
Kontrollbit-Designpunkte

Lassen Sie mich die Hauptpunkte des CPU-Designs analysieren

1.Wie wählt der erste Mux den Eingang aus? Offensichtlich hofft man für den A-Befehl, den Befehl als Adresse in 
das A-Register einzulesen. Wenn der Befehl ein C-Befehl ist, wird die ALU ausgewählt aluoutput.
2.Der A-Befehl muss auf das A-Register zugreifen, und der C-Befehl beurteilt anhand des 5. Bits des Befehls, ob auf
das A-Register zugegriffen werden soll.
3.Wird die Ausgabe des A-Registers in den Speicher zurückgeschrieben writeM? Der A-Befehl schreibt niemals 
zurück, und der C-Befehl beurteilt anhand des dritten Bits.
4.Der Sprungzugriff auf das D-Register D register, das M-Register inMund den PC loadhat nichts mit dem A-
Befehl zu tun. Wenn es sich also um einen A-Befehl handelt, ist das Steuerbit  falsch; die Steuerinformationen④⑤⑧
bei , der C-Befehl wird entsprechend beurteilt 4. Bit;④
5.  ⑤ Steuerinformationen: Der C-Befehl beurteilt anhand des 12. Bits;
6.  ⑥ Für Steuerinformationen beurteilt der C-Befehl anhand des 6. bis 11. Bits;
7.  ⑦ ist die Symbolausgabebitsumme der ALU , ngund zrdie Untertabelle gibt das negative Bit und das Nullbit an, 
und das positive Bit kann indirekt berechnet werden.
8.Wenn das negative Bit, das Nullbit und das positive Bit jeweils jmpmit der Phase des C-Befehls kombiniert werden
und keines davon Null ist (es liegt ein Sprung vor), wird das Sprungsteuerbit bei  erhalten⑧  true.
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In Projekt 04 gibt es kein HDL, stattdessen habe ich gelernt, Assembler zu schreiben. Nisan und Shocken haben wieder einmal eine 
Assemblersprache für genau diese Architektur namens HACK erfunden. Die Sprache versteht zwei Arten von Anweisungen. Aber zuerst 
müssen wir uns vorstellen, dass wir einen Computer haben.



Hier sehen Sie drei Geräte innerhalb des blauen Rechtecks: ROM, CPU und RAM.
• ROM: Nur-Lese-Speicher. Unser Computer holt sich daraus Anweisungen und führt sie aus. Wir haben kein HDL dafür 

geschrieben, da es sich nur um eine schreibgeschützte Version des RAM handelt, die bereits eingebaut ist.
• CPU: Eine Verkapselung der ALU, die bis Projekt 05 mit schwarzer Magie arbeitet.
• RAM: Random Access Memory. Unser Computer kann darin Daten lesen und schreiben.

HACK-Assembly bietet eine äußerst rudimentäre Möglichkeit, die CPU zu steuern. Der Schlüssel zum Verständnis von HACK Assembly 
sind die drei Register: D, A und M. D steht für "Data" (wahrscheinlich). Es enthält einen 16-Bit-Wert, genau wie die beiden anderen. In 
unserer Assemblersprache können Sie zwei Dinge damit tun:

• ihn als ALU-Eingang lesen
• ALU-Ergebnis in ihn schreiben

A steht für "Adresse". Es funktioniert ziemlich genau so wie D, mit einer zusätzlichen Funktion:

• Es wird auf eine Assembler-Zeit-Konstante gesetzt 

die mit dieser Assemblerzeile (oder Anweisung) realisiert werden kann:

@42

Erweitern Sie, um mehr über den Unterschied zwischen A und D zu erfahren

M steht für "Speicher". Beachten Sie, dass es sich nicht um ein Register im wörtlichen Sinne handelt, sondern um einen Alias für 
RAM[A]. Zum Beispiel,

@42
M=-1

setzt das 42. Wort (wenn man von Null aus zählt) im RAM auf -1, d. h. alle Bits werden auf Eins gesetzt.



Wir nennen eine Anweisung eine "A-Anweisung", wenn sie mit "@" beginnt, und andernfalls eine "C-Anweisung". Bei der Ausführung 
eines C-Befehls berechnet die ALU immer etwas - auch Null. Man kann ihr ein Ziel voranstellen, um zu entscheiden, wo das Ergebnis 
gespeichert werden soll. Sie können entweder eines der drei Register A, D und M auswählen oder nicht, so dass sich 8 Möglichkeiten 
ergeben:

D+M; // Berechne D+M, aber speichere es nirgendwo
AD=1; // A und D gleichzeitig auf 1 setzen
AMD=1 // setzt A, M und D gleichzeitig auf 1

C-Anweisungen können auch etwas wirklich Cooles tun, nämlich springen. Die Syntax unterscheidet sich von der in einer industriellen 
Assemblersprache.

@42
D;JEQ // dies springt zu ROM[42], wenn D=0

Das JEQ hier ist ein Sprungbefehl. Eine Sprunganweisung vergleicht die ALU-Ausgabe mit Null und springt, wenn sie größer/gleich/nicht 
gleich/etc. ist.

Was ist, wenn ich zu 42 springen will, wenn RAM[69] Null ist?

Der Einfachheit halber können wir einer Anweisung in der Assemblerdatei ein Etikett anhängen und es später wiederverwenden:

(END)
@END
0;JMP

In diesem Code zeigt (END) auf @END, und JMP ist ein unbedingter Sprung, so dass eine Endlosschleife entsteht. Es ist eine gute 
Praxis, ein Programm auf diese Weise zu beenden, damit die ROM-Adresse nicht überläuft und der Computer das Programm erneut von
der Anweisung 0 aus startet.

Sie können auch benutzerdefinierte Symbole nach einem "@" verwenden, um eine statische Adresse ab 16 zuzuweisen oder 
wiederzuverwenden. Das ist so, als würde man eine Variable deklarieren, deren Wert in RAM[n] gespeichert wird, wobei n ≥ 16 ist. 
Warum nicht 0-15, fragen Sie sich? Nun, sie sind für die Symbole R0-R15 reserviert.



Diese @Symbol-Notation geht noch weiter, indem sie einen monochromen Bildschirm auf einen Speicherbereich @SCREEN, nämlich 
16384-24575, und eine Tastatur auf @KBD, also 24576, abbildet. Wenn Sie das höchste Bit in RAM[16384] auf Eins setzen, malen Sie 
das obere linke Pixel schwarz. Wenn Sie die Leertaste drücken, wird RAM[24576] auf 32 (0x20) gesetzt. Sie können im CPU-Emulator 
mit ihnen interagieren.

Hier ist ein Schnipsel von HACK-Assembler, den ich geschrieben habe und der RAM[16] von 0 inkrementiert, bis er gleich dem Wert ist, 
den Sie vor dem Programmstart in RAM[0] eingegeben haben:

Schaubild 1: CPU-Emulator mit Pong



@x
M=0     // x = RAM[16] = 0

(LOOP)
@R0
D=M     // D = RAM[0]
@x
D=D-M   // D -= x
@END
D;JEQ   // if D == 0 goto END
@x
M=M+1   // otherwise x += 1
@LOOP
0;JMP   // goto LOOP

(END)
@END
0;JMP



Projekt 05: Computer
Nach einem Projekt, das scheinbar aus dem Nichts kam, klingt es beruhigend, dass wir wieder mit dem Bau der Computerhardware 
beginnen. Zuerst müssen wir uns für die Architektur entscheiden. Es ist üblich, einen Computer auf der Von-Neumann-Architektur 
aufzubauen. Aber Canon Von Neumann speichert sowohl Anweisungen als auch Daten in einer einzigen Speichereinheit, üblicherweise 
RAM, sodass die CPU beides ändern kann. Dennoch wird ein winziges ROM benötigt, um die CPU beim Bootvorgang zu unterstützen. In
unserer Anwendung werden wir jedoch einfach zwei Einheiten ähnlicher Größe verwenden. Das bedeutet, dass unser Computer mit 
einem einzigen ROM nur ein bestimmtes Programm ausführen kann. Dies wird als Harvard-Architektur bezeichnet, technisch gesehen 
eine Teilmenge von Von Neumann. Auch AVR-Mikrocontroller nutzen diese Architektur.

Das bedeutet also, dass sich im Computer drei Dinge befinden: CPU, ROM und RAM. Da wir in Projekt 03 RAM erstellt haben und ROM 
integriert ist, bleibt nur noch die CPU übrig.
Die CPU muss:

• Lesen Sie die Anweisungen aus dem ROM
• Daten aus dem RAM lesen
• Berechnen Sie etwas
• Schreiben Sie Daten auf A, D und RAM
• Führen Sie die Anweisungen einzeln aus
• Springen Sie zu einer anderen Anweisung, wenn der Programmierer dies verlangt

Als ich die Anforderungen las, wusste ich sofort, dass es eine Menge interner Kabel geben wird. Glücklicherweise haben die Autoren ein 
Blockdiagramm bereitgestellt, das diesem ähnelt:



Igitt! Was hat es mit den Fragezeichen auf sich? Offenbar ist das die eigene Version der Autoren von Spoilerwarnungen. Ich musste 
selbst herausfinden, was das ist, und das ist auch gut so. Ich mag Herausforderungen.

Stellen wir zunächst einmal sicher, dass wir wissen, was jeder Pin/Chip tut.

• Befehle im ROM kommen vom Pin instruction
• Daten aus dem RAM kommen vom Pin inM



• Sowohl RAM- als auch ROM-Adressen werden über die addressM ausgewählt.
• Die ALU verarbeitet zwei Register und gibt einen Ausgang aus
• Die Register A und D nehmen Eingaben von der ALU entgegen
• Die ALU-Ausgabe geht über outM auch an den RAM
• writeM weist den RAM an, Daten zu laden
• Der PC inkrementiert, setzt zurück oder springt zu einer Anweisung

Was ist eigentlich eine Anweisung? Es ist ein 16-Bit-Wert, der beschreibt, was die CPU in diesem Taktzyklus tun soll. Ein Assembler, den
wir in Projekt 06 schreiben werden, übersetzt Assembler in Binärcode, aber in diesem Projekt nehmen wir an, dass er aus dem Nichts 
kam.
Was die 16 Bits darstellen, hängt von der Art des Befehls ab, den Sie schreiben. Sie wird durch das höchste Bit, den sogenannten 
Opcode, angegeben. Bei einem A-Befehl ist der Opcode 0, gefolgt von 15 Bit Adresse. Wenn man bedenkt, dass die Größe unserer 
größeren Speichereinheit, des ROM, 32768 Wörter beträgt, sind 15 sinnvoll. In diesem Fall speichert die CPU den Wert im A-Register.

Die C-Anweisung mit Opcode 1 ist komplizierter, besteht aber aus vier Gruppen von Steuerbits:

 fixed    ALU control    jump instruction

\     /   \        /        \        /

+-----+---+--------+--------+--------+

| 111 | a | c1..c6 | d1..d3 | j1..j3 |

+-----+---+--------+--------+--------+

      /   \        /        \

       A/M         destination

• a entscheidet, ob die ALU D und A oder D und M aufnimmt.
• c1..c6 entsprechen den Steuerbits der ALU.



• d1..d3 weisen die CPU an, die ALU-Ausgabe in A, D bzw. M zu speichern.
• j1..j3 sagen der CPU, dass sie zu ROM[A] springen soll, wenn die ALU-Ausgabe <0, =0 bzw. >0 ist

Nach einer Vermutung scheinen wir die Antwort auf die meisten Fragezeichen zu haben.



Das ist einfach, aber falsch. Schauen wir uns den mit d1 bezeichneten Lade-Pin des A-Registers genauer an. Was passiert, wenn wir 
versuchen, die Adresse 1 mit dem A-Befehl @1 zu laden? Fügen wir es zusammen:

0000 0000 0000 0001

^\________________/

|        ^

|        |

opcode   integer value 1

Der Mux auf der linken Seite wird den Befehl durchlassen, weil der Opcode 0 ist, aber denken Sie daran, dass HDL d1 nicht erkennt, 
sondern nur Befehl[5].Was passieren wird, ist, dass das A-Register sich weigern wird, zu laden, weil Befehl[5] Null ist.Etwas Ähnliches 
wird auch mit d2 und d3 passieren, also fügen wir ein wenig Logik hinzu:





Damit ist sichergestellt, dass A, D und M nur dann Daten laden, wenn wir es ihnen ausdrücklich befehlen.Jetzt richten wir unsere 
Aufmerksamkeit auf die beiden einzigen Fragezeichen, die noch übrig sind: zr und ng, die von der ALU kommen, und load, das in den 
PC geht.

Fällt Ihnen etwas auf? j1..j3 fehlen, also sind sie es definitiv. Erinnern Sie sich, dass wir den PC auf seinen Eingang setzen können, wenn
wir load auf high ziehen, und auf diese Weise können wir zu ROM[A] springen. Aber wie?



Es ist eigentlich sehr einfach!

Offenbar haben die Autoren bei der Spezifikation der ALU an alles gedacht.



(Tatsächliche Gates können abweichen)

Und das war's, wir haben eine CPU gebaut! Wir sind dem Computer schon sehr nahe; wir müssen nur noch alle Drähte anschließen. Ich 
bin zu müde, um ein weiteres Diagramm zu entwerfen, also hier ist das HDL:

CHIP Computer {
    IN reset;

    PARTS:
    ROM32K(address=pc, out=instruction);
    CPU(
        inM=inM, instruction=instruction, reset=reset,
        writeM=writeM, outM=outM, addressM=addressM, pc=pc
    );
    Memory(in=outM, address=addressM, load=writeM, out=inM);
}

https://fkfd.me/projects/nand2tetris_1/

https://zhangruochi.com/Computer-Architecture/2019/06/03/

https://qiita.com/dgkz/items/437426b6b50f41e718c7

https://qiita.com/dgkz/items/437426b6b50f41e718c7
https://zhangruochi.com/Computer-Architecture/2019/06/03/
https://fkfd.me/projects/nand2tetris_1/


https://people.duke.edu/~nts9/logicgates/CPU.hdl



https://github.com/havivha/Nand2Tetris/blob/master/05/CPU.hdl

https://github.com/havivha/Nand2Tetris/blob/master/05/CPU.hdl


https://github.com/Olical/nand2tetris/blob/master/chips/architecture/CPU.hdl



https://aua-uff-co.de/prozessor/

https://aua-uff-co.de/prozessor/


CHIP CPU {
    IN  inM[16],         // M value input  (M = contents of RAM[A])
        instruction[16], // Instruction for execution
        reset;           // Signals whether to re-start the current
                         // program (reset==1) or continue executing
                         // the current program (reset==0).

    OUT outM[16],        // M value output
        writeM,          // Write to M?
        addressM[15],    // Address in data memory (of M)
        pc[15];          // address of next instruction

    PARTS:
    // a or c-type instruction?
    Not(in=instruction[15], out=aType);
    Or(a=instruction[12], b=false, out=cType);

    // where to store
    And(a=instruction[5], b=instruction[15], out=writeA);
    And(a=instruction[4], b=instruction[15], out=writeD);
    And(a=instruction[3], b=instruction[15], out=writeM);

    // logical conditions needed for the control logic
    Not(in=zr, out=jne);
    Not(in=jle, out=jgt);
    Or(a=zr, b=jgt, out=jge);
    Or(a=zr, b=ng, out=jle);

// the actual control logic
    Mux8Way(a=false, b=jgt, c=zr, d=jge, e=ng, f=jne, g=jle, h=true, 
sel=instruction[0..2],
            out=jumpIfaType);
    And(a=instruction[15], b=jumpIfaType, out=doJump);

    // the mux on the left of diagam 5.9
    Mux16(a=ALUout, b=instruction, sel=aType, out=Ain);

    // A register (could use plain register, but tests want it)
    Or(a=aType, b=writeA, out=loadA);
    ARegister(in=Ain, load=loadA, out=Aout, out[0..14]=addressM);

    // D register (could use plain register, but tests want it)
    DRegister(in=ALUout, load=writeD, out=registerD);

    // the mux on the right of diagam 5.9
    Mux16(a=Aout, b=inM, sel=cType, out=inputALU);
    // alu
    ALU(x=registerD, y=inputALU, zx=instruction[11], nx=instruction[10], 
zy=instruction[9],
        ny=instruction[8], f=instruction[7], no=instruction[6], zr=zr, ng=ng, 
out=ALUout);

    // needed for feeding back as outputs of the CPU cannot be fed back
    Or16(a=false, b=ALUout, out=outM);
    // program counter
    PC(in=Aout, load=doJump, inc=true, reset=reset, out[0..14]=pc);



    

CHIP Computer {
    IN reset;

    PARTS:
    CPU (reset=reset, instruction=i, inM=j, addressM=k, writeM=l, outM=m, 
pc=n);
    Memory(in=m ,load=l ,address=k ,out=j);
    ROM32K (address=n, out=i);
}

CHIP Memory {
    IN in[16], load, address[15];
    OUT out[16];

    PARTS:
    DMux4Way(in=load, sel=address[13..14], a=a, b=b, c=c, d=d);
    Or(a=a, b=b, out=i);
    RAM16K(in=in, load=i, address=address[0..13], out=j);
    Screen(in=in, load=c, address=address[0..12], out=k);
    Keyboard(out=l);
    Mux4Way16(a=j, b=j, c=k, d=l, sel=address[13..14], out=out);
}


	Kontrollbit-Designpunkte
	Projekt 05: Computer

