
Beschreibung der Simulation 01 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Das zugrundeliegende Programm:

Demonstration der logischen Befehle and, or, xor, nor

Wie im HowTo beschrieben, wird Simulation01.asm im MARS geöffnet.

Der Code zeigt die Verwendung der logischen Befehle für die UND- Verknüpfung, die ODER-
Verknüpfung, die EXKLUSIV-ODER-Verknüpfung und die NICHT-ODER-Verknüpfung. Im
Folgenden werden einzelne Codeabschnitte näher erläutert.

Die Konstanten werden hinterlegt, die im Programmablauf benötigt werden, als Beispielzahlen
wurden 0xFFFF0000 und 0x46A1F0B7 willkürlich ausgewählt. Die Strings and, or, xor, nor, nl sind
für den Programmablauf nicht notwendig, sondern dienen der Übersichtlichkeit und
Verständlichkeit der Ausgabe.

Die hinterlegten Zahlen source1 und source2 werden in die Register s1 und s2 geladen, sehr schön
kann man das im „Execute“ Fenster im Text Segment verfolgen:

Empfehlenswert ist es, Schritt für Schritt durch das Programm zu gehen, das geschieht durch Klicks
auf den „Run one step at a time“ Button:

.data
source1: .word 0xFFFF0000
source2: .word 0x46A1F0B7

and: .asciiz "\n11111111111111110000000000000000 AND\n01000110101000011111000010110111 =\n"
or: .asciiz "\n11111111111111110000000000000000 OR\n01000110101000011111000010110111 =\n"
xor: .asciiz "\n11111111111111110000000000000000 XOR\n01000110101000011111000010110111 =\n"
nor: .asciiz "\n11111111111111110000000000000000 NOR\n01000110101000011111000010110111 =\n"
nl: .asciiz "\n"

.text
lw $s1, source1 # $s1 = 0xFFFF0000
lw $s2, source2 # $s2 = 0x46A1F0B7

Beschreibung der Simulation 01 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Im rechten Bereich unter „Register“ findet man nun nach Ausführung der beiden Codezeilen die mit
den Source-Werten gefüllten Register s1 und s2,

sodass nun die eigentlichen Operationen beginnen können,

wobei die Ergebnisse in den Registern s3 bis s6 gespeichert werden. Die Operationen verknüpfen
bitweise, deshalb erfolgt die Ausgabe der Ergebnisse nicht hexadezimal oder dezimal, sondern
binär, sodass gut erkennbar wird, was die einzelnen logischen Operationen tun. Der folgende Code
dient der Ausgabe des Strings „and“ und des Ergebnisses der UND-Verknüpfung, das in Register s3
gespeichert ist:

Für jeden syscall wird ein Wert benötigt, der bestimmt, welche Art syscall ausgeführt werden soll.
Die 4 bedeutet: „print string“ mit dem Argument:„$a0 = address of null-terminated string to print“,
das heißt also, dass in Register a0 die Adresse eines Strings steht, der ausgegeben werden soll. Die
35 bedeutet: „print integer in binary“ mit dem Argument: „$a0 = integer to print“, das heißt also,
dass in Register a0 eine Integer-Zahl liegt, die als Binärzahl ausgegeben werden soll. Diese
Argumente müssen vor dem syscall in a0 geschrieben werden.

Die Codefragmente für die Ausgabe der Ergebnisse der anderen Operationen funktionieren ebenso,
sodass als letztes noch das Ende des Programms steht:

Der Wert 10 für den syscall bedeutet: „exit (terminate execution)“ und der syscall mit diesem Wert
beendet die Ausführung des Programms.

Operationen
and $s3, $s1, $s2
or $s4, $s1, $s2
xor $s5, $s1, $s2
nor $s6, $s1, $s2

Ausgabe and

la $a0, and
li $v0, 4
syscall
move $a0, $s3
li $v0, 35
syscall
la $a0, nl
li $v0, 4
syscall

exit
li $v0, 10
syscall

Beschreibung der Simulation 01 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Die Ausgabe des ausgeführten Programms sieht folgendermaßen aus und zeigt die bitweise
Verknüpfung der Source-Werte entsprechend der logischen Befehle:

Gleichzeitig kann man im rechten Bereich die abschließende Registerbelegung sehen, wobei man
wahlweise die Darstellung als Hexadezimal-Zahl oder als Dezimalzahl wählen kann:

umgeschaltet wird das durch Setzen des Häkchens bei „Hexadecimal Values“ am unteren Rand des
Data Segments:

11111111111111110000000000000000 AND
01000110101000011111000010110111 =
01000110101000010000000000000000

11111111111111110000000000000000 OR
01000110101000011111000010110111 =
11111111111111111111000010110111

11111111111111110000000000000000 XOR
01000110101000011111000010110111 =
10111001010111101111000010110111

11111111111111110000000000000000 NOR
01000110101000011111000010110111 =
00000000000000000000111101001000
-- program is finished running --

