
Beschreibung der Simulation 13 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Das zugrundeliegende Programm:

Programm mit Aufruf von Unterprogrammen
zur Demonstration der Grundrechenarten

Wie im HowTo beschrieben, wird Simulation13.asm im MARS geöffnet. Es sollen 2 Ganzzahlen
eingegeben werden, die dann als Parameter für mehrere Unterprogramme dienen, die die
Grundrechenarten aus den Simulationen 8 – 12 dieser Reihe realisieren.

Im .data Teil des Codes werden Strings hinterlegt, die einerseits zur Eingabe der Ganzzahlen
auffordern und andererseits die Ausgabe begleiten sollen.

Empfehlenswert ist es, nach dem Assemblieren Schritt für Schritt durch das Programm zu gehen,
das geschieht durch Klicks auf den „Run one step at a time“ Button:

Der .text Teil beginnt mit der Aufforderung, die erste Zahl, also x, einzugeben:

Zu erkennen ist ein Unterschied zu den bisherigen Simulationen, wir haben hier ein
Hauptprogramm main. In den bisherigen kleinen Beispielprogrammen war das nicht so, weil diese
so klein und kurz und wenig komplex waren. Da in diesem Programm aber Unterprogramme
vorhanden sind, sehen wir hier nun den Anfang des Hauptprogramms, das zugleich der Aufrufende,
also der Caller für die Unterprogramme sein wird.

.data
prompt1: .asciiz "\nBitte die erste Zahl eingeben, x = "
prompt2: .asciiz "\nBitte die zweite Zahl eingeben, y = "

.text
main:
Ausgabe der ersten Nachricht prompt1

li $v0, 4 # der Wert 4 für den syscall bedeutet: print string
la $a0, prompt1 # lädt die Adresse des ersten Strings in $a0
syscall

erste Zahl einlesen und im Parameterübergabe-Register $a1 ablegen
li $v0, 5 # der Wert 5 für den syscall bedeutet: read integer
syscall
move $a1, $v0

Beschreibung der Simulation 13 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Der Wert 4 für den syscall bedeutet print string, und die Adresse dieses Strings muss dafür in
Register $a0 geladen werden. Nach Ausgabe der Nachricht prompt1 kann dann x eingelesen
werden, dazu dient der Wert 5: read integer für den syscall. Wird dann eine Zahl eingegeben und
mit Enter bestätigt, liegt sie in $v0 vor und wird hier, zur weiteren Verwendung, in das
Parameterübergabe-Register $a1 kopiert:

Wie man sieht, liegt hier als Beispiel x = 12 in hexadezimaler Darstellung in $a1 vor.

Ebenso wird für die zweite Ganzzahl verfahren, sodass nach Ausführen obigen Codefragments y =
5 als Beispiel im Register $a2 vorliegt:

Da jetzt die Übergabe-Parameter bereitstehen, kann das � main Programm nun der Reihe nach die
Unterprogramme add, sub, mul und div aufrufen, die ihre Berechnungen ausführen und die
Ergebnisse ausgeben:

Der Aufruf eines Unterprogramms geschieht jeweils durch den jal: jump and link Befehl, der PC+4
im Register $ra speichert, sodass nach Rückkehr aus dem Unterprogramm mit dem nächsten Befehl
weitergemacht werden kann. In folgender Abbildung ist zu sehen, dass der pc vor Ausführung des
jal den Wert 0x00400038 enthält:

Ausgabe der zweiten Nachricht prompt2
li $v0, 4
la $a0, prompt2 # Adresse des zweiten Strings in $a0 laden
syscall

zweite Zahl einlesen und im Parameterübergabe-Register $a2 ablegen
li $v0, 5
syscall
move $a2, $v0

Aufrufe der Unterprogramme
jal add
jal sub
jal mul
jal div

Beschreibung der Simulation 13 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Dies ist gerade die Adresse genau dieses ersten Unterprogrammaufrufs jal add, was im MARS sehr
gut im Text Segment ersichtlich wird, wie folgender Bildausschnitt zeigt:

Würde nun jal den pc Inhalt sichern, also in Register $ra schreiben, dann würde der Rücksprung
wieder zum selben jal führen, und das Programm steckte in einer Endlosschleife fest. Entsprechend
schreibt jal die Adresse des nächsten Befehls, also hier pc+4 = 0x0040003C in $ra, sodass nach
Rückkehr direkt mit dem nächsten Befehl fortgefahren werden kann:

In pc steht nun also die Anfangsadresse des Unterprogramms, in diesem Fall ist das add, sodass als
nächstes die folgenden Codezeilen ausgeführt werden:

Ebenso wie Hauptprogramme können Unterprogramme einen .data und einen .text Teil haben.
Im .data Teil wird hier der String hinterlegt, der die Ausgabe der Summe begleiten soll (Zeile 50).
Im .text Teil wird die Addition vorgenommen (Zeile 53), der String (Zeilen 56-58) und schließlich
die Summe selbst ausgegeben (Zeilen 61-63). Wesentlich ist auch Zeile 66, da sie den Rücksprung
zur in $ra liegenden Adresse enthält. Durch eben diesen Rücksprung wird mit dem Aufruf des
Unterprogramms sub fortgefahren, das ebenso wie add seine Berechnung durchführt, das Ergebnis
ausgibt und zurück in das main Programm springt, wo daraufhin der Aufruf zum nächsten
Unterprogramm, also mul erfolgt. Die Unterprogramme mul und div werden wie in den
Simulationen 12 und 13 dieser Reihe ausgeführt und nach Rückkehr aus div bleibt in main nur
noch, das Programm zu beenden, was wie in den anderen Simulationen dieser Reihe Simulationen
mit dem MARS Simulator auch, über den Wert 10: terminate execution für den syscall passiert:

add:
.data

message_add: .asciiz "\nDas Ergebnis der Addition ist x + y = "
.text

Addition
add $t1, $a1, $a2

Ausgabe der Nachricht
li $v0, 4
la $a0, message_add
syscall

Ausgabe der Summe
li $v0, 1
move $a0, $t1
syscall

Rücksprung
jr $ra

Beschreibung der Simulation 13 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Die Ausgabe ist im Fenster Run I/O unterhalb des Data Segments im execute Fenster zu finden:

exit
li $v0, 10 # der Wert 10 für den syscall bedeutet: exit (terminate execution)
syscall

