// This file is part of www.nand2tetris.org // and the book "The Elements of Computing Systems" // by Nisan and Schocken, MIT Press. // File name: projects/05/CPU.hdl /** * The Hack CPU (Central Processing unit), consisting of an ALU, * two registers named A and D, and a program counter named PC. * The CPU is designed to fetch and execute instructions written in * the Hack machine language. In particular, functions as follows: * Executes the inputted instruction according to the Hack machine * language specification. The D and A in the language specification * refer to CPU-resident registers, while M refers to the external * memory location addressed by A, i.e. to Memory[A]. The inM input * holds the value of this location. If the current instruction needs * to write a value to M, the value is placed in outM, the address * of the target location is placed in the addressM output, and the * writeM control bit is asserted. (When writeM==0, any value may * appear in outM). The outM and writeM outputs are combinational: * they are affected instantaneously by the execution of the current * instruction. The addressM and pc outputs are clocked: although they * are affected by the execution of the current instruction, they commit * to their new values only in the next time step. If reset==1 then the * CPU jumps to address 0 (i.e. pc is set to 0 in next time step) rather * than to the address resulting from executing the current instruction. */ CHIP CPU { IN inM[16], // M value input (M = contents of RAM[A]) instruction[16], // Instruction for execution reset; // Signals whether to re-start the current // program (reset==1) or continue executing // the current program (reset==0). OUT outM[16], // M value output writeM, // Write to M? addressM[15], // Address in data memory (of M) pc[15]; // address of next instruction PARTS: // Put your code here: //Controlbus // A/C-Instruction and Controlbus Not(in=instruction[15],out=on); //d1 Or(a=on,b=instruction[5],out=loadA); And(a=instruction[15],b=instruction[12],out=AoderMem); //d2 And(a=instruction[15],b=instruction[4],out=loadD); //d3 -- writeM And(a=instruction[15],b=instruction[3],out=writeM); //j3 And(a=instruction[15],b=instruction[0],out=j3); //j2 And(a=instruction[15],b=instruction[1],out=j2); //j1 And(a=instruction[15],b=instruction[2],out=j1); Not(in=zr,out=notzr); Not(in=ng,out=notng); And(a=notzr,b=notng,out=notzrAndNoting); And(a=notzrAndNoting,b=j3,out=jg3); And(a=zr,b=j2,out=jg2); And(a=ng,b=j1,out=jg1); Or(a=jg3,b=jg2,out=jg23); Or(a=jg23,b=jg1,out=loadPC); // Hier addressM[15]-Ausgang der CPU ARegister(in=mux1,load=loadA,out=outAReg,out[0..14]=addressM); //M1 Mux16(a=outM2,b=instruction,sel=on,out=mux1); //M2 Mux16(a=outAReg,b=inM,sel=AoderMem,out=AM); DRegister(in=outM2,load=loadD,out=outD); // Das out könnte nicht funktionieren, d.h. die Verteilung zum D-Register und zum Mux ALU(x=outD,y=AM,zx=instruction[11],nx=instruction[10],zy=instruction[9],ny=instruction[8],f=instruction[7],no=instruction[6],zr=zr,ng=ng,out=outM,out=outM2); //Counter PC(in=outAReg,load=loadPC, inc=true,reset=reset,out[0..14]=pc); }