Beschreibung der Simulation 17 aus der Reihe:
Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hagen

auf Grundlage des Kurstextes Computersysteme II

Das zugrundeliegende Programm:

Programm zur Veranschaulichung von Speicherzugriffen und Nutzung des Stacks

Wie im HowTo beschrieben, wird Simulationl7.asm im MARS gedftnet. Das Programm wandelt
fiir ein Feld von Bytes jeweils das obere Nibble und anschlieBend das untere Nibble in die

entsprechende ASCII-Darstellung um und speichert diese auf dem Stack.

.data
.byte 0x5d 0x18 0x2a 0x34 0x00

mask: .word OxF

Im .data Teil des Codes werden die Bytes sowie eine Maske hinterlegt.

Empfehlenswert ist es, nach dem Assemblieren Schritt fiir Schritt durch das Programm zu gehen,
das geschieht durch Klicks auf den ,,Run one step at a time* Button:

|06 @
—| Run one step at a time I—

Der .text Teil beginnt damit, die Adresse des soeben erzeugten Byte-Arrays in das Register $¢/ und

die Maske mask in das Register $¢2 zu schreiben:

text
ladt die Adresse des byte-Arrays in $tl

la $t1, in
Iw $t2, mask # ladt die Maske mask in $t2

Wichtig: In $¢/ liegt nun die Adresse von in, nicht die enthaltenen Bytes selbst, zu sehen an

folgenden Screenshots:

fse1 9 0x10010000
| st2 10 0x0000000£F
11 (AR e Calatalatatal

unter der in 8t/ gespeicherten Adresse Ox/0010000 finden wir im Data Segment des Execute

Fensters unsere Bytes:

Data Segment
Address Value (+0)
0x10010000 0x342a1854
0x10010020 0x00000000

Beschreibung der Simulation 17 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

@ FernUniversitat in Hagen

Dann wird das erste dieser Bytes in $¢3 geladen, die Zugriffsadresse inkrementiert und zu Marke
m2 gesprungen, falls das geladene Byte 0x00 ist, denn dann sind wir am Ende des Arrays

angekommen:
Ib $t3, ($t1) # 1adt ein Byte aus dem Byte-Array in $t3
addi $t1,$t1,1 # inkrementiert die Adresse, sodass bei erneutem Zugriff das nichste Byte geladen wird
beqz $t3, m2 # Beendet das Programm, wenn das geladene Byte = 0 ist

Wesentlich hier: der Befehl /b $¢3, ($¢t1) 1adt ein Byte des Eintrags, der unter der in $¢/
gespeicherten Adresse liegt, in diesem Fall also das Byte Ox5d. Es wird in $¢3 geschrieben und
dabei um das Vorzeichenbit erweitert.

1b $t3, (§tl)
addi stl.stl.l

lddt ein Byte aus dem Byte-Array in 5t3

ipkrementiert die Adresse, sodiss bel erpeptem Fucriff das pdchste B

bd1b $t1,-100(5t2)
1b £tl, (5t2)

sr1b 8tl1,-100

jalb $t1,100

arl 1B $t1,100000

34 1b $t1,100($t2)

1p 1B $tl1,100000 (5t2)
ad 1B $t1,lakel

pnlb $t1,label (5£2)
1b $tl1,1label+100000

1il1b $t1,1abel+100000 ($t2)

Load byte : Set $t1 to sign-extended 8-bit value from effective memory byte address
Load Byte : Set $t1 to sign-extended 8-bit value from effective memory byte address
Load Byte : Set $t1 to sign-extended 8-bit value from effective memory byte address |-
Load Byte : Set $t1 to sign-extended 8-bit value from effective memory byte address
Load Byte : Set $t1 to sign-extended 8-bit value from effective memory byte address | -
Load Byte : Set $t1 to sign-extended 8-bit value from effective memaory byte address
Load Byte : Set $t1 to sign-extended 8-bit value from effective memory byte address
Load Byte : Set $t1 to sign-extended 8-bit value from effective memory byte address
Load Byte : Set $t1 to sign-extended 8-bit value from effective memaory byte address
Load Byte : Set $t1 to sign-extended 8-bit value from effective memory byte address
Load Byte : Set $t1 to sign-extended 8-bit value from effective memory byte address

Solange $¢3 nicht gleich 0 ist, wird nicht zu m2 gesprungen, sondern mit Marke m/ fortgefahren.
In ml wird zuerst das obere Nibble des geladenen Bytes in die Marke m3 geschickt, dann das
untere. Das obere wird ausgewdhlt, indem der Inhalt von $#3 um 4 nach rechts geschoben und in

$t4 geschrieben wird:

T 11 0x00000054d
i s 1z 0x00000005
lsts 13 0x00000000

Das untere wird ausgewéhlt, indem der Inhalt von $t3 mit der Maske in $t2 UND-verkniipft wird:

5e3 11 0x0000005d
|sta 12 0x0000000d
II:"!—I.' 149 FeefAAAAAADC

ml: srl $t4, $t3, Ox4
jal m3
and $t4, $t3, $t2
jal m3
Ib $t3, ($t1)
addi $t1, $t1, 1
bnez $t3, m1

Schiebt den Inhalt von $t3 um 4 nach rechts und speichert das Ergebnis in $t4
Sprung zu m3 (Pc+4 wird in Register 31 = $ra gespeichert)

bitweise UND-Verkniipfung von $t3 und der Maske in $t2, Ergebnis in $t4

Sprung zu m3 (PC+4 wird in Register 31 = $ra gespeichert)

Nachstes Byte aus dem Array laden

Adresse inkrementieren

Sprung zu m1, falls das geladene Byte ungleich 0 ist

Beschreibung der Simulation 17 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hagen

auf Grundlage des Kurstextes Computersysteme II

Die Marke m3 addiert erst 30,5 zum Nibble, denn ab hier sind in der ASCII-Tabelle die Zeichen fiir
0-9 Stelle 489-5710) hinterlegt, speichert diese Summe in $£5 und fragt dann ab, ob das Nibble > /0
ist. Falls ja, miissen erneut 7 addiert werden, um auf die Zeichen 'A' bis 'F' (Stelle 65,0-7019) zu
verweisen:

m3: addi $t5,$t4,0x30 # 0x30 wird addiert, hier sind die ASCII-Zeichen ab '0' hinterlegt
slti $t6,$t4,0xA # falls das aktuelle Nibble > 10 ist, wird 0x7 addiert, um auf die Zeichen
bnez $t6,m4 #'A' bis 'F' zu verweisen, sonst weiter mit Marke m4

addi $t5,$t5,0x7

Es folgt die Marke m4, in der der Wert, der in m3 ermittelt und in $z5 geschrieben wurde, auf dem
Stack gesichert wird:

mé4: addi $sp, $sp, -4 # Pradekrement des Stackpointers
sb $t5, ($sp) # Sichern von $t5 auf dem Stack
jr $ra # Riicksprung

Sind alle Bytes geladen und ihre ASCII-Darstellung auf dem Stack gespeichert, sieht das
folgendermallen aus:

Data Segment

Address Value (+0) Value (+4) | Value (+8) Value (+c) Walue (+10) Value (+14) Value (+18) Value (+1c)
0x7£ffefc0| 0x00000000] 0x000000Q8e U000 (00 ey, 0x00000000] 0x00000000] 0x00000000 0x00000000] 0x00000034|~

0x00000033 ﬂxﬂﬂﬂﬂﬂg% 0x00000032)ﬂxl’Jﬂl’Jl’Jﬂl’JSS 0x00000031 0x00000044 0x00000035 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

Als Beispiel, hier rot markiert, die 32,5 = 50,,. In der ASCII-Tabelle steht an Stelle 50 eben die 2,
das obere Nibble des dritten Bytes Ox2a unseres Arrays.

Was nun noch bleibt, ist wie bei den anderen Simulationen dieser Reihe auch, das Beenden des
Programms durch den Wert 10 (terminate execution) fir den syscall. Erreicht wird dieses
Codefragment durch den Sprung in die Marke m2, nachdem 0x00 in $¢3 geladen wurde:

m2: li $v0, 10 # exit
syscall

Dieses Programm war urspriinglich in DLX-Assembler verfasst und diente erst als Klausur- spéter
dann als Einsendeaufgabe. Es wurde iibersetzt und leicht modifiziert, um dieser Reihe Simulationen
mit dem MARS Simulator als Beispielaufgabe anzugehoren.

