
Beschreibung der Simulation 03 aus der Reihe: 
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Das zugrundeliegende Programm: 

Demonstration der Schiebeoperationen sll, srl, sra

Wie im HowTo beschrieben, wird Simulation03.asm im MARS geöffnet. 

Der Code zeigt die Verwendung der Schiebebefehle sll, srl und sra. Im Folgenden werden einzelne
Codeabschnitte näher erläutert.

Die Konstanten werden hinterlegt, die im Programmablauf benötigt werden, als Beispielzahl wurde
0xf30002a8 willkürlich ausgewählt. Die Strings sll, srl und sra sind nicht für die Ausführung des
Programms nötig, sondern dienen der Übersichtlichkeit und Verständlichkeit der Ausgabe.

Die Beispielzahl src wird in Register s0 geladen, sehr schön kann man das im „Execute“ Fenster im
Text Segment verfolgen:

Empfehlenswert ist es, Schritt für Schritt durch das Programm zu gehen, das geschieht durch Klicks
auf den „Run one step at a time“ Button:

.data
src: .word 0xf30002a8
sll: .asciiz "\nshift left logical\n11110011000000000000001010101000 um 4 Stellen = \n"
srl: .asciiz "\nshift right logical\n11110011000000000000001010101000 um 4 Stellen = \n"
sra: .asciiz "\nshift right arithmetic\n11110011000000000000001010101000 um 4 Stellen = \n"

.text
lw $s0, src # $s0 = 0xf30002a8



Beschreibung der Simulation 03 aus der Reihe: 
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Im rechten Bereich unter „Register“ findet man nun nach Ausführung der Codezeile das mit der
Beispielzahl beschriebene Register s0,

sodass nun die eigentlichen Operationen beginnen können:

wobei wesentlich ist, worin die Unterschiede in den Befehlen liegen:

• shift left logical, logisches Linksschieben:

es wird um die Anzahl Bits nach links geschoben, die durch den im Befehl angegeben  
immediate Wert bestimmt wird, in diesem Fall sind das 4.  Dieselbe Anzahl 0en wird rechts 
nachgeschoben.

• shift right logical, logisches Rechtsschieben:

es wird um die Anzahl Bits nach rechts geschoben, die durch den im Befehl angegebenen 
immediate Wert bestimmt wird, in diesem Fall wieder 4. Dieselbe Anzahl 0en wird von links
nachgeschoben.

• shift right arithmetic, arithmetisches Rechtsschieben:

es wird um die durch den immediate  Wert (hier 4) bestimmte Anzahl Bits  nach rechts  
geschoben, im Gegensatz zum srl aber wird nicht pauschal mit 0en aufgefüllt, sondern es 
wird das Vorzeichen erweitert, im Falle unserer Beispielzahl ist das die 1.

# Schiebeoperationen
sll $s1, $s0, 4 # Schiebe den Inhalt von $s0 um 4 Stelle nach links, fülle rechts mit 0en auf
srl $s2, $s0, 4 # Schiebe den Inhalt von $s0 um 4 Stellen nach rechts, fülle links mit 0en auf
sra $s3, $s0, 4 # Schiebe den Inhalt von $s0 um 4 Stellen nach rechts, fülle links mit dem Vorzeichenbit auf



Beschreibung der Simulation 03 aus der Reihe: 
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Nach  diesen  Operationen  können  die  Ergebnisse,  die  in  den  Registern  s1-s3  vorliegen,  nun
ausgegeben werden. Damit man das bitweise Schieben besser erkennen kann, erfolgt die Ausgabe
nicht  hexadezimal,  sondern  binär.  Mittels  folgenden  Codefragments  wird  die  Ausgabe  des
Ergebnisses der sll-Operation initiiert:

Zuerst wird die Adresse des Strings sll in das Register a0 geladen, dann der Wert 4 in das Register
v0. Der syscall mit dem Wert 4 steht für „print string“ und gibt aus, was unter der in a0 liegenden
Adresse gespeichert ist. Schließlich wird das Ergebnis der sll-Operation von s1 nach a0 kopiert, um
es dann mit dem syscall 35 („print integer in binary“) als Dualzahl auszugeben. Die Ausgaben der
beiden anderen Operationen folgen demselben Prinzip.

Der Wert 10 für den syscall bedeutet: „exit (terminate execution)“ und der syscall mit diesem Wert
beendet die Ausführung des Programms. 

Die Ausgabe des Programms ist die folgende:

Ebenfalls lassen sich nach Ausführung im rechten Bereich die Werte der Register ablesen, wobei
man  wahlweise  die  Darstellung  als  Hexadezimal-Zahl  oder  als  Dezimalzahl  wählen  kann,
umgeschaltet wird das durch Setzen des Häkchens bei „Hexadecimal Values“ am unteren Rand des
Data Segments:

Abschließende Registerbelegung:

# Ausgabe sll
la $a0, sll
li $v0, 4
syscall
move $a0, $s1
li $v0, 35
syscall

# exit
li $v0, 10
syscall

shift left logical
11110011000000000000001010101000 um 4 Stellen = 
00110000000000000010101010000000
shift right logical
11110011000000000000001010101000 um 4 Stellen = 
00001111001100000000000000101010
shift right arithmetic
11110011000000000000001010101000 um 4 Stellen = 
11111111001100000000000000101010
-- program is finished running --


