
Second-pass: Translate instructions


First-pass:  Build symbol Table

Pre-pass:  Read source and Clean-up codes

Read the ASM code form file.

Remove comments (// and all stuff after it until a EOL '\0')
Remove Spaces
Save the cleaned-up code into a queue (FIFO buffer).
Initialize symbol table (e.g., pre-allocate R0-R15).


Count lines and find labels "(Xxx)".
The label has the same ROM address as the instruction
next (below) to it.
Xxx can not begin with a number.
Add the XXX label and its corresponding ROM address
to the symbol table.
Erase the (Xxx) line.
Save the processed code into a queue.


Parse tree


Read next
instruction

Start with '@'

Not startwith '@'

purely number

after '@'

A-inst with
imediate value

contains 
letter

Invalid
num+letter

purely letter
or letter+num

In the

symbol table

Not in thesymbol table

A-inst with label

A-inst with
variable

    // Adds 1 + ... + 100
    @i
    M=1 // i=1
    @sum
    M=0 // sum=0
(LOOP)
    @i
    D=M // D=i
    @100
    D=D-A // D=i-100
    @END
    D;JGT // if (i-100)>0 goto END
    @i
    D=M // D=i
    @sum
    M=D+M // sum=sum+i
    @i
    M=M+1 // i=i+1
    @LOOP
    0;JMP // goto LOOP
(END)
    @END
    0;JMP // infinite loop
                                 .


@i
M=1
@sum
M=0
(LOOP)
@i
D=M 
@100
D=D-A 
@END
D;JGT
@i
D=M 
@sum
M=D+M 
@i
M=M+
@LOOP
0;JMP
(END)
@END
0;JMP 
                                 .


"0vvv vvvv vvvv vvvv"

15-bit

imediate value

Symbol table

label  addr

... ...

... ...

lookup

"0aaa aaaa aaaa aaaa"

15-bit

addr value

Symbol table

label  addr

... ...

Symbol table

var   addr

... ...

add

Assign a new address to the 

next available RAM position

"0aaa aaaa aaaa aaaa"

15-bit

addr value

Split the instruction into 3
parts with '=' and '; ' delimeters

dest = comp;jump

Lookup table Lookup table Lookup table

c
c

c

c
c

c

c

c
c

Default: invalia

Default: invalia

empty before '='

Default: invalia

empty after  ';'

C-inst

Implementation: C++

I know C++.
C++ is Object-oriented 

C++ supports STL e.g., map and queue.

    // Adds 1 + ... + 100
    @i
    M=1 // i=1
    @sum
    M=0 // sum=0
(LOOP)
    @i
    D=M // D=i
    @100
    D=D-A // D=i-100
    @END
    D;JGT // if (i-100)>0 goto END
    @i
    D=M // D=i
    @sum
    M=D+M // sum=sum+i
    @i
    M=M+1 // i=i+1
    @LOOP
    0;JMP // goto LOOP
(END)
    @END
    0;JMP // infinite loop
                                 .


C++ std::map

key   value

... ...

Symbol table

label  addr

... ...

... ...

2P2=2

3P3=6

2P2=2
2P2=2

1110101010000000
0011001100100000
1110111111001000
0011001100100000
1110101010001000
0011001100100000
1111110000010000
0000000001100100
1110010011010000
0000000000010011
1110001100000001
0011001100100000
1111110000010000
0011001100100000
1111000010001000
0011001100100000
1111110111001000
0000000000000101
1110101010000111
0000000000010011
1110101010000111
                     .


Assembler

Assembly code Machine code

Symbol
Table
 Parser

Assembler

    // Adds 1 + ... + 100
    @i
    M=1 // i=1
    @sum
    M=0 // sum=0
(LOOP)
    @i
    D=M // D=i
    @100
    D=D-A // D=i-100
    @END
    D;JGT // if (i-100)>0 goto END
    @i
    D=M // D=i
    @sum
    M=D+M // sum=sum+i
    @i
    M=M+1 // i=i+1
    @LOOP
    0;JMP // goto LOOP
(END)
    @END
    0;JMP // infinite loop
                                 .


@i
M=1
@sum
M=0
@i
D=M 
@100
D=D-A 
@END
D;JGT
@i
D=M 
@sum
M=D+M 
@i
M=M+
@LOOP
0;JMP
@END
0;JMP 
                                 .


Symbol Table

SP : 0
LCL :1
ARG :2
THIS :3
THAT :4
R0 :0

...

LOOP : 5
END : 19

Symbol Table
SP : 0
LCL :1
ARG :2
THIS :3
THAT :4
R0 :0

...

@i
M=1
@sum
M=0
(LOOP)
@i
D=M 
@100
D=D-A 
@END
D;JGT
@i
D=M 
@sum
M=D+M 
@i
M=M+
@LOOP
0;JMP
(END)
@END
0;JMP 
                                 .


@i
M=1
@sum
M=0
@i
D=M 
@100
D=D-A 
@END
D;JGT
@i
D=M 
@sum
M=D+M 
@i
M=M+
@LOOP
0;JMP
@END
0;JMP 
                                 .


Code

.asm file queue1

queue1 queue2




