
Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 1

Chapter 1

Boolean Logic

From Nand to Tetris
Building a Modern Computer from First Principles

These slides support chapter 1 of the book
The Elements of Computing Systems

(1st and 2nd editions)
By Noam Nisan and Shimon Schocken

MIT Press

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 2

Practice

• Logic gates

• HDL

• Hardware simulation

• Multi-bit buses

Theory

• Basic concepts

• Boolean algebra

• Boolean functions

• Nand

Chapter 1: Boolean logic

Project 1

• Introduction

• Chips

• Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 3

Practice

• Logic gates

• HDL

• Hardware simulation

• Multi-bit buses

Theory

• Basic concepts

• Boolean algebra

• Boolean functions

• Nand

Chapter 1: Boolean logic

Project 1

• Introduction

• Chips

• Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 4

Boolean values

George Boole
1815 - 1864

• Boolean / binary values: 0, 1

• Boolean / binary variable: holds a 0, or a 1

no

yes

false

true

0

1

off

on

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 5

Boolean values

b0b1
• 1 binary variable: 2 possible states

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 6

Boolean values

b0b1
• 1 binary variable: 2 possible states

• 2 binary variables: 4 possible states

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 7

Boolean values

b2 b0b1...

• 1 binary variable: 2 possible states

• 2 binary variables: 4 possible states

• 3 binary variables: 8 possible states

• ...

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 8

Boolean values

b2 b0b1
• 1 binary variable: 2 possible states

• 2 binary variables: 4 possible states

• 3 binary variables: 8 possible states

• ...

Question: How many different states can be
represented by N binary variables?

...

Answer: 2N

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 9

Boolean functions

x y f
0 0 0

0 1 0

1 0 0

1 1 1

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 10

Boolean functions

x y f
0 0 0

0 1 0

1 0 0

1 1 1

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 11

Boolean functions

x y f
0 0 0

0 1 0

1 0 0

1 1 1

f
x

f(x ,y)
y

f(x,y) =
1 when x == 1 and y == 1

0 otherwise

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 12

Boolean functions

x y And
0 0 0

0 1 0

1 0 0

1 1 1

And
x

And(x,y)
y

And(x,y) =

Boolean function (like And(x ,y)):
A function that operates on boolean variables, and returns a boolean value.

Boolean operator (like x And y):
A simple boolean function that operates on a few boolean variables, called operands.

1 when x == 1 and y == 1

0 otherwise

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 13

Boolean functions

Answer: 16
N binary variables span 2!!

Boolean functions.

x y And
0 0 0

0 1 0

1 0 0

1 1 1

x y Or
0 0 0

0 1 1

1 0 1

1 1 1

x And y x Or y

...
x y Xor
0 0 0

0 1 1

1 0 1

1 1 0

x Xor y

x y Nand
0 0 1

0 1 1

1 0 1

1 1 0

x Nand y

Question:
How many Boolean functions
x f y exist over two binary
(2-valued) variables?

x y f
0 0 v1
0 1 v2
1 0 v3
1 1 v4

x f y

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 14

Boolean functions

Not(0 Or (1 And 1)) =
Not(0 Or 1) =
Not(1) =
0

Boolean function evaluation (example):

Not(x Or (y And z)) Evaluate this function for, say,
x = 0, y = 1, z = 1

y Not
0 1

1 0

Not(x)

x y And
0 0 0

0 1 0

1 0 0

1 1 1

x y Or
0 0 0

0 1 1

1 0 1

1 1 1

x And y x Or y

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 15

Chapter 1: Boolean logic

Theory

• Basic concepts

• Boolean algebra

• Boolean functions

• Nand

Practice

• Logic gates

• HDL

• Hardware simulation

• Multi-bit buses

Project 1

• Introduction

• Chips

• Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 16

Some Boolean identities

Commutative: x And y = y And x
x Or y = y Or x

Associative: x And (y And z) = (x And y) And z
x Or (y Or z) = (x Or y) Or z

Distributive: x And (y Or z) = (x And y) Or (x And z)
x Or (y And z)) = (x Or y) And (x Or z)

De Morgan: Not(x And y) = Not(x) Or Not(y)
Not(x Or y) = Not(x) And Not(y)

Idempotent: x And x = x
x Or x = x

Double negation: Not(Not(x)) = x

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 17

Some Boolean identities

Commutative: x And y = y And x
x Or y = y Or x

Associative: x And (y And z) = (x And y) And z
x Or (y Or z) = (x Or y) Or z

Distributive: x And (y Or z) = (x And y) Or (x And z)
x Or (y And z)) = (x Or y) And (x Or z)

De Morgan: Not(x And y) = Not(x) Or Not(y)
Not(x Or y) = Not(x) And Not(y)

Idempotent: x And x = x
x Or x = x

Double negation: Not(Not(x)) = x

For example, let’s
prove this identity

All these identities can be
easily proved from the
function definitions of
And, Or, Not

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 18

Boolean algebra

Prove
Not(x And y) = Not(x) Or Not(y)

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 19

Boolean algebra

Prove
Not(x And y) = Not(x) Or Not(y)

x y f
0 0 1

0 1 1

1 0 1

1 1 0

f (x ,y) = Not(xAnd y)

x y g
0 0 1

0 1 1

1 0 1

1 1 0

g (x ,y) = Not(x) Or Not(y)

Proof: Fill in the right column in both truth tables.
If f = g, the identity is proved.

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 20

Boolean algebra

Commutative: x And y = y And x
x Or y = y Or x

Associative: x And (y And z) = (x And y) And z
x Or (y Or z) = (x Or y) Or z

Distributive: x And (y Or z) = (x And y) Or (x And z)
x Or (y And z)) = (x Or y) And (x Or z)

De Morgan: Not(x And y) = Not(x) Or Not(y)
Not(x Or y) = Not(x) And Not(y)

Idempotent: x And x = x
x Or x = x

Double negation: Not(Not(x)) = x

Substitution:

In any such identity, x and y
can be substituted with any
boolean function

Not(Not(a)) = a

Not(Not(u Or v)) = u Or v

Etc.

Substitution examples:

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 21

Boolean algebra

Commutative: x And y = y And x
x Or y = y Or x

Associative: x And (y And z) = (x And y) And z
x Or (y Or z) = (x Or y) Or z

Distributive: x And (y Or z) = (x And y) Or (x And z)
x Or (y And z)) = (x Or y) And (x Or z)

De Morgan: Not(x And y) = Not(x) Or Not(y)
Not(x Or y) = Not(x) And Not(y)

Idempotent: x And x = x
x Or x = x

Double negation: Not(Not(x)) = x

Not(Not(x) And Not(x Or y)) =

Not(Not(x) And (Not(x) And Not(y))) =

Not((Not(x) And Not(x)) And Not(y)) =

Not(Not(x) And Not(y)) =

Not(Not(x Or y)) =

x Or y

By De Morgan’s rule:

Task: Simplify this function (example):

By the associative rule:

By the idempotent rule:

By De Morgan’s rule:

By double negation:

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 22

Boolean algebra

Not(Not(x) And Not(x Or y)) =

Not(Not(x) And (Not(x) And Not(y))) =

Not((Not(x) And Not(x)) And Not(y)) =

Not(Not(x) And Not(y)) =

Not(Not(x Or y)) =

x Or y

By De Morgan’s rule:

Task: Simplify this function (example):

By the associative rule:

By the idempotent rule:

By De Morgan’s rule:

By double negation:

Observations about simplifying
Boolean functions:

• Can lead to significant optimization

• Based on intuition, experience, and luck

• Can be assisted by some tools

• But, in general: NP-hard.

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 23

Boolean algebra

Commutative: (xAnd y) = (yAnd x)
(x Or y) = (y Or x)

Associative: (xAnd (yAnd z)) = ((xAnd y) And z)
(x Or (y Or z)) = ((x Or y) Or z)

Distributive: (xAnd (y Or z)) = (xAnd y) Or (xAnd z)
(x Or (yAnd z)) = (x Or y) And (x Or z)

De Morgan: Not(xAnd y) = Not(x) Or Not(y)
Not(x Or y) = Not(x) And Not(y)

Idempotent: (xAnd x) = x
(x Or x) = x

Double negation: Not(Not(x)) = x

x Or y = Not(Not(x) And Not(y))

De Morgan:

Not(x Or y) = Not(x) And Not(y)

Negate both sides:

Not(Not(x Or y)) = Not(Not(x) And Not(y))

By double negation:

x Or y = Not(Not(x) And Not(y))

Another example: Prove that

Implication
• We don’t really “need” Or
• We will soon revisit this reduction

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 24

Chapter 1: Boolean logic

Theory

• Basic concepts

• Boolean algebra

• Boolean functions

• Nand

Practice

• Logic gates

• HDL

• Hardware simulation

• Multi-bit buses

Project 1

• Introduction

• Chips

• Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 25

A Boolean function can be expressed using
a formula, or a truth table

The two representations are equivalent

Question: Can we construct each representation
from the other one?

Boolean function

x y z f
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Formula (example)

Truth table

f(x, y, z) = (x And (Not(y) Or z)) And y

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 26

f(x, y, z) = (x And (Not(y) Or z)) And y

Formula

Formula truth table

x y z f
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Truth table

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 27

f(x, y, z) = (x And (Not(y) Or z)) And y

x y z f
0 0 0 0

0 0 1 0

0 1 0

0 1 1

1 0 0 0

1 0 1 0

1 1 0

1 1 1

f

Formula

Truth table

Formula truth table

When y = 0, f must be 0

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 28

x y z f
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0

1 1 1

f

Truth table

f(x, y, z) = (x And (Not(y) Or z)) And y

Formula

Formula truth table

When y = 0, f must be 0

When x = 0, f must be 0

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 29

x y z f
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

f

Truth table

(1 And (Not(1) Or 0)) And 1 = 1

When y = 0, f must be 0

(1 And (Not(1) Or 1)) And 1 = 1

f(x, y, z) = (x And (Not(y) Or z)) And y

Formula

Formula truth table

When x = 0, f must be 0

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 30

f(x, y, z) = (x And (Not(y) Or z)) And y

x y z f
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Formula

Truth table
Lemma
Given a Boolean function expressed as a formula,
we can always construct from it its truth table.

?

Formula truth table

Proof: Evaluate the function over all the possible values
of its variables (which is the definition of a truth table)

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 31

f(x, y, z) = (x And (Not(y) Or z)) And y

x y z f
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Formula

Truth table ?

Can we also go the other way around,
for any given truth table?

?

Boolean function synthesis: Truth table formula

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 32

Boolean function synthesis: Truth table formula

x y z f
0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

Goal: Synthesize a formula which is
equivalent to this truth table

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 33

Boolean function synthesis

x y z f f1 f3 f5
0 0 0 1 1 0 0

0 0 1 0 0 0 0

0 1 0 1 0 1 0

0 1 1 0 0 0 0

1 0 0 1 0 0 1

1 0 1 0 0 0 0

1 1 0 0 0 0 0

1 1 1 0 0 0 0

Not(x) And Not(y) And Not(z)

Not(x) And y And Not(z)

x And Not(y) And Not(z)

(

(

(

Or

Or

)

)

)

1. Focus on the rows where f = 1
2. For each such row i, define a function fi which equals 1 in row i and 0 elsewhere.

Define fi to be a conjunction of all of f’s variables or their negations, as the variable
is 1 or 0 in the i’th row

3. Define f to be the disjunction of all these conjunctions

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 34

Boolean function synthesis

x y z f
0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

Not(x) And Not(y) And Not(z)

Not(x) And y And Not(z)

x And Not(y) And Not(z)

(

(

(

Or

Or

)

)

)

Not(z) And (Not(x) Or Not(y)) (following
simplification)

1. Focus on the rows where f = 1
2. For each such row i, define a function fi which equals 1 in row i and 0 elsewhere.

Define fi to be a conjunction of all of f’s variables or their negations, as the variable
is 1 or 0 in the i’th row

3. Define f to be the disjunction of all these conjunctions

Disjunctive
Normal
Form (DNF)

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 35

Boolean function synthesis

x y z f
0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

Theorem
Any boolean function can be represented as a formula containing
only the operators And, Or, Not

Proof: Construct the function’s truth table, then use the truth table to
construct the DNF (which, by definition, uses only And, Or, Not).

Lemma
Given a boolean function expressed as a truth table, we can
always synthesize a formula that expresses that function
Proof: Use the truth table to construct the DNF (which is a formula)

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 36

Chapter 1: Boolean logic

Theory

• Basic concepts

• Boolean algebra

• Boolean functions

• Nand

Practice

• Logic gates

• HDL

• Hardware simulation

• Multi-bit buses

Project 1

• Introduction

• Chips

• Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 37

The expressive power of Nand

Observations

• Not(x) = x Nand x

In other words:

• Not can be realized using Nand
• x And y = Not(x Nand y) • And can be realized using Nand

• x Or y = Not(Not(x) And Not(y))
• (De Morgan)

• Or can be realized using Nand

Proof : Any Boolean function can be expressed using Not, And, and Or (DNF).
Combined with the above observations, we get the theorem.

Theorem: Any Boolean function can be realized using only Nand.

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 38

The expressive power of Nand

Theorem: Any Boolean function can be realized using only Nand.

OK, so we can build a computer from Nand gates only.

But how can we actually do it?

That’s what the Nand to Tetris course is all about!

Computers:
Machines that realize
Boolean functions:
f (input bits) = output bits

Conclusion: Any computer can be built from Nand gates only:

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 39

Practice

• Logic gates

• HDL

• Hardware simulation

• Multi-bit buses

Theory

• Basic concepts

• Boolean algebra

• Boolean functions

• Nand

Chapter 1: Boolean logic

Project 1

• Introduction

• Chips

• Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 40

Practice

• Logic gates

• HDL

• Hardware simulation

• Multi-bit buses

Theory

• Basic concepts

• Boolean algebra

• Boolean functions

• Nand

Chapter 1: Boolean logic

Project 1

• Introduction

• Chips

• Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 41

Logic gates

• Elementary gates (Nand, And, Or, Not, …)

• Composite gates (Mux, Adder, …)

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 42

Elementary gates

if (a==1 or b==1)
then out=1 else out=0

if (in==0)
then out=1 else out=0

if (a==1 and b==1)
then out=1 else out=0

And

if (a==1 and b==1)
then out=0 else out=1

Why focus on these particular gates?
• Because either {Nand} or {And, Or, Not} (as well as other subsets)

can be used to span any given Boolean function
• Because they have efficient hardware implementations.

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 43

Elementary gates

if (a==1 and b==1)
then out=1 else out=0

And

And circuit

if (a==1 or b==1)
then out=1 else out=0

Or circuit

Circuit implementations:

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 44

Composite gates

if (a==1 and b==1 and c==1)
then out=1 else out=0

And3

Possible implementations:
Physical Logical

• This course does not deal with physical implementations
• (circuits, transistors, relays... that’s EE, not CS)

• We focus only on logical implementations

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 45

Chapter 1: Boolean logic

Practice

• Logic gates

• HDL

• Hardware simulation

• Multi-bit buses

Theory

• Basic concepts

• Boolean algebra

• Boolean functions

• Nand

Project 1

• Introduction

• Chips

• Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 46

Building a chip

The process

• Design the chip architecture

• Specify the architecture in HDL

• Test the chip in a hardware simulator

• Optimize the design

• Realize the optimized design in silicon.

?Xor
a

b
out

if ((a == 0 and b == 1) or (a == 1 and b == 0))
sets out = 1

else
sets out = 0

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 47

Building a chip

The process

ü Design the chip architecture

ü Specify the architecture in HDL

ü Test the chip in a hardware simulator

• Optimize the design

• Realize the optimized design in silicon.

?

if ((a == 0 and b == 1) or (a == 1 and b == 0))
sets out = 1

else
sets out = 0

Xor
a

b
out

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 48

Design: Requirements

a b out

0 0 0

0 1 1

1 0 1

1 1 0

Requirement
Build a chip that
delivers this
functionalityif ((a == 0 and b == 1) or (a == 1 and b == 0))

sets out = 1
else

sets out = 1

Gate Interface
Expressed as an
HDL stub file

/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {

IN a, b;
OUT out;

PARTS:
// Missing implementation

Xor
a

b
out

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 49

Design: Implementation

/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {

IN a, b;
OUT out;

PARTS:
// Missing implementation

Gate Interface
Expressed as an
HDL stub file

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 50

Design: Implementation

/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {

IN a, b;
OUT out;

PARTS:
// Missing implementation

a

Not

Not

And

And

Or

b

out
nota

notb
aAndNotb

notaAndb

out

b

a

b

a

in

in

out

out

out

out

b

a

Gate diagram

Gate Interface
Expressed as an
HDL stub file

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 51

Design: Implementation

/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);

}

a

Not

Not

And

And

Or

b

out
nota

notb
aAndNotb

notaAndb

out

b

a

b

a

in

in

out

out

out

out

b

a

Practice: Complete the
missing HDL code

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 52

Design: Implementation

/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

a

Not

Not

And

And

Or

b

out
nota

notb
aAndNotb

notaAndb

out

b

a

b

a

in

in

out

out

out

out

b

a

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 53

Interface / Implementation

/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

a

Not

Not

And

And

Or

b

out
nota

notb
aAndNotb

notaAndb

out

b

a

b

a

in

in

out

out

out

out

b

a

gate
interface

gate
Implement

-ation

A logic gate has:
• One interface
• Many possible

implementations

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 54

Hardware description languages

/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

Observations:

• HDL is a functional / declarative language

• An HDL program can be viewed as a textual specification of a chip diagram

• The order of HDL statements is insignificant.

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 55

Hardware description languages

/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

Common HDLs
• VHDL
• Verilog
• …

Our HDL
• Similar in spirit to other HDLs
• Minimal and simple
• Provides all you need for this course

Our HDL Guide / Documentation:
The Elements of Computing Systems / Appendix 2: HDL

https://drive.google.com/file/d/1dPj4XNby9iuAs-47U9k3xtYy9hJ-ET0T/view

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 56

Chapter 1: Boolean logic

Practice

• Logic gates

• HDL

• Hardware simulation

• Multi-bit buses

Theory

• Basic concepts

• Boolean algebra

• Boolean functions

• Nand

Project 1

• Introduction

• Chips

• Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 57

Hardware simulation in a nutshell

CHIP Xor {
IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

HDL code

simulate

hardware
simulator

Simulation options

• Interactive

• Script-based.

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 58

Interactive simulation

1. Load an
HDL program

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 59

Interactive simulation

HDL code

2. manipulate
input pins

4. inspect
output pins

5. inspect
internal pins

3. evaluate the
chip logic1. Load an

HDL program

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 60

Hardware simulation in a nutshell

CHIP Xor {
IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

HDL code

simulate

hardware
simulator

Simulation options

• Interactive

• Script-based.

load Xor.hdl,
output-file And.out,
output-list a b out;
set a 0, set b 0, eval, output;
set a 0, set b 1, eval, output;
set a 1, set b 0, eval, output;
set a 1, set b 1, eval, output;

test script

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 61

Script-based simulation
Xor.tst

load Xor.hdl;
set a 0, set b 0, eval;
set a 0, set b 1, eval;
set a 1, set b 0, eval;
set a 1, set b 1, eval;

test script = sequence of
commands to the simulator

Benefits:

• “Automatic” testing

• Replicable testing.

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 62

Script-based simulation, with an output file

The logic of a typical test script
• Initialize:

q Loads an HDL file
q Creates an empty output file
q Lists the names of the pins whose

values will be written to the output file
• Repeat:

q set – eval - output

a	b	out
0	0	0
0	1	1
1	0	1
1	1	0

Xor.out

Output File, created
by the test script,
as a side-effect of the
simulation process

load Xor.hdl,
output-file Xor.out,
output-list a b out;
set a 0, set b 0, eval, output;
set a 0, set b 1, eval, output;
set a 1, set b 0, eval, output;
set a 1, set b 1, eval, output;

Xor.tst

test
script

tested
chip

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 63

Script-based simulation

HDL
code

test
script

inspect the
output file2. run

the script 1. Load a
test script

a	b	out
0	0	0
0	1	1
1	0	1
1	1	0

Xor.out

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 64

Script-based simulation, with a compare file

Simulation-with-compare-file logic

• When each output command is executed,
the outputted line is compared to the
corresponding line in the compare file

• If the two lines are not the same, the
simulator throws a comparison error.

load Xor.hdl,
output-file Xor.out,
compare-to Xor.cmp,
output-list a b out;
set a 0, set b 0, eval, output;
set a 0, set b 1, eval, output;
set a 1, set b 0, eval, output;
set a 1, set b 1, eval, output;

Xor.tst

CHIP Xor {
IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

Xor.hdl

a	b	out
0	0	0
0	1	1
1	0	1
1	1	0

Xor.out

a	b	out
0	0	0
0	1	1
1	0	1
1	1	0

Xor.cmp

compare

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 65

Script-based simulation, with a compare file

Demos:

load Xor.hdl,
output-file Xor.out,
compare-to Xor.cmp,
output-list a b out;
set a 0, set b 0, eval, output;
set a 0, set b 1, eval, output;
set a 1, set b 0, eval, output;
set a 1, set b 1, eval, output;

Xor.tst

CHIP Xor {
IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

Xor.hdl

a	b	out
0	0	0
0	1	1
1	0	1
1	1	0

Xor.out

a	b	out
0	0	0
0	1	1
1	0	1
1	1	0

Xor.cmp

compare
Experimenting with Built-In Chips

Building and Testing HDL-based Chips

Script-Based Chip Testing

https://www.youtube.com/watch?v=FW6Z_Xp2v-c
https://www.youtube.com/watch?v=iSNfqzJUWW4
https://www.youtube.com/watch?v=d0X0dMMUt1U

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 66

Chapter 1: Boolean logic

Practice

• Logic gates

• HDL

• Hardware simulation

• Multi-bit buses

Theory

• Basic concepts

• Boolean algebra

• Boolean functions

• Nand

Project 1

• Introduction

• Chips

• Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 67

Multi-bit bus

LSB = Least
significant bit

MSB = Most
significant bit

13 1215 14 9 811 10 5 47 6 1 03 2

Example: 16-bit bus

0 01 0 0 01 0 0 11 1 0 11 1

• Sometimes we wish to manipulate a sequence of bits as a single entity

• Such a multi-bit entity is termed “bus”

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 68

Working with buses: Example

/* Adds two 16-bit values. */
CHIP Adder {

IN a[16], b[16];
OUT out[16];

PARTS:
...

}
/* Adds three 16-bit inputs. */
CHIP Adder3Way {

IN a[16], b[16], c[16];
OUT out[16];

PARTS:
Adder(a=a , b=b, out=ab);
Adder(a=ab, b=c, out=out);

}out: 0. . . 1 1

a:
1 0

1

15 . . .

. . . 1 1

b: 0. . .0 1

c: 1. . .0 0

out
a

16

16-bit
adder

b
16

16

n-bit value (bus) can be
treated as a single entity

Creates an internal
bus pin (ab)

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 69

/* Returns 1 if a==1 and b==1,
0 otherwise. */

CHIP And {
IN a, b;
OUT out;
...

}

Working with individual bits within buses

/* 4-way And: Ands 4 bits. */
CHIP And4Way {

IN a[4];
OUT out;

PARTS:
And(a=a[0], b=a[1], out=and01);
And(a=and01, b=a[2], out=and012);
And(a=and012, b=a[3], out=out);

}

Input bus pins can
be subscripted.

a:
1 0

1

3 2

10 1

out: 0

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 70

/* Returns 1 if a==1 and b==1,
0 otherwise. */

CHIP And {
IN a, b;
OUT out;
...

}

Working with individual bits within buses

/* Bit-wise And of two 4-bit inputs */
CHIP And4 {

IN a[4], b[4];
OUT out[4];

PARTS:
And(a=a[0], b=b[0], out=out[0]);
And(a=a[1], b=b[1], out=out[1]);
And(a=a[2], b=b[2], out=out[2]);
And(a=a[3], b=b[3], out=out[3]);

}

Output bus pins
can be subscripted

a:
1 0

1
3 2

10 0

b: 100 1

out: 100 0

/* 4-way And: Ands 4 bits. */
CHIP And4Way {

IN a[4];
OUT out;

PARTS:
And(a=a[0], b=a[1], out=and01);
And(a=and01, b=a[2], out=and012);
And(a=and012, b=a[3], out=out);

}

Input bus pins can
be subscripted.

a:
1 0

1

3 2

10 1

out: 0

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 71

Chapter 1: Boolean logic

Practice

• Logic gates

• HDL

• Hardware simulation

• Multi-bit buses

Theory

• Basic concepts

• Boolean algebra

• Boolean functions

• Nand

Project 1

• Introduction

• Chips

• Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 72

Chapter 1: Boolean logic

Practice

• Logic gates

• HDL

• Hardware simulation

• Multi-bit buses

Theory

• Basic concepts

• Boolean algebra

• Boolean functions

• Nand

Project 1

• Introduction

• Chips

• Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 73

Built-in chips
We provide built-in versions of the chips built in this course (in tools/builtInChips).
For example:

/** Sets out to a Xor b */
CHIP Xor {

IN a, b;
OUT out;

BUILTIN Xor;
// implemented by a Xor.java class.

}

Xor.hdl

Behavioral simulation
• Before building a chip in HDL, one can implement the chip logic in a high-level language
• Enables experimenting with / testing the chip abstraction before actually building it

• Enables high-level planning and testing of hardware architectures.

/** Sets out to a Xor b */
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

Xor.hdl

A built-in chip has the same interface
as the regular chip, but a different
implementation

Demo: Loading and testing a built-in chip in the hardrawe simulator

Implemented
in Java

Implemented
in HDL

https://www.youtube.com/watch?v=FW6Z_Xp2v-c

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 74

Hardware construction projects

Key players:
• Architect:

q Decides which chips are needed
q Specifies the chips

• Developers:
q Build / test the chips

In Nand to Tetris:
The architect is the course instructor; the developers are the students

For each chip, the architect supplies:

q Built-in chip
q Chip API (skeletal HDL program = stub file)
q Test script
q Compare file

Given these resources, the developers (students) build the chips.

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 75

The developer’s view (of, say, a Xor gate)

These files specify:
• The chip interface (.hdl)
• How the chip is supposed to behave (.cmp)
• How to test the chip (.tst)

The developer’s task:
Implement the chip (complete the supplied .hdl file),
using these resources.

load Xor.hdl,
output-file Xor.out,
compare-to Xor.cmp
output-list a b out;
set a 0, set b 0, eval, output;
set a 0, set b 1, eval, output;
set a 1, set b 0, eval, output;
set a 1, set b 1, eval, output;

Xor.tst

test
script

/** Sets out to a Xor b */
CHIP Xor {

IN a, b;
OUT out;

PARTS:
// Implementation missing

}

Xor.hdl

stub
file

a	b	out
0	0	0
0	1	1
1	0	1
1	1	0

Xor.cmpcompare
file

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 76

hardware platform

computer

abstraction

ALU, RAM

abstraction

elementary
logic gates

abstraction

Nand

Building
gates

Building
chips

Building a
computer

Nand to Tetris Roadmap (Part I: Hardware)

abstraction

assembler

machine
language

p1

p2

p3

p4

p5

p6

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 77

hardware platform

computer

abstraction

ALU, RAM

abstraction

elementary
logic gates

abstraction

Nand

Building
gates

Building
chips

Building a
computer

Project 1

abstraction

assembler

machine
language

p1

p2

p3

p4

p5

p6

Project 1
Build 15 elementary logic gates

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 78

Project 1

Why these 15 particular gates?

• Commonly used gates

• Comprise all the elementary logic gates needed to build our computer.

Given: Nand

Goal: Build the following gates:

Elementary
logic gates
q Not

q And

q Or

q Xor

q Mux

q DMux

q Or8Way

q Mux4Way16

q Mux8Way16

q DMux4Way

q DMux8Way

Multi-way
variants

q Not16

q And16

q Or16

q Mux16

16-bit
variants

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 79

Project 1

Elementary
logic gates
q Not

q And

q Or

q Xor

q Mux

q DMux

q Or8Way

q Mux4Way16

q Mux8Way16

q DMux4Way

q DMux8Way

Multi-way
variants

q Not16

q And16

q Or16

q Mux16

16-bit
variants

Given: Nand

Goal: Build the following gates:

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 80

Multiplexor / Demultiplexor

Widely used in:

• Hardware design

• Communications networks.

if (sel == 0)
out = a

else
out = b

if (sel == 0)
{a, b} = {in, 0}

else
{a, b} = {0, in}

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 81

Example 1: Using Mux logic to build a programmable gate

When sel == 0
the gate acts like an And gate

CHIP AndMuxOr {
IN a, b, sel;
OUT out;

PARTS:
And (a=a, b=b, out=andOut);
Or (a=a, b=b, out=orOut);
Mux (a=andOut, b=orOut, sel=sel, out=out);

}

Mux.hdl

a b sel out

0 0 0 0

0 1 0 0

1 0 0 1

1 1 0 1

0 0 1 0

0 1 1 1

1 0 1 0

1 1 1 1

When sel == 1
the gate acts like an Or gate

if (sel == 0)
out = a And b

else
out = a Or b

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 82

Example 2: Using Mux logic in communications networks

• Enables transmitting multiple messages simultaneously using a single,
shared communications line

• Unrelated to this course.

source destination

The sel inputs feed from
oscillators that produce
alternating 0 and 1 signals

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 83

Multiplexor

sel out

0 a

1 b

abbreviated
truth table

a b sel out

0 0 0 0

0 1 0 0

1 0 0 1

1 1 0 1

0 0 1 0

0 1 1 1

1 0 1 0

1 1 1 1

if (sel == 0)
out = a

else
out = b

Implementation tip
Can be implemented from the gates And, Or, Not.

CHIP Mux {
IN a, b, sel;
OUT out;

PARTS:
// Put your code here:

}

Mux.hdl

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 84

Demultiplexor
in sel a b

0 0 0 0

0 1 0 0

1 0 1 0

1 1 0 1

if (sel == 0)
{a, b} = {in, 0}

else
{a, b} = {0, in}

• Acts like the “inverse” of a multiplexor

• Channels the single input value into one of two possible destinations

CHIP DMux {
IN in, sel;
OUT a, b;

PARTS:
// Put your code here:

}

DMux.hdl

Implementation tip
Similar to the Mux implementation.

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 85

Project 1

Elementary
logic gates
q Not

q And

q Or

q Xor

q Mux

q DMux

q Or8Way

q Mux4Way16

q Mux8Way16

q DMux4Way

q DMux8Way

Multi-way
variants

q Not16

q And16

q Or16

q Mux16

16-bit
variants

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 86

And16

out = 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0

a = 1 0 1 0 1 0 1 1 0 1 0 1 1 1 0 0
b = 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0

CHIP And16 {
IN a[16], b[16];
OUT out[16];

PARTS:
// Put your code here:

}

Implementation tip

A straightforward 16-bit extension of the
elementary And gate

(See notes about working with multi-bit buses).

Example:

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 87

Project 1

Elementary
logic gates
q Not

q And

q Or

q Xor

q Mux

q DMux

q Or8Way

q Mux4Way16

q Mux8Way16

q DMux4Way

q DMux8Way

Multi-way
variants

q Not16

q And16

q Or16

q Mux16

16-bit
variants

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 88

16-bit, 4-way multiplexor

sel[1] sel[0] out

0 0 a

0 1 b

1 0 c

1 1 d

Implementation tip:

Can be built from several Mux16 gates.

CHIP Mux4Way16 {
IN a[16], b[16], c[16], d[16],

sel[2];
OUT out[16];

PARTS:

// Put your code here:
}

Mux4Way16.hdl

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 89

Chapter 1: Boolean logic

Practice

• Logic gates

• HDL

• Hardware simulation

• Multi-bit buses

Theory

• Basic concepts

• Boolean algebra

• Boolean functions

• Nand

Project 1

• Introduction

• Chips

• Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 90

Project 1

Elementary
logic gates
q Not

q And

q Or

q Xor

q Mux

q DMux

q Or8Way

q Mux4Way16

q Mux8Way16

q DMux4Way

q DMux8Way

Multi-way
variants

q Not16

q And16

q Or16

q Mux16

16-bit
variants

How to actually build these gates?

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 91

Files

if ((a == 0 and b == 1) or
(a == 1 and b == 0))
sets out = 1

else
sets out = 0

CHIP Xor {
IN a, b;
OUT out;

PARTS:
// Put your code here

}

Xor
a

b
out

load Xor.hdl,
output-file Xor.out,
compare-to Xor.cmp,
output-list a b out;
set a 0, set b 0, eval, output;
set a 0, set b 1, eval, output;
set a 1, set b 0, eval, output;
set a 1, set b 1, eval, output;

a b out
0 0 0
0 1 1
1 0 1
1 1 0

Xor.cmp

For every chip built in the course
(using Xor as an example), we supply
these three files

Xor.hdl (stub file) Xor.tst

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 92

Files

if ((a == 0 and b == 1) or
(a == 1 and b == 0))
sets out = 1

else
sets out = 0

CHIP Xor {
IN a, b;
OUT out;

PARTS:
// Put your code here

}

Xor
a

b
out

load Xor.hdl,
output-file Xor.out,
compare-to Xor.cmp,
output-list a b out;
set a 0, set b 0, eval, output;
set a 0, set b 1, eval, output;
set a 1, set b 0, eval, output;
set a 1, set b 1, eval, output;

a b out
0 0 0
0 1 1
1 0 1
1 1 0

Xor.cmp

When running your Xor.hdl on the
supplied Xor.tst,
your Xor.out should be the same as
the supplied Xor.cmp

The contract:

Xor.hdl (stub file) Xor.tst
Project 1 folder
(.hdl, .tst, .cmp files):
nand2tetris/projects/01

Tools:
• Text editor

(for completing the .hdl files)

• Hardware simulator:
nand2tetris/tools

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 93

Chip interfaces

CHIP Xor {
IN a, b;
OUT out;

PARTS:
Not (in= , out=);
Not (in= , out=);
And (a= , b=, out=);
And (a= , b=, out=);
Or (a= , b=, out=);

}

a

Not

Not

And

And

Or

b

out
nota

notb
aAndNotb

notaAndb

out

b

a

b

a

in

in

out

out

out

out

b

a

If I want to use some chip-parts,
how do I figure out their signatures?

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 94

Chip interfaces: Hack chip set API

Add16 (a= ,b= ,out=);

ALU (x= ,y= ,zx= ,nx= ,zy= ,ny= ,f= ,no= ,out= ,zr= ,ng=);

And16 (a= ,b= ,out=);

And (a= ,b= ,out=);

Aregister (in= ,load= ,out=);

Bit (in= ,load= ,out=);

CPU (inM= ,instruction= ,reset= ,outM= ,writeM= ,addressM= ,pc=);

DFF (in= ,out=);

DMux4Way (in= ,sel= ,a= ,b= ,c= ,d=);

DMux8Way (in= ,sel= ,a= ,b= ,c= ,d= ,e= ,f= ,g= ,h=);

DMux (in= ,sel= ,a= ,b=);

Dregister (in= ,load= ,out=);

FullAdder (a= ,b= ,c= ,sum= ,carry=);

HalfAdder (a= ,b= ,sum= , carry=);

Inc16 (in= ,out=);

Keyboard (out=);

Memory (in= ,load= ,address= ,out=);

Mux16 (a= ,b= ,sel= ,out=);

Mux4Way16 (a= ,b= ,c= ,d= ,sel= ,out=);

Mux8Way16 (a= ,b= ,c= ,d= ,e= ,f= ,g= ,h= ,sel= ,out=);

Mux8Way (a= ,b= ,c= ,d= ,e= ,f= ,g= ,h= ,sel= ,out=);

Mux (a= ,b= ,sel= ,out=);

Nand (a= ,b= ,out=);

Not16 (in= ,out=);

Not (in= ,out=);

Or16 (a= ,b= ,out=);

Or8Way (in= ,out=);

Or (a= ,b= ,out=);

PC (in= ,load= ,inc= ,reset= ,out=);

PCLoadLogic (cinstr= ,j1= ,j2= ,j3= ,load= ,inc=);

RAM16K (in= ,load= ,address= ,out=);

RAM4K (in= ,load= ,address= ,out=);

RAM512 (in= ,load= ,address= ,out=);

RAM64 (in= ,load= ,address= ,out=);

RAM8 (in= ,load= ,address= ,out=);

Register (in= ,load= ,out=);

ROM32K (address= ,out=);

Screen (in= ,load= ,address= ,out=);

Xor (a= ,b= ,out=);

Open the Hack chip set API in a window, and copy-paste
chip signatures into your HDL code, as needed

https://drive.google.com/file/d/1IsDnH0t7q_Im491LQ7_5_ajV0CokRbwR/view

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 95

Built-in chips

CHIP Foo {
IN ...;
OUT ...;

PARTS:
...
Bar(...)
...

}

Forcing the simulator to use a built-in chip, say Bar:

• Typically, Bar.hdl will be either a given stub-file, or a file that has an
incomplete implementation

• Remove, or rename, the file Bar.hdl from the project folder

• Whenever Bar will be mentioned as a chip-part in some chip definition, the
simulator will fail to find Bar.hdl in the current folder. This will cause the
simulator to invoke the built-in version of Bar instead.

Q: Suppose you want to use a chip-part before
you’ve implemented it. How to do it?

A: The simulator features built-in implementations
of all the project 1 chips

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 96

Project 1

Guidelines: www.nand2tetris.org (projects section)

Files: nand2tetris/projects/01 (on your PC)

Tools
• Text editor (for completing the given .hdl stub-files)
• Hardware simulator: nand2tetris/tools (on your PC)

Guides
• Hardware simulator tutorial
• HDL guide
• Hack chip set API

http://www.nand2tetris.org/
https://b1391bd6-da3d-477d-8c01-38cdf774495a.filesusr.com/ugd/44046b_02055f8bb5ac47648c0ab642f01c1919.pdf
https://drive.google.com/file/d/1dPj4XNby9iuAs-47U9k3xtYy9hJ-ET0T/view
https://drive.google.com/file/d/1IsDnH0t7q_Im491LQ7_5_ajV0CokRbwR/view

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 97

Best practice advice

• Implement the chips in the order in which they appear in the project guidelines

• If you don’t implement some chips, you can still use them as chip-parts in other
chips (use their built-in implementations)

• You can invent additional, “helper chips”; However, this is not necessary.
Implement and use only the chips that we specified

• In each chip implementation, strive to use as few chip-parts as possible

• When defining 16-bit chips, the same chip-parts may appear many times.
That’s fine, use copy-paste-edit.

That’s It!
Go Do Project 1!

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 98

hardware platform

computer

abstraction

ALU, RAM

abstraction

elementary
logic gates

abstraction

Nand

Building
gates

Building
chips

Building a
computer

What’s next?

abstraction

assembler

machine
language

p1

p2

p3

p4

p5

p6

This lecture / project / chapter:
Build 15 elementary logic gates

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 99

hardware platform

computer

abstraction

ALU, RAM

abstraction

elementary
logic gates

abstraction

Nand

Building
gates

Building
chips

Building a
computer

What’s next?

abstraction

assembler

machine
language

p1

p2

p3

p4

p5

p6

Next:
Build chips that do arithmetic,

ending up with an ALU,
using the chips built in project 1

This lecture / project / chapter:
Build 15 elementary logic gates

