
Beschreibung der Simulation 12 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Das zugrundeliegende Programm:

Division zweier Integer mit Eingabe der Zahlen und Ausgabe des Produkts als
double

Wie im HowTo beschrieben, wird Simulation12.asm im MARS geöffnet. Es sollen 2 Ganzzahlen
eingegeben, konvertiert und dann die erste durch die zweite dividiert werden. Der Quotient soll als
double ausgegeben werden.

Im .data Teil des Codes werden Strings hinterlegt, die einerseits zur Eingabe der Ganzzahlen
auffordern und andererseits die Ausgabe begleiten sollen.

Empfehlenswert ist es, nach dem Assemblieren Schritt für Schritt durch das Programm zu gehen,
das geschieht durch Klicks auf den „Run one step at a time“ Button:

Der .text Teil beginnt mit der Aufforderung, die erste Zahl, also x, einzugeben:

Der Wert 4 für den syscall bedeutet print string, und die Adresse dieses Strings muss dafür in
Register $a0 geladen werden. Nach Ausgabe der Nachricht prompt1 kann dann x eingelesen
werden, dazu dient der Wert 5: read integer für den syscall. Wird dann eine Zahl eingegeben und
mit Enter bestätigt, liegt sie in $v0 vor und wird hier, zur weiteren Verwendung, in das temporäre
Register $t0 kopiert:

.data
prompt1: .asciiz "\nBitte die erste Zahl (den Dividenden) eingeben, x = "
prompt2: .asciiz "\nBitte die zweite Zahl (den Divisor) eingeben, y = "
message: .asciiz "\nDas Ergebnis der Division (der Quotient) ist x : y = "

.text
Ausgabe der ersten Nachricht: prompt1

li $v0, 4 # der Wert 4 für den syscall bedeutet: print string
la $a0, prompt1 # lädt die Adresse des ersten Strings in $a0
syscall

erste Zahl einlesen und im temporären Register $t0 ablegen
li $v0, 5 # der Wert 5 für den syscall bedeutet: read integer
syscall
move $t0, $v0

Beschreibung der Simulation 12 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Wie man sieht, liegt hier als Beispiel x = 12 in hexadezimaler Darstellung in $t0 vor.

Mithilfe des Befehls mtc1.d $t0, $f4 wird x nun zum Coprozessor 1 übertragen, wo es dann zu
double konvertiert werden kann mit dem Befehl cvt.d.w $f4, $f4, das hier den Wert aus dem
Floating-Point-Register $f4 nimmt, zu double konvertiert und wieder in $f4 ablegt.

Ebenso wird dann als nächstes der Divisor y = 5 eingelesen, zum Coprozessor transferiert und
konvertiert, sodass vor Ausführung des Divisionsbefehls div in Zeile 41 x und y als double
bereitliegen:

Hier erst in hexadezimaler Darstellung und dann in dezimaler Darstellung zu erkennen.

Nun liegen also Dividend und Divisor bereit, und die eigentliche Division kann initiiert werden:

Der div.d Befehl nimmt also das zweitgenannte Register, teilt den Inhalt durch den Inhalt des
drittgenannten Registers und legt den Quotienten im erstgenannten Register ab, sodass nach
Ausführung in $f12 das Ergebnis bereitsteht:

erste Zahl zum Coproc 1 transferieren und konvertieren
mtc1.d $t0, $f4
cvt.d.w $f4, $f4

Division durchführen, Ergebnis in $f12 speichern
div.d $f12, $f4, $f6

Beschreibung der Simulation 12 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Erst dezimal, dann hexadezimal gezeigt.

Nun muss noch das Ergebnis ausgegeben werden, die Ausgabe wird vom String message begleitet:

Wie schon bei der Ausgabe der Aufforderungen prompt1 und prompt2 steht hier der Wert 4 für den
syscall für print string und die Adresse des auszugebenden Strings muss in $a0 geladen werden.

Der Wert 3 für den syscall bedeutet, dass in $f12 ein double steht, der ausgegeben werden soll.

Nun bleibt nur noch das Beenden des Programms, was wie in den anderen Simulationen dieser
Reihe Simulationen mit dem MARS Simulator auch, über den Wert 10: terminate execution für den
syscall passiert:

Die Ausgabe ist im Fenster Run I/O unterhalb des Data Segments im execute Fenster zu finden:

Ausgabe des Quotienten
li $v0, 3 # der Wert 3 für den syscall bedeutet: $f12 = double to print
syscall

exit
li $v0, 10 # der Wert 10 für den syscall bedeutet: exit (terminate execution)
syscall

Ausgabe der dritten Nachricht: message
li $v0, 4
la $a0, message
syscall

