Beschreibung der Simulation 04 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n HHEEﬂ

auf Grundlage des Kurstextes Computersysteme II

Das zugrundeliegende Programm:

Schleife mit Verwendung von set on less than: slt

Wie im HowTo beschrieben, wird Simulation04.asm im MARS geoffnet.

Der Code zeigt die Verwendung von sl in einer Schleife. Der folgende High-Level-Code wird in
Assembler umgesetzt:

int sum = 0;
for (i=1;1<101;1=1*2)
sum = sum + i;

Es werden also die Vielfachen von 2 unter 100 addiert.

addi $s1, $zero, 0 # Initialisierung der Summe sum in $s1 mit 0
addi $s0, $zero, 1 # Initialisierung des Zéhlers i in $s0 mit 1
addi $t0, $0, 101 # Obergrenze 101

Zuerst werden die Variable sum und der Zéhler i initialisiert. In Mips Assembler erfolgt das hiufig
durch den addi Befehl, der hier die immediate Werte 0, bzw [zur Konstanten 0 im Register $zero
addiert und die Summe in Register sl bzw. sO ablegt. Die Obergrenze fiir den Zahler i in der
Schleife wird mit dem Wert /01 in das temporére Register tO geschrieben.

loop:

st $t1, $s0, $t0 #if (i<101) $t1 =1, else $t1 =0

beq $tl1, $zero, done #1if $t1 == 0 (i>=101), spring zur Marke done
add $s1, $s1, $s0 sum = sum + i

sll $s0, $s0, 1 #i=1%*2

j loop # Sprung zu loop

In der ersten Zeile dieses Codefragments ist die slf Anweisung zu sehen: sit $t1, $s0, $t0

loop:
sltlstl, =30, st0 # 1iFf (i<101) :.Tf; =1, else 5t1 = 0
].'IEE[ol il | - =% o fnne H 1 F St] —— {1 = 070 Ttk Ralad 1y Mawpls Aana

adﬂ| slt stl,#t2,5t3 SetlessthanIf 52 is Iess than 53, then set $t1 to 1 else set §t1 1o 0|

Die st Anweisung macht also Folgendes:

Wird die Abfrage s0 < t0 (hier also i < 101) zu JA ausgewertet, dann schreibt slf eine / (true) in
Register t1, anderenfalls, wenn die Abfrage zu NEIN ausgewertet wird, dann schreibt slt eine 0
(false) in Register t1.

Beschreibung der Simulation 04 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hﬂﬂﬂﬂ

auf Grundlage des Kurstextes Computersysteme II

In der nichsten Zeile obigen Codefragments folgt die beq Anweisung: branch if equal.

beq $tl, $zero, done # 1Ff 5t1 == 0 (1 »=101), spring zur Mirke done
add =1 s=1 san & anm = onm 4 J
411 |beg $tl,$t2,label Branch if equal : Branch to statement at label's address if $1 and $t2 are equal

beqg $tl,-100, label Branch if EClual : Branch to statement at label if $1 is equal to 16-bit immediate
beqg $tl,100000,1laekel Branch if ECQual : Branch to statement at label if $11 is equal to 32-bit immediate

31

A -

Die beq Anweisung ldsst das Programm also zum Label done (siehe Seite 3) springen, gdw. der
durch die s/t Anweisung in das Register ¢/ geschrieben Wert 0 ist, wenn also ¢/ = () und demnach i
> 101. Solange t/=1, also i<I01, wird nicht gesprungen und das Programm setzt die Ausfiihrung in
der nédchsten Zeile mit dem add Befehl fort.

Der add Befehl addiert den Zihlerwert i zur Variable sum in Register s/, und der folgende
Schiebebefehl s// multipliziert den Z&hlerwert i in Register s0 mit 2, indem um ein Bit nach links
geschoben und rechts eine 0 eingefiigt wird. (Zur Ausfiihrung des Schiebebefehls mehr in
Simulation 03 dieser Reihe Simulationen mit dem MARS Simulator.)

Empfehlenswert ist es, Schritt fiir Schritt durch das Programm zu gehen, das geschieht durch Klicks
auf den ,,Run one step at a time* Button:

) O|G @
—| Run one step at a time I—

Dabei kann man schon die Schleife beobachten, und wie dabei die Variable sum in Register s0 und
der Zidhler i in Register s/ wachsen, es folgt eine Tabelle mit den Registerbelegungen in

Dezimaldarstellung:

sum in sl iins0

- - Programmstart

0 1 (<101) Erster Eintritt in die Schleife

1 2 (<101) Zweiter Eintritt in die Schleife

3 4 (<101) Dritter Eintritt in die Schleife

7 8 (<101) Vierter Eintritt in die Schleife
15 16 (<101) Fiinfter Eintritt in die Schleife
31 32 (<101) Sechster Eintritt in die Schleife
63 64 (<101) Siebter Eintritt in die Schleife
127 128 (=101) Abbruch!

Beschreibung der Simulation 04 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n HHEEﬂ

auf Grundlage des Kurstextes Computersysteme II

Da i nun groBer als 701 ist, wird durch die slt Anweisung eine 0 in Register ¢/ geschrieben und die
beq Anweisung lisst das Programm zur Marke done springen.

Was bleibt ist das Beenden der Programmausfiihrung:

done:
li $v0, 10 # Der Wert 10 fiir den syscall bedeutet:
syscall # terminate execution

Der Wert 10 fiir den syscall bedeutet ,,terminate execution ““ und beendet das Programm.

Dieser Beispielcode entstammt (leicht modifiziert) einem Beispiel im sechsten Kapitel des Buches
Harris & Harris: Digital Design and Computer Architecture, Elsevier, 2012

