Beschreibung der Simulation 05 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n HHEEﬂ

auf Grundlage des Kurstextes Computersysteme II

Das zugrundeliegende Programm:

Demonstration der Lade-/Speicher-Operationen Ib, lbu, sb

Wie im HowTo beschrieben, wird Simulation05.asm im MARS geoffnet. Der Code zeigt die
Verwendung der Lade- und Speicheroperationen:

* Ib: load byte,
* Ibu: load byte unsigned und
* sbh: store byte

Im Folgenden werden einzelne Codeabschnitte ndher erldutert.

.data

src: .word 0xf78c4203

Ibu: .asciiz " Nach dem Ladebefehl Ibu $s1, 2($s0) steht in Register $s1 nun das mit Oen erweiterte Byte 2 des
Eingabewortes: \n"

1b: .asciiz "\n Nach dem Ladebefehl 1b $s2, 2(s0) steht in Register $s2 nun das vorzeichenerweiterte Byte 2 des
Eingabewortes: \n"

sb: .asciiz "\n Mit dem Speicherbefehl sb $s3, 3(s0) wird das Byte 3 in $s0 durch das least significant Byte\n aus
$s3 ersetzt, die anderen Bytes aus $s3 wurden ignoriert: \n"

Die willkiirlich gewéhlte Beispielzahl src = OxF78C 4203, sowie einige flir den Programmablauf
zwar nicht wesentliche, aber fiir die Ubersichtlichkeit der Ausgabe dienliche Strings werden
hinterlegt.

text
Laden der Adresse von src in s0
la $s0, src

Laden eines Beispielwerts in s1-s3, damit erkennbar wird, was mit den Werten in den Zielregistern passiert
li $s1, 0x6¢00216f
li $s2, 0x6¢00216f
li $s3, 0x6c¢00216f

Nun wird die Adresse der Konstanten s7c in Register sO geladen und dann mit dem /i Befehl (load
immediate) eine ebenfalls willkiirlich gewahlte Beispielzahl in die Register s1-s3 geschrieben. Hier
wird der /i Befehl benutzt, um seine Verwendung zu zeigen - die fiir die Register vorgesehene
Beispielzahl hitte auch im .data Bereich schon hinterlegt werden konnen.

o damit arkannhar umoed ram mit Adan Wart
S0, QdBl1l SrESnbayr wilrd, Was m1C den art

Laden eines Beispielwerts in sl-
1i| 451, OxEcDDZLEE

ll F ol ClarS mOi0T 1 S £

1i 1i &t1,-100 Load Immediate : Set $1 to 16-bit immediate (sign-extended)
1i £tl1,100 Load Immediate : Set $t1 to unsigned 16-bit immediate (zero-extended)
1i #t1,100000 Loadlmmediate : Set $t1 to 32-bit immediate

A =TT

e I L o~ B

Beschreibung der Simulation 05 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hagen

auf Grundlage des Kurstextes Computersysteme II

Empfehlenswert ist es, Schritt fiir Schritt durch das Programm zu gehen, das geschieht durch Klicks
auf den ,,Run one step at a time* Button:

| O |G @
—| Run one step at a time I—

Im folgenden Bildausschnitt sieht man, dass in sO nach Ausfiihrung der obigen Befehle nun nicht
der Wert src, sondern seine Adresse steht, und in den Registern sl-s3 liegt die Beispielzahl
$0x6C00 216F bereit:

eLd 1 [Epr AN NN]
8 EED 16 0x10010000
8 EER 17 0x6cON216E
“|sa2 18 0x6cO0216
“|g=3 19 0x6c00216E
MEad an [a Rt lalalulatalalal

Im Data Segment auf der linken Seite des MARS findet man die Adresse, die in s0O steht, ndmlich
$0x10010000, sowie den Wert, der unter dieser Adresse zu finden ist, eben unsere Beispielzahl
srce=30xF78C 4203:

Data Segment

Address Walue (+0)
0x10010000 0x£T78c4203
w1 ANTNA20 w2B8222020~

Nun konnen die eigentlichen Operationen beginnen, zuerst wird /bu demonstriert:

Laden des Bytes 2, also 0x8c mit dem lbu Befehl in Register $s1
Ibu $s1, 2($s0)

Es wird also das Byte 2 des Wertes, der unter der Adresse, die in sO liegt, gefunden wird, in das
Register s1 geladen:

Laden des Bytes 2, also 0xfc mit dem lbu Eefehl in Register sl

1bu $=1, 2(5s30)

o 7/1bu $tl,-100(%t2) Load byte unsigned : Set $t1 to zero-extended 8-bit value from effective memory byte address
ia_ lbu stl, (5t2) Load Byte Unsigned : Set §t1 to zero-extended 8-bit value from effective memaory byte address
1j |1bu $tl,-100 Load Byte Unsigned : Set 51 to zero-extended 8-bit value from effective memaory byte address
sys lbu #tl1,100 Load Byte Unsigned : Set $t1 to zero-extended 8-bit value from effective memaory byte address
mov lbu $tl1,100000 Load Byte Unsigned : Set $t1 to zero-extended 3-bit value from effective memaory byte address
pj |1bu #t1,100(t2) Load Byte Unsigned : Set 51 to zero-extended 8-bit value from effective memary byte address
sys lbu 5tl1,100000(5t2) Load Byte Unsigned : Set $t1 to zero-extended 8-bit value from effective memaory byte address

lbu $tl,label Load Byte Unsigned : Set §t1 to zero-extended 3-bit value from effective memaory byte address
o r|lbu 5t1,label (5t2) Load Byte Unsigned : Set 51 to zero-extended 8-bit value from effective memary byte address
ib_ lbu %tl,label+l00000 Load Byte Unsigned : Set $t1 to zero-extended 8-bit value from effective memaory byte address

lbu stl,label+l00000(st2) LoadByte Unsigned: Set $t1 to zero-extended 8-bit value from effective memory byte address

Beschreibung der Simulation 05 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hagen

auf Grundlage des Kurstextes Computersysteme II

In s0 liegt die Adresse unseres Beispielwertes src = OxF78C 4203, das Byte 2 ist 0x8C. Was steht
also nun nach Ausfiihrung des /bu Befehls in Register s1?

11§50 16 0x10010000
a1 17 0x0000008
Ass2 18 0X6c002165

Das Byte 0x8C wurde in s1 geschrieben und die iibrigen Bits in s1 wurden mit Oen iiberschrieben,
die 3 oberen Bytes des urspriinglichen Eintrags gehen also verloren.

Es folgt die Demonstration des /b — Befehls:

Laden des Bytes 2, also 0x8c mit dem b Befehl in Register $s2
Ib $s2, 2($s0)

Es wird also, ebenso wie bei lbu, das adressierte Byte in das Zielregister geladen. Wo liegt nun der
Unterschied zum lbu?

T admn Aao T 1a P LT - PSR S, P,
Laden des Bytes 2, also 0xfc mit dem

10| 552, 2(5s0)

= [1b $tl,-100(5t2) Load byte : Set 511 to sign-extended 8-bit value from effective memaory byte address
ia 1b $tl, (5t2) Load Byte : Set $t1 to sign-extended 8-bit value from effective memaory byte address
1i|1lb $tl,-100 Load Byte : Set $t1 to sign-extended 8-bit value from effective memaory byte address
gy{1b #t1,100 Load Byte : Set $t1 to sign-extended 8-bit value from effective memaory byte address
moi 1B $t1,100000 Load Byte : Set $t1 to sign-extended 8-bit value from effective memaory byte address
1i|lb $tl,100(5t2) Load Byte : Set $t1 to sign-extended 8-bit value from effective memaory byte address
57 1k £t1,100000(st2) Load Byte : Set $t1 to sign-extended 8-bit value from effective memaory byte address

1b $tl,label Load Byte : Set $t1 to sign-extended 8-bit value from effective memaory byte address
& |1b 5tl, label (5t2) Load Byte : Set $t1 to sign-extended 8-bit value from effective memaory byte address
;]_., 1b $tl,label+100000 Load Byte : Set $t1 to sign-extended 8-bit value from effective memaory byte address

1b stl,label+100000(5t2) LoadByte: Set 51 to sign-extended 8-bit value from effective memaory byte address

Die durch MARS bereitgestellten Erlduterungen zeigen den Unterschied schon auf: sign-extended
bei /b und zero-extended bei lbu. Der Ib-Befehl 14dt also das gewéhlte Byte und fiillt das Register
nach oben mit dem Vorzeichenbit auf, wihrend der /bu-Befehl mit Oen auffiillt, unabhingig vom
Vorzeichenbit des gewihlten Bytes. Was steht nun als folgerichtig in s2 nach Ausfithren des lb-
Befehls?

f; s 1lh Uxooooooon
“|ls=0 16 0x10010000
|ls=1 17 0x0000008c
‘|g=2 18 OxEEEEEERC
523 19 0x6cO0216£
g EED 20 0x00000000

Die oberen 3 Byte des urspriinglichen Eintrags in s2 sind verloren gegangen, iiberschrieben durch
das Vorzeichenbit des geladenen Bytes 0x8C, hier also durch len.

Beschreibung der Simulation 05 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hagen

auf Grundlage des Kurstextes Computersysteme II

Es folgt die Demonstration des sh-Befehls:

Bedeutet: Nimm das least significant Byte aus $s3 und ersetze damit das Byte 3 in $s0
sb $s3, 3($s0)

Wesentlicher Unterschied zu den Ladebefehlen ist hier die Reihenfolge der Register im Befehl:
Wihrend bei den Ladebefehlen das Zielregister als erstes genannt wird, ist dies beim Speicherbefehl
sb das Quellregister. Also wird das least significant Byte aus dem erstgenannten Register, hier s3,
gespeichert. Das Ziel wird wieder mit Anfangsadresse + Offset angegeben, hier ist dies also das
Byte 3 des Eintrags, der unter der Adresse zu finden ist, die in sO steht, also unserer Beispielzahl
src = OxF78C 4203. Das Byte 3 ist OxF7.Was passiert mit diesem Byte und insbesondere mit den
drei anderen Bytes?

Nimm das least significant Byte aus 553 und ersetze damit das Byte 3 1n §s50

sb %33, 3(%s0)

Bedeutet:

4 {8k $t1,-100({5t2) Store byte : Store the low-order 8 bits of 51 into the effective memory byte address
ia- ab $tl, (5t2) Store Byte : Store the low-order & bits of $t1 into the effective memory byte address
1i sk #tl,-100 Store Byte : Store the low-order & bits of $t1 into the effective memory byte address
. sb $tl, 100 Store Byte : Store the low-order & bits of $t1 into the effective memory byte address
1|5k $tl,100000 Store Byte : Store the low-order & bits of $t1 into the effective memory byte address
1i |5k #tl,100(5t2) Store Byte : Store the low-order & bits of $t1 into the effective memory byte address
. sb $tl,100000(5t2) Store Byte : Store the low-order & bits of $t1 into the effective memory byte address
zb 5tl, label Store Byte : Store the low-order & bits of $t1 into the effective memory byte address
sb stl,label(5t2) Store Byte : Store the low-order & bits of $t1 into the effective memory byte address
—13b %tl,label+l00000 Store Byte : Store the low-order 8 bits of $11 into the effective memory byte address |
Il 5o £tl, label+100000(5t2) Store Byte : Store the low-order 8 bits of 51 into the effective memaory byte address -

nins A [l Choawr |ina Mumhbare

Nach Ausfiihrung des sh-Befehls miissen wir im Data Segment unter der Adresse 0x10010000
nachsehen, was mit dem Eintrag dort passiert ist:

Data Segment :

Data Segment

oh s Va0 Address U

0x10010000 £78g4203) 010010980 (}y““

Aw1 AT ANZ0 A CET M1 0070020 MEFAIAIN07n
vorher nachher

Es wurde also das Byte 3 ersetzt (durch das least significant Byte, also die unteren 8 Bit des
Eintrags in s3) und die anderen 3 Byte in s0 bleiben von der Ausfiihrung unveréndert.

Was bleibt ist das Beenden der Programmausfiihrung:

exit
1i $v0, 10 # Der Wert 10 fiir den syscall bedeutet:
syscall # terminate execution

Der Wert 10 fiir den syscall bedeutet ,,terminate execution “ und beendet das Programm.

Beschreibung der Simulation 05 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hagen

auf Grundlage des Kurstextes Computersysteme II

Diese drei Codefragmente dienen der Ausgabe der hinterlegten Strings und der Registerbelegungen
nach Ausfithrung der jeweiligen Lade-/Speicherbefehle:

In s1 steht nun das mit 0 erweiterte Byte, Ausgabe:
la $a0, Ibu
1i $v0, 4
syscall
move $a0, $s1
li $v0, 34
syscall

In s2 steht nun das vorzeichenerweiterte Byte, Ausgabe:
la $a0, 1b
li $v0, 4
syscall
move $a0, $s2
li $v0, 34
syscall

In sO wurde durch den sb Befehl das Byte 3 durch das Byte 0 aus $s3 ersetzt
la $a0, sb
1i $v0, 4
syscall
Iw $a0, ($s0)
1i $v0, 34
syscall

* Zuerst wird die Adresse des Strings, der ausgegeben werden soll, in a0 geladen, dann der
Wert 4 (print string) in $v0 geschrieben, sodass der syscall fiir die Ausgabe des Strings sorgt.

* Als Néchstes wird der Wert, der ausgegeben werden soll, in a0 geschrieben und mit dem
syscall Wert 34 erfolgt die Ausgabe dieses Wertes in hexadezimaler Darstellung:

Nach dem Ladebefehl Ibu $s1, 2($s0) steht in Register $s1 nun das mit Oen erweiterte Byte 2 des Eingabewortes:
0x0000008c

Nach dem Ladebefehl 1b $s2, 2(s0) steht in Register $s2 nun das vorzeichenerweiterte Byte 2 des Eingabewortes:
Oxftfftt8c

Mit dem Speicherbefehl sb $s3, 3(s0) wird das Byte 3 in $s0 durch das least significant Byte

aus $s3 ersetzt, die anderen Bytes aus $s3 wurden ignoriert:

0x68c4203

-- program is finished running --

Relevanter Unterschied beim Code fiir die Ausgabe:

Um einen Registerwert auszugeben schreibt man folgende Codezeile: move $al), $s2

die den Inhalt von s2 nach a0 kopiert, als Parameter fiir den syscall. Um den Wert auszugeben, der
unter der Adresse zu finden ist, die in einem Register steht: /w a0, ($s0) diese Zeile 14dt das Wort,
das unter der Adresse in sO zu finden ist, in a0 als Parameter fiir den syscall.

