
Beschreibung der Simulation 17 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Das zugrundeliegende Programm:

Programm zur Veranschaulichung von Speicherzugriffen und Nutzung des Stacks

Wie im HowTo beschrieben, wird Simulation17.asm im MARS geöffnet. Das Programm wandelt
für ein Feld von Bytes jeweils das obere Nibble und anschließend das untere Nibble in die
entsprechende ASCII-Darstellung um und speichert diese auf dem Stack.

Im .data Teil des Codes werden die Bytes sowie eine Maske hinterlegt.

Empfehlenswert ist es, nach dem Assemblieren Schritt für Schritt durch das Programm zu gehen,
das geschieht durch Klicks auf den „Run one step at a time“ Button:

Der .text Teil beginnt damit, die Adresse des soeben erzeugten Byte-Arrays in das Register $t1 und
die Maske mask in das Register $t2 zu schreiben:

Wichtig: In $t1 liegt nun die Adresse von in, nicht die enthaltenen Bytes selbst, zu sehen an
folgenden Screenshots:

unter der in $t1 gespeicherten Adresse 0x10010000 finden wir im Data Segment des Execute
Fensters unsere Bytes:

.data
in: .byte 0x5d 0x18 0x2a 0x34 0x00
mask: .word 0xF

.text
la $t1, in # lädt die Adresse des byte-Arrays in $t1
lw $t2, mask # lädt die Maske mask in $t2

Beschreibung der Simulation 17 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Dann wird das erste dieser Bytes in $t3 geladen, die Zugriffsadresse inkrementiert und zu Marke
m2 gesprungen, falls das geladene Byte 0x00 ist, denn dann sind wir am Ende des Arrays
angekommen:

Wesentlich hier: der Befehl lb $t3, ($t1) lädt ein Byte des Eintrags, der unter der in $t1
gespeicherten Adresse liegt, in diesem Fall also das Byte 0x5d. Es wird in $t3 geschrieben und
dabei um das Vorzeichenbit erweitert.

Solange $t3 nicht gleich 0 ist, wird nicht zu m2 gesprungen, sondern mit Marke m1 fortgefahren.
In m1 wird zuerst das obere Nibble des geladenen Bytes in die Marke m3 geschickt, dann das
untere. Das obere wird ausgewählt, indem der Inhalt von $t3 um 4 nach rechts geschoben und in
$t4 geschrieben wird:

Das untere wird ausgewählt, indem der Inhalt von $t3 mit der Maske in $t2 UND-verknüpft wird:

lb $t3, ($t1) # lädt ein Byte aus dem Byte-Array in $t3
addi $t1,$t1,1 # inkrementiert die Adresse, sodass bei erneutem Zugriff das nächste Byte geladen wird
beqz $t3, m2 # Beendet das Programm, wenn das geladene Byte = 0 ist

m1: srl $t4, $t3, 0x4 # Schiebt den Inhalt von $t3 um 4 nach rechts und speichert das Ergebnis in $t4
jal m3 # Sprung zu m3 (Pc+4 wird in Register 31 = $ra gespeichert)
and $t4, $t3, $t2 # bitweise UND-Verknüpfung von $t3 und der Maske in $t2, Ergebnis in $t4
jal m3 # Sprung zu m3 (PC+4 wird in Register 31 = $ra gespeichert)
lb $t3, ($t1) # Nächstes Byte aus dem Array laden
addi $t1, $t1, 1 # Adresse inkrementieren
bnez $t3, m1 # Sprung zu m1, falls das geladene Byte ungleich 0 ist

Beschreibung der Simulation 17 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Die Marke m3 addiert erst 3016 zum Nibble, denn ab hier sind in der ASCII-Tabelle die Zeichen für
0-9 Stelle 4810-5710) hinterlegt, speichert diese Summe in $t5 und fragt dann ab, ob das Nibble > 10
ist. Falls ja, müssen erneut 7 addiert werden, um auf die Zeichen 'A' bis 'F' (Stelle 6510-7010) zu
verweisen:

Es folgt die Marke m4, in der der Wert, der in m3 ermittelt und in $t5 geschrieben wurde, auf dem
Stack gesichert wird:

Sind alle Bytes geladen und ihre ASCII-Darstellung auf dem Stack gespeichert, sieht das
folgendermaßen aus:

Als Beispiel, hier rot markiert, die 3216 = 5010. In der ASCII-Tabelle steht an Stelle 50 eben die 2,
das obere Nibble des dritten Bytes 0x2a unseres Arrays.

Was nun noch bleibt, ist wie bei den anderen Simulationen dieser Reihe auch, das Beenden des
Programms durch den Wert 10 (terminate execution) für den syscall. Erreicht wird dieses
Codefragment durch den Sprung in die Marke m2, nachdem 0x00 in $t3 geladen wurde:

Dieses Programm war ursprünglich in DLX-Assembler verfasst und diente erst als Klausur- später
dann als Einsendeaufgabe. Es wurde übersetzt und leicht modifiziert, um dieser Reihe Simulationen
mit dem MARS Simulator als Beispielaufgabe anzugehören.

m2: li $v0, 10 # exit
syscall

m3: addi $t5,$t4,0x30 # 0x30 wird addiert, hier sind die ASCII-Zeichen ab '0' hinterlegt
slti $t6,$t4,0xA # falls das aktuelle Nibble > 10 ist, wird 0x7 addiert, um auf die Zeichen
bnez $t6,m4 # 'A' bis 'F' zu verweisen, sonst weiter mit Marke m4
addi $t5,$t5,0x7

m4: addi $sp, $sp, -4 # Prädekrement des Stackpointers
sb $t5, ($sp) # Sichern von $t5 auf dem Stack
jr $ra # Rücksprung

