
CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

CSE 390 B Spring 2021

Building a Computer &
Exam Preparation

Organization of a Computer, Fetch/Execute Cycle, Hack CPU
Design, Exam prep fundamentals

Significant material adapted from www.nand2tetris.org. © Noam Nisan and Shimon Schocken.

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Agenda

❖ Cornell Note-Taking Debrief

❖ Exam Preparation

❖ Building a Computer Overview

❖ Reading Review and Q&A

❖ Hack CPU Logic

2

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Project 3 Cornell Note-Taking Debrief

3

Take a look at your Cornell notes from CSE 390B and from
another course that you practiced Cornell note-taking with.

❖ What elements of the cornell note-taking method
allowed you to better understand and work on Project 3?
▪ How are these elements similar/different when comparing this

to your other course?

❖ What were barriers that prevented you from fully
engaging in the cornell note-taking method (either in this
class or another class)?
▪ What are ways that can help address this?

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Agenda

❖ Cornell Note-Taking Debrief

❖ Exam Preparation

❖ Building a Computer Overview

❖ Reading Review and Q&A

❖ Hack CPU Logic

4

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Gearing up for your exams...

❖ Make a Study Plan
▪ What key topics/concepts with your exam

cover?
▪ How might your study guides look different

for specific classes?
▪ What resources, materials, or people might

you need to engage with?

❖ Create a Schedule
▪ DON’T CRAM
▪ Office hours, review sessions, study groups
▪ Reference your weekly time commitments

& quarterly calendar

❖ Test Yourself
▪ Utilize your cornell question notes
▪ Replicate exam-like environments

5

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Gearing up for your exams...

❖ Make a Study Plan
▪ What key topics/concepts with your exam

cover?
▪ How might your study guides look different

for specific classes?
▪ What resources, materials, or people might

you need to engage with?

❖ Create a Schedule
▪ DON’T CRAM
▪ Office hours, review sessions, study groups
▪ Reference your weekly time commitments

& quarterly calendar

❖ Test Yourself
▪ Utilize your cornell question notes
▪ Replicate exam-like environments

6

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Project 5: Timed Mock Exam Problem

❖ Schedule a 30-minute session is based on your group
members availability do one mock exam problem

❖ Determine how you will get in touch with each other if
needed

❖ Determine who will be the zoom host for the session

❖ Email cse390b-staff@cs.washington.edu with your
group’s meeting day & time

7

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Agenda

❖ Cornell Note-Taking Debrief

❖ Exam Preparation

❖ Building a Computer Overview

❖ Reading Review and Q&A

❖ Hack CPU Logic

8

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Building a Computer

9

● All your hardware efforts are about to pay off! In project
5, you will build Computer.hdl -- the final, top-level chip
in this course
○ For all intents and purposes, a real computer

○ Simplified, but organization very similar to your laptop

● Later projects we will start writing software to make it
useful

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Hack CPU

10

COMPUTER

ROM
(Instructions)

INPUT

CPU

REGISTERS

CONTROL

OUTPUT

010111001110
101100010101
111000101111
...

Instructions

0
1
2

RAM
(Data)

100110010111
100011001111
000000000010
...

Data

0
1
2

addr of next
instruction

data out

data in

instr

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Hack CPU Interface Inputs

11

● Inputs:
○ inM: Value coming from memory

○ instruction: 16-bit instruction

○ reset: if 1, reset the program

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Hack CPU Interface Outputs

12

● Outputs:
○ outM: value used to update

memory if writeM is 1

○ writeM: if 1, update value in
memory at addressM with outM

○ addressM: address to read from or
write to in memory

○ pc: address of next instruction to be
fetched from memory

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Basic CPU Loop

● Repeat forever:
○ Fetch an instruction from the program memory

○ Execute that instruction

13

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Fetching

● Specify which instruction to read as the address input to
our memory

● Data output: actual bits of the instruction

14

0101110011100110
1011000101010100
1110001011111100
...

Instructions

1100101010010101
1100100101100111
0011001010101011
...

Data

0
1
2

n
n+1
n+2

PC 1

MEMORY

Memory Input:
Address

Memory Output:
Data

Instruction
D=A;JMP

Instruction Address

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Executing

● The instruction bits describe exactly “what to do”
○ A-instruction or C-instruction? Which operation for the ALU?

What memory address to read? To write? If / where to jump
after this instruction?

● Executing the instruction involves data of some kind.
○ Accessing registers

and/or

○ Accessing memory

15

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Combining Fetch & Execute

16

0101110011100110
1011000101010100
1110001011111100
...

Instructions

1100101010010101
1100100101100111
0011001010101011
...

Data

0
1
2

n
n+1
n+2 PC 1

MEMORY

Memory Input:
Address

Memory Output:
Data

Instruction
D=A;JMP

Instruction Address

Data Address (from instruction or register)

Data
245

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Combining Fetch & Execute

17

0101110011100110
1011000101010100
1110001011111100
...

Instructions

1100101010010101
1100100101100111
0011001010101011
...

Data

0
1
2

n
n+1
n+2

MEMORY

Memory Input:
Address

Memory Output:
Data

Instruction
D=A;JMP

Data
245

● Could we implement with RAM16K.hdl?

PC 1Instruction Address

Data Address (from instruction or register)

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Combining Fetch & Execute

18

0101110011100110
1011000101010100
1110001011111100
...

Instructions

1100101010010101
1100100101100111
0011001010101011
...

Data

0
1
2

n
n+1
n+2

MEMORY

Memory Input:
Address

Memory Output:
Data

Instruction
D=A;JMP

Data
245

● Could we implement with RAM16K.hdl?
○ No! Our memory chips only have one input and one output!

PC 1Instruction Address

Data Address (from instruction or register)

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Solution 1: Handling Single Input/Output

19

0101110011100110
1011000101010100
1110001011111100
...

Instructions

1100101010010101
1100100101100111
0011001010101011
...

Data

0
1
2

n
n+1
n+2

MEMORY

Memory Input:
Address

Memory Output:
Data

Instruction,
when fetching

Data, when
executing

Fetching vs. Executing

Instruction Address

Data Address

● Can use multiplexing to share single input/output!

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Solution 1: Fetching/Executing Separately

20

0101110011100110
1011000101010100
1110001011111100
...

Instructions

1100101010010101
1100100101100111
0011001010101011
...

Data

0
1
2

n
n+1
n+2

MEMORY

Memory Input:
Address

Memory Output:
Data

Instruction,
when fetching

Data, when
executing

Instruction Address

Data Address

Fetching vs. Executing

Fetching vs. Executing

● Need to store fetched instruction so it’s available during
execution phase.

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Solution 2: Separate Memory Units

● Separate instruction memory and data memory into two
different chips
○ Each can be independently addressed, read from, written to

● This is what we will do in Project 5!
○ See Chapter 5 for more detail on design

● Pros:
○ Simpler to implement

● Cons:
○ Fixed size of each partition, rather than flexible storage
○ Two chips → redundant circuitry

21

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Agenda

❖ Cornell Note-Taking Debrief

❖ Exam Preparation

❖ Building a Computer Overview

❖ Reading Review and Q&A

❖ Hack CPU Logic

22

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Hack CPU Implementation

● Need to be able to provide the functionality our assembly
language specifies

● A-instructions
○ Need to be able to load values into the A-Register

● C-instructions
○ Need to perform different computations w/varying inputs

○ Need to be able to store the results in different destinations

● Flow Control
○ Need to keep track of our current instruction address and know

what address to execute next

23

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Hack CPU Implementation

● Only 4 main components needed!
○ ALU

○ PC

○ Registers (x2) for A and D
■ For testing & debugging reasons, you’ll use built-in ARegister.hdl

and DRegister.hdl instead.

● Tricky Part: All the control logic
○ We’ll recommend an overall flow of data

○ Your task: to design and implement proper control logic

24

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Hack CPU Design

25

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

A-Instruction Design

● Need to load value of instruction into the A-register
○ Corresponds to our @value syntax

● Possible solution: setup A-register w/instruction as input
○ Problem: sometimes need to store a computation result in the

A-register (e.g. A = D + 1)

● Solution: use a mux to choose either the instruction value
or the previous ALU output as the A-register input
○ Still need logic to determine if the A-regiseter should be loaded

26

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Hack CPU Design: A-instructions

27

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

C-Instruction Design: Inputs

● Need inputs from the A, D, and M registers
○ Never need to use the A register and M register in a

computation together!

● One ALU input will always be the D register

● The other will either be the A register or the M register
○ inM is the input w/the M register value

○ Can use a Mux to make this choice!

● Remember constants are generated by the ALU internally

28

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

C-Instruction Design: Computations

● ALU performs the computations

● Now that we have our inputs, just need to specify the
correct computation for the ALU to execute

● You’ll note the computation bits in the instruction binary
are very similar to the control inputs to the ALU

29

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

C-Instruction Design: Destinations

● Can store computations in three destinations: the A, D, or
M registers
○ Loop ALU output back to the A and D registers

○ outM, writeM, and addressM used to write to the M register

● Even though our ALU output is connected to these
locations, we don’t always want to update them
○ Control logic will specify when we want to write to these

locations

30

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Hack CPU Design: C-instructions

31

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Flow Control Design: Flow Control

● Use the Program Counter chip to keep track of the
current instruction address

● Input will be from the A-register
○ When we jump to an address in assembly, we jump to the

address specified in the A-register

● Load (jump) or increment determined by the output from
our ALU
○ More specifically can use the status flags to determine if the

output is < 0, == 0, or > 0

32

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Hack CPU Design: Flow Control

33

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Agenda

❖ Cornell Note-Taking Debrief

❖ Exam Preparation

❖ Building a Computer Overview

❖ Reading Review and Q&A

❖ Hack CPU Logic

34

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Hack CPU Logic

● How do we determine the unimplemented logic for the
CPU (all of the c’s in the diagrams)?

● Need to refer to the assembly specification!

● Project 5 will require a good bit of consulting of Chapter 4
to figure out how to use the instruction bits to implement
the control logic

35

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Hack CPU Logic Workflow

● Step 1: Figure out what to pay attention to
○ Usually will be some combination of instruction bits and/or

intermediate outputs
○ These are the “inputs” to your sub-problem

● Step 2: determine logic for the part you are working on
○ Uses the “inputs” from step 1

○ Usually requires reading a relevant section of the
textbook/assembly specification

36

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Instruction Bits: A-instruction

16 bits: 0 v v v v v v v v v v v v v v v

● Most significant bit is a 0 (indicates an A-instruction)

● Rest of the bits are the value to be loaded
○ Since most significant bit is 0, entire A-instruction is also the

value to be loaded

37

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Instruction Bits: C-instruction

16 bits: 1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

● Most significant bit is a 1 (indicates a C-instruction)

● Next two most significant bits aren’t used (always 1)

● a-bit and c-bits are related to computations

● d-bits are related to destination locations

● j-bits are related to jumping
38

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Hack CPU Logic Example: writeM

● Example: determining when writeM should be set to 1

● Step 1: figure out what to pay attention to
○ writeM is related to where we store the output, or what

destination we use
○ We need to look up the destination bits specification from

Chapter 4!

39

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Hack CPU Logic Example: writeM

● Example: determining when writeM should be set to 1

● Step 2: determine logic for specification
○ Read the “Destination Specification” section of Chapter 4

○ d3 determines if the output should be written to memory

○ Which bit of our instruction is that???

○ Instruction bits:

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

○ So writeM = instruction[3]?

40

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Hack CPU Logic Example: writeM

● Example: determining when writeM should be set to 1

● Not so fast…
○ What happens if it’s an A-instruction?

○ We only write to destinations in the case of a C-instruction

○ So writeM = C-instruction & instruction[3]

○ Remember that certain actions only occur on certain instruction
types, you may have to include a check for instruction type in
your logic depending on the action!

41

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Hack CPU Implementation: Logic sub-chips

● We provide you with 3 sub-chips and tests that
implement the control logic for the A Register, D Register,
and PC
○ LoadAReg contains logic for loading the A Register

○ LoadDReg contains logic for loading the D Register

○ JumpLogic contains logic for determining if the PC should
load/jump or increment

● Implement/test these first, then use them in your CPU
implementation!
○ Intended to help you narrow the scope of any bugs you may

have

42

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Hack CPU Implementation: Logic sub-chips

43

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Hack CPU Implementation: Logic sub-chips

● No in-class work today :(

● Thursday we will give you time to implement at least one
of the Logic sub-chips

44

CSE 390B, Spring 2021L09: Building a Computer & Exam Preparation

Reminders

❖ Office Hours
▪ Eric & Margot’s office hours happening right after class!

❖ Project 4:
▪ Due Thursday 11:59PM PDT

❖ CSE 390B Midterm
▪ Thursday May 6th

45

