
Beschreibung der Simulation 05 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Das zugrundeliegende Programm:

Demonstration der Lade-/Speicher-Operationen lb, lbu, sb

Wie im HowTo beschrieben, wird Simulation05.asm im MARS geöffnet. Der Code zeigt die
Verwendung der Lade- und Speicheroperationen:

• lb: load byte,
• lbu: load byte unsigned und
• sb: store byte

Im Folgenden werden einzelne Codeabschnitte näher erläutert.

Die willkürlich gewählte Beispielzahl src = 0xF78C 4203, sowie einige für den Programmablauf
zwar nicht wesentliche, aber für die Übersichtlichkeit der Ausgabe dienliche Strings werden
hinterlegt.

Nun wird die Adresse der Konstanten src in Register s0 geladen und dann mit dem li Befehl (load
immediate) eine ebenfalls willkürlich gewählte Beispielzahl in die Register s1-s3 geschrieben. Hier
wird der li Befehl benutzt, um seine Verwendung zu zeigen - die für die Register vorgesehene
Beispielzahl hätte auch im .data Bereich schon hinterlegt werden können.

.data
src: .word 0xf78c4203
lbu: .asciiz " Nach dem Ladebefehl lbu $s1, 2($s0) steht in Register $s1 nun das mit 0en erweiterte Byte 2 des

Eingabewortes: \n"
lb: .asciiz "\n Nach dem Ladebefehl lb $s2, 2(s0) steht in Register $s2 nun das vorzeichenerweiterte Byte 2 des

Eingabewortes: \n"
sb: .asciiz "\n Mit dem Speicherbefehl sb $s3, 3(s0) wird das Byte 3 in $s0 durch das least significant Byte\n aus

$s3 ersetzt, die anderen Bytes aus $s3 wurden ignoriert: \n"

.text
Laden der Adresse von src in s0
la $s0, src

Laden eines Beispielwerts in s1-s3, damit erkennbar wird, was mit den Werten in den Zielregistern passiert
li $s1, 0x6c00216f
li $s2, 0x6c00216f
li $s3, 0x6c00216f

Beschreibung der Simulation 05 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Empfehlenswert ist es, Schritt für Schritt durch das Programm zu gehen, das geschieht durch Klicks
auf den „Run one step at a time“ Button:

Im folgenden Bildausschnitt sieht man, dass in s0 nach Ausführung der obigen Befehle nun nicht
der Wert src, sondern seine Adresse steht, und in den Registern s1-s3 liegt die Beispielzahl
$0x6C00 216F bereit:

Im Data Segment auf der linken Seite des MARS findet man die Adresse, die in s0 steht, nämlich
$0x10010000, sowie den Wert, der unter dieser Adresse zu finden ist, eben unsere Beispielzahl
src=$0xF78C 4203:

Nun können die eigentlichen Operationen beginnen, zuerst wird lbu demonstriert:

Es wird also das Byte 2 des Wertes, der unter der Adresse, die in s0 liegt, gefunden wird, in das
Register s1 geladen:

Laden des Bytes 2, also 0x8c mit dem lbu Befehl in Register $s1
lbu $s1, 2($s0)

Beschreibung der Simulation 05 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

In s0 liegt die Adresse unseres Beispielwertes src = 0xF78C 4203, das Byte 2 ist 0x8C. Was steht
also nun nach Ausführung des lbu Befehls in Register s1?

Das Byte 0x8C wurde in s1 geschrieben und die übrigen Bits in s1 wurden mit 0en überschrieben,
die 3 oberen Bytes des ursprünglichen Eintrags gehen also verloren.

Es folgt die Demonstration des lb – Befehls:

Es wird also, ebenso wie bei lbu, das adressierte Byte in das Zielregister geladen. Wo liegt nun der
Unterschied zum lbu?

Die durch MARS bereitgestellten Erläuterungen zeigen den Unterschied schon auf: sign-extended
bei lb und zero-extended bei lbu. Der lb-Befehl lädt also das gewählte Byte und füllt das Register
nach oben mit dem Vorzeichenbit auf, während der lbu-Befehl mit 0en auffüllt, unabhängig vom
Vorzeichenbit des gewählten Bytes. Was steht nun als folgerichtig in s2 nach Ausführen des lb-
Befehls?

Die oberen 3 Byte des ursprünglichen Eintrags in s2 sind verloren gegangen, überschrieben durch
das Vorzeichenbit des geladenen Bytes 0x8C, hier also durch 1en.

Laden des Bytes 2, also 0x8c mit dem lb Befehl in Register $s2
lb $s2, 2($s0)

Beschreibung der Simulation 05 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Es folgt die Demonstration des sb-Befehls:

Wesentlicher Unterschied zu den Ladebefehlen ist hier die Reihenfolge der Register im Befehl:
Während bei den Ladebefehlen das Zielregister als erstes genannt wird, ist dies beim Speicherbefehl
sb das Quellregister. Also wird das least significant Byte aus dem erstgenannten Register, hier s3,
gespeichert. Das Ziel wird wieder mit Anfangsadresse + Offset angegeben, hier ist dies also das
Byte 3 des Eintrags, der unter der Adresse zu finden ist, die in s0 steht, also unserer Beispielzahl
src = 0xF78C 4203. Das Byte 3 ist 0xF7.Was passiert mit diesem Byte und insbesondere mit den
drei anderen Bytes?

Nach Ausführung des sb-Befehls müssen wir im Data Segment unter der Adresse 0x10010000
nachsehen, was mit dem Eintrag dort passiert ist:

vorher nachher

Es wurde also das Byte 3 ersetzt (durch das least significant Byte, also die unteren 8 Bit des
Eintrags in s3) und die anderen 3 Byte in s0 bleiben von der Ausführung unverändert.

Was bleibt ist das Beenden der Programmausführung:

Der Wert 10 für den syscall bedeutet „terminate execution“ und beendet das Programm.

Bedeutet: Nimm das least significant Byte aus $s3 und ersetze damit das Byte 3 in $s0
sb $s3, 3($s0)

exit
li $v0, 10 # Der Wert 10 für den syscall bedeutet:
syscall # terminate execution

Beschreibung der Simulation 05 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Diese drei Codefragmente dienen der Ausgabe der hinterlegten Strings und der Registerbelegungen
nach Ausführung der jeweiligen Lade-/Speicherbefehle:

• Zuerst wird die Adresse des Strings, der ausgegeben werden soll, in a0 geladen, dann der
Wert 4 (print string) in $v0 geschrieben, sodass der syscall für die Ausgabe des Strings sorgt.

• Als Nächstes wird der Wert, der ausgegeben werden soll, in a0 geschrieben und mit dem
syscall Wert 34 erfolgt die Ausgabe dieses Wertes in hexadezimaler Darstellung:

Relevanter Unterschied beim Code für die Ausgabe:
Um einen Registerwert auszugeben schreibt man folgende Codezeile: move $a0, $s2
die den Inhalt von s2 nach a0 kopiert, als Parameter für den syscall. Um den Wert auszugeben, der
unter der Adresse zu finden ist, die in einem Register steht: lw a0, ($s0),diese Zeile lädt das Wort,
das unter der Adresse in s0 zu finden ist, in a0 als Parameter für den syscall.

In s1 steht nun das mit 0 erweiterte Byte, Ausgabe:
la $a0, lbu
li $v0, 4
syscall
move $a0, $s1
li $v0, 34
syscall

...

...

...

In s2 steht nun das vorzeichenerweiterte Byte, Ausgabe:
la $a0, lb
li $v0, 4
syscall
move $a0, $s2
li $v0, 34
syscall

…
…
…

In s0 wurde durch den sb Befehl das Byte 3 durch das Byte 0 aus $s3 ersetzt
la $a0, sb
li $v0, 4
syscall
lw $a0, ($s0)
li $v0, 34
syscall

 Nach dem Ladebefehl lbu $s1, 2($s0) steht in Register $s1 nun das mit 0en erweiterte Byte 2 des Eingabewortes:
0x0000008c
 Nach dem Ladebefehl lb $s2, 2(s0) steht in Register $s2 nun das vorzeichenerweiterte Byte 2 des Eingabewortes:
0xffffff8c
 Mit dem Speicherbefehl sb $s3, 3(s0) wird das Byte 3 in $s0 durch das least significant Byte
 aus $s3 ersetzt, die anderen Bytes aus $s3 wurden ignoriert:
0x6f8c4203
-- program is finished running --

