
VHDL Kurzreferenz

Aufbau eines VHDL Moduls
Ein VHDL Modul besteht im Wesentlichen aus zwei Tei-
len: Der Schnittstellendefinition (entity) und mindestens ei-
ner zugehörigen Architekturbeschreibung (architecture). In ei-
ner Konfiguration (configuration) wird u.a. festgelegt, welche
architecture für eine entity benutzt werden soll. VHDL Mo-
dule greifen oftmals auf bereits bestehende Konstrukte zu. Die-
se Konstrukte sind in Pakete gegliedert und in Bibliotheken
(library) abgelegt. Sie müssen vor ihrer Benutzung eingebun-
den werden.
Eine VHDL Modul ist typischerweise wie folgt gegliedert:

1. Deklaration von Bibliotheken und Auswahl von Paketen

2. Schnittstellendefinition des Moduls

3. Architekturbeschreibung des Moduls

In diesem einfachen Fall benötigt man keine Konfiguration, da
zu der entity nur eine architecture existiert. Die Syntax eines
solchen VHDL Moduls sieht wie folgt aus (Strings in

”
spitzen

Klammern“ (<>) sind frei wählbare Namen):

l ibrary <LibraryX >;
use <LibraryX >.<PackageY>. a l l ;
[. . .]

entity <Modul> i s
port (

<InS igna l > : in <Type o f InS igna l >;
<OutSignal >: out <Type of OutSignal >;
. . .

) ;
end <Modul>;

architecture <Funct iona l i ty > of <Modul> i s
−− Declare Sub−Components and Signa l s
begin
−− Concurrent Statements
end <Funct iona l i ty >;

Bibliotheken
library IEEE; macht die Bibliothek IEEE sichtbar
use IEEE.STD LOGIC 1164.ALL; bindet alle Konstrulte aus dem
Paket STD LOGIC 1164 der Bibliothek IEEE ein
use IEEE.STD LOGIC 1164.STD ULOGIC; bindet nur den Daten-
typ STD ULOGIC aus dem Paket STD LOGIC 1164 ein

Entities
Die Spezifikation eines VHDL Moduls besteht aus zwei Teilen:
Der Beschreibung der externen sowie internen Sicht. Die externe
Sicht auf ein VHDL Modul ist die Schnittstellendefiniton oder
Entity Declaration. Eine Entity ist die Black-Box Beschreibung
eines VHDL Moduls. Hier wird (hauptsächlich) spezifiziert, wel-
che Anschlüsse (ports) das Modul besitzt.

Im folgenden Beispiel ist ein
Block gegeben, der einen Ad-
dierer beschreibt: Ohne die
Funktionalität zu kennen, kann
man die Schnittstellendefiniton
in VHDL angeben:

entity adder i s
port (

a , b : in s t d l o g i c v e c t o r (1 downto 0) ;
sum : out s t d l o g i c v e c t o r (2 downto 0)

) ;
end entity adder ;

Die Ports a, b sind Inputs des Moduls adder, sum ist ein Out-
put Port. Der Datentyp aller Ein- und Ausgangsleitungen ist
std logic vector.

Architectures
Die interne Sicht auf ein VHDL Modul ist die Architektur
oder Architecture Body. Hier wird spezifizert, was innerhalb
der

”
Black-Box“ passiert. Eine architecture ist folgenderma-

ßen aufgebaut:

architecture <Architecture> of <Component> i s
−− Declare Signals , Components , . . .
begin
−− Concurrent Statements
end <Architecture >;

Eine mögliche Architektur für die Entity adder ist:

architecture myAdder of adder i s
signal x , y : s t d l o g i c v e c t o r (2 downto 0) ;

begin
x <= ’0 ’ & a ;
y <= ’0 ’ & b ;
sum <= x + y ;

end myAdder ;

Durch Anhängen einer vordern Null (MSB=Most Significant
Bit) mit dem &-Operator werden aus den 2-bit Eingangsvek-
toren a und b 3-bit Vektoren gemacht und diese den Signalen
x und y zugewiesen. Die lokalen Signale x und y müssen dazu
zuvor (vor begin) deklariert werden. Durch die Signalzuweisung
sum <= x + y; wird auf den Ausgangsport sum die Summe der
Werte auf den beiden Signalen x und y zugewiesen. Das man den
+-Operator benutzen kann, ist in VHDL nicht selbstverständ-
lich. Hierzu muss zusätzlich ein Paket eingebunden verden, das
den Operator definiert, z.B. mit IEEE.STD LOGIC ARITH.ALL.

Notiz: Wenn man in einer typischen SW-Programmiersprache
eine +-Operation benutzt, wird diese durch den Compiler in ei-
ne (oder mehrere) Addier-Instruktion(en) überführt. Fast jeder
Prozessor unterstützt mindestens einen Addierbefehl. Bei der
HW-Beschreibungssprache VHDL befindet man sich auf einer
tieferen Abstraktionsebene! Hier kann vielmehr spezifiziert wer-
den, wie die Addition als Schaltung funktioniert.

Angenommen, wir hätten die Bibliothek STD LOGIC ARITH nicht
zur Verfügung, dafür aber ein VHDL Modul namens fulladder

welches die Summe aus den Eingangs-Bits A, B und Cin auf
den Ausgang S schreibt und einen etwaigen Übertrag über die
ebenfalls 1-bit breite Ausgangsleitung Cout ausgibt. In der Ar-
chitektur myOtherAdder werden zwei dieser Volladierer benutzt
um die 3-bit Summe der beiden 2-bit Eingangswerte a und b zu
berechnen. Einzelne Bitstellen eines Vektors kann man selektie-
ren, indem man den Index der gewünschten Position in Runden
Klammern nach dem Signalnamen angibt. a(0) etwa selektiert

das Bit mit dem niedrigsten Wert (hier Index 0) aus dem Vek-
tor a. Ist a vom Typ std logic vector, so ist a(0) vom Typ
std logic.

architecture myOtherAdder of adder i s
component f u l l a d d e r i s
port (A, B, Cin : in s t d l o g i c ;

S , Cout : out s t d l o g i c) ;
end component f u l l a d d e r ;
signal c0 , c1 : s t d l o g i c ;

begin
c0 <= ’ 0 ’ ;
add0 : f u l l a d d e r port map(A => a (0) , B => b (0) ,
Cin => c0 , S => sum(0) , Cout => c1) ;
add1 : f u l l a d d e r port map(A => a (1) , B => b (1) ,
Cin => c1 , S => sum(1) , Cout => sum(2)) ;

end myOtherAdder ;

Instanziierung von Komponenten
Wie Instanzen einer Sub-Komponente gebildet werden, kann
man im obigen fulladder-Beispiel sehen. Zunächst muss die
Komponente (mit component) eingebundenen werden. Die In-
stanziierung einer Sub-Komponente kann man sich als

”
einset-

zen“ eines bestehenden Moduls in die aktuelle Schaltung vor-
stellen. VHDL basiert stark auf der hierarchischen Verschach-
telung von Modulen. Einmal implementierte Lösungen können
so vielfach wiederverwendet werden. Möchte man eine Instanz
bilden, so gibt man zuerst den Namen der Instanz an und
dann, abgetrennt durch einen Doppelpunkt den Namen der Sub-
Komponente und damit den Typ der Instanz. Anschließend folgt
das sogenannte port mapping. Dabei werden die

”
Anschlüsse“

(ports) der gebildeten Instanz mit Signalen verbunden. Diese Si-
gnal können entweder lokale Signale sein, oder auch die ports des
Moduls in das die Sub-Komponente eingesetzt wird. Die Syntax
für das verbinden eines ports ist: <Port der Sub-Komponente>

=> <Port/Lokales Signal des aktuellen Moduls>.

Prozesse
Prozesse stellen die wichtigste (komplexe) Parallele Anwei-
sung (concurrent statement) in VHDL dar. Innerhalb einer
architecture können mehrere Prozesse spezifiziert werden.
Wichtig ist: Alle Prozesse laufen zueinander parallel! Generell
gilt für die concurrent statements einer Architektur, dass es
völlig egal ist, in welcher Reihenfolge sie angegeben werden. Für
VHDL (wie für HW allgemein) gilt: Alles passiert parallel
zueinander! Natürlich gibt es auch in HW Abläufe von Er-
eignissen, die einzelnen HW-Elemente sind aber ständig aktiv.
Es ist daher nicht trivial, das zeitliche Verhalten von in VHDL
beschrieben Schaltungen zu verstehen.
Prozesse haben im Allgemeinen folgende Struktur:

<label >: process [(s e n s i t i v i t y l i s t)]
−−Local Declarat ions

begin
−−Sequent ia l Statements

end process ;

So kann etwa die Signalzuweisung a<=b xor c; auch als Prozess
spezifiziert werden:

compute xor : process (b , c)
begin

a<=b xor c ;
end process ;

Prozesse werden häufig eingesetzt, um zusammenhänge Teile
eines Moduls zu kapseln. Außerdem benötigt man Prozesse um
getaktete, sogenannte sequentielle Logik zu beschreiben.

Datentypen
Der einfachste binäre Datentyp in VHDL ist bit. Ein Signal
vom Typ bit kann die Werte ’0’ und ’1’ annehmen. Da man
mit VHDL digitale Systeme (vollständig) beschreiben möchte,
reicht dieser Datentyp für normalerweise nicht aus, denn Signale
einer Schaltung können weitere Werte annehmen. Der Datentyp
std logic ist das

”
physikalische“ Pendant zu bit. Signale vom

Typ std logic haben folgende mögliche Werte:
’U’ nicht initialisiert ’Z’ hochohmig
’X’ treibend unbekannt ’W’ schwach unbekannt
’0’ treibend logische 0 ’L’ schwach logische 0
’1’ treibend logische 1 ’H’ schwach logische 1
’-’ don’t care

Oft

werden mehrere binäre Signale zu einem Bus zusam-
men gefasst. In VHDL heißen solche Busse Vektoren. Am
häufigsten wird der Datentyp std logic vector für Bus-
se mit dem Grundtyp std logic verwendet. (Vektoren sind
als Array (vor-)definiert: TYPE std logic vector IS ARRAY (

NATURAL RANGE <>) OF std logic;)

signal c : s t d l o g i c v e c t o r (3 downto 0) :=”0001” ;

Hier wird ein Signal namens c erzeugt, das einen 4-Bit Vektor
aus std logic Signalen implementiert und mit dem Wert “0001“
initialisiert ist. In Klammern ist die Indizierung des Vektors an-
gegeben, d.h., das Bit ganz links hat den Index 3, das Bit ganz
rechts den Index 0, u.s.w. Alternativ könnte man die Reihen-
folge der Nummerierung ändern, indem man den Vektor mit (0

to 6) indiziert. Die Gewichtung der Bits (wenn man den Vektor
als Zahl auffasst) wird durch die Indizierung nicht beeinflusst.
In VHDL steht das Bit mit niedrigsten Wert (LSB=least signi-
ficant bit) immer ganz rechts!
Der ganzzahlige Datentyp in VHDL ist integer. Ein
integer-Signal deklariert man wie folgt:

signal count : i n t e g e r range 0 to 10 := 1 ;

Hier wird ein Signal namens count erzeugt, das ganze Zahlen im
Wertebereich [0..10] speichern soll. Zusätzlich wird count mit
1 initialisiert. Zu integer existieren noch zwei Untertypen mit
vordefinierten Wertebereichen. positive speichert positive Wer-
te ([1..n]), natural besitzt den Wertebereich [0..n]. n ist dabei
der maximale Integer-Wert (dieser Wert ist systemabhängig).
Neben den vordefinierten Typen können in VHDL auch ei-
gene Typen definiert werden. Im einfachsten Fall sind dies
Aufzählungstypen.

type AMPEL i s (ROT,GELB,GRUEN) ;

Dieser Ausdruck definiert den Typ AMPEL, der die Werte ROT,
GELB und GRUEN annehmen kann. Man kann im dann Signale
dieses Typs, z.B. wie folgt, erzeugen und initilisieren:

signal myAmpel : AMPEL := ROT;

Attribute
In VHDL gibt es Typ-bezogene, Feld-bezogene (ein Feld ist ein
Vektor bzw. ein Array) und Signal-bezogene Attribute. Die Syn-
tax für Attribute ist in jedem Fall <Typ/Objekt>’<Attribut>.
Typ-bezogene Attribute geben Informationen über einen
Datentyp. So liefert etwa AMPEL’pos(GELB) den Integerwert
1 zurück und damit die Position des Wertes GELB in dem
Aufzählungstyp AMPEL. AMPEL’succ(GELB) liefert mit GRU-
EN einen Wert vom Typ AMPEL.
Feld-bezogene Attribute werden auf Arrays bzw. Vek-
toren angewendet. Angenommen, der Vektor c vom Typ
std logic vector(7 downto 4) trägt den Wert “0001“,
dann gilt z.B.: a’left=7, a(a’left)=’0’, a’right=4,
a(a’right)=’1’.
Signal-bezogene Attribute geben Informationen zum dyna-
mischen Signalverhalten. Als ein wichtiges Beispiel kann das Si-
gnalattribut event angegeben. Der Ausdruck a’event ist immer
dann wahr, wenn sich der Wert des Signals a ändert. Dieses
Attribut wird in der Logiksynthese (Übersetzung einer VHDL-
Beschreibung in eine Schaltung) benutzt um sequentielle Logik
zu beschreiben. Ist clk das Clock-Signal der Schaltung, so ist der
Ausdruck (clk’event and clk=’1’) immer an den steigenden
Taktflanken wahr. Innerhalb von Prozessen wird dieser Aus-
druck benutzt, um bestimmte Signalzuweisungen nur bei stei-
genden Taktflanken auszuwerten. Die gesetzten Werte sind dann
für den Zeitraum der folgenden Taktperiode stabil. Mit einer
solchen Spezifikation kann also das Verhalten eines Speicherele-
ments beschrieben werden (siehe Prozesse).

Operatoren
Bei logischen Ausdrücken der Form a Operator b müssen
beide Operanden vom gleichen Datentyp (std logic oder
std logic vector) sein. Folgende Operatoren sind definiert:
and, or, nand, nor, xor, xnor, not (nur der b-Operand!)
Neben den logischen Basisoperatoren sind weitere Operato-
ren Paketen (wie etwa std logic arith definiert. Die Operan-
den von relationalen Ausdrücken können (fast) beliebigen
müssen aber auch gleichen Typs sein. Mögliche Operatoren sind
dabei:
= (a = b), /= (a 6= b), < (a < b), > (a > b), <= (a ≤ b), >= (a ≥ b)
Desweiteren sind shift Ausdrücke auf Vektoren in der Form a

ShiftOp b definiert. Hierbei muss a ein Vektor und b ein Integer
sein. Mögliche shift-Operatoren sind:
sll (shift left logical), srl (right logical), sla (left arithme-
tic), sra (right arith.), rol (rotate left), ror (rotate right)
Weitere Operatoren sind:

additive: +, −, & (Konkatenation)
multiplikative: ∗, /, mod (Modulo), rem (Divisionsrest)

sonstige: ∗∗ (Potenz), abs (Betragsfunktion)

Concurrent Statements
Durch die Signalzuweisung a <= b; erhält das Signal a den
Wert von Signal b. a und b müssen gleichen Typs sein und in
der architecture definiert sein, entweder als lokales Signal oder
als Port der entity. Eine Signalzuweisung kann eine (beliebige)
kombinatorische Verknüpfungen von Signalen sein, wie etwa:
a <= b xor (c and d); Wichtig ist, beide Seiten einer Signal-

zuweisung müssen gleichen Typs sein! Ist a vom Typ std logic

und b vom Typ std logic vector(6 downto 0) so ist die Zuwei-
sung a <= b; ungültig. Man kann allerdings einzelne Leitungen
eines Vektors selektieren. Somit wäre z.B. die Zuweisung a <=

b(0); korrekt.
Ein weiteres concurrent statement ist die Bedingte Signalzu-
weisung. Hierbei werden verschieden Zuweisungsalternativen
durch Bedingungen gesteuert.

a <= b0 when s e l 0 = ’1 ’ else
b1 when s e l 1 = ”00” else
b2 ;

Ziel der Zuweisung beim obigen Beispiel ist in allen Fällen das
Signal a. Der zugewiesen Wert liegt, abhängig von den Bedin-
gungen, an den Signalen b0, b1 oder b2 an, welche alle vom
selben Typ wie a sind. Die Bedingung nach dem when kann alle
(lesbaren) Signale beinhalten. Eine zweite Form der bedingten
Signalzuweisung ist die Selektive Signalzuweisung.

with s e l 1 select
a <= b0 when ”00” ,

b1 when ”11” ,
b2 when others ;

Im Beispiel wird ein Signal (das select Signal, hier sel1) über-
prüft und anhand der Belegung dem zu setzenden Signal (a) ein
Wert zugeordnet. Es ist wichtig, dass immer alle Alternativen
des select Signals überprüft werden. Im Beispiel ist dies durch
den when others Fall abgedeckt, der alle nicht-aufgeführten Al-
ternativen beinhaltet. Die selektive Signalzuweisung ist ideal,
um Multiplexer direkt zu modellieren.

Sequential Statements
Neben den verschiedenen Signalzuweisungen sind Prozesse wich-
tige concurrent statements. Innerhalb von Prozessen kann eine
zweite Form, die sogenannten sequential Statements, benutzt
werden. Das if-Statement erlaubt in Prozessen die bedingte
Ausführung von weiteren sequentiellen Statements.

i f <condit ion0 > then
<seq . statements>
e l s i f <condit ion1 > then
<seq . statements>
else
<seq . statements>

end i f ;

i f s e l 1=”00” then
a <= b0 ;
y <= x0 ;

e l s i f s e l 0 = ’1 ’ then
a <= b1 ;

else
a <= b2 ;

end i f ;

VHDL Prozesse unterstützen auch ein case-Statement. Dabei
sollte darauf geachtet werden, einen default Fall (when others)
anzugeben.

case <s e l e c t S i g > i s
when <choice0> =>
<seq . statements>

when <choice1> =>
<seq . statements>
. . .

end case ;

case s e l 1 i s
when ”00” =>

a <= b0 ;
y <= x0 ;

when others =>
a <= b1 ;

end case ;

Diese Referenz soll als Hilfe zum Einstieg in VHDL aufgefasst wer-

den. Sie deckt nur einen sehr kleinen Teil des Sprachumfangs ab.

Revision: 0.1, 18. Juni 2009, Heiner Giefers

