Beschreibung der Simulation 02 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hagen

auf Grundlage des Kurstextes Computersysteme II

Das zugrundeliegende Programm:

Demonstration der arithmetischen Befehle mul und div

Wie im HowTo beschrieben, wird Simulation02.asm im MARS geoffnet.

Der Code zeigt die Verwendung der arithmetischen Befehle mul und div und wie dabei die Register
HT und LO bendtigt werden. Im Folgenden werden einzelne Codeabschnitte néher erldutert.

.data
numberl: .word OxOfffffff
number2: .word 0x12345678
number3: .word 0x01234567

Die Konstanten werden hinterlegt, die im Programmablauf bendétigt werden, als Beispielzahlen
wurden OxOfffftft, 0x12345678 und 0x01234567 willkiirlich ausgewdhlt.

text
Laden der Beispielzahlen in t0, t1, t2
Iw $t0, number1
Iw $t1, number2
Iw $t2, number3

Die hinterlegten Zahlen numberl, number2 und number3 werden in die tempordren Register t0, t1
und t2 geladen, sehr schon kann man das im ,,Execute* Fenster im Text Segment verfolgen:

Basic Source

001|1ui £1,0x00001001 13: 1w $t0, numberl
0001w $8,0x00000000 (51}
001[1ui £1,0x00001001 14: 1w $tl, number?
1004|1w £9, 0200000004 {£1)
001|1ui £1,0x00001001 15: 1w £t2, number3
1001w £10,0x00000003 ($1)

Empfehlenswert ist es, Schritt fiir Schritt durch das Programm zu gehen, das geschieht durch Klicks
auf den ,,Run one step at a time** Button:

| O |G @
—| Run one step at a time I—

Beschreibung der Simulation 02 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hagen

auf Grundlage des Kurstextes Computersysteme II

Im rechten Bereich unter ,,Register” findet man nun nach Ausfiihrung der drei Codezeilen die mit
den Beispielzahlen gefiillten Register t0-t2,

sda ' UXUULUUUUY
stl 8 OXOfffffff
stl 9 0x12345678
§t2 10 0x012345867
5t3 11 0x00000000
£rd 12 fxNnNANANAN

sodass nun die eigentlichen Operationen beginnen konnen. Zuerst die Multiplikation,

Multiplikation
mul $t3, $t0, $t1 # Die unteren 32 Bits des Produkts werden in $t3 abgelegt
mfhi $s0 # Um auf die oberen 32 Bits zugreifen zu kdnnen, wird mthi benotigt
mflo $sl1 # Fiir den Zugriff auf die unteren 32 Bits des Produkts wird mflo verwendet

wobei wichtig ist, dass das Produkt zweier 32-Bit-Zahlen bis zu 64 Bit gro3 wird. Es werden also 2
Register bendtigt, um es berechnen zu konnen. Die oberen 32 Bit werden automatisch im Register
hi abgelegt, darauf zugreifen kann man dann mit dem Befehl mfhi, die unteren 32 Bit werden hier in
Register t3 geschrieben, weil es das destination register im Befehl ist, zusétzlich liegen sie im
Register lo, wo mit dem Befehl mflo auf sie zugegritffen werden kann.

Dann folgt die Division,

Division $t0 durch $tl

div $t0, $t2 # speichert den Quotienten in lo und den rest in hi
mfhi $s2 # holt den Rest der Division aus hi und legt ihn in $s2 ab
mflo $s3 # holt den Quotienten aus lo und legt ihn in $s3 ab

wobei prinzipiell der Quotient in /o und der Rest in /i abgelegt wird.

exit
1i $v0, 10
syscall

Der Wert 10 fiir den syscall bedeutet: ,,exit (terminate execution)* und der syscall mit diesem Wert
beendet die Ausfiithrung des Programms.

Das Programm hat keine Ausgabe, im rechten Bereich lassen sich schon die Werte der Register
nach Ausfiihrung ablesen, wobei man wahlweise die Darstellung als Hexadezimal-Zahl oder als
Dezimalzahl wihlen kann, umgeschaltet wird das durch Setzen des Hékchens bei ,,Hexadecimal
Values* am unteren Rand des Data Segments:

Beschreibung der Simulation 02 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fgmumue[sitﬁ[in Hauen

auf Grundlage des Kurstextes Computersysteme II

AbschlieBende Registerbelegung:

st [+ Ox0ffE£fEEE
sl 9 0x12345678
ELt2 10 0x01234567
Ft3 11 Oxadcbad988
std 12 0x00000000
FLS 13 0x00000000
3] 14 0x00000000
EL7 15 0x00000000
g3l 16 0x01234567
g3l 17 Oxadcbad988
£32 18 0x0012345d
£33 15 0x0000000e
£34 20 0x00000000
£33 21 0x00000000
£36 22 0x00000000
537 23 0x00000000
StE 24 0x00000000
Ft9 25 0x00000000
£k0 26 0x00000000
skl 27 0x00000000
§Qp 28 0x10008000
£3p 29 O0x7fffefic
£fp 30 0x00000000
Fra 31 0x00000000
PC 0x00400038
hi 0x0012345d4
lo 0x0000000e

