
Beschreibung der Simulation 04 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Das zugrundeliegende Programm:

Schleife mit Verwendung von set on less than: slt

Wie im HowTo beschrieben, wird Simulation04.asm im MARS geöffnet.

Der Code zeigt die Verwendung von slt in einer Schleife. Der folgende High-Level-Code wird in
Assembler umgesetzt:

Es werden also die Vielfachen von 2 unter 100 addiert.

Zuerst werden die Variable sum und der Zähler i initialisiert. In Mips Assembler erfolgt das häufig
durch den addi Befehl, der hier die immediate Werte 0, bzw 1 zur Konstanten 0 im Register $zero
addiert und die Summe in Register s1 bzw. s0 ablegt. Die Obergrenze für den Zähler i in der
Schleife wird mit dem Wert 101 in das temporäre Register t0 geschrieben.

In der ersten Zeile dieses Codefragments ist die slt Anweisung zu sehen: slt $t1, $s0, $t0

Die slt Anweisung macht also Folgendes:
Wird die Abfrage s0 < t0 (hier also i < 101) zu JA ausgewertet, dann schreibt slt eine 1 (true) in
Register t1, anderenfalls, wenn die Abfrage zu NEIN ausgewertet wird, dann schreibt slt eine 0
(false) in Register t1.

int sum = 0;
for (i = 1; i <101; i = i*2)

sum = sum + i;

addi $s1, $zero, 0 # Initialisierung der Summe sum in $s1 mit 0
addi $s0, $zero, 1 # Initialisierung des Zählers i in $s0 mit 1
addi $t0, $0, 101 # Obergrenze 101

loop:
slt $t1, $s0, $t0 # if (i<101) $t1 = 1, else $t1 = 0
beq $t1, $zero, done # if $t1 == 0 (i >=101), spring zur Marke done
add $s1, $s1, $s0 sum = sum + i
sll $s0, $s0, 1 # i = i * 2

j loop # Sprung zu loop

Beschreibung der Simulation 04 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

In der nächsten Zeile obigen Codefragments folgt die beq Anweisung: branch if equal.

Die beq Anweisung lässt das Programm also zum Label done (siehe Seite 3) springen, gdw. der
durch die slt Anweisung in das Register t1 geschrieben Wert 0 ist, wenn also t1 = 0 und demnach i
≥ 101. Solange t1=1, also i<101, wird nicht gesprungen und das Programm setzt die Ausführung in
der nächsten Zeile mit dem add Befehl fort.

Der add Befehl addiert den Zählerwert i zur Variable sum in Register s1, und der folgende
Schiebebefehl sll multipliziert den Zählerwert i in Register s0 mit 2, indem um ein Bit nach links
geschoben und rechts eine 0 eingefügt wird. (Zur Ausführung des Schiebebefehls mehr in
Simulation 03 dieser Reihe Simulationen mit dem MARS Simulator.)

Empfehlenswert ist es, Schritt für Schritt durch das Programm zu gehen, das geschieht durch Klicks
auf den „Run one step at a time“ Button:

Dabei kann man schön die Schleife beobachten, und wie dabei die Variable sum in Register s0 und
der Zähler i in Register s1 wachsen, es folgt eine Tabelle mit den Registerbelegungen in
Dezimaldarstellung:

sum in s1 i in s0

- - Programmstart

0 1 (<101) Erster Eintritt in die Schleife

1 2 (<101) Zweiter Eintritt in die Schleife

3 4 (<101) Dritter Eintritt in die Schleife

7 8 (<101) Vierter Eintritt in die Schleife

15 16 (<101) Fünfter Eintritt in die Schleife

31 32 (<101) Sechster Eintritt in die Schleife

63 64 (<101) Siebter Eintritt in die Schleife

127 128 (≥101) Abbruch!

Beschreibung der Simulation 04 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Da i nun größer als 101 ist, wird durch die slt Anweisung eine 0 in Register t1 geschrieben und die
beq Anweisung lässt das Programm zur Marke done springen.

Was bleibt ist das Beenden der Programmausführung:

Der Wert 10 für den syscall bedeutet „terminate execution“ und beendet das Programm.

Dieser Beispielcode entstammt (leicht modifiziert) einem Beispiel im sechsten Kapitel des Buches
Harris & Harris: Digital Design and Computer Architecture, Elsevier, 2012

done:
li $v0, 10 # Der Wert 10 für den syscall bedeutet:
syscall # terminate execution

