Beschreibung der Simulation 01 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hagen

auf Grundlage des Kurstextes Computersysteme II

Das zugrundeliegende Programm:

Demonstration der logischen Befehle and, or, xor, nor

Wie im HowTo beschrieben, wird Simulation01.asm im MARS geoffnet.

Der Code zeigt die Verwendung der logischen Befehle fiir die UND- Verkniipfung, die ODER-
Verkniipfung, die EXKLUSIV-ODER-Verkniipfung und die NICHT-ODER-Verkniipfung. Im
Folgenden werden einzelne Codeabschnitte ndher erldutert.

.data
sourcel: .word OxFFFF0000
source2: .word 0x46A1F0B7

and: .asciiz"\nl11111111111111110000000000000000 AND\n01000110101000011111000010110111 =\n"
or: .asciiz"\n11111111111111110000000000000000 OR\n01000110101000011111000010110111 =\n"
XOr: .asciiz"\n11111111111111110000000000000000 XOR\n01000110101000011111000010110111 =\n"
nor: .asciiz "\n11111111111111110000000000000000 NOR\n01000110101000011111000010110111 =\n"
nl: .asciiz "\n"

Die Konstanten werden hinterlegt, die im Programmablauf bendtigt werden, als Beispielzahlen
wurden 0xFFFF0000 und 0x46A1F0B7 willkiirlich ausgewihlt. Die Strings and, or, xor, nor, nl sind
fiir den Programmablauf nicht notwendig, sondern dienen der Ubersichtlichkeit und
Verstindlichkeit der Ausgabe.

text
Iw $s1, sourcel # $s1 = 0xFFFF0000
Iw $s2, source2 # $s2 = 0x46A1F0B7

Die hinterlegten Zahlen sourcel und source2 werden in die Register s1 und s2 geladen, sehr schon
kann man das im ,,Execute* Fenster im Text Segment verfolgen:

Text Segment

Bkpt Address Code Basic Source

L] 0x00400000| 0x3c011001|{lui $1,0x00001001 16: lw $81, sourcel # $31 = OxFFFF0000
[] | 0x00400004| 0x8c310000|1w $17, 0x00000000 (51)

: 0x00400008 0x3c011001|1ui £1,0x00001001 17: lw %32, source? # 532 = 0x46R1F0OB7
: 0x0040000c| Ox8c320004|1w $18,0x00000004 ($1)

Empfehlenswert ist es, Schritt fiir Schritt durch das Programm zu gehen, das geschieht durch Klicks
auf den ,,Run one step at a time** Button:

O G @
—| Run one step at a time I—

Beschreibung der Simulation 01 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hﬂﬂﬂﬂ

auf Grundlage des Kurstextes Computersysteme II

Im rechten Bereich unter ,,Register” findet man nun nach Ausfithrung der beiden Codezeilen die mit
den Source-Werten gefiillten Register s1 und s2,

221 17| Ox££££0000
532 18 0x46alf0bT
Mea 14 AwfAfnnnnnnn

sodass nun die eigentlichen Operationen beginnen konnen,

Operationen
and $s3, $s1, $s2
or $s4, $s1, $s2
xor $s5, $s1, $s2
nor $s6, $s1, $s2

wobei die Ergebnisse in den Registern s3 bis s6 gespeichert werden. Die Operationen verkniipfen
bitweise, deshalb erfolgt die Ausgabe der Ergebnisse nicht hexadezimal oder dezimal, sondern
binér, sodass gut erkennbar wird, was die einzelnen logischen Operationen tun. Der folgende Code
dient der Ausgabe des Strings ,,and" und des Ergebnisses der UND-Verkniipfung, das in Register s3
gespeichert ist:

Ausgabe and

la $a0, and

li $v0, 4
syscall

move $a0, $s3
1i $v0, 35
syscall

la $a0, nl

1i $v0, 4
syscall

Fiir jeden syscall wird ein Wert benoétigt, der bestimmt, welche Art syscall ausgefiihrt werden soll.
Die 4 bedeutet: ,,print string* mit dem Argument:,,8a0 = address of null-terminated string to print*,
das heif3t also, dass in Register a0 die Adresse eines Strings steht, der ausgegeben werden soll. Die
35 bedeutet: ,,print integer in binary“ mit dem Argument: ,,$a0 = integer to print*, das heil3t also,
dass in Register a0 eine Integer-Zahl liegt, die als Bindrzahl ausgegeben werden soll. Diese
Argumente miissen vor dem syscall in a0 geschrieben werden.

Die Codefragmente fiir die Ausgabe der Ergebnisse der anderen Operationen funktionieren ebenso,
sodass als letztes noch das Ende des Programms steht:

exit
1i $v0, 10
syscall

Der Wert 10 fiir den syscall bedeutet: ,,exit (terminate execution)* und der syscall mit diesem Wert
beendet die Ausfiihrung des Programms.

Beschreibung der Simulation 01 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fgmu“iuersitﬁt i“ Hauen

auf Grundlage des Kurstextes Computersysteme II

Die Ausgabe des ausgefiihrten Programms sieht folgendermaBlen aus und zeigt die bitweise
Verkniipfung der Source-Werte entsprechend der logischen Befehle:

I1111111111111110000000000000000 AND
01000110101000011111000010110111 =
01000110101000010000000000000000

11111111111111110000000000000000 OR
01000110101000011111000010110111 =
I1111111111111111111000010110111

I1111111111111110000000000000000 XOR
01000110101000011111000010110111 =
10111001010111101111000010110111

11111111111111110000000000000000 NOR
01000110101000011111000010110111 =
00000000000000000000111101001000

-- program is finished running --

Gleichzeitig kann man im rechten Bereich die abschlieBende Registerbelegung sehen, wobei man
wahlweise die Darstellung als Hexadezimal-Zahl oder als Dezimalzahl wihlen kann:

$30 16 0x00000000 fILEL 16 0
sl 17 0xEEE£0000 o [EEN 17 -§5536
£32 18 0x46a1£0b7 [EEF 18 1185018039
£33 19 0x46a10000 523 19 1184956416
s34 20 0xEEEEE0RT 524 20 -3913
£35 21 0xb95e£0b7 525 21 ~1184960329
$36 22 0x00000£48 526 22 3912
£aT 23 NxNNANNANAD illza7 e y

umgeschaltet wird das durch Setzen des Hiakchens bei ,,Hexadecimal Values* am unteren Rand des
Data Segments:

