Beschreibung der Simulation 12 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n HHEEﬂ

auf Grundlage des Kurstextes Computersysteme II

Das zugrundeliegende Programm:

Division zweier Integer mit Eingabe der Zahlen und Ausgabe des Produkts als
double

Wie im HowTo beschrieben, wird Simulationl2.asm im MARS geoffnet. Es sollen 2 Ganzzahlen
eingegeben, konvertiert und dann die erste durch die zweite dividiert werden. Der Quotient soll als
double ausgegeben werden.

.data
promptl: .asciiz "\nBitte die erste Zahl (den Dividenden) eingeben, x ="
prompt2: .asciiz "\nBitte die zweite Zahl (den Divisor) eingeben, y ="
message: .asciiz "\nDas Ergebnis der Division (der Quotient) istx : y ="

Im .data Teil des Codes werden Strings hinterlegt, die einerseits zur Eingabe der Ganzzahlen
auffordern und andererseits die Ausgabe begleiten sollen.

Empfehlenswert ist es, nach dem Assemblieren Schritt fiir Schritt durch das Programm zu gehen,
das geschieht durch Klicks auf den ,,Run one step at a time* Button:

0|6 @)
——— | Run one step ata time ——

Der .text Teil beginnt mit der Aufforderung, die erste Zahl, also x, einzugeben:

text
Ausgabe der ersten Nachricht: prompt1

li $v0, 4 # der Wert 4 fiir den syscall bedeutet: print string
la $a0, promptl # ladt die Adresse des ersten Strings in $a0
syscall

erste Zahl einlesen und im temporéren Register $t0 ablegen
1i $v0, 5 # der Wert 5 fiir den syscall bedeutet: read integer
syscall
move $t0, $v0

Der Wert 4 fiir den syscall bedeutet print string, und die Adresse dieses Strings muss dafiir in
Register $a0 geladen werden. Nach Ausgabe der Nachricht prompt! kann dann x eingelesen
werden, dazu dient der Wert 5. read integer fiir den syscall. Wird dann eine Zahl eingegeben und
mit Enter bestitigt, liegt sie in $v0 vor und wird hier, zur weiteren Verwendung, in das temporére
Register $70 kopiert:

Beschreibung der Simulation 12 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

@ FernUniversitat in Hagen

&l 7 0x00000000
st0 g 0x0000000c
stl 9 0x00000000

Wie man sieht, liegt hier als Beispiel x = /2 in hexadezimaler Darstellung in $z0 vor.

erste Zahl zum Coproc 1 transferieren und konvertieren
mtcl.d $t0, $4
cvt.d.w $t4, $14

Mithilfe des Befehls mtcl.d $t0, $f4 wird x nun zum Coprozessor 1 {ibertragen, wo es dann zu
double konvertiert werden kann mit dem Befehl cve.dw $f4, $f4, das hier den Wert aus dem
Floating-Point-Register $f4 nimmt, zu double konvertiert und wieder in $f4 ablegt.

Ebenso wird dann als néichstes der Divisor y = 5 eingelesen, zum Coprozessor transferiert und
konvertiert, sodass vor Ausfiihrung des Divisionsbefehls div in Zeile 41 x und y als double

bereitliegen:

g4 0x00000000 Ox4028000000000000
L5 Ox40280000
£f6 0x00000000 O0x4014000000000000
5FT fxdnt1annnn

Hier erst in hexadezimaler Darstellung und dann in dezimaler Darstellung zu erkennen.

:: L Uaeld
d B 0.0 12.0
|z£5 2.625
d(515 0.0 5.0
ey 7.3175

Nun liegen also Dividend und Divisor bereit, und die eigentliche Division kann initiiert werden:

Division durchfiihren, Ergebnis in $f12 speichern
div.d $f12, $f4, $fo

Y Tarietan dnrelFiThran . Froahnd e
#F Ulvision durchiuiiren, frgebnis

-

div.d s£12, $£4, $£6

in =F192 epailcrharn
1 Ills Spelciiern

3;;3| div.d $£2,5£4,5£6 Floating point division double precision : Set $f2 to double-precision floating point value of $f4 divided by $fﬁ|

Der div.d Befehl nimmt also das zweitgenannte Register, teilt den Inhalt durch den Inhalt des
drittgenannten Registers und legt den Quotienten im erstgenannten Register ab, sodass nach
Ausfiihrung in $f12 das Ergebnis bereitsteht:

Beschreibung der Simulation 12 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hagen

auf Grundlage des Kurstextes Computersysteme II

[s£11 0.0
ls£12 4.172325E-8 2.4
Ns£13 2.05

Erst dezimal, dann hexadezimal gezeigt.

Heg11 0x00000000
|se12 0x33333333 0x4003333333333333
Ns£13 0x40033333

Nun muss noch das Ergebnis ausgegeben werden, die Ausgabe wird vom String message begleitet:

Ausgabe der dritten Nachricht: message
1i $v0, 4
la $a0, message
syscall

Wie schon bei der Ausgabe der Aufforderungen promptl und prompt2 steht hier der Wert 4 fiir den
syscall fur print string und die Adresse des auszugebenden Strings muss in $a0 geladen werden.

Ausgabe des Quotienten
li $v0, 3 # der Wert 3 fiir den syscall bedeutet: $f12 = double to print
syscall

Der Wert 3 fiir den syscall bedeutet, dass in $f12 ein double steht, der ausgegeben werden soll.

Nun bleibt nur noch das Beenden des Programms, was wie in den anderen Simulationen dieser
Reihe Simulationen mit dem MARS Simulator auch, Uiber den Wert 10: terminate execution fiir den
syscall passiert:

exit
li $v0, 10 # der Wert 10 fiir den syscall bedeutet: exit (terminate execution)
syscall

Die Ausgabe ist im Fenster Run /0 unterhalb des Data Segments im execute Fenster zu finden:

Mars Messages |/ Run /0 |

Bitte die erate Zahl ({den Dividenden) eingeben, x = 12

Bitte die zweite Zahl {den Diviscr) eingebken, ¥ = 5

Clear Das Ergebnis der Division (der Quotient) ist x @ v = 2.4

—— program is finished running -—-

