
Beschreibung der Simulation 14 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Das zugrundeliegende Programm:

Programm zur Berechnung der Fakultät einer einzulesenden Ganzzahl n

Wie im HowTo beschrieben, wird Simulation14.asm im MARS geöffnet. Das Programm liest eine
Ganzzahl n ein und berechnet rekursiv deren Fakultät n!. Zeigt den Gebrauch des Stacks.

Im .data Teil des Codes werden Strings hinterlegt, die einerseits zur Eingabe der Ganzzahl
auffordern und andererseits die Ausgabe begleiten sollen.

Empfehlenswert ist es, nach dem Assemblieren Schritt für Schritt durch das Programm zu gehen,
das geschieht durch Klicks auf den „Run one step at a time“ Button:

Der .text Teil beginnt mit der Aufforderung, die Zahl n, einzugeben:

Der Wert 4 für den syscall bedeutet print string, und die Adresse dieses Strings muss dafür in
Register $a0 geladen werden. Nach Ausgabe der Nachricht prompt kann dann n eingelesen werden,
dazu dient der Wert 5: read integer für den syscall. Wird dann eine Zahl eingegeben und mit Enter
bestätigt, liegt sie in $v0 vor und wird hier, zur weiteren Verwendung, in das Parameterübergabe-
Register $a0 kopiert:

Wie man sieht, liegt hier als Beispiel n = 6 in $a0 vor.

.data
prompt: .asciiz "\nBitte geben Sie die Zahl ein, deren Fakultät berechnet werden soll: n = "
message: .asciiz "\n Die Fakultät von n ist:\n n! = "

.text
main:
n einlesen und in $a0 ablegen

la $a0, prompt # Laden der Adresse des Strings prompt
li $v0, 4 # Der Wert 4 für den syscall bedeutet print string
syscall # Ausgabe des Strings prompt
li $v0, 5 # der Wert 5 für den syscall bedeutet read integer
syscall # n in $v0 einlesen
move $a0, $v0 # n in $a0 ablegen

Beschreibung der Simulation 14 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Da wir hier ein Programm vorliegen haben, das Rekursion nutzt, brauchen wir auch eine
Abbruchbedingung für eben diese rekursiven Aufrufe:

Danach kann das Unterprogramm fac aufgerufen werden, in dem die eigentliche Berechnung
stattfindet:

Der Aufruf des Unterprogramms geschieht wieder, wie wir das schon in Simulation 13 dieser Reihe
gesehen haben, über den Befehl jal: jump and link, der PC+4 im Register $ra speichert, damit das
Unterprogramm eine Rücksprungadresse hat.

Beim ersten Aufruf von fac, aus main heraus, wird die Rücksprungadresse $0x00400024 in $ra
gespeichert, was genau dem Befehl entspricht, der nach jal fac im Hauptprogramm main steht, wie
man schön im Text Segment des Execute Fenster sehen kann:

Was aber passiert mit den rekursiven Aufrufen von fac innerhalb von fac? Wenn jeder Aufruf mit
jal die Rücksprungadresse in $ra sichert, dann werden die vorherigen überschrieben und das
Programm kann nie zurückkehren in das Hauptprogramm, von dem aus es aufgerufen wurde. Was
ist also zu tun? Die jeweilige Rücksprungadresse muss gesichert werden, bevor durch den erneuten
(rekursiven) Aufruf die Adresse unwiederbringlich überschrieben und damit verloren ist. Ebenso
muss der Inhalt des Registers $s0, in dem jeweils das Argument eingetragen wird, gesichert werden.
Folgende Codezeilen realisieren diese Anforderungen, indem zuerst 8 Byte Speicherplatz auf dem
Stack allokiert werden, um dann zwei 32-Bit-Worte dort zu sichern:

Im Folgenden zeigen Screenshots, wie das beim ersten Aufruf von fac, also aus dem main
Programm heraus, aussieht:

Wert für die Abbruchbedingung
li $s1, 1

#################### Unterprogramm fac #####################
fac:

addi $sp, $sp, -8 # Auf dem Stack Platz für 2 Einträge schaffen
sw $s0, 0($sp) # Sichern des Registers $s0
sw $ra, 4($sp) # Sichern der Rücksprungadresse

Aufruf des Unterprogramms fac
jal fac

Beschreibung der Simulation 14 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Nach dem Aufruf von fac steht im Register $sp = $0x7FFFEFFC, der Stackpointer zeigt also auf
diese Adresse.

Im unteren Bereich des Data Segments des Execute Fensters kann man die Ansicht des Stacks
mithilfe des Dropdown Menus auswählen:

Zu Beginn ist der Stack leer, rot markiert ist der Bereich, auf den der Stackpointer gerade zeigt:

Nach Ausführen des Befehls addi $sp, $sp, -8 ist $sp = 0x7FFFEFF4 zeigt also in obiger
Abbildung auf die erste Zeile der dritten Spalte von rechts (blau markiert). Dort wird dann mit sw
$s0, 0($sp) der Inhalt von $s0 eingetragen (im Moment noch 0) und mit sw $ra, 4($sp) wird die
Rücksprungadresse in der Zelle rechts davon eingetragen:

Dies ist eben genau die Rücksprungadresse aus fac heraus, zurück ins main Programm, wo wir den
Befehl finden, der im Programm direkt hinter dem jal fac steht, wie wir das oben bereits in der
Abbildung gesehen haben.

Beschreibung der Simulation 14 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Nun wird das Argument in $s0 geschrieben, auf die Abbruchbedingung geprüft und $a0
dekrementiert, sodass daraufhin fac mit n-1 aufgerufen werden kann:

Exkurs: Was passiert derweil auf dem Stack?

$sp = 0x7FFFEFEC, wieder 2 Spalten weiter links in der Übersicht des Stacks im Execute Fenster.
sw $s0, 0($sp) schreibt also den Inhalt von $s0 in diese Zelle (blau) und sw $ra, 4($sp) sichert die
Rücksprungadresse in die Zelle rechts daneben (rot):

Schön zu sehen: der Stack wächst (nach unten)! Mit jedem rekursiven Aufruf von fac wandert der
Zeiger 2 Zellen nach links, trägt das Argument und die Rücksprungadresse ein, bis das Argument in
$a0=1 ist:

Damit liegen die Werte, die für die Berechnung von 6! (in unserem Beispiel) benötigt werden, im
Stack vor. 6*5*4*3*2*1=720, wobei die 1 nicht auf den Stack gelegt werden muss, weil sie in der
Marke done in das Rückgaberegister $v0 geschrieben wird:

Zurück zum Programmablauf:

add $s0,$zero,$a0 # lädt das Argument in $s0
beq $s0, $s1, done # wenn das Argument = 1 ist, springe zur Marke done, Abbruchbedingung
addi $a0, $a0, -1 # dekrementiere das Argument (n-1)

rekursiver Aufruf mit n-1
jal fac

done: # diese Zeile wird nur einmal ausgeführt, wenn fac mit a0=1 aufgerufen wurde
li $v0, 1 # ist das Argument = 1, wird 1 zurückgegeben

Beschreibung der Simulation 14 aus der Reihe:
Simulationen mit dem MARS Simulator
auf Grundlage des Kurstextes Computersysteme II

Sobald fac mit $a0=1 aufgerufen wurde, ist die Abbruchbedingung in Zeile 43 erreicht (denn dort
ist dann $s0=1), sodass zur Marke done gesprungen wird, wo eine 1 als Rückgabewert von fac in
das Register $v0 geschrieben wird. Vom Stack zurückgelesen werden der zuletzt gesicherte $s0
-Inhalt sowie die zuletzt gesicherte Rücksprungadresse, dann wird der Stackpointer wieder auf den
Wert vor dem letzten Unterprogrammaufruf gesetzt (Zeiger wandert 2 Zellen nach rechts!)

Es erfolgt der Rücksprung (Zeile 61), woraufhin das Produkt der Inhalte von $s0 und $v0 berechnet
und in $v0 abgelegt wird, um dann wieder zu Zeile 57 in die Marke end zu springen. Das
wiederholt sich solange, bis die Rücksprungadresse auf dem Stack erreicht ist, die aus fac hinaus
wieder in das Hauptprogramm main führt.

Sobald der Rücksprung fac verlässt, wird das Programm an Zeile 24 fortgesetzt. Das Ergebnis der
Berechnung steht in $v0 und wird zusammen mit dem zugehörigen String message ausgegeben:

Danach bleibt nur noch, das Programm zu beenden, was wie in den anderen Codebeispielen auch,
über den syscall mit dem Wert 10 (terminate execution) passiert:

Die Ausgabe ist im Fenster Run I/O unterhalb des Data Segments im execute Fenster zu finden:

exit
li $v0, 10 # der Wert 10 für den syscall bedeutet: exit (terminate execution)
syscall

hierhin wird bei Rückkehr aus fac gesprungen, wenn fac sich selbst aufgerufen hat
mult $s0, $v0 # Ergebnis mit dem Argument multiplizieren
mflo $v0 # Produkt als Ergebnis zurückgeben
j end # Sprung zur Marke end

move $t0, $v0 # in $v0 stand das Ergebnis, ablegen in $t0
la $a0, message # Laden der Adresse des Strings message
li $v0, 4 # der Wert 4 für den syscall bedeutet print string
syscall # Ausgabe des Strings message
move $a0, $t0 # Laden des Ergebnisses in $a0
li $v0, 1 # der Wert 1 für den syscall bedeutet print integer
syscall # Ausgabe des Ergebnisses

end:
lw $s0, 0($sp) # Zurücklesen des Registers $s0 vom Stack
lw $ra, 4($sp) # Zurücklesen der Rücksprungsadresse vom Stack
addi $sp, $sp, 8 # Stackpointer wieder auf den Wert vor Aufruf des Unterprogramms setzen
jr $ra # Rücksprung

################# Ende des Unterprogramms fac ##################

