VHDL Kurzreferenz

Aufbau eines VHDL Moduls

Ein VHDL Modul besteht im Wesentlichen aus zwei Tei-
len: Der Schnittstellendefinition (entity) und mindestens ei-
ner zugehorigen Architekturbeschreibung (architecture). In ei-
ner Konfiguration (configuration) wird u.a. festgelegt, welche
architecture fiir eine entity benutzt werden soll. VHDL Mo-
dule greifen oftmals auf bereits bestehende Konstrukte zu. Die-
se Konstrukte sind in Pakete gegliedert und in Bibliotheken
(1ibrary) abgelegt. Sie miissen vor ihrer Benutzung eingebun-
den werden.
Eine VHDL Modul ist typischerweise wie folgt gegliedert:

1. Deklaration von Bibliotheken und Auswahl von Paketen

2. Schnittstellendefinition des Moduls

3. Architekturbeschreibung des Moduls
In diesem einfachen Fall benttigt man keine Konfiguration, da
zu der entity nur eine architecture existiert. Die Syntax eines
solchen VHDL Moduls sieht wie folgt aus (Strings in ,spitzen
Klammern® (<>) sind frei wihlbare Namen):

entity adder is

port (

a,b : in std_logic_.vector (1 downto 0);
sum out std_logic_.vector (2 downto 0)
)i

end entity adder;

das Bit mit dem niedrigsten Wert (hier Index 0) aus dem Vek-
tor a. Ist a vom Typ std_logic_vector, so ist a(0) vom Typ
std_logic.

Die Ports a, b sind Inputs des Moduls adder, sum ist ein Out-
put Port. Der Datentyp aller Ein- und Ausgangsleitungen ist
std_logic_vector.

Architectures

Die interne Sicht auf ein VHDL Modul ist die Architektur
oder Architecture Body. Hier wird spezifizert, was innerhalb
der ,Black-Box“ passiert. Eine architecture ist folgenderma-
Ben aufgebaut:

architecture myOtherAdder of adder is
component fulladder is
port(A, B, Cin: in std_logic;
S, Cout out std_logic);
end component fulladder ;

signal cO0, cl: std_logic;

begin

c0 <= ’07;

add0: fulladder port map(A => a(0), B => b(0),
Cin => ¢c0, S => sum(0), Cout => cl);

addl: fulladder port map(A => a(l), B => b(1),
Cin => cl1, S => sum(1l), Cout => sum(2));

end myOtherAdder;

architecture <Architecture> of <Component> is
—— Declare Signals, Components,

begin

Concurrent Statements

end <Architecture >;

library <LibraryX >;
use <LibraryX >.<PackageY >.all;

[...]

entity <Modul> is

port (
<InSignal> in <Type_of_InSignal >;
<OutSignal >: out <Type_of_-OutSignal >;

)3
end <Modul>;

architecture <Functionality > of <Modul> is
—— Declare Sub—Components and Signals
begin

Concurrent Statements

end <Functionality >;

Eine mogliche Architektur fiir die Entity adder ist:

architecture myAdder of adder is
signal x,y: std_-logic_-vector (2 downto 0);

begin
x <= 0’ & a;
y <= 0’ & b;

sum <= X + y;
end myAdder;

Bibliotheken

library IEEE; macht die Bibliothek IEEE sichtbar

use IEEE.STD_LOGIC_1164.ALL; bindet alle Konstrulte aus dem
Paket STD_LOGIC_1164 der Bibliothek IEEE ein

use IEEE.STD_LOGIC_1164.STD_ULOGIC; bindet nur den Daten-
typ STD_ULOGIC aus dem Paket STD_LOGIC_1164 ein

Entities

Die Sperzifikation eines VHDL Moduls besteht aus zwei Teilen:
Der Beschreibung der externen sowie internen Sicht. Die externe
Sicht auf ein VHDL Modul ist die Schnittstellendefiniton oder
Entity Declaration. Eine Entity ist die Black-Box Beschreibung
eines VHDL Moduls. Hier wird (hauptséchlich) spezifiziert, wel-
che Anschliisse (ports) das Modul besitzt.

Im folgenden Beispiel ist ein 2

Block gegeben, der einen Ad- —>a adder 3
dierer beschreibt: Ohne die 2 b sum -+»
Funktionalitit zu kennen, kann —1

man die Schnittstellendefiniton
in VHDL angeben:

Durch Anhéngen einer vordern Null (MSB=Most Significant
Bit) mit dem &-Operator werden aus den 2-bit Eingangsvek-
toren a und b 3-bit Vektoren gemacht und diese den Signalen
x und y zugewiesen. Die lokalen Signale x und y miissen dazu
zuvor (vor begin) deklariert werden. Durch die Signalzuweisung
sum <= x + y; wird auf den Ausgangsport sum die Summe der
Werte auf den beiden Signalen x und y zugewiesen. Das man den
+-Operator benutzen kann, ist in VHDL nicht selbstverstind-
lich. Hierzu muss zusétzlich ein Paket eingebunden verden, das
den Operator definiert, z.B. mit IEEE.STD_LOGIC_ARITH.ALL.

Notiz: Wenn man in einer typischen SW-Programmiersprache
eine +-Operation benutzt, wird diese durch den Compiler in ei-
ne (oder mehrere) Addier-Instruktion(en) iiberfiihrt. Fast jeder
Prozessor unterstiitzt mindestens einen Addierbefehl. Bei der
HW-Beschreibungssprache VHDL befindet man sich auf einer
tieferen Abstraktionsebene! Hier kann vielmehr spezifiziert wer-
den, wie die Addition als Schaltung funktioniert.

Angenommen, wir hitten die Bibliothek STD_LOGIC_ARITH nicht
zur Verfiigung, dafiir aber ein VHDL Modul namens fulladder
welches die Summe aus den Eingangs-Bits A, B und Cin auf
den Ausgang S schreibt und einen etwaigen Ubertrag iiber die
ebenfalls 1-bit breite Ausgangsleitung Cout ausgibt. In der Ar-
chitektur myOtherAdder werden zwei dieser Volladierer benutzt
um die 3-bit Summe der beiden 2-bit Eingangswerte a und b zu
berechnen. Einzelne Bitstellen eines Vektors kann man selektie-
ren, indem man den Index der gewiinschten Position in Runden
Klammern nach dem Signalnamen angibt. a(0) etwa selektiert

Instanziierung von Komponenten

Wie Instanzen einer Sub-Komponente gebildet werden, kann
man im obigen fulladder-Beispiel sehen. Zunichst muss die
Komponente (mit component) eingebundenen werden. Die In-
stanziierung einer Sub-Komponente kann man sich als ,einset-
zen“ eines bestehenden Moduls in die aktuelle Schaltung vor-
stellen. VHDL basiert stark auf der hierarchischen Verschach-
telung von Modulen. Einmal implementierte Losungen kénnen
so vielfach wiederverwendet werden. Mochte man eine Instanz
bilden, so gibt man zuerst den Namen der Instanz an und
dann, abgetrennt durch einen Doppelpunkt den Namen der Sub-
Komponente und damit den Typ der Instanz. Anschlielend folgt
das sogenannte port mapping. Dabei werden die ,,Anschliisse®
(ports) der gebildeten Instanz mit Signalen verbunden. Diese Si-
gnal kénnen entweder lokale Signale sein, oder auch die ports des
Moduls in das die Sub-Komponente eingesetzt wird. Die Syntax
fiir das verbinden eines ports ist: <Port der Sub-Komponente>
=> <Port/Lokales Signal des aktuellen Moduls>.

Prozesse

Prozesse stellen die wichtigste (komplexe) Parallele Anwei-
sung (concurrent statement) in VHDL dar. Innerhalb einer
architecture konnen mehrere Prozesse spezifiziert werden.
Wichtig ist: Alle Prozesse laufen zueinander parallel! Generell
gilt fiir die concurrent statements einer Architektur, dass es
vollig egal ist, in welcher Reihenfolge sie angegeben werden. Fiir
VHDL (wie fiir HW allgemein) gilt: Alles passiert parallel
zueinander! Natiirlich gibt es auch in HW Ablidufe von Er-
eignissen, die einzelnen HW-Elemente sind aber stindig aktiv.
Es ist daher nicht trivial, das zeitliche Verhalten von in VHDL
beschrieben Schaltungen zu verstehen.

Prozesse haben im Allgemeinen folgende Struktur:

<label >: process [(sensitivity_list)]
—Local Declarations

begin
—Sequential
end process;

Statements

So kann etwa die Signalzuweisung a<=b xor c; auch als Prozess
spezifiziert werden:

compute_xor:
begin

a<=b xor c;
end process;

process (b,c)

signal myAmpel : AMPEL := ROT;

Prozesse werden hiufig eingesetzt, um zusammenhinge Teile
eines Moduls zu kapseln. Auflerdem bendtigt man Prozesse um
getaktete, sogenannte sequentielle Logik zu beschreiben.

Datentypen

Der einfachste bindre Datentyp in VHDL ist bit. Ein Signal
vom Typ bit kann die Werte ’0’ und ’1’ annehmen. Da man
mit VHDL digitale Systeme (vollstindig) beschreiben mochte,
reicht dieser Datentyp fiir normalerweise nicht aus, denn Signale
einer Schaltung konnen weitere Werte annehmen. Der Datentyp
std_logic ist das , physikalische“ Pendant zu bit. Signale vom
Typ std-logic haben folgende mdogliche Werte:

’U’ nicht initialisiert ’Z> hochohmig

’X? treibend unbekannt | ’W’ schwach unbekannt

>0’ treibend logische 0 ’L> schwach logische 0 Oft
’1’ treibend logische 1 ’H’> schwach logische 1
’=> don’t care

werden mehrere bindre Signale zu einem Bus zusam-

men gefasst. In VHDL heilen solche Busse Vektoren. Am
h&ufigsten wird der Datentyp std_logic_vector fiir Bus-
se mit dem Grundtyp std_-logic verwendet. (Vektoren sind
als Array (vor-)definiert: TYPE std-logic_vector IS ARRAY (
NATURAL RANGE <>) OF std_logic;)

signal c:std_-logic_-vector (3 downto 0):="0001";

Hier wird ein Signal namens ¢ erzeugt, das einen 4-Bit Vektor
aus std_logic Signalen implementiert und mit dem Wert “0001¢
initialisiert ist. In Klammern ist die Indizierung des Vektors an-
gegeben, d.h., das Bit ganz links hat den Index 3, das Bit ganz
rechts den Index 0, u.s.w. Alternativ konnte man die Reihen-
folge der Nummerierung dndern, indem man den Vektor mit (0
to 6) indiziert. Die Gewichtung der Bits (wenn man den Vektor
als Zahl auffasst) wird durch die Indizierung nicht beeinflusst.
In VHDL steht das Bit mit niedrigsten Wert (LSB=least signi-
ficant bit) immer ganz rechts!

Der ganzzahlige Datentyp in VHDL ist integer. Ein
integer-Signal deklariert man wie folgt:

signal count integer range 0 to 10 := 1;

Hier wird ein Signal namens count erzeugt, das ganze Zahlen im
Wertebereich [0..10] speichern soll. Zusétzlich wird count mit
1 initialisiert. Zu integer existieren noch zwei Untertypen mit
vordefinierten Wertebereichen. positive speichert positive Wer-
te ([1..n]), natural besitzt den Wertebereich [0..n]. n ist dabei
der maximale Integer-Wert (dieser Wert ist systemabhingig).
Neben den vordefinierten Typen konnen in VHDL auch ei-
gene Typen definiert werden. Im einfachsten Fall sind dies
Aufzihlungstypen.

type AMPEL is (ROT,GELB,GRUEN) ;

Dieser Ausdruck definiert den Typ AMPEL, der die Werte ROT,
GELB und GRUEN annehmen kann. Man kann im dann Signale
dieses Typs, z.B. wie folgt, erzeugen und initilisieren:

Attribute

In VHDL gibt es Typ-bezogene, Feld-bezogene (ein Feld ist ein
Vektor bzw. ein Array) und Signal-bezogene Attribute. Die Syn-
tax fiir Attribute ist in jedem Fall <Typ/0Objekt>’<Attribut>.
Typ-bezogene Attribute geben Informationen iiber einen
Datentyp. So liefert etwa AMPEL’pos(GELB) den Integerwert
1 zuriick und damit die Position des Wertes GELB in dem
Aufzihlungstyp AMPEL. AMPEL’succ(GELB) liefert mit GRU-
EN einen Wert vom Typ AMPEL.

Feld-bezogene Attribute werden auf Arrays bzw. Vek-
toren angewendet. Angenommen, der Vektor ¢ vom Typ
std_logic_vector(7 downto 4) trigt den Wert “0001¢,
dann gilt 2z.B.: a’left=7, a(a’left)=’0’, a’right=4,
a(a’right)="1".

Signal-bezogene Attribute geben Informationen zum dyna-
mischen Signalverhalten. Als ein wichtiges Beispiel kann das Si-
gnalattribut event angegeben. Der Ausdruck a’event ist immer
dann wahr, wenn sich der Wert des Signals a &ndert. Dieses
Attribut wird in der Logiksynthese (Ubersetzung einer VHDL-
Beschreibung in eine Schaltung) benutzt um sequentielle Logik
zu beschreiben. Ist c1k das Clock-Signal der Schaltung, so ist der
Ausdruck (clk’event and clk=’1’) immer an den steigenden
Taktflanken wahr. Innerhalb von Prozessen wird dieser Aus-
druck benutzt, um bestimmte Signalzuweisungen nur bei stei-
genden Taktflanken auszuwerten. Die gesetzten Werte sind dann
fiir den Zeitraum der folgenden Taktperiode stabil. Mit einer
solchen Spezifikation kann also das Verhalten eines Speicherele-
ments beschrieben werden (siche Prozesse).

Operatoren

Bei logischen Awusdriicken der Form a Operator b miissen
beide Operanden vom gleichen Datentyp (std-logic oder
std_logic_vector) sein. Folgende Operatoren sind definiert:
and, or, nand, nor, xor, xnor, not (nur der b-Operand!)

Neben den logischen Basisoperatoren sind weitere Operato-
ren Paketen (wie etwa std_logic_arith definiert. Die Operan-
den von relationalen Ausdriicken kénnen (fast) beliebigen
miissen aber auch gleichen Typs sein. Mogliche Operatoren sind
dabei:

=(a=b), /= (@#b),<(@<b),> (@>b),<=(a<b),>= (a>b)
Desweiteren sind shift Ausdriicke auf Vektoren in der Form a
ShiftOp b definiert. Hierbei muss a ein Vektor und b ein Integer
sein. Mogliche shift-Operatoren sind:

s11 (shift left logical), srl (- right logical), sla (- left arithme-
tic), sra (- right arith.), rol (rotate left), ror (rotate right)
Weitere Operatoren sind:

additive: 4+, —, & (Konkatenation)
multiplikative: %, /, mod (Modulo), rem (Divisionsrest)
sonstige: xx (Potenz), abs (Betragsfunktion)

Concurrent Statements

Durch die Signalzuweisung a <= b; erhilt das Signal a den
Wert von Signal b. a und b miissen gleichen Typs sein und in
der architecture definiert sein, entweder als lokales Signal oder
als Port der entity. Eine Signalzuweisung kann eine (beliebige)
kombinatorische Verkniipfungen von Signalen sein, wie etwa:

a <= b xor (c and d); Wichtig ist, beide Seiten einer Signal-

zuweisung miissen gleichen Typs sein! Ist a vom Typ std_logic
und b vom Typ std_logic_vector(6 downto 0) so ist die Zuwei-
sung a <= b; ungiiltig. Man kann allerdings einzelne Leitungen
eines Vektors selektieren. Somit wére z.B. die Zuweisung a <=
b(0); korrekt.

Ein weiteres concurrent statement ist die Bedingte Signalzu-
weisung. Hierbei werden verschieden Zuweisungsalternativen
durch Bedingungen gesteuert.

110
»00”

else
else

a <= b0 when sel0
bl when sell
b2;

Ziel der Zuweisung beim obigen Beispiel ist in allen Féillen das
Signal a. Der zugewiesen Wert liegt, abhéngig von den Bedin-
gungen, an den Signalen b0, bl oder b2 an, welche alle vom
selben Typ wie a sind. Die Bedingung nach dem when kann alle
(lesbaren) Signale beinhalten. Eine zweite Form der bedingten
Signalzuweisung ist die Selektive Signalzuweisung.

with sell select

a <= b0 when 7007,
bl when 7117,
b2 when others;

Im Beispiel wird ein Signal (das select Signal, hier sell) iiber-
priift und anhand der Belegung dem zu setzenden Signal (a) ein
Wert zugeordnet. Es ist wichtig, dass immer alle Alternativen
des select Signals iiberpriift werden. Im Beispiel ist dies durch
den when others Fall abgedeckt, der alle nicht-aufgefiithrten Al-
ternativen beinhaltet. Die selektive Signalzuweisung ist ideal,
um Multiplexer direkt zu modellieren.

Sequential Statements

Neben den verschiedenen Signalzuweisungen sind Prozesse wich-
tige concurrent statements. Innerhalb von Prozessen kann eine
zweite Form, die sogenannten sequential Statements, benutzt
werden. Das if-Statement erlaubt in Prozessen die bedingte
Ausfithrung von weiteren sequentiellen Statements.

if <condition0> then if sell="00" then
<seq. statements> a <= b0;
elsif <conditionl> then y <= x0;
<seq. statements> elsif sel0=’1" then
else a <= bl;
<seq. statements> else
end if; a <= b2;
end if;

VHDL Prozesse unterstiitzen auch ein case-Statement. Dabei
sollte darauf geachtet werden, einen default Fall (when others)
anzugeben.

case <selectSig> is case sell is

when <choice0> => when 7007 =>
<seq. statements> a <= b0;

when <choicel> => y <= x0;
<seq. statements> when others =>
L. a <= bl;

end case; end case;

Diese Referenz soll als Hilfe zum Einstieg in VHDL aufgefasst wer-
den. Sie deckt nur einen sehr kleinen Teil des Sprachumfangs ab.

Revision: 0.1, 18. Juni 2009, Heiner Giefers

