Beschreibung der Simulation 03 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hagen

auf Grundlage des Kurstextes Computersysteme II

Das zugrundeliegende Programm:

Demonstration der Schiebeoperationen sll, sri, sra

Wie im HowTo beschrieben, wird Simulation03.asm im MARS geoftnet.

Der Code zeigt die Verwendung der Schiebebefehle sll, srl und sra. Im Folgenden werden einzelne
Codeabschnitte niher erldutert.

.data
src: .word 0xf30002a8
sll: .asciiz "\nshift left logical\n11110011000000000000001010101000 um 4 Stellen = \n"
srl: .asciiz "\nshift right logical\n11110011000000000000001010101000 um 4 Stellen = \n"
sra: .asciiz "\nshift right arithmetic\n11110011000000000000001010101000 um 4 Stellen =\n"

Die Konstanten werden hinterlegt, die im Programmablauf bendtigt werden, als Beispielzahl wurde
0xf30002a8 willkiirlich ausgewéhlt. Die Strings sll, srl und sra sind nicht fiir die Ausfiihrung des
Programms notig, sondern dienen der Ubersichtlichkeit und Verstéindlichkeit der Ausgabe.

text
Iw $s0, src # $s0 = 0xf30002a8

Die Beispielzahl src wird in Register sO geladen, sehr schon kann man das im ,,Execute’ Fenster im
Text Segment verfolgen:

ﬂTextSegmem

Bkpt | Address Code Basic Source

D 0x00400000| 0x3c011001(1ui £1,0x00001001 11: lw $30, src # £30 = 0xf30002a8

D 0x00400004| 0xBc300000|1w £16,0x00000000 (1)

|_| fAwrAfAANAA2] A1 230011 17 18 Awdfnannna 14« all ¢al tafi A4 & Qrhicha Aanm Trhalt wwan €2l mm 4 S+alla marh

Empfehlenswert ist es, Schritt fiir Schritt durch das Programm zu gehen, das geschieht durch Klicks
auf den ,,Run one step at a time** Button:

O G @
—| Run one step at a time I—

Beschreibung der Simulation 03 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hagen

auf Grundlage des Kurstextes Computersysteme II

Im rechten Bereich unter ,,Register” findet man nun nach Ausfithrung der Codezeile das mit der
Beispielzahl beschriebene Register s0,

EL7 15 0x00000000
zal 16 0x£30002a8
g3l 17 0x00000000

sodass nun die eigentlichen Operationen beginnen kénnen:

Schiebeoperationen
sll $s1, $s0, 4 # Schiebe den Inhalt von $s0 um 4 Stelle nach links, fiille rechts mit Oen auf
srl $s2, $s0, 4 # Schiebe den Inhalt von $s0 um 4 Stellen nach rechts, fiille links mit Oen auf
sra $s3, $s0, 4 # Schiebe den Inhalt von $s0 um 4 Stellen nach rechts, fiille links mit dem Vorzeichenbit auf

wobei wesentlich ist, worin die Unterschiede in den Befehlen liegen:

» shift left logical, logisches Linksschieben:

Schicbeoperationen
sllI $81, 530, 4 # Schicbe den Inhalt von 550 um 4 Stelle nach links, fillle rechts mit Osn auf

|511 stl,st2,10 Shiftleftlogical : Set $t1 to result of shifting $t2 left by number of bits specified b].rimmediate|

es wird um die Anzahl Bits nach links geschoben, die durch den im Befehl angegeben
immediate Wert bestimmt wird, in diesem Fall sind das 4. Dieselbe Anzahl Oen wird rechts

nachgeschoben.

» shift right logical, logisches Rechtsschieben:

srll 82, %50, 4 # Schiebe den Inhalt von §50 um 4 Stellen nach rechts, fitlle links mit Oesn auf

|E|r1 £tl,5t2,10 Shiftrightlogical - Set $1 to result of shifting $t2 right by number of bits specified hyimmediate|

es wird um die Anzahl Bits nach rechts geschoben, die durch den im Befehl angegebenen
immediate Wert bestimmt wird, in diesem Fall wieder 4. Dieselbe Anzahl Oen wird von links

nachgeschoben.

» shift right arithmetic, arithmetisches Rechtsschieben:

2afl um 4 Stellen nach rechts Firlle links mit dem Varseichenbit anf
sl um ¢ SCellicn nach reclits, IULilS LINKES BIC deR VOrZolConennli aul

sral 533, 530, 4 # Schiebe den Inhalt wvon §

|sra $tl,5t2,10 Shiftright arithmetic : Set 5t1 to result of sign-extended shifting $t2 right by number of bits specified by immediate|

es wird um die durch den immediate Wert (hier 4) bestimmte Anzahl Bits nach rechts
geschoben, im Gegensatz zum sr/ aber wird nicht pauschal mit Oen aufgefiillt, sondern es
wird das Vorzeichen erweitert, im Falle unserer Beispielzahl ist das die 1.

Beschreibung der Simulation 03 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hagen

auf Grundlage des Kurstextes Computersysteme II

Nach diesen Operationen konnen die Ergebnisse, die in den Registern sl-s3 vorliegen, nun
ausgegeben werden. Damit man das bitweise Schieben besser erkennen kann, erfolgt die Ausgabe
nicht hexadezimal, sondern bindr. Mittels folgenden Codefragments wird die Ausgabe des
Ergebnisses der sll-Operation initiiert:

Ausgabe sll
la $a0, sll
li $v0, 4
syscall
move $a0, $s1
1i $v0, 35
syscall

Zuerst wird die Adresse des Strings s// in das Register a0 geladen, dann der Wert 4 in das Register
v0. Der syscall mit dem Wert 4 steht fiir ,,print string* und gibt aus, was unter der in a0 liegenden
Adresse gespeichert ist. Schlielich wird das Ergebnis der sll-Operation von s nach a0 kopiert, um
es dann mit dem syscall 35 (,,print integer in binary*) als Dualzahl auszugeben. Die Ausgaben der
beiden anderen Operationen folgen demselben Prinzip.

exit
li $v0, 10
syscall
Der Wert 10 fiir den syscall bedeutet: ,,exit (terminate execution)* und der syscall mit diesem Wert
beendet die Ausfiithrung des Programms.

Die Ausgabe des Programms ist die folgende:

shift left logical
11110011000000000000001010101000 um 4 Stellen =
00110000000000000010101010000000

shift right logical
11110011000000000000001010101000 um 4 Stellen =
00001111001100000000000000101010

shift right arithmetic
11110011000000000000001010101000 um 4 Stellen =
11111111001100000000000000101010

-- program is finished running --

Ebenfalls lassen sich nach Ausfiihrung im rechten Bereich die Werte der Register ablesen, wobei
man wahlweise die Darstellung als Hexadezimal-Zahl oder als Dezimalzahl wéhlen kann,
umgeschaltet wird das durch Setzen des Hikchens bei ,,Hexadecimal Values* am unteren Rand des
Data Segments:

| Hexadecimal Addresses [| Hexadecimal Values [| ASCII

AbschlieBende Registerbelegung:

JIETS =] JXUUUuuuuu
fIEEL 16 0x£30002a8
=R 17 0x30002a80
EEE 18 0x0£30002a
IEEE] 19 0x££30002a
dIEET! 20 0x00000000

