/ Assembler \

Symbol k
E Table

- /

) 000
011001100100000
0 001
011001100100000
0 001
011001100100000
1 010
000000001100100
(%) 010
000000000010011
(%) 000
O 011001100100000
I > Y r 1 010
011001100100000

1 001
011001100100000
1 001

Asse m b I er %2%%%2221@1

000000000010011

0 000

Assembly code Machine code

Pre-pass: Read source and Clean-up codes Symbol Table

e Read the ASM code form file.

. . N A e SP:O0
 Remove comments (// and all stuff after it until a EOL "\0') . LCL 1
e Remove Spaces . AR(; -2
. e THIS :3
e Save the cleaned-up code into a queue (FIFO buffer). . . THAT 4
e Initialize symbol table (e.g., pre-allocate R0-R15). « RO:0
Label RAM address (hexa)
SP 0 0x0000
LCL 1 0x0001
ARG 2 0x0002
THIS 3 0x0003
THAT 4 Ox0004
RO-R15 0-15 0x0000-f
SCREEN 16384 0x4000
KBD 24576 0x6000

.asm file queue1

First-pass: Build symbol Table

e Count lines and find labels "(Xxx)".
 The label has the same ROM address as the instruction Symbol Table
next (below) to it. .
e XXx can not begin with a number. Lol
e Add the XXX label and its corresponding ROM address— . /TAEI% %
to the ' . THAT :4
e Erase the (Xxx) line. — -« RO:0
e Save the processed code into a queu |
label| addr| «—
e LOOP:5
L J « END : 19

queue queue2

15-bit
Imediate value

Second-pass: Translate instructions

A-inst with . "
OVVV VVVV VVVV VVVV

imediate value

e Parse tree

(Y)

lookup | - :
Read next _ >label| addr .
instruction Invalid : : \ 15-bit
\ / addr value
> \““\\\a\)\e > A-inst with label . | »
S\meo Oaaa aaaa aaaa aaaa
/VOI / H H (Y N
SJ”hb n tha A—|n§t with : :
o/ lap, variable :
e | S .
> var |addr 15-bit
add T
: —Y addr value
Split the instruction into 3 . J .
parts with '=" and '; ' delimeters . "OI T
Assign a new address to the dda aaaa aaaa aaaa
dest = comp; next available RAM position
Lookup table Lookup table Lookup table
\4 v
dest dl d2 d3 comp comp Jjump jl jz 33
cl c2 ¢c3 c4 c5 céb
empty before '=' | null 0 0 0 (when a=0) (when a=1) null 0 0 o | empty after "
M 0 0 1 0 1 0 1 0 1 o0 JGT 0 0 1
D o 1 0 1 1 1 1 1 1 1 JEQ 0 1 0
A 1 0 0 D 0o 0 1 1 0 0 JLT 1 0 0
2P2=2 | aM 1 0 1 A 1 1 0 0 0 0 M JINE 1 0 1
2P2=2 | AD 1 1 0 1D o 0 1 1 0 1 JLE 1 1 0
3P3=6 | AMD 1 1 1 1A 1 1 0 0 0 1 1M JMP 1 1 1
Default: invalia -D o o0 1 1 1 1 Default: invalia
-A 1 1 0 0 1 1 -M
C D+1 0 1 1 1 1 1
CA+1 1 1 0 1 1 1 M+1 C
D-1 0 0 1 1 1 0
A-1 1 1 0 0 1 0 M-1
C D+A o 0 O o0 1 o0 D+M C
D-A 0 1 0 0 1 1 D-M
A-D 0 0 0 1 1 1 M-D
C D&A 0 0 0 0 0 0 D&M C
C D|A o 1 0 1 o0 1 D|M
Default: invalia
C-inst 111 Apc1c003¢4 cs5c dadpdyy
Implementation: C++

e | know C++. — A,
e C++ is Object-oriented . ;|

» C++ supports STL e.g., map and queue. key |value == |label addr

