CSE 390 B Spring 2021

Building a Computer &
Exam Preparation

Organization of a Computer, Fetch/Execute Cycle, Hack CPU

Design, Exam prep fundamentals

Significant material adapted from www.nandZ2tetris.org. © Noam Nisan and Shimon Schocken.

YA/ UNIVERSITY of WASHINGTON

YA/ UNIVERSITY of WASHINGTON LO9: Building a Computer & Exam Preparation

Agenda

Cornell Note-Taking Debrief
Exam Preparation

Building a Computer Overview
Reading Review and Q&A

Hack CPU Logic

CSE 3908, Spring 2021

w UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Project 3 Cornell Note-Taking Debrief

Take a look at your Cornell notes from CSE 390B and from
another course that you practiced Cornell note-taking with.

+» What elements of the cornell note-taking method

allowed you to better understand and work on Project 37

= How are these elements similar/different when comparing this
to your other course?

What were barriers that prevented you from fully
engaging in the cornell note-taking method (either in this

class or another class)?
= What are ways that can help address this?

Y/
L X4

YA/ UNIVERSITY of WASHINGTON LO9: Building a Computer & Exam Preparation

Agenda

Cornell Note-Taking Debrief
Exam Preparation

Building a Computer Overview
Reading Review and Q&A

Hack CPU Logic

CSE 3908, Spring 2021

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Gearing up for your exams...

< Make a Study Plan
= What key topics/concepts with your exam
cover?
= How might your study guides look different
for specific classes?
= What resources, materials, or people might
you need to engage with?

< Create a Schedule £
= DON'T CRAM 2
= Office hours, review sessions, study groups LET . GETgREADY TO
= Reference your weekly time commitments
& quarterly calendar

% Test Yourself

= Utilize your cornell question notes
= Replicate exam-like environments

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Gearing up for your exams...

< Make a Study Plan
= What key topics/concepts with your exam
cover?
= How might your study guides look different
for specific classes?
= What resources, materials, or people might
you need to engage with?

< Create a Schedule £
= DON'T CRAM 2
= Office hours, review sessions, study groups LET . GETgREADY TO
= Reference your weekly time commitments
& quarterly calendar

% Test Yourself

= Utilize your cornell question notes
= Replicate exam-like environments

w UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Project 5: Timed Mock Exam Problem

0.

%®

%

NS

%

Schedule a 30-minute session is based on your group
members availability do one mock exam problem

Determine how you will get in touch with each other if
needed

Determine who will be the zoom host for the session

Email cse390b-staff@cs.washington.edu with your
group’s meeting day & time

YA/ UNIVERSITY of WASHINGTON LO9: Building a Computer & Exam Preparation

Agenda

Cornell Note-Taking Debrief
Exam Preparation

Building a Computer Overview
Reading Review and Q&A

Hack CPU Logic

CSE 3908, Spring 2021

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Building a Computer

« All your hardware efforts are about to pay off! In project
5, you will build Computer.hdl -- the final, top-level chip
in this course

O For all intents and purposes, a real computer
O Simplified, but organization very similar to your laptop

o Later projects we will start writing software to make it
useful

W UNIVERSITY of WASHINGTON LO9: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Hack CPU

COMPUTER

ROM CPU RAM
(Instructions) (Data)

instr data ou

0 010111001110 ‘ ® 100110010111
101100010101 1 100011001111

[ERY

2 111000101111 2 000000000010

Instructions Data

REGISTERS
addrjof next

instfuction | CONTROL I

1 = 2

INPUT OUTPUT

10

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Hack CPU Interface Inputs

o Inputs:
O inM: Value coming from memory \
L . M —/—>
O instruction: 16-bit instruction " 16 g~ UM
—~— writeM
instruction ﬁl%» CPU .
O reset: if 1, reset the program ;> addressM
reset —4—> ﬁ15L’ Pt

11

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Hack CPU Interface Outputs

o Outputs:
O outM: value used to update
memory if writeM is 1 \
inM ﬁm;" W outM
O writeM: if 1, update value in —— witeM
: instruction—~A—| CPU
memory at addressM with outM 16 Pap——
—/> e
reset —~4—» 15
O addressM: address to read from or ;
write to in memory
O pc: address of next instruction to be

fetched from memory

12

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Basic CPU Loop

o Repeat forever:
O Fetch an instruction from the program memory
O Execute that instruction

13

YA/ UNIVERSITY of WASHINGTON

Fetching

Specify which instruction to read as the address input to

our memory

L0O9: Building a Computer & Exam Preparation

Data output: actual bits of the instruction

=

n+1
n+2

MEMORY

0101110011100110
1011000101010100
1110001011111100

Instructions

1100101010010101
1100100101100111
0011001010101011

Data

Memory Output:

Data .
Instruction

D=A; JMP

Memory Input:
Address

| instruction Address

PC

CSE 390B, Spring 2021

14

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Executing

o The instruction bits describe exactly “what to do”

O A-instruction or C-instruction? Which operation for the ALU?
What memory address to read? To write? If / where to jump
after this instruction?

« Executing the instruction involves data of some kind.
O Accessing registers

and/or

O Accessing memory

15

YA/ UNIVERSITY of WASHINGTON

LO9: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Combining Fetch & Execute

=

n+1
n+2

MEMORY

0101110011100110
1011000101010100
1110001011111100

Instructions

1100101010010101
1100100101100111
0011001010101011

Data

Memory Output:
Data Instruction
D=A; JMP
— Data
245
Memory Input:
Address
Instruction Address PC 1

Data Address (from instruction or register)

16

W UNIVERSITY of WASHINGTON LO9: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Combining Fetch & Execute

Memory Output:
Dat)
MEMORY atd Instruction
D=A; JMP
© ©0101110011100110
1 1011000101010100
— Data
2 1110001011111100
o 245
Instructions
n 1100101010010101 Memory Input:
n+1 1100100101100111 Address
2)
M2 Instruction Address PC 1
Data . . .
Data Address (from instruction or register)
o Could we implement with RAM16K . hd1?

17

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Combining Fetch & Execute

Memory Output:
Data .
MEMORY Instruction
D=A; JMP
© ©0101110011100110
1 1011000101010100 Data
2 1110001011111100
245
Instructions
n 1100101010010101 Memory Input:
n+l 1100100101100111 Address
n+2 ©0011001010101011 .
Instruction Address PC 1
Data . . .
Data Address (from instruction or register)

« Could we implement with RAM16K.hd1?

O No! Our memory chips only have one input and one output!

18

YA/ UNIVERSITY of WASHINGTON

L0O9: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Solution 1: Handling Single Input/Output

MEMORY

%) 0101110011100110
1011000101010100
2 1110001011111100

=

Instructions

n 1100101010010101
n+l 1100100101100111
n+2 0011001010101011

Data

Instruction,

Memory Output: when fetching
Data

Data, when
executing

Memory Input:

Address]
Instruction Address

Data Address

Fetching vs. Executing

« Can use multiplexing to share single input/output!

19

YA/ UNIVERSITY of WASHINGTON

L0O9: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Solution 1: Fetching/Executing Separately

MEMORY

(%) 0101110011100110

1 1011000101010100

2 1110001011111160
Instructions

n 1100101010010101

n+l 1100100101100111

n+2 0©0011001010101011
Data

o

Memory Output:
Data

Memory Input:
Address

Fetching vs. Executing

Instruction,
when fetching

REGISTER

Data, when
executing

- Instruction Address
- Data Address

Fetching vs. Executing

Need to store fetched instruction so it’s available during
execution phase.

20

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Solution 2: Separate Memory Units

o Separate instruction memory and data memory into two
different chips
O Each can be independently addressed, read from, written to

« This is what we will do in Project 5!
O See Chapter 5 for more detail on design

e Pros:
O Simpler to implement

o Cons:
O Fixed size of each partition, rather than flexible storage
O Two chips — redundant circuitry

21

YA/ UNIVERSITY of WASHINGTON LO9: Building a Computer & Exam Preparation

Agenda

Cornell Note-Taking Debrief
Exam Preparation

Building a Computer Overview
Reading Review and Q&A

Hack CPU Logic

CSE 3908, Spring 2021

22

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Hack CPU Implementation

« Need to be able to provide the functionality our assembly
language specifies

o A-instructions

O Need to be able to load values into the A-Register
o C-instructions

O Need to perform different computations w/varying inputs

O Need to be able to store the results in different destinations
« Flow Control

O Need to keep track of our current instruction address and know
what address to execute next

23

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Hack CPU Implementation

o Only 4 main components needed!
o ALU
O PC

O Registers (x2) for Aand D
s For testing & debugging reasons, you’ll use built-in ARegister.hd|
and DRegister.hdl instead.

« Tricky Part: All the control logic
o We’ll recommend an overall flow of data
O Your task: to design and implement proper control logic

24

YA/ UNIVERSITY of WASHINGTON

LO9: Building a Computer & Exam Preparation

Hack CPU Design

CSE 3908, Spring 2021

ALU output O ALU output
c C's
c l
l D register |—»-
instruction Mux16 | ATSHISISEN-—0— outM
> ALU ® >
_ C
inM
M input
Areqister T C's writeM
output (o Cc >
ru addressM
O memory address output .
reset
reset bit C
l pC
—t PC Program Counter output

\J

25

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

A-Instruction Design

o Need to load value of instruction into the A-register
O Corresponds to our @value syntax

« Possible solution: setup A-register w/instruction as input

O Problem: sometimes need to store a computation result in the
A-register (e.g. A=D+1)

o Solution: use a mux to choose either the instruction value

or the previous ALU output as the A-register input
O Still need logic to determine if the A-regiseter should be loaded

26

YA/ UNIVERSITY of WASHINGTON

LO9: Building a Computer & Exam Preparation

CSE 3908, Spring 2021

Hack CPU Design: A-instructions

ALU output D= ALU output
c C's
c !
l D register
instruction Mux16 Aregister |—-0— outM
> ALU o -
' C
inM
M input
Aregister T C's writeM
output c Cc >
F addressM
O memory address output -
reset
reset bit C
! pC
PC p———— Program Counter output

\j

27

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

C-Instruction Design: Inputs

o Need inputs from the A, D, and M registers

O Never need to use the A register and M register in a
computation together!

« One ALU input will always be the D register

« The other will either be the A register or the M register
O inMis the input w/the M register value
O Can use a Mux to make this choice!

« Remember constants are generated by the ALU internally

28

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

C-Instruction Design: Computations

o ALU performs the computations

« Now that we have our inputs, just need to specify the
correct computation for the ALU to execute

« You’ll note the computation bits in the instruction binary
are very similar to the control inputs to the ALU

29

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

C-Instruction Design: Destinations

« Can store computations in three destinations: the A, D, or

M registers
O Loop ALU output back to the A and D registers
O outM, writeM, and addressM used to write to the M register

o Even though our ALU output is connected to these

locations, we don’t always want to update them

O Control logic will specify when we want to write to these
locations

30

YA/ UNIVERSITY of WASHINGTON

LO9: Building a Computer & Exam Preparation

CSE 3908, Spring 2021

Hack CPU Design: C-instructions

ALU output D= ALU output
c C's
c !
l D register
instruction Mux16 Aregister |—-0— outM
> ALU o -
' C
inM
M input
Aregister T C's writeM
output c Cc >
F addressM
O memory address output -
reset
reset bit C
! pC
PC p———— Program Counter output

\j

31

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Flow Control Design: Flow Control

o Use the Program Counter chip to keep track of the
current instruction address

« Input will be from the A-register

O When we jump to an address in assembly, we jump to the
address specified in the A-register

o Load (jump) or increment determined by the output from
our ALU

O More specifically can use the status flags to determine if the
outputis<0,==0,0r>0

32

YA/ UNIVERSITY of WASHINGTON

LO9: Building a Computer & Exam Preparation

CSE 3908, Spring 2021

Hack CPU Design: Flow Control

ALU output D= ALU output
c C's
c !
l D register
instruction Mux16 Aregister |—-0— outM
> ALU o -
' C
inM
M input
Aregister T C's writeM
output c Cc >
F addressM
O memory address output -
reset
reset bit C
! pC
PC p———— Program Counter output

\j

33

YA/ UNIVERSITY of WASHINGTON LO9: Building a Computer & Exam Preparation

Agenda

Cornell Note-Taking Debrief
Exam Preparation

Building a Computer Overview
Reading Review and Q&A

Hack CPU Logic

CSE 3908, Spring 2021

34

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Hack CPU Logic

« How do we determine the unimplemented logic for the
CPU (all of the c’s in the diagrams)?

« Need to refer to the assembly specification!

« Project 5 will require a good bit of consulting of Chapter 4
to figure out how to use the instruction bits to implement

the control logic

35

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Hack CPU Logic Workflow

o Step 1: Figure out what to pay attention to

O Usually will be some combination of instruction bits and/or
intermediate outputs
O These are the “inputs” to your sub-problem

« Step 2: determine logic for the part you are working on
O Uses the “inputs” from step 1

O Usually requires reading a relevant section of the
textbook/assembly specification

36

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Instruction Bits: A-instruction

16 bits: 0 v vV VV V V V V VVV VYV V V

« Most significant bit is a O (indicates an A-instruction)

o Rest of the bits are the value to be loaded

O Since most significant bit is 0, entire A-instruction is also the
value to be loaded

37

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Instruction Bits: C-instruction

16 bits: 111 acl c2 c3 c4 c5 c6dl d2 d3 j1 j2 53
« Most significant bitis a 1 (indicates a C-instruction)

« Next two most significant bits aren’t used (always 1)

« a-bit and c-bits are related to computations

« d-bits are related to destination locations

o j-bits are related to jumping

38

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Hack CPU Logic Example: writeM

« Example: determining when writeM should be set to 1

« Step 1: figure out what to pay attention to

O

writeM is related to where we store the output, or what
destination we use

We need to look up the destination bits specification from
Chapter 4!

39

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Hack CPU Logic Example: writeM

« Example: determining when writeM should be set to 1

« Step 2: determine logic for specification
O Read the “Destination Specification” section of Chapter 4
O d3 determines if the output should be written to memory
O Which bit of our instruction is that???
O Instruction bits:

111aclc2c3c4c5c6d1d2d3j1j2j3

O So writeM = instruction[3]?

40

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Hack CPU Logic Example: writeM

« Example: determining when writeM should be set to 1

« Not so fast...

O What happens if it’s an A-instruction?

O We only write to destinations in the case of a C-instruction
O So writeM = C-instruction & instruction[3]
O

Remember that certain actions only occur on certain instruction
types, you may have to include a check for instruction type in
your logic depending on the action!

41

w UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Hack CPU Implementation: Logic sub-chips

« We provide you with 3 sub-chips and tests that
implement the control logic for the A Register, D Register,
and PC

O LoadAReg contains logic for loading the A Register
O LoadDReg contains logic for loading the D Register

O Jumplogic contains logic for determining if the PC should
load/jump or increment

« Implement/test these first, then use them in your CPU
implementation!

O Intended to help you narrow the scope of any bugs you may
have

42

YA/ UNIVERSITY of WASHINGTON

LO9: Building a Computer & Exam Preparation

CSE 3908, Spring 2021

Hack CPU Implementation: Logic sub-chips

ALU output O= ALU output
LoadDReg cs
LoadAReg l
v D register
instruction Mux16 Aregister |—e0— outM
> ALU o -
inM ¢ Mux16
M input >
A teqlsler T C's writeM
output c - >
addressM
O memory address output >
reset v
reset bit JumpLoglc
i PC
PC p——— Program Counter output

\

43

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Hack CPU Implementation: Logic sub-chips

« No in-class work today :(

« Thursday we will give you time to implement at least one
of the Logic sub-chips

44

W UNIVERSITY of WASHINGTON L09: Building a Computer & Exam Preparation CSE 3908, Spring 2021

Reminders

o Office Hours
= Eric & Margot’s office hours happening right after class!

¢ Project 4.
= Due Thursday 11:59PM PDT

¢ CSE 390B Midterm
= Thursday May 6th

45

