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Vorwort

Die Digitaltechnik ist ein integraler Bestandteil unseres täglichen Lebens geworden. 
Vielfach begegnet sie uns in Form von Desktop-PCs, Laptops, Tablets, Fernsehgeräten 
oder Smartphones. Wenn wir ein solches Gerät nutzen, ist klar: Wir verwenden ein digi-
tales System. Darüber hinaus ist die Digitaltechnik aber auch in Bereiche eingezogen, 
bei der sie nicht sofort offensichtlich ist. In einem modernen Auto arbeiten beispiels-
weise zahlreiche digitale Komponenten. Sie steuern den Motor, helfen beim Einparken 
und unterstützen beim Fahren durch Fahrspurassistenten, ABS und ESP. Diese Form der 
digitalen Systeme werden häufig, weil sie in einem größeren System integriert sind, als 
„eingebettete Systeme“ bezeichnet. Man findet sie in vielen Bereichen des Alltags, wie 
zum Beispiel in Hausgeräten, Uhren, Heizungssteuerungen oder in Fotoapparaten. Auch 
in industriellen Anwendungen geht nichts ohne die Digitaltechnik. So wäre beispiels-
weise die Vernetzung industriell genutzter Maschinen, die vierte industrielle Revolution, 
ohne entsprechende digitale Komponenten undenkbar.

Was ist Digitaltechnik? Welche Prinzipien liegen ihr zugrunde? Wie werden digitale 
Systeme realisiert?−Diese und andere Fragen werden in diesem Lehrbuch beantwortet.

Das Buch beschreibt die wichtigen Themenfelder der Digitaltechnik und wendet sich 
vorrangig an Studierende der Studiengänge Elektrotechnik, Informatik, Mechatronik 
sowie verwandter Studiengänge. Es wird der Bogen von den Grundlagen der Digital-
technik über Schaltungsstrukturen und Schaltungstechnik bis hin zu den Komponenten 
digitaler Systeme, wie programmierbare Logikbausteine, Speicher, AD/DA-Umsetzer 
und Mikrocontroller gespannt. Zahlreiche Beispiele erleichtern das Verständnis für den 
Aufbau und die Funktion moderner digitaler Systeme.

Mit dieser 7. Auflage und dem auf vier Autoren gewachsenen Team wurde das Lehr-
buch grundlegend überarbeitet und modernisiert. Hierbei waren uns die folgenden 
Aspekte wichtig:

•	 Ein besonderes Merkmal dieses Lehrbuches ist die Breite der behandelten Themen 
von Grundlagen über Komponenten bis zu digitalen Systemen.

•	 Der Entwurf mit einer Hardwarebeschreibungssprache ist Standard in der Industrie. 
Auf die verständliche, schrittweise Erläuterung von VHDL wird daher besonderer 
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Wert gelegt. Nach einer Einführung in VHDL wird bei vielen Themen Bezug auf 
VHDL-Konstrukte genommen. In einem Vertiefungskapitel werden weiterführende 
Sprachkonstrukte erläutert.

•	 Ein neues Einleitungskapitel gibt eine Übersicht über die Digitaltechnik, um die Ein-
ordnung von Grundlagenwissen zu ermöglichen.

•	 Inhalte, die keine Praxisrelevanz mehr haben, wurden weggelassen, zum Beispiel 
asynchrone Zähler oder obsolete RAM-Bausteine.

•	 Im Gegenzug werden praxisrelevante Inhalte ausführlicher behandelt, darunter:
–	 Zeitverhalten, Pipelining
–	 Schaltungssimulation und -verifikation
–	 Verlustleistung
–	 Moderne Speichertechnologien

Die ersten sechs Kapitel legen die wesentlichen Grundlagen zum Verständnis digitaler 
Komponenten. Kap. 1 bietet eine Einführung in die Thematik und stellt wichtige Grund-
prinzipien im Überblick dar.

Kap. 2 widmet sich der digitalen Darstellung von Informationen, wobei der Schwer-
punkt auf der Darstellung von Zahlen liegt. Kap. 3 führt in die Hardwarebeschreibungs-
sprache VHDL ein, die weltweit für den Entwurf digitaler Schaltungen verwendet wird. 
Digitale Systeme lassen sich als Kombination von kombinatorischen und sequenziellen 
Schaltungen auffassen. Beide Konzepte werden in den Kapiteln 4 und 5 vorgestellt, wäh-
rend sich Kap. 6 den aus diesen Konzepten abgeleiteten Schaltungsstrukturen widmet. In 
diesen Kapiteln wird kontinuierlich die Implementierung in der Sprache VHDL themati-
siert und vertieft.

In den Kapiteln 7 bis 14 werden vertiefende Themen aufgegriffen: Kap. 7 stellt unter-
schiedliche Konzepte zur Realisierung digitaler Systeme im Überblick vor. In Kap. 8 
werden erweiterte Aspekte der Schaltungsbeschreibung in VHDL, wie zum Beispiel 
Testbenches für die Verifikation aufgegriffen. Die praktische Umsetzung von VHDL-
Beschreibungen erfolgt heute häufig mithilfe von programmierbaren Logikbausteinen 
(FPGAs), welche in Kap. 9 vertieft vorgestellt werden. Das Verständnis der techno-
logischen Grundlagen moderner Digitalschaltungen wird durch eine Einführung in die 
Halbleitertechnologie in Kap. 10 ermöglicht. Eine zentrale Systemkomponente ist der 
Speicher. Dieser kann mithilfe unterschiedlicher Technologien realisiert werden, die in 
Kap. 11 vorgestellt werden. Für Ein-/Ausgabe analoger Größen werden Analog-Digital- 
und Digital-Analog-Umsetzer benötigt, deren Aufbau und Funktionsweise in Kap. 12 
näher erläutert werden. Kap. 13 und 14 widmen sich digitalen Rechnersystemen. In 
Kap. 13 wird der Aufbau und die Funktionsweise von Rechnern vorgestellt. Kap. 14 
greift diese Aspekte auf und vertieft sie anhand eines konkreten Beispiels, einem Mik-
rocontroller der AVR-Familie. In Kap. 11 bis 14 werden ebenfalls Bussysteme zur Kom-
munikation innerhalb eines digitalen Systems vorgestellt.

http://dx.doi.org/10.1007/978-3-662-49731-9_1
http://dx.doi.org/10.1007/978-3-662-49731-9_2
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Am Ende aller Kapitel befinden sich Übungsaufgaben, die wichtige Aspekte aufgrei-
fen und zur selbstständigen Lernkontrolle herangezogen werden können. Die Lösungen 
der Aufgaben sind am Ende des Buches zu finden.

Ergänzendes Material steht im Internet unter www.springer.com/de/
book/9783662497302 oder www.hs-osnabrueck.de/buch-digitaltechnik zur Verfügung.

Für die Rückmeldungen zu den Lehrinhalten bedanken wir uns bei den Studierenden 
der Hochschule Osnabrück und der Hochschule Bonn-Rhein-Sieg. Besonderer Dank 
geht an alle Kolleginnen und Kollegen, die uns seit der ersten Auflage durch ihre Hilfe 
und Rückmeldungen begleitet haben. In der aktuellen Auflage war dies insbesondere 
Dipl.-Ing. Andrea Schwandt. Nicht zuletzt möchten wir uns bei allen an dieser Ausgabe 
beteiligten Mitarbeiterinnen und Mitarbeitern des Springer-Verlages bedanken. Ohne 
ihre professionelle Arbeit wäre das vorliegende Buch nicht realisierbar gewesen.

Das Lehrbuch soll natürlich Leserinnen und Leser gleichermaßen ansprechen und wir 
haben uns bemüht, dass alle Formulierungen auch so verstanden werden.

im Oktober 2016	 Winfried Gehrke
Marco Winzker
Klaus Urbanski

Roland Woitowitz

http://www.springer.com/de/book/9783662497302
http://www.springer.com/de/book/9783662497302
http://www.hs-osnabrueck.de/buch-digitaltechnik


IX

Vorwort zur ersten Auflage

Die Digitaltechnik hat seit der Einführung der ersten digitalen integrierten Halbleiter-
schaltungen im Jahre 1958 einen vehementen Aufschwung genommen. Maßgeblich 
daran beteiligt war der technologische Fortschritt in der Mikroelektronik. Mittlerweile 
lassen sich integrierte Schaltungen mit mehr als 100 Mio. aktiven Elementen realisieren.

Anfänglich konzentrierte sich diese Technik einerseits auf niedrigintegrierte logische 
Grundschaltungen und andererseits auf hochintegrierte kundenspezifische Schaltungen 
(Full Custom ICs), aber bereits 1971 kamen die Mikroprozessoren als neuartige pro-
grammierbare Universalschaltungen hinzu.

Seit einigen Jahren erweitert sich das Anwendungsspektrum zunehmend in Richtung 
der sog. Semi Custom ICs. Hierbei handelt es sich um hochintegrierte Standardschaltun-
gen, bei denen wesentliche Designschritte mittels Computerunterstützung vom Anwen-
der selbst übernommen werden.

Das Buch widmet sich all diesen Grundlagen der Digitaltechnik unter besonderer 
Berücksichtigung der zurzeit gültigen Normen für Schaltsymbole und Formelzeichen.

Der Darstellung grundlegender Logikbausteine, wie NAND, NOR, Flipflops und Zäh-
ler sowie programmierbarer Bausteine, wie PAL, PLA, LCA schließt sich eine Einfüh-
rung in die Mikroprozessor- und Mikrocontroller-Technik an.

Einen besonderen Schwerpunkt bildet der systematische Entwurf von Schaltnet-
zen und Schaltwerken unter Einsatz programmierbarer Bausteine. Zahlreiche Beispiele 
hierzu erleichtern das Verständnis für Aufbau und Funktion dieser modernen digitalen 
Systeme.

Zu allen Kapiteln werden Übungsaufgaben mit ausführlichen Musterlösungen ange-
boten. Daher eignet sich dieses Buch besonders zum Selbststudium. Es wendet sich 
damit sowohl an Hochschulstudenten der Elektrotechnik oder Informationstechnik im 
Hauptstudium, als auch an den in der Berufspraxis stehenden Ingenieur, der seinen Wis-
sensstand auf diesem Gebiet aktualisieren will.
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Besonderer Dank gebührt Herrn Dr.-Ing. H. Kopp, der dieses Buch durch wertvolle 
Anregungen und vielfältige Unterstützung bereichert hat. Auch den Studenten der Fach-
hochschule Osnabrück gilt unser Dank für ihre Mitarbeit und mannigfache Hilfestellung.

Bedanken möchten wir uns ebenfalls beim Verlag für die gute Zusammenarbeit.

Osnabrück, Deutschland, Dezember 1992 �  
	

Klaus Urbanski
Roland Woitowitz
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PLA	 Programmable Logic Array
PLCC	 Plastic Leaded Chip Carrier
PLD	 Programmable Logic Device
PLL	 Phase Locked Loop
PWM	 Pulse Width Modulation, Pulsweitenmodulation
QDR	 Quad Data Rate
QFP	 Quad Flat Pack
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RISC	 Reduced Instruction Set Computer
ROM	 Read Only Memory
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SNR	 Signal-to-Noise Ratio
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Digitaltechnik steckt heutzutage in vielen technischen Geräten. Wenn Sie dieses Buch 
lesen, haben Sie vermutlich den Tag über schon etliche digitale Schaltungen benutzt. Der 
Rauchmelder im Schlafzimmer, der nachts auf Sie aufpasst, hat einen kleinen digitalen 
Mikrocontroller, genau wie der Radiowecker, der Sie geweckt hat. Mit dem Smartphone 
voller Digitaltechnik haben Sie vermutlich Ihre Emails und sozialen Netzwerke nach 
Neuigkeiten abgefragt. Und egal ob Sie mit dem Auto oder der Straßenbahn in die Hoch-
schule gefahren sind, wieder waren digitale Schaltungen für Sie tätig. Nur falls Sie mit 
dem Fahrrad unterwegs waren, verlief dieser Teil des Tages ohne Digitaltechnik – es sei 
denn, Sie haben einen Fahrradtacho.

Digitale Schaltungen übernehmen in vielen technischen Geräten Aufgaben zur Steu-
erung und Regelung. Das heißt, sie fragen Informationen ab und treffen anhand von 
Regeln Entscheidungen. Dieses Grundprinzip wird beispielsweise beim Antiblockiersys-
tem (ABS) im Auto deutlich. Die Digitalschaltung bekommt die Informationen, ob die 
Bremse betätigt ist und die Räder blockieren. Wenn dies der Fall ist, wird die Bremskraft 
leicht reduziert, damit die Räder wieder Haftung zur Straße bekommen und man bessere 
Bremswirkung sowie Manövrierbarkeit erhält.

Der besondere Vorteil von digitalen Schaltungen liegt darin, dass Berechnungen und 
Entscheidungen sowie das Speichern und Übertragen von Informationen sehr einfach 
möglich sind. Prinzipiell könnte ein Antiblockiersystem auch mit einer Analogschaltung 
und eventuell sogar mechanisch oder hydraulisch aufgebaut werden. Aber ein digitales 
System kann die Informationen wesentlich präziser verarbeiten, also beispielsweise die 
Geschwindigkeit vor dem Bremsen, die Stellung des Lenkrads und die Drehgeschwin-
digkeit aller Räder auswerten und alle Bremsen individuell ansteuern.

Einführung 1
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1.1	� Arbeitsweise digitaler Schaltungen

Ein wichtiges Kennzeichen der Digitaltechnik ist die Darstellung von Informationen mit 
den Werten 0 und 1. Dieses Prinzip wird als Zweiwertigkeit bezeichnet. Daten mit zwei 
möglichen Werten werden Binärdaten genannt. Wenn eine Information mehr als zwei 
Werte haben kann, wird sie mit mehreren Stellen dargestellt. Am bekanntesten ist sicher 
das Byte, ein Datenwort mit acht Bit, also acht Stellen mit dem Wert 0 oder 1.

1.1.1	� Darstellung von Informationen

Binärdaten werden meistens mit Spannungspegeln dargestellt, beispielsweise die 0 mit 
0 V und die 1 mit 3,3 V. Dabei sind auch geringe Abweichungen der Spannung erlaubt, 
das heißt auch eine Spannung von beispielsweise 0,2 V wird noch als 0 akzeptiert. Dies 
ist eine wichtige Eigenschaft der Digitaltechnik, denn dadurch ist sie gegenüber kleinen 
Störungen und Rauschen unempfindlich. Erst bei großen Störungen kann der Wert einer 
Information nicht mehr korrekt erkannt werden.

Für die Darstellung von Binärdaten mit Spannungspegeln gibt es mehrere Standards. 
Beispielsweise wird im Standard LVTTL der Spannungsbereich von 0 bis 0,8 V als logi-
sche 0 und von 2,0 bis 3,3 V als logische 1 interpretiert. Der Bereich zwischen 0,8 und 
2,0 V ist der Übergangsbereich und diese Spannungen dürfen nur kurz beim Wechsel 
zwischen 0 und 1 auftreten. Die Bezeichnung LVTTL bedeutet übrigens Low-Voltage-
Transistor-Transistor-Logik und hat gewissermaßen „historischen“ Ursprung. Sie ist eine 
spannungsreduzierte Version (Low-Voltage) eines anderen Standards (TTL).

Es gibt, neben LVTTL, eine Vielzahl weiterer Standards für Spannungspegel. Frü-
her wurden oft höhere Spannungen, z. B. 5 V, verwendet, sodass auch höhere Pegel 
gebräuchlich waren. Innerhalb von integrierten Schaltungen, z. B. der CPU in Ihrem 
Computer, werden heutzutage geringere Spannungen im Bereich von 1 V benutzt.

Die Werte 0 und 1 können je nach Anwendung auch durch andere physikalische Grö-
ßen dargestellt werden, beispielsweise Lichtimpulse in einer Glasfaserleitung oder durch 
elektrische Ladung auf einem Kondensator.

1.1.2	� Logik-Pegel und Logik-Zustand

Die Begriffe Logik-Pegel und Logik-Zustand unterscheiden Spannungswerte und Infor-
mation einer binären Variablen. Der Logik-Pegel wird durch L (Low) und H (High) und 
der Logik-Zustand durch die Ziffern 0 und 1 bezeichnet. Für die Beschreibung des phy-
sikalischen Verhaltens einer digitalen Schaltung dienen somit die Logik-Pegel, während 
das logische Verhalten durch Logik-Zustände gekennzeichnet wird.

Die Zuordnung von L und H zu 0 und 1 erfolgt fast immer in positiver Logik, das 
heißt der Pegel L entspricht einer logischen 0 und Pegel H entspricht einer logischen 1. 
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Prinzipiell ist auch eine umgekehrte Zuordnung möglich, die als negative Logik bezeich-
net wird. Diese Zuordnung wird in der Praxis jedoch kaum verwendet.

1.1.3	� Verarbeitung von Informationen

Digitalschaltung können die logischen Werte 0 und 1 für Berechnungen und Entschei-
dungen verwenden. Das Ergebnis einer Berechnung ist dabei wieder der Wert 0 oder 1. 
Die Grundelemente zur Berechnung werden als Logikgatter bezeichnet. Die wichtigsten 
Logikgatter sind:

•	 Inverter: Der Inverter ergibt am Ausgang das „Gegenteil“ des Eingangs. Das heißt 
eine 0 wird zur 1, eine 1 zur 0.

•	 UND-Gatter: Das UND-Gatter hat zwei oder mehr Eingänge. Es ergibt am Ausgang 
eine 1, wenn alle Eingänge 1 sind. Mit anderen Worten: Der eine und der andere Ein-
gang müssen 1 sein.

•	 ODER-Gatter: Das ODER-Gatter hat ebenfalls zwei oder mehr Eingänge. Es ergibt 
1, wenn mindestens ein Eingang 1 ist. Auch der Fall, dass mehrere Eingänge 1 sind ist 
erlaubt. Mit anderen Worten: Der eine oder der andere oder beide Eingänge müssen 1 
sein.

•	 XOR-Gatter: Das XOR-Gatter ist in der Grundform für zwei Eingänge definiert. Die 
Bezeichnung bedeutet ausschließendes Oder (engl. exclusiv-or). Es ist eine Abwand-
lung des ODER-Gatters, die jedoch keine 1 ausgibt, wenn beide Eingänge 1 sind. Mit 
anderen Worten: Für eine 1 am Ausgang müssen der eine oder der andere Eingang 
aber nicht beide Eingänge 1 sein.

Für die Logikgatter gibt es Schaltsymbole, die in Abb. 1.1 dargestellt sind. Die Eingänge 
sind immer auf der linken Seite, der Ausgang ist rechts. Das Dreieck im Symbol des 
Inverters steht für eine Weiterleitung oder Verstärkung, der Kreis gibt die Invertierung, 
also Umkehrung des Wertes an. Das Zeichen & steht für ‚und‘. Im ODER-Gatter meint 

Abb. 1.1   Symbole für 
Logikgatter

Inverter

&

UND-Gatter

≥1

ODER-Gatter

=1

XOR-Gatter 

1.1  Arbeitsweise digitaler Schaltungen
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die Bezeichnung ‚≥1‘, dass mindestens eine 1 am Eingang anliegen muss, damit der 
Ausgang 1 wird. Entsprechend bedeutet ‚=1‘ bei XOR, dass von zwei Eingängen exakt 
eine 1 vorhanden sein muss.

Mit diesen Grundelementen können Informationen miteinander verknüpft werden. 
Außerdem müssen in einer Digitalschaltung auch Informationen gespeichert werden und 
das Grundelement hierfür ist das D-Flip-Flop (D-FF). Dabei steht D für Daten und Flip-
Flop symbolisiert das Hin- und Herschalten zwischen 0 und 1.

Das D-Flip-Flop arbeitet mit einem Takt, (engl. Clock), also einem periodischen Sig-
nal, welches die Arbeitsgeschwindigkeit einer Digitalschaltung vorgibt. Der Takt ist 
Ihnen möglicherweise von Ihrem PC bekannt. Eine moderne CPU arbeitet mit einem 
Takt von 2 bis 3 GHz, das heißt 2 bis 3 Milliarden mal pro Sekunde wechselt das Takt-
signal von 0 auf 1. Schaltungen, die eine nicht ganz so hohe Rechengeschwindigkeit 
wie eine CPU haben, verwenden einen Takt mit geringerer Frequenz, beispielsweise 
100 MHz.

Das Schaltsymbol des D-Flip-Flop (D-FF) ist in Abb. 1.2 dargestellt. Das Taktsignal 
ist am Eingang C1 (wie Clock) angeschlossen. Bei jeder Taktflanke, also einem Wechsel 
des Takts von 0 auf 1 wird der Wert am Dateneingang 1D gespeichert und unmittelbar 
darauf am Datenausgang ausgegeben. Diese Information wird für den Rest der Taktperi-
ode gespeichert.

Logikgatter und D-FF werden aus Transistoren aufgebaut. Für ein Logikgatter sind 
rund 10, für ein D-FF rund 20 Transistoren erforderlich. In einer Digitalschaltung finden 
sich natürlich viele dieser Grundelemente.

1.1.4	� Beispiel: Einfacher Grafikcontroller

Damit Sie sich die Arbeitsweise einer Digitalschaltung vorstellen können, soll eine 
Schaltung als Beispiel vorgestellt werden. Es handelt sich um einen Controller für ein 
einfaches Grafikmodul. Moderne PC-Grafikkarten sind sehr leistungsfähig und können 
realistische Bilder in hoher Geschwindigkeit erzeugen. Allerdings würde die Beschrei-
bung eines solchen Grafikcontrollers wahrscheinlich das ganze Buch füllen. Die hier 
vorgestellte Schaltung ist deutlich einfacher zu verstehen und findet sich in Geräten mit 
geringen Grafikanforderungen. Sie entspricht auch in etwa den PC-Grafikkarten der 
1980er Jahre.

Der Grafikcontroller setzt den Bildschirm aus einzelnen Zeichen zusammen. Für die-
ses Beispiel gehen wir davon aus, dass der Bildschirm 800 Bildpunkte breit und 600 
Bildpunkte hoch ist. Jedes Zeichen soll 10 Bildpunkte breit und 15 Bildpunkte hoch sein. 

Abb. 1.2   Schaltsymbol des 
D-Flip-Flop (D-FF) 1D

C1Takt

Dateneingang Datenausgang
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Damit passen 40 Zeilen mit je 80 Zeichen auf den Bildschirm. Ein Bild wird 60-mal je 
Sekunde also mit einer Frequenz von 60 Hz dargestellt.

Für die Zeichen gibt es einen festen Zeichensatz mit 128 Zeichen, darunter Buchsta-
ben in Klein- und Großschreibung, Ziffern, Sonderzeichen und Symbole. Abb. 1.3 zeigt 
beispielhaft den Buchstaben A und die Ziffer 1 als 10 mal 15 Grafik.

Ein Prozessor teilt dem Grafikcontroller für jede Position mit, welches Zeichen darge-
stellt werden soll. Außerdem kann das Zeichen normal und invers dargestellt werden, das 
heißt bei invers ist der Hintergrund schwarz und das Zeichen weiß. Mit sieben Stellen 
wird eines der 128 Zeichen ausgewählt. Die achte Stelle gibt normale oder inverse Dar-
stellung an. Damit ist für jedes Zeichen auf dem Bildschirm ein Byte, also ein Datenwort 
mit acht Stellen erforderlich.

Die Digitalschaltung des Grafikcontrollers benötigt einen Speicher für den aktuellen 
Bildschirminhalt, einen Speicher für die Grafiken der 128 Zeichen sowie zwei Zähler 
für die Zeile und Spalte, welche gerade dargestellt wird. Diese Schaltungsstruktur zeigt 
Abb. 1.4.

Der aktuelle Bildschirminhalt wird in einem Speicher abgelegt. Eine CPU schreibt für 
jede der 40 mal 80 Positionen ein Byte und bestimmt damit das darzustellende Zeichen. 

Abb. 1.3   Buchstabe A und 
Ziffer 1 als 10 mal 15 Grafik

=1RAM
40x80 Byte

Zähler
Spalte

Zähler
Zeile

ROM
128 Zeichen,
10x15 Pixel

Takt

Daten

Addr.

Daten

Addr.

von Prozessor an Display

Abb. 1.4   Schaltungsstruktur eines einfachen Grafikcontrollers

1.1  Arbeitsweise digitaler Schaltungen
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Dieser Speicher mit der Kurzbezeichnung RAM (Random Access Memory) braucht also 
3200 Speicherstellen zu jeweils einem Byte. Ein Festwertspeicher, Kurzbezeichnung 
ROM (Read-Only-Memory), enthält die 128 Zeichen zu je 10 mal 15 Bildpunkten, also 
19.200 Speicherstellen zu jeweils einem Bit.

Der Grafikcontroller gibt das Bild zeilenweise aus. Die aktuell dargestellte Position 
wird durch zwei Zähler bestimmt, wobei ein erster Zähler die Spalte zählt. Wenn der 
Zähler an der letzten Spalte angekommen ist, wird der zweite Zähler aktiviert und so 
die nächste Zeile aufgerufen. Aus den Zählerwerten von Spalte und Zeile wird bestimmt, 
welches Zeichen gerade dargestellt wird.

Die Zählerwerte rufen zunächst das aktuelle Zeichen aus dem RAM auf. Dort steht 
zum Beispiel, dass der Buchstabe A angezeigt werden soll. Jetzt muss noch beachtet 
werden, welcher Bildpunkt des aktuellen Zeichens angezeigt wird, denn jedes Zeichen 
besteht ja aus 10 mal 15 Bildpunkten. Diese Information wird im ROM verarbeitet. Das 
ROM bekommt vom RAM das aktuelle Zeichen und von den Zählern die Information 
über die Position innerhalb des Zeichens. Für die linke obere Ecke des Buchstabens A 
wird dann zum Beispiel die Information „weißer Bildpunkt“ ausgegeben (siehe Abb. 1.3).

Für die Auswahl des Zeichens sind sieben Stellen eines Byte vorgesehen. Die achte 
Stelle kann durch ein XOR-Gatter den Helligkeitswert umdrehen, sodass eine inverse 
Darstellung entsteht.

Die Geschwindigkeit des Takts muss zu der Anzahl der Bildpunkte und der Bilder pro 
Sekunde passen. Aus 800 mal 600 Bildpunkten und 60 Bilder pro Sekunde berechnet 
sich theoretisch eine Frequenz von 28,8 MHz. In der Realität sind allerdings in horizon-
taler und vertikaler Richtung noch Abstände zwischen den aktiven Bildbereichen erfor-
derlich, sogenannte Austastlücken. Daher wird bei der genannten Auflösung ein Takt von 
40 MHz verwendet.

1.1.5	� Beispiel: Zähler im Grafikcontroller

In einen Teil des Grafikcontrollers soll noch etwas detaillierter geschaut werden. Damit 
ein Zeichen auf dem Bildschirm dargestellt wird, muss die aktuelle Spalte an den ROM-
Speicher gegeben werden. Hierzu wird ein Zähler eingesetzt, der nacheinander die Zah-
len von 0 bis 9 ausgibt und danach wieder ab der 0 weiterzählt. Diese Schaltung ist ein 
Teil des Blocks „Zähler Spalte“ in Abb. 1.4.

Die Schaltung für so einen Zähler ist in Abb. 1.5 dargestellt. Der Zählerstand wird als 
Dualzahl dargestellt, das heißt, eine Ziffer Z besteht aus vier Stellen z(3:0), wobei jede 
Stelle 0 oder 1 sein kann. Der Wert 0000 entspricht dem Zählerstand Null, 0001 ent-
spricht Eins und so weiter. Die ausführliche Darstellung von Dualzahlen folgt später in 
Kapitel 2.

In der Schaltung von Abb. 1.5 wird der aktuelle Stand des Zählers in vier Flip-Flops 
für die vier Stellen der Zahl Z gespeichert. Aus dem aktuellen Wert wird mit einigen Gat-
tern der neue Zählerstand berechnet. Der Takt sorgt für die Datenübernahme, das heißt 

http://dx.doi.org/10.1007/978-3-662-49731-9_2
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bei Aktivierung übernehmen die vier Flip-Flops den neuen Zählerstand und schalten so 
eine Zahl weiter.

Die Flip-Flops dienen also zur Speicherung von Informationen, hier dem aktuellen 
Zählerstand. Die Gatter führen Rechnungen durch, ermitteln hier also den nächsten Wert 
des Zählers. Wie eine solche Schaltung entworfen wird, erfahren Sie in den folgenden 
Kapiteln.

1.2	� Technische Realisierung digitaler Schaltungen

Eine Digitalschaltung kann auf verschiedene Art und Weise implementiert, also aufge-
baut werden. Der Oberbegriff für eine Schaltungsimplementierung ist Integrierte Schal-
tung, englisch Integrated Circuit  (IC). Der Begriff bezieht sich darauf, dass mehrere 
Transistoren auf dem gleichen Bauelement zusammengefasst, also integriert sind. Auf 
den ersten integrierten Schaltungen begann dies mit bis zu 50 Transistoren, heute können 
es über eine Milliarde Transistoren sein.

Weitere Bezeichnungen sind Chip und Microchip. Diese Begriffe beziehen sich auf 
das kleine Siliziumplättchen innerhalb eines ICs. In der Praxis werden diese Begriffe 
gleichbedeutend für IC verwendet.

Die wichtigsten Arten von ICs werden im Folgenden kurz vorgestellt.

1.2.1	� Logikbausteine

Logikgatter und Flip-Flops sind als einzelne Bauelemente verfügbar. Eine Digitalschal-
tung kann aus diesen einzelnen Logikbausteinen aufgebaut werden. Es wird eine Vielzahl 

Abb. 1.5   Zähler im 
Grafikcontroller
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8 1  Einführung

verschiedener Bausteine angeboten, die in Tabellenbüchern und Datenblättern von den 
Herstellern beschrieben werden.

Ein Beispiel für einen Logikbaustein ist der IC 7408 mit vier Und-Gattern. Er ist in 
Abb. 1.6, dargestellt. Die jeweils zwei Eingänge und ein Ausgang der Und-Gatter sind 
auf Anschlussbeinchen, sogenannten Pins, aus dem Gehäuse herausgeführt und können 
mit anderen Bauelementen verbunden werden. Am Logikbaustein sind außerdem Versor-
gungsspannung (VDD) und Masse (GND) vorhanden, so dass der Baustein 14 Pins hat.

Sehr kleine Schaltungen, wie etwa der Zähler aus Abb. 1.5 können prinzipiell mit ein-
zelnen Logikbausteinen realisiert werden. Für größere Digitalschaltungen wären jedoch 
viel zu viele Bausteine nötig. In der Praxis werden Logikbausteine eingesetzt, wenn 
kleine Schaltungen mit wenigen Gattern benötigt werden.

1.2.2	� Kundenspezifische Integrierte Schaltung

Eine große Digitalschaltung kann aufgebaut werden, indem Logikgatter und Flip-Flop 
nach Bedarf verschaltet werden und dann eine Integrierte Schaltung nach diesem Bau-
plan hergestellt wird. So eine Schaltung wird als Kundenspezifische Integrierte Schaltung 
oder ASIC (Application Specific Integrated Circuit) bezeichnet.

Der Entwurf eines ASIC erfordert jedoch hohe Entwicklungskosten und eine rela-
tiv lange Entwicklungszeit. Die Entwicklung einer solchen Schaltung lohnt sich darum 
meist erst ab einer Stückzahl von 10 000, besser 100 000 ICs. Ein ASIC kann entweder 
nur in eigenen Produkten eingesetzt werden oder auch anderen Firmen zum Kauf ange-
boten werden.

1.2.3	� Standardbauelemente

Für viele Aufgabenstellungen existieren fertige Digitalschaltungen, welche direkt ein-
gesetzt werden können. Diese ICs werden als ASSP bezeichnet (Application Specific 
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Abb. 1.6   IC 7408 mit vier Und-Gattern



9

Standard Product). Bekannte Beispiele hierfür sind Prozessoren und Speicherbausteine 
für Computer. Abb. 1.7 zeigt den Minicomputer Raspberry Pi 3, der auf der linken Seite 
einen IC mit Prozessor und Grafikcontroller enthält. Auf der rechten Seite ist ein etwas 
kleinerer IC, der für die Netzwerk- und USB-Verbindung sorgt.

Aber auch für viele andere Anwendungen sind ASSPs verfügbar. Wenn für eine Pro-
blemstellung ein ASSP verfügbar ist, kann damit meistens schnell und mit vertretbaren 
Kosten eine Schaltung aufgebaut werden.

1.2.4	� Programmierbare Schaltung

Einen Mittelweg zwischen Standardbauelementen und ASIC bieten programmierbare 
Schaltungen, sogenannte FPGAs (Field Programmable Gate Arrays). Ein FPGA ist, 
genau wie ein ASSP, als IC direkt verfügbar. Anders als ein ASSP hat ein FPGA aber 
keine festgelegte Funktion, sondern wird vom Entwicklerteam programmiert.

Abb. 1.8 zeigt den prinzipiellen Aufbau eines FPGAs. Der Baustein enthält verschie-
dene Logikblöcke, die als Logikgatter und Flip-Flop programmiert werden können. 
Durch programmierbare Verbindungsleitungen und Ein-/Ausgänge können Schaltungen 
erstellt werden. Im Bild wird durch die fett gedruckten Elemente eine einfache Digital-
schaltung implementiert.

Abb. 1.7   Minicomputer Raspberry Pi

1.2  Technische Realisierung digitaler Schaltungen
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Ein FPGA kann zehntausende Logikgatter und Flip-Flops enthalten. Im Vergleich zu 
ASICs sind Entwicklungskosten und Entwicklungszeit für eine FPGA-Schaltung gerin-
ger, sodass ein Produkt eher am Markt sein kann. Allerdings sind die Stückkosten und 
die Verlustleistung etwas höher.

Als Beispiel nehmen wir an, eine Firma möchte einen Monitor für medizinische 
Anwendungen entwickeln. Für die Darstellung von Röntgenbildern ist eine sehr hohe 
Abstufung von Grauwerten erforderlich.

•	 ASSPs zur Ansteuerung von Monitoren sind verfügbar. Sie sind jedoch nur für Com-
puter-Anwendungen mit normaler Farbabstufung ausgelegt.

•	 Die Firma könnte ein eigenes ASIC als Grafikcontroller entwerfen. Der Markt für die 
geplanten Monitore ist jedoch nicht besonders groß und die Firma erwartet Verkaufs-
zahlen von einigen hundert Monitoren pro Jahr. Für diese geringe Stückzahl lohnt 
sich der Entwurf eines ASIC nicht.

•	 Ein FPGA ist die bevorzugte Lösung zur Implementierung der Monitoransteuerung. 
Die Digitalschaltung kann mit der benötigten Farbabstufung aufgebaut werden. Da 
FPGAs als Komponente verfügbar sind, ist keine aufwendige Fertigung erforderlich.

1.2.5	� Mikrocontroller

Zur Implementierung einer Digitalschaltung kann auch ein Mikrocontroller eingesetzt 
werden. Dabei handelt es sich um einen kleinen Computer, der komplett auf einem ein-
zigen IC aufgebaut ist. Platzbedarf und Kosten sind viel geringer als bei einem PC; dafür 
ist allerdings auch die Rechenleistung beschränkt.

Ein-/
Ausgänge

Logik

Verbindungs- 
netzwerk

≥1

& 1D

B
C

A

Takt

D Y
C1

Abb. 1.8   Programmierbare Schaltung (FPGA)



11

Ein Mikrocontroller kann genau wie ein FPGA für eine Anwendung programmiert 
werden. Anders als bei einem FPGA werden durch die Programmierung aber keine 
Logikgatter und Flip-Flops verschaltet. Die Funktion wird beim Mikrocontroller schritt-
weise als Computerprogramm ausgeführt. Leistungsfähigkeit und Flexibilität sind 
dadurch geringer als beim FPGA, aber für viele Anwendungen ausreichend.

1.3	� Digitale und analoge Informationen

1.3.1	� Darstellung von Informationen

Die Begriffe digital und analog beschreiben die Darstellung von Signalen. Die Aufgabe 
von analogen und digitalen Schaltungen ist oft die Verarbeitung von physikalischen Grö-
ßen, wie Audiosignale, Bildsignale oder Sensorinformationen. Eine analoge Darstellung 
übersetzt eine physikalische Größe in eine andere, zweite physikalische Größe. Diese 
zweite physikalische Größe ist in der Elektronik normalerweise eine elektrische Span-
nung. Wenn beispielsweise ein Temperatursensor die Wassertemperatur misst, kann die 
Temperatur von 0° bis 100° C durch eine analoge Spannung von 0 bis 1 V dargestellt 
werden. Theoretisch kann ein analoges Signal beliebig viele Werte einnehmen.

Bei einem digitalen Signal ist die Anzahl der möglichen Werte festgelegt. Dies ist 
der wesentliche Unterschied zu einem analogen Signal. Wenn eine Wassertemperatur 
verarbeitet werden soll, kann beispielsweise festgelegt werden, dass eine Abstufung in 
1°-Schritten sinnvoll ist. Das digitale Signal kann dann nur 101 verschiedene Werte ein-
nehmen, also die Werte 0°, 1°, 2°, bis 100°. Diese Abzählbarkeit der möglichen Werte 
steckt auch hinter der Bezeichnung digital, denn das Wort digit hat eigentlich die Bedeu-
tung „Finger“ und meint damit das Abzählen (per Finger).

Beispielsweise kann Musik auf analoger Schallplatte oder digitaler CD gespeichert 
werden. Bei der Schallplatte werden die Schallwellen in kleine Auslenkungen einer 
Rille übersetzt. Die Auslenkung repräsentiert somit das Musiksignal. Bei der CD wird 
das Musiksignal digital gespeichert. Pro Sekunde werden 44.100 Signalwerte als Zahl 
gespeichert. Mit 16 Bit pro Zahl sind 65.536 verschiedene Signalwerte möglich.

1.3.2	� Vor- und Nachteile der Darstellungen

Analoge Signalverarbeitung hat den Vorteil, dass ein Signal theoretisch beliebig genau 
dargestellt werden kann. Digitale Signale haben eine begrenzte Genauigkeit, diese kann 
aber so gewählt werden, dass die Abstufungen ausreichend fein sind.

Die 65.536 möglichen Signalwerte der CD können störungsfrei ausgelesen und wie-
dergegeben werden. Die Schallplatte hat theoretisch eine unbegrenzte Auflösung. Diese 
wird durch die kleinen Abmessungen der Schallplattenrille sowie durch Staub und 

1.3  Digitale und analoge Informationen
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Abnutzung allerdings in der Realität eher schlechter als bei der CD sein. Natürlich dür-
fen Fans der Schallplatte trotzdem ihrem Medium treu bleiben.

Die Verarbeitung analoger Signale war in der Vergangenheit oft einfacher als bei digi-
talen Schaltungen. Durch die Leistungsfähigkeit moderner Digitalschaltungen haben sich 
die Verhältnisse umgedreht. Heutzutage ist die Verarbeitung digitaler Signale fast immer 
einfacher. Hinzu kommt die problemlose Speicherung und Übertragung digitaler Infor-
mationen, die Vorteile gegenüber der analogen Darstellung bietet.

Als Beispiel nehmen wir an, dass ein aktuelles Bild von einer Sportveranstaltung für 
einen Zeitungsartikel benötigt wird. Ein analoges Foto auf Filmmaterial wurde früher 
zunächst chemisch entwickelt, das passende Bild wurde ausgewählt und persönlich oder 
per Kurier in die Redaktion gebracht. Heute kann auf einer Digitalkamera sofort das pas-
sende Bild ausgewählt und per Mobiltelefon als Email in die Redaktion geschickt wer-
den. Innerhalb von Minuten ist eine Veröffentlichung auf der Homepage möglich.

Digitale Systeme haben in vielen Anwendungen die analogen Techniken abgelöst:

•	 Audiosignale werden nicht mehr analog auf Schallplatte und Musikkassette, sondern 
digital auf CD und als MP3 gespeichert.

•	 Videosignale werden nicht mehr analog auf VHS-Band, sondern digital als MPEG auf 
Festplatten, DVD und Blu-Ray gespeichert.

•	 Das analoge Telefon wurde zunächst durch digitales ISDN und mittlerweile durch 
Voice-over-IP ersetzt.

•	 Fotos werden kaum noch auf chemischem Filmmaterial, sondern meist als digitale 
JPEG-Datei gemacht.

Allerdings sind noch nicht alle Anwendungen digital. Für Radio gibt es zwar digitale 
Übertragung, das analoge UKW-Radio wird aber weiter verwendet. Gründe für die Bei-
behaltung von UKW-Radio sind die ausreichende Qualität, der einfache Aufbau analoger 
Radios sowie die Vielzahl von vorhandenen Geräten.

1.3.3	� Wert- und zeitdiskret

Die digitale Darstellung von Signalen wird durch die Fachbegriffe wertdiskret und 
zeitdiskret beschrieben. Das Wort diskret bedeutet dabei voneinander abgetrennt, 
einzelstehend.

Mit wertdiskret ist gemeint, dass für die Signalwerte nur bestimmte, einzelne Werte 
möglich sind. Das Gegenteil ist wertkontinuierlich, das heißt es gibt keine Lücken zwi-
schen den möglichen Werten.

Mit zeitdiskret ist gemeint, dass die Signalwerte nur zu bestimmten Zeiten vorhanden 
sind. Das Gegenteil ist zeitkontinuierlich, das heißt zu jeder Zeit ist das Signal definiert.
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Betrachten wir wieder CD und Schallplatte:

•	 Ein Musiksignal auf einer CD ist wertdiskret, denn es sind fest definierte 65.536 ver-
schiedene Werte möglich. Und es ist zeitdiskret, denn pro Sekunde sind genau 44.100 
Signalwerte definiert. Die Werte zwischen diesen Zeitpunkten sind nicht abgespei-
chert. Für die Wiedergabe kann man diese Zwischenwerte problemlos interpolieren, 
aber sie sind nicht auf der CD enthalten.

•	 Ein Musiksignal auf Schallplatte ist wertkontinuierlich, denn die Schallplattenrille ist 
stufenlos verschoben. Und es ist zeitkontinuierlich, denn die Rille hat keine Lücke. 
Für jede Position, also für jeden Zeitpunkt ist eine Verschiebung der Rille vorhanden.

Abb. 1.9 zeigt ein analoges und ein digitales Signal im Zeitverlauf. Das analoge Signal 
ist durchgängig über der horizontalen Zeitachse und der vertikalen Werteachse. Das digi-
tale Signal ist nur zu bestimmen Zeiten definiert und kann nur bestimmte Werte einneh-
men. Die Schrittweite im digitalen Signal ist zur Verdeutlichung sehr groß gewählt. In 
der Realität sind die Abstände so klein, dass ein digitales Signal keine erkennbaren Stu-
fen zeigt.

Digitale Signale sind also wertdiskret und zeitdiskret, analoge Signale sind wertkon-
tinuierlich und zeitkontinuierlich. Es gibt Spezialfälle von wertdiskret und zeitkonti-
nuierlich oder zeitdiskret und wertkontinuierlich. Diese werden jedoch nicht gesondert 
betrachtet, sondern sind meist analog. Ein solcher Spezialfall sind Kinofilme auf Film-
rolle. Pro Sekunde sind typischerweise 24 Einzelbilder vorhanden (zeitdiskret), die Farb-
informationen der einzelnen Bilder sind stufenlos (wertkontinuierlich).

1.4	� Übungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Prüfen Sie sich mit den Fragen am Kapi-
telende. Die Antworten finden Sie am Ende des Buches.

Bei allen Auswahlfragen ist immer genau eine Antwort korrekt.

Aufgabe 1.1
Was gilt IMMER für Binärdaten?

Abb. 1.9   Verlauf eines 
analogen und digitalen Signals

t

f(t)

digital

t

f(t)

analog
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a)	 Binärdaten stellen einen Zahlenwert dar
b)	Binärdaten arbeiten mit 0 und 3,3 V
c)	 Es gibt zwei Zustände

Aufgabe 1.2
Was gilt IMMER für einen Inverter?

a)	 Ein Inverter hat eine Verzögerungszeit von 1 ns
b)	Eine 0 am Eingang wird zu einer 1 am Ausgang
c)	 Wenn am Eingang 3,3 V anliegt, ergibt der Ausgang 0 V

Aufgabe 1.3
Was gilt für ein UND-Gatter?

a)	 Nur wenn genau ein Eingang 1 ist, ist der Ausgang 1
b)	Wenn mindestens ein Eingang 1 ist, ist der Ausgang 1
c)	 Nur wenn alle Eingänge 1 sind, ist der Ausgang 1

Aufgabe 1.4
Was gilt für ein ODER-Gatter?

a)	 Nur wenn alle Eingänge 1 sind, ist der Ausgang 1
b)	Wenn mindestens ein Eingang 1 ist, ist der Ausgang 1
c)	 Nur wenn genau ein Eingang 1 ist, ist der Ausgang 1

Aufgabe 1.5
Was gilt für ein XOR-Gatter (mit zwei Eingängen)?

a)	 Wenn mindestens ein Eingang 1 ist, ist der Ausgang 1
b)	Nur wenn alle Eingänge 1 sind, ist der Ausgang 1
c)	 Nur wenn genau ein Eingang 1 ist, ist der Ausgang 1

Aufgabe 1.6
Was gilt für ein UND-Gatter?

a)	 Nur wenn alle Eingänge 0 sind, ist der Ausgang 0
b)	Wenn mindestens ein Eingang 0 ist, ist der Ausgang 0
c)	 Nur wenn genau ein Eingang 0 ist, ist der Ausgang 0
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Aufgabe 1.7
Was gilt für ein ODER-Gatter?

a)	 Wenn mindestens ein Eingang 0 ist, ist der Ausgang 0
b)	Nur wenn alle Eingänge 0 sind, ist der Ausgang 0
c)	 Nur wenn genau ein Eingang 0 ist, ist der Ausgang 0

Aufgabe 1.8
Was gilt für ein XOR-Gatter (mit zwei Eingängen)?

a)	 Wenn mindestens ein Eingang 0 ist, ist der Ausgang immer 1
b)	Nur wenn alle Eingänge 0 sind, ist der Ausgang 1
c)	 Nur wenn genau ein Eingang 0 ist, ist der Ausgang 1

Aufgabe 1.9
Was gilt für ein D-Flip-Flop (D-FF)?

a)	 Wenn Daten und Takt den gleichen Wert haben, wechselt der Ausgang
b)	Wenn Daten und Takt einen ungleichen Wert haben, wechselt der Ausgang
c)	 Daten werden bei einer Taktflanke gespeichert
d)	Daten werden bei Takt gleich 1 gespeichert
e)	 Daten werden bei Takt gleich 0 gespeichert

Aufgabe 1.10
Welche Eigenschaften hat ein digitales Signal?

a)	 wertdiskret und zeitkontinuierlich
b)	wertdiskret und zeitdiskret
c)	 wertkontinuierlich und zeitkontinuierlich
d)	 zeitdiskret und wertkontinuierlich
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Genau wie wir Menschen verarbeiten auch digitale Systeme Informationen, die sie aus 
ihrer Umgebung erhalten.

Lesen Sie zum Beispiel den Wetterbericht in der Tageszeitung und erhalten die Infor-
mation, dass mit Regen zu rechnen ist, nehmen Sie einen Schirm mit, wenn Sie das Haus 
verlassen. Wird dagegen wolkenloses Sommerwetter angekündigt, ist die Mitnahme 
einer Sonnenbrille vermutlich die bessere Entscheidung.

Um als Mensch eine Information aufnehmen und verarbeiten zu können, muss sie in 
einer für uns zugänglichen Form vorliegen. Der Wetterbericht in der Zeitung besteht aus 
einzelnen Zeichen, die wir zu Wörtern und Sätzen zusammenfügen. Die in den Sätzen 
enthaltene, man kann auch sagen „codierte“, Information extrahieren wir und reagieren 
entsprechend. Allerdings hätten wir große Schwierigkeiten den Wetterbericht zu verste-
hen, wenn er in einer uns unbekannten Sprache verfasst wäre. Da wir die Regeln nicht 
kennen, die beschreiben wie die Information durch die Aneinanderreihung der Buchsta-
ben codiert ist, könnten wir mit dem scheinbaren Buchstabensalat nichts anfangen.

Wie lassen sich diese Überlegungen auf ein digitales System übertragen? Zunächst 
ist es selbstverständlich wichtig, dass die zu verarbeitenden Informationen in digitaler 
Form, also als Bits, vorliegen. Darüber hinaus müssen aber auch Regeln vereinbart sein, 
die die Bedeutung der Bits beschreiben. Andernfalls kann ein digitales System die in 
den Bits enthaltene Information nicht extrahieren – es kann mit dem „Bitsalat“ nichts 
anfangen.

In diesem Kapitel werden einige Regeln zur digitalen Codierung von Informationen 
vorgestellt, die die Grundlage für die Realisierung vieler digitaler Schaltungen darstel-
len. Da in vielen praktischen Anwendungsfällen Zahlenwerte verarbeitet werden, liegt 
der Schwerpunkt dieses Kapitels auf der binären Codierung von Zahlen. In diesem Kapi-
tel werden darüber hinaus einige gebräuchliche Codes vorgestellt, die sich zur Codierung 
sowohl numerischer als auch nicht-numerischer Informationen eignen.

Digitale Codierung von Informationen 2
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2.1	� Grundlagen

Für die binäre Codierung einer Information werden Codewörter definiert, die aus Bits 
zusammengesetzt sind. Je mehr Bits zur Anwendung kommen, desto mehr Codewör-
ter können definiert werden: Wird ein Bit verwendet, ergeben sich die zwei möglichen 
Codierungen „0“ und „1“. Mit 2 Bits ergeben sich bereits 4 Möglichkeiten, „00“, „01“, 
„10“ und „11“. Allgemein gilt, dass die maximale Anzahl der Codewörter eine Zweier-
potenz ist. Mit n Bits lassen sich 2n unterschiedliche binäre Codierungen darstellen. Aus-
gewählte Zweierpotenzen sind in Tab. 2.1 dargestellt.

Für Zehnerpotenzen sind Vorsätze klar definiert. Zum Beispiel steht k (Kilo) für 103, M 
(Mega) für 106 oder G (Giga) für 109. Als die Vorsätze für Zweierpotenzen eingeführt wur-
den, orientierte man sich an den bekannten Vorsätzen für Zehnerpotenzen. Da 210 ≈ 103 
ist, setzte man den Zehnerpotenzvorsatz Kilo auch für die Zweierpotenz ein. Zur Unter-
scheidung wurde teilweise der Zweierpotenzvorsatz K anstelle von k verwendet. Weiterhin 
sind dann die Abkürzungen M für 220 ≈ 106, G für 230 ≈ 109 und T für 240 ≈ 1012 ein-
geführt worden. Hier war jedoch eine Unterscheidung mittels Groß- und Kleinschreibung 
nicht mehr möglich und es gibt das Problem einer möglichen Zweideutigkeit. Gibt zum 
Beispiel ein Hersteller die Kapazität einer Festplatte mit 5,0 TByte an, so meint er in der 
Regel 5 · 1012 Byte und nicht 5 · 240 Byte. Die Differenz beträgt immerhin fast 10 %.

Weitere Probleme entstehen bei der Kennzeichnung von Übertragungsgeschwindig-
keiten. In Datenübertragungsnetzen sind die Bezeichnungen kbit/s, Mbit/s und Gbit/s 
üblich. Hier sind die üblichen Abkürzungen für Zehnerpotenzen gemeint. Um die Zwei-
deutigkeit der Vorsätze zu vermeiden hat das internationale Normierungsgremium IEC 

Tab. 2.1   Ausgewählte Zweierpotenzen

n 1 2 3 4 5 6 7 8 9 16 20 30

2n 2 4 8 16 32 64 128 256 512 65.536 1.048.576 1.073.741.824

Tab. 2.2   Binäre Vorsätze für Zweierpotenzen

Zweierpotenz Abkürzung 
(gesprochen)

Abgeleitet von z. B. Speicherkapa-
zität in bit

z. B. Speicherkapa-
zität in Byte

210 Ki (Kibi) Kilobinär Kibit KiB (= 8 Kibit)

220 Mi (Mebi) Megabinär Mibit MiB (= 8 Mibit)

230 Gi (Gibi) Gigabinär Gibit GiB (= 8 Gibit)

240 Ti (Tebi) Terabinär Tibit TiB (= 8 Tibit)

250 Pi (Pebi) Petabinär Pibit PiB (= 8 Pibit)

260 Ei (Exbi) Exabinär Eibit EiB (= 8 Eibit)

270 Zi (Zebi) Zettabinär Zibit ZiB (= 8 Zibit)

280 Yi (Yobi) Yottabinär Yibit YiB (= 8 Yibit)
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(International Electrotechnical Commission) in der Norm IEC 60027 neue Vorsätze für 
binäre Vielfache festgelegt. In Tab. 2.2 sind diese Vorsätze zusammengefasst.

Die IEC-Norm hat sich bisher nur zum Teil in der Praxis verbreitet. In vielen Fäl-
len werden die Vorsätze für Zehnerpotenzen verwendet, obwohl eigentlich Vorsätze für 
Zweierpotenzen gemeint sind.

2.2	� Vorzeichenlose Zahlen

In diesem Abschnitt werden Zahlendarstellungen und grundlegende arithmetische Ope-
rationen für vorzeichenlose duale Ganzzahlen erläutert. Der betrachtete Zahlenraum 
umfasst also die natürlichen Zahlen inklusive der Null.

2.2.1	� Stellenwertsysteme

Wenn Sie die Ziffernfolge „123“ sehen, werden Sie diese vermutlich sofort mit dem Zah-
lenwert Einhundertdreiundzwanzig verbinden. Wir haben in unseren ersten Schuljah-
ren gelernt, dass Zahlen durch einzelne Zeichen dargestellt werden, die hintereinander 
geschrieben einen Zahlenwert repräsentieren. Die am weitesten rechts stehende Ziffer 
ist die Einerstelle. Diese wird gefolgt von der Zehnerstelle und der Hunderterstelle. Sol-
len größere Zahlenwerte dargestellt werden, werden einfach weitere Stellen hinzuge-
fügt. Diese Vereinbarung legen wir im Alltag bei der „Decodierung“ einer Ziffernfolge 
zugrunde.

Man kann die im Alltag verwendete Vereinbarung auch mathematisch als Formel dar-
stellen. Der Zahlenwert Z10 einer Folge von N Ziffern, die aus den Ziffern zN−1 bis z0 
besteht, ergibt sich aus der Formel:

Als Ziffernzeichen werden die zehn Symbole 0,1, … 8,9 verwendet, denen jeweils ein 
Zahlenwert im Bereich von Null bis Neun zugeordnet ist.

Diese Form der Zahlendarstellung nennt man Stellenwertsystem. Jeder Stelle einer 
Ziffernfolge ist ein Stellengewicht zugeordnet. Im Dezimalsystem ist dies eine Zehnerpo-
tenz. Die Summe der einzelnen Produkte aus Stellenwert und Stellengewicht ergibt den 
dargestellten Zahlenwert.

Dass wir im Alltag zehn unterschiedliche Symbole zur Darstellung der Ziffern ver-
wenden, ist eine willkürliche Festlegung. Man kann zum Beispiel auch die Vereinbarung 
treffen, ein Siebener-System zu verwenden. Dann würden die Symbole 7, 8 und 9 nicht 
benötigt und es gälte die Rechenregel:

Z10 =

N−1
∑

i=0

zi · 10
i

2.2  Vorzeichenlose Zahlen
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Da sich somit eine Einerstelle, eine Siebenerstelle und eine Neunundvierzigerstelle 
ergibt, würde die Ziffernfolge „123“ dem Zahlenwert Sechsundsechzig entsprechen.

Diese Überlegungen lassen sich auf beliebige Anzahlen von Ziffernsymbolen erweitern. 
Werden B Ziffernsymbole verwendet, ergibt sich der codierte Zahlenwert aus der Formel:

Der Wert B wird als Basis des jeweiligen Zahlensystems bezeichnet und man spricht von 
einer Zahlendarstellung „zur Basis B“ oder von einem B-adischen Zahlensystem. Um 
die verwendete Basis explizit deutlich zu machen, kann sie als Index an die Ziffernfolge 
angefügt werden. Zum Beispiel gilt:

In vielen Fällen wird jedoch auf den Index verzichtet, da aus dem Zusammenhang 
bereits deutlich wird, welche Basis verwendet wird.

Einer der Vorteile der hier vorgestellten Stellenwertsysteme gegenüber anderen Zah-
lensystemen ist die einfache Möglichkeit alle vier Grundrechenarten mit übersichtlichen 
Regeln umzusetzen.

Eine Zahlendarstellung, die nicht auf Stellenwertigkeiten basiert, ist beispielsweise 
das Römische Zahlensystem. Eine Addition lässt sich in diesem System durch „Zusam-
menziehen“ der beiden Operanden relativ einfach realisieren. Eine Multiplikation ist 
dagegen deutlich aufwendiger als im dezimalen Stellenwertsystem.

2.2.2	� Darstellung vorzeichenloser Zahlen in der Digitaltechnik

Zur Implementierung digitaler Systeme werden nur zwei Zustände verwendet. Daher ist 
es konsequent, genau zwei Ziffernsymbole zu verwenden. Es wird also die Basis 2 für 
die Darstellung von Zahlen gewählt. Eine Zahl wird in diesem Dualsystem durch eine 
Folge von Nullen und Einsen dargestellt und ergibt sich entsprechend der Überlegungen 
des vorangegangenen Abschnitts zu:

Selbst bei relativ kleinen Zahlen ergibt sich hierbei schnell eine große Stellenzahl. So 
kann der dezimale Wert 9810 im Dezimalsystem mit zwei Ziffern dargestellt werden. Im 
Dualsystem werden dagegen mindestens 7 Stellen benötigt: 9810 = 11000102.

Z7 =

N−1
∑

i=0

zi · 7
i

ZB =

N−1
∑

i=0

zi · B
i

6610 = 1028 = 1237 = 10024 = 21103

Z2 =

N−1
∑

i=0

zi · 2
i
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Um die Darstellung dualer Zahlen übersichtlicher zu gestalten, können mehrere Bits 
einer Dualzahl zusammengefasst werden. So können zum Beispiel 3 Bits zu einer neuen 
Ziffer kombiniert werden. Der Wert dieser neuen Ziffer kann 8 verschiedene Werte 
annehmen. Man erhält ein Zahlensystem zur Basis 8, das Oktalsystem.

In der Praxis wird sehr häufig eine Gruppierung von jeweils vier Bits vorgenommen. 
Dieses ist insbesondere dann sinnvoll, wenn die Zahlenwerte mit Vielfachen von vier 
Bits codiert werden, was bei allen heute üblichen Rechnersystemen der Fall ist. Da sich 
bei einer Kombination von vier Bits zu einer neuen Ziffer 16 mögliche Werte ergeben, 
reichen die Ziffernsymbole des Dezimalsystems nicht mehr aus. Es werden neben den 
Symbolen 0 bis 9 noch sechs weitere Symbole für die Werte 10 bis 15 benötigt. Hierfür 
werden die ersten Buchstaben des Alphabets verwendet. Auf diese Weise erhält man das 
sogenannte Hexadezimalsystem, ein Stellenwertsystem zur Basis 16.

Die verschiedenen Darstellungen von Zahlenwerten in unterschiedlichen Zahlensyste-
men fasst Tab. 2.3 für die Zahlen von 0 bis 1810 zusammen. Bei der Verwendung des Oktal- 
oder des Hexadezimalsystems arbeitet die zugrundeliegende digitale Hardware weiterhin 
mit einzelnen Bits, also im Dualzahlensystem. Die Kombination von Bits zu einer Oktal- 
oder Hexadezimalziffer dient lediglich der kompakteren Darstellung der Zahlenwerte.

Tab. 2.3   Darstellung 
der Zahlen 0 bis 18 im 
Dezimal-, Dual-, Oktal- und 
Hexadezimalsystem

Dezimal
B = 10

Dual
B = 2

Oktal
B = 8

Hexadezimal
B = 16

0 0 0 0

1 1 1 1

2 10 2 2

3 11 3 3

4 100 4 4

5 101 5 5

6 110 6 6

7 111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

16 10000 20 10

17 10001 21 11

18 10010 22 12

2.2  Vorzeichenlose Zahlen
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2.2.3	� Umwandlung zwischen Zahlensystemen

Für die Umrechnung eines Zahlenwertes aus einem System zur Basis B1 in ein System 
zur Basis B2 kann direkt unter Verwendung der bereits vorgestellten Summenformel 
erfolgen:

Hierbei muss die Berechnung zur Basis B2 erfolgen. Das Rechnen in einem anderem als 
dem dezimalen Zahlensystem ist jedoch gewöhnungsbedürftig, sodass es sich empfiehlt 
zunächst eine Umwandlung der Zahl in das Dezimalsystem vorzunehmen. In einem 
zweiten Schritt erfolgt dann die Umwandlung des Dezimalwertes in das gewünschte 
Zahlensystem zur Basis B2.

Die Umrechnung aus dem Dezimalsystem in ein anderes Zahlensystem kann mithilfe 
der Divisionsmethode erfolgen, die im Folgenden vorgestellt wird.

Die Divisionsmethode basiert auf einem iterativen Vorgehen, bei dem zunächst die 
Ausgangszahl ganzzahlig durch die Basis B2 des Zielsystems dividiert wird. Der Rest der 
Division ergibt eine Stelle der zu berechnenden Zahl. Anschließend wird der Quotient 
der Division wiederum durch B2 dividiert. Dieses Vorgehen wird so lange wiederholt, 
bis der berechnete Quotient Null ist. Die gesuchte Zahlendarstellung ergibt sich aus den 
berechneten Resten, wobei der zuerst berechnete Rest die Einerstelle repräsentiert.

Die Umwandlung einer Zahl zur Basis B1 in eine Zahl zur Basis B2 kann wie folgt als 
iteratives Vorgehen formuliert werden:

1.	 Umwandlung der Ausgangzahl in das Dezimalsystem (Summenformel anwenden).
2.	 Ganzzahl-Division durch B2.
3.	 Rest der Division ergibt eine Stelle der gesuchten Zahl.
4.	 Falls Quotient ungleich Null: Zurück zu Schritt 2. Der Dividend der erneuten Division 

ist der zuvor berechnete Quotient.

2.2.4	� Beispiele zur Umwandlung zwischen Zahlensystemen

Beispiel 1
Die Zahl 1100102 soll in eine Dezimalzahl umgewandelt werden. Hier kann die Sum-
menformel direkt angewendet werden:

Die gesuchte Dezimalzahl ist 50.

Z =

N−1
∑

i=0

zi · B
i
1

Z =

N−1
∑

i=0

zi · 2
i
= 1 · 21 + 1 · 24 + 1 · 25 = 2+ 16+ 32 = 50
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Beispiel 2
Die Zahl 8910 soll in eine binäre Zahl umgewandelt werden. Mit der Divisionsmethode 
ergibt sich die in Tab. 2.4 dargestellte Rechnung und damit die gesuchte binäre Reprä-
sentation 10110012.

Beispiel 3
Die Zahl 83ED16 soll in eine Dualzahl überführt werden. Die Umrechnung zwischen 
dem Dualzahlensystem und dem Hexadezimalsystem kann sehr einfach erfolgen, da 
4 Bit einer Dualzahl exakt einer Stelle der Hexadezimalzahl entsprechen. Man benötigt 
lediglich die Zuordnung einer hexadezimalen Ziffer zu ihrem dualen Äquivalent (vgl. 
Tab. 2.3) und kann die Umwandlung direkt durch Ablesen aus der Tabelle durchführen. 
Die einzelnen Hexadezimalstellen werden sukzessive durch ihre binären Entsprechungen 
ersetzt und es ergibt sich:

Beispiel 4
Die Dualzahl 10111110111011112 soll in eine Hexadezimal gewandelt werden. Nach der 
Gruppierung der Dualzahl in Gruppen zu jeweils 4 Bit ergibt sich das Ergebnis wiede-
rum durch Ablesen aus Tab. 2.3:

Beispiel 5
Die Zahl 145056 soll in eine Oktalzahl umgewandelt werden. In diesem Fall bietet sich 
ein Vorgehen in zwei Schritten an.

Zunächst wird die gegebene Zahl mithilfe der Summenformel in eine Dezimalzahl 
umgewandelt und es ergibt sich

Anschließend erfolgt die Umwandlung in das Zielsystem mithilfe der Divisionsmethode 
(vgl. Tab. 2.5) Die gesuchte Oktalzahl lautet 44518.

83ED16 = 1000 0011 1110 11012

1011 1110 1110 11112 = BEEF16

145056 = 234510

Tab. 2.4   Umwandlung 
der Dezimalzahl 89 in eine 
Dualzahl

Iteration Dividend Divisor Quotient Rest

1 89 2 44 1

2 44 2 22 0

3 22 2 11 0

4 11 2 5 1

5 5 2 2 1

6 2 2 1 0

7 1 2 0 1

2.2  Vorzeichenlose Zahlen
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2.2.5	� Wertebereiche und Wortbreite

Für alle Zahlendarstellungen gilt, dass mit einer konkreten Anzahl an Stellen nur eine 
begrenzte Anzahl von Zahlenwerten dargestellt werden kann. Besitzt eine Dezimalzahl 
beispielsweise drei Stellen, kann diese nur die Werte von 0 bis 999 annehmen. Mit einer 
7-stelligen Dualzahl kann nur der Zahlenbereich von 0 bis 11111112 = 12710 dargestellt 
werden.

Werden zwei Dualzahlen addiert, kann es (je nach Zahlenwerten) passieren, dass für 
die Summe mehr Bits als für die beiden Operanden benötigt werden. So kann beispiels-
weise die Summe der Zahlen 11012 (1310) und 01012 (510) nicht mit 4 Bit dargestellt 
werden. Für das Ergebnis 1810 werden 5 Bit benötigt (1810 = 100102).

Generell gilt, dass bei der Addition von n binären Zahlen log2(n) zusätzliche Bits für 
das Ergebnis benötigt werden. Addiert man beispielsweise 8 Zahlen mit der Wortbreite 
6 Bit, muss für das Ergebnis eine Wortbreite von 6 + log2(8) = 9 Bit vorgesehen werden.

Vermutlich finden Sie diese Erkenntnis nicht sonderlich bemerkenswert, da wir aus 
dem täglichen Leben daran gewöhnt sind, dass das Ergebnis einer Rechnung mehr Stel-
len als die Operanden benötigt. Zur Veranschaulichung dieses Sachverhalts wird bereits 
in den ersten Jahren der Schulausbildung der Zahlenstrahl eingeführt. Mit ihm lassen 
sich unter anderem auch die Addition und Subtraktion übersichtlich grafisch darstellen. 
Durchläuft man den Zahlenstrahl von Null in Richtung positiver Zahlen, wird mit jedem 
Schritt eine 1 addiert (Additionsrichtung). Durchlaufen des Zahlenstrahls in entgegen-
gesetzter Richtung entspricht der Subtraktion (Subtraktionsrichtung). Je weiter man sich 
auf dem Zahlenstrahl vom Wert Null entfernt, desto größer werden die Zahlen. An der 
Grenze zu einer Zehnerpotenz (zum Beispiel 99) wird die Anzahl der Stellen zur Darstel-
lung der Zahlen erhöht (statt zwei Stellen für 99 werden drei Stellen für die Darstellung 
des Wertes 100 verwendet).

Für ein digitales System ist dieses Prinzip jedoch schwer umsetzbar. Ist ein System 
einmal realisiert, steht nur eine feste Anzahl von Stellen in der Hardware zur Verfügung. 
Das Prinzip „ich nehme mir so viele Stellen wie ich brauche“ funktioniert in digitalen 
Systemen daher nicht. Hieraus ergeben sich einige Konsequenzen für die arithmeti-
schen Komponenten eines digitalen Systems, die im folgenden Abschnitt näher erläutert 
werden.

Tab. 2.5   Umwandlung der 
Dezimalzahl 2345 in eine 
Oktalzahl

Iteration Dividend Divisor Quotient Rest

1 2345 8 293 1

2 293 8 36 5

3 36 8 4 4

4 4 8 0 4
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2.2.6	� Zahlendarstellung mit begrenzter Wortbreite

Stellen Sie sich vor, Sie sollen ein digitales System realisieren, dass intensiv von der 
Addition Gebrauch macht. Für die Implementierung der Addierer des Systems könnten 
Sie sich entscheiden, dass immer die benötigte Anzahl von Ergebnisbits zur Verfügung 
stehen soll, das Ergebnis also ein Bit mehr als die Operanden umfasst. Allerdings ist zu 
beachten, dass die Wortbreite der Ergebnisse mit zunehmender Anzahl durchgeführter 
Additionen kontinuierlich wächst. Besitzen die Eingangswerte des Systems zum Beispiel 
eine Wortbreite von 8 bit, würde das Ergebnis einer ersten Addition eine Wortbreite 9 bit 
benötigen. Werden die so berechneten Zwischenergebnisse mit einer weiteren Addition 
weiterverarbeitet, sind bereits 10 bit für diese Ergebnisse erforderlich.

Selbstverständlich kann man ein digitales System realisieren, das beispielsweise vier 
8-Bit-Zahlen addieren kann und ein Ergebnis mit der Wortbreite 10 bit liefert. Aber stel-
len Sie sich vor, Sie sollen eine arithmetische Komponente für ein Rechnersystem ent-
werfen. Sie wissen nicht welches Programm später auf dem Rechner laufen wird und 
welche Wortbreiten für Operanden und Ergebnisse sinnvoll sind. Darüber hinaus besit-
zen die Speicherstellen eines Rechners, in denen auch Zwischenergebnisse abgelegt 
werden, feste Wortbreiten (meist Vielfache eines Bytes). Daher verwenden die arithme-
tischen Einheiten eines Rechners meist identische Operanden- und Ergebniswortbrei-
ten. Ergibt sich bei einer Berechnung ein Ergebnis, das eine größere Wortbreite als die 
implementierte Ergebniswortbreite benötigt, werden die führenden Bits des Ergebnisses 
einfach weggelassen. Die Ausgabe der arithmetischen Einheit wäre in diesem Fall also 
nicht korrekt. Nehmen wir an, dass mithilfe eines Addierers die Zahlen 10112 = 1110 
und 10012 = 910 addiert werden. Es steht ein Addierer mit einer Wortbreite von 4 bit zur 
Verfügung. Der Addierer kann also Operanden und Ergebnisse im Bereich von 0 bis 15 
verarbeiten bzw. ausgeben. Das korrekte Ergebnis der Summe aus 11 und 9 ist jedoch 20 
und überschreitet damit den möglichen Zahlenbereich der Ergebnisse des 4-Bit-Addie-
rers. Statt des korrekten Ergebnisses 101002 wird der Addierer führende 1 verwerfen und 
01002 = 410 ausgegeben.

Was bedeutet die begrenzte Wortbreite für die grafische Darstellung von Zah-
len? Am Beispiel eines 4-Bit-Addierers lässt sich dies anschaulich erläutern: Startet 
man bei 0 und addiert sukzessive eine 1, durchläuft das Ergebnis die Zahlen von 0 bis 
1510 = 11112. Bei der Addition von 1510 und 1 erreicht man wieder den Ausgangspunkt: 
Das vom Addierer ausgegebene Ergebnis ist 00002, da die Zahl 1610 = 100002 nicht mit 
4 Bit dargestellt werden kann.

Die grafische Darstellung dieses Verhaltens kann also kein Zahlenstrahl sein. Viel-
mehr ergibt sich ein Zahlenkreis, der bei Addition im Uhrzeigersinn durchlaufen wird. 
Entsprechend wird der Kreis bei der Subtraktion entgegen dem Uhrzeigersinn durchlau-
fen (Abb. 2.1).

2.2  Vorzeichenlose Zahlen
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2.2.7	� Binäre vorzeichenlose Addition

Die Regeln zur Addition und Subtraktion im Dualsystem sind mit denen des Dezimal-
systems vergleichbar. Beide Operationen werden stellenweise, beginnend mit der nie-
derwertigsten Stelle (die Stelle mit dem niedrigsten Stellengewicht), durchgeführt. Bei 
dieser Operation kann wie im Dezimalsystem ein Überlauf auftreten, welcher entspre-
chend zu berücksichtigen ist. Der wesentliche Unterschied zwischen dem Dezimal- und 
dem Dualsystem ist, dass der 10er-Übergang des Dezimalsystems einem 2er-Übergang 
im Dualsystem entspricht. Für die Addition zweier Dualzahlen bedeutet dies, dass ein 
Übertrag in der nächsthöheren Stelle zu berücksichtigen ist, wenn die Summe der Zif-
fern den Wert 1 überschreitet. Es ergeben sich 8 mögliche Fälle für die einstellige binäre 
Addition, welche in Tab. 2.6 zusammengefasst sind.

Zur Verdeutlichung ein Beispiel: Die beiden binären Zahlen 0011 und 1001 sollen 
addiert werden. Die Addition der beiden niederwertigsten Stellen ergibt den Wert 2. Die-
ses Ergebnis wird durch eine 1 in der nächsthöheren Stelle (Übertrag) und eine 0 in der 
aktuellen Stelle dargestellt (vgl. Abb. 2.2). Unter Berücksichtigung des Übertrags und 
der zwei Operandenbits der nächsthöheren Stelle ergibt sich wiederum ein Übertrag 1 
und ein Ergebnisbit mit dem Wert 0. Dieses Verfahren wird für alle Operandenbits durch-
geführt und man erhält ein Ergebnis mit der Wortbreite 4 bit.

Überlaufsdetektion bei der vorzeichenlosen Addition
Variante 1: Betrachtung des höchstwertigen Übertragsbits

Ist das höchstwertige Übertragsbit bei der Addition zweier vorzeichenloser Zahlen 0, 
ist das Ergebnis korrekt. Andernfalls ist bei der Addition ein Überlauf aufgetreten und 
das ausgegebene Ergebnis nicht korrekt.

Abb. 2.1   Zahlenkreis für 
positive Zahlen mit einer 
Wortbreite von 4 bit
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Variante 2: Betrachtung der höchstwertigen Bits der Operanden und des 
Ergebnisses

Sind beide höchstwertigen Bits der Operanden identisch, tritt bei der Addition ein 
Überlauf auf, wenn diese Bits gleich 1 sind. Sind die beiden höchstwertigen Bits der 
Operanden unterschiedlich, ist ein Überlauf aufgetreten, wenn das höchstwertige Ergeb-
nisbit gleich 0 ist. In allen anderen Fällen ist kein Überlauf aufgetreten.

2.2.8	� Binäre vorzeichenlose Subtraktion

Bei der binären Subtraktion können ähnliche Rechenregeln angewandt werden wie sie 
aus dem Dezimalsystem bekannt sind. Sukzessive werden die einzelnen Bits des Minu-
enden und Subtrahenden beginnend mit dem niederwertigsten Bit betrachtet. Es wird die 
Differenz aus dem Minuendenbit und dem Subtrahendenbit bestimmt. Sofern ein Über-
trag zu berücksichtigen ist, wird dieser mit negativem Vorzeichen einbezogen. Es erge-
ben sich wie bei der Addition 8 mögliche Fälle (Tab. 2.7)

Soll beispielsweise die binäre Zahl 0111 von der Zahl 1100 subtrahiert werden, ergibt 
sich die in Abb. 2.3 dargestellte Rechnung. Die Subtraktion der beiden niederwertigsten 
Stellen ergibt den Wert −1. Dieses Ergebnis wird durch einen (negativ bewerteten) Über-
trag mit dem Wert −1 in der nächsthöheren Stelle und einem Ergebnisbit mit dem Wert 
1 in der aktuellen Stelle dargestellt. Unter Berücksichtigung des Übertrags und der zwei 
Operandenbits der nächsthöheren Stelle ergibt sich ein Übertrag −1 und ein Ergebnisbit 
mit dem Wert 0. Dieses Verfahren wird für alle Bits der Operanden durchgeführt und so 
die Differenz mit der Wortbreite 4 bit bestimmt.

Tab. 2.6   Übersicht über 
die einstellige binäre 
Addition

Eingabewerte Ausgabewerte
1. Summand 2. Summand Übertragsbit Summenbit Übertragsbit

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Abb. 2.2   Beispiel für die 
binäre Addition

0011
+ 1001

Übertrag: 0011
1100

2.2  Vorzeichenlose Zahlen
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Wie bei der Addition kann im Anschluss an die Berechnung überprüft werden, ob das 
ausgegebene Ergebnis korrekt ist. Bei der Subtraktion vorzeichenloser Zahlen entsteht 
ein Unterlauf, wenn der Minuend kleiner als der Subtrahend ist. In diesem Fall ist das 
wahre Ergebnis negativ und lässt sich nicht als vorzeichenlose Zahl darstellen. Für die 
Detektion eines Unterlaufs können wieder zwei alternative Möglichkeiten eingesetzt 
werden:

Unterlaufsdetektion bei der vorzeichenlosen Subtraktion
Variante 1: Betrachtung des höchstwertigen Übertragsbits

Ist das höchstwertige Übertragsbit bei der Subtraktion zweier natürlicher Zahlen 0, 
ist das Ergebnis korrekt. Andernfalls ist ein Unterlauf aufgetreten und das ausgegebene 
Ergebnis nicht korrekt.

Möglichkeit 2: Betrachtung der höchstwertigen Bits der Operanden und des 
Ergebnisses

Sind beide höchstwertigen Bits der Operanden identisch, tritt bei der Addition ein 
Unterlauf auf, wenn das höchstwertige Ergebnisbit gleich 1 ist. Ebenfalls tritt ein Unter-
lauf auf, wenn das höchstwertige Bit des Minuenden 0 und das des Subtrahenden 1 ist. 
In allen anderen Fällen tritt kein Unterlauf auf und das Ergebnis ist korrekt.

Tab. 2.7   Übersicht über die 
einstellige binäre Subtraktion

Eingabewerte Ausgabewerte
Minuend Subtrahend Übertrag Differenz Übertrag

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Abb. 2.3   Beispiel für die 
binäre Subtraktion

1100
- 0111

Übertrag: 0111
0101
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2.2.9	� Binäre vorzeichenlose Multiplikation und Division

Für die Addition und Subtraktion im Binärsystem gelten vergleichbare Regeln wie im 
Dezimalsystem. Es ist lediglich zu beachten, dass der 10er-Übergang des Dezimalsystems 
einem 2er-Übergang im Binärsystem entspricht. Unter Beachtung dieser Besonderheit las-
sen sich auch Vorgehensweisen zur Durchführung der binären Multiplikation oder Divi-
sion formulieren, die weitgehend den bekannten Regeln des Dezimalsystems entsprechen.

Für die Durchführung der Multiplikation wird der Multiplikator sukzessive mit den 
einzelnen Stellen des Multiplikanden multipliziert. Da die Ziffern des Multiplikanden 
nur die Werte 0 oder 1 annehmen können, ist das Ergebnis dieser stellenweisen Multipli-
kation also entweder Null oder identisch mit dem Multiplikator.

Schreibt man die einzelnen Produkte entsprechend dem Stellengewicht des verwen-
deten Multiplikandenbits untereinander und summiert anschließend die gebildeten Pro-
dukte erhält man als Ergebnis das Produkt der beiden Operanden.

In vielen Fällen möchte man mögliche Überläufe bei der Multiplikation vermeiden 
und wählt für die Produktwortbreite einen Wert, der sich aus der Summe der Wortbreiten 
des Multiplikanden und des Multiplikators ergibt.

Die binäre Multiplikation ist für die Zahlen 0101 und 1011 in Abb. 2.4 dargestellt.
Ebenso kann die Division der Grundschulmathematik auf die binäre Division übertra-

gen werden. Hierbei wird der Divisor testweise von einem Teil des Dividenden subtra-
hiert. Tritt bei der Subtraktion kein Überlauf auf, ergibt sich ein Quotientenbit mit dem 
Wert 1 und das Ergebnis der Subtraktion wird für weitere Berechnungen weiterverwendet. 
Ist dagegen ein Überlauf aufgetreten, ist das berechnete Quotientenbit 0 und das Ergebnis 
der Subtraktion wird verworfen. Es wird mit dem Minuenden weiter gerechnet. Vor der 
nachfolgenden Subtraktion zur Bestimmung eines weiteren Quotientenbits wird ein wei-
teres Bit des Dividenden an die berechnete Differenz (kein Überlauf) bzw. den Minuen-
den (bei aufgetretenem Überlauf) angefügt. Auf diese Weise wird sukzessive der gesamte 
Dividend durchlaufen. Das Ergebnis der letzten Subtraktion ergibt den Rest der Division. 
Es ist zu beachten, dass die führenden Nullen des Divisors nicht berücksichtigt werden.

Die Vorgehensweise für eine binäre Addition wird in für einen Dividenden mit dem 
Wert 01010101 und einem Divisor mit dem 1011 verdeutlicht (Abb. 2.5).

Abb. 2.4   Beispiel für die 
binäre Multiplikation

0101 * 1011

+         0101
+        0101
+       0000
+      0101

0001000

00110111

2.2  Vorzeichenlose Zahlen
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Die vorgestellten Rechenvorschriften können als Basis für die Implementierung digitaler 
Arithmetikschaltungen verwendet werden. In der Praxis kommen teilweise auch modifizierte 
Verfahren zum Einsatz, die Vorteile im Hinblick auf die Rechenzeit oder den Schaltungsauf-
wand bieten. Die Schaltungsstruktur eines Addierers wird in Kapitel 6 vorgestellt.

2.3	� Vorzeichenbehaftete Zahlen

In vielen Fällen ist die ausschließliche Verwendung vorzeichenloser Zahlen nicht ausreichend 
und es müssen sowohl positive als auch negative Zahlen verwendet werden. Hieraus ergibt 
sich zwangsläufig die Frage nach einer geeigneten Codierung vorzeichenbehafteter Zahlen.

Eine naheliegende Idee wäre es, die Zahlendarstellung des täglichen Lebens auch 
auf Dualzahlen anzuwenden. Üblicherweise kennzeichnen wir Zahlenwerte mit einem 
vorangestellten Vorzeichen, einem Plus- oder Minuszeichen. Der Zahlenwert nach dem 
Vorzeichen entspricht dem Betrag der Zahl. Diese Form der Zahlendarstellung wird als 
Vorzeichen-Betrag-Darstellung bezeichnet. Die am weitesten verbreitete Darstellungs-
form vorzeichenbehafteter Zahlen ist die sogenannte Zweierkomplement-Darstellung, die 
in Abschn. 2.3.2 vorgestellt wird.

2.3.1	� Vorzeichen-Betrag-Darstellung

In der üblichen Dezimaldarstellung werden vorzeichenbehaftete Zahlenwerte als eine 
Kombination von Vorzeichen und Betrag dargestellt. Es handelt sich um die Vorzeichen-
Betrag-Darstellung. Dieses Prinzip lässt sich auch auf Dualzahlen übertragen. Es bietet 
sich an, das Vorzeichen durch ein einzelnes Bit zu codieren. Üblicherweise verwendet 
man eine führende 0 um einen positiven Zahlenwert darzustellen und eine führende 1 für 

Abb. 2.5   Beispiel für die binäre Division

http://dx.doi.org/10.1007/978-3-662-49731-9_6
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negative Zahlen. Die restlichen Bits entsprechen dem Betrag der dargestellten Zahl, wel-
cher als vorzeichenlose Dualzahl codiert ist.

Genauso wie für vorzeichenlose Zahlen kann als grafische Darstellung ein Zahlen-
kreis verwendet werden. Abb. 2.6 zeigt den Zahlenkreis für eine Wortbreite von 4 bit.

Betrachtet man den Zahlenkreis in Abb. 2.6 genauer, fallen mehrere Besonderheiten 
auf:

1.	 Es existieren zwei Repräsentationen der Null, „+0“ und „−0“.
2.	 Es gibt zwei Stellen, an denen Überläufe bzw. Unterläufe auftreten können, nämlich 

zwischen −7 und +0 sowie zwischen +7 und −0
3.	 Die Additionsrichtung im Bereich positiver Zahlen entspricht der Subtraktionsrich-

tung im Bereich negativer Zahlen.

Alle drei Beobachtungen sind Nachteile, die das Rechnen in dieser Zahlendarstellung 
erschweren bzw. die Implementierung arithmetischer Schaltungen aufwendiger machen.

Um beispielsweise eine Addition durchzuführen, können verschiedene Vorgehenswei-
sen definiert werden. Am einfachsten ist es, wenn das Vorzeichen der Operanden für die 
eigentliche arithmetische Operation unberücksichtigt bleibt und eine Operation wie für 
vorzeichenlose Zahlen durchgeführt wird. Um dabei das korrekte Ergebnis zu erhalten, 
ist eine Fallunterscheidung auf Basis der Vorzeichen der Operanden erforderlich. Je nach 
vorliegendem Fall, wird gegebenenfalls eine Vertauschung der Operanden vorgenom-
men, statt einer Addition eine Subtraktion durchgeführt oder das Vorzeichen des Ergeb-
nisses invertiert (Tab. 2.8).

Äquivalent zur Addition können auch für andere Grundoperationen Rechenregeln 
formuliert werden, wobei eine geeignete Fallunterscheidung vorzusehen ist. Dies stellt 

Abb. 2.6   Zahlenkreis für 
vorzeichenbehaftete Zahlen in 
Vorzeichen-Betrag-Darstellung
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einen wesentlichen Nachteil für den Einsatz der Vorzeichen-Betrag-Darstellung in digita-
len Systemen dar, da die Fallunterscheidungen in Hardware implementiert werden müss-
ten, wodurch sich der schaltungstechnische Aufwand erhöht.

2.3.2	� Zweierkomplement-Darstellung

Aus den Überlegungen des vorangegangenen Abschnitts lassen sich Forderungen formu-
lieren, die für eine Darstellung vorzeichenbehafteter Zahlen gelten sollten. So ist es wün-
schenswert, dass

1.	 nur eine Codierung dem Zahlenwert Null entspricht,
2.	 die Additionsrichtung für den gesamten Zahlenbereich identisch ist,
3.	 nur an einer Position im Zahlenkreis ein Überlauf bzw. Unterlauf auftritt.

Eine Zahlendarstellung die diese Forderungen erfüllt, ist die sogenannte Zweierkomple-
ment-Darstellung. Die Codierung der Zahlen im Zweierkomplement ergibt sich aus den 
ersten beiden Forderungen: Zwischen den Zahlenwerten −1 und +1 darf nur eine Codie-
rung existieren, die den Wert 0 repräsentiert. Setzt man voraus, dass die positiven Zah-
len wie bei der Vorzeichen-Betrag-Darstellung durch eine führende 0 zu identifizieren 
sind und legt zugrunde, dass die selbstverständliche Gleichung 1−2 = −1 gelten soll, 
lässt sich die Codierung der Zahl −1 wie folgt anhand des Zahlenkreises bestimmen: 
Als Startpunkt wählt man auf dem Zahlenkreis die Codierung „0001“, was der Zahl +1 
entspricht. Läuft man auf dem Zahlenkreis einen Schritt in Subtraktionsrichtung, muss 
sich die Codierung der Zahl 0 ergeben. Diese entspricht bei einer Wortbreite von 4 bit 
der Codierung 0000 und entspricht somit der Darstellung der Null für vorzeichenlose 
Zahlen. Ein weiterer Schritt in Subtraktionsrichtung muss zwangsläufig zur Codierung 
der Zahl −1 führen. Für eine Wortbreite von 4 bit ergibt sich für −1 also die Codierung 
1111. Die Codierungen aller weiteren negativen Zahlen können durch weitere Schritte in 
Subtraktionsrichtung gefunden werden.

Tab. 2.8   Fallunterscheidung für die Addition in Vorzeichen-Betrag-Darstellung

Vorzeichenbit der 
Operanden

Erforderliche Schritte

1. Summand 2. Summand Operanden 
vertauschen

Ausgeführte 
Operation

Vorzeichen des 
Ergebnisses 
invertieren

0 0 nein Addition nein

0 1 nein Subtraktion nein

1 0 ja Subtraktion nein

1 1 nein Addition ja
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Für die Zweierkomplement-Darstellung gilt, dass alle Codierungen mit einer füh-
renden 1 als negative Zahlen zu interpretieren sind. Dies hat den Vorteil, dass sich der 
Wert einer Zweierkomplement-Zahl durch eine einfache Summenformel angeben lässt. 
Als einziger Unterschied zu der Formel für vorzeichenlose Zahlen ist bei Zweierkomple-
ment-Zahlen beim höchstwertigen Bit ein negatives Stellengewicht zu berücksichtigen:

So ergibt sich für eine Wortbreite von 4 bit die Zahl −8 als kleinste darstellbare negative 
Zahl, welche durch die Bitfolge 1000 codiert wird. Der Zahlenkreis für Zweierkomple-
ment-Zahlen mit einer Wortbreite von 4 bit ist in Abb. 2.7 dargestellt.

2.3.2.1 � Negieren einer Zweierkomplement-Zahl
Möchte man eine vorzeichenbehaftete Zahl in Zweierkomplement-Darstellung negieren, 
kann man die vorgestellte Summenformel verwenden um den Wert der Ausgangszahl zu 
bestimmen. Anschließend wird das Vorzeichen der Zahl invertiert und wiederum mithilfe 
der Summenformeln die Codierung der gesuchten Zahl bestimmt. Dieses Vorgehen ist 
jedoch relativ umständlich und fehlerträchtig.

Aufgrund der Eigenschaften der Zweierkomplement-Zahlen lässt sich glücklicher-
weise ein einfacheres zweischrittiges Verfahren definieren: Zunächst werden alle Stellen 
der Ausgangszahl invertiert. Anschließend wird dieses Zwischenergebnis inkrementiert 
(= eine 1 addiert). Das Ergebnis stellt die entsprechende negierte Zahl dar.

Hierzu ein Beispiel: Die 6 bit breite Zweierkomplement-Zahl „011101“ soll negiert 
werden.

Z = −zN−1 · 2
N−1

+

N−2
∑

i=0

zi · 2
i

Abb. 2.7   Zahlenkreis für 
vorzeichenbehaftete Zahlen in 
Zweierkomplement-Darstellung
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Mithilfe der Summenformel für Zweierkomplement-Zahlen kann das Ergebnis überprüft 
werden:

0111012 = 16+ 8+ 4+ 1 = 29

1000112 = −32+ 2+ 1 = −29

2.3.2.2 � Vorzeichenerweiterung
In einigen praktischen Anwendungsfällen ist es erforderlich die Wortbreite einer Zahl zu 
vergrößern und zum Beispiel aus einer 8 bit breiten Zahl eine Zahl mit der Wortbreite 16 bit 
zu generieren. Für vorzeichenlose Zahlen ist es lediglich erforderlich die Zahl mit führenden 
Nullen aufzufüllen. Im Fall der Zweierkomplement-Darstellung werden die zusätzlichen 
Stellen dagegen mit dem höchstwertigen Bit (Vorzeichenbit) der Ausgangszahl aufgefüllt.

2.3.3	� Addition und Subtraktion in Zweierkomplement-Darstellung

Für die Bestimmung der Ergebnisbits einer Addition oder Subtraktion von Zahlen in 
Zweierkomplement-Darstellung gilt das gleiche Vorgehen wie für vorzeichenlose Zah-
len. Dies bedeutet unter anderem, dass eine Additions- bzw. Subtraktionsschaltung für 
vorzeichenlose Zahlen unverändert auch für Zweierkomplement-Zahlen eingesetzt wer-
den kann. Dieses ist insbesondere dann vorteilhaft, wenn in einem digitalen System 
sowohl vorzeichenlose als auch vorzeichenbehaftete Zahlen verarbeitet werden, wie dies 
zum Beispiel in digitalen Rechnern der Fall ist.

Für die Bestimmung von Überläufen und Unterläufen bei der Zweierkomplement-
Addition bzw. -Subtraktion gelten andere Regeln als bei vorzeichenlosen Zahlen. Eine 
Überschreitung des darstellbaren Zahlenbereichs kann ebenfalls durch die Betrachtung 
der höchstwertigen Bits der Operanden und des Ergebnisses detektiert werden. Für die 
Addition gilt beispielsweise, dass nur dann ein Überlauf oder Unterlauf auftreten kann, 
wenn beide Summanden das gleiche Vorzeichen besitzen. Besitzen beispielsweise beide 
Operanden ein positives Vorzeichen (repräsentiert durch eine führende Null), so muss 
auch die Summe ein positives Vorzeichen besitzen. Besitzt das Ergebnis dagegen eine 
führende Eins und repräsentiert somit einen negativen Zahlenwert, ist dieses offenbar 
falsche Ergebnis auf einen Überlauf zurückzuführen. Entsprechendes gilt für den Fall der 
Addition zweier negativer Zahlen. Die Überlegungen für die Addition lassen sich ent-
sprechend für die Subtraktion anstellen. Hierbei gilt, dass eine Bereichsüberschreitung 
nur dann auftritt, wenn die beiden Operanden unterschiedliche Vorzeichen besitzen.

Über-/Unterlaufsdetektion bei der vorzeichenbehafteten Addition
Sind beide höchstwertigen Bits der Operanden identisch und ist das höchstwer-
tige Ergebnisbit ungleich der höchstwertigen Operandenbits, ist ein Überlauf bzw. 

NEG(011101) = 011101+ 1 = 100010+ 1 = 100011
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Unterlauf aufgetreten. In allen anderen Fällen ist keine Überschreitung des darstellba-
ren Zahlenbereichs aufgetreten und das Ergebnis ist korrekt codiert.

Über-/Unterlaufsdetektion bei der vorzeichenbehafteten Subtraktion
Sind beide höchstwertigen Bits der Operanden unterschiedlich und ist das höchstwertige 
Ergebnisbit ungleich dem höchstwertigen Operandenbit des Minuenden, ist ein Überlauf 
bzw. Unterlauf aufgetreten. In allen anderen Fällen ist keine Überschreitung des darstell-
baren Zahlenbereichs aufgetreten und das Ergebnis ist korrekt codiert.

2.3.4	� Multiplikation und Division in Zweierkomplement-
Darstellung

Für die Multiplikation und die Division von Zweierkomplement-Zahlen bietet sich als 
einfachste Vorgehensweise ein dreischrittiges Verfahren an. Hierbei werden zunächst die 
Beträge der Operanden berechnet und anschließend die eigentliche Operation mit vor-
zeichenlosen Zahlen durchgeführt. Im letzten Schritt wird gegebenenfalls das Ergebnis 
durch Negierung korrigiert, falls die Operanden unterschiedliche Vorzeichen besitzen. 
Diese Korrektur muss für das Produkt bei der Multiplikation oder dem Quotienten bei 
der Division ausgeführt werden. Für die Korrektur des Restes einer binären Zweierkom-
plement-Division wird lediglich das Vorzeichen des Dividenden berücksichtigt: Ist der 
Dividend negativ, ist eine Korrektur des Restes durch Negierung vorzunehmen.

Alternativ zu der oben beschriebenen Vorgehensweise kann beispielsweise für Mul-
tiplikation eine Vorgehensweise gewählt werden, die berücksichtigt, dass das höchst-
wertige Bit der Operanden negativ zu gewichten ist. Unter Berücksichtigung dieser 
Eigenschaft der Zweierkomplement-Zahlen kann die Multiplikation äquivalent zur 
Multiplikation vorzeichenloser Zahlen ausgeführt werden. Hierbei ergeben sich in den 
Teilprodukten einzelne negativ zu bewertende Einsen, die bei der Summation der Teil-
produkte negativ zu berücksichtigen sind. Das nachfolgende Beispiel verdeutlicht die 
Vorgehensweise, wobei negativ zu berücksichtigende Bits kursiv dargestellt sind.

Sollen zum Beispiel die beiden vorzeichenbehafteten Zahlen 1101 und 1001 multipli-
ziert werden, ergäbe sich das in Abb. 2.8 dargestellte Vorgehen.

Abb. 2.8   Beispiel für 
die Zweierkomplement-
Multiplikation

2.3  Vorzeichenbehaftete Zahlen
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2.3.5	� Bias-Darstellung

Eine weitere Möglichkeit vorzeichenbehaftete Zahlen darzustellen, ist die sogenannte 
Bias-Darstellung (bzw. Excess-Darstellung). Der Begriff „Bias“ stammt aus dem Eng-
lischen und bedeutet in etwa „Vorbeaufschlagung“ oder „Vorspannung“. Bei dieser Dar-
stellung kann der Zahlenwert mithilfe der Summenformel für vorzeichenlose Zahlen 
bestimmt werden, wobei nach der Summenbildung eine Konstante B subtrahiert wird. 
Durch die Subtraktion der Konstanten können auch negative Zahlenwerte dargestellt 
werden. Der Wert der Konstanten kann im Prinzip beliebig gewählt werden. Da man in 
der Regel einen symmetrischen Zahlenbereich anstrebt (Absolutwert der kleinsten nega-
tiven Zahl entspricht etwa dem Wert der größten positiven Zahl), wird B im Allgemeinen 
entsprechend der Wortbreite N der Zahlendarstellung gewählt:

Betrachten wir die Bitfolge 100101, welche eine Zahl in Bias-Darstellung repräsentiert. 
Welcher Zahlenwert wird durch die Bitfolge dargestellt?

Mit N = 6 ergibt sich

Z =

N−1
∑

i=0

zi · 2
i
− B =

(

25 + 22 + 20
)

−

(

25 − 1
)

= 6

2.3.6	� Darstellbare Zahlenbereiche

Häufig ergibt sich beim Entwurf eines digitalen Systems die Frage, welche Wortbreite 
für die Darstellung von Zahlenwerten verwendet werden muss. Um Aufwand zu spa-
ren möchte man natürlich so wenige Bits wie möglich verwenden. Andererseits muss 
die Wortbreite aber ausreichend sein, um den gewünschten Zahlenbereich abzudecken. 
Tab. 2.9 fast den darstellbaren Zahlenbereich für Zahlen mit einer Wortbreite von N bit 
zusammen:

B =
2N

2
− 1 = 2N−1

− 1

Tab. 2.9   Darstellbarer 
Zahlenbereich in Abhängigkeit 
der verwendeten Wortbreite 
N bit

Zahlendarstellung Kleinster Wert Größter Wert

Vorzeichenlos 0 2N − 1

Vorzeichen-Betrag − 2N−1 + 1 2N−1 − 1

Zweierkomplement − 2N−1 2N−1 − 1

Bias (B = 2N−1 − 1) − 2N−1 + 1 2N−1
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2.4	� Reelle Zahlen

In den vorangegangenen Abschnitten wurde die binäre Darstellung ganzer Zahlen 
betrachtet. Viele Problemstellungen der Digitaltechnik lassen sich mit ausreichen-
der Genauigkeit mithilfe ganzer Zahlen lösen. Es gibt aber auch Anwendungen, die 
den Einsatz reeller Zahlen erfordern. Im Folgenden wird daher eine Übersicht über die 
Möglichkeiten zur binären Darstellung reeller Zahlen gegeben, wobei die Varianten Fest-
komma-Darstellung und Gleitkomma-Darstellung unterschieden werden.

2.4.1	� Festkomma-Darstellung

Für die Darstellung von ganzen Zahlen wurde die Vereinbarung getroffen, dass das nie-
derwertigste Bit die Einerstelle darstellt, also mit 20 gewichtet wird. Diese Vereinbarung 
ist zwar für ganze Zahlen sinnvoll, aber letztlich willkürlich. Genauso gut kann als Stel-
lengewicht des niederwertigsten Bits einer binären Zahl auch eine Zweierpotenz mit 
negativem Exponenten gewählt werden. Um den Wert einer solchen Zahl zu bestimmen, 
muss die Summenformel für ganze Zahlen geringfügig modifiziert werden und lautet nun

für vorzeichenlose Zahlen bzw.

für vorzeichenbehaftete Zahlen.
Die benötigte Wortbreite N einer derartigen Zahl ergibt sich aus der Summe der 

Anzahl der Vorkommastellen M und der Nachkommastellen L:

Vereinbart man beispielsweise, dass zwei Nachkommastellen (L = 2) verwendet werden. 
Welchem Zahlenwert würde dann die binäre Ziffernfolge „10111“ als vorzeichenlose 
Zahl entsprechen? Welcher Zahlenwert ergibt sich als vorzeichenbehaftete Zahl?

Mithilfe der obigen Summenformeln ist die Lösung leicht zu bestimmen. Werden die 
Bits als vorzeichenlose Zahl interpretiert ergibt sich

Wenn die Bits eine vorzeichenbehaftete Zahl in Festkommadarstellung repräsentieren 
ergibt sich der dargestellte Zahlenwert zu

Z =

M−1
∑

i=−L

zi · 2
i

Z = −zM−1 · 2
M−1

+

M−2
∑

i=−L

zi · 2
i

N = M + L

Zvorzeichenlos = 22 + 20 + 2−1
+ 2−2

= 5, 75

2.4  Reelle Zahlen
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Für die arithmetischen Grundoperationen ergeben sich keine bzw. lediglich geringe 
Änderungen. Besitzen beide Operanden die gleiche Anzahl an Nachkommastellen L, 
kann die Addition und Subtraktion genauso wie für ganze Zahlen durchgeführt werden. 
Das Ergebnis besitzt ebenfalls L Nachkommastellen. Bei der Multiplikation besitzt das 
Ergebnis dagegen 2 · L Nachkommastellen. Um bei der Division die gewünschte Genau-
igkeit des Quotienten zu erhalten, können die Nachkommastellen des Dividenden vor 
Ausführung der Division mit Nullen erweitert werden.

Müssen dagegen Zahlen mit unterschiedlichen Wortbreiten verarbeitet werden, sind 
beispielsweise bei der Addition und Subtraktion Korrekturschritte erforderlich um die 
Stellengewichte der einzelnen Bits anzupassen.

Nehmen wir an, die Zahl 01001 mit zwei Nachkommastellen und die Zahl 10110 mit 
drei Nachkommastellen sollen addiert werden. Das niederwertigste Bit der ersten Zahl 
besitzt das Gewicht 2−2 und das der zweiten Zahl 2−3. Diese beiden Bits dürfen also 
nicht einfach addiert werden, da die bekannten Regeln zur binären Addition darauf basie-
ren, dass immer Bits mit gleichem Stellengewicht betrachtet werden. Also müssen die 
Zahlen zunächst so erweitert werden, dass die Stellengewichte der einzelnen Bits über-
einstimmen: Die erste Zahl wird rechts um eine Stelle mit dem Wert 0 erweitert, wäh-
rend bei der zweiten Zahl auf der linken Seite eine 0 angefügt wird (in Abb. 2.9 kursiv 
dargestellt). Anschließend kann die Addition wie gewohnt ausgeführt werden. Sofern 
erforderlich, kann die Wortbreite des Ergebnisses durch Weglassen der niederwertigsten 
Nachkommastelle anschließend wieder auf 5 reduziert werden.

2.4.2	� Gleitkomma-Darstellung

Insbesondere in digitalen Rechnersystemen, hat sich die Gleitkomma-Darstellung, wie 
sie in der internationalen Norm IEEE 754 definiert ist, durchgesetzt. Solche Rechner-
systeme sollen sowohl kleine als auch große Datenwerte verarbeiten können und genau 
dies ermöglicht die Gleitkomma-Darstellung. Eine detaillierte Beschreibung dieser Zah-
lendarstellung würde den Rahmen dieses Buches sprengen. Daher wird im Folgenden 
lediglich das Grundprinzip der Gleitkomma-Darstellung betrachtet.

Bei Verwendung dieser Gleitkomma-Darstellung wird der Zahlenwert durch eine 
Mantisse M und einen Exponenten E dargestellt. Sowohl M als auch E werden hierbei 
als ganze Zahlen codiert, wobei für M die Vorzeichen-Betrag-Darstellung und für E die 

Zzweierkomplement = −22 + 20 + 2−1
+ 2−2

= −2, 25

Abb. 2.9   Beispiel für die 
Festkomma-Addition
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Bias-Darstellung gewählt wird. Zusätzlich wird ein Vorzeichenbit S angeben. Der Zah-
lenwert ZGK einer Gleitkommazahl kann wie folgt bestimmt werden:

Die verwendeten Wortbreiten für die Mantisse und den Exponenten sind der Norm IEEE 
754 festgelegt, die unterschiedliche Genauigkeiten spezifiziert. Für die einfache Genau-
igkeit (C-Datentyp float) werden insgesamt 32 Bit verwendet, die sich in 24 Bit für die 
Mantisse inklusive Vorzeichenbit und 8 Bit für den Exponenten aufteilen. Für die soge-
nannte doppelte Genauigkeit (C-Datentyp double) werden die Mantisse mit 53 Bit und 
der Exponent mit 11 Bit codiert.

2.4.3	� Reelle Zahlen in digitalen Systemen

In der Praxis steht man häufig vor der Problemstellung einen Algorithmus entwerfen zu 
müssen, welcher im Anschluss in einem digitalen System in Software oder Hardware 
implementiert werden soll. Für die Entwicklung eines Algorithmus mag es bequem 
erscheinen, wenn man sich über die Wortbreiten der verwendeten Zahlen möglichst 
wenig Gedanken machen muss. Also ist es naheliegend alle Berechnungen mit einer 
möglichst flexiblen Zahlendarstellung, wie zum Beispiel einer Gleitkomma-Darstellung 
mit doppelter Genauigkeit, durchzuführen. Soll der Algorithmus später in Form einer 
digitalen Hardware realisiert werden, wird man allerdings auf Probleme stoßen, da die 
Hardware-Umsetzung von Berechnungen in Gleitkomma-Darstellung relativ aufwen-
dig ist. Kann dieser Aufwand, zum Beispiel aus Kostengründen, nicht betrieben wer-
den, müssen die algorithmischen Vorgaben in Gleitkomma-Darstellung in eine weniger 
komplexe ganzzahlige Darstellung umgewandelt werden. Hierbei werden möglicher-
weise wichtige Eigenschaften des entwickelten Algorithmus verändert, sodass nicht ohne 
Weiteres gewährleistet werden kann, dass das finale Produkt den ursprünglich ins Auge 
gefassten Qualitätsvorgaben entspricht.

In der Praxis werden daher frühzeitig die erforderlichen Wortbreiten ermittelt. Auf 
den Einsatz einer Gleitkomma-Darstellung wird verzichtet. Dies gilt insbesondere dann, 
wenn ein Algorithmus in digitale Hardware überführt oder in Software auf einem preis-
günstigen Rechnersystem, wie zum Beispiel einem einfachen Mikrocontroller, ausge-
führt werden soll.

2.5	� Codes

In diesem Abschnitt werden gebräuchliche Möglichkeiten vorgestellt, um Informati-
onen in digitaler Form darzustellen. Diese Informationen müssen nicht zwangsläufig 
Zahlenwerte repräsentieren. Einer Bitfolge können auch beliebige andere Bedeutungen 
zugeordnet werden. So kann man mit Codes zum Beispiel Farben oder auch die Fehler-
zustände einer Maschine darstellen.

ZGK = (−1)S ·M · 2E

2.5  Codes
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2.5.1	� BCD-Code

Der BCD-Code (Binary Coded Digit) dient der Codierung der zehn Dezimalziffern. Für 
die Codierung jeder Ziffer werden 4 Bit verwendet, die auch als Tetraden bezeichnet 
werden. Die verwendeten Bitfolgen entsprechen der dualen Darstellung der vorzeichen-
losen Zahlen 0 bis 9. Da bei der Verwendung von 4 Bits 16 verschiedene Bitkombinati-
onen möglich sind, jedoch nur 10 hiervon zur Codierung der Ziffern benötigt werden, 
werden 6 Bitkombinationen nicht verwendet. Diese nicht verwendeten Kombinationen 
werden als Pseudotetraden bezeichnet. In Tab. 2.10 ist die Codierung einer Dezimalzif-
fer in Form einer BCD-Tetrade dargestellt.

Der BCD-Code wird zum Teil in Digitaluhren und für digitale Displays (zum Bei-
spiel in Multimetern) eingesetzt. Der BCD-Code kann auch für die Implementierung von 
Rechnersystemen eingesetzt werden. Hierbei kann es vorkommen, dass das Ergebnis 
einer Addition zu einer Pseudotetrade führt. Um ein Ergebnis, das eine Pseudotetrade 
enthält, wieder in eine gültige BCD-Darstellung umzuwandeln, sind Korrekturschritte 
erforderlich, die die Implementierung der BCD-Arithmetik komplizieren. Darüber hin-
aus ist die BCD-Darstellung nicht speichereffizient, da mit einer Tetrade nur 10 statt der 
sonst 16 möglichen Codierungen verwendet werden. So können beispielsweise mit 8 Bit 
nur die Zahlen von 0 bis 99 dargestellt werden, während mit der Darstellung als vorzei-
chenlose Dualzahl der Bereich von 0 bis 255 abgedeckt ist.

Tab. 2.10   Codierung einer 
Dezimalziffer auf Basis des 
BCD-Codes

a3 a2 a1 a0 Codierte Dezimalziffer

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

1 0 0 1 9

1 0 1 0 Pseudotetraden

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1
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Nehmen wir an, die beiden BCD-Zahlen 37 und 55 sollen addiert werden. Auch das 
Ergebnis soll in BCD-Darstellung vorliegen. Die Addition kann ohne weitere Beachtung 
der BCD-Codierung durchgeführt werden. Man erhält dann das Ergebnis in der üblichen 
binären Darstellung. In diesem Beispiel ergibt sich für die untere Hälfte des Ergebnisses 
die Pseudotetrade 1100.

Zur Korrektur des Ergebnisses kann zunächst die nächsthöhere BCD-Stelle um 1 
erhöht werden, was der binären Addition des Wertes 16 entspricht. Interpretiert man die 
so erhaltenen Ergebnisbits als BCD-Zahl, wäre das Ergebnis um 10 zu groß. Dies kann 
korrigiert werden, indem die untere BCD-Stelle um 10 verringert wird.

Das zweischrittige Vorgehen (16 addieren und anschließend 10 subtrahieren) kann 
natürlich auch in einem Schritt durch die Addition des Wertes 6 realisiert werden.

Die Korrektur muss sukzessive, beginnend mit den niederwertigsten Bits, immer dann 
durchgeführt werden, wenn der BCD-Stellen eine Pseudotetrade enthält (Abb. 2.10).

2.5.2	� Gray-Code

Stellen Sie sich vor, Sie sollen einen Temperaturwarner realisieren, der aus einem digi-
talen Thermometer und einer Einheit zur Temperaturüberprüfung besteht. Sinkt die 
Temperatur unter einen bestimmten Wert, soll ein Alarm ausgegeben werden. Die Tem-
peraturüberprüfung fragt die aktuelle Temperatur, die vom Thermometer als Dualzahl 
übertragen wird, in regelmäßigen Abständen ab und gibt gegebenenfalls einen Alarm 
aus. Würden Sie das System so realisieren, könnten sporadische Fehlalarme auftreten.

Wie kann das sein? Nehmen wir vereinfachend an, dass das Thermometer die aktu-
elle Temperatur mit einer Wortbreite von 4 bit ausgibt und Temperaturen zwischen 0 und 
15 °C messen kann. Steigt die Temperatur zum Beispiel von 7 °C auf 8 °C, würde das 
Thermometer zunächst 0111 und anschließend 1000 ausgeben. Alle vier vom Thermo-
meter ausgegebenen Bits müssen sich in diesem Fall ändern. In einem realen System 
werden die Bitwechsel auf Grund von zeitlichen Toleranzen bei der Messwertausgabe 
aber nicht exakt gleichzeitig stattfinden. In Abb. 2.11 ist ein möglicher zeitlicher Verlauf 
der Thermometerausgabe für den Wechsel von 7 °C auf 8 °C dargestellt, wobei ts0, ts1, 
ts2 und ts3 die einzelnen Bits des Temperatursignals und TSdual die duale Interpretation 
der Bits repräsentiert.

Abb. 2.10   Beispiel für die 
BCD-Addition

2.5  Codes
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Es ist zu erkennen, dass zwischen den tatsächlich gültigen Zahlenwerten 7 und 8 auch 
ungültige Werte, die nicht der wahren Temperatur entsprechen, an die Einheit zur Tem-
peraturüberprüfung gesendet werden. Wird die Temperatur in einem Moment abgefragt, 
in dem ein ungültiger Wert ausgegeben wird, kann dies zu einem Fehlalarm führen.

Möglicherweise werden Sie einwenden, dass diese ungültigen Werte nur für sehr 
kurze Zeiten auftreten und in den meisten Fällen ein korrekter Wert ausgegeben wird. 
Obwohl dies sicher richtig ist, verschlimmert diese Tatsache die Lage eher noch: Da das 
System nur selten Fehlalarme ausgeben würde, gestaltet sich eine systematische Fehler-
suche extrem schwierig.

Das Kernproblem der oben beschriebenen Temperaturüberwachung liegt darin, dass 
bei einer Änderung der Temperatur mehrere Bits invertiert werden müssen. Wäre es 
da nicht eine einfache Lösung des Problems, wenn bei einer Temperaturänderung nur 
ein einzelnes Bit zu modifizieren wäre? Genau dieser Ansatz wird vom Gray-Code, der 
nach seinem Erfinder Frank Gray benannt ist, aufgegriffen. Der Gray-Code zeichnet sich 
dadurch aus, dass sich zwei benachbarte Codierungen nur in einer Stelle unterscheiden. 
Der Gray-Code für eine Wortbreite von 4 bit ist in Tab. 2.11 dargestellt.

Wird der Gray-Code für das Beispiel der Temperaturüberwachung eingesetzt, käme 
es zu keiner unbeabsichtigten Ausgabe ungültiger Werte und Fehlalarme würden vermie-
den. Der zeitliche Verlauf des Temperatursignals ist für den Wechsel von 7 °C nach 8 °C 
in Abb. 2.12 dargestellt.

Der Gray-Code kann immer dann sinnvoll eingesetzt werden, wenn zwischen zwei 
digitalen Komponenten Werte übertragen werden sollen, deren Änderung stetig ist. So 
wird der Gray-Code unter anderem auch für die Positions- oder Winkelbestimmung ein-
gesetzt. Ein weiteres Einsatzgebiet ist die Übertragung von Speicherfüllständen inner-
halb digitaler Systeme. Für die Implementierung arithmetischer Operationen ist der 
Gray-Code dagegen nicht gut geeignet.

Abb. 2.11   Beispiel des 
zeitlichen Verlaufs der Ausgabe 
eines digitalen Thermometers 
mit dualer Codierung

ts3

t

ts2

ts1

ts0

TSdual 7 5 1 0 8
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2.5.3	� 1-aus-N-Code

Der 1-aus-N-Code stellt eine weitere Alternative zur binären Codierung von Informatio-
nen dar. Dieser Code zeichnet sich dadurch aus, dass in jedem Codewort mit der Wort-
breite N bit nur ein einzelnes Bit auf 1 gesetzt ist; alle anderen Bits besitzen den Wert 0.

Der 1-aus-N-Code ist ein sogenannter redundanter Code, da sich mit N Bits 2N unter-
schiedliche binäre Wörter darstellen lassen, von denen jedoch nur N als gültige Code-
wörter genutzt werden. Der Code geht also verschwenderisch mit der Wortbreite um. 
Dies wird durch den Vorteil aufgewogen, dass sich die Codewörter relativ leicht codieren 
bzw. decodieren lassen.

Eine mögliche Codierung der Zahlenwerte 0 bis 5 mit einem 1-aus-6-Code ist exemp-
larisch in Tab. 2.12 dargestellt.

Tab. 2.11   Gray-Code für eine 
Wortbreite von 4 bit

Codierter Wert a3 a2 a1 a0

0 0 0 0 0

1 0 0 0 1

2 0 0 1 1

3 0 0 1 0

4 0 1 1 0

5 0 1 1 1

6 0 1 0 1

7 0 1 0 0

8 1 1 0 0

9 1 1 0 1

10 1 1 1 1

11 1 1 1 0

12 1 0 1 0

13 1 0 1 1

14 1 0 0 1

15 1 0 0 0

Abb. 2.12   Beispiel des 
zeitlichen Verlaufs der Ausgabe 
eines digitalen Thermometers 
mit Gray-Codierung

ts3

t

ts2

ts1

ts0

TSGray 7 8
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2.5.4	� ASCII-Code

Mit dem ASCII-Code (American Standard Code for Information Interchange) werden 
ausschließlich Zeichen, also Buchstaben, Ziffern und Sonderzeichen, codiert. Jedes Zei-
chen wird durch 7 Bit repräsentiert. Der ASCII-Code entspricht nahezu dem 7-Bit-Code 
nach DIN 66003, welcher im Gegensatz zum ASCII-Code unter anderem auch deutsche 
Umlaute abdeckt.

Die Zeichencodierung gemäß dem ASCII-Code ist in Tab. 2.13 dargestellt. Die Bits 
a4, a5 und a6 dienen in dieser Tabelle der Auswahl der Spalten und die Bits a0, a1, a2 und 
a3 der Zeilenauswahl. Bei der Übertragung wird für ein ASCII-Zeichen im Allgemeinen 
ein Byte (8 bit) verwendet. In der Datentechnik wird häufig auch das achte Bit zu einer 
Erweiterung des Zeichenvorrats herangezogen. Dadurch kann die Anzahl der codierten 
Zeichen verdoppelt werden.

Da der ASCII-Code nur einen sehr eingeschränkten Zeichensatz von 128 bzw. 256 
unterschiedlichen Zeichen bietet, wird in vielen Rechnersystemen auch der sogenannte 
Unicode zur Codierung von Zeichen eingesetzt. Ziel des Unicodes ist es, alle existieren-
den Zeichen codieren zu können. Hierzu werden in Unicode Ebenen (planes) definiert, 
die bis zu 65535 Zeichen enthalten können. Der Vorteil, alle gebräuchlichen Zeichen 
codieren zu können, wird allerdings durch den Nachteil erkauft, dass pro Zeichen eine 
deutlich höhere Anzahl an Bits vorgesehen werden muss. Daher wird in einfachen 
Anwendungsfällen (zum Beispiel Status- und Fehlermeldungen eines digitalen Systems) 
in der Regel auf den Einsatz von Unicode verzichtet und auf den weniger komplexen 
ASCII-Code zurückgegriffen.

2.5.5	� 7-Segment-Code

Der 7-Segment-Code wird ausschließlich zur Codierung von Zahlen verwendet, die 
mithilfe einer einfachen Anzeige dargestellt werden sollen. Sehr weit verbreitet sind 
7-Segment-Anzeigen in digitalen Weckern, in denen sie zur Anzeige der Uhrzeit die-
nen. Auch bei einfachen Taschenrechnern kommen Segment-Anzeigen zum Einsatz. Ein 
Beispiel einer solchen Anzeige auf einer Platine für digitaltechnische Experimente ist in 
Abb. 2.13 dargestellt.

Tab. 2.12   Codierung der 
Werte 0 bis 5 mithilfe eines 
1-aus-6-Codes

Codierter Wert a5 a4 a3 a2 a1 a0

0 0 0 0 0 0 1

1 0 0 0 0 1 0

2 0 0 0 1 0 0

3 0 0 1 0 0 0

4 0 1 0 0 0 0

5 1 0 0 0 0 0
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Tab. 2.13   Siebenstelliger 
ASCII-Code

a6 0 0 0 0 1 1 1 1
a5 0 0 1 1 0 0 1 1
a4 0 1 0 1 0 1 0 1

a3 a2 a1 a0

0 0 0 0 NUL DLE SP 0 @ P ` p

0 0 0 1 SOH DC1 ! 1 A Q a q

0 0 1 0 STX DC2 “ 2 B R b r

0 0 1 1 ETX DC3 # 3 C S c s

0 1 0 0 EOT DC4 $ 4 D T d t

0 1 0 1 ENQ NAK % 5 E U e u

0 1 1 0 ACK SYN & 6 F V f v

0 1 1 1 BEL ETB ‘ 7 G W g w

1 0 0 0 BS CAN ( 8 H X h x

1 0 0 1 HT EM ) 9 I Y i y

1 0 1 0 LF SUB * : J Z j z

1 0 1 1 VT ESC + ; K [ k {

1 1 0 0 FF FS , < L \ l |

1 1 0 1 CR GS – = M ] m }

1 1 1 0 SO RS . > N ^ n ~

1 1 1 1 SIX US2 / ? O _ o DEL

Abb. 2.13   Vierstellige 7-Segment-Anzeige

2.5  Codes
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Die Darstellung der Ziffern wird häufig durch Leuchtdioden realisiert, die in Form 
einer eckigen 8 angeordnet sind. Durch Einschalten ausgewählter Leuchtdioden können 
nicht nur die Ziffern 0 bis 9, sondern auch die Hexadezimalziffern A bis F (zum Teil 
als Kleinbuchstaben) angezeigt werden. Auf diese Weise kann pro Ziffer einer solchen 
Anzeige der Wert von jeweils 4 Bits visualisiert werden.

Um Hexadezimalziffern mithilfe einer 7-Segment-Anzeige darstellen zu können, müs-
sen die 4 Bits einer Hexadezimalziffer in geeigneter Weise in 7 Bits zur Ansteuerung der 
Leuchtdioden der Anzeige umgewandelt werden. In Tab. 2.14 ist eine hierfür geeignete 
Codierung dargestellt, wobei davon ausgegangen wird, dass eine 1 einer leuchtenden 
LED entspricht. Tab. 2.14 zeigt die Zuordnung zwischen den Bits des Codewortes (a bis 
g) und den LEDs der Anzeige (Abb. 2.14).

Tab. 2.14   Codierung einer 
Hexadezimalziffer für die 
Ausgabe auf einer 7-Segment-
Anzeige

Hex-Ziffer Code für die Ansteuerung der Segmente
a b c d e f g

0 1 1 1 1 1 1 0

1 0 1 1 0 0 0 0

2 1 1 0 1 1 0 1

3 1 1 1 1 0 0 1

4 0 1 1 0 0 1 1

5 1 0 1 1 0 1 1

6 1 0 1 1 1 1 1

7 1 1 1 0 0 0 0

8 1 1 1 1 1 1 1

9 1 1 1 1 0 1 1

A 1 1 1 0 1 1 1

b 0 0 1 1 1 1 1

C 1 0 0 1 1 1 0

d 0 1 1 1 1 0 1

E 1 0 0 1 1 1 1

F 1 0 0 0 1 1 1

Abb. 2.14   Kennzeichnung 
der LEDs einer 7-Segment-
Anzeige mit den Buchstaben 
a bis g
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2.6	� Übungsaufgaben

Prüfen Sie sich selbst mithilfe der folgenden Aufgaben. Am Ende dieses Buches finden 
Sie die Lösungen.

Aufgabe 2.1
Stellen Sie die Dezimalzahl 5710 in anderen Zahlensystemen dar:

a)	 binär
b)	oktal
c)	 hexadezimal

Aufgabe 2.2
Welchen dezimalen Wert repräsentiert die Bitfolge „10010111“, wenn es sich

a)	 um eine vorzeichenlose Dualzahl handelt?
b)	um eine Zweierkomplement-Zahl handelt?
c)	 um eine BCD-codierte Zahl handelt?

Aufgabe 2.3
Wie viele Bits sind für die Darstellung des Wertes 3210 erforderlich, wenn als 
Zahlendarstellung

a)	 die vorzeichenlose Dualzahlen-Darstellung gewählt wird?
b)	die binäre Vorzeichen-Betrag-Darstellung gewählt wird?
c)	 die Zweierkomplement-Darstellung gewählt wird?

Aufgabe 2.4
Welcher Zahlenbereich kann mit 8 Bits dargestellt werden, wenn die folgenden Darstel-
lungen gewählt werden?

a)	 vorzeichenlos
b)	Vorzeichen-Betrag
c)	 Zweierkomplement

Aufgabe 2.5
Die nachfolgenden 6-Bit-Zahlen sollen addiert werden. Bestimmen Sie jeweils das (6 bit 
breite) Ergebnis für den Fall, dass es sich um vorzeichenlose Dualzahlen handelt und 
ermitteln Sie, ob bei der Addition ein Überlauf auftritt.

a)	 110011 + 001010
b)	100010 + 101001

2.6  Übungsaufgaben
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c)	 010111 + 101101
d)	Wie würden sich die Ergebnisse ändern, wenn die Operanden und das Ergebnis die 

Zweierkomplement-Darstellung verwenden?
e)	 Was würde sich im Hinblick auf Bereichsüberschreitungen (Überlauf) ändern, wenn 

die Operanden und das Ergebnis die Zweierkomplement-Darstellung verwenden?

Aufgabe 2.6
Nachfolgend sind 8-Bit-Zahlen in Hexadezimal-Darstellung angegeben. Diese Zahlen 
sollen addiert werden. Bestimmen Sie jeweils das Ergebnis in Hexadezimal-Darstel-
lung und ermitteln Sie, ob Bereichsüberschreitungen auftreten. Die Zahlenwerte sollen 
sowohl als vorzeichenlose Dualzahlen als auch als Zweierkomplement-Zahlen interpre-
tiert werden.

Hinweis: Sie können die Zahlen zunächst in eine binäre Darstellung überführen, 
eine binäre Addition durchführen und anschließend das binäre Ergebnis in einer hexa-
dezimale Darstellung überführen. Einfacher ist es, wenn Sie die Subtraktion direkt in 
der Hexadezimal-Darstellung durchführen. Wenden Sie hierzu die Rechenregeln aus der 
Grundschule an und beachten Sie, dass der 10er-Übergang des Dezimalsystems einem 
16er-Übergang im Hexadezimalsystem entspricht. Beide Wege führen zum Ziel.

a)	 27 + 33
b)	9A + 89
c)	 DE + CD

Aufgabe 2.7
Nachfolgend sind 8-Bit-Zahlen in Hexadezimal-Darstellung angegeben. Diese Zahlen 
sollen subtrahiert werden. Bestimmen Sie jeweils das (8 bit breite) Ergebnis in Hexa-
dezimal-Darstellung und ermitteln Sie, ob Bereichsüberschreitungen auftreten. Die 
Zahlenwerte sollen sowohl als vorzeichenlose Dualzahlen als auch als Zweierkomple-
ment-Zahlen interpretiert werden.

Hinweis: Wie bei der Addition ist auch hier ist die Berechnung im Hexadezimalsys-
tem einfacher.

a)	 A9 − 42
b)	83 − 37
c)	 5C − BF

Aufgabe 2.8
Welche besondere Eigenschaft besitzt der Gray-Code?
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Aufgabe 2.9
Welche der folgenden Bitfolgen sind Pseudotetraden des BCD-Codes? (mehrere Antwor-
ten können richtig sein)

a)	 1000
b)	1011
c)	 1100
d)	1001

Aufgabe 2.10
Es wird ein 1-aus-8 Code betrachtet.

a)	 Welche Wortbreite besitzt ein Codewort?
b)	Wie viele unterschiedliche Codewörter lassen sich darstellen?

Aufgabe 2.11
Achtung, Transferleistung erforderlich: Man kann theoretisch auch für das Dezimal-
system eine Komplementdarstellung wählen, also eine Zahlendarstellung im „Zehner-
komplement“. Wie würden in dieser Zahlendarstellung die folgenden Werte dargestellt 
werden, wenn 3 Dezimalstellen zur Verfügung stehen?

a)	 0
b)	−1
c)	−2
d)	−10
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In Kapitel 1 wurden bereits die wichtigsten Grundelemente digitaler Systeme vorgestellt. 
Eine digitale Hardware verarbeitet Informationen, indem die Eingangssignale zum Bei-
spiel mithilfe von logischen Grundelementen, den Gattern, verknüpft werden. Wie kann 
man nun festlegen wie die Gatter verschaltet werden sollen, um die Ausgangssignale 
einer Schaltung zu berechnen?

Möglicherweise kennen Sie Schaltpläne für elektrische Geräte. Durch grafische 
Symbole werden die Komponenten des Gerätes beschrieben und die elektrischen Ver-
bindungen werden durch Striche dargestellt. Eine naheliegende Möglichkeit wäre es, 
diese grafische Darstellung auch zur Spezifikation einer digitalen Schaltung zu verwen-
den. Die elektrisch zu verbindenden Komponenten könnten dann zum Beispiel logische 
Grundelemente sein. Man kann hierbei auch eine hierarchische Darstellung wählen, 
indem einzelne Elemente zu Blöcken zusammenfasst werden, die dann in anderen Teilen 
des Schaltplans als Module eingesetzt werden. Diese Form der Schaltungsbeschreibung 
wurde tatsächlich in den Anfängen der Digitaltechnik eingesetzt. Allerdings durchlief die 
Digitaltechnik von Beginn an eine rasante Entwicklung. Bis heute verdoppelt sich etwa 
alle zwei Jahre die Anzahl der Schaltfunktionen, die sich in einer einzelnen elektroni-
schen Komponente (einem „Chip“) integrieren lässt. Dies bedeutet unter anderem, dass 
die Komplexität digitaler Systeme kontinuierlich zunimmt. Mit den Fortschritten der 
Digitaltechnik wurden die Schaltpläne zunehmend komplexer und man suchte etwa ab 
Mitte der 1980er-Jahre nach Alternativen zur Schaltplaneingabe.

Als Lösung wurden die sogenannten Hardwarebeschreibungssprachen (engl. Hard-
ware Description Language, HDL) erfunden. Diese Sprachen ermöglichen es, die Funk-
tion einer digitalen Schaltung, ähnlich wie ein Programm für einen Rechner, in textueller 
Form zu beschreiben. Im Gegensatz zu den üblichen Software-Programmiersprachen wie 
C/C++ oder Java, besitzen Hardwarebeschreibungssprachen Sprachelemente, die beson-
ders für die Beschreibung digitaler Hardware geeignet sind. In der Praxis werden zwei 
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Beschreibungssprachen eingesetzt: Verilog und VHDL (Very High Speed Integrated Cir-
cuits Hardware Description Language). VHDL bietet gegenüber Verilog einen größeren 
Funktionsumfang und wird daher meist als bevorzugte Sprache zur Beschreibung digita-
ler Systeme eingesetzt.

In diesem Kapitel werden die Grundlagen der Sprache VHDL vorgestellt. Nachdem 
Sie dieses Kapitel gelesen haben, kennen Sie die wichtigsten Sprachelemente und sind in 
der Lage eigene digitale Schaltungen in VHDL zu beschreiben. Praktische Hinweise für 
die Durchführung eigener VHDL-Experimente finden Sie auch auf der im Vorwort ange-
gebenen Internetseite zum Buch.

3.1	� Designmethodik im Überblick

Der Ausgangspunkt einer HDL-basierten Beschreibung sind eine oder mehrere VHDL-
Dateien, welche die Funktion der späteren digitalen Hardware festlegen. Wie bei der 
Erstellung von Software handelt es sich um Textdateien, die eine für den Menschen les-
bare Beschreibung der gewünschten Module enthalten.

Nicht jeder syntaktisch richtige VHDL-Code kann auch in Hardware überführt wer-
den. VHDL bietet zum Beispiel Sprachkonstrukte um Dateien einzulesen oder Texte 
auszugeben. Diese Sprachelemente können nicht in Hardwaremodule übersetzt werden. 
Der Compiler, welcher aus den VHDL-Beschreibungen Hardware erzeugt, würde ent-
sprechende Warn- bzw. Fehlermeldungen ausgeben. Da der Übersetzungsprozess in der 
Regel als Synthese bezeichnet wird, spricht man auch von „synthesefähigem“ oder „syn-
thetisierbarem“ VHDL-Code.

Die nicht-synthetisierbaren Sprachelemente werden vielfach in sogenannten Testben-
ches eingesetzt. Als eine Testbench wird VHDL-Code bezeichnet, der zur Überprüfung 
der Funktion des synthetisierten Codes geschrieben wurde.

Die VHDL-Dateien werden mithilfe eines sogenannten Simulators auf einem PC aus-
geführt. Der Simulator ermöglicht es, den zeitlichen Verlauf aller Signale zu visualisie-
ren oder in Dateien auf dem PC abzulegen.

Für die Simulation werden die zu testenden VHDL-Module als Komponenten in 
den Testbench-Code eingefügt. Der Code der Testbench legt wechselnde Eingangssig-
nale (im Fachjargon „Stimuli“) an die Eingänge der zu prüfende Komponente an. Das 
Konzept einer VHDL-Testbench, in die eine zu prüfende VHDL-Komponente eingesetzt 
wird, ist in Abb. 3.1 dargestellt.

Der zeitliche Verlauf von Eingangs- und Ausgangssignalen als auch von internen 
Signalen einer VHDL-Beschreibung kann während der Simulation mithilfe sogenann-
ter Waveform-Viewer visualisiert werden. Die grafische Darstellung der Signalverläufe 
gibt häufig wichtige Hinweise zur Lokalisierung eines Fehlers und ist ein nicht wegzu-
denkendes Handwerkszeug der VHDL-Entwicklung. Ein Beispiel für die Ausgabe eines 
Waveform Viewers ist in Abb. 3.2 dargestellt. In diesem Beispiel wird das Ergebnis der 
UND-Verknüpfung von a und b dem Signal q zugewiesen.



53

In Abb. 3.3 ist der Ablauf eines VHDL-basierten Entwurfsprozesses dargestellt: Der 
Ausgangspunkt sind VHDL-Dateien, welche die gewünschte Funktion der digitalen 
Hardware beschreiben. Darüber hinaus werden Testbench-Dateien erstellt. Mithilfe der 
Simulation der VHDL-Hardware-Module in Kombination mit den Testbench-Dateien 
wird die korrekte Funktion der Hardware-Beschreibung überprüft und gegebenenfalls 
entdecktes Fehlverhalten korrigiert. Anschließend kann die Synthese, also die Überfüh-
rung der VHDL-Hardware-Beschreibungen in digitale Hardware, erfolgen. Auch nach 
diesem Schritt können Änderungen am VHDL-Code erforderlich werden um beispiels-
weise den benötigten Realisierungsaufwand zu reduzieren oder das zeitliche Verhalten 
des Systems zu verbessern. Der Entwurfsprozess ist also ein iterativer Prozess, bei dem 
(insbesondere bei komplexen Systemen) die Schritte Simulation und Synthese mehrfach 
durchlaufen werden.

Testsignal-
Generator

Auswertung
und

Ergebnisanzeige

„Testbench“
(VHDL)

„Prüfling“
(VHDL)Stimuli Reaktion

Abb. 3.1   Verifikation einer Komponente mithilfe einer VHDL-Testbench

Abb. 3.2   Waveform Viewer

3.1  Designmethodik im Überblick



54 3  Einführung in VHDL

3.2	� Grundstruktur eines VHDL-Moduls

Ein VHDL-Modul repräsentiert meistens einen Teil eines größeren Systems und wird in 
Form einer Textdatei beschrieben. In diesem Abschnitt werden einige grundlegende Kon-
zepte und Sprachelemente vorgestellt, die bei einem VHDL-basierten Hardwareentwurf 
verwendet werden.

Simulation

. vhd . vhd

Synthese

VHDL-
Hardware-

Module

VHDL-
Testbench

ok?
nein

VHDL-Code
korrigieren

ja

Synthese
durchführen

ok?

VHDL-Code
verbessern

(bzgl. HW-Aufwand 
oder Zeitverhalten)

nein

weitere 
Fertigungsschritte

Digitales System

Abb. 3.3   VHDL-basierter Entwurfsprozess
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3.2.1	� Bibliotheken

VHDL-Beschreibungen müssen vor ihrer Verwendung (in einer Simulation oder für die 
Synthese) zunächst kompiliert werden. Die durch den Übersetzungsvorgang erzeugte 
binäre Beschreibung wird in einer sogenannten Bibliothek abgelegt und kann anschlie-
ßend mit anderen kompilierten VHDL-Beschreibungen zu einer Simulationsdatei bzw. 
der zu realisierenden Hardware zusammengefügt werden.

Es ist freigestellt, ob man für jedes VHDL-Modul eine eigene Bibliothek anlegt oder 
ob mehrere VHDL-Dateien in einer gemeinsamen Bibliothek abgelegt werden. Insbeson-
dere für kleinere Systeme ist es häufig völlig ausreichend, eine gemeinsame Bibliothek 
für alle übersetzten VHDL-Dateien zu wählen.

Ein Aufruf eines VHDL Compilers zum Übersetzen der VHDL-Datei my_module.vhd 
kann wie folgt aussehen:

   vcom -work my_work_lib my_module.vhd

In diesem Beispiel wird der VHDL-Compiler vcom aufgerufen. Mithilfe des 
Schalters -work wird der Name der zu verwendenden Bibliothek angegeben – in die-
sem Beispiel my_work_lib.

Drei Bibliotheken sind besonders wichtig: work, std und ieee.
Der Bibliotheksname work ist ein Synonym für die jeweils aktuelle Arbeitsbiblio-

thek, in der die Ergebnisse des Übersetzungsvorgangs abgelegt werden. Es ist zum Bei-
spiel möglich, alle VHDL-Elemente in einer Bibliothek my_work_lib abzulegen und die 
bereits übersetzten Elemente wahlweise über den Namen work oder my_work_lib zu 
referenzieren. Da work ein vordefinierter symbolischer Name für die aktuelle Arbeitsbi-
bliothek ist, sollte work nicht als Bibliotheksname verwendet werden. Andernfalls hätte 
die Referenzierung der Bibliothek work zwei mögliche Bedeutungen: Es kann sich um 
die aktuelle Arbeitsbibliothek (welche einen beliebigen Namen besitzen kann) oder um 
die Bibliothek mit dem Namen work handeln.

In der Bibliothek std sind einige grundlegende Sprachkonstrukte und Datentypen defi-
niert. Darüber hinaus enthält die Bibliothek std auch Funktionen zur Ein- und Ausgabe.

Die Bibliothek ieee enthält wichtige und häufig verwendete Datentypen sowie viele 
hilfreiche Funktionen. Die wichtigsten Elemente dieser Bibliothek werden im Verlauf 
dieses Kapitels vorgestellt und in Kapitel 8 weiter vertieft.

Sollen Bibliotheken, die nicht bereits im VHDL-Standard vordefiniert sind (dies ist 
für die Bibliotheken work und std der Fall), müssen sie vor ihrer Verwendung mithilfe 
einer Library-Anweisung bekanntgemacht werden. Anschließend wird mithilfe einer 
Use-Anweisung ausgewählt, welche Teile der Bibliothek in dem nachfolgenden VHDL-
Code verwendet werden sollen. Hinter dem Schlüsselwort use folgt zunächst die Angabe 
der gewünschten Bibliothek und dann, durch Punkte abgetrennt, das zu verwendenden 
Paket der Bibliothek sowie die Elemente aus dem jeweiligen Paket. Meist ist eine expli-
zite Auswahl einzelner Elemente nicht erforderlich: Man wählt mit dem Schlüsselwort 
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all einfach alle vorhandenen Elemente aus. Im nachfolgenden VHDL-Code stehen dann 
alle Elemente des jeweiligen Bibliothekspakets zur Verfügung.

Die folgenden Beispiele verdeutlichen die Syntax zur Verwendung von Bibliotheken:

-- Die Bibliotheken std und work benòtigen keine Library-Anweisung

-- mithilfe einer Use-Anweisung werden die Teile der Bibliothek bekannt

-- gemacht, die in der nachfolgenden VHDL-Beschreibung verwendet

-- werden

-- Verwendung von Ein-/Ausgabe-Funktionen aus der Bibliothek std

use std.textio.all;

-- Verwendung von Funktionen eines eigenen Paketes, welches bereits

-- in der aktuellen Arbeitsbibliothek abgelegt (ùbersetzt) worden ist

use work.my_package.all;

-- Verwendung von Datentypen, Funktionen etc.

-- wie sie im IEEE-Standard 1164 festgelegt worden sind

library ieee;

use ieee.std_logic_1164.all;

3.2.2	� Entity und Architecture

VHDL-Beschreibungen entsprechen einzelnen Hardware-Komponenten. Damit eine sol-
che Komponente vollständig beschrieben ist, müssen vor allem zwei Teile der Beschrei-
bung erstellt werden:

1.	 Die äußeren Anschlüsse der Komponente: Welche Signale werden in das Modul hin-
eingeführt und welche kommen heraus? Welche Wortbreite haben die Signale?

2.	 Die Funktion des Moduls: Nach welcher digitalen Rechenvorschrift werden die Aus-
gangssignale aus den Eingangssignalen berechnet?

Die Beschreibung der „Sicht von außen“ wird als Entity und das „Innenleben“ als 
Architecture bezeichnet. Diese beiden Teile eines VHDL-Moduls werden häufig in 
einer gemeinsamen Textdatei abgelegt. Die Beschreibung einer Entity beginnt mit dem 
VHDL-Schlüsselwort entity. Der Name des Moduls wird durch die Schlüsselwörter entity 
und is eingerahmt. Das Ende der Entity-Beschreibung wird durch end gekennzeich-
net. Zwischen dem Beginn und dem Ende der Entity werden die von außen sichtbaren 
Eigenschaften des Moduls definiert. Anschlüsse für Eingangs- und Ausgangssignale, im 
englischen Sprachgebrauch als Ports bezeichnet, werden in Form einer Liste angegeben, 
welche mit dem Schlüsselwort port eingeleitet wird. Der eigentliche Inhalt der Portliste 
wird in Klammern angegeben, wobei die einzelnen Listenelemente durch ein Semikolon 
voneinander getrennt werden. Für jeden Port wird ein Name angegeben und festgelegt, 
ob es sich um einen Eingang oder einen Ausgang handelt (Schlüsselwörter in und out). 
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Darüber hinaus muss für die Anschlüsse ein Datentyp angegeben werden. In der Pra-
xis hat sich für die Beschreibungen einzelner Bits der Datentyp std_logic (gesprochen: 
„standard logic“) durchgesetzt, welcher durch die Norm IEEE 1164 definiert ist. Um 
diesen Datentyp verwenden zu können, muss das Paket std_logic_1164 aus der IEEE-
Bibliothek hinzugefügt werden.

Betrachten wir das Beispiel eines UND-Gatters mit zwei Eingängen. Die Entity kann 
in VHDL wie folgt realisiert werden:

library ieee;

use ieee.std_logic_1164.all;

entity and_2 is

   port (a : in  std_logic;

         b : in  std_logic;

         q : out std_logic);

end;

Groß- und Kleinschreibung wird in VHDL nicht unterschieden und daher kann für 
alle Sprachelemente sowohl Groß- als auch Kleinschrift verwendet werden. Selbst 
Mischformen sind erlaubt und syntaktisch korrekt. So kann das Schlüsselwort entity 
auch Entity oder eNTiTy geschrieben werden.

Die Architecture-Beschreibung startet mit dem Schlüsselwort architecture, gefolgt 
von einem Namen der Architecture. Welcher Entity die Architecture zuzuordnen ist, wird 
direkt danach mit of festgelegt. Zwischen den Schlüsselwörtern begin und end wird der 
VHDL-Code eingefügt, der die Funktion des Moduls beschreibt. Die Architecture eines 
UND-Gatters ist recht übersichtlich. Die Zuweisung der UND-Verknüpfung der beiden 
Eingänge an den Ausgangsport benötigt nur eine Codezeile.

architecture behave of and_2 is

begin

   q <= a and b;
end;

3.2.3	� Bezeichner

Namen von VHDL-Elementen wie zum Beispiel Entity-, Architecture-, oder Signalna-
men usw. beginnen immer mit einem Buchstaben. Anschließend sind sowohl Buchstaben 
als auch Zahlen oder der Unterstrich „_“ erlaubt. Die Verwendung von Schlüsselwörtern 
ist nicht erlaubt. In Tab. 3.1 sind die VHDL-Schlüsselwörter zusammengefasst.

Es ist nicht unbedingt notwendig die Bedeutung aller Schlüsselwörter zu verstehen. 
Einige der reservierten Wörter werden selbst von Experten nur selten verwendet.

3.2  Grundstruktur eines VHDL-Moduls
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Für die Erstellung von VHDL-Code ist ein kontextsensitiver Editor empfehlenswert, 
der Schlüsselwörter automatisch farblich hervorhebt. Damit kann zum Beispiel erkannt 
werden, ob versehentlich ein Schlüsselwort als Bezeichnung eines VHDL-Elements ver-
wendet wird.

3.3	� Grundlegende Datentypen

Genauso wie Programmiersprachen zur Entwicklung von Software, stellt VHDL ver-
schiedene Datentypen zur Verfügung. In diesem Abschnitt werden die wichtigsten 
Datentypen vorgestellt.

3.3.1	� Integer

Mithilfe des Datentyps integer können ganze Zahlen im Bereich von −231 bis +231−1 
dargestellt werden, also der Zahlenbereich, welcher mit einer 32 bit breiten Zweierkom-
plementzahl dargestellt werden kann.

Tab. 3.1   Übersicht über reser-
vierte Wörter der Hardwarebe-
schreibungssprache VHDL

abs downto library postponed srl

access else linkage procedure subtype

after elsif literal process then

alias end loop pure to

all entity map range transport

and exit mod record type

architecture file nand register unaffected

array for new reject units

assert function next rem until

attribute generate nor report use

begin generic not return variable

block group null rol wait

body guarded of ror when

buffer if on select while

bus impure open severity with

case in or signal xnor

component inertial others shared xor

configuration inout out sla

constant is package sll

disconnect label port sra
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Das Syntheseprogramm, das die VHDL-Beschreibung in Hardware überführt, wird 
für Integer-Werte zunächst eine Wortbreite von 32 Bit annehmen – unabhängig davon, 
ob diese Wortbreite für die zu verarbeitenden Daten wirklich benötigt wird. Es besteht 
daher die Gefahr, dass das Syntheseprogramm nicht erkennt, dass die in VHDL beschrie-
bene Aufgabe auch mit einer geringeren Wortbreite lösbar ist und letztlich eine Schal-
tung für 32 Bit realisiert, obwohl auch eine weniger komplexe Schaltung ausreichen 
würde. Um diese Gefahr zu vermeiden können die im Folgenden vorgestellten Datenty-
pen std_logic_vector, signed und unsigned eingesetzt werden. Sie zeichnen sich dadurch 
aus, dass man die zu verwendende Wortbreite explizit angibt.

3.3.2	� Std_logic

Der Datentyp std_logic wurde bereits weiter vorne in diesem Kapitel zur Beschreibung 
einzelner Bits eingeführt. Dieser Datentyp repräsentiert ein einzelnes Bit, das die Werte 
0 oder 1 annehmen kann. Der Datentyp std_logic bietet darüber hinaus noch weiterge-
hende Möglichkeiten.

So wird zur Beschreibung des Einschaltzustands eines Signals, welcher zufällig 0 
oder 1 sein kann, ein weiterer Wert benötigt. Der Datentyp std_logic bietet hierfür den 
Wert Undefined an, welcher mit dem Buchstaben U abgekürzt wird.

Neben 0, 1, und U bietet der Datentyp noch sechs weitere Werte. Eine Übersicht über 
die neunwertige Logik des Datentyps std_logic ist in Tab. 3.2 dargestellt.

Nicht alle neun möglichen Werte sind gleichermaßen praxisrelevant. Einige können 
zum Beispiel verwendet werden, wenn Ausgänge mehrerer Gatter auf eine gemeinsame 
Leitung geführt werden. Hierzu zählen die Werte Z, L, H und W. Die Möglichkeit, meh-
rere Gatterausgänge an eine gemeinsame physikalische Leitung anzuschließen, ist jedoch 
ein Sonderfall.

Es verbleiben neben der 0 und der 1 also noch die Werte U, X und – (Don’t-Care). 
Obwohl Sie diese Werte in einer realen Schaltung nicht beobachten werden, da die 

Tab. 3.2   Werte des Datentyps 
std_logic

Wert Bedeutung

0 Logische 0

1 Logische 1

U Undefiniert

X Unbekannt

– „Don’t-Care“ (für Eingänge: Wert ist beliebig)

Z Hochohmig

L „Schwache“ logische 0

H „Schwache“ logische 1

W „Schwach“ unbekannt

3.3  Grundlegende Datentypen
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Leitungen entweder den Wert 0 oder den Wert 1 besitzen, sind die zusätzlichen Signal-
zustände hilfreich. Die Werte U und X werden Ihnen bei der Simulation eines VHDL-
Modells begegnen. Der Wert U deutet darauf hin, dass sich in der simulierten Schaltung 
Signale befinden, die noch nicht auf einen definierten Wert initialisiert worden sind. Ins-
besondere zu Beginn einer Simulation werden Sie viele Signale mit dem Wert U beob-
achten können. Aufgrund von VHDL-Zuweisungen werden diese Signale meist relativ 
schnell einen definierten Wert (meist 0 oder 1) erhalten. Ist ein Signal mit dem Wert U 
länger zu beobachten, sollte der Grund für dieses Verhalten analysiert werden. Es kann 
sein, dass die fehlende Zuweisung eines Wertes an dieses Signal einen Fehler darstellt, 
der zu einem Fehlverhalten der Hardware führen kann.

Der Wert X tritt auf, wenn unbeabsichtigt zwei Ausgänge mit unterschiedlichen logi-
schen Werten auf das gleiche Signal geführt werden. Darüber hinaus kann der Wert X 
in der Simulation entstehen, wenn undefinierte oder unbekannte Signale in logischen 
Verknüpfungen verwendet werden. Werden in einer Simulation Signale mit dem Wert 
X beobachtet, muss die Ursache für dieses Verhalten untersucht werden. In den meis-
ten Fällen liegt ein Fehler im VHDL-Code vor, welcher vor dem Umsetzen der VHDL-
Beschreibung in Hardware behoben werden muss.

Mithilfe des Wertes Don’t-Care kann in einer VHDL-Beschreibung zum Ausdruck 
gebracht werden, dass der Wert eines bestimmten Signals unerheblich für die Funktion 
der Schaltung ist und somit dieses Signal für die Berechnung der Ausgangswerte nicht 
beachtet werden muss. Meist kann diese Information bei der Optimierung der synthe-
tisierten Hardware verwendet werden, sodass eine schnellere oder weniger aufwendige 
Hardware erzeugt werden kann.

3.3.3	� Std_logic_vector

Viele digitale Systeme lassen sich einfacher und übersichtlicher in VHDL beschreiben, 
wenn man die Möglichkeit nutzt, einzelne Bits zu gruppieren. Hierzu kann der Datentyp 
std_logic_vector (beziehungsweise std_ulogic_vector) verwendet werden.

Die Indexgrenzen des Vektors werden in Klammern angegeben. Meist wird hierbei 
eine absteigende Indizierung verwendet, zum Beispiel (7 downto 0).

Nehmen wir an, Sie möchten eine Schaltung realisieren, die vier UND-Gatter mit 
jeweils zwei Eingängen enthalten soll. Selbstverständlich kann man diese Schaltung mit-
hilfe von 8 Eingängen und 4 Ausgängen vom Datentyp std_logic realisieren. Allerdings 
würde in diesem Fall die Entity-Beschreibung des Moduls 12 Ports enthalten und in der 
Architecture müssten vier Signalzuweisungen, für jeden der vier Ausgänge der Schal-
tung, vorgenommen werden.

Die Problemstellung lässt sich bei Verwendung des Datentyps std_logic_vector deut-
lich übersichtlicher lösen:
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library ieee;

use ieee.std_logic_1164.all;

entity and_2x4 is

   port (a : in  std_logic_vector (3 downto 0);

         b : in  std_logic_vector (3 downto 0);

         q : out std_logic_vector (3 downto 0));

end;

architecture behave of and_2x4 is

begin

   q <= a and b;
end;

VHDL unterstützt Operatoren, die auf Vektoren angewendet werden. In der Codezeile 
q <= a and b wird dies ausgenutzt. Diese Zeile führt eine bitweise UND-Verknüpfung 
der einzelnen Komponenten der Vektoren a und b aus und weist das Ergebnis den jewei-
ligen Bits des Ausgangs q zu. Es wäre auch möglich, diese Zuweisungen explizit auszu-
führen, indem auf die einzelnen Elemente der Vektoren zugegriffen wird:

architecture behave_2 of and_2x4 is

begin

   q(0) <= a(0) and b(0);
   q(1) <= a(1) and b(1);
   q(2) <= a(2) and b(2);
   q(3) <= a(3) and b(3);
end;

Diese Schreibweise würde zum gleichen Ergebnis führen wie die UND-Verknüpfung 
auf Basis von Vektoren. Es ist eine Frage des „Coding-Styles“ welche der beiden Varian-
ten bevorzugt wird. Im Allgemeinen sollte jedoch aus Gründen der Übersichtlichkeit die 
vektorielle Schreibweise vorrangig verwendet werden.

Im Zusammenhang mit Vektoren wird häufig die Frage gestellt, ob es möglich ist, die 
Elemente eines Vektors zu vertauschen indem ein Vektor mit absteigender Indizierung 
(zum Beispiel 7 downto 0) einem Vektor mit aufsteigender Indizierung (zum Beispiel 0 
to 7) zugewiesen wird. Obwohl die Elementanzahl in den Vektoren übereinstimmt, ist 
eine solche Zuweisung nicht zulässig. Die beiden Vektoren besitzen unterschiedliche 
Datentypen und dürfen daher nicht direkt einander zugewiesen werden.

3.3.4	� Signed und Unsigned

Der Datentyp std_logic_vector ist eine Zusammenfassung einzelner Bits zu einem Vek-
tor. Welche Information durch den Bitvektor dargestellt wird, ist durch den Datentyp 

3.3  Grundlegende Datentypen
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nicht eindeutig definiert. Es könnten völlig unabhängige Bits sein, die aus Gründen der 
Übersichtlichkeit gruppiert wurden. Genauso gut könnte die Zusammenfassung der Bits 
einen Zahlenwert darstellen. Im letzteren Fall wäre es wünschenswert, dass für die Vek-
toren nicht nur logische Funktionen, sondern auch arithmetische Operationen wie Addi-
tion oder Subtraktion definiert wären.

VHDL verwendet im Hinblick auf den Datentyp std_logic_vector eine strikte Philo-
sophie: Der Datentyp std_logic_vector beschreibt die Zusammenfassung einzelner Bits. 
Dass diese Bits gemeinsam betrachtet einen Zahlenwert darstellen könnten, wird von 
VHDL ausgeschlossen und es werden im Sprachstandard keine arithmetischen Operatio-
nen dafür zur Verfügung gestellt.

Soll in VHDL die Kombination einzelner Bits als eine Zahl interpretiert werden, 
werden die Datentypen signed und unsigned verwendet. Ähnlich wie beim Datentyp 
std_logic_vector können mit signed und unsigned beliebig große Vektoren gebildet wer-
den. Die Bits werden als eine Zweierkomplementzahl beziehungsweise als vorzeichen-
lose Dualzahl interpretiert werden.

Diese Datentypen sind ebenfalls vom IEEE standardisiert worden und stehen im Paket 
numeric_std der IEEE-Bibliothek zur Verfügung. Für diese Datentypen sind arithmeti-
sche Operationen wie die Addition definiert und eine Addiererschaltung für vorzeichen-
lose Zahlen mit der Wortbreite 4 bit kann wie folgt implementiert werden:

library ieee;

use ieee.numeric_std.all;

entity addu_4 is

   port (a : in  unsigned (3 downto 0);

         b : in  unsigned (3 downto 0);

         q : out unsigned (3 downto 0));

end;

architecture behave of addu_4 is

begin

   q <= a + b;
end;

3.3.5	� Konstanten

Möchte man einem Signal eine Konstante zuweisen, muss hierbei auf den Daten-
typ geachtet werden. Bei Signalen vom Datentyp integer erfolgt die Zuweisung – wie 
in einer Software-Programmiersprache – in Form einer dezimalen Zahl. Möchte man 
dagegen den Zahlenwert in hexadezimaler, binärer oder einer anderen nicht-dezimalen 
Schreibweise angeben, muss vor der Zahl der Radix der Zahlendarstellung angegeben 
werden. Die nachfolgende Zahl wird durch Doppelkreuze (#) eingerahmt. So würde die 
Hexadezimalzahl BEEF im VHDL-Code als 16#BEEF# angegeben werden.
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Konstanten vom Datentyp std_logic_vector oder signed bzw. unsigned werden in 
Anführungszeichen in binärer Form angeben. Mit einem vorangestellten x lassen sich die 
Werte auch in hexadezimaler Schreibweise angeben, wobei jede Hexadezimalstelle exakt 
4 bit repräsentiert.

Die Zuweisung eines std_logic-Wertes erfolgt in einfachen (halben) Anführungszeichen.
Die folgenden Beispiele verdeutlichen die Möglichkeiten zur Angabe von Konstanten.

-- Exemplarische Konstantenzuweisungen

i <= 1234;          -- integer, dezimal

i <= 16#ABC#;       -- integer, hexadezimal

i <= 8#175#;        -- integer, oktal

i <= 2#01010111#;   -- integer, dual

sv8 <= "01000111";  -- std_logic_vector

sv8 <= "0UUX0111";  -- std_logic_vector

sv8 <= x"EF";       -- std_logic_vector, hexadezimal

s <= '1';           -- std_logic

b <= true;            -- boolean

Sehr nützlich ist die Zuweisung mithilfe der Others-Funktion. Diese ermöglicht es 
einzelnen Elementen eines Vektors Werte zuzuweisen und den restlichen Elementen 
(others) einen anderen Wert. Die Syntax wird durch die folgenden Beispiele verdeutlicht:

-- Diese Zeilen kònnen…

   sv1 <= "01000001";
   sv2 <= "00111101";
   sv3 <= "00000000";
-- … mit Hilfe von "others" auch so formuliert werden:

   sv1 <= (0,6=>'1', others=>'0');
   sv2 <= (7,6,1 =>'0', others=>'1');
   sv3 <= (others=>'0');

3.3.6	� Umwandlung zwischen Datentypen

Für die Umwandlung zwischen den Datentypen integer, signed/unsigned und std_logic_
vector stehen verschiedene Funktionen zur Verfügung. So lässt sich beispielsweise ein 
Unsigned- bzw. Signed-Wert mit der Funktion to_integer() in einen Integer-Wert umwan-
deln. Für die umgekehrte Typumwandlung steht die Funktion to_unsigned() beziehungs-
weise to_signed() zur Verfügung. Für eine Umwandlung vom Datentyp unsigned bzw. 
signed in den Datentyp std_logic_vector kann die Funktion std_logic_vector() verwendet 
werden. Eine Umwandlung in die Datentypen signed und unsigned kann entsprechend 
mit den Funktionen signed() und unsigned() erfolgen.

In Abb. 3.4 sind die Funktionen zur Umwandlung zwischen den Datentypen std_
logic_vector, signed/unsigned und integer grafisch dargestellt.

3.3  Grundlegende Datentypen
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Eine Umwandlung vom Datentyp integer in den Datentyp std_logic_vector kann nicht 
direkt erfolgen, sondern erfordert immer einen Zwischenschritt über den Datentypen sig-
ned bzw. unsigned.

Einige Beispiele für die Umwandlung der VHDL-Datentypen sind im Folgenden 
dargestellt.

-- Exemplarische Typumwandlungen

i    <= to_integer(s8);       -- signed -> integer
u8   <= to_unsigned(i,8);     -- integer -> unsigned
s8   <= to_signed(-123,8);    -- Ganzzahlige Konstante: Datentyp Integer
slv8 <= std_logic_vector(u8); -- unsigned -> std_logic_vector
i    <= to_integer(unsigned(slv8));       -- std_logic_vector -> integer
slv8 <= std_logic_vector(to_signed(i,8)); -- integer -> std_logic_vector

3.3.7	� Datentyp Bit

In VHDL existiert auch der Datentyp bit. Objekte dieses Typs können die Werte 0 bzw. 
1 annehmen, was auf den ersten Blick ausreichend erscheinen mag. In der Praxis besteht 
jedoch häufig der Wunsch einem Signal noch weitere Zustände, außer 0 oder 1, zuwei-
sen zu können. Ein typisches Beispiel hierfür ist der Zustand eines Signals nach dem 
Einschalten eines Systems. Ist es 0 oder ist es 1? Möglicherweise „fällt“ das Signal auf 
einen zufälligen Initialwert, es ist also nach dem Einschalten manchmal 0 und manch-
mal 1. Der Einschaltzustand des Signals ist also weder eindeutig 0 noch eindeutig 1, 

std_logic_vector

unsigned

signed

integer

to_unsigned (x,N)

to_integer (x)

to_integer (x)

to_signed (x,N)std_logic_vector (x)

std_logic_vector (x)

unsigned (x)

signed (x)

x: umzuwandelnder Wert

N: Wortbreite

Abb. 3.4   Umwandlung zwischen wichtigen VHDL-Datentypen
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sondern undefiniert. Die Modellierung des undefinierten Einschaltzustands ist mithilfe 
des Datentyps std_logic möglich, mit dem Datentyp bit dagegen nicht. Daher wird in 
der Praxis der Typ std_logic bevorzugt eingesetzt und hat die Verwendung des Typs bit 
verdrängt.

3.4	� Operatoren

Die UND-Verknüpfung wurde bereits in den vorangegangenen Abschnitten einge-
führt. In diesem Abschnitt werden nun weitere wichtige Operatoren vorgestellt, die zur 
Beschreibung der Funktion einer Schaltung eingesetzt werden können. Nicht alle Opera-
toren lassen sich mit allen Datentypen verwenden. So ist es zum Beispiel nicht möglich 
zwei Werte vom Datentyp std_logic_vector zu addieren.

In den Tab. 3.3, 3.4 und 3.5 folgenden Tabellen sind wichtige VHDL-Operatoren 
zusammengestellt. Die Datentypen integer, signed und unsigned werden hierbei unter 
dem Begriff „numerisch“ zusammengefasst.

Die folgenden Beispiele sollen den Einsatz der Operatoren in VHDL verdeutlichen:

-- Beispiele fùr die Verwendung von VHDL-Operatoren

a    <= b or c;              -- Bitweises ODER

sig1 <= not sig2;             -- Bitweise Invertierung

u8_1 <= u8_2 + "00000011";    -- Addition

u8   <= to_unsigned(2**7,8);  -- Potenzierung

if s8 = to_signed(3,8) then     -- Vergleich

   slv5_1 = slv5_2 nand slv5_3; -- NAND (Nicht-UND)

end if;

Bei den arithmetischen Operatoren ist zu beachten, dass die Wortbreite des Ergeb-
nisses mit der Wortbreite der Operanden identisch sein muss. Sie mögen vielleicht 
spontan einwenden wollen, dass dies zu Problemen führen kann: Wenn beispielsweise 
zwei 8 Bit breite vorzeichenlose Zahlen (Wertebereich: 0 … 255) addiert werden 

Tab. 3.3   Logische VHDL-Operatoren

Schreibweise Bedeutung Datentypen Synthetisierbar?

and UND-Verknüpfung std_logic, std_logic_vector,
signed, unsigned

Ja

or ODER-Verknüpfung

nand Nicht-UND-Verknüpfung

nor Nicht-ODER-Verknüpfung

xor Exklusiv-ODER-Verknüpfung

not Invertierung

3.4  Operatoren
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sollen, würde das Ergebnis in einem Bereich von 0 bis 510 liegen können. Es wären 
also zur Darstellung des Ergebnisses 9 Bit erforderlich. Dieser Einwand ist völlig kor-
rekt und in VHDL würde das 8 Bit breite Ergebnis der Addition tatsächlich nur die 
untersten Bits des „wahren“ Ergebnisses enthalten. Würden beispielsweise die Zahlen 
65 und 250 addiert (65 + 250 = 315 = 1001110112), würde dem Ergebnissignal der 
binäre Wert 00111011 zugewiesen – die führende 1 ginge verloren. Soll bei der Addi-
tion das korrekte 9 Bit breite Ergebnis berechnet werden, muss die Addition mit 9 Bit 
breiten Operanden ausgeführt werden. Dies lässt sich erreichen, indem die Wortbreite 
der Operanden um 1 bit vergrößert wird. Eine mögliche Realisierung in VHDL zeigt 
der nachfolgende Code:

-- Addition mit vorheriger Erweiterung der Operanden

sum <= '0' & op1 + '0' & op2;       -- fùr Datentyp unsigned

sum <= op1(7) & op1 + op2(7) & op2; -- fùr Datentyp signed

Dieser VHDL-Code verwendet den Operator & mit dem zwei Vektoren zu einem 
neuen Vektor mit größerer Wortbreite „zusammengefügt“ werden können. Der Operator 
lässt sich mit allen vektoriellen Datentypen, also signed, unsigned und std_logic_vector 
verwenden. Die folgenden Beispiele verdeutlichen die Funktionsweise des Operators:

Tab. 3.5   VHDL-Operatoren 
für Vergleiche

Schreibweise Bedeutung Datentypen Synthetisierbar?

= Gleich Beliebig Ja

/= Ungleich

> Größer Numerisch

< Kleiner

>= Größer-gleich

<= Kleiner-gleich

Tab. 3.4   Arithmetische VHDL-Operatoren

Schreibweise Bedeutung Datentypen Synthetisierbar?

+ Addition Numerisch Ja

- Subtraktion

* Multiplikation

/ Division Abhängig vom verwendeten 
Synthese-Programmmod Quotient der Ganzzahldivision

rem Rest der Ganzzahldivision

** Potenzierung Integer Falls Konstanten

abs Absolutwert Numerisch Ja
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-- Exemplarische Anwendungen des "Zusammenfùgeoperators"

sv6  <= "010" & '1' & "100" & '0'; -- Ergebnis: "01011000"

sv10 <= "00" & sv8;   -- Vorzeichenlose Erweiterung 8 bit -> 10 bit

s9   <= s8(7) & s8;   -- Vorzeichenerweiterung eines signed-Wertes

-- "Rotieren" eines 6 bit breiten Wertes um zwei Stellen nach rechts

-- Beispiel: Aus "011001" wird "010110"

sv6   <= sv6(1 downto 0) & sv6(5 downto 2);

3.5	� Signale

Die Ausgangswerte komplexerer Schaltungen lassen sich normalerweise nicht durch 
eine ausschließliche Verknüpfung der Eingangssignale beschreiben. Häufig möchte man 
zunächst Zwischenergebnisse berechnen, deren anschließende Verknüpfung weitere Zwi-
schenergebnisse oder die Werte der Ausgangssignale ergeben. Diese Zwischenergebnisse 
sind letztlich nichts anderes als digitale Signale, die nur innerhalb des Moduls verwendet 
werden und nicht von außen sichtbar sind. Für die Definition solcher Signale steht in 
VHDL das Schlüsselwort signal zur Verfügung.

3.5.1	� Definition und Verwendung von Signalen

Nehmen wir an, die in Abb. 3.5 dargestellte Schaltung soll in VHDL beschrieben werden.
Die Eingänge a und b werden durch ein UND-Gatter zum Signal z verknüpft, welches 

nur innerhalb des Moduls sichtbar ist. Mithilfe der ODER-Verknüpfung von z und dem 
Eingangssignal c wird das Ausgangssignal q berechnet. Die Signale a, b und q sind Ports 
der Entity dieses Moduls. Das Signal z muss dagegen in der Architecture des Moduls 
definiert werden. VHDL stellt hierfür das Schlüsselwort signal zur Verfügung. Hinter 
dem Schlüsselwort signal werden der gewünschte Signalname sowie der Datentyp des 
Signals angegeben. Signale werden im sogenannten Deklarationsteil der Architecture 
definiert, welcher sich vor dem begin der Architecture befindet.

Abb. 3.5   Beispiel einer 
logischen Funktion &

≥1

a

b

c

q

z

3.5  Signale
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Die VHDL Beschreibung des Moduls würde also wie folgt realisiert werden:

library ieee;

use ieee.std_logic_1164.all;

entity and_or is

   port (a : in  std_logic;

         b : in  std_logic;

         c : in  std_logic;

         q : out std_logic);

end;

architecture behave of and_or is

   -- Hier ist der Deklarationsteil der Architecture

   -- Signale werden hier definiert

   -- und kònnen nach "begin" verwendet werden

   signal z : std_logic;

begin

   z <= a and b;
   q <= z or c;
end;

3.5.2	� Signalzuweisungen

In dem obigen Beispiel ist die Reihenfolge der Zuweisungen an das Signal z bzw. den Port 
q unerheblich. Anders als in einer Programmiersprache für die Softwareentwicklung wird 
der Code innerhalb einer Architecture nicht sequenziell, Zeile für Zeile, ausgeführt, sondern 
alle Zuweisungen sind zeitgleich aktiv. Der Fachbegriff hierfür ist nebenläufige Zuweisung.

Es wäre also ebenso korrekt, den Code wie folgt umzustellen:

architecture behave_2 of and_or is

   signal z : std_logic;

begin

   q <= z or c;  -- zuerst die Zuweisung an q
   z <= a and b; -- dann erst an z
end;

Hat man bereits Erfahrungen mit Programmiersprachen für die Softwareentwicklung 
gesammelt, mag dieses Verhalten zunächst ungewöhnlich erscheinen. Aber eine genau-
ere Betrachtung zeigt, dass sich die Zuweisungen genauso verhalten müssen: Ein Gat-
ter in einer digitalen Schaltung reagiert immer auf die Signale an den Gattereingängen, 
unabhängig davon, ob andere Gatter in der Schaltung existieren oder ob andere Gatter 
ebenfalls Änderungen ihrer Eingangssignale beobachten. Somit sind die beiden Gatter 
der Beispielschaltung also immer und unabhängig voneinander aktiv. Das UND-Gatter 
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wird immer dann einen neuen Wert ausgeben, wenn sich einer der beiden Eingänge a 
oder b geändert hat, während eine Änderung von z oder c zu einer Neuberechnung des 
Ausgangs q führt. Um dieses Verhalten beschreiben zu können, müssen auch die VHDL-
Zuweisungen kontinuierlich und unabhängig voneinander aktiv sein. Würde dagegen 
eine Zuweisung von der Ausführung einer vorangegangenen Zuweisung abhängen, 
ergäbe sich eine Abhängigkeit, die nicht dem Verhalten der Hardware entspräche.

Selbstverständlich hätte diese recht einfache Schaltung übrigens auch mithilfe einer 
einzelnen Zuweisung in der Form

   q <= (a and b) or c;

realisiert werden können, wobei dann auf die Definition des Signals Z verzichtet wer-
den kann.

In welchem Umfang Signale eingesetzt werden ist auch eine Frage der Übersichtlichkeit 
des Codes. Werden mehr als zwei oder drei Operatoren in einer Zuweisung verwendet, emp-
fiehlt sich in der Regel der Einsatz von Signalen, um die Lesbarkeit des Codes zu verbessern.

3.6	� Prozesse

In den vorangegangenen Beispielen wurden Signalen oder Ports Werte zugewiesen. 
Hierzu wurden einfache Zuweisungen verwendet. Mithilfe der vorgestellten Opera-
toren kann man unter Verwendung dieser einfachen Zuweisungen theoretisch belie-
big komplexe Schaltungen in VHDL realisieren. Dieses Vorgehen kann allerdings ein 
recht mühseliges und fehlerbehaftetes Abenteuer werden: Die logische Funktion, die es 
zu realisieren gilt, müsste zunächst manuell so umgewandelt werden, dass sie mithilfe 
der vorgestellten Operatoren darstellbar ist. Erst danach kann die Eingabe des VHDL-
Codes erfolgen. Selbst wenn die Umwandlung der Funktion fehlerfrei gelingt, wäre der 
anschließend formulierte VHDL-Code in vielen Fällen schlecht lesbar. Spätere Änderun-
gen der Funktion wären damit schwierig.

Geht es also vielleicht auch etwas eleganter und übersichtlicher? Kann man vielleicht 
auch in VHDL die aus Programmiersprachen bekannten Konstrukte wie Schleifen oder 
Verzweigungen zur Beschreibung einer digitalen Funktion verwenden? Alle Signal- oder 
Portzuweisungen werden zeitgleich (parallel, nebenläufig) ausgeführt. Mit zunehmender 
Komplexität eines VHDL-Moduls kann dies die Verständlichkeit des Codes weiter ver-
ringern. Wäre es daher nicht angenehmer, wenn VHDL-Code sequenziell (wie ein Pro-
gramm einer Software-Programmiersprache) ausgeführt würde?

Für die Lösung der skizzierten Problematik existiert in VHDL das Sprachkonstrukt 
eines Prozesses. Prozesse sind eines der wichtigsten Elemente zur Beschreibung von 
Hardware in VHDL. Ein VHDL-Prozess kann als Erweiterung der Zuweisungen aufge-
fasst werden. Genauso wie eine nebenläufige Zuweisung beschreibt ein VHDL-Prozess 
das Verhalten einer Teilschaltung des Systems und wird innerhalb einer Architecture 
eingesetzt.

3.6  Prozesse
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Prozesse zeichnen sich unter anderem durch die folgenden Eigenschaften aus:

•	 Ein Prozess wird nebenläufig zu anderen Prozessen oder Signalzuweisungen ausgeführt.
•	 VHDL-Code innerhalb eines Prozesses wird sequenziell ausgeführt.
•	 Innerhalb eines Prozesses können Konstrukte wie sie aus Software-Programmierspra-

chen bekannt sind, zum Beispiel If-Else-Anweisungen oder Variablen, zur Beschrei-
bung der Funktion des Prozesses eingesetzt werden.

•	 Genauso wie nebenläufige Signalzuweisungen repräsentiert ein Prozess ein Stück 
Hardware, welches einen Teil der digitalen Gesamtfunktion des Systems zur Verfü-
gung stellt.

Im Folgenden werden einige wichtige Aspekte von Prozessen näher beleuchtet und 
vertieft.

3.6.1	� Syntaktischer Aufbau von Prozessen

Prozesse werden mithilfe des Schlüsselwortes process eingeleitet. Wie bei einer VHDL-
Architecture beginnt die eigentliche Beschreibung des Verhaltens nach dem Schlüssel-
wort begin. Zwischen process und begin befindet sich der Deklarationsteil, welcher zum 
Beispiel zur Definition von Variablen verwendet werden kann.

Im Gegensatz zu nebenläufigen Signalzuweisungen werden Prozesse nicht automa-
tisch ausgeführt, wenn sich eines der verknüpften Signale ändert. Die im Rahmen die-
ses Kapitels betrachteten Prozesse besitzen eine sogenannte Sensitivitätsliste, welche die 
Signale enthält, deren Änderung zu einer Ausführung des Prozesses führen soll. Die Sig-
nale werden in Klammern nach dem Schlüsselwort process angeben.

Im Folgenden wird die Struktur von Prozessen anhand des Beispiels aus Abb. 3.5 
erläutert.

architecture and_or_proc of and_or is

begin

   my_process: process (a,b,c)

   begin

      q <= (a and b) or c;
   end process;

end;

Es soll eine Schaltung beschrieben werden, welche die Signale bzw. Eingänge a, b 
und c verknüpft und das Ergebnis q zuweist. Da q von a, b und c abhängt, muss eine 
Neuberechnung von q immer dann erfolgen, wenn sich eines der Eingangssignale ändert. 
Daher werden die drei Signale in die Sensitivitätsliste aufgenommen. Zwischen begin 
und end wird die Prozessbeschreibung eingefügt, die in diesem einfachen Beispiel nur 
eine einzelne Zuweisung umfasst.
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Es wäre völlig berechtigt, wenn Sie jetzt Zweifel an der Sinnhaftigkeit von Prozessen 
bekämen: Im Prinzip beschreibt der Prozess keine andere Funktion als die, die man bereits 
mit einer einfachen Signalzuweisung realisieren kann. Eine nebenläufige Signalzuweisung 
wäre für dieses Beispiel tatsächlich kürzer und übersichtlicher als die Verwendung eines 
Prozesses. Aber Prozesse können mehr! Einige Aspekte werden bereits in diesem Kapitel 
vorgestellt. Andere Aspekte werden Sie beim Lesen der weiteren Kapitel dieses Buches 
entdecken und sukzessive die Behauptung nachvollziehen können, dass ohne Prozesse 
eine sinnvolle und übersichtliche Beschreibung digitaler Systeme nicht möglich ist.

Möglicherweise werden Sie bei der Lektüre dieses Buches auch entdecken, dass 
nebenläufige Signalzuweisungen und Prozesse zwei unterschiedliche Herangehenswei-
sen repräsentieren: Beschreibt man ein digitales Hardware-Modul ausschließlich mit 
Signalzuweisungen, benötigt man eine gute Vorstellung darüber, wie die Schaltung aus 
digitalen Grundelementen (UND-, ODER-Gatter, usw.) aufgebaut sein soll. Bei Verwen-
dung von Prozessen steht eher die digitale Funktion im Vordergrund. Wie diese Funktion 
später durch das Syntheseprogramm mithilfe der verfügbaren Grundelemente realisiert 
wird, ist von nachrangiger Bedeutung. Daher lassen sich mithilfe von VHDL-Prozessen 
auch komplexe digitale Funktionen elegant und übersichtlich realisieren.

Der Beispielcode zeigt auch, dass Prozessen Namen erhalten können, wenn dies sinn-
voll erscheint. Der Prozessname ist optional und wird vor dem Schlüsselwort process 
eingefügt. Der dem Namen folgende Doppelpunkt ist obligatorisch.

3.6.2	� Ausführung von Prozessen

Prozesse besitzen eine gewisse Ähnlichkeit mit Funktionen höherer Programmierspra-
chen. Allerdings existiert zwischen den Funktionen einer Programmiersprache und den 
VHDL-Prozessen ein entscheidender Unterschied. Eine Software-Funktion wird vom 
Programmierer durch einen entsprechenden Aufruf im Code aktiviert und einmalig 
ausgeführt. Dieses Prinzip kann für Prozesse nicht gelten: Ein Prozess beschreibt eine 
digitale Hardware-Komponente, die kontinuierlich aktiv ist. Eigentlich müsste also ein 
Prozess eine Endlosschleife enthalten, die immer wieder den Kern des Prozesses aus-
führt. Genauso arbeitet ein VHDL-Prozess tatsächlich. Die Endlosschleife ist jedoch im 
VHDL-Code nicht in Form einer Schleifenanweisung sichtbar, da mit der Verwendung 
eines VHDL-Prozesses bereits implizit festgelegt ist, dass der Code des Prozesses konti-
nuierlich ausgeführt wird.

Endlosschleifen in einer Software führen häufig dazu, dass ein Programm nicht 
mehr reagiert. In VHDL sind dagegen Endlosschleifen bewusst gewollt? Genauso ist es 
tatsächlich.

Ein Software-Programm wird sequenziell, also Befehl für Befehl, von einem Rech-
ner ausgeführt. Sie haben aber nur einen Rechner zur Ausführung der Software zur Ver-
fügung und wenn dieser mit der Verarbeitung einer Endlosschleife beschäftigt ist, kann 
er keine anderen Aufgaben ausführen. Wenn Sie dagegen aus einer VHDL-Beschreibung 

3.6  Prozesse
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Hardware generiert haben, existieren sozusagen viele kleine „Rechner“ gleichzeitig. 
Diese führen kontinuierlich, also im Prinzip in einer Endlosschleife, immer das gleiche 
„Programm“ aus, welches zuvor durch Prozesse beschrieben wurde.

Aber wie kann dann eine Simulation mehrerer VHDL-Prozesse auf einem nicht-paral-
lelen, sequenziell arbeitenden Rechner ausgeführt werden? Ein PC wäre ja schon mit der 
Ausführung eines einzelnen VHDL-Prozesses komplett ausgelastet.

Um diese Problematik zu lösen, ist in VHDL die bereits erwähnte Sensitivitätsliste 
eingeführt worden. In dieser Liste werden alle Signale eingetragen, die innerhalb des 
jeweiligen Prozesses gelesen werden. Der Prozess wird genau einmal durchlaufen, wenn 
sich eines der Signale der Sensitivitätsliste ändert. Ändert sich keines der Signale, ruht 
die Ausführung des jeweiligen Prozesses. Auf diese Weise wird in der Simulation einer 
VHDL-Beschreibung zu einem beliebigen Zeitpunkt immer maximal ein Prozess aktiv 
sein. Die Aktivierung eines Prozesses führt zu Signaländerungen, die dann wiederum 
die Ausführung weiterer Prozesse zur Folge haben. Auf diese Weise kann sukzessive das 
gesamte Verhalten der parallelen Hardware auf einem sequenziell arbeitenden PC nach-
gebildet werden.

Wird beim Anlegen der Sensitivitätsliste ein Signal übersehen, ist dies für die Hard-
waregenerierung mittels Synthese relativ unbedeutend. Die meisten Syntheseprogramme 
würden zwar Warnungen ausgeben, aber dennoch eine funktionstüchtige Hardware 
erzeugen.

Für die Simulation ist die korrekte Angabe der Sensitivitätsliste dagegen sehr wichtig: 
Würde bei dem in Abschn. 3.6.1 gezeigten Beispiel das Signal b nicht in der Sensitivi-
tätsliste aufgeführt sein, würde der Prozess bei Änderungen von b nicht aktiviert werden. 
Somit würde trotz einer Änderung von b das Ausgangssignal q seinen Wert behalten und 
die Simulation der Schaltung ein anderes Ergebnis liefern als die zugehörige Hardware. 
Eine umfassende Überprüfung der VHDL-Beschreibung mithilfe einer Simulation wäre 
also nicht möglich.

3.6.3	� Variablen

Als Alternative zu Signalen können in Prozessen auch Variablen eingesetzt werden. 
VHDL-Variablen sind mit statischen Variablen vergleichbar, wie sie zum Beispiel in der 
Programmiersprache C zur Verfügung stehen: Sie sind nur in dem Prozess sichtbar, in 
dem sie definiert wurden und behalten den zugewiesenen Wert auch dann, wenn der Pro-
zess unterbrochen wird.

Die Definition einer Variablen geschieht im Deklarationsteil des Prozesses (vor begin) 
und werden mit dem Schlüsselwort variable eingeleitet. Für Zuweisungen an Variablen 
wird := verwendet, während bei Signalen die bereits erwähnte Zeichenkombination <= 
zum Einsatz kommt.

Ein einfaches Beispiel verdeutlicht die Verwendung von Variablen in 
VHDL-Prozessen:
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proc_with_variable : process (a,b)

   variable my_var : std_logic;

begin

   my_var := a and b; -- Variablenzuweisung
   q <= my_var;       -- Signalzuweisung
end process;

Aufgrund der sequenziellen Ausführung eines Prozesses sind die im Beispielcode 
gezeigten Zuweisungen nicht vertauschbar.

Im Prinzip wird eine Zuweisung an eine Variable zunächst komplett durchgeführt, 
bevor die nächste Zeile des Prozesses abgearbeitet wird. Dies ist genau das Verhalten, 
das auch für Variablen in Programmiersprachen wie C/C++ oder Java gilt.

Zuweisungen an Signale blockieren den Prozessablauf dagegen nicht. Der Prozess 
läuft also weiter, ohne dass die Zuweisung eine Wirkung auf den Wert des Signals hat. 
Das Signal behält bis zu einer Prozessunterbrechung bzw. dem Prozessende seinen alten 
Wert. Erst bei einer Beendigung oder Unterbrechung des Prozesses werden die zuvor 
ausgeführten Signalzuweisungen wirksam und die Signale erhalten neue Werte.

Würde also die Zuweisung an q vor der Zuweisung an my_var stehen, würde der 
VHDL-Code im Gegensatz zum obigen Beispiel kein einfaches UND-Gatter mehr 
beschreiben.

Da insbesondere das oben erwähnte Verhalten von Signalzuweisungen innerhalb von 
Prozessen für viele VHDL-Einsteiger etwas gewöhnungsbedürftig ist, wird dieses Ver-
halten im nachfolgenden Abschnitt ausführlicher erläutert.

3.6.4	� Signalzuweisungen in Prozessen

Für die Zuweisungen von Signalen innerhalb von VHDL-Prozessen gelten zwei wichtige 
Regeln:

1.	 Die an ein Signal zugewiesenen Werte werden erst nach einer Unterbrechung des Pro-
zesses sichtbar.

2.	 Wird ein Signal mehrfach in einem Prozess zugewiesen, zeigt nur die zuletzt ausge-
führte Zuweisung Wirkung. Alle vorangegangenen Zuweisungen werden verworfen.

Da Signale allen Prozessen einer VHDL-Architecture zur Verfügung stehen, muss sicher-
gestellt werden, dass die Änderung eines Signals in allen Prozessen gleichzeitig sichtbar 
wird. Dieser Forderung wird durch die erste Regel Rechnung getragen.

Wird eine VHDL-Beschreibung simuliert, werden alle Zuweisungen an Signale 
zunächst „gesammelt“. Die eigentliche Zuweisung an das Signal und die damit verbun-
dene Sichtbarmachung eines Signalwechsels geschieht erst mit der Unterbrechung des 
Prozesses oder mit der Beendigung des Prozessdurchlaufs. Dies bedeutet auch, dass 

3.6  Prozesse
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ein Lesezugriff auf ein Signal vor einer Prozessunterbrechung den „alten“ Wert liefern 
wird – unabhängig davon, ob der Prozess das Signal zuvor beschrieben hat oder nicht.

Nicht wenige, die VHDL lernen, haben zuvor eine Programmiersprache erlernt. In 
diesen Sprachen gilt die Regel, dass eine Zuweisung sofort Wirkung zeigt. Wird einer 
Variablen ein neuer Wert zugewiesen, kann bereits mit dem nächsten Befehl auf den 
neuen Wert zugegriffen werden. Auch hier gilt: VHDL hat zwar viele Ähnlichkeiten 
mit klassischen Programmiersprachen, aber VHDL ist nicht für die Entwicklung eines 
sequenziellen Rechnerprogramms, sondern für die Beschreibung von parallel arbeiten-
den Hardwarekomponenten gedacht.

Die zweite Regel ergibt sich als Konsequenz aus der ersten. Es ist erlaubt einem Sig-
nal in einem Prozess mehrfach einen Wert zuzuweisen. Wenn die Signalzuweisungen 
aber zunächst gesammelt werden und erst bei einer Prozessunterbrechung wirklich aus-
geführt werden, kann hierbei nur der zuletzt zugewiesene Wert Berücksichtigung finden.

Ihnen wird der nachfolgende VHDL-Code vorgelegt. Es handelt sich um ein Modul 
mit den Eingängen a und b sowie dem Ausgang q.

signal s : std_logic;

   -- Hier ggf. weiterer Code

process (a,b,s)

begin

   s <= a and b;
   s <= a or b;
   s <= a;
   q <= s;
   s <= a xor b;
end process;

Welche Hardware wird durch diesen Code beschrieben? Ein UND-Gatter oder ein 
ODER-Gatter? Oder ist es nur ein einfacher Draht; wird also q immer direkt der Wert 
von a zugewiesen? Oder handelt es sich um ein Exklusiv-ODER-Gatter?

Analysiert man dieses Beispiel Schritt für Schritt, kann man sich der, in diesem Bei-
spiel recht verklausulierten, Funktion des Codes nähern.

Offensichtlich ist, dass die ersten beiden Zuweisungen an das Signal s keine Wirkung 
haben, da sie durch spätere Zuweisungen überschrieben werden. Diese kann man also 
aus dem Code streichen und der Prozess kann auch wie folgt formuliert werden.

process (a,b,s)

begin

   s <= a;
   q <= s;
   s <= a xor b;
end process;
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Werfen wir in dem verbleibenden Code einen Blick auf die Zuweisung an den Aus-
gang q. q wird der Wert von s zugewiesen. Aber was liefert der Lesezugriff auf s zurück? 
Vielleicht sind Sie geneigt ad hoc „a“ zu sagen, da vor der Zuweisung an q dem Signal 
s der Wert von a zugewiesen wird. Dies wäre die korrekte Antwort, wenn es sich bei s 
um eine VHDL-Variable handeln würde. Da s jedoch ein Signal ist, muss der Code noch 
etwas genauer analysiert werden.

Bei der Ausführung des Prozesses wird die Zuweisung des Wertes von a an das Sig-
nal s noch nicht sofort ausgeführt. Die Zuweisung an q würde also den Wert des Sig-
nals s sehen, der bei einem vorangegangenen Aufruf des Prozesses zugewiesen wurde. 
Da das Signal s in dem Prozess zweimal geschrieben wird und nur die letzte Sig-
nalzuweisung zur Ausführung kommt, wird s also die Exklusiv-ODER-Verknüp-
fung der Eingänge a und b zugewiesen. Also beschreibt der Prozess letztlich eine 
Exklusiv-ODER-Verknüpfung.

Die Reihenfolge der Zuweisungen an s und q ist, wie bei nebenläufigen Signalzuwei-
sungen irrelevant. Der Prozess kann daher auch wie folgt formuliert werden.

process (a,b,s)

begin

   s <= a xor b;
   q <= s;
end process;

Diese Variante ist deutlich besser lesbar, da sie auch bei einer sequenziellen Interpre-
tation des Codes auf das korrekte Verständnis der beschriebenen Funktionalität führt.

Sofern das Signal s nicht in anderen Prozessen der Architecture verwendet wird, kann 
der Code auf die Zuweisung q <= a xor b reduziert werden.

Ein nicht seltener Fehler, der bei Signalzuweisungen in Prozessen auftritt, ist die 
Zuweisung eines Signals aus unterschiedlichen Prozessen heraus. Dies würde bedeuten, 
dass zwei Prozesse gleichzeitig den Wert des Signals festlegen könnten. Abgesehen von 
wenigen Spezialfällen, ist dies in der Regel nicht gewollt und würde auch beim Syn-
thesevorgang zu Fehlermeldungen führen. Daher müssen bei der Erstellung von VHDL-
Prozessen die beiden folgenden Regeln beachtet werden:

1.	 Signale dürfen in beliebig vielen Prozessen gelesen werden.
2.	 Signale dürfen nur in einem Prozess geschrieben werden.

3.6.5	� Wichtige Sprachkonstrukte in VHDL-Prozessen

VHDL-Prozesse bieten vielfältige Sprachkonstrukte zur Beschreibung einer Hardware-
Komponente. In diesem Abschnitt werden die gebräuchlichsten und wichtigsten Ele-
mente zur Beschreibung von Prozessen vorgestellt.

3.6  Prozesse
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3.6.5.1 � If-Anweisung
Die If-Anweisung ermöglicht die bedingte Ausführung von Code innerhalb eines 
VHDL-Prozesses. Zwischen den Schlüsselwörtern if und then wird eine Bedingung, bei-
spielsweise ein Vergleich zweier Signale, eingefügt. Anschließend folgt der Code, der 
ausgeführt werden soll, wenn die Bedingung wahr ist. Abgeschlossen wird die Anwei-
sung mit end if;

Optional können zusätzlich mit elsif weitere Bedingungen eingefügt werden, die dann 
überprüft werden, wenn die voranstehenden Bedingungen unwahr waren.

Mit dem Schlüsselwort else wird der Code eingeleitet, der ausgeführt werden soll, 
wenn alle Bedingungen der If-Anweisung unwahr waren. Auch dies ist eine Option, die 
bei Bedarf weggelassen werden kann.

Bei der Verwendung von elsif ist die Schreibweise als ein einzelnes Wort zu beachten. 
Viele VHDL-Anfänger, insbesondere wenn sie bereits Programmierkenntnisse besitzen, 
neigen dazu, statt elsif die Formulierung else if zu wählen. Die beiden Varianten sind 
nicht äquivalent. Mit else if wird in dem Else-Zweig der Anweisung eine neue If-Anwei-
sung geöffnet, die ihrerseits durch end if geschlossen werden muss.

Der folgende Pseudocode zeigt den prinzipiellen Aufbau der If-Anweisung, wobei 
optionale Elemente in geschweiften Klammern dargestellt sind.

if <Bedingung> then

   <Anweisungen>

{elsif <Bedingung> then

   <Anweisungen>}

{else

   <Anweisungen>}

end if;

Ein Beispiel für die Anwendung der If-Anweisung zeigt der folgende Code.

if a = b then

   q <= a and c;

   v := '1';

elsif a = c and b = '1' then

   q <= d;

   v := '1';

else

   q <= '0';

   v := '0';

end if;

3.6.5.2 � Case-Anweisung
Wie die If-Anweisung ermöglicht auch die Case-Anweisung die bedingte Ausfüh-
rung von Codeteilen. Nach dem Schlüsselwort case wird ein auszuwertender Ausdruck 
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angegeben. Mit dem Schlüsselwort when wird angegeben, welcher Code für ein kon-
kretes Ergebnis des Ausdrucks ausgeführt werden soll. Durch die Verwendung von „|“ 
können mehrere Werte angegeben werden, die zur Ausführung des nachfolgenden Codes 
führen sollen. Ist keiner der angegebenen Werte identisch mit dem Ergebnis des Aus-
drucks, können Default-Anweisungen spezifiziert werden, die in diesem Fall ausgeführt 
werden sollen. Hierzu wird statt eines Wertes das Schlüsselwort others angegeben.

Der folgende Pseudocode zeigt den Aufbau der Case-When-Anweisung.

case <Ausdruck> is

   when <Wert>  => <Anweisungen>
   {when <Wert> => <Anweisungen>}
      …

   {when <Wert> => <Anweisungen>}
   {when others => <Anweisungen>}
end case;

Ein Anwendungsbeispiel der Case-When-Anweisung wird durch den folgenden Code 
dargestellt.

case a_vec is -- a_vec ist vom Typ std_logic_vector(2 downto 0)

   when "000" =>

      q <= a and c;

      r <= a;

   when "001"|"010" =>

      q <= b;

      r <= a and c;

   when "111" =>

      q <= '1';

      r <= d;

   when others =>

      q <= '0';

      r <= '0';

end case;

Mit einer Case-Anweisung kann ein einzelner Ausdruck mit verschiedenen möglichen 
(konstanten) Werten verglichen werden. In vielen Fällen kann mit der Case-Anweisung 
ein sehr kompakter und übersichtlicher Code erzielt werden. Sind die Vergleichswerte 
nicht konstant oder sind Vergleiche mit unterschiedlichen Ausdrücken gewünscht, kann 
die If-Anweisung verwendet werden.

3.6.5.3 � For-Schleife
VHDL unterstützt auch Schleifen. Zuerst wird hier die For-Schleife vorgestellt.

3.6  Prozesse
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Nach dem Schlüsselwort for wird ein Bezeichner für die Schleifenvariable eingefügt. 
Der Schleifenbereich folgt nach dem Schlüsselwort in. Der Bereich kann aufsteigend (zum 
Beispiel „1 to 8“) oder absteigend (zum Beispiel „15 downto 0“) durchlaufen werden.

Nach der Angabe des Schleifenbereichs folgt das Schlüsselwort loop, welches von 
den Anweisungen des Schleifenkerns gefolgt wird. Die Schleife wird mit end loop 
abgeschlossen.

Schleifen dürfen optional mit einem Namen (Label) versehen werden.

{loop_label:} for <Bezeichner> in <Bereich> loop

   <Anweisungen>

end loop {loop_label};

Ein Beispiel für die Verwendung einer For-Schleife zeigt das nachfolgende Codefrag-
ment, das den Vektor x „spiegelt“ und das Ergebnis dem Vektor y zuweist. y(0) erhält 
den Wert von x(9), y(1) den Wert von x(8) usw.

my_loop: for i in 0 to 9 loop

   y(9-i) := x(i); -- x und y sind Vektoren
end loop my_loop;

Die For-Schleifen sind abweisende Schleifen. Beispielsweise würde der Kern der 
nachfolgenden Schleife nie ausgeführt werden, da es sich um eine abwärtszählende 
Schleife handelt, deren untere Grenze größer ist als die obere.

another_loop: for i in 0 downto 5 loop

   y(i) := x(i); -- was auch immer hier steht - es wird nicht ausgefùhrt!

end loop;

Schleifen sind synthesefähig, wenn die Schleifengrenzen statisch sind, sich die 
Schleifengrenzen also nicht erst zur Laufzeit des VHDL-Codes ergeben.

Darüber hinaus ist zu beachten, dass Schleifen von Syntheseprogrammen „ausge-
rollt“ werden. Man kann sich dies so vorstellen, dass die Schleife aufgelöst wird und der 
Schleifenkern wiederholt in den Code eingefügt wird. Für jedes Durchlaufen des Schlei-
fenkerns wird also eine eigene Hardwarekomponente generiert.

3.6.5.4 � While-Schleife
Neben For-Schleifen können in VHDL auch While-Schleifen eingesetzt werden. Hierbei 
wird zunächst die nach dem Schlüsselwort while angegebene Bedingung geprüft. Ergibt 
diese den Wert true, wird der Schleifenkern ausgeführt und anschließend die Bedingung 
erneut geprüft. Auch die While-Schleifen sind also abweisende Schleifen.

Die Struktur einer while-Schleife zeigt der folgende Pseudocode.
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{loop_label:} while <Bedingung> loop

   <Anweisungen>

end loop {loop_label};

Ein Beispiel für die Verwendung einer While-Schleife zeigt das nachfolgende 
Codefragment.

i := 0;
while i < 8 loop

   a(i) := b(i) xor c(7-i);
   i    := i + 1;
end loop;

3.7	� Hierarchie

Werden komplexere Schaltungen entworfen, ist es sinnvoll, die gesamte Schaltung 
in kleinere Module aufzuspalten, die zunächst separat in VHDL beschrieben werden. 
In einer weiteren VHDL-Beschreibung können diese Module dann zur gewünschten 
Gesamtschaltung kombiniert werden. Um dieses Vorgehen zu unterstützen, bietet VHDL 
die Möglichkeit Module innerhalb von Modulen „aufzurufen“. In der Praxis spricht man 
hierbei nicht von „aufrufen“, sondern von „instanziieren“. Ein instanziiertes Modul wird 
auch als „Instanz“ dieses Moduls bezeichnet.

Es ist auch möglich eine neu geschaffene Komponente, welche Instanzen enthält, wie-
derum in einem anderen Modul zu instanziieren und so eine hierarchische Beschreibung 
einer Schaltung in mehreren Stufen/Ebenen zu realisieren.

Im Folgenden wird die Vorgehensweise zur Instanziierung von Modulen in VHDL 
anhand des Beispiels einer Komponente beschrieben, die drei 8-Bit-Operanden addiert.

Nehmen wir an, dass bereits das folgende Entity-Architecture-Paar zur Beschreibung 
eines 8-Bit-Addierers für zwei Operanden in VHDL beschrieben wurde.

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity add_2 is

   port (op1 : in  std_logic_vector(7 downto 0);

         op2 : in  std_logic_vector(7 downto 0);

         sum : out std_logic_vector(7 downto 0));

end;

3.7  Hierarchie
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architecture struct of add_2 is

begin

   process (op1,op2)

   begin

      sum <= std_logic_vector(unsigned(op1) + unsigned(op2));

   end process;

end;

Um diese Beschreibung des Addierers in einer anderen VHDL-Architecture zu instan-
ziieren, wird die Entity angegeben, die für diese Instanziierung verwendet werden soll. 
Darüber hinaus muss die Bibliothek angegeben werden, in der das Modul abgelegt wurde.

Die Instanziierung eines Moduls beginnt mit einem eindeutigen Namen für diese Instanz. 
Nach einem Doppelpunkt folgen das Schlüsselwort entity, die Bibliothek (im nachfolgen-
den Beispiel die Arbeitsbibliothek work) und der Name des zu instanziierenden Moduls. 
Abschließend wird die Zuordnung der Anschlüsse der Instanz zu den Ein- und Ausgängen 
oder den Signalen der instanziierenden Architecture angegeben. Die Zuordnung wird mit 
den Schlüsselwörtern port map eingeleitet.

Auf Basis des Addierers für zwei Operanden kann ein Addierer für 3 Operanden 
realisiert werden. Das Blockschaltbild dieses 3-Operanden-Addierers ist in Abb. 3.6 
dargestellt.

Dieser Addierer lässt sich in VHDL wie folgt beschreiben:

library ieee;

use ieee.std_logic_1164.all;

entity add_3 is

   port (a : in std_logic_vector (7 downto 0);

         b : in std_logic_vector (7 downto 0);

Abb. 3.6   Blockschaltbild 
eines Addierers für 3 
Operanden
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         c : in  std_logic_vector (7 downto 0);

         q : out std_logic_vector (7 downto 0));

end;

architecture struct of add_3 is

   signal tmp : std_logic_vector (7 downto 0);

begin

   a1: entity work.add_2 port map (op1 => a, op2 => b, sum => tmp);

   a2: entity work.add_2 port map (op1 => tmp, op2 => c, sum => q);

end;

Das Beispiel zeigt die Zuordnung der Anschlüsse der add_2-Module zu den Ein- und 
Ausgängen des Moduls add_3, wobei eine namensbasierte Zuordnung (engl. named 
association) mithilfe des Zuordnungsoperators => verwendet wird. Eher selten findet 
man positionsbasierte Zuordnung (engl. positional association), bei der lediglich die 
Ports und Signale der instanziierenden Architecture angegeben werden. Das erste ange-
gebene Signal wird dann an den ersten Port der instanziierten Architecture angeschlos-
sen. Das zweite Signal an den zweiten Port, usw.

3.8	� Übungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Prüfen Sie sich mit den folgenden Aufga-
ben. Die Antworten finden Sie am Ende des Buches.

Sofern nicht anders vermerkt, ist nur eine Antwort richtig.

Aufgabe 3.1
Welche der folgenden Aussagen zum VHDL-basierten Entwurfsprozess ist richtig?

a)	 Eine Testbench ist eine VHDL-Datei, die nur in der Simulation zum Einsatz kommt.
b)	Wurde mithilfe von Simulationen die korrekte Funktionsweise einer VHDL-Beschrei-

bung nachgewiesen, müssen im weiteren Verlauf des Entwurfsprozesses keine Ände-
rungen an dem VHDL-Code vorgenommen werden.

c)	 Ein digitales System muss immer in einer einzelnen VHDL-Datei beschrieben 
werden.

d)	Eine syntaktisch korrekt beschriebenes Entity-/Architecture-Paar ist sowohl simulier-
bar als auch synthetisierbar.

Aufgabe 3.2
Welche Aussagen zu VHDL-Bibliotheken sind richtig? (Mehrere Antworten sind richtig)

a)	 Das Ergebnis der Übersetzung einer VHDL-Datei wird immer in einer Bibliothek 
abgelegt.

3.8  Übungsaufgaben
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b)	Zur Verwendung der Inhalte einer Bibliothek muss diese mithilfe einer Library-
Anweisung bekannt gemacht werden (Ausnahmen work, std).

c)	 Die Bibliothek work enthält wichtige vordefinierte Datentypen.
d)	Bei der Verwendung des Datentyps std_logic muss die Bibilothek ieee bekannt 

gemacht werden.
e)	 Die Datentypen signed, unsigned und integer sind vordefinierte Datentypen, die auch 

ohne Angabe einer Bibliothek verwendet werden können.

Aufgabe 3.3
Welche Aussagen sind richtig? (Mehrere Antworten sind richtig)

a)	 In VHDL wird Groß- und Kleinschreibung nicht unterschieden: MY_SIG und my_sig 
bezeichnen das gleiche Signal.

b)	Anhand der Entity einer VHDL-Beschreibung können die Ein- und Ausgänge eines 
Moduls identifiziert werden.

c)	 Signale vom Datentyp std_logic können nur die Werte ‚0‘, ‚1‘ und ‚U‘ annehmen.
d)	 Im Deklarationsteil einer Architecture (= vor begin) können sowohl Signale als auch 

Variablen definiert werden.
e)	 Numerische Konstanten können nicht in hexadezimaler Darstellung angegeben 

werden.

Aufgabe 3.4
Welche Aussagen zu VHDL-Prozessen sind richtig? (Mehrere Antworten sind richtig)

a)	 Der Code innerhalb eines Prozesses wird sequenziell ausgeführt.
b)	Alle Signale auf die innerhalb eines Prozesses schreibend zugegriffen wird, müssen in 

der Sensitivitätsliste erscheinen.
c)	 Innerhalb eines Prozesses ist nur die zuletzt ausgeführte Zuweisung an ein Signal rele-

vant. Alle vorangegangenen Zuweisungen an das gleiche Signal haben keine Wirkung.
d)	Für die Zuweisung eines Wertes an eine Variable wird die Zeichenkombination „<=“ 

verwendet.

Aufgabe 3.5
Der nachfolgend dargestellte VHDL-Code ist syntaktisch nicht korrekt. Korrigieren Sie 
die Fehler.

library ieee.std_logic_1164.all;

entity my_module is

   port (a : in  std_logic_vector;

         b : in  integer;

         c : in  std_logic;
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         q : out std_logic_vector;)

end;

architecture of my_module is

begin

   signal tmp : unsigned (7 downto 0);

   process (a,b,tmp)

      variable vi : unsigned (7 downto 0);

   begin

      tmp <= to_unsigned(A);
      vi  <= to_unsigned(B,8);
      if c == 1
         q <= vi - tmp;
      else

         q <= vi + tmp;
      end;

   end process;

end;

Aufgabe 3.6
Erstellen Sie ein VHDL-Modul (Entity und Architecture), das die im Folgenden 
beschriebene Funktion realisiert:

•	 Das Modul besitzt die Eingänge a (Wortbreite 8 bit), b (8 Bit) und c (2 Bit) und den 
Ausgang q (8 Bit)

•	 Der Ausgang q wird in Abhängigkeit vom Eingang c aus den Werten der Eingänge a 
und b berechnet. Es soll gelten:
c = 00:   q = a
c = 01:   q = a & b
c = 10:   q = a ˅ b
c = 11:   q = a ⊕ b  (⊕ bezeichnet eine Exklusiv-ODER-Verknüpfung)

•	 Verwenden Sie für die Fallunterscheidung (Werte von c) eine If-Anweisung

Aufgabe 3.7
Ersetzen Sie die If-Anweisung aus Aufgabe 3.6 durch eine Case-Anweisung. Welche 
Codeänderungen sind erforderlich?

Aufgabe 3.8
Auf Basis des Moduls aus Aufgabe 3.6 soll ein Modul entworfen werden, das für eine 
Wortbreite von 16 Bit ausgelegt ist (Ports a,b und q) aber ansonsten die identische Funk-
tion ausführt.

Schreiben Sie ein geeignetes Entity/Architecture-Paar in VHDL. Instanziieren Sie das 
Modul aus Aufgabe 3.6.
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Digitalschaltungen, deren Ausgänge nur von den aktuellen Eingangswerten abhängen, 
nennt man kombinatorische Schaltungen. Eine solche Schaltung arbeitet nur mit Logik-
gattern und enthält weder Rückkopplungen noch Flip-Flops. Die Eingangswerte werden 
durch die Schaltung kombiniert (daher der Name) und ein Ergebnis berechnet. Da keine 
Flip-Flops verwendet werden, können keine Informationen gespeichert werden.

Kombinatorische Schaltungen sind normalerweise Teil einer größeren Schaltung. Sie 
werden zusammen mit Flip-Flops eingesetzt, wobei der kombinatorische Teil die Berech-
nungen vornimmt und die Flip-Flops die Ergebnisse speichern. Die gesamte Schaltung 
mit den Flip-Flops ist dann eine sequenzielle Schaltung, also eine Schaltung deren Ergeb-
nis von der zeitlichen Abfolge (der Sequenz) ihrer Eingänge abhängt. In diesem Kapitel 
werden zunächst die Funktion und der Entwurf kombinatorischer Schaltungen erläutert. 
Flip-Flops und sequenzielle Schaltungen werden im nächsten Kapitel vorgestellt.

Als Beispiel für eine kombinatorische Schaltung ist in Abb. 4.1 eine einfache Alarm-
anlage dargestellt. Dabei sollen eine Tür (T) und zwei Fenster (F1, F2) überwacht wer-
den. Mit einem Schalter (S) wird die Alarmanlage ein- oder ausgeschaltet. Diese vier 
Eingangssignale sollen binäre Werte also 0 oder 1 sein. Die 1 bedeutet dabei jeweils 
„aktiv“, das heißt Tür oder Fenster ist offen, beziehungsweise Anlage ist eingeschaltet.

Die kombinatorische Schaltung wertet die vier Eingangssignale aus und berechnet, ob 
ein Alarm ausgelöst werden soll oder nicht. Dafür gibt es einen Ausgang A, der mit einer 
1 einen Alarmfall anzeigt. Andernfalls ist der Ausgang 0. Am Ausgang A ist eine Alarm-
hupe angebracht.

Wie man systematisch die kombinatorische Schaltung entwirft, wird später in diesem 
Kapitel erläutert. Für dieses einfache Beispiel kann man die Schaltung direkt aus der 
Aufgabenstellung ableiten. Der Alarm soll überwachen, ob Tür oder Fenster offen sind 
und dabei melden, wenn einer oder mehrere der Kontakte auf 1 sind. Dies entspricht der 
ODER-Verknüpfung der drei Signale T, F1, F2. Dieses Zwischenergebnis führt zu einem 
Alarm, wenn die Anlage eingeschaltet ist, also muss das Ergebnis der ODER-Verknüpfung 
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noch mit dem Schalter S UND-verknüpft werden. Nur wenn der Schalter auf 1 ist, wird 
der Alarm A ausgelöst. Die kombinatorische Schaltung ist ebenfalls in Abb. 4.1 dargestellt.

4.1	� Schaltalgebra

Die Rechenregeln der Digitaltechnik werden als Schaltalgebra bezeichnet. Der Begriff 
Algebra ist aus der Schulmathematik bekannt und beschreibt dort die Rechenregeln für 
Zahlen. Die Zahlen in der elementaren Algebra, also der Schulmathematik, können dabei 
unendlich viele Werte einnehmen, also eins, zwei, drei, siebenundvierzig, fünftausend 
und so weiter.

Die Schaltalgebra ist eine besondere Form der Algebra, bei der Variablen nur zwei 
mögliche Werte haben, nämlich 0 und 1. Das heißt für alle Eingangswerte und das 
Ergebnis einer Rechenoperation sind nur diese beiden Werte möglich. Manchmal werden 
für die Werte auch die Begriffe Falsch (entspricht 0) und Wahr (entspricht 1) verwendet.

Funktionen, bei denen Eingangs- und Ausgangswerte nur die Werte 0 und 1 anneh-
men können, bezeichnet man als binäre Schaltfunktionen, boolesche Schaltfunktionen 
oder einfach Schaltfunktionen. Die Bezeichnung boolesch weist darauf hin, dass die 
Funktion nach der Booleschen Algebra berechnet wird, die nach dem englischen Mathe-
matiker George Boole benannt ist.

Die Schaltalgebra ist also die mathematische Beschreibung der Funktionen in der 
Digitaltechnik. Die Schaltung selber wird dann als kombinatorische Schaltung bezeich-
net. Darin führen Schaltglieder eine logische Verknüpfung von Eingangswerten zu einem 
Ausgangswert durch. Die Schaltglieder bezeichnet man auch als Gatter.

Physikalische Eigenschaften wie Spannungspegel oder Umschaltzeiten werden in der 
Schaltalgebra nicht berücksichtigt. Ob ein digitales Signal den Wert 0 V oder 0,1 V hat 
ist unbedeutend. Beide Spannungspegel werden durch den Wert 0 dargestellt. Somit ist 
die Schaltalgebra eine Abstrahierung zur vereinfachten Schaltungsbeschreibung.

4.1.1	� Schaltfunktion und Schaltzeichen

Bei der Beschreibung von Schaltfunktionen werden die Eingangsvariablen meist mit den 
Buchstaben A, B, C, … und die Ausgangsvariable mit dem Buchstaben Y bezeichnet. Y 
ist damit eine Funktion von A, B, C, … und kann durch ein Schaltzeichen dargestellt 
werden (Abb. 4.2).

Abb. 4.1   Kombinatorische 
Schaltung als einfache 
Alarmanlage
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4.1.2	� Funktionstabelle

Da jede Eingangsvariable nur zwei mögliche Werte haben kann, ist es möglich, sämtli-
che Kombinationen der Eingangswerte aufzuzählen und als Funktionstabelle anzugeben. 
Bei n Eingängen sind 2n Kombinationen möglich. Für die Funktionstabelle wird auch 
der Begriff Wahrheitstabelle benutzt; er bezieht sich auf die Bezeichnungen Falsch und 
Wahr.

Somit gibt es bei zwei Eingangsvariablen A und B vier verschiedene Kombinationen 
der Eingangswerte, nämlich 00, 01, 10, 11. Drei Eingangsvariablen ergeben acht, vier 
Eingangsvariablen 16 Kombinationen.

Für die elementare Algebra wäre eine Funktionstabelle nicht möglich, da unendlich 
viele Eingangswerte möglich sind. Die Tabelle würde also unendlich groß werden. Trotz-
dem gibt es auch dort ein Beispiel für eine Funktionstabelle, nämlich das „Kleine Ein-
maleins“. Für das Produkt zweier Zahlen von 1 bis 10 gibt es 100 Möglichkeiten und die 
100 Ergebnisse werden in der Grundschule auswendig gelernt.

Funktionstabellen dienen zum Beschreiben vorhandener Schaltungen oder zur Spe-
zifikation einer Schaltung, die entworfen werden soll. Beim Schaltungsentwurf, der 
Schaltungssynthese wird die Aufgabe meist als Text beschrieben und daraus die Funkti-
onstabelle erstellt.

Als Beispiel soll eine Schaltung spezifiziert werden, welche die Mehrheit aus drei 
Eingangswerten bildet. Die Eingänge A, B, C sind digitale Werte und können die Werte 0 
und 1 annehmen. Wenn zwei oder drei Eingänge 1 sind, soll auch der Ausgang Y 1 sein. 
Ansonsten ist der Ausgang 0.

Eine solche Mehrheitsschaltung oder Majoritätsschaltung kann als Sicherheits-
schaltung für redundante Systeme dienen. Eine Fabrikhalle hat drei Rauchmelder und 
nur wenn zwei Rauchmelder auslösen, wird ein Alarm gemeldet und die Fabrikation 
gestoppt. Ein Fehler in einem Rauchmelder kann also keinen Alarm auslösen.

Die Funktionstabelle der Majoritätsschaltung ist in Abb. 4.3 angegeben. Für drei Vari-
ablen gibt es 23, also 8 Kombinationen und die Tabelle gibt an, welche der Kombinatio-
nen eine 1 am Ausgang ergeben sollen.

4.1.3	� Funktionstabelle mit Don’t-Care

Als Besonderheit kann es bei Funktionstabellen vorkommen, dass für eine oder meh-
rere Eingangskombinationen keine Ausgabe spezifiziert werden muss. Dies ist dann der 
Fall, wenn bestimmte Eingangskombinationen laut Aufgabenstellung nicht vorkommen 

Abb. 4.2   Schaltfunktion und 
Schaltzeichen Y = f(A,B,C)
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können. Oder das Ergebnis bestimmter Eingangskombinationen wird in der späteren Ver-
arbeitung nicht verwendet.

Der nicht definierte Ausgang wird als Don’t-Care bezeichnet und in der Funktionsta-
belle mit einem Strich ‚-‘ gekennzeichnet. Beim Schaltungsentwurf können die Don’t-
Care-Einträge benutzt werden, um eine möglichst kleine und damit kostengünstige 
Schaltung zu entwerfen.

Eine Schaltung soll für die Zahlen 0 bis 9 ausgeben, ob es sich um eine Primzahl 
handelt. Die Zahlen sind als vierstellige Dualzahl A(3:0) angegeben. Von den 16 Kombi-
nationen der vier Stellen werden 6 Kombinationen nicht benutzt. Die Ausgabe für diese 
Kombinationen ist beliebig, also Don’t-Care. Abb. 4.4 zeigt die Funktionstabelle.

4.2	� Funktionen der Schaltalgebra

Die Grundfunktionen der Schaltalgebra sind UND-Verknüpfung, ODER-Verknüpfung und 
Negation. Alle anderen Schaltfunktionen lassen sich aus Kombinationen dieser Grund-
funktionen darstellen. Zusammengesetzte Funktionen sind NAND-Verknüpfung, NOR-
Verknüpfung, XOR-Verknüpfung (Antivalenz) und XNOR-Verknüpfung (Äquivalenz).

Abb. 4.3   Funktionstabelle der 
Majoritätsschaltung

0 0
0 1
1 0
1 1

A B Y

0
1
1
1

0 0
0 1
1 0
1 1

0
0
0
0
1
1
1
1

0
0
0
1

C

Abb. 4.4   Primzahlerkennung 
für Zahlen 0 bis 9 als 
Funktionstabelle mit Don’t-Care

0

1

0

1

0

1

0

1

A(3:0) Y
0

-

0
1

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

0
0
0
0

0
0
0
0

1
1
1
1
1
1
1
1

1
1
1
1

0
0
0
0 1

0
1
0
1
0
0
-
-
-
-
-

Z ah le nw e rt
0
1
2
3
4
5
6
7
8
9



89

4.2.1	� UND-Verknüpfung

Die UND-Verknüpfung wurde in Kapitel 1 schon kurz vorgestellt. Der Ausgang Y ist 1, 
wenn alle Eingangsvariablen 1 sind. Ansonsten ist der Ausgang 0. Das Funktionszeichen 
ist nicht eindeutig definiert. Meist wird ‚&‘ (Kaufmanns-Und) verwendet. Daneben sind 
‚∧‘ (umgekehrtes v), der Multiplikationspunkt ‚·‘ sowie das direkte Aneinanderfügen der 
Operatoren möglich. In der Übersicht aller Funktionen in Tab. 4.1 finden sich für alle 
Funktionen die verschiedenen Schreibweisen.

Das Verhalten der UND-Verknüpfung ist in der Funktionstabelle in Abb. 4.5 darge-
stellt. Alle vier Kombinationsmöglichkeiten für die beiden Eingänge sind aufgezählt; nur 
wenn A und B gleich 1 sind, ist auch Y gleich 1. Abb. 4.5 zeigt auch das Schaltzeichen 
der UND-Verknüpfung.

Eine UND-Verknüpfung ist auch für mehr als zwei Eingangsvariablen möglich. 
Abb. 4.6 zeigt Funktionstabelle und Schaltzeichen bei drei Eingangsvariablen. Genauso 
sind Funktionen mit vier, fünf oder mehr Eingangsvariablen möglich und werden auch in 
der Praxis verwendet.

4.2  Funktionen der Schaltalgebra

Tab. 4.1   Funktionen für zwei Eingangsvariablen

Ausgabe für AB = Logische Funktion Bezeichnung
11 01 10 00

0 0 0 0 Y = 0 Konstante 0
0 0 0 1 Y = A ∨ B NOR

0 0 1 0 Y = A& B̄ Inhibition

0 0 1 1 Y = B̄ Oder: Y = ¬B Negation (B)

0 1 0 0 Y = Ā&B Inhibition

0 1 0 1 Y = Ā Oder: Y = ¬A Negation (A)

0 1 1 0 Y = A⊕ B XOR, Antivalenz

0 1 1 1 Y = A&B NAND

1 0 0 0 Y = A&B Oder: Y = A ∧ B = A · B = AB UND

1 0 0 1 Y = A⊕ B (Selten: Y = A ↔ B) XNOR, 
Äquivalenz

1 0 1 0 Y = A Identität (A)

1 0 1 1 Y = A ∨ B̄ (Selten: Y = B → A) Implikation

1 1 0 0 Y = B Identität (B)

1 1 0 1 Y = Ā ∨ B (Selten: Y = A → B) Implikation

1 1 1 0 Y = A ∨ B (Selten: Y = A+ B) ODER

1 1 1 1 Y = 1 Konstante 1

http://dx.doi.org/10.1007/978-3-662-49731-9_1
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4.2.2	� ODER-Verknüpfung

Auch die ODER-Verknüpfung wurde in Kapitel 1 kurz vorgestellt. Der Ausgang Y ist 1, 
wenn ein oder mehrere Eingangsvariablen 1 sind. Nur wenn alle Eingangsvariablen 0 
sind ist auch der Ausgang 0. Die Funktionstabelle und das Schaltzeichen sind in Abb. 4.7 
dargestellt. Auch die ODER-Funktion kann mehr als zwei Eingänge verknüpfen. Als 
Symbol in der Schaltfunktion wird ‚≥1‘ verwendet. In Formeln wird ‚∨‘ (mathemati-
sches Symbol) oder ‚v‘ (Buchstabe) benutzt, auch das Plus-Zeichen ‚+‘ wird manchmal 
verwendet.

4.2.3	� Negation, Inverter

Die Negation gibt das „Gegenteil“ des Eingangswerts aus, also bei einer 0 eine 1 und 
bei einer 1 eine 0 (Abb. 4.8). In Formeln wird die Negation durch einen Strich über der 
Variablen oder Voranstellen des Zeichens ‚¬‘ dargestellt. Auch ganze Ausdrücke kön-
nen durch einen Strich oberhalb negiert werden. Ein Beispiels dafür ist das XNOR in 
Tab. 4.1.

Das Schaltungselement wird Inverter genannt. In Schaltzeichen wird die Negation 
durch einen Kreis dargestellt. Als Schaltzeichen für den Inverter werden drei verschie-
dene Varianten verwendet (Abb. 4.8). Das untere Schaltsymbol mit dem Dreieck ist am 
prägnantesten und wird in der Praxis meist benutzt.

Das Sonderzeichen ‚¬‘ ist etwas umständlich zu erzeugen, darum wird auch der 
Schrägstrich ‚/‘ als Präfix oder die Raute ‚#‘ als Suffix zum Kennzeichen einer Negation 
verwendet. Die Invertierung des Wertes A schreibt sich dann also /A oder A#.

Abb. 4.5   Funktionstabelle 
und Schaltzeichen der UND-
Verknüpfung
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4.2.4	� NAND-Verknüpfung

Durch Kombination einer UND-Verknüpfung und einer Negation am Ausgang ergibt 
sich die NAND-Verknüpfung. Der Name leitet sich aus dem englischen „not and“ ab. Das 
Schaltbild entspricht der UND-Verknüpfung mit einem Kreis am Ausgang für die Nega-
tion. Die Funktion ist für zwei oder mehr Eingangsvariablen definiert und Abb. 4.9 zeigt 
Funktionstabelle und Schaltzeichen für vier Variablen.

Formeln verwenden das UND-Symbol ‚&‘ und negieren den ganzen Ausdruck durch 
einen Strich oberhalb (siehe Tab. 4.1). Dies gilt auch für NOR und XNOR.

Abb. 4.7   Funktionstabelle 
und Schaltzeichen der ODER-
Verknüpfung
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des Schaltzeichens für einen 
Inverter 0
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Abb. 4.9   Funktionstabelle 
und Schaltzeichen der NAND-
Verknüpfung

0

&

A

B
Y

1

0

1

0

1

0

1

A B Y

1

0

1

1

C D

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0 1

1

1

1

1

1

1

1

1

1

1

1

C

D



92 4  Kombinatorische Schaltungen

4.2.5	� NOR-Verknüpfung

Durch Kombination einer ODER-Verknüpfung und einer Negation am Ausgang ergibt 
sich die NOR-Verknüpfung. Der Name leitet sich aus dem englischen „not or“ ab. Das 
Schaltbild entspricht der ODER-Verknüpfung mit einem Kreis am Ausgang für die Nega-
tion (Abb. 4.10). Auch diese Funktion ist für zwei oder mehr Eingangsvariablen definiert.

4.2.6	� XOR-Verknüpfung

Die XOR-Verknüpfung ist in der Grundform zunächst für zwei Eingangsvariablen definiert 
und ergibt eine 1 wenn genau eine Variable 1 ist, aber nicht beide gemeinsam. Dies kann 
man als „ausschließendes oder“, englisch „exclusive or“ bezeichnen, daher XOR. Manch-
mal wird die Funktion auch als Antivalenz bezeichnet. Dies meint, dass beide Eingänge 
unterschiedlichen Wert haben müssen, damit der Ausgang 1 wird. Eine XOR-Verknüpfung 
mit mehr als zwei Eingängen ist 1, wenn die Anzahl der 1-Werte am Eingang ungerade ist.

In Formeln wird das XOR durch das Symbol ‚⊕‘ dargestellt. In Schaltzeichen wird 
die Bezeichnung ‚=1‘ verwendet (Abb. 4.11).

4.2.7	� XNOR-Verknüpfung

Die XOR-Verknüpfung mit negiertem Ausgang wird als XNOR-Verknüpfung bezeich-
net („exclusive not or“). Funktion und Schaltzeichen sind in Abb. 4.12 dargestellt. 

Abb. 4.10   Funktionstabelle 
und Schaltzeichen der NOR-
Verknüpfung
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und Schaltzeichen der XOR-
Verknüpfung

0
A
B

Y
0

0 1
1 0
1 1

A B Y
0
1
1

=1

0

Abb. 4.12   Funktionstabelle 
und Schaltzeichen der XNOR-
Verknüpfung

0
A
B

Y
0

0 1
1 0
1 1

A B Y

0
1

1

=1

0



93

Manchmal wird die Funktion auch als Äquivalenz bezeichnet. Dies meint, dass in der 
Grundform mit zwei Eingängen beide Eingänge den gleichen Wert haben müssen, damit 
der Ausgang 1 wird. Bei mehr als zwei Eingängen ist die XNOR-Verknüpfung 1, wenn 
die Anzahl der 1-Werte am Eingang gerade ist.

4.2.8	� Weitere Verknüpfungen

Neben den genannten Verknüpfungen sind weitere Funktionen möglich. Bei nur einem 
Eingang gibt es noch die Identität, bei der der Ausgang gleich dem Eingang ist.

Alle möglichen Verknüpfungen mit zwei Eingängen sind in Tab. 4.1 aufgeführt. Eine 
Funktionstabelle für zwei Eingänge hat vier Einträge und für jeden Eintrag sind zwei 
Werte 0 und 1 möglich. Also sind 24 = 16 Funktionen theoretisch denkbar. Einige die-
ser Funktionen sind trivial, beispielsweise Ausgang ist immer 0 oder Ausgang ist iden-
tisch Eingang A. Einige Funktionen sind die oben genannten Verknüpfungen, also UND, 
ODER, XOR und so weiter.

Daneben gibt es noch Implikation und Inhibition als weitere Verknüpfungen. Die 
Funktionen selbst werden verwendet, aber die Begriffe sind in der Praxis nicht üblich. 
Stattdessen wird die Funktion über eine Grundfunktion beschrieben, also beispielsweise 
„A und nicht B“ für Eintrag drei der Tabelle.

4.2.9	� Logikstufen

Alle Verknüpfungen können auch in einer mehrstufigen Funktion verwendet werden, 
bei der das Ergebnis einer Verknüpfung die Eingabe einer weiteren Verknüpfung ist. Die 
Anzahl der aufeinander folgenden Verknüpfungen wird als Stufigkeit bezeichnet. Der 
Begriff bezieht sich sowohl auf die Logik als auch auf deren Umsetzung als Schaltung.

•	 Einstufige Logik: Eine Logik und digitale Schaltung wird als einstufig bezeichnet, 
wenn zwischen Eingang und Ausgang nur eine Verknüpfung vorhanden ist.

•	 Zweistufige Logik: Eine Logik und digitale Schaltung wird als zweistufig bezeich-
net, wenn zwischen Eingang und Ausgang zwei Verknüpfungen in Kette geschaltet 
sind.

•	 n-stufige Logik: Eine Logik und digitale Schaltung wird als n-stufig bezeichnet, 
wenn zwischen Eingang und Ausgang n Verknüpfungen in Kette geschaltet sind.

Bei der Anzahl der Stufen wird eine Negation am Eingang oder Ausgang nicht als sepa-
rate Stufe gezählt.

4.2  Funktionen der Schaltalgebra
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Beispiele für Logikfunktionen mit verschiedenen Stufen:

•	 Einstufige Logik: Y = A ∨ B̄

•	 Zweistufige Logik: Y =
(

Ā&B
)

∨
(

C& D̄
)

•	 4-stufige Logik: Y = A&
(

B̄ ∨ (C& (D̄ ∨ E
)

))

Bedeutung hat die Stufenzahl insbesondere für eine Schaltungsrealisierung. Jede Ver-
knüpfung entspricht einem Logikgatter in der Schaltung. Dabei addieren sich die Verzö-
gerungszeiten sämtlicher Stufen. Deshalb sollte für zeitkritische Entwürfe die Anzahl der 
Stufen so klein wie möglich sein.

4.2.10	� US-amerikanische Logiksymbole

In englischsprachiger Literatur und in Datenblättern finden Sie auch Logiksymbole in 
US-amerikanischer Darstellungsweise. Diese sind in Abb. 4.13 dargestellt. Durch einen 
Kreis am Ausgang werden die Varianten mit invertiertem Ausgang gekennzeichnet, also 
aus AND wird NAND, aus XOR wird XNOR.

Man kann sich die Symbole merken, indem man bei der geraden linken Kante des 
AND an die vertikalen Striche des A und bei der gebogenen linken Kante des OR an die 
Rundungen des O denkt.

4.3	� Rechenregeln der Schaltalgebra

4.3.1	� Vorrangregeln

Genau wie in der elementaren Algebra hat auch die Schaltalgebra Vorrangregeln. In der 
elementaren Algebra gilt „Punktrechnung vor Strichrechnung“, also hat die Multiplika-
tion Vorrang vor der Addition.

In der Schaltalgebra hat das Negationszeichen den größten Vorrang und es kann für 
eine einzelne Variable oder für einen gesamten Ausdruck stehen. An nächster Stelle sind 
nach DIN die Verknüpfungszeichen für UND, ODER, NAND und NOR gleichrangig. 
Danach folgen im Vorrang die Symbole für Implikation, Äquivalenz und Antivalenz, die 

Abb. 4.13   US-amerikanische 
Logiksymbole

Inverter AND-Gate

OR-Gate XOR-Gate
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untereinander wiederum gleichrangig sind. Da die Verknüpfungszeichen für UND sowie 
ODER die gleiche Priorität haben, müssen innerhalb einer Gleichung mit UND- und 
ODER-Verknüpfungen also die einzelnen Terme in Klammern gesetzt werden.

Allerdings wird der Vorrang in der Praxis anders gehandhabt. Den stärksten Vorrang 
hat weiterhin das Negationszeichen. Dann gilt allerdings „UND vor ODER“, das heißt 
die UND-Verknüpfung hat Vorrang vor der ODER-Verknüpfung. Dies spart oftmals 
Schreibarbeit und Klammern. Alle anderen Verknüpfungen werden üblicherweise per 
Klammer geordnet, um Missverständnisse zu vermeiden.

Auch in diesem Buch wird die Praxisregel „UND vor ODER“ benutzt. Abb. 4.14 
zeigt die verschiedenen Schreibweisen. Alle drei Ausdrücke sind gleichwertig.

4.3.2	� Rechenregeln

Rechenregeln zum Umformen von Funktionen gelten in der Schaltalgebra ähnlich wie 
in der elementaren Algebra. Die Rechenregeln gelten für UND- sowie ODER-Verknüp-
fungen. Für alle Rechenregeln wird auf mathematische Beweise verzichtet. Die meisten 
Regeln können verifiziert werden, indem alle möglichen Werte eingesetzt werden.

4.3.2.1 � Vereinfachungsregeln für eine Variable
Es gibt eine Reihe von Vereinfachungsregeln, die gelten, wenn nur eine Variable und 
eventuell eine Konstante vorhanden ist.
Eine Variable ODER die Konstante 0 ergibt die Variable:

Eine Variable ODER die Konstante 1 ergibt 1:

Eine Variable UND die Konstante 0 ergibt 0:

Eine Variable UND die Konstante 1 ergibt die Variable:

Eine Variable ODER sich selbst ergibt die Variable:

A ∨ 0 = A

A ∨ 1 = 1

A&0 = 0

A&1 = A

A ∨ A = A

Abb. 4.14   Vorrangregeln der 
Schaltalgebra

Y korrekt nach DIN= (A & B) v (C & D)

= A & B v C & D

= A B v C D

„UND vor ODER“

verkürzt ohne ‚&‘

4.3  Rechenregeln der Schaltalgebra
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Eine Variable UND sich selbst ergibt die Variable:

Eine Variable ODER ihre Negation ergibt 1:

Eine Variable UND ihre Negation ergibt die 0:

Eine Variable doppelt negiert ergibt wieder die Variable:

Einige dieser Rechenregeln haben Ähnlichkeit zur elementaren Algebra, also der 
Schulmathematik.

•	 Eine Zahl plus Null ergibt wieder die Zahl.
•	 Eine Zahl mal Null ergibt Null.
•	 Eine Zahl mal Eins ergibt wieder die Zahl.

Für andere Rechenregeln gibt es jedoch keine Entsprechung.

•	 Eine Zahl mal oder plus sich selbst ergibt keine Konstante.

4.3.2.2 � Kommutativgesetz
Das Kommutativgesetz, oder Vertauschungsgesetz, besagt, dass die Reihenfolge der Ope-
randen vertauscht werden darf. Es gilt also:

4.3.2.3 � Assoziativgesetz
Das Assoziativgesetz, oder Verbindungsgesetz, besagt, dass Rechenoperationen mit dem 
gleichen Operator in beliebiger Reihenfolge durchgeführt werden dürfen. Es gilt also:

4.3.2.4 � Distributivgesetz
Das Distributivgesetz, oder Verteilungsgesetz, besagt, dass ein Operand vor einer Klam-
mer auf Operatoren in einer Klammer verteilt werden darf. Dies wird in der elementaren 
Algebra als Ausmultiplizieren und Ausklammern bezeichnet. Es gilt also:

A&A = A

A ∨ Ā = 1

A& Ā = 0

A = A

A&B = B&A

A ∨ B = B ∨ A

A&B&C = (A&B)&C = A& (B&C) = (A&C)&B

A ∨ B ∨ C = (A ∨ B) ∨ C = A ∨ (B ∨ C) = (A ∨ C) ∨ B
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A ∨ (B&C) = (A ∨ B)& (A ∨ C)

4.3.2.5 � De Morgansche Gesetze
Die de Morganschen Gesetze sind zwei Regeln, die besagen:

•	 Eine NAND-Verknüpfung kann ersetzt werden durch eine ODER-Verknüpfung mit 
negierten Operatoren.

•	 Eine NOR-Verknüpfung kann ersetzt werden durch eine UND-Verknüpfung mit 
negierten Operatoren.

Anschaulich gesagt, kann also die Negation des gesamten Ausdrucks ersetzt werden 
durch Negation der einzelnen Operanden und Tauschen von UND nach ODER bezie-
hungsweise ODER nach UND. Diese Gesetze gelten für beliebig viele Operatoren.

Zu den de Morganschen Gesetzen gibt es kein Äquivalent in der elementaren Algebra, 
sodass diese Regeln eventuell etwas überraschend aussehen.

4.3.2.6 � Shannonsches Gesetz
Das Shannonsche Gesetz ist eine Erweiterung der de Morganschen Gesetze. Es besagt, 
dass in einer Funktion, die aus UND- sowie ODER-Verknüpfungen besteht, alle Varia-
blen negiert und die Operatoren UND sowie ODER vertauscht werden können. Die so 
entstehende Funktion ergibt dann die Negation der ursprünglichen Funktion. Als Formel 
schreibt sich dies:

Das Shannonsche Gesetz erscheint zunächst sehr theoretisch, hat aber praktische Bedeu-
tung. Mit ihm können logische Ausdrücke umgeformt werden, damit sie besser als 
Schaltung umgesetzt werden können. In der CMOS-Technologie sind beispielsweise 
NAND- und NOR-Verknüpfungen einfacher als UND-, ODER-Verknüpfungen. Mit dem 
Shannonschen Gesetz kann dann umgeformt werden:

Die Funktion kann somit durch zwei NAND-Schaltungen mit jeweils zwei Operatoren 
implementiert werden.

A& (B ∨ C) = (A&B) ∨ (A&C)

A&B&C& . . . &X = Ā ∨ B̄ ∨ C̄ ∨ . . . ∨ X̄

A ∨ B ∨ C ∨ . . . ∨ X = Ā& B̄& C̄& . . . & X̄

f (A,B, . . . ,X; &, ∨) = f
(

Ā, B̄, . . . , X̄; ∨, &
)

Ā ∨ (B&C) = A&
(

B̄ ∨ C̄
)

= A& (B&C)

4.3  Rechenregeln der Schaltalgebra
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4.4	� Schaltungsentwurf durch Minimieren

Beim Schaltungsentwurf wird für eine bestimmte Aufgabenstellung eine Schaltung ent-
worfen. Aus der Spezifikation wird die logische Funktion erstellt. Diese logische Funk-
tion entspricht einer Schaltung aus Gattern, welche die Funktion ausführt.

In diesem Abschnitt wird die prinzipielle Vorgehensweise erläutert. Für den prakti-
schen Entwurf ist das grafische Verfahren mit Karnaugh-Diagramm gut geeignet, wel-
ches im nächsten Abschnitt beschrieben wird. Des Weiteren kann die Minimierung 
rechnergestützt erfolgen. Dabei können, je nach Algorithmus, auch mehrstufige Logik-
funktionen entstehen. Mit dem hier vorgestellten Verfahren wird stets eine zweistufige 
Logik erzeugt.

4.4.1	� Minterme

Für den Schaltungsentwurf werden sogenannte Minterme verwendet. Ein Minterm ist 
eine UND-Verknüpfung, die jede Variable genau einmal benutzt. Die Variable kann dabei 
nicht-negiert oder negiert verwendet werden. Bei n Eingangsvariablen existieren 2n ver-
schiedene Minterme. Bei drei Variablen A, B, C wären also acht verschiedene Minterme 
möglich. Alle drei Variablen werden nicht-negiert oder negiert verwendet, beispielsweise:

Das Besondere am Minterm ist, dass er bei genau einer Kombination der Eingangsvaria-
blen den Ausgangswert 1 ergibt und sonst 0 ist. Dies ergibt sich dadurch, dass die UND-
Bedingung ja nur bei einer Kombination erfüllt ist. Abb. 4.15 zeigt für drei Minterme 
die Funktionstabelle. Wenn die nicht-negierten Eingänge gleich 1 und die negierten Ein-
gänge gleich 0 sind, ist der Ausgang gleich 1.

4.4.2	� Schaltungsentwurf mit Mintermen

Mit den Mintermen kann direkt eine kombinatorische Schaltung entworfen werden. 
Dazu werden die Minterme ausgewählt, welche eine 1 ausgeben sollen. Die Minterme 

A&B&C ; A& B̄&C ; Ā& B̄& C̄

Abb. 4.15   Funktionstabelle 
für drei Minterme
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werden dann ODER-verknüpft, damit die 1-Werte der Minterme auch in der Gesamt-
schaltung eine 1 ausgeben. Diese Beschreibung wird als disjunktive Normalform (DNF) 
bezeichnet. Disjunktion ist dabei eine andere Bezeichnung für die ODER-Funktion.

Betrachten wir als Beispiel die Majoritätsschaltung dessen Funktionstabelle in 
Abb. 4.3 dargestellt ist. Die Schaltung soll für vier Eingangskombinationen eine 1 aus-
geben. Die Minterme für diese vier Kombinationen werden ausgewählt und ODER-
verknüpft. Dies ergibt die Funktion:

4.4.3	� Minimierung von Mintermen

Die disjunktive Normalform, also die ODER-Verknüpfung der Minterme ist eine logi-
sche Gleichung, welche die geforderte Funktion ausführt. Allerdings kann die Nor-
malform meist noch vereinfacht werden. Diese Vereinfachung wird als Minimierung 
bezeichnet. Dabei werden Terme anhand der Rechenregeln der Schaltalgebra zusammen-
gefasst. Wenn ein Term nicht mehr weiter zusammengefasst werden kann, wird er als 
Primterm bezeichnet.

Bei der Majoritätsschaltung können unter anderem die Terme 
(

Ā&B&C
)

 sowie 
(A&B&C) zusammengefasst werden. In beiden Termen müssen B und C den Wert 1 
haben. A soll im ersten Term 0, im zweiten Term 1 sein. Das heißt, beide mögliche Werte 
für A sind erlaubt und daher braucht A nicht beachtet zu werden. Die Terme können des-
halb zum Primterm (B&C) zusammengefasst werden.

Diese anschauliche Erklärung lässt sich auch über die Rechenregeln herleiten:

•	 Assoziativgesetz: 
(

Ā&B&C
)

∨ (A&B&C) =
(

Ā& (B&C)
)

∨ (A& (B&C))

•	 Distributivgesetz: 
(

Ā& (B&C)
)

∨ (A& (B&C)) =
(

Ā ∨ A
)

& (B&C)

•	 Vereinfachungsregel: 
(

Ā ∨ A
)

= 1

•	 Vereinfachungsregel: 1& (B&C) = (B&C)

Auf die gleiche Weise können die Terme 
(

A& B̄&C
)

 sowie 
(

A&B& C̄
)

 mit dem Term 
(A&B&C) zusammengefasst werden. Dabei fällt die Variable B̄ beziehungsweise C̄ 
weg. Die minimierte Majoritätsfunktion lautet:

Diese Minimierung ist allerdings rechnerisch sehr aufwendig. Man muss genau auf-
passen, welche Terme miteinander kombiniert werden können. Für die Ermittlung der 
Primterme ist das grafische Verfahren nach Karnaugh wesentlich einfacher, welches in 
Abschn. 4.6 erläutert wird.

Y =
(

Ā&B&C
)

∨
(

A& B̄&C
)

∨
(

A&B& C̄
)

∨ (A&B&C)

Y = (B&C) ∨ (A&C) ∨ (A&B)

4.4  Schaltungsentwurf durch Minimieren
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4.4.4	� Maxterme

Für den Schaltungsentwurf können auch sogenannte Maxterme verwendet werden. Ein 
Maxterm ist eine ODER-Verknüpfung, die jede Variable genau einmal verwendet. Wie 
bei Mintermen kann jede Variable wiederum nicht-negiert oder negiert sein. Für den 
Maxterm gilt dann, dass er bei genau einer Kombination der Eingangsvariablen den Aus-
gangswert 0 ergibt und sonst 1 ist. Maxterme sind:

Abb. 4.16 zeigt für drei Maxterme die Funktionstabelle. Nur wenn die nicht-negierten 
Eingänge gleich 0 sowie die negierten Eingänge gleich 1 sind, ist der Ausgang gleich 0.

Maxterme sind also das Gegenstück zu Mintermen. Eine Funktion benutzt die UND-, 
die andere die ODER-Verknüpfung. Bei einer Funktion gibt es eine einzige 1, bei der 
anderen eine einzige 0.

4.4.5	� Schaltungsentwurf mit Maxtermen

Auch aus den Maxtermen kann direkt eine kombinatorische Schaltung entworfen wer-
den. Dazu werden die Maxterme ausgewählt, welche eine 0 ausgeben und dann UND-
verknüpft, damit diese Nullen in Kombinationen der Gesamtschaltung eine 0 ergeben. 
Diese Beschreibung wird als konjunktive Normalform (KNF) bezeichnet. Konjunktion ist 
dabei eine andere Bezeichnung für die UND-Funktion.

Die Majoritätsschaltung gibt für vier Eingangskombinationen eine 0 aus. Die Max-
terme für diese vier Kombinationen werden ausgewählt und UND-verknüpft. Dies ergibt 
die Funktion:

4.4.6	� Minimierung von Maxtermen

Auch die konjunktive Normalform, also die UND-Verknüpfung von Maxtermen kann 
meist noch vereinfacht werden.

A ∨ B ∨ C; A ∨ B̄ ∨ C; Ā ∨ B̄ ∨ C̄

Y = (A ∨ B ∨ C)&
(

Ā ∨ B ∨ C
)

&
(

A ∨ B̄ ∨ C
)

&
(

A ∨ B ∨ C̄
)

Abb. 4.16   Funktionstabelle 
für drei Maxterme
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Für die Majoritätsschaltung kann der Maxterm (A ∨ B ∨ C) jeweils mit den drei ande-
ren Termen zusammengefasst werden. Die einzelnen Rechenschritte sollen hier jedoch 
nicht einzeln aufgeführt werden. Die minimierte Majoritätsfunktion lautet:

4.5	� Schaltungsminimierung mit Karnaugh-Diagramm

Im vorherigen Abschnitt wurde gezeigt, dass disjunktive und konjunktive Normalformen 
durch Minimierung vereinfacht werden können. Ein Karnaugh-Diagramm (Aussprache 
„Karnoh“) führt diese Vereinfachung grafisch durch. Durch die Darstellung kann direkt 
erkannt werden, welche Terme miteinander verbunden werden können. Eine Minimie-
rung mit Karnaugh-Diagramm ist sehr gut für Funktionen mit zwei bis vier Variablen 
geeignet. Für fünf oder sechs Variablen ist das Verfahren ebenfalls möglich, erfordert 
dann aber etwas Übung und gutes räumliches Vorstellungsvermögen.

Das Verfahren kann sowohl für die disjunktive als auch für die konjunktive Normal-
form durchgeführt werden. Hier soll hauptsächlich die disjunktive Normalform vorgestellt 
werden. Das Verfahren ist auch unter dem Namen Venn-Diagramm, Karnaugh-Veitch-
Diagramm (Aussprache „Karnoh-Fietsch“) oder KV-Diagramm bekannt.

Das Karnaugh-Diagramm ist insbesondere wichtig, da es die Zusammenhänge von 
Schaltalgebra, logischen Verknüpfungen und Schaltungsimplementierung verdeutlicht. 
In der Praxis erfolgt die Schaltungsminimierung heutzutage meist durch Computerpro-
gramme zur Schaltungssynthese.

4.5.1	� Grundsätzliche Vorgehensweise

Das Karnaugh-Diagramm ist im Prinzip eine andere Anordnung der Wahrheitstabelle. 
Die Eingangsvariablen werden am horizontalen und vertikalen Rand eines schachbrettar-
tig unterteilten Rechtecks angeordnet. Für n Eingangsvariablen erhält man somit 2n Fel-
der. Dabei sind sie so angeordnet, dass jedes Feld einem Minterm entspricht und sich 
zwei horizontal oder vertikal benachbarte Felder nur in einer Eingangsvariablen unter-
scheiden. In die Felder werden die Werte 0 und 1 der Ausgangsvariablen eingetragen. 
Benachbarte 1-Felder werden dann wie im Abschn. 4.5.4 zusammengefasst:

Im Karnaugh-Diagramm sind auch Felder am rechten und linken bzw. oberen und unte-
ren Rand benachbart, denn auch sie unterscheiden sich nur in einer Variablen. Es müs-
sen möglichst viele benachbarte 1-Felder zu einem Block zusammengefasst werden. Die 
logische Gleichung wird dann minimal, wenn die Blöcke möglichst viele Felder enthal-
ten und die Anzahl der Blöcke minimal ist.

Die Vorgehensweise zum Aufstellen der disjunktiven Minimalform lautet:

Y = (B ∨ C)& (A ∨ C)& (A ∨ B)

(A&B) ∨
(

A& B̄
)

= A&
(

B ∨ B̄
)

= A

4.5  Schaltungsminimierung mit Karnaugh-Diagramm
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1.	 Ausgehend von der Wahrheitstabelle wird die benötigte Anzahl der Eingangsvariablen 
ermittelt und das entsprechende Karnaugh-Diagramm aufgestellt. Die logischen Vari-
ablen werden am Rand des KV-Diagramms angeordnet.

2.	 Anhand der Wahrheitstabelle werden die Werte der Ausgangsvariablen 0 oder 1 in die 
entsprechenden Felder des Karnaugh-Diagramms eingetragen.

3.	 Benachbarte 1-Felder werden zu einem Block zusammengefasst.
4.	 Zwei Blöcke, die sich nur in einer Variablen unterscheiden, sind ebenfalls benach-

bart; sie dürfen zu einem größeren Block zusammengefasst werden. Ein Block enthält 
immer 2n Felder. Eine Zusammenfassung von zum Beispiel drei oder fünf Feldern ist 
nicht erlaubt.

5.	 Ein 1-Feld darf in mehreren Blöcken integriert sein.
6.	 Jeder Block repräsentiert einen UND-Term (UND-Verknüpfung der Eingangsvariablen).
7.	 Aus den möglichen Termen (den Blöcken im Diagramm) werden die erforderlichen 

Terme so gewählt, dass alle 1-Felder berücksichtigt sind.
8.	 Die logische Gleichung ergibt sich aus der ODER-Verknüpfung der ausgewählten 

UND-Terme.
9.	 Die logische Gleichung wird nur dann minimal, falls die Blöcke so groß wie möglich 

sind und die Anzahl der ausgewählten Blöcke minimal ist.

4.5.2	� Karnaugh-Diagramm für zwei Variablen

Bei zwei Variablen hat die Funktionstabelle vier Einträge. Im Karnaugh-Diagramm in 
Abb. 4.17 werden diese Einträge in vier Feldern dargestellt. Jeder Eintrag entspricht 
einem Feld und die horizontale Richtung unterscheidet zwischen verschiedenen Wer-
ten der Variable B, die vertikale Richtung unterscheidet zwischen verschiedenen Werten 
der Variable A. Die Buchstaben p bis s zeigen die Korrespondenz zwischen Tabelle und 
Diagramm.

Um eine Funktion zu minimieren, werden die Ausgabewerte der Funktionstabelle 
in das Diagramm eingetragen. Die beispielhaft gewählte Funktionstabelle in Abb. 4.18 
hat einen Eintrag mit Funktionswert 0 und drei Einträge mit Funktionswert 1 und diese 
Werte finden sich im Karnaugh-Diagramm wieder. Jede 1 entspricht einem Minterm, das 
heißt, die Funktion könnte durch drei Minterme dargestellt werden.

Im Diagramm kann man jetzt erkennen, welche 1-Einträge, also welche Min-
term nebeneinander liegen. Diese benachbarten Minterme können zu einem Term 

Abb. 4.17   Zuordnung im 
Karnaugh-Diagramm
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1 1

A B Y
p
q
r
s

p

r

q

s

B=
0 1

0

1

A=



103

zusammengefasst werden. In Abb. 4.18 sind dies die beiden Einsen in der linken Spalte 
und die beiden Terme in der unteren Zeile. Eine 1, also ein Minterm darf dabei mehrfach 
für die Minimierung verwendet werden.

Abb. 4.19 zeigt die zusammengefassten Einträge. Für die linke Spalte ist die Variable 
B gleich 0. Die Variable A kann 0 oder 1 sein, denn das abgerundete Rechteck der ver-
bundenen Einträge liegt über der oberen und unteren Zeile. Damit entspricht dieser Term 
der Funktion B = 0 gleichbedeutend mit B̄. Der andere verbundene Eintrag läuft über 
die untere Zeile, also A gleich 1. B kann 0 oder 1 sein, denn das Rechteck liegt über den 
Spalten für beide Werte von B. Der Term ist also A = 1 gleichbedeutend mit A. Die mini-
mierte Funktion ergibt sich aus der ODER-Verknüpfung der Terme, also:

4.5.3	� Karnaugh-Diagramm für drei Variablen

Für drei Variablen wird das Diagramm auf acht Felder erweitert (Abb. 4.20). An der 
langen Kante werden dafür zwei Variablen angeordnet. Die Reihenfolge der beiden 
Variablen ist so zu wählen, dass sich benachbarte Felder weiterhin in nur einer Varia-
ble unterscheiden. Diese Reihenfolge entspricht dadurch dem Gray-Code. Beachten Sie, 
dass linker und rechter Rand benachbart sind.

Das Diagramm enthält somit zwei Terme, die sich aus jeweils zwei Mintermen, also 
zwei 1-Stellen zusammensetzen. Die minimierte Funktion ergibt sich zu:

Auch Gruppen von vier Funktionswerten können zu einer Vierergruppe zusammenge-
fasst werden. Dies entspricht einer Zusammenfassung von zwei Zweiergruppen, die sich 
auch nur in einer Variablen unterscheiden. Wenn sich somit weniger Terme und größere 
Terme ergeben, spart dies Schaltungsaufwand. Die Vierergruppen können quadratisch 

Y = A ∨ B̄

Y = (Ā& B̄) ∨ (B̄&C)

Abb. 4.18   Einträge im 
Karnaugh-Diagramm
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Abb. 4.19   Zusammenfassung 
von 1-Einträgen
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oder über eine ganze Zeile gehen. Abb. 4.21 zeigt ein Karnaugh-Diagramm mit zwei 
Vierergruppen. Die resultierende Funktion ist:

Die linke Spalte des Karnaugh-Diagramms enthält die Terme für B,C = 00 und die 
rechte Spalte die Terme für B,C = 10. Daher unterscheiden sich diese Terme auch 
nur in einer Variable (Variable B) und sind benachbart. Zweier- und Vierergruppen 
können daher über den Rand hinaus verbunden sein. Abb. 4.22 zeigt dies für zwei 
Karnaugh-Diagramme.

4.5.4	� Karnaugh-Diagramm für vier Variablen

Für vier Eingangsvariablen wird das Diagramm auf 16 Felder erweitert, so dass auch die 
vertikale Achse zwei Variablen enthält, wiederum mit der Reihenfolge in Gray-Codie-
rung. Abb. 4.23 zeigt die Anordnung und zwei Gruppen.

Y = A ∨ C

Abb. 4.20   Karnaugh-
Diagramm mit drei Variablen 0 0

0 1
1 0
1 1

A B Y
1
1
0
0

0 0
0 1
1 0
1 1

C

0
1
0
0

0
0
1
1

0
0

1
1

B,C= 00 01

0

1
A=

11 10

B=0, C=1A=0, B=0

011

0010

0

Abb. 4.21   Karnaugh-
Diagramm mit Vierergruppen
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In den 16 Feldern können Gruppen mit zwei, vier oder acht 1-Feldern gebildet wer-
den. Die Gruppengröße muss aber eine Zweierpotenz sein, das heißt eine Gruppe aus 
sechs Feldern ist nicht möglich. Dies ergibt sich daraus, dass bei einer Zusammenfas-
sung eine Variable aus dem Term entfällt und dadurch die Gruppe jeweils doppelt so 
groß wird. Für ein Karnaugh-Diagramm mit vier Variablen gibt es also folgende mögli-
che Gruppen:

•	 Einzelnes 1-Feld mit allen vier Variablen
•	 Zweiergruppe mit drei Variablen
•	 Vierergruppe mit zwei Variablen
•	 Achtergruppe mit einer Variablen (siehe Abb. 4.24)

Theoretisch kann es dann auch eine 16er-Gruppe ohne Variable geben, das heißt die 
Funktion ist immer 1.

Wie schon beim Karnaugh-Diagramm für drei Variablen sind hier wieder die Rän-
der benachbart. Dies gilt natürlich auch für Vierergruppen und zwar auch in der Kom-
bination von oberer, unterer und linker, rechter Rand. Mit anderen Worten, auch die vier 
Ecken können zu einer Vierergruppe zusammengefasst werden (Abb. 4.25). Dazu müs-
sen aber alle vier Eckfelder eine 1 eingetragen haben. Eine diagonale Zweiergruppe, also 
Feld links-unten und Feld rechts-oben wäre nicht möglich, da ja auch ansonsten keine 
diagonalen Felder erlaubt sind.

Abb. 4.23   Karnaugh-
Diagramm mit vier Variablen 00 01A,B= 11 10
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Abb. 4.24   Karnaugh-
Diagramm mit Achtergruppen 00 01
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4.5.5	� Auswahl der erforderlichen Terme

Nachdem die 1-Felder zu möglichst großen Gruppen, den Primtermen, zusammengefasst 
sind, muss im nächsten Schritt überprüft werden, welche Terme erforderlich sind. Dabei 
sind manchmal alle Primterme erforderlich und manchmal werden Primterme nicht benö-
tigt, sind also redundant. Die Bedingung für die Auswahl der Primterme ist, dass alle 1-Fel-
der in mindestens einem Primterm enthalten sein müssen. Je weniger Primterme benötigt 
werden und je größer die Terme sind, umso günstiger ist die entstehende Schaltung.

Als Beispiel wird eine Funktion mit sieben 1-Feldern betrachtet, die in Abb. 4.26 im 
Karnaugh-Diagramm eingetragen sind. Es lassen sich vier Primterme bilden, und zwar 
eine Vierergruppe und drei Zweiergruppen. Da alle 1-Felder in einem der Primterme ent-
halten sein müssen, ist Term 1 erforderlich, denn nur er enthält die 1-Felder in der linken 
Spalte. Auch Term 2 und Term 4 sind erforderlich, denn nur sie enthalten die 1-Felder in 
der dritten Spalte (für C,D = 11). Term 3 hingegen ist nicht erforderlich, denn sein obe-
res 1-Feld ist bereits in Term 1, das untere 1-Feld in Term 4 enthalten.

4.5.6	� Ermittlung der minimierten Funktion

Wenn die erforderlichen Primterme bekannt sind, müssen die logischen Funktionen für diese 
Terme bestimmt werden. Die Terme sind dabei eine UND-Verknüpfung von nicht-negierten 
und negierten Eingangsvariablen. Welche Eingangsvariablen im Term enthalten sind, ergibt 
sich durch die Position des Primterms im Karnaugh-Diagramm. Drei Fälle sind möglich:

Abb. 4.25   Die vier Ecken 
können eine Vierergruppe 
bilden
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•	 Der Primterm überdeckt nur Zeilen oder Spalten, für die eine Eingangsvariable 1 ist. 
Dann wird die Variable nicht-negiert in der UND-Verknüpfung verwendet.

•	 Der Primterm überdeckt nur Zeilen oder Spalten, für die eine Eingangsvariable 0 ist. 
Dann wird die Variable negiert in der UND-Verknüpfung verwendet.

•	 Der Primterm überdeckt Zeilen oder Spalten, für die eine Eingangsvariable sowohl 1 
als auch 0 sind. Dann wird die Variable nicht in der UND-Verknüpfung verwendet.

Die Formel für die minimierte Funktion ergibt sich dann als ODER-Verknüpfung aller 
UND-Terme.

Als Beispiel wird die Funktion für Term 1 in Abb. 4.26 ermittelt. Für die vier Ein-
gangsvariablen gilt:

•	 Der Term überdeckt nur Zeilen in denen die Variable A gleich 0 ist. A wird negiert 
verwendet.

•	 In den oberen beiden Zeilen ist die Variable B sowohl 0 als auch 1. B wird nicht 
verwendet.

•	 In den überdeckten linken Spalten ist C beides mal 0. C wird negiert verwendet.
•	 In den beiden linken Spalten ist D sowohl 0 als auch 1. D wird nicht verwendet.
•	 Die Funktion für Term 1 ist also: Ā& C̄

Für Term 2 gilt, dass die Variablen A und B gleich 0 sind und daher negiert verwendet 
werden. D ist gleich 1 und wird nicht-negiert verwendet. C kann 0 und 1 sein und darum 
in der Funktion nicht enthalten. Der Primterm lautet also: Ā& B̄&D

Für Term 4 sind die Variablen A, B und D gleich 1 und daher nicht-negiert. C ist wie 
bei Term 2 nicht enthalten und daher lautet der Primterm: A&B&D

Somit ergibt sich die minimierte Funktion für Abb. 4.26 als ODER-Verknüpfung von 
Term 1, 2 und 4:

4.5.7	� Karnaugh-Diagramm mit Don’t-Care

Wenn für bestimmte Kombinationen von Eingangswerten keine Ausgabe spezifiziert ist, 
kann diese Freiheit benutzt werden, um die minimierte Funktion möglichst einfach zu 
erstellen. Ein Beispiel für Funktionen mit Don’t-Care wurde am Anfang des Kapitels in 
Abschn. 4.2.4 erläutert.

Die Behandlung von Don’t-Care-Einträgen bei der Minimierung nach Karnaugh ist 
relativ einfach. Zunächst werden die Don’t-Cares als Strich ‚-‘ in das Karnaugh-Dia-
gramm eingetragen. Bei der Ermittlung der Primterme werden die Don’t-Cares einbe-
zogen, um möglichst große Primterme zu bilden. Bei der Auswahl der erforderlichen 
Primterme werden die Don’t-Cares dann nicht berücksichtigt, denn sie müssen nicht in 
einem Primterm enthalten sein.

Y = Ā& C̄ ∨ Ā& B̄&D ∨ A&B&D

4.5  Schaltungsminimierung mit Karnaugh-Diagramm
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Anschaulich gesprochen werden die Don’t-Cares zur Bildung der Primterme wie 
1-Werte, bei der Auswahl der erforderlichen Primterme wie 0-Werte behandelt. Primterme 
die nur aus Don’t-Cares bestehen, werden nicht eingetragen. In der resultierenden mini-
mierten Funktion ergeben sich dann für manche Don’t-Cares eine 1, für andere eine 0.

Als Beispiel für die Behandlung von Don’t-Cares soll die in Abschn. 4.2.3 beschrie-
bene Primzahlerkennung für die Zahlen 0 bis 9 minimiert werden. Die Funktionstabelle 
findet sich in Abb. 4.4 und hat sechs Don’t-Cares. Der Eingang ist die vierstellige Dualzahl 
A(3:0), so dass die Eingangsvariablen hier nicht A bis D heißen. Abb. 4.27 zeigt auf der 
linken Seite die Zuordnung zwischen Feldern im Karnaugh-Diagramm und Dezimalzahlen.

Im Karnaugh-Diagramm in Abb. 4.27 (rechts) können drei Vierergruppen als Primterme 
gebildet werden. In der dritten Zeile wäre eine weitere Vierergruppe nur aus Don’t-Cares 
möglich, die aber nicht eingetragen wird, da sie ohne 1-Felder nicht erforderlich sein kann.

Term 1 ist erforderlich, da nur er das 1-Feld rechts oben abdeckt. Term 2 ist erforder-
lich, da nur er das 1-Feld für ‚0101‘ abdeckt. Mit diesen beiden Termen sind sämtliche 
1-Felder abgedeckt, sodass Term 3 nicht erforderlich ist.

Zur Bestimmung der Terme werden wieder die Eingangsvariablen betrachtet. Für Term 
1 ist A(2) stets 0 und A(1) stets 1, also werden sie negiert beziehungsweise nicht-negiert 
berücksichtigt. Die Variablen A(3) und A(0) treten sowohl als 0 und 1 auf, entfallen also. 
Term 1 lautet somit A(2)&A(1). Term 2 berechnet sich als A(2)&A(0). Die minimierte 
Funktion für die Primzahlerkennung ist die ODER-Verknüpfung der Terme und lautet:

Durch die gewählten Terme werden vier der sechs Don’t-Care-Felder umfasst. Für diese 
Felder ergibt sich also eine 1 als Ausgabe, für die anderen beiden Don’t-Care-Felder eine 
0. Da laut Aufgabenstellung diese Eingangskombinationen nicht auftreten, konnten sie 
frei belegt werden.

Y = A(2)&A(1) ∨ A(2)&A(0)

Term 1

Term 3Term 2

A(3:2)=

A(1:0)=

1100

0110

----

--00

A(3:2)=
00

00

01

01

11

11

10

10

00

00

01

01

11

11

10

10

A(1:0)=

2310

6754

14151312

101198

Abb. 4.27   Karnaugh-Diagramm für Primzahlerkennung mit Don’t-Cares
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Vielleicht fragen Sie sich beim Betrachten von Abb. 4.27, ob die Terme nicht auch 
kleiner gewählt werden könnten. Term 1 beispielsweise könnte auch als Zweiergruppe 
mit den beiden 1-Feldern aus der ersten Zeile eingetragen werden. Ein solcher Term 
würde tatsächlich eine korrekte logische Funktion ergeben. Er wäre aber aufwendiger als 
die Vierergruppe. Term 1 als Zweiergruppe entspricht A(3)&A(2)&A(1), während die 
Vierergruppe durch den einfacheren Term A(2)&A(1) umgesetzt wird.

4.5.8	� Karnaugh-Diagramm für mehr als vier Variablen

Auch Funktionen mit fünf oder sechs Variablen können prinzipiell mit dem Karnaugh-
Diagramm minimiert werden. Allerdings sind dafür mehr als zwei Dimensionen erfor-
derlich und man muss sich die Felder räumlich hintereinander oder übereinander 
vorstellen. Abb. 4.28 zeigt eine Darstellung mit 32 Feldern für fünf Variable, bei der die 
beiden Hälften gedanklich an der mittleren, dickeren Linie geknickt werden. Felder aus 
rechter und linker Hälfte liegen dadurch übereinander. Eine mögliche Vierergruppe ist 
zur Verdeutlichung eingetragen. Für sechs Variable müsste man in einem 64er-Feld auch 
eine obere und untere Hälfte übereinander legen.

Diese Darstellung ist allerdings unübersichtlich und daher fehleranfällig. Ein rechner-
gestütztes Verfahren wäre daher sinnvoll.

4.5.9	� Karnaugh-Diagramm der konjunktiven Normalform

Bisher wurde stets die disjunktive Normalform beschrieben, aber in ähnlicher Weise kann 
auch die konjunktive Normalform aufgestellt werden. Entsprechend der Symmetrie der 
Schaltalgebra (siehe de Morgansche Gesetze in Abschn. 4.3.2.5) ist die Vorgehensweise 
praktisch spiegelbildlich. Es werden also anstatt der 1-Felder die 0-Felder verbunden, gege-
benenfalls mithilfe der Don’t-Care-Felder. Dann werden die ODER-Terme UND-verknüpft.

Als Beispiel soll die Primzahlerkennung auch in der konjunktiven Normalform mini-
miert werden. In Abb. 4.29 werden aus den 0-Feldern mithilfe der Don’t-Cares eine 
Achtergruppe und drei Vierergruppen gebildet. Term 1 und 3 sind erforderlich, da es 

4.5  Schaltungsminimierung mit Karnaugh-Diagramm

Abb. 4.28   Karnaugh-
Diagramm für fünf Variablen 000 001A,B= 011 010
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jeweils ein 0-Feld gibt, welches nur in ihnen enthalten ist. Damit sind alle 0-Felder abge-
deckt, so dass Term 2 und 4 redundant sind.

Die minimierte Funktion ergibt sich zu:

Für die Primzahlerkennung sind die minimierten Funktionen der disjunktiven und kon-
junktiven Normalform praktisch gleich aufwendig, denn beide Funktionen nutzen drei 
Verknüpfungen mit jeweils zwei Eingängen. Je nach Funktionstabelle kann eine der 
Varianten aber auch günstiger als die andere sein. Es gibt Entwurfsprogramme die beide 
Varianten ausprobieren und die günstigere verwenden.

4.6	� VHDL für kombinatorische Schaltungen

4.6.1	� Beschreibung logischer Verknüpfungen

Im Kapitel 3 haben Sie die Schaltungsbeschreibung mit VHDL kennengelernt. Die logi-
schen VHDL-Operatoren können verwendet werden, um eine Funktion zu beschreiben. 
Die gerade in Abschn. 4.5.9 berechnete Logikfunktion würde dann wie folgt lauten:

y <= (a(2) or a(1)) and ((not a(2)) or a(0));

Die Reihenfolge der Operationen wird durch Klammern vorgegeben. Dies empfiehlt 
sich, um zweifelsfrei zu definieren, wie die Funktion gemeint und interpretiert werden 
soll. Es ist besser einige Sekunden für eine weitere Klammer zu investieren, als mehrere 
Stunden oder länger nach einem Fehler im Code zu suchen.

Die direkte Beschreibung der Logikfunktion ist möglich und wird auch von Program-
men verstanden. Viel sinnvoller ist es jedoch, die Funktion zu beschreiben und die Gene-
rierung der Logikfunktion dem Programm zu überlassen.

Y = (A(2) ∨ A(1))&
(

A(2) ∨ A(0)
)

00 01A(3:2)= 11 10

00

01

11

10

A(1:0)=

Term 1

Term 2

Term 3

1100

0110

----

--00 Term 4

Abb. 4.29   Primzahlerkennung in der konjunktiven Normalform

http://dx.doi.org/10.1007/978-3-662-49731-9_3
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4.6.2	� Beschreibung der Funktion

Bei der Funktionsbeschreibung in VHDL wird die Spezifikation durch If- und Case-
Anweisungen sowie Zuweisungen beschrieben. Die Funktion soll ja die Primzahl aus 
dem 4-Bit-Wert A erkennen. Eine VHDL-Beschreibung würde darum A zunächst in 
einen Unsigned umwandeln und dann eine Case-Anweisung aufrufen.

signal a_u : unsigned (3 downto 0);

…

a_u     <= unsigned(a);
process (a_u)

   begin

   case a_u is

      when  0 => y <= '0';
      when  1 => y <= '0';
      when  2 => y <= '1';
      when  3 => y <= '1';
      when  4 => y <= '0';
      when  5 => y <= '1';
      when  6 => y <= '0';
      when  7 => y <= '1';
      when  8 => y <= '0';
      when  9 => y <= '0';
      when others => y <= '0';
   end case;

end process;

Diese Beschreibung benötigt zwar etwas mehr Text, dafür spart man sich die manu-
elle Schaltungsminimierung für die Logikfunktion. Außerdem ist beim Betrachten des 
Codes schneller deutlich, welche Funktion ausgeführt wird.

Man kann die Beschreibung auch noch vereinfachen, indem nur die Primzahlen in 
der Case-Anweisung genannt werden. Alle anderen Werte sind durch den Others-Fall 
berücksichtigt. Die Case-Anweisung würde dann lauten:

   case a_u is

      when  2 => y <= '1';
      when  3 => y <= '1';
      when  5 => y <= '1';
      when  7 => y <= '1';
      when others => y <= '0';
   end case;

Im Unterschied zu der Funktionstabelle in Abb. 4.4 werden bei beiden VHDL-
Beschreibungen die Don’t-Care-Fälle nicht berücksichtigt, sondern die Ausgabe für 

4.6  VHDL für kombinatorische Schaltungen
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Werte größer 10 zu 0 gesetzt. Prinzipiell könnte für ein Don’t-Care der Wert ‚-‘ zugewie-
sen werden. Dies wird in der Praxis jedoch selten gemacht, da die Einsparungen meist 
relativ gering sind.

4.7	� Übungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Prüfen Sie sich mit den Aufgaben und 
Fragen am Kapitelende. Die Lösungen und Antworten finden Sie am Ende des Buches.

Bei den Auswahlfragen ist immer genau eine Antwort korrekt.

Aufgabe 4.1
Was ist ein Minterm?

a)	 Eine Logikfunktion die nur für eine Eingangskombination 1 ist
b)	Eine Logikfunktion die mit geringst möglicher Geschwindigkeit arbeitet
c)	 Eine Logikfunktion die nur für eine Eingangskombination 0 ist
d)	Eine Logikfunktion die nur aus einem Inverter besteht
e)	 Eine Logikfunktion die nur aus einem XOR-Gatter besteht

Aufgabe 4.2
Was ist ein Maxterm?

a)	 Eine Logikfunktion die nur für eine Eingangskombination 0 ist
b)	Eine Logikfunktion die nur für eine Eingangskombination 1 ist
c)	 Eine Logikfunktion die nur aus einem XOR-Gatter besteht
d)	Eine Logikfunktion die nur aus einem Inverter besteht
e)	 Eine Logikfunktion die mit konstanter Geschwindigkeit arbeitet

Aufgabe 4.3
Für eine Stereoanlage soll die eingestellte Lautstärke auf einer vertikalen Skala mit sie-
ben LEDs (L1 bis L7) dargestellt werden. Die Lautstärke ist als 3-Bit-Dualzahl D2, D1, 
D0 verfügbar.

Je höher die eingestellte Lautstärke, umso mehr LEDs sollen durch Ausgabe einer 1 
leuchten. Bei Lautstärke 0 (D2, D1, D0 = 000) sind alle LEDs aus, bei 1 (001) leuchtet 
nur L1, und so weiter. Abb. 4.30 zeigt den Wert 4 (100) bei dem L1 bis L4 leuchten.

Stellen Sie die Funktionstabelle der Schaltung auf.

Aufgabe 4.4
Für einen Spielautomaten soll die Eingabe eines Joysticks akustisch ausgegeben werden. 
Der Joystick hat vier Schalter O (oben), U (unten), L (links), R (rechts). In der Mittelstellung 
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geben alle Schalter 0 aus, bei Auslenkung sind die entsprechenden Schalter 1. Der Joystick 
kann schräg gehalten werden, sodass ein horizontaler und ein vertikaler Schalter gleichzeitig 
gedrückt sein können. Die beiden horizontalen bzw. vertikalen Schalter O und U bzw. L und 
R können nicht gleichzeitig gedrückt sein.

Wenn der Joystick aus der Mittelstellung heraus, horizontal oder vertikal gedrückt 
wird, soll durch Setzen des Ausgangs T1 = 1 ein bestimmter Ton ausgegeben werden. 
Wenn der Joystick schräg gehalten wird und zwei Schalter drückt, soll durch Setzen des 
Ausgangs T2 = 1 ein anderer Ton ausgegeben werden. T1 ist dann 0.

Stellen Sie die Funktionstabelle der Schaltung zur Erzeugung der Tonansteuerung T1 
und T2 aus den Schaltern O, U, R, L des Joysticks auf. Für Eingangskombinationen, die 
nicht auftreten können, soll für die Ausgänge ein Don’t-Care (‚-‘) eingetragen werden.

Aufgabe 4.5
Eine kombinatorische Schaltung hat vier Eingänge A(3:0), die unten als Dezimalzahl A 
angegeben ist. Es gibt einen Ausgang Y der folgende Werte hat:

•	 1 bei A = 5, 7, 10, 11, 14, 15
•	 0 sonst

Hinweis: Die Zuordnung von Dezimalzahl zu Feldern im Karnaugh-Diagramm ergibt 
sich aus der Zahlendarstellung, ist aber auch in Abb. 4.27 (links) angegeben.

a)	 Stellen Sie das Karnaugh-Diagramm auf.
b)	Ermitteln Sie die Produktterme. Welche Produktterme sind erforderlich?
c)	 Geben Sie die Funktion für die Ausgangsvariable an.

Aufgabe 4.6
Eine kombinatorische Schaltung hat vier Eingänge A(3:0), die unten als Dezimalzahl A 
angegeben ist. Es gibt einen Ausgang Y der folgende Werte hat:

•	 1 bei A = 0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 15
•	 0 sonst

4.7  Übungsaufgaben

Abb. 4.30   Lautstärkeanzeige 
einer Stereoanlage
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a)	 Stellen Sie das Karnaugh-Diagramm auf.
b)	Ermitteln Sie die Produktterme. Welche Produktterme sind erforderlich?
c)	 Geben Sie die Funktion für die Ausgangsvariable an.

Aufgabe 4.7
Eine kombinatorische Schaltung hat vier Eingänge A(3:0), die unten als Dezimalzahl A 
angegeben ist. Es gibt einen Ausgang Y der folgende Werte hat:

•	 1 bei A = 1, 3, 8, 11, 13, 14
•	 0 bei A = 0, 2, 4, 5, 6
•	 Don’t-Care sonst

a)	 Stellen Sie das Karnaugh-Diagramm auf.
b)	Ermitteln Sie die Produktterme mit Nutzung der undefinierten Ausgänge. Welche Pro-

duktterme sind erforderlich?
c)	 Geben Sie die Funktion für die Ausgangsvariable an.

Aufgabe 4.8
Eine kombinatorische Schaltung hat vier Eingänge A(3:0), die unten als Dezimalzahl A 
angegeben ist. Es gibt einen Ausgang Y der folgende Werte hat:

•	 1 bei A = 0, 5, 14, 15
•	 0 bei A = 1, 2, 3, 6, 7, 8, 12, 13
•	 Don’t-Care sonst

a)	 Stellen Sie das Karnaugh-Diagramm auf.
b)	Ermitteln Sie die Produktterme mit Nutzung der undefinierten Ausgänge. Welche Pro-

duktterme sind erforderlich?
c)	 Geben Sie die Funktion für die Ausgangsvariable an.
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Während kombinatorische Schaltungen nur die aktuellen Werte der Eingangssignale 
verwenden, können sich sequenzielle Schaltungen Informationen merken. Die Aus-
gangswerte einer sequenziellen Schaltung können damit von den aktuellen und den vor-
angegangenen Werten der Eingangssignale abhängen. Dieses Gedächtnis wird durch 
Flip-Flops als Speicherelemente erreicht.

Beispielsweise kann der Kanal eines Fernsehers durch Zifferntasten sowie durch ‚+‘ 
und ‚−‘-Taste ausgewählt werden. Durch Drücken der Taste ‚4‘ wird der Kanal Vier aus-
gewählt. Der Fernseher hat hierfür eine sequenzielle Schaltung, die sich den aktuellen 
Kanal merkt, auch wenn keine Taste mehr gedrückt ist. Durch Drücken von ‚+‘ wechselt 
der Fernseher auf Kanal Fünf. Wird ‚−‘ gedrückt, geht der Fernseher wieder auf Kanal 
Vier. Der Kanal kann also auf verschiedene Arten angewählt werden. Wie die Kanalaus-
wahl erfolgte, ist nicht wichtig. Wenn der Kanal Vier gewählt ist, braucht sich die sequen-
zielle Schaltung nicht zu merken, ob dies durch die Taste ‚4‘ oder ‚−‘ oder ‚+‘ geschah.

Sequenzielle Schaltungen werden in der Digitaltechnik sehr oft eingesetzt und dabei 
meist durch einen Takt angesteuert. Dieser Takt erreicht für eine Hochleistungs-CPU 
Frequenzen von über 3 GHz, während für viele Anwendungen eine Geschwindigkeit im 
Bereich 10 bis 100 MHz ausreicht. Sequenzielle Schaltungen werden beispielsweise als 
Flankendetektor, als Zähler oder als Steuerung eingesetzt.

•	 Ein Flankendetektor erkennt die Änderung eines Eingangswertes und gibt einmalig 
ein Signal weiter. Wenn beim Fernseher die ‚+‘-Taste gedrückt wird, soll nur ein 
Kanal weitergeschaltet werden, selbst wenn die Taste etwas länger gedrückt wird.

•	 Ein Zähler ist beispielsweise in einer CPU enthalten und zählt pro Takt jeweils einen 
Wert weiter, um den nächsten Befehl auszuführen. Bei einer Verzweigung kann der 
Zähler auch auf einen bestimmten Wert gesetzt werden.

In diesem und dem nächsten Kapitel werden einige Schaltungen ausführlich erläutert.

Sequenzielle Schaltungen 5
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5.1	� Speicherelemente

5.1.1	� RS-Flip-Flop

Die Grundform eines Speicherelements ist das RS-Flip-Flop (RS-FF), auch als Latch 
bezeichnet. Es arbeitet ohne Takt und hat die beiden Eingänge R und S sowie den Aus-
gang Q. Das Schaltsymbol ist in Abb. 5.1 dargestellt.

5.1.1.1 � Funktion
Die beiden Eingänge haben die Bedeutung Reset (R) und Set (S), also rücksetzen und 
setzen. Entsprechend dieser Namen ist auch die Funktion des RS-Flip-Flops.

•	 Mit R auf 1 wird der Ausgang Q auf 0 gesetzt (rücksetzen), S ist dabei 0.
•	 Mit S auf 1 wird der Ausgang Q auf 1 gesetzt (setzen), R ist dabei 0.
•	 Sind beide Eingänge 0, bleibt der Wert von Q unverändert (speichern).
•	 Beide Eingänge dürfen nicht gleichzeitig auf 1 sein. Man kann nicht gleichzeitig set-

zen und rücksetzen.

Der Zeitverlauf in Abb. 5.2 verdeutlicht die Funktion. In der Digitaltechnik wird der 
Zeitverlauf üblicherweise etwas vereinfacht dargestellt, da vor allem der logische 
Zusammenhang gezeigt werden soll. Auf der horizontalen Achse ist die Zeit aufgetra-
gen. Die vertikale Achse zeigt die Pegel für die Eingangs- und Ausgangssignale. Die 
Zeitachse hat keinen Maßstab, da keine konkreten Zeiten sondern die Abläufe wichtig 
sind. Ebenso hat die vertikale Achse keinen Maßstab, sondern gibt nur die Pegel L und H 
für die Werte 0 und 1 an. Die Signalübergänge werden leicht schräg dargestellt, um den 
Übergang von 0 nach 1 oder umgekehrt anzudeuten. Die Zeitverzögerung, die in jeder 
Schaltung enthalten ist, wird dadurch angedeutet, dass die Signalübergänge von Eingang 
und Ausgang leicht versetzt sind.

Für das RS-FF sind in Abb. 5.2 die Eingänge R und S sowie der im Flip-Flop gespei-
cherte Ausgangswert Q dargestellt. Die eingezeichneten Zeitpunkte haben folgende 
Bedeutung:

1.	 Der Eingang R ist 1, das RS-FF wird rückgesetzt und Q ist 0.
2.	 Beide Eingänge sind 0 und das RS-FF speichert den vorherigen Wert 0 für Q.
3.	 S wird 1 und setzt das RS-FF. Der Ausgang Q wird 1 und speichert diesen Wert auch 

wenn S wieder auf 0 geht.
4.	 Mit Aktivierung von R wird das RS-FF wieder auf 0 gesetzt.

Abb. 5.1   Schaltsymbol eines 
RS-Flip-Flops (RS-FF)

S

R

QS

R
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Beachten Sie: Wenn R und S 0 sind, kann der Ausgang sowohl 0 als auch 1 sein. Der 
Ausgangswert hängt also davon ab, ob zuletzt R oder S auf 1 war. Dies ist der wesentli-
che Unterschied zu einer kombinatorischen Schaltung, die bei gleichen Eingangswerten 
immer den gleichen Ausgangswert ergeben, unabhängig von vorherigen Werten.

5.1.1.2 � Aufbau
Die Speicherung im RS-FF erfolgt durch eine Rückkopplung des Ausgangs Q. Es werden 
zwei NOR-Gatter benötigt, die wie in Abb. 5.3 verschaltet sind. Der Ausgang des zwei-
ten NOR-Gatters wird an einen Eingang des ersten Gatters zurückgeführt und speichert 
so den Wert des Ausgangs Q. Da nur zwei Gatter benötigt werden, ist der Schaltungsauf-
wand für das RS-FF relativ klein.

Die NOR-Gatter des RS-FF können im Schaltplan auch nebeneinander geschoben 
werden, so dass sich die in Abb. 5.4 gezeigte Anordnung ergibt. Während ein NOR-Gat-
ter den Ausgang Q erzeugt, hat das andere NOR-Gatter den invertierten Speicherwert als 
Ausgang.

5.1.1.3 � Herleitung des Aufbaus
Der Aufbau des RS-Flip-Flops könnte auch mit den bereits bekannten Methoden aus 
dem vorherigen Kapitel hergeleitet werden. Abb. 5.5 zeigt, dass die Rückführung zur 
Speicherung des Flip-Flop-Wertes als separate Leitung angesehen werden kann. Der 

Abb. 5.2   Zeitverlauf der 
Ansteuerung eines RS-Flip-
Flops
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Rest des Flip-Flops ist dann eine normale kombinatorische Schaltung. Sie hat die Ein-
gänge R und S sowie den alten Wert von Q, der hier als Qn bezeichnet wird. Mit die-
sen drei Werten berechnet die kombinatorische Schaltung dann den neuen Wert von Q, 
bezeichnet als Qn+1. Die Bezeichner n und n+1 stellen Zeitschritte dar; n ist der aktuelle, 
n+1 der nächste Wert.

Für die kombinatorische Schaltung aus Abb. 5.5 kann eine Funktionstabelle erstellt 
und mit dem Verfahren nach Karnaugh minimiert werden. Abb. 5.6 zeigt die Funktions-
tabelle und das Karnaugh-Diagramm dieser kombinatorischen Schaltung. Zur Minimie-
rung können die disjunktive und die konjunktive Normalform verglichen werden, also 
Einsen oder Nullen zusammengefasst werden. Die konjunktive Normalform mit dem in 
Abb. 5.6 dargestellten Termen ergibt die Funktion

Mit dem De Morganschen Gesetz wird die UND-Verknüpfung durch eine NOR-Ver-
knüpfung mit negierten Operatoren ersetzt. Aus dem ODER in der Klammer wird dann 
ein NOR und die Negierung von R entfällt. Somit ergibt sich die in Abb. 5.3 gezeigte 
Struktur mit zwei NOR-Gattern.

5.1.1.4 � Verwendung
In der Praxis wird das RS-Flip-Flop in der einfachen Grundform nur selten verwendet, 
da es kein Taktsignal benutzt. Es ist jedoch als Teilschaltung in getakteten Flip-Flops 
enthalten und dadurch eine wichtige Grundlage für die Datenspeicherung in sequenziel-
len Schaltungen.

5.1.2	� Taktsteuerung von Flip-Flops

5.1.2.1 � Takt
Fast alle in der Realität eingesetzten Schaltungen benutzen einen Takt zur Ansteuerung 
der Speicherelemente. Der Takt ist ein periodisches Signal, welches in gleichmäßigem 
Rhythmus zwischen 0 und 1 wechselt. Ein 0-1-Zyklus wird als Taktzyklus, Taktschritt 
oder Taktperiode bezeichnet.

Q
n+1

= R̄& (Qn
∨ S)

Q
n+1

= R̄& (Qn
∨ S) = R ∨ (Qn ∨ S)

Abb. 5.6   Minimierung nach 
Karnaugh für den Entwurf des 
RS-FF
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Der besondere Vorteil der Taktsteuerung ist die Synchronisierung der Speicherele-
mente. Durch den Takt schalten alle Flip-Flops gemeinsam und führen einen Rechen-
schritt aus. Mit dem nächsten Taktzyklus wird der nächste Rechenschritt ausgeführt.

Kennzeichnend für einen Takt sind die Periodendauer Tper und die Taktfrequenz f, die 
der Kehrwert der Periodendauer ist:

Taktfrequenzen für digitale Schaltungen sind typischerweise im Bereich zwischen 
10 MHz für eine einfache Schaltung bis zu über 3 GHz für aktuelle CPUs in Computern. 
Die Periodendauer ergibt sich nach der genannten Formel.

Zur Verdeutlichung zwei Zahlenbeispiele:

•	 Für die Taktfrequenz 10 MHz beträgt die Periodendauer	

•	 Für die Taktfrequenz 3 GHz beträgt die Periodendauer	

Je höher die Taktfrequenz ist, umso leistungsfähiger ist eine Schaltung. Allerdings stei-
gen auch der Schaltungsaufwand, die Störanfälligkeit und die benötigte Leistung. Darum 
haben netzbetriebene stationäre Computer normalerweise höhere Taktraten als batterie-
betriebene Laptops und Smartphones.

Eine weitere Kenngröße des Takts ist das Tastverhältnis D (englisch Duty Cycle), also 
die Dauer der 1-Phase bezogen auf die Periodendauer:

Der Duty Cycle sollte möglichst etwa 50 %, also 0- und 1-Phase etwa gleich lang sein. 
Dies ist insbesondere für hohe Taktfrequenzen wichtig, damit das Taktsignal ausreichend 
Zeit hat, auch wirklich die Low- und High-Pegel zu erreichen.

Abb. 5.7 zeigt den Taktverlauf eines Taktsignals mit Periodendauer und Zeiten für die 
Taktphasen. Die englische Bezeichnung für Takt ist Clock; das Signal wird daher oft als 
CLK oder C abgekürzt.
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5.1.2.2 � Taktpegelsteuerung
Als einfache Taktsteuerung kann der Taktpegel, also der Wert 0 oder 1, benutzt werden. 
Ein taktpegelgesteuertes Flip-Flop ist nur aktiv, wenn der Takt auf 1 ist. Die Grundform 
des RS-Flip-Flop kann mit wenig Aufwand um eine Taktpegelsteuerung erweitert wer-
den. Wie in Abb. 5.8 gezeigt, werden dazu die Eingänge mit jeweils einem UND-Gatter 
erweitert. Nur wenn der Takt auf 1 ist, werden die beiden Steuereingänge R und S durch 
die UND-Funktion an R* und S* weitergegeben. Ist der Takt auf 0 sind auch R* und S* 
auf 0 und das RS-FF behält seinen Wert.

Der Zeitablauf in Abb. 5.9 verdeutlicht das Verhalten. Nur wenn der Takt CLK auf 1 
ist, werden die Steuereingänge R und S ausgewertet. Dies sind die mit  gekennzeichne-
ten Impulse. Wenn der Takt auf 0 ist, führen an den mit  gekennzeichneten Zeiten die 
Eingangssignale zu keiner Änderung am Ausgang.

Die Taktpegelsteuerung hat jedoch einen großen Nachteil. Eigentlich sollte die Verar-
beitung so ablaufen, dass pro Taktzyklus die Informationen genau ein Flip-Flop weiter-
gegeben werden. Allerdings dauert die 1-Phase eine gewisse Zeit und die Flip-Flops sind 
während dieser 1-Phase aktiviert. Es wird also vorkommen, dass Informationen durch 
mehrere Flip-Flops „rutschen“.

Um dies zu vermeiden, werden bei taktpegelgesteuerten Flip-Flops zwei Takte ver-
wendet, die sich nicht überlappen. Dies ist in Abb. 5.10 dargestellt. Oben im Bild ist zu 
sehen, wie aufeinander folgende Flip-Flops abwechselnd an eines der Taktsignale ange-
schlossen werden. Unten ist der Zeitverlauf der beiden Takte skizziert. Immer abwech-
selnd, mit einer Pause dazwischen, ist ein Takt aktiv. Damit werden die Daten immer 
genau einen Schritt, also ein Flip-Flop weitergereicht.

Das Prinzip des Zweiphasentakts ähnelt einer Kanalschleuse, bei der ein Schiff durch 
zwei Tore fahren muss. Erst fährt das Schiff durch ein Tor und das Tor wird geschlossen. 

R

S

Q

Q

&

&

CLK

R*

S*

1

1

Abb. 5.8   Taktpegelgesteuertes RS-Flip-Flop

Abb. 5.9   Zeitverlauf beim 
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Flop
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Nach dem Ändern des Wasserstands wird das andere Tor geöffnet und das Schiff fährt 
weiter zur nächsten Schleuse. Es sind jedoch nie beide Tore gleichzeitig offen.

Ein solcher Zweiphasentakt mit taktpegelgesteuerten Flip-Flops wurde früher in vielen 
Schaltungen eingesetzt. Allerdings sind zwei Taktleitungen erforderlich, was einen höheren 
Aufwand bedeutet. Auch kann die Taktperiode nicht so gut ausgenutzt werden, sodass Zeit 
verloren geht. Darum werden heute kaum noch taktpegelgesteuerte Flip-Flops verwendet.

5.1.2.3 � Taktflankensteuerung
Heutzutage wird praktisch immer eine Taktflankensteuerung verwendet. Nur bei einer 
Taktflanke ist das Flip-Flop aktiv, das heißt der Zeitpunkt des Schaltens ist sehr genau 
vorgegeben. Dies hat den Vorteil, dass alle Flip-Flops einer Schaltung wirklich gleichzei-
tig arbeiten können. Somit wird eine Verarbeitung immer genau einen Schritt von Flip-
Flop zu Flip-Flop weitergeführt.

Für die Taktflankensteuerung kann entweder die steigende Taktflanke, also der Über-
gang von 0 nach 1, oder die fallende Taktflanke, also der Übergang von 1 nach 0, benutzt 
werden. Meist wird die steigende Taktflanke verwendet, da dies anschaulicher ist. Alle 
Flip-Flops einer Schaltung sind dann nur beim Übergang des Takts von 0 nach 1 aktiv. 
Genauso gut könnten auch Flip-Flops eingesetzt werden, die bei der fallenden Taktflanke 
aktiv sind. Dann sollten alle Flip-Flops der Schaltung so aufgebaut sein. Im Schalt-
symbol wird die Taktflankensteuerung durch ein Dreieck am Takteingang dargestellt. 
Abb. 5.11 zeigt die Steuerung durch die Taktflanke und das Schaltsymbol.

Es gibt keine Flip-Flops, die bei beiden Flanken aktiv sind. Eine Mischung von Flip-
Flops mit steigender und fallender Taktflanke wird nur bei Spezialschaltungen benötigt; 
ein Beispiel findet sich in einem späteren Kapitel bei der Ansteuerung von Speichern.

Abb. 5.10   Schaltungsprinzip 
und Zeitdiagramm eines 
Zweiphasentakts

CLK_B

CLK_A

CLK_B

CLK_A

Flip-Flops

t

CLK

t

CLK

Flip-Flop aktiv

Abb. 5.11   Taktflankensteuerung und Schaltsymbol
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Bei der Taktflankensteuerung erfolgt üblicherweise keine Ansteuerung mit R und S wie 
beim RS-Flip-Flop. Stattdessen gibt es einen Dateneingang D, dessen Wert direkt gespei-
chert wird. Dieses taktflankengesteuerte D-Flip-Flop wird im nächsten Abschnitt erläutert.

5.1.3	� D-Flip-Flop

Das taktflankengesteuerte D-Flip-Flop, oder kurz D-Flip-Flop (D-FF) ist das heutzutage 
am häufigsten verwendete Flip-Flop. Wenn in der Praxis von einem Flip-Flop gespro-
chen wird, ist so gut wie immer das taktflankengesteuerte D-Flip-Flop gemeint. Zwei 
oder mehr D-FFs, die von einem gemeinsamen Takt angesteuert werden, bezeichnet man 
auch als Register.

5.1.3.1 � Funktion
Beim D-Flip-Flop wird der Eingang D bei einer steigenden Flanke des Takts übernom-
men und am Ausgang Q ausgegeben. Das Schaltungssymbol in Abb. 5.12 zeigt auf der 
linken Seite den Dateneingang D und den Takteingang C mit dem Dreieck zur Kenn-
zeichnung der Taktflankensteuerung. An der rechten Seite ist der Datenausgang Q. Wenn 
das D-FF auf die negative Taktflanke reagiert, wird dies durch einen Inverterkreis am 
Takteingang dargestellt. Im Symbol kennzeichnet die Ziffer 1 die Abhängigkeit der Sig-
nale voneinander. Der Dateneingang 1D wird abhängig vom Taktsignal C1 ausgewertet.

Das Verhalten des D-Flip-Flops wird durch die Funktionstabelle in Abb. 5.13 
beschrieben. Die Form der Tabelle ist ähnlich zu den Funktionstabellen der kombinatori-
schen Schaltungen. Das Zeitverhalten wird durch das Taktflankensymbol und Indizes an 
den Werten beschrieben. Qn meint dabei wieder den jetzigen Wert des Ausgangs Q und 
Qn+1 ist der zeitlich darauffolgende Wert. Die Indizes bezeichnen also aufeinanderfol-
gende Taktperioden oder Zeitschritte n und n+1.

Abb. 5.12   Taktsymbol des 
D-FFs

1D

C1

positive
Taktflanke

1D

C1

negative
Taktflanke

D

C

Q D

C

Q

Abb. 5.13   Funktionstabelle 
des D-FFs
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Die Zeilen der linken Funktionstabelle (positive Taktflanke) haben die Bedeutung:

1.	 Bei D gleich 0 und positiver Taktflanke an C wird der Ausgang Q zu 0.
2.	 Bei D gleich 1 und positiver Taktflanke an C wird der Ausgang Q zu 1.
3.	 Wenn der Takt konstant auf 0 ist, behält Q seinen Wert. Der Wert von D ist irrelevant 

(‚X‘). Das neue Qn+1 ist also gleich dem alten Qn.
4.	 Wenn der Takt konstant auf 1 ist, behält Q seinen Wert. Qn+1 ist gleich Qn.

Die rechte Funktionstabelle zeigt das entsprechende Verhalten für die negative Taktflanke.
Das Zeitverhalten des D-FFs zeigt Abb. 5.14. Bei jeder steigenden Taktflanke wird 

der Eingang von D übernommen und am Ausgang Q ausgegeben. Änderungen von D 
zwischen den steigenden Taktflanken haben keine Auswirkungen.

Die eingezeichneten Zeitpunkte haben folgende Bedeutung:

1.	 Der Eingang D wird 1.
2.	 Bei der nächsten steigenden Taktflanke speichert das D-Flip-Flop den Eingangswert 

und gibt ihn am Ausgang aus. Q wird 1.
3.	 Der Eingang D wird 0.
4.	 Bei der nächsten steigenden Taktflanke speichert das D-Flip-Flop wieder den Ein-

gangswert. Q wird 0.
5.	 D wird 1 und vor der nächsten steigenden Taktflanke wieder 0. Der gespeicherte Wert 

im Flip-Flop und der Ausgang Q ändern sich nicht.
6.	 D wird wieder kurz 1, dann 0. Da in dieser Zeit eine steigende Taktflanke auftritt, 

wird der Ausgang für einen Takt gleich 1.

Das Zeitverhalten und auch alle weiteren Erklärungen sind im Folgenden nur für Flip-
Flops mit positiver Taktflanke dargestellt. Flip-Flops mit negativer Taktflanke verhalten 
sich entsprechend.

5.1.3.2 � Reales Zeitverhalten
Wie erläutert, übernimmt das D-Flip-Flop den Eingangswert bei der positiven Takt-
flanke. Natürlich braucht die Schaltung eine kurze Zeit, um den Wert zu übernehmen. 
Der Eingangswert darf sich darum zum Zeitpunkt der Taktflanke nicht ändern, sondern 
muss kurz vor und kurz nach der Taktflanke stabil sein. Abb. 5.15 zeigt einen zulässigen 
und unzulässigen Zeitverlauf.

Abb. 5.14   Zeitverhalten eines 
D-Flip-Flops D

Q

C

t
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1.	 Der Dateneingang D wechselt vor der Taktflanke.
2.	 Kurz vor und nach der Taktflanke ist D stabil und wird korrekt übernommen ().
3.	 Nach der Taktflanke kann D wieder wechseln.
4.	 Während der nächsten Taktflanke ist D nicht stabil und wird nicht korrekt übernom-

men (). Der Ausgang des Flip-Flops ist undefiniert. Er kann 0, 1 oder sogar einen 
unzulässigen Zwischenzustand haben.

5.	 Bei der nächsten Taktflanke ist D stabil. Dennoch kann das Flip-Flop einige Zeit 
benötigen, um sich zu „fangen“. Dies wird als Metastabilität bezeichnet. Im Bild ist 
angenommen, dass der Ausgang bei dieser Taktflanke wieder normal den Eingangs-
wert übernimmt.

Die benötigten Zeiten vor und nach der Taktflanke werden als Setup- und Hold-Zeit 
bezeichnet. Das Eingangssignal D muss vor der Taktflanke für die Setup-Zeit tsetup und 
nach der Taktflanke für die Hold-Zeit thold stabil sein.

Abb. 5.16 zeigt die Zeiten und verwendet die in der Digitaltechnik übliche Darstel-
lung. Der horizontale Strich in der Mitte zwischen 0 und 1 gibt an, dass der Wert belie-
big wechseln darf. Zwei parallele Striche bei 0 und 1 geben einen konstanten Wert 0 oder 
1 an.

Die benötigten Zeiten von tsetup und thold hängen von der verwendeten Technologie 
ab und sind in Datenblättern angegeben. Bei modernen integrierten Schaltungen sind die 
Zeiten im Bereich von 0,1 ns oder kleiner. Die Hold-Zeit wird oft zu Null angestrebt, 
damit sich der Eingangswert direkt nach der Taktflanke ändern darf.

5.1.3.3 � Aufbau
Für den Aufbau eines D-Flip-Flops gibt es mehrere Möglichkeiten, die sich in Größe, 
Zeitverhalten und Stromverbrauch unterscheiden. Abb. 5.17 zeigt eine Möglichkeit zum 
Aufbau eines D-Flip-Flops. Auf der rechten Seite ist ein RS-Flip-Flop zur Datenspei-
cherung (vgl. Abb. 5.3). Auf der linken Seite ist eine Vorstufe, in der sich ebenfalls die 
Struktur zweier RS-FFs findet. Diese Vorstufe erkennt die steigende Taktflanke und steu-
ert dann das RS-FF auf der rechten Seite an.

Abb. 5.15   Datenspeicherung 
bei Taktflanken
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Abb. 5.16   Setup- und Hold-
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Eine weitere Schaltung zur Implementierung eines Flip-Flops wird später im Kapitel 
Halbleitertechnik vorgestellt (Kapitel 10).

5.1.4	� Erweiterung des D-Flip-Flops

Die Grundfunktion des D-Flip-Flops kann durch weitere Steuereingänge erweitert 
werden.

5.1.4.1 � Asynchroner Reset und Set
Der Dateneingang des D-FF wird nur bei der Taktflanke ausgewertet. Manchmal ist es 
jedoch erforderlich, dass der Wert eines D-FFs sofort geändert wird. Hierzu dient ein 
asynchroner Reset oder Set. Der Begriff asynchron meint dabei „nicht synchron“, also 
„nicht mit dem Takt gekoppelt“. Normalerweise hat ein D-FF entweder Reset oder Set, 
je nachdem welchen Wert das D-FF bei Aktivierung einnehmen soll.

•	 Ein asynchroner Reset setzt das D-FF sofort auf 0.
•	 Ein asynchroner Set setzt das D-FF sofort auf 1.

Mit „sofort“ ist hierbei gemeint, dass nicht auf die nächste Taktflanke gewartet wer-
den muss. Natürlich hat das Flip-Flop eine kurze Verzögerungszeit, in der die Gatter 
umschalten.

Reset und Set sind normale Eingänge des Flip-Flops und werden an der linken Kante 
des Schaltsymbols eingezeichnet (Abb. 5.18). Negative Polarität wird wieder durch den 
Inverterkreis symbolisiert. Abb. 5.18 zeigt beispielhaft den Set mit negativer Polarität. 
Genauso wäre ein Reset mit negativer Polarität möglich.

Das Zeitverhalten eines D-Flip-Flops mit asynchronen Reset zeigt Abb. 5.19. Bei den 
steigenden Taktflanken sind Hilfslinien eingezeichnet, um die Taktzyklen zu verdeutlichen.

1.	 Mit der steigenden Taktflanke wird der Wert 1 des Eingangs D gespeichert.
2.	 Durch eine 1 am Reset wird das D-FF sofort auf 0 gesetzt, also ohne auf eine Takt-

flanke zu warten.

Abb. 5.17   Möglichkeit zum 
Aufbau eines D-Flip-Flops 
(nach Datenblatt TI SN7474)

D

Q

Q

&

&

CLK

&

&

&

&

http://dx.doi.org/10.1007/978-3-662-49731-9_10


126 5  Sequenzielle Schaltungen

3.	 Reset wird wieder 0, also inaktiv. Dies hat aber noch keine Auswirkung auf den 
gespeicherten Wert.

4.	 Erst mit der nächsten steigenden Taktflanke wird der Wert von D wieder ausgewertet 
und der Ausgang Q wird 1.

Beachten Sie insbesondere, dass nach dem Ende des Resets, zum Zeitpunkt ③ das Flip-
Flop noch auf 0 bleibt. Der Eingang D ist synchron, wird also erst bei der nächsten stei-
genden Taktflanke wieder ausgewertet.

Praktische Verwendung finden asynchroner Reset und Set insbesondere bei der Initia-
lisierung. Beim Einschalten einer Digitalschaltung haben die Flip-Flops einen unbekann-
ten Speicherzustand und können durch Reset und Set auf den gewünschten Startwert 
gesetzt werden.

Auch für die Erkennung kurzer Impulse können asynchroner Reset und Set verwen-
det werden. Ein Eingangssignal ist eventuell sehr kurz und schon vor der nächsten Takt-
flanke beendet. Ein solcher Impuls würde von einer synchronen Schaltung, die nur bei 
den Taktflanken arbeitet, nicht erkannt. Zur Erkennung solcher Impulse wird ein Flip-
Flop durch den Dateneingang ständig auf 0 gesetzt und der Impuls wird am asynchronen 
Set angeschlossen. Wenn das Flip-Flop auf 1 ist, lag ein Impuls am Set-Eingang vor.

5.1.4.2 � Synchroner Reset und Set
Alternativ kann Reset und Set auch ganz normal mit der Taktflanke ausgewertet wer-
den, also synchron. Wie in Abb. 5.20 gezeigt, hat der Steuereingang dann die Ziffer 1, als 
Kennzeichnung der Abhängigkeit vom Takt.

Der synchrone Set ist prinzipiell ein weiterer Dateneingang, das heißt, der Ausgang 
des Flip-Flops wird 1, wenn während der Taktflanke D oder S auf 1 sind. Deswegen 
könnte die Schaltung auch durch ein normales D-FF und ein ODER-Gatter implemen-
tiert werden (Abb. 5.20, rechts). Entwurf und Darstellung als synchroner Set sind jedoch 
übersichtlicher und der Set kann direkt in die Flip-Flop-Schaltung integriert werden.

Abb. 5.18   Schaltsymbole von 
D-FFs mit asynchronem Set 
(hier mit negativer Polarität) 
und Reset
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In ähnlicher Weise gibt es D-FFs mit synchronem Reset. Auch synchroner Reset und 
Set werden für die Initialisierung von Digitalschaltungen verwendet.

5.1.4.3 � Enable
Ein weiterer Steuereingang der für D-FFs verwendet wird, ist der Enable-Eingang (EN). 
Bei einer Taktflanke wird der D-Eingang nur übernommen, wenn Enable gleich 1 ist. 
Ansonsten wird der Ausgang Qn beibehalten. Abb. 5.21 zeigt Symbol und Zeitverhalten, 
wobei die Ziffern wieder die Abhängigkeit anzeigen. Das Enable EN1 gibt die Gültigkeit 
von Takt 1C2 an, welcher dann den Dateneingang 2D übernimmt.

Im Zeitverhalten sind folgende Fälle gekennzeichnet:

1.	 EN ist 0 und das Flip-Flop behält seinen Wert.
2.	 EN ist 1 und bei jeder steigenden Taktflanke wird der Wert von D übernommen.
3.	 EN ist 0 und das Flip-Flop behält seinen Wert.

Ein Enable-Steuereingang wird in der Praxis eingesetzt, wenn eine Teilschaltung nur zu 
bestimmten Zeiten oder bei bestimmten Bedingungen aktiv ist.

5.1.4.4 � Kompakte Darstellung von D-Flip-Flops
Für die Darstellung von D-Flip-Flops in einer größeren Schaltung wird in der Praxis 
häufig eine kompakte Form gewählt und die Ziffern der Eingangsabhängigkeit weggelas-
sen (Abb. 5.22, links).

Abb. 5.20   Symbol und 
Schaltung eines D-FFs mit 
synchronem Set
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Asynchroner Set und Reset können dann an der unteren oder oberen Kante des Sym-
bols eingezeichnet sein, um darzustellen, dass sie unabhängig vom Takteingang sind. Der 
Set liegt in dieser Darstellung an der oberen Kante, denn er zieht den Wert „nach oben“, 
zur 1. Reset wird entsprechend an der unteren Kante dargestellt, denn er zieht den Wert 
„nach unten“, zur 0. Abb. 5.22 zeigt auch diese Darstellung, wobei das Set wieder bei-
spielhaft negative Polarität hat (vgl. Abb. 5.18).

5.1.5	� Weitere Flip-Flops

Es gibt neben D-Flip-Flops und ihren Erweiterungen auch andere taktflankengesteuerte 
Flip-Flops. Diese werden allerdings in der Praxis nur selten eingesetzt und darum hier 
nur kurz erwähnt.

5.1.5.1 � JK-Flip-Flop
Das JK-Flip-Flop (JK-FF) hat einen Takteingang und die beiden Steuereingänge J und 
K. Diese haben folgende Bedeutung:

•	 Beide Eingänge auf 0: Flip-Flop behält seinen Wert.
•	 J auf 1 (und K auf 0): Flip-Flop geht auf 1
•	 K auf 1 (und J auf 0): Flip-Flop geht auf 0
•	 Beide Eingänge auf 1: Flip-Flop invertiert seinen Wert, geht also von 0 auf 1 oder von 

1 auf 0.

Dieses Verhalten ähnelt dem RS-FF, mit J als Set und K als Reset. Die Bedeutung kann 
man sich merken als J wie Jump (auf 1) und K wie Kill (auf 0). Die beim RS-FF verbo-
tene Kombination, dass beide Steuereingänge auf 1 sind, ist hier erlaubt und dreht den 
gespeicherten Wert um.

Auch dieses Flip-Flop kann durch asynchronen Reset oder Set erweitert werden.
JK-Flip-Flops wurden früher eingesetzt, als Digitalschaltungen noch durch einzelne 

diskrete Bausteine aufgebaut wurden. Durch geschickte Ansteuerung von J und K konn-
ten Logikgatter eingespart werden. Heutzutage werden praktisch keine diskreten Flip-
Flops und darum auch keine JK-FFs mehr verwendet.

5.1.5.2 � Toggle-Flip-Flop
Das Toggle-Flip-Flop (T-FF) hat, neben dem Takt, nur einen Steuereingang T. Wenn T 
gleich 1 ist, invertiert das Flip-Flop seinen Wert, es „toggled“. Bei T gleich 0 bleibt der 
gespeicherte Wert unverändert.

Auch das T-FF kann durch asynchronen Reset oder Set erweitert werden. Wie beim 
JK-FF wurde das T-FF eingesetzt, um durch geschickte Ansteuerung Logikgatter einzu-
sparen. Es wird heutzutage praktisch nicht mehr verwendet.
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5.1.6	� Kippstufen

Flip-Flops werden auch als bistabile Kippstufen bezeichnet. Bistabil meint, dass beide 
„Kippwerte“, also 0 und 1 stabil sind. Diese Bezeichnung legt nahe, dass es auch andere 
Kippstufen gibt.

5.1.6.1 � Monostabile Kippstufe
Eine monostabile Kippstufe, auch als Monoflop bezeichnet, hat nur einen stabilen 
Zustand; der instabile Zustand geht nach einer Verzögerungszeit in den stabilen Zustand 
über. Das Monoflop reagiert auf eine positive Taktflanke am Eingang mit einem 1-Impuls 
am Ausgang. Aus dieser instabilen Lage kippt es nach einer einstellbaren Zeit TD zurück 
in den stabilen Zustand mit einer 0 am Ausgang. Erst wenn der Ausgang wieder in seinen 
ursprünglichen Logik-Zustand zurückgekippt ist, kann ein neuer Eingangsimpuls mit sei-
ner Flanke wirksam werden.

Als Variante sind nachtriggerbare Monoflops möglich. Falls die Impulsdauer TD noch 
nicht abgelaufen ist, verlängert eine Taktflanke des Eingangssignals den Impuls bis wie-
derum die Zeit TD nach der Flanke abgelaufen ist.

Dieses Verhalten entspricht der Treppenhausbeleuchtung in einem Mehrfamilien-
haus. Nach Schalterdruck ist das Licht für zwei Minuten an (instabiler Zustand) und geht 
danach wieder aus (stabiler Zustand). Bei einer nachtriggerbaren Treppenhausbeleuch-
tung verlängert ein weiterer Schalterdruck die Beleuchtungsdauer.

Monostabile Kippstufen sind als diskrete Bauelemente verfügbar. Die Verzögerungs-
zeit kann über ein RC-Glied eingestellt werden. Eingesetzt werden diese Bauelemente, 
um das Zeitverhalten von Signalen zu kontrollieren. Beispielsweise kann so sicherge-
stellt werden, dass ein Reset eine bestimmte Mindestdauer hat.

5.1.6.2 � Astabile Kippstufe
Eine astabile Kippstufe hat keinen stabilen Zustand, sondern wechselt periodisch zwi-
schen den beiden Zuständen, also 0 und 1. Sie wird auch als Oszillator bezeichnet und 
als Taktgenerator eingesetzt.

Es gibt verschiedene Schaltungen, die als astabile Kippstufe eingesetzt werden können. 
Einfache Schaltungen nutzen RC-Glieder, um zwischen den Zuständen umzuschalten. 
Hierbei ist die Frequenz meist nicht sehr stabil, aber für einfache Anwendungen kann dies 
ausreichend sein.

Für hohe Ansprüche in Hinblick auf Frequenzstabilität werden quarzgesteuerte Oszil-
latoren eingesetzt. Für den Einsatz in der Digitaltechnik stehen integrierte Schaltkreise zur 
Verfügung, die über einen Schwingquarz auf eine bestimmte Frequenz eingestellt werden.

5.2	� Endliche Automaten

Eine sequenzielle Schaltung, die aus Speicherelementen und Logikgattern besteht, wird 
als Automat, oder genauer als endlicher Automat bezeichnet.

5.2  Endliche Automaten
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5.2.1	� Automatentheorie

Ein Automat ist dadurch gekennzeichnet, dass sein Verhalten durch aktuelle Eingangs-
variablen und interne Zustandsvariablen bestimmt ist. Die Zustandswerte, oder auch 
Zustände, beschreiben die „Vorgeschichte“ des Automaten. Daraus ergibt sich auch die 
englische Bezeichnung Finite State Machine (FSM), also frei übersetzt Automat mit end-
licher Anzahl an Zuständen.

Vielleicht fragen Sie sich jetzt, ob es überhaupt Automaten mit unendlicher Anzahl an 
Zuständen gibt. Als reale Implementierung ist ein unendlich großer Speicher natürlich 
nicht möglich, aber in der Theorie ist dies denkbar. In der theoretischen Informatik wird 
die Turingmaschine verwendet, die einen unendlich großen Speicher hat und somit ein 
unendlicher Automat ist. Mit dem Gedankenmodell der Turingmaschine wird die Bere-
chenbarkeit von mathematischen Problemen analysiert.

5.2.1.1 � Mealy-Automat
Eine Grundform der endlichen Automaten ist der Mealy-Automat. Er wird durch drei 
Gruppen an Variablen und zwei Funktionen definiert.

Die drei Gruppen an Variablen sind:

•	 Eingangsvariablen, also Eingangswerte, die in die Schaltung hineingehen. Sie wer-
den als X(0), X(1), X(2), … sowie gemeinsam als Gruppe X bezeichnet.

•	 Ausgangsvariablen, also Ausgangswerte, die aus der Schaltung herausgehen. Sie 
werden als Y(0), Y(1), Y(2), … sowie gemeinsam Y bezeichnet.

•	 Zustandsvariablen, also interne Werte der Schaltung, die den Zustand speichern. Sie 
werden als Z(0), Z(1), Z(2), … sowie gemeinsam Z bezeichnet.

Die zwei Funktionen beschreiben die Zusammenhänge zwischen den Variablen:

•	 Die Zustandsübergangsfunktion benutzt die Eingangsvariablen X und die aktuellen 
Zustandsvariablen Zn, also Z vom aktuellen Zeitschritt n. Hiermit berechnet sie die 
neuen Zustandsvariablen Zn+1 für den nächsten Zeitschritt n+1. Als Funktion ausge-
drückt lautet dies: Zn+1=f(X,Zn)

•	 Die Ausgangsfunktion benutzt ebenfalls die Eingangsvariablen X und die aktuellen 
Zustandsvariablen Zn, um die Ausgangsvariablen Y zu berechnen. Die Funktion lautet: 
Y=g(X,Zn)

Diese Struktur ist in Abb. 5.23 dargestellt. Eingangsvariable X und aktuelle Zustands-
variablen Zn gehen in die Zustandsübergangsfunktion. Dieser Block ist eine kombina-
torische Schaltung aus UND-Gattern, ODER-Gattern und so weiter. Sie berechnet den 
nächsten Zustand Zn+1. Die Speicherglieder sind D-Flip-Flops, die zurzeit noch den 
aktuellen Zustand Zn speichern und bei der Taktflanke den neuen Zustand übernehmen. 
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Die Ausgangsfunktion ist ebenfalls eine kombinatorische Schaltung und berechnet aus X 
und Zn die Ausgangsvariablen Y.

Später in diesem Kapitel sind Beispiele für Automaten angegeben, um Struktur und 
Funktion des Mealy-Automaten zu verdeutlichen. Zunächst soll jedoch der andere 
bedeutende Automatentyp vorgestellt werden.

5.2.1.2 � Moore-Automat
Der Moore-Automat ähnelt dem Mealy-Automat, hat jedoch einen wesentlichen Unter-
schied. Die Ausgangsfunktion hängt nur von den aktuellen Zustandsvariablen Zn ab und 
nicht von den Eingangsvariablen X. Die Funktion für die Ausgangsvariablen Y lautet 
also: Y=g(Zn)

Die Informationen der Eingangsvariablen beeinflussen also zunächst den Zustand und 
der Zustand bestimmt dann den Ausgang. Die Struktur ist in Abb. 5.24 zu sehen.

Verglichen mit dem Mealy-Automaten ist der Moore-Automat also etwas einfacher in 
der Struktur. Grundsätzlich können für praktische Problemstellungen stets beide Auto-
maten verwendet werden. Für manche Problemstellungen ist ein Mealy-Automat besser 
geeignet, für andere ein Moore-Automat.

An den Beispielen, die später in diesem Kapitel folgen, werden die Unterschiede 
sowie Vor- und Nachteile deutlich.

5.2.1.3 � Medwedew-Automat
Der Medwedew-Automat ist ein Spezialfall des Moore-Automaten. Bei ihm sind die Aus-
gangsvariablen Y gleich den Zustandsvariablen Zn. Die Ausgangsfunktion ist also trivial 
und gibt die Zustandsvariablen direkt weiter. In der Funktionsschreibweise lautet dies: 
Y=Zn

Auf den Medwedew-Automat wird später in Abschn. 5.2.7 kurz eingegangen.

Abb. 5.23   Struktur des 
Mealy-Automaten
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5.2.2	� Beispiel für einen Automaten

5.2.2.1 � Schaltungsanalyse
Um die Funktionsweise eines Automaten zu verstehen, wird in diesem Abschnitt ein vor-
handener Automat analysiert. Im darauffolgenden Abschnitt lernen Sie dann, wie Auto-
maten entworfen werden.

Startpunkt der Analyse ist das Schaltbild des Automaten in Abb. 5.25. Vergleichen 
Sie ihn auch mit den Grundstrukturen von Mealy- und Moore-Automat in Abb. 5.23 und 
Abb. 5.24.

Im Schaltbild sind die drei Blöcke des Automaten hervorgehoben:

•	 Die Zustandsübergangsfunktion besteht aus fünf Logikgattern.
•	 Als Speicherglieder werden zwei D-Flip-Flops verwendet.
•	 Die Ausgangsfunktion besteht aus einem Logikgatter.

Die drei Variablengruppen des Automaten sind:

•	 Es gibt eine Eingangsvariable X
•	 Es gibt eine Ausgangsvariable Y
•	 Es gibt zwei Zustandsvariable Z(0), Z(1)

Außerdem ist das Taktsignal CLK vorhanden.
Eine Betrachtung der Struktur zeigt, dass es sich um einen Moore-Automaten handelt, 

denn der Ausgang Y hängt nur von den Zustandsvariablen und nicht auch noch von der 
Eingangsvariablen ab.

Zur weiteren Analyse werden die Funktionstabellen der beiden kombinatori-
schen Schaltungen für Zustandsübergangsfunktion und Ausgangsfunktion aufge-
stellt. Die Zustandsübergangsfunktion hat drei Eingänge, also müssen für 23 = 8 
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Abb. 5.25   Schaltbild eines Automaten
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Eingangskombinationen die Funktionswerte ermittelt werden. Die Ausgangsfunktion 
hat zwei Eingänge, also 22 = 4 Eingangskombinationen. Die Funktionstabellen werden 
direkt berechnet, indem alle Kombinationen in die Grafik oder die logische Funktion ein-
gesetzt werden. Wenn Sie möchten, können Sie dies als Übung selbst berechnen, ansons-
ten finden Sie das Ergebnis in Abb. 5.26.

Beachten Sie die Unterscheidung für die Zustandsvariable Z(0), Z(1). Die aktuellen 
Werte Zn(0), Zn(1) sind Eingänge für beide Funktionstabellen. Die Werte Zn+1(0), Zn+1(1) 
für den nächsten Zeitschritt sind die Ausgabe der Zustandsübergangsfunktion.

5.2.2.2 � Zustände und Zustandsfolgetabelle
Da der Automat zwei Zustandsvariable hat, können vier verschiedene Zustände gespei-
chert werden. Zur besseren Anschaulichkeit werden diese Zustände durch Buchstaben A, 
B, C, D gekennzeichnet. Als allgemeine Bezeichnung für Zustände wird der Buchstabe 
s (engl. State) verwendet. Die Zuordnung zwischen Zustandsvariablen und Zuständen 
zeigt Abb. 5.27.

Jetzt können Zustandsübergangsfunktion und Ausgangsfunktion mit der Codierung 
der Zustände kombiniert werden. In Tabelle Abb. 5.26 werden also Z(0) und Z(1) durch 
die Zustandsnamen A, B, C, D aus Abb. 5.27 ersetzt. Das Ergebnis wird als Zustands-
folgetabelle (Abb. 5.28) bezeichnet. Die acht Zeilen der Zustandsübergangsfunktion 
(Abb. 5.26) sind umsortiert, so dass die Zustände in vier Zeilen und die Eingangsvariable 
in zwei Spalten angeordnet sind.

In der Zustandsfolgetabelle Abb. 5.28 steht links der aktuelle Zustand sn. Auf der 
rechten Seite ist für die beiden Möglichkeiten der Eingangsvariablen der jeweilige Fol-
gezustand sn+1 angegeben. Ganz rechts findet sich die Ausgangsvariable Y. Wie oben 
gesagt, ergibt sich Abb. 5.28 direkt aus den Funktionstabellen und der Zustandscodie-
rung. Zum Nachvollziehen können Sie als Übung die Zustandsfolgetabelle selbst noch 
einmal erstellen.

Abb. 5.26   Funktionstabellen 
für Zustandsübergangsfunktion 
(links) und Ausgangsfunktion 
(rechts)
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Die Übergänge zwischen den Zuständen lassen sich auch grafisch darstellen. Hierzu 
dient das Zustandsfolgediagramm in Abb. 5.29. Die Zustände sind als Kreise angegeben 
und enthalten auch die Ausgabewerte der jeweiligen Zustände. Die Übergänge zwischen 
den Zuständen sind Pfeile. Bei jeder steigenden Taktflanke geht der Automat einen Über-
gang, also einen Pfeil weiter. Am Pfeil steht jeweils die Bedingung, bei der der Übergang 
erfolgt, also X = 0 oder X = 1.

Da es für X zwei Möglichkeiten gibt, gibt es für jeden Zustand zwei mögliche Fol-
gezustände. Dabei ist es auch möglich, dass ein Zustand sein eigener Folgezustand ist. 
Jeder Zustand ist Startpunkt für genau zwei Pfeile. Für die Endpunkte der Pfeile gibt es 
keine Beschränkung. Manche Zustände können nur von einem Pfeil, also einem Über-
gang erreicht werden. Andere Zustände können das Ziel von mehreren Zustandsübergän-
gen sein.

5.2.2.3 � Funktion
Durch das Zustandsfolgediagramm oder vielleicht bereits durch die Zustandsfolgetabelle 
wird die Funktion des Automaten deutlich. Der Automat erkennt Folgen von 1 am Ein-
gang X. Wenn der Eingang das dritte Mal 1 ist, wird auch der Ausgang 1 und bleibt 1 so 
lange weiter eine 1 am Eingang anliegt. Wenn eine 0 am Eingang anliegt, geht der Aus-
gang auf 0 und es müssen wieder drei Werte mit 1 anliegen, damit der Ausgang 1 wird. 
Wenn nach zweimal 1 bereits eine 0 am Eingang X anliegt, beginnt das Zählen wieder 
von neuem; es muss wieder dreimal eine 1 auftreten.

Dieses Verhalten wird durch die Zustände wie folgt umgesetzt. Vergleichen Sie zur 
Beschreibung die Zustandsfolgetabelle (Abb. 5.28) und das Zustandsfolgediagramm 
(Abb. 5.29).

•	 Bei einer 0 am Eingang geht der Automat in den Zustand A. Dieser Zustand hat also 
die Bedeutung: „Der letzte Eingangswert war 0.“

•	 Bei der ersten 1 geht der Automat in den Zustand B. Dieser Zustand hat die Bedeu-
tung: „Es gab bisher eine 1.“
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Abb. 5.28   Zustandsfolgetabelle
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Abb. 5.29   Zustandsfolgediagramm
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•	 Wenn im Zustand B eine 0 anliegt, muss wieder von vorne gestartet werden und der 
Automat geht nach A. Eine 1 im Zustand B wäre jedoch die zweite 1 und der Automat 
geht in den Zustand C mit der Bedeutung: „Es gab bisher zweimal eine 1.“

•	 Eine weitere 1 wäre die dritte 1 und dies soll der Automat ja erkennen. Dann geht der 
Automat in den Zustand D und gibt am Ausgang eine 1 aus.

•	 Bei jeder weiteren 1 bleibt der Automat in D und gibt weiter 1 aus. Der Zustand D hat 
also die Bedeutung: „Drei oder mehr Eingangswerte nacheinander waren 1.“

Wie Sie aus der Beschreibung erkennen, hat also jeder Zustand eine bestimmte 
Bedeutung.

Zustand: Der Zustand speichert Informationen aus der Vergangenheit, die für die Funktion 
erforderlich sind.

Abb. 5.30 zeigt das Zeitverhalten des Automaten beispielhaft für einen Zeitverlauf am 
Eingang X. Das Eingangssignal wird jeweils bei der steigenden Taktflanke ausgewer-
tet und daraus ergeben sich der Zustand und das Ausgabesignal Y für den jeweiligen 
Taktzyklus.

In praktischen Anwendungen arbeiten fast alle Schaltungen mit einem Taktsignal. 
Deshalb verwenden auch alle Automaten, die in diesem Buch beschrieben sind, einen 
Takt und die Informationen am Eingang eines Automaten werden immer nur bei der stei-
genden Taktflanke ausgewertet. Die Beschreibung „Der Eingang X war dreimal 1.“ meint 
daher eigentlich „Der Eingang X war bei drei steigenden Taktflanke auf 1.“

5.2.3	� Entwurf von Automaten

Normalerweise ist in der Praxis der Ablauf umgekehrt zu dem zuvor erläuterten Beispiel. 
Bei einer Entwicklung ist meist eine Aufgabe gegeben und hierzu soll eine Schaltung 
entworfen werden. Der Ablauf beim Entwurf umfasst die folgenden Schritte:

1.	 Spezifikation des Verhaltens
2.	 Aufstellen der Zustandsfolgetabelle
3.	 Minimierung der Zustände
4.	 Codierung der Zustände
5.	 Aufstellen der Ansteuerungstabelle
6.	 Logikminimierung

Abb. 5.30   Zeitdiagramm für 
den analysierten Automaten
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X

Y
Zustand A A B C A B CA D D A
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5.2.3.1 � Spezifikation des Verhaltens
Das gewünschte Verhalten eines Automaten ist meist in Textform gegeben. Ein einfacher 
Automat kann in einem Absatz beschrieben werden. Für eine komplexe Schaltung, z. B. 
einen Mikroprozessor, kann die Spezifikation aber auch mehrere 100 Seiten Umfang haben. 
Gerade bei größeren Spezifikationen können Unklarheiten auftreten, zum Beispiel weil 
nicht alle möglichen Fälle des Eingangsverhaltens spezifiziert sind. Diese Unklarheiten 
müssen dann während des Entwurfs durch Rückfragen bei den Verantwortlichen für die 
Spezifikation geklärt werden.

In diesem Unterkapitel soll eine Schaltung mit folgender Spezifikation entworfen 
werden:

Zum Entprellen eines Tasters soll ein Automat entwickelt werden. Der Automat soll am 
Ausgang Y den entprellten Wert des Eingangs X angeben. Wenn am Eingang drei Takte lang 
der gleiche Wert 0 oder 1 anliegt, soll der Ausgang Y diesen Wert annehmen. Ansonsten soll 
der letzte Eingangswert, der mindestens drei Takte anlag ausgegeben werden.
Beim Einschalten soll der Wert 0 ausgegeben werden.

Ein Zeitdiagramm kann die Spezifikation ergänzen. Zeitdiagramme sind dabei aber nur 
Beispiel und dienen der Illustration einer Spezifikation. Sie sind kein Ersatz für eine Spe-
zifikation, denn die Angabe aller möglichen Abfolgen von Eingangskombinationen und 
Zuständen ist in einem Zeitdiagramm meist gar nicht möglich. Das Zeitdiagramm des 
Entprell-Automaten in Abb. 5.31 zeigt die Reaktion auf eine exemplarische Eingabe.

5.2.3.2 � Aufstellen der Zustandsfolgetabelle
Das Aufstellen der Zustandsfolgetabelle ist der eigentliche kreative Schritt bei der Ent-
wicklung eines Automaten. Am übersichtlichsten und einfachsten ist die grafische Dar-
stellung als Zustandsfolgediagramm und spätere Abschrift als Tabelle.

Als Erstes muss entschieden werden, ob eine Implementierung als Mealy- oder 
Moore-Automat erfolgen soll. Bei Übungsaufgaben ist normalerweise der Typ vorgege-
ben. Hier soll ein Moore-Automat erstellt werden. Wenn Sie mehrere Automaten entwor-
fen haben, können Sie selbst beurteilen, welcher Automatentyp günstiger ist.

Das Zustandsfolgediagramm wird schrittweise erstellt und dieser Entwurf soll hier 
auch in einzelnen Schritten erklärt werden, damit Sie die Vorgehensweise nachvollziehen 
können.

Schritt 1
Um einen Anfang für das Diagramm zu haben, wird mit einem ersten Zustand begonnen. 
In diesem Beispiel wird der Fall betrachtet, dass die Eingabe immer 0 ist. In diesem Fall 
ist auch die Ausgabe 0 und der Automat bleibt immer im gleichen Zustand.

Abb. 5.31   Zeitdiagramm für 
Entprell-Automat

CLK
X
Y
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Abb. 5.32 zeigt den ersten Zustand. Um die Bedeutung anzudeuten, hat er den Namen 
„stabil 0“. Zunächst wird ja nur der Fall betrachtet, dass der Eingang stets 0 ist, so dass 
auch nur ein Übergangspfeil eingetragen wird. Er führt wieder auf den Zustand „stabil 
0“. Die Ausgabe des Zustands ist 0.

Dieser Zustand ist auch der Startzustand, denn laut Spezifikation soll beim Ein-
schalten der Wert 0 ausgegeben werden. Dies wird durch einen Pfeil mit „Reset“ 
gekennzeichnet.

Schritt 2
Der Automat wird jetzt schrittweise erweitert. Als nächster Schritt wird angenommen, 
dass der Eingang auf 1 wechselt und dann auf diesem Wert bleibt. Der Automat muss 
mitzählen, wie oft der Eingang 1 ist. Dieses Mitzählen erfolgt durch die unterschied-
lichen Zustände, denn bei jedem Takt geht der Automat ja einen Übergang, also einen 
Pfeil weiter.

Die ersten beiden Male darf er laut Spezifikation noch nicht reagieren. Erst beim drit-
ten Mal wird der Wechsel auf 1 akzeptiert und auch die Ausgabe geht auf 1.

Dieses Verhalten wird, wie in Abb. 5.33 zu sehen, durch drei neue Zustände erreicht:

•	 Bei der ersten 1 merkt sich ein Zustand, dass einmal eine 1 aufgetreten ist. Dieser 
Zustand wird als „1-mal 1“ bezeichnet. Er hat noch die Ausgabe Y=0, da erst nach 
drei Takten ein Wechsel akzeptiert werden soll.

•	 Mit der zweiten 1 wird der Zustand „2-mal 1“ erreicht.

stabil 0

Y=0

X=0

R
eset

Abb. 5.32   Zustandsfolgediagramm des Entprell-Automaten – Schritt 1
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Abb. 5.33   Zustandsfolgediagramm des Entprell-Automaten – Schritt 2
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•	 Mit der dritten 1 akzeptiert der Automat, dass der neue Wert lange genug aufgetreten 
ist und jetzt stabil anliegt. Der neue Zustand „stabil 1“ hat die Ausgabe 1.

Wenn der Eingang danach weiterhin 1 ist, bleibt der Automat im Zustand „stabil 1“.

Schritt 3
Als weiterer Schritt kann der Weg von der Ausgabe 1 zurück zu 0 eingetragen werden. 
Es wird angenommen, dass der Eingang jetzt wieder auf 0 wechselt und dort bleibt. Das 
Verhalten des Automaten ist ähnlich wie in Schritt 2, so dass jetzt zwei neue Zustände 
„1-mal 0“ und „2-mal 0“ eingetragen werden (Abb. 5.34). Danach wechselt der Automat 
wieder in den zuerst eingetragenen Zustand „stabil 0“, ganz links.

Schritt 4
Als letzter Schritt wird überprüft, ob alle Übergänge für die Zustände eingetragen sind. 
Bei n Eingangsvariablen hat jeder Zustand 2n Möglichkeiten für Folgezustände. Es müs-
sen also prinzipiell 2n Pfeile vorhanden sein, wobei auch mehrere Pfeile auf den gleichen 
Folgezustand führen können.

Der hier betrachtete Automat hat eine Eingangsvariable X, mit zwei möglichen Wer-
ten 0 und 1. Darum muss jeder Zustand zwei Übergänge, also zwei Pfeile haben. Hierzu 
müssen noch einige Pfeile eingetragen werden.

•	 Wenn bei „1-mal 1“ der Eingang X auf 0 ist, wird das Zählen der 1-Werte abgebro-
chen und der Automat geht wieder auf den Zustand „stabil 0“.

•	 Auch bei „2-mal 1” ist für X gleich 0 die erforderliche Anzahl von drei 1-Werten nicht 
erreicht. Der Automat geht auf “stabil 0”.

•	 Bei „1-mal 0“ fehlt der Übergang für X gleich 1. In diesem Fall geht der Automat auf 
„stabil 1“.

•	 Bei „2-mal 0“ ist für X gleich 1 der Folgezustand ebenfalls „stabil 1“.

Abb. 5.35 zeigt den kompletten Automaten. Alle Zustände haben zwei Folgezustände, 
so dass keine Übergänge fehlen.

Die Aufteilung in vier Schritte ergibt sich hier durch die Überlegungen zu den Teil-
funktionen des Automaten. Bei anderen Aufgabenstellungen können mehr oder weniger 
Schritte sinnvoll sein.
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Abb. 5.34   Zustandsfolgediagramm des Entprell-Automaten – Schritt 3
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Aufstellen der Zustandsfolgetabelle
Aus dem Zustandsfolgediagramm kann jetzt als textuelle Form die Zustandsfolgetabelle 
erstellt werden. Dazu wird für jeden Zustand eine Zeile und für jede mögliche Eingangs-
kombination eine Spalte angelegt. In diese Felder wird für jede Kombination aus Ein-
gangswerten und Zustand der Folgezustand eingetragen.

Außerdem erhalten die Ausgangswerte eine Spalte.
Die Zustandsfolgetabelle des Automaten in Abb. 5.36 benötigt also sechs Zeilen für 

die sechs Zustände. In zwei Spalten werden die Folgezustände für X = 0 und X = 1 ein-
getragen; eine dritte Spalte gibt den Wert des Ausgangs Y an. In die Felder werden die 
Informationen des Zustandsfolgediagramms (Abb. 5.35) eingetragen. Der Startzustand 
wird mit einem Stern gekennzeichnet. Das Aufstellen der Tabelle ist eher formell, die 
kreative Arbeit wurde bei der Erstellung des Diagramms geleistet. Natürlich sollte noch 
einmal die Plausibilität des Automaten überprüft werden, also ob für jeden möglichen 
Fall auch ein Folgezustand definiert wurde.

5.2.3.3 � Minimierung der Zustände
In diesem Schritt wird geprüft, ob die Anzahl der Zustände reduziert werden kann, oder 
ob die Anzahl bereits minimal ist. Eine Vereinfachung ist möglich, wenn äquivalente 
(also gleichbedeutende) Zustände zusammengefasst werden können. Zwei Zustände sind 
äquivalent, wenn für alle Eingangskombinationen die Folgezustände gleich oder äquiva-
lent sind und außerdem die Ausgangswerte gleich sind.

stabil 0
Y=0

1-mal 1
Y=0

2-mal 1
Y=0

stabil 1
Y=1

X=1 1-mal 0
Y=1

2-mal 0
Y=1

X=0

X=1 X=1 X=0 X=0

X=1 X=0

X=1 X=1X=0 X=0

R
eset

Abb. 5.35   Zustandsfolgediagramm des Entprell-Automaten – Schritt 4

sn

X = 0

sn+1

X = 1

stabil 0stabil 0*

stabil 1

stabil 1
stabil 1

stabil 1

stabil 0

stabil 0
stabil 01-mal 1

2-mal 1

1-mal 0
2-mal 0

1-mal 0
2-mal 0

1-mal 1
2-mal 1

Y

0
0
0
1
1
1

stabil 1

* = Reset

Abb. 5.36   Zustandsfolgetabelle des Entprell-Automaten

5.2  Endliche Automaten
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Der Entprell-Automat ist minimal, benötigt also mindestens sechs Zustände, denn:

•	 Die drei linken und die drei rechten Zustände in Abb. 5.35 haben unterschiedliche 
Ausgaben.

•	 Die Folgezustände sind nicht gleich. Für die drei linken Zustände führt X = 0 zwar 
immer nach „stabil 0“. Für X = 1 sind jedoch unterschiedliche Folgezustände vorhan-
den. Ähnliches gilt für die drei rechten Zustände.

Es gibt Algorithmen, mit denen äquivalente Zustände gefunden und der Automat mini-
miert werden können. In der Praxis werden diese Algorithmen aus zwei Gründen jedoch 
selten verwendet. Zum einen können durch Betrachten eines Automaten recht gut äqui-
valente Zustände identifiziert werden. Zum anderen wird akzeptiert, wenn ein oder zwei 
Zustände zu viel vorhanden sind, solange die Struktur des Automaten verständlich bleibt.

Beispiel für die Minimierung von Zuständen
Unnötige Zustände entstehen, wenn im Zustandsfolgediagramm ein neuer Zustand 
erstellt wurde, obwohl ein bereits vorhandener Zustand genutzt werden könnte. Schauen 
Sie sich dazu noch einmal Schritt 3 der Erstellung des Zustandsfolgediagramms in 
Abb. 5.34 an. Hier fehlt noch der Fall, dass bei „1-mal 1“, „2-mal 1“ eine 0 auftritt, ein 
Wechsel also nur einen oder zwei Takte lang ist. Ähnliches gilt für „1-mal 0“, „2-mal 0“.

Man könnte jetzt für diese fehlenden Übergänge zwei neue Zustände erstellen, und 
zwar „bleib 0“ und „bleib 1“. Dies wäre nicht nötig, denn die Übergänge könnten nach 
„stabil 0“ und „stabil 1“ gehen. Aber eventuell wird dies bei der Erstellung des Automa-
ten nicht erkannt.

Von den Zuständen „bleib 0“ und „bleib 1“ gehen die Übergänge auf sich selbst sowie 
auf „1-mal 1“ beziehungsweise „1-mal 0“. Es entsteht das Diagramm in Abb. 5.37. Die-
ses Zustandsfolgediagramm ist ein korrekter Automat, entsprechend der Spezifikation, 
aber er ist nicht minimal, denn er verwendet acht statt der erforderlichen sechs Zustände.

Zur Minimierung des Automaten in Abb. 5.37 können „bleib 0“ und „stabil 0“ zusam-
mengefasst werden. Sie sind äquivalent, denn:

stabil 0
Y=0

1-mal 1
Y=0

2-mal 1
Y=0

stabil 1
Y=1

X=1 1-mal 0
Y=1

X=1 X=1 X=0 X=0

X=1 X=0

X=0 X=0

bleib 0
Y=0

bleib 1
Y=1

X=1
X=0

X=1

X=1 X=1

X=0

X=0

R
eset

2-mal 0
Y=1

Abb. 5.37   Nicht minimales Zustandsfolgediagramm des Entprell-Automaten
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•	 Beide Zustände haben die gleichen Folgezustände, nämlich sich selbst für X = 0 und 
„1-mal 1“ für X = 1.

•	 Beide Zustände geben Y = 0 aus.

Gleiches gilt für „bleib 1“ und „stabil 1“.
Damit ergibt sich wieder der minimale Automat aus Abb. 5.35. Beide Automaten, also 

Abb. 5.37 und  5.35 sind äquivalent, denn sie ergeben für gleiche Eingaben auch die glei-
che Ausgabe. Von außen, also ohne Sichtbarkeit des aktuellen Zustands, sind die Auto-
maten nicht zu unterscheiden.

5.2.3.4 � Codierung der Zustände
Als nächster Entwurfsschritt wird für die Zustände des Automaten eine Zustandsco-
dierung bestimmt. Es muss also festgelegt werden, welche 0-1-Kombinationen für die 
Zustände gelten. Die Codewortlänge n muss so gewählt werden, dass alle m Zustände 
dargestellt werden können. Mathematisch ausgedrückt muss also gelten:

Aufgelöst nach der Codewortlänge n ergibt sich folgende Formel, bei der ld den Zweier-
logarithmus bezeichnet:

Das Beispiel dieses Kapitels hat m = 6 Zustände, also ist n ≥ ld 6 = 2,58 als Codewort-
länge nötig. Da nur ganzzahlige Werte möglich sind, muss n mindestens 3 sein. Mit der 
Zweierpotenz kann man ähnlich rechnen. Für n = 3 gilt 23 = 8 ≥ 6. Die Gegenprobe für 
n = 2 zeigt, dass die kleinere Codewortlänge von zwei nicht möglich ist: 22 = 4 < 6. Da 
die Zweierpotenzen für kleine Zahlen recht einfach zu merken sind, ist diese Rechen-
weise meist einfacher als der Logarithmus.

Tipp zur Berechnung: Taschenrechner haben normalerweise keine Taste für den Zweierlog-
arithmus. Der Wert kann berechnet werden, als Zehnerlogarithmus einer Zahl geteilt durch 
Zehnerlogarithmus von zwei:

Für m = 6 lautet die Rechnung:

Ziel der Zustandscodierung ist ein möglichst geringer Aufwand, eine möglichst hohe Takt-
geschwindigkeit oder eine Kombination aus diesen beiden Anforderungen. Für die Codie-
rung gibt es prinzipiell sehr viele Möglichkeiten, sodass diese nicht alle ausprobiert werden 
können. Es gibt darum verschiedene Strategien, die im Abschn. 5.2.4 noch erläutert werden.

In der Praxis wird oft eine einfache Zuordnung gewählt und das soll auch für das hier 
betrachtete Beispiel so erfolgen. Als Codierung werden die Zustände entsprechend der 

2n ≥ m

n ≥ ld m

ld m = log m / log 2

ld 6 = log 6/ log 2 = 0, 778/0, 301 = 2, 58

5.2  Endliche Automaten
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Dualzahlen durchnummeriert. Der Automat hat 6 Zustände, die entsprechend der Tabelle 
in Abb. 5.38 mit dem Codewort Z(2:0) codiert werden. Da die Anzahl der Zustände keine 
Zweierpotenz ist, sind einige Codewörter unbenutzt, hier sind das die Codierungen 110 
und 111.

5.2.3.5 � Aufstellen der Ansteuerungstabelle
Mit der gewählten Codierung kann jetzt die Funktionstabelle für die kombinatorischen 
Schaltungen im Automat erstellt werden. In der Zustandsfolgetabelle werden also die 
Namen der Zustände durch die Codierung ersetzt. Diese neue Tabelle wird als Ansteue-
rungstabelle bezeichnet.

Abb. 5.39 zeigt die Ansteuerungstabelle für die Codierung aus Abb. 5.38. Eine Beson-
derheit sind die beiden unbenutzten Codierungen für die keine Folgezustände und Aus-
gabewerte definiert sind. Für sie werden Don’t-Care-Werte eingetragen.

Für sicherheitskritische Schaltungen kann für die unbenutzten Codierungen auch ein 
bestimmter Folgezustand gewählt werden. Falls die Schaltung durch eine Störung, bei-
spielsweise einen Spannungseinbruch, in einen undefinierten Zustand gerät, wird somit 
im Folgeschritt wieder ein gültiger Zustand erreicht.

5.2.3.6 � Logikminimierung
Aus der Ansteuerungstabelle können jetzt die Logikfunktionen durch Minimierung, 
also mit Karnaugh-Diagramm ermittelt werden. Dies sind insgesamt vier Karnaugh-
Diagramme für Ausgangswert Y und die drei neuen Zustandsvariable Zn+1(2:0). Die 

Abb. 5.38   Codierung des 
Entprell-Automaten mit 
minimaler Codewortlänge

sn Z(2:0)

000
001
010
011
100
101

stabil 0
1-mal 1
2-mal 1

1-mal 0
2-mal 0

stabil 1

Zn

X = 0

Zn+1

X = 1

110
111-

sn

-

Y

- - - - - -
- - -- - -

0
0
1
1
1
-

0

-

stabil 0*
1-mal 1
2-mal 1

1-mal 0
2-mal 0

stabil 1

000*
001

001

010
010

011 011
011
011

011

100
000

000
000
000

100

101
101

Abb. 5.39   Ansteuerungstabelle des Entprell-Automaten
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Diagramme haben vier Eingangswerte, nämlich Eingangsvariable X und drei Zustands-
variable Zn(2:0). Da bei dem Moore-Automaten die Ausgabe unabhängig vom Eingang 
ist, hat das Karnaugh-Diagramm für Y nur drei Eingangswerte Zn(2:0).

Auf die Darstellung der Karnaugh-Diagramme wird hier verzichtet. Die minimierten 
Funktionen sind:

Mit diesen Funktionen ergibt sich für den Automaten das Schaltbild aus Abb. 5.40. Es 
enthält drei Flip-Flops für die Zustandsvariablen sowie ein Dutzend Logik-Gatter für 
Zustandsübergangsfunktion und Ausgangsfunktion. Der Startzustand „stabil 0“ hat die 
Codierung 000. Darum wird der Reset so geschaltet, dass alle Flip-Flops auf 0 gesetzt 
werden.

Z
n+1(2) = X̄ & Z

n(1)& Z
n(0) ∨ X̄ & Z

n(2)& Zn(0)

Z
n+1(1) = X & Z

n(2) ∨ X & Z
n(1) ∨ X & Z

n(0)

Z
n+1(0) = X & Z

n(2) ∨ X & Z
n(1) ∨ X & Zn(0) ∨ Z

n(2)& Zn(0)

Y = Z
n(2) ∨ Z

n(1)& Z
n(0)

D

C

X

D

C

Y

CLK

D

C

Zn+1(1)

Zn+1(0) Zn(0)

Zn(1)

Zn+1(2) Zn(2)

&

Zustandsübergangsfunktion Speicherglieder

&

Ausgangsfunktion

RESET

R

R

R

&

&

&

&

&

&

1

1

1

1

Abb. 5.40   Schaltbild des Entprell-Automaten
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Damit ist der Automat komplett entworfen. In der Praxis würde nun die Dokumen-
tation folgen, die ein Nachvollziehen des Schaltungsentwurfs ermöglicht. Außerdem 
werden durch eine Dokumentation spätere Modifikationen vereinfacht, die sich eventuell 
durch eine geänderte Spezifikation ergeben.

5.2.4	� Codierung von Zuständen

Für die Codierung der Zustände gibt es verschiedene Strategien. Wichtiges Unterschei-
dungsmerkmal ist die Codewortlänge.

5.2.4.1 � Codierung mit minimaler Codewortlänge
Die Codierung mit minimaler Codewortlänge wurde im vorstehenden Beispiel bereits 
verwendet. Bei der Zuordnung von Zuständen und Codewörtern gibt es mehrere Mög-
lichkeiten. Theoretisch könnte man hier verschiedene Codierungen ausprobieren, um zu 
versuchen, möglichst einfache kombinatorische Schaltungen zu erhalten.

In der Praxis wird meist eine einfache Zuordnung gewählt, beispielsweise das oben 
verwendete Durchnummerieren der Zustände entsprechend der Dualzahlen. Der Auf-
wand zum kompletten Ausprobieren verschiedener Möglichkeiten ist meist zu hoch.

5.2.4.2 � Codierung mit redundanter Codewortlänge
Eine andere Strategie zur Codierung benutzt mehr Stellen des Codewortes als eigentlich 
erforderlich wären. Die Codewortlänge ist also redundant und erfordert mehr Flip-Flops 
als bei minimaler Codewortlänge. Dies erscheint zunächst nicht sinnvoll, allerdings 
werden oft die kombinatorischen Schaltungen für Zustandsübergangsfunktion und Aus-
gangsfunktion einfacher und schneller.

Häufig verwendete Codes sind die One-Hot-Codierung sowie die Zero-One-Hot-
Codierung. Die One-Hot-Codierung ist ein 1-aus-n-Code, das heißt von den n Stellen 
des Codeworts ist genau eine Stelle 1 (also „Hot“), die anderen sind 0. Die Anzahl der 
möglichen Codewörter ist genauso groß wie die Codewortlänge.

Die Zero-One-Hot-Codierung ist eine Variante, bei der zusätzlich das Codewort mit 
nur 0-Stellen erlaubt ist. Bei n Stellen sind also n+1 Codewörter möglich.

Der Entprell-Automaten aus Abschn. 5.2.3 hat 6 Zustände, so dass eine One-Hot-
Codierung die Codewortlänge 6 hat. Die Zero-One-Hot-Codierung ergibt die Codewort-
länge 5. Eine Zuordnung von Codierung und Zuständen ist in Abb. 5.41 angegeben.

Zum Vergleich der Codierungen soll der Entprell-Automat auch mit der One-Hot-
Codierung implementiert werden. Genau wie im vorherigen Abschnitt wird in die 
Zustandsfolgetabelle die Codierung eingesetzt, so dass sich die Ansteuerungstabelle in 
Abb. 5.42 ergibt. Durch die Codewortlänge 6 sind 26=64 Codierungen möglich, von 
denen 6 benutzt sind. Die 58 unbenutzten Codierungen haben Don’t-Care als Folgezu-
stand und Ausgabe und können somit zur Optimierung benutzt werden.
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Aus der Ansteuerungstabelle werden wiederum die Logikfunktionen durch Mini-
mierung erstellt. Für den Folgezustand sind sieben Eingangswerte zu beachten, nämlich 
sechs aktuelle Zustandsvariable sowie der Eingangswert X. Für den Ausgang sind es die 
sechs aktuellen Zustandsvariablen. Dies ist für ein Karnaugh-Diagramm zu unübersicht-
lich, sodass eine rechnergestützte Minimierung durchgeführt wird. Das Ergebnis lautet:

Zwei Dinge fallen bei den Gleichungen auf:

•	 Die Zustandsvariable Zn(5) wird nicht verwendet. Es sind also nur fünf Stellen des 
Codeworts und damit auch nur fünf Flip-Flops nötig. Damit wird die Codierung zu 
einer Zero-One-Hot-Codierung, allerdings mit anderer Zuordnung als in Abb. 5.41.

Z
n+1(5) = X̄ & Z

n(4)

Z
n+1(4) = X̄ & Z

n(3)

Z
n+1(3) = X & Zn(1)& Zn(0)

Z
n+1(2) = X & Z

n(1)

Z
n+1(1) = X & Z

n(0)

Z
n+1(0) = X̄ & Zn(4)& Zn(3)

Y = Zn(2)& Zn(1)&Zn(0)

Abb. 5.41   Codierung des 
Entprell-Automaten mit 
redundanter Codewortlänge

sn Z (5:0)

„One-Hot“

000001

„Zero-One-Hot“

000010
000100
001000
010000
100000

00000
00001
00010
00100
01000
10000

Z (4:0)

stabil 0
1-mal 1
2-mal 1

1-mal 0
2-mal 0

stabil 1

stabil 0
1-mal 1
2-mal 1

1-mal 0
2-mal 0

stabil 1

Zn(5:0)
X=0

Zn+1(5:0)
X=1

sn

000001
000010
000100
001000
010000
100000

000001
000001
000001

000001

010000
100000

001000
001000
001000
001000

000010
000100

sonst - - - - - - - - - - - -

Y

0
0
1
1
1
-

0*

* = Reset

*

Abb. 5.42   Ansteuerungstabelle des Entprell-Automaten für One-Hot-Codierung
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•	 Die Logik-Funktionen sind deutlich einfacher als bei der Variante mit minimaler 
Codewortlänge. Es wird jeweils nur ein UND-Gatter mit zwei oder drei Eingängen 
benötigt. Die Informationen müssen nur durch eine Stufe an Logikgattern, wodurch 
die Schaltung prinzipiell schneller ist.

Die Schaltung des Automaten mit One-Hot-Codierung ist in Abb. 5.43 dargestellt. Für 
den Startzustand (vgl. Abb. 5.42) muss Zn(0) auf 1, die anderen Zustandsvariablen auf 0 
gesetzt werden.

Auch im optischen Vergleich zu Abb. 5.40 wird sichtbar, dass die One-Hot-Codierung 
einen Nachteil durch zusätzliche Flip-Flops und Vorteile durch weniger Logikgatter und 
nur eine Logikstufe hat.

D

C

X

D

C

&

Y

CLK

D

C

D

C

D

C

&

&

&

&

RESET

S

R

R

R

R

&

Zn(3)

Zn(4)

Zn+1(0)

Zn(2)

Zn+1(3)

Zn+1(4)

Zn+1(1)

Zn+1(2)

Zn(1)

Zn(0)

Abb. 5.43   Schaltbild des Entprell-Automaten mit One-Hot-Codierung
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5.2.4.3 � Optimierte Codierung
Um verschiedene Codierungen zu vergleichen, wird eine weitere Variante vorgestellt. Es 
handelt sich um eine Codierung bei der die Code-Zuordnung optimiert wird. Dazu wird 
die Zustandsfolgetabelle (vgl. Abb. 5.36) genauer betrachtet. Wie in Abb. 5.44 verdeut-
licht, fallen zwei Dinge auf:

1.	 Drei der Zustände können nur bei X=0 als Folgezustand auftreten, die drei anderen 
Zustände nur bei X=1.

2.	 Für drei Zustände ist die Ausgabe Y= 0, für die drei anderen Zustände ist Y= 1.

Diese beiden Eigenschaften können ausgenutzt werden, um die Codierung möglichst 
einfach zu wählen.

1.	 Eine Zustandsvariable Z(0) wird entsprechend des Folgezustands gewählt. Das heißt, 
die Zustände, die Folgezustand bei X=0 sind, werden auch mit Z(0)=0 codiert. Die 
anderen Zustände, die Folgezustand bei X=1 sind, werden mit Z(0)=1 codiert.

2.	 Eine Zustandsvariable Z(1) wird entsprechend des Ausgabewertes gewählt. Das heißt, 
die Zustände mit Ausgangswert Y=0, werden mit Z(1)=0 codiert, die Zustände mit 
Y=1, haben Z(1)=1 als Code.

Weitere Zustandsvariable werden ohne besondere Zuordnung gewählt. Dabei muss 
beachtet werden, dass alle Zustände unterschiedliche Codierungen bekommen. Für die 6 
Zustände des Entprell-Automaten ist eine dritte Zustandsvariable Z(2) erforderlich. Die 
Codierung hat hier minimale Codewortlänge; dies ist jedoch keine zwingende Bedin-
gung für eine optimierte Codierung.

Der gewählte Code ist in Abb. 5.45 dargestellt. Die Codierungen 100 und 011 werden 
nicht verwendet.

Die Ansteuerungstabelle und die Logikfunktionen werden hier nicht gezeigt, sondern 
direkt das Schaltbild des Automaten mit optimierter Codierung in Abb. 5.46. Die beiden 
Optimierungen sind direkt im Schaltbild zu erkennen. Da Z(0) entsprechend des Folge-
zustands gewählt ist, wird direkt der Eingang X ohne weitere Verarbeitung gespeichert. 
Und da Y(1) entsprechend des Ausgangs ist, kann diese Zustandsvariable direkt als Aus-
gang Y verwendet werden.

Abb. 5.44   Analyse der 
Zustandsfolgetabelle zur 
Optimierung

sn

X=0

sn+1

X=1

stabil 0
1-mal 1
2-mal 1

stabil 1
1-mal 0
2-mal 0

Y

0
0
0
1
1
1

stabil 0
stabil 0
stabil 0

stabil 0

1-mal 0
2-mal 0 stabil 1

stabil 1
stabil 1

stabil 1

1-mal 1
2-mal 1

*

* = Reset
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Auch für andere Automaten können oft optimierte Codierungen entsprechend der 
Ausgabe oder der Folgezustände gefunden werden.

5.2.4.4 � Vergleich der Codierungen
Um die Codierung der Zustände und die Struktur des Automaten besser zu verstehen, 
sollen hier noch einmal die drei Varianten verglichen werden:

•	 Codierung mit minimaler Codewortlänge und einfacher Durchnummerierung der 
Zustände, Abb. 5.40

•	 Codierung mit redundanter Codewortlänge und One-Hot-Codierung, Abb. 5.43
•	 Codierung mit optimierter Zustandscodierung durch Analyse der Zustandsfolgeta-

belle, Abb. 5.46

D

C

X

Zn(1)

D

C

Zn(2)

Y

CLK

D

C

Zn+1(0) Zn(0)

Zn+1(1)

Zn+1(2)

RESET

R

R

R

&

&

&

&

1

1

Abb. 5.46   Schaltbild des Entprell-Automaten mit optimierter Codierung

Abb. 5.45   Codierung des 
Entprell-Automaten mit 
optimierter Codierung

Z (2 :0 )

0 0 0
0 0 1
1 0 1
1 1 1
0 1 0
1 1 0

Zustände, die bei
X=‚1‘ folgen

Zustände mit
Ausgabe Y=‚1'

sn

stabil 0
1-mal 1
2-mal 1

1-mal 0
2-mal 0

stabil 1
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Zunächst ist wichtig zu sagen, dass alle Automaten äquivalent sind. Das heißt, sie erge-
ben bei gleicher Eingabe auch die gleiche Ausgabe. Damit sind sie in ihrem logischen 
Verhalten von außen nicht zu unterscheiden.

Ob allgemein eine Codierung mit minimaler oder redundanter Codewortlänge die 
geeignete Schaltung ergibt, hängt von der Struktur des Automaten, den Anforderungen 
und der Technologie der Schaltungsimplementierung ab. Es handelt sich um Strategien, 
die bei der Schaltungsoptimierung probiert werden können.

In der Praxis muss der Aufwand für eine Optimierung und der erzielte Nutzen beachtet 
werden. Die Arbeitszeit, die für eine optimale Zustandscodierung erforderlich ist, lohnt sich 
meist nicht, denn in einer sehr großen Schaltung werden nur einige Logikgatter gespart.

Der Schaltungsentwurf erfolgt heutzutage mit Computer-Unterstützung. In Abschn. 5.3 
wird erläutert, wie die Zustandsfolgetabelle in VHDL umgesetzt werden kann. Die Codie-
rung der Zustände und Berechnung der Logikfunktionen erfolgt durch den Computer, der 
eine Codierung mit minimaler oder redundanter Wortlänge wählt oder beide Möglichkeiten 
ausprobiert. Die Optimierung der Zustandscodierung erfolgt also durch den Rechner. Sie 
sollten die Rückmeldungen des Computers verstehen (z. B. „Choosing One-Hot-Coding“).

5.2.5	� Entwurf von Mealy-Automaten

Der Entwurf eines Mealy-Automaten gleicht in weiten Teilen dem eines Moore-Automaten.

5.2.5.1 � Unterschied zum Moore-Automaten
Der wesentliche Unterschied beim Mealy-Automaten ist, dass die Ausgabe nicht von 
den Zuständen sondern den Zustandsübergängen abhängt. Das bedeutet, im Zustandsfol-
gediagramm wird die Ausgabe nicht in die Zustandskreise, sondern an den Pfeilen der 
Zustandsübergänge eingetragen (Abb. 5.47).

Dieser Unterschied kommt daher, dass beim Mealy-Automat die Ausgabe ja auch 
von den aktuellen Eingangswerten und nicht nur vom Zustand abhängt. Auch in der 

Abb. 5.47   Vergleich der 
Zustandsfolgediagramme für 
Moore- und Mealy-Automat

X=0 X=1
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Moore Mealy
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Zustandsfolgetabelle ist dann die Ausgabe abhängig von Zustand und Eingang und wird 
nicht einmal pro Zustand, sondern für jede Eingangsspalte angegeben (Abb. 5.48).

Diese Unterschiede erscheinen zunächst etwas formell. Sie eröffnen jedoch weitere 
Möglichkeiten für den Entwurf eines Automaten. Um dies zu verdeutlichen, wird im fol-
genden Beispiel ein Mealy-Automat entworfen.

5.2.5.2 � Beispiel für einen Mealy-Automaten
Am Anfang des Entwurfs steht wieder eine Spezifikation des Verhaltens. Als Beispiel 
soll ein Mealy-Automat mit folgender Spezifikation entworfen werden:

Ein Automat soll die Anzahl von Takten mit dem Wert 1 halbieren. Wenn am Eingang X der 
Wert 1 anliegt, soll für jeden zweiten Wert eine 1, ansonsten eine 0 am Ausgang Y ausgege-
ben werden. Die Zählung soll durch Eingangswerte 0 nicht beeinflusst werden. Bei einer 0 
am Eingang soll 0 ausgegeben werden.
Beim Einschalten soll für die erste 1 der Wert 0 ausgegeben werden.

Auch hier wird die Spezifikation durch ein Zeitdiagramm ergänzt (Abb. 5.49). Der Wert 
von X wird immer bei der steigenden Taktflanke ausgewertet. Der erste Impuls mit 1 
wird unterdrückt, der zweite Impuls führt zur Ausgabe 1. Wenn X dauerhaft auf 1 ist, 
führt dies zu einer 0-1-Folge an Y.

5.2.5.3 � Aufstellen der Zustandsfolgetabelle
Um den Automat zu entwerfen, wird zunächst überlegt, welche Informationen sich der 
Automat merken muss. Der Automat gibt nur jede zweite 1 am Eingang weiter und 
unterdrückt die jeweils andere 1. Er muss sich also merken, ob die nächste 1 weitergege-
ben oder unterdrückt wird. Mit dieser Grundidee an Zuständen wird der Automat wieder 
grafisch, durch das Aufstellen des Zustandsfolgediagramms entworfen.

Schritt 1
Es wird mit zwei Zuständen entsprechend obiger Überlegung gestartet (Abb. 5.50). Sie 
erhalten den Namen „next-0“ und „next-1“ mit der Bedeutung:

Abb. 5.48   Vergleich der 
Zustandsfolgetabellen für 
Moore- und Mealy-Automat
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Abb. 5.49   Zeitdiagramm für 
Halbieren der 1-Werte
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•	 next-0: Die nächste 1 am Eingang wird unterdrückt. Dies ist laut Spezifikation der 
Startzustand.

•	 next-1: Die vorherige 1 wurde unterdrückt, also wird die nächste 1 des Eingangs an 
den Ausgang weitergegeben.

Wie in Abb. 5.50 zu sehen, ist für die Zustände keine Ausgabe definiert, da ein Mealy-
Automat entworfen wird.

Schritt 2
Für die beiden Zustände wird nun überlegt, was laut Spezifikation im Falle der Eingaben 
X=0 und X=1 passieren muss.

•	 Für X=0 wird eine 0 ausgegeben. Das Zählen der 1-Werte wird nicht beeinflusst, 
darum ändert der Automat seinen Zustand nicht.

•	 Für X=1 sind zwei Fälle möglich:
–	 Im Zustand next-0 wird die 1 unterdrückt, also eine 0 ausgegeben. Der Automat 

merkt sich, dass die nächste 1 weitergegeben wird, wechselt also nach next-1.
–	 Im Zustand next-1 wird die 1 weitergegeben, also eine 1 ausgegeben. Der Automat 

merkt sich, dass die nächste 1 wieder unterdrückt wird, wechselt also nach next-0.
Damit sind für alle Zustände beide mögliche Folgezustände definiert und das 

Zustandsfolgediagramm in Abb. 5.51 ist komplett. Es werden zwei Zustände benötigt, 
die sich nicht zusammenfassen lassen.

Der Unterschied zum Moore-Automaten zeigt sich in der Definition der Ausgangs-
werte. Beim Mealy-Automat in Abb. 5.51 sind die Ausgänge für die Zustandsübergänge, 

Reset

next-0 next-1

Abb. 5.50   Zustandsfolgediagramm zum Halbieren der 1-Werte – Schritt 1

Reset

next-0

X=0, Y=0

next-1

X=0, Y=0
X=1, Y=0

X=1, Y=1

Abb. 5.51   Zustandsfolgediagramm zum Halbieren der 1-Werte – Schritt 2
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also für die Pfeile definiert. Beim Moore-Automat in Abb. 5.35 sind die Ausgänge für die 
Zustände, also die Kreise definiert.

Zustandsfolgetabelle
Die Zustandsfolgetabelle (Abb. 5.52) kann direkt aus dem Diagramm erstellt wer-
den. Wie erläutert ist die Ausgabe abhängig von Zustand und Eingang. Darum wird sie 
zusammen mit dem Folgezustand für jede Eingangsspalte in der Form sn+1,Y angegeben.

5.2.5.4 � Implementierung des Mealy-Automaten
Nächster Schritt zur Implementierung ist die Codierung der Zustände. Bei nur zwei 
Zuständen ist ein Codewort mit nur einer Stelle erforderlich. Die Wahl der Codierung 
lässt nicht viele Optionen zu und wird so gewählt, dass next-0 mit Z=0 und next-1 mit 
Z=1 codiert wird.

Nach Aufstellen der Ansteuerungstabelle kann der Automat mit einem Flip-Flop für 
den Zustandsspeicher, einem EXOR- sowie einem UND-Gatter implementiert werden 
(Abb. 5.53).

5.2.5.5 � Vereinfachte Darstellung des Zustandsfolgediagramms
Die Darstellung des Zustandsfolgediagramms muss natürlich nicht exakt den Beispielen 
in Abb. 5.35 oder 5.51 entsprechen. Wenn mehrere Eingabe- oder Ausgabewerte vor-
handen sind oder die Zustandsbezeichnungen zu lang werden, kann ein Diagramm auch 
unübersichtlich werden. Ziel sollte eine kompakte grafische Darstellung sein.

sn

X=0

sn+1,Y

X=1

next-0
next-1

*

* = Reset

next-0, 0
next-1, 0

next-1, 0
next-0, 1

Abb. 5.52   Zustandsfolgetabelle zum Halbieren der 1-Werte

X
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Y
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Zn+1

Zustandsübergangsfunktion Speicherglied Ausgangsfunktion

RESET

R

&

Abb. 5.53   Schaltbild des Mealy-Automaten zum Halbieren der 1-Werte
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Einige Möglichkeiten zur vereinfachten Darstellung sind in Abb. 5.54 dargestellt:

1.	 Ein- und Ausgänge müssen nicht mit X, Y bezeichnet werden, sondern können natür-
lich Abkürzungen entsprechend der Spezifikation haben, beispielsweise im Bild A1, 
A2, P, T.

2.	 Eingangs- und Ausgangswerte müssen nicht stets neu benannt werden, sondern kön-
nen in einer festen Reihenfolge angegeben werden. Eine empfohlene Reihenfolge ist: 
Eingangswerte, Schrägstrich, Ausgangswerte

3.	 Wenn für mehrere Eingangskombinationen derselbe Folgezustand eingenommen wer-
den soll, kann dies an einen gemeinsamen Übergangspfeil angetragen werden

4.	 Zustände können einfach durchnummeriert werden (S0, S1, …) und die Bedeutung 
wird als Liste dokumentiert.

Eine andere Vereinfachung ist für die Zustandsübergänge möglich. Es kommt vor, dass 
für einen Zustandsübergang nur ein Teil der Eingangsvariablen beachtet werden muss. 
Dies kann man darstellen, indem man die erforderliche Eingabe benennt (Abb. 5.55, 
links) oder die nicht erforderliche Eingabe mit ‚X‘, für „Eingang beliebig“ bezeichnet 
(Abb. 5.55, rechts).

Wichtig ist, dass sämtliche 2n Eingangskombinationen bei n Eingangswerten berück-
sichtigt sind. Außerdem darf ein Diagramm auch nicht kryptisch kurz werden. In der 
Praxis muss man nach zwei Wochen, zwei Monaten oder zwei Jahren das Diagramm 
immer noch lesen und verstehen können.

5.2.6	� Vergleich von Mealy- und Moore-Automat

Anhand der vorgestellten Beispiele können die Charakteristika von Mealy- und Moore-
Automat jetzt verglichen werden. Der Mealy-Automat hat mehr Möglichkeiten, denn 
eine Ausgabe ist für jeden Übergangspfeil und nicht nur für die Zustandskreise definiert. 

Abb. 5.54   Vereinfachte 
Darstellung eines 
Zustandsfolgediagramms S0

00 / 01 01 / 00Ein- /Ausgänge
A1,A2 / P,T

Zustände:
S0 - Start
S1 - ...

10 / 00
11 / 11

Abb. 5.55   Zwei Varianten 
zur Zusammenfassung von 
Zustandsübergängen
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Dies macht ihn jedoch im Entwurf auch etwas komplexer. Der Moore-Automat hat hin-
gegen den Vorteil, dass weniger Fälle für die Ausgabe definiert werden müssen, was ihn 
übersichtlicher macht.

Moore-Automat
Wegen der besseren Übersichtlichkeit wird in der Praxis meist der Moore-Automat ver-
wendet. Die Zustände des Moore-Automaten entsprechen oft einer bestimmten Ausgabe-
situation, sodass die Funktion des Automaten einfacher nachvollzogen werden kann.

Die Übersichtlichkeit eines Schaltungsentwurfs erhöht seine Wartbarkeit. Damit ist 
nicht die Reparatur einer defekten Schaltung gemeint, sondern die Möglichkeit, einen 
Entwurf später einmal zu ändern und anzupassen. Je übersichtlicher ein Schaltungsent-
wurf ist, umso höher ist die Wartbarkeit.

Mealy-Automat
Ein wesentlicher Vorteil des Mealy-Automaten ist dessen Geschwindigkeit. Der Moore-
Automat geht für eine Änderung der Ausgabe in einen neuen Zustand, was stets einen 
Taktzyklus dauert. Für viele Anwendungen stellt diese Verzögerung kein Problem dar.

Manchmal muss eine Schaltung jedoch sehr schnell reagieren, ohne auf ein Taktsignal 
zu warten. Dies kann zum Beispiel bei Bussystemen wie dem PCI-Bus im PC der Fall 
sein. Für solche Fälle kann der Mealy-Automat noch im gleichen Taktzyklus eine Ant-
wort geben. Dies ist auch im Zeitablauf von Abb. 5.49 ersichtlich. Die 1-Impulse werden 
im gleichen Taktzyklus weitergegeben. Es tritt nur eine kleine Verzögerung durch das 
UND-Gatter der Ausgangsfunktion auf.

Verwendung beim Automatenentwurf
Es wird empfohlen, im Normalfall einen Automaten als Moore-Automaten zu entwerfen. 
Nur wenn der Automat noch im gleichen Taktzyklus eine Antwort ausgeben muss, emp-
fiehlt sich der Einsatz eines Mealy-Automaten.

5.2.7	� Registerausgabe

5.2.7.1 � Taktkonzept
Mit der bisher gezeigten Struktur erfolgt für die Automaten die Ausgabe der Signalwerte 
Y aus einer kombinatorischen Verknüpfung. In der Praxis ist es vorteilhaft, wenn Teil-
schaltungen klare Schnittstellen zu den folgenden Teilschaltungen haben. Deshalb wird 
oft ein Taktkonzept verwendet, bei dem die Ausgänge von Teilschaltungen immer aus 
einem Flip-Flop stammen müssen. Man spricht auch von einer Registerausgabe.

Für den Mealy-Automaten ist eine Registerausgabe normalerweise nicht erwünscht, 
denn der Vorteil bei diesem Automaten ist ja gerade die Reaktion der Schaltung ohne 
Warten auf das nächste Taktsignal.
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5.2.7.2 � Moore-Automat mit Registerausgabe
Für den Moore-Automaten kann eine Registerausgabe durch eine Veränderung des 
Blockschaltbilds erreicht werden. Dies ist in Abb. 5.56 dargestellt ist. Die Ände-
rung funktioniert so, dass die Ausgangsfunktion nicht mit der gespeicherten aktuellen 
Zustandsvariable Zn rechnet, sondern mit der neuen Zustandsvariable Zn+1. Dadurch 
liegt das Ergebnis Y* der Ausgangsfunktion bereits früher vor. Damit das gleiche Zeit-
verhalten wie im ursprünglichen Blockschaltbild entsteht, werden die Variablen Y* in 
einer Registerstufe gespeichert und ergeben den Ausgang Y. Die Ausgangsfunktion wird 
also vor die Flip-Flops geschoben und die Ausgabe zum Ausgleich durch Flip-Flops 
gespeichert.

Beide Strukturen des Moore-Automaten sind äquivalent, haben also die gleiche logi-
sche Funktion. Allerdings ist das Zeitverhalten anders. Durch das Verschieben der Aus-
gabefunktion gibt der Automat die Werte für Y direkt aus Flip-Flops aus, was für das 
Taktkonzept gewünscht ist. Die nachfolgende Schaltung hat die komplette Zeit des Takt-
zyklus für ihre Berechnungen.

Eine ausführliche Erläuterung von Taktkonzept und Laufzeiten befindet sich in 
Kapitel 6.

5.2.7.3 � Beispiel für Moore-Automat mit Registerausgabe
Der im Abschn. 5.2.3 entworfene Moore-Automat zum Entprellen eines Signals wurde 
auf Registerausgabe umgestellt. Als Ausgangsbasis wurde das Schaltbild in Abb. 5.40 
verwendet. Für die Registerausgabe wird die Ausgangsfunktion vor die Speicherglieder 
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Abb. 5.56   Struktur des Moore-Automaten mit Registerausgabe
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gezogen und der Wert Y* in einem Speicherglied gespeichert. Die veränderte Schaltung 
ist in Abb. 5.57 dargestellt. Die Größe der Schaltung ändert sich nicht. Lediglich für den 
Ausgangswert Y wird ein weiteres Flip-Flop benötigt, aber genau dieses Flip-Flop ist ja 
erwünscht.

5.2.7.4 � Medwedew-Automat
Der Medwedew-Automat ist ein Spezialfall des Moore-Automaten, bei dem die Aus-
gangsvariablen Y gleich den Zustandsvariablen Zn sind. Darum sind für den Medwedew-
Automat keine weiteren Ausgangs-Flip-Flops erforderlich, weil die Ausgangsvariablen ja 
bereits aus einem Flip-Flop kommen. Diese Struktur zeigt Abb. 5.58.

Für bestimmte Anwendungen lässt sich beim Entwurf eines Moore-Automaten ein-
planen, dass die Zustandsvariablen auch als Ausgangsvariablen verwendet werden. Ein 
Beispiel hierfür ist die optimierte Codierung des Entprell-Automaten (Abschn. 5.2.4.3), 
bei dem eine Zustandsvariable gleich dem Ausgang gewählt wurde. Auch ein Zähler ist 
ein Medwedew-Automat. Er gibt nacheinander Zahlenwerte aus, wie 0, 1, 2, 3, … Diese 
Zahl wird als Zustand gespeichert und ist die Ausgabe.

In der Praxis wird in vielen Fällen der Aufwand für zusätzliche Ausgangs-Flip-Flops 
akzeptiert. Der Arbeitsaufwand für eine spezielle Codierung wird hingegen vermieden.
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5.2.8	� Asynchrone Automaten

Eine weitere Form von Automaten sind asynchrone Automaten. Sie werden in der Praxis 
sehr selten entworfen und daher wird hier nur kurz ihre prinzipielle Struktur erläutert.

5.2.8.1 � Struktur
Bei asynchronen Automaten sind keine Flip-Flops zur Datenspeicherung vorhanden. Die 
Zustandsinformation wird stattdessen direkt vom Ausgang der Zustandsübergangsfunk-
tion zurück nach dessen Eingang gegeben. Die Speicherung der Information findet in der 
Verzögerung der Logikgatter und der Verbindungsleitungen statt.

Abb. 5.59 zeigt diese Struktur. Die kombinatorische Schaltung besteht aus den Logik-
gattern für Zustandsübergangsfunktion und Ausgabefunktion. Der als Verzögerung ange-
gebene Block ist kein reales Bauelement, sondern symbolisiert das Zeitverhalten der 
Logikgatter.

Asynchrone Automaten haben in der Theorie einige Vorteile gegenüber synchronen 
Automaten, also Automaten mit Flip-Flops:

•	 Höhere Geschwindigkeit, denn der Takt muss nicht auf die langsamste Verzögerung 
der kombinatorischen Schaltung warten.

•	 Niedrigerer und gleichmäßigerer Stromverbrauch, denn bei synchronen Schaltungen 
sind bei den Taktflanken Hunderttausende von FFs gleichzeitig aktiv.

•	 Geringere Störausstrahlung, denn es gibt keinen Takt.

In der Praxis gibt es jedoch auch schwerwiegende Nachteile, die gleich in Abschn. 5.2.8.3 
folgen.

Abb. 5.58   Struktur des 
Medwedew-Automaten Zn=YZn+1
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Abb. 5.59   Struktur eines 
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5.2.8.2 � Beispiel eines asynchronen Automaten
Das in Abschn. 5.1.1 beschriebene RS-Flip-Flop ist ein Beispiel für einen asynchronen 
Automaten. Abb. 5.60 zeigt erneut den Aufbau des RS-FFs (wie in Abb. 5.3) mit den 
Strukturelementen des asynchronen Automaten. Die Rückführung des Zustands Q erfolgt 
ohne Verzögerung oder Flip-Flop.

5.2.8.3 � Einsatz
Der praktische Einsatz von asynchronen Automaten ist nicht einfach, denn beim Entwurf 
sind wesentlich mehr Bedingungen zu beachten als bei synchronen Automaten.

•	 Ein asynchroner Automat ist nur stabil, wenn die Änderung einer Zustandsvariablen 
nicht erneut zu immer weiteren Änderungen von Zustandsvariablen führt. Ansonsten 
kann der Automat zwischen verschiedenen Zuständen schwingen.

•	 Die kombinatorische Schaltung darf keine kurzzeitigen Zwischenwerte ausgeben. 
Ansonsten kann der Automat in einen falschen Zustand übergehen.

Aufgrund dieser Bedingungen sind asynchrone Automaten wesentlich schwieriger zu 
entwerfen, denn Fehler beim Einhalten der Bedingungen lassen sich nur schwer entde-
cken. Das Risiko beim Entwurf eines asynchronen Automaten ist relativ hoch.

In der Praxis werden darum asynchrone Automaten so gut wie nicht entworfen. In der 
Regel werden lediglich bewährte und besonders geprüfte Grundschaltungen eingesetzt, 
wie zum Beispiel das RS-Flip-Flop.

5.3	� Entwurf sequenzieller Schaltungen mit VHDL

5.3.1	� Grundform des getakteten Prozesses

Der Entwurf sequenzieller Schaltungen erfolgt in VHDL mit einer besonderen Form 
des bereits beschriebenen Prozesses. Der Prozess benötigt keine Sensitivity-Liste und 
beginnt mit einem Wait-Statement für die steigende Taktflanke. Dieses Wait-Statement 
hat die Schreibweise wait until rising_edge(clk); und sagt aus, dass die nachfolgenden 
Anweisungen nur bei einer steigenden Taktflanke ausgeführt werden sollen. Nach dem 
Wait-Statement steht der VHDL-Code, der bei der steigenden Taktflanke ausgeführt wer-
den soll.

Abb. 5.60   Strukturelemente 
des asynchronen Automaten 
beim RS-Flip-Flop
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signal a, b : std_logic;

…

process

begin

   wait until rising_edge(clk);

   b <= a;

end process;

Im VHDL-Code sind nur die Definition von a und b sowie der Prozess gezeigt. Entity 
und Architecture-Definition werden zur besseren Übersicht zunächst weggelassen. Ein 
vollständiges Beispiel folgt später. Das Taktsignal clk ist ein normales Signal in VHDL; 
oft ist es direkt ein Eingangssignal der Schaltung.

Das Beispiel beschreibt ein einfaches D-Flip-Flop. Mit der steigenden Taktflanke wird 
der Wert des Signals a im Signal b gespeichert. Diese Beschreibung entspricht einem 
D-Flip-Flop entsprechend Abb. 5.61.

Die Schreibweise rising_edge() ist für die Beschreibung sequenzieller Schaltungen 
sehr wichtig. Syntheseprogramme erkennen diese Funktion und generieren eine Schal-
tung mit D-Flip-Flops. Es gibt außerdem die Variante falling_edge(). Hiermit wird eine 
Funktion beschrieben, die bei einer fallenden Taktflanke aktiv ist. Entsprechend werden 
D-Flip-Flops generiert, die mit der fallenden Taktflanke aktiv sind.

5.3.2	� Erweiterte Funktion des getakteten Prozesses

Die Grundform des Prozesses erscheint zunächst relativ aufwendig, denn für ein ein-
zelnes Flip-Flop werden vier Zeilen VHDL-Code benötigt. Die Stärke von VHDL liegt 
darin, dass nach dem Wait-Statement weitere Funktionen beschrieben werden können. 
Es sind If-Abfragen, Case-Bedingungen und logische Verknüpfungen, auch ineinander 
geschachtelt, möglich. Die Optimierung der Schaltung wird von einem Synthese-Pro-
gramm übernommen.

Als immer noch kleines Beispiel wird eine Überlauferkennung betrachtet. count ist 
eine Zahl mit dem Wertebereich von 0 bis 15 und in VHDL als unsigned-Signal mit 4 bit 
Wortbreite definiert. Eine Schaltung soll überprüfen, ob der Zahlenwert größer als zehn 
ist und das Ergebnis in einem Flip-Flop speichern. Dies könnte zum Beispiel anzeigen, 
dass ein Speicher überläuft.

Abb. 5.61   Schaltung des in 
VHDL beschriebenen D-Flip-
Flops

b

clk

a
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C
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signal count : unsigned(3 downto 0);

signal overflow : std_logic;

…

process

begin

   wait until rising_edge(clk);

   if count > 10 then

        overflow <= '1';
   else

        overflow <= '0';
   end if;

end process;

Nach dem Wait-Statement wird eine If-Abfrage mit der Konstanten zehn geschrieben. 
Ein Syntheseprogramm würde hieraus die Schaltung in Abb. 5.62 synthetisieren. Der 
Vorteil von VHDL ist, dass man sich über die Logikfunktion keine Gedanken machen 
muss. Auch Änderungen sind einfach. Wenn der Überlauf nicht bei Werten größer zehn, 
sondern bei elf oder zwölf erfolgen soll, wird einfach die Zahl im VHDL-Code geändert 
und das Synthese-Programm berechnet die neue Schaltung.

5.3.3	� Steuerleitungen für Flip-Flops

Durch VHDL-Beschreibungen können auch die am Anfang dieses Kapitels in 
Abschn. 5.1.4 beschriebenen Erweiterungen des D-Flip-Flops realisiert werden, also 
Reset, Set und Enable. Die Reset- und Set-Eingänge können entweder als synchrone 
oder als asynchrone Eingänge implementiert werden. Für die VHDL-Beschreibung wird 
ein synchrones Rücksetzen der Schaltung empfohlen. Zum einen wird dies in der Praxis 
meist verwendet, zum andern ist die VHDL-Beschreibung etwas einfacher.

5.3.3.1 � Synchroner Reset und Set
Der synchrone Reset und Set wird durch eine If-Abfrage des Steuersignals beschrieben. 
Diese If-Abfrage folgt direkt nach der Wait-Anweisung und beschreibt erst das Verhalten 
bei der Initialisierung und dann in der Else-Verzweigung die reguläre Verarbeitung.

Der folgende VHDL-Code erzeugt zwei D-Flip-Flops, f mit synchronem Reset und g 
mit synchronem Set. Beim Steuersignal wird üblicherweise der Name reset verwendet, 

Abb. 5.62   Schaltung der 
in VHDL beschriebenen 
Überlauferkennung
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egal auf welche Polarität initialisiert wird. Für die Else-Verzweigung werden als Beispiel 
einfache kombinatorische Verknüpfungen aufgerufen.

process

begin

   wait until rising_edge(clk);

   if reset = '1' then
      f <= '0';
      g <= '1';
   else

      f <= a or b;
      g <= b and c and d;
   end if;

end process;

Im Else-Zweig können, wie im Beispiel gezeigt, Berechnungen und Verknüpfungen 
programmiert werden. Für den Reset-Fall sind jedoch nur feste Werte, also 0 oder 1 
möglich. Der Grund hierfür ist, dass die VHDL-Beschreibung in eine digitale Schaltung 
umgewandelt werden soll. Dabei wird der Reset-Wert für die Auswahl des Flip-Flops 
verwendet. Deswegen muss ein fester Wert vorhanden sein, anhand dessen entweder ein 
Flip-Flop mit Reset oder Set verwendet wird.

•	 Steht im Reset-Zweig die Anweisung f <= ‘0’; wird ein Flip-Flop mit Reset erzeugt.
•	 Steht im Reset-Zweig die Anweisung f <= ‘1’; wird ein Flip-Flop mit Set erzeugt.
•	 Steht im Reset-Zweig die Anweisung f <= a; oder f <= b or c; kann nicht entschie-

den werden, ob ein Flip-Flop mit Set oder Reset erzeugt wird. Stattdessen wird ein 
Flip-Flop ohne Rücksetzfunktion erzeugt und die Funktion wird durch Logikgatter 
umgesetzt. Dies ist normalerweise nicht erwünscht, wenn der VHDL-Code eine Initi-
alisierung beschreibt.

5.3.3.2 � Asynchroner Reset und Set
Sequenzielle Schaltungen mit asynchronem Reset und Set werden durch einen VHDL-
Programmierstil ohne Wait-Statement beschrieben. Stattdessen wird der Prozess mit 
einer Sensitivity-Liste für Takt und Steuersignal aufgerufen. Die Beschreibung der 
sequenziellen Schaltung erfolgt durch eine If-Elsif-Abfrage. Das Reset-Verhalten wird 
im If-Zweig, der Takt im Elsif-Zweig beschrieben. Die Syntax für Reset und Set ist 
gleich; die Unterscheidung erfolgt durch Zuweisung einer 0 oder 1.

Die Reihenfolge von If- und Elsif-Zweig entspricht der Priorität, denn das asynchrone 
Rücksetzen erfolgt ja unabhängig vom Takt. Die Takt-Abfrage folgt mit elsif, denn sie 
wird nur ausgeführt, wenn kein Reset anliegt.

5.3  Entwurf sequenzieller Schaltungen mit VHDL
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process(clk, reset)

begin

   if reset = '1' then
      f <= '0';
      g <= '1';
   elsif rising_edge(clk) then

      f <= a or b;
      g <= b and c and d;
   end if;

end process;

Die Syntax von if reset = ‘1‘ then und elsif rising_edge(clk) then muss unbedingt 
eingehalten werden. Nur so kann das Syntheseprogramm erkennen, dass es ein D-Flip-
Flop mit Reset oder Set einbauen soll. Zwischen end if; und end process; darf kein ande-
rer VHDL-Code eingeschoben werden. Natürlich kann auch ein Flip-Flop mit fallender 
Taktflanke erzeugt werden, indem die Abfrage auf falling_edge(clk) erfolgt.

Wie zuvor sind für den Reset-Fall nur feste Werte, also 0 oder 1 möglich. Bei der 
Anweisung f <= ‘0’; wird ein Flip-Flop mit Reset erzeugt, bei f <= ‘1’; ein Flip-Flop 
mit Set. Falls keine Konstante für den Reset-Fall angegeben ist, würde das Synthesepro-
gramm einen Fehler ausgeben. Der Grund hierfür ist, dass es für diese Beschreibung kein 
passendes Schaltungselement gibt. Angenommen im Reset-Fall stände die Anweisung f 
<= a;. Bei a=0 soll ein asynchroner Reset erfolgen, bei a=1 ein asynchroner Set. Das 
Syntheseprogramm muss aber entweder ein Flip-Flop mit Set oder mit Reset einbauen. 
Da dies nicht möglich ist, erfolgt die Fehlermeldung.

5.3.3.3 � Enable
Auch eine Enable-Funktionalität wird durch eine If-Abfrage beschrieben. Die Enable-
Abfrage enthält keine Else-Beschreibung. Wenn enable aktiviert ist, wird der neue Wert 
übernommen, ansonsten findet keine Änderung statt. Der folgende VHDL-Code erzeugt 
zwei D-Flip-Flops mit Enable.

process

begin

   wait until rising_edge(clk);

   if enable = '1' then
      f <= a or b;
      g <= b and c and d;
   end if;

end process;

Enable und Reset/Set können auch miteinander kombiniert werden. Dabei wird zuerst 
die If-Anweisung für die Rücksetzfunktion geschrieben, denn die Initialisierung hat nor-
malerweise eine höhere Priorität als der Enable-Eingang.
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5.3.4	� Entwurf von Automaten

Mit einem Prozess kann auch ein kompletter Automat beschrieben werden. Zuvor müs-
sen das Zustandsfolgediagramm und die Zustandsfolgetabelle erstellt werden (vgl. 
Abschn. 5.2.3). Die weiteren Schritte, also Codierung der Zustände und Generierung der 
Logik wird dann durch VHDL-Beschreibung und Logiksynthese übernommen.

5.3.4.1 � Elemente der VHDL-Beschreibung
Im VHDL-Code wird die Funktion des Automaten nach der Wait-Anweisung beschrie-
ben (vgl. Abschn. 5.3.2). Außerdem erfolgt ein Reset des Automaten.

Eine Besonderheit ist die Beschreibung des Zustands. Es ist empfehlenswert, für die 
Speicherung des Zustands einen neuen, individuellen Datentyp zu definieren. Dies hat 
zwei Vorteile:

•	 Der VHDL-Code wird lesbarer.
•	 Das Syntheseprogramm weiß durch diese Beschreibung, dass ein Automat syntheti-

siert werden soll und kann die Schaltung optimieren.

Die Definition des Datentyps erfolgt in der Architecture mit dem Befehl:

type   <type_name> is (value_0, value_1, …);

Dieser Befehl definiert nur, dass es einen neuen Datentyp gibt. Zusätzlich muss noch 
ein Signal mit diesem Datentyp erzeugt werden. Dies erfolgt mit dem Befehl:

signal   <signal_name> : <type_name>;

In diesem Abschnitt soll der Entprell-Automat aus Abschn. 5.2.3 als Beispiel verwen-
det werden. Der Automat hat sechs Zustände, die erst als Datentyp definiert und dann 
als Signal verwendet werden. Die Zustandsnamen des Beispiels müssen leicht angepasst 
werden, da VHDL-Signale nicht mit Ziffern beginnen und keine Leerzeichen enthalten 
dürfen. Das Zustandsfolgediagramm Abb. 5.35 ist mit den angepassten Zustandsnamen 
in Abb. 5.63 noch einmal dargestellt.

Damit lautet die Signaldefinition in VHDL:

stabil_0 stabil_1
X=1

X=0

X=1 X=1 X=0 X=0

X=1 X=0

X=1 X=1X=0 X=0

R
eset

einmal_0einmal_1 zweimal_1 zweimal_0
Y=0 Y=1Y=0 Y=1Y=0 Y=1

Abb. 5.63   Zustandsfolgediagramm des Entprell-Automaten für die VHDL-Beschreibung

5.3  Entwurf sequenzieller Schaltungen mit VHDL
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type   state_type is (stabil_0, einmal_1, zweimal_1,

                      stabil_1, einmal_0, zweimal_0);

signal state        :  state_type;

Die Funktion des Automaten wird dann in einem synchronen Prozess umgesetzt. 
Zunächst wird mit einem Reset der Startzustand programmiert und auch die Ausgabe Y 
des Automaten auf einen Startwert gesetzt. Laut Zustandsfolgediagramm Abb. 5.63 ist 
stabil_0 mit Y=0 der Startzustand. Dies schreibt sich in VHDL:

process

begin

   wait until rising_edge(clk);

   if reset = '1' then
      state <= stabil_0;
      y     <= '0';
   else

      …

Als nächstes folgt die Beschreibung der einzelnen Zustände. Hierfür wird ein Case-
Statement mit dem Zustandssignal als Operator verwendet. Die Zustände sind die When-
Bedingungen. Innerhalb der When-Bedingungen wird dann Folgezustand und Ausgabe 
für den Folgezustand beschrieben. Die Abhängigkeit von den Eingangswerten wird 
durch ein If-Statement oder ein Case-Statement beschrieben.

Der folgende VHDL-Code gilt wieder für den Entprell-Automaten. Er beschreibt das 
Case-Statement abhängig von Zustandssignal state und den ersten Fall für den Zustand 
stabil_0. Der Folgezustand ist abhängig vom Eingang x, und wird als If-Statement 
beschrieben. Die Beschreibung für die weiteren Zustände erfolgt in der gleichen Weise 
und wird hier zunächst übersprungen. Der komplette VHDL-Code steht im folgenden 
Unterabschnitt.

Beachten Sie, dass mit den Folgezuständen jeweils die neuen Ausgabewerte beschrie-
ben werden. Im folgenden VHDL-Code gibt es den Folgezustand stabil_0, der die Aus-
gabe Y gleich 0 hat, sowie den Folgezustand einmal_1, der ebenfalls die Ausgabe Y 
gleich 0 hat. Durch diese Schreibweise wird ein Moore-Automat mit Registerausgabe 
erzeugt, wie in Abschn. 5.2.7 beschrieben.

case state is

   when stabil_0 =>
      if x='0' then
         state <= stabil_0;
         y <= '0';
      else

         state <= einmal_1;
         y <= '0';
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      end if;

   when einmal_1 =>
      …

end case;

Die Beschreibung der einzelnen Zustände kann direkt aus dem Zustandsfolgedia-
gramm (Abb. 5.63) und der Zustandsfolgetabelle übertragen werden.

Damit ist die komplette Funktion des Automaten beschrieben. Der komplette VHDL-
Code mit Aufruf der IEEE-Bibliothek, Entity und Architecture ist im folgenden Unter-
kapitel angegeben. Die If-Statements für die Folgezustände werden in drei Zeilen 
formatiert, um den Automaten kompakter und damit übersichtlicher zu beschreiben. Die 
Formatierung hat keine Auswirkung auf die Bedeutung des VHDL-Codes und sollte gut 
lesbar gestaltet werden.

5.3.4.2 � Kompletter VHDL-Code des Automaten

library ieee;

use ieee.std_logic_1164.all;

entity entprell is

   port (clk   :in  std_logic;

         reset :in  std_logic;

         x     :in  std_logic;

         y     :out std_logic);

end;

architecture behave of entprell is

   type   state_type is (stabil_0, einmal_1, zweimal_1,

                         stabil_1, einmal_0, zweimal_0);

   signal state       :  state_type;

begin

process

begin

wait until rising_edge(clk);

   if reset = '1' then
      state <= stabil_0;
      y     <= '0';
   else

      case state is

         when stabil_0 =>        
            if x='0' then   state <= stabil_0;     y <= '0';

5.3  Entwurf sequenzieller Schaltungen mit VHDL
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            else            state <= einmal_1;    y <= '0';
            end if;

         when einmal_1 =>           
            if x='0' then   state <= stabil_0;    y <= '0';
            else            state <= zweimal_1;   y <= '0';
            end if;

         when zweimal_1 =>         
            if x='0' then   state <= stabil_0;    y <= '0';
            else            state <= stabil_1;    y <= '1';
            end if;

         when stabil_1 =>        
            if x='1' then   state <= stabil_1;    y <= '1';
            else            state <= einmal_0;    y <= '1';
            end if;

         when einmal_0 =>           
            if x='1' then   state <= stabil_1;    y <= '1';
            else            state <= zweimal_0;   y <= '1';
            end if;

         when zweimal_0 =>         
            if x='1' then   state <= stabil_1;    y <= '1';
            else            state <= stabil_0;    y <= '0';
            end if;

      end case; -- state

   end if; -- reset

end process;

end;

5.3.5	� Programmierstile für VHDL-Code

Wie in jeder Programmiersprache sind auch für VHDL verschiedene Programmierstile 
möglich. Wir haben einen Programmierstil gewählt, der gut lesbar und wenig fehleran-
fällig ist. In der Praxis werden Sie sicherlich auch VHDL-Code in anderer Schreibweise 
begegnen. Für den Einstieg in VHDL empfehlen wir, zunächst bei einer Schreibweise zu 
bleiben.

Der VHDL-Code wird durch ein Syntheseprogramm in eine Schaltung umgewandelt. 
Heutige Syntheseprogramme sind so intelligent, dass sie für die meisten Programmier-
stile eine kompakte und schnelle Schaltung erzeugen.

In der Praxis gibt es innerhalb größerer Entwicklerteams oft eigene Richtlinien für 
Programmierstile, damit von verschiedenen Personen geschriebener Code nicht zu inho-
mogen wird.
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5.4	� Übungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Prüfen Sie sich mit den Aufgaben und 
Fragen am Kapitelende. Die Lösungen und Antworten finden Sie am Ende des Buches. 
Bei den Auswahlfragen ist immer genau eine Antwort korrekt.

Bitte versuchen Sie unbedingt, die Aufgaben zu den Automaten zuerst selber zu lösen. 
Nur durch Übung lernen Sie den Entwurf von Automaten. Die Lösungen sind bewusst 
sehr knapp gehalten und werden am besten verstanden, wenn Sie vorher selbst eine 
Lösung ermittelt haben.

Aufgabe 5.1
Was gilt für ein RS-Flip-Flop (RS-FF)?

a)	 Daten werden unabhängig von einem Takt gespeichert
b)	Daten werden bei Takt gleich 1 gespeichert
c)	 Daten werden bei Takt gleich 0 gespeichert
d)	Daten werden bei einer Taktflanke gespeichert

Aufgabe 5.2
Welche Ansteuerung für Flip-Flops ist heutzutage üblich?

a)	 Taktflanke
b)	Unabhängig vom Takt
c)	 Taktpegel

Aufgabe 5.3
Wie reagiert ein D-Flip-Flop (D-FF) auf einen asynchronen Reset?

a)	 Ausgang geht bei der nächsten Taktflanke auf 0
b)	Ausgang geht sofort auf 1
c)	 Ausgang geht bei der nächsten Taktflanke auf 1
d)	Ausgang geht sofort auf 0

Aufgabe 5.4
Wie reagiert ein D-Flip-Flop (D-FF) auf einen synchronen Set?

a)	 Ausgang geht bei der nächsten Taktflanke auf 0
b)	Ausgang geht sofort auf 1
c)	 Ausgang geht bei der nächsten Taktflanke auf 1
d)	Ausgang geht sofort auf 0

5.4  Übungsaufgaben
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Aufgabe 5.5
Ein Automat, bei dem der Ausgang nur vom Zustand und NICHT von den momentanen 
Eingangswerten abhängt, bezeichnet man als, …

a)	 Endlicher Automat
b)	Mealy-Automat
c)	 Moore-Automat
d)	Turing-Automat
e)	 Medwedew-Automat

Aufgabe 5.6
Ein Automat, bei dem der Ausgang vom Zustand UND von den momentanen Eingangs-
werten abhängt, bezeichnet man als, …

a)	 Endlicher Automat
b)	Moore-Automat
c)	 Medwedew-Automat
d)	Turing-Automat
e)	 Mealy-Automat

Aufgabe 5.7
Betrachten Sie die Taktsignale in Abb. 5.64. Wie groß ist für die Diagramme a) bis c) 
jeweils:

•	 Periodendauer
•	 Taktfrequenz
•	 Duty Cycle der 1-Phase

Abb. 5.64   Taktsignale
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Aufgabe 5.8
Ein Automat mit 11 Zuständen soll mit minimaler Codewortlänge codiert werden. Wie 
viele Stellen muss das Codewort haben?

Aufgabe 5.9
Ein Automat mit 9 Zuständen soll mit einer One-Hot-Codierung codiert werden. Wie 
viele Stellen muss das Codewort haben?

Aufgabe 5.10
Wie viele Zustände können bei minimaler Codewortlänge mit 5 Stellen codiert werden?

Aufgabe 5.11
Wie viele Zustände können mit einer One-Hot-Codierung mit 8 Stellen codiert werden?

Aufgabe 5.12
Die Jalousie an einem Fenster soll durch einen einzelnen Taster angesteuert werden. Um 
nur einen Taster zu verwenden, ändert sich die Bewegungsrichtung der Jalousie bei jeder 
neuen Betätigung des Tasters. Solange wie der Taster gedrückt gehalten wird, bewegt 
sich die Jalousie nach oben oder nach unten. Beim Loslassen stoppt die Jalousie, kann 
also auch halb oder zweidrittel geschlossen werden.

Beispiel:

•	 Der Taster wird gedrückt und festgehalten: Die Jalousie bewegt sich nach unten.
•	 Der Taster wird losgelassen: Die Jalousie stoppt.
•	 Der Taster wird gedrückt und festgehalten: Die Jalousie bewegt sich nach oben.
•	 Der Taster wird losgelassen: Die Jalousie stoppt.
•	 Der Taster wird gedrückt und festgehalten: Die Jalousie bewegt sich nach unten.

Nach dem Start soll sich die Jalousie bei Tastendruck zuerst nach unten bewegen. Das 
Ende der Bewegung, also ganz offen oder ganz geschlossen, wird nicht überprüft, da der 
Motor dann selbstständig stoppt.

Die Jalousie soll durch einen Moore-Automaten angesteuert werden. Der Taster liegt 
am Eingang T und ist 1, wenn er gedrückt wird. Der Motor wird durch zwei Ausgänge 
M(1:0) angesteuert. Die Bedeutung ist:

•	 M=00 – Motor ausgeschaltet
•	 M=01 – Motor fährt herunter
•	 M=10 – Motor fährt herauf
•	 M=11 – nicht zulässig

5.4  Übungsaufgaben
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a)	 Stellen Sie das Zustandsfolgediagramm auf. Verwenden Sie so wenige Zustände wie 
möglich.

b)	Erstellen Sie die Zustandsfolgetabelle.

Aufgabe 5.13
Mit einem Automaten sollen Parkmünzen zum Preis von 50 Cent verkauft werden. Ein 
elektromechanisches System erkennt Münzen im Wert von 10, 20 und 50 Cent und mel-
det eine eingeworfene Münze auf zwei Leitungen M(1:0). Wird keine Münze einge-
worfen, ist M=00. Erkannte Münzen werden mit einem Signal der Länge eines Taktes 
angezeigt. Die Münzen werden wie folgt codiert:

•	 M=01 – 10 Cent
•	 M=10 – 20 Cent
•	 M=11 – 50 Cent

Werden insgesamt mehr als 50 Cent eingeworfen, wird das übrige Geld einbehalten. 
Beispiele für erlaubte Kombinationen sind also:

•	 20 Cent, 20 Cent, 10 Cent
•	 50 Cent
•	 20 Cent, 20 Cent, 20 Cent (10 Cent verfallen)
•	 20 Cent, 50 Cent (ungeschickte Reihenfolge, 20 Cent verfallen)

Entwerfen Sie einen Moore-Automaten, der die Leitungen M(1:0) auswertet und 
nach Einwurf eines Betrags von mindestens 50 Cent einen Ausgang P für einen Takt auf 
1 schaltet, um eine Parkmünze auszugeben. Danach kann erneut Geld für die nächste 
Parkmünze eingeworfen werden. Aufgrund der mechanischen Auswertung vergehen zwi-
schen zwei Münzeinwürfen mehrere Takte.

a)	 Stellen Sie das Zustandsfolgediagramm auf. Verwenden Sie so wenige Zustände wie 
möglich.

b)	Erstellen Sie die Zustandsfolgetabelle.

Aufgabe 5.14
Der Automat zum Halbieren der Takte mit dem Wert 1 aus Abschn. 5.2.5 soll als Moore-
Automat entworfen werden.

Wenn am Eingang X der Wert 1 anliegt, soll für jeden zweiten Wert eine 1, ansonsten 
eine 0 am Ausgang Y ausgegeben werden. Die Zählung soll durch Eingangswerte 0 nicht 
beeinflusst werden. Bei einer 0 am Eingang soll 0 ausgegeben werden. Beim Einschalten 
soll für die erste 1 der Wert 0 ausgegeben werden. Der Zeitablauf entspricht Abb. 5.49, 
allerdings ist die Ausgabe bis zur nächsten Taktflanke verzögert (da Moore-Automat).
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a)	 Stellen Sie das Zustandsfolgediagramm auf. Verwenden Sie so wenige Zustände wie 
möglich.

b)	Erstellen Sie die Zustandsfolgetabelle.

Aufgabe 5.15
Auf einer Datenleitung D werden Datenworte der Länge 4 übertragen. Die Datenworte 
bestehen aus drei Stellen Nutzinformation und einer vierten Stelle zur Fehlererkennung, 
der Parity-Stelle. Diese vierte Parity-Stelle ist so gewählt, dass die Anzahl der 1-Stellen 
im Datenwort immer ungerade ist. Ein Fehler bei der Übertragung kann erkannt werden, 
wenn beim Empfänger die Anzahl der 1-Stellen, also die Parität, gerade ist.

Entwerfen Sie einen Mealy-Automaten, der die Datenleitung D überwacht und ein 
falsches Datenwort erkennt. Wenn ein falsches Datenwort mit gerader Anzahl der 1-Stel-
len auftritt, soll der Ausgang E (Error) für einen Takt auf 1 sein. Innerhalb eines Daten-
wortes und wenn kein Fehler auftritt, ist E auf 0.

Abb. 5.65 ist ein Beispiel für einen Zeitablauf. Die Klammern kennzeichnen die 
Datenworte.

•	 Das erste Datenwort hat zwei 1-Stellen, also fehlerhaft, da Parität gerade.
•	 Das zweite Datenwort hat drei 1-Stellen, also korrekt, da Parität ungerade.
•	 Das dritte Datenwort hat vier 1-Stellen, also fehlerhaft, da Parität gerade.

a)	 Stellen Sie das Zustandsfolgediagramm auf. Verwenden Sie so wenige Zustände wie 
möglich.

b)	Erstellen Sie die Zustandsfolgetabelle.

Hinweise:

•	 Der Automat muss mitzählen, wie viele Stellen und welche Werte empfangen wurden.
•	 Es müssen nicht alle verschiedenen Kombinationen unterschieden werden. Es sind 

weniger als zehn Zustände nötig.
•	 Achten Sie darauf, dass nach der vierten Stelle sofort das neue Datenwort beginnt. 

Der Automat darf keine Pause einlegen.

Abb. 5.65   Zeitdiagramm für die Fehlererkennung mit Parity-Stelle

5.4  Übungsaufgaben
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In den Kapiteln 4 und 5 wurde gezeigt, wie aus einer Aufgabenstellung eine kombinato-
rische oder sequenzielle Schaltung entwickelt werden kann. Dieser allgemeine Entwurfs-
weg ist prinzipiell für jede Spezifikation möglich. Für bestimmte Aufgabenstellungen 
kann es aber auch einfacher gehen. Es gibt einige Grundstrukturen, die häufig in digita-
len Schaltungen vorkommen und solche Strukturen werden in diesem Kapitel vorgestellt. 
Die Strukturen können durch eine Beschreibung in VHDL erzeugt werden.

6.1	� Grundstrukturen digitaler Schaltungen

Wenn Sie die hier gezeigten Grundstrukturen kennen, können Sie oft eine digitale 
Schaltung direkt aus diesen Strukturen zusammenstellen. Sie sparen sich damit mögli-
cherweise den allgemeinen Entwurfsweg über Funktionstabelle oder Zustandsfolgedia-
gramm. In Abschn. 6.5.2 wird hierzu ein ausführliches Beispiel gezeigt.

6.1.1	� Top-down Entwurf

Größere Digitalschaltungen werden Top-down entworfen, also „von oben nach unten“. 
Damit ist gemeint, dass eine Schaltung schrittweise in immer kleinere Teile aufgeteilt 
wird. Das Gesamtsystem besteht also aus Teilschaltungen, die auch als Untermodul 
bezeichnet werden. Die Untermodule können wiederum aus weiteren Untermodulen 
zusammengesetzt sein. Auf dem untersten Schritt der Aufteilung befinden sich Grund
elemente. Dies können Schaltungsstrukturen dieses Kapitels sein, aber auch Automaten 
(Kapitel 4) oder einzelne Gatter und Flip-Flops.

Schaltungsstrukturen 6

http://dx.doi.org/10.1007/978-3-662-49731-9_4
http://dx.doi.org/10.1007/978-3-662-49731-9_5
http://dx.doi.org/10.1007/978-3-662-49731-9_4


174 6  Schaltungsstrukturen

Beispielsweise lässt sich ein Mikrocontroller (siehe Kap. 13 und 14) in die folgenden 
Teilschaltungen aufteilen:

•	 Der Mikrocontroller besteht aus den Untermodulen CPU, Speicher, Eingabe, Ausgabe, 
Bussystem, …

•	 Die CPU besteht aus den Untermodulen Rechenwerk, Steuerwerk, Register, Speicher-
interface, …

•	 Das Steuerwerk besteht aus Programmzähler, Befehlsdecoder, …
•	 Der Programmzähler wird durch die Grundstruktur Zähler implementiert.

Der Vorteil dieser Vorgehensweise ist, dass die Untermodule einzeln entworfen werden 
können. Dies ist übersichtlich und erlaubt auch eine Aufteilung auf mehrere Personen 
oder, bei größeren Projekten, sogar auf mehrere Standorte eines Unternehmens.

Die einzelnen Teilschaltungen werden dann Schritt für Schritt zur Gesamtschaltung 
zusammengesetzt. Dieses Zusammenfügen wird als Bottom-up bezeichnet.

6.1.2	� Darstellung von Schaltungsstrukturen

In den bisherigen Kapiteln wurden bereits grafische Symbole (Schaltzeichen) für die 
Darstellung von Schaltungselementen verwendet. Gemeint sind die rechteckigen Kästen, 
bei denen sich die Eingänge auf der linken Seite und die Ausgänge auf der rechten Seite 
befinden. An der oberen und unteren Kante können sich Steuersignale befinden.

Auch für Schaltungsstrukturen werden solche Schaltzeichen verwendet. Es gibt eine 
standardisierte Darstellung, die in Abb. 6.1 zu sehen ist. Die Eingänge sind links, die Aus-
gänge rechts angeordnet. Der obere Block erhält Steuersignale, welche die Datensignale 
beeinflussen. Der untere Block umfasst die Datensignale. Dabei trennt ein horizontaler 
Strich unabhängige Datensignale voneinander. Abkürzungen und Symbole bei „*“ und „**“ 
geben die Funktion an.

Die Verwendung dieser Darstellung ist in der Praxis allerdings sehr uneinheitlich. 
Englischsprachige Quellen verwenden die Symbole kaum und darum findet sich auch in 
Deutschland oft eine einfachere Darstellung. Meist wird ein einfaches Rechteck verwen-
det und die Funktion durch eine Beschriftung verdeutlicht.

Abb. 6.1   Standardisierte 
Darstellung eines 
Schaltungselements D(0) *

A
B

**

D(1)
D(2)

Y(0)
Y(1)
Y(2)

http://dx.doi.org/10.1007/978-3-662-49731-9_13
http://dx.doi.org/10.1007/978-3-662-49731-9_14
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6.2	� Kombinatorische Grundstrukturen

6.2.1	� Multiplexer

Eine wichtige Grundstruktur für kombinatorische Schaltungen ist der Multiplexer, kurz 
„Mux“. Abhängig von Steuersignalen wird einer von mehreren Eingängen ausgewählt 
und auf den Ausgang gegeben. Je nach Anzahl der Auswahlmöglichkeiten sind ein oder 
mehrere Steuerleitungen erforderlich.

•	 1-aus-2-Multiplexer: Für zwei Dateneingänge ist eine Steuerleitung erforderlich
•	 1-aus-4-Multiplexer: Für vier Dateneingänge sind zwei Steuerleitungen nötig, denn 

die zwei Steuerleitungen können vier Möglichkeiten anzeigen
•	 1-aus-8-Multiplexer: Für acht Dateneingänge sind drei Steuerleitungen nötig

Auch Multiplexer für mehr Eingänge sind möglich. Mit n Steuerleitungen kann aus 2n 
Eingängen ausgewählt werden.

Das Schaltsymbol für einen 1-aus-4-Multiplexer ist in Abb. 6.2 dargestellt. Links 
befindet sich das Symbol in der standardisierten Darstellung mit dem Steuerblock und 
den zwei Steuerleitungen A(1:0). Entsprechend der Werte an A wird einer der vier Daten-
eingänge D(3:0) ausgewählt und an den Ausgang Y gegeben. In der Mitte ist ein verein-
fachtes Symbol dargestellt, welches in der Praxis häufig verwendet wird.

Ebenfalls in Abb. 6.2 gezeigt ist die Funktionstabelle für den 1-aus-4-Multiplexer. Die 
Leitung A gibt als Binärzahl an, welcher Eingangswert auf Y geschaltet wird. Es wird 
als ein Datenwert ausgewählt und die Schaltung wird darum auch als Datenselektor 
bezeichnet.

VDHL-Beschreibung
Ein Multiplexer kann durch das bereits bekannte Case-Statement erzeugt werden. Als 
Bedingung wird das Steuersignal a verwendet. Im Code sind die Signale definiert als:

•	 a : std_logic_vector(1 downto 0);
•	 d : std_logic_vector(3 downto 0);
•	 y : std_logic;

Abb. 6.2   Symbole und 
Funktionstabelle für 1-aus-4-
Multiplexer D(0)

MUX

D(1)
D(2)

A(0)
A(1)

0

1

2

D(3)

3

Y

0

1
} G

0

3

Y

A(1:0) Y

0 0
0 1
1 0
1 1

D(0)
D(1)
D(2)
D(3)

D(0)
D(1)
D(2)

A(0)
A(1)

D(3)
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case a is

   when "00"   => y <= d(0);
   when "01"   => y <= d(1);
   when "10"   => y <= d(2);
   when others => y <= d(3);
end case;

Die Case-Anweisung kann nur innerhalb eines Prozesses aufgerufen werden. Die 
VHDL-Befehle für den Prozess werden hier und in den folgenden Beispielen zur besse-
ren Übersichtlichkeit weggelassen. Der Others-Fall ist erforderlich, um alle möglichen 
Werte des Datentyps std_logic zu erfassen, also zum Beispiel auch ‚X‘ oder ‚U‘.

6.2.2	� Demultiplexer

Die entgegengesetzte Schaltung ist der Demultiplexer, kurz „Demux“. Abhängig von 
Steuersignalen A wird ein Eingangssignal D auf einen von mehreren möglichen Aus-
gängen Y gelegt. Die anderen Ausgänge sind 0. Genau wie beim Multiplexer gibt es 
Varianten mit verschiedener Anzahl an Wahlmöglichkeiten, also 1-auf-2, 1-auf-4, 1-auf-
8-Demultiplexer oder auch größere Schaltungen. Abb. 6.3 zeigt das Symbol und die 
Funktionstabelle für einen 1-auf-4-Demultiplexer.

Die Begriffe Multiplexer und Demultiplexer stammen von einer möglichen Anwen-
dung, bei der sich mehrere Signalwege eine gemeinsame Leitung teilen. Dies ist in 
Abb. 6.4 dargestellt. Die Schaltungsstrukturen werden jedoch auch für andere Anwen-
dungen eingesetzt.

Eine andere Bezeichnung für den Demultiplexer ist Adressdecoder. Dabei wählt eine 
Binärzahl mit n Stellen eine von 2n Ausgangsleitungen und eine weitere Steuerleitung G 
aktiviert den Ausgang. Die Funktionstabelle für 8 Ausgangsleitungen ist in Abb. 6.5 darge-
stellt. Eine beispielhafte Anwendung ist, dass eine Adresse einen von 8 Speicherbausteinen 

Abb. 6.3   Symbol und 
Funktionstabelle für 1-auf-4-
Demultiplexer

A(1:0)

0 0
0 1
1 0
1 1

Y(0)
Y(1)
Y(2)
Y(3)

D

A(0)
A(1)

D000
D 000

D 0 00
D 00 0

Y(3:0)

Abb. 6.4   Multiplexer und 
Demultiplexer

D(0)
D(1)
D(2)

A(1:0)

D(3)

A(1:0)

Y(0)
Y(1)
Y(2)
Y(3)
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auswählt. Die Schaltung entspricht exakt einem 1-auf-8-Demultiplexer des Datensignals G. 
Je nach Anwendungsgebiet ist die Bezeichnung als Adressdecoder jedoch verständlicher.

VHDL-Beschreibung
Auch der Demultiplexer kann durch ein Case-Statement erzeugt werden. Zunächst 
werden alle Ausgangssignale y auf 0 gesetzt. Der Eingang d wird dann einer der vier 
Ausgangsleitungen zugewiesen und damit für diesen Ausgang die Zuweisung der Null 
wieder überschrieben. Da die zwei Zuweisungen nacheinander innerhalb eines Prozesses 
ausgeführt werden, hat die erste Zuweisung für die Hardware-Synthese keine Wirkung.

Am ausgewählten Ausgang wird also nicht kurzzeitig eine 0 (erste Zuweisung) und 
danach auf der Wert von d (zweite Zuweisung) zu beobachten sein.

Die Signale sind definiert als:

•	 a : std_logic_vector(1 downto 0);
•	 d : std_logic;
•	 y : std_logic_vector(3 downto 0);

y <= "0000";
case a is

   when "00"   => y(0) <= d;
   when "01"   => y(1) <= d;
   when "10"   => y(2) <= d;
   when others => y(3) <= d;
end case;

6.2.3	� Addierer

Arithmetische Berechnungen sind eine wichtige Grundfunktion von digitalen Schaltun-
gen. Eine Grundschaltung für die Addition zweier Zahlen wird als Addierer bezeichnet. 
In diesem Abschnitt werden Addierer für Binärzahlen beschrieben. Die Addition von 
Zweierkomplementzahlen erfolgt mit der gleichen Struktur; lediglich das Vorzeichen 
muss berücksichtigt werden.

Abb. 6.5   Funktionstabelle 
eines Adressdecoders für 8 
Leitungen

A(2:0)

0 0
0 1
1 0
1 1

0 0 0 0
00 0 0

000 0
00 00

G

1 0
1 0
1 0
1 0

0 0
0 1
1 0
1 1

1 1
1 1
1 1
1 1

X0 X X 0 0 0 0
00 0 1

100 0
01 00

0 0 0 0
00 0 1

100 0
01 00

1 0 0 0
00 0 0

000 0
00 00

00 01 00 00

Y(7) Y(6) Y(5) Y(4) Y(3) Y(2) Y(1) Y(0)
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Zwei Zahlen der Wortbreite n ergeben eine Summe der Wortbreite n + 1, denn der 
Wertebereich der Summe kann ja größer als die Summanden sein. Für die Beispiele in 
diesem Abschnitt wird n = 8 gewählt, wenn nichts anderes angegeben ist.

Für diesen Fall der Wortbreite n = 8 haben die Summanden einen Wertebereich von 
[0,255]. Die Summe kann den Wertebereich von [0,510] haben und benötigt eine Wort-
breite von n = 9.

Ein Addierer hat somit 2⋅n Eingangsleitungen für die beiden Summanden A und B, 
sowie n + 1 Ausgangsleitungen für die Summe S. Ein Entwurf der Schaltung mit dem 
Karnaugh-Diagramm ist nicht möglich, da das Diagramm bei 2⋅n Eingangsleitungen 22⋅n 
Wertekombinationen hätte. Bei n = 8 wären diese 216 = 65.536 Einträge, also viel zu 
viel für eine grafische Optimierung

Ripple-Carry-Addierer
Für den Entwurf eines Addierers analysiert man die arithmetische Rechenoperation und 
setzt diese in eine Schaltung um. Zur Veranschaulichung ist in Abb. 6.6 die Addition 
zweier Zahlen dargestellt. Die Berechnung findet nacheinander für die einzelnen Binär-
stellen der Summanden A und B statt. Die beiden Werte werden mit dem Übertrag aus 
der vorherigen Stelle addiert und ergeben eine Summenstelle sowie einen Übertrag in die 
nächste Stelle. Der Übertrag zur ersten Stelle ist 0; der Übertrag der letzten Stelle ergibt 
die zusätzliche Summenstelle.

Diese Berechnung kann direkt in eine Schaltung umgesetzt werden. Die Berechnung 
für jede Stelle wird in einem Untermodul mit der Bezeichnung Volladdierer (VA) durch-
geführt. Dieses Untermodul wird gleich noch beschrieben.

Für eine Addition von n Stellen werden n Volladdierer eingesetzt. Jeder Volladdierer 
erhält die beiden Stellen der Summanden sowie den Übertrag aus der vorherigen Stelle. 
Als Ausgabe des Volladdierers gibt es die Summe der aktuellen Stelle sowie den Übertrag 
für die nächste Stelle. Der erste Volladdierer hat am Eingang des Übertrags den Wert 0, 
denn die erste Stelle hat noch keinen Übertrag. Der Ausgang des Übertrags vom letzten 
Volladdierer ergibt die zusätzliche Summenstelle. Diese Struktur ist für n = 8 in Abb. 6.7 
dargestellt. Der Übertrag (engl. Carry) läuft durch alle Stellen und darum wird diese 
Schaltungsstruktur als Ripple-Carry-Addierer (engl. Ripple-Carry-Adder) bezeichnet.

Es gibt noch weitere Addiererstrukturen, die für große Wortbreiten schneller arbeiten. 
Der Ripple-Carry-Addierer ist jedoch die wichtigste und am häufigsten vorkommende 
Addiererstruktur.

Volladdierer
Der Volladdierer hat drei Eingangssignale und zwei Ausgangssignale. Eingänge sind 
A, B und CI, also die beiden Binärstellen der Summanden sowie der Übertrag aus der 

Abb. 6.6   Addition zweier 
Binärzahlen der Wortbreite 
8 bit
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S
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vorherigen Binärstelle mit der Bezeichnung CI für Carry-In. Ausgänge sind S und CO, 
also die Binärstelle der Summe sowie der Übertrag für die nächste Binärstelle mit der 
Bezeichnung CO für Carry-Out.

Die Schaltung muss die drei Eingangswerte A, B, CI summieren, was einen Wert von 
0 bis 3 ergeben kann. Wenn diese Summe 2 oder 3 ist, erfolgt ein Übertrag in die nächste 
Stelle. Der Ausgang S wird 1, falls die Summe 1 oder 3 ist. Diese Funktion und das Symbol 
für einen Volladdierer ist in Abb. 6.8 gezeigt. Die Schaltung besteht aus wenigen Gattern.

Eine vereinfachte Form des Volladdierers ist der Halbaddierer (HA). Dieses Modul 
hat keinen Carry-Eingang und kann für die unterste Stelle des Ripple-Carry-Addierers 
verwendet werden.

VHDL-Beschreibung
Der Addierer kann direkt durch das Plus-Zeichen erzeugt werden. Die Signale kön-
nen als Vektor vom Typ signed/unsigned oder als integer definiert werden. Wie in 
Abschn. 3.5. erläutert, muss für signed und unsigned die Erweiterung der Wortbreite 
beachtet werden. Für Operanden A und B mit 8 bit Wortbreite lautet die Beschreibung:

s <=  '0' & a +  '0' & b;  ‐‐ fùr Datentyp unsigned
s <= a(7) & a + b(7) & b;  ‐‐ fùr Datentyp signed

Die Grundstruktur des Addierers wird auch für die Subtraktion eingesetzt. Prinzi-
piell wird statt des Volladdierers ein ähnlich definierter Vollsubtrahierer verwendet. In 
der Praxis wird jedoch oft einfach der Subtrahend invertiert und eine Addition durch-
geführt. Damit ist kein weiteres Grundelement erforderlich. Es wird also S = A + (−B) 
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Abb. 6.7   Ripple-Carry-Addierer für Binärzahlen mit 8 Stellen

Abb. 6.8   Symbol und 
Funktionstabelle für einen 
Volladdierer
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gerechnet. Damit die Invertierung dem Zweierkomplement entspricht, muss die 0 für den 
ersten Übertrag ebenfalls invertiert werden.

In VHDL wird die Subtraktion einfach durch das Minus-Zeichen aufgerufen. Für den 
Datentyp signed lautet die Beschreibung:

s <= a(7) & a - b(7) & b;

6.3	� Sequenzielle Grundstrukturen

6.3.1	� Zähler

Zähler sind wichtige Grundschaltungen, um Abläufe in digitalen Schaltungen zu steuern. 
Dabei wird als Grundoperation eine Binärzahl mit jedem Takt um eins erhöht. Auch ein 
Rückwärtszählen ist möglich, aber nicht so anschaulich. Gezählt wird stets ab dem Wert 
Null, also nicht ab Eins.

Die meisten Zähler beginnen nach Erreichen des letzten Ausgabewertes automatisch 
wieder beim ersten Ausgabewert, also der Null. Man bezeichnet dies als Modulo-m Zäh-
ler, wobei m die Anzahl der Zustände ist.

Beispielsweise zählt ein Modulo-5 Aufwärtszähler 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, …
Besonders einfach sind Modulo-2n Zähler. Sie durchlaufen alle n-stelligen Binärzah-

len. Um alle 10-stelligen Binärzahlen zu durchlaufen wird ein Modulo-210 Zähler einge-
setzt. Er läuft von 0 bis 1023 und startet danach wieder bei 0.

Diese Grundfunktion kann verändert und durch verschiedene Steuersignale erweitert 
werden.

•	 Enable: Der Zähler geht nur zum nachfolgenden Wert, wenn ein Steuereingang ena-
ble = 1 ist.

•	 Clear: Der Zähler springt wieder auf den Startzustand. Dies entspricht einem Reset.
•	 Load: Der Zähler lädt auf einen Wert von einem Eingang.
•	 Up/Down: Die Zählrichtung kann gewählt werden, das heißt der Zähler zählt auf 

Wunsch in die negative Richtung.
•	 Kein automatischer Neustart, das heißt der Zähler hält beim Erreichen des Maximal-

werts an und startet erst nach Clear erneut.

Ein ausführliches Beispiel für die Verwendung von Zählern folgt in Abschn. 6.5.2.

Implementierung
Ein Zähler wird mit der gleichen Struktur wie ein Moore-Automat implementiert. Der 
aktuelle Zählerstand ist in Flip-Flops gespeichert und aus diesem Wert sowie den Steuer-
signalen berechnet eine kombinatorische Schaltung den nächsten Zählerstand (Abb. 6.9). 
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Im einfachsten Fall besteht die kombinatorische Schaltung aus einem Addierer, der zum 
aktuellen Zählerstand den Wert Eins addiert. Je nach benötigten Steuersignalen sind wei-
tere Gatter erforderlich.

VHDL-Beschreibung
Ein Zähler wird durch die Addition einer Zählvariablen in einem getakteten Prozess 
erzeugt. Besonders einfach ist der Modulo-2n Zähler, wenn die Zählvariable als unsig-
ned definiert ist. Bei Erreichen des Maximalwerts ist die Addition so definiert, dass sie 
danach wieder den Wert Null ergibt.

Für einen Modulo-210 Zähler wird die Zählvariable count definiert als:

•	 count : unsigned(9 downto 0);

process

begin

wait until rising_edge(clk);

   count <= count + 1;
end process;

Zähler mit Steuersignalen lassen sich durch Erweiterung des Codes mit If-Bedin-
gungen umsetzen. Der folgende Code beschreibt einen Modulo-100 Zähler, der nur bei 
enable = 1 zählt. Der Steuereingang clear setzt den Zähler auf 0 und zwar unabhängig 
von enable (siehe auch Abb. 6.9). Er entspricht einem synchronen Rücksetzen.

Die Steuereingänge sind als std_logic und die Zählvariable als unsigned definiert:

•	 clear: std_logic;
•	 enable: std_logic
•	 count : unsigned(6 downto 0);

Abb. 6.9   Implementierung 
eines Zählers

D

C

clear

Z(1)

D

C

Z(n-1)

Z

Zustandsübergangsfunktion Speicherglieder

CLK

D

C

Z(0)

ko
m
bi
na

to
ris

ch
e

S
ch

al
tu
ng

enable

S
te
u
er
si
g
n
al
e

n

6.3  Sequenzielle Grundstrukturen



182 6  Schaltungsstrukturen

process

begin

wait until rising_edge(clk);

   if clear = '1' then
      count <= (others => '0');
   elsif enable = '1' then  
        if count = 99 then
           count <= (others => '0');
        else

            count <= count + 1;
        end if;

   end if;

end process;

6.3.2	� Schieberegister

Mehrere hintereinander geschaltete D-Flip-Flops werden als Schieberegister bezeich-
net. In einem Schieberegister werden die gespeicherten Werte mit jedem Takt einen Wert 
weiter geschoben (Abb. 6.10).

Durch Steuersignale, beispielsweise ein Enable, kann die Grundstruktur erweitert 
werden. Ein Schieberegister wird verwendet, wenn Daten vor oder innerhalb einer Ver-
arbeitung um wenige Takte verzögert werden sollen. Bei größeren Verzögerungen (ab ca. 
16 Takte) sind jedoch Speicher meist effizienter.

Eine wichtige Anwendung von Schieberegistern ist die Verarbeitung serieller 
Daten und die Umwandlung zwischen seriellen und parallelen Daten. In Abb. 6.11 ist 
ein Schieberegister zur Wandlung paralleler Daten zur seriellen Datenübertragung 

Abb. 6.10   Schieberegister D(n)
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dargestellt. Der Dateneingang D hat 8 Leitungen, die zu Beginn der Übertragung mit 
Multiplexern in ein Schieberegister geladen werden. Dann wird 8 Takte lang das Daten-
wort auf die serielle Leitung T ausgegeben. Nach diesen 8 Takten kann das nächste 
Datenwort übertragen werden.

VDHL-Beschreibung
Für die VHDL-Beschreibung eines Schieberegisters wird die Zusammenfassung von 
Vektoren mit dem Concatenation-Operator & verwendet. Achtung: Verwechseln Sie die-
sen Operator nicht mit der UND-Verknüpfung.

Für ein einfaches Schieberegister ähnlich wie in Abb. 6.10 wird ein std_logic_vector 
definiert. Hier soll als Wortbreite 8 bit verwendet werden und ein Steuereingang enable 
beachtet werden. Der oberste Wert des Schieberegisters, das MSB (Most Significant Bit), 
wird nicht mehr gespeichert. Die übrigen Werte rücken eine Stelle auf und werden mit dem 
neuen Eingangswert data ergänzt. Dies wird programmiert, indem der Wert des Schiebe-
registers ohne MSB (also d(6:0)) mittels Concatenation um das Signal data ergänzt wird.

Die Signale sind definiert als:

•	 d : std_logic_vector(7 downto 0);
•	 data: std_logic;
•	 enable : std_logic;

process

begin

wait until rising_edge(clk);

   if enable = '1' then
      d <= d(6 downto 0) & data;
  end if;

end process;

6.3.3	� Rückgekoppeltes Schieberegister

Bei einem rückgekoppelten Schieberegister werden einige Stellen XOR-verknüpft und wie-
der in das Schieberegister gegeben. Die englische Bezeichnung hierfür ist Linear Feedback 
Shift Register oder LFSR. Abb. 6.12 zeigt ein LFSR mit 4 Stellen. Die Daten an Position 3 
und 4 werden XOR-verknüpft und wieder an Position 0 in das Schieberegister gegeben.

Bei geeigneter Wahl der Rückkopplung werden bei einem n-Bit-Schieberegister 2n−1 
verschiedene Zustände durchlaufen. Von den 2n möglichen Kombinationen treten also 
sämtliche Werte auf, ausgenommen alle Stellen auf 0. Die Werte treten dabei nicht in der 

6.3  Sequenzielle Grundstrukturen
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arithmetischen Reihenfolge auf und können darum auch als Pseudo-Zufallszahlen genutzt 
werden. Die Initialisierung muss vermeiden, dass alle Werte auf 0 sind (nicht in Abb. 6.12 
dargestellt).

Die Abgriffe der Rückkopplung sind für verschiedene Längen des Schieberegisters in 
Tabellen angegeben. Eingesetzt werden LFSR beispielsweise als Zahlengeneratoren in 
der Kommunikationstechnik.

6.4	� Zeitverhalten

6.4.1	� Verzögerungszeit realer Schaltungen

Logikgatter benötigen eine kurze Laufzeit bis der Ausgang auf eine Änderung der Ein-
gangsvariablen reagiert. Diese Laufzeit ist abhängig von der Technologie. Für ein ein-
zelnes Gatter in einem Gehäuse kann die Laufzeit über 10 ns betragen. Als Teil eines 
modernen hochintegrierten ASICs sind Laufzeiten unter 0,1 ns möglich.

Realistische Werte für die Verzögerungszeit eines Gatters innerhalb integrierter Schal-
tungen betragen etwa 0,1 bis 1,0 ns, während die Verzögerungszeit diskreter Gatter bei 
etwa 1 ns bis 10 ns liegt (vgl. Kap. 7). Dabei ist die Verzögerungszeit auch abhängig 
von der Funktion des Logikgatters. Ein Inverter ist meist schneller als ein ODER-Gatter 
mit 8 Eingängen. Auch gleichartige Gatter können eine unterschiedliche Laufzeit haben, 
abhängig beispielsweise davon, ob ihr Ausgang 1 oder 10 weitere Gatter ansteuert.

6.4.2	� Transiente Signalzustände

Beim Wechsel einer oder mehrerer Eingangsvariablen treten aufgrund der Verzögerungszei-
ten oft kurze Zwischenzustände auf. Diese werden als Spike, Glitch oder Hazard bezeichnet.

Zum besseren Verständnis wird die Schaltung in Abb. 6.13 betrachtet. Bei ihr wech-
selt der mittlere Eingang von 1 auf 0. Für beide Eingangswerte ist der Ausgang Y auf 1. 
Durch Verzögerungszeiten der Gatter kann jedoch ein kurzzeitiger Spike am Ausgang Y 
auftreten. Dieser entsteht durch den folgenden Ablauf:

Abb. 6.12   Rückgekoppeltes 
Schieberegister mit 4 Stellen
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•	 Der mittlere Eingang wechselt von 1 auf 0.
•	 Das obere UND-Gatter wechselt dadurch von 1 auf 0.
•	 An beiden Eingängen des ODER-Gatters liegt 0 an und der Ausgang ist kurzzeitig 0.
•	 Das untere UND-Gatter ist durch den vorgeschalteten Inverter etwas langsamer als 

das obere UND-Gatter und wechselt später von 0 auf 1.
•	 Der untere Eingang des ODER-Gatters wird 1 und der Ausgang wird wieder 1.

6.4.3	� Signalübergänge in komplexen Schaltungen

Bei komplexen Schaltungen können auch mehrere Übergänge auftreten, bis der endgül-
tige Ausgangswert erreicht ist. Dies lässt sich beim Ripple-Carry-Addierer aus Abb. 6.7 
gut nachvollziehen. Eine Summenstelle hängt von den Eingangswerten der aktuellen 
Stelle sowie von allen tieferen Stellen ab. Summenstelle S(6) beispielsweise hängt von 
A(6) und B(6) sowie dem Übertrag aus allen vorherigen Stellen also A(5) bis A(0) und 
B(5) bis B(0) ab. Wenn zwei neue Zahlen für die Berechnung am Addierer anliegen, liegt 
an Stelle 6 die Information von A(6) und B(6) sofort an. Die Informationen aus den vor-
herigen Stellen müssen jedoch erst durch mehrere Volladdierer weitergegeben werden 
und treffen später an der Stelle 6 ein.

Als ein Beispiel werden die Signalwechsel des Ripple-Carry-Addierers simuliert. An 
den Eingängen A und B liegen zunächst die Werte 8510 und 17010, also binär 010101012 
und 101010102 an. Dann wechseln die Werte auf 17110 und 8510, binär 101010112 und 
010101012. Als Verzögerungszeit für einen Volladdierer wird 0,3 ns angenommen. 
Außerdem wird angenommen, dass der Eingang B eine etwas längere Anschlussleitung 
und dadurch eine zusätzliche Laufzeit von 0,1 ns hat.

Das Ergebnis der Simulation ist in Abb. 6.14 zu sehen. Die Summe wechselt von 
25510 auf 25610, binär von 0111111112 auf 1000000002. Durch die schrittweise Ver-
arbeitung des Übertrags wechseln die höheren Summenausgänge S mehrfach den 
Wert.
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Abb. 6.13   Spike beim Wechsel eines Eingangssignals
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6.5	� Taktkonzept in realen Schaltungen

6.5.1	� Register-Transfer-Level (RTL)

Der mehrfache Wechsel von Signalzuständen lässt sich in Digitalschaltungen kaum ver-
meiden. Er stellt aber auch kein Problem dar, denn fast alle Schaltungen werden durch 
einen Takt gesteuert. Das allgemeine Taktkonzept ist in Abb. 6.15 dargestellt. Die Ein-
gangssignale einer Schaltung werden zunächst in Flip-Flops gespeichert. Die Flip-Flop-
Ausgänge werden dann in einer kombinatorischen Schaltung verarbeitet. Dabei können 
mehrfache Signalwechsel auftreten. Wenn alle Wechsel der kombinatorischen Schaltung 
erfolgt sind, werden die Informationen in einer zweiten Flip-Flop-Stufe gespeichert. Von 
dort werden die Daten in der nachfolgenden Taktperiode an die nächste kombinatorische 
Schaltung gegeben, nach der sich erneut eine Flip-Flop-Stufe befindet.

Die Flip-Flop-Stufen werden auch als Register bezeichnet und als kompakte Darstel-
lung das in Abb. 6.15 gezeigte Schaltsymbol verwendet. Das Taktkonzept bezeichnet 
man als Register-Transfer und diese Schaltungsstruktur ermöglicht ein sicheres Arbeiten 
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der Schaltung, da die Register jeweils abwarten, bis alle Signalübergänge in der kombi-
natorischen Schaltung erfolgt sind.

Ein wesentlicher Vorteil dieses Schaltungskonzepts ist auch die Übersichtlichkeit 
beim Schaltungsentwurf. Beim Entwurf kann man sich gut vorstellen, welche Informati-
onen jeweils in einer Registerstufe vorhanden sind. Daraus kann man dann beschreiben, 
was im nächsten Schritt mit diesen Informationen passieren soll. Die Entwurfsmethodik 
ist weit verbreitet und wird als Register-Transfer-Level (RTL) bezeichnet.

6.5.2	 Beispiel für Entwurf mit Register-Transfer-Level: Ampelsteuerung

Der Entwurf im Register-Transfer-Level, kurz RTL-Design, wird mit einem ausführlichen 
Beispiel verdeutlicht. Dabei werden auch die Grundstrukturen aus Abschn. 6.3 verwendet.

Aufgabenstellung
Eine Fußgängerampel soll durch eine Digitalschaltung angesteuert werden. Die Straße 
hat eine Ampel mit drei Lichtzeichen Rot, Gelb, Grün und der Fußgängerüberweg 
eine Ampel mit zwei Lichtzeichen Rot, Grün (Abb. 6.16). Um die Schaltung einfach 
zu halten, sollen keine Tasten ausgewertet werden, sondern stets folgender Ablauf 
stattfinden:

•	 10 s grün für die Straße
•	 1 s gelb für die Straße
•	 1 s rot für die Straße
•	 5 s grün für die Fußgänger
•	 2 s rot für die Fußgänger
•	 1 s rot und gelb für die Straße
•	 Zyklus beginnt erneut

Für eine echte Fußgängerampel wäre diese Steuerung sicher zu einfach, deswegen 
nehmen wir an, die Schaltung sei für eine Modelleisenbahn.

Die Digitalschaltung verwendet einen Takt mit der Frequenz 50 MHz.

Abb. 6.16   Einfache 
Fußgängerampel

6.5  Taktkonzept in realen Schaltungen
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Struktur
Der Entwurfsablauf beim RTL-Design ist so, dass die Aufgabe zunächst in einzelne Teil-
schritte unterteilt wird. Diese Teilschritte werden dann zwischen den Registern berech-
net. Für die Ampelsteuerung sind drei Teilschritte sinnvoll.

1.	 Aus dem Takt (50 MHz) wird ein Sekundensignal erzeugt.
2.	 Mit dem Sekundensignal werden die 20 Schritte des Ampelablaufs gezählt.
3.	 Mit der Information, welcher Schritt des Ampelablaufs vorliegt, werden die Lichtsig-

nale ausgegeben.

VHDL-Beschreibung
Die Schaltung könnte prinzipiell mit einem Moore-Automaten umgesetzt werden. Es 
ist jedoch deutlich einfacher und übersichtlicher, wenn die Grundstrukturen Zähler und 
Multiplexer verwendet werden. Im Folgenden ist der komplette VHDL-Code inklusive 
Bibliotheksaufruf und Entity angegeben.

Das Eingangssignal clock_50 ist der Takt von 50 MHz. Die Ausgangssignale sind 
strasse mit drei Werten für rotes, gelbes, grünes Licht (gezählt von MSB nach LSB) 
sowie fussweg mit zwei Werten für rotes und grünes Licht (MSB und LSB). Beim Wert 
„001“ für strasse ist also der drittgenannte Wert, das grüne Licht aktiv. Beim Wert „10“ 
für fussweg ist der erstgenannte Wert aktiv, also das rote Licht.

Die drei Schritte des Register-Transfer-Levels sind durch die Kommentarzeilen 
gekennzeichnet.

1.	 Der erste RTL-Schritt ist ein Zähler, der mit count_a 50 Mio. Werte zählt und dann 
enable für einen Takt auf 1 setzt. Die benötigte Wortbreite des Zählers berechnet sich 
aus dem Zweierlogarithmus von 50.000.000 und ergibt aufgerundet 26 bit.

ld50 000 000 = log 50 000 000/ log 2 = 7, 699/0, 301 = 25, 58

2.	 Der zweite RTL-Schritt ist ebenfalls ein Zähler, der durch enable einmal pro Sekunde 
aktiviert wird. Er zählt mit count_b die 20 Schritte des Ampelzyklus. Die benötigte 
Wortbreite beträgt 5 bit.

3.	 Der dritte RTL-Schritt ist eine Fallunterscheidung, codiert als If-Anweisung, die aus 
dem Wert von count_b die Ansteuerung der Ampellichter ermittelt.

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity ampel is

   port (clock_50 : in  std_logic;

         strasse  : out std_logic_vector(2 downto 0); -- rot, gelb, grùn

         fussweg  : out std_logic_vector(1 downto 0));-- rot, grùn

end;
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architecture behave of ampel is

signal  enable  : std_logic;

signal  count_a : unsigned(25 downto 0);

signal  count_b : unsigned(4 downto 0);

begin

process

begin

wait until rising_edge(clock_50);

   -- Zàhler fùr 1 Impuls je Sekunde

   if count_a >= 49999999 then
      count_a <= (others => '0');
      enable  <= '1';
   else

      count_a <= count_a + 1;
      enable  <= '0';
   end if;

   -- Zàhler fùr 20 Schritte der Ampel

   if enable = '1' then
        if count_b >= 19 then
           count_b <= (others => '0');
        else

            count_b <= count_b + 1;
        end if;

   end if;

   -- Abfrage fùr Lichter der Ampel

   if      count_b < 10 then

        -- 10 Sekunden grùn fùr Straße, rot fùr Fussweg

        strasse <= "001"; fussweg <= "10";
   elsif  count_b < 11 then

        -- 1 Sekunde gelb fùr Straße

        strasse <= "010"; fussweg <= "10";
   elsif  count_b < 12 then

        -- 1 Sekunde rot fùr Straße

        strasse <= "100"; fussweg <= "10";
   elsif  count_b < 17 then

        -- 5 Sekunden grùn fùr Fußweg

        strasse <= "100"; fussweg <= "01";
   elsif  count_b < 19 then

        -- 2 Sekunden rot fùr Fußweg

6.5  Taktkonzept in realen Schaltungen
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        strasse <= "100"; fussweg <= "10";
   else

        -- 1 Sekunde rot/gelb fùr Straße

        strasse <= "110"; fussweg <= "10";
   end if;

end process;

end;

6.5.3	� Kritischer Pfad

Die Speicherung in einer Flip-Flop-Stufe darf erst erfolgen, wenn alle Wechsel der kom-
binatorischen Schaltung abgelaufen sind. Hierfür muss die maximale Verzögerungs-
zeit der kombinatorischen Schaltung berechnet werden. Der langsamste Weg durch die 
Schaltung wird als kritischer Pfad bezeichnet. Ein Pfad beginnt bei einem Flip-Flop-
Ausgang und endet bei einem Flip-Flop-Eingang.

Als Beispiel ist in Abb. 6.17 der kritische Pfad eines Ripple-Carry-Addierers darge-
stellt (vergleiche Abb. 6.7). Die Summanden A und B sowie die Summe S werden ent-
sprechend der RTL-Methodik in Flip-Flop-Stufen gespeichert. Der kritische Pfad beginnt 
bei der untersten Stelle eines Summanden und endet bei der höchsten Stelle des Ergeb-
nisses. Dazwischen müssen die acht Volladdierer des Ripple-Carry-Addierers durchlau-
fen werden.

Für die Verzögerungszeit des kritischen Pfads werden die Verzögerungszeiten aller 
Gatter sowie die Signallaufzeiten der Leitungen addiert. Außerdem hat auch der Ausgang 
des Flip-Flops am Start des Pfads eine Verzögerungszeit. Beim Flip-Flop am Ende des 
Pfads muss die Setup-Zeit eingehalten werden, also die Zeit vor der steigenden Takt-
flanke, in der das Eingangssignal stabil sein muss (siehe Kapitel 5).

Als ein Beispiel wird der kritische Pfad des Ripple-Carry-Addierers berechnet. Dazu 
werden folgende Verzögerungszeiten angenommen.

•	 Verzögerungszeit eines Volladdierers: 0,3 ns
•	 Setup-Zeit eines Flip-Flops: 0,2 ns

VA VA VA VA VA VA VA VA
‚0'

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

CLK

CLK

Abb. 6.17   Kritischer Pfad eines Ripple-Carry-Addierers

http://dx.doi.org/10.1007/978-3-662-49731-9_5


191

•	 Verzögerungszeit von Takt nach Flip-Flop-Ausgang: 0,2 ns
•	 Laufzeit einer Leitung: 0,1 ns

Für einen 8-Bit-Addierer besteht der kritische Pfad dann aus:

•	 Flip-Flop-Ausgang: 0,2 ns
•	 8 Volladdierer: 8⋅0,3 ns = 2,4 ns
•	 9 Verbindungsleitungen: 9⋅0,1 ns = 0,9 ns
•	 Flip-Flop Setup-Zeit: 0,2 ns

Dies ergibt in Summe 3,7 ns.
Für einen 32-Bit-Addierer müssen 32 Volladdierer und 33 Verbindungsleitungen 

berücksichtigt werden. Der kritische Pfad beträgt dann 13,3 ns.
In der Praxis wird der kritische Pfad durch Entwurfsprogramme ermittelt, indem 

sämtliche Pfade der Schaltung berechnet werden. In Abb. 6.17 könnte auch der andere 
Eingang des ersten Volladdierers sowie der andere Ausgang des letzten Volladdierers 
Anfang und Ende des kritischen Pfads sein. Dies hängt von den Verbindungsleitungen 
und dem inneren Aufbau der Volladdierer ab.

6.5.4	� Pipelining

Mögliche Taktfrequenz
Aus dem kritischen Pfad kann als Kehrwert die mögliche Taktfrequenz berechnet 
werden.

•	 Der 8-Bit-Ripple-Carry-Addierer hat im kritischen Pfad eine Verzögerungszeit von 
3,7 ns. Die maximal mögliche Taktfrequenz beträgt darum 1/(3,7 ns) = 270 MHz.

•	 Für den 32-Bit-Ripple-Carry-Addierer mit der Verzögerungszeit von 13,3 ns beträgt 
die maximal mögliche Taktfrequenz 75 MHz.

Oft ist jedoch die Vorgehensweise anders herum, das heißt für eine Problemstellung 
ist die erforderliche Taktgeschwindigkeit vorgegeben. Sie ergibt sich entweder direkt aus 
der Aufgabe oder aus der Leistungsfähigkeit von Konkurrenzprodukten. Der kritische 
Pfad muss dann diese Vorgabe erfüllen.

Dies wird durch die beiden folgenden Zahlenbeispiele verdeutlicht:

•	 Eine digitale Schaltung soll Radarsignale analysieren, die mit 100 Mio. Werten pro 
Sekunde auftreten. Die Schaltung muss daher eine Taktfrequenz von 100 MHz errei-
chen. Der kritische Pfad darf 10 ns betragen.

•	 Ein Mikrocontroller soll entworfen werden. Die vorhandenen Produkte arbeiten mit 
bis zu 200 MHz. Für das neue Produkt wird daher eine Taktfrequenz von 250 MHz 
spezifiziert. Der kritische Pfad darf 4 ns betragen.

6.5  Taktkonzept in realen Schaltungen
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Taktfrequenz und kritischer Pfad
Die Analyse des kritischen Pfads und der Vergleich mit der geforderten Taktfrequenz zei-
gen, ob die Geschwindigkeitsanforderungen an die Schaltung eingehalten werden. Wenn 
die Geschwindigkeit ausreicht, ist normalerweise keine weitere Optimierung erforder-
lich. Falls der kritische Pfad jedoch länger als die verfügbare Zeit ist, muss die Schaltung 
optimiert werden.

Zur Verkürzung des kritischen Pfads kann überlegt werden, ob die Verarbeitung einfa-
cher aufgebaut oder in mehr Teilschritte aufgeteilt werden kann.

Beispielsweise wird in der Ampelsteuerung aus Abschn. 6.5.2 ein Zähler bis 50 Mio. 
eingesetzt. Falls dieser Zähler nicht mit der geforderten Taktfrequenz arbeitet, könnte er 
in zwei nacheinander geschaltete Zähler bis 10.000 und 5.000 aufgeteilt werden.

Einfügen von Flip-Flop-Stufen
Wenn eine Schaltung nicht umstrukturiert werden kann oder soll, lässt sich durch das 
Einfügen von Flip-Flop-Stufen die Verarbeitungsgeschwindigkeit erhöhen. Dies wird als 
Pipelining bezeichnet und in digitalen Schaltungen sehr häufig eingesetzt.

Abb. 6.18 zeigt das Einfügen einer Pipeline-Stufe. Die kombinatorische Logik wird 
durch einen Schnitt aufgeteilt und in sämtliche Verbindungsleitungen werden Flip-
Flops eingefügt. Wichtig ist, dass tatsächlich alle Signale gleich verzögert werden, da 
die Informationen sonst zeitlich gegeneinander verschoben wären. In Abb. 6.18 wird die 

CLK

1

&

&

& 1

1

&

&

& 1

CLK

1

&

&

& 1

1

&

&

& 1

Abb. 6.18   Einfügen einer Pipeline-Stufe



193

Pipeline-Stufe bereits nach zwei Gattern eingefügt. Je nach Geschwindigkeitsanforde-
rungen kann aber auch erst nach 10 oder 20 Gattern eine Pipeline-Stufe erforderlich sein.
Pipelining verkürzt nicht die Gesamtlaufzeit durch die Kombinatorik, sondern die Lauf-
zeit zwischen Flip-Flop-Stufen. Ein kritischer Pfad von beispielsweise 10 ns wird durch 
Pipelining in zwei Teile zu 5 ns aufgeteilt und die Schaltung kann dadurch mit 200 MHz 
statt mit 100 MHz betrieben werden. Allerdings dauert die Berechnung dann zwei Takt-
zyklen. Die gesamte Verzögerung einer Berechnung wird als Latenzzeit bezeichnet.

Der Vorteil des Pipelinings ist, dass während einer Berechnung in der zweiten Pipe-
line-Stufe, bereits die nächsten Werte in die erste Pipeline-Stufe gegeben werden kön-
nen. Die Anzahl an Rechenzyklen wird als Durchsatz bezeichnet. Die Schaltung mit 
100 MHz Takt hat einen Durchsatz von 100 Mio. Datenwerten, während bei 200 MHz 
der Durchsatz 200 Mio. Datenwerte beträgt. Pipelining bewirkt also eine Steigerung der 
Verarbeitungsleistung.

6.5.5	� Taktübergänge

Taktbereiche
Bisher wurde überall in einer Schaltung der gleiche Takt verwendet. Dies ist auch mög-
lichst anzustreben. Allerdings lässt sich nicht immer vermeiden, dass mehrere Takte ver-
wendet werden. Ein Beispiel dafür ist ein PC:

•	 Die CPU arbeitet mit einem Takt zwischen 3 und 4 GHz.
•	 Der DRAM-Speicher arbeitet mit einem Takt im Bereich von 1 GHz.
•	 Die Grafikkarte arbeitet mit einem Takt zwischen 500 und 1000 MHz.
•	 Peripheriebausteine für LAN und USB nutzen eigene Taktsignale.

Die Taktbereiche werden auch als Clock-Domain bezeichnet. Beim Übergang zwischen 
Clock-Domains kann eine fehlerhafte Datenübernahme auftreten, die durch spezielle 
Schaltungsstrukturen verhindert werden muss.

Fehler bei Taktübergängen
Ein Fehler bei Taktübergängen tritt auf, wenn eine Information an mehreren Stellen 
einen Taktübergang hat. Zur Verdeutlichung des Problems ist in Abb. 6.19 eine Schaltung 
zur Flankenerkennung dargestellt. Das Signal A kommt aus einem anderen Taktbereich 
und die Schaltung soll erkennen, wenn es einen Übergang von 0 nach 1. Dies soll ange-
zeigt werden, indem der Ausgang Q für einen Takt auf 1 gesetzt wird.

Die Funktionsweise der Flankenerkennung ist:

•	 Der Eingang A wird in einem Flip-Flop gespeichert. B ist somit der Wert des Ein-
gangs A aus dem vorherigen Takt.

6.5  Taktkonzept in realen Schaltungen
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•	 Es wird überprüft, ob A im letzten Takt 0 war und jetzt 1 ist. Dies erfolgt durch ein 
UND-Gatter, welches nur 1 ist, wenn A auf 1 und B auf 0 ist (invertierter Eingang des 
Gatters).

•	 Das Ergebnis des UND-Gatters, Signal C wird in einem Flip-Flop gespeichert.
•	 Der Ausgang des Flip-Flops ist die gewünschte Flankenerkennung.

Die Schaltung ist relativ übersichtlich und das Zeitdiagramm zeigt, wie der Ablauf zu 
dem geplanten Verhalten führt. Ein Fehler tritt jedoch auf, wenn das Signal A sich nicht 
zu dem angenommenen Zeitpunkt ändert. Dies ist möglich, da A ja aus einer anderen 
Clock-Domain stammt.

Das fehlerhafte Verhalten ist in Abb. 6.20 dargestellt.

•	 Der Eingang A ändert sich kurz vor der Taktflanke.
•	 Das Flip-Flop für den Wert B übernimmt den neuen Wert noch.
•	 Das UND-Gatter hat eine kurze Verzögerung, sodass der Wert C nicht mehr vom Flip-

Flop übernommen wird.
•	 Nach der Taktflanke hat das Flip-Flop für B schon den neuen Wert übernommen. 

Darum liegt an beiden Eingängen des UND-Gatters der Wert 1 an und es wird keine 
Flanke erkannt.

Auslöser des Fehlers ist die unbekannte Zeitbeziehung zwischen A und den Takt CLK. 
Da das Signal A aus einem anderen Taktbereich kommt, wechselt es manchmal in aus-
reichendem Abstand und manchmal fast gleichzeitig zum Taktsignal CLK. Schwierig für 

Abb. 6.20   Fehlerhafter 
Ablauf bei Flankenerkennung
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Abb. 6.19   Schaltung zur 
Flankenerkennung CLK
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die Fehlersuche ist, dass der Fehler nicht immer auftritt. Es ist gut möglich, dass 95 % 
der Taktflanken erkannt werden und nur für 5 % der Übergänge ein Fehler auftritt.

Korrekte Taktübernahme
Die Vermeidung des Fehlers erfolgt dadurch, dass ein Taktübergang nur an einer Stelle in der 
Schaltung erfolgen darf. Es muss also verhindert werden, dass das Signal A aus einem frem-
den Taktbereich die Eingangswerte für beide (!) Flip-Flops beeinflusst. Dies kann man in 
einer Schaltung erreichen, indem der Eingang A zunächst mit einem Flip-Flop in die Clock-
Domain übernommen wird. In Abb. 6.21 wird A zunächst als A_SYNC in den Taktbereich 
von CLK übernommen. Damit ist die Zeitbeziehung von A zum Takt sichergestellt und es 
kann kein fehlerhafter Ablauf auftreten. Signal B wurde zur besseren Lesbarkeit umbenannt.

VHDL-Beschreibung
In der Praxis wird die Schaltung aus Abb. 6.21 natürlich in VHDL entworfen. Das UND-
Gatter ergibt sich aus der If-Anweisung.

process

begin

wait until rising_edge(clk);

   a_sync      <= a;
   a_sync_old  <= a_sync;
   if (a_sync_old='0') and (a_sync='1') then
        q <= '1';
   else

        q <= '0';
   end if;

end process;

6.5.6	� Metastabilität von Flip-Flops

Ein weiteres Problem bei der Taktübernahme ist die Einhaltung der Setup- und Hold-
Zeiten (siehe Kapitel 5). Damit ein Flip-Flop Daten korrekt übernimmt, muss der Ein-
gang kurz vor (Setup) bis kurz nach (Hold) der Taktflanke unverändert sein. Wenn sich 
Daten unabhängig vom Takt ändern, wird diese Bedingung nicht immer eingehalten.

Abb. 6.21   Flankenerkennung 
mit sicherer Datenübernahme 
beim Taktübergang
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Zunächst kann nicht vorhergesagt werden, ob noch der alte oder schon der neue Sig-
nalwert vom Flip-Flop nach A_SYNC (Abb. 6.21) übernommen wird. Diese Unsicherheit 
wäre kein Problem, da die Empfangsschaltung ohnehin nicht weiß, wann die Eingangs-
daten übergeben werden und einen Zeitversatz berücksichtigen muss. Allerdings kann 
der Fall eintreten, dass ein Flip-Flop in der Mitte zwischen 0 und 1 „hängt“. Dieser Zwi-
schenzustand wird als Metastabilität bezeichnet. Er tritt sehr selten auf, kann jedoch 
einen Fehler in der Verarbeitung verursachen.

Als Schutz gegen Metastabilität wird empfohlen, ein Signal beim Übergang in einen 
anderen Taktbereich mit zwei hintereinandergeschalteten Flip-Flops zu übernehmen 
(Abb. 6.22). Erst danach darf das Signal im Taktbereich verwendet werden. Ein metastabi-
les Signal des ersten Flip-Flops würde vom zweiten Flip-Flop nicht übernommen werden.

Allerdings erhöht sich durch das zweite Flip-Flop die Latenzzeit, also die Reaktions-
zeit auf den Eingang. Eine Synchronisation gegen Metastabilität wird darum nicht in 
allen Anwendungen eingesetzt.

6.5.7	� Taktübergang mehrerer Signale

Schwieriger ist der Fall, wenn mehrere Signale gleichzeitig übernommen werden müs-
sen. Wenn sich Daten unabhängig vom Empfangstakt ändern, ist nicht sicher, ob alle 
zusammengehörigen Informationen mit der gleichen Taktflanke gespeichert werden. Bei 
einem 8-Bit-Wert könnte es beispielsweise passieren, dass Bit 0 noch rechtzeitig von 
einer Taktflanke übernommen wird, Bit 1 jedoch erst von der nächsten Taktflanke. Dies 
ist ein Problem, da die Informationen eines Datenworts so auseinandergezogen werden.

Zur Vermeidung dieses Fehlers gibt es mehrere Möglichkeiten:

•	 Warten auf langsamste Information: Die empfangende Schaltung kann ein oder zwei 
Takte warten, bis alle Stellen einer Information anliegen und erst dann die Daten aus-
werten. Dies ist relativ einfach, aber nur möglich, wenn sich die Daten deutlich lang-
samer als der Takt ändern.

Abb. 6.22   Flankenerkennung 
mit Synchronisation gegen 
Metastabilität
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•	 Vermeidung mehrerer Signalwechsel: Wenn Daten eine feste Reihenfolge haben, bei-
spielsweise bei einem Zähler, kann die Codierung so erfolgen, dass sich immer nur ein 
Wert im Datenwort ändert. Ein möglicher Code hierfür ist der Gray-Code (siehe Kapitel 2)

•	 Dual-Port-Speicher: Eine universelle Lösung ist ein Dual-Port-Speicher. In ihm kann 
mit einem Takt geschrieben und mit einem anderen gelesen werden. Die interne Steu-
erung sorgt für eine sichere Trennung der Taktbereiche. Für die Verwaltung des Spei-
chers (z. B. Füllstand) werden dann häufig Zähler auf Basis des Gray-Codes eingesetzt.

6.6	� Spezielle Ein-/Ausgangsstrukturen

Für Ein- und Ausgänge von digitalen Schaltungen gibt es spezielle Schaltungsstrukturen.

6.6.1	� Schmitt-Trigger-Eingang

Digitale Signale werden ja durch Spannungspegel dargestellt. Dabei gibt es einen 
Bereich für den Low-Pegel und einen Bereich für den High-Pegel. Dazwischen ist ein 
Übergangsbereich, in dem das Signal undefiniert ist (vgl. Kapitel 1).

Der Übergangsbereich wird innerhalb digitaler Schaltungen normalerweise schnell durch-
laufen. Am Eingang einer Schaltung kann es jedoch vorkommen, dass der Übergangsbereich 
langsamer durchlaufen wird und durch Rauschen gestört ist. Eine Digitalschaltung könnte 
dadurch mehrfach einen Pegelwechsel erkennen, was normalerweise nicht gewünscht ist.

Dieses Problem wird durch einen Schmitt-Trigger behoben. Ein Schmitt-Trigger hat 
eine Hysterese und behält einen Ausgangswert so lange, bis sich der Eingangswert deut-
lich ändert. Bei einem Eingangssignal im Übergangsbereich wird der vorhandene Aus-
gangswert beibehalten.

Das Symbol eines Schmitt-Triggers enthält zur Kennzeichnung eine Hysteresekurve 
(Abb. 6.23). In Abb. 6.23 ist das Zeitverhalten eines Schmitt-Triggers dargestellt.

•	 Eingang A hat zunächst Low-Pegel (L) und der Ausgang Y ist somit logisch 0.

Abb. 6.23   Symbol und 
Zeitverhalten eines Schmitt-
Triggers
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•	 Der Eingang A geht dann in den Übergangsbereich, in dem eine normale Digitalschal-
tung ein undefiniertes Verhalten zeigen würde. Der Ausgang Y des Schmitt-Triggers 
bleibt jedoch auf logisch 0.

•	 Wenn A sich im Spannungsbereich des High-Pegels (H) befindet, wechselt auch Y auf 
logisch 1.

•	 A geht wieder in den Übergangsbereich, doch Y bleibt noch logisch 1.
•	 Erst wenn A wieder im Low-Pegel ist, wechselt auch Y auf logisch 0.

6.6.2	� Tri-State-Ausgang

Digitale Ausgänge dürfen im allgemeinen Fall nicht miteinander verbunden werden. 
Wenn eine Leitung 0 und eine andere 1 ausgibt, fließt ein Kurzschlussstrom und der 
Logik-Pegel ist nicht eindeutig. Für den Einsatz in Bus-Systemen gibt es jedoch eine 
besondere Ausgangsstufe, die man parallel schalten kann.

Der Tri-State-Ausgang (auch 3-State oder Three-State) hat drei Möglichkeiten für den 
Ausgabewert. Neben 0 und 1 kann der Ausgang abgeschaltet werden; er ist dann passiv 
und gibt keinen Wert aus. Dies wird als hochohmig mit der Abkürzung ‚Z‘ bezeichnet. In 
Schaltsymbolen wird ein Tri-State-Ausgang durch ein auf der Spitze stehendes Dreieck 
dargestellt (Abb. 6.24).

Der Ausgangstreiber hat dazu einen Steuereingang EN (Enable), der mit 1 die Daten-
ausgabe aktiviert. Bei EN auf 0 ist der Ausgang hochohmig (Abb. 6.25).

Ein typisches Einsatzgebiet von Tri-State-Leitungen sind Bus-Systeme, zum Beispiel 
der PCI-Bus im PC. Hier sind CPU, Grafikkarte und weitere Peripheriekarten eingesteckt. 
Nur einer dieser Busteilnehmer gibt Daten aus, die anderen Anschlüsse sind hochohmig. 
Durch die Steuerung muss sichergestellt werden, dass stets nur ein Ausgang aktiv ist.

Auch die Verbindung zwischen CPU und DRAM nutzt Tri-State-Leitungen. Wenn die 
CPU Daten schreibt, ist der DRAM-Anschluss hochohmig. Wenn die CPU Daten liest, 
ist der CPU-Anschluss hochohmig.

Abb. 6.25   Tri-State-Treiber 
und Funktionstabelle A Y
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Abb. 6.24   Symbol für Tri-
State- und Open-Kollektor-
Ausgang

Tri-State Open-Kollektor
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6.6.3	� Open-Kollektor-Ausgang

Eine andere Methode zur Zusammenschaltung mehrerer Digitalausgänge ist der Open-
Kollektor-Ausgang. Normalerweise hat ein Digitalausgang zwei Transistoren. Entweder 
zieht der eine Transistor den Ausgang zum Low-Pegel oder der andere Transistor zieht 
den Ausgang zum High-Pegel. Beim Open-Kollektor-Ausgang ist nur der Transistor 
zum Low-Pegel vorhanden. Der Kollektor dieser Schaltung bildet den Ausgang und liegt 
offen, daher der Name. Da statt Bipolar-Transistoren heute meist Feldeffekt-Transistoren 
verwendet werden, wird auch der Name Open-Drain-Ausgang verwendet.

Der Open-Kollektor-Ausgang wird an einen externen Lastwiderstand RL angeschlos-
sen, der die Ausgangsleitung nach Versorgungsspannung US, und damit nach High-Pegel 
zieht. Wenn der Ausgang aktiv ist, schaltet er den Transistor leitend und zieht die Aus-
gangsleitung Y nach Low-Pegel. Der Vorteil dieses Schaltungsprinzips besteht darin, 
dass mehrere Open-Kollektor-Ausgänge parallel geschaltet werden können und jeder den 
Ausgang auf Low-Pegel ziehen kann (Abb. 6.26).

Wenn ein oder mehrere Bauelemente die Ausgangsleitung auf Low-Pegel ziehen, ergibt 
sich eine logische 0. Nur wenn alle Bauelemente den Ausgang auf High-Pegel lassen, 
ergibt sich eine logische 1. Dies entspricht einer UND-Funktion. Die Zusammenschaltung 
wird auch als Wired-AND bezeichnet, also als „UND-Gatter durch Verdrahtung“.

In Schaltsymbolen wird ein Open-Kollektor-Ausgang durch eine Raute mit Balken 
dargestellt (Abb. 6.24).

Der Open-Kollektor-Ausgang wird eingesetzt, wenn mehrere Signale miteinander 
logisch verknüpft werden sollen. Es ist, anders als bei Tri-State-Ausgängen, keine zen-
trale Steuerung erforderlich. Allerdings ist auch nicht ohne weiteres ersichtlich, welcher 
Baustein das Signal auf 0 gezogen hat.

Als Beispiel nehmen wir an, dass mehrere Peripheriebausteine an eine CPU angeschlos-
sen sind und einen Interrupt auslösen können. Durch ein Wired-AND können die Bausteine 
ihre Interrupt-Leitungen kombinieren und gemeinsam an die CPU geben, so dass nur ein 
einziger Interrupt-Eingang erforderlich ist. Wenn ein Interrupt auftritt, fragt die CPU ab, 
welcher Peripheriebaustein Auslöser des Interrupts war und bearbeitet die Anfrage.

Abb. 6.26   Verdrahtung 
mehrerer Open-Kollektor-
Ausgänge
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6.7	� Übungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Prüfen Sie sich mit den Aufgaben und 
Fragen am Kapitelende. Die Lösungen und Antworten finden Sie am Ende des Buches.

Bei den Auswahlfragen ist immer genau eine Antwort korrekt.

Aufgabe 6.1
Wie bezeichnet man eine Digitalschaltung, bei der Steuereingänge einen von mehreren 
Dateneingängen auswählen?

a)	 Multiplexer
b)	Demultiplexer
c)	 Addierer
d)	Schieberegister
e)	 Datenregister

Aufgabe 6.2
Die Grundstruktur einer Additionsschaltung mit der Kaskadierung von Volladdierern 
nennt man, …

a)	 Halbaddierer
b)	Carry-Overflow-Addierer
c)	 Carry-Pulse-Addierer
d)	Carry-Overtake-Addierer
e)	 Ripple-Carry-Addierer

Aufgabe 6.3
Welche Aussage trifft für Tri-State-Ausgänge zu?

a)	 Mehrere Ausgänge werden UND-verknüpft
b)	Rauschen am Eingang wird durch eine Hysterese entstört
c)	 Der High-Pegel kann konfiguriert werden
d)	Eine Signalleitung kann als Eingang oder Ausgang geschaltet werden
e)	 Ein High-Pegel wechselt nach kurzer Zeit automatisch zum Low-Pegel

Aufgabe 6.4
Was wird als Spike (auch Glitch oder Hazard) bezeichnet?

a)	 Fehler durch Weltraumstrahlung
b)	 Invertierung eines Taktsignals
c)	 Kurze Zwischenzustände an Schaltungsausgängen
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d)	Höchstfrequenz eines Taktsignals
e)	 Verzögerungszeit bei Flip-Flops

Aufgabe 6.5
Wie bezeichnet man den langsamsten Weg durch eine kombinatorische Schaltung?

a)	 Periodendauer
b)	Hold-Zeit
c)	 Zyklus
d)	Setup-Zeit
e)	 Kritischer Pfad

Aufgabe 6.6
Wie viele Signalleitungen (Ein-/Ausgänge, keine Versorgungsspannung/Masse) hat ein 
1-aus-4 Multiplexer/Datenselektor?

a)	 9
b)	5
c)	 7
d)	4
e)	 6

Aufgabe 6.7
Wie viele Signalleitungen (Ein-/Ausgänge, keine Versorgungsspannung/Masse) hat ein 
1-auf-8 Demultiplexer?

a)	 8
b)	10
c)	 11
d)	12
e)	 9

Aufgabe 6.8
Ein Modulo-2^10 Zähler hat einen Takt von 50 MHz. Wie viele Zählzyklen schafft der 
Zähler pro Sekunde (gerundet)?

a)	 5.000.000
b)	50.000
c)	 50.000.000
d)	2.000
e)	 100.000.000

6.7  Übungsaufgaben
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Aufgabe 6.9
Ein Modulo-2^8 Zähler hat einen Takt von 500 kHz. Wie viele Zählzyklen schafft der 
Zähler pro Sekunde (gerundet)?

a)	 100.000
b)	2.000
c)	 5.000
d)	1.000
e)	 500.000

Aufgabe 6.10
Die mögliche Taktfrequenz für den Addierer in Abb. 6.17 soll erhöht werden. Fügen Sie 
eine Pipeline-Stufe ein. Beachten Sie, dass alle Signale gleich verzögert werden, damit 
Informationen der Datenworte weiterhin zueinander passen.

Berechnen Sie kritischen Pfad und mögliche Taktfrequenz mit den Annahmen aus 
Abschn. 6.5.3.
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Bei der Realisierung eines Systems müssen neben der digitalen Funktion weitere 
Aspekte berücksichtigt werden, die sowohl technischen als auch nicht-technischen Cha-
rakter besitzen. Einige Beispiele für diese Aspekte sind:

•	 Rechenleistung
•	 Verlustleistung
•	 Formfaktor, maximaler Platzbedarf
•	 Benötigte Logikpegel für Ein- und Ausgabe
•	 Entwurfskosten, Produktionskosten
•	 Entwicklungszeit, Time-to-Market
•	 Vorkenntnisse und Erfahrungen

Für die Realisierung eines digitalen Systems gibt es unterschiedliche Alternativen, die 
sich im Hinblick auf die genannten Eigenschaften unterscheiden. Es ist beispielsweise 
denkbar, ausschließlich Standard-Bausteine einzusetzen, deren Funktion vom Hersteller 
fest vorgegeben ist. Ebenso ist es möglich, selbst als Halbleiter-Hersteller zu agieren und 
eigene Chips produzieren zu lassen. Es können auch Programmierbare Logikbausteine 
eingesetzt werden, deren Hardware-Funktion flexibel festgelegt werden kann. Statt eine 
Funktion in Form von Gattern zu realisieren, ist auch ein softwareorientierter Ansatz 
möglich, bei dem beispielsweise Mikrocontroller eingesetzt werden. Diese Bausteine 
sind deutlich kompakter als ein PC und sind teilweise für weniger als 1 EUR erhältlich. 
In diesem Kapitel werden die verschiedenen Varianten näher beleuchtet.

Realisierung digitaler Systeme 7
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7.1	� Standardisierte Logikbausteine

Unter Standardlogik-Bausteinen werden Komponenten verstanden, die käuflich zu 
erwerben sind und eine einfache digitale Hardware-Funktion zur Verfügung stellen, wel-
che durch den Anwender nicht modifiziert werden kann.

Standardlogik-Bausteine sind in Bausteinfamilien bzw. -serien zusammengefasst. Die 
wichtigsten Familien sind die sogenannte 4000er-Serie sowie die 7400er-Serie (bzw. 
kurz 74er-Serie). Die Bezeichnung dieser Familien geht auf die Kennzeichnung der 
zugehörigen Schaltkreise zurück. So beginnt die Bezeichnung eines Bausteins der 74er-
Serie immer mit der Zahl 74. Diese wird meist von mehreren Buchstaben gefolgt, die 
die Implementierungstechnologie und damit auch einige Eigenschaften (zum Beispiel 
Logikpegel) des Bausteins beschreiben. Eine abschließende Zahl kennzeichnet die logi-
sche Funktion. So besitzen ein 74HC374 und ein 74LVC374 zwar die gleiche logische 
Funktion (acht D-Flip-Flops), aber ein unterschiedliches Zeitverhalten und unterschiedli-
che elektrische Eigenschaften.

Als ein Vertreter der 74er-Familie ist in Abb. 7.1 der Baustein 74HC04 abgebildet, 
welcher sechs Inverter enthält. Die Buchstaben SN stehen für den Hersteller und das N 
am Ende der Bausteinkennzeichnung gibt die Gehäuseform an.

In den 1970er Jahren wurden die Standardlogik-Bausteine noch zur Realisierung von 
Computern eingesetzt. Die hiermit verbundenen Nachteile liegen auf der Hand: Große 
Bauform, hohe Kosten, große Verlustleistung. Die damaligen Computer waren so groß 
wie Kleiderschränke, hatten eine Stromaufnahme, die mit mehreren hundert heutiger 
PCs vergleichbar ist und boten für 6-stellige Dollar-Beträge eine Rechenleistung, für die 
heute vermutlich niemand auch nur einen Euro bezahlen würde.

Abb. 7.1   Baustein 74HC04: 
Sechs Inverter in einem 
gemeinsamen Gehäuse
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Obwohl die Standardlogik-Komponenten heute keine Bedeutung für die Realisierung 
ganzer Systeme mehr haben, haben sie dennoch ihre Daseinsberechtigung. Sie werden 
zum Beispiel dann eingesetzt, wenn einfache logische Funktionen mithilfe von ein paar 
wenigen Gattern realisiert werden sollen. Ebenso können einige dieser Bausteine auch 
als Leitungstreiber oder zur Pegelanpassung zwischen Komponenten mit unterschiedli-
chen Versorgungsspannungen eingesetzt werden.

Zur Verdeutlichung, welche logischen Funktionen in der 74er-Serie zur Verfügung 
stehen, sind einige ausgewählte Funktionen in Tab. 7.1 zusammengestellt. Eine umfas-
sende Dokumentation der verfügbaren digitalen Funktionen kann von den Herstellern 
(Texas Instruments, NXP, STM, u.v.a.) bezogen werden.

Die ersten Standard-Logikbausteine der 74er-Serie wurden mithilfe von Bipolar-
Transistoren realisiert. Inzwischen hat auch in diesem Bereich die CMOS-Technolo-
gie (vgl. Kapitel 10) die reine bipolare Implementierung verdrängt. Einige Familien 
werden auch mit einer Kombination von bipolaren und MOS-Transitoren realisiert. 
Die Eingänge sowie die logische Funktion werden dann mithilfe der CMOS-Technik 

Tab. 7.1   Ausgewählte Logikfunktionen der 74er-Serie

Baustein
(letzte Ziffern)

Funktion

00 4 NAND2

02 4 NOR2

04 6 Inverter

07 6 Treiber/Buffer (mit OC-Ausgang)

08 4 AND2

10 3 NAND3

25 2 NOR4

46 BCD nach Siebensegment Decoder

74 2 D-Flip-Flops mit Set- und Reset-Eingängen

138 3:8 Demultiplexer/Decoder

148 8:3 Prioritätsencoder

165 8 Bit Parallel-In/Serial-Out Schieberegister

190 4 Bit Aufwärts-/Abwärtszähler

244 8 Bit Leitungstreiber mit Tristate-Ausgängen

245 8 Bit Bidirektionaler Bustreiber mit Tristate-Ausgängen

373 8 pegelgesteuerte D-Flip-Flops mit Tristate-Ausgängen

374 8 flankengesteuerte D-Flip-Flops mit Tristate-Ausgängen

573 8 pegelgesteuerte D-Flip-Flops mit Tristate-Ausgängen

574 8 flankengesteuerte D-Flip-Flops mit Tristate-Ausgängen

595 8 Bit Serial-in/Parallel-out Schieberegister mit Tristate-Ausgängen

7.1  Standardisierte Logikbausteine
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implementiert, während für die Ausgangstreiber Bipolar-Transistoren eingesetzt wer-
den. So wird gegenüber einer reinen CMOS-Implementierung eine höhere Treiberleis-
tung und eine geringere Abhängigkeit von der Lastkapazität erreicht. Eine Übersicht 
über verschiedene Familien der 74er-Serie folgt in Abschn. 7.1.5.

Nicht alle Grundfunktionen der 74er-Serie werden in allen Familien angeboten. Im 
Einzelfall muss geprüft werden, ob eine gewünschte Funktion zur Verfügung steht.

Als eine Ergänzung zu der weitverbreiteten 74er-Serie bietet beispielsweise die Firma 
NXP konfigurierbare Logikgatter in platzsparenden Gehäusen an. Damit kann ein ein-
zelnes NAND- oder NOR-Gatter mit zwei Eingängen realisiert werden, während ein 
typischer Baustein der 74er-Serie vier dieser Gatter enthält. Die konfigurierbaren Logik-
gatter sind in den Familien LVC, AUP (Advanced Ultra-Low-Power) und AXP (Advan-
ced Extremely Low-Power) verfügbar. Die Logikfunktion der Gatter ist durch die äußere 
Beschaltung wählbar.

7.1.1	� Charakteristische Eigenschaften digitaler Schaltkreise

Bevor ein Baustein für den Entwurf eines digitalen Systems ausgewählt wird, müssen 
dessen Merkmale bekannt sein. In den Datenblättern integrierter Schaltungen wird meist 
eine Reihe von Kenndaten angegeben, die die Eigenschaften des Bausteins beschreiben. 
Neben dem erlaubten Versorgungsspannungsbereich sind unter anderem die Pegel sowie 
die zulässigen Ströme an Ein- und Ausgängen von Bedeutung (vgl. Abb. 7.2).

Für diese Parameter definieren die Datenblätter die zulässigen Wertbereiche. Einige 
der wichtigsten Parameter sind in Tab. 7.2 zusammengefasst. Die Formelzeichen entspre-
chen denen, die in englischsprachigen Datenblättern verwendet werden. Daher wird hier 
der Buchstabe V als Formelzeichen für die elektrische Spannung verwendet.

7.1.2	� Lastfaktoren

Die Treiberstärke einer Ausgangsleitung muss für die angeschlossene Belastung durch 
die nachfolgenden Bausteine ausreichen. Die Belastung, die ein Ausgang durch einen 

Digitale
Schaltung

VI

II IO

VO

GND

VDD

Abb. 7.2   Anschlussbezeichnung digitaler Schaltungen
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Eingang innerhalb der gleichen Schaltkreisfamilie erfährt, wird durch den sogenann-
ten Lastfaktor beschrieben. Hierzu wird der Eingangsstrom eines typischen Gatters der 
Bausteinfamilie (Einheitsgatter) definiert. Es ergeben sich für Low- und High-Pegel die 
beiden charakteristischen Größen II,HN und II,LN, die den Strom angeben, welcher in den 
Eingang des Einheitsgatters hineinfließt.

Auf Basis der Eigenschaften eines Einheitsgatters lassen sich die beiden charakteristi-
schen Größen Fan-in und Fan-out definieren.

Fan-in (Eingangslastfaktor)
Der Fan-in eines Eingangs gibt an, um welchen Faktor die Stromaufnahme größer ist als 
beim Einheitsgatter derselben Schaltkreisfamilie.

Innerhalb einer Schaltkreisfamilie gilt ein Eingang als einfache Last, wenn er den glei-
chen Strom aufnimmt wie das Einheitsgatter (FI = 1).

Fan-out (Ausgangslastfaktor)
Der Fan-out gibt an, mit wie vielen Eingängen eines Einheitsgatters derselben Schalt-
kreisfamilie der entsprechende Ausgang belastet werden darf.

FI ,H =
II ,H

II ,HN

FI ,L =
II ,L

II ,LN

FI = max
[

FI ,H ,FI ,L

]

Tab. 7.2   Wichtige Parameter zur Charakterisierung digitaler Schaltkreise

Formelzeichen Bedeutung Bemerkungen

GND Masse Alternative Bezeichnung: VSS

VDD Versorgungsspannung Alternative Bezeichnung: VCC

VI Eingangsspannung

II Eingangsstrom

VO Ausgangsspannung

IO Ausgangsstrom

VI,Hmin Minimale Eingangsspannung, die als 
High-Pegel erkannt wird

Abhängig von Versorgungsspannung

VI,Lmax Maximale Eingangsspannung, die als 
Low-Pegel erkannt wird

II,H Eingangsstrom bei High-Pegel Bei CMOS-Schaltkreisen meist 
vernachlässigbarII,L Eingangsstrom bei Low-Pegel

VO,Hmin Garantierte minimale Ausgangsspannung 
bei High-Pegel

Abhängig von Versorgungsspannung 
und Ausgangsstrom

VO,Lmax Garantierte maximale Ausgangsspannung 
bei Low-Pegel

IO,Hmax, IO,Lmax Maximal zulässiger Ausgangsstrom bei 
High- bzw. Low-Pegel

7.1  Standardisierte Logikbausteine
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FO,H =
IO,Hmax

II ,HN

FO,L =
IO,Lmax

OI ,LN

FO = min
[

FO,H ,FO,L

]

7.1.3	� Störspannungsabstand

Als Störspannungsabstand bezeichnet man die Spannung, um die ein Digitalausgang 
variieren darf, ohne dass ein angeschlossener Eingang derselben Logikfamilie in einen 
verbotenen Pegelbereich gelangt. Der Störspannungsabstand wird für High- und Low-
Pegel getrennt angegeben (Abb. 7.3).

7.1.4	� Schaltzeiten

Beim Einsatz eines digitalen Bausteins ist unter anderem die Verzögerungszeit, die teil-
weise auch als Schaltzeit bezeichnet wird, von großer Bedeutung. Um die Verzögerungs-
zeiten zu bestimmen, wird üblicherweise eine Rechteckspannung an den Eingang des 
Bausteins angelegt und der zeitliche Verlauf der Ausgangspannung gemessen. Das Aus-
gangssignal ist nicht rechteckförmig und der Wechsel des logischen Signals am Ausgang 
nimmt eine gewisse Zeit in Anspruch. Die Zeit setzt sich zusammen aus einer Verzögerung 
im Inneren des Logikbausteins sowie der Zeit für die Umladung der Last am Ausgang.

Wird die Zeit gemessen, die der Ausgang benötigt, um von 10 % auf 90 % des Aus-
gangspegels anzusteigen bzw. von 90 % auf 10 % abzufallen, erhält man die Anstiegszeit 
(rise time, tR) bzw. Abfallzeit (fall time, tF). Häufig werden diese Zeiten auch zusammen-
fassend als transition time (tT) angegeben.

Möchte man die Verzögerungszeit eines Bausteins angeben, so wird hierfür als Referenz-
punkt genau die Mitte zwischen Minimal- und Maximalpegel gewählt. Die Zeit, die zwi-
schen dem Erreichen des 50 %-Eingangspegels vergeht, bis der Ausgang seinerseits 50 % 

SH = UO,Hmin − UI ,Hmin

SL = UO,Lmax − UI ,Lmax

Ausgang Eingang

VO,Hmin

VO,Lmax

VI,Hmin

VI,Lmax

SH

SL

H-
Pegel

L-
Pegel

H-
Pegel

L-
Pegel

Abb. 7.3   Störspannungsabstand
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des Pegels erreicht hat, ergibt also die Verzögerungszeit (propagation delay, tP). Diese kann 
auch für steigende und fallende Flanken getrennt angegeben werden kann (tPLH, tPHL).

In Abb. 7.4 sind die Schaltzeiten für das Beispiel eines Inverters dargestellt.

7.1.5	� Logikfamilien

In Tab. 7.3 sind einige ausgewählte Familien der 74er-Serie mit Versorgungsspannungs-
bereich und Schaltzeiten eines 74xx00 (vier NAND2-Gatter) zusammengefasst. Die 

Abb. 7.4   Verzögerungszeiten 
einer digitalen Schaltung am 
Beispiel eines Inverters

VO

tF

90%

t

VI

t

tR

tpHL tpLH

50%

10%

50%

Tab. 7.3   Übersicht über einige Familien der 74er-Serie: Versorgungsspannungsbereich und typi-
sche Schaltzeiten für einen 74xx00-Baustein

Abkürzung Bezeichnung VCC (V) tT (ns) tP (ns) Bemerkungen

(Keine) Standard TTL (veraltet) 4,5 ~ 5,5 7 9 VCC = 5,0V; CL = 15pF

LS Low-Power Schottky 
(veraltet)

4,5 ~ 5,5 7 10 VCC = 5,0V; CL = 15pF

HC High-Speed CMOS 2,0 ~ 6,0 6 7 VCC = 5,0V; CL = 15pF

HCT HC, TTL-compatible 4,5 ~ 5,5 7 8 VCC = 5,0V; CL = 15pF

AHC Advanced High-Speed CMOS 2,0 ~ 5,5 3 4,5 VCC = 5,0V; CL = 15pF

LVC Low Voltage CMOS 1,65 ~ 3,6 2 3,0 VCC = 3,3V; CL = 50pF

ALVC Adv. Low Voltage CMOS 1,65 ~ 3,6 2 2,1 VCC = 3,3V; CL = 50pF

ABT Adv. BiCMOS, 
TTL-compatible

4,5 ~ 5,5 2,5 2,3 VCC = 3,3V; CL = 50pF

AUC Adv. Ultra Low Voltage 
CMOS

0,8 ~ 2,7 1 1,5 VCC = 1,8V; CL = 30pF

7.1  Standardisierte Logikbausteine
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Schaltzeiten gelten für die angegebenen Randbedingungen, insbesondere Versorgungs-
spannung und Lastkapazität (CL). Darüber hinaus können die Schaltzeiten auch auf 
Grund von Streuungen bei der Fertigung der Bausteine variieren. In den meisten Daten-
blättern wird daher neben den typischen Zeiten auch ein Maximalwert angegeben.

7.2	� Komponenten für digitale Systeme

Für die Implementierung einer digitalen Schaltung kommen verschiedene Strategien in 
Betracht, die in diesem Abschnitt vorgestellt werden. Reale digitale Systeme verwenden 
häufig eine Kombination dieser Strategien.

7.2.1	� ASICs

Möchte man ein digitales System realisieren, kann man einen speziellen Halbleiterbau-
stein fertigen lassen, der die gewünschte Funktion ausführt. In diesem Fall spricht man 
von sogenannten ASICs (Application Specific Integrated Circuit). Beim Entwurf eines 
ASICs wird auch ein digitales System aus logischen Grundelementen erstellt. Statt 
jedoch die Grundfunktionen auf einer Platine (wie zum Beispiel bei Verwendung von 
Bausteinen der 74er-Serie) vorzunehmen, erfolgt die Platzierung und Verdrahtung der 
Gatter beim ASIC-Entwurf auf einer wenige Quadratmillimeter großen Siliziumfläche. 
Diese Realisierung ist viel kompakter als bei Verwendung standardisierter Logikbau-
steine. Darum ist ein ASIC häufig schneller und besitzt eine geringere Verlustleistung. 
Da die Anzahl und die Position der Gatter während des Entwurfs frei gewählt werden 
können, kann der Baustein für den jeweiligen Anwendungsfall optimiert werden.

Für den Entwurf eines ASICs wird der sogenannte Standardzellentwurf eingesetzt. 
Bei dieser Entwurfsmethodik stehen die logischen Grundelemente als Bibliothek in elek-
tronischer Form zur Verfügung. Aus dieser Bibliothek können Bauelemente ausgewählt, 
auf dem Chip platziert und anschließend verdrahtet werden.

Die Auswahl und das Verbinden der einzelnen Gatter zu einem komplexen System 
erfolgt mithilfe einer Hardwarebeschreibungssprache wie VHDL. Mit einem Synthese-
programm wird die VHDL-Beschreibung in eine sogenannte Gatternetzliste überführt. 
Diese Netzliste gibt an, welche Logikelemente verwendet werden und wie diese verdrah-
tet sind. Die Synthese hat also die Aufgabe die VHDL-Beschreibung zu analysieren und 
eine möglichst optimale Implementierung auf Basis der Grundelemente der Bibliothek 
zu finden. Optimal heißt in diesem Fall, dass die spezifizierten maximalen Verzögerungs-
zeiten eingehalten werden und eine möglichst kleine Chipfläche benötigt wird. Darüber 
hinaus können auch Aspekte wie die Verlustleistung Berücksichtigung finden. Dieser 
Entwurfsschritt wird häufig auch als Frontend-Design bezeichnet.

Nachdem das Frontend-Design abgeschlossen ist, erfolgt das Backend-Design. 
In diesem Schritt werden mit speziellen Layoutprogrammen die Platzierung und die 
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Verdrahtung der Elemente aus der Gatternetzliste vorgenommen. Hierfür ist in der Bib-
liothek für jedes Element der Netzliste eine Implementierung aus einzelnen Transistoren 
hinterlegt.

Auf den ersten Blick klingt der Ansatz des ASIC-Entwurfs vielleicht als ideale 
Lösung zur Realisierung digitaler Systeme. Aufgrund der Optimierung können die 
Schaltkreise mit einer relativ kleinen Siliziumfläche und damit kostengünstig produ-
ziert werden. Allerdings sind die Produktionskosten nicht der einzige Kostenfaktor eines 
ASIC-Entwurfs, denn es fallen in einem deutlichen Umfang einmalige Kosten (engl. 
non-recurring engineering costs bzw. NRE) an. Diese Kosten entstehen zum einen 
durch den hohen Arbeitsaufwand im Frontend- und Backend-Design. Zum anderen ist 
die Erstellung von Belichtungsmasken, die zur Produktion des Schaltkreises in der Halb-
leiterfabrik benötigt werden, ein weiterer wichtiger Kostenfaktor. Aufgrund der kleinen 
Strukturen heutiger Produktionsprozesse werden extrem präzise Masken benötigt, sodass 
die Vorbereitung der Produktion eines ASICs mehrere Millionen Euro kosten kann. 
Berücksichtigt man diese Kosten, wird deutlich, dass vor der Produktion eines ASICs 
eine intensive Überprüfung des Designs erforderlich ist, damit die Wahrscheinlichkeit 
eines Designfehlers verringert wird.

Nehmen wir als Beispiel an, dass die NRE-Kosten eines ASIC-Projekts etwa 
15 Mio EUR betragen. Wenn der Baustein in einer Stückzahl von 100.000 produ-
ziert werden soll, ergibt sich umgerechnet auf einen einzelnen Baustein ein Anteil von 
150 EUR. Diese Kosten sind für viele Anwendungsgebiete unattraktiv, sodass nur bei 
sehr hohen Stückzahlen eine ASIC-Entwicklung wirtschaftlich sinnvoll ist.

7.2.2	� ASSPs

Eine Alternative zur Entwicklung eines eigenen Bausteins können sogenannte Applica-
tion Specific Standard Products (ASSPs) sein. Ein ASSP hat den gleichen Aufbau wie ein 
ASIC, wird allerdings nicht selbst entworfen, sondern ist ein frei am Markt erhältlicher 
Schaltkreis. Er kann für eine sehr spezielle Funktion (zum Beispiel WLAN, Steuerung 
von Motoren) optimiert sein oder aber auch als System-on-Chip (SoC) mehrere Funktio-
nen integrieren und so die kostengünstige Implementierung eines Gesamtsystems ermög-
lichen. Ein Beispiel für ein System-on-Chip sind die ASSPs, die in heutigen Fernsehern 
verbaut werden: Fast die gesamte Funktionalität vom Empfang des Fernsehsignals über 
Satellit, Kabel oder WLAN bis hin zur Anzeige auf einem Display ist in einem hochinte-
grierten Baustein vereinigt.

7.2.3	� FPGAs und CPLDs

Die Produktion eines ASICs ist ein sehr attraktiver Weg zur Realisierung eines digitalen 
Systems – wenn sie nicht mit erheblichen Grundkosten verbunden wäre. Wäre es also 

7.2  Komponenten für digitale Systeme
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vielleicht ein möglicher Ausweg, wenn man Bausteine hätte, deren Hardware zwar fest 
ist, aber deren digitale Funktion erst vom Anwender festgelegt würde? Diese Bausteine 
kann man (aufgrund der festen Hardware) in großen Stückzahlen günstig herstellen und 
dennoch kann der Anwender die digitale Funktion, wie bei einem ASIC, nach seinen 
Bedürfnissen festlegen.

Diese Überlegungen wurden bereits sehr früh angestellt und die Idee, Schaltkreise 
zu realisieren, deren logische Funktion in VHDL „programmiert“ werden kann, wurde 
schon in den 1970er Jahren aufgegriffen und ist bis heute immer weiter verfeinert 
worden.

Die Besonderheit dieser Bausteine ist, dass ihre logische Funktion noch im Feld (zum 
Beispiel nach dem Einsetzen in eine Platine) konfiguriert werden kann. Daher werden sie 
als Field Programmable Gate Arrays (FPGAs) bezeichnet. Neben FPGAs werden auch 
Complex Programmable Logic Devices (CPLDs) beziehungsweise Simple Programma-
ble Logic Devices (SPLDs) angeboten. CPLDs eignen sich besonders für programmier-
bare logische Funktionen mit einer relativ geringen Komplexität, während mit FPGAs 
ganze Rechnersysteme realisiert werden können. Die gesamte Gruppe dieser Bausteine 
wird auch unter dem Begriff Programmierbare Logik zusammengefasst.

Sind also FPGAs die ideale Lösung zur Realisierung einer digitalen Funktion? In 
vielen Fällen kann man diese Frage tatsächlich bejahen: Mit heutigen FPGAs können 
sehr komplexe Systeme zu einem relativ günstigen Preis realisiert werden. Insbeson-
dere bei kleinen bis mittleren Stückzahlen können FPGAs ihre Kostenvorteile gegenüber 
ASICs ausspielen. Daher werden programmierbare Logikbausteine in vielen Bereichen 
eingesetzt.

7.2.4	� Mikrocontroller

Kann man eine digitale Funktion statt mit Gattern auf einer Platine oder in Form eines 
ASICs auf einem Stück Silizium vielleicht auch in Software realisieren? Schließlich ist 
doch das Grundprinzip eines jeden Rechnerprogramms das Einlesen von Eingabewer-
ten, die Verarbeitung der Werte und die anschließende Ausgabe von Ergebnissen. Und 
letztlich macht ein logisches Gatter oder auch ein komplexes System nichts anderes: Es 
betrachtet sozusagen die Eingänge und bestimmt nach einer festgelegten Rechenvor-
schrift die Ausgangssignale. Also müsste es möglich sein, eine beliebige digitale Funk-
tion auch mithilfe eines Rechners zu realisieren.

Sie mögen vielleicht einwenden, dass es wenig sinnvoll ist, wenn man beispielsweise 
die Funktion eines einfachen UND-Gatters durch ein Programm auf einem PC ersetzt. 
Sicher, die Kosten der PC-basierten Lösung wären viel zu hoch und auch die Bauform 
und die benötigte leistungsfähige Spannungsversorgung wären nachteilig. Ein Rechner-
system auf Basis eines PCs ist also aus verschiedensten Gründen für viele Anwendungs-
gebiete nicht gut geeignet.
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Aber es existieren Alternativen zu einem Standard-PC: Bereits in den 1970er Jahren 
erkannten die Halbleiterhersteller den Bedarf an kostengünstigen, stromsparenden Rech-
nersystemen, die sich auf einem Stück Silizium unterbringen ließen. Diese Bausteine 
sind nicht als PC-Ersatz gedacht, sondern werden häufig dort eingesetzt, wo sich Steu-
erungs- und Regelungsaufgaben elegant in Software realisieren lassen und nur moderate 
Rechenleistungen benötigt werden. Aufgrund dieses Anwendungsbereiches bürgerte sich 
schnell die Bezeichnung Mikrocontroller für diese Art von Bausteinen ein.

Mikrocontroller enthalten in einem einzelnen Gehäuse alles, was einen Rechner 
ausmacht: Einen Mikroprozessor zur Abarbeitung eines Programms, Speicher für Pro-
gramme und Daten und Ein-/Ausgabe-Schnittstellen für die Kommunikation mit der 
Außenwelt.

Obwohl das Grundkonzept eines PCs und eines Mikrocontrollers ähnlich ist, unter-
scheiden sie sich doch erheblich: Während PCs für interaktives Arbeiten ausgelegt sind 
und vorrangig eine hohe Rechenleistung bieten sollen, stehen bei Mikrocontrollern vor 
allem der Preis und eine kompakte Bauform im Vordergrund. Mikrocontroller besitzen 
daher eine (im Vergleich zu einem aktuellen PC) geringe Rechenleistung und einen deut-
lich kleineren Speicher. Trotz dieser Einschränkungen werden jedes Jahr mehrere Milli-
arden Mikrocontroller verbaut (Abb. 7.5).

Wenn Sie einen Gang durch Ihren Haushalt machen, werden Sie vermutlich viele 
Geräte entdecken, die einen Mikrocontroller enthalten. Betrachten wir als ein Beispiel 
eine Waschmaschine: Die Aufgaben an die Steuerung sind vielfältig. Es wird eine Benut-
zerschnittstelle in Form von Tastern, Drehschaltern und Displays benötigt. Die Drehrich-
tung und Geschwindigkeit des Trommelmotors müssen geregelt werden. Und nicht zuletzt 
müssen Wasserzu- und -ablauf sowie die Heizung korrekt angesteuert werden. Besitzt 
man einen Rechnerbaustein mit digitalen Ein- und Ausgängen kann die Steuerung auf ele-
gante Weise in Software implementiert werden. Die Rechenleistung heutiger Mikrocont-
roller reicht für die Regelungsalgorithmen einer typischen Waschmaschine völlig aus.

Das Einsatzgebiet der Mikrocontroller ist natürlich nicht auf den Haushalt beschränkt. 
Überall wo Steuerungen und Regelungen benötigt werden, werden Mikrocontroller 

Abb. 7.5   Beispiel eines 
Mikrocontrollers: Von außen 
ist nicht zu erkennen, dass 
es sich um einen kompletten 
Rechner handelt

7.2  Komponenten für digitale Systeme
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eingesetzt. Häufig sind diese Rechnersysteme nicht sofort erkennbar, weshalb sie auch 
als eingebettete Systeme (Embedded System) bezeichnet werden.

7.2.5	� Vergleich der Alternativen

Die möglichen Alternativen für die Implementierung einer digitalen Schaltung unter-
scheiden sich in Flexibilität, Entwicklungszeit, Entwicklungskosten und Stückkosten. 
Tab. 7.4 gibt einen groben Vergleich der Alternativen ASIC, ASSP, Mikrocontroller (µC) 
und FPGA. Die Symbole zur Bewertung bedeuten sehr gut (+ +), gut (+), mittel (○), 
schlecht (–), sehr schlecht (– –).

Die Wahl einer Alternative ist abhängig von den Randbedingungen des Entwicklungs-
projektes, also unter anderem Komplexität der Schaltung, Zeitdruck, Kostendruck, Kon-
kurrenzsituation. Die Entscheidung für ein Implementierungskonzept ist daher in der 
Praxis das Ergebnis einer ausführlichen Analyse und wird zwischen Entwicklungsteam, 
Produktmarketing und Unternehmensleitung abgestimmt.

7.2.6	� Kombination von Komponenten

In komplexeren digitalen Systemen wird die Systemfunktion häufig auf verschiedene 
Bausteine verteilt. Die zentrale Komponente ist dann häufig ein programmierbarer Bau-
stein, der einen Mikroprozessor enthält und mit Programmiersprachen wie C/C++ 
programmiert werden kann. Der Mikroprozessor kann durch programmierbare Logik-
bausteine, wie FPGAs oder CPLDs ergänzt werden. Auf diese Weise können einige 
Systemfunktionen in der programmierbaren Logik implementiert werden, wodurch der 
zentrale Mikroprozessor entlastet wird.

Wenn das System einen Speicherbedarf von einigen Megabyte oder mehr besitzt, wer-
den zusätzlich spezielle Speicherbausteine benötigt, die als eigenständige Komponenten 
auf der Systemplatine untergebracht werden.

Tab. 7.4   Alternativen zur 
Implementierung digitaler 
Schaltungen

ASIC ASSP µC FPGA

Hohe Flexibilität + - + + +
Geringe Entwicklungszeit – – + + + ○
Geringe Entwicklungskosten – – + + + ○
Geringe Stückkosten + + + + + ○
Rechenleistung + + + + ○ +
Verlustleistung + + + + ○ ○
Geringe Stückzahlen möglich – – + + + + + +
Hohe Stückzahlen möglich + + + + + + +
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Ein-/Ausgabe-Komponenten, die nicht bereits durch den Mikroprozessor zur Verfü-
gung gestellt werden, können entweder in der programmierbaren Logik oder als zusätz-
liche Systemkomponenten, zum Beispiel in Form eines ASSPs, integriert werden. 
Insbesondere Spezialfunktionen wie WLAN, USB oder Ethernet können durch derartige 
zusätzliche Bausteine realisiert werden.

Für einfache Anwendungen ist eine Systemrealisierung auf Basis mehrerer Ein-
zelkomponenten häufig nicht sinnvoll, da sie zu kostenintensiv sind oder die Verlust-
leistung zu groß wäre. Für diese Anwendungsfälle bietet die Halbleiterindustrie die in 
Abschn. 7.2.4 vorgestellten Mikrocontroller an, die sich insbesondere für eine kosten-
günstige Realisierung von Systemen mit relativ geringen Anforderungen an die Rechen-
leistung realisieren lassen.

Die unterschiedlichen Komponenten digitaler Systeme werden in verschiedenen 
Kapiteln genauer vorgestellt: Kapitel 9 vertieft Aspekte der programmierbaren Logik-
bausteine. Kapitel 10 beschreibt die Grundlagen der Halbleitertechnik. In Kapitel 11 
werden Speicherbausteine vorgestellt. Die Kapitel 12 vorgestellten Analog-Digital- und 
Digital-Analog-Umsetzer werden immer dann benötigt, wenn die Ein-/Ausgabe in ana-
loger Form erfolgen soll. Kapitel 13 und Kapitel 14 gehen auf die Realisierung soft-
wareprogrammierbarer Bausteine ein, wobei der Schwerpunkt auf Mikrocontrollern 
liegt.

7.3	� VHDL-basierter Systementwurf

Für den Entwurf digitaler Systeme wird Software eingesetzt, die den Entwicklungspro-
zess auf dem Weg von der Idee zum fertigen System unterstützt. Der rechnergestützte 
Schaltungsentwurf wird als Electronic Design Automation (EDA) und die Programme für 
die Schaltungsentwicklung als EDA-Programme oder EDA-Tools bezeichnet. Mithilfe 
dieser Programme kann VHDL-Code eingegeben, simuliert und in Hardware überführt 
werden. Das Ergebnis des Entwurfsprozesses ist eine binäre Datei, die mithilfe eines 
Programmiergerätes auf ein FPGA übertragen bzw. zur Fertigung eines ASICs an die 
Halbleiterfabrik übergeben wird.

Im Folgenden wird der VHDL-basierte Systementwurf näher beschrieben. Aufgrund 
der großen Bedeutung von programmierbaren Logikbausteinen, erfolgt die Beschreibung 
für ein FPGA-Design.

7.3.1	� Designflow

Der Entwurf eines Systems auf Basis eines FPGAs beinhaltet immer zwei Aspekte: Zum 
einen muss die gewünschte Funktion in VHDL beschrieben und mithilfe der Entwurfs-
software in eine Programmierdatei für das FPGA übersetzt werden. Daneben ist es von 
wesentlicher Bedeutung, dass die einzelnen Entwurfsschritte durch Verifikation begleitet 
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werden. Besondere Bedeutung kommt hierbei der frühzeitigen Simulation des eingege-
benen VHDL-Codes zu.

Eine schematische Übersicht über den FPGA-Entwurf zeigt Abb. 7.6. Die einzelnen 
Schritte werden in den folgenden Abschnitten näher erläutert.

Der Ablauf eines VHDL-basierten Entwurfs besitzt teilweise Ähnlichkeiten zur Ent-
wicklung von Software. Die gewünschte Funktion wird in Form einer Textdatei beschrie-
ben. Diese Datei wird dann durch einen Compiler bzw. ein Synthesetool optimiert und 
in ein ausführbares Programm bzw. eine Programmierdatei für das FPGA übersetzt. Es 
ist jedoch zu beachten, dass ein FPGA ein paralleles System ist, auf dem eine Vielzahl 
von Funktionen gleichzeitig ablaufen. Außerdem ist das Zeitverhalten von wesentlicher 
Bedeutung. Ist die Verzögerungszeit der Kombinatorik zwischen zwei Flip-Flops zu 
groß, wird das System fehlerhaft arbeiten. Daher ist der VHDL-basierte Entwurfsablauf, 
trotz der Ähnlichkeiten zur Softwareentwicklung, als Hardwareentwurf anzusehen.

7.3.2	� VHDL-Eingabe

Die Hardwarebeschreibungssprache VHDL wurde in vorangegangenen Kapiteln bereits 
vorgestellt. Sie kennen bereits die Syntax der Sprache und wissen auch, wie Sie bei-
spielsweise endliche Automaten in VHDL beschreiben können. Für die Entwicklung 
eines FPGA-Designs muss berücksichtigt werden, dass der VHDL-Code in der Regel ein 
synchrones System beschreibt, das aus Flip-Flops und kombinatorischer Logik besteht.

Abb. 7.6   FPGA-Designflow 
mit VHDL
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In Kapitel 6 wurde bereits erläutert, dass die meisten digitalen Schaltungen eine 
Kombination von Registern und Kombinatorik zwischen den Registerstufen darstellen 
(Register-Transfer-Level-Design oder kurz RTL-Design). Die Grundstruktur der entspre-
chenden Hardware ist in Abb. 7.7 dargestellt.

Mit der Eingabe des VHDL-Codes werden die Registerstufen und die logische Funk-
tion zwischen zwei Registerstufen festgelegt. Dabei muss auch das Zeitverhalten der 
späteren Hardware berücksichtigt werden. Für einfache Designs kann dies häufig als 
unkritisch angesehen werden. Für Entwürfe mit hohen Anforderungen an die Rechen-
leistung (und damit häufig einer hohen Taktfrequenz) nimmt die Bedeutung des Zeit-
verhaltens zu. Den größten Einfluss auf das Zeitverhalten hat der VHDL-Code. Alle 
nachfolgenden Schritte im Designflow können eventuelle Probleme im Zeitverhalten der 
Schaltung nur in einem begrenzten Umfang korrigieren.

7.3.3	� Simulation

Die Simulation des VHDL-Codes ist einer der wichtigsten Schritte, um die Korrektheit 
der beschriebenen digitalen Funktion frühzeitig sicherzustellen. Prinzipiell bieten VHDL 
Simulatoren die Möglichkeit, durch Kommandos Signale auf definierte Werte zu set-
zen. Die verwendeten Kommandos sind nicht standardisiert und variieren mit den ein-
gesetzten Simulatoren. Beispielsweise wird bei Verwendung des Simulators XSIM der 
Firma Xilinx ein Signal mit dem Namen my_sig mit dem Kommando add_force my_sig 
1 auf den Wert 1 gesetzt werden. Um die Reaktion der VHDL-Beschreibung sichtbar 
zu machen, muss anschließend mithilfe des Run-Kommandos (zum Beispiel run 10 ns) 
etwas Simulationszeit vergehen. Der zeitliche Verlauf sowohl von Eingangs- und Aus-
gangssignalen als auch von internen Signalen einer VHDL-Beschreibung wird wäh-
rend der Simulation mithilfe sogenannter Waveform-Viewer grafisch dargestellt (vgl. 
Kapitel 3).

Das Anlegen unterschiedlicher Eingangswerte durch Simulator-Kommandos und die 
Überprüfung der Schaltungsreaktion anhand der grafischen Ausgabe wird in der Pra-
xis allerdings kaum verwendet. Wird der VHDL-Code des Systems erweitert, muss die 
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Abb. 7.7   Struktur eines RTL-Designs
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Simulation wiederholt werden. Die Eingabe-Kommandos müssen wiederholt werden, 
was zeitaufwendig und fehlerträchtig ist. In der Praxis wird daher meist eine Methode 
gewählt, bei der der zu prüfende VHDL-Entwurf in eine Testbench eingebunden wird. 
Auch die Testbench wird in VHDL programmiert.

Für kleinere Entwürfe benötigt man häufig nur einfache Testbenches, die Eingangs-
daten (Stimuli) für den zu testenden VHDL-Code erzeugen. Die Korrektheit des Ent-
wurfs wird durch die manuelle Inspektion der Signalverläufe überprüft. Diese interaktive 
Simulation ist jedoch mit dem Nachteil verbunden, dass die Überprüfung manuell erfolgt 
und daher auch Fehler übersehen werden können.

Die bessere Variante ist eine selbstüberprüfende (self-checking) Testbench, bei der die 
Ausgaben des getesteten Codes mit erwarteten Ergebnissen verglichen werden. Hierzu 
müssen die erwarteten Werte zum Beispiel als Textdatei zur Verfügung stehen.

Die Stimuli werden von der Testbench aus einer Datei eingelesen und an das zu über-
prüfende Design angelegt. Die erwarteten Ausgabewerte des Systems werden durch ein 
sogenanntes Known-Good-Device, zum Beispiel eine Beschreibung als C-Programm, 
erzeugt. Die erwartete Ausgabe wird ebenfalls von der Testbench eingelesen und mit 
den Ausgabewerten des Designs verglichen. Eventuell auftretende Differenzen werden 
während der Simulation in einer Protokolldatei aufgezeichnet und können anschließend 
zur Fehlersuche verwendet werden. Das Prinzip der self-checking Testbench verdeutlicht 
Abb. 7.8.

Eine self-checking Testbench bietet unter anderem den Vorteil, dass Simulationen 
automatisiert gestartet werden können und so selbst aufwendige Tests ohne interaktiven 
Eingriff möglich sind. Dies ist insbesondere für komplexe Systeme vorteilhaft, deren 
Simulationszeit mehrere Stunden beträgt.

Testbench
(VHDL)

Stimuli-Datei Referenz-Datei

=?

Vergleich

Protokoll-Datei

C-Programm

Design
(VHDL)

Abb. 7.8   Struktur einer selbstcheckenden Testbench
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7.3.4	� Synthese

Die Synthese umfasst das Einlesen und Analysieren des VHDL-Codes mit einer 
anschließenden Umsetzung der beschriebenen Funktion auf die verfügbaren digitalen 
Grundelemente. Das Ergebnis der Synthese ist eine sogenannte Netzliste, die Informatio-
nen über die benötigten Grundelemente und die Verbindungen zwischen den Elementen 
enthält.

Die genaue Platzierung der Elemente sowie deren exakte Verdrahtung bleiben bei 
diesem Schritt unberücksichtigt. Um die Verzögerungen durch die spätere Verdrahtung 
bereits bei der Synthese berücksichtigen zu können, werden statistische Modelle (Wire-
load Models) eingesetzt.

Die Synthese analysiert die VHDL-Beschreibung auch im Hinblick auf konstante Sig-
nale. Wird der Wert eines Signals als konstant erkannt, kann dieses zur Optimierung aus-
genutzt werden, da die Logik, die an diesem Signal angeschlossen ist, vereinfacht oder 
im besten Fall komplett entfernt werden kann. Dieser Optimierungsschritt wird als Cons-
tant Propagation bezeichnet.

Ein Beispiel für die Optimierung von Konstanten zeigt das nachfolgende Codefrag-
ment. Für den Vergleich von count und buf_size realisiert die Synthese eine optimierte 
Hardware, die den Vergleich eines 4-Bit-Wertes mit der Konstanten 10 durchführt. Wäre 
buf_size dagegen ein Signal, das verschiedene Werte annehmen kann, müsste ein Verglei-
cher (also letztlich eine Subtraktion) von der Synthese implementiert werden.

architecture behave of my_module is

   constant buf_size : integer := 10;
   signal   count    : signed (3 downto 0);

begin

   process begin

        wait until rising_edge (clk);

        …

        if count > buf_size then -- Hier nutzt die Synthese aus, dass

              …                  -- buf_size eine Konstante ist

        end if;

   end process;

end;

Code ohne eine digitale Funktion wird von der Synthese erkannt und ignoriert. Im 
nachfolgend dargestellten Codeausschnitt wird dem Signal q auf eine etwas umständ-
liche Weise der Wert Null zugewiesen. Dieses würde das Syntheseprogramm erkennen 
und das Design entsprechend optimieren. Nachdem von der Synthese q als konstant 
erkannt wurde, kann diese Information auch für weitere Optimierungsschritte auf Basis 
der Constant Propagation verwendet werden.

7.3  VHDL-basierter Systementwurf
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process (a,b,c)

   variable v1 : std_logic;

   variable v2 : std_logic;

begin

   v1 := a and b;
   v2 := (not a) and (not c);
   q <= v1 and v2 and c;
end process;

7.3.5	� Platzierung und Verdrahtung

Nach dem Syntheseschritt erfolgt die Platzierung (Placement bzw. Place) und Verdrah-
tung (Routing bzw. Route) der identifizierten Grundelemente. Das Programm wählt für 
jedes Grundelement der Netzliste ein physikalisch vorhandenes Element des FPGA-
Chips aus. Nach diesem Platzierungs-Schritt sind die Positionen aller Netzlistenelemente 
festgelegt. Nun werden die Ein- und Ausgänge der Elemente verbunden. Dazu muss das 
Routing-Programm die durch das Syntheseergebnis vorgeschriebenen Verbindungen 
herstellen.

Nachdem die Verdrahtung abgeschlossen ist, kann eine genauere Abschätzung des 
Zeitverhaltens erfolgen, da nun die exakten Verbindungsleitungen bekannt sind.

7.3.6	� Timinganalyse

Bereits bei der Synthese sowie während Platzierung und Verdrahtung wird das Zeitver-
halten der Schaltung überwacht und gegebenenfalls optimiert. Nach Abschluss der Ver-
drahtung steht das genaue Zeitverhalten der Schaltung fest und wird abschließend einer 
Timinganalyse unterzogen.

Das wichtigste Ergebnis der Timinganalyse ist die Information ob die Timing-
Anforderungen eingehalten werden und wie groß der Worst Negative Slack (WNS) ist. 
Dieser Wert gibt die „Luft“ im kritischen Pfad des Designs an. Wenn beispielsweise 
ein WNS von 1 ns ausgegeben wird, bedeutet dies, dass alle Signale auch 1 ns später an 
den Eingängen der Flip-Flops erscheinen könnten, ohne dass es zu einer Verletzung der 
Setup-Zeit käme. Ist der WNS-Wert dagegen negativ, liegt ein Timingproblem vor. Die 
Kombinatorik der Schaltung ist zu langsam. Wenn man die Taktfrequenz nicht reduzie-
ren kann, sind häufig Änderungen im VHDL-Code erforderlich (zum Beispiel der Ein-
satz von Pipelining, vgl. Kapitel 6).

Als Zusammenfassung wird auch der Total Negative Slack (TNS) angeben. Hierbei 
handelt es sich um die Summe aller Pfade, deren Zeitverhalten die Setup-Zeit der Flip-
Flops verletzt. Pfade, deren Zeitverhalten nicht verletzt ist, werden bei der TNS-Analyse 
nicht berücksichtigt. Somit ist der TNS-Wert entweder negativ oder Null (falls keine 
Setup-Time-Verletzungen vorliegen).

http://dx.doi.org/10.1007/978-3-662-49731-9_6
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In Analogie zur Analyse der Setup-Zeit wird auch eine Hold-Time-Analyse durchge-
führt und der WHS- bzw. THS-Wert (Worst Hold Slack bzw. Total Hold Slack) ausgeben.

Diese Form der Analyse wird als statische Timinganalyse bezeichnet. Der Begriff 
„statisch“ meint, dass das Zeitverhalten ohne die genaue Kenntnis des dynamischen Ver-
haltens der Signale, also ohne das Anlegen von Eingangsstimuli, durchgeführt wird.

Normalerweise ist diese Form der Analyse ausreichend. Allerdings ist zu beachten, 
dass die statische Timinganalyse pessimistisch ist. Sie überprüft alle Pfade eines Designs 
auf mögliche Verletzungen des Zeitverhaltens. Manchmal werden jedoch einige Pfade 
des Designs im praktischen Betrieb gar nicht verwendet. In diesem Fall kann eine dyna-
mische Timinganalyse in Betracht gezogen werden. Darüber hinaus kann es in besonde-
ren Fällen, zum Beispiel wenn das Design kritische Taktübergänge enthält, sinnvoll sein, 
eine dynamische Timinganalyse durchzuführen.

Für eine dynamische Timinganalyse wird das Design inklusive einer Modellierung 
der Verzögerungen der Grundelemente in einer Simulation überprüft. Hierzu müssen 
geeignete Eingangsstimuli definiert werden, die alle relevanten Pfade testen. Außerdem 
ist zu bedenken, dass die Komplexität der Simulation aufgrund der Modellierung des 
Zeitverhaltens deutlich höher ist als für die Simulation des VHDL-Quellcodes und daher 
eine größere Rechenzeit für die Simulation benötigt wird.

7.3.7	� Inbetriebnahme

Nachdem ein Entwurf durch Simulation verifiziert wurde, kann er, wenn er als ASIC rea-
lisiert werden soll, in einer Halbleiterfabrik produziert werden. Soll das System auf Basis 
eines CPLDs oder eines FPGAs realisiert werden, erfolgt nach der Simulation die Pro-
grammierung des Bausteins mithilfe eines entsprechenden Programmiergerätes. Ein Bei-
spiel einer Experimentierplatine mit angeschlossenem Programmiergerät ist in Abb. 7.9 
dargestellt.

Trotz sorgfältiger Simulation kann es in der Praxis Fälle geben, die eine Fehlersuche 
im laufenden Betrieb erfordern. Dies kommt vor, wenn in der Anwendung Fälle auftre-
ten, die in der Simulation nicht beachtet wurden oder aus Zeitgründen nicht simuliert 
werden konnten. Auch bei der Ansteuerung von externen Bauelementen, beispielsweise 
einem Speicher, kann es passieren, dass sich der reale Baustein etwas anders verhält, als 
dies in der Simulation vorhergesehen wurde.

Zur Fehlersuche, insbesondere bei komplexen FPGAs, ist es häufig nicht ausreichend, 
wenn nur die äußeren Anschlüsse des Systems zugänglich sind und der zeitliche Verlauf 
von internen Signalen nicht sichtbar ist. Um die Fehlersuche im Betrieb zu erleichtern, 
können dem Entwurf spezielle Module hinzugefügt werden, die in der Lage sind, den 
zeitlichen Verlauf interner Signale aufzuzeichnen und über eine Debug-Schnittstelle aus-
zugeben. Auf diese Weise können die Zustände der internen Signale ähnlich wie in einer 
VHDL-Simulation visualisiert werden.

7.3  VHDL-basierter Systementwurf
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Der Vorteil dieses Vorgehens ist es, dass auch FPGA-interne Signale im laufenden 
Betrieb analysiert werden können. Auf der anderen Seite benötigt dieses Vorgehen aber 
mehr Ressourcen des FPGAs. So wird zum Beispiel für die Speicherung des zeitlichen 
Verlaufs der beobachteten Signale interner Speicher benötigt. Um den Hardwareaufwand 
für die Verifikation im Betrieb klein zu halten, wird daher meist nur ein relativ kurzes 
Zeitfenster aufgezeichnet. Darüber hinaus werden nur wenige besonders wichtige Sig-
nale für die Beobachtung im laufenden Betrieb ausgewählt. Da die Beobachtbarkeit der 
Signale gegenüber einer Simulation deutlich eingeschränkt ist, stellt dieses Vorgehen kei-
nen Ersatz, sondern eine Ergänzung zur Simulation dar.

7.3.8	� Der digitale Entwurf als iterativer Prozess

Die in diesem Kapitel beschriebenen Entwurfsschritte müssen bei komplexeren Designs 
unter Umständen mehrfach durchlaufen werden. Zeigt der erste Syntheselauf, dass das 
angestrebte Zeitverhalten nicht eingehalten werden kann oder das geplante Ressourcen-
budget überschritten wird, kann bei kleinen Zielabweichungen versucht werden, durch 
geeignete Einstellungen der Entwurfsprogramme ein besseres Ergebnis zu erzielen. Bei 
größeren Abweichungen bleibt meist nur der Schritt zurück zum VHDL-Code, um zum 
Beispiel den zeitlich kritischen Pfad im Design zu optimieren. Bei sehr anspruchsvol-
len Designs können diese Änderungen nun wiederum Probleme an anderen Stellen des 
Codes nach sich ziehen, sodass der Designflow vom Schreiben des VHDL-Codes bis zur 
Platzierung und Verdrahtung mehrfach durchlaufen werden muss.

Abb. 7.9   FPGA-Experimentierplatine mit Programmiergerät
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Für erste Schritte im FPGA-Design wird meist kein iteratives Vorgehen benötigt: Sind 
die Anforderungen an die Taktfrequenz moderat gewählt und die Anforderungen an den 
maximalen Ressourcenbedarf einer Schaltung von untergeordneter Bedeutung, wird man 
häufig bereits mit dem ersten Syntheseversuch ein zufriedenstellendes Ergebnis erzielen.

7.4	� Übungsaufgaben

Prüfen Sie sich selbst mit den Fragen am Kapitelende. Die Lösungen und Antworten fin-
den Sie am Ende des Buches.

Sofern nicht anders vermerkt, ist nur eine Antwort richtig.

Aufgabe 7.1
Welche Aussage ist im Hinblick auf einen Vergleich der Bausteine 74HC00 und 
74AHC00 korrekt?

a)	 Beide Bausteine besitzen den gleichen Versorgungsspannungsbereich.
b)	Die logischen Funktionen der Bausteine sind identisch.
c)	 Die logische Funktion der Bausteine ist vom Hersteller abhängig.
d)	Der minimale High-Pegel an den Eingängen der Bausteine ist identisch.

Aufgabe 7.2
Was beschreibt der Begriff Fan-out?

a)	 Die Anzahl der Ausgänge eines Schaltkreises.
b)	Die Anzahl der Leitungen die an einen Ausgang angeschlossen werden dürfen.
c)	 Ein Maß für die Last, die die Ausgänge des Bausteins treiben können.
d)	Ein Maß für die Last, die ein Eingang des Bausteins darstellt.

Aufgabe 7.3
Was gilt für die unterschiedlichen Bausteine einer Familie (zum Beispiel „HC“) der 
74er-Serie?

a)	 Alle Bausteine besitzen die gleiche Verzögerungszeit.
b)	Eingänge der Bausteine müssen immer mit Ausgängen der gleichen Familie verbun-

den werden.
c)	 Für alle Bausteine wird vom Hersteller eine maximale Schaltzeit unabhängig von der 

Ausgangsbelastung garantiert.
d)	Alle Bausteine besitzen den gleichen Versorgungsspannungsbereich.

Aufgabe 7.4
Welche Aussage trifft auf ASICs zu? (Mehrere Antworten sind richtig)

7.4  Übungsaufgaben
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a)	 Für den Entwurf eines ASICs werden meist Bibliotheken mit Standardzellen 
verwendet.

b)	Ein ASIC-Entwurf ist sowohl für kleine als auch für große Stückzahlen sinnvoll.
c)	 Ein ASIC-Entwurf ist mit relativ hohen Fixkosten verbunden.
d)	Die digitale Funktion eines ASICs kann nicht mithilfe von VHDL beschrieben werden.

Aufgabe 7.5
Welche Aussagen treffen für den Vergleich eines Mikrocontrollers mit einem PC zu? 
(Mehrere Antworten sind richtig)

a)	 Mikrocontroller besitzen im Gegensatz zu einem PC keine Ein-/
Ausgabe-Schnittstellen.

b)	Mikrocontroller sind kostengünstiger als PCs.
c)	 Typische Mikrocontroller besitzen eine geringere Rechenleistung als PCs.
d)	Typische Mikrocontroller besitzen eine geringere Speicherkapazität als PCs.

Aufgabe 7.6
Was meint der Begriff „Programmierbare Logik“?

a)	 Die Bausteine können Programme ausführen, die in Sprachen wie C oder Java 
geschrieben sind.

b)	ASICs, die einen softwareprogrammierbaren Mikroprozessor beinhalten.
c)	 Die logische Funktion der Hardware des Bausteins kann durch den Anwender pro-

grammiert werden.
d)	Logische Funktionen, die mithilfe eines Programms auf einem PC simuliert werden.

Aufgabe 7.7
Welches ist typische Reihenfolge der Entwurfsschritte?

a)	 Synthese, Platzierung, Verdrahtung
b)	Platzierung, Verdrahtung, Synthese
c)	 Platzierung, Synthese, Verdrahtung
d)	Synthese, Verdrahtung, Platzierung

Aufgabe 7.8
Welche Kombinationen von Worst Negative Slack (WNS) und Total Negative Slack 
(TNS) können in der Praxis auftreten? (Mehrere Antworten sind richtig)

a)	 WNS: -3 ns; TNS: -4 ns
b)	WNS: -3 ns; TNS: 0 ns
c)	 WNS: +3 ns; TNS: +5 ns
d)	WNS: 0 ns; TNS: 0 ns
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In Kapitel 3 wurden die wichtigsten Sprachelemente von VHDL vorgestellt und Sie 
sind damit bereits in der Lage, digitale Schaltungen in VHDL zu entwerfen. In diesem 
Kapitel werden vertiefende Aspekte der Hardwarebeschreibung mit VHDL dargestellt. 
Einige dieser Sprachelemente eröffnen neue Möglichkeiten zur Beschreibung von Hard-
warekomponenten. Andere können helfen, den Code besser zu strukturieren und lesbarer 
zu gestalten. Darüber hinaus werden in diesem Kapitel VHDL-Konstrukte vorgestellt, 
die zur Überprüfung der von Ihnen erstellten Hardwarebeschreibungen eingesetzt wer-
den können. Nach dem Studium dieses Kapitels haben Sie die wichtigsten Aspekte der 
Sprache VHDL kennengelernt und können auch komplexere Schaltungen in VHDL 
realisieren.

8.1	� Weitere Datentypen

Einige wichtige Datentypen sind bereits aus Kapitel 3 bekannt. In diesem Abschnitt 
werden weitere nützliche Datentypen behandelt.

8.1.1	� Natural und Real

Der Datentyp natural dient zur Darstellung natürlicher Zahlen im Bereich von 0  
bis +231−1, also dem Bereich der positiven Zahlen, der sich auch mit dem Datentyp 
integer darstellen lässt. Ergänzend zu den ganzzahligen Datentypen, bietet VHDL auch 
die Verwendung von Gleitkommazahlen an, die mit dem Datentyp real definiert werden 
können.

Im Gegensatz zum Datentyp real sind die Ganzzahl-Datentypen synthetisier-
bar. VHDL-Beschreibungen auf Basis dieser Datentypen können also in eine digitale 
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Hardware überführt werden, während die Verwendung von Gleitkommadatentypen auf 
Testbenches beschränkt ist.

8.1.2	� Boolean

Wie viele Programmiersprachen unterstützt VHDL den Datentyp boolean. Diesem 
Datentyp können nur die Werte true oder false zugewiesen werden. Ein Objekt dieses 
Datentyps entspricht in Hardware einem einzelnen Bit. Die Bezeichnung der Werte 
erfolgt jedoch nicht mit 0 oder 1. Dies wäre dagegen syntaktisch inkorrekt (da es sich bei 
0 und 1 um Werte vom Typ integer handelt) und würde zu Fehlermeldungen führen.

Ein häufiger Anwendungsfall für diesen Datentyp ist die Abfrage von Bedingungen. 
Werden beispielsweise zwei Werte verglichen, so ist das Ergebnis dieses Vergleichs vom 
Datentyp boolean. Selbstverständlich können auch Objekte, zum Beispiel Signale, mit 
diesem Datentyp angelegt werden, die dann in einer Abfrage ausgewertet werden.

8.1.3	� Time

VHDL unterstützt die Verwendung von physikalischen Datentypen. Die Werte dieses 
Datentyps setzen sich aus einem Zahlenwert und einer Einheit zusammen. Der wich-
tigste physikalische Datentyp ist time. Dieser Datentyp erlaubt die Angabe von Zeiten 
mit den Einheiten Femtosekunde (fs), Picosekunde (ps), Nanosekunde (ns), Mikrose-
kunde (ms), Millisekunde (msec), Sekunde (sec), Minute (min) oder Stunde (hr).

Der Datentyp time ist nicht synthesefähig, da Zeitangaben im Zuge der Synthese 
ignoriert werden. Für Testbenches ist der Datentyp jedoch sehr hilfreich um das zeitli-
che Verhalten von Signalen nachzubilden. Ein Beispiel für die Verwendung des Daten-
typs time ist im nachfolgenden Codeausschnitt dargestellt. Das Signal clk wird durch 
eine Not-Anweisung invertiert. Durch Angabe einer zeitlichen Verzögerung mithilfe des 
Schlüsselworts after ergibt sich ein Signal, welches alle 5 Nanosekunden invertiert wird. 
Auf diese Weise wird also ein digitales Taktsignal modelliert, welches eine Perioden-
dauer von 10 ns besitzt. Die Definition des Signals clk beinhaltet die initiale Zuweisung 
des Wertes 0. Auf diese Weise wird sichergestellt, dass clk zu Beginn der Simulation 
einen definierten Wert erhält.

signal clk : std_logic := '0';
…

clk <= not clk after 5 ns;

Auch die Definition eigener physikalischer Datentypen ist in VHDL möglich. Aller-
dings wird hiervon selten Gebrauch gemacht, sodass dieser Aspekt hier nicht weiter ver-
tieft wird.
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8.1.4	� Std_ulogic, Std_ulogic_vector

Neben den Datentyp std_logic und std_logic_vector wird im IEEE-Paket auch der 
Datentyp std_ulogic und std_ulogic_vector definiert. Es handelt sich dabei um eine 
Alternative zu den Datentypen std_logic und std_logic_vector. Diese bereits vorgestell-
ten Datentypen haben eine sogenannte Auflösungsfunktion (engl. resolution function). 
Die Auflösungsfunktion ist immer dann relevant, wenn einem Signal gleichzeitig zwei 
Werte zugewiesen werden. Mithilfe der beim Datentyp std_logic definierten Auflö-
sungsfunktion wird für diese Fälle der sich ergebende Wert des Signals bestimmt. Wird 
einem Signal beispielsweise gleichzeitig der Wert 0 und der Wert 1 zugewiesen, wäre das 
Ergebnis bei Verwendung von std_logic der Wert X (unknown).

In den Datentypen std_ulogic und std_ulogic_vector steht das „u“ für unresolved und 
drückt aus, dass für diesen Datentyp keine Auflösungsfunktion existiert. Werden einem 
Signal gleichzeitig zwei Werte zugewiesen, würden die Entwurfswerkzeuge bereits 
beim Übersetzungsvorgang der VHDL-Beschreibung einen Fehler ausgeben. Es ist eine 
individuelle Entscheidung, ob diese Eigenschaft als ein Vorteil angesehen wird. In der 
Praxis werden die meisten VHDL-Beschreibungen auf Basis des Datentyps std_logic 
geschrieben. Daher wird in diesem Buch auf die Verwendung des Datentyps std_ulogic 
verzichtet.

8.1.5	� Benutzerdefinierte Datentypen

Mithilfe des Schlüsselwortes Type können in VHDL auch benutzerdefinierte Datentypen, 
zum Beispiel für die Codierung der Zustände eines endlichen Automaten (vgl. Kapitel 5) 
angelegt werden.

Die Definition des benutzerdefinierten Typs Farbe kann zum Beispiel wie folgt for-
muliert werden:

type farbe is (rot,gruen,blau,lila);

8.1.6	� Zeichen und Zeichenketten

Für einzelne Zeichen bietet der VHDL-Standard den Datentyp character an. Dieser 
Datentyp ist ein Aufzählungstyp, der insgesamt 256 Werte umfasst, wobei die ersten 128 
Werte dem 7-Bit-ASCII-Code (vgl. Kapitel 2) entsprechen und die letzten 128 Werte 
Umlaute und Sonderzeichen enthalten. Da die Definition des Datentyps im Paket std 
erfolgt, kann der Datentyp ohne Use-Anweisung in allen VHDL-Beschreibungen einge-
setzt werden. Die Typdefinition zeigt der folgende Codeausschnitt:

8.1  Weitere Datentypen
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type character is (

NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,

BS, HT, LF, VT, FF, CR, SO, SI,

DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,

CAN, EM, SUB, ESC, FSP, GSP, RSP, USP,

' ', '!', '"', '#', '$', '%', '&', ''',

'(', ')', '*', '+', ',', '-', '.', '/',
'0', '1', '2', '3', '4', '5', '6', '7',

'8', '9', ':', ';', '<', '=', '>', '?',
'@', 'A', 'B', 'C', 'D', 'E', 'F', 'G',

'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O',

'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',

'X', 'Y', 'Z', '[', '\', ']', '^', '_',

'`', 'a', 'b', 'c', 'd', 'e', 'f', 'g',

'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o',

'p', 'q', 'r', 's', 't', 'u', 'v', 'w',

'x', 'y', 'z', '{', '|', '}', '~', DEL,

-- weitere 128 Werte

);

Ähnlich wie für den Datentyp std_logic existiert ein zugehöriger vektorieller Daten-
typ mit dem Namen string, in dem Zeichenketten abgelegt werden können. Der folgende 
Code zeigt einige Beispiele zur Verwendung der Datentypen.

signal i : integer;

signal my_char : character;

signal my_string : string(1 to 10) := "Hallo Welt";
my_string(7 to 10) <= "VHDL";   -- my_string enthàlt danach "Hallo VHDL"
my_string(6) <= '_';            -- my_string enthàlt danach "Hallo_Welt"
my_char <= my_string(1);        -- my_char enthàlt danach 'H'

8.1.7	� Subtypes

Man kann von deklarierten Typen weitere Typen (subtype) ableiten. Ein Subtype ist ein 
Datentyp mit eingeschränktem Wertebereich im Vergleich zum Basistyp. Die Syntax zur 
Definition eines Subtypes lautet:

subtype <subtype_name> is <subtype_indication>;

Die subtype_indication enthält den Namen des Basisdatentyps und optional eine Ein-
schränkung, welcher Bereich des Basisdatentyps dem neu definierten Subtype zur Verfü-
gung stehen soll.
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-- Subtype Beispiele:

subtype dezimal_ziffer is integer range 0 to 9; -- Bereichseinschrànkung

subtype byte is std_logic_vector (7 downto 0); -- Indexeinschrànkung

subtype ganze_zahl is integer; -- ganze_zahl = anderer Name fùr Integer

-- Beispiele fùr vordefinierte Subtypes:

subtype natural is integer range 0 to integer'high;

subtype positive is integer range 1 to integer'high;

subtype std_logic is resolved std_ulogic;

subtype X01 is resolved std_ulogic range 'X' to '1'; -- ('X','0','1')

Die Angabe resolved bedeutet, dass für den hier definierten Datentyp eine Auflö-
sungsfunktion definiert ist.

Bei der Definition der Subtypes natural und positive wird das Attribut high verwen-
det. Mithilfe dieses Attributs wird der größte Zahlenwert des Typs integer ausgewählt. 
Der Ausdruck integerʼhigh ist also gleichbedeutend mit +2147483647.

8.1.8	� Arrays

Wie alle Programmiersprachen unterstützt auch VHDL Arrays, also Felder von beliebi-
gen Datentypen. Die Definition eines Arrays ist in VHDL etwas umständlicher gelöst als 
in den meisten Programmiersprachen, da man zunächst das gewünschte Array als neuen 
Datentyp definieren muss. Erst anschließend darf dieser neue Datentyp für die Definition 
von Signalen oder Variablen verwendet werden. Die Typdefinition eines Arraydatentyps 
sieht wie folgt aus:

type <type_name> is array (range) of <element_data_type>;

Nehmen wir an, Sie möchten ein Array aus 10 Integer-Werten anlegen. Dann sehen 
die Typdefinition und die Definition eines entsprechenden Array-Signals zum Beispiel so 
aus:

type my_int_array_type is array (1 to 10) of integer; -- neuer Typ

signal my_ints : my_int_array_type; -- Signal auf Basis des neuen Typen

Ein Zugriff auf das Array erfolgt dann genauso wie beim Zugriff auf einzelne Ele-
mente eines Signals vom Typ std_logic_vector (denn der Datentyp std_logic_vector ist 
auch ein Array-Datentyp):

my_ints(6) <= 24;

Selbstverständlich kann man auch mehrdimensionale Arrays anlegen, wenn man die 
Typdefinitionen verschachtelt:

8.1  Weitere Datentypen
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type my_int_array_type_1D is array (1 to 20) of integer;

type my_int_array_type_2D is array (1 to 10) of my_int_array_type_1D;

signal my_2D_ints : my_int_array_type_2D;

…

my_2D_ints(7)(5) <= 12; -- zweidimensionaler Arrayzugriff

Arrays werden häufig benötigt, um Speicher zu modellieren. Sie wollen zum Beispiel 
einen Speicher der Größe 1 kByte modellieren. Dies erreichen Sie mit folgendem Code:

type my_mem_type is array (0 to 1023) of std_logic_vector (7 downto 0);

signal mem : my_mem_type;

8.1.9	� Records

VHDL unterstützt Records, also das Zusammenfassen mehrerer Werte in einem neuen 
Datentyp. Dies ist mit Structs vergleichbar, die Sie vielleicht aus einer Programmierspra-
che bereits kennen. Die allgemeine Form einer Record-Definition sieht wie folgt aus:

type <record_type_name> is

   element_name : element_typ;

   {element_name : element_typ;} -- Ggf. beliebig viele weitere Elemente

end record [record_type_name];      -- record_type_name ist optional

Die Definition und Verwendung von Records wird durch die nachfolgenden Beispiele 
verdeutlicht:

type bus_mosi is

   addr : std_logic_vector(31 downto 0);

   data : std_logic_vector(31 downto 0);

   rd   : std_logic;

   wr   : std_logic;

end record;

type bus_miso is

   data  : std_logic_vector(31 downto 0);

   ready : std_logic;

end record;

Wenn Sie Records angelegt haben, dürfen Sie den Datentyp wie jeden anderen Daten-
typ verwenden. Sehr praktisch kann es sein, Records für die Ports eines Moduls einzu-
setzen: Wenn viele Signale gemeinsam zu verdrahten sind (zum Beispiel Bussignale, die 
von einem Master an mehrere Slaves anzuschließen sind), können Records die Lesbar-
keit des Codes verbessern.
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Der Zugriff auf die Elemente eines Records erfolgt über selected names, den 
„Punkt-Operator“:

signal bus_out : bus_mosi;

signal bus_in : bus_miso;

… -- weiterer VHDL-Code

bus_out.addr <= x"1234_5678"; -- Zugriff auf die Elemente des Records
bus_out.rd   <= '1';
bus_out.wr   <= '0';
…

data_in <= bus_in.data;

8.2	� Sprachelemente zur Code-Strukturierung

VHDL unterstützt den Entwicklungsprozess mit einigen nützlichen Sprachelementen 
bei der Strukturierung des Codes. Einige der Konstrukte sind in ähnlicher Form auch in 
Software-Programmiersprachen vorhanden.

8.2.1	� Function

Eine VHDL-Funktion (Schlüsselwort: function) dient dazu, aus einem oder mehreren 
Übergabeparametern einen Rückgabewert zu berechnen. Wichtige Eigenschaften von 
Funktionen sind:

•	 Funktionen haben immer exakt einen Rückgabewert. Die Rückgabe erfolgt mithilfe 
des Schlüsselwortes return.

•	 Die Parameter dürfen innerhalb der Funktion nur gelesen werden. Schreibzugriffe 
sind nicht erlaubt.

•	 Innerhalb von Funktionen können lokale Variablen oder Konstanten definiert werden. 
Die Variablen werden mit jedem Funktionsaufruf neu initialisiert. Mit anderen Wor-
ten: Wird einer Variablen ein Wert zugewiesen, steht dieser beim nächsten Aufruf der 
Funktion nicht mehr zur Verfügung.

•	 Funktionen dürfen keine Wait-Anweisungen enthalten.
•	 Funktionen dürfen keine Signalzuweisungen enthalten.
•	 Funktionen dürfen sowohl Funktionen als auch Prozeduren (s. u.) aufrufen. Auch 

rekursive Aufrufe (eine Funktion ruft sich selbst auf) sind erlaubt.

Die syntaktische Struktur einer VHDL-Funktion stellt der nachfolgende Code dar.

8.2  Sprachelemente zur Code-Strukturierung
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function <Funktionsname> ({<Parameterliste>}) return <Typ_Rùckgabe-

wert> is

   <Deklarationen>

begin

   <Anweisungen>

end function;

Funktionen dürfen im Deklarationsteil einer Architecture (also vor dem begin) oder in 
Paketen definiert werden.

Als ein Beispiel ist im Folgenden eine VHDL-Funktion zur Umwandlung vom Gray-
Code in eine Dualzahl dargestellt.

Die Funktionsdefinition verwendet den Datentyp std_logic_vector ohne die Länge des 
Vektors zu spezifizieren. Auf diese Weise können durch die Funktion Vektoren mit einer 
beliebigen Länge verarbeitet werden. Allerdings wird für die Implementierung der Funk-
tion die Länge des jeweils bei Aufruf der Funktion übergebenen Vektors benötigt. Diese 
lässt sich sehr elegant mithilfe des length-Attributs des Vektors bestimmen. Die Schreib-
weise gray_val’length liefert die Länge (Anzahl der Elemente) des Vektors gray_val und 
wird zu Beginn der Funktion genutzt.

-- Definition der Funktion Gray2Bin

function Gray2Bin (gray_val : std_logic_vector) return std_logic_vector 

is

   constant vlen  : integer := gray_val'length;

   variable temp : std_logic_vector(vlen-1 downto 0);

begin

   temp := gray_val;
   if vlen > 1 then

        for i in vlen-2 downto 0 loop

            temp(i) := gray_val(i) xor temp(i+1);
        end loop;

   end if;

   return temp(vlen-1 downto 0);

end function;

-- Beispiel fùr den Aufruf der Funktion Gray2Bin

     …

     bin <= Gray2Bin(gray);
     …

8.2.2	� Procedure

VHDL-Prozeduren können ebenso wie Funktionen im Deklarationsteil einer Architec-
ture oder in Paketen definiert werden.
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Im Gegensatz zu Funktionen können Prozeduren mehrere Rückgabewerte besitzen. 
Die Rückgabe der Ergebnisse einer Prozedur erfolgt durch Modifikation der Werte der 
übergebenen Parameter und es ist daher erlaubt, auf die übergebenen Parameter schrei-
bend zuzugreifen. Um festzulegen, ob ein Parameter nur gelesen, nur beschrieben oder 
sowohl gelesen als auch beschrieben werden darf, wird mit den Parametern eines der 
Schlüsselwörter in, out oder inout angegeben.

Als Parameter können Variablen, Signale oder Konstanten verwendet werden. Bei der 
Definition einer Prozedur muss festgelegt werden, welcher der drei Parameterklassen 
von der Prozedur erwartet wird.

Ein weiterer Unterschied zu Funktionen ist, dass innerhalb einer Prozedur Zuweisun-
gen an Signale erlaubt sind, wenn die Prozedur innerhalb eines Prozesses definiert wird.

Darüber hinaus dürfen Wait-Anweisungen in Prozeduren verwendet werden. Aller-
dings sind diese Prozeduren dann nicht mehr synthetisierbar und der Einsatz solcher Pro-
zeduren bleibt auf Testbenches beschränkt.

Der grundlegende Aufbau einer VHDL-Prozedur ist einer Funktion recht ähnlich:

procedure <Prozedurname> (<Parameterliste>) is

   <Deklarationen>

begin

   <Anweisungen>

end procedure;

Ein Beispiel für eine VHDL-Prozedur zeigt der nachfolgende Code, der eine Sortie-
rung von drei Signalen implementiert.

-- Prozedur sort_u3

-- Sortiert 3 Werte vom Datentyp unsigned

procedure sort_u3 (signal val1 : in  unsigned;

                   signal val2 : in  unsigned;

                   signal val3 : in  unsigned;

                   signal min  : out unsigned;

                   signal med  : out unsigned;

                   signal max  : out unsigned) is

   variable min_v : unsigned(min'length-1 downto 0);

   variable med_v : unsigned(med'length-1 downto 0);

   variable max_v : unsigned(max'length-1 downto 0);

   variable tmp_v : unsigned(min'length-1 downto 0);

begin

   max_v := val1;
   med_v := val2;
   min_v := val3;

8.2  Sprachelemente zur Code-Strukturierung
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   if min_v >= med_v then -- min/med tauschen?
      tmp_v := med_v;
      med_v := min_v;
      min_v := tmp_v;
   end if;

   if med_v >= max_v then -- max/med tauschen?
      tmp_v := max_v;
      max_v := med_v;
      med_v := tmp_v;
   end if;

   if min_v >= med_v then -- und noch einmal ggf. min/med tauschen
      tmp_v := med_v;
      med_v := min_v;
      min_v := tmp_v;
   end if;

   min <= min_v;
   med <= med_v;
   max <= max_v;
end procedure;

-- Beispiel fùr den Aufruf der Procedure

…

sort_u3 (sig_1,sig_2,sig_3,sig_min,sig_med,sig_max);

-- alle sechs Signale mùssen vom Typ unsigned sein

-- und die gleiche Wortbreite besitzen

…

8.2.3	� Entity-Deklaration mit Generics

Stellen Sie sich vor, Sie möchten eine logische Funktion in VHDL realisieren, die 
Signale vom Typ std_logic_vector verknüpft. Da es sich um eine grundlegende Funktion 
handelt, die Sie häufig benötigen, muss Sie für Vektoren mit unterschiedlicher Wortbreite 
zur Verfügung stehen.

Natürlich kann man für jede benötigte Wortbreite ein eigenes Entity-Architecture-
Paar realisieren. Allerdings kann dies sehr aufwendig werden, wenn viele unterschiedli-
che Wortbreiten benötigt werden. Es wäre eleganter, wenn man der Instanz des Moduls 
„irgendwie“ die benötigte Wortbreite als Parameter mitteilen könnte. Wenn dieser Para-
meter in der Entity und der Architecture des instanziierten Moduls entsprechend berück-
sichtigt werden würde, kann die Erstellung eines einzelnen Entity-Architecture-Paares 
ausreichend sein.
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Um einem Modul während der Instanziierung Parameterwerte übergeben zu kön-
nen, muss die Entity des Moduls neben einer Port-Liste eine auch eine Parameter-Liste 
(Schlüsselwort Generic) enthalten.

Diese Parameter (Generics) können dann in symbolischer Form bei der Beschreibung 
des Moduls verwendet werden. Erst mit der Instanziierung des Moduls werden die (für 
diese Instanz) zu verwendenden Werte der Parameter festgelegt.

In der Praxis werden Generics häufig mit dem Datentyp integer oder natural definiert. 
Aber auch alle anderen VHDL-Datentypen sind zulässig und können für bei der Defini-
tion eines Generics eingesetzt werden.

Ein Beispiel soll die Vorgehensweise verdeutlichen: Angenommen Sie möchten ein 
Modul erstellen, das ein Signal um eine bestimmte Anzahl von Taktzyklen verzögern soll. 
Dieses Modul soll möglichst flexibel sein und für beliebige Wortbreiten oder Verzögerun-
gen einsetzbar sein. Das Modul kann mithilfe von Generics wie folgt realisiert werden:

library ieee;

use ieee.std_logic_1164.all;

entity delay_unit is

   generic (D   : natural := 3;  -- Anzahl der Verzògerungszyklen (D>0 !)
            N   : natural := 8); -- Breite der verzògerten Werte (N>0 !)
   port (clk    : in  std_logic;

         d_in   : in  std_logic_vector(N-1 downto 0);

         d_out  : out std_logic_vector(N-1 downto 0));

end;

architecture behave of delay_unit is

     -- Hier legen wir ein Array mit D Eintràgen an

     -- Jeder Eintrag nimmt N Bits auf

     --

     -- Durch die Synthese wird eine Kette von D Registern (also D-FFs)

     -- mit der Wortbreite N implementiert

   type d_arr_type is array (0 to D-1) of std_logic_vector(N-1 downto 

0);

   signal d_array : d_arr_type;

begin

   process begin

      wait until rising_edge(clk);

      for i in 0 to (D-2) loop -- Werte in der FF-Kette verschieben

           d_array(i) <= d_array(i+1);
      end loop;

      d_array(D-1) <= d_in; -- Eingangswert an oberster Position
      -- der FF-Kette abspeichern

   end process;

   d_out <= d_array(0); -- àltesten Wert ausgeben
end;

8.2  Sprachelemente zur Code-Strukturierung
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Bei der Instanziierung des Moduls erfolgt nun neben der Portzuordnung (port map) 
auch die Zuordnung der verwendeten Generics (generic map). Ist bei der Deklaration des 
Parameters in der Entity ein Default-Wert angegeben worden, kann die Parameterzuord-
nung auch entfallen. In diesem Fall wird für diese Instanz der angegebene Default-Wert 
verwendet.

Die Werte, die den Generics bei der Instanziierung zugeordnet werden, müssen zur 
Übersetzungszeit des bekannt VHDL-Codes berechenbar sein. Werte, die sich erst wäh-
rend der Simulation ergeben, sind nicht erlaubt. So ist es beispielsweise nicht möglich, 
einem Generic ein Signal zuzuweisen.

Der folgende Code zeigt die Instanziierung des oben beschriebenen Moduls.

…

-- Verwendung der Default-Werte fùr die Parameter D und N,

-- also D=3 und N=8
u0 : delay_unit port map (clk => clk, d_in => x_sv8, d_out => q_sv8);

-- Ùberschreiben der Default-Werte: D=5, N=32
-- Die Ein- und Ausgànge dieser Instanz haben die Wortbreite 4

u1 : delay_unit

   generic map (D=> 5, N => 32)
   port map (clk => clk, d_in => x_sv32, d_out => q_sv32);
…

8.2.4	� Generate-Anweisung

In manchen Fällen lassen sich Parameter sehr elegant in einer Generate-Anweisung 
verwenden. Die Generate-Anweisung existiert in den beiden Varianten if-generate und 
for-generate und dient der bedingten beziehungsweise wiederholten Ausführung neben-
läufiger Anweisungen wie Signalzuweisungen, Prozesse oder Instanziierungen.

Die allgemeine Schreibweise der beiden Generate-Anweisungen lautet

<Name>: if <Bedingung> generate

   <Nebenlàufige Anweisungen>

end generate;

<Name>: for <Laufindex> in <Bereich> generate

   <Nebenlàufige Anweisungen>

end generate;

Mithilfe der If-Generate-Anweisung können nebenläufige Anweisungen mit einer 
Bedingung versehen werden. Nur wenn die Bedingung erfüllt ist, ist dieser Code aktiv. 
Auf diese Weise können zum Beispiel Instanziierungen oder Prozesse in Abhängigkeit 
von Generics aktiviert werden.
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Betrachten wir hierzu das Beispiel des Moduls delay_unit aus dem vorangegangenen 
Abschnitt. Das Modul kann nur eingesetzt werden, wenn die Verzögerung mindestens einen 
Taktzyklus beträgt, also D > 1 gilt. Würde D zu 0 gewählt werden, würde die Zuweisung

d_array(D-1) <= d_in;

auf d_array(−1) zugreifen. Dieser Feldindex existiert jedoch nicht, da der kleinste 
mögliche Index 0 ist. Eine Fehlermeldung wäre die Folge.

Möchte man auch die Auswahl D = 0 (also keine Verzögerung des Signals) ermög-
lichen, kann dies mithilfe der If-Generate-Anweisung realisiert werden. Da bei der If-
Generate-Anweisung kein else unterstützt wird, werden zwei If-Generate-Anweisungen 
benötigt. Der VHDL-Code kann wie folgt aussehen:

entity my_module is

   generic (delay_count : natural := 1);
   port (clk : in std_logic;

          -- weitere Ports

         );

end;

architecture behave of my_module is

   signal q_sv32, x_sv32 : std_logic_vector (31 downto 0);

begin

-- Prozesse und nebenlàufige Zuweisungen dieses Moduls

GEN_D0: if delay_count = 0 generate -- Ein Label muss sein
        -- delay_count = 0, also direkte Zuweisung
        q_sv32 <= x_sv32;
   end generate;

GEN_D1: if delay_count > 0 generate

   -- delay_count > 0, also das Modul einbauen

   -- fùr die Wortbreite N wird der Defaultwert (32)

   -- aus der Entity-Definition der Delay_Unit genutzt

   u1 : delay_unit

         generic map (D => delay_count)
         port map (clk => clk, d_in => x_sv32, d_out => q_sv32);
   end generate;

end;

Die For-Generate-Anweisung wird für eine wiederholte Ausführung nebenläufiger 
Zuweisungen oder Modul-Instanziierungen eingesetzt. Der Einsatz dieser Anweisung wird 
im Folgenden anhand eines sehr einfachen Beispiels verdeutlicht. Nehmen wir an, Sie 
haben ein AND2-Modul, also ein UND-Gatter mit zwei Eingängen realisiert und möch-
ten dieses für die VHDL-Beschreibung eines UND-Gatters mit N Eingängen verwenden.  

8.2  Sprachelemente zur Code-Strukturierung
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Eine mögliche Lösung mithilfe der For-Generate-Anweisung kann dann wie folgt formu-
liert werden:

architecture for_gen_arch of and_n is

begin

   AND2GEN: for i in 0 to N-1 generate

        ui : and_2 port map (a => a(i), b => b(i), q => q(i));
   end generate;

end;

Beide Formen der Generate-Anweisung sollten nicht mit ähnlichen Sprachkon-
strukten für Prozesse verwechselt werden. Die If- und For-Anweisungen in Prozessen 
beinhalten sequenziell ausgeführten Code, der Teil eines Prozesses ist. Die Generate-
Anweisung bezieht sich dagegen immer auf nebenläufigen Code, beispielsweise Signal-
zuweisungen, Prozesse oder Instanziierungen.

Insbesondere müssen die Bereichsgrenzen der For-Generate-Anweisung beziehungs-
weise die Bedingung der If-Generate-Anweisung zum Zeitpunkt der Übersetzung des 
Moduls berechenbar sein. Der Grund hierfür ist, dass aus dem VHDL-Code Hardware 
generiert wird und daher bekannt sein muss, wie viele und welche Schaltungselemente 
erzeugt werden sollen. Es wäre beispielsweise nicht möglich, in einer If-Generate-Bedin-
gung den Wert eines Signals abzufragen. Da sich der Wert des Signals erst während der 
Simulation oder während des Betriebs der Hardware ergibt, ist die Bedingung zum Über-
setzungszeitpunkt des Moduls nicht auflösbar und würde Fehlermeldungen bei der Über-
setzung des VHDL-Codes zur Folge haben.

8.2.5	� Attribute

Mit Attributen lassen sich Eigenschaften von Objekten und Typen abfragen. VHDL-
Beschreibungen können hiermit teilweise kürzer oder eleganter realisiert werden. Der 
Wert eines Attributs kann in einem VHDL-Modell weiter verwendet werden. Attribute 
lassen sich auf viele Datentypen anwenden, beispielsweise lässt sich die Anzahl der Ele-
mente in einem Vektor bestimmen. Die generelle Syntax für Verwendung von Attributen 
lautet:

<typ_name>'<attribut_bezeichner>

Die Werte der Attribute unterscheiden sich von den Datenobjektwerten. VHDL unter-
scheidet vordefinierte und benutzerdefinierte Attribute. Die wichtigsten vordefinierte 
Attribute sind: ʼleft, ʼright, ʼhigh, ʼlow, ʼlength, ʼpos, ʼval und ʼrange.

Der folgende Code zeigt einige Beispiele zur Verwendung von Attributen:
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process

   type farben_typ is (rot, gruen, blau, gelb, lila);

   variable farbe : farben_typ;

   variable i     : integer;

   variable c     : character := 'A';
   variable slv   : std_logic_vector (7 downto 0);

begin

   farbe := farben_typ'left;   -- liefert: rot
   farbe := farben_typ'right;  -- liefert: lila
   i := slv'low;               -- liefert: 0 (kleinster Indexwert)
   i := slv'high;              -- liefert: 7 (hòchster Indexwert)
   i := slv'length;            -- liefert: 8 (Lànge des Vektors)
   i := character'pos(c);      -- liefert: 65 (= ASCII-Wert von 'A')
   c := character'val(65);         -- liefert: 'A'(= Zeichen an Position 65)
   wait;

end process;

In manchen VHDL-Beschreibungen findet sich das Attribut ʼevent in Verbindung mit 
Signalen. Falls innerhalb eines VHDL-Modells eine Flanke des Signals clk eine Aktion 
bewirken soll, so lässt sich diese Flanke auch durch die Bedingung if clkʼevent and 
clk = ‘1’  then abfragen.

Die folgenden Schreibweisen beschreiben beispielsweise ein D-Flip-Flop:

-- D-FF mit der IEEE-Funktion rising_edge()

process begin

   wait until rising_edge(clk);

   q <= d;
end process;

-- D-FFs mit Abfrage des Attributs 'event

-- Diese Schreibweise ist nicht empfehlenswert

process begin

   -- Prozess unterbrechen bis ein Ereignis (Zuweisung eines neuen

   -- Wertes) auf dem Signal clk stattgefunden hat UND das Signal

   -- den Wert 1 angenommen hat

   wait until clk'event and clk='1';
   q <= d;
end process;

In manchen VHDL-Beschreibungen ist die Schreibweise clkʼevent and clk = ‘1’zu 
finden. Allerdings deckt diese Schreibweise alle Signalwechsel ab, bei denen das abge-
fragte Signal clk von einem Wert ungleich ‘1’ auf ‘1’ wechselt und sollte daher nicht 
verwendet werden.
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So würde beispielsweise ein Wechsel von ‘H’ zu ‘1’ in der Simulation als steigende 
Flanke interpretiert. Dies ist jedoch inkorrekt, da ‘H’ eine „schwache Eins“ und ‘1’ eine 
„starke 1“ darstellt. Der Wechsel von ‘H’ zu ‘1’ stellt also keine steigende Flanke dar. 
Demgegenüber würde beispielsweise ein Wechsel von ‘0’ zu ‘H’ welcher eine steigende 
Flanke darstellt, nicht als solche erkannt werden.

Die falsch interpretierten Signalwechsel wirken sich nur in der Simulation aus. Die syn-
thetisierte Hardware, die ja nur Nullen und Einsen kennt, würde sich dagegen korrekt – 
und damit anders als die Simulation – verhalten.

Für die Erkennung einer Taktflanke wird darum die Verwendung der Funktion rising_
edge() (beziehungsweise falling_edge() für fallende Signalflanken) empfohlen, die expli-
ziter und damit besser lesbar ist.

8.2.6	� Instanziierung mit der Component-Anweisung

In Kapitel 3 wurde die Instanziierung von Modulen durch Angabe der Bibliothek und der 
Entity bereits vorgestellt. Im Folgenden wird eine alternative Vorgehensweise zur Ins-
tanziierung von Modulen beschrieben, die ebenfalls sehr häufig angewendet wird. Daher 
wird Ihnen diese Variante dann begegnen, wenn Sie beispielsweise VHDL-Code aus 
Internet-Quellen verwenden möchten.

Angenommen Sie haben ein Modul beschrieben und möchten dieses in einem ande-
ren Modul verwenden. Als Beispiel verwenden wir ein einfaches UND-Modul mit zwei 
Eingängen. Die Entity des Grundmoduls kann wie folgt aussehen:

entity and_2 is

port (a : in  std_logic;

      b : in  std_logic;

      q : out std_logic);

end;

In der alternativen Beschreibung ohne Angabe der VHDL-Bibliothek wird eine Com-
ponent-Anweisung verwendet. Diese Anweisung macht das zu instanziierende Modul in 
der Architecture bekannt und anschließend kann das Modul beliebig oft in der VHDL-
Architecture verwendet werden.

Die Component-Anweisung beschreibt im Wesentlichen die Anschlüsse des zu instan-
ziierenden Moduls und ist der Entity-Deklaration des Moduls sehr ähnlich: Im Gegen-
satz zur Entity-Deklaration wird statt des Schlüsselwortes entity das Schlüsselwort 
component verwendet.

Die Component-Anweisung des UND-Gatters würde wie folgt aussehen:

component and_2 is

port (a : in  std_logic;

http://dx.doi.org/10.1007/978-3-662-49731-9_3
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      b : in  std_logic;   -- Sieht fast wie die Entity aus…

      q : out std_logic  ) -- Aber: Nach der Klammer kein Semikolon

end component;

Die Instanziierung des damit bekannt gemachten Moduls beginnt (wie bei der bereits 
bekannten Entity-Instanziierung) mit einem eindeutigen Namen für diese Instanz. Nach 
einem Doppelpunkt wird die Komponente (in diesem Beispiel and_2) angeben. Darauf folgt 
die Zuordnung der Anschlüsse, die mit den Schlüsselwörtern port map eingeleitet wird.

Für das Beispiel eines Vierfach-UND-Moduls, welches UND-Gatter instanziiert, kön-
nen Entity und Architecture wie folgt beschrieben werden:

library ieee;

use ieee.std_logic_1164.all;

entity and_4x2 is

   port (a : in  std_logic_vector (3 downto 0);

         b : in  std_logic_vector (3 downto 0);

         q : out std_logic_vector (3 downto 0));

end;

architecture behave of and_4x2 is

   component and_2 is

        port (a : in  std_logic;

              b : in  std_logic;

              q : out std_logic);

   end component;

begin

     u0 : and_2 port map (a => a(0), b => b(0), q => q(0));
     u1 : and_2 port map (a => a(1), b => b(1), q => q(1));
     u2 : and_2 port map (a => a(2), b => b(2), q => q(2));
     u3 : and_2 port map (a => a(3), b => b(3), q => q(3));
end;

Die in Kapitel 3 eingeführte Entity-Instanziierung und Instanziierung mit der Component-
Anweisung sind gleichwertig und letztlich eine Frage des bevorzugten „Coding-Styles“. 
Dennoch sollte man die Varianten kennen, da beide in der Praxis verwendet werden.

8.2.7	� Pakete

Einige häufig verwendete Bibliotheken und die darin enthaltenen Pakete (Packages) wur-
den in den vorangegangenen Abschnitten bereits verwendet. Pakete sind immer dann 
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sinnvoll, wenn grundlegende Funktionen oder Datentypen in mehreren VHDL-Dateien 
verwendet werden sollen.

In einem Paket können unterschiedliche VHDL-Elemente abgelegt sein. Dies sind in 
der Praxis neben selbst definierten Datentypen, Funktionen oder Prozeduren häufig auch 
Component-Anweisungen. Wird beispielsweise ein Paket, das Component-Anweisungen 
enthält, in einer VHDL Beschreibung durch geeignete Library- und Use-Anweisungen 
bekannt gemacht, können die hierin enthaltenen Component-Anweisungen im nachfol-
genden Code entfallen. Der Code wird dadurch kürzer und übersichtlicher.

Pakete werden in einen Header- und einen Body-Teil aufgespalten. Der Header ent-
hält die „von außen“ sichtbaren Deklarationen, zum Beispiel welche Aufrufparameter 
eine Prozedur besitzt. Der Package-Body legt die Implementierung der im Header dekla-
rierten Elemente fest.

Der Package-Header wird mit dem Schlüsselwort package eingeleitet, während ein 
Package-Body durch package body gekennzeichnet wird:

package <Paketname> is

   <Typdefinitionen>

   <Definition oder Deklaration von Konstanten>

   <Signaldefinitionen>

   <Deklaration von Funktionen und Prozeduren>

   <Component-Anweisungen>

end package;

package body <Paketname> is

   <Definition von Konstanten, falls im Header nur deklariert>

   <Definitionen von Funktionen und Prozeduren>

end package body;

Als ein Beispiel für die Anwendung von Paketen zeigt der nachfolgende Code ein 
Paket, das Funktionen zur Umwandlung des Gray-Codes in Dualzahlen und umgekehrt 
enthält.

library ieee;

use ieee.std_logic_1164.all;

------

-- Package Header

------

package gray_pkg is

   -- Funktionsdeklarationen --

   function gray2bin (gray_val : std_logic_vector)

        return std_logic_vector;
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   function bin2gray (bin_val : std_logic_vector)

        return std_logic_vector;

end package;

------

-- Package Body

------

package body gray_pkg is

   -- Implementierung: Gray2Bin --

   function gray2bin (gray_val : std_logic_vector)

        return std_logic_vector is

        constant vlen : integer := gray_val''length;
        variable temp : std_logic_vector(vlen-1 downto 0);

   begin

        temp := gray_val;
        if vlen > 1 then

            for i in vlen-2 downto 0 loop

                 temp(i) := gray_val(i) xor temp(i+1);
            end loop;

        end if;

        return temp(vlen-1 downto 0);

   end function;

   -- Implementierung: Bin2Gray --

   function bin2gray (bin_val : std_logic_vector)

        return std_logic_vector is

        constant vlen : integer := bin_val'length;
   begin

        return ('0' & bin_val(vlen-1 downto 1)) xor bin_val;

   end function;

end package body;

8.2.8	� Einbindung von Spezialkomponenten

Für FPGAs und ASICs sind Spezialkomponenten wie Multiplizierer, Speicher oder 
Elemente zur Taktaufbereitung verfügbar. Doch wie können diese Elemente in einem 
VHDL-basierten Design eingesetzt werden? Hierzu werden zwei Ansätze unterschie-
den: Die Instanziierung und die Inferenz (engl. instantiation beziehungsweise inference). 
Beide Ansätze werden im Folgenden näher erläutert.
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Instanziierung beim FPGA-Entwurf
Bei der Instanziierung wird ein bestimmtes Modul, zum Beispiel ein Multiplizierer, 
explizit als eine Komponente aufgerufen. Damit wird dem Synthesetool vorgeschrieben 
dieses konkret benannte Modul zu verwenden.

Für die Instanziierung stellen die FPGA-Hersteller spezielle VHDL-Bibliotheken 
zur Verfügung, in denen alle Grundelemente hinterlegt sind. Man kann also auf die ver-
fügbaren Hardwarekomponenten explizit zugreifen. Theoretisch könnten auch einzelne 
Logikzellen ausgewählt und durch den Designer verdrahtet werden. Da man hiermit aber 
die Intelligenz der Synthesetools nicht nutzen würde, wird von dieser Möglichkeit in der 
Praxis kein Gebrauch gemacht. Die Instanziierung wird im Allgemeinen nur dort einge-
setzt, wo dies unumgänglich ist, weil die gewünschten Elemente nicht automatisch durch 
die Synthese ausgewählt werden können. Ein Beispiel hierfür sind PLLs zur Taktaufbe-
reitung. Für diese Elemente existiert keine Entsprechung in VHDL und daher müssen sie 
per Instanziierung ausgewählt werden.

Die Parameter der jeweiligen Instanz werden im VHDL-Code durch Übergabe von 
Generics festgelegt. Da dies in einigen Fällen etwas umständlich ist, werden grafische 
Blockgeneratoren angeboten. Mithilfe der Generatoren ist es möglich, die Eigenschaf-
ten des zu instanziierenden Blocks interaktiv über eine grafische Oberfläche festzulegen. 
Als Ergebnis liefern die Generatoren einen Block, der in einer VHDL-Beschreibung als 
Komponente instanziiert werden kann.

Inferenz beim FPGA-Entwurf
In einigen Fällen kann man auch auf die „Intelligenz“ des Synthesetools setzen: Für 
bestimmte VHDL-Konstrukte erkennt die Synthese automatisch, dass hier ein Hard-
makro (zum Beispiel ein Multiplizierer-Modul oder ein FPGA-interner Speicher) in 
Betracht kommt. Da sich die Verwendung der Makros aus dem VHDL-Code ergibt, wird 
dieses Vorgehen als Inferenz bezeichnet.

Die Syntheseprogramme unterstützen meist die Inferenz von Speichern, Multipli-
zieren und einfachen arithmetischen Komponenten wie zum Beispiel die in der Sig-
nalverarbeitung häufig vorkommende Kombination eines Multiplizierers mit einem 
nachfolgenden Addierer. Für die Inferenz eines Multiplizierers genügt es beispielsweise, 
die entsprechende Operation im VHDL-Code zu verwenden.

Die Instanziierung und Inferenz wird im Folgenden anhand des Beispiels eines 
FPGA-internen Speichers für einen FPGA-Baustein der Xilinx Serie 7 näher beleuchtet.

8.2.8.1 � Beispiel: Instanziierung eines Speichers
Der nachfolgend dargestellte VHDL-Code zeigt die Instanziierung eines Speichers. Es 
wird das Modul BRAM_SDP_MACRO, welches in der von der Firma Xilinx zur Verfü-
gung gestellten Bibliothek unisim vorliegt, aufgerufen und mit den Signalen des Designs 
verbunden. Über Generics lassen sich verschiedene Parameter, wie die Wortbreite oder 
die Größe des Speichers, auswählen.
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library unisim;

use unisim.vcomponents.all;

library unimacro;

use unimacro.vcomponents.all;

…

my_ram_instance : bram_sdp_macro

generic map (

   bram_size      => "18Kb",      -- Auswahl Speichergroesse: "18Kb", "36Kb"
   device      => "7SERIES", -- Zielbaustein-Serie
   write_width => 8,         -- Wortbreite Schreibport
   read_width  => 8,         -- Wortbreite Leseport
   do_reg       => 0,          -- Zusaetzliches Register am Daten-Ausgang?
   init_file   => "NONE",    -- evtl. Datei mit Initialwerten
   sim_collision_check => "NONE", -- Simulation: Schreib/Leseoperation
                                  -- auf gleiche Adresse checken?

   srval       => x"000000000000000000", -- Ausgabe nach Reset
   write_mode  => "WRITE_FIRST"   -- Auswahl Kollisionsbehandlung
   )

port map (

   rst    => rst,    -- Reseteingang
   rdclk  => rdclk,  -- Taktsignal Leseport
   rdaddr => rdaddr, -- Leseadresse
   rden   => rden,   -- Enable: Lesen
   regce  => '1',    -- Enable fùr Ausgangsregister
   do     => do,     -- Lesedaten
   wrclk  => wrclk,  -- Taktsignal Schreibport
   wraddr => wraddr, -- Schreibadresse
   wren   => wren,   -- Enable-Signal fùr Schreiboperation
   we     => we,     -- Byte-weises Enable-Signal
   di     => di      -- Schreibdaten
);

Ein Nachteil der Instanziierung ist, dass man unter anderem die Größe der Speicher-
module auf dem FPGA kennen muss. Wird ein Speicher benötigt, der größer als ein 
einzelner Speicherblock ist, muss die entsprechende Anzahl an Speichermodulen ins-
tanziiert werden. Darüber hinaus lässt sich VHDL-Code, der die Instanziierung von Ele-
menten verwendet, nicht unbedingt auf andere FPGAs übertragen. So könnten sich zum 
Beispiel die Eigenschaften der Speichermodule einer nachfolgenden FPGA-Generation 
ändern. Der VHDL-Code wäre damit nicht mehr zu dem neuen FPGA kompatibel und 
müsste entsprechend angepasst werden.

8.2.8.2 � Beispiel: Instanziierung eines Speichers mit Blockgenerator
Alternativ stellen die FPGA-Hersteller Modul-Generatoren zur Verfügung um Speicher-
Module über eine grafische Oberfläche zu konfigurieren. Der Blockgenerator erstellt 
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dann eine Komponente, die im VHDL-Code eingebunden werden kann. Der Vorteil 
dabei ist, dass der Blockgenerator auch größere Speicher aus mehreren Speicherblöcken 
zusammenstellen kann. Falls zusätzliche kombinatorische Logik erforderlich ist, wird 
auch diese erzeugt.

Im unten stehenden Beispiel wird ein FIFO-Speicher aufgerufen, der Datenworte 
um eine feste Anzahl an Takten verzögert. FIFO steht dabei für First-In-First-Out. Der 
Blockgenerator erzeugt die VHDL-Dateien des Moduls fifo_memory. Neben Speicher-
Modulen können Generatoren auch andere Funktionen erzeugen, beispielsweise Divisi-
onsschaltungen oder Filter.

my_fifo_instance : fifo_memory

port map (

   clk   => clk,
   d_in  => d_in,
   d_out => d_out);

Wie bei der Instanziierung von Modulen aus der FPGA-Bibliothek kann ein Untermo-
dul nicht unbedingt auf andere FPGAs übertragen werden.

Dieser Nachteil lässt sich durch die Inferenz von Speichern umgehen. Hierzu muss 
der VHDL-Code so geschrieben werden, dass er den Eigenschaften des Speichers 
entspricht.

8.2.8.3 � Beispiel: Inferenz eines Speichers
Der nachfolgende Code zeigt die Realisierung eines Speichers. Die Wortbreite und die 
Größe des Speichers kann über Generics ausgewählt werden. Da der Lesezugriff syn-
chron implementiert ist, wählen die Syntheseprogramme die auf dem FPGA-Baustein 
verfügbaren RAM-Speicherelemente (sogenanntes Block-RAM) aus.

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity dmem_sp is

   generic (

        DW   : integer := 16;     -- Data Width
        AW   : integer := 10);    -- Address Width

     port (

         clk : in  std_logic;     -- Clock

         en  : in  std_logic;     -- Enable

         we  : in  std_logic;     -- Write enable

         a   : in  std_logic_vector(AW-1 downto 0);   -- Address

         d   : in  std_logic_vector(DW-1 downto 0);   -- Data in
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         q   : out std_logic_vector(DW-1 downto 0)); -- Data out

end;

architecture rtl of dmem_sp is

   type tmem is array(0 to 2**AW-1) of std_logic_vector(DW-1 downto 0);

   signal mem : tmem;

begin

   process begin

        wait until rising_edge(clk);

        q <= mem(to_integer(unsigned(a)));
        if en = '1' then
            if we = '1' then
                 mem(to_integer(unsigned(a))) <= d;
            end if;

        end if;

   end process;

end;

Da keine Aussagen über die FPGA-Technologie im Code vorgenommen werden, 
ist die Speicherinferenz auch auf andere FPGAs übertragbar. Darüber hinaus kann die 
Speichergröße und Wortbreite flexibel über die Generics angegeben werden, ohne eine 
genauere Kenntnis der zugrunde liegenden FPGA-Technologie zu haben.

Möchte man dagegen statt der Block-RAM-Module lieber Flip-Flops als Spei-
cher verwenden, ist nur eine kleine Änderung des Codes erforderlich. Zieht man die 
Zuweisung an den Datenausgang q vor den Prozess, wird ein asynchroner Lesezugriff 
beschrieben. Mit einer derartigen VHDL-Beschreibung werden dann Flip-Flops als Spei-
cherelemente (sogenanntes Distributed Memory) ausgewählt. Dies kann zum Beispiel 
vorteilhaft sein, wenn nur ein sehr kleiner Speicher benötigt wird: Block-RAMs stehen 
meist nur in Vielfachen von 1 oder 2 kByte zur Verfügung. Benötigt man zum Beispiel 
nur 256 Bit Speicherplatz und sind die Block-RAM-Ressourcen knapp, ist der Einsatz 
von Distributed Memory erwägenswert.

Die entsprechenden Änderungen für die Verwendung von Distributed Memory sind 
im folgenden Code-Ausschnitt dargestellt.

begin

   q <= mem(to_integer(unsigned(a))); -- Asynchroner Lese-Zugriff
   process begin

        wait until rising_edge(clk);

        if en = '1' then
        …

In der Regel sollte die Inferenz bevorzugt werden, da diese übersichtlicher ist 
und sich der Code leichter auf andere FPGAs übertragen lässt. Für einige Module, 
beispielsweise PLLs, hat man nicht die Wahl zwischen Instanziierung und Inferenz. 

8.2  Sprachelemente zur Code-Strukturierung
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Diese Spezialmodule müssen entweder durch eine VHDL-Instanziierung oder durch 
einen Blockgenerator im System eingebaut werden. Die näheren Einzelheiten über die 
zu verwendenden Bibliothek oder den Aufruf des entsprechenden Moduls in VHDL ist 
bei Bedarf in der Dokumentation der Anbieter der Synthesetools zu finden.

8.2.8.4 � Beispiel: Inferenz eines Dual-Port-Speichers
FPGAs stellen meist auch sogenannte Dual-Port-Speicher zur Verfügung. Hierbei han-
delt es sich um Speicher, die zwei getrennte Anschlüsse für Lese- und Schreibzugriffe 
besitzen. Es kann also gleichzeitig von zwei unterschiedlichen Modulen auf die Ele-
mente des Speichers zugegriffen werden.

Dual-Port-Speicher erlauben es, beide Module mit unterschiedlichen Taktfrequen-
zen zu betrieben. In diesem Fall muss die Inferenz des Dual-Port-Speichers mithilfe 
zweier getrennter VHDL-Prozesse (ein Prozess für jeden der beiden Schreib-Lese-Ports) 
beschrieben werden.

Da beide Prozesse auch einen Schreibzugriff auf die Speicherelemente unterstützen 
müssen, ergibt sich hier eine Besonderheit: Das Speicher-Array kann nicht durch eine 
Variable innerhalb einer der beiden Prozesse realisiert werden, da dann der andere Pro-
zess keinen Zugriff auf die Variable hätte. Aber auch die Realisierung mithilfe eines 
VHDL-Signals ist nicht möglich: Beide Prozesse würden schreibend auf das Array-Sig-
nal zugreifen, was während der Synthese zu Fehlermeldungen führen würde.

Um diese Problematik zu lösen, können Variablen eingesetzt werden, die (wie Sig-
nale) im Deklarationsteil der Architecture definiert werden und in allen Prozessen der 
Architecture sichtbar sind. Diese Art der Variablen wird in VHDL als Shared Variables 
bezeichnet. Die Beschreibung eines synchronen Dual-Port-Speichers kann wie folgt rea-
lisiert werden:

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity bmem_dp is

   generic (

        DW  : integer := 16;   -- Data Width
        AW  : integer := 10); -- Address Width

   port (

        -- Port 1

        clk1 : in  std_logic;  -- Clock

        we1  : in  std_logic;  -- Write enable

        a1   : in  std_logic_vector(AW-1 downto 0); -- Address

        d1   : in  std_logic_vector(DW-1 downto 0); -- Data in

        q1   : out std_logic_vector(DW-1 downto 0); -- Data out
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        -- Port 2

        clk2 : in  std_logic; -- Clock

        we2  : in  std_logic; -- Write enable

        a2   : in  std_logic_vector(AW-1 downto 0); -- Address

        d2   : in  std_logic_vector(DW-1 downto 0); -- Data in

        q2   : out std_logic_vector(DW-1 downto 0)  -- Data out

        );

end;

architecture rtl of bmem_dp is

   type tmem is array(0 to 2**AW-1) of std_logic_vector(DW-1  downto  0);

   -- Hier wird die "shared variable" definiert

   shared variable mem : tmem := ((others=> (others=>'0')));
   signal q1_sig : std_logic_vector(DW-1 downto 0) := (others=>'0');
   signal q2_sig : std_logic_vector(DW-1 downto 0) := (others=>'0');

begin

   q1 <= q1_sig;
   q2 <= q2_sig;

   -- Port 1

   process begin

        wait until rising_edge(clk1);

        if (we1 = '1') then
            mem(to_integer(unsigned(a1))) := d1;
        end if;

        q1_sig <= mem(to_integer(unsigned(a1)));
   end process;

   -- Port 2

   process begin

        wait until rising_edge(clk2);

        if (we2 = '1') then
            mem(to_integer(unsigned(a2))) := d2;
        end if;

        q2_sig <= mem(to_integer(unsigned(a2)));
   end process;

end;

Natürlich kann dieser Code auch eingesetzt werden, wenn die beiden Module, die auf 
den Speicher zugreifen, identische Taktsignale verwenden. In diesem Fall wird an die 
Taktanschlüsse clk1 und clk2 einfach das gleiche Taktsignal angelegt.

Achtung: Lassen Sie sich nicht dazu verleiten, Shared Variables als Ersatz für VHDL-
Signale einzusetzen. Shared Variables können zwar von typischen Synthesetools – mit 
entsprechenden Warnmeldungen – in Hardware übersetzt werden, aber das Verhalten von 
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Schreibzugriffen aus zwei Prozessen heraus ist für Shared Variables nicht eindeutig defi-
niert. Im obigen Fall der Beschreibung eines Speichermoduls ist dies akzeptabel und wird 
vom Synthesetool korrekt in einen entsprechenden Dual-Port-Speicher überführt. In den 
meisten anderen Fällen kann die Verwendung von Shared Variables zu Unterschieden 
zwischen Simulation und synthetisierter Hardware führen.

8.3	� Sprachelemente zur Verifikation

Wie bereits in Kapitel 7 beschrieben, ist die Simulation mit einer Testbench ein wesentli-
cher Schritt zur Verifikation von VHDL-Code. VHDL bietet dabei die Möglichkeit wäh-
rend der Simulation auf Dateien zuzugreifen. Dieses kann zum Beispiel sinnvoll sein, um 
Ausgabewerte oder Statusmeldungen während der Simulation in einer Datei abzulegen, 
die anschließend auch ohne erneuten Simulationsaufruf zur Verfügung stehen.

Grundsätzlich ist die binäre Ein-/Ausgabe und die Ein-/Ausgabe von Textdateien zu 
unterscheiden. Binäre Dateien enthalten die gespeicherten Werte in binärer Form wäh-
rend die gespeicherten Werte in Textdateien im ASCII-Code vorliegen und mithilfe eines 
Editors betrachtet und modifiziert werden können.

8.3.1	� Binäre Ein-/Ausgabe

Um auf eine Datei zugreifen zu können, muss in VHDL zunächst ein Dateidatentyp ange-
legt werden. Dies erfolgt mithilfe der Definition eines benutzerdefinierten Datentyps. 
Anschließend wird mithilfe dieses Datentyps ein sogenannter Dateideskriptor angelegt, 
welcher für alle weiteren Zugriffe auf die verwendet wird. Das nachfolgende Beispiel 
zeigt die erforderlichen Definitionen für eine Datei, die mit dem Datentyp integer arbeitet.

type my_file_type is file of integer;

file my_file : my_file_type;

Das eigentliche Öffnen der Datei erfolgt anschließend mithilfe der Prozedur file_
open(). Diese Prozedur erwartet vier Parameter. Der erste Parameter ist vom Datentyp 
FILE_OPEN_STATUS. Ihm wird der Status nach dem Öffnen der Datei zugewiesen. War 
das Öffnen der Datei erfolgreich, erhält der Parameter den Wert OPEN_OK. Für even-
tuelle Fehlerfälle stehen die Werte STATUS_ERROR, NAME_ERROR, MODE_ERROR 
zur Verfügung. Der zweite Parameter ist vom Datentyp FILE. Hier wird der zuvor defi-
nierte Dateidatentyp übergeben. Der Dateiname wird als dritter Parameter angeben. Ob 
die Datei zum Lesen oder Schreiben geöffnet wird, legt der vierte Parameter fest: Mit 
READ_MODE wird eine Datei zum Lesen geöffnet, während WRITE_MODE eine zu 
schreibende Datei öffnet. Sollen Daten an den Inhalt einer bestehenden Datei angehängt 
werden, wird als vierter Parameter APPEND_MODE verwendet.

http://dx.doi.org/10.1007/978-3-662-49731-9_7
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Ein mögliches Beispiel für das Öffnen einer Datei zeigt der nachfolgende 
Codeausschnitt:

file_open(my_file_status, my_file, "my_values.dat", WRITE_MODE);

Für die Ein-/Ausgabe stellt VHDL die Prozeduren read() und write() zur Verfügung. 
Als Parameter werden der Dateideskriptor und eine Variable übergeben, die den auszuge-
benden Wert enthält (write) oder welcher der eingelesene Wert zugewiesen wird (read).

Ein Beispiel wie in einem Prozess eine binäre Datei geöffnet und der Schreibzugriff 
realisiert wird, zeigt der nachfolgende Code:

process

   type my_file_type is file of integer;

   file my_file : my_file_type;

   variable cnt : integer:= 64;
   variable my_file_status : FILE_OPEN_STATUS;

begin

   -- Datei òffnen

   file_open(my_file_status, my_file, "my_values.dat", WRITE_MODE);

   if my_file_status = OPEN_OK then -- Datei erfolgreich geòffnet?
        for i in 1 to 10 loop

            write(my_file, cnt); -- Werte in die Datei schreiben

            cnt := cnt+1;
        end loop;

        file_close(my_file); -- Datei schließen

   end if;

   wait; -- Diesen Prozess mit einfacher Wait-Anweisung beenden

end process;

8.3.2	� Ein-/Ausgabe mit Textdateien

Während für die binäre Ein-/Ausgabe keine besonderen Pakete benötigt werden, muss 
für den Zugriff auf Textdateien das standardisierte Paket textio, welches ein Teil der 
Standardbibliothek std ist, mithilfe einer Use-Anweisung bekannt gemacht werden. 
Dieses Paket umfasst die textuelle Ein-/Ausgabe für die im VHDL-Standard definierten 
Datentypen. Sollen Daten vom Typ std_logic eingelesen oder ausgegeben werden, steht 
das zusätzliche Paket std_logic_textio aus der Bibliothek ieee zur Verfügung.

Die textuelle Ein-/Ausgabe erfolgt zeilenbasiert. So wird bei der Ausgabe zunächst 
eine Textzeile (vom Datentyp line) mit der Write-Prozedur beschrieben. Ist eine Text-
zeile erstellt, kann diese mit der Prozedur writeline() ausgeben werden. Entsprechendes 
gilt für die Eingabe: Zunächst wird eine Zeile mit der Prozedur readline() eingelesen und 
anschließend mithilfe der Read-Prozedur auf den Inhalt der Zeile zugegriffen.

8.3  Sprachelemente zur Verifikation
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Eine Besonderheit ist zu beachten, wenn Zeichenketten (strings) ausgegeben werden 
sollen. Die folgenden Zeilen würden zu einer Fehlermeldung führen:

write (my_line, "Hallo"); -- Fehler! Ist dies wirklich eine Zeichenkette?

write (my_line, "10010"); -- Auch falsch! String oder std_logic_vector?

                         -- oder etwas anderes ???

Bei der ersten Zeile ist es für einen Menschen sofort offensichtlich, dass es sich um 
eine Zeichenkette vom Datentyp string handelt. Bei der zweiten Zeile ist dies weniger 
offensichtlich. Schließlich könnte es sich beispielsweise auch um einen Wert vom Typ 
std_logic_vector handeln. Damit nun die korrekte Implementierung der Write-Prozedur 
aufgerufen werden kann, muss der Datentyp in diesem Fall explizit angeben werden. 
Dies gilt auch für die eigentlich für einen Menschen offensichtlichen Fälle. Die explizite 
Kennzeichnung des Datentyps erfolgt über einen sogenannten Type-Qualifier, dessen all-
gemeine Form wie folgt aussieht:

   <Datentyp>'(<Wert>)

Für die obigen Beispiele würde der korrekte Code also wie folgt lauten:

write (my_line, string'("Hallo")); -- Ok! Mit expliziter Typangabe …

write (my_line, string'("10010"));   -- … kann die richtige write-Funktion

                                   -- identifiziert werden

Ein Beispiel zur Verwendung der Textausgabe zeigt der nachfolgende Prozess.

process

   -- Fùr die Angabe des Dateityps kann der im textio-Paket definierte

   -- Datentyp text verwendet werden

   file my_txt_file : text;

   variable cnt     : integer:= 64;
   variable cnt_slv : std_logic_vector (7 downto 0);

   variable l       : line;

   variable my_file_status : FILE_OPEN_STATUS;

begin

   -- Datei òffnen

   file_open(my_file_status, my_txt_file, "my_values.txt", WRITE_MODE);

   if my_file_status = OPEN_OK then -- Datei erfolgreich geòffnet?
        for i in 1 to 5 loop

            write(l, cnt); -- Integer in die Datei schreiben

            write(l,string'(" "));

            cnt_slv := std_logic_vector(to_unsigned(cnt,8));
            write(l,cnt_slv); -- Wert als std_logic_vector schreiben
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            writeline(my_txt_file,l);

            cnt := cnt+1;
        end loop;

        file_close(my_txt_file); -- Datei schließen

   end if;

   wait; -- Prozess beenden

end process;

Die Simulation initialisiert die Variable cnt mit dem Wert 64. In einer Schleife wird 
cnt als Integer und std_logic_vector fünfmal ausgegeben und dabei jeweils um 1 erhöht. 
Nach Durchführung der Simulation würde die Datei my_values.txt den folgenden Inhalt 
besitzen:

64 01000000

65 01000001

66 01000010

67 01000011

68 01000100

Beim Einlesen von Dateien kommen den Funktionen endfile() und endline() eine 
wichtige Bedeutung zu. Ihnen wird als Parameter ein Dateideskriptor oder eine Zeile 
übergeben. Wenn der Rückgabewert (Typ: boolean) der Funktion den Wert true besitzt, 
wurde das Ende der Datei beziehungsweise der Zeile erreicht.

Mithilfe der vorgestellten Ein-/Ausgabekonzepte können auch Ein- und Ausgaben 
auf der Simulatorkonsole erfolgen. Hierfür sind die Symbole INPUT und OUTPUT 
vordefiniert:

write(l,string'("Hallo Konsole!"));

writeline(OUTPUT,l);

8.3.3	� Wait-Anweisungen in Testbenches

In den vorangegangenen Kapiteln wurde die Wait-Anweisung bereits eingeführt. Die 
Wait-Anweisung wurde verwendet, um sequenzielle Schaltungen vom einfachen D-Flip-
Flop bis hin zu komplexeren endlichen Automaten zu beschreiben. Zur Erinnerung ist 
hier noch einmal die VHDL-Beschreibung eines Prozesses angegeben, der die Funktion 
eines D-Flip-Flops realisiert:

process begin

   wait until rising_edge(clk);

   q <= d;
end process;

8.3  Sprachelemente zur Verifikation
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In diesem Beispiel wird die Ausführung unterbrochen bis eine bestimmte Bedingung, 
hier das Auftreten einer steigenden Flanke des Taktsignals clk, wahr ist. Für synthetisier-
baren VHDL-Code ist diese Form der Wait-Anweisung ist die am häufigsten verwendete 
Variante. Es gibt jedoch noch weitere Varianten der Wait-Anweisung, die insbesondere 
für die Erstellung von Testbenches nützlich sind. Die vier Varianten der Wait-Anweisung 
sind in Tab. 8.1 zusammengefasst.

Es ist zu beachten, dass Wait-Anweisungen und Sensitivitätslisten einander ausschlie-
ßen. Besitzt ein Prozess eine Sensitivitätsliste, darf er keine Wait-Anweisung enthalten. 
Wird dagegen eine Wait-Anweisung verwendet, darf der Prozess keine Sensitivitätsliste 
besitzen. Darüber hinaus darf synthetisierbarer Code nur eine einzelne Wait-until-Anwei-
sung pro Prozess enthalten. Testbench-Prozesse, die dagegen nur für die Simulation 
verwendet werden, dürfen beliebig viele Wait-Anweisungen enthalten. Mithilfe der Wait-
Anweisung kann eine Testbench auf recht einfache Weise erstellt werden. Der nachfol-
gende Abschnitt zeigt hierzu ein Beispiel.

8.3.4	� Testbench mit interaktiver Überprüfung

Eine Testbench besitzt keine Eingangs- oder Ausgangssignale. Daher kann die Entity 
sehr einfach realisiert werden. Sie besteht im Allgemeinen aus zwei Zeilen:

entity tb is

end;

Im Deklarationsteil der Architecture werden die Signale definiert, die an die Ein- und 
Ausgänge des zu überprüfenden Moduls angeschlossen werden. Im Anweisungsteil der 
Architecture wird der Prüfling instanziiert und es werden mithilfe eines Prozesses unter-
schiedliche Testvektoren an die zu testende Komponente angelegt.

Die Architecture einer Testbench für einen Encoder, welcher einen 4-Bit-Binärwert in 
ein 7-Bit-Codewort für eine Sieben-Segment-Anzeige umsetzt, kann wie folgt realisiert 
werden:

Tab. 8.1   Formen der Wait-Anweisung

Struktur Beispiel Erläuterung

wait; wait; „Für immer warten“: Der Prozess wird unterbro-
chen und nie fortgesetzt

wait for <Zeitangabe>; wait for 10 ns; Prozessunterbrechung für einen bestimmten 
Zeitraum

wait on <Signalliste>; wait on A, B; Prozessunterbrechung bis ein Wechsel eines Sig-
nals der Signalliste detektiert wird

wait until <Bedingung>; wait until A = B; Unterbrechung des Prozesses bis die angegebene 
Bedingung wahr ist
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architecture tb_arch of tb is

   signal bin_val : std_logic_vector(3 downto 0);

   signal sev_seg_code : std_logic_vector(6 downto 0);

begin

   dut : entity work.bin2sevenseg -- DUT: Device Under Test

   port map (

        bin      => bin_val,
        sevenseg => sev_seg_code);

   process begin -- Prozess zum Anlegen der Stimuli

        bin_val <= "0000";
        wait for 10 ns; -- Kurze Wartezeit

        bin_val <= "0001";
        wait for 10 ns;

        bin_val <= "0010";
        wait for 10 ns;

        -- Hier ggf. weitere Stimuli

        wait; -- Test durchlaufen. Der Prozess kann beendet werden.

   end process;

end;

Da die Testbench keine Überprüfung der Ausgabewerte des Prüflings vornimmt, muss 
die Korrektheit durch eine manuelle Überprüfung der erzeugten Waveform erfolgen. 
Dieses Vorgehen besitzt den Vorteil, dass der Testbench-Code auf die Erzeugung von Sti-
muli beschränkt bleibt und daher relativ einfach zu realisieren ist. Ein Nachteil ist, dass 
bei der Überprüfung ein mögliches Fehlverhalten des zu testenden Moduls übersehen 
werden könnte.

8.3.5	� Testbench mit Assert-Anweisungen

Sind die erwarteten Ausgabewerte des Prüflings bekannt, kann die Verifikation im Rah-
men auch durch die Testbench selbst erfolgen. Hierzu kann die Assert-Anweisung ein-
gesetzt werden. Diese Anweisung überprüft während der Simulation eine angegebene 
Bedingung. Ist diese nicht erfüllt, wird eine Meldung ausgegeben. Der Schweregrad der 
Verletzung der angegebenen Bedingung kann explizit angegeben werden. Zur Auswahl 
stehen hierbei note, warning, error und failure. Welcher Schweregrad zu einem Abbruch 
der Simulation führt, kann mithilfe der Aufrufparameter des Simulators ausgewählt wer-
den. Erfolgt keine Auswahl, führen in der Regel die Schweregrade error und failure zu 
einem Abbruch der Simulation.

Die folgenden Beispiele zeigen den typischen Aufbau von Assert-Anweisungen:
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-- Signal a wird gegen einen erwarteten Wert a_exp getestet

assert a /= a_exp report "Fehler in der Simulation" severity error;

-- Eine Warnung ausgeben falls der Wert von i 10 ùberschreitet

assert i <= 10 report "i ist groesser als 10" severity warning;

-- Eine Simulation mit Hilfe der Assert-Anweisung beenden

assert false report "Simulation wird beendet" severity failure;

Die Verwendung der Assert-Anweisung für die Verifikation eines UND-Gatters zeigt 
der folgende Code. Die erwarteten Ausgabewerte werden in der Variablen q_expected 
abgelegt und mit den Ausgabewerten des Prüflings verglichen. Die Variable q_expected 
beschreibt, dass die erwartete Ausgabe für die Eingangswerte 00, 01 und 10 jeweils 0 ist. 
Nur für die Eingabe 11 wird am Ausgang des UND-Gatters eine 1 erwartet. Tritt ein Feh-
ler auf, wird mithilfe einer Assert-Anweisung eine entsprechende Meldung ausgegeben.

process

   variable i_sv       : std_logic_vector (1 downto 0);

   variable q_expected : std_logic_vector (3 downto 0) := "1000";
begin

   for i in 0 to 3 loop

        i_sv := std_logic_vector(to_unsigned(i,2));
        a <= i_sv(0);
        b <= i_sv(1);
        wait for 10 ns;

        assert q = q_expected(i) report "Fehler!" severity error;
   end loop;

   wait;

end process;

Die Anwendung der Assert-Anweisung ist nicht auf Testbench-Code beschränkt. 
Auch in synthetisierbaren VHDL-Beschreibungen können Assert-Anweisungen einge-
setzt werden, um beispielsweise das Einhalten eines erwarteten Wertebereichs zu über-
prüfen. Bei der Synthese der VHDL-Beschreibung wird aus den Assert-Anweisungen 
keine Hardware generiert. Sie werden vom Syntheseprogramm ignoriert.

8.3.6	� Testbench mit Dateiein-/-ausgabe

Häufig entsteht bei dem Entwurf eines digitalen Systems der Wunsch Stimuli oder 
erwartete Ausgabewerte aus Dateien einzulesen oder Ausgaben der Simulation in einer 
Datei abzulegen. Dieses Vorgehen hat verschiedene Vorteile:

•	 Die Stimuliwerte sind übersichtlich in einer Datei zusammengefasst und können 
leicht geändert werden.
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•	 Stimuli- und Erwartungswerte können rechnergestützt erstellt werden. Dies ist insbe-
sondere dann interessant, wenn ein funktionales Modell des zu entwerfenden Systems 
in einer Hochsprache (meist C/C++) erstellt wurde.

•	 Simulationen benötigen keine interaktiven Eingriffe.
•	 Die Simulationsergebnisse können rechnergestützt ausgewertet werden.
•	 Stimuli und Resultate einer Simulation liegen in einfach lesbarer Form vor und kön-

nen zu Dokumentationszwecken aufbewahrt werden.

Diesen Vorteilen steht gegenüber, dass der Aufwand zum Erstellen einer Testbench 
größer ist als bei den zuvor skizzierten Ansätzen. In vielen Fällen kann der zusätzliche 
Aufwand gering gehalten werden, wenn eine bereits zuvor eingerichtete Testbench wie-
derverwendet werden kann und nur leicht abgewandelt werden muss.

Der nachfolgende Code stellt eine komplette Testbench mit Dateiein-/-ausgabe für ein 
einfaches logisches Gatter dar. Der Code lässt sich auch auf komplexere Problemstellun-
gen erweitern.

use std.textio.all; -- bei Benutzung der Standard-Bibliothek

                    -- ist keine Library-Anweisung erforderlich

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use ieee.std_logic_textio.all;

entity tb is

end;

architecture tb_arch of tb is

   signal bin_val : std_logic_vector(3 downto 0);

   signal sev_seg_code : std_logic_vector(6 downto 0);

begin

   dut : entity work.bin2sevenseg -- DUT: Device Under Test

        port map (

            bin      => bin_val,
            sevenseg => sev_seg_code);

process -- Prozess zum Anlegen von Stimuli und zum Ueberprufen

        -- der Ausgabewerte des „device under test (DUT)"

   file stimuli_file         : text; -- Filedeskriptoren anlegen

   file resultat_file        : text;

   variable stim_file_status : FILE_OPEN_STATUS; -- Filestatus

   variable res_file_status  : FILE_OPEN_STATUS;

   variable l                : line; -- Variable vom Typ line fuer 

Text-IO
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   variable stim             : std_logic_vector(3 downto 0);

   variable exp              : std_logic_vector(6 downto 0);

   variable wait_time        : time;

   variable errors_detected  : natural := 0;
begin

   -- Dateien òffnen

   file_open(stim_file_status, stimuli_file, "stimuli.txt", READ_MODE);

   file_open(res_file_status, resultat_file, "result.txt", WRITE_MODE);

   -- Dateien erfolgreich geòffnet?

   if stim_file_status = OPEN_OK and res_file_status = OPEN_OK then

        while not endfile(stimuli_file) loop -- Dateiende?

            readline(stimuli_file,l); -- Eine Zeile lesen

            read(l,stim); -- Stimuli lesen

            bin_val <= stim;
            read(l,wait_time); -- Wartezeit lesen

            wait for wait_time; -- Warten

            read(l,exp); -- Erwarteten Ausgabewert lesen

            write (l,stim); -- Stimuli und Ausgabewerte

            write (l,string'(" ")); -- in Resultat-Datei schreiben

            write (l,sev_seg_code);

            write (l,string'(" "));

            assert sev_seg_code = exp
                    report "Simulation error detected" severity warning;

            if sev_seg_code = exp then -- in Resultat-Datei schreiben
                 write (l,string'("Ok"));

            else

                 write (l,string'("Error -- Expected: "));

                 write (l,exp);

                   errors_detected := errors_detected + 1; -- Fehlerzaehler+1
            end if;

            writeline(resultat_file,l);

        end loop;

        -- Am Ende der Simulation den Fehlerzaehler ausgeben

        write (l,string'("--------"));

        writeline(resultat_file,l);

        write (l,string'("Total Error Count: "));

        write (l,errors_detected);

        writeline(resultat_file,l);

        write (l,string'("--------"));

        writeline(resultat_file,l);

        file_close(stimuli_file); -- Dateien schliessen

        file_close(resultat_file);

   end if;
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   -- Simulation mit Assert-Anweisung beenden

   assert false report "Simulation finished." severity failure;

end process;

end;

Die Stimulidatei stimuli.txt besitzt ein recht übersichtliches zeilenorientiertes Format. 
In einer Zeile stehen zunächst die Stimuliwerte. Daran schließt sich die Angabe der Zeit 
an, die zwischen Anlegen der Stimuliwerte und Auswertung der Ausgangswerte verge-
hen soll. Am Ende der Zeile ist der erwartete Ausgabewert des Prüflings angegeben.

0000 10 ns 0111111

0001 10 ns 0000110

0010 10 ns 1011011

0011 10 ns 1001111

0100 10 ns 1100110

0101 10 ns 1101101

0110 10 ns 1111101

0111 10 ns 0000111

1000 10 ns 1111111

1001 10 ns 1101111

1010 10 ns 1110111

1011 10 ns 1111100

1100 10 ns 0111001

1101 10 ns 1011110

1110 10 ns 1111001

1111 10 ns 1110001

Die durch die Simulation erzeugte Ergebnisdatei sieht beispielsweise wie folgt aus:

0000 0111111 Ok

0001 0000110 Ok

0010 1011011 Ok

0011 1001111 Ok

0100 1100110 Ok

0101 1101101 Ok

0110 1111101 Ok

0111 0000101 Error -- Expected: 0000111

1000 1111111 Ok

1001 1101111 Ok

1010 1110111 Ok

1011 1111100 Ok

1100 0111001 Ok

1101 1011110 Ok

8.3  Sprachelemente zur Verifikation
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1110 0000001 Error -- Expected: 1111001

1111 1110001 Ok

--------

Total Error Count: 2

--------

8.4	� Übungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Prüfen Sie sich selbst mit den folgenden 
Aufgaben. Am Ende des Buches finden Sie die Lösungen.

Sofern nicht anders vermerkt, ist nur eine Antwort richtig.

Aufgabe 8.1
Ein Taktsignal soll mithilfe des VHDL-Signals clk modelliert werden. Die Frequenz des 
Taktsignals beträgt 100 MHz. Welche der folgenden Codezeilen ist korrekt?

a)	 clk <= not clk;
b)	 clk <= not clk after 5 ns
c)	 clk <= clk after 10 ns
d)	 clk <= not clk after 10 ns

Aufgabe 8.2
Welche Aussagen über die Datentypen std_logic und std_ulogic sind korrekt? (Mehrere 
Antworten sind richtig)

a)	 Der Datentyp std_logic besitzt eine „Auflösungsfunktion“ (resolution function), der 
Datentyp std_ulogic dagegen nicht.

b)	Ein Signal vom Datentyp std_ulogic wird zu Beginn einer Simulation immer auf ‘Uʼ 
(undefined) gesetzt. Ein Signal vom Datentyp std_logic erhält zu Beginn der Simula-
tion immer den Wert ‘0ʼ.

c)	 Die beiden Datentypen sind Teil des VHDL-Standards. Daher können sie auch ohne 
die Verwendung von Library- und Use-Anweisungen in VHDL-Beschreibungen ein-
gesetzt werden.

d)	Erfolgen Zuweisungen an ein Signal vom Datentyp std_logic aus zwei Prozessen her-
aus, führt dies in der Simulation nicht zu einer Fehlermeldung.

Aufgabe 8.3
Welche Aussage über die Generics sind korrekt?

a)	 Bei der Instanziierung eines Moduls können auch Signale an die Generics „ange-
schlossen“ werden.
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b)	Die Werte, die an die Generics übergeben werden, müssen zur Übersetzungszeit bere-
chenbar (zum Beispiel Konstanten) sein.

c)	 Generics sind immer vom Datentyp integer.
d)	Wird ein Generic verwendet, muss bei der Instanziierung des entsprechenden Moduls 

dem Generic immer ein Wert zugewiesen werden.

Aufgabe 8.4
Wie kann ein Prozess mithilfe der Wait-Anweisung (für immer) beendet werden?

a)	 wait forever;
b)	wait;
c)	 wait until ();
d)	wait on;

Aufgabe 8.5
Was gilt für Prozesse in Testbenches?

a)	 Eine Testbench darf nur einen einzelnen Prozess beinhalten.
b)	Testbench-Prozesse dürfen mehrere Wait-Anweisungen beinhalten.
c)	 Testbench-Prozesse dürfen eine Sensitivitätsliste besitzen und gleichzeitig eine Wait-

Anweisung beinhalten.
d)	Testbench-Prozesse dürfen nur synthetisierbaren Code beinhalten.

Aufgabe 8.6
Gegeben ist der nachfolgende VHDL-Prozess.

process

   file my_file : text;

   variable my_f_status : FILE_OPEN_STATUS;

   variable l : line;

   variable slv : std_logic_vector (3 downto 0);

begin

   file_open(my_f_status, my_file, "test.txt", WRITE_MODE);

   if my_f_status = OPEN_OK then
        for i in 1 to 5 loop

            write (l,i);

            write (l,string'(" "));

            slv := std_logic_vector(to_unsigned(i,4));
            write (l,slv);

            writeline(my_file,l);

        end loop;

   end if;

   wait;

end process;

8.4  Übungsaufgaben
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Welche Ausgabe erwarten Sie in der Datei test.txt?
a.

1

2

3

4

5

b.

1 001

2 010

3 011

4 100

5 101

c.

1 0001

2 0010

3 0011

4 0100

5 0101

d.

1

0001

2

0010

3

0011

4

0100

5

0101
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In Kapitel 7 wurden programmierbare Logikbausteine bereits kurz vorgestellt. Diese 
Bausteine zeichnen sich dadurch aus, dass ihre logische Funktion durch den Anwender 
festgelegt werden kann. Viele programmierbare Logikbausteine lassen sich mehrfach pro-
grammieren, so dass sich eventuelle Designfehler innerhalb kurzer Zeit durch eine Neu-
programmierung beheben lassen. Ebenso können beispielsweise auch Änderungen der 
Spezifikation des Zielsystems selbst in späten Phasen des Entwicklungsprozesses eingear-
beitet werden. Auf Grund dieser Vorteile haben sich programmierbare Logikbausteine in 
vielen Bereichen durchgesetzt. Mit einigen dieser Bausteine lassen sich nur wenige Gatter 
ersetzen, andere ermöglichen dagegen die Realisierung von komplexen digitalen Systemen.

Zur Beschreibung der gewünschten logischen Funktion wird meist VHDL verwendet. 
Der VHDL-Code wird von Software-Tools, die teilweise kostenlos von den Baustein-
Herstellern zur Verfügung gestellt werden, interpretiert und für den Zielbaustein opti-
miert. Das Ergebnis ist eine binäre Datei, die auf die programmierbare Logikkomponente 
geladen wird. Erst durch diesen Programmiervorgang erhält der Baustein seine finale 
digitale Funktion.

Die Preise der Bausteine unterscheiden sich erheblich: Während einfache Bausteine 
für wenige Cent erworben werden können, müssen für komplexere Bausteine zwei- oder 
dreistellige Eurobeträge aufgebracht werden. Auch für extrem komplexe Spezialanwen-
dungen stehen Bausteine zur Verfügung. Da diese Bausteine jedoch eine relativ große 
Siliziumfläche benötigen und sie nur in relativ kleinen Stückzahlen verkauft werden, 
erreichen die Preise dieser Komponenten vier- oder sogar fünfstellige Eurobeträge.

Auch wenn der Begriff Programmierbarkeit eine Nähe zu Software-Programmen 
nahelegt, handelt es sich dennoch um unterschiedliche Konzepte. Ein Software-Pro-
gramm wird auf einen Computer geladen und dann sequenziell vom Prozessor des Rech-
ners ausgeführt. Im Fall programmierbarer Logik wird zwar auch die Information über 
die auszuführende Funktion auf den Baustein geladen, die Ausführung dieser Funktion 
geschieht jedoch direkt in Hardware und nicht durch eine sequenzielle Interpretation 
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der Befehle eines Computerprogramms. Um den Unterschied der Konzepte deutlich 
zu machen, werden programmierbare Logikbausteine auch als konfigurierbare Logik 
bezeichnet.

Im Rahmen der folgenden Abschnitte werden zunächst die technischen Grundkon-
zepte programmierbarer Logikbausteine erläutert. Diese werden anschließend aufgegrif-
fen und es werden unterschiedliche Typen programmierbarer Logikbausteine vorgestellt.

9.1	� Grundkonzepte programmierbarer Logik

Für die Realisierung eines Bausteins, dessen Funktion erst durch den Anwender festge-
legt wird, können zwei grundlegende Konzepte verfolgt werden, die im Folgenden näher 
erläutert werden.

9.1.1	� Zweistufige Logik

Eine beliebige kombinatorische Funktion lässt sich mithilfe des KV-Diagramms – oder bei 
komplexeren Funktionen mithilfe eines geeigneten Computerprogramms – in eine zwei-
stufige Darstellung überführen. Wird beispielsweise eine disjunktive Darstellung der Funk-
tion angestrebt, besteht die erste Logikstufe aus UND-Verknüpfungen während in einer 
zweiten Stufe ODER-Verknüpfungen verwendet werden. Um einen Baustein zu realisie-
ren, dessen logische Funktion vom Anwender in disjunktiver Form programmiert werden 
kann, muss dieser Baustein also eine zweistufige UND-/ODER-Struktur enthalten. Durch 
die Auswahl, ob ein Eingangssignal in der UND-Stufe berücksichtigt wird, können die 
Produktterme der gewünschten Funktion in der UND-Stufe realisiert werden. Die Produkt-
terme werden mit der ODER-Stufe zum Ausgangssignal der Funktion zusammengefasst.

Um die Auswahl der zu berücksichtigenden Eingangssignale und Produktterme zu 
ermöglichen, werden neben UND- und ODER-Gattern elektrische Schalter benötigt, die 
die Eingangssignale beziehungsweise Produktterme mit den Eingängen der Gatter ver-
binden. Soll ein Gattereingang unberücksichtigt bleiben, wird der Schalter so program-
miert, dass eine logische 1 (bei UND-Gattern) beziehungsweise eine logische 0 (bei 
ODER-Gattern) zugeführt wird.

Die Grundstruktur eines solchen programmierbaren Logikbausteins ist in Abb. 9.1 
dargestellt. Der Baustein besitzt die drei Eingänge X1, X2 und X3. Die an diesen Ein-
gängen anliegenden Signale können den UND-Gattern negiert oder nicht-negiert zuge-
führt werden. In dem dargestellten Beispiel können mithilfe der beiden UND-Gatter 
insgesamt zwei Produktterme gebildet werden. Wird nur ein Term benötigt, kann einer 
der Eingänge des nicht benötigten UND-Gatters auf Null gesetzt werden. Auf diese 
Weise wird sichergestellt, dass der Ausgang des UND-Gatters, unabhängig von den Wer-
ten der anderen Eingänge, den Wert 0 besitzt und somit in der nachfolgenden ODER-
Stufe nicht berücksichtigt wird.
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Mit der in Abb. 9.1 gezeigten Beispielprogrammierung werden die Terme P1 und P2 
durch die folgenden logischen Gleichung beschrieben:

beziehungsweise

Damit ergibt sich der Ausgangswert für Y zu

Mithilfe der dargestellten Schaltung lassen sich beliebige kombinatorische Funktionen 
realisieren, wenn diese maximal drei Eingangsvariablen besitzen und sie sich mithilfe 
von maximal zwei Termen beschreiben lassen.

Um auch komplexere logische Funktionen realisieren zu können, kann die Grund-
schaltung mit mehr UND-Gattern ausgestattet werden. Sollen darüber hinaus auch 
mehrere Ausgangssignale gleichzeitig berechnet werden, werden weitere ODER-Gat-
ter hinzugefügt. Es ist nachvollziehbar, dass eine vollständige grafische Darstellung 
eines solchen Bausteins schnell unübersichtlich werden kann. Daher wird häufig eine 
kompaktere Darstellung gewählt, bei der die Eingänge der UND-Gatter in einem ein-
zelnen Strich zusammengefasst werden. Hierbei entfällt auch die explizite Darstellung 
der Schalter. Diese werden durch Punkte ersetzt. Ein gesetzter Punkt deutet an, dass 

P1 = X1&X2&X3

P2 = X2&X3

Y = P1 ∨ P2 = (X1&X2&X3) ∨ (X2&X3)

Abb. 9.1   Struktur 
eines zweistufigen 
programmierbaren 
Logikbausteins mit 3 
Eingängen und einem Ausgang

111

X1 X2 X3

"1"

&

&

1

"0"

"0"

Y

P1

P2
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der zugehörige Schalter so programmiert ist und damit eine Verbindung zwischen dem 
jeweiligen Eingangssignal und der UND-Stufe hergestellt ist. Fehlt der Punkt dagegen, 
liegt an dem zugehörigen Eingang des UND-Gatters eine 1 an.

Für das obige Beispiel ist die kompakte Darstellung in Abb. 9.2 abgebildet.
Das in diesem Abschnitt vorgestellte Grundprinzip wird bei sogenannten Programma-

ble Logic Devices (PLDs) verwendet, die in den Abschn. 9.2 und 9.3 näher vorgestellt 
werden. Ist neben dem UND-Array auch das ODER-Feld programmierbar, wird meist 
der Begriff Programmable Logic Arrays (PLA) verwendet.

Der Vorteil des programmierbaren ODER-Feldes eines PLAs ist es, dass die Pro-
duktterme allen ODER-Verknüpfungen zugeführt werden. Wird ein Produktterm für 
die Berechnung von mehr als einem Ausgang benötigt, muss der Term daher nur einmal 
durch die entsprechende UND-Verknüpfung gebildet werden. Dieser Vorteil der PLA-
Struktur muss mit der Programmierbarkeit des ODER-Feldes erkauft werden, was letzt-
lich zu einem höheren Flächenbedarf des Bausteins und damit zu höheren Kosten führt.

Ein Beispiel soll die mehrfache Verwendung eines Produktterms verdeutlichen: Es 
werden die Funktionen

Y1 = P1 ∨ P2 = (X1&X2&X3) ∨ (X2&X3)

Abb. 9.2   Beispiel 
eines programmierbaren 
Logikbausteins in kompakter 
grafischer Darstellung
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Abb. 9.3   Programmierbarer 
Logikbaustein mit mehrfach 
verwendetem Produktterm 1
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und

mithilfe eines PLAs realisiert.
Die Programmierung des PLAs kann dann wie in Abb. 9.3 dargestellt realisiert 

werden.

9.1.2	� Tabellenbasierte Logikimplementierung

Eine logische Funktion kann auch durch eine Tabelle definiert werden, welche die mög-
lichen Eingangswerte mit den zugehörigen Ausgangswerten auflistet. Diese tabellarische 
Darstellungsform kann für eine direkte Implementierung in Hardware verwendet wer-
den. Als Grundelemente werden in diesem Fall statt Gatter sogenannte Lookup-Tabellen 
(engl. look-up table, LUT) verwendet. Eine Lookup-Tabelle ist ein kleiner Speicher in 
dem für alle Eingangskombinationen die jeweiligen Ausgangswerte abgelegt sind.

Besitzt die LUT beispielsweise vier Eingänge, müssen für die Implementierung der 
Tabelle 16 Speicherstellen bereitgestellt werden. Die Auswahl, welche der gespeicherten 
Werte am Ausgang erscheint, erfolgt durch Anlegen eines 4 bit breiten Wertes an die Ein-
gänge der LUT.

Möchte man eine LUT aus digitalen Grundelementen aufbauen, kann dies beispiels-
weise mithilfe von D-Flip-Flops und einem Multiplexer erfolgen. Ein Beispiel für eine 
Realisierung einer solchen LUT ist in Abb. 9.4 dargestellt. Dabei wird auf eine genauere 
Darstellung der Logik zum Schreiben der gespeicherten Werte aus Gründen der Über-
sichtlichkeit verzichtet.

Y2 = P1 ∨ P3 = (X1&X2&X3) ∨ (X1&X2)

Abb. 9.4   Implementierung 
einer Lookup-Tabelle mit 
D-Flip-Flops
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Auch mithilfe einer LUT-basierten Implementierung lassen sich also beliebige logi-
sche Funktionen realisieren, sofern die Anzahl der LUT-Eingänge ausreichend groß 
gewählt ist.

In Abb. 9.5 ist die Realisierung eines UND- und eines ODER-Gatters auf Basis der 
LUT mit zwei Eingängen dargestellt. Für alle möglichen Kombinationen der Eingänge 
I0 und I1 werden die entsprechenden Ausgangswerte in den Flip-Flops abgespeichert 
(0,0,0,1 für ein UND-Gatter und 0,1,1,1 für ein ODER-Gatter). Der Multiplexer wählt 
anhand der Eingangswerte I0 und I1 einen der vier Flip-Flop-Ausgänge aus. In dem Bei-
spiel in Abb. 9.5 liegen am Eingang der LUT die Werte 1 und 0 an. Hiermit wird das 
zweite Flip-Flop ausgewählt, in dem im Fall einer UND-Verknüpfung eine 0 beziehungs-
weise im Fall eines ODER-Gatters eine 1 abgelegt ist.

Besitzt die zu realisierende Funktion mehr Eingänge als die verwendeten LUTs, 
müssen mehrere LUTs durch Parallelschaltung und Kaskadierung kombiniert werden. 
Welche LUTs wie kombiniert werden müssen, hängt von der zu implementierenden logi-
schen Funktion ab.

Ein programmierbarer Logikbaustein auf Basis von LUTs muss also neben den pro-
grammierbaren LUTs auch konfigurierbare Verbindungen zwischen den einzelnen LUTs 
zur Verfügung stellen. So können dann auch komplexe Funktionen, bei denen mehrere 
LUTs kombiniert werden müssen, mithilfe des Bausteins realisiert werden.
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Abb. 9.5   LUT-basierte Realisierung eines UND- und eines ODER-Gatters



269

Das in diesem Abschnitt skizzierte Prinzip der LUT-basierten Implementierung in 
Kombination mit einem programmierbaren Verdrahtungskonzept setzen die Field Pro-
grammable Gate Arrays (FPGA) ein. Reale FPGAs realisieren die Speicherelemente der 
LUTs zur Reduktion der benötigten Chipfläche auf Basis von speziellen Speichertechno-
logien (zum Beispiel SRAM). Eine detailliertere Diskussion der FPGA-Technologie ist 
in Abschn. 9.4 zu finden.

9.2	� Simple Programmable Logic Device (SPLD)

Die ersten programmierbaren Bausteine wurden bereits 1971 von der Firma Monoli-
thic Memories Inc. entwickelt und unter dem Namen PAL (Programmable Array Logic) 
vermarktet. Heute werden diese Bausteine und ihre Nachfolger  häufig auch als Simple 
Programmable Logic Device (SPLD)  bezeichnet. Mit diesen Bausteinen lassen sich 
kombinatorische Schaltungen in disjunktiver Form realisieren.

Die Eingangssignale werden hierzu in einer Eingangsstufe verstärkt und in negierter 
und nicht-negierter Form für die weitere Verarbeitung zur Verfügung gestellt. Die auf-
bereiteten Eingangsgrößen werden einem UND-Array zugeführt, welches die benötigten 
Produktterme berechnet. Eine feste Verdrahtung der UND-Ausgänge mit den ODER-
Eingängen sorgt für die gewünschte disjunktive Verknüpfung der Produktterme. Die 
Grundstruktur eines PALs entspricht also den in Abschn. 9.1.1 dargestelltem Ansatz 
einer zweistufigen disjunktiven Logikimplementierung, bei der die Programmierbarkeit 
durch konfigurierbare Verbindungen im UND-Array erreicht wird, während das ODER-
Feld festverdrahtet ist.

Darüber hinaus bieten die Bausteine die Möglichkeit, einige der Ausgänge wahlweise 
auch als Eingang zu nutzen. So können auch komplexere Funktionen, die eine höhere 
Anzahl an Eingangssignalen benötigen, mithilfe des Bausteins realisiert werden. Die 
Ausgänge werden hierzu mit Tri-State-Treibern versehen, deren Ausgänge durch eine 
entsprechende Programmierung des Bausteins in einen hochohmigen Zustand versetzt 
werden können. An diesen Anschlüssen können dann Eingangssignale angelegt werden, 
deren Werte ebenfalls im UND-Feld verarbeitet werden können.

Die Grundstruktur eines PAL-Bausteins mit Eingängen (I), Ausgängen (O) und Ein-/
Ausgängen (I/O) ist in Abb. 9.6 dargestellt.

Da mithilfe derartiger Bausteine auch endliche Automaten realisiert werden sollen, ist 
es sinnvoll, die hierfür notwendigen Register auf dem Chip vorzusehen. Daher wurden 
neben PALs mit der in Abb. 9.6 gezeigten Struktur auch Bausteine entwickelt, die bereits 
D-Flip-Flops enthalten. Die Grundstruktur eines solchen Bausteins zeigt Abb. 9.7.

Eine besondere Eigenschaft von PALs ist es, dass eine einmal programmierte Funk-
tion nicht modifiziert werden kann. Dieser Nachteil wurde mithilfe der sogenannten 
GALs (Generic Array Logic) vermieden. Das Grundprinzip dieser Bausteine ist aller-
dings sehr ähnlich. Teilweise können GALs auch als Ersatz für PALs eingesetzt werden.

9.2  Simple Programmable Logic Device (SPLD)
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Die Bedeutung von PALs und GALs ist in den letzten Jahren zurückgegangen und sie 
werden in Neuentwicklungen meist nicht mehr eingesetzt. Obwohl die Bausteine noch 
angeboten werden, haben einige Hersteller die Bausteinfamilien bereits abgekündigt. 
Statt der PALs werden heute meist die im nachfolgenden Abschnitt vorgestellten CPLDs 
verwendet (Tab. 9.1).

Abb. 9.6   Struktur eines PAL-
Bausteins I1

UND/ODER-

Feld

Ik

EN
I/O1

EN
I/Om

EN
O1

EN
On

Abb. 9.7   Grundstruktur 
eines programmierbaren 
Logikbausteins mit UND/
ODER-Struktur und Registern

I1

UND/ODER-
Feld

Ik

EN
I/O11D

C1

Q

EN
I/Om1D

C1

Q

Clk

Tab. 9.1   Beispiele einiger PAL-Bausteine

Bezeichnung Anzahl Eingänge Anzahl Ein-/Ausgänge Anzahl Minterme je Ausgang
Ohne Register Mit Registern

PAL16L8 10 8 0 7

PAL16R4 8 4 4 7

PAL16R8 8 0 8 7

PAL20R8 12 0 8 8
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9.3	� Complex Programmable Logic Device (CPLD)

Eine Weiterentwicklung des PLA-Konzeptes stellen die sogenannten Complex Pro-
grammable Logic Devices (CPLDs) dar. Viele dieser Bausteine bedienen sich dem 
PLA-Konzept und kombinieren mehrere PLA-Blöcke mit einer programmierbaren Ver-
bindungsmatrix, die es ermöglicht, die Ausgänge eines PLA-Blocks mit den Eingängen 
eines anderen Blocks zu verbinden. Auf diese Weise ist die Implementierung der logi-
schen Funktion nicht allein auf die disjunktive Form beschränkt. Es können auch meh-
rere disjunktive Stufen kaskadiert werden. Dies kann insbesondere bei komplexeren 
Funktionen zu einer günstigeren Realisierung führen.

Die Grundstruktur eines CPLDs ist in Abb. 9.8 dargestellt. Neben den programmierba-
ren UND/ODER-Strukturen (PLA) besitzen CPLDs sogenannte Makrozellen (Macro Cell, 
MC). Die Makrozellen können als eine Erweiterung der Registerstufen einfacher PLA-
Bausteine aufgefasst werden. Der schematische Aufbau der Makrozelle eines CPLDs der 
Coolrunner-II-Serie (Fa. Xilinx) ist in Abb. 9.9 dargestellt. Der Kern der Makrozelle ist 
ein D-Flip-Flop, dessen D-Eingang mit der PLA-Struktur verbunden ist. Mithilfe eines 
Exklusiv-Oder-Gatters kann entschieden werden, ob der durch die UND/ODER-Struktur 
berechnete Term nicht-invertiert oder invertiert an das D-Flip-Flop weitergereicht wird. 
Die Rückführung des Terms in die Verbindungsmatrix kann sowohl asynchron (Abgriff 
vor dem Flip-Flop) oder synchron (Abgriff hinter dem Flip-Flop) erfolgen. Ebenso kann 
für die Ausgabe eines Wertes ausgewählt werden, ob diese asynchron oder synchron erfol-
gen soll. Das Flip-Flop der dargestellten Makrozelle besitzt Enable-, Set- und Reset-Ein-
gänge, die ebenfalls mithilfe der PLA-Struktur angesteuert werden.

In der Praxis stellt sich die Frage, welcher CPLD-Baustein zur Lösung eines konkret 
vorliegenden Problems geeignet ist. Neben der benötigten Anzahl an Ein- und Ausgängen 
spielt hierbei auch die Frage, wie viele Gatter durch ein bestimmtes CPLD ersetzt werden 
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Abb. 9.8   Struktur eines CPLDs auf PLA-Basis

9.3  Complex Programmable Logic Device (CPLD)



272 9  Programmierbare Logik

können, eine wichtige Rolle. Die Antwort auf diese Fragestellung lässt sich häufig nicht 
alleine durch den Blick auf die Architektur eines CPLDs beantworten. Passt die zu imple-
mentierende Funktion nur schlecht zu der im CPLD-Baustein vorgegebenen Struktur, 
wird die Realisierung ineffizient sein, so dass viele Teile der verfügbaren CPLD-Res-
sourcen nicht genutzt werden können. Daneben hat auch die Effizienz der Synthesepro-
gramme, die zum Umsetzen der in VHDL beschriebenen Funktion verwendet werden, 
einen nicht unerheblichen Einfluss auf das Ergebnis. In der Praxis wird man daher, sofern 
nicht auf Erfahrungswerte aus ähnlich gelagerten Fällen zurückgegriffen werden kann, 
vor der finalen Auswahl eines CPLD Bausteins mehrere Syntheseläufe ausführen, um so 
den Ressourcenverbrauch für unterschiedliche Bausteine abschätzen zu können.

Tab. 9.2 fasst exemplarisch einige wichtige Parameter der CPLD-Familie CoolRun-
ner-II der Firma Xilinx zusammen.

CPLDs werden von mehreren Herstellern angeboten. Die wichtigsten sind Xilinx, 
Altera, Lattice, MicroSemi und Atmel. Einige Anbieter, wie die Firmen Altera oder Lat-
tice, setzen als Alternative zu dem hier vorgestellten PLA-basierten Konzept eine LUT-
basierte Realisierung ein, die bis vor einigen Jahren hauptsächlich im Bereich der im 
nachfolgenden Abschnitt beschriebenen FPGAs zu finden war.
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Abb. 9.9   Schematischer Aufbau einer Makrozelle

Tab. 9.2   Parameter der CPLD-Familie CoolRunner-II (Xilinx)

Baustein
XC2C32A XC2C64A XC2C128 XC2C256 XC2C384 XC2C512

Makrozellen 32 64 128 256 384 512

Max. I/Os 33 64 100 184 240 270

Max. Taktfrequenz 
Fsystem (MHz)

323 263 244 256 217 179
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Um einen Vergleich mit PLA-basierten CPLDs zu unterstützen geben die Hersteller 
zum Teil an, wie vielen Makrozellen ein CPLD entspricht. Als ein Beispiel hierfür sind 
in Tab. 9.3 einige Parameter der MAX V Serie der Firma Altera angegeben. Das Kernele-
ment dieser CPLDs ist ein Logic Element (LE). Ein Logic Element enthält eine LUT mit 
4 Eingängen, ein Flip-Flop sowie Logik zum Setzen oder Rücksetzen des Flip-Flops.

9.4	� Field Programmable Gate Arrays

Der Begriff Gate Array bezeichnete ursprünglich Bausteine, die aus einem großen Feld 
vorgegebener Logikgatter bestand. Die Verdrahtung der Gatter, und damit die zu reali-
sierende logische Funktion, konnte vom Kunden festgelegt werden. Die Verdrahtung 
der Gatter wurde dann im Auftrag des Kunden in einer Halbleiterfabrik realisiert. Auch 
die Funktion der heute üblichen Form der Gate-Arrays, die Field Programmable Gate 
Arrays, kann durch den Anwender festgelegt werden. Da die Programmierung elektrisch 
erfolgt, sind keine zeitaufwendigen Produktionsschritte in einer Halbleiterfabrik erfor-
derlich: Mithilfe eines Programmiergerätes kann die gewünschte logische Funktion in 
wenigen Sekunden auf ein FPGA geladen werden. Da FPGAs zu attraktiven Preisen 
angeboten werden, haben Sie sich in vielen Bereichen durchgesetzt. Im Folgenden wer-
den die Grundkonzepte dieser Bausteine näher vorgestellt.

9.4.1	� Allgemeiner Aufbau eines FPGAs

Wie bei anderen programmierbaren Logikbausteinen lässt sich die digitale Funktion 
eines FPGAs im Feld programmieren. Ein wesentliches Merkmal von FPGAs ist es, dass 
sich deutlich komplexere Funktionen realisieren lassen, als dies mit PALs oder CPLDs 
möglich wäre. Auch im Hinblick auf die technische Realisierung der „Programmierbar-
keit“ unterscheiden sich FPGAs von vielen CPLDs. Während einfache Logikbausteine 
(hierzu zählen wir auch CPLDs) im Kern eine zweistufige UND/ODER-Struktur einset-
zen, basieren FPGAs auf einer tabellenbasierten Implementierung.

Tab. 9.3   Parameter der CPLD-Familie MAX V (Altera)

Baustein
5M40Z 5M80Z 5M160Z 5M240Z 5M570Z 5M1270Z 5M2210Z

Logic Elements 40 80 160 240 570 1270 2210

Äquiv. Makrozellen 32 64 128 192 440 980 1700

Max. I/Os 54 79 79 114 159 271 271

Verzögerungszeit, 
pin-to-pin (ns)

7,5 7,5 7,5 7,5 9,0 6,2 7,0

9.4  Field Programmable Gate Arrays
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Die Grundidee eines FPGAs ist relativ einfach: Man realisiert einen Baustein, der 
viele kleine Logikblöcke enthält, in denen sich programmierbare Lookup-Tabellen 
(LUTs) befinden. Jede LUT besitzt beispielsweise vier Eingänge und einen Ausgang. 
Die spätere Programmierung der LUTs legt fest, nach welcher logischen Funktion der 
Ausgangswert aus den Eingängen berechnet werden soll. Da für die Implementierung 
eines digitalen Systems auch Flip-Flops benötigt werden, enthalten die Logikblöcke 
auch Flip-Flops. Meist sind die gleiche Anzahl an LUTs und Flip-Flops vorhanden, da 
dies dem Bedarf in praktischen Schaltungen entspricht. Dabei wird jeder LUT ein FF 
zugeordnet, so dass der Ausgangswert einer LUT auch innerhalb eines Logikblocks 
gespeichert werden kann.

Für die Verbindungen zwischen den Logikblöcken wird ein Verbindungsnetzwerk ein-
gesetzt. Die Programmierbarkeit des Verbindungsnetzwerkes wird durch programmier-
bare Schalter erreicht (Switch Matrix). Die Funktionsweise des Verbindungsnetzwerkes 
kann man mit Gleisen einer Eisenbahn vergleichen: Sollen Daten von einem Logikblock 
an einen bestimmten anderen Logikblock gesendet werden, werden die „Weichen“ inner-
halb des Netzwerkes so programmiert, dass eine elektrische Verbindung zwischen den 
beiden Logikblöcken hergestellt wird. Im Gegensatz zu einer Eisenbahnverbindung wer-
den die Weichen nicht dynamisch im Betrieb umgeschaltet, sondern sie werden nach 
dem Einschalten einmalig für die gewünschte logische Funktion konfiguriert.

Durch die Programmierbarkeit der Logik-Blöcke und des Verbindungsnetzwerkes, 
können komplexe logische Funktionen durch die Kombination mehrerer LUTs umge-
setzt werden. Die maximale Komplexität der Gesamtfunktion ist natürlich durch die 
Anzahl der verfügbaren Logikblöcke begrenzt.

Darüber hinaus ist es natürlich auch denkbar, dass das Verdrahtungsnetzwerk der limi-
tierende Faktor einer FPGA-basierten Systemimplementierung ist, wenn eine sehr auf-
wendige Signalverdrahtung benötigt wird. In diesem Fall können nicht alle vorhandenen 
LUTs genutzt werden.

Neben den Logikblöcken und dem Verbindungsnetzwerk enthalten FPGAs auch  
Ein-/Ausgabeblöcke (IO-Blocks oder kurz IOBs). Mithilfe dieser Blöcke kann unter ande-
rem eine Anpassung von Logikpegeln erfolgen. Arbeitet ein FPGA beispielsweise mit 
einer internen Versorgungsspannung von 1,8 V, können die Pegel der internen Signale mit-
hilfe der IOBs so angepasst werden, dass sie auch Bausteinen mit einer Versorgungsspan-
nungsspannung von 3,3 V zugeführt werden können. Daneben stehen in den IOBs auch 
Funktionen zur Verfügung, die für eine besonders schnelle Ein-/Ausgabe hilfreich sein 
können. Ein Beispiel hierfür sind IOB-interne Parallel-Seriell-Wandler, die auf Schiebe-
registern basieren (Serializer). Ausgabedaten werden von den Logikblöcken parallel (zum 
Beispiel 4 oder 8 bit) an die IOBs herangeführt. Innerhalb des IOBs werden die Daten 
„serialisiert“, das heißt Bit für Bit am äußeren Anschluss des FPGAs ausgegeben. Auf 
diese Weise kann eine hohe Datenrate am Ausgang des FPGAs realisiert werden, obwohl 
die Implementierung der logischen Funktion innerhalb des FPGAs vergleichsweise lang-
sam ist. Für die Eingabe können De-Serializer eingesetzt werden, welche die Daten seriell 
einlesen und für die FPGA-interne Logik in paralleler Form zur Verfügung stellen.
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Die Grundstruktur eines FPGAs, das aus Logik-Blöcken, IO-Blöcken und einem Ver-
bindungsnetzwerk besteht, ist in Abb. 9.10 dargestellt.

Der Aufbau eines einfachen Logikblocks ist in Abb. 9.11 dargestellt. Die meisten 
Eingänge und Ausgänge sind mit dem Verbindungsnetzwerk verbunden. Darüber hinaus 
existieren die Anschlüsse CIN und COUT, die mit dem Block Carry/Control-Logic ver-
bunden sind. Mithilfe dieser Anschlüsse und der zugehörigen Logik wird ein besonders 
schneller Durchlauf der Übertragsbits eines Addierers ermöglicht. Mithilfe dieser beson-
deren Carry-Logik kann die Verzögerungszeit der Addition deutlich reduziert werden.

Abb. 9.10   Prinzipieller 
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9.4.2	� Taktverteilung im FPGA

In digitalen Systemen werden die Datenausgabe und die Datenübernahme der Flip-Flops 
mithilfe von Taktsignalen gesteuert. Im Idealfall „sehen“ alle Flip-Flops eines Systems 
zum gleichen Zeitpunkt die steigende Flanke eines Taktsignals. In der Praxis lässt sich 
dieser Idealfall nicht realisieren, da Taktsignale, wie alle anderen Signale, über Leitun-
gen des Chips an die Flip-Flops herangeführt werden müssen. Reale Leitungen besitzen 
eine Verzögerungszeit, so dass Flip-Flops, die nah an einer Taktquelle platziert sind, eine 
steigende Flanke etwas eher sehen als ein Flip-Flop, das am Ende einer Taktleitung liegt.

Dass dies ein potentielles Problem für die Realisierung eines Systems darstellen kann, 
macht folgendes Beispiel deutlich: Nehmen wir vereinfachend an, dass die verwendeten 
D-Flip-Flops eine Setup-Zeit und ein Clock-to-Q-Delay (also die Zeit, die benötigt wird, um 
nach der steigenden Taktflanke den im Flip-Flop gespeicherten Wert am Ausgang zur Ver-
fügung zu stellen) von jeweils 1 ns besitzen. Nehmen wir weiterhin an, die Logik und die 
Verdrahtung zwischen zwei derartigen Flip-Flops habe eine Verzögerungszeit von 3 ns. Mit 
diesen Werten würde sich eine minimale Taktperiode von 1 ns + 1 ns + 3 ns = 5 ns ergeben. 
Dieses System kann also bei idealer Taktverteilung mit maximal 200 MHz betrieben werden.

Erhält das zweite Flip-Flop die steigende Flanke früher als das erste Flip-Flop, ver-
größert sich die maximale Periodendauer entsprechend, da das empfangende (zweite) 
Flip-Flop bereits früher stabile Daten am Eingang erwartet. Nehmen wir an, die zeitliche 
Verschiebung des Taktsignals (im Fachjargon auch Clock Skew genannt) betrage 2 ns. 
Dann würde sich die minimale Taktperiode um diese 2 ns auf 7 ns erhöhen und damit die 
maximale Taktfrequenz des Systems auf etwa 140 MHz absinken.

Was kann man also tun? Nun, die Signalverzögerungen beruhen auf physikalischen 
Gesetzen und können daher nicht eliminiert oder umgangen werden. Aber ein ers-
ter Schritt zur Problemlösung ist es, die Verzögerungen des Taktsignals innerhalb des 
Chips zu kennen. Auf Basis dieser Kenntnis kann für jedes Flip-Flop, dessen Ausgang 
mit einem anderen Flip-Flop verbunden ist, die Verzögerung des Taktsignals abgeschätzt 
und bei der Logik-Synthese entsprechend berücksichtigt werden. Aber natürlich löst 
dies noch nicht das eigentliche Problem, dass große Verzögerungen des Taktsignals zu 
einer signifikanten Reduktion der Systemfrequenz und damit der Rechenleistung führen 
können. Um dieses zu Problem zu reduzieren, setzen FPGAs spezielle Verbindungsnetz-
werke zur Verteilung der Taktsignale ein. Ein Beispiel für den Aufbau eines Taktnetz-
werks mit zentralen Taktreibern ist in Abb. 9.12 dargestellt.

Die Taktsignale werden baumartig im System verteilt. Auf diese Weise wird erreicht, 
dass der Clock-Skew in einem akzeptablen Rahmen gehalten werden kann und es kann 
davon ausgegangen werden, dass Flip-Flops, die sich in örtlicher Nähe befinden, in etwa 
das gleiche zeitliche Verhalten des Taktes sehen. Werden zwei Flip-Flops, die weit vonei-
nander entfernt liegen, miteinander verbunden, kann hierbei natürlich weiterhin ein sig-
nifikanter Clock-Skew auftreten. So sehen zum Beispiel Flip-Flops, die in der Nähe der 
Takttreiber liegen, die steigende Flanke deutlich eher als Flips-Flops, die in den Ecken 
des FPGAs platziert sind.
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Mit Fortschreiten der Halbleitertechnologie wird dieses Problem verschärft: Einer-
seits steigen die erzielbaren Taktfrequenzen kontinuierlich an, wodurch die Verzögerun-
gen durch das Taktverteilungsnetzwerk immer deutlicher spürbar werden. Andererseits 
werden die geometrischen Abmessungen der Leitungen kleiner, was zu einem höheren 
Widerstand und damit zu langsameren Pegelwechseln führt. Um den Nachteil der zentra-
len Taktpufferung zu reduzieren, werden in modernen FPGAs Taktreiber eingesetzt, die 
über den Chip verteilt sind. Auf diese Weise wird die Leitungslänge zwischen Takttreiber 
und Takteingang der Flip-Flops reduziert und damit der Clock-Skew deutlich reduziert.

Aus diesen Erläuterungen zum Aufbau des Taktnetzwerkes ergibt sich auch, dass man 
niemals ein Taktsignal aus einer logischen Funktion heraus generieren sollte, da die-
ses Taktsignal nicht über das Taktnetzwerk geführt werden kann und somit signifikante 
Clock-Skew-Probleme die Folge sein können. Da das Taktsignal über Gatter geführt 
wird, wird dies in der Praxis auch als Gated Clock bezeichnet. Insbesondere Anfängern 
im FPGA-Design unterläuft nicht selten der Fehler, dass versehentlich Gated Clocks in 
einem VHDL-Entwurf realisiert werden, indem zum Beispiel ein Ausgangssignal eines 
Moduls einfach mit dem Takteingang eines anderen Moduls verbunden wird. Syntak-
tisch ist dies völlig korrekt und auch in der Simulation der Schaltung wird man häufig 
keine unerwarteten Ergebnisse sehen. Um das Risiko zu minimieren, dass versehent-
lich Gated Clocks in einem VHDL-Entwurf eingebaut werden, sollten die Takteingänge 
aller VHDL-Module mit einem (wenn im System nur ein Takt verwendet wird: mit dem 
gleichen) Taktsignal verbunden werden. Jegliche logische Verknüpfungen (und seien sie 
noch so simpel) eines Taktsignals mit anderen Signalen sollten vermieden werden.

9.4.3	� Typische Spezialkomponenten

Um die Implementierung von logischen Funktionen besser zu unterstützen, enthalten 
heutige FPGAs vielfach Spezialkomponenten, die zusätzlich zu den Logikblöcken für 

Abb. 9.12   Taktnetzwerk mit 
zentralen Takttreibern

Takt-Treiber

9.4  Field Programmable Gate Arrays
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die Implementierung eines Systems verwendet werden können. In diesem Abschnitt wer-
den die wichtigsten dieser Elemente kurz vorgestellt.

Mit Spezialkomponenten wird das Ziel verfolgt, eine bestimmte häufig genutzte 
Funktion möglichst effizient zur Verfügung zu stellen. Die Instanziierung dieser Module 
wird häufig von den Designtools unterstützt.

9.4.3.1 � Speicherelememente
In vielen Fällen ist für die Realisierung eines Systems auch die Speicherung von Daten 
erforderlich. Wird eine sehr große Speicherkapazität benötigt, ist in der Regel ein exter-
ner Speicher außerhalb des FPGAs unvermeidbar. Ist der benötigte Speicherbedarf 
jedoch kleiner, ist eine Speicherung der Daten innerhalb des FPGAs wünschenswert, da 
so schneller und flexibler auf die Daten zugegriffen werden kann.

Da eine LUT letztlich auch ein kleiner Speicher ist, liegt die Idee nahe, die verfüg-
baren LUTs zu einem Speicher mit der benötigten Kapazität zu verbinden. Dieses Prin-
zip wird von FPGAs unterstützt und man spricht in diesem Fall von verteiltem Speicher 
(Distributed Memory). Der Nachteil dieses Ansatzes ist, dass die wertvollen Ressourcen 
der Logikblöcke für die Speicherung von Daten eingesetzt werden und nicht mehr für die 
Implementierung von logischen Funktionen zur Verfügung stehen.

Daher bieten heutige FPGAs auch Speicher in Form von sogenanntem Block-RAM an. 
Hierbei handelt es sich um mehrere kleine Speicher (meist in der Größe weniger kByte), 
die auf dem FPGA-Chip verteilt sind. Der Vorteil von Block-RAM ist, dass die erziel-
bare Speicherdichte, also Bits pro Siliziumfläche, um ein Vielfaches größer ist als bei 
der Verwendung von Distributed Memory. Daher bietet sich die Verwendung von Block-
RAM immer dann an, wenn ein größerer Speicher benötigt wird beziehungsweise die 
Ressourcen zur Implementierung von Logik knapp sind.

Um den Speicher für verschiedene Anwendungen möglichst gut nutzen zu können, 
ist die Wortbreite der Block-RAMs konfigurierbar. Beispielsweise besitzen die Block-
RAMs der Cyclone-V-FPGAs (Fa. Altera) eine Größe von 9 kbit. Der Speicher kann mit 
Wortbreiten zu 1, 2, 4, 8, 9, 16, 18, 32 oder 36 genutzt werden, wobei die maximale 
Anzahl der Worte immer eine Zweierpotenz ist. Da die Gesamtkapazität festliegt, nimmt 
die maximale Anzahl der Speicherworte mit der Wortbreite ab. So kann ein einzelner 
dieser Speicher zum Beispiel 8192 Worte mit einer Breite von 1 bit aufnehmen oder 
aber auch für die Speicherung von 512 16-Bit-Worten genutzt werden. Wortbreiten von 
9, 18 und 36 bit werden unterstützt, da diese in der Kommunikationstechnik verwendet 
werden.

FPGA-internes Block-RAM wird meist als Dual-Port-Speicher implementiert, der 
zwei Schreib-/Leseanforderungen gleichzeitig bearbeiten kann. Diese Eigenschaft ist 
zum Beispiel dann vorteilhaft, wenn ein Modul Daten generiert, die vor der Verarbeitung 
durch ein zweites Modul zwischengespeichert werden müssen. Beide Module können 
dann unabhängig voneinander auf den Speicher zugreifen. Eine Arbitrierungslogik, die 
festlegt welches der beiden Module auf den Speicher zugreifen darf, kann dann entfallen.
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9.4.3.2 � Arithmetische Module
Eine häufig benötigte arithmetische Operation ist die Multiplikation. Daher beinhalten 
die meisten aktuellen FPGAs spezielle Multiplizierer-Module, die gegenüber einer LUT-
basierten Implementierung der Multiplikation den Vorteil einer geringeren Verzögerungs-
zeit bieten. Darüber hinaus kann durch die Verwendung der Hardware-Multiplizierer die 
Anzahl der benötigten Logikblöcke reduziert werden.

In modernen FPGAs wird das Konzept zur Unterstützung arithmetischer Funktio-
nen häufig erweitert und es stehen nicht nur Multiplizierer zur Verfügung. Der FPGA-
Hersteller Xilinx bietet beispielsweise sogenannte „DSP-Slices“ an. Hierbei handelt es 
sich um Module, die neben einem Multiplizierer auch einen Addierer und einen Akku-
mulator enthalten. Mithilfe dieser Module sollen insbesondere Anwendungen der digi-
talen Signalverarbeitung (Digital Signal Processing, DSP) unterstützt werden.

Die meisten angebotenen arithmetischen Module sind für die Verarbeitung von gan-
zen Zahlen ausgelegt. Einige FPGA-Serien, wie zum Beispiel Stratix-10 der Firma 
Altera, stellen auch Spezialhardware zur Verarbeitung von Gleitkommazahlen bereit.

9.4.3.3 � Takterzeugung
FPGAs enthalten meist auch Komponenten zur Erzeugung von intern verwendeten Takt-
signalen. Diese Komponenten beinhalten meist eine Phasenregelschleife (engl. Phase-
Locked Loop, PLL), die es ermöglicht, aus einem Eingangstaktsignal Ausgangssignale 
zu erzeugen, deren Frequenz und Phasenlage aus dem Eingangssignal abgeleitet wird. 
Teilweise kommen auch DLLs (Delay-Locked Loop) zum Einsatz.

Die Quelle des Eingangstaktes einer PLL kann entweder ein von außen zugeführtes 
Signal oder ein bereits im FPGA (zum Beispiel durch eine weitere vorgeschaltete PLL) 
vorhandenes Taktsignal sein.

Die PLLs der meisten FPGAs erlauben die gleichzeitige Erzeugung mehrerer Takt-
signale aus einem einzelnen Eingangstakt, wobei die Frequenzen der erzeugten Signale 
sowohl kleiner als auch größer als die Frequenz des Eingangstaktes sein können. Neben 
der einfachen Erzeugung unterschiedlicher Systemtaktsignale können die PLLs auch zur 
Synchronisierung des externen Taktsignals mit den intern verwendeten Takten verwendet 
werden. Dies ist insbesondere dann hilfreich, wenn die Eingangsdaten des FPGAs syn-
chron zur Verfügung gestellt werden.

Das Blockschaltbild einer PLL zeigt Abb. 9.13. Die Phasenlage eines von außen zuge-
führten Taktes wird mit einem Referenztakt verglichen. Mithilfe einer Regelung wird ein 
analoges Signal erzeugt, welches einem spannungsgesteuerten Oszillator (Voltage-Cont-
rolled-Oscillator, VCO) zugeführt wird. Durch Teilung des  Oszillatortaktes werden die 
Ausgangssignale der PLL sowie der zum Phasenvergleich zurückgeführte Referenztakt 
erzeugt.

9.4.3.4 � Spezialisierte Peripheriemodule
Viele FPGAs bieten spezielle Peripheriemodule an, die Schnittstellen mit besonders kri-
tischen Zeitanforderungen besitzen. Ein typisches Beispiel für derartige Module sind 

9.4  Field Programmable Gate Arrays
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Speicher-Controller. In älteren FPGA-Generationen musste die Speicheranbindung 
noch mithilfe der Standard-FPGA-Ressourcen (Logikblöcke, IO-Blöcke) erfolgen. Dass 
hierbei wertvolle Ressourcen für eine standardisierte und häufig benötigte Funktion 
eingesetzt werden müssen, ist eher ein untergeordnetes Problem. Viel schwerwiegen-
der ist häufig das Problem, dass die maximalen Taktfrequenzen, und damit die erziel-
bare Speicherbandbreite, bei einer Implementierung mit den üblichen FPGA-Ressourcen 
begrenzt sind. Um die hohen Datenraten wie sie von modernen Speicherbausteinen ange-
boten werden, auch für ein FPGA-basiertes Design nutzbar zu machen, werden spezi-
alisierte Speichercontroller benötigt. Diese Komponenten sind für die Anbindung von 
externem Speicher optimiert und unterstützen Datenraten von mehreren GByte/s, die 
sich mithilfe von Logikblöcken nicht realisieren ließen. In einem beschränkten Umfang 
können diese Module konfiguriert werden. So sind zum Beispiel die Auswahl des Spei-
chertyps oder auch einige Eigenschaften der FPGA-internen Schnittstelle wählbar.

Ein anderes Beispiel für ein spezielles Peripheriemodul ist eine PCI Express (PCIe) 
Schnittstelle. Der PCIe-Bus hat sich als wichtiger Standard für die Verbindung von Kom-
ponenten etabliert. Da die Implementierung einer PCIe-Schnittstelle besondere Anforde-
rungen (insbesondere im Hinblick auf das Zeitverhalten) stellt, ist eine Implementierung 
mit Standard-FPGA-Ressourcen schwierig und aufwendig. Dieser Nachteil wird durch 
die Bereitstellung von PCIe-Hard-Macros vermieden und die entsprechende Funktion 
kann so effizienter und mit geringerem Aufwand implementiert werden.

9.4.3.5 � Prozessor-Subsysteme
Häufig besteht der Wunsch, Teile eines Systems „in Hardware“ auf einem FPGA, andere 
Teile dagegen „in Software“ auf einem Mikroprozessor zu implementieren.

Natürlich kann ein Mikroprozessor auch mithilfe von Logikblöcken implementiert 
werden. Die FPGA-Hersteller bieten hierzu entsprechende Prozessordesigns (zum Bei-
spiel NIOS der Firma Altera oder Microblaze der Firma Xilinx) mit den zugehörigen 
Werkzeugen zur Softwareentwicklung an. Da diese Prozessoren mithilfe der flexibel ein-
setzbaren programmierbaren Logikkomponenten implementiert werden, werden sie auch 
als Soft-Prozessoren bezeichnet. Allerdings gilt auch für diese Lösungen, dass ihre Effi-
zienz eher als moderat anzusehen ist.
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Abb. 9.13   Aufbau einer PLL
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Wäre es da nicht logisch, in einem FPGA neben den spezialisierten Hard-Makros 
auch Prozessoren – oder am besten gleich ganze Prozessorsysteme – anzubieten?

Genau dieser Ansatz wird von einigen Herstellern verfolgt. So bieten zum Beispiel 
die Firmen Xilinx und Altera Chips an, die neben einem FPGA-Teil auch Multikern-
Rechner-Systeme beinhalten. Die maximalen Taktfrequenzen, und damit die erzielbare 
Rechenleistung dieser Systeme erreichen ein Vielfaches von dem der Soft-Prozessoren. 
Da diese Chips nicht mehr als reine FPGAs anzusehen sind, werden sie von den Her-
stellern unter dem Begriff System-on-Chip (SoC) vermarktet. Dieser Begriff soll deutlich 
machen, dass es sich um komplette Systeme handelt, deren Funktion sich als Kombina-
tion von Software (auf dem CPU-Subsystem) und Hardware (auf dem FPGA-Teil) fest-
legen lässt.

9.5	� FPGA-Familien

Der FPGA-Markt ist auf den ersten Blick relativ unübersichtlich. Es gibt unterschied-
liche Anbieter, wobei die Firmen Xilinx und Altera (inzwischen von der Firma Intel 
übernommen) zusammen ca. 90 % des Marktes bedienen. Die Hersteller bringen 
schritthaltend mit der Weiterentwicklung der Halbleitertechnik etwa alle 2 Jahre eine 
neue Bausteingeneration heraus. Innerhalb dieser Generationen werden wiederum 
unterschiedliche Familien angeboten, die FPGAs mit ähnlichen Grundeigenschaften 
beinhalten, sich aber im Hinblick auf die Komplexität (Anzahl der Logikblöcke und 
Hard-Makros, Größe des internen Speichers usw.) unterscheiden.

Die Bausteine einer Generation werden häufig in einer besonders preisgünstigen 
„Low-Cost“-Familie und einer besonders leistungsstarken „High-Performance“-Familie 
angeboten. Daneben werden teilweise auch „Mid-Range“-Familien angeboten, die einen 
Mittelweg zwischen den beiden anderen Familien bieten (vgl. Tab. 9.4).

Durch die Fortschritte der Halbleitertechnologie steigt die Leistungsfähigkeit von 
Generation zu Generation an. So bieten aktuelle Low-Cost-Familien teilweise Eigen-
schaften an, die den High-Performance-Familien zurückliegender Generationen ent-
sprechen. Tab. 9.5 fasst den Zeitpunkt der Einführung und die jeweils verwendete 

Tab. 9.4   Auswahl einiger FPGA-Familien und ihre Marktpositionierung

Altera Familie Stratix Arria Cyclone

Altera Positionierung „High density, high 
performance“

„Balance of 
cost, power and 
performance“

„Low system cost plus 
performance“

Xilinx Familie Virtex Kintex Artix

Xilinx Positionierung „System performance“ „Price Performance 
with low power“

„System performance 
per Watt for cost sen-
sitive applications“

9.5  FPGA-Familien
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Halbleitertechnologie für das Beispiel der High-Performance-Familie Stratix der Firma 
Altera zusammen. Die jeweils verwendeten Produktionstechnologien entsprechen in 
etwa denen, die auch bei der Produktion von anspruchsvollen Spitzenprodukten wie PC-
Prozessoren, zum Einsatz kommen. Genauso wie bei PC-Prozessoren wird also auch bei 
der Produktion von FPGAs angestrebt, die neueste verfügbare Produktionstechnologie 
einzusetzen.

9.5.1	� Vergleich ausgewählter FPGA-Familien

Innerhalb der Stratix-Familie werden unterschiedliche Bausteine angeboten. Eine Über-
sicht über die Eigenschaften dieser FPGAs ist in Tab. 9.6 zusammengefasst. Die Abkür-
zung ALM (Adaptive Logic Module) ist eine Hersteller-spezifische Abkürzung. Die 
wesentlichen Elemente eines ALM sind eine LUT mit 7 Eingängen, Logik für schnelle 
Addition und 4 Register.

Zum Vergleich zu der High-Performance-Familie Stratix 10 fasst Tab. 9.7 einige der 
Eigenschaften von Vertretern der Familie Cyclone V zusammen.

Die interne Speicherkapazität lässt sich relativ leicht, auch über FPGA-Generationen 
hinweg, vergleichen. Ein Vergleich der Logikelemente ist dagegen schwieriger, da der 
Aufbau der programmierbaren Grundelemente von Generation zu Generation wechseln 
kann. Ein einfacher Vergleich der Anzahl der ALMs ist nicht unbedingt zielführend, weil 
sich ALMs unterschiedlicher Generationen in ihrem Aufbau unterscheiden können. Für 
einen groben Vergleich unterschiedlicher Bausteine gibt die Firma Altera daher das Maß 

Tab. 9.5   Zeitpunkt der Markteinführung und verwendete Halbleitertechnik der Stratix-Familie 
(Fa. Altera)

Generation/Name Stratix Stratix II Stratix III Stratix IV Stratix V Stratix 
10

Jahr der Einführung 2002 2004 2006 2008 2010 2013

Halbleitertechnologie(nm) 130 90 65 40 28 14

Tab. 9.6   Übersicht über einige Eigenschaften von ausgewählten FPGAs der Stratix-10-Familie

Bezeichnung GX500 GX1100 GX2500 GX5500

Anzahl ALMs 164.160 370.080 821.150 1.867.680

Anzahl Flip-Flops 656.640 1.480.320 3.284.600 7.470.720

Speicher (Mbit) 46 92 208 166

Arithmetik-Module für Signalverarbeitung 1.152 2.250 5.011 1.980

Multiplizierer (18 × 19 bit) 2.304 5.040 10.022 3.960

PCIe-Makros 1 2 6 3
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Logic Elements (LE) an, das die verfügbaren ALMs in fiktive Grundelemente umrechnet. 
Einige der angebotenen FPGAs der Firma Altera sind auch als „SoC-Varianten“ verfüg-
bar, die zusätzlich zum FPGA-Teil ein Multikern-CPU-Subsystem beinhalten.

Der Hersteller Xilinx verwendet zur Angabe der FPGA-Komplexität die Begriffe 
Slice beziehungsweise Complex Logic Block (CLB). Ein CLB der „Ultrascale“-FPGAs 
enthält beispielsweise 8 LUTs mit jeweils 6 Eingängen, Addiererlogik und 16 Flip-
Flops. Einige Parameter von Bausteinen der Kintex- beziehungsweise Virtex-Ultrascale-
Familie sind in Tab. 9.8 zusammengefasst.

Für besonders kostensensitive Systeme bietet Xilinx die Artix-7-Serie an. Diese ist 
ähnlich positioniert wie die Cyclone-Serie von Altera. Ebenso wie Altera bietet auch die 
Firma Xilinx Bausteine an, die CPU-Subsysteme enthalten. So enthält beispielsweise die 
Zynq-7000-Serie ein Subsystem, das auf einem Zweikern-System basiert, während mit 
der Zynq-Ultrascale + -Serie ein Prozessorsystem zum Einsatz kommt, das insgesamt 
6 Prozessoren zur Verfügung stellt. Die CPUs dieser Serie werden durch Hard-Makros 
unterstützt, die für Beschleunigung von 3D-Grafik- oder Videofunktionen ausgelegt sind, 
so dass die anderen Ressourcen (FPGA-Teil oder Prozessoren) entlastet werden.

Obwohl in diesem Abschnitt bereits viele Zahlen präsentiert werden, welche 
die Eigenschaften kommerziell angebotener FPGA-Familien beschreiben, ist diese 

Tab. 9.7   Übersicht über einige Eigenschaften von ausgewählten FPGAs der Cyclone-V-Familie

Bezeichnung 5CGXC3 5CGXC5 5CGXC7 5CGXC9

Anzahl ALMs 13.460 29.080 56.480 113.560

Anzahl Flip-Flops 53.840 116.320 225.920 454.240

Speicher (Mbit) 1,6 4,8 7,6 13,8

Arithmetik-Module für Signalverarbeitung 57 150 156 342

Multiplizierer (18 × 18 bit) 114 300 312 684

PCIe-Makros 1 2 2 2

Tab. 9.8   Übersicht über einige Eigenschaften von ausgewählten FPGAs der Kintex- und der 
Virtex-Ultrascale-Familie

Kintex Virtex

Bezeichnung KU035 KU060 KU115 XCVU065 XCVU125 XCVU440

Anzahl CLBs 25.391 41.460 82.920 44.760 89.520 316.620

Anzahl Flip-Flops 406.256 663.360 1.326.720 716.160 1.432.320 5.065.920

Block-RAM (Mbit) 19,0 38,0 75,9 44,3 88,6 88,6

Arithmetik-Module 
für Signalverarbeitung 
(DSP-Slices)

1.700 2.760 5.520 600 1.200 2.880

PCIe-Makros 2 3 6 2 4 6

9.5  FPGA-Familien
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Darstellung nur ein kleines Schlaglicht auf das umfangreiche Angebot der FPGA-Her-
steller. Betrachtet man alleine die Anzahl der zur Verfügung gestellten Flip-Flops, so 
liegt beispielsweise zwischen dem kleinsten Baustein der Cyclone-V-Serie und dem 
größten Baustein der Stratix-10-Serie ein Faktor von etwa 140. Für den internen Spei-
cher (Block-RAM) beträgt das Verhältnis etwa 100. Vergleichbare Faktoren ergeben sich 
auch für die Bausteine des Herstellers Xilinx.

Um die absoluten Zahlen einordnen zu können, kann folgendes Beispiel eines Sys-
tems zur Verarbeitung von Videosignalen dienen. Das System besitzt eine Kame-
raschnittstelle mit Anbindung zum externen Speicher, Module zur Verarbeitung der 
Bilder (zweidimensionale Filter) in Echtzeit sowie eine Ausgabeeinheit mit Speicher-
anbindung, die zur Anzeige der verarbeiteten Kamerabilder auf einem Monitor dient. 
Wird für die Implementierung dieses nicht ganz trivialen Systems ein Zynq-7000-SoC 
der Firma Xilinx eingesetzt, werden etwa jeweils 3000 LUTs und Flip-Flops benötigt. 
Selbst bei dem kleinsten in der Zynq-7000-Serie verfügbaren Baustein ist damit weniger 
als 20 % der FPGA-Ressourcen belegt.

Dieses Beispiel macht deutlich, dass viele der heutigen FPGAs nicht für den Ersatz 
von wenigen Gattern gedacht sind. Im Gegenteil: Sie ermöglichen die Realisierung 
hochkomplexer Systeme, für deren Realisierung noch vor wenigen Jahren ASICs erfor-
derlich gewesen wären. Daher haben FPGAs den Einsatz von ASICs in vielen Bereichen 
ersetzt. Die seit einigen Jahren verfügbare Kombination von der „hardwareprogrammier-
baren“ Logik mit leistungsfähigen „softwareprogrammierbaren“ Prozessor-Subsystemen 
eröffnet weitere Möglichkeiten für den Einsatz der FPGA-Technologie.

Die bisher betrachteten FPGAs zielen auf die Realisierung von wesentlichen Teilen 
eines Systems innerhalb der programmierbaren Logik. Ein anderer Ansatz wird mit den 
besonders kleinen, kostengünstigen und energieeffizienten FPGAs der Hersteller Lattice 
und Quicklogic verfolgt. So bietet beispielsweise Lattice die Serie Ice40 in den Varianten 
Ultra und UltraLite an. Diese Bausteine besitzen eine relativ geringe Anzahl von Logik-
blöcken und bieten nur wenig Speicherkapazität. Der entscheidende Vorteil dieser Bau-
steine ist die geringe statische Stromaufnahme, die im Bereich von 30 bis 70 μA liegt. 
Daher werden diese Bausteine bevorzugt in mobilen Geräten eingesetzt. Die FPGAs 
werden zum Teil als sogenannte Glue Logic verwendet, also zur Realisierung logischer 
Funktionen mit denen die Hauptkomponenten des Systems untereinander verbunden 
werden. Daneben kann mithilfe dieser FPGAs auch der Hauptprozessor des Systems, 
zum Beispiel bei Ein-/Ausgabe-Operationen, entlastet werden. Der Hauptprozessor kann 
so bereits in einen Stromsparmodus wechseln während das FPGA noch mit der Ein-/
Ausgabe beschäftigt ist. Insgesamt wird so die Verlustleistung reduziert, da der relativ 
energiehungrige Hauptprozessor länger im Stromsparmodus verweilen kann.

Als ein exemplarischer Vertreter von besonders energieeffizienten FPGAs sind 
in Tab. 9.9 die wesentlichen Kennwerte der Ice40-Serie des Herstellers Lattice 
zusammengefasst.
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9.6	� Hinweise zum Selbststudium

In vielen Fällen werden die Programme zum Entwurf von FPGA-Systemen in kostenlo-
sen Varianten angeboten und können von Internetseiten der Hersteller heruntergeladen 
werden. Für die Bedienung der Software bieten die Hersteller Online-Tutorials, Trai-
ningsvideos und eine umfangreiche Dokumentation an, die es ermöglichen, erste eigen-
ständige Schritte im Bereich des VHDL-Entwurfs für programmierbare Logikbausteine 
durchzuführen.

Da der Entwurf einer FPGA-Platine eine herausfordernde Aufgabe ist, bieten sich für 
eigene Experimente fertige Boards an, die teilweise auch zu vergünstigten Preisen für 
Studierende und andere nicht-kommerzielle Nutzer angeboten werden. Für erste eigene 
Schritte bieten sich günstige Boards an, die bereits für deutlich unter 100 € zum Kauf 
angeboten werden.

Für die beiden Marktführer Xilinx und Altera bieten die Firmen Digilent (www.digi-
lentinc.com) beziehungsweise Terasic (www.terasic.com) günstige Einsteigerboards an. 
Da diese Boards auch ein integriertes Programmiergerät besitzen, lassen sie sich ohne 
weitere Kosten für eigene Experimente verwenden.

Sehr interessant sind die Boards, die mit FPGAs ausgestattet sind, die auch ein CPU-
Subsystem als Hardmacro beinhalten. Als ein Beispiel für ein solches Board ist das mit 
Xilinx-Baustein Zynq ausgestattete ZyBo-Board der Firma Digilent in Abb. 9.14 darge-
stellt. In der Mitte des Boards ist der FPGA-Baustein zu sehen. Darunter ist einer der 
beiden SDRAM-Speicher untergebracht. Dieses Board verfügt über viele Anschlussmög-
lichkeiten wie VGA, HDMI, Ethernet, USB, Audio, sowie Buchsen für die Anbindung 
eigener Hardware.

Mithilfe dieser Boards lassen sich auch erste Schritte im Bereich des FPGA-Enwurfs 
durchführen ohne das CPU-System zu nutzen. Später kann dann die Verwendung 
des CPU-Subsystems einbezogen werden. So können interessante Experimente bis 
hin zur Einbindung von eigener Hardware unter dem Betriebssystem Linux durchge-
führt werden. Obwohl diese Boards mit einem Preis ab ca. 100 € etwas teurer sind als 
die einfachsten FPGA-Experimentierboards, kann sich die Anschaffung auf Grund der 
erweiterten Möglichkeiten lohnen.

Tab. 9.9   Eigenschaften von Low-Power FPGAs am Beispiel der Ice40-Serie

UltraLite Ultra

Bezeichnung UL640 UL1K LP1K LP2K LP4K

Anzahl Logikblöcke 640 1248 1100 2048 3520

Block-RAM (kbit) 56 56 64 80 80

Multiplizierer – – 2 4 4

PLLs 1 1 1 1 1

Stat. Stromaufnahme (μA) 35 35 71 71 71

9.6  Hinweise zum Selbststudium
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9.7	� Übungsaufgaben

Hier finden Sie Aufgaben, die einige Aspekte dieses Kapitels aufgreifen. Die Lösungen 
finden Sie am Ende des Buches.

Sofern nicht anders vermerkt, ist nur eine Antwort richtig.

Aufgabe 9.1
Welche Vorteile besitzen programmierbare Logikbausteine gegenüber logischen Stan-
dard-Komponenten beziehungsweise ASICs? (Mehrere Antworten sind richtig)

a)	 Die digitale Funktion programmierbarer Logikbausteine kann durch den Anwender 
festgelegt werden.

b)	Designfehler lassen sich schneller korrigieren als dies bei dem Einsatz von ASICs 
möglich wäre.

c)	 Mithilfe Programmierbarer Logikbausteine können logische Funktionen kompakter 
realisiert werden als dies mit ASICs möglich wäre.

d)	Mithilfe Programmierbarer Logikbausteine können logische Funktionen kompakter 
realisiert werden als dies mit Standardkomponenten (zum Beispiel 74er-Logikserie) 
möglich wäre.

Aufgabe 9.2
Wodurch zeichnen sich PAL-Bausteine aus?

a)	 Sie ermöglichen die Realisierung beliebig komplexer Funktionen.
b)	Sie bieten eine höhere Komplexität als FPGAs.

Abb. 9.14   Beispiel eines erschwinglichen FPGA-Boards für eigene Experimente: Das ZyBo-
Board der Firma Digilent Inc.
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c)	 Sie besitzen intern eine UND/ODER-Struktur.
d)	Sie enthalten grundsätzlich keine Flip-Flops. Daher kann mit den Bausteinen immer 

nur eine Kombinatorik realisiert werden.

Aufgabe 9.3
Wodurch zeichnen sich CPLDs aus?

a)	 CPLDs sollten aus Kostengründen nur für Systeme eingesetzt werden, die in sehr 
hohen Stückzahlen gefertigt werden.

b)	 Im Vergleich zu PALs bieten CPLDs eine deutlich geringere Komplexität.
c)	 Sie enthalten grundsätzlich keine Flip-Flops. Daher kann mit den Bausteinen immer 

nur eine Kombinatorik realisiert werden.
d)	Die Funktion der Schaltung kann mithilfe von VHDL beschrieben werden.

Aufgabe 9.4
Wodurch zeichnen sich FPGAs aus?

a)	 Typische FPGAs realisieren logische Funktionen auf Basis einer zweistufigen UND/
ODER-Struktur.

b)	Sie können nicht zur Realisierung von endlichen Automaten verwendet werden.
c)	 FPGAs realisieren logische Funktionen mithilfe von Lookup-Tabellen.
d)	Alle FPGAs besitzen einen Mikroprozessor in Form eines Hardmacros.

Aufgabe 9.5
Wie viele unterschiedliche logische Funktionen können mit einer LUT mit 5 Eingängen 
realisiert werden?

a)	 5
b)	25
c)	 32
d)	64

Aufgabe 9.6
Welche der folgenden Komponenten sind in typischen FPGAs enthalten? (Mehrere Ant-
worten sind richtig)

a)	 Spezialmodule für ausgewählte arithmetische Operationen, zum Beispiel Multiplizierer
b)	Speicher
c)	 Spezialmodule zur Beschleunigung von 3D-Grafik-Anwendungen
d)	Module zur Takterzeugung

9.7  Übungsaufgaben
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Digitale Schaltungen werden als Integrierte Schaltung aufgebaut. Der Begriff Integrierte 
Schaltungen beschreibt, dass sich auf einem Stück Halbleiter nicht nur ein einzelner, 
sondern viele Transistoren befinden. Eine komplette Schaltung ist also auf dem Halb-
leiterkristall integriert. Ursprünglich umfasste eine Integrierte Schaltung einige tausend 
Transistoren; mittlerweile können über eine Milliarde Transistoren auf einer Fläche von 
etwa einem Quadratzentimeter zusammengefasst werden.

Für Integrierte Schaltungen sind verschiedene Begriffe gebräuchlich. Sie werden auch 
als Mikrochip, Chip, IC oder ASIC bezeichnet. IC steht für „Integrated Circuit“, ASIC für 
„Application Specific Integrated Circuit“ also Anwendungsspezifische Integrierte Schaltung.

Die wesentlichen Vorteile Integrierter Schaltungen sind insbesondere geringe 
Baugröße, geringe Kosten, hohe Geschwindigkeit und geringe Parameterabweichungen.

•	 Durch Verwendung integrierter Schaltungen kann die Baugröße eines Gerätes sehr 
gering sein. Statt mehrerer Bauelemente, die einzeln in Chipgehäusen verpackt sind, 
ist nur ein einzelnes Chipgehäuse erforderlich.

•	 Durch die Zusammenfassung mehrerer Bauelemente können fast immer die Kosten 
für ein elektronisches Gerät reduziert werden. Die wichtigsten Kostenvorteile sind 
dabei die geringere Anzahl an benötigten Bauelementen, kleinere und damit günsti-
gere Platinen und Gerätegehäuse, sowie kostengünstigere Fertigung durch Verwen-
dung von weniger Komponenten.

•	 In einer Schaltung mit geringerer Baugröße sind die Verbindungsleitungen zwischen 
den Transistoren wesentlich kürzer. Dadurch kann die Rechengeschwindigkeit der 
Schaltung erhöht werden, da wesentlich kleinere Kapazitäten umgeladen werden.

•	 Wenn sich die einzelnen Transistoren einer Schaltung auf demselben Halbleiterkris-
tall befinden, haben die Transistoren nur sehr geringe Produktionsschwankungen 
zueinander.

Halbleitertechnik 10
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10.1	� CMOS-Technologie

Die für einen IC gewählte Schaltungstechnik wird als Chip-Technologie bezeichnet. Die 
zurzeit mit Abstand größte Marktbedeutung hat die CMOS-Technologie, die in diesem 
Kapitel erläutert wird.

Die CMOS-Technologie verwendet Silizium als Halbleitermaterial und das Hauptan-
wendungsgebiet sind digitale Schaltungen. Sie erlaubt eine sehr hohe Integrationsdichte. 
Das heißt, dass auf einem Chip sehr viele Transistoren untergebracht werden können. 
Auf Basis der CMOS-Technologie werden Computer-Prozessoren, Grafikkarten-ICs, 
Speicherbausteine, MP3-Decoder und viele andere ICs gefertigt.

Der Name CMOS steht für Complementary Metal-Oxid-Semiconductor und 
beschreibt das Grundprinzip. Complementary, also komplementär, meint zwei sich 
ergänzende Schaltungsteile, die zusammen einen digitalen Ausgangswert ergeben und 
Metal-Oxid-Semiconductor bezeichnet in diesem Zusammenhang einen bestimmten Typ 
von Feldeffekttransistoren.

Der Vorteil der CMOS-Technologie ist ihre relativ geringe Verlustleistung. Dies spart 
zum einen Energie, insbesondere bei mobilen Geräten wie Laptop oder Mobiltelefon. 
Ebenso wichtig ist aber zum anderen, dass die Schaltungen sich nicht zu stark erwärmen, 
denn die Verlustleistung muss vom Halbleiter auf das Chipgehäuse und von dort auf die 
Umgebung abgeführt werden.

Aktuelle Computer und ihre Grafikkarten werden durch große und manchmal störend 
laute Lüfter gekühlt. Die Aussage, CMOS-Schaltungen hätten eine geringe Verlustleis-
tung, mag darum zunächst nicht offensichtlich sein. Allerdings enthält eine integrierte 
Schaltung etliche Millionen Transistoren, die mit hoher Geschwindigkeit Berechnungen 
durchführen. Nur durch die geringe Verlustleistung von CMOS-Schaltungen ist es über-
haupt möglich, eine so hohe Integrationsdichte zu erreichen und die Verlustleistung in 
einem handhabbaren Rahmen zu halten.

10.1.1	� Prinzipieller Aufbau

Der Aufbau und die Funktionsweise einer CMOS-Schaltung werden am Beispiel eines 
NAND-Gatters mit zwei Eingängen deutlich. Abb. 10.1 zeigt links den prinzipiellen Auf-
bau eines NAND-Gatters. Die zwei Eingänge A und B sind an insgesamt vier Schalter 
angeschlossen. Abhängig von dem Wert der Steuerleitung sind die Schalter geöffnet oder 
geschlossen. Dadurch verbinden sie den Ausgang Y entweder mit 0 oder 1.

Natürlich sind in Integrierten Schaltungen keine mechanischen Schalter, sondern 
Transistoren eingebaut. Es werden zwei Transistorarten verwendet. Der p-Kanal-Tran-
sistor leitet bei einer 0 (niedrige Spannung) am Eingang und sperrt bei einer 1 (hohe 
Spannung). Der n-Kanal-Transistor leitet dagegen bei einer 1 am Eingang und sperrt 
bei einer 0. Abb. 10.1 zeigt auf der rechten Seite das Schaltbild des NAND-Gatters. Die 
Masse wird als Ground (GND) bezeichnet. VDD ist die Versorgungsspannung (mit V für 
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„Voltage“ und D für den Drain-Anschluss des Transistors). Typische Werte für die Ver-
sorgungsspannung sind zwischen 1,0 und 5,0 V.

Zur Erläuterung der Funktion zeigt Abb. 10.2 die möglichen Ansteuerungen der Ein-
gänge. Die dick dargestellten Leitungen kennzeichnen welche Verbindungen leitend 
sind. Da beide Eingänge jeweils zwei Werte einnehmen können, existieren insgesamt 
vier Möglichkeiten der Ansteuerung.

•	 Im Fall a) sind beide Eingänge gleich 0. Dadurch leiten beide p-Kanal-Transistoren 
und der Ausgang wird niederohmig mit der Versorgungsspannung verbunden. Außer-
dem sperren die n-Kanal-Transistoren, so dass kein Kurzschluss von der Versorgungs-
spannung zur Masse entsteht.

•	 In den Fällen b) und c) ist ein Eingang 0, der andere 1 und einer der p-Kanal-
Transistoren ist leitend, der andere sperrt. Durch die Parallelschaltung der p-Kanal-
Transistoren ist auch hier eine Verbindung des Ausgangs zur Versorgungsspannung 
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Abb. 10.1   Grundprinzip und reales Schaltbild eines NAND-Gatters
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vorhanden; der Ausgang ist 1. Von den n-Kanal-Transistoren ist einer durch eine 1 
am Eingang leitend. In der Reihenschaltung fließt jedoch kein Strom nach Masse.

•	 Im Fall d) sind beide Eingänge 1. Jetzt sind beide n-Kanal-Transistoren leitend und 
der Ausgang ist mit Masse verbunden, gibt also eine 0 aus. Die beiden p-Kanal-Tran-
sistoren sperren, so dass der Ausgang nicht mit Versorgungsspannung verbunden ist.

Die vier Eingangskombinationen ergeben somit die NAND-Funktion. In den vier mögli-
chen Fällen zeigt sich die wichtige Eigenschaft der Schaltung, dass von den beiden Netz-
werken aus p-Kanal und n-Kanal-Transistoren jeweils eins leitend, das andere gesperrt 
ist. Die Netzwerke verhalten sich also genau entgegengesetzt, was durch das ‚C‘ in 
CMOS, also den Begriff komplementär, ausgedrückt wird.

10.1.2	� Feldeffekttransistoren

Feldeffekttransistoren werden sowohl nach n-Kanal und p-Kanal als auch nach selbst-
sperrend und selbstleitend unterschieden. Da in der CMOS-Technologie nur selbstsper-
rende Transistoren eingesetzt werden, sind nur diese im Folgenden erläutert. Sie werden 
auch als Anreicherungstyp oder Enhancement-Typ bezeichnet. Selbstleitende Transisto-
ren (Verarmungstyp, Depletion-Typ) werden in der CMOS-Technologie nicht verwendet.

Das Grundmaterial, genannt Substrat, ist monokristallines Silizium, bei dem also die 
Silizium-Atome ein gleichmäßiges Gitter bilden. Dieses Material wird dotiert, das heißt, 
es werden kleine Mengen weiterer chemischer Elemente hinzugefügt. Je nach chemi-
schem Element handelt es sich um eine n-Dotierung mit zusätzlichen Elektronen oder 
um eine p-Dotierung mit sogenannten Löchern, also Freistellen, so dass sich Elektronen 
bewegen können.

n-Kanal-Transistor
Der Aufbau eines Feldeffekttransistors ist in Abb. 10.3 als Schnittansicht von schräg 
oben dargestellt. Das Substrat ist leicht p-dotiert und in dieses Grundmaterial wer-
den die beiden Anschlüsse Source und Drain durch n-Dotierung erzeugt. Zwischen den 
Anschlüssen liegt über einer Isolationsschicht der Gate-Anschluss. Die Isolationsschicht 
besteht meist aus Siliziumdioxid SiO2 und der Gate-Anschluss aus polykristallinem Sili-
zium, der durch eine hohe Dotierung gut leitet. L und W bezeichnen die Länge und Weite 
des Transistors. Sie sind wichtige Kenngrößen, denn aus ihnen ergeben sich die Größe 
und die Leitfähigkeit des Transistors.

Die Funktion des Feldeffekttransistors ist in Abb. 10.4 dargestellt. Zur einfacheren 
Darstellung ist die Seitenansicht gewählt. Im spannungslosen Zustand ist die Verbindung 
zwischen Source und Drain nicht leitend.

Bei Anlegen einer positiven Spannung an das Gate werden die p-Ladungsträger im 
Substrat, also die Löcher, verdrängt, denn gleichnamige Ladungen stoßen sich ab. 
Gleichzeitig werden n-Ladungsträger, also Elektronen, angezogen, denn ungleichnamige 
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Ladungen ziehen sich an. Ab einer gewissen Spannung sind so viele Löcher verdrängt 
und Elektronen angezogen, dass sich ein Überhang von n-Ladungsträgern zwischen 
Source und Drain bildet. Dieser Bereich wird als Kanal bezeichnet. Mit dem Kanal 
bildet sich ein Gebiet, das zwischen Source und Drain durchgängig eine n-Dotierung 
besitzt, so dass der Transistor leitet.

Da die Leitfähigkeit durch einen n-Kanal entsteht, wird dieser Aufbau als n-Kanal-
Transistor bezeichnet. Die Spannung, ab der ein Kanal entsteht, ist die Schwellenspan-
nung UT (T für „Threshold“, Schwelle). Der genaue Wert der Schwellenspannung ist 
unter anderem von der Dotierung abhängig.

p-Kanal-Transistor
Der Aufbau eines p-Kanal-Transistors ist im Prinzip der gleiche, allerdings sind die 
Dotierungen vertauscht (Abb. 10.5). Das Substrat ist n-dotiert und die Bereiche für 
Source und Drain haben eine p-Dotierung. Durch eine negative Spannung am Gate wer-
den Elektronen abgestoßen und Löcher angezogen, so dass sich ab der Schwellenspan-
nung ein p-Kanal bildet, der die p-Bereiche Source und Drain verbindet.

Die negative Gate-Spannung bedeutet dabei nicht, dass auf einem CMOS-Chip nega-
tive Spannungen verwendet werden. Die Gate-Spannung muss negativ gegenüber dem 
Bezugspotential des Substrats werden. Dies wird dadurch erreicht, dass beim p-Kanal-
Transistor das Substrat an Versorgungsspannung gelegt wird. Eine Gate-Spannung von 
0 Volt ist damit negativ gegenüber Substrat.

Ein Unterschied zum n-Kanal-Transistor besteht in den elektrischen Eigenschaften. 
Die Beweglichkeit der Löcher ist etwas geringer als die Beweglichkeit der Elektronen. 

Abb. 10.3   Aufbau eines 
n-Kanal-Feldeffekttransistors
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Deswegen ist der Widerstand eines p-Kanal-Transistors etwa 2- bis 3-mal so hoch wie 
bei einem p-Kanal-Transistor gleicher Größe. Als Ausgleich wird normalerweise ein 
p-Kanal-Transistor mit doppelter oder dreifacher Gate-Weite W (siehe Abb. 10.3) ver-
wendet, wodurch beide Transistoren etwa gleichen elektrischen Widerstand haben.

10.1.3	� Layout

Über den Transistoren befinden sich Verbindungsleitungen aus Metall. Für die vielen 
Verbindungen auf einem Chip sind mehrere Lagen an Verbindungsleitungen vorhanden. 
Moderne ICs haben etwa fünf bis zehn Lagen, wovon die unteren Lagen für lokale Ver-
bindungen, die oberen Lagen für längere Verbindungen und die Spannungsversorgung 
verwendet werden. Zwischen den Verbindungsleitungen sowie zu den Transistoren sind 
Isolierschichten, die an vertikalen Verbindungsstellen durch Kontaktlöcher, sogenannte 
Vias unterbrochen sind. Abb. 10.6 zeigt die Transistorstruktur (gates) und die Verbin-
dungslagen (M1 bis M4) im Elektronenmikroskop und gibt einen Eindruck von der rea-
len Geometrie.

Der physikalische Aufbau einer CMOS-Schaltung wird als Layout bezeichnet. Das 
Layout beschreibt die Position der Transistoren sowie der Verbindungsleitungen. In 
Abb. 10.7 ist zunächst das Layout eines einzelnen Transistors gezeigt. Links sieht man 
die Seitenansicht, wie im vorherigen Abschnitt erläutert. Dabei sind Source und Drain 
durch Metalllage und Kontaktloch angeschlossen. Rechts ist die Draufsicht gezeigt, die 
für das Layout verwendet wird. Dabei wird in der Darstellung nicht zwischen Source 
und Drain unterschieden.

Das Layout eines kompletten Gatters ist in Abb. 10.8 dargestellt. Es handelt sich um 
das oben beschriebene NAND-Gatter. Zur Orientierung ist das Schaltbild noch einmal 
angegeben. Im Layout sind oben und unten Metallleitungen für die Anschlüsse von Ver-
sorgungsspannung (VDD) und Masse (GND) vorhanden.

Die beiden n-Kanal-Transistoren befinden sich im unteren Bereich des Layouts und 
sind in Reihe geschaltet. Zwischen den Transistoren ist keine zusätzliche Verbindung 
nötig. Das Drain-Gebiet des einen Transistors ist direkt das Source-Gebiet des anderen 
Transistors. Ein Anschluss dieser Reihenschaltung ist an GND, der andere am Ausgang 
Y. Die Gate-Anschlüsse sind mit den Eingängen des NAND-Gatters, A und B verbunden.

Abb. 10.5   Funktion des 
p-Kanal-Feldeffekttransistors
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Abb. 10.6   Transistor im Elektronenmikroskop. (Foto: Chipworks)

Abb. 10.7   Layout eines 
Transistors
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Im oberen Bereich des Layouts sind die beiden p-Kanal-Transistoren. Sie sind parallel 
geschaltet und verbinden jeweils VDD mit dem Ausgang Y. Auch sie werden durch die 
Eingänge A und B angesteuert. Wie oben erläutert, benötigen die p-Kanal-Transistoren 
ein anderes Substrat und dies wird durch die sogenannte n-Wanne bereitgestellt. Die 
n-Wanne ist ein Bereich, in dem das eigentlich p-dotierte Grundmaterial durch Dotierung 
in einen n-Bereich umgewandelt wird. Durch das Kontaktloch ganz oben an der VDD-
Leitung wird die n-Wanne mit dem Pegel der Versorgungsspannung verbunden.

Im Layout sind auch Länge und Weite des Gates dargestellt. Die Gate-Länge wird so 
kurz wie möglich gewählt, damit der Widerstand durch den Transistor nicht unnötig groß 
wird. Die Weite wird so gewählt, dass n-Kanal und p-Kanal-Netzwerke den gleichen Wider-
stand und damit symmetrisches Verhalten haben. Beim NAND-Gatter sind zwei n-Kanal-
Transistoren in Reihe, was den doppelten Widerstand ergibt. Die p-Kanal-Transistoren 
haben aufgrund der geringeren Beweglichkeit der Löcher ebenfalls etwa doppelten Wider-
stand. Somit sind die Widerstände beider Transistornetzwerke etwa gleich groß.

10.2	� Grundschaltungen in CMOS-Technik

In diesem Abschnitt wird für einige Grundschaltungen der Aufbau in CMOS-Technik 
erläutert. Das Ziel ist dabei, dass Sie sich vorstellen können, wie Digitalschaltungen aus 
Transistoren aufgebaut werden.

10.2.1	� Inverter

Der Inverter ist noch einfacher aufgebaut als das NAND-Gatter und besteht aus nur zwei 
Transistoren. Ein Transistor verbindet den Ausgang mit VDD, ein anderer mit GND. 
Schaltbild und Layout sind in Abb. 10.9 dargestellt. Die Gate-Weite des p-Kanal-Tran-
sistors (oben) ist doppelt so groß wie beim n-Kanal-Transistor, um die geringere Beweg-
lichkeit der Löcher auszugleichen.

10.2.2	� Logikgatter

Andere Grundgatter können in ähnlicher Weise wie das NAND-Gatter mit n- und 
p-Kanal-Transistoren aufgebaut werden. Ein Netzwerk von n-Kanal-Transistoren verbin-
det den Ausgang mit Masse, ein zweites Netzwerk von p-Kanal-Transistoren verbindet 
den Ausgang mit der Versorgungsspannung. Dabei ist wichtig, dass die Netzwerke zuein-
ander komplementär sind, also stets genau eins der Netzwerke leitet.

Das Beispiel in Abb. 10.10 hat die Funktion Y = (A ∨ B)&C. Man erkennt, dass die 
Netzwerke auch in ihrer Topologie komplementär sind. Im p-Kanal-Netzwerk sind die 
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Transistoren für A und B in Reihe und C ist parallel dazu. Im n-Kanal-Netzwerk sind A 
und B parallel geschaltet und C liegt in Reihe dazu.

Nach dem gezeigten Grundprinzip lassen sich viele weitere Logikgatter entwerfen. 
Ein Kennzeichen von CMOS-Logikgattern ist, dass Funktionen mit einer Invertierung 
einfacher zu implementieren sind. Dies bedeutet, dass beispielsweise die NAND-Funk-
tionen einfacher als eine UND-Funktion aufgebaut sein kann, denn die NAND-Funktion 
nutzt die Eigenschaft, dass eine 0 die Transistoren nach VDD öffnet.

Für ein Gatter ohne Invertierung wird ein Inverter angefügt. Ein UND-Gatter besteht 
beispielsweise aus dem NAND-Gatter (Abb. 10.1), ergänzt um den Inverter aus Abb. 10.9. 
Die Schaltung benötigt 6 Transistoren, vier für das NAND, zwei für den Inverter. Im Lay-
out werden die beiden Schaltungsteile kombiniert, um wenig Fläche zu belegen.

10.2.3	� Transmission-Gate

In den bisher gezeigten Grundgattern verbinden die Transistoren den Ausgang mit 
VDD oder GND. Es ist jedoch auch möglich, Signaleingänge durch die Transistoren zu 

Abb. 10.9   Schaltbild und 
Layout eines Inverters
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leiten oder zu sperren. Die entsprechende Schaltungsstruktur wird als Transmission-Gate 
bezeichnet und ist in Abb. 10.11, links dargestellt. Ein n-Kanal und ein p-Kanal-Transistor 
sind parallel geschaltet und geben abhängig vom Steuersignal EN den Eingang auf den 
Ausgang weiter. Da die Transistoren bei unterschiedlichem Pegel der Steuersignale leiten, 
ist das Signal EN in positiver und negativer Polarität erforderlich.

Der Vorteil dieser Schaltungsstruktur ist der geringe Schaltungsaufwand. Manche 
Funktionen lassen sich mit deutlich weniger Transistoren umsetzen, als bei der Struk-
tur mit komplementären Transistornetzwerken nötig wäre. Der Nachteil der Struktur ist, 
dass ein Transmission-Gate keine Treiberfähigkeit besitzt. Dies ist jedoch meist kein 
Problem, denn der Treiber des Eingangssignals kann üblicherweise ein oder sogar meh-
rere Transmission-Gates treiben. Falls die Treiberfähigkeit nach dem Transmission-Gate 
zu gering ist, kann ein Inverter als Treiber eingefügt werden.

Vielleicht haben Sie beim Blick auf Abb. 10.11 überlegt, ob nicht ein Transistor als 
Transmission-Gate ausreichen würde. Dies ist ungünstig, denn der n-Kanal-Transistor 
schaltet eine 0 mit vollem Pegel, reduziert aber eine 1 um die Schwellenspannung. Umge-
kehrt schaltet der p-Kanal-Transistor die 1 mit vollem und die 0 mit reduziertem Pegel. 
Erst die Kombination beider Transistoren gibt ein gutes Schaltverhalten.

Ein Logikgatter, welches die Transmission-Gate-Struktur verwendet, ist in 
Abb. 10.11, rechts zu sehen. Es handelt sich um einen 1-aus-2-Multiplexer mit Steu-
ereingang S und Dateneingängen A und B. Die Dateneingänge sind jeweils durch ein 
Transmission-Gate mit dem Ausgang Y verbunden. Da die Ansteuerung für die Transmis-
sion-Gates unterschiedliche Polarität hat, ist genau ein Gate geöffnet, das andere sperrt. 
Die Schaltung benötigt nur sechs Transistoren, zwei für den Inverter und vier in den 
Transmission-Gates, und ist damit sehr kompakt.

10.2.4	� Flip-Flop

Neben kombinatorischen Elementen enthält eine Digitalschaltung natürlich auch Flip-
Flops zur Speicherung von Informationen. Heutzutage werden praktisch immer taktflan-
kengesteuerte D-Flip-Flops verwendet. Es gibt verschiedene Schaltungstechniken, um 
ein solches Flip-Flop zu realisieren. Die Varianten unterscheiden sich in Siliziumfläche, 
Schaltgeschwindigkeit und Stromverbrauch.

Als eine Flip-Flop-Schaltung ist in Abb. 10.12 exemplarisch das Transmission Gate 
Pulsed Latch, kurz TGPL, dargestellt. Zum Verständnis der Schaltung ist ein kleines 

Abb. 10.11   Transmission-
Gate und Anwendung in einem 
Multiplexer
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Zeitdiagramm angegeben sowie einige interne Signalknoten mit Bezeichnung markiert. 
Dateneingang D, Takteingang CK sowie Datenausgang Q sind fett dargestellt.

Funktionsweise des Transmission Gate Pulsed Latch (TGPL):

1.	 Das TGPL enthält auf der linken Seite eine Taktaufbereitung. Der Takteingang CK 
wird durch drei Inverter verzögert und in der Polarität gedreht (Signal /CK, siehe 
Zeitdiagramm). Durch ein NAND-Gatter werden dann CK und /CK verknüpft und das 
Pulssignal P entsteht. P ist meist 1 und wird nur bei einer steigenden Taktflanke kurz 
0. Damit steuert dieses Pulssignal die Datenübernahme an der Taktflanke.

2.	 Der Dateneingang D läuft zunächst durch einen Inverter, der als Treiber dient. /D wird 
gespeichert, indem das Pulssignal P beim Pegel 0 ein Transmission-Gate öffnet. Das 
gespeicherte Datensignal liegt dann am internen Knoten /Q an. Durch den Eingangs-
inverter hat es die umgekehrte Polarität. Kurz nach der Taktflanke wechselt P wieder 
auf den Wert 1 und schließt das Transmission-Gate.

3.	 Jetzt wird zur Datenspeicherung der interne Knoten /Q durch den Inverter und die 
vier Transistoren auf der rechten Seite der Schaltung wieder nach /Q gegeben. Dieser 
Schaltungsteil ist eine Rückkopplung, die den Wert an /Q speichert. Nur wenn P auf 
0 ist, also bei einer steigenden Taktflanke, unterbricht die Rückkopplung, damit ein 
neuer Eingangswert D gespeichert werden kann.

4.	 Durch den Inverter rechts unten wird der interne Knoten /Q auf den Datenausgang Q 
gegeben. Die Invertierung am Eingang wird wieder durch den Ausgangsinverter auf-
gehoben, so dass der richtige Signalwert ausgegeben wird.

Für die sichere Funktion muss das Zeitverhalten der Schaltung genau abgestimmt wer-
den. Die Laufzeit der drei Inverter bei ① muss ein Pulssignal P erzeugen, welches den 
Eingang D sicher übernimmt. Andererseits sollte das Pulssignal auch nicht zu lange 
0 sein, denn während dieser Zeit darf sich D nicht ändern. Die Dauer des Pulssignals 
bestimmt also Setup- und Hold-Zeit.

Außerdem muss die Verzögerungszeit von Transmission-Gate bei ②, sowie Rück-
kopplung bei ③ zueinander passen, damit die Schaltungsteile sicher zusammenarbeiten.

Dieses Zeitverhalten muss bei allen Variationen der Arbeitsbedingungen sicher funk-
tionieren. Als Variationen der Arbeitsbedingungen sind drei Einflussgrößen zu beachten, 
die unter der Abkürzung PVT zusammengefasst sind:

Abb. 10.12   Schaltbild des 
Transmission Gate Pulsed 
Latch. (Quelle: M. Alioto, 
IEEE Transactions on VLSI 
Systems, 2011)
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•	 Process (P): Die elektrischen Eigenschaften der Transistoren unterliegen den Tole-
ranzen des verwendeten Halbleiterprozesses und können schwanken. Beispiel: Die 
Dotierung von Source und Drain kann gegenüber dem „Normalfall“ abweichen.

•	 Voltage (V): Die Versorgungsspannung kann, eventuell auch nur kurzzeitig, schwan-
ken. Beispiel: Statt ideal 1,2 V kann die Spannung 1,15 oder 1,25 V betragen.

•	 Temperature (T): Die Temperatur kann schwanken. Beispiel: Der Chip kann bei 
Temperaturen im Bereich von −20°C bis 80°C arbeiten.

Bei der Entwicklung eines Flip-Flops wird die Schaltung darum unter verschiedenen 
Arbeitsbedingungen simuliert und es werden Testschaltungen hergestellt. Dabei kann 
auch überprüft werden, ob eventuell eine andere Flip-Flop-Schaltung für den jeweiligen 
Halbleiterprozess besser geeignet ist. Das oben beschriebene TGPL ist nur eine mögliche 
Schaltungsvariante.

10.3	� Verlustleistung

Neben der Anzahl an Transistoren, welche die Größe einer Schaltung ausmacht, ist 
der Energieverbrauch einer Schaltung eine wichtige Kenngröße. Die CMOS-Technik 
ist prinzipiell sehr energieeffizient. Sie hat gegenüber anderen Halbleitertechniken den 
großen Vorteil, dass durch ein Gatter kein Ruhestrom fließt, denn entweder sperren die 
p-Kanal-Transistoren oder die n-Kanal-Transistoren. Vorgängertechnologien hingegen 
hatten einen ständigen Ruhestrom und wurden wegen dieser ständigen Verlustleistung 
durch CMOS abgelöst.

Durch immer leistungsfähigere Schaltungen ist allerdings auch die Verlustleistung 
von CMOS-Schaltungen in den letzten Jahren immer weiter gestiegen. Deutlich sichtbar 
ist dies bei High-End-Grafikkarten für PC-Spiele. Sie haben hohe Rechenleistung für die 
Berechnung der Grafik, aber auch große Kühlkörper und Lüfter zur Kühlung.

Es gibt verschiedene Gründe aus denen eine geringe Verlustleistung Integrierter 
Schaltungen sinnvoll ist.

•	 Höhere Leistungsaufnahme erhöht die Kosten für Chipgehäuse und Kühlkörper. 
Gegebenenfalls sind Lüfter erforderlich.

•	 Die Betriebskosten für Spannungsversorgung und Kühlung steigen. Dies ist insbeson-
dere in Rechenzentren ein hoher Kostenanteil.

•	 Mobile Geräte wie Laptop, Tablet oder Smartphone sollen mit einer Akkuladung 
möglichst lange Betriebszeiten haben.

•	 Es werden autarke Sensoren eingesetzt, die mit einer Batterie mehrere Jahre betrieben 
werden sollen.

Die Verlustleistung entsteht durch einen statischen und einen dynamischen Anteil. 
Diese beiden Aspekte der Verlustleistung werden in den folgenden Abschnitten näher 
vorgestellt.
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10.3.1	� Statische Verlustleistung

CMOS-Schaltungen haben zwar keinen Ruhestrom, der durch einen geöffneten Transis-
tor fließt. Dennoch fließen winzige sogenannte Leckströme, da der Transistor natürlich 
keine galvanische Trennung des Stromflusses vornimmt. Diese Leckströme addieren 
sich über die Milliarden Transistoren eines Chips und verursachen eine statische 
Verlustleistung.

Leckströme entstehen an verschiedenen Stellen des Transistoraufbaus. Insgesamt gibt 
es vier Anteile, die in Abb. 10.13 dargestellt sind (vergleiche Abb. 10.4 und 10.5). Der 
Anschluss B ist dargestellt, da auch über das Substrat (Bulk) Leckströme fließen können.

•	 Subthreshold Leakage Isubth entsteht, da der Kanal nicht vollständig ausgeschaltet 
werden kann.

•	 Gate Leakage Igate ergibt sich auf Grund von Ladungsträgerübertragung durch sehr 
dünnes Gate-Oxyd.

•	 Reverse Bias Junction Leakage Irev ist der Sperrstrom des pn-Übergangs zum Substrat.
•	 Gate Induced Drain Leakage Igidl ist der Leckstrom vom Drain-Anschluss, verursacht 

durch die Feldstärke der Drain-Spannung.

Der Hauptanteil der statischen Verlustleistung entsteht durch die Subthreshold Leakage 
Isubth. Einen geringeren Anteil tragen Gate Leakage Igate und Reverse Bias Junction 
Leakage Irev bei. Die Gate Induced Drain Leakage Igidl ist normalerweise vernachlässig-
bar. Allgemein führt eine erhöhte Temperatur zu steigenden Leckströmen.

Die Subthreshold Leakage ist exponentiell von der Schwellenspannung abhängig. Je 
höher die Schwellenspannung, umso geringer sind die Leckströme. Andererseits redu-
ziert eine höhere Schwellenspannung auch die Verarbeitungsgeschwindigkeit, so dass ein 
Kompromiss gefunden werden muss.

10.3.2	� Dynamische Verlustleistung

Die dynamische Verlustleistung entsteht bei Aktivität der Schaltung. Zum Verständnis 
wird die Inverter-Schaltung aus Abschn. 10.2.1 erneut betrachtet. Abb. 10.14 zeigt den 
Inverter sowie Spannungen und Ströme bei Schaltungsaktivität. Zusätzlich zu den bei-
den Transistoren ist ein Kondensator mit der Kapazität CL abgebildet. Dieser stellt die 

Abb. 10.13   Leckströme bei 
einem CMOS-Transistor S

Igate
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Lastkapazität dar, welche vom Inverter geschaltet wird. Die Lastkapazität setzt sich 
zusammen aus den Gate-Kapazitäten der nachfolgenden Gatter sowie der Leitungskapa-
zität auf den Verbindungen dorthin. Der Zeitverlauf zeigt den prinzipiellen Verlauf der 
Spannungen am Eingang und Ausgang des Inverters sowie der Ströme im p-Kanal-Tran-
sistor ip(t), im n-Kanal-Transistor in(t), sowie zum Kondensator ic(t).

Im Diagramm wechselt die Eingangsspannung zum Zeitpunkt ① von logisch 1 auf 0. 
Mit kurzer Zeitverzögerung wechselt darauf der Ausgang von 0 nach 1. Dabei wird der 
Kondensator über den p-Kanal-Transistor geladen, sichtbar an den Strömen ip und ic. 
Außerdem fließt ein kleinerer Querstrom über ip und in, wenn beim Umschalten des Ein-
gangs beide Transistoren für kurze Zeit teilweise leiten.

Zum Zeitpunkt ② wechselt der Eingang wieder von 0 auf 1 und der Ausgang kurz 
darauf von 1 nach 0. Jetzt wird der Kondensator über den n-Kanal-Transistor entladen, 
sichtbar an den Strömen in und einem negativen Wert für ic. Wieder sind beim Umschal-
ten kurzfristig beide Transistoren teilweise leitend, so dass erneut ein Querstrom über ip 
und in fließt.

Die Verlustleistung des Inverters berechnet sich über das Integral des Stroms ip(t), mul-
tipliziert mit der Versorgungsspannung VDD. Dabei hat das Umladen der Kapazität den 
größten Anteil. Einflussgrößen sind zum einen der Wert der Lastkapazität CL sowie die 
Höhe der Versorgungsspannung VDD. Zum anderen muss berücksichtigt werden, wie oft 
die Kapazität umgeladen wird. Dies wird durch die Taktfrequenz f der Schaltung angege-
ben, sowie die Schaltaktivität σ als Wahrscheinlichkeit einer 0-1-Flanke pro Taktzyklus.

Diese Einflussgrößen multiplizieren sich zur Verlustleistung PC für das Umladen der 
Lastkapazität. Dabei hat die Versorgungsspannung einen quadratischen Einfluss:

Die Einflussgrößen sind, ausgenommen die Schaltaktivität, bereits bekannt. Die Schalt-
aktivität drückt aus, wie häufig eine Leitung auf 1 wechselt und kann Werte zwischen 1 
und 0 einnehmen.

•	 Das Taktsignal hat jeden Takt eine steigende Flanke und daher ist σ = 1
•	 Die unterste Stelle eines Zählers hat von Takt zu Takt abwechselnd die Werte 0 und 1. 

Es gibt also jeden zweiten Takt eine steigende Flanke: σ = 0,5

PC,inv = σ f V2

DDCL
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GND
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ip(t)

in(t)
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Abb. 10.14   CMOS-Inverter mit Zeitverlauf von Spannungen und Strömen
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•	 Die oberste Stelle eines 8-Bit-Zählers hat nur eine steigende Flanke beim Über-
gang von 127 nach 128. Der nächste Wechsel tritt erst 256 Takte später auf: 
σ = 1/256 ≈ 0,004

•	 Die Reset-Leitung einer CPU wird im normalen Betrieb nicht angesteuert, daher ist 
σ = 0

•	 Audio und Video-Signale haben, je nach Typ des Signals, einen Wert von σ ≈ 0,3 bis 
0,1

Für eine gesamte Integrierte Schaltung müssen die Anteile der einzelnen Schaltungskno-
ten addiert werden.

Die Verlustleistung durch den Querstrom ist in dieser Gleichung noch nicht berück-
sichtigt. Allerdings ist der Anteil deutlich kleiner als PC und ebenfalls proportional zur 
Schalthäufigkeit. Darum wird in der Praxis meist nur die Verlustleistung durch Umladen 
der Lastkapazitäten betrachtet. Der Einfluss des Querstroms kann beispielsweise berück-
sichtigt werden, indem die Lastkapazitäten CL etwas höher angesetzt werden.

10.3.3	� Entwurf energieeffizienter Schaltungen

Um Schaltungen mit geringer Verlustleistung zu entwerfen, werden möglichst alle Ein-
flussgrößen optimiert. Ein Faktor ist die Versorgungsspannung, die früher bei 5 Volt lag 
und heute bis auf Werte von etwa 1 Volt reduziert wurde. Dies ist ohnehin erforderlich, 
damit die Feldstärken in den kleiner werdenden Transistoren nicht zu stark ansteigen. 
Durch die geringere Versorgungsspannung reduzieren sich statische und dynamische 
Verlustleistung.

Die statische Verlustleistung kann durch Wahl der Parameter des Halbleiterprozesses, 
also Transistorgeometrie und Dotierungsstärken reduziert werden. Weil dadurch auch die 
Geschwindigkeit einer Schaltung sinkt, kann ein Hersteller einen Halbleiterprozess in 
verschiedenen Varianten anbieten. Beispielsweise kann eine Version angeboten werden, 
die im Hinblick auf die Schaltgeschwindigkeit optimiert ist. Weitere Varianten des Halb-
leiterprozesses könnten eine Low-Power-Version oder eine „balancierte Version“, die 
einen Kompromiss aus Rechenleistung und Stromverbrauch darstellt, sein.

Die dynamische Verlustleistung kann reduziert werden, indem eine geringere Kapa-
zität CL umgeladen wird. Dies kann durch einen Prozess mit geringeren physikalischen 
Abmessungen erfolgen. Aber auch eine geringere Anzahl an Schaltungselementen redu-
ziert die Anzahl an Schaltungsknoten und damit die Lastkapazität. Eine Möglichkeit ist 
beispielsweise, wenn eine Rechenoperation nur eine Genauigkeit von 16 bit anstatt 32 bit 
erfordert.

Als weitere Einflussgröße kann eine geringere Häufigkeit der Signalwechsel die 
dynamische Verlustleistung reduzieren. Eine Möglichkeit hierfür ist das Abschalten 

PC =

∑

i= alle Knoten

σi f V
2

DD CL,i

10.3  Verlustleistung
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ganzer Schaltungsteile, wenn sie nicht benötigt werden. Dies erfolgt beispielsweise in 
einer CPU mit mehreren Prozessoren. Bei geringer Rechenlast werden einzelne Prozes-
soren komplett ausgeschaltet und damit die dynamische Verlustleistung reduziert. Wenn 
ein Prozessor oder nicht benötigte Schnittstellenkomponenten vorübergehend von der 
Versorgungsspannung abgetrennt werden, reduziert sich zusätzlich auch die statische 
Verlustleistung.

10.4	� Integrierte Schaltungen

Eine komplette Integrierte Schaltung setzt sich aus vielen einzelnen Gattern und Flip-
Flops zusammen.

10.4.1	� Logiksynthese und Layout

Standardzellbibliothek
Die in Abschn. 10.2 beschriebenen Grundschaltungen werden vom Hersteller eines 
Halbleiterprozesses in einer Bibliothek zur Verfügung gestellt. Diese Grundschaltungen 
werden als Standardzellen bezeichnet. Eine Standardzellbibliothek umfasst beispiels-
weise 100 bis 200 Zellen, darunter:

•	 Inverter und Treiber, also nacheinander geschaltete Inverter, für größere Lastkapazitäten
•	 Logikgatter, also UND-, ODER-, NAND-, NOR-, XOR-Gatter mit unterschiedlicher 

Anzahl an Eingängen
•	 Komplexgatter, für kombinierte Logikfunktionen, beispielsweise die Funktion 

Y = (A ∨ B)&C aus Abb. 10.10 oder der Multiplexer aus Abb. 10.11
•	 Arithmetische Schaltungen, beispielsweise Volladdierer
•	 Flip-Flops in verschiedener Konfiguration, beispielsweise mit Set oder Reset

Außerdem können für manche Zellen Varianten mit verschiedener Treiberstärke vor-
handen sein. Ein Flip-Flop, das nur ein weiteres Gatter ansteuert, benötigt einfache Trei-
berstärke. Falls mehrere Gatter angesteuert werden, könnte die vierfache Treiberstärke 
sinnvoll sein.

Logiksynthese
Die Auswahl der passenden Standardzelle erfolgt normalerweise durch ein EDA-Pro-
gramm. Dazu schreiben Sie VHDL-Code und das Programm sucht dann die passende 
Standardzelle für die beschriebene Funktion. Anhand der Verbindungen zu weiteren 
Standardzellen, entscheidet das Programm auch, welche Treiberstärke eingesetzt werden 
soll. Dieser Schritt wird als Logiksynthese bezeichnet.
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Beispielsweise wurde im Kapitel 6 eine Flankenerkennung beschrieben, bei der fol-
gender VHDL-Code verwendet wurde:

if (a_sync_old='0') and (a_sync='1') then
   q <= '1';     else
   q <= '0';     end if;

Die Logiksynthese interpretiert diesen Code und erkennt, dass eine Logikfunktion 
Ā&B erforderlich ist. A ist dabei das VHDL-Signal a_sync_old, B ist a_sync. Für die 
Umsetzung in Standardzellen hat die Logiksynthese mehrere Möglichkeiten:

•	 Inverter für A gefolgt von einem UND-Gatter.
•	 Da Grundgatter in CMOS-Technologie stets eine Invertierung beinhalten, wäre ein 

NAND- oder NOR-Gatter vorteilhaft. Die Logikfunktion kann mit den Gesetzen von 
De Morgan umgewandelt werden in Ā&B =

(

A ∨ B̄
)

. Damit ergibt sich ein Inverter 
für B gefolgt von einem NOR-Gatter.

•	 Eventuell steht in der Standardzellbibliothek ein passendes Komplexgatter mit der 
Funktion Ā&B zur Verfügung.

Dieser Entwurfsschritt ist ähnlich zur in Kapitel 7 beschriebenen Synthese von 
FPGA-Schaltungen. Allerdings muss die Logiksynthese unter vielen Standardzellen 
wählen, während der FPGA-Synthese üblicherweise nur Look-Up-Tables und Flip-Flops 
zur Verfügung stehen.

Layout
Die Logiksynthese erzeugt eine Netzliste mit benötigten Standardzellen und ihren Ver-
bindungsleitungen. Im nächsten Schritt werden die Position der Standardzellen und die 
Lage der Verbindungsleitungen ermittelt. Die physikalische Anordnung wird als Lay-
out, die beiden Einzelschritte als Placement und Routing bezeichnet. Auch diese Schritte 
werden von einem EDA-Programm durchgeführt und sind ähnlich zur Platzierung und 
Verdrahtung des FPGA-Entwurfs.

Miteinander verbundene Standardzellen werden vom EDA-Programm möglichst nah 
aneinander platziert. Dazu probiert ein intelligenter Algorithmus verschiedene Anord-
nungen aus. Abb. 10.15 zeigt das Layout einer automatisch erzeugten Teilschaltung.

Aus den Teilschaltungen wird schließlich die gesamte integrierte Schaltung zusam-
mengestellt. Abb. 10.16 zeigt als Beispiel das Chip-Foto eines System-on-Chip (SoC) 
für ein Smartphone. Es handelt sich um die zentrale Steuereinheit des Geräts mit zwei 
CPU-Kernen und der Grafikerzeugung (GPU) sowie lokalem Speicher (L1, L2, SRAM). 
Ebenso sind verschiedene Schnittstellen für externen Speicher (DRAM), Kamera, USB 
und das Display (LCD) vorhanden. Für die Taktaufbereitung dienen PLLs (Phase-
Locked Loop). Der Chip enthält über 1 Mrd. Transistoren auf rund 1 Quadratzentimeter 
Fläche.

10.4  Integrierte Schaltungen
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Abb. 10.15   Teil eines Chip-Layouts. (Quelle: Infineon)

Abb. 10.16   Chip-Foto eines System-on-Chip für ein Smartphone. (Foto: Chipworks)
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10.4.2	� Herstellung

Als Grundmaterial für die Herstellung von CMOS-Schaltungen wird monokristalli-
nes Silizium verwendet. Die Herstellung erfolgt auf dünnen Siliziumscheiben, genannt 
Wafer. Ein Wafer ist etwa 1 mm dick und hat einen Durchmesser zwischen 15 und 30 cm 
(Abb. 10.17). Auf diesem Substrat werden durch aufwendige chemische und physikali-
sche Prozesse die Strukturen für die Schaltung aufgebracht. Aus einem kompletten Wafer 
können mehrere hundert einzelne Chips gefertigt werden.

Die Anzahl an Chips je Wafer ergibt sich direkt aus der Fläche. Als Zahlenbeispiel 
betrachten wir einen Wafer mit 30 cm Durchmesser, auf dem sich Chips mit der Fläche 
von 2 cm2 befinden. Die Kreisfläche ist π˙r2, also 3,14‧(15 cm)2 = 707 cm2. Da jeder 
Chip 2 cm2 benötigt, ergibt der Wafer theoretisch 353 Chips. An den Kanten, zum Sägen 
der Chips und für kleine Testflächen geht jedoch Fläche verloren. Praktisch können aus 
dem Wafer darum etwa 250 bis 300 Chips hergestellt werden.

Auf dem Wafer werden die Strukturen der Transistoren und Metallleitungen in meh-
reren Arbeitsschritten nacheinander gefertigt. Abb. 10.18 zeigt den Arbeitsschritt der 
Erzeugung von Source und Drain eines Transistors (vergleiche Abb. 10.4). Das Subst-
rat ist p-dotiert und für Source und Drain sollen zwei n-dotierte Bereiche entstehen. Das 
Bild zeigt einen kleinen Ausschnitt des Wafers in Seitenansicht.

Zunächst wird die Oberfläche mit Fotolack versehen, mit einer Belichtungsmaske 
abgedeckt und belichtet. Dieser Verarbeitungsschritt wird als Lithographie (auch Belich-
tungstechnik) bezeichnet. Die nicht belichteten Stellen können entfernt werden und las-
sen das darunter liegende Substrat frei (Abb. 10.18, links). Dann wird der Halbleiter in 
eine Atmosphäre mit dem Dotierungsgas gebracht und erhitzt. Für eine n-Dotierung kann 
die Dotierung zum Beispiel Arsen sein. Die Dotierungsatome dringen in das Substrat ein 
und bilden Source und Drain (Abb. 10.18, rechts).

Auf diese Art werden Schritt für Schritt die einzelnen Ebenen einer Schaltung 
erzeugt. Die komplette Bearbeitung eines Wafers benötigt mehrere hundert Verarbei-
tungsschritte. Dazu gehört immer wieder das Auftragen von Fotolack, Belichten mit 
einer Fotomaske, Freiätzen unbelichteter Regionen, Dotieren nichtabgedeckter Bereiche 
und Entfernen des Fotolacks. Für die einzelnen Schaltungsebenen werden rund 20 bis 30 
verschiedene Belichtungsmasken benötigt.

Aufgrund der sehr feinen Strukturen würde ein Staubkorn oder ein Haar auf dem 
Wafer die Fertigung stören und der Chip wäre an der Stelle des Staubkorns unbrauchbar. 
Darum findet die Fertigung in einem Reinraum statt. Dort trägt man spezielle Schutz-
kleidung und einen Mundschutz und es werden möglichst Industrieroboter eingesetzt. 
Dennoch bleibt trotz aller Sorgfalt eine geringe Staubkonzentration, so dass sich Ferti-
gungsfehler nicht komplett vermeiden lassen.

Darum müssen sämtliche ICs nach der Fertigung einzeln getestet werden. Üblicher-
weise erfolgt dieser Fertigungstest zweimal, einmal noch auf dem Wafer, ein anderes Mal 
nach dem Verpacken. Durch den ersten Test werden Kosten beim Verpacken in die Gehäuse 

10.4  Integrierte Schaltungen
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gespart, denn defekte Chips werden nicht weiter verarbeitet. Durch den zweiten Test wird 
überprüft, ob das Zersägen des Wafers und das Verpacken zu Fehlern geführt haben.

Der Anteil der korrekt gefertigten ICs wird als Ausbeute (engl. Yield) bezeichnet. 
Genaue Ausbeutewerte werden von den Halbleiterfirmen als Betriebsgeheimnis gehü-
tet. Werte für eine eingefahrene Fertigung können bei 80 bis 90 % liegen. Für eine neue 
Halbleitertechnologie kann die Ausbeute jedoch auch bei nur 10 % oder noch darunter 
liegen. Dennoch kann solch eine Fertigung wirtschaftlich sein, wenn die Produkte auf-
grund der Leistungsfähigkeit der neuen Technologie einen entsprechend hohen Preis 
erzielen.

10.4.3	� Packaging

Nach Erstellen der Schaltungsstrukturen wird schließlich der Wafer in einzelne Chips 
zersägt und in Gehäuse verpackt. Diese unverpackten Chips werden auch als Die 
bezeichnet; der Plural ist Dies oder Dice. Mit dünnen Golddrähtchen werden Die und 
Gehäuse miteinander verbunden. Die Drähtchen werden als Bond-Draht bezeichnet, 
der Fertigungsschritt als Bonding. Abb. 10.19 zeigt, wie in einem geöffneten Gehäuse 
die Bond-Drähte eine Verbindung zum Die herstellen. Für die Bond-Drähte wird Gold 
als Material verwendet, weil es ein sehr guter elektrischer Leiter ist und sich für diese 
Anwendung gut verarbeiten lässt.

Abb. 10.17   Silizium-Wafer. (Foto: imec)

Abb. 10.18   Substrat vor 
und während der Dotierung 
von Source und Drain eines 
CMOS-Transistors
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Die Anschlussflächen im Inneren des Gehäuses sind mit den Pins außen am Gehäuse 
verbunden. Mit den Pins erfolgt dann die elektrische Verbindung zur Platine.

10.4.4	� Gehäuse

Es sind verschiedene Gehäuseformen gebräuchlich. Hauptkriterium für die Auswahl des 
Gehäuses durch den Hersteller ist die Anzahl der Anschlüsse. Weitere Kriterien sind auf-
tretende Verlustleistung, Platzbedarf und Gehäusekosten. Um die Ausrichtung der ICs zu 
bestimmen, sind an den Gehäusen Orientierungsmarken angebracht, meist ein eingepräg-
ter Punkt oder eine Kerbe im Gehäuse. Zusätzlich kann sich in einer Ecke ein fehlender 
oder zusätzlicher Pin befinden.

Abb. 10.20 zeigt beispielhaft einige Gehäuseformen. Von links nach rechts sind 
abgebildet:

•	 DIL-Gehäuse (Dual In-Line): Geeignet für kleine Anzahl an Pins. Die „Beinchen“ 
des Gehäuses sind für eine Durchsteckmontage gedacht, werden also durch Löcher in 
der Platine geführt.

•	 PLCC-Gehäuse (Plastic Leaded Chip Carrier): Für mittlere Anzahl an Pins geeignet. 
Die Pins erlauben die Oberflächenmontage und das Einstecken in Sockel.

Abb. 10.19   Geöffneter Chip mit Bond-Drähten zwischen Die und Gehäuse. (Foto: imec, 
bearbeitet)

10.4  Integrierte Schaltungen
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•	 QFP-Gehäuse (Quad Flat Pack): Ebenfalls für mittlere Anzahl an Pins und die Ober-
flächenmontage geeignet. Im Vergleich zu PLCC etwas kleinere Pins.

•	 BGA-Gehäuse (Ball Grid Array): Bis zu großer Anzahl an Pins verfügbar. Die 
Anschlüsse für die Oberflächenmontage befinden sich als Lötkugeln unterhalb des 
Bausteins.

10.5	� Miniaturisierung der Halbleitertechnik

Die erste Integrierte Schaltung wurde 1958 von Jack Kilby entwickelt, der dafür den 
Nobelpreis für Physik erhielt. Seitdem hat sich die Halbleitertechnik kontinuierlich wei-
terentwickelt. Ein wesentlicher Fortschritt ist, dass es durch geschickte Fertigungstech-
nik gelungen ist, die Größe eines Transistors immer weiter zu reduzieren.

Als Angabe wie klein die Strukturen einer Halbleitertechnologie sind, wird die soge-
nannte Strukturgröße als Größenangabe verwendet. Früher entsprach die Strukturgröße 
der Gate-Länge L des Transistors (vergleiche Abb. 10.3). Durch verschiedene Möglich-
keiten für die Gestaltung der Transistorgeometrie hat die Strukturgröße heute jedoch 
keinen direkten Bezug zu einer bestimmten Geometrie. Eine kleinere Strukturgröße 
kennzeichnet einen moderneren Prozess, der mehr Transistoren enthalten kann. Durch 
die kleineren Abmessungen arbeitet er schneller und mit weniger Verlustleistung. Die 
Strukturgröße beträgt aktuell 10 Nanometer (Stand 2016). Diese Angabe finden Sie oft in 
Zeitschriftenartikeln, beispielsweise als „neue CPU in 10 nm Technologie“. Ein mensch-
liches Haar hat übrigens einen Durchmesser von rund 80 µm, ist also 8000mal so dick.

10.5.1	� Moore’sches Gesetz

Durch die Miniaturisierung passen immer mehr Transistoren auf einen einzelnen Chip. 
Diese Entwicklung wird als Mooreʼsche Gesetz bezeichnet.

Das Mooreʼsche Gesetz besagt: Die Anzahl der Transistoren pro Integrierter Schaltung ver-
doppelt sich alle zwei Jahre.

Abb. 10.21 zeigt den Anstieg der Integration. Die vertikale Achse hat eine logarithmi-
sche Skala, das heißt, ein Teilstrich der Skala entspricht einem Multiplikationsfaktor 
von 10 gegenüber dem vorherigen Teilstrich. Die Punkte stellen Einführungsjahr und 

Abb. 10.20   Verschiedene Gehäuse für Integrierte Schaltungen
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Transistoranzahl für einige Computer-Prozessoren dar, angefangen beim Intel 4004, dem 
ersten in Serie produzierten Mikroprozessor.

Gordon Moore, ein Mitbegründer der Firma Intel, hat die nach ihm benannte Aus-
sage, die natürlich kein Naturgesetz, sondern eine Prognose ist, bereits 1965, also am 
Anfang der „Geschichte“ integrierter Schaltkreise formuliert. Ursprünglich wurde sogar 
eine jährliche Verdopplung prognostiziert, 1975 dann auf den Zeitraum von zwei Jah-
ren zurückgenommen. Das „Mooreʼs Law“ ist oft zitiertes Synonym für das stürmische 
Wachstum der Halbleiterindustrie. Ein Ende dieser Entwicklung wurde zwar oft voraus-
gesagt, scheint aber für die nächsten Jahre noch nicht in Sicht.

10.5.2	� FinFET-Transistoren

Bei der Miniaturisierung von Halbleitern gibt es eine natürliche Grenze: Die Größe der 
Atome. Der Atomdurchmesser eines Siliziumatoms beträgt etwa 0,25 nm, so dass die 
Gate-Länge heute bereits unter hundert Atomen liegt. Als Folge müssen für die Schalt-
eigenschaften der Transistoren quantenphysikalische Einflüsse einzelner Atome beachtet 
werden. Durch die kleinen Abmessungen verschlechtern sich die elektrischen Eigen-
schaften der Transistoren.

Darum werden neue Transistorgeometrien entwickelt, die für sehr kleine Strukturen 
besser geeignet sind, als die in Abschn. 10.1.2 beschriebenen, sogenannten Planar-Tran-
sistoren. Eine erfolgreich eingesetzte Struktur sind FinFET-Transistoren. Dabei liegt das 
Gate nicht oberhalb des Kanals, sondern um einen Steg herum, der wie eine Finne oder 

Abb. 10.21   Das Mooreʼsche 
Gesetz beschreibt die stetige 
Zunahme an Transistoren je 
integrierter Schaltung
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Rückenflosse aussieht. Aus dieser Finne und der Abkürzung FET für Feldeffekttransistor 
ergibt sich der Name FinFET. Der physikalische Aufbau eines FinFET-Transistors ist in 
Abb. 10.22 dargestellt. Das Gate umschließt den Kanal von drei Seiten und hat daher auf 
kleinem Raum eine hohe Schaltwirkung. Auch Abb. 10.6 zeigt FinFET-Transistoren.

10.5.3	� Weitere Technologieentwicklung

In den nächsten Jahren werden Fortschritte in der Fertigungstechnik für eine weitere Mini-
aturisierung sorgen. Techniken in der Erprobung sind unter anderem dreidimensionaler 
Aufbau von Schaltungen und Verbindungen mit Kohlenstoffnanoröhren (CNT, englisch 
Carbon Nanotubes). Das Grundprinzip digitaler Schaltungen, also das Schalten von Nullen 
und Einsen bleibt auch für die vorgeschlagenen neuen Fertigungstechniken erhalten.

Das Problem für eine neue Fertigungstechnik ist oft die Zuverlässigkeit in der indus-
triellen Fertigung. Wenn im Labor ein Aufbau funktioniert, ist dies nur der erste Schritt. 
Eine neue Technik muss auch in der Massenfertigung zu vertretbaren Kosten eine hohe 
Fertigungsausbeute ergeben.

10.6	� Übungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Prüfen Sie sich mit den Aufgaben und 
Fragen am Kapitelende. Die Lösungen und Antworten finden Sie am Ende des Buches.

Bei den Auswahlfragen ist immer genau eine Antwort korrekt.

Aufgabe 10.1
Was für Schaltelemente werden für CMOS-Schaltungen benutzt?

a)	 Feldeffekttransistoren
b)	Mechanische Schalter
c)	 Feldeffekt- und Bipolartransistoren
d)	Bipolartransistoren

Aufgabe 10.2
Ein CMOS-Inverter besteht aus zwei Transistoren. Wie heißt der mit Versorgungsspan-
nung (VDD) verbundene Transistor?

a)	 Depletion-Transistor
b)	p-Kanal Transistor
c)	 n-Kanal Transistor
d)	Verarmungstransistor
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Aufgabe 10.3
Ein CMOS-Inverter besteht aus zwei Transistoren. Wie heißt der mit Masse (GND) ver-
bundene Transistor?

a)	 n-Kanal Transistor
b)	Depletion-Transistor
c)	 p-Kanal Transistor
d)	Verarmungstransistor

Aufgabe 10.4
Wenn bei CMOS das Substrat p-dotiert ist, muss der p-Kanal-Transistor in einem spezi-
ellen, umdotierten Gebiet liegen. Wie wird dieses Gebiet bezeichnet?

a)	 Sillicon Region
b)	Silicon Valley
c)	 n-Wanne
d)	Raumladungszone
e)	 Verarmungszone

Aufgabe 10.5
Was bedeutet der Begriff Complementary (komplementär) bei CMOS-Gattern?

a)	 Es ist stets entweder n-Kanal- oder p-Kanal-Netzwerk leitend
b)	p-Kanal-Transistoren haben eine größere Kanalweite
c)	 CMOS-Gatter beinhalten normalerweise eine Invertierung
d)	p-Kanal- und n-Kanal-Transistoren haben entgegengesetztes Verhalten

Aufgabe 10.6
Warum hat im CMOS-Inverter der p-Kanal-Transistor eine 2–3fache Kanalweite?

a)	 Löcher haben eine höhere Beweglichkeit als Elektronen
b)	Löcher haben eine geringere Beweglichkeit als Elektronen
c)	 Die Schaltzeiten 0 nach 1 sowie 1 nach 0 sollen unterschiedlich sein
d)	Die Reihenschaltung mehrerer Transistoren wird ausgeglichen
e)	 Die Parallelschaltung mehrerer Transistoren wird ausgeglichen

Aufgabe 10.7
Welchen Aufbau hat ein Transmission-Gate?

a)	 Zwei unterschiedliche Inverter sind parallel geschaltet
b)	Es werden nur p-Kanal-Transistoren verwendet

10.6  Übungsaufgaben
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c)	 Zwei Inverter sind in Reihe geschaltet
d)	n-Kanal und p-Kanal-Transistor sind parallel geschaltet
e)	 Es werden nur n-Kanal-Transistoren verwendet

Aufgabe 10.8
Was besagt das Moore’sche Gesetz?

a)	 Die Fläche von Integrierten Schaltungen verdoppelt sich alle zwei Jahre
b)	Der Stromverbrauch Integrierter Schaltungen ist proportional zur Anzahl an 

Transistoren
c)	 Die Fläche von Integrierten Schaltungen halbiert sich alle zwei Jahre
d)	Die Anzahl der Transistoren pro Integrierter Schaltung verdoppelt sich alle zwei Jahre
e)	 Der Stromverbrauch Integrierter Schaltungen ist proportional zur Fläche

Aufgabe 10.9
Was kennzeichnet einen FinFET-Transistor?

a)	 Die Dotierung wird besonders schwach gewählt
b)	Der Kanal ist oberhalb des Gatters
c)	 Die Dotierung wird besonders stark gewählt
d)	Es handelt sich um einen Bipolartransistor
e)	 Das Gate liegt um den Kanal herum

Aufgabe 10.10
Welche Funktion hat die Schaltung in Abb. 10.23?

Hinweis: Bei einer 0 am Eingang leiten die p-Kanal-Transistoren (oberes Netzwerk), 
bei einer 1 am Eingang leiten die n-Kanal-Transistoren (unteres Netzwerk). Stellen Sie 
eine Funktionstabelle für die vier möglichen Eingangskombinationen auf und ermitteln 
Sie, welcher Spannungswert am Ausgang anliegt. Aus der Funktionstabelle können Sie 
die Logikfunktion erkennen.

Abb. 10.23   Schaltung für 
Aufgabe 10.10
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Die Speicherung von Informationen ist eine wichtige Funktion innerhalb von Digital-
schaltungen. Für kleine Speichergrößen werden Flip-Flops eingesetzt, die bereits aus 
vorherigen Kapiteln bekannt sind. Für mittlere und größere Datenmengen sind spezielle 
Speicherstrukturen effizienter, die in diesem Kapitel vorgestellt werden. Für mittlere 
Datengrößen werden die Speicher auf einem Chip integriert. Für sehr große Datenmen-
gen sind spezielle Speicherbausteine verfügbar.

Es gibt verschiedene Technologien für den Aufbau von Speichern, die sich in ihren 
Eigenschaften deutlich unterscheiden und daher jeweils eigene Anwendungsbereiche 
haben. Die wichtigste Unterscheidung bei den Speichertechnologien ist die Speicherfä-
higkeit ohne Betriebsspannung.

•	 Flüchtige Speicher benötigen eine Versorgungsspannung zum Erhalt der Informatio-
nen. Zu diesen Speichern gehören SRAM und DRAM. Auch Flip-Flops benötigen die 
Versorgungsspannung zur Informationsspeicherung.

•	 Nichtflüchtige Speicher behalten ihren Inhalt auch ohne Versorgungsspannung. Zu 
diesen Speichern gehören EEPROM, FRAM, MRAM, PCRAM und RRAM.

Die englischen Begriffe sind Volatile Memory und Non-Volatile Memory.
Im Folgenden werden zunächst die verschiedenen Technologien zur Speicherung 

erläutert und danach aktuelle Speicherbausteine betrachtet.

Speicher 11
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11.1	� Übersicht

11.1.1	� Begriffe und Abkürzungen

Für die verschiedenen Speichertypen und Speicherorganisationen werden eine Reihe von 
Begriffen und Abkürzungen verwendet. Für Ihren Überblick klären wir für zunächst die 
wichtigsten Bezeichnungen.

•	 SRAM steht für Static Random Access Memory, also ein statischer Speicher mit 
wahlfreiem Zugriff.

•	 DRAM steht für Dynamic Random Access Memory, also ein dynamischer Speicher 
mit wahlfreiem Zugriff.

Der Unterschied zwischen statisch und dynamisch bedeutet, dass ein SRAM seine Daten 
unbegrenzt hält, solange die Versorgungsspannung anliegt. Das DRAM hingegen würde 
Daten nach einiger Zeit verlieren und darum muss die gespeicherte Information in regel-
mäßigen Abständen aufgefrischt werden. Der Fachbegriff für diesen Vorgang ist Refresh.

•	 ROM ist ein Read-Only-Memory, also ein Speicher, der nur gelesen werden kann. Er 
enthält feste Werte, die nicht verändert werden können.

•	 EEPROM ist ein nicht-flüchtiger Speicher, der mehrfach neu beschrieben wer-
den kann. Die Abkürzung steht für Electrically Erasable Programmable Read-Only 
Memory.

•	 FRAM, MRAM, PCRAM und RRAM sind innovative nichtflüchtige Speicher. Die 
Abkürzungen stehen für Ferroelectric RAM, Magnetoresistive RAM, Phase-Change 
RAM und Resistive RAM.

•	 NVRAM steht für Non-Volatile RAM und ist der Oberbegriff für nichtflüchtige 
Speicher.

In dem Begriff EEPROM ist eine längere Geschichte der Speichertechniken verborgen.

•	 ROM ist der Ausgangspunkt. Sie werden mit festem Speicherinhalt hergestellt, der 
vor der Fertigung festgelegt wurde.

•	 PROM steht für Programmable ROM, also programmierbares ROM. Damit werden 
Speicherbausteine bezeichnet, bei denen der Speicherinhalt programmiert werden 
kann. Zunächst war aber nur ein einziger Programmiervorgang möglich.

•	 EPROM steht für Erasable PROM, also löschbares PROM. Der Löschvorgang 
erfolgte durch Belichtung mit UV-Licht. Das EPROM wurde aus der Platine entnom-
men und für circa 15 min in ein spezielles Belichtungsgerät gelegt. Danach konnte es 
neu programmiert werden.

•	 EEPROM steht für Electrically Erasable PROM, also ein PROM, welches elektrisch 
löschbar ist und nicht mehr belichtet werden muss.
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•	 Flash-EEPROM bezeichnet eine häufig genutzte Variante des EEPROMs. Dabei 
können Speicherzellen nicht einzeln geändert werden, sondern beim Ändern des Spei-
cherinhalts werden ganze Speicherblöcke zurückgesetzt („geflasht“).

Auch der Begriff RAM, also Random Access Memory, hat historischen Hintergrund. 
Heutige Speicher haben fast immer einen wahlfreien Zugriff auf die gespeicherten 
Informationen. Früher wurden auch FIFO-Speicher verwendet, die Daten in der glei-
chen Reihenfolge ausgeben, mit der sie geschrieben werden. Der Begriff FIFO steht für 
First-In-First-Out und diese Speicher schieben intern die Daten wie in einem Fließband 
schrittweise weiter.

Auch heute werden noch FIFOs verwendet, beispielsweise in Computer-Netzwerken, 
wenn Datenpakete empfangen und in der gleichen Reihenfolge weitergegeben werden. 
In diesen FIFOs ist jedoch mittlerweile ein SRAM-Speicher enthalten, welcher in fester 
Reihenfolge angesteuert wird.

11.1.2	� Grundstruktur

Die prinzipielle Grundstruktur ist für alle Speichertechnologien ähnlich und in Abb. 11.1 
dargestellt. Die Speicherzellen sind in einer Matrixform in Zeilen und Spalten angeord-
net. Auf die einzelnen Speicherzellen wird über eine Adresse zugegriffen. Anhand eines 
Teils der Speicheradresse wird eine Zeile ausgewählt. Der Rest der Speicheradresse 
wählt eine Spalte aus. Steuerleitungen geben an, ob Daten gelesen oder geschrieben wer-
den sollen.

Die Daten werden über Lese- und Schreibverstärker aus der Speicherzelle gelesen 
beziehungsweise in die Zelle geschrieben. Über den Lese-/Schreibverstärker erfolgt 
der Datenaustausch mit der weiteren Schaltung. Normalerweise enthält ein Speicher 

Abb. 11.1   Grundstruktur 
eines Halbleiterspeichers
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Datenworte mit mehreren Bits, das heißt unter einer Adresse sind 8 Bit, 16 Bit oder 
32 Bit gespeichert. Die einzelnen Speichertechnologien unterscheiden sich durch die Art 
der verwendeten Speicherzellen in der Matrix.

Durch die Matrixanordnung ergibt sich eine Zweiteilung der Adresse, welche die 
interne Ansteuerung des Speichers erleichtert. Anstelle eines großen Adressdecoders sind 
zwei kleine Decoder nötig. Die Aufteilung wird meist so gewählt, dass die Speichermat-
rix quadratisch ist oder ein Verhältnis von 2-zu-1 oder 4-zu-1 hat.

Als Beispiel wird ein Speicher für 220 Datenworte zu 16 Bit betrachtet. Dies sind 
exakt 1.048.576 Datenworte, also rund eine Million. Dafür sind etwa 16 Mio. Speicher-
zellen erforderlich, die bei einer quadratischen Aufteilung eine Speichermatrix aus 4096 
Zeilen und 4096 Spalten bilden. Jeweils 16 Zellen einer Zeile bilden ein Datenwort und 
haben die gleiche Adresse. Es müssen also 4096 Zeilen und 4096/16 = 256 Spalten 
angesteuert werden.

Aus der Speichergröße ergibt sich die benötigte Wortbreite für die Adresse. Mit n 
Adressleitungen können 2n Adressen angesteuert werden.

Der Speicher mit 220 Datenworten benötigt somit 20 Adressleitungen. In der inter-
nen Struktur werden 12 Adressleitungen verwendet, um die Zeilenadresse zu bestimmen. 
Dies berechnet sich aus den 4096 Adressen, die dem Wert 212 entsprechen. Die restlichen 
8 Adressleitungen bestimmen die Spaltenadresse, denn 256 ist 28.

11.1.3	� Physikalisches Interface

Die Geschwindigkeit eines Datenzugriffs ist natürlich wichtig für die Leistungsfähigkeit 
eines Speichers. Dabei unterscheidet man zwischen Latenzzeit und Datentransferrate. 
Die Latenzzeit ist die Reaktionszeit auf einen Datenzugriff und hängt von der Organisa-
tion des Speichers ab. Die Datentransferrate ist die Geschwindigkeit mit der Daten zwi-
schen Speicher und System übertragen werden.

Die höchste Datentransferrate ist möglich, wenn der Speicher sich auf demselben 
Chip wie das restliche System befindet. Dies wird als interner Speicher oder Embedded 
Memory bezeichnet. Für separate Speicherbausteine, also externen Speicher, ist die Ver-
bindung, das physikalische Interface zwischen Speicher und System, entscheidend für 
die Datentransferrate.

Zur Beschleunigung des Datentransfers werden verschiedene Schaltungstechniken 
eingesetzt.

Reduzierter Spannungshub mit Referenzspannung
Die Leitungen zwischen System und Speicher haben Kapazitäten, die bei Signalwech-
seln umgeladen werden müssen. Um dies zu beschleunigen, wird der Spannungshub auf 
den Leitungen reduziert. Allerdings sinkt dadurch auch der Störabstand, denn der Über-
gangsbereich zwischen Low- und High-Pegel wird sehr klein. Als Ausgleich wird eine 
Referenzspannung eingeführt. Wenn der Signalpegel höher als die Referenzspannung ist, 
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wird bei positiver Logik eine 1 erkannt. Spannungen unterhalb des Referenzpegels wer-
den als eine logische 0 interpretiert. Störungen wirken sich auf Signale und Referenz-
spannung gleichermaßen aus, so dass die Information nicht verfälscht wird.

Terminierung von Leitungen
Auf elektrischen Leitungen können Reflektionen von Signalwechseln auftreten. Wenn 
diese die eigentlichen Signale überlagern, sind Fehler in der Datenübertragung möglich. 
Für die Signalleitungen zu externen Speichern gibt es daher Layout-Regeln, damit die 
Leitungen einen passenden Wellenwiderstand haben. Außerdem können auf der Platine 
oder direkt auf den Chips Abschlusswiderstände für eine Terminierung der Leitungen 
sorgen.

Double-Data-Rate
Schnelle Speicher verwenden ein synchrones Interface, bei denen die Abfolge der Daten 
durch einen Takt angezeigt wird. Allerdings kann die hohe Frequenz des Taktsignals pro-
blematisch sein. Grund ist, dass der Takt schnellere Signalwechsel als die Datenleitun-
gen hat. Der Takt wechselt in jedem Zyklus von 0 nach 1 und wieder von 1 nach 0. Ein 
Datensignal hat jedoch pro Taktzyklus maximal einen Signalwechsel und damit die halbe 
Frequenz.

Zur Verringerung der Frequenz für das Taktsignal wird eine Datenübertragung mit 
Double-Data-Rate, abgekürzt DDR, verwendet. Dabei signalisieren steigende und fal-
lende Taktflanken die übertragenen Daten. Pro Taktzyklus werden also zwei Datenworte 
übertragen, was zu der Bezeichnung „doppelte Datenrate“ führt.

11.2	� Speichertechnologien

11.2.1	� SRAM

Im SRAM erfolgt die Datenspeicherung durch Rückkopplung zweier Inverter. Abb. 11.2 
zeigt einen Ausschnitt aus der Speichermatrix. Die Inverter sind wechselseitig mit ihren 
Ein- und Ausgängen verbunden, so dass eine gespeicherte 0 oder 1 doppelt invertiert und 
verstärkt wird. Damit bleibt die Information erhalten. Beim Abschalten der Versorgungs-
spannung entfällt die Rückkopplung, die Daten gehen verloren, der Speicher ist flüchtig.

Angesteuert werden die SRAM-Zellen über eine Zeilenadresse sowie Datenleitungen. 
Für jede Spalte sind zwei Datenleitungen vorhanden, die Daten und invertierte Daten 
verbinden.

•	 Zum Lesen von Daten wird eine Zeile ausgewählt und die Zeilenadresse auf 1 gesetzt. 
Dadurch werden alle Speicherzellen einer Zeile mit den Datenleitungen verbunden. 
Der Leseverstärker wählt dann die richtigen Spalten aus und gibt die Daten an den 
Ausgang.

11.2  Speichertechnologien
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•	 Zum Schreiben von Daten wird ebenfalls eine Zeile durch Zeilenadresse auf 1 ausge-
wählt. Wiederum werden die Speicherzellen mit den Datenleitungen verbunden. Dort 
wo Daten geschrieben werden, müssen die Datenleitungen die neuen Werte enthalten. 
Außerdem muss der Schreibverstärker so stark sein, dass er die Rückkopplung der 
Speicherzelle überschreibt.

Die Speicherzelle selbst ist in Abb. 11.3 dargestellt. Die Inverter haben jeweils zwei 
Transistoren, die Schalter sind durch jeweils einen einzelnen Transistor aufgebaut. 
Anders als beim Transmission-Gate (vgl. Kapitel 10) wird nur ein n-Kanal-Transistor 
verwendet, um Transistoren zu sparen. Insgesamt benötigt die SRAM-Zelle 6 Transisto-
ren. Sie wird daher auch als 6T-Zelle bezeichnet.

Wir betrachten wieder den Speicher mit 220 Datenworten zu 16 Bit. Horizontal 
verlaufen 4096 Zeilenadressen und vertikal für jede Zelle zwei Datenleitungen also 
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Abb. 11.2   Speicherzellen eines SRAMs

Abb. 11.3   Transistoraufbau 
einer SRAM-Speicherzelle

VDD

GNDAdress-
leitung

Datenleitungen
(direkt und invertiert)

D D

http://dx.doi.org/10.1007/978-3-662-49731-9_10


321

insgesamt 8192. Für die rund 16 Mio. Speicherzellen werden 6 ‧ 16 Mio., also 96 Mio. 
Transistoren benötigt. Bei der Adressierung eines 16-Bit-Wortes werden 32 nebeneinan-
derliegende Datenleitungen angesprochen, je Bit zwei Leitungen.

11.2.2	� DRAM

Ein DRAM verwendet eine andere Art der Speicherung. Eine Information wird als 
Ladung auf einem kleinen Kondensator gespeichert. Ein Transistor dient als Schalter zur 
Datenleitung. Die Adressleitung öffnet den Transistor, so dass die Ladung gespeichert 
oder abgefragt werden kann (Abb. 11.4).

Der wesentliche Vorteil der DRAM-Speicherung ist der geringere Platzbedarf gegen-
über einem SRAM. Zunächst werden weniger Komponenten benötigt, und zwar nur ein 
Transistor und ein Kondensator, verglichen mit den sechs Transistoren des SRAMs. Ein 
weiterer Platzvorteil entsteht dadurch, dass keine p-Kanal-Transistoren verwendet wer-
den und darum keine n-Wanne mit einem Mindestabstand zu den n-Kanal-Transistoren 
erforderlich ist. Der Masseanschluss des Kondensators verbindet zum Substrat. Darum 
wird keine Masseleitung benötigt und auch Versorgungsspannung sowie eine zweite 
Datenleitung sind nicht erforderlich, was weiterhin Platz einspart. Die Speicherkapazität 
eines DRAMS ist dadurch wesentlich höher als bei einem SRAM.

Das Speicherprinzip des DRAMs hat jedoch auch Nachteile, insbesondere die Not-
wendigkeit einer speziellen Halbleitertechnologie sowie die begrenzte Datenerhaltung.

Spezielle Halbleitertechnologie
Wichtig für die Informationsspeicherung ist ein Kondensator mit ausreichender Kapazi-
tät. Dieser ist in einem Standard-CMOS-Prozess nicht vorhanden, so dass eine spezielle 
Halbleitertechnologie erforderlich ist. Ein SRAM-Speicher hingegen lässt sich auf einem 
Standard-CMOS-Prozess fertigen.

Es gibt verschiedene Möglichkeiten, einen Kondensator aufzubauen. Zwei Grundprin-
zipien sind Capacitor over Bitline (COB) und Trench-Transistoren.

•	 Bei Capacitor over Bitline befindet sich der Kondensator oberhalb der Datenleitung 
(Bitline) und wird beim Aufbau der verschiedenen Schichten eines Chips erzeugt.

•	 Als Trench-Kondensator wird in das Substrat ein Graben (engl. Trench) oder Loch 
geätzt und mit leitfähigem Material aufgefüllt. Grundprinzip und Chipfoto einer 

Abb. 11.4   Speicherzelle 
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DRAM-Zelle mit Trench-Kondensator sind in Abb. 11.5 dargestellt. WL (Write Line) 
bezeichnet die Adressleitung.

Begrenzte Datenerhaltung
Die Ladung des Kondensators wird nicht, wie beim SRAM, durch eine Rückkopplung 
automatisch erhalten. Dies muss für die Speicherung und für den Lesevorgang berück-
sichtigt werden.

Bei der Speicherung wird der Kondensator durch Leckströme langsam entladen. Die 
Daten werden also nur für einen kurzen Zeitraum gespeichert und müssen durch einen 
Refresh periodisch erneuert werden. Die garantierte Speicherzeit zwischen zwei Refresh
vorgängen ist abhängig von der Halbleitertechnologie und liegt in der Größenordnung 
von 100 ms.

Beim Lesevorgang wird der Transistor am Kondensator geöffnet und die Ladung über 
die Datenleitung gelesen. Dies erfordert einen sehr empfindlichen Leseverstärker, der 
erkennen muss, ob ein kleiner Kondensator am Ende einer langen Datenleitung geladen 
oder nicht geladen war. Außerdem wird durch das Lesen des Kondensators die Informa-
tion gelöscht. Nach dem Lesen einer Zelle muss also immer die Information wieder in 
die Kondensatoren zurückgeschrieben werden.

Dies hört sich zunächst nach einem sehr hohen Aufwand an. Gemildert wird der Auf-
wand dadurch, dass beim Lesen eine ganze Zeile in den Leseverstärker geladen wird. 
Weitere Datenzugriffe in die gleiche DRAM-Zeile können darum sehr schnell erfolgen, 
da die Daten bereits im Leseverstärker vorhanden sind.

Als Zahlenbeispiel nehmen wir wieder den oben betrachteten Speicher mit 220 Daten-
worten zu 16 Bit. Wenn er als DRAM implementiert ist, wird zunächst eine der 4096 
Zeilenadressen angesprochen und in den Leseverstärker geladen. Dort stehen dann 256 
Worte zu 16 Bit für den schnellen Datenzugriff bereit.

Isolation

Poly-
silizium

Substrat

Trench -
Kondensator

Source Drain
Gate

Transistor

Abb. 11.5   DRAM-Speicherzelle mit Trench-Kondensator als physikalischer Aufbau und im 
Elektronenmikroskop. (Foto: Chipworks)
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Aufgrund des geringeren Platzbedarfs für die Speicherzellen wird für die Speicherung 
großer Datenmengen oft ein DRAM eingesetzt. Beispielsweise wird der Hauptspeicher 
eines PCs durch DRAM-Speicher implementiert.

11.2.3	� ROM

Wenn in einem System unveränderliche Werte gespeichert werden sollen, wird ein Read-
Only-Memory (ROM) eingesetzt. An den Kreuzungspunkten von Adress- und Datenlei-
tungen befinden sich Kontaktmöglichkeiten, die verbunden oder nicht verbunden sind 
und damit eine 0 oder 1 darstellen. Um einen Kurzschluss über andere Speicherstellen zu 
vermeiden, befindet sich an der Kontaktstelle eine Diode.

Abb. 11.6 zeigt den Aufbau eines ROMs mit verbundenen und unverbundenen Kon-
taktstellen. Zum Lesen einer Information wird eine Adressleitung auf High-Pegel gelegt 
und vom Leseverstärker überprüft, ob auf der Datenleitung ein Strom fließt. Die unbe-
nutzten Adressleitungen liegen auf Low-Pegel und sind durch die Dioden abgetrennt.

11.2.4	� OTP-Speicher

Eine besondere Art eines nichtflüchtigen Speichers stellt der Einmalprogrammierbare 
Speicher dar. Er wird als OTP, also One-Time-Programmable bezeichnet. Ein OTP-Spei-
cher kann nach der Programmierung nicht mehr verändert werden und gegebenenfalls 
muss ein kompletter Baustein ausgetauscht und weggeworfen werden. In der Anfangs-
zeit der Mikroelektronik war eine Programmierung nicht anders möglich. Heute ist diese 
Einschränkung für viele Anwendungen nicht mehr akzeptabel.

Für programmierbare Schaltungen (FPGAs) wird eine Einmalprogrammierung jedoch 
weiterhin eingesetzt. Sie hat den Vorteil, dass sie Sicherheit gegen unbeabsichtigte Ände-
rung oder Manipulation einer Schaltung bietet. Ein Anwendungsbeispiel sind FPGAs für 
Satelliten und Raumfahrt, bei denen die Programmierung durch kosmische Strahlung 
nicht gestört werden darf. Bei der Entwicklung werden eventuell einige wenige Bau-
steine mit Testversionen programmiert und ausgetauscht. Danach kann eine Kleinserie 
mit dem gewünschten Speicherinhalt programmiert und in Geräte eingebaut werden.

Abb. 11.6   Struktur eines 
ROMs
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Implementiert werden Einmalprogrammierbare Speicher durch Sicherungen und 
Antisicherungen. Eine Sicherung brennt bei zu hohem Strom durch, während eine 
Anti-Sicherung (Anti-Fuse) bei Anlegen einer Programmierspannung eine elektrische 
Verbindung herstellt. In der Praxis sind heutzutage Anti-Fuses gebräuchlich, da diese 
zuverlässiger programmiert werden können.

Das Grundprinzip eines PROM zeigt Abb. 11.7. An jeder Verbindung von Adress-
leitung und Datenleitung ist eine Sicherung oder Anti-Fuse in Reihe zu einer Diode 
geschaltet. Bei der Programmierung wird festgelegt, welche Verbindungen benötigt 
werden.

11.2.5	� EEPROM

Für viele Anwendungen sollen Daten nichtflüchtig gespeichert, aber auch leicht verän-
derbar sein. Das hierfür am weitesten verbreitete Halbleiterelement ist das EEPROM. 
Hierbei erfolgt die Datenspeicherung durch spezielle Transistoren mit einem zusätzli-
chen isolierten Gate (engl. Floating-Gate). Wie Abb. 11.8 zeigt, liegt das Floating-Gate 
zwischen dem regulären Steuer-Gate und dem Kanal. Auf dem Floating-Gate kann durch 
Tunneleffekte und sogenanntes Hot-Electron-Injection eine Ladung gespeichert und wie-
der gelöscht werden. Das Floating-Gate ist jedoch elektrisch isoliert und speichert die 
Ladung daher sehr lange. Die garantierte Speicherzeit beträgt je nach Baustein bis zu 20 
Jahre.

Zum Lesen der Daten muss die Ladung nicht abgerufen werden. Der Transistor wird 
über das Steuer-Gate angesprochen. Falls keine Ladung auf dem Floating-Gate vorhan-
den ist, leitet der Transistor wie in der normalen CMOS-Technik. Falls eine Ladung 
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gespeichert ist, verschiebt sich die Schwellenspannung und der Transistor bleibt auch bei 
Ansteuerung durch das Steuer-Gate nichtleitend. So ist eine Unterscheidung des Spei-
cherinhalts möglich.

Häufig wird die als Flash-EEPROM bezeichnete Schaltungsform eingesetzt. Hierbei 
hat der Schreibvorgang die Besonderheit, dass für eine einzelne Zelle nur die Änderung 
von einer 1 in eine 0 möglich ist. Falls eine 0 in eine 1 geändert werden soll, muss ein 
ganzer Block komplett auf 1 gesetzt werden und erneut die benötigten 0-Werte geschrie-
ben werden. Typische Blockgrößen sind zwischen 8 kByte und 256 kByte. Dieses 
Löschen ganzer Speicherblöcke hat zu dem Namen Flash geführt. Ein Vorteil der Flash-
Technik ist der geringere Schaltungsaufwand, u.a. weil beim Löschen nicht jede Zelle 
einzeln angesprochen werden muss.

Die Anzahl der möglichen Löschzyklen ist begrenzt und beträgt beispielsweise 
100.000 Zyklen. Bei der Ansteuerung des Flash-EEPROMs wird meist versucht, die Blö-
cke möglichst gleich häufig zu benutzen, um die Lebensdauer des Bausteins zu verlän-
gern. Diese Strategie bezeichnet man als Wear Leveling, also frei übersetzt „Ausgleichen 
der Abnutzung“.

Es gibt zwei Strukturen für die Anordnung von Floating-Gate Transistoren zu einem 
Speicher, und zwar die NOR- und die NAND-Struktur, dargestellt in Abb. 11.9. Beiden 
Technologien gemeinsam ist, dass wieder eine Zeile durch einen Zeilendecoder ausge-
wählt wird.

•	 In der NOR-Struktur schalten die Speichertransistoren die Datenleitung parallel nach 
Masse. Die nicht aktiven Transistoren sind nicht leitend und stellen somit keine Ver-
bindung nach Masse dar. Zum Lesen wird ein Transistor über die Adressleitung ange-
sprochen. Abhängig von seinem Speicherzustand kann er daraufhin leitend werden 
und die Datenleitung nach Masse ziehen. Dies wird vom Leseverstärker erkannt.

•	 In der NAND-Struktur sind die Speichertransistoren in der Datenleitung in Reihe 
angeordnet. Die nicht aktiven Transistoren sind leitend geschaltet. Der Transistor, der 

Abb. 11.9   Interne EEPROM-
Speicherzellenstruktur in 
NOR- und NAND-Technik
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gelesen werden soll, wird über die Adressleitung angesprochen und schaltet die Rei-
henschaltung leitend oder nicht leitend. Auch dies wird vom Leseverstärker erkannt.

Beide Strukturen werden in der Praxis eingesetzt.

•	 Der Vorteil der NOR-Struktur ist ein geringer Widerstand auf der Datenleitung, wel-
cher eine gute Lesbarkeit der Daten ermöglicht. Der Nachteil ist ein höherer Flächen-
bedarf, da jeder Transistor einen Kontakt zu Masse benötigt.

•	 Der Vorteil der NAND-Struktur ist ein geringerer Flächenbedarf, da die Speichertran-
sistoren direkt aneinander geschaltet werden. Dadurch ist die Speicherkapazität höher. 
Der Nachteil ist, dass die nicht aktiven Transistoren auch im leitenden Zustand noch 
einen gewissen Widerstand haben, der sich in der Reihenschaltung addiert. Dadurch 
ist das Auslesen schwieriger und es können Lesefehler auftreten.

Für die meisten Anwendungen wird heutzutage die NAND-Struktur verwendet, da die 
Speicherdichte deutlich höher ist. Beim Lesen können jedoch einzelne Datenworte 
fehlerhaft sein, sogenanntes Bit-Flipping. Darum wird die Information mit einem feh-
lerkorrigierenden Code gespeichert, englisch Error Correcting Code (ECC). Durch 
Zusatzinformationen kann ein Controller einzelne Fehler erkennen und direkt korrigie-
ren. Wenn zu viele Fehler in einem Speicherblock auftreten, können diese jedoch nicht 
mehr korrigiert werden. Ein problematischer Speicherblock muss rechtzeitig erkannt und 
als unbrauchbar markiert werden. Ein NAND-Speicher kann einige solcher Bad Blocks 
haben, wodurch sich seine Speicherkapazität leicht reduziert.

Eine Erhöhung der Speicherdichte ist möglich, indem verschiedene Ladungsmengen 
auf das Floating-Gate gespeichert werden. Je nach Ladung verschiebt sich die Schwel-
lenspannung des Speichertransistors und kann durch den Leseverstärker unterschieden 
werden. Aktuell werden zwei bis vier Bit auf einem Transistor gespeichert, was die 
Unterscheidung von bis zu 16 verschiedenen elektrischen Ladungen erfordert. Diese 
Technik wird nur für NAND-Speicher eingesetzt und allgemein als Multi-Level-Cell 
(MLC) bezeichnet; bei Speicherung von 3 oder 4 Bit auch als Triple- oder Quad-Level-
Cell (TLC, QLC). Die mit diesen Techniken verbundene höhere Fehlerwahrscheinlichkeit 
erfordert einen Controller mit leistungsfähiger Fehlerkorrektur.

11.2.6	� Innovative Speichertechniken

In den letzten Jahren ist der Markt für nicht-flüchtige Halbleiterspeicher (NVRAM) 
kontinuierlich gewachsen. Grund dafür ist, dass diese Speicher in immer mehr Geräten 
eingesetzt werden und dabei auch die Speichergrößen steigen. NVRAMs finden sich in 
USB-Speicher-Sticks, Digitalkameras, Mobiltelefonen, Tablets, Solid-State-Festplatten 
und weiteren Elektronikgeräten.

Darum werden weitere Speichertechniken entwickelt, die höhere Speicherkapazitäten, 
geringere Kosten oder einfachere Ansteuerung verglichen mit EEPROMs ermöglichen. 
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Einige dieser Techniken sind bereits im praktischen Einsatz, allerdings sind ihre Markt-
anteile noch recht klein. Es ist gegenwärtig nicht absehbar, welche der neuen Techniken 
zu einer Konkurrenz von EEPROMs werden oder diese sogar ersetzen können. Das Prin-
zip einiger innovativer Speichertechniken wird in diesem Unterkapitel vorgestellt.

Für die Speicherung wird ein Material gesucht, welches

•	 zwei verschiedene Zustände hat, die sich in ihren elektrischen Eigenschaften 
unterscheiden,

•	 einen einfachen Wechsel zwischen diesen Zuständen ermöglicht,
•	 beide Zustände stabil über Jahre hinweg behält,
•	 sehr oft zwischen diesen Zuständen wechseln kann, also mindestens hunderttausend, 

möglichst eine Milliarde Mal,
•	 platzsparend und kostengünstig zu einem CMOS-Prozess ergänzt werden kann.

Die vorgeschlagenen Speichertechniken nutzen jeweils andere Materialien zur Daten-
speicherung. Die folgende Übersicht nennt aktuell verwendete Materialien für die 
Speichertechniken.

FRAM
FRAM, also Ferroelectric RAM, verwendet einen Kondensator mit einem ferroelek-
trischen Dielektrikum. Dieses Material hat eine Kristallstruktur, welche zwei stabile 
Zustände mit unterschiedlichem elektrischen Feld aufweist. Für das Material Blei-Zir-
konat-Titanat (PZT) ist die Struktur in Abb. 11.10 dargestellt. In der Mitte der Kristall-
struktur aus Blei (Pb) und Sauerstoff (O) ist ein Atom aus Zirconium oder Titan, welches 
sich in der unteren oder oberen Position der kubischen Struktur befinden kann. Durch 
ein elektrisches Feld lässt sich dieses zentrale Atom verschieben und so eine Information 
speichern.

MRAM
MRAM, also Magnetoresistive RAM, speichert Informationen in einer ferromag-
netischen Schicht. Diese befindet sich getrennt durch ein dünnes Dielektrikum aus 

Ti/ZrE E

Positive Polarisation
Logischer Zustand: ‚0'

O

Pb

Negative Polarisation
Logischer Zustand: ‚1'

Abb. 11.10   Kristallstruktur eines FRAM-Speichermaterials
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Aluminiumdioxid (Al2O3) gegenüber einer weiteren magnetischen Schicht (siehe 
Abb. 11.11). Die obere Magnetschicht ist magnetisch weich und kann in ihrer magne-
tischen Orientierung gedreht werden. Die untere Magnetschicht ist magnetisch hart und 
hat eine feste Orientierung. Der Strom durch das Dielektrikum ist durch einen Tunnelef-
fekt abhängig davon, ob die magnetische Orientierung parallel oder antiparallel ist.

PCRAM
PCRAM, also Phase-Change-RAM, Phasenwechselspeicher, nutzt ein Material, welches 
eine kristalline oder amorphe Struktur einnehmen kann. Je nach Struktur ist der elektri-
sche Widerstand unterschiedlich und zeigt so eine 0 oder 1 an. Der Wechsel zwischen 
den Strukturen erfolgt über Aufheizen durch elektrischen Strom. Je nach Geschwindig-
keit der Abkühlung wird das Material kristallin oder amorph (Abb. 11.12).

RRAM
RRAM, auch ReRAM, für Resitive RAM, verändert ähnlich wie PCRAM den Wider-
stand eines Speichermaterials. Dabei befindet sich ein Metalloxid zwischen zwei Elek-
troden. Durch einen Strom kann der Widerstand des Metalloxids zwischen hohem und 
niedrigem Widerstand wechseln. Dafür ist allerdings keine Erwärmung und Abkühlung 
des Materials nötig, so dass ein Speichervorgang prinzipiell einfacher erfolgen kann. Ein 
Ausschnitt aus der Speichermatrix ist in Abb. 11.13 dargestellt.
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Abb. 11.11   Aufbau eines MRAM-Speicherelements
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Ansteuerung innovativer NVRAMs
Die Ansteuerung erfolgt für alle Speichertechnologien wieder in Matrixstruktur mit 
Adress- und Datenleitungen. Die Einbindung des Speichermaterials ist abhängig davon, 
welche elektrische Eigenschaft sich für die Datenspeicherung ändert. Teilweise wird ein 
Transistor benötigt, der die Speicherzelle freischaltet.

Eine besonders kompakte Anordnung ist für bestimmte RRAMs möglich. Durch hori-
zontale und vertikale Leitungen kann eine einzelne Speicherzelle direkt angesprochen 
werden (Abb. 11.13). Durch eine Diode in der Speicherzelle, wie beim ROM, haben 
andere Zellen keinen Einfluss auf die Leseelektronik. Mehrere Lagen an Zellen sollen 
gestapelt werden, um die Speicherkapazität zu erhöhen. Dabei kann eine Leitung gemein-
sam für zwei Ebenen an Speicherzellen genutzt werden (Vertikalleitung in Abb. 11.13).

11.3	� Eingebetteter Speicher

Als eingebetteter Speicher, engl. Embedded Memory, werden Speicherblöcke bezeichnet, 
die sich gemeinsam mit einer größeren Schaltung auf einem Chip befinden.

11.3.1	� SRAM

In fast jedem größeren digitalen Chip befinden sich SRAM-Speicherblöcke. Ein SRAM 
ist mit der normalen CMOS-Fertigungstechnik herzustellen und erfordert daher keinen 
zusätzlichen Fertigungsaufwand. Eingesetzt werden SRAM-Speicherblöcke beispiels-
weise als interner Speicher einer CPU, für die Zwischenspeicherung von Audio- und 
Videodaten oder bei der Zwischenspeicherung von Netzwerkdaten.

Elektroden

Metalloxid

Horizontalleitung

Vertikalleitung

Abb. 11.13   Dreidimensionale Struktur eines RRAMs
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Die Ansteuerung eines SRAMs erfolgt durch Adresse, Datenleitungen und Steuer-
leitungen. Oft sind Flip-Flops an Eingängen und Ausgängen integriert, so dass auch ein 
Takteingang vorhanden ist.

•	 Die Adressleitungen entsprechen der Anzahl an Speicherworten. Ein Speicher mit 2n 
Adressen benötigt n Adressleitungen, die parallel anliegen. So hat ein Speicher mit 
1024 Speicherworten einen Adressbus mit 10 Leitungen, denn 210=1024.

•	 Die Datenleitungen entsprechen der Wortbreite der Speicherworte. Ein Speicher für 
16-Bit-Worte hat Datenleitungen mit 16 Stellen. Dateneingang und Datenausgang sind 
getrennte Leitungen. Bidirektionale Leitungen sind bei Embedded Memory nicht nötig, 
da die Anzahl der Verbindungsleitungen innerhalb eines Chips kaum begrenzt ist.

•	 Als Steuerleitung ist eine Schreibsteuerung erforderlich, die angibt, ob die Daten am Ein-
gang in den Speicher geschrieben werden sollen. Optional ist ein Enable-Signal möglich, 
mit dem das SRAM zur Verringerung der Verlustleistung inaktiv geschaltet werden kann.

Ein Speicher für 1024 Worte der Wortbreite 16 bit hat damit die in Abb. 11.14 dargestell-
ten Eingangs- und Ausgangssignale. Anstelle eines besonderen Symbols wird ein Block 
mit der Angabe der Speichergröße verwendet.

Embedded-SRAM werden in der Schaltungsentwicklung als Bibliothekselement 
bereitgestellt, ähnlich wie die Logikgatter oder Flip-Flops. Je nach Technologie sind 
bestimmte Speichergrößen vorgegeben oder können, in gewissen Grenzen, frei mit 
einem Generator erzeugt werden.

Ein Embedded-SRAM kann auch mehr als ein Speicher-Interface haben. Häufig wer-
den Dual-Port-Speicher eingesetzt, die zwei unabhängige Zugriffe unterstützen. Beide 
Anschlüsse können verschiedene Takteingänge besitzen und somit auch Daten aus einem 
Taktbereich in einen anderen Taktbereich überführen. Durch die Adressierung muss 
sichergestellt werden, dass keine Konflikte durch gleichzeitigen Schreibzugriff auf die 
gleiche Speicherstelle auftreten.

Die Anschlüsse haben jeweils eigene Adresseingänge. Als Datenleitungen sind entwe-
der für beide Anschlüsse Dateneingang und -ausgang vorhanden oder ein Anschluss ist 
ein Eingang, der andere Anschluss ein Ausgang. Auch mehr als zwei Anschlüsse sind 
prinzipiell für ein Embedded-SRAM möglich, werden aber selten verwendet.

Als Anwendungsbeispiel soll ein Audiosignal mit einem Halleffekt digital verfremdet 
werden. Dazu wird das Signal verzögert und mit reduziertem Pegel zum Eingangssignal 
addiert. Für die Verzögerung kann ein SRAM eingesetzt werden, in das permanent die aktu-
ellen Signalwerte gespeichert und von anderer Adresse frühere Signalwerte gelesen werden.

Abb. 11.14   Eingangs- und 
Ausgangssignale eines 
Embedded-SRAM

SRAM
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11.3.2	� DRAM

Ein DRAM bietet eine deutlich höhere Speicherkapazität als SRAM, erfordert jedoch 
einen speziellen CMOS-Prozess. Embedded-DRAM wird in der Praxis eingesetzt, wenn 
große Datenmengen gespeichert werden sollen. Durch eine Kombination von Speicher 
und Signalverarbeitung sind sehr kompakte Systeme möglich.

Embedded-DRAM lohnt sich meist nur in Einzelfällen. Sehr große Datenmengen 
übersteigen die Speicherkapazität und erfordern mehrere externe Speicherchips. Bei 
kleineren bis mittleren Datenmengen wird Embedded-SRAM verwendet. Dies erfordert 
zwar mehr Chipfläche, ist aber kostengünstiger, da kein spezieller CMOS-Prozess ver-
wendet werden muss.

Ein Beispiel ist der Grafik-Prozessor SM768 von Silicon Motions mit 256 MByte 
Embedded-DRAM. Er erzeugt eine Grafik für einen Monitor und kann direkt an ein LCD-
Panel angeschlossen werden. Der Baustein wird über USB 3.0 angesteuert, ohne dass eine 
Grafikkarte nötig ist. Auch komprimierte Videodaten können decodiert werden. Dadurch 
dass sich Speicher und Signalverarbeitung auf einem einzigen Baustein befinden, ermög-
licht dieser einzelne Chip den kostengünstigen Aufbau eines intelligenten Monitors.

11.3.3	� ROM

Festwertspeicher können, genau wie SRAMs, mit der normalen CMOS-Fertigungstech-
nik hergestellt werden. Damit eignen sie sich, wenn in einer Schaltung vorab festgelegte 
Informationen abgespeichert werden sollen. Eingesetzt werden ROMs beispielsweise für 
den Boot-Code einer CPU, also die fest vorgegebenen Anweisungen beim Starten eines 
Rechnersystems.

Ein weiteres Einsatzgebiet für ROMs ist die Verwendung als Tabelle für arithmeti-
sche Operationen. Als Beispiel hierfür nehmen wir an, dass in einer Digitalschaltung die 
Wurzel von einer Dualzahl mit der Wortbreite 10 bit benötigt wird. Der Ausgabewert 
soll auf ganze Zahlen gerundet werden. Die Ergebnisse dieser Rechenoperation können 

Abb. 11.15   Symbol und 
Ausschnitt der Wertetabelle 
für ein ROM zur Wurzel-
Berechnung

ROM
1024x6ADDR(9:0) DOUT(5:0)

ADDR 
(in hex)

WurzelZahlen-
wert

Wurzel 
gerundet

DOUT
(in hex)

000 0 0 0 00
001 1 1 1 01
002 2 1,41 1 01
003 3 1,73 2 02

123 291 17,06 17 11

3FF 1023 31,98 32 20

... ... ... ... ...

... ... ... ... ...
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vorab berechnet und in einem ROM gespeichert werden. Die Eingangswerte betragen 
0 bis 1023, die Wurzel hiervon ist 0 bis 31,98, gerundet 0 bis 32. Für den Ausgabewert 
sind also 6 Bit erforderlich. Das ROM umfasst 1024 Worte mit jeweils 6 bit Wortbreite. 
Der Eingangswert wird als Adresse an das ROM angelegt. Am Ausgang wird das Ergeb-
nis der Wurzelberechnung anzeigt. Die Schnittstelle des ROMs und ein Ausschnitt der 
Wertetabelle sind in Abb. 11.15 gezeigt.

11.3.4	� NVRAM

Ein nichtflüchtiger Speicher (NVRAM) erfordert, genau wie ein DRAM, einen speziel-
len CMOS-Prozess. Anders als beim DRAM gibt es jedoch keine Alternative, wenn in 
einem Chip Daten auch ohne Versorgungsspannung gespeichert werden sollen. In diesem 
Fall muss ein CMOS-Prozess mit Erweiterung für NVRAM eingesetzt werden.

Ein häufig eingesetztes Anwendungsbeispiel sind Mikrocontroller. Auf einem einzigen 
Chip sind eine CPU, Peripherie und der Programmspeicher integriert. Damit der Mikro-
controller durch die Anwender programmiert werden kann, ist der Programmspeicher als 
NVRAM implementiert. Während der Programmentwicklung kann der Programmspeicher 
immer wieder umprogrammiert werden. Ebenfalls gibt es FPGAs, die programmierbare 
Logik und die Speicherung der Konfiguration in einem NVRAM kombinieren.

Alternativ kann das System auch auf zwei Chips aufgeteilt werden. Ein Chip in Stan-
dard-CMOS enthält den Mikrocontroller oder das FPGA und ein zweiter Speicher-Chip 
enthält den Programmspeicher oder die Konfiguration.

Ein Anwendungsbeispiel ist der ATmega328-Controller der Firma Atmel, welcher auf 
der populären Mikrocontroller-Platine Arduino Uno verwendet wird. Der ATmega328 
enthält zwei Blöcke NVRAM.

•	 Ein Programmspeicher von 32 kByte.
•	 Ein Datenspeicher von 1 kByte, der vom Programm gelesen und beschrieben werden 

kann.

11.4	� Diskrete Speicherbausteine

Wenn in einem digitalen System größere Datenmengen gespeichert werden müssen, wer-
den hierzu häufig diskrete Speicherbausteine eingesetzt. Das System besteht dann aus 
mehreren Chips, also zum einen aus Signalverarbeitungschips, gefertigt in einem Stan-
dard-CMOS-Prozess, zum anderen aus einem oder mehreren Speicher-Chips, gefertigt in 
speziellen CMOS-Varianten.
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11.4.1	� Praktischer Einsatz

Ein Beispiel hierfür ist ein PC. Er enthält auf dem Motherboard unter anderem die Chips für 
CPU und Chipset, gefertigt in Standard-CMOS. Als Hauptspeicher wird DRAM eingesetzt, 
der sich auf steckbaren Speichermodulen befindet. Jedes Speichermodul enthält mehrere, 
beispielsweise acht, DRAM-Chips. Der Boot-Code für das PC-System, bekannt als BIOS 
(Basic Input Output System), sowie Grundeinstellungen befinden sich in einem NVRAM.

11.4.1.1 � Systemaufbau
Eine Aufteilung des Systems unter Nutzung diskreter Speicherbausteine hat mehrere 
Vorteile.

•	 Die Kapazität externer Speicherbausteine ist höher, als bei gemeinsamer Nutzung der 
Chipfläche für Speicher und Signalverarbeitung.

•	 Höhere Flexibilität des Systems, weil je nach Bedarf mehr oder weniger externer 
Speicher angebunden werden kann.
–	 Im oben genannten PC-System können DRAM-Riegel, je nach Bedarf eingesetzt 

werden.
–	 Einige Smartphones werden mit unterschiedlicher Speicherkapazität verkauft. Auf 

den Geräten sind dann unterschiedliche NVRAMs verbaut.
•	 Externe Speicherbausteine sind gut verfügbar. Sie können, auch in kleinen Stückzah-

len, kurz nach Markteinführung bei Distributoren gekauft werden. Dies ist nicht der 
Fall bei Chips mit Embedded-DRAM, die nur von wenigen Chipherstellern angeboten 
werden und häufig Großkunden vorbehalten sind. Auch für Embedded-NVRAM ist 
die Anzahl an Chipherstellern geringer als für Standard-CMOS-Speichertechnologien.

•	 Neue Speichertechnologien werden zunächst für den Massenmarkt der diskreten 
Speicherbausteine angeboten. Meist sind sie nur mit einer signifikanten Verzögerung 
von einem Jahr oder mehr als Embedded-Speicher verfügbar.

•	 Die Kosten für einen Chip mit Standard-CMOS-Technologie sind geringer als für 
einen Chip, der einen speziellen Herstellungsprozess mit Embedded-Speicher-Unter-
stützung benötigt. Die Einsparung ist in der Regel so hoch, dass sie auch die Kosten 
für die diskreten Bauelemente deckt.

Der Einsatz von diskreten Speicherbausteinen kann jedoch auch Nachteile haben.

•	 Je mehr Bauelemente ein System hat, umso größer ist der Platzbedarf. Dies ist insbe-
sondere für mobile Geräte ungünstig.

•	 Ein Speicherzugriff auf externe Bauelemente hat eine geringere Bandbreite, da die 
Anzahl der Leitungen begrenzt und die Geschwindigkeit externer Signalleitungen 
geringer ist. Außerdem ist die Verlustleistung höher, da größere Leitungskapazitäten 
umgeladen werden müssen.

11.4  Diskrete Speicherbausteine
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•	 Es muss sichergestellt werden, dass die verwendeten Speicherbausteine für die Pro-
duktlebensdauer verfügbar sind. Im PC-Bereich werden Bauteile oft nach wenigen 
Jahren durch leistungsfähigere Neuentwicklungen ersetzt. Für einen PKW müssen 
hingegen jahrzehntelang Ersatzteile verfügbar sein.

11.4.1.2 � Aktuelle Speicherbausteine
Für flüchtige Datenspeicherung werden in der Praxis am häufigsten DRAM-Speicher-
bausteine eingesetzt. Der Grund dafür ist die höhere Speicherdichte eines DRAM, also 
Bits pro Siliziumfläche, verglichen mit einem SRAM. An diesen Marktverhältnissen 
wird sich auch in Zukunft wenig ändern.

Für nicht-flüchtige Datenspeicherung werden hauptsächlich EEPROMs in der Aus-
führung als NAND-Flash eingesetzt. Die NOR-Flash-Technologie hat den Nachteil 
der geringeren Speicherkapazität und darum nur einen kleinen Marktanteil. Innovative 
Speichertechnologien sind noch nicht so weit entwickelt, dass sie den Marktanteil von 
NAND-Flash-EEPROMs erreichen. Dies kann sich jedoch in den nächsten Jahren ändern.

Im Folgenden sind exemplarisch vier Speicherbausteine beschrieben, die in der Pra-
xis weite Verbreitung haben oder exemplarisch für ähnliche Bausteine sind. Dazu wur-
den ein SRAM, ein DRAM, ein EEPROM und ein innovatives NVRAM ausgewählt. Sie 
werden in kompatibler Form von mehreren Herstellern angeboten und bieten dadurch 
höhere Sicherheit der Verfügbarkeit.

Die Entwicklung neuer Speicherbauelemente baut üblicherweise auf den Vorgängern 
auf. Das heißt, die Eigenschaften, die in den folgenden Abschnitten beschrieben sind, 
finden sich in ähnlicher Weise in den Vorgängern und sind Grundlage für die Spezifika-
tion der nächsten Speichertechnologie.

11.4.2	� QDR-II-SRAM

11.4.2.1 � Übersicht
QDR bezeichnet eine Familie von Dual-Port-SRAMs, die also zwei Anschlüsse haben. 
Ein Anschluss ist ein Schreib-Interface, der andere ein Lese-Interface. Beide Anschlüsse 
übertragen Daten bei steigender und fallender Taktflanke (Double-Data-Rate), so dass als 
Bezeichnung Quad-Data-Rate (QDR) gewählt wurde. Es gibt verschiedene Geschwin-
digkeitsstufen der QDR-Familie. Hier soll QDR-II betrachtet werden, mit ‚II‘ im Sinne 
der römischen Zahl Zwei.

Das Einsatzgebiet dieser Speicherbausteine sind insbesondere Anwendungen, die eine 
sehr hohe Datenrate benötigen und bei denen Lese- und Schreiboperationen etwa gleich 
häufig vorkommen. Ein Anwendungsbeispiel sind Netzwerkanwendungen, bei denen 
Datenpakete zwischengespeichert werden müssen.

Die SRAMs werden mit unterschiedlichen Speichergrößen im Bereich von 18 bis 
144 Mbit und Datenwortbreiten von 9, 18 und 36 bit angeboten. Ein typischer Baustein 
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ist der CY7C1514KV18 von Cypress, mit einer Speicherkapazität von 72 Mbit und 
36 bit Datenwortbreite. Die Taktgeschwindigkeit darf 350 MHz betragen. Vergleichbare 
Bausteine werden unter anderem von IDT und Renesas angeboten. Der Speicher arbei-
tet mit Vielfachen von 9 bit, nicht 8 bit, da in der Telekommunikation häufig zusätzliche 
Bits zur Fehlererkennung verwendet werden.

Der Speicherbaustein hat folgende Anschlüsse:

•	 A, 20 Bit, Adresse, gemeinsame für Schreib- und Lese-Interface
•	 D, 36 Bit, Dateneingang
•	 Q, 36 Bit, Datenausgang
•	 /WPS, Write-Port-Select aktiviert einen Schreibzugriff
•	 /RPS, Read-Port-Select aktiviert einen Lesezugriff
•	 K und /K, Takt für Schreib-Interface in positiver und negativer Polarität
•	 C und /C, Takt für Lese-Interface in positiver und negativer Polarität
•	 CQ und /CQ, Ausgabe des Takts C für Anpassung an Laufzeiten
•	 VREF, Referenzspannung für Datenleitungen
•	 weitere Pins für Steuerfunktionen, Stromversorgung und Fertigungstest

Insgesamt hat das Chipgehäuse 165 Pins. Der Schrägstrich (/) kennzeichnet Low-aktive 
Signale.

Auffällig ist die hohe Anzahl an Taktanschlüssen. Die Takte für Lese-Interface und 
Schreib-Interface sind in beiden Polaritäten vorhanden. Außerdem wird der Lesetakt in 
beiden Polaritäten wieder aus dem Speicherbaustein ausgegeben. Die Takte sind nicht 
unabhängig voneinander, sondern es handelt sich um den gleichen Takt mit unter-
schiedlichen Verzögerungen. Dieser Aufwand ist nötig, da bei den verwendeten hohen 
Taktfrequenzen die Laufzeit der Signale auf der Platine beachtet werden muss. In der 
Konfiguration mit 36 bit Wortbreite sind 333 MHz möglich, die einer Periodendauer von 
3 ns entsprechen. Aufgrund der Anwendung der Double-Data-Rate-Technik hat jedes 
Datenwort nur eine Dauer von 1,5 ns.

11.4.2.2 � Logisches Interface
Die Adressierung des SRAMs erfolgt stets abwechselnd für Lese- und Schreib-Interface. 
Abb. 11.16 gibt ein Beispiel für den Zeitablauf. Im oberen Bereich sind sechs Eingänge 
des SRAMs, im unteren Bereich drei Ausgänge dargestellt. Für das Taktinterface sind 
verschiedene Konfigurationen möglich. K als primärer Takt ist stets erforderlich, die Ver-
wendung von C und CQ ist optional. In diesem Beispiel wird kein separater Lesetakt C, 
aber die Taktausgabe CQ verwendet.

Der Zeitablauf zeigt drei Lesezugriffe auf die Adressen a0 bis a2, sowie vier Schreib-
zugriffe auf die Adressen a4 bis a7. Die Zugriffe erfolgen immer als Burst (Sequenz) 
von zwei Datenworten, das heißt, pro Adresse werden immer zwei 36-Bit-Worte ange-
sprochen. Damit sind für die Speicherkapazität von 72 Mbit 20 Adressleitungen nötig.

11.4  Diskrete Speicherbausteine
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Zunächst wird die Leseoperation betrachtet. Die Adresse bei der steigenden Taktflanke 
von K ist immer die Leseadresse. Zum Zeitpunkt ① wird die Adresse a0 angegeben und 
durch /RPS auf 0 (Low-aktiv) ein Lesevorgang angezeigt. Der Zugriff auf das SRAM 
benötigt etwas Zeit, deswegen werden die Daten nach einer Latenzzeit von (hier) zwei 
Takten ausgegeben. Zum Zeitpunkt ③ wird das erste Datenwort mit der Bezeichnung q00 
ausgegeben; einen halben Takt später bei ④ folgt das zweite Datenwort des Burst q01. 
Durch /RPS auf 0 folgen noch zwei weitere Datenzugriffe auf die Adressen a1 und a2, 
die Daten folgen unmittelbar auf den ersten Burst. Danach wird /RPS zu 1 und es folgen 
keine weiteren Leseoperationen.

Das Lese-Interface gibt auch CQ und /CQ als Hilfssignale für die Datenübernahme 
aus. CQ und /CQ haben ihre Taktflanken an der gleichen Position wie der Datenausgang. 
Das System, welches die Daten empfängt, kann hieraus den Takt für die Datenüber-
nahme erzeugen.

Die Schreiboperation beginnt auch bei der steigenden Taktflanke von K, verwendet 
aber die Adresse einen halben Taktzyklus später an der steigenden Taktflanke von /K. 
Die erste Schreiboperation beginnt also zum Zeitpunkt ① mit dem ersten Datenwort 
d40 und dem Steuersignal /WPS. Dann folgt zum Zeitpunkt ② die Adresse a4, und das 
Datenwort d41. Auf eine Adresse werden mit den Datenworten d40 und d41 also ins-
gesamt 72 Bit geschrieben. Im Diagramm werden vier Bursts von jeweils zwei Daten-
worten geschrieben. Danach wird /WPS zu 1 und das Schreib-Interface ist inaktiv.

Übrigens müssen mit einem Schreibzugriff nicht immer 72 Bit geschrieben werden. 
Über das Steuersignal Write-Byte-Select (in Abb. 11.16 nicht dargestellt) können Teile 
des Datenwortes ausgewählt werden.

11.4.2.3 � Physikalisches Interface
Zusätzlich zur logischen Ansteuerung sind Zeitanforderungen und Spannungspegel zu 
beachten. Bei den Zeitanforderungen sind dies Setup- und Hold-Zeiten der Eingangssig-
nale, sowie Vorgaben zum Duty Cycle der Takte und deren Zeitversatz.

Abb. 11.16   Zeitablauf der 
Ansteuerung eines QDR-II-
SRAMs

a0 a4 a6a5 a2a1 a7

q10q00 q01 q11 q21q20

/WPS

/RPS

/K

K

A

D

Q

CQ

/CQ

d40 d41 d61d51 d60d50 d71d70
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Wird das oben genannte SRAM mit 333 MHz Takt betrieben, beträgt die Zykluszeit 
3 ns und für Daten und Adresse steht die halbe Zykluszeit von 1,5 ns zur Verfügung. Die 
Zeitvorgaben sind in diesem Fall:

•	 Setup- und Hold-Zeit jeweils 0,3 ns
•	 Duty Cycle des Takts zwischen 40 % und 60 %
•	 Abstand der steigenden Flanken von K und /K mindestens 1,35 ns, also 45 % der hal-

ben Zykluszeit.
•	 Initialisierungszeit, also Zeit zwischen Anlegen der Spannungsversorgung und erstem 

Datenzugriff, 1 ms

Als Spannungspegel sind drei verschiedene Versorgungsspannungen definiert, und zwar

•	 Core-Spannung von 1,8 V für die komplette interne Logik
•	 I/O-Spannung von 1,5 V für die Ein- und Ausgangspins
•	 Referenzspannung von 0,75 V für die Erkennung der Datenpegel

Die Logikpegel der Signaleingänge sind in Relation zur Referenzspannung definiert. Der 
Low-Pegel muss 0,1 V kleiner, der High-Pegel 0,1 V größer als die Referenzspannung 
sein. Damit reicht also ein Spannungshub von 0,2 V aus.

Darüber hinaus gibt es weitere Vorgaben, unter anderem die maximal erlaubten Span-
nungen, die Stromaufnahme und weiteren Zeitanforderungen. Diese sind in den Daten-
blättern der QDR-II-SRAMs angegeben.

11.4.3	� DDR3-SDRAM

11.4.3.1 � Übersicht
DRAM-Speicherbausteine haben eine deutlich höhere Speicherkapazität als SRAMs 
und sind damit kostengünstiger. Allerdings ist die mögliche Datenrate geringer und die 
Ansteuerung deutlich komplexer, da nach jedem Lesevorgang die Information in den 
Speicherzellen wiederhergestellt werden muss (vgl. Abschn. 11.2.2). Außerdem ist ein 
regelmäßiger Refresh erforderlich.

DDR3-SDRAM ist eine moderne Familie von DRAM-Speichern mit einer Kapazität 
von bis zu 4 Gbit, also rund 30mal so viel wie ein QDR-II-SRAM. Das ‚S‘ in SDRAM 
steht für synchron und gibt an, dass der Baustein mit einem Takt arbeitet. In diesem 
Abschnitt wird exemplarisch der Baustein MT41J512M8 von Micron Technology 
betrachtet, ein 4 Gbit DDR3-DRAM mit einer Datenwortbreite von 8 bit. Vergleichbare 
Bausteine werden unter anderem von Samsung und Hynix angeboten. Verwendet wird 
der Baustein beispielsweise in DRAM-Modulen für PCs.

11.4  Diskrete Speicherbausteine
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Der Baustein wird mit verschiedenen Geschwindigkeiten angeboten. Die Taktfre-
quenz darf knapp über 1 GHz betragen. Es gibt nur ein Speicherinterface mit bidirektio-
nalen Datenleitungen. Die wesentlichen Anschlüsse sind:

•	 A, 16 Bit, Adresse
•	 BA, 3 Bit, Bankadresse, wählt eine von acht internen Speicherbänken aus
•	 DQ, 8 Bit, Datenbus, bidirektional als Dateneingang und Datenausgang
•	 DQS und /DQS, Referenzsignal für das Ausgangstiming
•	 /RAS, /CAS, /WE, Steuersignale für Lese- und Schreiboperationen
•	 CK und /CK, Takt in positiver und negativer Polarität
•	 VREF_DQ, Referenzspannung für Datenleitungen
•	 VREF_CA, Referenzspannung für Steuerleitungen
•	 weitere Pins für Steuerfunktionen, Stromversorgung und Fertigungstest

Das Gehäuse hat 78 Anschlüsse, also weniger als die Hälfte, verglichen mit dem 
QDR-II-SRAM.

11.4.3.2 � Logisches Interface
Das DRAM muss beim Start zunächst initialisiert werden. Für die Ansteuerung muss 
dann beim Lesen, Schreiben und Refresh der innere Aufbau beachtet werden. Das 
Arbeitsprinzip wird am besten deutlich, wenn der Lesevorgang betrachtet wird.

Beim Lesen wird eine komplette Zeile in den Schreib/Lese-Verstärker geladen. Dabei 
wird die Ladung in den Speicherzellen gelöscht und muss wieder „zurückgeschrieben“ 
werden. Dieses Lesen und Zurückschreiben benötigt mehrere Taktzyklen. Während die-
ser Zeit ist das DRAM blockiert. Darum sind in einem DRAM-Chip acht unabhängige 
Speicherbänke verfügbar. Während eine Bank noch durch Zurückschreiben von Daten 
belegt ist, kann bereits auf eine andere Bank zugegriffen werden.

Der Lesezugriff auf den Speicher erfolgt in drei Schritten.

•	 Activate: Hierdurch wird eine Zeile in den Leseverstärker geladen.
•	 Read: Aus der Zeile werden Datenworte gelesen. Mehrere Leseoperationen für die 

aktivierte Zeile sind möglich und jede Leseoperation liest einen Burst von vier oder 
acht Worten.

•	 Precharge: Der Zugriff auf die Zeile wird beendet und die Daten wieder in die Spei-
cherzellen zurückgeschrieben.

Die Schritte werden durch die Steuersignale /RAS, /CAS und /WE aufgerufen. Zwischen 
den Schritten gibt es Wartezeiten von mehreren Takten, die eingehalten werden müssen. 
Nach Activate können ebenfalls Schreiboperationen in die Zeile erfolgen, auch abwech-
selnd mit Leseoperationen.

Abb. 11.17 zeigt den Zeitablauf für zwei Leseoperationen auf zwei verschiedene 
Bänke. Als Burst sind 8 Worte gewählt. Die invertierten Signale /CK und /DQS sind zur 
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besseren Übersicht weggelassen. Die Steuersignale /RAS, /CAS, /WE sind zum Kom-
mandowort ‚cmd‘ (Command) zusammengefasst. Die eingezeichneten Zeitpunkte haben 
folgende Bedeutung:

1.	 Aktivierung der Zeile r0 (r wie Row) in der Bank 0 mit dem Kommando ‚act‘ (Acti-
vate). Bevor die Zeile verwendet werden kann, muss mehrere Takte gewartet werden.

2.	 Aktivierung der Zeile r1 in der Bank 1.
3.	 Lesezugriff auf Spalte c0 (c wie Column) in der Bank 0. Nach Ausführen der Lese-

operation soll die Zeile durch Precharge zurückgeschrieben werden. Als Kommando 
wird darum ‚rdp‘ (Read with Precharge) aufgerufen.

4.	 Lesezugriff auf Spalte c1 in der Bank 1, ebenfalls mit Precharge.
5.	 Nach einer Latenzzeit werden die Daten des Lesezugriffs ③ ausgegeben. Entspre-

chend der Burst-Länge werden acht Daten von 0 bis 7 ausgegeben. Als Hilfssignale 
für die Datenübernahme wird DQS ausgegeben. Die Taktflanken sind an der gleichen 
Position wie der Datenausgang und das System, welches die Daten empfängt, kann 
hieraus den Übernahmetakt erzeugen.

6.	 Direkt nach dem ersten Datenburst werden die Daten des Lesezugriffs ④ ausgegeben. 
Dies sind die Daten 8 bis f.

Die Bezeichnung nop (No Operation) gibt an, dass kein Kommando übertragen wird. 
Bitte beachten Sie, dass in Abb. 11.17 die Abstände zwischen den Kommandos etwas 
verkürzt dargestellt sind. Die internen Vorgänge benötigen bestimmte Zeiten, die einer 
Anzahl an Taktzyklen entsprechen. Deswegen werden mit steigender Taktfrequenz mehr 
Taktzyklen für bestimmte Abläufe benötigt.

Die maximale Taktfrequenz und die Wartezeiten werden als Kennziffern des DRAMs 
angegeben und sind Ihnen vielleicht schon begegnet, wenn Sie Speicherriegel für den PC 
gekauft oder die Werte im BIOS eingeben haben. Die Bezeichnung DDR3-1866 CL13 
13-13-32 bedeutet beispielsweise:

•	 DDR3-1866: DDR3-SDRAM mit 1866 Mio. Transfers je Sekunde, also einer maxi-
malen Taktfrequenz von 933 MHz.

A r0 - c0- r1- c1- - - -- - - - -

DQ 764 5310 2 fec db98 a

DQS

CK

cmd act nop rdpnop actnop rdpnop nop nop nopnop nop nop nop nop

BA 0 - 0- 1- 1- - - -- - - - -

Abb. 11.17   Zeitablauf zweier Leseoperationen eines DDR3-SDRAMs
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•	 CL13 ist die Anzahl der Taktzyklen zwischen Read und Ausgabe der Daten. CL steht 
für Column Access Latency oder CAS Latency.

•	 Die folgenden drei Zahlen bezeichnen weitere Zeiten
–	 13 Taktzyklen zwischen dem Activate-Befehl einer Zeile und erstem Read-Zugriff
–	 13 Taktzyklen für den Precharge-Vorgang
–	 32 Taktzyklen zwischen zwei Activate-Befehlen auf dieselbe Bank

Der Zugriff auf ein DRAM erfordert also das Beachten der internen Speicherorganisa-
tion. Eine hohe Datenrate kann erreicht werden, wenn mehrere Daten aus der gleichen 
Zeile gelesen werden (nur ein Activate-Befehl nötig) und die Zugriffe ansonsten auf ver-
schiedene Speicherbänke verteilt werden (Wartezeit zwischen Activate-Befehlen auf die-
selbe Bank).

Diese Zugriffsmuster werden beispielsweise von den CPUs in einem PC berücksich-
tigt. Der Speichercontroller einer CPU liest größere Datenblöcke aus dem DRAM und 
speichert sie auf einem internen SRAM, dem sogenannten Cache. Die Daten sind so im 
DRAM abgelegt, dass ein Zugriff möglichst effizient erfolgen kann.

11.4.3.3 � Physikalisches Interface
Das physikalische Interface des DDR3-SDRAMs nutzt ähnliche Prinzipien wie das 
QDR-II-SRAM. Da noch höhere Frequenzen auftreten können, sind die Anforderungen 
entsprechend höher.

Für ein DDR3-1866-SDRAM beträgt die Taktfrequenz 933 MHz Takt und somit ist 
die Zykluszeit 1,07 ns. Der Duty Cycle des Takts muss zwischen 47 % und 53 % liegen. 
Anstelle fester Setup- und Hold-Zeit für die Signaleingänge werden Grenzen für den 
Zeitverlauf der Spannung definiert. Darin ist auch festgelegt, wie stark ein Überschwin-
gen der Signale erfolgen darf. Die Adress- und Steuerleitungen werden nur einmal pro 
Taktzyklus ausgewertet, während Datenleitungen zweimal pro Taktzyklus gültig sind. 
Daher wird zwischen diesen Signalen unterschieden.

Die Spannungsversorgung für Core und I/O beträgt 1,5 V, die Referenzspannung zur 
Erkennung der Datenpegel ist 0,75 V.

Spezifische Angaben zum physikalischen und logischen Interface finden Sie im 
Datenblatt eines DDR3-SDRAMs, beispielsweise dem MT41J512M8 von Micron.

11.4.4	� EEPROM

11.4.4.1 � Übersicht
Im Bereich der EEPROMs gibt es eine große Vielfalt an unterschiedlichen diskreten 
Speicherbausteinen. Es gibt kleine, mittlere und große Speichergrößen, sowie langsamen 
und schnellen Speicherzugriff.
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•	 Kleine Speichergrößen im Bereich von einigen kByte, werden beispielsweise verwen-
det, um Geräteeinstellungen zu speichern, wie Netzwerkname, WLAN-Passwort und 
IP-Adresse eines Netzwerkgeräts.

•	 Mittlere Speichergrößen, im Bereich von MByte, werden beispielsweise zum Spei-
chern von Messdaten oder von Programmcode für größere Prozessoren verwendet.

•	 Große Speichergrößen, im Bereich von GByte, werden als Massenspeicher verwen-
det, beispielsweise im Smartphone oder als Solid-State-Disk (SSD).

Bei kleineren Speichergrößen kann teilweise jedes Datenwort einzeln gelöscht werden. 
Mittlere und große Speichergrößen werden als Flash-EEPROM implementiert.

Der Speicherzugriff kann seriell über eine Datenleitung oder parallel über mehrere 
Leitungen erfolgen.

•	 Der serielle Zugriff ist langsamer, aber ausreichend, wenn nur wenige Daten benötigt 
werden oder wenn die Daten einmalig gelesen und dann auf dem System zwischenge-
speichert werden.

•	 Der parallele Zugriff ist schneller und für größere Datenmengen sinnvoll.

Aus den unterschiedlichen Anforderungen ergibt sich eine Vielfalt an diskreten 
EEPROM Speicherbausteinen. SRAM und DRAM Bausteine werden nur eingesetzt, 
wenn die Speicherkapazität auf einem Chip nicht ausreicht. Ein EEPROM Baustein ist 
jedoch bereits erforderlich, wenn nur wenige Byte nichtflüchtig gespeichert werden sol-
len, da ein Chip in Standard-CMOS-Technologie dies nicht bietet.

11.4.4.2 � 8 Gbit Flash-Memory
Als ein Beispiel für ein EEPROM mit großer Speicherkapazität wird der Baustein 
TH58NVG3S0HTA00 von Toshiba mit einer Speichergröße von 8 Gbit, also 1 GByte 
betrachtet. Es handelt sich dabei um ein NAND-Flash-EEPROM. Andere Anbieter von 
NAND-Flash-EEPROMs sind beispielsweise Cypress, Micron, Samsung und Winbond.

Der Baustein ist in 4096 Blöcken organisiert und jeder Block hat 64 „Speicherseiten“ 
mit jeweils 4352 Bytes. Dieser Inhalt einer Seite umfasst 4096 Bytes Nutzdaten sowie 
256 Bytes für Speicherverwaltung und die bei der NAND-Struktur nötige Fehlerkor-
rektur. Ein Flash-Löschvorgang bezieht sich immer auf einen Block von 64 Seiten, also 
256 kByte.

Der Baustein ist darauf ausgelegt mit einem fehlerkorrigierenden Controller zusam-
menzuarbeiten. Das Speicherinterface arbeitet ohne Takt und hat die folgenden 
Anschlüsse:

•	 IO, 8 Bit, I/O-Port
•	 CLE, Command Latch Enable, Übernahmesignal für Befehle
•	 ALE, Address Latch Enable, Übernahmesignal für Adresse
•	 /CE, Chip Enable

11.4  Diskrete Speicherbausteine
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•	 /WE, Write Enable
•	 /RE, Read Enable
•	 RY/BY, Ready/Busy, zeigt an, ob der Baustein noch einen Befehl ausführt
•	 /WP, Write Protect, für einen Schreibschutz
•	 Pins für Stromversorgung

Das Gehäuse hat 48 Anschlüsse, von denen jedoch ein größerer Teil nicht verwendet 
wird. RY/BY ist ein gleichzeitig High-aktives Ready- und Low-aktives Busy-Signal.

11.4.4.3 � Logisches Interface
Der 8-Bit-Port IO wird gemeinsam für Kommandos, Adressen und Daten verwendet. 
Kommandos werden durch bestimmte 8-Bit-Werte übermittelt. CLE und ALE zeigen an, 
um welche Information es sich jeweils handelt.

Die drei Grundoperationen des Bausteins sind Löschen eines Blocks, Schreiben von 
Daten und Lesen von Daten.

Löschen eines Blocks
Abb. 11.18 zeigt den Zeitablauf beim Löschen eines EEPROM-Blocks.

1.	 Der Löschvorgang wird durch ein spezielles Kommando gestartet. Dazu liegt der Wert 
6016 auf den acht Datenleitungen und CLE zeigt an, dass es sich bei dieser Informa-
tion um ein Kommando handelt. Die Datenübernahme erfolgt durch die steigende 
Flanke an /WE.

2.	 Die Adresse des zu löschenden Blocks wird auf der Datenleitung übertragen. Da die 
Datenleitung kleiner als die Adresswortbreite ist, wird die Adresse in drei Teile A-0, 
A-1, A-2 aufgeteilt.

3.	 Das Kommando D016 löst den Löschvorgang aus. Durch RY/BY wird angezeigt, dass 
der Baustein beschäftigt ist. Das Löschen eines Blocks benötigt etwa 2,5 bis 5 ms.

4.	 Nach Ende des Löschvorgangs muss überprüft werden, ob das Löschen erfolgreich 
war. Dazu wird das Kommando 7016 angegeben.

5.	 Der Baustein antwortet mit einem Statuswort (sts). Für diese Leseoperation wird /RE 
angesteuert.

Abb. 11.18   Zeitablauf beim 
Löschen eines EEPROM-
Blocks
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Bei einem NAND-EEPROM kann es vorkommen, dass Speicherblöcke fehlerhaft sind 
oder im Gebrauch fehlerhaft werden. Dies würde durch das Statuswort angezeigt und 
der Controller verwendet einen solchen Block dann nicht mehr. Für den hier betrachte-
ten Baustein werden 60.000 Löschzyklen angegeben, wobei mit zunehmender Anzahl an 
Löschzyklen einige Blöcke unbrauchbar werden können. Laut Datenblatt bleiben über 
die spezifizierte Lebensdauer mindestens 4016 der 4096 Blöcke funktionsfähig.

Schreiben von Daten
Das Schreiben von Daten erfolgt vorzugsweise für einzelne Seiten mit 4096 plus 
256 Bytes. Der Zeitablauf ist in Abb. 11.19 dargestellt. Die Steuersignale werden ähnlich 
wie beim Löschen angesteuert und für bekannte Schritte nicht einzeln erläutert.

1.	 Das Kommando 8016 gibt an, dass ein Schreibvorgang ausgeführt werden soll.
2.	 Die Adresse von Block und Seite wird in fünf Teilen von A-0 bis A-4 übertragen.
3.	 Jetzt werden nacheinander die Daten jeweils mit der steigenden Flanke von /WE 

übertragen. Bis zu 4352 Byte sind möglich, das heißt D-x wäre dann D-4351. CLE 
und ALE auf 0 zeigen an, dass es sich weder um ein Kommando (CLE) noch um 
Adressen (ALE) handelt.

4.	 Das Kommando 1016 startet den Schreibvorgang. Die Daten sind bisher in einem internen 
Zwischenspeicher und werden jetzt in die Speichermatrix geschrieben. Das EEPROM 
überprüft den Schreibvorgang und versucht eventuell mehrfach zu schreiben. Durch RY/
BY wird die Aktivität angezeigt. Die Programmierung einer Seite dauert 300 bis 700 µs.

5.	 Nach Ende des Schreibvorgangs muss mit dem Kommando 7016 überprüft werden, ob 
das Schreiben erfolgreich war.

6.	 Der Baustein antwortet mit einem Statuswort (sts).

Für die Verwendung des EEPROMs ist die interne Organisation zu beachten. Der Con
troller schreibt Daten auf freie Seiten des Speichers. Nicht mehr benötigte Seiten werden 
nicht sofort gelöscht, sondern zunächst als ungültig gekennzeichnet. Erst wenn alle Sei-
ten eines Blocks ungültig sind, wird ein ganzer Block gelöscht. Hierfür kann es eventuell 
nötig sein, noch gültige Seiten in andere Blöcke zu kopieren.

Damit der Controller Schreibzugriffe und das Löschen von Blöcken optimieren kann, 
wird empfohlen, den Speicher nicht komplett zu füllen.

Abb. 11.19   Zeitablauf beim 
Schreiben in ein EEPROM /CE
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Lesen von Daten
Das Lesen von Daten erfolgt ähnlich wie das Schreiben von Daten. Zunächst wird ein 
Lesekommando gegeben, dann die Leseadresse in fünf Teilen und ein weiteres Kom-
mando. Daraufhin lädt der Baustein die Daten aus der Speichermatrix in den Lesever-
stärker und gibt nacheinander die Daten ab der angeforderten Adresse aus. Das Lesen der 
Daten aus der Speichermatrix benötigt 25 µs.

11.4.4.4 � Physikalisches Interface
Die Datenrate bei Schreib- und Lese-Zugriffen ist deutlich geringer als bei SRAM und 
DRAM, denn das EEPROM ist als Massenspeicher und nicht als schneller Arbeitsspei-
cher vorgesehen.

Die mögliche Datenrate beim Schreiben und Lesen von Daten beträgt 40 MHz. Hinzu 
kommen die oben genannten Zeiten für den Zugriff auf die Speichermatrix.

Die Spannungsversorgung des Bausteins beträgt 3,3 V. Die Daten werden durch 
Spannungspegel dargestellt. Der Low-Pegel wird bis 0,66 V erkannt, der High-Pegel ab 
2,64 V, dazwischen befindet sich der Übergangsbereich, in dem keine eindeutige Zuord-
nung der Spannung zu einem logischen Wert möglich ist.

Spezifische Angaben zum physikalischen und logischen Interface finden Sie im 
Datenblatt.

11.4.5	� FRAM mit seriellem Interface

11.4.5.1 � Übersicht
Als ein Beispiel für ein NVRAM mit einer innovativen Speichertechnik wird der 
Baustein MB85RS64V von Fujitsu betrachtet. Es handelt sich um ein Ferroelektri-
sches RAM mit 8192 Worten zu 8 bit und seriellem Interface. Jede Zelle kann einzeln 
beschrieben werden. Mit der Speicherkapazität von 8 kByte handelt es sich um eine 
kleine Speichergröße. Dafür ist der Baustein allerdings auch sehr kompakt und hat ein 
Gehäuse mit nur 8 Pins. Bausteine mit ähnlichem Interface und Speichergröße sind auch 
als EEPROM von verschiedenen Herstellern verfügbar.

Als besonderer Vorteil sind für das FRAM 1012 mögliche Zugriffe pro Zelle spezifi-
ziert. Für EEPROMs werden üblicherweise 105 bis 106 Schreibvorgänge angegeben.

Die Anschlüsse des Bausteins sind:

•	 SCK, Serial Clock, Takt für den seriellen Zugriff
•	 SI, Serial Data Input, serieller Dateneingang
•	 SO, Serial, Data Output, serieller Datenausgang
•	 /CS, Chip Select, zum Aktivieren des Bausteins
•	 /WP, Write Protect, Schreibschutz
•	 /HOLD, pausiert einen Zugriff
•	 Versorgungsspannung und Masse
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11.4.5.2 � Logisches Interface
Die Kommunikation mit dem Baustein erfolgt über das Serial Peripheral Interface (SPI). 
Bei diesem Protokoll sind getrennte Leitungen für Dateneingang und -ausgang vorhan-
den, das heißt die Datenleitung wird nicht bidirektional betrieben. Ein Zugriff auf den 
Baustein erfolgt über Kommandos. Bei Schreib- und Leseoperationen folgt nach dem 
Kommando eine Adresse und bei einem Schreibzugriff die Daten. Bei einem Lesezugriff 
antwortet der Baustein nach der Adressübertragung mit den angeforderten Daten.

Abb. 11.20 zeigt den Zeitablauf eines Schreibvorgangs. /CS aktiviert zunächst den 
Baustein. Dann werden insgesamt 32 Bits durch die steigende Flanke von SCK übertra-
gen, die Most Significant Bits (MSB) jeweils zuerst. Die ersten 8 Bit sind das Schreib-
kommando 0216. Dann folgt die Adresse mit 16 Bit. Da für 8 kByte nur 13 Bit benötigt 
werden, sind die obersten drei Adressbits unbelegt. Schließlich werden die Daten über-
tragen und durch /CS die Übertragung beendet.

Es ist auch möglich, mehrere Bytes an Daten zu übertragen, die dann in aufeinander 
folgende Adressen geschrieben werden (nicht in Abb. 11.20 dargestellt). Damit ist keine 
wiederholte Übertragung von Kommando und Adresse nötig.

11.4.5.3 � Physikalisches Interface
Die maximale Taktfrequenz für SCK beträgt 20 MHz. Wartezeiten für die Programmierung 
sind nicht erforderlich. Die Spannungsversorgung des Bausteins beträgt 3,3 bis 5 V. Bei 
3,3 Spannungsversorgung wird der Low-Pegel bis 0,66 V, der High-Pegel ab 2,64 V erkannt.

11.5	� Speichersysteme

Ein Speichersystem ist die Kombination aus mehreren Speichern. Dabei sind verschie-
dene Konfigurationen möglich. Mehrere gleiche Speicher können kombiniert werden, 
um die Speicherkapazität zu erhöhen. Verschiedene Speicher können kombiniert wer-
den, wenn unterschiedliche Eigenschaften benötigt werden. Dies kann SRAM- und 
DRAM-Speicher oder flüchtiger und nicht-flüchtiger Speicher sein. Außerdem können 
die Speicher sowohl Embedded Speicher auf der Integrierten Schaltung als auch diskrete 
Speicherbausteine außerhalb sein.

Abb. 11.20   Serielles 
Schreiben in ein FRAM mit 
SPI-Protokoll x x x 21 2 1 0 7 6 2 1 0
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11.5.1	� Adressdecodierung

Oft ist es gewünscht, dass die Speicher gemeinsam von einer zentralen Steuerlogik, zum 
Beispiel der CPU eines Rechnersystems, angesprochen werden sollen. Die Unterschei-
dung der Speicher erfolgt dann anhand der Speicheradresse. Der Adressraum enthält 
Adressbereiche für die unterschiedlichen Speicher. Je nach Größe von Adressraum und 
Speicherkomponenten können Adressbereiche auch unbelegt sein.

Der prinzipielle Aufbau eines Speichersystems ist in Abb. 11.21 dargestellt. Die zen-
trale Steuerlogik gibt eine Adresse sowie Steuersignale an das Speichersystem. Je nach 
Speichermodul können unterschiedliche Steuersignale sinnvoll und erforderlich sein. 
Hier sind dargestellt:

•	 CS für Chip Select: Ein Zugriff findet statt
•	 WR für Write: Ein Schreibzugriff findet statt
•	 RD für Read: Ein Lesezugriff findet statt

Ein Adressdecoder ermittelt dann aus der Adresse, welches Speichermodul adressiert ist 
und gibt an dieses Modul ein individuelles Chip-Select-Signal weiter. Über den Daten-
bus gibt die Steuerlogik entweder Daten an das Speichermodul oder es werden Daten 
empfangen.

Aus der Organisation des Adressraums ergibt sich die Adressierung. Zur Verdeutli-
chung wird das Speichersystem eines fiktiven Rechnersystems in Abb. 11.22 dargestellt. 
Die Adresse hat eine Wortbreite von 16 bit und kann damit 64 kByte adressieren. Spei-
cherzugriffe erfolgen jeweils auf ein Byte. Es sind drei Speicher vorhanden, und zwar ein 
ROM von 4 kByte für den Boot-Code, ein SRAM von 8 kByte als Datenspeicher und ein 
EEPROM von 32 kByte für den Programmcode. Der Adressraum ist links in Abb. 11.22 
angegeben. Das Präfix „0x“ kennzeichnet hexadezimale Zahlen. Die Adressbelegung ist 
wie folgt:

Abb. 11.21   Aufbau eines 
Speichersystems aus mehreren 
Speichermodulen
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•	 0x8000 – 0xffff: EEPROM
•	 0x6000 – 0x7fff: unbelegt
•	 0x4000 – 0x5fff: SRAM
•	 0x1000 – 0x3fff: unbelegt
•	 0x0000 – 0x0fff: ROM

Die Steuerlogik kann also beispielsweise durch Angabe von Adresse 0x0123 auf das 
ROM sowie durch Adresse 0x4567 auf das SRAM zugreifen.

Auf der rechten Seite von Abb. 11.22 ist die Logik des Adressdecoders abgebildet. 
Die 16 Adressleitungen werden teils für die Selektion des Speichermoduls verwendet, 
teils gehen sie in das Speichermodul. Ein Chip-Select-Signal der Steuerlogik wird hier 
nicht verwendet; die Speicher werden über Read und Write angesteuert.

Die Logik des Adressdecoders und die Wortbreite der Adressen ergeben sich aus 
Speichergröße und Position im Adressraum.

•	 Das EEPROM benötigt für 32 kByte Speichergröße eine Adresse der Wortbreite 
15 bit. Das oberste Bit der Adresse selektiert den Speicher, wenn die Adresse größer 
als 0x8000 ist. Als Chip-Select-Signal des EEPROMs kann direkt Adressleitung 15 
verwendet werden.

•	 Das SRAM benötigt für 8 kByte Speichergröße eine Adresse der Wortbreite 13 bit. 
Die vorderen drei Bit der Adresse selektieren den Speicher für Adressen zwischen 
0x4000 und 0x5fff. In diesem Adressbereich sind A(15) bis A(13) gleich 0102. Das 
Chip-Select-Signal wird durch ein UND-Gatter mit drei Eingängen, zwei davon 
negiert, erzeugt.

•	 Das ROM benötigt für 4 kByte Speichergröße eine Adresse der Wortbreite 12 bit. Die 
vorderen vier Bit der Adresse selektieren den Speicher für Adressen zwischen 0x0000 
und 0x1fff. In diesem Adressbereich sind A(15) bis A(12) gleich 0. Das Chip-Select-
Signal wird durch ein UND-Gatter mit vier negierten Eingängen erzeugt.

Abb. 11.22   Adressraum 
und -decoder für ein 
Speichersystem mit drei 
Speichermodulen
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11.5.2	� Multiplexing des Datenbusses

Jetzt betrachten wir den Datenbus auf der linken Seite von Abb. 11.21. Daten können 
von der Steuerlogik zu einem Speicher oder vom Speicher zur Steuerlogik übertragen 
werden. Für die Implementierung gibt es zwei Möglichkeiten. Entweder sind getrennte 
Datenleitungen für Schreib- und Leseoperationen vorhanden, die dann durch Multiplexer 
ausgewählt werden. Oder es wird eine gemeinsame Datenleitung verwendet, auf die alle 
Busteilnehmer mit Tri-State-Ausgängen schreiben.

Innerhalb Integrierter Schaltungen werden stets getrennte Datenleitungen für Schreib- 
und Leseoperationen verwendet. Tri-State-Leitungen sind innerhalb eines ICs zwar tech-
nisch möglich, aber für Fertigung und Herstellungstest sehr problematisch. Auch für die 
Ansteuerung diskreter Speicherbausteine können getrennte Datenleitungen verwendet 
werden. Beispiele dafür sind das QDR-II-SRAM und das FRAM aus Abschn. 11.4.

Der Schaltungsaufbau bei getrennten Datenleitungen ist in Abb. 11.23 dargestellt, 
wiederum für das Speichersystem mit EEPROM, SRAM und ROM. Alle drei Speicher-
module haben einen Datenausgang, aber nur das SRAM hat einen Dateneingang. Hier 
wird angenommen, dass die Programmierung des EEPROMs über ein eigenes Program-
mier-Interface erfolgt (nicht dargestellt); die Steuerlogik schreibt nicht in das EEPROM. 
Die Richtung von Schreiben und Lesen bezieht sich jeweils auf die Sicht der Steuerlo-
gik. Der Schreibbus führt direkt vom Datenausgang (D_OUT) der Steuerlogik an den 
Dateneingang (D_IN) des Speichermoduls. Auch mehrere Speichermodule können an 
den Schreibbus angeschlossen werden, da nur die Steuerlogik Daten schreiben kann.

Der Lesebus hat mehrere Quellen, und zwar die Datenausgänge aller Speichermo-
dule. Darum ist ein Multiplexing erforderlich, damit nur die Daten des adressierten 
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Speichermoduls an die Steuerlogik gegeben werden (siehe Abb. 11.23). Zunächst wird 
für jedes Speichermodul die RD-Leitung mit der CS-Leitung UND-verknüpft. Das ver-
knüpfte Signal ist 1, wenn ein Lesezugriff auf das entsprechende Modul erfolgt. Zum 
Multiplexing wird der Datenausgang des Speichermoduls durch UND-Gatter weiterge-
geben. Falls das Modul nicht aktiv ist, bleibt der Ausgang dieser UND-Gatter auf 0. Da 
immer nur ein Speichermodul adressiert sein kann, ist auch nur ein Lesebus aktiviert und 
die anderen Lesebusse sind 0. Für den Dateneingang der Steuerlogik werden die einzel-
nen Lesebusse ODER-verknüpft.

Ein Datenbus mit Tri-State-Leitungen kann für die Ansteuerung diskreter Bauele-
mente verwendet werden. Dies hat den Vorteil, dass die Datenleitungen gemeinsam 
zum Lesen und Schreiben verwendet werden, denn die Anzahl der Anschlüsse eines 
ICs ist begrenzt. Beispiele dafür sind das DDR3-SDRAM und das Flash-EEPROM aus 
Abschn. 11.4. Beim Flash-EEPROM wurde der Datenbus auch für Kommandoworte und 
Adresse genutzt, um noch mehr Pins zu sparen.

Abb. 11.24 zeigt ein Speichersystem mit Tri-State-Leitungen. Die Blöcke für Spei-
cher und Steuerlogik stellen jetzt jeweils eigene diskrete Bauelemente dar und sind zur 
Verdeutlichung mit dickeren Linien gezeichnet. Sowohl die Speicher als auch die Steuer-
logik müssen für den Betrieb an einem Tri-State-Bus vorgesehen sein und entsprechende 
Treiber an den Anschlüssen besitzen. Im Chip der Steuerlogik wird der Tri-State-Treiber 
durch das Write-Signal angesteuert, bei den Speichern durch UND-Verknüpfung aus 
Read und jeweiligem Chip-Select-Signal.

RAM_1

Zentrale Steuerlogik

CS

D_OUT(7:0)

&

...

Datenbus 
auf Platine

(8 Bit)

RD

...

D_IN(7:0)...

D_OUT(7:0)
WR

...

D_IN(7:0)

...

RAM_0

CS

D_OUT(7:0)

&

...

RD

...

D_IN(7:0)

...

...

...

Diskrete 
Bauelemente

Abb. 11.24   Speichersystem mit diskreten Bauelementen und Tri-State-Leitungen

11.5  Speichersysteme



350 11  Speicher

Die Datenleitungen werden in den Bauelementen gleichzeitig als Ausgang und Daten-
eingang für die interne Logik genutzt. Eine Steuerlogik (hier nicht dargestellt) entschei-
det, ob der Dateneingang verwendet wird.

11.5.3	� Ansteuerung diskreter Speicherbausteine

Die vier in Abschn. 11.4 vorgestellten diskreten Speicherbausteine haben Schnittstellen, 
die unterschiedlich komplexe Ansteuerungen benötigen:

•	 Das serielle NVRAM kann relativ einfach angesprochen werden.
•	 Das NAND-EEPROM hat ein recht einfaches Interface, erfordert jedoch Fehlerkor-

rektur und Beachtung defekter Blöcke.
•	 Das SRAM hat ein einfaches logisches Interface, erfordert jedoch bei höheren Takt-

frequenzen eine spezielle Taktbehandlung sowie eine physikalische Ansteuerung mit 
Logikpegeln bezogen auf eine Referenzspannung.

•	 Das DRAM erfordert ein komplexes Protokoll für die Ansteuerung, Beach-
tung der Bankstruktur sowie Taktbehandlung und physikalische Ansteuerung mit 
Referenzspannung.

Für die Ansteuerung diskreter Speicherbausteine sind verschiedene Funktionselemente 
vorhanden, die für den Aufbau eines Systems genutzt werden können.

Logisches Interface
Für die logische Ansteuerung werden Controller angeboten, welche die Ansteuerung der 
Bausteine ausführen. Diese Controller sind teilweise als VHDL-Code oder Gatter-Netz-
liste verfügbar und können in eigene Schaltungsentwürfe übernommen werden. Solche 
Schaltungsbeschreibungen werden als Intellectual Property (IP) bezeichnet und müssen 
üblicherweise als Lizenz gekauft werden. Für programmierbare Bausteine (FPGAs) wer-
den von den Herstellern IP-Blöcke angeboten. Diese sind für Käufer der FPGAs oft ohne 
weitere Kosten verfügbar.

Physikalisches Interface
Die physikalische Ansteuerung von SRAMs und DRAMs erfolgt über Pins mit speziellen 
Logikpegeln. Für Tri-State-Busse sind ebenfalls entsprechende Pins erforderlich. Die Her-
steller von ICs und FPGAs bieten diese Ein- und Ausgangstreiber als Bibliothekselement an.

11.6	� Übungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Prüfen Sie sich mit den Aufgaben und 
Fragen am Kapitelende. Die Lösungen und Antworten finden Sie am Ende des Buches.

Bei den Auswahlfragen ist immer genau eine Antwort korrekt.
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Aufgabe 11.1
Welche der folgenden Technologien ist ein ‚flüchtiger Speicher‘?

a)	 FRAM
b)	EPROM
c)	 Flash
d)	SRAM
e)	 EEPROM

Aufgabe 11.2
Wie viele Transistoren hat eine normale SRAM-Zelle?

a)	 9
b)	2
c)	 1
d)	5
e)	 6

Aufgabe 11.3
Wie viele Transistoren hat eine normale DRAM-Zelle?

a)	 6
b)	5
c)	 2
d)	1
e)	 9

Aufgabe 11.4
Wozu wird beim DRAM ein ‚Refresh‘ benötigt?

a)	 Zugriff auf verschiedene Speicherblöcke
b)	Zugriff auf Zeilen und Spalten der Speichermatrix
c)	 Auswahl eines Speicherblocks
d)	Aufladen von Kondensatoren
e)	 Löschen von Datenbereichen

Aufgabe 11.5
Was passiert beim ‚Flash‘ eines Flash-Speichers?

a)	 Zugriff auf Zeilen und Spalten der Speichermatrix
b)	Auswahl eines Speicherblocks
c)	 Löschen von Datenbereichen

11.6  Übungsaufgaben
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d)	Zugriff auf verschiedene Speicherblöcke
e)	 Aufladen von Kondensatoren

Aufgabe 11.6
Wie erfolgt die Datenspeicherung in EEPROMs?

a)	 Kondensator
b)	Magnetfeld
c)	 Rückkopplung von Invertern
d)	Transistor mit ‚Floating-Gate‘
e)	 Brennen von Sicherungen

Aufgabe 11.7
a)	 Wie viele Adressleitungen braucht ein SRAM mit 16K Datenworten?
b)	Wie viele Adressleitungen braucht ein SRAM mit 256K Datenworten?

Aufgabe 11.8
a)	 Ein SRAM hat 16 Adressleitungen und 8 Datenleitungen. Wie hoch ist die 

Speicherkapazität?
b)	Ein SRAM hat 20 Adressleitungen und 16 Datenleitungen. Wie hoch ist die 

Speicherkapazität?

Aufgabe 11.9
Abb. 11.25 zeigt ein einfaches Speichermodul mit 6 Adressleitungen und 1 bit Wortbreite. 
Damit soll ein Primzahl-Detektor realisiert werden. Programmieren Sie die Speicherelemente 
mit 0 oder 1, so dass der Speicher eine 1 ausgibt, wenn eine Primzahl am Eingang anliegt.

Abb. 11.25   Einfaches 
Speichermodul für Primzahl-
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Analog-Digital-Umsetzer (ADU), engl. Analog-Digital-Converter (ADC), sind Bindeglieder 
zwischen analogen Signalquellen wie Messwandler für Druck, Temperatur, Weg, Beschleu-
nigung, Mikrofonen und digital arbeitenden Systemen. Sie wandeln einen analogen 
Spannungswert in eine digitale Darstellung. Digital-Analog-Umsetzer (DAU) engl. Digital-
Analog-Converter (DAC), wandeln dann einen digitalen Wert wieder in die analoge Welt.

Technische Herausforderungen beim Einsatz von ADUs und DAUs liegen in den 
Anforderungen an Genauigkeit und Geschwindigkeit der Umsetzung. Wirtschaftliche 
Herausforderungen liegen in den Kosten der Umsetzer, denn ein Gesamtsystem kann aus 
Analog-Digital-Umsetzer, digitaler Verarbeitung und Digital-Analog-Umsetzer bestehen. 
Im Vergleich mit einem rein analogen System müssen die Kosten vergleichbar sein oder 
die digitale Verarbeitung muss eine bessere Qualität der Verarbeitung ermöglichen.

Generelle Vorteile der digitalen gegenüber der analogen Technik bestehen unter ande-
rem durch:

•	 Geringere Störanfälligkeit digitaler Signale, bzw. Fehlerkorrektur nach Störungen
•	 Einsatzmöglichkeit besonders hoch integrierter Digitalbausteine wie FPGAs, Mikro-

prozessoren, Signalprozessoren, Speicher usw.
•	 Möglichkeit zur Datenkomprimierung und Verschlüsselung von Daten

12.1	� Grundprinzip von Analog-Digital-Umsetzern

Analog-Digital-Umsetzer sind Systeme, die einer analog vorliegenden elektrischen Mess-
größe (z. B. einer Spannung U) eine digitale Repräsentationsgröße (z. B. eine binäre 
Zahl) zuordnen. Bei analogen Systemen liegt demgegenüber die Repräsentationsgröße, 

Analog-Digital- und Digital-Analog-
Umsetzer 12



354 12  Analog-Digital- und Digital-Analog-Umsetzer

beispielsweise der Zeigerausschlag eines Messgerätes, in analoger Form vor. Analoge 
Größen sind zeit- und wertkontinuierlich wie Abb. 12.1 zeigt.

Ein ADU ordnet der analogen Eingangsgröße eine zeit- und wertdiskrete Repräsen-
tationsgröße zu, beispielsweise Binärzahlen, wie Abb. 12.2 zeigt. Ein ADU bildet dem-
zufolge ein Signalintervall (Quantisierungsintervall Q) auf einen diskreten Wert ab. 
Dadurch werden systematische Fehler, die Quantisierungsfehler, verursacht.

Beim Vorliegen zeit- und wertkontinuierlicher, also analoger Signale bewirkt der 
ADU eine Diskretisierung in zweifacher Hinsicht:

•	 Diskretisierung in eine endliche Anzahl zugelassener Amplitudenwerte, auch Quanti-
sierung genannt.

•	 Diskretisierung im Zeitbereich, denn ein Amplitudenwert gilt für eine bestimmte 
Mindestzeit. Diesen Vorgang nennt man Abtastung.

Weiterhin liefert der ADU die digitale Information in einem bestimmten Code, bei-
spielsweise dem Dual-Code. Dieser Vorgang heißt Codierung. Die erforderlichen Ver-
arbeitungsschritte beim Übergang vom analogen zum digitalen Signal sind in Abb. 12.3 
veranschaulicht.

Wesentliche Anwendungsgebiete für ADUs und DAUs sind:

•	 Digitalmessinstrumente: Analoge Messgrößen wie Strom, Spannung, Widerstand, Fre-
quenz, Temperatur, Gewicht usw. werden mit endlicher Auflösung als Ziffern angezeigt.

Abb. 12.1   Prinzipielle 
Wirkungsweise eines Analog-
Messgerätes
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•	 Nachrichtentechnische Einrichtungen: Sprach- und Videosignale, die zunächst in analoger 
Form vorliegen, werden digitalisiert und digital übertragen oder gespeichert. Beispiele: 
Telefonie per Voice-over-IP, Videocodierung für Digitalfernsehen oder Blu-Ray Disc.

•	 Digitale Signalverarbeitung: Sprach-, Bild- und Videosignale werden durch digitale 
Verarbeitung verändert. Beispiel: Bildverbesserung in Digitalkameras.

•	 Digitale Regelungssysteme und Prozesssteuerung: Ein Digitalregler kann einen oder 
mehrere Regelkreise betreiben. Beispiele: Werkzeugmaschinen, Lebensmittelproduk-
tion, allgemeine Prozessabläufe, Überwachung von Verbundsystemen zur elektrischen 
Energieversorgung.

12.1.1	� Systeme zur Umsetzung analoger in digitale Signale

Die Analog-Digital-Umsetzung umfasst prinzipiell die folgenden vier Schritte:

1.	 Bandbegrenzung durch Tiefpassfilter
2.	 Abtastung im Abtasthalteglied (AHG, engl. Sample & Hold)
3.	 Quantisierung
4.	 Codierung
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Abb. 12.3   Verarbeitungsschritte beim Übergang von analogen zu digitalen Signalen
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Ein System zur Digitalisierung analoger Signale lässt sich somit durch das Blockschalt-
bild in Abb. 12.4 beschreiben. Integrierte Schaltungen zur AD-Umsetzung vereinen die 
Funktionen meist auf einem Baustein. Es ist jedoch auch möglich, die Umsetzfunktion 
auf mehrere Bauelemente aufzuteilen.

Der Eingangstiefpass mit der Grenzfrequenz fg ist für den Fall erforderlich, dass das 
Analogsignal nicht hinreichend bandbegrenzt ist. Seine Dimensionierung wird durch das 
Abtasttheorem bestimmt (Abschn. 12.1.2). Als nächster Block ist ein Abtasthalteglied 
(AHG) vorgesehen. Dieses hält während der Umsetzungsdauer des ADU das umzuset-
zende Analogsignal konstant (Abschn. 12.1.3). Das AHG speist direkt den eigentlichen 
Umsetzer, der aus Quantisierer und Codierer besteht. Verschiedene Architekturen werden 
in Abschn. 12.2 vorgestellt. Eine Ablaufsteuerung koordiniert die Aufgaben der einzel-
nen Blöcke.

12.1.2	� Abtasttheorem

Das Abtasttheorem von Shannon gibt an, in welchen zeitlichen Abständen dem vorlie-
genden Analogsignal mindestens Proben (Abtastwerte) entnommen werden müssen, 
damit nach einer späteren DA-Umsetzung das Ursprungssignal (bis auf die Quantisie-
rungsfehler) fehlerfrei rekonstruiert werden kann.

Das Abtasttheorem lautet: Eine auf fg bandbegrenzte Signalfunktion s(t) wird vollständig 
bestimmt durch zeitdiskrete und äquidistante Abtastwerte sa(t) im zeitlichen Abstand von 
T = Tabt < 1/

(

2fg
)

Das bedeutet, die in einem Signalgemisch auftretende höchstfrequente spektrale 
Komponente muss wenigstens zweimal pro Periode Tg abgetastet werden. Dieses lässt 
sich sowohl im Zeit- als auch im Spektralbereich begründen. Die Formel für Tabt wird 
auch mit dem Formelzeichen kleiner-gleich angegeben, aber das Gleichheitszeichen 
hat nur theoretische und keine praktische Bedeutung. Wird das Abtasttheorem verletzt, 
entstehen Signalfehler, die in der Regel nicht zu eliminieren sind.

Als Beispiel soll ein Audiosignal betrachtet werden. Das menschliche Gehör kann Fre-
quenzen bis zu 20 kHz wahrnehmen. Die Abtastrate muss darum größer als 40 kHz sein. 
Für die Speicherung auf einer Audio-CD wird eine Abtastrate von 44,1 kHz verwendet.
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Abb. 12.4   Gesamtsystem zur Digitalisierung analoger Signale
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12.1.3	� Abtasthalteglied (AHG)

Das Abtasthalteglied soll dem vorliegenden Signal in Abständen, die durch das Abtast-
theorem festgelegt sind, Signalproben entnehmen und diese während der Umsetzdauer 
tu des ADUs konstant halten (speichern), wie Abb. 12.5 zeigt. Die Haltedauer tH muss 
größer als die Umsetzdauer tu des ADUs gewählt werden, so dass gilt:

Ist allerdings die Umsetzdauer tu sehr viel kleiner als Tabt kann theoretisch auf eine Abtast
haltung verzichtet werden. Diese Forderung lässt sich in der Praxis allerdings selten 
sinnvoll erfüllen, da der ADU dadurch sehr teuer werden würde. Die Zusammenhänge 
sollen an einem Beispiel konkretisiert werden.

Wird kein AHG benutzt, kann sich während der Umsetzdauer tu des ADU das 
Eingangssignal s(t) um ds ändern, was zu einem falschen Umsetzungsergebnis führt. 
Soll die maximale Genauigkeit eines ADU von 1/2 LSB (Least Significant Bit) erhalten 
bleiben, muss im Sinne einer Worst-Case-Betrachtung gefordert werden, dass an der 
Stelle der größtmöglichen Signalsteigung die Signaländerung kleiner als 1/2 LSB 
bleibt. Beispielsweise führt diese Forderung bei einem vollaussteuernden Sinussignal 
s(t) = A · sin(ωg · t) zu folgendem Ergebnis:

Das ist die maximale Steigung des Signals mit der Amplitude A = m · Q/2, wobei Q die 
Quantisierungsintervallbreite und m die Quantisierungsstufenzahl im Aussteuerbereich 
sind. Weiter gelte fg = 1/(2 · Tabt) als Grenzfall für die Abtastung. Dann folgt:

Mit der oben formulierten Bedingung Smax · tu ≤ Q/2 folgt durch Gleichsetzen

und nach tu umgestellt:

tu ≤ tH ≤ T = Tabt

(

ds

dt

)

max

= A · ωg = Smax

Smax =
m · Q · 2 · π · fg

2
=

m · Q · π

2 · Tabt

Smax =
m · Q · π

2 · Tabt
≤

Q

2 · tu

sa(t)

t
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s(t)
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Abb. 12.5   Prinzipielle Wirkungsweise eines Abtasthaltegliedes



358 12  Analog-Digital- und Digital-Analog-Umsetzer

Dieses ist die erforderliche Umsetzdauer eines ADUs, welche bei der Abtastung ein 
AHG entbehrlich macht. Diese Forderung ist sehr weitreichend, da in der Regel m sehr 
viel größer als 1 ist.

Als Beispiel wird eine Abtastperiodendauer von 125 µs für die digitale Sprachsignal-
verarbeitung mit Telefonqualität betrachtet. Es wird ein linearer ADU mit n = 12 bit ver-
wendet, sodass m = 2n − 1 = 4095 ist. Dann gilt für die Umsetzdauer:

Dieses lässt sich nicht sinnvoll realisieren, da ADUs mit diesen Leistungsmerkmalen 
zwar technisch möglich, jedoch für diese Anwendung zu aufwendig sind. Wird dagegen 
ein AHG eingesetzt, darf die Umsetzdauer tu des ADU näherungsweise Tabt, also im vor-
liegenden Beispiel 125 µs betragen. Darin liegen Sinn und Vorteil eines AHG.

Die Arbeitsweise eines AHG zeigt das prinzipielle Schaltbild in Abb. 12.6. Wird der 
Schalter S in die obere Stellung gebracht, lädt sich der Haltekondensator CH auf die 
Signalspannung auf. Dieses entspricht der Abtastphase. Nach Bewegen des Schalters S 
in die Mittelstellung beginnt die Haltephase, während der das Signal in CH gespeichert 
bleibt. Die Spannung UH ist durch einen hochohmigen Leseverstärker als sa(t) verfügbar. 
RS ist der Eingangswiderstand des AHG, Ri der Innenwiderstand der Signalquelle.

In modernen Pipeline-ADUs in CMOS-Technologie werden die AHGs mit geschalte-
ten Kondensatoren (Switched Capacity Circuits) realisiert, wie in Abb. 12.7 dargestellt ist.

tu ≤
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m · π

tu ≤
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4095 · π
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S
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Abb. 12.6   Prinzipieller Aufbau eines AHGs und sein Anschluss an die Signalquelle s(t)
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In der Abtastphase sind die Schalter S1 und S3 geschlossen, und S2 ist offen. Da 
der Summationspunkt des Operationsverstärkers auf Bezugspotenzial liegt, wird der 
Kondensator CH mit der Eingangsspannung Ui geladen.

Für die Haltephase werden die Schalter S1 und S3 geöffnet und S2 geschlossen und 
damit die Haltekapazität in den Gegenkopplungskreis des Operationsverstärkers gelegt. 
Da die Ladung von CH nicht über den Summationspunkt abfließen kann, bleibt sie erhal-
ten, und die Ausgangsspannung Ua nimmt den Wert Ui an.

12.1.4	� Erreichbare Genauigkeit für ADUs abhängig von der 
Codewortlänge

Durch die Codewortlänge n ist die Anzahl der möglichen Codewörter gegeben. Hieraus 
lassen sich die Quantisierung der Messwerte und die erreichbare Genauigkeit berechnen. 
Zur besseren Anschaulichkeit wird im Folgenden angenommen, dass der Messbereich 
bei 0 V beginnt.

Ein Wert für die mögliche Genauigkeit eines ADUs ist die Quantisierungsintervall-
breite Q. Sie berechnet sich aus der Codewortlänge n und dem Aussteuerbereich Umax. 
Für einen n-Bit-ADU ergibt sich Q als:

Der höchste codierbare Spannungswert beträgt dann:

Dieser Wert ergibt sich daraus, dass von den 2n möglichen Codewörtern der erste Wert 
für die Spannung 0 V benötigt wird und die folgenden 2n − 1 Codewörter jeweils um 
den Wert Q größer sind.

Als einfaches Beispiel betrachten wir einen Aussteuerbereich Umax von 1 V und eine 
Wortbreite von n = 3 bit. Dann beträgt Q = 1 V/23 = 1 V/8 = 125 mV. Die Zahl der 
Quantisierungsintervalle beträgt 8, sodass der höchste codierbare Spannungswert 7 Inter-
valle höher als 0 V ist:

Die Quantisierungskennlinie dieses ADUs ist in Abb. 12.8 dargestellt. Es existieren 8 
darstellbare Spannungswerte und 7 Intervalle zwischen diesen Werten. Jedem Codewort 
entspricht ein Repräsentationswert, beispielsweise für den Code 011 der Wert 0,375 V. 
Die Eingangswerte des zugehörigen Quantisierungsintervalls werden diesem Wert zuge-
wiesen. Für den Code 011 sind beispielsweise die Übergangswerte 0,3125 und 0,4375 V. 
Der höchste darstellbare Digitalwert ist 0,875 V und um ein Quantisierungsintervall klei-
ner als die maximale Eingangsspannung Umax.

Q =
Umax

2n

U∗

max =
(

2
n
− 1

)

· Q

U∗

max = 7 · 125mV = 0, 875V
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Die beiden Punkte in den Ecken des Diagramms legen die ideale Quantisierungsge-
rade fest. Diese verläuft durch die Mittelpunkte aller Quantisierungsintervalle einer idea-
len Quantisierungskennlinie. Bei einer realen Quantisierungskennlinie ergibt sich für die 
Mittelpunkte aller Quantisierungsintervalle jedoch im allgemeine keine Gerade. Darin 
äußern sich unterschiedliche Fehler realer Umsetzer, wie sie in Abschn. 12.4 im Einzel-
nen erläutert werden.

Als Beispiel für reale Größenordnungen wird ein Aussteuerbereich Umax von 10 V und 
eine Wortbreite von n = 12 bit betrachtet. Dann beträgt Q = 10 V/212 = 1 V/4096 = 2,44 
mV. Der höchste codierbare Spannungswert beträgt U*max = 4095 · (10 V/4096) = 9,976 V.

Bei einer idealen Quantisierungsgerade sind alle Quantisierungsintervalle Q gleich 
groß und man spricht von linearer Quantisierung. Dann ist der maximale Quantisierungs-
fehler Fabs die Hälfte des Quantisierungsintervalls:

Der relative Fehler Frel hängt von der aktuellen Aussteuerung ab, er nimmt bei Vollaus-
steuerung sein Minimum an:

Für einen 3-Bit-ADU beträgt der Fehler Frel beispielsweise 1/16 = 6,25 %.
Wird bei einer Digitalisierung eine bestimmte relative Genauigkeit Frel verlangt, so 

kann daraus die erforderliche Wortbreite für den ADU berechnet werden. Sie ergibt sich 
aus dem nächstgrößeren ganzzahligen Wert und dem Zweierlogarithmus der benötigten 
Genauigkeit nach der Formel:
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=
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Soll beispielsweise eine relative Genauigkeit bei Vollaussteuerung von 1 % erreicht wer-
den, berechnet sich der Zweierlogarithmus von 0,01 zu ld 0,01 = − 6,64. Daraus ergibt 
sich n = 5,64, sodass für den ADU mindestens n* = 6 bit nötig sind.

12.1.5	� Codierung der ADU-Werte

Für das eben genannte Beispiel eines 12-Bit-ADU mit Aussteuerbereich Umax von 10 V 
ist die Codetabelle in Tab. 12.1 auszugsweise dargestellt. Die Codeworte werden als 
Dualzahl dargestellt.

Falls mit dem ADU auch negative Spannungen gemessen werden, ist eine Darstellung 
als Dualzahl mit Offset oder als Zweierkomplement möglich. Bei der Offsetdarstellung 
beginnt der Code bei der geringsten Spannung mit dem Codewort Null und steigt bis 
zum höchsten codierbaren Spannungswert an. Bei der Zweierkomplementdarstellung 
werden negative Spannungswerte durch eine negative Zahl angegeben. Manche Bau-
steine bieten auch die Datenausgabe im Gray-Code. Die Codierung eines ADUs ist im 
Datenblatt definiert und kann teilweise durch Konfigurationssignale ausgewählt werden.

12.2	� Verfahren zur Analog-Digital-Umsetzung

Für die eigentliche AD-Umsetzung sind verschiedene Verfahren möglich, die sich in 
Aufwand und Geschwindigkeit deutlich unterscheiden. Für die folgenden Erläuterungen 
werden meistens die Repräsentationswerte der einzelnen Quantisierungsschritte verwen-
det, da dies anschaulicher ist (siehe Abb. 12.8). In realen Schaltungen erfolgen Verglei-
che hingegen mit den Übergangswerten.

Tab. 12.1   Repräsentations-
werte und Codeworte für einen 
12-Bit-ADU

Codewort-Nummer Repräsentationswert 
in V

Codierung

0 0 0000 0000 0000

1 0,0024414 0000 0000 0001

2 0,0048828 0000 0000 0010

… … …

1024 2,5000000 0100 0000 0000

… … …

2048 5,0000000 1000 0000 0000

… … …

4095 9,9975586 1111 1111 1111
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12.2.1	� Parallelverfahren

Umsetzer nach diesem Verfahren heißen Parallel-, Direkt- oder Flash-Umsetzer. Das 
Messverfahren ähnelt der Längenmessung mit einem Zollstock. An die unbekannte 
Größe wird der Zollstock angelegt, der in m Teile des Quantisierungsintervalls, soge-
nannte Normale, eingeteilt ist. Der nächstliegende ganzzahlige Wert ist die gesuchte 
Länge.

Für die elektronische Realisierung dieses Verfahrens ist Folgendes wichtig:

•	 Es ist nur ein Messschritt nötig, das Verfahren arbeitet schnell.
•	 Es sind m Normale nötig, also großer Aufwand an Präzisionsbauelementen.

Elektrisch kann dieses Normalenlineal durch eine Spannungsteilerkette mit m gleichgro-
ßen Präzisionswiderständen realisiert werden. Jeder Widerstand ergibt eine darstellbare 
Stufe. Zusätzlich ist noch der Wert Null vorhanden, so dass m + 1 Werte möglich sind. 
Das Blockschaltbild des entsprechenden Parallelumsetzers ist in Abb. 12.9 dargestellt. Es 
gilt: R1 = R2 = … = Rm. Rref wird entsprechend dem Verhältnis von Umax zu Uref gewählt.

Mittels m Komparatoren wird die unbekannte Spannung Ux mit den einzelnen Abgrif-
fen des Normalen-Spannungsteilers verglichen. Alle Komparatoren, deren Spannungen 
an den Teilereingängen größer als Ux sind, liefern am Ausgang eine logische 1, alle ande-
ren eine logische 0. Diese Werte werden mit einem Abtastimpuls in ein Register über-
nommen und in der Decodierlogik in die entsprechende Anzahl von n = ld(m + 1) bits 
umgesetzt. Das Register realisiert eine digitale Abtasthaltung, sodass dieser Umsetzer 
ohne ein zusätzliches AHG betrieben werden kann.
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Abb. 12.9   Blockschaltbild eines ADUs nach dem Flash-Verfahren
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Der hohe Aufwand zeigt sich in der großen erforderlichen Anzahl von Präzisions-
widerständen und Komparatoren. Daher wird dieses Verfahren normalerweise nur bis 
Auflösungen von 12 bit eingesetzt. Technische Probleme bei hoher Auflösung liegen 
außerdem im Eingangsverstärker, der m Komparatoreingänge treiben muss und in den 
Komparatoren selbst, die eine kleine Hysterese und hohe Gleichtaktunterdrückungen 
aufweisen müssen. Ein weiterer Nachteil ist die vergleichsweise hohe Verlustleistung 
dieses Umsetzertyps.

Die Geschwindigkeit des Umsetzers wird durch den langsamsten Komparator 
bestimmt, der erst eingeschwungen sein muss, bevor der Abtastimpuls eintrifft. Anwen-
dungsschwerpunkte für Umsetzer dieses Typs liegen bei der digitalen Signalverarbei-
tung, insbesondere der Bildverarbeitung mit Datenraten von mehr als 80 Mbit/s und bei 
Transientenrekordern.

Eventuell ist Ihnen aufgefallen, dass beim Flash-ADU die Quantisierungsschritte 
immer bis zum nächsten Repräsentationswert reichen. Bei der Auflösung aus Abb. 12.8 
würde die Codierung „000“ also dem Wertebereich von 0 V bis 0,125 V entsprechen. 
Dies liegt daran, dass alle Widerstände des Spannungsteilers gleich groß gewählt sind 
und die Komparatoren die Eingangsspannung mit den Repräsentationswerten verglei-
chen. Bezogen auf die Dezimalzahl wird durch diese Vereinfachung der Nachkommaan-
teil abgeschnitten und es findet nicht die eigentlich erforderliche Rundung statt.

In der Praxis wird diese Verschiebung durch Halbierung des Werts für R1 und entspre-
chender Erhöhung von Rref oder durch einen Offset im Eingangsverstärker gelöst. Um 
die Beschreibung der Schaltungsstrukturen in diesem Kapitel übersichtlich zu halten, 
sollen solche Rundungsfragen nicht beachtet werden.

12.2.2	� Wägeverfahren

Beim Wägeverfahren wird pro Messschritt ein Bit des Digitalwortes erzeugt. Der Name 
dieses Verfahrens stammt von dem bei einer Balkenwaage üblichen Messvorgang: Das 
Wägegut unbekannten Gewichts wird in eine Waagschale gelegt. In die andere kommt 
zunächst das größte verfügbare Gewicht. Ist dieses zu schwer, wird es wieder entfernt 
und eine Null notiert. Ist es nicht zu schwer, bleibt es liegen und es wird eine Eins 
notiert. Anschließend werden nacheinander alle verfügbaren kleineren Gewichte in glei-
cher Weise benutzt. Das unbekannte Gewicht entspricht der Summe aller mit Eins mar-
kierten Gewichte.

Das Wägeverfahren benutzt mehrere Normale qi mit dualer Abstufung ihres Wertes. 
Die Auflösung entspricht einer Quantisierungsstufe Q, also dem LSB des fertigen Code-
wortes. Die erste Normale q0 hat den Wert Q, die folgenden Normale sind q1 = 2 · Q, 
q1 = 4 · Q bis qn − 1 = 2n − 1 · Q.

Da die Anwendung jedes Normals qi ein Bit liefert, sind für einen n-Bit-ADU also n 
Normale nötig. Das größte umfasst den halben Messbereich, also Umax/2 und die Summe 
aller Normale ergibt den insgesamt darstellbaren Messbereich Umax − Q.
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Eine Messung der Eingangsgröße x beginnt mit dem Vergleich mit dem größten Nor-
mal qn − 1.

•	 Gilt x ≥ qn − 1, wird bn − 1 = 1 und qn − 1 bleibt angelegt.
•	 Gilt dagegen x < qn − 1, wird bn − 1 = 0 und qn − 1 wird entfernt.

Damit ist das MSB (Most Significant Bit) des Digitalwertes b gebildet. Im nächsten 
Schritt wird der verbleibende Rest der Messgröße mit dem nächstkleineren Normal 
verglichen.

•	 Gilt x − bn – 1 · qn – 1 ≥ qn − 2, wird bn − 2 = 1 und qn − 2 bleibt angelegt.
•	 Gilt dagegen x − bn – 1 · qn – 1 < qn − 2, wird bn − 2 = 0 und qn − 2 wird entfernt.

Dieser Vorgang wird mit den restlichen Normalen bis zum kleinsten Normal q0 der 
Größe Q fortgesetzt. Die Zahl Z der Messschritte entspricht der Normalenzahl N und 
damit der Bitanzahl, also gilt Z = N = n.

Das Messergebnis lautet x = bn – 1 ·2n − 1 + bn – 2 ·2n − 2 +···+ b2·22 + b1 ·2 + b0.
Als Beispiel wird ein Wägecodierer mit m = 255 Quantisierungsintervallen 

betrachtet. Er hat eine Auflösung von Q = 1/256 und damit sind Z = N = 8 und 
n = ld(m + 1) = 8 bit. Daher sind N = 8 Normale und Z = 8 Messschritte erforderlich. 
Das größte Normal hat den Wert qn − 1 = 2(n − 1)·Q = 128·Q und das kleinste den Wert 
q0 = Q.

Die Umsetzzeit im Wägecodierer ist größer als beim Direktumsetzer, da mehr Schritte 
erforderlich sind. Dafür werden weniger Normale benötigt, d. h. der Aufwand an Präzisi-
onsbauteilen ist prinzipiell geringer.

Bei der technischen Realisierung des Wägeverfahrens unterscheidet man zwischen 
Umsetzern mit schrittweiser Annäherung (Sukzessive Approximation, Successive Appro-
ximation) und Kaskadenumsetzer (Pipeline-A/D-Umsetzer). In der Praxis wird von die-
sen beiden Varianten meist das Verfahren mit schrittweiser Annäherung verwendet und 
darum wird dieses hier anhand des Rückkopplungscodierers erläutert. Das Blockschalt-
bild in Abb. 12.10 zeigt den Aufbau mit der Rückkopplung als wesentliches Merkmal.
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Abb. 12.10   Blockschaltbild des Rückkopplungscodierers mit schrittweiser Annäherung (Sukzessive 
Approximation)
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Als Rückkopplung wird mit einem Digital-Analog-Umsetzer (DAU) eine Referenz-
spannung Uref erzeugt. Diese wird entsprechend der Summe der aktivierten Normale 
schrittweise variiert. Im ersten Schritt ist das MSB gesetzt und Uref = Umax/2. Der Kom-
parator vergleicht die Referenzspannung mit der Eingangsspannung und ermittelt das 
MSB des Digitalausgangs, der im Successive Approximation Register (SAR) gespeichert 
wird. Der DAU erzeugt dann den nächsten analogen Vergleichswert, der wieder mit dem 
Eingangssignal verglichen wird um das nächste Ausgangsbit zu ermitteln.

Als Beispiel soll das Verfahren für einen ADU mit n = 3 bit und Umax  = 1 V durch-
gespielt werden. Das Quantisierungsintervall Q ist damit 0,125 V. Als Eingangsspannung 
wird Ux = 0,8 V angenommen.

•	 Im Abtasthalteglied AHG wird die Eingangsspannung gehalten, damit während der 
schrittweisen Umsetzung stets der gleiche Analogwert U*x anliegt.

•	 Der erste Vergleich erfolgt mit dem Wert Uref = 22 · Q = 4 · 0,125 V = 0,5 V. Der Ein-
gangswert von 0,8 V ist größer als die Referenzspannung, also ist das MSB b2 gleich 1.

•	 Der zweite Vergleich addiert zu der bisher ermittelten Spannung von 0,5 V die 
nächste Normale, mit halber Größe der vorherigen Normale. Es ergibt sich also der 
Wert Uref = b2 · 22 · Q + 21 · Q = 0,5 V + 2 · 0,125 V = 0,75 V. Der Eingangswert 
von 0,8 V ist wieder größer als die Referenzspannung, also ist das nächste Bit b1 
gleich 1.

•	 Der dritte Vergleich addiert wieder zu der bisher ermittelten Spannung von 0,75 V die 
nächste Normale, mit halber Größe der vorherigen Normale. Es ergibt sich der Wert 
Uref = b2 · 22 · Q + b1 · 21 · Q + 20 · Q = 0,75 V + 0,125 V = 0,875 V. Der Eingangs-
wert von 0,8 V ist kleiner als die Referenzspannung, also ist Bit b0 gleich 0.

•	 Damit ergibt sich nach drei Schritten der digitale Ausgangswert 110, der einer Span-
nung von 6 · Q = 0,75 V entspricht.

Das Ergebnis ist innerhalb der erreichbaren Genauigkeit für die gewählte Codewortlänge.

12.2.3	� Zählverfahren

Beim Zählverfahren handelt es sich um ein rein seriell arbeitendes Verfahren. Es exis-
tiert nur ein Normal der Länge Q und während der Messung wird gezählt, wie oft dieses 
Normal an den unbekannten Wert x angelegt werden muss, um diesen zu erreichen. Das 
Zählergebnis entspricht dann dem gesuchten Digitalwert von x.

Die Zahl der erforderlichen Vergleichsschritte Z hängt von der Messgröße ab und 
beträgt maximal Z = m = 2n − 1, denn falls beim (2n − 1)ten Messschritt immer noch 
gilt x > (2n − 1) · Q, dann muss x im letzten Quantisierungsintervall liegen.

Der Vorteil dieses Umsetzertyps ist, dass nur ein Normal, also ein geringer Aufwand 
an Präzisionsbauelementen, benötigt wird. Da die Anzahl der Messschritte jedoch von 
allen Umsetzverfahren am größten ist, arbeitet es auch am langsamsten.
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Das Zählverfahren kann elektronisch durch eine Abwandlung des soeben vorgestell-
ten Rückkopplungsumsetzers realisiert werden. Dazu wird das SAR durch einen Zähler 
ersetzt und damit Uref pro Messschritt nur um eine Quantisierungsstufe Q erhöht.

Vergleicht man die drei bisher dargestellten Umsetzverfahren miteinander, so zeigt 
sich, dass Aufwand (bzw. Kosten) und Umsetzungsdauer bis zu einem gewissen Grade 
untereinander austauschbar sind. Dieses ist in Abb. 12.11 anschaulich dargestellt. Häu-
fig besteht bei der Anwendung von ADUs jedoch der Wunsch, die Auswahl hinsichtlich 
Geschwindigkeit und Kosten präziser an das vorliegende Digitalisierungsproblem anzu-
passen, als es die drei bisher genannten Verfahren zulassen. Dafür stehen zwei weitere 
Verfahren zur Verfügung: Das erweiterte Parallel- und das erweiterte Zählverfahren. 
Beide werden in den nächsten Abschnitten vorgestellt.

12.2.4	� Erweitertes Parallelverfahren

Das Parallelverfahren ist zwar sehr schnell, hat aber den Nachteil, dass der Auf-
wand an Präzisionsbauteilen exponentiell mit der Auflösung steigt; denn es werden 
N = m = 2n − 1 Normale für einen n-Bit-Umsetzer benötigt. Abhilfe schafft hier das 
erweiterte Parallelverfahren, dessen Funktion zwischen Parallel- und Wägeverfahren 
liegt.

Im folgenden Abschnitt wird zunächst das allgemeine Prinzip des erweiterten Par-
allelverfahrens dargelegt und anschließend eine moderne Realisierung dieses Prinzips 
anhand des Pipeline-A/D-Umsetzers erläutert.

12.2.4.1 � Allgemeines Prinzip des erweiterten Parallelverfahrens
Man erhöht, ausgehend von einem Parallelverfahren, die Anzahl der Messschritte von 
Z = 1 auf Z > 1, beispielsweise auf Z = 2, bildet im ersten Schritt (m′+ 1) Grobstufen 
und unterteilt die Grobstufe, in der der unbekannte Wert x liegt, in (m″ + 1) Feinstufen. 
Die Gesamtauflösung beträgt dann m + 1 = (m′ + 1) · (m″ + 1), und die Zahl der 
Normale verringert sich auf N = m′ + m″.

Das soll am Beispiel verdeutlicht werden. Für einen 8-Bit-ADU gilt 
m = 28 − 1 = 255. Dann muss z. B. für Z = 2 Messschritte gelten: m + 1 = (m′ + 1) · 
(m″ + 1) = 256. Hierfür gibt es die in Tab. 12.2 dargestellten Möglichkeiten.

Aufwand Wandlungsdauer

Parallelverfahren
Wägeverfahren
Zählverfahren

Abb. 12.11   Vergleich der drei klassischen AD-Umsetzverfahren hinsichtlich Hardwareaufwand 
und Geschwindigkeit
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Allgemein gilt, dass die minimale Normalenzahl, also der kleinste Hardwareaufwand, 
im Fall (m′ + 1) = (m″ + 1) erreicht wird.

Geht man allgemein auf Z > 2 Messschritte über, muss gelten (m′ + 1) · (m″ + 1) · 
(m‴ + 1)··· · (m(Z) + 1) = m + 1 = 2n und die Normalenzahl beträgt:

Die Zahl der nötigen Normale wird wiederum minimal, wenn für alle m(i) = m′ = konstant 
gilt. Dann beträgt die Anzahl an Quantisierungsstufen pro Messschritt:

und die erforderliche Normalenzahl beträgt N = Z · m′.
Als einfaches Beispiel soll ein 8-Bit-ADU in Z = 4 Schritten mit minimaler Norma-

lenzahl aufgeteilt werden. Die minimale Normalenzahl ergibt sich für

Dies bedeutet pro Umsetzerstufe werden 2 Bit generiert. Die Zahl der Normale beträgt 
N = Z · m′ = 4 · 3 = 12.

Falls die Einzelquantisierungsstufenzahl keine Potenz von 2 ergibt, ist eine andere 
Aufteilung nötig. Soll beispielsweise der 8-Bit-ADU in Z = 3 Schritte aufgeteilt wer-
den, ergibt sich für die Anzahl an Quantisierungsstufen der Wert 3

√

256 = 6,35 also keine 
Zweierpotenz. Die drei Stufen müssen dann so gewählt werden, dass sie einer Zweierpo-
tenz entsprechen und sich insgesamt die benötigten 256 Quantisierungsstufen ergeben. 
Dies erfolgt, durch zwei Stufen mit 8 und einer Stufe mit 4 Einzelquantisierungsstufen, 
die insgesamt 8 · 8 · 4 = 256 Stufen ergeben. In Bit gerechnet ergeben die Einzelstufen 
zweimal 3 und einmal 2 Bit, insgesamt also 8 Bit. Die minimale Normalenzahl ist 17. 
Die Umsetzerstruktur ist in Abb. 12.12 gezeigt.
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Tab. 12.2   Möglichkeiten 
für die Realisierung eines 
ADUs nach dem erweiterten 
Parallelverfahren, mit n = 8 bit 
und Z = 2 Schritten

Grobstufen Feinstufen N=m′+m″ Bemerkungen

1 256 255 Direktverfahren

2 128 128

4 64 66

8 32 38

16 16 30 Minimale 
Normalenzahl

32 8 38 Ab hier Wiederholung
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Umsetzer nach dem erweiterten Direktverfahren mit der Schrittzahl Z = 2 sind als 
Half-Flash-Umsetzer auf dem Markt vertreten. Das vereinfachte Blockschaltbild des 
Half-Flash-Umsetzers AD 7821 (Analog Devices) mit 8 Bit ist in Abb. 12.13 dargestellt. 
Ein 4-Bit-Direktumsetzer erzeugt im ersten Schritt die vier höchstwertigen Bits (MSB). 
Deren Analogäquivalent wird anschließend von der analogen Eingangsspannung subtra-
hiert. Aus der verbleibenden Differenz werden dann mit einem zweiten 4-Bit-Direktum-
setzer die vier niederwertigsten Bits ermittelt (LSB).

12.2.4.2 � Pipeline-Analog-Digital-Umsetzer
Bei einem Pipeline-ADU erfolgt die Umsetzung ebenfalls in mehreren Schritten. Anders 
als beim allgemeinen Verfahren werden die Werte in jeder Stufe mit einem AHG gehal-
ten und nach der Differenzbildung verstärkt. Durch das Halten der Zwischenwerte ist 
eine Verarbeitung im Pipeline-Verfahren möglich, denn während die zweite Stufe die 
nachfolgenden Bits ermittelt, kann die erste Stufe bereits den nächsten Abtastwert bear-
beiten. Die Verstärkung ermöglicht der nachfolgenden Stufe mit höheren Signalpegeln 
zu arbeiten.

Abb. 12.14 zeigt das Prinzip eines Pipeline-Analog-Digital-Umsetzers mit vier Stu-
fen eines 3-Bit-Umsetzers, angelehnt an den Baustein AD9200 von Analog Devices. 
Vom analogen Eingangssignal werden in der ersten Stufe die drei höchstwertigen Bits 
in einem Flash-AD-Umsetzer (ADU) ermittelt und das digitale Teilergebnis mit einem 
DA-Umsetzer (DAU) wieder in einen analogen Wert umgesetzt. Der Eingangswert wird 
im ersten Abtast-Halte-Glied (AHG) gespeichert und von ihm wird jetzt der Ausgang des 
DAUs abgezogen. Da im ersten Schritt drei Bit des Ergebnisses ermittelt wurden, kann 
die Differenz um den Faktor 23 = 8 verstärkt werden. Dadurch hat die Differenz wieder 
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Abb. 12.12   Struktur eines dreischrittigen 8-Bit-ADU nach dem erweiterten Parallelverfahren mit 
minimaler Normalenzahl
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den gleichen Pegel wie das Eingangssignal und die zweite Stufe kann genauso wie die 
erste Stufe dimensioniert werden. Dies ist für den Schaltungsentwurf und die Genauig-
keit der AD- und DA-Umsetzung vorteilhaft. Nach der zweiten Stufe werden in der drit-
ten und vierten Stufe die weiteren Bits ermittelt.

Für den praktischen Entwurf ist es vorteilhaft, wenn sich die Bereiche der einzelnen 
Stufen etwas überlappen. Pro Stufe wird darum nicht der volle 3-Bit-Messbereich von 0 
bis 7 genutzt, sondern nur etwa der Wertebereich von 0 bis 5. Diese 6 Werte entsprechen 
rund 2,5 bit Auflösung und somit erfolgt dann die Verstärkung zwischen den Stufen auch 
mit dem Faktor 6. Eine Korrekturlogik setzt aus den vier Teilergebnissen den Messwert 
mit der Genauigkeit von 10 bit zusammen. In dieser Korrekturlogik kann sichergestellt 
werden, dass sich der gesamte ADU über den Messbereich möglichst linear verhält. Ins-
besondere wird vermieden, dass Missing Codes auftreten, das heißt beim Übergang zwi-
schen Messbereichen wird kein Codewort übergangen.

12.2.5	� Erweitertes Zählverfahren

Das erweiterte Zählverfahren liegt in seiner Funktion zwischen dem Zähl- und dem 
Wägeverfahren. Das Zählverfahren hat zwar den Vorteil minimalen Aufwands an Präzi-
sionsbauelementen, dafür ist aber die Schrittzahl und damit die Umsetzdauer die höchste 
der drei klassischen Umsetzverfahren. Beispielsweise sind für einen 8-Bit-Umsetzer 255 
Schritte erforderlich.

Eine Reduzierung der Umsetzdauer lässt sich prinzipiell durch eine Aufteilung in eine 
Grobmessung und eine Feinmessung erreichen. In der Grobmessung könnte ein Normal 
der Größe 2 · Q verwendet werden, was bei 8 Bit 127 Schritte erfordert. In der Feinmes-
sung wird dann in einem einzelnen Schritt ein Normal der Größe Q verwendet. Somit 
wird die Anzahl der erforderlichen Schritte etwa halbiert. Auch eine weitere Aufteilung 
mit Zwischenmessungen ist denkbar.

Eine praktische Bedeutung bei der Realisierung von ADUs hat das erweiterte Zähl-
verfahren bislang nicht.
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Abb. 12.14   Blockschaltbild eines Pipeline-Analog-Digital-Umsetzers
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12.2.6	� Single- und Dual-Slope-Verfahren

Bisher wurden ausschließlich Umsetzverfahren betrachtet, bei denen die elektrische 
Spannung direkt gemessen wurde. Bei indirekten Verfahren wird dagegen die Messgröße 
zunächst in eine Hilfsgröße überführt, welche genauer, schneller oder mit kleinerem Auf-
wand messbar ist. Die wichtigsten Hilfsgrößen sind eine messgrößenproportionale Fre-
quenz sowie eine messgrößenproportionale Zeit.

Die Messung mithilfe einer variablen Zeit erfolgt durch Zählung mit einem Taktsig-
nal. Das Grundprinzip dieses Verfahren wird als Single-Slope-Verfahren bezeichnet. Die 
Funktion wird an einem Blockschaltbild beschrieben (Abb. 12.15). Ein Sägezahngene-
rator erzeugt eine linear ansteigende Spannung Uk, die zum Beginn einem Messzyklus 
gestartet wird. Wenn diese die Spannung Null erreicht, wechselt der logische Pegel am 
unteren Komparator auf High und der Zähler startet. Erreicht Uk die unbekannte Mess-
spannung Ux, wechselt der logische Pegel am oberen Komparator auf Low und der Zäh-
ler stoppt. Der so ermittelte Zählerstand ergibt den digitalen Messwert. Es handelt sich 
also um ein Zählverfahren, wobei die Spannungsänderung dUk / dt während einer Takt-
periode einem Quantisierungsintervall entspricht.

Dieses einfache Verfahren wird in der Praxis jedoch nicht eingesetzt, denn der Säge-
zahngenerator hat durch alterungs- oder temperaturbedingte Änderungen seiner Bauele-
mente nur eine begrenzte Genauigkeit.

Praktisch eingesetzt wird das Doppelflanken- oder Dual-Slope-Verfahren. Hierbei 
wird, anders als beim Single-Slope-Verfahren, die Messgröße Ux und nicht eine Refe-
renzspannung über eine feste Zeit t1 integriert. Abb. 12.16 und 12.17 zeigen Prinzip-
schaltbild und Zeitverlauf bei einer Messung. Während der festen Messdauer t1 wird 
in einem Integrator die unbekannte Spannung Ux bis zur Endspannung Ua aufintegriert. 
Anschließend schaltet der Zähler für t1 um und die Spannung Ua wird über eine nega-
tive Referenzspannung -Uref wieder bis auf die Spannung 0 integriert. Die Zeit t2, die 
hierfür erforderlich ist, wird gemessen und ergibt den digitalen Messwert für die Span-
nung Ux.

Der Vorteil dieser Messung liegt darin, dass die Bauteile R und C für beide Integ-
rationszyklen verwendet werden. Dadurch ist die Messung unabhängig von Parame-
terschwankungen bei diesen Bauteilen. Es ist lediglich eine stabile Referenzspannung 
erforderlich, die durch Band-Gap-Dioden mit hoher Genauigkeit zur Verfügung steht.

Abb. 12.15   Blockschaltbild 
eines ADUs nach dem Single-
Slope-Verfahren
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Die Messdauer t1 kann zu einem Vielfachen der Periodendauer der 50 Hz Netzspan-
nung, also zu n · 20 ms gewählt werden. In diesem Fall haben Störungen durch die Netz-
spannung keinen Einfluss auf das Messergebnis.

Die Vorteile dieses Messverfahrens sind also:

•	 gute Störspannungsunterdrückung, da integrierendes Verfahren
•	 unabhängig von alterungs- und temperaturbedingten Änderungen der Bauelemente 

und des Taktoszillators
•	 Die Langzeitpräzision wird nur durch Uref bestimmt, die sehr präzise erzeugt werden kann
•	 erzielbare Genauigkeit: ca. 0,001 %, d. h. 15–16 bit bzw. 5 Dezimalstellen

Nachteil:

•	 Das Verfahren arbeitet relativ langsam

Die häufigste Anwendung findet dieser Umsetzertyp in Digitalvoltmetern.

12.2.7	� Sigma-Delta-Umsetzer

Ein Sigma-Delta-Umsetzer (ΣΔ-Umsetzer) kombiniert die Rückführung eines 1-Bit-
DA-Umsetzers mit einem Integrator und einer Überabtastung. Das Blockschalt-
bild Abb. 12.18 zeigt den Aufbau. Der Eingangswert Ux wird mit der Rückführung 
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Abb. 12.16   Prinzipschaltbild eines AD-Umsetzers nach dem Dual-Slope-Verfahren
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kombiniert und in einem Integrator weiterverarbeitet. Dieser Integrator ist ähnlich wie 
beim Dual-Slope-Verfahren aufgebaut. Ein Komparator ermittelt, ob das Integral posi-
tiv oder negativ ist und arbeitet daher als 1-Bit-ADU. Der ADU-Ausgang Plus ist eine 
binäre Information und geht an ein D-Flip-Flop, wo der Wert mit hoher Taktfrequenz 
abgetastet wird. Als Rückführung geht der abgetastete Vergleichswert P auf einen 1-Bit-
DA-Umsetzer, dessen Ausgang vom Eingangswert abgezogen wird.

Der Digitalausgang berechnet sich durch einen digitalen Filter aus der Folge von Ver-
gleichswerten P. Der Name Sigma-Delta bildet sich aus den Funktionselementen Integra-
tion (Sigma) und der Differenzbildung mit der Rückkopplung (Delta).

Zum Verständnis des Funktionsprinzips wird der Zeitablauf bei einer Umsetzung in 
Tab. 12.3 Schritt für Schritt erläutert. Als Messbereich wird ±1 V angenommen und auch 
der Ausgang des DAU beträgt +1 V oder − 1 V. Als Spannung am Analogeingang Ux 
soll 0,6 V gemessen werden. Für den Zeitschritt 1 wird zum besseren Verständnis die 
Rückführung weggelassen, daher ist Udig = 0 V (in der Tabelle mit 0* markiert). Eben-
falls wird angenommen, dass der Integrator mit der Spannung Uint = 0 V startet.

In den Zeitschritten erfolgen dann die folgenden Berechnungen:

1.	 Ux plus Udig ergeben 0,6 V, die im Integrator verarbeitet werden. Dieser Wert ist posi-
tiv, daher ist Plus gleich 1.

2.	 Die Rückführung nimmt den vorherigen Wert von Plus und ergibt darum Udig = 1 V. 
Dieser Wert wird von Ux abgezogen, sodass Udiff = − 0,4 V ist. Addiert zum vorherigen 
Wert des Integrators bleibt Uint = 0,2 V. Dieser Wert ist positiv, daher ist Plus gleich 1.

3.	 Die Rückführung ergibt erneut Udig = 1 V, sodass wiederum Udiff = − 0,4 V ist. Der 
Wert des Integrators wird Uint = − 0,2 V. Dieser Wert ist negativ, daher ist Plus gleich 0.

4.	 Wegen des negativen Werts im Integrator ergibt die Rückführung nun Udig = − 1 V. 
Daher ist Udiff = 1,6 V und der Wert des Integrators wird Uint = 1,4 V. Dieser Wert ist 
positiv, daher wird Plus wieder gleich 1.

5.	 Die Rückführung ergibt wieder Udig = 1 V, darum wird Udiff = − 0,4 V. Der Wert des 
Integrators wird Uint = 1 V. Dieser Wert ist positiv, daher ist Plus gleich 1.

6.	 Der weitere Zeitablauf kann aus der Tabelle abgelesen werden.

Beim Zeitablauf in Tab. 12.3 besteht die Pulsfolge am digitalen Filter aus vier Einsen 
und einer Null. Die Pulsfolge wird Tiefpass-gefiltert und ergibt einen 1-Anteil von 80 %. 
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Abb. 12.18   Blockschaltbild eines Sigma-Delta-Umsetzers
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Dieser Wert bezieht sich auf den Messbereich von ±1 V und entspricht Ux = −1 V +  
0,8 · 2 V = − 1 V + 1,6 V = 0,6 V.

Die Tabelle zeigt die Umsetzung eines konstanten Eingangswertes. Wenn sich 
Ux ändert, wird sich auch die Pulsfolge nach mehreren Schritten an den geänderten 
Eingangswert anpassen.

Der Sigma-Delta-Umsetzer versucht also mit Pulsen von +1 V und − 1 V die 
Eingangsspannung nachzubilden. Dies sind recht grobe Schritte; im Gegenzug dafür 
wird die Frequenz der Schritte sehr hoch gewählt. Der Unterschied zwischen höchster 
Frequenz des Eingangssignals und Abtastrate wird als Oversampling Ratio OSR 
bezeichnet und hierfür sind Faktoren von 100 und höher möglich. Diese Arbeitsfrequenz 
passt sehr gut zu modernen CMOS-Prozessen, die hohe Taktfrequenzen ermöglichen.

Das Messprinzip des Sigma-Delta-Umsetzers unterscheidet sich damit maßgebend 
von dem der bisher dargestellten Umsetzer. Letztere liefern bei einer Abtastrate, die 
möglichst nahe der unteren durch das Abtasttheorem erlaubten Grenze liegt, jeweils ein 
vollständiges Codewort. Der Sigma-Delta-Umsetzer liefert dagegen eine 1-Bit-Folge 
mit sehr viel höherer Frequenz. Dieses Verfahren nennt man daher auch Oversampling-
Technik. Der Sigma-Delta-Umsetzer hat gegenüber anderen Umsetzern eine Reihe von 
Vorteilen:

1.	 Er kann nahezu völlig aus digitalen Komponenten aufgebaut werden. Die Anforde-
rungen an die 1-Bit-Umsetzung sind nicht sehr hoch.

2.	 Er wirkt für das Eingangssignal wie ein Tiefpass, für das Quantisierungsfehlersignal 
jedoch wie ein Hochpass. Das Spektrum des Quantisierungsfehlersignals wird daher 
schwerpunkthaft in die Nähe der sehr hohen Abtastfrequenz verschoben. Der digital 
arbeitende Tiefpass eliminiert erhebliche Teile davon und kann so dimensioniert 
werden, dass er 50 Hz-Störungen unterdrückt.

3.	 Dem Umsetzerprinzip ist eine monotone Quantisierungskennlinie inhärent.

Tab. 12.3   Zeitablauf einer AD-Umsetzung mit Sigma-Delta-Umsetzer

Zeit
schritt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ux [in 
V]

0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6

Udig [in 
V]

0* +1 +1 −1 +1 +1 +1 +1 −1 +1 +1 +1 +1 −1 +1

Udiff 
[in V]

0,6 −0,4 −0,4 1,6 −0,4 −0,4 −0,4 −0,4 1,6 −0,4 −0,4 −0,4 −0,4 1,6 −0,4

Uint [in 
V]

0,6 0,2 −0,2 1,4 1,0 0,6 0,2 −0,2 1,4 1,0 0,6 0,2 −0,2 1,4 1,0

Plus 
[binär]

1 1 0 1 1 1 1 0 1 1 1 1 0 1 1
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4.	 Wegen der sehr hohen Abtastfrequenz kommt der Sigma-Delta-Umsetzer generell 
ohne Abtast-Halteglied aus.

5.	 Derzeit liefert dieses Verfahren die höchsten verfügbaren Auflösungen.

Den Vorteilen stehen auch einige Nachteile gegenüber:

1.	 Wegen des mittelwertbildenden digitalen Filters gibt es eine große Latenzzeit 
zwischen dem ersten Abtastwert und dem ersten Codewort. Daher eignet sich dieser 
Umsetzer nicht zum Multiplexbetrieb für mehrere Signalquellen.

2.	 Gegenüber Flash-Umsetzern arbeitet das Sigma-Delta-Verfahren langsam.

Sigma-Delta-Umsetzer nach dem Oversampling-Prinzip haben sich inzwischen mit 
Auflösungen von 16 bit in der hochwertigen Tonsignalverarbeitung etabliert. Weiterhin 
wird dieses Verfahren in der Telemetrie und zur präzisen Überwachung langsam 
veränderlicher Signale, beispielsweise bei Dehnungsmessstreifen eingesetzt.

12.3	� Verfahren zur Digital-Analog-Umsetzung

Digital-Analog-Umsetzer (DAU) dienen der Rückgewinnung des Analogsignals aus 
codierten digitalen Werten. Dabei verursacht die Zeitdiskretisierung prinzipiell keine 
Fehler, wenn das Abtasttheorem eingehalten wird. Die Wertdiskretisierung führt zu 
Quantisierungsfehlern, die systematischer Natur sind und nicht mehr eliminiert werden 
können. Durch Wahl einer hohen Auflösung können die Quantisierungsfehler jedoch sehr 
klein gehalten werden.

Bei der Umsetzung liefert der DAU Impulse endlicher Breite ts und mit der Höhe, die 
durch die Digitalwerte vorgegeben ist (Abb. 12.19). Dieses Signal ist also noch zeitdis-
kret. Durch anschließende Filterung in einem Tiefpass (Interpolator-Tiefpass) wird die-
ses Signal wieder zu einer stetigen Analogfunktion interpoliert.

Theoretisch sollte die Impulsbreite ts möglichst klein sein, um keine zusätzlichen Fre-
quenzen für das Ausgangssignal zu erzeugen. In der Realität wird jedoch aus zwei Grün-
den eine größere Impulsbreite gewählt, die meist der Periodendauer der Abtastung Tabt 
entspricht.

•	 Durch die größere Breite des Signals ist eine höhere Signalleistung vorhanden.
•	 Es ist keine Abschaltung des Signals zwischen den Ausgabewerten erforderlich.

Das resultierende Rechtecksignal ergibt eine merkliche Verzerrung des Ausgangssignals, 
denn das Spektrum des digitalen Signals wird mit dem Spektrum einer Rechteckfunktion 
der Breite Tabt multipliziert. Diese Verzerrung kann jedoch durch ein nachfolgendes 
analoges Filter wieder eliminiert werden. Die Struktur eines DAUs entspricht damit 
Abb. 12.20.
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12.3.1	� Direktverfahren

Im Direktverfahren werden die möglichen Ausgangsspannungen des n-Bit-Umsetzers in 
einem Spannungsteiler aus 2n gleichen Widerständen gebildet. Durch einen Multiplexer 
wird eine Spannung ausgewählt und an den Ausgang gegeben (Abb. 12.21). Die Schalter des 
Multiplexers sind natürlich keine mechanischen Schalter, sondern werden durch Transisto-
ren implementiert. Die Widerstandsreihe führt auch zu der englischen Bezeichnung „String 
Architecture“. Das Verfahren ähnelt dem Parallelverfahren zur AD-Umsetzung aus Abb. 12.9.

Der Vorteil dieses Verfahrens ist eine relativ gleichmäßige Schrittweite der 
Umsetzungskennlinie, denn die Toleranzen der Widerstände entsprechen der Schrittweite 
zweier Ausgabewerte. Dadurch können insbesondere keine Monotoniefehler (siehe 
Abschn. 12.4.1.6) auftreten.

Der Nachteil des Verfahrens ist der hohe Aufwand an Widerständen und Schaltern, 
insbesondere bei höheren Wortbreiten. Es gibt jedoch erweiterte Strukturen, bei denen 
nicht alle 2n Ausgangsspannungen direkt erzeugt werden, sondern eine Interpolation 
zwischen Abgriffen der Widerstandsreihe erfolgt.

12.3.2	� Summation gewichteter Ströme

Das Verfahren der Summation gewichteter Ströme basiert auf dem Prinzip, dass für 
jedes auf 1 gesetzte Bit des Dualwortes ein dem Bitgewicht entsprechender Strom 
erzeugt wird. Dann werden alle Ströme rückwirkungsfrei summiert, beispielsweise 
durch einen Operationsverstärker (OP). Für einen DAU mit n bit ergibt sich daraus die 
in Abb. 12.22 gezeigte Schaltung. Das digitale Codewort steuert die Schalter b0 bis 
bn − 1. Die Ausgangsspannung des OPs beträgt dann:

Abb. 12.19   Das 
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Impulsen endlicher Breite
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Für die Ströme gilt

Damit berechnet sich die Ausgangsspannung UDA des Umsetzers zu

Es ist ersichtlich, dass die Ausgangsspannung UDA eine Form hat, die dem vorgegebenen 
dualen Wert bis auf eine multiplikative Konstante entspricht. Die elektronischen Schalter 
können in Bipolar- oder CMOS-Technik realisiert werden.

Ein wesentlicher Nachteil der Schaltungsstruktur ist, dass sich die Widerstandswerte 
für einen n-Bit-Umsetzer um den Faktor 2n − 1 unterscheiden. Dieses ist in monolithi-
scher Technik schwer zu realisieren, da der herstellbare Wertebereich technologisch 
begrenzt ist. Außerdem sind die Anforderungen an die Präzision der kleineren Wider-
stände sehr hoch. Der kleinste Widerstand R hat den höchsten Strombeitrag und sein 
Stromfehler sollte kleiner als 1/2 Stelle des Ergebnisses sein. Das bedeutet, der Fehler 
darf nur so groß wie die Hälfte des Strombeitrags des größten Widerstands R/2n − 1 sein. 
Darum muss die Genauigkeit besser als 2 − n sein. Bei einem 12-Bit-Umsetzer benötigt 
der kleinste Widerstand also die Genauigkeit von 2 − 12 = 2,44 · 10 − 4 und dieser Wert 
ist praktisch nicht zu erreichen.

UDA = −RF(b0 · i0 + b1 · i1 + b2 · i2 + . . .+ bn−1 · in−1)
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Abb. 12.21   DA-Umsetzung im Direktverfahren
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Aus diesen Gründen werden integrierte DAUs nicht nach dem oben dargestellten 
Prinzip realisiert, sondern durch fortgesetzte Spannungsteilung in einem 
Kettenleiternetzwerk. Dieses Verfahren wird im nächsten Kapitel beschrieben.

Eingesetzt wird die Umsetzung mit Summation gewichteter Ströme bei Anwendungen 
mit geringer Wortbreite. Ein Beispiel ist die Codierung von Tasten für Mikrocontroller. 
Wenn ein Mikrocontroller durch mehrere Taster bedient werden soll, wäre prinzipiell für 
jeden Taster eine Eingangsleitung erforderlich. Stattdessen können vier bis sechs Taster 
über ein Widerstandsnetzwerk wie in Abb. 12.22 an einen einzigen Analogeingang des 
Mikrocontrollers gegeben werden, so dass Eingangsleitungen gespart werden. Der Ope-
rationsverstärker ist dabei nicht erforderlich.

12.3.3	� R-2R-Leiternetzwerk

Die Arbeitsweise dieses DA-Umsetzertyps basiert prinzipiell auf dem gleichen Ver-
fahren wie der zuvor dargestellte, denn es werden Ströme addiert, die dem Wert der 
einzelnen Dualstellen des vorgegebenen Digitalwortes entsprechen. Allerdings wer-
den hier die Ströme mit stufenweise gleichgroßen Widerständen anhand fortgesetz-
ter Spannungsteilung in einem Leiternetzwerk erzeugt. Grundelement ist dabei ein 
π-Glied, das als belasteter Spannungsteiler mit folgenden Eigenschaften betrieben 
wird:

•	 Belastet man den Spannungsteiler mit einem Abschlusswiderstand Z, so soll sein 
Eingangswiderstand ebenfalls Z sein. Das ermöglicht eine einfache Kettenschaltung 
der einzelnen Spannungsteiler.

•	 Der Teilerfaktor in jeder abgeschlossenen Teilerstufe soll entsprechend der dualen 
Abstufung 2 sein.

Diese Forderungen lassen sich mit symmetrischen Vierpolen erreichen, die mit ihrem 
Wellenwiderstand abgeschlossen sind. Eine Rechnung liefert das in Abb. 12.23 
dargestellte verlängerbare Kettenleiternetzwerk. Wegen der charakteristischen 
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Widerstandswerte wird diese Schaltung auch als R-2R-Leiternetzwerk bezeichnet. Der 
Wert für den Widerstand R kann frei gewählt werden.

Für die Verwendung als ADU wird an die Klemmen A und B eine Referenzspannung 
Uref angeschlossen. Der Spannungsteilerkette werden über Stromschalter die Einzel-
ströme gemäß dem vorliegenden Binärwort entnommen und am Summationspunkt eines 
OP rückwirkungsfrei addiert (Abb. 12.24).

Für die eingetragenen Spannungen gilt:

Damit ergeben sich die Ströme zu:

Die Stromschalter werden in Bipolar- oder CMOS-Technik realisiert. Es tritt lediglich 
das gut realisierbare Widerstandsverhältnis 2:1 auf. Ein typischer Wert für R ist 500 Ω. 
Nach diesem Prinzip arbeiten die meisten käuflichen DAUs in monolithischer und hybri-
der Technik. Außerdem ist in ADUs mit sukzessiver Approximation im Gegenkopplungs-
pfad ein DAU dieses Typs enthalten.
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Abb. 12.23   R-2R-Leiternetzwerk für einen Digital-Analog-Umsetzer
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12.3.4	� Pulsweitenmodulation

Die Pulsweitenmodulation (PWM) erzeugt eine analoge Ausgangsgröße durch schnellen 
Wechsel zwischen zwei Spannungswerten. Das Verhältnis zwischen den Zeiten für die 
Ausgangspegel bestimmt die analoge Ausgangsgröße. Abb. 12.25 zeigt den Zeitablauf 
für zwei Ausgabewerte. Das Ausgangssignal wechselt periodisch zwischen High-Pegel 
UH und Low-Pegel UL. Die Dauer des High-Pegels tH dividiert durch die Periodendauer 
TPer wird als Tastverhältnis bezeichnet.

Aus der Pulsfolge kann durch einen Tiefpass eine Mittelwertbildung erfolgen, um 
eine analoge Ausgangsspannung zu erzeugen; im einfachsten Fall reicht ein Kondensa-
tor. Die analoge Ausgangsspannung berechnet sich zu

Als Beispiel wird für den Zeitverlauf in Abb. 12.25 ein High-Pegel von 3,3 V und ein 
Low-Pegel von 0 V angenommen. Dann ergibt sich für das Tastverhältnis von 70 % die 
Ausgangsspannung 2,31 V und für 20 % die Spannung 0,66 V.

Es gibt jedoch auch Anwendungen, bei denen keine analoge Ausgangsspannung benö-
tigt wird, sondern stattdessen der angesteuerte Aktor oder der nachfolgende Sensor einen 
Mittelwert bildet.

•	 Ein Gleichstrommotor kann durch eine PWM angesteuert werden und ergibt verschie-
dene Drehgeschwindigkeiten. Die Masse der Achse und die Motorlast sorgen für die 
Mittelwertbildung.

•	 Wird eine Leuchtdiode mit einer PWM angesteuert, erscheint sie verschieden hell. 
Die LED ist abwechselnd leuchtend und nicht-leuchtend und das menschliche Auge 
sorgt für die Mittelwertbildung.

UDA = UL +
tH

TPer
(UH − UL)

R

2R

R

2R

R

2R 2R 2R

Uref i2i3 i0i1

b2 b1 b0b3

UDA

RF

0 1 Schalter-
stellung

U2 U1 U0U3=Uref

Abb. 12.24   Prinzipschaltbild eines 4-Bit-DAUs mit R-2R-Leiternetzwerk
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12.4	� Eigenschaften realer AD- und DA-Umsetzer

Reale Umsetzerbausteine sind mit Fehlern behaftet. Sie sind bauelemente-, schaltungs- 
oder prinzipbedingt und können sowohl im ADU als auch im DAU auftreten. Sie lassen 
sich in statische und dynamische Fehler unterteilen.

Die zunächst betrachteten statischen Fehler treten in ADUs und bis auf den Quan-
tisierungsfehler auch in DAUs auf. Die in den folgenden Kapiteln hierzu dargestellten 
Diagramme beziehen sich auf ADUs. Durch Spiegelung an der Einheitsgeraden erhält 
man daraus die entsprechenden Darstellungen für DAUs. Bei dynamischen Fehlern muss 
zwischen ADUs und DAUs unterschieden werden.

12.4.1	� Statische Fehler

Als statische Fehler werden solche Fehler bezeichnet, die nach dem Abklingen aller Ein-
schwingvorgänge übrig bleiben.

12.4.1.1 � Quantisierungsfehler
Die Beschränkung auf eine endliche Anzahl darstellbarer Amplitudenstufen bei der AD-
Umsetzung verursacht systematische Fehler, deren Amplitude im Allgemeinen ±0,5 · Q 
erreichen kann. Nach der DA-Umsetzung ergibt sich dadurch ein Fehlersignal, der 
Quantisierungsfehler, der rauschsignalähnlichen Charakter hat und den Signal-Rausch-
Abstand begrenzt. Der Quantisierungsfehler ist auch interpretierbar als Auswirkung der 
nichtlinearen Stufenkennlinie eines Quantisierers auf das Signal. Da in praktischen Fäl-
len die Stufen der Quantisiererkennlinie sehr klein sind, kann man auch von einer mikro-
skopischen Nichtlinearität sprechen.

Setzt man eine lineare Quantisierung, ein in jedem Quantisierungsintervall gleich ver-
teiltes Signal und einen mitten im Quantisierungsintervall Q liegenden Repräsentations-
wert voraus, beträgt die Quantisierungsgeräuschleistung (Noise) N:

N = Q2/12

Abb. 12.25   Zeitablauf für 
eine Pulsweitenmodulation 
(PWM) für die Ausgabewerte 
20 und 70 % t

u(t)
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Tastverhältnis 70%
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Als Zahlenbeispiel wird ein vollaussteuerndes Sinussignal bei einem Umsetzer mit 
m · Q ≈ 2n Quantisierungsintervallen angenommen, wobei n die Codewortbreite ist. Hier 
beträgt die Signalleistung S:

Dann beträgt der maximal erreichbare Signal-Rausch-Abstand (Signal to Noise Ratio) 
für das mit n bit digitalisierte Sinussignal

Unter den oben getroffenen Voraussetzungen ist daher mit einem 12-Bit-Umsetzer ein 
max. Rauschabstand von SNR = 74 dB erreichbar. Dieser Wert entspricht einer guten 
Signalqualität, somit kann der Quantisierungsfehler bei der Digitalisierung mit einem 
erträglichen technischen Aufwand relativ klein gehalten werden.

Für die nächsten Betrachtungen wird die Stufenkennlinie mittels einer Geraden 
durch die Quantisierungsintervallmitten ersetzt (Umsetzerkennlinie). Der ideale lineare 
AD-Umsetzer hat dann eine Umsetzerkennlinie, wie sie in Abb. 12.26 dargestellt ist. 
Verwendet man für Ein- und Ausgangsgrößen gleiche Maßstäbe, verläuft die ideale 
Kennlinie unter 45°.  Weicht ein Umsetzer von dieser Kennlinie ab, ist er fehlerhaft.

12.4.1.2 � Offsetfehler
Anschaulich gesehen liegt ein Offsetfehler (Zero Error) vor, wenn die Umsetzer-
kennlinie gegenüber der idealen Kennlinie parallelverschoben ist (Abb. 12.27, links). 
Ursache hierfür ist beispielsweise ein Offsetfehler des Eingangsverstärkers. Konkret 
entspricht dieser Fehler der Lageabweichung des ersten Übergangswerts oberhalb 
von Null von der Ideallage bei 0,5 · Q (siehe auch Abb. 12.8). Der Offsetfehler verur-
sacht einen konstanten absoluten Fehler im gesamten Aussteuerbereich und ist auf null 
abgleichbar.

Die Angabe des Offsetfehlers im Datenblatt erfolgt üblicherweise in Bruchteilen des 
Aussteuerbereichs. Der Offsetfehler hat darüber hinaus einen Temperatur-Koeffizienten, 
der nur mit großem Aufwand kompensiert werden kann.

12.4.1.3 � Verstärkungsfehler
Anschaulich gesehen liegt ein Verstärkungsfehler (Gain Error) vor, wenn die Kennlini-
ensteigung von der idealen Steigung 1 abweicht (Abb. 12.27, rechts). Er verursacht einen 
konstanten relativen Fehler im Aussteuerbereich und ist auf null abgleichbar.

Die exakte Definition des Verstärkungsfehlers ist die Abweichung der real vorliegen-
den Spannungsdifferenz zwischen dem ersten Übergangswert bei 0,5 · Q und dem letzten 
bei Umax − 1,5 · Q vom idealen Wert (siehe Abb. 12.8).

S =

(

m · Q

2 ·
√

2

)2

=
22n · Q2

8

SNR = 10 · log
S

N
= (1, 76+ 6, 02 · n)dB
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Die Angabe des Verstärkungsfehlers im Datenblatt erfolgt entweder absolut in LSB 
oder relativ in % des Aussteuerbereichs. Der Verstärkungsfehler hat einen Temperatur-
Koeffizienten, der nur mit großem Aufwand kompensiert werden kann.

12.4.1.4 � Nichtlinearität
Die Nichtlinearität (Nonlinearity) eines Umsetzers, auch Integrale Nichtlinearität (INL) 
genannt, entspricht der maximalen Kennlinienabweichung von der Geraden durch die 
Endpunkte des Diagramms.

Nach Abgleich der Offset- und Verstärkungsfehler entspricht sie der maximalen 
Abweichung von der idealen Kennlinie (Abb. 12.28). Gelegentlich wird allerdings in 
Datenblättern die Nichtlinearität auch als maximale Abweichung von der bestmöglichen 
Geraden interpretiert. Dann ist ein Offsetfehler einzustellen, damit die Nichtlinearität 
den Herstellerangaben entspricht.

Der Grund für Nichtlinearitäten sind ungleich große Quantisierungsintervalle. Die 
Nichtlinearität kann durch mehrere benachbarte Quantisierungsintervalle verursacht wer-
den, welche Abweichungen in gleicher Richtung haben. Die Angabe der Nichtlinearität 
erfolgt üblicherweise in Bruchteilen des LSB.

Abb. 12.26   Kennlinie eines 
idealen AD-Umsetzers

D
ig

ita
ls

ig
na

l

0 U*max

Id
ea

ler
 W

an
dle

r

000...0

111...1

Analogsignal

D
ig

ita
ls

ig
na

l

0 U*max

Id
ea

ler
 W

an
dle

r

000...0

111...1

Analogsignal

D
ig

ita
ls

ig
na

l

0 U*max

Id
ea

ler
 W

an
dle

r

000...0

111...1

Analogsignal

W
an

dle
r m

it 

Offs
et

fe
hle

r

W
andler m

it 

Verst
ärku

ngsfe
hler

Abb. 12.27   Kennlinien mit Offsetfehler und Verstärkungsfehler
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12.4.1.5 � Differenzielle Nichtlinearität
Als differenzielle Nichtlinearität (Differential Nonlinearity) bezeichnet man die 
Abweichung der Breite eines Quantisierungsintervalls vom Idealwert Q. Dabei 
bezieht man sich auf dasjenige Quantisierungsintervall mit der größten Abweichung 
(Abb. 12.29).

Die Angabe im Datenblatt erfolgt üblicherweise in Bruchteilen eines LSB. Ist die dif-
ferenzielle Nichtlinearität im Datenblatt beispielsweise mit ±0,5 LSB angegeben, müs-
sen alle Quantisierungsintervalle im Bereich 1 LSB ± 0,5 LSB liegen. Eine Sonderform 
der differenziellen Nichtlinearität liegt vor, wenn einzelne Codeworte fehlen (Missing 
Code). In diesem Falle beträgt sie 1 LSB.

12.4.1.6 � Monotoniefehler
Ein Umsetzer hält die Monotonität (Monotonicity) ein, wenn die Umsetzerkennlinie für 
steigende Eingangswerte stufenweise monoton ansteigt. Hinreichende Bedingung für 
Monotonität ist, dass die Nichtlinearität kleiner als 2 LSB bleibt. Eine Kennlinie, die 
diese Bedingung nicht einhält, ist in Abb. 12.30 gezeigt.

12.4.1.7 � Betriebsspannungsabhängigkeit der Umsetzerparameter
Die Ausgangsgrößen von Umsetzern sind auch von der Betriebsspannung abhängig. 
In den Datenblättern wird diese Eigenschaft als Power Supply Sensitivity (bzw. Power 
Supply Rejection) bezeichnet. Die Angabe erfolgt als „prozentuale Änderung der 
Ausgangsgrößen“ dividiert durch „prozentuale Änderung der Betriebsspannung“. In 
der Regel bezieht sie sich auf Tracking-Netzteile, bei denen die beiden Spannungen 
unterschiedlicher Polarität sich nur symmetrisch ändern können. Eine Verwendung 
getrennter Netzteile für positive und negative Betriebsspannung wirkt sich in dieser 
Beziehung nachteilig aus.

Abb. 12.28   Integrale 
Nichtlinearität
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12.4.2	� Dynamische Fehler

Dynamische Fehler an Umsetzern treten auf, wenn diese unter nichtstatischen Bedingun-
gen, insbesondere in der Nähe ihrer maximalen Geschwindigkeit, betrieben werden. Sie 
lassen sich aus den statischen Fehlerkenndaten in der Regel nicht gewinnen.

Dabei muss stets das gesamte System betrachtet werden, das heißt auch das Abtast-
halteglied bei ADUs sowie Analogverstärker am Eingang von ADUs und am Ausgang 
von DAUs tragen zur Systemcharakteristik bei. Sie können die dynamischen Umsetzerei-
genschaften wegen ihrer Einschwingcharakteristik deutlich einschränken.

Die wichtigsten heute weiterhin üblichen Kenndaten zur Beschreibung des dynami-
schen Verhaltens von ADUs sind der Signal-Rausch-Abstand, die Effektive Auflösung, 
die Harmonischen Verzerrungen und das Histogramm. Sie werden in den folgenden 
Kapiteln dargestellt. Ihre Messung erfolgt auf digitaler Ebene mit schnellen Rechnern 
und, bis auf das Histogramm, anhand der Fast-Fourier-Transformation (FFT). Daher 
werden für die Charakterisierung keine Präzisions-DAUs benötigt. Eine für DAUs wich-
tige dynamische Kenngröße ist die Glitch-Fläche.

Abb. 12.29   Differenzielle 
Nichtlinearität
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12.4.2.1 � Einschwingzeit
Die Einschwingzeit (Acquisition Time) eines DAUs ist die Zeit, die nötig ist, damit sich 
die Spannung bzw. der Strom bei einem Sprung über den gesamten Aussteuerbereich in 
einen Toleranzschlauch zurückzieht, der die Breite eines LSB hat und symmetrisch zum 
stationären Endwert liegt (Abb. 12.31). Die Einschwingzeit setzt sich aus Verzögerungs-, 
Anstiegs- und Überschwingzeit zusammen. Erst nach Verstreichen der Einschwingzeit 
entsprechen die Messwerte der geforderten Genauigkeit. Die Überschwingzeit wird auch 
als Settling Time bezeichnet.

12.4.2.2 � Signal-Rausch-Abstand und Effektive Auflösung
Das Verhältnis der Leistung S eines den ADU vollkommen aussteuernden Sinussignals 
zur Quantisierungsgeräuschleistung N entspricht dem Signal-Rausch-Abstand SNR (Sig-
nal to Noise Ratio):

Für eine praxisgerechte Größe müssen neben den Quantisierungsfehlern alle weiteren 
Fehler D (Distortion) bei der Umsetzung berücksichtigt werden. D ist die Leistung der 
weiteren Verzerrungen, die durch nichtideales Verhalten der Bauelemente entstehen. Die 
daraus resultierende Kenngröße wird als SINAD (SIgnal to Noise And Distortion ratio) 
bezeichnet und wird durch Messungen ermittelt:

Der Signal-Rausch-Abstand eines idealen ADUs berücksichtigt nur die Quantisierungs-
fehler und errechnet sich zu (siehe Abschn. 12.4.1):

Für einen idealen ADU mit einer Auflösung von n = 12 bit ergibt sich daraus ein Wert 
von SNR = 74 dB.

Reale Umsetzer liefern kleinere Werte, die darüber hinaus mit steigender 
Signalfrequenz abnehmen. Die Darstellung des über die FFT gemessenen SINAD über 

SNR = 10 log
S

N
dB

SINAD = 10 log
S

N + D
dB

SNR = (1, 76+ 6, 02 · n)dB

t

s(t) Stationärer Endwert
Endwert + ½ LSB

Endwert - ½ LSB

Einschwingzeit

Verzöge-
rungszeit

Anstiegs-
zeit

Überschwing-
zeit

Abb. 12.31   Definition der Einschwingzeit (Acquisition Time) eines DAU oder Abtast-Haltegliedes
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der Signalfrequenz wird daher zur Beurteilung der dynamischen Qualität eines ADUs 
herangezogen.

Benutzt man die gemessenen SINAD-Werte, setzt sie in die obige Beziehung ein und 
stellt diese nach n um, gewinnt man als äquivalentes Qualitätskriterium die effektive 
Auflösung n′ (Effective Number Of Bits, ENOB) gemäß:

Ein realer ADU mit der Auflösung von n bit entspricht also in seinem dynamischen 
Verhalten einem fiktiven idealen ADU mit der Auflösung von n′ bit, wobei n’ kleiner 
als n ist. Der Wert von n’ ist abhängig von der Frequenz des gemessenen Signals und 
nimmt für höhere Frequenzen ab. Ein typischer Verlauf der effektiven Auflösung ist in 
Abb. 12.32 dargestellt.

12.4.2.3 � Harmonische Verzerrungen
Zur Bestimmung der Harmonischen Verzerrungen THD (Total Harmonic Distortion) 
werden bezüglich der Anzahl verwendeter Oberwellen unterschiedliche Definitionen 
benutzt. Sie reichen von 2 bis zur Gesamtzahl aller messbaren Oberwellen. Die Firma 
Analog Devices benutzt zum Beispiel 5 Oberwellen. Damit ergibt sich die Total Harmo-
nic Distortion zu:

Dabei entspricht U0 dem Effektivwert der Grundwelle und Ui ist der Effektivwert der 
i-ten Oberwelle.

12.4.2.4 � Histogramm
Das Histogramm gestattet Aussagen darüber, wie sich bei einem ADU unter dynamischer 
Belastung Integrale und Differenzielle Nichtlinearitäten verhalten. Dazu wird der ADU 
mit einem vollaussteuernden Eingangssignal konstanter Verteilungsdichte gespeist und in 
einem Digitalrechner die Häufigkeitsverteilung der einzelnen Codeworte durch Zählung 
ermittelt. Wird ein anderes Testsignal (z. B. Sinus) verwendet, kann die Abweichung von 
einer konstanten Verteilungsdichte rechnerisch kompensiert werden.

n′ =
SINAD− 1, 76dB

6, 02dB

THD = 10 · log
U2
1 + U2

2 + U2
3 + U2

4 + U2
5

U2
0

dB

Abb. 12.32   Prinzipieller 
Verlauf der effektiven 
Auflösung n′ in bit über der 
Frequenz für einen realen 
n-Bit-ADU
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Die grafische Darstellung der relativen Häufigkeiten H über den Codeworten ist das 
Histogramm (diskrete Verteilungsdichte). Ein Prinzipbeispiel zeigt Abb. 12.33.

Für einen in dieser Hinsicht idealen ADU gilt H = konstant. Nichtideale Umsetzer 
weichen hiervon ab. Zeigt das Histogramm etwa benachbarte Spitzen oder Einbrüche, 
sind das Hinweise auf Differenzielle Nichtlinearitäten. Fehlt eine Linie völlig, ist das 
zugehörige Codewort nicht ansprechbar (Missing Code).

12.4.2.5 � Glitch-Fläche
Die dynamischen Eigenschaften speziell von DAUs können durch die Einschwingzeit 
nicht hinreichend beschrieben werden. Abhängig von Toleranzen der elektronischen 
Stromschalter können nämlich am Ausgang kurzzeitig sehr hohe Störimpulse, soge-
nannte Glitches, auftreten.

Als Beispiel wird betrachtet, dass sich der Eingangscode eines 8-Bit-DAU von 
0111 1111 auf 1000 0000 ändert. Alle elektronischen Stromschalter am Leiternetzwerk 
werden in diesem Falle umgeschaltet. In der Realität geschieht dieses jedoch nicht 
exakt gleichzeitig. Es wird angenommen, dass der Schalter für das MSB schneller 
als die anderen schaltet. Dann wird kurzzeitig der Zwischencode 1111 1111 
angenommen. Dieses führt am Ausgang zu einem Störimpuls, dessen Höhe dem halben 
Aussteuerbereich nahekommt, obwohl der Wert sich eigentlich nur um 1 LSB ändern 
soll.

Im Datenblatt wird diese Größe durch das Integral über die Glitch-Funktion, also die 
Glitch-Fläche, zum Beispiel in der Einheit nVs bei spezifiziertem Messmodus angege-
ben. Dieser Wert sollte möglichst klein sein.

Einige Hersteller sehen einstellbare Korrekturschaltungen zur Minimierung der 
Glitch-Fläche vor. Glitches können auch vermieden werden, indem der Ausgang des 
DAUs nach Abklingen der Einschwingvorgänge durch Track-and-Hold-Glieder abge-
tastet und bis zur nächsten Umsetzung konstant gehalten wird. Teilweise sind derar-
tige Deglitch-Einrichtungen bereits in den DAUs enthalten. Allerdings vergrößert sich 
dadurch die Gesamteinschwingzeit des Umsetzers.

Abb. 12.33   Prinzipielle 
Darstellung eines Histogramms 
H für einen ADU mit 
4096 darstellbaren Stufen, 
entsprechend 12 Bit

Codewort

H ideal

40950

...

...
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12.5	� Ansteuerung von diskreten AD- und DA-Umsetzern

Analog-Digital- und Digital-Analog-Umsetzer können als Teil eines größeren ASICs 
implementiert werden. Ein ASIC mit analogen und digitalen Schaltungsteilen wird als 
Mixed-Signal-ASIC bezeichnet. Beispiele hierfür sind:

•	 Ein Controller für einen LCD-Monitor nimmt Videosignale aus der analogen VGA-
Schnittstelle entgegen. Sie werden dann digital verarbeitet, also, wenn erforderlich, 
auf Bildschirmgröße skaliert, mit On-Screen-Display überlagert und dann an das 
eigentliche Display weitergegeben.

•	 Ein ASIC für einen USB-Musik-Player liest digitale Daten aus einem NVRAM und 
decodiert sie aus dem komprimierten Format. Die digitalen Signale werden dann auf 
dem ASIC in analoge Signale umgesetzt und ausgegeben.

•	 Mikrocontroller enthalten oft Analog-Digital-Umsetzer, um analoge Informationen 
direkt verarbeiten zu können.

Oftmals werden allerdings auch rein digitale ASICs verwendet und eine AD- und DA-
Umsetzung in diskreten Bausteinen implementiert. Die Aufteilung eines Systems in 
Digital-ASIC und diskrete Umsetzer hat insbesondere folgende Vorteile:

•	 Es ist eine Vielzahl von diskreten ADUs und DAUs verfügbar, die eine Wahl bezüg-
lich Geschwindigkeit, Genauigkeit und Preis ermöglichen.

•	 Die digitale Verarbeitung in einem Mixed-Signal-ASIC kann den analogen Schal-
tungsteil stören und die Qualität der Umsetzung einschränken.

•	 Ein Mixed-Signal-ASIC ist aufwendiger als ein Digital-ASIC und daher teurer.
•	 Der Zugang zu Mixed-Signal-Fertigungstechnik ist schlechter verfügbar. Außerdem 

müssen im Entwicklerteam ausreichende Kompetenzen für analoge Schaltungstechnik 
vorhanden werden.

•	 Bei FPGAs gibt es kaum Bausteine mit AD- oder DA-Umsetzen.

In diesem Abschnitt wird erläutert, wie diskrete AD- und DA-Umsetzer angesteuert wer-
den. Dabei werden serielle und parallele Ansteuerung verwendet.

12.5.1	� Serielle Ansteuerung

Die serielle Ansteuerung diskreter Umsetzer hat den Vorteil, dass nur wenige Leitun-
gen benötigt werden. Die Taktgeschwindigkeit normaler Signalleitungen liegt meist im 
Bereich von 10 bis 100 MHz. Für einen Datenwert sind, je nach Protokoll und Auflö-
sung, 10 bis 20 Bit erforderlich. Eine serielle Ansteuerung ist also für Abtastraten im 
Bereich von kHz bis wenige MHz geeignet.
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Als Beispiel für Umsetzer mit serieller Ansteuerung werden die Bausteine MCP3201 
und MCP4921 von der Firma Microchip betrachtet. Sie verwenden das Serial Peripheral 
Interface (SPI), welches auch in Kapitel 11 für ein FRAM mit seriellem Interface 
verwendet wurde.

12.5.1.1 � AD-Umsetzer MCP3201
Der Baustein MCP3201 ist ein Analog-Digital-Umsetzer mit 12 bit Auflösung und einer 
Abtastrate von 100 kHz bei 5 V Betriebsspannung und 50 kHz bei 2,7 V Betriebsspan-
nung. Die Umsetzung erfolgt mit dem Wägeverfahren und sukzessiver Approximation 
(SAR). Der Baustein benötigt lediglich acht Pins und ist damit sehr kompakt. Seine 
Anschlüsse sind:

•	 IN+ und IN-, analoge Eingänge
•	 DOUT, Datenausgang
•	 CLK, Takteingang
•	 /CS, Chip-Select und Shutdown
•	 VREF, Referenzspannung
•	 VDD und VSS, Versorgungsspannung und Masse

Anmerkung: Im Datenblatt werden für Datenausgang und Takt die Bezeichnungen 
DOUT und CLK verwendet. Um die Beschreibung allgemein zu halten, werden hier die 
SPI-Bezeichnungen SDO und SCK verwendet.

Der Baustein ermittelt die Differenz zwischen den beiden analogen Eingänge IN+ 
und IN−. Dabei gibt es jedoch die Einschränkung, dass IN− nur um ±100 mV vom 
Massepegel abweichen darf, sodass kein vollständiger differenzieller Eingang vorhanden 
ist. Die getrennten Spannungsversorgungen VDD und VREF ermöglichen die Verwen-
dung einer besonders stabilisierten Referenzspannung.

Die Ansteuerung und Datenübertragung ist in Abb. 12.34 dargestellt. Eine 
AD-Umsetzung wird durch Wechsel des Eingangs /CS von 1 auf 0 gestartet. Von 
der nächsten fallenden Flanke an SCK wird für eineinhalb Taktzyklen der analoge 
Eingangswert im Abtast-Halte-Glied (AHG) erfasst. Die Taktfrequenz an SCK darf 
1,6 MHz betragen, so dass eine Sample-Zeit tsample von etwa 1 µs möglich ist. Mit den 
nächsten Takten an SCK erfolgt dann die Umsetzung in sukzessiver Approximation und 
es werden nacheinander eine 0 sowie die Stellen des ermittelten Wertes ausgegeben. In 
der sukzessiven Approximation wird zuerst das höchstwertige Bit (MSB) ermittelt und 
darum wird dieses Bit auch zuerst ausgegeben. Nach zwölf Takten ist die Umsetzung 
beendet (tu) und es ist noch ein weiterer Takt für die Ausgabe des LSB erforderlich 
(tdata). Weitere Takte sind erlaubt; eine neue AD-Umsetzung wird jedoch erst durch eine 
fallende Flanke an /CS gestartet.

Die Ansteuerung kann direkt durch die SPI-Schnittstelle eines Mikrocontrollers 
erfolgen. Dazu werden Steuerbefehle gegeben, die zwei Byte einlesen. Die 

http://dx.doi.org/10.1007/978-3-662-49731-9_11
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SPI-Schnittstelle erzeugt damit 16 Flanken an SCK und liest 16 Bit Daten. Aus diesen 
16 Bit werden die gültigen 12 Bit der AD-Umsetzung extrahiert.

12.5.1.2 � DA-Umsetzer MCP4921
Der Baustein MCP4921 ist ein Digital-Analog-Umsetzer mit 12 bit Auflösung und exter-
ner Referenzspannung. Er arbeitet im Direktverfahren. Es gibt verwandte Produkte mit 
10 und 8 bit Auflösung, mit zusätzlicher interner Referenzspannung sowie mit zwei Aus-
gängen. Genau wie der zuvor betrachtete MCP3201 hat auch der MCP4921 acht Pins 
und ist sehr kompakt. Seine Anschlüsse sind:

•	 VOUT, analoger Ausgang
•	 SDI, Dateneingang
•	 SCK, Takteingang
•	 /CS, Chip-Select
•	 /LDAC, Übernahmesignal für Daten (Latch DAC, Verwendung optional)
•	 VREF, Referenzspannung
•	 VDD und VSS, Versorgungsspannung und Masse

Anmerkung: Hier werden im Datenblatt schon die SPI-Bezeichnungen verwendet.
Die Ansteuerung des Bausteins zeigt Abb. 12.35. Mit /CS auf 0 wird der Datentransfer 

begonnen. Dann werden für einen analogen Ausgabewert 16 Bit im SPI-Protokoll 
übertragen. Das erste Übertragungsbit ist 0, danach kommen drei Steuerbits (werden im 
nächsten Absatz erläutert) und darauf die 12 Bits, welche als Analogwert ausgegeben 
werden sollen. Nach der Übertragung wird durch Setzen von /LDAC auf 0 der 
Analogwert am Ausgang VOUT aktualisiert. Durch diese Steuerleitung können mehrere 
DAUs zeitgleich ihre Ausgabe ändern. Falls keine Synchronisation durch /LDAC 
benötigt wird, kann dieser Wert konstant auf 0 gelegt werden und der Ausgang wird nach 
der Datenübertragung automatisch aktualisiert.

Bei der Übertragung werden drei Steuerbits angegeben, die folgende Bedeutung 
haben. In Abb. 12.35 werden zur besseren Übersichtlichkeit die ersten Buchstaben B, G, 
S angegeben.

•	 BUF: Die Referenzspannung kann gepuffert werden, was zu höherer Eingangsimpe-
danz bei leichten Einschränkungen in der Umsetzungsqualität führt.

Abb. 12.34   Ansteuerung und 
Datenübertragung des ADUs 
MCP3201 von Microchip 0123456891011
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•	 /GA (Gain): Es ist ein Ausgabeverstärker vorhanden, für den der Faktor 1 oder 2 
gewählt werden kann.

•	 /SHDN (Shutdown): Der Analogausgang kann zur Verringerung der Verlustleistung 
abgeschaltet werden.

12.5.2	� Parallele Ansteuerung

Für höhere Datenraten ist eine Datenübertragung über SPI nicht mehr möglich. Eine 
Geschwindigkeitssteigerung kann über parallele Datenleitungen erfolgen.

12.5.2.1 � AD-Umsetzer AD9200 mit einfachem Parallelausgang
Der Baustein AD9200 ist ein Pipeline-Analog-Digital-Umsetzer von Analog Devices mit 
10 bit Auflösung und einer Abtastrate von 20 MHz. Es sind zwei Gehäuse mit 28 und 48 
Pins verfügbar. Die digitale Schnittstelle besteht aus den Anschlüssen:

•	 D9 bis D0, Datenausgang mit 10 bit Wortbreite
•	 OTR, Out-of-Range Indicator
•	 STBY, Standby, setzt den AD-Umsetzer in den Ruhezustand
•	 THREE-STATE, schaltet die Ausgangsleitungen ab
•	 CLK, als Takt für die interne Operation des Umsetzers sowie für den Datenausgang

Dieses Dateninterface ist sehr einfach. Bei jedem Takt wird ein Datenwort mit 10 Bit 
ausgegeben. Der Out-of-Range Indicator gibt an, wenn die Eingangswerte außerhalb des 
Messbereichs liegen. Der Datenausgang wird dann auf den kleinsten oder größten Wert 
limitiert. In Verbindung mit dem MSB des Datenausgangs kann unterschieden werden, 
ob ein Überlauf oder ein Unterlauf auftritt.

12.5.2.2 � AD-Umsetzer AD9467 mit differenziellem Parallelausgang
Bei höheren Taktgeschwindigkeiten wird ab etwa 100 MHz die Datenübertragung 
auf einer Platine störanfällig. Für bessere Übertragungseigenschaften werden dann 
differenzielle Leitungen eingesetzt. Dies bedeutet, ein Ausgang verwendet nicht mehr 
eine einzelne Leitung, sondern zwei Leitungen, die entgegengesetzte Spannungspegel 

Abb. 12.35   Ansteuerung 
des DAUs MCP4921 von 
Microchip 0123456891011
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einnehmen. Diese werden durch ‚+‘ und ‚−‘ gekennzeichnet, das heißt beispielsweise 
der Takt CLK wird auf den Leitungen CLK+ und CLK− übertragen.

Durch die differenzielle Übertragung kann der Spannungshub zwischen Low- und 
High-Pegel deutlich verringert werden, denn Störungen betreffen immer beide Leitun-
gen. Aufgrund des geringeren Spannungshubs sind dann auch höhere Taktfrequenzen 
möglich. Die differenzielle Übertragung wird als LVDS (Low Voltage Differential Signa-
ling) bezeichnet.

Der Baustein AD9467 ist ein Pipeline-Analog-Digital-Umsetzer von Analog Devices 
mit 16 bit Auflösung und einer Abtastrate bis zu 250 MHz. Das Gehäuse hat 72 Pins und 
die digitale Schnittstelle besteht aus einem parallelen LVDS-Datenausgang und einem 
seriellen Steuereingang.

Der parallele LVDS-Datenausgang arbeitet mit Double-Data-Rate (DDR), einer 
Technik, die bereits in Kapitel 11 in Zusammenhang mit DDR-SDRAMs vorgestellt 
wurde. Das heißt, es werden pro Taktzyklus nacheinander zwei Bit auf einer Daten-
leitung ausgegeben. Diese Datenleitung ist dann in zwei Polaritäten vorhanden, also 
als ‚+‘ und ‚−‘. Die Datenleitungen für beispielsweise die Bits 15 und 14 werden als 
D15+/D14+ und D15−/D14− bezeichnet. Der Datenausgang hat insgesamt die folgen-
den Anschlüsse:

•	 D15+/D14+ und D15−/D14− bis D1+/D0+ und D1−/D0−, Datenausgang mit 8 
bit LVDS-Werten auf 16 Leitungen

•	 OTR+ und OTR−, Out-of-Range Indicator (2 Leitungen)
•	 CLK+ und CLK−, Takteingang (2 Leitungen)
•	 DCO+ und DCO−, Taktausgang (2 Leitungen)

Der Zeitablauf von Datenerfassung und -ausgabe ist in Abb. 12.36 dargestellt. Die stei-
gende Flanke am Takteingang CLK+ bestimmt die Abtastzeitpunkte des analogen Ein-
gangssignals. Der Datenausgang hat ein eigenes Taktsignal DCO, mit dem die Datenbits 
von der nachfolgenden Schaltung übernommen werden müssen.

Die Umsetzung des analogen Eingangswerts benötigt aufgrund des Pipeline-Verfah-
rens 16 Takte, sodass der Ausgangswert erst nach dieser Latenzzeit ausgegeben wird. 
Während der Umsetzung werden weitere Daten erfasst und jeweils nach der Latenzzeit 
von 16 Takten ausgegeben. Die Latenzzeit entspricht der Wortbreite des ADUs von 16 bit.

Der vergrößerte Ausschnitt in Abb. 12.36 zeigt den Zeitablauf bei der Datenausgabe. 
Mit der steigenden Flanke von DCO+ wird Bit 15 für den Abtastwert N-16 ausgege-
ben (Bezeichnung: D15N − 16). Mit der fallenden Flanke an DCO+ folgt einen halben 
Takt später Bit 14 für diesen Abtastwert. Im darauffolgenden Takt folgen die Daten für 
Abtastwert N-15. Parallel liegen auf den anderen 7 LVDS-Leitungen die weiteren Bits des 
Datenworts an.

Außerdem enthält der Baustein AD9467 einen seriellen Steuereingang mit SPI-
Protokoll (vergleiche Abb. 12.34). Hierüber können Konfigurationsregister geschrieben 

http://dx.doi.org/10.1007/978-3-662-49731-9_11
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und gelesen werden. Diese Konfiguration betrifft analoges und digitales Verhalten, 
beispielsweise:

•	 Justierung des Spannungsmessbereichs
•	 Wahl des Datenformats zwischen dual, 2er-Komplement und Gray-Code
•	 Ausgabe vordefinierter Daten zu Testzwecken

12.5.3	� Serielle Hochgeschwindigkeitsschnittstelle JESD204B

Die im vorherigen Abschnitt vorgestellte parallele Schnittstelle benötigt 20 Leitungen, 
die auf einer Platine paarweise parallel geführt müssen und zudem die gleichen Länge 
haben sollen. Eine Alternative zu dieser aufwendigen Verbindung ist die serielle Hoch-
geschwindigkeitsschnittstelle JESD204B, welche von der Standardisierungsorganisation 
JEDEC (Joint Electron Device Engineering Council) definiert wird.

Ein wesentliches Problem bei hohen Übertragungsgeschwindigkeiten auf der Platine 
ist nicht unbedingt die Geschwindigkeit des Datensignals sondern die Synchronisierung 
von Daten und Takt. Aus diesem Grund wird beim, im vorherigen Abschnitt beschrie-
benen, parallelen Interface des AD9467 der Takt zusammen mit den Daten ausgegeben, 
damit diese möglichst die gleiche Laufzeit haben. Noch höhere Taktraten sind möglich, 
wenn der Empfänger den Takt aus den empfangenen Daten rekonstruieren kann. Dieses 
Prinzip wird für die JESD204B-Übertragung genutzt.

CLK+
CLK–

DCO+
DCO–

D15+/D14+
D15–/D14–

D1+/D0+
D1–/D0–

Analoge 
Spannung

N-1 N
N+1

N+2 N+3 N+4

D15N-16 D14N-16 D15N-15 D14N-15

D1N-16 D1N-16 D0N-15 D0N-15

... ... ...

... ... ...

D14 D15 D14 D15 D14 D15 D14 D15 D14 D15 D14

D0 D1 D0 D1 D0 D1 D0 D1 D0 D1 D0

D15

D1

Abtastzeitpunkt

N-18 N-17 N-16 N-15 N-14 N-13

Abtastzeitpunkt des 
Ausgabewerts

Datenbit 15 des 
Abtastzeitpunkts N-16

Abb. 12.36   Datenerfassung und LVDS-Datenausgang des ADUs AD9467
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Für die Taktrekonstruktion muss sichergestellt sein, dass die Daten genügend Takt-
flanken besitzen. Wird beispielsweise der Wert 0 mit 0000 0000 codiert und mehrfach 
nacheinander ausgegeben, kann der Empfangsbaustein hieraus keinen Takt erkennen. Als 
Lösung dieses Problems wird ein spezieller Code mit redundanter Wortlänge verwen-
det. Dazu werden die 8 Bit eines Byte mit 10 Stellen codiert. Von den 1024 möglichen 
Codewörtern werden nur solche verwendet, bei denen mindestens alle 5 Takte eine Sig-
nalflanke auftritt. Damit ist sichergestellt, dass der Takt aus den Daten zurückgewonnen 
werden kann. Der entsprechende Code wird als 8b/10b-Code bezeichnet und auch für 
andere Anwendungen in der Kommunikationstechnik verwendet.

Der Baustein ADC32J45 von Texas Instruments ist ein ADU mit JESD204B-
Schnittstelle. Er hat zwei Analogeingänge und setzt diese mit einer Abtastrate von 
160 MHz und 14 bit Genauigkeit um. Für die Konfiguration des Bausteins ist zusätzlich 
ein SPI-Port vorhanden.

Abb. 12.37 zeigt die wichtigsten Signale des JESD204B-Datenausgangs in 
vereinfachter Darstellung. Der Baustein erhält vom Signalverarbeitungs-ASIC den Takt 
CLK und das Steuersignal SYNC, beide als differentielles LVDS-Signal. Vom ADU 
gehen zwei LVDS-Signale DA und DB mit den Daten der beiden Analogeingänge an 
das Signalverarbeitungs-ASIC. Die Datenübertragung erfolgt im 8b/10b-Format mit 
10-facher Geschwindigkeit des Taktsignals. Bei positivem und bei negativem Pegel von 
CLK wird jeweils ein Byte und somit pro Taktzyklus die 14 Bit des Messwertes und 
2 ungenutzte Bits übertragen.

Mit dem Steuersignal SYNC wird am Beginn einer Übertragung der Empfangstakt 
im Signalverarbeitungs-ASIC synchronisiert. Ist SYNC+ gleich 0 sendet der ADU ein 
festes Steuerwort. Sobald dieses Steuerwort mehrfach korrekt erkannt wurde, ist die 
Taktsynchronisierung erfolgt und SYNC+ wird auf 1 gesetzt. Danach sendet der ADU 
noch Steuerworte zur sogenannten Framesynchronisierung und dann folgen die Daten 
der AD-Umsetzung.

Für die Synchronisierung und Decodierung des 8b/10b-Codes ist im 
Signalverarbeitungs-ASIC ein entsprechendes Schaltungsmodul erforderlich. Für FPGAs 
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Abb. 12.37   Vereinfachter Zeitablauf am Datenausgang des ADUs ADC32J45 mit 
JESD204B-Schnittstelle
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werden von den Herstellern JESD204B-Interfaces angeboten, welche die Verwendung 
dieser Schnittstelle vereinfachen.

12.6	� Übungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Prüfen Sie sich mit den Aufgaben und 
Fragen am Kapitelende. Die Lösungen und Antworten finden Sie am Ende des Buches.

Aufgabe 12.1
Ordnen Sie den AD-Umsetzern jeweils die passende Kurzbeschreibung zu.

a)	 Dual-Slope-Verfahren
b)	Parallelverfahren
c)	 Sigma-Delta-Umsetzer
d)	Wägeverfahren

1.	 Gleichzeitiger Vergleich mit 2n − 1 Komparatoren
2.	 Integration von Referenzspannung und Messspannung
3.	 Hohe Überabtastung des Eingangswertes und 1-Bit-Umsetzung
4.	 Schrittweise Bestimmung der einzelnen Bits

Aufgabe 12.2
Ordnen Sie den DA-Umsetzern jeweils die passende Kurzbeschreibung zu.

a)	 Pulsweitenmodulation
b)	Summation gewichteter Ströme
c)	 Direktverfahren
d)	R-2R-Leiternetzwerk

1.	 Verwendung von 2n gleichen Widerständen
2.	 Verwendung von einer Widerstandskette mit Widerständen gleicher Größenordnung
3.	 Verwendung von Widerständen mit den Werten R, R/2, R/4, R/8, R/16, R/32, …
4.	 Mittelwertbildung aus zwei Spannungswerten

Aufgabe 12.3
Ein ADU hat einen Aussteuerbereich Umax von 3 V und eine Wortbreite von n = 10 bit.

a)	 Wie groß ist die Quantisierungsintervallbreite Q?
b)	Wie groß ist der höchste codierbare Spannungswert?
c)	 Welche Codierung ergibt sich für die Spannung 1,2 V?
d)	Am Ausgang wird der Code 00 0100 1011 ausgegeben. In welchem Bereich ist der 

Spannungswert?
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Aufgabe 12.4
Ein ADU im Wägeverfahren hat einen Aussteuerbereich Umax von 2 V und eine Wort-
breite von n = 8 bit.

a)	 Wie groß ist die Quantisierungsintervallbreite Q?
b)	Am Eingang liegt die Spannung 0,7 V an. Geben Sie die Schritte der AD-Umsetzung 

an. Welche Codierung ergibt sich für die Spannung?

Aufgabe 12.5
Ein Sigma-Delta-Umsetzer hat einen Messbereich von ±1 V und der Analogeingang Ux 
beträgt − 0,2 V.

a)	 Geben Sie den Zeitverlauf einer AD-Umsetzung an. Nehmen Sie an, dass im ersten 
Zeitschritt die Rückführung Udig = 0 V ist und dass der Integrator mit der Spannung 
Uint = 0 V startet (Tab. 12.4).

b)	 Interpretieren Sie die Ausgabewerte.

Aufgabe 12.6
Ein PWM-Ausgang hat den in Abb. 12.38 dargestellten Zeitverlauf. Welche Ausgangs-
spannung wird durch das Signal erzeugt?

Tab. 12.4   Zeitablauf für Übungsaufgabe zum Sigma-Delta-Umsetzer

Zeit
schritt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ux  
[in V]

−0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2

Udig  
[in V]

0

Udiff  
[in V]

Uint  
[in V]

Plus 
[binär]

Abb. 12.38   Zeitablauf der 
Pulsweitenmodulation (PWM)

t
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Mikroprozessoren und Mikrocontroller sind komplexe, hochintegrierte digitale Schalt-
kreise, auf deren Basis leistungsfähige Rechnersysteme realisiert werden.

Einer der wichtigsten Meilensteine auf dem Weg zu modernen Rechnersystemen war 
die kommerzielle Realisierung des ersten integrierten Mikroprozessors. Zu Anfang der 
1970er Jahre gelang dies der Firma Intel. Im Jahr 1977 schloss sich die Einführung von 
Mikrocontrollern an, die ein gesamtes Rechnersystem mit Prozessor, Speicher und wei-
teren Komponenten auf einem einzelnen Chip integrieren. In den folgenden Jahren setzte 
eine stürmische Entwicklung im Bereich der Mikroprozessortechnik ein, die insbeson-
dere durch die fortschreitende Integrationsdichte digitaler Schaltkreise unterstützt wurde. 
Heute sind Rechnersysteme, die auf Mikroprozessoren oder Mikrocontrollern basieren, 
integraler Bestandteil des täglichen Lebens geworden. Sie werden als PCs realisiert und 
unterstützen den Anwender zum Beispiel bei der Büroarbeit oder dem Recherchieren im 
Internet. Auch in Mobiltelefonen, Digitalkameras, Geräten der Unterhaltungselektronik 
oder in Hausgeräten, Kraftfahrzeugen und industriellen Anlagen arbeitet eine Vielzahl 
von digitalen Rechnersystemen.

Im Rahmen dieses Kapitels werden die wesentlichen Grundlagen der Mikroprozessor-
technik beschrieben. Sie bilden die Basis für das Verständnis von konkreten Rechnern, 
wie zum Beispiel der in Kapitel 14 vorgestellten Mikrocontroller.

13.1	� Grundstruktur eines Mikrorechnersystems

Mikrorechner sind digitale Systeme, deren Aufgabe es ist, Daten zu verarbeiten. Diese 
Aufgabe zerfällt in drei grundlegende Schritte, die von einem Mikrorechnersystem aus-
geführt werden müssen: Dateneingabe, Datenverarbeitung und Datenausgabe. Die Steu-
erung dieser Schritte wird durch ein Programm festgelegt, welches die Reihenfolge der 
benötigten Verarbeitungsschritte festlegt.

Grundlagen der Mikroprozessortechnik 13
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In der Regel müssen mehrere eingelesene Daten miteinander verknüpft werden, um 
einen Ausgabewert zu berechnen. Hieraus ergibt sich zwangsläufig, dass die Möglichkeit 
bestehen muss, Eingabewerte oder auch Zwischenergebnisse speichern zu können, die 
sich während der Verarbeitung ergeben.

Aus diesen grundlegenden Betrachtungen können die wesentlichen Komponenten 
eines Mikrorechnersystems abgeleitet werden: Es werden Eingabe- und Ausgabekom-
ponenten, Speicher und mindestens eine Verarbeitungseinheit benötigt. Ein Rechnersys-
tem auf Basis dieser Komponenten wurde in den 1940er Jahren von John von Neumann 
beschrieben und ist als sogenannte Von-Neumann-Architektur bekannt geworden.

Auch heutige Rechnersysteme, vom PC bis hin zu Mikrorechnersystemen, welche 
zum Beispiel die Steuerung Ihrer Waschmaschine übernehmen, können als eine spezielle 
Implementierung der Von-Neumann-Architektur aufgefasst werden (Abb. 13.1).

Eine Von-Neumann-Architektur besteht aus drei wesentlichen Komponenten: Die 
Ein-/Ausgabe-Einheit dient dem Datenaustausch mit externen Komponenten wie Tasta-
turen, Anzeigen oder auch Sensoren und Aktuatoren.

Die zentrale Verarbeitungseinheit (engl. Central Processing Unit, CPU) dient der 
eigentlichen Verarbeitung der Daten. Sie besteht aus einem Steuerwerk, einem Rechen-
werk und Registern. Die zentrale Aufgabe des Steuerwerks ist die Interpretation der 
Befehle des auszuführenden Programms und die zugehörige Ablaufsteuerung innerhalb 
der CPU, während das Rechenwerk (engl. Arithmetic Logical Unit, ALU) logische und 
arithmetische Operationen ausführt. Die Operanden und Ergebnisse der Operationen 
werden in den CPU-internen Registern, die auch als Arbeitsregister bezeichnet werden, 
abgelegt.

Die dritte Komponente einer Von-Neumann-Architektur ist der Speicher, in welchem 
sowohl die Befehle des Programms als auch Daten abgelegt werden.

Für die Verbindung der einzelnen Komponenten eines Rechnersystems werden in der 
Regel sogenannte Busse eingesetzt. Busse können als die logische Zusammenfassung 
einzelner Signalleitungen verstanden werden, wobei diese Leitungen zusammengehö-
rende Informationen übertragen. Die in einem Mikrorechnersystem verwendeten Busse 
können grob in drei verschiedene Typen eingeteilt werden:

Der Adressbus dient zur Auswahl einer Komponente mit der die CPU Daten 
austauschen möchte. Dies kann zum Beispiel eine Speicherstelle innerhalb des Speichers 

Abb. 13.1   Blockschaltbild 
eines Rechners auf Basis der 
Von-Neumann-Architektur

Rechenwerk
(ALU)

Steuerwerk

Ein-/Ausgabe

CPU

Register

Speicher



399

sein. Da die einzelnen Speicherstellen unterschiedliche Adressen besitzen, kann anhand 
der Adresse das angesprochene Speicherelement ausgewählt werden.

Die Daten selbst werden über den Datenbus übertragen. Die Daten können hierbei 
sowohl von der CPU an die Speicher- und Ein-/Ausgabe-Komponenten als auch von die-
sen Komponenten an die CPU gesendet werden.

Neben den Leitungen für den Datentransfer und den Adressleitungen wird ein Steu-
erbus benötigt. Der Steuerbus übermittelt alle Informationen, die neben Daten und 
Adressen an die einzelnen Komponenten des Systems übertragen werden müssen. Ein 
Beispiel für eine solche Information ist, ob von der ausgewählten Adresse Daten gele-
sen werden sollen, oder ob die Daten, die von der CPU auf den Datenbus gelegt worden 
sind, geschrieben werden sollen. Weiterhin kann der Steuerbus beispielsweise zur Über-
tragung eines Taktsignals zur Systemsynchronisation oder zur Übermittlung von Fehler-
codes verwendet werden.

Ein exemplarisches Blockschaltbild eines einfachen Mikrorechnersystems mit einem 
unidirektionalen Adressbus und einem bidirektionalen Datenbus ist in Abb. 13.2 darge-
stellt. Dieses System besitzt zwei verschiedene Speicher. Ein Flashspeicher dient der 
Aufnahme von Daten, die auch nach dem Abschalten der Versorgungsspannung erhal-
ten bleiben sollen. Wird in diesem Speicher das Programm abgelegt, steht es direkt 
nach dem Einschalten zur Verfügung und kann sofort ausgeführt werden. Darüber hin-
aus können im Flashspeicher Konstanten abgelegt werden, die für die Ausführung des 
Programms benötigt werden. Da sich die Variablen eines Programms während der Pro-
grammlaufzeit häufig ändern, ist es nicht sinnvoll, Variablen ebenfalls in einem Flash-
speicher abzulegen, da das häufige Beschreiben des Flashspeichers eine frühe Alterung 
des Speichers nach sich ziehen würde. Daher ist in dem Beispielsystem ein RAM-Spei-
cher vorgesehen, der zur Speicherung von Variablen verwendet wird.

Neben den Speichern besitzt das System Eingabe- und Ausgabekomponenten. Die CPU 
kann mit den Komponenten des Systems kommunizieren, indem die entsprechende Adresse 

Abb. 13.2   Blockschaltbild eines einfachen Mikrorechnersystems

13.1  Grundstruktur eines Mikrorechnersystems
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der jeweils ausgewählten Komponente auf den Adressbus gelegt wird. Da die Adressen von 
dem Programm, welches von der CPU ausgeführt wird, berechnet werden müssen, ist es 
für die Programmierung des Systems von wesentlicher Bedeutung, die Adressen zu kennen, 
unter denen die Systemkomponenten angesprochen werden. Diese Adressen werden häufig 
in grafischer Form als eine sogenannte Address Map zur Verfügung gestellt.

Eine mögliche Address Map für das gezeigte Beispielsystem ist in Abb. 13.3 links 
dargestellt. Die Auswahl zwischen Speicher und Ein-/Ausgabeeinheiten wird in diesem 
Fall nur durch die auf dem Adressbus anliegende Adresse durchgeführt. Adressen im 
Bereich von 0x0000 bis 0x5FFF adressieren die Speicherelemente des Systems, während 
mit Adressen im Bereich 0xC000 bis 0xFFFF auf Eingabe- und Ausgabekomponenten 
zugegriffen werden kann. Man spricht in diesem Fall auch davon, dass sich der Speicher 
und die Ein-/Ausgabeeinheiten „einen gemeinsamen Adressraum teilen“. Der Fachbe-
griff für diesen Ansatz lautet Memory-Mapped-I/O.

Als Alternative können auch getrennte Adressräume für Speicher und Ein-/Ausgabe-
komponenten verwendet werden. In diesem Fall spricht man von Port Mapped I/O. Eine 
mögliche Adressierung der Systemkomponenten des Beispielsystems ist in Abb. 13.3 
rechts angegeben. Die Adressierung der Systemkomponenten erfolgt nun mithilfe der 
Adresse und der zusätzlichen Information, ob ein Speicherzugriff oder ein Zugriff auf 
die Ein-/Ausgabe erfolgen soll. Letztere wird den Komponenten mithilfe des Steuerbus-
ses zur Verfügung gestellt.

Beide Ansätze werden für Rechnersysteme in der Praxis verwendet. Ein gemeinsa-
mer Adressraum vereinfacht die Programmierung, was dem Programmierer oder rech-
nergestützten Werkzeugen wie Compilern zugute kommt. Auf der anderen Seite kann bei 
Verwendung von zwei getrennten Adressräumen unter Umständen eine Beschleunigung 
des Zugriffs auf Ein-/Ausgabekomponenten erfolgen, was sich positiv auf die Rechenzeit 
eines Programms auswirken kann.

0x0000

0x4000

Flash

SRAM

Eingabe

Ausgabe

Flash

SRAM

0x0000

0x4000

0x6000

0xC000

0xE000

ungenutzt

Eingabe

Ausgabe

ungenutzt ungenutzt

b) Port-Mapped I/Oa) Memory-Mapped I/O

Abb. 13.3   Mögliche Address Maps für das Beispielsystem
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13.2	� Befehlsabarbeitung in einem Mikroprozessor

Die Befehle eines Programms werden in binärer Form im Programmspeicher abgelegt. 
Jeder Befehl enthält Informationen über die auszuführende Operation, die benötigten 
Operanden und wo Ergebnisse des Befehls abgespeichert werden sollen. Für die Abar-
beitung eines Befehls ist es erforderlich, die binär codierten Befehle zunächst in der CPU 
zu decodieren. Im Anschluss hieran werden die benötigten Operanden dem Rechenwerk 
der CPU zugeführt. Das Rechenwerk führt dann die im Befehl codierte arithmetische 
oder logische Operation aus und speichert das Ergebnis ab. Somit sind fünf Schritte für 
die Ausführung eines Befehls erforderlich:

1.	 Befehl aus dem Programmspeicher holen und in die CPU übertragen
2.	 Befehl decodieren, die Operanden bestimmen und die auszuführende Operation aus 

dem Befehlswort extrahieren
3.	 Werte der Operanden bestimmen, zum Beispiel Werte aus dem Datenspeicher in die 

CPU übertragen
4.	 Operation mithilfe des Rechenwerks ausführen
5.	 Ergebnis der Operation abspeichern

Die Steuerung des Ablaufes dieser Schritte wird vom Steuerwerk der CPU übernommen. 
Grundsätzlich kann das Steuerwerk als ein endlicher Automat aufgefasst werden, der die 
benötigten Arbeitsschritte zur Ausführung eines Befehls sequenziell durchläuft. In der 
Praxis wird das Steuerwerk eines Mikroprozessors häufig nicht als ein einzelner Mealy- 
oder Moore-Automat realisiert, sondern besteht aus einer hierarchischen Anordnung 
mehrerer Automaten. Mikroprozessoren sind im Allgemeinen synchrone Systeme, deren 
interne Abläufe durch ein zentrales Taktsignal synchronisiert werden. Im einfachsten Fall 
werden die einzelnen Schritte der Befehlsabarbeitung in jeweils einem Taktzyklus ausge-
führt. Somit würde die Abarbeitung eines einzelnen Befehls gemäß den oben dargestell-
ten Schritten jeweils 5 Taktzyklen benötigen.

Bei realen Mikroprozessoren kann die Anzahl der benötigten Taktzyklen zur Aus-
führung sowohl von Prozessor zu Prozessor als auch für die einzelnen Befehle eines 
Prozessors unterschiedlich sein. Ein Grund für dieses Verhalten ist in den technologi-
schen Randbedingungen zu suchen, die für die Herstellung eines Prozessors gelten. So 
kann beispielsweise ein Zugriff auf den Programmspeicher im Vergleich zu den ande-
ren Verarbeitungsschritten deutlich mehr Zeit in Anspruch nehmen. In diesem Fall wäre 
es denkbar, dass der erste Schritt, also der Zugriff auf den Programmspeicher, in einem 
Taktzyklus ausgeführt wird, während die weiteren Schritte zusammengefasst in einem 
weiteren Taktzyklus durchgeführt werden. In diesem Fall würde die Abarbeitung eines 
Befehls also lediglich zwei Taktzyklen benötigen.

Darüber hinaus ist es denkbar, dass einzelne Befehle komplexere Verarbeitungs-
schritte benötigen als andere Befehle des gleichen Prozessors. Es kann sein, dass für 
die Übertragung der Operanden einzelner Befehle eine aufwendige Berechnung der 

13.2  Befehlsabarbeitung in einem Mikroprozessor
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Speicheradresse erforderlich ist, für die mehrere Taktzyklen benötigt werden. Andere 
Befehle kommen dagegen mit weniger komplexen Berechnungen aus und werden in kür-
zerer Zeit ausgeführt.

13.3	� Typische Befehlsklassen

Bei dem Entwurf eines Mikroprozessors kommt der Frage, welche Befehle zur Ver-
fügung gestellt werden sollen, eine zentrale Bedeutung zu. Hierbei existieren viele 
Freiheitsgrade. So gibt es nicht einen ultimativen Satz von Befehlen, der von allen Pro-
zessoren gleichermaßen unterstützt wird. Vielmehr besitzt jeder Prozessor einen eige-
nen Befehlssatz, der mit Rücksicht auf unterschiedliche Kriterien wie CPU-Kosten, 
Speicherbedarf für Programme, Rechenleistung etc. entworfen worden ist. Auch wenn 
der Befehlssatz eines Prozessors also nicht allgemeingültig angegeben werden kann, so 
lassen sich dennoch Gemeinsamkeiten der Befehlssätze erkennen.

Für einen typischen Prozessor können die Befehle in Befehlsklassen zusammengefasst 
werden, die im Folgenden kurz vorgestellt werden.

13.3.1	� Aufbau eines Befehlswortes

Ein Programm besteht aus einzelnen Befehlsworten, die nacheinander ausgeführt wer-
den. Mit jedem Befehlswort wird dem Prozessor mitgeteilt, welcher Teilschritt als nächs-
tes auszuführen ist. Dies kann zum Beispiel eine arithmetische Operation oder auch 
der Sprung an eine andere Stelle im Programm sein. Das Befehlswort besteht aus einer 
definierten Anzahl von Nullen und Einsen, die vom Steuerwerk des Prozessors interpre-
tiert werden. Sowohl die Wortbreite der einzelnen Befehle als auch die Bedeutung der in 
einem Befehlswort vorhandenen Bits können bei der Definition eines Instruktionssatzes 
frei gewählt werden.

Um die Decodierung eines Befehls durch das Steuerwerk zu vereinfachen, benut-
zen viele Prozessoren Befehlsworte, deren Bits zu Feldern zusammengefasst sind. 
Eines dieser Felder gibt dann zum Beispiel die auszuführende Operation (zum Beispiel 
„Addition“ oder „Sprung“) an. Die weiteren Bits stellen ergänzende Informationen zur 
Verfügung. So muss beispielsweise bei einem arithmetischen Befehl angegeben wer-
den, aus welchen Arbeitsregistern die Operanden geholt werden sollen und in welchem 
Arbeitsregister das Ergebnis abgelegt werden muss.

Betrachten wir zur Verdeutlichung einen Prozessor, dessen Befehle 32 Bit umfassen, 
und schauen uns eine mögliche Codierung eines Additions- und eines Sprungbefehls 
an: Um eine ausreichend große Anzahl an unterschiedlichen Befehlen zu ermöglichen 
wird die auszuführende Operation mit 6 Bit codiert. Um beispielsweise 32 verschiedene 
Arbeitsregister auswählen zu können, werden pro Register 5 Bit benötigt. Für eine Addi-
tion müssen drei Arbeitsregister ausgewählt werden (zwei für die Summanden und eines 
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für die Aufnahme des Ergebnisses). Damit werden für diesen Befehl 21 Bit belegt. Die 
verbleibenden 11 Bit können einen beliebigen Wert besitzen.

Möchte man dagegen eine Addition mit einem Registerwert und einer Konstanten 
durchführen, wird diese Konstante häufig mit im Befehlswort abgelegt. Da hierbei ein 
Register weniger ausgewählt werden muss (ein Summand ist ja die Konstante), werden 
also für die Operation und die Registerauswahl 16 Bit benötigt und es verbleiben 16 Bit 
für die Konstante, die gegebenenfalls mithilfe einer Vorzeichenerweiterung (vgl. Kapitel 2) 
auch auf eine größere Wortbreite erweitert werden kann.

Bei einem Sprungbefehl ist es ausreichend die Operation Sprung mit 6 Bit zu kenn-
zeichnen. Die verbleibenden 26 Bit geben dann das Sprungziel (die Adresse des nächsten 
Befehls) an.

In Abb. 13.4 ist ein möglicher Aufbau des Befehlswortes für die drei hier diskutierten 
Beispiele dargestellt.

13.3.2	� Arithmetische und logische Befehle

Die Aufgabe eines Mikroprozessors besteht darin, Daten mithilfe von mathematischen 
Operationen zu verknüpfen. Für die meisten der hierzu benötigten Grundoperationen 
wird ein entsprechender Befehl zur Verfügung gestellt. Ein typischer Prozessor besitzt 
arithmetische Befehle, die zum Beispiel die Negierung eines Operanden und die 

Abb. 13.4   Beispiele für 
den Aufbau eines 32-Bit-
Befehlswortes

Op

Addition von zwei Arbeitsregistern

Re Ro1 ungenutztRo2

01116212631

Op

Addition eines Arbeitsregisters mit einer Konstanten

Re Ro1 16-Bit-Konstante

016212631

Op

Sprung

26-Bit-Sprungziel

02631

Op: Operation

Re: Ergebnisregister

Ro: Operandenregister
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Addition oder Subtraktion zweier Operanden unterstützen. Darüber hinaus werden 
logische Befehle unterstützt, welche die bitweise UND-, ODER, und Exklusiv-ODER-
Verknüpfung oder das bitweise Rechts- oder Links-Schieben durchführen.

Der Implementierungsaufwand eines Rechenwerkes für diese Operationen ist relativ 
gering. Daher werden diese Operationen von allen Prozessoren unterstützt. Ein Befehl 
zur Multiplikation oder Division erfordert dagegen einen höheren Aufwand für die Rea-
lisierung des Rechenwerks und ist daher nicht in allen CPUs enthalten. Fehlt die Hard-
wareunterstützung für eine arithmetische Operation, müssen diese Funktionen durch 
eine Folge von mehreren Befehlen, im Fall der Multiplikation beispielsweise durch 
Additions- und Schiebeoperationen, implementiert werden.

Ein weiterer wichtiger Faktor im Hinblick auf den Implementierungsaufwand des 
Rechenwerks ist die Wortbreite der Operationen. Einfache Prozessoren besitzen häu-
fig Rechenwerke mit einer Wortbreite von 8 bit. Viele Prozessoren mit einer mittleren 
Rechenleistung verwenden in der Regel Rechenwerke mit einer Wortbreite von 32 bit. 
Hochleistungsprozessoren, wie sie zum Beispiel in PCs eingesetzt werden, besitzen 
dagegen Rechenwerke, welche die Verarbeitung von Operanden mit einer Wortbreite von 
128 bit und mehr ermöglichen.

Werden in einem Programm häufig Gleitkommavariablen verwendet, ist es wün-
schenswert, dass die zugehörigen arithmetischen Grundoperationen mithilfe eines ein-
zelnen Befehls ausgeführt werden können. Hierzu wird innerhalb des Rechenwerkes eine 
Einheit zur Ausführung von Operationen mit ganzzahligen Operanden (Integer-Unit) und 
eine Einheit zur Ausführung von Gleitkommaoperationen (Floating-Point-Unit) imple-
mentiert. Der hiermit verbundene Realisierungsaufwand ist bei vielen Prozessoren des 
unteren bis mittleren Kostenbereichs häufig nicht kommerziell sinnvoll. Aus diesem 
Grund werden Gleitkommaeinheiten in Mikroprozessoren dieses Segmentes in der Regel 
nicht eingesetzt. In diesem Fall müssen Gleitkommaoperationen durch eine Folge von 
Ganzzahloperationen realisiert werden, wodurch die Rechenzeit des Programms ansteigt.

13.3.3	� Transferbefehle

Sollen zwei Daten, die im Speicher des Systems abgelegt sind, zum Beispiel durch Addi-
tion miteinander verknüpft werden, ist dies bei typischen Mikroprozessoren nicht mit-
hilfe eines einzelnen Befehls durchführbar. Vielmehr muss zunächst ein Operand aus 
dem Speicher des Systems in einen Zwischenspeicher innerhalb der CPU kopiert wer-
den. Im Anschluss daran kann mithilfe eines weiteren Befehls die eigentliche Addition 
der Daten erfolgen.

Daneben ist es häufig auch erforderlich, Daten zum Beispiel aus einer Eingabeein-
heit in den Speicher des Systems zu kopieren, ohne die Daten hierbei zu modifizieren. 
Für beide Fälle stellen Prozessoren Datentransferbefehle zur Verfügung, mit denen Daten 
zwischen Speicher und CPU oder Eingabe- oder Ausgabeeinheiten und CPU ausge-
tauscht werden können. Die unterschiedlichen Befehle zum Kopieren von Daten können 
unter dem Begriff Transferbefehle zusammengefasst werden.
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13.3.4	� Befehle zur Programmablaufsteuerung

Ist ein arithmetischer Befehl oder ein Transferbefehl von der CPU ausgeführt worden, 
wird die Programmausführung mit dem nächsten im Programmspeicher abgelegten 
Befehl fortgesetzt. Die Möglichkeiten zum Erstellen von Programmen sind jedoch allein 
mit Transferbefehlen oder arithmetischen Befehlen sehr eingeschränkt. Selbst einfache 
Programme benötigen die Möglichkeit, Befehle wiederholt auszuführen (Schleifen) oder 
einzelne Programmteile unter bestimmten Bedingungen zu überspringen (bedingte Ver-
zweigungen). Um diese Programmkonstrukte zu unterstützen, stellen Mikroprozessoren 
Befehle zur Steuerung des Programmablaufs zur Verfügung. Die zu dieser Gruppe zäh-
lenden Befehle umfassen:

Unbedingte Sprungbefehle
Nach Ausführung eines unbedingten Sprungbefehls wird die Ausführung des Programms 
an einer durch den Befehl spezifizierten Adresse im Programmspeicher fortgesetzt und 
es wird an eine andere Position im Programmspeicher „gesprungen“.

Bedingte Sprungbefehle
Bedingte Sprungbefehle führen, den Sprung nur aus, wenn eine im Befehl angegebene 
Bedingung erfüllt ist. Ist die Bedingung dagegen nicht erfüllt, wird das Programm mit 
dem nachfolgenden Befehl fortgesetzt.

Als Bedingungen können Informationen herangezogen werden, die sich aus der Aus-
führung vorangegangener Befehle ergeben. So kann zum Beispiel eine Programmver-
zweigung erfolgen, falls das Ergebnis der vorangegangenen Operation Null ist. Ebenso 
kann eine Verzweigung ausgeführt werden, falls das Ergebnis des zuvor ausgeführten 
Befehls negativ ist oder ein arithmetischer Überlauf aufgetreten ist.

Unterprogrammaufrufe
Nach dem Ende eines Unterprogramms muss zur aufrufenden Position im Programm 
zurückgekehrt werden. Die CPU muss beim Aufruf eines Unterprogramms also die aktu-
elle Befehlsadresse zwischenspeichern.

Ein Befehl zum Aufruf eines Unterprogramms besitzt daher die Funktionalität eines 
unbedingten Sprungs. Zusätzlich wird bei der Ausführung des Befehls die aktuelle Pro-
grammspeicheradresse gesichert. Auch für das Beenden eines Unterprogramms wird ein 
besonderer Befehl verwendet. Dieser Befehl sorgt dafür, dass das Programm an der beim 
Aufruf des Unterprogramms gespeicherten Programmspeicherposition fortgesetzt wird.

13.3.5	� Spezialbefehle

Viele Mikroprozessoren stellen Befehle zur Verfügung, die nicht einer der zuvor dis-
kutierten Befehlsklassen zugeordnet werden können. Ein Befehl dieser Klasse ist der 

13.3  Typische Befehlsklassen
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NOP-Befehl (engl. no operation), der lediglich einen Befehlszyklus ausführt, hierbei 
jedoch weder Daten transportiert noch Daten in irgendeiner Weise verändert. Dieser auf 
den ersten Blick wenig sinnvoll erscheinende Befehl kann zum Beispiel für die Reali-
sierung einfacher Warteschleifen eingesetzt werden. Weiterhin besitzen viele Mikropro-
zessoren spezielle Befehle, die auf den jeweiligen Prozessor zugeschnitten sind und sich 
nicht in allen typischen Prozessoren wiederfinden lassen.

13.4	� Adressierung von Daten und Befehlen

Für die Ausführung einer Operation mithilfe des Rechenwerks müssen zunächst die 
benötigten Operanden bestimmt werden. Dies bedeutet, dass der auszuführende Befehl 
Informationen darüber enthalten muss, ob ein Operand zum Beispiel im Datenspeicher 
des Systems zu finden ist und mit welcher Berechnungsvorschrift die Speicheradresse 
des Operanden aus den im Befehl enthaltenen Informationen bestimmt werden soll. Die 
von einem Mikroprozessor für die Adressierung zur Verfügung gestellten Berechnungs-
vorschriften werden in der Regel als Adressierungsarten bezeichnet. In diesem Abschnitt 
werden typische Adressierungsarten vorgestellt. Zur Vereinfachung bezieht sich die 
Darstellung auf den Zugriff der Operanden eines Befehls. Die hier vorgestellten Adres-
sierungsarten können, mit Ausnahme der unmittelbaren Adressierung, ebenso für die 
Adressierung beim Abspeichern des Ergebnisses eines Befehls verwendet werden.

13.4.1	� Unmittelbare Adressierung

Die einfachste Adressierungsart ist die unmittelbare Adressierung. In diesem Fall wird 
der Wert des zu verarbeitenden Operanden direkt als Teil des Befehls angegeben. Da 
der Wert des Operanden somit Teil des ausgeführten Programms ist und sich während 
der Programmlaufzeit nicht ändert, wird diese Adressierungsart häufig für Konstanten 
verwendet.

Abb. 13.5 verdeutlicht die unmittelbare Adressierung, bei dem sich der Operand 
direkt aus einem Teil des Befehlswortes ergibt. Das aus dem Programmspeicher gele-
sene Befehlswort ist hierbei abstrakt dargestellt. Insbesondere wurde auf die genauere 
Darstellung der für die Adressierung irrelevanten Teile des Befehlswortes, wie zum Bei-
spiel die auszuführende Operation, verzichtet. Diese Teile des Befehlswortes sind dunk-
ler dargestellt.

Abb. 13.5   Unmittelbare 
Adressierung

Befehlswort

Operand zum
Rechenwerk
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13.4.2	� Absolute Adressierung

Im Fall der absoluten Adressierung ist ebenfalls eine Konstante im Befehlswort abgelegt. 
Diese wird jedoch anders als im Fall der unmittelbaren Adressierung nicht als Operand 
sondern als Adresse interpretiert.

Dementsprechend wird diese Konstante auf dem Adressbus ausgegeben. Der adres-
sierte Wert wird aus dem Datenspeicher beziehungsweise einer Ein-/Ausgabekompo-
nente ausgelesen und dem Rechenwerk als Operand zugeführt (Abb. 13.6).

13.4.3	� Indirekte Adressierung

Die indirekte Adressierung kann als eine Erweiterung der absoluten Adressierung aufge-
fasst werden. Die im Befehlswort codierte Konstante wird ebenfalls als Registerauswahl 
interpretiert. Der in dem ausgewählten Register liegende Wert wird als Adresse verwen-
det wird.

In Abb. 13.7 ist das Grundprinzip der indirekten Adressierung dargestellt.
Die indirekte Adressierung kann auch mit einer Modifikation des verwendeten 

Registers kombiniert werden. Dies ist sinnvoll, wenn ein Prozessor auf mehrere aufei-
nanderfolgende Adressen zugreifen soll. In der Regel ist die Adressmodifikation auf das 
Inkrementieren (Erhöhung des Wertes um 1) und Dekrementieren (Verringern um 1) 
beschränkt. Da die Modifikation des Adressspeichers automatisch mit der Ausführung 
des zugehörigen Befehls stattfindet, spricht man auch von indirekter Adressierung mit 
Auto-Inkrement beziehungsweise Auto-Dekrement.

Bei der Ausführung eines Befehls, der die indirekte Adressierung mit Auto-Inkrement 
beziehungsweise -Dekrement verwendet, wird einerseits der Datenspeicher adressiert 
und andererseits ein Registerwert modifiziert. Die Reihenfolge dieser beiden Schritte 

Abb. 13.6   Absolute (direkte) 
Adressierung

Adresse Operandauswahl Rechenwerk
zum

Befehlswort

Register

Register Datenspeicher

Abb. 13.7   Indirekte Adressierung
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ist theoretisch beliebig wählbar. So könnte bei Verwendung eines Befehls mit Auto-
Inkrement zunächst das Register inkrementiert werden. Der so erhaltene Wert könnte 
anschließend zur Adressierung des Operanden verwendet werden. Ebenso ist es denkbar, 
dass der aus dem Register ausgelesene Wert direkt zur Adressierung verwendet und erst 
anschließend inkrementiert wird. Der erste Fall wird als Pre-Inkrement, der zweite Fall 
als Post-Inkrement bezeichnet. Analog kann die indirekte Adressierung ebenso sowohl 
mit Pre-Dekrement als auch Post-Dekrement implementiert werden. Abb. 13.8 und 13.9 
stellen die indirekte Adressierung mit Post-Inkrement und Pre-Dekrement schematisch 
dar.

Als eine weitere Variante der indirekten Adressierung setzen Mikroprozessoren viel-
fach die indirekte Adressierung mit Verschiebung ein. Bei Verwendung dieser Adressie-
rungsart ergibt sich die Adresse des Operanden aus der Summe des aus dem Registerwert 
und eines Offsetwertes der als Konstante im Befehlswort abgelegt ist. Der so berechnete 
Wert wird lediglich zur Adressierung verwendet. Eine Veränderung des Adressspeichers, 
wie sie bei der indirekten Adressierung mit Auto-Inkrement beziehungsweise Auto-
Dekrement erfolgt, findet hierbei nicht statt.

Darüber hinaus kann der Offset, der bei der indirekten Adressierung verwendet 
wird, auch in einem zur Laufzeit des Programms veränderbaren Indexspeicher abgelegt 
werden. In diesem Fall enthält das Befehlswort neben der Registerauswahl auch eine 
Adresse des Indexspeichers. Beide Speicher werden bei der Ausführung des Befehls aus-
gelesen. Die Summe der beiden ausgelesenen Werte ergibt die Adresse des Operanden, 
der dem Rechenwerk zugeführt wird. Diese Adressierungsart wird auch als indirekt indi-
zierte Adressierung oder kurz indizierte Adressierung bezeichnet (Abb. 13.10).

Adresse

Operand

Befehlswort

Register
auswahl

zum
Rechenwerk

+1

Register Datenspeicher

Abb. 13.8   Indirekte Adressierung mit Post-Inkrement

 

Adresse

Operand

Befehlswort

Register
auswahl

zum
Rechenwerk

-1

Register Datenspeicher

Abb. 13.9   Indirekte Adressierung mit Pre-Dekrement
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13.4.4	� Indirekte Adressierung mit dem Stackpointer

Eine der wichtigsten Anwendungen der indirekten Adressierung ist die Realisierung 
eines Stapelspeichers (engl. Stack). Bei Verwendung eines Stapelspeichers ist die Adres-
sierung der Daten eingeschränkt. Es gibt zu einem Zeitpunkt immer nur eine Position 
innerhalb des Speichers, die gelesen oder beschrieben werden kann. Diese Eigenschaft 
ist vergleichbar mit einem Papierstapel, auf dem nur ein neues Blatt oben auf dem Sta-
pel abgelegt werden kann oder nur das oberste Blatt entfernt werden kann. Durch diese 
Analogie wird eine weitere wichtige Eigenschaft des Stapelspeichers deutlich: Bei einem 
Lesezugriff wird der jeweils zuletzt geschriebene Wert vom Stapelspeicher gelesen, 
genauso wie das zuletzt abgelegte Blatt als erstes von einem Papierstapel entfernt wer-
den würde.

Diese Eigenschaft des Stapelspeichers lässt sich besonders gut für Unterprogramm-
aufrufe nutzen, bei denen die aktuelle Befehlsadresse zwischengespeichert werden muss. 
Wird bei dem Aufruf eines Unterprogramms die aktuelle Befehlsadresse auf einem Sta-
pelspeicher abgelegt, sind auch Unterprogrammaufrufe innerhalb eines Unterprogramms 
einfach realisierbar. Beim Verlassen des zuletzt aufgerufenen Unterprogramms wird die 
zuletzt abgespeicherte Programmspeicheradresse vom Stapelspeicher entfernt, und die 
Programmausführung wird mit dem aufrufenden Unterprogramm fortgesetzt. Die Ver-
schachtelungstiefe von Unterprogrammen ist somit lediglich durch die maximale Größe 
des Stapelspeichers begrenzt.

Die Funktion eines Stacks lässt sich auf verschiedene Weisen realisieren. Für einen 
typischen Prozessor wird meist eine Variante bevorzugt, bei der die auf dem Stack abge-
speicherten Werte im Datenspeicher abgelegt werden. Darüber hinaus wird die aktuelle 
Schreib-/Leseposition in einem besonderen Register der CPU, dem Stapelzeiger (engl. 
Stackpointer), abgelegt.

Üblicherweise verweist der Stackpointer auf die Speicherstelle, die beim nächsten 
Schreibzugriff überschrieben wird. Ein Schreibzugriff führt darüber hinaus zum Dekre-
mentieren des Stackpointers. Wiederholte Schreibzugriffe würden also zum Beschreiben 
des Datenspeichers an niedrigeren Adressen führen. Dieses Verhalten wird häufig auch 
mit der Aussage „der Stack wächst nach unten“ umschrieben. Für die Implementierung 

Offset Adresse Operand
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Register Datenspeicher

Abb. 13.10   Indirekte Adressierung mit Verschiebung

13.4  Adressierung von Daten und Befehlen
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eines Stapelspeichers mithilfe eines Stapelzeigers kann die indirekte Adressierung mit 
Auto-Inkrement beziehungsweise Auto-Dekrement eingesetzt werden. Ein Schreibzu-
griff erfolgt dann mithilfe einer indirekten Adressierung mit Post-Dekrement, während 
ein Lesezugriff die indirekte Adressierung mit Pre-Inkrement verwendet.

13.4.5	� Befehlsadressierung

Für die Adressierung der abzuarbeitenden Befehle verwendet ein Mikroprozessor ein 
besonderes Register, den sogenannten Programmzähler (Program Counter, PC). Der PC 
wird vom Steuerwerk der CPU normalerweise mit der Abarbeitung eines Befehls inkre-
mentiert, sodass automatisch der jeweils nachfolgende Befehl im Programmspeicher 
adressiert wird. Wird dagegen ein Sprungbefehl ausgeführt, muss die Adressierung des 
Programmspeichers entsprechend modifiziert werden. Hierzu werden von den meisten 
Mikroprozessoren eine absolute Adressierung, eine relative Adressierung und eine indi-
rekte Adressierung zur Verfügung gestellt. Zur Unterscheidung zwischen Datenadressie-
rung und Befehlsadressierung werden diese Adressierungsarten auch als PC-absolute, 
PC-relative oder PC-indirekte Adressierung bezeichnet.

Im Fall der absoluten Adressierung wird der Programmzähler mit einer im Sprungbe-
fehl angegebenen Konstanten geladen. Die Programmausführung wird somit an der Posi-
tion fortgesetzt, die durch die Konstante festgelegt ist.

Die relative Adressierung verwendet ebenfalls eine im Befehlswort abgelegte Kons-
tante. Die Summe aus dieser Konstanten und dem aktuellen PC ergibt den neuen Pro-
grammzähler. Während die absolute Adressierung also einen Befehl ausführt, der sich 
mit „springe zu Programmspeicheradresse XYZ“ umschreiben lässt, führt die PC-rela-
tive Adressierung einen Befehl aus, der mit „springe um XYZ Programmspeicheradres-
sen“ beschrieben werden kann.

Im Fall der PC-indirekten Adressierung wird der neue Wert des PCs, ähnlich der 
indirekten Datenadressierung, aus einem Adressspeicher ausgelesen und in den Pro-
grammzähler übertragen. Die auszulesende Position des Adressspeichers wird hierbei als 
Konstante im Befehlswort angegeben.

13.5	� Maßnahmen zur Steigerung der Rechenleistung

Die Aufgabe eines Mikroprozessors ist es, eine möglichst hohe Rechenleistung unter 
gegebenen Randbedingungen (Kosten, Verlustleistung, usw.) zur Verfügung zu stellen. 
In den folgenden Abschnitten werden technische Möglichkeiten aufgezeigt, die zu einer 
Steigerung der Rechenleistung von Mikroprozessoren eingesetzt werden können.



411

13.5.1	� Erhöhung der Taktfrequenz

Da Mikroprozessoren als synchrone Systeme realisiert werden, ist es ein naheliegender 
Ansatz, die Taktfrequenz des Systems zu erhöhen. Mit der Erhöhung der Taktfrequenz 
lässt sich eine annähernd proportionale Steigerung der Rechenleistung erzielen.

Es muss jedoch berücksichtigt werden, dass die Möglichkeit zur Erhöhung der Takt-
frequenz für einen Mikroprozessor begrenzt ist. Wird die Dauer eines Taktzyklus über 
eine kritische Grenze hinaus verringert, können Fehlfunktionen auftreten. Diese kriti-
sche Grenze ergibt sich aus dem kritischen Pfad, also der maximal auftretenden Signal-
laufzeit zwischen zwei Flip-Flops des Systems. Eine Möglichkeit, diese Signallaufzeit 
zu verringern, stellt das sogenannte Pipelining dar, welches in Abschn. 13.5.3 für Mik-
roprozessoren erläutert wird. Darüber hinaus ist zu beachten, dass bei Verwendung von 
CMOS-Technologien, wie sie heute für die Realisierung von Mikroprozessoren verwen-
det werden, die dynamische Verlustleistung proportional zur Taktfrequenz ansteigt. Die-
ser Effekt kann ebenfalls zu einer Limitierung der maximal verwendbaren Taktfrequenz 
führen.

13.5.2	� Parallelität

Eine Erhöhung der Rechenleistung kann auch erzielt werden, indem mehrere Opera-
tionen gleichzeitig ausgeführt werden. Dies kann sowohl durch parallele Einheiten im 
Rechenwerk als auch durch die Verwendung mehrerer Mikroprozessoren ermöglicht 
werden.

Im Idealfall steigt die verfügbare Rechenleistung proportional zu der im Rechenwerk 
implementierten Parallelität. In der Praxis wird dieser theoretische Anstieg meist nicht 
erreicht. Programme bilden in der Regel sequenzielle Verarbeitungsschritte ab. Inwieweit 
diese Verarbeitungsschritte, entgegen der vom Programmierer vorgegebenen sequenzi-
ellen Abarbeitungsreihenfolge, auch zeitgleich ausgeführt werden können, ist sehr stark 
vom Programm abhängig. Im ungünstigsten Fall muss für jede Operation die jeweils vor-
angegangene Operation abgearbeitet werden, da zum Beispiel das Ergebnis der ersten 
Operation als Operand für den nachfolgenden Befehl benötigt wird. In diesem Fall kann 
die Parallelität des Rechenwerks nicht ausgenutzt werden und es wäre keine Erhöhung 
der Rechenleistung erreichbar.

Geht man davon aus, dass ein Programm aus ideal parallelisierbaren (die benötigte 
Rechenzeit verhält sich annähernd umgekehrt proportional zur eingesetzten Parallelität) 
und nicht-parallelisierbaren Anteilen besteht, kann der Rechenleistungsgewinn durch die 
folgenden Formel angeben werden:

mit: G – Rechenleistungsgewinn (engl. Speedup)

G =

1

(s+ p/N)

13.5  Maßnahmen zur Steigerung der Rechenleistung
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p – Durch Parallelverarbeitung beschleunigter Programmanteil
s – Anteil des Programms mit konstanter Rechenzeit
N – Parallelität des Systems, zum Beispiel Anzahl paralleler Operationen
Die Grundlagen zu dieser Betrachtung wurden erstmals von Gene M. Amdahl formu-

liert und sind als Amdahl’s Law in die Geschichte der Computerwissenschaft eingegan-
gen. Auch wenn diese Betrachtung starke Vereinfachungen vornimmt, macht sie dennoch 
deutlich, dass bereits ein geringer Anteil an nicht-parallelisierbaren Programmteilen zu 
einer signifikanten Begrenzung des realisierbaren Rechenleistungsgewinns führen kann.

Darüber hinaus erfordert der sinnvolle Einsatz paralleler Einheiten, dass diese mit den 
jeweils zu verarbeitenden Daten versorgt werden. Hierzu wird häufig ein hoher schal-
tungstechnischer Aufwand benötigt, der zusätzlich zu dem Aufwand der benötigten par-
allelen Einheiten erforderlich wird.

Darüber hinaus müssen in den Befehlsworten des Prozessors entweder mehrere Ope-
rationen codiert werden oder es müssen mehrere Befehle gleichzeitig verarbeitet wer-
den können, was zu einer weiteren Erhöhung des Realisierungsaufwands führt. Diese 
Ansätze werden als Very-Long-Instruction-Word-Architekturen (VLIW) beziehungsweise 
superskalare Architekturen bezeichnet

Parallele Rechenwerke werden im Bereich der PC-Prozessoren eingesetzt, mit sepa-
raten Rechenwerken für Integer- und Floating-Point-Operationen. Bei PC-Prozessoren 
haben sich Multi-Core-Systeme durchgesetzt, bei denen mehrere Prozessoren in einem 
Gehäuse integriert werden. Diese Form der Rechenleistungserhöhung wurde notwendig, 
da sich die zuvor verfolgte Strategie einer mit jeder Prozessorgeneration steigenden Takt-
frequenz aus technologischen Gründen nicht mehr durchhalten ließ.

13.5.3	� Pipelining

Eine weitere Möglichkeit zur Erhöhung der Rechenleistung ist der Einsatz von Pipe-
lining, welches im deutschen Sprachraum auch häufig mit Fließbandverarbeitung über-
setzt wird.

Das Grundprinzip der Fließbandverarbeitung in der industriellen Produktion ist, 
dass an verschiedenen Stationen spezialisierte Teilaufgaben durchgeführt werden. Nach 
Durchlaufen aller Stationen ist das Endprodukt fertiggestellt. Da hierbei immer mehrere 
Stationen gleichzeitig aktiv sind, kann die Fließbandverarbeitung auch als eine beson-
dere Form der Parallelverarbeitung aufgefasst werden. Der Unterschied zu der im vor-
angegangenen Abschnitt beschriebenen Form der Parallelverarbeitung ist jedoch, dass 
im Fall des Pipelinings jede Station nur einen ausgewählten Teil der gesamten Verarbei-
tungsaufgabe ausführt und das so erhaltene Arbeitsergebnis an die nachfolgende Station 
weiterreicht. Dieses Grundprinzip wird in Mikroprozessoren bei Befehlsabarbeitung 
eingesetzt.

In Abschn. 13.2 wurden die einzelnen Schritte zur Verarbeitung eines Befehls exem-
plarisch vorgestellt. Hierbei wurde die Verarbeitung eines Befehls durch die Ausführung 
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von 5 Teilschritten vorgenommen. Ohne Einsatz von Pipelining würden alle Teilschritte 
eines Befehls durchlaufen bevor die Ausführung des nachfolgenden Befehls begonnen 
wird. Nimmt man vereinfachend an, dass alle Teilschritte eine identische Verarbeitungs-
zeit TS benötigen, würde die Bearbeitung eines Befehls also 5TS erfordern.

Wird dagegen jeder Teilschritt durch eine eigenständige Einheit ausgeführt, kann jede 
dieser Einheiten nach Bearbeitung eines Teilschritts sofort mit der Ausführung des nach-
folgenden Befehls beginnen. Im Idealfall besitzen alle Verarbeitungsschritte identische 
Verzögerungszeiten. Dann kann bereits nach der Zeit TS die Verarbeitung eines neuen 
Befehls mit dem ersten Teilschritt beginnen kann, während für den vorangegangenen 
Befehl zeitgleich der zweite Teilschritt ausgeführt wird.

In Abb. 13.11 ist der zeitliche Verlauf der Verarbeitung von Befehlen ohne und mit 
Einsatz von Pipelining dargestellt. Zum Zeitpunkt t = 0 beginnt in beiden Fällen die 
Ausführung des ersten Befehls. Wird Pipelining verwendet, kann bereits zum Zeitpunkt 
t = TS mit der Ausführung eines weiteren Befehls begonnen werden. Zum Zeitpunkt 
t = 5TS ist für beide Fälle die erste Instruktion komplett abgearbeitet. Bei Verwen-
dung von Pipelining ist zu diesem Zeitpunkt bereits die Verarbeitung von vier weiteren 
Befehlen begonnen worden, während ohne Einsatz von Pipelining erst die Ausführung 
des zweiten Befehls begonnen wird. Betrachtet man einen längeren Zeitraum, lässt sich 
beobachten, dass bei Verwendung von Pipelining 5-mal mehr Instruktionen pro Zeitein-
heit verarbeitet werden. Die Rechenleistung wird also um den Faktor 5 gesteigert.
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Abb. 13.11   Zeitlicher Verlauf der Befehlsverarbeitung mit und ohne Pipelining

13.5  Maßnahmen zur Steigerung der Rechenleistung
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Der schaltungstechnische Aufwand zur Realisierung einer einfachen Befehlspipeline 
ist moderat. Im einfachsten Fall ist es ausreichend die einzelnen Stufen der Befehlsaus-
führung durch Flip-Flops (sog. Pipeline-Register) zu entkoppeln. Auf diese Weise kann 
in jedem Taktzyklus die Ausführung eines neuen Befehls gestartet werden.

Auf den ersten Blick mag der Einsatz von Pipelining als ein sehr effizientes Mittel 
zur Steigerung der Rechenleistung erscheinen. In der Tat setzen die meisten der heute 
verfügbaren Prozessoren Pipelining ein. Dennoch wird in der Praxis meist nicht ein 
zu der Anzahl der Pipelinestufen proportionaler Rechenleistungsgewinn erzielt. Der 
ausschlaggebende Grund für diesen Effekt ist das Bestehen von Abhängigkeiten 
zwischen den Befehlen, die zeitgleich verarbeitet werden. Exemplarisch soll dies im 
Folgenden anhand der Datenabhängigkeit zweier Instruktionen verdeutlicht werden: 
Wird ein Befehl ausgeführt, der als Operanden das Ergebnis des vorangegangenen 
Befehls benötigt, führt dies zu einem Konflikt. Erst wenn die vorangegangene 
Instruktion die W-Stufe durchlaufen hat, kann das Ergebnis von der R-Stufe als 
Operand für einen nachfolgenden Befehl gelesen werden. Betrachtet man zwei 
aufeinanderfolgende Befehle, wird deutlich, dass der zweite Befehl die R-Stufe bereits 
durchlaufen hat, wenn sich der erste Befehl in der W-Stufe befindet (vgl. Abb. 13.12). 
Ohne weitere Maßnahmen zu ergreifen, würde der zweite Befehl somit einen veralteten, 
falschen Wert als Operanden einlesen.

Die einfachste Möglichkeit diesen Konflikt aufzulösen, besteht darin, die Ausführung 
des zweiten Befehls zu verzögern. So wird sichergestellt, dass der zweite Befehl die 
R-Stufe erst durchläuft nachdem der erste Befehl in der W-Stufe verarbeitet wurde 
(vgl. Abb. 13.13). Diese Verzögerung der Befehlsausführung führt jedoch zu einer 
Verringerung der pro Zeiteinheit verarbeiteten Befehle, was somit zu einer Verringerung 
der Rechenleistung führt. Moderne Prozessoren setzen daher verschiedene komplexe 
Maßnahmen zur Verringerung des negativen Einflusses der Abhängigkeit zwischen 
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Abb. 13.12   Beispiel eines Konfliktes bei der Befehlsabarbeitung
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aufeinanderfolgenden Befehlen ein. Dennoch kann auch durch diese Maßnahmen keine 
völlige Elimination der Rechenleistungsverringerung erzielt werden, sodass auch in 
diesen Fällen die real erzielbare Rechenleistung unterhalb des theoretisch ermittelten 
Wertes ohne Berücksichtigung von Befehlsabhängigkeiten bleibt.

13.5.4	� Befehlssatzerweiterungen

Für die Frage, ob eine bestimmte Aufgabenstellung von einem bestimmten Mikropro-
zessor bearbeitet werden kann, ist die Wahl des Befehlssatzes dieses Prozessors rela-
tiv unbedeutend. Stellt sich jedoch die Frage nach der Rechenleistung des Prozessors, 
kommt der Wahl des Befehlssatzes dagegen eine zentrale Bedeutung zu. Bereits in 
Abschn. 13.3.2 wurde am Beispiel der Multiplikation verdeutlicht, dass die Verwen-
dung eines Multiplikationsbefehls die Rechenleistung eines Prozessors erhöhen kann. 
Entsprechendes gilt für den Einsatz einer Floating-Point-Unit zur Beschleunigung von 
Gleitkommaoperationen. Durch den Einsatz einer Gleitkommaeinheit können Fließkom-
maberechnungen um ein bis zwei Größenordnungen schneller durchgeführt werden.

Das Prinzip, den Befehlssatz auf das Anwendungsgebiet zu optimieren, 
muss nicht auf grundlegende Operationen wie Multiplikation, Division oder 
Gleitkommaoperationen beschränkt werden. Viele Mikroprozessoren stellen sogenannte 
Befehlssatzerweiterungen zur Verfügung. So wurde beispielsweise Mitte der 1990er 
Jahre die MMX-Befehlssatzerweiterung von der Firma Intel für PC-Prozessoren 
eingeführt. Eines der Ziele war es, durch diese Erweiterung eine flüssige Wiedergabe von 
Videosequenzen zu erreichen. In den darauffolgenden Jahren wurden die Erweiterungen 
des Befehlssatzes unter dem Namen SSE (Streaming SIMD Extensions) fortgeführt. 
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Abb. 13.13   Auflösung eines Pipelinekonfliktes durch Verzögerung der Befehlsabarbeitung

13.5  Maßnahmen zur Steigerung der Rechenleistung
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Andere Prozessorhersteller haben ebenso verschiedenste Befehlssatzerweiterungen 
entwickelt und mit unterschiedlichen Bezeichnungen auf dem Markt etabliert.

Spezielle Befehle zur Unterstützung typischer Operationsfolgen lassen sich nicht nur 
in PC-Prozessoren finden. Selbst Mikroprozessoren der unteren Preisklasse setzen das 
Prinzip der Befehlssatzerweiterung ein. Die im nachfolgenden Kapitel vorgestellte AVR-
CPU besitzt beispielsweise besondere Befehle zum Setzen oder Löschen einzelner Bits.

13.6	� Grundlegende Mikroprozessorarchitekturen

Für den Entwurf und die Auswahl eines Mikroprozessors stellen sich viele Fragen, die 
die Architektur des Prozessors beeinflussen. Einige dieser Fragestellungen sind:

•	 Welche Wortbreite wird für die Daten- und Adressbusse verwendet?
•	 Welche Wortbreite besitzt das Rechenwerk, und ist eine Floating-Point-Unit zur 

Beschleunigung von Gleitkommaoperationen vorhanden?
•	 Welche Befehle werden unterstützt?
•	 Wie werden die Befehle binär codiert und welche Wortbreite wird für die Codierung 

der Befehle verwendet?
•	 In welchem Umfang sind innerhalb der CPU Speicherelemente, zum Beispiel zum 

Abspeichern von Zwischenergebnissen vorhanden?
•	 In welchen Teilschritten werden die Befehle abgearbeitet?
•	 In welchem Umfang wird Pipelining für die Befehlsausführung eingesetzt?
•	 Wie werden Parameter wie Rechenleistung, Kosten und Verlustleistung ausbalanciert?
•	 Welche Halbleitertechnologie wird für die Realisierung verwendet?

Anhand dieser Auswahl von Fragestellungen wird deutlich, dass für den Entwurf eines 
Mikroprozessors eine Vielzahl von Freiheitsgraden existiert, die zu unterschiedlichen 
architektonischen Varianten führt. Trotz dieser Detailvielfalt können Mikroprozessoren 
in zwei grundlegende Architekturklassen eingeteilt werden, deren Eigenschaften in den 
folgenden Abschnitten näher beleuchtet werden.

13.6.1	� CISC

Die Abkürzung CISC steht für Complex Instruction Set Computer und bezeichnet Pro-
zessoren, bei denen angestrebt wird, Befehle mit einer möglichst großen Funktionalität 
zur Verfügung zu stellen.

CISC-Prozessoren zeichnen sich durch einen großen Befehlsumfang und eine 
große Anzahl unterschiedlicher Adressierungsarten aus. Die Wortbreite der einzelnen 
Befehle eines CISC-Prozessors variiert, sodass für die Ausführung der Befehle eine 
unterschiedliche Anzahl von Programmspeicherzugriffen erforderlich ist. Diese 
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Eigenschaft, sowie die unterschiedliche Komplexität der Befehle, führen dazu, dass die 
Abarbeitung eines Befehls in der Regel mehrere Taktzyklen erfordert. Die Anzahl der 
benötigten Taktzyklen variiert bei typischen CISC-Prozessoren zudem in Abhängigkeit 
vom Befehl. Typische Beispiele für CISC-Architekturen sind die Prozessorfamilien 808x 
und 80x86 der Firma Intel oder die Prozessoren der 680x0-Serie der Firma Motorola.

CISC-Prozessoren wurden bis in die 1990er Jahre erfolgreich vermarktet. Durch die 
Fortschritte der Halbleitertechnologie wurden höhere Integrationsdichten und kürzere 
Verzögerungszeiten der verwendeten Logik- und Speicherelemente ermöglicht. Insbe-
sondere durch die sinkende Zugriffszeit der Speicher war es nicht mehr nötig mit einem 
Befehl möglichst viele Funktionen auszuführen. Dies brachte einen der Hauptgründe für 
die Verwendung von CISC-Prozessoren ins Wanken und führte dazu, dass die Bedeutung 
der CISC-Prozessoren abnahm.

13.6.2	� RISC

Im Lauf der 1980er Jahre wurden zahlreiche Studien zu Architekturen von Mikroprozes-
soren durchgeführt, die unter anderem zeigten, dass viele der komplexen Befehle eines 
CISC-Prozessors nur zu einem geringen Anteil in praktischen Programmen verwendet 
wurden. Die meisten Programme nutzen nur einen kleinen Anteil des Befehlssatzes, vor-
rangig die einfach strukturierten Befehle des Prozessors. Diese Beobachtung führte zu 
einem Architekturansatz, der als RISC (Reduced Instruction Set Computer) bezeichnet 
wird. Typische RISC-Prozessoren zeichnen sich durch die folgenden Eigenschaften aus:

Limitierter Befehlssatz
Es werden nur die am häufigsten benötigten Grundbefehle implementiert, wobei auf 
komplexe Adressierungsarten verzichtet wird. Dies ist sowohl für den Aufwand als auch 
im Hinblick auf die Taktfrequenz von Vorteil.

Instruktionspipelining
Durch die Reduktion des Befehlssatzes wird gleichzeitig der Einsatz von Instruktions-
pipelining vereinfacht. Hierbei wird angestrebt, in jedem Taktzyklus des Prozessors die 
Bearbeitung eines neuen Befehls zu beginnen.

Load/Store-Architektur
Zum Austausch von Daten mit dem Speicher oder Ein-/Ausgabekomponenten wer-
den Befehle eingesetzt, die nur einen Transport der Daten zwischen Speicher und den 
Arbeitsregistern der CPU durchführen (load, store). Auf die Möglichkeit, innerhalb eines 
Befehls sowohl den Datentransport als auch eine arithmetisch-logische Operation auszu-
führen, wird im Gegensatz zu typischen CISC-Prozessoren, verzichtet.

13.6  Grundlegende Mikroprozessorarchitekturen
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Relativ hohe Registeranzahl
RISC-Prozessoren besitzen meist deutlich mehr Register als CISC-Prozessoren. Die 
während der Abarbeitung eines Programms anfallenden Zwischenergebnisse können so 
innerhalb des Prozessors abgelegt werden. Die Anzahl für zusätzliche Befehle zum Able-
gen der Zwischenergebnisse im Datenspeicher kann auf diese Weise reduziert werden.

Universell verwendbare Register
Die CPU-internen Register können sowohl für die Verarbeitung von Daten als auch zur 
Berechnung von Adressen verwendet werden. Eine Unterscheidung zwischen Daten- und 
Adressregistern, wie sie teilweise bei CISC-Prozessoren verwendet wurde, findet nicht 
statt.

Einfache Befehlscodierung
Um die Decodierung eines Befehls zu vereinfachen und damit zu beschleunigen, wird 
eine einheitliche Codierung der Befehle angestrebt. Hierbei wird das Befehlswort in der 
Regel in einzelne Felder unterteilt, in denen unabhängig vom Befehl, immer die gleiche 
Information (zum Beispiel die auszuführende Operation oder die für die Operation zu 
verwendenden Register) gespeichert ist.

13.6.3	� RISC und Harvard-Architektur

Wie im vorigen Abschnitt beschrieben, ist eine wesentliche Eigenschaft von RISC-Pro-
zessoren die Verwendung von Instruktionspipelining zur Verarbeitung von Befehlen. 
Der Einsatz von Instruktionspipelining ermöglicht eine Erhöhung des Befehlsdurchsat-
zes (Anzahl der verarbeiteten Befehle pro Taktzyklus), da in jedem Taktzyklus mehrere 
unterschiedliche Befehle in den einzelnen Stufen der Pipeline verarbeitet werden. Wird 
ein RISC-Prozessor auf Basis einer Von-Neumann-Architektur implementiert, ergibt 
sich ein Engpass, durch die Verwendung eines gemeinsamen Speichers für Befehle und 
Daten.

Dieser Engpass entsteht, da bei Verwendung von Instruktionspipelining in jedem 
Taktzyklus die Ausführung eines neuen Befehls gestartet werden kann. Dabei wird mit 
jedem Taktzyklus ein Zugriff auf den Speicher ausgeführt. Werden Befehle ausgeführt, 
die einen Zugriff auf den Datenspeicher ausführen, führt dies zu einem Konflikt: 
Innerhalb eines Taktzyklus müsste sowohl der Zugriff auf die Befehle des Programms 
als auch der Zugriff auf die im gemeinsamen Programm- und Datenspeicher abgelegten 
Daten erfolgen. Der gemeinsame Speicher für Daten und Befehle einer Von-Neumann-
Architektur ermöglicht jedoch nur einen Zugriff, entweder auf Daten oder auf Befehle. 
Somit müssen die Zugriffe auf Daten und Befehle in unterschiedlichen Taktzyklen 
erfolgen. Es kann also nicht mehr in jedem Taktzyklus ein Zugriff auf die Befehle des 
Programms erfolgen und der Befehlsdurchsatz sowie die erzielbare Rechenleistung 
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werden reduziert. Der beschriebene Engpass der Von-Neumann-Architektur wird auch 
als „Von-Neumann-Bottleneck“ bezeichnet.

Es ist möglich, einen RISC-Prozessor auf Basis einer Von-Neumann-Architektur 
zu realisieren, sofern die beschriebene Reduktion der Rechenleistung für das 
Anwendungsgebiet des Prozessors tolerierbar ist. Ist es dagegen das Ziel, einen 
möglichst hohen Befehlsdurchsatz zu erzielen, ist es sinnvoll, den Speicherkonflikt 
durch Realisierung getrennter Speicher für Befehle und Daten aufzulösen. Dieser 
architektonische Ansatz wird als Harvard-Architektur bezeichnet. Die Struktur eines 
Mikrorechnersystems auf Basis einer Harvard-Architektur ist in Abb. 13.14 dargestellt. 
Der Programmspeicher der in Abb. 13.14 Architektur kann beispielsweise als 
nichtflüchtiger Flashspeicher realisiert werden. Der Datenspeicher wird dagegen meist 
auf Basis eines flüchtigen SRAMs realisiert.

In der Regel benötigen Programme Konstanten, die beim Start des Programms 
definierte Werte enthalten. Einerseits handelt es sich bei diesen Konstanten um Daten, 
die somit im flüchtigen Datenspeicher abgelegt werden müssen, der jedoch nach dem 
Einschalten der Versorgungsspannung keine definierten Werte enthält. Daher werden die 
Konstanten zusammen mit dem Programm im Flashspeicher abgelegt und stehen sofort 
nach dem Einschalten des Systems zur Verfügung. Zu Beginn des Programms werden 
die Konstanten aus dem Flashspeicher in den Datenspeicher kopiert. Für diesen initialen 
Kopiervorgang muss der Programmspeicher jedoch wie ein Datenspeicher betrieben 
werden. Da dies nicht dem reinen Grundkonzept einer Harvard-Architektur entspricht, 
werden Architekturen mit getrennten Daten- und Programmspeichern, die einen 
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Abb. 13.14   Struktur eines Mikrorechners auf Basis einer Harvard-Architektur
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datenorientierten Zugriff auf den Programmspeicher erlauben, auch als modifizierte 
Harvard-Architektur bezeichnet.

Die Idee, Daten und Befehle in getrennten Speichern abzulegen, um eine möglichst 
hohe Rechenleistung zu erzielen, mag einfach erscheinen. Allerdings wurde dieser 
Ansatz von ersten integrierten Mikrorechnersystemen nicht verwendet. Bei typischen 
CISC-Prozessoren, wie sie insbesondere in den 1970er bis 1990er Jahren realisiert wur-
den, tritt kein Zugriffskonflikt auf, da ein Befehl immer komplett abgearbeitet wird, 
bevor die Verarbeitung des nachfolgenden Befehls gestartet wird. Darüber hinaus ist die 
Realisierung getrennter Speicher aufwendiger und kann die Kosten des Systems erhöhen. 
Erst bei Einsatz von Instruktionspipelining, welches zuerst in Spezialprozessoren für die 
digitale Signalverarbeitung (Digitale Signalprozessoren, DSP) eingesetzt wurde, wurden 
getrennte Speicher für Daten und Befehle für die Realisierung von Mikrorechnersyste-
men eingesetzt. Später wurden die zunächst CISC-basierten Standardprozessoren mehr 
und mehr durch RISC-Prozessoren ersetzt. Als Folge des hierbei verwendeten Instruk-
tionspipelinings bekam die Harvard-Architektur eine immer größere Bedeutung für die 
Realisierung integrierter Mikroprozessoren und Mikrorechnersysteme.

13.7	� Mikrocontroller

Mikrocontroller sind integrierte Mikrorechnersysteme, die neben einer CPU auch Spei-
cher, Ein-/Ausgabeeinheiten sowie weitere für den Betrieb des Systems notwendige 
Komponenten, beispielsweise die Takterzeugung, enthalten. Durch die Integration des 
Systems auf einem Mikrochip kann die Verwendung von externen Komponenten auf ein 
Minimum reduziert werden. Auf diese Weise lassen sich kostengünstige Mikrorechner 
realisieren.

Beim Entwurf und Einsatz von Mikrocontrollern stehen üblicherweise die Kosten 
des Controllers und die Verlustleistung im Vordergrund. Daher besitzen Mikrocontrol-
ler eine deutlich geringere Rechenleistung als sie zum Beispiel von Prozessoren für den 
PC-Markt zur Verfügung gestellt werden. Auch wenn dies auf den ersten Blick als ein 
Nachteil erscheinen mag, darf nicht vergessen werden, dass Mikrocontroller häufig für 
Anwendungen mit relativ geringen Rechenleistungen eingesetzt werden.

Sehr deutlich wird der Vorteil von Mikrocontrollern, wenn die Kosten eines Control-
lers mit dem eines PC-basierten Systems verglichen werden. Ein PC-basiertes System 
mit CPU, Speicher und Hauptplatine kostet mehrere hundert Euro, während Mikrocon-
troller für wenige Euro, teilweise sogar für Preise unterhalb eines Euros, erhältlich sind.

Mikrocontroller werden in vielen eingebetteten Systemen des Alltags eingesetzt. Sie 
übernehmen die Steuerung von Haushaltsgeräten, Fernsehgeräten, Kraftfahrzeugen, von 
industriellen Anlagen oder auch Medizingeräten.

Viele Halbleiterhersteller bieten Mikrocontroller mit unterschiedlichen Eigenschaf-
ten an. Anbieter von Mikrocontrollern sind (in alphabetischer Reihenfolge) die Firmen 
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Atmel, Fujitsu, Infineon, Microchip, NEC, NXP, Renesas, Texas Instruments und ST 
Microelectronics.

Einige der wichtigsten Unterscheidungskriterien, die bei der Auswahl eines Control-
lers zu beachten sind, werden im Folgenden vorgestellt:

Wortbreite des Rechenwerks
Typische Mikrocontroller des unteren Preissegmentes setzen Rechenwerke mit einer 
Wortbreite von 8 bit ein. Controller für höhere Rechenleistungen verwenden Rechen-
werke mit einer Breite von 32 bit. Darüber hinaus werden auch 16-Bit-Mikrocontroller 
angeboten.

Verwendete CPU
Die Wahl des Prozessors stellt einen entscheidenden Faktor für die Leistungsfähigkeit 
des Systems dar. Darüber hinaus kann es von praktischer Bedeutung sein, dass die Con-
troller für unterschiedliche Produkte eines Unternehmens die gleiche CPU verwenden. 
Auf diese Weise kann das einmal erworbene Know-how sowie Entwurfssoftware auch 
für Folgeprodukte effizient eingesetzt werden.

Taktfrequenz
Mikrocontroller arbeiten mit relativ geringen Taktfrequenzen, die sich im Bereich von 
einigen MHz bis hin zu einigen hundert MHz bewegen.

Größe des eingebetteten Speichers
Häufig wird der Programmspeicher als Flashspeicher und der Datenspeicher als SRAM 
zusammen mit der CPU integriert. Hierbei variiert die Größe dieser Speicher zwischen 
wenigen kByte bis zu mehreren hundert kByte.

Eingebettete Schnittstellen
Während alle Mikrocontroller Möglichkeiten zur einfachen programmgesteuerten digita-
len Ein-/Ausgabe besitzen, werden darüber hinaus weitere sehr unterschiedliche Schnitt-
stellen in Hardware zur Verfügung gestellt.

Der grundsätzliche Aufbau eines Mikrocontrollers ist in Abb. 13.15 dargestellt. Die 
Komponenten eines Mikrocontrollers umfassen einen Mikroprozessor (CPU), Speicher 
für Programme und Daten und Ein-/Ausgabeeinheiten.

Die Ein- und Ausgabe von digitalen Daten wird bei allen Mikrocontrollern mithilfe 
sogenannter Ports unterstützt. Ports sind digitale bidirektionale Anschlüsse des Control-
lers, die sowohl als Eingänge als auch als Ausgänge genutzt werden können. Die Aus-
wahl, ob ein bestimmter Anschluss als Eingang oder Ausgang genutzt wird, erfolgt über 
das Programm, welches von der CPU ausgeführt wird. Darüber hinaus erfolgt auch die 
Ein-/Ausgabe durch die Software, sodass Ports sehr universell einsetzbar sind.

13.7  Mikrocontroller
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In vielen Abwendungsfällen muss ein Mikrocontroller über standardisierte digitale 
Schnittstellen mit anderen Komponenten eines Systems oder externen Geräten 
kommunizieren. Grundsätzlich kann diese Kommunikation mithilfe von Ports realisiert 
werden, indem das jeweilige Schnittstellenprotokoll in Software implementiert wird. 
Durch diesen Ansatz wird jedoch ein bestimmter Anteil der CPU-Rechenleistung 
für die SW-basierte Implementierung des Schnittstellenprotokolls benötigt, sodass 
die zur Verfügung stehende Rechenleistung für die eigentliche Applikation reduziert 
wird. Um diesen Nachteil zu vermeiden, bieten Mikrocontroller verschiedene digitale 
Schnittstellen (zum Beispiel USB oder Ethernet) als integrierte Hardwaremodule an. 
Diese Schnittstellen implementieren das Protokoll zur Datenübertragung in HW und 
entlasten so die CPU des Controllers, die lediglich die zu sendende Daten bereitstellen 
beziehungsweise empfangene Daten von der Schnittstelle abholen muss.

Darüber hinaus enthalten viele Mikrocontroller Schnittstellen, die der Erweiterung 
des auf dem Controller integrierten Speichers dienen und mit externen SRAM- oder 
SDRAM-Speicherbausteinen kommunizieren können. Neben der digitalen Ein-/Ausgabe 
ermöglichen viele Mikrocontroller das Einlesen oder Ausgeben analoger Werte durch 
integrierte A/D- beziehungsweise D/A-Umsetzer.

Eine weitere typische Mikrocontrollerkomponente sind die sogenannten Timer, die im 
deutschen Sprachgebrauch zum Teil auch als Zeitgeber bezeichnet werden. Im Grunde 
handelt es sich bei Timern um integrierte Zähler, die entweder mit einem internen 
Takt des Controllers oder mit einem von außen zugeführten Takt betrieben werden 
können. In Abhängigkeit vom Zählerstand können verschiedene, programmierbare 
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Abb. 13.15   Architektur eines Mikrocontrollers
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Ereignisse ausgelöst werden. Zum Beispiel kann bei Erreichen eines vorprogrammierten 
Zählerstands der Ausgabewert einer der Controlleranschlüsse invertiert werden, wodurch 
sich ein Rechtecksignal erzeugen lässt. In der Regel lässt sich das erzeugte Signal 
in Frequenz und Tastverhältnis mit geringem Softwareaufwand modifizieren. Timer 
werden für praktische Anwendungen häufig eingesetzt. Sie erlauben unter anderem 
den regelmäßigen Aufruf von Unterprogrammen sowie die zeitliche Vermessung von 
Signalen.

Mikrocontroller verfügen darüber hinaus über eine integrierte Hardwareeinheit zur 
Takterzeugung, die das Taktsignal für den Betrieb des Controllers generiert. Die Aus-
wahl der erzeugten Taktfrequenz erfolgt mithilfe weniger externer Komponenten, zum 
Beispiel mithilfe eines externen Quarzes oder eines RC-Gliedes. Die meisten Mikro-
controller besitzen daneben die Möglichkeit, den Systemtakt durch einen integrierten 
Oszillator zu erzeugen. In diesem Fall kann auf externe Komponenten völlig verzichtet 
werden.

Wird für eine Anwendung eine möglichst exakte Taktfrequenz benötigt, empfiehlt 
sich die Verwendung eines externen Quarzes. Die internen Oszillatoren können in der 
Regel eine Frequenzabweichung von einigen Prozent aufweisen und sind auch im Hin-
blick auf die Temperaturstabilität einem quarzbasierten Oszillator unterlegen.

Mikrocontroller sind also integrierte Schaltkreise, die alle notwendigen Komponen-
ten eines Rechners beinhalten. Auf Basis von Mikrocontrollern lassen sich sehr einfach 
kostengünstige programmierbare Systeme realisieren, deren Einsatzgebiet nahezu unbe-
grenzt ist.

13.8	� Übungsaufgaben

In den folgenden Aufgaben werden einige Themen dieses Kapitels aufgegriffen. Die 
Lösungen der Aufgaben finden Sie am Ende des Buches.

Sofern nicht anders vermerkt, ist nur eine Antwort richtig.

Aufgabe 13.1
Welche Aussagen zu Adressräumen sind korrekt? (Mehrere Antworten sind richtig)

a)	 Bei Memory-Mapped-Adressierung besitzen Speicher und Ein-/Ausgabe unterschied-
liche Adressräume.

b)	Bei Port-Mapped-Adressierung besitzen Speicher und Ein-/Ausgabe gemeinsame 
Adressräume.

c)	 Bei Memory-Mapped-Adressierung besitzen Speicher und Ein-/Ausgabe gemeinsame 
Adressräume.

d)	Bei Port-Mapped-Adressierung besitzen Speicher und Ein-/Ausgabe unterschiedliche 
Adressräume.

13.8  Übungsaufgaben
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Aufgabe 13.2
Wie wird die Adressierungsart bezeichnet, bei der die Speicheradresse direkt aus dem 
Befehlswort übernommen wird?

a)	 Unmittelbare Adressierung
b)	Absolute Adressierung
c)	 Indirekte Adressierung
d)	 Indirekte Adressierung mit Verschiebung

Aufgabe 13.3
Welche Adressierungsarten verwenden einen „Adressspeicher“ (zum Beispiel CPU-
Register)? (Mehrere Antworten sind richtig)

a)	 Unmittelbare Adressierung
b)	Absolute Adressierung
c)	 Indirekte Adressierung
d)	 Indirekte Adressierung mit Verschiebung

Aufgabe 13.4
Mit welchen Maßnahmen kann die Rechenleistung eines Mikroprozessors gesteigert 
werden? (Mehrere Antworten sind richtig)

a)	 Erhöhung der Taktfrequenz
b)	Spezialbefehle
c)	 Instruktions-Pipelining
d)	VLIW

Aufgabe 13.5
Was ist der wesentliche Unterschied zwischen einer Von-Neumann- und einer 
Harvard-Architektur?

a)	 Die Harvard-Architektur kann nur für CISC-Prozessoren eingesetzt werden.
b)	Die Von-Neumann-Architektur verwendet Flash als Instruktionsspeicher, die typische 

Harvard-Architektur dagegen SRAM
c)	 Die Harvard-Architektur besitzt getrennte Speicher für Instruktionen und Daten.
d)	 Die Harvard-Architektur unterstützt weniger Befehle als die Von-Neumann-Architektur.
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Mikrocontroller sind kleine Rechnersysteme, die in einem Baustein alles beinhalten, was 
zur Realisierung eines Computers benötigt wird: Sie enthalten eine CPU, Speicher und 
auch Ein-/Ausgabeeinheiten. Die Vorteile eines Mikrocontrollers sind die kompakte Bau-
form und der günstige Preis. Mikrocontroller werden in unterschiedlichsten, meist kos-
tensensitiven, Anwendungen eingesetzt. Ein typisches Einsatzgebiet sind Steuerungs- und 
Regelungsanwendungen. In Ihrer Waschmaschine sorgt beispielsweise ein Mikrocontrol-
ler dafür, dass Sie ein Waschprogramm auswählen können. Er regelt die Wassertempera-
tur und steuert unter anderem die Elektronik für den Trommelmotor und die Pumpen an.

Die Hersteller von Mikrocontrollern bieten eine relativ große Produktpalette an. Meis-
tens werden die Produkte eines Herstellers in Familien unterteilt. Die Produkte einer sol-
chen Familie besitzen in der Regel die gleiche CPU, unterscheiden sich aber im Hinblick 
auf die Speicherkapazität oder die integrierten Ein-/Ausgabekomponenten. Aufgrund dieser 
Produktvielfalt kann der Anwender den Controller auswählen, der im Hinblick auf die tech-
nischen Eigenschaften und die Kosten optimal für das geplante Einsatzgebiet geeignet ist.

Dieses Kapitel bietet einen Einstieg in die Technik der Mikrocontroller. Der Mikro-
controller ATmega32 aus der AVR-Familie des Herstellers Atmel wird exemplarisch 
vorgestellt. Die hier vorgestellten Grundprinzipien lassen sich auf zahlreiche andere 
Mikrocontrollern übertragen und sind nicht auf die AVR-Familie beschränkt.

14.1	� Die Mikrocontroller-Familie AVR

Die AVR-Mikrocontroller sind relativ einfach strukturiert und eignen sich gut für erste 
Lernschritte im Bereich der Mikrorechnertechnik. Viele der AVR-Mikrocontroller wer-
den in DIP-Gehäusen (Dual-Inline-Package) angeboten, die sich gut für vertiefende 
Experimente auf einem Steckbrett eignen.

Mikrocontroller 14
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Alle Controller der AVR-Familie basieren auf einem RISC-Mikroprozessor, der eine 
zweistufige Befehlspipeline besitzt. Das Rechenwerk der CPU hat eine Wortbreite von 
8 bit. Die Firma Atmel unterteilt die Mikrocontroller der AVR-Familie in mehrere Grup-
pen, von denen drei im Folgenden kurz vorgestellt werden.

tinyAVR
Die tinyAVR-Mikrocontroller zeichnen sich durch eine kleine Gehäuseform mit weni-
gen Anschlüssen aus. Viele der im DIP-Gehäuse angebotenen Controller besitzen 8 oder 
14 Anschlüsse, wovon jeweils 2 für die Spannungsversorgung verwendet werden. Die 
Controller können mit einer Spannung zwischen 1,8 und 5,5 V betrieben werden. Der 
Programmspeicher ist, wie bei allen Controllern der AVR-Familie, als Flashspeicher 
ausgeführt. Die Größe dieses Speichers liegt für tinyAVR-Controller meist zwischen 1 
und 8 kByte. Zur Speicherung von Daten stehen ein SRAM und ein EEPROM zur Ver-
fügung, deren Größe 64 bis 512 Byte beträgt. Alle Controller besitzen mindestens einen 
Timer und mindestens eine Schnittstelle zur seriellen digitalen Datenübertragung. Für 
das Einlesen analoger Werte stehen teilweise AD-Umsetzer zur Verfügung.

megaAVR
Die Mikrocontroller der megaAVR-Serie sind umfangreicher ausgestattet als die 
tinyAVR-Controller. Sie besitzen einen größeren Flash-Programmspeicher, dessen 
Größe zwischen 8 und 256 kByte liegt. Zur Speicherung von Daten stehen SRAM- oder 
EEPROM-Speicher mit einer Größe von bis zu 4 kByte zur Verfügung. Darüber hinaus 
besitzen die Controller der megaAVR-Serie mindestens zwei Timer und verfügen über 
eine größere Anzahl digitaler Schnittstellen als die tinyAVR-Controller.

Die in den megaAVR-Controllern verwendete CPU besitzt einen Hardware-Multipli-
zierer, der eine schnelle Multiplikation von 8 bit breiten Operanden ermöglicht.

Als ein Beispiel für die Controller der megaAVR-Serie ist die Pinbelegung des Mikro-
controllers ATmega32 in Abb. 14.1 dargestellt. Dieser Controller besitzt einen Flash-Pro-
grammspeicher der Größe 32 kByte, 2 kByte SRAM und 1 kByte EEPROM-Speicher, 
sowie diverse eingebettete Peripheriekomponenten.

Der ATmega32 besitzt 32 Portanschlüsse (PA0-PA7, PB0-PB7, PC0-PC7 und PD0-
PD7), deren Funktion durch das ausgeführte Programm festgelegt wird. Die weite-
ren Anschlüsse dienen der Stromversorgung (VCC, AVCC und GND) oder können zur 
Erzeugung des Systemtaktes (XTAL1, XTAL2) oder zum Rücksetzen des Controllers in 
den Einschaltzustand (/Reset) verwendet werden. Die in Klammern angegebenen Pinbe-
zeichnungen beziehen sich auf die sogenannten alternativen Portfunktionen. Per Soft-
ware kann ausgewählt werden, ob die Anschlüsse direkt über die Software gesteuert 
werden sollen (Funktion als Ein-/Ausgabe-Ports) oder ob sie als Anschlüsse für einge-
bettete Peripheriekomponenten eingesetzt werden.

Aufgrund seines relativ großen Programmspeichers und einer großen Anzahl per Soft-
ware steuerbarer Anschlüsse eignet sich der ATmega32 gut für die Durchführung prakti-
scher Experimente.
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AVR XMEGA
Einer der vielen Unterschiede der AVR-XMEGA-Serie zu den zuvor vorgestellten AVR-
Serien ist der Einsatz eines DMA-Controllers (Direct Memory Access) in Kombination 
mit dem sogenannten Event-System. Diese Module ermöglichen unter anderem einen 
Datenaustausch zwischen den Komponenten des Systems, ohne die CPU mit dem eigent-
lichen Datentransfer zu belasten. Die Controller der XMEGA-Serie besitzen einen bis zu 
384 kByte großen Flash-Programmspeicher und einen bis zu 32 kByte großen SRAM-
Speicher, welcher bei einigen XMEGA-Controllern durch externen Speicher erweitert 
werden kann.

14.2	� Programmierung von Mikrocontrollern

Die Programmierung von Mikrocontrollern kann in Assembler oder in einer Hoch-
sprache erfolgen. Bei der Programmierung in Assembler besteht das Programm aus 
Befehlen, die genau wie im Programm angegeben, von der CPU ausgeführt werden. 
Diese Art der Programmierung hat verschiedene Vorteile: So kann zum Beispiel die 

Abb. 14.1   Pinbelegung des 
Mikrocontrollers ATmega32 im 
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Ausführungszeit des Programms bereits während der Entwicklung exakt bestimmt wer-
den. Darüber hinaus können Assemblerprogramme im Hinblick auf die Ausführungszeit 
und die Programmgröße (Flash-Speicherbedarf) optimiert werden.

Um Assembler-Programme schreiben zu können, ist eine genaue Kenntnis des 
Befehlssatzes der eingesetzten CPU erforderlich. Diese Notwendigkeit wird bei Ein-
satz einer Hochsprache vermieden, da der Compiler das Umsetzen des Quellcodes in die 
Befehle der CPU übernimmt. Der Einsatz einer Hochsprache vereinfacht daher die Pro-
grammierung und Programme können in kürzerer Zeit realisiert werden als bei einer Pro-
grammierung in Assembler. Die Optimierung der CPU-Befehle wird dann vom Compiler 
übernommen. Obwohl heutige Compiler eine gute Codeoptimierung durchführen, ist bei 
der Verwendung einer Hochsprache nicht gewährleistet, dass das Ergebnis das Optimum 
im Hinblick auf Rechenzeit und Speicherbedarf darstellt. Dennoch wird der Praxis die 
Programmierung in C/C++ in vielen Fällen der Programmierung in Assembler vorgezo-
gen, da die Produktivität bei der Programmentwicklung im Vordergrund steht.

Im Rahmen dieses Kapitels wird am Beispiel des AVR-Mikrocontrollers ATmega32 
auf die Programmierung sowohl in Assembler als auch in C eingegangen. Die Beschäf-
tigung mit der Programmierung in Assembler ermöglicht unter anderem ein tieferes Ver-
ständnis der Funktionsweise eines Mikroprozessors.

Grundsätzlich besitzen Mikrocontrollerprogramme die gleichen Elemente wie die Pro-
gramme, die Sie vielleicht bereits auf einem PC entwickelt haben. Es gibt Funktionen, Ver-
zweigungen, Schleifen usw. Einer der größten Unterschiede zwischen einem typischen 
PC-Programm und einem Mikrocontrollerprogramm ist, dass das Hauptprogramm des Cont-
rollers eine Endlosschleife enthält. Dass dies so sein muss, wird plausibel, wenn ein typisches 
Anwendungsgebiet eines Mikrocontrollers anschaut: Die Steuerung einer Waschmaschine.

Stellen Sie sich vor, Sie schalten Ihre Waschmaschine ein. Das Programm des Mikro
controllers in der Steuereinheit wird gestartet und fragt die Bedienknöpfe ab. Das Pro-
gramm ist aber wahrscheinlich schneller als Sie. Noch bevor Sie einen Taster des 
Bedienfeldes drücken können, stellt das Programm fest, dass offensichtlich nichts zu tun 
ist (es wurde ja kein Taster gedrückt) und wird beendet. Ihre Waschmaschine wäre mit 
einer solchen Steuerung nicht gut bedienbar.

Statt das Programm nach der ersten Abfrage des Bedienfeldes zu beenden, müssen 
die Taster und Schalter kontinuierlich abgefragt werden. Mit der Auswahl eines Wasch-
programms wird der Mikrocontroller der Steuereinheit in ein entsprechendes Unterpro-
gramm verzweigen, welches die Sensorik (Wasserstand, Wassertemperatur, usw.) abfragt 
und die Aktorik (Pumpe, Heizung, usw.) ansteuert. Nach dem Beenden des Unterpro-
gramms wird wieder zur Abfrage des Bedienfeldes zurückgekehrt. Das Mikrocontroller-
Programm wird also bis zum Abschalten der Waschmaschine laufen und muss damit eine 
Endlosschleife enthalten.

Die typische Grundstruktur eines Mikrocontrollerprogramms besteht aus zwei Tei-
len: Zu Beginn des Programms wird die Initialisierung des Systems ausgeführt und die 
Peripheriekomponenten initialisiert. Ist die Initialisierung abgeschlossen, werden die 
Eingangswerte des Controllers in einer Endlosschleife überprüft und gegebenenfalls 
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neue Ausgangswerte berechnet, die anschließend über die Ausgabeeinheiten ausge-
geben werden. Dieser Grundstruktur folgen sowohl Assemblerprogramme als auch 
Hochsprachenprogramme.

14.2.1	� Programmierung in Assembler

Im Gegensatz zu einem Hochsprachenprogramm darf in jeder Zeile eines Assemblerpro-
gramms maximal ein CPU-Befehl stehen.

CPU-Befehle bestehen aus einer Bitkombination, die im Programmspeicher des 
Rechners abgelegt werden. Da jedoch niemand ein Programm schreiben möchte, das 
aus einer Textdatei mit Nullen und Einsen besteht, werden CPU-Befehle in einer für den 
Menschen lesbaren Form angegeben. Hierzu werden die Befehle als Mnemonics (Kürzel, 
die meist aus 1 bis 4 Buchstaben bestehen) angegeben. Nach dem Befehlskürzel werden 
zu verarbeitenden Operanden angeben.

Für die AVR-CPU kann man den Befehl zur Addition der Werte in den Arbeitsregis-
tern r5 und r7 in binärer Form so schreiben:

   0000110001010111

Deutlich besser lesbar ist diese Variante:

   add r5, r7

Hier wird der Befehl als Mnemonic angegeben und sowohl die ausgeführte Operation 
als auch die verwendeten Operanden sind leicht erkennbar.

Neben den Mnemonics werden Ihnen in Assemblerprogrammen auch Label (Mar-
ken) begegnen. Mithilfe von Labeln wird eine Codezeile mit einem Symbol versehen, 
das im Programm eingesetzt werden kann. Im Verlauf dieses Kapitels werden Sie einige 
Beispiele für die Verwendung von Labels kennenlernen. Daher wird hier zunächst ledig-
lich der Sprung in ein Unterprogramm als ein Beispiel für die Verwendung eines Labels 
dargestellt:

; Hier wird das Unterprogramm durch ein Label markiert

my_add_up:   

   add r5, r7   ; Dieses einfache Unterprogramm fùhrt eine Addition aus

   ret          ; Der "Return"-Befehl

                ; bewirkt die Rùckkehr in das Hauptprogramm

; Das Hauptprogramm. In diesem Beispiel wird es auch markiert

main:

   …               ; Hier stehen weitere Befehle

   call my_add_up  ; Mit diesem Befehl wird das UP aufgerufen …

   …               ; und anschließend der hier stehende Code ausgefùhrt

14.2  Programmierung von Mikrocontrollern
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Das Programm, welches die Umsetzung des Assemblercodes in die für den Rechner 
lesbare Form (also Nullen und Einsen) übersetzt, wird als Assembler bezeichnet. Eine 
Codeoptimierung, wie sie Hochsprachencompiler durchführen, findet bei der Überset-
zung nicht statt.

14.2.2	� Programmierung in C

Ein wesentlicher Aspekt der Mikrocontrollerprogrammierung ist der Zugriff auf die 
eingebettete Peripherie. Um beispielsweise einen digitalen Wert an einem Mikrocont-
rolleranschluss ausgeben zu können, muss die CPU den Ausgabewert in Registern der 
Peripheriekomponenten ablegen. Zwei wichtige Aspekte, die für die Mikrocontroller-
Programmierung in C wichtig sind, werden in diesem Abschnitt vorgestellt.

14.2.2.1 � Zugriff auf Peripheriekomponenten
Viele Mikrocontroller verwenden Memory-Mapped-I/O (vgl. Kapitel 13) um Zugriffe auf 
die Komponenten, zum Beispiel Ein-/Ausgabe-Einheiten, zu ermöglichen. Auf die Periphe-
rie kann dann genauso wie auf den Datenspeicher zugegriffen werden. Auf welche Kompo-
nente zugegriffen wird, ergibt sich aus der verwendeten Adresse. Während es für „normale“ 
Variablen völlig egal ist, an welcher Stelle sie im Speicher abgelegt werden, ist es für einen 
Peripheriezugriff essenziell, genau die richtige Adresse anzusprechen. Man muss also, im 
Gegensatz zu typischen PC-Programmen, dem Compiler vorschreiben, auf welche Adresse 
er zugreifen soll. Dies lässt sich relativ einfach mithilfe von Zeigern realisieren.

Nehmen wir an, Sie möchten auf eine Peripheriekomponente zugreifen, die unter der 
Adresse 234 erreichbar. Ein entsprechender Programmausschnitt, welcher der Periphe-
riekomponente den Wert 7 übergibt, kann dann wie folgt aussehen.

// Zeiger definieren und initialisieren

// Anschließend verweist der Zeiger auf die gewùnschte Adresse

volatile char *periph_ptr = (char *) 234;

// Der Peripheriekomponente einen Wert ùbergeben

// Hierzu wird an die Adresse, auf die der Zeiger verweist,

// der gewùnschte Wert abgelegt

*periph_ptr = 7;

In dem Programm wird ein Zeiger angelegt und mit der gewünschten Adresse initiali-
siert. Der Zugriff auf die Peripheriekomponente erfolgt dann durch die Dereferenzierung 
des Zeigers im unteren Teil des Beispielcodes. Mithilfe des Schlüsselwortes volatile wird 
der Compiler angewiesen, bei Verwendung des Zeigers keine Optimierung anzuwenden.

Warum dies wichtig ist, kann anhand eines einfachen Beispiels erläutert werden. Neh-
men wir an, Ihr Mikrocontroller besitzt eine Peripheriekomponente, mit welcher der Aus-
gangswert eines Portanschlusses festgelegt werden kann. Schreibt man in ein Register der 
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Komponente den Wert 1, wird eine 1 am Ausgang ausgegeben; wird eine 0 geschrieben 
erscheint am Ausgang der Wert 0. Mithilfe dieser Komponente möchten Sie nun einen 
kurzen Impuls ausgeben. Ein entsprechender Programmausschnitt würde so aussehen:

*output_ptr = 0; // Wir gehen ganz sicher: Erst mal eine 0 ausgeben
*output_ptr = 1; // Eine 1 erscheint am Ausgang
*output_ptr = 0; // Aber nicht lange: Wir setzen den Ausgang wieder 
auf 0

Aus Sicht des Compilers gibt es nur Speicherstellen. Der Compiler kennt keine Peri-
pherie. Was würde also ein optimierender Compiler mit diesem Codeausschnitt tun?

Nun, der Compiler würde annehmen, dass die ersten beiden Zeilen überflüssig sind, 
da am Ende in der (vermeintlichen) Speicherstelle, auf die der Zeiger output_ptr ver-
weist, eine Null stehen wird. Die ersten beiden Zeilen müssten aus Sicht des Compilers 
also nicht ausgeführt werden. Daher wird der Compiler diese Zeilen ignorieren und so 
die Rechenzeit des Programms reduzieren.

Für einen Datenspeicher wäre dieses Verhalten des Compilers korrekt und wün-
schenswert. Für den Zugriff auf eine Peripheriekomponente muss die Optimierung 
dagegen unterbunden werden, da andernfalls kein 1-Impuls am Ausgang des Controllers 
erscheint. Daher werden Zeiger auf Peripheriekomponenten stets mit dem C-Schlüssel-
wort volatile definiert.

In der Praxis muss man die Zeiger nicht selbst definieren. Die Hersteller von Mik-
rocontrollern stellen in der Regel Header-Dateien bereit, in denen die entsprechenden 
Definitionen bereits enthalten sind. Bei dem in diesem Kapitel vorgestellten AVR-Mikro-
controller ist dies die Datei io.h.

14.2.2.2 � Setzen und Löschen von Bits
Häufig sind in einem Register einer Peripheriekomponente mehrere unterschiedliche 
Informationen zusammengefasst. Die einzelnen Bits des Registers besitzen also eine 
unterschiedliche Wirkung. In vielen Fällen möchte man daher nur einzelne Bits eines 
Registers modifizieren.

Nehmen wir zum Beispiel an, dass über den oben verwendeten Zeiger output_ptr der 
Ausgangswert von 8 Mikrocontrolleranschlüssen festgelegt werden kann. Jedem Bit des 
Peripherieregisters, auf das output_ptr verweist, ist genau ein Portausgang des Control-
lers zugeordnet.

Nehmen wir an, Sie möchten am Anschluss 3 eine 1 ausgeben. Hierzu muss also das 
Bit 3 des Registers gesetzt werden. Nehmen wir darüber hinaus an, dass die anderen 
Ausgabewerte unverändert bleiben sollen. Es darf also nur das Bit 3 des Registers modi-
fiziert werden.

Dies lässt sich durch eine bitweise ODER-Verknüpfung, in C/C++ der Operator |, 
des Registerwertes mit dem Wert 8 (Bit 3 ist gesetzt, alle anderen Bits sind Null) errei-
chen. In C kann dies so erfolgen:

14.2  Programmierung von Mikrocontrollern
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// Beispiel fùr das Setzen eines Bits

char tmp;

tmp = *output_ptr; // aktuellen Registerwert holen
tmp = tmp | 8; // Bit 3 setzen -- Achtung! Dies ist ein bitweises 
ODER

// Nicht mit dem logischen ODER verwechseln: ||

*output_ptr = tmp; // und wieder in das Register schreiben

In C/C++ kann man dies auch in einer Zeile schreiben:

*output_ptr |= 8; // Bit 3 setzen - die kurze Variante

Um das beeinflusste Bit noch deutlicher im Code sichtbar zu machen wird häufig eine 
andere Variante für die Angabe der verwendeten Konstante gewählt:

*output_ptr |= 1<<3; // Hier sieht man besser welches Bit gesetzt wird

Die Schreibweise 1<<3 mag auf den ersten Blick ungewöhnlich aussehen. Vielleicht 
wirkt es umständlich, eine 1 um 3 Stellen nach links zu schieben, um so die Konstante 8 zu 
erhalten. Dennoch wird diese Schreibweise bevorzugt bei der Mikrocontrollerprogrammie-
rung eingesetzt, da das modifizierte Bit explizit angegeben wird. Der Code ist besser lesbar.

Um einzelne Bits zu löschen wird die bitweise UND-Verknüpfung (Operator &) 
verwendet. Die UND-Verknüpfung mit einer Konstanten, die nur an einer Bitposi-
tion eine Null enthält uns ansonsten Einsen, löscht genau ein Bit und lässt die anderen 
unangetastet.

Möchte man das Bit 3 löschen, benötigt man den invertierten Wert von 1<<3. In C 
wird die bitweise Invertierung durch den Operator ~ realisiert. Der Code für das Löschen 
des Bits 3 sieht also so aus:

*output_ptr &= ~(1<<3); // Die Klammern sind wichtig, da sonst zuerst
                        // die Invertierung und dann das Schieben

                        // ausgefùhrt wird - und das wàre falsch

Im Fall des AVR sind in der Headerdatei io.h viele Konstanten definiert, welche die 
Bitposition einzelner Peripherieregister enthalten. Im Datenblatt des Controllers findet 
man beispielsweise ein Register mit der Abkürzung TCCR1B. Unter anderem enthält 
dieses Register ein Bit, das mit der Bezeichnung WGM12 abgekürzt wird (was diese Bit 
bewirkt, wird später vorgestellt). Nach Einbinden der Headerdatei io.h kann dieses Bit 
mit der folgenden Zeile gesetzt werden:

TCCR1B |= 1<<WGM12; // Setzen des Bits WGM12 im Register TCCR1B
                    // so man muss nicht die genaue Position

                    // dieses Bits im Kopf haben
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Es können auch mehrere Bits mit einer einzelnen Zuweisung gesetzt werden. Mit 
der nachfolgenden Codezeile werden beispielsweise die Bits TWINT, TWSTA und 
TWEN im Register TWCR gesetzt. Alle anderen Bits des Registers bleiben unverändert.

TWCR |= (1<<TWINT)|(1<<TWSTA)|(1<<TWEN);

14.3	� Die AVR-CPU

Der Mikroprozessor der AVR-Controller ist eine RISC-CPU, die auf einer Harvard-
Architektur basiert. Der Prozessor beinhaltet 32 Arbeitsregister mit einer Wortbreite von 
8 bit, die sowohl für arithmetisch-logische Operationen als auch für Adressberechnungen 
eingesetzt werden können. Diese Register werden als r0,r1,…, r30, r31 bezeichnet. Da 
die CPU auf einer Load/Store-Architektur basiert, können arithmetisch-logische Opera-
tionen nur mit Daten ausgeführt werden, die sich in den Arbeitsregistern befinden. Für 
das Laden der Register beziehungsweise das Abspeichern von Registerwerten stehen ent-
sprechende Transferbefehle zur Verfügung.

Neben den Arbeitsregistern enthält der Mikroprozessor der AVR-Controller die fol-
genden Register:

Programmzähler (Program Counter, PC)
Der Programmzähler enthält die Adresse des als nächsten auszuführenden Befehls und 
besitzt eine Wortbreite, die es ermöglicht, den gesamten Programmspeicher des jeweili-
gen Controllers zu adressieren.

Statusregister
Das Statusregister besitzt eine Wortbreite von 8 bit. Jedes dieser Bits wird auch als Flag 
bezeichnet. Die Flags enthalten unter anderem Informationen über die ausgeführten Ope-
rationen (zum Beispiel Auftreten arithmetischer Überläufe).

Stackpointer
Der Stackpointer (Stapelzeiger) ist ein Register, welches die aktuelle SRAM-Adresse des 
Stapels enthält.

Befehlsregister
Das Befehlsregister dient der Zwischenspeicherung des aus dem Programmspeicher aus-
gelesenen Befehls. Das Befehlsregister ist bei der Programmierung nicht sichtbar und 
der Inhalt kann nicht durch Befehle modifiziert werden.

Der Mikroprozessor enthält darüber hinaus ein Steuerwerk, welches die Decodierung 
der Befehle vornimmt und CPU-interne Steuersignale zur Verarbeitung eines Befehls 
generiert. Das Rechenwerk des AVR-Prozessors enthält eine 8-Bit-ALU, welche die in 
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den Befehlen codierten arithmetischen und logischen Operationen ausführt. Die prinzipi-
elle Struktur des AVR-Mikroprozessors ist in Abb. 14.2 dargestellt.

Die Befehle der CPU werden in 16 bit breiten Worten des Programmspeichers 
abgelegt. Der Mikroprozessor der AVR-Controller arbeitet die Befehle mithilfe einer 
zweistufigen Befehlspipeline ab. In der ersten Pipelinestufe wird ein Befehl aus dem Pro-
grammspeicher ausgelesen. In der zweiten Stufe wird der Befehl ausführt.

Die Mehrheit der arithmetischen Befehle benötigt für die Ausführung der zweiten 
Pipelinestufe lediglich einen Taktzyklus. Da der nachfolgende Befehl bereits während 
der Ausführung des aktuellen Befehls eingelesen wird, kann ein Befehlsdurchsatz von 
bis zu einem Befehl pro Taktzyklus erreicht werden.

Die meisten Load- und Storebefehle sowie die Sprungbefehle benötigen für die Ver-
arbeitung mehrere Taktzyklen. Hierbei wird die Befehlspipeline des AVR angehalten, 
sodass der Befehlsdurchsatz bei Verwendung dieser Befehle absinkt.

Bei der Ausführung eines Befehls wird in vielen Fällen der Inhalt des Statusregisters 
berücksichtigt. Aus diesem Grund wird im Folgenden zunächst das Statusregister der 
CPU betrachtet. Im Anschluss daran werden die Befehle der AVR-CPU vorgestellt.

Das Statusregister (vgl. Tab. 14.1) besitzt eine Wortbreite von 8 bit und beinhaltet die 
nachfolgend erläuterten Flags.

I-Flag
Mithilfe des Interrupt-Flags können Interrupts freigegeben (I = 1) oder gesperrt werden 
(I = 0).

Interne
Steuersignale

Befehlsdecoder
& Steuerung

Statusregister
(SREG) Rechenwerk

(ALU)

Arbeitsregister
(r0 … r31)
32 x 8 bit

Befehlsregister
Programmzähler

(PC)

Stackpointer
(SP)

Befehle
(vom Programmspeicher)

Adressen
(zum Programmspeicher)

Adressen & Daten
(zum/vom Datenspeicher)

Abb. 14.2   Struktur der AVR-CPU
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T-Flag
Das T-Flag kann als Bitspeicher aufgefasst werden. Es kann durch Befehle gelöscht und 
gesetzt werden. Darüber hinaus kann es für die Ausführung von bedingten Sprüngen 
abgefragt werden.

Im Gegensatz zum I-Flag und T-Flag beziehen sich alle weiteren Flags auf arithmeti-
sche Operationen.

Z-Flag
Ist das Ergebnis einer Operation Null, wird dies durch ein gesetztes Zero-Flag (Z = 1) 
signalisiert.

N-Flag
Das Negative-Flag ist die Kopie des höchstwertigen Bits des Ergebnisses, da dieses Bit 
bei Zahlen in Zweierkomplementdarstellung das Vorzeichen repräsentiert.

C-Flag
Mithilfe des Carry-Flags wird gekennzeichnet (C = 1), ob bei einer vorzeichenlosen 
Operation ein Überlauf, also ein Verlassen des darstellbaren Zahlenbereichs aufgetreten 
ist. Darüber hinaus wird das C-Flag bei Schiebe- oder Rotationsbefehlen eingesetzt.

V-Flag
Das Overflow-Flag signalisiert mit V = 1 einen Überlauf bei vorzeichenbehafteten Ope-
rationen wie der Addition oder der Subtraktion.

S-Flag
Ein Überlauf bei einer Zweierkomplementoperation führt dazu, dass das höchstwertige 
Ergebnisbit nicht das korrekte Vorzeichen enthält (vgl. Kapitel 2). Somit kann durch das 
N-Flag in diesem Fall nicht das Vorzeichen des Ergebnisses bestimmt werden. Aus die-
sem Grund bietet die AVR-CPU ein weiteres Flag an: Mithilfe des Sign-Flags wird das 
wahre Vorzeichen, auch bei einem aufgetretenen Zweierkomplementüberlauf, angege-
ben. Das S-Flag ergibt sich aus der Exklusiv-Oder-Verknüpfung des N- und des V-Flags. 
Durch diese Verknüpfung enthält das S-Flag im Fall eines Überlaufs (V = 1) das inver-
tierte N-Flag, während es eine Kopie des N-Flags enthält, wenn kein Überlauf aufgetre-
ten ist.

Tab. 14.1   Statusregister der AVR-CPU

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

I T H S V N Z C

Interrupt-
Flag

Bit-Transfer- 
Flag

Half-
Carry-Flag

Sign-Flag Overflow-
Flag

Negative-
Flag

Zero-Flag Carry-
Flag
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H-Flag
Das Half-Carry-Flag wird gesetzt (H = 1), wenn bei einer vorzeichenlosen Ope-
ration ein Überlauf aus dem niederwertigen in das höherwertige Halbbyte auftritt. 
Das H-Flag ist zum Beispiel für Rechenoperationen mit Zahlen in BCD-Darstellung 
sinnvoll.

14.4	� Der AVR-Befehlssatz

Dieser Abschnitt gibt eine Übersicht über den Befehlssatz der AVR-CPU. Mithilfe von 
arithmetischen und logischen Befehlen werden Arbeitsregister der CPU modifiziert. 
Transferbefehle werden genutzt um Daten aus den Registern in die Peripheriekomponen-
ten oder den Speicher zu übertragen, beziehungsweise um Daten aus den Systemkom-
ponenten in die Arbeitsregister zu transferieren. Eine weitere Gruppe sind die Befehle, 
die zur Steuerung des Programmablaufs genutzt werden. Mithilfe dieser Befehle können 
Sprünge, Verzweigungen und Schleifen realisiert werden.

14.4.1	� Arithmetische und logische Befehle

Als Operanden für die arithmetischen und logischen Befehle können die Arbeitsregis-
ter verwendet werden. Die AVR-CPU verwendet ein sogenanntes Zwei-Adress-Format. 
Das bedeutet, dass maximal zwei Operanden durch einen Befehl adressiert werden. Das 
Ergebnis der ausgeführten Operation wird hierbei in einem der beiden Operandenregister 
abgelegt und der darin gespeicherte Wert wird überschrieben. Exemplarisch kann dies 
anhand des Additionsbefehls verdeutlich werden. Der Befehl add r7,r12 führt eine Addi-
tion der Inhalte der Register r7 und r12 aus. Die Summe der beiden Operanden wird 
anschließend im erstgenannten Register r7 abgelegt.

Darüber hinaus kann für einige Befehle auch die unmittelbare (engl. immediate) 
Adressierung verwendet werden. In diesem Fall ist der zweite Operand eine 8 bit breite 
Konstante, welche im Befehlswort abgelegt wird. Soll beispielsweise die Konstante 17 
vom Inhalt des Registers r23 subtrahiert werden, kann dies mithilfe des Befehls subi 
r23,17 erfolgen. Der Buchstabe i ist hierbei das Kürzel für immediate.

Für alle Befehle, die eine unmittelbare Adressierung verwenden, gilt die Einschrän-
kung, dass sie nur mit der oberen Hälfte des Arbeitsregistersatzes, also mit r16 bis r31, 
verwendet werden können. Der Grund hierfür ist die Beschränkung der Befehlswort-
breite auf 16 bit. Da die Konstante bereits 8 Bit belegt und für die Codierung der aus-
zuführenden Operation weitere 4 Bit benötigt werden, verbleiben lediglich 4 Bit zur 
Codierung des Arbeitsregisters, womit nicht alle 32 Register adressiert werden können.

Bei vielen Mikrocontrollern der AVR-Serie werden auch einige Befehle mit Operan-
den der Wortbreite 16 bit unterstützt. Da die Arbeitsregister der AVR-CPU eine Wort-
breite von 8 bit besitzen, werden die Operanden aus zwei aufeinanderfolgenden Registern 
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(Registerpaare) gebildet. Das Register mit dem niedrigeren Index enthält hierbei die unte-
ren 8 Bit, das Register mit dem höheren Index die oberen 8 Bit des Operanden.

In Tab. 14.2 sind die wichtigsten arithmetischen und logischen Befehle der AVR-CPU 
zusammengefasst.

Die Flags des Statusregisters können auch direkt durch Befehle gesetzt oder gelöscht 
werden (Tab. 14.3).

14.4.2	� Transferbefehle

Die bisher vorgestellten arithmetischen und logischen Befehle dienen der Verarbeitung 
von Daten, die in den Arbeitsregistern der CPU abgelegt sind. Für einen Datenaustausch 
zwischen den Arbeitsregistern und anderen Komponenten des Systems werden weitere 
Befehle, die sogenannten Transferbefehle, benötigt. Es existieren Befehle zum Kopieren 
von Daten zwischen Arbeitsregistern und zum Datenaustausch zwischen CPU und Peri-
pheriekomponenten und dem Speicher.

Für den Datenaustausch mit Peripheriekomponenten (zum Beispiel Speicher oder 
Schnittstellen) werden Load- und Storebefehle bereitgestellt. Für die Adressierung bietet 
die AVR-CPU die Adressierungsarten direkt, indirekt, indirekt mit Post-Inkrement, indi-
rekt mit Pre-Inkrement und indirekt mit Verschiebung an (vgl. Kapitel 13).

Im Fall der indirekten Adressierung wird eine 16-Bit-Adresse aus Registerpaaren 
geholt. Als mögliche Registerpaare stehen die Paare r26:r27, r28:r29 und r30:r31 zur 
Verfügung. Auf diese Weise kann ein Adressraum mit einer Adresswortbreite von 16 bit 
angesprochen werden. Zur Vereinfachung können diese Registerpaare auch mit neuen 
Symbolen (X, Y und Z) angesprochen werden. Die Register X, Y und Z stellen keine 
zusätzlichen Register dar, sondern sind lediglich andere Bezeichnungen für Register-
paare, die bereits im Arbeitsregistersatz enthalten sind. Für die Zuordnung der Register-
bezeichnungen gilt Tab. 14.4.

Während alle Komponenten des Mikrocontrollers memory-mapped adressiert werden 
können, ist für einige häufig verwendete Komponenten auch ein Zugriff über eine io-
mapped-basierte Adressierung mithilfe der Befehle in und out möglich. Diese Befehle 
benötigen weniger Programmspeicherplatz und werden schneller ausgeführt als die ent-
sprechenden memory-mapped arbeitenden Load-/Storebefehle.

In Tab. 14.5 sind die wichtigsten Transferbefehle der AVR-CPU zusammenge-
stellt. Grundsätzlich werden durch die Transferbefehle keine Flags des Statusregisters 
beeinflusst.

14.4.3	� Befehle zur Programmablaufsteuerung

Zur Steuerung des Programmablaufs besitzen die Mikrocontroller der AVR-Familie 
verschiedene Sprungbefehle, mit denen unbedingte oder bedingte Sprünge ausgeführt 

14.4  Der AVR-Befehlssatz
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Tab. 14.2   Arithmetische und logische Befehle der AVR-CPU

(Fortsetzung)
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Tab 14.2   (Fortsetzung)

(Fortsetzung)

14.4  Der AVR-Befehlssatz
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Tab 14.2   (Fortsetzung)

(Fortsetzung)
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werden können. Während die bedingten Sprungbefehle nur eine relative Adressierung 
zur Bestimmung des Sprungziels unterstützen, stehen die unbedingten sowohl mit relati-
ver als auch mit absoluter und indirekter Adressierung zur Verfügung.

Der Aufruf von Unterprogrammen wird beim AVR durch die CALL-Befehle unter-
stützt. Diese Befehle entsprechen einem unbedingten Sprung, wobei zusätzlich die Rück-
sprungadresse, an der das Programm nach Beenden des Unterprogramms fortgesetzt 
werden soll, auf dem Stack abgelegt wird. Für das Beenden eines Unterprogramms wird 
der Befehl RET verwendet. Dieser lädt die auf dem Stack abgelegte Rücksprungadresse 
in den Program Counter und setzt somit das aufrufende Programm an der Stelle fort, die 
dem Einsprung in das Unterprogramm folgt.

Tab 14.2   (Fortsetzung)

Tab. 14.3   Statusregister der 
AVR-CPU

Flag Befehl zum Setzen Befehl zum Löschen

C SEC CLC

N SEN CLN

Z SEZ CLZ

V SEV CLV

S SES CLS

H SEH CLH

T SET CLT

I SEI CLI

Tab. 14.4   Alternative 
Bezeichnungen für Register 
der AVR-CPU

Registerpaar Synonyme Bezeichnung

r27:r26 X

r29:r28 Y

r31:r30 Z

14.4  Der AVR-Befehlssatz
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Tab. 14.5   Transferbefehle der AVR-CPU

(Fortsetzung)
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Tab 14.5   (Fortsetzung)

14.4  Der AVR-Befehlssatz
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In Tab. 14.6 sind die wichtigsten Sprungbefehle der AVR-CPU zusammengestellt.
Neben den oben genannten Sprungbefehlen besitzt die AVR-CPU Befehle, mit denen 

ein einzelner nachfolgender Befehl übersprungen werden kann. Diese sogenannten Skip-
befehle sind in Tab. 14.7 zusammengefasst.

Für die Ausführung von bedingten Sprüngen können die Befehle BRBC und BRBS 
verwendet werden. Hierbei ist die Angabe des abzufragenden Flags des Statusregisters 
erforderlich. Da dies das Programm unübersichtlicher machen kann, stehen für jedes Bit 
des Statusregisters spezielle Sprungbefehle zur Verfügung. Diese Befehle stellen keine 
zusätzlichen Befehle dar, sondern sind lediglich synonyme Bezeichnungen für die ent-
sprechenden Varianten des BRBC- beziehungsweise BRBS-Befehls. Tab. 14.8 fasst die 
Synonyme für bedingte relative Sprungbefehle zusammen.

14.5	� Verwendung der AVR-Befehle

In diesem Abschnitt wird die Verwendung des Befehlssatzes anhand einiger Beispiele 
verdeutlicht. Hierzu werden Programmfragmente vorgestellt, die auch in größeren AVR-
Programmen eingesetzt werden können.

14.5.1	� Arithmetische und logische Grundfunktionen

Die Mikroprozessoren der AVR-Familie unterstützen Befehle zur Verarbeitung von Byte-
operanden. Sollen Operanden mit einer größeren Wortbreite verarbeitet werden, müssen 
hierzu mehrere aufeinander folgende Befehle verwendet werden. Im Folgenden wird dies 
für einige arithmetische und logische Grundfunktionen vorgestellt.

14.5.1.1 � Setzen und Löschen einzelner Bits
Zum Setzen oder Löschen einzelner oder auch mehrerer Bits stehen die Befehle sbr und 
cbr zur Verfügung. Alternativ können hierfür auch die logischen Befehle and, andi bezie-
hungsweise or oder ori eingesetzt werden. Sowohl für die Befehle sbr und cbr als auch 
für alle Befehle mit unmittelbarer Adressierung wie andi oder ori dürfen nur die Register 
r16 bis r31 verwendet werden.

; Setzen des Bits 4 im Register r20

sbr   r20,16

ori   r20,0x10   ; Alternative mit identischer Funktion

; Lòschen des Bits 2 im Register r23

cbr   r23,4

andi  r23,0xFB   ; Alternative mit identischer Funktion
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Tab. 14.6   Sprungbefehle der AVR-CPU

14.5  Verwendung der AVR-Befehle
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Tab. 14.7   Überblick über die Skipbefehle

Tab. 14.8   Überblick über bedingte relative Sprungbefehle

Flag Bedingter Sprungbefehl

C 0 BRCC, BRSH Branch if Carry Cleared, Branch if Same or Higher

1 BRCS, BRLO Branch if Carry Set, Branch if Lower

N 0 BRPL Branch if Plus

1 BRMI Branch if Minus

Z 0 BRNE Branch if Not Equal

1 BREQ Branch if Equal

V 0 BRVC Branch if Overflow Cleared

1 BRVS Branch if Overflow Set

S 0 BRGE Branch if Greater or Equal (signed)

1 BRLT Branch if Less Than (signed)

H 0 BRHC Branch if Half-Carry Cleared

1 BRHS Branch if Half-Carry Set

T 0 BRTC Branch if T-Flag Cleared

1 BRTS Branch if T-Flag Set

I 0 BRID Branch if Interrupt Disabled

1 BRIE Branch if Interrupt Enabled
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14.5.1.2 � Addition und Subtraktion
Im folgenden Programmfragment wird davon ausgegangen, dass die zu addierenden 
16 bit breiten Operanden in den Registerpaaren r25:r24 und r27:r26 stehen. Die Summe 
wird im Registerpaar r25:r24 abgelegt.

; Addition zweier 16-Bit-Operanden

add   r24,r26   ; untere 8 Bit der Operanden addieren

adc   r25,r27   ; obere 8 Bit der Operanden addieren

Mithilfe des ersten Befehls werden die beiden unteren Bytes der Operanden addiert. 
Der Übertrag dieser Operation wird im Carry-Flag des Statusregisters gespeichert. Mit dem 
zweiten Befehl werden die beiden oberen Bytes der Operanden addiert, wobei das im Carry-
Flag gespeicherte Übertragsbit durch den Befehl adc (add with carry) berücksichtigt wird.

Liegen die Operanden nicht in Registern sondern im Speicher, müssen die Operan-
den zunächst durch geeignete Load-Befehle in die CPU übertragen werden. Dies kann 
mit absoluter oder indirekter Adressierung geschehen. Das folgende Beispiel benutzt 
die absolute Adressierung für den ersten Operanden, während der zweite Operand mit 
indirekter Adressierung unter Verwendung des Y-Registers (Registerpaar r29:r28) in den 
Prozessor übertragen wird.

; Addition zweier 16-Bit-Operanden im Speicher

lds   r24,0x100   ; untere 8 Bit des 1. Operanden holen

lds   r25,0x101   ; obere 8 Bit des 1. Operanden holen

ldi   r28,0x02    ; Adresse des 2. Operanden in das …

ldi   r29,0x01    ; … Y-Register ùbertragen

ld    r24,Y+      ; unteres Byte des 2. Operanden holen (Adresse: 0x102)
ld    r25,Y       ; oberes Byte des 2. Operanden holen (Adresse: 0x103)

add   r24,r26     ; Addition durchfùhren

adc   r25,r27

sts   0x100,r24   ; unteres Byte des Ergebnisses speichern

sts   0x101,r25   ; oberes Byte des Ergebnisses speichern

Analog zur Addition kann die Subtraktion ausgeführt werden:

; Subtraktion zweier 16-Bit-Operanden

sub   r24,r26   ; untere Bytes der Operanden subtrahieren

sbc   r25,r27   ; obere Bytes der Operanden subtrahieren

Wie im Fall der Addition wird in diesem Beispiel ein möglicher Übertrag, der sich 
bei der Subtraktion der unteren Operandenbytes ergibt, durch den Befehl sbc (subtract 
with carry) berücksichtigt. Im Fall der Subtraktion ist dieser Übertrag negativ zu gewich-
ten. Daher wird mithilfe des sbc-Befehls von der Differenz der Operanden r25 und r27 
zusätzlich der Wert des Carry-Flags subtrahiert.

14.5  Verwendung der AVR-Befehle
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14.5.1.3 � Arithmetische und logische Schiebeoperationen
Für logische oder arithmetische Schiebeoperationen stehen die Befehle lsr, lsl, ror, rol 
und asr zur Verfügung, die einen Wert um ein Bit nach rechts beziehungsweise links ver-
schieben. Das jeweils „herausgeschobene“ Bit, beim Rechtsschieben beispielsweise das 
unterste Bit des Operanden, wird im Carry-Flag abgelegt. Die Rotationsbefehle ror und 
rol übertragen den Wert des Carry-Flags in das frei gewordenen Bit des Arbeitsregisters. 
In Abb. 14.3 ist die Funktionsweise der Schiebe- und Rotationsbefehle veranschaulicht.

Die Schiebebefehle arbeiten mit 8-Bit-Operanden. Durch mehrfache Anwendung von 
Schiebebefehlen können auch breitere Operanden verarbeitet werden. Exemplarisch wird 
dies anhand eines 16-Bit-Wertes gezeigt, welcher in zwei Arbeitsregistern abgelegt ist.

; Schieben nach links

lsl   r24   ; unteres Byte schieben

rol   r25   ; oberes Byte schieben

; Schieben nach rechts (logisch bzw. vorzeichenlos)

lsr   r25   ; oberes Byte schieben

ror   r24   ; unteres Byte schieben

0

LSR

1 1 0 0 0 1 01

0 0 1 1 0 0 0 10

0

0

LSL

1 1 0 0 0 1 01

1 1 0 0 0 1 0 00

0

0

ROR

1 1 0 0 0 1 01

1 0 1 1 0 0 0 10

Operand

Ergebnis

C-Flag

Operand

Ergebnis

C-Flag

Operand

Ergebnis

C-Flag Operand

Ergebnis

C-Flag

Operand

Ergebnis

C-Flag
0

ROL

1 1 0 0 0 1 01

1 1 0 0 0 1 0 10

0

ASR

1 1 0 0 0 1 01

0 0 1 1 0 0 0 10

Ein ASL-Befehl existiert nicht

Logisches Schieben

Arithmetisches Schieben

Rotieren

Abb. 14.3   Schiebe- und Rotationsbefehle
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Die gezeigten Befehle können auch als arithmetische Schiebeoperation, also eine 
Multiplikation mit 2 beziehungsweise eine Division durch 2 aufgefasst werden, sofern 
der Operand als vorzeichenlose Zahl aufgefasst wird. Bei der Schiebeoperation nach 
links tritt hierbei ein Überlauf auf, wenn das höchstwertige Bit des Operanden gesetzt 
ist. Soll dieser Fall abgefangen werden, kann nach dem Schieben der Wert des Carry-
Flags abgefragt werden. Ist dieses gesetzt, ist ein Überlauf aufgetreten. Im Fall des 
Rechtsschiebens tritt dagegen nie ein Überlauf auf.

Stellt der Operand dagegen eine Zweierkomplementzahl dar, kann ein Überlauf im 
Fall des Linksschiebens durch ein gesetztes V-Flag detektiert werden.

Für das arithmetische Rechtsschieben von vorzeichenbehafteten Zahlen muss der 
Befehl asr verwendet werden. Dieser sorgt im Gegensatz zu den anderen Schiebebefeh-
len dafür, dass das höchstwertige Bit des Operanden in das Ergebnis kopiert wird.

; Arithmetisches Schieben nach rechts (vorzeichenbehaftet)

asr   r25   ; oberes Byte schieben

ror   r24   ; unteres Byte schieben

14.5.1.4 � Multiplikation
Viele der AVR-CPUs unterstützen die Multiplikation zweier 8-Bit-Werte. Das Ergebnis 
der Multiplikationsbefehle ist ein 16-Bit-Wert, der im Registerpaar r1:r0 abgelegt wird. 
Sollen 16-Bit-Operanden multipliziert werden, müssen insgesamt vier Multiplikations-
befehle verwendet werden. Die hierbei entstehenden Teilergebnisse werden anschlie-
ßend entsprechend ihrem Gewicht addiert. Diese Vorgehensweise wird in Abb. 14.4 
verdeutlicht.

Eine entsprechende Umsetzung des Prinzips ist im folgenden Programmfragment dar-
gestellt. Die 16-Bit-Operanden stehen in den Registerpaaren r25:r24 und r27:r26. Das 
32 bit breite Ergebnis wird in den Registern r16 bis r19 abgelegt, wobei r16 die unters-
ten 8 Bit und r19 die obersten 8 Bit des Produktes enthält. Die Register r17 und r18 
enthalten die Produktbits 15 bis 8 beziehungsweise 23 bis16. Die Berücksichtigung des 
Gewichts der Teiloperanden erfolgt durch die Auswahl der Produktregister.

Abb. 14.4   Prinzip der 16x16-
Multiplikation mithilfe von 
8x8-Multiplikationsbefehlen

Op1_h Op1_l*

Op1_l* Op2_l

Op2_h Op2_l

Op1_h* Op2_l

Op1_l* Op2_h

Op1_h* Op2_h

+

+

+

Produkt P

14.5  Verwendung der AVR-Befehle



450 14  Mikrocontroller

; Vorzeichenlose 16x16 Multiplikation

clr   r18         ; Produktbits (23:16) auf 0 setzen

clr   r19         ; Produktbits (31:24) auf 0 setzen

mul   r24,r26     ; op1_l * op2_l (1. Teilergebnis mit Gewicht 16:0)

mov   r16,r0      ; Ergebnis in die Produktbits (7:0) …

mov   r17,r1      ; … und (15:8) kopieren

mul   r25,r26     ; op1_h * op2_l (2. Teilergebnis mit Gewicht 24:8)

add   r17,r0      ; Ergebnis zu den Produktbits (15:8) …

adc   r18,r1      ; … und (23:16) addieren

mul   r24,r27     ; op1_l * op2_h (3. Teilergebnis, mit Gewicht 24:8)

add   r17,r0      ; Ergebnis zu den Produktbits (15:8) …

adc   r18,r1      ; … und (23:16) addieren

mul   r24,r27     ; op1_h * op2_h (4. Teilergebnis mit Gewicht 31:16)

add   r18,r0      ; Ergebnis zu den Produktbits (23:16) …

adc   r19,r1      ; … und (31:24) addieren

14.5.1.5 � Division
Die Division wird von der AVR-CPU nicht durch einen entsprechenden Befehl unter-
stützt. Stattdessen kann diese Operation mithilfe eines Algorithmus durchgeführt 
werden, der, wie die schriftliche Division, auf einer sukzessiven Berechnung der Quo-
tientenbits basiert. Abb. 14.5 veranschaulicht das Vorgehen bei einer vorzeichenlosen 
Division für 8-Bit-Operanden.

Ein entsprechendes AVR-Programm kann wie folgt realisiert werden:

Abb. 14.5   Flussdiagramm für 
die 8-Bit-Division

nein

ja

nein

Quotient schieben

Rest &
Dividend schieben

Rest < Divisor?

Bitzähler = 8
Rest & Quotient löschen

Bitzähler = Bitzähler -1

Bitzähler = 0?

Rest = Rest - Divisor
Quotient = Quotient | 1
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; Vorzeichenlose 8-Bit-Division

; r16=Bitzàhler, r24=Dividend, r25=Divisor
; r26=Rest, r27=Quotient
ldi r16,8          ; Bitzàhler = 8
clr r26            ; Rest lòschen

clr r27            ; Quotient lòschen

div_loop:

   lsl r27         ; Quotient schieben

   lsl r24         ; oberstes Dividendenbit in C-Flag

   rol r26         ; Dividendenbit in Rest verschieben

   cp r26,r25      ; Rest mit Divisor vergleichen

   brcs dec_cnt    ; falls Rest kleiner: springen

   sub r26,r25     ; Divisor von Rest subtrahieren

   ori r27,1       ; Quotientenbit setzen

dec_cnt:

   dec r16         ; Bitzàhler dekrementieren

   brne div_loop   ; falls noch nicht 0: nàchste Iteration

14.5.2	� Befehle für den Zugriff auf Speicher und 
Peripheriekomponenten

In diesem Abschnitt werden die Befehle zum Transfer von Daten zwischen der CPU 
und dem Speicher beziehungsweise den eingebetteten Peripheriekomponenten näher 
erläutert. Da die AVR-CPU eine Load-Store-Architektur besitzt, müssen alle Daten, die 
durch ein Programm verarbeitet werden sollen, zunächst durch einen Ladebefehl (load) 
in ein Arbeitsregister der CPU übertragen werden. Anschließend können die Daten mit 
arithmetischen oder logischen Befehlen verarbeitet werden. Die Ergebnisse dieser Ope-
rationen können für weitere arithmetisch-logische Befehle im Register verbleiben oder 
werden mithilfe eines Speicherbefehls (store) in den Speicher oder die Peripheriekompo-
nenten übertragen

Für die Adressierung des SRAMs im Controller stehen mehrere Load- und Storebe-
fehle zur Verfügung, welche sich durch die verwendete Adressierungsart unterscheiden. 
Diese Befehle sind in Tab. 14.9 zusammengefasst.

Tab. 14.9   Adressierung des SRAMs über Lade- und Speicherbefehle

Addressierungsart Load-Befehl Storebefehl

Absolut lds sts

Indirekt ld st

Indirekt mit Pre-Drekrement oder Post-Inkrement ld st

Indirekt mit Verschiebung ldd std

Absolut lds sts

14.5  Verwendung der AVR-Befehle
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Als Zielarbeitsregister der Load-Befehle beziehungsweise Quellarbeitsregister für die 
Store-Befehle können alle 32 Arbeitsregister der CPU verwendet werden. Für die Adres-
sierung des Speichers im Fall der indirekten Adressierung können nur die Register X, Y 
und Z verwendet werden. Der Offset bei indirekter Adressierung mit Verschiebung darf 
nur positiv sein und den Wert 63 nicht überschreiten. Darüber hinaus wird diese Adres-
sierungsart nur für die Register Y und Z unterstützt.

Im Folgenden sind Codebeispiele zur Verwendung der Load- und Storebefehle ange-
geben. Alle Beispiele führen die gleiche Operation aus: Das Kopieren des Wertes in der 
SRAM-Speicherstelle 228 in die SRAM-Speicherstelle 254.

; Speicherstelle kopieren mit absoluter Adressierung

lds   r7,228      ; Wert aus SRAM laden

sts   254,r7      ; Wert in SRAM speichern

; Speicherstelle kopieren mit indirekter Adressierung

ldi   r30,228     ; Low-Byte des Z-Registers laden

ldi   r31,0       ; High-Byte des Z-Registers laden

ldi   r26,255     ; Low-Byte des X-Registers laden

ldi   r27,0       ; High-Byte des X-Registers laden

ld    r3,Z        ; Wert indirekt aus SRAM laden

st    -X,r3       ; mit Pre-Dekrement speichern

; Kopieren mit indirekter Adressierung mit Verschiebung

ldi   r28,220     ; Low-Byte des Y-Registers laden

ldi   r29,0       ; High-Byte des Y-Registers laden

ldd   r5,Y+8      ; Wert aus SRAM laden
std   Y+34,r5     ; Wert in SRAM speichern

Für einen Zugriff auf den Programmspeicher wird der Befehl lpm (load from pro-
gram memory) zur Verfügung gestellt. Dieser Befehl ermöglicht es auf im Programm-
speicher abgelegte Konstanten zuzugreifen. Hierbei wird nur die indirekte Adressierung 
oder die indirekte Adressierung mit Post-Inkrement unterstützt. Wird bei Verwendung 
des lpm-Befehls kein Operand angeben, erfolgt die Berechnung der Programmspei-
cheradresse mithilfe des Registerpaares Z und der gelesene Wert wird im Register r0 
abgespeichert.

; Beispiele fùr die Verwendung des Befehls lpm

lpm               ; r0 mit Wert aus Programmspeicher laden

lpm   r0,Z        ; identisch zu voriger Zeile

lpm   r8,Z        ; hier wird r8 ùberschrieben

lpm   r17,Z+      ; r17 laden, anschließend Z inkrementieren

Der Zugriff auf die Peripheriekomponenten kann sowohl memory-mapped (mithilfe 
der zuvor beschriebenen Load-/Storebefehle) als auch port-mapped erfolgen. Für einen 
port-mapped-basierten Zugriff stellt die AVR-CPU die Befehle in und out zur Verfügung.
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Die Befehle in und out unterstützen nur eine absolute Adressierung. Soll beispiels-
weise ein Wert auf den digitalen Ausgängen (PORTA) eines ATmega32 ausgegeben wer-
den, kann dies mithilfe des Befehls

out   27,r7        ; r7 auf den PORTA-Anschlùssen ausgeben

geschehen. Die Adressen der einzelnen Peripheriekomponenten können in den Daten-
blättern der AVR-Controller nachgeschlagen werden. Allerdings wird der Programmcode 
durch eine Angabe der Adresse als Zahlenwert wie im obigen Beispiel recht unüber-
sichtlich. Die Firma Atmel stellt daher sowohl für Assembler- als auch für C-Programme 
Include-Dateien zur Verfügung, in denen symbolische Konstanten für den Zugriff auf die 
Peripheriekomponenten definiert sind. Hiermit kann das obige Beispiel auch wie folgt 
formuliert werden.

.include "m32def.inc"   ; Include Datei einbinden

out   PORTA,r7          ; r7 auf den PORTA-Anschlùssen ausgeben

Mithilfe der Befehle in und out kann auch auf CPU-interne Register wie das Status-
register oder den Stackpointer zugegriffen werden, wie die folgenden Codebeispiele 
zeigen:

in   r14,SREG      ; Statusregister nach r14 kopieren

in   r30,SPL       ; niederwertiges Byte des SP nach r30

in   r31,SPH       ; hòherwertiges Byte des SP nach r31

14.5.3	� Programmverzweigungen

Im Rahmen dieses Abschnitts wird anhand von einfachen Beispielen verdeutlicht, wie 
die Sprungbefehle der AVR-CPU eingesetzt werden können. Hierzu wird zunächst auf 
Programmverzweigungen eingegangen. Anschließend werden der Aufruf von Unterpro-
grammen und Möglichkeiten der Übergabe von Parametern an Unterprogramme vorge-
stellt. Eine Einführung in die Verarbeitung von Interrupts schließt den Abschnitt ab.

14.5.3.1 � Bedingte Verzweigungen und Programmschleifen
Soll eine bedingte Verzweigung oder eine Programmschleife realisiert werden, kön-
nen hierzu die bedingten Sprungbefehle oder auch die Skip-Befehle verwendet wer-
den. Exemplarisch kann die Verwendung der AVR-Sprungbefehle anhand zweier 
einfacher Beispiele verdeutlich werden, die in Abb. 14.6 als Flussdiagramme darge-
stellt sind.

Die bedingte Ausführung eines Befehls (Abb. 14.6a) lässt sich mithilfe eines Ver-
gleichs und eines bedingten Sprungbefehls realisieren.

14.5  Verwendung der AVR-Befehle
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; Verzweigung mit bed. Sprung (if)

cp    r24,r25    ; R24 und R25 vergleichen (Flags wie SUB)

brne  weiter     ; falls ungleich: springen

subi  r28,10     ; Subtraktion ausfùhren

weiter:

Ebenso könnte die gleiche Funktionalität erreicht werden, wenn das Programmfrag-
ment mit Skip-Befehlen realisiert würde. Der Skip-Befehl überprüft eine Bedingung 
(zum Beispiel, ob zwei Register identische Werte besitzen) und überspringt nachfolgen-
den Befehl falls die Bedingung erfüllt ist. Im obigen Beispiel bietet sich die Verwendung 
des Befehls cpse (compare and skip if equal) an:

; Verzweigung mit Skip-Befehl

cpse  r24,r25     ; Vergleich -- Nachf. Befehl evtl. ùberspringen

subi r28,10       ; wird nicht ausgefùhrt falls r24=r25

Bei diesem Beispiel besitzt der Skip-Befehl gegenüber dem Branch-Befehl Vorteile, 
da Programmcode eingespart und gleichzeitig die Ausführungszeit des Programmab-
schnitts um einen Taktzyklus reduziert wird.

Ein Programmfragment, welches das Beispiel aus Abb. 14.6b umsetzt, könnte wie 
folgt formuliert werden:

; Verzweigung mit bed. Sprung (if-else)

cp     r24,r25   ; R24 und R25 vergleichen (Flags wie SUB)

brne  do_inc     ; falls ungleich: springen

subi  r28,10     ; Subtraktion ausfùhren

rjmp  weiter     ; alternativen Code ùberspringen

do_inc:

   inc   r27     ; R27 inkrementieren

weiter:

ja

nein

r24 = r25 ?

r28 = r28 - 10

a)

ja

nein r27 = r27 + 1

b)

r24 = r25 ?

r28 = r28 - 10

Abb. 14.6   Beispiele für Programmverzeigungen
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Der Einsatz von Skip-Befehlen ist in diesem Beispiel nicht vorteilhafter. Auf ein ent-
sprechendes Beispiel wird daher verzichtet.

14.5.3.2 � Unterprogrammaufrufe
Unterprogramme werden mithilfe der Befehle call, rcall oder icall aufgerufen. Wäh-
rend der Befehl call die Adresse des Unterprogramms absolut angibt, verwendet der 
Befehl rcall eine relative Adressierung. Da der Befehl rcall einen geringeren Programm-
speicherbedarf besitzt und schneller ausgeführt wird, ist dieser Befehl in der Regel zu 
bevorzugen. Hierbei ist jedoch zu berücksichtigen, dass die Differenz der Einsprungad-
resse des Unterprogramms und des rcall-Befehls auf den Wertebereich von −2048 bis 
+2047 begrenzt ist. Ist die Differenz größer, muss auf den call-Befehl zurückgegriffen 
werden. Der Befehl icall ermöglicht die Angabe der Unterprogrammadresse mithilfe des 
Z-Registers und verwendet somit eine indirekte Adressierung.

Die CPU legt mit dem Unterprogrammaufruf die Rücksprungadresse merken. Dies 
ist die Programmspeicheradresse, bei der das Programm nach Beenden des Unterpro-
gramms fortgesetzt werden soll. Für die Speicherung der Rücksprungadresse wird der 
Stack verwendet. Da Programmspeicheradressen im Fall des AVR eine Wortbreite von 
16 bit besitzen, werden hierdurch zwei Speicherplätze des Stacks belegt.

Ein Unterprogramm wird mit dem Befehl ret beendet. Dieser Befehl lädt die auf dem 
Stack abgelegte Programmspeicheradresse des aufrufenden Programms in den Program 
Counter (PC). Der Program Counter adressiert somit anschließend die Befehle des aufru-
fenden Programms, welches nach Ausführung des ret-Befehls fortgesetzt wird.

Werden in einem Unterprogramm Zwischenergebnisse erzeugt, können diese tempo-
rär in Arbeitsregistern abgelegt werden. Da die Werte dieser Register durch das Unter-
programm verändert werden, ist es sinnvoll, die betroffenen Arbeitsregister zu Beginn 
des Unterprogramms auf dem Stack zu sichern. Hierzu wird der Befehl push verwendet. 
Vor Verlassen des Unterprogramms werden die ursprünglichen Werte der Arbeitsregister 
mithilfe des pop-Befehls vom Stack in die Register zurückgeladen. Nach Verlassen des 
Unterprogramms besitzen somit alle Arbeitsregister den Wert, den sie beim Aufruf des 
Unterprogramms besaßen.

Die Arbeitsregister können auch zur Übergabe von Parametern oder Rückgabe-
werten verwendet werden. Ein Beispiel hierfür zeigt das nachfolgende Programm, 
welches aus einem Hauptprogramm haupt_prg und einem Unterprogramm up_add 
besteht.

; Beispiel fùr Unterprogrammaufrufe mit

; registerbasierter Parameterùbergabe

haupt_prg:

ldi   r24,42        ; 1. Beispielwert laden

ldi   r25,37        ; 2. Beispielwert laden

rcall up_add        ; Unterprogramm aufrufen

…                   ; weitere Befehle zur Verarbeitung des

14.5  Verwendung der AVR-Befehle
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…                   ; Ergebnisses (steht in r16)

up_add:

push  r24           ; r24 auf dem Stack sichern

add   r24,r25       ; Parameter addieren

mov   r16,r24       ; Ergebnis nach r16 schreiben

pop   r24           ; r24 wieder herstellen

ret                 ; Unterprogramm verlassen

Als Alternative zur registerbasierten Parameterübergabe kommt auch die Über-
gabe von Parametern mithilfe des Stacks infrage. Dieses Vorgehen ist insbesondere 
dann sinnvoll, wenn eine große Anzahl von Parametern an ein Unterprogramm über-
geben werden soll. Im folgenden Beispiel wird die Parameterübergabe exemplarisch 
verdeutlicht.

Das Unterprogramm sichert zunächst die verwendeten Registerwerte auf dem Stack, 
und es wird der aktuelle Wert des Stackpointers in das Z-Register geladen. Anschließend 
erfolgt die indirekte Adressierung der Daten mithilfe einer indirekten Adressierung mit 
Verschiebung. Nach der Verarbeitung der Daten, in diesem Beispiel die Addition der 
übergebenen Parameter, wird das Ergebnis auf dem Stack gesichert, wobei der erste 
Übergabeparameter überschrieben wird. Nach dem Wiederherstellen der gesicherten 
Registerwerte wird das Unterprogramm verlassen.

Das Hauptprogramm stellt den ursprünglichen Wert des Stackpointers nach Rückkehr 
aus dem Unterprogramm wieder her, indem die zuvor mit push-Befehlen auf dem Stack 
abgelegten Werte mit zwei pop-Befehlen vom Stack entfernt werden. Da der erste Über-
gabeparameter mit dem Ergebnis des Unterprogramms überschrieben wurde, befindet 
sich nach Ausführung beider pop-Befehle das Ergebnis des Unterprogramms im Arbeits-
register r24.

Wird eine Parameterübergabe mithilfe des Stacks durchgeführt, ist es sinnvoll, die 
Belegung des Stacks tabellarisch festzuhalten. Hierzu wird in einer zweispaltigen Tabelle 
in der linken Spalte die Adresse der Speicherstelle (relativ zum aktuellen Stackpointer) 
und in der rechten Spalte der Wert der Speicherstelle eingetragen.

Für die Realisierung des Codes wird angenommen, dass das Hauptprogramm zwei 
Parameter auf dem Stack ablegt und anschließend in das Unterprogramm verzweigt. Zu 
Beginn des Unterprogramms werden die Register r30, r31, r24 und r25 auf dem Stack 
gesichert. Die anschließende Belegung des Stacks ist in Tab. 14.10 dargestellt. Anhand 
der Tabelle kann nachvollzogen werden, dass die Parameter an den Adressen Stackpoin-
ter+7 und Stackpointer+8 zu finden sind, woraus sich direkt der benötigte Offset für die 
Verschiebung zur Adressierung der Übergabeparameter ergibt.

Auf Basis der dokumentierten Stackbelegung kann das Programm realisiert werden. 
Im Folgenden ist der Code für das Hauptprogramm haupt_prg und das Unterprogramm 
up_add dargestellt.
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; Beispiel fùr Unterprogrammaufrufe mit

; stackbasierter Parameterùbergabe

haupt_prg:

ldi   r24,42      ; 1. Beispielwert laden

push  r24         ; 1. Wert auf dem Stack ablegen

ldi   r24,37      ; 2. Beispielwert laden

push  r24         ; 2. Wert auf dem Stack ablegen

rcall up_add      ; Unterprogramm aufrufen

pop   r24         ; Stackpointer durch pop-Befehle

pop   r24         ; wieder herstellen

                  ; Das Ergebnis steht nun in r24

…                 ; weitere Befehle zur Verarbeitung des Ergebnisses

up_add:

push  r30         ; r30, r31 (= Z-Register)
push  r31         ; auf dem Stack sichern

push  r24         ; temporàr verwendete Register sichern

push  r25

in     r30,SPL    ; untere 8 Bit des Stackpointers nach r30

in     r31,SPL    ; obere 8 Bit des Stackpointers nach r31

ldd   r24,Z+8     ; 1. Wert vom Stack nach r24 kopieren
ldd   r25,Z+7     ; 2. Wert vom Stack nach r25 kopieren
add   r24,r25     ; Parameter addieren

std   Z+8,r24      ; Ergebnis anstelle des 1. Wertes auf dem Stack ablegen
pop   r25         ; gesicherte Register wieder herstellen

pop   r24         ; Aufgrund der Struktur des Stapelspeichers

pop   r31         ; geschieht dies in umgekehrter Reihenfolge

pop   r30         ; (Beispiel: Das zuerst gesicherte Register wird

                  ; zuletzt vom Stack geholt)

ret               ; Unterprogramm verlassen

Tab. 14.10   Belegung 
des Stacks für das 
Beispielprogramm

Adresse Wert

SP+8 1. Parameter (42)

SP+7 2. Parameter (37)

SP+6 Rücksprungadresse

SP+5 Rücksprungadresse

SP+4 r30

SP+3 r31

SP+2 r24

SP+1 r25

SP „unbelegt“

14.5  Verwendung der AVR-Befehle
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14.6	� Grundlagen der Interruptverarbeitung

Eine wichtige Aufgabe eines Mikrorechnersystems ist es, auf Ereignisse reagieren zu 
können. Derartige Ereignisse können zum Beispiel Eingaben des Benutzers oder auch 
das Bereitstellen von Daten eines Sensors sein. Ebenso könnten eingebettete Periphe-
riekomponenten wie Timer oder Kommunikationsschnittstellen Ereignisse auslösen, auf 
die das Programm reagieren muss. Eine besondere Eigenschaft dieser Ereignisse ist, dass 
sie asynchron zum laufenden Programm auftreten. Dies heißt, dass man bei der Erstel-
lung eines Programms nicht weiß, welcher Teil des Programms gerade abgearbeitet wird, 
wenn das Ereignis auftritt.

Es existieren zwei grundlegende Alternativen, um auf diese Ereignisse zu reagie-
ren. Diese Alternativen werden im Folgenden mit dem englischen Fachbegriff Polling 
(deutsch: Abfragen) und als Interruptverarbeitung oder kurz Interrupts bezeichnet.

Eine Analogie aus dem täglichen Leben kann helfen, die Grundprinzipien die-
ser beiden Strategien zu verdeutlichen: Sie haben Gäste eingeladen, wissen aber nicht 
genau, wann die Gäste erscheinen werden. Zur Bewirtung Ihrer Gäste müssen Sie noch 
Getränke kalt stellen.

Eine denkbare Strategie wäre es, auf dem Flur der Wohnung im Kreis zu laufen. Jedes 
Mal bei Erreichen der Wohnungstür wird diese geöffnet, um nachzuschauen, ob die 
Gäste schon eingetroffen sind. Um die Wartezeit sinnvoller zu nutzen, könnte auch ein 
Weg durch die Küche gewählt werden, um mit jedem Durchlauf eine Getränkeflasche in 
den Kühlschrank zu stellen. Diese Vorgehensweise entspricht in etwa dem Prinzip des 
Pollings: Die Abfrage des Ereignisses („Gäste sind da“) wird wiederholt (in einer Warte-
schleife) ausgeführt ohne zu wissen, ob das Ereignis wirklich eingetreten ist. Zusätzlich 
zur Abfrage des Ereignisses kann in der Warteschleife ein Teil der sonst noch anstehen-
den Aufgaben („Getränke kalt stellen“) abgearbeitet werden.

In der Realität würden die meisten Menschen vermutlich eine andere Strategie wäh-
len, da sie eine Türklingel besitzen: Sie arbeiten die Aufgabe „Getränke kalt stellen“ ab 
und unterbrechen diese Arbeit sobald die Klingel läutet. Die Gäste werden hereingelas-
sen und die unterbrochene Arbeit wird wieder aufgenommen. Diese Strategie entspricht 
der Interruptverarbeitung: Das Ereignis („Gäste sind da“) wird durch eine besondere 
Hardware („Klingel“) signalisiert. Solange das Ereignis nicht eintritt, werden andere 
Aufgaben abgearbeitet.

Obwohl die oben dargestellte Analogie nicht überstrapaziert werden sollte, kann sie 
einige Konsequenzen der unterschiedlichen Strategien zur Verarbeitung von Ereignissen 
verdeutlichen:

•	 Für die interruptbasierte Verarbeitung wird zusätzliche Hardware benötigt, die zur 
Unterbrechung einer von der CPU abgearbeiteten Aufgabe führt.

•	 Potenziell könnte Polling zu kürzeren Reaktionszeiten führen. („Öffnen der Tür genau 
in dem Moment, in dem die Gäste die Tür erreichen“).
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•	 Treten Ereignisse nur kurzzeitig auf, besteht insbesondere bei Polling die Gefahr, dass 
diese Ereignisse verpasst werden („die Gäste gehen wieder, weil der Gastgeber gerade 
zu lange in der Küche beschäftigt ist“)

In den folgenden Abschnitten werden weitere Aspekte der Interruptverarbeitung durch 
ein Mikrorechnersystem diskutiert.

14.6.1	� Interruptfreigabe

In typischen Mikrorechnersystemen können prinzipiell mehrere Ereignisse auftreten, auf 
die ein Programm reagieren könnte. Nicht alle dieser möglichen Ereignisse sind für eine 
konkrete Anwendung relevant. Daher ist es sinnvoll, dass nur die relevanten Ereignisse 
zu einer Unterbrechung des Programms führen.

Die Möglichkeit, dass man festlegt welche Ereignisse zu Programmunterbrechungen 
führen, wird als Interruptfreigabe bezeichnet.

Die Interruptfreigabe erfolgt häufig hierarchisch. Hierbei kann eine globale und eine 
lokale Interruptfreigabe unterschieden werden. Die globale Interruptfreigabe dient dazu, 
Programmunterbrechungen grundsätzlich zuzulassen. Zusätzlich ist es für jedes Ereignis 
möglich, das Auslösen eines Interrupts zu erlauben oder zu sperren. Erst wenn die globale 
Interruptfreigabe und die lokale Freigabe mindestens eines Ereignisses erfolgt sind, kön-
nen Unterbrechungen auftreten. Damit ein Ereignis (beispielsweise eine Flanke an einem 
Interrupteingang) zu einer Programmunterbrechung führt, muss also sowohl die lokale 
Freigabe des jeweiligen Ereignisses als auch die globale Interruptfreigabe erfolgt sein.

Die globale Freigabe von Interrupts im Fall der AVR-CPU erfolgt durch das Setzen 
des Interrupt-Flags (I-Flag) im Statusregister der CPU. Hierfür kann für Assemblerpro-
gramme der Befehl sei beziehungsweise für C-Programme die Funktion sei() verwendet 
werden. Das Löschen des Flags, und damit das globale Sperren aller Interrupts, erfolgt 
mit dem Befehl cli oder der C-Funktion cli().

Die lokale Interruptfreigabe erfolgt durch eine entsprechende Programmierung der 
einzelnen eingebetteten Peripheriekomponenten, die in den nachfolgenden Abschnit-
ten näher vorgestellt werden. Exemplarisch für die lokale Interruptfreigabe werden hier 
externe Interrupts behandelt.

Die Controller der AVR-Familie besitzen die Möglichkeit einer Programmunterbre-
chung, wenn ein äußeres Signal einen bestimmten Wert annimmt. Hierzu besitzt bei-
spielsweise der Controller ATmega32 drei Anschlüsse, die mit INT0, INT1 und INT2 
gekennzeichnet sind. Für die lokale Freigabe der zugehörigen Interrupts besitzt der 
ATmega32 das Global Interrupt Control Register (GICR), welches die in Tab. 14.11 dar-
gestellte Belegung hat.

Durch Setzen des Bits 7 dieses Registers erfolgt beispielsweise die lokale Freigabe 
des Interrupts, der dem Controlleranschluss INT1 zugeordnet ist. Entsprechendes gilt für 
die Bits 6 und 5, mit denen die Interrupts der Anschlüsse INT0  bzw. INT2 freigeschaltet 
werden können.

14.6  Grundlagen der Interruptverarbeitung
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Für die Auswahl, welches konkrete Ereignis (Low-Pegel, High-Pegel, steigende oder 
fallende Flanke des an dem Anschluss zugeführten Signals) zu einer Programmunterbre-
chung führt, existieren weitere Register, wie das Microcontroller Unit Control Register 
(MCUCR) und das Microcontroller Unit Control and Status Register (MCUCSR).

14.6.2	� Interrupt-Service-Routinen

Nachdem ein freigegebenes Ereignis zur Auslösung einer Unterbrechung geführt hat, 
muss der Programmteil aufgerufen werden, der zur Verarbeitung dieses Interrupts vorge-
sehen ist. Dieser Programmteil wird als Interrupt-Service-Routine (ISR) bezeichnet.

Die Unterbrechung des laufenden Programms und das Verzweigen in die ISR erfolgen 
durch die Hardware des Mikrorechners. Daher muss der CPU vor dem Auslösen eines 
Interrupts bekannt sein, an welcher Position im Programmspeicher die zugehörige ISR 
zu finden ist. Hierzu wird ein Zeiger auf die entsprechende Programmspeicher-Position 
benötigt. Dieser Zeiger, welcher auch als Interrupt-Vektor bezeichnet wird, kann bereits 
mit dem Entwurf des Prozessors festgelegt werden. In diesem Fall liegt die Position der 
ISR fest und kann nicht nachträglich modifiziert werden. Alternativ finden auch pro-
grammierbare Interrupt-Vektoren Anwendung. In diesem Fall kann durch eine entspre-
chende Programmierung die Einsprungadresse der ISR durch das Programm bestimmt 
werden.

Im Fall der AVR-CPU wird der erste Weg beschritten, wobei die Interrupt-Service-
Routinen in den ersten Speicherstellen des Programmspeichers abgelegt werden. Für 
jede ISR sind im unteren Teil des Programmspeichers zwei Programmspeicherworte 
reserviert. Dieser Speicherplatz reicht natürlich nicht für die Aufnahme einer kompletten 
ISR aus. Allerdings ist der reservierte Bereich ausreichend, um einen Sprungbefehl (zum 
Beispiel mithilfe des jmp-Befehls) aufzunehmen, mit welcher der Code der eigentlichen 
ISR aufgerufen wird.

In den Datenblättern der AVR-Controller ist die Zuordnung von Ereignissen und 
Interrupt-Vektoren zu finden. Exemplarisch fasst Tab. 14.12 die Interrupt-Vektoren des 
ATmega32 zusammen.

Bei einem Ereignis an INT1 springt ein Interrupt beispielsweise an Adresse 
4 und dort wird ein Sprung in die ISR hinterlegt. Da die Sprungbefehle immer 
16 Bit des Programmspeichers belegen, beginnen alle Interruptvektoren an geraden 
Programmspeicheradressen.

Die folgenden Beispielprogramme verdeutlichen die Verwendung von Interrupt-
Service-Routinen in Assembler beziehungsweise C. Um die Programme möglichst 

Tab. 14.11   Belegung des 
GICR-Registers

GICR

Bit 7 6 5 4 3 2 1 0

Name INT1 INT0 INT2 – – – IVSEL IVCE
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übersichtlich zu halten, beschränkt sich die Aufgabe der ISR auf das Zählen der steigen-
den Flanken am Controller-Anschluss INT1.

In diesem Programm werden einige Assembler-Direktiven verwendet, die an dem 
vorangestellten Punkt zu erkennen sind. Assembler-Direktiven sind Anweisungen, die 
während der Übersetzung des Programms ausgewertet werden. Sie werden nicht in aus-
führbare Befehle umgesetzt und belegen daher auch keinen Platz im Programmspeicher. 
Die Direktive .org bewirkt, dass nachfolgende Befehle an einer definierten Position im 
Programmspeicher abgelegt werden. Im obigen Beispiel wird sie verwendet, um den 
nachfolgenden Befehl (jmp isr_int1) an die Adresse des Interruptvektors (0x04) abzule-
gen. Nach Einsatz der Direktive .dseg beziehen sich alle Befehle auf das SRAM. Die im 
Beispielprogramm angegebene Folge aus den Direktiven .dseg, .org und .db dienen dazu, 
im SRAM ein Byte an der Adresse 0x200 zu reservieren. Mithilfe des Labels icnt kann 

Tab. 14.12   Zuordnung von Ereignissen und Interruptvektoren

Interrupt-
vektor (hex.)

Interruptquelle
Kurzbezeichnung Erläuterungen Gruppe

00 RESET Reset des Systems (nicht sperrbar) Reset

02 INT0 Ereignis an Anschluss INT0 Externe 
Interruptquellen04 INT1 Ereignis an Anschluss INT1

06 INT2 Ereignis an Anschluss INT2

08 TIMER2_COMP Timer2-Vergleichs-Interrupt Timer

0A TIMER2_OVF Timer2-Überlauf-Interrupt

0C TIMER1_CAPT Timer1-Capture-Interrupt (ICU)

0E TIMER1_COMPA Timer1-Vergleichs-Interrupt A

10 TIMER1_COMPB Timer1-Vergleichs-Interrupt B

12 TIMER1_OVF Timer1-Überlauf-Interrupt

14 TIMER0_COMP Timer0-Vergleichs-Interrupt

16 TIMER0_OVF Timer0-Überlauf-Interrupt

18 SPI_STC SPI: Übertragung abgeschlossen Eingebettete
Schnittstellen1A USART_RXC USART: Datenempfang 

abgeschlossen

1C USART_UDRE USART: Sendedatenspeicher leer

1E USART_TXC USART: Senden eines Datums 
abgeschlossen

20 ADC Umsetzung des Analogwertes fertig

22 EE_RDY EEPROM-Bereit-Interrupt EEPROM

24 ANA_COMP Analog-Komparator Eingebettete
Schnittstellen26 TWI I2C/TWI-Interrupt

28 SPM_RDY Programmspeicher-Interrupt Programmspeicher

14.6  Grundlagen der Interruptverarbeitung
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auf dieses Byte ähnlich wie auf eine Variable in einem Hochsprachenprogramm zugegrif-
fen werden.

; Beispiel fùr Unterprogrammaufrufe mit Interrupt-Service-Routinen

; Beispiel fùr die Interruptverarbeitung in Assembler

; Zàhlen der steigenden Flanken am Anschluss INT1

.include "m32def.inc" ; Controllerspezifische Definitionen einbinden

jmp   main            ; nach Reset: Sprung ins Hauptprogramm

.org  0x04            ; Assemblierung bei INT-Vektor fortsetzen

jmp   isr_int1        ; Sprung in eigentliche ISR fùr INT1

…                     ; hier mòglicherweise weitere ISRs

…                     ; oder Unterprogramme

isr_int1:

push  r24             ; Register auf Stack retten

lds   r24,icnt        ; aktuellen Zàhlerwert holen

inc   r24             ; Zàhler inkrementieren

sts   icnt,r24        ; in SRAM abspeichern

reti                  ; ISR verlassen

main:

; Initialisierung

clr   r24             ; r24 auf null setzen

sts   icnt,r24        ; Zàhlvariable lòschen

lds   r16,MCUCR

ori   r16,(1<<ISC10)  ; INT1 so programmieren, dass eine Unter-

ori   r16,(1<<ISC11)  ; brechung mit einer steig. Flanke auftritt

sts   MCUCR,r16

lds   r16, GIFR

ori   r16,(1<< INT1)  ; lokale Interruptfreigabe fùr INT1

sts   MCUCR,r16

sei                   ; globale Interruptfreigabe

; Endlosschleife des Hauptprogramms

main_lp:

lds  r24,icnt         ; aktuellen Zàhler nach r24

call  ausgabe         ; Wert ausgeben -- Das Unterprogramm

                      ; „ausgabe" ist hier nicht angegeben

rjmp  main_lp         ; Endlosschleife des Hauptprogramms

.dseg                 ; Assemblierung auf SRAM umschalten 

(„Datensegment")

.org  0x200           ; SRAM-Adresse auswàhlen

icnt:

.db  0                ; 1 Byte reservieren

Ein äquivalentes Programm kann auch in der Sprache C formuliert werden. Hierzu 
werden sowohl die controller-spezifischen Definitionen aus der Include-Datei io.h als 
auch die speziellen Definitionen für Interruptverarbeitung (interrupt.h) eingebunden.
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In der Include-Datei interrupt.h sind unter anderem auch Makros definiert, die zu 
einer einfachen Definition von ISRs verwendet werden können. Hierzu wird das Makro 
ISR() aufgerufen. Als Parameter wird der zugehörige Interruptvektor verwendet, der 
durch die Kurzbezeichnung des Vektors mit nachgestelltem „_vect“ gekennzeichnet 
wird.

// Programmbeispiel zur Verwendung von ISRs in C

#include <avr/io.h>          // Controller-spezifische Definitionen

#include <avr/interrupt.h>   // Header-Datei fùr Interrupts

volatile unsigned char icnt;

// Hauptprogramm

void main()

{

   // Initialisierung

   icnt = 0;
   // Interrupt bei steigender Flanke an INT1

   MCUCR |= (1<<ISC11)| (1<<ISC10);
   GICR |= 1<<INT1;     // Lokale Interruptfreigabe
   sei();               // Globale Interruptfreigabe

   while (1) {          // Endlosschleife

        Ausgabe(icnt);

   }

}

// INT1 ISR

ISR (INT1_vect)

{

   icnt++;             // Diese ISR inkrementiert icnt
}

Insbesondere bei Verwendung der Hochsprache C wird deutlich, dass Interrupt-
Service-Routinen grundsätzlich keine Argumente und auch keine Rückgabewerte besit-
zen. Diese Eigenschaft ergibt sich aus der Tatsache, dass man nicht wissen kann, welcher 
Programmteil gerade ausgeführt wird, wenn eine ISR aufgerufen wird. Somit können 
auch keine Parameter in Arbeitsregistern oder auf dem Stack abgelegt werden, die dann 
von einer ISR verarbeitet werden könnten. Die einzige Möglichkeit eine Kommunika-
tion zwischen Hauptprogramm und ISR zu realisieren, ist die Verwendung gemeinsamer 
Speicherplätze, zum Beispiel im SRAM.

14.7	� Eingebettete Peripheriekomponenten

Mikrocontroller sind universell einsetzbare digitale Systeme, die auf einem Chip integ-
riert sind. Neben einer CPU enthalten Sie eine Vielzahl von verschiedenen Peripherie-
komponenten für sehr unterschiedliche Aufgaben. Die Hersteller von Mikrocontrollern 

14.7  Eingebettete Peripheriekomponenten



464 14  Mikrocontroller

bieten meist eine große Anzahl von unterschiedlichen Mikrocontrollern an, die sich auch 
im Hinblick auf die in dem System eingebetteten Komponenten unterscheiden.

Im Folgenden werden am Beispiel der Mikrocontroller der AVR-Familie typische 
Peripheriekomponenten und ihre Programmierung vorgestellt. Hierbei wird der AVR-
Mikrocontroller ATmega32 zugrunde gelegt. Anhand dieses Beispielcontrollers wird die 
Funktionsweise ausgewählter Peripheriekomponenten diskutiert. Auf diese Weise wer-
den konkrete Kenntnisse der AVR-Mikrocontrollerserie vermittelt, die es ermöglichen, 
einfache AVR-basierte Systeme zu realisieren. Außerdem werden Sie in die Lage ver-
setzt, die anhand der AVR-Serie vermittelten Grundprinzipien auf andere eingebettete 
digitale Systeme zu übertragen.

14.7.1	� Ports

Jeder Mikrocontroller besitzt sogenannte Ports. Ports sind Anschlüsse des Mikrocontrol-
lers, die durch eine entsprechende Programmierung als digitale Eingänge oder Ausgänge 
verwendet werden können.

Häufig werden die einzelnen Anschlüsse zu Gruppen zusammengefasst und erhal-
ten einen logischen Namen, der sowohl im Datenblatt referenziert als auch im Rahmen 
der Softwareentwicklung in den Programmen verwendet wird. So besitzt der ATmega32 
beispielsweise vier Ports, die mit PORTA, PORTB, PORTC und PORTD bezeichnet 
werden. Jedem dieser Ports sind acht Anschlüsse des Controllers zugeordnet. Die Port-
anschlüsse des Controllers werden durch eine entsprechende Nummerierung unterschie-
den. So werden beispielsweise die acht Anschlüsse des Ports PORTA als PA0 bis PA7 
bezeichnet. Für die anderen Ports gelten entsprechende Zuordnungen.

Um eine hohe Flexibilität beim Einsatz der Ports zu erzielen, ist es möglich, jeden 
einzelnen Anschluss eines Ports, unabhängig von den anderen Anschlüssen dieses Ports, 
als Ausgang oder Eingang zu programmieren.

Ist ein Portanschluss als Ausgang konfiguriert, wird durch das laufende Programm 
festgelegt, ob an diesem Anschluss eine logische 0 oder 1 ausgegeben wird. Entspre-
chend kann mithilfe eines als Eingang programmierten Ports ein digitaler Wert eingele-
sen und durch die Software des Controllers ausgewertet werden.

Ports stellen somit die universellste Peripheriekomponente dar, da sie für die Ver-
bindung eines Mikrocontrollers mit beliebigen anderen digitalen Bausteinen eingesetzt 
werden können. Aus diesem Grund wird statt des Begriffs Port häufig auch der Begriff 
General Purpose Input/Output (GPIO) verwendet.

Die Grenzen der Einsetzbarkeit von Ports wird im Wesentlichen durch die Leis-
tungsfähigkeit der CPU des Controllers bestimmt: Je häufiger ein Portbit pro Zeiteinheit 
umprogrammiert werden muss, desto höher ist die hierfür benötigte Rechenleistung. Im 
ungünstigsten Fall übersteigt die zur Bedienung der Ports benötigte Rechenleistung die 
durch die CPU zur Verfügung gestellte Rechenleistung, sodass eine konkrete Aufgabe, 
wie die Kommunikation mit einem anderen Baustein, nicht realisiert werden kann. Es 
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muss daher im Einzelfall geprüft werden, ob eine angestrebte digitale Ein-/Ausgabefunk-
tion durch eine entsprechende Portprogrammierung erfolgen kann, oder ob der Einsatz 
eines Controllers sinnvoll ist, der die gewünschte Funktion durch spezialisierte Hard-
ware-Komponenten zur Verfügung stellt.

Zur Programmierung von Peripheriekomponenten werden sogenannte I/O-Register 
verwendet. Entsprechend der Grundfunktion eines Ports müssen mindestens zwei I/O-
Register vorhanden sein: Ein Register zur Auswahl, ob ein Anschluss als Eingang oder 
als Ausgang betrieben werden soll und ein weiteres Register, welches zum Einlesen oder 
Ausgeben der eigentlichen Daten dient.

Entsprechend ihrer Funktion findet man in nahezu allen Mikrocontrollern zur Pro-
grammierung von Ports sogenannte Datenrichtungsregister und Datenregister. Mithilfe 
des Datenrichtungsregisters wird die Datenrichtung, also ob ein Portbit als Eingang oder 
als Ausgang arbeitet, programmiert. Die Datenregister dienen der eigentlichen Ein-/Aus-
gabe digitaler Werte. Darüber hinaus können einem Port weitere I/O-Register zugeordnet 
sein, mit denen spezielle Portfunktionen aktiviert werden können.

Die im Rahmen dieses Kapitels betrachtete AVR-Familie ordnet jedem Port drei I/O-
Register zu:

Datenrichtungsregister (Data Direction Register, DDR)
Wird ein Bit im Datenrichtungsregister auf 0 gesetzt, arbeitet der zugehörige Anschluss 
als Eingang. Ist das dem Anschluss zugehörige Bit dagegen auf 1 gesetzt, wird der ent-
sprechende Anschluss als digitaler Ausgang betrieben.

Dateneingangsregister (Port Input Register, PIN)
Mithilfe dieses Registers können die an einem Port anliegenden digitalen Eingangswerte 
eingelesen werden.

Datenausgaberegister (Port Output Register, PORT)
Ist ein Portanschluss als Ausgang programmiert, kann mithilfe des PORT-Registers der 
ausgegebene logische Wert festgelegt werden. Ist ein Portanschluss als Ausgang pro-
grammiert, wird durch Setzen des zugehörigen Bits des PORT-Registers eine 1 oder 
durch Löschen des Bits eine logische 0 ausgegeben.

Wird ein Portanschluss als Eingang verwendet, kann mithilfe des PORT-Registers ein 
sogenannter Pull-up-Widerstand durch Setzen des Portbits aktiviert werden. Der Port-
eingang wird dann über einen Widerstand (im Bereich mehrerer Kiloohm) mit der Ver-
sorgungsspannung verbunden. Auf diese Weise liegt an dem Eingang eine „schwache 
Eins“ an, die durch die äußere Beschaltung mit einer „starken Null“, also einer relativ 
niederohmigen Verbindung zu Masse, überschrieben werden kann.

Ist das zugehörige Bit im PORT-Register gelöscht, arbeitet der Eingang in einem 
hochohmigen Modus (s. Tab. 14.13).

Die Portprogrammierung kann anhand eines einfachen Schaltungsbeispiels ver-
deutlicht werden: An einen ATmega32-Controller ist ein Taster und eine LED mit 
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Vorwiderstand anschlossen. Der Taster ist mit dem Portanschluss PA2 und die LED mit 
dem Anschluss PA6 verbunden. Ein entsprechender Schaltplan ist in Abb. 14.7 darge-
stellt. Die Aufgabe des Controllers besteht darin, die LED einzuschalten, wenn der Taster 
gedrückt wird.
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Abb. 14.7   Einfache Mikrocontrolleranwendung mit LED und Taster

Tab. 14.13   Funktionen der 
Portanschlüsse bei AVR-
Mikrocontrollern

Bit im IO-Register Funktion des Portanschlusses
DDR PORT

0 0 Eingang, hochohmig

0 1 Eingang, Pull-up-Widerstand aktiviert

1 0 Ausgang, Ausgabe einer 0

1 1 Ausgang, Ausgabe einer 1
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Aufgrund der Beschaltung muss der Anschluss PA1 als Eingang und der Anschluss 
PA6 als Ausgang betrieben werden. Über die Verwendung der anderen Anschlüsse des 
Ports PORTA wurde keine Aussage getroffen.

#define __AVR_ATmega32__ // Auswahl des Controllers

#include <avr/io.h> // Definitionen etc. fùr den Controller einbinden

void main()

{

   // Initialisierung

   DDRA  |= 0x40; // Bit 6 im Datenrichtungsregister A setzen
   DDRA  &= 0xFD; // Bit 1 im Datenrichtungsregister A lòschen
   PORTA |= 0x02; // Bit 1 im PORTA-Register setzen und so den
                  // internen Pull-Up-Widerstand aktivieren

   // Endlosschleife

   while (1) {

        if (PINA & 0x02)     // PA2 = 1 => Taster nicht gedrùckt
            PORTA &= 0xBF;   // PORTA(6) lòschen (LED aus)
        else                 // PA2 = 0 => Taster gedrùckt
            PORTA |= 0x40;   // PORTA(6) setzen (LED an)
   }

}

Neben der Portprogrammierung verdeutlicht dieses einfache Beispielprogramm einige 
weitere wichtige Aspekte der Programmierung von Mikrocontrollern der AVR-Serie. Im 
Folgenden werden die einzelnen Zeilen des Programms näher erläutert:

#define __AVR_ATmega32__ // Auswahl des Controllers

Mithilfe dieser Zeile wird der Controller ausgewählt, für den das Programm geschrie-
ben wird. Bei Verwendung einer Entwicklungsumgebung wie Atmel Studio geschieht 
diese Auswahl in der Regel über die Einstellungen des in der Entwicklungsumgebung 
angelegten Projektes. In diesem Fall kann die explizite Auswahl des Controllers im Pro-
gramm entfallen.

#include <avr/io.h> // Definitionen etc. fùr den Controller einbinden

Diese Zeile inkludiert eine Header-Datei, welche unter anderem die Definitionen der 
im Controller vorhandenen I/O-Register enthält. Anschließend kann auf die Register des 
Controllers wie auf Variablen eines C-Programms zugegriffen werden, was die Program-
mierung und die Lesbarkeit des Programms wesentlich vereinfacht.

void main()

14.7  Eingebettete Peripheriekomponenten
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Diese Zeile leitet das Hauptprogramm ein und entspricht der üblichen Programmie-
rung in der Programmiersprache C. Anders als bei manchen Programmen, die für einen 
PC entwickelt werden, besitzt das Hauptprogramm keine Argumente und keine Rück-
gabewerte. Da das Hauptprogramm bei einfachen Controllern häufig direkt nach dem 
Einschalten des Systems, ohne Zuhilfenahme eines Betriebssystems gestartet wird, exis-
tiert kein aufrufendes Programm (zum Beispiel das Betriebssystem), welches Argumente 
übergeben könnte oder Rückgabewerte erwartet.

Manchmal wird dennoch für das Hauptprogramm eines AVRs ein Rückgabewert 
angegeben. Der Grund hierfür ist in dem verwendeten Compiler zu suchen, welcher eine 
Warnmeldung ausgibt, falls das Hauptprogramm keinen Rückgabewert besitzt. Diese 
Warnmeldung kann durch die Definition eines Rückgabewertes vermieden werden.

// Initialisierung

DDRA  |= 0x40; // Bit 6 im Datenrichtungsregister A setzen
DDRA  &= 0xFD; // Bit 1 im Datenrichtungsregister A lòschen
PORTA |= 0x02; // Bit 1 im PORTA-Register setzen und so den
               // internen Pull-Up-Widerstand aktivieren

Die korrekte Programmierung des Datenrichtungsregisters des verwendeten Ports 
geschieht mithilfe dieser Zeilen. In der ersten Zeile wird der aktuelle Wert des Datenrich-
tungsregisters gelesen und mithilfe einer bitweisen ODER-Verknüpfung mit der hexade-
zimalen Konstanten 0x40 (binär: 0100 0000) verknüpft. Das Ergebnis der Verknüpfung 
wird im Datenrichtungsregister des Ports A, DDRA, abgelegt. Durch diese Form der Pro-
grammierung des Datenrichtungsregisters wird sichergestellt, dass das Bit 6 des Daten-
richtungsregisters DDRA, welches die Datenrichtung des Portanschlusses PA6 festlegt, 
auf 1 gesetzt wird. Alle anderen Bits des Datenrichtungsregisters behalten ihren Wert. 
Analog wird in der zweiten Zeile das Löschen des Bits 1 im Datenrichtungsregister 
durch die Verwendung einer bitweisen UND-Verknüpfung durchgeführt.

Da bei geöffnetem Taster kein eindeutiger logischer Pegel an dem Anschluss PA1 
anliegt, wird mithilfe der dritten Zeile der interne Pull-Up-Widerstand dieses Portan-
schlusses aktiviert. Bei geöffnetem Taster würde an dem Portanschluss über den Pull-
Up-Widerstand eine logische 1 anliegen, während bei gedrücktem Taster eine logische 0 
anliegt.

while (1)

Mit dem Setzen der für die Anwendung relevanten Bits der Register DDRA und 
PORTA ist die Initialisierung für dieses einfache Programmbeispiel abgeschlossen und 
es folgt der Code für den normalen Betrieb des Controllers. Dieser wird in den meis-
ten Fällen in eine Endlosschleife eingebettet, da das Programm kontinuierlich auf Einga-
ben reagieren soll. Würde man auf die Endlosschleife verzichten, würde das Programm 
bereits nach wenigen Taktzyklen beendet sein. In diesem Fall wird in eine vom Compiler 
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erzeugte leere Endlosschleife verzweigt. Die gewünschte Reaktion des Controllers auf 
den Tastendruck würde also nur einmalig, kurz nach dem Einschalten des Controllers 
erfolgen.

if (PINA & 0x02)  // PA2 = 1 => Taster nicht gedrùckt

Mithilfe dieser Zeile wird der Anschluss PA2 des Controllers abgefragt. Der Lesezu-
griff auf PINA liefert den momentanen Wert aller Portanschlüsse des Ports PA zurück. 
Von diesen 8 Bit ist jedoch nur eines für die Ausführung der gewünschten Funktion rele-
vant. Daher werden die nicht relevanten Bits durch die UND-Verknüpfung mit der Kon-
stanten 0x02 (binär: 0000 0010) ausgeblendet, und es ergeben sich zwei mögliche Werte 
für den Ausdruck PINA&0x02: Liegt an dem Anschluss PA2 eine logische 1 an (Taster 
offen), ergibt der Ausdruck den Wert 2. Ist der Taster gedrückt und liegt eine logische 0 
am Anschluss PA2 an, ergibt der Ausdruck den Wert 0. Da in der Programmiersprache 
C alle Ausdrücke, die einen Wert ungleich Null ergeben, als wahr interpretiert werden, 
kann der Ausdruck PINA&0x02 zur Auswahl herangezogen werden. Ist der Taster nicht 
gedrückt (Ausdruck ungleich Null), würde der If-Zweig ausgeführt werden. Im anderen 
Fall der Else-Zweig.

PORTA &= 0xBF;     // PORTA(6) lòschen (LED aus)
PORTA |= 0x40;     // PORTA(6) setzen (LED an)

Diese beiden Zeilen setzen beziehungsweise löschen das Bit 6 des I/O-Registers 
PORTA. Ist das Bit gelöscht, liegt an dem Portanschluss eine niedrige Spannung (nahe 
0 V) an und über die LED fällt keine Spannung ab; die LED leuchtet nicht. Ist das Bit 
dagegen gesetzt, wird am Anschluss eine hohe Spannung (nahe der Versorgungsspan-
nung des Controllers) ausgegeben und die LED leuchtet.

Die Programmierung der Ports kann ebenso in Assembler erfolgen. Ein Programm, 
welches die oben beschriebene Funktion ausführt, könnte wie folgt realisiert werden:

.include "m32def.inc"

in    r24,DDRA    ; Aktuellen Wert des DDRA-Registers holen

ori   r24,0x40    ; relevante Bits setzen

andi  r24,2       ; bzw. lòschen

out   DDRA,r24    ; Ergebnis abspeichern

in    r24,PORTA   ; PORTA holen

ori   r24,0x2     ; Pull-Up fùr Eingang PA1 aktivieren

out   PORTA,r24   ; PORTA setzen

main_loop:

in    r16,PINA    ; Eingabewert holen

andi  r16,0x02    ; Bit 1 maskieren

breq  led_on      ; falls Ergebnis = 0, springen
in    r24,PORTA
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andi  r24,0xBF

out   PORTA,r24   ; LED aus

rjmp  main_loop

led_on:

in    r24,PORTA

ori   r24,0x40

out   PORTA,r24   ; LED an

rjmp  main_loop

Den Portanschlüssen eines Mikrocontrollers können neben der softwaregesteuer-
ten Ein-/Ausgabe digitaler Daten auch andere Funktionen zugeordnet werden. Die ent-
sprechenden alternativen Portfunktionen (engl. alternate port functions) werden in den 
Anschlussdiagrammen des Controllers häufig in Klammern angegeben. So können die 
Anschlüsse PA0 bis PA7 eines ATmega32 beispielsweise als analoge Eingänge verwen-
det werden. Andere Anschlüsse wie PD0, PD1 oder PC0, PC1 können dagegen mit ein-
gebetteten Peripheriekomponenten zur seriellen Datenübertragung verbunden werden. 
Ist eine alternative Portfunktion aktiviert worden, ist die ursprüngliche Portfunktion 
in der Regel nicht mehr zugänglich, da die Peripheriekomponente die Steuerung der 
Anschlüsse übernimmt. Durch die Mehrfachbelegung der Anschlüsse eines Mikrocont-
rollers wird erreicht, dass die Anzahl der Anschlüsse gering gehalten wird. Der Control-
ler kann somit in kleinere Gehäuse mit relativ wenigen Anschlüssen eingebaut werden, 
was neben der kleineren Bauform auch zu einer Verringerung der Herstellungskosten 
beiträgt. In den folgenden Abschnitten werden einige der wichtigsten Peripheriekom-
ponenten anhand des Beispiels eines ATmega32 beschrieben. Die zugehörigen alternati-
ven Portfunktionen werden in Zusammenhang mit der jeweiligen Peripheriekomponente 
beschrieben.

14.7.2	� Timer

Timer sind ebenso wie die zuvor beschriebenen Ports Standardkomponenten eines Mik-
rocontrollers. Sie können für sehr unterschiedliche Aufgaben eingesetzt werden. Hierzu 
zählen unter anderem die Erzeugung von Signalen, die zeitliche Vermessung von Signa-
len (zum Beispiel Frequenzzähler) oder auch die regelmäßige Unterbrechung des CPU-
Programms durch Interrupts.

Die Kernkomponente eines Timers ist ein digitaler Zähler, der häufig eine Wortbreite 
von 8, 16 oder 32 bit besitzt. Der Zähler wird entweder mit einem aus dem Systemtakt 
abgeleiteten Takt oder mit einem von außen angelegten Taktsignal betrieben (Abb. 14.8). 
Der aktuelle Zählerstand wird durch eine nachgeschaltete Einheit ausgewertet, welche in 
Abhängigkeit vom Zählerstand ein Timer-Ereignis auslösen kann. Auf Basis des Timer-
Ereignisses können weitere Aktionen abgeleitet werden. Dies kann zum Beispiel das 
Invertieren eines Mikrocontroller-Anschlusses oder die Unterbrechung des laufenden 
Programms durch einen Interrupt sein.
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Auf den ersten Blick mag die Kernfunktion eines Timers simpel erscheinen, sodass 
die Schlussfolgerung naheliegen könnte, dass die Funktion eines Timers auch mit-
hilfe der CPU durch ein entsprechendes Programm nachgebildet werden kann. Diese 
Schlussfolgerung würde jedoch vernachlässigen, dass die CPU die wertvollste und uni-
versell einsetzbarste Komponente ist. Es ist daher nicht sinnvoll, diese Komponente 
für eine so einfache Aufgabe wie das Zählen von Impulsen einzusetzen, da die hierfür 
benötigte Rechenleistung nicht mehr für andere Aufgaben genutzt werden kann. Neben 
der Entlastung der CPU bietet die Auslagerung häufig genutzter Funktionen in eine 
eigenständige Hardwarekomponente einen weiteren entscheidenden Vorteil: Wird eine 
Funktion in Form einer spezialisierten Hardware implementiert, kann die Implementie-
rung so erfolgen, dass die Ausführung dieser Funktion in wenigen Taktzyklen (häufig 
in einem einzelnen Taktzyklus) erfolgt. Eine entsprechende Realisierung als CPU-Pro-
gramm benötigt dagegen in der Regel eine deutlich höhere Ausführungszeit, was sich 
insbesondere dann negativ auswirken würde, wenn auf äußere Ereignisse, wie zum 
Beispiel der Wechsel des Wertes eines Eingangssignals reagiert werden muss. Diese 
Tatsache wird in den folgenden Abschnitten am Beispiel der Funktion eines Timers 
verdeutlicht.

Die im Rahmen dieses Kapitels betrachteten Timer des Mikrocontrollers ATmega32 
können in verschiedenen Modi betrieben werden. Die Modi werden als der „Normale 
Modus (normal mode)“, der „CTC-Modus“ sowie als „PWM-Modi“ bezeichnet. In den 
folgenden Abschnitten werden diese Modi näher beschrieben.

14.7.2.1 � Normal Mode
Der als Normal Mode bezeichnete Modus eines AVR-Timers stellt den einfachsten 
Betriebsmodus dar. In diesem Modus zählt der Zähler des Timers nur aufwärts. Bei 
Erreichen des Zähler-Endwertes (zum Beispiel 255 bei einem 8-Bit-Timer) wird der 
Zählerstand auf 0 gesetzt und erneut aufwärts gezählt. Das Erreichen des Endwertes 
stellt ein Ereignis dar, welches zum Beispiel zur Invertierung eines Ausgangssignals ver-
wendet werden kann. Das zugehörige zeitliche Verhalten des Zählerstandes und des Aus-
gangssignals ist in Abb. 14.9 dargestellt.
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Abb. 14.8   Prinzipieller Aufbau eines einfachen Timers
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Wird der Timer mit der Taktfrequenz des Controllers fsys betrieben, ergibt sich die 
Rate der Überlaufereignisse ROV beziehungsweise die Frequenz des erzeugten Signals fout 
zu:

beziehungsweise

Die Überlaufrate ROV hängt in diesem Fall nur von der Systemtaktfrequenz ab. Für eine 
grobe Einstellung der Überlaufrate wird bei Timern in der Regel ein Vorteiler eingesetzt. 
Im Fall des ATmega32 kann der Vorteiler des Timers auf fünf verschiedene Werte zwi-
schen 1 (keine Vorteilung) und 1024 (der Zähler des Timers wird mit 1/1024 der Sys-
temfrequenz betrieben) eingestellt werden. Für die Einstellung des Vorteilers werden 
I/O-Register (Timer/Counter Control Register, TCCR) zur Verfügung gestellt. Wird für 
den Vorteiler der Wert NVor verwendet, gilt für die Überlaufrate

Durch die Verwendung des Vorteilers lässt sich somit eine grobe Einstellung der Über-
laufrate und damit der Frequenz der Timerereignisse vornehmen.

14.7.2.2 � CTC Modus
Eine feinere Einstellung des zeitlichen Verlaufs der Timerereignisse lässt sich erzielen, 
wenn der Zählerstand, dem ein Ereignis zugeordnet ist, frei programmiert werden kann. 
Hierzu besitzt ein Timer ein Register, dessen Inhalt kontinuierlich mit dem aktuellen 
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Abb. 14.9   Verlauf des Zählerstandes und eines Ausgangssignals im Normal Mode
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Zählerstand verglichen wird. Im Fall der AVR-Timer wird dieses Register als OCR (Out-
put Compare Register) bezeichnet. Erreicht der Zählerstand des Timers den im OCR-
Register programmierten Wert, kann dies als ein Timerereignis gewertet werden, welches 
analog zum Timer-Überlauf im Nomal Mode behandelt wird. Dieser Betriebsmodus wird 
als Clear Timer on Compare match (CTC) bezeichnet. Der Verlauf des Zählerstandes im 
CTC-Modus ist in Abb. 14.10 dargestellt.

Mithilfe des CTC-Modus wird eine relativ feine Einstellung der Rate der Timerereig-
nisse beziehungsweise der Frequenz des Ausgangssignals ermöglicht. Es gilt:

14.7.2.3 � PWM-Modi
Bei den beiden zuvor vorgestellten Timermodi lässt sich die Frequenz eines erzeugten 
Signals einstellen, das Tastverhältnis ist dagegen mit 0,5 festgelegt und kann in diesen 
Modi nicht geändert werden. Die Erzeugung eines Signals mit programmierbarem Tast-
verhältnis lässt sich mithilfe der sogenannten PWM-Modi realisieren. Der Name PWM-
Modi ergibt sich aus der typischen Anwendung dieser Modi, nämlich die Erzeugung 
eines pulsweiten-modulierten Signals (PWM-Signal).

Bei Verwendung der PWM Modi zählt der Timer immer bis zum Erreichen des End-
wertes. Es kann allerdings sowohl das Erreichen des Endwertes als auch das Durchlaufen 
des Vergleichswertes als interrupt-auslösendes Timerereignis genutzt werden.

Grundsätzlich werden zwei PWM-Modi unterschieden. Im ersten Fall des Fast-
PWM-Modus, der auch als Single-Slope-PWM bezeichnet wird, zählt der Zähler des 
Timers nur aufwärts. Nach dem Erreichen des Endwertes beginnt der Zähler von 0 an 
zu zählen. Dabei findet die Invertierung des Ausgangssignals sowohl bei Erreichen des 
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Abb. 14.10   Verlauf des Zählerstandes und eines Ausgangssignals im CTC Mode
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Vergleichswertes als auch bei Erreichen des Endwertes statt. Abb. 14.11 zeigt das Zeit-
verhalten des Timers im Fast-PWM-Modus.

Die Frequenz des erzeugten PWM-Signals ist abhängig von dem gewählten Timer
endwert TOP und der Eingangsfrequenz des Zählers, welche sich aus der Eingangsfre-
quenz fin und dem gewählten Vorteilerwert NVor ergibt. Das erzeugte Signal besitzt die 
Frequenz fFPWM mit einem Tastverhältnis VFPWM

Im zweiten Fall des Phase-Correct-PWM-Modus, der auch als Dual-Slope-PWM-Modus 
bezeichnet wird, zählt der Timer zunächst aufwärts und nach Erreichen des Endwertes abwärts. 
Nach Erreichen des Wertes 0 zählt der Zähler wiederum aufwärts. Dabei findet ein Wechsel der 
Polarität des Ausgangssignals nur dann statt, wenn der Vergleichswert erreicht wird.

Hieraus ergeben sich die folgenden Gleichungen für die Frequenz beziehungsweise 
das Tastverhältnis des erzeugten Signals:

Das zugehörige Zeitverhalten ist in Abb. 14.12 dargestellt.
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Abb. 14.11   Verlauf des Zählerstandes und eines Ausgangssignals im Fast-PWM-Mode
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14.7.2.4 � Die Timer des ATmega32
Der Mikrocontroller ATmega32 besitzt drei Timer, welche als Timer 0, Timer 1 und 
Timer 2 bezeichnet werden.

Timer 0 ist ein 8-Bit-Timer. Er besitzt einen Vergleichswert (I/O-Register: OCR0) und 
kann mit dem internen Systemtakt oder mit einem externen Takt (Anschluss: T0) betrie-
ben werden.

Der Timer 1 ist ein 16-Bit-Timer, der ebenso mit dem internen Systemtakt oder einem 
externen Takt (Anschluss: T1) betrieben werden kann. Er besitzt zwei Vergleichswerte 
(OCR1A, OCR1B) und kann gleichzeitig zwei verschiedene Signale an den Controlleran-
schlüssen OC1A und OC1B ausgeben.

Timer 1 besitzt darüber hinaus eine sogenannte Input-Capture-Unit (ICU). Die Auf-
gabe der ICU ist es, den aktuellen Zählerwert bei Auftreten eines zuvor programmier-
ten Ereignisses in ein spezielles Register (I/O-Register ICR1) zu übertragen. Dieser Wert 
bleibt bis zum nächsten Auftreten des Ereignisses im ICP-Register gespeichert und kann 
von der CPU ausgelesen werden. Die ICU kann unter anderem zum zeitlichen Vermes-
sen von digitalen Signalen verwendet werden. Wird beispielsweise als ICU-Ereignis das 
Auftreten einer steigenden Flanke des Eingangssignals am Anschluss ICP1 ausgewählt, 
ist es möglich, die Periodendauer des Eingangssignals durch zeitliches Vermessen zweier 
Taktflanken zu bestimmen. Hierzu muss lediglich der Wert des ICR1-Registers bei Auf-
treten der zweiten Taktflanke von dem ICR1-Wert bei Auftreten der ersten Taktflanke 
subtrahiert werden. Die Periodendauer Tin des Signals ergibt sich dann zu:

Tin =
(ICRFlanke2 − ICRFlanke2) · NVor

fin

Zählerstand

t

Endwert

0
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0
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Abb. 14.12   Signalerzeugung im Phase-Correct-PWM-Mode (Dual-Slope-PWM-Mode)
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Der Timer 2 des ATmega32 ist ebenso wie der Timer 0 mit einem 8-Bit-Zähler ausgestat-
tet, und es kann ein Vergleichswert (OCR2) programmiert werden. Die Besonderheit des 
Timers 2 ist der zugeordnete eingebettete Quarzoszillator, welcher unabhängig von den 
anderen Komponenten des Controllers betrieben werden kann. Der Timer 2 kann mithilfe 
dieses Oszillators mit einem Taktsignal versorgt werden, selbst wenn der Controller sich in 
einem Stromsparmodus befindet und wesentliche Systemkomponenten abgeschaltet sind.

Zur Programmierung der Timer des ATmega32 stehen mehrere Register zur Verfü-
gung, deren Funktion in den folgenden Abschnitten beschrieben wird.

14.7.2.5 � Register des Timers 0
Der aktuelle Zählerstand des Timers 0 kann durch einen Zugriff auf das Register TCNT0 
gelesen oder auch geschrieben werden. Über das Register OCR0 wird auf den Ver-
gleichswert des Timers 0 zugegriffen.

Die Auswahl des Betriebsmodus des Timers 0 erfolgt über ein Steuerregister (Timer/
Counter Control Register, TCCR0). Neben dem Betriebsmodus werden mithilfe die-
ses Registers auch der Wert des Vorteilers und die Quelle des Timertaktes festgelegt 
(Tab. 14.14).

Das Bit FOC0 dient dem softwarebasierten Auslösen eines Compare-Match-Ereig-
nisses (Zählerstand = Vergleichswert) unabhängig vom aktuellen Wert des OCR0-
Registers oder des Zählerstandes. Die Bedeutung der anderen Bits dieses Registers ist in 
Tab. 14.15 und 14.16 zusammengefasst.

Tab. 14.14   Belegung des Registers TCCR0

TCCR0

Bit 7 6 5 4 3 2 1 0

Name FOC0 WGM00 COM01 COM00 WGM01 CS02 CS01 CS00

Tab. 14.15   Bedeutung der Bits CS00, CS01 und CS02

CS02 CS01 CS00 Bedeutung

0 0 0 Keine Taktauswahl, Timer ist abgeschaltet

0 0 1 Systemtakt mit Vorteiler = 1

0 1 0 Systemtakt mit Vorteiler = 8

0 1 1 Systemtakt mit Vorteiler = 64

1 0 0 Systemtakt mit Vorteiler = 256

1 0 1 Systemtakt mit Vorteiler = 1024

1 1 0 Externer Takt an Anschluss T0, aktive Flanke = fallende Flanke

1 1 1 Externer Takt an Anschluss T0, aktive Flanke = steigende 
Flanke
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14.7.2.6 � Register des Timers 1
Da der Timer 1 auf einem Zähler mit einer Wortbreite von 16 bit basiert, sind Register, 
die sich auf den Zählerstand beziehen in Form von zwei 8 bit breiten Registern imple-
mentiert. So kann beispielsweise der Zählerstand des Timers über die Register TCNT1L 
(niederwertiges Byte) und TCNT1H (höherwertiges Byte) geschrieben und gelesen wer-
den. Analog kann auf die Vergleichswerte mithilfe der Register OCR1AL und OCR1AH 
sowie OCR2AL und OCR2AH zugegriffen werden. Entsprechendes gilt für den ICR-Wert 

Tab. 14.16   Bedeutung der Bits WGM00, WGM01, COM00 und COM01

WGM00 COM01 COM00 WGM01 Bedeutung

0 0 0 0 Normal Mode, Signalerzeugung aus

0 0 0 1 CTC-Modus, Signalerzeugung aus

0 0 1 0 Normal Mode, Invertierung des OC0-Ausgangs bei 
Erreichen des Vergleichswertes

0 0 1 1 CTC-Modus, Invertierung des OC0-Ausgangs bei Errei-
chen des Vergleichswertes

0 1 0 0 Normal Mode, Löschen des OC0-Ausgangs bei Errei-
chen des Vergleichswertes

0 1 0 1 CTC-Modus, Löschen des OC0-Ausgangs bei Errei-
chen des Vergleichswertes

0 1 1 0 Normal Mode, Setzen des OC0-Ausgangs bei Erreichen 
des Vergleichswertes

0 1 1 1 CTC-Modus, Setzen des OC0-Ausgangs bei Erreichen 
des Vergleichswertes

1 0 0 0 Phase-Correct-PWM-Modus, Signalerzeugung aus

1 0 0 1 Fast-PWM-Modus, Signalerzeugung aus

1 0 1 0 Reserviert (ungültige Konfiguration)

1 0 1 1 Reserviert (ungültige Konfiguration)

1 1 0 0 Phase-Correct-PWM-Modus, Löschen des OC0-Aus-
gangs bei Erreichen des Vergleichswertes während des 
Aufwärtszählens, Setzen während des Abwärtszählens

1 1 0 1 Fast-PWM-Modus, Löschen des OC0-Ausgangs bei 
Erreichen des Vergleichswertes während des Aufwärts-
zählens, Setzen nach Zählerüberlauf

1 1 1 0 Phase-Correct-PWM-Modus, Setzen des OC0-
Ausgangs bei Erreichen des Vergleichswertes wäh-
rend des Aufwärtszählens, Löschen während des 
Abwärtszählens

1 1 1 1 Fast-PWM-Modus, Setzen des OC0-Ausgangs bei 
Erreichen des Vergleichswertes während des Aufwärts-
zählens, Löschen nach Zählerüberlauf

14.7  Eingebettete Peripheriekomponenten
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der Input-Capture-Unit, auf welchen über die Register ICRL und ICRH zugegriffen wer-
den kann.

Zur Steuerung werden für den Timer 1 zwei Register zur Verfügung gestellt, TCCR1A 
und TCCR1B (Tab. 14.17).

Die Bedeutung der Bits CS12, CS11, CS10 und FOC1A, FOC1B besitzen eine zu den 
entsprechenden Bits des Timers 0 analoge Funktion (vgl. Tab. 14.18).

Die Bits ICNC1 und ICES1 sind der Input-Capture-Unit zugeordnet. Wird ICNC1 
gesetzt, wird damit ein Rauschfilter in der ICU aktiviert, welches kurzzeitige Signal-
wechsel am ICP1-Anschluss ausfiltert. Mit dem Bit ICES1 kann die aktive Flanke des 
ICP1-Signals festgelegt werden: Ist ICES1 gesetzt, reagiert die ICU auf eine steigende 
Flanke; ist ICES1 gelöscht, reagiert die ICU auf eine fallende Flanke.

Tab. 14.17   Belegung der Register TCCR1A und TCCR1B

TCCR1A

Bit 7 6 5 4 3 2 1 0

Name COM1A1 COM1A0 COM1B1 COM1B0 FOC1A FOC1B WGM11 WGM10

TCCR1B

Bit 7 6 5 4 3 2 1 0

Name ICNC1 ICES1 - WGM13 WGM12 CS12 CS11 CS10

Tab. 14.18   Bedeutung der Bits COM1A1, COM1B1, COM1A0 und COM1B0

COM1A1
COM1B1

COM1A0
COM1B0

Bedeutung

0 0 Signalerzeugung aus

0 1 Normal, CTC: Invertieren des OC-Ausgangs bei Erreichen des 
Vergleichswertes
PWM-Modi: Signalerzeugung aus.
Ausnahme WGM1 = 1001,1110 oder 1111: Invertieren des OC1A-
Ausgangs bei Erreichen des Vergleichswertes

1 0 Normal, CTC: Löschen des OC-Ausgangs bei Erreichen des 
Vergleichswertes
Fast PWM: Löschen des OC-Ausgangs bei Erreichen des Vergleichswer-
tes während, Setzen nach Erreichen von TOP
PC-PWM: Löschen des OC-Ausgangs bei Erreichen des Vergleichswer-
tes während des Aufwärtszählens, Setzen während des Abwärtszählens

1 1 Normal, CTC: Setzen des OC-Ausgangs bei Erreichen des 
Vergleichswertes
Fast PWM: Setzen des OC-Ausgangs bei Erreichen des Vergleichswer-
tes während, Löschen nach Erreichen von TOP
PC-PWM: Setzen des OC-Ausgangs bei Erreichen des Vergleichswertes 
während des Aufwärtszählens, Löschen während des Abwärtszählens
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Mithilfe der Bits WGM13 bis WGM10 wird der Betriebsmodus des Timers festgelegt. 
Die 16 möglichen Modi des Timers 1 sind in Tab. 14.19 zusammengefasst.

14.7.2.7 � Register des Timers 2
Die Register des Timers 2 entsprechen den Registern des Timers 0. Zur Unterscheidung 
der Timer werden die Register des Timers 2 mit der Ziffer 2 (statt 0) gekennzeichnet, 
also TCNT2 statt TCNT0, OCR2 statt OCR0, usw. Entsprechendes gilt für die einzelnen 
Bits der Timer-Register (zum Beispiel WGM21 statt WGM01). Eine Ausnahme bilden 
die Bits CS22 bis CS20 zur Steuerung des Vorteilers (s. Tab. 14.20).

Als Taktquelle kann neben dem Systemtakt auch ein separater Quarzoszillator ver-
wendet werden, welcher mit einem externen Quarz (typischerweise mit einem 32-kHz-
Uhrenquarz) betrieben wird. Zur Steuerung dieser Funktion besitzt der Timer 2 ein 
weiteres Register, welches als Asynchronous Status Register (ASSR) bezeichnet wird 
(Tab. 14.21).

Ist das Bit AS2 gesetzt, wird der Timer 2 über den separaten Quarzoszillator mit 
einem Taktsignal versorgt. Ist das Bit dagegen gelöscht, wird dem Timer der Systemtakt 
zugeführt. Die drei anderen Bits des ASSR-Registers dienen der Synchronisation zwi-
schen der CPU und dem Timer: Wird beispielsweise ein Schreibzugriff auf das OCR2-
Register ausgeführt, wird das Bit OCR2UB (OCR2 Update Busy) gesetzt. Erst wenn 

Tab. 14.19   Bedeutung der Bits WGM13, WGM12, WGM11 und WGM10

WGM13 GM12 WGM11 WGM10 Bedeutung

0 0 0 0 Normal Mode, TOP = 0xFFFF

0 0 0 1 Phase-Correct-PWM-Modus, TOP = 0x00FF

0 0 1 0 Phase-Correct-PWM-Modus, TOP = 0x01FF

0 0 1 1 Phase-Correct-PWM-Modus, TOP = 0x03FF

0 1 0 0 CTC-Modus, TOP = OCR1A

0 1 0 1 Fast-PWM-Modus, TOP = 0x00FF

0 1 1 0 Fast-PWM-Modus, TOP = 0x01FF

0 1 1 1 Fast-PWM-Modus, TOP = 0x03FF

1 0 0 0 Phase-and-Frequency-Correct-PWM, TOP = ICR1

1 0 0 1 Phase-and-Frequency-Correct-PWM, TOP = 
OCR1A

1 0 1 0 Phase-Correct-PWM-Modus, TOP = ICR1

1 0 1 1 Phase-Correct-PWM-Modus, TOP = OCR1A

1 1 0 0 CTC-Modus, TOP = ICR1

1 1 0 1 Reserviert

1 1 1 0 Fast-PWM-Modus, TOP = ICR1

1 1 1 1 Fast-PWM-Modus, TOP = OCR1A

14.7  Eingebettete Peripheriekomponenten
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der geschriebene Wert vom Timer übernommen wurde, wird das Bit von der Timer-HW 
zurückgesetzt. Entsprechendes gilt für die Register TCNT2 und TCCR2, denen die Bits 
TCN2UB und TCR2UB zugeordnet sind.

14.7.2.8 � Timer als Interruptquellen
Die Timer des ATmega32 können auch als Interruptquellen genutzt werden. Es können 
mithilfe aller Timer Interrupts ausgelöst werden, wenn ein Timer-Überlauf aufgetreten 
ist oder der Zählwert des Timers den Vergleichswert erreicht hat. Zusätzlich kann für den 
Timer 1 das Auftreten eines „Input-Capture-Ereignisses“ als Interruptquelle genutzt wer-
den. Die Freigabe der jeweiligen Interrupts geschieht durch Setzen des zugehörigen Bits 
im Timer/Counter-Interrupt-Mask-Register (TIMSK).

Darüber hinaus ermöglichen die Timer das Abfragen des jeweiligen Interrupt-Status 
durch das Timer/Counter-Interrupt-Flag-Register (TIFR). Mithilfe dieses Registers ist es 
zum Beispiel möglich, das Auftreten einer der oben genannten Interruptbedingungen durch 
die CPU anzufragen, ohne eine interruptbasierte Verarbeitung zu nutzen (Tab. 14.22).

Die Bits OCIEx und OCFx sind den Vergleichsereignissen (Zählerstand = Vergleichs-
wert) und die Bits TOIEx und TOVx den Überlaufereignissen zugeordnet, während die 
Bits TICIE1 und ICF1 der Input Capture Unit des Timers 1 zugeordnet sind.

Die Anwendungsmöglichkeiten der Timer-Interrupts sind sehr vielfältig. Ein sehr ein-
faches Beispiel ist die zyklische Erzeugung von Interrupts zur Unterbrechung des Haupt-
programms, um regelmäßig anfallende Aufgaben abzuarbeiten. Darüber hinaus sind 
regelmäßige Timer-Interrupts eine wesentliche Grundlage vieler Betriebssysteme.

Eine wichtige Bedeutung kommt der Timer-Interrupt-Programmierung auch bei 
der Erzeugung von Ausgangssignalen zu. Häufig ist es erforderlich, die Parameter des 

Tab. 14.20   Bedeutung der 
Bits CS00, CS01 und CS02

CS22 CS21 CS20 Bedeutung

0 0 0 Timer ist 
abgeschaltet

0 0 1 Vorteiler = 1

0 1 0 Vorteiler = 8

0 1 1 Vorteiler = 32

1 0 0 Vorteiler = 64

1 0 1 Vorteiler = 128

1 1 0 Vorteiler = 256

1 1 1 Vorteiler = 1024

Tab. 14.21   Belegung des 
Registers ASSR

ASSR

Bit 7 6 5 4 3 2 1 0

Name – – – – AS2 TCN2UB OCR2UB TCR2UB
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mithilfe des Timers erzeugten Signals dynamisch zu modifizieren. Der Timer muss also 
im laufenden Betrieb umkonfiguriert werden. Hierbei muss beachtet werden, dass der 
Zählerstand des Timers nicht unbedingt mit der Ausführung des Programms synchroni-
siert ist. Um diese Synchronisation zu unterstützen, sind die OCR-Register der Timer mit 
„Schattenregistern“ ausgestattet. Wird in einem solchen Schattenregister ein Wert abge-
legt, wirkt sich der neue Wert nicht sofort in der Timer-Hardware aus. Vielmehr wird der 
im Schattenregister gespeicherte Wert erst bei Erreichen eines definierten Zählerstands 
(zum Beispiel Timerendwert) in das eigentliche Timer-Register übernommen. Für die 
dynamische Timer-Programmierung ist es sehr bequem den Interrupt freizugeben, der 
dem o.g. Zählerstand zugeordnet ist. Die Konfiguration des Timers erfolgt dann jeweils 
in der entsprechenden ISR. Auf diese Weise wird der Timer nur zu definierten Zeiten neu 
konfiguriert und das Verhalten des Ausgangssignals ist nicht von den Laufzeiten der ein-
zelnen Programmteile der Software abhängig.

Als ein einfaches Beispiel für die Interrupt-Programmierung wird im Folgenden ein 
C-Programm vorgestellt, mit dem eine Uhr realisiert werden kann.

Die Uhrzeit wird in den globalen Variablen Sekunden, Minuten und Stunden abgelegt, 
die von einer Timer-ISR beschrieben werden. Im Hauptprogramm wird der Timer 1 so 
konfiguriert, dass alle 8000 Systemtaktzyklen ein Interrupt ausgelöst wird (Vorteiler = 8, 
OCR-Register = 999). Beträgt die Systemtaktfrequenz beispielsweise 16 MHz, werden 
also 2000 Interrupts pro Sekunde auftreten.

In der Timer-ISR werden die aufgetretenen Timerinterrupts gezählt. Ist eine Sekunde 
vergangen, wird die Variable Sekunden inkrementiert. Ist diese anschließend gleich 60, 
wird sie auf Null gesetzt und die Variable Minuten inkrementiert. Der Wert der Variablen 
Minuten wird anschließend überprüft und gegebenenfalls auf Null gesetzt und die Varia-
ble Stunden inkrementiert.

Da die Anzahl der pro Sekunde auftretenden Interrupts von der Systemtaktfrequenz 
abhängt, muss diese bekannt sein. Für AVR-Programme gilt die Vereinbarung, dass die 
Systemtaktfrequenz im Präprozessorsymbol F_CPU abgelegt wird. In der ISR wird 
überprüft, ob der Interruptzähler den Wert F_CPU/8000 erreicht hat, also eine Sekunde 
vergangen ist.

Im Folgenden ist das Programm für die Realisierung einer Uhr dargestellt.

Tab. 14.22   Belegung der Register TIMSK und TIFR

TIMSK

Bit 7 6 5 4 3 2 1 0

Name OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 OCIE0 TOIE0

TIFR

Bit 7 6 5 4 3 2 1 0

Name OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 OCF0 TOV0
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#include <avr/io.h>

#include <avr/interrupt.h>     // Header-Datei fùr Interrupts

// Symbol fùr Systemtaktfrequenz setzen. Dies kann auch in der

// Entwicklungsumgebung erfolgen

#define F_CPU 16000000          // Beispiel: 16 MHz

volatile unsigned char Sekunden;

volatile unsigned char Minuten;

volatile unsigned char Stunden;

// Unterprogramm zur Ausgabe der Uhrzeit

void Zeitausgabe(unsigned char Stunden, unsigned char Minuten,

                 unsigned char Sekunden) {

   // zum Beispiel Ausgabe auf einem Sieben-Segment-Display

}

// Hauptprogramm

void main() {

   // Timer 1 initialisieren

   // nicht gesetzte Bits sind nach dem Reset des Controllers 0

   TCCR1B |= 1<<WGM12;  // CTC-Modus
   TCCR1B |= 1<<CS11;   // Vorteiler = 8
   OCR1A = 999;         // alle 1000 Taktzyklen ein Interr.
   TIMSK  |= 1<<OCIE1A; // Freigabe Vergleichsinterrupt
   sei();               // Globale Interruptfreigabe

   // Normaler Betrieb: hier erfolgt die Ausgabe der Uhrzeit

   // das Zàhlen der Sekunden erfolgt in der ISR

   while (1) {

        Zeitausgabe(Stunden, Minuten, Sekunden);

   }

}

// Timer 1 ISR

ISR (TIMER1_COMPA_vect) {

   static unsigned long IntCount = 0;
   IntCount++;
   if (IntCount == F_CPU/8000) { // 1 Sekunde vergangen ?
      IntCount = 0;      // Zàhler zurùcksetzen
      Sekunden++;        // Uhrzeit setzen…
      if (Sekunden==60) {
         Sekunden = 0;
         Minuten++;
         if (Minuten==60) {
            Minuten = 0;
            Stunden++;
            if (Stunden==24) Stunden = 0;
         }

      }

   }

}



483

14.7.2.9 � Watchdog-Timer
Grundsätzlich kann selbst bei sorgfältigster Entwicklung von Softwarekomponen-
ten nicht sichergestellt werden, dass ein Programm komplett fehlerfrei ist und in allen 
Betriebszuständen des Systems reibungslos funktioniert. Unentdeckte Softwarefehler 
können je nach Anwendung fatale Folgen für ein System oder für die Umgebung des 
Systems, incl. der Benutzer haben. Um einen Systemabsturz, der zum Beispiel aufgrund 
eines Softwarefehlers aufgetreten ist, abfangen zu können, besitzen Mikrocontroller 
einen sogenannten Watchdog-Timer.

Die Arbeitsweise des Watchdogs ähnelt dem Prinzip des sogenannten „Totmann-
Knopfes“, wie er in Schienenfahrzeugen eingesetzt wird: Der Fahrzeugführer muss in 
regelmäßigen Abständen den Knopf bedienen. Unterlässt er dies, wird automatisch ein 
Nothalt des Systems ausgeführt.

Der Watchdog-Timer basiert auf einem Abwärtszähler. Erreicht der Zähler den Zäh-
lerstand 0, wird durch den Timer ein Zurücksetzen des Controllers ausgelöst. Um die-
ses Zurücksetzen zu vermeiden, muss der Zähler des Watchdog-Timers per Software 
regelmäßig auf einen von Null verschiedenen Wert gesetzt werden. Arbeitet das System 
einwandfrei, wird der Zähler des Watchdogs nie den Wert 0 erreichen und somit kein 
Zurücksetzen des Systems auslösen.

Das Taktsignal für die Watchdog-Timer ATmega-Serie wird mithilfe eines eingebet-
teten Oszillators realisiert, sodass für die Takterzeugung keine externen Komponenten 
benötigt werden. Durch den Einsatz eines Vorteilers können dem Zähler des Watchdogs 
verschiedene Taktfrequenzen zugeführt werden, wodurch die Zeit bis zum Erreichen des 
Zählerstandes 0 über das CPU-Programm festgelegt werden kann.

Das softwarebasierte Setzen des Watchdog-Zählers eines ATmega32 erfolgt in Assem-
bler mit dem Spezialbefehl wdr (Watchdog Reset) beziehungsweise in C durch den Auf-
ruf der Funktion wdt_reset(). Zur Programmierung des Watchdogs steht das Watchdog 
Timer Control Register (WDTCR) zur Verfügung (Tab. 14.23).

Das Bit WDE dient zum Aktivieren (WDE = 1) oder Deaktivieren (WDE = 0) des 
Watchdog-Timers. Soll der Watchdog deaktiviert werden, müssen zunächst die Bits 
WDTOE und WDE gesetzt und anschließend das Bit WDE innerhalb von 4 Taktzyklen 
gelöscht werden. Auf diese Weise soll ein unbeabsichtigtes Deaktivieren des Watchdogs 
ausgeschlossen werden.

Die Bits WDP2 bis WDP0 werden zur Programmierung des Vorteilers verwendet. Die 
Zeit, die zwischen dem Ausführen des wdr-Befehls und dem Erreichen des Zählwertes 0 
vergeht, ergibt sich gemäß Tab. 14.24.

Tab. 14.23   Belegung des 
Registers WDTCR

WDTCR

Bit 7 6 5 4 3 2 1 0

Name - - - WDTOE WDE WDP2 WDP1 WDP0
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Der Grund für das Zurücksetzen des Controllers kann mithilfe des „Microcontroller Unit 
Control and Status“ Registers (MCUCSR) von der CPU abgefragt werden (Tab. 14.25).

Je nach Grund des Resets wird eines der fünf niederwertigen Bits des MCUCSR-
Registers gesetzt. Die Bedeutung dieser Bits ist in Tab. 14.26 zusammengefasst.

14.7.3	� Schnittstellen für die serielle Datenübertragung

Fast alle Mikrocontroller stellen eingebettete Peripheriekomponenten zur Verfügung, die 
eine bitserielle Datenübertragung unterstützen. Der wesentliche Vorteil einer bitseriellen 
Übertragung im Gegensatz zu einer bitparallelen Übertragung ist die Reduktion des Ver-
drahtungsaufwands zwischen Sender und Empfänger. Die Reduktion dieses Aufwands 

Tab. 14.24   Bedeutung der Bits WDP2, WDP1 und WDP0

WDP2 WDP1 WDP0 Zeit bis zum Erreichen des Zählerstands 0 
(circa)

0 0 0 17 ms

0 0 1 33 ms

0 1 0 65 ms

0 1 1 130 ms

1 0 0 260 ms

1 0 1 520 ms

1 1 0 1,0 s

1 1 1 2,1 s

Tab. 14.25   Belegung des Registers MCUCSR

MCUCSR

Bit 7 6 5 4 3 2 1 0

Name JTD ISC2 – JTRF WDRF BORF EXTRF PORF

Tab. 14.26   Bedeutung der Bits im MCUCSR-Register

JTRF Reset durch das JTAG-Programmier- und Debug-Interface

WDRF Watchdog-Reset

BORF Brownout-Detection-Reset
(Versorgungsspannung unterschreitet programmierten Wert)

EXTRF Externer Reset-Anschluss wurde aktiviert

PORF Versorgungsspannung wurde eingeschaltet 
(„Power-On-Reset“)
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kann insbesondere bei einfachen, kostensensitiven Systemen einen wichtigen Aspekt 
darstellen.

In den folgenden Abschnitten wird die Diskussion auf die in Mikrocontrollern häufig 
anzutreffenden seriellen Schnittstellen beschränkt. Zunächst wird jeweils das verwendete 
Übertragungsprotokoll vorgestellt und im Anschluss daran wird die spezifische Imple-
mentierung der Schnittstellen am Beispiel des ATmega32 näher erläutert.

14.7.3.1 � U(S)ART
Die Abkürzung UART steht für Universal Asynchronous Receiver/Transmitter, also ein 
universell einsetzbarer Sender und Empfänger für asynchrone Datenübertragungen. Der 
Begriff „asynchron“ bedeutet hier, dass bei dieser Datenübertragung kein Taktsignal 
zwischen Sender und Empfänger ausgetauscht wird. Der Empfänger muss allein aus der 
Kenntnis des Datensignals die übertragenen Datenbits extrahieren. Eine Erweiterung des 
UARTs stellt der USART dar. Der zusätzliche Buchstabe „S“ soll andeuten, dass diese 
Komponente auch eine synchrone Datenübertragung unterstützen kann. In diesem Fall 
wird vom Sender ein Taktsignal erzeugt, das zusammen mit dem Datensignal übertragen 
wird.

Bereits um 1960 wurde ein geeignetes Protokoll zur asynchronen seriellen Datenüber-
tragung zwischen Rechnern entwickelt und standardisiert. Die bekannteste Implementie-
rung dieser Anwendung stellt die serielle Schnittstelle eines PCs dar, die häufig auch als 
RS232-Schnittstelle, V.24-Schnittstelle, COM-Port oder einfach als serielle Schnittstelle 
bezeichnet wird. Diese Schnittstelle diente viele Jahre als Kommunikationsschnittstelle 
zwischen Rechnern oder zwischen Rechnern und Modems, welche eine Datenfernüber-
tragung über Telefonleitungen ermöglicht.

Die Bedeutung der RS232-Schnittstelle für PCs hat in den letzten 30 Jahren kontinu-
ierlich abgenommen. Rechner werden heute meist über Ethernet-Leitungen oder WLAN 
vernetzt, die deutlich höhere Übertragungsraten ermöglichen. Im Bereich der Datenfern-
übertragung werden Technologien wie DSL eingesetzt, wobei die Verbindung zu einem 
DSL-Modem über USB oder Ethernet realisiert wird. Daher werden von heutigen PCs 
in der Regel keine RS232-Schnittstellen mehr zur Verfügung gestellt. Zur Nutzung die-
ser Schnittstelle müssen häufig entweder entsprechende Erweiterungskarten oder USB-
Geräte angeschafft werden, die über einen USB-Anschluss des Rechners die gewünschte 
RS232-Schnittstelle zur Verfügung stellen.

Eine größere Bedeutung besitzt die RS232-Schnittstelle im Bereich der Mikrorech-
nersysteme. Hier steht häufig nicht die erzielbare Datenrate im Vordergrund, sondern 
zunächst die einfache Implementierbarkeit der Kommunikation zweier Komponenten. 
Eine häufige Anwendung ist die Verbindung eines Mikrorechnersystems mit einem PC, 
um Statusmeldungen an den PC zu senden oder auch um Programme und Daten an den 
Mikrorechner zu senden.

Entsprechend der ursprünglichen Anwendung im Bereich der Datenfernübertragung 
werden sogenannte Datenendeinrichtungen (Data Terminal Equipment, DTE) und Daten-
übertragungseinrichtungen (Data Communication Equipment, DCE) unterschieden. Ein 
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PC arbeitet in der Regel als DTE, während die angeschlossenen Geräte meist als DCE 
betrieben werden. Diese Unterscheidung ist insbesondere für die Steckerbelegung der 
Geräte von Bedeutung. Für die serielle Übertragung mithilfe des RS232-Standards wer-
den heute fast ausschließlich 9-polige Sub-D-Steckverbindungen verwendet, deren Bele-
gung in Tab. 14.27 zusammengefasst ist.

In vielen Anwendungsfällen wird nur ein Teil der dargestellten Signale verwendet. Im 
einfachsten Fall ist es möglich eine bidirektionale Verbindung zwischen zwei Stationen 
(zum Beispiel PC und Mikrocontroller) mithilfe der Anschlüsse RXD, TXD und GND 
zu realisieren.

Die RS232-Schnittstelle arbeitet mit negativer Logik. Eine logische Null wird durch 
einen Spannungspegel im Bereich von +3 bis +15 V, eine logische Eins durch einen 
Pegel zwischen −3 und −15 V dargestellt. Ein direkter Anschluss der Signale der seriel-
len Schnittstelle eines PCs an einen Mikrocontroller sollte niemals erfolgen, da der Con-
troller hierbei zerstört werden würde. Es ist also ein Umsetzen der Pegel der seriellen 
Schnittstelle erforderlich. Hierfür stehen verschiedene integrierte Bausteine zur Verfü-
gung, die auch eine Umwandlung zwischen negativer und positiver Logik durchführen. 
Ein Beispiel ist der von verschiedenen Herstellern angebotene Baustein MAX232.

14.7.3.2 � Datenübertragung mit dem UART-Protokoll
Der Empfänger erhält nur das vom Sender generierte Datensignal. Um allein aus der 
Kenntnis des Datensignals die übertragenen Daten zu extrahieren können, muss der 
Empfänger den Beginn einer Datenübertragung erkennen können. Der Beginn einer 
Datenübertragung wird durch ein sogenanntes Startbit gekennzeichnet, welches den vor-
definierten Wert 0 besitzt. Anschließend erfolgt die Übertragung einer zwischen Sender 
und Empfänger vereinbarten Anzahl von Datenbits. Hierbei gilt die Vereinbarung, dass 
zuerst das niederwertigste Bit (Least Significant Bit, LSB) übertragen wird. In der Regel 
wird eine Übertragung von 8 Datenbits ausgewählt.

Tab. 14.27   Belegung der 9-poligen Sub-D-Steckverbindungen

Nr. Kürzel Name Bedeutung Datenrichtung

1 DCD Data Carrier Detect DCE erhält einlaufende Daten DCE → DTE

2 RXD Receive Data Empfangsdaten (des DTE, z. B. PC) DCE → DTE

3 TXD Transmit Data Sendedaten (des DTE, z. B. PC) DTE → DCE

4 DTR Data Terminal Ready Einsatzbereitschaft des DTE DTE → DCE

5 GND Ground Signalmasse

6 DSR Data Set Ready Einsatzbereitschaft des DCE DCE → DTE

7 RTS Ready To Send DTE (z. B. PC) möchte Daten übertragen DTE → DCE

8 CTS Clear To Send DCE kann Daten entgegennehmen DCE → DTE

9 RI Ring Indicator Modem erkennt Anruf DCE → DTE
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Im Anschluss an die Datenübertragung erfolgt die Übertragung von ein bis zwei 
Stoppbits, welche den Wert 1 besitzen. Bis zum Beginn der nächsten Datenübertragung 
verbleibt das Sendesignal auf dem Wert 1.

Um die Datenübertragung gegenüber kurzzeitigen Störungen abzusichern, kann zwi-
schen den Daten und dem Stoppbit ein Paritätsbit (parity bit) eingefügt werden. Verwen-
det der Sender die Übertragung eines Paritätsbits, muss dies dem Empfänger bekannt 
sein. Ebenso müssen Sender und Empfänger die gleiche Rechenvorschrift zur Berech-
nung des Paritätsbits verwenden.

Der Empfänger berechnet aus den empfangenen Daten das erwartete Paritätsbit und 
vergleicht dieses mit dem vom Sender empfangenen Paritätsbit. Sind die Werte beider Bits 
identisch, wird davon ausgegangen, dass eine fehlerfreie Übertragung stattgefunden hat.

Für die Berechnung des Paritätsbits werden zwei Vorschriften verwendet, die als 
„ungerade Parität“ (odd parity) beziehungsweise „gerade Parität“ (even parity) bezeich-
net werden. In beiden Fällen erfolgt die Berechnung des Paritätsbits p derart, dass eine 
Exklusiv-Oder-Verknüpfung der Datenbits di und eines Modusbits m (m = 0 für even 
parity, m = 1 für odd parity) durchgeführt wird:

Aufgrund dieser Vorschrift zur Berechnung des Paritätsbits lassen sich vom Empfänger nur 
Übertragungsfehler erkennen, bei denen nur ein Fehler oder eine ungerade Anzahl fehler-
hafter Bits auftritt. Ist die Anzahl der durch Übertragungsfehler modifizierten Bits dagegen 
gerade, würde der Empfänger die Daten als korrekt übertragen ansehen. Darüber hinaus 
ermöglicht dieser sehr einfache Fehlerschutz keine empfängerseitige Fehlerkorrektur, da 
der Empfänger nicht bestimmen kann, welches Datenbit fehlerhaft übertragen wurde.

In der Praxis wird die Übertragung eines Paritätsbits häufig nicht genutzt, wenn von 
einem relativ sicheren Übertragungskanal ausgegangen werden kann. Dies ist meist bei 
einer Verbindung zwischen einem PC und einem Mikrocontroller der Fall, wenn die 
Datenleitungen nicht länger als wenige Meter sind und die Umgebung keine starken 
elektromagnetischen Störquellen besitzt.

Abb. 14.13 zeigt exemplarisch den zeitlichen Verlauf der Übertragung eines Bytes mit 
den Einstellungen: 8 Datenbits, 1 Stoppbit, gerade Parität.

Neben der Anzahl der Daten- und Stoppbits sowie der verwendeten Paritätsberech-
nung (odd, even, keine), muss dem Empfänger die Dauer der Übertragung eines ein-
zelnen Bits (Bitdauer) bekannt sein. Da die Bitdauer direkt die Übertragungsrate 
beeinflusst, wird von Bitrate oder von Baudrate gesprochen.

Theoretisch können beliebige Baudraten verwendet werden. In der Praxis werden 
jedoch meist standardisierte Baudraten verwendet. Typische Baudraten sind in Tab. 14.28 
zusammengefasst.

14.7.3.3 � Handshake zwischen Sender und Empfänger
In vielen Anwendungsfällen kann davon ausgegangen werden, dass der Empfänger die 
vom Sender empfangenen Daten stets verarbeiten kann. Dies ist zum Beispiel der Fall, 

p = dn−1 ⊕ dn−2 ⊕ · · · ⊕ d1 ⊕ d0 ⊕ m
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wenn ein Mikrocontroller Daten an einen PC sendet, um diese mithilfe eines Terminal-
programms auf dem Monitor anzuzeigen. Aufgrund der hohen Rechenleistung eines PCs 
und der vergleichsweise geringen Datenrate der seriellen Schnittstelle, wird der PC in 
der Regel alle vom Controller gesendeten Daten korrekt verarbeiten können.

Genauso sind auch Anwendungsfälle denkbar, in denen der Empfänger die gesende-
ten Daten nicht sofort verarbeiten kann. Würde der Sender diese Situation ignorieren und 
weiter Daten senden, wäre ein Verlust von Daten die Folge. Um diesen Datenverlust zu 
vermeiden, muss die Möglichkeit bestehen, dem Sender mitzuteilen, dass der Empfänger 
kurzzeitig nicht in der Lage ist, weitere Daten zu empfangen. Die hierfür notwendige 
Kommunikation zwischen Empfänger und Sender wird als Handshake bezeichnet.

Eine Möglichkeit zur Implementierung stellt das sogenannte Software-Handshake dar. 
In diesem Fall wird die Handshake-Information über die Datenleitungen RXD und TXD 
ausgetauscht. Ist ein Gerät nicht bereit Daten zu empfangen, sendet es an die Gegenstelle 
den Wert 19 (0x13). Der Sender wird daraufhin das Senden weiterer Daten einstellen. 
Sobald der Empfänger wieder bereit ist, sendet er den Wert 17 (0x11) und die Daten-
übertragung wird fortgesetzt. Da die beiden Zahlenwerte im ASCII-Code als XOFF 
beziehungsweise XON bezeichnet werden, wird diese Art des Handshakes oft auch als 
XON/XOFF-Handshake bezeichnet.

Ein Nachteil des Software-Handshakes ist es, dass zwei Zahlenwerten eine besondere 
Bedeutung zugeordnet wird, sodass diese Werte nicht mehr für die Datenübertragung zur 
Verfügung stehen.
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Abb. 14.13   Zeitdiagramm für die Übertragung eines Bytes

Tab. 14.28   In der Praxis 
häufig verwendete Baudraten

Baudrate (in bit/s) Bitdauer (µs)

2400 416,67

9600 104,17

19.200 52,08

38.400 26,04

57.600 17,36

115.200 8,68
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Dieser Nachteil kann durch das sogenannte Hardware-Handshake vermieden werden. 
Hierfür können die beiden Signale RTS und CTS herangezogen werden. Ein DTE (zum 
Beispiel ein PC) teilt einem DCE mit, dass es Daten senden möchte indem es die Lei-
tung RTS aktiviert (RTS = 0). Das DCE setzt daraufhin das Signal CTS auf 0 sobald es 
für den Datenempfang bereit ist. Für das DTE wird bei Verwendung dieses Handshakes 
angenommen, dass es jederzeit alle vom DCE gesendeten Daten korrekt verarbeiten 
kann. Gegebenenfalls kann jedoch vom DTE das DTR-Signal deaktiviert werden um so 
ein Senden von Daten zu unterbrechen.

In vielen Anwendungen wird der RTS-Anschluss als RTR-Signal (Ready To Receive) 
verwendet. In diesem Fall zeigt eine logische 0 auf der RTS-Leitung an, dass das DTE 
Daten empfangen kann. Das DCE signalisiert die Empfangsbereitschaft dagegen durch 
das Aktivieren der CTS-Leitung (CTS = 0).

Darüber hinaus können auch die Signale DSR und DTR zur Realisierung eines Hard-
ware-Handshakes verwendet werden, welche in ähnlicher Weise wie die Signale RTR 
und CTS angesteuert werden können.

Obwohl in vielen Mikrocontrollern eingebettete Peripheriekomponenten zur Daten-
übertragung mithilfe des RS232-Protokolls zur Verfügung stehen, werden von diesen 
Komponenten häufig nur die Signale RXD und TXD bedient. Soll die Kommunikation 
mithilfe eines Hardware-Handshakes erfolgen, ist hierfür die softwarebasierte Ansteue-
rung von zusätzlichen Portanschlüssen erforderlich. Das Hardware-Handshake wird in 
diesem Fall also durch das Programm in Software implementiert.

14.7.3.4 � Der USART im AVR
Viele Mikrocontroller der AVR-Serie besitzen eine eingebettete Schnittstelle zur Rea-
lisierung einer asynchronen seriellen Kommunikation. Im Fall des ATmega32 wird 
diese Peripheriekomponente als USART (Universal Synchronous Asynchronous 
Receiver/Transmitter) bezeichnet. Diese Komponente unterstützt serielle Übertragun-
gen mit 5 bis 9 Datenbits und 1 oder 2 Stoppbits. Neben der Analyse des Paritätsbits 
existieren weitere Möglichkeiten zur Erkennung von Übertragungsfehlern, die in diesem 
Abschnitt beschrieben werden. Wie die Bezeichnung USART andeutet, kann diese Kom-
ponente sowohl in einem asynchronen als auch in einem synchronen Modus betrieben 
werden. Im Folgenden wird nur auf den asynchronen Betriebsmodus näher eingegangen.

Der USART des ATmega32 stellt die beiden Signale TXD (Datenausgang) und RXD 
(Dateneingang) zur Verfügung. Diese Signale werden an den Anschlüssen PD0 und PD1 
als alternative Portfunktionen herausgeführt. Wird der USART durch das auf dem Cont-
roller laufende Programm aktiviert, stehen die Portanschlüsse PD0 und PD1 nicht mehr 
als frei programmierbare Portanschlüsse zur Verfügung.

Für die Konfiguration des USARTs werden drei USART-Control-and-Status-Register 
(UCSRA, UCSRB, UCSRC) sowie zwei Bitratenregister (UBBRL, UBBRH) bereitgestellt 
(s. Tab. 14.29).

Mit Setzen der Bits TXEN (Transmitter Enable) beziehungsweise RXEN (Receiver 
Enable) wird der Sender beziehungsweise Empfänger der seriellen Schnittstelle des 
ATmega32 aktiviert.
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Die Baudrate hängt von der Systemtaktfrequenz und dem Wert im UBRR-Register ab. 
Mithilfe der folgenden Formel kann ein geeigneter Wert für die Programmierung der Regis-
ter UBRRH (höherwertiges Byte) und UBRRL (niederwertiges Byte) bestimmt werden.

Die Auswahl der Anzahl der Datenbits innerhalb eines Frames (zwischen Start- und 
Stoppbit) wird durch UCSZ festgelegt (s. Tab. 14.30).

Die zu sendenden (oder empfangenen) Daten werden im Register UDR (USART Data 
Register) abgelegt. Ein Schreibzugriff auf dieses Register übermittelt neue zu sendende 
Daten an die Schnittstelle, während die CPU mithilfe eines Lesezugriffs auf empfangene 
Daten zugreifen kann.

Bei der Verwendung von 9 Datenbits wird das höchstwertige Datenbit durch 
die Bits TXB8 beziehungsweise RXB8 repräsentiert. In allen anderen Fällen haben 
diese Bits keine Bedeutung. Die weiteren Bits der UCSR-Register sind in Tab. 14.31 
zusammengefasst.

Für die häufig verwendete Konfiguration „8 Datenbits, keine Parität, 1 Stoppbit, asyn-
chroner Modus“ ergeben sich für die Programmierung der UCSR-Register die Werte 
UCSRB = 0x18 und UCSRC = 0x86. Die Bits des Registers UCSRA können auf den 

UBRR =
fsys + 8 · Baudrate

16 · Baudrate
− 1

Tab. 14.29   USART-Control- und Statusregister: UCSRA, UCSRB, UCSRC

UCSRA

Bit 7 6 5 4 3 2 1 0

Name RXC TXC UDRE FE DOR PE U2X MPCM

UCSRB

Bit 7 6 5 4 3 2 1 0

Name RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8

UCSRC

Bit 7 6 5 4 3 2 1 0

Name URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL

Tab. 14.30   Auswahl der 
Datenbits pro Frame mithilfe 
der UCSZ-Bits

UCSZ2 UCSZ1 UCSZ0 Datenbits

0 0 0 5

0 0 1 6

0 1 0 7

0 1 1 8

1 1 1 9
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Werten belassen werden, die sie nach dem Resetvorgang des Controllers erhalten haben 
(UCSRA = 0).

Funktionen zur Initialisierung des USARTs und zum Polling-basierten Empfang 
beziehungsweise Senden von Daten können in der Programmiersprache C wie folgt rea-
lisiert werden:

// Initialisierung des USARTs:

void USART_init (unsigned int baudrate)

{

   unsigned int bdr = ((F_CPU+8*baudrate)/baudrate/16)-1;
   UBRRH = (bdr>>8)&0x7F;
   UBRRL = bdr&0xFF;
   UCSRB = (1<<RXEN)|(1<<TXEN);   // Empfànger und Sender akt.
   UCSRC = (1<<URSEL)|(3<<UCSZ0); // 8 daten, 1 stopp

Tab. 14.31   Bedeutung der Bits der UCSR-Register

Bit Name Bedeutung

RXC Receive Complete 1: Daten eines Frames empfangen

TXC Transmit Complete 1: Daten eines Frames versendet

UDRE Data Register Empty 1: Daten-Register (UDR) ist leer

FE Frame Error 1: Ein empfangenes Stoppbit hatte den Wert 0

DOR Data Overrun 1: Daten im UDR-Register wurden nicht 
rechtzeitig gelesen worden und wurden von 
neuen empfangenen Daten überschrieben

PE Parity Error 1: Paritätsfehler erkannt

U2X Double Speed 1: Verdopplung der 
Übertragungsgeschwindigkeit

MPCM Multiprocessor Communication Mode 1: Multiprocessor Modus aktiviert

RXCIE Receive Complete
Interrupt Enable

Lokale Interruptfreigabe

TXCIE Transmit Complete
Interrupt Enable

Lokale Interruptfreigabe

UDRIE Data Register Empty
Interrupt Enable

Lokale Interruptfreigabe

URSEL Register Select 0: Zugriff auf UBRRH; 1: Zugriff auf UCSRC

UMSEL Mode Select 0: asynchroner Modus, 1: synchroner Modus

UPM1/0 Parity Mode 00: keine Parität; 10: Gerade Parität; 11: 
Ungerade Parität

USBS Stop Bit Select 0: 1 Stoppbit; 1: 2 Stoppbits

UCPOL Clock Polarity Polarität des Taktsignals im synchronen 
Modus

14.7  Eingebettete Peripheriekomponenten
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}

// Daten mit USART empfangen:

unsigned char UART_rx(void)

{

   while (!(UCSRA & (1<<RXC)));   // auf Daten warten

   return UDR;                    // empf. Zeichen zurùckgeben

}

// Daten mit USART senden:

void UART_tx(unsigned char data)

{

   while(!(UCSRA & (1<<UDRE)));   // warten auf Ende des Sendens

   UDR=data;                     // neues Zeichen ausgeben
}

14.7.4	� SPI

Die Abkürzung SPI steht für Serial Peripheral Interface. Es handelt sich um eine syn-
chrone Schnittstelle, die zur Datenübertragung unidirektionale Signalleitungen ver-
wendet und zur Verbindung integrierter Bausteine verwendet wird. Zusätzlich zu den 
Datenleitungen wird ein Taktsignal übertragen, welches zur Synchronisation eingesetzt 
wird.

14.7.4.1 � Datenübertragung mit dem SPI-Protokoll
Das Protokoll arbeitet nach dem Master-Slave-Prinzip. Ein SPI-Master initiiert die 
Datenübertragung und ist insbesondere für die Erzeugung des Taktsignals verantwort-
lich. SPI-Slaves empfangen das Taktsignal die vom Master übermittelten Daten. Gleich-
zeitig werden Daten vom Slave an den Master übertragen.

Für die Bezeichnung der Anschlüsse eines SPI-Interfaces sind keine allgemeingülti-
gen Namen spezifiziert. Die in der Praxis häufig verwendeten Anschlussbezeichnungen 
sind in Tab. 14.32 zusammengefasst.

Sowohl der Master als auch der Slave enthalten Schieberegister, in die die Daten bitse
riell eingeschrieben werden. Die Übernahme eines Bits in diese Schieberegister erfolgt 
mit der aktiven Taktflanke des Taktsignals SCK.

Häufig können auf der Seite des SPI-Masters die wesentlichen Übertragungspara-
meter konfiguriert werden. Hierzu zählen die Auswahl der aktiven Taktflanke (fallende 
oder steigende Flanke), die Wortlänge der Übertragung und die Auswahl, ob zuerst das 
höchstwertigste Bit (MSB first) oder das niederwertigste Bit (LSB first) übertragen wer-
den sollen.

Die Auswahl, welcher Slave an der Kommunikation teilnehmen soll, erfolgt durch 
den Slave-Select-Anschluss (/SS) des Slaves. Wird dieser auf 0 gelegt, nimmt der Slave 
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mit der nächsten aktiven Flanke des SCK-Signals an der Kommunikation der Bausteine 
teil. Andernfalls ignoriert der Slave die SPI-Übertragung.

Die Grundstruktur der Verbindung zwischen einem Master und einem Slave zeigt 
Abb. 14.14.

Ein Zeitdiagramm für die Signale SCK, MOSI und MISO ist in Abb. 14.15 dargestellt. 
In diesem Beispiel gilt für die SPI-Übertragung: Ruhezustand des Taktes ist 0 und die 
Datenübernahme findet mit der ersten Taktflanke nach Verlassen des Ruhezustands statt.

Sollen mehrere Slaves mit einem SPI-Master verbunden werden, können zwei Grund-
strukturen verwendet werden, die im Folgenden als SPI-Kaskadierung oder als SPI-
Sternverbindung bezeichnet werden.

Tab. 14.32   Anschlussbezeichnungen eines SPI-Interfaces

Signalbezeichnungen Bedeutung Datenrichtung

MOSI, SDI, SIMO Daten (Master Out, Slave In) Master → Slave

MISO, SDO, SOMI Daten (Master In, Slave Out) Slave → Master

SCK, SCLK Takt (Serial Clock) Master → Slave

/SS, /SSEL, /CS, /STE Slaveauswahl (Slave Select) Master → Slave

Schieberegister

Master

Takterzeugung

Slaveauswahl

MOSI

SCK

MISO

/SS

Slave

Schieberegister

Abb. 14.14   Struktur der SPI-Verbindung zwischen einem Master und einem Slave

Abb. 14.15   SPI-Signalverlauf

SCK

MISO

MOSI
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Im Fall der SPI-Kaskadierung wird ausgenutzt, dass die Daten, die über den MOSI-
Anschluss in einen Slave eingeschrieben werden, nach mehreren Taktzyklen unverändert 
am MISO-Ausgang des Slaves erscheinen. Wird dieser MISO-Ausgang mit dem MOSI-
Eingang eines nachfolgenden Slaves verbunden, können somit „durch den ersten Slave 
hindurch“ Daten zu dem nachfolgenden Slave übertragen werden. Während der Über-
tragung von Daten mithilfe des SPI-Protokolls müssen alle /SS-Eingänge auf dem Wert 
0 gehalten werden. Hierfür kann eine gemeinsame /SS-Leitung für alle kaskadierten 
SPI-Slaves verwendet werden. Die entsprechende Verbindungsstruktur ist in Abb. 14.16 
exemplarisch für die Verbindung von einem Master und drei Slaves skizziert.

Die Alternative zur Kaskadierung stellt die SPI-Sternverbindung dar. Hierbei werden 
die MISO-Ausgänge der Slaves miteinander verbunden und an den MISO-Eingang des 
Masters angeschlossen. MOSI-Eingänge der Slaves werden mit dem MOSI-Ausgang des 
Masters verbunden. Um zu vermeiden, dass die Verbindung der MISO-Ausgänge der Sla-
ves zu einem Kurzschluss führen kann, muss jeder der Slaves einzeln selektiert werden 
können. Wird vom Master nur einer der Slaves selektiert (/SS = 0), nimmt nur dieser an 
der Datenübertragung teil, während die Ausgänge der nicht selektierten Slaves hochoh-
mig sind. Die SPI-Sternverbindung ist in Abb. 14.17 für einen Master und drei Slaves 
skizziert.

Der Vorteil der SPI-Kaskadierung ist der geringere Verdrahtungsaufwand. Bereits mit 
4 Signalleitungen können beliebig viele Slaves an einen Master angeschlossen werden. 
Die Kaskadierung besitzt jedoch den Nachteil, dass die Daten durch alle Slaves hindurch 
gereicht werden müssen. Soll zum Beispiel der Slave 1 in Abb. 14.16 vom Master aus-
gelesen werden, so müssen die Daten des Slaves 1 zunächst durch die Slaves 2 und 3 
geschoben werden, wodurch der Datentransfer mehr Zeit in Anspruch nimmt. Darüber 
hinaus ist zu beachten, dass die Slaves Daten unverändert durchreichen müssen. Diese 
Funktion wird von vielen Slaves nicht unterstützt und es muss die Sternverdrahtung 
gewählt werden. In diesem Fall ist jeder Slave direkt mit dem Master verbunden und 
die Zeit zur Übertragung zwischen dem Master und einem beliebigen Slave ist für alle 

Abb. 14.16   SPI-
Kaskadierung mit einem 
Master und drei Slaves
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Slaves identisch. Diesem Vorteil steht der Nachteil gegenüber, dass für jeden Slave eine 
eigene /SS-Leitung erforderlich ist.

14.7.4.2 � SPI-Interface der AVR-Mikrocontroller
Die Mikrocontroller der AVR-Familie stellen ein SPI-Interface als eingebettete Periphe-
riekomponente zur Verfügung. Im Folgenden werden die Register der SPI-Schnittstelle 
eines ATmega32 beschrieben. Der ATmega32 stellt die SPI-spezifischen Anschlüsse als 
alternative Portfunktionen an den Anschlüssen PB4 (/SS), PB5 (MOSI), PB6 (MISO) und 
PB7 (SCK) zur Verfügung. Die Schnittstelle kann sowohl im Master- als auch im Slave-
Modus betrieben werden.

Für die Programmierung der SPI-Schnittstelle stehen ein Steuerregister (SPI Control 
Register, SPCR), ein Statusregister (SPI Status Register, SPSR) und ein Datenregister 
(SPI Data Register, SPDR) zur Verfügung.

Die Belegung des Steuerregisters SPCR ist in Tab. 14.33 dargestellt. Das Register 
dient der Konfiguration der SPI-Schnittstelle. Die Bedeutung der einzelnen Bits dieses 
Registers ist in Tab. 14.34 zusammengefasst.

Die im Master-Modus erzeugte Frequenz des SPI-Taktsignals wird aus den Bits 
SPR1, SPR0 und SPI2X (Bit 0 im Register SPSR) gemäß Tab. 14.35 aus dem Systemtakt 
abgeleitet.

Abb. 14.17   SPI-
Sternverbindung mit einem 
Master und drei Slaves
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Tab. 14.33   Belegung des Registers SPCR

SPCR

Bit 7 6 5 4 3 2 1 0

Name SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0

14.7  Eingebettete Peripheriekomponenten
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Das Statusregister SPSR enthält neben dem Bit SPI2X, welches die Takterzeugung 
beeinflusst, zwei Statusbits. Das Bit SPIF wird von der Schnittstellen-Hardware auf 1 
gesetzt sobald ein Byte übertragen wurde (Tab. 14.36).

Wird die SPI-Schnittstelle im Interruptbetrieb eingesetzt (SPIE = 1), wird das SPIF-
Bit durch die Hardware mit Aufruf der zugehörigen ISR gelöscht. Im Polling-Betrieb 
muss zum Löschen des Bits zunächst das Register SPSR und anschließend das Datenre-
gister SPDR gelesen werden.

Zum Lesen empfangener Daten beziehungsweise Schreiben zu sendender Daten steht 
das Register SPDR zur Verfügung. Vor dem Beginn einer Datenübertragung wird das zu 
sendende Byte in diesem Register abgelegt. Durch einen Lesezugriff auf dieses Regis-
ter kann die CPU nach Beendigung einer Übertragung die empfangenen Daten auslesen. 

Tab. 14.35   Festlegung der 
SPI-Taktfrequenz mit den Bits 
SPR1, SPR0 und SPI2X

SPR1 SPR0 SPI2X SPI-Taktfrequenz

0 0 1 fsys / 2

0 0 0 fsys / 4

0 1 1 fsys / 8

0 1 0 fsys / 16

1 0 1 fsys / 32

1 0 0 fsys / 64

1 1 1 fsys / 128

1 1 0 fsys / 256

Tab. 14.34   Bedeutung der SPCR-Steuerregisterbits

Bit Name Bedeutung

SPIE SPI Interrupt Enable 1: Lokale Interruptfreigabe
Ein Interrupt wird jeweils nach der Übertragung eines Bytes 
ausgelöst.

SPE SPI Enable 0: normale Portfunktion (SPI deaktiviert)/1: SPI-Schnittstelle 
aktiviert

DORD Data Ordering 0: MSB first/1: LSB first

MSTR Master Mode 0: Betrieb als SPI-Slave/1: Betrieb als SPI-Master

CPOL Clock Polarity Ruhezustand des Taktes
(= Polarität des Taktsignals, wenn keine Übertragung stattfindet)

CPHA Clock Phase Mit diesem Bit wird festgelegt, welche Taktflanke verwendet 
wird:
0: Die erste Flanke nach Verlassen des Ruhezustands des Taktes 
ist die aktive Taktflanke
1: Die zweite Flanke nach Verlassen des Ruhezustands des Taktes 
ist die aktive Taktflanke
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Während eine Datenübertragung aktiv ist, darf das Datenregister nicht geschrieben wer-
den. Ein versehentliches Überschreiben des Datenregisters signalisiert die SPI-Schnitt-
stelle durch Setzen des WCOL-Bits im Statusregister.

Bei vielen AVR-Controllern wird die SPI-Schnittstelle nicht nur zur Kommunikation 
mit anderen Bausteinen eingesetzt. Sie dient darüber hinaus als In-System-Program-
ming-Schnittstelle (ISP). Mithilfe der ISP-Funktion kann ein AVR-Controller, welcher in 
einem System eingesetzt ist, programmiert werden, ohne den Controller aus der Umge-
bung entfernen zu müssen. Diese Möglichkeit ist insbesondere für die Entwicklungs-
phase eines Systems bequem und zeitsparend.

Im Folgenden sind exemplarisch zwei Funktionen zur Initialisierung des SPI-Inter-
faces und zum Polling-basierten Empfangen und Senden von Daten angeben:

// Initialisierung des SPI-Interfaces

void SPI_init (void)

{

   DDRB |= (1<<PB4)|(1<<PB5)|(1<<PB7);   // SS,MOSI,SCK -> Ausgang
   SPCR |= (1<<SPE) |(1<<MSTR)|(1<<SPR0); // Schnittstelle konfigurieren
}

// SPI-Datenùbertragung

unsigned char SPI_io(unsigned char snd_data)

{

   SPDR = snd_data; 			  // Daten senden

   while (!(SPSR & (1<<SPIF))); 	 // Ùbertragung abwarten

   return SPDR; 		         // empf. Daten zurùckgeben

}

14.7.5	� TWI/I2C

In den frühen 1980er Jahren führte die Firma Philips den Inter-Integrated-Circuit-Bus 
(I2C) ein. Mit diesem Bus ist es möglich, mehrere integrierte Bausteine (Mikrocontroller, 
A/D-Umsetzer, D/A-Umsetzer, Speicher usw.) auf einer Leiterplatte mit nur zwei Signal-
leitungen zu verbinden. Aufgrund der Anzahl der Signalleitungen bezeichnen einige Her-
steller diese Schnittstelle auch als TWI (Two-Wire-Interface). Die Abkürzungen I2C und 
TWI können als synonyme Bezeichnungen identischer Schnittstellen aufgefasst werden.

Tab. 14.36   Belegung des Registers SPSR

SPSR

Bit 7 6 5 4 3 2 1 0

Name SPIF WCOL – – – – – SPI2X

14.7  Eingebettete Peripheriekomponenten
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Die I2C-Schnittstelle dient der synchronen seriellen Übertragung von Daten. Mithilfe 
des Signals SCL (Serial Clock) wird ein Taktsignal an alle angeschlossenen Bausteine 
übertragen. Der Datenaustausch findet über die Leitung SDA (Serial Data) statt.

Die I2C-Anschlüsse eines integrierten Bausteins sind als Open-Collector- beziehungs-
weise Open-Drain-Ausgänge realisiert. Die SDA- und SCL-Anschlüsse der einzelnen 
Komponenten sind miteinander verbunden und werden über einen Pull-Up-Widerstand 
mit der Versorgungsspannung verbunden. Ein Baustein kann die I2C-Leitungen aktiv auf 
einen Low-Pegel (logische 0) ziehen, er ist jedoch nicht in der Lage einen High-Pegel 
(logische 1) aktiv auszugeben. Ein High-Pegel auf einer der Signalleitungen wird erzielt, 
wenn alle Bausteine ihre Anschlüsse hochohmig schalten. Durch den Pull-Up-Wider-
stand (einige Kiloohm) wird dann eine logische 1 auf der Signalleitung erscheinen.

Abb. 14.18 zeigt den prinzipiellen Aufbau eines Systems mit mehreren integrierten 
Bausteinen, welche über eine I2C-Schnittstelle miteinander kommunizieren können.

Im Ruhezustand befinden sich alle I2C-Anschlüsse der Bausteine in einem hochohmi-
gen Zustand, sodass beide Busleitungen über die Pull-up-Widerstände einen High-Pegel 
führen. Soll ein Datenaustausch zwischen zwei Komponenten stattfinden, muss einer der 
Bausteine das benötigte Taktsignal erzeugen und die Datenübertragung initiieren. Die-
ser Baustein übernimmt damit die Funktion eines I2C-Masters. Alle anderen Bausteine 
arbeiten dagegen als I2C-Slave.

14.7.5.1 � Das I2C-Protokoll
Die Übertragung von Daten mithilfe des I2C-Protokolls erfolgt in zeitlich aufeinanderfol-
genden Schritten.

Im ersten Schritt übermittelt der Master eine sogenannte Startbedingung. Anschlie-
ßend wird eine 7 bit breite Bausteinadresse vom Master an die Slaves übermittelt. Ist die 
Bausteinadresse eines Slaves mit der übermittelten Adresse identisch, wird dieser Slave 
an der Kommunikation mit dem Master teilnehmen. Alle anderen, nicht ausgewählte 
Slaves, belassen ihre I2C-Anschlüsse in einem hochohmigen Zustand. In der Regel wird 
die I2C-Adresse eines Bausteins durch den Hersteller festgelegt. Häufig ist es möglich, 
einzelne Bits dieser Adresse durch die äußere Beschaltung (oder im Fall eines Mikro-
controllers durch das Programm der CPU) festzulegen. Auf diese Weise kann erreicht 
werden, dass mehrere identische Komponenten im gleichen Bussystem kollisionsfrei 
betrieben werden können. Nach der Übertragung der Bausteinadresse folgt ein einzelnes 
Bit, welches angibt, ob der Master Daten vom Slave lesen möchte oder ob Daten vom 
Master an den Slave übertragen werden sollen (0: Schreibzugriff, 1: Lesezugriff).

Abb. 14.18   Aufbau eines 
I2C-Systems mit mehreren 
integrierten Bausteinen

IC1 IC2 ICn

SDA

SCL
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Nach der Übertragung der Adresse und der Schreib-/Leseinformation versetzt der 
Master seinen SDA-Anschluss in einen hochohmigen Zustand. Wurde ein Slave-Bau-
stein durch die übertragene Adresse angesprochen, zieht dieser die SDA-Leitung für 
einen Taktzyklus auf Low. Auf diese Weise wird dem Master signalisiert, dass ein I2C-
Slave mit der übertragenen Adresse im System existiert und dieser an der nachfolgenden 
Datenübertragung teilnimmt. Diese Bestätigung wird als Acknowledge bezeichnet.

Im nächsten Schritt erfolgt die eigentliche Datenübertragung. Für einen Schreibzu-
griff sendet der Master 8 Datenbits an den Slave, welcher den Empfang anschließend 
bestätigt. Bei einem Lesezugriff sendet dagegen der Slave Daten an den Master und der 
Master bestätigt den Empfang.

Nach der Übertragung eines Bytes können entweder weitere Bytes übertragen werden 
oder die Übertragung wird beendet. Zum Beenden einer Übertragung kann der Master 
entweder eine neue Startbedingung senden und so einen neuen Datentransfer einleiten 
oder der Master sendet eine sogenannte Stoppbedingung, welche das Ende der Übertra-
gung signalisiert (s. Abb. 14.19).

Bei der Übertragung gemäß dem I2C-Protokoll gilt die Vereinbarung, dass sich der 
Wert der SDA-Leitung nur ändern darf, wenn die SCL-Leitung den Wert 0 besitzt. Diese 
Vereinbarung ist in Abb. 14.20 visualisiert.

Die oben genannte Vereinbarung gilt nur für die Adress- und Datenübertragung. Zur 
Signalisierung der Start- oder Stoppbedingung wird sie dagegen nicht eingehalten. Bei 
der Übertragung einer Startbedingung wird die SDA-Leitung vom Master auf Low gezo-
gen während sich die SCL-Leitung noch im Ruhezustand (High) befindet. Entsprechend 
wird zur Übertragung einer Stoppbedingung zunächst die Taktleitung SCL von 0 auf 1 
gesetzt. Mit einem anschließenden Wechsel der SDA-Leitung von 0 auf 1 wird wieder 
der Ruhezustand (SDA = 1, SCL = 1) erreicht. Der zeitliche Signalverlauf für Start- und 
Stoppbedingungen ist in Abb. 14.21 dargestellt.

Abb. 14.20   Synchronisierung 
beim I2C-Protokoll
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Abb. 14.19   Zeitlicher Verlauf einer I2C-Übertragung
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Die bitserielle Übertragung der Adressen oder Daten beginnt jeweils mit dem höchst-
wertigen Bit (Most Significant Bit first, MSB first). Der zeitliche Verlauf einer Über-
tragung ist exemplarisch in Abb. 14.22 dargestellt. Der Master adressiert hierbei einen 
Baustein mit der Adresse 0x35 und empfängt vom Baustein den Wert 0xA5.

14.7.5.2 � I2C-Interface der AVR-Mikrocontroller
Viele Mikrocontroller der AVR-Serie besitzen eine Hardware-Komponente, welche 
die Datenübertragung nach dem I2C-Protokoll unterstützt. Im Folgenden wird auf die 
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Schnittstelle eines ATmega32-Controllers eingegangen. Der Hersteller Atmel bezeichnet 
die I2C-Schnittstelle als Two-Wire-Interface, TWI.

Die I2C-Schnittstelle kann sowohl im Master- als auch im Slave-Betrieb arbeiten. Die 
Bausteinadresse für den Slavemodus kann durch eine entsprechende Programmierung 
durch den Controller frei festgelegt werden. Der AVR unterstützt SCL-Taktfrequenzen 
von bis zu 400 kHz, was dem sogenannten „Fast-Mode“ entspricht. Da viele I2C-Bau-
steine nur den Standard-Mode mit einer Taktfrequenz von 100 kHz unterstützen, muss 
vor der Inbetriebnahme eines I2C-Systems überprüft werden, ob die gewählte Taktfre-
quenz von allen Bausteinen des Systems unterstützt wird.

Die Programmierung des I2C-Interfaces eines AVR ist sehr übersichtlich, da diese 
Hardwarekomponente lediglich 5 Register besitzt, die im Folgenden näher vorgestellt 
werden.

Das TWI Control Register (TWCR) dient zur Steuerung der I2C-Hardwarekompo-
nente. Mithilfe dieses Registers kann die Komponente ein- oder ausgeschaltet oder die 
lokale Interruptfreigabe sowie einige Übertragungsparameter konfiguriert werden. Das 
TWI Status Register (TWSR) enthält 5 Bits, die als Statusinformation vom Programm 
ausgewertet werden können. Auf dieses Weise ist es möglich, Übertragungsfehler (zum 
Beispiel „Slave hat auf die Übertragung einer Adresse nicht mit einer Bestätigung geant-
wortet“) im Programm zu erkennen. Das TWSR-Register enthält darüber hinaus zwei 
Bits (TWPS1 und TWPS0), die zusammen mit dem Register TWBR (TWI Bitrate Regis-
ter) die verwendete Taktfrequenz im Masterbetrieb festlegen. Hierbei wird I2C-Frequenz 
aus der Systemtaktfrequenz fsys gemäß der nachfolgenden Formel abgeleitet:

Mithilfe des TWI Slave Address Registers (TWAR) wird die vom Controller verwendete 
Bausteinadresse im Slave-Modus festgelegt. Die Übermittlung von Daten erfolgt mit 
dem TWI Data Register (TWDR).

Die Belegung der Register TWCR und TWSR ist im Folgenden angegeben. Die ande-
ren Register der I2C-Schnittstelle enthalten 8-Bit-Werte (Tab. 14.37, 14.38 und 14.39).

Mithilfe der TWS-Statusbits kann die CPU den aktuellen Zustand des I2C-Inter-
faces bestimmen. Hierbei wird der jeweilige Betriebsmodus (Master oder Slave) unter-
schieden. Darüber hinaus wird unterschieden, ob der AVR Daten empfängt (Receiver) 
beziehungsweise Daten sendet (Transmitter). Somit ergeben sich vier grundlegende 

fSCL =
fsys

16+ 2 · TWBR · 4TWPS

Tab. 14.37   Belegung des Registers TWCR

TWCR

Bit 7 6 5 4 3 2 1 0

Name TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE

14.7  Eingebettete Peripheriekomponenten
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Betriebsmodi, für die eine Statusabfrage erfolgen kann: Master-Receiver-Modus, Mas-
ter-Transmitter-Modus, Slave-Receiver-Modus und Slave-Transmitter-Modus.

In Tab. 14.40 sind die möglichen Statusinformationen für den Masterbetrieb zusam-
mengefasst. Die in der Tabelle angegeben Konstanten können bei der Softwareent-
wicklung in der Programmiersprache C nach dem Inkludieren der Header-Datei twi.h 
verwendet werden.

Im Folgenden werden exemplarisch zwei Beispielfunktionen angegeben, welche das 
Polling-basierte Senden und Empfangen eines Bytes ermöglichen. Zur Fehlerbehandlung 
wird die Funktion TW_ERR() verwendet, die im nachfolgenden Code nicht angegeben ist 
und für ein lauffähiges Programm erstellt werden müsste.

// Senden eines Bytes

#include <util/twi.h> // I2C-Header-Datei

void TWI_ERR ()

{

   // Hier Code zur Fehlerbehandlung

}

void TWI_sendbyte (unsigned char twi_addr, unsigned char twi_data)

Tab. 14.39   Belegung des Registers TWSR

TWSR

Bit 7 6 5 4 3 2 1 0

Name TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0

Tab. 14.38   Bedeutung der einzelnen Bits des TWCR-Registers

Bit Name Bedeutung

TWINT TWI Interrupt Flag 1: Die I2C-Komponente hat die zuvor programmierte 
Aufgabe abgearbeitet und kann von der CPU mit neuen 
Aufgaben belegt werden. Ein Löschen dieses Bits (durch 
Schreiben einer 1) startet die nachfolgende Aufgabe

TWEA TWI Enable Acknowledge 1: Die Komponente generiert ein Bestätigungssignal, 
wenn Daten empfangen wurden oder falls (Slavemodus) 
die eigene Bausteinadresse empfangen wurde

TWSTA TWI Start Condition 1: Startbedingung generieren

TWSTO TWI Stop Condition 1: Stoppbedingung generieren (Mastermodus), Rückset-
zen des Interfaces (zur Fehlerbehandlung im Slavemodus)

TWWC TWI Write Collision 1: Das Datenregister (TWDR) wurde beschrieben bevor 
eine zuvor gestartete Übertragung abgeschlossen wurde

TWEN TWI Enable 1: Die I2C-Komponente ist aktiviert

TWIE TWI Interrupt Enable Lokale Interruptfreigabe
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{

   // --- Startbedingung ---

   TWCR = (1<<TWINT)|(1<<TWSTA)| (1<<TWEN);     // Sende START
   while (!(TWCR & (1<<TWINT)));                // gesendet?

   if (TWSR != TW_START) TWI_ERR();             // Status prùfen

   // --- Adresse ---

   TWDR = (twi_data << 1) | TW_WRITE;           // Adresse nach TWDR
   TWCR = (1<<TWINT) | (1<<TWEN);              // Ùbertragung starten
   while (!(TWCR & (1<<TWINT)));                // Adr. gesendet?

   if (TWSR != TW_MT_SLA_ACK) TWI_ERR();       // Status prùfen

   // --- Daten ---

   TWDR = twi_data;                            // Daten nach TWDR

Tab. 14.40   Statusinformationen für den Masterbetrieb

Statusbits im Register
TWSR

Konstante in
C-Bibliothek

Modus Bedeutung

0x08 TW_START Alle „START“ übertragen

0x10 TW_REP_START Alle „Repeated START“ übertragen
(Startbed. ohne vorherige 
Stoppbed.)

0x18 TW_MT_SLA_ACK Master
Transmit.

Adresse + „Write“ übertragen, 
Bestätigung (ACK) empfangen

0x20 TW_MT_SLA_NACK Master
Transmit.

Adresse + „Write“ übertragen,
Keine Bestätigung (NACK) 
empfangen

0x28 TW_MT_DATA_ACK Master
Transmit.

Daten übertragen, Bestätigung 
(ACK) empfangen

0x30 TW_MT_DATA_NACK Master
Transmit.

Daten übertragen, keine Bestäti-
gung (NACK) empfangen

0x38 TW_MR_ARB_LOST Master
Receiver

Ein anderer Master hat die 
Kontrolle
der I2C-Leitungen übernommen

0x40 TW_MR_SLA_ACK Master
Receiver

Adresse + „Read“ übertragen, 
Bestätigung (ACK) empfangen

0x48 TW_MR_SLA_NACK Master
Receiver

Adresse + „Read“ übertragen, 
keine Bestätigung (NACK) 
empfangen

0x50 TW_MR_DATA_ACK Master
Receiver

Daten empfangen, Bestätigung 
(ACK) gesendet

0x58 TW_MR_DATA_NACK Master
Receiver

Daten empfangen, keine Bestäti-
gung NACK gesendet

14.7  Eingebettete Peripheriekomponenten
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   TWCR = (1<<TWINT) | (1<<TWEN);              // Ùbertragung starten
   while (!(TWCR & (1<<TWINT)));                // Daten gesendet?

   if (TWSR != TW_MT_DATA_ACK) TWI_ERR();       // Status prùfen

   // --- Stoppbedingung ---

   TWCR = (1<<TWINT)|(1<<TWEN)| (1<<TWSTO);     // STOP senden
}

// Empfangen eines Bytes

#include <util/twi.h>                           // I2C-Header-Datei

unsigned char TWI_recbyte (unsigned char twi_addr)

{

   unsigned char twi_data;

   // --- Startbedingung ---

   TWCR = (1<<TWINT)|(1<<TWSTA)| (1<<TWEN);     // Sende START
   while (!(TWCR & (1<<TWINT)));                // gesendet?

   if (TWSR != TW_START) TWI_ERR();             // Status prùfen

   // --- Adresse ---

   TWDR = (twi_addr << 1) | TW_READ;            // Adresse nach TWDR
   TWCR = (1<<TWINT) | (1<<TWEN);              // Ùbertragung starten
   while (!(TWCR & (1<<TWINT)));                // Adr. gesendet?

   if (TWSR != TW_MR_SLA_ACK) TWI_ERR();        // Status prùfen

   // --- Daten ---

   TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWEA);
   while (!(TWCR & (1<<TWINT)));                // Daten empf. ?

     twi_data = TWDR;                           // Daten sichern

   // --- Stoppbedingung ---

   TWCR = (1<<TWINT)|(1<<TWEN)| (1<<TWSTO);     // STOP senden
   return twi_data;

}

14.7.6	� Analoge Peripheriekomponenten

Neben digitalen Ein-/Ausgabekomponenten stellen Mikrocontroller vielfach auch 
analoge Komponenten zur Verfügung. Der im Rahmen dieses Kapitels exemplarisch 
betrachtete Mikrocontroller ATmega32 verfügt über einen A/D-Umsetzer und einen Ana-
log-Komparator. Im Folgenden werden diese Komponenten näher vorgestellt.
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14.7.6.1 � Analog/Digital-Umsetzer
Der A/D-Umsetzer arbeitet nach dem Verfahren der sukzessiven Approximation und 
stellt eine Auflösung von 10 bit zur Verfügung. Die Umsetzung erfolgt nach dem Ver-
fahren der sukzessiven Approximation und benötigt, je nach Betriebsmodus, eine Zeit 
von 13 bis 260 µs. Als analoge Eingänge können im Fall des ATmega32 die Anschlüsse 
PA0 (ADC0) bis PA7 (ADC7) verwendet werden. Insgesamt stehen somit 8 analoge 
Anschlüsse zur Verfügung. Durch eine entsprechende Konfiguration des integrierten 
Analog-Multiplexers ist es möglich, jeweils einen dieser Anschlüsse mit dem Eingang 
des A/D-Umsetzers zu verbinden und eine Messung der anliegenden Eingangsspan-
nung durchzuführen. Darüber hinaus wird eine differenzielle Messung unterstützt, die 
es ermöglicht, die Spannungsdifferenz zweier analoger Anschlüsse zu messen. Die für 
den A/D-Umsetzer benötigte Referenzspannung kann entweder intern erzeugt oder über 
den Anschluss AREF beziehungsweise AVCC zugeführt werden. Die Struktur des A/D-
Umsetzers ist in Abb. 14.23 gezeigt.

Mithilfe eines Eingangsmultiplexers werden die Anschlüsse des Controllers aus-
gewählt, die dem A/D-Umsetzer zugeführt werden sollen. Neben den Anschlüssen 
ADC0 bis ADC7 kann auch eine interne Referenzspannung oder eine Masseverbindung 
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Interrupt
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Abb. 14.23   Struktur des A/D-Umsetzers
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ausgewählt werden. Bei Auswahl einer differenziellen Messung kann die Differenz-
spannung mithilfe eines Verstärkers mit den Werten 1, 10 und 200 multipliziert werden. 
Die ausgewählte Spannung wird zunächst über ein Sample-and-Hold-Glied geführt und 
anschließend dem A/D-Umsetzer zugeführt.

Nach der Durchführung der Wandlung kann der digitalisierte Wert aus den I/O-
Registern ADCL und ADCH ausgelesen werden. Für diesen Wert gelten die folgenden 
Formeln:

Normale Messung (single-ended):

Differenzielle Messung:

mit: V – Verstärkungsfaktor
Für die Programmierung des A/D-Umsetzers werden drei Register verwendet: Das 

ADC Multiplexer Selection Register (ADMUX), das ADC Control and Status Register A 
(ADCSRA) sowie einige Bits des Special Function IO Registers (SFIOR). Die Belegung 
der genannten Register ist im Folgenden angegeben (Tab. 14.41)

Mithilfe der Bits REFS1 und REFS0 wird die Referenzspannung für den A/D-Umset-
zer ausgewählt MUX4 bis MUX0 steuern die Analogmultiplexer, und mithilfe des Bits 
ADLAR kann das Ausgabeformat in den Registern ADCL und ADCH ausgewählt wer-
den. Tab. 14.42, 14.43 und 14.44 fassen die Bedeutung der Bits des ADMUX-Registers 
zusammen.

ADC =
Uin · 1024

Uref

ADC =
(Upos − Uneg) · V · 512

Uref

Tab. 14.41   Belegung des Registers ADMUX

ADMUX

Bit 7 6 5 4 3 2 1 0

Name REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0

Tab. 14.42   Auswahl der Referenzspannung mit den Bits REFS1 und REFS0

REFS1 REFS0 Referenzspannung Uref

0 0 Anschluss AREF

0 1 Anschluss AVCC

1 0 reserviert

1 1 Interne 2.56 V Referenzspannung (Kapazität an AREF empfohlen)
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Mit dem Register ADSCRA werden die Grundeinstellungen zum Betrieb des A/D-
Umsetzers vorgenommen (Tab. 14.45 und 14.46).

Tab. 14.43   Bedeutung der Bits des ADMUX-Registers

ADCH (ADLAR = 0)

Bit 7 6 5 4 3 2 1 0

Name - - - - - - ADC9 ADC8

ADCL (ADLAR = 0)

Bit 7 6 5 4 3 2 1 0

Name ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0

ADCH (ADLAR = 1)

Bit 7 6 5 4 3 2 1 0

Name ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2

ADCL (ADLAR = 1)

Bit 7 6 5 4 3 2 1 0

Name ADC1 ADC0 - - - - - -

14.7  Eingebettete Peripheriekomponenten

Tab. 14.44   Auswahl der Eingangsmultiplexer in Abhängigkeit von MUX0 bis MUX4

MUX3 MUX2 MUX1 MUX0 Analogeingang (MUX4 = 0) Analogeingang (MUX4 = 1)

0 0 0 0 ADC0 ADC0-ADC1

0 0 0 1 ADC1 ADC1-ADC1

0 0 1 0 ADC2 ADC2-ADC1

0 0 1 1 ADC3 ADC3-ADC1

0 1 0 0 ADC4 ADC4-ADC1

0 1 0 1 ADC5 ADC5-ADC1

0 1 1 0 ADC6 ADC6-ADC1

0 1 1 1 ADC7 ADC7-ADC1

1 0 0 0 (ADC0-ADC0)*10 ADC0-ADC2

1 0 0 1 (ADC1-ADC0)*10 ADC1-ADC2

1 0 1 0 (ADC0-ADC0)*200 ADC2-ADC2

1 0 1 1 (ADC1-ADC0)*200 ADC3-ADC2

1 1 0 0 (ADC2-ADC2)*10 ADC4-ADC2

1 1 0 1 (ADC3-ADC2)*10 ADC5-ADC2

1 1 1 0 (ADC2-ADC2)*200 Interne Spannung (1,22V)

1 1 1 1 (ADC3-ADC2)*200 Masse (0V)
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Tab. 14.45   Belegung des Registers ADSCRA

ADSCRA

Bit 7 6 5 4 3 2 1 0

Name ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0

Tab. 14.46   Bedeutung der Bits des Registers ADSCRA

Bit Name Bedeutung

ADEN ADC Enable Ein-/Ausschalten des A/D-Umsetzers (0: aus, 1: ein)

ADSC ADC Start Conversion 1: Start einer A/D-Umsetzung
Dieses Bit muss auch im „Free-Running-Mode“ (auto-
matisch wiederholte Messungen) zum Start der ersten 
Wandlung gesetzt werden.

ADATE ADC Auto Trigger Enable 0: Start der A/D-Umsetzungen durch SW
1: Kontinuierliche A/D-Umsetzung

ADIF ADC Interrupt Flag 1: A/D-Umsetzung abgeschlossen
(Löschen des Bits durch Schreiben einer 1)

ADIE ADC Interrupt Enable 1: Lokale Interruptfreigabe. Auslösen einer Unterbrechung 
nach Abschließen der A/D-Umsetzung

ADPS ADC Prescaler Selection Auswahl des Taktes des A/D-Umsetzers

Tab. 14.48   Belegung des Registers TWSR

SFIOR

Bit 7 6 5 4 3 2 1 0

Name ADTS2 ADTS1 ADTS0 - ACME PUD PSR2 PSR10

Tab. 14.47   Einstellung der ADC-Taktfrequenz durch Teilung der Systemfrequenz

ADPS2 ADPS1 ADPS0 ADC-Taktfrequenz

0 0 0 fsys / 2

0 0 1 fsys / 2

0 1 0 fsys / 4

0 1 1 fsys / 8

1 0 0 fsys / 16

1 0 1 fsys / 32

1 1 0 fsys / 64

1 1 1 fsys / 128
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Die Taktfrequenz, mit welcher der A/D-Umsetzer betrieben wird, beeinflusst sowohl 
die Dauer der Umsetzung als auch die Genauigkeit des Ergebnisses. Für eine Genauig-
keit von 10 Bit empfiehlt der Hersteller die Auswahl einer Frequenz zwischen 50 und 
200 kHz. Ist eine geringere Genauigkeit ausreichend, kann der A/D-Umsetzer auch mit 
Frequenzen oberhalb von 200 kHz betrieben werden, um höhere Abtastraten zu erzielen. 
Eine Umsetzung dauert, je nach Betriebsmodus, zwischen 14,5 und 16,5 Taktzyklen. Die 
Auswahl der Taktfrequenz durch die CPU erfolgt durch Programmierung der ADPS-Bits 
im ADSCRA-Register. Die Taktfrequenz wird durch Teilung der Systemfrequenz fsys ent-
sprechend Tab. 14.47 erzeugt.

Neben dem softwarebasierten Start einer A/D-Umsetzung, kann eine Umsetzung auch 
durch controllerinterne Ereignisse ausgelöst werden. Zur Auswahl dieser Ereignisse 
müssen die ADTS-Bits (ADTS: ADC Trigger Selection) im Register SFIOR programmiert 
werden (Tab. 14.48).

Die Auswahl der möglichen Ereignisse zum Start einer Wandlung fasst Tab. 14.49 
zusammen.

Eine einfache Beispielfunktion zur Verwendung des A/D-Umsetzers ist nachfolgend 
angegeben. Sie initialisiert den Umsetzer und startet eine Umsetzung, auf deren Ende 
Polling-basiert gewartet wird. Das Ergebnis wird als 16-Bit-Wert an das Hauptprogramm 
zurückgegeben.

#include <avr/io.h>

#include <util/delay.h>

unsigned int GET_ADC1()

{

   unsigned int adc;

   // Auswahl: Referenzspannung & Analogeingang ADC1

   ADMUX = (1<<REFS0) | (1<<MUX0);
   // A/D-Umsetzer einschalten und Vorteiler wàhlen

   ADCSRA = (1<<ADEN) | (1<<ADPS2) | (1<<ADPS1) | (1<<ADPS0);

Tab. 14.49   Auswahl der Triggerquelle zum Start der A/D-Umsetzung

ADTS2 ADTS1 ADTS0 Trigger-Quelle zum Start einer A/D-Umsetzung

0 0 0 „Free Running Mode“: A/D-Umsetzung wird automatisch nach dem 
Beenden der vorangegangenen Umsetzung gestartet

0 0 1 Analog-Komparator

0 1 0 Externer Interrupt (Anschluss INT0)

0 1 1 Timer0: Zähler des Timers = Vergleichswert (Compare Match)

1 0 0 Timer0: Zählerüberlauf (Timer Overflow)

1 0 1 Timer1: Zähler des Timers = Vergleichswert B (Compare Match B)

1 1 0 Timer1: Zählerüberlauf (Timer Overflow)

1 1 1 Timer1: Ereignis der Input-Capture-Unit (Capture Event)

14.7  Eingebettete Peripheriekomponenten
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   // Start der Umsetzung per Software            

   ADCSRA |= (1<<ADSC);
   // Auf Ende der Umsetzung warten

   while (ADCSRA & (1<<ADSC)) _delay_us(1);        

   // Ergebnis lesen

   adc = ADCL;
   adc |= (ADCH<<8);
   return adc;

}

14.7.6.2 � Analog-Komparator
Mithilfe des Analog-Komparators können zwei analoge Spannungen miteinander ver-
glichen werden. Das Ergebnis dieses Vergleichs wird vom Komparator als binärer Wert 
ausgegeben. Der Ausgangswert des Komparators kann durch die CPU über die Abfrage 
eines I/O-Registers eingelesen werden. Darüber hinaus ist es möglich, bei Änderungen 
des Ausgangswertes einen Interrupt auszulösen. Weiterhin kann der Ausgang des Ana-
log-Komparators direkt in der Hardware des Mikrocontrollers (zum Beispiel im Timer 
1 als Capture-Impuls für die Input-Capture-Unit) verwendet werden. Die Struktur des 
Komparators zeigt Abb. 14.24.

Die Funktion des Komparators wird im Wesentlichen durch das ACSR-Register fest-
gelegt (Tab. 14.50).

Wie Tab. 14.51 zu entnehmen ist, erfolgt die Signalauswahl für den positiven Kompa-
ratoreingang durch das Bit ACBG. Der Multiplexer für den negativen Komparatoreingang 
wird über die Bits ACME (SFIOR-Register) und ADEN (ADCSRA-Register) gesteuert. 
Gilt ACME = 1 und ADEN = 0 (A/D-Umsetzer abgeschaltet), wird dem negativen Kom-
paratoreingang das Ausgangssignal des Eingangsmultiplexers des A/D-Umsetzer zuge-
führt. In allen anderen Fällen wird das Signal am Anschluss AIN1 ausgewählt.

Abb. 14.24   Struktur des 
Analog-Komparators

MUX
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+
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Interne
Referenz-
spannung 
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Tab. 14.50   Belegung des Registers ACSR

ACSR

Bit 7 6 5 4 3 2 1 0

Name ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0



511

14.7.7	� Interrupt-basierte Kommunikation mit 
Peripheriekomponenten

Die Kommunikation zwischen CPU und eingebetteten Peripheriekomponenten kann 
Polling-basiert erfolgen. Beispiele hierzu wurden in den vorangegangenen Abschnitten 
für einzelne Peripheriekomponenten eines AVR-Mikrocontrollers dargestellt. Polling 
stellt die einfachste Möglichkeit dar, mit einer eingebetteten Komponente zu kommuni-
zieren und besitzt den Vorteil, dass der Programmcode meist relativ gut nachvollziehbar 
ist, da er streng sequenziell ausgeführt wird. Mit Polling ist jedoch der Nachteil verbun-
den, dass ein signifikanter Anteil der verfügbaren Rechenleistung für Warteschleifen zur 
Abfrage von Peripheriekomponenten aufgebracht werden muss. Darüber hinaus muss bei 
Verwendung von Polling sichergestellt sein, dass die Komponenten ausreichend häufig 
abgefragt werden, da andernfalls Ereignisse (zum Beispiel der Empfang von Daten) ver-
passt werden könnten. Für sehr einfache Anwendungen kann Polling durchaus ein sinn-
voller Ansatz zur Realisierung einer Anwendung auf einem Mikrocontroller sein. Für 
komplexere Anwendungen ist er meist nicht zu empfehlen, da entweder die rechtzeitige 
Abfrage aller Peripheriekomponenten nicht gewährleistet werden kann oder auch der 
Verbrauch der Rechenleistung für Warteschleifen zur Abfrage der Peripheriekomponen-
ten nicht toleriert werden kann.

Tab. 14.51   Signalauswahl am Komparatoreingang

Bit Name Bedeutung

ACD Analog Comparator Disable Ein-/Ausschalten des Komparators (0: ein, 1: aus)

ACBG Analog Comparator Bandgap Select Auswahl des Signals am positiven 
Komparator-Eingang
0: Anschluss AIN0
1: Intern erzeugte Referenzspannung (typ. 1,23 V)

ACO Analog Comparator Output Aktueller Status des Komparatorausgangs
(zur Abfrage durch die CPU)

ACI Analog Comparator
Interrupt Flag

1: Ereignis (entspr. der ACIS-Bits) ist aufgetreten 
und es wird ein Interrupt ausgelöst, sofern der AC-
Interrupt freigegeben ist

ACIE Analog Comparator
Interrupt Enable

1: Lokale Interruptfreigabe

ACIC Analog Comparator
Input Capture Enable

1: Ereignis des Analog-Komparators löst Capture-
Event in Timer1 aus.

ACIS Analog Comparator
Interrupt Mode Select

00: Interrupt bei Wechsel des Ausgangs ACO
01: reserviert
10: Interrupt bei fallender Flanke des Ausgangs 
ACO
11: Interrupt bei steigender Flanke des Ausgangs 
ACO
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Als Alternative zu Polling kann eine interruptbasierte Kommunikation mit Periphe-
riekomponenten eingesetzt werden. Das Hauptprogramm wird in diesem Fall zunächst 
die Initialisierung des Systems vornehmen, die benötigten Interrupts lokal freigeben und 
abschließend eine globale Interruptfreigabe durch Setzen des I-Flags im Statusregister 
der CPU vornehmen. Anschließend wird das Hauptprogramm in eine Endlosschleife 
springen, die in einfachen Anwendungsfällen leer ist. Ein Beispiel für die Verwendung 
von Interrupts wird anhand des folgenden Beispiels verdeutlicht:

Mithilfe eines Mikrocontrollers soll eine einfache Temperaturüberwachung realisiert 
werden. Ein hypothetischer Sensor liefert die Temperatur als 8-Bit-Wert an den Mikro-
controller. Der Sensor misst kontinuierlich die Temperatur. Über die steigende Flanke 
eines Synchronisationssignals wird vom Sensor angezeigt, dass ein neuer Messwert aus-
gegeben wurde. Übersteigt die gemessene Temperatur einen vorprogrammierten Wert, 
soll der Mikrocontroller ein Alarmsignal (Alarm = 1) ausgeben. Eine Hardwarerealisie-
rung auf Basis eines ATmega32 ist in Abb. 14.25 skizziert.

Ein entsprechendes Programm für den Mikrocontroller kann wie folgt aussehen:

// Einfache Temperaturùberwachung

#include <avr/io.h>

#include <avr/interrupt.h>

#define ALARM_SCHWELLE 100

void InitSystem() {

   // Portrichtungen einstellen

   DDRA = 0;        
   DDRB |= (1<<PB0);
   DDRD &= ~(1<<PD2);
   // Interrupt konfigurieren und lokal freigeben

   MCUCR |= (1<<ISC01)|(1<<ISC00);     
   GICR |= (1<<INT0);
   // Globale Interrupt-Freigabe

   sei();            

}

Sensor
PA[7:0]

PD2 (INT0)

PB0 Alarm

Mikrocontroller

Abb. 14.25   Anwendungsbeispiel „Temperaturüberwachung“
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// Interrupt-Service-Routine

ISR(INT0_vect) {

   // PB0 = 1 falls Alarmschwelle ùberschritten
   if (PINA > ALARM_SCHWELLE) PORTB |= (1<<PB0);
}

void main () {

   InitSystem();

   while (1) {

        // Sofern keine anderen regelmàßigen Aufgaben zu

        // erledigen sind, eine leere Endlosschleife…

   }

}

14.7.7.1 � Interruptverarbeitung und atomare Operationen
Nun soll das System zur Temperaturüberwachung zunächst so erweitert werden, dass 
der Benutzer über eine entsprechende Schnittstelle den Schwellwert zur Auslösung 
eines Alarms einstellen kann. Zur Bedienung der Schnittstelle wird dem Programm die 
Funktion UIF() hinzugefügt. Diese Funktion könnte zum Beispiel mithilfe einer Tastatur 
und eines Displays mit dem Benutzer kommunizieren und den jeweils aktuell gewähl-
ten Schwellwert als Rückgabewert liefern. Die Implementierung dieser Funktion ist hier 
irrelevant und wird nicht näher betrachtet. Da die Benutzereingabe durch die Bedienung 
der Tastatur jedoch einige Zeit benötigt, muss berücksichtigt werden, dass die Ausfüh-
rungszeit der Funktion nicht exakt bestimmbar ist und mehrere 100 ms oder auch meh-
rere Sekunden betragen kann. Ein erweitertes Programm, welches einen einstellbaren 
Alarmwert unterstützt, kann wie folgt realisiert werden.

// Temperaturùberwachung mit einstellbarem Alarmwert

#include <avr/io.h>

#include <avr/interrupt.h>

volatile unsigned char Schwelle;

void InitSystem() {

   // Programmcode wie oben angegeben

}

unsigned char UIF() {

   // User-Interface, die genaue Implementierung ist irrelevant

}

ISR(INT0_vect) {

   // PB0 = 1 falls Alarmschwelle ùberschritten
   if (PINA > Schwelle) PORTB |= (1<<PB0);
}
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void main () {

   InitSystem();

   while (1) {

        Schwelle = UIF();
   }

}

Nun soll das Programm ein weiteres Mal erweitert werden. Es wird ein neuer Sen-
sor verwendet, der einen 16 bit breiten Temperaturwert liefert. Der vom Sensor gelieferte 
Wert wird mithilfe der Ports PORTA und PORTC vom Mikrocontroller eingelesen. Der 
Code wird wie folgt modifiziert:

// Temperaturùberwachung mit einstellbarem 16-Bit-Alarmwert

// >>> Fehlerhafte Implementierung !!! <<<

// Modifikationen zum vorangegangenen Programm sind fett gedruckt

#include <avr/io.h>

#include <avr/interrupt.h>

volatile unsigned short Schwelle;

void InitSystem(void) { … }

unsigned short UIF(void) { … }

ISR(INT0_vect) {

   unsigned short Messwert;

   Messwert = PINA;
   Messwert = (Messwert<<8) | PINC;
   if (Messwert > Schwelle) PORTB |= (1<<PB0);
}

void main () {

   InitSystem();

   while (1) {

        Schwelle = UIF();
   }

}

Auf den ersten Blick mögen die Modifikationen des Programms plausibel und sinn-
voll erscheinen: Ein lauffähiges und bewährtes Programm wurde durch die Modifikation 
der Wortbreite der verwendeten Variablen modifiziert. Allerdings würden bei Einsatz die-
ses Programms sporadische Fehlfunktionen auftreten. Um die Ursache dieser sporadi-
schen Fehler zu verstehen, muss die Codezeile

Schwelle = UIF();
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näher betrachtet werden.
Der Aufruf des Unterprogramms und die Zuweisung an die globale Variable Schwelle 

würde vom Compiler in den folgenden Assemblercode umgesetzt werden:

call   0x92; Aufruf von UIF, Rùckgabewert in r24 und r25

sts   0x61, r25; Zuweisung des hòherwertigen Bytes

sts   0x60, r24; Zuweisung des niederwertigen Bytes

Mit der Analyse des Assemblercodes wird das auftretende Problem deutlich: Der 
Compiler benötigt für die Zuweisung des Rückgabewertes an die 16-Bit-Variable 
Schwelle zwei Befehle. Sollte nun zufällig ein Sensor-Interrupt auftreten, während der 
erste Befehl der Zuweisung ausgeführt wird, würde die Interrupt-Service-Routine einen 
nicht vollständig erneuerten Wert in den Speicherstellen (hier: 0x60 und 0x61) der Varia-
blen Schwelle vorfinden. Die erste Zuweisung würde dem Sprung in die ISR ausgeführt, 
während die zweite Zuweisung erst nach Verlassen der ISR aufgerufen wird.

In vielen Fällen wird sich dieser Programmfehler nicht bemerkbar machen, da mehrere 
Bedingungen zum Auftreten einer Fehlfunktion gelten müssen: Der Interrupt muss genau 
zum oben beschriebenen Zeitpunkt auftreten und das höherwertige Byte des Schwellwertes 
muss sich gegenüber dem vorangegangenen Wert geändert haben. Darüber hinaus müsste der 
vom Temperatursensor gelieferte Wert dazu führen, dass aufgrund des falsch übergebenen 
Schwellwertes ein Alarm fälschlich ausgelöst wird. Anhand dieser Überlegung ist zu erken-
nen, dass der Fehler vermutlich nur sehr selten auftreten wird. Genau hierin liegt jedoch die 
Schwierigkeit, den Fehler durch praktische Tests des Systems zu detektieren. Während der 
Entwicklungsphase tritt der Fehler aufgrund der geringen Auftrittswahrscheinlichkeit eventu-
ell nicht zutage, hat jedoch im Betrieb des Systems möglicherweise fatale Folgen.

Anhand dieses einfachen Beispiels wird deutlich, dass man sich mit der CPU des ver-
wendeten Systems auskennen sollte. In diesem Beispiel muss bei der Programmierung 
klar sein, dass eine 16-Bit-Zuweisung nicht durch einen einzelnen Befehl ausgeführt wer-
den kann, da die CPU zwei aufeinanderfolgende 8-Bit-Zuweisungen verwenden muss.

Operationen, die nicht durch Interrupts (oder auch andere hier nicht näher betrach-
tete Mechanismen) unterbrochen werden können, werden auch als atomare Operationen 
bezeichnet. Der Begriff „atomar“ ist hierbei aus dem griechischen Wort átomo (= unteil-
bar) abgeleitet.

Die in dem Beispiel gezeigte Zuweisung eines 16-Bit-Wertes stellt somit keine ato-
mare Operation dar, da sie durch einen Interrupt unterbrochen werden kann.

Zur Lösung dieser Problematik können die für die Zuweisung relevanten Interrupts 
kurzzeitig gesperrt werden. Eine mögliche Implementierung des Hauptprogramms 
könnte wie folgt aussehen.

// Ungùnstige Implementierung des Hauptprogramms

void main () {

   InitSystem();
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   while (1) {

        GICR &= ~(1<<INT0); // Interruptereignis INT0 sperren
        Schwelle = UIF();
        GICR |= (1<<INT0); // Interruptereignis INT0 freigeben
   }

}

Dieser Ansatz ist „interruptfest“. Es können also keine sporadischen Fehler auf-
grund einer unvollständigen Zuweisung auftreten. Allerdings tritt hierbei eine weitere 
Problematik auf: Die Ausführung der Schleifenanweisung (while(1)) und das Sperren 
beziehungsweise das Freigeben des INT0-Interrupts können von der CPU in wenigen 
Taktzyklen abgearbeitet werden. Für den Aufruf der Benutzerschnittstelle wird dagegen 
signifikant mehr Rechenzeit benötigt. Die Konsequenz ist, dass die Interrupts die über-
wiegende Zeit gesperrt sind. Daher ist die Wahrscheinlichkeit hoch, dass die ISR nicht 
aufgerufen wird und damit einige vom Temperatursensor gelieferten Werte nicht verar-
beitet werden. Daher sollte bei der Programmentwicklung darauf geachtet werden, dass 
Interrupts nur so kurz wie möglich gesperrt werden.

Eine entsprechende Modifikation des Hauptprogramms könnte wie folgt aussehen.

// Sinnvollere Implementierung des Hauptprogramms

void main ()

{

   unsigned short Schwelle_lokal;

   InitSystem();

   while (1) {

        Schwelle_lokal = UIF();
        GICR &= ~(1<<INT0); // INT0 sperren
        Schwelle = Schwelle_lokal;
        GICR |= (1<<INT0); // INT0 freigeben
   }

}

Zusammenfassend lässt sich festhalten, dass die folgenden Überlegungen und Regeln 
bei der Verwendung von Interrupts beachtet werden sollten.

•	 Interrupts sollten, wenn überhaupt, so kurz wie möglich vom Hauptprogramm 
gesperrt werden.

•	 Da nach dem Aufruf einer ISR keine weiteren Interrupts zugelassen sind, sollte eine 
ISR eine möglichst kleine Rechenzeit benötigen.

•	 Für die Kommunikation zwischen dem Hauptprogramm und einer ISR sollte geprüft 
werden, ob die implementierte Kommunikation atomar ist. Gegebenenfalls sollte 
die Implementierung des Programms angepasst werden, um sporadische Fehler zu 
vermeiden.
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14.7.7.2 � FIFO-basierte Kommunikation mit Peripheriekomponenten
In vielen Fällen ist es wünschenswert, die Kommunikation mit einer Peripheriekompo-
nente nicht byteweise auszuführen, sondern zunächst eine Zwischenspeicherung vorzu-
nehmen. Da die Reihenfolge der Daten durch den Speicher nicht verändert werden soll, 
bietet sich die Implementierung eines First-In-First-Out-Speichers (FIFO) an. Eine mög-
liche FIFO-Realisierung ist im Folgenden dargestellt.

Die im Folgenden dargestellte Implementierung eines FIFOs verwendet zur Speiche-
rung der Daten einen Bereich im SRAM des Controllers. Der Speicherbereich wird mit-
hilfe der C-Bibliotheksfunktion malloc() reserviert. Zur Adressierung der Daten werden 
zwei Zeiger verwendet. Ein Schreibzeiger (wp) dient zur Adressierung der Daten, die in 
den FIFO-Speicher geschrieben werden. Ein Lesezeiger (rp) adressiert die Daten, die bei 
einem Lesezugriff auf das FIFO ausgeben werden. Die zur Verwaltung des FIFOs benö-
tigten Daten (Schreibzeiger, Lesezeiger, Größe des FIFOs sowie ein Zeiger auf den im 
SRAM allokierten Speicherbereich) werden in einer Datenstruktur abgelegt.

Der allokierte Speicherbereich mit der Größe N Bytes wird als Ringspeicher genutzt. 
Für die Adressierung des Speichers bieten sich verschiedene Varianten an.

Bei der im Folgenden verwendeten Variante durchlaufen der Lese- und der Schreib-
zeiger einen Wertebereich von 0 bis 2N−1. Das FIFO ist leer, wenn die Werte des 
Schreib- und des Lesezeigers identisch sind. Dagegen ist das FIFO voll, wenn die Diffe-
renz zwischen Schreib- und Lesezeiger genau N beträgt. Ein gesondertes Mitführen der 
„Voll/Leer“-Information oder des FIFO-Füllstandes ist bei dieser Variante nicht erfor-
derlich. Werden die Zeiger als Bytevariablen ausgelegt, kann die atomare Ausführung 
des Codes sichergestellt werden, ohne dass Interrupts kurzzeitig gesperrt werden müss-
ten. Der Nachteil dieses Ansatzes ist jedoch, dass die beiden Zeiger nur dann direkt zur 
Adressierung des Speichers verwendet werden, wenn ihre Werte kleiner als N−1 sind. 
Andernfalls muss vor der Adressierung vom Wert des Zeigers N subtrahiert werden.

Abb. 14.26 zeigt verschiedene Beispiele für mögliche Zustände der gewählten FIFO-
Implementierung. Es ist jeweils der Füllstand (= Anzahl gültiger Werte im FIFO) sowie 
der Wert des Schreibzeigers und des Lesezeigers angegeben.

Die FIFO-Implementierung stellt verschiedene C-Funktionen zur Verfügung. Die Funk-
tion FIFO_Init() allokiert Speicher für den Pufferspeicher zur Aufnahme der zu speichern-
den Daten und die Parameter des FIFOs (Schreibzeiger, Lesezeiger, FIFO-Größe und 
einen Zeiger auf den Pufferspeicher). Der Rückgabewert dieser Funktion ist ein Zeiger auf 
die angelegte Datenstruktur zur Verwaltung des FIFOs, die für die folgenden Funktionen 
als Parameter verwendet wird. Da die Allokation des Speichers dynamisch erfolgt, kann 
es vorkommen, dass der benötigte Speicherbereich zur Laufzeit des Programms nicht zur 
Verfügung steht. In diesem Fall ist der Rückgabewert der Funktion NULL.

Mithilfe der Funktionen FIFO_Read() beziehungsweise FIFO_Write() können Daten 
aus dem FIFO-Speicher gelesen beziehungsweise in das FIFO geschrieben werden. Diese 
Funktionen sind nicht blockierend („non-blocking“). Dies bedeutet, dass beispielsweise 
der Aufruf der Funktion FIFO_Write() auch bei einem vollen FIFO nicht wartet, bis ein 
Eintrag im FIFO frei wird. In diesem Fall wird die Funktion mit dem Rückgabewert 0 
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verlassen, um dem aufrufenden Programmteil anzuzeigen, dass der Schreibvorgang nicht 
erfolgreich ausgeführt wurde. Das aufrufende Programm kann mithilfe dieser Information 
entscheiden, ob die Fortsetzung des Programms sinnvoll ist oder gegebenenfalls in einer 
Warteschleife auf das Freiwerden eines Eintrages im FIFO warten und den Schreibvor-
gang erneut anstoßen. Entsprechendes gilt für die Funktion FIFO_Read(). Die Funktion 
FIFO_Free() gibt den mit FIFO_Init() belegten Speicherbereich wieder frei.

Der folgende Code zeigt eine mögliche FIFO-Implementierung in der Programmier-
sprache C.

// ************************************************************

// File:   fifo.h

// ************************************************************

#ifndef __FIFO_H__

#define __FIFO_H__

#include <stdlib.h>

// FIFO Struktur zur Aufnahme der FIFO-Parameter

typedef volatile struct {

   unsigned char size;    // FIFO Gròße

   unsigned char rp;      // Lesezeiger

   unsigned char wp;      // Schreibzeiger

   unsigned char *buffer; // Zeiger auf Pufferspeicher

} TS_Fifo;

// FIFO Initialisierung (Speicher wird mittels malloc allokiert)

extern TS_Fifo* FIFO_Init(unsigned char log2size);

// FIFO Speicher freigeben

Füllstand = 0
Initialzustand

Füllstand = 1 Füllstand = 2 Füllstand = 1

Füllstand = 0
(leer)

Füllstand = 3 Füllstand = 4
(voll)

Füllstand = 0
(leer)

Abb. 14.26   Beispiele für Zustände der FIFO-Implementierung am Beispiel eines FIFOs mit 4 
Einträgen
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extern void FIFO_Free(TS_Fifo *fifo);

// Wert aus FIFO lesen

extern unsigned char FIFO_Read(TS_Fifo *fifo, unsigned char* value);

// Wert in FIFO schreiben

extern unsigned char FIFO_Write(TS_Fifo *fifo, unsigned char value);

#endif

// ************************************************************

// File:   fifo.c

// ************************************************************

#include "fifo.h"

TS_Fifo* FIFO_Init(unsigned char size)

{

   TS_Fifo *fifo;

   if (size>127) return NULL;

   fifo = malloc(sizeof(TS_Fifo));
   if (fifo==NULL) return NULL;
   fifo->buffer = malloc(size);
   if (fifo->buffer==NULL) {
        free((void*)fifo);

        return NULL;

   }

   fifo->size = size;
   fifo->rp = 0;
   fifo->wp = 0;
   return (fifo);

}

void FIFO_Free(TS_Fifo *fifo)

{

   free((void*)fifo->buffer);

   free((void*)fifo);

}

unsigned char FIFO_Read(TS_Fifo *fifo, unsigned char *value)

{

   unsigned char wp_tmp;

   unsigned char rp_tmp;

   unsigned char rp_adr;

   wp_tmp = fifo->wp;
   rp_tmp = fifo->rp;
   rp_adr = (rp_tmp>=fifo->size)? rp_tmp-fifo->size:rp_tmp;
   if (wp_tmp==rp_tmp) {       // FIFO leer ?
        return 0;

   } else {

        *value = fifo->buffer[rp_adr]; // Wert holen
        rp_tmp++;               // Lesezeiger erhòhen
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        // Bei Ùberlauf rp auf 0 setzen

        if (rp_tmp==2*fifo->size) rp_tmp = 0;
        fifo->rp = rp_tmp;       // atomare Zuweisung
        return 1;

   }

}

unsigned char FIFO_Write(TS_Fifo *fifo, unsigned char value)

{

   unsigned char wp_tmp;

   unsigned char rp_tmp;

   unsigned char wp_adr;

   unsigned char rp_adr;

   wp_tmp = fifo->wp;
   rp_tmp = fifo->rp;
   wp_adr = (wp_tmp>=fifo->size)?wp_tmp-fifo->size:wp_tmp;
   rp_adr = (rp_tmp>=fifo->size)?rp_tmp-fifo->size:rp_tmp;
   if (wp_adr==rp_adr && wp_tmp!=rp_tmp) {
        // FIFO ist voll

        return 0;

   } else {

        // Wert in FIFO eintragen

        fifo->buffer[wp_adr] = value; // Wert schreiben
        wp_tmp++;                    // Schreibzeiger erhòhen
        // Bei Ùberlauf wp auf 0 setzen

        if (wp_tmp==2*fifo->size) wp_tmp = 0;
        fifo->wp = wp_tmp;            // atomare Zuweisung            
        return 1;

   }

}

Die FIFO-Funktionen können für die Kommunikation mit Peripheriekomponenten 
verwendet werden. Der nachfolgende Code verwendet FIFO-Speicher für die Kommuni-
kation über den USART. Es werden zwei FIFOs angelegt. Ein FIFO nimmt die empfange-
nen Daten in einer Interrupt-Service-Routine auf und legt diese in einem Empfangs-FIFO 
(rx_fifo) ab. Die empfangenen Daten werden mithilfe der Funktion UART_GetFifo() an 
das Hauptprogramm übergeben. Für das Senden von Daten wird ein weiteres FIFO (tx_
fifo) verwendet. Das Hauptprogramm legt Daten durch Aufruf der Funktion UART_Put-
Fifo() in diesem Sende-FIFO ab. Mithilfe einer ISR werden die Daten aus diesem FIFO 
ausgelesen und an die eingebettete serielle Schnittstelle des Mikrocontrollers übergeben.

// ************************************************************

// File:   uart_fifo.h

// ************************************************************

#ifndef __UART_H__

#define __UART_H__
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#include <avr/io.h>

#include <avr/interrupt.h>

#include "fifo.h"

// Interruptbasierter Transfer mit FIFOs

extern unsigned char UART_InitFIFOTransfer (unsigned long baudrate,

     unsigned char rx_size, unsigned char tx_size);

// Zeichen aus RX FIFO abholen

// Rùckgabewert ist 0 falls kein Zeichen verfùgbar, sonst 1

extern unsigned char UART_GetFifo(unsigned char *data);

// Zeichen in TX FIFO schreiben

// Rùckgabewert ist 0 falls Schreibpuffer voll, sonst 1

extern unsigned char UART_PutFifo(unsigned char data);

#endif

// ************************************************************

// File:   uart_fifo.c

// ************************************************************

#include "uart_fifo.h"

static volatile TS_Fifo *rx_fifo;

static volatile TS_Fifo *tx_fifo;

// Initialisierung des UARTs und der FIFOs

unsigned char UART_InitFIFOTransfer (unsigned long baudrate,

     unsigned char rx_size,     unsigned char tx_size)

{

   unsigned long bdrate;

   // Uebertragungsrate setzen

   bdrate = (F_CPU+baudrate*8)/(baudrate*16)-1;
   UBRRH = (bdrate>>8)&0xFF;
   UBRRL = bdrate&0xFF;
   //Uebertragungsformat: 8 data bits, no parity, 1 stop bit

   UCSRC = (1<<URSEL)|(1<<UCSZ1)|(1<<UCSZ0);   
   // FIFOs initialisieren

   rx_fifo = FIFO_Init(rx_size);
   if (rx_fifo == NULL) return 0;
   tx_fifo = FIFO_Init(tx_size);
   if (tx_fifo == NULL) return 0;
   // UART einschalten

   UCSRB = (1<<RXEN)|(1<<TXEN);
   // Lokale Interruptfreigabe

   UCSRB |= (1<<RXCIE)|(1<<TXCIE);
   return 1;

}

// Wert in Sende-FIFO schreiben (Aufruf durch Hauptprogramm)

unsigned char UART_PutFifo(unsigned char data)
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{

   unsigned char tmp_data;

   unsigned char num;

   // Wert in FIFO eintragen

   num = FIFO_Write(tx_fifo,data);
   // Falls Sendepuffer leer, Wert ausgeben

   if (UCSRA & (1<<UDRE)) {

        UCSRB &= ~(1<<TXCIE);
        FIFO_Read(tx_fifo,&tmp_data);

        UDR = tmp_data;
        UCSRB |= (1<<TXCIE);
   }

   return num;

}

// Wert aus Empfangs-FIFO lesen (Aufruf durch Hauptprogramm)

unsigned char UART_GetFifo(unsigned char *data)

{

   return (FIFO_Read(rx_fifo,data));

}

// Interrupt-Service-Routinen fùr Senden und Empfangen

ISR (USART_TXC_vect)

{

   unsigned char data;

   // Falls FIFO Daten enthàlt, diese ùbertragen

   if (FIFO_Read(tx_fifo,&data)) UDR = data;
}

ISR (USART_RXC_vect)

{

   // Empfangenen Wert in Empfangs-FIFO schreiben

   FIFO_Write(rx_fifo,UDR);

}

Ein einfaches Anwendungsbeispiel für die oben dargestellten Funktionen stellt das 
nachfolgende Hauptprogramm dar. Das Programm liest empfangene Daten ein und gibt 
diese über den USART unverändert wieder aus.

// ************************************************************

// File:   UartFifoDemo.c

// ************************************************************

#include "uart_fifo.h"

int main ()

{

   unsigned char data;
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   if (UART_InitFIFOTransfer(9600,16,16)) {

        sei();

        while (1) {

            if (UART_GetFifo(&data)) UART_PutFifo(data);

        }

   }

}

14.8	� Hinweise zum praktischen Selbststudium

In den vorangegangenen Abschnitten wurden die Grundlagen der Mikrorechnertechnik 
am Beispiel der AVR-Mikrocontroller-Familie behandelt. Die AVR-Controller zeichnen 
sich durch eine relativ einfache Struktur aus und sind für einen Einstieg in die Mikro-
rechnertechnik gut geeignet. Um das Verständnis der vorgestellten Themen zu vertiefen, 
ist es sehr empfehlenswert, eigene praktische Experimente mit Mikrocontrollern durch-
zuführen. Dieser Abschnitt soll einer ersten Orientierung dienen und so den Einstieg in 
das praktische Selbststudium erleichtern.

14.8.1	� Hardwareauswahl

Für die AVR-Mikrocontroller werden von verschiedenen Herstellern zahlreiche Boards 
als Fertiggeräte oder als Bausatz angeboten. Neben dem Controller selbst stehen auf die-
sen Boards häufig auch weitere Bauteile wie LEDs, Taster, Lautsprecher oder Summer, 
LCD-Displays usw. zur Verfügung. In vielen Fällen steht auch eine Schnittstelle zur Ver-
bindung mit einem PC zur Verfügung, mit welcher die entwickelten Programme in den 
Flashspeicher des Controllers übertragen werden können. Ein wesentliches Kriterium 
für die Auswahl eines Boards sollte neben dem Preis die Möglichkeiten zur Erweiterung 
durch eigene Schaltungsteile sein.

Eine Alternative zu bereits vorgefertigten Boards stellt die Anschaffung eines Steck-
brettes dar. Viele Controller der AVR-Familie sind auch in Dual-Inline-Gehäusen (DIL) 
verfügbar. Mithilfe dieser Controller ist die Realisierung einfacher Systeme auf einem 
Steckbrett möglich.

14.8.2	� Entwicklungsumgebungen

Für die AVR-Mikrocontroller steht die Entwicklungsumgebung Atmel Studio zur Verfü-
gung, die kostenlos von der Homepage der Firma Atmel (www.atmel.com) heruntergeladen 
werden kann. Atmel Studio ist eine unter Windows-PCs lauffähige Entwicklungsumge-
bung, die neben der Erstellung von Programmen auch die Programmierung und das Debug-
gen der Controller unterstützt. Darüber hinaus besteht über einen integrierten Simulator die 
Möglichkeit, Programme auch ohne Anschaffung von Hardware zu testen.

14.8  Hinweise zum praktischen Selbststudium
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14.8.3	� Programmierung und Debugging von AVR-Mikrocontrollern

Die Übertragung von Programmen in den Flashspeicher eines AVR-Mikrocontrollers 
kann über die SPI-Schnittstelle des Controllers erfolgen. Ebenso können über diesen 
Weg auch Daten im eingebetteten EEPROM abgelegt werden. Für die Programmierung 
muss der Controller nicht aus der Zielapplikation entfernt werden. Daher wird dieser 
Vorgang als In-System-Programming (ISP) bezeichnet. Da das Protokoll zur Program-
mierung des Controllers offengelegt ist, sind verschiedene Programmiergeräte erhältlich, 
die eine Programmierung von AVR-Controllern unterstützen. Ein wesentlicher Nachteil 
des ISP-Verfahrens ist es, dass es nur zur Programmierung, nicht jedoch zum Debugging 
des Controllers verwendet werden kann.

Im Gegensatz zu ISP existieren für die AVR-Controller verschiedene Ansätze um 
ein Programm auch innerhalb des Systems zu debuggen. Hierbei können zum Beispiel 
Breakpoints gesetzt oder Variablenwerte ausgelesen werden, auch wenn sich der Mikro-
controller im Zielsystem befindet. Dieser als On-Chip-Debugging (OCD) oder In-Circuit-
Emulation (ICE) bezeichnete Ansatz vereinfacht die Fehlersuche erheblich. Daher ist es 
auch für Einsteiger sinnvoll ein Programmiergerät anzuschaffen, welches das Debuggen 
im Zielsystem unterstützt. Hierbei ist jedoch darauf zu achten, dass nicht alle AVR-Con-
troller den gleichen Ansatz verfolgen. Viele Controller der ATtiny-Serie unterstützen ein 
Verfahren, das von der Firma Atmel als Debug-Wire bezeichnet wird. Bei diesem Verfah-
ren muss (abgesehen von der Versorgungsspannung des Mikrocontrollers) lediglich die 
Resetleitung des Controllers mit dem Programmiergerät verbunden werden, was insbe-
sondere für Controller mit einer geringen Anzahl von Anschlüssen von Vorteil ist. Viele 
Controller der ATmega-Serie unterstützen dagegen ein Debuggen mittels eines JTAG-
Interfaces. In diesem Fall müssen neben dem Reset-Anschluss auch die Anschlüsse TDO, 
TDI, TMS und TCK mit dem Programmieradapter verbunden werden. Diese Anschlüsse 
stehen dann nicht mehr uneingeschränkt als Portanschlüsse für die Zielapplikation zur 
Verfügung. Darüber hinaus kommt insbesondere bei den Mikrocontrollern der Xmega-
Serie eine als „Program and Debug Interface“ (PDI) Schnittstelle zum Einsatz.

14.8.3.1 � Programmiergeräte
Im Internet wird eine Vielzahl unterschiedlicher Programmiergeräte von diversen Her-
stellern angeboten. Sowohl die Preise wie auch die Funktionalität dieser Geräte differie-
ren stark. Die günstigsten Geräte werden bereits ab ca. 15 EUR angeboten.

In der Regel ist es empfehlenswert, auf Originalgeräte der Firma Atmel zurückzugrei-
fen. Auf diese Weise kann ausgeschlossen werden, dass Inkompatibilitäten des Program-
mieradapters zu Fehlern führen. Ein interessantes Gerät stellt der AVR-Dragon dar. Es 
unterstützt verschiedene Programmierprotokolle, unter anderem ISP und JTAG. Die Kos-
ten für dieses Gerät liegen bei etwa 70 EUR.

14.8.3.2 � Fuse-Bits
Bei der Durchführung eigener Experimente wird man recht schnell auf die sogenann-
ten „Fuse-Bits“ stoßen. Fuse-Bits sind einzelne Bits, in der die Konfiguration des 
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Mikrocontrollers abgespeichert wird. Bei der Programmierung der Fuse-Bits ist besondere 
Vorsicht geboten. Wird durch eine falsche Programmierung des Fuse-Bits sowohl das ISP- 
als auch das JTAG-Interface gesperrt, ist eine weitere Programmierung des Controllers 
nicht mehr über diese Schnittstellen möglich. Um eine falsche Programmierung der Fuse-
Bits zu korrigieren, muss der Controller in einem speziellen Programmiermodus betrieben 
werden, der nur von wenigen Geräten (zum Beispiel AVR-Dragon) unterstützt wird.

Im Folgenden werden die Fuse-Bits am Beispiel des ATmega32 kurz erläutert:

OCDEN
Ist dieses Bit aktiviert, wird die oben beschriebene Möglichkeit des Debuggens im Ziel-
system unterstützt.

JTAGEN
Mithilfe dieses Bits wird das JTAG-Interface zum Debuggen (OCDEN aktiviert) und/
oder Programmieren des Controllers aktiviert.

SPIEN
Ist SPIEN aktiviert, kann die Programmierung des Controllers über die SPI-Schnittstelle 
mittels ISP erfolgen.

CKOPT
Dieses Bit findet Verwendung, wenn der Takt mithilfe eines Keramikresonators erzeugt 
wird und eine hohe Taktfrequenz benötigt wird. Im Normalfall sollte dieses Bit nicht 
aktiviert werden.

EESAVE
Bei Aktivierung eines sogenannten Chip-Erase-Cycles (Löschen des gesamten Chips) 
wird das EEPROM nicht gelöscht, wenn das Bit EESAVE aktiviert ist.

BOOTSZ, BOOTRST
Diese Bits ermöglichen es, den Einsprungpunkt nach einem Reset von der Programm-
speicheradresse 0 an eine hohe Speicheradresse zu setzen. Mithilfe des so eingesprunge-
nen Programms kann dann untere Bereich des Programmspeichers mit dem eigentlichen 
Applikationscode programmiert. Programme, die nach dem Reset den eigentlichen Pro-
grammcode laden, werden als Bootloader bezeichnet.

BODLEVEL, BODEN
Die AVR-Controller erlauben es, die Betriebsspannung kontinuierlich zu überwachen. 
Unterschreitet die Betriebsspannung einen vorprogrammierten Wert (Auswahlmöglich-
keiten im Fall des ATmega32: 2,7 V oder 4,0 V), wird ein Reset ausgelöst. Diese auch als 
Brown-Out-Detection bezeichnete Möglichkeit kann unter anderem dazu genutzt wer-
den, ein System bei einem Ausfall der Spannungsversorgung geordnet herunterzufahren.

14.8  Hinweise zum praktischen Selbststudium
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SUT_CKSEL
Diese unter dem Namen SUT_CKSEL zusammengefassten Fuse-Bits dienen zur Aus-
wahl der Takterzeugung für den Controller. Die gebräuchlichsten Fälle sind entweder die 
Verwendung des intern erzeugten Taktes oder die Aktivierung des eingebetteten Quar-
zoszillators, welcher an den Anschlüssen XTAL1 und XTAL2 einen externen Quarz 
benötigt. Darüber hinaus kann der Takt mithilfe eines externen RC-Gliedes, einem Kera-
mikresonator oder von einer externen Quelle zugeführt werden.

Im Auslieferungszustand sind die Fuse-Bits der AVR-Controller mit sinnvollen Wer-
ten vorbelegt, sodass eine Neuprogrammierung in der Regel entfallen kann. Eine Aus-
nahme stellt die Programmierung der Taktauswahl dar. Im Auslieferungszustand ist für 
die Takterzeugung der eingebettete RC-Oszillator als Taktquelle ausgewählt. Viele Schal-
tungen verwenden jedoch einen externen Quarz zur Erzeugung des Taktsignals, sodass 
die SUT_CKSEL-Bits zunächst entsprechend programmiert werden müssen.

14.9	� Übungsaufgaben

Die folgenden Übungsaufgaben greifen einige Themen dieses Kapitels auf. Die Lösun-
gen finden Sie am Ende des Buches.

Sofern nicht anders vermerkt, ist nur eine Antwort richtig.

Aufgabe 14.1
Welche der folgenden Aussagen ist richtig? (Mehrere Antworten sind richtig)

a)	 Typische Mikrocontroller besitzen immer eine CPU.
b)	Typische Mikrocontroller besitzen immer interne Speicherkomponenten.
c)	 Typische Mikrocontroller besitzen immer Ports.
d)	Typische Mikrocontroller besitzen immer A/D-Umsetzer.

Aufgabe 14.2
Welche Aussagen sind richtig? (Mehrere Antworten sind richtig)

a)	 Die SPI-Schnittstelle wird zur asynchronen bitseriellen Datenübertragung verwendet.
b)	Bei Verwendung einer I2C-Schnittstelle erfolgt nach der Übertragung einer Startbe-

dingung immer die Übertragung einer Bausteinadresse.
c)	 Das SPI-Protokoll verwendet getrennte Leitungen zur Übertragung von Daten vom 

Slave zum Master beziehungsweise vom Master zum Slave.
d)	Das I2C-Protokoll verwendet getrennte Leitungen zur Übertragung von Daten vom 

Slave zum Master beziehungsweise vom Master zum Slave.

Aufgabe 14.3
Welche Aussage über Unterprogramme ist richtig?
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a)	 Beim Ausführen eines Unterprogramms wird dessen Code auf dem Stack abgelegt 
und anschließend ausgeführt.

b)	 Im aufrufenden Programmteil muss die Rücksprungadresse über geeignete Assem-
blerbefehle ermittelt und vor einem Unterprogrammaufruf auf dem Stack abgelegt 
werden.

c)	 Der aufrufende Programmteil kann einem Unterprogramm die Parameter über den 
Stack übergeben.

d)	Der Code eines Unterprogramms muss im Programmspeicher immer vor dem Code 
des aufrufenden Programmteils abgelegt sein.

Aufgabe 14.4
Welche Aussage ist richtig?

a)	 Wird ein Wert auf dem Stack des AVR abgelegt, wird der Stackpointer dekrementiert.
b)	Der Stackpointer des AVR kann nicht durch die Befehle eines Programms modifiziert 

werden.
c)	 Mithilfe des Befehls pop werden Daten auf dem Stack abgelegt.
d)	Der Stackpointer der AVR-CPU zeigt immer auf den Wert, welcher als letztes auf 

dem Stack abgelegt wurde.

Aufgabe 14.5
Welche Aussage ist richtig?

a)	 Der AVR enthält nur Speicher, welche die gespeicherten Werte auch ohne Anliegen 
einer Versorgungsspannung halten können.

b)	 Der Programmspeicher des AVR kann nicht zur Speicherung von Daten verwendet 
werden, da kein Befehl existiert, mit dem der Programmspeicher gelesen werden kann.

c)	 Variablen eines C-Programms werden nicht im SRAM des AVR abgelegt.
d)	Die Befehle eines AVR-Programms können nicht im EEPROM-Speicher abgelegt 

werden.

Aufgabe 14.6
Welche Aussagen sind richtig? (Mehrere Antworten sind richtig)

a)	 Ein typischer Timer kann so programmiert werden, dass beim Überlauf des timerin-
ternen Zählers ein Interrupt ausgelöst wird.

b)	Soll eine möglichst exakte Interruptrate (Interrupts pro Zeiteinheit) erzielt werden, 
sollte ein Timer bevorzugt im „CTC-Modus“ und nicht „Normal-Mode“ betrieben 
werden.

c)	 Eine Vorteiler-Einheit (Prescaler) ermöglicht es die Zählfrequenz eines Timers zu 
erhöhen.

d)	Timer enthalten immer eine Input-Capture-Unit.

14.9  Übungsaufgaben
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Aufgabe 14.7
Der Anschluss PA2 eines ATmega32 ist über einen Taster mit Masse (GND) verbunden. 
Am Anschluss PC6 ist eine LED angeschlossen. Die LED leuchtet, wenn an PC6 ein 
High-Pegel ausgegeben wird.

a)	 Erstellen Sie ein Programm in der Programmiersprache C, das die LED leuchten lässt, 
wenn der Taster geschlossen ist. Ist der Taster geöffnet, soll die LED nicht leuchten.

b)	Realisieren Sie das Programm in Assembler.

Aufgabe 14.8
Mithilfe eines UARTs sollen Daten an einen PC übertragen werden. Für die Verbindung 
gilt: 8 Nutzdatenbits, keine Parität, 1 Stoppbit. Als Baudrate wird der Wert 9600 bps 
gewählt.

a)	 Skizzieren Sie den zeitlichen Verlauf des Signals am TXD-Anschluss des Controllers. 
Verwenden Sie für die Nutzdaten den Wert 0x35 (binär: 0011 0101).

b)	Wie hoch ist die maximal erzielbare Netto-Datenrate (Daten-Bytes pro Sekunde)?
c)	 Nun wird auch ein Pariätsbit übertragen. Bei der Übertragung des Wertes 0x35 (binär: 

0011 0101) sendet der Controller ein Paritätsbit mit dem Wert „1“. Welche Parität 
wurde gewählt?

Aufgabe 14.9
Der nachfolgende Code zeigt Ausschnitte eines AVR-Programms.

char  v8, *p8   // 8-Bit-Variable  bzw. Zeiger auf einen 8-Bit-Wert

short v16,*p16  // 16-Bit-Variable bzw. Zeiger auf einen 16-Bit-Wert

long  v32,*p32  // 32-Bit-Variable bzw. Zeiger auf einen 32-Bit-Wert

// hier weiterer Programmcode

v8  = 12;       // Zuweisung 1
p8  = &v8;      // Zuweisung 2
v16 = 1234;     // Zuweisung 3
p16 = &v16;     // Zuweisung 4
v32 = 12345678; // Zuweisung 5
p32 = &v32;     // Zuweisung 6
// hier weiterer Programmcode

a)	 Welche der Zuweisungen können mit einem AVR atomar ausgeführt werden?
b)	Statt eines AVR wird ein 32-Bit-Mikrocontroller eingesetzt. Welche Zuweisungen 

sind nun atomar ausführbar?



529© Springer-Verlag GmbH Deutschland 2016 
W. Gehrke et al., Digitaltechnik, Springer-Lehrbuch,  
DOI 10.1007/978-3-662-49731-9_15

In diesem Abschnitt finden Sie die Lösungen zu den Übungsaufgaben der vorangegangenen 
Kapitel.

Kapitel 1
Aufgabe 1.1 c
Aufgabe 1.2 b
Aufgabe 1.3 c
Aufgabe 1.4 b
Aufgabe 1.5 c
Aufgabe 1.6 b
Aufgabe 1.7 b
Aufgabe 1.8 c
Aufgabe 1.9 c
Aufgabe 1.10 b

Kapitel 2
Aufgabe 2.1
a)	 1110012
b)	718
c)	 3916

Aufgabe 2.2
a)	 151
b)	−105
c)	 97

Lösungen der Übungsaufgaben 15
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Aufgabe 2.3
a)	 6 bit
b)	7 bit
c)	 7 bit

Aufgabe 2.4
a)	 [0,255]
b)	 [−127,127]
c)	 [−128,127]

Aufgabe 2.5
a)	 111101, kein Überlauf
b)	001011, Überlauf
c)	 000100, Überlauf
d)	Die Ergebnisse wären identisch
e)	 kein Überlauf bei a und c, Überlauf bei b

Aufgabe 2.6
a)	 5A, Vorzeichenlos: kein Überlauf, 2er-Komplement: kein Überlauf
b)	23, Vorzeichenlos: Überlauf, 2er-Komplement: Überlauf
c)	 AB, Vorzeichenlos: Überlauf, 2er-Komplement: kein Überlauf

Aufgabe 2.7
a)	 67, Vorzeichenlos: kein Überlauf, 2er-Komplement: Überlauf
b)	4C, Vorzeichenlos: kein Überlauf, 2er-Komplement: Überlauf
c)	 9D, Vorzeichenlos: Überlauf, 2er-Komplement: Überlauf

Aufgabe 2.8
Wird ein Gray-codierter Wert inkrementiert, ändert sich das Codewort in genau einer Stelle.

Aufgabe 2.9
b. und c. sind Pseudotetraden

Aufgabe 2.10
a)	 Es werden 8 bit benötigt.
b)	Es können 8 unterschiedliche Werte dargestellt werden.

Aufgabe 2.11
Überträgt man die Zweierkomplement-Darstellung auf das Dezimalsystem, entspräche die 
Codierung 999 dem Zahlenwert −1, da dies der Wert wäre, den man bei Durchlaufen des 
Zahlenkreises in negativer Richtung erhalten würde. Aus dieser Überlegung ergibt sich:

a)	 000
b)	999
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c)	 998
d)	990

Kapitel 3
Aufgabe 3.1 a
Aufgabe 3.2 a, b, d
Aufgabe 3.3 a, b
Aufgabe 3.4 a, c
Aufgabe 3.5

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity my_module is

   port (a : in  std_logic_vector (7 downto 0);

         b : in  integer;

         c : in  std_logic;

         q : out std_logic_vector (7 downto 0) );

end;

architecture behave of my_module is

   signal tmp : unsigned (7 downto 0);

begin

   process

        variable vi : unsigned (7 downto 0);

   begin

        tmp <= unsigned(A);
        vi  := to_unsigned(B,8);
        if (c = '1') then
            q <= std_logic_vector(vi - tmp);
        else

            q <= std_logic_vector(vi + tmp);
        end if;

   end process;

end;

Aufgabe 3.6

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;
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entity my_module is

port (a : in  std_logic_vector (7 downto 0);

      b : in  std_logic_vector (7 downto 0);

      c : in  std_logic_vector (1 downto 0);

      q : out std_logic_vector (7 downto 0) );

end;

architecture behave of my_module is

begin

   process (a,b,c)

   begin

        if    c="00" then q <= a;
        elsif c="01" then q <= a and b;
        elsif c="10" then q <= a or b;
        elsif c="11" then q <= a xor b;
        -- std_logic! => c kann mehr als 4 Werte annehmen
        -- dies wird ùber das nachfolgende else abgefangen

        else  q <= (others=>'X');
        end if;   

   end process;

end;

Aufgabe 3.7

   process (a,b,c)

   begin

        case c is

            when "00" =>  q <= a;
            when "01" =>  q <= a and b;
            when "10" =>  q <= a or b;
            when "11" =>  q <= a xor b;
            -- std_logic! => c kann mehr als 4 Werte annehmen
            -- also benòtigen wir auch den "others"-Fall

            when others => q <= (others=>'X');
        end case;

   end process;

Aufgabe 3.8

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity my_module_16 is

port (a : in  std_logic_vector (15 downto 0);

      b : in  std_logic_vector (15 downto 0);

      c : in  std_logic_vector (1 downto 0);
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      q : out std_logic_vector (15 downto 0) );

end;

architecture behave of my_module_16 is

begin

   my_module_inst1 : entity work.my_module

   port map (

         a => a(7 downto 0),
         b => b(7 downto 0),
         c => c,
         q => q(7 downto 0) );
     my_module_inst2 : entity work.my_module

     port map (

         a => a(15 downto 8),
         b => b(15 downto 8),
         c => c,
         q => q(15 downto 8) );
end;

Kapitel 4
Aufgabe 4.1 a
Aufgabe 4.2 a
Aufgabe 4.3
Die Funktionstabelle hat bei drei Eingangsvariablen acht mögliche Kombinationen. 
Schrittweise muss jeweils eine weitere LED eingeschaltet werden.

D2 D1 D0 L7 L6 L5 L4 L3 L2 L1

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 1 1

0 1 1 0 0 0 0 1 1 1

1 0 0 0 0 0 1 1 1 1

1 0 1 0 0 1 1 1 1 1

1 1 0 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Funktionstabelle „Lautstärke-LEDs“

Aufgabe 4.4
Die Funktionstabelle hat einen Eintrag ohne Tonausgabe (Mittelstellung), vier Einträge 
mit Ausgabe Ton T1 (Auslenkung in vier Richtungen) und vier Einträge mit Ausgabe 
Ton T2 (schräge Auslenkung in vier Ecken). Dies sind neun mögliche Kombinationen. 
Insgesamt sind für vier Eingänge 16 Kombinationen möglich, sodass für die übrigen sie-
ben Kombinationen ein Don’t-Care eingetragen wird.

15  Lösungen der Übungsaufgaben
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O (oben) U (unten) L (links) R (rechts) T1 (Ton 1) T2 (Ton 2)

0 0 0 0 0 0

0 0 0 1 1 0

0 0 1 0 1 0

0 0 1 1 – –

0 1 0 0 1 0

0 1 0 1 0 1

0 1 1 0 0 1

0 1 1 1 – –

1 0 0 0 1 0

1 0 0 1 0 1

1 0 1 0 0 1

1 0 1 1 – –

1 1 0 0 – –

1 1 0 1 – –

1 1 1 0 – –

1 1 1 1 – –

Funktionstabelle „Spielautomat“

Aufgabe 4.5
Produktterme 1 und 3 aus Abb. 15.1 sind erforderlich. Die Funktion für die Ausgangsva-
riable lautet:

Aufgabe 4.6
Alle Produktterme aus Abb. 15.2 sind erforderlich. Die Funktion für die Ausgangsvaria-
ble lautet:

Aufgabe 4.7
Produktterme 1 und 3 aus Abb. 15.3 sind erforderlich. Die Funktion für die Ausgangsva-
riable lautet:

Aufgabe 4.8
Alle Produktterme aus Abb. 15.4 sind erforderlich. Die Funktion für die Ausgangsvaria-
ble lautet:

Y = A(3)&A(2)&A(0) ∨ A(3)&A(1)

Y = A(2) ∨ A(3)&A(1)&A(0) ∨ A(1)&A(0)

Y = A(2)&A(0) ∨ A(3)

Y = A(3)&A(1)&A(0) ∨ A(3)&A(2)&A(1) ∨ A(3)&A(1)
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Kapitel 5
Aufgabe 5.1 a
Aufgabe 5.2 a
Aufgabe 5.3 d
Aufgabe 5.4 c
Aufgabe 5.5 c
Aufgabe 5.6 e
Aufgabe 5.7

Abb. 15.1   Karnaugh-
Diagramm zu Aufgabe 4.5 00 01A(3:2)= 11 10

00

01

11

10

A(1:0)=

Term 1

Term 2

Term 3

0000

0110

1100

1100

Abb. 15.2   Karnaugh-
Diagramm zu Aufgabe 4.6 00 01A(3:2)= 11 10

00

01

11

10

A(1:0)=

Term 1

Term 2

Term 3

1111

0101

0100

1111

Abb. 15.3   Karnaugh-
Diagramm zu Aufgabe 4.7 00 01A(3:2)= 11 10

00

01

11

10

A(1:0)=

Term 1

Term 2

Term 3

0110

0-00

1-1-

-1-1

Abb. 15.4   Karnaugh-
Diagramm zu Aufgabe 4.8 00 01A(3:2)= 11 10

00

01

11

10

A(1:0)=

Term 1

Term 2

Term 3

0001

001-

1100

---0
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a)	 Periodendauer T = 100 ns, Taktfrequenz f = 10 MHz, Duty-Cycle D = 80 %
b)	Periodendauer T = 1 ms, Taktfrequenz f = 1 kHz, Duty-Cycle D = 70 %
c)	 Periodendauer T = 0,5 ms = 500 µs, Taktfrequenz f = 2 kHz, Duty-Cycle D = 40 %

Aufgabe 5.8
Das Codewort muss 4 Stellen für 11 Zustände besitzen. Die Berechnung kann über den 
Zweierlogarithmus von 11 erfolgen, der aufgerundet 4 ergibt.

Als alternativer Rechenweg können die Zweierpotenzen betrachtet werden. Mit 3 
Stellen sind 23, also 8 Kombinationen möglich. Dies reicht nicht aus. 4 Stellen sind aus-
reichend, denn Sie ergeben 24, also 16 Kombinationen.

Aufgabe 5.9
Das Codewort muss 9 Stellen besitzen, denn die One-Hot-Codierung benötigt für jeden 
der 9 Zustände eine Stelle.

Aufgabe 5.10
Mit 5 Stellen sind 25, also 32 unterschiedliche Codierungen möglich.

Aufgabe 5.11
Es können 8 Zustände codiert werden, also genau so viele wie Stellen in der One-Hot-
Codierung vorhanden sind.

Aufgabe 5.12
Der Automat benötigt vier Zustände mit den folgenden Bedeutungen:

•	 S0: Motor steht. Beim nächsten Tastendruck fährt die Jalousie herunter (Startzustand).
•	 S1: Taste ist gedrückt, der Motor fährt herunter.
•	 S2: Motor steht. Beim nächsten Tastendruck fährt die Jalousie herauf.
•	 S3: Taste ist gedrückt, der Motor fährt herauf.

Zustandsfolgediagramm und Zustandsfolgetabelle sind in Abb. 15.5 und 15.6 dargestellt.

ld11 = log 11/ log 2 = 1,041/0,301 = 3,46

S0
M=00

S1
M=01

S2
M=00

S3
M=10

T=1

T=0

T=0 T=1

T=0

Reset

T=1 T=0 T=1

Abb. 15.5   Zustandsfolgediagramm des Automaten „Jalousie“
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Aufgabe 5.13
Der Automat speichert in den Zuständen den bisher eingeworfenen Geldbetrag. Der 
Zustand mit der Bedeutung „50 Cent“ gibt an, dass die benötigte Summe erreicht ist und 
der Automat mit dem Ausgang P = 1 die Parkmünze ausgibt. Danach muss wieder neues 
Geld eingeworfen werden, das heißt, der Automat geht nach Ausgabe der Parkmünze 
wieder zu „0 Cent“.

•	 C_0: 0 Cent eingeworfen (Startzustand)
•	 C_10: 10 Cent eingeworfen
•	 C_20: 20 Cent eingeworfen
•	 C_30: 30 Cent eingeworfen
•	 C_40: 40 Cent eingeworfen
•	 C_50: 50 Cent oder mehr eingeworfen, Parkmünze wird ausgegeben

Der Startzustand war nicht ausdrücklich in der Aufgabenstellung angegeben, sondern 
ergibt sich durch Überlegung.

Zustandsfolgediagramm und Zustandsfolgetabelle sind in Abb. 15.7 und 15.8 darge-
stellt. Die beiden Eingänge werden in der kompakten Form „M(1:0)“ angegeben. Da der 
Eingang zwei Signale mit vier Kombinationsmöglichkeiten hat, sind für jeden Zustand 
vier Folgezustände möglich. In manchen Fällen sind einige dieser Folgezustände gleich.

sn

T=0

sn+1

T=1

S0
S1
S2

M

00
01
00
10

S0
S2
S2
S0 S3

S3
S3

S1
S1

*

* = Reset

Abb. 15.6   Zustandsfolgetabelle des Automaten „Jalousie“

C_0
P=0

C_10
P=0

C_20
P=0

C_30
P=0

00

R
es

et

Eingänge:
M(1:0)

C_40
P=0

00 00 00 00

01 01 01 01

10 10 10

XX

C_50
P=1

01

11 11 11 11 11

10

10

Abb. 15.7   Zustandsfolgediagramm des Automaten „Parkmünze“
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Übrigens werden im Zustand C_50 die Eingänge nicht ausgewertet. Der Automat geht 
nach einem Takt mit P = 1 wieder in den Startzustand. Dies ist möglich, da in der Aufga-
benstellung spezifiziert ist, dass zwischen zwei Münzeinwürfen mehrere Takte vergehen.

Aufgabe 5.14
Der Automat muss sich weiterhin merken, ob die nächste 1 unterdrückt oder ausgegeben 
wird. Außerdem ist ein Zustand erforderlich, der nach der jeweils zweiten 1 die Ausgabe 
für einen Takt auf 1 setzt. Nach dieser Ausgabe wird die nächste 1 unterdrückt.

•	 S0: Nächste 1 unterdrücken, Ausgabe 0. (Startzustand)
•	 S1: Nächste 1 weitergeben, Ausgabe 0.
•	 S2: Gerade wurde die zweite 1 erkannt, 1 ausgeben, nächste 1 unterdrücken.

Zustandsfolgediagramm und Zustandsfolgetabelle sind in Abb. 15.9 und 15.10 dargestellt.

Reset S0
Y=0

X=0

S1
Y=0

X=0
X=1

X=1
S2
Y=1

X=1X=0

Abb. 15.9   Zustandsfolgediagramm des Automaten „Halbieren“

sn

X=0

sn+1

X=1

S0
S1
S2

Y

0
0
1

S0
S1
S0 S1

S1
S2

*

* = Reset

Abb. 15.10   Zustandsfolgetabelle des Automaten „Halbieren“

sn

00

sn+1

C_0
C_10
C_20

C_0

C_30

*

* = Reset

C_40

M=

C_10 C_20 C_50
C_10 C_20 C_30 C_50
C_20 C_30 C_40 C_50
C_30 C_40 C_50 C_50
C_40 C_50 C_50 C_50

01 10 11

P

C_50 C_0 C_0 C_0 C_0

0
0
0
0
0
1

Abb. 15.8   Zustandsfolgetabelle des Automaten „Parkmünze“
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Aufgabe 5.15
Im Startzustand ist noch keine Stelle des Datenworts empfangen.

Wenn die erste Stelle empfangen wird, sind zwei Zustände erforderlich, die sich mer-
ken, erste Stelle empfangen und Wert 0 oder 1.

Wenn die zweite Stelle empfangen wird, können vier Fälle auftreten, und zwar: 00, 
01, 10 und 11. Jetzt ist wichtig zu erkennen, dass der Automat nicht unterscheiden muss, 
ob 01 oder 10 empfangen wurde. Beide Fälle können den gleichen Zustand nutzen, denn 
der Automat muss sich nur merken, dass eine 1-Stelle auftrat. Wenn man weiterüberlegt, 
kann man erkennen, dass auch eine Unterscheidung von 00 und 11 nicht nötig ist. Darum 
sind für die vier Fälle nur zwei Zustände erforderlich, und zwar: „2 Stellen empfangen, 
ungerade“ und „2 Stellen empfangen, gerade“.

Das gleiche gilt nach drei Stellen, wo wieder zwei Zustände benötigt werden.
Beim Empfang der vierten Stelle wird eventuell das Fehlersignal E = 1 ausgegeben 

und der Automat geht direkt wieder in den Startzustand. Es ist also kein Zustand „4 Stel-
len empfangen“ nötig.

Insgesamt benötigt der Automat somit 7 Zustände:

•	 ST: Start, keine Stelle des Datenworts empfangen
•	 1_G: Eine Stelle empfangen, Parität gerade. (Dies entspricht einer empfangenen 0. 

Die Bezeichnung wurde gewählt, da dies zu den folgenden Zuständen passt.)
•	 1_U: Eine Stelle empfangen, Parität ungerade.
•	 2_G: Eine Stelle empfangen, Parität gerade.
•	 2_U: Eine Stelle empfangen, Parität ungerade.
•	 3_G: Eine Stelle empfangen, Parität gerade.
•	 3_U: Eine Stelle empfangen, Parität ungerade.

Zustandsfolgediagramm und Zustandsfolgetabelle sind in Abb. 15.11 und 15.12 darge-
stellt. Nach jeweils vier Takten ist die Bearbeitung eines Datenworts abgeschlossen und 
der Automat ist im Startzustand für das nächste Datenwort.

ST

1_G 2_G 3_G

R
es

et

Ein- /Ausgänge
D / E

0/0

1_U 2_U 3_U

1/0

0/0 0/0

0/00/0

1/0

1/0

1/0

1/1
0/0

1/0
0/1
1/0

Abb. 15.11   Zustandsfolgediagramm des Automaten „Parity“
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Kapitel 6
Aufgabe 6.1 a
Aufgabe 6.2 e
Aufgabe 6.3 d
Aufgabe 6.4 c
Aufgabe 6.5 e
Aufgabe 6.6 c (4 Dateneingänge, 1 Datenausgang, 2 Steuerleitungen)
Aufgabe 6.7 d (1 Dateneingang, 8 Datenausgänge, 3 Steuerleitungen)

Aufgabe 6.8
Ein Modulo-2^10 Zähler durchläuft 210 = 1024 Werte, gerundet 1000 Werte. Bei 
50 Mio. Werten pro Sekunde schafft der Zähler etwa 50.000 Zyklen pro Sekunde (Ant-
wort b).

Aufgabe 6.9
Ein Modulo-2^8 Zähler durchläuft 28 = 256 Werte, gerundet 250 Werte. Bei 500.000 
Werten pro Sekunde schafft der Zähler etwa 2000 Zyklen pro Sekunde (Antwort b).

Aufgabe 6.10
Die Pipeline-Stufe sollte in der Mitte des kritischen Pfads eingefügt werden. Diese 
Position liegt in der Verbindungsleitung für den Übertrag nach vier Volladdierern. Die 
folgenden vier Volladdierer berechnen die zweite Hälfte der Addition im nächsten Takt-
zyklus. Damit die Informationen der Datenworte weiterhin zueinander passen, werden 
das Ergebnis der ersten vier Volladdierer sowie die Eingangswerte der nächsten vier Voll-
addierer jeweils um einen Takt verzögert. Die Addiererschaltung mit Pipelining zeigt 
Abb. 15.13.

Der kritische Pfad durchläuft 4 Addierer und besteht insgesamt aus:

•	 Flip-Flop Takt nach Ausgang: 0,2 ns
•	 4 Volladdierer: 4 · 0,3 ns = 1,2 ns
•	 5 Verbindungsleitungen: 5 · 0,1 ns = 0,5 ns
•	 Flip-Flop Setup-Zeit: 0,2 ns

sn

0

sn+1,E

ST
1_G
1_U

1_G,0

2_G

*

* = Reset

2_U

D=

1_U,0
2_G,0 2_U,0
2_U,0 2_G,0
3_G,0
3_U,0

1

3_G
3_U

ST,1
ST,0 ST,1

3_U,0
3_G,0
ST,0

Abb. 15.12   Zustandsfolgetabelle des Automaten „Parity“
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Dies ergibt in Summe 2,1 ns. Die mögliche Taktfrequenz beträgt damit rund 475 MHz.
Eventuell erscheint der Aufwand für das Pipelining in Abb. 15.13 recht hoch. Die 

ursprüngliche Schaltung hatte 8 Volladdierer und 25 Flip-Flop und erlaubt eine Taktfre-
quenz von 270 MHz. Für das Pipelining werden 13 zusätzliche Flip-Flops benötigt. Voll-
addierer und Flip-Flop sind ungefähr gleich groß, so dass der Mehraufwand 13 von 33 
Elementen, also rund 40 % beträgt.

Im Gegenzug kann die Taktfrequenz, und damit die Rechenleistung, um 75 % gestei-
gert werden. Die theoretische Verdopplung der Taktfrequenz wird nicht erreicht, da das 
Pipeline-Flip-Flop eine Setup-Zeit sowie Verzögerungszeiten von Takt nach Ausgang 
und der Verbindungsleitung benötigt.

Kapitel 7
Aufgabe 7.1 b
Aufgabe 7.2 c
Aufgabe 7.3 d
Aufgabe 7.4 a, c
Aufgabe 7.5 b, c, d
Aufgabe 7.6 c
Aufgabe 7.7 a
Aufgabe 7.8 a, d

Kapitel 8
Aufgabe 8.1 b
Aufgabe 8.2 a, d
Aufgabe 8.3 b
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Abb. 15.13   Ripple-Carry-Adder mit Pipeline-Stufe
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Aufgabe 8.4 b
Aufgabe 8.5 b
Aufgabe 8.6 c

Kapitel 9
Aufgabe 9.1 a, b, d
Aufgabe 9.2 c
Aufgabe 9.3 d
Aufgabe 9.4 c
Aufgabe 9.5 c
Aufgabe 9.6 a, b, d

Kapitel 10
Aufgabe 10.1 a
Aufgabe 10.2 b
Aufgabe 10.3 a
Aufgabe 10.4 c
Aufgabe 10.5 a
Aufgabe 10.6 b
Aufgabe 10.7 d
Aufgabe 10.8 d
Aufgabe 10.9 e
Aufgabe 10.10

Nur wenn A und B beide 0 sind, ist die Reihenschaltung der beiden p-Kanal-Tran-
sistoren (oben) leitend und verbindet den Ausgang Y mit VDD. Wenn ein oder beide 
Eingänge 1 sind, verbindet die Parallelschaltung der n-Kanal-Transistoren (unten) den 
Ausgang Y mit GND.
Verhalten der Transistorschaltung

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

Verhalten der Transistorschaltung

Dieses Verhalten entspricht der NOR-Funktion.

Kapitel 11 
Aufgabe 11.1 d
Aufgabe 11.2 e
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Aufgabe 11.3 d
Aufgabe 11.4 d
Aufgabe 11.5 c
Aufgabe 11.6 d
Aufgabe 11.7

a)	 Die Berechnung erfolgt am einfachsten über Zweierpotenzen. Mit 10 Adressleitun-
gen lassen sich 210 = 1024 also 1 K Adressen ansprechen. Für den zusätzlichen 
Faktor 16 sind 4 Adressleitungen erforderlich, denn 24 = 16. In der Summe werden 
10 + 4 = 14 Adressleitungen benötigt.

b)	Zunächst werden wieder 10 Adressleitungen für 1 K Adressen benötigt. Für den 
zusätzlichen Faktor 256 sind 8 Adressleitungen erforderlich, denn 28 = 256. In der 
Summe werden 10 + 8 = 18 Adressleitungen benötigt.

Aufgabe 11.8
a)	 Mit 16 Adressleitungen lassen sich 216 = 65.536 Datenworten ansprechen. Jedes 

Datenwort hat 8 bit, somit beträgt die Speicherkapazität 65.536 ∙ 8 = 524.288 bit.
In der Praxis wird oft der Faktor 1024 zu 1 K gerechnet. 16 Adressleitungen teilen 
sich dann auf in 6 Adressleitungen für den Faktor 26 = 64 und 210 = 1 K, also 64 K 
Datenworte. Mit 8 bit je Datenwort ergibt sich 512 kbit Speicherkapazität.

b)	20 Adressleitungen entsprechen zweimal 10 Adressleitungen für 1 K Adressen, mitei-
nander multipliziert 1 M Adressen. Mit 16 bit je Datenwort beträgt die Speicherkapa-
zität 16 Mbit.
Der exakte Wert beträgt 220 ∙ 16 = 16.777.216 bit.

Aufgabe 11.9
Bei einer Dualzahl am Eingang des Speichermoduls entspricht die Reihenfolge der Spei-
cherzellen zeilenweise ansteigenden Zahlen. Die erste Zeile entspricht also den Zahlen 0 
bis 7, die zweite Zeile den Zahlen 8 bis 15, bis zur letzten Zeile mit den Zahlen 56 bis 63.

Primzahlen im möglichen Wertebereich 0 bis 63 sind die Zahlen: 2, 3, 5, 7, 11, 13, 17, 
19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61.

Für die Primzahlen wird in die Speicherzelle eine 1 gespeichert, ansonsten eine 0. 
Das Ergebnis zeigt Abb. 15.14.

Kapitel 12
Aufgabe 12.1 A-2 B-1 C-3 D-4
Aufgabe 12.2 A-4 B-3 C-1 D-2
Aufgabe 12.3

a)	 Quantisierungsintervallbreite

Q = Umax/2
n
= 3V/1024 = 2,93mV
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b)	Höchster codierbarer Spannungswert

c)	 Die Eingangsspannung 1,2 V dividiert durch die Quantisierungsintervallbreite ergibt

Der gerundete Wert 410 entspricht der Codierung „01 1001 1010“.

U
∗
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(

2n − 1
)

· Q = 3V · (1023/1024) = 2,997V
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Abb. 15.14   Speichermodul als Primzahl-Detektor
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d)	Die Codierung „00 0100 1011“ entspricht dem Wert 75 und ergibt den 
Repräsentationswert

Die Eingangsspannung liegt im Bereich der Quantisierungsintervallbreite um den 
Repräsentationswert

Aufgabe 12.4
a)	 Quantisierungsintervallbreite

b)	Schrittweiser Vergleich mit jeweils halber Spannung, beginnend bei 2n−1 ∙ Q = 1V

•	 0,7 V ≥ 1 V? Nicht erfüllt, also b7 = 0
•	 0,7 V ≥ 0,5 V? Erfüllt, also b6 = 1 und Reduktion der Spannung um 0,5 V auf 0,2 V
•	 0,2 V ≥ 0,25 V? Nicht erfüllt, also b5 = 0
•	 0,2 V ≥ 0,125 V? Erfüllt, also b4 = 1 und Reduktion der Spannung um 0,125 V auf 

0,075 V
•	 0,075 V ≥ 0,0625 V? Erfüllt, also b3 = 1 und Reduktion der Spannung um 

0,0625 V auf 0,0125 V
•	 0,0125 V ≥ 0,03125 V? Nicht erfüllt, also b2 = 0
•	 0,0125 V ≥ 0,015625 V? Nicht erfüllt, also b1 = 0
•	 0,0125 V ≥ 0,0078125 V? Erfüllt, also b0 = 1 (letzter Schritt)

Als Digitalwert ergibt sich somit 0101 1001, also der Dezimalwert 89. Dies entspricht 
dem Repräsentationswert

Die Differenz zur Eingangsspannung von 0,7 V beträgt 4,7 mV und ist kleiner als die 
Quantisierungsintervallbreite.

Anmerkung: Der Quantisierungsfehler ist größer als Q/2. Dies liegt daran, dass das 
hier verwendete Berechnungsverfahren, wie im Text beschrieben, keine Rundung ent-
hält, sondern Nachkommastellen abschneidet. Der rechnerische Ausgangswert wäre 
0,7 V/(2 V/256) = 89,6, Wenn Sie Q/2 zum Eingangswert 0,7 V addieren, erhalten Sie 
mit dem Verfahren den korrekt gerundeten Digitalwert. Rechnen Sie erneut!

Aufgabe 12.5
Der Zeitablauf ist in der Tabelle dargestellt.

75 · Q = 75 · 3V/1024 = 0,2197V

74, 5 · Q = 0,2183V ≤ Ux ≤ 0,2212V = 75,5 · Q

Q = Umax/2
n
= 2V/256 = 7,8125mV

89 · Q = 89 · 2V/256 = 0,6953V
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Zeit-
schritt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ux [in 
V]

−0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2

Udig [in 
V]

0 −1 1 −1 1 −1 −1 1 −1 1 −1 −1 1 −1 1

Udiff [in 
V]

−0,2 0,8 −1,2 0,8 −1,2 0,8 0,8 −1,2 0,8 −1,2 0,8 0,8 −1,2 0,8 −1,2

Uint [in 
V]

−0,2 0,6 −0,6 0,2 −1 −0,2 0,6 −0,6 0,2 −1 −0,2 0,6 −0,6 0,2 −1

Plus 
[binär]

0 1 0 1 0 0 1 0 1 0 0 1 0 1 0

Sigma-Delta-Umsetzer mit Messbereich von ±1 V und Analogeingang Ux = −0,2 V.

Die Pulsfolge enthält zu 40 % den Wert 1. Dieser Anteil bezieht sich auf den Messbe-
reich von ±1 V und entspricht

Aufgabe 12.6
Im Zeitverlauf ist die Dauer des High-Pegels 8 ms bei einer Periodendauer von 10 ms. 
Dies entspricht einem Tastverhältnis von 80 %. Der High-Pegel ist 3 V und der Low-
Pegel 0 V, so dass sich für die Ausgangsspannung ergibt

Kapitel 13
Aufgabe 13.1 c, d
Aufgabe 13.2 b
Aufgabe 13.3 c, d
Aufgabe 13.4 a, b, c, d
Aufgabe 13.5 c

Kapitel 14
Aufgabe 14.1 a, b, c (A/D-Umsetzer sind weit verbreitet, aber nicht immer vorhanden)
Aufgabe 14.2 b, c
Aufgabe 14.3 c
Aufgabe 14.4 a
Aufgabe 14.5 d
Aufgabe 14.6 a, b
Aufgabe 14.7

Ux = −1V + 0,4 · 2V = - 1V + 0,8V = - 0,2V

UDA = 0V +
8ms

10ms
3V = 2,4V
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a)

#include <avr/io.h>

int main(void)

{

   // internen Pull-Up Widerstand fùr Tasteranschluss aktivieren

   PORTA |= 1<<2;  
   // LED-Anschluss als Ausgang konfigurieren

   DDRC |= 1<<6;

   while (1){

            // Nachfolgende Bedingung liefert "true"  

            // falls Taster nicht gedrùckt

        if (PINA & (1<<2))

            DDRC &= ~(1<<6); // LED aus
        else

            DDRC |= 1<<6;    // LED an
   }

}

b)

.include "m32def.inc"

   ; Interner Pull-Up fùr Taster aktivieren

   in   r16, PORTA  ; PORTA nach r16

   ori  r16, (1<<2) ; Bit 2 setzen

   out  PORTA, r16  ; r16 wieder nach PORTA schreiben

   ; LED-Anschluss auf Ausgabe

   in   r16, DDRC   ; DDRC nach r16

   ori  r16, (1<<6) ; Bit 6 setzen

   out  DDRC, r16   ; und wieder in das Datenrichtungsregister schreiben

   ; Hier ist die Endlosschleife, in der

   ; der Taster abgefragt und die LED ein- oder ausgeschaltet wird

my_loop:

   in   r16,PINA    ; Wert von PINA holen

   andi r16,(1<<6)  ; nur Bit 6 ist von Interesse

   breq led_on      ; falls 0, springen

   in   r16, PORTC  ; sonst Bit 6

   andi r16,~(1<<6) ; in PORTC lòschen

   out  PORTC, r16  ; und so LED ausschalten

   jmp  my_loop     ; fertig. Taster wieder abfragen

15  Lösungen der Übungsaufgaben
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led_on:

   in   r16, PORTC  ; PORTC holen

   ori  r16, (1<<6); Bit 6 setzen

   out  PORTC, r16  ; und wieder nach PORTC schreiben => LED an
   jmp  my_loop      ; fertig. Taster wieder abfragen

Anmerkung: Der Code lässt sich auch kürzer schreiben, wenn die Befehle sbi und cbi 
verwendet werden.

Aufgabe 14.8
a) (Abb. 15.15).
b)	1 Frame besteht aus 10 Bit. Mit jedem Frame wird 1 Byte übertragen. Die Brutto-

Datenrate beträgt 9600 bps. Also können 960 Bytes/s übertragen werden, wenn die 
Frames ohne Pause zwischen den Frames übertragen werden.

c)	 Die Anzahl der übertragenen Einsen (inklusive Paritätsbit) ist ungerade. Es wurde 
also ungerade Parität gewählt.

Aufgabe 14.9
Der AVR besitzt eine 8-Bit-CPU. Die Befehle verarbeiten also maximal 8 Bit. Werden 
Operanden mit einer größeren Wortbreite verarbeitet, sind hierfür mehrere Befehle not-
wendig. Zwischen der Ausführung zweier Befehle kann ein Interrupt ausgelöst werden. 
Also sind nur die Zuweisungen atomar, die mit einem einzelnen Befehl durchgeführt 
werden können.

Im Fall des AVR ist dies die Zuweisung an eine 8-Bit-Variable. Die Zuweisung an 
einen Zeiger ist nicht atomar, da der Zeiger eine größere Wortbreite als 8 bit besitzt und 
daher für die Zuweisung mehrere Befehle erforderlich sind. Im Fall einer 32-Bit-CPU 
sind alle Zuweisungen atomar (wenn vorausgesetzt wird, dass Zeiger eine maximale 
Wortbreite von 32 bit besitzen).

Für die Aufgabe ergibt sich also:

a)	 Nur Zuweisung 1 ist atomar.
b)	Alle Zuweisungen sind atomar.
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Abb. 15.15   Zeitverlauf des TXD-Signals bei Übertragung des Wertes 0 × 35
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Im Folgenden finden Sie Hinweise auf ergänzende und weiterführende Informationen, 
die wir nach den Themen des Lehrbuchs gegliedert haben.

Digitale Informationsverarbeitung und Grundlagen digitaler 
Schaltungen (Kapitel 1, 2, 4, 5, 6)

•	 C. Maxfield, „Bebop to the Boolean Boogie, An Unconventional Guide to Electro-
nics“, Newnes, 2008.

•	 M. Alioto, E. Consoli, G. Palumbo, „Analysis and Comparison in the Energy-Delay-
Area Domain of Nanometer CMOS Flip-Flops“, IEEE Trans. VLSI Systems, 2011.

•	 M. Aguirre-Hernandez, M. Linares-Aranda, „CMOS Full-Adders for Energy-Efficient 
Arithmetic Applications“, IEEE Transactions on Very Large Scale Integration (VLSI) 
Systems, 2011.

Systementwurf mit VHDL (Kapitel 3, 8)

•	 P. Ashendon, „The Student's Guide to VHDL“, Morgan Kaufmann Publishers, 2008.
•	 B. Mealy, F. Tappero, „Free Range VHDL“, www.freerangefactory.org
•	 J. Bergeron, „Writing Testbenches: Functional Verification of HDL Models“, Springer 

2003.
•	 J. Reichardt, B. Schwarz, „VHDL-Synthese“, De Gruyter Oldenbourg, 2015.
•	 A. Mäder, „VHDL kompakt“, Universität Hamburg, Fakultät für Mathematik, Infor-

matik und Naturwissenschaften, tams-www.informatik.uni-hamburg.de/vhdl/doc/ajm-
Material/vhdl.pdf

Literaturhinweise

© Springer-Verlag GmbH Deutschland 2016 
W. Gehrke et al., Digitaltechnik, Springer-Lehrbuch,  
DOI 10.1007/978-3-662-49731-9

http://www.freerangefactory.org
http://tams-www.informatik.uni-hamburg.de/vhdl/doc/ajmMaterial/vhdl.pdf
http://tams-www.informatik.uni-hamburg.de/vhdl/doc/ajmMaterial/vhdl.pdf


550 Literaturhinweise

Schaltungsrealisierung (Kapitel 7, 10)

•	 K.-H. Cordes, A. Waag, N. Heuck, „Integrierte Schaltungen“, Pearson, 2010.
•	 H. Göbel, „Einführung in die Halbleiter-Schaltungstechnik“, Springer-Vieweg, 2014.
•	 L. Chen et.al., „Low Power Design Methodologies for Digital Signal Processors“, in 

N.N. Tan et.al. „Ultra-Low Power Integrated Circuit Design“, Springer 2014.
•	 I. Kuon, J. Rose, „Measuring the Gap Between FPGAs and ASICs“, IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, 2007.

FPGAs und Komponenten digitaler Systeme (Kapitel 9, 11, 12)

•	 M. Qazi, M. E. Sinangil, A. P. Chandrakasan, „Challenges and Directions for Low-
Voltage SRAM“, IEEE Design and Test of Computers, Jan/Feb 2011.

•	 J.M. de la Rosa, „Sigma-Delta Modulators: Tutorial Overview, Design Guide, and 
State-of-the-Art Survey“, IEEE Transactions on Circuits and Systems I, 2011.

Mikrocontroller (Kapitel 13, 14)

•	 J. Hennessy, D. Patterson, „Rechnerorganisation und Rechnerentwurf: Die Hardware/
Software-Schnittstelle“, Oldenbourg, 2011.

•	 G. Schmitt, „Mikrocomputertechnik mit Controllern der Atmel AVR-RISC-Familie“, 
Oldenbourg, 2010.

•	 J. Wiegelmann, „Softwareentwicklung in C für Mikroprozessoren und Mikrocontrol-
ler“, VDE Verlag, 2011.

Weblinks

Für Informationen zu einzelnen Komponenten empfehlen wir die Herstellerseiten. In der 
nachfolgenden Übersicht sind einige Webseiten exemplarisch aufgeführt.
Standard-Logik:

•	 Texas Instruments: www.ti.com/lsds/ti/logic/home_overview.page
•	 NXP: www.nxp.com/products/logic

Programmierbare Logikbausteine (CPLDs, FPGAs):

•	 Xilinx: www.xilinx.com
•	 Altera: www.altera.com

http://www.ti.com/lsds/ti/logic/home_overview.page
http://www.nxp.com/products/logic
http://www.xilinx.com
http://www.altera.com
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•	 Lattice: www.latticesemi.com
•	 MicroSemi: www.microsemi.com

FPGA-Experimentierboards:

•	 Digilent: www.digilentinc.com
•	 Terasic: www.terasic.com

Speicher:

•	 Samsung: www.samsung.com/semiconductor/
•	 Hynix: www.skhynix.com
•	 Micron Technology: www.micron.com

AD/DA-Umsetzer:

•	 Microchip: www.microchip.com
•	 Analog Devices: www.analog.com

AVR-Mikrocontroller:

•	 allgemein: www.atmel.com/products/microcontrollers/avr/
•	 ATmega32: www.atmel.com/devices/ATMEGA32.aspx

Eine Übersicht über verschiedene Hersteller, sowie Information zu Preisen und Verfüg-
barkeit von Bauelementen bieten Distributoren bzw. Elektronikversandhändler, zum 
Beispiel

•	 Digikey: www.digikey.de
•	 Mouser: www.mouser.de
•	 Reichelt-Elektronik: www.reichelt.de
•	 Watterott: www.watterott.com

Viele Informationen zu digitalen Systemen und ein sehr gutes deutschsprachiges Forum 
finden Sie auf der Seite

•	 www.mikrocontroller.net

http://www.latticesemi.com
http://www.microsemi.com
http://www.digilentinc.com
http://www.terasic.com
http://www.samsung.com/semiconductor/
http://www.skhynix.com
http://www.micron.com
http://www.microchip.com
http://www.analog.com
http://www.atmel.com/products/microcontrollers/avr/
http://www.atmel.com/devices/ATMEGA32.aspx
http://www.digikey.de
http://www.mouser.de
http://www.reichelt.de
http://www.watterott.com
http://www.mikrocontroller.net
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1–9
1-aus-N-Code, 43
6T-Zelle, 320
7-Segment-Code, 44
8b/10b-Code, 394

A
Abfallzeit, 208
Abtasthalteglied, 355
Abtasttheorem, 356
Abtastung, 354
Acknowledge, 499
Addierer, 177
Address Map, 400
Adressbus, 398
Adressdecoder, 176
Adresse, 317
Adressierung, 406, 452

absolute, 407, 410
indirekte, 407
indizierte, 408
PC-absolute, 410
PC-indirekte, 410
PC-relative, 410
relative, 410
unmittelbare, 406

Adressraum, 346
A/D-Umsetzer, 505
Amdahl‘s Law, 412
Analog-Digital-Umsetzer, 353
Analoge Signaldarstellung, 11
Analog-Komparator, 510
Analog-Multiplexer, 505
Ansteuerungstabelle, 142

Anstiegszeit, 208
Anti-Fuse, 324
Antivalenz, 92
Application Specific Integrated Circuit (ASIC), 

8, 210
Application Specific Standard Product (ASSP), 

9, 211
Approximation, sukzessive, 364
Äquivalente Automaten, 149
Äquivalente Zustände, 139
Äquivalenz, 93
Arbeitsregister, 402, 429, 456
Architecture, 56, 232, 254
Arithmetic Logical Unit (ALU), 398
Array, 229
ASCII-Code, 44
Assembler, 427, 430
Assembler-Beispiel

Addition, 447
Interrupt, 462
Multiplikation, 449
Ports, 469
setzen und Löschen von Bits, 444
stackbasierte Parameterübergabe, 456

Assembler-Direktiven, 461
Assert-Anweisung, 255
Assoziativgesetz, 96
Astabile Kippstufe, 129
Asynchroner Automat, 157
Asynchroner Reset, 125

VHDL-Beschreibung, 161
Atomare Operation, 515
Attribut, 238
Ausbeute, 308
Ausgangsfunktion, 130

Stichwortverzeichnis
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Automat, 129
äquivalenter, 149
asynchroner, 157
VHDL-Beschreibung, 163

B
Bad Blocks, 326
Ball Grid Array, 310
Baudrate, 487
Befehlssatz, 402
BGA-Gehäuse (Ball Grid Array), 310
Bias-Darstellung, 36
Bibliothek, 55

ieee, 55
std, 55
work, 55

Binärdaten, 2
Binäre Schaltfunktion, 86
Binary Coded Digit, 40
Binary Coded Digit Code (BCD-Code), 40
Bistabile Kippstufe, 129
Bit-Flipping, 326
Blockgenerator, 245
Block-RAM, 246, 278, 284
Bonding, 308
Boolean, 226
Boolesche Schaltfunktion, 86
Boot-Code, 331
Bottom-Up Entwurf, 174
Burst, 335
Bus

Adressbus, 398
Datenbus, 399
Steuerbus, 399

C
Capture-Unit, 475
Carry-Logik, 275
C-Beispiel

analoge Eingabe, 509
Bits setzen und Löschen, 431
FIFO, 518
I2C, 502
interrupt, 463
Ports, 467
SPI, 497
Temperaturüberwachung, 512

UART, 491
Uhr, 481
Zugriff auf Peripherie, 430

Central Processing Unit (CPU), 398, 421
Character, 227
Chip, 7
Clock, 119
Clock-Domain, 193
Clock Skew, 276
CMOS-Technologie, 290
Codewortlänge, 144
Codierung

AD-Umsetzer, 354
optimierte, 147
von Zuständen, 144

Compact Disc (CD), 11, 356
Complex Instruction Set Computer (CISC), 416
Complex Programmable Logic Devices 

(CPLD), 212, 271
Component-Anweisung, 240
Constant Propagation, 219

D
Datenbus, 399
Datenregister, 465
Datenrichtungsregister, 465
Datentransferrate, 318
Datenwort, 318
De Morgansche Gesetze, 97
Delay-Locked-Loop (DLL), 279
Demultiplexer, 176
D-Flip-Flop, 4, 122, 239, 276

Aufbau, 124
Aufbau in CMOS-Technologie, 298
Verwendung im FPGA, 271
VHDL-Beschreibung, 158

Die, 308
Differenzielle Nichtlinearität, 383
Digital-Analog-Umsetzer, 353
Digitale Signaldarstellung, 11
DIL-Gehäuse (Dual In-Line), 309
Direct Memory Access (DMA), 427
Direktverfahren (DAU), 375
Disjunktive Normalform, 99
Diskrete Signaldarstellung, 13
Diskrete Speicherbausteine, 332
Diskretisierung, 354
Distributed Memory, 247, 278
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Distributivgesetz, 96
Don’t-Care, 59, 87

im Karnaugh-Diagramm, 107
Dotierung, 292
Double-Data-Rate (DDR), 319, 392
Dual In-Line, 309
Dual-Port-Speicher, 248, 278, 330
Dual-Slope-Verfahren, 370
Durchsatz, 193
Duty Cycle, 119, 337, 340
Dynamic Random Access Memory (DRAM), 

316, 321
diskreter Baustein, 337

Dynamische Verlustleistung, 301

E
Einheitsgatter, 207
Einschwingzeit, 385
Einstufige Logik, 93
Electrically Erasable Programmable Read-Only 

Memory (EEPROM), 316, 324
diskreter Baustein, 340

Electronic Design Automation (EDA), 215
Embedded Memory, 318, 329
Enable, 127

VHDL-Beschreibung, 162
Endlicher Automat, 129
Energieeffizienz, 303
Entity, 56
Entwurf von Automaten, 135
Entwurfsprozesses, 53
Error Correcting Code (ECC), 326

F
Falling_edge(), 159, 240
Fan-in, 207
Fan-out, 207
Feldeffekttransistoren, 292
Ferroelectric RAM (FRAM), 316, 327
Fertigungstest, 307
Festkomma-Darstellung, 37
Field Programmable Gate Array (FPGA), 9, 

212, 269, 273
FinFET-Transistoren, 311
Finite State Machine s. Automat
First-In-First-Out (FIFO), 246, 317, 517
Flags, 434

Flankenerkennung, 193
Flash-EEPROM, 317, 325
Flash-Umsetzer, 362
Floating-Gate, 324
Floating-Point-Unit, 404
Flüchtige Speicher, 315
For-generate-Anweisung, 236
For-Schleife, 77
Frequenz, 119
Function, 231
Funktionstabelle, 87
Fuse-Bit, 524

G
Gated Clock, 277
Gate-Länge, 296, 310
Gatter, 86
Gatternetzliste, 210
Gehäuse, 309
Generate-Anweisung, 236
Generic, 235
Generic Array Logic (GAL), 269
Gleitkomma-Darstellung, 37
Glitch, 184
Grafikcontroller, 4
Gray-Code, 42, 197, 242

H
Halbaddierer, 179
Handshake, 488
Harmonische Verzerrungen, 386
Harvard-Architektur, 419

modifizierte, 420
Hazard, 184
High-Logik-Pegel, 2
Histogramm, 386
Hold-Zeit, 124

I
I2C, 497
Identität, 93
If-Anweisung, 76
If-generate-Anweisung, 236
Implikation, 93
In-Circuit-Emulation (ICE), 524
Inferenz, 243
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Inhibition, 93
Input-Capture-Unit, 475
Instanziierung, 79, 243
Instruktionssatz, 402
In-System-Programming (ISP), 524
Integer, 58
Integrated Circuit (IC), 7
Integrierte Schaltung, 7, 289
Inter-Integrated-Circuit-Bus, 497
Interrupt, 458, 480, 512
Interruptfreigabe, 459, 512
Interrupt-Vektor, 460
Inverter, 3, 90, 296
IO-Block (IOB), 274, 280

J
JESD204B, 393
JK-Flip-Flop, 128
JTAG, 524

K
Karnaugh-Diagramm, 98, 101
Karnaugh-Veitch-Diagramm, 101
Kippstufe

astabile, 129
bistabile, 129

Kohlenstoffnanoröhre, 312
Kombinatorische Schaltung, 85
Kommutativgesetz, 96
Komplexgatter, 304
Konjunktive Normalform, 100
Kritischer Pfad, 190
KV-Diagramm, 101

L
Label, 429
Lastkapazität, 210
Latch, 116
Latenzzeit, 193, 318
Layout, 294
Leckströme, 301
Library-Anweisung, 55
Linear Feedback Shift Register (LFSR), 183
Logic Element, 273, 283
Logik

einstufige, 93

negative, 3
n-stufige, 93
positive, 2
zweistufige, 93

Logikbaustein, 8
Logikgatter, 3
Logik-Pegel, 2
Logikstufen, 93
Logiksymbole, US-amerikanische, 94
Logik-Zustand, 2
Look-up table (LUT), 267, 273, 274
Look-up-Tabelle, 267, 273, 274
Low-Logik-Pegel, 2
Low Voltage Differential Signaling  

(LVDS), 392

M
Magnetoresistive RAM (MRAM), 316, 327
Majoritätsschaltung, 87
Makrozelle, 271
Maxterm, 100
Mealy-Automat, 130, 149
Medwedew-Automat, 131, 156
Memory-Mapped-I/O, 400, 430
Metastabilität, 124, 196
Microchip, 7
Mikrocontroller, 11, 213, 420
Minimale Codewortlänge, 144
Minimierung

logischer Funktionen, 98
von Zuständen, 139

Minterm, 98
Mixed-Signal-ASIC, 388
Mnemonic, 429
Modulo-m-Zähler, 180
Monostabile Kippstufe, 129
Monotonität, 383
Moore-Automat, 131
Moore’sches Gesetz, 310
Multi-Level-Cell (MLC), 326
Multiplexer, 175

N
Nachtriggerbares Monoflop, 129
NAND-EEPROM, 325
NAND-Gatter, 290
NAND-Verknüpfung, 91
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Natural, 225
Negation, 90
Negative Logik, 3
Netzliste, 219
Nichtflüchtige Speicher, 315
Nichtlinearität, 382

differenzielle, 383
N-Kanal-Transistor, 292
Non-Volatile Memory, 315
Non-Volatile RAM (NVRAM), 316, 326

diskreter Baustein, 344
NOR-EEPROM, 325
NOR-Verknüpfung, 92
N-stufige Logik, 93

O
ODER-Gatter, 3
ODER-Verknüpfung, 90
Offsetfehler, 381
On-Chip-Debugging, 524
One-Hot-Codierung, 144
Open-Collector-Ausgang, 199, 498
Open-Drain-Ausgang, 199, 498
Operation, atomare, 515
Optimierte Codierung, 147
Others, 63, 77
OTP-Speicher, 323
Oversampling-Technik, 373

P
Package, 241
Paket, 241
Parallel-Seriell-Wandlung, 182
Parallelverfahren, 362

erweitertes, 366
Parität, 487
Periodendauer, 119
Pfad, kritischer, 190
Phase-Change RAM (PCRAM), 316, 328
Phase-Locked Loop (PLL), 279
Pipeline-ADU, 364, 368
Pipelining, 192, 411, 412, 418
P-Kanal-Transistor, 293
Placement, 220
Platzierung, 220
PLCC-Gehäuse, 309
Polling, 458, 511

Port, 56, 421, 464
Port Mapped I/O, 400
Portfunktionen, alternative, 426, 470
Positive Logik, 2
Primterm, 99
Procedure, 232
Process, Voltage, Temperature (PVT), 299
Program Counter, 410, 433
Programmable Array Logic (PAL), 269
Programmable Logic Arrays (PLA), 266
Programmable Logic Device (PLD), 266
Prozess, 69
Pseudo-Tetrade, 40
Pull-Up-Widerstand, 498
Pulsweitenmodulation (PWM), 379

Q
QFP-Gehäuse, 310
Quad-Data-Rate (QDR), 334
Quad-Flat-Pack-Gehäuse, 310
Quad-Level-Cell (QLC), 326
Quantisierung, 354
Quantisierungsfehler, 380
Quantisierungsintervall, 354, 359
Querstrom, 302

R
R-2R-Leiternetzwerk, 377
Read(), 251
Readline(), 251
Read-Only-Memory (ROM), 316, 323
Real data, 225
Rechenregeln der Schaltalgebra, 95
Record, 230
Reduced Instruction Set Computer (RISC), 417
Redundante Codewortlänge, 144
Reduzierter Spannungshub, 318
Refresh, 322
Register, 122, 186
Registerausgabe, 154

VHDL-Beschreibung, 164
Registerpaar, 437
Register-Transfer-Level (RTL), 186, 217
Reset

asynchroner, 125, 161
synchroner, 126

Resistive RAM (R RAM), 316, 328
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Resolution Function, 227
Ripple-Carry-Addierer, 178
Rising_edge(), 158, 240
Route, 220
RS-Flip-Flop, 116

asynchroner Automat, 158
Rückgekoppeltes Schieberegister, 183
Rückkopplung, 117

S
Schaltaktivität, 302
Schaltalgebra, 86
Schaltfunktion, 86

binäre, 86
boolesche, 86

Schaltglied, 86
Schaltsymbole, 3
Schaltung, sequenzielle, 115
Schaltungsentwurf durch Minimieren, 98
Schaltzeichen, 86, 174
Schaltzeit, 208
Schiebeoperationen, 448
Schieberegister, 182

rückgekoppeltes, 183
Schmitt-Trigger, 197
Sequenzielle Schaltung, 115
Serial Peripheral Interface (SPI), 345, 389, 492
Serializer, 274
Seriell-Parallel-Wandlung, 182
Setup-Zeit, 124, 276
Shannonsches Gesetz, 97
Shared Variable, 248
Sieben-Segment-Anzeige, 254
Sigma-Delta-Umsetzer, 371
Signal, 67
Signal-Rausch-Abstand, 385
SIgnal to Noise And Distortion ratio  

(SINAD), 385
Signal to Noise Ratio(SNR)

Signal-Rausch-Abstand, 385
Signed Data, 62
Silizium, 290
Simple Programmable Logic Device (SPLD), 

212, 269
Simulation, 52
Single-Slope-Verfahren, 370

Skipbefehl, 444
Soft-Prozessor, 280
Speicher, 315
Speichersystem, 345
Spezifikation, 136
Spike, 184
Sprungbefehl

bedingter, 405
unbedingter, 405

Stack, 409, 456
Stackpointer, 433, 456
Standardlogik-Bausteine, 204
Standardzellen, 304
Stapelspeicher, 409, 456
Stapelzeiger, 433, 456
Startbedingung, 498
Startbit, 486
Static Random Access Memory  

(SRAM), 316, 319
diskreter Baustein, 334

Statische Verlustleistung, 301
Statusregister, 433, 444
Std_logic, 57, 59, 227
Std_logic_textio, 251
Std_logic_vector, 60, 227, 229
Std_ulogic, 227
Std_ulogic_vector, 60
Stellengewicht, 19
Steuerbus, 399
Steuerwerk, 401
Stimuli, 52, 218, 259
Stoppbedingung, 499
Stoppbit, 487
Störspannungsabstand, 208
String, 228, 252
Strukturgröße, 310
Stufigkeit, 93
Substrat, 292
Subtypes, 228
Sukzessive Approximation, 364
Summation gewichteter Ströme, 375
Superskalare Architektur, 412
Switch Matrix, 274
Synchroner Reset, 126

VHDL-Beschreibung, 160
Synthese, 52
System-on-Chip (SoC), 211, 281, 305
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Takt, 4, 118
Taktbereich, 193
Taktflankensteuerung, 121
Taktfrequenz, 191
Taktkonzept, 186
Taktpegelsteuerung, 120
Taktübergang, 193
Tastverhältnis, 119
Testbench, 52, 218, 250, 254
Textausgabe, 252
Textio, 251
Time, 226
Timer, 470

CTC Mode, 472
Normal Mode, 471
PWM Mode, 473

To_integer, 63
To_signed, 63
To_unsigned, 63
Toggle-Flip-Flop, 128
Top-down Entwurf, 173
Total Negative Slack (TNS), 220
Total Hold Slack (THS), 221
Transiente Signalzustände, 184
Transmission-Gate, 298
Triple-Level-Cell(TLC), 326
Tri-State-Ausgang, 198

Verwendung für Datenbus, 349
Turingmaschine, 130
Two-Wire-Interface (TWI), 497
Type, 227
Type-Qualifier, 252

U
UART-Protokoll, 486
Überlauf, 26, 28, 34
Übertrag, 178
UND-Gatter, 3
UND-Verknüpfung, 89
Universal Asynchronous Receiver/Transmitter 

(UART), 485
Universal Synchronous Asynchronous Recei-

ver/Transmitter (USART), 489
Unsigned Data, 62
Untermodul, 173
Unterprogrammaufruf, 455

US-amerikanische Logiksymbole, 94
Use-Anweisung, 55

V
Venn-Diagramm, 101
Verdrahtung, 220
Vereinfachungsregeln der Schaltalgebra, 95
Vergleich Mealy-Automat/Moore-Automat, 

153
Verlustleistung, 300

statische, 301
Verstärkungsfehler, 381
Very-Long-Instruction-Word (VLIW), 412
Verzögerungszeit, 184, 209
VHDL-Beispiel

Attribute, 238
Component-Anweisung, 240
Dateizugriff, 251, 252
Fußgängerampel, 187
Generate-Anweisung, 237
Generics, 235
Inferenz eines Speichers, 246
Paket, 242
Sequenzielle Schaltung, 159
Testbench, 254, 257

Volatile, 430
Volatile Memory, 315
Volladdierer, 178
Vollsubtrahierer, 179
Voltage-Controlled-Oscillator (VCO), 279
Von-Neumann-Architektur, 398, 419
Vorrangregeln der Schaltalgebra, 94
Vorzeichen-Betrag-Darstellung, 30
Vorzeichenerweiterung, 34

W
Wafer, 307
Wägeverfahren, 363
Wahrheitstabelle, 87
Wait-Anweisung, 254
Wartbarkeit, 154
Watchdog-Timer, 483
Waveform, 255
Waveform-Viewer, 52
Wear Leveling, 325
Wertdiskrete Signaldarstellung, 13
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Wertkontinuierliche Signaldarstellung, 13
While-Schleife, 78
Wireload Model, 219
Worst Hold Slack (WHS), 221
Worst Negative Slack (WNS), 220
Write(), 251
Writeline(), 251

X
XOR-Gatter (exclusive or), 3
XOR-Verknüpfung (exclusive or), 92

Y
Yield, 308

Z
Zahlenkreis, 25
Zähler, 180
Zählverfahren, 365
Zeichenketten, 228, 252
Zeitdiskrete Signaldarstellung, 13
Zeitkontinuierliche Signaldarstellung, 13
Zero-One-Hot-Codierung, 144
Zustand, 130, 135
Zustandscodierung, 141
Zustandsfolgediagramm, 134
Zustandsfolgetabelle, 133
Zustandsübergangsfunktion, 130
Zustandsvariable, 130
Zuweisung, nebenläufige, 68
Zweierkomplement-Darstellung, 32
Zweistufige Logik, 93
Zweiwertigkeit, 2
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