From Nand to Tetris

Building a Modern Computer from First Principles

Chapter 1

Boolean Logic

These slides support chapter 1 of the book
The Elements of Computing Systems
(15t and 2 editions)

By Noam Nisan and Shimon Schocken
MIT Press

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 1

Chapter 1: Boolean logic

Theory Practice Project 1
 Basic concepts * Logic gates * Introduction
* Boolean algebra « HDL * Chips
* Boolean functions * Hardware simulation * Guidelines

 Nand Multi-bit buses

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 2

Chapter 1: Boolean logic

Theory

- Basic concepts

* Boolean algebra
* Boolean functions

 Nand

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 3

Boolean values

off no false 5]

on yes true 1

George Boole

* Boolean / binary values: 0, 1
1815 - 1864

* Boolean / binary variable: holds a @, ora 1

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 4

Boolean values

) &) 1 binary variable: 2 possible states

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 5

Boolean values

by by
é 1 binary variable: 2 possible states
; 2 binary variables: 4 possible states

e e e
) & e &)

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 6

Boolean values

. b,

1 binary variable: 2 possible states
2 binary variables: 4 possible states

3 binary variables: 8 possible states

o ef e) &) of e &) &)
«f) & ey &) af & ef &) T

o) e e e) &) & e) &)

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 7

Boolean values

. b, b, b

v 1 binary variable: 2 possible states

2 binary variables: 4 possible states

3 binary variables: 8 possible states

() e) &)

O &) O) O))

Question: How many different states can be
represented by N binary variables?

Answer: 2V

o &) e«) e &) &) e) &)
e e e) &)

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 8

Boolean functions

x ¥y |t
v V v
V v v
v V v

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 9

Boolean functions

I = B I I
A ECEEEEECE A
R ol o ® |

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 10

Boolean functions

X
> S(x,y)
X Y f f >
0 0 0 Y \
0 1 0
1 2] 0 fxy) 1 whenx==1andy ==
X,y) =
1 1 : @ otherwise

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 11

Boolean functions

X y | And
%) %) (%]
%) 1 (%]
1 (%] (%]
1 1 1

X
>

Y
—

And(x,y) = {

Boolean function (like And(x,y)):

And(x,y)
And —»

1 whenx==1andy ==

@ otherwise

A function that operates on boolean variables, and returns a boolean value.

Boolean operator (like x And y):

A simple boolean function that operates on a few boolean variables, called operands.

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 12

Boolean functions

x And y

X y | And
%) %) %)
(%] 1 (%]
1 (%] %)
1 1 1

x Nand y
X y | Nand
%) (%] 1
(%] 1 1
1 (%] 1
1 1 (%]

xOry
X y Or
%) %) %)
%) 1 1
1 (%] 1
1 1 1
x Xory
X y | Xor
%) %) %)
%) 1 1
1 (%] 1
1 1 %)

Question:

How many Boolean functions
x fy exist over two binary
(2-valued) variables?

Answer: 16

N binary variables span 22"
Boolean functions.

xXfy
x y |/
%) %) Vi
o o (%) 1 V)
1 (%] V3
1 1 V4

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 13

Boolean functions

xAnd y
X y | And
(%] (%] (%]
(%] 1 (%]
1 (%] (%]
1 1 1

Boolean function evaluation (example):

Not(x Or (y And 2))
Not(e Or (1 And 1)) =

Not(e Or 1) =

Not(1) =
0

Evaluate this function for, say,
X=0,y=1,z=1

xOry Not(x)
X y Or v | Not
(%] (%] (%] %] 1
0 1 1 1 0
1 (%] 1
1 1 1

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 14

Chapter 1: Boolean logic

 Boolean functions

 Nand

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 15

Some Boolean 1dentities

Commutative: x And y =y And x
xOry=yO0Orx

Associative: x And (yAndz) =(x And y) And z
xOr(yOrz)=(xOry)Orz

Distributive: x And (y Or z) = (x And y) Or (x And z)
x Or (y And z)) = (x Or y) And (x Or z2)

De Morgan: Not(x And y) = Not(x) Or Not(y)
Not(x Or y) = Not(x) And Not(y)

Idempotent: xAndx=x

xOrx=x

Double negation: Not(Not(x)) =x

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 16

Some Boolean 1dentities

Commutative: x And y =y And x
xOry=yO0Orx

Associative: x And (yAndz) =(x And y) And z
xOr(yOrz)=(xOry)Orz

Distributive: x And (y Or z) = (x And y) Or (x And z)
x Or (y And z)) = (x Or y) And (x Or z2)

De Morgan: Not(x And y) = Not(x) Or Not(y)
[Not(x Or y) = Not(x) And Not(y)]

Idempotent: xAndx=x

xOrx=x

Double negation: Not(Not(x)) =x

All these identities can be
easily proved from the

function definitions of
And, Or, Not

For example, let’s
prove this identity

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 17

Boolean algebra

Prove
Not(x And y) = Not(x) Or Not(y)

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 18

Boolean algebra

Prove
Not(x And y) = Not(x) Or Not(y)

f(x,y)=Not(x And y) g(x,y)=Not(x) Or Not(y)

x oy | f X Y g
(%) (%) 1 (%) (%) 1
(%) 1 1 (%) 1 1
1 (%) 1 1 0 1
1 1 (% 1 1 (%]

Proof: Fill in the right column in both truth tables.
If f= g, the 1dentity is proved.

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 19

Boolean algebra

Commutative: x And y =y And x
xOry=yO0Orx

Associative: x And (yAndz) =(x And y) And z
xOr(yOrz)=(xOry)Orz

Distributive: x And (y Or z) = (x And y) Or (x And z)
x Or (y And z)) = (x Or y) And (x Or z2)

De Morgan: Not(x And y) = Not(x) Or Not(y)
Not(x Or y) = Not(x) And Not(y)

Idempotent: xAndx=x

xOrx=x

Double negation:[Not(Not(x)) = x]

Substitution:

In any such identity, x and y
can be substituted with any
boolean function

Substitution examples:

Not(Not(a)) =a
Not(Not(u Or v)) =u Or v
Etc.

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 20

Boolean algebra

Commutative: x And y=y And x Task: Simplify this function (example):
xOry=yO0Orx

Not(Not(x) And Not(x Or y)) =

Associative: x And (y And z) = (x And y) And z o
x Or (y Or Z) — ()C Or y) Orz By De Morgan’s rule:

Distributive: x And (y Orz) = (x And) Or (x Andz) T\OUNot(x) And (Not(x) And Not(y))) =

x Or (y And z)) = (x Or y) And (x Or z2) By the associative rule:

De Morgan: Not(x And y) = Not(x) Or Not(y) Not((Not(x) And Not(x)) And Not(y)) =

Not(x Or y) = Not(x) And Not(y) By the idempotent rule:

Idempotent: xAndx=x Not(Not(x) And Not(y)) =

xOrx=x
By De Morgan’s rule:

Double negation: Not(Not(x)) =x
Not(Not(x Or y)) =

By double negation:

xOry

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 21

Boolean algebra

Task: Simplify this function (example):

Not(Not(x) And Not(x Or y)) =
Observations about simplifying

Boolean functions: By De Morgan’s rule:

* (Can lead to significant optimization Not(Not(x) And (Not(x) And Not(y))) =
* Based on intuition, experience, and luck By the associative rule:

* Can be assisted by some tools Not((Not(x) And Not(x)) And Not(y)) =

* But, in general: NP-hard. By the idempotent rule:

Not(Not(x) And Not(y)) =

By De Morgan’s rule:
Not(Not(x Or y)) =

By double negation:

xOry

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 22

Boolean algebra

Commutative: (x And y) = (y And x)
(x Ory)=(y Or x)

Associative: (x And (y And z)) = ((x And y) And 2)
(x Or (yOrz))=((x Ory) Orz)

Distributive: (x And (y Or z)) = (x And y) Or (x And z)
(x Or (y And z)) = (x Or y) And (x Or z2)

De Morgan: Not(x And y) = Not(x) Or Not(y)
Not(x Or y) = Not(x) And Not(y)

Idempotent: (x And x) =x
(xOrx)=x

Double negation: Not(Not(x)) = x

Another example: Prove that

x Or y = Not(Not(x) And Not(y))
De Morgan:
Not(x Or y) = Not(x) And Not(y)

Negate both sides:
Not(Not(x Or y)) = Not(Not(x) And Not(y))

By double negation:

x Or y = Not(Not(x) And Not(y))

Implication
* We don’t really “need” Or

 We will soon revisit this reduction

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 23

Chapter 1: Boolean logic

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 24

Boolean function

Formula (example)

f(x,y,z)=(x And (Not(y) Or z)) And y

Truth table

A Boolean function can be expressed using
a formula, or a truth table

The two representations are equivalent

Question: Can we construct each representation
from the other one?

R RrRPr PO OO0 0=
R RO R R o
R ® R|® R & R |®|N
R ECEECRECHEECEECEECE AN

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 25

Formula m) truth table

Formula

f(x,y,z)=(x And (Not(y) Or z)) And y

Truth table ‘

f

R RrRPr PO OO0 0=
R RO @O|lRr Rl
R O R O R & R O|N

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 26

Formula m) truth table

Formula

f(x,y,z)=(x And (Not(y) Or z)) And y

Truth table ‘

X y z f

0 0 0 0 When y =0, fmust be 0
(%] %) 1 %)

(%] 1 (%]

(%] 1 1

1 %) (%] %)

1 %) 1 %)

1 1 (%]

1 1 1

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 27

Formula m) truth table

Formula

f(x,y,z)=(x And (Not(y) Or z)) And y

Truth table ‘

When y =0, fmust be 0

When x =0, f must be 0

Clo|l ool |~

R|lRPr RPRIRP OO Ol
RRr |0 R R ol o=
R ® P O R O lFrR|o(N

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 28

Formula m) truth table

Formula

f(x,y,z)=(x And (Not(y) Or z)) And y

Truth table ‘

When y =0, fmust be 0

When x =0, f must be 0

(1 And (Not(1) Or 0)) And 1 = 1

R RrRPr PO OO0 0=
R RO R R o
R ® R|® R & R |®|N
R ECEECRECHEECEECEECE AN

(1 And (Not(1) Or 1)) And 1 =1

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 29

Formula m) truth table

Formula

f(x,y,z)=(x And (Not(y) Or z)) And y

Truth table ‘

Lemma

Given a Boolean function expressed as a formula,
we can always construct from it its truth table.

Proof: Evaluate the function over all the possible values
of its variables (which is the definition of a truth table)

R RrRPr PO OO0 0=
R RO R R o
R ® R|® R & R |®|N
R ECEECRECHEECEECEECE AN

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 30

Boolean function synthesis: Truth table =) formula

Formula

f(x,y,z)=(x And (Not(y) Or z)) And y

Truth table ﬁ

Can we also go the other way around,
for any given truth table?

R RrRPr PO OO0 0=
R RO R R o
R ® R|® R & R |®|N
R ECEECRECHEECEECEECE AN

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 31

Boolean function synthesis: Truth table =) formula

Goal: Synthesize a formula which i1s
equivalent to this truth table

|l ® O|lr | ® RO RN

S N A N o v B o B B S I R o o I
[S <~ TR A~ T B SN B SR Y I B T S
RO R ® R & R ®©|N

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 32

Boolean function synthesis

x y z|f|\h|h|S
m(o o e|1|1]|0|e|(Not(x)And Not(y) And Not(z)) Or
© 06 1|0(0|0]|06
= e 1 e|1|0|1|e]|(Not(x)AndyAnd Not(z)) Or
© 1 1|0(0|0]|6
1 0 o160 |1|(xAndNot(y)And Not(z))
1 0 1(0|0|0|06
1 1 0(0|0|0 |06
1 1 1|e|e|e|oe

Focus on the rows where f= 1

2. For each such row i, define a function f; which equals 1 in row i and 0 elsewhere.
Define f; to be a conjunction of all of f’s variables or their negations, as the variable
is 1 or 0 in the i’th row

3. Define f'to be the disjunction of all these conjunctions

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 33

Boolean function synthesis

xy z|f
0o 0 0|1 (Not(x) And Not(y) And Not(z)) Or)
© 0 1|60

Disjunctive
6 1 0|1 (Not(x) And y And Not(z)) Or Normal
@ 1 1|0 Form (DNF)
1 0 01 (x And Not(y) And Not(z)))
1 0 1|0 |
1 1 0o Not(z) And (Not(x) Or Not(y)) onoieion
11 10

Focus on the rows where f= 1

2. For each such row i, define a function f; which equals 1 in row i and 0 elsewhere.
Define f; to be a conjunction of all of f’s variables or their negations, as the variable
is 1 or 0 in the i’th row

3. Define f'to be the disjunction of all these conjunctions

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 34

Boolean function synthesis

Lemma
Given a boolean function expressed as a truth table, we can
always synthesize a formula that expresses that function

Proof: Use the truth table to construct the DNF (which is a formula)

Theorem

Any boolean function can be represented as a formula containing
only the operators And, Or, Not

Proof: Construct the function’s truth table, then use the truth table to
construct the DNF (which, by definition, uses only And, Or, Not).

R R R P OO0 O
R RO R O o=
R ® R ® R ® P O®|N
|l ® O|lr | ® RO RN

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 35

Chapter 1: Boolean logic

/ Boolean functions

» Nand

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 36

The expressive power of Nand

x Nand y xAnd y xOry Not(x)
x y | Nand x y | And x y | Or x | Not
e o 1 @ o 0) 0 0 0 1
o 1 1 0o 1) 0 1 1 1 0
1 o 1 1 o 0 1 0 1
1 1 0 1 1 1 1 1 1
Observations In other words:

e Not(x)=x Nand x
e xAnd y = Not(x Nand y)

e x Ory = Not(Not(x) And Not(y))

(De Morgan)

* Not can be realized using Nand

* And can be realized using Nand

* Or can be realized using Nand

Theorem: Any Boolean function can be realized using only Nand.

Proof : Any Boolean function can be expressed using Not, And, and Or (DNF).
Combined with the above observations, we get the theorem.

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 37

The expressive power of Nand

Theorem: Any Boolean function can be realized using only Nand.

Conclusion: Any computer can be built from Nand gates only:

x Nand y

Y

Nand

R R O o|x

(7]
1
(]
1

1
1
1
(]

Computers:
Machines that realize
Boolean functions:

£ (input bits) = output bits

OK, so we can build a computer from Nand gates only.

But how can we actually do it?

That’s what the Nand to Tetris course 1s all about!

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 38

Chapter 1: Boolean logic

Theory

 Basic concepts

{ * Boolean algebra

 Boolean functions

 Nand

Practice

Logic gates

« HDL

Hardware simulation

Multi-bit buses

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Project 1

* Introduction
* Chips

* Guidelines

Slide 39

Chapter 1: Boolean logic

Practice

e Hardware simulation

e Multi-bit buses

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 40

Logic gates

» Elementary gates (Nand, And, Or, Not, ...)

* Composite gates (Mux, Adder, ...)

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 41

Elementary gates

Nand
b S

if (a==1 and b==1)
then out=0 else out=1

out

if (a==1 or b==1)
then out=1 else out=0

Why focus on these particular gates?

And out
h —

if (a==1 and b==1)
then out=1 else out=0

Not out

if (in==0)
then out=1 else out=0

* Because either {Nand} or {And, or, Not} (as well as other subsets)
can be used to span any given Boolean function

* Because they have efficient hardware implementations.

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 42

Elementary gates

x y | And x y | Or
a o o 0 a o o 5
. And out [1 | o out [1
A b 1 o | 1
1 1 1 1 1 1
if (a==1 and b==1) if (a==1 or b==1)
then out=1 else out=0 then out=1 else out=0
Circuit implementations:
a
— 0 o—0" o0— o o
a b
b
And circuit
Or circuit
out
out
—HO—Q- -O—r

(power supply) (light bulb)

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 43

Composite gates

b —— And3 out

if (a==1 and b==1 and c==1)
then out=1 else out=0

Possible implementations:
Physical Logical
a b C
O/O O/C O/O— | |

| |
a |
|
|| And |
b —— |
|
out l And out
c |
) S — |

* This course does not deal with physical implementations

(circuits, transistors, relays... that’s EE, not CS)

* We focus only on logical implementations

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 44

Chapter 1: Boolean logic

Practice

e Hardware simulation

e Multi-bit buses

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 45

Building a chip

‘1.‘ ! v‘ "y"w 1 :'»5"("‘1'!‘b
N
a
) out
b
if((a==0and b==1) or (a==1 and b == 9))
setsout =1
else
sets out =0

The process

* Design the chip architecture

* Specify the architecture in HDL

e Test the chip in a hardware simulator
* Optimize the design

* Realize the optimized design in silicon.

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 46

Building a chip

| ’ﬂ' f‘w‘w E‘Iln"ri‘rv,gl | ‘I'f(m‘r’"
()

a
) out
b
if((a==0and b==1) or (a==1 and b == 9))
setsout =1
else
sets out =0

The process

v" Design the chip architecture

v" Specify the architecture in HDL

v" Test the chip in a hardware simulator
Optimize the design

Realize the optimized design in silicon.

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 47

Design: Requirements

) out

b

if((a==0and b==1) or (a==1 and b == 9))
setsout =1

else
setsout =1

P |, |O|O|o

CHIP Xor {
IN a, b;
OUT out;
PARTS:
// Missing implementation

/** Sets out = (a And Not(b)) Or (Not(a) And b)) */

Requirement

Build a chip that
delivers this
functionality

Gate Interface

Expressed as an
HDL stub file

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 48

Design: Implementation

/** Sets out = (a And Not(b)) Or (Not(a) And b)) */

CHIP Xor { Gate Interface
IN a, b;
OUT out; Expressed as an
PARTS: HDL stubﬁle

// Missing implementation

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 49

Design: Implementation

r-r--=-=-=-=---"-""-""-""--"""-"-""-—"-=-—""=-"—""="—"="—"=-—""="-—"=—"=-—"=-—=—-- A
=] ——L—O : |
out
I b And :
I 1 \ |
: I | notne 20Ut K aAndyotb i
| \ notb \ I
| \/ 2 |
I /\4 out |
I / \\ b I
' Not nota | |
| in out \ / |
| vy notgAndb |
I e () |
I I
I I
I I
I I

/
out /
b And
O

/** Sets out = (a And Not(b)) Or (Not(a) And b)) */

CHIP Xor {
IN a, b;
OUT out;
PARTS:
// Missing implementation

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Gate diagram

out

Gate Interface

Expressed as an
HDL stub file

Slide 50

Design: Implementation

r-r--=-=-=-=---"-""-""-""--"""-"-""-—"-=-—""=-"—""="—"="—"=-—""="-—"=—"=-—"=-—=—-- A
=] | O : |
—t— out |
I b And I
I \ |
. /
: in |NoD\e out Y aAndyotb :
| \ ngtb \ I
I \ / \ a I
%
| A Ut 1 out
I !/ o\ b I
| __INot nata / |
| in out \ / |
| vy nota}Andb |
I out / I
| , | And |
[N I
I I
/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {
IN a, b; -
OUT out; m
PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb); Practice: Complete the
y missing HDL code
|

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 51

Design: Implementation

r-r--=-=-=-=---"-""-""-""--"""-"-""-—"-=-—""=-"—""="—"="—"=-—""="-—"=—"=-—"=-—=—-- A
d | O : |
—t— out |
I And I
I ° I
1 \
| in out / aAndotb I
, Not) y |
| \ notb \ I
I \ / \ a I
% out |
I /
I / \\ b I
| __[Not nota / |
| in out \ / |
| vy nota}Andb |
I — / I
| And out |
b & b |
A\
I I
I I

/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {

IN a, b; n

OUT out; m
PARTS

Not (in=a, out=nota);

Not (in=b, out=notb);

And (a=a, b=notb, out=aAndNotb);

And (a=nota, b=b, out=notaAndb);

Or (a=aAndNotb, b=notaAndb, out=out);

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

out

Slide 52

Interface / Implementation

in out \

I
J
vy notgAndb |
t/ !
, | And ou |
b © :
I
/‘
/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
. gate CHIP Xor {
interface IN a, b;
_ OUT out;
e PARTS:
Not (in=a, out=nota);
gate .
Not (in=b, out=notb);
Implement < And (a=a, b=notb, out=aAndNotb);
-ation And (a=nota, b=b, out=notaAndb);
_ Or (a=aAndNotb, b=notaAndb, out=out);
}

A logic gate has:

* One interface

* Many possible
implementations

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 53

Hardware description languages

Observations:

 HDL is a functional / declarative language

 An HDL program can be viewed as a textual specification of a chip diagram

e The order of HDL statements is insignificant.

/** Sets out = (a And Not(b)) Or (Not(a) And b)) */

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 54

Hardware description languages

Common HDLs Our HDL

* VHDL * Similar in spirit to other HDLs

* Verilog * Minimal and simple

. ... * Provides all you need for this course

Our HDL Guide / Documentation:
The Elements of Computing Systems /| Appendix 2: HDL

/** Sets out = (a And Not(b)) Or (Not(a) And b)) */

CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 55

https://drive.google.com/file/d/1dPj4XNby9iuAs-47U9k3xtYy9hJ-ET0T/view

Chapter 1: Boolean logic

Practice

e Multi-bit buses

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 56

Hardware simulation

in a nutshell

CHIP Xor {
IN a, b; HDL code

OUT out;

PARTS:

Not (in=a, out=nota);

Not (in=b, out=notb);

And (a=a, b=notb, out=aAndNotb);

And (a=nota, b=b, out=notaAndb);

Or (a=aAndNotb, b=notaAndb, out=out);

6 0 0

Simul _(2.5j—/Users, hii

hocken/Desktop/nand2tetris/week 1/Xor.hdl

File View Run Help

mOIDELHEEBY

—{ —
Fast

Animate:

Program flow

Format: View:

DN |- || —

Chip Nam... Xor Time: 0
Input pins Output pins
Name Value Name Value
a o out 0
b 0
Internal pins
CHIP Xor { Name Value
IN a, b; nota 1
OUT out; notb 1
aAndNotb 0
PARTS: notaAndb 0
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNott
And (a=nota, b=b, out=notaAndt
Or (a=aAndNotb, b=notaAndb, c

load Xor.hdl,

output-file Xor.out,
output-list a b out;

eval,
eval,
eval,
, eval,

output;
output;
output;
output;

hardware

simulator

Simulation options

Interactive

* Script-based.

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 57

Interactive simulation

e 00 Hardware Simulator (2.5) - /Users/shimonschocken/Desktop/nand2tetris/week 1/Xor.hdl

View Run Help

m > ’ L] ‘ @ ? ey Animate: Format: View:
= - Slow Fast | Programflow %| [D.. 3| | Scr.. %

chipn. 1. Load an Time: [0
HDL program - :
Input piny “Output pins
Name Value Name Value
HDL ‘\Internal pins

Slide 58

Interactive simulation

| ® 0 O Hardware Simulator (2.5) - /Users/shimonschocken/Desktop/nand2tetris/week 1/Xor.hdl
JEila View Run Help
. ? - k_f’i)'l_‘l éAnimate: Format: View:
= ! Slow Fast . | Programflow 3| | D.. 3| | Ser.. %
3. evaluate the
HDL program
Input piny Output pins
Name Value ame Value
a out 1
b
4. inspect
: output pins
2. manipulate
input pins
HDL Internal pins
CHIP Xor { Name Value
IN a, b; nota 1
0UT out; notb 0
aAndNotb 0
PARTS: notaAndb 1
Not (in=a, out=nota); .
Not (in=b, out=notb); . S. 1nspegt
And (a=a, b=notb, out=aAndNott| internal pins
And (a=nota, b=b, out=notaAndk
0r (a=aAndNotb, b=notaAndb, c
}
HDL code
Slide 59

Hardware simulation

in a nutshell

000 Hardware Si

lator (2.5) — /Users/shi

hocken/Desktop/nand2tetris/week 1/Xor.hdl

File View Run Help

mOIDuELEHE BY

Chip Nam... Xor

Time

0

—{ —
Fast

Animate:

Format: View:

Input pins Output pins
CHIP XOr‘ { Name Value Name Value
IN a, b; b o ’
> 05 HDL code
OUT out;
PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And
And) HDL Internal pins
Oor load Xor"hdl’ teSt Scrlpt CHIP Xor { Name Value
} output-file And.out, éﬂTa, b - :
out; no
output-list a b out; aAndNotb 0
set a @, set b @0, eval, output; :::T?;nn, out=nota); rotanad !
set a @, set b 1, eval, output; And (302, bonoth, aut=akndiott
set a 1) set b @J eval’ output; And (a=nota, b=b, out=notaAndt
0Or (a=aAndNotb, b=notaAndb, c
set a 1, set b 1, eval, output; }

Programflow +| [D.. | | Ser..

load Xor.hdl,

output-file Xor.out,

output-list a b out;

set a @, set b @, eval, output;

set a @, set b 1, eval, output;

set a 1, set b 0, eval, output;

set a 1, set b 1, eval, output;

hardware
simulator

Simulation options

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 60

Script-based simulation

Xor.hdl

CHIP Xor {
IN a, b;
OUT out;

PARTS:

Not (in=a, out=nota);

Not (in=b, out=notb);

And (a=a, b=notb, out=aAndNotb);

And (a=nota, b=b, out=notaAndb);

Or (a=aAndNotb, b=notaAndb, out=out);

Xor.tst
load Xor.hdl;
set a 9, set b 0, eval;
set a 9, set b 1, eval;
set a 1, set b 0, eval;
set a 1, set b 1, eval;

Benefits:

* “Automatic” testing

* Replicable testing.

test script = sequence of
commands to the simulator

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 61

Script-based simulation, with an output file

Xor.hdl Xor. tst
CHIP Xor {
IN a, b; load Xor.hdl,
OUT out; output-file Xor.out,
output-list a b out;
PARTS: set a 9, set b 9, eval, output;
Not (in=a, out=nota); set a 9, set b 1, eval, output;

Not (in=b, out=notb);

And (a=a, b=notb, out=aAndNotb);

And (a=nota, b=b, out=notaAndb);

Or (a=aAndNotb, b=notaAndb, out=out);

a
set a 1, set b 0, eval, output;
set a 1, set b 1, eval, output;

) Xor.out test
i : : script
The logic of a typical test script | a | b |out] 2
+ Initialize: I 0 I 0 : e :
(%] 1 1
o Loads an HDL file 10 1|
o Creates an empty output file | 1] 1] 0 |
o Lists the names of the pins whose |

values will be written to the output file Output File, created

by the test script

e R : . ’

epeat as a side-effect of the
a set—eval - output simulation process

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 62

Script-based simulation

PR — b b— FR——— o

Hardware Simuiator (2.5) - /Users/shimonschoc.l(en/Desktc;p/nandZtetris/week 1/X6r.hdl

e

8 00

File View Rmw Help

{ = Animate:

Y I

< 0@

I —
Format: ﬂew:

éSIow Fast | Programflow 3| | D.. A | Scr.. 3
Chip Nam... load Xor.hdl,
| i o 0 | loutput-file Xor.out,
[- i | |output-list a b out;
Input pins 2 run itput pins
Name Vi ; e 1. Load a 7] 'set a 0, set b @, eval, output;
a the SCI'lpt out o p| |set a @, set b 1, eval, output;
b) test SCl’lpt set a 1, set b @, eval, output;
set a 1, set b 1, eval, output;
test
script
, _ Xor.out
HDL Internal pins
CHIP Xor { Name Value
IN a, b; nota 1 | a | b |OUt|
0UT out; notb 1
aAndNotb 0 | @ | @ | @ |
PARTS: notaAndb 0
Not (in=a, out=nota); | 0 | 1 | 1 |
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotk | 1 | @ | 1 |
And (a=nota, b=b, out=notaAndt
Or (a=aAndNotb, b=notaAndb, c HDL | 1 | 1 | @ |
}
code

inspect the
output file

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 63

Script-based simulation, with a compare file

Xor.hdl

CHIP Xor {
IN a, b;
OUT out;

PARTS:

Not (in=a, out=nota);

Not (in=b, out=notb);

And (a=a, b=notb, out=aAndNotb);

And (a=nota, b=b, out=notaAndb);

Or (a=aAndNotb, b=notaAndb, out=out);

Simulation-with-compare-file logic

 When each output command is executed,
the outputted line 1s compared to the
corresponding line in the compare file

e If the two lines are not the same, the
simulator throws a comparison error.

Xor.tst

load Xor.hdl,
output-file Xor.out,
compare-to Xor.cmp,
output-list a b out;
set a 9, set b 0, eval,
set a 9, set b 1, eval,
set a 1, set b 0, eval,
set a 1, set b 1, eval,

output;
output;
output;
output;

Xor.out

P P, O O O

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 64

Script-based simulation, with a compare file

Xor.hdl

CHIP Xor {
IN a, b;
OUT out;

PARTS:

Not (in=a, out=nota);

Not (in=b, out=notb);

And (a=a, b=notb, out=aAndNotb);

And (a=nota, b=b, out=notaAndb);

Or (a=aAndNotb, b=notaAndb, out=out);

Demos:

Experimenting with Built-In Chips

Building and Testing HDIL -based Chips

Script-Based Chip Testing

Xor.tst

load Xor.hdl,

output-file Xor.out
compare-to Xor.cmp,
output-list a b out
set a 9, set b 9, e
set a 9, set b1, e
set a1, set b 9, e

J

5

val,
val,
val,

set a 1, set b 1, eval,

output;

output;
output;
output;

Xor.out

Xor.cmp

R PO O YV
R ®O r O C
O r PO

P P, O ©®© O

R ®O B, ®© O

O r PO

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 65

https://www.youtube.com/watch?v=FW6Z_Xp2v-c
https://www.youtube.com/watch?v=iSNfqzJUWW4
https://www.youtube.com/watch?v=d0X0dMMUt1U

Chapter 1: Boolean logic

Practice

J Hardware simulation

Multi-bit buses

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 66

Multi-bit bus

* Sometimes we wish to manipulate a sequence of bits as a single entity

* Such a multi-bit entity is termed “bus”

Example: 16-bit bus

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 (%] 0 1 0 (%] 0 1 1 (%] 1 1 1 0 1

MSB = Most LSB = Least
significant bit significant bit

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 67

Working with buses: Example

/* Adds two 16-bit values. */ 16
CHIP Adder { a —~p 6ot | 1
IN a[16], b[16]; 16 +—4—p out
adder
OUT out[16]; b —4<Pp
PARTS:
}
/* Adds three 16-bit inputs. */
15 ... 1 0 CHIP Adder3Way { .
a1]1]1 IN a[16], b[16], c[16]; i vl () oo o
OUT out[16]; treated as a single entity
b:| 1|0
PARTS:
cLe 2| 4 Adder(a=a , b=b, out=ab); i
er(a=a , b=b, out=ab); Creates an internal
Adder(a=ab, b=c, out=out); :
out:(11]...]1| o } bus pin (ab)

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 68

Working with individual bits within buses

/* Returns 1 if a==1 and b==1,
0 otherwise. */

CHIP And {
IN a, b; /* 4-way And: Ands 4 bits. */
OUT out; CHIP And4Way { .
e IN a[4]; Input bus pins can
} OUT out; be subscripted.
> 10 PARTS:

And(a=a[@], b=a[1], out=and@l);
And(a=and@l, b=a[2], out=andel2);
And(a=and@12, b=a[3], out=out);

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 69

Working with individual bits within buses

/* Returns 1 if a==1 and b==1,
0 otherwise. */

CHIP And {
IN a, b; /* 4-way And: Ands 4 bits. */
OUT out; CHIP And4Way { .
e IN a[4]; Input bus pins can
} OUT out; be subscripted.
2 1 0 PARTS:

And(a=a[@], b=a[1], out=andol);
And(a=and@l, b=a[2], out=andel2);
And(a=and@12, b=a[3], out=out);

out:| o
}
5 0 /* Bit-wise And of two 4-bit inputs */
BN I I e CHIP And4 { _
: IN a[4], b[4]; Output bus pins

OUT out[4]; can be subscripted

b:le|e|1]|1
PARTS:

out:|leleloel1 And(a=a[@], b=b[@], out=out[0]);

And(a=a[1], b=b[1], out=out[1]);
And(a=a[2], b=b[2], out=out[2]);
And(a=a[3], b=b[3], out=out[3]);

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 70

Chapter 1: Boolean logic

Theory Practice
 Basic concepts * Logic gates
/ * Boolean algebra J « HDL
* Boolean functions * Hardware simulation
* Nand * Multi-bit buses

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Project 1

* Introduction
* Chips

* Guidelines

Slide 71

Chapter 1: Boolean logic

* Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 72

Built-1n chips

We provide built-in versions of the chips built in this course (in tools/builtInChips).
For example:

Xor.hdl Xor.hdl

/** Sets out toa Xorb */ /** Sets out toa Xorb */

CHIP Xor { CHIP Xor {
IN a, b; Implemented IN a, b; Implemented
OUT out; in HDL OUT out; in Java
PARTS: BUILTIN Xor;
Not (in=a, out=nota); // implemented by a Xor. java class.
Not (in=b, out=notb); }
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb); L))
Or (a=aAndNotb, b=notaAndb, out=out); A built-in chip has the same interface

¥ as the regular chip, but a different

implementation

Behavioral simulation

* Before building a chip in HDL, one can implement the chip logic in a high-level language
* Enables experimenting with / testing the chip abstraction before actually building it
* Enables high-level planning and testing of hardware architectures.

Demo: Loading and testing a built-in chip in the hardrawe simulator

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 73

https://www.youtube.com/watch?v=FW6Z_Xp2v-c

Hardware construction projects

Key plavers:

"
EEE pmo

e Architect:
o Decides which chips are needed
o Specifies the chips

* Developers:
o Build / test the chips

In Nand to Tetris:

The architect is the course instructor; the developers are the students
For each chip, the architect supplies:

o Built-in chip

o Chip API (skeletal HDL program = stub file)
o Test script

o Compare file

Given these resources, the developers (students) build the chips.

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 74

The dCVGlOpGI"S View (of, say, a Xor gate)

Xor.hdl Xor.tst
/** Setsout toaXorb */ load Xor.hdl,
CHIP Xor { stub output-file Xor.out, test
IN a, b; file compare-to Xor.cmp scﬁpt
OUT out; output-list a b out;

set a 0, set b 0, eval, output;

PARTS: set a 9, set b 1, eval, output;
// Tmplementation missing set a 1, set b 0, eval, output;
} set a 1, set b 1, eval, output;
. Xor.cm
These files specify: COff{‘Fare P
11
* The chip interface (.hd1) : 3 : b :OUt:
0| 0| o
* How the chip is supposed to behave (.cmp) le | 1]1|
: |10 | 1]
* How to test the chip (.tst) 1116

The developer’s task:

Implement the chip (complete the supplied .nd1 file),
using these resources.

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 75

assembler

Nand to Tetris Roadmap (Part I: Hardware)

abstraction

machine
language

-~

o

\ 4
abstraction | Buildinga
computer
>
computer

abstraction

ALU, RAM |

Building
chips

hardware platform

' abstraction

elementary
logic gates

Building
gates

=4

~

/

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 76

Project 1

abstraction

machine
language

assembler

-~

o

\ 4
abstraction | Buildinga
computer
>
computer

abstraction

ALU, RAM |

Building
chips

~

hardware platform

' abstraction

elementary
logic gates

Building

gates
o ™
(1)

/

Project 1

Build 15 elementary logic gates

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 77

Project 1

Given: Nand

Goal:

Elementary

Build the following gates:

logic gates

Qa

Qa

Qa

Qa

Qa

Qa

Why these 15 particular gates?

Not
And
Or

Xor
Mux

DMux

16-bit

variants

]

]

]

Not16
And16
Oorile6

Mux16

* Commonly used gates

* Comprise all the elementary logic gates needed to build our computer.

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Multi-way
variants

o Or8Way
Mux4Way16

[m]

Mux8Way16

[m]

DMux4Way
DMux8Way

[m]

[m]

Slide 78

Project 1

Given: Nand

Goal: Build the following gates:

Elementary 16-bit
logic gates variants
o Not o Notlé
a And o Andl16
a Or o Orlé
a Xor o Mux16

.....»Mux

s} DMux

Multi-way
variants

o Or8Way
Mux4Way16

[m]

Mux8Way16

[m]

DMux4Way
DMux8Way

[m]

[m]

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 79

Multiplexor / Demultiplexor

a— L a
Mux out in DMux
b — — b
sel sel
if (sel == o) if (sel ==0)
out = a {a, b} = {in, 0}
else else
out=>b {a,b} = {0, in}
Widely used in:

* Hardware design

 Communications networks.

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 80

Example 1: Using Mux logic to build a programmable gate

a b sel out
a —| o | o | o 0
AndMuxOr ——out 5 a 5 o
b When sel ==
’ 1 |6] © 1 the gate acts like an And gate
1 1 (7] 1
sel
0 0 1 0
if (sel ==0)
0 1 1 1 When sel ==
out =aAndb .
1) 1) the gate acts like an Or gate
else
out=a0rb 1 1 1 1
Mux.hdl
: ___________________ CHIP AndMuxOr {
a—T1+o0 IN a, b, sel;
| And OUT out;
|
|
| out PARTS:
| And (a=a, b=b, out=andOut);
: Or (a=a, b=b, out=orOut);
b 5 Mux (a=andOut, b=orOut, sel=sel, out=out);

sel

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 81

Example 2: Using Mux logic in communications networks

...1011 ...1011
> ... 01101101 >
Mux DMux

-

...0110 .--0110
-

g

-

The sel inputs feed from
oscillators that produce
alternating 0 and 1 signals

R ORFRO
R ORFRO

* Enables transmitting multiple messages simultaneously using a single,
shared communications line

e Unrelated to this course.

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 82

Multiplexor

a— a b sel out sel out
Mux out 9 0 0 0 0 a abbreviated
1 (%] (%} 1
sel 1| 1] o 1
if (sel == o) e e 1] e
out =a 0 1 1 1
else 1 %) 1 0
out=b 1| 1| 1 1
Mux.hdl
CHIP Mux {
IN a, b, sel; Implementation tip
OUT out; .
Can be implemented from the gates And, or, Not.
PARTS:
// Put your code here:
b

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 83

Demultiplexor

in DMux

sel

in sel a b

if (sel == o) o | o [0 | o
{a, b} = {in, 0} 0 1 | e | e
clse 1 o | 1| o
{a,b} = {0, in} 1 1 | e | 1

* Acts like the “inverse” of a multiplexor

* Channels the single input value into one of two possible destinations

DMux . hdl
CHIP DMux {
IN in, sel;
OUT a, b;
PARTS:
// Put your code here:
}

Implementation tip

Similar to the mux implementation.

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 84

Project 1

Elementary

logic gates

Q

Q

Q

Not
And
Or

Xor
Mux

DMux

16-bit

variants

o Notl6

s And16

o Orle6
o Mux16

Multi-way
variants

o Or8Way

o Mux4hWayl6
o Mux8Way16
o DMux4hay
o DMux8Way

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 85

Andl6

Example:

%

19010101101011100
©0101101001010120

16

And16 out
16

b ‘—7/;——— out

16

0010100100001000

CHIP Andil6 {
IN a[16], b[16];
OUT out[16];

Implementation tip

A straightforward 16-bit extension of the
PARTS : elementary And gate

// Put your code here: (See notes about working with multi-bit buses).

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 86

Project 1

Elementary

logic gates

Q

Q

Q

Not
And
Or

Xor
Mux

DMux

16-bit
variants

o Notl6
o Andl6
o Orlé

o Mux16

Multi-way
variants

o Or8Way
) Mux4hay16
o Mux8Way16
o DMux4hay
o DMux8Way

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 87

16-bit, 4-way multiplexor

sel[1] sel[0Q] out

Mux4Way16

0
out 0
1
1

R | O| L, | O

sel

Mux4Way16.hdl

CHIP Mux4Wayl6 {
IN a[16], b[16], c[16], d[16],
sel[2]; .)
OUT out[16]; Implementation tip:

PARTS : Can be built from several Mmuxie gates.
// Put your code here:

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 88

Chapter 1: Boolean logic

Project 1

v Introduction

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 89

Project 1

Elementary

logic gates

Qa

Qa

Qa

Not
And
Or

Xor
Mux

DMux

16-bit

variants

o Notl6
o Andl6
o Orlé

o Mux16

<<
’
|

Multi-way
variants

o Or8hWay
Mux4Way16

O

Mux8Way16

O

DMux4Way
DMux8Way

O

O

How to actually build these gates?

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 90

Files

Xor.cmp
d
) out a b out For every chip built in the course
b 20 0 .
01 1 (using xor as an example), we supply
i == == 10 1
if((a==0andb==1)or these three files
(a==1andb==0)) 11 o
setsout =1
else
sets out = 0
Xor.hdl (stub file) Xor.tst
CHIP Xor { load Xor.hdl,
IN a, b; output-file Xor.out,
OUT out; compare-to Xor.cmp,
PARTS: output-list a b out;
// Put your code here set a 0, set b 0, eval, output;
} set a 9, set b 1, eval, output;
set a 1, set b 0, eval, output;
set a 1, set b 1, eval, output;

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 91

Files

] Xor.cmp The contract:
) out a b out
b 00 o When running your Xor.hdl on the
01 1 supplied Xor.tst
if (@==0and b ==1) or lo 1 Pp ' ’
(a==1andb==10)) 11 o your Xor.out should be the same as
setsout =1 .
else the supplied Xor.cmp
setsout =0
Xor.hdl (stub file) Xor.tst
Project 1 folder
CHIP Xor { load Xor.hdl, fil
IN a, b; output-file Xor.out, (-hd1, .tst, .cmp files):
OUT out; compare-to Xor.cmp, nand2tetris/projects/o1
PARTS: output-list a b out;
p b 1 i Tools:
Put your code here set a @, set b 9, eval, output; —_—
} set a 9, set b 1, eval, output; e Text editor
set a 1, set b @, eval, output; (for completing the .hd1 files)
set a 1, set b 1, eval, output; .
* Hardware simulator:

nand2tetris/tools

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 92

Chip interfaces

a
a —oO out
b And
) — \
1N ot 2ut / aAndwotb
\ nqéb \
\ / \ a
ﬁ
/ \\ b
__INot nota /
in out \ /
\ notgAndb
- out/
b And
b O
CHIP Xor {
IN a, b;
OUT out;
PARTS:
Not (in= , out=);
Not (in= , out=);
And (a= , b=, out=);
And (a= , b=, out=);
Or (a= , b=, out=);
¥

out
- out

If I want to use some chip-parts,
how do I figure out their signatures?

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 93

Chlp interfaces: Hack chip set API

Open the Hack chip set API in a window, and copy-paste

Addi16 (a= ,b= ,out=);

ALU (x= ,y= ,zXx= ,nx= ,zy= ,ny= ,f= ,no= ,out= ,zr=

Andl16 (a= ,b= ,out=);

And (a= ,b= ,out=);
Aregister (in= ,load= ,out=
Bit (in= ,load= ,out=);

CPU (inM= ,instruction= ,reset= ,outM= ,writeM= ,ad

DFF (in= ,out=);

DMux4Way (in= ,sel= ,a= ,b=
DMux8Way (in= ,sel= ,a= ,b=
DMux (in= ,sel= ,a= ,b=);
Dregister (in= ,load= ,out=

FullAdder (a= ,b= ,c= ,sum=

HalfAdder (a= ,b: ,sum= , carry=);

Incl6 (in= ,out=);

Keyboard (out=);

Memory (in= ,load= ,address= ,out=);

Mux16 (a= ,b= ,sel= ,out=);

Mux4Wayl6 (a= ,b= ,c= ,d= ,sel= ,out=);
Mux8Wayl6 (a= ,b= ,c= ,d= ,e= ,f= ,g= ,h= ,sel= ,ou

chip signatures into your HDL code, as needed

»Ng=)s

)5

»C= Jd=)_;

,€= ,d= ,e= ,f= ,g= ,hs

)5

scarry=);

Mux8Way (a= ,b= ,c= ,d= ,e= ,f= ,g= ,h= ,sel= ,out=);

Mux (a= ,b= ,sel= ,out=);

Nand (a= ,b= ,out=);

Notl6 (in= ,out=);

Not (in= ,out=);

0orl6 (a= ,b= ,out=);

Or8Way (in= ,out=);

Or (a= ,b= ,out=);

PC (in= ,load= ,inc= ,reset= ,out=);
PCLoadlLogic (cinstr= ,j1= ,j2= ,j3= ,load=
RAM16K (in= ,load= ,address= ,out=);
RAM4K (in= ,load= ,address= ,out=);
RAM512 (in= ,load= ,address= ,out=);
RAM64 (in= ,load= ,address= ,out=);
RAM8 (in= ,load= ,address= ,out=);
Register (in= ,load= ,out=);

ROM32K (address= ,out=);

Screen (in= ,load= ,address= ,out=);

Xor (a= ,b= ,out=);

»inc=);

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 94

https://drive.google.com/file/d/1IsDnH0t7q_Im491LQ7_5_ajV0CokRbwR/view

Built-1n chips

CHIP Foo {
IN ...;
our ... Q: Suppose you want to use a chip-part before
PARTS you’ve implemented it. How to do it?
Bar () A: The simulator features built-in implementations

of all the project 1 chips
}

Forcing the simulator to use a built-in chip, say Bar:

* Typically, Bar.nd1 will be either a given stub-file, or a file that has an
incomplete implementation

* Remove, or rename, the file sar.hd1 from the project folder

* Whenever Bar will be mentioned as a chip-part in some chip definition, the
simulator will fail to find Bar.nhd1 1n the current folder. This will cause the
simulator to invoke the built-in version of Bar instead.

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 95

Project 1

Guidelines: www.nand2tetris.org (projects section)

Files: nand2tetris/projects/e1 (on your PC)

Tools

« Text editor (for completing the given .hd1 stub-files)

* Hardware simulator: nand2tetris/tools (on your PC)

Guides
e Hardware simulator tutorial
 HDL guide

e Hack chip set API

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 96

http://www.nand2tetris.org/
https://b1391bd6-da3d-477d-8c01-38cdf774495a.filesusr.com/ugd/44046b_02055f8bb5ac47648c0ab642f01c1919.pdf
https://drive.google.com/file/d/1dPj4XNby9iuAs-47U9k3xtYy9hJ-ET0T/view
https://drive.google.com/file/d/1IsDnH0t7q_Im491LQ7_5_ajV0CokRbwR/view

Best practice advice

* Implement the chips in the order in which they appear in the project guidelines

* If you don’t implement some chips, you can still use them as chip-parts in other
chips (use their built-in implementations)

* You can invent additional, “helper chips”; However, this is not necessary.
Implement and use only the chips that we specified

* In each chip implementation, strive to use as few chip-parts as possible

* When defining 16-bit chips, the same chip-parts may appear many times.
That’s fine, use copy-paste-edit.

That’s It!
Go Do Project 1!

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 97

What’s next?

abstraction

machine
language

assembler

/ v hardware platform \

abstraction | Buildinga
computer

» abstraction Building
chips -
ALU, RAM —— abstraction Building

gates
elementary |——) @o
logic gates @

This lecture / project / chapter:

computer

o

Build 15 elementary logic gates

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken Slide 98

What’s next?

abstraction Next:
machine Build chips that do arithmetic,
language . _
ending up with an ALU,
assembler using the chips built in project 1
/ ' - hardware platform \
abstraction | Buildinga
computer
computer P abstraction | Building
chips o
ALU, RAM | - abstraction Building
gates
@ elementary |—————) O
logic gates

o

/

This lecture / project / chapter:

Build 15 elementary logic gates

Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken

Slide 99

