Kontrollbit-Designpunkte
Lassen Sie mich die Hauptpunkte des CPU-Designs analysieren

1.Wie wahlt der erste Mux den Eingang aus? Offensichtlich hofft man flr den A-Befehl, den Befehl als Adresse in
das A-Register einzulesen. Wenn der Befehl ein C-Befehl ist, wird die ALU ausgewahlt aluoutput.

2.Der A-Befehl muss auf das A-Register zugreifen, und der C-Befehl beurteilt anhand des 5. Bits des Befehls, ob auf
das A-Register zugegriffen werden soll.

3.Wird die Ausgabe des A-Registers in den Speicher zurlickgeschrieben writeM? Der A-Befehl schreibt niemals
zuruck, und der C-Befehl beurteilt anhand des dritten Bits.

4.Der Sprungzugriff auf das D-Register D register, das M-Register inMund den PC loadhat nichts mit dem A-
Befehl zu tun. Wenn es sich also um einen A-Befehl handelt, ist das Steuerbit @®)®) falsch; die Steuerinformationen
bei @), der C-Befehl wird entsprechend beurteilt 4. Bit;

5.6 Steuerinformationen: Der C-Befehl beurteilt anhand des 12. Bits;

6.® Fur Steuerinformationen beurteilt der C-Befehl anhand des 6. bis 11. Bits;

7. ist die Symbolausgabebitsumme der ALU , ngund zrdie Untertabelle gibt das negative Bit und das Nullbit an,
und das positive Bit kann indirekt berechnet werden.

8.Wenn das negative Bit, das Nullbit und das positive Bit jeweils jmpmit der Phase des C-Befehls kombiniert werden
und keines davon Null ist (es liegt ein Sprung vor), wird das Sprungsteuerbit bei (8 erhalten true.

CPU operation

instruction

iInM

c

@

reset

reset bit

ALU output - ALU output ;f
C C's .E
c) ® i‘
@ |

A register ‘ outM

> ALU »0— -
Mux16 ,f
M input > @ i=

5 .

Aregister T ® C's 3 writeM

output C C -

r | addressM

O memory address output >
c |
® E

i pc

L —

Program Counter output

-
instruction Mux16
-
_ c
inM
reset
reset bit

ALU output O ALU output
c Cs
¢ 1
l — Dregister | —»
A register -0 outM
> ALU -0 -
] /
Areqster Cs writeM
output c c >
addressM
O memory address output -
c
| | .
—-[PC - Program Counter output -

C-1nstruction specification

Symbo]ic syntax: dest = comp jllmpBJ
V- 5 4 . T 1 0

e S Np——
Binary syntax: 111aclc2c3cd chchdl d2 d3 41 j2 3
Jump |[j1 j2 33| effect

null |®@ © © |nojump

JGT (@ © 1 |[ifout>0 jump

JEQ (@ 1 0 |if out=0 jump

JGE (© 1 1 |if out20 jump

JLT |1 © 0 |if out<d jump

JNE (1 © 1 |ifout#0 jump

JLE [1 1 @]if out<e jump -
JMP |1 1 1| unconditional jump A @R

instruction outM
i) -
@5 @
i
T W input writeM
1in L

- e o o mw o owm

Handling A-instructions

Routes the instruction’s MSB (op-code) to the Mux16 control bit

----'—-1

1

|

|

i

|

* 1 I

i 8 { :

|

.

instruction e — | OutM
>ALu -0 -

11168111116818111 :

D=D+1; JMP 1 Mux16 :
: : M input # | writeM
inM : T é] "

I |

cg
: 4 0 |

The Hack language specification

@xxx

B YV IVIVEVEVEV VY

(xxx is a decimal valoe ranging from 0w 32767,
or a symbol bound to such a decimal value)

(v v = 15-bit valoe of xoo0)

Symbohc:
A mmstruction
Binary:
Symbaolic:
C mstruction
Binary:
Predefined symbaols:
symbol waloe
[235] B
El 1
RZ 2
RIS 15
SP 5]
LCL 1
ARG 2
THIS 3
THAT g
SCREEN 16384
EBD 24576

dest = comp; jump

{conep is mandatory.

[f diest is empty, the = is omitted,
If fuesep i3 empty., the ; s omitted)

111laccccccdddjjf
comp CCCCCC dest d d d Effect: store comp in:

a 1 81818 null | @ & @ | the valoe is not stoped
1 111111 M @ 8 1 | RAM[A]

-1 1 11 8 1@ o @ 1 @& |ODregister (reg)

i] A o8 1 188 M [@ 1 1 |RaM[A] and Deeg

A M 1 18 8848 1 1 & @ |Arcg

n a8 1 161 A i & 1 [|Arcgand RAM[A]

A M |1 18 881 Al i 1 @& |Arcgand Dreg

-0 A oBe 1111 | aoM |1 1 1 | Arcg Dreg amd RAMIA]
-h M |1 18 & 11 ; Por .

el B 11111 S J J EHF:L

Ael [Me2 |1 18111 null | & @ @ |nojump

-1 B8 1118 w1 | e @ 1 |ifcomp >0 jump

Al |M21|1 10010 g (e 1 @ [ifcomp=0jump

Dei e |8 B B B 1@ Ge (& 1 1 | ifcoup =0 jump

b-A |D-M |8 1 8 & 11 wr |1 e a |ifcomp <0 jump

oD | m-D |8 B B8 111 me [1 & 1 |ifcowmp 0 jump

DA | DEM (B B B B @ @ e |1 1 @ |ifcomp =0 jump

o & DM | 1 8 18 1 [e 1 1 1 | unconditional jump

d==8 d==1

00Co0¢ it

nshis]
—{ AnD
P

—

,LQM

———

L2 it —°

extM
OW\'__'?'
weC (51 b
@ |a=d
rese+ - R #m?c—
nc
+rue
ofcort bit
insCis}
. D) =
write A

bl bit

16 . load lp
jelp| i D Register out ”

(i)

16
16 e 2 O
e 2 & n o Data Out Bus

Instr Bus 4 Out (memiedp|in p Register out —r}
. sel A) ’

i
@ Write Enable

15

A 4
- O
Decod !
ecode + . | Data Address Bus

Data In Bus 115 reset load inc 15
O o ——— | PC out !f O
R Instruction Address Bus

Reset 1
O -

https://www.bencode.net/posts/2017-04-17-diy-computer-architecture/

In Projekt 04 gibt es kein HDL, stattdessen habe ich gelernt, Assembler zu schreiben. Nisan und Shocken haben wieder einmal eine
Assemblersprache fir genau diese Architektur namens HACK erfunden. Die Sprache versteht zwei Arten von Anweisungen. Aber zuerst
missen wir uns vorstellen, dass wir einen Computer haben.

5CREEN

KEYBOARD

Hier sehen Sie drei Geréte innerhalb des blauen Rechtecks: ROM, CPU und RAM.
* ROM: Nur-Lese-Speicher. Unser Computer holt sich daraus Anweisungen und fuhrt sie aus. Wir haben kein HDL daftr
geschrieben, da es sich nur um eine schreibgeschutzte Version des RAM handelt, die bereits eingebaut ist.
* CPU: Eine Verkapselung der ALU, die bis Projekt 05 mit schwarzer Magie arbeitet.
* RAM: Random Access Memory. Unser Computer kann darin Daten lesen und schreiben.

HACK-Assembly bietet eine aulRerst rudimentéare Moglichkeit, die CPU zu steuern. Der Schlissel zum Verstandnis von HACK Assembly
sind die drei Register: D, A und M. D steht fur "Data" (wahrscheinlich). Es enthalt einen 16-Bit-Wert, genau wie die beiden anderen. In
unserer Assemblersprache konnen Sie zwei Dinge damit tun:

* ihnals ALU-Eingang lesen
* ALU-Ergebnis in ihn schreiben

A steht fur "Adresse". Es funktioniert ziemlich genau so wie D, mit einer zusatzlichen Funktion:

* Es wird auf eine Assembler-Zeit-Konstante gesetzt

die mit dieser Assemblerzeile (oder Anweisung) realisiert werden kann:

@42

Erweitern Sie, um mehr tiber den Unterschied zwischen A und D zu erfahren

M steht fur "Speicher". Beachten Sie, dass es sich nicht um ein Register im wdrtlichen Sinne handelt, sondern um einen Alias fur
RAM[A]. Zum Beispiel,

@42
M=-1

setzt das 42. Wort (wenn man von Null aus z&hlt) im RAM auf -1, d. h. alle Bits werden auf Eins gesetzt.

Wir nennen eine Anweisung eine "A-Anweisung", wenn sie mit "@" beginnt, und andernfalls eine "C-Anweisung". Bei der Ausfihrung
eines C-Befehls berechnet die ALU immer etwas - auch Null. Man kann ihr ein Ziel voranstellen, um zu entscheiden, wo das Ergebnis
gespeichert werden soll. Sie kdnnen entweder eines der drei Register A, D und M auswahlen oder nicht, so dass sich 8 Mdglichkeiten
ergeben:

D+M; // Berechne D+M, aber speichere es nirgendwo
AD=1; // A und D gleichzeitig auf 1 setzen
AMD=1 // setzt A, M und D gleichzeitig auf 1

C-Anweisungen kénnen auch etwas wirklich Cooles tun, namlich springen. Die Syntax unterscheidet sich von der in einer industriellen
Assemblersprache.

@42
D;JEQ // dies springt zu ROM[42], wenn D=0

Das JEQ hier ist ein Sprungbefehl. Eine Sprunganweisung vergleicht die ALU-Ausgabe mit Null und springt, wenn sie grof3er/gleich/nicht
gleich/etc. ist.

Was ist, wenn ich zu 42 springen will, wenn RAM[69] Null ist?
Der Einfachheit halber kdnnen wir einer Anweisung in der Assemblerdatei ein Etikett anhdngen und es spater wiederverwenden:

(END)
@END
0;JIMP

In diesem Code zeigt (END) auf @END, und JMP ist ein unbedingter Sprung, so dass eine Endlosschleife entsteht. Es ist eine gute
Praxis, ein Programm auf diese Weise zu beenden, damit die ROM-Adresse nicht Uberlauft und der Computer das Programm erneut von
der Anweisung 0 aus startet.

Sie kbnnen auch benutzerdefinierte Symbole nach einem "@" verwenden, um eine statische Adresse ab 16 zuzuweisen oder
wiederzuverwenden. Das ist so, als wirde man eine Variable deklarieren, deren Wert in RAM[n] gespeichert wird, wobei n > 16 ist.
Warum nicht 0-15, fragen Sie sich? Nun, sie sind fur die Symbole R0O-R15 reserviert.

Diese @Symbol-Notation geht noch weiter, indem sie einen monochromen Bildschirm auf einen Speicherbereich @SCREEN, namlich
16384-24575, und eine Tastatur auf @KBD, also 24576, abbildet. Wenn Sie das hochste Bit in RAM[16384] auf Eins setzen, malen Sie

das obere linke Pixel schwarz. Wenn Sie die Leertaste driicken, wird RAM[24576] auf 32 (0x20) gesetzt. Sie konnen im CPU-Emulator
mit ihnen interagieren.

File ¥iew Run Help

5
@256 267
C=h 1= 266|=|
ea 26
=

@19 2717

15 [0 JNE 9717 ‘ iy 9

16 |ea 4872
M1 2850,
m=-1 2968

[19 leis 3 o .
A= 16384)
-1
[22 jgis 3570,
FERE) 18 ALU
[24 Jga 2185 Dinp

ut
AN=M-1 2118 é ALU output :
=] 3495 a
FrwY 16384 | M4 Tnput
8 [D=N-D - 8 -1 2

\Runnin

w
A
=
»

Schaubild 1: CPU-Emulator mit Pong

Hier ist ein Schnipsel von HACK-Assembler, den ich geschrieben habe und der RAM[16] von 0 inkrementiert, bis er gleich dem Wert ist,
den Sie vor dem Programmstart in RAM[0] eingegeben haben:

@x
M=0 // X

RAM[16] = O

(LOOP)

@RO

D=M // D
@x

D=D-M // D -= Xx

@END

D;JEQ // if D == 0 goto END
@x

M=M+1 // otherwise x +=1
@LOOP

©;JMP // goto LOOP

RAM[O]

(END)
@END
0;JIMP

Projekt 05: Computer

Nach einem Projekt, das scheinbar aus dem Nichts kam, klingt es beruhigend, dass wir wieder mit dem Bau der Computerhardware
beginnen. Zuerst missen wir uns fur die Architektur entscheiden. Es ist tblich, einen Computer auf der Von-Neumann-Architektur
aufzubauen. Aber Canon Von Neumann speichert sowohl Anweisungen als auch Daten in einer einzigen Speichereinheit, Ublicherweise
RAM, sodass die CPU beides dndern kann. Dennoch wird ein winziges ROM bendétigt, um die CPU beim Bootvorgang zu unterstitzen. In
unserer Anwendung werden wir jedoch einfach zwei Einheiten ahnlicher Gré3e verwenden. Das bedeutet, dass unser Computer mit
einem einzigen ROM nur ein bestimmtes Programm ausfiihren kann. Dies wird als Harvard-Architektur bezeichnet, technisch gesehen
eine Teilmenge von Von Neumann. Auch AVR-Mikrocontroller nutzen diese Architektur.

Das bedeutet also, dass sich im Computer drei Dinge befinden: CPU, ROM und RAM. Da wir in Projekt 03 RAM erstellt haben und ROM
integriert ist, bleibt nur noch die CPU ubrig.
Die CPU muss:

* Lesen Sie die Anweisungen aus dem ROM

+ Daten aus dem RAM lesen

* Berechnen Sie etwas

* Schreiben Sie Daten auf A, D und RAM

* Fudhren Sie die Anweisungen einzeln aus

* Springen Sie zu einer anderen Anweisung, wenn der Programmierer dies verlangt

Als ich die Anforderungen las, wusste ich sofort, dass es eine Menge interner Kabel geben wird. Glicklicherweise haben die Autoren ein
Blockdiagramm bereitgestellt, das diesem ahnelt:

instr- —1 —J(A_" Register
uctions | Register —1% " —> outM

inM — =
\ 4
_Lypc |
, PC
l . —> WriteM
d WV

addressM reset PC

Igitt! Was hat es mit den Fragezeichen auf sich? Offenbar ist das die eigene Version der Autoren von Spoilerwarnungen. Ich musste
selbst herausfinden, was das ist, und das ist auch gut so. Ich mag Herausforderungen.

Stellen wir zun&chst einmal sicher, dass wir wissen, was jeder Pin/Chip tut.

 Befehle im ROM kommen vom Pin instruction
« Daten aus dem RAM kommen vom Pin inM

* Sowohl RAM- als auch ROM-Adressen werden lber die addressM ausgewabhit.
» Die ALU verarbeitet zwei Register und gibt einen Ausgang aus

» Die Register Aund D nehmen Eingaben von der ALU entgegen

* Die ALU-Ausgabe geht tber outM auch an den RAM

* writeM weist den RAM an, Daten zu laden

* Der PC inkrementiert, setzt zurtick oder springt zu einer Anweisung

Was ist eigentlich eine Anweisung? Es ist ein 16-Bit-Wert, der beschreibt, was die CPU in diesem Taktzyklus tun soll. Ein Assembler, den
wir in Projekt 06 schreiben werden, Ubersetzt Assembler in Bindrcode, aber in diesem Projekt nehmen wir an, dass er aus dem Nichts
kam.

Was die 16 Bits darstellen, hangt von der Art des Befehls ab, den Sie schreiben. Sie wird durch das héchste Bit, den sogenannten
Opcode, angegeben. Bei einem A-Befehl ist der Opcode 0, gefolgt von 15 Bit Adresse. Wenn man bedenkt, dass die Grél3e unserer
grél3eren Speichereinheit, des ROM, 32768 Worter betragt, sind 15 sinnvoll. In diesem Fall speichert die CPU den Wert im A-Register.

Die C-Anweisung mit Opcode 1 ist komplizierter, besteht aber aus vier Gruppen von Steuerbits:

fixed ALU control jump instruction
\ / 0\ / \ /
+----- +--mmme - - L +

S G he e e Fomm - - Fomm o - +
/ \ / \
A/M destination

* aentscheidet, ob die ALU D und A oder D und M aufnimmt.
* cl..c6 entsprechen den Steuerbits der ALU.

* d1..d3 weisen die CPU an, die ALU-Ausgabe in A, D bzw. M zu speichern.
* j1..]3 sagen der CPU, dass sie zu ROMJ[A] springen soll, wenn die ALU-Ausgabe <0, =0 bzw. >0 ist

Nach einer Vermutung scheinen wir die Antwort auf die meisten Fragezeichen zu haben.

instr-
uctions

inM

¥

T‘

Register

s

i

v

— PC

Y

—> outM

/

oddressM reset

v
PC

> WriteM

Das ist einfach, aber falsch. Schauen wir uns den mit d1 bezeichneten Lade-Pin des A-Registers genauer an. Was passiert, wenn wir
versuchen, die Adresse 1 mit dem A-Befehl @1 zu laden? Flgen wir es zusammen:

0000 0000 0000 0001
™\ /

| N

opcode integer value 1

Der Mux auf der linken Seite wird den Befehl durchlassen, weil der Opcode 0 ist, aber denken Sie daran, dass HDL d1 nicht erkennt,
sondern nur Befehl[5].Was passieren wird, ist, dass das A-Register sich weigern wird, zu laden, weil BefehlI[5] Null ist.Etwas Ahnliches

wird auch mit d2 und d3 passieren, also fligen wir ein wenig Logik hinzu:

T
TR v
2 —% ¢l 06
opcoole —J % N D
. Register
l“S'!;r' — A
uckions jj% Register _1—5&, ——>outM
. M >
. . B
v
—>{ PC opcode
l >l;r—4 B D)—I>writeM
¥ | vV

addressM

reset

PC

Damit ist sichergestellt, dass A, D und M nur dann Daten laden, wenn wir es ihnen ausdricklich befehlen.Jetzt richten wir unsere
Aufmerksamkeit auf die beiden einzigen Fragezeichen, die noch Ubrig sind: zr und ng, die von der ALU kommen, und load, das in den

PC geht.

Fallt Ihnen etwas auf? j1..j3 fehlen, also sind sie es definitiv. Erinnern Sie sich, dass wir den PC auf seinen Eingang setzen kdnnen, wenn
wir load auf high ziehen, und auf diese Weise kénnen wir zu ROMI[A] springen. Aber wie?

Iz — 1

2 reng c1..ch

'l’ﬂS'.tr' 4 A
ass 8 Register —;_) 31/ ——>outM

.lnM y,

N4
/\

— L3 pc

| opcode

et J B D—I>writeM
WV

addressM reset PC

Es ist eigentlich sehr einfach!

Offenbar haben die Autoren bei der Spezifikation der ALU an alles gedacht.

mstr

inM

' 3 —‘r,
oS 1 Re,g ster

-

hj 2r

l 4

<& ﬂﬁ ;
'__lﬁ PC | | J3

opcode +_

T‘
] opcoole
dzlz% ¢l..ch
opcode D
Peglsber
5 LS ot

d3 '——|D_> writeM

addressM veset

\4

PC

(Tatséchliche Gates kdnnen abweichen)

Und das war's, wir haben eine CPU gebaut! Wir sind dem Computer schon sehr nahe; wir missen nur noch alle Drahte anschlie3en. Ich
bin zu mide, um ein weiteres Diagramm zu entwerfen, also hier ist das HDL:

CHIP Computer {
IN reset;

PARTS:
ROM32K(address=pc, out=instruction);
CPU(
inM=inM, instruction=instruction, reset=reset,
writeM=writeM, outM=outM, addressM=addressM, pc=pc
);
Memory (in=outM, address=addressM, load=writeM, out=inM);

httos://fkid. melprajects/nand2tetris. 1/

https://qiita.com/dgkz/items/437426b6b50f41e718c7
https://zhangruochi.com/Computer-Architecture/2019/06/03/
https://fkfd.me/projects/nand2tetris_1/

https://people.duke.edu/~nts9/logicgates/CPU.hdl

ALU output O ALU output

C's
¢ }
instruction Mux16 A register outM
- > ALU e -
_ c
inM
M input

Areqster Cs writeM
output [C -
addressM
O memory address output -
reset
reset bit c
l PC

ALU output Qe ALU output

C C's
c !
. | .
instruction Mux16 A register outM
- > ALU =) .
inM c Mux16
M input -
Aregister C's writeM
output - C -
addressM
O memory address output -
reset
reset bit c
PC

PC b Program Counter output .

https://github.com/havivha/Nand2Tetris/blob/master/05/CPU.hdl

https://github.com/Olical/nand2tetris/blob/master/chips/architecture/CPU.hdlI

ALU output O ALU output

c
" }
instruction Mux16 A register outM
- =) -
_ c
inM
M input
Areqster writeM
output c -
addressM
O memory address output -
reset
reset bit C
PC

PC b Program Counter output -

: ALU output i
E O ALL output :
i c Cs :
I D register -
instruction | Mux16 A register 2 | outM
CCCCCCCCCCCCCCCe E > A'Lu T i -
(a 16-bita- or c- . oulput :
instruction) : C Mux16 ;
; i M input :
inM] : :
: Aregister r Cs | writeM
; output c C : -
: i addressM
: o ! -
: Memary address output !
reset 5 !
E reset bit c i
L PC
; i Program Counter output : i

https://aua-uff-co.de/prozessor/

CHIPQPU { , // the actual control logic
IN inM[16], /I'M velueinput (M = contents of RAM[A]) Mux8Way(a=fase, b=jgt, c=zr, d=jge, e=ng, f=jne, g=jle, h=true,
instruction[16], // Instruction for execution sel=instruction[0..2],
reset; /I Signals whether to re-start the current
I/ program (reset==1) or continue executing
// the current program (reset==0).

out=jumplfaType);
And(a=instruction[15], b=jumplfaType, out=doJump);

// the mux on the left of diagam 5.9

OUT outM[16], /' M value output Mux16(a=AL Uout, b=instruction, sel=aType, out=Ain);
writeM, /I Writeto M?
addressM[15], // Addressin data memory (of M) /I A register (could use plain register, but tests want it)
pc[15]; /I address of next instruction Or(a=aType, b=writeA, out=loadA);

PARTS: ARegister(in=Ain, load=loadA, out=Aout, out[0..14]=addressM);

/l aor c-typeinstruction?
Not(in=instruction[15], out=aType);
Or(a=instruction[12], b=false, out=cType);

/I D register (could use plain register, but tests want it)
DRegister(in=ALUout, load=writeD, out=registerD);

// the mux on theright of diagam 5.9

/I where to store , , , Mux16(a=Aout, b=inM, sel=cType, out=inputALU);
And(a=instruction[5], b=instruction[15], out=writeA); J/ du
And(a=instruction[4], b=instruction[15], out=writeD); ALU(x=registerD, y=inputALU, zx=instruction[11], nx=instruction[10],

And(a=instruction[3], b=instruction[15], out=writeM); zy=instruction[9]

ny=instruction[8], f=instruction[7], no=instruction[6], zr=zr, ng=ng,

/1'logical conditions needed for the control logic out=AL Uout);

Not(in=zr, out=jne); ’

Not(injle, out=jgt); /I needed for feeding back as outputs of the CPU cannot be fed back
Or(a=zr, b=jgt, out=jge); Or16(a=false, b=ALUout, out=outM);

Or(a=zr, b=ng, out=jle); /1 program counter

PC(in=Aout, load=doJump, inc=true, reset=reset, out[0..14]=pc);

CHIP Computer {
IN reset;

PARTS:

CPU (reset=reset, instruction=i, inM=j, addressM=k, writeM=I, outM=m,
pc=n);

Memory (in=m ,load=| ,address=k ,out=j);

ROM32K (address=n, out=i) ;
!

CHIP Memory {
INin(16), load, address(15) ;
OUT out(16);

PARTS:

DMux4Way (in=load, sel=address(13..14), a=a, b=b, c=c, d=d);
Or(a=a, b=b, out=i);

RAM16K (in=in, load=i, address=address (0..13], out=j);
Screen(in=in, load=c, address=address (0..12], out=k) ;
Keyboard(out=l) ;

Mux4Way 16 (a=j, b=j, c=k, d=l, sel=address(13..14), out=out) ;

	Kontrollbit-Designpunkte
	Projekt 05: Computer

