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Chapter 1

Boolean Logic

From Nand to Tetris
Building a Modern Computer from First Principles

These slides support chapter 1 of the book
The Elements of Computing Systems

(1st and 2nd editions)
By Noam Nisan and Shimon Schocken

MIT Press
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Boolean values

George Boole
1815 - 1864

• Boolean / binary values: 0, 1

• Boolean / binary variable: holds a 0, or a 1

no

yes

false

true

0

1

off

on
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Boolean values

b0b1
• 1 binary variable:  2 possible states
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Boolean values

b0b1
• 1 binary variable:  2 possible states

• 2 binary variables: 4 possible states
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Boolean values

b2 b0b1...

• 1 binary variable:  2 possible states

• 2 binary variables: 4 possible states

• 3 binary variables: 8 possible states

• ...
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Boolean values

b2 b0b1
• 1 binary variable:  2 possible states

• 2 binary variables: 4 possible states

• 3 binary variables: 8 possible states

• ...

Question: How many different states can be 
represented by N binary variables? 

...

Answer:  2N
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Boolean functions

x y f
0 0 0

0 1 0

1 0 0

1 1 1
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Boolean functions

x y f
0 0 0

0 1 0

1 0 0

1 1 1
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Boolean functions

x y f
0 0 0

0 1 0

1 0 0

1 1 1

f
x

f(x ,y)
y

f(x,y) = 
1 when x == 1 and y == 1

0 otherwise  
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Boolean functions

x y And
0 0 0

0 1 0

1 0 0

1 1 1

And
x

And(x,y)
y

And(x,y) = 

Boolean function (like And(x ,y)):
A function that operates on boolean variables, and returns a boolean value.

Boolean operator (like x And y):
A simple boolean function that operates on a few boolean variables, called operands.

1 when x == 1 and y == 1

0 otherwise  
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Boolean functions

Answer: 16
N binary variables span 2!!

Boolean functions.

x y And
0 0 0

0 1 0

1 0 0

1 1 1

x y Or
0 0 0

0 1 1

1 0 1

1 1 1

x And y x Or y

...
x y Xor
0 0 0

0 1 1

1 0 1

1 1 0

x Xor y

x y Nand
0 0 1

0 1 1

1 0 1

1 1 0

x Nand y

Question:
How many Boolean functions 
x f y exist over two binary
(2-valued) variables?

x y f
0 0 v1
0 1 v2
1 0 v3
1 1 v4

x f y
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Boolean functions

Not(0 Or (1 And 1)) =
Not(0 Or 1) =
Not(1) =
0

Boolean function evaluation (example):

Not(x Or (y And z)) Evaluate this function for, say, 
x = 0, y = 1, z = 1

y Not
0 1

1 0

Not(x)

x y And
0 0 0

0 1 0

1 0 0

1 1 1

x y Or
0 0 0

0 1 1

1 0 1

1 1 1

x And y x Or y
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Some Boolean identities

Commutative:   x And y = y And x
x Or y = y Or x

Associative:      x And (y And z) = (x And y) And z
x Or (y Or z) = (x Or y) Or z

Distributive:      x And (y Or z) = (x And y) Or (x And z)
x Or (y And z)) = (x Or y) And (x Or z)

De Morgan:       Not(x And y) = Not(x) Or Not(y)
Not(x Or y) = Not(x) And Not(y)

Idempotent:       x And x = x
x Or x = x

Double negation:  Not(Not(x)) = x
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Some Boolean identities

Commutative:   x And y = y And x
x Or y = y Or x

Associative:      x And (y And z) = (x And y) And z
x Or (y Or z) = (x Or y) Or z

Distributive:      x And (y Or z) = (x And y) Or (x And z)
x Or (y And z)) = (x Or y) And (x Or z)

De Morgan:       Not(x And y) = Not(x) Or Not(y)
Not(x Or y) = Not(x) And Not(y)

Idempotent:       x And x = x
x Or x = x

Double negation:  Not(Not(x)) = x

For example, let’s 
prove this identity

All these identities can be 
easily proved from the 
function definitions of  
And, Or, Not
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Boolean algebra

Prove
Not(x And y) = Not(x) Or Not(y)



Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken                                Slide 19

Boolean algebra

Prove
Not(x And y) = Not(x) Or Not(y)

x y f
0 0 1

0 1 1

1 0 1

1 1 0

f (x ,y ) = Not(xAnd y ) 

x y g
0 0 1

0 1 1

1 0 1

1 1 0

g (x ,y ) = Not(x ) Or Not(y )

Proof: Fill in the right column in both truth tables.
If f = g, the identity is proved.
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Boolean algebra

Commutative:   x And y = y And x
x Or y = y Or x

Associative:      x And (y And z) = (x And y) And z
x Or (y Or z) = (x Or y) Or z

Distributive:      x And (y Or z) = (x And y) Or (x And z)
x Or (y And z)) = (x Or y) And (x Or z)

De Morgan:       Not(x And y) = Not(x) Or Not(y)
Not(x Or y) = Not(x) And Not(y)

Idempotent:       x And x = x
x Or x = x

Double negation:  Not(Not(x)) = x

Substitution: 

In any such identity, x and y
can be substituted with any 
boolean function

Not(Not(a)) = a

Not(Not(u Or v)) = u Or v

Etc.

Substitution examples: 
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Boolean algebra

Commutative:   x And y = y And x
x Or y = y Or x

Associative:      x And (y And z) = (x And y) And z
x Or (y Or z) = (x Or y) Or z

Distributive:      x And (y Or z) = (x And y) Or (x And z)
x Or (y And z)) = (x Or y) And (x Or z)

De Morgan:       Not(x And y) = Not(x) Or Not(y)
Not(x Or y) = Not(x) And Not(y)

Idempotent:       x And x = x
x Or x = x

Double negation:  Not(Not(x)) = x

Not(Not(x) And Not(x Or y)) =

Not(Not(x) And (Not(x) And Not(y))) =

Not((Not(x) And Not(x)) And Not(y)) = 

Not(Not(x) And Not(y)) =

Not(Not(x Or y)) =

x Or y

By De Morgan’s rule:

Task: Simplify this function (example):

By the associative rule:

By the idempotent rule:

By De Morgan’s rule:

By double negation:
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Boolean algebra

Not(Not(x) And Not(x Or y)) =

Not(Not(x) And (Not(x) And Not(y))) =

Not((Not(x) And Not(x)) And Not(y)) = 

Not(Not(x) And Not(y)) =

Not(Not(x Or y)) =

x Or y

By De Morgan’s rule:

Task: Simplify this function (example):

By the associative rule:

By the idempotent rule:

By De Morgan’s rule:

By double negation:

Observations about simplifying 
Boolean functions:

• Can lead to significant optimization

• Based on intuition, experience, and luck

• Can be assisted by some tools

• But, in general: NP-hard.
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Boolean algebra

Commutative:   (xAnd y) = (yAnd x)                   
(x Or y) = (y Or x)

Associative:      (xAnd (yAnd z)) = ((xAnd y) And z)
(x Or (y Or z)) = ((x Or y) Or z)

Distributive:      (xAnd (y Or z)) = (xAnd y) Or (xAnd z)
(x Or (yAnd z)) = (x Or y) And (x Or z)

De Morgan:       Not(xAnd y) = Not(x) Or Not(y)
Not(x Or y) = Not(x) And Not(y)

Idempotent:       (xAnd x) = x
(x Or x) = x

Double negation:  Not(Not(x)) = x

x Or y = Not(Not(x) And Not(y))

De Morgan:

Not(x Or y) = Not(x) And Not(y)

Negate both sides:

Not(Not(x Or y)) = Not(Not(x) And Not(y))

By double negation:

x Or y = Not(Not(x) And Not(y))

Another example: Prove that

Implication
• We don’t really “need” Or
• We will soon revisit this reduction
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A Boolean function can be expressed using
a formula, or a truth table

The two representations are equivalent

Question: Can we construct each representation 
from the other one?

Boolean function

x y z f
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Formula (example)

Truth table

f(x, y, z) = (x And (Not(y) Or z)) And y
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f(x, y, z) = (x And (Not(y) Or z)) And y

Formula

Formula       truth table

x y z f
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Truth table
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f(x, y, z) = (x And (Not(y) Or z)) And y

x y z f
0 0 0 0

0 0 1 0

0 1 0

0 1 1

1 0 0 0

1 0 1 0

1 1 0

1 1 1

f

Formula

Truth table

Formula       truth table

When y = 0, f must be 0
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x y z f
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0

1 1 1

f

Truth table

f(x, y, z) = (x And (Not(y) Or z)) And y

Formula

Formula       truth table

When y = 0, f must be 0

When x = 0, f must be 0
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x y z f
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

f

Truth table

(1 And (Not(1) Or 0)) And 1 = 1 

When y = 0, f must be 0

(1 And (Not(1) Or 1)) And 1 = 1

f(x, y, z) = (x And (Not(y) Or z)) And y

Formula

Formula       truth table

When x = 0, f must be 0
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f(x, y, z) = (x And (Not(y) Or z)) And y

x y z f
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Formula

Truth table
Lemma
Given a Boolean function expressed as a formula, 
we can always construct from it its truth table.

?

Formula       truth table

Proof: Evaluate the function over all the possible values
of its variables (which is the definition of a truth table)
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f(x, y, z) = (x And (Not(y) Or z)) And y

x y z f
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Formula

Truth table ?

Can we also go the other way around,
for any given truth table?

?

Boolean function synthesis: Truth table       formula
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Boolean function synthesis: Truth table       formula

x y z f
0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

Goal: Synthesize a formula which is 
equivalent to this truth table
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Boolean function synthesis

x y z f f1 f3 f5
0 0 0 1 1 0 0

0 0 1 0 0 0 0

0 1 0 1 0 1 0

0 1 1 0 0 0 0

1 0 0 1 0 0 1

1 0 1 0 0 0 0

1 1 0 0 0 0 0

1 1 1 0 0 0 0

Not(x) And Not(y) And Not(z)

Not(x) And y And Not(z)

x And Not(y) And Not(z)

(

(

(

Or

Or

)

)

)

1. Focus on the rows where f = 1
2. For each such row i, define a function fi which equals 1 in row i and 0 elsewhere.

Define fi to be a conjunction of all of f’s variables or their negations, as the variable 
is 1 or 0 in the i’th row

3. Define f to be the disjunction of all these conjunctions
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Boolean function synthesis

x y z f
0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

Not(x) And Not(y) And Not(z)

Not(x) And y And Not(z)

x And Not(y) And Not(z)

(

(

(

Or

Or

)

)

)

Not(z) And (Not(x) Or Not(y)) (following 
simplification)

1. Focus on the rows where f = 1
2. For each such row i, define a function fi which equals 1 in row i and 0 elsewhere.

Define fi to be a conjunction of all of f’s variables or their negations, as the variable 
is 1 or 0 in the i’th row

3. Define f to be the disjunction of all these conjunctions

Disjunctive 
Normal 
Form (DNF)
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Boolean function synthesis

x y z f
0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

Theorem
Any boolean function can be represented as a formula containing 
only the operators And, Or, Not

Proof: Construct the function’s truth table, then use the truth table to
construct the DNF (which, by definition, uses only And, Or, Not). 

Lemma
Given a boolean function expressed as a truth table, we can 
always synthesize a formula that expresses that function
Proof: Use the truth table to construct the DNF (which is a formula)
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The expressive power of Nand

Observations

• Not(x ) = x Nand x

In other words:

• Not can be realized using Nand
• x And y  = Not(x Nand y) • And can be realized using Nand

• x Or y = Not(Not(x) And Not(y))
• (De Morgan)

• Or can be realized using Nand

Proof : Any Boolean function can be expressed using Not, And, and Or (DNF). 
Combined with the above observations, we get the theorem.

Theorem: Any Boolean function can be realized using only Nand.
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The expressive power of Nand

Theorem: Any Boolean function can be realized using only Nand.

OK, so we can build a computer from Nand gates only.

But how can we actually do it?

That’s what the Nand to Tetris course is all about!

Computers:
Machines that realize 
Boolean functions:
f (input bits) = output bits

Conclusion: Any computer can be built from Nand gates only:
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Logic gates

• Elementary gates (Nand, And, Or, Not, …)

• Composite gates (Mux, Adder, …)



Nand to Tetris / www.nand2tetris.org / Chapter 1 / Copyright © Noam Nisan and Shimon Schocken                                Slide 42

Elementary gates

if (a==1 or b==1)
then out=1 else out=0

if (in==0)
then out=1 else out=0

if (a==1 and b==1)
then out=1 else out=0

And

if (a==1 and b==1)
then out=0 else out=1

Why focus on these particular gates?
• Because either {Nand} or {And, Or, Not} (as well as other subsets)

can be used to span any given Boolean function
• Because they have efficient hardware implementations.
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Elementary gates

if (a==1 and b==1)
then out=1 else out=0

And

And circuit

if (a==1 or b==1)
then out=1 else out=0

Or circuit

Circuit implementations:
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Composite gates

if (a==1 and b==1 and c==1)
then out=1 else out=0

And3

Possible implementations:
Physical Logical

• This course does not deal with physical implementations
• (circuits, transistors, relays... that’s EE, not CS)

• We focus only on logical implementations
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Building a chip

The process

• Design the chip architecture

• Specify the architecture in HDL

• Test the chip in a hardware simulator

• Optimize the design

• Realize the optimized design in silicon.

?Xor
a

b
out

if ((a == 0 and b == 1) or (a == 1 and b == 0))
sets out = 1

else
sets out = 0
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Building a chip

The process

ü Design the chip architecture

ü Specify the architecture in HDL

ü Test the chip in a hardware simulator

• Optimize the design

• Realize the optimized design in silicon.

?

if ((a == 0 and b == 1) or (a == 1 and b == 0))
sets out = 1

else
sets out = 0

Xor
a

b
out
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Design: Requirements

a b out

0 0 0

0 1 1

1 0 1

1 1 0

Requirement
Build a chip that 
delivers this 
functionalityif ((a == 0 and b == 1) or (a == 1 and b == 0))

sets out = 1
else

sets out = 1

Gate Interface
Expressed as an 
HDL stub file

/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {

IN a, b;
OUT out;

PARTS:
// Missing implementation

Xor
a

b
out
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Design: Implementation

/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {

IN a, b;
OUT out;

PARTS:
// Missing implementation

Gate Interface
Expressed as an 
HDL stub file
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Design: Implementation

/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {

IN a, b;
OUT out;

PARTS:
// Missing implementation

a

Not

Not

And

And

Or

b

out
nota

notb
aAndNotb

notaAndb

out

b

a

b

a

in

in

out

out

out

out

b

a

Gate diagram

Gate Interface
Expressed as an 
HDL stub file
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Design: Implementation

/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);

}

a

Not

Not

And

And

Or

b

out
nota

notb
aAndNotb

notaAndb

out

b

a

b

a

in

in

out

out

out

out

b

a

Practice: Complete the 
missing HDL code
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Design: Implementation

/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

a

Not

Not

And

And

Or

b

out
nota

notb
aAndNotb

notaAndb

out

b

a

b

a

in

in

out

out

out

out

b

a
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Interface / Implementation

/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

a

Not

Not

And

And

Or

b

out
nota

notb
aAndNotb

notaAndb

out

b

a

b

a

in

in

out

out

out

out

b

a

gate
interface

gate
Implement

-ation

A logic gate has:
• One interface
• Many possible 

implementations
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Hardware description languages

/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

Observations:

• HDL is a functional / declarative language

• An HDL program can be viewed as a textual specification of a chip diagram

• The order of HDL statements is insignificant.
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Hardware description languages

/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

Common HDLs
• VHDL
• Verilog
• …

Our HDL
• Similar in spirit to other HDLs
• Minimal and simple
• Provides all you need for this course

Our HDL Guide / Documentation:
The Elements of Computing Systems / Appendix 2: HDL

https://drive.google.com/file/d/1dPj4XNby9iuAs-47U9k3xtYy9hJ-ET0T/view
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Hardware simulation in a nutshell

CHIP Xor {
IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or  (a=aAndNotb, b=notaAndb, out=out);

}

HDL code

simulate

hardware 
simulator

Simulation options

• Interactive

• Script-based.
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Interactive simulation

1. Load an 
HDL program
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Interactive simulation

HDL code

2. manipulate
input pins

4. inspect
output pins

5. inspect
internal pins

3. evaluate the 
chip logic1. Load an 

HDL program
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Hardware simulation in a nutshell

CHIP Xor {
IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or  (a=aAndNotb, b=notaAndb, out=out);

}

HDL code

simulate

hardware 
simulator

Simulation options

• Interactive

• Script-based.

load Xor.hdl,
output-file And.out,
output-list a b out;
set a 0, set b 0, eval, output;
set a 0, set b 1, eval, output;
set a 1, set b 0, eval, output;
set a 1, set b 1, eval, output;

test script
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Script-based simulation
Xor.tst

load Xor.hdl;
set a 0, set b 0, eval;
set a 0, set b 1, eval;
set a 1, set b 0, eval;
set a 1, set b 1, eval;

test script = sequence of 
commands to the simulator

Benefits:

• “Automatic” testing

• Replicable testing.

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}
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Script-based simulation, with an output file

The logic of a typical test script
• Initialize:

q Loads an HDL file
q Creates an empty output file
q Lists the names of the pins whose

values will be written to the output file
• Repeat:

q set – eval - output

| a | b |out|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

Xor.out

Output File, created 
by the test script,
as a side-effect of the 
simulation process

load Xor.hdl,
output-file Xor.out,
output-list a b out;
set a 0, set b 0, eval, output;
set a 0, set b 1, eval, output;
set a 1, set b 0, eval, output;
set a 1, set b 1, eval, output;

Xor.tst

test
script

tested 
chip

Xor.hdl
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}
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Script-based simulation

HDL 
code

test 
script

inspect the 
output file2. run

the script 1. Load a 
test script

| a | b |out|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

Xor.out
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Script-based simulation, with a compare file

Simulation-with-compare-file logic

• When each output command is executed, 
the outputted line is compared to the 
corresponding line in the compare file

• If the two lines are not the same, the 
simulator throws a comparison error.

load Xor.hdl,
output-file Xor.out,
compare-to Xor.cmp,
output-list a b out;
set a 0, set b 0, eval, output;
set a 0, set b 1, eval, output;
set a 1, set b 0, eval, output;
set a 1, set b 1, eval, output;

Xor.tst

CHIP Xor {
IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

Xor.hdl

| a | b |out|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

Xor.out

| a | b |out|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

Xor.cmp

compare
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Script-based simulation, with a compare file

Demos:

load Xor.hdl,
output-file Xor.out,
compare-to Xor.cmp,
output-list a b out;
set a 0, set b 0, eval, output;
set a 0, set b 1, eval, output;
set a 1, set b 0, eval, output;
set a 1, set b 1, eval, output;

Xor.tst

CHIP Xor {
IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

Xor.hdl

| a | b |out|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

Xor.out

| a | b |out|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

Xor.cmp

compare
Experimenting with Built-In Chips

Building and Testing HDL-based Chips

Script-Based Chip Testing

https://www.youtube.com/watch?v=FW6Z_Xp2v-c
https://www.youtube.com/watch?v=iSNfqzJUWW4
https://www.youtube.com/watch?v=d0X0dMMUt1U
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Multi-bit bus

LSB = Least 
significant bit

MSB = Most 
significant bit

13 1215 14 9 811 10 5 47 6 1 03 2

Example: 16-bit bus

0 01 0 0 01 0 0 11 1 0 11 1

• Sometimes we wish to manipulate a sequence of bits as a single entity

• Such a multi-bit entity is termed “bus”
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Working with buses: Example

/* Adds two 16-bit values. */ 
CHIP Adder { 

IN a[16], b[16]; 
OUT out[16]; 

PARTS: 
...

}
/* Adds three 16-bit inputs. */ 
CHIP Adder3Way { 

IN a[16], b[16], c[16]; 
OUT out[16];

PARTS:
Adder(a=a , b=b, out=ab);
Adder(a=ab, b=c, out=out);   

}out: 0. . . 1 1

a:
1 0

1

15 . . .

. . . 1 1

b: 0. . .0 1

c: 1. . .0 0

out
a

16

16-bit
adder

b
16

16

n-bit value (bus) can be 
treated as a single entity

Creates an internal 
bus pin (ab)
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/* Returns 1 if a==1 and b==1,
0 otherwise. */ 

CHIP And { 
IN a, b; 
OUT out;
... 

}

Working with individual bits within buses

/* 4-way And: Ands 4 bits. */ 
CHIP And4Way { 

IN a[4]; 
OUT out;

PARTS: 
And(a=a[0],   b=a[1], out=and01);
And(a=and01,  b=a[2], out=and012);
And(a=and012, b=a[3], out=out);

}

Input bus pins can 
be subscripted.

a:
1 0

1

3 2

10 1

out: 0
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/* Returns 1 if a==1 and b==1,
0 otherwise. */ 

CHIP And { 
IN a, b; 
OUT out;
... 

}

Working with individual bits within buses

/* Bit-wise And of two 4-bit inputs */ 
CHIP And4 { 

IN a[4], b[4]; 
OUT out[4];   

PARTS: 
And(a=a[0], b=b[0], out=out[0]);
And(a=a[1], b=b[1], out=out[1]);
And(a=a[2], b=b[2], out=out[2]);
And(a=a[3], b=b[3], out=out[3]);

}

Output bus pins 
can be subscripted

a:
1 0

1
3 2

10 0

b: 100 1

out: 100 0

/* 4-way And: Ands 4 bits. */ 
CHIP And4Way { 

IN a[4]; 
OUT out;

PARTS: 
And(a=a[0],   b=a[1], out=and01);
And(a=and01,  b=a[2], out=and012);
And(a=and012, b=a[3], out=out);

}

Input bus pins can 
be subscripted.

a:
1 0

1

3 2

10 1

out: 0
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Built-in chips
We provide built-in versions of the chips built in this course (in tools/builtInChips).
For example:

/** Sets out to a Xor b */
CHIP Xor {

IN a, b;
OUT out;

BUILTIN Xor;
// implemented by a Xor.java class. 

}

Xor.hdl

Behavioral simulation
• Before building a chip in HDL, one can implement the chip logic in a high-level language
• Enables experimenting with / testing the chip abstraction before actually building it

• Enables high-level planning and testing of hardware architectures.

/** Sets out to a Xor b */
CHIP Xor {

IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota);
Not (in=b, out=notb);
And (a=a, b=notb, out=aAndNotb);
And (a=nota, b=b, out=notaAndb);
Or (a=aAndNotb, b=notaAndb, out=out);

}

Xor.hdl

A built-in chip has the same interface 
as the regular chip, but a different 
implementation

Demo: Loading and testing a built-in chip in the hardrawe simulator

Implemented 
in Java

Implemented 
in HDL

https://www.youtube.com/watch?v=FW6Z_Xp2v-c
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Hardware construction projects

Key players:
• Architect:

q Decides which chips are needed
q Specifies the chips

• Developers:
q Build / test the chips

In Nand to Tetris:
The architect is the course instructor; the developers are the students

For each chip, the architect supplies:

q Built-in chip 
q Chip API (skeletal HDL program  = stub file)
q Test script
q Compare file

Given these resources, the developers (students) build the chips. 
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The developer’s view (of, say, a Xor gate)

These files specify:
• The chip interface (.hdl)
• How the chip is supposed to behave (.cmp)
• How to test the chip (.tst)

The developer’s task:
Implement the chip (complete the supplied .hdl file), 
using these resources.

load Xor.hdl,
output-file Xor.out,
compare-to Xor.cmp
output-list a b out;
set a 0, set b 0, eval, output;
set a 0, set b 1, eval, output;
set a 1, set b 0, eval, output;
set a 1, set b 1, eval, output;

Xor.tst

test 
script

/** Sets out to a Xor b */
CHIP Xor {

IN a, b;
OUT out;

PARTS:
// Implementation missing

}

Xor.hdl

stub
file

| a | b |out|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

Xor.cmpcompare
file
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hardware platform

computer

abstraction

ALU, RAM

abstraction

elementary 
logic gates

abstraction

Nand

Building 
gates

Building 
chips

Building a 
computer

Nand to Tetris Roadmap (Part I: Hardware)

abstraction

assembler

machine 
language

p1

p2

p3

p4

p5

p6
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hardware platform

computer

abstraction

ALU, RAM

abstraction

elementary 
logic gates

abstraction

Nand

Building 
gates

Building 
chips

Building a 
computer

Project 1

abstraction

assembler

machine 
language

p1

p2

p3

p4

p5

p6

Project 1
Build 15 elementary logic gates
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Project 1

Why these 15 particular gates?

• Commonly used gates

• Comprise all the elementary logic gates needed to build our computer.

Given: Nand

Goal: Build the following gates:

Elementary 
logic gates
q Not

q And

q Or

q Xor

q Mux

q DMux

q Or8Way

q Mux4Way16

q Mux8Way16

q DMux4Way

q DMux8Way

Multi-way
variants

q Not16

q And16

q Or16

q Mux16

16-bit
variants
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Project 1

Elementary 
logic gates
q Not

q And

q Or

q Xor

q Mux

q DMux

q Or8Way

q Mux4Way16

q Mux8Way16

q DMux4Way

q DMux8Way

Multi-way
variants

q Not16

q And16

q Or16

q Mux16

16-bit
variants

Given: Nand

Goal: Build the following gates:
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Multiplexor / Demultiplexor

Widely used in:

• Hardware design 

• Communications networks.

if  (sel == 0) 
out = a

else 
out = b

if  (sel == 0)
{a, b} = {in, 0}

else
{a, b} = {0, in}
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Example 1: Using Mux logic to build a programmable gate

When sel == 0
the gate acts like an And gate

CHIP AndMuxOr {
IN a, b, sel;
OUT out;

PARTS:
And (a=a, b=b, out=andOut);
Or  (a=a, b=b, out=orOut);
Mux (a=andOut, b=orOut, sel=sel, out=out);

}

Mux.hdl

a b sel out

0 0 0 0

0 1 0 0

1 0 0 1

1 1 0 1

0 0 1 0

0 1 1 1

1 0 1 0

1 1 1 1

When sel == 1
the gate acts like an Or gate

if  (sel == 0) 
out = a And b

else 
out = a Or b
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Example 2: Using Mux logic in communications networks

• Enables transmitting multiple messages simultaneously using a single,
shared communications line

• Unrelated to this course.

source destination

The sel inputs feed from 
oscillators that produce 
alternating 0 and 1 signals
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Multiplexor

sel out

0 a

1 b

abbreviated 
truth table

a b sel out

0 0 0 0

0 1 0 0

1 0 0 1

1 1 0 1

0 0 1 0

0 1 1 1

1 0 1 0

1 1 1 1

if  (sel == 0) 
out = a

else 
out = b

Implementation tip
Can be implemented from the gates And, Or, Not.

CHIP Mux {
IN a, b, sel;
OUT out;

PARTS:
// Put your code here:

}

Mux.hdl
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Demultiplexor
in sel a b

0 0 0 0

0 1 0 0

1 0 1 0

1 1 0 1

if (sel == 0)
{a, b} = {in, 0}

else
{a, b} = {0, in}

• Acts like the “inverse” of a multiplexor

• Channels the single input value into one of two possible destinations

CHIP DMux {
IN in, sel;
OUT a, b;

PARTS:
// Put your code here:

}

DMux.hdl

Implementation tip
Similar to the Mux implementation.
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Project 1

Elementary 
logic gates
q Not

q And

q Or

q Xor

q Mux

q DMux

q Or8Way

q Mux4Way16

q Mux8Way16

q DMux4Way

q DMux8Way

Multi-way
variants

q Not16

q And16

q Or16

q Mux16

16-bit
variants
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And16

out = 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0

a = 1 0 1 0 1 0 1 1 0 1 0 1 1 1 0 0
b = 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0

CHIP And16 {
IN a[16], b[16];
OUT out[16];

PARTS:
// Put your code here:

}

Implementation tip

A straightforward 16-bit extension of the 
elementary And gate

(See notes about working with multi-bit buses).   

Example:
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Project 1

Elementary 
logic gates
q Not

q And

q Or

q Xor

q Mux

q DMux

q Or8Way

q Mux4Way16

q Mux8Way16

q DMux4Way

q DMux8Way

Multi-way
variants

q Not16

q And16

q Or16

q Mux16

16-bit
variants
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16-bit, 4-way multiplexor

sel[1] sel[0] out

0 0 a

0 1 b

1 0 c

1 1 d

Implementation tip:

Can be built from several Mux16 gates.

CHIP Mux4Way16 {
IN a[16], b[16], c[16], d[16],

sel[2];
OUT out[16];

PARTS:

// Put your code here:
}

Mux4Way16.hdl
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Project 1

Elementary 
logic gates
q Not

q And

q Or

q Xor

q Mux

q DMux

q Or8Way

q Mux4Way16

q Mux8Way16

q DMux4Way

q DMux8Way

Multi-way
variants

q Not16

q And16

q Or16

q Mux16

16-bit
variants

How to actually build these gates?
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Files

if ((a == 0 and b == 1) or
(a == 1 and b == 0))
sets out = 1

else
sets out = 0

CHIP Xor {
IN a, b;
OUT out;

PARTS:
// Put your code here

}

Xor
a

b
out

load Xor.hdl,
output-file Xor.out,
compare-to Xor.cmp,
output-list a b out;
set a 0, set b 0, eval, output;
set a 0, set b 1, eval, output;
set a 1, set b 0, eval, output;
set a 1, set b 1, eval, output;

a b out
0 0  0
0 1  1
1 0  1
1 1  0

Xor.cmp

For every chip built in the course 
(using Xor as an example), we supply 
these three files

Xor.hdl (stub file) Xor.tst
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Files

if ((a == 0 and b == 1) or
(a == 1 and b == 0))
sets out = 1

else
sets out = 0

CHIP Xor {
IN a, b;
OUT out;

PARTS:
// Put your code here

}

Xor
a

b
out

load Xor.hdl,
output-file Xor.out,
compare-to Xor.cmp,
output-list a b out;
set a 0, set b 0, eval, output;
set a 0, set b 1, eval, output;
set a 1, set b 0, eval, output;
set a 1, set b 1, eval, output;

a b out
0 0  0
0 1  1
1 0  1
1 1  0

Xor.cmp

When running your Xor.hdl on the 
supplied Xor.tst, 
your Xor.out should be the same as 
the supplied Xor.cmp

The contract:

Xor.hdl (stub file) Xor.tst
Project 1 folder
(.hdl, .tst, .cmp files):
nand2tetris/projects/01

Tools:
• Text editor

(for completing the .hdl files)

• Hardware simulator: 
nand2tetris/tools
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Chip interfaces

CHIP Xor {
IN a, b;
OUT out;

PARTS:
Not (in= , out= );
Not (in= , out= );
And (a= , b=, out=);
And (a= , b=, out=);
Or (a= , b=, out=);

}

a

Not

Not

And

And

Or

b

out
nota

notb
aAndNotb

notaAndb

out

b

a

b

a

in

in

out

out

out

out

b

a

If I want to use some chip-parts, 
how do I figure out their signatures?
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Chip interfaces: Hack chip set API

Add16 (a= ,b= ,out= ); 

ALU (x= ,y= ,zx= ,nx= ,zy= ,ny= ,f= ,no= ,out= ,zr= ,ng= ); 

And16 (a= ,b= ,out= ); 

And (a= ,b= ,out= ); 

Aregister (in= ,load= ,out= ); 

Bit (in= ,load= ,out= ); 

CPU (inM= ,instruction= ,reset= ,outM= ,writeM= ,addressM= ,pc= ); 

DFF (in= ,out= ); 

DMux4Way (in= ,sel= ,a= ,b= ,c= ,d= ); 

DMux8Way (in= ,sel= ,a= ,b= ,c= ,d= ,e= ,f= ,g= ,h= ); 

DMux (in= ,sel= ,a= ,b= ); 

Dregister (in= ,load= ,out= ); 

FullAdder (a= ,b= ,c= ,sum= ,carry= );  

HalfAdder (a= ,b= ,sum= , carry= ); 

Inc16 (in= ,out= ); 

Keyboard (out= ); 

Memory (in= ,load= ,address= ,out= ); 

Mux16 (a= ,b= ,sel= ,out= ); 

Mux4Way16 (a= ,b= ,c= ,d= ,sel= ,out= ); 

Mux8Way16 (a= ,b= ,c= ,d= ,e= ,f= ,g= ,h= ,sel= ,out= ); 

Mux8Way (a= ,b= ,c= ,d= ,e= ,f= ,g= ,h= ,sel= ,out= ); 

Mux (a= ,b= ,sel= ,out= ); 

Nand (a= ,b= ,out= ); 

Not16 (in= ,out= ); 

Not (in= ,out= ); 

Or16 (a= ,b= ,out= ); 

Or8Way (in= ,out= ); 

Or (a= ,b= ,out= ); 

PC (in= ,load= ,inc= ,reset= ,out= ); 

PCLoadLogic (cinstr= ,j1= ,j2= ,j3= ,load= ,inc= ); 

RAM16K (in= ,load= ,address= ,out= ); 

RAM4K (in= ,load= ,address= ,out= ); 

RAM512 (in= ,load= ,address= ,out= ); 

RAM64 (in= ,load= ,address= ,out= ); 

RAM8 (in= ,load= ,address= ,out= ); 

Register (in= ,load= ,out= ); 

ROM32K (address= ,out= ); 

Screen (in= ,load= ,address= ,out= ); 

Xor (a= ,b= ,out= ); 

Open the Hack chip set API in a window, and copy-paste 
chip signatures into your HDL code, as needed 

https://drive.google.com/file/d/1IsDnH0t7q_Im491LQ7_5_ajV0CokRbwR/view
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Built-in chips

CHIP Foo {
IN ...;
OUT ...;

PARTS:
...
Bar(...)
...

}

Forcing the simulator to use a built-in chip, say Bar:

• Typically, Bar.hdl will be either a given stub-file, or a file that has an 
incomplete implementation

• Remove, or rename, the file Bar.hdl from the project folder

• Whenever Bar will be mentioned as a chip-part in some chip definition, the 
simulator will fail to find Bar.hdl in the current folder. This will cause the 
simulator to invoke the built-in version of Bar instead.

Q: Suppose you want to use a chip-part before 
you’ve implemented it. How to do it?

A: The simulator features built-in implementations 
of all the project 1 chips
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Project 1

Guidelines: www.nand2tetris.org (projects section)

Files: nand2tetris/projects/01 (on your PC)

Tools
• Text editor (for completing the given .hdl stub-files)
• Hardware simulator: nand2tetris/tools (on your PC)

Guides
• Hardware simulator tutorial
• HDL guide
• Hack chip set API

http://www.nand2tetris.org/
https://b1391bd6-da3d-477d-8c01-38cdf774495a.filesusr.com/ugd/44046b_02055f8bb5ac47648c0ab642f01c1919.pdf
https://drive.google.com/file/d/1dPj4XNby9iuAs-47U9k3xtYy9hJ-ET0T/view
https://drive.google.com/file/d/1IsDnH0t7q_Im491LQ7_5_ajV0CokRbwR/view
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Best practice advice

• Implement the chips in the order in which they appear in the project guidelines

• If you don’t implement some chips, you can still use them as chip-parts in other 
chips (use their built-in implementations)

• You can invent additional, “helper chips”; However, this is not necessary.
Implement and use only the chips that we specified

• In each chip implementation, strive to use as few chip-parts as possible

• When defining 16-bit chips, the same chip-parts may appear many times.
That’s fine, use copy-paste-edit.

That’s It!
Go Do Project 1!
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hardware platform

computer

abstraction

ALU, RAM

abstraction

elementary 
logic gates

abstraction

Nand

Building 
gates

Building 
chips

Building a 
computer

What’s next?

abstraction

assembler

machine 
language

p1

p2

p3

p4

p5

p6

This lecture / project / chapter:
Build 15 elementary logic gates
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hardware platform

computer

abstraction

ALU, RAM

abstraction

elementary 
logic gates

abstraction

Nand

Building 
gates

Building 
chips

Building a 
computer

What’s next?

abstraction

assembler

machine 
language

p1

p2

p3

p4

p5

p6

Next:
Build chips that do arithmetic,

ending up with an ALU, 
using the chips built in project 1

This lecture / project / chapter:
Build 15 elementary logic gates


