Beschreibung der Simulation 13 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n HHEEﬂ

auf Grundlage des Kurstextes Computersysteme II

Das zugrundeliegende Programm:

Programm mit Aufruf von Unterprogrammen
zur Demonstration der Grundrechenarten

Wie im HowTo beschrieben, wird Simulationl3.asm im MARS geoffnet. Es sollen 2 Ganzzahlen
eingegeben werden, die dann als Parameter fiir mehrere Unterprogramme dienen, die die
Grundrechenarten aus den Simulationen 8 — 12 dieser Reihe realisieren.

.data
promptl: .asciiz "\nBitte die erste Zahl eingeben, x ="
prompt2: .asciiz "\nBitte die zweite Zahl eingeben, y ="

Im .data Teil des Codes werden Strings hinterlegt, die einerseits zur Eingabe der Ganzzahlen
auffordern und andererseits die Ausgabe begleiten sollen.

Empfehlenswert ist es, nach dem Assemblieren Schritt fiir Schritt durch das Programm zu gehen,
das geschieht durch Klicks auf den ,,Run one step at a time* Button:

0| G &
—| Run one step at a time I—

Der .text Teil beginnt mit der Aufforderung, die erste Zahl, also x, einzugeben:

text

main:

Ausgabe der ersten Nachricht prompt!
1i $v0, 4 # der Wert 4 fiir den syscall bedeutet: print string
la $a0, prompt1 # 1adt die Adresse des ersten Strings in $a0
syscall

erste Zahl einlesen und im Parameteriibergabe-Register $al ablegen
1i $v0, 5 # der Wert 5 fiir den syscall bedeutet: read integer
syscall
move $al, $v0

Zu erkennen ist ein Unterschied zu den bisherigen Simulationen, wir haben hier ein
Hauptprogramm main. In den bisherigen kleinen Beispielprogrammen war das nicht so, weil diese
so klein und kurz und wenig komplex waren. Da in diesem Programm aber Unterprogramme
vorhanden sind, sehen wir hier nun den Anfang des Hauptprogramms, das zugleich der Aufrufende,
also der Caller fir die Unterprogramme sein wird.

Beschreibung der Simulation 13 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

@ FernUniversitat in Hagen

Der Wert 4 fiir den syscall bedeutet print string, und die Adresse dieses Strings muss dafiir in
Register 8a0 geladen werden. Nach Ausgabe der Nachricht prompt! kann dann x eingelesen
werden, dazu dient der Wert 5. read integer fiir den syscall. Wird dann eine Zahl eingegeben und
mit Enter bestdtigt, liegt sie in $v0 vor und wird hier, zur weiteren Verwendung, in das
Parameteriibergabe-Register $a/ kopiert:

i|sa0 4 0x10010000
|lsa1 5 0x0000000c
Hsaz A NxNnANNNAN

Wie man sieht, liegt hier als Beispiel x = /2 in hexadezimaler Darstellung in $a/ vor.

Ausgabe der zweiten Nachricht prompt2
li $v0, 4
la $a0, prompt2 # Adresse des zweiten Strings in $a0 laden
syscall

zweite Zahl einlesen und im Parameteriibergabe-Register $a2 ablegen
li $v0, 5
syscall
move $a2, $v0

Ebenso wird fiir die zweite Ganzzahl verfahren, sodass nach Ausfiihren obigen Codefragments y =
5 als Beispiel im Register $a2 vorliegt:

||$al 5 0x0000000¢c
| 522 & 0x00000005
N |

Da jetzt die Ubergabe-Parameter bereitstehen, kann das main Programm nun der Reihe nach die
Unterprogramme add, sub, mul und div aufrufen, die ihre Berechnungen ausfithren und die
Ergebnisse ausgeben:

Aufrufe der Unterprogramme
jal add
jal sub
jal mul
jal div

Der Aufruf eines Unterprogramms geschieht jeweils durch den jal: jump and link Befehl, der PC+4
im Register $ra speichert, sodass nach Riickkehr aus dem Unterprogramm mit dem néchsten Befehl
weitergemacht werden kann. In folgender Abbildung ist zu sehen, dass der pc vor Ausfiihrung des
jal den Wert 0x00400038 enthalt:

o s ol Pt N Pt ? Pt it i
£ra 21 0x00000000
pc O0x00400038
LR (et el alalalatutalyl

Beschreibung der Simulation 13 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hﬂﬂﬂﬂ

auf Grundlage des Kurstextes Computersysteme II

Dies ist gerade die Adresse genau dieses ersten Unterprogrammaufrufs jal add, was im MARS sehr
gut im Text Segment ersichtlich wird, wie folgender Bildausschnitt zeigt:

| UKUUSUUUIE| UXUUULIUZL|200U 50, 5U, 54 aL: MOVE »EL, VU
|# 0x00400038| 0x0c100014[jal 0x00400050 34: jal add

AwAnAnana~l Aen~1anatAlsz1 fennannnTa ac. EERE

Wiirde nun jal den pc Inhalt sichern, also in Register $ra schreiben, dann wiirde der Riicksprung
wieder zum selben ja/ fithren, und das Programm steckte in einer Endlosschleife fest. Entsprechend
schreibt jal die Adresse des nichsten Befehls, also hier pc+4 = 0x0040003C in $ra, sodass nach
Riickkehr direkt mit dem nichsten Befehl fortgefahren werden kann:

R | (e Lt it Pt et

|5za 31 0x0040003¢
|lee 0X00400050

In pc steht nun also die Anfangsadresse des Unterprogramms, in diesem Fall ist das add, sodass als
nichstes die folgenden Codezeilen ausgefiihrt werden:

add:
.data
message add: .asciiz "\nDas Ergebnis der Addition istx +y ="
text
Addition
add $t1, $al, $a2

Ausgabe der Nachricht
1i $v0, 4

la $a0, message add
syscall

Ausgabe der Summe
1i $v0, 1

move $a0, $tl

syscall

Riicksprung
jr Sra

Ebenso wie Hauptprogramme kdnnen Unterprogramme einen .data und einen .fext Teil haben.
Im .data Teil wird hier der String hinterlegt, der die Ausgabe der Summe begleiten soll (Zeile 50).
Im .text Teil wird die Addition vorgenommen (Zeile 53), der String (Zeilen 56-58) und schlieBlich
die Summe selbst ausgegeben (Zeilen 61-63). Wesentlich ist auch Zeile 66, da sie den Riicksprung
zur in $ra liegenden Adresse enthélt. Durch eben diesen Riicksprung wird mit dem Aufruf des
Unterprogramms sub fortgefahren, das ebenso wie add seine Berechnung durchfiihrt, das Ergebnis
ausgibt und zuriick in das main Programm springt, wo darauthin der Aufruf zum nichsten
Unterprogramm, also mul erfolgt. Die Unterprogramme mul und div werden wie in den
Simulationen 12 und 13 dieser Reihe ausgefiihrt und nach Riickkehr aus div bleibt in main nur
noch, das Programm zu beenden, was wie in den anderen Simulationen dieser Reihe Simulationen
mit dem MARS Simulator auch, iiber den Wert 10: terminate execution fiir den syscall passiert:

Beschreibung der Simulation 13 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fgmu“iuersitﬁt i“ Hauen

auf Grundlage des Kurstextes Computersysteme II

exit

li $v0, 10 # der Wert 10 fiir den syscall bedeutet: exit (terminate execution)
syscall

Die Ausgabe ist im Fenster Run I/0 unterhalb des Data Segments im execute Fenster zu finden:

f Mars Messages |/ Run o |

Bitte die erate Zahl eingebken, x = 12

Bitte die zweite Zahl eingeben, v = 5

Clear Dazs Ergebnis der Rddition ist x + v = 17

Das Ergebnis der Subtraktion ist x - y = 7

Das Ergebniz der Multiplikation als doubkle ist x * ¥ = &0.0
Das Ergebnis der Division ist x @ ¥ = 2.4

—-— program i3 f£inished running ——

