Klaus Fricke

Lehr- und Ubungsbuch fiir
Elektrotechniker und Informatiker

HONGYHIT

Digitaltechnik

Lizenz zum Wissen.

Sichern Sie sich umfassendes Technikwissen mit Sofortzugriff auf
tausende Fachbiicher und Fachzeitschriften aus den Bereichen:
Automobiltechnik, Maschinenbau, Energie + Umwelt, E-Technik,
Informatik + I'T und Bauwesen.

Exklusiv fiir Leser von Springer-Fachbiichern: Testen Sie Springer
fiir Professionals 30 Tage unverbindlich. Nutzen Sie dazu im
Bestellverlauf Thren personlichen Aktionscode auf
www.springerprofessional.de/buchaktion/

B o | T,

&) Springer

Mufomaieehat MacHoaious Erene t Unien Sk s s

Fachuicher | 298 Farns

] Umwehtschutz
technik

o Jetzt
RKSTOFFE wlr‘\l\ﬁr’\tli':w - |) 30 Ta ge

testen!

Springer fiir Professionals.
Digitale Fachbibliothek. Themen-Scout. Knowledge-Manager.

4’ Zugriff auf tausende von Fachbiichern und Fachzeitschriften

() Selektion, Komprimierung und Verkniipfung relevanter Themen
durch Fachredaktionen

> Tools zur personlichen Wissensorganisation und Vernetzung

www.entschieden-intelligenter.de

Springer fir Professionals @ Springer

Klaus Fricke

Digitaltechnik

Lehr- und Ubungsbuch fir
Elektrotechniker und Informatiker

8., Uberarbeitete und aktualisierte Auflage

@ Springer Vieweg

Klaus Fricke

Fachbereich Elektrotechnik
und Informationstechnik
Hochschule Fulda

Fulda, Deutschland

ISBN 978-3-658-21065-6 ISBN 978-3-658-21066-3 (eBook)
https://doi.org/10.1007/978-3-658-21066-3

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detail-
lierte bibliografische Daten sind im Internet iiber http://dnb.d-nb.de abrufbar.

Springer Vieweg

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 1999, 2001, 2002, 2005, 2007, 2009,
2014, 2018

Das Werk einschlieflich aller seiner Teile ist urheberrechtlich geschiitzt. Jede Verwertung, die nicht
ausdriicklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags.
Das gilt insbesondere fiir Vervielfiltigungen, Bearbeitungen, Ubersetzungen, Mikroverfilmungen und die
Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt
auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen-
und Markenschutz-Gesetzgebung als frei zu betrachten wiren und daher von jedermann benutzt werden
diirften.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in
diesem Werk zum Zeitpunkt der Verdffentlichung vollstindig und korrekt sind. Weder der Verlag noch
die Autoren oder die Herausgeber iibernehmen, ausdriicklich oder implizit, Gewihr fiir den Inhalt des
Werkes, etwaige Fehler oder AuBerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und
Gebietsbezeichnungen in verdffentlichten Karten und Institutionsadressen neutral.

Gedruckt auf sdurefreiem und chlorfrei gebleichtem Papier
Springer Vieweg ist ein Imprint der eingetragenen Gesellschaft Springer Fachmedien Wiesbaden GmbH und ist

ein Teil von Springer Nature
Die Anschrift der Gesellschaft ist: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

Vorwort

In vielen technischen Anwendungen sind Kenntnisse der Digitaltechnik unerlédsslich. Die Mo-
bilfunktechnik, Mikrocomputertechnik, digitale Regelungen und viele Einrichtungen der Tele-
kommunikation sind ohne die Methoden der Digitaltechnik nicht mehr zu verstehen, ein Trend,
der verstérkt wird durch den Einsatz integrierter mechanisch-elektronischer Systeme. Besonde-
re Bedeutung hat die Digitaltechnik auch in eingebetteten Systemen erlangt. Unter einem ein-
gebetteten System versteht man eine digitaltechnische Schaltung, die in ein technisches System
,eingebettet ist. Man findet eingebettete Systeme in einer Vielzahl von Anwendungsberei-
chen, z. B. in Waschmaschinen, Kraftfahrzeugen, Kiihlschrinken, in der Unterhaltungselek-
tronik, in Mobiltelefonen usw.

Dieses Buch vermittelt einen fundierten Einstieg in die Digitaltechnik, indem es die Grundla-
gen bis hin zum Aufbau und der Programmierung einfacher Mikroprozessoren liickenlos dar-
stellt. Neben einer soliden theoretischen Grundlage erwirbt der Leser also Kenntnisse, die das
Verstindnis der meisten digitaltechnischen Schaltungen ermoglichen. In der vorliegenden 8.
Ausgabe wurden zahlreiche Aktualisierungen vorgenommen. Insbesondere wurde im Kapitel
Mikroprozessoren als Beispiel-Mikroprozessor ein Prozessor ausgewihlt, der zur Zeit in der
Industrie vielfach Anwendung findet. Neu aufgenommen wurde die Gleitpunktdarstellung von
Zahlen.

Das vorliegende Buch richtet sich hauptséchlich an Ingenieure und Informatiker an Fachhoch-
schulen und Universitdten. Da zum Versténdnis des Buches keine besonderen Vorkenntnisse
benotigt werden, eignet sich das Buch aber auch fiir den interessierten Laien. Lediglich fiir das
Kapitel ,,Schaltungstechnik* muss der Leser Grundkenntnisse in der Elektronik haben. Das
Kapitel ist aber zum Verstdndnis der anderen Kapitel des Buches nicht erforderlich und kann
iibersprungen werden. Die Darstellung der booleschen Algebra und die verwendeten Symbole
entsprechen weitgehend der geltenden DIN-Norm.

Um das Selbststudium zu erleichtern, sind zu jedem Kapitel Ubungsaufgaben angegeben, mit
denen das Verstindnis des behandelten Stoffs iiberpriift werden kann. Ein Losungsvorschlag ist
jeweils im Anhang zu finden.

Ein Schwerpunkt des Buches liegt in der ausfiihrlichen Darstellung der Grundlagen der Digital-
technik. Besonders die Synthese von Schaltnetzen wird detailliert erldutert. Haufig verwendete
Standard-Schaltnetze wie Multiplexer und Code-Umsetzer werden mit Beispielen behandelt.
Da die arithmetischen Schaltnetze fiir das Verstdandnis von Prozessoren wichtig sind, werden
die Grundlagen der Festkomma-Arithmetik und die Hardware von arithmetisch-logischen Ein-
heiten genauer besprochen.

Im Bereich der Schaltungsentwicklung stehen heute ausgereifte Entwurfswerkzeuge zur Ver-
figung, die es dem Anwender ermoglichen komplexe digitale Schaltungen zu entwerfen, in
Silizium zu implementieren, den Entwurf zu testen und zu verifizieren. Diese Moglichkeit hat
dazu gefiihrt, dass in vermehrtem Umfang anwenderspezifische Schaltungen (ASIC) angeboten

VI Vorwort

werden, die der Kunde selbst konfigurieren kann. Ein Kapitel ist daher dem Aufbau von an-
wendungsspezifischen integrierten Schaltungen gewidmet.

Im nichsten Kapitel folgt eine Einfithrung in VHDL, eine Programmiersprache zur Beschrei-
bung, Synthese und Simulation integrierter digitaler Schaltungen, die sich als Standard heraus-
gebildet hat und haufig zum Entwurf von ASIC verwendet wird. Der Schaltungsentwurf mit
derartigen Hardware Description Language (HDL) setzt sich immer mehr durch, da er insbe-
sondere bei komplexen Entwiirfen erhebliche Vorteile gegeniiber den bisherigen grafisch ori-
entierten Entwurfsmethoden bietet.

Autfbauend auf den Schaltnetzen werden synchrone und asynchrone Schaltwerke besprochen.
Es wird eine Vorgehensweise fiir die Entwicklung von synchronen und asynchronen Schalt-
werken dargestellt. In der neuen Auflage wurde der Fokus stirker auf die synchronen Schalt-
werke gerichtet. Die Technik der asynchronen Schaltwerke wird heute im Wesentlichen in den
Flipflops angewendet, von denen hier die géngigen Typen vorgestellt werden. Daneben werden
Beispiele fiir die Konstruktion von Zédhlern und Schieberegistern besprochen, sowie einige
kommerzielle Bauelemente vorgestellt.

In einem besonderen Kapitel werden die verschiedenen Technologien und Eigenschaften der
Speicherbausteine gegeniibergestellt, die die Eigenschaften moderner Rechnersysteme wesent-
lich mitbestimmen. Es werden typische Zeitdiagramme fiir verschiedene Speicherbausteine
dargestellt, die die Funktion der Bausteine verdeutlichen.

Das letzte Kapitel bietet einen einfachen Einstieg in die Mikroprozessortechnik. Als Einfiih-
rung in den Aufbau von Rechnern wird das Prinzip des Von-Neumann-Rechners erklért. Da-
rauf aufbauend werden die Vorgénge bei der Ausfithrung von Befehlen beschrieben. Als prak-
tisches Beispiel wird der aktuelle Mikrocontroller ATmegal6 der Firma AVR in einem Kapitel
vorgestellt. Es beschreibt die Arbeitsweise und den Aufbau des Prozessors. Ausfiihrlich wird
auf die Programmierung in Assembler eingegangen. Damit werden Kenntnisse vermittelt, die
auch bei der Verwendung anderer Prozessortypen niitzlich sind.

Fulda im Méirz 2018,
Klaus Fricke

Inhaltsverzeichnis

1 Einleitung 1
2 Codierung und Zahlensysteme 3
2.1 COARS ettt e ettt et et h e bt b et ettt saeenbe et eteens 3
2.2 DUAICOAR. ...ttt st nbe ettt et nae et eas 4
2.3 Festkomma-Arithmetik im DUalSyStem..........coccuerieriierierieiieiiere et 5
2.3.1 Ganzzahlige Addition im DualSyStemc.cccueruerierierieeiieie et e eeeeeeseeens 5
2.3.2 Addition von Festkommazahlen...........c.ccceveiirininininieiiceiece e 6
2.3.3 Einerkomplementdarstellung...........ccoecverieriieiiieiienie e 6
2.3.4 Zweierkomplementdarstellungcccvevieriieciieienieniee et 6
2.3.5 Subtraktion in Zweierkomplementdarstellung.............ccccooieiiiiiniiniinieeeeeeee 7
2.3.6 BereichSUbersChreitungoceeiieuiiriiiiieie et 8
2.3.7 MUIPIKATION ...ttt ettt sttt ettt s esae e ae e e eneeens 9
2.3.8 DIVISION 1.ttt ettt ettt ettt et e et e e et e e bt e bt ete e st ene e se et e ebeebeebeeneeneenseeensenes 9
2.4 Gleitkommadarstellung von reellen Zahlen............ccocoeoeeiiiiiiininiiiiieeeeee e 10
2.4.1 Einleitung: Gleitkommadarstellung im Dezimalsystemccccoeceveeieienienieneenne. 10
2.4.2 Gleitkommadarstellung im DualSyStemccccvevueriircienieniieieeieeeeseeie e 10
2.4.3 Spezielle ZahlendarstelluNgen...........cc.eeveeieiieniiecieiieceee et sie e 11
2.5 HexXadeZimalCodecoeiuiriiriieiieieiee sttt sttt 12
2.6 OKLAICOME.c.veeeeiieiietiierieet ettt sttt ettt ettt et 12
2.7 GIAYCOAE ..ottt ettt ettt et et e st e st et e e st enseesteesseeseeaseenseensennsesnsesneenneannennns 12
2.8 BOD-COAEcueiiiieniiiesteeteete ettt sttt sttt ettt st sttt 13
2.9 AlphanumerisSChe COdescoouiiiiiiiiieiee et 13
2,10 UDUNGEN ..ottt enanan 14
3 Schaltalgebra 15
3.1 Schaltvariable und Schaltfunktion..........cc.ccceveierinininiieeeee e 15
3.2 Zweistellige Schaltfunktionenccuevieriieiierieiiesieseee e 16
3.3 ReEChENIEEEIN ..ottt et ettt eensesnaenneas 20
3.4 Vereinfachte SChIEIDWEISEcc.covevuiriiriiriiiiicicreenceeeeeete ettt 21
3.5 Kanonische disjunktive Normalform (KDNF)ccccoooiiiiiiiiiiiieeeeee e, 21
3.6 Kanonische konjunktive Normalform (KKINF)ccooooiiiiiiiniiiiieeeeeeeee, 22
3.7 Darstellung von Funktionen mit der KKNF und KDNFccooooiiiiiiiiiiiiieeee 23
3.8 Minimieren mit Hilfe der Schaltalgebra...........ccoooiiiiiiiiiiii e 25
3.9 SChaltSYMDOLE.......coueieiitieiieieeee ettt ettt see ettt et aeeaen 25
3.9.1 Grundsétzlicher Aufbau der SYmMbOLEc.cccveeiiiieriiiieie e 26
3.9.2 Die AbhAngigkeitSNOtatioNcccvieiiiieiieriierieeie ettt reesreebeesseeeaeseeas 27
3.9.3 Die UND-ADhANGIZKEIt (G) ..cvveevverrieriieiieieeie ettt sre e be e esae s 27
3.9.4 Die ODER-ADANGIZKEIL (V) ..eeovieiieiieieeieeieciteeieete ettt 28
3.9.5 Die EXOR-ADhANGIZKEIt (IN)...eevereiiiiieriieiieieeie ettt 29
3.9.6 Die Verbindungs-AbhAngigKeit (Z).......cceeverveerierieieiieie ettt 29
3.9.7 Die Ubertragungs-Abhangigkeit (X)coooorueverueveieeeieeceeeeceeeeeeeeeeee e 29

3.10 UDUNEEN ..ottt senenaenas 30

VIII Inhaltsverzeichnis

4 Verhalten logischer Gatter 31
4.1 Positive und negative LOZIKccocveiiieiiieieciesieiee e 32
4.2 Definition der SChaltZEItencceviriririeieiiriiireeescetetet ettt e 33
4.3 Ubertragungskennlinie, StOrabstand...............cocoeveverueierecuereceieeceeeeeeeeesee e 34
44 AUSZANZE ..ottt ettt ettt ettt et et e e a e e bt e e h e e bt e bt e bt e et et e eateehe e e bt e bt e teentenneens 35

4.4.1 Offener Kollektor (Open ColleCtor)ccueiieiiereriieeieiie et 36
4.4.2 Tri-State-AUSZANEcovievieereeriesreereereeteeteesteesseesesstesseesseeseesseessesssesseessesssesssesseens 37
4.5 UDBUINZEI ..ottt ettt sttt 38

5 Schaltungstechnik 39

ST CMOS et bbbttt b et b ettt nae b 39
ST FAN-OUL ..t sttt et et e 41
5.1.2 Grundschaltungen NAND und NORc..ccccoiiiiiiiiiininiineececeece e 41
5.1.3 TranSmiSSION-Gate........ccerieruieiiieierierieeteeteeteseesete st eteeeeeseesaeesseeseeseensesnsesneenns 43
5.1.4 Tri-State-AUSZANGeoeiertieiieiieieet et eerte et eteseeesteesteete et e stee bt e teentesseesbeenbeeseeneas 44
5.1.5 CMOS-Eigenschaftenccoeciiiuieiieiieieeie ettt 45

0 1 N RSP RUSUSR P T 45
5.2.1 Belastung der AUSZANZEcccueveeiierieeieeieeee ettt et eereeeeeeteesbeesreeseseaesteesseesseeneeens 47

5.3 Emitter-Coupled Logic (ECL)ccviiiiiiiiieiieee ettt 48

5.4 Integrierte InjektionS-LOZIK (I21)vuveveeeeeeeeeeeeeeeeeeeeseeseeseeeeeeeesee s seesee s 49

5.5 Verlustleistung und Schaltverhalten von Transistorschaltern............ccoocveeevevevienieennnnne. 50

5.6 UDUNZEN ...t aenaeee 51

6 Schaltnetze 53

6.1 Minimierung mit Karnaugh-Veitch-Diagrammenc.ccoceevererereeienienineneneneneene 53
6.1.1 Minimierung der KDNFcccoooiiiiiiieiieeeeseeeee e 53
6.1.2 Minimierung der KKINFccciiiiiiiiieee e 56
6.1.3 Karnaugh-Veitch-Diagramme fiir 2 bis 6 Eingangsvariablen.............ccccocevenenne. 57
6.1.4 Unvollstindig spezifizierte FUNKtONENcccooouiiiiiieniiiieieeeceeeeee e 59

6.2 Das Quine-McCluskey-Verfahrencccocevieviieiieiicieceeieeie et 60

6.3 Andere OptimiCrUNGSZICICccueevieiiiiiiieiiecie ettt ettt beeebe s ae e s reesseenseenneees 63
6.3.1 Umwandlung UND/ODER-Schaltnetz in NAND-Schaltnetz...........c.cccoevvenreennnnnen. 64
6.3.2 Umwandlung ODER/UND-Schaltnetz in NOR-Schaltnetz...........cccccoeevvvvervennnnen. 65

6.4 Laufzeiteffekte in SChaltNetZencccooiviiiiiiiiiiii e 66
6.4.1 StruKtUrNAZATdScceeiiieii e 66
6.4.2 FunktionShazardsc..coceeeririiieiiinienineneeeecet ettt 67
6.4.3 Klassifizierung von Hazards...........cocoerereriiiinieniinininenceeeecececse e 68

0.5 UDUNZEN ...ttt eenanan 69

7 Asynchrone Schaltwerke 71
7.1 Prinzipieller Aufbau von Schaltwerkenc.ccvevieiiniiniieiieiececeeeee e 71
7.2 Analyse asynchroner SChaltWerkecovvvevieriieiieiicieeeceee e 72
7.3 SystematiSChe ANALYSEcveivveiiieiiiciicieciece ettt et e be e sreesaeesne e 73
7.4 Analyse unter Beriicksichtigung der Gatterlaufzeit...........ccoovevieeiincinienieenieceeeeee 75
7.5 SPCICHCTGIIEACToevieeiieiieieeie ettt ettt e s e s be e beebeessesaaesseesseenseenes 78

7.5 1 RS-FHPFIOP ettt sttt 78
7.5.2 RS-Flipflop mit TaKteINGang.......c..ceceruireririeienienienienieneeceeeeeeesee e 79
7.5.3 Taktpegelgesteuertes D-FIPIIOPccccoeeerieiiiiinininienceicicccrceeeeeee e 80

7.5.4 Flankengesteuertes D-FIPlop.....c.ccceeierieiiiiiiieieeee e 83

Inhaltsverzeichnis IX

7.5.5 ZWelflanKenStEUCTUNEco.eeueeuteierientinieniieienieeitet ettt sttt ettt nee st s e eaeeaees 85
7.5.60 JK-FUHPIIOP -ttt 86
757 T-FHPIIOP oottt sttt ettt et st 87
T.5.8 BRISPICL ..ttt ettt et et anean 88
7.5.9 Zusammenfassung FIPlops......cccoooiiiiiiiiiiiiec e 88
7.6 UDUNZEN ..ottt n s enanannas 90
8 Synchrone Schaltwerke 93
8.1 Beispiel 1: Schaltwerk ,,BInarzahler=.............ccccooieviiiiiiieiiecieee e 94
8.2 MOOTE-SCRAIWETKc..cueviiieiiiiiiciiiicreeree et 95
8.3 Mealy-SChaltWerk.........ccueeieriieiieiicie ettt s ae e e s seenseense e 97
8.3.1 Beispiel 2: Mealy-Schaltwerk ,,Maschinensteuerung®............ccccccceeeeverenrenenennenn 97
8.3.2 Realisierung der Maschinensteuerung als Moore-Schaltwerk.......c..c.ccecceceeeennee. 100
8.4 ZuStandSCOAICTUNG.....c..evueruiriieiieititetente sttt ettt ettt st eeneen 100
8.4.1 BINAre COICTUNG.cuiiiieiiiiieiieie ettt et 101
8.4.2 Codierung nach dem Gray-Codeccoeieiiiiiiiiiiieiieietee e 101
8.4.3 Ausgangsorientierte COICIUNGcuevuiertieriirierierieieeee e eee st see e seeesaeeneeas 101
8.4.4 ,,ONC-HOt “~COICTUNGceoeviirieiieiiieeieciecieete ettt e ere e re s e essessneeees 104
8.5 Wahl der FIPTIOPS....coviiiieiieiiciiectteteee ettt ste e e s reeaeenns 106
8.6 Zeitverhalten von SChaltWerkenccoieieieiiniereiceeece e 107
8.7 UDBUNEEN ...ttt en s en e esne e 109
9 Multiplexer und Code-Umsetzer 111
LB LY L1 (511 553 USRS 111
9.1.1 Multiplexer-Realisierung von Funktionen..........c..ccccoceeerveeiieneneninencnnceeeneennenn 112
0.2 COAC-UMSELZETevieeieeeeie e seeste sttt et et e et et eessee et esesnsesneesneesseeseenseenseensennsenseens 114
9.2.1 Der BCD/Dezimal-Code-UmSetzer 7442cccoovevirereeeeeenieniinieneneneeeeeeeenne 115
0.2.2 DeMUIIPIEXET ...cueeeieeeiieeiie ettt ettt et st esae e 116
9.2.3 Erzeugung von Funktionsblindelnc.ccooieiiiiiiiiiineeeeceeeee 117
9.3 Analoge Multiplexer und DemultipleXer.......c.cccvevrieriieciiriieiieieeie e 119
0.4 UDUNEEI ..ottt ettt et saesssasennans 119
10 Digitale Zihler 121
10.1 ASYNCRIONE ZANICToovieiieiieiieie ettt e e reebeessesenesseeseensaens 121
10.1.1 Mod-8-BINArzZaAh1erccveivieiiieieiieeiesitesie ettt 121
10.1.2 MOG=60-ZERLETvevineeeirieieierieet ettt sttt et seeneenen 122
10.1.3 Asynchrone RUCKWAISZARIETcccouerininininirccieceeeeeeeeee e 123
10.1.4 Zeitverhalten asynchroner ZahIer...........cccooieiieiiriiiieiieeee e 124
10.2 Synchrone ZARIET..........c.ooiiiiiiieiiee ettt et et eae e eens 124
10.2.1 4-Bit-DUAIZARIET ...c..c.eovinieiiiiiiciiiiciee s 125
10.2.2 Mod-6-Zahler im Gray-Code............ceevvirierrieriieieeiesiiesieesre et eeeeee e sreereenseens 127
10.2.3 Der synchrone 4-Bit Aufwirts/Abwirts-Bindrzahler 74191ccocoeoeeiiieieeene 129
10.3 UDBUNGEI ...ttt s s sanans 130
11 Schieberegister 131
11.1 Zeitverhalten von SchiebereiSternc.ceouiruirieriieiieieee et 132
11.1.1 Schiebere@iSter T4194 ...ttt 133

11.2 Riickgekoppelte SChiebere@iSter........coouiriiriirieiieieeieee et 135

X Inhaltsverzeichnis

11.2.1 Moebius-Zahler, JOhNSON-ZANIETcccvveeeeeiriieeeieeeeeeee e 136
11.2.2 Pseudo-ZufallSfol@en......ccooouieiiiriiieiecieceeeee e 138
11.3 UDUNGEN ..o aeneeen 140
12 Arithmetische Bausteine 141
12,1 VOUAAICTET ...ttt sttt et et et et et eeneeenens 141
12.2 SerieNAAAICTETccueeuieiieiiieiie ettt ettt ettt be b ese e st et et e nee e 141
12.3 RipPle-Carry-AddiCrer........c.cccviiiiirieiieiiereeee ettt reesre e beeese s e e seaenas 142
12.4 Carry-Look-Ahead AddICrer.........cccvevvieeiieiiiieiieieeie ettt 143
12.4.1 Kaskadierung von Carry-Look-Ahead-Addierermnccccoovveeivvcieniienieniennenen. 145
12.4.2 Vergleich der AQICTericviiieiieiieieeie ettt ae e 149
12.5 Arithmetisch-logische-Recheneinheiten (ALU)cocceeveeieniininininieneneneeieieneens 149
12.5.1 Beispiele flir OpPerationencceecverieriereerieeieeieeeeseeeeeee e seeesseeseesesnesenes 152
12.6 KOMPATATOTEIL ...couvtiiiieiiiieiteeniieeeie ettt ettt et ettt ettt e st e bt e e sabeebteesateebeeesaneenaee 154
12.6.1 2-Bit-KOMPATatorcccueeiiieiieiieeiieitiesieee ettt et 154
12.6.2 Kaskadierbare Komparatorencceeceererieiienieniereeeeeeee e 155
12.7 UDUNZEN ..ot 156
13 Digitale Speicher 157
13.1 Prinzipieller Aufbau von Speicherbausteinen..........cceecueveeereerierieecieriereeie e 158
13.2 ROM ottt ettt et sttt et et bbbt bbb e b e 158
13.3 PROM ..ottt sttt ettt sttt ettt be bt sbe et et e e e 161
13.4 EPROM ..ottt ettt ettt ettt et e s e b e e beebeeneeseeneensensensensesneas 162
13.5 EEPROMouiiiiiiieiieiee ettt ettt ettt tesseebeebeeseeneeneensensensensesneas 163
13,60 EAROM ...ttt ettt ettt et ettt besbe b e ebesseeseentensensensensesneas 163
13.7 NOVRAM L.ttt ettt ettt st besae bt est e st et e ntenbesaea 164
13.8 Statisches RAM (SRAM)ooiiiiiiieiieieciestestt ettt st sre e ve s beeaneeaeas 164
13.8.1 Aufbau eines SRAM......ccooiiiiiiiiieeeee et 164
13.8.2 BeiSpiel SRAMouiiiiiiiiiiieeese ettt 165
13.9 Dynamisches RAM (DRAM)cccieviieiiriieiieniiesieeiesee st eve e sseessaesseeseessessnesnees 169
13.9.1 Aufbau eines DRAMcc.coiiiiiiiiiiiiieeesesee et 169
13.9.2 Beispiel DRAMooiiiiiiicieieniereeeteeese ettt s 169
13.10 SDRAM (Synchrones DRAM).......ccccceriiriieiiieieeieiieieeie ettt eee e eeeens 174
13.11 DDR-RAM (Double Data Rate DRAM)ccccueiiiiieiieiiieeieeceeeee e 174
13.12 EimerkettenSPeIChercc.ooiuiiiieiieiii e 174
13.12.1 Beispiel €ines FIFOS.....c.oooiiiiiiiiieiieie ettt 175
13.13 Kaskadierung von SPEICHETNc.cccvieiiiiiiieriieie ettt b e 177
13.14 Erweiterung der WOTrtIANGE.........cccvevvieiieiieieiiesiiece ettt 177
13.15 Erweiterung der Speicherkapazititcccceevveeeveeieiieieerieeiecreeeeeeeee e 178
13.15.1 VOIIdECOICTUNGocvviiieiieiieie ettt ettt e e saeseaesseesseesseensesenas 179
13.15.2 TeildeCOICIUNGccuveiieiieieeie ettt ettt et e ste e be s e esseenneneees 181
13.15.3 Lineare DECOTICIUNGcceervieciiiieiierieenieete et etesee e e veesaessaesseesseessessnesenes 183
13.16 UBUNEEN.......coooeieeeeeeeeeeeeeeeee et s e nes s 185
14 Programmierbare Logikbausteine 187
14,1 ASTC-FAMILICN.....ciitiitiiieiieiiieeee ettt ettt et st e st et eneeeneesaeens 187
14.2 Programmierbare Logik-IC (PLD)c.cccoeiiiieiiiiieieee et e 190

T4.2.1 PLDTYPOM ettt ettt ettt ettt ettt et e bt et et et e eneesneesaeas 190

Inhaltsverzeichnis XI
14.3 ROM, EPROM, EEPROMcccctiiiieiiieiiieiieieiieteieie sttt essesaebessesseesesseesnans 191
T4.4 PLA oottt ettt et ettt ettt st ettt e b e b et e Rttt e st e st e beeseere st ateeneensenes 192
T4.5 PAL oottt ettt ettt ettt ettt be et e te Rttt e st e st e b e eseebeeneasaeneensenes 197
T4.6 GAL ...ttt ettt ettt ettt ettt et et et e teereeneeneent et e nae s nes 199
14.7 Programmierung von PLD-Bausteinen..........cccceeeeiirieniiiieiienieee e 202

g T T S OSSPSR 202
14.8 Field Programmable Gate Arrays (FPGA)cccoevvieieeiieiiieiecieeeeceeie e 203
14.8.1 Aufbau eines FPGAcooioiiiiie et 203
14.8.2 Konfigurierbare Logik-BIScke (CLB).....ccccovieivieciieiieieiieceeieere et 205
14.8.3 TO-BIOCK ...ttt sttt ettt st 206
14.8.4 VerbindungsleitunGeN..........cccvevieriieiieiieieetiesieesieere e ste e e seeeseesaesseesseensaenseens 207
14.8.5 Programmierung eines FPGA........c..cocooiiiiiiiiininininneccecceee e 208
T4.9 CPLD ...ttt ettt ettt ettt et e st e b e baese et e eseessessessesbeeseeseeseeseassensensenes 208
14.9.1 Aufbau einer CPLDccoiiiiiiieiiee ettt 208
14.9.2 Logik-Array BIOcke (LAB)coiiiiieieee et 209
14.9.3 TO-StEUCTUILE ...cuveeueeeiieeiieeiieette it ettt et e et e bt e e et e estesbeesbeesbeebeenaesneeeneesseenseeneeens 211
14.9.4 GroBe der CPLDcooiiiieieeeeeee ettt sttt et s ens 211
T4, 10 GALE-ATTAYS .eveevrieeiieeeiieeete ettt erteetteesteeeteeeteeesteesbeessteessseessseesnsaessseessseessseesnseensses 212
14.10.1 Aufbau von Channelled Gate-ATTaYScccecverreerreereiieieerieenreereeeesreesseeseens 212
14.11 Standardzellen-ASICcoooiiiiiieee ettt 215
14.12 Vollkundendesign-ASICS.........cccerciirierieriieieeieeeesieeteetesreseeseesseessesssesseesseensenns 215
14.13 UBUNZEN ..ot 216

15 VHDL 217
15.1 Entwurfsverfahren fiir digitale Schaltungen............ccoccveviieeiiiiiiiiiieecc e 217
15.2 Die Struktur von VHDLcooiiiiiiit et 218
) B T 1) 011« DSOS 218
154 OPCTALOTEI ..ccuviiiiiiiiieeiee ettt ettt e st e et e st e st esbeesabeesabeesateesabaesnteesaseesateesnseenases 220
I5.5 ENEILY coteteitieee ettt bbb bbbt ettt 221
15.0 ATCHITECLUTEeutenteieteiteeieei ettt ettt bbbttt ettt besbe bt est et e e naens 222
I5.7 PIOZESSE ..ueeiintieeiiieiteeee ettt ettt sttt e st ettt s e bt e bt e et e bt et e s baeeaee s 223
15.8 Struktureller ENtWUIT..........cooiiiiieiet et 227
I5.9 BUSSE ..ttt ittt ettt ettt ettt a e b ettt e e e e a e e bt e bt e bt e bt e bt eneeeae e bt eneenteens 228
15.10 UDBUNEEN <.ttt 230

16 Mikroprozessoren 231
16.1 Prinzip kooperierender SChaltWerke............ccvevvieviieiirieniieiecieceeseeie e 231
16.2 Der Von-Neumann-ReChNETccciiiiiiiiiiiiiee e 231

16.2.1 OPCIratiONSWETKc.veeiiiiereieriiesieeteeteetesteesteeteetesesessaesteesseesseessessnesseesseensesnsenns 233
16.2.2 LOIEWETK. c..cueeiiinieierteeteetee ettt sttt ettt s eb et 233
160.2.3 SPEICHETecuviiieiiiecieeie ettt ettt ettt e et e te et e e b e e sbessaesseesseenseenseesseessensaenseens 234
16.2.4 Ein- und AUSZADEc.coiiiiiiiiiriiieiceteteeeste ettt 234
16.2.5 BEIIIED .ovveeieiieieciieieeeeet ettt ettt sttt sa et e b e bt eeteeseeneeneenaenne 235
16.3 Architektur des ATMEZA6cceooiiriiniiniiiiieieieceeee e 235
16.3.1 Anschliisse des ATMEZAL16......cc.coiuieiiiriiiieieeee et 237
160.3.2 CPU-REZISET....cutieteeieeie ettt ettt ettt ettt et eee bt e bt e teeeeeaeesbeenaeeneeens 239
16.3.3 Programm-SPeiCher........ccooiiiiiiiiiiii e 240
16.3.4 Daten-SPCICRETccviieiiiiiciieiecic ettt et e reesbeereenre e 241
16.3.5 Funktionsablaufe bei der Befehlsausflihrungccccceoveviieviiiciiiinieiicces 242

XII Inhaltsverzeichnis

16.4 Assembler-Programmierting..........cccoeeeeierierieninieneneneeeetententesie s eveeeeteee e 243
16.5 AdIESSIEIUNZSATTEI .. .euveviiieniiietintenieeteeet ettt sttt ettt et et b ebe et enneeentenbenaean 244
16.6 BEfChISSALZ.......eeeieiieiieieeie ettt sttt e sne et et eneeeneenneens 248
16.6.1 KONVENIONEI.cuiitieiieiieieeiie ettt sttt ettt et e sttt et e eteeseesseesbe e beeeeeneeeneas 248
16.6.2 Transfer-Befehl..........cccooiiiiiiiiiie e 248
16.6.3 Laden VON BYTESooiiiiiiieiieie ettt e 248
16.6.4 Speichern VON BYEScccuieiiiiiiciieiieieeie ettt 250
16.6.5 Arithmetische Befehle: Negation..........cccocviiiiiiiiieniieiiciccieceeceeseee e 250
16.6.6 Arithmetische Befehle: Addition und Subtraktion............ccccceveviiiniieienenennne. 251
16.6.7 Arithmetische Befehle: Setzen und Loschen von Bits in einem Register............ 253
16.6.8 Arithmetische Befehle: Test und Vergleich..........ccovvvvieciieiicieniinieieeeeen, 254
16.6.9 Arithmetische Befehle: Logische Operationen............ccocceverencneneneeeennennenne 254
16.6.10 Schiebe- und Rotationsbefehleccoevieiiiiiiriiniieeeeeeee e 254
16.6.11 Befehle zum Setzen und Loschen von Flags im SREGc..coccoevirieiiiinnnne. 256
16.6.12 Absolut adressierter SPIUNE.......coveiierierieie ettt ee st eeees 257
16.6.13 Relativ adressierter SPIUNE.......c.eiverieriierieee ettt eaees 258
16.6.14 Relativ adressierte, bedingte SPIringe..........ccoveeeveerienieiieiieieeeseeeee e 259
16.6.15 Befehl TDEerSpringen.........ccvecvieriierieeciieieeieiiese et e st reesreesseeeneseeas 260
16.6.16 Befehle fiir UNterprogramime...........cceeeveeeveeieeeeseerieenreeeeeeeeeesseesseessesssessnesenns 261
16.7 ASSCMDICTANWEISUINZENveeuvienrieerieerietieeteesteeieereereseeeseeesseesseessesssesssessaeseesseessesnnas 264
16.8 Interrupt-BearbDEitlungcccvveciivierieiieieeie sttt sseeseeaeennes 266
16.9 UDUNZEN ... 268
A Anhang 269
A.1 Die AbhAngigKeitSNOtationcccceriririririeieienentene ettt ees 269
A.2 Befehlssatz des ATmMEZAlO0........occvveierieiieiieieee ettt 273
A.3 Losungen der AUf@aben.........cccoiiiiiiiiiiiiieieeeee e 281
YN 1<) YL | USSR 307

A5 SAChWOITIEZISTET ... eetieiieiieit ettt ettt et ettt ettt et e st enbeebeeneeenees 311

®

Check for
updates

1 Einleitung

Die Digitaltechnik hat in den letzten Jahren an Bedeutung weiter zugenommen. Dies ist auf die
wesentlichen Vorziige der Digitaltechnik zuriickzufiihren, die es erlauben, sehr komplexe Sys-
teme aufzubauen. Man erreicht dies, indem man sich auf zwei Signalzustéinde beschrinkt, die
in logischen Schaltungen (sogenannte Gatter) ohne Fehlerfortpflanzung iibertragen werden
konnen. Durch diese Einschrinkung gelingt es, eine Halbleiter-Technologie aufzubauen, die
eine Realisierung von iiber 10" logischen Gattern auf einem Chip ermoglicht.

Die Voraussetzung fiir die einwandfreie Funktion ist allerdings eine genaue Dimensionierung
der einzelnen Gatter, so dass die Beschrankung auf zwei Signalzustinde gerechtfertigt ist. Um
diese Vorgehensweise deutlich zu machen, soll im Folgenden der Begriff ,,Signal® etwas ge-
nauer betrachtet werden, denn die Digitaltechnik hat sich die Verarbeitung von Signalen zum
Ziel gesetzt. Signale dienen der Ubermittlung von Nachrichten. Sie werden durch physikali-
sche Groflen wie Spannung, Strom, Druck, Kraft usw. beschrieben. Die Amplituden dieser
GroBen sind zeitabhidngig. Die zu iibertragende Information steckt in den sich dndernden
Amplitudenwerten.

Es soll zum Beispiel der zeitabhéngige Fliissigkeitsstand F in einem Behélter gemessen wer-
den. Das Bild 1-1a zeigt den Fliissigkeitsstand als Funktion der Zeit. Wenn der verwendete
Sensor ein elektrisches Signal abgibt, dessen Spannung proportional zur Fiillhohe ist, so erhélt
man einen Zeitverlauf der Spannung U; wie in Bild 1-1b. Dieses Signal ist wertkontinuierlich,
da alle Amplitudenwerte im Messbereich auftreten konnen. Systeme, die wertkontinuierliche
Signale verarbeiten konnen, werden analoge Systeme genannt.

F U,

a) b)

00 01 10 11 10
—AA A A

iy t

c) d)

Bild 1-1 Beispiel fiir die Digitalisierung eines Signals. a) Fiillstand F in einem Tank {iber der Zeit ¢ aufge-
tragen. b) Zeitverlauf der Ausgangsspannung U, des Sensors. ¢) Quantisierter Zeitverlauf der Spannung
U, bei 4 Amplitudenstufen. d) Zuordnung der Amplituden zu den Codierungen 00, 01, 10 und 11.

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018
K. Fricke, Digitaltechnik, https://doi.org/10.1007/978-3-658-21066-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-21066-3_1&domain=pdf

2 1 Einleitung

Wertdiskrete Signale, die auch digitale Signale genannt werden, kénnen dagegen nur bestimm-
te diskrete Amplitudenwerte annehmen. Ein Beispiel fiir ein digitales Signal ist das Signal,
welches durch zwei unterschiedliche Spannungspegel anzeigt, ob eine Tiir geschlossen oder
offen ist. Derartige Signale konnen direkt von digitalen Systemen verarbeitet werden.

Sollen wertkontinuierliche Signale mit digitalen Systemen {ibertragen werden, so miissen diese
zundchst quantisiert werden. Bei diesem Vorgang wird an bestimmten Zeitpunkten, den Ab-
tastzeitpunkten, die Amplitude des Signals einer diskreten Amplitudenstufe zugeordnet. So ist
es im Bild 1-1c fiir das obige Beispiel des Fiillstandssensors geschehen. Man erhélt die wert-
diskrete Spannung U,. Bei der Quantisierung muss man einen Rundungsfehler in Kauf neh-
men.

Fiir eine digitale Ubertragung muss das Signal zuerst digitalisiert werden. Eine Amplitude wird
dann durch eine Folge von Ziffern tibertragen. Jede Ziffer ist ein wertdiskretes Signal. Im Bild
1-1d ist ein Beispiel fiir eine Codierung mit 2 aufeinander folgenden Ziffern gezeigt. Die
Amplitudenstufe 0 wird durch die Ziffern 00 dargestellt. Die Amplituden 1, 2, 3 werden zu 01,
10, 11. Man unterscheidet auch zwischen zeitdiskreten und zeitkontinuierlichen Signalen. Zeit-
diskrete Signale kdnnen ihre Amplitude nur zu bestimmten Zeiten dndern, wéhrend zeitkonti-
nuierliche Signale zu beliebigen Zeiten ihre Amplitude dndern konnen. Digitale Systeme kon-
nen zeitdiskret sein, man nennt sie dann synchron. Die Synchronisierung wird {iber ein Takt-
signal hergestellt.

Ein digitales System besitzt durch die Beschrinkung auf endliche Amplitudenstufen eine er-
hohte Storsicherheit. Gestorte digitale Signale konnen den urspriinglichen diskreten Amplitu-
denwerten eindeutig zugeordnet werden. Die Stérung darf aber nur maximal die Halfte des
Abstandes zwischen 2 Amplitudenstufen betragen, damit kein Fehler entsteht.

Digitale Systeme haben gegeniiber analogen Systemen eine Reihe von Vorteilen:

e Digitale Signale unterliegen keiner Fehlerfortpflanzung, dadurch sind fast beliebig
komplexe Systeme wie zum Beispiel Mikroprozessoren realisierbar. Es kdnnen belie-
big viele Bearbeitungsschritte nacheinander durchgefiihrt werden, ohne dass systema-
tische Fehler auftauchen. Auch fiir die Ubertragung iiber weite Strecken ist diese Ei-
genschaft digitaler Systeme von Vorteil.

e Eine hohe Verarbeitungsgeschwindigkeit kann durch Parallelverarbeitung erzielt wer-
den.

e Digitale Systeme sind leicht zu konstruieren, denn die boolesche Algebra stellt eine
sehr einfache Beschreibung dar. Die Entwicklung von komplexen Digitalschaltungen
ist heute durch die Verwendung sehr leistungsfédhiger Entwicklungswerkzeuge auto-
matisierbar geworden.

e Digitale Systeme sind relativ einfach zu testen.

Der Nachteil digitaler Systeme:

e Digitale Systeme sind langsamer als analoge Systeme. Die in der digitalen Signalver-
arbeitung iiblichen Taktfrequenzen liegen etwa bei einem Drittel der moglichen Uber-
tragungsrate analoger Systeme. Deshalb dominiert die Analogtechnik im Hochfre-
quenzbereich.

®

Check for
updates

2 Codierung und Zahlensysteme

2.1 Codes

Codes werden in der Digitaltechnik hiufig verwendet, um ein Signal fiir einen Anwendungsfall
optimal darzustellen. Ein Code bildet die Zeichen eines Zeichenvorrates auf die Zeichen eines
zweiten Zeichenvorrates ab. Sinnvollerweise soll auch eine Decodierung mdglich sein, bei der
aus dem codierten Zeichen wieder das urspriingliche gewonnen wird.

Ein bekanntes Beispiel fiir einen Code ist der Morse-Code. Die Definition eines Codes ge-
schieht durch eine Zuordnungstabelle wie sie in Tabelle 2-1 fiir den Morse-Code festgehalten
ist. Dieser Code ist umkehrbar, da aus dem Buchstaben ein Morsezeichen, und daraus wieder
der Buchstabe eindeutig ermittelt werden kann. Das gilt aber nur fiir einen Text, der in kleinen
Buchstaben geschrieben ist, da der Morse-Code nicht zwischen Grof3- und Kleinschreibung
unterscheidet. Ein Text, der in Grof3- und Kleinschreibung verfasst ist, kann daher strengge-
nommen aus dem Morse-Code nicht wieder decodiert werden.

Tabelle 2-1 Morse-Code.

Alphabet | Morse-Code || Alphabet | Morse-Code || Alphabet | Morse-Code
a - j e s
b - = k — = t -
c - 1 - u -
d — m - v -
e n - w -
f - 0 - X - =
g —— p —— y - ==
h q —_— = z -
i r —

Fiir jede Anwendung gibt es mehr oder weniger gut geeignete Codes. So ist fiir die Zahlen-
arithmetik in einem Rechner ein anderer Code sinnvoll als fiir die Ubertragung von Zahlen
iiber eine Nachrichtenverbindung. Dieses Kapitel untersucht die Unterschiede der einzelnen
Codes und weist auf deren spezifische Anwendungen hin.

Die Kombination mehrerer Zeichen eines Codes nennt man ein Wort. Wir werden uns im Fol-
genden auf den technisch wichtigen Fall beschridnken, dass alle Worter eines Codes die gleiche
Léange n haben. Im Morse-Code ist das nicht der Fall. Hat ein Code einen Zeichenvorrat von N
Zeichen, so kann man N" verschiedene Worter der Lange n bilden. Werden alle N' mdoglichen
Worter eines Codes verwendet, so spricht man von einem Minimalcode. Werden weniger als
N" Worter verwendet, so nennt man ihn einen redundanten Code. Im Folgenden findet man
eine Zusammenfassung der geldufigsten Codes, ausfiihrliche Darstellungen findet man in [7-9].

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018
K. Fricke, Digitaltechnik, https://doi.org/10.1007/978-3-658-21066-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-21066-3_2&domain=pdf

4 2 Codierung und Zahlensysteme

2.2 Dualcode

Der Dualcode ist der wichtigste Code in digitalen Systemen, da er sehr universell ist. Durch die
Beschrinkung auf die Zeichen 1 und 0 ist eine Verarbeitung mit Bauelementen moglich, die als
Schalter arbeiten. Der Dualcode erlaubt auch eine Arithmetik analog der des Dezimalsystems.
Das duale Zahlensystem kann als eine Codierung des Dezimalsystems verstanden werden. Eine
Dualzahl besteht aus einem Wort, welches aus den Zeichen ¢; € {0,1} gebildet wird. Die Zei-
chen ¢; eines Worts werden in der Digitaltechnik Bits genannt. Das Wort z, in der Dual-
Darstellung entsteht durch die Aneinanderreihung der einzelnen Bits wie im Folgenden darge-
stellt:

Z)=Cp1Cpa ... C1Co... Coppt1 Coy (21)

Diese Dualzahl hat n Stellen vor dem Komma und m Stellen nach dem Komma. Den einzelnen
Bits werden entsprechend ihrer Stellung i im Wort Gewichte 2' zugeordnet. Damit kann die
dquivalente Dezimalzahl z;, berechnet werden:

Zy= g(Zl()) = c,,_12”'1 + cn_22”'2 6’121 + 0020 . C_m+12_m+l + c_mZ"" (22)
Wir betrachten zum Beispiel die Dualzahl 10110,011,, die durch den Index 2 als Dualzahl
gekennzeichnet ist. Sie wird interpretiert als:

g(z)=12"+02° + 122+ 1.2 + 02° + 027" + 122 + 1.2° = 2,0 =22,375,

Der Dualcode wird als gewichteter Code bezeichnet, da die weiter links im Wort stehenden
Bits ein hoheres Gewicht besitzen. Gleichung 2.2 liefert eine Vorschrift fiir die Umwandlung
von Dualzahlen in Dezimalzahlen.

Die Umwandlung von Dezimalzahlen in Dualzahlen ist komplizierter. Sie kann durch einen
Algorithmus beschrieben werden, der fiir den ganzzahligen und den gebrochenen Teil der De-
zimalzahl unterschiedlich ist. Am obigen Beispiel der Zahl 22,375, soll der Algorithmus dar-
gestellt werden:

e Zuerst wird der ganzzahlige Anteil in eine Dualzahl umgesetzt. Dazu wird der ganzzahlige
Anteil fortwahrend durch 2 geteilt und der Rest notiert, bis sich 0 ergibt.

22:2=11 Rest 0
11:2=5 Rest 1

5:2=2 Rest 1 ganzzahliger Anteil der Dualzahl
2:2=1 Rest 0

1:2=0 Rest 1
Die zu 22, gehérende Dualzahl ist also 10110,.
e Im zweiten Schritt wird der gebrochene Anteil in den gebrochenen Anteil der Dualzahl

umgesetzt. Zuerst wird der gebrochene Anteil mit 2 multipliziert. Der ganzzahlige Anteil
wird abgetrennt, er bildet die niedrigstwertige Stelle der Dualzahl.

Das Verfahren wird wiederholt, wie im folgenden Beispiel gezeigt.
0,3752=10,75 +0
0,75-2=0,5 +1 gebrochener Anteil der Dualzahl
0,5-2=0 +1

2.3 Festkomma-Arithmetik im Dualsystem 5

Man erkennt an dieser Stelle, dass sich der Rest 0 ergibt. Das ist nicht notwendigerweise so.
Im Normalfall wird der gebrochene Anteil der d4quivalenten Dualzahl unendlich viele Stel-
len haben. Man muss sich dann mit einer bestimmten Anzahl von Stellen hinter dem Kom-
ma begniigen und damit die Genauigkeit einschrianken. In unserem Fall entspricht 0,375,
genau 0,011,.

Aus dem ganzzahligen und dem gebrochenen Anteil ergibt sich die gesuchte Dualzahl zu
10110,011,.

2.3 Festkomma-Arithmetik im Dualsystem

In diesem Kapitel wird die Arithmetik mit Festkommazahlen beschrieben. Festkomma-
Arithmetik bedeutet, dass das Komma immer an einer festen Stelle steht. Die Stelle, an der das
Komma steht, orientiert sich dabei an der Stellung im Speicher, in dem die Zahl steht. Das
Komma braucht dabei nicht in der Hardware des Rechners implementiert zu sein. Es existiert
in diesem Fall nur im Kopf des Programmierers. Wir beschrinken uns auf eine konstante Wort-
lange n, wie es in Rechnern der Fall ist. Dadurch kann auch das Problem der Bereichsiiber-
schreitung diskutiert werden.

2.3.1 Ganzzahlige Addition im Dualsystem

Die ganzzahlige Addition zweier Zahlen 4 und B wird im Dualsystem genau wie im Dezimal-
system stellenweise durchgefiihrt. Wie dort miissen bei jeder Stelle die beiden Dualziffern a,
und b, und der Ubertrag von der vorhergehenden Stelle c,.; addiert werden. Bei der Addition
(Tabelle 2-2) entsteht eine Summe s, und ein neuer Ubertrag c,,.

Tabelle 2-2 Addition im Dualsystem mit den Summanden a,, b, und dem Ubertrag von der vorhergehen-
den Stelle ¢,.;. Die Summe ist s, und der neue Ubertrag c,,.

N
B
S
B
)
3
Ay

ol Bl Bl Bl =] =) == [wo]
= O O = =] O O
ol =1 Bl =0 Bl =) Bl [e]
—l = =] O = O O ©
— O O =] O] = =] O] «

In dem folgenden Beispiel fiir eine Addition ist der Ubertrag explizit aufgefiihrt:

0 1 1 1 1 0
+ 1

1

(U

Ubertrag 11
1 0

1
1 1
I 1
I 1

(=1 Bl e
| of -

0
0
= 1

1

6 2 Codierung und Zahlensysteme

Man beachte, dass im obigen Beispiel zwei 8 Bit lange Zahlen addiert wurden und das Ergeb-
nis auch 8 Bit lang ist, so dass keine Bereichsiiberschreitung stattfindet.

2.3.2 Addition von Festkommazahlen

Sollen zwei Festkommazahlen addiert werden, so ist es analog zum gewohnten Vorgehen im
Dezimalsystem wichtig, dass die Kommata iibereinander stehen. Daher muss bei der Addition
von zwei 8Bit langen Zahlen das Komma bei beiden Zahlen zum Beispiel an der dritten Stelle
stehen:

0,
+ 0,
1
1

Ubertrag

—|—]lo o
ol —|lo ~
olo|— —
—|lo|l— o
ol =] - o
olo|— —

>

2.3.3 Einerkomplementdarstellung

Um den Hardware-Aufwand in Rechnern klein zu halten, hat man sich bemiiht, Subtraktion
und Addition auf einen Algorithmus zuriickzufiihren. Das gelingt, wenn negative Dualzahlen
in ihrer Komplementdarstellung verwendet werden. Man unterscheidet zwischen Einer- und
Zweier-Komplement. Das Einerkomplement wird gebildet, indem in einer Dualzahl alle Nullen
gegen Einsen vertauscht werden und umgekehrt. Das Einerkomplement von 0001 ist also 1110.
Das Einerkomplement einer Dualzahl 4 wird hier dargestellt als —A4.

Es gilt offenbar bei einer Darstellung in # Bit-Worten:
“A+4=2"-1 (2.3)
Bsp. fiir eine Darstellung in 8 Bit-Worten:

10110011 +01001100=11111111=2%~1
Man kann Gleichung 2.3 so umformen, dass sie eine Rechenvorschrift fiir das Einerkomple-
ment ergibt:

“A=2"-1-4 (2.4)

2.3.4 Zweierkomplementdarstellung

Das Zweierkomplement A, entsteht aus dem Einerkomplement —4 durch die Addition von 1:

Agr=—4+1 (2.5)
Also gilt mit Gleichung 2.4:
A =2"-4 (2.6)

Man erkennt, dass hier eine Darstellung vorliegt, in der —4 vorkommt, wodurch sich diese
Darstellung fiir die Subtraktion eignet. Man beachte auch, dass 2" in der dualen Darstellung
n+1 Stellen hat. Hier ein Beispiel fiir das Zweierkomplement aus 10101100:

Axo=—4+1=01010011+1=01010100

2.3 Festkomma-Arithmetik im Dualsystem 7

1000

Bild 2-1 Darstellung von 4Bit-Wadrtern in Zweierkomplementdarstellung.

Eine kreisformige Darstellung (Bild 2-1) der 4Bit breiten Dualzahlen verdeutlicht den Zahlen-
bereich. Die betragsméBig grofite darstellbare positive Zahl ist 7, die betragsméBig grofte
negative Zahl ist -8,y. Der Zahlenbereich ist also unsymmetrisch angeordnet, da es eine negati-
ve Zahl mehr gibt als positive. Die groBte und kleinste darstellbare Zahl ist:

Zmax = 2n*1 -1 (27)

Zin =—2"" (2.8)
Dem Bild 2-1 entnimmt man, dass man betragsmafBig kleine Zweierkomplement-Zahlen daran
erkennt, dass sie viele filhrende Einsen aufweisen, wenn sie negativ sind, und dass sie viele
fithrende Nullen haben, wenn sie positiv sind. BetragsméBig grofe Zweierkomplement-Zahlen
haben eine weit links stehende Null, wenn sie negativ sind und eine weit links stehende Eins
wenn sie positiv sind. Die Zahl 1000, (—8;¢) ist ihr eigenes Zweierkomplement! Es ist auch
wichtig festzustellen, dass es nur eine 0 in der Zweierkomplement-Darstellung gibt. Das er-
leichtert die Abfrage, ob ein Ergebnis 0 ist. In der Einerkomplementdarstellung gibt es dagegen
die Dualzahl 0000, die der +0,, entspricht und die Dualzahl 1111, die der —0,, entspricht.

2.3.5 Subtraktion in Zweierkomplementdarstellung

Es sollen nun zwei positive Dualzahlen 4 und B voneinander subtrahiert werden. Man kann die
Subtraktion unter Verwendung des Zweierkomplements laut Gleichung 2.6 so durchfiihren:

A—B:A—B+BK2—BK2:A—B+BK2—(2n—B) (29)
Zusammenfassen des rechten Ausdrucks ergibt:
A—B=A4 +By,-2" (2.10)

Was bedeutet die Subtraktion von 2"? Das soll am Beispiel der Subtraktion 7-3 = 4 im 4Bit-
Dualsystem dargestellt werden. Die Summe des Dualdquivalents von 7 und des Komplements
des Dualédquivalents von 3 ergibt:

8 2 Codierung und Zahlensysteme

0 1 1 1 10
+ 1 1 0 1 35
=1 0 1 0 0
-~ 1.0 0 0 0
= 0 1 0 0 410

Die Subtraktion von 10000, = 2° entsprechend der Gleichung 2.10 ergibt das richtige Ergebnis
0100,. Das kann in einem 4-Bit-Rechner einfach dadurch geschehen, dass die hochste Stelle
ignoriert wird. Bei der Subtraktion mit Hilfe des Zweierkomplements ist also der hochste
Ubertrag ¢, nicht zu beriicksichtigen. Vorsicht ist aber geboten in Zusammenhang mit einer
Bereichsiiberschreitung.

2.3.6 Bereichsiiberschreitung

Es soll daher das Problem der Bereichsiiberschreitung (Overflow) in Zusammenhang mit der
Zweierkomplement-Darstellung betrachtet werden. Bereichsiiberschreitungen kénnen nur in 2
Féllen auftreten. Namlich dann, wenn zwei positive Zahlen addiert werden oder wenn zwei
negative Zahlen addiert werden. In allen anderen Féllen ist eine Bereichsiiberschreitung ausge-
schlossen. Dazu betrachten wir einige Beispiele in einer 4-Bit Darstellung:

¢ Beispiel einer Bereichsiiberschreitung bei der Addition zweier positiver Zahlen:

0O 1 0 1 S1o
+ 0O 1 0 1 S1o
=@ 1 o0 1 0 -6

Das Ergebnis ist offensichtlich falsch. Der Fehler entsteht durch den Ubertrag von der 3. in
die 4. Stelle, wodurch eine negative Zahl vorgetiuscht wird. Dieser Ubertrag c; wird in ei-
ner Darstellung mit » Bits allgemein als c,.; bezeichnet. Der Ubertrag ¢, (allgemein c,) von
der 4. Stelle in die 5. Stelle heifit Carry (Cy). Er ist in diesem Beispiel nicht aufgetreten.

¢ Beispiel einer Bereichsiiberschreitung bei der Addition negativer Zahlen :

1 0 1 1 ~510
+ 1 0 1 1 ~510
= (1) 0 1 1 0 6]()

Auch in diesem Beispiel entsteht ein falsches Ergebnis. Es gab keinen Ubertrag c,.; von der
3. in die 4. Stelle aber einen Ubertrag ¢, von der 4. in die 5. Stelle.

e Zum Vergleich eine Addition zweier negativer Zahlen ohne Bereichsiiberschreitung:

1 1 1 1 1y
+ 1 1 0 1 31
= (1) 1 1 0 0 —410

Es gab die Ubertriige ¢, und c,.,.

Nun sollen diese Ergebnisse zusammen mit weiteren, hier nicht gezeigten Féllen in einer Ta-
belle zusammengefasst werden. Fiir zwei positive Dualzahlen 4 und B kann ein Uberlauf bei
der Rechnung im Zweierkomplement festgestellt werden, wenn die Ubertréige ¢, und ¢, |, wie
in der Tabelle 2-3 gezeigt, ausgewertet werden. Zusammenfassend kann festgestellt werden,
dass ein richtiges Ergebnis vorliegt, wenn ¢, = ¢,.; gilt, ein falsches, wenn ¢, # ¢,.; ist.

2.3 Festkomma-Arithmetik im Dualsystem 9

Tabelle 2-3 Uberlauf bei der Addition in einer n Bit-Zweierkomplement-Darstellung (4, B > 0).

Richtiges Ergebnis Uberlauf
A+ B ¢, =0, ¢,.1=0 ¢, =0, ¢, =1
A-B Cn=Cp.1 nicht moglich
-A-B =1, c=1 c,=1,¢,.0=0

2.3.7 Multiplikation

Die Multiplikation wird wie im Dezimalsystem ausgefiihrt. Hier ein Beispiel fiir die Multipli-
kation im Dualsystem 10;¢x11;5=110,¢:

1 01 0 x 10111
1 010
1 010

1 01 0
1101110

Das grofite zu erwartende Ergebnis £ der Multiplikation zweier n-Bit-Worter ist:
E:(zn_ 1) (2n_ 1):22)1_2n+1 +1 SzZn_ 1

Das Ergebnis einer Multiplikation zweier n-Bit-Zahlen ist also 2x-Bit lang. Es ist aber kleiner
als die mit 2» Bits maximal darstellbare Dualzahl 2*"~1. Das Gesagte gilt fiir eine Multiplikati-
on positiver Zahlen. Fiir das Rechnen in der Zweierkomplement-Darstellung kdnnen spezielle
Algorithmen verwendet werden [41], oder man muss die Zweierkomplement-Zahlen vor der
Multiplikation in ihre Betrdge zuriickverwandeln und das Ergebnis entsprechend dem Vorzei-
chen wieder in die gewiinschte Darstellung iiberfiihren.

Bei der Multiplikation von Fixkommazahlen werden zunichst die Zahlen ohne Berticksichti-
gung des Kommas multipliziert. Es gilt: Die Multiplikation zweier Zahlen mit » und k Stellen
hinter dem Komma ergibt ein Produkt mit n+k Stellen hinter dem Komma.

2.3.8 Division

Die Division kann mit dem gleichen Algorithmus durchgefiihrt werden, wie er im Dezimalsys-
tem verwendet wird. Das soll am Beispiel 10y, : 2;o= 5,9 demonstriert werden:

1010 :001°0=1P091
1 0
0 1
1

0
0
0

Entsprechend hat bei der Division einer Zahl mit n Stellen hinter dem Komma durch eine Zahl
mit & Stellen hinter dem Komma, der Quotient n-k Stellen hinter dem Komma. So ergibt sich
entsprechend dem obigen Beispiel (1,254 : 0,5, = 2,51¢):

1,010 : 00,10=10,1

Die Division von Zweierkomplement-Zahlen kann auf Multiplikation und Addition zuriickge-
fiihrt werden [41].

10 2 Codierung und Zahlensysteme

2.4 Gleitkommadarstellung von reellen Zahlen

2.4.1 Einleitung: Gleitkommadarstellung im Dezimalsystem

Grofle Zahlen werden in der Regel mit Hilfe der Gleitkommadarstellung dargestellt. Ein Bei-
spiel ist die Darstellung der Lichtgeschwindigkeit: 2,99792458 - 10® m/s. In allgemeiner Form:

z=m-b° (2.11)
Die Zahl m wird Mantisse genannt und e ist der Exponent. Dabei ist e eine ganze Zahl und m
eine vorzeichenbehaftete Festkommazahl. In diesem Beispiel ist die Mantisse 2,99792458 und
der Exponent 8. Typisch fiir eine Gleitkommadarstellung ist ihre Basis b. Im Beispiel ist die

Basis b = 10. Sowohl der Exponent als auch die Mantisse haben ein Vorzeichen. In Rechnern
verwendet man eine Darstellung im Dualsystem mit der Basis b = 2.

2.4.2 Gleitkommadarstellung im Dualsystem

In diesem Kapitel wird die Gleitkommadarstellung im Dualsystem beschrieben. In der Infor-
matik heilit dieser Zahlentyp ,,Real”, da damit reelle Zahlen dargestellt werden konnen. Die
Darstellung nach der weitverbreiteten Norm [EEE-754 hat allgemein die Form:

z=(1)"1m-2° =(-1)"-1m-2¢€" 9 (2.12)
e sist das Vorzeichen der Mantisse, es wird durch ein Bit dargestellt.

e 1,mist der Betrag der Mantisse. Er wird als duale Festkommazahl mit einer Stelle vor
dem Komma gespeichert, die immer eine Eins ist. Der Teil m nach dem Komma heif3t
Fraction. m wird durch geeignete Wahl des Exponenten so gewéhlt, dass

2> |1,m|>1 (2.13)

gilt, was nur fiir Zahlen z # 0 mdoglich ist. Daher ist die Null nicht darstellbar. Gleit-
kommadarstellungen, die die Bedingung 2.13 erfiillen, heiflen normalisiert. Die Man-
tisse hat im Rechner eine feste Anzahl digitaler Stellen #,,,.

¢ Anstelle des Exponenten e wird eine Charakteristik ¢ = e + g gespeichert. Sie hat eine
feste Anzahl Stellen n.. Durch die Addition des Excesses ¢ wird der Exponent e so
verschoben, dass nur positive Zahlen gespeichert werden miissen. Der Exzess betragt

g=2""1 (2.14)

so dass sich z.B. mit 8 Stellen (n. = 8) ein Excess von 127 ergibt. Damit sind Expo-
nenten von —127 bis 128 darstellbar. Die kleinste Charakteristik 0 ergibt sich, wenn
der kleinste Exponent —127 durch die Addition des Excesses 127 zu Null wird. Die
grofite Charakteristik, ndmlich die grofite mit 8 Bit darstellbare Zahl 255, erhélt man
durch die Summe des groBten Exponenten 128 und des Exesses 127.

Tabelle 2-4 Anzahl der digitalen Stellen flir Vorzeichen, Exponent und Mantisse nach IEEE-754.

Anzahl der Stellen in Bit

Vorzeichen n, Charakteritik 7, Mantisse n,,
Single Precision 1 8 23

Double Precision 1 11 52

2.4 Gleitkommadarstellung von reellen Zahlen 11

Zwei héufig verwendete Zahlenformate nach IEEE-745 sind Single Precision und Double Pre-
cision. Laut Tabelle 2-4 werden 1+ n, + n,, binire Stellen verwendet. Zahlen im Zahlenformat
Single Precision benétigen also 32 Bit, im Format Double Precision 64 Bit.

Beispiel:

Es soll die reelle Zahl —0,171875), in die Single Precision-Darstellung nach IEEE-745 gewan-
delt werden. Die erste Stelle ist das Vorzeichen s. s = 1 steht fiir eine negative, s = 0 fiir eine
positive Mantisse. In diesem Fall gilt also s = 1

Zuerst wandelt man die Dezimalzahl in eine Dualzahl:

—0,171875,5 =—0,001011,

AnschlieBend wird die Zahl normalisiert, sie hat dann die Form 1,m - 2":

-0,001011,=-1,011 - 2

27 bedeutet also analog zum Dezimalsystem eine Verschiebung um 3 Stellen. Die Mantisse

wird ohne die 1 vor dem Komma gespeichert und durch Nullen auf 23 Bit erweitert oder gege-
benenfalls auf 23 Stellen gerundet:

m =4011 0000 0000 0000 0000 0000

Zum Exponenten e = —3 wird der Excess ¢ addiert (fiir Single Precision g = 127), um die Cha-
rakteristik ¢ zu erhalten. Sie wird als 8-stellige Dualzahl abgespeichert:

c=e+q=-3+127=124,,=01111100,
Nun wird durch Aneinanderreihen von s, ¢ und m die zu speichernde Zahl gebildet:
s c m
1 01111100 011 0000 0000 0000 0000 0000
Die gesuchte Binédrzahl ist also: 1011 1110 0011 0000 0000 0000 0000 0000,.

2.4.3 Spezielle Zahlendarstellungen

e Die Null ist zunédchst nicht darstellbar, da die Mantisse 1,m ist und damit immer un-
gleich O ist. Ersatzweise hat man dafiir die Zahl mit der Mantisse 1,00... und der Cha-
rakteristik 0 definiert. Dies ist die kleinste darstellbare Zahl, die als 0 definiert wird.
Da beide Vorzeichen zugelassen sind, erhilt man zwei Darstellungen der Null.

e Fiir die Darstellung von * unendlich stehen die Zahlen mit der Mantisse 1,00... und
der grofBtmoglichen Charakteristik. In der Darstellung Single Precision ist das die 255.

e Zusitzlich gibt es eine Darstellung, die NaN (not a Number) genannt wird. Diese Zahl
wird nicht als Gleitkommazahl betrachtet und fiihrt in der Regel zum Abbruch der
Rechnung.

Tabelle 2-5 Spezielle Darstellung von Null, Unendlich und NaN nach IEEE-754 fiir Single Precision.

Vorzeichen Charakteristik Fraction
Null 0 oder 1 0 0
+ unendlich 0 oder 1 255 0

Keine Zahl (NaN) 0 oder 1 255 £0

12 2 Codierung und Zahlensysteme

2.5 Hexadezimalcode

In der Praxis hat sich neben dem Dualcode auch der Hexadezimalcode durchgesetzt, da er
gegeniiber langen Dualzahlen iibersichtlicher ist. Die 16 Hexadezimalziffern sind definiert
durch die Tabelle 2-6. Die Hexadezimalziffern groBer als 9 werden durch die Buchstaben A-F
dargestellt. Fiir die Umwandlung einer Dualzahl in eine Hexadezimalzahl fasst man jeweils 4
Ziffern der Dualzahl zusammen, die als eine Hexadezimalstelle interpretiert werden. Dadurch
hat eine Hexadezimalzahl nur ein Viertel der Stellen wie eine gleichgrof3e Dualzahl. Bsp.:

1011 1110 0011 0000

B E 3 0
Es gilt also 1011 1110 0011 0000, = BE30,6. Zur Kennzeichnung einer Hexadezimalzahl sind
auch die Zeichen H und $ iiblich. Die Umwandlung einer Hexadezimalzahl in eine Dezimal-
zahl und umgekehrt geschieht am einfachsten iiber die entsprechende Dualzahl. Es ist aber
auch moglich, die Umwandlung iiber einen Algorithmus wie bei der Umwandlung einer Dual-
zahl in eine Dezimalzahl durchzufiihren. Die umgekehrte Umwandlung wiirde analog zur Glei-
chung 2.2 durchzufiihren sein.

Tabelle 2-6 Diec Hexadezimalziffern O bis F.

Dez. 0 1 2 9 10 11 12 13 14 15
Dual | 0000 { 0001 | 0010 | ... | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
Hex. 0 1 2 9 A B C D E F

2.6 Oktalcode

Der Oktalcode wird dhnlich verwendet wie der Hexadezimalcode, nur dass jeweils 3 Stellen
einer Dualzahl zusammengefasst werden. Fiir den Oktalcode werden die Ziffern 0 bis 7 des
Dezimalcodes verwendet, er wird oft auch mit dem Index O gekennzeichnet. Bsp.:

110|101|100|011
6 | 5 | 4 | 3
Es gilt also 110 101 100 011, = 65435,

2.7 Graycode

Oft bendtigt man in der Digitaltechnik eine Codierung fiir einen Zahlencode, bei dem beim
Ubergang von einer Zahl zur nichsten sich nur eine Ziffer &ndern soll. Diese Bedingung ist
notwendig, wenn durch technische Ungenauigkeiten der Zeitpunkt der Umschaltung nicht
genau eingehalten werden kann. Bei einer gleichzeitigen Umschaltung von 2 Ziffern konnten
sich daher Fehlschaltungen ergeben. Als Beispiel fiir einen derartigen Fehler soll die Umschal-
tung von 1,4 auf 2, im Dualcode betrachtet werden:

0001 ¥ N
Y 0000 0011
0010

Bei dieser Umschaltung dndern sich die Bits 0 und 1. Bei gleichzeitigem Umschalten wird die
neue Zahl direkt erreicht. Wechselt erst das Bit 0, so erscheint zunéchst die Zahl 0000 und erst

2.9 Alphanumerische Codes 13

wenn sich auch Bit 1 dndert, erhilt man die richtige Zahl 0010. Andert sich zuerst das Bit 1
und dann Bit 0, so wird zwischendurch die Zahl 0011 sichtbar. Graycodes vermeiden diesen
gravierenden Fehler dadurch, dass sich von einem Codewort zum néchsten nur eine Stelle
andert. Die Tabelle 2-7 zeigt einen 3-stelligen Graycode. Der gezeigte Code hat zusétzlich die
Eigenschaft, dass er zyklisch ist, da sich auch beim Ubergang von der hochsten Zahl (7o) zu
der niedrigsten (0;¢) nur eine Stelle dndert. Zyklische Graycodes konnen fiir alle geraden Peri-
odenléngen konstruiert werden.

Tabelle 2-7 Beispiel fiir einen 3-stelligen Graycode.

Dezimal | Graycode Dezimal Graycode
0 000 4 110
1 001 5 111
2 011 6 101
3 010 7 100

2.8 BCD-Code

Will man zum Beispiel die Dezimal-Ziffern einer Anzeige ansteuern, so eignet sich ein Code,
bei dem den einzelnen Dezimal-Ziffern dual codierte Code-Worter zugeordnet sind. Dieser
Code wird als BCD-Code (Binédr-codierte Dezimalzahl) bezeichnet. Eine Mdglichkeit besteht
darin, die Dezimal-Ziffern durch jeweils eine 4-stellige Dualzahl darzustellen. Da die einzelnen
Stellen die Wertigkeiten 8, 4, 2 und 1 haben, wird der Code 8-4-2-1-Code genannt. Es gibt
auch die Moglichkeit, einen BCD-Code mit den Gewichten 2, 4, 2, 1 aufzubauen (Aiken-
Code). Andere BCD-Codes sind der 3-Exzess-Code und der BCD-Gray-Code [3].

Tabelle 2-8 BCD-Code.

Dezimalziffer |8-4-2-1-Code ||Dezimalziffer |8-4-2-1-Code
0 0000 5 0101
1 0001 6 0110
2 0010 7 0111
3 0011 8 1000
4 0100 9 1001

2.9 Alphanumerische Codes

Es existiert eine Vielzahl von Codes fiir die Darstellung alphanumerischer Zeichen durch Bin-
arziffern. Ein bekanntes Beispiel ist der ASCII-Code (ASCII = American Standard-Code for
Information Interchange), der auch eine Reihe von Steuerzeichen enthilt (Tabelle 2-9).

14 2 Codierung und Zahlensysteme

Tabelle 2-9 ASCII-Code (ohne Steuerzeichen).

ASCII Zei- ASCII Zei- ASCII Zei- ASCII Zei- ASCII Zei- ASCII Zei-
chen chen chen chen chen chen

20 SP 30 0 40 @ 50 P 60 ’ 70 P

21 ! 31 1 41 A 51 Q 61 a 71 q

22 " 32 2 42 B 52 R 62 b 72 r

23 # 33 3 43 C 53 S 63 c 73 S

24 $ 34 4 44 D 54 T 64 d 74 t

25 % 35 5 45 E 55 U 65 e 75 u

26 & 36 6 46 F 56 v 66 f 76 v

27 ' 37 7 47 G 57 A\ 67 g 77 w

28 (38 8 48 H 58 X 68 h 78 X

29) 39 9 49 I 59 Y 69 i 79 y

2A | * 3A |: 4A |] 5A |Z 6A |j TA |z

2B |+ 3B |; 4B K SB[6B |k 7B | {

2C |, 3C |< 4C |L 5C |\ 6C |1 7C ||

2D |- iD |= 4D (M 5D |] 6D |m 7D }

2E . 3E > 4E N SE A 6E n 7E

2F / 3F ? 4F (0] SF _ 6F 0 7F DEL

2.10 Ubungen

Aufgabe 2.1 Wandeln Sie die folgenden Dualzahlen in Dezimalzahlen um:
a) 1110,101 b) 10011,1101

Aufgabe 2.2 Wandeln Sie die folgenden Dezimalzahlen in Dualzahlen um:
a) 33,125 b) 45,33

Aufgabe 2.3 Berechnen Sie die untenstehenden Aufgaben mit Hilfe des Zweierkomplements
bei einer Wortldnge von 6 Bit. Geben Sie an, ob es eine Bereichsiiberschreitung gibt.

a) 010101 — 001010 b)—010111 — 011011

Aufgabe 2.4 Berechnen Sie im Dualsystem:

a) 110101 - 010101

b) 1101110 : 110

Aufgabe 2.5 Entwickeln Sie einen zyklischen Graycode mit der Periodenlénge 6.

Aufgabe 2.6 Welche reelle Zahl wird durch die Single Precision Zahl C23A8000,s nach IEEE-
754 dargestellt?

®

Check for
updates

3 Schaltalgebra

Die Digitaltechnik hat der Analogtechnik voraus, dass sie auf einer relativ einfachen, aber
dennoch machtigen Theorie beruht, der booleschen Algebra, die auch Schaltalgebra genannt
wird. In diesem Kapitel werden diese theoretischen Grundlagen der Digitaltechnik dargestellt.
Die boolesche Algebra kann man auf fast alle bei der Entwicklung einer digitalen Schaltung
vorkommenden Probleme anwenden, unter der Bedingung, dass einige technologische Voraus-
setzungen erfiillt sind, die im Kapitel 4 behandelt werden.

3.1 Schaltvariable und Schaltfunktion

In der Digitaltechnik verwendet man spezielle Variablen und Funktionen. Unter einer Schaltva-
riablen versteht man eine Variable, die nur die Werte 0 oder 1 annehmen kann. Mit Schaltvari-
ablen kdnnen Funktionen gebildet werden. Eine Funktion:

v = f(x1, xp, X3,... X,) mitx;, y €{0,1} 3.D

nennt man zn-stellige Schaltfunktion oder Binédrfunktion. Der Wertebereich der Funktionswerte
enthélt wieder die Elemente 0 und 1. Funktionen konnen durch Tabellen definiert werden, in
denen die Funktionswerte zu den moglichen 2" Kombinationen der n Eingangsvariablen aufge-
listet sind. Derartige Tabellen werden Wahrheitstabellen genannt.

Eine sehr einfache Funktion, die die Eingangsvariable x mit der Ausgangsvariablen y ver-
kniipft, ist durch Tabelle 3-1 gegeben. Man erkennt, dass Schaltfunktionen durch eine Tabelle
definiert werden konnen, in der alle Werte der Eingangsvariablen enthalten sind, da ja nur die
beiden Elemente 0 und 1 zu berticksichtigen sind.

Tabelle 3-1 Wahrheitstabelle eines Inverters.

x|y
1
110

Die durch die Tabelle 3-1 definierte Schaltfunktion y = f(x) wird Negation, Komplement, oder
NOT genannt. Sie wird im Folgenden durch den Operator — gekennzeichnet:

y="x 3.2)
Sprich: y gleich nicht x

Die Negation ist eine einstellige Schaltfunktion, da sie nur ein Eingangssignal besitzt. In
Schaltplédnen wird die Realisierung dieser Funktion, der ,Inverter”, durch das Schaltsymbol in
Bild 3-1 gekennzeichnet.

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018
K. Fricke, Digitaltechnik, https://doi.org/10.1007/978-3-658-21066-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-21066-3_3&domain=pdf

16 3 Schaltalgebra

Bild 3-1 Schaltsymbol des Inverters.

Gibt es noch weitere einstellige Schaltfunktionen? Durch systematisches Probieren findet man
insgesamt 4, die in Tabelle 3-2 zusammengefasst sind. Andere Kombinationen der Ausgangs-
Schaltvariablen y gibt es nicht. Man stellt fest, dass die Funktion y = x eine Durchverbindung
darstellt. Die Schaltfunktionen y = 0 und y =1 erzeugen Konstanten, die unabhéngig vom Ein-
gang sind. Nur die einstellige Bindrfunktion y = —x ist daher fiir die Schaltalgebra wichtig.

Tabelle 3-2 Einstellige Bindrfunktionen.

Wabhrheitstabelle | Funktion Schaltzeichen Name
x|y 3
0] 0 y=0
110
x |y y=x 1
0]o0 S I
111
NOT,
x =
0 Jl/ e x— I p— y | Komplement,
1 1o Negation
X y=1
011
1 1

3.2 Zweistellige Schaltfunktionen

Prinzipiell kann man Binérfunktionen mit beliebig vielen Eingangsvariablen bilden. Es hat sich
aber als praktisch erwiesen, zunédchst nur Funktionen mit einer oder zwei Eingangsvariablen zu
betrachten und Funktionen mit mehr Eingangsvariablen darauf zuriickzufiihren.

Eine bindre Funktion mit den Eingangsvariablen x, und x; kann wieder durch eine Tabelle
definiert werden. Man kann sich die Kombination der Eingangsvariablen x, und x; als einen

3.2 Zweistellige Schaltfunktionen 17

Vektor X = [x), xo] vorstellen. Bei zwei Eingangsvariablen gibt es 4 mogliche Eingangsvekto-
ren X, die oft mit ihrem Dezimaldquivalent indiziert werden. So bedeutet X,, dass x; =1 und x,
=0 gilt, oder anders ausgedriickt, dass X, =[x}, xo] =[1,0].

Technisch wichtig sind neben der Negation die Grundverkniipfungen UND und ODER, die
durch die Tabelle 3-3 definiert sind. Man bezeichnet UND auch als AND oder Konjunktion,
sowie ODER als OR oder Disjunktion.

Tabelle 3-3 Grundverkniipfungen UND und ODER.

Wahrheitstabelle Funktion Schaltzeichen Name

X1 | Xo [)V

ololo Y=XoAX Xo— UND,
0[1]o0 o] & |anp,
11010 Konjunktion
111
X | Xo |)Y

0 0 0 Y =X V X Xo — ODER,
011 y >1 =Y |oR,

1 [{0]1 Disjunktion
111

Es stellt sich die Frage nach den anderen moglichen 2-stelligen Bindrfunktionen. Um diese
Frage systematisch zu beantworten, kann man die Werte der Ausgangsvariablen y permutieren,
welche aus den 4 moglichen Eingangsvektoren resultieren. Eine Funktion y(x;, xo) kann allge-
mein durch die Wahrheitstabelle 3-4 definiert werden.

Tabelle 3-4 Wahrheitstabelle fiir eine 2-stellige Binirfunktion.

X1 | Xo y
0 | »(0,0)
1 | »0,1)
1|0 | »10)
{1 |yLD

Man erkennt aus der Tabelle, dass man 22" =16 verschiedene binire Funktionen mit n=2
Eingangsvariablen bilden kann. Alle moglichen zweistelligen Bindrfunktionen sind in Tabelle
3-5 aufgelistet. Die Darstellung der biniren Funktionen ist in einer DIN-Norm festgelegt [10].

18 3 Schaltalgebra

Tabelle 3-5 2-stellige Binédrfunktionen: Wahrheitstabelle, Darstellung durch (AND, NOT, OR), Schalt-

symbol und Funktionsname.

Wahrheitstabelle Funktion Schaltsymbol Name
x|1lo]1]o
x|1lt]o]o
lylololofo] y=0 Null
y=—|(xovx) X0
|y lofofo]1] y:xOVxll o |10y NOR
Ly lofoli]o] Y =XoATX Inhibition
| y | 0 | 0 | 1 | 1 | y=m Komplement
[y Jol1JoJo] y=xAx Tnhibition
| y | 0 | 1 | 0 | 1 | y="x Komplement
y=(—xg A X))V (Xg A —X1)]
Ly lof1[i]o] Oy:;owxlo Y ey EXOR
y==(x0 A X1) —
Ly lofifi]1] y:xOOXxll o | & p-y NAND
|y | 1 |0|0|0| Y=XgAX fl’:&—y UND, AND
| y | 1 | 0 | 0 | 1 | y:(xo;\fli\/(_(::()/\ﬁxo i?_ = —Y Aquivalenz
- A0 1 —
Ly ltloli]o] Y =X Identitit
Ly Jilofi]1] Y=XoV Implikation
| y | 1 | 1 | 0 | 0 | y=x Identitit
Ly lififof1] y="w VX Implikation
[y TiJi]1]o] y=xvx Y |21~y | opEr or
Ly lofo]a]1] y=1 Eins

3.2 Zweistellige Schaltfunktionen 19

Die technisch wichtigen Funktionen NAND, NOR, Aquivalenz, und EXOR (auch Exklusiv-
Oder, Antivalenz genannt) haben ein eigenes Schaltsymbol. Sie werden in der Praxis oft durch
spezielle Schaltungen realisiert.

Es ist in der Tabelle 3-5 auch dargestellt, wie die einzelnen Funktionen nur durch die Verkniip-
fungen AND, OR und NOT dargestellt werden konnen. Daher ist jede bindre Funktion durch
diese 3 Verkniipfungen darstellbar. Auch allein durch die Funktion NOR, ebenso wie allein
durch die Funktion NAND konnen alle bindren Funktionen dargestellt werden. Diese Funktio-
nen nennt man daher ,,vollstindig*.

Der Beweis der Aquivalenzen kann durch das Aufstellen der Wahrheitstabellen geschehen. So
soll zum Beispiel die in Tabelle 3-5 dargestellte Aquivalenz fiir die EXOR-Verkniipfung durch
AND, OR und NOT bewiesen werden:

Xo P x; = ("xg AX1) V (Xo A7) (3.3)

In Tabelle 3-6 werden zunéchst die beiden Klammerausdriicke ausgewertet. Danach wird das
logische OR der beiden Klammerausdriicke gebildet und in die 5. Spalte geschrieben. Da die
vorletzte und die letzte Spalte iibereinstimmen ist die Gleichheit bewiesen, denn in der letzten
Spalte steht die Definition der Exklusiv-Oder-Funktion.

Tabelle 3-6 Beweis durch eine Wahrheitstabelle.

X1 | Xo | X0 AX; Xo A | (TxXo A Xp) V(X0 ATX) Xo €D Xy
0fo0 0 0 0 0
01 0 1 1 1
1 {0 1 0 1 1
1|1 0 0 0 0

20 3 Schaltalgebra

3.3 Rechenregeln

Wichtig fiir die Vereinfachung komplizierter Funktionen sind die Rechenregeln der booleschen
Algebra. Die einzelnen Gesetze konnen durch die Verwendung von Wahrheitstabellen bewie-
sen werden. Die Rechenregeln der booleschen Algebra sind im Folgenden aufgelistet:

Kommutativgesetze:
Xo A X=X A Xg (3.4
Xo VX=X V Xg (3.5
Assoziativgesetze:
(xo AX1) AXy=X0 A (X] AX2) (3.6)
(xovx)Vx=xV(x;VXx) 3.7
Distributivgesetze:
Xo A (X1 Vx2) = (xg A X))V (X0 AX) (3.8)
Xo V(X1 A X2) = (Xo v X1) A (X0 V X2) (3.9)
Absorptionsgesetze:
Xo A (X0 VvV x1) =X (3.10)
Xo V (X0 A X2) = Xo (3.1D)

Existenz der neutralen Elemente:

XoA 1 =x (3.12)

X0 v 0=x (3.13)
Existenz der komplementiren Elemente

XoAxo=0 (3.14)

XoV =1 (3.15)
De Morgansche Theoreme:

Xo AXxp="("%9 VvV x) (3.16)

Xo VX1 ="("Xg A X)) (3.17)

Aus der Symmetrie der Gesetze erkennt man folgendes:

Gilt ein Gesetz, so gilt auch das Gesetz, welches man erhélt, indem man AND mit OR und die
Konstanten 0 mit 1 vertauscht. Das so erhaltene Gesetz bezeichnet man als das duale Gesetz.
So sind zum Beispiel die Gesetze 3.16 und 3.17 zueinander dual. Analog bezeichnet man eine
Funktion F', die aus der Funktion F durch Vertauschen von AND mit OR und 0 mit 1 entstan-
den ist, als die zu F duale Funktion.

Wichtig ist es auch festzustellen, dass NAND und NOR nicht assoziativ sind. Es gilt also:
(XOK)C])K)Q # xOK(XIsz) (318)

(XOVX|)VX2 ;é)C()V(X[V)Cz) (319)

3.5 Kanonische disjunktive Normalform (KDNF) 21

3.4 Vereinfachte Schreibweise

Kompliziertere Funktionen sind oft nicht leicht zu lesen:
13, X2, X1, X0) = ((H2ATXIATXG) V (TX2AXIATXG) V (TH2AX | AX) V (XA AX) (3.20)

In einer vereinfachten Schreibweise, die aber nicht in der Norm festgehalten ist, kann man die
Konjunktionszeichen und die Klammern weglassen. Damit vereinbart man auch gleichzeitig,
dass die Konjunktionen zuerst gebildet werden und anschlieBend die Disjunktionen. Man
schreibt daher Gleichung 3.20 folgendermaf3en:

f(X3, X2, X1, X()) = TN TX T X V TX0X 1 X V TX0X 1 X V X2T XX (321)

3.5 Kanonische disjunktive Normalform (KDNF)

Jede bindre Funktion kann allein durch AND, OR und NOT dargestellt werden. Das kann auf
systematische Art und Weise geschehen wie es am Beispiel der in Tabelle 3-7 gegebenen
Funktion gezeigt werden soll. Man kann auf zwei verschiedene Arten vorgehen. Wir beginnen
mit der kanonischen disjunktiven Normalform (KDNF).

Tabelle 3-7 Wahrheitstabelle fiir Beispiel zur KDNF.

Xy | x1 | xo | Dezimal | y
00O 0 1
0101 1 0
O(1]0 2 1
011 3 1
1 0|0 4 0
1101 5 1
1 [{1]0 6 1
I [1]1 7 0

Man betrachtet dazu zunichst die Eingangsvektoren X;, fiir die die Funktion y = f(X) den Wert
1 annimmt. Es gilt also fiir diese Eingangsvektoren f(X;) = 1. In unserem Fall sind das X;, X5,
X;, Xs, und Xs. Nun bildet man fiir jeden dieser Eingangsvektoren eine Konjunktion der Ele-
mente x;, die genau fiir diesen Eingangsvektor den Wert 1 annimmt. Fiir X5 wére das:

mMs = X7 X1Xo (322)

Man nennt ms auch Minterm. Die Minterme enthalten immer alle Eingangsvariablen, sie wer-
den deshalb auch Vollkonjunktionen genannt. In einem Minterm kommen alle Eingangsvariab-
len invertiert oder nichtinvertiert vor, je nachdem, ob die entsprechende Eingangsvariable 1
oder 0 ist. Fiir das Beispiel sind die anderen Minterme:

22 3 Schaltalgebra

My = "X 7| "o (3.23)
My = "X X1 "Xp (3.24)
m3 = "Xy X Xo (3.25)
Mg = XX "X (3.26)

Ein Minterm hat also fiir einen bestimmten Fall der Eingangsvariablen den Wert 1.

Die gesamte Funktion muss durch die Disjunktion der Minterme dargestellt werden, denn die
Funktion soll den Wert 1 bekommen, wenn einer der Minterme gleich 1 wird. Diese Darstel-
lungsweise heilit kanonische disjunktive Normalform (KDNF). Sie heiflit kanonisch, da in je-
dem Minterm alle Variablen vorkommen. In unserem Fall kann die Funktion dargestellt wer-
den durch:

y=moNvmyNvVmzNV ms\N mg =

V= TXX 1 XV T XX T X VTN X1 XV XTX] X VX X1 X

(3.27)

3.6 Kanonische konjunktive Normalform (KKNF)

Alternativ konnen fiir die Darstellung der Funktion die Eingangsvektoren X; verwendet wer-
den, bei denen die Funktion den Wert 0 annimmt. Dann gilt also f(X;) = 0. Bei der Funktion in
Tabelle 3-7 sind das X;, X; und X5.

Es werden die so genannten Maxterme M, gebildet. Das sind die Disjunktionen, die genau dann
gleich 0 sind, wenn der entsprechende Eingangsvektor X; anliegt:

M1:X2 VX1V ™X (328)
M4 =X VX VX (329)
M7 =XV X1V X (330)

Es miissen also die Eingangsvariablen, die im Eingangsvektor gleich 1 sind, invertiert im Max-
term auftreten. Die Eingangsvariablen, die im Eingangsvektor gleich 0 sind, erscheinen im
Maxterm nichtinvertiert. So wird der Maxterm M nur fiir x,= 0, x; =0, xo= 1 gleich 0.

Die gesamte Funktion kann nun durch die Konjunktion der Maxterme dargestellt werden, denn
der Funktionswert darf nur 0 sein, wenn mindestens einer der Maxterme gleich 0 ist. Die kano-
nische konjunktive Normalform (KKNF) genannte Darstellungsform ist fiir unser Beispiel:

y:Ml /\M4 /\M7 :(XQ V X \/_‘Xo) A (_‘Xz V X1 \/)Co) A (_'XQ\/_‘Xl V_‘X())
(3.31)

3.7 Darstellung von Funktionen mit der KKNF und KDNF 23

3.7 Darstellung von Funktionen mit der KKNF und KDNF

In der Praxis stellt sich oft die Frage, wie man von einem konkreten Problem zu der dazugeho-
rigen Schaltfunktion kommt. Dazu betrachten wir das Beispiel der Funktion ,,Gerade Paritit™ f;
in Tabelle 3-8. Es soll eine Schaltung mit 3 Eingéngen x,, x;, x, realisiert werden, welche am
Ausgang y genau dann eine 1 ausgibt, wenn eine gerade Anzahl der Eingangssignale 1 ist.
Dies ist eine Verallgemeinerung der Aquivalenzfunktion auf mehrere Eingangsvariablen, im
Beispiel in Tabelle 3-8 werden 3 Eingangsvariablen verwendet. Als Erstes stellen wir die
Wabhrheitstabelle der Funktion y = fi(x,, x1, Xo) auf. Dazu betrachten wir alle Kombinationen
der Eingangssignale, fiir die der Ausgang 1 sein soll. Es sind dies die Fille, in denen zwei oder
keine 1 an den Eingéngen anliegt. Das sind alle vorkommenden Fille. In Tabelle 3-8 ist zusétz-
lich das Dezimaldquivalent des Eingangsvektors angegeben.

Tabelle 3-8 Wahrheitstabelle fiir das Beispiel der Funktion ,,Gerade Paritit“ y = f,(x, x1, xo).

X | x1 | xo | Dezimal- | y
dquivalent
0010 0 1
001 1 0
o110 2 0
011 3 1
10O 4 0
1 0|1 5 1
1 {10 6 1
1|11 7 0

Dann stellen wir die KDNF auf. Wir bendtigen die Minterme m; fiir die Eingangsvektoren mit
den Dezimaldquivalenten 6, 5, 3, 0. Diese Minterme werden durch ein logisches ODER ver-
kniipft. Die KDNF fiir dieses Beispiel ist also:

V=XX1 X V X2 Xo V XX Xo VXX X (3.32)

Das entsprechende Schaltnetz besitzt 4 UND-Gatter, die ein ODER-Gatter mit 4 Eingédngen
speisen. In Bild 3-2 sind auch die Inverter eingezeichnet, die die invertierten Eingangsvariablen
liefern.

24 3 Schaltalgebra

xg ——(
X1 &

X2 ||

X0 o |

X aq&

x; L |: >1 y
X — '—
x? & ’_

X — Q|

X

x| g &

X2

Bild 3-2 Schaltnetz fiir die Realisierung der KDNF der Funktion ,,Gerade Paritat*.

Die KKNF wird durch die Maxterme mit den Dezimaldquivalenten 1, 2, 4, 7 gebildet. Diese
werden logisch UND-verkniipft. Die KKNF fiir das Beispiel ergibt sich daher zu:

y=(x VXV)V Vg Vg VX)) (tx Vo vTxg) (3.33)

B

gl

Bild 3-3 Schaltnetz fiir die Realisierung der KKNF der Funktion ,,Gerade Paritit*.

Die KKNF und die KDNF sind gleichwertige Darstellungsformen fiir eine Funktion. Sie sind
aber oft unterschiedlich komplex, da sich die Anzahl der Minterme nach der Anzahl der Ein-
gangsvektoren richtet, bei der die Funktion den Wert 1 annimmt, wihrend die Zahl der Max-
terme durch die Anzahl der Eingangsvektoren bestimmt wird, fiir die die Funktion O ist. Im
vorliegenden Fall sind die KKNF und die KDNF aber beziiglich ihres Aufwandes gleich.

Fiir die Arbeit mit Normalformen ist eine Verallgemeinerung der de Morganschen Gesetze
wichtig. Der so genannte Shannonsche Satz lautet:

Fiir eine beliebige boolesche Funktion y = f(xy, x1,..., X, , A,V,<2,6,1,0) gilt

W= f(_Lx09_Lx17"'9 Wy, Vo A 9Haﬂ_)s 091)

3.8 Minimieren mit Hilfe der Schaltalgebra 25

Das bedeutet, dass die Variablen invertiert werden miissen, und alle Operationen durch ihre
dualen ersetzt werden. Gegeben ist zum Beispiel die Funktion:

y=(x VXV A XV XV X)
Dann gilt nach dem Shannonschen Satz auch:
P =("X A TX AXg) V(X2 A XA TX)

Mit dieser Regel kann man die KKNF auch aufstellen, indem man die KDNF der inversen
Funktion bestimmt. Wenn man z.B. in der Tabelle 3-8 in der 5. Spalte y durch —y und alle
Nullen durch Einsen ersetzt, erhélt man:

TP =TT X VTN XX VX T T VX X X (3.34)

Nun wendet man den Shannonschen Satz an und erhélt, wie man durch Vergleich mit Glei-
chung 3.33 feststellt, direkt die KKNF:

y= ()Cz VXV _‘X())(XZ VX VvV X())(_‘Xz VXV XO)(_‘XZ VX VvV _‘Xo) (335)

3.8 Minimieren mit Hilfe der Schaltalgebra

Die KKNF und die KDNF eignen sich hauptsidchlich zum Aufstellen der booleschen Gleichun-
gen. Beziiglich des Aufwandes an Gattern sind diese Formen aber nicht ideal. Zum Vereinfa-
chen eignet sich sehr gut eine Identitét, die im Folgenden hergeleitet werden soll:

X0 X V Xg Xy

=Xo (x1 v 7x1)

=xo Al

= %o
Es gilt also:

Xo X1 V X X = X (3.36)
Die duale Regel ist:

(X0 V x1)(Xo vV 7X1) = Xo (3.37)
Bsp.: Es soll die folgende Funktion minimiert werden:

V=XoTX X X3 V XX X2 X3 V XX X2 X3 V XX Xp X3 V XXX X3

Man erkennt, dass man z.B. die Terme 1 und 2, 2 und 3 sowie 4 und 5 zusammenfassen kann.
Zuerst fasst man die beiden ersten Terme zusammen, l4sst aber den zweiten bestehen, da man
ihn noch fiir die Zusammenfassung mit dem dritten Term benotigt:

Y =XoX2X3V XgX1X2X3 V XgX1"X2X3V " XX X2X3 V T XX X2 X3

Dann fasst man von diesem Ausdruck die Terme 2 und 3 sowie 4 und 5 zusammen:
Y =XoXaX3V XgX1 X3V XX X3

Die letzten beiden Terme kdnnen zusammengefasst werden:
Y = XoX2X3 V X1 X3

Diese Darstellung ist minimal. Man bendétigt filir die Realisierung nur 2 AND-Gatter und ein
OR-Gatter. Eine graphische Methode fiir die Minimierung wird im Kapitel 6 vorgestellt.

26 3 Schaltalgebra

3.9 Schaltsymbole

Die verwendeten Schaltsymbole der Digitaltechnik in diesem Buch entsprechen der DIN
40900. In dieser Vorschrift wurden zundchst nur die alten runden Schaltsymbole durch neue
rechteckige ersetzt, da man sicher war, dass runde Schaltzeichen von Computern nicht ge-
zeichnet werden konnen. Inzwischen wurde aber in die Vorschrift auch die Abhingigkeitsnota-
tion aufgenommen, die es erlaubt, das Verhalten von digitalen Schaltungen aus dem Schaltbild
ablesen zu konnen.

Hier wird eine kurze Einleitung in die verwendete Systematik gezeigt. In den einzelnen Kapi-
teln werden die verwendeten Symbole bei ihrem Auftreten in bestimmten Schaltungen erklért.
Im Anhang folgt eine tabellarische Zusammenfassung.

3.9.1 Grundsiitzlicher Aufbau der Symbole

Die Symbole haben eine Umrandung, in der sich oben ein Symbol befindet, welches die grund-
sétzliche Funktion der Schaltung kennzeichnet (Bild 3-4). In den bisher besprochenen Symbo-
len waren das die Symbole &, 21, =1, 1. Eine Tabelle tiber die moglichen Symbole findet man
im Anhang.

Symbol zur Beschreibung der Schaltung

-

[J—
=

[—
-J
-

[J—
=

[—

Eingénge Ausginge

-

| J—
9

-
| — |

| J—
=

P o

Symbol zur Beschreibung der Ein- und Ausgénge

Bild 3-4 Generelle Struktur eines Schaltsymbols.

Die Eingénge werden in der Regel links, die Ausginge in der Regel rechts des Symbols ange-
ordnet. Wird von dieser Regel abgewichen, so muss die Signalrichtung durch Pfeile gekenn-
zeichnet werden. In Bild 3-4 sind auch die Stellen gekennzeichnet, an denen genauere Angaben
iiber die Eingédnge und Ausgénge durch zusétzliche Symbole gemacht werden konnen.

Innerhalb der Umrandungen werden dadurch Aussagen iiber den inneren logischen Zustand der
Schaltung gemacht.

AuBerhalb stehen Symbole wie die Inversionskreise fiir logische Zustinde, die Inversionsdrei-
ecke fiir die Pegel (Pegel werden im folgenden Kapitel 4 behandelt), oder Aussagen iiber die
Art des Signals. Tabellen iiber die moglichen Symbole findet man im Anhang.

Wenn die Schaltung einen gemeinsamen Kontroll-Block beinhaltet, wird dies wie in Bild 3-5a
dargestellt. Ein gemeinsamer Ausgangs-Block wird durch zwei Doppellinien wie in Bild 3-5b
gekennzeichnet.

3.9 Schaltsymbole 27

Gemeinsamer %o AT
[~ Kontrollblock
5
Xy) — Yo X1 — _ M
xX; — — N — f(x()’xl)
Xy — — » Gemeinsamer Ausgangsblock
a) b)

Bild 3-5 Generelle Struktur von Schaltsymbolen. a) Gemeinsamer Kontrollblock, b) Gemeinsamer Aus-
gangsblock fiir ein Array gleichartiger Schaltungen.

3.9.2 Die Abhingigkeitsnotation

In der Abhéngigkeitsnotation wird der Einfluss eines Eingangs (oder Ausgangs) auf andere
Ein- und Ausgiinge durch einen Buchstaben beschrieben, der den Einfluss ndher beschreibt.
Dem Buchstaben folgt eine Zahl zur Identifikation. Die gleiche Zahl findet man bei den Ein-
und Ausgéngen, auf die dieser Einfluss ausgeiibt wird. Dies soll an den folgenden Beispiclen
genauer erldutert werden.

3.9.3 Die UND-Abhiingigkeit (G)

Durch ein G an einem Eingang kann die UND-Abhéangigkeit gekennzeichnet werden. In Bild
3-6 ist der Eingang x; mit G1 genauer beschrieben. Da der Eingang x, mit einer 1 gekenn-
zeichnet ist, wird er mit dem Eingang x; logisch UND verkniipft. Der Eingang x, ist durch —1
gekennzeichnet. Daher wird er mit dem negierten Eingang x; logisch UND verkniipft. Die
Notation bezieht sich auf die inneren Zustinde. Eventuelle Inversionskreise werden erst nach-
traglich beriicksichtigt. Sie legen dann das externe Verhalten fest.

Xo — {1
11— Gl =
X241

Bild 3-6 Die UND-Abhéngigkeit (G).

Wie Bild 3-7 zeigt, kann die Abhangigkeitsnotation auch auf Ausgénge angewendet werden.

28 3 Schaltalgebra

xo—l Gl—yo

xo—1 Glp—» = xO EP‘J/O

b)

E

Bild 3-7 Die UND-Abhéngigkeit (G), angewendet auf einen Ausgang a) ohne, b) mit Inversion des Aus-
gangs.

Haben zwei Einginge die gleiche Bezeichnung (Bild 3-8), werden diese Einginge logisch
ODER verkniipft.

Xo—11
1 —1Gl1 =
22— Gl

Bild 3-8 Die UND-Abhingigkeit (G) bei zwei Eingédngen, die mit G1 bezeichnet sind.

3.9.4 Die ODER-Abhiingigkeit (V)

Wenn ein mit Vn gekennzeichneter Eingang oder Ausgang den internen 1-Zustand hat, so
haben alle Ein- und Ausgénge den Wert 1, die durch die Zahl n gekennzeichnet. Hat der mit
Vn gekennzeichnete Ein- oder Ausgang den Wert 0, so haben die von ihm beeinflussten Ein-
und Ausgénge ihren normal definierten Wert. Zwei Beispiele findet man in Bild 3-9.

X0 —1V1 1 —)0

I\
—_

Yo

X0

a)

V1il— Yo

4

A
—_

I— » b)

Bild 3-9 Die ODER-Abhéngigkeit (V).

3.9 Schaltsymbole 29

3.9.5 Die EXOR-Abhingigkeit (N)

Die mit Nn gekennzeichneten Ein- oder Ausgénge stehen mit den von ihnen beeinflussten Ein-
und Ausgéngen in einer EXOR-Beziehung. Ist der mit Nn bezeichnete Ein- oder Ausgang auf
1, so werden die mit n gekennzeichneten Ein- und Ausgénge invertiert, andernfalls bleiben sie
unbeeinflusst.

— Jo

Xo —N1

11— M

Bild 3-10 Die EXOR-Abhéngigkeit (N).

3.9.6 Die Verbindungs-Abhiingigkeit (Z)

Ein Ein- oder Ausgang der durch Zn gekennzeichnet ist, wird mit allen Ein- und Ausgéngen,
die mit einem n gekennzeichnet sind, verbunden gedacht (Bild 3-11).

Xo —| ryo

Xo —171 11— Yo

X0 —1G1 Xo— Yo
X1 —1Z2 b) X1 —

Bild 3-11 Die Verbindungs-Abhéngigkeit (Z).

\S]

|
S
i

&

3.9.7 Die Ubertragungs-Abhingigkeit (X)

Wenn ein Ein- oder Ausgang, der durch Xn gekennzeichnet ist, auf 1 ist, werden alle Ein- und
Ausgénge, die mit n gekennzeichnet sind, bidirektional verbunden (Bild 3-12). Andernfalls
sind die mit #» gekennzeichneten Ein- und Ausgénge voneinander isoliert.

11— Fiir xy= 1 sind y, und y; bidirektional
Yo —IX1 1/ — verbunden
0 o 4 Fiir x= 0 sind y; und y, bidirektional
= |
Y2 verbunden

Bild 3-12 Die Ubertragungs-Abhingigkeit (X).

Weitere Abhingigkeiten (C, S, R, EN, M, A, D, J, K) werden in den entsprechenden Kapiteln
und im Anhang beschrieben.

30 3 Schaltalgebra

3.10 Ubungen

Aufgabe 3.1
Beweisen Sie die Absorptionsgesetze 3.10 und 3.11 mit Hilfe einer Wahrheitstabelle.

Aufgabe 3.2

Minimieren Sie die folgende Funktion mit Hilfe der booleschen Algebra:
V= XpX1X—X3 V XoX1X2X3 V —X—X1X2X3 V — XX~ X0X3 V Xp— X1 X2X3 V Xp—X|—XX3

Aufgabe 3.3

Geben Sie die KKNF und die KDNF fiir ein System mit den Eingangsvariablen @, b und ¢ an,
welches an den Ausgéngen s; und sy die Summe der 3 Eingangsvariablen a+b+c ausgibt. s; soll
dabei die Wertigkeit 2 und s, die Wertigkeit 1 haben.

Aufgabe 3.4
Koénnen die beiden folgenden Gleichungen unter der Voraussetzung vereinfacht werden, dass
sie weiterhin ein zweistufiges Schaltnetz ergeben?

a) die KDNF fiir s; und s aus Aufgabe 3.3
b) die KKNF fiir s; und sy aus Aufgabe 3.3

Aufgabe 3.5
Beweisen Sie:
a)aﬂ-)—|b=—|(aé¢->b)

b) Wenn gilt: f=a <> b <» ¢ dann gilt auch: —f = —a ¢ —b —c.

Aufgabe 3.6

Vereinfachen Sie die folgenden booleschen Gleichungen mit Hilfe der booleschen Algebra:
a) Y= X1XoX3 V 00X

b) yo= s Vo wanXs VoX0X3 VX0 V XX V NG

C) y3= w3 V(X VX)) VXm0 VX —nXaX;

d) y4= (=g) (=1 Vi V)

e) ys= (- Vv =X Vi viag)) (o V)

Aufgabe 3.7
Geben Sie eine dquivalente Schaltung bestehend aus UND, ODER und NOT-Gattern fiir das
untenstehende Schaltsymbol in Abhéngigkeitsnotation an.

S —1 Gl
]
Yo —
a | 21— W
X — 1
o |1 ==

®

Check for
updates

4 Verhalten logischer Gatter

In diesem Kapitel soll insoweit auf das reale Verhalten logischer Gatter eingegangen werden,
wie es zum Verstindnis der Dimensionierung digitaler Schaltungen notwendig ist. Im folgen-
den Kapitel 5 wird das Thema weiter vertieft. Es wird zunédchst der Frage nachgegangen, in-
wieweit ein bindres System als Modell fiir ein reales System verwendet werden kann. Das soll
am Beispiel eines Inverters geschehen. In Bild 4-1a sind bindre Signale an einem Inverter dar-
gestellt, wie sie in einem realen System typischerweise auftreten. Das Bild 4-1b zeigt x(f), eine
Idealisierung des Eingangssignals u.(¢) aus Bild 4-1a. u,(f) wird durch y(¢) idealisiert (Bild 4-
1c).

Ua(2), u(?)

)
x(f) = u (1) X ; P
E E b
V(1) = u (1) 0
Lo

Bild 4-1 a) Reales digitales System mit dem Eingangssignal u.(f) und dem Ausgangssignal u,(¢). b) idea-
lisiertes Eingangssignal x(7). c) idealisiertes Ausgangssignal y(?).

Dem Bild entnimmt man, dass das reale System in den folgenden Punkten vom idealisierten
System abweicht:

- Das reale System zeigt ein wertkontinuierliches Verhalten. Technische Systeme haben von
Natur aus Toleranzen und werden durch statistische Prozesse wie das Rauschen gestort, so
dass es nicht moglich ist, ein Signal zu erzeugen, welches nur genau 2 Amplitudenwerte
annimmt.

- Die Wechsel zwischen den Werten 0 und 1 sind im realen System flieBend. Die Flanken
werden durch ihre Anstiegs- und Abfallzeit beschrieben.

- Das Ausgangssignal des Inverters reagiert nur verzogert auf das Eingangssignal. Dieser und
der im letzten Punkt aufgefiihrte Effekt sind auf die endliche Reaktionsgeschwindigkeit rea-
ler Bauelemente zuriickzufiihren.

Ein digitaltechnisches System wird so ausgelegt, dass es wie ein wertdiskretes System arbeitet,
solange das tatsdchliche Signal sich innerhalb von vorgegebenen Amplituden- und Zeitgrenzen
bewegt:

- Amplituden: Die Dimensionierung eines digitalen Systems muss zundchst mit den Metho-
den der Analogtechnik geschehen, um sicherzustellen, dass das Signal innerhalb der vor-
gegebenen Amplitudenbedingungen bleibt. Ist dies der Fall, so kann eine 0 und eine 1 si-

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018
K. Fricke, Digitaltechnik, https://doi.org/10.1007/978-3-658-21066-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-21066-3_4&domain=pdf

32 4 Verhalten logischer Gatter

cher unterschieden werden und das System kann mit den in Kapitel 3 beschriebenen leis-
tungsfihigen Methoden der Digitaltechnik behandelt werden.

- Laufzeiten: Es entstehen aber auch Fehlfunktionen durch die Vernachlédssigung der Signal-
laufzeiten in den Gattern. Durch die Konstruktion der Schaltung muss vermieden werden,
dass Signallaufzeiten auf das Verhalten der Schaltung Einfluss nehmen. Geeignete Design-
Regeln werden in den entsprechenden Kapiteln angegeben.

4.1 Positive und negative Logik

In der Digitaltechnik arbeitet man mit Schaltern, die nur zwei unterschiedliche Spannungspegel
erzeugen konnen. Ein hoher Spannungspegel wird mit H (=High) ein niedriger mit L (=Low)
bezeichnet. In der booleschen Algebra wurden bisher die Zeichen 0 und 1 verwendet. Die bei-
den Zeichen werden in der Technik den zwei Werten der Spannung zugewiesen. In der elektri-
schen Digitaltechnik kann zum Beispiel eine hohe Spannung fiir 1 stehen und eine niedrige fiir
0, man nennt das positive Logik. Auch die umgekehrten Verhiltnisse sind denkbar. Man
spricht dann von negativer Logik.

Tabelle 4-1 Zuordnung der Spannungspegel zu den logischen Zustédnden.

Spannung | Pegel Logischer Zustand
positive Logik negative Logik

=5V H 1 0

=0V L 0 1

In Schaltbildern kénnen auch Spannungspegel anstelle von logischen Pegeln verwendet wer-
den. Ein Beispiel ist in Bild 4-2 gezeigt.

X0 Xo Xo
& —C& &
Y o—y)
X1 Xp — X —(Q
Xo X1 Yy Xo X1 Yy Xo X1 y
L L] H 0 0 1 1 1 0
L H]L 0 1 0 1 0 1
H L]1H 1 0 1 0 1 0
H H|H 1 1 1 0 0 0
a) b) c)

Bild 4-2 Schaltsymbole und Wahrheitstabellen fiir a) Pegeldarstellung b) positive Logik c¢) negative
Logik.

Man erkennt eine Bezeichnung mit Pegeln daran, dass statt der Inversionskreise Dreiecke ge-
zeichnet werden. Wenn mindestens ein Dreieck in einem Schaltbild erscheint, handelt es sich
um eine Pegeldarstellung. Aus dieser kann bei positiver Logik durch das Ersetzen von Drei-

4.2 Definition der Schaltzeiten 33

ecken durch die Inversionskreise die gewohnte Darstellung mit logischen Groflen gewonnen
werden. Alternativ kdnnen alle Ein- und Ausgénge, die kein Dreieck aufweisen, mit einem
Inversionskreis versehen werden und die Dreiecke weggelassen werden. Man arbeitet dann mit
negativer Logik.

4.2 Definition der Schaltzeiten

Elektronische Schalter reagieren mit einer Verzogerung auf einen Wechsel der Eingangssigna-
le. AuBlerdem sind die Anstiegszeiten von einem Low- zu einem High-Pegel (oder umgekehrt)
nicht beliebig kurz. Die Anstiegszeit ¢,y (transition time Low-High) und die Abfallzeit 7,
(transition time High-Low) (Bild 4-3) werden zwischen 10% und 90% der maximalen Span-
nungsamplitude definiert.

Bild 4-3 Definition der Anstiegszeit 7, und Abfallzeit ¢,;.

Die Verzogerungszeit von Low nach High ¢, (propagation delay time Low-High) und die
Verzogerungszeit von High nach Low ¢, (propagation delay time High-Low) werden ent-
sprechend Bild 4-4 durch die Zeiten zwischen 50% der Maximalspannung am Eingang bis zum
Erreichen des gleichen Spannungspegels am Ausgang definiert. Die Signallaufzeit durch ein
Gatter ist der Mittelwert dieser Zeiten:

tp = (tpHL + tpLH)/Z (4 1)
Ue/l]max A
17 ' !
0,5 .
:<—>' I - !
Uu /Umax A : Z‘pHL | : :
. I by :
0.5 - \ /
i . !

Bild 4-4 Definition der Zeiten #,;; und #,;.

AuBerdem sollen nun die in einem Taktsignal auftretenden Zeiten definiert werden. Taktsigna-
le werden in der Digitaltechnik fiir die Synchronisation verschiedener Ereignisse verwendet.
Die Zeit in der das Taktsignal auf dem hohen Spannungspegel ist, hei3t Pulsdauer #,, die Takt-
periode heifit 7). Oft wird auch die Taktfrequenz f, = 1/T, verwendet.

34 4 Verhalten logischer Gatter

A
Y

fy r; t

Bild 4-5 Ideales Taktsignal mit der Pulsdauer ¢, und der Pulsperiode 7,,.

4.3 Ubertragungskennlinie, Stérabstand

Die Ubertragungskennlinie kennzeichnet das Amplitudenverhalten eines digitalen Gatters. Sie
wird in der Regel nur fiir einen Inverter angegeben, da das Verhalten anderer Gatter darauf
zuriickgefiihrt werden kann. In Bild 4-6 sind eine ideale und eine reale Kennlinie eines Inver-
ters angegeben. Die ideale Kennlinie wechselt abrupt bei einer bestimmten Eingangsspannung
U, = U, vom hohen Ausgangspegel Uy zum niedrigen Ausgangspegel U;. Die reale Kennlinie
hat dagegen einen stetigen Ubergang. Zusitzlich sind in der Realitit die Kennlinien der Gatter
temperaturabhéngig und sie haben eine fertigungsbedingte Streuung.

U,

A U,

Uy i reale Kennlinie Ue 1 b
\<<—ideale Kennlinie

U \;

U, U Un U,

>

Bild 4-6 Reale und ideale Ubertragungskennlinie eines Inverters.

Daher fiihrt man Grenzen ein, innerhalb derer man ein Signal als ein H oder ein L betrachtet
(Bild 4-7). Diese Bereiche sind fiir Ein- und Ausgang unterschiedlich groB. Fiir ein L am Ein-
gang, welches ein H am Ausgang ergibt, resultiert somit der Bereich 1 in Bild 4-7, in dem die
Inverterkennlinie liegen muss. Analog muss die Inverterkennlinie im Bereich 2 liegen, wenn
am Eingang ein H anliegt. Im Bild ist eine typische Ubertragungskennlinie eingetragen.

Bereich 1

H { U,

Hmin

typische Kennlinie U, U,

i

; 1 o—

1

i

; Bereich 2
L Uiimax =1=-=+=-=-=- TR ‘,/.:_

1 .

! ; i > U,

UeLmax UeHmil’l VDD
.) |
L H

Bild 4-7 Ubertragungskennlinie eines Inverters.

4.4 Ausginge 35

In Bild 4-8 sind die eben definierten Grenzen fiir die Ausgangsspannung U, eines Gatters und
fiir die Eingangsspannung U, des folgenden Gatters eingetragen. Die Grenzen miissen folgen-
dermaflen liegen: Der Bereich in dem ein Signal am Eingang des zweiten Gatters als High
erkannt wird, muss den Bereich iiberdecken, in dem das Ausgangssignal im ungiinstigsten Fall
liegen kann. Genau dann wird ein Signal immer richtig erkannt und es gibt keine Fehlerfort-

pflanzung.
U, T

UaT

V . V
High UDD High | 7
aHmin
UeHmin _ O U” Ue e
Ue max
UaLmax Low -
Low
ov ov

Bild 4-8 Grenzen der Ein- und Ausgangssignale bei zwei aufeinander folgenden Invertern.

Diese Betrachtung ist fiir die Digitaltechnik von fundamentaler Bedeutung. Wahlt man dieses
Verhéltnis der Ein- und Ausgangspegel bei allen Gattern, so kann man beliebig komplexe
Schaltungen aufbauen, ohne sich um die Amplitudenbedingungen kiimmern zu miissen. Dabei
muss aber noch beachtet werden, dass an ein Gatter nur eine maximale Anzahl von Gattern
angeschlossen werden kann, da die Belastung durch mehrere Gatter am Ausgang die Pegel
verdndern kann.

Aus Bild 4-8 ergeben sich auch die Storabstinde. Der Stérabstand U, fiir den High-Pegel und
der fiir den Low-Pegel U, sind definiert als die Differenzen der Spannungspegel zwischen
dem Ausgang und dem folgenden Eingang:

High-Pegel: Low-Pegel:
UnH = UaHmin - UeHmin UnL = UeLmax - UaLmax

Die Storabstinde sind also die ,,Sicherheitsabstinde® zwischen den Gattern. Damit durch zu-
sitzliche additive Storimpulse keine Fehler auftreten, miissen sie moglichst grof3 sein.

4.4 Ausginge

In der Digitaltechnik arbeitet man mit Transistoren im Schalterbetrieb. Es handelt sich um

Schalter, die durch ein Signal gesteuert werden konnen. In Bild 4-9 sind zwei Symbole fiir
gesteuerte Schalter angegeben. Der linke schlief3t fiir x = H, der rechte fiir x = L.

Bild 4-9 Symbole fiir Schalter. Links fiir x = H eingeschaltet. Rechts fiir x = L eingeschaltet.

36 4 Verhalten logischer Gatter

In der Regel haben logische Gatter, ob bipolar oder unipolar realisiert, einen komplementéren
Ausgang, damit der Ruhestrom gering ist und die Ruheverlustleistung vernachléssigbar klein
bleibt (Bild 4-10). Immer ist einer der Schalter gedffnet und der andere geschlossen. Ist x = H,
so ist der untere Schalter geschlossen und der Ausgang y mit OV verbunden, also auf L. Ist x =
L, so ist der Ausgang y mit der Betriebsspannung Vpp kurzgeschlossen, also auf H. Wie dieser
Inverter haben fast alle Gatter einen derartigen komplementiren Ausgang, der auch Totem-
Pole-Ausgang genannt wird. Fiir spezielle Anwendungen werden aber weitere Varianten des
Ausgangs angeboten, wie sie im Folgenden dargestellt werden.

VDD

ov

Bild 4-10 Komplementirer Inverter.

4.4.1 Offener Kollektor (Open Collector)

Bei dieser Schaltungsvariante besteht der Gatter-Ausgang nur aus einem Schalter, wie es in den
gestrichelten Kéisten des Bildes 4-11 angedeutet ist. Der eine Anschluss des Schalters ist nach
auflen gefiihrt und wird extern iiber einen Widerstand R, an die positive Versorgungsspannung
Ve angeschlossen. Diese Schaltungsvariante ist besonders bei den bipolaren Schaltkreisfami-
lien tiblich. Eine groBere Anzahl von Ausgéngen kann an einen gemeinsamen Widerstand R,
angeschlossen werden. Bei positiver Logik (hoher Spannungspegel H = 1) ergibt sich eine
UND-Verkniipfung der Ausginge, da alle x; = 1 sein miissen, damit alle Schalter offen sind
und der Ausgang auf einen hohen Spannungspegel (= High) geht (Tabelle 4-2).

VDD
Ry

Bild 4-11 Zwei Gatter mit Open-Collector-Ausgéngen, verschaltet zu einem virtuellen Gatter.

Die Schaltung wird ,,wired-or* oder ,,wired-and* genannt und dient der Einsparung von Gat-
tern, besonders wenn Gatter mit vielen Eingdngen benétigt werden. Ein Beispiel ist in Bild 4-
12 gezeigt. Im Schaltzeichen wird der Open-Collector-Ausgang entsprechend Bild 4-11 durch
eine unterstrichene Raute gekennzeichnet. Analog dazu ist der Open-Drain-Ausgang moglich,
aber nicht tiblich.

4.4 Ausginge 37

Tabelle 4-2 Verhalten der Open-Collector-Schaltung (Bild 4-11) bei positiver und negativer Logik.

Spannungspegel Positive Logik (UND) Negative Logik (ODER)
X2 X1 y X2 X1 Y X2 X1 y
L L L 0 0 0 1 1 1
L H L 0 1 0 1 0 1
H L L 1 0 0 0 1 1
H H H 1 1 1 0 0 0
xo —21 <
X1 & Yy ={(xq Vv x)(x3Vx3)
X —21 <
Xy ——

Bild 4-12 Schaltzeichen fiir zwei ODER-Gatter mit Open-Collector-Ausgéngen.

4.4.2 Tri-State-Ausgang

Wenn ein Kabel aus Ersparnisgriinden fiir die wechselseitige Ubertragung zwischen mehreren
Sendern und Empfiangern genutzt werden soll, so verwendet man oft Bussysteme. Um mehrere
Bausteine mit ihrem Ausgang an einen Bus anzuschlieBen, miissen die nicht aktiven Bausteine
am Ausgang hochohmig gemacht werden, also vom Bus abgekoppelt werden. Dies geschieht
mit einer besonderen Schaltung, welche Tri-State-Ausgang oder auch Three-State-Ausgang
genannt wird (abgekiirzt TS). Arbeiten mehrere Tri-State-Ausgénge auf einen Bus, so darf
immer nur ein Ausgang eingeschaltet (,,enable®) sein, die anderen miissen im hochohmigen
Zustand verbleiben. In Bild 4-13 ist eine Schaltung gezeigt, mit der beide Ausgangsschalter mit
einem ,,Enable-Signal“ E gleichzeitig hochohmig geschaltet werden konnen. Das Schaltsymbol
ist in der Abhéngigkeitsnotation dargestellt, die spéter noch ausfiihrlicher dargestellt werden
soll. Das Kiirzel ,,EN“ mit der nachgestellten 1 deutet an, dass der Ausgang, der durch eine 1
gekennzeichnet ist, durch den EN-Eingang gesteuert wird. Wenn mehrere Ausgénge vorhanden
sind, so werden alle mit einer 1 markierten Ausgidnge durch den ,,Enable-Eingang* gesteuert.
Das Dreieck kennzeichnet den Tri-State-Ausgang.

VDD
E &
9 E ——ENI1
x 9 Y lvo—y
— & N 1
ov

Bild 4-13 Tri-State-Buffer (Inverter). Links: Prinzipschaltbild mit Enable £ und Eingangssignal x.
Rechts: Schaltsymbol.

38 4 Verhalten logischer Gatter

In Bild 4-14 sind als Beispiel drei bidirektionale Schnittstellen gezeigt, die auf einen Bus arbei-
ten, an den eine Vielzahl derartiger Schnittstellen angeschlossen werden konnen. Die Schnitt-
stelle n kann mit E, = 1 auf Senden geschaltet werden. Es muss aber sichergestellt werden,
dass alle anderen Schnittstellen dann nicht senden. Empfangen kann jede Schnittstelle unab-
héngig von den anderen, da dann das Potential auf dem Bus durch den einzigen Sender einge-
prigt werden kann.

Busleitung
A A A
e I R i I S
: 1 1A | 1 IZANE N 1A i
+ O [ENL 1 i O [ENL 1 |i: O [ENl 1 |
S e e 0 s e
Xa0 Ey Xs0 Xal E, Xs1 Xa2 E, Xs2

Bild 4-14 3 Bidirektionale Bustreiber mit Tri-State-Ausgingen, die iiber einen Bus kommunizieren.

4.5 Ubungen

Aufgabe 4.1

4 verschiedene Gatter erzeugen bei positiver Logik die booleschen Funktionen: UND, ODER,

Aquivalenz und Exklusiv-ODER. Welche boolesche Funktion erhalten sie bei negativer Logik?

Aufgabe 4.2

a) Vereinfachen Sie die untenstehende Schaltung.

b) Stellen sie die Schaltbilder der vereinfachten Schaltung fiir positive und negative Logik dar.
4 —&
b —

C_m&

&

Aufgabe 4.3
Geben Sie das Pegeldiagramm und die Wahrheitstabellen fiir positive und negative Logik ana-
log zu Tabelle 4-2 fiir die folgende Schaltung an:

}_M_o
<

®

Check for
updates

5 Schaltungstechnik

Transistoren werden in digitalen Schaltkreisen als Schalter eingesetzt. Sie haben die Aufgabe,
einen Stromkreis zu 6ffnen oder zu trennen. Idealerweise miissten sie daher von einem Kurz-
schluss im eingeschalteten Zustand zu einem unendlich hohen Widerstand im ausgeschalteten
Zustand umgeschaltet werden konnen. Auch sollen sie gemél Bild 4-6 bei einer definierten
Schwellenspannung U; abrupt schalten. Reale Transistoren erfiillen diese Vorgaben jedoch nur
unvollstindig. In den nédchsten Abschnitten werden die gédngigen Schaltkreistechnologien so-
wie deren Eigenschaften diskutiert.

5.1 CMOS

Die am héufigsten verwendete digitale Schaltkreistechnologie ist die CMOS-Technologie
(CMOS = Complementary Metal Oxide Semiconductor). Die verwendeten Feldeffekttransis-
toren haben den Vorteil, dass das Gate durch ein Oxid isoliert ist, so dass im statischen Fall
kein Strom in den Eingang flieit. Die Anschliisse Gate, Drain und Source sind mit G, D bzw. S
im Schaltbild gekennzeichnet. Mit B ist der Substratanschluss bezeichnet, der in der CMOS-
Technik auf ein konstantes Potential gelegt wird. In der Regel verwendet man Anreicherungs-
MOSFET, die bei 0V am Gate sperren. In Tabelle 5-1 sind das Schaltbild, die Steuerkennlinie
und die Ausgangskennlinie eines n-Kanal- und eines p-Kanal-Anreicherungs-MOSFET darge-
stellt [12]. n-Kanal und p-Kanal-MOSFET werden auch NMOS und PMOS-Transistoren ge-
nannt.

Tabelle 5-1 Kennlinien von NMOS und PMOS-Feldeffekttransistoren.

Typ

. Steuerkennlinie Ausgangskennlinie
Schaltbild

NMOS I Ip Uss

= Ups

Q
aC:
O'LT
S-
aq Y
T

p—B | Ups UGS UGS

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018
K. Fricke, Digitaltechnik, https://doi.org/10.1007/978-3-658-21066-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-21066-3_5&domain=pdf

40 5 Schaltungstechnik

In den Steuerkennlinien ist die Threshold- oder Durchschalt-Spannung U, markiert, die die
Spannung angibt, bei der der Transistor zu leiten beginnt. Uy, ist beim NMOS-Transistor posi-
tiv und beim PMOS-Transistor negativ.

Man erkennt aus den Steuerkennlinien, dass der NMOS-Transistor fiir positive Gate-Source-
Spannungen Ugs groBier als Uy, anfangt zu leiten. Der PMOS-Transistor ist fiir Gate-Source-
Spannungen Ugs eingeschaltet, die negativer sind als die Threshold-Spannung U,,. Man sieht
aber auch, dass der Ubergang zwischen dem ausgeschalteten und dem eingeschalteten Zustand
stetig ist.

Der Drainstrom des NMOS-Transistors ist positiv, wiahrend der des PMOS-Transistors negativ
ist. Man verschaltet die beiden Transistoren daher wie in Bild 5-1 gezeigt, indem man die
Drains beider Transistoren verbindet. Die Gates sind miteinander so verbunden, dass Ugsnumos)
= U, und Ugspros) = U — Vppist. Durch geeignete Wahl von Uy, und V) ist dadurch sicher-
gestellt, dass immer ein Transistor ausgeschaltet ist und der andere eingeschaltet.

Die so entstandene Schaltung wirkt als Inverter, denn fiir U, = OV ist der NMOS-Transistor
ausgeschaltet und der PMOS-Transistor leitet. Daher ist U, = Vpp. Fiir U, = Vpp dagegen ist
der PMOS-Transistor ausgeschaltet und der NMOS-Transistor leitet, so dass U, = 0V wird.

Der Funktion der Anordnung entspricht daher dem Inverter in Bild 4-10.

Ugspmos) Vbp
PMOS
IpPmos)
o ° o
1
U, DINMOS) U,
NMOS

? U GS(NMOS)l

o

Bild 5-1 CMOS-Inverter.

Die Schaltung wird auch als digitaler Verstirker verwendet. Man bezeichnet sie dann als Buf-
fer. Auflerdem bildet sie die Grundlage fiir die digitalen CMOS-Grundgatter NAND und NOR.

5.1 CMOS 41

Wichtig zur Beurteilung der Qualitit des Gatters ist die Ubertragungskennlinie U, = f(U,). Die
Ubertragungskennlinie von CMOS-Gattern ist, wie im Bild 5-2 gezeigt, nahezu ideal, denn sie
wechselt sehr abrupt zwischen den beiden Signalzusténden.

U,
A VDD: 15V
sl 7
10 4 Vop=5V
54

Bild 5-2 Ubertragungskennlinie eines CMOS-Inverters bei 5V und 15V Betriebsspannung.

5.1.1 Fan-Out

In der Regel werden an den Ausgang eines Gatters mehrere Eingénge anderer Gatter ange-
schlossen. An ein CMOS-Standard-Gatter konnen eine Vielzahl (z.B. 50) Standard-
Gattereingénge angeschlossen werden, da der CMOS-Eingang rein kapazitiv ist. Man be-
schreibt dies, indem man sagt, CMOS habe einen Ausgangslastfaktor oder ein Fan-Out von
z.B. 50. Bei einer so hohen kapazitiven Belastung eines Ausgangs erhohen sich aber die
Schaltzeiten, wie unten gezeigt werden wird.

5.1.2 Grundschaltungen NAND und NOR

Die CMOS-Grundschaltungen entstehen aus dem Inverter, indem zu dem NMOS- und dem
PMOS-Transistor jeweils ein weiterer gleichartiger Transistor parallel oder in Serie geschaltet
wird. Dadurch wird ein logisches UND oder ODER erzeugt. Durch die zusétzliche Invertierung
erhélt man die Grundgatter der CMOS-Technologie, ndmlich das NAND- und das NOR-Gatter
(Bild 5-3).

In der NOR-Schaltung in Bild 5-3 wird das Ausgangssignal y immer dann L wenn einer der
Eingéinge auf H liegt, denn dann leitet zumindest einer der n-Kanal-FET und einer der p-
Kanal-FET sperrt. In der NAND-Schaltung dagegen geht y nur auf L wenn beide Eingédnge auf
H liegen. Dann nédmlich leiten die n-Kanal-FET und die p-Kanal-FET sperren.

Es ist moglich, komplizierte logische Ausdriicke direkt in CMOS-Logik zu iibersetzen. Man
verwendet dazu statt der Serien- und der Parallelschaltung wie im Fall der NAND und NOR-
Schaltung kompliziertere Schaltungen. Der NMOS-Transistor im Inverter wird durch eine
Schaltung aus NMOS-Transistoren ersetzt, bei der eine UND-Verkniipfung eine Serienschal-
tung und die ODER-Verkniipfung durch eine Parallelschaltung gebildet wird. Genauso wird
der einzelne PMOS-Transistor im Inverter durch mehrere PMOS-Transistoren ersetzt, deren
Schaltung dual zu der im NMOS-Zweig sein muss. Mit dieser Technik kénnen Logik-

42 5 Schaltungstechnik

Schaltkreise fiir komplizierte Funktionen konstruiert werden. Ein Beispiel findet man in Auf-
gabe 5.3 am Ende dieses Kapitels.

VDD _‘ I - VDD

X0 X0

:
al

e
il

Bl gl

gL

NOR NAND
X0 | X y Xo | X1 y
0|0 1 0110 1
0 1 0 0 1 1
1 0 0 1 0 1
1 1 0 1 1 0

Bild 5-3 CMOS-Grundgatter: links NOR, rechts NAND.

Der Autbau eines realen CMOS-Gatters ist in Bild 5-4 gezeigt. Die Schaltung gliedert sich in 4
Teile:

1.

Eine Eingangsschutzschaltung soll eine Zerstorung des Bausteins durch statische Aufla-
dung verhindern. Die obere der Dioden ist fiir Spannungen, die grofer sind als die Betriebs-
spannung, in Durchlassrichtung geschaltet, die untere fiir Spannungen, die kleiner sind als
ov.

Der Eingangsbuffer reduziert, besonders bei Gattern mit mehr als 2 Eingéngen, die Ver-
schiebung der Eingangspegel der in Serie geschalteten FETs des Gatters.

Das eigentliche Gatter erzeugt die logische Funktion. In diesem Fall ist es die NAND-
Schaltung aus Bild 5.3

Der Ausgangstreiber verbessert die Ubertragungskennlinie, reduziert die Riickwirkung vom
Ausgang auf den Eingang und erhoht den maximalen Laststrom. Der Treiber ist fiir den
weitaus groBten Teil der im Chip umgesetzten Verlustleistung verantwortlich.

Die Schaltung wird im CMOS-Logikbaustein 4001verwendet, in dem 4 dieser NAND-Gatter
enthalten sind. Wegen des niedrigen Integrationsgrades werden diese Schaltungen heute nur
noch selten verwendet.

5.1 CMOS 43

=t
1l

|—UT_._TT_I_ |_UI_J_TT_I_.

——o0 y
‘I—
,_
KR
N J J
Y e
Elngangs- Buffer NAND Treiber

schutzschaltung

Bild 5-4 CMOS-NOR-Gatter (4001).

5.1.3 Transmission-Gate

Die in Bild 5-5 gezeigte Schaltung ist als Transmission-Gate bekannt. Es handelt sich um einen
Analogschalter, der vielseitig eingesetzt werden kann. Der Inverter, bestehend aus T; und Ty,
erzeugt die Steuersignale fiir das eigentliche Transmission-Gate, bestehend aus T, und T,.

Liegt am Eingang s des Inverters ein H, so liegt an T, ein hohes Potential und an T; ein L. Da
T, und T, symmetrisch beziiglich Drain und Source sind, sind beide Transistoren durchgesteu-
ert und das Transmission-Gate ist durchgeschaltet. Umgekehrt kénnen T, und T, mit einem
Low-Pegel am Eingang des Inverters hochohmig gemacht werden. Durch die Verwendung je
eines n- und p-Kanal-FET wird die Schaltung symmetrischer.

Das Transmission-Gate kann zum Beispiel fiir die Ankopplung an einen Bus als Tristate-
Schalter verwendet werden. Es wird auch zur effektiven Realisierung von Gattern eingesetzt
[14]. Ein Beispiel fiir die Anwendung des Transmission-Gates ist der analoge Multiplexer und
Demultiplexer auf Seite 119. Dort wird auch ausgenutzt, dass das Transmission-Gate eine
elektrische Verbindung darstellt, die in beiden Richtungen verwendet werden kann.

44 5 Schaltungstechnik

°y

V,
g DD 1 Ly
T3

1"

Bild 5-5 CMOS-Transmission-Gate mit Schaltsymbol.

Im Schaltsymbol wird der Steuereingang durch das interne Symbol X1 gekennzeichnet, wel-
ches andeuten soll, dass alle Ein- und Ausgénge, die mit 1 gekennzeichnet sind, bidirektional
verbunden werden, wenn der durch X1 gekennzeichnete Eingang auf | liegt.

5.1.4 Tri-State-Ausgang

Ein CMOS-Tri-State-Ausgang kann zum Beispiel mit zwei zusdtzlichen Transistoren aufge-
baut werden, welche im ,,Enable“-Zustand leiten und im hochohmigen Zustand sperren. Durch
die beiden zusétzlichen Transistoren wird der Ausgang im hochohmigen Zustand von der Be-
triebsspannung und Masse abgekoppelt. Bild 5-6 zeigt die Schaltung mit Wahrheitstabelle und
Schaltsymbol.

x | En y
En 1 o1 I
1 1 0
d [0 | hoch-
ohmig
1 ?

°y

]

En —EN1
j x—1 IVlo— y
a) c)

Bild 5-6 CMOS-Tri-State Ausgang a) Schaltung, b) Wahrheitstabelle, c) Schaltsymbol.

Vbp
T
T,
T3
T4

5.2 TTL 45

5.1.5 CMOS-Eigenschaften

- Unbenutzte Eingénge miissen immer mit Masse, Vpp oder einem benutzten Eingang ver-
bunden werden, da das Potential sonst undefiniert ist.

- Der Latch-Up-Effekt kann zu einer thermischen Uberlastung des Bausteins fiihren. Dabei
wird ein parasitdrer Tyristor im CMOS-Inverter geziindet. Dieser Effekt tritt bei hohen
Stromen und besonders bei hoher Umgebungstemperatur auf.

- Die maximale Eingangsspannung darf zwischen -0,5V und Vpp+0,5V liegen.

- CMOS-Bausteine sind trotz der Eingangsschutzschaltung sehr empfindlich gegen statische
Aufladung.

- CMOS-Gatter konnen im Gegensatz zu TTL-Gattern parallelgeschaltet werden, um einen
hoheren Ausgangsstrom zu erhalten. Da mit steigender Temperatur der Drainstrom sinkt,
hat z.B. bei der gleichzeitigen Verbindung der Eingénge sowie der Ausgiinge zweier Inver-
ter der Ausgangs-Transistor mit dem groften Laststrom eine Tendenz den Laststrom zu
verringern wodurch die Schaltung thermisch stabil wird. CMOS-Gatter sind daher ther-
misch stabil, auch wenn sie parallel geschaltet werden.

- CMOS-Bausteine haben ein sehr hohes Fan-Out, da die Eingénge der Gatter sehr hochoh-
mig sind. Bei hohem Fan-Out steigen die Anstiegszeit und die Abfallzeit stark an, wie un-
ten gezeigt werden wird.

- Die Impulsflanken zur Ansteuerung von CMOS-Gattern miissen eine Mindeststeilheit ha-
ben. Bei langsamem Umschalten sind die Ausgangstransistoren zu lange beide leitend, was
zu thermischen Problemen fiihrt. Auflerdem sind CMOS-Schaltungen im Umschaltpunkt
sehr storempfindlich, so dass es zu Fehlschaltungen kommen kann.

Tabelle 5-2 Typische Eigenschaften verschiedener CMOS-Logikfamilien.

Bezeichnung Standard | Standard High [High Speed | Advanced Low-

Speed Voltage
4000 74C00 | 74HCO0 | 74HCTO00 | 74ACT00 | 74LVCO00

Leistung je Gatter | 0,3mW 3mW | 0,5mW 0,5mW 0,8mW 0,5mW

Laufzeit ¢, 90ns 30ns 10ns 10ns 3ns 6ns
Betriebsspannung 5V 15V 2-6V 5V 5V 3,3V
5.2 TTL

Die frither am weitesten verbreitete Realisierung von logischen Gattern ist die bipolare Transis-
tor-Transistor-Logik (TTL) (Bild 5-7). Ihre Funktion beruht auf der Verwendung eines Multi-
Emitter-Transistors T; im Eingang. Sind alle Eingédnge auf einem Potential nahe der positiven
Betriebsspannung (H), so wirkt der Kollektor des Eingangstransistors T, als Emitter. Der Tran-
sistor arbeitet im Inversbetrieb. In Bild 5-7 ist dann der folgende Transistor T, durchgesteuert,
und damit liegt der Ausgang auf L. Damit der Eingangsstrom gering bleibt, muss die Invers-
stromverstdrkung von T, nahe bei 1 liegen. Die Kollektordotierung muss daher ungefahr gleich
der Basisdotierung sein.

Liegt nur ein Eingang auf L, so stellt der Eingangstransistor T, einen durchgesteuerten Transis-
tor im Normalbetrieb (aktiv, vorwirts) dar. Die Kollektor-Emitterspannung ist bis auf eine

46 5 Schaltungstechnik

geringe Restspannung gesunken und der folgende Transistor T, sperrt. Der Ausgang liegt dann
auf H. Da der Eingangstransistor immer durchgeschaltet ist, entfdllt das Ausrdumen der Basis-
ladung. Das wirkt sich giinstig auf die Schaltgeschwindigkeit aus. Das Schaltverhalten kann
weiter verbessert werden, wenn eine Schottky-Diode zwischen Basis und Kollektor geschaltet
wird, welche eine Flusspolung der Basis-Kollektor-Diode verhindert. Dann bleibt die Basisla-
dung gering, und Umladungen zwischen Vorwirts- und Riickwértsbetrieb werden zusitzlich
vermieden. TTL-Gatter mit Schottky-Dioden haben ein ,,S“ in der Typenbezeichnung. Die

Transistoren im Schaltbild werden durch einen S-formigen Balken markiert.

. H] °* Vee -f
T, T oA
b)

T, Ty

X0

X1

°y
Ts

N[
| %]
N[
| %1
=
=1
=

==
= Rl =
O|l—=|=|—=I=

a)

Bild 5-7 a) TTL-NAND-Gatter (74S00). b) Darstellung der Transistoren mit Schottky-Dioden. ¢) Wahr-
heitstabelle.

* * °Vee xo | xi | En ¥
EI 0 0 1 1
0 1 1 1
En o—so L T, } (1) i (1)
N T d| d | O | hoch-
0 : oy ohmig
X1 Tl
14E Ty b)

En _|ENI
a)

Bild 5-8 a) Prinzip eines TTL-Tri-State-Gatters (NAND), b) Wahrheitstabelle fiir positive Logik, ¢)
Schaltsymbol.

52 TTL 47

Das TTL-Tri-State-Gatter in Bild 5-8 hat einen Enable-Eingang En mit dem der Ausgang
hochohmig geschaltet werden kann.

Wenn der Eingang En auf L liegt, wird der obere Ausgangs-Transistor T; gesperrt. Der Enable-
Eingang En bewirkt iiber den Emitter von T, dass der Transistor T, im Vorwirtsbetrieb leitet.
Daher sperrt T, und es gibt keinen Spannungsabfall am Emitterwiderstand von T, so dass auch
T, sperrt. Da beide Ausgangstransistoren T; und Ty sperren, ist der Ausgang im hochohmigen
Tristate-Zustand.

Liegt der Eingang En auf H, so sind der entsprechende Emitter und die Diode stromlos. Die
Schaltung arbeitet dann wie eine normale NAND-Schaltung.

5.2.1 Belastung der Ausgiinge

Auch bei TTL kann an ein Gatter nur eine begrenzte Anzahl Eingéinge von Folgegattern ange-
schlossen werden. Bei TTL ist der Laststrom der Ausgangsstufe begrenzt. Fiir Standard TTL-
Bausteine gelten die in Tabelle 5-3 festgehaltenen maximalen Laststrome. Auflerdem sind die
minimalen Eingangsstrome angegeben.

Tabelle 5-3 Maximale Ausgangs- und minimale Eingangsstrome fiir Standard-TTL-Bausteine.

maximaler Last-Strom | minimaler Eingangs-Strom
Low 16mA 1,6mA
High 0,4mA 0,04mA

Daraus folgt, dass bis zu 10 Standard-TTL-Gatter an ein Standard-TTL-Gatter angeschlossen
werden konnen. Das Fan-Out der Standard TTL-Baureihe betrdagt 10. Man kann aber auch das
Fan-Out betrachten, welches durch gemischte Verwendung der Baureihen entsteht. Alternativ
dazu ist auch die Verwendung der Begriffe ,,Drive-Factor und ,,Load-Factor* {iblich. Fiir alle
TTL-Baureihen gilt:

- Versorgungsspannung Vee= 5V
Nahezu gleiche Ein- und Ausgangspegel (,, TTL-Pegel*) fiir alle Baureihen:

UaLmax = 0a4V
UaHmin = 2,4V
UeLmax = O,8V
UeHmin = 270V

- offene Eingénge entsprechen einem logischen High!
Ausgénge diirfen nicht parallel geschaltet werden.

Tabelle 5-4 Typische Eigenschaften der TTL-Logikfamilien.

Bezeichnung Standard | High | Schottky | Low-Power | Advanced Low-
Speed Schottky Power-
Advanced
7400 74H00 | 74S00 74L.S00 74AS00 | 74ALS00
Leistung je Gatter 10mW | 23mW 20mW 2mW ImW ImW
Laufzeit ¢, 10ns 5ns 3ns 10ns 1,5ns 4ns

48 5 Schaltungstechnik

5.3 Emitter-Coupled Logic (ECL)

Die Emitter-gekoppelte Logik (ECL) arbeitet mit Differenzverstirkern, welche nicht in die
Sattigung gesteuert werden (Bild 5-9). Dadurch sind diese Schaltkreise sehr schnell.

Im Eingangsdifferenzverstérker der Schaltung werden die Spannungen der Eingangssignale x
und x; mit einem Referenzsignal verglichen. Liegen x, und x; auf L, dann sperren die Transis-
toren T; und T,, dagegen leitet T;. Der Ausgang y gibt dann ein L aus. Liegt dagegen x, oder x,;
auf H, so leitet T, oder T, und T; sperrt. Das Ausgangssignal O liegt dann auf H. Es handelt
sich also um ein NOR-Gatter. Die Schaltschwelle kann mit dem Spannungsteiler an der Basis

von T, eingestellt werden.
JT

|/ >
N

X1] :)_—|y
X0 Tl Tz P—‘ o —y
L . b)

S T T

a)

Bild 5-9 ECL-NOR-Gatter: a) Schaltung, b) Schaltsymbol fiir positive Logik.

Die Eigenschaften von ECL-Gattern lassen sich wie folgt zusammenfassen:

- ECL-Gatter sind gegeniiber TTL-Gattern schneller.

- Sie verbrauchen im Ruhezustand mehr, bei hohen Schaltfrequenzen weniger Leistung als
CMOS und TTL.

- Bei Low und High-Pegel haben ECL-Gatter die gleiche Verlustleistung.

- ECL-Gatter haben ein hohes Fan-Out

- Die Storsicherheit ist geringer.

Tabelle 5-5 Typische Eigenschaften der ECL-Logikfamilien.

Bezeichnung Standard High Speed High Speed
10.100 10E100 100E100

Leistung je Gatter 35mW 50mW 40mW

Laufzeit ¢, 2ns 0,75ns 0,4ns

5.4 Integrierte Injektions-Logik (I12L) 49

5.4 Integrierte Injektions-Logik (I’L)

Die integrierte Injektions-Logik I°L hat den Vorteil einer sehr geringen Chipfliche. AuBerdem
kann sie mit geringen Betriebsspannungen und geringen Verlustleistungen arbeiten. Sie ist aber
weitgehend von der CMOS-Technologie abgelost worden.

In Bild 5-10 ist ein typischer Inverter gezeigt. T, wirkt als Stromquelle mit einem relativ kon-
stanten Ausgangsstrom /. Liegt der Eingang x auf High, so flieft der gesamte Strom in die
Basis von T, der leitend wird. Die Ausgénge y; und y, liegen dann auf Low.

Ist der Eingang Low, dann flieBt der Strom /, in das vorhergehende Gatter und die Ausgénge
liegen auf High.

Vee Y1)2
? Vee X Y1 »
I

: p | [p [n]ln]

a)
Bild 5-10 a) Schaltbild eines I*L-Inverters, b) Realisierung.
I°L-Schaltkreise konnen mit sehr geringen Betriebsspannungen von unter 1V betrieben werden.
Der Storabstand wird dann aber sehr klein. Bild 5-11 zeigt ein NOR-Gatter in PL-Technik. Die

beiden weiteren offenen Kollektoren konnen zur Realisierung weiterer logischer Funktionen
genutzt werden.

VC C

. <
3L

1
N RS

-

Bild 5-11 NOR-Gatter in I’L-Technik.

50 5 Schaltungstechnik

5.5 Verlustleistung und Schaltverhalten von Transistorschaltern

Das Schaltverhalten eines CMOS-Gatters soll im Folgenden an einer CMOS-Ausgangsstufe
mit einer CMOS-Last untersucht werden. Dafiir ist in Bild 5-12 das Modell eines Transistor-
schalters dargestellt. In diesem Modell wird ein Transistor nur durch einen Widerstand R, oder
R,y dargestellt, je nachdem, ob er aus- oder eingeschaltet ist. Die Leitungen, die am Ausgang
angeschlossen sind und die folgende Eingangsschaltung werden durch die Kapazitit C; darge-
stellt.

e

a) b) 9]
CMOS-Inverter Einschalten Ausschalten

Bild 5-12 a) CMOS-Inverter. b) Modell fiir den Einschaltvorgang. b) Modell fiir den Ausschaltvorgang.

Der Kondensator C; setzt sich aus den Eingangskapazititen der folgenden Gatter sowie den
Leitungskapazititen und der Ausgangskapazitit Cpg des Inverters zusammen. Bei einer bipola-
ren Schaltungstechnik miisste auch der Eingangswiderstand der folgenden Gatter beriicksich-
tigt werden.

In der folgenden Berechnung ist der Widerstand des gesperrten Transistors R, als unendlich
grof} angenommen. Man beachte, dass der On-Widerstand R,, bei gegebener Gate-Linge der
Transistoren von der Gate-Weite der Transistoren abhéingig ist, da der Drainstrom proportional
zum Verhiltnis Gateweite zu Gateldnge ist. Kleine Transistoren haben daher einen hohen On-
Widerstand. Lost man im Zeitbereich die Differentialgleichungen fiir die Ausgangsspannung,
so erhélt man fiir das Schalten von L nach H:

U, =V, (1 e) (5.1
und fiir das Schalten von H nach L:
Ua — VDD e_[/erCi (52)

Die Zeitkonstante dieser Funktionen ist eine Approximation der Schaltzeit des Gatters:
ty=R,, C; (53)

5.6 Ubungen 51

Um eine geringe Schaltzeit zu erzielen, miissen daher der On-Widerstand der Transistoren und
die angeschlossenen Kapazititen klein sein.

Berechnet man aus Gleichung 5.1 und 5.2 die mittlere Verlustleistung P fiir periodisches Ein-
und Ausschalten mit der Frequenz fund addiert die statische Verlustleistung (Vpp° / (RontRop)
so erhilt man:

1
P:VDZD[

Rnn + Rof/

+ fC,.] (5.4)

Man zieht daraus die folgenden Schliisse:

— Schnelle Schaltungen bendtigen niedrige On-Widerstdnde und daher Transistoren mit
groBBer Weite W (wenn FETs verwendet werden)

— Schnelle Schaltungen erfordern geringe Leitungskapazititen, in schnellen Schaltungen
diirfen daher nur relativ wenige Gatter an einen Ausgang angeschlossen werden

— Mit steigender Schaltgeschwindigkeit steigt die Verlustleistung

— Bei schnellen und hochintegrierten Schaltungen muss die Versorgungsspannung redu-
ziert werden (2 oder 3V).

p 4 CMOS
ECL

GaAs(HEMT)

>/

Bild 5-13 Leistungsaufnahme P verschiedener Technologien iiber der Schaltfrequenz (schematisch).

Bild 5-13 zeigt die Leistungsaufnahme von verschiedenen Logik-Technologien iiber der Fre-
quenz. Neben der CMOS- und der Silizium-ECL-Technologie sind die Ergebnisse fiir eine
Technologie auf der Basis des Verbindungshalbleiters Gallium-Arsenid (GaAs) dargestellt. Die
verwendeten Transistoren, spezielle Feldeffekttransistoren, sind High-Electron-Mobility-
Transistoren (HEMT). Das Bild zeigt, dass entsprechend Gleichung 5.4, ein statischer Anteil
der Verlustleistung und ein frequenzproportionaler Anteil vorliegen. Bei niedrigen Frequenzen
schneidet die CMOS-Technologie und bei hohen die GaAs-Technologie am besten ab.

5.6 Ubungen

Aufgabe 5.1
a) Konstruieren Sie ein CMOS-NAND-Gatter mit 3 Eingéingen.
b) Konstruieren Sie ein CMOS-NOR-Gatter mit 3 Eingédngen.

52 5 Schaltungstechnik

Aufgabe 5.2

Geben Sie die Wahrheitstabelle und das Schaltbild des TTL-Gatters in Bild 5-8 an, wenn eine
negative Logik zugrunde gelegt wird.

Aufgabe 5.3

Geben Sie an, welche logische Funktion y = f (x4, X3, X5, X1, Xo) durch das dargestellte Gatter
realisiert wird, wenn man eine positive Logik zugrunde legt.

x;%

o E' . E X4 :]
iE Tj T y

al

XO_L]_"

M

-1

T

- |
N O S
Aufgabe 5.4

Geben Sie an, welche logische Funktion y = f (x, xp) durch das dargestellte Gatter realisiert
wird, wenn man eine positive Logik zugrunde legt.

BB B

X1

TTT
T

X0

3T
5|_

e
T

13

®

Check for
updates

6 Schaltnetze

Ein Schaltnetz ist eine Funktionseinheit, die einen Ausgangswert erzeugt, der nur von den
Werten der Eingangsvariablen zum gleichen Zeitpunkt abhéngt. Es wird durch eine Schaltfunk-
tion beschrieben. In der Praxis stellt sich oft die Aufgabe, zu einer gegebenen Schaltfunktion
die einfachste Realisierung zu finden. Hier werden Verfahren vorgestellt, die eine Minimierung
mit graphischen Methoden oder mit Hilfe von Tabellen ermdglichen. Die minimierte KDNF
wird minimale disjunktive Normalform (DNF), die minimierte KKNF wird minimale konjunk-
tive Normalform (KNF) genannt.

6.1 Minimierung mit Karnaugh-Veitch-Diagrammen

6.1.1 Minimierung der KDNF

Die Methode der Minimierung von Schaltnetzen mit Karnaugh-Veitch-Diagrammen eignet
sich gut fiir den Entwurf von Hand. Sie wird hier an Hand eines Beispiels erldutert. Die zu
minimierende Schaltfunktion sei durch die Tabelle 6-1 definiert.

Tabelle 6-1 Beispiel einer Schaltfunktion.

Dez. | x5 | xo | x1 | X0 | ¥ Dez. | x5 | x2 | x1 | X0 | ¥
0 0O[0]JO0fO0]1 8 I1{0]0fO0]1
1 oOofojJO0|1]O0 9 r{fojof1]0
2 O[O0 1f0]1 10 110 1]0]|1
3 oo 1|1]0 11 1101]1(O0
4 Of1]10([0]O 12 1 L {0]0[|1
5 Of1]0f1]1 13 1 L{fo] 1|1
6 o1 1[0]O0 14 1 | I1{o0]0
7 01 1 110 15 1) 1] 1]1]1

Fiir die Minimierung werden Matrix-Diagramme verwendet, in denen jedes Feld genau einer
Disjunktion der Eingangsvariablen, also einem Minterm entspricht. Diese Diagramme werden
Karnaugh-Veitch-Diagramme (KV-Diagramm) genannt. Im Bild 6-1 sind zwei KV-Dia-
gramme gezeigt, in denen die Felder mit ihren Mintermen bzw. mit dem Funktionswert der
zugehdrigen Eingangsvariablenkombination bezeichnet sind. Das Diagramm ist so konstruiert,
dass sich beim Ubergang von einem Feld in das nichste nur eine Variable dndert.

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018
K. Fricke, Digitaltechnik, https://doi.org/10.1007/978-3-658-21066-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-21066-3_6&domain=pdf

54 6 Schaltnetze

X3:1 X3—1
—

f_/%
£(0000)|f(0100)|(1100)|f(1000) mo | ms | mp | ms
£f(0001)|f(0101)|f(1101)|f(1001) M s s

xo=1 xo=1
ms3 my mis my
f0011)|fO111)|f(1111)|{f(1011) -
Xl ny me mig mio
f(0010)|£(0110)|f(1110)|f(1010)
| S —
X2=1

x2:1

Bild 6-1 Karnaugh-Veitch-Diagramme fiir 4 Eingangsvariable a) mit bindrer Bezeichnung der Felder, b)
mit Bezeichnung der Minterme.

In diesem Diagramm werden zur Minimierung der KDNF die Minterme der Schaltfunktion
markiert. Dabei ist die Verwendung der Dezimaldquivalente hilfreich. Fiir das Beispiel erhélt
man:

X3
/_/H

1 1 1

1 1

X0
1
X1
1 1
R
X2

Bild 6-2 Karnaugh-Veitch-Diagramm mit den Mintermen der Funktion aus Bild 6-1.

Jetzt konnen benachbarte Felder, da sie sich immer nur in einer Variablen unterscheiden, nach
der Regel (Gleichung 3.36)

Xo X1V Xo X1 =X (61)
zusammengefasst werden.
Daher werden moglichst groBBe Gebiete von Feldern mit einer 1 gebildet. Es sind aber nur zu-
sammenhéingende, konvexe Gebiete mit 1,2,4,8 usw. Feldern moglich. Diese Felder werden
durch eine Konjunktion der Eingangsvariablen beschrieben, die Implikant genannt wird. Man

denkt sich dabei die linke Seite des Diagramms anschlieBend an die rechte, ebenso wie die
obere Seite mit der unteren gedanklich verbunden. Ein Implikant, der aus 4 Eingangsvariablen

6.1 Minimierung mit Karnaugh-Veitch-Diagrammen 55

aufgebaut ist, besteht aus einem Feld (bei einer Funktion mit 4 Variablen). Hat der Implikant
eine Variable weniger, so verdoppelt sich jeweils die Anzahl der Felder. Um den Aufwand an
Gattern zu minimieren, werden daher moglichst grofle Felder gebildet.

Bild 6-3 Karnaugh-Veitch-Diagramm mit den Mintermen der Funktion aus Tabelle 6-1.

Fiir das Gebiet | findet man den Implikanten /;:
Gebiet 1: I} = xo™x1x

Man findet keinen anderen Implikanten der /; vollstidndig tiberdeckt. Der Implikant /; der
Funktion wird Primimplikant genannt, wenn es keinen Implikanten /, gibt derart, dass /; von I,
vollstandig iiberdeckt wird. Die Implikanten der DNF werden auch Produktterme genannt.

Die im Beispiel vorhandenen Primimplikanten sind mit den Zahlen 1 bis 5 markiert. Weitere
Primimplikanten findet man nicht. Fiir die anderen markierten Primimplikanten kann man mit
Hilfe der Variablen am Rand des Diagramms die Konjunktionen bestimmen, die die Gebiete
eindeutig bezeichnen:

Gebiet 2: [, = xg X2 X3
Gebiet 3: [; = —x; x5 x3
Gebiet 4: I, = —xo —x; X3
Gebiet 5: I5 = —xy %,

In einem Diagramm fiir 4 Eingangsvariable entspricht ein Gebiet von 4 Feldern einem Impli-
kanten mit 2 Variablen, wie es hier fiir den Implikanten /5 der Fall ist. Dieser Implikant liegt in
den 4 Ecken des Diagramms, die verbunden gedacht werden.

Man unterscheidet zwischen:
- Kern-Primimplikanten Pg:

Ein Primimplikant ist ein Kern-Primimplikant, falls er durch die Disjunktion aller {ibrigen
Primimplikanten nicht iiberdeckt wird. Die Kern-Primimplikanten haben also eine 1, die
nur sie allein abdecken. Die Kern-Primimplikanten tauchen in der minimierten Form der
DNF auf jeden Fall auf.

- Absolut eliminierbare Primimplikanten P,:

56 6 Schaltnetze

Ein Primimplikant ist absolut eliminierbar, falls er durch die Kern-Primimplikanten voll-
stindig tiberdeckt wird. Er ist {iberfliissig.

- Relativ eliminierbare Primimplikanten Pg:

alle weiteren Primimplikanten heifen relativ eliminierbare Primimplikanten. Eine Auswahl
der relativ eliminierbaren Primimplikanten taucht in der minimierten Form der DNF auf.

Im Beispiel ergeben sich die Mengen:

PK: {[19 123]5}
Py= {Q}
Pr={L, I}

Die minimierte Schaltfunktion setzt sich aus den Kern-Primimplikanten und einer Auswahl der
relativ eliminierbaren Primimplikanten zusammen, so dass alle Minterme abgedeckt sind. Die
vereinfachte Schaltfunktion lautet also, wenn man den relativ eliminierbaren Primimplikanten
4 eliminiert:

13, X2, X1, X0) = Xo X1 X2 V XoX2X3 V TX1 X2 X3 V g T, (6.2)
und wenn man den Primimplikanten 3 eliminiert:

f(X3, X2, X1, X()) =X TX1X2 VXpX2X3 V X9 X1 X3V TX) X2 (63)

6.1.2 Minimierung der KKNF

Das Verfahren zur Minimierung der KKNF beruht auf den Maxtermen. An Stelle der Einsen
werden nun die Nullen betrachtet. Fiir das gleiche Beispiel werden nun die Maxterme in das
Diagramm eingetragen.

X0

X1

Bild 6-4 Karnaugh-Veitch-Diagramm mit den Maxtermen der Funktion aus Tabelle 6-1.

Es werden wieder moglichst groe Gebiete eingezeichnet, wobei nach den gleichen Regeln
verfahren wird wie bei der Ermittlung der DNF. Die in Bild 6-4 eingezeichneten Gebiete sind
die Primimplikanten der KNF. Sie werden durch Disjunktionen der Eingangsvariablen darge-
stellt, die auBerhalb des jeweiligen Gebietes den Funktionswert 1 erzeugen:

6.1 Minimierung mit Karnaugh-Veitch-Diagrammen 57

Gebiet 1: [, =xy vV %, V X3
Gebiet 2: [, = —xy V x5
Gebiet 3: ;="x; V "X V X3
Gebiet 4: I, = —xo V X1 V X3
Gebiet 5: Is =xoV X1 V X,

Im Beispiel ergeben sich also die Mengen:

PK: {[13 IZa]5}
P, ={2}
Pr={L, L4}

Eine minimale Realisierung erhélt man durch die Verwendung der Kern-Primimplikanten und
des Implikanten /:

1(x3, X2, X1, X0) = (X0 vV 72 V X3)(TXp V X2) (71 V T V X3)(Xo V TV TXR) (6.4)

Die zweite mogliche minimale KNF erhdlt man durch die Verwendung der Kern-
Primimplikanten und des Implikanten Zj:

1(x3, X2, X1, X0) = (X0 vV 72 v X3)(X V X2)(TXo V T V X3)(X0 V XV TXR) (6.5)

6.1.3 Karnaugh-Veitch-Diagramme fiir 2 bis 6 Eingangsvariablen

Hier finden Sie eine Zusammenstellung der verschiedenen KV-Diagramme mit den eingetra-
genen Dezimaldquivalenten. Karnaugh-Veitch-Diagramme mit mehr als 6 Variablen werden
selten verwendet, da sie sehr uniibersichtlich sind.

X3
f_/%
X X 0 4 12 8
K_M f_/%
0 2 0 2 6 4 1 5 13 9
X0
xo{ 1 3 Xo{ 1 3 7 5 3 7 15 11
X1
— 2 6 14 10
X1
| S
X2

Bild 6-5 Karnaugh-Veitch-Diagramme fiir 2, 3 und 4 Eingangsvariable.

58 6 Schaltnetze

X0
3 7 15 11 27 31 23 19
X1
2 6 14 10 26 30 22 18
[[
X2 X2
Bild 6-6 Karnaugh-Veitch-Diagramm fiir 5 Eingangsvariable.
ij
0 8 24 16 48 56 40 32
1 9 25 17 49 57 41 33
3 X0

X3 X3

Bild 6-7 Karnaugh-Veitch-Diagramm fiir 6 Eingangsvariable.

6.1 Minimierung mit Karnaugh-Veitch-Diagrammen 59

6.1.4 Unvollstindig spezifizierte Funktionen

Mitunter ist eine Funktion nicht vollstindig spezifiziert. Dann kénnen manche Funktionswerte
beliebig gewahlt werden. Sie werden im KV-Diagramm mit einem d (don’t care) markiert. Die
don’t care-Minterme koénnen zur Minimierung der Funktion benutzt werden. Im folgenden
Beispiel (Bild 6-8) ist eine Funktion durch ihr KV-Diagramm gegeben.

X2

x1

Bild 6-8 Beispiel fiir eine unvollstindig spezifizierte Funktion.

Nun koénnen die Primimplikanten unter Einbeziehung der don’t care-Felder so eingezeichnet
werden, dass sic moglichst grol werden. Die don’t care-Felder konnen dabei 0 oder 1 gesetzt
werden.

X2

X0

Bild 6-9 Primimplikanten fiir das Beispiel aus Bild 6-8.

Man findet fiir die minimierte Form daher:

12, X1, X0) = Xg™X2 V X (6.6)

Ohne die Verwendung der don’t care-Terme (d.h. mit d = 0) hétte man folgende minimierte
Form gefunden:

12, X1, X0) = X7 X V T X TN V X X X (6.7)

Die Funktion kann also mit Hilfe der don’t care-Terme einfacher dargestellt werden.

60 6 Schaltnetze

6.2 Das Quine-McCluskey-Verfahren

Ein Verfahren zur Minimierung von Schaltnetzen, welches sich fiir die Implementierung auf
dem Rechner eignet, ist das Verfahren von Quine-McClusky. Es beruht auf Tabellen, in denen
wieder nach dem Prinzip der Gleichung 3.36 vorgegangen wird:

XoX1 V Xo™X] = Xo (6.8)

Die Darstellung der Funktion geschieht durch ihre Minterme im Binédrdquivalent. Fiir eine im
Minterm vorkommende Variable wird eine 1 gesetzt, fiir eine negierte Variable eine 0 und fiir
eine nicht vorkommende ein Strich (-). Ein Beispiel:

x37xxo wird geschrieben als: 10-1

Das Verfahren soll im Folgenden an Hand des Beispiels aus Tabelle 6-1 dargestellt werden.
Die Minterme der Schaltfunktion werden in eine Tabelle (Tabelle 6-2) eingetragen, in der sie
zu Gruppen von Mintermen mit der gleichen Anzahl von 1-Elementen zusammengefasst wer-
den. In den Spalten stehen: das Dezimaldquivalent, die bindre Darstellung und die Gruppe (d.h.
die Anzahl der Eins-Elemente des Bindrdquivalents).

Tabelle 6-2 Ordnung der Minterme nach Gruppen mit gleich vielen 1-Elementen.

Dezimal | x3 | x» | x1 | xo | Gruppe
0 olo]o]o 0 v
2 olof[1]o 1 v
8 1lofo]o 1 v
5 o|l1]o0f1 2 v
10 1{fo]l1]o 2 4
12 1{1]o]o 2 v
13 1{1]lo]1 3 v
15 111]1 4 v

In der folgenden Tabelle 6-3 werden dann die Terme aufeinander folgender Gruppen, die sich
nur in einer Stelle unterscheiden, in einer Zeile zusammengefasst. Dies ist die Anwendung der
Gleichung 6.8. Die Stelle, in der sich die Elemente unterscheiden, wird durch einen Strich (-)
gekennzeichnet. Fiir das Dezimaldquivalent werden die Dezimalzahlen der Minterme eingetra-
gen, aus denen sich der neue Term zusammensetzt.

6.2 Das Quine-McCluskey-Verfahren 61

Tabelle 6-3 1. Zusammenfassung der Minterme nach Gruppen mit gleicher Anzahl von 1-Elementen.

Dezimal | x3 | xo | x1 | xo | Gruppe
0,2 ofof-1|0oO 0 v
0,8 -[O0]JO0]O 0 v
2,10 -0l 1]0O0 1 v
810 |1]o]-1]o 1 v
8,12 1|-101{0 1
5,13 -1]10(1 2
12,13 I{1]10] - 2
13,15 L (1] -1]1 3

Im Beispiel konnen die Minterme 0 und 1 zusammengefasst werden, da sie sich nur in der
Stelle x; unterscheiden.

Alle Terme, die sich zusammenfassen lassen, werden in der vorhergehenden Tabelle 6-2 mit
einem v" markiert. (Da z.B. die Minterme 0 und 1 verschmolzen wurden, werden sie in Tabelle
6-2 beide mit einem v markiert). Nicht markierte Terme sind Primimplikanten, sie erscheinen
in der minimierten Schaltfunktion (im Beispiel bisher nicht der Fall).

In der folgenden Tabelle 6-4 wird das Verfahren wiederholt. Es werden wieder die Elemente
aufeinander folgender Gruppen aus Tabelle 6-3 zusammengefasst. Wieder werden nur Terme
zusammengefasst, die sich nur um eine Bindrstelle unterscheiden. Sind die Bindrdquivalente
mehrerer Terme gleich, so werden die Terme alle bis auf einen gestrichen.

Tabelle 6-4 2. Zusammenfassung der Minterme nach Gruppen mit gleicher Anzahl von 1-Elementen.

Dezimal | x3 | xo | x1 | xo | Gruppe

02810 - o[-0 0
08210 | - to—+—=T0 | 0 Gestrichen (= Zeile 1)

Das Verfahren wird fortgefiihrt, bis sich keine Terme mehr verschmelzen lassen. Die nicht
abgehakten Terme sind Primimplikanten. Also sind

8,12

5,13

12,13

13,15 und

0,2,8,10 Primimplikanten

Nun miissen die Primimplikanten klassifiziert werden nach: Kern-Primimplikanten, absolut
eliminierbaren Primimplikanten und relativ eliminierbaren Primimplikanten. Das wird mit
einer weiteren Tabelle, der Primimplikantentafel, erreicht.

62 6 Schaltnetze

Auf der Abszisse werden die Minterme der Schaltfunktion aufgetragen, auf der Ordinate die
Primimplikanten. Die Minterme, die in einem Primimplikanten enthalten sind, werden mit
einem X markiert.

Tabelle 6-5 Primimplikantentafel fiir das Beispiel.

Primimplikanten Minterme
0 2 5 8 10 12 13 15
8,12 X X
5,13 X X
12,13 X X
13,15 x X
0,2,8,10 X X X X

Befindet sich in einer Spalte nur ein X, so ist der dazugehdrige Primimplikant ein Kern-
Primimplikant. Die durch ihn abgedeckten Minterme werden durch einen Kreis ® gekenn-
zeichnet. Im Beispiel werden die Minterme 0, 2, 10 nur durch den Kern-Primimplikanten
0,2,8,10 abgedeckt, er erscheint in der minimierten DNF. Die durch ihn abgedeckten Minterme
0,2,8,10 werden, auch in den anderen Zeilen, gekennzeichnet (®).

Tabelle 6-6 Primimplikantentafel fiir das Beispiel mit gestrichenen Termen (®).

Primimplikanten Minterme
0 2 5 8 10 12 13 15
8,12 ® x
5,13 ® ®
12,13 X ®
13,15 ® ®
0,2,8,10 ® ® ® ®

Auch die Implikanten 5,13 und 13,15 sind Kern-Primimplikanten, da nur sie einen der Min-
terme 5 bzw. 15 abdecken. Die abgedeckten Minterme 5,13,15 werden gekennzeichnet (®).

Aus den verbleibenden Primimplikanten, das sind die relativ eliminierbaren Primimplikanten
wird eine minimale Anzahl ausgesucht, um die verbleibenden Minterme abzudecken. Diese
bilden dann zusammen mit den Kern-Primimplikanten die Minimalform der Schaltfunktion. Im
Beispiel kann fiir den verbleibenden Minterm 12 entweder der Primimplikant 8,12 oder 12,13
ausgewahlt werden.

6.3 Andere Optimierungsziele 63
Tabelle 6-7 Zuordnung der Implikanten.
Dezimal | x3 | xo | x1 | xo Implikant
8,12 1 - 0 X3—X1—X
5 . 13 - 1 1 Xr—X 1 X
12,13 1 110 - X3Xy—1X)
13,15 1 1 - 1 X3X2X0
02810 - 10| -10 —Xr—1X
Man erhilt also, wenn man den Primimplikanten 12,13 verwendet:
133, X2, X1, X0) = X271 X0 V X3X2X0 V X3X2 X V TN X (6.9)
oder wenn man den Primimplikanten 8,12 verwendet:
(3, X2, X1, X0) = X27X1 X0 V X3X2Xp V X371 X V XX (6.10)

Diese Gleichungen sind identisch zu den mit Hilfe der Karnaugh-Veitch-Diagramme gefunde-

nen minimierten Formen.

6.3 Andere Optimierungsziele

Ein Schaltnetz, das durch seine KDNF oder KKNF beschrieben ist oder durch die minimierten
Formen DNF und KNF, ldsst sich direkt durch ein zweistufiges Schaltwerk realisieren. Fiir ein
zweistufiges Schaltwerk muss man zwei Gatterlaufzeiten veranschlagen, wenn man die Lauf-
zeit durch die Inverter vernachléssigt, oder wenn die Eingangsvariablen auch invertiert zur

Verfiigung stehen.

In der Regel hat man aber bei der Realisierung auch weitere Randbedingungen zu beachten:

- Oft soll das Schaltwerk mit nur einem Gattertyp aufgebaut werden, so zum Beispiel nur mit

NOR oder NAND.

- Die maximale Laufzeit ist oft vorgegeben, so dass nur ein zweistufiges Schaltwerk in Frage

kommt.

- Es sollen mehrere Funktionen gemeinsam minimiert werden.

- Die maximale Anzahl der Produktterme ist in programmierbaren Bausteinen in der Regel

vorgegeben.

Es sollen im Folgenden einige dieser Besonderheiten bei der Realisierung von Schaltnetzen

aufgezeigt werden.

64 6 Schaltnetze

6.3.1 Umwandlung UND/ODER-Schaltnetz in NAND-Schaltnetz

Es soll das in Bild 6-10a gezeigte Schaltnetz, das aus der DNF gewonnen werden kann, in ein
Schaltnetz umgewandelt werden, welches nur aus NAND-Gattern aufgebaut ist. Mit der de
Morganschen Regel wandelt man zundchst das ODER-Gatter in ein UND-Gatter um (Bild 6-
10b). Dann verschiebt man die Inversionskreise vom Eingang dieses UND-Gatters an die Aus-
ginge der an den Eingéngen liegenden UND-Gatter und hat dann ein reines NAND-Netz (Bild
6-10c). Die einmalige Anwendung der de Morganschen Regel ergibt die Formel:

Y = XpX2X3V X9 X2 X3V XpX T X3V X1X2X3

= ~(—(xox2x3) ~(xo™x27x3) (XX 7X3) (X 1X27x3)) (6.11)

| —1>1
—

L] e[][#]

o— Y

b)

J
&

L] e[][#]
7

o—y

:

11
23

| & =] &| &]
‘j (@)
K

o c)

Bild 6-10 a) Schaltnetz einer DNF b) Umwandlung des ODER-Gatters c) Verschieben der Inversionskrei-
se.

6.3 Andere Optimierungsziele 65

6.3.2 Umwandlung ODER/UND-Schaltnetz in NOR-Schaltnetz

Bei der Umwandlung eines ODER/UND-Schaltnetzes in ein Schaltnetz nur aus NOR-Gattern
geht man entsprechend vor. In Bild 6-11 ist gezeigt, dass durch die Umwandlung des UND-
Gatters am Ausgang (Bild 6-11b) und die Verschiebung der Inversionskreise (Bild 6-11c¢) ein
reines NOR-Netz entsteht. Die Formel erhdlt man durch einmalige Anwendung der de Morg-
anschen Regel:

y= ()Co VXV X3)(X()V XV _‘X3)(XoV X1V _‘X3)(X1VXV _‘X3)

=("(xo VX2V x3) V(XoV 0V x3) V(X VXV THG) V(X VX VTxg)) (6.12)

| /&
—

=
(==}
| |v|| |v|| |v|| |v|

-
o

| |v|| |v|| |v|| |v|

ok ok ok i
|
<

b)

| |v|| |v|
— —

!
v
~

J

2R x

W — O
v

Bild 6-11 a) Schaltnetz einer KNF b) Umwandlung des UND-Gatters c) Verschieben der Inversionskrei-
se.

66 6 Schaltnetze

6.4 Laufzeiteffekte in Schaltnetzen

6.4.1 Strukturhazards

Bisher wurde das Laufzeitverhalten von Schaltnetzen als ideal angenommen, das heif3t, dass
die Ausgangssignale sofort anliegen. In der Praxis ist diese Annahme zu optimistisch. Wenn
man eine endliche Gatterlaufzeit annimmt, konnen am Ausgang von Schaltnetzen voriiberge-
hend falsche Ausgangssignale anliegen. Diese Effekte werden Strukturhazards genannt. Es ist
im Bild 6-12 ein Gatter gezeigt, welches die Funktion:

Y=X1X0 V XX (6.13)
ausfiihrt. Im Inverter habe das Signal die Laufzeit #,.. Die Laufzeiten in den UND- und ODER-
Gattern sind fiir die Betrachtung der Laufzeitunterschiede nicht zu beriicksichtigen, wenn die
Laufzeiten der UND-Gatter gleich sind.

X2 —
? & V1
i

Xo
-

1
i
: y
X .
' : * L 5"|_,
1 1
' ;

redundantes Gatter

Bild 6-12 Schaltnetz mit Strukturhazard.

Der Zeitverlauf der Signale xo(£), y1(2), y2(f) und y(¢) ist in Bild 6-13 gezeigt. Das Ausgangssig-
nal y(f) zeigt einen Einbruch der Dauer ¢, der durch die Zeitverschiebung im Inverter entsteht.
Bei einer idealen Schaltung wiirde er nicht auftreten.

xo(t) &
¢ P P -
»1(0) 4 -l e > [y -
]
i i
> ¢
»(t) 4
[ot
nt) | il e
R

Bild 6-13 Zeitlicher Verlauf beim Umschalten von x in der Schaltung aus Bild 6-12 (x;=x,=1).

6.4 Laufzeiteffekte in Schaltnetzen 67

Betrachtet man den Vorgang im KV-Diagramm (Bild 6-14), so stellt man fest, dass ein Uber-
gang zwischen zwei Primimplikanten vorliegt. Eine Korrektur des Fehlers ist mit einem Gatter
mdglich, das den Term x,x, realisiert.

Das Schaltnetz wird dann durch die folgende Funktion beschrieben:

V=X1X0 VXX VXX (6.14)
X2
/_/%
0 0 1 1]
X0 { 0 [1 1 0
[S —
X1

Bild 6-14 KV-Diagramm des Schaltnetzes aus Bild 6-12 mit Korrekturgatter (gestrichelt).

Das Problem taucht immer dann auf, wenn zwei Implikanten in der DNF stehen, von denen der
eine Implikant eine Variable in der negierten und der andere Implikant in der nicht negierten
Form besitzt und wenn gleichzeitig der Wert der Implikanten gleich ist. Das ist in Gleichung
6.11 fiir x;=x,=1 der Fall. Eine Abhilfe ist moglich durch die Einfithrung eines Implikanten, der
die Schnittstelle zwischen den beiden Implikanten iiberdeckt.

6.4.2 Funktionshazards

Funktionshazards entstehen z.B., wenn zwei Eingangsvariablen sich dndern, der Ausgangszu-
stand des Schaltnetzes aber auf 1 bleiben sollte. Das Phédnomen soll an einem Beispiel erldutert
werden, welches durch sein KV-Diagramm gegeben ist (Bild 6-15).

X3
—
1 1
X0
1N
\ (1)
x| | K 1\
(2)
—_—
X2

Bild 6-15 KV-Diagramm eines Schaltnetzes mit Funktionshazard. Es sind die beiden mogli-
chen Schaltwege (1) und (2) eingetragen.

68 6 Schaltnetze

Beim Ubergang von (x3,%2,%1,%0)=(1,0,1,0) nach (x3,x,x1,%0)=(1,1,1,1) kénnen, je nach den
Verzogerungszeiten der verwendeten Gatter, zwei verschiedene Schaltverhalten auftreten.
Wenn die Wirkung von x, zuerst erfolgt bleibt der Ausgang dauernd auf 1, wie es richtig ist
(Weg 1 in Bild 6-15). Wirkt sich erst die Anderung von x; aus, so tritt ein Hazard auf (Weg 2).

() &

Weg 1

(b 4

Ll Weg 2

\/

Bild 6-16 Zeitverlauf des Ausgangssignals des Schaltnetzes entsprechend Bild 6-15 fiir die beiden mogli-
chen Schaltwege (1) und (2).

6.4.3 Klassifizierung von Hazards

Man unterscheidet zwischen den folgenden Hazard-Typen:

MON statischer 0-Hazard

| | -
vt statischer 1-Hazard

[1 -
v 4 dynamischer 1-Hazard

[I
OR | dynamischer 0-Hazard

I

Bild 6-17 Klassifizierung von Hazards.

6.5 Ubungen 69

6.5 Ubungen

Aufgabe 6.1 Eine boolesche Funktion f(x3,x,,x1,X0) ist gegeben durch ihre Funktionstabelle:

X3 X2 X1 xo | f(x3,2,X1,%0)
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

a) Tragen Sie die Werte der Funktion fin ein KV-Diagramm ein.

b) Bestimmen Sie alle Primimplikanten der KDNF von f.

¢) Geben Sie die Kern-Primimplikanten, absolut eliminierbaren Primimplikanten und relativ
eliminierbaren Primimplikanten an.

d) Bestimmen Sie eine minimale disjunktive Normalform von f.

e) Ermitteln Sie die minimale DNF mit Hilfe des Verfahrens von Quine-McCluskey.

Aufgabe 6.2

Eine unvollstindig spezifizierte boolesche Funktion soll durch ihre Minterme und Maxterme
gegeben sein. Die nicht spezifizierten Werte sind don’t care. Die Funktion f(x4, x3, X2, X1, X0)
hat die Minterme (x4: MSB, x,: LSB):

Mo, My, My, M7, Mg, M21, Mo4, M5, Mg,
und die Maxterme:
Ml: M95 Mlly M13, MIS: M187 MIQ: M267 M27a M307 M31
a) Zeichnen Sie das KV-Diagramm und tragen Sie Minterme und die Maxterme ein.

b) Bestimmen Sie eine mdglichst einfache disjunktive sowie eine mdglichst einfache kon-
junktive Normalform, wobei die don’t care-Felder optimal genutzt werden sollen.

70 6 Schaltnetze

Aufgabe 6.3

Durch ihre Minterme m; sind die folgenden drei Schaltfunktionen (x;: MSB, x: LSB) gegeben:
£1(3,%2,X1,%0) = Mo, My, Ms
f(x3,x0,x1,%0) = mg, ms, my
£5(x3,x0,%1,%0) = M3, ms, my, myy, mys

a) Geben Sie fiir jede Funktion getrennt eine minimale DNF an, indem Sie ein KV-
Diagramm fiir jede Funktion aufstellen.

b) Zeigen Sie anhand der drei KV-Diagramme, dass die drei Funktionen gemeinsame Terme
haben und geben Sie ein moglichst einfaches Schaltnetz an, in dem gemeinsame Terme
nur einmal realisiert werden.

¢) Zeichnen Sie das optimale Schaltnetz.

Aufgabe 6.4
Eine Schaltfunktionen (x;: MSB, x,: LSB) ist durch ihre Minterme m; gegeben:
f(x3,%2,%1,%0) = my, my, ms, M, M7, Mo, M3, M5

Zeigen Sie wie die Funktion nur mit NAND-Gattern realisiert werden kann. Versuchen Sie mit
mdglichst wenigen Gattern auszukommen. Nehmen Sie an, dass die Eingangsvariablen x3, x,
X1, Xo auch invertiert zur Verfiigung stehen.

Aufgabe 6.5

Im Bild ist eine Digitalschaltung gezeigt, in der ein Strukturhazard auftritt. Die Laufzeit durch
ein Gatter (UND, ODER, NOT) soll jeweils gleich ¢, sein.

X3
& I
X0
1p]
xi n & >1 y

X2 Eb—
i 4

a) Geben Sie die boolesche Funktion y = f(x3, x5, X1, o) an.

b) Tragen Sie die Funktion in ein KV-Diagramm ein.

¢) Markieren Sie im KV-Diagramm die Stelle, an der ein Hazard auftritt.

d) Schlagen Sie eine Schaltung mit der gleichen Funktion vor, in der kein Strukturhazard
auftritt.

®

Check for
updates

7 Asynchrone Schaltwerke

Ein asynchrones Schaltwerk kann man sich aus einem Schaltnetz entstanden denken, bei dem
zumindest ein Ausgang auf den Eingang zuriickgefiihrt wurde. Dieses Schaltnetz wird im Fol-
genden mit SN1 bezeichnet. Schaltwerke werden auch sequentielle Schaltungen oder endliche
Automaten genannt. Das Verhalten eines Schaltwerks hdngt neben den aktuell anliegenden
Eingangsvariablen auch von den Eingangsvariablen x; vorhergegangener Zeiten ab. Es ist daher
in der Lage Information zu speichern. Die gespeicherten Grofen heilen Zustandsgrofen, die
hier mit z; bezeichnet werden.

X
m+1

— N
—/] Schaltnetz | 2 {

’_l/r SN1

Bild 7-1 Asynchrones Schaltwerk: Schaltnetz mit Riickkopplung und dem Eingangsvektor x, dem Riick-
kopplungsvektor z zu den Zeitpunkten m und m+1.

Verzégerung

Zur Entkopplung der Ein- und Ausgénge bendtigen asynchrone Schaltwerke eine Verzdgerung
in der Riickkopplung. Schaltwerke, bei denen ein Taktsignal entkoppelnde Pufferspeicher in
der Riickkopplung kontrolliert, heiBen synchrone Schaltwerke. Sie werden im néchsten Kapitel
behandelt. Durch die Verzogerung zwischen Ein- und Ausgang ist es sinnvoll, die Zu-
standsgrofien zu zwei verschiedenen Zeitpunkten zu betrachten, die mit den Indizes m und m+1
bezeichnet werden.

Es sollen nur Eingangssignale x; betrachtet werden, die zu diskreten Zeiten ihre Werte dndern.
Der Abstand zwischen zwei Anderungen der Eingangssignale soll so groB sein, dass sich in-
zwischen auf allen Verbindungsleitungen feste Werte eingestellt haben. Man nennt dies Betrieb
im Grundmodus.

7.1 Prinzipieller Aufbau von Schaltwerken

Ein Schaltwerk enthdlt immer ein Schaltnetz, hier SN1 genannt, welches iiber eine Verzoge-
rungsstrecke zuriickgekoppelt ist. Ein Schaltwerk hat aber auch Ausgénge, die auf zwei ver-
schiedene Arten in einem zweiten Schaltnetz SN2 ermittelt werden konnen (Bild 7-2):

e Im Moore-Schaltwerk (Moore-Automat) werden die Ausgangsvariablen y nur aus den Zu-
standsgrofien z” berechnet.

e Der Mealy-Automat verwendet dagegen im Schaltnetz SN2 nicht nur die Zustandsgrofien
Z", sondern auch die Eingangsvariablen x als Eingangsgrofen.

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018
K. Fricke, Digitaltechnik, https://doi.org/10.1007/978-3-658-21066-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-21066-3_7&domain=pdf

72 7 Asynchrone Schaltwerke

m+1

Schaltnetz
SN1
fl (X ’Zm)

Verzogerung

iLN

I

Schaltnetz
SN2

(2 m)

T

Schaltnetz
SN1
f1(x,2")

Verzogerung

b)

I
|

Schaltnetz
SN2
f2(x s Zm)

ﬂﬁ@[yﬁi[
i

Bild 7-2 a) Moore-Schaltwerk, b) Mealy-Schaltwerk.

7.2 Analyse asynchroner Schaltwerke

Als Beispiel sei die Analyse eines NOR-Flipflops durchgefiihrt. Es besteht aus einem idealen
riickgekoppelten Verkniipfungsnetz (Bild 7-3). Mit dieser Schaltung kénnen Daten gespeichert
werden. Die Abkiirzungen S und R fiir die Eingangssignale bedeuten ,,Setzen* bzw. ,,Riickset-
zen“. Der Ausgang wird hier mit O, bezeichnet, alternativ ist auch Q iiblich. Ein zweiter Aus-
gang O, wird auch als invertierender Ausgang —Q bezeichnet. Die invertierende Funktion des
zweiten Ausgangs ist allerdings nicht immer gegeben, wie wir unten sehen werden.

0> (=0)

01 (9)

Bild 7-3 NOR-Flipflop (in Klammern: andere {ibliche Bezeichnung der Ausgénge).

7.3 Systematische Analyse 73

Man kann diese einfache Schaltung bereits durch die Anwendung der bei der Analyse der
Schaltnetze gemachten Erfahrungen verstehen.

1.

Wir beginnen mit dem Fall S =1, R = 0. Der Ausgang des oberen NOR-Gatters in Bild 7-3
liegt dann auf 0,=0. Beide Eingédnge des unteren NOR-Gatters sind dann auf 0, so dass
0,=1 gilt. Das Flipflop ist gesetzt. Dieses Ergebnis tragen wir in die Wahrheitstabelle 7-1
ein. Zwei mogliche Darstellungsformen der Wahrheitstabelle sind dort gezeigt.

Im umgekehrten Fall S =0, R = 1 wird aus Symmetriegriinden der Ausgang O, = 0 und O,
= 1. Das Flipflop ist zuriickgesetzt.

. Nun soll der Fall § =0, R = 0 betrachtet werden. Dann wird das Verhalten des Flipflops von

der Vorgeschichte abhingig.

War der Ausgang O; = 1, so ist ein Eingang des oberen NOR-Gatters in Bild 7-3 gleich 1
und es bleibt auf O, = 0. Es bleibt auch Q; = 1, da beide Eingénge dieses Gatters auf 0 lie-
gen. Dieser Zustand ist stabil und bleibt daher erhalten.

War dagegen der Ausgang O, = 1, so folgt aus Symmetriegriinden, dass ;=0 und O, = 1
erhalten bleiben.

In die Tabelle 7-1 wird daher eingetragen, dass der Vorzustand gespeichert wird
(0"=0™"). Die beiden Darstellungsformen der Tabelle 7-1 unterscheiden sich durch die
Darstellung der Werte der Ausgénge O und —Q zu den Zeiten m und m+1.

Der letzte verbleibende Fall ist S =1, R = 1. Dann gehen beide Ausginge auf 0. Dieser Fall
wird ausgeschlossen, da die Ausgéinge nicht mehr invers zueinander sind.

Tabelle 7-1 Zwei Formen der Wahrheitstabelle eines RS-NOR-Flipflops.

S R Qm+1 S R Qm Qm+l
0foO o" 0]01]O0 0
0 1 0 01]0 1 1
1 0 1 0 1 0 0
0 1 1 0
1 1 verboten 1 010 1
1 0 1 1
1 1 0 | verboten
1 1 1 | verboten

7.3 Systematische Analyse

Eine systematische Analyse kann mit dem Aufstellen der booleschen Funktionen f; und f,
(vergl. Bild 7-2) fiir die Schaltnetze SN1 und SN2 durchgefiihrt werden. Wir zeichnen dazu das
Schaltbild entsprechend Bild 7-4 um und fiihren die pauschale Verzogerungszeit ¢, fiir die
Schaltung ein.

74 7 Asynchrone Schaltwerke

Schaltnetz

a) b)
Bild 7-4 a) Verkniipfungsnetz mit Riickkopplung (RS-NOR-Flipflop), b) Riickkopplung aufgetrennt.

Die Ubergangsfunktion beschreibt den Ausgang z,"*" des idealen Schaltnetzes SN1 als Funkti-
on der Eingangsgrofien S, R, z;™:

ZlmJrl :—|(—|(S\/Zlm) \/R) =—RS Vv =R Zlm (71)

Die Ausgabefunktionen beschreiben das Verhalten des Schaltnetzes SN2, welches in der Reali-
sierung teilweise identisch mit dem Schaltnetz SN1 ist, da auch das obere NOR-Gatter ver-
wendet wird:

0/"=z" (7.2)
sz = —|(S \2 Zlm) =5 —|Zlm (73)

0," in Gleichung 7.3 ist eine Funktion der Eingangsgrofe S, daher handelt es sich um ein Mea-
ly-Schaltwerk. Aus den Zustandsgleichungen konnten die Tabellen 7-1 erstellt werden. Man
kann die Zustandsgleichungen aber auch in die so genannte Zustandsfolgetabelle eintragen
(Tabelle 7-2).

Tabelle 7-2 Zustandsfolgetabelle in Form eines KV-Diagramms.

Zlm+1 le, sz

0 ©) 1 ©) ©) 01 00 00 01
1 © @ 0 0 10 10 10 10

In das erste Diagramm wird der neue Zustand z,""' eingetragen. Diese GroBe beeinflusst nach
ihrer Wertdnderung am Ausgang iiber die Riickkopplung den Eingang.

In das zweite Diagramm werden die Ausgabegrofen eingetragen, in diesem Fall 0" und Q,".

In der Zustandsfolgetabelle werden als néchstes die stabilen Zustinde durch Kreise markiert.
Sie sind durch die Gleichung z," = z,"! gekennzeichnet. In diesen Fillen wird sich das Netz-
werk nach dem Einstellen des Ausgangszustandes stabil verhalten. Ein Beispiel wére die Ein-
gangskombination R = 0, S = 1, wenn gleichzeitig z," =1 ist. Dann ergibt sich aus der Zu-
standsfolgetabelle nach der Laufzeit ; am Ausgang des Netzwerkes stabil z,” "' = 1.

7.4 Analyse unter Beriicksichtigung der Gatterlaufzeit 75

Eine weitere Art der Darstellung ist das Zustandsdiagramm (Bild 7-5). Im Zustandsdiagramm,
hier in der fiir ein Mealy-Schaltwerk {iblichen Form, sind die inneren Zusténde, in diesem Fall
z,", durch Kreise (sog. Knoten) gekennzeichnet. Die moglichen Uberginge sind durch Pfeile
(sog. Kanten) dargestellt. Die dafiir notigen Bedingungen der Eingangsvariablen sind an den
Pfeilen vermerkt. Durch einen Schrégstrich sind die Werte der Ausgangsvariablen davon ge-
trennt. Es geht aus diesem Diagramm zum Beispiel hervor, dass der Ubergang von z,” = 0 nach
z"=1mit § =1, R = 0 bewirkt werden kann. Ein so genannter reflexiver Ubergang ist bei z,”
=0 fiir R =S = 1. Der Zustand z," = 1 ist reflexiv fiir =R, unabhéngig von S.

—RS/00
—S5/01 —=R/10

RS/00

R/10

Bild 7-5 Zustandsdiagramm, in den Kreisen steht z;", nach dem Querstrich: Q0;0,.

Die in diesem Abschnitt vorgestellte systematische Form der Analyse liefert die gleichen Er-
gebnisse wie die in Abschnitt 7.2 mit der einfachen Betrachtungsweise gewonnenen.

7.4 Analyse unter Beriicksichtigung der Gatterlaufzeit

Im Folgenden soll gezeigt werden, dass die obige Analyse zu stark vereinfacht ist, da das Ver-
zogerungsverhalten der Gatter nicht vollstdndig beriicksichtigt wird. Sie gibt einige der auftre-
tenden Probleme nicht wieder. Am Beispiel des NOR-Flipflops soll nun demonstriert werden,
wie auch das Verhalten einer Schaltung analysiert werden kann, in der beide NOR-Gatter eine
endliche Verzogerungszeit haben (Bild 7-6).

Bild 7-6 Verkniipfungsnetz mit Riickkopplung (RS-NOR-Flipflop) unter Beriicksichtigung der Gatter-
laufzeiten ¢, und #,.

76 7 Asynchrone Schaltwerke

Man erkennt, dass nun zwei Zustandsvariablen vorliegen und liest aus Bild 7-6 die Ubergangs-
funktionen:

2™ = (R v ™) = =R —z," (7.4)
2" =S v ") =S —z" (7.5)
und die Ausgabefunktionen:
0" =z/" (7.6)
" =z, (7.7)

ab. Aus den Zustandsgleichungen kann wieder ein KV-Diagramm gewonnen werden. Es gibt
die Signale z,"*" und z,”*" als Funktion der GréBen am Eingang R, S, z,” und z,” an (Tabelle 7-
3). Die stabilen Zustinde sind durch einen Kreis gekennzeichnet.

Ist 2, # z,™ oder 2™ # z,”, so erfolgt ein Ubergang zu einer anderen Kombination von Ein-
gangssignalen. Diese instabilen Ausgangszustinde sind durch Unterstreichen hervorgehoben.

Tabelle 7-3 Zustandsfolgetabelle in Form eines KV-Diagramms.

m+lzlm+l
z,"z," —R—S —RS RS R—S
00 11 01 10
01 (o) 00 00
11 00 00 00 00
10 @ 00 00 | (10)

Sind fiir eine Kombination von Eingangsvariablen beide Zustandsvariablen unterstrichen, &n-
dern sich beide ZustandsgroBen. Man spricht von einem Zweikomponenteniibergang. In die-
sem Fall ist es entscheidend, welche der beiden Gatterlaufzeiten kiirzer ist. Diese bestimmt
dann den nichsten Zustand, da der Ubergang mit der kiirzeren Gatterlaufzeit sich zuerst am
Ausgang auswirkt.

Nun soll aus Tabelle 7-3 das Zustandsdiagramm konstruiert werden. Das soll an einem Beispiel
erldutert werden. Wir nehmen an, dass sich das Schaltwerk mit den Eingangsvariablen R=1,
S=1 stabil im Zustand z,"z,"=00 befindet. In Tabelle 7-3 finden wir den stabilen Zustand
2,"12,™1=00 in der ersten Zeile der Tabelle.

Nun sollen die Eingédnge auf R=0, S=0 schalten. Die Zusténde, die sich einstellen kdnnen, sind
also in der ersten Spalte der Tabelle zu finden. Da die Zustandsvariablen z,"z;"=00 zunéchst
bleiben, miissen wir in der ersten Zeile der Tabelle unter der neuen Eingangsvariablenkombi-
nation die neuen Zustandsvariablen ablesen. Wir finden z,""'z,""! = 11. Das bedeutet, dass sich
beide Zustandsvariablen dndern wollen. Wir kdnnen 3 Fille unterscheiden:

7.4 Analyse unter Beriicksichtigung der Gatterlaufzeit 77

1. Ist die Verzdgerungszeit des ersten Gatters geringer (¢,<t;), so geht das Schaltwerk nach der
Laufzeit #, zunéchst in den Zustand z,""'z,"*! = 01. Das weitere Verhalten richtet sich nach
dem GroBenverhéltnis der Laufzeiten. Es ist eine Vielzahl von Abldufen moglich, die recht

kompliziert sein kdnnen.

2. Ist t;>t), so geht das Schaltwerk in den Zustand z,
ell die gleiche Problematik wie unter 1.

m+1 m+1

10. Danach ergibt sich prinzipi-

3. Gilt t)=t,, so geht es nach z,""'z;""'=11. Es liegt wieder ein Zweikomponenteniibergang
vor. Das Schaltwerk wird also wieder zuruck nach z,""'z,""'=00 schwingen, um den Vor-

gang periodisch zu wiederholen.

Man erkennt, dass das Verhalten des Schaltwerks von den Verzogerungszeiten der Gatter ab-
héngig wird. Man nennt diesen Vorgang Lauf oder ,,Race”, wobei man zwischen kritischen
und unkritischen Ldufen unterscheidet, je nachdem, ob die Endzustinde verschieden oder
gleich sind. Im vorliegenden Fall ist der Lauf, der beim Schalten von RS=11 nach RS=00 auf-
tritt, ein kritischer Lauf, da das Schaltwerk dabei 3 verschiedene Verhaltensweisen zeigen
kann.

Dies ist in Bild 7-7a verdeutlicht. Die ersten Zustandsiibergdnge beim Wechsel von RS=11 (im
Zustand z,"z;"=00) zu RS=00 sind entsprechend den verschiedenen Gatterlaufzeiten aufge-
schliisselt. Dies ist der einzige kritische Lauf im RS-NOR-Flipflop. Man kann ihn z.B. vermei-
den, indem man die Eingangskombination RS=11 verbietet.

=S
10

(10) “
R—S
>t
=t yl —R =S
@ @ RS (;(0 :@
h<t —R S
W J
01
a) —R b)

Bild 7-7 a) Zustandsiiberginge des RS-NOR-Flipflops, die dem Ubergang RS=11 (im Zustand z,"z,"=00)
nach RS=00 folgen, aufgeschliisselt nach den Gatterverzdgerungszeiten. Weitere Ubergénge sind méglich
b) Zustandsdiagramm mit allen Ubergéngen (¢,=t,).

In Bild 7-7b ist das Zustandsdiagramm mit allen moglichen Ubergingen fiir #,=t, gezeigt. Man
stellt fest, dass der Zustand 00 zentral liegt, so dass er bei jedem Ubergang durchlaufen wird.
Wenn man die Eingangskombination RS=11 verbietet, kann das Schaltwerk nicht im Zustand
00 stabil verbleiben, dieser Zustand wird dann nur noch schnell durchlaufen. Es gibt es keine
kritischen Laufe mehr, da es nur noch Einkomponenteniibergiinge gibt.

Wenn sich das Flipflop im Zustand 10 befindet, ist es stabil fiir S=0. Das Flipflop ist dann
zuriickgesetzt. Wechseln dann die Eingénge auf SR=10, so geht es iiber den Zustand 00 zum
Zustand 01, ohne im Zustand 00 zu verweilen. Zusammenfassend kann festgestellt werden:

78 7 Asynchrone Schaltwerke

e Der Eingangsvariablenkombination R=S=1 beim RS-NOR-Flipflop fiihrt zu nicht-
komplementiren Ausgéngen.

e Wenn nach dem verbotenen Eingangswertepaar RS = 11 das Eingangswertepaar RS =
00 folgt, konnen nach Bild 7-7 drei verschiedene Verhalten resultieren: Schwingen
zwischen 00 und 11, Stabilitdt in 10 oder Stabilitét in 01. Dies ist der einzige kritische
Lauf, der im Schaltwerk vorkommt. Er kann vermieden werden, wenn nach der verbo-
tenen Eingangsvariablenkombination nicht sofort RS = 00 folgt.

e Probleme entstehen in asynchronen Schaltungen wenn die Ubergangsfunktionen nicht
hazardfrei realisiert werden. Dann koénnen kurze Storsignale an die Einginge des
Schaltnetzes SN1 gelangen und ein falsches oder unvorhergesagtes Verhalten des
Schaltwerks bewirken.

e Zweikomponenteniiberginge der Zustandsvariablen sollten mdglichst vermieden wer-
den. Es besteht die Moglichkeit eines Laufes.

7.5 Speicherglieder

Im letzten Abschnitt wurde deutlich, dass die Verwendung asynchroner Schaltwerke problema-
tisch ist. Es werden daher nur Schaltungen verwendet, deren Verhalten gut bekannt ist. Dazu
gehoren die Flipflops (abgekiirzt: FF), die in diesem Abschnitt zusammengefasst dargestellt
werden. Alle Bausteine sind auch integriert erhaltlich.

7.5.1 RS-Flipflop

Ein RS-Flipflop kann aus NAND- oder NOR-Gattern aufgebaut werden (Bilder 8-7 und 8-8).
Das RS-Flipflop mit NAND-Gattern arbeitet mit negativer Logik, denn die Eingénge sind
gegeniiber dem Flipflop mit NOR-Gattern invertiert.

Problematisch am RS-Flipflop ist, dass bereits kurze Storimpulse auf den Eingéngen R und S
zu fehlerhaftem Setzen oder Riicksetzen des Flipflops fiihren. Als Verbesserung dieses Flip-
flops wird daher unten ein Takt eingefiihrt, der die Zeit festlegt, in der die Eingénge aktiv sind.

S
s
_Is — 0
R—R o— —Q
R
S R Qm+1 Qmﬂ
00} 0" | 0" 0™ = RV —(Sv O") = =RSv —RQ"
o[1 0
0] 1] o 1
1 1 verboten

Bild 7-8 RS-Flipflop mit NOR-Gattern. Von oben nach unten: Schaltbild, Schaltsymbol, Wahrheitstabel-
le und Ubergangsfunktion.

7.5 Speicherglieder 79

—-S— &
~-R—g R P——Q
&
—R —0
-S —R Qm+1 Qm+1
0] o verboten 0" = (=S ~(=RQ™) = Sv =RQ"
1 0 0 1
0 1 1 0
1|1 | o | —o

Bild 7-9 RS-Flipflop mit NAND-Gattern. Von oben nach unten: Schaltbild, Schaltsymbol, Wahrheitsta-
belle und Ubergangsfunktion.

7.5.2 RS-Flipflop mit Takteingang

Mit einem Takt C kann die Zeit begrenzt werden, in der das Flipflop fiir Eingangssignale sensi-
tiv ist. Das RS-Flipflop mit Takteingang wird auch als RS-Latch bezeichnet (Bild 7-10). Ob-
wohl das Flipflop aus NAND-Gattern aufgebaut ist, arbeitet es mit positiver Logik.

a) b)
Q s—18 — 0
C —C1
R IR o——Q
-0
C) S R C QmH _‘Qm+1
010 1 % —0"
1|o0 1 1 0
011 1 0 1
1 1 1 verboten
d{d] o o | —0"

Bild 7-10 RS-Flipflop mit Takteingang. a) Schaltbild, b) Schaltsymbol, c) Wahrheitstabelle.

Die Ubergangsfunktion fiir das zustandsgesteuerte RS-Flipflop erhiilt man, indem man sie aus
dem Schaltbild 7-10a abliest:

80 7 Asynchrone Schaltwerke

0" = ~(—(SCYA(—(ROQ™)) = SC v (+(RC)Q™)
= SCv —RQ" v —CQ" 79

Die Ubergangsfunktion sagt aus, dass das Flipflop gesetzt wird, wenn SAC = 1 gilt oder wenn
der vorherige Zustand Q"'=1 war und —R=1 oder —C=1 sind. Aus der Ubergangsfunktion kann
man die Zustandsfolgetabelle konstruieren.

Bild 7-10c zeigt, dass der verbotene Zustand mit diesem Flipflop nicht vermieden worden ist.
Allerdings werden nun Stérungen auf den Eingédngen S und R wihrend der Zeit vermieden, in
der der Takt C auf 0 ist. Nur bei hohem Taktpegel kann das Flipflop angesteuert werden. Man
nennt diese Art der Steuerung taktpegelgesteuert oder zustandsgesteuert.

\

\/

v

=
—

v

try tuL Lo bur

Bild 7-11 Typisches Verhalten eines taktpegelgesteuerten RS-Flipflops, C = Takt.

Bild 7-11 zeigt das Verhalten eines RS-Flipflops. Es wird deutlich, dass das Flipflop wéhrend
der Zeit, in der der Takt auf 1 ist, alle Eingangssignale durchlédsst. So koénnen Stérimpulse,
selbst bei festen Werten der Eingangsgroflen, das Flipflop unbeabsichtigt setzen oder riickset-
zen. Im Bild 7-11 sind auch die Signallaufzeiten von High nach Low und umgekehrt angege-
ben.

Alle im Weiteren behandelten Flipflops haben einen Takteingang.

7.5.3 Taktpegelgesteuertes D-Flipflop

Um den verbotenen Eingangszustand des RS-Flipflops zu vermeiden verwendet man in der
Regel andere Flipflops. Das wichtigste ist das D-Flipflop (Bild 7-12). Das D-Flipflop entsteht
aus dem taktpegelgesteuerten RS-Flipflop, indem fiir den neuen Eingang D = S = —R gesetzt
wird. Dadurch verschwindet der verbotene Zustand. Die Ubergangsfunktion kann man ermit-
teln, indem man in Gleichung 7.8 S=D und R =—-D einsetzt. Man erhalt:

7.5 Speicherglieder 81

0"'=DCv—-CQ" (7.9)

Die Ubergangsfunktion des D-Flipflops sagt aus, dass es fiir C = 1 den Dateneingang D durch-
schaltet und dass es fiir C = 0 den alten Zustand speichert.

D &
& 0
n D —1D — ¢
—] 0O— —
c .]& & —0 C—CI1 o
a) b)
D C Qm+l ﬁQerl
0 1 0 1
1 1 1 0
al o o | —o" ©)

Bild 7-12 Pegelgesteuertes D-Flipflop. a) Schaltbild, b) Schaltsymbol, ¢) Wahrheitstabelle.

Bild 7-13 zeigt einen typischen Zeitverlauf der Signale an einem taktpegelgesteuerten D-
Flipflop. Man erkennt, dass das D-Flipflop Anderungen des Eingangssignals wihrend des
hohen Taktpegels direkt an den Ausgang weitergibt. Es erscheint in diesem Zustand wie ein
reines Verzogerungsglied (D von engl. delay). Man sagt auch, es ist transparent. Daher ist im
Englischen auch der Name ,,transparent latch* gebrauchlich.

Der Zeitraum in dem die Entscheidung fallt, welche Information in einem Flipflop gespeichert
wird, nennt man Wirkintervall #,. Ist das Eingangssignal innerhalb des Wirkintervalls nicht
konstant, ist der gespeicherte Wert vom Zufall abhéngig und daher undefiniert. Daher muss das
Eingangssignal eine gewisse Zeit vor und nach der negativen Taktflanke konstant sein. Der
Anteil des Wirkintervalls vor der Taktflanke heifit Setup-Zeit ¢, der Anteil nach der Taktflanke
heiflt Hold-Zeit #,.

Die Verhiltnisse sind in (Bild 7-14) fiir das ungepufferte D-Flipflop gezeigt. Zeiten, in denen
sich das Eingangssignal dndern darf kann, sind durch die Jagerzaun-dhnliche Darstellung mar-
kiert. Das Wirkintervall liegt am Ende der High-Phase des Taktintervalls.

Der Zeitraum, in dem sich das Ausgangssignal dndern kann, nennt man Kippintervall #, es ist
auch durch die Jagerzaun-Darstellung markiert. Beim ungepufferten D-Flipflop iiberlappt sich
das Kippintervall mit dem Wirkintervall, ndmlich wéhrend der transparenten Phase.

82 7 Asynchrone Schaltwerke

\/

g o
QT : |—|_|—|

>t > i > e

\/

\

toLH tyHL IpLH

Bild 7-13 Typisches Verhalten eines taktpegelgesteuerten D-Flipflops.

Bild 7-14 Definition der Setup-Zeit t,, der Hold-Zeit #,, des Wirkintervalls ¢; und des Kippintervalls #.

Eine Realisierung des D-Flipflops mit der CMOS-Technologie ist in Bild 7-15 gezeigt. Das
linke Transmission-Gate wird mit dem Takt C, das rechte mit dem invertierten Takt -C ange-
steuert.
e Das linke Transmission-Gate ist bei hohem Taktpegel durchgeschaltet und lésst das
Eingangssignal D iiber die beiden Inverter zum Ausgang durch. Dies ist die transpa-
rente Phase. Das rechte Transmission-Gate sperrt.

e Wenn der Takt auf den niedrigen Taktpegel wechselt, wird das linke Transmission-
Gate gesperrt und das rechte leitet. Dadurch wird der Eingang D abgekoppelt und
durch das rechte Transmission-Gate der Speicherkreis geschlossen. Gespeichert wird
der Wert des Eingangssignals D, welcher am Ende des hohen Taktpegels anlag. Im
Speicherkreis wird die Information durch den Kreis gespeichert, der durch die beiden
Inverter gebildet wird, dhnlich wie im oben beschriebenen NOR-Flipflop, wenn fiir
beide Eingénge R =5 =0 gilt.

Wichtig fiir die Funktion ist die Kontrolle der Flanken des Taktes und des invertierten Taktes.

7.5 Speicherglieder 83

a)

C —X1
D —|1 1 1P o — O

-C —X1

b)

ﬂclTjVDD J—‘ﬁVDD ﬁVDD B
e BT

Bild 7-15 Realisierung des taktpegelgesteuerten D-Flipflops: a) Prinzip b) Schaltung in CMOS-
Technologie.

7.5.4 Flankengesteuertes D-Flipflop

Bei taktpegelgesteuerten D-Flipflops stort oft das transparente Verhalten. Bei der Weitergabe
von einzelnen Bits in Schieberegistern kann es dazu fiihren, dass sie iiber mehrere Stufen des
Schieberegisters weitergegeben werden. Auch ist das Wirkintervall relativ lang. Im Wirkinter-
vall kénnen Stérungen oder Anderungen des Eingangssignals Einfluss auf die gespeicherte
Information nehmen. Um diese Probleme zu vermeiden, verwendet man taktflankengesteuerte
Flipflops. Bei einem taktflankengesteuerten Flipflop muss das Eingangssignal im Idealfall nur
wihrend der Taktflanke konstant sein. Bei diesem Flipflop spielt es keine Rolle, wie lang der
Takt auf dem hohen Pegel ist. Fiir die Taktflanke wird bei einigen Technologien eine Mindest-
steilheit gefordert.

In der Wahrheitstabelle des vorderflankengesteuerten D-Flipflops in Bild 7-16 sind die anstei-
genden Taktflanken durch Pfeile gekennzeichnet. Das durch die Tabelle beschriebene Flipflop
hat zusitzlich einen asynchronen, invertierten Setzeingang —S und einen asynchronen, inver-
tierten Riicksetzeingang —R. Mit diesen Eingéngen kann das Flipflop z.B. beim Einschalten
unabhéngig vom Takt in einen definierten Zustand gebracht werden. In der Regel verwendet
man nur den Setzeingang oder nur den Riicksetzeingang. Dadurch vermeidet man, dass —S =
—R = 0 wird, was laut Tabelle zu undefiniertem Verhalten fiihrt. Im Schaltsymbol (Bild 7-16b)
ist die Vorderflankensteuerung durch das Dreieck am Takteingang dargestellt.

84 7 Asynchrone Schaltwerke

a) b)
D|C| =5 | =R o
d | d 0 1 1 »— 1D
d d 1 0 0 Cc —>Cl1
i -gRr SO
d | d 0 0 undefiniert —-R
1|7 1 1 1
o1 1 1 0
d| o 1 1 o"
d |1 1 1 "

Bild 7-16 a)Wahrheitstabelle des vorderflankengesteuerten D-Flipflops 7474 mit asynchronem Setz- und
Riicksetzeingingen. Die ansteigende Flanke des Taktes ist durch T dargestellt. b) Schaltsymbol.

In der CMOS-Technologie wird die Flankensteuerung in der Regel durch die Schaltung in Bild
7-17 realisiert. Es werden zwei Flipflops verwendet, wobei das linke (das Master-Flipflop) mit
dem invertierten Takt und das rechte (das Slave-Flipflop) mit dem nichtinvertierten Takt ange-
steuert wird. Derartige Schaltungen werden Master-Slave-Flipflops genannt.

-C —X1 C —X1
D 1 1 1 }3 1 i:) 1 1 1D . — O
C—x1 -C —X1
1 1 1 1
Master Slave

Bild 7-17 Schaltung des vorderflankengesteuerten D-Flipflops in CMOS-Technologie.

e Wenn die steigende Flanke des Taktsignals kommt, beginnt der Master zu speichern.
Es speichert das Eingangssignal D, so wie es am Ende des niedrigen Taktpegels anlag.
Das Slave-Flipflop wird dann transparent und der Ausgang Q zeigt das gespeicherte
Eingangssignal.

e Wenn nun der niedrige Taktpegel kommt, wird die Speicherfunktion durch das Slave-
Flipflop iibernommen, welches weiterhin das Ausgangssignal Q ausgibt. Das Master-
Flipflop ist transparent und leitet das jetzt anliegende Eingangssignal D an den Ein-
gang des Slaves weiter. Bei der dann folgenden steigenden Flanke beginnt der Zyklus
von neuem.

7.5 Speicherglieder 85

Da immer eines der beiden Flipflops speichert, zeigt das flankengesteuerte Flipflop keine
transparenten Eigenschaften.

In Bild 7-18 ist das Zeitverhalten eines vorderflankengesteuerten D-Flipflops gezeigt. Das
Wirkintervall ist deutlich kiirzer als beim taktpegelgesteuerten D-Flipflop und liegt bei der
ansteigenden Flanke. Man erkennt am Zeitdiagramm, dass der Ausgang erst nach dem Wirkin-
tervall seinen Wert dndert. Dieses Verhalten, welches durch ein nicht iiberlappendes Wirk- und
Kippintervall gekennzeichnet ist, nennt man Pufferung. Man charakterisiert dieses Flipflop
daher als gepuffertes, vorderflankengesteuertes D-Flipflop.

AAAAAAAAAA —— t
il itn

0

¢

Bild 7-18 Zeitdiagramm des Verhaltens eines gepufferten, vorderflankengesteuerten D-Flipflops.

7.5.5 Zweiflankensteuerung

Ein Schieberegister besteht aus mehreren nacheinander geschalteten Flipflops, in denen Daten
wie in einer Eimerkette weitergegeben werden sollen (Bild 7-19). In einer Schieberegisterkette
diirfen nie Eingang und Ausgang der verwendeten Flipflops durchgeschaltet sein, damit die
Daten nicht durch eine Stufe ,hindurchfallen”. Daher sind fiir diesen Anwendungsfall nur
Flipflops geeignet, bei denen das Wirk- und das Kippintervall geniigend weit auseinander lie-
gen. Es konnen zum Beispiel die oben genannten gepufferten, vorderflankengesteuerten D-
Flipflops verwendet werden. Solange kein Taktversatz ¢, (clock-skew) auftritt, wird die Infor-
mation richtig weitergegeben, da sich Wirk- und Kippintervall nicht iiberlappen. Da die beiden
Intervalle aber nur wenig entkoppelt sind, kann es bei einem Taktversatz ¢y, der grofler ist als
der Abstand zwischen Wirk- und Kippintervall, zu Fehlschaltungen kommen.

D2 D3 D4
D—{1D 1D 1D -
C1 Cl C1
c_| L

Bild 7-19 Schieberegister mit vorderflankengesteuerten D-Flipflops.

Besser sind fiir diese Anwendung zweiflankengesteuerte Flipflops geeignet, welche die Infor-
mation erst mit der fallenden Taktflanke an den Ausgang weitergeben (Bild 7-20). Derartige
Flipflops nennt man zweiflankengesteuertes D-Flipflops. Man kann sich aus zwei vorderflan-

86 7 Asynchrone Schaltwerke

kengesteuerten D-Flipflops zusammengesetzt denken, bei denen das zweite Flipflop durch
Inversion des Taktes an der abfallenden Flanke getriggert wird. Auch diese Flipflops sind
Master-Slave-Flipflops oder Zwischenspeicherflipflops.

D— 1D 1D 3
~C1 ~C1 D_lip —|— ¢
o o— = ¢ —Cl
To——0
a) b)

Bild 7-20 Zweiflankengesteuertes D-Flipflop: a) Prinzip, b) Schaltsymbol.

7.5.6 JK-Flipflop

Das JK-Flipflop kann man sich aus dem RS-Master-Slave-Flipflop durch die Riickkopplung
der Ausginge O und —Q auf die Eingénge R und S entstanden denken (Bild 7-21). Wenn der
Takt auf dem hohen Pegel ist, gelten die folgenden Formeln:

S=J-0" (7.14)

R=KQO" (7.15)
Es kann also nur gesetzt werden, wenn es riickgesetzt war und nur riickgesetzt werden, wenn es
gesetzt war. Damit ist auch sichergestellt, dass R und S nicht gleichzeitig 1 sein kénnen, da ja
entweder O =1 oder —Q =1 gilt.

J _|
c C1
K & IR) -0

Bild 7-21 Aus einem RS-Flipflop entwickeltes JK-Flipflop.

Das JK-Flipflop entwickelt man aus der Ubergangsfunktion des RS-Flipflops unter Verwen-
dung der Gleichungen 7.8, 7.14 und 7.15:

0" =8C v (=R v —C)Q" (7.16)
0" = CJ-0" v (~(KQ™) v ~C)Q" (7.17)
0" = CJ-0" v —KQ" v ~CQ" (7.18)

Aus der Ubergangsfunktion ergibt sich die Zustandsfolgetabelle in Bild 7-22.

7.5 Speicherglieder 87

clJ| k| o
ool o J 1 a0
1ol 1 0 C —C1
1jrypo ! K —|1K Tlo——-0
1l1]1]=0
0(d|d]| O

a) b)

Bild 7-22 a) Wahrheitstabelle und b) Schaltsymbol des JK-Flipflops.

Das JK-Flipflop verhilt sich also, solange J und K nicht gleichzeitig 1 sind, wie ein RS-
Master-Slave-Flipflop. Ist aber J = K = 1, so wechselt der Ausgang bei jedem Taktimpuls.
Dies macht es sehr einfach, mit dem JK-Flipflop Frequenzteiler und Digitalzéhler aufzubauen.
Es muss ein Master-Slave-Flipflop verwendet werden, damit das Flipflop bei /=K =1 und C
=1 nicht schwingt. Im Bild 7-23 ist das Verhalten eines zweiflankengesteuerten Flipflops an 4
Taktimpulsen gezeigt. Das Flipflop wird im ersten Taktimpuls gesetzt, im zweiten riickgesetzt
und in den beiden folgenden Taktimpulsen wird gewechselt.

tw Ik tw tg ty Ix ty Iy

o T T T T
> [

A oo

A i ' ! ' ' ! : '

) 1 1 1 L 1
o
' T T H 1) \ 1 >1

. . :) | 1 \ |

A T T S N S B

KT , ' || : 1 1) |
— >
\ y) [| | > 1

I 1) 1 i ! 1

\, :\ AN \ '
o ; i i~
| | s ! [o

Setzen riick- wechseln wechseln

Bild 7-23 Zeitverhalten des JK-Flipflops mit Zweiflankensteuerung.

7.5.7 T-Flipflop

Das T-Flipflop (Bild 7-24) entsteht aus dem JK-Flipflop indem ein neuer Eingang 7T eingefiihrt
wird, der mit beiden Eingidngen des JK-Flipflops verbunden wird: 7'= J = K. Im Englischen
wird es Toggle-Flipflop genannt.

88 7 Asynchrone Schaltwerke

T|c| o T_hr -0
ojlo] o C —Cl
0 T Qm -1 o— _|Q
l T _|Qm

a) b)

Bild 7-24 a) Wahrheitstabelle und b) Schaltsymbol eines vorderflankengesteuerten T-Flipflops.

7.5.8 Beispiel

Ein typisches Beispiel fiir ein integriertes Flipflop ist das D-Flipflop 74175. In diesem IC sind
4 gleiche vorderflankengesteuerte D-Flipflops enthalten, die alle vom gleichen Takt gesteuert
werden. Alle Flipflops sind an den gleichen Riicksetzeingang R angeschlossen. Man nennt
einen derartigen Baustein auch Register.

a) b)
—R 1P
CLK . CLK —p C1
Dy D pP{1p— @ —-R —Np
> C1 4 -
+—R — —|Q0 Dy, —1D — Qo
N
D, 1D 0 o
> Cl D, —1D — O
R —LLPo— -0 = -0
D I
D, D 0, 2 b gz
Q —0>
+—R — 1P -0, D; —1D — O
N
D; D 0, Os
> Cl1
R — 10— —0;

Bild 7-25 a) Schaltbild und b) Schaltsymbol integrierter Baustein 74175 mit 4 vorderflankengesteuerten
D-Flipflops.

7.5.9 Zusammenfassung Flipflops

In der Tabelle 7-6 sind die gebrduchlichsten Flipflop-Typen zusammengefasst. Es fillt auf,
dass einige der Flipflops nicht existieren. So ist zum Beispiel ein T-Flipflop ohne Takteingang
instabil und das D-Flipflop degeneriert zu einer bloBen Durchverbindung.

Alle Flipflops in Tabelle 7-6 kdnnen noch zusitzliche asynchrone Setz- und Riicksetzeingénge
haben.

7.5 Speicherglieder 89

Tabelle 7-6 Tabellarische Zusammenfassung der wichtigsten Flipflops.

Ohne Takt- | Zustands- 2-Zustands- 1-Flanken- 2-Flanken-
steuerung | Steuerung Steuerung Steuerung Steuerung
—IS — | 1S — | 1S A | 1S — [1S ar—
—C1 —C1 —Cl1 —Cl1
RS1_R Oo— | IR o— |[4IR _ To—|_IIR o—| {1R To—
. —1D — (11D [|[71D — (1D
Verzogerung
—C1 —C1 — Cl1 — Cl1
D A A
o— o— o— o—
. . . . 1] ar— |y — [1) ar—
instabil instabil e e L
JK Ik Tjo—|IK o—| 1K To—
—1T ar— | 1T — [—IT ar—
instabil instabil
T —C1 —Cl1 — Cl1
Tio— o— Tio—

Tabelle 7-7 zeigt die Lage des Kipp- und Wirkintervalls bei den verschiedenen Flipflop-Typen
relativ zur Lage der Taktflanken.

Tabelle 7-7 Lage des Kipp- und Wirkintervalls bei den verschiedenen Flipflop-Typen.

ohne Takt- | Zustands- 2-Zustands- 1-Flanken- 2-Flanken-

steuerung | Steuerung Steuerung Steuerung Steuerung

90

7 Asynchrone Schaltwerke

Liegt keine Taktsteuerung vor, so umfassen Wirk- und Kippintervall die gesamte Taktper-
iode. Dies ist nur fiir das RS-Flipflop sinnvoll.

Bei einer Takt-Zustandssteuerung ist das Wirkintervall mit dem hohen Taktpegel identisch
(bei positiver Ansteuerung). Das Kippintervall iiberlappt sich mit dem Wirkintervall.

Bei der Zweizustandssteuerung wird zusétzlich die Lage des Wirkintervalls durch den
Takt kontrolliert. Wirk- und Kippintervall folgen dicht aufeinander.

Die Zweiflankensteuerung legt Wirk- und Kippintervall an die positive bzw. an die negati-
ve Flanke des Taktsignals. Wichtig ist bei der Zweiflankensteuerung, dass sich durch die
Wahl des Tastverhéltnisses des Taktes, also des Verhéltnisses der Dauer des hohen Pegels
zu der des niedrigen Pegels, die Lage des Wirk- und Kippintervalls verschieben lésst.
Wirk- und Kippintervall iiberlappen sich nicht.

Pufferung bedeutet, dass sich Wirk- und Kippintervall nicht iiberlappen. Der Abstand
betrdgt in der Regel etwa eine Gatterlaufzeit. Pufferung ist oft mit einer 1-
Flankensteuerung verbunden, wie es im Kapitel 7.5.4 fiir das D-Flipflop in CMOS-
Technologie dargestellt ist.

7.6 Ubungen

Aufgabe 7.1

Das asynchrone Schaltwerk mit einer Riickkopplung im untenstehenden Bild soll analysiert
werden.

A
: e

21

——

Ermitteln Sie die Ubergangs- und Ausgabefunktionen. Stellen Sie die Zustandstabelle auf
und tragen Sie alle stabilen Zusténde ein.

2. Handelt es sich um ein Moore- oder ein Mealy-Schaltwerk?

3. Handelt es sich um eine bistabile Schaltung?

4. Zeichnen Sie das Zustandsdiagramm.

5. Tragen Sie den Verlauf des Ausgangssignals y in das unten gezeigte Impulsdiagramm ein.
4 T [] [] .
B l | L
y % g

Aufgabe 7.2

Im untenstehenden Bild ist ein asynchrones Schaltwerk mit zwei Riickkopplungen gezeigt.
Analysieren Sie diese Schaltung, in dem sie folgendermalen vorgehen:

7.6 Ubungen 91

— >1 z

c I
&

- >1 Zy

o ;J__

Stellen Sie die Zustandstabelle auf und tragen Sie alle stabilen Zustdnde ein.

. Zeichnen Sie das Zustandsdiagramm.

3. Welche Probleme kdnnen in der Schaltung auftreten? Geben Sie eine Verbesserung
der Schaltung an, mit der diese Probleme vermieden werden konnen.

4. Beschreiben Sie die Funktion der Schaltung.

N —

Aufgabe 7.3

Im Bild unten ist eine Schaltung mit 3 Flipflops gezeigt. Diese Schaltung soll im Folgenden
analysiert werden. Gehen Sie davon aus, dass die Flipflops am Ausgang eine halbe Taktperiode
Verzdgerung haben, wihrend das NOR-Gatter keine Verzogerung aufweisen soll. Skizzieren
Sie im untenstehenden Zeit-Diagramm die Verldufe der Signale Oy, O; und 0,. Kennzeichnen
Sie die Wirk- und Kippintervalle der Flipflops im Zeitdiagramm. Alle Flipflops seien zu Be-

ginn zurtickgesetzt.
11 1S 1J —

CLK ~CI o c1 | & 2

~Cl
1—{IK IR | L i H—

N A O Y

v

v

v

v

——,——>—> —>—> —>
v

v

92 7 Asynchrone Schaltwerke

Aufgabe 7.4
Andern Sie das Zeitdiagramm in Bild 7-13 fiir ein vorderflankengesteuertes D-Flipflop ab.

Aufgabe 7.5

Im Bild ist eine iibliche Realisierung eines taktflankengesteuerten D-Flipflops in CMOS-
Technologie dargestellt. Dieses Flipflop soll im Folgenden analysiert werden.

C o
Lo

Jeweils zwei der Transmission-Gates konnen in dieser Schaltung zu einer UND-ODER-
Schaltung nach folgendem Muster umgewandelt werden (Signalflussrichtung nur von links
nach rechts):

X 11 x L
X1 | & R
X2 1 1 X2

Gehen Sie bei der Analyse folgendermalien vor:

a) Wie viele Transistoren werden fiir die Schaltung bendtigt, wenn man davon ausgeht,
dass der Takt auch invertiert vorliegt.

b) Zeichnen Sie die Gesamtschaltung unter Beriicksichtigung der vorgegebenen Um-
wandlung. Markieren Sie, wo die Schaltung aufgetrennt werden muss, damit Sie
riickkopplungsfrei wird.

¢) Geben Sie die Ubergangsfunktion(en) und die Ausgabefunktion(-en) an.
d) Stellen Sie die Zustandstabelle auf.

e) Zeichnen Sie das Zustandsdiagramm. Erkldren Sie an Hand des Zustandsdiagramms
die Funktion der Schaltung.

®

Check for
updates

8 Synchrone Schaltwerke

Ein Schaltwerk (auch endlicher Automat, Finite State Machine oder sequentielle Schaltung
genannt) unterscheidet sich von einem Schaltnetz dadurch, dass es fiir mindestens eine Kombi-
nation von Eingangsvariablen mehrere Kombinationen der Ausgangsvariablen gibt. Die Aus-
gangsvariablen werden in diesem Fall von der Vergangenheit der Eingangswerte bestimmt.
Diese Vergangenheit manifestiert sich in den Zustandsvariablen. Eine Kombination der Zu-
standsvariablen wird Zustand genannt. Ein System mit N Zustandsvariablen kann daher 2"
unterschiedliche Zustdnde einnehmen. Diese Tatsachen treffen fiir asynchrone und synchrone
Schaltwerke gleichermalBBen zu. Im Gegensatz zu asynchronen Schaltwerken werden die Zu-
standsvariablen bei synchronen Schaltwerken aber in Flipflops gespeichert.

Ein synchrones Schaltwerk besteht aus einem Schaltnetz (hier SN1 genannt), welches aus den
Zustandsvariablen z” zum Zeitpunkt m und den in der Regel mehreren Eingédngen x die Zu-
standsvariablen z”"' erzeugt (Bild 8-1). Die Indizes m und m+1 kennzeichnen aufeinander
folgende Perioden des Taktes CLK. Die Gleichungen, die dieses Schaltnetz beschreiben, wer-
den Ubergangsfunktionen genannt:

2" = £ (x,2") (8.1)
Die neuen Zustandsvariablen z”"' werden mit der steigenden Taktflanke in die Flipflops einge-

lesen und werden wihrend des Kippintervalls iiber die Riickkopplung am Eingang des
Schaltnetzes sichtbar. Dann beginnt der Zyklus von neuem.

X
> Schaltnetz | z""!
SNI1 i{> Flipflops
:> fi(x,2") N
CLK |_>
Zm
Riickkopplung N

Bild 8-1 Synchrones Mealy-Schaltwerk mit Takteingang CLK.

Die Flipflops entkoppeln den geschlossenen Kreis, der durch die Riickkopplung entsteht. Der
Vorteil des synchronen Schaltwerks liegt darin, dass das Ausgangssignal des Verkniipfungs-
netzes nur im eingeschwungenen Zustand auf das Verhalten des Schaltwerks Einfluss hat.
Hazards spielen keine Rolle, solange sie bis zum Wirkintervall der Speicher abgeklungen sind.
Auch konnen keine Laufe (Races) auftreten, da Eingang und Ausgang des Verkniipfungsnetzes
durch die Speicherglieder entkoppelt sind.

Ein wesentlicher Unterschied zu asynchronen Schaltwerken besteht darin, dass nun die Wech-
sel zwischen den Zustdnden immer synchron zum Takt stattfinden, denn die Zustandsvariablen
2! werden immer synchron zum Takt in die Speicher geladen. Oft werden zweiflankenge-
steuerte Flipflops als Speicher verwendet, so dass auch die Ausgiinge der Speicher synchron

schalten. Dadurch hat man eine sehr gute Kontrolle iiber die zeitlichen Abldufe im Schaltwerk.

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018
K. Fricke, Digitaltechnik, https://doi.org/10.1007/978-3-658-21066-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-21066-3_8&domain=pdf

94 8 Synchrone Schaltwerke

8.1 Beispiel 1: Schaltwerk ,,Binérzihler

Wir betrachten das im Bild 8-2 gezeigte Beispiel. Es handelt sich um ein Schaltwerk mit zwei
Zustandsvariablen zy" und z;". Fiir jede der Zustandsvariablen wird ein D-Flipflop verwendet.
Der einzige Eingang ist x. Dieses synchrone Schaltwerk soll nun analysiert werden.

x 2n+1 z,"! z"
ID 1
>Cl 4
m+1 m
Z Z
b —ip —
EN) 21

Bild 8-2 Beispiel 1 fiir ein synchrones Schaltwerk.

Schritt 1: Aufstellen der Ubergangsfunktionen 2! = f(x, 2”)

Da es zwei Zustandsvariablen und damit 2 Riickkopplungen gibt, werden 2 Ubergangsfunktio-
nen aufgestellt. Das Gatter mit der Beschriftung 2n+1 ist die Erweiterung der Exklusiv-Oder-
Funktion auf mehr als 2 Eingénge. Der Ausgang wird gleich 1, wenn eine ungerade Zahl von
Eingéngen auf 1 liegt.

" (8.2)

.
2" = x 0z @ 2" = =z VX 2"z "V Xz =z x 20"z, (8.3)

Schritt 2: Aufstellen der Zustandsfolgetabelle (auch Ubergangstabelle).

Aus den beiden Ubergangsfunktionen wird die Zustandsfolgetabelle 8-1a aufgestellt. Sie hat
als Eingénge die Zustandsvariablen z,” und z;" und den Eingang x. Ausgang sind die neuen Zu-
standsvariablen z,""' und z,""'. Die Reihenfolge der Zeilen ist beliebig. Sinnvoll ist eine An-
ordnung im Bindrcode oder wie hier in einem Gray-Code, so dass die Zustandsfolgetabelle die
Form eines KV-Diagramms hat. Oft werden die Zustandsvariablen durch die dezimale Codie-
rung dargestellt. Dadurch erhdlt man die 4 dezimal codierten Zustinde Z" in Tabelle 8-1b.

Tabelle 8-1 Zustandsfolgetabelle fiir das Beispiel a) mit binér dargestellten b) mit dezimal dargestellten
Zustinden.

Zlm+1 ZOmH Zm+l
a) 2" zo" b) z"
x=0 x=1 x=0[x=1
0 0 0 1 1 1 0 1 3
0 1 1 010 O 1 2 0
1 1 0 0|1 0 3 0 2
1 0 1 1 0 1 2 3 1

8.2 Moore-Schaltwerk 95

Schritt 3: Zeichnen des Zustandsdiagramms.

Der Inhalt der Tabelle kann auch in Form eines Diagramms dargestellt werden. Die Zusténde
werden als Knoten (Kreise) dargestellt. In sie wird die bindre oder dezimale Codierung des
Zustandes eingetragen. Alternativ kann auch der Zustand symbolisch beschrieben werden. Die
Ubergiinge zwischen den Zustinden werden als Kanten (Pfeile) bezeichnet. An den Kanten
stehen die Bedingungen fiir den Eingang x, fiir die der Ubergang stattfindet. Keine Bedingung
an einer Kante bedeutet, dass der Ubergang immer stattfindet. Alternativ sind auch andere
Beschriftungen der Kanten iiblich. So kann z.B. statt 0 auch -x stehen und fiir 1 steht x.

Notation:

Bild 8-3 Zustandsdiagramm fiir das Beispiel 1 in Bild 8-2.

Aus dem Zustandsdiagramm lésst sich das Verhalten gut ablesen: Das Schaltwerk durchlauft
fiir x = 0 die vier Zustdnde zyklisch in der Reihenfolge 0,1,2,3,0 usw., wihrend es fiir x = 1 die
umgekehrte Reihenfolge durchlauft 0,3,2,1,0 usw. Es handelt sich daher um einen Vorwirts-
Riickwiérts-Zahler, wobei mit dem Eingang x die Zahlrichtung gesteuert werden kann.

8.2 Moore-Schaltwerk

In der Regel hat ein Schaltwerk auch Ausgénge. Sind die Ausgénge y nur von den Zustandsva-
riablen abhdngig, so nennt man dieses Schaltwerk Moore-Schaltwerk (Bild 8-4). Die Ausgénge
werden in einem zweiten Schaltnetz SN2 erzeugt. Die Gleichungen, die das Schaltnetz SN2
beschreiben, heilen Ausgabefunktionen oder Ausgangsfunktionen:

y =" (8.4)

:l> Schaltnetz | z"*!

SN1 j|> Speicher

—:‘|> f(x,2")
CLK : P> §‘

Schaltnetz

g Yy

Bild 8-4 Prinzip des synchronen Moore-Schaltwerks.

Als Beispiel soll hier der Fall behandelt werden, dass 4 Ausgédnge 4 Leuchtdioden ansteuern,
und zwar so, dass im Zustand 0 eine, im Zustand 1 zwei, im Zustand 2 drei und im Zustand 3

96

8 Synchrone Schaltwerke

alle Leuchtdioden brennen. Die Ausgénge heillen y; (0< 1 < 3). Im Zustandsdiagramm des
Mooreschaltwerks (Bild 8-5) ist es iiblich, die Werte der Ausgénge in die Kreise fiir die Zu-
stinde einzutragen, da die Zuordnung eindeutig ist. Die Zustandsfolgetabelle 8-2 wird durch
eine zusitzliche Spalte fiir die Ausgédnge ergénzt. Dieser Teil der Tabelle heiflt Ausgabetabelle.

Notation:

X

Bild 8-5 Zustandsdiagramm des Moore-Schaltwerks mit den Werten fiir die Ausgénge y;,.

Tabelle 8-2 Zustandsfolgetabelle mit Ausgabetabelle fiir das Mooreschaltwerk.

Da die Ausgénge fiir jeden Zustand eindeutig bestimmt sind, ist es moglich, die Ausgabefunk-
tionen als Funktion der Zustandsvariablen darzustellen. Bei einem Moore-Schaltwerk sind die

. . Zlm+] m+1
21 Zo =0 =1 Y3210
0 0 0 1 1 1 0001
0 1 1 0 0 0 0011
1 1 0 0 1 0 1111
1 0 1 1 0 1 0111

Ausgabefunktionen nur Funktionen der Zustandsvariablen z,":

_ m m
V3= 2o Zh

=1 n=z"vz" n=z"
(8.5) (8.7)
X 2n+1 z,"M "
1D
S
Z()m Z m+1 m
Z Z
1 O 0 1D 0
CLK >Cl by

(8.8)
>1
i
I —»
Y2

Bild 8-6 Moore-Schaltwerk (Ergdnzung der Ausgénge zum Beispiel 1).

El?
Y3

8.3 Mealy-Schaltwerk 97

8.3 Mealy-Schaltwerk

In einem Mealy-Schaltwerk sind die Ausgénge y nicht nur von den Zustandsvariablen z;”, son-
dern zusitzlich auch von den Eingéngen x abhéngig. Daher sind die Ausgabefunktionen auch
Funktionen der Eingangsvariablen x:

y="1H(", x) (8.9)
Das Blockschaltbild des synchronen Mealy-Schaltwerks zeigt Bild 8-7. Es unterscheidet sich
vom Moore-Schaltwerk nur durch die zusétzlichen Eingédnge x am Schaltnetz SN2.

> Schaltnetz | Z™"!
X SN1 ::> Speicher [—
—N £, 27
—] >
CLK |—
N
Schaltnetz
V]l sne2 Y N
:D f(x, 2%)

Bild 8-7 Synchrones Mealy-Schaltwerk mit Takteingang CLK.

8.3.1 Beispiel 2: Mealy-Schaltwerk ,,Maschinensteuerung*

An einem Beispiel soll die Entwicklung eines synchronen Mealy-Schaltwerks exemplarisch
durchgefiihrt werden. Es soll ein Schaltwerk mit 4 Zustdnden entworfen werden, welches 3
Maschinen iiber den Ausgangsvektor Y = (y;, y», 3) ein- und ausschaltet. Das Verhalten soll
abhingig vom Eingang r sein:

Fiir r = 0 sollen die 4 Zusténde zyklisch der Reihe nach durchlaufen werden. Die 3 Maschinen
sollen entsprechend der Tabelle 8-3 in den vier mdglichen Zustinden eingeschaltet sein.

Wenn der Eingang r = 1 ist, soll das Schaltwerk in den Zustand 1 gehen. Das Schaltwerk soll
in diesem Zustand bleiben, solange » = 1 ist. Die Maschinen sollen in allen Zustinden so
schnell wie moglich ausgeschaltet werden. 7 ist also ein Not-Ausschalter.

Tabelle 8-3 Ansteuerung der Maschinen Y = (y4,,, y3) in den 4 Zustidnden.

Zustand e R
r=0 r=1
1 ein ein ein aus aus aus
2 aus ein ein aus aus aus
3 aus ein aus aus aus aus
4 ein ein aus aus aus aus

98 8 Synchrone Schaltwerke

Aufstellen des Zustandsdiagramms

Im Zustandsdiagramm eines Mealy-Schaltwerks werden die Werte der Ausginge nicht in den
Kreisen fiir die Zusténde notiert, sondern an den Kanten. Sie werden oft durch einen Querstrich
von den Bedingungen fiir die Ubergénge getrennt.

Das Zustandsdiagramm (Bild 8-8) kann ausgehend vom Zustand 1 entworfen werden. Fiir » =0
durchléuft das Schaltwerk die vier Zustdnde der Reihe nach, wobei wir die 3 Ausgénge ent-
sprechend der Tabelle durch einen Schriagstrich vom Wert fiir » trennen. Wird » = 1, so geht
das Schaltnetz in den Zustand 1 und bleibt dort solange » = 1 ist. Die drei Ausgénge bleiben auf
000. Dass die Werte der Ausgangsvariablen vom Wert der Eingangsvariablen » abhingen, wird
im Zustandsdiagramm durch die zwei verschiedenen Wege fiir » = 0 und » = 1 deutlich, die mit
den Ausgangswerten ¥ =110 bzw. Y= 000 vom Zustand 4 zum Zustand 1 fiihren

Bild 8-8 Zustandsdiagramm eines Mealy-Schaltwerks Beispiel 2 (Notation an den Kanten: » / yy, y5, y3).
In den Kreisen stehen die symbolischen Bezeichnungen der Zusténde.

Da 4 Zustinde durchlaufen werden, kommt man mit zwei Flipflops fiir die beiden Zustandsva-
riablen z," und zy" aus. Die in den zwei Flipflops gespeicherten Werte miissen jetzt den 4 Zu-
stinden zugeordnet werden. Wir wiéhlen in diesem Fall einen Gray-Code fiir die Zustandsco-
dierung, wie sie in Tabelle 8-4 angegeben ist. Eine andere Codierung kann unter Umstinden
eine einfachere Schaltung ergeben.

Tabelle 8-4 Codierung der 4 Zusténde.

Zustand | z; | zp

—_—| = O O

A W] o —
S| | —=| ©

Aufstellen der Zustandsfolgetabelle

Die Zustandsfolgetabelle kann aus dem Zustandsdiagramm in Bild 8-8 abgelesen werden. Die
einzelnen Zustdnde mit dem Index m und dem Index m+1 unterscheiden sich bei synchronen
Schaltwerken um eine Taktperiode. Abhdngig von den Eingangswerten r, z,", z," werden die
Folgezusténde ™1 ™" und die Ausgénge fiir die 3 Maschinen y, y,, y5 in die Tabelle ein-

getragen.

8.3 Mealy-Schaltwerk 99

Tabelle 8-5 Zustandsfolgetabelle und Ausgabetabelle der Maschinensteuerung (Beispiel 2).

m+1 m+1
moom 21 20 Y1)2 V3
VAR
r=0 r=1 r=0 r=1

0 0 0 1 0 0 1 1 1 0 0 0
0 1 1 1 0 0 0 1 1 0 0 0
1 1 1 0 0 0 01 0 0 0 O
1 0 0 0 0 0 1 1 0 0 0 0

Nun miissen die Ubergangsgleichungen fiir die Ansteuerung der Einginge der Flipflops aufge-
stellt werden. Da bei D-Flipflops die am D-Eingang anliegenden Werte bei der steigenden
Flanke des Taktes in das Flipflop eingelesen werden, sind die Ansteuerfunktionen D; = z™"".
Die Werte aus der Zustandsfolgetabelle 8-5 werden in zwei KV-Diagramme (Tabelle 8-6)
eingetragen.

Tabelle 8-6 KV-Diagramme fiir die Ansteuerfunktionen der D-Flipflops und fiir die Ausgangsfunktionen.

r r
K_H /“‘/R
D, D, D, D, Vinys yiynys
01 00 111 000
11 00 011 000 .
A
10 00 010 000
Z m

00 00 110 000 !

Fiir die Ansteuerfunktionen der D-Flipflops, die das Schaltnetz SN1 beschreiben, liest man aus
dem linken KV-Diagramm der Tabelle 8-6 ab:

DO = ﬂ}"—|Z1m (810)
Dl :—|I’Z0m (811)

Die Ausgangsfunktionen, die im Schaltnetz SN2 realisiert sind, konnen aus dem rechten KV-
Diagramm der Tabelle 8-6 ermittelt werden:

= —|I"—|Z()m (812)
yy=—r (8.13)
y3==—r—zi" =Dy (8.14)

An den Gleichungen 8.12 bis 8.14 kann man direkt erkennen, dass es sich um ein Mealy-
Schaltwerk handelt, da sie alle Funktionen der Eingangsvariablen r sind. Dadurch werden bei
einem Not-Aus die Motoren ohne Zustandswechsel sofort ausgeschaltet.

100 8 Synchrone Schaltwerke

{1 a -
—C W1
& . 4 i
—O
D, D 20 Y3
> m
CLK Cl - —Z)
& I e B
4 m
>Cl1 Aic —Z]

Bild 8-9 Schaltbild der Maschinensteuerung (Beispiel 2).

8.3.2 Realisierung der Maschinensteuerung als Moore-Schaltwerk

Hitte man bei der Entwicklung der Schaltung ein Moore-Schaltwerk zugrunde gelegt, so hitte
man einen zusitzlichen Zustand 5 benétigt, in den das Schaltwerk geht, wenn der Not-
Ausschalter betitigt wird (Bild 8-10). Bei einem Moore-Schaltwerk kann man die Werte der
Ausginge in die Kreise fiir die Zustéinde eintragen. Es sind fiir die Codierung der Zusténde
mindestens 3 Zustandsvariable erforderlich. Nachteilig kann sein, dass bei einem Not-Aus erst
nach einem Zustandswechsel die Motoren ausgeschaltet werden. Das Moore-Schaltwerk rea-
giert also langsamer. Dieser Nachteil ist umso bedeutsamer, je langsamer der Takt CLK ist.

Bild 8-10 Alternatives Zustandsdiagramm der Maschinensteuerung (Beispiel 2) als Moore-Schaltwerk. In
den Kreisen stehen jeweils der symbolische Zustand und die Ausgénge y; y, ys.

8.4 Zustandscodierung

Wir haben oben gesehen, dass es mehrere Alternativen fiir die Codierung der Zusténde gibt.
Die Auswahl der Codierung hat einen entscheidenden Einfluss auf den Aufwand. Wichtig ist
natiirlich, dass alle Zustidnde unterscheidbar sind. Die Auswirkungen sollen am folgenden Bei-
spiel diskutiert werden:

Beispiel 3: Ampelsteuerung

Es soll eine Ampelsteuerung entworfen werden, die zyklisch die Signale rot - rot und gelb -
griin - gelb - rot ... auf 1 setzt. Die Weiterschaltung soll durch den Takt erfolgen. Die Schal-
tung hat keinen Eingang aufler dem Takt CLK. Man kann das untenstehende Zustandsdia-
gramm angeben. Die Zustinde werden, ohne Steuerung durch einen Eingang kreisformig

8.4 Zustandscodierung 101

durchlaufen. Die Weiterschaltung erfolgt bei jedem Takt unabhéngig von einem Eingang. Man
nennt dies einen autonomen Automat. Es handelt sich um ein Moore-Schaltwerk.

@ Notation
@ rot gelb griin

Bild 8-11 Zustandsdiagramm der Ampelsteuerung (Beispiel 3) mit den Zustinden 1,2,3,4 und den Werten
fir die Ausgénge rot, gelb, griin.

In der Praxis haben sich u.a. [19] die folgenden Strategien fiir die Codierung von Zustdnden
bewahrt, die in der Regel nacheinander durchlaufen werden: Binédre-Codierung, Gray-Code,
ausgangsorientierte Codierung und ,,One-Hot“-Codierung. Sie sind in der folgenden Tabelle
zusammengefasst und sollen im Folgenden verglichen werden.

Tabelle 8-7 Zustandscodierung: Binédre-Codierung, Gray-Code, ausgangsorientierte Codierung, ,,One-
Hot“-Codierung fiir das Beispiel 3 Ampelsteuerung.

Binédr Gray- Ausgangs- One-Hot-
Code orientierte Codierung
Codierung

Zustand | zy [zo lzi | 20l 22 | z1 | z0) z3 | 22 | z1 | 2o

—_—] o= O O
— O] =] ©
—_—| = O O

0
1
0
1

S| =] O ©
— O o ©

0
0
1
0

o O oOf —

0
1
0
0

Bl W] O =
S| =] = &
O O =] —

8.4.1 Binire Codierung

Diese Moglichkeit findet man im Beispiel in Kapitel 8.1 ,,Binédrzédhler* beschrieben. Man bend-
tigt zwei Zustandsvariablen und zwei Flipflops.

8.4.2 Codierung nach dem Gray-Code

Diese Moglichkeit wurde bei der Schaltung der Maschinensteuerung verwendet: Man benétigt
zwei Zustandsvariablen und zwei Flipflops. Wenn die Zustinde der Reihe nach durchlaufen
werden ergibt dies oft einen geringeren Aufwand bei der Realisierung als die bindre Codierung.

8.4.3 Ausgangsorientierte Codierung

In dieser Codierung wird jedem Ausgang ein Flipflop zugeordnet. Daher steuert je ein D-
Flipflop entsprechend Bild 8-12 eine der Lampen direkt an. Man benétigt drei Flipflops, ob-
wohl fiir die Realisierung der vier Zustinde zwei Flipflops ausgereicht hétten. Das Schaltnetz

102 8 Synchrone Schaltwerke

SN2 ist zu Durchverbindungen degeneriert und féllt daher weg. Das ist der Vorteil dieser Co-
dierung.

]
D, ID — % ® rot
:,\l/ —PCl T
SN1 Dl s g ® gelb
—pPCl 1 o
D, z" N
TR) e
CLK >Cl1 71 o

Bild 8-12 Struktur des Schaltwerks fiir die Ampelsteuerung mit ausgangsorientierter Codierung.

Das Zustandsdiagramm der Ampelsteuerung mit dieser Codierung ist in Bild 8-13 angegeben.
Die drei Ausgénge sind im Zustandsdiagramm nicht angegeben, da ja die einfache Bezichung:
rot=z,", gelb= z\" und griin= z," gilt. Aus dem Zustandsdiagramm wird die Zustandsfolgeta-
belle (Tabelle 8-8) abgeleitet. Wichtig ist es festzustellen, dass nur 4 der moglichen 2° = 8

Zustinde verwendet werden.

Bild 8-13 Zustandsdiagramm fiir die Ampelsteuerung (in den Zusténden z,", z,", z,").

Tabelle 8-8 Zustandsfolgetabelle fiir die Ampelsteuerung mit ausgangsorientierter Codierung.

2" 2" z" szﬂ Zlm+1 Zoerl
1 0 0 1 1 0
1 1 0 0 0 1
0 0 1 0 1 0
0 1 0 1 0 0

Es wurden nur die vier Zustdnde eingetragen, die im Zyklus durchlaufen werden. Die vier nicht
benutzten Zustdnde werden zundchst nicht beriicksichtigt. Es soll aber sichergestellt werden,
dass das Schaltwerk nach dem Einschalten, wobei es in einen beliebigen Zustand geht, nach
einigen Takten in den normalen Zyklus {ibergeht. Das muss spéter kontrolliert werden. Fiir die
Entwicklung des Schaltnetzes fiir die Ansteuersignale der drei D-Flipflops werden drei KV-

8.4 Zustandscodierung 103

Diagramme aus der Zustandsfolgetabelle entwickelt. Das ist einfach, da ein D-Flipflop den
Wert, der am D-Eingang anliegt, als nichsten Zustand speichert: D, = z""'. Die Werte fiir die
nicht benétigten Zustdnde werden beliebig angesetzt (d).

+1 +1 +1
DQZZZm D1:Z|m D(): Zom

m
V4] sz sz

@EOE 'qooﬁl dOMO
Zo"{o d|d|d Zom{__lJ @.Zom{ 0| d @J

m
Z1 Z1 Z]

Bild 8-14 KV-Diagramme zur Minimierung der Ansteuernetze fiir die D-Flipflops.

Aus Bild 8-14 leitet man die folgenden Ansteuergleichungen ab:

D2 = sz+1 = —|Zlm—|Zom \ —|sz—|20m = —|Zom (—\Zlm \2 —|sz) = —|(Zom \2 Zlmsz (8 15)
Dy=z""=—z" (8.16)
D0220m+1 :Zlm sz (817)

Mit den Ansteuergleichungen liegen nun auch die Folgezustinde der zunéchst nicht bendtigten
Zustdande 000, 011, 101 und 111 fest. Die vollstindige Zustandstabelle (Tabelle 8-9) wird
durch Erginzen dieser Zustinde in Tabelle 8-8 unter Verwendung der Gleichungen 8.15 bis
8.17 zusammengestellt.

Tabelle 8-9 Vollstindige Zustandsfolgetabelle fiir Ampelsteuerung mit ausgangsorientierter Codierung.

" 2" 2" 2 g g
0 0 O 1 1 0
0 0 1 0 1 0
0 1 0 1 0 0
0 1 1 0 0 0
1 0 O 1 1 0
1 0 1 0 1 0
1 1 0 0 0 1
I 1 1 0 0 1

Tabelle 8-9 liefert das Zustandsdiagramm in Bild 8-15. Aus dem nun vollstdndigen Zustands-
diagramm geht hervor, dass alle Zustinde, in die das Netzwerk zufillig beim Einschalten
kommen kann, letztendlich in den Zyklus fithren. Dazu sind maximal 2 Takte notig. Man be-
achte, dass eine andere Wahl der don’t care-Terme im KV-Diagramm (Bild 8-14) zu einem

104 8 Synchrone Schaltwerke

anderen Zustandsdiagramm gefiihrt hétte. Es kann passieren, dass die Zusténde, die nicht zum
Kreis-Zyklus des Schaltwerkes gehoren, nicht automatisch nach einigen Takten in diesen Kreis
fithren. Dann kann es vorkommen, dass das Schaltwerk beim Einschalten nicht in den ge-
wiinschten Zyklus geht, sondern in einem anderen Zyklus héngen bleibt. Will man das verhin-
dern, so muss man die don’t care-Terme anders festlegen. Der kreisformige Zyklus aus den
Zustdnden 001, 010, 100 und 110 ist, unabhéngig von den don’t cares, immer vorhanden.

Bild 8-15 Zustandsdiagramm fiir die Ampelsteuerung mit allen Zustdnden.

2" |z Zoml_ D Z,m
<] 21 2 ID - 2 ® rot
&
L —pct
1 F} D D il ® gelb
PCl T
Dy z" ..
ID ® griin
CLK >C1 T 5

Bild 8-16 Schaltbild der Ampelsteuerung mit ausgangsorientierter Codierung.

8.4.4 ,,One-Hot*“-Codierung

Ublich ist auch die so genannte ,,One-Hot**-Codierung. Man bendtigt nun 4 Zustandsvariablen
z3", 23", z1", zo" von denen nur immer eine gleich 1 ist, wihrend die anderen 0 sind. Man bend-
tigt dann 4 Flipflops. Allerdings wird das Ansteuernetzwerk SN1 sehr einfach. Die Codierung
der Zusténde ist in Tabelle 8-7 dargestellt.

Man erhélt, unter Zuhilfenahme der Tabelle 8-7 die Zustandsfolgetabelle 8-10. Es gibt sehr
viele nicht benétigte Zusténde (14).

8.4 Zustandscodierung 105

Tabelle 8-10 Zustandsfolgetabelle der Ampelsteuerung mit ,,One-Hot“-Codierung.

" 2" "z |z) ™ | rot gelb griin
0001 0 0 1 0 1 0 0
0010 0 0 0 1 1 0
0100 1 0 0 0 0 0 1
1 000 0 0 0 1 0 1 0

Aus der Zustandsfolgetabelle gewinnt man die KV-Diagramme in Bild 8-17 fiir die Minimie-
rung des Schaltnetzes SN1. Aus den KV-Diagrammen liest man die Gleichungen ab:

Z3m+1 :sz) :Zlm s Z1 :Z()m) Z()m-*—1 :Z3m (818)
Dabher ist kein Schaltnetz SN1 nétig und die D-Flipflops sind im Kreis angeordnet. Das ist
typisch fiir die ,,One-Hot“-Codierung. Durch die vielen don’t cares wird das Schaltnetz SN1 in
der Regel sehr einfach. Allerdings bendtigt man viele Flipflops, da man mehr Zustandsvariable
benotigt.

m+1 m+1

D=z m+1 D=z m+1 D1: Zlmﬂ Do=z m+1
m m m
Z3 Z3 Z3 Z3
(1| o 0 0 0 0 ol 1
'd
0 m O m 1] m O m
20 ~[7 20 20 Z0
Zlm Zl’ﬂ] Zlm . J Zlm
0[] U) 0 of Ul
— — — —
m m m m
Z2 3 Z Z

Bild 8-17 KV-Diagramme fiir die Ansteuernetzwerke der D-Flipflops (Kein Eintrag = don’t care).

Fiir das Schaltnetz SN2 erhilt man rot = zy"vz,", gelb= z,"vz3" und griin = z,". Die Schaltung
(Bild 8-18) bendtigt ein Initialisierungssignal /nif, um einen Anfangszustand z.B. 0001 einzu-
stellen.

>1 rot
e gelb
Zp Z 2z Z3
1D 7 1D 7 1D 7 1D
PCL - [PCL qp- [PC! qp-[PC! qpb-
S R R R
CLK
Init .

Bild 8-18 Struktur der Ampelsteuerung mit ,,One-Hot“-Codierung.

106 8 Synchrone Schaltwerke

8.5 Wahl der Flipflops

Es kann vorkommen, dass z.B. nur JK-Flipflops verfiigbar sind. Auch ist der Aufwand unter-
schiedlich, je nachdem welcher Flipflop-Typ verwendet wird. Wir greifen dazu das Beispiel 1
aus Kapitel 8.1 auf, den Binérzdhler, und realisieren es diesmal mit JK-Flipflops.

Tabelle 8-11 Zustandsfolgetabelle

m+1 m+1
Z] A

Zl n ZO”Z
x=0 x=1
@—e—+@ 1 11
0 1 1 0 0 0
1 1 0 0 1 0
1 0 1 1 0 1

Es miissen die Gleichungen fiir die Ansteuerung der Eingénge der JK-Flipflops, ndmlich fiir J;,
Ky, Jound K aufgestellt werden. Dazu ist es hilfreich, sich die Werte fiir / und K zu notieren,
die bei einem gegebenen Wert der Zustandsvariablen z” fiir einen gewiinschten Folgezustand
2" erforderlich sind. Wenn zum Beispiel der Zustand z” = 0 erhalten bleiben soll (in Tab. 8-
11 markiert), kann dies durch J = 0 bei beliebigem K erreicht werden. K = 1 wiirde ,,Riickset-
zen“ bedeuten und K = 0 ,,Speichern®. Beides fiihrt zum Erhalt von z” = 0. Ahnliche Uberle-
gungen fiihren zu den anderen Tabellenwerten (Tabelle 8-12), die immer einen Freiheitsgrad

enthalten.

Tabelle 8-12 Ansteuerung eines JK-Flipflops abhéngig von den alten und neuen Zusténden.

2T K Beschreibung

0 0 0 d | Speichern oder Riicksetzen
0 1 1 d | Wechseln oder Setzen

1 0 d 1 | Wechseln oder Riicksetzen
1 1 d 0 |Speichern oder Setzen

Tabelle 8-13 KV-Diagramm fiir die Ansteuerfunktionen der JK-Flipflops.

- JiKy JoKy

x=0 x=1
(0)—o—pCod) [1d T T
0 1 Id| |[dl 0d dl
11 d1] [di] do [di
1 0 do (1d] {dl\ 1d]

8.6 Zeitverhalten von Schaltwerken 107

Mit Hilfe der Tabelle 8-12 wird aus der Zustandsfolgetabelle 8-11 das KV-Diagramm 8-13
entwickelt. (markiert ist der gleiche Ubergang wie in Tabelle 8-11)

Fiir die Ansteuerfunktionen der JK-Flipflops, die das Schaltnetz SN1 beschreiben, liest man
aus dem KV-Diagramm (Tabelle 8-13) unter Ausnutzung der don’t care-Terme ab:

J():l K():l JIZ—OCZOm\/X_!ZOm K1:Jl
=X Zom
(8.19) (8.20) (8.21) (8.22)

Die Ausgangsfunktionen, die im Schaltnetz SN2 realisiert sind, bleiben natiirlich gleich.

Ji Z
X 1 . 1J T 1 >1
N1
>
k,l Cl

" 1K i e
Jo 1J 1 d

CLK X >C1

Bild 8-19 Moore-Schaltwerk (Beispiel 1) mit JK-Flipflops.

8.6 Zeitverhalten von Schaltwerken

Damit ein Schaltwerk (Bild 8-20) so funktioniert, wie es im letzten Abschnitt berechnet wurde,
miissen einige Zeitbedingungen eingehalten werden. Diese Zeitbedingungen sollen nun genau-
er untersucht werden. Dazu zeichnen wir die Wirk- und Kippintervalle der Flipflops in der
Riickkopplung relativ zum Takt CLK auf (Bild 8-21).

x > Schaltnetz | Z"'!
SN1 :D Speicher

Z" fi(x, 2™ S
:D |_

CLK

Bild 8-20 Synchrones Schaltwerk.

Im Bild ist eine Uberlappung #,; von Wirk- und Kippintervall eingezeichnet. Werden bei ei-
nem Schaltwerk mehrere Flipflops verwendet, so ergibt sich durch die Verschiebung des Tak-
tes (clock skew) eine Verbreiterung der Wirk- und Kipp-Intervalle. Das kann dazu fiihren, dass
sich auch bei einflankengesteuerten D-Flipflops die Wirk- und Kippintervalle tiberlappen. Bei
zweiflankengesteuerten Flipflops iiberlappen sich die Wirk- und Kippintervalle nicht, so dass
tii; negativ wird.

108 8 Synchrone Schaltwerke

In Bild 8-20 sind auch die Ausginge z” der Flipflops eingezeichnet. Sie sind auBerhalb der
Kippintervalle stabil. In den Kippintervallen konnen sie sich dauernd &ndern. Mogliche Sig-
naldnderungen sind, wie es {iblich ist, durch einen ,,Jagerzaun‘ dargestellt. Die Eingangssignale
x" wurden im Bild so eingezeichnet, dass sie zu den gleichen Zeiten wie die Ausgénge der
Flipflops stabil sind.

T

FF @) !j@

1
[; twi
it
o
o

3

T

1

i : : :

— T + YYYYYYYY
[: ‘0’0’0‘3'0’0’0’0’0’0’0’0’0’0’0’0.0, i i \0’0’0’0’0’0““
— \

\N]

Bild 8-21 Zeitverhalten eines Schaltwerks.

Nun konnen die Ausgénge des Schaltnetzes SN1 betrachtet werden. Dazu soll kurz das gene-
relle Verhalten eines Schaltnetzes analysiert werden.

e Wenn sich die Eingangsgroflen eines Schaltnetzes dndern, so &ndert sich der Ausgang fiir
eine gewisse Zeit t,;, nicht. Diese Zeit t,;, ist eine Totzeit. Sie wird zum Teil durch die
Laufzeit der Gatter hervorgerufen. Der andere Teil ergibt sich durch die Laufzeit der Signa-
le auf den Leitungen zwischen Speichern und dem Schaltnetz.

e Dann beginnen sich die Ausgangsgrofien zu dndern. Nach einer gewissen Zeit ,,,, sind auch
alle Einschwingvorginge (Hazards) abgeklungen. Dann ist das Ausgangssignal stabil.

Die Zustandsvariablen z""'des Schaltwerks &ndern sich also frithestens nach Ablauf der Zeit
tmin Nach Beginn des Kippintervalls. Stabil sind die Ausgénge z”"' des Schaltwerks nach der
Zeit t,,, nach dem Ende des Kippintervalls (Bild 8-21). Aus dem Bild lassen sich nun die Be-
dingungen fiir das Funktionieren des Schaltwerks ablesen. Eine wesentliche Bedingung fiir das
Funktionieren eines Schaltwerkes ist, dass die Eingangsvariablen der Flipflops wéhrend deren
Wirkintervall stabil sein miissen.

e Die Zustandsvariablen z"*! diirfen sich daher erst nach dem Ende des Wirkintervalls &n-
dern. Die Zeit ¢, muss also groBer als 0 sein.

4 = toin — tyie > 0 (823)

8.7 Ubungen 109

Ohne Taktversatz sagt diese Bedingung, dass sich Wirk- und Kippintervall maximal um die
minimale Laufzeit ¢,,, des Schaltnetzes liberlappen diirfen. Bei groem Taktversatz ist die
Bedingung nur mit zweiflankengesteuerten Flipflops zu erfiillen. Durch die Wahl des Tast-
verhiltnisses des Taktes kdnnen die Zeiten in einem weiten Rahmen variiert werden.

e Nach dem Ende des Kippintervalls muss das Schaltnetz die neuen Eingangsvariablen fiir
die Speicher berechnen. Dies muss, inklusive aller Einschwingvorgénge, abgeschlossen
sein, wenn das ndchste Wirkintervall beginnt.

Die zweite Riickkopplungsbedingung lautet daher
L= twk = tyax > 0 (824)

Nun wollen wir die Verhéltnisse im Schaltnetz SN2 fiir die Berechnung der Ausgangsfunktio-
nen y betrachten. Ist die Laufzeit dieses Schaltnetzes gleich der von SN1, so sind die Ausgénge
y zur gleichen Zeit giiltig wie die z”*'. Diese Tatsache kann ausgenutzt werden, um am Aus-
gang y Pufferspeicher anzubringen, die dafiir sorgen, dass die Ausgangsgrofen synchron zu
den x™ und z" stabil zur Verfiigung stehen (Bild 8-22). Die Bedingungen lassen sich noch ge-
nauer fassen, wenn man zwischen den Laufzeiten der Signale durch die Schaltnetze SN1 und
SN2 unterscheidet.

X
> Schaltnetz | z"*!
SN1 ::) Speicher
’:‘> fi(x, ") .
Zm
\:D Schaltnetz
SN2 Speicher :: >
:‘> £(x, 2") > ’ g
>
CLK

Bild 8-22 Synchrones Mealy-Schaltwerk mit Pufferspeichern am Ausgang.

8.7 Ubungen

Aufgabe 8.1

Es soll ein Schaltwerk fiir eine Pumpensteuerung entworfen werden, welche den Wasserstand
in einem Behdlter kontrollieren soll (Bild unten links). Die Anordnung besteht aus einem Was-
serbehilter, der einen unregelméBigen Abfluss hat. Gefiillt wird der Behélter mit zwei Pumpen,
deren gemeinsame Forderleistung grofBer ist als der maximal mogliche Abfluss. Drei Sensoren
mit den Ausgangssignalen xo, x; und x, zeigen mit dem Wert 1 an, dass der Wasserstand hdher
ist als der entsprechende Sensor angebracht ist.

Das geforderte Verhalten der Pumpen ist im rechten Bild dargestellt. Beide Pumpen sollen
laufen, wenn der Wasserstand geringer ist als x;. Wenn der Wasserstand weiter steigt, soll eine
Pumpe beim Erreichen von x; abgeschaltet werden. Beim Erreichen von x, wird auch die letzte
Pumpe abgeschaltet. Im Falle eines fallenden Wasserstandes soll bei x; die erste und bei x, die
zweite Pumpe eingeschaltet werden.

110 8 Synchrone Schaltwerke

CLK —»
> Automat
> Wasserstand
Xo X1 X2
200 2 0 110 —
® X2 |=':=',_\—d’:‘:> Anzahl der
L ' stellgen ! laufenden
® X1 2 : 1 : 0 : 0 <_Pumpen
Xi
0 fallend
&<
Abfluss ﬂ
ﬁ Vi
Pumpe2
Pumpel |4 Yo
Aufgabe 8.2

Entwerfen Sie die in Kapitel 8.3.1 vorgestellte Maschinensteuerung, indem Sie an Stelle der D-
Flipflops a) RS-Flipflops oder b) JK-Flipflops verwenden. Vergleichen Sie den Aufwand bei
den drei Realisierungen.

Aufgabe 8.3

Es soll ein synchrones Moore-Schaltwerk entworfen werden, welches einen Parkautomaten
realisiert, der Parkscheine fiir € 1,50 ausgibt. Die Miinzen kdnnen in beliebiger Reihenfolge
eingeworfen werden. Ist der Betrag von € 1,50 erreicht oder iiberschritten, so soll ein Park-
schein ausgegeben werden und gegebenenfalls Wechselgeld zuriickgezahlt werden.

Der Parkautomat hat einen Miinzpriifer, der nur 50Cent und 1Euro-Stiicke akzeptiert. Der
Ausgang des Miinzpriifers gibt nach jedem Taktsignal entsprechend der folgenden Wahrheits-
tabelle an, was eingeworfen wurde. Es ist ausgeschlossen, dass der Miinzpriifer M = (1,1) aus-
gibt und dass mehr als eine Miinze innerhalb einer Taktperiode eingeworfen wird. Falsche
Miinzen werden automatisch zuriickgegeben

Einwurf Ausgang des Miinzpriifers M = (xy, xo)
Keine oder falsche Miinze 00
50Cent-Stiick 01
1Euro-Stiick 10

Ein Parkschein wird mit dem Ausgangssignal S = 1 ausgegeben, gleichzeitig wird der Miinz-
einwurf mechanisch gesperrt, andernfalls ist der Miinzeinwurf moglich. Mit dem Signal R = 1
wird ein 50Cent-Stiick zuriickgegeben.

a) Geben Sie das Zustandsdiagramm und die dazugehdrige Zustandsfolgetabelle an.

b) Ermitteln Sie die Ubergangsfunktionen und die Ausgabefunktionen.

®

Check for
updates

9 Multiplexer und Code-Umsetzer

In diesem Kapitel werden zwei Standard-Bauelemente, ndmlich Multiplexer und Code-
Umsetzer, vorgestellt. Diese Bausteine sind fiir eine Reihe von Anwendungen, wie zum Bei-
spiel die Realisierung von booleschen Funktionen oder die Biindelung von mehreren Nachrich-
tenkandlen auf einer Leitung geeignet.

9.1 Multiplexer

Ein Multiplexer ist ein Baustein, der einen von # digitalen Eingéingen auf den Ausgang schal-
tet. Der Eingang wird durch Selektionseingidnge ausgewéhlt.

Als Beispiel ist in Bild 9-1 der Baustein 74151 gezeigt. Dieser Multiplexer wird als 8:1-
Multiplexer bezeichnet, da mit ihm 8 verschiedene FEingénge I; wahlweise auf den einen Aus-
gang y gelegt werden konnen. In der CMOS-Version ist der Baustein mit Transmission-Gates
realisiert.

Mit den Selektionseingéngen x,, x;, xo wird die Quelle ausgewéhlt. Nachdem sich die Adress-
und Datensignale stabilisiert haben, kann die Quelle mit dem Aktivierungssignal En (Enable)
durchgeschaltet werden. Der Ausgang y bleibt auf 0, solange En = 1 ist. Fiir En = 0 wird der
ausgewdhlte Ausgang durchgeschaltet.

Der Baustein enthilt ein Schaltnetz mit der Verkniipfung:
y="En (—xyx;xolp V " 1x0; vV 00X X0l V T0x X005 V XX X0l V

V XX 1X0ls v Xox1 X0l V XX 1X017) 9.1)

Tabelle 9-1 Wahrheitstabelle des 8:1-Multiplexers 74151 (x = Eingangssignal d. Eingangs /;, x € {0,1}).

En \xoxixg |Lle L L L |y
1 |ddd [dddddddd |0
0 [000 |dddddddx |x
0 [001 |[ddddddxd |x
0 [010|dddddxdd |x
0 [011 |ddddxddd |x
0 [1 00 |dddxdddd |x
0 [1 01 |ddxddddd |x
0 |1 10 |dxdddddd |x
0 [1 11 |xddddddd |x

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018
K. Fricke, Digitaltechnik, https://doi.org/10.1007/978-3-658-21066-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-21066-3_9&domain=pdf

112 9 Multiplexer und Code-Umsetzer

En .

1 <
[[
1
&

— MUX
L En g EN
I ._& . g =0 0
3 — X1 — =
L 4
4 &J —] 10—()

—] I_
15 1 1 — y
1, I —3
6 & I 1

(= 4
I7 & 15_5

— 1(,_6
pag
5 —{TH—
-« —lp—

Bild 9-1 8:1-Multiplexer 74151 mit Schaltsymbol.

Das Schaltsymbol in Bild 9-1 des 8:1-Multiplexers 74151 ist durch die Uberschrift MUX ge-
kennzeichnet. Die Funktion des Multiplexers wird durch eine UND-Abhéngigkeit (G) der
Selektionseingénge x; und der Dateneingédnge /; beschrieben. Die Selektionseingénge x; werden
von 0 fiir x, bis 2 flir x, nummeriert.

9.1.1 Multiplexer-Realisierung von Funktionen

Ein Multiplexer kann verwendet werden, um ein Schaltnetz zu realisieren. Dies soll an einem
Beispiel gezeigt werden. Das zu realisierende Verkniipfungsnetz wird durch sein Karnaugh-
Diagramm in Bild 9-2 vorgegeben. Es soll ein 8:1-Multiplexer verwendet werden.

Ein 8:1-Multiplexer hat 3 Selektionseingénge, an die 3 der 4 Variablen angeschlossen werden
konnen. Man hat fiir die Wahl dieser 3 Variablen 4 Mdglichkeiten. Die jeweils nicht bertick-
sichtigte Variable wird so an die Dateneingénge /; angelegt, dass der vorgegebene Funktions-
wert der Funktion am Ausgang des Multiplexers erscheint. Das Vorgehen dafiir soll nun erldu-
tert werden. Zunichst muss festgelegt werden, welche Variablen an den Selektionseingédngen
anliegen sollen. Hier wurden x3, x,, x; ausgewihlt. Mit diesen drei Variablen an den Selekti-
onseingdngen werden in einem KV-Diagramm jeweils Bereiche von 2 Mintermen ausgewahlt.
In Bild 9-2 sind die Bereiche /; angegeben, die einem Eingangsvektor mit dem Dezimaldquiva-
lent i zuzuordnen sind. Bei der Ermittlung des Dezimaldquivalents muss auf die Wertigkeit der
Selektionseinginge geachtet werden. x; hat hier die Wertigkeit 2% x, die Wertigkeit 2' und x,
die Wertigkeit 2°.

An die Dateneingénge des MUX miissen dann nur noch die entsprechenden Restfunktionen
f(xo) angelegt werden. Enthilt ein Bereich keine 1, so muss an den entsprechenden Datenein-
gang eine 0 angelegt werden. Sind zwei Einsen in einem Bereich, so wird der Dateneingang

9.1 Multiplexer 113

mit 1 beschaltet. Ist in dem Bereich nur eine 1, so kommt es auf die Position der 1 an, ob der
Dateneingang mit der Variablen (x() oder der invertierten Variablen (—x,) beschaltet wird. Zum
Beispiel lésst sich aus Bild 9-2b ablesen, dass [, mit 1 beschaltet werden muss, denn der Be-
reich [, enthélt nur Einsen. Dagegen muss /; mit —x, beschaltet werden, denn der Bereich /; hat
nur eine 1 an der Position, die von der Randbezeichnung x, nicht iiberdeckt wird. Diese Be-
schaltung des Multiplexers ist in Bild 9-3 gezeigt.

a) X3 b) X3
K_A_\ K_J%
1 I I I
1 1 0 2 6 4
1 1
X X0
! { ' Lo\ 5| k| I

X1 X1

1 1

| — | S —
X2 X3

Bild 9-2 a) Karnaugh-Veitch-Diagramm der Beispielfunktion b) Definition der Bereiche /;, die einem
Eingangsvektor (x3, x, x;) mit dem Dezimaldquivalent i zuzuordnen sind.

En—CENMUX
xx,——————10
—T
Xy ————2 7

1—/0
! —
0 2 -y
Xo 3
4
1—/5
6
0—/7

Bild 9-3 Beschaltung des Multiplexers fiir die in Bild 9-2 definierte Funktion.

Alternativ kann auch ein 16:1-Multiplexer verwendet werden. Dessen Dateneingéinge miissen
dann nur noch mit 0 und 1 beschaltet werden. Diese Variante bringt aber beziiglich des Auf-
wandes keinen Vorteil gegeniiber einem 8:1-Multiplexer. Wird ein 4:1-Multiplexer verwendet,
so liegen an den beiden Selektionseingéngen 2 der Variablen an, an den 4 Dateneingéngen liegt
jeweils eine DNF (oder KNF) aus den anderen beiden Variablen an. Ein Beispiel ist in Bild 9-
4 gezeigt. Beschaltet man die Selektionseingénge des Multiplexers mit x; und x,, so wird die
Beschaltung an den Datencingéngen besonders einfach. In diesem Fall kommt man mit einem
4:1-Multiplexer ohne weitere Gatter aus (Bild 9-5). Legt man x; und x, an die Selektionsein-
ginge, so muss man die Dateneingénge mit zusétzlichen Gattern beschalten.

9 Multiplexer und Code-Umsetzer

114
a) X3
——
1
1 1
1 1
X1
1
S——
X2

b)

Xo

X3
f_/%

Iy

L | L | L

Xo

X2

Bild 9-4 a) Karnaugh-Veitch-Diagramm der Beispielfunktion b) Definition der Eingangsfelder.

X2
X3

X1

Xo

En —Q

W= O

—
O——y

Bild 9-5 Beschaltung des Multiplexers fiir die in Bild 9-4 definierte Funktion.

9.2 Code-Umsetzer

Ein Code-Umsetzer ist eine Schaltung, die das Codewort aus einem Code 1, welches an den m
Eingéngen anliegt, in ein Wort aus einem anderen Code 2 umsetzt. Das Codewort am Ausgang
hat in diesem Fall eine Wortldnge von n Bits. Im Schaltsymbol in Bild 9-6 sind die beiden
Codes in der Uberschrift angegeben.

Xo
X1
X2

xm

Codel/Code2

Yo
R4
Y2

yﬂ

Bild 9-6 Schaltsymbol eines Code-Umsetzers.

9.2 Code-Umsetzer 115

Code-Umsetzer findet man in den folgenden Anwendungen:

- Integrierte Code-Umsetzer kénnen zur Wandlung von Codes verwendet werden. Ublich
sind zum Beispiel Umsetzer vom BCD-Code zum Hexadezimal-Code.

- Sie eignen sich zur Erzeugung von Funktionsbiindeln.

- Spezielle Code-Umsetzer konnen als Demultiplexer eingesetzt werden. Der Demultiplexer
ist, wie unten erldutert werden wird, das Gegenstiick zu einem Multiplexer. Er dient zum
Verteilen eines Nachrichtenkanals auf mehrere Leitungen.

9.2.1 Der BCD/Dezimal-Code-Umsetzer 7442

Hier soll als Beispiel der Code-Umsetzer 7442 vorgestellt werden (Bild 9-7). Er wandelt vom
BCD-Code in den 1 aus 10-Code. Der hier verwendete 1 aus 10-Code ist ein Code, dessen
Worter die Eigenschaft haben, dass alle 10 Bit bis auf eins den Wert 1 haben. Der Code-
Umsetzer hat 4 Eingéinge und 10 Ausgangsleitungen. Die Ausgénge liegen normalerweise auf
1 und werden im Falle der Auswahl auf 0 geschaltet. Jeder Ausgang y; realisiert den entspre-
chenden Maxterm:

y;= M, miti=0,1,..9 (9.2)

Die Funktion kann auch so interpretiert werden, dass jeder Ausgang den entsprechenden inver-
tierten Minterm realisiert:

Yo =Mgs= X3V XV X1 V Xg = (T3 X0 X X) = T 9.3)

Im Schaltsymbol des Code-Umsetzers 7442 werden die beiden Codes angegeben, zwischen
denen gewandelt wird. In diesem Fall BCD/DEC, das heist vom BCD-Code in den Dezimal-
code. Die Wertigkeiten des BCD-Codes sind innerhalb der linken Berandung des Symbols
angegeben. Auf der rechten Seite ist die Wertigkeit des dazugehorigen Ausgangs angegeben.

| & p— Yo
& p— 4!
— BCD/DEC
0 & p— »m O—
b p P 0 O_J/o
- & b— s é O—yl
X1 - Xo — | 1 3 Y2
— & Y4 X T 2 4 %
& Xy T | 4 5 Ya
v —{ibe P ¥ x3] 8 p f
6
— & e 7 Y7
8Py
& 8
x; —{Ths 7 9 0=y
& pb—
8
] & p—)

Bild 9-7 Schaltbild und Schaltsymbol des BCD/Dezimal-Code-Umsetzers 7442.

116 9 Multiplexer und Code-Umsetzer

Tabelle 9-2 Wahrheitstabelle des BCD/Dezimal-Code-Umsetzers 7442.

Dezimal |x; X2 X1 X0 |Voys Y7 Y6 Vs V4 V3 Y2 Y1 Vo
0 0000 1111111110
1 0001 1111111101
2 0010 [1111 11101 1
3 0011 1111110111
4 0100 [1 111101111
5 0101 111101 11711
6 0110 [1110 111111
7 0111 110111 1111
8 1000 J1o11 11 1111
9 1001 o111 11 1111
10 1010 1111 11 1111
11 1011 Jr1r1r1 111111
12 1100 1111111111
13 1101 111111 1111
14 1110 111111 1111
15 1111 Jr1r11 111111

9.2.2 Demultiplexer

Code-Umwandler, die von einem bindren in einen 1 aus n-Code umsetzen, konnen als Demul-
tiplexer verwendet werden. Der Demultiplexer soll die reziproke Aufgabe eines Multiplexers
ibernehmen. Ein Demultiplexer soll einen Eingang E auf mehrere Ausgénge verteilen, die mit
Adressleitungen ausgewihlt werden kdnnen.

Als Beispiel soll der oben angegebene BCD/Dezimal-Code-Umsetzer verwendet werden. Dazu
wird der hochstwertige Eingang als Dateneingang E verwendet (Bild 9-8). Die Eingénge x,, xi,
Xo werden zu den Adresseingidngen des Demultiplexers. Sie wihlen den Ausgang aus. Als Aus-
génge werden nur die Leitungen 0 bis 7 verwendet.

BCD/DEC, i y
0

I

: Is

Xy —
X1 —
Xo —

Bild 9-8 Verwendung eines Dezimal-Code-Umsetzers als Demultiplexer.

9.2 Code-Umsetzer 117

Die Funktion wird durch die Wahrheitstabelle 9-2 deutlich. Der hochstwertige Eingang x;
entscheidet ndmlich, ob der durch x,, x, xo ausgewahlte Ausgang auf 0 oder 1 liegt. In diesem
Fall hétte man auch einen Bindr nach Octal-Code-Wandler mit 8 Ausgéingen verwenden kon-
nen. Ein Multiplexer und ein Demultiplexer kdnnen zusammen eine Dateniibertragungstrecke
bilden, die die Ubertragung von n parallelen Datenstrdmen iiber eine einzige Leitung ermdg-
licht. Bild 9-9 zeigt das Prinzip.

MUX BCD/DEC 0p—
|0 0 10—y
1,67 1 20—
Iy 0 B 3P—————
Il 1 — 4 4 o—— V4
I 2 y 5P s
L 3 o 8 () S—
54 p 7P Y7
5 5 o—
I 6 8
L 7 9P
X2
X
Xo

Bild 9-9 Prinzip einer Dateniibertragungstrecke mit Multiplexer und Demultiplexer.

An die Adressleitungen des Multiplexers und des Demultiplexers werden die Adressen 0 bis 7
periodisch angelegt. Dadurch wird jeder Eingang /; in einem Achtel der Zeit auf den Ausgang
y; Uibertragen. So wird jeder Leitung durch das System ein Zeitschlitz zugeteilt. Das Verfahren
heift auch Zeitmultiplex (Time Division Multiple Access = TDMA).

9.2.3 Erzeugung von Funktionsbiindeln

Mit einem Code-Umsetzer, der in einen 1 aus n-Code wandelt, konnen Funktionsbiindel er-
zeugt werden. Als Beispiel sollen 3 boolesche Funktionen ys, 3, y; und y, mit den 3 Eingédngen
X2, X1, Xo realisiert werden. Sie sind in der Wahrheitstabelle 9-3 gegeben.

Tabelle 9-3 Wahrheitstabelle fiir 4 Beispielfunktionen ys, v,, 1, yo.

Dezimal X2 X1 Xo | V321)0
0 000 |0OOOO
1 001 0011
2 010 1000
3 011 1111
4 100 |]0O100O
5 1 01 0101
6 1 10 1101
7 1 11 1010

118 9 Multiplexer und Code-Umsetzer

Man verwendet einen Umsetzer vom Bindrcode zum Octal-Code, wie er im Baustein 74138
enthalten ist, denn dieser Code-Umsetzer hat 3 Eingédnge und 8 Ausgénge. Jeder Ausgang geht
auf 0, wenn der entsprechende Eingangsvektor an den Eingédngen anliegt. Man kann daher
sagen, dass die Ausgénge den invertierten Mintermen entsprechen. Alternativ kann man die
Ausginge als die Maxterme der Funktionen interpretieren.

Es sind zwei verschiedene Realisierungen moglich, je nachdem, ob die Ausgénge als die inver-
tierten Minterme oder die Maxterme interpretiert werden. Im ersten Fall wird die DNF, im
zweiten die KNF gebildet. Geht man von den invertierten Mintermen aus, so muss man folgen-
dermaflen vorgehen: Der Ausgang der zu einem Eingangsvektor gehort, fiir den der Funkti-
onswert 1 sein soll, muss an ein NAND-Gatter angeschlossen werden (Bild 9-10). Durch die
Inversion der Ausgénge des 74138 und die Inversion des Funktionswertes durch das NAND
ergibt sich ein logisches ODER, wie es fiir die Bildung der DNF erforderlich ist.

BIN/OCT

0 O —nmy
1 O —n,

2p _
Xo | 1 3 @ I’Im’lz
X1] 2 -~ s
a 4 —Nny
*2 4 5 G —Mms
6 O —Mg
7 O * t —niy

DE Y2 M Yo
Bild 9-10 Realisierung der DNF von Funktionsbiindeln mit einem Code-Umsetzer.
Fiir die Bildung der KNF werden die Ausgédnge als Maxterme interpretiert. Wir schliefen also

die Ausgénge, die zu den Eingangsvektoren gehoren, deren Funktionswerte 0 sein sollen, an
ein UND-Gatter an (Bild 9-11), da die Maxterme in der KNF UND-verkniipft werden.

BIN/OCT
0P M,
16 M,
_ 2P M,
X 71 30 M,
x; 7 2 e
- 4p M,
X2 4 5 o]‘45
6 M
70 * - M;

& & & &

V3 2 1 Yo

Bild 9-11 Realisierung der KNF von Funktionsbiindeln mit einem Code-Umsetzer.

9.4 Ubungen 119

9.3 Analoge Multiplexer und Demultiplexer

Wenn analoge Signale gemultiplext werden sollen, kdnnen Transmission-Gates zum Schalten
verwendet werden. Zur Ansteuerung der Transmission-Gates wird ein Multiplexer benétigt. Da
die Transmission-Gates einen invertierten Steuereingang haben, muss der Multiplexer invertie-
rende Ausginge haben. Die Schaltung ist in Bild 9.12 gezeigt. Weil sie in beiden Richtungen
verwendet werden kann, ist sie sowohl als Multiplexer als auch als Demultiplexer fiir analoge
und digitale Signale verwendbar. Allerdings wird das zu iibertragende Signal beim Durchlau-
fen des Schaltkreises gedampft. Es miissen also externe Buffer angeschlossen werden.

BIN/OCT _eroxl)
S7 < g
7 ay dg X1
6 de S6 > I Ife—s
xo] 1 5 as as X1
x 2 4 a, 55 — 1 1le—
w14 3 a3 a; »—dXI
2 a _ R 1 1< R
1 a) o T — S
0 70 as X1 *-——>r—
5 ——s | PR
a) X1
S5 «—> I e
a >0 X1
5 ——s 1| IR
[N X1
So «—> I 1}«

Bild 9-12 Analoger Multiplexer (Signalflussrichtung von links nach rechts) und Demultiplexer (Signal-
flussrichtung von rechts nach links).

9.4 Ubungen

Aufgabe 9.1

Eine Schaltfunktion f(a,a;,a¢) nach untenstehender Tabelle soll mit dem gezeigten Multiplexer
realisiert werden. Geben Sie die Beschaltung der Eingénge /; und x; des Multiplexers an.

a) a [ZN) f MUX

0 |0 |0 |O En 9 EN

0 o [t Jo xo—o}Gg

o |1 Jo |1 x1—1 3,
o [1 [1 Jo | oy
1 [0 [0 [1 L]0

T 0 |1 |1 ﬁl_é

1]1 o Jo 12__3

1 [1 |1 It }

120

9 Multiplexer und Code-Umsetzer

Aufgabe 9.2

Es soll ein Verkniipfungsnetz fiir die Funktionen Fy(a,,a,,a3) und F\(a;,a,,a;) mit einem Multi-
plexer bzw. mit einem Code-Umsetzer realisiert werden. Die Funktionen sind durch untenste-

hende Wabhrheitstabelle definiert.

a) Realisieren Sie die Funktionen mit dem Baustein 74153, welcher zwei 4:1 Multiplexer
enthélt. Das Schaltsymbol des 74153 ist unten rechts dargestellt.
b) Verwenden Sie den Code-Umsetzer 74138 (siehe S. 119), um die Funktionen zu realisie-

ren.
a|a|az | Fo | Fy
0[0]0]O0]1
o(foj1)1]0
oO(1]0]1 1
oOof1]1]0]0
r{fojo]t1]1
110 1]J0]0
I1{1jo]1]O0
Irf1]11]11]1
Aufgabe 9.3

74153
Xo — 0 O
w—1 J63
1 C
MUX
Enl—o EN
[0_ 0
L1
[2_ 2
L—/3
En, 9 EN
0
1
2
3

Yo

Konstruieren Sie einen Code-Umsetzer flir die Umwandlung vom Oktal-Code in einen Gray-

Code nach folgender Tabelle:

Eingang | Ausgang Eingang | Ausgang
X2 X1 Xo)21 o X2 X1 Xo Y2 V1o
000 000 100 110
001 001 101 111
010 011 110 101
011 010 111 100

®

Check for
updates

10 Digitale Zahler

Digitale Zahler sind asynchrone oder synchrone Schaltwerke, die in der Regel aus kettenformig
angeordneten Registern bestehen. Der Registerinhalt wird als der Zéhlstand des Zéhlers inter-
pretiert.

10.1 Asynchrone Zihler

Asynchrone Zihler sind asynchrone Schaltwerke. Das Eingangssignal ist die zu zdhlende Im-
pulsfolge. Sie wird direkt auf den Takteingang des ersten Flipflops gelegt. Die Takteingéinge
der folgenden Flipflops sind an die Ausgénge der vorhergehenden Flipflops angeschlossen. Im
Gegensatz dazu werden beim synchronen Zihler, der weiter unten besprochen wird, alle Flip-
flops vom gleichen Eingangssignal angesteuert. Im Folgenden sollen zwei einfache Schaltun-
gen als Beispiel fiir asynchrone Zahler vorgestellt werden.

10.1.1 Mod-8-Binirzihler

Ein mod-8-Binirzdhler kann aus negativ flankengesteuerten JK-Flipflops aufgebaut werden,
wie es in Bild 10-1 gezeigt ist. Die J- und K-Eingénge der JK-Flipflops sind auf 1 gesetzt. Der
Ausgang des ersten Flipflops Oy wird also bei jeder negativen Flanke des Eingangs seinen
Zustand wechseln. Genauso verhilt es sich mit den Ausgéngen der weiteren Flipflops.

(o O 0,
1—1) 1—1) 1—1)

x; ——p>Cl ——>Cl ——>Cl
1—IK >~ 1—IK o~ 1—IK —

Bild 10-1 Mod-8-Binérzédhler aus drei JK-Flipflops.

Daraus resultiert ein Impulsdiagramm, wie es in Bild 10-2 gezeigt wird. Nach dem Zéhlerstand
111 kehrt der Zahler wieder zu 000 zuriick. Man nennt ihn mod-8-Zihler, da er 8 verschiedene
Ziahlerstinde aufweisen kann, die periodisch durchlaufen werden (mod = modulo).

Die Schaltung kann auch als Frequenzteiler verwendet werden. Wie man in Bild 10-2 erkennt,
hat das Ausgangssignal einer jeden Stufe die halbe Frequenz der vorherigen Stufe.

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018
K. Fricke, Digitaltechnik, https://doi.org/10.1007/978-3-658-21066-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-21066-3_10&domain=pdf

10 Digitale Zahler

Q|_||_||_||_||_||_||_||_I=
I [| .
0
| .
an
| .

Bild 10-2 Zeitdiagramm des mod-8-Binérzéhlers aus Bild 10-1.

10.1.2 Mod-6-Zihler

Den asynchronen mod-6-Zihler kann man durch Erweiterung eines mod-8-Zahlers erhalten.
Man benétigt dazu JK-Flipflops mit einem Riicksetzeingang R. Man setzt die Flipflops zuriick,
wenn der Zihlerstand 6 (110) erreicht ist. Die Abfrage wird mit einem UND-Gatter an den
Ausgingen Q) und Q, durchgefiihrt (Bild 10-3). In einem mod-6-Zéhler darf der Zahlerstand
110 nicht auftauchen. Wie das Impulsdiagramm in Bild 10-3 zeigt, ist das aber fiir die Dauer
des Riicksetzvorganges der Fall. Es entsteht also ein kurzer Storimpuls, der fiir manche An-

wendungen nicht tolerierbar ist.

Qo
1—17J 1—17J
x ——>Cl1 L g>Cl
1 —]IK — 1 —]IK
—IR —IR

O, 0>
&
11—
L—o>Cl
1 —1K o—
—R

Bild 10-3 Mod-6-Binérzéhler aus drei JK-Flipflops.

10.1 Asynchrone Zéhler 123

X1 4 1 2 3 4 5 6 1 2
. (1T rtrrr i rirtirrri
| | | | | | | | .
QIA t
[N .
O, 4 t
[\

Bild 10-4 Zeitdiagramm des mod-6-Binérzahlers aus Bild 10-3.

10.1.3 Asynchrone Riickwirtszihler

Soll ein asynchroner Zahler riickwirts zdhlen, so miissen nicht die Ausgénge Q; der Flipflops
an die Eingénge der nichsten Stufe angeschlossen werden, sondern die invertierten Ausgénge
—Q; (Bild 10-5). Dadurch schalten die JK-Flipflops immer an der positiven Flanke und man
erhélt ein Impulsdiagramm wie es in Bild 10-6 gezeigt ist.

Qo O (@)}

1—/1J J 1—/1] J 1—/1] J
x; —>Cl1 ~Cl1 ~Cl1
kb Tk b gk b

Bild 10-5 Mod-8-Abwirtszéhler aus drei JK-Flipflops.

wﬁl_ll_ll_lﬁmi

Qo

I . & 1 [1,
0 :
} [] [1] .

/

Bild 10-6 Zeitdiagramm des mod-8-Abwirtszdhlers aus Bild 10-5.

124 10 Digitale Zéhler

An der fallenden Flanke des Eingangssignals schaltet das erste Flipflop und dessen Ausgang
geht auf H. Die folgenden Flipflops schalten im Idealfall alle gleichzeitig.

10.1.4 Zeitverhalten asynchroner Zihler

Asynchrone Zihler verhalten sich bei Taktperioden 7, nicht mehr ideal, die in der Grof3enord-
nung der Gatterverzogerung ¢,, der Flipflops liegen. Bild 10-7 zeigt die Ausgénge der Flipflops
eines asynchronen Zihlers mit einer Gatterverzogerungszeit, die ungefahr einer halben Taktpe-
riode entspricht. Man erkennt, dass zwischen den richtigen Zahlerstdnden zusétzliche Zahler-
stinde liegen. Bei etwas groBerer Verzogerungszeit der Flipflops wiirde der Zahlerstand 100
nicht mehr auftreten. Damit ist auch eine Abfrage von Zahlerstinden nicht mehr moglich. Die
maximale Taktfrequenz f,,, eines asynchronen Zahlers mit n Stufen, die alle die gleiche Gat-
terverzogerung t,; haben, ist durch die Gleichung (10.1) gegeben. Reale Zihler erreichen die-
sen Wert aber bei weitem nicht.

fmax: 1/(ntpd) (101)

xITI_II_II_II_II_II_I_I_I_I_Li

e e I e e

000 001 010 011 4 101 110 111

100

Bild 10-7 Zeitdiagramm des mod-8-Binérzdhlers aus Bild 10-1 mit endlicher Verzdgerungszeit.

Asynchrone Zahler sind relativ einfach aufgebaut. Durch ihre Probleme bei hoheren Frequen-
zen tritt dieser Vorteil aber in den Hintergrund. Die im Folgenden vorgestellten synchronen
Zdhler vermeiden durch einen Takt die Verschiebung der Schaltvorgénge in den hinteren Stu-
fen.

10.2 Synchrone Zahler

Ein synchroner Zahler ist ein synchrones Schaltwerk. Es unterliegt den in Kapitel 8 formulier-
ten Zeitbedingungen. In Bild 10-8 ist das Prinzip eines synchronen Zahlers mit D-Flipflops
dargestellt. Es konnen aber auch RS- oder JK-Flipflops verwendet werden. In synchronen
Zahlern hat jedes Register einen Takteingang, so dass alle Register fast gleichzeitig schalten.
Die in den Registern gespeicherten Zustinde werden in jeder Taktperiode aus den alten Zu-
stdnden in einem Schaltnetz erzeugt.

10.2 Synchrone Zéhler 125

Schaltnetz
L L \
D,=0,"" . D=0,"" . D=0, ”
O, O Qo
Y 1D / 1D Y 1D
~Cl m ~Cl m ~Cl
) =0 =00

CLK

Bild 10-8 Prinzip eines synchronen Zahlers.

Die Konstruktion eines synchronen Zahlers kann daher mit den im Kapitel 8 dargestellten
Methoden geschehen. Es werden im Folgenden zwei Beispiele vorgestellt.

10.2.1 4-Bit-Dualzihler

Die Aufgabenstellung: Es soll ein 4-Bit-Dualzéhler mit vier JK-Flipflops aufgebaut werden.
Er soll ein Ubertragssignal ¢, liefern, wenn er von 1111 nach 0000 schaltet. Zunéchst stellen
wir die Zustandsfolgetabelle auf (Tabelle 10-1).

Aus der Zustandsfolgetabelle miissen dann die Ansteuergleichungen fiir die 4 JK-Flipflops
entwickelt werden. Wir verwenden dafiir wieder die Tabelle 8-4, in der die Ansteuergleichun-
gen fiir einen Wechsel von einem Zustand zum Folgezustand festgehalten sind. Wir erhalten
vier KV-Diagramme (Bild 10-9), in die wir die Paare der Funktionswerte J:K; eintragen.

Tabelle 10-1 Zustandsfolgetabelle eines 4-Bit-Dualzihlers.

0" 0, 0" 0" [0 0. 0, 00t Tlos™ 0, 0 0 [0y 0 0 o™
0 0 0 010 0 0 1 1 0 0 0 |1 0 0 1
0 0 0 110 0 1 0 1 0 0 1]! 0 1 0
0 0 1 010 0 1 1 1 0 1 0 |1 0 1 1
0 0 1 1160 1 0 0 1 0 1 1 |1 1 0 0
0 1 0 010 1 0 1 1 1 0 0 |1 1 0 1
0 1 0 1160 1 1 0 1 1 0 1]1 1 1 0
0 1 1 010 1 1 1 1 1 1 0]1 1 1 1
0o 1 1 11]1 0 0 0 1 1 1 1]0 0 0 0

126 10 Digitale Zéhler
J. m JoK: m
3K3 Q3 202 Q3
/_/% /_)%
0d | 0d | dO do 0d | do do 0d
0d | 0d | dO do 0d | do do 0d
Q" Q"
0d 1d | dl do 1d | dl dl 1d
le le
0d | 0d | dO do 0d | do do 0d
—_— —_—
sz sz
J K m J m
14 0 ofo 0
f_/% f_)%
0d | 0d | 0d | Od 1d 1d 1d 1d
1d 1d 1d 1d dl dl dl dl
Q0" 00"
dl dl dl dl d1l d1l d1l d1l
o" o"
do do do do 1d 1d 1d 1d
—_— —_—
QZ”Z QZ”Z
Bild 10-9 KV-Diagramme fiir die Ansteuerfunktionen der JK-Flipflops.
Man liest die folgenden Ansteuergleichungen fiir die JK-Flipflops ab:
J():KO: 1 (102)
J1:K1 :Qom (103)
Jz = K2 = Q()lem (104)
J3=K3= 00" 01" 0" (10.5)

Die Gleichungen wurden mit Hilfe der KV-Diagramme abgeleitet, um die Systematik aufzu-
zeigen. Man kann die Gleichungen aber auch direkt anschreiben, wenn man in der Wahrheits-
tabelle erkennt, dass das Flipflop i immer genau dann wechselt, wenn die Ausgénge aller vor-
hergehenden Flipflops 1 sind.

10.2 Synchrone Zéhler

127

Der Ubertrag ist in der Tabelle ¢, nicht angegeben. Er berechnet sich analog zu obiger Uberle-

gung einfach nach der Formel:
2= 00" 01" 0" 05"
Das Schaltbild des gesamten Zéhlers ist in Bild 10-10 dargestellt.
Oo O 0}

(10.6)

0

ox

(@)

1%11) _IE 17 ——lg 1]
o o—

~Cl1 ——>Cl1 ~>Cl1 o>Cl
RST. r r

1K | LIk
CLK

Bild 10-10 Schaltbild des synchronen 4Bit-Dualzéhlers.

10.2.2 Mod-6-Zihler im Gray-Code

Als zweites Beispiel soll die Konstruktion eines mod-6-Zéhlers im Gray-Code dargestellt wer-
den. Er soll 6 Zahlen im Gray-Code durchziihlen und beim Zihlerhdchststand einen Ubertrag
liefern. Wir wollen fiir den Zahler drei D-Flipflops verwenden. Wir beginnen mit der Kon-
struktion der Zustandsfolgetabelle (Tabelle 10-2). Dazu stellen wir einen zyklischen Gray-
Code fiir 6 Zustinde auf. Beim Hochststand 100 wird das Ubertragssignal c; gleich eins.

Tabelle 10-2 Zustandsfolgetabelle des mod-6-Zahlers im Gray-Code.

0," 0" 0" 0" o o] e
0 0 O 0 0 1 0
0 0 1 0 1 1 0
0 1 1 0 1 0 0
0 1 0 1 1 0 0
1 1 0 1 0 0 0
1 0 0 0 0 0 1
I 1 1 d d d 0
1 0 1 d d d 0

128 10 Digitale Zéhler

Aus der Zustandsfolgetabelle konnen die drei KV-Diagramme der drei D-Flipflops entworfen
werden:

Dz= Q2m+1 D1= Q1m+1 D0= Q0m+1
sz sz sz
1 1 1 1
0" d[d o[1 [1]dfd o [1 d[d
Hm_/ [—— —_
Q1 an1 Qlﬂl

Bild 10-11 KV-Diagramme fiir die Ansteuerung der D-Flipflops des mod-6-Zahlers im Gray-Code.

Daraus erhilt man die Ansteuerfunktionen der D-Flipflops:

Dy=0)""' = 0/"-0," (10.7)
D =0""=0,"v 0,"-0," (10.8)
Dy= 00" ==0,"-0," (10.9)

Die don't care-Terme fiir D; wurden immer als 1 interpretiert, wahrend alle anderen don't care-
Terme 0 gesetzt wurden. Daher geht der Zéhler aus den unbenutzten Zéhlerstinden im néchs-
ten Takt zum Zdhlerstand 010. Der Ubertrag c; kann ohne KV-Diagramm angegeben werden:

Ci= —|Q0m—|Q1mQ2m (10 10)
Die fertige Schaltung ist in Bild 10-12 zu sehen. Das Zustandsdiagramm fiir die Schaltung mit

den beiden nicht verwendeten Zustdnden in Bild 10-13 zeigt, dass die Schaltung nach dem
Einschalten auch aus diesen Zustdnden den Zéhlzyklus im folgenden Takt beginnt.

0" 0" 0"
Dy 0" D, 0" D, 0,"
1D > —{ID 1D
_>C1 m —‘>(j1 m _>C1 mn
—0o =0, =0,
O— O—
. {&

CLK

Bild 10-12 Schaltung des mod-6-Zéhlers im Gray-Code.

10.2 Synchrone Zéhler 129

Bild 10-13 Zustandsdiagramm des mod-6-Zéhlers im Gray-Code.

10.2.3 Der synchrone 4-Bit Aufwirts/Abwérts-Binéirzahler 74191

In diesem Abschnitt wird ein synchroner 4-Bit Aufwérts/Abwérts-Binédrzéhler exemplarisch
vorgestellt. Der Baustein ist typisch fiir diese Art von Zahlern. Das Schaltsymbol ist in Bild 10-
14 gezeigt.

74191

CTRDIV16

—~CTEN —| G1
D/—U ——| M2[Down] 2(CT=0)Z6 MAX/MIN
_E M3[UP] 3(CT=15)Z6 nj

CLK_E 1,2-/1,3+
G4 56— —RCO

—L0AD — C5 6,14
1 C
X __lsp [])
N — 2] — 9
2 — [3] —
B [4] — O

Bild 10-14 Schaltsymbol des synchronen 4-Bit Aufwérts/Abwirts-Binérzéhlers 74191.

Die Bezeichnung CTRDIV16 (counter dividing by 16) bedeutet, dass der Zéhler ein mod-16-
Zahler ist. Mit dem Signal —~CTEN (Counter Enable) wird der Zahler aktiviert. Mit D/=U
kann die Zahlrichtung von Aufwirts auf Abwérts umgeschaltet werden.

Es wird mit jeder ansteigenden Flanke des Taktes CLK weitergezédhlt. Am Schaltsymbol sind
die Zeichen 1,2- und 1,3+ angegeben. Das bedeutet, dass der Takt mit dem Anschluss =CTEN
(an dem GI1 steht) UND verkniipft wird. Es gibt eine Betriebsartenumschaltung (Mode-
Abhiéngigkeit M), die mit M2 fiir Abwirtszdhlen und M3 fiir Aufwiértszdhlen an den D/—U-
Eingéngen definiert wird. Auflerdem ist der invertierte Takt mit dem Anschluss —RCO UND-
verkniipft, was durch die Bezeichnung G4 festgelegt wird.

130 10 Digitale Zéhler

Der Ausgang MAX/MIN hat verschiedene Funktionen fiir Aufwértszéhlen (Ziffer 3) und Ab-
wartszahlen (Ziffer 2). Es liegt also wieder eine M-Abhéngigkeit vor. Beim Abwértszihlen
geht der Ausgang MAX/MIN auf 1 wenn der Zdhlerstand 0 ist, was durch CT=0 gekennzeichnet
ist. Entsprechend wird beim Aufwirtszahlen der maximale Zahlerstand CT=15 angezeigt. Der
Ausgang MAX/MIN besitzt aulerdem eine Z-Abhingigkeit (Z6) mit dem Ausgang —RCO.

Der Ausgang —RCO ist also mit dem Ausgang MAX/MIN verbunden, wenn gleichzeitig der
Takt CLK = 0 ist (wegen G4) und der Anschluss =CTEN = 0 ist (wegen G1). Dies wird durch
die Ziffernfolge 6,1,4 am Anschluss —RCO festgelegt, die die Z- und die beiden G-
Abhiéngigkeiten definiert. Der Ausgang —RCO ist daher ein synchroner Ausgang, wéhrend
MAX/MIN asynchron arbeitet.

Der Zahler ist iiber die Eingéinge x3, x,, X1, X parallel ladbar. Dafiir muss der Eingang —~LOAD
auf 0 gesetzt werden. Diese Funktion ist asynchron. Der Zéhler wird durch die parallele Lad-
barkeit programmierbar. Legt man zum Beispiel beim Aufwértszéhlen an die Eingédnge (x3, x5,
X1, Xo) = 1000, so z#hlt der Zihler nur 7 Stufen bis 1111. Dann sendet er das Ubertragssignal
—RCO = 0. Wird dieses mit =LOAD verbunden, so wird der Zidhler mit 1000 geladen und
beginnt den Zyklus von neuem.

Der Zahler kann natiirlich auch als Frequenzteiler durch 16 verwendet werden, denn er liefert
beim kontinuierlichen Zihlen nach jeweils 16 Taktimpulsen einen Ubertrag —RCO.

10.3 Ubungen

Aufgabe 10.1

1. Ist die unten abgebildete Zahlerschaltung ein synchroner oder asynchroner Zahler?
2. Istes ein Auf- oder Abwirtszihler?
3. Welches Teilerverhiltnis weist der Ausgang O, beziiglich des Eingangs x; auf?

o 0,
1—1] 1J —

x; -+——O>Cl1 ~Cl1
1 —IK O— 1K N—

Aufgabe 10.2

Konstruieren Sie einen asynchronen Abwdértszahler, der die Folge 000, 111, 110, 101, 100,
011, 000, usw. durchlauft.

Aufgabe 10.3

Konstruieren Sie einen Dualzdhler mit 3 D-Flipflops , der fiir = 1 die Folge 000, 001, 010,
011, 100, 000 ... aufwérts zahlt. Fiir = 0 soll der Zéhler die gleiche Folge riickwirts zéhlen.

Aufgabe 10.4

Wie muss der Bindrzihlerbaustein 74191 beschaltet werden, damit er als Dezimalteiler ver-
wendet werden kann?

®

Check for
updates

11 Schieberegister

Schieberegister bestehen aus einer Kette von mehreren Registern, in denen der Informations-
transport wie in einer Eimerkette weitergegeben wird. Sie konnen z.B. aus D-Flipflops oder
JK-Flipflops aufgebaut sein. Ein Beispiel mit 4 JK-Flipflops ist in Bild 11-1 gezeigt. Damit die
Information kontrolliert und gleichzeitig {iber die Kette iibertragen wird, werden flankenge-
steuerte Flipflops verwendet.

0 0, Os 04
Ji J» J3 J A i
Eq 1J 1 1] : 1J Ay
~Cl1 ~C1 ~C1 ~C1
LglK O IK O IK O IK O—
K K, K; Ky
CLK

Bild 11-1 Schieberegisterkette aus vier JK-Flipflops.

Das dargestellte Schieberegister hat einen seriellen Eingang E; und einen seriellen Ausgang A;.
Die parallelen Ausgénge heilen O;. Die Funktion dieses nach rechts schiebenden Schieberegis-
ters wird durch die folgenden Gleichungen beschrieben:

0" = E" (11.1)
O"'=0." fir 0<i<4 (11.2)
A" = 04" (11.3)

Schieberegister finden universelle Anwendung in der CPU von Rechnern fiir die Multiplikation
und Division. Sie werden aber auch fiir die Serien-Parallel-Wandlung und die Parallel-Serien-
Wandlung verwendet. Auflerdem dienen sie als Eimerketten-Speicher (first in - first out,
FIFO).

Schieberegister konnen die folgenden Eigenschaften aufweisen:

- Umschaltung zwischen Links- und Rechts-Schieben

- Parallele Eingénge zum gleichzeitigen Laden der Registerkette
- Parallele Ausgénge

- Serielle Ein- und Ausgénge.

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018
K. Fricke, Digitaltechnik, https://doi.org/10.1007/978-3-658-21066-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-21066-3_11&domain=pdf

132 11 Schieberegister

11.1 Zeitverhalten von Schieberegistern

Problematisch kann das Auftreten eines Taktversatzes (clock skew) sein, wenn Register mit
geringem Abstand zwischen Wirk- und Kippintervall verwendet werden, wie das bei ungepuf-
ferten Flipflops der Fall ist. Ein Taktversatz kann dazu flihren, dass die Information bei einem
Taktimpuls iiber mehrere Stufen iibertragen wird oder verloren geht. Das ist darauf zuriickzu-
fiihren, dass der Taktversatz zu einer Uberlappung von Wirk- und Kippintervall fiihrt.

Dieser Fall soll nun an Hand einer Registerkette aus zwei einflankengesteuerten, gepufferten
D-Flipflops gezeigt werden (Bild 11-2). Das zweite D-Flipflop wird mit einem Taktversatz ¢
angesteuert.

,D
Ex Dl 1D Ql 2 1D QZ As’

>Cl1 >Cl1

CLK ty

Bild 11-2 Schieberegister mit vorderflankengesteuerten D-FF.

In Bild 11-3a sind zunédchst die Verhéltnisse ohne Taktversatz gezeigt (¢, = 0). Die Wirk- und
Kippintervalle der beiden Flipflops liegen gleichzeitig. Das Bild zeigt, dass die Information
richtig von einem Flipflop zum néchsten weitergegeben wird.

;

i

]
D, /Wil \ Wil Wil
——— . .

D wo 11/ w2 DN W2

1 b
——

N\ K2 \Kz \Kz
§ L/ NN

Bild 11-3a Zeitdiagramm der Schieberegisterkette aus Bild 11-2 ohne Taktversatz (#,=0).

(05}

In Bild 11-3b ist der Takt des zweiten Flipflops gegeniiber dem ersten um ¢#, verzogert.
Dadurch riickt das Wirkintervall W2 des zweiten Flipflops in das Kippintervall des ersten Flip-
flops K1, so dass es dem Zufall iiberlassen bleibt, was im zweiten Flipflop gespeichert ist.

11.1 Zeitverhalten von Schieberegistern

133

NK]

er_ T

Bild 11-3b Zeitdiagramm der Schieberegisterkette aus Bild 11-2 mit Taktversatz .

Bei einer etwas grofleren Verschiebung #, wiirde der Ausgang Q, des zweiten Flipflops das
gleiche Ausgangssignal liefern wie der Ausgang O, des ersten Flipflops. Dann ,,fallt™ das Bit

ohne Speicherung durch das zweite Flipflop.

Wenn man einen groen Taktversatz tolerieren muss, wéhlt man deshalb oft zweiflankenge-
steuerte Flipflops. Wenn man zweiflankengesteuerte Flipflops verwendet, kann man einen
Taktversatz fast bis zur halben Taktperiode zulassen.

11.1.1 Schieberegister 74194

Das Schieberegister 74194 wird hier als Beispiel in Bild 11-4 fiir ein 4-Bit-Schieberegister
vorgestellt. Es ist ein flankengesteuertes Schieberegister mit mehreren Betriebszustidnden, die
mit den Signalen Sy und S, eingestellt werden konnen (Tabelle 11-1). Die Betriebszustdnde
werden im Schaltsymbol mit der Mode-Abhéngigkeit beschrieben.

Tabelle 11-1 Betriebsarten des Schieberegisters 74194.

Betriebsart So S CLK Eqgw Eqg | ABCD 04 0 Oc Op
Parallel Laden 1 1 T d d |4BCD A B C D
Rechts Schieben | 0 1 T d 1 |dddd 1 Q4 Oz Oc

T d 0 (dddd 0 Q4 O Oc
Links Schieben 1 0 T 1 d|dddd Op Oc Op 1

T d |dddd| 0O QcOp 0
Takt ausblenden (] d d d [dddd 0408 Oc Op

Das Schieberegister ist iiber die Eingédnge A, B, C, D parallel ladbar. Fiir Sy =1 und S; =1 wird

im Schaltsymbol die Ziffer 3 verwendet. Damit wird der Betriebszustand ,,parallel-Laden*

134 11 Schieberegister

74194
SRG4
Sy — 0
s _|pm 3
-R —QR
CLK —F>C4
P | I_
sk —1,4D -
A4 —]34D On
B —34D — Os
C —34D — Oc
D —3,4D o)
D
Eg —24D

Bild 11-4 Schaltsymbol des 4 Bit-bidirektionalen, parallel ladbaren Schieberegisters 74194.

Esp A B C D Eg

I\
—_

sitp

—1D Y —1D — — 1D e 1D Y

>C1 >C1 >C1 >Cl1
(R p| R | LR b (R b
o Os Oc Op

Bild 11-5 Schaltbild des 4 Bit-bidirektionalen, parallel ladbaren Schieberegisters 74194.

11.2 Riickgekoppelte Schieberegister 135

eingestellt. Konsequenterweise sind die Eingiéinge 4, B, C, D mit dieser Ziffer versehen. Uber
die Eingénge Eg (beim Links-Schieben) und Egsz (beim Rechts-Schieben) kann ein Signal
seriell eingespeist werden. Links-Schieben wird im Schaltsymbol durch die Ziffer 2 gekenn-
zeichnet, daher ist auch der Eingang Eg mit einer 2 gekennzeichnet. Als serieller Ausgang
kann Q4 oder QOp verwendet werden, je nachdem, ob Links- oder Rechts-Schieben gewihlt
wurde.

11.2 Riickgekoppelte Schieberegister

Koppelt man die einzelnen Ausgénge einer Schieberegisterkette iiber ein Schaltnetz auf den
Eingang zuriick, so erhélt man ein riickgekoppeltes Schieberegister. Das Prinzip ist in Bild 11-
6 gezeigt. Die Funktion des Schieberegisters kann durch die folgenden Gleichungen beschrie-
ben werden:

0" = 10", 0., 0") (11.4)
Q2m+1 — le (115)
Q3m+1 — sz (116)

Der einzige Freiheitsgrad liegt in der Wahl der Funktion f(Q,", 0,", 0;"). Dadurch sind in
jedem Zustand nur zwei verschiedene Folgezustinde moglich.

Die Wahrheitstabelle des riickgekoppelten Schieberegisters mit 3 Speichern aus Bild 11-6 ist in
Tabelle 11-2 dargestellt. In der linken Spalte ist der Inhalt der D-Flipflops zum Zeitpunkt m
dargestellt. Zum Zeitpunkt m+1 befindet sich im ersten D-Flipflop der durch das Schaltnetz
erzeugte Funktionswert. In die beiden folgenden D-Flipflops 2 und 3 wurden die Werte von
01" und Q," geschoben.

f0,",0,",0,") Schalt- <
<« netz <
<
0, o" 0" oy"
1
1D 1D 1D A
~Cl1 ~C1 ~Cl1
o= o o=
CLK

Bild 11-6 Prinzip eines riickgekoppelten Schieberegisters.

136 11 Schieberegister

Tabelle 11-2 Wahrheitstabelle des riickgekoppelten Schieberegisters aus Bild 11-6.

0" 0" 05" o o ot
0 | 0.00)
T [fo.0.D
0 | f0.1.0)
| fo.Ln
0
1
0
1

f(1,0,0)
f(1,0,1)
f(1,1,0)
f(1,1,1)

—_—l = =] =] O O O O
—_—l o= =] =] O O O ©
—_—l = O O =] =] O ©

0
0
1
1
0
0
1
1

Es soll zum Beispiel folgende Folge der Registerinhalte erzeugt werden:
000, 100, 010, 001, 000 usw.

Am seriellen Ausgang A, kann die Folge 000100010001...entnommen werden. Die Schaltung
kann also als ein Frequenzteiler durch 4 verwendet werden. Alternativ konnen die verschiede-
nen Registerinhalte auch als Ziahlerstinde eines Zéhlers interpretiert werden, der allerdings in
einem speziellen Code zéhlt. Man hétte damit einen mod-4-Zahler entworfen.

Zur Realisierung dieses Schieberegisters stellt man eine Wahrheitstabelle auf, die in Tabelle
11-3 gezeigt ist. In dieser Wahrheitstabelle sind nur die im gewiinschten Zyklus vorkommen-
den Zustiande beriicksichtigt.

Tabelle 11-3 Wahrheitstabelle zur Erzeugung der Folge: 000, 100, 010, 001, 000.

o" "o ot o oM
0O 0 O 1 0 0
1 0 O 0 1 0
0 1 0 0 0 1
0 0 1 0 0 0

Es ldsst sich daraus die Funktion f(Q:", 0,", Q;") auch ohne Verwendung eines KV-
Diagramms ablesen:

le+l _ f(le, zm’ Q3m) —_ ﬁle—lem_lQ;n (1 17)

11.2.1 Moebius-Zihler, Johnson-Zahler

Eine oft verwendete Form des Schieberegisters ist der Moebius- oder Johnson-Zéhler. Bei
diesem Zihler wird der Ausgang invertiert in den Eingang gegeben. In Bild 11-7 ist ein John-
son-Zahler mit 4 D-Flipflops abgebildet. Die Speicherinhalte sind durch die Wahrheitstabelle
11-4 gegeben. Es werden zwei unterschiedliche zyklische Folgen mit jeweils 8 Zustinden
erzeugt.

11.2 Riickgekoppelte Schieberegister 137
O O, Os O
b D, D; Dy
1D 1D 1D 1D o4
>Cl1 ~Cl ~Cl ~Cl1
o— o— o— o
CLK
Bild 11-7 Johnsonzéhler aus vier D-Flipflops.
Das Schaltnetz des Johnson-Zihlers ist durch die folgende Formel gegeben:
DI — f(le’ sz’ 3m, Q4m) — _|Q4m (11.8)

In das erste der 4 D-Flipflops wird immer der invertierte Inhalt des letzten Flipflops geladen.
Es kann nun die Wahrheitstabelle (Tabelle 11-4) des Johnsonzéhlers aufgestellt werden. Man
stellt fest, dass sich zwei unabhéngige Zyklen ergeben, je nachdem mit welchem Anfangszu-
stand der Zihler beim Einschalten startet. Beide Zyklen sind aber gleich lang. Will man einen
bestimmten Zyklus erzwingen, so muss man den Anfangszustand vorgeben.

Tabelle 11-4 Wahrheitstabelle des Johnson-Zahlers aus Bild 11-7.

0" 0," 0" 0" | 0" @ O o ([0 0. 0 04 [0 0 0 o
O 0 0 O 1 0 0 0 0 0 1 0 1 0 0 1
1 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0
1 1 0 0 1 1 1 0 0O 1 0 0 1 0 1 0
1 1 1 0 1 1 1 1 1 0 1 0 1 1 0 1
1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 0
0 1 1 1 0 0 1 1 0 1 1 0 1 0 1 1
0 0 1 1 0 0 0 1 1 0 1 1 0 1 0 1
0O 0 0 1 0 0 0 0 O 1 0 1 0 0 1 0

Das Verhalten des Ringzéhlers kann auch in einem Zustandsdiagramm (Bild 11-8) dargestellt

werden.

138 11 Schieberegister

Bild 11-8 Zustandsdiagramm des Johnson-Zahlers aus Bild 11-7. In den Kreisen steht O," O,™ 05" O,

11.2.2 Pseudo-Zufallsfolgen

Mit Schieberegistern konnen am seriellen Ausgang bindre Zahlenfolgen erzeugt werden, die
eine Verteilung von Nullen und Einsen haben, die fast gleich einer zufdlligen biniren Zahlen-
folge ist. Man nennt diese Zahlenfolgen pseudo-zufillig. Pseudo-zufillige Zahlenfolgen haben
eine Periode und sind daher deterministisch.

Man erzeugt Pseudo-Zufallsfolgen, indem man einige Ausgénge der Schieberegisterkette iiber
ein Antivalenz-Gatter zuriickkoppelt. Im Bild 11-9 ist ein Beispiel flir n = 7 gezeigt.

A

A A

0" 0" 05" o4 05" 06" o
1D 1D 1D 1D 1D 1D 1D A;

~Cl1 ~Cl1 ~Cl1 ~Cl1 ~Cl1 ~Cl1 ~Cl1
}F D—J7 O_Ji :)—J7 D-J7 }’7 -

CLK 17

Bild 11-9 Schieberegister zur Erzeugung einer Pseudo-Zufallsfolge n = 7.

Abhingig von der Position der Riickkopplungsleitungen ergeben sich unterschiedlich lange
Folgen am seriellen Ausgang A,. Besonders interessant sind die Riickkopplungen, bei denen
sich eine maximal lange Periode der Folge ergibt. Diese maximal langen Folgen heilen M-
Sequenzen, nur sie haben pseudo-zufillige Eigenschaften. Die Periode P einer maximal langen
Zufallsfolge, die aus einem n-Bit langen Schieberegister gewonnen werden kann, ist:

P=2"-1 (11.9)

11.2 Riickgekoppelte Schieberegister 139

Bei der Erzeugung von Pseudo-Zufallsfolgen enthilt die Schieberegisterkette alle moglichen
Bindrzahlen mit Ausnahme der 0. Der Zustand 0 ist stabil. Er darf daher auch nicht als An-
fangszustand auftreten. Daher haben die Pseudo-Zufallsfolgen die Eigenschaft, dass in der
Periode eine 1 mehr auftritt als Nullen. Nullen und Einsen sind nicht gleichverteilt. Auch das
ist eine Abweichung von einer idealen Zufallsfolge. Trotzdem eignen sie sich zum Testen von
Nachrichtenkanélen.

Die Riickkopplungen fiir eine maximal lange Periode sind in Tabelle 11-5 bis n = 8 zusam-
mengefasst. Sind mehr als zwei Riickkopplungen mit x markiert, so wird als Verkniipfung die
Verallgemeinerung der Exklusiv-Oder-Funktion verwendet: ihr Ausgang ist 1, wenn eine unge-
rade Anzahl der Eingénge auf 1 liegt. Die maximal lange Pseudozufallsfolge enthélt alle Binér-
zahlen der Linge n mit Ausnahme der Zahl 0. Die Zahl 0 darf nicht auftauchen, da sie bei
beliebiger Wahl der Lage der Riickkopplungen wieder in den gleichen Zustand fiihrt.

Tabelle 11-5 Riickkopplungen fiir Pseudo-Zufallsfolgen (- keine Riickkopplung, x Riickkopplung.)

Riickkopplungen

n [1]2]|3(4]|5|6]7]8 Periode
2 |x|x 3
31-]x|x 7

4 1-1-x|x 15
S1-1-1x|-1]x 31

6 |-|-]-|-[x]|x 63
T1-1-1-[x|-]-]x 127

8 -1-|-[x|x|x|-][x 255

Fiir n = 3 ist in Bild 11-10 ein Beispiel fiir die Erzeugung einer Pseudo-Zufallsfolge angege-
ben. Die erzeugte Folge kann aus der Zustandsfolgetabelle ermittelt werden.

< =1 <
0" 05"
ID D 1D Ay
~Cl| —4=C1| —>CI

J’ o-J’ b- ’7 b-
CLK - >
Bild 11-10 Schieberegister zur Erzeugung einer maximal langen Pseudo-Zufallsfolge n = 3.

Am seriellen Ausgang A, des Schieberegisters aus Bild 11-10 bekommt man die Folge:
1110010. Es wurde vorausgesetzt, dass der Anfangsinhalt des Schieberegisters 111 war.

140 11 Schieberegister

11.3 Ubungen

Aufgabe 11.1

Konstruieren Sie eine Schieberegisterkette aus D-Flipflops, die die Folge 010011 periodisch
am sericllen Ausgang liefert. Wie viele D-Flipflops benétigen Sie?

Aufgabe 11.2

Mit einer Schieberegisterkette aus 3 JK-Flipflops soll eine mdglichst lange Folge von Zustén-
den erzeugt werden. Die Schaltung, die dafiir verwendet werden soll, ist im Bild angegeben.

<
<«

SN1 <
< <0, 0 03

Ji Jr J3
1 1J 1 As
~Cl1 ~Cl1 ~Cl1
1K O IK O 1K o———

K, K, K;

CLK

1. Geben sie eine moglichst lange Folge von Zustinden an, die mit diesem Schieberegister
erzeugt werden kann. In der Folge sollen die Zusténde 3,1,0,4,2 in dieser Reihenfolge ent-
halten sein (jeweils im Dezimaldquivalent mit Q; als MSB angegeben).

2. Stellen Sie die Zustandsfolgetabelle fiir die maximal lange Folge auf.

3. Geben Sie das Schaltnetz SN1 fiir die Erzeugung dieser Zustands-Folge an.

Aufgabe 11.3

Geben Sie die Pseudo-Zufallsfolge an, die aus einem Schieberegister mit 4 Flipflops entsteht.
Die Riickkopplungen sollen so gelegt sein, dass die Folge maximal lang wird.

Aufgabe 11.4

Das unten gezeigte, riickgekoppelte Schieberegister mit einem JK-Flipflop und zwei D-
Flipflops soll analysiert werden.

1. Stellen Sie die Ansteuerfunktion £, = f(Q,",0,",05;™) fiir das erste Flipflop auf.

2. Geben Sie die daraus folgende Zustandsfolgetabelle an.

3. Zeichnen sie das Zustandsdiagramm.

L
<+ 21 &
g >1 <
—e
A
Z 1] Qs 95 Qs 4,
) ~Cl ~C1 ~C1
—1K &—l__ &—{__ o—
CLK .

®

Check for
updates

12 Arithmetische Bausteine

12.1 Volladdierer

Im Kapitel 3 wurde bereits die Addition zweier Binirzahlen unter Beriicksichtigung des Uber-
trags definiert. Ein Schaltnetz, das diese Addition fiir eine Stelle durchfiihrt, heiflt Volladdierer.
Der Ubertrag von der vorherigen Stelle und die beiden Summanden werden addiert und die
Summe und ein Ubertrag zur nichsten Stelle werden ausgegeben. Der Volladdierer beinhaltet
die Schaltfunktionen fiir den Summenausgang F; und den Ubertrag (carry) zur nichsten Stufe
Cit+1:

Fi STCTX VY OTCGXTY: VYV CGTX T VO CiXi Y T xiH%yiH% C; (121)

Civ1=X;)i V C (x,-V yl) (122)
Ein Volladdierer bendtigt fiir die Ausfithrung der Addition 3 Gatterlaufzeiten ¢, wobei die

Inverter hier mit einer Gatterlaufzeit veranschlagt werden. ¢y = 3t,.Der Ubertrag tp ist schon
nach zwei Gatterlaufzeiten berechnet: ;= 2¢,.

2
G— I CO [— G
X; —
yi— Q X —F

Bild 12-1 Schaltsymbol des Volladdierers nach den Gleichungen 12.1 und 12.2.

12.2 Serienaddierer

Sollen Dualzahlen mit z.B. 4 Stellen addiert werden, so kann man mit zwei Schieberegistern
(Bild 12-2) die Summanden x und y an einen Volladdierer heranfiihren. Der Ubertrag wird in
einem Speicher zwischengespeichert. Das Ergebnis steht hinterher im Schieberegister von x.
Bei jedem Taktimpuls C wird eine Addition durchgefiihrt.

Die fiir die Addition zweier m-stelliger Dualzahlen benétigte Zeit betrdgt m mal die Zeit, die
eine Addition mit dem Volladdierer benétigt. tx=m 3 t,.

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018
K. Fricke, Digitaltechnik, https://doi.org/10.1007/978-3-658-21066-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-21066-3_12&domain=pdf

142 12 Arithmetische Bausteine

Fiy |.“|F0 |xm_1|...|x,~|_|i' o z . F;

Vi p
. _‘ Ci Citl
>_>l ym-1|...|y1 l CI CO =1D Q
T f > Cl
Schieberegister Zwischenspeicher

Bild 12-2 Serienaddierer fiir m Stellen. Es wird gerade der i-te Schritt durchgefiihrt.

12.3 Ripple-Carry-Addierer

Auch aus m Volladdierern kann ein Addierwerk fiir zwei m-stellige Dualzahlen aufgebaut
werden, indem der Ubertragsausgang an den Ubertragseingang des folgenden Volladdierers
angeschlossen wird. (Bild 12-3).

Co Xo Mo C1 X1 N C X2 W2 C3 X3)3
R 2 Y v ¥ Y v oy v v ¥
Cl P Q Cl P Q CI P Q Cl P Q
2z 2 2z >
> CO > CO > CO > CcO
v [v L | v I v
FO Ci Fl Cy F2 C3 F3 Cyq

Bild 12-3 Ripple-Carry-Addierer fiir 4 Bit.

Wie grof3 ist nun die Ausfithrungszeit fiir eine Addition von zwei m-stelligen Bindr-Zahlen?
Der Ubertrag ¢, bendtigt nur 2 Gatterlaufzeiten, da fiir die Berechnung des Ubertrags kein
Inverter bendtigt wird. Die Gesamtverzogerungszeit betrigt also fiir den Ubertrag c,,:

to="2 mt, (12.3)

Das letzte Summenbit, welches feststeht, ist das MSB (hochstwertige Bit) der Summe F,;.
Man stellt fest, dass man m-1 mal die Zeit fiir die Berechnung des Ubertrags plus die Zeit fiir
die Berechnung der hochstwertigen Stelle F,,.; benétigt. Das MSB der Summe F,; ist giiltig
nach der Verzogerungszeit:

ts=Q2(m—1)+3)1,=2m+1) 1, (12.4)

12.4 Carry-Look-Ahead Addierer 143

Das ist eine sehr lange Ausfithrungszeit. Wiirde man eine Realisierung mit einem 2-stufigen
Schaltwerk (mit Invertern) wihlen, so erhielte man die optimale Ausfiihrungszeit 3¢,. Man
beachte aber, dass die Wahrheitstabelle fiir die Addition von 2 8-stelligen Dualzahlen eine
Linge von 2'7=131072 Zeilen hat (8Bit + 8Bit + 1Bit(cy) = 17). Die Realisierung eines solchen
Schaltnetzes wiirde einen enormen Schaltungsaufwand bedeuten.

12.4 Carry-Look-Ahead Addierer

Einen Kompromiss beziiglich des schaltungstechnischen Aufwands und der Verzdgerungszeit
stellt der Carry-Look-Ahead-Addierer (CLA-Addierer) dar. Er besteht aus einem Schaltnetz
aus Volladdierern, die wie ein Ripple-Carry-Addierer geschaltet sind. Der Ubertrag fiir die
einzelnen Volladdierer wird allerdings durch ein zusétzliches Schaltnetz berechnet. Durch
mehrfache Anwendung der Gleichung 12.2 erhilt man fiir die einzelnen Ubertriige:

Cc1 =X vV co(xo Vv =gyVvce 12.5
1 _0'19 0(xo v ¥0) = go V copo (12.5)
8o Do
Cr=X1)1VCl (xl \/yl) =gi1vepr =gV 1V Copobi (126)
—
&1 D1
C3=X2)2V C (X2 VY2) =2V Copr = g2 V 1D2V P 1P2Y CoPoP 1Pz (12.7)
=
&2 D2
C4= X313V €3 (X3V 3) = g3V e3P = g3V ©P3 Y gIDaD3Y EaD1DaP3Y CoPoP1PaDs (12.8)
83 P3 G P
Man hat dabei gesetzt :
8i=Xi)i (12.9)
und:
Pi=x% vy (12.10)

g: =1 bedeutet, dass in jedem Term c;,; ein Ubertrag generiert wird. In diesem Fall sind beide
Eingangsvariablen der jeweiligen Volladdiererstufe gleich 1 (vgl. Gleichung 12.9). Man nennt
deshalb g, auch ,,carry generate®.

Dagegen bewirkt p; nur einen Ubertrag, wenn auch ¢; = 1 ist. p; ist 1, wenn nur eine der beiden
Eingangsvariablen gleich 1 ist (Gl. 12.10). p; heif3it auch ,,carry propagate®.

In Bild 12-4 ist eine Schaltung fiir einen Carry-Look-Ahead-Addierer gezeigt. Man erkennt,
dass zunichst die Funktionen g; und p; gebildet werden. Daraus erhélt man mit den invertierten
Gleichungen 12.5 bis 12.7 die Grofien —c bis —cs.

Da man die Funktionen g, und p, schon gebildet hat, benutzt man sie auch, um die Summen F;
zu berechnen. Es gilt ndmlich, wie man leicht nachpriifen kann:

X Py, =g <o p; (12.11)
daher ist nach Gleichung 12.1:
Fi:xiél-)yiéi-)ci:giél-)piéﬁc,- (1212)

144 12 Arithmetische Bausteine

P3
V3 [>1]
&3
—F3
D2
»2 [>1]
&2
X2 E
. — i —F
1 >1
g1
—F
Po
Yo [>1]
8o
X0 E
Co

Bild 12-4 Addierer mit Schaltnetz zur Erzeugung der Ubertrige —c; nach dem Carry-Look-Ahead-
Prinzip.

12.4 Carry-Look-Ahead Addierer 145

In der Schaltung wird die invertierte Ausgangsfunktion —F; verwendet, die man durch Invertie-
ren von ¢; erhilt.
—F; = x; B y; b ¢ (12.13)

In Bild 12-4 werden daher noch zwei Exklusiv-Oder-Gatter verwendet, um die Ausgangsfunk-
tionen zu bilden. Auflerdem werden in dem Baustein noch die Funktionen —P und —G er-
zeugt, aus denen dann der Ubertrag ¢, entsprechend der Gleichung 12.8 gewonnen werden
kann.

Man entnimmt dem Bild, dass fiir die Bildung der Summen F; vier Gatter durchlaufen werden:

=41, (12.14)
Die Gesamtverzdgerungszeit zur Berechnung von —P und —G betrégt:
tp=1t;=31, (12.15)
z
€% — CI (0..15)CPpp— —P
'\
X0 —
x° (0...15)CGP— —G
1— >-P
Xy —
—F
X3 o— "¢
<
Yo— o—
z
Yi— >Q O— ﬁFz
Yi—

Bild 12-5 Schaltsymbol des Addierers aus Bild 12-4.

Der Hardwareaufwand fiir die Berechnung der Ubertriige bei der Addition von zwei m-stelligen
Zahlen kann an Hand der Gleichungen 12.5-12.8 (sowie fiir m grofer als 4) ermittelt werden.
Man erhélt fiir die Anzahl der Gatter Ng:

Ng = Z (i+3) =t m +7)m (12.16)

und fiir die maximale Anzahl der Gatter-Eingénge Nj:
Ng=m (12.17)

12.4.1 Kaskadierung von Carry-Look-Ahead-Addierern

Da die Zahl der bendtigten Eingéinge pro Gatter und die Anzahl der Gatter bei grofleren Wort-
langen m stark ansteigt, wie man den Gleichungen 12.16 und 12.17 entnimmt, baut man bei
grofieren Bitldngen zunédchst Blocke aus 4-Bit-Carry-Look-Ahead-Addierern auf. Das Verfah-
ren soll zundchst an Hand eines Addierers fiir 16Bit-Dualzahlen gezeigt werden, welcher aus 4
Stiick der oben beschriebenen 4-Bit CLA-Addierer aufgebaut ist.

146 12 Arithmetische Bausteine

Die Hilfssignale —P; und —G; und ¢, des 4-Bit-Addierers i (i = 1...4) werden entsprechend den
untenstehenden Gleichungen einem CLA-Generator zugeleitet. Die verwendeten Gleichungen
entsprechen den Gleichungen 12.5-12.8. Daraus werden die Ubertréige ¢4, cg und ¢y, fiir die
einzelnen Blocke erzeugt. Dieser Baustein hat die Bezeichnung 74182.

¢y =Gy Vv coPy=—(—Gy Py v ~cyGy) (12.18)
cg =GV 4P =Gy Vv GoPy Vv coPoPr= (G P, v GG Py v —cg—GoGY)

(12.19)
cn=Gy Vv cgPr=Gy v GiPy v GoP Py Vv coPoP 1Py =

=(=GyPy v G —Gy P v —GyG Gy Py v ¢y GG Gy)

(12.20)

cie=GiVepP;= lG3 v GoP3; vGPyPs v G0P1P2P3lv COF0P1P2P3'=
G P

(12.21)
“P==-Pyv —P,v—P,v—P; (12.22)
=G =~G37P; v ~G,G3P, v =G Gy G3 Py v ~ Gy GGy Gy (12.23)

c16 wird in der Schaltung des 74182 nicht erzeugt, sondern stattdessen die Signale -G (Block
Generate) und —P (Block Propagate), aus denen dann mit zwei Gattern (nach der Gleichung
12.21) ¢y gebildet werden kann.

In Bild 12-6 ist die komplette Schaltung des Carry-Look-Ahead-Generators gezeigt, wie sie im
Baustein 74182 enthalten ist. Die Eingidnge P; und G; und die Ausgénge P und G sind inver-
tiert, um die Kompatibilitdt mit dem Addierer in Bild 12-4 zu erhalten.

Das Schaltsymbol fiir den Baustein 74182 findet man im Bild 12-7. Die Schaltung fiir einen
Carry-Look-Ahead-Generator fiir 16 Bit kann aus 4-mal der ALU aus Bild 12-4 und einem
74182 zusammengesetzt werden. Die Schaltung ist in Bild 12-8 gezeigt.

12.4 Carry-Look-Ahead Addierer

147

_|P3
—G;

—1132
—1(;2

—P,
—1(;1

—1(;0

Cn

Bild 12-6 Carry-Look-Ahead-Generator 74182.

[1p—

Cn+12

Cn+8

Cn+a

Cn —

—P,—9
-Gy~
—P, —Q
—-G,—9
—P, —Q
=G, —(
—P; —Q
-G;—(

CI

CPO
CGO
CP1
CG1
CP2
CG2
CP3
CG2

CPG
CP

CG

CO0
COl1
CcO2

O— —P
D__|G

Cn+d

Cn+8

| Cn+12

Bild 12-7 Schaltsymbol des Carry-Look-Ahead-Generators 74182.

148 12 Arithmetische Bausteine

i)2 —P
Co CI (0...15) :)G—
Xo — :)_|—
X, — 0...15)
Xy —
X3 o— —Fo
Yo] 5 o— —F)
Y1] Q o— —F
Y2 — D— —|F3
Y3]
)2 P
€4 — CI (0..15) p——m
-G
X4
X5 — (0.15) P————
X6 —
X, o— —F}4
Ya] 5 o— —f's
] CPG
ii— Q D_:FFG o“ cpp——2 &
vy —] P —qcro G > [
—9cGo CGP”
qcP1 c
Cs)2 —-P cal €oo c4
CI (0...15) oG—l—ngzz Col1 c8
] —/ 12
S O E) T Ao o
P —d
X10— CG3
Xp | o— _ig
Y8] o— T
Yo 71 %Q z o— —Fo
Y10 b— —F;
Y]
I
—P
‘24 1 (0..15) p——mo
-G
X12 n————
Xis (0...15)
X14
X157 o— —F1p
Yi2] o— —F'13
13 Q O— —U'14
Y1a T o— —Fs
Yis

Bild 12-8 CLA-Addierer fiir 16 Bit aus vier 4-Bit-CLA-Addierern und einem CLA-Generator.

12.5 Arithmetisch-logische-Recheneinheiten (ALU) 149

12.4.2 Vergleich der Addierer

Die 3 Addierer werden in der folgenden Tabelle beziiglich ihrer Laufzeit verglichen. Man
erkennt, dass der grofere Hardware-Aufwand des CLA-Addierers in einer weit geringeren
Ausfiihrungszeit resultiert.

Tabelle12-1 Ausfithrungszeit der verschiedenen Addierer.

Anzahl Gatterlaufzeiten / ¢,
4Bit 16Bit 64Bit
Serienaddierer 12 48 192
Ripple-Carry-Addierer 9 33 129
CLA-Addierer 4 8 12

12.5 Arithmetisch-logische-Recheneinheiten (ALU)

Arithmetisch-logische Einheiten (engl.: arithmetic logic unit = ALU) sollen neben der Additi-
on und der Subtraktion auch bitweise logische Verkniipfungen durchfiihren kdnnen. Diese
Bausteine enthalten in der Regel einen Addierer fiir 2 Summanden. AuBlerdem sind sie durch
eine spezielle Schaltung in der Lage, logische Operationen von 2 Operanden durchzufiihren,
wie zum Beispiel die bitweise UND-Verkniipfung zwischen den Operanden.

Als Beispiel wird hier die 4-Bit-ALU 74181 dargestellt. Sie fiihrt, abhdngig von einem 4-Bit-
Steuerwort S, verschiedene Operationen durch. Mit dem Eingang M kann von logischen zu
arithmetischen Operationen umgeschaltet werden.

Die Schaltung der ALU 74181 kann als eine Erweiterung der Addiererschaltung in Bild 12-4
gesehen werden. Fiir die Ausfiihrung der verschiedenen Operationen werden anstelle der Sig-
nale p; und g; die Signale p;' und g/ nach den folgenden Formeln gebildet:

&= v s Vv s1yi) (12.24)

pi =057y VoSN W) (12.25)
Fiir das Steuerwort S = (1,0,0,1) ist p;' = p; und g/=g;. Die Schaltung ist in Bild 12-9 gezeigt.
Sie wird fiir die Erzeugung der Eingangssignale anstelle der p; und g; wie in Bild 12.4 verwen-
det.

Die Schaltung der ALU 74181 ist in Bild 12-10 gezeigt. Man sieht, dass die Addition durch die
EXOR-Verkniipfung nach Gleichung 12.13 realisiert werden kann. Man erhilt mit der Abkiir-
zung t;:

=g <Pp'=7(s3 77X Ty VS TNV vV OTSIX Y VTSN) (12.26)

150 12 Arithmetische Bausteine

[& | '
— >1p A
g . pi
Vi _ LI
? >1 gi'
i
So
S
§2
83

Bild 12-9 Schaltnetz fiir die Erzeugung von 16 verschiedenen Funktionen.

Fiir andere Steuerworter S konnen andere Funktionen gebildet werden, wie unten gezeigt wer-
den wird.

Wie werden nun die Ubertriige ¢; verarbeitet? Zunichst stellt man fest, dass die Ubertrige —c;
nur bei den arithmetischen Verkniipfungen benétigt werden. Man fiihrt daher einen Eingang M
ein, der fiir die arithmetischen Operationen 0 gesetzt werden muss. Fiir eine Carry-Look-
Ahead-Logik aus den Gleichungen 12.5-12.7 erhdlt man durch die Beriicksichtigung von M die
folgenden Gleichungen fiir u, bis u3. Die u; ersetzen fiir M=0 die Ubertrige c;:

ug = ~(—Mco) (12.27)
up =~("Mgo' v —Mpq'co) (12.28)
uy = ~(—Mg,' v ~Mgy' pi' v ~Mpy' pi'co) (12.29)
us =~(~Mgy' v ~Mg\' p2' v =Mgo' pi' p2' v =Mpy' pi' p2'co) (12.30)

Fiir M=0 (arithmetische Funktionen) sind diese Gleichungen identisch zu den invertierten Glei-
chungen 12.5-12.7. Fiir M=1 sind alle u; = 1.

Mit den —c¢; werden, wie dem Bild 12.4 zu entnehmen ist, durch eine EXOR-Verkniipfung die
Ausgangsfunktionen gebildet:

Der Ubertrag und die Block-Generate- und Block-Propagate-Signale G und P werden nach der
Gleichung 12.8 gebildet:

~G=7(g' v g'ps' v &i'paps'v gpi'paps) (12.32)
—P =~(popi'p2'ps") (12.33)
ca =GV popi'paps'co (12.34)

12.5 Arithmetisch-logische-Recheneinheiten (ALU)

151

—y3]

_Lx3

)2]

-

—Y1]

—|)C1

-0 ~]

—X0
80
81
82
83

M

[k

Co

Bild 12-10 Arithmetisch logischer Baustein (ALU) 74181.

—F)

=Y

—F

L F,

152 12 Arithmetische Bausteine

74181
ALU
So —10
PI— (0...15)CP —P
5, —1 WO (0.15¢G__ -G
53— 31 eP=Q)C|— X=Y
M — (0...15)CO Cnia
Cy —C]
1 C
-y —Jp | — —F%
0 —do [1]
—x —dp 5 o—
1 —gQ [2]
2 —Q
—X3 _CP O_ _‘F3
(8]
- —Q
Bild 12-11 Schaltsymbol der ALU 74181.
12.5.1 Beispiele fiir Operationen
Addition
Das Steuerwort fiir die Addition lautet: = (1001). Damit erhélt man:
g =" vy =xyi=g (12.35)
pi=—(X7y) =XV yi= pi (12.36)
ti =& (_sz (12.37)
Da M=0 ist, gilt:
Uy = "Co (12.38)
ur =7(go v poco) (12.39)
uy =(g1 Vv g1 V Popico) (12.40)
us = (g2 vV g1P2 vV gP1P2V Pop1P2Co) (12.41)
Dabher gilt u;= —c; und die Summe wird, wie die Schaltung es vorgibt, durch:
TF S < 1 =70 < X <y = (e X<) (12.42)

berechnet.

12.5 Arithmetisch-logische-Recheneinheiten (ALU) 153

Disjunktion
Das Steuerwort ist $=(1,0,1,1) und M=1.
Damit wird nach Gleichung 12.26:
i == 7y) =XV (12.43)

Da M=1 ist, werden die u;=1 und am Ausgang erscheint nach Gleichung 12.31 die Disjunktion
von x;und y;:
—F =u Bt == (v) (12.44)

Es lassen sich insgesamt 32 verschiedene Funktionen bilden, von denen einige nur von gerin-
ger Bedeutung sind. In Tabelle 12-2 sind die mit der ALU 74181 moglichen Funktionen zu-
sammengefasst.

Wenn groBere Wortbreiten benétigt werden, konnen mit dem Carry-Look-Ahead-Generator
74182 jeweils 4 Bausteine 74181 zusammengeschaltet werden. Eine weitere Kaskadierung ist

moglich. Die ALU 74181 kann als Komparator oder Vergleicher verwendet werden.

Tabelle 12-2 Funktionen der ALU 74181.

Auswahleingénge Ausginge F;
M=1 M=0

s3 | s2 | s1 | So | logische Funktionen arithmetische Funktionen

co=0 co=1
0 0 0 0 X x—1 X
0 0 0 1 —(xy) (xy)—1 Xy
oo [T [0 vy)1 xy
0 0 1 1 1 -1 0
o100 ~(xvy)) X+ v)+l
O 101 v xy+(xvy) xy v+l
0 1 1 0 “(x <P y) x—y—1 xX=y
0 1 1 1 XV Ty xv-y xvy+1
| 0 0 0 Xy xt+t(xvy) x+(xvy+1
1 0 0 1 X<y x+y x+y+1
Lot jo y @ M+H@Evy) | vyl
1 0 1 1 xvy xXVy xvy+1
1 1 0 0 0 x+x x+x+1
1 1 0 1 Xy xXy+x xy+x+1
1 1 1 0 Xy xXTy+x xy+x+l
1 1 1 1 X X x+1

154 12 Arithmetische Bausteine

12.6 Komparatoren

Komparatoren vergleichen zwei in der Regel gleichlange Worter, indem sie anzeigen welche
Zahl groBer ist. Komparatoren werden z.B. in Rechnern eingesetzt, um Sprungbedingungen
abzupriifen.

Die Realisierung von Komparatoren erfordert in der Regel einen hohen schaltungstechnischen
Aufwand, der dhnlich wie bei Addierern iiberproportional mit der Stellenzahl steigt, wenn die
Laufzeit vorgegeben ist. Man verwendet daher bei grofleren Wortbreiten kaskadierbare Kom-
paratoren.

12.6.1 2-Bit-Komparator

Als ein Beispiel soll ein Komparator fiir zwei 2-Bit-Dualzahlen x und y entwickelt werden, der
auf Gleichheit (x = y) testet und je einen Ausgang fiir x >y und x <y haben soll. Dazu stellt
man zunéchst die Wahrheitstabelle (Tabelle 12-3) auf.

Tabelle 12-3 Wahrheitstabelle fiir einen 2-Bit-Komparator.

Yi|Yo | X1 [Xo [x=y |x<y x>y Yi|yo [X1 [Xo |x=y [x<y|x>y
01]0]0fO0 1 0 0 1{ojofo0o] O 1 0
0]0]0(1 0 0 1 110[(0]1 0 1 0
0j0|1[0] O 0 1 110]1(0 1 0 0
010]1]1 0 0 1 1(0]1]1 0 0 1
01]1{0[0] O 1 0 I1f1]0f[0] O 1 0
011]0]1 1 0 0 111]0f1 0 1 0
0|1(1(0] O 0 1 If1]1{0] O 1 0
Oj1]1f1 0 0 1 111]1]1 1 0 0

Durch Minimieren findet man:
Ay =X17V1V XTVITVo YV XoX1 Vo (12.45)
Ay = 7X1)1 V XXV VXYV (12.46)

Der Ausgang A,-, kann aus der Tatsache abgeleitet werden, dass er genau dann gleich 1 ist,
wenn die beiden anderen Eingédnge gleich 0 sind:

Apey = Ay ~Ayey (12.47)

Durch diese MaBnahme erhoht sich die Laufzeit fiir diesen Eingang um die Laufzeit eines
Gatters.

12.6 Komparatoren 155

12.6.2 Kaskadierbare Komparatoren

In Bild 12-12 ist das Schaltsymbol des 4-Bit-Komparators 7485 gezeigt, der Ausginge fiir
Gleichheit (x = y) und fir x >y und x <y hat. Zusétzlich hat der Baustein 3 Eingénge, an
denen Ubertrdge von einem gleichartigen Baustein iibertragen werden, dessen Wertigkeit nied-
riger ist.

Mit 3 dieser Bausteine kann ein 12-Bit-Komparator aufgebaut werden, wie es in Bild 12-13
dargestellt ist. Am niederwertigsten Baustein ist der Ubertragseingang fiir Gleichheit mit 1
beschaltet, wiahrend die Eingénge fiir ,,groBer” und ,kleiner” mit 0 beschaltet sind. Die beiden
hoéherwertigen Bausteine erhalten an den Eingidngen die Ausgangssignale des vorhergehenden
Bausteins. Man beachte, dass der Ubertrag ,,rippelt*. Daher wiichst die Ausfiihrungszeit linear
mit der Anzahl der Bausteine.

xo—4 0 COMP
X1 —
X2 — P
X3 —3
<y < P<Ql—
x=y = P=Q—
x>y —|f> P>Q—
Yo—0
Y1 —
Y2 — Q
y3—3
Bild 12-12 Schaltsymbol des 4-Bit-Komparators 7485.
X0 —1 0 COMP x4 —10 COMP xs —0 COMP
X1 — X5 — Xo — |
X2 | P X6 — P X10 — p
X3 _13 X7 {3 X1 —43
"< P<Q < P<Q < P<Q
l—= P=Q = P=Q = P=Q
0—> P>Q > P>Q > P>Q
Yo__10 Ya__10 Y8 __10
Y1 __| Vs __| Yo __|
Y2] Q Yo | Q Yio ___| Q
Y3i_ 13 Yi_ 13 yu _ |3

Bild 12-13 Schaltung eines 12-Bit-Komparators mit 3 Bausteinen 7485.

156 12 Arithmetische Bausteine

12.7 Ubungen

Aufgabe 12.1

Wie kann ein 74181 als Komparator fiir zwei 4Bit-Worter verwendet werden?

Aufgabe 12.2

Leiten Sie die Funktion des 74181 fiir das Steuerwort M = 1 und S = 0110 aus den im Text
hergeleiteten Gleichungen her.

Aufgabe 12.3

Eine Alternative zum Carry-Look-Ahead-Addierer ist der Carry-Select-Addierer. Im Bild ist
eine Version fiir 16Bit gezeigt. Die 5 im Schaltbild enthaltenen Addierer sind Ripple-Carry-
Addierer mit 4, 5 und 7 Bit Breite in der 1. 2. und 3. Stufe.

a) Erklédren Sie die Funktion der Schaltung.

b) Geben Sie die Laufzeit der Ausgangssignale als Vielfaches einer Gatterlaufzeit ¢, an.
(Laufzeit der Multiplexer =2t,)

, Foy 3
co cay = 4
Xo..3 /4 P M&JX
Yo.3 /4 Q CO B GT
1
_F4A..8
5
0 —cr1 Y > 7 0
P 5 1
Q CcoO
P 0
> G—
Q CO & _1 (&) 1
€1 | Fo.is
7
0—c1 3 X # 0
P 7 1
Q Co
X915 /7 | 5
Yo.15 —F—9 —c X
7 P e
Q coO >1
Cy — & cs

®

Check for
updates

13 Digitale Speicher

Speicherbausteine dienen der Speicherung groBerer Datenmengen. Sie werden in Digitalrech-
nern als ein wichtiger Bestandteil eingesetzt. Man unterscheidet zwischen:

Halbleiterspeichern und Massenspeichern

Halbleiterspeicher werden auf einem Halbleiterchip realisiert. Massenspeicher haben eine hohe
Speicherdichte, sie konnen also viele Daten auf geringem Raum speichern. Beispiele fiir Mas-
senspeicher sind Festplatten, CD-ROM und Magnetbénder. Sie werden hier nicht behandelt.

seriellem Zugriff und wahlfreiem Zugriff

Serieller Zugriff bedeutet, dass die Daten nur iiber ein Tor seriell ein- und ausgelesen werden
konnen. Damit sind Eimerkettenspeicher gemeint, die wie Schieberegister arbeiten. Sie sind
meist nach dem FIFO-Prinzip organisiert. Wahlfreier Zugriff heiflt, dass jeder Speicherplatz zu
jeder Zeit zugénglich ist.

ortsadressierten und inhaltsadressierten Speichern

Ortsadressierte Speicher haben eine Adresse, unter der jeder Speicherplatz zugéinglich ist. In
inhaltsadressierten Speichern findet man eine Information iiber die Assoziation mit einem Teil
der Information selber. Zum Beispiel kann in einer Lieferliste die Bestellnummer dazu dienen,
Informationen iiber den Artikel zu finden.

fliichtigen und nichtfliichtigen Speichern

Fliichtige Speicher verlieren die Information beim Ausschalten der Betriebsspannung, nicht-
fliichtige halten sie.

Festwertspeicher und Schreib/Lese-Speicher

Festwertspeicher werden einmal programmiert und kdnnen von da an nur noch gelesen werden.
Sie sind nicht fliichtig. Schreib/Lese-Speicher konnen beliebig gelesen und beschrieben wer-
den.

Bit- und Wort-organisierten Speichern

In Bit-organisierten Speichern ist jedes Bit einzeln zugénglich. In Byte-organisierten Speichern
werden jeweils 8Bit = 1Byte gleichzeitig gelesen oder geschrieben. In Wort-organisierten
Speichern wird immer ein Wort gleichzeitig gelesen oder geschrieben.

Die Speicherkapazitit wird als Produkt der Anzahl der Speicherworter und der Wortldnge
angegeben. Die Anzahl der Speicherworter ist in der Regel eine Zweierpotenz.

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018
K. Fricke, Digitaltechnik, https://doi.org/10.1007/978-3-658-21066-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-21066-3_13&domain=pdf

158 13 Digitale Speicher

13.1 Prinzipieller Aufbau von Speicherbausteinen

Speicherbausteine werden in der Regel an ein Bussystem angeschlossen. Dadurch kdnnen eine
Vielzahl von verschiedenen Speichern parallel angeschlossen werden. Das Bussystem muss es
ermdglichen, dass in eine bestimmte Speicherzelle geschrieben oder aus ihr gelesen werden
kann. Man unterscheidet zwischen:

Adressbus

Der Adressbus legt an jeden Speicherbaustein die Adresse, unter der das Datum abgespeichert
oder gesucht wird.

Steuerbus

Der Steuerbus enthilt alle Leitungen zur Bausteinsteuerung. Dazu gehort die Bausteinauswahl
mit dem Chip-Select-Anschluss CS. Da alle Bausteine an den gleichen Adressbus angeschlos-
sen werden, muss die Auswahl des betreffenden Bausteins iiber diese Leitung geschehen. Uber
eine Leitung Read/—~Write (RD/=WR) kann zwischen Lesen und Schreiben umgeschaltet wer-
den.

Datenbus

Der Datenbus ist an alle Bausteine angeschlossen. Seine Breite ist durch die Anzahl der Bit
gegeben, die jeweils unter einer Adresse stehen. Die Breite wird in Bit oder Byte = 8Bit ange-
geben. Um keine Konflikte auf den Leitungen zu erzeugen miissen die Ausginge der Speicher,
die auf den Datenbus wirken, Tristate-Ausginge sein. Sie werden durch die Leitung Output
Enable (OF) des Steuerbusses freigeschaltet.

13.2 ROM

ROM ist die Abkiirzung fiir read only memory. Ein ROM ist ein Speicherbaustein, dessen
Dateninhalt schon vom Hersteller durch Masken definiert ist. Der Dateninhalt ist daher fest
und kann nur gelesen werden. Die gespeicherten Daten sind nicht fliichtig.

ROM-Bausteine unterscheiden sich durch die Anzahl der Bits, die unter einer Adresse gespei-
chert sind. Es sind Speicher mit 1, 4, 8 und 16Bit Wortldnge {iblich.

In einem ROM sind, wie in den meisten anderen digitalen Speichern auch, die einzelnen Spei-
cherplitze matrixformig angeordnet (Bild 13-1). Die Speicherzellen liegen an den Schnittpunk-
ten der Leitungen. Sie werden angesprochen, wenn beide, die Zeilen- und die Spaltenleitung
auf 1 liegen. Die Zeilenleitung wird auch Wortleitung, die Spaltenleitung auch Datenleitung
genannt. Vorteilhaft bei dieser Anordnung ist, dass man Leitungen einspart. Man benétigt fiir
n* Speicherplitze nur 2n Leitungen, gegeniiber n” bei einer linearen Anordnung.

Die Zuordnung der Wortleitungen zu den Adressen A, bis 4, geschieht iiber einen Zeilendeco-
der. Der Spaltendecoder iibernimmt die Auswahl der Datenleitungen. Da die Datenleitungen
neben der Auswahl der Spalte auch die Aufgabe haben, die gespeicherte Information zum
Ausgang zu leiten, ist ein Leseverstirker zwischen Decoder und Speichermatrix geschaltet. Im
Bild ist ein Speicher gezeigt, der 4Bit pro Adresse speichert. Es handelt sich also um ein
64x4Bit-ROM.

13.2 ROM 159

Zeilendecoder Datenleitung
BIN/OCT /
0
Ao —1 % Wortleitung
A, — 431 / Zeilenleitung
] 5
A, — 4 8
7 Ausgang
Leseverstirker f—»
 —
[TTTTTTI
01234567
Spaltendecoder BIN/OCT
1 2 4
T
Az Ay As

Bild 13-1 Prinzipschaltbild eines 64x4Bit-ROM.

Eine Realisierung eines 16x1Bit-ROM in CMOS-Technik ist in Bild 13-2 gezeigt. Die Spei-
chermatrix besteht aus 16 n-Kanal-MOSFET. Soll in einer Speicherzelle ein H gespeichert
sein, so wird das Drain nicht kontaktiert. Das kann technologisch mit einer einzigen Maske
erreicht werden, die je nachdem, ob ein Transistor angekoppelt werden soll oder nicht, eine
Leiterbahnverbindung zum Transistor herstellt oder nicht.

Die Datenleitungen haben als Lastwiderstand einen p-Kanal-MOSFET. Der Spaltendecoder
schaltet mit einem Pass-Transistor immer eine Datenleitung an den Ausgang.

Wird durch den Zeilendecoder eine Zeile angewéhlt, indem der entsprechende Ausgang des
Zeilendecoders auf H geht, so werden die Datenleitungen, an denen ein MOSFET kontaktiert
ist, auf L gezogen. Andernfalls bleiben sie auf Vpp. Nur die Datenleitung, deren Pass-
Transistor durch den Spaltendecoder durchgeschaltet ist, wird auf den Ausgang geschaltet.

Man erkennt, dass pro Speicherzelle nur ein Transistor bendtigt wird, was zu einer hohen Spei-
cherdichte fiihrt.

160 13 Digitale Speicher

T [T T
N l UEL UE UEL UE Speichermatrix
1 5 5[g
TR 5| 5
| DXOQE__L -
o o
g iy

Bild 13-2 Aufbau eines 16x1Bit-ROM.

Das Schaltsymbol eines 1Kx8Bit = 1KByte-ROM ist in Bild 13-3 gezeigt. Neben den Ad-
resseingdngen hat der Baustein auch einen Chip-Select-Eingang (—CS) und einen Output-
Enable-Eingang (—OE). Der —CS-Eingang dient zur Auswahl des ROM, wenn mehrere ROM

an einen Bus angeschlossen werden sollen. Ist zusdtzlich der —mOFE-Eingang auf L, so wird der
Ausgang niederohmig.

Im Symbol des ROM wird die Adressabhédngigkeit verwendet, dic mit dem Buchstaben A
gekennzeichnet wird. Die geschweifte Klammer umfasst die Adresseingénge. Der Bruch nach
dem A gibt im Zghler die niedrigste und im Nenner die hochste Adresse des Speichers an. An
den 8 Ausgingen des 8Bit breiten Datenwortes ist wieder der Buchstabe A angegeben zum
Zeichen, dass die Ausginge immer an den durch die Adressen ausgewihlten Speicherplatz
gelegt werden. Die Ausgénge sind als Tristate-Ausginge ausgefiihrt.

13.3 PROM

161

A, ROM 1Kx8
A __| AV
Ay | AV
A AV
A, | L0
215 — 1023 AV

6 —]
] AV
o AV
Ay | AV
AV
—CS —d& .
—0OE —g

—Qo
—O
— >
—0s
— 04
—0s
— O

Bild 13-3 ROM mit einer Speicherkapazitdt von 1KByte.

13.3 PROM

Ein PROM entspricht vom Aufbau her einem ROM, mit dem Unterschied, dass es vom An-
wender programmierbar ist. Es ist ebenfalls matrixformig aufgebaut mit einem Spalten- und
einem Zeilendecoder fiir die Adressdecodierung. Eine mogliche Realisierung kann aus Bild 13-
2 abgeleitet werden. Die Drains der Transistoren in den Speicherzellen kdnnen bei einem
PROM anstelle mit einer Leiterbahnverbindung mit einem Fusible-Link kontaktiert werden
(Bild 13-4). Das Fusible-Link wird zur Programmierung mit einer erhohten Spannung unter-
brochen, wenn ein H gespeichert werden soll. Dazu ist in der Regel ein spezielles Program-
miergerdt notwendig. Ein Fusible-Link entspricht einer Schmelzsicherung. Die gespeicherte
Information ist nicht fliichtig. Ein einmal unterbrochenes Fusible-Link kann nicht wieder her-
gestellt werden. Sie werden daher auch als OTP-ROM (OTP = one time programmable) be-

zeichnet.

Das Schaltsymbol eines PROM gleicht dem des ROM (Bild 13-3).

Wortleitung

\fE*H

1

Bild 13-4 Speicherzelle eines PROM.

Datenleitung

162 13 Digitale Speicher

13.4 EPROM

EPROM steht fiir eraseable ROM. Ein EPROM entspricht in seinem Aufbau einem ROM oder
PROM, nur dass an Stelle der Fusible-Links oder der maskenprogrammierten Verbindungen
16schbare Speicherelemente liegen.

Man verwendet fiir die Speicherelemente Floating-Gate-MOSFET (Bild 13-5). Diese MOSFET
sind Anreicherungs-Typen mit einem zusétzlichen Gate, das keine Verbindung nach aufien hat
und Floating-Gate genannt wird. Dieses Gate hat zunidchst ein freies Potential. Durch eine
Ladung auf dem Floating-Gate kann Information in der Speicherzelle gespeichert werden.

Ve
Floating Gate ﬁ] <

J\?’

Wortleitung

Drain Gate Source

Floating gate
p-Substrat MOSFET

Datenleitung

Bild 13-5 Floating-Gate-MOSFET, Aufbau und Funktion.

Ohne Ladung auf dem Gate funktioniert der Transistor wie ein normaler n-Kanal-
Anreicherungs-MOSFET. Eine geniigend grofe positive Spannung auf dem Gate schaltet den
Transistor durch. Dieser Zustand fiihrt zu einem L auf der Datenleitung, wenn die Speicherzel-
le durch die Wortleitung ausgewahlt wird.

Soll ein H gespeichert werden, so muss eine negative Ladung auf dem Floating-Gate gespei-
chert werden. Der Transistor sperrt dann immer und bei einer Auswahl der Speicherzelle {iber
die Wortleitung bleibt die Datenleitung auf H. Die negative Ladung auf dem Floating-Gate
wird durch Tunneln von Elektronen durch das Qxid erzeugt.

Mit einer erhdhten Spannung zwischen Drain und Substrat erreicht das Feld zwischen Gate-
Elektrode und Kanal so hohe Werte, dass Elektronen durch den Avalanche-Effekt vervielfdltigt
werden. Eine gewisse Anzahl der Elektronen kann durch das Gate-Oxid auf die Floating-Gate-
Elektrode tunneln. Es entsteht eine negative Ladung auf dem Gate, die den Transistor sperrt.
Durch eine etwa 20-miniitige Bestrahlung mit UV-Licht kann das Isoliermaterial, welches
zwischen Gate und Source liegt, ionisiert werden, wodurch die Ladung abflieBen kann. Damit
ist die Information wieder geldscht. Die Ladungsspeicherung ist durch die guten Eigenschaften
des Oxids auf Jahre stabil.

13.6 EAROM 163

Fiir die Programmierung wird die Betriebsspannung Vpp auf eine erhdhte Spannung gelegt.

Das Schaltsymbol eines EPROM ist dem des ROM identisch (Bild 13-3), da die Art der Pro-
grammierung nicht im Schaltsymbol erkennbar ist.

13.5 EEPROM

EEPROM steht fiir electrically eraseable programmable ROM. Diese Bausteine sind elektrisch
beschreibbar und elektrisch 19schbar.

Die einzelne Speicherzelle ist dhnlich wie beim EPROM mit einem Floating-Gate-MOSFET
aufgebaut. Allerdings ist die Dicke des Oxids zwischen Floating-Gate und Kanal diinner.
Dadurch ist es moglich, mit einer erhdhten Spannung zwischen Gate und Kanal Elektronen
vom Gate in den Kanal und umgekehrt zu transportieren. Das geschieht durch Fowler-
Nordheim-Tunneln.

EEPROM mit einer speziellen Speicherzelle werden manchmal auch als Flash-EEPROM be-
zeichnet. Sie sind nur insgesamt oder aber blockweise 16schbar.

Die kommerziell erhéltlichen ROM, PROM, EPROM und EEPROM sind oft pinkompatibel,
so dass es moglich ist, in der Entwicklungsphase EPROM oder EEPROM zu verwenden, die
im Produkt dann durch ROM oder PROM ersetzt werden.

Die Schaltsymbole von EEPROM und ROM sind identisch (Bild 13-3).

13.6 EAROM

EAROM steht fiir electrically alterable ROM. Vom Verhalten her ist ein EAROM &hnlich dem
EEPROM.

Zur Unterscheidung zwischen EEPROM und EAROM. Es haben sich zwei unterschiedliche
Bezeichnungsweisen eingebiirgert, die sich teilweise widersprechen:

e Oft werden die Bausteine mit groferer Kapazitit als EEPROM bezeichnet, wéihrend die mit
kleiner Kapazitit EAROM genannt werden.

e Manchmal werden aber auch mit EEPROM, und insbesondere mit Flash-EEPROM, die
Bausteine bezeichnet, die nur insgesamt oder blockweise geloscht werden konnen. Unter
EAROM versteht man dann einen Bit- oder Byte-weise 16schbaren Speicher.

164 13 Digitale Speicher

13.7 NOVRAM

Das NOVRAM (non volatile RAM) ist ein nicht fliichtiges RAM (random access memory). Es
ist aus einem fliichtigen Schreib-Lesespeicher aufgebaut. Beim Ausschalten des Systems wird
der Dateninhalt innerhalb von etwa 10ms in ein EEPROM gerettet. Daher sind in jeder Spei-
cherzelle eine RAM-Speicherzelle und eine EEPROM-Speicherzelle enthalten. So werden die
Vorteile des RAM, ndmlich schnelles Lesen und Schreiben in beliebige Speicherzellen, mit
dem Vorteil des EEPROM, der Nichtfliichtigkeit vereint.

Tabelle 13-1 Ubersicht der nichtfliichtigen Speicher.

Bezeichnung Programmierung | Loschen

ROM (read only memory) Maske | einmalig nicht moglich
PROM (programmable ROM) elektr. | einmalig nicht mdglich
field programmable ROM,

one time PROM (OTP ROM)

EPROM (erasable ROM) elektr. | mehrmals UV-Licht (20 min)

gesamter Speicherinhalt

EEPROM (electrically erasable ROM) | elektr. | mehrmals elektrisch,

Flash-EEPROM gesamter Speicherinhalt
oder Bit-weise
(20-100 ms)

EAPROM (electrically alterable elektr. | mehrmals elektrisch, Bit-weise

ROM) (20-100ms)

NOVRAM (nonvolatile RAM) elektr. | mehrmals elektrisch, Bit-weise
(100ns)

13.8 Statisches RAM (SRAM)

RAM ist die Abkiirzung von random access memory. Damit ist ein Speicherbaustein gemeint,
der beliebig beschrieben und gelesen werden kann. Ein RAM ist matrixformig aufgebaut. Man
unterscheidet zwischen statischen RAM (SRAM) und dynamischen RAM (DRAM). Statische
RAM verwenden Flipflops als Speicherzellen. Hoher integrierte Bausteine arbeiten meist mit
einer dynamischen Speicherung der Information in Kondensatoren, die mit einem Transistor
angesteuert werden kdnnen.

13.8.1 Aufbau eines SRAM

Die Speicherzelle eines statischen RAM ist in Bild 13-6 gezeigt. Sie ist aus zwei gegengekop-
pelten CMOS-Invertern aufgebaut. Uber eine Wortleitung kann die Speicherzelle angesprochen
werden. Fiir die Auswahl einer Zelle wird ein H auf die Wortleitung gegeben. Dadurch werden
Ts und T¢ niederohmig.

13.8 Statisches RAM (SRAM) 165

Beim Schreibvorgang kann mit einem H auf der Datenleitung DL ein H in den Speicher ge-
schrieben werden. Dann wird T; leitend und T, sperrt. Der rechte Inverter gibt ein L aus. Da-
raufthin wird der linke Inverter auf H gesteuert. Ebenso kann mit einem H auf der Datenleitung
—DL ein L in den Speicher geschrieben werden.

Beim Lesevorgang wird wieder die Zelle mit der Wortleitung ausgewahlt. An den Datenleitun-
gen kann das gespeicherte Bit ausgelesen werden.

T 1lsl

TSTfL J% T

Q rl TE’— —‘iT

Wortleitung

Datenleitung Datenleitung
DL —DL

Bild 13-6 RAM-Speicherzelle in CMOS-Technik.

Die beiden Datenleitungen werden mit einem symmetrisch aufgebauten Leseverstiarker gele-
sen. Auch der Schreibverstirker ist symmetrisch aufgebaut.

13.8.2 Beispiel SRAM

Als ein Beispiel soll ein typisches RAM vorgestellt werden. Es hat eine Speicherkapazitét von
2Kx8Bit oder 2KByte. Das Schaltsymbol ist in Bild 13-7 dargestellt.

Der Eingang —CS (chip select), der auch —CE (chip enable) genannt wird, dient zur Auswahl
des Bausteins, wenn mehrere Speicher an einen Bus angeschlossen werden sollen. Wenn —CS
= H ist, wird der Baustein in einem Wartezustand mit verminderter Stromaufnahme betrieben.

Da er an einen Datenbus angeschlossen werden soll, hat der Baustein Tristate-Ausgénge. Diese
konnen mit dem Signal —OF = H hochohmig gemacht werden.

166 13 Digitale Speicher

A, RAM 2Kx8

A
] 2047

—-0OE—dG1
—-CS—QG2
RD/= WR-E 2C3 [WRITE]
1,2 EN[READ]
-

Dy 4+—A3D
0 ’ AZ4 L
tw ’

Bild 13-7 RAM mit einer Speicherkapazitit von 2Kx8Bit.

Entsprechend seiner Speicherkapazitit hat der Baustein 11 Adresseinginge Ag-Ajp. Mit
RD/=WR = H kann der Inhalt der Speicherzellen gelesen werden, mit RD/~WR = L kann in sie
geschrieben werden.

Im Zeitdiagramm (Bild 13-8) ist der Lesezyklus dargestellt. Wahrend des gesamten Lesezyklus
muss RD/—=WR = H sein. Wenn die Adressen giiltig auf dem Adressbus anliegen, wird zunéchst
der Baustein mit —CS ausgewihlt. Dann kann der Ausgang mit —OF aktiviert werden. Nach
der Decodierung der Adressen im RAM liegen die giiltigen Daten auf dem Datenbus.

Die im Zeitdiagramm eingetragenen Zeiten sind wie folgt definiert:

tzc read cycle time / Lese-Zyklus-Zeit

In dieser Zeit kann ein kompletter Lesezyklus durchgefiihrt werden. Die Zeit ist wichtig, wenn
viele Lesezyklen nacheinander durchgefiihrt werden sollen.

t44address access time / Adress-Zugriffszeit

Liegen giiltige Adressen auf dem Adressbus, so sind nach der Adress-Zugriffszeit giiltige Da-
ten auf dem Datenbus.

Von dem Zeitpunkt, an dem das Signal —mOF = L gesetzt wird, vergeht die Zeit t¢, bis giiltige
Daten auf dem Datenbus anliegen.

13.8 Statisches RAM (SRAM) 167

top ist die Zeit, die die Daten noch auf dem Datenbus liegen, nachdem —OF wieder auf H ge-
gangen ist.

5 Irc »
L tia R :
) f i
Adressbus W giiltige Adressen : m
. : A
| N :
1 I .
i E
~CS . ! /
: .
. t, co : | t

\/

RD/-WR

\/

5
3
A

Datenbus

; giiltige Daten)—
(]

\]

B =y

~

Bild 13-8 Lesezyklus des RAM.

Das Zeitdiagramm eines Schreibzyklus ist in Bild 13-9 dargestellt. In einem Schreibzyklus gilt
immer —OF = H, so dass der Sender (in der Regel ein Mikroprozessor) die Daten auf den Da-
tenbus legen kann. Zum Schreiben in eine Speicherzelle muss RD/—WR = L und —CS = L
gelten. Man unterscheidet zwei Fille:

1. Early Write Bei dieser Vorgehensweise ist wahrend des gesamten Schreibzyklus RD/—WR
= L, der Schreibvorgang wird durch die negative Flanke von —CS cingeleitet. Ein Early-
Write-Zyklus ist in Bild 13-9 dargestellt.

2. Late Write Bei dieser Vorgehensweise ist wihrend des gesamten Schreibzyklus —CS = L.
Der Schreibvorgang wird durch die negative Flanke von RD/—WR eingeleitet. Hier vertau-
schen also gegeniiber dem Early-Write-Zyklus RD/=WR und —CS ihre Rollen.

168 13 Digitale Speicher

3 twe »
! i
Adressbus giiltige Adressen M__.
; i
E : E t
Lt w Lar !
4 T .

~CS i / E
] y] o
]

—OE E
]
! >
; t
i
;
e | s
1 g
: >
; t
\ é
L
Datenbus (giiltige Daten)
; >
tps : tpy !

Bild 13-9 Schreibzyklus des RAM (Early Write).

Im Zeitdiagramm sind die folgenden Zeiten festgehalten:

twe Write cycle time / Schreib-Zyklus-Zeit
In dieser Zeit kann ein kompletter Schreibzyklus durchgefiihrt werden.

tps und tpy entsprechen der Setup- und der Holdtime beim D-Flipflop. In der durch diese Zei-
ten festgelegten Zeitspanne miissen die Daten stabil auf dem Datenbus anliegen.

tysund ¢, Address-Set und Address-Holdtime

tys ist die Zeit, die die Adresse vor dem —CS-Puls der Weite ¢ stabil anliegen muss. ¢4 gibt
die Zeit an, die die Adressen nach dem —CS-Puls anliegen miissen. Beide Zeiten sind fiir die
Decodierung der Zeilen- und Spaltenadresse im RAM notwendig.

13.9 Dynamisches RAM (DRAM) 169

13.9 Dynamisches RAM (DRAM)

Ein DRAM (dynamic RAM) ist ein fliichtiger Halbleiterspeicher, in dem die Information auf
Kondensatoren gespeichert wird. Bedingt durch den einfachen Aufbau einer Speicherzelle
haben DRAM eine sehr gro3e Speicherdichte.

13.9.1 Aufbau eines DRAM

Das Speicherelement zeigt Bild 13-10. Ein H auf der Wortleitung wéhlt die Speicherzelle aus.
Die auf dem Kondensator gespeicherte Ladung kann dann iiber die Datenleitung abflieBen.
Eine vorhandene Ladung bedeutet einen Speicherinhalt von einem H, keine Ladung entspricht
einem L. Das Lesen zerstort die gespeicherte Ladung, so dass nach jedem Lesen die Ladung
neu gespeichert werden muss.

Dynamische RAM sind so organisiert, dass sie einen Lesevorgang automatisch mit einer Rege-
nerierung der Ladung verbinden. Wenn eine Speicherzelle eine gewisse Zeit nicht gelesen
wird, flieit die Ladung ab, und die Information geht verloren. Deshalb miissen alle Speicherin-
halte periodisch durch einen Lesevorgang regeneriert werden. Man nennt den Vorgang auch
Refresh. Da der Off-Widerstand des MOSFET sehr hoch ist, geniigen sehr kleine Kondensato-
ren, um Entladezeiten im ms-Bereich zu erhalten.

[l
1

Zeilenleitung

Datenleitung

Bild 13-10 Dynamische RAM-Speicherzelle.

13.9.2 Beispiel DRAM

Als Beispiel wird der TMS416400 vorgestellt. Dieses DRAM hat eine Speicherkapazitdt von
4Mx4Bit. Die Daten in jeder Speicherzelle miissen alle 64ms aufgefrischt werden.

In diesem Baustein werden die Zeilen- und die Spaltenadresse iiber die gleichen Anschliisse
geladen, um den Baustein klein zu halten. Wie das Prinzipschaltbild (Bild 13-11) zeigt, benutzt
der TMS416400 10Bit fiir die Auswahl der Spalten und 12Bit fiir die Auswahl der Zeilen. Fiir
das Einlesen der Zeilenadresse wird der Anschluss —RAS (row address strobe) und fiir das
Einlesen der Spaltenadresse —CAS (column address strobe) verwendet. In einem Schreib-
Leseverstiarker wird das 4Bit breite Datenwort ein- und ausgelesen.

170 13 Digitale Speicher

Das Schaltsymbol des TMS 416400 ist in Bild 13-12 abgebildet. Man erkennt aus der Abhén-
gigkeitsnotation, dass —RAS (mit Abhédngigkeitsnotation C20) die Adressleitungen A, bis 4,
verwendet, wihrend —CAS die Adressleitungen A, bis A9 bendtigt (Abhéngigkeitsnotation mit
C21).

Zeilen- Zeilen- Daten-
adressbuffer decoder Ein/
H Ausgang
Ao Ao H Speicher- Schreib- DQ,
: D N Ko e (TTO)
]]] t.. i
Ay Ay s verstirker DO
¥ _|||||||||||||
Spalten-
decoder
—RAS — Soalt
palten-
—CAS — i adressbuffer

Ao--F4o

Bild 13-11 Prinzipschaltbild eines 4Mx4Bit-DRAM (TMS 416400).

Lesen

Das Zeitdiagramm eines Lesevorgangs zeigt Bild 13-13. Man erkennt, dass zunichst die Zei-
lenadresse (Row = Zeile) anliegen muss, die mit der fallenden Flanke von —RAS eingelesen
wird. Dann wird die Spaltenadresse (Column = Spalte) angelegt und mit der fallenden Flanke
von —CAS eingelesen. Im Schaltsymbol liest man diese Zusammenhinge aus den Bezeichnun-
gen C20 und C21 ab. Mit dem Anliegen von —WR = 1 beginnt die Adress-Zugriffszeit ¢,4 nach
deren Ende giiltige Daten am Ausgang anliegen. Der Ausgang wird niederohmig, wenn bei der
fallenden Flanke von —CAS (Ziffer 21) der Eingang —RAS = 0 (Ziffer 23 und 24) und der Ein-
gang —OFE=0 (Ziffer 25) ist. Dieser Zusammenhang wird im unteren Késtchen innerhalb der
Umrandung des Symbols dargestellt.

13.9 Dynamisches RAM (DRAM) 171

RAM 4194Kx4 TMS416400
210 —120D10/21D0
N
Ay |
A3 —]
Ay —
yy— a2
45— 4194303
Ag —
Ay —20D19/21D9
A10——20D20
An——20D21
—RAS 24[PWR DOWN]
E G23[REFRESH ROW]
> C20[ROW]
—CAS G24
>(C21[COLUMN]
>
R _Tf & 23C22
2321D | 24,25EN
—-0OF —J G25
DO 1 [
o —4—A.,22D
DO, -
DO,
DQ; -

Bild 13-12 Schaltbild des TMS 416400.

Der Bereich im Speicher, der unter der gleichen Zeilenadresse zu finden ist, wird auch als Seite
(Page) bezeichnet. Es gibt ein vereinfachtes Leseverfahren (Fast Page Mode-DRAM), wenn
man mehrere Daten auf einer Seite lesen will. Dabei bleibt —~RAS = 0 nach dem Einlesen der
Zeilenadresse. Fiir das Auffinden der verschiedenen Daten auf der Seite werden dann die ent-
sprechenden Spaltenadressen mehrfach verindert und durch die fallende Flanke von —CAS
eingelesen.

Eine weitere Verbesserung ist beim TMS416400 dadurch erreicht worden, dass nach der nega-
tiven Flanke von —RAS bereits die Auswertung der Spaltenadressen beginnt, die kurz nach der
fallenden Flanke von —RAS (nach der Hold-Time) bereits anliegen diirfen. Die damit verbun-
dene Geschwindigkeitssteigerung wird als ,,Enhanced Page Mode* bezeichnet. Wenn die
fallende Flanke von —CAS kommt, hat die Decodierung der Spaltenadresse bereits begonnen.
Die Zugriffszeit fiir das Lesen auf einer Seite mit dem ,,Enhanced Page Mode* ist 74, eine
Zeit, die kiirzer ist als #44.

172 13 Digitale Speicher

AN

YVYVVVYVVVVVVVYVVVVRVVVVVVTA

Adressbus T:X Zellen-AdrMSpalten-Adr. NN Zeilen-Adr.

] t
1
y i IR
. ! >
A : taa :
—RAS h gl / \
] ! -
L - >
N : ! t
|) !
M]
—CAS ! \ , /
; . . -
1 i ! t
i i leac !
A | —
M]
; L >
') !
') ! 4
' | !
" . !
—WR ;o'o'o'o'o'o'o'o;o'o'o'o;o'o‘o‘o‘o‘o‘o‘ﬂo‘o‘o‘o‘ﬁ b ; ' 'mw‘o‘w.omul
T o KGRI
] 1 !
' 1 ! t
' | !
A ' ; /I
') 1 .
Datenbus \i giiltige Daten)—
i ¢

Bild 13-13 Lesezyklus des TMS 416400.

Schreiben

Zum Schreiben wird zunichst die Zeilenadresse angelegt und mit der fallenden Flanke von
—RAS eingelesen. Dann wird die Spaltenadresse angelegt und mit der fallenden Flanke von
—CAS eingelesen.

Beim Schreiben muss wegen der Ziffer 23 der Abhéngigkeitsnotation —RAS = L sein. Die
Daten am Dateneingang werden eingelesen, wenn einer der Eingéinge —CAS oder —WR auf L
ist und der andere eine fallende Flanke aufweist. In Bild 13-14 ist der Fall gezeigt, bei dem
zuerst —=WR auf L geht und dann die fallende Flanke von —CAS die Daten einliest. Dieser Fall
heift ,,Early Write*. Die Daten miissen wie bei einem Flipflop zwischen der Setup-Time #pg
vor der fallenden Flanke und der Hold-Time fpy nach der fallenden Flanke von —CAS stabil
anliegen.

Werden die Daten mit der fallenden Flanke von —WR eingelesen, nennt man das ,,Late Write®.

13.9 Dynamisches RAM (DRAM) 173

Adressbus ilen- _ TXCRORCRCRORCROORO .\
Zellen-Adr RSP alten-Adr. PN ~C1len-Adr

t
' e &
) '
A 1 '
—RAS E\ / E\
T T >
i t
“ ' !
—CAS \ /
3 t
A]
0000000000000 ! 00000000 00000000N00NN/
—-WR 00000000) WAk) WAk
RGN E BN
1
' P t
; o
A , ' '\
Datenbus —c giiltige Daten ! :/
] »
1 H >
—Ppie—p!
! Ips i tpy t

Bild 13-14 Schreibzyklus (Early Write) des TMS 416400.

Auffrischen

Alle 64ms muss jede Speicherzelle aufgefrischt werden, andernfalls gehen die Daten verloren.
Eine normale Schreib- oder Leseoperation eines Bits in einer Zeile frischt alle Bits dieser Zeile
wieder auf. Es reicht daher fiir ein vollstindiges Auffrischen aus, alle 4096 Zeilen periodisch
zu lesen, indem die Adressleitungen A, bis A;; durch einen Zéhler permutiert werden. Der
TMS416400 kann mit den folgenden Verfahren aufgefrischt werden [19]:

RAS only refresh

—CAS wird fiir diese Vorgehensweise auf H gelassen. Aus dem Schaltsymbol geht hervor, dass
—CAS und —OE auf L sein miissen, damit die Ausgénge niederohmig werden. Daher bleibt der
Ausgang in diesem Fall hochohmig, so dass die Verlustleistung des Chips wéhrend des Auffri-
schens niedrig bleibt. Extern mit einem Zahler generierte Adressen werden fiir diese Refresh-
Operation verwendet. Nach jedem Adresswechsel wird mit —RAS die neue Adresse des aufzu-
frischenden Speicherplatzes eingelesen.

Hidden Refresh

Dieser Auffrischvorgang schliefit sich an einen Lesevorgang an. —CAS bleibt aber nach Ab-
schluss des Lesevorganges auf L. Die Daten am Ausgang bleiben dadurch wahrend der folgen-
den Refresh-Operation giiltig und der folgende Auffrischvorgang wirkt nicht nach auflen. Dann
wird —RAS zyklisch zwischen L und H umgeschaltet. Die Wortadressen der aufzufrischenden
Speicherzellen werden intern erzeugt.

174 13 Digitale Speicher

CAS before RAS refresh

Bei dieser Art des Auffrischens erfolgt zuerst die fallende Flanke von —CAS und dann die von
—RAS. Durch die umgekehrte Reihenfolge wird dem Speicherbaustein ein Refresh-Zyklus
signalisiert. Die extern angelegten Adressen werden ignoriert und die Adressen der zu regene-
rierenden Zeilen aus dem internen Zeilenadress-Zahler verwendet. Fiir eine Folge von Refresh-
Operationen bleibt —CAS auf L und —RAS wird zyklisch zwischen L und H umgeschaltet.

Warten

Der Baustein kann in einen Wartezustand versetzt werden, in dem er sehr wenig Leistung auf-
nimmt (Power down mode).

13.10 SDRAM (Synchrones DRAM)

Bei diesem Speichertyp handelt es sich auch um ein dynamisches RAM. Es arbeitet grundsitz-
lich so wie im letzen Kapitel beschrieben. Allerdings wird ein interner Takt des Speichers mit
einer Taktflanke des Prozessortakts synchronisiert, wodurch man eine schnellere Arbeitsweise
erzielt. Aulerdem wird ein Burst-Mode angewendet. Intern sind zwei Speicherbénke vorhan-
den, auf die abwechselnd zugegriffen wird, so dass auch ein schneller Zugriff {iber mehrere
Seiten ermdglicht wird. Bei der Synchronisation auf eine Taktflanke spricht man auch von
Single Data-Rate DRAM. Es gibt z.B. die SDRAM-Speichertypen PC100 und PC133. Die
Zahl gibt die Taktrate des Busses an. Fiir die Ubertragungsgeschwindigkeit muss die Taktrate
noch mit der Breite des Busses multipliziert werden. So ist bei einem PC133-System mit 8Byte
breitem Bus die Ubertragungsgeschwindigkeit 133MHz x 8Byte = 1000MByte/s.

13.11 DDR-RAM (Double Data Rate DRAM)

Eine neuere Entwicklung ist das Double Data-Rate DRAM (DDR-RAM). Es wird auch als
DDR-SDRAM bezeichnet. Im Gegensatz zum SDRAM wird beim DDR-RAM auf zwei Takt-
flanken synchronisiert. Es wird intern immer die doppelte Datenmenge aus dem Speicher aus-
gelesen (Prefetch), die bei der steigenden Flanke ausgegeben werden kann. Der Rest der Daten
wird zwischengespeichert und bei der fallenden Flanke ausgegeben. Dadurch arbeitet er dop-
pelt so schnell wie ein SDRAM. DDR-RAM gibt es in die Typen PC200, PC266, PC 333, PC
370 und PC400. Aus dieser Zahl kann wieder die Ubertragungsgeschwindigkeit ermittelt wer-
den, jedoch ist zusétzlich der Faktor 2 zu berlicksichtigen, da auch bei der negativen Taktflanke
Daten tibertragen werden. Weitergehende Entwicklungen (DDR2, DDR3) haben einen 4 oder
8-fachen Prefetch.

13.12 Eimerkettenspeicher

Eimerkettenspeicher sind digitale Speicher in denen Daten seriell gespeichert werden konnen.
In den Eingang werden Daten seriell hinein geschoben, am Ausgang konnen sie in der gleichen
Reihenfolge wieder entnommen werden. Sie werden auch FIFO (First in first out) genannt.

Eimerkettenspeicher werden als Puffer verwendet, wenn z.B. ein Datenstrom an einer Schnitt-
stelle zwischen zwei nicht synchronisierten Takten iibergeben werden soll. Werden mehr Daten
angeliefert als ausgelesen, werden die aufgelaufenen Daten zwischengespeichert.

13.12 Eimerkettenspeicher 175

Eine andere Organisationsform ist das LIFO (last in first out), das auch als Stack bezeichnet
wird. Ein LIFO ist dhnlich aufgebaut wie ein FIFO.

13.12.1 Beispiel eines FIFOs

Hier soll ein FIFO mit 64 Speicherpldtzen beschrieben werden (SN74ACT2226 von Texas
Instruments).

Um unabhingig voneinander lesen und schreiben zu kdnnen, wird ein Dual-Port-RAM als
Herzstiick des Speichers verwendet (Bild 13-15). Es ist eine RAM-Speicherzelle, die durch ein
zweites Paar Wort- und Datenleitungen erweitert wurde. Dadurch sind zwei weitgehend unab-
héngige Tore vorhanden. Zum Beispiel kann an beiden Toren unabhéngig gelesen werden. Es
kann allerdings nicht die gleiche Zelle gleichzeitig gelesen und beschrieben werden. Bei ver-
schiedenen Speicherzellen ist das moglich. Daher ist eine Logik erforderlich, mit der solche
Konflikte erkannt werden kdnnen.

IVDD |

1+l Lj | 5 1+ |

ii EF 7] j__li_
gl Ly

WL,
Wortleitungen
WL,
DL, DL, —DL, —DL,
Datenleitungen Datenleitungen

Bild 13-15 Prinzip einer Dual-Port RAM-Speicherzelle.

Fiir das FIFO (Bild 13-16) wird als Speicher ein Dual-Port-RAM verwendet, in dem die Spei-
cherplitze ringformig angeordnet sind. Im Blockschaltbild kann man erkennen, dass fiir Lesen
und Schreiben getrennte Takte verwendet werden (RdClk und WrClk), die nicht synchron zu
sein brauchen. Fiir das Schreiben von Daten am Eingang D ist es erforderlich, dass WrEn = 1
(write enable) ist, dass das Input-Ready-Flag /nRdy = 1 ist und am Schreibtakt WrClk eine
ansteigende Flanke auftritt.

Gleiches gilt fiir den Ausgang. RdEn = 1, OutRdy = 1 und eine ansteigende Flanke am Lesetakt
RdClk miissen auftreten, damit am Ausgang Q ein Bit gelesen werden kann.

176 13 Digitale Speicher

’ 1
Speicherplatz 0
RdEn Steuerung Pointer Speicherplatz 1
synchrones Lesen || Speicherplatz 2
Raclk Lesen Dual- Port
SRAM
64 1
_RST Reset
— Pointer | Spe?cﬁerpiatz 6;
WirClk Steuerung Schreiben Spe?c erplatz 6
synchrones Speicherplatz 63
WrEn Schreiben | 0

—— InRdy
Zustands-
anzeige [OutRdy
— F/E
— HF

Bild 13-16 Blockschaltbild des FIFO-Speichers SN74ACT2226.

Der Speicherplatz des Dual-Port-RAM, in den das nichste Datum geschrieben werden kann,
wird im ,,Pointer Schreiben® gespeichert. Das ist ein Halbleiterspeicher, in dem die Adresse
des Speicherplatzes steht, in den als néchstes geschrieben wird. Es ist die Adresse, die um 1
niedriger ist als die, in die zuletzt geschrieben wurde.

Im ,,Pointer Lesen* steht die Adresse des Speicherplatzes aus dem als néchstes gelesen wird.
Nach dem Lesevorgang wird der Pointer um 1 erniedrigt. Die gespeicherten Daten stehen also
zwischen den beiden Pointern wie es im Blockschaltbild angedeutet ist.

Zusétzlich ist ein Flag (Anzeiger) fiir einen fast vollen oder einen fast leeren Speicher vorhan-
den (F/E). Ein halbvoller Speicher wird mit dem Flag HF angezeigt. Im Blockschaltbild wer-
den diese Flags in der Zustandsanzeige erzeugt.

Mit einem Reset —RST kann der Speicher zuriickgesetzt, also geloscht werden.

Das Schaltsymbol des FIFOs ist in Bild 13-17 gezeigt.

13.14 Erweiterung der Wortldnge 177

FIFO 64 1

—RST —Q
RESET IN RDY [InRdy

OUT RDY [OutRdy
ALMOST FULL/EMPTY [— F/E
HALF FULL [— HF

WrEn —| WRTEN
WrClk — P WRTCLK
RdEn — RDEN
RdClk —PPRDCLK

1 [

Bild 13-17 Schaltsymbol des FIFO-Speichers SN74ACT2226.

13.13 Kaskadierung von Speichern

In vielen Fillen miissen Speicher aus mehreren Speicherbausteinen zusammengesetzt werden.
Das ist der Fall:

1. wenn ein einzelner Speicher von der Kapazitét nicht ausreicht. Es ist zu unterscheiden, ob
die Wortlange zu klein ist oder aber die Anzahl der Speicherplitze zu gering ist.

2. wenn der Speicherbereich aus nichtfliichtigen ROM und fliichtigen Schreib-Lesespeichern
zusammengesetzt werden muss oder

3. wenn aus Kostengriinden ein schneller Speicher mit einem langsamen Speicher kombiniert
werden soll.

13.14 Erweiterung der Wortliange

Soll zum Beispiel eine Wortldnge von 8Bit auf dem Datenbus realisiert werden und stehen
aber nur Speicherbausteine mit einer Wortldnge von 4Bit zur Verfligung, so konnen diese ent-
sprechend Bild 13-18 verschaltet werden. Den einzelnen Speichern werden der Adress- und
der Datenbus identisch zugefiihrt. Der Datenein- und Ausgang des einen Speichers wird an die
Bits 0 bis 3 des Datenbusses angeschlossen, wéahrend der Datenein- und Ausgang des anderen
Speicherbausteins an die Bits 4 bis 7 des Datenbusses gelegt wird.

178 13 Digitale Speicher

Ao 11Bit-Adressbus
AlO
RAM 2K x4 RAM 2K x4
0 } y 0 0 } 4 0
10 2047 10 2047
A,3D<;i— A,3D<i—
—J Gl —J Gl
AV AV
—d G2 :D> —d G2 :D>
1C3[WR] 1C3[WR]
1,2EN[RD] 1,2EN[RD]
DQy}..|\DQs DQy..| DQ;
8Bit-Datenbus
=CS
—0F
R/~W

Bild 13-18 Erweiterung der Wortlénge eines Speichers auf 8Bit.

13.15 Erweiterung der Speicherkapazitit

Soll die Anzahl der Speicherplétze in einem Speicher erhoht werden, so miissen mehrere Spei-
cher geringerer Kapazitit zusammengeschaltet werden.

Im Folgenden sind einige Beispiele fiir einen Speicher mit 8Kx8Bit = 8KByte Kapazitit darge-
stellt. Der Speicher soll aus 4 einzelnen Speicherbausteinen mit 2KByte Speicherkapazitét
zusammengeschaltet werden. Er soll an einen Adressbus der Breite 16Bit angeschlossen wer-
den. Die Datenbusbreite betrigt 8Bit.

Die einzelnen Speicherbausteine mit je 2KByte Speicherkapazitit haben 11 Adressanschliisse
AO'A10~

Das Problem, welches beim Anschluss der Speicher-Bausteine zu 16sen ist, ist die Decodierung
der Adressleitungen A;,-4;5, um Speicherplitze in den einzelnen Speicherbausteinen gezielt
ansprechen zu konnen. Im Folgenden werden einige iibliche Losungsmdglichkeiten mit drei
RAM und einem ROM vorgestellt.

13.15 Erweiterung der Speicherkapazitit 179

13.15.1 Volldecodierung

Bei der Volldecodierung werden alle Adressleitungen genutzt. Jeder Speicherplatz hat nur eine
Adresse.

Man erreicht dies zum Beispiel, indem man einen Demultiplexer mit 4 Ausgingen verwendet,
die an die Chip-Select-Eingédnge —CS der 4 Speicherbausteine angeschlossen werden (Bild 13-
19). Die Eingidnge des Demultiplexers werden an die Adressleitungen 4;; und 4;, angeschlos-
sen.

Die hoheren Adressleitungen 43 bis 4;5 werden mit einem ODER-Gatter an den Chip-Select-
Eingang des Demultiplexers angeschlossen, damit bei Adressen, die hoher sind als 1FFFH (H
fiir hexadezimal) keiner der Bausteine angesprochen wird.

Der Adressplan des Systems (Bild 13-19) ist in Tabelle 13-2 gezeigt. Die Adressen der Spei-
cherplitze werden in Hexadezimalschreibweise und in Bindrdarstellung angegeben. Die Tabel-
le zeigt, dass die Speicherplétze dicht liegen. Der Programmierer kann also Daten nach Belie-
ben abspeichern (aber nicht in das ROM), ohne auf irgendwelche Liicken Riicksicht nehmen zu
miissen. Die hochste Adresse ist IFFFH= 4x2048-1, was einer Speicherkapazitit von 8K ent-
spricht.

Heute wird die Decodierung von Adressen fiir Speichersysteme oft mit programmierbaren
Logikbausteinen durchgefiihrt, wie sie in Kapitel 14 besprochen werden.

180 13 Digitale Speicher

RAM 2Kx8 _
4o 0 0
: A—rn 0
7:‘%0} 2047 AV
10] /
cs 0Oy
—OF —oE 9 Gl A3D <1‘£
Jq G2 ’ —
Py R/ﬁWJC 1C3[WRITE] Ds
B 1,2EN[READ]
RAM 2Kx8
4o 0} P 0
: o 0
,&:‘%0 2047 AV N
10 = —|/
]
O 1 91 A3D <1‘:£
R/~ D
DX & % 1C3[WRITE] 7
—CS 1,2EN[READ]
——J EN 3 p—
. 20— RAM 2Kx8
Hi (1)0_ o 0} P 0
21:‘%0 2047 AV N
—0OF 4 ! A3D <1‘:°
=] 62 D]
T9 IC3[WRITE]
1,2EN[READ]
El
. y ROM 2Kx8
15 - 11 40 0 } P 0 Q
N o 0
y >1o 2047 AV
Adressbus 10 ~CS 0, V
—OF EE EN
Datenbus

Bild 13-19 Volldecodierung eines Systems mit 8K-Speicher.

13.15 Erweiterung der Speicherkapazitét 181

Tabelle 13-2 Adressplan des Systems mit Volldecodierung aus Bild 13-19. Es ist jeweils die niedrigste
und hochste Adresse des jeweiligen Speichers angegeben.

Baustein | Adresse Adresse (binér)
(Hex) 15141312 111098 7654 3210
1 0000 0000 0000 [0000|0000
(ROM) | O7FF 0000 0111 Ir111 (1111
2 0800 0000 1000 [0000|0000
(RAM) | OFFF 0000 1111 Ir111 (1111
3 1000 0001 0000 [0000|0000
(RAM) 17FF 0001 0111 Ir111)1111
4 1800 0001 1000 [0000|0000
(RAM) | 1FFF 0001 1111 11111111

13.15.2 Teildecodierung

Bei der Teildecodierung werden nicht alle Adressleitungen genutzt. Es wurde fiir das System
in Bild 13-20 ein Demultiplexer fiir die Decodierung der Adressleitungen A4,, und 4;, verwen-
det. Die hoheren Adressleitungen 4,3 bis A5 werden nicht decodiert, um den Hardware-
Aufwand zu verringern. Die auf diesen Leitungen anliegenden Bits sind also ,,don’t care®.

Wie der Adressplan in Tabelle 13-3 zeigt, ist jeder Speicherplatz unter 8 Adressen erreichbar,
da die 3 MSB don’t care sind. Es ist aber sinnvoll, bei der Programmierung 4,5 = 44 =A4;3=0
zu setzen. Dann kénnen einfach hexadezimale Adressen bestimmt werden.

182 13 Digitale Speicher

RAM 2Kx8 _
A() 0
— > }A—O 0,
10/ 2047 AV j‘>
Ao —
cs 0y
-/ A D,
—0E 9 ! A3D 1 —
19 IC3[WRITE] 7
1, 2EN[READ]
RAM 2Kx8
Adressbus Ay 0
> }AL Qo
y 10f 72047 AV j‘>
10 —
All A12 CS Q7
—/ A D
—0F 4 C! A3D
DX T_C 1C3[WRITE] 7
1, 2EN[READ]
. 3 p—
U, 20— RAM 2Kx8
1P 4
o do 0
0 : } A L QO
::A > 10/ 2047 AV j>
10 —
cs 0y
-/ A D,
—OE —OE 9 Gl A3D K1T—
R 2 \—
Y 79 1C3[WRITE] 7
- 1, 2EN[READ]
ROM 2Kx8
A() O
By AV S N
; 10/ 72047 AV :>
Ao O
- A 7
—OF 5&_‘EN
Datenbus

Bild 13-20 Teildecodierung eines Systems mit 8K-Speicher.

13.15 Erweiterung der Speicherkapazitit 183

Tabelle 13-3 Adressplan des Systems mit Teildecodierung aus Bild 13-20. Es ist jeweils die niedrigste
und hochste Adresse des jeweiligen Speichers angegeben.

Baustein | Adresse Adressleitungen (binér)
(Hex) 15141312 111098 7654 3210
1 0000 dddo 0000 [0000|0000
(ROM) | E7FF dddo 0111 Ir111 (1111
2 0800 dddo 1000 [0000|0000
(RAM) | EFFF dddo 1111 Ir111 (1111
3 1000 ddd1 0000 [0000|0000O
(RAM) | F7FF dddl 0111 I111|1111
4 1800 ddd1 1000 [0000|0000
(RAM) | FFFF ddd1 1111 11111111

13.15.3 Lineare Decodierung

Bei der linearen Decodierung wird auf einen Decoder verzichtet. Stattdessen werden die obe-
ren Adressleitungen A;; bis Ay, direkt an die Chip-Select-Eingénge CS der Speicher ange-
schlossen. In Bild 13-21 wurden Bausteine mit nichtinvertiertem Chip-Select-Eingang CS
verwendet, um einen einfacheren Aufbau des Speicherbereichs zu erhalten. 4,5 wird nicht
verwendet und ist daher don’t care.

Die lineare Decodierung schrankt den nutzbaren Speicherbereich stark ein. In diesem Fall
konnen nur 5 Bausteine mit je 2Kx8Bit = 16KByte angeschlossen werden, weil nur 5 Adress-
leitungen zur Verfiigung stehen. Daher ist die Anwendung der linearen Decodierung auf Sys-
teme mit geringem Speicherplatzbedarf beschrankt.

Der Adressplan in Tabelle 13-4 zeigt, dass im Speicherbereich Liicken auftreten. Wird ein
derartiger Speicher in einem Mikroprozessorsystem eingesetzt, muss der Programmierer auf-
passen, dass er nicht versucht Daten in die Liicken abzuspeichern. In der Hexadezimaldarstel-
lung des Adressplans wurde vorausgesetzt, dass 4;5 = 0 ist. Andernfalls ist das System sehr
uniibersichtlich.

Man beachte, dass z.B. mit der Adresse 7800H alle vier Bausteine angesprochen werden. Auch
dadurch konnen Fehler entstehen. Die lineare Decodierung ist nur dort iiblich, wo an einen
breiten Adressbus nur wenige Speicher mit geringer Kapazitit angeschlossen werden miissen.

184 13 Digitale Speicher

RAM 2Kx8 _
4 N 0 } AL Qo
——/l10f " 2047 AV j‘>
AIO Q
)
A14 CS D
~or_ 1G] A3D <‘::°
R/—W]
19 IC3[WRITE] Ds
1, 2EN[READ]
RAM 2Kx8
Adressbus Ay N 0
: A——0 0
y /| 10} 2047 AV :°‘>
10 Q:
7
A13 cS D,
—OE gé A3D <,‘:°
R/—W]
/. 19 1C3[WRITE] Dy
1, 2EN[READ]
RAM 2Kx8
4o N 0} 40 0
———V|10f "2047 av j‘>
10 Q
)
A1, CS D,
—OE —0E Gl A3D <:—74)
R G2 D
Py 19 IC3IWRITE] 7
- 1, 2EN[READ]
ROM 2Kx8
Ay
) 0
. N }A—O 0,
———V/|10f "2047 av j‘>
10 T
s O

Datenbus

Bild 13-21 Lineare Decodierung eines Systems mit 8K-Speicher.

13.16 Ubungen 185

Tabelle 13-4 Adressplan des Systems aus Bild 13-21 mit linearer Decodierung. Es ist jeweils die nied-
rigste und hochste Adresse des jeweiligen Speichers angegeben.

Baustein | Adresse Adressleitungen (binér)
(Hex) 15141312 111098 7654 3210
1 0800 dooo 1000 [0000|0000
(ROM) | OFFF dooo 1111 Ir111 (1111
2 1000 doo1 0000 [0000|0000
(RAM) 17FF doo1 0111 Ir111 (1111
3 2000 do1o 0000 [0000|0000
(RAM) | 27FF do1o0 0111 Ir111)1111
4 4000 d100 0000 [0000|0000
(RAM) | 47FF d100 0111 11111111

13.16 Ubungen

Aufgabe 13.1
1. Welche der Speicherbausteine RAM, EEPROM und ROM sind fliichtig?

2. Welche der folgenden Speicherbausteine RAM, PROM, ROM und EEPROM sind
Festwertspeicher?

3. Geben Sie an, wie die folgenden Speicher programmiert werden konnen: ROM,
PROM, EPROM, EEPROM.

4. Kann der Inhalt der Speicher-Bausteine ROM, EPROM, EEPROM, Flash-EEPROM.
geloscht werden? Geben Sie in allen Fillen an wie das geschehen kann.

5. Was ist der Unterschied zwischen SRAM und DRAM?

Aufgabe 13.2

Es soll ein Speicher fiir einen 16Bit-Adressbus und 8Bit-Datenbus aufgebaut werden. Es sol-
len, beginnend bei der Adresse 0000H, ein ROM mit 4KByte dann RAM mit 2KByte, 2KByte
und 8KByte Speicherplétzen installiert werden.

1. Die Speicherpldtze sollen ,,volldecodiert werden. Ermitteln Sie fiir jeden Speicher-
baustein jeweils die unterste und oberste Adresse.

2. Die Decodierung soll mit dem gezeigten Demultiplexer durchgefithrt werden. An
welche Adressleitungen miissen die Eingéinge des Demultiplexers angeschlossen wer-
den?

3. Entwerfen Sie ein Schaltnetz, welches an den Ausgingen des Demultiplexers die ein-
zelnen Speicherbausteine richtig ansteuert. Wie werden die restlichen Adressleitungen
angeschlossen?

186 13 Digitale Speicher

DX

=
o
N —
S = NWhA U
<
I

—-CS—J EN

Aufgabe 13.3

In einem Speichersystem mit wenigen Speicherplédtzen sollen an einen Adressbus von 8Bit
Breite Speicher mit 1Byte Wortldnge angeschlossen werden. Es sollen beginnend bei niedrigen
Adressen, Schnittstellen mit 2Byte, 4Byte und 8Byte Speicherplatz angeschlossen werden.

Die Adressen sollen linear decodiert werden.
1. Geben Sie eine Schaltungsmdglichkeit an. Wie werden die Adressleitungen ange-
schlossen?
2. Stellen Sie einen Adressplan auf.

Aufgabe 13.4

Unten ist eine Decodierschaltung fiir einen Mikroprozessor mit 16Bit breitem Adressbus ge-
zeigt. Die drei Speicherbausteine, die damit angesteuert werden, haben die invertierenden
Chip-Select-Anschliisse —=CS;, =CS,und —CSs.

1. Stellen Sie die booleschen Gleichungen der Decodierschaltung auf.

2. Geben Sie das daraus resultierende Adressschema an.

3. Welche Kapazitit miissen sinnvollerweise die angeschlossenen Speicherbausteine ha-

ben, wenn unter jeder Adresse ein Byte angesprochen werden soll?
4. Um welche Art von Decodierung handelt es sich?

Ao —
21 —|CS1

n o
A ﬁ —C52

d &

+—— O

1&
Dy e

d &

®

Check for
updates

14 Programmierbare Logikbausteine

Sollen Schaltwerke oder Schaltnetze aufgebaut werden, so gibt es verschiedene Moglichkeiten
der Realisierung. Aus Kostengriinden wird man nach Mdoglichkeit Standardbauelemente bevor-
zugen, die in grofen Stiickzahlen gefertigt werden konnen. Es stellt sich daher die Frage, wie
Standardbauelemente den speziellen Anforderungen der einzelnen Kunden angepasst werden
konnen. Der Halbleitermarkt bietet die folgenden Alternativen:

Kombination von niedrig integrierten Standard-IC auf einer Leiterplatte

Hierbei werden in der Regel einzelne Gatter und niedrig integrierte SSI und MSI-IC (SSI =
small scale integration, MSI = medium scale integration) miteinander auf einer Leiterplatte
(PCB = printed circuit board) verschaltet. Diese Vorgehensweise hat eine sehr hohe Flexibili-
tdt. Allerdings haben die Bauelemente eine sehr hohe Leistungsaufnahme, da alle Gatter am
Ausgang einen Leitungstreiber aufweisen miissen. Auflerdem sind derartige Schaltungen in der
Fertigung sehr teuer. Sie eignen sich eher fiir geringe Stiickzahlen. Denkbar sind auch Logiken
aus einzelnen Dioden und Transistoren. Diese Vorgehensweise wird heute wegen des hohen
Montage- und Priifaufwandes nur noch in Ausnahmeféllen beschritten, wie zum Beispiel bei
der ,,wired or“-Verkniipfung.

Anwenderspezifische Software

Hierunter fallt im Wesentlichen der Mikroprozessor. Er erhélt seine hohe Flexibilitét durch die
Software, mit der sein Verhalten den jeweiligen Erfordernissen angepasst werden kann.

Anwenderspezifische Hardware

Flexibilitdt kann durch die Verwendung kundenspezifischer integrierter Schaltungen erreicht
werden. Diese Schaltungen sind unter dem Oberbegriff ASIC (= application specific in-
tegrated circuit) zusammengefasst. Dies sind Schaltungen, die durch physikalische Verdnde-
rungen oder durch ein Konfigurationsprogramm an bestimmte Anforderungen angepasst wer-
den konnen. ASIC umfassen sowohl kundenspezifisch hergestellte IC (Vollkundendesign) mit
speziell fiir den Kunden zugeschnittener Logik als auch Standardbausteine, in denen durch den
Kunden mit Stromsté8en Verbindungen hergestellt werden konnen, um ein bestimmtes Verhal-
ten zu erzielen.

14.1 ASIC-Familien

Es existiert heute eine Vielzahl von verschiedenen ASIC-Familien. Man kann ASIC grob un-
terscheiden nach:

Programmierbare Logik-IC (PLD)

Die Klasse der programmierbaren Logik-IC (Bild 14-1) hat sich als erste ASIC-Familie etab-
liert. Aus der Sicht der Hersteller sind die programmierbaren Logik-IC Standard-Bausteine, da
sie fuir alle Kunden identisch gefertigt werden konnen. Durch die Programmiermdglichkeit von
matrixformig angeordneten UND- und ODER-Matrizen kann der Kunde im Haus die Schal-
tung so strukturieren, wie er sie benotigt.

Halbkundendesign-ASICs

Hier handelt es sich um ASIC, die matrixformig angeordnete Gatter besitzen und die vom
Hersteller durch die Strukturierung der Verbindungsleitungen den Kundenwiinschen angepasst
werden konnen. Die einzelnen Gatter sind vom Hersteller getestet und ihr Verhalten ist genau

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018
K. Fricke, Digitaltechnik, https://doi.org/10.1007/978-3-658-21066-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-21066-3_14&domain=pdf

188 14 Programmierbare Logikbausteine

bekannt, so dass eine Bibliothek von Zellen vorliegt, die vom Anwender mit Hilfe von Design-
Software zu einer kompletten Schaltung zusammengesetzt werden kénnen. Halbkundendesign
ASIC haben geringere Entwicklungskosten als Vollkundendesign ASIC, sie sind aber auch
langsamer. Da sie die Chipfliche weniger gut ausnutzen, sind die Kosten pro Chip hdher als
beim Vollkundendesign-ASIC. In dieser Gruppe findet man die Gate-Arrays und die Standard-
zellen-ASIC.

Vollkundendesign-ASICs

Bei diesem ASIC-Typ handelt es sich um ein Design, das fiir den Kunden speziell angefertigt
wird. Es unterscheidet sich durch nichts von einem normalen Standard-IC. Diese Losung bietet
die hochstmogliche Flexibilitit. Es konnen alle Funktionen verwirklicht werden. Selbst analoge
Schaltungsteile sind denkbar. Wegen der hohen Entwicklungskosten lohnt sich ein Vollkun-
dendesign nur bei sehr hohen Stiickzahlen. Es konnen sehr hohe Integrationsdichten erzielt
werden. Die Signalverarbeitungsgeschwindigkeit kann sehr hoch sein, wenn dies erforderlich
1st.

Anwenderprogrammierbarer Channeled Standard-Zellen-ASIC

Logikbaustein (PLD) Gate Array

EDDDDDE EDDDDDE EI:IDI:II:IDI:I

5! (I EIRRINIEN]

Il Il Ol Il U\ (2
0| 0 (| LTI = 0 0
0 %ﬁﬁ%m 0| A 5 0| (LI
O O O O O 5
I I O I I I O I [|]

Bild 14-1 Struktur verschiedener ASIC-Typen.

Aus Tabelle 14-2 geht hervor, dass von den anwenderprogrammierbaren Logikbausteinen bis

hin zu den Vollkunden-IC die Entwicklungszeit, die Entwicklungskosten, die Flexibilitéit so-

wie die sinnvolle Mindeststiickzahl zunehmen, wihrend die Chipfliache, die die Herstellungs-

kosten pro Chip bestimmt, abnimmt. Daraus ergeben sich die unterschiedlichen Anwendungs-

gebiete der unterschiedlichen ASIC-Arten. In der Praxis konnen sich allerdings leicht Abwei-

chungen von dieser Regel ergeben. So sind die anwenderprogrammierbaren Logikbausteine

heute mit Gatterdquivalenten bis zu mehreren 100000 erhéiltlich. Sie kommen daher auch in

den Bereich der VLSI-Bausteine. Manche Anwendungsmoglichkeiten wurden nur durch die

Entwicklung von ASIC erschlossen: Multifunktions-Armbanduhren, Scheckkarten-Rechner

oder portable PC. Wesentliche Bestimmungsgrofien bei der Entwicklung digitaler Systeme

sind:

¢ Der Entwicklungsaufwand ist fiir verschiedene ASIC sehr unterschiedlich.

¢ Bauteilekosten pro Funktion. In der Regel sind die Bauteilekosten fiir ASIC mit hohem
Entwicklungsaufwand am geringsten, wodurch sich diese nur bei groBlen Stiickzahlen loh-
nen. Dazu gehoren auch die Zusatzkosten fiir Gehduse, Stromversorgung, Leiterplatte usw.

e Lager- und Vorratskosten fiir Material

e Wartungs- und Service-Aufwand

e Realisierungszeit des Projekts

14.1 ASIC-Familien 189

e personelle Entwicklungskapazitt

Die verschiedenen ASIC-Typen miissen hinsichtlich dieser Punkte iiberpriift werden, um die
geeignete Technologie fiir den jeweiligen Anwendungsfall zu finden. Die Motivation fiir die
Wahl eines bestimmten ASIC kann sehr unterschiedlich sein. ASIC haben generell einige Vor-
teile:

e FEin ASIC beinhaltet in der Regel die Funktion von vielen Standard-Bauelementen, damit
sinkt die Fehlerwahrscheinlichkeit der Schaltung, sie wird zuverléssiger.

e Der Entflechtungsaufwand auf der Leiterplatte ist geringer. Man kann unter Umsténden
eine billigere Leiterplatte verwenden.

e Es ist schwierig, ein ASIC zu kopieren, da seine Funktion von auflen nur schwer durch-
schaut werden kann. Damit kann ein Entwicklungsvorsprung gegeniiber der Konkurrenz
leichter aufrechterhalten werden.

e ASIC lassen sich oft einfacher testen als eine Schaltung aus einer Vielzahl von Standard-
Komponenten, vorausgesetzt, dass entsprechende Testmoglichkeiten bei der Entwicklung
berticksichtigt wurden.

Tabelle 14-1 Systematik der ASIC nach der Struktur.

Anwender- Standardzellen- | Vollkun-
ASIC-Typ programmierbare 1C Gate-Arrays ASIC den-ASIC
Feste Struktur UND/ODER-Matrix, Logische digitale und analo- o
Logikzellen-Matrix Gatter ge Standardzellen
programmier- Fuse, Antifuse,el. Ladun- Verbindungs- Alle
gen, programmgesteuerte) Alle Masken
bare Struktur | pratrizen leitungen Masken
PLA, PAL, PROM,
Ausfihrungs- | EPROM. FPGA g;?:rfrlizd Standardzellen-1C, o
formen ’ 1Y Block-Zellen-IC
Sea of Gates

Tabelle 14-2 Vergleich von Standardkomponenten und verschiedenen ASIC-Familien. Angedeutet sind
die grundsétzlichen Tendenzen des Aufwandes und der Leistungen der verschiedenen ASIC.

Parameter Standard- oro gArZXfrrlliiigare— Hal.bkunden— Voukunden—
Komponenten IC design-ASIC design-ASIC
Leistung mittel-hoch mittel hoch sehr hoch
Entwicklungskosten niedrig niedrig mittel-hoch | hoch-sehr hoch
Maskenkosten - - niedrig-mittel hoch
Entwurfsdauer kurz mittel mittel mittel-hoch
Stiickkosten niedrig hoch mittel niedrig
Integrationsdichte hoch niedrig hoch sehr hoch

190 14 Programmierbare Logikbausteine

14.2 Programmierbare Logik-IC (PLD)

Programmierbare Logik-IC (PLD) sind im Prinzip Standard-Bauelemente, die vom Kunden fiir
seine Zwecke konfiguriert werden konnen. Ihr elektrisches Verhalten ist genau bekannt, so
dass sehr genaue Modelle fiir die Simulation vorhanden sind. Daher kénnen programmierbare
Logik-IC sehr einfach entwickelt werden. Thr Stiickpreis, bezogen auf die vorhandene Gatter-
zahl kann gering sein, da sie in groflen Stiickzahlen hergestellt werden konnen. Allerdings
gelingt es bei den wenigsten Designs einen hohen Ausnutzungsgrad der Gatter zu erzielen. Sie
eignen sich daher besonders fiir geringe Stiickzahlen. Thr Vorteil liegt auch darin, dass sie kurz-
fristig gedndert werden konnen. Programmierbare Logik-IC haben auch den Vorteil, dass sie
vom Hersteller bereits hardwareméBig getestet wurden. Der Anwender muss nur noch die Kon-
figuration priifen.

Programmierbare Logik-IC werden im Folgenden mit ihrem englischen Oberbegriff ,,pro-
grammable logic device” (PLD) bezeichnet.

Durch die Mdglichkeit, die Logik vom Anwender konfigurieren zu kdnnen, verkniipfen PLD
so die Vorteile eines Standardbausteins mit kundenspezifisch hergestellten Bausteinen, die den
Bediirfnissen des Kunden optimal angepasst sind.

14.2.1 PLD-Typen

Unterschieden werden kann nach der Art der Programmierung:

e Fuse-Link, einmal elektrisch herstellbare, dann dauerhafte Trennung

o Antifuse, einmal elektrisch herstellbare, dann dauerhafte Verbindung.

e 1-Bit RAM-Zellen: Flipflops

e EPROM-Zellen: dauerhafte Ladungsspeicherung, kann durch UV-Licht geloscht werden.
e EEPROM-Zellen: dauerhafte Ladungsspeicherung, kann elektrisch geléscht werden.

In PLD werden programmierbare UND- und ODER-Matrizen verwendet. Abhéngig von deren
Struktur kann man unterscheiden nach:

PLA Programmierbare UND und ODER-Matrix
PAL Programmierbare UND-Matrix, feste ODER-Matrix
GAL Wie PLA, aber zusitzlich mit programmierbaren Ausgangsnetzwerken

EEPROM Programmierbare ODER-Matrix, feste UND-Matrix
FPGA, LCA Elektrisch programmierbares logisches Array, fliichtig

CPLD, EPLD elektrisch programmierbares logisches Array, nicht fliichtig, mit UV-
Licht oder elektrisch 16schbar

Im Folgenden werden die in den PLD verwendeten UND- und ODER-Gatter, die in der Regel
eine Vielzahl von Eingéngen haben, vereinfacht dargestellt (Bild 14-2).

14.3 ROM, EPROM, EEPROM 191

vollstindige vereinfachte
Darstellung Darstellung
Y =X
X0 g X0 —
R
X —e X —|— programmierbare Verbindung
1} + programmierte Verbindung
X2 —¢ X X2
y y

Bild 14-2 Vollstandige und vereinfachte Darstellung eines UND-Gatters in einer PLD.

14.3 ROM, EPROM, EEPROM

Mit nichtfliichtigen Speichern wie ROM, PROM, EPROM, EEPROM usw. konnen Schaltnetze
realisiert werden. Sollen zum Beispiel zwei Funktionen mit 4 Eingangsvariablen realisiert
werden, so bendtigt man ein ROM mit 16x2Bit Kapazitét. Unter jeder der 16 Adressen werden
die Funktionswerte der beiden Funktionen gespeichert, wobei alle Funktionen moglich sind.
Ein ROM ist also sehr universell. Es kann aber ineffektiv sein, wenn eine Funktion nur sehr
wenige Einsen oder Nullen in der Wahrheitstabelle hat.

X0 4
x| —e UND-Matrix
(fest)
X, —e
[e]feJleJ[e e [e[e]fe]
>1 fo
%
ODER-Matrix % b
(programmierbar) Iz_ll f,
>1 f3

Bild 14-3 Darstellung eines 8x4-ROM (32Bit) mit UND- und ODER-Matrix.

192 14 Programmierbare Logikbausteine

Man verwendet ROM in den folgenden Féllen bevorzugt:

e Wenn die Funktion als Wahrheitstabelle gegeben ist. Dann kann die Funktion ohne weitere
Bearbeitung direkt gespeichert werden.

e Wenn die Funktion sehr viele Produktterme bendtigt. Das ist zum Beispiel der Fall bei
arithmetischen Funktionen.

e Wenn absehbar ist, dass die Schaltung oft gedndert werden muss und der Aufwand nicht
bekannt ist.

e Wenn es viele Einsen in der Wahrheitstabelle gibt.

Das ROM kann als ein Schaltnetz verstanden werden, welches eine feste UND-Matrix zur
Adressdecodierung und eine maskenprogrammierbare ODER-Matrix hat (Bild 14-3).

14.4 PLA

PLA (Programmable Logic Array) bestehen aus einer programmierbaren UND- und einer pro-
grammierbaren ODER-Matrix, wie dies im Bild 14-4 festgehalten ist. Mit einem PLA kann die
DNF direkt verwirklicht werden, wobei die Produktterme durch die UND-Matrix und die
Summen-Terme durch die ODER-Matrix realisiert werden. Die Anzahl der Produktterme ist
dabei kleiner als die bei n Eingingen mdgliche von 2”. Gemeinsame Produktterme kdnnen
mehreren Eingéingen zugefiihrt werden.

"o

X, —e UND-Matrix
(programmierbar)

X2 $-

(S []

ODER-Matrix
(programmierbar)

HEEE
—_ —_ —_
Sh

Bild 14-4 Allgemeines Schema eines PLA.

Im allgemeinen Schema in Bild 14-4 konnen einige Verbesserungen durchgefiihrt werden:

e Die Ausginge sollten auch negiert werden konnen, denn bei vielen Funktionen ist das
Komplement mit weniger Aufwand realisierbar.

e Es werden oft Tri-State-Ausgénge bendtigt. In diesem Fall ist es sinnvoll, dass einige der
Ausgénge auch als Eingénge verwendet werden kdnnen.

14.4 PLA 193

e Die Ausgédnge miissen unter Umstédnden zwischengespeichert werden. Daher haben viele
PLA am Ausgang Flipflops.

e Durch die Einfithrung einer invertierten Riickfiihrung aus der ODER-Matrix kdnnen unter
Umstédnden viele Produktterme gespart werden.

An Hand der beiden folgenden Beispiele soll nun der Nutzen und die Realisierung der Verbes-
serungen diskutiert werden. Das EXOR-Gatter des PLA in Bild 14-5 dient zur Kontrolle der
Polaritit des Ausgangs. Liegt dessen zweiter Eingang auf 0, so wirkt das Gatter als Buffer,
liegt der zweite Eingang auf 1, so wird der Ausgang invertiert. Man kann also immer zwischen
der Realisierung einer Funktion und ihrer Invertierten wéhlen und so Produktterme sparen.

AuBerdem hat das PLA in Bild 14-5 Tri-State-Gatter an den Ausgéngen. Die Enable-Ausgénge
werden durch einzelne Produktterme kontrolliert. Alternativ gibt es PLA, deren Enable-
Einginge durch extra Ausgénge an der ODER-Matrix gesteuert werden, oder es werden exter-
ne Pins verwendet. Da die Ausginge als Tri-State-Ausginge ausgefiihrt sind, die auch einen
Eingang haben, ist es mdoglich sie als bidirektionale Schnittstelle zu verwenden. Die entspre-
chenden Einginge werden auch in die UND-Matrix gefiihrt. Die hohere Flexibilitat fiihrt zu
einer besseren Ausnutzung des PLA.

UND-Matrix

Kontroll-Terme

X0
X1
X2 L 4

>1
D_:l | ¢ fo
i
—EN
21— Ny £
i

ODER-Matrix

Bild 14-5 PLA mit EXOR-Gatter und bidirektionalem Tri-State-Ausgang.

Das PLA in Bild 14-7 hat eine invertierte Riickfiihrung aus der ODER-Matrix, die auch Kom-
plement-Array genannt wird. Diese Riickfithrung hilft Produktterme zu sparen, wenn man
Probleme bearbeitet, bei denen bei einer Reihe von Ausnahmen die Ausginge einen bestimm-
ten Wert annehmen sollen. Es soll als Beispiel mit diesem PLA ein 7-Segment-Decoder fiir

194 14 Programmierbare Logikbausteine

BCD-Zahlen gebaut werden, der fiir Eingangswerte grofer als 1001p ein E fiir Error anzeigt.
Die Definition der Ziffern mit dem entsprechenden Code ist in Bild 14-6 gezeigt.

| |b L T T
e

g
d
Bild 14-6 Definition der 10 Ziffern und E fiir Error einer 7-Segmentanzeige.

Man benoétigt fiir die Ziffern 0-9 10 Produktterme. Diese werden auch an den Eingang des
Komplement-Arrays angeschlossen. Beim Auftreten eines dieser Produktterme bleibt das
Komplement-Array wirkungslos. Wird dagegen kein Produktterm angesprochen, weil eine
Pseudotetrade, also eine der Bindrzahlen zwischen 10 und 15 anliegt, so werden mit dem
Komplement-Array die Segmente fiir den Buchstaben E angesprochen.

%

Kk @ K%
. UND-Matrix

1

T

b

X3

I\
—

ODER-Matrix l l l.ll

v

v

I\
A

v v
it —
NI IENIENIN “
— — — — — — —
S Q

I\
A

llll

Bild 14-7 PLA mit invertierter Riickfiihrung aus der ODER-Matrix (Beispiel fiir 7-Segmentanzeige).

In Bild 14-8 ist ein PLA fiir die Realisierung von Schaltwerken in vereinfachter Form darge-
stellt. PLA dieser Art werden auch als Sequencer bezeichnet. Die gezeigte Schaltung hat:

14.4 PLA

195

e Zustandsregister mit den Ausgéngen Py, P, und P,. Die Register-Ausgénge werden in die

UND-Matrix zuriickgekoppelt.

e Der Eingang P/—FE kann so programmiert werden, dass er entweder als Enable fiir die Tri-

State-Buffer oder aber als Preset fiir die D-Flipflops wirkt.

e Das Komplement-Array kann genutzt werden, um einen bestimmten Zustand beim Ein-
schalten oder bei Fehlern einzustellen. Das Komplement-Array spricht an, wenn keiner der

direkt verwendeten Zustinde beim Einschalten auftritt.

X

X0 ¢
X X
X1
"
1
X—¥ *
i Wﬁ
>|<—>|<
q1]
&ll&ll&ll&ll&]l& &][& &
[>1 |
; 1S 1 v—Py
— >C1
x— >1 IR =
— S
X >1 18 lyl—-P,
x— >1 IR
— S
X >1 18 1 gl
- >Cl ENV P
* * >1 1R
k— S
CLK
T
P/—E = . EIO

Bild 14-8 PLA fiir die Realisierung von Schaltwerken (Sequencer), Programmierung fiir das Beispiel:

mod-5-Vorwirts/Riickwarts-Bindrzéhler.

Als Beispiel soll nun ein mod-5-Bindr-Zéhler, der fiir das Eingangssignal x = xo = 0 vorwirts
und filir x = xo= 1 riickwérts z&hlt, mit dem in Bild 14-8 gezeigten PLA entwickelt werden. Mit
diesen Informationen erhélt man die Tabelle 14-3. Aus der Zustandsfolgetabelle kann die An-
steuertabelle (Tabelle 14-4) fiir die RS-Flipflops des Bausteines entwickelt werden.

196 14 Programmierbare Logikbausteine

Tabelle 14-3 Zustandsfolgetabelle des mod-5-Bindrzahlers.

Xo=0 xo=1
+1 +1 +1 +1 +1 +1
sz Pl m Ponl Pzﬂ’l 1)1 m Ponl sz Pl m POIn

0
0
0
0
1

S| | = O ©

0
1
0
1
0

S| | O O ©
S| O ~| | ©
S| S| = S =

0
0
0
1
1

S| O O &
—| O] = O ©

Tabelle 14-4 Ansteuertabelle fiir die RS-Flipflops des mod-5-Binérzéhlers.

xo=0 xo=1
PY"P\" Py | RSy RiSy RoSo | RaSa RiSi RoSo
0 0 0]4do do 01 01 do do
0O 0 11]4do 01 10 do do 10
0 1 0]4do 0d 01 do 10 01
0 1 1] 01 10 10 | dO 0d 10
1 0 0]10 do do | 10 01 01

Aus der Ansteuertabelle werden die KV-Diagramme (Bild 14-9) abgeleitet. In diesen befinden
sich freie Felder, die zu den Zustdnden gehdren, die im normalen Z&hl-Zyklus nicht vorkom-
men. Aus diesen Zustédnden, die sich beim Einschalten, oder aber durch eine Storung einstellen
konnen, soll der Zahler in den Folgezustand (Py,P;,P,) = (0,0,0) gehen.

R»S, X RS, . RSy
8

do [do | do [(orX|,| do Od®dozgﬁwdoz

6 7| 6 :
Py \ l 1 /———L
1 N[0|10 10]1
do @ do | do @@ od | do Q\o 0] 103
—_— —_— —_—
P, Py Py

Bild 14-9 KV-Diagramme fiir Ansteuerung der RS-Flipflops.

14.5 PAL 197

Aus den KV-Diagrammen erhélt man die Gleichungen:

ROZP()_‘Pz S():_‘P()_‘Plpzx\/_‘P()Pl_‘szV_l‘P()_‘Pz_‘X)
\) L Y J L Y J Y
1 2 5 4
R] = T‘P()P]“P2X'V‘POP1“P2“X) S1 = “‘P()“Plple\/ ?0“P1“P2“X)
T 1
5 6 2 7
R2 = ‘_‘PO_‘PIPQX'V _‘lP()_‘P|P2_'X | S2 = l})(}P]_‘Pz_‘x'\/ _“Po_‘Pl_‘sz ,
T T T
2 3 6 8

Die mit den Ziffern 1 bis 8 markierten Implikanten werden mit den ersten 8 UND-Gattern der
UND-Matrix in Bild 14-8 realisiert. An die Ausgénge dieser 8 UND-Gatter wird auch das
Komplement-Array angeschlossen, so dass das Komplement-Array bei den Zustdnden des
normalen Zyklus nicht anspricht. In allen anderen Fillen legt das Komplement-Array iiber das
zehnte UND-Gatter der UND-Matrix eine 1 an die R-Eingidnge der RS-Flipflops und setzt sie
so zuriick. Die ODER-Matrix wird entsprechend den Gleichungen programmiert. Der P/—FE-
Eingang wird so programmiert, dass er als Enable fiir die Ausgénge wirkt. Der entsprechende
Programmierpunkt wurde offen gelassen, was einer 1 entspricht.

14.5 PAL

Eine PAL (Programmable Array Logic) (Bild 14-10) ist eine Vereinfachung der PLA. Sie
besitzt nur eine programmierbare UND-Matrix. Die ODER-Matrix ist auf eine Zusammenfas-
sung von wenigen (in Bild 14-10 sind es 4) Produkttermen beschrénkt.

o AR ODER-Matrix
q
oiofom v
& _
E&m £,
& 1
o
& | -
3221 f,
_y Z —
. s
UND-Matrix ?
E%m £,
& 1
o

Bild 14-10 PAL mit 3 Eingéngen und 3 Ausgingen und mit 4 Produkttermen pro Ausgang.

Mit einer PAL konnen viele Funktionen mit geringerem Hardware-Aufwand als mit einer PLA
realisiert werden. Der Aufbau einer PAL erlaubt aber nicht, dass gemeinsame Produktterme
mehrerer Funktionen gemeinsam genutzt werden kdnnen wie bei einer PLA.

198 14 Programmierbare Logikbausteine

Die in Bild 14-11 gezeigte PAL 18P8 hat EXOR-Gatter zur Polarititssteuerung. Die Tri-State-
Ausginge werden durch Produktterme gesteuert. Die Ausginge sind auch als Eingénge nutz-
bar, wodurch das Einsatzspektrum der PAL grofer wird.

Einige PALs haben heutzutage die Moglichkeit, die Produktterme gezielt einzelnen Ausgingen
zuzuweisen (product term steering). Das heifit allerdings nicht, dass Produktterme von ver-
schiedenen Funktionen gemeinsam genutzt werden kénnen.

X1 E
0 4 8 12 16 20 24 28 31
0 _
— EI; s
224 & ||
. 1
2 T . A -—:I_Il
= Lol
ra 2 7
: Y] X16
480 ra —1 |
X3 - 1 all
% S S v
_V X1s5
736 § —1 |
e Dl R oL -
= UL
% _V X14
992 —1 |
ro'd, p— —_—
q L
S — ENL
a _V X13
1248 X —1
> 4]
1280 = ___
ra >1 EN »3
.AI.: V r—
K X12
1504 & —1 |
" 4]
1536 g | —
> EN 2
O—e—
% Vi X1
1760 —1 |
s o—
1792
ﬁ >1 L‘EN
% V: 1
2016 —1 |
x —5 d]

Bild 14-11 PAL 16LS8.

14.6 GAL 199

Bei PAL ist ein einheitliches Schema zur Bezeichnung iiblich:

PTL/ 16 R 8 \
Anzahl der Eingénge Anzahl der Ausginge
R synchroner Registerausgang X EXOR-Gatter und Registerausgang
Ra asynchroner XP EXOR-Gatter und programmierbare
Registerausgang Ausgangspolaritit
S kombinatorischer Ausgang XRP EXOR-Gatter und programmierbare
mit ,,produkt term steering* Registerpolaritét
H Ausgang aktiv High C Komplementérausgang
L Ausgang aktiv Low P Ausgang mit programmierbarer
Vv variable Signalausgabe Polaritét
14.6 GAL

Mit GALs (Generic Array Logic) werden Verbesserungen der PALs bezeichnet, die an den
Ausgingen programmierbare Zellen (OLMC = Output Logic Macro Cell) enthalten, die den
erforderlichen Bedingungen angepasst werden konnen, indem sie als Eingang, Ausgang oder
Tri-State-Ausgang programmiert werden.

GALs sind in EECMOS-Technologie hergestellt, die den CMOS-Prozess mit elektrisch 16sch-
barer Speichertechnologie (EEPROM) kombiniert. Sie haben daher eine relativ geringe Ver-
lustleistung und recht hohe Geschwindigkeit. Die Bausteine sind oft (typisch 2000-mal) pro-
grammierbar und 16schbar. Ein Vorteil liegt auch darin, dass die Programmierbarkeit vom
Hersteller gepriift werden kann.

Da die Ausgénge konfigurierbar sind, geniigen eine geringe Anzahl GALs, um ein groBes Pro-
duktspektrum an PLD zu ersetzen.

Die Struktur der GAL16V8 ist in Bild 14-12 gezeigt. Die GAL 16V8 besitzt 8 OLMC. Jedes
OLMC kann 8 Produktterme ODER-verkniipfen. Der Eingang x; kann als Takteingang CLK,
der Eingang x;o als Output Enable —~OF verwendet werden.

Ein OLMC ist in Bild 14-13 dargestellt. Einige der OLMC konnen bidirektional betrieben
werden, nur die OLMC 15 und 16 konnen nur als Ausgang wirken. Alle OLMC haben Riick-
kopplungen in die UND-Matrix.

Man erkennt in Bild 14-13, dass es 16 verschiedene Eingédnge gibt, so dass es mit der Inversion
32 verschiedene Spalten der UND-Matrix gibt.

Das OLMC des GAL16V8 wird durch die Signale XOR(n), SYN, AC0, ACI(n) gesteuert. SYN,
ACO wirken global auf alle OLMC, XOR(n) und ACI(n) sind individuell fiir jedes OLMC n
wiahlbar. XOR(n) steuert die Polaritdt des Ausgangs. XOR(n) = 0 bedeutet aktiv LOW.

200 14 Programmierbare Logikbausteine

X1 ,]—|
CLK = 0 4 8 12 16 20 24 28
1 — P
e v HEN
1L C || V yg
. OLMC I
. . 19
x — b} = [
a Y ~EN
a Y7
: ormc [V
16 e 18
oA
x —l 1 |_
. v HEN
1L C L v y()
. OLMC I
0 . 17
X4 _ZSEIO _Ci:ll | [
a ~ HEN
4 y5
: ormc 1Y)
5 a 16
oA
xs —1p 4 |
 — EN|
ra —— V4
ry OLMC v Y
40 - 15
Yo — 11 [
1 Vv ||
A: C __ET;C y3
a OLMC L
" a 14
o4
» —1] |
49 a V _ﬁ
1 C || VO yz
& omMC 1Y)
. 13
56 4
o« S —
nam— EN
a 1
3 OLMC v 7
3 12
64 & |
—|1 iO 1
e i) EN i],xlo
—OF

Bild 14-12 Struktur des GAL16VS.

14.6 GAL

201

CLK | |—OE

i MUX

E MUX ACI(n)— 0 0

e/ s 0 aco— 1593

| aCn & P GT 1 o

i 00] 0—1

: 1 2 ACO—-q

! 3 ACI(n) '
cr [~
> _ MUX
> >1 =1 1D
e . 0 {0 L ACI(m) o]
> G-(¢ |-ACI(n)

iZur UND- 7

Matrix XOR(n) 2 4co

i 00

i 1 <
- « 2o

! Riickfithrung in i b

[. 1

i die UND-Matrix 5 e <

i g 1 4

Bild 14-13 OLMC Nr. n des GAL16V8, das benachbarte OLMC hat die Nr. m.

Tabelle 14-5 Bedeutung der Signale SYN, ACO und ACI(n).

Betriebsart Funktiondes | SYN | ACO | ACI Beschreibung
OLMC (n)
Tri-State-Ausgang hochohmig
Eingang 1 0 1 Eingangssignal in néchste Zelle
Simple Mode nur fiir OLMC 12-14 und 17-18
(Schaltnetz) Aqsgang immer eingeschaltet
Ausgang 1 0 0 keine Ruckkopplupg ’
8 Produktterme fiir Logik
fiir alle OLMC moglich
Complex Mode | T4i_state : | | Freigabe iiber Produktterm
(Schaltnetz) | Ein-/Ausgang 7 Produktterme fiir Logik
) Register Tri- CLK wirksam
Registered | gpate 0 1 1 OE durch Produktterm
Mode Ein-/Ausgang 7 Produktterme fiir Logik
(Schaltung mit | Register CLK wirksam
Registern) Tri-State 0 1 0 Freigabe des Ausgangs mit —=OE
Ein-/ Ausgang 8 Produktterme fiir Logik

202 14 Programmierbare Logikbausteine

14.7 Programmierung von PLD-Bausteinen

Die Programmierung von PLD-Bausteinen wird mit einer Datei im JEDEC-Format durchge-
fiihrt. In Bild 14-14 ist ein Beispiel fiir eine GAL16V8 gezeigt. Die Datei hat zu Beginn jeder
Zeile eine Zeilenadresse, welche mit *L beginnt.

In jeder Zeile stehen 32 Bits, da ein GAL16V8 zusammen mit den invertierten Eingdngen 32
Spalten in der UND-Matrix belegt, wie man in Bild 14-12 erkennt. Eine 1 bedeutet, dass die
Verbindung an der entsprechenden Stelle unterbrochen ist; eine 0, dass sie verbunden ist.
*1,0000 1111110110111101110111111111111

*1,0032 1111010111111011111011110111111

*1,0064 1111111111010101111110101101111

*1,0096 1110111101112112111101112111111111

*1,0128 1111111110111110111111111011111

Bild 14-14 Auszug aus dem JEDEC-File des GAL16V8

Die Zeilen des JEDEC-Files des GAL16V8 sind folgendermaBen belegt:

0000-2047 Verbindungen der Logikmatrix entsprechend obigem Beispiel
2048-2055 XOR(n)-Bit fiir OLMC 12-19

2056-2119 Elektronische Signatur: 64 Bit fiir eigene Anwendung
2120-2127 ACI(n)-Bit fir OLMC 12-19

2128-2191 Produkttermfreigabe P70 bis PT63

2192 SYN-Bit

2193 ACO-Bit

Zum Programmieren wird die GAL in einen Programmiermodus versetzt, indem an einen Pin
eine bestimmte Spannung gelegt wird (hier Pin 2 = 16,5V). An 6 Pins (Pin 18, Pin 3 bis Pin 7)
werden dann Zeilen der Speichermatrix angewéhlt und mit dem Takt SCLK (Pin 8) die Bits, die
an SDIN (Pin 9) liegen, in das Schieberegister geschoben.

GALs haben einen elektronischen Kopierschutz. Wenn das Sicherheitsbit gesetzt ist, kann die
Programmierung nicht mehr gelesen werden. Nur eine Loschung ist dann moglich. Der Daten-
erhalt ist auf 10 Jahre garantiert. Der Programmiervorgang dauert wenige Sekunden.

14.7.1 Test

Fiir Schaltwerke ist es wichtig zu testen, ob die Zusténde, in die das Schaltwerk im normalen
Betrieb nicht kommen darf, ordnungsgeméil verlassen werden. Dazu ist es sinnvoll, dass man
alle Register mit einem beliebigen Wert laden kann.

Das GAL16V8 hat deshalb eine Schaltung, in der die Register geladen werden kdnnen. Diese
Betriebsart wird durch Anlegen von 15V an PRLD (Pin 11) aktiviert. Uber den seriellen Ein-
gang SDIN (Pin 9) kénnen die Daten dann mit dem Takt DCLK (Pin 1) durch die Register
geschoben werden, die als Schieberegister geschaltet sind. Am seriellen Ausgang SDOUT (Pin
12) kdnnen die Daten wieder entnommen werden. Es werden nur die Registerzellen involviert,
die als Registerausgang konfiguriert sind.

14.8 Field Programmable Gate Arrays (FPGA) 203

14.8 Field Programmable Gate Arrays (FPGA)

Field Programmable Gate Arrays (FPGA) sind Standard-Logikbausteine, die vom Anwender
fiir seine Zwecke konfiguriert werden miissen. Sie bestehen aus mehreren PLD, die {iber eine
Verbindungsmatrix miteinander kommunizieren. Die Vorteile von FPGA sind:

e Fiir FPGA werden von den Herstellern Software-Bausteine zur Verfiigung gestellt,
so genannte Intellectual Property Core (IP-Core). Es stehen z.B. Prozessorkerne,
Schnittstellen, Speicherverwaltungen und viele andere hédufig verwendete digitale
Schaltungen z.B. im VHDL-Code (vergl. Kap 15) zur Verfiigung.

e Es ist keine Lagerhaltung beim Kunden erforderlich, da Standardbauelemente leicht
verfiigbar sind. Bei kundenspezifischen Designs muss man dagegen nach einer Bestel-
lung beim Halbleiterhersteller oft mehrere Monate Lieferzeit einkalkulieren.

e Die Hardware des FPGA wird vom Hersteller getestet, daher braucht der Anwender
nur noch ein reduziertes Priifprogramm zu fahren.

¢ Im Gegensatz zu einer diskreten Realisierung werden weniger Bauelemente bendtigt,
wodurch die Schaltung zuverléssiger wird.

e Der Aufwand fiir das Entflechten der Leiterbahnen ist geringer. Dadurch kann unter
Umsténden eine billigere Platine verwendet werden.

e In FPGA kann eine optimale Architektur realisiert werden. Sie sind daher sehr
schnell.

e Anderungen sind leicht durchzufiihren, da nur das Programm geéindert werden muss.

14.8.1 Aufbau eines FPGA

Im Folgenden wird die FPGA-Familie Spartan II des Halbleiter-Herstellers Xilinx beschrieben
[27]. Deren FPGA enthalten bis zu 600 000 Gatter. Die FPGA sind in CMOS-Technik aufge-
baut.

FPGA sind anwenderprogrammierbare Arrays aus logischen Blocken, meist in Form einer
PLA. Die logische Konfiguration wird durch ein Programm festgelegt, welches in einem
SRAM auf dem Chip gespeichert wird. Die Konfigurierung ist also fliichtig. Das SRAM wird
daher beim Starten aus einem ROM oder PROM geladen. FPGA anderer Hersteller konnen
durch Fuses oder Antifuses programmierbar sein. Die Architektur der Spartan II-FPGA gliedert
sich in verschiedene konfigurierbare Blocke:

e Die Logik ist in konfigurierbaren Logik-Blocken (CLB) zusammengefasst. Die logi-
sche Funktion wird in RAM-Zellen gespeichert, die mit dem Konfigurationspro-
gramm programmiert werden. Die CLB sind matrixférmig in der Mitte des FPGA an-
geordnet.

¢ Die Ein- und Ausgénge werden durch Input/Output-Blocke (I0-Blocks) realisiert. Sie
lassen sich als Eingang, Ausgang, Tri-State-Ausgang oder als bidirektionale Schnitt-
stelle schalten. Die I0-Blocke sind am Rand des FPGA neben den Pins des Gehduses
angeordnet.

e Die Verbindungsleitungen sind in einem programmierbaren Netz realisiert, welches
die logischen Blocke miteinander verschaltet.

e Es gibt RAM-Blocke mit denen sich einfach ein digitaler Speicher realisieren lésst.

e Fiir die Taktversorgung stehen 4 Delay-Locked Loop (DLL) zur Verfiigung. Dies sind
Bausteine, mit denen verzogerte Takte fiir die verschiedenen Schaltungsteile erzeugt

204

14 Programmierbare Logikbausteine

werden konnen. Da man sehr grofle Schaltungen realisieren kann, muss man rdumlich
entfernte Schaltungsteile mit einem verzdgerten Takt ansteuern wenn man hohe Takt-
frequenzen erreichen will.

In Tabelle 14-6 sind die verschieden grolen FPGA der Spartan II-Familie aufgelistet.

piL |[1o][lo|f1o][io|[10o][10|[10|[10|] DLL
110 cLB|[cLB][cLB][cLB][cLB][cLB]|[cLB][CLB o] |
110 cLB|[cLB][cLB][cLB][cLB][cLB]|[cLB][CLB 0] |
110 cLBl|[cLB][cLB][cLB][cLB][cLB][cLB][CLB o] |
110 % cLB|[cLB][cLB][cLB]|[cLB][cLB|[cLB][CLB % o] |

10| |[cu][cLB]|[cLB][cLB|[cLB][cLB|[cLB][cLB]|E |[10

10 cLB|[cLB|[cLB][cLB|[cLB][cLB][cLB][cLB 10
110 cLB|[cLB][cLB][cLB]|[cLB][cLB|[cLB][CLB o] |
110 cLB|[cLB][cLB][cLB][cLB][cLB]|[cLB][CLB o] |

piL |[10o][lo|[1o][io|[10][10|[10|[10|] DLL

Bild 14-15 FPGA, schematisch. Konfigurierbare Logik-Blocke (CLB), Delay-Locked Loops (DLL)
Block-RAM und 10-Blécke sind angedeutet.

Tabelle 14-6 Familie der Spartan II FPGA der Firma Xilinx.

Typ Typische Anzahl Gatter | CLB | Ein- und Ausgénge | Block-RAM
XC2S50E | 50000 384 182 32K
XC2S100E | 100 000 600 202 40K
XC2S150E | 150 000 864 265 48K
XC2S200E | 200 000 1176 | 289 56K
XC2S300E | 300 000 1536 | 329 64K
XC2S400E | 400 000 2400 | 410 160K
XC2S600E | 600 000 3456 | 514 288K

14.8 Field Programmable Gate Arrays (FPGA) 205

14.8.2 Konfigurierbare Logik-Blocke (CLB)

Die CLB sind alle identisch. Sie sind, wie in Bild 14-15 gezeigt, in Matrizen angeordnet. So
hat zum Beispiel der Baustein XC2S50E 384 CLB. Jedes CLB enthilt 2-mal den in Bild 14-16
gezeigten Grundbaustein. Die mit LUT (look-up table) bezeichneten Blocke generieren eine
beliebige Funktion mit 4 Eingangsvariablen. Sie bestehen aus einem Speicherbaustein, dhnlich
wie in Kapitel 14.3 beschrieben, nur dass hier ein RAM verwendet wird. Durch die Werte, die
beim Konfigurieren im RAM gespeichert werden, werden die Funktionswerte festgelegt. Das
RAM kann alternativ auch als normaler RAM-Speicher verwendet werden. Die beiden D-
Flipflops konnen fiir die Speicherung der Zustandsgrofien verwendet werden. Sie kénnen durch
die Signale R und S gesetzt und riickgesetzt werden. Fiir die Realisierung schneller arithmeti-
scher Operationen steht ein Baustein mit einer Carry-Logik dhnlich dem in Kapitel 12 be-
schriebenen Carry-Look-Ahead zur Verfiigung. Die Konfiguration der logischen Funktion des
Schaltnetzes wird im beschriebenen Konfigurationsspeicher festgehalten.

| Carry Out
Xo00 —J'— Carry-
Xo1 und S
X0 LUT Steuer- 1D Yo
logik > Cl
X03 _ IR
R :
CLK
S
X10 —l— Carry-
Xy, — und S
X LUT Steuer- 1D M
logik > Cl1
X13 L1 R
R2 | Carry In

Bild 14-16 Einer von 2 Grundbausteinen (Slice), der in einem konfigurierbaren Logik-Block (CLB)
enthalten ist (vereinfacht).

Die beiden Ausginge des Grundbausteins (Slice) konnen mit einem Multiplexer ausgewihlt
werden, so dass zusammen mit dem Auswahleingang eine Funktion mit 9 Eingangsvariablen
realisiert werden kann. Zusammen mit dem zweiten Slice auf dem CLB koénnen sogar Funktio-
nen mit 19 Variablen mit einem CLB erzeugt werden. In Bild 14-17 ist die Verschaltung der
beiden Slices durch die Multiplexer gezeigt. Die Programmierung der Funktionen in den LUT
und die Konfigurierung der Multiplexer wird mit dem Konfigurationsprogramm festgelegt.

206 14 Programmierbare Logikbausteine

1
X00 _i_ iSlicel
Xor T | !
Xo2 T T Vo
Xo03 + i \
X10 T N
X11 _i_ ;N
Yoo T i
X13 _:___ _________ K
XMo1 [T —
X00 + :Shce2
o —H L
Yo L
Yo3 T !
Xio T H
X11 + i 2l
Yoo T i
X13 —] 1

Bild 14-17 Konfigurierbarer Logik-Block (CLB) der Spartan II-Familie von Xilinx mit zwei Slices
(vergl. Bild 14-16) und 3 programmierbaren Multiplexern.

14.8.3 10-Block

In Bild 14-18 ist ein 10-Block der Spartan II-Familie von Xilinx vereinfacht dargestellt. Je-
weils ein 10-Block ist fiir einen Anschluss-Pin vorgesehen. Der Baustein XC2S50E hat zum
Beispiel 182 IO-Pins und genauso viele I0-Blocke. Ein ESD-Netzwerk dient dem Schutz vor
Uberspannungen. ESD ist die Abkiirzung fiir Electrostatic Discharge, womit statische Entla-
dungen gemeint sind, die das Bauelement zerstoren kénnen.

Jeder 10-Block enthélt folgende Optionen, die {iber programmierbare Multiplexer und Buffer
eingestellt werden konnen:

e FEine Anpassung an verschiedene Logik-Pegel, die iiber Referenzspannungen pro-
grammiert werden kdnnen.

e Zwei D-Flipflops als Zwischenspeicher fiir die Eingabe /N oder Ausgabe OUT von
Daten. Aber auch ein direkter Ausgang kann programmiert werden. Auch das Enable-
Signal des Ausgangsbuffers kann in einem Flipflop zwischengespeichert werden.

e Die Moglichkeit, den Ausgang als Tri-State-Ausgang zu programmieren. Der Aus-
gang wird dann mit dem Eingang OF iiber einen Buffer entweder aktiv oder hochoh-
mig geschaltet. Der Eingang ist immer lesbar.

e Die D-Flipflops kénnen mit dem Eingang S/R je nach Programmierung synchron oder
asynchron gesetzt oder zuriickgesetzt werden.

14.8 Field Programmable Gate Arrays (FPGA) 207

IN

S/R

OE
CLK

our

progr. int./ext.
I_ Delay Referenz
1D —
>Cl
S/R
l A
1D
>C1
S/R
| D > ESD- | (| 10-Pin
1% g Netzwerk |
S Cl cco
S/R OF
IN Out
Vref
programmierbarer programmierbarer
Multiplexer Buffer

Bild 14-18 Vereinfachter I0-Block der Spartan II-Familie von Xilinx.

14.8.4 Verbindungsleitungen

Die Flexibilitdt des FPGA wird zu einem wesentlichen Teil durch vielseitige Programmie-
rungsmoglichkeiten der Verbindungsleitungen erreicht. Die vorhandenen Leitungen kdnnen
durch Schaltmatrizen und ,,programmable interconnect points (PIP) in vielfdltiger Weise
miteinander verbunden werden. Die Ein- und Ausgénge der CLB und der 10-Blocke koénnen so
programmiert werden, dass sie an die umliegenden Verbindungsleitungen angeschlossen wer-
den. Es gibt folgende Arten von Verbindungselementen:

Local Routing: Innerhalb der CLB werden die LUT sowie die Flipflops verschaltet
und Verbindungen zu benachbarten CLB hergestellt.

General Purpose Routing: Die meisten Verbindungen werden durch das General Pur-
pose Routing hergestellt. Dazu sind Schaltmatrizen (General Routing Matrix = GRM)
um die CLB herum angeordnet. Mit 24 Leitungen in jede Richtung sind Verbindun-
gen zu benachbarten GRM moglich. 96 Leitungen mit Verstirkern sind fiir weiter ent-
fernte GRM vorhanden. 12 Leitungen (Long Lines) dienen der Verbindung zu sehr
weit entfernten GRM. Diese Leitungen arbeiten auch bidirektional, dhnlich wie in
Bild 4-14 gezeigt.

[O-Routing: Zusitzliche Verbindungen, ringformig um den Chip angeordnet, erlauben
eine weitgehend freie Zuordnung der Pins, ohne dass die Anordnung der CLB geén-
dert werden muss.

Dedicated Routing: Hiermit sind jeweils vier Tristate-Busse gemeint, die an jedes
CLB angeschlossen werden konnen. Auflerdem gibt es 2 Leitungen pro CLB, die das
Carry in Carry-Look Ahead-Schaltungen weitergeben.

208 14 Programmierbare Logikbausteine

14.8.5 Programmierung eines FPGA

Die Programmierung eines FPGA beginnt in der Regel mit der Eingabe der Schaltung entwe-
der:

e in schematischer Form mit einer graphischen Eingabe,

e oder durch eine Hardware-beschreibende Programmiersprache (z.B. VHDL = very
high speed integrated circuit hardware description language, siche Kapitel 15)

In der Regel stellen die FPGA-Hersteller auch Makros zur Verfligung, die oft bendtigte digitale
Schaltungen beschreiben.

Diese Daten werden in eine genormte Netzliste konvertiert, die EDIF-File genannt wird. Sie
enthilt die Daten aller Gatter sowie die Verbindungen zwischen ihnen. Nicht beriicksichtigt
sind aber die physikalischen Daten der Verbindungsleitungen wie zum Beispiel die Laufzeit.
Die Netzliste bildet auch die Grundlage fiir eine Uberpriifung der Schaltung auf ihre logische
Funktion.

Anschlieend kann aus dem EDIF-File eine Zuordnung der Gatter auf die CLB stattfinden
(Implementation). Gleichzeitig werden die Verbindungsleitungen festgelegt. Dieser Optimie-
rungsvorgang heif}t ,,Place and Route®. Hierbei werden Vorgaben des Benutzers beriicksichtigt
wie Lage der Pins, kritische Pfade usw.

Mit den Daten der nun physikalisch vollstandig bekannten Schaltung ist eine Simulation der
Schaltung mit realistischen Laufzeiten moglich. Dieser Schritt hei3t Verifikation.

Aus dem Design wird abschlieBend ein Bitstrom generiert, welcher die Konfigurationsdaten
enthélt. Die Konfigurationsdaten werden im FPGA in RAM-Speichern gespeichert, die beim
Konfigurierungsvorgang zu einem langen Schieberegister zusammengeschaltet werden kdnnen.
Die Anzahl der Konfigurationsbits variiert je nach GroBe des FPGA zwischen 630kBit
(XC2S50E) und 3,9MBit (XC2S600E). Mehrere FPGA konnen zum Konfigurieren nacheinan-
der geschaltet werden (Daisy-Chain) wobei beim Laden der Beginn des Bitstroms zunéchst das
eine, dann das andere FPGA durchlduft und dann am Ende der Schieberegisterkette des zwei-
ten FPGA anhélt. Die Anzahl der Konfigurationsbits hdngt nicht von dem Ausnutzungsgrad
des FPGA ab.

14.9 CPLD

CPLD (complex programmable logic device) die auch EPLD genannt werden, sind in
EEPROM- oder EPROM-Technologie hergestellt. Sie sind daher elektrisch programmierbar
und nicht fliichtig. Sie sind entweder elektrisch oder mit UV-Licht 16schbar und daher sehr gut
fiir Kleinserien und Labormuster geeignet.

14.9.1 Aufbau einer CPLD

CPLD werden hier am Beispiel der MAX 3000A-Familie der Firma Altera dargestellt [28]. Sie
sind in CMOS-EEPROM-Technologie hergestellt. Es sind Versionen fiir Taktfrequenzen von
tiber 200MHz verfiigbar. Die Architektur ist in Bild 14-19 dargestellt.

Das Herzstiick der CPLD ist eine zentrale Verbindungsmatrix PIA, die alle Baugruppen mitei-
nander verbindet. Die Logik wird in Logic Array Blocks (LAB) zusammengefasst, welche
jeweils 16 Makrozellen enthalten.

e 36 Leitungen gehen von der PIA in jeden LAB. Sie sind in jeder Makrozelle verflig-
bar.

149 CPLD 209

e Jede Makrozelle hat einen Ausgang zu den IO-Ports. Die Schaltung hat also 16 10-
Ports pro LAB. Die I0-Ports kdnnen als bidirektionale Schnittstellen genutzt werden.

e Jede Makrozelle hat einen Ausgang zur PIA.

Es gibt zwei Takte (CKLI und CKL2) und zwei globale Output-Enable-Signale (OE! und
OE?2) sowie ein globales Resetsignal (CLR). Die Anzahl der Makrozellen, die darin verfiigba-
ren Gatter und sowie die Anzahl der Ein- und Ausgénge ist in Tabelle 14-6 fiir die verschiede-
nen Typen der CPLD-Familie gezeigt.

Durch die klare Struktur der CPLD sind konkrete Angaben iiber die erreichbaren Takt-
Frequenzen moglich.

Input/CLK] 3
Input/CLK2/OE2 1
Input/OE1 1

Input/CLR 1 i
10-Ports 10-Ports
= ., LAB B =
[16 g
O g Makrozellen g —
3 3 O
S = s =
0~ » =
o E —
—— g —{
I0-Ports %D 10-Ports
— LAB C 2 LABD —
e 16 S 16 o [
— g Makrozellen i Makrozellen g —
- s = —{]
=u : 7 =
- [N o —{1
—{]
[——
10-Ports 10-Ports
o [s

!

Weitere Makrozellen

AAR2222

Bild 14-19 Architektur der CPLD MAX 3000A-Familie der Firma Altera.

14.9.2 Logik-Array Blocke (LAB)

Die Logik ist in den Logic Array Blocks (LAB) in jeweils 16 Makrozellen angeordnet, wie es
in Bild 14-20 schematisch gezeigt ist. Jede Makrozelle enthélt ein Flipflop und die Logik in
Form einer PAL. Daher kann jede Makrozelle zur Erzeugung eines Schaltnetzes oder zur Er-
zeugung einer Schaltung mit Register-Ausgang verwendet werden. Diese Unterscheidung wird
durch einen programmierbaren Multiplexer in jeder Makrozelle getroffen.

210 14 Programmierbare Logikbausteine

Jeweils 36 Leitungen sind aus der zentralen Verbindungsmatrix in ein LAB gefiihrt und stehen
allen Makrozellen gleichermallen zur Verfligung.

Die Produktterme der PLA konnen verwendet werden fiir:

e Die Erzeugung einer booleschen Funktion mit Hilfe des Oder-Gatters. Damit entsteht
eine PAL-Struktur wie in Bild 14-10 gezeigt.

e fiir den Set- oder Reset-Eingang des Flipflops. Alternativ kann durch einen program-
mierbaren Multiplexer fiir den Reset der globale Reset GR) verwendet werden.

e fiir den Takteingang des Flipflops. Es kann auch mit einem programmierbaren Multi-
plexer einer der beiden globalen Takte GCLK an den Flipflopeingang gefiihrt werden.

Jeder Makrozelle stehen im Normalfall 5 Produktterme zur Verfiigung. Um die Flexibilitit
weiter zu erhéhen, kdnnen auch Produktterme von einer anderen Makrozelle geborgt werden.
Dadurch kdnnen bis zu 20 Produktterme in einer Matrixzelle verwendet werden. Alternativ hat
jede Makrozelle einen Expander, mit dem Produktterme in die lokale Matrix des LAB zuriick-
gegeben werden und so mehreren Matrixzellen zur Verfiigung stehen. Es gibt 16 Expanderlei-
tungen. Mit einem Exklusiv-Oder-Gatter kann die invertierte Funktion erzeugt werden, wenn
dieses einfacher ist. Jede Makrozelle hat je einen Ausgang zu der zentralen Verbindungsmatrix
PIA und zum 10-Block.

Lokale Verbindungsmatrix

des LAB GCLK GR
36 Leitungen 16 Expander Produktterme 21
von der PIA von anderen
= Makrozellen 10
& P
& — S lj
& = 1D
& 2 >Cl1
o 2 R
& —
< £
o 2
&8
— = [S=
& — ~
1& 1 IO
1 |®®e] | LY X % 117
Expander fiir programmierbarer
Produktterme Multiplexer

Zur globalen Verbindungsmatrix PIA

Bild 14-20 Makrozelle der CPLD MAX 3000A-Familie der Firma Altera (GCLK = globale Takte, GR =
globaler Reset).

149 CPLD 211

14.9.3 10-Steuerung

Jeder Logic Array Block (LAB) hat cine eigene 10-Steuerung. Dafiir stehen innerhalb des
LAB, je nach Grofle des CPLD, 6 bis 10 Output-Enable-Leitungen zur Verfligung. Jeder der
16 10-Pins wird mit einer Schaltung entsprechend Bild 14-21 angesteuert. Es kann mit einem
programmierbaren Multiplexer programmiert werden:

e nur Eingang: Es wird eine 0 an den OE-Eingang des Buffers gelegt.
e nur Ausgang: Es wird eine 1 an den OE-Eingang des Ausgangs-Buffers gelegt.

e bidirektionaler IO-Port. Eine der 6 bis 10 globalen OE-Leitungen wird fiir das Enable
des Output-Buffers verwendet.

e Der IO-Pin wird nicht verwendet, Es wird eine 0 an den OE-Eingang des Buffers ge-

legt.
ﬂ » [q)‘
~ > ﬁ>‘
B
=]
S - q
g
& 6 bis 10 globale .
.g OE-Leitungen °
E — <D
>
o 0]
E 1 — / OE
=]
Q
N Open Drain, Slew Rate :l\ <] [O0-Pin
Von der Makrozelle
OF
IN Out
Open Drain, Slew Rate
programmierbarer programmierbarer
Multiplexer Buffer

Bild 14-21 IO-Steuerung der CPLD MAX 3000A-Familie fiir einen [O-Pin.

14.9.4 Grofie der CPLD

Da die EEPROM-Technologie sehr viel mehr Platz auf dem Chip einnimmt als die RAM-
Technologie der FPGA sind CPLD tendenziell kleiner. In Tabelle 14-7 sind die Eigenschaften
der MAX 3000A-Familie aufgelistet.

212 14 Programmierbare Logikbausteine

Tabelle 14-7 MAX 3000A-Familie der Firma Altera.

Typ Anzahl Gatter Makrozellen | Ein- und Ausgénge
EPM3032A | 600 32 34

EPM3064A | 1250 64 66

EPM3128A | 2500 128 96

EPM3256A | 5000 256 158

EPM3512A | 10000 512 208

14.10 Gate-Arrays

Gate-Arrays sind ASIC, bei denen ein Array von Gates mit fester Geometrie vom Hersteller
angeboten wird (sog. master-slices). Nur die Verbindungsmetallisierungen werden vom Her-
steller kundenspezifisch strukturiert. Es werden Gate-Arrays bis zu einer Komplexitdt von
250000 Gates angeboten. Die Ausfiihrung erfolgt meistens in CMOS-Technologie.

Gate-Arrays kann man unterscheiden nach der verarbeiteten Signalform:

o digitale Gate-Arrays

e analoge Gate-Arrays

e gemischt digitale und analoge Gate-Arrays
oder nach der Struktur:

e Channelled Gate-Arrays (Die Verdrahtung verlduft in speziellen Kanilen)
e Sea-of Gates (Die Verdrahtung lauft auf den Matrixzellen)
Im Folgenden wird der Aufbau von Channelled Gate-Arrays beschrieben.

14.10.1 Aufbau von Channelled Gate-Arrays

Ein Gate-Array (Bild 14-22) besteht aus einer Matrix aus Matrixzellen, aus Peripheriezellen
und Sonderstrukturen. Dazwischen liegen Verdrahtungskanile. Ein Gate-Array kann mehrere
100 Pins haben.

o o o

LT
I
LT
Himm

HiEnnnn.

Bild 14-22 Struktur eines Gate-Arrays.

Verdrahtungskanal

| ___—Matrixzellen

HEnnN

RIRLEIRN

14.10 Gate-Arrays 213

Die alle gleich aufgebauten Matrixzellen (Bild 14-23) sind Zellen, die jeweils einige p- und n-
MOS Transistorpaare enthalten. Diese MOSFET sind zundchst nicht miteinander verbunden.
Das ist der Fall auf dem ,,Master*“-Chip. In diesem Zustand wird der Wafer beim Hersteller
vorrdtig gehalten. Kundenspezifisch kann dann durch eine oder mehrere Verdrahtungsebenen
eine Verschaltung durchgefiihrt werden. Damit kann aus einzelnen Matrixzellen z.B. ein
NAND-Gatter oder ein Flipflop entstehen. Es sind 1 bis 8 kundenspezifische Masken iiblich.
Mehr Verbindungsebenen helfen Chipflache zu sparen und verbessern die Geschwindigkeit.

p-Kanal n-Kanal

—

}

[El O

O
=]

O

ENEAENE
(o]l | [Tl | [©]] | [©]
(O] | o] | [T} | [E]
EENEYE
Bl @ Bl B
O] | [©]| | [} | [E]
(o] | [Tl | [O]] | [E]
@ﬁ{@@

(0 O

VDD VSS

Bild 14-23 Matrixzelle eines Gate-Arrays. Die anderen Matrixzellen schlieen sich unten und oben an.

p-Kanal n-Kanal

oa |
[El O

ARE R

[oF [oF O [oF
[ON [ON (BN (BN
S|
EEL

Bild 14-24 Elektrische Verbindungen der Matrixzelle aus Bild 14-23.

214 14 Programmierbare Logikbausteine

Mit einer weiteren kundenspezifischen Metallisierungsebene konnen nun bestimmte Biblio-
thekszellen gebildet werden. Diese Bibliothekszellen werden vom Hersteller durchgemessen
und genau simuliert. Der Kunde kann dann am Rechner das Symbol fiir die entsprechende
Bibliothekszelle (z.B. ein NAND-Gatter) abrufen und kann dies mit einem Simulationsmodell
verbinden. Aulerdem wird die Verbindungsmetallisierung festgehalten, so dass spiter automa-
tisch eine Maske generiert werden kann.

p-Kanal n-Kanal

K_A_\ f_A_\
[] []

g8 s e/ (g
X, B [Ta | [EE IE_IE EREE; o
»—2HE o | fELE |8 o] @ LBE— -

sFlElEER SIS

VDD VSS

Bild 14-25 Bibliothekszelle: NAND-Gatter mit 3 Eingéngen x, x, X, und dem Ausgang y.

Im Bild 14.25 ist als Beispiel die Bibliothekszelle eines NAND-Gatters mit 3 Eingédngen dar-
gestellt. Die kundenspezifische Verbindungsebene ist grau dargestellt. Ein Inverter z.B. wiirde
die Zelle nicht voll ausnutzen, da er nur 2 Transistoren bendtigt. Fiir einen Leistungstreiber
werden 2 weitere Transistoren parallel geschaltet.

e
Lk .
o
X0 — E_‘
X1 E_‘

Bild 14-26 Schaltbild der Bibliothekszelle in Bild 14-25: NAND-Gatter mit 3 Eingéngen x, x;, x, und
dem Ausgang y.

14.12 Vollkundendesign-ASICs 215

Die Peripheriezellen enthalten Leistungstreiber fiir die Verbindung zu den Pins. In der Regel ist
eine Peripheriezelle pro Pin vorgesehen. Durch die anwenderspezifische Verdrahtung kann die
Peripheriezelle als Eingang, Ausgang oder als bidirektionale Schnittstelle geschaltet werden.

Die Sonderstrukturen enthalten z.B. das ,,process control module” (PCM), Justiermarken, die
Chipbezeichnung und die Versionsnummer. In den Verdrahtungskanilen liegt die Verbin-
dungsmetallisierung zwischen den einzelnen Gattern.

Komplexe ASICs lassen sich nur durch den Einsatz von computergestiitzen Entwicklungs-
werkzeugen kostengiinstig produzieren. Die Entwicklung erfolgt in der Regel auf kundeneige-
nen Workstations oder zunehmend auch auf PCs. Der Vorteil der Gate-Arrays liegt in der Tat-
sache, dass der Hersteller Bibliotheken bereithélt, in denen er getestete Verschaltungen von
Matrixzellen gesammelt hat, die z.B. einzelne Gatter (wie SSI), Multiplexer (MSI) und kleinere
Mikroprozessoren (LSI) enthalten. Der Anwender kann aus diesen Bibliothekszellen eigene
Entwiirfe erstellen und sich durch das prdzise Modell darauf verlassen, dass die Schaltung
(fast) immer sofort funktioniert.

14.11 Standardzellen-ASIC

Standardzellen-ASICs besitzen mehr Freiheitsgrade als Gate-Arrays. Thre besonderen Kennzei-
chen sind:
Die Weite der Standardzellen ist beliebig, nur die Hohe liegt fest.
Der Inhalt der Zellen ist beliebig.
Analoge Funktionen sind moglich.
Die Verdrahtungskanile sind beziiglich ihrer Abmessungen kundenspezifisch.
Sonderfunktionen: ROM, RAM in spezieller Technologie werden angeboten.
Alle Masken sind kundenspezifisch.
e Die ChipgroBe ist kundenspezifisch.
Die Vor- und Nachteile von Standardzellen-ASIC sind:

e Die Integrationsdichte ist hoher als bei Gate-Arrays, die Kosten pro Chip sind daher
geringer.

e Entwicklungskosten und Entwicklungszeit sind hoher als bei Gate-Arrays, daher kon-
nen Standardzellen-ASIC erst ab einer Stiickzahl von etwa 30 000 Stiick pro Jahr ren-
tabel sein.

e Es wird vom Hersteller Software fiir getestete Bibliothekszellen geliefert.

e Die Lieferzeiten sind grofer als bei Gate-Arrays.

In Standardzellen-ASIC wird die Struktur der Bibliothekszellen nicht einem allgemeinen
Schema angepasst, sondern den speziellen Erfordernissen der Bibliothekszelle. Daher wird eine
geringere Chip-Flache belegt als bei einem Gate-Array. Alternativ kann man auch die Ge-
schwindigkeit optimieren.

14.12 Vollkundendesign-ASICs

Vollkundendesign-ASIC unterscheiden sich nicht von normalen Standard-IC. Beim Design
stehen dem Entwickler alle Freiheitsgrade offen. Der Hersteller bietet nur Entwurfswerkzeuge
an, die auf die Eigenschaften des Herstellungsprozesses zugeschnitten sind.

216 14 Programmierbare Logikbausteine

14.13 Ubungen

Aufgabe 14.1

Beschreiben Sie die Unterschiede von programmierbaren Logik-IC, Gate-Arrays und Vollkun-
den-IC beziiglich Entwicklungsaufwand, Kosten pro Chip sowie erreichbarer Komplexitét.

Aufgabe 14.2

Die 3 booleschen Funktionen fy, fi, f; sollen mit einer PLA realisiert werden. Kennzeichnen
Sie im untenstehenden Schema die ndtigen Verbindungen mit Punkten und bezeichnen Sie die
Anschliisse der PLA.

fo(a,b,c,d) = ad v —a—bcd
fi(a,b,c,d) = —ab—cd v abcd v a—bcd
fy(a,b,c,d)y=—((aVv b v —c)(—c Vv d)(—a Vv cVv —d))

Xo

X1

X3

15
o

[>1] f
i
>1 f,
[>1] £,

Aufgabe 14.3

Die 2 booleschen Funktionen f, und f; sollen mit einer PAL realisiert werden. Kennzeichnen
Sie die nétigen Verbindungen mit Punkten und bezeichnen Sie die Anschliisse.

fo(a,b,c,d) = —a—b—c—d v ab—c—d v a—b—c—d v —ab—cd v —a—bcd v —abcd
fl(a,b,c,d) = —a—b—c—d v ab—cd v —a—bcd v —abc—d

X0 X1 X2 X3

Bl

fo

21

HEEEEEEE

7H|—| Juiin

®

Check for
updates

15 VHDL

15.1 Entwurfsverfahren fiir digitale Schaltungen

Zur Entwicklung digitaler Schaltungen stehen heute eine Vielzahl verschiedener Entwurfs-
werkzeuge zur Verfiigung. Sie sind eine unerlissliche Voraussetzung fiir den Entwurf komple-
xer Schaltungen. So konnten sich ASIC nur auf dem Markt durchsetzen, weil leistungsfahige
Software fiir ihren Entwurf vorhanden war. Es gibt eine Vielzahl verschiedener Sprachen fiir
die Entwicklung von Hardware. Man unterscheidet zwischen Architektur-unabhéngigen und
Architektur-abhdngigen Sprachen:

e Architektur-unabhéingige Sprachen konnen fiir das Design von ASIC verschiedener Her-
steller verwendet werden. Sie haben prinzipiell den Nachteil, dass die Unterstiitzung neuer
ASIC-Typen erst verzogert angeboten wird. Der Vorteil liegt sicher darin, dass man einfa-
cher ein Design von einem Baustein auf einen anderen transferieren kann. Auflerdem ist
kein zusétzlicher Schulungsaufwand bei einem Wechsel des ASIC nétig.

e Architektur-spezifische Software. Viele Hersteller bieten spezielle Software fiir die Ent-
wicklung ihrer Hardware an. Ein Wechsel des ASIC-Herstellers ist oft mit Problemen ver-
bunden.

Das logische Design von Digitalschaltungen wurde in der Vergangenheit im Wesentlichen mit
grafischen Entwurfswerkzeugen durchgefiihrt, mit der so genannten schematischen Schal-
tungseingabe. Dabei werden zunéchst aus einzelnen Gattern einfache Module erzeugt, die dann
zu komplexeren Modulen zusammengesetzt werden, bis das gewiinschte System fertiggestellt
ist. Man spricht hier von einem Bottom-Up-Entwurf. Der Nachteil dieses Verfahrens ist, dass
der Entwurf bei komplexen Systemen sehr uniibersichtlich wird und es somit sehr schwierig
zu liberblicken ist, ob der Entwurf die gewiinschten Anforderungen erfiillt.

Die heute immer mehr gewéhlte Alternative zur schematischen Schaltungsentwicklung ist die
Verwendung von Hardware-beschreibenden Sprachen (Hardware-Description Language
HDL). Der Top-Down-Entwurf wird mit diesen HDL-Entwurfswerkzeugen mdglich, denn sie
konnen ein System in mehreren Abstraktionsebenen beschreiben. Man beginnt mit der Be-
schreibung des Systems auf einer hohen abstrakten Ebene, die durch das Anforderungsprofil
der Schaltung vorgegeben wird. Dieser Entwurf wird dann immer mehr konkretisiert, bis man
bei einer Beschreibung angelangt ist, die sich direkt in Hardware umsetzen lédsst. Die heutigen
Synthesewerkzeuge konnen aus einer Verhaltensbeschreibung einer Schaltung direkt eine
Hardware-Realisierung der Schaltung erzeugen. Wichtig ist auch, dass das komplette System
in allen Abstraktionsebenen simulierbar ist, so dass das Testen des Systems in einem frithen
Stadium des Entwurfs moglich ist.

Hier wird die Sprache VHDL vorgestellt (VHSICHDL (VHSIC = Very High Speed In-
tegrated Circuit)). Sie wurde im Jahr 1987 als IEEE Standard eingefiihrt (IEEE Std 1076-
1987). 1993 wurden einige Ergdnzungen hinzugefiigt (IEEE Std 1076-1993). Durch die Nor-
mung wird die Wiederverwendbarkeit von Code erleichtert. VHDL ist eine technologie-
unabhéngige Beschreibung, die den Top-Down- und den Bottom-Up-Entwurf gleichermaf3en
ermdglicht. Die objektorientierte Programmiersprache VHDL besitzt Konstrukte fiir die hierar-
chische Gliederung eines Entwurfs. Dieses Kapitel erlaubt einen kleinen Einblick in die Nut-
zung von VHDL fiir die Synthese von Digitalschaltungen. Der gesamte Sprachumfang von
VHDL ist jedoch viel grofer.

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018
K. Fricke, Digitaltechnik, https://doi.org/10.1007/978-3-658-21066-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-21066-3_15&domain=pdf

218 15 VHDL

15.2 Die Struktur von VHDL

Eine VHDL-Beschreibung besteht aus einem VHDL-File mit verschiedenen Design-Einheiten
(Design-Units):

e In der Design-Einheit Entity wird die Schnittstellenbeschreibung eines Schaltungs-
teils definiert. Sie ist eine Blackbox, deren Inhalt aus der Architecture besteht.

e Inder Architecture wird die Funktion der Schaltung beschrieben.

e Die Configuration definiert die Zuordnung von Entity und Architecture, wenn es
mehrere Architectures zu einer Entity gibt. Sie wird hier nicht niher erldutert.

e In der Package Declaration und dem Package Body werden wichtige, oft gebrauchte
Funktionen, Komponenten, Konstanten und Datentypen definiert.

Einige allgemeine Hinweise:
Kommentare werden in VHDL durch zwei Minuszeichen gekennzeichnet (--), der Rest der
Zeile wird bei der Compilierung nicht beachtet.
Es wird nicht nach GroB- und Kleinschreibung unterschieden. Es ist aber iiblich, VHDL-
Schliisselworter klein und Identifier groB zu schreiben. Hier werden VHDL-Schliisselworter
zusitzlich fett gedruckt. Namen und Identifier miissen mit einem Buchstaben beginnen. Da-
nach kdnnen Buchstaben, Zahlen und der Unterstrich () folgen. Viele Synthesewerkzeuge
begrenzen die Lange von Identifiern auf 32 Zeichen. Nach jeder Anweisung steht ein Apo-
stroph (;). Bei Aufzidhlungen steht in der Regel ein Komma.

15.3 Typen

Leitungen werden in VHDL durch Signale beschrieben, die deklariert werden miissen. Bei der
Deklaration werden Typ und Name des Signals festgelegt. Das kann im Wesentlichen an zwei
Stellen geschehen:
e In der Entity werden die Signale deklariert, die verschiedene Entities miteinander ver-
binden. Diese Signale dienen also als Verbindungsleitungen. Sie sind global definiert.
e In der Architecture werden Signale deklariert, die nur innerhalb dieser Umgebung ge-
braucht werden. Sie sind in der Architektur lokal sichtbar.
Alle verwendeten Typen miissen vorher deklariert werden. Dies kann auf verschiedene Weise
geschehen. Man kann vordefinierte Typen verwenden, die in die Sprache integriert sind. Wei-
terhin kann man Typen aus kommerziell erhiltlichen Packages (z. B. Library IEEE im Package
std logic 1164) verwenden oder sie selbst definieren. Die einfachen Datentypen, also die Ska-
lare, sind in VHDL denen in Programmiersprachen wie C vergleichbar. In Tabelle 15-1 sind
die in VHDL immer verfiigbaren, vordefinierten Typen aufgelistet.

Tabelle 15-1 In VHDL vordefinierte Typen.

Typ Beschreibung

boolean Werte: true und false

integer Bindrdarstellung: 2#101# , oktal 8#12# , hexadezimal 16#1F#
real [+|-1number.number[E[+|-lnumber]] Bsp.: 1.894E-3

character Standard-ASCII-Zeichensatz: '0'-'9"', 'a'-'z"', 'A'-'Z"'

bit Werte: '0' und '1"

15.3 Typen 219

Ein Digitalsignal kann im einfachsten Fall mit dem Signal-Typ bit beschrieben werden, der
das Verhalten zeigt, welches durch die boolesche Algebra vorgegeben ist. Die Elemente dieses
Typssind '0' und '1'. Sie werden in Apostroph eingeschlossen. Die Zuweisung von Signal-
pegeln erfolgt durch den Operator " <= ". Als Beispiel diec Zuweisung des Wertes 0 an das
Signal A: A <= '0'. Bei Zuweisungen miissen in VHDL generell die Typen der linken und
rechten Seite gleich sein. Also muss A in dem Beispiel auch vom Typ bit sein. Aufzdhlungs-
typen konnen durch die folgende Syntax definiert werden:

type FARBE is (Rot, Gelb, Blau);

Weitere Typen entstehen durch die Verwendung von Untertypen (subtype). Sie ermdglichen
eine Einschrinkung des Bereichs der vordefinierten Typen und werden durch folgende Syntax
definiert:

subtype KLEINE BUCHSTABEN is character 'a' to 'z';
subtype ZWEISTELLIGE ZAHLEN is integer 10 to 99;

Wie in anderen Programmiersprachen sind auch zusammengesetzte Typen moglich. Das sind
zum einen Arrays, die im Beispiel unten durch die Typen BYTE und MATRIX verdeutlicht
werden. Der Bereich des Indexes wird durch 7 downto 0 beschrieben, wodurch ein Byte
mit 8 Bit entsteht. Zum anderen sind Records mdglich. Das ist ein Datentyp, der aus verschie-
denen Typen zusammengesetzt ist. Im Beispiel des Typs ZAHL ist das Vorzeichen vom Typ
Bit und die beiden Ziffern sind vom Typ Integer.

type BYTE is array (7 downto 0) of bit; -- Array
type MATRIX is array (7 downto 0, 7 downto 0) of bit; -- Array
type ZAHL is -- Record

Vorzeichen : bit;

Zifferl: integer range 0 to 9;

Ziffer2: integer range 0 to 9;
end record;

Der Typ bit_vector ist ein Array von Elementen des Typs bit. Dieser Typ ist in VHDL
vordefiniert. Fiir die Wertzuweisung hat man zwei Alternativen:

A <= "0010" ;
A<= (IOI,IOI,I]_I,IOI);

Auch der Typ String, ein Array vom Typ Character istin VHDL vordefiniert.

Unter Verwendung eines bekannten Typs kdnnen dann Signale, Konstanten und die spéter
néher erlduterten Variablen definiert werden:

constant EIN: bit := '0';

variable ADDRESS, INDEX: integer;
signal WORD: bit wvector (7 downto 0);
signal ZAEHLER: integer range 10 to 99;

Die Konstantendefinition enthélt selbstverstéindlich eine Zuweisung, hier des Wertes 0. Die
beiden letzten Signaldefinitionen schrinken den verwendeten Zahlenbereich bzw. die Breite
des Vektors ein. Alternativ hitte man auch das Signal ZAEHLER unter Verwendung eines
Subtype deklarieren kénnen:

subtype ZWEISTELLIGE ZAHLEN is integer 10 to 99;
signal ZAEHLER: ZWEISTELLIGE ZAHLEN;

220 15 VHDL

15.4 Operatoren

Ausdriicke werden in VHDL mit den in der Tabelle 15-2 aufgefiihrten Operatoren gebildet. Die
Prioritdt der Operatoren wéchst von oben nach unten. Eine andere Reihenfolge muss durch

Klammerung deutlich gemacht werden.

Tabelle 15-2 Operatoren.

VHDL- Funktion Typ Operand 1 | Typ Operand 2 | Typ Ergebnis

Operator
Boolesche and anb bit, bit_vector, |wie Operand 1 | wie Operand 1
Operatoren or avb boolean

nand —(anb)

nor —(avb)

xor aexorb
Vergleichs- = a=b beliebig wie Operand 1 | boolean
Operatoren /= a =b

< a<b skalare Typen, | wie Operand 1

<= a<b diskrete Vekto-

> a>b ren

>= a=b
Schiebe- sll, srl |logisch bit, boolean integer wie Operand 1
Operatoren 575" sra | arithmetisch

rol, ror |rotieren
additiv- + atb integer, real wie Operand 1 | wie Operand 1
arithmetische [a_b
Operatoren

& a&b bit, bit_vector, |passend

susammen- | character,
setzen string

Vorzeichen- |+ +a integer, real - wie Operand 1
Operatoren [a
multiplikativ- | * a*b integer, real wie links wie Operand 1
arithmetische 7 a/b
Operatoren

mod adivb integer wie links

rem amodb
weitere * % a® integer, real integer wie Operand 1
Operatoren |abs |a| integer, real -

not —a bit, bit_vector, |-

boolean

15.5 Entity 221

Wenn man Operanden mit anderen als den in der Tabelle angegebenen Typen verwenden will,
hat man zwei Moglichkeiten. Durch die Verwendung von Packages werden diese Operationen
fiir weitere Typen mit Hilfe des ,,Overloading* moglich. Mit ,,Overloading™ ist hier die Mog-
lichkeit gemeint, verschiedene Typen mit den gleichen Operatoren zu verkniipfen. Alternativ
kann man Typen konvertieren, um einen Operator anwenden zu kdnnen. Diese Typkonvertie-
rungen werden auch in Packages zur Verfiigung gestellt.

15.5 Entity

In der Entity werden nur die Schnittstellen eines Schaltungsteils definiert. Die Funktionalitét
wird in einer oder mehreren dazugehdrigen Architekturen beschrieben. Eine vereinfachte Syn-
tax der Entity in der Backnus-Naur-Form [38] ist:

entity Entity Name is
[Generics]
[Ports]

end [Entity Name];

Die eckigen Klammern in der Backnus-Naur-Form bedeuten, dass das entsprechende Element
nicht oder einmal vorkommen darf. Die Verwendung von Generics und Ports wird im
folgenden Beispiel eines Addierers deutlich:

entity Addierer is
generic (width: integer) ;
port(A,B: in bit vector(l to width);
CIN: in bit;
F: out bit vector(l to width));
end Addierer;

Die Hauptaufgabe der Entity besteht in der Definition der Ports. Ports geben die Signale an,
mit denen die einzelnen Entities miteinander verbunden werden. Diese Signale sind aber auch
innerhalb der Entity und der dazugehorigen Architektur sichtbar. In obigem Beispiel werden
nach dem Schliisselwort port die Eingangssignale des Addierers A und B vom Typ
bit vector mit dem Modus in definiert. Es sind 4 verschiedene Modi entsprechend Tabel-
le 15-3 moglich.

Tabelle 15-3 Bedeutung der Modi in der Port-Definition der Entity.

Modus Funktion Verwendung in Zuweisungen innerhalb der
dazugehdrigen Architektur

in Eingang nur auf der rechten Seite von Zuweisungen

out Ausgang nur auf der linken Seite

inout bidirektionaler Port kann beliebig im Code benutzt werden

buffer Ausgang einmal links, beliebig oft auf der rechten Seite

Die Breite der Eingangsvektoren wird durch den Ausdruck (1 to width) beschrieben,
wobei width ein Generic ist, der den hochsten Index festlegt. Generics sind Konstanten, die
an anderer, oft zentraler Stelle des Codes festgelegt werden. Dadurch ist es mdglich, universel-
leren Code zu schreiben.

222 15 VHDL

15.6 Architecture

Die Architecture ist eine Umgebung fiir nebenlédufige Anweisungen. Sie sind gleichzeitig wirk-
sam, wie es fiir eine Digitalschaltung typisch ist. So kénnen zum Beispiel die in Bild 15-1
gezeigten nebenldufigen Signalzuweisungen in der daneben stehenden Schaltung resultieren.
Die beiden Zuweisungen sind gleichzeitig aktiv und werden nicht wie in anderen Program-
miersprachen sequentiell verarbeitet. Daher ist auch die Reihenfolge im Code beliebig. Dieses

Verhalten wird mit nebenlaufig bezeichnet.
—

&
.

E <= not ((A and B) and C)
F <= (B and C) and D

g Q w >

Bild 15-1 Beispiel fiir nebenldufige Signalzuweisungen und daraus generierte Hardware.

Eine Architecture wird vereinfacht in folgender Syntax beschrieben:

architecture Architecture Name of Entity Name is
[Typ Deklaration]
[Subtype Deklaration]
[Konstanten Deklaration]
[Signal Deklaration]
[Komponenten Deklaration]
begin
[Nebenldufige Anweisungen]
end [Architecture Name] ;

Architecture Name ist ein frei wéhlbarer Name der Architektur, die der Entity Enti-
ty Name zugeordnet wird. Alle Architekturen, die zu einer Entity gehoren, miissen verschie-
dene Namen haben. Architekturen verschiedener Entities konnen gleiche Namen haben. Eine
Architektur besteht aus einem Deklarationsteil, in dem lokale Signale, Typen, Subtypen, Kon-
stanten und Komponenten deklariert werden konnen. Die Deklaration von Typen, Subtypen
und Signalen wurde in Kapitel 15.3 beschrieben.

Die Schaltungsfunktion steht in den nebenldufigen Anweisungen. Die wichtigsten nebenldufi-
gen Anweisungen fiir Verhaltensbeschreibungen sind in Tabelle 15-4 zusammengefasst. An-
weisungen, die in Strukturbeschreibungen verwendet werden, sind ebenfalls nebenldufige An-
weisungen. Sie werden weiter unten im Kapitel 15.8 beschrieben. Verhaltensbeschreibung und
Strukturbeschreibung sind unterschiedliche Stile, in denen Schaltungen beschrieben und ent-
worfen werden konnen.

Wie der Name sagt, wird in der Verhaltensbeschreibung eine Schaltung durch ihr Verhalten
charakterisiert. Die Synthese der realen Schaltung {iberldsst man den automatischen Entwurfs-
werkzeugen. Dagegen wird in der Strukturbeschreibung die Schaltung in ihrer Struktur vom
Entwickler fest vorgegeben.

Als Beispiel fiir eine Verhaltensbeschreibung wird im Folgenden der Code fiir einen Multiple-
xer gezeigt. In der Entity wird die Schnittstellenbeschreibung fiir die Eingéinge X0, X1, den
Selektions-Eingang SEL und den Ausgang Y durchgefiihrt. Die Funktion wird in der Architek-

15.7 Prozesse

223

tur mit dem Namen VERHALTEN beschrieben. Sie besteht im Wesentlichen aus der bedingten
Signalzuweisung, in der der durch SEL ausgewdhlte Eingang auf den Ausgang Y durchge-

schaltet wird.

entity MUX is
port (X0, X1, SEL: in bit; Y : out bit);
end MUX;

architecture VERHALTEN of MUX is
begin
Y <= X0 when SEL '0' else
X1 when SEL = '1';
end VERHALTEN;

Tabelle 15-4 Nebenldufige Anweisungen fiir die Verhaltensbeschreibung.

Nebenldufige Anweisung Beispiel

Signalzuweisung Z <= A and B;

Bedingte Signalzuweisung: Zugewiesen wird,|Z <= A when (X = 0) else

wenn die Bedingung, die nach when steht, wahr B when (X = 1) else

ist. Die folgenden else-Zweige werden nicht C;

mehr durchlaufen. Schachtelungen sind moglich.

Selektive Signalzuweisung: Der Wert von SEL [with SEL select

(Typ bit_vector) bestimmt, welche Zuwei- Z <= A when ('0','0'),

sung wirksam wird. Die Alternativen miissen B when ('0','1'),

sich ausschlieBen. C when ('1','0'),
D when ('1','1");

Prozessanweisung: Umgebung fiir sequentielle | Label: process (A,B)

Anweisungen. Wenn sich eines der Signale A variable TEMP integer;

oder B in der Sensitivity-List dndert, werden die | begin

sequentiellen Anweisungen der Reihe nach aus- [Sequentielle Anweisungen]

gefiihrt. Im Prozess sind Variablendeklarationen | end process;

moglich (siehe nédchstes Kapitel).

15.7 Prozesse

Ein Prozess ist eine nebenldufige Anweisung. Mehrere Prozesse in einer Architektur sind also
gleichzeitig aktiv. Innerhalb eines Prozesses werden aber Anweisungen nacheinander, also

sequentiell bearbeitet. Die Syntax der Prozessumgebung ist:

[Label:] process|[(Sensitivity List)]
[Typ Deklaration]
[Subtype Deklaration]
[Konstanten Deklaration]
[Variablen Deklaration]

begin
[Sequentielle Anweisungen]

end process;

224 15 VHDL

Es gibt 2 Alternativen, um das zeitliche Verhalten eines Prozesses zu steuern:

e mit der Sensitivity-List: Die Sensitivity-List ist eine Liste von durch Kommata getrennten
Signalen z.B. (CLK, D1, D2). Die sequenticllen Anweisungen werden beim Simulati-
onsbeginn einmal bis zu end process durchgefiihrt. Dann wird der Prozess unterbro-
chen, bis sich eines der in der Sensitivity-List stehenden Signale dndert, worauf der Ablauf
von neuem beim Schliisselwort begin beginnt.

e Mit Hilfe von einer oder mehreren Wait-Anweisungen. Die sequentiellen Anweisungen
werden der Reihe nach ausgefiihrt, bis eine Wait-Anweisung erreicht wird. Dann wartet
der Prozess solange, bis die in der Wait-Anweisung gegebene Bedingung erfiillt ist. Da-
rauf werden die folgenden sequenticllen Anweisungen weiter ausgefithrt. Wenn das Ende
des Prozesses erreicht ist, wird wieder von vorne begonnen.

Alle Prozesse konnen entweder mit einer Sensitivity-List oder mit Wait-Anweisungen ge-

schrieben werden. In Tabelle 15-5 sind die beiden Mdglichkeiten gegeniibergestellt:

Tabelle 15-5 Zwei gleichwertige Alternativen fiir die Ablaufsteuerung eines Prozesses.

Prozess mit Sensitivity List

Prozess mit Wait-Anweisung

process (A, B)
begin
C <= A and B;

end process;

process
begin
C <= A and B;
wait on A, B;

end process;

Im Deklarationsteil der Prozessanweisung konnen Typen, Konstanten und Variablen deklariert
werden. Dagegen ist eine Signaldefinition in der Prozess-Umgebung nicht moglich. Signale
miissen in der {ibergeordneten Architektur deklariert werden. Sie sind in Prozessen innerhalb
der Architektur sichtbar. Innerhalb von Prozessen nehmen Signale ihren neuen Wert nicht
schon bei der Zuweisung an, sondern erst, wenn der Prozess in einen Wartezustand geht. War-
tezustdnde werden, wie oben beschrieben, durch die Sensitivity-List oder durch eine Wait-
Anweisung erzeugt. Auch zwei oder mehrere Zuweisungen an das gleiche Signal sind erlaubt.
Dann werden alle bis auf die letzte iiberschrieben. Im folgenden Beispiel wird daher die erste
Zuweisung durch die zweite unwirksam, so dass Z den Wert von D bekommt.

Z <= A and B;
Z <= D;

In Prozessen konnen Variablen deklariert und initialisiert werden. Sie sind innerhalb des Pro-
zesses lokal zu verwenden. Sie haben wie Signale einen Typ. Sie unterscheiden sich von ihnen
aber durch ihr zeitliches Verhalten: Nach einer Zuweisung nimmt die Variable sofort ihren
neuen Wert an. Die Zuweisung einer Variablen wird durch das Zeichen := verdeutlicht, im
Gegensatz zu <= bei Signalen.

C := B
B := A;
A := C;

In diesem Beispiel werden durch die sofort erfolgende Wertzuweisung die urspriinglichen
Werte der Variablen A und B vertauscht.

Mit den in Tabelle 15-6 aufgelisteten sequentiellen Anweisungen wird die Funktionalitit von
Prozessen beschrieben.

15.7 Prozesse 225

Tabelle 15-6 Sequentielle Anweisungen.

Sequentielle Anweisung Beispiel
Signalzuweisung Z <= A and Bj;
Variablenzuweisung Z := A and B;
Wait-Anweisung wait on A,B;

Nur in Prozessen ohne Sensitivity-List. wait until A = Bj;

wait on: Warten bis sich A oder B dndert
wait until: Bis die Bedingung wahr wird

If-elsif-else-Anweisung if A = 'l' then F <= X;
Kann mehrfach geschachtelt werden. elsif B = 'l' then F <= Y;
else F <= Z;
end if;
Case-Anweisung case B is
Alle Fille miissen aufgezahlt werden. when "00" => Y := 'l"';
when "01" => Y := '0"';
when "10" => Y := '1';
when "11" => Y := '1';
end case;
for-loop for I in 7 downto 0 loop;
fiir parallele Hardware. Laufvariable: in der C(I) := A(I) and B(I);

Loop-Anweisung lokal, muss nicht dekla- |end loop;
riert werden, Zuweisungen nicht erlaubt.

while-loop variable I: integer:= 0
Laufvariable: muss deklariert werden, while I<8 loop
Zuweisungen moglich. OUT(I) <= 1IN(I);
I := 1 +1;
end loop;

Als Beispiel fiir eine sequentielle Schaltungsbeschreibung wird hier der Code fiir ein synchro-
nes Schaltwerk gezeigt. Es ist die gleiche Aufgabenstellung wie die Ampelsteuerung im Kapi-
tel 8.2. Allerdings wurde ein Eingang RESET ergénzt, mit dem man das Schaltwerk in den
Zustand S1 (nur Rot brennt) zuriicksetzen kann.

entity AMPEL is
port (RESET,CLOCK: in bit;
ROT, GELB, GRUEN: out bit);
end AMPEL;

architecture VERHALTEN of AMPEL is
type STATE TYPE is (S1, S2, S3, S4);
signal CS, NS: STATE TYPE;

begin
ZUSTANDSSPEICHER: process (CLOCK, RESET)
begin
if (RESET='1l') then CS <= S1;
elsif (CLOCK'event and CLOCK = '1l') then CS <= NS;
end if;

end process;

226 15 VHDL

SCHALTNETZ: process (CS)
begin
case CS is
when S1 => NS <= S2;
ROT <= '1'; GELB <= '0O'; GRUEN <= '0';
when S2 => NS <= S3;
ROT <= '1'; GELB <= '1l'; GRUEN <= '0';
when S3 => NS <= S4;
ROT <= '0'; GELB <= '0'; GRUEN <= '1';
when S4 => NS <= S1;
ROT <= '0'; GELB <= '1l'; GRUEN <= '0';
end case;
end process;
end VERHALTEN;

Im Deklarationsteil der Architektur wird der Type STATE TYPE deklariert mit den 4 Zustén-
den S1 bis S4. Den beiden Signalen CS und NS wird dieser Typ zugeordnet. Diese Signale
entsprechen den Aus- und Eingéingen an den Zustandsregistern z” und z,"*".

In diesem Code werden 2 Prozesse verwendet. Im ersten Prozess mit dem Label
»ZUSTANDSSPEICHER® werden die Flipflops beschrieben. In einer if-else-elsif-Anweisung
wird im if-Zweig bei einem Reset der Zustand S1 eingestellt. Der elsif-Zweig enthélt das Attri-
but 'event, welches bewirkt, dass auf eine Flanke des Signals CLOCK gewartet wird. Zu-
sammen mit der Bedingung CLOCK = '1' wird so eine positive Flankensteuerung beschrie-
ben.

Im zweiten Prozess mit dem Label ,,SCHALTNETZ“ werden die Ubergiinge zwischen den
Zustinden S1 bis S4 definiert und die Ausgénge in den jeweiligen Zusténden festgelegt. Da es
sich um ein Moore-Schaltwerk handelt, ist dies leicht in einer einzigen Case-Anweisung mog-
lich. Man erkennt, dass beide Prozesse gleichzeitig aktiv sein miissen.

In Bild 15-2 ist die durch ein Synthese-Werkzeug generierte Schaltung zu sehen. Man erkennt,
dass 4 D-Flipflops verwendet werden, die zu einem Kreis verbunden sind. Beim Reset wird das
2. Flipflop gesetzt, die anderen werden zuriickgesetzt. Die 1 des gesetzten Flipflops wird dann
durch den Takt wie in einem Eimerkettenspeicher weitergereicht. Die Codierung der Ausgénge
kann dann einfach durch 2 ODER-Gatter durchgefiihrt werden.

>1 GELB
L_Zl ROT
1D 0 1D S 0Q 1D 0 1D 0
GRUEN
>C1 R >C1 >C1 R —>C1 R
CLK
RST - -

Bild 15-2 Generierte Hardware fiir die Verhaltensbeschreibung AMPEL.

15.8 Struktureller Entwurf 227

15.8 Struktureller Entwurf

Ein Entwurfsstil, bei dem die Schaltung aus hierarchisch gegliederten Komponenten zusam-
mengesetzt wird, nennt man strukturellen Entwurf. Dieser Stil kommt dem herkdmmlichen,
grafisch orientierten Entwurfsstil am nichsten. Man kennt dies vielleicht aus der Netzliste im
Netzwerkanalyseprogramm SPICE. Mit einer Netzliste werden Bausteine, in VHDL compo-
nent genannt, verdrahtet. Nebenldufige Anweisungen fiir den strukturellen Entwurf sind in
der Tabelle 15-7 aufgelistet.

Tabelle 15-7 Nebenldufige Anweisungen fiir den strukturellen Entwurf.

Nebenldufige Anweisung Beispiel

Komponenteninstanzierung Label: Component name
(struktureller Entwurf). Anschluss eines port map (local => actual,
Bausteins (Component). Die lokalen Ports local => actual);

(local) werden mit der dulleren Schaltung
(actuals) verbunden.

Generate-Statement Label: for I in 0 to 7 generate
(struktureller Entwurf). Erzeugung periodi- D _Flipflop port map

scher Strukturen. Es werden 8 Instanzen D(I), Q(I), CLK);

der Komponente D_Flipflop erzeugt. end generate;

Als Beispiel ist hier der strukturelle Code des gleichen Multiplexers gezeigt, der oben als Ver-
haltensbeschreibung prasentiert wurde. Die Entity ist daher identisch.

entity MUX is
port (X0, X1, SEL: in bit; Y: out bit);

end MUX;
architecture STRUKTUR of MUX is
signal A,B,C: bit;
component NO GATE

port (I: in bit; O: out bit);
end component;
component AND GATE

port (IO, Il: in bit; O: out bit);
end component;
component OR_GATE

port (IO, Il: in bit; O: out bit);
end component;
begin
Instl: NO_GATE

port map (I => SEL, O => A);
Inst2: AND Gate

port map (I0 => X0, Il => A, O => B);
Inst3: AND Gate

port map (I0 => X1, Il => SEL, O => C);
Inst4: OR _GATE

port map (I0 => b, Il => C, O => Y);
end STRUKTUR;

228 15 VHDL

Im Code fiir den Multiplexer werden im Deklarationsteil der Architektur zunichst die internen
Signale A, B und C deklariert. AnschlieBend stehen die Deklarationen der 3 Komponenten
NO_GATE, AND GATE und OR_GATE. Die Architekturen fiir diese Komponenten kdnnen an
anderer Stelle stehen. Nach dem Schliisselwort begin folgen die nebenldufigen Anweisungen,
die aus 3 Komponenten-Instanzierungen bestechen. Neben dem Namen der entsprechenden
Komponente enthalten sie eine port map, in der die Tore zugeordnet werden. Die generierte
Hardware mit den entsprechenden Verbindungen ist in Bild 15-3 gezeigt.

SEL NO-GATE A —1T0 0 I0 O f—Y
I o_| AND-GATE B |NOR-GATE
X0 I1 JTI:L
X1 10 0
AND-GATE
T1

Bild 15-3 Generierte Hardware fiir den strukturellen Code MUX.

15.9 Busse

Auch Bussysteme, die mit Tristate-Gattern arbeiten, konnen in VHDL modelliert werden. Das
Problem ist, dass bei Bussen mehrere Treiber-Ausginge auf ein Signal wirken. Es gibt also
mehr als eine Zuweisung auf ein Signal. Man benétigt fiir die Losung dieses Problems ein
mehrwertiges Logiksystem. Es bietet sich an, die in der Package STD LOGIC_ 1164 enthal-
tenen Datentypen std_logic und std logic_ vector zu verwenden. Das sind 9-wertige
Datentypen, die besser das Verhalten einer realen Digitalschaltung beschreiben, als das 2-
wertige System bit und bit vector (Tabelle 15-8). Es sind in diesen Datentypen Werte
fiir einen hochohmigen Ausgang und fiir nicht initialisierte Zustdnde von Flipflops vorhanden.
AuBlerdem gibt es schwache, das heif3t iiber einen Widerstand anliegende digitale Werte 0 und
1. Diese werden durch eine erzwungene 1 und 0 {iberschrieben.

Tabelle 15-8 Logiksystem std_logic in der Package STD LOGIC_ 1164.

Wert | Beschreibung Wert Beschreibung

'yt nicht initialisiert "W schwach unbekannt
'X! erzwungen unbekannt 'L schwache 0

'o’ erzwungene 0 'H' schwache 1

'y erzwungene 1 ' Don’t care

A hochohmig

Wie wird nun mit bei einer doppelten Wertzuweisung auf ein Bus-Signal umgegangen? Die
Antwort liegt in einer Auflosungsfunktion, mit der der endgiiltige Wert auf dem Bus berechnet
wird. Diese Auflosungsfunktion ist hier fiir 2 Signale A und B dargestellt. Sie ist ebenfalls in

15.9 Busse

229

der Package STD LOGIC_ 1164 enthalten. Man erkennt zum Beispiel, dass, wenn ein Signal
hochohmig 'Z' ist, das andere Signal durchgeschaltet wird.

Tabelle 15-9 Auflosungsfunktion fiir den Datentyp std_logic.

Signal A

gt [ox [ror [[z [owe [Ry [
wrlor o o o [o o [o [o o
x o xe xe oxe oxe rxe [x| x| e
or[rur[x o [xr o [ror [ror [o | ke
o [T x| e a rxe
g [z o [x o[z W n rE e
a [wlox o[w [rw [owe [we [rxe
o xe o [[[we [[we [xe
H [[xe o [[E [we [[R [xe
o xe xe oxe xe rxe [rxe [x| e

Als Beispiel fiir einen bidirektionalen Bus wird hier die VHDL-Beschreibung eines Schnittstel-

lenbausteins gezeigt, die

die

STD LOGIC 1164 verwendet.

library IEEE;

use IEEE.std logic_1164.all;

entity TRI BUS is

beschriebene

port (SEND, OEN: in std logic;
std logic;

RECEIVE: out
BUS: inout std logic;

end TRISTATEBUS;

architecture VERHALTEN of TRI BUS is

begin
process (OEN, SEND, BUS)
begin
RECEIVE <= BUS;
if (OEN = '1")

end if;
end process;
end VERHALTEN;

then BUS <= SEND;
else BUS <= 'Z';

Auflosungsfunktion

aus

der

Package

230 15 VHDL

SEND »>+—11 1V BUS
'
1
RECEIVE _q
1
1

Bild 15-4 Schaltung des Schnittstellenbausteins.

Die Bibliothek wird mit den ersten beiden Zeilen vor der Entity eingebunden. Damit ist der
Typ auch in der zugehdrigen Architektur bekannt. Das Bus-Signal ist mit dem Modus inout
deklariert, so dass man auf den Bus schreiben als auch von ithm lesen kann. In der Architektur
wird dem Signal BUS, je nach dem Wert des Signals Output Enable OEN der Wert des Signals
SEND oder das fiir einen hochohmigen Ausgang stehende 'Z' zugewiesen. Der Typ
std_logic wird sehr hiufig fiir Digitalsignale verwendet. Die Schaltung ist in Bild 15-4
verdeutlicht.

15.10 Ubungen

Aufgabe 1: Welche Aufgaben haben Entity und Architecture in einer VHDL-Beschreibung?

Aufgabe 2: Welche Werte haben die Variablen C und D sowie die Signale A und B nach dem
folgenden Code, der sich in einem Prozess befindet?

C := D;
D := C;
A <= B;
B <= A;
Aufgabe 3:

a) An welcher Stelle steht der Deklarationsteil in einem Prozess?
b) Zwischen welchen Schliisselwortern steht der Deklarationsteil in einer Architektur?

Aufgabe 4: Geben Sie die boolesche Gleichung an, die durch den folgenden Code beschrieben
wird. Alle Signale sind vom Typ bit.

process (A,B,X,Y,Z)

begin
if A = '1l' then F <= X;
elsif B = '1l' then F <= Y;
else F <= Z;
end if;

end process;

®

Check for
updates

16 Mikroprozessoren

16.1 Prinzip kooperierender Schaltwerke

Schaltwerke mit sehr vielen inneren Zusténden, die zusétzlich von einer Vielzahl von Eingén-
gen abhingig sind, konnen mit den bisher gezeigten Methoden nur schwer entwickelt werden.
Die Schwierigkeit liegt im groBen Umfang der benétigten Zustandsfolgetabelle. Prinzipiell
konnen daher mit dem besprochenen Entwurfsverfahren nur einfache Schaltwerke konzipiert
werden.

Eine Losungsmoglichkeit des Problems sind kooperierende Schaltwerke, bei denen man das
Schaltwerk in ein Operationswerk und ein Leitwerk aufteilt. Diese konnen dann getrennt ent-
wickelt werden. In Bild 16-1 ist eine derartige Struktur dargestellt. Das Operationswerk kann
mit dem Steuerbus s; so konfiguriert werden, wie es der jeweiligen Aufgabe entspricht. So
kann zum Beispiel die in Kapitel 12.5 behandelte ALU als ein einfaches Operationswerk ver-
standen werden. Der Zustandsbus z; gibt Informationen iiber die Ergebnisse aus dem Operati-
onswerk an das Leitwerk weiter.

Leitwerk

) z; Zustandsbus
Datenbus Steuerbus s; U ﬁ

Operationswerk

<::'1> ALU

Register

Bild 16-1 Aufbau eines kooperierenden Schaltwerks.

Operationswerke enthalten in der Regel eine arithmetisch-logische Einheit (ALU) sowie Regis-
ter zum Speichern der Variablen. Mit dem Operationswerk konnen daher eine Vielzahl von
Problemen bearbeitet werden. Das Leitwerk leistet die Koordinierung der im Operationswerk
durchzufiihrenden Operationen. Es kann zum Beispiel als Schaltwerk aufgebaut sein.

16.2 Der Von-Neumann-Rechner

Das Konzept des Von-Neumann-Rechners ist eine Erweiterung des oben dargestellten koope-
rierenden Schaltwerks. Der Von- Neumann-Rechner beinhaltet die Trennung des Schaltwerks
in ein Leit- und ein Operationswerk. Dariiber hinaus wird beim Von-Neumann-Rechner das
Leitwerk durch ein Software-Programm gesteuert, dass die Folge der Operationen enthélt.
Damit wird eine noch grofere Flexibilitét erreicht, da man durch die Wahl eines anderen Pro-
gramms ein anderes Problem bearbeiten kann. Das Programm wird, gemeinsam mit den vom
Operationswerk benétigten Daten, in einem Speicher gespeichert. Daher ist ein Bussystem

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018
K. Fricke, Digitaltechnik, https://doi.org/10.1007/978-3-658-21066-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-21066-3_16&domain=pdf

232 16 Mikroprozessoren

vorhanden, welches es erlaubt, die Daten und die Befehle des Programms aus dem Speicher zu
holen und Daten in den Speicher zu schreiben. Das Programm, welches vom Mikroprozessor
ausgefiihrt wird, heiflt Maschinenprogramm, die auszufiithrenden Befehle heilen Maschinenbe-
fehle. In der Praxis entsteht das Maschinenprogramm oft durch eine Ubersetzung aus dem
Assemblercode, der weiter unten beschrieben wird.

Das Prinzip des Von-Neumann-Rechners ist in Bild 16-2 dargestellt. Die Verbindung zwischen
den Baugruppen wird durch drei Busse hergestellt. Auf dem Datenbus werden die Daten und
die Befehle transportiert, der Adressbus gibt die Information weiter, wo die Daten und Befehle
im Speicher zu finden sind. Uber den Steuerbus werden Signale geleitet, die zum Beispiel den
Speicher zwischen Lesen (RD) und Schreiben (WR) umschalten. Die Begriffe Lesen und
Schreiben sind jeweils aus der Sicht des Mikroprozessors zu interpretieren. Auch das Taktsig-
nal, das dem gesamten Prozessor gemeinsam ist, gehort zum Steuerbus.

Leitwerk

Befehlsregister t

Steuerung

Operationswerk

ALU
Register

Datenbus Adressbus

Speicher

Daten <::

Befehle

Ein/Ausgabe
Drucker, Tastatur, j

Bildschirm

1 A

Bild 16-2 Grundstruktur eines Von-Neumann-Rechners. Der Steuerbus, der alle Bausteine miteinander
verbindet, ist nicht gezeigt.

Man hat mit dem Mikroprozessor einen Universalbaustein geschaffen, der mit Hilfe der Soft-
ware an viele Problemstellungen angepasst werden kann. Dadurch findet der Mikroprozessor
Anwendung in vielen Produkten. Im Folgenden werden die Baugruppen des Von-Neumann-
Rechners genauer besprochen. Der eigentliche Mikroprozessorchip beinhaltet in der Regel das
Leitwerk und das Operationswerk. Zusammen mit einem Speicher und den Baugruppen der
Ein- und Ausgabe bildet er einen Computer oder Rechner. Bei so genannten Mikrocontrollern
sind auf dem Chip zusitzlich die Speicher (RAM und ROM), Ein- und Ausgabeeinheiten und
oft auch Analog/Digitalwandler integriert.

16.2 Der Von-Neumann-Rechner 233

16.2.1 Operationswerk

Das Operationswerk beinhaltet in der Regel die ALU und einen Registerblock fiir die Speiche-
rung von Zwischenergebnissen, wie es bereits oben besprochen wurde. Die Architektur von
Operationswerken kann mehr oder weniger auf eine spezielle Anwendung zugeschnitten sein.
Der Von-Neumann-Rechner ist fiir nahezu alle arithmetisch-logisch orientierten Problemstel-
lungen geeignet, es gibt aber auch Operationswerke fiir eine spezielle Aufgabe. Zum Beispiel
gibt es Prozessoren, die fiir die Signalverarbeitung optimiert sind, so genannte Digitale Signal-
prozessoren (DSP = Digital Signal Processor). Sie eignen sich zum Beispiel dafiir, eine FFT
(Fast-Fourier-Transformation) effizient auszufiihren.

Ein typischer Aufbau fiir eine universelle Register-Arithmetik-Einheit ist in Bild 16-3 darge-
stellt. Sie besteht aus zwei Registern A und B. Das Register A wird oft als Akkumulator be-
zeichnet. Es nimmt einen der Operanden und in der Regel das Ergebnis der Operation auf.

Mit der dargestellten Einheit konnen logische Operationen, Addition und Subtraktion durchge-
fithrt werden. Fiir die Multiplikation und Division kann das Rechts-Links-Schieberegister ver-
wendet werden. Im Flag-Register werden Informationen iiber das Ergebnis der arithmetischen
Operationen festgehalten. So zeigt ein bestimmtes Bit im Flag-Register an, ob das Ergebnis
gleich 0 ist, ein anderes zeigt an, ob es einen Ubertrag (Carry) gab. Der Inhalt des Flag-
Registers kann als Bedingung fiir Programmverzweigungen verwendet werden.

Datenbus

CLK 1D 1D
>2C1 >>2C1

GzRegister A G2 Register B

\ 4

Steuerbus

Zustandsbus
Flag-
Register

Links-Rechts-
Schiebe-Register

A

Bild 16-3 Typische busorientierte Register-Arithmetik-Einheit.

Konstanten, die das Operationswerk fiir die Ausfiihrung arithmetischer Operationen benétigt,
konnen durch die Hardware festgelegt sein oder sie werden durch einen Teil des Steuerbusses
auf den Datenbus gegeben.

16.2.2 Leitwerk

Man unterscheidet zwischen Leitwerken, die als Schaltwerk aufgebaut sind und mikropro-
grammgesteuerten Leitwerken. Die ersteren sind schneller. Sie werden bevorzugt eingesetzt,
wenn nur eine geringe Anzahl von Befehlen realisiert werden muss. Dies trifft fiir RISC (re-
duced instruction set computer) zu. Mikroprogrammgesteuerte Leitwerke sind sehr flexibel, sie

234 16 Mikroprozessoren

konnen leicht an verschiedene Anwendungsfille angepasst werden. Auf der anderen Seite sind
sie langsamer, da der Befehl erst aus einem Speicher geholt werden muss.

Im Leitwerk werden Maschinen-Befehle verarbeitet. Sie bestehen in der Regel aus zwei Teilen,
dem Befehlscode (Operationscode oder Opcode) und einem oder mehreren Operanden. Der
Befehlscode sagt welche Operation durchgefiihrt werden soll, der Operand enthélt Daten oder
Adressen, unter denen Daten zu finden sind. Das Leitwerk eines Mikroprozessors besteht aus
den folgenden Komponenten:

Befehlsziihler (Program-Counter)

Der Befehlszéhler oder Program-Counter (PC) ist ein Register im Rechner, welches die Adres-
se des ndchsten auszufiihrenden Maschinen-Befehls enthdlt. Um einen Befehl aus dem Spei-
cher zu holen, wird der Inhalt des Befehlszihlers auf den Adressbus gelegt, worauf der Spei-
cher auf dem Datenbus den Befehlscode sendet. Nachdem der Operationscode eines Befehls
aus dem Speicher geholt wurde, wird der PC erhoht und zeigt dann auf den nichsten Befehl.

Befehlsregister

Im Befehlsregister wird der Maschinen-Befehl zwischengespeichert, nachdem er aus dem
Speicher geholt wurde.

Befehls-Decoder

Im Befehls-Decoder werden aus dem Maschinenbefehl die Steuerbefehle fiir die einzelnen
Register, die ALU sowie fiir die Bussteuerung abgeleitet.

Stack-Pointer

Mit Hilfe des Stack-Pointers wird der Stapel-Speicher (Stack) organisiert. Ein Stapelspeicher
ist ein Speicher, in dem Daten seriell der Reihe nach abgelegt werden wie auf einem Papiersta-
pel. Der Stack-Pointer (SP) speichert die Adresse des ersten freien Speicherplatzes iiber dem
letzten Datum, welches in den Stack geschrieben wurde. Wenn neue Daten in den Stack ge-
schrieben werden, wird der Stack-Pointer entsprechend veréndert, so dass er wieder auf den
néchsten freien Speicherplatz im Stack (TOS = Top of Stack) zeigt.

Interruptsteuerung

Ein Interrupt ist die Unterbrechung eines laufenden Programms, um auf externe oder interne
Ereignisse reagieren zu konnen. Das ist z.B. der Fall wenn der Prozessor vom Anwender zu-
riickgesetzt werden soll (Reset), wenn auf einer Tastatur ein Wert eingegeben wurde oder wenn
ein neues Datenwort an einer externen Schnittstelle anliegt. In der Interruptsteuerung werden
diese Interrupts, die auch gleichzeitig auftreten konnen, organisiert.

16.2.3 Speicher

Charakteristisch fiir einen Von-Neumann-Rechner ist, dass im Speicher sowohl Daten als auch
Programme gespeichert werden. Der Speicher setzt sich aus Bausteinen verschiedener Techno-
logien zusammen. Daten werden meist in einem RAM gespeichert, wenn sie gedndert werden
miissen. Das Betriebssystem oder Teile davon werden oft in einem ROM oder EEPROM ge-
speichert.

16.2.4 Ein- und Ausgabe

Ein- und Ausgabeeinheiten sind Peripheriegerite wie Drucker, Bildschirm, Datennetze, externe
Plattenlaufwerke, Tastatur, Maus usw.

16.3 Architektur des ATmegal6 235

16.2.5 Betrieb

Im normalen Betrieb wird der Befehl, dessen Adresse im Befehlszdhler steht, aus dem Speicher
geholt und dann ausgefiihrt. AnschlieBend wird die Adresse des ndchsten Befehls ermittelt.
Das ist im Normalfall die Adresse des Befehls der als nédchstes im Speicher steht. Anders wird
bei Sprungbefehlen vorgegangen. Hier wird die Adresse des Sprungziels in den Befehlszahler
geladen. Die Adresse des Sprungziels ist im Operanden des Sprungbefehls enthalten.

Der normale Betrieb mit fortwdhrendem Holen und Ausfiihren von Befehlen kann aber auch
unterbrochen werden. Dies ist notig, um dem Rechner von aulen Informationen mitzuteilen.
Beispiele hierfiir sind zum Beispiel bei Steuerungsrechnern, wenn sich ein Sensorsignal gedn-
dert hat, beim PC, wenn eine Taste auf der Tastatur betétigt wurde, oder bei der Steuerung
einer Waschmaschine, wenn der richtige Fiillstand erreicht wurde. Dann wird iiber eine spezi-
elle Leitung, die Interrupt-Leitung, ein Interrupt ausgelost. Er bewirkt, dass das normale Pro-
gramm unterbrochen wird und stattdessen eine spezielle Interrupt-Service-Routine (ISR) abge-
arbeitet wird, in der auf das durch den Interrupt signalisierte Ereignis reagiert wird. Danach
wird wieder der normale Betrieb aus Holen und Abarbeiten von Befehlen aufgenommen.

Die Ausfithrung von Befehlen und die Interrupt-Bearbeitung werden weiter unten detailliert
beschrieben.

16.3 Architektur des ATmegal6

Der Aufbau eines Mikroprozessors wird hier am Beispiel des weit verbreiteten Mikrocontrol-
lers ATmegal6 der Firma Atmel beschrieben [48]. Mikrocontroller sind spezielle Bausteine
fiir die Steuer- und Regelungsaufgaben, die neben einem Mikroprozessor die digitalen Speicher
(ROM, RAM, EEPROM) und auch spezielle Schnittstellen fiir In- und Output digitaler und
analoger Groflen auf einem Chip enthalten. Der ATmegal6 dient hier als ein Beispiel fiir einen
Mikroprozessor. Es stehen der grundlegende Aufbau und die Funktionsweise eines Mikropro-
zessors im Vordergrund. Es sollen darauf aufbauend die Grundziige der Assemblerprogram-
mierung vermittelt werden. Die umfangreichen Moglichkeiten eines Mikrocontrollers werden
nur kurz gestreift. Fiir die Nutzung dieser zusitzlichen Ressourcen wie digitale Ein- und Aus-
génge, Zeitgeber (Timer), AD-Wandler usw. wird daher auf die weitergehende Literatur ver-
wiesen [44-48].

Der ATmegal6 ist abweichend von der von Neumann-Architektur in einer Havard-Architektur
aufgebaut (Bild 16-4). In dieser Architektur sind Programm- und Datenspeicher getrennt und
durch eigene Busse mit dem Prozessor verbunden. Da nun das Holen eines Befehls gleichzeitig
mit dem Laden oder Speichern eines Datums erfolgen kann, arbeitet der Prozessor deutlich
schneller als ein Prozessor mit einer von Neumann-Architektur. Der ATmegal6 ist ein 8-Bit-
Prozessor, das heifit, dass der Datenbus 8Bit breit ist.

CPU

Programm- Datenbus(16) Datenbus(8) Daten-
speicher speicher
(Worte) (Bytes)

ATmegal6

Programm-Adressbus(13) Daten-Adressbus(16)

Bild 16-4 Havard-Architektur des ATmegal6.

|

236 16 Mikroprozessoren

Die Programme werden im Programmspeicher abgespeichert, wobei unter jedem Speicherplatz
ein Wort (16Bit) abgespeichert wird. Die Adressen des Programmspeichers sind 13Bit breit,
das entspricht einem adressierbaren Adressraum von 8K Worten. Der Programmspeicher ist als
nichtfliichtiger Flash-Speicher aufgebaut.

Die Betriebsspannung ist 2,7 — 5,5V. Da Mikrocontroller bevorzugt fiir Aufgaben in der Regel-
und Steuerungstechnik sowie in der Nachrichtentechnik eingesetzt werden, sind auf dem Chip
parallele und serielle Schnittstellen, fliichtige und nichtfliichtige Speicher integriert. Der AT-
megal6 hat auBerdem mehrere Timer und einen 8-Kanal-AD-Wandler mit 10Bit Aufldsung.
Mehrere Interrupts dienen der Reaktion auf externe Ereignisse. Der Prozessor kann maximal
mit 16MHz Taktfrequenz betrieben werden.

Der Aufbau des ATmegal6 ist in Bild 16-5 gezeigt. Man erkennt die folgenden Komponenten:

e Der Program-Counter, Befehlsregister, Befehlsdecoder und die Interrupt-Steuerung
bilden das Leitwerk. Die Interrupt-Steuerung ist verantwortlich fiir die Bearbeitung von
Interrupts. Der Registerblock, die ALU und das Flag-Register SREG ergeben das Opera-
tionswerk. Leitwerk und Operationswerk zusammen werden auch CPU (Central Proces-
sing Unit) genannt

e Der Programmspeicher ist in Flash-Technologie (Flash) aufgebaut. Er bietet Platz fiir
16KByte Programm.

e Das statische RAM (SRAM) mit 1KByte und das EEPROM mit 512Bytes sind die auf
dem Chip integrierten Speicher fiir Daten.

e Port A, Port B, Port C und Port D sind multifunktionale digitale Schnittstellen mit einer
Breite von jeweils 8Bit z.B. fiir die Kommunikation mit Sensoren und Aktoren. Die Funk-
tion dieser Anschliisse ist oft doppelt belegt.

e FEin 8-Kanal-10-Bit-AD-Wandler mit wahlweise symmetrischen und asymmetrischen
Eingéingen.

e Die seriellen Schnittstellen TWI (Two-Wire-Serial Interface) und SPI (Serielles Periphe-
rie-Interface) und USART (Universal Synchronous and Asynchronous Serial Receiver and
Transmitter) dienen dem Aufbau von Schnittstellen (z.B. RS 232 oder Kommunikation mit
anderen Prozessoren). Das 16-Bit-Timer-System dient der Ausfithrung von zeitlich defi-
nierten Vorgingen und entlastet so den Prozessor von Zeitmessaufgaben. Es besteht aus:

— Zeitgeber: Zwei 8Bit-Timer und ein 16Bit-Timer mit programmierbarem Vortei-
ler. Sie haben einen Output-Compare-Modus, um definierte digitale Ausgangs-
muster erzeugen zu kdnnen, wie sie zum Beispiel bei der Pulsweitenmodulation
benétigt werden und einen Input-Capture-Modus um externe Ereignisse mit ei-
nem Zeitstempel versehen zu kdnnen.

— Watchdog-Timer: Es gibt einen programmierbaren Watchdog-Timer, mit dem
der korrekte Ablauf des Programms iiberwacht werden kann.

— Timer-Interruptsteuerung: produziert Interrupts bei Timeriiberlauf, kann aber
auch genutzt werden, um periodisch Interrupts zu erzeugen.

16.3 Architektur des ATmegal6 237
i
i Datenbus 8Bit i
\ _
! PortD [&» PD7
1 l—— PD6
| v > PDS5
, Program- Daten- e~ PD4
i Counter speicher <:> - PD3
. PC SRAM = PD2
: + 1—l—>I PD1
i Prog?a}r]nm- Register- > PDO
speicher i
| Flash Block > Port B > PB7
! 32Bytes <« PB6
1
1 le—» PB5
g ¥ v > PB4
efehls-]
! Regist > PB3
: egister ' PB2
: v > PB1
\ Befehls- Flagregister > PBO
M decoder SREG !
: Port C DR]]:gg
! >
i e PC5
! Timer, <:> l—>» PC4
! Counter l—>» PC3
i le—— PC2
' Interner Watchdog- <:’\‘/ <—i—> PC1
H Oszillator Timer > PCO
! 1
i Interrupt- Port A > PA7
Vbp —— steuerung > PA6
: - PAS
1
Vss —> EEPROM <:> > PA4
| — > PA3
! > PA2
| > PAI
| SPI > PAO
! !
: !
1
—RESET ! »| Prozessor- i
i steuerung AD-Wandler 4—:— AVCC
1 1
XTAL1 L » Oszillator : : ‘_E_ AREF
XTAL2 — > |
! 1

Bild 16-5 Prinzipschaltbild des ATmegal6.

16.3.1 Anschliisse des ATmegal6
Der ATmegal6 hat die folgenden Anschliisse (Bild 16-6):

Vb, Vss
—RESET

XTALI, XTAL2

Versorgungsspannung und Erde

Mit einem Low kann der Prozessor in einen Grundzustand zuriickgesetzt

werden.

Anschliisse fiir den Schwingquarz

238 16 Mikroprozessoren

AVCC Versorgungsspannung fiir den Prozessor und den AD-Umsetzer, wird in
der Regel mit Vpp verbunden.

AREF Referenzspannung fiir den AD-Wandler

PA7-PAO, Port A

PB7-PBO0, Port B

PC7-PCO0, Port C

PD7-PDO, Port D

Universeller digitaler Ein- oder Ausgangs-Port A oder alternativ als Ein-
génge flir den AD-Wandler (ADC7-ADCO) verwendet.

Universeller digitaler Ein- oder Ausgangs-Port B, alternativ genutzt fiir:
e Signale fiir sericllen SPI-Bus (SCK, MOSI, MISO, —SS),

Eingang fiir den analogen Vergleicher AIN1 und AIN2,

Ausgang fiir Timer/Counter0 Output Compare Match OCO

Eingang fiir den Interrupt INT2

Eingang fiir die Timer T1 und TO

Universeller digitaler Ein- oder Ausgangs-Port C, alternativ genutzt fiir:

e Signale fiir den Timer (TOSCI und TOSC2),

e JTAG-Port fiir Boundary Scan und Debugging (TDI, DTO,
TMS, TCK)

e TWI-Bus (SDA und SCL)

Universeller digitaler Ein- oder Ausgangs-Port D, alternativ genutzt fiir:

e Ausgang fiir Timer/Counter2 Output Compare Match OC2

e Eingang fiir Timer/Counter1 Input Capture ICP1

e Ausginge fiir Timer/Counterl Output Compare Match A und B
(OC1A und OC1B)

e Signale fiir den USART (TXD und RXD),

e FEingang fiir die Interrupts INTO und INT1

(XCK/T0) PBO O | \—/ 40| PAO(ADCO)
(T1)PB1 =2 39 2 PAIl (ADC1)
(INT2/AINO) PB2] 3 38 2 PA2 (ADC2)
(OCO/AIN1) PB3] 4 37 3 PA3 (ADC3)
(—SS) PB4 5 36 3 PA4 (ADC4)
(MOSI) PB5] 6 35 3 PAS5 (ADCS)
(MISO) PB6 1 7 34 3 PA6 (ADCS6)
(SCK) PB7 3 8 33 |3 PA7 (ADC7)
—~RESET 9 32 B3 AREF
VCC = 10 31 = GND
GND] 11 30 = AVCC
XTAL2] 12 20 1 PC7 (TOSC2)
XTAL1 = 13 28 1 PC6 (TOSC1)
(RXD) PD0] 14 27 (3 PC5 (TDI)
(TXD)PD1] 15 26 2 PC4 (TDO)
(INTO) PD2 =] 16 25 3 PC3 (TMS)
(INT1) PD3 — 17 24 |1 PC2 (TCK)
(OC1B) PD4] 18 23 | PC1 (SDA)
(OC1A) PD5 = 19 22 =3 PCO (SCL)
(ICP1) PD6] 20 21 (& PD7 (OC2)

Bild 16-6 Anschliisse des ATmegal6 (PDIP-Package).

16.3 Architektur des ATmegal6 239

16.3.2 CPU-Register

Die CPU-Register, die in Bild 16-7 abgebildet sind, dienen im Wesentlichen der Speicherung
von Operanden und Adressen. Die meisten Befehle des ATmegal6 arbeiten mit dem Register-
satz 10 bis r31, in dem 8-Bit-Operanden gespeichert werden konnen. Die Register sind Ziel
oder Quelle fiir arithmetische Operationen und werden fiir die Adressierung bendétigt. Eine
besondere Rolle nehmen die Register r26, r27 und 128, 29 sowie r30, r31 ein, die paarweise die
Indexregister X, Y und Z ergeben. Sie sind vorzugsweise fiir die Speicherung von 16Bit-
Adressen vorgesehen. Durch ihre Breite von 16Bit konnen sie einen Adressraum von maximal
64K adressieren. Sie werden fiir eine besondere Adressierungsart verwendet, die indizierte
Adressierung. Das Register mit der niedrigeren Adresse speichert jeweils das Low-Byte, wih-
rend das Register mit der hoheren Adresse jeweils das High-Byte der Adresse speichert.

Zusétzlich besitzt der ATmegal6 64 Register (I/O-Register) zur Steuerung der Peripherie zu
der Timer, Ports, AD-Wandler und die Schnittstellen gehoren.

Bereits oben wurde der Programm-Zéhler (PC) erwéhnt, der eine Breite von 13Bit hat. Er ent-
hélt die Adresse des ndchsten auszufiihrenden Befehls. Er wird nach der Ausfiihrung eines
Befehls in der Regel um 1 erhoht. Ausnahme davon sind Sprungbefehle, die bewirken, dass das
Sprungziel in den PC geladen wird. Danach wird der Befehl am Sprungziel ausgefiihrt.

Der 16-Bit Stack-Pointer wird in ein Low-und ein High-Byte unterteilt. Er enthélt die Adresse
des obersten freien Platzes im Stack (Top of Stack, TOS). Register, die die Adresse eines Da-
tums enthalten, wie der Stack-Pointer oder der Befehlszihler, werden Pointer genannt.

7 0 Adr.
10 $00
rl $01
2 $02
3 $03
rl3 $0D
rl4 $OE
rl5 $OF
Registersatz rl6 $10
rl7 $11
126 $1A X-Register Low-Byte
27 $1B X-Register High-Byte
28 $1C Y-Register Low-Byte
29 $1D Y-Register High-Byte
r30 $1E Z-Register Low-Byte
31 $1F Z-Register High-Byte
7 0

Statusregister SREG | THS VN Z C

Bild 16-7 CPU-Register des ATmegal6

240 16 Mikroprozessoren

Das Status-Register SREG wird auch Flag-Register genannt. Es enthilt neben den Flags das I-
Bit, das fiir die Steuerung von Interrupts des Prozessors benétigt wird.

Bit Flag Beschreibung

0 C Carry-Flag: Carry oder Borrow vom MSB. Bei der Addition ist C = ¢, bei der Sub-
traktion ist C= —c,.

1 Z Zero. Das Zero-Flag wird gesetzt, wenn alle Bits des Ergebnisses gleich 0 sind.

2 N Negative. Dieses Bit ist dquivalent zu Bit 7 des Ergebnisses einer Operation.

3 'V Overflow. Uberlauf wie in Kapitel 2 dargestellt. Bedingung dafiir ist, dass c, # ¢,
gilt. V zeigt ein falsches Vorzeichen bei einer Zweierkomplement-Operation an.

Sign-Bit. Dieses Bit ergibt sich aus der Operation S=N <> V

N
w2

5 H Half Carry. Dieses Flag zeigt einen Ubertrag aus Bit 3 an. Es dient der BCD-
Arithmetik.

6 T Bit Copy Storage. Dieses Bit dient als Zwischenspeicher. Mit speziellen Befehlen,
die hier nicht weiter erldutert werden, kdnnen Bits aus dem Registerfile in das T-Bit
kopiert werden.

7 1 I-Bit. Mit diesem Bit kdnnen die Interrupts gesperrt werden.

16.3.3 Programm-Speicher

Der Programmspeicher (Bild 16.8) ist in Flash-Technologie aufgebaut. Er bietet Platz fiir
16KByte Programmcode. Da die Befehle des ATmegal6 entweder 1 oder 2 Worte lang sind,
ist der Speicher so organisiert, dass in jedem Speicherplatz ein Wort gespeichert wird. Der
Adressbereich (8K x 16Bit) geht von $0000 bis $1FFF. Dieser Adressbereich kann durch den
Programm-Counter mit der Breite von 13 Bit adressiert werden. Der nichtfliichtige Speicher
kann bis zu 10000mal beschrieben und geldscht werden.

15 0 Adresse
$0000

$0001

Programm-
Speicher $0002
(Flash) $0003
$0004

$0005

$1FFB
$1FFC
$1FFD

$1FFE
S$1FFF

Boot-Sektor

Bild 16-8 Mapping des Programmspeichers des ATmegal6

16.3 Architektur des ATmegal6 241

Der Flash-Programmspeicher besteht aus zwei Bereichen. Im oberen Bereich steht der eigentli-
che Programmcode. Im unteren Bereich, dem Boot-Sektor, kann ein sogenannter Bootloader
abgelegt werden. Der Beginn dieses Bereichs wird mit Fuse-Bits festgelegt, die nur iiber ein
Programmiergerdt verdndert werden konnen. Wird eine Bootsektion eingerichtet, startet der
ATmegal6 nach einem Reset an der Startadresse dieses Boot-Bereichs. Mit dem dort abgeleg-
ten Programm, welches man Bootloader nennt, wird eine Kommunikation z.B. mit dem PC
hergestellt und der Programmcode neu geschrieben. Dies ist sehr niitzlich, um bei fertigen
Produkten dem Kunden ein Firmware-Update ohne Programmiergerét zu ermoglichen.

16.3.4 Daten-Speicher

Das statische RAM (SRAM) mit 1KByte und das EEPROM mit 512Bytes Inhalt sind die auf
dem Chip integrierten Speicher fiir Daten.

Der Registerblock (Bild 16-9) fiir die universell verwendbaren CPU-Register liegt im Adress-
bereich $0000 bis $001F. Im anschlieBenden Adressbereich von $0020 bis $005F liegen die
[/O-Register. In diesen Registern wird die Information gespeichert, wie die Schnittstellen ar-
beiten, wie der AD-Wandler konfiguriert ist, wie die Timer geschaltet sind usw. Hier wird auf
diese Register nicht weiter eingegangen. Sie sind aber von groBer Wichtigkeit, wenn mit den
erwihnten Ressourcen gearbeitet wird. Die I/0O-Register kdnnen mit einer besonderen Adres-
sierungsart angesprochen werden. In dieser Adressierungsart wird die alternative Adresse2 in
Bild 16-9 verwendet, die um $20 niedriger ist. Der Bereich von $0060 bis $045F ist fiir die
Datenspeicherung frei verfiigbar.

7 0 Adressel Adresse2
$0000 r0
$0001 rl

) $0002 2
Universal- $0003 3

| Register o
$001D r29
$001E r30
$001F r31

$0020 | $0000
$0021 | $0001

— I/O-

Register $005D | $003D
$005E | SO03E
$005F | $003F
$0060
$0061

SRAM

$045E
$045F

Bild 16-9 Mapping des Datenspeichers des ATmegal6.

242 16 Mikroprozessoren

16.3.5 Funktionsabliufe bei der Befehlsausfiihrung

Im normalen Betriebszustand fiihrt ein Prozessor eine immer wiederkehrende Folge von Schrit-
ten durch. Es wird fortwahrend ein Befehl aus dem Speicher geholt und dann abgearbeitet. Im
Normalfall werden die Befehle in der Reihenfolge bearbeitet, in der sie im Speicher stehen. Die
Ausfiihrung einer Befehlsfolge soll an Hand des folgenden Beispiels erlautert werden:

Befehl ;Kommentar

INC rl0 ;inkrementiere Register rl0
ADD rll,rl5S ;addiere rll und rl2, speichere Ergebnis in rll
DEC rl2 ;dekrementiere ril2

In diesem Beispiel dient der Befehl INC r10 zum Inkrementieren des Inhaltes des Registers
r10 und der Befehl DEC r12 zum Dekrementieren des Inhaltes von r12. Der Befehl ADD
rll, r15 bewirkt, dass der Inhalt des Registers r11 und der des Registers r15 addiert und das
Ergebnis in r11 abgespeichert wird.

Beim ATMegal 6 wird zur Abarbeitung der Befehle eine Befehls-Pipeline verwendet. Bei einer
Pipeline wird ein Befehl in mehreren Takten ausgefiihrt, wie es bei der Fleilbandproduktion in
der Industrie iiblich ist. In der 2-stufigen Pipeline des ATmegal6 wird in einem Takt gleichzei-
tig

e cin Befehl aus dem Programm-Speicher geholt und

e der vorhergehende Befehl ausgefiihrt. Dafiir werden die
a) Operanden aus dem Speicher geholt,
b) das Ergebnis in der ALU berechnet und
¢) das Ergebnis im Speicher abgelegt.

Die zeitliche Abfolge fiir die aufeinander folgenden Befehle des obigen Beispiels ist im Bild
16-10 gezeigt. Man erkennt, dass in jedem Takt ein Befehlscode gelesen wird und ein Befehl
mit den drei Ausfiihrungs-Schritten a, b und ¢ ausgefiihrt wird. Die Ausfithrung eines Befehls
wird einen Takt nach dessen Befehlsdecodierung durchgefiihrt. Durch diese Pipeline-
erarbeitung wird die mittlere Verarbeitungszeit fiir einen Befehl halbiert.

Befehls-
dekodierung

Befehlscode
INC rlo0
holen

Befehlscode
ADD rll,rl5
holen

Befehlscode

Befehls
Ausfiihrung

1Keinen Befehl
:ausﬁjhren

a) Inhalt von r10 laden
b) 1 addieren
¢) Ergebnis nach r10

a) Inhalt von r11 laden

DEC rl2 b) Inhalt von rl5 add. Takt 3
holen c) Ergebnis nach rl1
Nichsten | N_ a) Inhalt von r12 laden
Befehlscode b) 1 subtrahieren Takt 4
holen c) Ergebnis nach r12

v

Zeit

Bild 16-10 Befehlsausfiihrung des ATmegalo6.

16.4 Assembler-Programmierung 243

16.4 Assembler-Programmierung

Jeder Befehl hat ein festes Format. Beim ATmegal6 sind fast alle Befehle ein Wort und nur in
Ausnahmefillen 2 Worte lang. Die Verhiltnisse werden im Folgenden an Hand des Assembler-
Befehls ADD r10, r17 beispielhaft erklédrt. ADD ist ein so genanntes Mnemonic, es ldsst sich
leicht merken, da es aus der englischen Beschreibung ,,Add ““ abgeleitet wurde.

Wie jeder andere Befehl auch, kann der Befehl ADD r10, r17 in die Maschinensprache iiber-
setzt werden, eine binédre Darstellung, die vom Prozessor interpretiert werden kann. Dies ist in
Tabelle 16-2 dargestellt. Der Befehlscode (auch Operationscode oder Opcode) besteht nur aus
einem Wort, welches oft hexadezimal dargestellt wird, in diesem Fall $OEA1. In diesem Wert
sind der Befehl ,,ADD* und die beteiligten Register codiert. In der Maschinensprache stehen in
der bindren Darstellung 0000 11rd dddd rrrr die Abkiirzung ddddd fiir die binére
Codierung des Zielregisters r10 und rrrrr und fiir die bindre Codierung des Quellregisters
r17. Das Zeichen $ wird hier fiir die Kennzeichnung der hexadezimalen Darstellung verwendet.

Tabelle 16-1 Gegeniiberstellung der Assembler-, Hexadezimal- und Bindrdarstellung des Befehls ADD
r10,rl7. Mitrl0 = ddddd = 01010 und rl7 = rrrrr = 10001.

Schreibweise Operationscode
Assembler ADD rl0,rl7
bin. | 0000 11rd dddd rrrr
Maschinensprache 0000 1110 1010 0001
hex. SOEAL

Ein Assembler(-programm) ist ein Programm, welches diese Ubersetzung von der Assemb-
lerdarstellung in die Maschinensprache iibertrigt. Das Assemblerprogramm ist also ein Uber-
setzer. Das in der Assemblersprache vorliegende Programm wird ,,Source Code® genannt, das
vom Mikroprozessor ausfiihrbare heifit Maschinencode (auch ,,Object Code). Der Vorgang
des Ubersetzens wird Assemblierung genannt. Die Ubersetzung kann auch ,,von Hand* erfol-
gen.

Assemblerprogramm
Assemblersprache Maschinensprache
»Source Code* ,»Object Code*
vom Programmierer erstellt vom Mikroprozessor ausfiihrbar
Mnemonics: Binércode:
ADD rl0,rl7 0000 1110 1010 0001

Bild 16-11 Das Verhéltnis von Assembler- und Maschinensprache.

Die Firma Atmel bietet als Entwicklungsumgebung das AVR-Studio an. Es enthélt unter ande-
rem einen Simulator, einen Assembler und einen Editor. AVR-Studio kann kostenlos von der

244 16 Mikroprozessoren

Homepage der Firma heruntergeladen werden [50,51]. Die folgende Beschreibung bezieht sich
auf den Assembler von AVR-Studio. In anderen Assembler-Programmen kann eine leicht
verdnderte Syntax erforderlich sein. Assembler(-sprache) wird auch gleichzeitig die Program-
miersprache genannt, in der die Befehle als Mnemonics dargestellt sind. Diese ist spezifisch fiir
einen bestimmten Mikroprozessor.

In der Assembler-Darstellung wird der Code in 4 Spalten notiert. In der ersten Spalte stehen
linksbiindig Marken (Labels), in der folgenden Spalte stehen die Mnemonics der Befehle, dann
folgen die Operanden. Rechts kdnnen, durch ein Semikolon getrennt, Kommentare folgen, die
den Rest der Zeile einnehmen konnen. Ein Beispiel:

LOOP: LDI 1rl6,SFF ;Lade Register 16 mit der Konstanten FF
ADD 1rl0,rl7 ;Lade rl0 mit rl0 + rl7
CLC ;Losche Carry

16.5 Adressierungsarten

Assemblerbefehle arbeiten mit verschiedenen Adressierungsarten. Die Unterschiede liegen
darin, wie der Ort gekennzeichnet wird, an dem das Datum oder die Daten gespeichert werden,
mit denen operiert wird. Im Folgenden sind dich wichtigsten Adressierungsarten des ATme-
gal6 aufgelistet. Sie kommen bei den meisten Prozessoren in dhnlicher Form vor. Die Befehle
des ATmegal6 haben in der Regel die Lénge von einem Wort (2Bytes). Innerhalb dieses Wor-
tes sind die Wirkung des Befehls und z.B. die verwendeten Register codiert. Nach dem Be-
fehlscode kann in manchen Féllen ein weiteres Wort folgen, welches dann eine Adresse bein-
haltet. Es werden die Abkiirzungen und Konventionen in Tabelle 16-2 verwendet.

Tabelle 16-2 Konventionen

Abk. | Beschreibung Codierung im Opcode
Rr Quell-Register r0 bis r31 rrrrr
Rd Ziel-Register r0 bis r31 ddddd
Rh Register flir die Immediate-Adressierung | 1dddd
(r16-r31)
Rw Register (fiir die Befehle AIDW,SBIW) | r25:r24 (ww=00)
(r24,r26,r28,r30) r27:126 = X (ww=01)
r29:r28 = Y (ww=10)
r31:r30 = Z (ww=11)
Rp Pointer-Register (X,Y,Z) r27:r26 = X (eee=111)
r29:r28 = Y (eee=010)
r31:r30 = Z (eee=000)
Ro Base-Pointer-Register r29:r28 = Y (o=1)
r31:r30 = Z (0=0)
Kn n-Bit-Konstante kkkkkk...
Bit-Position in Register bbb

Portadresse 6 Bit PPPrppp

16.5 Adressierungsarten 245

Es werden im Folgenden zu jeder Adressierungsart Beispielformate fiir die Befehle angegeben.
Die Adressierungsarten sind im Einzelnen:

Inherent

Dies ist die einfachste Adressierungsart, bei der keine weiteren Operanden bendtigt werden.
Bsp.: CLC Der Befehl bewirkt das Loschen des Carry-Flags. Im Befehlscode, der aus nur ei-
nem Wort besteht, ist die Funktionalitit des Befehls CLC codiert.

15 0

1001 0100 1000 1000

CLC

Immediate

Die Adressierungsart Immediate wird verwendet, um Konstanten in die CPU zu laden. Diese
Adressierungsart dient also der Initialisierung von Speicherplétzen. Diese Befehle sind nur ein
Wort lang. Sie enthalten als Operanden die zu verarbeitende Zahl selbst. Der Beispielbefehl
LDI rl19, $3F dient dazu, das Register r19 mit der Konstanten $3F zu laden.

15 0

| 1110 kkkk dddd kkkk |

LDI Rh,K8

|1110 0011 0011 1111|

LDI rl9,S$3F

Der Befehlscode enthélt codiert die 8-Bit Konstante, hier mit kkkkkkkk gekennzeichnet, und
das Register, welches eines der Register r16 bis r31 sein kann. In der Codierung dddd fiir das
verwendete Register ist das vorderste Bit des Bindrdquivalentes der Registernummer weggelas-
sen, da es immer 1 ist (z.B. r19 = 10011 daher dddd = 0011).

Register direkt
Bei der Adressierungsart Register direkt ist nur ein Register beteiligt. Als Beispiel dient uns
hier der Befehl INC r9, der den Inhalt des Registers r9 um 1 erhdht. Der Befehlscode ergibt
sich aus dem untenstehenden Schema. Fiir die Codierung des Registers Rd ist ddddd vorgese-
hen, da in diesem Fall Register r0 bis r31 Operanden sein kdnnen.

15 0

| 1001 010d dddd 0011 |

INC Rd

|1001 0100 1001 001l|

INC r9

Register direkt, 2 Register

Bei dieser Adressierungsart Register direkt sind zwei Register beteiligt. Ein Beispiel dafiir ist
der Befehl ADD r10, r17, der bewirkt, dass der Inhalt des Registers r10 und der des Regis-
ters r17 addiert und das Ergebnis in r10 abgespeichert wird. Der Befehlscode besteht wieder
nur aus einem Wort:

246 16 Mikroprozessoren

15 0
|oooo 11rd dddd rrrr|

ADD Rd,Rr

|oooo 1110 1010 0001|

ADD rl1l0,rl7

Fiir die Codierung der Registers werden hier die Abkiirzungen rrrrr fiir das Quellregister
Rr verwendet und ddddd fiir das Zielregister Rd, in dem das Ergebnis gespeichert wird.

I/0 direkt

Bei dieser Adressierungsart ist ein Register aus dem 10/Bereich involviert und ein weiteres
Register als Quell- oder Zielregister. Ein Beispiel dafiir ist der Befehl OUT $0012, r2, der
bewirkt, dass der Inhalt des Registers 12 in das Ausgangsregister des Port D geschrieben wird.
Das Ausgangsregister hat die Adresse $0012. Der Befehlscode besteht aus einem Wort:

15 0
|1011 lppr rrrr pppp|

OUT P,Rr

|1011 1000 0010 1100|

OUT $0012,r2

Der Befehlscode enthélt codiert die 6-Bit IO-Adresse P, die mit pppppp gekennzeichnet ist.
Mit dieser Adressierung kénnen Adressen im 10-Bereich von $00 bis $3F erreicht werden. Mit
anderen Adressierungsarten als der 1O-direkt-Adressierung muss die Adresse $0012 durch
$0032 (vergl. Bild 16-9) ersetzt werden.

Daten direkt

Diese Adressierungsart 14dt ein Datum aus dem Datenspeicher in ein Register. In der Adressie-
rungsart Daten direkt steht die gesamte 16-Bit-Adresse eines Operanden im Befehl. Daher hat
dieser Befehl eine Linge von 2 Worten. Ein Beispiel ist der Befehl LDS r5, $01F4, der
bewirkt, dass das Register r5 aus dem Datenspeicher mit der Adresse $01F4 geladen wird. Im
Opcode wird die Adresse bindr mit aaaa aaaa aaaa aaaa codiert.

15 0 15 0
|1001 000d dddd OOOO| |aaaa aaaa aaaa aaaa|

LDS Adresse
|1001 0000 0101 oooo| |0000 0001 1111 01oo|

LDS r5, $01F4

Daten indirekt

Auch in dieser Adressierungsart wird ein Datum aus dem Datenspeicher in ein Register gela-
den. Die Adresse steht aber in einem der Pointer-Register X,Y oder Z. Daher bendtigt dieser
Befehl nur eine Lange von einem Wort. Ein Beispiel fiir diese Adressierungsart ist der Befehl
LD rl6, X, der bewirkt, dass das Register r16 aus dem Datenspeicher mit dem Datum geladen

16.5 Adressierungsarten 247

wird, welche in dem Speicherplatz steht, dessen Adresse im X-Registerpaar gespeichert ist. Im
Opcode werden die Registerpaare folgendermafen codiert: X (eee=111), Y (eee=010) und Z
(eee=000). Der Programmierer muss vor der Verwendung des Befehls das Pointer-Register
initialisieren.

15 0

| 000e 000d dddd ee00 |

LD Rd,Rp

|0001 0001 0000 1100|

LD rlé6,X

Diese Adressierungsart existiert in einigen Varianten, die sich in der Verwendung der Indexre-
gister unterscheiden. Es ist z.B. moglich, dass das Datum aus dem Speicherplatz geladen wird,
dessen Adresse sich aus dem Inhalt des Indexregisters plus einem Versatz (Displacement)
ergibt. Alternativ ist auch die Dekrementierung des Indexregisters vor dem Zugriff auf das
Datum moglich oder die Inkrementierung nach dem Zugriff. Dies ist in der Tabelle 16-3 zu-
sammengefasst.

Tabelle 16-3 Ladebefehle fiir Daten indirekt mit Displacement, Pradekrement und Postinkrement..

Befehl Beschreibung Wirkung Verdnderung
Indexregister

LD rl6, X Data indirekt rl6 « (X) Keine

LDD rl6, Y+10 [Data indirekt mit Displacement | r16 < (Y +10) | Keine

LD ril6, -X Data indirekt mit Pradekrement | r16 « (X-1) X« X-1

LD rlé6e, X+ Data indirekt mit Postinkrement | r16 « (X) X« X+1

In dieser Tabelle bedeutet r16 < (X), dass das Register r16 mit dem Inhalt des Datenspeichers
mit der Adresse geladen wird, die im Registerpaar X steht. Die Klammer bedeutet also, dass
der Inhalt des Registers als Adresse gedeutet werden soll, unter der das Datum zu finden ist.
Diese Schreibweise wird im Folgenden bei der Beschreibung der Wirkung von Befehlen ver-
wendet. In der Spalte ,,Verdnderung Indexregister™ ist der Inhalt des Indexregisters nach der
Ausfiihrung des Befehls aufgelistet.

Programmspeicher direkt

Diese Adressierungsart wird beim Sprungbefehl JMP und beim Unterprogrammaufruf CALL
verwendet. So wird z.B. beim Sprung JMP $0100 das Programm an der Adresse $0100 im
Programmspeicher fortgesetzt. Die Adresse darf maximal 22Bit umfassen.

15 0 15 0
|1001 010k kkkk 110k| |kkkk kkkk kkkk kkkk|

JMP Adresse

|1001 0100 0000 1100| |oooo 0001 0000 oooo|

JMP $0100

248 16 Mikroprozessoren

Programmspeicher relativ

Diese Adressierungsart wird beim Sprungbefehl RIMP und beim Unterprogrammaufruf
RCALL verwendet. Der Operand gibt im Zweierkomplement an, wie der Sprung zu der ange-
gebenen Adresse relativ zum Inhalt des Befehlszéhlers ausgefiihrt werden soll. Im Beispiel
unten wird zu der Zieladresse gesprungen, indem der PC um $12 erhoht wird.

15 0

| 1100 kkkk kkkk kkkk |

RJIMP Zieladresse

|1100 0000 0001 001o|

RJIMP $012

16.6 Befehlssatz

16.6.1 Konventionen

Im Folgenden wird der Befehlssatz des ATmegal6 besprochen. Einige komplexere Befehle
wie die Multiplikation und die Division werden hier nicht dargestellt. Sie sind auch nicht bei
allen Prozessoren der ATmega-Familie verfligbar. Auch die Befehle zum Abspeichern und
Laden aus dem Programmspeicher werden hier nicht dargestellt. Bei der Beschreibung der
Befehle werden die in Tabelle 16-2 definierten Konventionen verwendet.

16.6.2 Transfer-Befehl

Dieser Befehl dient dem Transfer von Daten zwischen Registern. Der Befehl verdndert, wie
auch die Lade- und Speicherbefehle, das Statusregister SREG nicht. Der Befehl MOV Rd, Rr
(Move) kopiert den Inhalt des Registers Rd in das Register Rr, so dass dann beide Register den
alten Inhalt des Registers Rd enthalten. Der Befehl ist ein Wort lang und benétigt zur Ausfiih-
rung einen Takt.

Tabelle 16-4 Transferbefehl (T = Takte, W = Worte).

Befehl | Operanden Beschreibung Ausfiihrung T W
MOV Rd,Rr Kopiere Register Rd « Rr 1

[y

16.6.3 Laden von Bytes

Lade-Befehle bewirken das Laden eines Registers mit einem Datum. Der Befehl LDT dient der
Initialisierung eines Registers mit einer Konstanten:

LDI rl7,SFF ;Alle Bits im Register rl7 setzen

Wie aus der Beschreibung des Befehls in Tabelle 16-4 ersichtlich ist, dient als Zielregister Rh,
damit werden im Folgenden die Register r16-r31 bezeichnet, die mit der Adressierungsart
Immediate verwendet werden konnen. Die Konstante, mit der initialisiert werden muss, ist
entsprechend der Groe der Register ein Byte lang.

16.6 Befehlssatz 249

Tabelle 16-5 Ladebefehle (T = Takte, W = Worte).

Befehl | Operanden Beschreibung Ausfiihrung T W

LDI Rh, K8 Lade immediate Rd « K 1 1

LDS Rd,Al6 Lade direkt aus Daten- | Rd « (A4) 2 2
speicher

LD R4, Rp Lade indirekt Rd < (Rp) 2 1

LD Rd, Rp+ Lade indirekt mit Post- | Rd «(Rp) 2 1
Inkrement Rp — Rp + 1

LD Rd, -Rp Lade indirekt mit Pr&- |Rp « Rp - 1 3 1
Dekrement Rd — (Rp)

LDD Rd, Ro+K6 Lade indirekt mit Dis- | Rd « (Ro + K) 2 1
placement

IN Rd, P Lade aus IO-Adresse Rd « (P) 1 1

Soll ein Datum direkt aus dem Datenspeicher in ein Register kopiert werden, muss der Befehl
LDS verwendet werden. Der Befehl enthilt die 16Bit-Adresse des Speicherplatzes, aus dem
das 8Bit-Datum geladen wird. Daher wird zur Darstellung des Befehls ein zweites Wort beno-
tigt.
LDS rl7,S01FF ;Register rl7 mit dem Inhalt der
;Speicherstelle $01FF laden

Der Aufwand kann reduziert werden, wenn man die indirekte Adressierungsart verwendet. Bei
dieser steht die Adresse in einem der Indexregister X,Y oder Z. Allerdings miissen die In-
dexregister vor der Verwendung der indirekten Adressierung initialisiert werden. Bsp.:

LDI XL, $60 ; Low-Byte der Adresse in XL laden
LDI XH, $00 ; High-Byte der Adresse in XH laden
LD rle, X ; rlé mit dem Datum aus $0060 laden

In diesem Beispiel wird zunéchst mit den beiden LDI-Befehlen das Register XL mit dem Low-
Byte der Adresse und das Register XH mit dem High-Byte der Adresse geladen. Dann kann der
eigentliche Datentransfer aus dem Speicherplatz mit der Adresse $0060 stattfinden. Dieser
Overhead lohnt sich, wenn anschlieend auf benachbarte Speicherplitze zugegriffen wird, wie
es in Tabellen normalerweise der Fall ist. Dafiir stehen die Befehle mit Dekrementierung des
Indexregisters vor dem Zugriff oder die Inkrementierung nach dem Zugriff zur Verfiigung. In
dem folgenden Beispiel wird zusétzlich der Inhalt des Speicherplatzes $0061 in Register 117
geladen, um zu zeigen, dass dies ohne erneute Initialisierung des Indexregisters moglich ist,
indem man im Befehl vorher das Postinkrement nutzt.

LDI XL, $60 ; Low-Byte der Adresse in XL laden
LDI XH, $00 ; High-Byte der Adresse in XH laden
LD rle, X+ ; rlé aus $0060 laden, X = X+1

LD rl7, X ; rl7 aus $0061 laden

250 16 Mikroprozessoren

Der Befehl LDD lddt indirekt mit einem Displacement. Er kann nur mit den Registerpaaren Y
und Z verwendet werden (Diese Register werden hier mit der Abkiirzung Ro gekennzeichnet).
Das Displacement ist eine vorzeichenlose 6-Bit Konstante (0 bis 63), die fiir die Adressierung
zum Inhalt des Indexregisters addiert wird. Nach dem Zugriff bleibt der Inhalt des Indexregis-
ters unverandert.

LDI YL, $65 ; Low-Byte der Adresse in YL laden
LDI YH, $00 ; High-Byte der Adresse in YH laden
LDD rl7, Y+$2 ; rl7 aus $0067 laden, Y =Y

Der Befehl IN dient zum Laden von Daten aus 10-Adressen. Er arbeitet mit der Adressie-
rungsart IO direkt. Das Register aus dem 10-Bereich ist das Quellregister und das Register r17
ist das Zielregister.

IN rl7, S$16 ; Port B lesen

$16 ist die Adresse des Port B. Entsprechend Bild 16-9 ist das die Adressel, die in dieser
Adressierungsart verwendet werden muss. Die entsprechende Adresse2 ist $36, sie miisste
zusammen mit der Adressierungsart Daten direkt verwendet werden.

16.6.4 Speichern von Bytes

Speicher-Befehle dienen zum Abspeichern von Registerinhalten in den Datenspeicher. Die
Befehle sind in Tabelle 16-6 aufgelistet, sie haben die gleichen Adressierungsarten wie die
Lade-Befehle, nur die Adressierungsart Immediate ist beim Abspeichern nicht sinnvoll.

Tabelle 16-6 Speicherbefehle.

Befehl | Operanden Beschreibung Ausfiihrung T | W

STS Alé6,RdA Speichere direkt in| (A) <« Rd 2 2
Datenspeicher

ST Rp,Rr Speichere indirekt (Rp) < Rr 2 1

ST Rp+,Rr Speichere indirekt mit | (Rp) < Rr 2 1
Post-Inkrement Rp — Rp + 1

ST -Rp,Rr Speichere indirekt mit | Rp « Rp - 1 2 1
Pr&-Dekrement (Rp) « Rr

STD Ro+K6,Rr Speichere indirekt mit (Ro + K) « Rr 2 1
Displacement

ouT P,Rr Speichere in IO- | (P)« Rr 1 1
Adresse

16.6.5 Arithmetische Befehle: Negation

Die Negation (Tabelle 16-7) mit dem Befehl NEG bildet in einer ALU das Zweierkomplement.
Es werden die angegebenen Flags in Abhingigkeit vom Ergebnis beeinflusst.

Tabelle 16-7 Negation.

Befehl [Operand Beschreibung Ausfiihrung H,s,v,N,z,Cc | T
NEG Rd Zweierkomplement Rd « $00 - Rd H,S,V,N,Z,C 1

16.6 Befehlssatz 251

Da es sich um eine Subtraktion handelt, wird ein ,,Borrow", also das invertierte c,, als Carry-
Bit verwendet. Wir betrachten als ein Beispiel den Code

LDT rl7,$45
NEG rl7

Es wird intern das Folgende gerechnet:

01 0 0 0 1 0 1 =8%45
1 01 11 0 1 0 =-%$45
0 000 0O 0O 0 0 1wCarry-in, Ubertrige
/7' 1 0/1/'1 1 0 1 1
Cn Cni h

In der ersten Zeile der Rechnung steht der Operand $45, der in der zweiten Zeile bitweise in-
vertiert ist. Durch das Carry-in, welches gleich 1 gesetzt wird, wird das Zweierkomplement
erzeugt. In der gleichen Zeile sind die Ubertriige notiert, die bei der Addition des Carry-in zu
—$45 entstehen. Die beiden vordersten Ubertriige heiBen c, und c,.;, wie bereits im Kapitel 2
beschrieben. Die Flags ergeben sich nach folgendem System:

= Bit 7 des Ergebnisses = 1 (man beginnt bei Bit 0 zu zdhlen). Das Ergebnis ist negativ.
= 0, da das Ergebnis nicht Null ist

= ¢, <P ¢,y =0, (vergl. Kapitel 2) also kein Overflow, das Ergebnis ist daher richtig.

= N« V=1

= —c, =1, da bei der Subtraktion das invertierte Carry (Borrow) verwendet wird.

= —h =1, da bei der Subtraktion das invertierte Halfcarry verwendet wird.

Im Flagregister SREG steht H=1, S=1, V=0, N=1, Z=0, C=1, im Register r17 steht $BB.

T OQOYnINZ

16.6.6 Arithmetische Befehle: Addition und Subtraktion

Es stehen eine Reihe von Befehlen fiir die Addition und die Subtraktion zur Verfiigung. Sie
sind in Tabelle 16-8 aufgelistet.

Tabelle 16-8a Additionsbefehle und Subtraktionsbefehle.

Befehl | Operand Beschreibung Ausfiihrung H,S,V,N,z,C|T

ADD Rd,Rr Addiere ohne Carry [Rd « Rd + Rr H,S,V,N,Z,C |1

ADC Rd,Rr Addiere mit Carry Rd « Rd + Rr + C|H,S8,V,N,Z,C |1

ADIW Rw, K6 Addiere zu Wort Rw « Rw + K -,5,V,N,z,C | 2
immediate

SUB Rd,Rr Subtrahiere ohne Rd « Rd - Rr H,S,V,N,Z,C |1
Carry

SUBI Rh, K8 Subtrahiere imme- Rh « Rh - K H,S,V,N,Z,C | 1
diate

SBC Rd,Rr Subtrahiere mit Rd « Rd - Rr - C|H,S,V,N,Z2,C |1
Carry

SBCI Rh, K8 Subtrahiere imme- Rh « Rh - K - C H,S,V,N,Zz,C |1
diate mit Carry

SBIW Rw, K6 Subtrahiere imme- Rw « Rw - K -,8,V,N,Z,C | 2
diate

252 16 Mikroprozessoren

Tabelle 16-8b Additionsbefehle und Subtraktionsbefehle (Inkrement und Dekrement).

Befehl | Operand Beschreibung Ausfithrung H,S,V,N,z,Cc| T
INC Rd Inkrementiere Rd « Rd + 1 -,8,V,N,Z,- |1
DEC Rd Dekrementiere Rd « Rd - 1 -,8,V,N,Z,- |1

Der Additionsbefehl ADD Rd, Rr addiert den Inhalt der beiden beteiligten Register Rd und Rr
und speichert das Ergebnis in Rd ab. Es werden die Flags H,S,V,N,Z und C beeinflusst. Als
Beispiel sei hier die Rechnung $08 + $FC (= 8 + (— 4)) gezeigt:

LDI rl7,$08
LDI rl8, SFC
ADD rl7,rls

Es wird intern das Folgende gerechnet:

0 0001 0 0 0 =%08
1 1.1 1 1 1 0 0 =8FC
1 11 1 1 0 0 0 O0«Carry-in, Ubertriige
0 1 0 O

/7 0 o/a"o
Cn Cnl h

Da es sich um eine Addition handelt, ist das Carry-in gleich 0. In der 3. Zeile der Rechnung
stehen die Ubertrige der Rechnung $08 + $FC. Das Flag-Register SREG enthilt nach der
Rechnung die folgenden Inhalte H=h=1, V=1¢, <> ¢,,=0,N=0,S=N <> V=0, Z=0, C =
c,=1. Das Register r17 wird mit dem Ergebnis $04 geladen.

Beim ADC-Befehl wird ein vorher gesetztes Carry beriicksichtigt. Dies ist notwendig, um
Zahlen addieren zu koénnen, die aus mehreren Bytes bestehen. Das folgende Beispiel mit 16-
Bit-Zahlen geht davon aus, dass sich der erste Summand in den Speicherpldtzen $0060 (Low-
Byte) und $0061 (High-Byte) befindet und der zweite in den Speicherpldtzen $0062 (Low-
Byte) und $0063 (High-Byte). Die Summe wird in die Speicherpldtze $0064 (Low-Byte) und
$0065 (High-Byte) geschrieben. Man beachte, dass bei diesem Prozessor immer das Low-Byte
im Speicherplatz mit der niedrigeren Adresse steht und das High-Byte im Speicherplatz mit der
hoheren Adresse.

LDI YL, $60 ;Low-Byte der Adresse in YL laden

LDI YH, $00 ;High-Byte der Adresse in YH laden

LD rlée, Y ;rl6 aus S0060 laden

LDD rl7, Y+1 ;rl7 aus $0061 laden

ADD rle, rl7 ;Summe der Low-Bytes in rlé, Carry setzen
STD Y+4, rlé6 ;rl6 nach $0064

LDD rlé, Y+2 ;r1l6 aus $0062 laden

LDD rl7, Y+3 ;rl7 aus $0063 laden

ADCD rle, rl7 ;Summe der High-Bytes + Carry in rlé

STD Y+5, rlé6 ;rl6 nach $0065

16.6 Befehlssatz 253

Das Programm funktioniert nur, weil die Befehle LDD und STD das Carry-Bit, welches im
Befehl ADD gesetzt wurde, nicht mehr verdndern. Bei der ersten Addition wird der Befehl ADD
verwendet, der ein bereits gesetztes Carry nicht beriicksichtigt.

In manchen Féllen kann der Befehl ADIW verwendet werden. Er erlaubt es, eine Konstante K

(0 £ K £ 63) zu einem Wort zu addieren, welches in einem der Registerpaare Rw steht.
(r25:124, r27:126, 129:128, 131:130)

Der Befehl INC Rd inkrementiert den Inhalt eines Registers.

Die Befehle fiir die Subtraktion sind analog zu den Additionsbefehlen konstruiert. Allerdings
wird hier das Carry als Borrow interpretiert. Es soll ein Beispicl mit dem Befehl SUB gezeigt
werden. Wir betrachten die Rechnung $08 — $04 (= 8 — 4) analog zum obigen Beispiel fiir die
Addition:

LDI rl7,s$08
LDI rl8,s$04
SUB rl7,rl8

Die Rechnung sieht folgendermalien aus:

00 001 0 0 0 =3%08
1 1.1 1 1 0 1 1 ==%04
1 1 1 1 1 0 1 1 1«Carry-in, Ubertrige

T

Das Statusregister SREG enthilt daher H= -h =0, V=¢, <® ¢,,=0,N=0,S=N <> V=0,
7=0, C = —¢, = 0. Das Register r17 wird mit dem Ergebnis $04 geladen.

Die Subtraktionsbefehle, die das Carry (Borrow) einer vorausgegangenen Subtraktion (z.B.
der Befehl SBC) beriicksichtigen, sind so konstruiert, dass sie bei der sequentiellen Ausfiihrung

das Carry richtig weitergeben. Es erscheint also in den Befehlen mit einem negativen Vorzei-
chen.

16.6.7 Arithmetische Befehle: Setzen und Loschen von Bits in einem Register

Mit den Befehlen SBR und CBR in Tabelle 16-9 konnen einzelne Bit in einem Register mit
einer Maske gesetzt oder geloscht werden. Die Befehle SER Rh und CLR Rd setzen bzw.
16schen alle Bits im angegebenen Register, wobei der Befehl SER nur mit den Registern 16-31
verwendet werden kann, wihrend CLR mit allen Registern kompatibel ist. CLR hat den glei-
chen Opcode wie EOR Rd, Rd.

Tabelle 16-9 Setzen und Loschen eines einzelnen Bit in einem Register.

Befehl [Operand | Beschreibung Ausfiihrung H,8,V,N,z,C|T
SBR Rh, K8 Setze Bit(s) Rh « Rh v K -,8,V,N,z,- |1
CBR Rh, K8 Loésche Bit(s) Rh « Rh A ($SFF-K) -,8,V,N,z,- |1
CLR RdA Losche Register Rd « $00 -,0,0,0,1,- 11
SER Rh Setze Register Rh ~ SFF I

254 16 Mikroprozessoren

16.6.8 Arithmetische Befehle: Test und Vergleich

Der Befehl TST Rd (Test for Zero or Minus) vergleicht den Inhalt eines Registers mit der
Zahl 0. Es werden die Flags S, V, N und Z entsprechend dem Inhalt des Registers gesetzt, ohne
dass dieser verdndert wird. Alle Befehle fiir den Vergleich zweier Zahlen haben gemeinsam,
dass sie nur das Statusregister SREG verdndern, aber keines der anderen beteiligten Register.
Es wird also nur eine Testsubtraktion durchgefiihrt. Die Flags werden nach dem gleichen Prin-
zip wie bei der Subtraktion veradndert.

Tabelle 16-10 Test und Vergleich.

Befehl | Operand | Beschreibung Ausfithrung H,S8,V,N,z,C | T

TST Rd Teste auf Null Rd « Rd A RdA -,8,V,N,Z, - 1
oder Minus

CpP Rd,Rr Vergleiche Rd - Rr H,S,V,N,Z,C 1

CpC Rd,Rr Vergleiche mit Rd - Rr - C H,S,V,N,Z,C 1
Carry

CPI Rh, K8 Vergleiche imme- Rd - K H,S,V,N,Z,C 1
diate

16.6.9 Arithmetische Befehle: Logische Operationen

Logische Operationen werden bitweise durchgefiihrt. Es stehen Und, Oder, Exklusiv Oder und
das Einerkomplement zur Verfligung. Die logischen Operationen beeinflussen die Flags S, V,
N, Z und Z. Der Befehl COM bildet das Einerkomplement des Registerinhalts.

Der Befehl AND Rd, Rd ist identisch mit dem Befehl TST Rd, daher haben die beiden Befeh-
le den gleichen Opcode.

Tabelle 16-11 Logische Operationen.

Befehl | Operand | Beschreibung Ausfiihrung H,8,V,N,z,C | T

AND Rd,Rr Logisches UND Rd < Rd A Rr -,$,V,N,Z, - 1

ANDI Rh, K8 Logisches UND, Rh « Rh A K -,$,V,N, 2z, - 1
immediate

OR Rd,Rr Logisches ODER Rd < Rd v Rr -,8,V,N,Z, - 1

ORI Rh, K8 Logisches ODER, Rh < Rh v K -,8,V,N,Z, - 1
immediate

EOR Rd,Rr Exklusives ODER |Rd « Rd ¢» Rr | -,S,V,N,Z, - 1

COM Rd Einerkomplement Rd « SFF - Rd -,8,V,N,Z,C 1

16.6.10 Schiebe- und Rotationsbefehle

Der ATmegal6 besitzt Befehle fiir das arithmetische und logische Schieben und das Rotieren
von Registerinhalten um ein Bit nach links oder rechts. Die Adressierungsart bei allen Schiebe-
und Rotations-Befehlen ist Register direkt. Die Befehle fiir das arithmetische und logische
Schieben und Rotieren sind in Tabelle 16-12 zusammengefasst.

16.6 Befehlssatz 255

Tabelle 16-12 Schiebe- und Rotationsbefehle.

Befehl | Operand Beschreibung Ausfithrung H,S,V,N,Z,C
LSL Rd Logisch links Rd(n+l1l) « Rd(n), H,-,V,N,Z,C
schieben Rd (0) - o0,
c ~ RA(7)
LSR Rd Logisch rechts Rd (n) ~ Rd(n+1), -,-,V,N,Z,C
schieben RA (7) -0,
Cc ~ R4 (0)
ROL Rd Rotiere links RA (0) ~ C, H,-,V,N,Z,C
Uber Carry Rd(n+1) — Rd(n),
c ~ RA(7)
ROR Rd Rotiere rechts RA(7) ~ C, -,-,V,N,Z,C
Uber Carry Rd (n) « Rd(n+1),
Cc ~ R4 (0)
ASR Rd Arithmetisches Rd (n) ~ Rd(n+1), -,-,V,N,z,C
Schieben rechts n=20..6

Logisches Schieben bedeutet, dass beim Links-Schieben Nullen in die Bit-Position 0 gescho-
ben werden. Beim Rechts-Schieben werden Nullen in die Bit-Position 7 geschoben. Die her-
ausgeschobenen Bits werden in das Carry-Flag kopiert. Logisches Schieben ist in Bild 16-10
verdeutlicht. Der Befehl LSL Rd wird vom Assembler-Programm in den gleichen Opcode wie
ADD Rd, Rd iibersetzt, da diese beiden Befehle von ihrer Wirkung her identisch sind.

Logical Shift Left (LSL Rd) Logical Shift Right (LSR Rd)

Bild 16-10 Logisches Schieben eines Registerinhaltes.

Das Rotieren des Inhaltes eines Registers geschieht iiber das Carry-Bit, wie es in Bild 16-11
dargestellt ist. Der Befehl ROL Rd wird vom Assembler in den Opcode ADC Rd, Rd iiber-
setzt, da auch dieser Befehl eine Verschiebung um 1 Bit nach links bewirkt, wobei das Carry
nach Bit 0 transferiert wird.

IIMZ?'II@ II'#:'?II@

Rotate Left (ROL Rd) Rotate Right (ROR Rd)

Bild 16-11 Rotieren eines Registerinhaltes.

256 16 Mikroprozessoren

Das arithmetische Schieben soll beim Links-Schieben eine Multiplikation mit 2, beim Rechts-
Schieben die Division durch 2 verwirklichen. Daher werden beim Links-Schieben von links
Nullen nachgeschoben, beim Rechts-Schieben wird das MSB (Most Significant Bit) reprodu-
ziert, um das Vorzeichen zu erhalten. Das Prinzip ist in Bild 16-12 verdeutlicht. Arithmetisches
Schieben des Inhalts eines Registers ist mit dem Befehl ASR nach rechts moglich.

Arithmetisches und logisches Links-Schieben sind identisch. Daher kann fiir das arithmetische
Links-Schieben der Befehl LSL verwendet werden.

H == 1] = @Ildi:?ll

Arithmetic Shift Left (LSL Rd) Arithmetic Shift Right (ASR Rd)

Bild 16-12 Arithmetisches Schieben eines Registerinhaltes.

16.6.11 Befehle zum Setzen und Loschen von Flags im SREG

Der ATmegal6 besitzt eine Reihe von Befehlen fiir die Manipulation einzelner Flags des
SREG, die in Tabelle 16-13 zusammengefasst sind.

Tabelle 16-13 Befehle zum Setzen und Léschen von Registerinhalten.

Befehl | Oper. Beschreibung Ausfithrung H,S,V,N,Z,C
BSET B Flag Setzen SREG(b) ~ 1 SREG (b)
BCLR B Flag Lé&schen SREG(b) ~ 0 SREG (b)
SEC Setze Carry C 1 -y ===, 1
CLC Loésche Carry C <0 -y =r=r=-,-,0
SEN Setze Negative-Flag N 1 I
CLN Losche Negative- Flag [N —~ O -y=,=,0,-,-
SEZ Setze Zero-Flag Z «~ 1 I
CLZ Loésche Zero-Flag Z « 0 -y =r=,=,0,-
SES Setze Signed-Flag S « 1 -, 1,-,-,-,-
CLS Losche Signed-Flag S <« 0 -,0,-,-,-,-
SEV Setze"Zweierkomple— V1 - =, 1,-,-, -
ment-Uberlauf Flag
CLV Lésch? Zweilerkomple- V<0 -,-,0,-,-,-
ment-Uberlauf Flag

Mit den Befehlen BSET und BCLR konnen die Status-Bits des Flag-Registers SREG einzeln
gesetzt und zuriickgesetzt werden:

16.6 Befehlssatz 257

BSET b ;setze Bit b im SREG
BCLR b ;16sche Bit b im SREG

So bewirkt der Befehl BSET 2, dass das Negativ-Flag im SREG gesetzt wird, alle anderen
Flags im SREG bleiben unverdndert. Alternativ kann dazu der Befehl SEN verwendet werden:
SEN ;setze Negativ-Flag im SREG = BSET 2

Die beiden Befehle SEN und BSET 2 werden vom Assemblerprogramm in den gleichen
Opcode tibersetzt. Genauso haben auch die anderen Befehle zum Setzen und Loschen der Flags
SEC, CLC, SEN, CLN, SEZ, CLZ, SES, CLS, SEV und CLV den gleichen Opcode wie der
entsprechende BSET oder BCLR Befehl.

16.6.12 Absolut adressierter Sprung

Sprungbefehle verdndern die normale Abfolge von Befehlen, die durch eine Inkrementierung
des Befehlszéhlers gegeben ist. Der Assemblerbefehl

JMP Adresse

bewirkt einen Sprung zu der im Befehl angegebenen absoluten Adresse im Programm-
Speicher, die durch eine 22Bit lange Konstante angegeben wird. Es wird also die im Befehl
angegebene Adresse in den Befehlszédhler geladen.

Tabelle 16-14 Direkter Sprungbefehl JMP.

Befehl | Operand Beschreibung Ausfiihrung T | W
JMP K22 Sprung direkt PC ~ K 3

N

Wie man Tabelle 16-14 entnimmt, ist der Befehl 2 Worte lang. Der Opcode hat folgendes
Format:

1001 010k kkkk 110k kkkk kkkk kkkk kkkk

Der Buchstabe k markiert die 16 Bits der Adresse des Sprungziels. Im folgenden Beispiel soll
die Befehlsfolge aus den LDI-Befehlen, dem LD-Befehl und dem INC-Befehl iibersprungen
werden. Die Adresse des Sprungziels ist zunichst nicht bekannt:

JMP ? ;Sprung zum Sprungziel
LDI YL, $60 ;Low-Byte der Adresse in YL laden
LDI YH, S$00 ;High-Byte der Adresse in YH laden
LD rle, Y ;rl6 aus $0060 laden
INC rlé6 ;inkrementiere rlé6

;Sprungziel

Um die Adresse des Sprungziels festlegen zu konnen, muss die absolute Lage des Programms
im Speicher feststehen. Unten ist der Programmspeicherinhalt abgebildet unter der Annahme,
dass das Programm ab der Adresse $0010 im Programmspeicher steht. Aus dieser Auflistung
ergibt sich das Sprungziel $0016.

258 16 Mikroprozessoren

Adresse Inhalt Kommentar

0010 940C ;Opcode JMP Ziel, 1.Wort
0011 0016 ;Opcode JMP Ziel, 2.Wort
0012 E6CO ;LDI YL, $60

0013 EODO ;LDI YH, $00

0014 8108 ;LD rle, Y

0015 9503 ; INC rle

0016 e ;Sprungziel (Adresse $0016)

Fiir einen Programmierer ist das Abzéhlen der Befehls-Worte zwischen Sprung und Sprungziel
eine sehr fehlertriachtige Aufgabe. Ein Assembler erledigt diese Aufgabe automatisch. Im fol-
genden Assemblerprogramm wird die Marke (engl.: Label) ZIEL verwendet, die eine symboli-
sche Sprungadresse représentiert. Man beachte, dass nach dem Label in der ersten Spalte des
Source-Codes ein Doppelpunkt folgt. Der Assembler setzt fiir die Marke beim Ubersetzungs-
vorgang eine konkrete Adresse (Bei dieser Anordnung des Programms ist Ziel = $0016) ein.

JMP Ziel ; Sprung zum Sprungziel
LDI YL, $60 ;Low-Byte der Adresse in YL laden
LDI YH, $00 ;High-Byte der Adresse in YH laden
LD rlée, Y ;rlé6 aus $0060 laden
INC rlé6 ;inkrementiere rilé6

ZIEL: Co.. ;Sprungziel

16.6.13 Relativ adressierter Sprung

Alternativ kann ein Sprung auch relativ adressiert werden. Das ist mit dem Befehl ROMP mog-
lich.

Tabelle 16-15 Relativ adressierter Sprungbefehl RIMP.

Befehl | Operand | Beschreibung Ausfiihrung T W
RJIMP K12 Relativer Sprung PC - PC + K+ 1|2

=

Beim relativ adressierten Sprung wird das Sprungziel im Zweierkomplement relativ zum Inhalt
des Befehlszdhlers angegeben. Im Opcode sind 12 Bit fiir die Codierung der Sprungweite vor-
gesehen. Die Sprungweite betrdgt daher maximal $7FF, das sind 2047 Worte nach vorn oder
$800 nach hinten, was 2048 Worten entspricht. Ein relativer Sprung funktioniert unabhéngig
von seiner absoluten Position im Speicher.

Wir betrachten ein dhnliches Beispiel wie oben, nur mit einem relativ adressierten Sprung:

RJMP Ziel ;relativer Sprung zum Sprungziel
LDI YL, $60 ;Low-Byte der Adresse in YL laden
LDI YH, $00 ;High-Byte der Adresse in YH laden
LD rle, Y ;rl6 aus $0060 laden
INC rlé6 ;inkrementiere rlé6

ZIEL: Coe . ;Sprungziel

Im Programmspeicher wiirde das Programm ab der Adresse $0010 folgendermafen abgespei-
chert:

16.6 Befehlssatz 259

Adresse Inhalt Kommentar

0010 co004 ;RIMP Ziel, Ziel entspricht = + 4Worter
0011 E6CO ;LDI YL, $60

0012 EODO ;LDI YH, SO0

0013 8108 ;LD rle, Y

0014 9503 ; INC rile

0015 e ;Sprungziel (Adresse $0015)

Der Sprung muss also 4 Worter im Programmspeicher nach vorn erfolgen. Man beachte, dass
der Inhalt des Befehlszdhlers nach Ausfithrung des Befehls ROMP Ziel, ndmlich $0011, der
Rechnung zugrunde gelegt wird. Zu $0011 wird der Sprungabstand $04 addiert, woraus sich
das Sprungziel $0015 ergibt.

16.6.14 Relativ adressierte, bedingte Spriinge

Der Befehl ROMP wird immer ausgefiihrt, ebenso wie der Befehl JMP. Dagegen gibt es andere
Spriinge, die nur ausgefiihrt werden, wenn eine bestimmte Bedingung erfiillt ist. Deshalb sind
in Tabelle 16-16 Befehle zusammen mit der Bedingung angegeben, unter der sie ausgefiihrt
werden, andernfalls wird der Befehl an der ndchsthoheren Speicherstelle ausgefiihrt. Hier soll
zundchst ein Beispiel fiir eine einfache Schleife mit einem bedingten Sprung beschrieben wer-
den:

LDI 1r20,$0A ;Es sollen 10 Durchgange erfolgen
LDI YL, $60 ;Low-Byte der Adresse in YL laden
LDI YH, $00 ;High-Byte der Adresse in YH laden
ANF: ST Y+,r0 ;Register r0 in Zieladresse speichern
;Indexregister Y inkrementieren
DEC 120 ;Zahler dekr., Zero-Flag setzen
BRNE ANF ;wiederholen, wenn r20 grdfler 0

Im Beispielprogramm wird der Inhalt von Register r0 in die Speicherpldtze $0060 bis $0069
kopiert. Das wird erreicht, indem zunéchst das Register r20 mit der Anzahl der zu behandeln-
den Fille, ndmlich $A, geladen wird. Im Register r20 wird also eine Zéhlvariable gespeichert.
Dann wird das Indexregister Y auf die erste Adresse gesetzt und nachfolgend mit dem Befehl
ST Y+, r0 das Register 10 in den Speicherplatz gespeichert, dessen Adresse im Indexregister
Y steht. Danach wird der Inhalt des Indexregisters Y um eins erhoht, so dass es auf den néchs-
ten Speicherplatz zeigt. Die Zdhlvariable im Register 120 wird mit dem Befehl DEC um 1
dekrementiert. Dieser Befehl setzt das Zero-Flag, wenn in r20 $00 steht. Das nutzt der folgen-
de, bedingte Sprungbefehl. Der Sprung zum Label ANF wird nur ausgefiihrt, wenn der Inhalt
von r20 noch nicht 0 ist.

Es ist in vielen Fillen sinnvoll, vor dem Sprungbefehl den Befehl CP R4, Rr zu platzieren,
um die Flags zu setzen. Sollen damit Zahlen verglichen werden, ist es wichtig zu unterschei-
den, ob diese vorzeichenbehaftet (signed = Zweierkomplement-Zahl) oder nicht vorzeichen-
behaftet (unsigned = natiirliche Zahl) sind. Fiir signed-Zahlen sind speziell die Befehle BRGE
und BRLT vorgesehen, filir unsigned-Zahlen die Befehle BRSH und BRLO. Hier ein Beispiel fiir
zwei vorzeichenlose Zahlen:

CP rl,r2 ;rl - r2 bilden und Flags setzen
BRLO Zziel ;springen wenn rl kleiner r2

Der Sprung zum Label Ziel wird ausgefiihrt, wenn die Zahl in r1 kleiner ist als die in 12. Die
Zahlen in rl und r2 werden als vorzeichenlose Zahlen interpretiert.

260

16 Mikroprozessoren

Tabelle 16-16 Bedingte Sprungbefehle mit relativ adressiertem Sprungziel.

Befehl | Ope- | Beschreibung Ausfiihrung T
rand
BRBS b, K7 Verzweige wenn Status | wenn (SREG(b) = 1)dann | 1/2
Flag gesetzt PC —« PC + K + 1
BRBC b,K7 | Verzweige wenn Status | wenn (SREG(b) = 0)dann | 1/2
Flag geldscht PC -« PC + K + 1
BREQ K7 Verzweige wenn gleich | wenn (Z = 1) dann 1/2
PC -« PC + K+ 1
BRNE K7 Verzweige wenn un- wenn (Z = 0) dann 1/2
gleich PC « PC + K + 1
BRCS K7 Verzweige wenn Carry wenn (C = 1) dann 1/2
gesetzt PC « PC + K + 1
BRCC K7 Verzweige wenn Carry wenn (C = 0) dann 1/2
geldscht PC -« PC + K + 1
BRSH K7 Verzweige wenn gleich | wenn (C = 0) dann 1/2
oder grdfRer, unsigned | PC « PC + K + 1
BRLO K7 Verzweige wenn klei- wenn (C = 1) dann 1/2
ner, unsigned PC « PC + K + 1
BRMI K7 Verzweige wenn nega- wenn (N = 1) dann 1/2
tiv PC « PC + K + 1
BRPL K7 Verzweige wenn posi- wenn (N = 0) dann 1/2
tiv PC « PC + K + 1
BRGE K7 Verzweige wenn gréRer | wenn (N <» V=0) dann 1/2
gleich, signed PC « PC + K + 1
BRLT K7 Verzweige wenn klei- wenn (N € V=1) dann 1/2
ner gleich, signed PC « PC + K + 1
BRHS K7 Verzweige wenn Half wenn (H = 1) dann 1/2
Carry Flag gesetzt PC « PC + K + 1
BRHC K7 Verzweige wenn Half Wenn (H = 0) dann 1/2
Carry Flag geldscht PC —« PC + K + 1
BRVS K7 Verzweige wenn Over- wenn (V = 1) dann 1/2
flow Flag gesetzt PC —« PC + K + 1
BRVC K7 Verzweige wenn Over- wenn (V = 0) dann 1/2
flow Flag geldscht PC - PC + K + 1

16.6.15 Befehl iiberspringen

Alternativ kann der nédchste Befehl, abhéngig von einer Bedingung mit den Befehlen CPSE,

SBRC und SBRS iibersprungen werden (vergl. Tabelle 16-17).

Tabelle 16-17 Bedingte Sprungbefehle zum Uberspringen des nichsten Befehls.

Befehl | Operand Beschreibung Ausfithrung

CPSE Rd,Rr Uberspringe wenn wenn (Rd = Rr)dann
gleich PC —~ PC + 2 oder 3

SBRC Rr,b ﬁberspringe wenn Bit wenn (Rr(b) = 0)dann
im Register geldscht PC — PC + 2 oder 3

SBRS Rr,b ﬁberspringe wenn Bit wenn (Rr (b) = 1)dann
im Register gesetzt PC «~ PC + 2 oder 3

16.6 Befehlssatz 261

16.6.16 Befehle fiir Unterprogramme

Unterprogramme dienen der besseren Strukturierung eines Programmes. Sie sind Programmtei-
le, die eine bestimmte, klar definierte Aufgabe erfiillen. Sie werden vom aufrufenden Pro-
gramm mit den Befehlen CALL (Call Subroutine) oder RCALL (Relative Call Subroutine)
aufgerufen. Dazu muss im Befehl die Adresse des Unterprogramms stehen. CALL springt zu
einer absolut definierten Adresse, RCALL zu einer relativ definierten Adresse. Der letzte Be-
fehl im Unterprogramm ist RET (Return from Subroutine), er bewirkt, dass als nichstes der
Befehl im aufrufenden Programm ausgefiihrt wird, der nach dem CALL- bzw. RCALL-Befehl
steht. Die Riicksprungadresse wird dazu im Stack zwischengespeichert.

Der Stack ist ein Stapelspeicher im RAM. Auf ihm werden Daten oben abgelegt oder von oben
entnommen. Beim ATmegal6 wichst der Stack nach niedrigeren Adressen hin. Die nédchste
freie Speicherstelle im Stack wird dabei im Stack-Pointer gespeichert. Zu Beginn des Pro-
gramms wird der Stack initialisiert, indem man den Stack-Pointer z.B. auf die oberste Spei-
cherstelle im RAM-Bereich setzt. Wenn das erste Datum an diesem Speicherplatz abgelegt
wird, wird gleichzeitig der Stack-Pointer um Eins dekrementiert, denn das ist dann der nichste
freie Speicherplatz im Stack. Wenn ein Datum entnommen wird, wird der Stack-Pointer um
Eins inkrementiert.

Es werden beim CALL-Befehl die folgenden Schritte durchgefiihrt:

1. Bei einem Unterprogrammaufruf durch den Befehl CALL wird zunéchst die Riicksprung-
adresse gerettet, indem zuerst das hoherwertige Byte des Befehlszéhlers (PCH) auf den
Stack gelegt wird, also an die Adresse, die im Stack-Pointer gespeichert ist.

2. Dann wird der Stack-Pointer dekrementiert, so dass er auf die nichste freie Speicherstelle
im Stack zeigt.

3. Das niederwertige Byte des Befehlszihlers (PCL) wird auf den Stack gelegt, also an die
Adresse, auf die der Stack-Pointer zeigt.

4. AnschlieBend wird der Stack-Pointer um eins dekrementiert. Wahlt man die iibliche Dar-
stellung, in der die Speicherpldtze mit hoheren Adressen nach unten aufgetragen werden,
so wichst der Stack nach oben. Der Stack-Pointer zeigt nach dem CALL-Befehl wieder
auf die erste freie Stack-Position (top of stack = TOS).

5. Mit der Adresse im Operanden wird der Befehlszéhler geladen. Der néchste auszufiihrende
Befehl steht dann an dieser Stelle. Es ist die Adresse des ersten Befehls des Unterpro-
gramms.

6. Die Unterprogrammbefehle zum Aufruf eines Unterprogramms und Riicksprung aus ei-
nem Unterprogramm sind in Tabelle 16-18 zusammengefasst.

Der Befehl RCALL arbeitet genauso wie der Befehl CALL, nur dass die Adresse des Unterpro-

gramms relativ zum Speicherplatz des Befehls BSR angegeben wird. Dadurch darf das Unter-

programm maximal 2K Woérter weiter vorn oder 2K Worter weiter hinten im Programm stehen.

Der Riicksprung aus dem Unterprogramm in das aufrufende Programm geschieht mit dem

Befehl RET (Return from Subroutine). Beim Riicksprung ist die Reihenfolge der Stack-

Operationen umgekehrt:

1. Der Stack-Pointer wird inkrementiert, so dass er auf den obersten besetzten Speicherplatz
zeigt.

2. Der Inhalt des Speicherplatzes, auf den der Stack-Pointer zeigt, wird in das niederwertige
Byte des Befehlszdhlers PCL geschrieben.

3. Der Stack-Pointer wird inkrementiert.

262 16 Mikroprozessoren

4. Der Inhalt des Speicherplatzes, auf den der Stack-Pointer zeigt, wird in das hoherwertige
Byte des Befehlszdhlers PCH geschrieben.

Tabelle 16-18 Unterprogrammbefehle

Befehl | Operand | Beschreibung Ausfiihrung Flags T |W
RCALL | K12 Relativer Aufruf | PC « PC + K + 1 | keins 3 1
Unterprogramm Stack — PC + 1

SP « SP - 2
CALL K22 Absoluter Aufruf | PC ~ K keins 4 2
Unterprogramm Stack « PC + 2
SP — SP - 2
RET Unterprogramm PC ~ STACK keins 4 1
Return SP — SP + 2
PUSH Rr Push Register STACK « Rr keins 2 1
auf den Stack SP — SP -1
POP Rd Pop Register vom | Rd — STACK keins 2 1
Stack SP —~ SP + 1

Der Stack-Pointer muss initialisiert werden. Man setzt ihn in der Regel auf die hochste Adresse
des RAM-Bereiches. Das Initialisieren kann mit der folgenden Befehlsfolge geschehen.

LDI rlé6, LOW(RAMEND)

OouT SPL, rle6

ILDI rlé6, HIGH (RAMEND)

OUT SPH, rlé6
In diesem Fall wird der Stackpointer auf die Adresse $045F, die oberste Adresse im SRAM
initialisiert (vergl. Bild 16-9). Ein Unterprogramm WARTEN, welches eine Warteschleife
enthélt, ist unten gezeigt. Es wird vom Befehl CALL, WARTEN im Hauptprogramm aufgerufen.

CALL WARTEN ;Aufruf Unterprogramm ,Warten“
;weitere Befehle im Hauptprogramm

WARTEN: LDI rl7,SFF ;Unterprogrammbeginn, S$FF in r1l7 laden

ANFANG: DEC rl7 ;Zdhler dekrementieren
BRNE ANFANG ;wiederholen, wenn B grdfRer 0
RET ;RUcksprung

Das gezeigte Unterprogramm WARTEN hat den Nachteil, dass es den Inhalt des Registers r17
zerstort. Nach dem Aufruf des Unterprogramms steht immer $00 in r17. Man miisste immer
beim Aufruf des Unterprogramms sicherstellen, dass der Inhalt dieses Registers nicht mehr
gebraucht wird. Besser ist es, zu Beginn eines jeden Unterprogramms alle benétigten Register
auf den Stack zu retten und sie vor dem Riicksprung wieder vom Stack zu holen.

Mit dem Befehl PUSH kann der Inhalt der Register auf dem Stapel abgelegt werden, damit sie
durch die Operationen im Unterprogramm nicht zerstért werden. Man nennt diesen Vorgang
Retten (engl. push). Mit dem Befehl POP kann der Registerinhalt vom Stack zuriickgeholt
werden (engl. pull). Wie die Tabelle 16-24 zeigt, wird beim Pushen der Registerinhalt in dem
Speicherplatz abgelegt, auf den der Stack-Pointer zeigt. AnschlieBend wird der Stack-Pointer
dekrementiert, so dass er wieder auf den néchsten freien Speicherplatz zeigt. Beim Befehl POP
wird erst der Stack-Pointer inkrementiert und dann das Datum vom Stack in das Register gela-
den.

16.6 Befehlssatz 263

Hier ist das obige Unterprogramm so ergénzt, dass der Inhalt des Registers r17 auf den Stack
gerettet und am Ende des Unterprogramms wieder vom Stack geholt wird:

CALL WARTEN ;Aufruf Unterprogramm
;weitere Befehle im Hauptprogramm

WARTEN: PUSH rl17 ;Inhalt von rl7 retten

LDI rl7,SFF ;SFF in rl17 laden
ANFANG: DEC rl7 ;Zahler dekrementieren
BRNE ANFANG ;wiederholen, wenn B>0
POP rl7 ;rl7 zurlckholen
RET ;RUcksprung zum Hauptprogramm

In Tabelle 16-18 ist die Ubersetzung dieses Programmes durch den Assembler gezeigt. Unter
,,Adr findet man die Adresse des Speichers. Rechts daneben sind jeweils die Bytes aufgelistet,
die zu einem Befehl gehoren. Weiter rechts steht der Assemblercode. Im ersten Befehl steht
unter der Adresse $0010 den Opcode fiir den Befehl CALL WARTEN. Dieser Befehl umfasst
die beiden Worte 94 OE 00 15. Man erkennt, dass das Label WARTEN durch die Adresse 0015
ersetzt ist. Dies ist die Adresse des Unterprogramms.

Tabelle 16-19 List-File des Unterprogramms.

Adr. Inhalt Label Opcode Operand ;Kommentar

0010 94 OE 00 15 CALL WARTEN ;Aufruf Unterprogramm

0012 . . . ;weitere Befehle des
;Hauptprogramms

0015 93 1F WARTEN: PUSH rl7 ;Inhalt von rl7 retten

0016 EF 1F LDI rl7,$FF ;S$FF in rl17 laden

0017 95 1A ANFANG: DEC rl7 ;Zdhler dekrementieren

0018 F7 F1 BRNE ANFANG ;wiederholen, wenn B>0

0019 91 1F POP rl7 ;rl7 zurlckholen

001A 95 08 RET ;RUcksprung

In Tabelle 16-19 ist der Inhalt des Stacks gezeigt, wie er sich wéhrend der Ausfiihrung des
Unterprogramms darstellt. In diesem Beispiel wird angenommen, dass im Register r17 vor dem
Aufruf des Unterprogramms $2E stand. Der Stackpointer vor dem Aufruf des Unterprogramms
zeigt auf die Adresse $045F.

Tabelle 16-19 Stack zum Programm ,,Warten®. Es ist der Zustand wéhrend der Ausfiihrung des Unter-
programms gezeigt.

Speicher Kommentar

Adresse | Inhalt

045C <Stack-Pointer bei PC = 0016
045D 2E |geretteter Inhalt von rl7
045E 12 PCL

045F 00 |PCH <«-Stack-Pointer vor dem Unterprogrammaufruf

264 16 Mikroprozessoren

16.7 Assembleranweisungen

Man unterscheidet zwischen Assembleranweisungen und Assemblerbefehlen.

e Assemblerbefehle nennt man auch Mnemonics (z.B. LDI r20, $0A). Sie bilden den
Source-Code.

e Die Assembleranweisungen (engl. Directives) dienen dagegen der Ubersetzung des
Source-Codes in den Object-Code. Sie werden nicht iibersetzt, sondern sagen aus, wie die
Befehle zu einem Programm zusammengefiigt werden sollen. Sie sagen, ab welcher Ad-
resse das Programm in den Speicher geschrieben wird und geben Hinweise fiir die Zuord-
nung von symbolischen Variablen zu Speicherplitzen. z.B. sagt der Befehl . ORG $0010,
dass die folgenden Befehle ab dem Speicherplatz $0010 angeordnet werden sollen. As-
sembleranweisungen beginnen zur Unterscheidung von Variablen und Labeln immer mit
einem Punkt.

Das Assemblerprogramm nimmt die Ubersetzung des Source-Codes in den Object-Code vor,
hat aber daneben noch weitere Aufgaben:

1. Ein Maschinenprogramm ist im Allgemeinen an einen bestimmten Ort im Speicher gebun-
den. Zum Beispiel stehen in absolut adressierten Spriingen Sprungadressen, die bei einer
Verschiebung des Programms im Speicher gedndert werden miissen. Um es dem Pro-
grammierer einfacher zu machen, ist das Assemblerprogramm in der Lage, aus symboli-
schen Sprungadressen konkrete Adressen (physikalische Adressen) zu berechnen. Dazu
muss dem Assembler mitgeteilt werden, wo das Programm im Speicher stehen soll. Das
geschieht mit dem Befehl:

.ORG Adresse

Alternativ konnen mit den folgenden Definitionen Bereiche festgelegt werden, in die das
Programme oder Daten geschrieben werden sollen:

Anweisung Wirkung

.CSEG Der folgende Code wird in den Flash-Speicher geschrieben
.DSEG Die folgenden Variablendeklarationen stehen im SRAM
.ESEG Der folgende Code wird in das EEPROM {iibernommen

2. Vom Assembler kénnen symbolische Namen ,,Name* fir Konstanten verarbeitet werden.
Er ordnet jedem Label ,,Name* eine Konstante zu. Es sind 8-Bit-Konstanten und 16-Bit-
Konstanten moglich.

Anwei- Operand Wirkung Beispiel

sung

-EQU Name = data | Weist der Konstanten einen | . EQU Null = $00
Zahlenwert ,,data“ zu

3. Ebenso konnen symbolische Namen ,,Name* fiir Variablen und Konstanten vom Assemb-
ler verarbeitet werden. Er ordnet jeder Variablen eine 16-Bit-Adresse zu, da eine Variable
im Rechner identisch mit der Adresse eines Speicherplatzes ist.

16.7 Assembleranweisungen 265

Anweisung Operand | Wirkung Beispiel

Name: .DB Liste Erstellt eine Liste mit Kon- Konst: .DB 4,7,8
stanten

Name: .BYTE |n Definiert n 8-Bit-Variablen VAR: .BYTE 3

4. Kommentare, die mit einem Semikolon beginnen miissen, werden vom Assembler igno-
riert.

Das Assemblerprogramm nimmt eine Priifung auf Syntaxfehler vor.

6. Durch die Definition von Makros kann der Programmieraufwand gesenkt werden.

Die Assemblierung wird in mehreren Durchgéngen vorgenommen. Zuerst werden die Befehle
iibersetzt. In den weiteren Durchgidngen werden dann die symbolischen Adressen und Sprung-
ziele zugeordnet. Die Ubersetzung der Befehle in den Maschinencode wird mit Hilfe von pro-
zessorspezifischen Listen vorgenommen.

Tabelle 16-20 Beispiel fiir Assembleranweisungen.

Adresse Inhalt Label Opcode Operand ;Kommentar
.EQU KONST = SFF ;KONST definieren
.CSEG ; Programmbeginn
000000 e50f LDI rlé, LOW(RAMEND) ;Stack
000001 bfod ouT SPL, rlé ;initialisieren
000002 e004 LDI rl6, HIGH (RAMEND)
000003 eflf LDI rl7, KONST ;rl7 mit KONST la-
;den
000004 9310 0060 STS VAR1,rl7 ;rl7 in VAR1 spei-
;chern
000006
.DSEG ;Beginn Datenspei-
;cher
000060 VAR1l: .BYTE 1 ;Speicherort Varl

Das Beispiel verwendet die Assembleranweisungen .CSEG, .DSEG, .EQU und .BYTE.
Durch die Anweisung . CSEG wird der folgende Code im Flash-Programmspeicher abgelegt.
Die die Befehle stehen daher ab der Adresse $0000 im Flash-Speicher. Durch .DSEG werden
die Daten ab der ersten verfiigbaren Adresse im SRAM ab der Adresse $0060 abgelegt.

Der Assembler weist den Befehlen und Sprungmarken entsprechende Adressen im Programm-
speicher zu (in diesem Beispiel nicht vorhanden).

Die Anweisung .EQU wird fiir die Definition der Konstanten KONST verwendet. Immer wenn
diese Konstante im Text vorkommt, setzt das Assemblerprogramm den entsprechenden Wert
$FF ein. Das dient der Ubersichtlichkeit des Programms. KONSTI1 ist eine 8-Bit-Konstante, sie
wird verwendet, um das Register r17 zu initialisieren.

Die Anweisung .BYTE reserviert zundchst einen Speicherplatz und weist ihm eine Adresse
und einen symbolischen Namen zu. Der Name ist in diesem Fall VAR, die Adresse ist $0060,

266 16 Mikroprozessoren

die erste Adresse im SRAM. Der Programmierer kann jetzt VAR wie eine Adresse behandeln,
z.B. in Befehlen, die die Adressierungsart Daten Direkt verwenden, wie hier beim Befehl STS.

16.8 Interrupt-Bearbeitung

Ein Interrupt ist eine Moglichkeit ein laufendes Programm von auen zu unterbrechen. Dies ist
zum Beispiel erforderlich, wenn durch eine Tastatur ein Befehl eingegeben wurde, oder wenn
bei einer Mikroprozessor-gesteuerten Werkzeugmaschine ein Not-Halt ausgefiihrt werden soll.

Andere Ereignisse, die einen Interrupt auslésen kdnnen sind z.B.:

e Wenn einer der Timer im ATmega einen vorher festgelegten Wert erreicht.

e Wenn eine serielle Ubertragung in einer Schnittstelle abgeschlossen ist.

e Wenn eine Pegeldnderung an einem speziellen externen Pin am ATmega 16 aufgetre-
ten ist. Dies ist z.B. der INTO-Pin, der einen externen Interrupt signalisiert.

Wenn solch ein externes oder internes Ereignis signalisiert wird, wird das Programm unterbro-
chen und stattdessen eine fiir den Interrupt-spezifische Interrupt-Service-Routine (ISR) ausge-
fiihrt, die die anstehenden Probleme 16sen soll. AnschlieBend wird das Programm weiter ausge-
fithrt.

Interrupts sind ein Eingriff in das laufende Programm. Wenn ein Interrupt auftritt, wird die
Riicksprungadresse auf den Stack gerettet, um nach der Ausfithrung der ISR das Programm
weiter ausfiihren zu konnen.

Auflerdem konnen Interrupts ein- und ausgeschaltet werden. Das ist n6tig, um Interrupts an
unpassenden Stellen im Programmablauf zu verhindern. So ist es z.B. katastrophal, wenn ein
Interrupt auftritt, bevor der Stack initialisiert wurde. Es ist daher {iblich, ganz am Anfang des
Programms den Stack-Pointer zu initialisieren und dann erst die Interrupts freizugeben. Ein
Interrupt wird nur angenommen, wenn das lokale Masken-Bit und das globale Maskenbit im
SREG, das I-Bit, gesetzt sind.

Die Reihenfolge der Aktionen bei einem Interrupt ist:

e Wenn die Interrupt-Quelle festgestellt ist, reagiert diec CPU nach Beendigung des au-
genblicklich ausgefiihrten Befehls.

¢ Die Riicksprungadresse wird auf dem Stack gespeichert.

e Da mehrere Interrupts gleichzeitig auftreten kdnnen, haben Interrupts eine Prioritét.
Es wird daher der anliegende Interrupt mit der hochsten Prioritdt ausgefiihrt. Dafiir
wird aus dem Speicher der Interrupt-Vektor des Interrupts mit der hochsten Prioritét
aus der Interrupt-Vektor-Tabelle geholt und in den PC geladen. Die ISR wird an der
Adresse angesprungen, die durch die Interrupt-Vektor-Tabelle (Tab. 16-21) definiert
1st.

e Alle anderen Interrupts sind wahrend der Ausfiihrung der ISR gesperrt (Globales
Maskenbit im SREG wird zurilickgesetzt).

e Der RETI-Befehl in der ISR bewirkt das Laden des alten PC Wertes aus dem Stack.

e Die normale Programmbearbeitung wird fortgesetzt.

Beim Auftreten eines Interrupts ist folgendes zu beachten:

e Es werden auler dem PC-Wert keine Register automatisch gerettet. Wenn ein Regis-
ter in der ISR verwendet wird, sollte es auf jeden Fall gerettet werden, da in der Regel
nicht bekannt ist, an welcher Stelle im Hauptprogramm der Interrupt ausgeldst wurde.

e Zum Retten von Arbeitsregistern dienen die Befehle PUSH und POP.

16.8 Interrupt-Bearbeitung 267

e Falls durch arithmetische Befehle in der ISR das SREG verdndert wird, sollte es eben-
falls gerettet werden. Dies muss iiber IN und OUT in ein Arbeitsregister zwischenge-
speichert werden, da es dafiir keinen direkten Befehl gibt. (genauso: 1/0 Register).

¢ Flanken- oder Pegelsteuerung wird durch Bits im Register MCUCR eingestellt, wel-
ches im 10-Bereich liegt.

Der ATmega besitzt zwei Gruppen von Interrupts:

Die eine Gruppe sind die nicht maskierbaren Interrupts, von denen als Beispiele die Interrupts
INTO und INT1 in Tabelle 16-21 aufgelistet sind. Die Tabelle 16-21 enthélt fiir jeden Interrupt
zwei Adressen im Programmspeicher, in denen der Programmierer {iblicherweise einen Sprung
zu der dazugehdrigen Interrupt-Service-Routine einsetzt. Hier sind nur der Reset, die externen
Interrupts INTO und INT1 sowie beispielhaft zwei Interrupts des Timers 2 aufgelistet. Insge-
samt gibt es 21 Interrupts.

Die maskierbaren Interrupts haben ein lokales Maskenbit, mit dem sie ein- und ausgeschaltet
werden konnen. Die Maskenbits sind in den I0-Registern enthalten, die im Datenspeicher
liegen (vergl. Bild 16-9).

Tabelle 16-21 Eigenschaften einiger Interrupts und des Reset des ATmegal6.

Prioritdt | Vektor-Adresse im | Interrupt Quelle
Programmspeicher
1 0000-0001 RESET Externer Pin
2 0002-0003 INTO Externer PIN
3 0004-0005 INTI1 Externer PIN
4 0006-0007 TIMER2 COMP Timer/Counter2 Compare Match
5 0008-0009 TIMER2 OVF Timer/Counter2 Overflow
6 0006-0007 Weitere Interrupts
21 0028-0029

Auch der Reset gehdrt zu den Interrupts. Unter anderem wird ein Reset beim Einschalten der
Betriebsspannung ausgeldst, oder indem der Eingang —Reset auf 0 gesetzt wird. Das bewirkt
einen Neustart des Prozessors an der Adresse $0000 mit einer Initialisierung der meisten Re-
gister.

Wie im untenstehenden Programmbeispiel gezeigt, steht an der Stelle $0000 im Programm ein
Sprung in das Hauptprogramm, welches nach den Interruptvektoren an der Adresse $002A
angeordnet ist.

Das Hauptprogramm beginnt mit der Initialisierung des Stackpointers auf das Ende des SRAM.
Danach werden die Interrupts mit dem Befehl SEI freigegeben. Die Interrupt-Service-Routine
ist nach dem letzten Befehl des Hauptprogramms angeordnet. Dies ist in der Regel ein Riick-
sprung zum Beginn des Hauptprogramms. Das Hauptprogramm besteht oft aus einer Endlos-
schleife, in der die Steuer- und Regelaufgaben ausgefiihrt werden.

Der Ablauf bei einem Interrupt ist wie folgt: Wenn ein INTO-Interrupt wéhrend der Ausfiih-
rung des Hauptprogramms auftritt, wird der der Inhalt des PC auf den Stack gerettet. Stattdes-

268 16 Mikroprozessoren

sen wird der Interrupt-Vektor an der Adresse $0002 des INTO-Interrupts (vergl. Tabelle 16-28)
in den PC geladen. An dieser Adresse steht ein Sprung in die ISR an der Adresse $040. Nach
deren Beendigung veranlasst der Befehl RTI das Zuriickholen des PC, der damit auf den néchs-
ten Befehl des Hauptprogramms zeigt.

Addr Label Code ;Kommentar

$000 JMP Main ; Reset-Handler

$002 JMP EXT INTO ; Sprung zu IRQO

$004 Weitere Interrupts

$02A Main: LDI rlé6,high(RAMEND) ; Hauptprogramm

$S02B OUT SPH, rlé6 ; Stack Pointer init.
$02C LDI rle6, low (RAMEND)

$02D OuUT SPL,rle6

S02E SEI ; Enable interrupts
SO2F Befehle Hauptprogramm

SO3F RJMP Main ; Letzter Befehl Hauptprgr.
$040 EXT INTO: Befehle ISR INTO ; Beginn ISR INTO
$041 Befehle ISR INTO ; Befehle ISR

$042 RETI ; Rlcksprung aus ISR

16.9 Ubungen

Aufgabe 16.1

Was ist der Vorteil und der Nachteil einer gemeinsamen Speicherung von Daten und Befehlen
beim Von-Neumann-Rechner in demselben Speicher? Welche Vorteile hat eine Harvard-
Architektur?

Aufgabe 16.2

a) Zahlen Sie die Adressierungsarten des ATmegal6 auf.

b) Was geschieht bei einem Interrupt?

c) Erkléren Sie die Begriffe Stack und Stack-Pointer.

d) Welche Schritte flihren CALL und RET beim Aufruf eines Unterprogramms aus.

Aufgabe 16.3

Schreiben Sie ein Programm, welches zwei Zahlen in ihren Speicherpldtzen vertauscht. Die
Zahlen sollen in Speicherplétzen stehen, deren Adressen in den Index-Registern X und Y ste-
hen. Wie viele Takte benotigt Thr Programm zur Ausfiihrung?

Aufgabe 16.4

Schreiben Sie ein Programmstiick fiir den ATmegal6, welches einen Block von variabler Lén-
ge (n Bytes < 255) von einer Stelle im SRAM an eine andere verschiebt. Die Anzahl der zu
verschiebenden Bytes soll im Register r17 stehen. Im Index-Register X soll die erste Adresse
des zu verschiebenden Blocks stehen, im Index-Register Y die erste Adresse des neuen Blocks.

Aufgabe 16.5

Schreiben Sie ein Programm, welches die Anzahl der Einsen im Register r18 zihlt. Die Anzahl
der Einsen soll anschlielend binédr codiert im Register r16 stehen.

A Anhang

A.1 Die Abhiingigkeitsnotation

In dieser Tabelle werden die funktionsbeschreibenden Symbole der Abhéngigkeitsnotation
zusammengefasst. Diese Symbole werden innerhalb der Umrandung des Symbols angegeben.
Sie beschreiben die allgemeine Funktion der Schaltung.

Symbol Beschreibung
& UND-Gatter
>1 ODER Gatter
=1 EXOR-Gatter
= Aquivalenz-Gatter
2k Eine gerade Anzahl der Eingédnge muss auf 1 liegen
2k+1 Eine ungerade Anzahl der Eingéinge muss auf 1 liegen
1 Ein Eingang muss auf 1 sein
< oder > Tr.eibe.:r-Ausgang, das Symbol ist in Richtung des Signalflusses
orientiert.
o Schmitt-Trigger
XY Code-Wandler
MUX Multiplexer
DMUX oder DX | Demultiplexer
z Addierer
P-Q Subtrahierer
CPG Carry-Look-Ahead-Generator
T Multiplizierer
COMP Vergleicher, Komparator
ALU Arithmetisch-logische-Einheit
SRGm Schieberegister mit m Bits
CTRm Zéhler mit m Bits, Zykluslidnge 2"
CTR DIVm Zidhler mit Zykluslénge m
RCTRm Asynchroner Zihler mit Zykluslange 2™
ROM Read Only Memory
RAM Schreib-Lese-Speicher
FIFO First-In-First-Out-Speicher

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018
K. Fricke, Digitaltechnik, https://doi.org/10.1007/978-3-658-21066-3

270

A Anhang

In der folgenden Tabelle werden die logischen Symbole aulerhalb der Umrandung zusammen-

gefasst:

Nr Symbol Beschreibung

1 Logische Inversion eines Eingangs (externe 0 erzeugt interne

4()
2 Logische Inversion eines Ausgangs (interne 0 erzeugt externe
~

3 ‘Bi Eingang, aktiv bei L, dquivalent zu Nr. 1 bei positiver Logik

4 }4L Eingang, aktiv bei L, Signalfluss von rechts nach links

5 ’L Ausgang, aktiv bei L, dquivalent zu 2 bei positiver Logik

6 Signalfluss von rechts nach links

——
7 Bidirektionaler Signalfluss
e

8 Dynamischer Eingang: aktiv bei positiver Flanke

9 Dynamischer Eingang: aktiv bei negativer Flanke

10 H Nichtlogischer Eingang

11 L‘ Analoger Eingang an einem digitalen Symbol

12 _:[' Interne Verbindung

I3 % Invertierende interne Verbindung

4 | % Interne Verbindung: aktiv bei positiver Flanke

A.1 Die Abhéngigkeitsnotation 271

Die logischen Symbole der néchsten Tabelle liegen innerhalb der Umrandung des Symbols. Es
werden dadurch Aussagen iiber den inneren logischen Zustand der Schaltung gemacht.

Symbol Beschreibung

7}7 gepufferter Ausgang: Anderung erst bei Erreichen des urspriinglichen
Zustands des Eingangs

Eingang mit Hysterese

Ausgang mit offenem Kollektor eines npn-Transistors
oder vergleichbarer Ausgang

Ausgang mit offenem Emitter eines npn-Transistors
oder vergleichbarer Ausgang

|
T

Tri-State-Ausgang

v —
4{ EN Enable-Eingang
Flipflop-Einginge: Ubliche Bedeutung der Buchstaben
JLK,R,S,D, T

Eingénge, die Rechts-Shift bzw. Links-Shift in einem Schieberegister
4‘ o 4‘ o bewirken, m € N, m =1 wird in der Regel nicht angegeben

Bindrer Eingangsvektor mit den Wertigkeiten 0 bis n. n ist die Zweier-
potenz der Wertigkeit des MSB

Setz-Eingang, der angegebene Wert wird geladen, wenn der Eingang
aktiv ist

Ausgang geht auf 1, wenn das Register den angegebenen Wert annimmt

Ausgang mit konstantem Wert

e |

Gruppe von Signalen, die einen einzigen logischen Eingang bilden

Interne Verbindung: aktiv bei positiver Flanke

272

A Anhang

In dieser Tabelle wird die Bedeutung der Buchstaben in der Abhingigkeitsnotation zusammen-
gefasst. Es sind zusétzlich die Seiten angegeben, auf denen genauere Beschreibungen der Ab-
hingigkeiten oder Beispiele zu finden sind.

Abhingigkeit | Symbol Eingang auf 1 Eingang auf 0 Seite
Adresse A wihlt Adresse Adresse nicht gewahlt 162
Kontrolle C aktiviert unveréndert 80
Enable EN | aktiviert Eingénge unwirksam, 37

Tri-State-Ausgénge
hochohmig,
OC-Ausginge aus,
andere Ausginge auf 0
UND G UND mit anderen Eingén- | erzwingt 0 27
gen

Mode M Modus gewahlt Modus nicht gewéhlt 135
Negation N negiert Zustand Kein Einfluss 29
Reset R setzt Flipflop zuriick Kein Einfluss 78
Set S setzt Flipflop Kein Einfluss 78
ODER v erzwingt 1 Oder mit anderen Ein- 28

gingen
Ubertragung X bidirektionale Verbindung | Verbindung offen 30
hergestellt
Verbindung Z erzwingt 1 erzwingt 0 29

273

A.2 Befehlssatz des ATmegal6

Abkiirzungen fiir die folgenden Tabellen

Abk. Beschreibung Codierung im OP-Code

Rr Quell-Register r0 bis r31 rrrrr

Rd Ziel-Registerr0 bis r31 ddddd

Rh Register fir die Immediate- ldddd

Adressierung (rl6-r31)

Rw Pointer-Register (fir die Be- r25:r24 (ww=00)
fehle AIDW, SBIW) r27:1r26 X (ww=01)
(r24,r26,r28,r30) r29:r28 = Y (ww=10)

r31:r30 Z (ww=11)

Rp Pointer-Register (X,Y,Z) r27:r26 X (eee=111)
r29:r28 Y (eee=010)
r31:r30 Z (eee=000)

Ro Base Pointer-Register r29:r28 Y (o=1)
r31:r30 Z (o=0)

Kn n Bit-Konstante kkkkkk...

b Bit-Position in Register bbb

P Portadresse 6 Bit pPPPPPrP

Transfer-Befehle

Be- Operan- Beschreibung Ausfihrung T| W

fehl | den

MOV Rd, Rr Kopiere Register Rd « Rr 1|11

LDI Rh, K8 Lade immediate Rh « K 1|1

LDS Rd, Ale Lade direkt aus Datenspeicher Rd « (A) 2| 2

LD Rd, Rp Lade indirekt Rd « (Rp) 21 1

LD Rd, Rp+ Lade indirekt mit Post- Rd ~(Rp) 2(1

Inkrement Rp « Rp + 1
LD Rd, -Rp Lade indirekt mit Pra- Rp « Rp - 1 311
Dekrement Rd — (Rp)

LDD Rd, Lade indirekt mit Displacement Rd « (Ro + K) 2|1
Ro+K6

STS Al6, Rd Speichere direkt in Datenspei- (A) « Rd 2| 2

cher

ST Rp, Rr Speichere indirekt (Rp) <« Rr 2| 1

ST Rp+, Rr Speiche indirekt mit Post- (Rp) < Rr 2|1

Inkrement Rp « Rp + 1
ST -Rp, Rr Speichere indirekt mit Pra- Rp « Rp - 1 2|1
Dekrement (Rp) < Rr

STD Ro+K6,Rr Speichere indirekt mit Dis- (Ro + K) « Rr [2|1

placement

IN Rd, P Lade aus IO-Adresse Rd « (P) 1|1

ouT P, Rr Speicher in IO-Adresse (P)« Rr 111

274 A Anhang
Arithmetische Befehle
Be- Ope- Beschreibung Ausfihrung H,S,V,N,Z,C T
fehl | rand
ADD Rd, Rr | Addiere ohne Carry Rd « Rd + Rr H,S,V,N,Z,C 1
ADC Rd, Rr | Addiere mit Carry Rd « Rd + Rr + C H,S,V,N,Z,C 1
ADIW | Rw, K6 Addiere zu Wort Rw « Rw + K -,5,V,N,z,C 2
immediate
SUB Rd, Rr | Subtrahiere ohne Rd « Rd - Rr H,S,V,N,Z,C 1
Carry
SUBI | Rh, K8 Subtrahiere imme- Rh « Rh - K H,S,V,N,Z,C 1
diate
SBC Rd, Rr Subtrahiere mit Rd « Rd - Rr - C H,S,V,N,Z,C 1
Carry
SBCI | Rh, K8 Subtrahiere imme- Rh « Rh - K - C H,S,V,N,Z,C 1
diate mit Carry
SBIW | Rw, K6 Subtrahiere imme- Rw « Rw - K -,8,V,N,Z,C 2
diate
AND Rd, Rr | Logisches UND Rd < Rd A Rr -,8,V,N,Z, -
ANDI | Rh, K8 Logisches UND, Rh « Rh A K -,8,V,N,Z, -
immediate
OR Rd, Rr | Logisches ODER Rd < Rd v Rr -,8,V,N,Z, - 1
ORI Rh, K8 Logisches ODER, Rh < Rh Vv K -,8,V,N,Z, -
immediate
EOR Rd, Rr Exklusives ODER Rd — Rd € Rr -,5,V,N,Zz, - 1
COM Rd Einerkomplement Rd « SFF - Rd -,8,V,N,Zz,C 1
NEG Rd Zweilerkomplement Rd « $00 - Rd H,S,V,N,Z,C 1
SBR Rh, K8 | Setze Bit(s) Rh - Rh Vv K -,S,V,N,Z, - 1
CBR Rh, K8 Ldésche Bit (s) Rh « Rh A ($FF-K) -,8,V,N,Z, - 1
INC Rd Inkrementiere Rd « Rd + 1 -,3,V,N, Z, - 1
DEC Rd Dekrementiere Rd « Rd - 1 -,8,V,N,Z, - 1
CLR Rd Losche Register Rd ~ $00 -,0,0,0,1,- 1
SER Rh Setze Register Rh « SFF R 1
SREG-Manipulation
Be- Ope- Beschreibung Ausfihrung H,S,V,N,Z,C | T |W
fehl rand
BSET b Flag Setzen SREG (b) « 1 SREG (b) 1 1
BCLR | b Flag L&schen SREG(b) ~ 0 SREG (b) 1)1
SEC Setze Carry C 1 e 111
CLC Losche Carry C <0 -,-,-,-,-,0 111
SEN Setze Negative-Flag N 1 -,-,-,1,-,- 1 1
CLN Losche Negative- Flag N 0 -,-,-,0,-,- 111
SEZ Setze Zero-Flag Z ~ 1 -,-y-,-,1,- 1 1
CLZ Losche Zero-Flag Z —~ 0 -,-,-,-,0,- 111
SES Setze Signed-Flag S « 1 -, 1,-,-,-,- 111
CLS Losche Signed-Flag S « 0 -,0,-,-,-,- 111
SEV Setze Zweierkomple- V « 1 -, -,1,-,-,- 111
ment- Uberlauf Flag
CLV Losche Zweierkomple- V-0 -,-,0,-,-,- 111
ment- Uberlauf Flag

A.2 Befehlssatz des ATmegal6

275

Schieben Rotieren

Be- Ope- Beschrei- Ausfihrung H,S,V,N,Z,C W
fehl rand | bung
LSL RdA Logisch Rd(n+l1l) « Rd(n), H,-,V,N,Z,C 1
links RA (0) < 0,
schieben Cc — RA(7)
CelER==NENL
LSR Rd Logisch Rd (n) ~ Rd(n+1), -,-,V,N,z,C 1
rechts RA(7) ~ 0,
schieben C ~ R4 (0)
o | [== [[
ROL Rd Rotiere RdA(0) ~ C, H,-,V,N,Z,C 1
links Rd(n+l1l) « Rd(n),
Uber Car- c — RA(7)
ry k} @
C
N [[&= []
ROR Rd Rotiere RA (7) ~ C, -,-,V,N,z,C 1
rechts Rd (n) — Rd(n+1),
Uber Car- c ~ R4 (0)
ry E)
C
SEH T T == 11
ASR Rd Arithme- Rd (n) ~ Rd(n+l), n=0..6 -,-,V,N,Z,C 1
tisches
Schieben
[T T H
Vergleich
Be- Ope- Beschreibung Ausfihrung H,S,V,N,Z,C | T|W
fehl rand
CP Rd,Rr | Vergleiche Rd - Rr H,S,V,N,Z,C|1]1
CPC Rd,Rr | Vergleiche mit Carry [Rd - Rr - C H,S,V,N,z,C|1]|1
CPI Rh,K8 | Vergleiche immediate [Rd - K H,S,V,N,Z,C|1]1
TST Rd Teste auf Null oder Rd A RA -,8,V,N,Z,- | 1|1
Minus

276 A Anhang
Verzweigungsbefehle
Be- Ope- | Beschreibung Ausfihrung T W
fehl rand
RJIMP K12 Relativer Sprung PC « PC + K + 1 2 1
JMP K22 Sprung direkt PC « K 3 2
CPSE Rd,R | Uberspringe wenn wenn (Rd = Rr)dann 1/2/3 |1
r gleich PC « PC + 2 oder 3
SBRC Rr,b | Uberspringe wenn Bit | wenn (Rr(b) = 0)dann 1/2/3 |1
im Register geldscht | PC — PC + 2 oder 3
SBRS Rr,b | Uberspringe wenn Bit | wenn(Rr (b) = 1)dann 1/2/3 |1
im Register gesetzt PC —« PC + 2 oder 3
BRBS b,K7 | Verzweige wenn Sta- wenn (SREG(b) = 1) dann 1/2 1
tus Flag gesetzt PC -« PC + K + 1
BRBC b,K7 | Verzweige wenn Sta- wenn (SREG(b) = 0)dann 1/2 1
tus Flag geldscht PC -« PC + K + 1
BREQ K7 Verzweige wenn wenn (Z = 1) dann 1/2 1
gleich PC « PC + K + 1
BRNE K7 Verzweige wenn un- wenn (Z = 0) dann 1/2 1
gleich PC « PC + K + 1
BRCS K7 Verzweige wenn Carry | wenn (C = 1) dann 1/2 1
gesetzt PC « PC + K + 1
BRCC K7 Verzweige wenn Carry | wenn (C = 0) dann 1/2 1
geldscht PC —« PC + K + 1
BRSH K7 Verzweige wenn | wenn (C = 0) dann 1/2 1
gleich oder gréRer, [PC « PC + K + 1
Unsigned
BRLO K7 Verzweige wenn klei- | wenn (C = 1) dann 1/2 1
ner, Unsigned PC « PC + K + 1
BRMI K7 Verzweige wenn nega- | wenn (N = 1) dann 1/2 1
tiv PC « PC + K + 1
BRPL K7 Verzweige wenn posi- | wenn (N = 0) dann 1/2 1
tiv PC « PC + K + 1
BRGE K7 Verzweige wenn grod- wenn (N <& V=0) dann 1/2 1
Ber gleich, Signed PC « PC + K + 1
BRLT K7 Verzweige wenn klei- | wenn (N < V=1) dann 1/2 1
ner gleich, Signed PC « PC + K + 1
BRHS K7 Verzweige wenn Half wenn (H = 1) dann 1/2 1
Carry Flag gesetzt PC -« PC + K + 1
BRHC K7 Verzweige wenn Half Wenn (H = 0) dann 1/2 1
Carry Flag geldscht PC -« PC + K + 1
BRVS K7 Verzweige wenn Over- | wenn (V = 1) dann 1/2 1
flow Flag gesetzt PC —« PC + K + 1
BRVC K7 Verzweige wenn Over- | wenn (V = 0) dann 1/2 1
flow Flag geldscht PC -« PC + K + 1

A.2 Befehlssatz des ATmegal6

277

Unterprogramm-Befehle

Befehl | Ope- | Beschreibung Ausfihrung Flags
rand

RCALL K12 Relativer Auf- PC « PC + K + 1 keins
ruf Unterpro- Stack « PC + 1
gramm SP «~ SP - 2

CALL K22 Absoluter Auf- PC « K keins
ruf Unterpro- Stack « PC + 2
gramm SP « SP - 2

RET Unterprogramm PC ~ STACK keins
Return SP «~ SP + 2

RETI Interrupt Re- PC ~ STACK I
turn SP « SP + 2

PUSH Rr Push Register STACK « Rr keins
auf den Stack SP —~ SP - 1

POP Rd Pop Register Rd ~ STACK keins
vom Stack SP — SP + 1

Einige Befehle wie Multiplikation, Division,

Steuerbefehle usw. sind nicht aufgefiihrt!

278

A Anhang

Codierung der Befehle des ATmegal6

Mnemonic Operanden Codierung Wort 1 Wort 2
ADC Rd, Rr 0001 11rd dddd rrrr
ADD Rd,Rr 0000 1lrd dddd rrrr
ADIW Rw, K6 1001 0110 kkww kkkk
AND Rd,Rr 0010 00rd dddd rrrr
ANDI Rh, K8 0111 kkkk dddd kkkk
ASR Rd 1001 010d dddd 0101
BCLR b 1001 0100 1bbb 1000
BRBC b, K7 1111 01kk kkkk kbbb
BRBS b, K7 1111 00kk kkkk kbbb
BRCC K7 1111 01kk kkkk k000
BRCS K7 1111 o0kk kkkk k000
BREQ K7 1111 ookk kkkk k001
BRGE K7 1111 01kk kkkk k100
BRHC K7 1111 01kk kkkk k101
BRHS K7 1111 ookk kkkk k101
BRLO K7 1111 ookk kkkk k00O
BRLT K7 1111 ookk kkkk k100
BRMI K7 1111 ookk kkkk k010
BRNE K7 1111 01kk kkkk k001
BRPL K7 1111 01kk kkkk k010
BRSH K7 1111 01kk kkkk k00O
BRVC K7 1111 01kk kkkk k011
BRVS K7 1111 ookk kkkk k011
BSET b 1001 0100 Obbb 1000
CALL K22 1001 010k kkkk 111k K16
CBR Rh, K8 0111 kkkk dddd kkkk
CLC 1001 0100 1000 1000
CLN 1001 0100 1010 1000
CLR Rd = eor Rd,Rd

CLS 1001 0100 1100 1000
CLV 1001 0100 1011 1000
CLZ 1001 0100 1001 1000
COM Rd 1001 010d dddd 0000
Cp Rd,Rr 0001 01lrd dddd rrrr
CPpC Rd,Rr 0000 01lrd dddd rrrr
CPI Rh, K8 0011 kkkk dddd kkkk
CPSE Rd,Rr 0001 00rd dddd rrrr

279

A.2 Befehlssatz des ATmegal6
Mnemonic Operanden Codierung Wort 1 Wort 2
DEC Rd 1001 010d dddd 1010
EOR Rd,Rr 0010 0lrd dddd rrrr
IN R4, P 1011 Oppd dddd pppp
INC Rd 1001 010d dddd 0011
JMP K22 1001 010k kkkk 110k K16
LD Rd,Rp 100e 000d dddd ee00
1D Rd, Rp+ 100e 000d dddd eeOl
LD Rd, -Rp 100e 000d dddd eelo0
LDD Rd,Ro, K6 10k0 kk0d dddd okkk
LDI Rh, K8 1110 kkkk dddd kkkk
LDS Rd, K16 1001 000d dddd 0000 Klé6
LSL Rd = ADD Rd4,Rd
LSR Rd 1001 010d dddd 0110
MOV Rd,Rr 0010 11rd dddd rrrr
NEG Rd 1001 010d dddd 0001
NOP 0000 0000 0000 0O00O
OR R4, Rr 0010 10rd dddd rrrr
ORI Rh, K8 0110 kkkk dddd kkkk
ouT P,Rr 1011 lppr rrrr pppp
POP Rd 1001 000d dddd 1111
PUSH Rr 1001 00lr rrrr 1111
RCALL K12 1101 kkkk kkkk kkkk
RET 1001 0101 0000 1000
RETI 1001 0101 0001 1000
RJMP K12 1100 kkkk kkkk kkkk
ROL Rd = ADC Rd, Rd
ROR Rd 1001 010d dddd 0111
SBC Rd, Rr 0000 10rd dddd rrrr
SBCI Rh, K8 0100 kkkk dddd kkkk
SBIW Rw, K6 1001 0111 kkww kkkk
SBR Rh, K8 0110 kkkk dddd kkkk
SBRC Rr,b 1111 110r rrrr Osss
SBRS Rr,b 1111 111r rrrr Osss
SEC 1001 0100 0000 1000
SEN 1001 0100 0010 1000
SER Rh 1110 1111 dddd 1111
SES 1001 0100 0100 1000

280 A Anhang
Mnemonic Operanden Codierung Wort 1 Wort 2
SEV 1001 0100 0011 1000
SEZ 1001 0100 0001 1000
ST Rp,Rr 100e 00lr rrrr ee0O0
ST Rp+,Rr 100e 001lr rrrr eell
ST -Rp,Rr 100e 001lr rrrr eelO
STD Ro,K6,Rr 10K0 kklr rrrr okkk
STS Kl6,Rd 1001 001d dddd 0000 Kle
SUB Rd,Rr 0001 10rd dddd rrrr
SUBI Rh, K8 0101 kkkk dddd kkkk
SWAP Rd 1001 010d dddd 0010
TST Rd = AND Rd,Rd

281

A.3 Losungen der Aufgaben

Losung Aufgabe 2.1
a) g(1110,101,) =1-2° +1-2* +1-2' +0-2° +1.27" +0- 27 +1-27°=14,625,,
b) g(10011,1101,) =1-2* +1-2" +1-2° +1- 27" +1.27 +1.27*=19,8125,,
Losung Aufgabe 2.2
a)
33:2=16 Rest 1 A
16:2 =28 Rest 0
8:2=4 Rest 0 ganzzahliger Anteil der Dualzahl
4:2=2 Rest 0
2:2=1 Rest 0
1:2=0 Rest 1

0,125-2=0,25 +0
0,25-2=0,5 +0 gebrochener Anteil der Dualzahl
0,52=0 +1 Y

Dabher ist 33,125,, = 100001,001,.

b)
45:2=22 Rest 1 A
22:2=11 Rest 0
11:2=5 Rest 1 ganzzahliger Anteil der Dualzahl

5:2=2 Rest 1

2:2=1 Rest 0

1:2=0 Rest 1

0,33-2=0,66 +0
0,66-2=0,32 +1 gebrochener Anteil der Dualzahl

0,32-2=0,64 +0

0,64-2=0,28 +1

Jetzt ist die Dualzahl bis auf 4 Stellen hinter dem Komma bekannt. Daher: 45,33,, =
101101,0101,.

Losung Aufgabe 2.3
a) Das Zweierkomplement von 001010 ist 110110.

282 A Anhang

2149

0
+ 1 0 -10y9
0

O = =
O = =

Ubertrag 11 1
~— D 0 0 1 0 I 1 o

Es gab die Ubertrige cs und cg, daher ist das Ergebnis richtig.
b) Das Zweierkomplement von 010111 ist 101001, das von 011011 ist 100101.

1 01 0 0 1 2316

+ 1 0 0 1 0 1 =270
Ubertrag 1 0 0 0 0 1

M 0 0 1 1 1 0 47,

Es gilt hier ¢s= 0 und cs= 1, daher ist das Ergebnis falsch.

Losung Aufgabe 2.4

a) 110101-010101 =010001011001

b) 1101110:110 = 10010,&

Loésung Aufgabe 2.5 z.B.: 000, 001, 011, 010, 110, 100

Losung Aufgabe 2.6

C23A80006= 1100 0010 0 011 1010 1000 0000 0000 »
T

T
N C m

¢=10000100, =132

e=c—127=132 - 127=5

1,m=1,01110101

1,mx2°=101110,101, = 46,625

Wegen s = 1 ist die gesuchte reelle Zahl negativ: C23A8000,45 =— 46,625

Losung Aufgabe 3.1 Beweis durch eine Wahrheitstabelle:

Gleichung 3.10 Gleichung 3.11
Xt | X0 | xgvx; | xga(xgvxy) | xg xXp | X0 | xgAxp | xgVv(xgAaxy) | xo
0160 0 0 0 0 0 0 0
011 1 1 1 1 0 1 1
1[0 1 0 0 110 0 0 0
1|1 1 1 1 1|1 1 1 1

Losung Aufgabe 3.2

V= XpX1XX3 V XpX1X2X3 V — X)X 1X0X3 V —Xp— X —X0X3 V XX XoX3 V Xo— X (X3
V= XpX1X2 V XX 1X3 V XX X3
Y= XoXiXp V X3

Die letzte Gleichung ist die gesuchte minimale Darstellung.

A.3 Losungen der Aufgaben 283

Losung Aufgabe 3.3 Aufstellen der Wahrheitstabelle:

010 (0 (O (1 |1 |1 |1
010 (1 (1 [0 |O |1 |1
c (0 (1 [0 |1 |O |1 |O (1
s; 10 [0 [0 (1 [0 |1 |1 |1
so |0 [1 (1 (0O |1 |O |O |1
KDNEF fiir s¢: So="a~bc v —ab—cv a—b—c v abc

KDNEF fiir s;: s1="abc v a—bc v ab—c v abc
KKNF flir sy: so=(av—-bvc)avbv—c)av—bv—c)avbvc)
KKNF firs;: s;=(@avbdbv—c)av-bvec)(ravbvc)avbvc)

Losung Aufgabe 3.4

sy=bcvacvaboders;=(avb)(avc)bvc)

Die Gleichungen fiir s, lassen sich nicht weiter vereinfachen, da sich alle Terme in mindestens
2 Variablen unterscheiden.

Losung Aufgabe 3.5

a) a <> —b = ab v ~a—b = ~((—a v —=b)(a v b)) = ~(—ab v a—b) = —~(a <> b)

b)f=a<> b= f==(a<>b)<Pc=>f=—a<> b

Wiederholen mit b und ¢: —f = —a <> —b <> —¢

Losung Aufgabe 3.6

a) yi

b)

) ys

d) v

e) s

= X1X2X3 V —XX3

X1X0X3 V —0x3x) vV —xox; (Absorptionsgesetz)

x1x3 V —px3 (Zusammenfassung der Terme 1 und 2 nach Gl. 3.34)

x3(x1 vV —x,) (Distributivgesetz)

XX~ X3 V. X XX3 VX1 XX3 V X103 V X (X3 VXXX

—n—w; Vo xoxs VvV ap—xs (Terme 1 und 4, 2 und 3 sowie 5 und 6 zusammengefasst)
—n—; VoXXs Vx—s Vv xp—xs (Absorptionsgesetz)

—x; V xp (Terme 1 und 3, sowie 2 und 4 zusammengefasst)

—X1Xp—X3 V—|(.X'1 \ .X'2) V X103 VX —W0X3Xy

0003 VX VX 00— vV ——x0oxisx, (de Morgan)

—X XX VX VX ——y; (Term 4 kann wg. Term 2 weggelassen werden)
X3 VX VX 00— V ———is vV ——o— (Absorptionsgesetz)
—0—3 V — 0 V —xp—w (Terme 1 und 4 sowie 3 und 5 zusammengefasst)
(= =g) (- vV V)

—X Xy V X VX vV (de Morgan)

—x; V—ixp v—x;3 (Absorptionsgesetz)

—(—x 03 vV (X VX vV ag)) () V)

—(—xx—03 V- —x——) () vV) (de Morgan)

—(—x1—x3) (%1 vV —xp) (Gleichung 3.34)

(31 v x3) (1 vV —x) (de Morgan)

X1V x;3—x, (Distributivgesetz)

284 A Anhang
Losung Aufgabe 3.7
S Gl S '
] X0 &
Xo | *—
—1 L >1— W
x| >1 Yo = X & :Zl
Xy — .| X
; > — » | &
3 —1 1 ¥ 21— N
3 &

Losung Aufgabe 4.1
Z.B. durch Aufstellen der Wahrheitstabellen und Invertieren der Ein- und Ausgangsvariablen
findet man:

Positive Logik Negative Logik
UND ODER
ODER UND
Aquivalenz Exklusiv-ODER
Exklusiv-ODER Aquivalenz

Losung Aufgabe 4.2

a) y= —|(Clb)\/ —cd v a—bd =—a~v —-bv —cd v a—bd =—a~v —-bv —cd

b)

Positive Logik

4 ——— 3
b P,

C_c& l

Losung Aufgabe 4.3

Negative Logik

e [

d —Q

Spannungspegel

Positive Logik
logisches NAND

X2

X1

¥

Negative Logik
logisches NOR

X2

X1

| | |
| | =]
gl an] Rlesj RRan] IS
= =] o ©

0
1
0
1

1
1
1
0

O O =] =

1
0
1
0

—| o o] of =

A.3 Losungen der Aufgaben 285

Losung Aufgabe 5.1

X0 —eo— VDD 5 ! o . ° VDD
A 2
X1 NOR NAND l—l |_l |_-| o v
'_
2]
'_
X0
X2 — j
>
'_
X1
Y
e L s
_:3— X2
Losung Aufgabe 5.2
X0 | x1 | En y x | =1
1|1 0 0 X 1
| v
1100 0 o=
0 1[0 0 En _gENI
00O 1
d | d | 1 [hochohmig a) b)
Losung Aufgabe 5.3

Es handelt sich um eine Kombination von NAND und NOR-Gatter:
Y= Vg Vs = 00X (6 VX3 VX))

Losung Aufgabe 5.4

Es handelt sich um ein Aquivalenz-Gatter:
s==(xgX]) ; Y=-8SVoXgoX] = XX VoXgoX] = X € X

Losung Aufgabe 6.1

a) X3

1~

Xo

X1

0 1 1
~3
1N J

286

b) Implikanten: 1) xpx,—x;

d) Es gibt nur eine Losung: = xpx,—x; vV —xgxixs V- X1x0x3

2) xox2x3
¢) Kern-PI: 1, 4, 5. Absolut eliminierbare PI: 2, 3. Relativ eliminierbare PI: &

3) X1X2X3

¢) Losung mit dem Quine-McCluskey-Verfahren

4) —xx;x;

Dezimal | x3 | xo | x; | xo | Gruppe
5 0] 1]0]1 2
6 o|j1]1]0
11 1o 1]1 3
13 1| 1]0]|1
14 111|110
15 1|1]1]1 4

Zusammenfassen der Terme in einer zweiten Tabelle:

SR NE N N NN

Dezimal | x3 | x5 | x1 | xo | Gruppe
5,13 - 101 2
6,14 -1 1|10
11,15 1] -]1/(1 3
13,15 L {1 |-1]1
14,15 L1]1]-

Keine weiteren Zusammenfassungen moglich, daher Eintragung in die Primimplikantentafel:

51611 13(14] 15
513 | ® ®
6,14 ® ®
11,15 ® ®
13,15 X X
14,15 X | x

Die Kernprimimplikanten 5,13; 6,14 und 11,15 decken alle Minterme ab. Daher besteht die
minimale Form nur aus den Kern-Primimplikanten: f = xgx,—x; vV —xpx1x0 V' X1x0%3

A.3 Losungen der Aufgaben 287

Losung Aufgabe 6.2

a) X3 X4

X0
d 1 0 0 0 0 d 0
X1
[1 d d d 1 0 0 d 0
——/ —
S~) —_—
X2 X2
Losung fiir eine minimale DNF: y = —x3x, v —xjxy4 v —xg—xy
b) X3 X4
1 1 d d 1 1 d 1
[0 d 0 0 1 d 1 1
v, X0

X1

o /
[7 [S —)
X2 X2

Losung fiir eine minimale KNF: y = (—x; v =4)(—x3 V x4) A (—xg vV X; V Xy)

Losung Aufgabe 6.3
a) f] X3 fz X3 f3 X3

[1]
0 [L xo nEnis

X1 X1 X1

— — —

X2 X2 X2

DNF der einzelnen Funktionen:
f1 = —xp—x—xs VX s) = XX—X3 Vv XgXo—Xy ;5 f3 = XpXp—X3 VXX
b) fiund f; sowie f; und f; haben einen gemeinsamen Term, er wird nur einmal realisiert.

c) Der Aufwand betrégt 7 Gatter mit insgesamt 17 Eingéingen:

288 A Anhang

Losung Aufgabe 6.4
Es wird zunichst die optimale DNF aufgestellt, indem das KV-Diagramm ausgewertet wird.
2 X3
\r*—\
0 1 0 0

\[1 1

__/

Xo

(=]
—_
—_
(=]

o l1)l o o3
_J
~————

V=X VX3 Vxgx, Durch Anwendung der De Morganschen Regel erhélt man:

V=XV XV Xg = () () (xxs))

X0
.
X1 g

Losung Aufgabe 6.5

a) Y =XgX2X3 VX|TX3 VXXX X3

b) —A d) &

—

ary

B \1 lJ X1

H_/ |
X2 X2 Eb— &
¢) Der Hazard ist durch ¢ markiert —{1—

A.3 Losungen der Aufgaben 289

Losung Aufgabe 7.1

Die Riickkopplung des asynchronen Schaltwerks wird aufgetrennt:
A Zm+1 Zm
: Er—ms s

=1

1. aus der Schaltung liest man ab:
2"'=~(A-B)BvZ")=(~Av B)BvVZ")=—ABv —~A4Z"v B v BZ"
Daraus erhélt man eine Zustandstabelle in KV-Diagrammform: v
A

[1 ©
W] o

[
B

Ausgabegleichung: y=2z"
2. Day=_z" ist, handelt es sich um ein Moore-Schaltwerk.

3. Fiir 4 = B =0 ist die Schaltung bistabil.
4. Zustandsdiagramm:
B
" (] (1))
A—-B
5.
oo X
B T_\ [L
A "
oo L
Losung Aufgabe 7.2

1) Ablesen der Ubergangsbedingungen aus dem Schaltbild:

zlmJrl ==Czg vCe{" 26"+1 =Czy' v C—zi

290 A Anhang

Zustandsfolgetabelle Zustandsdiagramm

m+lz m+1 —-C C
1 0 C

00 [01 00 o\t

11 | 01 m

_a [[0 T0 } %0 ~C -¢
: 00 | 10
Y 10)= 11

2) Hazardfreie Realisierung durch das Hinzufiigen zweier redundanter Terme:

+1
2" =2Czy" v Cz)" = —Czy" v Cz" v zy"z,"

.
20" ==Cz" v Cz\" =—Cz" v C-z" v zy" ~z,"

3) Aus dem Zustandsdiagramm kann man ein Zeitdiagramm ableiten, aus dem die Funktion
deutlich wird:

CTI.I.I.I.I.I.I.I.I.I;

.

t

ZIT..ITI...ITI...F=

ZoT_I—II—II_l
t

Das Schaltwerk durchlduft den Zyklus 01, 11, 10, 00, wahrend der Takt zwei Impulse aufweist.
Dadurch kann an den beiden Ausgéngen z; und z, jeweils ein Signal der halben Frequenz ab-
gegriffen werden.

Losung Aufgabe 7.3

—
M
:I <+ =
]
]
]
]
]

CLK

v

J
©

J'
v

©
—>

f

S
—
v

A.3 Losungen der Aufgaben 291

Lésung Aufgabe 7.4
1T,
,‘
‘— oo
.
Lésung Aufgabe 7.5

a) Es werden jeweils 2 Transistoren fiir ein Transmission-Gate sowie fiir einen Inverter beno-
tigt: 12 Transistoren.

b) c
D — o
1P
m LI m+1 .
Z1 4
—|QC)
Z{'/H—l = —|((D—|C) V(—|Zlmc)) = (—|D\/ C)(Z{n \2 —|C) = —lDzlm v—=C=Dv CZlm
2 = (28 =O) v (2" C)) = ~(—25 = C) (2" C) = (25 v C)(—z™ v —=0)
2 = (28 v CY(D=C v —z"Cv —C) = 2§ D~C v —z" 25 Cv 28 —~Cv —z]"C = 2§'—~C v —z|"'C
0=z
d) Zustandsfolgetabelle e) Zustandsdiagramm (in den Kreisen: z;" z,™)
m+1 m+1
m m 21 22
1 V)
0 0 10 01 01 00
0 1 11 01 01 01
1 1 11 10 10 01
1 0 10 10 10 00

Da der Ausgang Q = z," ist, bezeichnet die rechte Ziffer in den Kreisen des Zustandsdia-
gramms den Ausgang Q. Das Flipflop ist in den Zustdnden 01, 11 gesetzt und in den Zustdnden
00, 10 zuriickgesetzt. Es wird im Folgenden der Fall betrachtet, dass das Flipflop gesetzt ist
und auf eine steigende Flanke wartet (C = 0). Es gibt 2 Mdglichkeiten:

1) Riicksetzen: Wenn D = 0 ist, befindet sich das Flipflop im Zustand 11. Kommt nun ei-
ne steigende Flanke des Taktes (C = 1) so wechselt das Flipflop zum Zustand 10. In
diesem Zustand bleibt das Flipflop, solange C = 1 ist, unabhingig von D, was fiir die
Flankensteuerung charakteristisch ist.

2) Flipflop bleibt gesetzt. Wenn D = 1 ist, ist das Flipflop im Zustand 01. Kommt eine
steigende Flanke, so bleibt das Flipflop in diesem Zustand und es wird weiterhin eine 1

292 A Anhang

gespeichert. Eine Anderung von D hat keinen Einfluss, wodurch die Flankensteuerung
realisiert wird.

Wenn der Takt wieder auf 0 geht, beginnt wieder die Wartephase. Der Fall, dass eine 0 gespei-
chert wird, ist analog, nur befindet sich das Flipflop zu Anfang in einem der beiden oberen
Zustinde, je nachdem welchen Wert D hat.

Losung Aufgabe 8.1

Beim Aufstellen des Zustandsdiagramms muss man sich zunéchst iiberlegen, wie viele Zustén-
de man benoétigt, um das geforderte Verhalten zu erzielen. Da 0,1 und 2 Pumpen laufen kon-
nen, kann man es mit 3 Zustdnden versuchen.

- —XXo Xy

Im Bild sind die Zustidnde zundchst mit 1,2 und 3 bezeichnet. Durch Vergleich mit der Aufga-
benstellung stellt man fest, dass sich das Schaltwerk richtig verhilt.

Die Zustandsfolgetabelle kann aus dem Zustandsdiagramm abgelesen werden. Dazu ist aber
eine Codierung der Zustinde nétig. Hier wéhlen wir die Zustidnde folgendermaflen Zustand 1:
zi" zo" =11, Zustand 2 : z," z," = 01, Zustand 3: z," z," = 00

Man beachte, dass durch diese Wahl die Zustandsvariablen z; = y; gilt. Es handelt sich daher
um ein Moore-Schaltwerk, bei dem das Schaltnetz SN2 aus Durchverbindungen besteht. Man

beachte auch, dass die Eingangsvariablenkombinationen x;—x,, x,—x; und x,—x, nicht vor-
kommen kdnnen: daher erscheinen hier don’t-cares (im Diagramm keine Eintragung). Das ist

genauso fiir den ,,liberfliissigen* Zustand z," z," = 10. X
Xy — A —
2" zy" Zlm+l Zomﬂ YiYo
0 00 1 110 O 0 0 00
0 1]1 1 110 1 0 0 01
1 111 1)1 1]0 1 0 1 11
1 0 10
Xo Xo
2] x| X ! X1 X

—
—

—
—
—_—
—

m
Z]

X0 X0 Xo Xo

A.3 Losungen der Aufgaben 293

Aus den KV-Diagrammen lesen wir ab: zJ"*' = 2" v —x,z{' v —x; und z{"*"' = z{"—x; v —x, 2"

Fiir die Ausgabegleichungen erhilt man y, = zy" und y; = z;™.

Losung Aufgabe 8.2

a) Realisierung mit RS-FF: Ansteuerung ecines RS-Flipflops abhédngig von den alten und
neuen Inhalten.

2SR Beschreibung

0 0 0 d | Speichern oder Riicksetzen
0 1 1 0 [Setzen

| 0 0 1 |Riicksetzen

1 1 d O |Speichern oder Setzen

Die Zustandsfolgetabelle 8-5 muss nun entsprechend der obigen Tabelle abgedndert werden.

rm

S]R] S()R() SIRI SORO
0d 10 0d 0d
10 do 0d 01 i}
Zp
do 01 01 01 \
Z m
01 0d 01 0d } ‘

Fiir die Ansteuerfunktionen der RS-Flipflops, die das Schaltnetz SN1 beschreiben, liest man
aus dem KV-Diagramm ab:

S() =" _‘Zlm 5 S] =" _‘Zom
Ry=r"vz/" ="z =8 : Ri=r"v-z"=~("z")

Die Ansteuerfunktionen fiir die Eingénge S, S, Ry, R; sind also mit der Realisierung mit JK-
Flipflops identisch.

b) Realisierung mit JK-FF: Ansteuerung eines JK-Flipflops abhingig von den alten und neu-
en Inhalten.

2T K Beschreibung

0 0 0 d | Speichern oder Riicksetzen
0 1 1 d | Wechseln oder Setzen

1 0 d 1 | Wechseln oder Riicksetzen
1 1 d O |Speichern oder Setzen

Die Werte aus dieser Tabelle werden in ein KV-Diagramm eingetragen, welches aus der Zu-
standsfolgetabelle entwickelt wird.

294 A Anhang

” ”
K JKe K Ko MMsMs MMM

od 1d od od 111 000

1d do 0d d1 011 00 ||
do d1 d1 d1 010 000 }>ZO $ i
d1 od d1 0d 110 000 jzl

Fiir die Ansteuerfunktionen der JK-Flipflops, die das Schaltnetz SN1 beschreiben, liest man
aus diesem KV-Diagramm unter Ausnutzung der don’t care-Terme ab:

JO =—|I"m—|Zlm 5 Jl =—|I"mZ6n
KO=FmVZin=—|(—|}"m—|Zlm)=—|JO 5 K1=Vm\/—|Zg1=—|(—|}"mZ(r)n)=—Jl
Fiir eine Realisierung mit D-Flipflops erhélt man hier also das einfachste Netzwerk. In anderen

Féllen kann das anders sein. Die Ansteuerfunktionen fiir die Ausgédnge (SN2) sind bei allen
Realisierungen gleich.

Losung Aufgabe 8.3

a) In den Zustinden 010 und 110 gibt der Miinzpriifer immer M = (x;, xo) = (0,0) aus, denn
dort ist S = 1, wodurch der Miinzeinwurf gesperrt wird. In der Zustandsfolgetabelle kon-
nen fiir die anderen M beliebige Folgezustdnde eingetragen werden.

Zustinde Kanten x;x
—_—

00
00 10
00 00
000 01 /001 01 /011 01 /010
00 ™_00 ™\ 00 "\ 10
E joo
10 10

Zustandsfolgetabelle (fiir die iberzdhligen Zustande 100, 101, 111 sind alle Eintragungen ddd):

m m m szﬂ Zlmﬂ ZOm+1 SR
V) Z] Zy
—X] —Xp X1 —Xo X1 Xo —X1 Xo
0 0 O 0o 0o 0|0 1 1|d d d|0 0 1[0 O
0 0 1 00 110 1 0|d d d|0 1 1({0 O
0 1 1 0 1 1|1 1 O0|d d d|{0 1 0[O0 O
0 1 0 0 0 0|d d d|d d d|d d df1 O
1 1 0 0 0 0|d d d|d d d|d d df1 1

A.3 Losungen der Aufgaben 295

b) Realisierung mit D-Flipflops:

m+1 m+1
22 Z()m Z2m 4 Z()m sz
(—/:(% /—/:(%
01]0f[O0]O0 0 Of[O0f(f1]O 0
of [1yo] [|) (1 1])
X1 X1
\ J \ J \ J
X0 X0
0 00 0 L 1 L
m m m m
Z1 Z] Z] Z]
2" z" z" freie Felder = don’t care
/—/:(%
ojof1]1]o
1 01]0
T N — (X1
X0
1 01
J
m m
Z1 Z1
Ubergangsfunktionen:
22m+1 :xlzlm

2™ =XV xze™ V 22"

20" = 20" v xz" v Xz

Ausgabefunktionen (direkt aus der Zustandsfolgetabelle abgelesen):
R=2z" ; S=z"—z"

Losung Aufgabe 9.1

Losung fiir den Fall, dass an die Einginge des Multiplexers a, mit der Wertigkeit 2° und a, mit
der Wertigkeit 2' angeschlossen werden. Andere Losungen sind denkbar.

a MUX
1 1 —E 9§ EN
0 1 0 1 a— 0 0
a0 0] 1]1 az—l}Gg L
ay 1 O_—|f
a a 0
‘ > 01
0 2 —|(11_2
a 1 3 1—/3

296 A Anhang

Losung Aufgabe 9.2

a) Realisierung mit Multiplexern:

a, a
o (1) }Gg
o[111 3
.
Fo a1 |01 7o X
— —E, "9 EN
a, as | 0
—ds 11 B FO
—ds -2
a 1—/13
’ ‘ —E, 9 EN
1 1 011 —a; |0
F] as 0 0 1 0 —as | 1 _ F]
—ds -2
as—\3
a
b) Zwei verschiedene Realisierungen mit einem Codewandler (Decodierer)
BIN/OCT BIN/OCT
0P o0p
1P 1P
as 7 1 g D a; 7 1 g 5
a, | 2 N a, | 2 N
| 40 | 40
a, 4 5 o a, 4 5 0
6P 6P
7P t t 7P
& & & &
Fy F Fy Fy
Losung Aufgabe 9.3
Konstruktion von 3 Schaltnetzen fiir die 3 Ausgénge:
»2 » Yo
X2 X2 X2

an T e
S8 I I G s 3 s Y R A

- — —
X1 X1 X1
Y2 =X
Y1 =X VX,

Yo TX1—wo V —X1Xp

A.3 Losungen der Aufgaben 297

Losung Aufgabe 10.1

1. Die Zahlerschaltung ist ein synchroner Zéhler, da das Eingangssignal an die Takteingéinge
aller Flipflops geht.

2. Es st ein Aufwértszahler (vergleiche Bild 10-10).

3. (O, hat 1/8 der Frequenz des Eingangssignals x;, es ist also ein Teiler durch 8.

Losung Aufgabe 10.2

“
QO Ql 02
1—1) — 1—1] 1—1] —
x ———>Cl1 +— >Cl1 —>Cl1
1—1K o 1 —{1K . 1 —1K

Losung Aufgabe 10.3

Zunéchst muss die Zustandsfolgetabelle mit dem gegebenen Code entworfen werden:

V=1 V=0
m m _ m m+1 m+1 m+1 m+l m+1 m+l
zZy Z1 2o V) Z Zy V) zZ A
0 0 O 0 0 1 1 0 O
0 0 1 0 1 0 0 0 0
0 1 0 0 1 1 0 0 1
0 1 1 1 0 0 0 1 0
1 0 O 0 0 0 0 1 1

Dann stellt man die KV-Diagramme fiir die Ansteuerfunktionen der 3 D-Flipflops auf:

Dzzzzmﬂ D =z m+1 D():Z()mﬂ
V V V
— — —
110(0]0 oOf1]107]0 0]1[0]1
0|dfd]|o ., 0fd|d]1 " 0|d|d]|o .
20 Z0 20
m 0]dfd]|1 m 1]1dfd]o 0|d|d]|oO
Z1 Z] "
0]dfd]|o 0[d|d]1 1 |d|d]|1
N—; N—; —

z" z z

298 A Anhang

Ansteuergleichungen:

Dy =z = (B V) v (2" —zf) v (V=22

Dy =z{"" = (25 =V v (2§ ="V)V (2" 2 =V) v (22)
D, =23 = (=2 "=z V) v (2] 25'V)

Losung Aufgabe 10.4

An die Eingénge fiir paralleles Laden muss die bindre 5 angelegt werden. —RCO (vergl. Seite
129 ff.) muss mit ~LOAD verbunden werden, um den Zéhler mit 5 zu laden, wenn er die 15
erreicht hat. Die Eingénge —CTEN = 0 und D/=U = 0 miissen fiir Aufwirtszdhlen program-
miert werden. Alternativ ist eine Losung mit Abwértszdhlen moglich.

CTRDIV16
0 1
g M2[Down] 2(CT=0)Z6 | —o out
M3[UP] 3(CT=15)Z6]
in T_C 1,2-/1,3+
G4
_ dcs 6,1,4 O————
1 [
1 —15D [1] 0o
0 — (2] O
1 — (3] 0,
00— (4] 05

Losung Aufgabe 11.1

Zuerst wird die Zustandsfolgetabelle konstruiert. Man beginnt, indem man in der Spalte 05"
die gewiinschte Folge von oben nach unten eintrdgt. Das garantiert, dass die Folge aus dem
seriellen Ausgang heraus geschoben wird. Dann kann man die Spalten Q" und 0," ausfiillen,
indem man die Eintragungen aus der Spalte 05" diagonal nach links oben tibertrdgt. Daraus
ergibt sich auch automatisch der Folgezustand 0,""", 0,""!, 0,"*". Die 0,"" der nicht bens-
tigten Zustdnde 111 und 000 sind zunéchst beliebig. Dann kann das KV-Diagramm fiir den
Eingang des ersten Flipflops erstellt werden.

+1 m

m m m m m m " :D Q3
070" 0" | 0" 0" o or =b by
0 1 0 0 0 1 d 1] 1
R B R N— or L1 L 14
1 1 0 0 1 1 o

0,

0 1 1 1 0 1
1 0 1 0 1 0
1 1 1 0 1 1 Dy = 05"-0," v =0,"~05"
0 0 O 1 0 0

A.3 Losungen der Aufgaben

299

0"

~Cl1

1D
~Cl1

05"

1D Ay
~Cl1

CLK

Aufgabe 11.2

1. Ausgehend von den Zustidnden 3,1,0,4,2 werden die moglichen Folgezustinde ausprobiert.
Das konnen jeweils nur zwei verschiedene sein, da ja nur eine 1 oder eine O in das linke
Schieberegister geschoben werden kann. Schon im Zyklus vorhandene Zustéinde werden
gestrichen, da sie nicht zu einer maximal langen Folge filhren. Man erhélt die Folge

3,1,0,4,2,5.,6,7...

doppelte Zustinde

2. Zustandsfolgetabelle:

Ji

05"

Ji="0" ; Ki=0,0"v~-0,""05"

Q]m sz Q3m leH Q2m+lQ3m+l Jl Kl

0 0 0 1 0 0 1d

0 0 1 0 0 0 0d

0 1 0 1 0 1 1d

0 1 1 0 0 1 0d

1 0 0 0 1 0 d1

1 0 1 1 1 0 do

1 1 0 1 1 1 do

1 1 1 0 1 1 d1

0" K; o
— e—

1 d d d 0 1

0| d ol dldal1]o
H%—J

0; 0,"

300 A Anhang

Losung Aufgabe 11.3

Die Riickkopplungen fiir eine maximal lange Pseudo-Zufallsfolge liegen an den Ausgingen
05" und Q4". Mit dem Registerinhalt 1111 beim Einschalten erhdlt man die folgenden Regis-
terinhalte, indem man fiir das neue Bit 1 die EXOR-Verkniipfung von Bit 3 und 4 bildet und
die alten Bit 1, 2, 3 nach 2, 3, 4 verschiebt.

m o" m o" m o" m o"
1] 1111 51 1000 9 1100 13 | 1010
2| 0111 6 | 0100 10 | 0110 14 | 1101
3] 0011 7 | 0010 11 | 1011 15| 1110
4 | 0001 8 | 1001 12 | 0101 16 | 1111

Die erzeugte Folge ist daher: 111100010011010 usw.

Losung Aufgabe 11.4
L E=~(O1v OV OV 0V 0i0:=0170,05 Vv 0,05 v Q105

2. Zustandsfolgetabelle 3. Zustandsdiagramm

om oo | E=s=k [0 00, @ @

= Ll K== E=1 Y Y =) k=)
anll R=d Ll K=l el [l Bl Re)
anll R=d el K=l el [l Kl
(=0 Ll Rl el Ll (o)l K

e Lt k=) k=1 I Bt k=) K==}

Losung Aufgabe 12.1

Ein 74181 kann als Komparator verwendet werden, wenn er als Subtrahierer geschaltet ist.
Dafiir muss S = (0,1,1,0) und M = 0 und ¢, = 1 sein. Dann gilt fiir den Ubertrag ¢, und den
Ausgang 4.-,, wie man leicht feststellen kann, bei einer Differenz x-y:

x=y |a=1,4.=1

x>y |laa=1,4-=0

X<y |c=0,4,-,=0

Losung Aufgabe 12.2

Fir S=0110 und M = 1 erhélt man nach Gleichung 12.26:

i ==y VX 7y) = (X <)

Da M=1 ist, werden die #,=1 und man erhélt nach Gleichung 12.31 die Funktion:
“F =< =t = X<y

A.3 Losungen der Aufgaben

301

Losung Aufgabe 12.3

a) Die Schaltung beruht darauf, dass die Addierer der hoheren Stufen doppelt vorhanden
sind. Der eine Addierer einer Stufe hat als Eingangs-Carry CI eine 1 der andere eine 0. Am
Ausgang CO einer Stufe mit CI =0 wird das Signal Carry Generate G (vergl. Seite 146)
erzeugt, am Ausgang CO einer Stufe mit CI =1 das Signal Carry Propagate P. In dem aus
einem UND- und einem ODER-Gatter gebildeten Netzwerk wird der Ubertrag ciy1 =G; +
c;P; gebildet. Dieser Ubertrag wihlt am Auswahl-Eingang eines Multiplexers das richtige
Ergebnis der niachsten Stufe aus. Fiir die Optimierung der Laufzeit ist es sinnvoll, die
Breiten der niedrig-wertigen Stufen geringer zu wihlen als die der Stufen fiir die hochwer-

tigen Bit.
b) Es werden die folgenden Abkiirzungen verwendet:
Beschreibung Formelzeichen
Gatterlaufzeit 1
Laufzeit des Ubertrags c; Lei
Breite der Stufe i m;
Laufzeit des Ausgangs F; ,, i/
Laufzeit eine Multiplexers Ihtux
Laufzeit der Summe im Addierer der Stufe mit dem Ausgang F; ,, | tim

Man erhélt die Laufzeiten:

Signal Laufzeit

Fy 3 tros = (2mi+1) 1, =9 ¢,

¢ to=2my 1,=81,

Fi s trys = Max{ tys, to 3+ tye = Max{11,8}+2) ¢,=13 ¢,

o o= Max{2mat,, 1.1 142 1, = (Max{10.8}+2)7,= 12 1,
Fo 15 | troys = Max{ toss, tea}+ tye = Max{15,12}42) 1, =17 ¢,
c3 te3=Max {2mst), t, 142 t, = Max{14,12}+2) ¢t,= 16 ¢,

Losung Aufgabe 13.1
Ein RAM ist fliichtig, EEPROM und ROM sind nicht fliichtig
PROM, ROM, EEPROM sind Festwertspeicher

Programmiert werden kdnnen: ROM durch Masken, PROM einmal elektrisch,
EPROM elektrisch und EEPROM elektrisch.

Ein ROM kann nicht geldscht werden, ein EPROM kann durch UV-Licht geldscht
werden, ein EEPROM kann elektrisch geloscht werden und ein Flash-EEPROM kann
blockweise elektrisch geloscht werden.

1.
2.
3.

Siche Text: statische und dynamische Speicherung.

302 A Anhang
Losung Aufgabe 13.2
1. Zunichst muss der Adressplan aufgestellt werden. Dazu werden die Speicherbereiche
der Speicherbausteine liickenlos aneinandergereiht.
. Adresse Adressleitungen (binér)
Baustein
(Hex) 15141312 111098 7654 3210
1 0000 0000 0000 0000|0000
(4K) OFFF 0000 1111 l111 1111
2 1000 0001 0000 [0O000]0000
(2K) 17FF 0001 0i1 11 1111|1111
3 1800 0001 1000 [0000[0000
(2K) 1FFF 0001 11111 111111111
4 2000 001:0 0000 [0000[0000
(8K) 3FFF 00T1:i1 1111 I111 1111
Y.
Decodierer
2. Im Adressplan sind die Bereiche der Adressleitungen, die als Eingéinge an den Spei-
chern anliegen, durch gestrichelte Kdsten angedeutet. Der Demultiplexer muss als
hochstwertige Eingangsleitung die hochstwertigte Adressleitung haben, bei der sich
ein Bit dndert. Das ist 4;5. Damit ist sichergestellt, dass sich auch die hochsten Spei-
cherpldtze anwéhlen lassen. Als niederwertigste Eingangsleitung muss der Demulti-
plexer die Adressleitung haben, die am kleinsten Speicher nicht mehr anliegt. Das ist
A11~
3. Der gesamte Speicherbereich von 16Kbyte wird durch den Demultiplexer in 8 Blocke

zu jeweils 2Kbyte aufgeteilt. Fiir den Speicherbaustein mit 8Kbyte miissen daher 4
Ausginge des Demultiplexer logisch ODER verkniipft werden. Durch die zweimalige
Inversion muss man ein UND-Gatter verwenden. Daraus ergibt sich folgender An-
schlussplan:

DX 7P—T¢

6 P—

, . —~CS(4)
11 1 4D

j” 2 b —CS(3)
e s 4 2 p————Cs12)
>1 L ™ HEN 10— & —CS(1)

Ay — 00—

Losung Aufgabe 13.3

1.

Der grofite Speicherbaustein verwendet die Adressleitungen A4, bis 4,. Daher stehen
die Adressleitungen A4; bis 47 zur Auswahl der Bausteine zur Verfiigung (Bild links).

Adressplan s. rechts (Adressen auBlerhalb der angegebenen Bereiche fithren zu Feh-
lern!).

A.3 Losungen der Aufgaben 303

RAM 8x8
Y O} 0 0
1 A— 0
Ay b) "7 Av—'; N
T R9G2 >
—ﬁICS'[WRITE] 7
1,2EN[READ]
Ao ORAM 4x8 Baustein [Adr. Adressleitungen
0 Q H b. .)
y }A— Oo (Hex) (bindr
1 73 NES 7654 3210
—CS D 1 08 | 000O0 1000
Y 20
P R;Opgfgé AL (byte) | 09 | 0000]| 1001
o 1qiewRiTE] | P 2 10 0001] 0000
1,2EN[READ] (4byte) | 13 {0001 | 0011
RAM 28 3 2000100000
i 0 o (8byte) | 27 {0010 0111
1 AV[:
—|CS Q7
4, 1P oG asplt2
R/—W G2 D
—ﬁ 1C3[WRITE] 7
—OF 1,2EN[READ]
R/-W
Losung Aufgabe 13.4

—CS1=A10VvAn Vv An="("41074117412)
—CS, = A4 v Andin v —AiyAn—An="(A1A41n vV An—An v ~AwAndin)

(KV-Diagramm verwenden!)

—CS3 = (40411412 v A1y A1A12)

Im unten gezeigten Adressschema sind die bindren Speicher-Adressen in 1K-Schritte
aufgeteilt. Der Adressbereich, der durch die Decodierschaltung abgedeckt wird, ist
markiert.

Baustein 1 muss 1Kbyte, Baustein 2 4Kbyte und Baustein 3 2Kbyte Kapazitit haben.

Da die oberen 3 Adressleitungen nicht verwendet werden und eine liickenlose Deco-
dierung des unteren Speicherbereichs durchgefiihrt wird, handelt es sich um eine Teil-
decodierung.

304 A Anhang

Baustein | Adresse Adressleitungen (binér)
(Hex) 15141312 111098 7654 3210
1 0000 dddfo 0000 [0000[0000
03FF dddhﬂll 11111111
2 0400 dddfo 01100 |0O0OO0O0O[0000O
ddd|o 0111 I111 1111
dddj|o 10j00 [0000|0000O0
ddd|o 10f11 I111 1111
dddj|o 11100 0000|0000
dddfo 1 1{11 I111|1111
dddfl 0000 |O0OO00|0000
13FF ddd\l | 00/11 l1111 1111
3 1400 [dddfl 0000 [0000[0000
dddfl 0111 I111 1111
dddfl 10j00 [0000|0000O0
IBFF | dddU | 1011 [1111[1111

Losung Aufgabe 14.1
Siehe Text und insbesondere Tabelle 14-2.

Losung Aufgabe 14.2

Die 3 booleschen Funktionen werden in drei KV-Diagramme eingetragen. Dann wird eine
Optimierung so durchgefiihrt, dass maximal 5 Produktterme entstehen. KV-Diagramme der 3
Funktionen:

fo f; f,
2)
@][] (4 oD
onj L) [‘
‘) ‘) SN TINNN

Damit erhilt man folgende 5 Produktterme:
Pi=cd ; Py=ad~c ; Py=adc ; Py=—a-bcd ; Ps=—ab—cd

A.3 Losungen der Aufgaben

305

Losung Aufgabe 14.3

[S1— 1,

(=1
[>1— 1

=2

Die Funktion f, wird so zusammengefasst, dass sie mit 4 Produkttermen realisiert werden kann.
Bei fj ist das bereits der Fall.

fo(a,b,c,d) = ma—b—c—d v a—c—d v —abd v —acd

fl(a,b,c,d) = —a—b—c—d v ab—cd v —a—bcd v —abc—d

a

c

—¥

H

o

:

Losung Aufgabe 15.1

H
H

0

:

HEEEEEEE

1

Die Entity ist eine Schnittstellenbeschreibung, wiahrend die Architektur die Funktion der Schal-

tung beschreibt.
Losung Aufgabe 15.2

C und D haben den alten Wert von D. Die Werte von A und B sind vertauscht.

Losung Aufgabe 15.3

a) Bei Prozessen mit Sensitivity-List nach der Sensitivity-List und vor dem Schliisselwort
begin, welches die sequentiellen Anweisungen einleitet. Bei Prozessen ohne Sensitivity-List
nach dem Schliisselwort process und vor dem Schliisselwort begin, welches die sequenti-
ellen Anweisungen einleitet.

306 A Anhang

b) In einer Architektur beginnt der Deklarationsteil nach dem ersten Auftreten des Schliissel-
wortes is und vor dem Schliisselwort begin, welches die nebenldufigen Anweisungen einlei-
tet.

Losung Aufgabe 15.4
F=4Xv —ABY v —4—-BZ
Losung Aufgabe 16.1

Der Vorteil einer gemeinsamen Speicherung von Daten und Befehlen in demselben Speicher
ist, dass der Speicherbereich flexibel aufgeteilt werden kann. Dadurch ist in der Regel ein klei-
nerer Speicher notig. Nachteilig bei einer gemeinsamen Speicherhaltung von Daten und Pro-
grammen ist, dass Befehle und Daten {iber den gleichen Datenbus transportiert werden miissen.
Dieser serielle Betrieb verlangsamt die Arbeitsweise des Prozessors. Alternativ werden daher
bei der Harvard-Architektur getrennte Speicher fiir Daten und Befehle verwendet, so dass Da-
ten und Befehle gleichzeitig gelesen werden konnen.

Losung Aufgabe 16.2 siche Text.

Losung Aufgabe 16.3

LD rle,X ;1. Zahl in rl1é laden 2 Takte
LD rl7,Y ;2. Zahl in rl17 laden 2 Takte
ST Y, rlé6 ;1. Zahl - Speicherplatz der 2. 2 Takte
ST X, rl7 ;2. Zahl - Speicherplatz der 1. 2 Takte
Das Programm bendétigt 8 Takte.
Losung Aufgabe 16.4
ANFANG: LD rle,X+ ;Datum in rlé laden, Zeiger X inkrem.
ST Y+,rl6 ;Datum in Ziel speichern, Zeiger Y inkrem.
DEC rl7 ;Zdhler dekrementieren
BRNE ANFANG ;wiederholen, wenn rl7 grdfRer 0
Losung Aufgabe 16.5
LDI rl7,s$08 ;Anzahl der Bits in rl7=Z&hler
CLR rle6 ;rlée null setzen
ANFANG:LSL rl0 ;MSB von rl0 ins Carry schieben
BRCC WEITER ;Uberspringen, wenn Carry = 0
INC rlé6 ;Akku A hochzédhlen, wenn Carry = 1
WEITER:DEC rl17 ;Zahler dekrementieren

BRNE ANFANG ;Nachstes Bit, wenn B grdfRer 0

A.4 Literatur 307

A4 Literatur

Allgemein (alle Kapitel)

(1]

Schiffmann, W.; Schmitz, R.: Technische Informatik
Band 1 Grundlagen der digitalen Elektronik. Berlin: Springer. 5. Auflage. 2004.

[2] Schiffmann, W.; Schmitz, R.: Technische Informatik
Band 2 Grundlagen der Computertechnik. Berlin: Springer. 5. Auflage. 2005.
[3] Pernards, P.: Digitaltechnik 1
Heidelberg: Hiithig. 4. Auflage. 2001.
[4] Reichardt, J.: Lehrbuch Digitaltechnik
Miinchen: Oldenbourg. 3. Auflage 2013.
[5] Urbanski, K.; Woitowitz, R.: Digitaltechnik
Berlin, Heidelberg: Springer. 6. Auflage. 2012.
[6] Tocci, R.; Widmer, N. und Moss, G.: Digital Systems, Principles and Applications
Englewood Cliffs: Prentice-Hall. 11. Auflage. 2010.
Codierung (Kapitel 2)
[7] Schonfeld, D; Klimant, H. Piotraschke, R.: Informations- und Kodierungstheorie
Wiesbaden: Springer Vieweg. 4. Auflage 2012.
[8] Werner, M.: Information und Codierung
Braunschweig, Wiesbaden: Vieweg. 2. Auflage 2008.
[9] Bossert, M.: Kanalcodierung

Miinchen: Oldenbourg. 2. Auflage 2013.

Schaltalgebra (Kapitel 3)

[10]

DIN 19226 Teil 3

Schaltungstechnik (ab Kapitel 4)

[11]

[12]

[13]

[14]

[15]

Tietze, U.; Schenk, Chr. und Gamm, E. Halbleiterschaltungstechnik
Berlin, Heidelberg: Springer. 15. Auflage. 2016.

Giebel, Th.: Grundlagen der CMOS-Technologie

Stuttgart, Leipzig, Wiesbaden: Teubner. 1. Auflage. 2002.

Baker, R.J.: CMOS Circuit Design, Layout, and Simulation
Hoboken: J. Wiley & Sons. 3. Auflage. 2010.

Klar, H.: Integrierte Digitale Schaltungen MOS/BICMOS

Berlin, Heidelberg: Springer: 2. Auflage. 1996.

GroB, W.: Digitale Schaltungstechnik

Braunschweig, Wiesbaden: Vieweg. 1994.

308 A Anhang

[16] Kang, S.-M.; Leblebici Y.: CMOS Digital Integrated Circuits: Analysis and Design
New York: McGraw-Hill. 3. Auflage 2011.

[17] Kumar, A. A.: Switching Theory and Logic Design

New Delhi, PHI Learning. 2010.
Ellwein, Ch.: Progammierbare Logik mit GAL und CPLD
Miinchen: Oldenbourg. 1999.

Schaltwerke (Kapitel 7 und 8)

[19]

Wauttke, H.; Henke, K.: Schaltsysteme
Miinchen: Pearson Studium. 2003.

Speicher (Kapitel 13)

[20]
(21]

[22]

http://www.samsung.com/global/business/semiconductor/product/dram
Hoffmann, K.: Systemintegration

Miinchen: Oldenbourg. 2. Auflage 2006.

Sharma, A.K.: Advanced Semiconductor Memories

Chichester: John Wiley & Sons. 2009.

Programmierbare Logikbausteine (Kapitel 14)

(23]

(24]

Auer, A.: PLD
Miinchen: Franzis'. 1993.

Salcic, Z. ; Smailagic, A.: Digital Systems Design and Prototyping: Using Field Pro-
grammable Logic and Hardware Description Languages

Norwell, Kluwer Academic Press. 2. Auflage 2000.
Bitterle, D., Nosswitz, M.: Schaltungstechnik mit GALs
Miinchen: Franzis'. 1997.

F. Kesel und R. Bartholomi: Entwurf von digitalen Schaltungen und Systemen mit
HDLs und FPGAs

Miinchen: Oldenbourg. 2. Auflage 2009.
http://www xilinx.com/
http://www.altera.com/

Kilts, S.: Advanced FPGA Design: Architecture, Implementation, and Optimization
Hoboken

John Wiley & Sons. 2007.

Grout, I. A.: Digital Systems Design with FPGAs and CPLDs
Amsterdam: Elsevier. 2008.

Beenker, F.P.M. et al: Testability Concepts for Digital ICs
New York: Springer. 2013.

A.4 Literatur 309

VHDL (Kapitel 15)
[32] Kesel, F.; Bartolomi, R.: Entwurf von digitalen Schaltungen und Systemen mit HDLs
und FPGAs

Miinchen, Wien: Oldenbourg. 3. Auflage 2013.
[33] VHDL-Archiv der Universitdt Hamburg:
http://tams-www.informatik.uni-hamburg.de/vhdl/vhdl.html
[34] Bhasker, J.: Die VHDL-Syntax
Toronto: Prentice Hall. 1996.
[35] Reifschneider, N.: CAE-gestiitzte IC-Entwurfsmethoden
Miinchen: Prentice-Hall. 1998.
[36] Reichardt, J.; Schwarz, B.: VHDL-Synthese
Miinchen: Oldenbourg. 6. Auflage 2012.
[37] Hunter, D.R.M. und Johnson, T.T.: Introduction to VHDL
London: Chapman and Hall. 1996.
[38] DIN 66256
[39] Molitor, P.; Ritter, J.: VHDL - eine Einfiihrung
Miinchen: Pearson Studium. 2004.

Mikroprozessor (Kapitel 16)

[40] Flick, Th. und Liebig, H.: Mikroprozessortechnik und Rechnerstrukturen
Berlin, Heidelberg, New York: Springer. 7. Auflage, 2005.

[41] Tanenbaum, A.S. und Goodman, J.: Computerarchitektur
Miinchen: Pearson Studium. 5. Auflage 2006.

[42] Wist, K.: Mikroprozessortechnik
Wiesbaden: Vieweg und Teubner. 4. Auflage 2011.

[43] Kleitz, W.: Digital and Microprocessor Fundamentals
Upper Saddle River: Prentice Hall. 4. Auflage 2002.

[44] Schmitt, G. : Mikrocomputertechnik mit Controllern der Atmel AVR-RISC-Familie
Miinchen: Oldenbourg. 5. Auflage 2010.

[45] Schifer, F.: AVR-Hardware und C-Programmierung in der Praxis
Aachen: Elektor. 2. Auflage 2008.

[46] Salzburger, L.: AVR-Mikrocontroller-Kochbuch
Miinchen: Franzis. 2013.

[47] Klbckl, I.: AVR-Mikrocontroller
Berlin, Boston: De Gruyter. 2015.

[48] Atmel, Atmegal6 Produktbeschreibung
http://www.atmel.com/devices/atmegal 6.aspx

310 A Anhang

[49] Atmel, 8-Bit AVR-Befehlssatz
http://www.atmel.com/images/doc0856.pdf

[50] Simulatoren fiir AVR-Prozessoren
http://www.mikrocontroller.net/articles/A VR-Simulation

[51] Atmel Studio

http://www.atmel.com/microsite/atmel studio6/debugging simulation.aspx

311

A.S5 Sachwortregister

2-stellige Bindrfunktionen...................... 18
7-Segment-Dekoder.............cceevenrennnn. 193
A
Abhéngigkeitsnotation.............c.ccecceueeen. 26
AddItion........cocoveiiviiiiieeeeee 5,152
Addition von Festkommazahlen........... 6
ganzzahlige Addition.............cccccveneene. 5
Adressbusooovvvvevviiiiieeein 158,232
Adressierungsarten..............ceeveveennnne 244
Adress-Zugriffszeit..........cccccveevvevenennn. 166
ALU. it 231
Amplitudenbedingung...........ccceceeeeneee 31
analoge Systeme.........ccoeceeveereeieriencnne. 1
Analoger Demultiplexer-....................... 119
Analoger Multiplexerccccccevuenee. 119
Analogschalter..........cccoocevenininccncecnen. 43
Ansteuerkennlinie..........ccoccoceeivceneecnen. 40
ANtIfUSE ..o 190
ATChItECtUTE ... 222
Arithmetische Befehle.......................... 251
arithmetisches Schieben 254
Arith.-log.-Recheneinheiten (ALU)149
ATTAY it 219
ASIC.ce e 187
Assembleranweisungenc......... 264
Assemblerprogrammcc.eenenee.. 243
Assembler-Programmierung................. 243
Assemblierung...........ccceeeveveenierienenenne. 243
Asynchrone Riickwirtszahler............... 123
Asynchrone Schaltwerke..........cc.ccc...... 71
asynchrone Setz- und Riicksetzeing. 88
Asynchrone Z&hlerccoccevevennnne. 121
Auffrischen........coccooeiiniiiiiiiee 173
Ausgabefunktionccccoeerennnene 74, 95
Ausgangs-Blockccceoiniiininiininn, 27
Ausgangsfunktion..........c.cccceveeveenieennnne 95
Ausgangstreiber......oovvevieeieieeneeieene 42
AULOMAL....c.eiiiiiiiiieieeiceee e 93
B
BCD/Dezimal-Code-Umsetzer.............. 115
Bedingte Springeccooeeeveeeveevennnenne. 259
Befehlsausfiihrung...........ccceevevevennnne. 242
Befehlscode.......cocevieiinenininiicicee 243
Befehls-Dekoder..........ccccooenininencnnnnne 234

Befehls-Pipelinecceevevveeveennenen. 242
Befehlsregister........ccooveeiirieneenieenenen. 234
Befehlssatz des ATmegal6 248
Befehlszahler.........cccccooevveeeennnnn.. 234,239
Bereichsiiberschreitungcccccvevennee. 8
Betrieb im Grundmodus............cccceeenee. 71
Bibliothekszelle..........ccccceveeiieniennnnen. 214
bidirektionale Schnittstellen................... 38
Binédre-Kodierung..........ccccecceeeieneennene. 101
Binérfunktion Siehe Schaltfunktion
Bindrzahlcccoooeiivieieieceeeee 4
Bitueiiiieeee 4,218
Bit-organisierte Speicher...................... 157
booleanocevuevinininininiiecee 218
Boolesche Algebraccccveveeieneenens 15
BUS et 38
Bussysteme.........cceceeeerieniieiiieieeeeenn 228
C
CaITY et 8, 141
Carry Generatecoceeeeeeevenvenvennennen 143
Carry Propagate......c..cocceveveeveeenenncnnes 143
Carry-Flagcccoveveiieiiieceeeeee, 240
Carry-Look-Ahead Addierer........ 143, 205
Carry-Look-Ahead-Generator 146
CAS before RAS refresh..........ccc.... 174
Channeled Gate-Array.........ccocevveevennenns 212
Characterc.ccceevveeeerienieeee e 218
CharakteristiKcccveevereenveneeieenene, 10
Clock-SKeWccovvvveeeeieeeeeeeeene. 85,107
CMOS-INVEIter....c.veeveeeeeeceeeeeee e 40
CMOS-Technologie 39, 82, 84
COde .. 114
COdeS ... 3
8-4-2-1-Code ...cceeeuvemieiiiniieeieieane 13
Aiken-Codeoovevvieiieiieieeieieeiees 13
Alphanumerische Codes..................... 13
ASCII-Code.....coovvererinienenieieieenn, 13
BCD-Code......cceovevenininieniiieieennen 13
Bindrcodeccoevveiieiirieeeeeeen 4
gewichteter Code.........ecvvvereeiveeennen. 4
Graycodeccooevvevveiieieeeieeeee 12
Hexadezimalcodecceveuenuennnne. 12
Morse-Code.......ccererererinieieieene 3
Oktalcodeooevereeieieieieeeee, 12
zyklischer Gray-Code...........cceevvennenn. 13

Code-Umsetzer........ccccoeeveeennennee. 111,114

312 A Anhang
CPLD....oooieeeeeeee e 208 einstellige Schaltfunktion....................... 15
CPU .. 236 elektronischer Kopierschutz................. 202
CPU-Register.......ccccoeveneneneneneennne. 239 Emitter-gekoppelte Logik....................... 48
Enable......cccoeviiieiiiiieee 37,47, 111
D Enhanced Page Modecccccoeuennenee. 171
Daisy-Chain..........cccooveveveveveverereerenennn. 208 Entflechtungsaufwand..............c..c...... 189
Daten diteKt oo 246 ENUEY coeoiieieieeeeeeeeeecceee 221
Daten indireKt.........coceveverenerceiennenne. 246 Entwurfswerkzeug. ..., 217
Datenbus......ooooooeooeo 158, 232, 235 EPLD ..o, 208
Datenleitungccocceveeeveeneenvenieene 158 EPROM ..., 162, 191
Datenspeichercooovveneenn... 235, 241 EPROM-Zelle......ccccecuevueninininencnnenn 190
Datentibertragungstrecke...........c.c....... 117 Erasable Programmable Logic Device .208
DDR-RAM oo 174 EXCeSS..ueetieiiiiiiiieieeceeeeee e 10
Dedicated Routing.............cccocoeveveeennn. 207 EXOR-Abhéngigkeit...........cccooevniunen. 29
Dekodierungoveveeereeeeeeernenan. 3,178 Exponent........ccooevieniiniiiiniinienees 10
Dekrementcccoevevenenenencnineenee. 247
Delay-Locked LooOp......cccceveeeveuenncnne. 203 F
Demultiplexer.........c.cccooeninn. 115,116 Fan-Out.......ccoceoeviniininincnenccnee, 41
Dezimaldquivalent........c..cocceereeeeeennee. 17 Fast Page Mode-DRAM 171
Dezimalzahl..........cccccooeviviniiieieieeee 4 Fehlerfortpflanzung...............ooocovveenn... 35
D-FHPLIOP .ccvcimrrimsriniiiiiiiiininnens 80 Feldeffekttransistor.........c.ccecevuerencnnenne. 39
Digitale Schnittstellen..............ccccccunee. 236 Festkomma-ArithmetiK.....ooor oo 5
Digitale Speicherccooviininnn. 157 FeStplattecoveveveeeeeeeeeeeeeeeeveeeenn 157
Digitale Systeme..........coocvveininriniinninnen. 2 Festwertspeichercoeveveveveveveuenne. 157
Digitale ZEhler.........coooovvvvinrrvinnnnnn. 87,121 FPGA oot 203
Digitaler Signalprozessor 233 FIFO ..ot 174
Disjunktionccccoevenenenienienceienene. 153 Finite State Machine.......oooweeeeoeoeoeoen, 93
Disjunktive Normalform......................... 53 Fixkommazahlenccccoceeeerieininnnne. 5
D@splgcement -- 247 Flag....ccooeoieineieieeee e 176
DiIVISION ..cveieeiieiciericniencreeeeeenee 9,256 Flag-RegiStercovvevverreeeereerennn. 240
don't care-Feldccccovenininencnienennn 59 flankengesteuertes D-Flipflop]3
don't care-Term......co.oorvvrrirn, 59 Flash-Speicher.........coovvirinierieiiennnns 240
Double Data Rate DRAM..................... 174 FLPLIOP . 78
DRAM ..ot 169 Floating-Gate-MOSFET........................ 162
Dualitit ...ccoovveveveeieieieienceescee 20,25 Fliichtige Speicher...........cocovvcvvvevuen... 157
Dual-Port-RAM........ccccooviiiiins 175 Fraction.........ccooveveveveveeeceeeeeeeeseseeeeeeennn, 10
Dynamisches RAM ..., 169 Frequenzteiler............ccc........ 87,121, 136
Funktionsbiindelc.......... 115,117
E Fuselinkcoccoveriniiiiieeeeee 190
Early WIIte ..o 167 Fusible-LinKcccocovvievieviieiiceenee, 161
EAROM.....ccooiiviniinincincnccecnecnne 163
ECL ..ot 48 G
EDIF-File......cccoeoviniiniiiinicecennn 208 GAL. ..o 199
EEPROM......ccoeeininiineieenennn. 163, 191 Gate-AITaY ...c.coeveverrererireeeeesreeeeenenns 212
EEPROM-Zellecccevoeeviiieierene 190 Gatterlaufzeit..........ccoeeeveerieiieeeiees 76
Eimerketteccccoevinenenenenccieennes 131 GatterverzOgerungoceevevveevereeueennene 124
Eimerkettenspeicher 157,174 General Purpose Routing...................... 207
einflankengesteuertes D-Flipflop.......... 107 GENETIC -t 221
Eingangskapazitit.........c.cccceeeeeieneenennnnne 50 Generic Array Logic (GAL)................. 199
Einschwingvorgangecccceceeeveeenee. 108 Gesetze der Booleschen Algebra............ 19

A.5 Sachwortregister 313
AbSOrptionsgesetzcecveeveeverveennens 20 TRQ-INterrupt.....c.oevveeveeeeeeeieeieeeennenn 268
ASSOZIAtIVEESCZ ..o 20
De Morgansche Theoreme 20 J
Distributivgesetz.cooooovvvvriierinnnns 20 JEDEC-FOrmat............ccooovvvevverrennens. 202
Existenz d. komplement. Elemente20 JK-FLPLIOP oo 86, 98
Existenz der neutralen Elemente 20 Johnson-Zahlercccoevecenecccneecnnne 136
Kommutativgesetz.........ccocoeeeeeeenne. 20
Shannonscher Satz.........c.cccceeeeeieenee. 24 K

Gercht .. 4 Kanonische disjunktive Normalform21

Gleitkommadarstellungcccveeneenne 10 Kanonische konjunktive Normalform 22

Gray—Kode.:: ... 101 Karnaugh-Veitch-Diagramm.............. 53

GrundverknGpfungen........cceeeeecovcmnvc. 17 10)) T 21

Kippintervall..................... 81, 89, 107, 132

H KENF oo 2

Halbkundendesign-ASIC...................... 187 Klassifizierung von Hazards................... 68

Halbleiterspeicher..........cccovevinencennnne 157 Kodierung nach den Ausgingen........... 101

Havard-Architekturcc.ccooocoeeeiee. 235 KOMMENLATEoocverererrreereesreererian. 265

Hazard ..o, 66, 93 KOmPparator.............c.coocovevveneenn, 153, 154
Verkniipfungshazard............... 66, 67, 68 komplementérer Ausgang.............c........ 36

HDL..ooiioi e 217 Komplement-Arrayccccooeee.... 193

Hidden Refresh.........ccccoveevvvevciienieennnen. 173 Komplementdarstellung 6

Bereichsiiberschreitung 8

1 Einerkomplementc.ccevvvevennenen. 6

T/O-direKtoovvoereerreeceeeees e 246 SUDLrAKHON ..ooos 7

[/O-REGISLET ... 241 Zweierkomplement..............cco.cooeoeennn. 6

Lo 49 konfigurierbarer Logik-BIOck w........... 203

TEEE-754ovvoooveoeeeeeoeeeeeeeeeeseeeennne 10 Konjunktive Normalform....................... 53

IMMEItevvveereiieieieieeeeeaee 245 Konstante.........oouvvviiiiiiniininnnn. 219,264

IMphKANt «.....oovvooeeeeeeeeeeeeeeenn 54, 67 Kontroll-Block ..., 27
Absolut elimin. Primimplikanten 55 kooperierende Schaltwerke 231
Kern-Primimplikanten........................ 55 kritischencoccvvevecininccncnccncean 77
PrimimpliKant...............o.ccooeveee.... 55,61 kritischer Laufcccocooevninencnennn. 77
Primimplikantentafel.......................... 61 kundenspezifische integr. Schaltung 187
Relativ elimin. Primimplikanten......... 56

INdEXTEIStErvvveveveveecececeeeeeeerae 239 L

indizierte Adressierung..............cccoeu..... 239 Lade-Befehle..........cocoeoieiniieiiiiee 248

inhaltsadressierte Speicher 157 Latch-Up ..coeviiieeeeeeeeeeeee 45

Inherent.........ccceeoveiereneneiceceeeeeeee 245 Late WIite......ooeovvveneiniicincecneee 167

Inkrementccoceeeviiieienieneneneenn 247 Lauf ... 77

INtEEET...covieieeeieeieeee e 218 Laufzeitccevvevveieeiecieceeeee 32,108

Integrierte Injektions-Logik.................... 49 Gatterlaufzeit.........cccoovevvveveeeienienens 66

INterrupt....cceeeeeeeeeeieieieeeeeee 235,266 Laufzeiteffekte in Schaltnetzen............... 66

Interrupt-Service-Routine..................... 266 Leitungskapazititcccccceveverveneennnns 50

Interrupt-Steuerungccceeveeveveennenne 236 Leitwerk ...cccoovevevencninenceieeenee 231,233

Inversionskreis........ccooevererenenennene 26, 64 Lese-Zyklus-Zeitcceeveveevierreneennne. 166

Inversionskreise........oeceverveeneniecnnenen 32 LIFO .ot 175

INVETtr ..o 15 Lineare Dekodierung.............cccceneeneee. 183

invertierte Funktion...........cocceceveveeence. 25 Local RoOUting.........ccceeeeeeieneenienieneenne. 207

[O-BIOCK..c..ciiiiiriiieieiececee 203, 206 Logic Array BlocK........cccceoeeeveienennnnne. 209

TO-ROUtING ..ceveeveiieiieiieieeieeee e 207 Logische Operationen............cc.cceuee.e. 254

314 A Anhang
logisches Schieben...........cccocvevveirennnnn. 254 Operationscode.........cceeverveennenen. 234,243
Look-Up Tablecccceevenenencnennnene 205 Operationswerkcccceeveeeennee. 231,233

10315321 10) SR 15,220
M Ortsadressierte Speicher 157
MaKrozelle ..o 209 OTP e 161
MANtISSE......vocveveveceeieeiceeieie e 10 Output Logic Macro Cell...................... 199
Maschinenbefehle. ..o 232 OVErflOW.....coieieiriieeeeeeee e 8
Maschinenprogramm.................. 232,264 Overflow-Flag......cccccovvvvveienieieeenen. 240
Maschinensprachecoo.ooveeeeene.. 243 Overloading.......c..coceeeeeeienienienenennenn. 221
Massenspeicher.........cceccveceeeeeneeenieeennne 157
Master-Slave-FIipflop.......cccocevvevevevnnee. 86 |
Maxtermcoooevvvveeeeeeieinnnnenn.. 22,56,115 Package......ccooevuenieniiiicec 218
Mealy-Automat.........ccccereeeeeeeeeeneeneene 71 PCB . 187
Mealy-Schaltwerk............cccovevveennnne 97,98 Peripheriezelle.........ccoovevvveiineenieennne, 215
mehrwertiges Logiksystem................... 228 Place and Route........cccoevvevverieeiennnnnne. 208
Mikrocontroller............cccoeuvevenne.... 232,236 POINLET v 176
Mikroprogrammc.cccevvereeereeennenne 233 POrt ., 221
MiKroprozessor...........occevevereeennnne 232,235 positive LogiK.......cooveveeienieiieieeieenn 32
MINtETM oo 21 Power down mode.......cccecceveieniincnnenn 174
MRNEMmOoNIC........covvveeeeeeuereenns 243,244, 264 Produktterm.......ccoeeevevieeeiiieieeeeeee. 55
Mod-6-Zahler im Gray-Code................ 127 Produkttermfreigabe..........cccoocveuvennen. 202
Modulo-5-Binér-Zghler 195 Program-Counterccccecveruereenuenene 234
Modulo-6-Zahlerccccoecevereniennnen. 122 Programmable Logic Array (PLA)....... 192
Modulo-8-Binérzahlerccocu.e... 121 Programmierbare Logikbausteine......... 187
Moebius-Zahlercccovereneneniennen. 136 Programmierbare Logik-ICs (PLD)......190
Moore-Schaltwerkccoeeveviennnne 71,95 Programmiermodusccccceerurennenne. 202
MOSFETcoeiiiiirienieieieeeeeeeeenene 39 Programmierung von PLD-Bausteinen. 202
MSBh..ooieeeeeee e 142 Programmspeicher........................ 235, 240
MBS ... 187 Programmspeicher direkt...................... 247
MultipleXercccevveevereeerieniereeieeeae 111 Programmspeicher relativ..................... 248
Multiplikation..........ccocceeverieneennne 9,256 Programm-Z&hlerc.ccoccvevvrennnne. 239

PROM.....ooiiiiiiiinciccncccnee, 161, 191
N Prozess......cceoeeieiieniiniicee e 223
nebenliufigen Anweisung 222 pseudo-Zufalligcccovvenrevrinrecnncnnee 138
negative LogiK........cccevevveevvinccininncnnnn. 32 Pseudo-Zufallsfolgen............cccccceees 138
NEtZISte ... 208 Pufferspeicher ..., 109
Non Volatile RAM oo 164 Pufferung........c.cocoeeveneininenieee 85
NOR-FLPLIOP oo 72
NOVRAM ..ottt 164 Q

QUAaNtiSIeIUNGcecvveereeieeeeieeieeee e 2
(0] Quine-McCluskey-Verfahren................. 60
Object Code....oovvrrveiieiieieeierieieeiene 243
Object-Code......oovverrieieeieeierieieeiene 264 R
ODER-AbhANGIGKEIt v 28 RACE e 77
Offener Kollektor ...l 36 RAM ..o, 164
OLMC ..ot 199 RAM-Speicherzelleoooweeeeeeenn.. 165
One-Hot-Kodierung..........c.cooccoernenne. 101 RAS only refresh.......cccoeeeenenecnnennne 173
OPCOde. ..o 234,243 Rauschencccocevvncnnincnnicnccnenen 31
Open Collector.........re, 36 REAL......ooovooeeeeeeeeeeeeeeeeeeee e 218
Open-Drain-Ausgang..............cccococeeene. 36 Realisierung von Schaltnetzen.............. 187

A.5 Sachwortregister 315
Realisierung von Schaltwerken............ 187 Schieberegister 74194ccccoeveruennee. 133
Recordoovvveiieiiciieiiceceeeeeee 219 Schreib/Lese-Speicher............ccveeveennenn. 157
reflexiver Ubergang............cocevvvvennn. 75 SDRAM. ..o 174
Refresh ..o.oovveveieicieeeeee, 169 Selektionseingange..........cccceveevereenuenne. 111
Register direktcocceveririnininiennne 245 Sensitivity-Listccevvevererenenenieeenne. 224
Register direkt, 2 Register.................... 245 SEqUENCETeovveuieieiiiereeereeeeeeeaen 194
RegisterblocK........ccoeveveienenenieienne 241 sequentielle Schaltung..........c...cccueenee.e. 93
Relativ adressierter Sprung................... 258 sequentielle Anweisungen.................... 224
RESET ...t 237 Serieller Zugriff.........ccceceevvenencncnnnne. 157
RSt i 4 Serienaddierer.........cccevvereveiieeienieeenns 141
Ripple-Carry-Addiererccccocceeeneee 142 SEZEN ..o 78
ROM....ooooeieeeeeeeeeeeee 158, 191 Sicherheitsbit..........ccceeeieeeiiecrieereenne. 202
ROtIEIeNoovveviciieieeeeeeeee e 254 Signal.......coooeeveviiinieieeeeeeeeens 1,218
RS-Flipflop mit Takteingang.................. 79 Sign-Bit, Sign Flag.......c..cccceceevienennne. 240
RS-Latch.....ccooieieiiiieeeeeeeee 79 SOftWATEoveiieiieieieecceeeee, 217
riickgekoppelte Schieberegister............ 135 Source Codeoovvveverrenieriieins 243, 264
Rickkopplungccoeevvveeieeieeiecieieenne, 71 Spaltendekoderccccevveeveieniennnns 161
Riickkopplungsbedingung..................... 109 Spaltenleitung..........ccceeeeeververvenrennnns 158
Riicksetzenccceevevivevieeieeierieeeee 78 Spannnungspegel.........ccoevereeieniiennennen. 32
Speicher-Befehlec.ccocvevveieennnnne. 250
S Speicherkapazittcccceeeveeeriennnne. 157
Schaltfunktionc.coeeeeeeeeeeenene. 15,53 Sprungbefehle.........c.covviinnnins 235,257
AND .ot 17 SRAM ..o 164,203
ANGVALENTZ oo 18 SSL e 187
AQUIVALeNZcoovvoveeeeeeeeeeeee. 18 stabiler Zustandccccoceverenenncennennns 74
DiSJUNKHOM ..o 17 Stack....coveeeeeieeieeeee e 234,261
ExXKIusiv-Oder .o 18 Stack-Pointer...........ccoeevervenivennnns 234,239
Tdentithit.......coevveereeieirieieeeeeeieee 18 Standardbauelement ..., 187
IMPHKAtON ... 18 Standardzellen-ASIC........c...cccocoerns 215
INhIBION ..o 18 statische Verlustleistung.............c......... 31
KOMPIEMENt ... 15 Statisches RAM.......cccccooevvivieeeeniiennn, 164
KOonjunktion...........cceveeevererrerneernnnn. 17 Status-Register SREGc.ccccoccc.. 240
NAND ... 18 SEEUSTDUS oo 158,232
NEGAtION ... 15 Steuerzeichenc.ccoceveveneneneeneenenn. 13
NOR oo 18 Storabstand..........cccooceverenieneniieienene 35
NOT s 15 Strukturbeschreibung...........ccccooeevvevev.. 222
ODER ... 17 Struktureller Entwurf.........ccooooooveevieens 227
OR o 17 SUbLTAKLON ..o 6,253
UND oo 17 Synchrone Schaltwerke..................... 71,93
SChaltMALriXvooeeeeeeiereieeeieeeenn. 207 Synchrone Z&hlerccooovvinrnnennn. 124
Schaltnetzcccceeveeevieiieeeeeeee, 53 Synchrones DRAM ... 174
Schaltsymbolc.cocoevvevveennn. 15,26 Synchrones Mealy-Schaltwerk............. 109
Schaltvariableccceoeeoieieneneicieeeens 15
Schaltverhalten............cccccocooeveieuerrannn. 50 T
Schaltzeitenccoceeeeeieieneneiceeecens 33 TaKE oo 33
AbfallZeit.....c.cccvevieieieeeeieeeeeeee 33 Taktflankeccccevererinenieieeieeens 83
ANSHEZSZEIt ..o 33 Taktfrequenz.........cocceeeeveneenenccncnne, 33
Signallaufzeit..........cccceeeverenenenennn. 33 taktpegelgesteuertes Flipflop.................. 80
Verzogerungszeit........oveveeeeeeeeneeennen. 33 Taktperiode........ccocveveeereeiereerieieenene, 33
Schieberegistercecueruennen. 83, 85, 131 TaKtversatzccoevveveveeeeeneeeenen, 85,132

316 A Anhang
TDMA ..ottt 117 Vollkonjunktion..........cceeeeeevereerieeceennnnns 21
Teildekodierung..........ccocvevveevevierienuennene 181 Vollkundendesign-ASIC 188, 215
T U 189, 202 Vollstandigkeitcceeeeeeeienieneieene, 19
Testen von Nachrichtenkanilen............ 139 von Neumann-Rechner-............c.c......... 231
T-FLPlOP oot 87 Vorzeichen-Flagcccooenininenennnn. 240
Three-State-Ausgang..........ccceceeeeeenee. 37
Toggle-Flipflop......cccceveviniiiiieieeee 87 W
Totem-Pole-Ausgang.............cccooeevuennn 36 Wahlfreier Zugriff.........cocoovvevverrnenc. 157
Transferbefehle...........cccoooniiin, 248 Wabhrheitstabelle.............ccooeverierinnnnens 15
Transistor-Transistor-Logik.................... 45 Wait-Anweisung..........coceeeeereeerreneenenn 224
Laststrom........cccceevvecveeeeneeneecieneennen. 47 Watchdog-Timercocoevvevvrvennnnn. 236
Tri-State-Gatter.......c.ccocevverereeeenennns 47 wertdiskrete Signalec.ccocvvueruen... 2
Transmission-Gate............ 43,82, 111, 119 Wertigkeit.......ooeeveieenenieenieeceenene 112
Tristate-AUuSgangcceceeveeeeereeneeenns 44 wertkontinuierliche Signale...................... 1
TTL e 45 wertkontinuierliches Verhalten............... 31
TYPON.cciiiiiiiiiiecec e 218 Wired-And..oo oo 36
Typkonvertierungc.cccocvueiin. 221 Wired-Or ..o 36
Wirkintervall 81, 85, 89, 107, 132
U WOTEe vttt 4
Ubergangsfunktioncc.cccoev.... 74, 94 WoOrtleitung........ooeeeeererieniercereeeee 158
Ubergangstabelleccovveverruerennnne. 94 Wort-organisierte Speicher................... 157
UDEIIag.....cevecveveeveeeeveeisieseieseeinaans 8, 141 Write cycle timeccooeverueverernnne. 168
Ubertragungs-Abhingigkeit 29
Ubertragungskennlinie................c............ 34 7
Umwandlung ODER/UND-Schaltnetz .63 ZAhIenbICICh e 7
Umwandlung UND/ODER-Schaltnetz....64 ZEICheN ... 3
Umwandlung Binérz. in Dezimalzahlen...4 Zeilendekoder.........cccooeveirenieiniencnnnn 161
Umwandlung Dezimalz. in Binérzahlen...4 Zeilenleitung.........ccceveevveereenienieennenenn 158
UND-Abhiéngigkeitc........ 27,112 zentrale Verbindungsmatrix 208
ungepuffertes D-Flipflop...........c...c........ 81 Zer0-Flag.....oooveeveeeeeeeeeeeeeeeeeenn. 240
unkritischer Lauf ..., 77 ZUStANd ..., 93
Unterprogrammcoceeeeerveeeeeennnn 261 Zustandsdiagramm 75,98, 101
Unterprogrammaufruf..........c..cccceceenee. 261 Zustandsfolgetabelle... 74, 94, 98, 102, 292
Untertypencc.oceeeevenencneneneeeenns 219 zustandsgesteuertes Flipflop...................)
Zustandsgleichung............ccocveeienienens 74
\Y ZustandSgroBeooveveveveeeveveiereeeenenns 71
Variablecccoeeveviveieeienieieeen. 219, 264 Zustandskodierungcccoeveeverneenne. 100
Verbindungs-Abhéngigkeit 29 Zustandsvariable..........cccecveeienienennnnnnn. 93
Vereinfachte Schreibweisec..c..... 21 Zustandsvektorcceeverieienenienennne 231
Vergleicher......c.ocovvvveieiiieieieiee, 153 Zweierkomplement............cccceeuevirrienee 250
Verhaltensbeschreibung........................ 222 zweiflankengesteuertes Flipflop.....85, 107
Verlustleistung..........ccccoooeveninineencennne. 51 Zweiflankensteuerungc.cceceeeeenne. 85
VHDL. ..ottt 217 Zweikomponenteniibergang 76
VHDL-Fil@oooovivieiiiiieiecieseeieee 218 Zweistellige Schaltfunktione.................. 16
Vier-Bit-Dualzdhler.............cccccvervrennnne 125 zweistufiges Schaltwerkcccoenee. 63
Volladdierer.........ccoceverenenencneeneennenns 141 Zwischenspeicherflipflopcccceeeneeee. 86

	Vorwort
	Inhaltsverzeichnis
	1 Einleitung
	2 Codierung und Zahlensysteme
	2.1 Codes
	2.2 Dualcode
	2.3 Festkomma-Arithmetik im Dualsystem
	2.3.1 Ganzzahlige Addition im Dualsystem
	2.3.2 Addition von Festkommazahlen
	2.3.3 Einerkomplementdarstellung
	2.3.4 Zweierkomplementdarstellung
	2.3.5 Subtraktion in Zweierkomplementdarstellung
	2.3.6 Bereichsüberschreitung
	2.3.7 Multiplikation
	2.3.8 Division

	2.4 Gleitkommadarstellung von reellen Zahlen
	2.4.1 Einleitung: Gleitkommadarstellung im Dezimalsystem
	2.4.2 Gleitkommadarstellung im Dualsystem
	2.4.3 Spezielle Zahlendarstellungen

	2.5 Hexadezimalcode
	2.6 Oktalcode
	2.7 Graycode
	2.8 BCD-Code
	2.9 Alphanumerische Codes
	2.10 Übungen

	3 Schaltalgebra
	3.1 Schaltvariable und Schaltfunktion
	3.2 Zweistellige Schaltfunktionen
	3.3 Rechenregeln
	3.4 Vereinfachte Schreibweise
	3.5 Kanonische disjunktive Normalform (KDNF)
	3.6 Kanonische konjunktive Normalform (KKNF)
	3.7 Darstellung von Funktionen mit der KKNF und KDNF
	3.8 Minimieren mit Hilfe der Schaltalgebra
	3.9 Schaltsymbole
	3.9.1 Grundsätzlicher Aufbau der Symbole
	3.9.2 Die Abhängigkeitsnotation
	3.9.3 Die UND-Abhängigkeit (G)
	3.9.4 Die ODER-Abhängigkeit (V)
	3.9.5 Die EXOR-Abhängigkeit (N)
	3.9.6 Die Verbindungs-Abhängigkeit (Z)
	3.9.7 Die Übertragungs-Abhängigkeit (X)

	3.10 Übungen

	4 Verhalten logischer Gatter
	4.1 Positive und negative Logik
	4.2 Definition der Schaltzeiten
	4.3 Übertragungskennlinie, Störabstand
	4.4 Ausgänge
	4.4.1 Offener Kollektor (Open Collector)
	4.4.2 Tri-State-Ausgang

	4.5 Übungen

	5 Schaltungstechnik
	5.1 CMOS
	5.1.1 Fan-Out
	5.1.2 Grundschaltungen NAND und NOR
	5.1.3 Transmission-Gate
	5.1.4 Tri-State-Ausgang
	5.1.5 CMOS-Eigenschaften

	5.2 TTL
	5.2.1 Belastung der Ausgänge

	5.3 Emitter-Coupled Logic (ECL)
	5.4 Integrierte Injektions-Logik (I2L)
	5.5 Verlustleistung und Schaltverhalten von Transistorschaltern
	5.6 Übungen

	6 Schaltnetze
	6.1 Minimierung mit Karnaugh-Veitch-Diagrammen
	6.1.1 Minimierung der KDNF
	6.1.2 Minimierung der KKNF
	6.1.3 Karnaugh-Veitch-Diagramme für 2 bis 6 Eingangsvariablen
	6.1.4 Unvollständig spezifizierte Funktionen

	6.2 Das Quine-McCluskey-Verfahren
	6.3 Andere Optimierungsziele
	6.3.1 Umwandlung UND/ODER-Schaltnetz in NAND-Schaltnetz
	6.3.2 Umwandlung ODER/UND-Schaltnetz in NOR-Schaltnetz

	6.4 Laufzeiteffekte in Schaltnetzen
	6.4.1 Strukturhazards
	6.4.2 Funktionshazards
	6.4.3 Klassifizierung von Hazards

	6.5 Übungen

	7 Asynchrone Schaltwerke
	7.1 Prinzipieller Aufbau von Schaltwerken
	7.2 Analyse asynchroner Schaltwerke
	7.3 Systematische Analyse
	7.4 Analyse unter Berücksichtigung der Gatterlaufzeit
	7.5 Speicherglieder
	7.5.1 RS-Flipflop
	7.5.2 RS-Flipflop mit Takteingang
	7.5.3 Taktpegelgesteuertes D-Flipflop
	7.5.4 Flankengesteuertes D-Flipflop
	7.5.5 Zweiflankensteuerung
	7.5.6 JK-Flipflop
	7.5.7 T-Flipflop
	7.5.8 Beispiel
	7.5.9 Zusammenfassung Flipflops

	7.6 Übungen

	8 Synchrone Schaltwerke
	8.1 Beispiel 1: Schaltwerk „Binärzähler“
	8.2 Moore-Schaltwerk
	8.3 Mealy-Schaltwerk
	8.3.1 Beispiel 2: Mealy-Schaltwerk „Maschinensteuerung“
	8.3.2 Realisierung der Maschinensteuerung als Moore-Schaltwerk

	8.4 Zustandscodierung
	8.4.1 Binäre Codierung
	8.4.2 Codierung nach dem Gray-Code
	8.4.3 Ausgangsorientierte Codierung
	8.4.4 „One-Hot“-Codierung

	8.5 Wahl der Flipflops
	8.6 Zeitverhalten von Schaltwerken
	8.7 Übungen

	9 Multiplexer und Code-Umsetzer
	9.1 Multiplexer
	9.1.1 Multiplexer-Realisierung von Funktionen

	9.2 Code-Umsetzer
	9.2.1 Der BCD/Dezimal-Code-Umsetzer 7442
	9.2.2 Demultiplexer
	9.2.3 Erzeugung von Funktionsbündeln

	9.3 Analoge Multiplexer und Demultiplexer
	9.4 Übungen

	10 Digitale Zähler
	10.1 Asynchrone Zähler
	10.1.1 Mod-8-Binärzähler
	10.1.2 Mod-6-Zähler
	10.1.3 Asynchrone Rückwärtszähler
	10.1.4 Zeitverhalten asynchroner Zähler

	10.2 Synchrone Zähler
	10.2.1 4-Bit-Dualzähler
	10.2.2 Mod-6-Zähler im Gray-Code
	10.2.3 Der synchrone 4-Bit Aufwärts/Abwärts-Binärzähler 74191

	10.3 Übungen

	11 Schieberegister
	11.1 Zeitverhalten von Schieberegistern
	11.1.1 Schieberegister 74194

	11.2 Rückgekoppelte Schieberegister
	11.2.1 Moebius-Zähler, Johnson-Zähler
	11.2.2 Pseudo-Zufallsfolgen

	11.3 Übungen

	12 Arithmetische Bausteine
	12.1 Volladdierer
	12.2 Serienaddierer
	12.3 Ripple-Carry-Addierer
	12.4 Carry-Look-Ahead Addierer
	12.4.1 Kaskadierung von Carry-Look-Ahead-Addierern
	12.4.2 Vergleich der Addierer

	12.5 Arithmetisch-logische-Recheneinheiten (ALU)
	12.5.1 Beispiele für Operationen

	12.6 Komparatoren
	12.6.1 2-Bit-Komparator
	12.6.2 Kaskadierbare Komparatoren

	12.7 Übungen

	13 Digitale Speicher
	13.1 Prinzipieller Aufbau von Speicherbausteinen
	13.2 ROM
	13.3 PROM
	13.4 EPROM
	13.5 EEPROM
	13.6 EAROM
	13.7 NOVRAM
	13.8 Statisches RAM (SRAM)
	13.8.1 Aufbau eines SRAM
	13.8.2 Beispiel SRAM

	13.9 Dynamisches RAM (DRAM)
	13.9.1 Aufbau eines DRAM
	13.9.2 Beispiel DRAM

	13.10 SDRAM (Synchrones DRAM)
	13.11 DDR-RAM (Double Data Rate DRAM)
	13.12 Eimerkettenspeicher
	13.12.1 Beispiel eines FIFOs

	13.13 Kaskadierung von Speichern
	13.14 Erweiterung der Wortlänge
	13.15 Erweiterung der Speicherkapazität
	13.15.1 Volldecodierung
	13.15.2 Teildecodierung
	13.15.3 Lineare Decodierung

	13.16 Übungen

	14 Programmierbare Logikbausteine
	14.1 ASIC-Familien
	14.2 Programmierbare Logik-IC (PLD)
	14.2.1 PLD-Typen

	14.3 ROM, EPROM, EEPROM
	14.4 PLA
	14.5 PAL
	14.6 GAL
	14.7 Programmierung von PLD-Bausteinen
	14.7.1 Test

	14.8 Field Programmable Gate Arrays (FPGA)
	14.8.1 Aufbau eines FPGA
	14.8.2 Konfigurierbare Logik-Blöcke (CLB)
	14.8.3 IO-Block
	14.8.4 Verbindungsleitungen
	14.8.5 Programmierung eines FPGA

	14.9 CPLD
	14.9.1 Aufbau einer CPLD
	14.9.2 Logik-Array Blöcke (LAB)
	14.9.3 IO-Steuerung
	14.9.4 Größe der CPLD

	14.10 Gate-Arrays
	14.10.1 Aufbau von Channelled Gate-Arrays

	14.11 Standardzellen-ASIC
	14.12 Vollkundendesign-ASICs
	14.13 Übungen

	15 VHDL
	15.1 Entwurfsverfahren für digitale Schaltungen
	15.2 Die Struktur von VHDL
	15.3 Typen
	15.4 Operatoren
	15.5 Entity
	15.6 Architecture
	15.7 Prozesse
	15.8 Struktureller Entwurf
	15.9 Busse
	15.10 Übungen

	16 Mikroprozessoren
	16.1 Prinzip kooperierender Schaltwerke
	16.2 Der Von-Neumann-Rechner
	16.2.1 Operationswerk
	16.2.2 Leitwerk
	16.2.3 Speicher
	16.2.4 Ein- und Ausgabe
	16.2.5 Betrieb

	16.3 Architektur des ATmega16
	16.3.1 Anschlüsse des ATmega16
	16.3.2 CPU-Register
	16.3.3 Programm-Speicher
	16.3.4 Daten-Speicher
	16.3.5 Funktionsabläufe bei der Befehlsausführung

	16.4 Assembler-Programmierung
	16.5 Adressierungsarten
	Inherent
	Immediate
	Register direkt
	Register direkt, 2 Register
	I/O direkt
	Daten direkt
	Daten indirekt
	Programmspeicher direkt
	Programmspeicher relativ

	16.6 Befehlssatz
	16.6.1 Konventionen
	16.6.2 Transfer-Befehl
	16.6.3 Laden von Bytes
	16.6.4 Speichern von Bytes
	16.6.5 Arithmetische Befehle: Negation
	16.6.6 Arithmetische Befehle: Addition und Subtraktion
	16.6.7 Arithmetische Befehle: Setzen und Löschen von Bits in einem Register
	16.6.8 Arithmetische Befehle: Test und Vergleich
	16.6.9 Arithmetische Befehle: Logische Operationen
	16.6.10 Schiebe- und Rotationsbefehle
	16.6.11 Befehle zum Setzen und Löschen von Flags im SREG
	16.6.12 Absolut adressierter Sprung
	16.6.13 Relativ adressierter Sprung
	16.6.14 Relativ adressierte, bedingte Sprünge
	16.6.15 Befehl überspringen
	16.6.16 Befehle für Unterprogramme

	16.7 Assembleranweisungen
	16.8 Interrupt-Bearbeitung
	16.9 Übungen

	A Anhang
	A.1 Die Abhängigkeitsnotation
	A.2 Befehlssatz des ATmega16
	Codierung der Befehle des ATmega16

	A.3 Lösungen der Aufgaben
	A.4 Literatur
	A.5 Sachwortregister

