Beschreibung der Simulation 14 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n HHEEﬂ

auf Grundlage des Kurstextes Computersysteme II

Das zugrundeliegende Programm:

Programm zur Berechnung der Fakultit einer einzulesenden Ganzzahl n

Wie im HowTo beschrieben, wird Simulationl4.asm im MARS gedffnet. Das Programm liest eine
Ganzzahl n ein und berechnet rekursiv deren Fakultit n/. Zeigt den Gebrauch des Stacks.

.data
prompt: .asciiz "\nBitte geben Sie die Zahl ein, deren Fakultdt berechnet werden soll: n="
message: .asciiz "\n Die Fakultdt von nist:\nn! ="

Im .data Teil des Codes werden Strings hinterlegt, die einerseits zur Eingabe der Ganzzahl
auffordern und andererseits die Ausgabe begleiten sollen.

Empfehlenswert ist es, nach dem Assemblieren Schritt fiir Schritt durch das Programm zu gehen,
das geschieht durch Klicks auf den ,,Run one step at a time* Button:

r IR @)
—— | Run one step ata time ——

Der .text Teil beginnt mit der Aufforderung, die Zahl n, einzugeben:

text

main:

n einlesen und in $a0 ablegen
la $a0, prompt # Laden der Adresse des Strings prompt
1i $v0, 4 # Der Wert 4 fiir den syscall bedeutet print string
syscall # Ausgabe des Strings prompt
li $v0, 5 # der Wert 5 fiir den syscall bedeutet read integer
syscall # n in $v0 einlesen
move $a0, $v0 # n in $a0 ablegen

Der Wert 4 fiir den syscall bedeutet print string, und die Adresse dieses Strings muss dafiir in
Register $a0 geladen werden. Nach Ausgabe der Nachricht prompt kann dann n eingelesen werden,
dazu dient der Wert 5. read integer fiir den syscall. Wird dann eine Zahl eingegeben und mit Enter
bestdtigt, liegt sie in $v0 vor und wird hier, zur weiteren Verwendung, in das Parameteriibergabe-
Register $a0 kopiert:

et 3 0x00000000
520 4 0x00000006
“|sa1 5 0x00000000

Wie man sieht, liegt hier als Beispiel n = 6 in $a0 vor.

Beschreibung der Simulation 14 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n HHEEﬂ

auf Grundlage des Kurstextes Computersysteme II

Da wir hier ein Programm vorliegen haben, das Rekursion nutzt, brauchen wir auch eine
Abbruchbedingung fiir eben diese rekursiven Aufrufe:

Wert fiir die Abbruchbedingung
li $s1, 1

Danach kann das Unterprogramm fac aufgerufen werden, in dem die eigentliche Berechnung
stattfindet:

Aufruf des Unterprogramms fac
jal fac

Der Aufruf des Unterprogramms geschieht wieder, wie wir das schon in Simulation 13 dieser Reihe
gesehen haben, tiber den Befehl jal: jump and link, der PC+4 im Register $ra speichert, damit das
Unterprogramm eine Riicksprungadresse hat.

FLEY au URUUUIUULL
sz 31 0x00400024
|ec 0x0040004¢

Beim ersten Aufruf von fac, aus main heraus, wird die Riicksprungadresse $0x00400024 in $ra
gespeichert, was genau dem Befehl entspricht, der nach jal fac im Hauptprogramm main steht, wie
man schon im Text Segment des Execute Fenster sehen kann:

0x00400020| 0x0cl00013|jal 0x0040004c 22: jal fac

0x00400024| 0x00024021|addu $8,50,52 24: move $tl, $v0 # in &v0 stand das Er...

0x00400028| 0x3c011001|1ui £1,0x00001001 25: la #al, message # Laden der Adresse d... |
I T T rcanannnaal acosaanna-lacs =0 =1 ncnnanana-

Was aber passiert mit den rekursiven Aufrufen von fac innerhalb von fac? Wenn jeder Aufruf mit
jal die Riicksprungadresse in $ra sichert, dann werden die vorherigen iiberschrieben und das
Programm kann nie zurlickkehren in das Hauptprogramm, von dem aus es aufgerufen wurde. Was
ist also zu tun? Die jeweilige Riicksprungadresse muss gesichert werden, bevor durch den erneuten
(rekursiven) Aufruf die Adresse unwiederbringlich iiberschrieben und damit verloren ist. Ebenso
muss der Inhalt des Registers $s0, in dem jeweils das Argument eingetragen wird, gesichert werden.
Folgende Codezeilen realisieren diese Anforderungen, indem zuerst 8 Byte Speicherplatz auf dem
Stack allokiert werden, um dann zwei 32-Bit-Worte dort zu sichern:

STNTRTNTR TN TR TN TR TN TR TN TRTNTRTNTRTNTRTNY, IRTRTRTRTN TR NIRRT RN NININ]
1 FitH 1

HHHEHEHEHEH A Unterprogramm fac ##HE#HHH

JuTaTy
1 1

1

fac:
addi S$sp, $sp, -8 # Auf dem Stack Platz fiir 2 Eintrége schaffen
sw $s0, 0($sp) # Sichern des Registers $s0
sw $ra, 4($sp) # Sichern der Riicksprungadresse

Im Folgenden zeigen Screenshots, wie das beim ersten Aufruf von fac, also aus dem main
Programm heraus, aussieht:

Beschreibung der Simulation 14 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

@ FernUniversitat in Hagen

Nach dem Aufruf von fac steht im Register $sp = $Ox7FFFEFFC, der Stackpointer zeigt also auf
diese Adresse.

B (1] 28 Ux1UUUEUUD
Az=p 29 OxTEEfeffc
. an AwnAnnnnnn

Im unteren Bereich des Data Segments des Execute Fensters kann man die Ansicht des Stacks
mithilfe des Dropdown Menus auswihlen:

0x10010000 {.data)

E===0x10000000 {.extern)
"""" 0x10010000 (.data)
=——0x10040000 (heap)
current $gp

current $sp
0x00400000 (.text)
0x90000000 (kdata)
OxFF0000 (MMIO)

Zu Beginn ist der Stack leer, rot markiert ist der Bereich, auf den der Stackpointer gerade zeigt:

Data Segment :

Address Value (+0) Value (+4) WValue (+8) Walue (+c) WValue (+10) Value (+14) Elue (+18) Value (+1c)
0x00000000 0x00000000 0x00000000 0x00000000 0x0000000 0x00000000 ‘xOOUOOO 0x00000000| =
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 00000 0x00000000 x000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x aan
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000|=
0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
AxNNAANNNM nxNOANANAN nxnNOANNNNA nxnNNANNNNA nxNNANNNNA NxNOONONAN nxNOnNaNAnN nxNNANANON

Nach Ausfithren des Befehls addi $sp, $sp, -8 ist $sp = Ox7FFFEFF4 zeigt also in obiger
Abbildung auf die erste Zeile der dritten Spalte von rechts (blau markiert). Dort wird dann mit sw
850, 0($sp) der Inhalt von 850 eingetragen (im Moment noch 0) und mit sw $ra, 4(8sp) wird die
Riicksprungadresse in der Zelle rechts davon eingetragen:

o &
WYalue (+14) WYalue (+18) Value (+1c)
1] 0x00000000 0x00400024 0x00000000) =~
o] 0x00000000 0x00000000 0x00000000
L4 FeeAAAAAAAN FPeeMAAAAAAN LA C T Y atatatalaalyl

Dies ist eben genau die Riicksprungadresse aus fac heraus, zuriick ins main Programm, wo wir den
Befehl finden, der im Programm direkt hinter dem jal fac steht, wie wir das oben bereits in der
Abbildung gesehen haben.

Beschreibung der Simulation 14 aus der Reihe:

Simulationen mit dem MARS Simulator

auf Grundlage des Kurstextes Computersysteme II

@ FernUniversitat in Hagen

Nun wird das Argument in $sO geschrieben, auf die Abbruchbedingung geprift und $a0
dekrementiert, sodass daraufhin fac mit n-/ aufgerufen werden kann:

jal fac

add $s0,$zero,$a0
beq $s0, $s1, done
addi $a0, $a0, -1

rekursiver Aufruf mit n-1

14dt das Argument in $s0
wenn das Argument = 1 ist, springe zur Marke done, Abbruchbedingung
dekrementiere das Argument (n-1)

CLLOLORLULRDORUELOLRULGLLLE
Exkurs: Was passiert derweil auf dem Stack?

FUL L0 UXLUUUouuy

$3p 29 ox7Effefec

£fp 30 0x00000000

(RS

(RS

$sp = Ox7FFFEFEC, wieder 2 Spalten weiter links in der Ubersicht des Stacks im Execute Fenster.
sw 850, 0($sp) schreibt also den Inhalt von $s0 in diese Zelle (blau) und sw $ra, 4($sp) sichert die
Riicksprungadresse in die Zelle rechts daneben (rot):

G = I
et et Value (+14) Yalue (+18) WYalue (+1c)

100 (0x00000006 O0x004000& 0x00000000 0x00400024 0x00000000) -+

100 0x00000000 0x00000000 0x00000000

L _ _ _ E——— | _ E—— _

Schon zu sehen: der Stack wéchst (nach unten)! Mit jedem rekursiven Aufruf von fac wandert der
Zeiger 2 Zellen nach links, tridgt das Argument und die Riicksprungadresse ein, bis das Argument in

$a0=1 ist:

Value (+0) Value (+4) Value (+8) Value (+c) Value (+10) Value (+14) Value (+18) Value (+1c)
£ci 0x00000000 0x00000000 0x00000000 0x00000002 0x00400068 0x00000003 0x004000&68 0x00000004) =
£el 0x00400068 0x00000005 0x00400068 0x00000008 0x00400068 0x00000000 0x00400024 0x00000000
a00 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

Damit liegen die Werte, die fiir die Berechnung von 6/ (in unserem Beispiel) bendtigt werden, im
Stack vor. 6*5*4*3*2*]=72(, wobei die I nicht auf den Stack gelegt werden muss, weil sie in der
Marke done in das Riickgaberegister $v0 geschrieben wird:

done:
Ii $vO0, 1

diese Zeile wird nur einmal ausgefiihrt, wenn fac mit a0=1 aufgerufen wurde

ist das Argument = 1, wird 1 zuriickgegeben

Zuriick zum Programmablauf:

CLRLOE

(S

COUeOe

Ve

i

]
L
L]

@ oW

Beschreibung der Simulation 14 aus der Reihe:

Simulationen mit dem MARS Simulator @ Fernu"iumsitﬁt n Hagen

auf Grundlage des Kurstextes Computersysteme II

Sobald fac mit $a0=1 aufgerufen wurde, ist die Abbruchbedingung in Zeile 43 erreicht (denn dort
ist dann 8s0=1), sodass zur Marke done gesprungen wird, wo eine / als Riickgabewert von fac in
das Register $v0 geschrieben wird. Vom Stack zuriickgelesen werden der zuletzt gesicherte $s0
-Inhalt sowie die zuletzt gesicherte Riicksprungadresse, dann wird der Stackpointer wieder auf den
Wert vor dem letzten Unterprogrammaufruf gesetzt (Zeiger wandert 2 Zellen nach rechts!)

end:
Iw $s0, 0($sp) # Zuriicklesen des Registers $s0 vom Stack
Iw $ra, 4($sp) # Zurilicklesen der Riicksprungsadresse vom Stack
addi $sp, $sp, 8 # Stackpointer wieder auf den Wert vor Aufruf des Unterprogramms setzen
jr Sra # Riicksprung

HitHHHHHHHH#H# Ende des Unterprogramms fac ##HHHHHHHHHTHHHHHIH

Es erfolgt der Riicksprung (Zeile 61), worauthin das Produkt der Inhalte von $s0 und $v0 berechnet
und in $v0 abgelegt wird, um dann wieder zu Zeile 57 in die Marke end zu springen. Das
wiederholt sich solange, bis die Riicksprungadresse auf dem Stack erreicht ist, die aus fac hinaus
wieder in das Hauptprogramm main fiihrt.

Sobald der Riicksprung fac verlésst, wird das Programm an Zeile 24 fortgesetzt. Das Ergebnis der
Berechnung steht in $v0 und wird zusammen mit dem zugehdrigen String message ausgegeben:

move $t0, $v0 # in $v0 stand das Ergebnis, ablegen in $t0

la $a0, message # Laden der Adresse des Strings message

1i $v0, 4 # der Wert 4 fiir den syscall bedeutet print string
syscall # Ausgabe des Strings message

move $a0, $t0 # Laden des Ergebnisses in $a0

1i $v0, 1 # der Wert 1 fiir den syscall bedeutet print integer
syscall # Ausgabe des Ergebnisses

Danach bleibt nur noch, das Programm zu beenden, was wie in den anderen Codebeispielen auch,
iiber den syscall mit dem Wert 10 (terminate execution) passiert:

exit
1i $v0, 10 # der Wert 10 fiir den syscall bedeutet: exit (terminate execution)

syscall

Die Ausgabe ist im Fenster Run 1/O unterhalb des Data Segments im execute Fenster zu finden:

Bitte geben Sie die Zahl e=in, deren Fakult&t berechnet werden scll: n = &

Die Fakultdt won n ist:

n! = 720

Clear

—-— program i3 finished running —-

