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Bild 16-4 Havard-Architektur des ATmega16. 
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Die Programme werden im Programmspeicher abgespeichert, wobei unter jedem Speicherplatz 
ein Wort (16Bit) abgespeichert wird. Die Adressen des Programmspeichers sind 13Bit breit, 
das entspricht einem adressierbaren Adressraum von 8K Worten. Der Programmspeicher ist als 
nichtflüchtiger Flash-Speicher aufgebaut. 

 

Die Betriebsspannung ist 2,7 – 5,5V. Da Mikrocontroller bevorzugt für Aufgaben in der Regel- 
und Steuerungstechnik sowie in der Nachrichtentechnik eingesetzt werden, sind auf dem Chip 
parallele und serielle Schnittstellen, flüchtige und nichtflüchtige Speicher integriert. Der AT-
mega16 hat außerdem mehrere Timer und einen 8-Kanal-AD-Wandler mit 10Bit Auflösung. 
Mehrere Interrupts dienen der Reaktion auf externe Ereignisse. Der Prozessor kann maximal 
mit 16MHz Taktfrequenz betrieben werden.  

 

Der Aufbau des ATmega16 ist in Bild 16-5 gezeigt. Man erkennt die folgenden Komponenten: 

• Der Program-Counter, Befehlsregister, Befehlsdecoder und die Interrupt-Steuerung 
bilden das Leitwerk. Die Interrupt-Steuerung ist verantwortlich für die Bearbeitung von 
Interrupts. Der Registerblock, die ALU und das Flag-Register SREG ergeben das Opera-
tionswerk. Leitwerk und Operationswerk zusammen werden auch CPU (Central Proces-
sing Unit) genannt  

• Der Programmspeicher ist in Flash-Technologie (Flash) aufgebaut. Er bietet Platz für 
16KByte Programm.  

• Das statische RAM (SRAM) mit 1KByte und das EEPROM mit 512Bytes sind die auf 
dem Chip integrierten Speicher für Daten.  

• Port A, Port B, Port C und Port D sind multifunktionale digitale Schnittstellen mit einer 
Breite von jeweils 8Bit z.B. für die Kommunikation mit Sensoren und Aktoren. Die Funk-
tion dieser Anschlüsse ist oft doppelt belegt. 

• Ein 8-Kanal-10-Bit-AD-Wandler mit wahlweise symmetrischen und asymmetrischen 
Eingängen. 

• Die seriellen Schnittstellen TWI (Two-Wire-Serial Interface) und SPI (Serielles Periphe-
rie-Interface) und USART (Universal Synchronous and Asynchronous Serial Receiver and 
Transmitter) dienen dem Aufbau von Schnittstellen (z.B. RS 232 oder Kommunikation mit 
anderen Prozessoren). Das 16-Bit-Timer-System dient der Ausführung von zeitlich defi-
nierten Vorgängen und entlastet so den Prozessor von Zeitmessaufgaben. Es besteht aus:  

− Zeitgeber: Zwei 8Bit-Timer und ein 16Bit-Timer mit programmierbarem Vortei-
ler. Sie haben einen Output-Compare-Modus, um definierte digitale Ausgangs-
muster erzeugen zu können, wie sie zum Beispiel bei der Pulsweitenmodulation 
benötigt werden und einen Input-Capture-Modus um externe Ereignisse mit ei-
nem Zeitstempel versehen zu können.    

− Watchdog-Timer: Es gibt einen programmierbaren Watchdog-Timer, mit dem 
der korrekte Ablauf des Programms überwacht werden kann.  

− Timer-Interruptsteuerung: produziert Interrupts bei Timerüberlauf, kann aber 
auch genutzt werden, um periodisch Interrupts zu erzeugen.  
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 Bild 16-5 Prinzipschaltbild des ATmega16. 

16.3.1  Anschlüsse des ATmega16 

Der ATmega16 hat die folgenden Anschlüsse (Bild 16-6): 

VDD,VSS Versorgungsspannung und Erde 

¬RESET  Mit einem Low kann der Prozessor in einen Grundzustand zurückgesetzt 
werden.  

XTAL1, XTAL2 Anschlüsse für den Schwingquarz 
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AVCC Versorgungsspannung für den Prozessor und den AD-Umsetzer, wird in 
der Regel mit VDD verbunden. 

AREF Referenzspannung für den AD-Wandler 

PA7-PA0, Port A Universeller digitaler Ein- oder Ausgangs-Port A oder alternativ als Ein-
gänge für den AD-Wandler (ADC7-ADC0) verwendet.  

PB7-PB0, Port B Universeller digitaler Ein- oder Ausgangs-Port B, alternativ genutzt für:  
• Signale für seriellen SPI-Bus (SCK, MOSI, MISO, ¬SS), 
• Eingang für den analogen Vergleicher AIN1 und AIN2,  
• Ausgang für Timer/Counter0 Output Compare Match OC0 
• Eingang für den Interrupt INT2 
• Eingang für die Timer T1 und T0  

PC7-PC0, Port C Universeller digitaler Ein- oder Ausgangs-Port C, alternativ genutzt für:  

• Signale für den Timer (TOSC1 und TOSC2), 
• JTAG-Port für Boundary Scan und Debugging (TDI, DTO, 

TMS, TCK)  
• TWI-Bus (SDA und SCL) 

PD7-PD0, Port D Universeller digitaler Ein- oder Ausgangs-Port D, alternativ genutzt für:  

• Ausgang für Timer/Counter2 Output Compare Match OC2 
• Eingang für Timer/Counter1 Input Capture ICP1 
• Ausgänge für Timer/Counter1 Output Compare Match A und B 

(OC1A und OC1B) 
• Signale für den USART (TXD und RXD), 
• Eingang für die Interrupts INT0 und INT1 

  

  

PA0 (ADC0) 
PA1 (ADC1) 
PA2 (ADC2) 
PA3 (ADC3) 
PA4 (ADC4) 
PA5 (ADC5) 
PA6 (ADC6) 
PA7 (ADC7) 
AREF 
GND 
AVCC 
PC7 (TOSC2) 
PC6 (TOSC1) 
PC5 (TDI) 
PC4 (TDO) 
PC3 (TMS) 
PC2 (TCK) 
PC1 (SDA) 
PC0 (SCL) 
PD7 (OC2) 

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

  (XCK/T0) PB0
(T1) PB1

(INT2/AIN0) PB2 
(OC0/AIN1) PB3

(¬SS) PB4
(MOSI) PB5
(MISO) PB6

(SCK) PB7
¬RESET

VCC
GND

XTAL2
XTAL1

(RXD) PD0
(TXD) PD1
(INT0) PD2
(INT1) PD3

(OC1B) PD4
(OC1A) PD5

(ICP1) PD6

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

 

Bild 16-6 Anschlüsse des ATmega16 (PDIP-Package). 
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16.3.2  CPU-Register 

Die CPU-Register, die in Bild 16-7 abgebildet sind, dienen im Wesentlichen der Speicherung 
von Operanden und Adressen. Die meisten Befehle des ATmega16 arbeiten mit dem Register-
satz r0 bis r31, in dem 8-Bit-Operanden gespeichert werden können. Die Register sind Ziel 
oder Quelle für arithmetische Operationen und werden für die Adressierung benötigt. Eine 
besondere Rolle nehmen die Register r26, r27 und r28, 29 sowie r30, r31 ein, die paarweise die 
Indexregister X, Y und Z ergeben.  Sie sind vorzugsweise für die Speicherung von 16Bit-
Adressen vorgesehen. Durch ihre Breite von 16Bit können sie einen Adressraum von maximal 
64K adressieren. Sie werden für eine besondere Adressierungsart verwendet, die indizierte 
Adressierung. Das Register mit der niedrigeren Adresse speichert jeweils das Low-Byte, wäh-
rend das Register mit der höheren Adresse jeweils das High-Byte der Adresse speichert. 

Zusätzlich besitzt der ATmega16 64 Register (I/O-Register) zur Steuerung der Peripherie zu 
der Timer, Ports, AD-Wandler und die Schnittstellen gehören. 

Bereits oben wurde der Programm-Zähler (PC) erwähnt, der eine Breite von 13Bit hat. Er ent-
hält die Adresse des nächsten auszuführenden Befehls. Er wird nach der Ausführung eines 
Befehls in der Regel um 1 erhöht. Ausnahme davon sind Sprungbefehle, die bewirken, dass das 
Sprungziel in den PC geladen wird. Danach wird der Befehl am Sprungziel ausgeführt. 

Der 16-Bit Stack-Pointer wird in ein Low-und ein High-Byte unterteilt. Er enthält die Adresse 
des obersten freien Platzes im Stack (Top of Stack, TOS). Register, die die Adresse eines Da-
tums enthalten, wie der Stack-Pointer oder der Befehlszähler, werden Pointer genannt. 

 

r0 $00   
r1 $01   
r2 $02   
r3 $03   
…    
r13 $0D   
r14 $0E   
r15 $0F   
r16 $10   
r17 $11   
…    
r26 $1A  X-Register Low-Byte 
r27 $1B  X-Register High-Byte 
r28 $1C  Y-Register Low-Byte 
r29 $1D  Y-Register High-Byte 
r30 $1E  Z-Register Low-Byte 
r31 $1F  Z-Register High-Byte 

7 0 Adr. 

Registersatz 

Statusregister SREG 

7 0

 I CZNVSH T 

 

Bild 16-7 CPU-Register des ATmega16 
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Das Status-Register SREG wird auch Flag-Register genannt. Es enthält neben den Flags das I-
Bit, das für die Steuerung von Interrupts des Prozessors benötigt wird.  

 

Bit Flag  Beschreibung 

0 C Carry-Flag: Carry oder Borrow vom MSB. Bei der Addition ist C = cn, bei der Sub-
traktion ist  C= ¬cn. 

1 Z Zero. Das Zero-Flag wird gesetzt, wenn alle Bits des Ergebnisses gleich 0 sind. 

2 N Negative. Dieses Bit ist äquivalent zu Bit 7 des Ergebnisses einer Operation. 

3 V Overflow. Überlauf wie in Kapitel 2 dargestellt. Bedingung dafür ist, dass cn ≠ cn-1

gilt. V zeigt ein falsches Vorzeichen bei einer Zweierkomplement-Operation an. 

4 S Sign-Bit. Dieses Bit ergibt sich aus der Operation S = N ↔ V  

5 H Half Carry. Dieses Flag zeigt einen Übertrag aus Bit 3 an. Es dient der BCD-
Arithmetik. 

6 T Bit Copy Storage. Dieses Bit dient als Zwischenspeicher. Mit speziellen Befehlen,
die hier nicht weiter erläutert werden, können Bits aus dem Registerfile in das T-Bit 
kopiert werden.  

7 I I-Bit.  Mit diesem Bit können die Interrupts gesperrt werden.  

16.3.3  Programm-Speicher 

Der Programmspeicher (Bild 16.8) ist in Flash-Technologie aufgebaut. Er bietet Platz für 
16KByte Programmcode. Da die Befehle des ATmega16 entweder 1 oder 2 Worte lang sind, 
ist der Speicher so organisiert, dass in jedem Speicherplatz ein Wort gespeichert wird. Der 
Adressbereich (8K × 16Bit) geht von $0000 bis $1FFF. Dieser Adressbereich kann durch den 
Programm-Counter mit der Breite von 13 Bit adressiert werden. Der nichtflüchtige Speicher 
kann bis zu 10000mal beschrieben und gelöscht werden. 

 $0000 
 $0001 

 $0002 

 $0003 
 $0004 

 $0005 

 …
 $1FFB 
 $1FFC 
 $1FFD 

 $1FFE 
 $1FFF 

15 0 Adresse 

 
Programm-

Speicher 
(Flash) 

 

 
Boot-Sektor
 

 

Bild 16-8 Mapping des Programmspeichers des ATmega16 
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Der Flash-Programmspeicher besteht aus zwei Bereichen. Im oberen Bereich steht der eigentli-
che Programmcode. Im unteren Bereich, dem Boot-Sektor, kann ein sogenannter Bootloader 
abgelegt werden. Der Beginn dieses Bereichs wird mit Fuse-Bits festgelegt, die nur über ein 
Programmiergerät verändert werden können. Wird eine Bootsektion eingerichtet, startet der 
ATmega16 nach einem Reset an der Startadresse dieses Boot-Bereichs. Mit dem dort abgeleg-
ten Programm, welches man Bootloader nennt, wird eine Kommunikation z.B. mit dem PC 
hergestellt und der Programmcode neu geschrieben. Dies ist sehr nützlich, um bei fertigen 
Produkten dem Kunden ein Firmware-Update ohne Programmiergerät zu ermöglichen.  
 

16.3.4  Daten-Speicher 

Das statische RAM (SRAM) mit 1KByte und das EEPROM mit 512Bytes Inhalt sind die auf 
dem Chip integrierten Speicher für Daten.  

Der Registerblock (Bild 16-9) für die universell verwendbaren CPU-Register liegt im Adress-
bereich $0000 bis $001F. Im anschließenden Adressbereich von $0020 bis $005F liegen die 
I/O-Register. In diesen Registern wird die Information gespeichert, wie die Schnittstellen ar-
beiten, wie der AD-Wandler konfiguriert ist, wie die Timer geschaltet sind usw. Hier wird auf 
diese Register nicht weiter eingegangen. Sie sind aber von großer Wichtigkeit, wenn mit den 
erwähnten Ressourcen gearbeitet wird. Die I/O-Register können mit einer besonderen Adres-
sierungsart angesprochen werden. In dieser Adressierungsart wird die alternative Adresse2 in 
Bild 16-9 verwendet, die um $20 niedriger ist. Der Bereich von $0060 bis $045F ist für die 
Datenspeicherung frei verfügbar. 

 $0000 r0 
 $0001 r1  

 $0002 r2  

 $0003 r3  
 …   

 $001D r29  

 $001E r30  

 $001F r31  

 $0020 $0000  

 $0021 $0001  
 … …  

 $005D $003D  

 $005E $003E  
 $005F $003F  

 $0060   

 $0061   
 …   

 $045E   
 $045F   

7 0 Adresse1 

 
Universal- 

 
Register 

 

 
I/O- 

 
Register 

 

 
 

SRAM 
 

Adresse2 

 

Bild 16-9 Mapping des Datenspeichers des ATmega16. 
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16.3.5  Funktionsabläufe bei der Befehlsausführung 

Im normalen Betriebszustand führt ein Prozessor eine immer wiederkehrende Folge von Schrit-
ten durch. Es wird fortwährend ein Befehl aus dem Speicher geholt und dann abgearbeitet. Im 
Normalfall werden die Befehle in der Reihenfolge bearbeitet, in der sie im Speicher stehen. Die 
Ausführung einer Befehlsfolge soll an Hand des folgenden Beispiels erläutert werden:  

Befehl    ;Kommentar 

INC r10    ;inkrementiere Register r10 
ADD r11,r15  ;addiere r11 und r12, speichere Ergebnis in r11   
DEC r12    ;dekrementiere r12 
 

In diesem Beispiel dient der Befehl INC r10 zum Inkrementieren des Inhaltes des Registers 
r10 und der Befehl DEC r12 zum Dekrementieren des Inhaltes von r12. Der Befehl ADD 
r11,r15 bewirkt, dass der Inhalt des Registers r11 und der des Registers r15 addiert und das 
Ergebnis in r11 abgespeichert wird. 

Beim ATMega16 wird zur Abarbeitung der Befehle eine Befehls-Pipeline verwendet. Bei einer 
Pipeline wird ein Befehl in mehreren Takten ausgeführt, wie es bei der Fleißbandproduktion in 
der Industrie üblich ist. In der 2-stufigen Pipeline des ATmega16 wird in einem Takt gleichzei-
tig  

• ein Befehl aus dem Programm-Speicher geholt und  
• der vorhergehende Befehl ausgeführt. Dafür werden die  

a) Operanden aus dem Speicher geholt,  
b) das Ergebnis in der ALU berechnet und  
c) das Ergebnis im Speicher abgelegt.  

Die zeitliche Abfolge für die aufeinander folgenden Befehle des obigen Beispiels ist im Bild 
16-10 gezeigt. Man erkennt, dass in jedem Takt ein Befehlscode gelesen wird und ein Befehl 
mit den drei Ausführungs-Schritten a, b und c ausgeführt wird. Die Ausführung eines Befehls 
wird einen Takt nach dessen Befehlsdecodierung durchgeführt. Durch diese Pipeline-
erarbeitung wird die mittlere Verarbeitungszeit für einen Befehl halbiert.   

Befehls-
dekodierung 

Zeit 

Befehlscode  
INC r10  
holen  

Befehlscode  
ADD r11,r15 
holen  

Befehlscode  
DEC r12  
holen  

Takt 1

Takt 2 

Takt 3 

Takt 4 

Befehls 
Ausführung 

a) Inhalt von r10 laden 
b) 1 addieren 
c) Ergebnis nach r10  

a) Inhalt von r11 laden 
b) Inhalt von  r15 add. 
c) Ergebnis nach r11 

a) Inhalt von r12 laden 
b) 1 subtrahieren 
c) Ergebnis nach r12 

Keinen Befehl 
ausführen 

Nächsten 
Befehlscode  
holen 

 

Bild 16-10 Befehlsausführung des ATmega16. 
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16.4  Assembler-Programmierung 

Jeder Befehl hat ein festes Format. Beim ATmega16 sind fast alle Befehle ein Wort und nur in 
Ausnahmefällen 2 Worte lang. Die Verhältnisse werden im Folgenden an Hand des Assembler-
Befehls ADD r10,r17 beispielhaft erklärt. ADD ist ein so genanntes Mnemonic, es lässt sich 
leicht merken, da es aus der englischen Beschreibung „Add “ abgeleitet wurde.  

Wie jeder andere Befehl auch, kann der Befehl ADD r10,r17 in die Maschinensprache über-
setzt werden, eine binäre Darstellung, die vom Prozessor interpretiert werden kann. Dies ist in 
Tabelle 16-2 dargestellt. Der Befehlscode (auch Operationscode oder Opcode) besteht nur aus 
einem Wort, welches oft hexadezimal dargestellt wird, in diesem Fall $0EA1. In diesem Wert 
sind der Befehl „ADD“ und die beteiligten Register codiert. In der Maschinensprache stehen in 
der binären Darstellung 0000 11rd dddd rrrr die Abkürzung ddddd für die binäre 
Codierung des Zielregisters r10 und rrrrr und für die binäre Codierung des Quellregisters 
r17. Das Zeichen $ wird hier für die Kennzeichnung der hexadezimalen Darstellung verwendet. 

Tabelle 16-1 Gegenüberstellung der Assembler-, Hexadezimal- und Binärdarstellung des Befehls ADD 
r10,r17.  Mit r10 = ddddd = 01010 und r17 = rrrrr = 10001. 

Schreibweise Operationscode 

Assembler ADD r10,r17 

 

Maschinensprache 

 

bin. 0000 11rd dddd rrrr 

0000 1110 1010 0001 

hex. $0EA1 

 

Ein Assembler(-programm) ist ein Programm, welches diese Übersetzung von der Assemb-
lerdarstellung in die Maschinensprache überträgt. Das Assemblerprogramm ist also ein Über-
setzer. Das in der Assemblersprache vorliegende Programm wird „Source Code“ genannt, das 
vom Mikroprozessor ausführbare heißt Maschinencode (auch „Object Code“). Der Vorgang 
des Übersetzens wird Assemblierung genannt. Die Übersetzung kann auch „von Hand“ erfol-
gen.  

 

Assemblersprache 
„Source Code“ 

vom Programmierer erstellt 
 

Mnemonics: 
 ADD  r10,r17 

Maschinensprache 
„Object Code“ 

vom Mikroprozessor ausführbar 
 

Binärcode:  
0000 1110 1010 0001  

Assemblerprogramm 

 

Bild 16-11 Das Verhältnis von Assembler- und Maschinensprache. 

Die Firma Atmel bietet als Entwicklungsumgebung das AVR-Studio an. Es enthält unter ande-
rem einen Simulator, einen Assembler und einen Editor. AVR-Studio kann kostenlos von der 
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Homepage der Firma  heruntergeladen werden [50,51]. Die folgende Beschreibung bezieht sich 
auf den Assembler von AVR-Studio. In anderen Assembler-Programmen kann eine leicht 
veränderte Syntax erforderlich sein.  Assembler(-sprache) wird auch gleichzeitig die Program-
miersprache genannt, in der die Befehle als Mnemonics dargestellt sind. Diese ist spezifisch für 
einen bestimmten Mikroprozessor. 

In der Assembler-Darstellung wird der Code in 4 Spalten notiert. In der ersten Spalte stehen 
linksbündig Marken (Labels), in der folgenden Spalte stehen die Mnemonics der Befehle, dann 
folgen die Operanden. Rechts können, durch ein Semikolon getrennt, Kommentare folgen, die 
den Rest der Zeile einnehmen können. Ein Beispiel: 

LOOP: LDI r16,$FF   ;Lade Register 16 mit der Konstanten FF 
    ADD  r10,r17   ;Lade r10 mit r10 + r17  
    CLC      ;Lösche Carry     

16.5  Adressierungsarten 

Assemblerbefehle arbeiten mit verschiedenen Adressierungsarten. Die Unterschiede liegen 
darin, wie der Ort gekennzeichnet wird, an dem das Datum oder die Daten gespeichert werden, 
mit denen operiert wird. Im Folgenden sind dich wichtigsten Adressierungsarten des ATme-
ga16 aufgelistet. Sie kommen bei den meisten Prozessoren in ähnlicher Form vor. Die Befehle 
des ATmega16 haben in der Regel die Länge von einem Wort (2Bytes). Innerhalb dieses Wor-
tes sind die Wirkung des Befehls und z.B. die verwendeten Register codiert. Nach dem Be-
fehlscode kann in manchen Fällen ein weiteres Wort folgen, welches dann eine Adresse bein-
haltet. Es werden die Abkürzungen und Konventionen in Tabelle 16-2 verwendet.   

Tabelle 16-2 Konventionen 

Abk. Beschreibung Codierung im Opcode 

Rr    Quell-Register r0 bis r31 rrrrr  

Rd Ziel-Register r0 bis r31 ddddd 

Rh Register für die Immediate-Adressierung 
(r16-r31) 

1dddd 

Rw Register (für die Befehle AIDW,SBIW) 
(r24,r26,r28,r30) 

r25:r24     (ww=00) 

r27:r26 = X (ww=01) 

r29:r28 = Y (ww=10) 

r31:r30 = Z (ww=11)  

Rp Pointer-Register (X,Y,Z) r27:r26 = X (eee=111) 

r29:r28 = Y (eee=010) 

r31:r30 = Z (eee=000) 

Ro Base-Pointer-Register r29:r28 = Y (o=1) 

r31:r30 = Z (o=0) 

Kn n-Bit-Konstante kkkkkk… 

b Bit-Position in Register  bbb 

P Portadresse 6 Bit pppppp 
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Es werden im Folgenden zu jeder Adressierungsart Beispielformate für die Befehle angegeben. 
Die Adressierungsarten sind im Einzelnen: 

Inherent  

Dies ist die einfachste Adressierungsart, bei der keine weiteren Operanden benötigt werden. 
Bsp.: CLC Der Befehl bewirkt das Löschen des Carry-Flags. Im Befehlscode, der aus nur ei-
nem Wort besteht, ist die Funktionalität des Befehls CLC codiert. 

1001 0100 1000 1000

15 

CLC

0

 

Immediate 

Die Adressierungsart Immediate wird verwendet, um Konstanten in die CPU zu laden. Diese 
Adressierungsart dient also der Initialisierung von Speicherplätzen. Diese Befehle sind nur ein  
Wort lang. Sie enthalten als Operanden die zu verarbeitende Zahl selbst. Der Beispielbefehl 
LDI r19,$3F dient dazu, das Register r19 mit der Konstanten $3F zu laden. 

1110 kkkk dddd kkkk

15

LDI Rh,K8

0

1110 0011 0011 1111

LDI   r19,$3F
 

Der Befehlscode enthält codiert die 8-Bit Konstante, hier mit kkkkkkkk gekennzeichnet, und 
das Register, welches eines der Register r16 bis r31 sein kann. In der Codierung dddd für das 
verwendete Register ist das vorderste Bit des Binäräquivalentes der Registernummer weggelas-
sen, da es immer 1 ist (z.B. r19 = 10011 daher dddd = 0011).   

Register direkt 

Bei der Adressierungsart Register direkt ist nur ein Register beteiligt. Als Beispiel dient uns 
hier der Befehl INC r9, der den Inhalt des Registers r9 um 1 erhöht. Der Befehlscode ergibt 
sich aus dem untenstehenden Schema. Für die Codierung des Registers Rd ist ddddd vorgese-
hen, da in diesem Fall Register r0 bis r31 Operanden sein können. 

1001 010d dddd 0011

15

INC Rd

0

1001 0100 1001 0011

INC r9  

Register direkt, 2 Register 

Bei dieser Adressierungsart Register direkt sind zwei Register beteiligt. Ein Beispiel dafür ist 
der Befehl ADD r10,r17, der bewirkt, dass der Inhalt des Registers r10 und der des Regis-
ters r17 addiert und das Ergebnis in r10 abgespeichert wird. Der Befehlscode besteht wieder 
nur aus einem Wort:  
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0000 11rd dddd rrrr

15

ADD Rd,Rr

0

0000 1110 1010 0001

ADD r10,r17
 

Für die Codierung der Registers werden hier die Abkürzungen  rrrrr für das Quellregister 
Rr verwendet  und ddddd für das Zielregister Rd, in dem das Ergebnis gespeichert wird.  

I/O direkt 

Bei dieser Adressierungsart ist ein Register aus dem IO/Bereich involviert und ein weiteres 
Register als Quell- oder Zielregister. Ein Beispiel dafür ist der Befehl OUT $0012,r2, der 
bewirkt, dass der Inhalt des Registers r2 in das Ausgangsregister des Port D geschrieben wird. 
Das Ausgangsregister hat die Adresse $0012. Der Befehlscode besteht aus einem Wort:  

 

1011 1ppr rrrr pppp

15

OUT P,Rr

0

1011 1000 0010 1100

OUT $0012,r2  
Der Befehlscode enthält codiert die 6-Bit IO-Adresse P, die mit pppppp gekennzeichnet ist. 
Mit dieser Adressierung können Adressen im IO-Bereich von $00 bis $3F erreicht werden. Mit 
anderen Adressierungsarten als der IO-direkt-Adressierung muss die Adresse $0012 durch 
$0032 (vergl. Bild 16-9) ersetzt werden. 

Daten direkt 

Diese Adressierungsart lädt ein Datum aus dem Datenspeicher in ein Register. In der Adressie-
rungsart Daten direkt steht die gesamte 16-Bit-Adresse eines Operanden im Befehl. Daher hat 
dieser Befehl eine Länge von 2 Worten. Ein Beispiel ist der Befehl LDS r5,$01F4, der 
bewirkt, dass das  Register r5 aus dem Datenspeicher mit der Adresse $01F4 geladen wird. Im 
Opcode wird die Adresse binär mit aaaa aaaa aaaa aaaa codiert.  

1001 000d dddd 0000

15 

LDS 

0

1001 0000 0101 0000

LDS r5, $01F4

aaaa aaaa aaaa aaaa

15 0

0000 0001 1111 0100

Adresse 

 

Daten indirekt 

Auch in dieser Adressierungsart wird ein Datum aus dem Datenspeicher in ein Register gela-
den. Die Adresse steht aber in einem der Pointer-Register X,Y oder Z. Daher benötigt dieser 
Befehl nur eine Länge von einem Wort. Ein Beispiel für diese Adressierungsart ist der Befehl 
LD r16,X, der bewirkt, dass das Register r16 aus dem Datenspeicher mit dem Datum geladen 
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wird, welche in dem Speicherplatz steht, dessen Adresse im X-Registerpaar gespeichert ist. Im 
Opcode werden die Registerpaare  folgendermaßen codiert: X (eee=111), Y (eee=010) und Z 
(eee=000). Der Programmierer muss vor der Verwendung des Befehls das Pointer-Register  
initialisieren. 

000e 000d dddd ee00

15

LD Rd,Rp

0

0001 0001 0000 1100

LD r16,X  
Diese Adressierungsart existiert in einigen Varianten, die sich in der Verwendung der Indexre-
gister unterscheiden. Es ist z.B. möglich, dass das Datum aus dem Speicherplatz geladen wird, 
dessen Adresse sich aus dem Inhalt des Indexregisters plus einem Versatz (Displacement) 
ergibt. Alternativ ist auch die Dekrementierung des Indexregisters vor dem Zugriff auf das 
Datum möglich oder die Inkrementierung nach dem Zugriff. Dies ist in der Tabelle 16-3 zu-
sammengefasst. 

Tabelle 16-3 Ladebefehle für Daten indirekt mit Displacement, Prädekrement und Postinkrement..   

Befehl Beschreibung Wirkung  Veränderung  
Indexregister 

LD r16, X Data indirekt r16 ← (X) Keine 

LDD r16, Y+10 Data indirekt mit Displacement r16 ← (Y +10) Keine 

LD r16, -X Data indirekt mit Prädekrement r16 ← (X-1) X ← X-1 

LD r16, X+ Data indirekt mit Postinkrement r16 ← (X) X ← X+1 

 

In dieser Tabelle bedeutet r16 ← (X), dass das Register r16 mit dem Inhalt des Datenspeichers 
mit der Adresse geladen wird, die im Registerpaar X steht. Die Klammer bedeutet also, dass 
der Inhalt des Registers als Adresse gedeutet werden soll, unter der das Datum zu finden ist. 
Diese Schreibweise wird im Folgenden bei der Beschreibung der Wirkung von Befehlen ver-
wendet. In der Spalte „Veränderung Indexregister“ ist der Inhalt des Indexregisters nach der 
Ausführung des Befehls aufgelistet. 

Programmspeicher direkt  

Diese Adressierungsart wird beim Sprungbefehl JMP und beim Unterprogrammaufruf CALL 
verwendet. So wird z.B. beim Sprung JMP $0100 das Programm an der Adresse $0100 im 
Programmspeicher fortgesetzt.  Die Adresse darf maximal 22Bit umfassen. 

1001 010k kkkk 110k

15 

JMP 

0

1001 0100 0000 1100

JMP $0100

kkkk kkkk kkkk kkkk

15 0

0000 0001 0000 0000

Adresse
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Programmspeicher relativ 

Diese Adressierungsart wird beim Sprungbefehl RJMP und beim Unterprogrammaufruf 
RCALL verwendet. Der Operand gibt im Zweierkomplement an, wie der Sprung zu der ange-
gebenen Adresse relativ zum Inhalt des Befehlszählers ausgeführt werden soll. Im Beispiel 
unten wird zu der Zieladresse  gesprungen, indem der PC um $12 erhöht wird.   

1100 kkkk kkkk kkkk 

15

RJMP Zieladresse

0

1100 0000 0001 0010

RJMP $012
 

16.6  Befehlssatz 

16.6.1  Konventionen  

Im Folgenden wird der Befehlssatz des ATmega16 besprochen. Einige komplexere Befehle 
wie die Multiplikation und die Division werden hier nicht dargestellt. Sie sind auch nicht bei 
allen Prozessoren der ATmega-Familie verfügbar. Auch die Befehle zum Abspeichern und 
Laden aus dem Programmspeicher werden hier nicht dargestellt. Bei der Beschreibung der 
Befehle werden die in Tabelle 16-2 definierten Konventionen verwendet. 

16.6.2  Transfer-Befehl 

Dieser Befehl dient dem Transfer von Daten zwischen Registern. Der Befehl verändert, wie 
auch die Lade- und Speicherbefehle, das Statusregister SREG nicht. Der Befehl MOV Rd,Rr 
(Move) kopiert den Inhalt des Registers Rd in das Register Rr, so dass dann beide Register den 
alten Inhalt des Registers Rd enthalten. Der Befehl ist ein Wort lang und benötigt zur Ausfüh-
rung einen Takt. 

Tabelle 16-4 Transferbefehl (T = Takte, W = Worte). 

Befehl Operanden Beschreibung  Ausführung T W 

MOV  Rd,Rr Kopiere Register Rd ← Rr 1 1 

16.6.3  Laden von Bytes 

Lade-Befehle bewirken das Laden eines Registers mit einem Datum. Der Befehl LDI dient der 
Initialisierung eines Registers mit einer Konstanten: 

LDI  r17,$FF   ;Alle Bits im Register r17 setzen 

Wie aus der Beschreibung des Befehls in Tabelle 16-4 ersichtlich ist, dient als Zielregister Rh, 
damit werden im Folgenden die Register r16-r31 bezeichnet, die mit der Adressierungsart 
Immediate verwendet werden können. Die Konstante, mit der initialisiert werden muss, ist 
entsprechend der Größe der Register ein Byte lang. 
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Tabelle 16-5 Ladebefehle (T = Takte, W = Worte). 

Befehl Operanden Beschreibung  Ausführung T W 

LDI  Rh,K8 Lade immediate Rd ← K 1 1 

LDS  Rd,A16 Lade direkt aus Daten-
speicher 

Rd ← (A) 2 2 

LD Rd,Rp Lade indirekt  Rd ← (Rp)  2 1 

LD  Rd,Rp+ Lade indirekt mit Post-
Inkrement  

Rd ←(Rp) 
Rp ← Rp + 1 

2 1 

LD  

 

Rd,-Rp Lade indirekt mit Prä-
Dekrement 

Rp ← Rp – 1 
Rd ← (Rp) 

3 1 

LDD  Rd,Ro+K6 Lade indirekt mit Dis-
placement 

Rd ← (Ro + K) 2 1 

IN Rd,P Lade aus IO-Adresse Rd ← (P) 1 1 

 

Soll ein Datum direkt aus dem Datenspeicher in ein Register kopiert werden, muss der Befehl 
LDS verwendet werden. Der Befehl enthält die 16Bit-Adresse des Speicherplatzes, aus dem 
das 8Bit-Datum geladen wird. Daher wird zur Darstellung des Befehls ein zweites Wort benö-
tigt.  

LDS r17,$01FF   ;Register r17 mit dem Inhalt der 

;Speicherstelle $01FF laden 

Der Aufwand kann reduziert werden, wenn man die indirekte Adressierungsart verwendet. Bei 
dieser steht die Adresse in einem der Indexregister X,Y oder Z. Allerdings müssen die In-
dexregister vor der Verwendung der indirekten Adressierung initialisiert werden. Bsp.: 

LDI   XL, $60    ; Low-Byte der Adresse in XL laden  

LDI   XH, $00    ; High-Byte der Adresse in XH laden  

LD   r16, X    ; r16  mit dem Datum aus $0060 laden  

In diesem Beispiel wird zunächst mit den beiden LDI-Befehlen das Register XL mit dem Low-
Byte der Adresse und das Register XH mit dem High-Byte der Adresse geladen. Dann kann der 
eigentliche Datentransfer aus dem Speicherplatz mit der Adresse $0060 stattfinden. Dieser 
Overhead lohnt sich, wenn anschließend auf benachbarte Speicherplätze zugegriffen wird, wie 
es in Tabellen normalerweise der Fall ist. Dafür stehen die Befehle mit Dekrementierung des 
Indexregisters vor dem Zugriff oder die Inkrementierung nach dem Zugriff zur Verfügung. In 
dem folgenden Beispiel wird zusätzlich der Inhalt des Speicherplatzes $0061 in Register r17 
geladen, um zu zeigen, dass dies ohne erneute Initialisierung des Indexregisters möglich ist, 
indem man im Befehl vorher das Postinkrement nutzt. 

LDI   XL, $60    ; Low-Byte der Adresse in XL laden  

LDI   XH, $00    ; High-Byte der Adresse in XH laden  

LD   r16, X+    ; r16 aus $0060 laden, X = X+1 

LD   r17, X    ; r17 aus $0061 laden 
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Der Befehl LDD lädt indirekt mit einem Displacement. Er kann nur mit den Registerpaaren Y 
und Z verwendet werden (Diese Register werden hier mit der Abkürzung Ro gekennzeichnet). 
Das Displacement ist eine vorzeichenlose 6-Bit Konstante (0 bis 63), die für die Adressierung 
zum Inhalt des Indexregisters addiert wird. Nach dem Zugriff bleibt der Inhalt des Indexregis-
ters unverändert. 

LDI   YL, $65    ; Low-Byte der Adresse in YL laden  

LDI   YH, $00    ; High-Byte der Adresse in YH laden  

LDD   r17, Y+$2   ; r17 aus $0067 laden, Y = Y 

Der Befehl IN dient zum Laden von Daten aus IO-Adressen. Er arbeitet mit der Adressie-
rungsart IO direkt. Das Register aus dem IO-Bereich ist das Quellregister und das Register r17 
ist das Zielregister.  

IN   r17, $16   ; Port B lesen 

$16 ist die Adresse des Port B. Entsprechend Bild 16-9 ist das die Adresse1, die in dieser 
Adressierungsart verwendet werden muss. Die entsprechende Adresse2 ist $36, sie müsste 
zusammen mit der Adressierungsart Daten direkt verwendet werden.  

16.6.4  Speichern von Bytes 

Speicher-Befehle dienen zum Abspeichern von Registerinhalten in den Datenspeicher. Die 
Befehle sind in Tabelle 16-6 aufgelistet, sie haben die gleichen Adressierungsarten wie die 
Lade-Befehle, nur die Adressierungsart Immediate ist beim Abspeichern nicht sinnvoll.  

Tabelle 16-6 Speicherbefehle. 

Befehl Operanden Beschreibung  Ausführung T W 

STS  A16,Rd Speichere direkt in 
Datenspeicher 

(A) ← Rd 2 2 

ST Rp,Rr Speichere indirekt (Rp) ← Rr  2 1 

ST  Rp+,Rr Speichere indirekt mit 
Post-Inkrement 

(Rp) ← Rr 
Rp ← Rp + 1 

2 1 

ST  -Rp,Rr Speichere indirekt mit 
Prä-Dekrement 

Rp ← Rp – 1 
(Rp) ← Rr 

2 1 

STD  Ro+K6,Rr Speichere indirekt mit 
Displacement 

(Ro + K) ← Rr  2 1 

OUT P,Rr Speichere in IO-
Adresse 

(P)← Rr 1 1 

16.6.5  Arithmetische Befehle: Negation  

Die Negation (Tabelle 16-7) mit dem Befehl NEG bildet in einer ALU das Zweierkomplement. 
Es werden die angegebenen Flags in Abhängigkeit  vom Ergebnis beeinflusst.  

Tabelle 16-7 Negation. 

Befehl Operand Beschreibung Ausführung H,S,V,N,Z,C T 
NEG  Rd Zweierkomplement Rd ← $00 - Rd H,S,V,N,Z,C 1 
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Da es sich um eine Subtraktion handelt, wird ein „Borrow“, also das invertierte cn, als Carry-
Bit verwendet. Wir betrachten als ein Beispiel den Code  

     LDI   r17,$45 
     NEG  r17  

Es wird intern das Folgende gerechnet: 

 0 1 0 0 0 1 0 1 =  $45 

 1 0 1 1 1 0 1 0 =¬$45 

0 0 0 0 0 0 0 0 1 Carry-in, Überträge 

 1 0 1 1 1 0 1 1  

               cn     cn-1                  h 

In der ersten Zeile der Rechnung steht der Operand $45, der in der zweiten Zeile bitweise in-
vertiert ist. Durch das Carry-in, welches gleich 1 gesetzt wird, wird das Zweierkomplement 
erzeugt. In der gleichen Zeile sind die Überträge notiert, die bei der Addition des Carry-in zu 
¬$45 entstehen. Die beiden vordersten Überträge heißen cn und cn-1, wie bereits im Kapitel 2 
beschrieben. Die Flags ergeben sich nach folgendem System: 

N  =  Bit 7 des Ergebnisses = 1 (man beginnt bei Bit 0 zu zählen). Das Ergebnis ist negativ.  
Z  =  0 , da das Ergebnis nicht Null ist 
V  =  cn 

 
↔  cn-1 = 0, (vergl. Kapitel 2) also kein Overflow, das Ergebnis ist daher richtig. 

S   =  N 
 
↔  V = 1  

C  =  ¬cn = 1, da bei der Subtraktion das invertierte Carry (Borrow) verwendet wird. 
H  =  ¬h = 1, da bei der Subtraktion das invertierte Halfcarry verwendet wird.   
Im Flagregister SREG steht H=1, S=1, V=0, N=1, Z=0, C=1, im Register r17  steht $BB.    

16.6.6  Arithmetische Befehle: Addition und Subtraktion 

Es stehen eine Reihe von Befehlen für die Addition und die Subtraktion zur Verfügung. Sie 
sind in Tabelle 16-8 aufgelistet. 

Tabelle 16-8a Additionsbefehle und Subtraktionsbefehle. 

Befehl Operand Beschreibung Ausführung H,S,V,N,Z,C T 
ADD  Rd,Rr  Addiere ohne Carry Rd ← Rd + Rr H,S,V,N,Z,C 1 

ADC  Rd,Rr Addiere mit Carry Rd ← Rd + Rr + C H,S,V,N,Z,C 1 

ADIW  Rw,K6 Addiere zu Wort 
immediate  

Rw ← Rw + K -,S,V,N,Z,C 2 

SUB  Rd,Rr Subtrahiere ohne 
Carry 

Rd ← Rd – Rr H,S,V,N,Z,C 1 

SUBI  Rh,K8 Subtrahiere imme-
diate 

Rh ← Rh – K H,S,V,N,Z,C 1 

SBC  Rd,Rr Subtrahiere mit 
Carry 

Rd ← Rd - Rr - C H,S,V,N,Z,C 1 

SBCI  Rh,K8 Subtrahiere imme-
diate mit Carry 

Rh ← Rh - K - C H,S,V,N,Z,C 1 

SBIW  Rw,K6 Subtrahiere imme-
diate  

Rw ← Rw – K -,S,V,N,Z,C 2 



252 16  Mikroprozessoren 

Tabelle 16-8b Additionsbefehle und Subtraktionsbefehle (Inkrement und Dekrement). 

Befehl Operand Beschreibung Ausführung H,S,V,N,Z,C T 

INC  Rd  Inkrementiere Rd ← Rd + 1 -,S,V,N,Z,-  1 

DEC  Rd Dekrementiere  Rd ← Rd – 1 -,S,V,N,Z,-  1 

 

Der Additionsbefehl ADD Rd,Rr addiert den Inhalt der beiden beteiligten Register Rd und Rr 
und speichert das Ergebnis in Rd ab. Es werden die Flags H,S,V,N,Z und C beeinflusst. Als 
Beispiel sei hier die Rechnung $08 + $FC (= 8 + (− 4)) gezeigt:  

  LDI   r17,$08 
LDI    r18,$FC  
ADD  r17,r18 

Es wird intern das Folgende gerechnet:  

 0 0 0 0 1 0 0 0 = $08 

 1 1 1 1 1 1 0 0 = $FC 

1 1 1 1 1 0 0 0 0 Carry-in, Überträge 

 0 0 0 0 0 1 0 0  

               cn     cn-1                  h 

Da es sich um eine Addition handelt, ist das Carry-in gleich 0. In der 3. Zeile der Rechnung 
stehen die Überträge der Rechnung $08 + $FC. Das Flag-Register SREG enthält nach der 
Rechnung die folgenden Inhalte H=h=1, V= cn ↔ cn-1= 0, N = 0, S = N ↔ V = 0, Z=0, C = 
cn=1. Das Register r17 wird mit dem Ergebnis $04 geladen. 

 

Beim ADC-Befehl wird ein vorher gesetztes Carry berücksichtigt. Dies ist notwendig, um 
Zahlen addieren zu können, die aus mehreren Bytes bestehen. Das folgende Beispiel mit 16-
Bit-Zahlen geht davon aus, dass sich der erste Summand in den Speicherplätzen $0060 (Low-
Byte) und $0061 (High-Byte)  befindet und der zweite in den Speicherplätzen $0062 (Low-
Byte) und $0063 (High-Byte). Die Summe wird in die Speicherplätze $0064 (Low-Byte) und 
$0065 (High-Byte) geschrieben. Man beachte, dass bei diesem Prozessor immer das Low-Byte 
im Speicherplatz mit der niedrigeren Adresse steht und das High-Byte im Speicherplatz mit der 
höheren Adresse. 

LDI   YL, $60   ;Low-Byte der Adresse in YL laden  
LDI   YH, $00   ;High-Byte der Adresse in YH laden  
LD   r16, Y   ;r16 aus $0060 laden  
LDD  r17, Y+1  ;r17 aus $0061 laden 

 ADD  r16, r17   ;Summe der Low-Bytes in r16, Carry setzen   
 STD  Y+4, r16   ;r16 nach $0064 

LDD   r16, Y+2  ;r16 aus $0062 laden  
LDD  r17, Y+3  ;r17 aus $0063 laden 
ADCD  r16, r17   ;Summe der High-Bytes + Carry in r16   
STD  Y+5, r16   ;r16 nach $0065 
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Das Programm funktioniert nur, weil die Befehle LDD und STD das Carry-Bit, welches im 
Befehl ADD gesetzt wurde, nicht mehr verändern. Bei der ersten Addition wird der Befehl ADD 
verwendet, der ein bereits gesetztes Carry nicht berücksichtigt.  

In manchen Fällen kann der Befehl ADIW verwendet werden. Er erlaubt es, eine Konstante K 
(0 ≤ K ≤ 63) zu einem Wort zu addieren, welches in einem der Registerpaare Rw steht. 
(r25:r24, r27:r26, r29:r28, r31:r30) 

Der Befehl INC Rd inkrementiert den Inhalt eines Registers.   

Die Befehle für die Subtraktion sind analog zu den Additionsbefehlen konstruiert. Allerdings 
wird hier das Carry als Borrow interpretiert. Es soll ein Beispiel mit dem Befehl SUB gezeigt 
werden. Wir betrachten die Rechnung $08 − $04 (= 8 − 4) analog zum obigen Beispiel für die 
Addition:  

 LDI   r17,$08 
LDI    r18,$04  
SUB  r17,r18 

Die Rechnung sieht folgendermaßen aus:  

 

 0 0 0 0 1 0 0 0 = $08 

 1 1 1 1 1 0 1 1 = ¬$04 

1 1 1 1 1 0 1 1 1 Carry-in, Überträge 

 0 0 0 0 0 1 0 0  

               cn     cn-1                    h 

Das Statusregister SREG enthält daher H= ¬h = 0, V= cn ↔ cn-1= 0, N = 0, S = N 
 
↔  V = 0, 

Z=0, C = ¬cn = 0. Das Register r17 wird mit dem Ergebnis $04 geladen. 

Die Subtraktionsbefehle, die das Carry (Borrow) einer vorausgegangenen Subtraktion (z.B.  
der Befehl SBC) berücksichtigen, sind so konstruiert, dass sie bei der sequentiellen Ausführung 
das Carry richtig weitergeben. Es erscheint also in den Befehlen mit einem negativen Vorzei-
chen. 

16.6.7  Arithmetische Befehle: Setzen und Löschen von Bits in einem Register  

Mit den Befehlen SBR und CBR in Tabelle 16-9 können einzelne Bit in einem Register mit 
einer Maske gesetzt oder gelöscht werden. Die Befehle SER Rh und CLR Rd setzen bzw. 
löschen alle Bits im angegebenen Register, wobei der Befehl SER nur mit den Registern 16-31 
verwendet werden kann, während CLR mit allen Registern kompatibel ist. CLR hat den glei-
chen Opcode wie EOR Rd,Rd. 

Tabelle 16-9 Setzen und Löschen eines einzelnen Bit in einem Register. 

Befehl Operand Beschreibung Ausführung H,S,V,N,Z,C T 
SBR  Rh,K8 Setze  Bit(s)  Rh ← Rh ∨ K -,S,V,N,Z,-  1 

CBR  Rh,K8 Lösche Bit(s)  Rh ← Rh ∧ ($FF-K) -,S,V,N,Z,-  1 

CLR  Rd Lösche Register Rd ← $00 -,0,0,0,1,-  1 

SER  Rh Setze Register Rh ← $FF -,-,-,-,-,- 1 
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16.6.8 Arithmetische Befehle: Test und Vergleich 

Der Befehl TST Rd (Test for Zero or Minus) vergleicht den Inhalt eines Registers mit der 
Zahl 0. Es werden die Flags S, V, N und Z entsprechend dem Inhalt des Registers gesetzt, ohne 
dass dieser verändert wird. Alle Befehle für den Vergleich zweier Zahlen haben gemeinsam, 
dass sie nur das Statusregister SREG verändern, aber keines der anderen beteiligten Register. 
Es wird also nur eine Testsubtraktion durchgeführt. Die Flags werden nach dem gleichen Prin-
zip wie bei der Subtraktion verändert.  

Tabelle 16-10 Test und Vergleich. 

Befehl Operand Beschreibung Ausführung H,S,V,N,Z,C T 

TST  Rd Teste auf Null 
oder Minus 

Rd ← Rd ∧ Rd -,S,V,N,Z,-  1 

CP  Rd,Rr Vergleiche Rd - Rr H,S,V,N,Z,C 1 

CPC  Rd,Rr Vergleiche mit 
Carry 

Rd - Rr - C H,S,V,N,Z,C 1 

CPI  Rh,K8 Vergleiche imme-
diate 

Rd - K H,S,V,N,Z,C 1 

 

16.6.9  Arithmetische Befehle: Logische Operationen 

Logische Operationen werden bitweise durchgeführt. Es stehen Und, Oder, Exklusiv Oder und 
das Einerkomplement zur Verfügung. Die logischen Operationen beeinflussen die Flags S, V, 
N, Z und Z. Der Befehl COM bildet das Einerkomplement des Registerinhalts.  

Der Befehl AND Rd,Rd ist identisch mit dem Befehl TST Rd, daher haben die beiden Befeh-
le den gleichen Opcode.  

Tabelle 16-11 Logische Operationen. 

Befehl Operand Beschreibung Ausführung H,S,V,N,Z,C T 

AND  Rd,Rr Logisches UND Rd ← Rd ∧ Rr -,S,V,N,Z,- 1 

ANDI  Rh,K8 Logisches UND, 
immediate 

Rh ← Rh ∧ K -,S,V,N,Z,-  1 

OR  Rd,Rr Logisches ODER  Rd ← Rd ∨ Rr -,S,V,N,Z,- 1 

ORI  Rh,K8 Logisches ODER, 
immediate 

Rh ← Rh ∨ K -,S,V,N,Z,-  1 

EOR  Rd,Rr Exklusives ODER Rd ← Rd ↔ Rr -,S,V,N,Z,-  1 

COM  Rd Einerkomplement Rd ← $FF - Rd -,S,V,N,Z,C  1 

16.6.10  Schiebe- und Rotationsbefehle  

Der ATmega16 besitzt Befehle für das arithmetische und logische Schieben und das Rotieren 
von Registerinhalten um ein Bit nach links oder rechts. Die Adressierungsart bei allen Schiebe- 
und Rotations-Befehlen ist Register direkt. Die Befehle für das arithmetische und logische 
Schieben und Rotieren sind in Tabelle 16-12 zusammengefasst. 
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Tabelle 16-12 Schiebe- und Rotationsbefehle. 

Befehl Operand Beschreibung Ausführung H,S,V,N,Z,C 

LSL  Rd Logisch links 
schieben 

Rd(n+1) ← Rd(n), 
Rd(0)   ← 0, 
C       ← Rd(7) 

H,-,V,N,Z,C  

LSR  Rd Logisch rechts 
schieben 

Rd(n)   ← Rd(n+1), 
Rd(7)   ← 0, 
C       ← Rd(0) 

-,-,V,N,Z,C  

ROL  Rd Rotiere links 
über Carry 

Rd(0)   ← C, 
Rd(n+1) ← Rd(n), 
C       ← Rd(7) 

H,-,V,N,Z,C 

ROR  Rd Rotiere rechts 
über Carry 

Rd(7)   ← C, 
Rd(n)   ← Rd(n+1), 
C       ← Rd(0) 

-,-,V,N,Z,C 

ASR  Rd Arithmetisches 
Schieben rechts 

Rd(n)   ← Rd(n+1), 
          n = 0..6 

-,-,V,N,Z,C 

 

Logisches Schieben bedeutet, dass beim Links-Schieben Nullen in die Bit-Position 0 gescho-
ben werden. Beim Rechts-Schieben werden Nullen in die Bit-Position 7 geschoben. Die her-
ausgeschobenen Bits werden in das Carry-Flag kopiert. Logisches Schieben ist in Bild 16-10 
verdeutlicht. Der Befehl LSL Rd wird vom Assembler-Programm in den gleichen Opcode wie 
ADD Rd,Rd übersetzt, da diese beiden Befehle von ihrer Wirkung her identisch sind. 

 

Logical Shift Left (LSL Rd) 

C 0 C 

Logical Shift Right (LSR Rd) 

0 

Bild 16-10 Logisches Schieben eines Registerinhaltes. 

Das Rotieren des Inhaltes eines Registers geschieht über das Carry-Bit, wie es in Bild 16-11 
dargestellt ist. Der Befehl ROL Rd wird vom Assembler in den Opcode ADC Rd,Rd über-
setzt, da auch dieser Befehl eine Verschiebung um 1 Bit nach links bewirkt, wobei das Carry 
nach Bit 0 transferiert wird. 

 

Rotate Left (ROL Rd) 

C C 

Rotate Right (ROR Rd) 

Bild 16-11 Rotieren eines Registerinhaltes.  
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Das arithmetische Schieben soll beim Links-Schieben eine Multiplikation mit 2, beim Rechts- 
Schieben die Division durch 2 verwirklichen. Daher werden beim Links-Schieben von links 
Nullen nachgeschoben, beim Rechts-Schieben wird das MSB (Most Significant Bit) reprodu-
ziert, um das Vorzeichen zu erhalten. Das Prinzip ist in Bild 16-12 verdeutlicht. Arithmetisches 
Schieben des Inhalts eines Registers ist mit dem Befehl ASR nach rechts möglich.  

 

Arithmetisches und logisches Links-Schieben sind identisch. Daher kann für das arithmetische 
Links-Schieben der Befehl LSL verwendet werden. 

 

Arithmetic Shift Left (LSL Rd) 

C 0 C 

Arithmetic Shift Right (ASR Rd) 

Bild 16-12 Arithmetisches Schieben eines Registerinhaltes. 

16.6.11  Befehle zum Setzen und Löschen von Flags im SREG 

Der ATmega16 besitzt eine Reihe von Befehlen für die Manipulation einzelner Flags des 
SREG, die in Tabelle 16-13 zusammengefasst sind.  

Tabelle 16-13 Befehle zum Setzen und Löschen von Registerinhalten. 

Befehl Oper. Beschreibung Ausführung H,S,V,N,Z,C 

BSET  B Flag Setzen SREG(b) ← 1 SREG(b) 

BCLR  B Flag Löschen SREG(b) ← 0 SREG(b) 

SEC   Setze Carry C ← 1 -,-,-,-,-,1 

CLC   Lösche Carry C ← 0 -,-,-,-,-,0 

SEN   Setze Negative-Flag N ← 1 -,-,-,1,-,- 

CLN   Lösche Negative- Flag N ← 0 -,-,-,0,-,- 

SEZ   Setze Zero-Flag Z ← 1 -,-,-,-,1,-  

CLZ   Lösche Zero-Flag  Z ← 0 -,-,-,-,0,- 

SES   Setze Signed-Flag S ← 1 -,1,-,-,-,- 

CLS   Lösche Signed-Flag S ← 0 -,0,-,-,-,- 

SEV   Setze Zweierkomple-
ment-Überlauf Flag 

V ← 1 -,-,1,-,-,- 

CLV   Lösche Zweierkomple-
ment-Überlauf Flag 

V ← 0 -,-,0,-,-,- 

 

Mit den Befehlen BSET und BCLR können die Status-Bits des Flag-Registers SREG einzeln 
gesetzt und zurückgesetzt werden: 
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BSET  b   ;setze Bit b im SREG 
BCLR  b  ;lösche Bit b im SREG 

So bewirkt der Befehl BSET 2, dass das Negativ-Flag im SREG gesetzt wird, alle anderen 
Flags im SREG bleiben unverändert. Alternativ kann dazu der Befehl SEN verwendet werden: 

SEN    ;setze Negativ-Flag im SREG = BSET 2  
 

Die beiden Befehle SEN und BSET 2 werden vom Assemblerprogramm in den gleichen 
Opcode übersetzt. Genauso haben auch die anderen Befehle zum Setzen und Löschen der Flags 
SEC, CLC, SEN, CLN, SEZ, CLZ, SES, CLS, SEV und CLV den gleichen Opcode wie der 
entsprechende BSET oder BCLR Befehl. 

16.6.12 Absolut adressierter Sprung 

Sprungbefehle verändern die normale Abfolge von Befehlen, die durch eine Inkrementierung 
des Befehlszählers gegeben ist. Der Assemblerbefehl  

JMP  Adresse  

bewirkt einen Sprung zu der im Befehl angegebenen absoluten Adresse im Programm-
Speicher, die durch eine 22Bit lange Konstante angegeben wird. Es wird also die im Befehl 
angegebene Adresse in den Befehlszähler geladen.  

Tabelle 16-14 Direkter Sprungbefehl JMP. 

Befehl Operand Beschreibung Ausführung T W 
JMP  K22  Sprung direkt PC ← K 3 2 

 

Wie man Tabelle 16-14 entnimmt, ist der Befehl 2 Worte lang. Der Opcode hat folgendes 
Format:  

1001 010k kkkk 110k kkkk kkkk kkkk kkkk 

Der Buchstabe k markiert die 16 Bits der Adresse des Sprungziels. Im folgenden Beispiel soll 
die Befehlsfolge aus den LDI-Befehlen, dem LD-Befehl und dem INC-Befehl übersprungen 
werden. Die Adresse des Sprungziels ist zunächst nicht bekannt: 

JMP  ?      ;Sprung zum Sprungziel 
LDI  YL, $60   ;Low-Byte der Adresse in YL laden  
LDI  YH, $00   ;High-Byte der Adresse in YH laden  
LD  r16, Y   ;r16 aus $0060 laden 
INC r16     ;inkrementiere r16 
  ....    ;Sprungziel 

 

Um die Adresse des Sprungziels festlegen zu können, muss die absolute Lage des Programms 
im Speicher feststehen. Unten ist der Programmspeicherinhalt abgebildet unter der Annahme, 
dass das Programm ab der Adresse $0010 im Programmspeicher steht. Aus dieser Auflistung  
ergibt sich das Sprungziel $0016. 
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Adresse Inhalt Kommentar 

0010 940C ;Opcode JMP Ziel, 1.Wort
0011 0016 ;Opcode JMP Ziel, 2.Wort
0012 E6C0 ;LDI YL, $60   
0013 E0D0 ;LDI YH, $00 
0014 8108 ;LD  r16, Y  
0015 9503 ;INC r16
0016 .... ;Sprungziel (Adresse $0016)
 

Für einen Programmierer ist das Abzählen der Befehls-Worte zwischen Sprung und Sprungziel 
eine sehr fehlerträchtige Aufgabe. Ein Assembler erledigt diese Aufgabe automatisch. Im fol-
genden Assemblerprogramm wird die Marke (engl.: Label) ZIEL verwendet, die eine symboli-
sche Sprungadresse repräsentiert. Man beachte, dass nach dem Label in der ersten Spalte des 
Source-Codes ein Doppelpunkt folgt. Der Assembler setzt für die Marke beim Übersetzungs-
vorgang eine konkrete Adresse (Bei dieser Anordnung des Programms ist Ziel = $0016) ein. 

JMP  Ziel     ;Sprung zum Sprungziel 
LDI  YL, $60   ;Low-Byte der Adresse in YL laden  
LDI  YH, $00   ;High-Byte der Adresse in YH laden  
LD  r16, Y   ;r16 aus $0060 laden 
INC r16     ;inkrementiere r16 

ZIEL: . . .       ;Sprungziel 

16.6.13  Relativ adressierter Sprung 

Alternativ kann ein Sprung auch relativ adressiert werden. Das ist mit dem Befehl RJMP mög-
lich.  

Tabelle 16-15 Relativ adressierter Sprungbefehl RJMP. 

Befehl Operand Beschreibung Ausführung T W 
RJMP  K12 Relativer Sprung PC ← PC + K + 1 2 1 

 

Beim relativ adressierten Sprung wird das Sprungziel im Zweierkomplement relativ zum Inhalt 
des Befehlszählers angegeben. Im Opcode sind 12 Bit für die Codierung der Sprungweite vor-
gesehen. Die Sprungweite beträgt daher maximal $7FF, das sind 2047 Worte nach vorn oder 
$800 nach hinten, was 2048 Worten entspricht. Ein relativer Sprung funktioniert unabhängig 
von seiner absoluten Position im Speicher.  

 

Wir betrachten ein ähnliches Beispiel wie oben, nur mit einem relativ adressierten Sprung: 

RJMP Ziel     ;relativer Sprung zum Sprungziel 
LDI  YL, $60   ;Low-Byte der Adresse in YL laden  
LDI  YH, $00   ;High-Byte der Adresse in YH laden  
LD  r16, Y   ;r16 aus $0060 laden 
INC r16     ;inkrementiere r16 

ZIEL: . . .       ;Sprungziel 
Im Programmspeicher würde das Programm ab der Adresse $0010 folgendermaßen abgespei-
chert: 
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Adresse Inhalt Kommentar 

0010 C004 ;RJMP Ziel, Ziel entspricht = + 4Wörter 
0011 E6C0 ;LDI YL, $60   
0012 E0D0 ;LDI YH, $00 
0013 8108 ;LD  r16, Y  
0014 9503 ;INC r16
0015 .... ;Sprungziel (Adresse $0015)
 

Der Sprung muss also 4 Wörter im Programmspeicher nach vorn erfolgen. Man beachte, dass 
der Inhalt des Befehlszählers nach Ausführung des Befehls RJMP Ziel, nämlich $0011, der 
Rechnung zugrunde gelegt wird. Zu $0011 wird der Sprungabstand  $04 addiert, woraus sich 
das Sprungziel $0015 ergibt.   

16.6.14  Relativ adressierte, bedingte Sprünge  

Der Befehl RJMP wird immer ausgeführt, ebenso wie der Befehl JMP. Dagegen gibt es andere 
Sprünge, die nur ausgeführt werden, wenn eine bestimmte Bedingung erfüllt ist. Deshalb sind 
in Tabelle 16-16 Befehle zusammen mit der Bedingung angegeben, unter der sie ausgeführt 
werden, andernfalls wird der Befehl an der nächsthöheren Speicherstelle ausgeführt. Hier soll 
zunächst ein Beispiel für eine einfache Schleife mit einem bedingten Sprung beschrieben wer-
den: 

LDI  r20,$0A   ;Es sollen 10 Durchgänge erfolgen   
LDI  YL, $60   ;Low-Byte der Adresse in YL laden  
LDI  YH, $00   ;High-Byte der Adresse in YH laden 

ANF:  ST  Y+,r0   ;Register r0 in Zieladresse speichern 
       ;Indexregister Y inkrementieren 
DEC r20    ;Zähler dekr., Zero-Flag setzen 
BRNE ANF    ;wiederholen, wenn r20 größer 0 

Im Beispielprogramm wird der Inhalt von Register r0 in die Speicherplätze $0060 bis $0069 
kopiert. Das wird erreicht, indem zunächst das Register r20 mit der Anzahl der zu behandeln-
den Fälle, nämlich $A, geladen wird. Im Register r20 wird also eine Zählvariable gespeichert. 
Dann wird das Indexregister Y auf die erste Adresse gesetzt und nachfolgend mit dem Befehl 
ST Y+,r0 das Register r0 in den Speicherplatz gespeichert, dessen Adresse im Indexregister 
Y steht. Danach wird der Inhalt des Indexregisters Y um eins erhöht, so dass es auf den nächs-
ten Speicherplatz zeigt. Die Zählvariable im Register r20 wird mit dem Befehl DEC um 1 
dekrementiert. Dieser Befehl setzt das Zero-Flag, wenn in r20 $00 steht. Das nutzt der folgen-
de, bedingte Sprungbefehl. Der Sprung zum Label ANF wird nur ausgeführt, wenn der Inhalt 
von r20 noch nicht 0 ist.  

Es ist in vielen Fällen sinnvoll, vor dem Sprungbefehl den Befehl CP Rd,Rr zu platzieren, 
um die Flags zu setzen. Sollen damit Zahlen verglichen werden, ist es wichtig zu unterschei-
den, ob diese vorzeichenbehaftet (signed = Zweierkomplement-Zahl)  oder nicht vorzeichen-
behaftet (unsigned = natürliche Zahl) sind. Für signed-Zahlen sind speziell die Befehle BRGE 
und BRLT vorgesehen, für unsigned-Zahlen die Befehle BRSH und BRLO. Hier ein Beispiel für 
zwei vorzeichenlose Zahlen: 

CP r1,r2     ;r1 – r2 bilden und Flags setzen 
BRLO Ziel     ;springen wenn r1 kleiner r2 

Der Sprung zum Label Ziel wird ausgeführt, wenn die Zahl in r1 kleiner ist als die in r2. Die 
Zahlen in r1 und r2 werden als vorzeichenlose Zahlen interpretiert.      
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Tabelle 16-16 Bedingte Sprungbefehle mit relativ adressiertem Sprungziel. 

Befehl Ope-
rand 

Beschreibung Ausführung T W 

BRBS  b,K7 Verzweige wenn Status 
Flag gesetzt 

wenn (SREG(b) = 1)dann 
PC ← PC + K + 1 

1/2 1 

BRBC  b,K7 Verzweige wenn Status 
Flag gelöscht 

wenn (SREG(b) = 0)dann 
PC ← PC + K + 1 

1/2 1 

BREQ  K7 Verzweige wenn gleich wenn (Z = 1) dann  
PC ← PC + K + 1 

1/2 1 

BRNE  K7 Verzweige wenn un-
gleich 

wenn (Z = 0) dann  
PC ← PC + K + 1 

1/2 1 

BRCS  K7 Verzweige wenn Carry 
gesetzt 

wenn (C = 1) dann  
PC ← PC + K + 1 

1/2 1 

BRCC  K7 Verzweige wenn Carry 
gelöscht 

wenn (C = 0) dann  
PC ← PC + K + 1 

1/2 1 

BRSH  K7 Verzweige wenn gleich 
oder größer, unsigned 

wenn (C = 0) dann 
PC ← PC + K + 1 

1/2 1 

BRLO  K7 Verzweige wenn klei-
ner, unsigned 

wenn (C = 1) dann 
PC ← PC + K + 1 

1/2 1 

BRMI  K7 Verzweige wenn nega-
tiv 

wenn (N = 1) dann 
PC ← PC + K + 1 

1/2 1 

BRPL  K7 Verzweige wenn posi-
tiv 

wenn (N = 0) dann 
PC ← PC + K + 1 

1/2 1 

BRGE  K7 Verzweige wenn größer 
gleich, signed 

wenn (N ↔ V=0) dann 
PC ← PC + K + 1 

1/2 1 

BRLT  K7 Verzweige wenn klei-
ner gleich, signed 

wenn (N ↔ V=1) dann  
PC ← PC + K + 1 

1/2 1 

BRHS  K7 Verzweige wenn Half 
Carry Flag gesetzt 

wenn (H = 1) dann  
PC ← PC + K + 1 

1/2 1 

BRHC  K7 Verzweige wenn Half 
Carry Flag gelöscht 

Wenn (H = 0) dann  
PC ← PC + K + 1 

1/2 1 

BRVS   K7 Verzweige wenn Over-
flow Flag gesetzt 

wenn (V = 1) dann  
PC ← PC + K + 1 

1/2 1 

BRVC   K7 Verzweige wenn Over-
flow Flag gelöscht 

wenn (V = 0) dann 
PC ← PC + K + 1 

1/2 1 

16.6.15  Befehl überspringen 

Alternativ kann der nächste Befehl, abhängig von einer Bedingung mit den Befehlen CPSE, 
SBRC und SBRS übersprungen werden (vergl. Tabelle 16-17). 

Tabelle 16-17 Bedingte Sprungbefehle zum Überspringen des nächsten Befehls. 

 Befehl Operand Beschreibung Ausführung 
CPSE  Rd,Rr Überspringe wenn 

gleich 
wenn (Rd = Rr)dann 
PC ← PC + 2 oder 3  

SBRC  Rr,b Überspringe wenn Bit 
im Register gelöscht 

wenn (Rr(b) = 0)dann  
PC ← PC + 2 oder 3 

SBRS  Rr,b Überspringe wenn Bit 
im Register gesetzt  

wenn(Rr(b) = 1)dann 
PC ← PC + 2 oder 3 
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16.6.16  Befehle für Unterprogramme  

Unterprogramme dienen der besseren Strukturierung eines Programmes. Sie sind Programmtei-
le, die eine bestimmte, klar definierte Aufgabe erfüllen. Sie werden vom aufrufenden Pro-
gramm mit den Befehlen CALL (Call Subroutine) oder RCALL (Relative Call Subroutine) 
aufgerufen. Dazu muss im Befehl die Adresse des Unterprogramms stehen. CALL springt zu 
einer absolut definierten Adresse, RCALL zu einer relativ definierten Adresse. Der letzte Be-
fehl im Unterprogramm ist RET (Return from Subroutine), er bewirkt, dass als nächstes der 
Befehl im aufrufenden Programm ausgeführt wird, der nach dem CALL- bzw. RCALL-Befehl 
steht. Die Rücksprungadresse wird dazu im Stack zwischengespeichert.   

Der Stack ist ein Stapelspeicher im RAM. Auf ihm werden Daten oben abgelegt oder von oben 
entnommen. Beim ATmega16 wächst der Stack nach niedrigeren Adressen hin. Die nächste 
freie Speicherstelle im Stack wird dabei im Stack-Pointer gespeichert. Zu Beginn des Pro-
gramms wird der Stack initialisiert, indem man den Stack-Pointer z.B. auf die oberste Spei-
cherstelle im RAM-Bereich setzt. Wenn das erste Datum an diesem Speicherplatz abgelegt 
wird, wird gleichzeitig der Stack-Pointer um Eins dekrementiert, denn das ist dann der nächste 
freie Speicherplatz im Stack. Wenn ein Datum entnommen wird, wird der Stack-Pointer um 
Eins inkrementiert. 

Es werden beim CALL-Befehl die folgenden Schritte durchgeführt: 

1. Bei einem Unterprogrammaufruf durch den Befehl CALL wird zunächst die Rücksprung-
adresse gerettet, indem zuerst das höherwertige Byte des Befehlszählers (PCH) auf den 
Stack gelegt wird, also an die Adresse, die im Stack-Pointer gespeichert ist.  

2. Dann wird der Stack-Pointer dekrementiert, so dass er auf die nächste freie Speicherstelle 
im Stack zeigt.  

3. Das niederwertige Byte des Befehlszählers (PCL) wird auf den Stack gelegt, also an die 
Adresse, auf die der Stack-Pointer zeigt.  

4. Anschließend wird der Stack-Pointer um eins dekrementiert. Wählt man die übliche Dar-
stellung, in der die Speicherplätze mit höheren Adressen nach unten aufgetragen werden, 
so wächst der Stack nach oben. Der Stack-Pointer zeigt nach dem CALL-Befehl wieder 
auf die erste  freie Stack-Position (top of stack = TOS). 

5. Mit der Adresse im Operanden wird der Befehlszähler geladen. Der nächste auszuführende 
Befehl steht dann an dieser Stelle. Es ist die Adresse des ersten Befehls des Unterpro-
gramms.  

6. Die Unterprogrammbefehle zum Aufruf eines Unterprogramms und Rücksprung aus ei-
nem Unterprogramm sind in Tabelle 16-18 zusammengefasst. 

Der Befehl RCALL arbeitet genauso wie der Befehl CALL, nur dass die Adresse des Unterpro-
gramms relativ zum Speicherplatz des Befehls BSR angegeben wird. Dadurch darf das Unter-
programm maximal 2K Wörter weiter vorn oder 2K Wörter weiter hinten im Programm stehen. 

Der Rücksprung aus dem Unterprogramm in das aufrufende Programm geschieht mit dem 
Befehl RET (Return from Subroutine). Beim Rücksprung ist die Reihenfolge der Stack-
Operationen umgekehrt: 

1. Der Stack-Pointer wird inkrementiert, so dass er auf den obersten besetzten Speicherplatz 
zeigt. 

2. Der Inhalt des Speicherplatzes, auf den der Stack-Pointer zeigt, wird in das niederwertige  
Byte des Befehlszählers PCL geschrieben. 

3. Der Stack-Pointer wird inkrementiert. 
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4. Der Inhalt des Speicherplatzes, auf den der Stack-Pointer zeigt, wird in das höherwertige 
Byte des Befehlszählers PCH geschrieben. 

Tabelle 16-18 Unterprogrammbefehle 

Befehl Operand Beschreibung Ausführung Flags T W 

RCALL K12 Relativer Aufruf 
Unterprogramm 

PC ← PC + K + 1 
Stack ← PC + 1 
SP ← SP − 2 

keins 3 1 

CALL K22 Absoluter Aufruf 
Unterprogramm 

PC ← K 
Stack ← PC + 2 
SP ← SP − 2 

keins 4 2 

RET  Unterprogramm 
Return 

PC ← STACK
SP ← SP + 2 

keins 4 1 

PUSH Rr Push Register 
auf den Stack 

STACK ← Rr 
SP ← SP − 1 

keins 2 1 

POP Rd Pop Register vom 
Stack 

Rd ← STACK 
SP ← SP + 1 

keins 2 1 

 

Der Stack-Pointer muss initialisiert werden. Man setzt ihn in der Regel auf die höchste Adresse 
des RAM-Bereiches. Das Initialisieren kann mit der folgenden Befehlsfolge geschehen. 

LDI r16, LOW(RAMEND) 
OUT SPL, r16 
LDI r16, HIGH(RAMEND) 
OUT SPH, r16 

In diesem Fall wird der Stackpointer auf die Adresse $045F, die oberste Adresse im SRAM 
initialisiert (vergl. Bild 16-9). Ein Unterprogramm WARTEN, welches eine Warteschleife 
enthält, ist unten gezeigt. Es wird vom Befehl CALL WARTEN im Hauptprogramm aufgerufen. 

  CALL WARTEN     ;Aufruf Unterprogramm „Warten“  
 ...      ;weitere Befehle im Hauptprogramm 
 ...      ; 

WARTEN:  LDI  r17,$FF   ;Unterprogrammbeginn, $FF in r17 laden 
ANFANG: DEC  r17   ;Zähler dekrementieren 

 BRNE  ANFANG  ;wiederholen, wenn B größer 0 
 RET      ;Rücksprung 

Das gezeigte Unterprogramm WARTEN hat den Nachteil, dass es den Inhalt des Registers r17 
zerstört. Nach dem Aufruf des Unterprogramms steht immer $00 in r17. Man müsste immer 
beim Aufruf des Unterprogramms sicherstellen, dass der Inhalt dieses Registers nicht mehr 
gebraucht wird. Besser ist es, zu Beginn eines jeden Unterprogramms alle benötigten Register 
auf den Stack zu retten und sie vor dem Rücksprung wieder vom Stack zu holen. 

Mit dem Befehl PUSH kann der Inhalt der Register auf dem Stapel abgelegt werden, damit sie 
durch die Operationen im Unterprogramm nicht zerstört werden. Man nennt diesen Vorgang 
Retten (engl. push). Mit dem Befehl POP kann der Registerinhalt vom Stack zurückgeholt 
werden (engl. pull). Wie die Tabelle 16-24 zeigt, wird beim Pushen der Registerinhalt in dem  
Speicherplatz abgelegt, auf den der Stack-Pointer zeigt. Anschließend wird der Stack-Pointer 
dekrementiert, so dass er wieder auf den nächsten freien Speicherplatz zeigt. Beim Befehl POP 
wird erst der Stack-Pointer inkrementiert und dann das Datum vom Stack in das Register gela-
den. 
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Hier ist das obige Unterprogramm so ergänzt, dass der Inhalt des Registers r17 auf den Stack 
gerettet und am Ende des Unterprogramms wieder vom Stack geholt wird:  

 
 CALL WARTEN  ;Aufruf Unterprogramm   
 ...      ;weitere Befehle im Hauptprogramm 
 ...      ; 

WARTEN:  PUSH r17   ;Inhalt von r17 retten  
 LDI  r17,$FF   ;$FF in r17 laden  

ANFANG: DEC  r17   ;Zähler dekrementieren 
 BRNE  ANFANG  ;wiederholen, wenn B>0 
 POP  r17   ;r17 zurückholen 
 RET      ;Rücksprung zum Hauptprogramm 

In Tabelle 16-18 ist die Übersetzung dieses Programmes durch den Assembler gezeigt. Unter 
„Adr“ findet man die Adresse des Speichers. Rechts daneben sind jeweils die Bytes aufgelistet, 
die zu einem Befehl gehören. Weiter rechts steht der Assemblercode. Im ersten Befehl steht 
unter der Adresse $0010 den Opcode für den Befehl CALL WARTEN. Dieser Befehl umfasst 
die beiden Worte 94 0E 00 15. Man erkennt, dass das Label WARTEN durch die Adresse 0015 
ersetzt ist. Dies ist die Adresse des Unterprogramms. 

Tabelle 16-19 List-File des Unterprogramms.  

Adr. Inhalt    Label     Opcode Operand  ;Kommentar 

0010 94 0E 00 15   CALL WARTEN  ;Aufruf Unterprogramm 
0012 . . .           ;weitere Befehle des 
          ;Hauptprogramms 
0015 93 1F   WARTEN:  PUSH  r17  ;Inhalt von r17 retten 
0016 EF 1F        LDI  r17,$FF   ;$FF in r17 laden  
0017 95 1A   ANFANG: DEC  r17   ;Zähler dekrementieren 
0018 F7 F1       BRNE  ANFANG  ;wiederholen, wenn B>0 
0019 91 1F        POP  r17   ;r17 zurückholen 
001A 95 08       RET      ;Rücksprung 

In Tabelle 16-19 ist der Inhalt des Stacks gezeigt, wie er sich während der Ausführung des 
Unterprogramms darstellt. In diesem Beispiel wird angenommen, dass im Register r17 vor dem 
Aufruf des Unterprogramms $2E stand. Der Stackpointer vor dem Aufruf des Unterprogramms 
zeigt auf die Adresse $045F.   

Tabelle 16-19 Stack zum Programm „Warten“. Es ist der Zustand während der Ausführung des Unter-
programms gezeigt.  

Speicher Kommentar 

Adresse Inhalt 

045C 
045D 
045E 
045F 

 
2E 
12 
00

←Stack-Pointer bei PC = 0016 
geretteter Inhalt von r17 
PCL 
PCH  ←Stack-Pointer vor dem Unterprogrammaufruf 
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16.7  Assembleranweisungen  

Man unterscheidet zwischen Assembleranweisungen und Assemblerbefehlen. 

• Assemblerbefehle nennt man auch Mnemonics (z.B. LDI  r20,$0A). Sie bilden den 
Source-Code. 

• Die Assembleranweisungen (engl. Directives) dienen dagegen der Übersetzung des 
Source-Codes in den Object-Code. Sie werden nicht übersetzt, sondern sagen aus, wie die 
Befehle zu einem Programm zusammengefügt werden sollen. Sie sagen, ab welcher Ad-
resse das Programm in den Speicher geschrieben wird und geben Hinweise für die Zuord-
nung von symbolischen Variablen zu Speicherplätzen. z.B. sagt der Befehl .ORG $0010, 
dass die folgenden Befehle ab dem Speicherplatz $0010 angeordnet werden sollen. As-
sembleranweisungen beginnen zur Unterscheidung von Variablen und Labeln immer mit 
einem Punkt. 

Das Assemblerprogramm nimmt die Übersetzung des Source-Codes in den Object-Code vor, 
hat aber daneben noch weitere Aufgaben: 

1. Ein Maschinenprogramm ist im Allgemeinen an einen bestimmten Ort im Speicher gebun-
den. Zum Beispiel stehen in absolut adressierten Sprüngen Sprungadressen, die bei einer 
Verschiebung des Programms im Speicher geändert werden müssen. Um es dem Pro-
grammierer einfacher zu machen, ist das Assemblerprogramm in der Lage, aus symboli-
schen Sprungadressen konkrete Adressen (physikalische Adressen) zu berechnen. Dazu 
muss dem Assembler mitgeteilt werden, wo das Programm im Speicher stehen soll.  Das 
geschieht mit dem Befehl:  

.ORG Adresse 

Alternativ können mit den folgenden Definitionen Bereiche festgelegt werden, in die das 
Programme oder Daten geschrieben werden sollen:  

Anweisung Wirkung 

.CSEG Der folgende Code wird in den Flash-Speicher geschrieben  

.DSEG Die folgenden Variablendeklarationen stehen im SRAM  

.ESEG Der folgende Code wird in das EEPROM übernommen  

 

2. Vom Assembler können symbolische Namen „Name“ für Konstanten verarbeitet werden. 
Er ordnet jedem Label „Name“ eine Konstante zu. Es sind 8-Bit-Konstanten und 16-Bit-
Konstanten möglich. 

Anwei-
sung 

Operand Wirkung Beispiel 

.EQU Name = data Weist der Konstanten einen 
Zahlenwert „data“ zu 

.EQU Null = $00 

 

3. Ebenso können symbolische Namen „Name“ für Variablen  und Konstanten vom Assemb-
ler verarbeitet werden. Er ordnet jeder Variablen eine 16-Bit-Adresse zu, da eine Variable 
im Rechner identisch mit der Adresse eines Speicherplatzes ist. 
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Anweisung Operand Wirkung Beispiel 

Name: .DB Liste Erstellt eine Liste mit Kon-
stanten  

Konst: .DB 4,7,8 

Name: .BYTE n Definiert n 8-Bit-Variablen VAR: .BYTE 3  

 

4. Kommentare, die mit einem Semikolon beginnen müssen, werden vom Assembler igno-
riert. 

5. Das Assemblerprogramm nimmt eine Prüfung auf Syntaxfehler vor. 

6. Durch die Definition von Makros kann der Programmieraufwand gesenkt werden. 

 

Die Assemblierung wird in mehreren Durchgängen vorgenommen. Zuerst werden die Befehle 
übersetzt. In den weiteren Durchgängen werden dann die symbolischen Adressen und Sprung-
ziele zugeordnet. Die Übersetzung der Befehle in den Maschinencode wird mit Hilfe von pro-
zessorspezifischen Listen vorgenommen. 

Tabelle 16-20 Beispiel für Assembleranweisungen.  

Adresse Inhalt   Label Opcode Operand     ;Kommentar 
           
                    .EQU  KONST = $FF   ;KONST definieren 
 
                 .CSEG        ;Programmbeginn 
000000 e50f         LDI   r16, LOW(RAMEND) ;Stack 
000001 bf0d         OUT   SPL, r16    ;initialisieren 
000002 e004         LDI   r16, HIGH(RAMEND)   
000003 ef1f         LDI   r17, KONST     ;r17 mit KONST la-  

            ;den 
000004 9310 0060    STS   VAR1,r17       ;r17 in VAR1 spei- 
                   ;chern  
000006 . . . 

.DSEG         ;Beginn Datenspei-
               ;cher  

000060           VAR1: .BYTE 1        ;Speicherort Var1  
 

Das Beispiel verwendet die Assembleranweisungen .CSEG, .DSEG, .EQU und .BYTE. 
Durch die Anweisung .CSEG  wird der folgende Code im Flash-Programmspeicher abgelegt. 
Die die Befehle stehen daher ab der Adresse $0000 im Flash-Speicher. Durch .DSEG werden 
die Daten ab der ersten verfügbaren Adresse im SRAM ab der Adresse $0060 abgelegt.  

Der Assembler weist den Befehlen und Sprungmarken entsprechende Adressen im Programm-
speicher zu (in diesem Beispiel nicht vorhanden).  

Die Anweisung .EQU wird für die Definition der Konstanten KONST verwendet. Immer wenn 
diese Konstante im Text vorkommt, setzt das Assemblerprogramm den entsprechenden Wert 
$FF ein. Das dient der Übersichtlichkeit des Programms. KONST1 ist eine 8-Bit-Konstante, sie 
wird verwendet, um das Register r17 zu initialisieren.  

Die Anweisung .BYTE reserviert zunächst einen Speicherplatz und weist ihm eine Adresse 
und einen symbolischen Namen zu. Der Name ist in diesem Fall VAR1, die Adresse ist $0060, 
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die erste Adresse im SRAM. Der Programmierer kann jetzt VAR1 wie eine Adresse behandeln, 
z.B. in Befehlen, die die Adressierungsart Daten Direkt verwenden, wie hier beim Befehl STS.  

16.8  Interrupt-Bearbeitung 

Ein Interrupt ist eine Möglichkeit ein laufendes Programm von außen zu unterbrechen. Dies ist 
zum Beispiel erforderlich, wenn durch eine Tastatur ein Befehl eingegeben wurde, oder wenn 
bei einer Mikroprozessor-gesteuerten Werkzeugmaschine ein Not-Halt ausgeführt werden soll.  

Andere Ereignisse, die einen Interrupt auslösen können sind z.B.: 

• Wenn einer der Timer im ATmega einen vorher festgelegten Wert erreicht. 
• Wenn eine serielle Übertragung in einer Schnittstelle abgeschlossen ist. 
• Wenn eine Pegeländerung an einem speziellen externen Pin am ATmega 16 aufgetre-

ten ist. Dies ist z.B. der INT0-Pin, der einen externen Interrupt signalisiert.    

Wenn solch ein externes oder internes Ereignis signalisiert wird, wird das Programm unterbro-
chen und stattdessen eine für den Interrupt-spezifische Interrupt-Service-Routine (ISR) ausge-
führt, die die anstehenden Probleme lösen soll. Anschließend wird das Programm weiter ausge-
führt. 

Interrupts sind ein Eingriff in das laufende Programm. Wenn ein Interrupt auftritt, wird die 
Rücksprungadresse auf den Stack gerettet, um nach der Ausführung der ISR das Programm 
weiter ausführen zu können.   

Außerdem können Interrupts ein- und ausgeschaltet werden. Das ist nötig, um Interrupts an 
unpassenden Stellen im Programmablauf zu verhindern. So ist es z.B. katastrophal, wenn ein 
Interrupt auftritt, bevor der Stack initialisiert wurde. Es ist daher üblich, ganz am Anfang des 
Programms den Stack-Pointer zu initialisieren und dann erst die Interrupts freizugeben. Ein 
Interrupt wird nur angenommen, wenn das lokale Masken-Bit und das globale Maskenbit im 
SREG, das I-Bit, gesetzt sind. 

Die Reihenfolge der Aktionen bei einem Interrupt ist:  

• Wenn die Interrupt-Quelle festgestellt ist, reagiert die CPU nach Beendigung des au-
genblicklich ausgeführten Befehls. 

• Die Rücksprungadresse wird auf dem Stack gespeichert. 
• Da mehrere Interrupts gleichzeitig auftreten können, haben Interrupts eine Priorität. 

Es wird daher der anliegende Interrupt mit der höchsten Priorität ausgeführt. Dafür 
wird aus dem Speicher der Interrupt-Vektor des Interrupts mit der höchsten Priorität 
aus der  Interrupt-Vektor-Tabelle geholt und in den PC geladen. Die ISR wird an der 
Adresse angesprungen, die durch die Interrupt-Vektor-Tabelle (Tab. 16-21) definiert 
ist. 

• Alle anderen Interrupts sind während der Ausführung der ISR gesperrt (Globales 
Maskenbit im SREG wird zurückgesetzt). 

• Der RETI-Befehl in der ISR bewirkt das Laden des alten PC Wertes aus dem Stack. 
• Die normale Programmbearbeitung wird fortgesetzt. 

 

Beim Auftreten eines Interrupts ist folgendes zu beachten: 

• Es werden außer dem PC-Wert keine Register automatisch gerettet. Wenn ein Regis-
ter in der ISR verwendet wird, sollte es auf jeden Fall gerettet werden, da in der Regel 
nicht bekannt ist, an welcher Stelle im Hauptprogramm der Interrupt ausgelöst wurde. 

• Zum Retten von Arbeitsregistern dienen die Befehle PUSH und POP.  
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• Falls durch arithmetische Befehle in der ISR das SREG verändert wird, sollte es eben-
falls gerettet werden. Dies muss über IN und OUT in ein Arbeitsregister zwischenge-
speichert werden, da es dafür keinen direkten Befehl gibt. (genauso: I/O Register). 

• Flanken- oder Pegelsteuerung wird durch Bits im Register MCUCR eingestellt, wel-
ches im IO-Bereich liegt. 

Der ATmega besitzt zwei Gruppen von Interrupts: 

Die eine Gruppe sind die nicht maskierbaren Interrupts, von denen als Beispiele die Interrupts  
INT0 und INT1 in Tabelle 16-21 aufgelistet sind. Die Tabelle 16-21 enthält für jeden Interrupt 
zwei Adressen im Programmspeicher, in denen der Programmierer üblicherweise einen Sprung 
zu der dazugehörigen Interrupt-Service-Routine einsetzt. Hier sind nur der Reset, die externen 
Interrupts INT0 und INT1 sowie beispielhaft zwei Interrupts des Timers 2 aufgelistet.  Insge-
samt gibt es 21 Interrupts.  

Die maskierbaren Interrupts haben ein lokales Maskenbit, mit dem sie ein- und ausgeschaltet 
werden können. Die Maskenbits sind in den IO-Registern enthalten, die im Datenspeicher 
liegen (vergl. Bild 16-9). 

Tabelle 16-21 Eigenschaften einiger Interrupts und des Reset des ATmega16.  

Priorität Vektor-Adresse im 
Programmspeicher 

Interrupt   Quelle 

1 0000-0001 RESET Externer Pin  

2 0002-0003 INT0 Externer PIN 

3 0004-0005 INT1 Externer PIN 

4 0006-0007 TIMER2 COMP  Timer/Counter2 Compare Match 

5 0008-0009 TIMER2 OVF  Timer/Counter2 Overflow 

6 

. . . 

21 

0006-0007 

. . .  

0028-0029 

Weitere Interrupts  

 
Auch der Reset gehört zu den Interrupts. Unter anderem wird ein Reset beim Einschalten der 
Betriebsspannung ausgelöst, oder indem der Eingang ¬Reset auf 0 gesetzt wird. Das bewirkt 
einen Neustart des Prozessors an der Adresse $0000 mit einer Initialisierung der meisten Re-
gister.  

 

Wie im untenstehenden Programmbeispiel gezeigt, steht an der Stelle $0000 im Programm ein 
Sprung in das Hauptprogramm, welches nach den Interruptvektoren an der Adresse $002A 
angeordnet ist. 

Das Hauptprogramm beginnt mit der Initialisierung des Stackpointers auf das Ende des SRAM.  
Danach werden die Interrupts mit dem Befehl SEI freigegeben. Die Interrupt-Service-Routine 
ist nach dem letzten Befehl des Hauptprogramms angeordnet. Dies ist in der Regel ein Rück-
sprung zum Beginn des Hauptprogramms. Das Hauptprogramm besteht oft aus einer Endlos-
schleife, in der die Steuer- und  Regelaufgaben ausgeführt werden.   

Der Ablauf bei einem Interrupt ist wie folgt: Wenn ein INT0-Interrupt während der Ausfüh-
rung des Hauptprogramms auftritt, wird der der Inhalt des PC auf den Stack gerettet. Stattdes-
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sen wird der Interrupt-Vektor an der Adresse $0002 des INT0-Interrupts (vergl. Tabelle 16-28) 
in den PC geladen. An dieser Adresse steht ein Sprung in die ISR an der Adresse $040. Nach 
deren Beendigung veranlasst der Befehl RTI das Zurückholen des PC, der damit auf den nächs-
ten Befehl des Hauptprogramms zeigt. 

Addr  Label   Code         ;Kommentar 
$000     JMP Main       ; Reset-Handler 
$002     JMP EXT_INT0     ; Sprung zu IRQ0 
$004     Weitere Interrupts 
. . .  
$02A Main:  LDI r16,high(RAMEND) ; Hauptprogramm 
$02B     OUT SPH,r16     ; Stack Pointer init.  
$02C     LDI r16,low(RAMEND) 
$02D     OUT SPL,r16 
$02E     SEI         ; Enable interrupts 
$02F     Befehle Hauptprogramm 

. . . 
$03F     RJMP Main      ; Letzter Befehl Hauptprgr. 
$040 EXT_INT0: Befehle ISR INT0   ; Beginn ISR INT0 
$041     Befehle ISR INT0   ; Befehle ISR 
$042     RETI        ; Rücksprung aus ISR 

16.9  Übungen 

Aufgabe 16.1  

Was ist der Vorteil und der Nachteil einer gemeinsamen Speicherung von Daten und Befehlen 
beim Von-Neumann-Rechner in demselben Speicher? Welche Vorteile hat eine Harvard-
Architektur? 

Aufgabe 16.2  

a) Zählen Sie die Adressierungsarten des ATmega16 auf. 
b) Was geschieht bei einem Interrupt? 
c) Erklären Sie die Begriffe Stack und Stack-Pointer. 
d) Welche Schritte führen CALL und RET beim Aufruf eines Unterprogramms aus. 

Aufgabe 16.3 

Schreiben Sie ein Programm, welches zwei Zahlen in ihren Speicherplätzen vertauscht. Die 
Zahlen sollen in Speicherplätzen stehen, deren Adressen in den Index-Registern X und Y ste-
hen. Wie viele Takte benötigt Ihr Programm zur Ausführung?  

Aufgabe 16.4 

Schreiben Sie ein Programmstück für den ATmega16, welches einen Block von variabler Län-
ge (n Bytes ≤ 255) von einer Stelle im SRAM an eine andere verschiebt. Die Anzahl der zu 
verschiebenden Bytes soll im Register r17 stehen. Im Index-Register X soll die erste Adresse 
des zu verschiebenden Blocks stehen, im Index-Register Y die erste Adresse des neuen Blocks. 

Aufgabe 16.5 

Schreiben Sie ein Programm, welches die Anzahl der Einsen im Register r18 zählt. Die Anzahl 
der Einsen soll anschließend binär codiert im Register r16 stehen. 



 

A  Anhang 

A.1  Die Abhängigkeitsnotation 

In dieser Tabelle werden die funktionsbeschreibenden Symbole der Abhängigkeitsnotation 
zusammengefasst. Diese Symbole werden innerhalb der Umrandung des Symbols angegeben. 
Sie beschreiben die allgemeine Funktion der Schaltung.  

 

Symbol Beschreibung 

& UND-Gatter 

≥1 ODER Gatter  

=1 EXOR-Gatter 

= Äquivalenz-Gatter  

2k Eine gerade Anzahl der Eingänge muss auf 1 liegen 

2k+1 Eine ungerade Anzahl der Eingänge muss auf 1 liegen 

1 Ein Eingang muss auf 1 sein 

oder  
Treiber-Ausgang, das Symbol ist in Richtung des Signalflusses 
orientiert. 

 Schmitt-Trigger 

X/Y Code-Wandler 

MUX Multiplexer 

DMUX oder DX Demultiplexer   

Σ Addierer 

P-Q Subtrahierer 

CPG Carry-Look-Ahead-Generator 

π Multiplizierer 

COMP Vergleicher, Komparator 

ALU Arithmetisch-logische-Einheit   

SRGm Schieberegister mit m Bits 

CTRm Zähler mit m Bits, Zykluslänge  2m 

CTR DIVm Zähler mit Zykluslänge m 

RCTRm Asynchroner Zähler mit Zykluslänge 2m 

ROM Read Only Memory 

RAM Schreib-Lese-Speicher 

FIFO First-In-First-Out-Speicher 

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018
K. Fricke, Digitaltechnik, https://doi.org/10.1007/978-3-658-21066-3
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In der folgenden Tabelle werden die logischen Symbole außerhalb der Umrandung zusammen-
gefasst: 

 

Nr Symbol Beschreibung 

1  

 

Logische Inversion eines Eingangs (externe 0 erzeugt interne 
1)  

2  

 

Logische Inversion eines Ausgangs (interne 0 erzeugt externe 
1) 

3  

 

Eingang, aktiv bei L, äquivalent zu Nr. 1 bei positiver Logik   

4  

 

Eingang, aktiv bei L, Signalfluss von rechts nach links   

5  

 

Ausgang, aktiv bei L, äquivalent zu 2 bei positiver Logik 

6  

 

Signalfluss von rechts nach links 

7  

 

Bidirektionaler Signalfluss 

8  

 

Dynamischer Eingang: aktiv bei positiver Flanke   

9  

 

Dynamischer Eingang: aktiv bei negativer Flanke  

10  

 

Nichtlogischer Eingang 

11  ∩ 
 

Analoger Eingang an einem digitalen Symbol 

12  

 
Interne Verbindung 

13  

 
Invertierende interne Verbindung 

14  

 
Interne Verbindung: aktiv bei positiver Flanke 
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Die logischen Symbole der nächsten Tabelle liegen innerhalb der Umrandung des Symbols. Es 
werden dadurch Aussagen über den inneren logischen Zustand der Schaltung gemacht.    

 

Symbol Beschreibung 

 
 

gepufferter Ausgang: Änderung erst bei Erreichen des ursprünglichen 
Zustands des Eingangs  

 

 

Eingang mit Hysterese 

 
 

Ausgang mit offenem Kollektor eines npn-Transistors 
oder vergleichbarer Ausgang 

   

 + 

 

 
 

Ausgang mit offenem Emitter eines npn-Transistors 
oder vergleichbarer Ausgang 

   

 + 

 
 

 

Tri-State-Ausgang 

 
EN 

 

Enable-Eingang 

J, K, R, S, D, T

 

Flipflop-Eingänge: Übliche Bedeutung der Buchstaben 

 
→m ←m 

 

Eingänge, die Rechts-Shift bzw. Links-Shift in einem Schieberegister 
bewirken, m ∈ N, m = 1 wird in der Regel nicht angegeben  

 
0 

n  

Binärer Eingangsvektor mit den Wertigkeiten 0 bis n. n ist die Zweier-
potenz der Wertigkeit des MSB  

 CT=15 
 

Setz-Eingang, der angegebene Wert wird geladen, wenn der Eingang 
aktiv ist  

 CT=15 
 

Ausgang geht auf 1, wenn das Register den angegebenen Wert annimmt  

 
"1" 

 

Ausgang mit konstantem Wert 

 

 

Gruppe von Signalen, die einen einzigen logischen Eingang bilden 

 
 

Interne Verbindung: aktiv bei positiver Flanke 
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In dieser Tabelle wird die Bedeutung der Buchstaben in der Abhängigkeitsnotation zusammen-
gefasst. Es sind zusätzlich die Seiten angegeben, auf denen genauere Beschreibungen der Ab-
hängigkeiten oder Beispiele zu finden sind. 

  

Abhängigkeit Symbol Eingang auf 1 Eingang auf 0 Seite  

Adresse A wählt Adresse   Adresse nicht gewählt 162 

Kontrolle C aktiviert unverändert 80 

Enable EN aktiviert Eingänge unwirksam, 

Tri-State-Ausgänge 
hochohmig, 

OC-Ausgänge aus, 

andere Ausgänge auf 0  

37 

UND G UND mit anderen Eingän-
gen 

erzwingt 0  27 

Mode M Modus gewählt Modus nicht gewählt 135 

Negation N negiert Zustand Kein Einfluss 29 

Reset R setzt Flipflop zurück Kein Einfluss 78 

Set S setzt Flipflop  Kein Einfluss 78 

ODER V erzwingt 1  Oder mit anderen Ein-
gängen 

28 

Übertragung X bidirektionale Verbindung 
hergestellt 

Verbindung offen 30 

Verbindung Z erzwingt 1 erzwingt 0 29 
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Abkürzungen für die folgenden Tabellen   

 
Abk. Beschreibung Codierung im OP-Code 
Rr    Quell-Register r0 bis r31 rrrrr  
Rd Ziel-Register r0 bis r31 ddddd 
Rh Register für die Immediate-

Adressierung (r16-r31) 
1dddd 
 

Rw Pointer-Register (für die Be-
fehle AIDW,SBIW) 
(r24,r26,r28,r30) 

r25:r24     (ww=00) 
r27:r26 = X (ww=01) 
r29:r28 = Y (ww=10) 
r31:r30 = Z (ww=11)  

Rp Pointer-Register (X,Y,Z) r27:r26 = X (eee=111) 
r29:r28 = Y (eee=010) 
r31:r30 = Z (eee=000) 

Ro Base Pointer-Register r29:r28 = Y (o=1) 
r31:r30 = Z (o=0) 

Kn n Bit-Konstante kkkkkk… 
b Bit-Position in Register  bbb 
P Portadresse 6 Bit pppppp 

 
 

 

Transfer-Befehle 

Be-
fehl 

Operan-
den 

Beschreibung  Ausführung T W 

MOV  Rd, Rr Kopiere Register  Rd ← Rr 1 1 
LDI  Rh, K8 Lade immediate Rh ← K 1 1 
LDS  Rd, A16 Lade direkt aus Datenspeicher Rd ← (A) 2 2 
LD Rd, Rp Lade indirekt  Rd ← (Rp)  2 1 
LD  Rd, Rp+ Lade indirekt mit Post-

Inkrement  
Rd ←(Rp) 
Rp ← Rp + 1 

2 1 

LD  
 

Rd, -Rp Lade indirekt mit Prä-
Dekrement 

Rp ← Rp – 1 
Rd ← (Rp) 

3 1 

LDD  Rd, 
Ro+K6 

Lade indirekt mit Displacement Rd ← (Ro + K) 2 1 

STS  A16, Rd Speichere direkt in Datenspei-
cher 

(A) ← Rd 2 2 

ST Rp, Rr Speichere indirekt (Rp) ← Rr  2 1 
ST  Rp+, Rr Speiche indirekt mit Post-

Inkrement 
(Rp) ← Rr 
Rp ← Rp + 1 

2 1 

ST  -Rp, Rr Speichere indirekt mit Prä-
Dekrement 

Rp ← Rp – 1 
(Rp) ← Rr 

2 1 

STD  Ro+K6,Rr Speichere indirekt mit Dis-
placement 

(Ro + K) ← Rr  2 1 

IN Rd, P Lade aus IO-Adresse Rd ← (P) 1 1 
OUT P, Rr Speicher in IO-Adresse (P)← Rr 1 1 
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Arithmetische Befehle 

Be-
fehl 

Ope-
rand 

Beschreibung Ausführung H,S,V,N,Z,C T 

ADD  Rd, Rr Addiere ohne Carry Rd ← Rd + Rr H,S,V,N,Z,C 1 
ADC  Rd, Rr Addiere mit Carry Rd ← Rd + Rr + C H,S,V,N,Z,C 1 
ADIW  Rw, K6 Addiere zu Wort 

immediate  
Rw ← Rw + K -,S,V,N,Z,C 2 

SUB  Rd, Rr Subtrahiere ohne 
Carry 

Rd ← Rd – Rr H,S,V,N,Z,C 1 

SUBI  Rh, K8 Subtrahiere imme-
diate 

Rh ← Rh - K H,S,V,N,Z,C 1 

SBC  Rd, Rr Subtrahiere mit 
Carry 

Rd ← Rd - Rr - C H,S,V,N,Z,C 1 

SBCI  Rh, K8 Subtrahiere imme-
diate mit Carry 

Rh ← Rh - K - C H,S,V,N,Z,C 1 

SBIW  Rw, K6 Subtrahiere imme-
diate  

Rw ← Rw - K -,S,V,N,Z,C 2 

AND  Rd, Rr Logisches UND Rd ← Rd ∧ Rr -,S,V,N,Z,- 1 

ANDI  Rh, K8 Logisches UND, 
immediate 

Rh ← Rh ∧ K -,S,V,N,Z,-  1 

OR  Rd, Rr Logisches ODER  Rd ← Rd ∨ Rr -,S,V,N,Z,- 1 

ORI  Rh, K8 Logisches ODER, 
immediate 

Rh ← Rh ∨ K -,S,V,N,Z,-  1 

EOR  Rd, Rr Exklusives ODER  Rd ← Rd ↔ Rr -,S,V,N,Z,-  1 
COM  Rd Einerkomplement Rd ← $FF - Rd -,S,V,N,Z,C  1 
NEG  Rd Zweierkomplement Rd ← $00 - Rd H,S,V,N,Z,C 1 
SBR  Rh, K8 Setze  Bit(s) Rh ← Rh ∨ K -,S,V,N,Z,-  1 

CBR  Rh, K8 Lösche Bit(s) Rh ← Rh ∧ ($FF-K) -,S,V,N,Z,-  1 

INC  Rd Inkrementiere Rd ← Rd + 1 -,S,V,N,Z,-  1 
DEC  Rd Dekrementiere  Rd ← Rd - 1 -,S,V,N,Z,-  1 
CLR  Rd Lösche Register Rd ← $00 -,0,0,0,1,- 1 
SER  Rh Setze Register Rh ← $FF -,-,-,-,-,- 1 

 

SREG-Manipulation 

Be-
fehl 

Ope-
rand 

Beschreibung Ausführung H,S,V,N,Z,C T W 

BSET  b Flag Setzen SREG(b) ← 1 SREG(b) 1 1 
BCLR  b Flag Löschen SREG(b) ← 0 SREG(b) 1 1 
SEC   Setze Carry C ← 1 -,-,-,-,-,1  1 1 
CLC   Lösche Carry C ← 0 -,-,-,-,-,0 1 1 
SEN   Setze Negative-Flag N ← 1 -,-,-,1,-,- 1 1 
CLN   Lösche Negative- Flag N ← 0 -,-,-,0,-,- 1 1 
SEZ   Setze Zero-Flag Z ← 1 -,-,-,-,1,-  1 1 
CLZ   Lösche Zero-Flag  Z ← 0 -,-,-,-,0,- 1 1 
SES   Setze Signed-Flag S ← 1 -,1,-,-,-,- 1 1 
CLS   Lösche Signed-Flag S ← 0 -,0,-,-,-,- 1 1 
SEV   Setze Zweierkomple-

ment- Überlauf Flag 
V ← 1 -,-,1,-,-,- 1 1 

CLV   Lösche Zweierkomple-
ment- Überlauf Flag 

V ← 0 -,-,0,-,-,- 1 1 
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Schieben Rotieren 

Be-
fehl 

Ope-
rand 

Beschrei-
bung 

Ausführung H,S,V,N,Z,C T W 

LSL  Rd Logisch 
links 
schieben 
 

Rd(n+1) ← Rd(n), 
Rd(0)   ← 0, 
C       ← Rd(7) 
 C 0 

 

H,-,V,N,Z,C  1 1 

LSR  Rd Logisch 
rechts 
schieben 

Rd(n)   ← Rd(n+1), 
Rd(7)   ← 0, 
C       ← Rd(0) 
 C 0 

 

-,-,V,N,Z,C  1 1 

ROL  Rd Rotiere 
links 
über Car-
ry 

Rd(0)   ← C, 
Rd(n+1) ← Rd(n), 
C       ← Rd(7) 
 

C 

 

H,-,V,N,Z,C 1 1 

ROR  Rd Rotiere 
rechts 
über Car-
ry 

Rd(7)   ← C, 
Rd(n)   ← Rd(n+1), 
C       ← Rd(0) 
 

C 

 

-,-,V,N,Z,C 1 1 

ASR  Rd Arithme-
tisches 
Schieben 
rechts 

Rd(n)   ← Rd(n+1), n=0..6 
 

C 

 

-,-,V,N,Z,C 1 1 

 

 

 Vergleich 

Be-
fehl 

Ope-
rand 

Beschreibung Ausführung H,S,V,N,Z,C T W 

CP  Rd,Rr Vergleiche Rd - Rr H,S,V,N,Z,C 1 1 
CPC  Rd,Rr Vergleiche mit Carry Rd - Rr - C H,S,V,N,Z,C 1 1 
CPI  Rh,K8 Vergleiche immediate Rd - K H,S,V,N,Z,C 1 1 
TST  Rd Teste auf Null oder 

Minus 
Rd ∧ Rd -,S,V,N,Z,-  1 1 
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Verzweigungsbefehle  

Be-
fehl 

Ope-
rand 

Beschreibung Ausführung T W 

RJMP  K12 Relativer Sprung PC ← PC + K + 1 2 1 
JMP  K22  Sprung direkt PC ← K 3 2 
CPSE  Rd,R

r 
Überspringe wenn 
gleich 

wenn (Rd = Rr)dann 
PC ← PC + 2 oder 3  

1/2/3 1 

SBRC  Rr,b Überspringe wenn Bit 
im Register gelöscht

wenn (Rr(b) = 0)dann  
PC ← PC + 2 oder 3 

1/2/3 1 

SBRS  Rr,b Überspringe wenn Bit 
im Register gesetzt 

wenn(Rr(b) = 1)dann 
PC ← PC + 2 oder 3 

1/2/3 1 

BRBS  b,K7 Verzweige wenn Sta-
tus Flag gesetzt 

wenn (SREG(b) = 1) dann 
PC ← PC + K + 1 

1/2 1 

BRBC  b,K7 Verzweige wenn Sta-
tus Flag gelöscht 

wenn (SREG(b) = 0)dann 
PC ← PC + K + 1 

1/2 1 

BREQ  K7 Verzweige wenn 
gleich 

wenn (Z = 1) dann  
PC ← PC + K + 1 

1/2 1 

BRNE  K7 Verzweige wenn un-
gleich 

wenn (Z = 0) dann  
PC ← PC + K + 1 

1/2 1 

BRCS  K7 Verzweige wenn Carry 
gesetzt 

wenn (C = 1) dann  
PC ← PC + K + 1 

1/2 1 

BRCC  K7 Verzweige wenn Carry 
gelöscht 

wenn (C = 0) dann  
PC ← PC + K + 1 

1/2 1 

BRSH  K7 Verzweige wenn 
gleich oder größer, 
Unsigned 

wenn (C = 0) dann 
PC ← PC + K + 1 

1/2 1 

BRLO  K7 Verzweige wenn klei-
ner, Unsigned 

wenn (C = 1) dann 
PC ← PC + K + 1 

1/2 1 

BRMI  K7 Verzweige wenn nega-
tiv 

wenn (N = 1) dann 
PC ← PC + K + 1 

1/2 1 

BRPL  K7 Verzweige wenn posi-
tiv 

wenn (N = 0) dann 
PC ← PC + K + 1 

1/2 1 

BRGE  K7 Verzweige wenn grö-
ßer gleich, Signed 

wenn (N ↔ V=0) dann 
PC ← PC + K + 1 

1/2 1 

BRLT  K7 Verzweige wenn klei-
ner gleich, Signed 

wenn (N ↔ V=1) dann  
PC ← PC + K + 1 

1/2 1 

BRHS  K7 Verzweige wenn Half 
Carry Flag gesetzt 

wenn (H = 1) dann  
PC ← PC + K + 1 

1/2 1 

BRHC  K7 Verzweige wenn Half 
Carry Flag gelöscht 

Wenn (H = 0) dann  
PC ← PC + K + 1 

1/2 1 

BRVS  K7 Verzweige wenn Over-
flow Flag gesetzt 

wenn (V = 1) dann  
PC ← PC + K + 1 

1/2 1 

BRVC  K7 Verzweige wenn Over-
flow Flag gelöscht 

wenn (V = 0) dann 
PC ← PC + K + 1 

1/2 1 
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Unterprogramm-Befehle  

Befehl Ope-
rand 

Beschreibung Ausführung Flags T W 

RCALL  K12 Relativer Auf-
ruf Unterpro-
gramm 

PC ← PC + K + 1  
Stack ← PC + 1 
SP ← SP − 2 

keins 3  1 

CALL  K22 Absoluter Auf-
ruf Unterpro-
gramm  

PC ← K 
Stack ← PC + 2 
SP ← SP − 2 

keins  4  2 

RET   Unterprogramm 
Return  

PC ← STACK
SP ← SP + 2 

keins  4  1 

RETI   Interrupt Re-
turn  

PC ← STACK  
SP ← SP + 2 

I 4  1 

PUSH Rr  Push Register 
auf den Stack  

STACK ← Rr  
SP ← SP − 1 

keins 2 1 

POP Rd  Pop Register 
vom Stack 

Rd ← STACK  
SP ← SP + 1 

keins 2 1 

 

Einige Befehle  wie Multiplikation, Division, Steuerbefehle usw. sind nicht aufgeführt! 
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Codierung der Befehle des ATmega16 

Mnemonic Operanden Codierung Wort 1 Wort 2 

ADC      Rd, Rr 0001 11rd dddd rrrr     

ADD      Rd,Rr 0000 11rd dddd rrrr     

ADIW     Rw,K6 1001 0110 kkww kkkk  

AND      Rd,Rr 0010 00rd dddd rrrr     

ANDI     Rh, K8 0111 kkkk dddd kkkk  

ASR      Rd 1001 010d dddd 0101  

BCLR     b 1001 0100 1bbb 1000     

BRBC     b,K7 1111 01kk kkkk kbbb    

BRBS     b,K7 1111 00kk kkkk kbbb    

BRCC     K7 1111 01kk kkkk k000  

BRCS     K7 1111 00kk kkkk k000     

BREQ     K7 1111 00kk kkkk k001  

BRGE     K7 1111 01kk kkkk k100  

BRHC     K7 1111 01kk kkkk k101  

BRHS     K7 1111 00kk kkkk k101  

BRLO     K7 1111 00kk kkkk k000  

BRLT     K7 1111 00kk kkkk k100  

BRMI   K7 1111 00kk kkkk k010    

BRNE   K7 1111 01kk kkkk k001     

BRPL    K7 1111 01kk kkkk k010  

BRSH   K7 1111 01kk kkkk k000    

BRVC   K7 1111 01kk kkkk k011     

BRVS     K7 1111 00kk kkkk k011     

BSET     b 1001 0100 0bbb 1000  

CALL K22 1001 010k kkkk 111k  K16 

CBR      Rh,K8 0111 kkkk dddd kkkk  

CLC  1001 0100 1000 1000  

CLN  1001 0100 1010 1000  

CLR      Rd  = eor Rd,Rd  

CLS  1001 0100 1100 1000     

CLV  1001 0100 1011 1000  

CLZ  1001 0100 1001 1000    

COM      Rd 1001 010d dddd 0000  

CP  Rd,Rr 0001 01rd dddd rrrr  

CPC Rd,Rr 0000 01rd dddd rrrr  

CPI      Rh,K8 0011 kkkk dddd kkkk  

CPSE     Rd,Rr 0001 00rd dddd rrrr     
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Mnemonic Operanden Codierung Wort 1 Wort 2 

DEC      Rd 1001 010d dddd 1010  

EOR      Rd,Rr 0010 01rd dddd rrrr  

IN       Rd,P 1011 0ppd dddd pppp  

INC      Rd 1001 010d dddd 0011  

JMP K22 1001 010k kkkk 110k  K16 

LD       Rd,Rp 100e 000d dddd ee00     

LD       Rd,Rp+ 100e 000d dddd ee01     

LD       Rd,-Rp 100e 000d dddd ee10     

LDD      Rd,Ro,K6 10k0 kk0d dddd okkk  

LDI      Rh,K8 1110 kkkk dddd kkkk  

LDS      Rd,K16 1001 000d dddd 0000  K16 

LSL      Rd = ADD Rd,Rd  

LSR      Rd 1001 010d dddd 0110  

MOV      Rd,Rr 0010 11rd dddd rrrr  

NEG      Rd 1001 010d dddd 0001     

NOP  0000 0000 0000 0000     

OR       Rd,Rr 0010 10rd dddd rrrr  

ORI      Rh,K8 0110 kkkk dddd kkkk  

OUT      P,Rr 1011 1ppr rrrr pppp     

POP      Rd 1001 000d dddd 1111     

PUSH     Rr 1001 001r rrrr 1111  

RCALL    K12 1101 kkkk kkkk kkkk  

RET  1001 0101 0000 1000  

RETI  1001 0101 0001 1000     

RJMP     K12 1100 kkkk kkkk kkkk   

ROL      Rd = ADC Rd, Rd  

ROR      Rd 1001 010d dddd 0111  

SBC      Rd, Rr 0000 10rd dddd rrrr  

SBCI     Rh,K8 0100 kkkk dddd kkkk  

SBIW     Rw,K6 1001 0111 kkww kkkk  

SBR      Rh,K8 0110 kkkk dddd kkkk  

SBRC     Rr,b 1111 110r rrrr 0sss  

SBRS     Rr,b 1111 111r rrrr 0sss  

SEC  1001 0100 0000 1000  

SEN  1001 0100 0010 1000     

SER      Rh 1110 1111 dddd 1111  

SES  1001 0100 0100 1000  
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Mnemonic Operanden Codierung Wort 1 Wort 2 

SEV  1001 0100 0011 1000     

SEZ  1001 0100 0001 1000     

ST       Rp,Rr 100e 001r rrrr ee00     

ST       Rp+,Rr 100e 001r rrrr ee01     

ST       -Rp,Rr 100e 001r rrrr ee10     

STD      Ro,K6,Rr 10K0 kk1r rrrr okkk  

STS      K16,Rd 1001 001d dddd 0000 K16 

SUB      Rd,Rr 0001 10rd dddd rrrr  

SUBI     Rh,K8 0101 kkkk dddd kkkk  

SWAP     Rd 1001 010d dddd 0010  

TST      Rd = AND Rd,Rd  
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A.3 Lösungen der Aufgaben  

Lösung Aufgabe 2.1 

a) 10
3210123

2 625,1421202120212121)101,1110( =⋅+⋅+⋅+⋅+⋅+⋅+⋅= −−−g  

b) 10
421014

2 8125,19212121212121)1101,10011( =⋅+⋅+⋅+⋅+⋅+⋅= −−−g  

Lösung Aufgabe 2.2 

a) 

33:2 = 16         Rest 1 

            16:2 = 8        Rest 0    

    8:2=4     Rest 0        ganzzahliger Anteil der Dualzahl 

       4:2=2   Rest 0 

          2:2=1     Rest 0 

         1:2 =0  Rest 1 

 

0,125⋅2 = 0,25      + 0 

   0,25⋅2=0,5    + 0      gebrochener Anteil der Dualzahl 

           0,5⋅2=0    + 1 

Daher ist 33,12510 = 100001,0012. 

 

b) 

45:2 = 22         Rest 1 

            22:2 = 11       Rest 0    

    11:2=5    Rest 1        ganzzahliger Anteil der Dualzahl 

        5:2=2   Rest 1 

           2:2=1    Rest 0 

          1:2=0 Rest 1 

 

0,33⋅2 = 0,66        + 0 

     0,66⋅2=0,32      + 1    gebrochener Anteil der Dualzahl 

        0,32⋅2=0,64   + 0 

           0,64⋅2=0,28 + 1 

Jetzt ist die Dualzahl bis auf 4 Stellen hinter dem Komma bekannt. Daher: 45,3310 ≈ 
101101,01012. 

Lösung Aufgabe 2.3 

a) Das Zweierkomplement von 001010 ist 110110. 
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  0 1 0 1 0 1  2110 

+  1 1 0 1 1 0  -1010 

Übertrag 1 1 0 1 0 0    

= (1) 0 0 1 0 1 1  1110 

Es gab die Überträge c5 und c6, daher ist das Ergebnis richtig.  

b) Das Zweierkomplement von 010111 ist 101001, das von 011011 ist 100101. 

  1 0 1 0 0 1  -2310 

+  1 0 0 1 0 1  -2710 

Übertrag 1 0 0 0 0 1    

= (1) 0 0 1 1 1 0  1410 

Es gilt hier c5 = 0 und c6 = 1, daher ist das Ergebnis falsch.  

Lösung Aufgabe 2.4 

a) 110101⋅010101 = 010001011001 

b) 1101110:110 = 10010, 01  

Lösung Aufgabe 2.5 z.B.: 000, 001, 011, 010, 110, 100 

Lösung Aufgabe 2.6  

C23A800016= 1100 0010 0 011 1010 1000 0000 0000 2 

 s         c                            m  
c = 100001002 = 13210 
e = c – 127 = 132  – 127 = 5 
1,m = 1,01110101  
1,m × 25 = 101110,1012 = 46,625 
Wegen s = 1 ist die gesuchte reelle Zahl negativ:  C23A800016 = – 46,62510 

 

Lösung Aufgabe 3.1 Beweis durch eine Wahrheitstabelle:   

Gleichung 3.10  Gleichung 3.11 

x1 x0 x x0 1∨  x x x0 0 1∧ ∨( )  x0  x1 x0 x x0 1∧  x x x0 0 1∨ ∧( )  x0  

0 0 0 0 0 0 0 0 0 0 

0 1 1 1 1 0 1 0 1 1 

1 0 1 0 0 1 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 

 

Lösung Aufgabe 3.2 

y =  x0x1x2¬x3 ∨ x0x1x2x3 ∨ ¬x0¬x1x2x3 ∨ ¬x0¬x1¬x2x3 ∨ x0¬x1x2x3 ∨ x0¬x1¬x2x3 
y =  x0x1x2 ∨ ¬x0¬x1x3 ∨ x0¬x1x3  
y =  x0x1x2 ∨ ¬x1x3   

Die letzte Gleichung ist die gesuchte minimale Darstellung. 
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Lösung Aufgabe 3.3 Aufstellen der Wahrheitstabelle: 

a 0 0 0 0 1 1 1 1 

b 0 0 1 1 0 0 1 1 

c 0 1 0 1 0 1 0 1 

s1 0 0 0 1 0 1 1 1 

s0 0 1 1 0 1 0 0 1 

KDNF für s0:   s0 = ¬a¬bc ∨ ¬ab¬c ∨ a¬b¬c ∨ abc  
KDNF für s1:  s1 = ¬abc ∨ a¬bc ∨ ab¬c ∨ abc  
KKNF für s0:  s0 = (¬a ∨ ¬b ∨ c)(¬a ∨ b ∨ ¬c)(a ∨ ¬b ∨ ¬c)(a ∨ b ∨ c)  
KKNF für s1:  s1 = (a ∨ b ∨ ¬c)( a ∨ ¬b ∨ c)(¬a ∨ b ∨ c)(a ∨ b ∨ c) 

Lösung Aufgabe 3.4 

s1 = bc ∨ ac ∨ ab oder s1 = (a ∨ b)( a ∨ c)(b ∨ c) 

Die Gleichungen für s0 lassen sich nicht weiter vereinfachen, da sich alle Terme in mindestens 
2 Variablen unterscheiden. 

Lösung Aufgabe 3.5 

a) a 
 
↔  ¬b = ab ∨ ¬a¬b = ¬((¬a ∨ ¬b)(a ∨ b)) = ¬(¬ab ∨ a¬b) = ¬(a ↔ b) 

b) f = a 
 
↔  b 

 
↔  c   ¬f = ¬(a 

 
↔ b) ↔ c  ¬f = ¬a ↔ b ↔ c 

Wiederholen mit b und c: ¬f = ¬a ↔ ¬b ↔ ¬c 

Lösung Aufgabe 3.6  

a) y1  =  x1x2x3 ∨ ¬x2x3   
=  x1x2x3 ∨ ¬x2x3x1 ∨ ¬x2x3  (Absorptionsgesetz) 
=  x1x3 ∨ ¬x2x3  (Zusammenfassung der Terme 1 und 2 nach Gl. 3.34) 
=  x3(x1 ∨ ¬x2)  (Distributivgesetz) 

b) y2  =  ¬x1¬x2¬x3  ∨  ¬x1x2x3  ∨ x1x2x3 ∨ x1¬x2¬x3 ∨ x1x2¬x3 ∨ ¬x1x2¬x3  
        =  ¬x2¬x3  ∨  x2x3  ∨ x2¬x3  (Terme 1 und 4, 2 und 3 sowie 5 und 6 zusammengefasst)   

=  ¬x2¬x3  ∨  x2x3  ∨ x2¬x3  ∨ x2¬x3  (Absorptionsgesetz) 
         =  ¬x3  ∨  x2   (Terme 1 und 3, sowie 2 und 4 zusammengefasst) 
c) y3  =  ¬x1x2¬x3 ∨¬(x1 ∨ x2) ∨ x1¬x2¬x3 ∨ ¬x1¬x2x3x4 
            =  ¬x1x2¬x3 ∨ ¬x1¬x2 ∨ x1¬x2¬x3 ∨ ¬x1¬x2x3x4 (de Morgan) 
    =  ¬x1x2¬x3 ∨ ¬x1¬x2 ∨ x1¬x2¬x3  (Term 4 kann wg. Term 2 weggelassen werden)    
     =  ¬x1x2¬x3 ∨ ¬x1¬x2 ∨ x1¬x2¬x3 ∨ ¬x1¬x2¬x3 ∨ ¬x1¬x2¬x3  (Absorptionsgesetz) 
  =  ¬x1¬x3 ∨ ¬x1¬x2 ∨ ¬x2¬x3   (Terme 1 und 4 sowie 3 und 5 zusammengefasst) 
d) y4  =  ¬(¬( ¬x1¬x2¬x4 ) ¬(¬x1 ∨¬x2 ∨¬x3)) 

=  ¬x1¬x2¬x4 ∨ ¬x1 ∨¬x2 ∨¬x3 (de Morgan) 
=  ¬x1 ∨¬x2 ∨¬x3 (Absorptionsgesetz) 

e) y5  =  ¬(¬x1x2¬x3 ∨ ¬(x1 ∨ x2 ∨ x3) ) (x1 ∨ ¬x2)  
=  ¬(¬x1x2¬x3 ∨  ¬x1¬x2¬x3) (x1 ∨ ¬x2) (de Morgan)  
=  ¬(¬x1¬x3) (x1 ∨ ¬x2) (Gleichung 3.34) 
=  (x1 ∨ x3) (x1 ∨ ¬x2) (de Morgan) 
=  x1 ∨ x3¬x2  (Distributivgesetz) 
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Lösung Aufgabe 3.7 

 

 

x0 

x1 ≥1 y0 

y1 

¬1 

S 

1 
x2 
x3 ≥1 

¬1 
1 

G1 

x0

x1
≥1 

& 

S

x2

x3

1

& 
y0 

≥1 
& 

& 
y1 

 
 
Lösung Aufgabe 4.1  
Z.B. durch Aufstellen der Wahrheitstabellen und Invertieren der Ein- und Ausgangsvariablen 
findet man:  

Positive Logik Negative Logik 
UND ODER 
ODER  UND 
Äquivalenz  Exklusiv-ODER 
Exklusiv-ODER  Äquivalenz 

 

Lösung Aufgabe 4.2 

a) y ab cd a bd a b cd a bd a b cd= ¬ ∨ ¬ ∨ ¬ = ¬ ∨ ¬ ∨ ¬ ∨ ¬ = ¬ ∨ ¬ ∨ ¬( )  

 

a 
b y 

& c 

d 

≥1 
a
b y 

& c

d

≥1 

Positive Logik Negative Logik b) 

 
 

 

Lösung Aufgabe 4.3 

Spannungspegel  Positive Logik 

logisches  NAND 

 Negative Logik 

logisches NOR 

x2 x1 y  x2 x1 y  x2 x1 y 

L L H  0 0 1  1 1 0 

L H H  0 1 1  1 0 0 

H L H  1 0 1  0 1 0 

H H L  1 1 0 0 0 1 
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Lösung Aufgabe 5.1 

 

x1

VDD 

x0

y 

x2 

x0 

y 

VDD

x1 

x2

NOR NAND

 
Lösung Aufgabe 5.2 

 x0 x1 En y 
1 1 0 0 
1 0 0 0 
0 1 0 0 
0 0 0 1 
d d 1 hochohmig a) 

y 

En

x1

EN1

≥1 
1 

b) 

x0

 
Lösung Aufgabe 5.3   

Es handelt sich um eine Kombination von NAND und NOR-Gatter: 
y = ¬x0 ∨ ¬x1 ∨ ¬x2¬x3¬x4 = ¬(x0x1 (x2 ∨ x3 ∨ x4)) 

Lösung Aufgabe 5.4 

Es handelt sich um ein Äquivalenz-Gatter: 
s x x= ¬( )0 1    ; y s x x x x x x x x= ¬ ∨ ¬ ¬ = ∨ ¬ ¬ = ↔0 1 0 1 0 1 0 1  

Lösung Aufgabe 6.1 

 

  

 

0 

0 

0 

0 

0 

1 

0 

1 

0 

1 

1 

1 

0 

0 

1 

0 
x1 

x0

x2 

x3 

3 

1 

4 

2 

5 

a) 
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b) Implikanten:  1) x0x2¬x1       2) x0x2x3       3) x1x2x3       4) ¬x0x1x2       5) x1x0x3  

c) Kern-PI: 1, 4 , 5. Absolut eliminierbare PI: 2, 3. Relativ eliminierbare PI: ∅  

d) Es gibt nur eine Lösung: f = x0x2¬x1 ∨ ¬x0x1x2 ∨  x1x0x3 

e) Lösung mit dem Quine-McCluskey-Verfahren 

 

Dezimal x3 x2 x1 x0 Gruppe  

 

 

 

 

 

 

5 

6 

0 

0 

1 

1 

0 

1 

1 

0 

2 

11 

13 

14 

1 

1 

1 

0 

1 

1 

1 

0 

1 

1 

1 

0 

3 

15 1 1 1 1 4 

 

Zusammenfassen der Terme in einer zweiten Tabelle: 

 

Dezimal x3 x2 x1 x0 Gruppe 

5,13 

6,14 

- 

- 

1 

1 

0 

1 

1 

0 

2 

11,15 

13,15 

14,15 

1 

1 

1 

- 

1 

1 

1 

- 

1 

1 

1 

- 

3 

 

Keine weiteren Zusammenfassungen möglich, daher Eintragung in die Primimplikantentafel: 

 

 5 6 11 13 14 15 

5,13 ⊗   ⊗   

6,14  ⊗   ⊗  

11,15   ⊗   ⊗ 

13,15    ×  × 

14,15     × × 

 

 

Die Kernprimimplikanten 5,13; 6,14 und 11,15 decken alle Minterme ab. Daher besteht die 
minimale Form nur aus den Kern-Primimplikanten: f = x0x2¬x1 ∨ ¬x0x1x2 ∨  x1x0x3 
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Lösung Aufgabe 6.2 

a) 

1 1 d 1 

1 d 1 d 

0 0 d 0 

0 0 d 0 

x2 

x0 

x1 

1 1 d d 

0 d 0 0 

d 1 0 0 

1 d d d 

x2 

x4 x3 

 

Lösung für eine minimale DNF: 404123 xxxxxxy ¬¬∨¬∨¬=   

 b) 

1 1 d 1 

1 d 1 1 

0 0 d 0 

0 0 d 0 

x2 

x0 

x1 

1 1 d d 

0 d 0 0 

d 1 0 0 

1 d d d 

x2 

x4 x3 

 

Lösung für eine minimale KNF: y x x x x x x x= ¬ ∨ ¬ ¬ ∨ ∧ ¬ ∨ ∨( )( ) ( )1 4 3 4 0 1 4  

Lösung Aufgabe 6.3 

 

1 1   

 1   

    

    

 

x1

x0 

x2

x3 

 1   

 1   

 1   

    
x1

x0 

x2

x3

    

 1   

1 1 1 1 

    

 

x1

x0 

x2 

x3 a) f1 f3 f2

DNF der einzelnen Funktionen: 
f x x x x x x1 0 1 3 1 2 3= ¬ ¬ ¬ ∨ ¬ ¬       ;   f x x x x x x2 1 2 3 0 2 3= ¬ ¬ ∨ ¬     ; f x x x x x3 0 2 3 0 1= ¬ ∨  

b)  f1 und f2  sowie f2 und f3 haben einen gemeinsamen Term, er wird nur einmal realisiert. 

c) Der Aufwand beträgt 7 Gatter mit insgesamt 17 Eingängen: 
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f1 

& x1
x2

≥1 

& x0

x3

f2 
& x0

x2

≥1 

f3 ≥1 
& 

x1

x0

x1

x3

x3

 
Lösung Aufgabe 6.4 

Es wird zunächst die optimale DNF aufgestellt, indem das KV-Diagramm ausgewertet wird. 
 

0 

1 

0 

0 

1 

1 

1 

1 

0 

1 

1 

0 

0 

1 

0 

0 

x1 

x0

x2

x3 

3 

1 

2 

 

y = x0¬x1 ∨ x2¬x3 ∨ x0x2    Durch Anwendung der De Morganschen Regel erhält man:  

y = x0¬x1 ∨ x2¬x3 ∨ x0x2 = ¬(¬(x0¬x1)¬(x2¬x3)¬(x0x2)) 

 

y 
& 

& x0

x1

& x2

x3

& x0

x2  
Lösung Aufgabe 6.5 

a)  y x x x x x x x x x= ∨ ¬ ∨ ¬ ¬ ¬0 2 3 1 3 0 1 2 3  
 

x2

& 

x3

y 
& 

≥1 

& 

1

1

1

x0

x1

1

& d)

   1 

  1  

1 1 1  

1 1   

 

x1

x0 

x2 

x3 
b) 

c) Der Hazard ist durch         markiert 
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Lösung Aufgabe 7.1 

Die Rückkopplung des asynchronen Schaltwerks wird aufgetrennt: 

 
&

≥1

& y B 

A zm+1

zm 

zm

 
 

1. aus der Schaltung liest man ab:  
zm+1 = ¬(A¬B)(B ∨ zm) = (¬A ∨ B)(B ∨ zm) = ¬AB ∨ ¬Azm ∨ B ∨ Bzm 

Daraus erhält man eine Zustandstabelle in KV-Diagrammform: ∨ 

B

0 1 1 0 

1 1 1 0 

A

zm 

 
Ausgabegleichung:  y = zm 

2. Da y = zm ist, handelt es sich um ein Moore-Schaltwerk. 
3. Für A = B = 0 ist die Schaltung bistabil. 
4. Zustandsdiagramm: 

 

0 

B 

1

A¬B 

B∨¬A ¬B 

 
5.  

t A 

t B 

t y 
 

 

Lösung Aufgabe 7.2 

1) Ablesen der Übergangsbedingungen aus dem Schaltbild:  

z Cz Czm m m
1

1
0 1

+ = ¬ ∨   ;   z Cz C zm m m
0

1
0 1

+ = ¬ ∨ ¬  
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00

¬C

01 

C 
C 

¬C 

10
C

¬C

11 
¬C C C 

z0
m 

z1
m+1z0

m+1 

00 01 
11 01 
11 10 
00 10 

z1
m 

Zustandsfolgetabelle  Zustandsdiagramm  

 
2) Hazardfreie Realisierung durch das Hinzufügen zweier redundanter Terme: 

z1
m+1 = ¬Cz0

m ∨ Cz1
m = ¬Cz0

m ∨ Cz1
m ∨ z0

mz1
m  

z0
m+1 = ¬Cz0

m ∨ C¬z1
m = ¬Cz0

m ∨ C¬z1
m ∨ z0

m ¬z1
m 

3) Aus dem Zustandsdiagramm kann man ein Zeitdiagramm ableiten, aus dem die Funktion 
deutlich wird: 

C 

t

z1 

t

z0 

t  
Das Schaltwerk durchläuft den Zyklus 01, 11, 10, 00, während der Takt zwei Impulse aufweist. 
Dadurch kann an den beiden Ausgängen z1 und z2 jeweils ein Signal der halben Frequenz ab-
gegriffen werden.  

Lösung Aufgabe 7.3 

 

t 

t 

t 

t 

CLK 

Q0 

¬Q0 

Q1 

W K W K W K W K W K W KK W K

J2 

Q2 t 

t  
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Lösung Aufgabe 7.4 

 

t

C 

D 

Q 

t

t  
Lösung Aufgabe 7.5 

a) Es werden jeweils 2 Transistoren für ein Transmission-Gate sowie für einen Inverter benö-
tigt: 12 Transistoren. 

 C 

& 

D 
& 

≥1 

& 

& 
≥1

t 
z1

m+1z1
m 

t 
z2

m+1 z2
m 

1

Q 

¬Q 

b) 

c) 

z D C z C D C z C Dz C D Czm m m m m
1

1
1 1 1 1

+ = ¬ ¬ ∨ ¬ = ¬ ∨ ∨ ¬ = ¬ ∨ ¬ ¬ ∨(( ) ( )) ( )( )  

z z C z C z C z C z C z Cm m m m m m m
2

1
2 1

1
2 1

1
2 1

1+ + + += ¬ ¬ ¬ ∨ = ¬ ¬ ¬ ¬ = ∨ ¬ ∨ ¬(( ) ( )) ( ) ( ) ( )( )

z z C D C z C C z D C z z C z C z C z C z Cm m m m m m m m m m
2

1
2 1 2 1 2 2 1 2 1

+ = ∨ ¬ ∨ ¬ ∨ ¬ = ¬ ∨ ¬ ∨ ¬ ∨ ¬ = ¬ ∨ ¬( )( )

Q z m= 2  

 

00 10 
¬D¬C

C 

01
D∨C

C

11 

D¬C 

¬D¬C

D¬C ¬D¬C 

D¬C ¬D∨C 

(in den Kreisen: z1
m z2

m ) 

z1
m+1

    z2
m+1 

z1
m

    z2
m 

¬D ¬C ¬DC DC D¬C 

0     0 10 01 01 00 
0     1 11 01 01 01 
1     1 11 10 10 01 
1     0 10 10 10 00 

d) Zustandsfolgetabelle e) Zustandsdiagramm 

Da der Ausgang Q = z2
m ist, bezeichnet die rechte Ziffer in den Kreisen des Zustandsdia-

gramms den Ausgang Q. Das Flipflop ist in den Zuständen 01, 11 gesetzt und in den Zuständen 
00, 10 zurückgesetzt. Es wird im Folgenden der Fall betrachtet, dass das Flipflop gesetzt ist 
und auf eine steigende Flanke wartet (C = 0). Es gibt 2 Möglichkeiten: 

1) Rücksetzen: Wenn D = 0 ist, befindet sich das Flipflop im Zustand 11. Kommt nun ei-
ne steigende Flanke des Taktes (C = 1) so wechselt das Flipflop zum Zustand 10. In 
diesem Zustand bleibt das Flipflop, solange C = 1 ist, unabhängig von D, was für die 
Flankensteuerung charakteristisch ist.  

2) Flipflop bleibt gesetzt. Wenn D = 1 ist,  ist das Flipflop im Zustand 01. Kommt eine 
steigende Flanke, so bleibt das Flipflop in diesem Zustand und es wird weiterhin eine 1 
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gespeichert. Eine Änderung von D hat keinen Einfluss, wodurch die Flankensteuerung 
realisiert wird.  

Wenn der Takt wieder auf 0 geht, beginnt wieder die Wartephase. Der Fall, dass eine 0 gespei-
chert wird, ist analog, nur befindet sich das Flipflop zu Anfang in einem der beiden oberen 
Zustände, je nachdem welchen Wert D hat. 
 

Lösung Aufgabe 8.1 

Beim Aufstellen des Zustandsdiagramms muss man sich zunächst überlegen, wie viele Zustän-
de man benötigt, um das geforderte Verhalten zu erzielen. Da 0,1 und 2 Pumpen laufen kön-
nen, kann man es mit 3 Zuständen versuchen.  

 

x1 1 
11 

2 
01 

3 
00 

¬x1 ¬x2x0 x1 

x2 

¬x0 

xi Zust.
y1y0 ¬x1  

Im Bild sind die Zustände zunächst mit 1,2 und 3 bezeichnet. Durch Vergleich mit der Aufga-
benstellung stellt man fest, dass sich das Schaltwerk richtig verhält. 

Die Zustandsfolgetabelle kann aus dem Zustandsdiagramm abgelesen werden. Dazu ist aber 
eine Codierung der Zustände nötig. Hier wählen wir die Zustände folgendermaßen Zustand 1: 
z1

m z0
m

 = 11, Zustand 2 : z1
m z0

m
 = 01, Zustand 3: z1

m z0
m

 = 00 

Man beachte, dass durch diese Wahl die Zustandsvariablen zi = yi gilt. Es handelt sich daher 
um ein Moore-Schaltwerk, bei dem das Schaltnetz SN2 aus Durchverbindungen besteht. Man 
beachte auch, dass die Eingangsvariablenkombinationen x1¬x0, x2¬x1 und x2¬x0 nicht vor-
kommen können: daher erscheinen hier don’t-cares (im Diagramm keine Eintragung). Das ist 
genauso für den „überflüssigen“ Zustand z1

m z0
m

 = 10. 

 

z1
m  z0

m z1
m+1 z0

m+1 y1y0 

0     0 0     1 0     1 0     0       0     0   00 

0     1 1     1 0     1 0     1   0     0   01 

1     1 1     1 1     1 0     1   0     1   11 

1     0         10 

 

 

 0   

 0   

 0   

    
z1

m 

0 0 0  

1 0 0  

1 1 0  

    

z1
m+1 

 0   

 0   

 1   

    

z0
m 

1 1 0  

1 1 1  

1 1 1  

    

x0x0 x0 x0

x2x1 x2x1 z0
m+1

 

x0 

x1 
x2 

x0 
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Aus den KV-Diagrammen lesen wir ab: 1021
1

0 xzxzz mmm ¬∨¬∨=+  und mmm zxxzz 1100
1

1 ¬∨¬=+  

Für die Ausgabegleichungen erhält man y0 = z0
m und  y1 = z1

m. 

 

Lösung Aufgabe 8.2 

a) Realisierung mit RS-FF: Ansteuerung eines RS-Flipflops abhängig von den alten und 
neuen Inhalten. 

zm zm+1 S    R Beschreibung 

0 0 0    d Speichern oder Rücksetzen

0 1 1    0 Setzen 

1 0 0    1 Rücksetzen 

1 1 d    0 Speichern oder Setzen 

Die Zustandsfolgetabelle 8-5 muss nun entsprechend der obigen Tabelle abgeändert werden.  

rm

0d 10 0d 0d 

10 d0 0d 01 

d0 01 01 01 

01 0d 01 0d 

S1R1 S0R0 S1R1 S0R0

z0
m

z1
m

 
Für die Ansteuerfunktionen der RS-Flipflops, die das Schaltnetz SN1 beschreiben, liest man 
aus dem KV-Diagramm ab: 

S0 = ¬rm ¬z1
m     ;     S1 = ¬rm ¬z0

m      

R0 = rm ∨ z1
m = ¬(¬rm ¬z1

m) = ¬S0 ;    R1 = rm ∨ ¬z0
m = ¬(¬rm z0

m) 

Die Ansteuerfunktionen für die Eingänge S0, S1, R0, R1 sind also mit der Realisierung mit JK-
Flipflops identisch.  

b) Realisierung mit JK-FF: Ansteuerung eines JK-Flipflops abhängig von den alten und neu-
en Inhalten. 

zm zm+1 J    K Beschreibung 

0 0 0    d Speichern oder Rücksetzen

0 1 1    d Wechseln oder Setzen 

1 0 d    1 Wechseln oder Rücksetzen

1 1 d    0 Speichern oder Setzen 

 

Die Werte aus dieser Tabelle werden in ein KV-Diagramm eingetragen, welches aus der Zu-
standsfolgetabelle entwickelt wird. 
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rm

0d 1d 0d 0d 111 000 

1d d0 0d d1 011 000 

d0 d1 d1 d1 010 000 

d1 0d d1 0d 110 000 

rm

J1K1 J0K0 J1K1 J0K0 M1M2M3 M1M2M3 

z0
m 

z1
m 

 
Für die Ansteuerfunktionen der JK-Flipflops, die das Schaltnetz SN1 beschreiben, liest man 
aus diesem KV-Diagramm unter Ausnutzung der don’t care-Terme  ab: 

J r zm m
0 1= ¬ ¬         ;  J r zm m

1 0= ¬   

K r z r z Jm m m m
0 1 1 0= ∨ = ¬ ¬ ¬ = ¬( )   ;  K r z r z Jm m m m

1 0 0 1= ∨ ¬ = ¬ ¬ = ¬( )  

Für eine Realisierung mit D-Flipflops erhält man hier also das einfachste Netzwerk. In anderen 
Fällen kann das anders sein. Die Ansteuerfunktionen für die Ausgänge (SN2) sind bei allen 
Realisierungen gleich. 

Lösung Aufgabe 8.3 

a) In den Zuständen 010 und 110 gibt der Münzprüfer immer  M = (x1, x0) = (0,0) aus, denn 
dort ist S = 1, wodurch der Münzeinwurf gesperrt wird. In der Zustandsfolgetabelle kön-
nen für die anderen M beliebige Folgezustände eingetragen werden.  

 

000 
00 

01 01 01 

10  00 

00 

001 
00 

011 
00 

010 
10 

110 
11 

10 10 

 00 

00 

00 

 Zustände 
z2z1z0 

SR 
Kanten x1x0 

 
Zustandsfolgetabelle (für die überzähligen Zustände 100, 101, 111 sind alle Eintragungen ddd): 
 

 z2
m    z1

m
    z0

m 
z2

m+1
    z1

m+1
    z0

m+1 S R 

 ¬x1 ¬x0 x1 ¬x0 x1 x0 ¬x1 x0 

0     0     0 0     0     0 0     1     1 d     d     d 0     0     1 0     0    

0     0     1 0     0     1 0     1     0 d     d     d 0     1     1 0     0    

0     1     1 0     1     1 1     1     0 d     d     d 0     1     0 0     0    

0     1     0 0     0     0 d     d     d d     d     d d     d     d 1     0    

1     1     0 0     0     0 d     d     d d     d     d d     d     d 1     1    
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b) Realisierung mit D-Flipflops: 

 

0 0 0 0   0  

0  1 0     

        

0  0 0     
x0

x1 

z1
m 

 z2
m+1 

z1
m

z2
mz0

m 

0 0 1 0   0  

1  1 1     

        

0  1 1     

 

x0

x1 

z1
m

 z1
m+1 

z1
m 

z2
m z0

m

 

0 0 1 1 0

1 0 0

1 0 1
x0

x1

z1
m

 z0
m+1

z1
m

z2
mz0

m
freie Felder = don’t care

 
Übergangsfunktionen: 

z2
m+1 = x1z1

m 

z1
m+1 = x1 ∨ x0z0

m ∨ z0
mz1

m 

z0
m+1 = ¬x0¬x1z0

m ∨ x1¬z0
m ∨ x0¬z1

m 

Ausgabefunktionen (direkt aus der Zustandsfolgetabelle abgelesen): 

R = z2
m     ;    S = z1

m¬z0
m          

Lösung Aufgabe 9.1 

Lösung für den Fall, dass an die Eingänge des Multiplexers a0 mit der Wertigkeit 20 und a2 mit 
der Wertigkeit 21 angeschlossen werden. Andere Lösungen sind denkbar. 

a1 

0 1 0 1 
0 0 1 1 

a2 

a0 

0 2 
1 3 

a2 

a0 3

a0

2
1
0

1
0

a2

EN¬E

¬f 
f 

G
0

3

MUX

1
¬a1

0
a1
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Lösung Aufgabe 9.2 

a) Realisierung mit Multiplexern: 

a2 

0 1 1 1 
1 0 1 0 

a1

F0
 

a3 

a2 

1 1 0 1 
0 0 1 0 

a1

F1
 

a3 

3

a1

2
1
0

1
0

a2

EN¬E1

F0 

G
0

3

MUX

1
¬a3

¬a3

a3

3
2
1
0
EN¬E2

a3

¬a3

¬a3

¬a3

F1 

 
b) Zwei verschiedene Realisierungen mit einem Codewandler (Decodierer) 

 

1 a3 
2 a2 
4 a1 

BIN/OCT

0
1
2
3
4
5
6
7

& &

F0 F1

1a3

2a2

4a1

BIN/OCT

0
1
2
3
4
5
6
7

& & 

F0 F1  
Lösung Aufgabe 9.3 
Konstruktion von 3 Schaltnetzen für die 3 Ausgänge: 

1 1

1 1x0

x1

x2

1 1

1 1

x1

x2

1 1

1 1

x1

x2

y2 y0y1

x0 x0

 
    y2  = x2  
    y1  = x1¬x2  ∨  ¬x1x2  
    y0  = x1¬x0  ∨  ¬x1x0  
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Lösung Aufgabe 10.1 

1. Die Zählerschaltung ist ein synchroner Zähler, da das Eingangssignal an die Takteingänge 
aller Flipflops geht. 

2. Es ist ein Aufwärtszähler (vergleiche Bild 10-10). 
3. Q2 hat 1/8 der Frequenz des Eingangssignals x1, es ist also ein Teiler durch 8. 
 

Lösung Aufgabe 10.2 

 

1J 

1K 

C1 
1 1J

1K 

C1

1J

1K 

C1x1 

Q2 

1

1

1

1

1

Q1Q0 

R R R 

& 

 
 

Lösung Aufgabe 10.3 

Zunächst muss die Zustandsfolgetabelle mit dem gegebenen Code entworfen werden: 

 

z2
m   z1

m
  z0

m 

V=1 

z2
m+1  z1

m+1
   z0

m+1 

V=0 

z2
m+1  z1

m+1
   z0

m+1 

0     0     0 0        0       1 1        0       0 

0     0     1 0        1       0 0        0       0 

0     1     0 0        1       1 0        0       1 

0     1     1 1        0       0 0        1       0 

1     0     0 0        0       0 0        1       1 

 

Dann stellt man die KV-Diagramme für die Ansteuerfunktionen der 3 D-Flipflops auf: 

 

1 0 0 0 

0 d d 0 

0 d d 1 

0 d d 0 

 

V 

0 1 0 0 

0 d d 1 

1 d d 0 

0 d d 1 

V

0 1 0 1 

0 d d 0 

0 d d 0 

1 d d 1 

 

V 

z2
m 

z1
m 

D2=z2
m+1 

z2
m 

z0
m 

D1=z1
m+1

z2
m 

D0=z0
m+1 

z1
m z1

m

z0
mz0

m 
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Ansteuergleichungen: 

)()()( 02012
1

00
mmmmmm zzVzzVzzD ¬¬∨¬∨¬== +  

)()()()( 0101102
1

11 VzzVzzVzzVzzD mmmmmmmm ¬∨¬∨¬∨¬== +  

)()( 01012
1

22 VzzVzzzzD mmmmmm ∨¬¬¬¬== +  

Lösung Aufgabe 10.4 

An die Eingänge für paralleles Laden muss die binäre 5 angelegt werden. ¬RCO (vergl. Seite 
129 ff.) muss mit ¬LOAD verbunden werden, um den Zähler mit 5 zu laden, wenn er die 15 
erreicht hat. Die Eingänge ¬CTEN = 0 und D/¬U = 0 müssen für Aufwärtszählen program-
miert werden. Alternativ ist eine Lösung mit Abwärtszählen möglich. 

 

in 

2(CT=0)Z6
3(CT=15)Z6

6,1,4 

CTRDIV16 
G1 
M2[Down]
M3[UP]
1,2-/1,3+
G4
C5

5D [1] 1 Q0 

[2] 0 Q1 

[3] 1 Q2 

[4] 0 Q3 

out 
0 

 
Lösung Aufgabe 11.1 

Zuerst wird die Zustandsfolgetabelle konstruiert. Man beginnt, indem man in der Spalte Q3
m 

die gewünschte Folge von oben nach unten einträgt. Das garantiert, dass die Folge aus dem 
seriellen Ausgang heraus geschoben wird. Dann kann man die Spalten Q1

m
 und Q2

m ausfüllen, 
indem man die Eintragungen aus der Spalte Q3

m diagonal nach links oben überträgt. Daraus 
ergibt sich auch automatisch der Folgezustand Q1

m+1, Q2
m+1, Q3

m+1. Die Q1
m+1 der  nicht benö-

tigten Zustände 111 und 000 sind zunächst beliebig. Dann kann das KV-Diagramm für den 
Eingang des ersten Flipflops erstellt werden. 

Q2
m 
 

d  1 1 
1  d  

 

Q3
m Q1

m+1=D1
 

Q1
m 

Q1
m

 Q2
m Q3

m   Q1
m+1

     Q2
m+1 Q3

m+1 

0      1      0    0          0          1 
0      0      1    1          0          0 
1      0      0    1          1          0 
1      1      0    0          1          1 
0      1      1    1          0          1 
1      0      1    0          1          0 
1      1      1    0          1          1 
0      0      0    1          0          0 

D1 = Q3
m¬Q1

m ∨ ¬Q2
m¬Q3

m 
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1D 
C1 

D1=Q1
m+1 

CLK 

As 1D

C1

Q1
m

1D

C1

Q2
m Q3

m

& 

& 
≥1 

 
Aufgabe 11.2 

1. Ausgehend von den Zuständen 3,1,0,4,2 werden die möglichen Folgezustände ausprobiert. 
Das können jeweils nur zwei verschiedene sein, da ja nur eine 1 oder eine 0 in das linke 
Schieberegister geschoben werden kann. Schon im Zyklus vorhandene Zustände werden 
gestrichen, da sie nicht zu einer maximal langen Folge führen. Man erhält die Folge 
3,1,0,4,2,5,6,7… 

011 
3 

001 
1 

000 
0 

100 
4 

010 
2 

001 
1 

101 
5 

010 
2 

110 
6 

011 
3 

111 
7 

doppelte Zustände 

 
2. Zustandsfolgetabelle: 

Q1
m

  Q2
m Q3

m Q1
m+1

 Q2
m+1Q3

m+1 J1   K1 

 0      0      0    1        0        0 1  d 
 0      0      1    0        0        0 0  d 
 0      1      0    1        0        1 1  d 
 0      1      1    0        0        1 0  d 
 1      0      0    0        1        0 d  1 
 1      0      1    1        1        0 d  0 
 1      1      0    1        1        1 d  0 
 1      1      1    0        1        1 d  1 

3.  

.

1 1 d d 

0 0 d d Q3
m

Q2
m 

Q1
m

J1

d d 0 1 

d d 1 0 Q3
m

Q2
m

Q1
m

K1

 

J1 = ¬Q3
m

     ;     K1 = Q2
mQ3

m
 ∨ ¬Q2

m¬Q3
m  



300 A Anhang  

Lösung Aufgabe 11.3 

Die Rückkopplungen für eine maximal lange Pseudo-Zufallsfolge liegen an den Ausgängen 
Q3

m und Q4
m.  Mit dem Registerinhalt 1111 beim Einschalten erhält man die folgenden Regis-

terinhalte, indem man für das neue Bit 1 die EXOR-Verknüpfung von Bit 3 und 4 bildet und 
die alten Bit 1, 2, 3 nach 2, 3, 4 verschiebt. 

m Qi
m 

1 1111 
2 0111 
3 0011 
4 0001 

 

m Qi
m 

5 1000 
6 0100 
7 0010 
8 1001 

 

m Qi
m 

9 1100 
10 0110 
11 1011 
12 0101 

 

m Qi
m 

13 1010 
14 1101 
15 1110 
16 1111 

 
 

Die erzeugte Folge ist daher: 111100010011010 usw. 

 

Lösung  Aufgabe 11.4 

1. Es = ¬(Q1 ∨ Q2 ∨ Q3) ∨ Q2Q3 ∨ Q1Q3 = ¬Q1¬Q2¬Q3 ∨ Q2Q3 ∨ Q1Q3 

 

110 

100

111 001

011 

101

010

000Q1
m

  Q2
m Q3

m Es = J1= K1 Q1
m+1

 Q2
m+1Q3

m+1

 0      0      0    1 1        0        0 
 0      0      1    0 0        0        0 
 0      1      0    0 0        0        1 
 0      1      1    1 1        0        1 
 1      0      0    0 1        1        0 
 1      0      1    1 0        1        0 
 1      1      0    0 1        1        1 
 1      1      1    1 0        1        1 

2.  Zustandsfolgetabelle 3. Zustandsdiagramm 

 
Lösung Aufgabe 12.1 

Ein 74181 kann als Komparator verwendet werden, wenn er als Subtrahierer geschaltet ist. 
Dafür muss S = (0,1,1,0) und M  = 0 und c0 = 1 sein. Dann gilt für den Übertrag c4 und den 
Ausgang Ax=y, wie man leicht feststellen kann, bei einer Differenz x-y: 

x = y c4 = 1, Ax=y = 1 

x > y c4 = 1, Ax=y = 0 

x < y c4 = 0, Ax=y = 0 

Lösung Aufgabe 12.2 

Für S = 0110 und M = 1 erhält man nach Gleichung 12.26:  

ti   = ¬(¬xi yi  ∨ xi ¬yi ) =  ¬(xi 
 
↔  yi)  

Da M=1 ist, werden die ui=1 und man erhält nach Gleichung 12.31 die Funktion:  

¬Fi   =  ui 
 
↔  ti = ¬ti = xi 

 
↔  yi 
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Lösung Aufgabe 12.3 

a) Die Schaltung beruht darauf, dass die Addierer der höheren Stufen doppelt vorhanden 
sind. Der eine Addierer einer Stufe hat als Eingangs-Carry CI eine 1 der andere eine 0. Am 
Ausgang CO einer Stufe mit CI =0 wird das Signal Carry Generate G (vergl. Seite 146) 
erzeugt, am Ausgang CO einer Stufe mit CI =1 das Signal Carry Propagate P. In dem aus 
einem UND- und einem ODER-Gatter gebildeten Netzwerk wird der Übertrag ci+1 =Gi + 
ciPi  gebildet. Dieser Übertrag wählt am Auswahl-Eingang eines Multiplexers das richtige 
Ergebnis der nächsten Stufe aus.  Für die Optimierung der Laufzeit ist es sinnvoll, die 
Breiten der niedrig-wertigen Stufen geringer zu wählen als die der Stufen für die hochwer-
tigen Bit.  

b) Es werden die folgenden Abkürzungen verwendet: 

Beschreibung Formelzeichen 

Gatterlaufzeit tp 

Laufzeit des Übertrags ci tci 

Breite der Stufe i mi 

Laufzeit des Ausgangs Fi...m tFi/m  

Laufzeit eine Multiplexers  tMux  

Laufzeit der Summe im Addierer der Stufe mit dem Ausgang Fi..m ti/m 

  

Man erhält die Laufzeiten: 

Signal Laufzeit 

F0...3 tF0/3 = (2m1+1) tp = 9 tp 
c1 tc1 = 2m1 tp = 8 tp 

F4...8 tF4/8 = Max{ t4/8, tc1}+ tMux = (Max{11,8}+2) tp = 13 tp 
c2 tc2 = Max{2m2tp, tc1 }+2 tp  =  (Max{10,8}+2) tp = 12 tp 
F9...15 tF9/15 = Max{ t9/15, tc2}+ tMux = (Max{15,12}+2) tp = 17 tp 
c3 tc3 = Max {2m3tp, tc2 }+2 tp  =  (Max{14,12}+2) tp = 16 tp  

 

Lösung Aufgabe 13.1  

1. Ein RAM ist flüchtig, EEPROM und  ROM sind nicht flüchtig 

2. PROM, ROM, EEPROM sind Festwertspeicher 

3. Programmiert werden können: ROM durch Masken, PROM einmal elektrisch, 
EPROM elektrisch und  EEPROM elektrisch. 

4. Ein ROM kann nicht gelöscht werden, ein EPROM kann durch UV-Licht gelöscht 
werden, ein EEPROM kann elektrisch gelöscht werden und ein Flash-EEPROM kann 
blockweise elektrisch gelöscht werden. 

5. Siehe Text: statische und dynamische Speicherung. 

  



302 A Anhang  

Lösung Aufgabe 13.2 

1. Zunächst muss der Adressplan aufgestellt werden. Dazu werden die Speicherbereiche 
der Speicherbausteine lückenlos aneinandergereiht. 

Baustein 
Adresse 

(Hex) 

Adressleitungen (binär) 

15 14 13 12     11 10  9  8     7  6  5  4     3  2  1  0 

1 

(4K) 

0 0 0 0 

0 F F F 

0  0  0  0 

0  0  0  0 

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1 

2 

(2K) 

1 0 0 0 

1 7 F F 

0  0  0  1 

0  0  0  1 

0  0  0  0 

0  1  1  1 

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1 

3 

(2K) 

1 8 0 0 

1 F F F 

0  0  0  1 

0  0  0  1 

1  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1 

4 

(8K) 

2 0 0 0 

3 F F F 

0  0  1  0 

0  0  1  1 

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1 

 

 

2. Im Adressplan sind die Bereiche der Adressleitungen, die als Eingänge an den Spei-
chern anliegen, durch gestrichelte Kästen angedeutet. Der Demultiplexer muss als 
höchstwertige Eingangsleitung die höchstwertigte Adressleitung haben, bei der sich 
ein Bit ändert. Das ist A13. Damit ist sichergestellt, dass sich auch die höchsten Spei-
cherplätze anwählen lassen. Als niederwertigste Eingangsleitung muss der Demulti-
plexer die Adressleitung haben, die am kleinsten Speicher nicht mehr anliegt. Das ist 
A11. 

3. Der gesamte Speicherbereich von 16Kbyte wird durch den Demultiplexer in 8 Blöcke 
zu jeweils 2Kbyte aufgeteilt. Für den Speicherbaustein mit 8Kbyte müssen daher 4 
Ausgänge des Demultiplexer logisch ODER verknüpft werden. Durch die zweimalige 
Inversion muss man ein UND-Gatter verwenden. Daraus ergibt sich folgender An-
schlussplan:  

 

 

1A11 
2A12 
4A13 

A14 

DX

0
1
2
3
4
5
6
7

EN¬CS≥1 
A15 

&

&
¬CS(4) 

¬CS(3) 
¬CS(2) 

¬CS(1) 
 

 

Lösung Aufgabe 13.3 

1. Der größte Speicherbaustein verwendet die Adressleitungen A0 bis A2. Daher stehen 
die Adressleitungen A3 bis A7 zur Auswahl der Bausteine zur Verfügung (Bild links). 

2. Adressplan s. rechts (Adressen außerhalb der angegebenen Bereiche führen zu Feh-
lern!). 

  

Decodierer 
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A5 

A0 
A1 
A2 

R/¬W 

A
0

7

A
0

7

RAM 8×8 

1C3[WRITE] 

Q0 

 
Q7

A∇ 

¬CS 
G1 

0 

¬OE 
G2 

1,2EN[READ] 

D0

 
D7

A,3D 

A4 

A0 
A1 

R/¬W 

A
0

3

RAM 4×8 

1C3[WRITE] 

Q0 

 
Q7

A∇ 

¬CS 
G1 

0 
1 

¬OE 
G2 

1,2EN[READ] 

D0

 
D7

A,3D 

A3 

A0 

R/¬W 

A
0

1

RAM 2×8 

1C3[WRITE] 

Q0

 
Q7

A∇ 

¬CS 
G1 ¬OE 
G2 

1,2EN[READ] 

D0

 
D7

A,3D 

¬OE 

R/¬W 

2 

Baustein Adr. 
(Hex)

Adressleitungen  
(binär) 

7  6  5  4      3  2  1  0 
1 

(2byte) 
0 8 
0 9 

0  0  0  0 
0  0  0  0  

1  0  0  0 
1  0  0  1  

2 
(4byte) 

1 0 
1 3 

0  0  0  1 
0  0  0  1  

0  0  0  0 
0  0  1  1  

3 
(8byte) 

2 0 
2 7 

0  0  1  0 
0  0  1  0  

0  0  0  0 
0  1  1  1  

 

..

.

..

.

..

.

..

.

..

.

..

.

 
 
 
  
Lösung  Aufgabe 13.4 
¬CS1 = A10 ∨ A11 ∨ A12 = ¬(¬A10¬A11¬A12) 

¬CS2 = A10A12 ∨ A11A12 ∨ ¬A10¬A11¬A12 = ¬(A10¬A12 ∨ A11¬A12 ∨ ¬A10¬A11A12) 

  (KV-Diagramm verwenden!) 

¬CS3 = ¬(¬A10A11A12 ∨ A10¬A11A12 )  

  

1. Im unten gezeigten Adressschema sind die binären Speicher-Adressen in 1K-Schritte 
aufgeteilt. Der Adressbereich, der durch die Decodierschaltung abgedeckt wird, ist 
markiert.  

2. Baustein 1 muss 1Kbyte, Baustein 2 4Kbyte und Baustein 3 2Kbyte Kapazität haben. 

3. Da die oberen 3 Adressleitungen nicht verwendet werden und eine lückenlose Deco-
dierung des unteren Speicherbereichs durchgeführt wird, handelt es sich um eine Teil-
decodierung. 
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Baustein Adresse 

(Hex) 

Adressleitungen (binär) 

15 14 13 12     11 10  9  8     7  6  5  4     3  2  1  0 

1 

 

0 0 0 0 

0 3 F F 

d  d  d  0 

d  d  d  0  

0  0  0  0 

0  0  1  1  

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1  

2 

 

0 4 0 0   

 

 

 

 

 

 

1 3 F F 

d  d  d  0 

d  d  d  0 

d  d  d  0 

d  d  d  0 

d  d  d  0 

d  d  d  0 

d  d  d  1 

d  d  d  1  

0  1  0  0 

0  1  1  1 

1  0  0  0 

1  0  1  1 

1  1  0  0 

1  1  1  1 

0  0  0  0 

0  0  1  1  

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1  

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1 

3 

 

1 4 0 0 

 

 

1 B F F 

d  d  d  1 

d  d  d  1  

d  d  d  1 

d  d  d  1 

0  1  0  0 

0  1  1  1 

1  0  0  0 

1  0  1  1   

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1 

0  0  0  0 

1  1  1  1   

 
Lösung Aufgabe 14.1 

Siehe Text und insbesondere Tabelle 14-2.  

 

Lösung Aufgabe 14.2 

Die 3 booleschen Funktionen werden in drei KV-Diagramme eingetragen. Dann wird eine 
Optimierung so durchgeführt, dass maximal 5 Produktterme entstehen. KV-Diagramme der 3 
Funktionen: 

 

    

  1 1 

1  1 1 

    

 

c 

d 

b 

a 

    

 1   

  1 1 

    
c 

d 

b 

a 

    

  1 1 

1    

1 1 1 1 

 

c 

d 

b 

a 

f0 f2 f1

2 2 

3 3

4 

1 

5

4

 
Damit erhält man folgende 5 Produktterme: 

P1 = c¬d   ;   P2 = ad¬c   ;   P3 = adc   ;   P4 = ¬a¬bcd   ;   P5 = ¬ab¬cd         
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b 

c 

d 

& & & &
≥1 f0

≥1 f1

≥1 f2

&

a 
1 

1 

1 

1 

 
Lösung Aufgabe 14.3 

Die Funktion f0 wird so zusammengefasst, dass sie mit 4 Produkttermen realisiert werden kann. 
Bei f1 ist das bereits der Fall. 

f0(a,b,c,d) = ¬a¬b¬c¬d ∨ a¬c¬d ∨ ¬abd ∨ ¬acd  

f1(a,b,c,d) = ¬a¬b¬c¬d ∨ ab¬cd ∨ ¬a¬bcd ∨ ¬abc¬d  

 b c d 

&

≥1 f1 &

&

&

&

≥1 f0 &

&

&

a 

1 1 1 1

 

Lösung Aufgabe 15.1 

Die Entity ist eine Schnittstellenbeschreibung, während die Architektur die Funktion der Schal-
tung beschreibt. 

Lösung Aufgabe 15.2 

C und D haben den alten Wert von D. Die Werte von A und B sind vertauscht. 

Lösung Aufgabe 15.3 

a) Bei Prozessen mit Sensitivity-List nach der Sensitivity-List und vor dem Schlüsselwort 
begin, welches die sequentiellen Anweisungen einleitet. Bei Prozessen ohne Sensitivity-List 
nach dem Schlüsselwort process und vor dem Schlüsselwort begin, welches die sequenti-
ellen Anweisungen einleitet.  
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b) In einer Architektur beginnt der Deklarationsteil nach dem ersten Auftreten des Schlüssel-
wortes is und vor dem Schlüsselwort begin, welches die nebenläufigen Anweisungen einlei-
tet.    

Lösung Aufgabe 15.4 

F = AX ∨ ¬ABY ∨ ¬A¬BZ 

Lösung Aufgabe 16.1 

Der Vorteil einer gemeinsamen Speicherung von Daten und Befehlen in demselben Speicher 
ist, dass der Speicherbereich flexibel aufgeteilt werden kann. Dadurch ist in der Regel ein klei-
nerer Speicher nötig. Nachteilig bei einer gemeinsamen Speicherhaltung von Daten und Pro-
grammen ist, dass Befehle und Daten über den gleichen Datenbus transportiert werden müssen. 
Dieser serielle Betrieb verlangsamt die Arbeitsweise des Prozessors. Alternativ werden daher 
bei der Harvard-Architektur getrennte Speicher für Daten und Befehle verwendet, so dass Da-
ten und Befehle gleichzeitig gelesen werden können.  

 

Lösung Aufgabe 16.2  siehe Text.  

 

Lösung Aufgabe 16.3 

LD  r16,X  ;1. Zahl in r16 laden        2 Takte 
LD  r17,Y  ;2. Zahl in r17 laden      2 Takte 
ST  Y,r16  ;1. Zahl → Speicherplatz der 2. 2 Takte 
ST  X,r17  ;2. Zahl → Speicherplatz der 1. 2 Takte 

 

Das Programm benötigt 8 Takte. 

 

Lösung Aufgabe 16.4 

ANFANG: LD  r16,X+  ;Datum in r16 laden, Zeiger X inkrem. 
ST  Y+,r16  ;Datum in Ziel speichern, Zeiger Y inkrem.  
DEC  r17   ;Zähler dekrementieren 
BRNE ANFANG  ;wiederholen, wenn r17 größer 0 

 

Lösung Aufgabe 16.5 

    LDI  r17,$08  ;Anzahl der Bits in r17=Zähler  
       CLR r16   ;r16 null setzen 
ANFANG: LSL  r10   ;MSB von r10 ins Carry schieben 
       BRCC WEITER   ;überspringen, wenn Carry = 0  
       INC  r16   ;Akku A hochzählen, wenn Carry = 1    
WEITER: DEC r17   ;Zähler dekrementieren 

BRNE ANFANG  ;Nächstes Bit, wenn B größer 0 
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