
Digitaltechnik

Winfried Gehrke
Marco Winzker
Klaus Urbanski
Roland Woitowitz

Grundlagen, VHDL, FPGAs, Mikrocontroller

7. Auflage

Springer-Lehrbuch

Winfried Gehrke · Marco Winzker
Klaus Urbanski · Roland Woitowitz

Digitaltechnik
Grundlagen, VHDL, FPGAs, Mikrocontroller

7., überarbeitete und aktualisierte Auflage

Winfried Gehrke
Osnabrück, Deutschland

Marco Winzker
St. Augustin, Deutschland

Klaus Urbanski
Osnabrück, Deutschland

Roland Woitowitz
Osnabrück, Deutschland

ISSN 0937-7433	
Springer-Lehrbuch
ISBN 978-3-662-49730-2	 ISBN 978-3-662-49731-9  (eBook)
DOI 10.1007/978-3-662-49731-9

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detail
lierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg
© Springer-Verlag GmbH Deutschland 1995, 1997, 2000, 2004, 2007, 2012, 2016
Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht
ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags.
Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die
Einspeicherung und Verarbeitung in elektronischen Systemen.
Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt
auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen-
und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden
dürften.
Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem
Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch die Autoren
oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige
Fehler oder Äußerungen.

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Springer Vieweg ist Teil von Springer Nature
Die eingetragene Gesellschaft ist Springer-Verlag GmbH Germany
Die Anschrift der Gesellschaft ist: Heidelberger Platz 3, 14197 Berlin, Germany

OnlinePlus Material zu diesem Buch finden Sie auf
http://www.springer.com/978-3-662-49731-9

V

Vorwort

Die Digitaltechnik ist ein integraler Bestandteil unseres täglichen Lebens geworden.
Vielfach begegnet sie uns in Form von Desktop-PCs, Laptops, Tablets, Fernsehgeräten
oder Smartphones. Wenn wir ein solches Gerät nutzen, ist klar: Wir verwenden ein digi-
tales System. Darüber hinaus ist die Digitaltechnik aber auch in Bereiche eingezogen,
bei der sie nicht sofort offensichtlich ist. In einem modernen Auto arbeiten beispiels-
weise zahlreiche digitale Komponenten. Sie steuern den Motor, helfen beim Einparken
und unterstützen beim Fahren durch Fahrspurassistenten, ABS und ESP. Diese Form der
digitalen Systeme werden häufig, weil sie in einem größeren System integriert sind, als
„eingebettete Systeme“ bezeichnet. Man findet sie in vielen Bereichen des Alltags, wie
zum Beispiel in Hausgeräten, Uhren, Heizungssteuerungen oder in Fotoapparaten. Auch
in industriellen Anwendungen geht nichts ohne die Digitaltechnik. So wäre beispiels-
weise die Vernetzung industriell genutzter Maschinen, die vierte industrielle Revolution,
ohne entsprechende digitale Komponenten undenkbar.

Was ist Digitaltechnik? Welche Prinzipien liegen ihr zugrunde? Wie werden digitale
Systeme realisiert?−Diese und andere Fragen werden in diesem Lehrbuch beantwortet.

Das Buch beschreibt die wichtigen Themenfelder der Digitaltechnik und wendet sich
vorrangig an Studierende der Studiengänge Elektrotechnik, Informatik, Mechatronik
sowie verwandter Studiengänge. Es wird der Bogen von den Grundlagen der Digital-
technik über Schaltungsstrukturen und Schaltungstechnik bis hin zu den Komponenten
digitaler Systeme, wie programmierbare Logikbausteine, Speicher, AD/DA-Umsetzer
und Mikrocontroller gespannt. Zahlreiche Beispiele erleichtern das Verständnis für den
Aufbau und die Funktion moderner digitaler Systeme.

Mit dieser 7. Auflage und dem auf vier Autoren gewachsenen Team wurde das Lehr-
buch grundlegend überarbeitet und modernisiert. Hierbei waren uns die folgenden
Aspekte wichtig:

•	 Ein besonderes Merkmal dieses Lehrbuches ist die Breite der behandelten Themen
von Grundlagen über Komponenten bis zu digitalen Systemen.

•	 Der Entwurf mit einer Hardwarebeschreibungssprache ist Standard in der Industrie.
Auf die verständliche, schrittweise Erläuterung von VHDL wird daher besonderer

VI Vorwort

Wert gelegt. Nach einer Einführung in VHDL wird bei vielen Themen Bezug auf
VHDL-Konstrukte genommen. In einem Vertiefungskapitel werden weiterführende
Sprachkonstrukte erläutert.

•	 Ein neues Einleitungskapitel gibt eine Übersicht über die Digitaltechnik, um die Ein-
ordnung von Grundlagenwissen zu ermöglichen.

•	 Inhalte, die keine Praxisrelevanz mehr haben, wurden weggelassen, zum Beispiel
asynchrone Zähler oder obsolete RAM-Bausteine.

•	 Im Gegenzug werden praxisrelevante Inhalte ausführlicher behandelt, darunter:
–	 Zeitverhalten, Pipelining
–	 Schaltungssimulation und -verifikation
–	 Verlustleistung
–	 Moderne Speichertechnologien

Die ersten sechs Kapitel legen die wesentlichen Grundlagen zum Verständnis digitaler
Komponenten. Kap. 1 bietet eine Einführung in die Thematik und stellt wichtige Grund-
prinzipien im Überblick dar.

Kap. 2 widmet sich der digitalen Darstellung von Informationen, wobei der Schwer-
punkt auf der Darstellung von Zahlen liegt. Kap. 3 führt in die Hardwarebeschreibungs-
sprache VHDL ein, die weltweit für den Entwurf digitaler Schaltungen verwendet wird.
Digitale Systeme lassen sich als Kombination von kombinatorischen und sequenziellen
Schaltungen auffassen. Beide Konzepte werden in den Kapiteln 4 und 5 vorgestellt, wäh-
rend sich Kap. 6 den aus diesen Konzepten abgeleiteten Schaltungsstrukturen widmet. In
diesen Kapiteln wird kontinuierlich die Implementierung in der Sprache VHDL themati-
siert und vertieft.

In den Kapiteln 7 bis 14 werden vertiefende Themen aufgegriffen: Kap. 7 stellt unter-
schiedliche Konzepte zur Realisierung digitaler Systeme im Überblick vor. In Kap. 8
werden erweiterte Aspekte der Schaltungsbeschreibung in VHDL, wie zum Beispiel
Testbenches für die Verifikation aufgegriffen. Die praktische Umsetzung von VHDL-
Beschreibungen erfolgt heute häufig mithilfe von programmierbaren Logikbausteinen
(FPGAs), welche in Kap. 9 vertieft vorgestellt werden. Das Verständnis der techno-
logischen Grundlagen moderner Digitalschaltungen wird durch eine Einführung in die
Halbleitertechnologie in Kap. 10 ermöglicht. Eine zentrale Systemkomponente ist der
Speicher. Dieser kann mithilfe unterschiedlicher Technologien realisiert werden, die in
Kap. 11 vorgestellt werden. Für Ein-/Ausgabe analoger Größen werden Analog-Digital-
und Digital-Analog-Umsetzer benötigt, deren Aufbau und Funktionsweise in Kap. 12
näher erläutert werden. Kap. 13 und 14 widmen sich digitalen Rechnersystemen. In
Kap. 13 wird der Aufbau und die Funktionsweise von Rechnern vorgestellt. Kap. 14
greift diese Aspekte auf und vertieft sie anhand eines konkreten Beispiels, einem Mik-
rocontroller der AVR-Familie. In Kap. 11 bis 14 werden ebenfalls Bussysteme zur Kom-
munikation innerhalb eines digitalen Systems vorgestellt.

http://dx.doi.org/10.1007/978-3-662-49731-9_1
http://dx.doi.org/10.1007/978-3-662-49731-9_2
http://dx.doi.org/10.1007/978-3-662-49731-9_3
http://dx.doi.org/10.1007/978-3-662-49731-9_4
http://dx.doi.org/10.1007/978-3-662-49731-9_5
http://dx.doi.org/10.1007/978-3-662-49731-9_6
http://dx.doi.org/10.1007/978-3-662-49731-9_7
http://dx.doi.org/10.1007/978-3-662-49731-9_14
http://dx.doi.org/10.1007/978-3-662-49731-9_7
http://dx.doi.org/10.1007/978-3-662-49731-9_8
http://dx.doi.org/10.1007/978-3-662-49731-9_9
http://dx.doi.org/10.1007/978-3-662-49731-9_10
http://dx.doi.org/10.1007/978-3-662-49731-9_11
http://dx.doi.org/10.1007/978-3-662-49731-9_12
http://dx.doi.org/10.1007/978-3-662-49731-9_13
http://dx.doi.org/10.1007/978-3-662-49731-9_14
http://dx.doi.org/10.1007/978-3-662-49731-9_13
http://dx.doi.org/10.1007/978-3-662-49731-9_14
http://dx.doi.org/10.1007/978-3-662-49731-9_11
http://dx.doi.org/10.1007/978-3-662-49731-9_14

VIIVorwort

Am Ende aller Kapitel befinden sich Übungsaufgaben, die wichtige Aspekte aufgrei-
fen und zur selbstständigen Lernkontrolle herangezogen werden können. Die Lösungen
der Aufgaben sind am Ende des Buches zu finden.

Ergänzendes Material steht im Internet unter www.springer.com/de/
book/9783662497302 oder www.hs-osnabrueck.de/buch-digitaltechnik zur Verfügung.

Für die Rückmeldungen zu den Lehrinhalten bedanken wir uns bei den Studierenden
der Hochschule Osnabrück und der Hochschule Bonn-Rhein-Sieg. Besonderer Dank
geht an alle Kolleginnen und Kollegen, die uns seit der ersten Auflage durch ihre Hilfe
und Rückmeldungen begleitet haben. In der aktuellen Auflage war dies insbesondere
Dipl.-Ing. Andrea Schwandt. Nicht zuletzt möchten wir uns bei allen an dieser Ausgabe
beteiligten Mitarbeiterinnen und Mitarbeitern des Springer-Verlages bedanken. Ohne
ihre professionelle Arbeit wäre das vorliegende Buch nicht realisierbar gewesen.

Das Lehrbuch soll natürlich Leserinnen und Leser gleichermaßen ansprechen und wir
haben uns bemüht, dass alle Formulierungen auch so verstanden werden.

im Oktober 2016	 Winfried Gehrke
Marco Winzker
Klaus Urbanski

Roland Woitowitz

http://www.springer.com/de/book/9783662497302
http://www.springer.com/de/book/9783662497302
http://www.hs-osnabrueck.de/buch-digitaltechnik

IX

Vorwort zur ersten Auflage

Die Digitaltechnik hat seit der Einführung der ersten digitalen integrierten Halbleiter-
schaltungen im Jahre 1958 einen vehementen Aufschwung genommen. Maßgeblich
daran beteiligt war der technologische Fortschritt in der Mikroelektronik. Mittlerweile
lassen sich integrierte Schaltungen mit mehr als 100 Mio. aktiven Elementen realisieren.

Anfänglich konzentrierte sich diese Technik einerseits auf niedrigintegrierte logische
Grundschaltungen und andererseits auf hochintegrierte kundenspezifische Schaltungen
(Full Custom ICs), aber bereits 1971 kamen die Mikroprozessoren als neuartige pro-
grammierbare Universalschaltungen hinzu.

Seit einigen Jahren erweitert sich das Anwendungsspektrum zunehmend in Richtung
der sog. Semi Custom ICs. Hierbei handelt es sich um hochintegrierte Standardschaltun-
gen, bei denen wesentliche Designschritte mittels Computerunterstützung vom Anwen-
der selbst übernommen werden.

Das Buch widmet sich all diesen Grundlagen der Digitaltechnik unter besonderer
Berücksichtigung der zurzeit gültigen Normen für Schaltsymbole und Formelzeichen.

Der Darstellung grundlegender Logikbausteine, wie NAND, NOR, Flipflops und Zäh-
ler sowie programmierbarer Bausteine, wie PAL, PLA, LCA schließt sich eine Einfüh-
rung in die Mikroprozessor- und Mikrocontroller-Technik an.

Einen besonderen Schwerpunkt bildet der systematische Entwurf von Schaltnet-
zen und Schaltwerken unter Einsatz programmierbarer Bausteine. Zahlreiche Beispiele
hierzu erleichtern das Verständnis für Aufbau und Funktion dieser modernen digitalen
Systeme.

Zu allen Kapiteln werden Übungsaufgaben mit ausführlichen Musterlösungen ange-
boten. Daher eignet sich dieses Buch besonders zum Selbststudium. Es wendet sich
damit sowohl an Hochschulstudenten der Elektrotechnik oder Informationstechnik im
Hauptstudium, als auch an den in der Berufspraxis stehenden Ingenieur, der seinen Wis-
sensstand auf diesem Gebiet aktualisieren will.

X Vorwort zur ersten Auflage

Besonderer Dank gebührt Herrn Dr.-Ing. H. Kopp, der dieses Buch durch wertvolle
Anregungen und vielfältige Unterstützung bereichert hat. Auch den Studenten der Fach-
hochschule Osnabrück gilt unser Dank für ihre Mitarbeit und mannigfache Hilfestellung.

Bedanken möchten wir uns ebenfalls beim Verlag für die gute Zusammenarbeit.

Osnabrück, Deutschland, Dezember 1992 �
	

Klaus Urbanski
Roland Woitowitz

XI

1	 Einführung. 	 1
1.1	 Arbeitsweise digitaler Schaltungen. 	 2

1.1.1	 Darstellung von Informationen . 	 2
1.1.2	 Logik-Pegel und Logik-Zustand . 	 2
1.1.3	 Verarbeitung von Informationen . 	 3
1.1.4	 Beispiel: Einfacher Grafikcontroller . 	 4
1.1.5	 Beispiel: Zähler im Grafikcontroller . 	 6

1.2	 Technische Realisierung digitaler Schaltungen. 	 7
1.2.1	 Logikbausteine. 	 7
1.2.2	 Kundenspezifische Integrierte Schaltung. 	 8
1.2.3	 Standardbauelemente. 	 8
1.2.4	 Programmierbare Schaltung. 	 9
1.2.5	 Mikrocontroller . 	 10

1.3	 Digitale und analoge Informationen. 	 11
1.3.1	 Darstellung von Informationen . 	 11
1.3.2	 Vor- und Nachteile der Darstellungen. 	 11
1.3.3	 Wert- und zeitdiskret . 	 12

1.4	 Übungsaufgaben. 	 13

2	 Digitale Codierung von Informationen. 	 17
2.1	 Grundlagen. 	 18
2.2	 Vorzeichenlose Zahlen. 	 19

2.2.1	 Stellenwertsysteme. 	 19
2.2.2	 Darstellung vorzeichenloser Zahlen in der Digitaltechnik. 	 20
2.2.3	 Umwandlung zwischen Zahlensystemen. 	 22
2.2.4	 Beispiele zur Umwandlung zwischen Zahlensystemen. 	 22
2.2.5	 Wertebereiche und Wortbreite. 	 24
2.2.6	 Zahlendarstellung mit begrenzter Wortbreite. 	 25
2.2.7	 Binäre vorzeichenlose Addition. 	 26

Inhaltsverzeichnis

XII Inhaltsverzeichnis

2.2.8	 Binäre vorzeichenlose Subtraktion . 	 27
2.2.9	 Binäre vorzeichenlose Multiplikation und Division 	 29

2.3	 Vorzeichenbehaftete Zahlen. 	 30
2.3.1	 Vorzeichen-Betrag-Darstellung. 	 30
2.3.2	 Zweierkomplement-Darstellung . 	 32
2.3.3	 Addition und Subtraktion in Zweierkomplement-Darstellung. . . 	 34
2.3.4	 Multiplikation und Division in

Zweierkomplement-Darstellung . 	 35
2.3.5	 Bias-Darstellung. 	 36
2.3.6	 Darstellbare Zahlenbereiche. 	 36

2.4	 Reelle Zahlen. 	 37
2.4.1	 Festkomma-Darstellung. 	 37
2.4.2	 Gleitkomma-Darstellung. 	 38
2.4.3	 Reelle Zahlen in digitalen Systemen. 	 39

2.5	 Codes. 	 39
2.5.1	 BCD-Code. 	 40
2.5.2	 Gray-Code. 	 41
2.5.3	 1-aus-N-Code. 	 43
2.5.4	 ASCII-Code. 	 44
2.5.5	 7-Segment-Code. 	 44

2.6	 Übungsaufgaben. 	 47

3	 Einführung in VHDL . 	 51
3.1	 Designmethodik im Überblick. 	 52
3.2	 Grundstruktur eines VHDL-Moduls . 	 54

3.2.1	 Bibliotheken. 	 55
3.2.2	 Entity und Architecture . 	 56
3.2.3	 Bezeichner. 	 57

3.3	 Grundlegende Datentypen. 	 58
3.3.1	 Integer . 	 58
3.3.2	 Std_logic . 	 59
3.3.3	 Std_logic_vector . 	 60
3.3.4	 Signed und Unsigned. 	 61
3.3.5	 Konstanten. 	 62
3.3.6	 Umwandlung zwischen Datentypen. 	 63
3.3.7	 Datentyp Bit. 	 64

3.4	 Operatoren. 	 65
3.5	 Signale. 	 67

3.5.1	 Definition und Verwendung von Signalen. 	 67
3.5.2	 Signalzuweisungen. 	 68

3.6	 Prozesse. 	 69
3.6.1	 Syntaktischer Aufbau von Prozessen. 	 70
3.6.2	 Ausführung von Prozessen. 	 71

XIIIInhaltsverzeichnis

3.6.3	 Variablen . 	 72
3.6.4	 Signalzuweisungen in Prozessen. 	 73
3.6.5	 Wichtige Sprachkonstrukte in VHDL-Prozessen. 	 75

3.7	 Hierarchie. 	 79
3.8	 Übungsaufgaben. 	 81

4	 Kombinatorische Schaltungen. 	 85
4.1	 Schaltalgebra . 	 86

4.1.1	 Schaltfunktion und Schaltzeichen. 	 86
4.1.2	 Funktionstabelle. 	 87
4.1.3	 Funktionstabelle mit Don’t-Care. 	 87

4.2	 Funktionen der Schaltalgebra. 	 88
4.2.1	 UND-Verknüpfung. 	 89
4.2.2	 ODER-Verknüpfung. 	 90
4.2.3	 Negation, Inverter. 	 90
4.2.4	 NAND-Verknüpfung . 	 91
4.2.5	 NOR-Verknüpfung. 	 92
4.2.6	 XOR-Verknüpfung. 	 92
4.2.7	 XNOR-Verknüpfung . 	 92
4.2.8	 Weitere Verknüpfungen. 	 93
4.2.9	 Logikstufen . 	 93
4.2.10	 US-amerikanische Logiksymbole . 	 94

4.3	 Rechenregeln der Schaltalgebra. 	 94
4.3.1	 Vorrangregeln. 	 94
4.3.2	 Rechenregeln. 	 95

4.4	 Schaltungsentwurf durch Minimieren. 	 98
4.4.1	 Minterme. 	 98
4.4.2	 Schaltungsentwurf mit Mintermen. 	 98
4.4.3	 Minimierung von Mintermen. 	 99
4.4.4	 Maxterme. 	 100
4.4.5	 Schaltungsentwurf mit Maxtermen. 	 100
4.4.6	 Minimierung von Maxtermen . 	 100

4.5	 Schaltungsminimierung mit Karnaugh-Diagramm. 	 101
4.5.1	 Grundsätzliche Vorgehensweise. 	 101
4.5.2	 Karnaugh-Diagramm für zwei Variablen. 	 102
4.5.3	 Karnaugh-Diagramm für drei Variablen. 	 103
4.5.4	 Karnaugh-Diagramm für vier Variablen. 	 104
4.5.5	 Auswahl der erforderlichen Terme. 	 106
4.5.6	 Ermittlung der minimierten Funktion . 	 106
4.5.7	 Karnaugh-Diagramm mit Don’t-Care . 	 107
4.5.8	 Karnaugh-Diagramm für mehr als vier Variablen. 	 109
4.5.9	 Karnaugh-Diagramm der konjunktiven Normalform. 	 109

XIV Inhaltsverzeichnis

4.6	 VHDL für kombinatorische Schaltungen. 	 110
4.6.1	 Beschreibung logischer Verknüpfungen. 	 110
4.6.2	 Beschreibung der Funktion . 	 111

4.7	 Übungsaufgaben. 	 112

5	 Sequenzielle Schaltungen. 	 115
5.1	 Speicherelemente. 	 116

5.1.1	 RS-Flip-Flop . 	 116
5.1.2	 Taktsteuerung von Flip-Flops. 	 118
5.1.3	 D-Flip-Flop . 	 122
5.1.4	 Erweiterung des D-Flip-Flops. 	 125
5.1.5	 Weitere Flip-Flops. 	 128
5.1.6	 Kippstufen . 	 129

5.2	 Endliche Automaten. 	 129
5.2.1	 Automatentheorie. 	 130
5.2.2	 Beispiel für einen Automaten. 	 132
5.2.3	 Entwurf von Automaten. 	 135
5.2.4	 Codierung von Zuständen . 	 144
5.2.5	 Entwurf von Mealy-Automaten. 	 149
5.2.6	 Vergleich von Mealy- und Moore-Automat. 	 153
5.2.7	 Registerausgabe. 	 154
5.2.8	 Asynchrone Automaten. 	 157

5.3	 Entwurf sequenzieller Schaltungen mit VHDL. 	 158
5.3.1	 Grundform des getakteten Prozesses. 	 158
5.3.2	 Erweiterte Funktion des getakteten Prozesses. 	 159
5.3.3	 Steuerleitungen für Flip-Flops. 	 160
5.3.4	 Entwurf von Automaten. 	 163
5.3.5	 Programmierstile für VHDL-Code. 	 166

5.4	 Übungsaufgaben. 	 167

6	 Schaltungsstrukturen. 	 173
6.1	 Grundstrukturen digitaler Schaltungen . 	 173

6.1.1	 Top-down Entwurf. 	 173
6.1.2	 Darstellung von Schaltungsstrukturen. 	 174

6.2	 Kombinatorische Grundstrukturen. 	 175
6.2.1	 Multiplexer. 	 175
6.2.2	 Demultiplexer. 	 176
6.2.3	 Addierer. 	 177

6.3	 Sequenzielle Grundstrukturen. 	 180
6.3.1	 Zähler. 	 180
6.3.2	 Schieberegister. 	 182
6.3.3	 Rückgekoppeltes Schieberegister. 	 183

6.4	 Zeitverhalten . 	 184

XVInhaltsverzeichnis

6.4.1	 Verzögerungszeit realer Schaltungen. 	 184
6.4.2	 Transiente Signalzustände. 	 184
6.4.3	 Signalübergänge in komplexen Schaltungen. 	 185

6.5	 Taktkonzept in realen Schaltungen . 	 186
6.5.1	 Register-Transfer-Level (RTL). 	 186
6.5.2	 Beispiel für Entwurf mit Register-Transfer-Level:

Ampelsteuerung. 	 187
6.5.3	 Kritischer Pfad. 	 190
6.5.4	 Pipelining. 	 191
6.5.5	 Taktübergänge . 	 193
6.5.6	 Metastabilität von Flip-Flops. 	 195
6.5.7	 Taktübergang mehrerer Signale. 	 196

6.6	 Spezielle Ein-/Ausgangsstrukturen . 	 197
6.6.1	 Schmitt-Trigger-Eingang. 	 197
6.6.2	 Tri-State-Ausgang . 	 198
6.6.3	 Open-Kollektor-Ausgang. 	 199

6.7	 Übungsaufgaben. 	 200

7	 Realisierung digitaler Systeme. 	 203
7.1	 Standardisierte Logikbausteine . 	 204

7.1.1	 Charakteristische Eigenschaften digitaler Schaltkreise. 	 206
7.1.2	 Lastfaktoren. 	 206
7.1.3	 Störspannungsabstand. 	 208
7.1.4	 Schaltzeiten . 	 208
7.1.5	 Logikfamilien. 	 209

7.2	 Komponenten für digitale Systeme. 	 210
7.2.1	 ASICs. 	 210
7.2.2	 ASSPs. 	 211
7.2.3	 FPGAs und CPLDs . 	 211
7.2.4	 Mikrocontroller . 	 212
7.2.5	 Vergleich der Alternativen. 	 214
7.2.6	 Kombination von Komponenten . 	 214

7.3	 VHDL-basierter Systementwurf . 	 215
7.3.1	 Designflow. 	 215
7.3.2	 VHDL-Eingabe . 	 216
7.3.3	 Simulation . 	 217
7.3.4	 Synthese. 	 219
7.3.5	 Platzierung und Verdrahtung. 	 220
7.3.6	 Timinganalyse . 	 220
7.3.7	 Inbetriebnahme. 	 221
7.3.8	 Der digitale Entwurf als iterativer Prozess. 	 222

7.4	 Übungsaufgaben. 	 223

XVI Inhaltsverzeichnis

8	 VHDL-Vertiefung . 	 225
8.1	 Weitere Datentypen. 	 225

8.1.1	 Natural und Real . 	 225
8.1.2	 Boolean . 	 226
8.1.3	 Time. 	 226
8.1.4	 Std_ulogic, Std_ulogic_vector. 	 227
8.1.5	 Benutzerdefinierte Datentypen. 	 227
8.1.6	 Zeichen und Zeichenketten . 	 227
8.1.7	 Subtypes. 	 228
8.1.8	 Arrays. 	 229
8.1.9	 Records. 	 230

8.2	 Sprachelemente zur Code-Strukturierung. 	 231
8.2.1	 Function. 	 231
8.2.2	 Procedure. 	 232
8.2.3	 Entity-Deklaration mit Generics . 	 234
8.2.4	 Generate-Anweisung. 	 236
8.2.5	 Attribute. 	 238
8.2.6	 Instanziierung mit der Component-Anweisung. 	 240
8.2.7	 Pakete. 	 241
8.2.8	 Einbindung von Spezialkomponenten. 	 243

8.3	 Sprachelemente zur Verifikation . 	 250
8.3.1	 Binäre Ein-/Ausgabe . 	 250
8.3.2	 Ein-/Ausgabe mit Textdateien. 	 251
8.3.3	 Wait-Anweisungen in Testbenches . 	 253
8.3.4	 Testbench mit interaktiver Überprüfung 	 254
8.3.5	 Testbench mit Assert-Anweisungen. 	 255
8.3.6	 Testbench mit Dateiein-/-ausgabe . 	 256

8.4	 Übungsaufgaben. 	 260

9	 Programmierbare Logik. 	 263
9.1	 Grundkonzepte programmierbarer Logik . 	 264

9.1.1	 Zweistufige Logik . 	 264
9.1.2	 Tabellenbasierte Logikimplementierung. 	 267

9.2	 Simple Programmable Logic Device (SPLD). 	 269
9.3	 Complex Programmable Logic Device (CPLD) 	 271
9.4	 Field Programmable Gate Arrays. 	 273

9.4.1	 Allgemeiner Aufbau eines FPGAs. 	 273
9.4.2	 Taktverteilung im FPGA . 	 276
9.4.3	 Typische Spezialkomponenten. 	 277

9.5	 FPGA-Familien . 	 281
9.5.1	 Vergleich ausgewählter FPGA-Familien. 	 282

9.6	 Hinweise zum Selbststudium. 	 285
9.7	 Übungsaufgaben. 	 286

XVIIInhaltsverzeichnis

10	 Halbleitertechnik. 	 289
10.1	 CMOS-Technologie. 	 290

10.1.1	 Prinzipieller Aufbau. 	 290
10.1.2	 Feldeffekttransistoren . 	 292
10.1.3	 Layout . 	 294

10.2	 Grundschaltungen in CMOS-Technik. 	 296
10.2.1	 Inverter. 	 296
10.2.2	 Logikgatter. 	 296
10.2.3	 Transmission-Gate. 	 297
10.2.4	 Flip-Flop . 	 298

10.3	 Verlustleistung. 	 300
10.3.1	 Statische Verlustleistung . 	 301
10.3.2	 Dynamische Verlustleistung. 	 301
10.3.3	 Entwurf energieeffizienter Schaltungen. 	 303

10.4	 Integrierte Schaltungen . 	 304
10.4.1	 Logiksynthese und Layout. 	 304
10.4.2	 Herstellung. 	 307
10.4.3	 Packaging. 	 308
10.4.4	 Gehäuse. 	 309

10.5	 Miniaturisierung der Halbleitertechnik . 	 310
10.5.1	 Moore’sches Gesetz. 	 310
10.5.2	 FinFET-Transistoren . 	 311
10.5.3	 Weitere Technologieentwicklung. 	 312

10.6	 Übungsaufgaben. 	 312

11	 Speicher . 	 315
11.1	 Übersicht . 	 316

11.1.1	 Begriffe und Abkürzungen. 	 316
11.1.2	 Grundstruktur. 	 317
11.1.3	 Physikalisches Interface. 	 318

11.2	 Speichertechnologien. 	 319
11.2.1	 SRAM. 	 319
11.2.2	 DRAM. 	 321
11.2.3	 ROM . 	 323
11.2.4	 OTP-Speicher. 	 323
11.2.5	 EEPROM. 	 324
11.2.6	 Innovative Speichertechniken . 	 326

11.3	 Eingebetteter Speicher. 	 329
11.3.1	 SRAM. 	 329
11.3.2	 DRAM. 	 331
11.3.3	 ROM . 	 331
11.3.4	 NVRAM . 	 332

XVIII Inhaltsverzeichnis

11.4	 Diskrete Speicherbausteine . 	 332
11.4.1	 Praktischer Einsatz. 	 333
11.4.2	 QDR-II-SRAM . 	 334
11.4.3	 DDR3-SDRAM. 	 337
11.4.4	 EEPROM. 	 340
11.4.5	 FRAM mit seriellem Interface. 	 344

11.5	 Speichersysteme. 	 345
11.5.1	 Adressdecodierung . 	 346
11.5.2	 Multiplexing des Datenbusses. 	 348
11.5.3	 Ansteuerung diskreter Speicherbausteine. 	 350

11.6	 Übungsaufgaben. 	 350

12	 Analog-Digital- und Digital-Analog-Umsetzer. 	 353
12.1	 Grundprinzip von Analog-Digital-Umsetzern. 	 353

12.1.1	 Systeme zur Umsetzung analoger in digitale Signale. 	 355
12.1.2	 Abtasttheorem. 	 356
12.1.3	 Abtasthalteglied (AHG). 	 357
12.1.4	 Erreichbare Genauigkeit für ADUs abhängig von der

Codewortlänge. 	 359
12.1.5	 Codierung der ADU-Werte . 	 361

12.2	 Verfahren zur Analog-Digital-Umsetzung. 	 361
12.2.1	 Parallelverfahren. 	 362
12.2.2	 Wägeverfahren. 	 363
12.2.3	 Zählverfahren. 	 365
12.2.4	 Erweitertes Parallelverfahren. 	 366
12.2.5	 Erweitertes Zählverfahren. 	 369
12.2.6	 Single- und Dual-Slope-Verfahren. 	 370
12.2.7	 Sigma-Delta-Umsetzer . 	 371

12.3	 Verfahren zur Digital-Analog-Umsetzung. 	 374
12.3.1	 Direktverfahren. 	 375
12.3.2	 Summation gewichteter Ströme. 	 375
12.3.3	 R-2R-Leiternetzwerk. 	 377
12.3.4	 Pulsweitenmodulation. 	 379

12.4	 Eigenschaften realer AD- und DA-Umsetzer. 	 380
12.4.1	 Statische Fehler. 	 380
12.4.2	 Dynamische Fehler . 	 384

12.5	 Ansteuerung von diskreten AD- und DA-Umsetzern. 	 388
12.5.1	 Serielle Ansteuerung. 	 388
12.5.2	 Parallele Ansteuerung . 	 391
12.5.3	 Serielle Hochgeschwindigkeitsschnittstelle JESD204B. 	 393

12.6	 Übungsaufgaben. 	 395

XIXInhaltsverzeichnis

13	 Grundlagen der Mikroprozessortechnik. 	 397
13.1	 Grundstruktur eines Mikrorechnersystems . 	 397
13.2	 Befehlsabarbeitung in einem Mikroprozessor. 	 401
13.3	 Typische Befehlsklassen . 	 402

13.3.1	 Aufbau eines Befehlswortes . 	 402
13.3.2	 Arithmetische und logische Befehle. 	 403
13.3.3	 Transferbefehle . 	 404
13.3.4	 Befehle zur Programmablaufsteuerung. 	 405
13.3.5	 Spezialbefehle. 	 405

13.4	 Adressierung von Daten und Befehlen. 	 406
13.4.1	 Unmittelbare Adressierung . 	 406
13.4.2	 Absolute Adressierung. 	 407
13.4.3	 Indirekte Adressierung. 	 407
13.4.4	 Indirekte Adressierung mit dem Stackpointer. 	 409
13.4.5	 Befehlsadressierung. 	 410

13.5	 Maßnahmen zur Steigerung der Rechenleistung. 	 410
13.5.1	 Erhöhung der Taktfrequenz. 	 411
13.5.2	 Parallelität . 	 411
13.5.3	 Pipelining. 	 412
13.5.4	 Befehlssatzerweiterungen . 	 415

13.6	 Grundlegende Mikroprozessorarchitekturen. 	 416
13.6.1	 CISC . 	 416
13.6.2	 RISC . 	 417
13.6.3	 RISC und Harvard-Architektur. 	 418

13.7	 Mikrocontroller . 	 420
13.8	 Übungsaufgaben. 	 423

14	 Mikrocontroller. 	 425
14.1	 Die Mikrocontroller-Familie AVR. 	 425
14.2	 Programmierung von Mikrocontrollern. 	 427

14.2.1	 Programmierung in Assembler . 	 429
14.2.2	 Programmierung in C . 	 430

14.3	 Die AVR-CPU . 	 433
14.4	 Der AVR-Befehlssatz. 	 436

14.4.1	 Arithmetische und logische Befehle. 	 436
14.4.2	 Transferbefehle . 	 437
14.4.3	 Befehle zur Programmablaufsteuerung. 	 437

14.5	 Verwendung der AVR-Befehle. 	 444
14.5.1	 Arithmetische und logische Grundfunktionen. 	 444
14.5.2	 Befehle für den Zugriff auf Speicher und

Peripheriekomponenten. 	 451
14.5.3	 Programmverzweigungen . 	 453

XX Inhaltsverzeichnis

14.6	 Grundlagen der Interruptverarbeitung. 	 458
14.6.1	 Interruptfreigabe . 	 459
14.6.2	 Interrupt-Service-Routinen . 	 460

14.7	 Eingebettete Peripheriekomponenten. 	 463
14.7.1	 Ports. 	 464
14.7.2	 Timer. 	 470
14.7.3	 Schnittstellen für die serielle Datenübertragung. 	 484
14.7.4	 SPI. 	 492
14.7.5	 TWI/I2C. 	 497
14.7.6	 Analoge Peripheriekomponenten. 	 504
14.7.7	 Interrupt-basierte Kommunikation mit

Peripheriekomponenten. 	 511
14.8	 Hinweise zum praktischen Selbststudium. 	 523

14.8.1	 Hardwareauswahl. 	 523
14.8.2	 Entwicklungsumgebungen. 	 523
14.8.3	 Programmierung und Debugging von AVR-Mikrocontrollern. . . 	 524

14.9	 Übungsaufgaben. 	 526

15	 Lösungen der Übungsaufgaben. 	 529

Literaturhinweise . 	 549

Stichwortverzeichnis. 	 553

XXI

ADC	 Analog Digital Converter
ADU	 Analog-Digital-Umsetzer
AHG	 Abtast-Halte-Glied
ALM	 Adaptive Logic Module
ALU	 Arithmetic Logical Unit
ASCII	 American Standard Code for Information Interchange
ASIC	 Application Specific Integrated Circuit
ASSP	 Application Specific Standard Product
BCD	 Binary Coded Decimal
BGA	 Ball Grid Array
CISC	 Complex Instruction Set Computer
CLB	 Complex Logic Block
CMOS	 Complementary Metal Oxide Semiconductor
CNT	 Carbon Nano Tube
COB	 Capacitor over Bitline
CPLD	 Complex Programmable Logic Device
CPU	 Central Processing Unit
DAC	 Digital Analog Converter
DAU	 Digital-Analog-Umsetzer
DCE	 Data Communication Equipment
DDR	 Double Data Rate
DIL	 Dual In-Line Package
DNF	 Disjunktive Normalform
DRAM	 Dynamic Random Access Memory
DSP	 Digital Signal Processing, Digital Signal Processor
DTE	 Data Terminal Equipment
ECC	 Error Correcting Code
EDA	 Electronic Design Automation
EEPROM	 Electrically Erasable Programmable Read Only Memory
FET	 Field Effect Transistor
FFT	 Fast Fourier Transform
FIFO	 First In First Out

Abkürzungsverzeichnis

XXII Abkürzungsverzeichnis

FPGA	 Field Programmable Gate Array
FRAM	 Ferroelectric Random Access Memory
GPU	 Graphics Processing Unit
I2C	 Inter-Integrated Circuit
IC	 Integrated Circuit
IEC	 International Electrotechnical Commission
IEEE	 Institute of Electrical and Electronics Engineers
INL	 Integrale Nichtlinearität
IOB	 Input Output Block
ISP	 In System Programming
ISR	 Interrupt Service Routine
JTAG	 Joint Test Action Group
KNF	 Konjunktive Normalform
LE	 Logic Element
LSB	 Least Significant Bit (Niederwertigstes Bit)
LUT	 Look-Up Table
LVDS	 Low Voltage Differential Signaling
LVTTL	 Low Voltage Transistor-Transistor-Logic
MLC	 Multi Level Cell
MOS	 Metal Oxide Semiconductor
MRAM	 Magnetoresistive Random Access Memory
MSB	 Most Significant Bit (Höchstwertigstes Bit)
NVRAM	 Non-Volatile Random Access Memory
OSR	 Oversampling Ratio
OTP	 One Time Programmable
PC	 Program Counter, Personal Computer
PCRAM	 Phase-Change Random Access Memory
PLA	 Programmable Logic Array
PLCC	 Plastic Leaded Chip Carrier
PLD	 Programmable Logic Device
PLL	 Phase Locked Loop
PWM	 Pulse Width Modulation, Pulsweitenmodulation
QDR	 Quad Data Rate
QFP	 Quad Flat Pack
QLC	 Quad Level Cell
RAM	 Random Access Memory
RISC	 Reduced Instruction Set Computer
ROM	 Read Only Memory
RRAM	 Resistive Random Access Memory
RTL	 Register Transfer Level
SAR	 Successive Approximation Register
SDRAM	 Synchronous Dynamic Random Access Memory
SINAD	 Signal-to-Interference Ratio including Noise and Distortion
SNR	 Signal-to-Noise Ratio
SPI	 Serial Peripheral Interface

XXIIIAbkürzungsverzeichnis

SPLD	 Simple Programmable Logic Device
SRAM	 Static Random Access Memory
THD	 Total Harmonic Distortion
THS	 Total Hold Slack
TLC	 Triple Level Cell
TNS	 Total Negative Slack
TTL	 Transistor-Transistor-Logik
TWI	 Two Wire Interface
UART	 Universal Asynchronous Receiver Transmitter
USART	 Universal Synchronous Asynchronous Receiver Transmitter
VCO	 Voltage Controlled Oscillator
VHDL	 Very High Speed Integrated Circuit Hardware Description Language
VLIW	 Very Long Instruction Word
WHS	 Worst Hold Slack
WNS	 Worst Negative Slack

1© Springer-Verlag GmbH Deutschland 2016
W. Gehrke et al., Digitaltechnik, Springer-Lehrbuch,
DOI 10.1007/978-3-662-49731-9_1

Digitaltechnik steckt heutzutage in vielen technischen Geräten. Wenn Sie dieses Buch
lesen, haben Sie vermutlich den Tag über schon etliche digitale Schaltungen benutzt. Der
Rauchmelder im Schlafzimmer, der nachts auf Sie aufpasst, hat einen kleinen digitalen
Mikrocontroller, genau wie der Radiowecker, der Sie geweckt hat. Mit dem Smartphone
voller Digitaltechnik haben Sie vermutlich Ihre Emails und sozialen Netzwerke nach
Neuigkeiten abgefragt. Und egal ob Sie mit dem Auto oder der Straßenbahn in die Hoch-
schule gefahren sind, wieder waren digitale Schaltungen für Sie tätig. Nur falls Sie mit
dem Fahrrad unterwegs waren, verlief dieser Teil des Tages ohne Digitaltechnik – es sei
denn, Sie haben einen Fahrradtacho.

Digitale Schaltungen übernehmen in vielen technischen Geräten Aufgaben zur Steu-
erung und Regelung. Das heißt, sie fragen Informationen ab und treffen anhand von
Regeln Entscheidungen. Dieses Grundprinzip wird beispielsweise beim Antiblockiersys-
tem (ABS) im Auto deutlich. Die Digitalschaltung bekommt die Informationen, ob die
Bremse betätigt ist und die Räder blockieren. Wenn dies der Fall ist, wird die Bremskraft
leicht reduziert, damit die Räder wieder Haftung zur Straße bekommen und man bessere
Bremswirkung sowie Manövrierbarkeit erhält.

Der besondere Vorteil von digitalen Schaltungen liegt darin, dass Berechnungen und
Entscheidungen sowie das Speichern und Übertragen von Informationen sehr einfach
möglich sind. Prinzipiell könnte ein Antiblockiersystem auch mit einer Analogschaltung
und eventuell sogar mechanisch oder hydraulisch aufgebaut werden. Aber ein digitales
System kann die Informationen wesentlich präziser verarbeiten, also beispielsweise die
Geschwindigkeit vor dem Bremsen, die Stellung des Lenkrads und die Drehgeschwin-
digkeit aller Räder auswerten und alle Bremsen individuell ansteuern.

Einführung 1

2 1  Einführung

1.1	� Arbeitsweise digitaler Schaltungen

Ein wichtiges Kennzeichen der Digitaltechnik ist die Darstellung von Informationen mit
den Werten 0 und 1. Dieses Prinzip wird als Zweiwertigkeit bezeichnet. Daten mit zwei
möglichen Werten werden Binärdaten genannt. Wenn eine Information mehr als zwei
Werte haben kann, wird sie mit mehreren Stellen dargestellt. Am bekanntesten ist sicher
das Byte, ein Datenwort mit acht Bit, also acht Stellen mit dem Wert 0 oder 1.

1.1.1	� Darstellung von Informationen

Binärdaten werden meistens mit Spannungspegeln dargestellt, beispielsweise die 0 mit
0 V und die 1 mit 3,3 V. Dabei sind auch geringe Abweichungen der Spannung erlaubt,
das heißt auch eine Spannung von beispielsweise 0,2 V wird noch als 0 akzeptiert. Dies
ist eine wichtige Eigenschaft der Digitaltechnik, denn dadurch ist sie gegenüber kleinen
Störungen und Rauschen unempfindlich. Erst bei großen Störungen kann der Wert einer
Information nicht mehr korrekt erkannt werden.

Für die Darstellung von Binärdaten mit Spannungspegeln gibt es mehrere Standards.
Beispielsweise wird im Standard LVTTL der Spannungsbereich von 0 bis 0,8 V als logi-
sche 0 und von 2,0 bis 3,3 V als logische 1 interpretiert. Der Bereich zwischen 0,8 und
2,0 V ist der Übergangsbereich und diese Spannungen dürfen nur kurz beim Wechsel
zwischen 0 und 1 auftreten. Die Bezeichnung LVTTL bedeutet übrigens Low-Voltage-
Transistor-Transistor-Logik und hat gewissermaßen „historischen“ Ursprung. Sie ist eine
spannungsreduzierte Version (Low-Voltage) eines anderen Standards (TTL).

Es gibt, neben LVTTL, eine Vielzahl weiterer Standards für Spannungspegel. Frü-
her wurden oft höhere Spannungen, z. B. 5 V, verwendet, sodass auch höhere Pegel
gebräuchlich waren. Innerhalb von integrierten Schaltungen, z. B. der CPU in Ihrem
Computer, werden heutzutage geringere Spannungen im Bereich von 1 V benutzt.

Die Werte 0 und 1 können je nach Anwendung auch durch andere physikalische Grö-
ßen dargestellt werden, beispielsweise Lichtimpulse in einer Glasfaserleitung oder durch
elektrische Ladung auf einem Kondensator.

1.1.2	� Logik-Pegel und Logik-Zustand

Die Begriffe Logik-Pegel und Logik-Zustand unterscheiden Spannungswerte und Infor-
mation einer binären Variablen. Der Logik-Pegel wird durch L (Low) und H (High) und
der Logik-Zustand durch die Ziffern 0 und 1 bezeichnet. Für die Beschreibung des phy-
sikalischen Verhaltens einer digitalen Schaltung dienen somit die Logik-Pegel, während
das logische Verhalten durch Logik-Zustände gekennzeichnet wird.

Die Zuordnung von L und H zu 0 und 1 erfolgt fast immer in positiver Logik, das
heißt der Pegel L entspricht einer logischen 0 und Pegel H entspricht einer logischen 1.

3

Prinzipiell ist auch eine umgekehrte Zuordnung möglich, die als negative Logik bezeich-
net wird. Diese Zuordnung wird in der Praxis jedoch kaum verwendet.

1.1.3	� Verarbeitung von Informationen

Digitalschaltung können die logischen Werte 0 und 1 für Berechnungen und Entschei-
dungen verwenden. Das Ergebnis einer Berechnung ist dabei wieder der Wert 0 oder 1.
Die Grundelemente zur Berechnung werden als Logikgatter bezeichnet. Die wichtigsten
Logikgatter sind:

•	 Inverter: Der Inverter ergibt am Ausgang das „Gegenteil“ des Eingangs. Das heißt
eine 0 wird zur 1, eine 1 zur 0.

•	 UND-Gatter: Das UND-Gatter hat zwei oder mehr Eingänge. Es ergibt am Ausgang
eine 1, wenn alle Eingänge 1 sind. Mit anderen Worten: Der eine und der andere Ein-
gang müssen 1 sein.

•	 ODER-Gatter: Das ODER-Gatter hat ebenfalls zwei oder mehr Eingänge. Es ergibt
1, wenn mindestens ein Eingang 1 ist. Auch der Fall, dass mehrere Eingänge 1 sind ist
erlaubt. Mit anderen Worten: Der eine oder der andere oder beide Eingänge müssen 1
sein.

•	 XOR-Gatter: Das XOR-Gatter ist in der Grundform für zwei Eingänge definiert. Die
Bezeichnung bedeutet ausschließendes Oder (engl. exclusiv-or). Es ist eine Abwand-
lung des ODER-Gatters, die jedoch keine 1 ausgibt, wenn beide Eingänge 1 sind. Mit
anderen Worten: Für eine 1 am Ausgang müssen der eine oder der andere Eingang
aber nicht beide Eingänge 1 sein.

Für die Logikgatter gibt es Schaltsymbole, die in Abb. 1.1 dargestellt sind. Die Eingänge
sind immer auf der linken Seite, der Ausgang ist rechts. Das Dreieck im Symbol des
Inverters steht für eine Weiterleitung oder Verstärkung, der Kreis gibt die Invertierung,
also Umkehrung des Wertes an. Das Zeichen & steht für ‚und‘. Im ODER-Gatter meint

Abb. 1.1   Symbole für
Logikgatter

Inverter

&

UND-Gatter

≥1

ODER-Gatter

=1

XOR-Gatter

1.1  Arbeitsweise digitaler Schaltungen

4 1  Einführung

die Bezeichnung ‚≥1‘, dass mindestens eine 1 am Eingang anliegen muss, damit der
Ausgang 1 wird. Entsprechend bedeutet ‚=1‘ bei XOR, dass von zwei Eingängen exakt
eine 1 vorhanden sein muss.

Mit diesen Grundelementen können Informationen miteinander verknüpft werden.
Außerdem müssen in einer Digitalschaltung auch Informationen gespeichert werden und
das Grundelement hierfür ist das D-Flip-Flop (D-FF). Dabei steht D für Daten und Flip-
Flop symbolisiert das Hin- und Herschalten zwischen 0 und 1.

Das D-Flip-Flop arbeitet mit einem Takt, (engl. Clock), also einem periodischen Sig-
nal, welches die Arbeitsgeschwindigkeit einer Digitalschaltung vorgibt. Der Takt ist
Ihnen möglicherweise von Ihrem PC bekannt. Eine moderne CPU arbeitet mit einem
Takt von 2 bis 3 GHz, das heißt 2 bis 3 Milliarden mal pro Sekunde wechselt das Takt-
signal von 0 auf 1. Schaltungen, die eine nicht ganz so hohe Rechengeschwindigkeit
wie eine CPU haben, verwenden einen Takt mit geringerer Frequenz, beispielsweise
100 MHz.

Das Schaltsymbol des D-Flip-Flop (D-FF) ist in Abb. 1.2 dargestellt. Das Taktsignal
ist am Eingang C1 (wie Clock) angeschlossen. Bei jeder Taktflanke, also einem Wechsel
des Takts von 0 auf 1 wird der Wert am Dateneingang 1D gespeichert und unmittelbar
darauf am Datenausgang ausgegeben. Diese Information wird für den Rest der Taktperi-
ode gespeichert.

Logikgatter und D-FF werden aus Transistoren aufgebaut. Für ein Logikgatter sind
rund 10, für ein D-FF rund 20 Transistoren erforderlich. In einer Digitalschaltung finden
sich natürlich viele dieser Grundelemente.

1.1.4	� Beispiel: Einfacher Grafikcontroller

Damit Sie sich die Arbeitsweise einer Digitalschaltung vorstellen können, soll eine
Schaltung als Beispiel vorgestellt werden. Es handelt sich um einen Controller für ein
einfaches Grafikmodul. Moderne PC-Grafikkarten sind sehr leistungsfähig und können
realistische Bilder in hoher Geschwindigkeit erzeugen. Allerdings würde die Beschrei-
bung eines solchen Grafikcontrollers wahrscheinlich das ganze Buch füllen. Die hier
vorgestellte Schaltung ist deutlich einfacher zu verstehen und findet sich in Geräten mit
geringen Grafikanforderungen. Sie entspricht auch in etwa den PC-Grafikkarten der
1980er Jahre.

Der Grafikcontroller setzt den Bildschirm aus einzelnen Zeichen zusammen. Für die-
ses Beispiel gehen wir davon aus, dass der Bildschirm 800 Bildpunkte breit und 600
Bildpunkte hoch ist. Jedes Zeichen soll 10 Bildpunkte breit und 15 Bildpunkte hoch sein.

Abb. 1.2   Schaltsymbol des
D-Flip-Flop (D-FF) 1D

C1Takt

Dateneingang Datenausgang

5

Damit passen 40 Zeilen mit je 80 Zeichen auf den Bildschirm. Ein Bild wird 60-mal je
Sekunde also mit einer Frequenz von 60 Hz dargestellt.

Für die Zeichen gibt es einen festen Zeichensatz mit 128 Zeichen, darunter Buchsta-
ben in Klein- und Großschreibung, Ziffern, Sonderzeichen und Symbole. Abb. 1.3 zeigt
beispielhaft den Buchstaben A und die Ziffer 1 als 10 mal 15 Grafik.

Ein Prozessor teilt dem Grafikcontroller für jede Position mit, welches Zeichen darge-
stellt werden soll. Außerdem kann das Zeichen normal und invers dargestellt werden, das
heißt bei invers ist der Hintergrund schwarz und das Zeichen weiß. Mit sieben Stellen
wird eines der 128 Zeichen ausgewählt. Die achte Stelle gibt normale oder inverse Dar-
stellung an. Damit ist für jedes Zeichen auf dem Bildschirm ein Byte, also ein Datenwort
mit acht Stellen erforderlich.

Die Digitalschaltung des Grafikcontrollers benötigt einen Speicher für den aktuellen
Bildschirminhalt, einen Speicher für die Grafiken der 128 Zeichen sowie zwei Zähler
für die Zeile und Spalte, welche gerade dargestellt wird. Diese Schaltungsstruktur zeigt
Abb. 1.4.

Der aktuelle Bildschirminhalt wird in einem Speicher abgelegt. Eine CPU schreibt für
jede der 40 mal 80 Positionen ein Byte und bestimmt damit das darzustellende Zeichen.

Abb. 1.3   Buchstabe A und
Ziffer 1 als 10 mal 15 Grafik

=1RAM
40x80 Byte

Zähler
Spalte

Zähler
Zeile

ROM
128 Zeichen,
10x15 Pixel

Takt

Daten

Addr.

Daten

Addr.

von Prozessor an Display

Abb. 1.4   Schaltungsstruktur eines einfachen Grafikcontrollers

1.1  Arbeitsweise digitaler Schaltungen

6 1  Einführung

Dieser Speicher mit der Kurzbezeichnung RAM (Random Access Memory) braucht also
3200 Speicherstellen zu jeweils einem Byte. Ein Festwertspeicher, Kurzbezeichnung
ROM (Read-Only-Memory), enthält die 128 Zeichen zu je 10 mal 15 Bildpunkten, also
19.200 Speicherstellen zu jeweils einem Bit.

Der Grafikcontroller gibt das Bild zeilenweise aus. Die aktuell dargestellte Position
wird durch zwei Zähler bestimmt, wobei ein erster Zähler die Spalte zählt. Wenn der
Zähler an der letzten Spalte angekommen ist, wird der zweite Zähler aktiviert und so
die nächste Zeile aufgerufen. Aus den Zählerwerten von Spalte und Zeile wird bestimmt,
welches Zeichen gerade dargestellt wird.

Die Zählerwerte rufen zunächst das aktuelle Zeichen aus dem RAM auf. Dort steht
zum Beispiel, dass der Buchstabe A angezeigt werden soll. Jetzt muss noch beachtet
werden, welcher Bildpunkt des aktuellen Zeichens angezeigt wird, denn jedes Zeichen
besteht ja aus 10 mal 15 Bildpunkten. Diese Information wird im ROM verarbeitet. Das
ROM bekommt vom RAM das aktuelle Zeichen und von den Zählern die Information
über die Position innerhalb des Zeichens. Für die linke obere Ecke des Buchstabens A
wird dann zum Beispiel die Information „weißer Bildpunkt“ ausgegeben (siehe Abb. 1.3).

Für die Auswahl des Zeichens sind sieben Stellen eines Byte vorgesehen. Die achte
Stelle kann durch ein XOR-Gatter den Helligkeitswert umdrehen, sodass eine inverse
Darstellung entsteht.

Die Geschwindigkeit des Takts muss zu der Anzahl der Bildpunkte und der Bilder pro
Sekunde passen. Aus 800 mal 600 Bildpunkten und 60 Bilder pro Sekunde berechnet
sich theoretisch eine Frequenz von 28,8 MHz. In der Realität sind allerdings in horizon-
taler und vertikaler Richtung noch Abstände zwischen den aktiven Bildbereichen erfor-
derlich, sogenannte Austastlücken. Daher wird bei der genannten Auflösung ein Takt von
40 MHz verwendet.

1.1.5	� Beispiel: Zähler im Grafikcontroller

In einen Teil des Grafikcontrollers soll noch etwas detaillierter geschaut werden. Damit
ein Zeichen auf dem Bildschirm dargestellt wird, muss die aktuelle Spalte an den ROM-
Speicher gegeben werden. Hierzu wird ein Zähler eingesetzt, der nacheinander die Zah-
len von 0 bis 9 ausgibt und danach wieder ab der 0 weiterzählt. Diese Schaltung ist ein
Teil des Blocks „Zähler Spalte“ in Abb. 1.4.

Die Schaltung für so einen Zähler ist in Abb. 1.5 dargestellt. Der Zählerstand wird als
Dualzahl dargestellt, das heißt, eine Ziffer Z besteht aus vier Stellen z(3:0), wobei jede
Stelle 0 oder 1 sein kann. Der Wert 0000 entspricht dem Zählerstand Null, 0001 ent-
spricht Eins und so weiter. Die ausführliche Darstellung von Dualzahlen folgt später in
Kapitel 2.

In der Schaltung von Abb. 1.5 wird der aktuelle Stand des Zählers in vier Flip-Flops
für die vier Stellen der Zahl Z gespeichert. Aus dem aktuellen Wert wird mit einigen Gat-
tern der neue Zählerstand berechnet. Der Takt sorgt für die Datenübernahme, das heißt

http://dx.doi.org/10.1007/978-3-662-49731-9_2

7

bei Aktivierung übernehmen die vier Flip-Flops den neuen Zählerstand und schalten so
eine Zahl weiter.

Die Flip-Flops dienen also zur Speicherung von Informationen, hier dem aktuellen
Zählerstand. Die Gatter führen Rechnungen durch, ermitteln hier also den nächsten Wert
des Zählers. Wie eine solche Schaltung entworfen wird, erfahren Sie in den folgenden
Kapiteln.

1.2	� Technische Realisierung digitaler Schaltungen

Eine Digitalschaltung kann auf verschiedene Art und Weise implementiert, also aufge-
baut werden. Der Oberbegriff für eine Schaltungsimplementierung ist Integrierte Schal-
tung, englisch Integrated Circuit (IC). Der Begriff bezieht sich darauf, dass mehrere
Transistoren auf dem gleichen Bauelement zusammengefasst, also integriert sind. Auf
den ersten integrierten Schaltungen begann dies mit bis zu 50 Transistoren, heute können
es über eine Milliarde Transistoren sein.

Weitere Bezeichnungen sind Chip und Microchip. Diese Begriffe beziehen sich auf
das kleine Siliziumplättchen innerhalb eines ICs. In der Praxis werden diese Begriffe
gleichbedeutend für IC verwendet.

Die wichtigsten Arten von ICs werden im Folgenden kurz vorgestellt.

1.2.1	� Logikbausteine

Logikgatter und Flip-Flops sind als einzelne Bauelemente verfügbar. Eine Digitalschal-
tung kann aus diesen einzelnen Logikbausteinen aufgebaut werden. Es wird eine Vielzahl

Abb. 1.5   Zähler im
Grafikcontroller

1D

C1

1D

C1

1D

C1

1D

C1

&=1

≥1

=1

&

&

&

Takt

z (3 :0)

z (0)

z (1)

z (2)

z (3)

1.2  Technische Realisierung digitaler Schaltungen

8 1  Einführung

verschiedener Bausteine angeboten, die in Tabellenbüchern und Datenblättern von den
Herstellern beschrieben werden.

Ein Beispiel für einen Logikbaustein ist der IC 7408 mit vier Und-Gattern. Er ist in
Abb. 1.6, dargestellt. Die jeweils zwei Eingänge und ein Ausgang der Und-Gatter sind
auf Anschlussbeinchen, sogenannten Pins, aus dem Gehäuse herausgeführt und können
mit anderen Bauelementen verbunden werden. Am Logikbaustein sind außerdem Versor-
gungsspannung (VDD) und Masse (GND) vorhanden, so dass der Baustein 14 Pins hat.

Sehr kleine Schaltungen, wie etwa der Zähler aus Abb. 1.5 können prinzipiell mit ein-
zelnen Logikbausteinen realisiert werden. Für größere Digitalschaltungen wären jedoch
viel zu viele Bausteine nötig. In der Praxis werden Logikbausteine eingesetzt, wenn
kleine Schaltungen mit wenigen Gattern benötigt werden.

1.2.2	� Kundenspezifische Integrierte Schaltung

Eine große Digitalschaltung kann aufgebaut werden, indem Logikgatter und Flip-Flop
nach Bedarf verschaltet werden und dann eine Integrierte Schaltung nach diesem Bau-
plan hergestellt wird. So eine Schaltung wird als Kundenspezifische Integrierte Schaltung
oder ASIC (Application Specific Integrated Circuit) bezeichnet.

Der Entwurf eines ASIC erfordert jedoch hohe Entwicklungskosten und eine rela-
tiv lange Entwicklungszeit. Die Entwicklung einer solchen Schaltung lohnt sich darum
meist erst ab einer Stückzahl von 10 000, besser 100 000 ICs. Ein ASIC kann entweder
nur in eigenen Produkten eingesetzt werden oder auch anderen Firmen zum Kauf ange-
boten werden.

1.2.3	� Standardbauelemente

Für viele Aufgabenstellungen existieren fertige Digitalschaltungen, welche direkt ein-
gesetzt werden können. Diese ICs werden als ASSP bezeichnet (Application Specific

7

6

5

4

3

2

1

8

9

10

11

12

13

14

7408

GND

2Y

2B

2A

1Y

1B

1A

3Y

3A

3B

4Y

4A

4B

VDD

4A
4Y&

4B

1A
1Y&

1B

2A
2Y&

2B

3A
3Y&

3B

Abb. 1.6   IC 7408 mit vier Und-Gattern

9

Standard Product). Bekannte Beispiele hierfür sind Prozessoren und Speicherbausteine
für Computer. Abb. 1.7 zeigt den Minicomputer Raspberry Pi 3, der auf der linken Seite
einen IC mit Prozessor und Grafikcontroller enthält. Auf der rechten Seite ist ein etwas
kleinerer IC, der für die Netzwerk- und USB-Verbindung sorgt.

Aber auch für viele andere Anwendungen sind ASSPs verfügbar. Wenn für eine Pro-
blemstellung ein ASSP verfügbar ist, kann damit meistens schnell und mit vertretbaren
Kosten eine Schaltung aufgebaut werden.

1.2.4	� Programmierbare Schaltung

Einen Mittelweg zwischen Standardbauelementen und ASIC bieten programmierbare
Schaltungen, sogenannte FPGAs (Field Programmable Gate Arrays). Ein FPGA ist,
genau wie ein ASSP, als IC direkt verfügbar. Anders als ein ASSP hat ein FPGA aber
keine festgelegte Funktion, sondern wird vom Entwicklerteam programmiert.

Abb. 1.8 zeigt den prinzipiellen Aufbau eines FPGAs. Der Baustein enthält verschie-
dene Logikblöcke, die als Logikgatter und Flip-Flop programmiert werden können.
Durch programmierbare Verbindungsleitungen und Ein-/Ausgänge können Schaltungen
erstellt werden. Im Bild wird durch die fett gedruckten Elemente eine einfache Digital-
schaltung implementiert.

Abb. 1.7   Minicomputer Raspberry Pi

1.2  Technische Realisierung digitaler Schaltungen

10 1  Einführung

Ein FPGA kann zehntausende Logikgatter und Flip-Flops enthalten. Im Vergleich zu
ASICs sind Entwicklungskosten und Entwicklungszeit für eine FPGA-Schaltung gerin-
ger, sodass ein Produkt eher am Markt sein kann. Allerdings sind die Stückkosten und
die Verlustleistung etwas höher.

Als Beispiel nehmen wir an, eine Firma möchte einen Monitor für medizinische
Anwendungen entwickeln. Für die Darstellung von Röntgenbildern ist eine sehr hohe
Abstufung von Grauwerten erforderlich.

•	 ASSPs zur Ansteuerung von Monitoren sind verfügbar. Sie sind jedoch nur für Com-
puter-Anwendungen mit normaler Farbabstufung ausgelegt.

•	 Die Firma könnte ein eigenes ASIC als Grafikcontroller entwerfen. Der Markt für die
geplanten Monitore ist jedoch nicht besonders groß und die Firma erwartet Verkaufs-
zahlen von einigen hundert Monitoren pro Jahr. Für diese geringe Stückzahl lohnt
sich der Entwurf eines ASIC nicht.

•	 Ein FPGA ist die bevorzugte Lösung zur Implementierung der Monitoransteuerung.
Die Digitalschaltung kann mit der benötigten Farbabstufung aufgebaut werden. Da
FPGAs als Komponente verfügbar sind, ist keine aufwendige Fertigung erforderlich.

1.2.5	� Mikrocontroller

Zur Implementierung einer Digitalschaltung kann auch ein Mikrocontroller eingesetzt
werden. Dabei handelt es sich um einen kleinen Computer, der komplett auf einem ein-
zigen IC aufgebaut ist. Platzbedarf und Kosten sind viel geringer als bei einem PC; dafür
ist allerdings auch die Rechenleistung beschränkt.

Ein-/
Ausgänge

Logik

Verbindungs-
netzwerk

≥1

& 1D

B
C

A

Takt

D Y
C1

Abb. 1.8   Programmierbare Schaltung (FPGA)

11

Ein Mikrocontroller kann genau wie ein FPGA für eine Anwendung programmiert
werden. Anders als bei einem FPGA werden durch die Programmierung aber keine
Logikgatter und Flip-Flops verschaltet. Die Funktion wird beim Mikrocontroller schritt-
weise als Computerprogramm ausgeführt. Leistungsfähigkeit und Flexibilität sind
dadurch geringer als beim FPGA, aber für viele Anwendungen ausreichend.

1.3	� Digitale und analoge Informationen

1.3.1	� Darstellung von Informationen

Die Begriffe digital und analog beschreiben die Darstellung von Signalen. Die Aufgabe
von analogen und digitalen Schaltungen ist oft die Verarbeitung von physikalischen Grö-
ßen, wie Audiosignale, Bildsignale oder Sensorinformationen. Eine analoge Darstellung
übersetzt eine physikalische Größe in eine andere, zweite physikalische Größe. Diese
zweite physikalische Größe ist in der Elektronik normalerweise eine elektrische Span-
nung. Wenn beispielsweise ein Temperatursensor die Wassertemperatur misst, kann die
Temperatur von 0° bis 100° C durch eine analoge Spannung von 0 bis 1 V dargestellt
werden. Theoretisch kann ein analoges Signal beliebig viele Werte einnehmen.

Bei einem digitalen Signal ist die Anzahl der möglichen Werte festgelegt. Dies ist
der wesentliche Unterschied zu einem analogen Signal. Wenn eine Wassertemperatur
verarbeitet werden soll, kann beispielsweise festgelegt werden, dass eine Abstufung in
1°-Schritten sinnvoll ist. Das digitale Signal kann dann nur 101 verschiedene Werte ein-
nehmen, also die Werte 0°, 1°, 2°, bis 100°. Diese Abzählbarkeit der möglichen Werte
steckt auch hinter der Bezeichnung digital, denn das Wort digit hat eigentlich die Bedeu-
tung „Finger“ und meint damit das Abzählen (per Finger).

Beispielsweise kann Musik auf analoger Schallplatte oder digitaler CD gespeichert
werden. Bei der Schallplatte werden die Schallwellen in kleine Auslenkungen einer
Rille übersetzt. Die Auslenkung repräsentiert somit das Musiksignal. Bei der CD wird
das Musiksignal digital gespeichert. Pro Sekunde werden 44.100 Signalwerte als Zahl
gespeichert. Mit 16 Bit pro Zahl sind 65.536 verschiedene Signalwerte möglich.

1.3.2	� Vor- und Nachteile der Darstellungen

Analoge Signalverarbeitung hat den Vorteil, dass ein Signal theoretisch beliebig genau
dargestellt werden kann. Digitale Signale haben eine begrenzte Genauigkeit, diese kann
aber so gewählt werden, dass die Abstufungen ausreichend fein sind.

Die 65.536 möglichen Signalwerte der CD können störungsfrei ausgelesen und wie-
dergegeben werden. Die Schallplatte hat theoretisch eine unbegrenzte Auflösung. Diese
wird durch die kleinen Abmessungen der Schallplattenrille sowie durch Staub und

1.3  Digitale und analoge Informationen

12 1  Einführung

Abnutzung allerdings in der Realität eher schlechter als bei der CD sein. Natürlich dür-
fen Fans der Schallplatte trotzdem ihrem Medium treu bleiben.

Die Verarbeitung analoger Signale war in der Vergangenheit oft einfacher als bei digi-
talen Schaltungen. Durch die Leistungsfähigkeit moderner Digitalschaltungen haben sich
die Verhältnisse umgedreht. Heutzutage ist die Verarbeitung digitaler Signale fast immer
einfacher. Hinzu kommt die problemlose Speicherung und Übertragung digitaler Infor-
mationen, die Vorteile gegenüber der analogen Darstellung bietet.

Als Beispiel nehmen wir an, dass ein aktuelles Bild von einer Sportveranstaltung für
einen Zeitungsartikel benötigt wird. Ein analoges Foto auf Filmmaterial wurde früher
zunächst chemisch entwickelt, das passende Bild wurde ausgewählt und persönlich oder
per Kurier in die Redaktion gebracht. Heute kann auf einer Digitalkamera sofort das pas-
sende Bild ausgewählt und per Mobiltelefon als Email in die Redaktion geschickt wer-
den. Innerhalb von Minuten ist eine Veröffentlichung auf der Homepage möglich.

Digitale Systeme haben in vielen Anwendungen die analogen Techniken abgelöst:

•	 Audiosignale werden nicht mehr analog auf Schallplatte und Musikkassette, sondern
digital auf CD und als MP3 gespeichert.

•	 Videosignale werden nicht mehr analog auf VHS-Band, sondern digital als MPEG auf
Festplatten, DVD und Blu-Ray gespeichert.

•	 Das analoge Telefon wurde zunächst durch digitales ISDN und mittlerweile durch
Voice-over-IP ersetzt.

•	 Fotos werden kaum noch auf chemischem Filmmaterial, sondern meist als digitale
JPEG-Datei gemacht.

Allerdings sind noch nicht alle Anwendungen digital. Für Radio gibt es zwar digitale
Übertragung, das analoge UKW-Radio wird aber weiter verwendet. Gründe für die Bei-
behaltung von UKW-Radio sind die ausreichende Qualität, der einfache Aufbau analoger
Radios sowie die Vielzahl von vorhandenen Geräten.

1.3.3	� Wert- und zeitdiskret

Die digitale Darstellung von Signalen wird durch die Fachbegriffe wertdiskret und
zeitdiskret beschrieben. Das Wort diskret bedeutet dabei voneinander abgetrennt,
einzelstehend.

Mit wertdiskret ist gemeint, dass für die Signalwerte nur bestimmte, einzelne Werte
möglich sind. Das Gegenteil ist wertkontinuierlich, das heißt es gibt keine Lücken zwi-
schen den möglichen Werten.

Mit zeitdiskret ist gemeint, dass die Signalwerte nur zu bestimmten Zeiten vorhanden
sind. Das Gegenteil ist zeitkontinuierlich, das heißt zu jeder Zeit ist das Signal definiert.

131.4 � Übungsaufgaben

Betrachten wir wieder CD und Schallplatte:

•	 Ein Musiksignal auf einer CD ist wertdiskret, denn es sind fest definierte 65.536 ver-
schiedene Werte möglich. Und es ist zeitdiskret, denn pro Sekunde sind genau 44.100
Signalwerte definiert. Die Werte zwischen diesen Zeitpunkten sind nicht abgespei-
chert. Für die Wiedergabe kann man diese Zwischenwerte problemlos interpolieren,
aber sie sind nicht auf der CD enthalten.

•	 Ein Musiksignal auf Schallplatte ist wertkontinuierlich, denn die Schallplattenrille ist
stufenlos verschoben. Und es ist zeitkontinuierlich, denn die Rille hat keine Lücke.
Für jede Position, also für jeden Zeitpunkt ist eine Verschiebung der Rille vorhanden.

Abb. 1.9 zeigt ein analoges und ein digitales Signal im Zeitverlauf. Das analoge Signal
ist durchgängig über der horizontalen Zeitachse und der vertikalen Werteachse. Das digi-
tale Signal ist nur zu bestimmen Zeiten definiert und kann nur bestimmte Werte einneh-
men. Die Schrittweite im digitalen Signal ist zur Verdeutlichung sehr groß gewählt. In
der Realität sind die Abstände so klein, dass ein digitales Signal keine erkennbaren Stu-
fen zeigt.

Digitale Signale sind also wertdiskret und zeitdiskret, analoge Signale sind wertkon-
tinuierlich und zeitkontinuierlich. Es gibt Spezialfälle von wertdiskret und zeitkonti-
nuierlich oder zeitdiskret und wertkontinuierlich. Diese werden jedoch nicht gesondert
betrachtet, sondern sind meist analog. Ein solcher Spezialfall sind Kinofilme auf Film-
rolle. Pro Sekunde sind typischerweise 24 Einzelbilder vorhanden (zeitdiskret), die Farb-
informationen der einzelnen Bilder sind stufenlos (wertkontinuierlich).

1.4	� Übungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Prüfen Sie sich mit den Fragen am Kapi-
telende. Die Antworten finden Sie am Ende des Buches.

Bei allen Auswahlfragen ist immer genau eine Antwort korrekt.

Aufgabe 1.1
Was gilt IMMER für Binärdaten?

Abb. 1.9   Verlauf eines
analogen und digitalen Signals

t

f(t)

digital

t

f(t)

analog

14 1  Einführung

a)	 Binärdaten stellen einen Zahlenwert dar
b)	Binärdaten arbeiten mit 0 und 3,3 V
c)	 Es gibt zwei Zustände

Aufgabe 1.2
Was gilt IMMER für einen Inverter?

a)	 Ein Inverter hat eine Verzögerungszeit von 1 ns
b)	Eine 0 am Eingang wird zu einer 1 am Ausgang
c)	 Wenn am Eingang 3,3 V anliegt, ergibt der Ausgang 0 V

Aufgabe 1.3
Was gilt für ein UND-Gatter?

a)	 Nur wenn genau ein Eingang 1 ist, ist der Ausgang 1
b)	Wenn mindestens ein Eingang 1 ist, ist der Ausgang 1
c)	 Nur wenn alle Eingänge 1 sind, ist der Ausgang 1

Aufgabe 1.4
Was gilt für ein ODER-Gatter?

a)	 Nur wenn alle Eingänge 1 sind, ist der Ausgang 1
b)	Wenn mindestens ein Eingang 1 ist, ist der Ausgang 1
c)	 Nur wenn genau ein Eingang 1 ist, ist der Ausgang 1

Aufgabe 1.5
Was gilt für ein XOR-Gatter (mit zwei Eingängen)?

a)	 Wenn mindestens ein Eingang 1 ist, ist der Ausgang 1
b)	Nur wenn alle Eingänge 1 sind, ist der Ausgang 1
c)	 Nur wenn genau ein Eingang 1 ist, ist der Ausgang 1

Aufgabe 1.6
Was gilt für ein UND-Gatter?

a)	 Nur wenn alle Eingänge 0 sind, ist der Ausgang 0
b)	Wenn mindestens ein Eingang 0 ist, ist der Ausgang 0
c)	 Nur wenn genau ein Eingang 0 ist, ist der Ausgang 0

151.4 � Übungsaufgaben

Aufgabe 1.7
Was gilt für ein ODER-Gatter?

a)	 Wenn mindestens ein Eingang 0 ist, ist der Ausgang 0
b)	Nur wenn alle Eingänge 0 sind, ist der Ausgang 0
c)	 Nur wenn genau ein Eingang 0 ist, ist der Ausgang 0

Aufgabe 1.8
Was gilt für ein XOR-Gatter (mit zwei Eingängen)?

a)	 Wenn mindestens ein Eingang 0 ist, ist der Ausgang immer 1
b)	Nur wenn alle Eingänge 0 sind, ist der Ausgang 1
c)	 Nur wenn genau ein Eingang 0 ist, ist der Ausgang 1

Aufgabe 1.9
Was gilt für ein D-Flip-Flop (D-FF)?

a)	 Wenn Daten und Takt den gleichen Wert haben, wechselt der Ausgang
b)	Wenn Daten und Takt einen ungleichen Wert haben, wechselt der Ausgang
c)	 Daten werden bei einer Taktflanke gespeichert
d)	Daten werden bei Takt gleich 1 gespeichert
e)	 Daten werden bei Takt gleich 0 gespeichert

Aufgabe 1.10
Welche Eigenschaften hat ein digitales Signal?

a)	 wertdiskret und zeitkontinuierlich
b)	wertdiskret und zeitdiskret
c)	 wertkontinuierlich und zeitkontinuierlich
d)	 zeitdiskret und wertkontinuierlich

17© Springer-Verlag GmbH Deutschland 2016
W. Gehrke et al., Digitaltechnik, Springer-Lehrbuch,
DOI 10.1007/978-3-662-49731-9_2

Genau wie wir Menschen verarbeiten auch digitale Systeme Informationen, die sie aus
ihrer Umgebung erhalten.

Lesen Sie zum Beispiel den Wetterbericht in der Tageszeitung und erhalten die Infor-
mation, dass mit Regen zu rechnen ist, nehmen Sie einen Schirm mit, wenn Sie das Haus
verlassen. Wird dagegen wolkenloses Sommerwetter angekündigt, ist die Mitnahme
einer Sonnenbrille vermutlich die bessere Entscheidung.

Um als Mensch eine Information aufnehmen und verarbeiten zu können, muss sie in
einer für uns zugänglichen Form vorliegen. Der Wetterbericht in der Zeitung besteht aus
einzelnen Zeichen, die wir zu Wörtern und Sätzen zusammenfügen. Die in den Sätzen
enthaltene, man kann auch sagen „codierte“, Information extrahieren wir und reagieren
entsprechend. Allerdings hätten wir große Schwierigkeiten den Wetterbericht zu verste-
hen, wenn er in einer uns unbekannten Sprache verfasst wäre. Da wir die Regeln nicht
kennen, die beschreiben wie die Information durch die Aneinanderreihung der Buchsta-
ben codiert ist, könnten wir mit dem scheinbaren Buchstabensalat nichts anfangen.

Wie lassen sich diese Überlegungen auf ein digitales System übertragen? Zunächst
ist es selbstverständlich wichtig, dass die zu verarbeitenden Informationen in digitaler
Form, also als Bits, vorliegen. Darüber hinaus müssen aber auch Regeln vereinbart sein,
die die Bedeutung der Bits beschreiben. Andernfalls kann ein digitales System die in
den Bits enthaltene Information nicht extrahieren – es kann mit dem „Bitsalat“ nichts
anfangen.

In diesem Kapitel werden einige Regeln zur digitalen Codierung von Informationen
vorgestellt, die die Grundlage für die Realisierung vieler digitaler Schaltungen darstel-
len. Da in vielen praktischen Anwendungsfällen Zahlenwerte verarbeitet werden, liegt
der Schwerpunkt dieses Kapitels auf der binären Codierung von Zahlen. In diesem Kapi-
tel werden darüber hinaus einige gebräuchliche Codes vorgestellt, die sich zur Codierung
sowohl numerischer als auch nicht-numerischer Informationen eignen.

Digitale Codierung von Informationen 2

18 2  Digitale Codierung von Informationen

2.1	� Grundlagen

Für die binäre Codierung einer Information werden Codewörter definiert, die aus Bits
zusammengesetzt sind. Je mehr Bits zur Anwendung kommen, desto mehr Codewör-
ter können definiert werden: Wird ein Bit verwendet, ergeben sich die zwei möglichen
Codierungen „0“ und „1“. Mit 2 Bits ergeben sich bereits 4 Möglichkeiten, „00“, „01“,
„10“ und „11“. Allgemein gilt, dass die maximale Anzahl der Codewörter eine Zweier-
potenz ist. Mit n Bits lassen sich 2n unterschiedliche binäre Codierungen darstellen. Aus-
gewählte Zweierpotenzen sind in Tab. 2.1 dargestellt.

Für Zehnerpotenzen sind Vorsätze klar definiert. Zum Beispiel steht k (Kilo) für 103, M
(Mega) für 106 oder G (Giga) für 109. Als die Vorsätze für Zweierpotenzen eingeführt wur-
den, orientierte man sich an den bekannten Vorsätzen für Zehnerpotenzen. Da 210 ≈ 103
ist, setzte man den Zehnerpotenzvorsatz Kilo auch für die Zweierpotenz ein. Zur Unter-
scheidung wurde teilweise der Zweierpotenzvorsatz K anstelle von k verwendet. Weiterhin
sind dann die Abkürzungen M für 220 ≈ 106, G für 230 ≈ 109 und T für 240 ≈ 1012 ein-
geführt worden. Hier war jedoch eine Unterscheidung mittels Groß- und Kleinschreibung
nicht mehr möglich und es gibt das Problem einer möglichen Zweideutigkeit. Gibt zum
Beispiel ein Hersteller die Kapazität einer Festplatte mit 5,0 TByte an, so meint er in der
Regel 5 · 1012 Byte und nicht 5 · 240 Byte. Die Differenz beträgt immerhin fast 10 %.

Weitere Probleme entstehen bei der Kennzeichnung von Übertragungsgeschwindig-
keiten. In Datenübertragungsnetzen sind die Bezeichnungen kbit/s, Mbit/s und Gbit/s
üblich. Hier sind die üblichen Abkürzungen für Zehnerpotenzen gemeint. Um die Zwei-
deutigkeit der Vorsätze zu vermeiden hat das internationale Normierungsgremium IEC

Tab. 2.1   Ausgewählte Zweierpotenzen

n 1 2 3 4 5 6 7 8 9 16 20 30

2n 2 4 8 16 32 64 128 256 512 65.536 1.048.576 1.073.741.824

Tab. 2.2   Binäre Vorsätze für Zweierpotenzen

Zweierpotenz Abkürzung
(gesprochen)

Abgeleitet von z. B. Speicherkapa-
zität in bit

z. B. Speicherkapa-
zität in Byte

210 Ki (Kibi) Kilobinär Kibit KiB (= 8 Kibit)

220 Mi (Mebi) Megabinär Mibit MiB (= 8 Mibit)

230 Gi (Gibi) Gigabinär Gibit GiB (= 8 Gibit)

240 Ti (Tebi) Terabinär Tibit TiB (= 8 Tibit)

250 Pi (Pebi) Petabinär Pibit PiB (= 8 Pibit)

260 Ei (Exbi) Exabinär Eibit EiB (= 8 Eibit)

270 Zi (Zebi) Zettabinär Zibit ZiB (= 8 Zibit)

280 Yi (Yobi) Yottabinär Yibit YiB (= 8 Yibit)

19

(International Electrotechnical Commission) in der Norm IEC 60027 neue Vorsätze für
binäre Vielfache festgelegt. In Tab. 2.2 sind diese Vorsätze zusammengefasst.

Die IEC-Norm hat sich bisher nur zum Teil in der Praxis verbreitet. In vielen Fäl-
len werden die Vorsätze für Zehnerpotenzen verwendet, obwohl eigentlich Vorsätze für
Zweierpotenzen gemeint sind.

2.2	� Vorzeichenlose Zahlen

In diesem Abschnitt werden Zahlendarstellungen und grundlegende arithmetische Ope-
rationen für vorzeichenlose duale Ganzzahlen erläutert. Der betrachtete Zahlenraum
umfasst also die natürlichen Zahlen inklusive der Null.

2.2.1	� Stellenwertsysteme

Wenn Sie die Ziffernfolge „123“ sehen, werden Sie diese vermutlich sofort mit dem Zah-
lenwert Einhundertdreiundzwanzig verbinden. Wir haben in unseren ersten Schuljah-
ren gelernt, dass Zahlen durch einzelne Zeichen dargestellt werden, die hintereinander
geschrieben einen Zahlenwert repräsentieren. Die am weitesten rechts stehende Ziffer
ist die Einerstelle. Diese wird gefolgt von der Zehnerstelle und der Hunderterstelle. Sol-
len größere Zahlenwerte dargestellt werden, werden einfach weitere Stellen hinzuge-
fügt. Diese Vereinbarung legen wir im Alltag bei der „Decodierung“ einer Ziffernfolge
zugrunde.

Man kann die im Alltag verwendete Vereinbarung auch mathematisch als Formel dar-
stellen. Der Zahlenwert Z10 einer Folge von N Ziffern, die aus den Ziffern zN−1 bis z0
besteht, ergibt sich aus der Formel:

Als Ziffernzeichen werden die zehn Symbole 0,1, … 8,9 verwendet, denen jeweils ein
Zahlenwert im Bereich von Null bis Neun zugeordnet ist.

Diese Form der Zahlendarstellung nennt man Stellenwertsystem. Jeder Stelle einer
Ziffernfolge ist ein Stellengewicht zugeordnet. Im Dezimalsystem ist dies eine Zehnerpo-
tenz. Die Summe der einzelnen Produkte aus Stellenwert und Stellengewicht ergibt den
dargestellten Zahlenwert.

Dass wir im Alltag zehn unterschiedliche Symbole zur Darstellung der Ziffern ver-
wenden, ist eine willkürliche Festlegung. Man kann zum Beispiel auch die Vereinbarung
treffen, ein Siebener-System zu verwenden. Dann würden die Symbole 7, 8 und 9 nicht
benötigt und es gälte die Rechenregel:

Z10 =

N−1
∑

i=0

zi · 10
i

2.2  Vorzeichenlose Zahlen

20 2  Digitale Codierung von Informationen

Da sich somit eine Einerstelle, eine Siebenerstelle und eine Neunundvierzigerstelle
ergibt, würde die Ziffernfolge „123“ dem Zahlenwert Sechsundsechzig entsprechen.

Diese Überlegungen lassen sich auf beliebige Anzahlen von Ziffernsymbolen erweitern.
Werden B Ziffernsymbole verwendet, ergibt sich der codierte Zahlenwert aus der Formel:

Der Wert B wird als Basis des jeweiligen Zahlensystems bezeichnet und man spricht von
einer Zahlendarstellung „zur Basis B“ oder von einem B-adischen Zahlensystem. Um
die verwendete Basis explizit deutlich zu machen, kann sie als Index an die Ziffernfolge
angefügt werden. Zum Beispiel gilt:

In vielen Fällen wird jedoch auf den Index verzichtet, da aus dem Zusammenhang
bereits deutlich wird, welche Basis verwendet wird.

Einer der Vorteile der hier vorgestellten Stellenwertsysteme gegenüber anderen Zah-
lensystemen ist die einfache Möglichkeit alle vier Grundrechenarten mit übersichtlichen
Regeln umzusetzen.

Eine Zahlendarstellung, die nicht auf Stellenwertigkeiten basiert, ist beispielsweise
das Römische Zahlensystem. Eine Addition lässt sich in diesem System durch „Zusam-
menziehen“ der beiden Operanden relativ einfach realisieren. Eine Multiplikation ist
dagegen deutlich aufwendiger als im dezimalen Stellenwertsystem.

2.2.2	� Darstellung vorzeichenloser Zahlen in der Digitaltechnik

Zur Implementierung digitaler Systeme werden nur zwei Zustände verwendet. Daher ist
es konsequent, genau zwei Ziffernsymbole zu verwenden. Es wird also die Basis 2 für
die Darstellung von Zahlen gewählt. Eine Zahl wird in diesem Dualsystem durch eine
Folge von Nullen und Einsen dargestellt und ergibt sich entsprechend der Überlegungen
des vorangegangenen Abschnitts zu:

Selbst bei relativ kleinen Zahlen ergibt sich hierbei schnell eine große Stellenzahl. So
kann der dezimale Wert 9810 im Dezimalsystem mit zwei Ziffern dargestellt werden. Im
Dualsystem werden dagegen mindestens 7 Stellen benötigt: 9810 = 11000102.

Z7 =

N−1
∑

i=0

zi · 7
i

ZB =

N−1
∑

i=0

zi · B
i

6610 = 1028 = 1237 = 10024 = 21103

Z2 =

N−1
∑

i=0

zi · 2
i

21

Um die Darstellung dualer Zahlen übersichtlicher zu gestalten, können mehrere Bits
einer Dualzahl zusammengefasst werden. So können zum Beispiel 3 Bits zu einer neuen
Ziffer kombiniert werden. Der Wert dieser neuen Ziffer kann 8 verschiedene Werte
annehmen. Man erhält ein Zahlensystem zur Basis 8, das Oktalsystem.

In der Praxis wird sehr häufig eine Gruppierung von jeweils vier Bits vorgenommen.
Dieses ist insbesondere dann sinnvoll, wenn die Zahlenwerte mit Vielfachen von vier
Bits codiert werden, was bei allen heute üblichen Rechnersystemen der Fall ist. Da sich
bei einer Kombination von vier Bits zu einer neuen Ziffer 16 mögliche Werte ergeben,
reichen die Ziffernsymbole des Dezimalsystems nicht mehr aus. Es werden neben den
Symbolen 0 bis 9 noch sechs weitere Symbole für die Werte 10 bis 15 benötigt. Hierfür
werden die ersten Buchstaben des Alphabets verwendet. Auf diese Weise erhält man das
sogenannte Hexadezimalsystem, ein Stellenwertsystem zur Basis 16.

Die verschiedenen Darstellungen von Zahlenwerten in unterschiedlichen Zahlensyste-
men fasst Tab. 2.3 für die Zahlen von 0 bis 1810 zusammen. Bei der Verwendung des Oktal-
oder des Hexadezimalsystems arbeitet die zugrundeliegende digitale Hardware weiterhin
mit einzelnen Bits, also im Dualzahlensystem. Die Kombination von Bits zu einer Oktal-
oder Hexadezimalziffer dient lediglich der kompakteren Darstellung der Zahlenwerte.

Tab. 2.3   Darstellung
der Zahlen 0 bis 18 im
Dezimal-, Dual-, Oktal- und
Hexadezimalsystem

Dezimal
B = 10

Dual
B = 2

Oktal
B = 8

Hexadezimal
B = 16

0 0 0 0

1 1 1 1

2 10 2 2

3 11 3 3

4 100 4 4

5 101 5 5

6 110 6 6

7 111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

16 10000 20 10

17 10001 21 11

18 10010 22 12

2.2  Vorzeichenlose Zahlen

22 2  Digitale Codierung von Informationen

2.2.3	� Umwandlung zwischen Zahlensystemen

Für die Umrechnung eines Zahlenwertes aus einem System zur Basis B1 in ein System
zur Basis B2 kann direkt unter Verwendung der bereits vorgestellten Summenformel
erfolgen:

Hierbei muss die Berechnung zur Basis B2 erfolgen. Das Rechnen in einem anderem als
dem dezimalen Zahlensystem ist jedoch gewöhnungsbedürftig, sodass es sich empfiehlt
zunächst eine Umwandlung der Zahl in das Dezimalsystem vorzunehmen. In einem
zweiten Schritt erfolgt dann die Umwandlung des Dezimalwertes in das gewünschte
Zahlensystem zur Basis B2.

Die Umrechnung aus dem Dezimalsystem in ein anderes Zahlensystem kann mithilfe
der Divisionsmethode erfolgen, die im Folgenden vorgestellt wird.

Die Divisionsmethode basiert auf einem iterativen Vorgehen, bei dem zunächst die
Ausgangszahl ganzzahlig durch die Basis B2 des Zielsystems dividiert wird. Der Rest der
Division ergibt eine Stelle der zu berechnenden Zahl. Anschließend wird der Quotient
der Division wiederum durch B2 dividiert. Dieses Vorgehen wird so lange wiederholt,
bis der berechnete Quotient Null ist. Die gesuchte Zahlendarstellung ergibt sich aus den
berechneten Resten, wobei der zuerst berechnete Rest die Einerstelle repräsentiert.

Die Umwandlung einer Zahl zur Basis B1 in eine Zahl zur Basis B2 kann wie folgt als
iteratives Vorgehen formuliert werden:

1.	 Umwandlung der Ausgangzahl in das Dezimalsystem (Summenformel anwenden).
2.	 Ganzzahl-Division durch B2.
3.	 Rest der Division ergibt eine Stelle der gesuchten Zahl.
4.	 Falls Quotient ungleich Null: Zurück zu Schritt 2. Der Dividend der erneuten Division

ist der zuvor berechnete Quotient.

2.2.4	� Beispiele zur Umwandlung zwischen Zahlensystemen

Beispiel 1
Die Zahl 1100102 soll in eine Dezimalzahl umgewandelt werden. Hier kann die Sum-
menformel direkt angewendet werden:

Die gesuchte Dezimalzahl ist 50.

Z =

N−1
∑

i=0

zi · B
i
1

Z =

N−1
∑

i=0

zi · 2
i
= 1 · 21 + 1 · 24 + 1 · 25 = 2+ 16+ 32 = 50

23

Beispiel 2
Die Zahl 8910 soll in eine binäre Zahl umgewandelt werden. Mit der Divisionsmethode
ergibt sich die in Tab. 2.4 dargestellte Rechnung und damit die gesuchte binäre Reprä-
sentation 10110012.

Beispiel 3
Die Zahl 83ED16 soll in eine Dualzahl überführt werden. Die Umrechnung zwischen
dem Dualzahlensystem und dem Hexadezimalsystem kann sehr einfach erfolgen, da
4 Bit einer Dualzahl exakt einer Stelle der Hexadezimalzahl entsprechen. Man benötigt
lediglich die Zuordnung einer hexadezimalen Ziffer zu ihrem dualen Äquivalent (vgl.
Tab. 2.3) und kann die Umwandlung direkt durch Ablesen aus der Tabelle durchführen.
Die einzelnen Hexadezimalstellen werden sukzessive durch ihre binären Entsprechungen
ersetzt und es ergibt sich:

Beispiel 4
Die Dualzahl 10111110111011112 soll in eine Hexadezimal gewandelt werden. Nach der
Gruppierung der Dualzahl in Gruppen zu jeweils 4 Bit ergibt sich das Ergebnis wiede-
rum durch Ablesen aus Tab. 2.3:

Beispiel 5
Die Zahl 145056 soll in eine Oktalzahl umgewandelt werden. In diesem Fall bietet sich
ein Vorgehen in zwei Schritten an.

Zunächst wird die gegebene Zahl mithilfe der Summenformel in eine Dezimalzahl
umgewandelt und es ergibt sich

Anschließend erfolgt die Umwandlung in das Zielsystem mithilfe der Divisionsmethode
(vgl. Tab. 2.5) Die gesuchte Oktalzahl lautet 44518.

83ED16 = 1000 0011 1110 11012

1011 1110 1110 11112 = BEEF16

145056 = 234510

Tab. 2.4   Umwandlung
der Dezimalzahl 89 in eine
Dualzahl

Iteration Dividend Divisor Quotient Rest

1 89 2 44 1

2 44 2 22 0

3 22 2 11 0

4 11 2 5 1

5 5 2 2 1

6 2 2 1 0

7 1 2 0 1

2.2  Vorzeichenlose Zahlen

24 2  Digitale Codierung von Informationen

2.2.5	� Wertebereiche und Wortbreite

Für alle Zahlendarstellungen gilt, dass mit einer konkreten Anzahl an Stellen nur eine
begrenzte Anzahl von Zahlenwerten dargestellt werden kann. Besitzt eine Dezimalzahl
beispielsweise drei Stellen, kann diese nur die Werte von 0 bis 999 annehmen. Mit einer
7-stelligen Dualzahl kann nur der Zahlenbereich von 0 bis 11111112 = 12710 dargestellt
werden.

Werden zwei Dualzahlen addiert, kann es (je nach Zahlenwerten) passieren, dass für
die Summe mehr Bits als für die beiden Operanden benötigt werden. So kann beispiels-
weise die Summe der Zahlen 11012 (1310) und 01012 (510) nicht mit 4 Bit dargestellt
werden. Für das Ergebnis 1810 werden 5 Bit benötigt (1810 = 100102).

Generell gilt, dass bei der Addition von n binären Zahlen log2(n) zusätzliche Bits für
das Ergebnis benötigt werden. Addiert man beispielsweise 8 Zahlen mit der Wortbreite
6 Bit, muss für das Ergebnis eine Wortbreite von 6 + log2(8) = 9 Bit vorgesehen werden.

Vermutlich finden Sie diese Erkenntnis nicht sonderlich bemerkenswert, da wir aus
dem täglichen Leben daran gewöhnt sind, dass das Ergebnis einer Rechnung mehr Stel-
len als die Operanden benötigt. Zur Veranschaulichung dieses Sachverhalts wird bereits
in den ersten Jahren der Schulausbildung der Zahlenstrahl eingeführt. Mit ihm lassen
sich unter anderem auch die Addition und Subtraktion übersichtlich grafisch darstellen.
Durchläuft man den Zahlenstrahl von Null in Richtung positiver Zahlen, wird mit jedem
Schritt eine 1 addiert (Additionsrichtung). Durchlaufen des Zahlenstrahls in entgegen-
gesetzter Richtung entspricht der Subtraktion (Subtraktionsrichtung). Je weiter man sich
auf dem Zahlenstrahl vom Wert Null entfernt, desto größer werden die Zahlen. An der
Grenze zu einer Zehnerpotenz (zum Beispiel 99) wird die Anzahl der Stellen zur Darstel-
lung der Zahlen erhöht (statt zwei Stellen für 99 werden drei Stellen für die Darstellung
des Wertes 100 verwendet).

Für ein digitales System ist dieses Prinzip jedoch schwer umsetzbar. Ist ein System
einmal realisiert, steht nur eine feste Anzahl von Stellen in der Hardware zur Verfügung.
Das Prinzip „ich nehme mir so viele Stellen wie ich brauche“ funktioniert in digitalen
Systemen daher nicht. Hieraus ergeben sich einige Konsequenzen für die arithmeti-
schen Komponenten eines digitalen Systems, die im folgenden Abschnitt näher erläutert
werden.

Tab. 2.5   Umwandlung der
Dezimalzahl 2345 in eine
Oktalzahl

Iteration Dividend Divisor Quotient Rest

1 2345 8 293 1

2 293 8 36 5

3 36 8 4 4

4 4 8 0 4

25

2.2.6	� Zahlendarstellung mit begrenzter Wortbreite

Stellen Sie sich vor, Sie sollen ein digitales System realisieren, dass intensiv von der
Addition Gebrauch macht. Für die Implementierung der Addierer des Systems könnten
Sie sich entscheiden, dass immer die benötigte Anzahl von Ergebnisbits zur Verfügung
stehen soll, das Ergebnis also ein Bit mehr als die Operanden umfasst. Allerdings ist zu
beachten, dass die Wortbreite der Ergebnisse mit zunehmender Anzahl durchgeführter
Additionen kontinuierlich wächst. Besitzen die Eingangswerte des Systems zum Beispiel
eine Wortbreite von 8 bit, würde das Ergebnis einer ersten Addition eine Wortbreite 9 bit
benötigen. Werden die so berechneten Zwischenergebnisse mit einer weiteren Addition
weiterverarbeitet, sind bereits 10 bit für diese Ergebnisse erforderlich.

Selbstverständlich kann man ein digitales System realisieren, das beispielsweise vier
8-Bit-Zahlen addieren kann und ein Ergebnis mit der Wortbreite 10 bit liefert. Aber stel-
len Sie sich vor, Sie sollen eine arithmetische Komponente für ein Rechnersystem ent-
werfen. Sie wissen nicht welches Programm später auf dem Rechner laufen wird und
welche Wortbreiten für Operanden und Ergebnisse sinnvoll sind. Darüber hinaus besit-
zen die Speicherstellen eines Rechners, in denen auch Zwischenergebnisse abgelegt
werden, feste Wortbreiten (meist Vielfache eines Bytes). Daher verwenden die arithme-
tischen Einheiten eines Rechners meist identische Operanden- und Ergebniswortbrei-
ten. Ergibt sich bei einer Berechnung ein Ergebnis, das eine größere Wortbreite als die
implementierte Ergebniswortbreite benötigt, werden die führenden Bits des Ergebnisses
einfach weggelassen. Die Ausgabe der arithmetischen Einheit wäre in diesem Fall also
nicht korrekt. Nehmen wir an, dass mithilfe eines Addierers die Zahlen 10112 = 1110
und 10012 = 910 addiert werden. Es steht ein Addierer mit einer Wortbreite von 4 bit zur
Verfügung. Der Addierer kann also Operanden und Ergebnisse im Bereich von 0 bis 15
verarbeiten bzw. ausgeben. Das korrekte Ergebnis der Summe aus 11 und 9 ist jedoch 20
und überschreitet damit den möglichen Zahlenbereich der Ergebnisse des 4-Bit-Addie-
rers. Statt des korrekten Ergebnisses 101002 wird der Addierer führende 1 verwerfen und
01002 = 410 ausgegeben.

Was bedeutet die begrenzte Wortbreite für die grafische Darstellung von Zah-
len? Am Beispiel eines 4-Bit-Addierers lässt sich dies anschaulich erläutern: Startet
man bei 0 und addiert sukzessive eine 1, durchläuft das Ergebnis die Zahlen von 0 bis
1510 = 11112. Bei der Addition von 1510 und 1 erreicht man wieder den Ausgangspunkt:
Das vom Addierer ausgegebene Ergebnis ist 00002, da die Zahl 1610 = 100002 nicht mit
4 Bit dargestellt werden kann.

Die grafische Darstellung dieses Verhaltens kann also kein Zahlenstrahl sein. Viel-
mehr ergibt sich ein Zahlenkreis, der bei Addition im Uhrzeigersinn durchlaufen wird.
Entsprechend wird der Kreis bei der Subtraktion entgegen dem Uhrzeigersinn durchlau-
fen (Abb. 2.1).

2.2  Vorzeichenlose Zahlen

26 2  Digitale Codierung von Informationen

2.2.7	� Binäre vorzeichenlose Addition

Die Regeln zur Addition und Subtraktion im Dualsystem sind mit denen des Dezimal-
systems vergleichbar. Beide Operationen werden stellenweise, beginnend mit der nie-
derwertigsten Stelle (die Stelle mit dem niedrigsten Stellengewicht), durchgeführt. Bei
dieser Operation kann wie im Dezimalsystem ein Überlauf auftreten, welcher entspre-
chend zu berücksichtigen ist. Der wesentliche Unterschied zwischen dem Dezimal- und
dem Dualsystem ist, dass der 10er-Übergang des Dezimalsystems einem 2er-Übergang
im Dualsystem entspricht. Für die Addition zweier Dualzahlen bedeutet dies, dass ein
Übertrag in der nächsthöheren Stelle zu berücksichtigen ist, wenn die Summe der Zif-
fern den Wert 1 überschreitet. Es ergeben sich 8 mögliche Fälle für die einstellige binäre
Addition, welche in Tab. 2.6 zusammengefasst sind.

Zur Verdeutlichung ein Beispiel: Die beiden binären Zahlen 0011 und 1001 sollen
addiert werden. Die Addition der beiden niederwertigsten Stellen ergibt den Wert 2. Die-
ses Ergebnis wird durch eine 1 in der nächsthöheren Stelle (Übertrag) und eine 0 in der
aktuellen Stelle dargestellt (vgl. Abb. 2.2). Unter Berücksichtigung des Übertrags und
der zwei Operandenbits der nächsthöheren Stelle ergibt sich wiederum ein Übertrag 1
und ein Ergebnisbit mit dem Wert 0. Dieses Verfahren wird für alle Operandenbits durch-
geführt und man erhält ein Ergebnis mit der Wortbreite 4 bit.

Überlaufsdetektion bei der vorzeichenlosen Addition
Variante 1: Betrachtung des höchstwertigen Übertragsbits

Ist das höchstwertige Übertragsbit bei der Addition zweier vorzeichenloser Zahlen 0,
ist das Ergebnis korrekt. Andernfalls ist bei der Addition ein Überlauf aufgetreten und
das ausgegebene Ergebnis nicht korrekt.

Abb. 2.1   Zahlenkreis für
positive Zahlen mit einer
Wortbreite von 4 bit

27

Variante 2: Betrachtung der höchstwertigen Bits der Operanden und des
Ergebnisses

Sind beide höchstwertigen Bits der Operanden identisch, tritt bei der Addition ein
Überlauf auf, wenn diese Bits gleich 1 sind. Sind die beiden höchstwertigen Bits der
Operanden unterschiedlich, ist ein Überlauf aufgetreten, wenn das höchstwertige Ergeb-
nisbit gleich 0 ist. In allen anderen Fällen ist kein Überlauf aufgetreten.

2.2.8	� Binäre vorzeichenlose Subtraktion

Bei der binären Subtraktion können ähnliche Rechenregeln angewandt werden wie sie
aus dem Dezimalsystem bekannt sind. Sukzessive werden die einzelnen Bits des Minu-
enden und Subtrahenden beginnend mit dem niederwertigsten Bit betrachtet. Es wird die
Differenz aus dem Minuendenbit und dem Subtrahendenbit bestimmt. Sofern ein Über-
trag zu berücksichtigen ist, wird dieser mit negativem Vorzeichen einbezogen. Es erge-
ben sich wie bei der Addition 8 mögliche Fälle (Tab. 2.7)

Soll beispielsweise die binäre Zahl 0111 von der Zahl 1100 subtrahiert werden, ergibt
sich die in Abb. 2.3 dargestellte Rechnung. Die Subtraktion der beiden niederwertigsten
Stellen ergibt den Wert −1. Dieses Ergebnis wird durch einen (negativ bewerteten) Über-
trag mit dem Wert −1 in der nächsthöheren Stelle und einem Ergebnisbit mit dem Wert
1 in der aktuellen Stelle dargestellt. Unter Berücksichtigung des Übertrags und der zwei
Operandenbits der nächsthöheren Stelle ergibt sich ein Übertrag −1 und ein Ergebnisbit
mit dem Wert 0. Dieses Verfahren wird für alle Bits der Operanden durchgeführt und so
die Differenz mit der Wortbreite 4 bit bestimmt.

Tab. 2.6   Übersicht über
die einstellige binäre
Addition

Eingabewerte Ausgabewerte
1. Summand 2. Summand Übertragsbit Summenbit Übertragsbit

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Abb. 2.2   Beispiel für die
binäre Addition

0011
+ 1001

Übertrag: 0011
1100

2.2  Vorzeichenlose Zahlen

28 2  Digitale Codierung von Informationen

Wie bei der Addition kann im Anschluss an die Berechnung überprüft werden, ob das
ausgegebene Ergebnis korrekt ist. Bei der Subtraktion vorzeichenloser Zahlen entsteht
ein Unterlauf, wenn der Minuend kleiner als der Subtrahend ist. In diesem Fall ist das
wahre Ergebnis negativ und lässt sich nicht als vorzeichenlose Zahl darstellen. Für die
Detektion eines Unterlaufs können wieder zwei alternative Möglichkeiten eingesetzt
werden:

Unterlaufsdetektion bei der vorzeichenlosen Subtraktion
Variante 1: Betrachtung des höchstwertigen Übertragsbits

Ist das höchstwertige Übertragsbit bei der Subtraktion zweier natürlicher Zahlen 0,
ist das Ergebnis korrekt. Andernfalls ist ein Unterlauf aufgetreten und das ausgegebene
Ergebnis nicht korrekt.

Möglichkeit 2: Betrachtung der höchstwertigen Bits der Operanden und des
Ergebnisses

Sind beide höchstwertigen Bits der Operanden identisch, tritt bei der Addition ein
Unterlauf auf, wenn das höchstwertige Ergebnisbit gleich 1 ist. Ebenfalls tritt ein Unter-
lauf auf, wenn das höchstwertige Bit des Minuenden 0 und das des Subtrahenden 1 ist.
In allen anderen Fällen tritt kein Unterlauf auf und das Ergebnis ist korrekt.

Tab. 2.7   Übersicht über die
einstellige binäre Subtraktion

Eingabewerte Ausgabewerte
Minuend Subtrahend Übertrag Differenz Übertrag

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Abb. 2.3   Beispiel für die
binäre Subtraktion

1100
- 0111

Übertrag: 0111
0101

29

2.2.9	� Binäre vorzeichenlose Multiplikation und Division

Für die Addition und Subtraktion im Binärsystem gelten vergleichbare Regeln wie im
Dezimalsystem. Es ist lediglich zu beachten, dass der 10er-Übergang des Dezimalsystems
einem 2er-Übergang im Binärsystem entspricht. Unter Beachtung dieser Besonderheit las-
sen sich auch Vorgehensweisen zur Durchführung der binären Multiplikation oder Divi-
sion formulieren, die weitgehend den bekannten Regeln des Dezimalsystems entsprechen.

Für die Durchführung der Multiplikation wird der Multiplikator sukzessive mit den
einzelnen Stellen des Multiplikanden multipliziert. Da die Ziffern des Multiplikanden
nur die Werte 0 oder 1 annehmen können, ist das Ergebnis dieser stellenweisen Multipli-
kation also entweder Null oder identisch mit dem Multiplikator.

Schreibt man die einzelnen Produkte entsprechend dem Stellengewicht des verwen-
deten Multiplikandenbits untereinander und summiert anschließend die gebildeten Pro-
dukte erhält man als Ergebnis das Produkt der beiden Operanden.

In vielen Fällen möchte man mögliche Überläufe bei der Multiplikation vermeiden
und wählt für die Produktwortbreite einen Wert, der sich aus der Summe der Wortbreiten
des Multiplikanden und des Multiplikators ergibt.

Die binäre Multiplikation ist für die Zahlen 0101 und 1011 in Abb. 2.4 dargestellt.
Ebenso kann die Division der Grundschulmathematik auf die binäre Division übertra-

gen werden. Hierbei wird der Divisor testweise von einem Teil des Dividenden subtra-
hiert. Tritt bei der Subtraktion kein Überlauf auf, ergibt sich ein Quotientenbit mit dem
Wert 1 und das Ergebnis der Subtraktion wird für weitere Berechnungen weiterverwendet.
Ist dagegen ein Überlauf aufgetreten, ist das berechnete Quotientenbit 0 und das Ergebnis
der Subtraktion wird verworfen. Es wird mit dem Minuenden weiter gerechnet. Vor der
nachfolgenden Subtraktion zur Bestimmung eines weiteren Quotientenbits wird ein wei-
teres Bit des Dividenden an die berechnete Differenz (kein Überlauf) bzw. den Minuen-
den (bei aufgetretenem Überlauf) angefügt. Auf diese Weise wird sukzessive der gesamte
Dividend durchlaufen. Das Ergebnis der letzten Subtraktion ergibt den Rest der Division.
Es ist zu beachten, dass die führenden Nullen des Divisors nicht berücksichtigt werden.

Die Vorgehensweise für eine binäre Addition wird in für einen Dividenden mit dem
Wert 01010101 und einem Divisor mit dem 1011 verdeutlicht (Abb. 2.5).

Abb. 2.4   Beispiel für die
binäre Multiplikation

0101 * 1011

+ 0101
+ 0101
+ 0000
+ 0101

0001000

00110111

2.2  Vorzeichenlose Zahlen

30 2  Digitale Codierung von Informationen

Die vorgestellten Rechenvorschriften können als Basis für die Implementierung digitaler
Arithmetikschaltungen verwendet werden. In der Praxis kommen teilweise auch modifizierte
Verfahren zum Einsatz, die Vorteile im Hinblick auf die Rechenzeit oder den Schaltungsauf-
wand bieten. Die Schaltungsstruktur eines Addierers wird in Kapitel 6 vorgestellt.

2.3	� Vorzeichenbehaftete Zahlen

In vielen Fällen ist die ausschließliche Verwendung vorzeichenloser Zahlen nicht ausreichend
und es müssen sowohl positive als auch negative Zahlen verwendet werden. Hieraus ergibt
sich zwangsläufig die Frage nach einer geeigneten Codierung vorzeichenbehafteter Zahlen.

Eine naheliegende Idee wäre es, die Zahlendarstellung des täglichen Lebens auch
auf Dualzahlen anzuwenden. Üblicherweise kennzeichnen wir Zahlenwerte mit einem
vorangestellten Vorzeichen, einem Plus- oder Minuszeichen. Der Zahlenwert nach dem
Vorzeichen entspricht dem Betrag der Zahl. Diese Form der Zahlendarstellung wird als
Vorzeichen-Betrag-Darstellung bezeichnet. Die am weitesten verbreitete Darstellungs-
form vorzeichenbehafteter Zahlen ist die sogenannte Zweierkomplement-Darstellung, die
in Abschn. 2.3.2 vorgestellt wird.

2.3.1	� Vorzeichen-Betrag-Darstellung

In der üblichen Dezimaldarstellung werden vorzeichenbehaftete Zahlenwerte als eine
Kombination von Vorzeichen und Betrag dargestellt. Es handelt sich um die Vorzeichen-
Betrag-Darstellung. Dieses Prinzip lässt sich auch auf Dualzahlen übertragen. Es bietet
sich an, das Vorzeichen durch ein einzelnes Bit zu codieren. Üblicherweise verwendet
man eine führende 0 um einen positiven Zahlenwert darzustellen und eine führende 1 für

Abb. 2.5   Beispiel für die binäre Division

http://dx.doi.org/10.1007/978-3-662-49731-9_6

31

negative Zahlen. Die restlichen Bits entsprechen dem Betrag der dargestellten Zahl, wel-
cher als vorzeichenlose Dualzahl codiert ist.

Genauso wie für vorzeichenlose Zahlen kann als grafische Darstellung ein Zahlen-
kreis verwendet werden. Abb. 2.6 zeigt den Zahlenkreis für eine Wortbreite von 4 bit.

Betrachtet man den Zahlenkreis in Abb. 2.6 genauer, fallen mehrere Besonderheiten
auf:

1.	 Es existieren zwei Repräsentationen der Null, „+0“ und „−0“.
2.	 Es gibt zwei Stellen, an denen Überläufe bzw. Unterläufe auftreten können, nämlich

zwischen −7 und +0 sowie zwischen +7 und −0
3.	 Die Additionsrichtung im Bereich positiver Zahlen entspricht der Subtraktionsrich-

tung im Bereich negativer Zahlen.

Alle drei Beobachtungen sind Nachteile, die das Rechnen in dieser Zahlendarstellung
erschweren bzw. die Implementierung arithmetischer Schaltungen aufwendiger machen.

Um beispielsweise eine Addition durchzuführen, können verschiedene Vorgehenswei-
sen definiert werden. Am einfachsten ist es, wenn das Vorzeichen der Operanden für die
eigentliche arithmetische Operation unberücksichtigt bleibt und eine Operation wie für
vorzeichenlose Zahlen durchgeführt wird. Um dabei das korrekte Ergebnis zu erhalten,
ist eine Fallunterscheidung auf Basis der Vorzeichen der Operanden erforderlich. Je nach
vorliegendem Fall, wird gegebenenfalls eine Vertauschung der Operanden vorgenom-
men, statt einer Addition eine Subtraktion durchgeführt oder das Vorzeichen des Ergeb-
nisses invertiert (Tab. 2.8).

Äquivalent zur Addition können auch für andere Grundoperationen Rechenregeln
formuliert werden, wobei eine geeignete Fallunterscheidung vorzusehen ist. Dies stellt

Abb. 2.6   Zahlenkreis für
vorzeichenbehaftete Zahlen in
Vorzeichen-Betrag-Darstellung

+1

+2

+3

+4

+5

+6

+7-0

-3

-2

-1

+0

-4

-5

-6

-7

0000
0001

0011

0010

1111

1110

1101

1100

1011

1010

1001
1000

0111

0110

0101

0100

Additions-
richtung

im Bereich
[+0;+7]

Additions-
richtung

im Bereich
[-0;-7]

2.3  Vorzeichenbehaftete Zahlen

32 2  Digitale Codierung von Informationen

einen wesentlichen Nachteil für den Einsatz der Vorzeichen-Betrag-Darstellung in digita-
len Systemen dar, da die Fallunterscheidungen in Hardware implementiert werden müss-
ten, wodurch sich der schaltungstechnische Aufwand erhöht.

2.3.2	� Zweierkomplement-Darstellung

Aus den Überlegungen des vorangegangenen Abschnitts lassen sich Forderungen formu-
lieren, die für eine Darstellung vorzeichenbehafteter Zahlen gelten sollten. So ist es wün-
schenswert, dass

1.	 nur eine Codierung dem Zahlenwert Null entspricht,
2.	 die Additionsrichtung für den gesamten Zahlenbereich identisch ist,
3.	 nur an einer Position im Zahlenkreis ein Überlauf bzw. Unterlauf auftritt.

Eine Zahlendarstellung die diese Forderungen erfüllt, ist die sogenannte Zweierkomple-
ment-Darstellung. Die Codierung der Zahlen im Zweierkomplement ergibt sich aus den
ersten beiden Forderungen: Zwischen den Zahlenwerten −1 und +1 darf nur eine Codie-
rung existieren, die den Wert 0 repräsentiert. Setzt man voraus, dass die positiven Zah-
len wie bei der Vorzeichen-Betrag-Darstellung durch eine führende 0 zu identifizieren
sind und legt zugrunde, dass die selbstverständliche Gleichung 1−2 = −1 gelten soll,
lässt sich die Codierung der Zahl −1 wie folgt anhand des Zahlenkreises bestimmen:
Als Startpunkt wählt man auf dem Zahlenkreis die Codierung „0001“, was der Zahl +1
entspricht. Läuft man auf dem Zahlenkreis einen Schritt in Subtraktionsrichtung, muss
sich die Codierung der Zahl 0 ergeben. Diese entspricht bei einer Wortbreite von 4 bit
der Codierung 0000 und entspricht somit der Darstellung der Null für vorzeichenlose
Zahlen. Ein weiterer Schritt in Subtraktionsrichtung muss zwangsläufig zur Codierung
der Zahl −1 führen. Für eine Wortbreite von 4 bit ergibt sich für −1 also die Codierung
1111. Die Codierungen aller weiteren negativen Zahlen können durch weitere Schritte in
Subtraktionsrichtung gefunden werden.

Tab. 2.8   Fallunterscheidung für die Addition in Vorzeichen-Betrag-Darstellung

Vorzeichenbit der
Operanden

Erforderliche Schritte

1. Summand 2. Summand Operanden
vertauschen

Ausgeführte
Operation

Vorzeichen des
Ergebnisses
invertieren

0 0 nein Addition nein

0 1 nein Subtraktion nein

1 0 ja Subtraktion nein

1 1 nein Addition ja

33

Für die Zweierkomplement-Darstellung gilt, dass alle Codierungen mit einer füh-
renden 1 als negative Zahlen zu interpretieren sind. Dies hat den Vorteil, dass sich der
Wert einer Zweierkomplement-Zahl durch eine einfache Summenformel angeben lässt.
Als einziger Unterschied zu der Formel für vorzeichenlose Zahlen ist bei Zweierkomple-
ment-Zahlen beim höchstwertigen Bit ein negatives Stellengewicht zu berücksichtigen:

So ergibt sich für eine Wortbreite von 4 bit die Zahl −8 als kleinste darstellbare negative
Zahl, welche durch die Bitfolge 1000 codiert wird. Der Zahlenkreis für Zweierkomple-
ment-Zahlen mit einer Wortbreite von 4 bit ist in Abb. 2.7 dargestellt.

2.3.2.1 � Negieren einer Zweierkomplement-Zahl
Möchte man eine vorzeichenbehaftete Zahl in Zweierkomplement-Darstellung negieren,
kann man die vorgestellte Summenformel verwenden um den Wert der Ausgangszahl zu
bestimmen. Anschließend wird das Vorzeichen der Zahl invertiert und wiederum mithilfe
der Summenformeln die Codierung der gesuchten Zahl bestimmt. Dieses Vorgehen ist
jedoch relativ umständlich und fehlerträchtig.

Aufgrund der Eigenschaften der Zweierkomplement-Zahlen lässt sich glücklicher-
weise ein einfacheres zweischrittiges Verfahren definieren: Zunächst werden alle Stellen
der Ausgangszahl invertiert. Anschließend wird dieses Zwischenergebnis inkrementiert
(= eine 1 addiert). Das Ergebnis stellt die entsprechende negierte Zahl dar.

Hierzu ein Beispiel: Die 6 bit breite Zweierkomplement-Zahl „011101“ soll negiert
werden.

Z = −zN−1 · 2
N−1

+

N−2
∑

i=0

zi · 2
i

Abb. 2.7   Zahlenkreis für
vorzeichenbehaftete Zahlen in
Zweierkomplement-Darstellung

+1

+2

+3

+4

+5

+6

+7-8

-5

-6

-7

0

-4

-3

-2

-1

0000
0001

0011

0010

1111

1110

1101

1100

1011

1010

1001
1000

0111

0110

0101

0100

Additions-
richtung

Subtraktions-
richtung

2.3  Vorzeichenbehaftete Zahlen

34 2  Digitale Codierung von Informationen

Mithilfe der Summenformel für Zweierkomplement-Zahlen kann das Ergebnis überprüft
werden:

0111012 = 16+ 8+ 4+ 1 = 29

1000112 = −32+ 2+ 1 = −29

2.3.2.2 � Vorzeichenerweiterung
In einigen praktischen Anwendungsfällen ist es erforderlich die Wortbreite einer Zahl zu
vergrößern und zum Beispiel aus einer 8 bit breiten Zahl eine Zahl mit der Wortbreite 16 bit
zu generieren. Für vorzeichenlose Zahlen ist es lediglich erforderlich die Zahl mit führenden
Nullen aufzufüllen. Im Fall der Zweierkomplement-Darstellung werden die zusätzlichen
Stellen dagegen mit dem höchstwertigen Bit (Vorzeichenbit) der Ausgangszahl aufgefüllt.

2.3.3	� Addition und Subtraktion in Zweierkomplement-Darstellung

Für die Bestimmung der Ergebnisbits einer Addition oder Subtraktion von Zahlen in
Zweierkomplement-Darstellung gilt das gleiche Vorgehen wie für vorzeichenlose Zah-
len. Dies bedeutet unter anderem, dass eine Additions- bzw. Subtraktionsschaltung für
vorzeichenlose Zahlen unverändert auch für Zweierkomplement-Zahlen eingesetzt wer-
den kann. Dieses ist insbesondere dann vorteilhaft, wenn in einem digitalen System
sowohl vorzeichenlose als auch vorzeichenbehaftete Zahlen verarbeitet werden, wie dies
zum Beispiel in digitalen Rechnern der Fall ist.

Für die Bestimmung von Überläufen und Unterläufen bei der Zweierkomplement-
Addition bzw. -Subtraktion gelten andere Regeln als bei vorzeichenlosen Zahlen. Eine
Überschreitung des darstellbaren Zahlenbereichs kann ebenfalls durch die Betrachtung
der höchstwertigen Bits der Operanden und des Ergebnisses detektiert werden. Für die
Addition gilt beispielsweise, dass nur dann ein Überlauf oder Unterlauf auftreten kann,
wenn beide Summanden das gleiche Vorzeichen besitzen. Besitzen beispielsweise beide
Operanden ein positives Vorzeichen (repräsentiert durch eine führende Null), so muss
auch die Summe ein positives Vorzeichen besitzen. Besitzt das Ergebnis dagegen eine
führende Eins und repräsentiert somit einen negativen Zahlenwert, ist dieses offenbar
falsche Ergebnis auf einen Überlauf zurückzuführen. Entsprechendes gilt für den Fall der
Addition zweier negativer Zahlen. Die Überlegungen für die Addition lassen sich ent-
sprechend für die Subtraktion anstellen. Hierbei gilt, dass eine Bereichsüberschreitung
nur dann auftritt, wenn die beiden Operanden unterschiedliche Vorzeichen besitzen.

Über-/Unterlaufsdetektion bei der vorzeichenbehafteten Addition
Sind beide höchstwertigen Bits der Operanden identisch und ist das höchstwer-
tige Ergebnisbit ungleich der höchstwertigen Operandenbits, ist ein Überlauf bzw.

NEG(011101) = 011101+ 1 = 100010+ 1 = 100011

35

Unterlauf aufgetreten. In allen anderen Fällen ist keine Überschreitung des darstellba-
ren Zahlenbereichs aufgetreten und das Ergebnis ist korrekt codiert.

Über-/Unterlaufsdetektion bei der vorzeichenbehafteten Subtraktion
Sind beide höchstwertigen Bits der Operanden unterschiedlich und ist das höchstwertige
Ergebnisbit ungleich dem höchstwertigen Operandenbit des Minuenden, ist ein Überlauf
bzw. Unterlauf aufgetreten. In allen anderen Fällen ist keine Überschreitung des darstell-
baren Zahlenbereichs aufgetreten und das Ergebnis ist korrekt codiert.

2.3.4	� Multiplikation und Division in Zweierkomplement-
Darstellung

Für die Multiplikation und die Division von Zweierkomplement-Zahlen bietet sich als
einfachste Vorgehensweise ein dreischrittiges Verfahren an. Hierbei werden zunächst die
Beträge der Operanden berechnet und anschließend die eigentliche Operation mit vor-
zeichenlosen Zahlen durchgeführt. Im letzten Schritt wird gegebenenfalls das Ergebnis
durch Negierung korrigiert, falls die Operanden unterschiedliche Vorzeichen besitzen.
Diese Korrektur muss für das Produkt bei der Multiplikation oder dem Quotienten bei
der Division ausgeführt werden. Für die Korrektur des Restes einer binären Zweierkom-
plement-Division wird lediglich das Vorzeichen des Dividenden berücksichtigt: Ist der
Dividend negativ, ist eine Korrektur des Restes durch Negierung vorzunehmen.

Alternativ zu der oben beschriebenen Vorgehensweise kann beispielsweise für Mul-
tiplikation eine Vorgehensweise gewählt werden, die berücksichtigt, dass das höchst-
wertige Bit der Operanden negativ zu gewichten ist. Unter Berücksichtigung dieser
Eigenschaft der Zweierkomplement-Zahlen kann die Multiplikation äquivalent zur
Multiplikation vorzeichenloser Zahlen ausgeführt werden. Hierbei ergeben sich in den
Teilprodukten einzelne negativ zu bewertende Einsen, die bei der Summation der Teil-
produkte negativ zu berücksichtigen sind. Das nachfolgende Beispiel verdeutlicht die
Vorgehensweise, wobei negativ zu berücksichtigende Bits kursiv dargestellt sind.

Sollen zum Beispiel die beiden vorzeichenbehafteten Zahlen 1101 und 1001 multipli-
ziert werden, ergäbe sich das in Abb. 2.8 dargestellte Vorgehen.

Abb. 2.8   Beispiel für
die Zweierkomplement-
Multiplikation

2.3  Vorzeichenbehaftete Zahlen

36 2  Digitale Codierung von Informationen

2.3.5	� Bias-Darstellung

Eine weitere Möglichkeit vorzeichenbehaftete Zahlen darzustellen, ist die sogenannte
Bias-Darstellung (bzw. Excess-Darstellung). Der Begriff „Bias“ stammt aus dem Eng-
lischen und bedeutet in etwa „Vorbeaufschlagung“ oder „Vorspannung“. Bei dieser Dar-
stellung kann der Zahlenwert mithilfe der Summenformel für vorzeichenlose Zahlen
bestimmt werden, wobei nach der Summenbildung eine Konstante B subtrahiert wird.
Durch die Subtraktion der Konstanten können auch negative Zahlenwerte dargestellt
werden. Der Wert der Konstanten kann im Prinzip beliebig gewählt werden. Da man in
der Regel einen symmetrischen Zahlenbereich anstrebt (Absolutwert der kleinsten nega-
tiven Zahl entspricht etwa dem Wert der größten positiven Zahl), wird B im Allgemeinen
entsprechend der Wortbreite N der Zahlendarstellung gewählt:

Betrachten wir die Bitfolge 100101, welche eine Zahl in Bias-Darstellung repräsentiert.
Welcher Zahlenwert wird durch die Bitfolge dargestellt?

Mit N = 6 ergibt sich

Z =

N−1
∑

i=0

zi · 2
i
− B =

(

25 + 22 + 20
)

−

(

25 − 1
)

= 6

2.3.6	� Darstellbare Zahlenbereiche

Häufig ergibt sich beim Entwurf eines digitalen Systems die Frage, welche Wortbreite
für die Darstellung von Zahlenwerten verwendet werden muss. Um Aufwand zu spa-
ren möchte man natürlich so wenige Bits wie möglich verwenden. Andererseits muss
die Wortbreite aber ausreichend sein, um den gewünschten Zahlenbereich abzudecken.
Tab. 2.9 fast den darstellbaren Zahlenbereich für Zahlen mit einer Wortbreite von N bit
zusammen:

B =
2N

2
− 1 = 2N−1

− 1

Tab. 2.9   Darstellbarer
Zahlenbereich in Abhängigkeit
der verwendeten Wortbreite
N bit

Zahlendarstellung Kleinster Wert Größter Wert

Vorzeichenlos 0 2N − 1

Vorzeichen-Betrag − 2N−1 + 1 2N−1 − 1

Zweierkomplement − 2N−1 2N−1 − 1

Bias (B = 2N−1 − 1) − 2N−1 + 1 2N−1

37

2.4	� Reelle Zahlen

In den vorangegangenen Abschnitten wurde die binäre Darstellung ganzer Zahlen
betrachtet. Viele Problemstellungen der Digitaltechnik lassen sich mit ausreichen-
der Genauigkeit mithilfe ganzer Zahlen lösen. Es gibt aber auch Anwendungen, die
den Einsatz reeller Zahlen erfordern. Im Folgenden wird daher eine Übersicht über die
Möglichkeiten zur binären Darstellung reeller Zahlen gegeben, wobei die Varianten Fest-
komma-Darstellung und Gleitkomma-Darstellung unterschieden werden.

2.4.1	� Festkomma-Darstellung

Für die Darstellung von ganzen Zahlen wurde die Vereinbarung getroffen, dass das nie-
derwertigste Bit die Einerstelle darstellt, also mit 20 gewichtet wird. Diese Vereinbarung
ist zwar für ganze Zahlen sinnvoll, aber letztlich willkürlich. Genauso gut kann als Stel-
lengewicht des niederwertigsten Bits einer binären Zahl auch eine Zweierpotenz mit
negativem Exponenten gewählt werden. Um den Wert einer solchen Zahl zu bestimmen,
muss die Summenformel für ganze Zahlen geringfügig modifiziert werden und lautet nun

für vorzeichenlose Zahlen bzw.

für vorzeichenbehaftete Zahlen.
Die benötigte Wortbreite N einer derartigen Zahl ergibt sich aus der Summe der

Anzahl der Vorkommastellen M und der Nachkommastellen L:

Vereinbart man beispielsweise, dass zwei Nachkommastellen (L = 2) verwendet werden.
Welchem Zahlenwert würde dann die binäre Ziffernfolge „10111“ als vorzeichenlose
Zahl entsprechen? Welcher Zahlenwert ergibt sich als vorzeichenbehaftete Zahl?

Mithilfe der obigen Summenformeln ist die Lösung leicht zu bestimmen. Werden die
Bits als vorzeichenlose Zahl interpretiert ergibt sich

Wenn die Bits eine vorzeichenbehaftete Zahl in Festkommadarstellung repräsentieren
ergibt sich der dargestellte Zahlenwert zu

Z =

M−1
∑

i=−L

zi · 2
i

Z = −zM−1 · 2
M−1

+

M−2
∑

i=−L

zi · 2
i

N = M + L

Zvorzeichenlos = 22 + 20 + 2−1
+ 2−2

= 5, 75

2.4  Reelle Zahlen

38 2  Digitale Codierung von Informationen

Für die arithmetischen Grundoperationen ergeben sich keine bzw. lediglich geringe
Änderungen. Besitzen beide Operanden die gleiche Anzahl an Nachkommastellen L,
kann die Addition und Subtraktion genauso wie für ganze Zahlen durchgeführt werden.
Das Ergebnis besitzt ebenfalls L Nachkommastellen. Bei der Multiplikation besitzt das
Ergebnis dagegen 2 · L Nachkommastellen. Um bei der Division die gewünschte Genau-
igkeit des Quotienten zu erhalten, können die Nachkommastellen des Dividenden vor
Ausführung der Division mit Nullen erweitert werden.

Müssen dagegen Zahlen mit unterschiedlichen Wortbreiten verarbeitet werden, sind
beispielsweise bei der Addition und Subtraktion Korrekturschritte erforderlich um die
Stellengewichte der einzelnen Bits anzupassen.

Nehmen wir an, die Zahl 01001 mit zwei Nachkommastellen und die Zahl 10110 mit
drei Nachkommastellen sollen addiert werden. Das niederwertigste Bit der ersten Zahl
besitzt das Gewicht 2−2 und das der zweiten Zahl 2−3. Diese beiden Bits dürfen also
nicht einfach addiert werden, da die bekannten Regeln zur binären Addition darauf basie-
ren, dass immer Bits mit gleichem Stellengewicht betrachtet werden. Also müssen die
Zahlen zunächst so erweitert werden, dass die Stellengewichte der einzelnen Bits über-
einstimmen: Die erste Zahl wird rechts um eine Stelle mit dem Wert 0 erweitert, wäh-
rend bei der zweiten Zahl auf der linken Seite eine 0 angefügt wird (in Abb. 2.9 kursiv
dargestellt). Anschließend kann die Addition wie gewohnt ausgeführt werden. Sofern
erforderlich, kann die Wortbreite des Ergebnisses durch Weglassen der niederwertigsten
Nachkommastelle anschließend wieder auf 5 reduziert werden.

2.4.2	� Gleitkomma-Darstellung

Insbesondere in digitalen Rechnersystemen, hat sich die Gleitkomma-Darstellung, wie
sie in der internationalen Norm IEEE 754 definiert ist, durchgesetzt. Solche Rechner-
systeme sollen sowohl kleine als auch große Datenwerte verarbeiten können und genau
dies ermöglicht die Gleitkomma-Darstellung. Eine detaillierte Beschreibung dieser Zah-
lendarstellung würde den Rahmen dieses Buches sprengen. Daher wird im Folgenden
lediglich das Grundprinzip der Gleitkomma-Darstellung betrachtet.

Bei Verwendung dieser Gleitkomma-Darstellung wird der Zahlenwert durch eine
Mantisse M und einen Exponenten E dargestellt. Sowohl M als auch E werden hierbei
als ganze Zahlen codiert, wobei für M die Vorzeichen-Betrag-Darstellung und für E die

Zzweierkomplement = −22 + 20 + 2−1
+ 2−2

= −2, 25

Abb. 2.9   Beispiel für die
Festkomma-Addition

39

Bias-Darstellung gewählt wird. Zusätzlich wird ein Vorzeichenbit S angeben. Der Zah-
lenwert ZGK einer Gleitkommazahl kann wie folgt bestimmt werden:

Die verwendeten Wortbreiten für die Mantisse und den Exponenten sind der Norm IEEE
754 festgelegt, die unterschiedliche Genauigkeiten spezifiziert. Für die einfache Genau-
igkeit (C-Datentyp float) werden insgesamt 32 Bit verwendet, die sich in 24 Bit für die
Mantisse inklusive Vorzeichenbit und 8 Bit für den Exponenten aufteilen. Für die soge-
nannte doppelte Genauigkeit (C-Datentyp double) werden die Mantisse mit 53 Bit und
der Exponent mit 11 Bit codiert.

2.4.3	� Reelle Zahlen in digitalen Systemen

In der Praxis steht man häufig vor der Problemstellung einen Algorithmus entwerfen zu
müssen, welcher im Anschluss in einem digitalen System in Software oder Hardware
implementiert werden soll. Für die Entwicklung eines Algorithmus mag es bequem
erscheinen, wenn man sich über die Wortbreiten der verwendeten Zahlen möglichst
wenig Gedanken machen muss. Also ist es naheliegend alle Berechnungen mit einer
möglichst flexiblen Zahlendarstellung, wie zum Beispiel einer Gleitkomma-Darstellung
mit doppelter Genauigkeit, durchzuführen. Soll der Algorithmus später in Form einer
digitalen Hardware realisiert werden, wird man allerdings auf Probleme stoßen, da die
Hardware-Umsetzung von Berechnungen in Gleitkomma-Darstellung relativ aufwen-
dig ist. Kann dieser Aufwand, zum Beispiel aus Kostengründen, nicht betrieben wer-
den, müssen die algorithmischen Vorgaben in Gleitkomma-Darstellung in eine weniger
komplexe ganzzahlige Darstellung umgewandelt werden. Hierbei werden möglicher-
weise wichtige Eigenschaften des entwickelten Algorithmus verändert, sodass nicht ohne
Weiteres gewährleistet werden kann, dass das finale Produkt den ursprünglich ins Auge
gefassten Qualitätsvorgaben entspricht.

In der Praxis werden daher frühzeitig die erforderlichen Wortbreiten ermittelt. Auf
den Einsatz einer Gleitkomma-Darstellung wird verzichtet. Dies gilt insbesondere dann,
wenn ein Algorithmus in digitale Hardware überführt oder in Software auf einem preis-
günstigen Rechnersystem, wie zum Beispiel einem einfachen Mikrocontroller, ausge-
führt werden soll.

2.5	� Codes

In diesem Abschnitt werden gebräuchliche Möglichkeiten vorgestellt, um Informati-
onen in digitaler Form darzustellen. Diese Informationen müssen nicht zwangsläufig
Zahlenwerte repräsentieren. Einer Bitfolge können auch beliebige andere Bedeutungen
zugeordnet werden. So kann man mit Codes zum Beispiel Farben oder auch die Fehler-
zustände einer Maschine darstellen.

ZGK = (−1)S ·M · 2E

2.5  Codes

40 2  Digitale Codierung von Informationen

2.5.1	� BCD-Code

Der BCD-Code (Binary Coded Digit) dient der Codierung der zehn Dezimalziffern. Für
die Codierung jeder Ziffer werden 4 Bit verwendet, die auch als Tetraden bezeichnet
werden. Die verwendeten Bitfolgen entsprechen der dualen Darstellung der vorzeichen-
losen Zahlen 0 bis 9. Da bei der Verwendung von 4 Bits 16 verschiedene Bitkombinati-
onen möglich sind, jedoch nur 10 hiervon zur Codierung der Ziffern benötigt werden,
werden 6 Bitkombinationen nicht verwendet. Diese nicht verwendeten Kombinationen
werden als Pseudotetraden bezeichnet. In Tab. 2.10 ist die Codierung einer Dezimalzif-
fer in Form einer BCD-Tetrade dargestellt.

Der BCD-Code wird zum Teil in Digitaluhren und für digitale Displays (zum Bei-
spiel in Multimetern) eingesetzt. Der BCD-Code kann auch für die Implementierung von
Rechnersystemen eingesetzt werden. Hierbei kann es vorkommen, dass das Ergebnis
einer Addition zu einer Pseudotetrade führt. Um ein Ergebnis, das eine Pseudotetrade
enthält, wieder in eine gültige BCD-Darstellung umzuwandeln, sind Korrekturschritte
erforderlich, die die Implementierung der BCD-Arithmetik komplizieren. Darüber hin-
aus ist die BCD-Darstellung nicht speichereffizient, da mit einer Tetrade nur 10 statt der
sonst 16 möglichen Codierungen verwendet werden. So können beispielsweise mit 8 Bit
nur die Zahlen von 0 bis 99 dargestellt werden, während mit der Darstellung als vorzei-
chenlose Dualzahl der Bereich von 0 bis 255 abgedeckt ist.

Tab. 2.10   Codierung einer
Dezimalziffer auf Basis des
BCD-Codes

a3 a2 a1 a0 Codierte Dezimalziffer

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

1 0 0 1 9

1 0 1 0 Pseudotetraden

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

41

Nehmen wir an, die beiden BCD-Zahlen 37 und 55 sollen addiert werden. Auch das
Ergebnis soll in BCD-Darstellung vorliegen. Die Addition kann ohne weitere Beachtung
der BCD-Codierung durchgeführt werden. Man erhält dann das Ergebnis in der üblichen
binären Darstellung. In diesem Beispiel ergibt sich für die untere Hälfte des Ergebnisses
die Pseudotetrade 1100.

Zur Korrektur des Ergebnisses kann zunächst die nächsthöhere BCD-Stelle um 1
erhöht werden, was der binären Addition des Wertes 16 entspricht. Interpretiert man die
so erhaltenen Ergebnisbits als BCD-Zahl, wäre das Ergebnis um 10 zu groß. Dies kann
korrigiert werden, indem die untere BCD-Stelle um 10 verringert wird.

Das zweischrittige Vorgehen (16 addieren und anschließend 10 subtrahieren) kann
natürlich auch in einem Schritt durch die Addition des Wertes 6 realisiert werden.

Die Korrektur muss sukzessive, beginnend mit den niederwertigsten Bits, immer dann
durchgeführt werden, wenn der BCD-Stellen eine Pseudotetrade enthält (Abb. 2.10).

2.5.2	� Gray-Code

Stellen Sie sich vor, Sie sollen einen Temperaturwarner realisieren, der aus einem digi-
talen Thermometer und einer Einheit zur Temperaturüberprüfung besteht. Sinkt die
Temperatur unter einen bestimmten Wert, soll ein Alarm ausgegeben werden. Die Tem-
peraturüberprüfung fragt die aktuelle Temperatur, die vom Thermometer als Dualzahl
übertragen wird, in regelmäßigen Abständen ab und gibt gegebenenfalls einen Alarm
aus. Würden Sie das System so realisieren, könnten sporadische Fehlalarme auftreten.

Wie kann das sein? Nehmen wir vereinfachend an, dass das Thermometer die aktu-
elle Temperatur mit einer Wortbreite von 4 bit ausgibt und Temperaturen zwischen 0 und
15 °C messen kann. Steigt die Temperatur zum Beispiel von 7 °C auf 8 °C, würde das
Thermometer zunächst 0111 und anschließend 1000 ausgeben. Alle vier vom Thermo-
meter ausgegebenen Bits müssen sich in diesem Fall ändern. In einem realen System
werden die Bitwechsel auf Grund von zeitlichen Toleranzen bei der Messwertausgabe
aber nicht exakt gleichzeitig stattfinden. In Abb. 2.11 ist ein möglicher zeitlicher Verlauf
der Thermometerausgabe für den Wechsel von 7 °C auf 8 °C dargestellt, wobei ts0, ts1,
ts2 und ts3 die einzelnen Bits des Temperatursignals und TSdual die duale Interpretation
der Bits repräsentiert.

Abb. 2.10   Beispiel für die
BCD-Addition

2.5  Codes

42 2  Digitale Codierung von Informationen

Es ist zu erkennen, dass zwischen den tatsächlich gültigen Zahlenwerten 7 und 8 auch
ungültige Werte, die nicht der wahren Temperatur entsprechen, an die Einheit zur Tem-
peraturüberprüfung gesendet werden. Wird die Temperatur in einem Moment abgefragt,
in dem ein ungültiger Wert ausgegeben wird, kann dies zu einem Fehlalarm führen.

Möglicherweise werden Sie einwenden, dass diese ungültigen Werte nur für sehr
kurze Zeiten auftreten und in den meisten Fällen ein korrekter Wert ausgegeben wird.
Obwohl dies sicher richtig ist, verschlimmert diese Tatsache die Lage eher noch: Da das
System nur selten Fehlalarme ausgeben würde, gestaltet sich eine systematische Fehler-
suche extrem schwierig.

Das Kernproblem der oben beschriebenen Temperaturüberwachung liegt darin, dass
bei einer Änderung der Temperatur mehrere Bits invertiert werden müssen. Wäre es
da nicht eine einfache Lösung des Problems, wenn bei einer Temperaturänderung nur
ein einzelnes Bit zu modifizieren wäre? Genau dieser Ansatz wird vom Gray-Code, der
nach seinem Erfinder Frank Gray benannt ist, aufgegriffen. Der Gray-Code zeichnet sich
dadurch aus, dass sich zwei benachbarte Codierungen nur in einer Stelle unterscheiden.
Der Gray-Code für eine Wortbreite von 4 bit ist in Tab. 2.11 dargestellt.

Wird der Gray-Code für das Beispiel der Temperaturüberwachung eingesetzt, käme
es zu keiner unbeabsichtigten Ausgabe ungültiger Werte und Fehlalarme würden vermie-
den. Der zeitliche Verlauf des Temperatursignals ist für den Wechsel von 7 °C nach 8 °C
in Abb. 2.12 dargestellt.

Der Gray-Code kann immer dann sinnvoll eingesetzt werden, wenn zwischen zwei
digitalen Komponenten Werte übertragen werden sollen, deren Änderung stetig ist. So
wird der Gray-Code unter anderem auch für die Positions- oder Winkelbestimmung ein-
gesetzt. Ein weiteres Einsatzgebiet ist die Übertragung von Speicherfüllständen inner-
halb digitaler Systeme. Für die Implementierung arithmetischer Operationen ist der
Gray-Code dagegen nicht gut geeignet.

Abb. 2.11   Beispiel des
zeitlichen Verlaufs der Ausgabe
eines digitalen Thermometers
mit dualer Codierung

ts3

t

ts2

ts1

ts0

TSdual 7 5 1 0 8

43

2.5.3	� 1-aus-N-Code

Der 1-aus-N-Code stellt eine weitere Alternative zur binären Codierung von Informatio-
nen dar. Dieser Code zeichnet sich dadurch aus, dass in jedem Codewort mit der Wort-
breite N bit nur ein einzelnes Bit auf 1 gesetzt ist; alle anderen Bits besitzen den Wert 0.

Der 1-aus-N-Code ist ein sogenannter redundanter Code, da sich mit N Bits 2N unter-
schiedliche binäre Wörter darstellen lassen, von denen jedoch nur N als gültige Code-
wörter genutzt werden. Der Code geht also verschwenderisch mit der Wortbreite um.
Dies wird durch den Vorteil aufgewogen, dass sich die Codewörter relativ leicht codieren
bzw. decodieren lassen.

Eine mögliche Codierung der Zahlenwerte 0 bis 5 mit einem 1-aus-6-Code ist exemp-
larisch in Tab. 2.12 dargestellt.

Tab. 2.11   Gray-Code für eine
Wortbreite von 4 bit

Codierter Wert a3 a2 a1 a0

0 0 0 0 0

1 0 0 0 1

2 0 0 1 1

3 0 0 1 0

4 0 1 1 0

5 0 1 1 1

6 0 1 0 1

7 0 1 0 0

8 1 1 0 0

9 1 1 0 1

10 1 1 1 1

11 1 1 1 0

12 1 0 1 0

13 1 0 1 1

14 1 0 0 1

15 1 0 0 0

Abb. 2.12   Beispiel des
zeitlichen Verlaufs der Ausgabe
eines digitalen Thermometers
mit Gray-Codierung

ts3

t

ts2

ts1

ts0

TSGray 7 8

2.5  Codes

44 2  Digitale Codierung von Informationen

2.5.4	� ASCII-Code

Mit dem ASCII-Code (American Standard Code for Information Interchange) werden
ausschließlich Zeichen, also Buchstaben, Ziffern und Sonderzeichen, codiert. Jedes Zei-
chen wird durch 7 Bit repräsentiert. Der ASCII-Code entspricht nahezu dem 7-Bit-Code
nach DIN 66003, welcher im Gegensatz zum ASCII-Code unter anderem auch deutsche
Umlaute abdeckt.

Die Zeichencodierung gemäß dem ASCII-Code ist in Tab. 2.13 dargestellt. Die Bits
a4, a5 und a6 dienen in dieser Tabelle der Auswahl der Spalten und die Bits a0, a1, a2 und
a3 der Zeilenauswahl. Bei der Übertragung wird für ein ASCII-Zeichen im Allgemeinen
ein Byte (8 bit) verwendet. In der Datentechnik wird häufig auch das achte Bit zu einer
Erweiterung des Zeichenvorrats herangezogen. Dadurch kann die Anzahl der codierten
Zeichen verdoppelt werden.

Da der ASCII-Code nur einen sehr eingeschränkten Zeichensatz von 128 bzw. 256
unterschiedlichen Zeichen bietet, wird in vielen Rechnersystemen auch der sogenannte
Unicode zur Codierung von Zeichen eingesetzt. Ziel des Unicodes ist es, alle existieren-
den Zeichen codieren zu können. Hierzu werden in Unicode Ebenen (planes) definiert,
die bis zu 65535 Zeichen enthalten können. Der Vorteil, alle gebräuchlichen Zeichen
codieren zu können, wird allerdings durch den Nachteil erkauft, dass pro Zeichen eine
deutlich höhere Anzahl an Bits vorgesehen werden muss. Daher wird in einfachen
Anwendungsfällen (zum Beispiel Status- und Fehlermeldungen eines digitalen Systems)
in der Regel auf den Einsatz von Unicode verzichtet und auf den weniger komplexen
ASCII-Code zurückgegriffen.

2.5.5	� 7-Segment-Code

Der 7-Segment-Code wird ausschließlich zur Codierung von Zahlen verwendet, die
mithilfe einer einfachen Anzeige dargestellt werden sollen. Sehr weit verbreitet sind
7-Segment-Anzeigen in digitalen Weckern, in denen sie zur Anzeige der Uhrzeit die-
nen. Auch bei einfachen Taschenrechnern kommen Segment-Anzeigen zum Einsatz. Ein
Beispiel einer solchen Anzeige auf einer Platine für digitaltechnische Experimente ist in
Abb. 2.13 dargestellt.

Tab. 2.12   Codierung der
Werte 0 bis 5 mithilfe eines
1-aus-6-Codes

Codierter Wert a5 a4 a3 a2 a1 a0

0 0 0 0 0 0 1

1 0 0 0 0 1 0

2 0 0 0 1 0 0

3 0 0 1 0 0 0

4 0 1 0 0 0 0

5 1 0 0 0 0 0

45

Tab. 2.13   Siebenstelliger
ASCII-Code

a6 0 0 0 0 1 1 1 1
a5 0 0 1 1 0 0 1 1
a4 0 1 0 1 0 1 0 1

a3 a2 a1 a0

0 0 0 0 NUL DLE SP 0 @ P ` p

0 0 0 1 SOH DC1 ! 1 A Q a q

0 0 1 0 STX DC2 “ 2 B R b r

0 0 1 1 ETX DC3 # 3 C S c s

0 1 0 0 EOT DC4 $ 4 D T d t

0 1 0 1 ENQ NAK % 5 E U e u

0 1 1 0 ACK SYN & 6 F V f v

0 1 1 1 BEL ETB ‘ 7 G W g w

1 0 0 0 BS CAN (8 H X h x

1 0 0 1 HT EM) 9 I Y i y

1 0 1 0 LF SUB * : J Z j z

1 0 1 1 VT ESC + ; K [k {

1 1 0 0 FF FS , < L \ l |

1 1 0 1 CR GS – = M] m }

1 1 1 0 SO RS . > N ^ n ~

1 1 1 1 SIX US2 / ? O _ o DEL

Abb. 2.13   Vierstellige 7-Segment-Anzeige

2.5  Codes

46 2  Digitale Codierung von Informationen

Die Darstellung der Ziffern wird häufig durch Leuchtdioden realisiert, die in Form
einer eckigen 8 angeordnet sind. Durch Einschalten ausgewählter Leuchtdioden können
nicht nur die Ziffern 0 bis 9, sondern auch die Hexadezimalziffern A bis F (zum Teil
als Kleinbuchstaben) angezeigt werden. Auf diese Weise kann pro Ziffer einer solchen
Anzeige der Wert von jeweils 4 Bits visualisiert werden.

Um Hexadezimalziffern mithilfe einer 7-Segment-Anzeige darstellen zu können, müs-
sen die 4 Bits einer Hexadezimalziffer in geeigneter Weise in 7 Bits zur Ansteuerung der
Leuchtdioden der Anzeige umgewandelt werden. In Tab. 2.14 ist eine hierfür geeignete
Codierung dargestellt, wobei davon ausgegangen wird, dass eine 1 einer leuchtenden
LED entspricht. Tab. 2.14 zeigt die Zuordnung zwischen den Bits des Codewortes (a bis
g) und den LEDs der Anzeige (Abb. 2.14).

Tab. 2.14   Codierung einer
Hexadezimalziffer für die
Ausgabe auf einer 7-Segment-
Anzeige

Hex-Ziffer Code für die Ansteuerung der Segmente
a b c d e f g

0 1 1 1 1 1 1 0

1 0 1 1 0 0 0 0

2 1 1 0 1 1 0 1

3 1 1 1 1 0 0 1

4 0 1 1 0 0 1 1

5 1 0 1 1 0 1 1

6 1 0 1 1 1 1 1

7 1 1 1 0 0 0 0

8 1 1 1 1 1 1 1

9 1 1 1 1 0 1 1

A 1 1 1 0 1 1 1

b 0 0 1 1 1 1 1

C 1 0 0 1 1 1 0

d 0 1 1 1 1 0 1

E 1 0 0 1 1 1 1

F 1 0 0 0 1 1 1

Abb. 2.14   Kennzeichnung
der LEDs einer 7-Segment-
Anzeige mit den Buchstaben
a bis g

47

2.6	� Übungsaufgaben

Prüfen Sie sich selbst mithilfe der folgenden Aufgaben. Am Ende dieses Buches finden
Sie die Lösungen.

Aufgabe 2.1
Stellen Sie die Dezimalzahl 5710 in anderen Zahlensystemen dar:

a)	 binär
b)	oktal
c)	 hexadezimal

Aufgabe 2.2
Welchen dezimalen Wert repräsentiert die Bitfolge „10010111“, wenn es sich

a)	 um eine vorzeichenlose Dualzahl handelt?
b)	um eine Zweierkomplement-Zahl handelt?
c)	 um eine BCD-codierte Zahl handelt?

Aufgabe 2.3
Wie viele Bits sind für die Darstellung des Wertes 3210 erforderlich, wenn als
Zahlendarstellung

a)	 die vorzeichenlose Dualzahlen-Darstellung gewählt wird?
b)	die binäre Vorzeichen-Betrag-Darstellung gewählt wird?
c)	 die Zweierkomplement-Darstellung gewählt wird?

Aufgabe 2.4
Welcher Zahlenbereich kann mit 8 Bits dargestellt werden, wenn die folgenden Darstel-
lungen gewählt werden?

a)	 vorzeichenlos
b)	Vorzeichen-Betrag
c)	 Zweierkomplement

Aufgabe 2.5
Die nachfolgenden 6-Bit-Zahlen sollen addiert werden. Bestimmen Sie jeweils das (6 bit
breite) Ergebnis für den Fall, dass es sich um vorzeichenlose Dualzahlen handelt und
ermitteln Sie, ob bei der Addition ein Überlauf auftritt.

a)	 110011 + 001010
b)	100010 + 101001

2.6  Übungsaufgaben

48 2  Digitale Codierung von Informationen

c)	 010111 + 101101
d)	Wie würden sich die Ergebnisse ändern, wenn die Operanden und das Ergebnis die

Zweierkomplement-Darstellung verwenden?
e)	 Was würde sich im Hinblick auf Bereichsüberschreitungen (Überlauf) ändern, wenn

die Operanden und das Ergebnis die Zweierkomplement-Darstellung verwenden?

Aufgabe 2.6
Nachfolgend sind 8-Bit-Zahlen in Hexadezimal-Darstellung angegeben. Diese Zahlen
sollen addiert werden. Bestimmen Sie jeweils das Ergebnis in Hexadezimal-Darstel-
lung und ermitteln Sie, ob Bereichsüberschreitungen auftreten. Die Zahlenwerte sollen
sowohl als vorzeichenlose Dualzahlen als auch als Zweierkomplement-Zahlen interpre-
tiert werden.

Hinweis: Sie können die Zahlen zunächst in eine binäre Darstellung überführen,
eine binäre Addition durchführen und anschließend das binäre Ergebnis in einer hexa-
dezimale Darstellung überführen. Einfacher ist es, wenn Sie die Subtraktion direkt in
der Hexadezimal-Darstellung durchführen. Wenden Sie hierzu die Rechenregeln aus der
Grundschule an und beachten Sie, dass der 10er-Übergang des Dezimalsystems einem
16er-Übergang im Hexadezimalsystem entspricht. Beide Wege führen zum Ziel.

a)	 27 + 33
b)	9A + 89
c)	 DE + CD

Aufgabe 2.7
Nachfolgend sind 8-Bit-Zahlen in Hexadezimal-Darstellung angegeben. Diese Zahlen
sollen subtrahiert werden. Bestimmen Sie jeweils das (8 bit breite) Ergebnis in Hexa-
dezimal-Darstellung und ermitteln Sie, ob Bereichsüberschreitungen auftreten. Die
Zahlenwerte sollen sowohl als vorzeichenlose Dualzahlen als auch als Zweierkomple-
ment-Zahlen interpretiert werden.

Hinweis: Wie bei der Addition ist auch hier ist die Berechnung im Hexadezimalsys-
tem einfacher.

a)	 A9 − 42
b)	83 − 37
c)	 5C − BF

Aufgabe 2.8
Welche besondere Eigenschaft besitzt der Gray-Code?

492.6  Übungsaufgaben

Aufgabe 2.9
Welche der folgenden Bitfolgen sind Pseudotetraden des BCD-Codes? (mehrere Antwor-
ten können richtig sein)

a)	 1000
b)	1011
c)	 1100
d)	1001

Aufgabe 2.10
Es wird ein 1-aus-8 Code betrachtet.

a)	 Welche Wortbreite besitzt ein Codewort?
b)	Wie viele unterschiedliche Codewörter lassen sich darstellen?

Aufgabe 2.11
Achtung, Transferleistung erforderlich: Man kann theoretisch auch für das Dezimal-
system eine Komplementdarstellung wählen, also eine Zahlendarstellung im „Zehner-
komplement“. Wie würden in dieser Zahlendarstellung die folgenden Werte dargestellt
werden, wenn 3 Dezimalstellen zur Verfügung stehen?

a)	 0
b)	−1
c)	−2
d)	−10

51© Springer-Verlag GmbH Deutschland 2016
W. Gehrke et al., Digitaltechnik, Springer-Lehrbuch,
DOI 10.1007/978-3-662-49731-9_3

In Kapitel 1 wurden bereits die wichtigsten Grundelemente digitaler Systeme vorgestellt.
Eine digitale Hardware verarbeitet Informationen, indem die Eingangssignale zum Bei-
spiel mithilfe von logischen Grundelementen, den Gattern, verknüpft werden. Wie kann
man nun festlegen wie die Gatter verschaltet werden sollen, um die Ausgangssignale
einer Schaltung zu berechnen?

Möglicherweise kennen Sie Schaltpläne für elektrische Geräte. Durch grafische
Symbole werden die Komponenten des Gerätes beschrieben und die elektrischen Ver-
bindungen werden durch Striche dargestellt. Eine naheliegende Möglichkeit wäre es,
diese grafische Darstellung auch zur Spezifikation einer digitalen Schaltung zu verwen-
den. Die elektrisch zu verbindenden Komponenten könnten dann zum Beispiel logische
Grundelemente sein. Man kann hierbei auch eine hierarchische Darstellung wählen,
indem einzelne Elemente zu Blöcken zusammenfasst werden, die dann in anderen Teilen
des Schaltplans als Module eingesetzt werden. Diese Form der Schaltungsbeschreibung
wurde tatsächlich in den Anfängen der Digitaltechnik eingesetzt. Allerdings durchlief die
Digitaltechnik von Beginn an eine rasante Entwicklung. Bis heute verdoppelt sich etwa
alle zwei Jahre die Anzahl der Schaltfunktionen, die sich in einer einzelnen elektroni-
schen Komponente (einem „Chip“) integrieren lässt. Dies bedeutet unter anderem, dass
die Komplexität digitaler Systeme kontinuierlich zunimmt. Mit den Fortschritten der
Digitaltechnik wurden die Schaltpläne zunehmend komplexer und man suchte etwa ab
Mitte der 1980er-Jahre nach Alternativen zur Schaltplaneingabe.

Als Lösung wurden die sogenannten Hardwarebeschreibungssprachen (engl. Hard-
ware Description Language, HDL) erfunden. Diese Sprachen ermöglichen es, die Funk-
tion einer digitalen Schaltung, ähnlich wie ein Programm für einen Rechner, in textueller
Form zu beschreiben. Im Gegensatz zu den üblichen Software-Programmiersprachen wie
C/C++ oder Java, besitzen Hardwarebeschreibungssprachen Sprachelemente, die beson-
ders für die Beschreibung digitaler Hardware geeignet sind. In der Praxis werden zwei

Einführung in VHDL 3

http://dx.doi.org/10.1007/978-3-662-49731-9_1

52 3  Einführung in VHDL

Beschreibungssprachen eingesetzt: Verilog und VHDL (Very High Speed Integrated Cir-
cuits Hardware Description Language). VHDL bietet gegenüber Verilog einen größeren
Funktionsumfang und wird daher meist als bevorzugte Sprache zur Beschreibung digita-
ler Systeme eingesetzt.

In diesem Kapitel werden die Grundlagen der Sprache VHDL vorgestellt. Nachdem
Sie dieses Kapitel gelesen haben, kennen Sie die wichtigsten Sprachelemente und sind in
der Lage eigene digitale Schaltungen in VHDL zu beschreiben. Praktische Hinweise für
die Durchführung eigener VHDL-Experimente finden Sie auch auf der im Vorwort ange-
gebenen Internetseite zum Buch.

3.1	� Designmethodik im Überblick

Der Ausgangspunkt einer HDL-basierten Beschreibung sind eine oder mehrere VHDL-
Dateien, welche die Funktion der späteren digitalen Hardware festlegen. Wie bei der
Erstellung von Software handelt es sich um Textdateien, die eine für den Menschen les-
bare Beschreibung der gewünschten Module enthalten.

Nicht jeder syntaktisch richtige VHDL-Code kann auch in Hardware überführt wer-
den. VHDL bietet zum Beispiel Sprachkonstrukte um Dateien einzulesen oder Texte
auszugeben. Diese Sprachelemente können nicht in Hardwaremodule übersetzt werden.
Der Compiler, welcher aus den VHDL-Beschreibungen Hardware erzeugt, würde ent-
sprechende Warn- bzw. Fehlermeldungen ausgeben. Da der Übersetzungsprozess in der
Regel als Synthese bezeichnet wird, spricht man auch von „synthesefähigem“ oder „syn-
thetisierbarem“ VHDL-Code.

Die nicht-synthetisierbaren Sprachelemente werden vielfach in sogenannten Testben-
ches eingesetzt. Als eine Testbench wird VHDL-Code bezeichnet, der zur Überprüfung
der Funktion des synthetisierten Codes geschrieben wurde.

Die VHDL-Dateien werden mithilfe eines sogenannten Simulators auf einem PC aus-
geführt. Der Simulator ermöglicht es, den zeitlichen Verlauf aller Signale zu visualisie-
ren oder in Dateien auf dem PC abzulegen.

Für die Simulation werden die zu testenden VHDL-Module als Komponenten in
den Testbench-Code eingefügt. Der Code der Testbench legt wechselnde Eingangssig-
nale (im Fachjargon „Stimuli“) an die Eingänge der zu prüfende Komponente an. Das
Konzept einer VHDL-Testbench, in die eine zu prüfende VHDL-Komponente eingesetzt
wird, ist in Abb. 3.1 dargestellt.

Der zeitliche Verlauf von Eingangs- und Ausgangssignalen als auch von internen
Signalen einer VHDL-Beschreibung kann während der Simulation mithilfe sogenann-
ter Waveform-Viewer visualisiert werden. Die grafische Darstellung der Signalverläufe
gibt häufig wichtige Hinweise zur Lokalisierung eines Fehlers und ist ein nicht wegzu-
denkendes Handwerkszeug der VHDL-Entwicklung. Ein Beispiel für die Ausgabe eines
Waveform Viewers ist in Abb. 3.2 dargestellt. In diesem Beispiel wird das Ergebnis der
UND-Verknüpfung von a und b dem Signal q zugewiesen.

53

In Abb. 3.3 ist der Ablauf eines VHDL-basierten Entwurfsprozesses dargestellt: Der
Ausgangspunkt sind VHDL-Dateien, welche die gewünschte Funktion der digitalen
Hardware beschreiben. Darüber hinaus werden Testbench-Dateien erstellt. Mithilfe der
Simulation der VHDL-Hardware-Module in Kombination mit den Testbench-Dateien
wird die korrekte Funktion der Hardware-Beschreibung überprüft und gegebenenfalls
entdecktes Fehlverhalten korrigiert. Anschließend kann die Synthese, also die Überfüh-
rung der VHDL-Hardware-Beschreibungen in digitale Hardware, erfolgen. Auch nach
diesem Schritt können Änderungen am VHDL-Code erforderlich werden um beispiels-
weise den benötigten Realisierungsaufwand zu reduzieren oder das zeitliche Verhalten
des Systems zu verbessern. Der Entwurfsprozess ist also ein iterativer Prozess, bei dem
(insbesondere bei komplexen Systemen) die Schritte Simulation und Synthese mehrfach
durchlaufen werden.

Testsignal-
Generator

Auswertung
und

Ergebnisanzeige

„Testbench“
(VHDL)

„Prüfling“
(VHDL)Stimuli Reaktion

Abb. 3.1   Verifikation einer Komponente mithilfe einer VHDL-Testbench

Abb. 3.2   Waveform Viewer

3.1  Designmethodik im Überblick

54 3  Einführung in VHDL

3.2	� Grundstruktur eines VHDL-Moduls

Ein VHDL-Modul repräsentiert meistens einen Teil eines größeren Systems und wird in
Form einer Textdatei beschrieben. In diesem Abschnitt werden einige grundlegende Kon-
zepte und Sprachelemente vorgestellt, die bei einem VHDL-basierten Hardwareentwurf
verwendet werden.

Simulation

. vhd . vhd

Synthese

VHDL-
Hardware-

Module

VHDL-
Testbench

ok?
nein

VHDL-Code
korrigieren

ja

Synthese
durchführen

ok?

VHDL-Code
verbessern

(bzgl. HW-Aufwand
oder Zeitverhalten)

nein

weitere
Fertigungsschritte

Digitales System

Abb. 3.3   VHDL-basierter Entwurfsprozess

55

3.2.1	� Bibliotheken

VHDL-Beschreibungen müssen vor ihrer Verwendung (in einer Simulation oder für die
Synthese) zunächst kompiliert werden. Die durch den Übersetzungsvorgang erzeugte
binäre Beschreibung wird in einer sogenannten Bibliothek abgelegt und kann anschlie-
ßend mit anderen kompilierten VHDL-Beschreibungen zu einer Simulationsdatei bzw.
der zu realisierenden Hardware zusammengefügt werden.

Es ist freigestellt, ob man für jedes VHDL-Modul eine eigene Bibliothek anlegt oder
ob mehrere VHDL-Dateien in einer gemeinsamen Bibliothek abgelegt werden. Insbeson-
dere für kleinere Systeme ist es häufig völlig ausreichend, eine gemeinsame Bibliothek
für alle übersetzten VHDL-Dateien zu wählen.

Ein Aufruf eines VHDL Compilers zum Übersetzen der VHDL-Datei my_module.vhd
kann wie folgt aussehen:

   vcom -work my_work_lib my_module.vhd

In diesem Beispiel wird der VHDL-Compiler vcom aufgerufen. Mithilfe des
Schalters -work wird der Name der zu verwendenden Bibliothek angegeben – in die-
sem Beispiel my_work_lib.

Drei Bibliotheken sind besonders wichtig: work, std und ieee.
Der Bibliotheksname work ist ein Synonym für die jeweils aktuelle Arbeitsbiblio-

thek, in der die Ergebnisse des Übersetzungsvorgangs abgelegt werden. Es ist zum Bei-
spiel möglich, alle VHDL-Elemente in einer Bibliothek my_work_lib abzulegen und die
bereits übersetzten Elemente wahlweise über den Namen work oder my_work_lib zu
referenzieren. Da work ein vordefinierter symbolischer Name für die aktuelle Arbeitsbi-
bliothek ist, sollte work nicht als Bibliotheksname verwendet werden. Andernfalls hätte
die Referenzierung der Bibliothek work zwei mögliche Bedeutungen: Es kann sich um
die aktuelle Arbeitsbibliothek (welche einen beliebigen Namen besitzen kann) oder um
die Bibliothek mit dem Namen work handeln.

In der Bibliothek std sind einige grundlegende Sprachkonstrukte und Datentypen defi-
niert. Darüber hinaus enthält die Bibliothek std auch Funktionen zur Ein- und Ausgabe.

Die Bibliothek ieee enthält wichtige und häufig verwendete Datentypen sowie viele
hilfreiche Funktionen. Die wichtigsten Elemente dieser Bibliothek werden im Verlauf
dieses Kapitels vorgestellt und in Kapitel 8 weiter vertieft.

Sollen Bibliotheken, die nicht bereits im VHDL-Standard vordefiniert sind (dies ist
für die Bibliotheken work und std der Fall), müssen sie vor ihrer Verwendung mithilfe
einer Library-Anweisung bekanntgemacht werden. Anschließend wird mithilfe einer
Use-Anweisung ausgewählt, welche Teile der Bibliothek in dem nachfolgenden VHDL-
Code verwendet werden sollen. Hinter dem Schlüsselwort use folgt zunächst die Angabe
der gewünschten Bibliothek und dann, durch Punkte abgetrennt, das zu verwendenden
Paket der Bibliothek sowie die Elemente aus dem jeweiligen Paket. Meist ist eine expli-
zite Auswahl einzelner Elemente nicht erforderlich: Man wählt mit dem Schlüsselwort

3.2  Grundstruktur eines VHDL-Moduls

http://dx.doi.org/10.1007/978-3-662-49731-9_8

56 3  Einführung in VHDL

all einfach alle vorhandenen Elemente aus. Im nachfolgenden VHDL-Code stehen dann
alle Elemente des jeweiligen Bibliothekspakets zur Verfügung.

Die folgenden Beispiele verdeutlichen die Syntax zur Verwendung von Bibliotheken:

-- Die Bibliotheken std und work benòtigen keine Library-Anweisung

-- mithilfe einer Use-Anweisung werden die Teile der Bibliothek bekannt

-- gemacht, die in der nachfolgenden VHDL-Beschreibung verwendet

-- werden

-- Verwendung von Ein-/Ausgabe-Funktionen aus der Bibliothek std

use std.textio.all;

-- Verwendung von Funktionen eines eigenen Paketes, welches bereits

-- in der aktuellen Arbeitsbibliothek abgelegt (ùbersetzt) worden ist

use work.my_package.all;

-- Verwendung von Datentypen, Funktionen etc.

-- wie sie im IEEE-Standard 1164 festgelegt worden sind

library ieee;

use ieee.std_logic_1164.all;

3.2.2	� Entity und Architecture

VHDL-Beschreibungen entsprechen einzelnen Hardware-Komponenten. Damit eine sol-
che Komponente vollständig beschrieben ist, müssen vor allem zwei Teile der Beschrei-
bung erstellt werden:

1.	 Die äußeren Anschlüsse der Komponente: Welche Signale werden in das Modul hin-
eingeführt und welche kommen heraus? Welche Wortbreite haben die Signale?

2.	 Die Funktion des Moduls: Nach welcher digitalen Rechenvorschrift werden die Aus-
gangssignale aus den Eingangssignalen berechnet?

Die Beschreibung der „Sicht von außen“ wird als Entity und das „Innenleben“ als
Architecture bezeichnet. Diese beiden Teile eines VHDL-Moduls werden häufig in
einer gemeinsamen Textdatei abgelegt. Die Beschreibung einer Entity beginnt mit dem
VHDL-Schlüsselwort entity. Der Name des Moduls wird durch die Schlüsselwörter entity
und is eingerahmt. Das Ende der Entity-Beschreibung wird durch end gekennzeich-
net. Zwischen dem Beginn und dem Ende der Entity werden die von außen sichtbaren
Eigenschaften des Moduls definiert. Anschlüsse für Eingangs- und Ausgangssignale, im
englischen Sprachgebrauch als Ports bezeichnet, werden in Form einer Liste angegeben,
welche mit dem Schlüsselwort port eingeleitet wird. Der eigentliche Inhalt der Portliste
wird in Klammern angegeben, wobei die einzelnen Listenelemente durch ein Semikolon
voneinander getrennt werden. Für jeden Port wird ein Name angegeben und festgelegt,
ob es sich um einen Eingang oder einen Ausgang handelt (Schlüsselwörter in und out).

57

Darüber hinaus muss für die Anschlüsse ein Datentyp angegeben werden. In der Pra-
xis hat sich für die Beschreibungen einzelner Bits der Datentyp std_logic (gesprochen:
„standard logic“) durchgesetzt, welcher durch die Norm IEEE 1164 definiert ist. Um
diesen Datentyp verwenden zu können, muss das Paket std_logic_1164 aus der IEEE-
Bibliothek hinzugefügt werden.

Betrachten wir das Beispiel eines UND-Gatters mit zwei Eingängen. Die Entity kann
in VHDL wie folgt realisiert werden:

library ieee;

use ieee.std_logic_1164.all;

entity and_2 is

   port (a : in  std_logic;

         b : in  std_logic;

         q : out std_logic);

end;

Groß- und Kleinschreibung wird in VHDL nicht unterschieden und daher kann für
alle Sprachelemente sowohl Groß- als auch Kleinschrift verwendet werden. Selbst
Mischformen sind erlaubt und syntaktisch korrekt. So kann das Schlüsselwort entity
auch Entity oder eNTiTy geschrieben werden.

Die Architecture-Beschreibung startet mit dem Schlüsselwort architecture, gefolgt
von einem Namen der Architecture. Welcher Entity die Architecture zuzuordnen ist, wird
direkt danach mit of festgelegt. Zwischen den Schlüsselwörtern begin und end wird der
VHDL-Code eingefügt, der die Funktion des Moduls beschreibt. Die Architecture eines
UND-Gatters ist recht übersichtlich. Die Zuweisung der UND-Verknüpfung der beiden
Eingänge an den Ausgangsport benötigt nur eine Codezeile.

architecture behave of and_2 is

begin

   q <= a and b;
end;

3.2.3	� Bezeichner

Namen von VHDL-Elementen wie zum Beispiel Entity-, Architecture-, oder Signalna-
men usw. beginnen immer mit einem Buchstaben. Anschließend sind sowohl Buchstaben
als auch Zahlen oder der Unterstrich „_“ erlaubt. Die Verwendung von Schlüsselwörtern
ist nicht erlaubt. In Tab. 3.1 sind die VHDL-Schlüsselwörter zusammengefasst.

Es ist nicht unbedingt notwendig die Bedeutung aller Schlüsselwörter zu verstehen.
Einige der reservierten Wörter werden selbst von Experten nur selten verwendet.

3.2  Grundstruktur eines VHDL-Moduls

58 3  Einführung in VHDL

Für die Erstellung von VHDL-Code ist ein kontextsensitiver Editor empfehlenswert,
der Schlüsselwörter automatisch farblich hervorhebt. Damit kann zum Beispiel erkannt
werden, ob versehentlich ein Schlüsselwort als Bezeichnung eines VHDL-Elements ver-
wendet wird.

3.3	� Grundlegende Datentypen

Genauso wie Programmiersprachen zur Entwicklung von Software, stellt VHDL ver-
schiedene Datentypen zur Verfügung. In diesem Abschnitt werden die wichtigsten
Datentypen vorgestellt.

3.3.1	� Integer

Mithilfe des Datentyps integer können ganze Zahlen im Bereich von −231 bis +231−1
dargestellt werden, also der Zahlenbereich, welcher mit einer 32 bit breiten Zweierkom-
plementzahl dargestellt werden kann.

Tab. 3.1   Übersicht über reser-
vierte Wörter der Hardwarebe-
schreibungssprache VHDL

abs downto library postponed srl

access else linkage procedure subtype

after elsif literal process then

alias end loop pure to

all entity map range transport

and exit mod record type

architecture file nand register unaffected

array for new reject units

assert function next rem until

attribute generate nor report use

begin generic not return variable

block group null rol wait

body guarded of ror when

buffer if on select while

bus impure open severity with

case in or signal xnor

component inertial others shared xor

configuration inout out sla

constant is package sll

disconnect label port sra

59

Das Syntheseprogramm, das die VHDL-Beschreibung in Hardware überführt, wird
für Integer-Werte zunächst eine Wortbreite von 32 Bit annehmen – unabhängig davon,
ob diese Wortbreite für die zu verarbeitenden Daten wirklich benötigt wird. Es besteht
daher die Gefahr, dass das Syntheseprogramm nicht erkennt, dass die in VHDL beschrie-
bene Aufgabe auch mit einer geringeren Wortbreite lösbar ist und letztlich eine Schal-
tung für 32 Bit realisiert, obwohl auch eine weniger komplexe Schaltung ausreichen
würde. Um diese Gefahr zu vermeiden können die im Folgenden vorgestellten Datenty-
pen std_logic_vector, signed und unsigned eingesetzt werden. Sie zeichnen sich dadurch
aus, dass man die zu verwendende Wortbreite explizit angibt.

3.3.2	� Std_logic

Der Datentyp std_logic wurde bereits weiter vorne in diesem Kapitel zur Beschreibung
einzelner Bits eingeführt. Dieser Datentyp repräsentiert ein einzelnes Bit, das die Werte
0 oder 1 annehmen kann. Der Datentyp std_logic bietet darüber hinaus noch weiterge-
hende Möglichkeiten.

So wird zur Beschreibung des Einschaltzustands eines Signals, welcher zufällig 0
oder 1 sein kann, ein weiterer Wert benötigt. Der Datentyp std_logic bietet hierfür den
Wert Undefined an, welcher mit dem Buchstaben U abgekürzt wird.

Neben 0, 1, und U bietet der Datentyp noch sechs weitere Werte. Eine Übersicht über
die neunwertige Logik des Datentyps std_logic ist in Tab. 3.2 dargestellt.

Nicht alle neun möglichen Werte sind gleichermaßen praxisrelevant. Einige können
zum Beispiel verwendet werden, wenn Ausgänge mehrerer Gatter auf eine gemeinsame
Leitung geführt werden. Hierzu zählen die Werte Z, L, H und W. Die Möglichkeit, meh-
rere Gatterausgänge an eine gemeinsame physikalische Leitung anzuschließen, ist jedoch
ein Sonderfall.

Es verbleiben neben der 0 und der 1 also noch die Werte U, X und – (Don’t-Care).
Obwohl Sie diese Werte in einer realen Schaltung nicht beobachten werden, da die

Tab. 3.2   Werte des Datentyps
std_logic

Wert Bedeutung

0 Logische 0

1 Logische 1

U Undefiniert

X Unbekannt

– „Don’t-Care“ (für Eingänge: Wert ist beliebig)

Z Hochohmig

L „Schwache“ logische 0

H „Schwache“ logische 1

W „Schwach“ unbekannt

3.3  Grundlegende Datentypen

60 3  Einführung in VHDL

Leitungen entweder den Wert 0 oder den Wert 1 besitzen, sind die zusätzlichen Signal-
zustände hilfreich. Die Werte U und X werden Ihnen bei der Simulation eines VHDL-
Modells begegnen. Der Wert U deutet darauf hin, dass sich in der simulierten Schaltung
Signale befinden, die noch nicht auf einen definierten Wert initialisiert worden sind. Ins-
besondere zu Beginn einer Simulation werden Sie viele Signale mit dem Wert U beob-
achten können. Aufgrund von VHDL-Zuweisungen werden diese Signale meist relativ
schnell einen definierten Wert (meist 0 oder 1) erhalten. Ist ein Signal mit dem Wert U
länger zu beobachten, sollte der Grund für dieses Verhalten analysiert werden. Es kann
sein, dass die fehlende Zuweisung eines Wertes an dieses Signal einen Fehler darstellt,
der zu einem Fehlverhalten der Hardware führen kann.

Der Wert X tritt auf, wenn unbeabsichtigt zwei Ausgänge mit unterschiedlichen logi-
schen Werten auf das gleiche Signal geführt werden. Darüber hinaus kann der Wert X
in der Simulation entstehen, wenn undefinierte oder unbekannte Signale in logischen
Verknüpfungen verwendet werden. Werden in einer Simulation Signale mit dem Wert
X beobachtet, muss die Ursache für dieses Verhalten untersucht werden. In den meis-
ten Fällen liegt ein Fehler im VHDL-Code vor, welcher vor dem Umsetzen der VHDL-
Beschreibung in Hardware behoben werden muss.

Mithilfe des Wertes Don’t-Care kann in einer VHDL-Beschreibung zum Ausdruck
gebracht werden, dass der Wert eines bestimmten Signals unerheblich für die Funktion
der Schaltung ist und somit dieses Signal für die Berechnung der Ausgangswerte nicht
beachtet werden muss. Meist kann diese Information bei der Optimierung der synthe-
tisierten Hardware verwendet werden, sodass eine schnellere oder weniger aufwendige
Hardware erzeugt werden kann.

3.3.3	� Std_logic_vector

Viele digitale Systeme lassen sich einfacher und übersichtlicher in VHDL beschreiben,
wenn man die Möglichkeit nutzt, einzelne Bits zu gruppieren. Hierzu kann der Datentyp
std_logic_vector (beziehungsweise std_ulogic_vector) verwendet werden.

Die Indexgrenzen des Vektors werden in Klammern angegeben. Meist wird hierbei
eine absteigende Indizierung verwendet, zum Beispiel (7 downto 0).

Nehmen wir an, Sie möchten eine Schaltung realisieren, die vier UND-Gatter mit
jeweils zwei Eingängen enthalten soll. Selbstverständlich kann man diese Schaltung mit-
hilfe von 8 Eingängen und 4 Ausgängen vom Datentyp std_logic realisieren. Allerdings
würde in diesem Fall die Entity-Beschreibung des Moduls 12 Ports enthalten und in der
Architecture müssten vier Signalzuweisungen, für jeden der vier Ausgänge der Schal-
tung, vorgenommen werden.

Die Problemstellung lässt sich bei Verwendung des Datentyps std_logic_vector deut-
lich übersichtlicher lösen:

61

library ieee;

use ieee.std_logic_1164.all;

entity and_2x4 is

   port (a : in  std_logic_vector (3 downto 0);

         b : in  std_logic_vector (3 downto 0);

         q : out std_logic_vector (3 downto 0));

end;

architecture behave of and_2x4 is

begin

   q <= a and b;
end;

VHDL unterstützt Operatoren, die auf Vektoren angewendet werden. In der Codezeile
q <= a and b wird dies ausgenutzt. Diese Zeile führt eine bitweise UND-Verknüpfung
der einzelnen Komponenten der Vektoren a und b aus und weist das Ergebnis den jewei-
ligen Bits des Ausgangs q zu. Es wäre auch möglich, diese Zuweisungen explizit auszu-
führen, indem auf die einzelnen Elemente der Vektoren zugegriffen wird:

architecture behave_2 of and_2x4 is

begin

   q(0) <= a(0) and b(0);
   q(1) <= a(1) and b(1);
   q(2) <= a(2) and b(2);
   q(3) <= a(3) and b(3);
end;

Diese Schreibweise würde zum gleichen Ergebnis führen wie die UND-Verknüpfung
auf Basis von Vektoren. Es ist eine Frage des „Coding-Styles“ welche der beiden Varian-
ten bevorzugt wird. Im Allgemeinen sollte jedoch aus Gründen der Übersichtlichkeit die
vektorielle Schreibweise vorrangig verwendet werden.

Im Zusammenhang mit Vektoren wird häufig die Frage gestellt, ob es möglich ist, die
Elemente eines Vektors zu vertauschen indem ein Vektor mit absteigender Indizierung
(zum Beispiel 7 downto 0) einem Vektor mit aufsteigender Indizierung (zum Beispiel 0
to 7) zugewiesen wird. Obwohl die Elementanzahl in den Vektoren übereinstimmt, ist
eine solche Zuweisung nicht zulässig. Die beiden Vektoren besitzen unterschiedliche
Datentypen und dürfen daher nicht direkt einander zugewiesen werden.

3.3.4	� Signed und Unsigned

Der Datentyp std_logic_vector ist eine Zusammenfassung einzelner Bits zu einem Vek-
tor. Welche Information durch den Bitvektor dargestellt wird, ist durch den Datentyp

3.3  Grundlegende Datentypen

62 3  Einführung in VHDL

nicht eindeutig definiert. Es könnten völlig unabhängige Bits sein, die aus Gründen der
Übersichtlichkeit gruppiert wurden. Genauso gut könnte die Zusammenfassung der Bits
einen Zahlenwert darstellen. Im letzteren Fall wäre es wünschenswert, dass für die Vek-
toren nicht nur logische Funktionen, sondern auch arithmetische Operationen wie Addi-
tion oder Subtraktion definiert wären.

VHDL verwendet im Hinblick auf den Datentyp std_logic_vector eine strikte Philo-
sophie: Der Datentyp std_logic_vector beschreibt die Zusammenfassung einzelner Bits.
Dass diese Bits gemeinsam betrachtet einen Zahlenwert darstellen könnten, wird von
VHDL ausgeschlossen und es werden im Sprachstandard keine arithmetischen Operatio-
nen dafür zur Verfügung gestellt.

Soll in VHDL die Kombination einzelner Bits als eine Zahl interpretiert werden,
werden die Datentypen signed und unsigned verwendet. Ähnlich wie beim Datentyp
std_logic_vector können mit signed und unsigned beliebig große Vektoren gebildet wer-
den. Die Bits werden als eine Zweierkomplementzahl beziehungsweise als vorzeichen-
lose Dualzahl interpretiert werden.

Diese Datentypen sind ebenfalls vom IEEE standardisiert worden und stehen im Paket
numeric_std der IEEE-Bibliothek zur Verfügung. Für diese Datentypen sind arithmeti-
sche Operationen wie die Addition definiert und eine Addiererschaltung für vorzeichen-
lose Zahlen mit der Wortbreite 4 bit kann wie folgt implementiert werden:

library ieee;

use ieee.numeric_std.all;

entity addu_4 is

   port (a : in  unsigned (3 downto 0);

         b : in  unsigned (3 downto 0);

         q : out unsigned (3 downto 0));

end;

architecture behave of addu_4 is

begin

   q <= a + b;
end;

3.3.5	� Konstanten

Möchte man einem Signal eine Konstante zuweisen, muss hierbei auf den Daten-
typ geachtet werden. Bei Signalen vom Datentyp integer erfolgt die Zuweisung – wie
in einer Software-Programmiersprache – in Form einer dezimalen Zahl. Möchte man
dagegen den Zahlenwert in hexadezimaler, binärer oder einer anderen nicht-dezimalen
Schreibweise angeben, muss vor der Zahl der Radix der Zahlendarstellung angegeben
werden. Die nachfolgende Zahl wird durch Doppelkreuze (#) eingerahmt. So würde die
Hexadezimalzahl BEEF im VHDL-Code als 16#BEEF# angegeben werden.

63

Konstanten vom Datentyp std_logic_vector oder signed bzw. unsigned werden in
Anführungszeichen in binärer Form angeben. Mit einem vorangestellten x lassen sich die
Werte auch in hexadezimaler Schreibweise angeben, wobei jede Hexadezimalstelle exakt
4 bit repräsentiert.

Die Zuweisung eines std_logic-Wertes erfolgt in einfachen (halben) Anführungszeichen.
Die folgenden Beispiele verdeutlichen die Möglichkeiten zur Angabe von Konstanten.

-- Exemplarische Konstantenzuweisungen

i <= 1234;          -- integer, dezimal

i <= 16#ABC#;       -- integer, hexadezimal

i <= 8#175#;        -- integer, oktal

i <= 2#01010111#;   -- integer, dual

sv8 <= "01000111";  -- std_logic_vector

sv8 <= "0UUX0111";  -- std_logic_vector

sv8 <= x"EF";       -- std_logic_vector, hexadezimal

s <= '1';           -- std_logic

b <= true;            -- boolean

Sehr nützlich ist die Zuweisung mithilfe der Others-Funktion. Diese ermöglicht es
einzelnen Elementen eines Vektors Werte zuzuweisen und den restlichen Elementen
(others) einen anderen Wert. Die Syntax wird durch die folgenden Beispiele verdeutlicht:

-- Diese Zeilen kònnen…

   sv1 <= "01000001";
   sv2 <= "00111101";
   sv3 <= "00000000";
-- … mit Hilfe von "others" auch so formuliert werden:

   sv1 <= (0,6=>'1', others=>'0');
   sv2 <= (7,6,1 =>'0', others=>'1');
   sv3 <= (others=>'0');

3.3.6	� Umwandlung zwischen Datentypen

Für die Umwandlung zwischen den Datentypen integer, signed/unsigned und std_logic_
vector stehen verschiedene Funktionen zur Verfügung. So lässt sich beispielsweise ein
Unsigned- bzw. Signed-Wert mit der Funktion to_integer() in einen Integer-Wert umwan-
deln. Für die umgekehrte Typumwandlung steht die Funktion to_unsigned() beziehungs-
weise to_signed() zur Verfügung. Für eine Umwandlung vom Datentyp unsigned bzw.
signed in den Datentyp std_logic_vector kann die Funktion std_logic_vector() verwendet
werden. Eine Umwandlung in die Datentypen signed und unsigned kann entsprechend
mit den Funktionen signed() und unsigned() erfolgen.

In Abb. 3.4 sind die Funktionen zur Umwandlung zwischen den Datentypen std_
logic_vector, signed/unsigned und integer grafisch dargestellt.

3.3  Grundlegende Datentypen

64 3  Einführung in VHDL

Eine Umwandlung vom Datentyp integer in den Datentyp std_logic_vector kann nicht
direkt erfolgen, sondern erfordert immer einen Zwischenschritt über den Datentypen sig-
ned bzw. unsigned.

Einige Beispiele für die Umwandlung der VHDL-Datentypen sind im Folgenden
dargestellt.

-- Exemplarische Typumwandlungen

i    <= to_integer(s8);       -- signed -> integer
u8   <= to_unsigned(i,8);     -- integer -> unsigned
s8   <= to_signed(-123,8);    -- Ganzzahlige Konstante: Datentyp Integer
slv8 <= std_logic_vector(u8); -- unsigned -> std_logic_vector
i    <= to_integer(unsigned(slv8));       -- std_logic_vector -> integer
slv8 <= std_logic_vector(to_signed(i,8)); -- integer -> std_logic_vector

3.3.7	� Datentyp Bit

In VHDL existiert auch der Datentyp bit. Objekte dieses Typs können die Werte 0 bzw.
1 annehmen, was auf den ersten Blick ausreichend erscheinen mag. In der Praxis besteht
jedoch häufig der Wunsch einem Signal noch weitere Zustände, außer 0 oder 1, zuwei-
sen zu können. Ein typisches Beispiel hierfür ist der Zustand eines Signals nach dem
Einschalten eines Systems. Ist es 0 oder ist es 1? Möglicherweise „fällt“ das Signal auf
einen zufälligen Initialwert, es ist also nach dem Einschalten manchmal 0 und manch-
mal 1. Der Einschaltzustand des Signals ist also weder eindeutig 0 noch eindeutig 1,

std_logic_vector

unsigned

signed

integer

to_unsigned (x,N)

to_integer (x)

to_integer (x)

to_signed (x,N)std_logic_vector (x)

std_logic_vector (x)

unsigned (x)

signed (x)

x: umzuwandelnder Wert

N: Wortbreite

Abb. 3.4   Umwandlung zwischen wichtigen VHDL-Datentypen

65

sondern undefiniert. Die Modellierung des undefinierten Einschaltzustands ist mithilfe
des Datentyps std_logic möglich, mit dem Datentyp bit dagegen nicht. Daher wird in
der Praxis der Typ std_logic bevorzugt eingesetzt und hat die Verwendung des Typs bit
verdrängt.

3.4	� Operatoren

Die UND-Verknüpfung wurde bereits in den vorangegangenen Abschnitten einge-
führt. In diesem Abschnitt werden nun weitere wichtige Operatoren vorgestellt, die zur
Beschreibung der Funktion einer Schaltung eingesetzt werden können. Nicht alle Opera-
toren lassen sich mit allen Datentypen verwenden. So ist es zum Beispiel nicht möglich
zwei Werte vom Datentyp std_logic_vector zu addieren.

In den Tab. 3.3, 3.4 und 3.5 folgenden Tabellen sind wichtige VHDL-Operatoren
zusammengestellt. Die Datentypen integer, signed und unsigned werden hierbei unter
dem Begriff „numerisch“ zusammengefasst.

Die folgenden Beispiele sollen den Einsatz der Operatoren in VHDL verdeutlichen:

-- Beispiele fùr die Verwendung von VHDL-Operatoren

a    <= b or c;              -- Bitweises ODER

sig1 <= not sig2;             -- Bitweise Invertierung

u8_1 <= u8_2 + "00000011";    -- Addition

u8   <= to_unsigned(2**7,8);  -- Potenzierung

if s8 = to_signed(3,8) then     -- Vergleich

   slv5_1 = slv5_2 nand slv5_3; -- NAND (Nicht-UND)

end if;

Bei den arithmetischen Operatoren ist zu beachten, dass die Wortbreite des Ergeb-
nisses mit der Wortbreite der Operanden identisch sein muss. Sie mögen vielleicht
spontan einwenden wollen, dass dies zu Problemen führen kann: Wenn beispielsweise
zwei 8 Bit breite vorzeichenlose Zahlen (Wertebereich: 0 … 255) addiert werden

Tab. 3.3   Logische VHDL-Operatoren

Schreibweise Bedeutung Datentypen Synthetisierbar?

and UND-Verknüpfung std_logic, std_logic_vector,
signed, unsigned

Ja

or ODER-Verknüpfung

nand Nicht-UND-Verknüpfung

nor Nicht-ODER-Verknüpfung

xor Exklusiv-ODER-Verknüpfung

not Invertierung

3.4  Operatoren

66 3  Einführung in VHDL

sollen, würde das Ergebnis in einem Bereich von 0 bis 510 liegen können. Es wären
also zur Darstellung des Ergebnisses 9 Bit erforderlich. Dieser Einwand ist völlig kor-
rekt und in VHDL würde das 8 Bit breite Ergebnis der Addition tatsächlich nur die
untersten Bits des „wahren“ Ergebnisses enthalten. Würden beispielsweise die Zahlen
65 und 250 addiert (65 + 250 = 315 = 1001110112), würde dem Ergebnissignal der
binäre Wert 00111011 zugewiesen – die führende 1 ginge verloren. Soll bei der Addi-
tion das korrekte 9 Bit breite Ergebnis berechnet werden, muss die Addition mit 9 Bit
breiten Operanden ausgeführt werden. Dies lässt sich erreichen, indem die Wortbreite
der Operanden um 1 bit vergrößert wird. Eine mögliche Realisierung in VHDL zeigt
der nachfolgende Code:

-- Addition mit vorheriger Erweiterung der Operanden

sum <= '0' & op1 + '0' & op2;       -- fùr Datentyp unsigned

sum <= op1(7) & op1 + op2(7) & op2; -- fùr Datentyp signed

Dieser VHDL-Code verwendet den Operator & mit dem zwei Vektoren zu einem
neuen Vektor mit größerer Wortbreite „zusammengefügt“ werden können. Der Operator
lässt sich mit allen vektoriellen Datentypen, also signed, unsigned und std_logic_vector
verwenden. Die folgenden Beispiele verdeutlichen die Funktionsweise des Operators:

Tab. 3.5   VHDL-Operatoren
für Vergleiche

Schreibweise Bedeutung Datentypen Synthetisierbar?

= Gleich Beliebig Ja

/= Ungleich

> Größer Numerisch

< Kleiner

>= Größer-gleich

<= Kleiner-gleich

Tab. 3.4   Arithmetische VHDL-Operatoren

Schreibweise Bedeutung Datentypen Synthetisierbar?

+ Addition Numerisch Ja

- Subtraktion

* Multiplikation

/ Division Abhängig vom verwendeten
Synthese-Programmmod Quotient der Ganzzahldivision

rem Rest der Ganzzahldivision

** Potenzierung Integer Falls Konstanten

abs Absolutwert Numerisch Ja

67

-- Exemplarische Anwendungen des "Zusammenfùgeoperators"

sv6  <= "010" & '1' & "100" & '0'; -- Ergebnis: "01011000"

sv10 <= "00" & sv8;   -- Vorzeichenlose Erweiterung 8 bit -> 10 bit

s9   <= s8(7) & s8;   -- Vorzeichenerweiterung eines signed-Wertes

-- "Rotieren" eines 6 bit breiten Wertes um zwei Stellen nach rechts

-- Beispiel: Aus "011001" wird "010110"

sv6   <= sv6(1 downto 0) & sv6(5 downto 2);

3.5	� Signale

Die Ausgangswerte komplexerer Schaltungen lassen sich normalerweise nicht durch
eine ausschließliche Verknüpfung der Eingangssignale beschreiben. Häufig möchte man
zunächst Zwischenergebnisse berechnen, deren anschließende Verknüpfung weitere Zwi-
schenergebnisse oder die Werte der Ausgangssignale ergeben. Diese Zwischenergebnisse
sind letztlich nichts anderes als digitale Signale, die nur innerhalb des Moduls verwendet
werden und nicht von außen sichtbar sind. Für die Definition solcher Signale steht in
VHDL das Schlüsselwort signal zur Verfügung.

3.5.1	� Definition und Verwendung von Signalen

Nehmen wir an, die in Abb. 3.5 dargestellte Schaltung soll in VHDL beschrieben werden.
Die Eingänge a und b werden durch ein UND-Gatter zum Signal z verknüpft, welches

nur innerhalb des Moduls sichtbar ist. Mithilfe der ODER-Verknüpfung von z und dem
Eingangssignal c wird das Ausgangssignal q berechnet. Die Signale a, b und q sind Ports
der Entity dieses Moduls. Das Signal z muss dagegen in der Architecture des Moduls
definiert werden. VHDL stellt hierfür das Schlüsselwort signal zur Verfügung. Hinter
dem Schlüsselwort signal werden der gewünschte Signalname sowie der Datentyp des
Signals angegeben. Signale werden im sogenannten Deklarationsteil der Architecture
definiert, welcher sich vor dem begin der Architecture befindet.

Abb. 3.5   Beispiel einer
logischen Funktion &

≥1

a

b

c

q

z

3.5  Signale

68 3  Einführung in VHDL

Die VHDL Beschreibung des Moduls würde also wie folgt realisiert werden:

library ieee;

use ieee.std_logic_1164.all;

entity and_or is

   port (a : in  std_logic;

         b : in  std_logic;

         c : in  std_logic;

         q : out std_logic);

end;

architecture behave of and_or is

   -- Hier ist der Deklarationsteil der Architecture

   -- Signale werden hier definiert

   -- und kònnen nach "begin" verwendet werden

   signal z : std_logic;

begin

   z <= a and b;
   q <= z or c;
end;

3.5.2	� Signalzuweisungen

In dem obigen Beispiel ist die Reihenfolge der Zuweisungen an das Signal z bzw. den Port
q unerheblich. Anders als in einer Programmiersprache für die Softwareentwicklung wird
der Code innerhalb einer Architecture nicht sequenziell, Zeile für Zeile, ausgeführt, sondern
alle Zuweisungen sind zeitgleich aktiv. Der Fachbegriff hierfür ist nebenläufige Zuweisung.

Es wäre also ebenso korrekt, den Code wie folgt umzustellen:

architecture behave_2 of and_or is

   signal z : std_logic;

begin

   q <= z or c;  -- zuerst die Zuweisung an q
   z <= a and b; -- dann erst an z
end;

Hat man bereits Erfahrungen mit Programmiersprachen für die Softwareentwicklung
gesammelt, mag dieses Verhalten zunächst ungewöhnlich erscheinen. Aber eine genau-
ere Betrachtung zeigt, dass sich die Zuweisungen genauso verhalten müssen: Ein Gat-
ter in einer digitalen Schaltung reagiert immer auf die Signale an den Gattereingängen,
unabhängig davon, ob andere Gatter in der Schaltung existieren oder ob andere Gatter
ebenfalls Änderungen ihrer Eingangssignale beobachten. Somit sind die beiden Gatter
der Beispielschaltung also immer und unabhängig voneinander aktiv. Das UND-Gatter

69

wird immer dann einen neuen Wert ausgeben, wenn sich einer der beiden Eingänge a
oder b geändert hat, während eine Änderung von z oder c zu einer Neuberechnung des
Ausgangs q führt. Um dieses Verhalten beschreiben zu können, müssen auch die VHDL-
Zuweisungen kontinuierlich und unabhängig voneinander aktiv sein. Würde dagegen
eine Zuweisung von der Ausführung einer vorangegangenen Zuweisung abhängen,
ergäbe sich eine Abhängigkeit, die nicht dem Verhalten der Hardware entspräche.

Selbstverständlich hätte diese recht einfache Schaltung übrigens auch mithilfe einer
einzelnen Zuweisung in der Form

   q <= (a and b) or c;

realisiert werden können, wobei dann auf die Definition des Signals Z verzichtet wer-
den kann.

In welchem Umfang Signale eingesetzt werden ist auch eine Frage der Übersichtlichkeit
des Codes. Werden mehr als zwei oder drei Operatoren in einer Zuweisung verwendet, emp-
fiehlt sich in der Regel der Einsatz von Signalen, um die Lesbarkeit des Codes zu verbessern.

3.6	� Prozesse

In den vorangegangenen Beispielen wurden Signalen oder Ports Werte zugewiesen.
Hierzu wurden einfache Zuweisungen verwendet. Mithilfe der vorgestellten Opera-
toren kann man unter Verwendung dieser einfachen Zuweisungen theoretisch belie-
big komplexe Schaltungen in VHDL realisieren. Dieses Vorgehen kann allerdings ein
recht mühseliges und fehlerbehaftetes Abenteuer werden: Die logische Funktion, die es
zu realisieren gilt, müsste zunächst manuell so umgewandelt werden, dass sie mithilfe
der vorgestellten Operatoren darstellbar ist. Erst danach kann die Eingabe des VHDL-
Codes erfolgen. Selbst wenn die Umwandlung der Funktion fehlerfrei gelingt, wäre der
anschließend formulierte VHDL-Code in vielen Fällen schlecht lesbar. Spätere Änderun-
gen der Funktion wären damit schwierig.

Geht es also vielleicht auch etwas eleganter und übersichtlicher? Kann man vielleicht
auch in VHDL die aus Programmiersprachen bekannten Konstrukte wie Schleifen oder
Verzweigungen zur Beschreibung einer digitalen Funktion verwenden? Alle Signal- oder
Portzuweisungen werden zeitgleich (parallel, nebenläufig) ausgeführt. Mit zunehmender
Komplexität eines VHDL-Moduls kann dies die Verständlichkeit des Codes weiter ver-
ringern. Wäre es daher nicht angenehmer, wenn VHDL-Code sequenziell (wie ein Pro-
gramm einer Software-Programmiersprache) ausgeführt würde?

Für die Lösung der skizzierten Problematik existiert in VHDL das Sprachkonstrukt
eines Prozesses. Prozesse sind eines der wichtigsten Elemente zur Beschreibung von
Hardware in VHDL. Ein VHDL-Prozess kann als Erweiterung der Zuweisungen aufge-
fasst werden. Genauso wie eine nebenläufige Zuweisung beschreibt ein VHDL-Prozess
das Verhalten einer Teilschaltung des Systems und wird innerhalb einer Architecture
eingesetzt.

3.6  Prozesse

70 3  Einführung in VHDL

Prozesse zeichnen sich unter anderem durch die folgenden Eigenschaften aus:

•	 Ein Prozess wird nebenläufig zu anderen Prozessen oder Signalzuweisungen ausgeführt.
•	 VHDL-Code innerhalb eines Prozesses wird sequenziell ausgeführt.
•	 Innerhalb eines Prozesses können Konstrukte wie sie aus Software-Programmierspra-

chen bekannt sind, zum Beispiel If-Else-Anweisungen oder Variablen, zur Beschrei-
bung der Funktion des Prozesses eingesetzt werden.

•	 Genauso wie nebenläufige Signalzuweisungen repräsentiert ein Prozess ein Stück
Hardware, welches einen Teil der digitalen Gesamtfunktion des Systems zur Verfü-
gung stellt.

Im Folgenden werden einige wichtige Aspekte von Prozessen näher beleuchtet und
vertieft.

3.6.1	� Syntaktischer Aufbau von Prozessen

Prozesse werden mithilfe des Schlüsselwortes process eingeleitet. Wie bei einer VHDL-
Architecture beginnt die eigentliche Beschreibung des Verhaltens nach dem Schlüssel-
wort begin. Zwischen process und begin befindet sich der Deklarationsteil, welcher zum
Beispiel zur Definition von Variablen verwendet werden kann.

Im Gegensatz zu nebenläufigen Signalzuweisungen werden Prozesse nicht automa-
tisch ausgeführt, wenn sich eines der verknüpften Signale ändert. Die im Rahmen die-
ses Kapitels betrachteten Prozesse besitzen eine sogenannte Sensitivitätsliste, welche die
Signale enthält, deren Änderung zu einer Ausführung des Prozesses führen soll. Die Sig-
nale werden in Klammern nach dem Schlüsselwort process angeben.

Im Folgenden wird die Struktur von Prozessen anhand des Beispiels aus Abb. 3.5
erläutert.

architecture and_or_proc of and_or is

begin

   my_process: process (a,b,c)

   begin

      q <= (a and b) or c;
   end process;

end;

Es soll eine Schaltung beschrieben werden, welche die Signale bzw. Eingänge a, b
und c verknüpft und das Ergebnis q zuweist. Da q von a, b und c abhängt, muss eine
Neuberechnung von q immer dann erfolgen, wenn sich eines der Eingangssignale ändert.
Daher werden die drei Signale in die Sensitivitätsliste aufgenommen. Zwischen begin
und end wird die Prozessbeschreibung eingefügt, die in diesem einfachen Beispiel nur
eine einzelne Zuweisung umfasst.

71

Es wäre völlig berechtigt, wenn Sie jetzt Zweifel an der Sinnhaftigkeit von Prozessen
bekämen: Im Prinzip beschreibt der Prozess keine andere Funktion als die, die man bereits
mit einer einfachen Signalzuweisung realisieren kann. Eine nebenläufige Signalzuweisung
wäre für dieses Beispiel tatsächlich kürzer und übersichtlicher als die Verwendung eines
Prozesses. Aber Prozesse können mehr! Einige Aspekte werden bereits in diesem Kapitel
vorgestellt. Andere Aspekte werden Sie beim Lesen der weiteren Kapitel dieses Buches
entdecken und sukzessive die Behauptung nachvollziehen können, dass ohne Prozesse
eine sinnvolle und übersichtliche Beschreibung digitaler Systeme nicht möglich ist.

Möglicherweise werden Sie bei der Lektüre dieses Buches auch entdecken, dass
nebenläufige Signalzuweisungen und Prozesse zwei unterschiedliche Herangehenswei-
sen repräsentieren: Beschreibt man ein digitales Hardware-Modul ausschließlich mit
Signalzuweisungen, benötigt man eine gute Vorstellung darüber, wie die Schaltung aus
digitalen Grundelementen (UND-, ODER-Gatter, usw.) aufgebaut sein soll. Bei Verwen-
dung von Prozessen steht eher die digitale Funktion im Vordergrund. Wie diese Funktion
später durch das Syntheseprogramm mithilfe der verfügbaren Grundelemente realisiert
wird, ist von nachrangiger Bedeutung. Daher lassen sich mithilfe von VHDL-Prozessen
auch komplexe digitale Funktionen elegant und übersichtlich realisieren.

Der Beispielcode zeigt auch, dass Prozessen Namen erhalten können, wenn dies sinn-
voll erscheint. Der Prozessname ist optional und wird vor dem Schlüsselwort process
eingefügt. Der dem Namen folgende Doppelpunkt ist obligatorisch.

3.6.2	� Ausführung von Prozessen

Prozesse besitzen eine gewisse Ähnlichkeit mit Funktionen höherer Programmierspra-
chen. Allerdings existiert zwischen den Funktionen einer Programmiersprache und den
VHDL-Prozessen ein entscheidender Unterschied. Eine Software-Funktion wird vom
Programmierer durch einen entsprechenden Aufruf im Code aktiviert und einmalig
ausgeführt. Dieses Prinzip kann für Prozesse nicht gelten: Ein Prozess beschreibt eine
digitale Hardware-Komponente, die kontinuierlich aktiv ist. Eigentlich müsste also ein
Prozess eine Endlosschleife enthalten, die immer wieder den Kern des Prozesses aus-
führt. Genauso arbeitet ein VHDL-Prozess tatsächlich. Die Endlosschleife ist jedoch im
VHDL-Code nicht in Form einer Schleifenanweisung sichtbar, da mit der Verwendung
eines VHDL-Prozesses bereits implizit festgelegt ist, dass der Code des Prozesses konti-
nuierlich ausgeführt wird.

Endlosschleifen in einer Software führen häufig dazu, dass ein Programm nicht
mehr reagiert. In VHDL sind dagegen Endlosschleifen bewusst gewollt? Genauso ist es
tatsächlich.

Ein Software-Programm wird sequenziell, also Befehl für Befehl, von einem Rech-
ner ausgeführt. Sie haben aber nur einen Rechner zur Ausführung der Software zur Ver-
fügung und wenn dieser mit der Verarbeitung einer Endlosschleife beschäftigt ist, kann
er keine anderen Aufgaben ausführen. Wenn Sie dagegen aus einer VHDL-Beschreibung

3.6  Prozesse

72 3  Einführung in VHDL

Hardware generiert haben, existieren sozusagen viele kleine „Rechner“ gleichzeitig.
Diese führen kontinuierlich, also im Prinzip in einer Endlosschleife, immer das gleiche
„Programm“ aus, welches zuvor durch Prozesse beschrieben wurde.

Aber wie kann dann eine Simulation mehrerer VHDL-Prozesse auf einem nicht-paral-
lelen, sequenziell arbeitenden Rechner ausgeführt werden? Ein PC wäre ja schon mit der
Ausführung eines einzelnen VHDL-Prozesses komplett ausgelastet.

Um diese Problematik zu lösen, ist in VHDL die bereits erwähnte Sensitivitätsliste
eingeführt worden. In dieser Liste werden alle Signale eingetragen, die innerhalb des
jeweiligen Prozesses gelesen werden. Der Prozess wird genau einmal durchlaufen, wenn
sich eines der Signale der Sensitivitätsliste ändert. Ändert sich keines der Signale, ruht
die Ausführung des jeweiligen Prozesses. Auf diese Weise wird in der Simulation einer
VHDL-Beschreibung zu einem beliebigen Zeitpunkt immer maximal ein Prozess aktiv
sein. Die Aktivierung eines Prozesses führt zu Signaländerungen, die dann wiederum
die Ausführung weiterer Prozesse zur Folge haben. Auf diese Weise kann sukzessive das
gesamte Verhalten der parallelen Hardware auf einem sequenziell arbeitenden PC nach-
gebildet werden.

Wird beim Anlegen der Sensitivitätsliste ein Signal übersehen, ist dies für die Hard-
waregenerierung mittels Synthese relativ unbedeutend. Die meisten Syntheseprogramme
würden zwar Warnungen ausgeben, aber dennoch eine funktionstüchtige Hardware
erzeugen.

Für die Simulation ist die korrekte Angabe der Sensitivitätsliste dagegen sehr wichtig:
Würde bei dem in Abschn. 3.6.1 gezeigten Beispiel das Signal b nicht in der Sensitivi-
tätsliste aufgeführt sein, würde der Prozess bei Änderungen von b nicht aktiviert werden.
Somit würde trotz einer Änderung von b das Ausgangssignal q seinen Wert behalten und
die Simulation der Schaltung ein anderes Ergebnis liefern als die zugehörige Hardware.
Eine umfassende Überprüfung der VHDL-Beschreibung mithilfe einer Simulation wäre
also nicht möglich.

3.6.3	� Variablen

Als Alternative zu Signalen können in Prozessen auch Variablen eingesetzt werden.
VHDL-Variablen sind mit statischen Variablen vergleichbar, wie sie zum Beispiel in der
Programmiersprache C zur Verfügung stehen: Sie sind nur in dem Prozess sichtbar, in
dem sie definiert wurden und behalten den zugewiesenen Wert auch dann, wenn der Pro-
zess unterbrochen wird.

Die Definition einer Variablen geschieht im Deklarationsteil des Prozesses (vor begin)
und werden mit dem Schlüsselwort variable eingeleitet. Für Zuweisungen an Variablen
wird := verwendet, während bei Signalen die bereits erwähnte Zeichenkombination <=
zum Einsatz kommt.

Ein einfaches Beispiel verdeutlicht die Verwendung von Variablen in
VHDL-Prozessen:

73

proc_with_variable : process (a,b)

   variable my_var : std_logic;

begin

   my_var := a and b; -- Variablenzuweisung
   q <= my_var;       -- Signalzuweisung
end process;

Aufgrund der sequenziellen Ausführung eines Prozesses sind die im Beispielcode
gezeigten Zuweisungen nicht vertauschbar.

Im Prinzip wird eine Zuweisung an eine Variable zunächst komplett durchgeführt,
bevor die nächste Zeile des Prozesses abgearbeitet wird. Dies ist genau das Verhalten,
das auch für Variablen in Programmiersprachen wie C/C++ oder Java gilt.

Zuweisungen an Signale blockieren den Prozessablauf dagegen nicht. Der Prozess
läuft also weiter, ohne dass die Zuweisung eine Wirkung auf den Wert des Signals hat.
Das Signal behält bis zu einer Prozessunterbrechung bzw. dem Prozessende seinen alten
Wert. Erst bei einer Beendigung oder Unterbrechung des Prozesses werden die zuvor
ausgeführten Signalzuweisungen wirksam und die Signale erhalten neue Werte.

Würde also die Zuweisung an q vor der Zuweisung an my_var stehen, würde der
VHDL-Code im Gegensatz zum obigen Beispiel kein einfaches UND-Gatter mehr
beschreiben.

Da insbesondere das oben erwähnte Verhalten von Signalzuweisungen innerhalb von
Prozessen für viele VHDL-Einsteiger etwas gewöhnungsbedürftig ist, wird dieses Ver-
halten im nachfolgenden Abschnitt ausführlicher erläutert.

3.6.4	� Signalzuweisungen in Prozessen

Für die Zuweisungen von Signalen innerhalb von VHDL-Prozessen gelten zwei wichtige
Regeln:

1.	 Die an ein Signal zugewiesenen Werte werden erst nach einer Unterbrechung des Pro-
zesses sichtbar.

2.	 Wird ein Signal mehrfach in einem Prozess zugewiesen, zeigt nur die zuletzt ausge-
führte Zuweisung Wirkung. Alle vorangegangenen Zuweisungen werden verworfen.

Da Signale allen Prozessen einer VHDL-Architecture zur Verfügung stehen, muss sicher-
gestellt werden, dass die Änderung eines Signals in allen Prozessen gleichzeitig sichtbar
wird. Dieser Forderung wird durch die erste Regel Rechnung getragen.

Wird eine VHDL-Beschreibung simuliert, werden alle Zuweisungen an Signale
zunächst „gesammelt“. Die eigentliche Zuweisung an das Signal und die damit verbun-
dene Sichtbarmachung eines Signalwechsels geschieht erst mit der Unterbrechung des
Prozesses oder mit der Beendigung des Prozessdurchlaufs. Dies bedeutet auch, dass

3.6  Prozesse

74 3  Einführung in VHDL

ein Lesezugriff auf ein Signal vor einer Prozessunterbrechung den „alten“ Wert liefern
wird – unabhängig davon, ob der Prozess das Signal zuvor beschrieben hat oder nicht.

Nicht wenige, die VHDL lernen, haben zuvor eine Programmiersprache erlernt. In
diesen Sprachen gilt die Regel, dass eine Zuweisung sofort Wirkung zeigt. Wird einer
Variablen ein neuer Wert zugewiesen, kann bereits mit dem nächsten Befehl auf den
neuen Wert zugegriffen werden. Auch hier gilt: VHDL hat zwar viele Ähnlichkeiten
mit klassischen Programmiersprachen, aber VHDL ist nicht für die Entwicklung eines
sequenziellen Rechnerprogramms, sondern für die Beschreibung von parallel arbeiten-
den Hardwarekomponenten gedacht.

Die zweite Regel ergibt sich als Konsequenz aus der ersten. Es ist erlaubt einem Sig-
nal in einem Prozess mehrfach einen Wert zuzuweisen. Wenn die Signalzuweisungen
aber zunächst gesammelt werden und erst bei einer Prozessunterbrechung wirklich aus-
geführt werden, kann hierbei nur der zuletzt zugewiesene Wert Berücksichtigung finden.

Ihnen wird der nachfolgende VHDL-Code vorgelegt. Es handelt sich um ein Modul
mit den Eingängen a und b sowie dem Ausgang q.

signal s : std_logic;

   -- Hier ggf. weiterer Code

process (a,b,s)

begin

   s <= a and b;
   s <= a or b;
   s <= a;
   q <= s;
   s <= a xor b;
end process;

Welche Hardware wird durch diesen Code beschrieben? Ein UND-Gatter oder ein
ODER-Gatter? Oder ist es nur ein einfacher Draht; wird also q immer direkt der Wert
von a zugewiesen? Oder handelt es sich um ein Exklusiv-ODER-Gatter?

Analysiert man dieses Beispiel Schritt für Schritt, kann man sich der, in diesem Bei-
spiel recht verklausulierten, Funktion des Codes nähern.

Offensichtlich ist, dass die ersten beiden Zuweisungen an das Signal s keine Wirkung
haben, da sie durch spätere Zuweisungen überschrieben werden. Diese kann man also
aus dem Code streichen und der Prozess kann auch wie folgt formuliert werden.

process (a,b,s)

begin

   s <= a;
   q <= s;
   s <= a xor b;
end process;

75

Werfen wir in dem verbleibenden Code einen Blick auf die Zuweisung an den Aus-
gang q. q wird der Wert von s zugewiesen. Aber was liefert der Lesezugriff auf s zurück?
Vielleicht sind Sie geneigt ad hoc „a“ zu sagen, da vor der Zuweisung an q dem Signal
s der Wert von a zugewiesen wird. Dies wäre die korrekte Antwort, wenn es sich bei s
um eine VHDL-Variable handeln würde. Da s jedoch ein Signal ist, muss der Code noch
etwas genauer analysiert werden.

Bei der Ausführung des Prozesses wird die Zuweisung des Wertes von a an das Sig-
nal s noch nicht sofort ausgeführt. Die Zuweisung an q würde also den Wert des Sig-
nals s sehen, der bei einem vorangegangenen Aufruf des Prozesses zugewiesen wurde.
Da das Signal s in dem Prozess zweimal geschrieben wird und nur die letzte Sig-
nalzuweisung zur Ausführung kommt, wird s also die Exklusiv-ODER-Verknüp-
fung der Eingänge a und b zugewiesen. Also beschreibt der Prozess letztlich eine
Exklusiv-ODER-Verknüpfung.

Die Reihenfolge der Zuweisungen an s und q ist, wie bei nebenläufigen Signalzuwei-
sungen irrelevant. Der Prozess kann daher auch wie folgt formuliert werden.

process (a,b,s)

begin

   s <= a xor b;
   q <= s;
end process;

Diese Variante ist deutlich besser lesbar, da sie auch bei einer sequenziellen Interpre-
tation des Codes auf das korrekte Verständnis der beschriebenen Funktionalität führt.

Sofern das Signal s nicht in anderen Prozessen der Architecture verwendet wird, kann
der Code auf die Zuweisung q <= a xor b reduziert werden.

Ein nicht seltener Fehler, der bei Signalzuweisungen in Prozessen auftritt, ist die
Zuweisung eines Signals aus unterschiedlichen Prozessen heraus. Dies würde bedeuten,
dass zwei Prozesse gleichzeitig den Wert des Signals festlegen könnten. Abgesehen von
wenigen Spezialfällen, ist dies in der Regel nicht gewollt und würde auch beim Syn-
thesevorgang zu Fehlermeldungen führen. Daher müssen bei der Erstellung von VHDL-
Prozessen die beiden folgenden Regeln beachtet werden:

1.	 Signale dürfen in beliebig vielen Prozessen gelesen werden.
2.	 Signale dürfen nur in einem Prozess geschrieben werden.

3.6.5	� Wichtige Sprachkonstrukte in VHDL-Prozessen

VHDL-Prozesse bieten vielfältige Sprachkonstrukte zur Beschreibung einer Hardware-
Komponente. In diesem Abschnitt werden die gebräuchlichsten und wichtigsten Ele-
mente zur Beschreibung von Prozessen vorgestellt.

3.6  Prozesse

76 3  Einführung in VHDL

3.6.5.1 � If-Anweisung
Die If-Anweisung ermöglicht die bedingte Ausführung von Code innerhalb eines
VHDL-Prozesses. Zwischen den Schlüsselwörtern if und then wird eine Bedingung, bei-
spielsweise ein Vergleich zweier Signale, eingefügt. Anschließend folgt der Code, der
ausgeführt werden soll, wenn die Bedingung wahr ist. Abgeschlossen wird die Anwei-
sung mit end if;

Optional können zusätzlich mit elsif weitere Bedingungen eingefügt werden, die dann
überprüft werden, wenn die voranstehenden Bedingungen unwahr waren.

Mit dem Schlüsselwort else wird der Code eingeleitet, der ausgeführt werden soll,
wenn alle Bedingungen der If-Anweisung unwahr waren. Auch dies ist eine Option, die
bei Bedarf weggelassen werden kann.

Bei der Verwendung von elsif ist die Schreibweise als ein einzelnes Wort zu beachten.
Viele VHDL-Anfänger, insbesondere wenn sie bereits Programmierkenntnisse besitzen,
neigen dazu, statt elsif die Formulierung else if zu wählen. Die beiden Varianten sind
nicht äquivalent. Mit else if wird in dem Else-Zweig der Anweisung eine neue If-Anwei-
sung geöffnet, die ihrerseits durch end if geschlossen werden muss.

Der folgende Pseudocode zeigt den prinzipiellen Aufbau der If-Anweisung, wobei
optionale Elemente in geschweiften Klammern dargestellt sind.

if <Bedingung> then

   <Anweisungen>

{elsif <Bedingung> then

   <Anweisungen>}

{else

   <Anweisungen>}

end if;

Ein Beispiel für die Anwendung der If-Anweisung zeigt der folgende Code.

if a = b then

   q <= a and c;

   v := '1';

elsif a = c and b = '1' then

   q <= d;

   v := '1';

else

   q <= '0';

   v := '0';

end if;

3.6.5.2 � Case-Anweisung
Wie die If-Anweisung ermöglicht auch die Case-Anweisung die bedingte Ausfüh-
rung von Codeteilen. Nach dem Schlüsselwort case wird ein auszuwertender Ausdruck

77

angegeben. Mit dem Schlüsselwort when wird angegeben, welcher Code für ein kon-
kretes Ergebnis des Ausdrucks ausgeführt werden soll. Durch die Verwendung von „|“
können mehrere Werte angegeben werden, die zur Ausführung des nachfolgenden Codes
führen sollen. Ist keiner der angegebenen Werte identisch mit dem Ergebnis des Aus-
drucks, können Default-Anweisungen spezifiziert werden, die in diesem Fall ausgeführt
werden sollen. Hierzu wird statt eines Wertes das Schlüsselwort others angegeben.

Der folgende Pseudocode zeigt den Aufbau der Case-When-Anweisung.

case <Ausdruck> is

   when <Wert>  => <Anweisungen>
   {when <Wert> => <Anweisungen>}
      …

   {when <Wert> => <Anweisungen>}
   {when others => <Anweisungen>}
end case;

Ein Anwendungsbeispiel der Case-When-Anweisung wird durch den folgenden Code
dargestellt.

case a_vec is -- a_vec ist vom Typ std_logic_vector(2 downto 0)

   when "000" =>

      q <= a and c;

      r <= a;

   when "001"|"010" =>

      q <= b;

      r <= a and c;

   when "111" =>

      q <= '1';

      r <= d;

   when others =>

      q <= '0';

      r <= '0';

end case;

Mit einer Case-Anweisung kann ein einzelner Ausdruck mit verschiedenen möglichen
(konstanten) Werten verglichen werden. In vielen Fällen kann mit der Case-Anweisung
ein sehr kompakter und übersichtlicher Code erzielt werden. Sind die Vergleichswerte
nicht konstant oder sind Vergleiche mit unterschiedlichen Ausdrücken gewünscht, kann
die If-Anweisung verwendet werden.

3.6.5.3 � For-Schleife
VHDL unterstützt auch Schleifen. Zuerst wird hier die For-Schleife vorgestellt.

3.6  Prozesse

78 3  Einführung in VHDL

Nach dem Schlüsselwort for wird ein Bezeichner für die Schleifenvariable eingefügt.
Der Schleifenbereich folgt nach dem Schlüsselwort in. Der Bereich kann aufsteigend (zum
Beispiel „1 to 8“) oder absteigend (zum Beispiel „15 downto 0“) durchlaufen werden.

Nach der Angabe des Schleifenbereichs folgt das Schlüsselwort loop, welches von
den Anweisungen des Schleifenkerns gefolgt wird. Die Schleife wird mit end loop
abgeschlossen.

Schleifen dürfen optional mit einem Namen (Label) versehen werden.

{loop_label:} for <Bezeichner> in <Bereich> loop

   <Anweisungen>

end loop {loop_label};

Ein Beispiel für die Verwendung einer For-Schleife zeigt das nachfolgende Codefrag-
ment, das den Vektor x „spiegelt“ und das Ergebnis dem Vektor y zuweist. y(0) erhält
den Wert von x(9), y(1) den Wert von x(8) usw.

my_loop: for i in 0 to 9 loop

   y(9-i) := x(i); -- x und y sind Vektoren
end loop my_loop;

Die For-Schleifen sind abweisende Schleifen. Beispielsweise würde der Kern der
nachfolgenden Schleife nie ausgeführt werden, da es sich um eine abwärtszählende
Schleife handelt, deren untere Grenze größer ist als die obere.

another_loop: for i in 0 downto 5 loop

   y(i) := x(i); -- was auch immer hier steht - es wird nicht ausgefùhrt!

end loop;

Schleifen sind synthesefähig, wenn die Schleifengrenzen statisch sind, sich die
Schleifengrenzen also nicht erst zur Laufzeit des VHDL-Codes ergeben.

Darüber hinaus ist zu beachten, dass Schleifen von Syntheseprogrammen „ausge-
rollt“ werden. Man kann sich dies so vorstellen, dass die Schleife aufgelöst wird und der
Schleifenkern wiederholt in den Code eingefügt wird. Für jedes Durchlaufen des Schlei-
fenkerns wird also eine eigene Hardwarekomponente generiert.

3.6.5.4 � While-Schleife
Neben For-Schleifen können in VHDL auch While-Schleifen eingesetzt werden. Hierbei
wird zunächst die nach dem Schlüsselwort while angegebene Bedingung geprüft. Ergibt
diese den Wert true, wird der Schleifenkern ausgeführt und anschließend die Bedingung
erneut geprüft. Auch die While-Schleifen sind also abweisende Schleifen.

Die Struktur einer while-Schleife zeigt der folgende Pseudocode.

79

{loop_label:} while <Bedingung> loop

   <Anweisungen>

end loop {loop_label};

Ein Beispiel für die Verwendung einer While-Schleife zeigt das nachfolgende
Codefragment.

i := 0;
while i < 8 loop

   a(i) := b(i) xor c(7-i);
   i    := i + 1;
end loop;

3.7	� Hierarchie

Werden komplexere Schaltungen entworfen, ist es sinnvoll, die gesamte Schaltung
in kleinere Module aufzuspalten, die zunächst separat in VHDL beschrieben werden.
In einer weiteren VHDL-Beschreibung können diese Module dann zur gewünschten
Gesamtschaltung kombiniert werden. Um dieses Vorgehen zu unterstützen, bietet VHDL
die Möglichkeit Module innerhalb von Modulen „aufzurufen“. In der Praxis spricht man
hierbei nicht von „aufrufen“, sondern von „instanziieren“. Ein instanziiertes Modul wird
auch als „Instanz“ dieses Moduls bezeichnet.

Es ist auch möglich eine neu geschaffene Komponente, welche Instanzen enthält, wie-
derum in einem anderen Modul zu instanziieren und so eine hierarchische Beschreibung
einer Schaltung in mehreren Stufen/Ebenen zu realisieren.

Im Folgenden wird die Vorgehensweise zur Instanziierung von Modulen in VHDL
anhand des Beispiels einer Komponente beschrieben, die drei 8-Bit-Operanden addiert.

Nehmen wir an, dass bereits das folgende Entity-Architecture-Paar zur Beschreibung
eines 8-Bit-Addierers für zwei Operanden in VHDL beschrieben wurde.

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity add_2 is

   port (op1 : in  std_logic_vector(7 downto 0);

         op2 : in  std_logic_vector(7 downto 0);

         sum : out std_logic_vector(7 downto 0));

end;

3.7  Hierarchie

80 3  Einführung in VHDL

architecture struct of add_2 is

begin

   process (op1,op2)

   begin

      sum <= std_logic_vector(unsigned(op1) + unsigned(op2));

   end process;

end;

Um diese Beschreibung des Addierers in einer anderen VHDL-Architecture zu instan-
ziieren, wird die Entity angegeben, die für diese Instanziierung verwendet werden soll.
Darüber hinaus muss die Bibliothek angegeben werden, in der das Modul abgelegt wurde.

Die Instanziierung eines Moduls beginnt mit einem eindeutigen Namen für diese Instanz.
Nach einem Doppelpunkt folgen das Schlüsselwort entity, die Bibliothek (im nachfolgen-
den Beispiel die Arbeitsbibliothek work) und der Name des zu instanziierenden Moduls.
Abschließend wird die Zuordnung der Anschlüsse der Instanz zu den Ein- und Ausgängen
oder den Signalen der instanziierenden Architecture angegeben. Die Zuordnung wird mit
den Schlüsselwörtern port map eingeleitet.

Auf Basis des Addierers für zwei Operanden kann ein Addierer für 3 Operanden
realisiert werden. Das Blockschaltbild dieses 3-Operanden-Addierers ist in Abb. 3.6
dargestellt.

Dieser Addierer lässt sich in VHDL wie folgt beschreiben:

library ieee;

use ieee.std_logic_1164.all;

entity add_3 is

   port (a : in std_logic_vector (7 downto 0);

         b : in std_logic_vector (7 downto 0);

Abb. 3.6   Blockschaltbild
eines Addierers für 3
Operanden

ADD_2

ADD_2

tmp

a b c

q

81

         c : in  std_logic_vector (7 downto 0);

         q : out std_logic_vector (7 downto 0));

end;

architecture struct of add_3 is

   signal tmp : std_logic_vector (7 downto 0);

begin

   a1: entity work.add_2 port map (op1 => a, op2 => b, sum => tmp);

   a2: entity work.add_2 port map (op1 => tmp, op2 => c, sum => q);

end;

Das Beispiel zeigt die Zuordnung der Anschlüsse der add_2-Module zu den Ein- und
Ausgängen des Moduls add_3, wobei eine namensbasierte Zuordnung (engl. named
association) mithilfe des Zuordnungsoperators => verwendet wird. Eher selten findet
man positionsbasierte Zuordnung (engl. positional association), bei der lediglich die
Ports und Signale der instanziierenden Architecture angegeben werden. Das erste ange-
gebene Signal wird dann an den ersten Port der instanziierten Architecture angeschlos-
sen. Das zweite Signal an den zweiten Port, usw.

3.8	� Übungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Prüfen Sie sich mit den folgenden Aufga-
ben. Die Antworten finden Sie am Ende des Buches.

Sofern nicht anders vermerkt, ist nur eine Antwort richtig.

Aufgabe 3.1
Welche der folgenden Aussagen zum VHDL-basierten Entwurfsprozess ist richtig?

a)	 Eine Testbench ist eine VHDL-Datei, die nur in der Simulation zum Einsatz kommt.
b)	Wurde mithilfe von Simulationen die korrekte Funktionsweise einer VHDL-Beschrei-

bung nachgewiesen, müssen im weiteren Verlauf des Entwurfsprozesses keine Ände-
rungen an dem VHDL-Code vorgenommen werden.

c)	 Ein digitales System muss immer in einer einzelnen VHDL-Datei beschrieben
werden.

d)	Eine syntaktisch korrekt beschriebenes Entity-/Architecture-Paar ist sowohl simulier-
bar als auch synthetisierbar.

Aufgabe 3.2
Welche Aussagen zu VHDL-Bibliotheken sind richtig? (Mehrere Antworten sind richtig)

a)	 Das Ergebnis der Übersetzung einer VHDL-Datei wird immer in einer Bibliothek
abgelegt.

3.8  Übungsaufgaben

82 3  Einführung in VHDL

b)	Zur Verwendung der Inhalte einer Bibliothek muss diese mithilfe einer Library-
Anweisung bekannt gemacht werden (Ausnahmen work, std).

c)	 Die Bibliothek work enthält wichtige vordefinierte Datentypen.
d)	Bei der Verwendung des Datentyps std_logic muss die Bibilothek ieee bekannt

gemacht werden.
e)	 Die Datentypen signed, unsigned und integer sind vordefinierte Datentypen, die auch

ohne Angabe einer Bibliothek verwendet werden können.

Aufgabe 3.3
Welche Aussagen sind richtig? (Mehrere Antworten sind richtig)

a)	 In VHDL wird Groß- und Kleinschreibung nicht unterschieden: MY_SIG und my_sig
bezeichnen das gleiche Signal.

b)	Anhand der Entity einer VHDL-Beschreibung können die Ein- und Ausgänge eines
Moduls identifiziert werden.

c)	 Signale vom Datentyp std_logic können nur die Werte ‚0‘, ‚1‘ und ‚U‘ annehmen.
d)	 Im Deklarationsteil einer Architecture (= vor begin) können sowohl Signale als auch

Variablen definiert werden.
e)	 Numerische Konstanten können nicht in hexadezimaler Darstellung angegeben

werden.

Aufgabe 3.4
Welche Aussagen zu VHDL-Prozessen sind richtig? (Mehrere Antworten sind richtig)

a)	 Der Code innerhalb eines Prozesses wird sequenziell ausgeführt.
b)	Alle Signale auf die innerhalb eines Prozesses schreibend zugegriffen wird, müssen in

der Sensitivitätsliste erscheinen.
c)	 Innerhalb eines Prozesses ist nur die zuletzt ausgeführte Zuweisung an ein Signal rele-

vant. Alle vorangegangenen Zuweisungen an das gleiche Signal haben keine Wirkung.
d)	Für die Zuweisung eines Wertes an eine Variable wird die Zeichenkombination „<=“

verwendet.

Aufgabe 3.5
Der nachfolgend dargestellte VHDL-Code ist syntaktisch nicht korrekt. Korrigieren Sie
die Fehler.

library ieee.std_logic_1164.all;

entity my_module is

   port (a : in  std_logic_vector;

         b : in  integer;

         c : in  std_logic;

833.8  Übungsaufgaben

         q : out std_logic_vector;)

end;

architecture of my_module is

begin

   signal tmp : unsigned (7 downto 0);

   process (a,b,tmp)

      variable vi : unsigned (7 downto 0);

   begin

      tmp <= to_unsigned(A);
      vi  <= to_unsigned(B,8);
      if c == 1
         q <= vi - tmp;
      else

         q <= vi + tmp;
      end;

   end process;

end;

Aufgabe 3.6
Erstellen Sie ein VHDL-Modul (Entity und Architecture), das die im Folgenden
beschriebene Funktion realisiert:

•	 Das Modul besitzt die Eingänge a (Wortbreite 8 bit), b (8 Bit) und c (2 Bit) und den
Ausgang q (8 Bit)

•	 Der Ausgang q wird in Abhängigkeit vom Eingang c aus den Werten der Eingänge a
und b berechnet. Es soll gelten:
c = 00:   q = a
c = 01:   q = a & b
c = 10:   q = a ˅ b
c = 11:   q = a ⊕ b  (⊕ bezeichnet eine Exklusiv-ODER-Verknüpfung)

•	 Verwenden Sie für die Fallunterscheidung (Werte von c) eine If-Anweisung

Aufgabe 3.7
Ersetzen Sie die If-Anweisung aus Aufgabe 3.6 durch eine Case-Anweisung. Welche
Codeänderungen sind erforderlich?

Aufgabe 3.8
Auf Basis des Moduls aus Aufgabe 3.6 soll ein Modul entworfen werden, das für eine
Wortbreite von 16 Bit ausgelegt ist (Ports a,b und q) aber ansonsten die identische Funk-
tion ausführt.

Schreiben Sie ein geeignetes Entity/Architecture-Paar in VHDL. Instanziieren Sie das
Modul aus Aufgabe 3.6.

85© Springer-Verlag GmbH Deutschland 2016
W. Gehrke et al., Digitaltechnik, Springer-Lehrbuch,
DOI 10.1007/978-3-662-49731-9_4

Digitalschaltungen, deren Ausgänge nur von den aktuellen Eingangswerten abhängen,
nennt man kombinatorische Schaltungen. Eine solche Schaltung arbeitet nur mit Logik-
gattern und enthält weder Rückkopplungen noch Flip-Flops. Die Eingangswerte werden
durch die Schaltung kombiniert (daher der Name) und ein Ergebnis berechnet. Da keine
Flip-Flops verwendet werden, können keine Informationen gespeichert werden.

Kombinatorische Schaltungen sind normalerweise Teil einer größeren Schaltung. Sie
werden zusammen mit Flip-Flops eingesetzt, wobei der kombinatorische Teil die Berech-
nungen vornimmt und die Flip-Flops die Ergebnisse speichern. Die gesamte Schaltung
mit den Flip-Flops ist dann eine sequenzielle Schaltung, also eine Schaltung deren Ergeb-
nis von der zeitlichen Abfolge (der Sequenz) ihrer Eingänge abhängt. In diesem Kapitel
werden zunächst die Funktion und der Entwurf kombinatorischer Schaltungen erläutert.
Flip-Flops und sequenzielle Schaltungen werden im nächsten Kapitel vorgestellt.

Als Beispiel für eine kombinatorische Schaltung ist in Abb. 4.1 eine einfache Alarm-
anlage dargestellt. Dabei sollen eine Tür (T) und zwei Fenster (F1, F2) überwacht wer-
den. Mit einem Schalter (S) wird die Alarmanlage ein- oder ausgeschaltet. Diese vier
Eingangssignale sollen binäre Werte also 0 oder 1 sein. Die 1 bedeutet dabei jeweils
„aktiv“, das heißt Tür oder Fenster ist offen, beziehungsweise Anlage ist eingeschaltet.

Die kombinatorische Schaltung wertet die vier Eingangssignale aus und berechnet, ob
ein Alarm ausgelöst werden soll oder nicht. Dafür gibt es einen Ausgang A, der mit einer
1 einen Alarmfall anzeigt. Andernfalls ist der Ausgang 0. Am Ausgang A ist eine Alarm-
hupe angebracht.

Wie man systematisch die kombinatorische Schaltung entwirft, wird später in diesem
Kapitel erläutert. Für dieses einfache Beispiel kann man die Schaltung direkt aus der
Aufgabenstellung ableiten. Der Alarm soll überwachen, ob Tür oder Fenster offen sind
und dabei melden, wenn einer oder mehrere der Kontakte auf 1 sind. Dies entspricht der
ODER-Verknüpfung der drei Signale T, F1, F2. Dieses Zwischenergebnis führt zu einem
Alarm, wenn die Anlage eingeschaltet ist, also muss das Ergebnis der ODER-Verknüpfung

Kombinatorische Schaltungen 4

86 4  Kombinatorische Schaltungen

noch mit dem Schalter S UND-verknüpft werden. Nur wenn der Schalter auf 1 ist, wird
der Alarm A ausgelöst. Die kombinatorische Schaltung ist ebenfalls in Abb. 4.1 dargestellt.

4.1	� Schaltalgebra

Die Rechenregeln der Digitaltechnik werden als Schaltalgebra bezeichnet. Der Begriff
Algebra ist aus der Schulmathematik bekannt und beschreibt dort die Rechenregeln für
Zahlen. Die Zahlen in der elementaren Algebra, also der Schulmathematik, können dabei
unendlich viele Werte einnehmen, also eins, zwei, drei, siebenundvierzig, fünftausend
und so weiter.

Die Schaltalgebra ist eine besondere Form der Algebra, bei der Variablen nur zwei
mögliche Werte haben, nämlich 0 und 1. Das heißt für alle Eingangswerte und das
Ergebnis einer Rechenoperation sind nur diese beiden Werte möglich. Manchmal werden
für die Werte auch die Begriffe Falsch (entspricht 0) und Wahr (entspricht 1) verwendet.

Funktionen, bei denen Eingangs- und Ausgangswerte nur die Werte 0 und 1 anneh-
men können, bezeichnet man als binäre Schaltfunktionen, boolesche Schaltfunktionen
oder einfach Schaltfunktionen. Die Bezeichnung boolesch weist darauf hin, dass die
Funktion nach der Booleschen Algebra berechnet wird, die nach dem englischen Mathe-
matiker George Boole benannt ist.

Die Schaltalgebra ist also die mathematische Beschreibung der Funktionen in der
Digitaltechnik. Die Schaltung selber wird dann als kombinatorische Schaltung bezeich-
net. Darin führen Schaltglieder eine logische Verknüpfung von Eingangswerten zu einem
Ausgangswert durch. Die Schaltglieder bezeichnet man auch als Gatter.

Physikalische Eigenschaften wie Spannungspegel oder Umschaltzeiten werden in der
Schaltalgebra nicht berücksichtigt. Ob ein digitales Signal den Wert 0 V oder 0,1 V hat
ist unbedeutend. Beide Spannungspegel werden durch den Wert 0 dargestellt. Somit ist
die Schaltalgebra eine Abstrahierung zur vereinfachten Schaltungsbeschreibung.

4.1.1	� Schaltfunktion und Schaltzeichen

Bei der Beschreibung von Schaltfunktionen werden die Eingangsvariablen meist mit den
Buchstaben A, B, C, … und die Ausgangsvariable mit dem Buchstaben Y bezeichnet. Y
ist damit eine Funktion von A, B, C, … und kann durch ein Schaltzeichen dargestellt
werden (Abb. 4.2).

Abb. 4.1   Kombinatorische
Schaltung als einfache
Alarmanlage

S
T F1 F2

A

F1
F2

1
T

&S A

87

4.1.2	� Funktionstabelle

Da jede Eingangsvariable nur zwei mögliche Werte haben kann, ist es möglich, sämtli-
che Kombinationen der Eingangswerte aufzuzählen und als Funktionstabelle anzugeben.
Bei n Eingängen sind 2n Kombinationen möglich. Für die Funktionstabelle wird auch
der Begriff Wahrheitstabelle benutzt; er bezieht sich auf die Bezeichnungen Falsch und
Wahr.

Somit gibt es bei zwei Eingangsvariablen A und B vier verschiedene Kombinationen
der Eingangswerte, nämlich 00, 01, 10, 11. Drei Eingangsvariablen ergeben acht, vier
Eingangsvariablen 16 Kombinationen.

Für die elementare Algebra wäre eine Funktionstabelle nicht möglich, da unendlich
viele Eingangswerte möglich sind. Die Tabelle würde also unendlich groß werden. Trotz-
dem gibt es auch dort ein Beispiel für eine Funktionstabelle, nämlich das „Kleine Ein-
maleins“. Für das Produkt zweier Zahlen von 1 bis 10 gibt es 100 Möglichkeiten und die
100 Ergebnisse werden in der Grundschule auswendig gelernt.

Funktionstabellen dienen zum Beschreiben vorhandener Schaltungen oder zur Spe-
zifikation einer Schaltung, die entworfen werden soll. Beim Schaltungsentwurf, der
Schaltungssynthese wird die Aufgabe meist als Text beschrieben und daraus die Funkti-
onstabelle erstellt.

Als Beispiel soll eine Schaltung spezifiziert werden, welche die Mehrheit aus drei
Eingangswerten bildet. Die Eingänge A, B, C sind digitale Werte und können die Werte 0
und 1 annehmen. Wenn zwei oder drei Eingänge 1 sind, soll auch der Ausgang Y 1 sein.
Ansonsten ist der Ausgang 0.

Eine solche Mehrheitsschaltung oder Majoritätsschaltung kann als Sicherheits-
schaltung für redundante Systeme dienen. Eine Fabrikhalle hat drei Rauchmelder und
nur wenn zwei Rauchmelder auslösen, wird ein Alarm gemeldet und die Fabrikation
gestoppt. Ein Fehler in einem Rauchmelder kann also keinen Alarm auslösen.

Die Funktionstabelle der Majoritätsschaltung ist in Abb. 4.3 angegeben. Für drei Vari-
ablen gibt es 23, also 8 Kombinationen und die Tabelle gibt an, welche der Kombinatio-
nen eine 1 am Ausgang ergeben sollen.

4.1.3	� Funktionstabelle mit Don’t-Care

Als Besonderheit kann es bei Funktionstabellen vorkommen, dass für eine oder meh-
rere Eingangskombinationen keine Ausgabe spezifiziert werden muss. Dies ist dann der
Fall, wenn bestimmte Eingangskombinationen laut Aufgabenstellung nicht vorkommen

Abb. 4.2   Schaltfunktion und
Schaltzeichen Y = f(A,B,C)

fA
B Y
C

4.1  Schaltalgebra

88 4  Kombinatorische Schaltungen

können. Oder das Ergebnis bestimmter Eingangskombinationen wird in der späteren Ver-
arbeitung nicht verwendet.

Der nicht definierte Ausgang wird als Don’t-Care bezeichnet und in der Funktionsta-
belle mit einem Strich ‚-‘ gekennzeichnet. Beim Schaltungsentwurf können die Don’t-
Care-Einträge benutzt werden, um eine möglichst kleine und damit kostengünstige
Schaltung zu entwerfen.

Eine Schaltung soll für die Zahlen 0 bis 9 ausgeben, ob es sich um eine Primzahl
handelt. Die Zahlen sind als vierstellige Dualzahl A(3:0) angegeben. Von den 16 Kombi-
nationen der vier Stellen werden 6 Kombinationen nicht benutzt. Die Ausgabe für diese
Kombinationen ist beliebig, also Don’t-Care. Abb. 4.4 zeigt die Funktionstabelle.

4.2	� Funktionen der Schaltalgebra

Die Grundfunktionen der Schaltalgebra sind UND-Verknüpfung, ODER-Verknüpfung und
Negation. Alle anderen Schaltfunktionen lassen sich aus Kombinationen dieser Grund-
funktionen darstellen. Zusammengesetzte Funktionen sind NAND-Verknüpfung, NOR-
Verknüpfung, XOR-Verknüpfung (Antivalenz) und XNOR-Verknüpfung (Äquivalenz).

Abb. 4.3   Funktionstabelle der
Majoritätsschaltung

0 0
0 1
1 0
1 1

A B Y

0
1
1
1

0 0
0 1
1 0
1 1

0
0
0
0
1
1
1
1

0
0
0
1

C

Abb. 4.4   Primzahlerkennung
für Zahlen 0 bis 9 als
Funktionstabelle mit Don’t-Care

0

1

0

1

0

1

0

1

A(3:0) Y
0

-

0
1

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

0
0
0
0

0
0
0
0

1
1
1
1
1
1
1
1

1
1
1
1

0
0
0
0 1

0
1
0
1
0
0
-
-
-
-
-

Z ah le nw e rt
0
1
2
3
4
5
6
7
8
9

89

4.2.1	� UND-Verknüpfung

Die UND-Verknüpfung wurde in Kapitel 1 schon kurz vorgestellt. Der Ausgang Y ist 1,
wenn alle Eingangsvariablen 1 sind. Ansonsten ist der Ausgang 0. Das Funktionszeichen
ist nicht eindeutig definiert. Meist wird ‚&‘ (Kaufmanns-Und) verwendet. Daneben sind
‚∧‘ (umgekehrtes v), der Multiplikationspunkt ‚·‘ sowie das direkte Aneinanderfügen der
Operatoren möglich. In der Übersicht aller Funktionen in Tab. 4.1 finden sich für alle
Funktionen die verschiedenen Schreibweisen.

Das Verhalten der UND-Verknüpfung ist in der Funktionstabelle in Abb. 4.5 darge-
stellt. Alle vier Kombinationsmöglichkeiten für die beiden Eingänge sind aufgezählt; nur
wenn A und B gleich 1 sind, ist auch Y gleich 1. Abb. 4.5 zeigt auch das Schaltzeichen
der UND-Verknüpfung.

Eine UND-Verknüpfung ist auch für mehr als zwei Eingangsvariablen möglich.
Abb. 4.6 zeigt Funktionstabelle und Schaltzeichen bei drei Eingangsvariablen. Genauso
sind Funktionen mit vier, fünf oder mehr Eingangsvariablen möglich und werden auch in
der Praxis verwendet.

4.2  Funktionen der Schaltalgebra

Tab. 4.1   Funktionen für zwei Eingangsvariablen

Ausgabe für AB = Logische Funktion Bezeichnung
11 01 10 00

0 0 0 0 Y = 0 Konstante 0
0 0 0 1 Y = A ∨ B NOR

0 0 1 0 Y = A& B̄ Inhibition

0 0 1 1 Y = B̄ Oder: Y = ¬B Negation (B)

0 1 0 0 Y = Ā&B Inhibition

0 1 0 1 Y = Ā Oder: Y = ¬A Negation (A)

0 1 1 0 Y = A⊕ B XOR, Antivalenz

0 1 1 1 Y = A&B NAND

1 0 0 0 Y = A&B Oder: Y = A ∧ B = A · B = AB UND

1 0 0 1 Y = A⊕ B (Selten: Y = A ↔ B) XNOR,
Äquivalenz

1 0 1 0 Y = A Identität (A)

1 0 1 1 Y = A ∨ B̄ (Selten: Y = B → A) Implikation

1 1 0 0 Y = B Identität (B)

1 1 0 1 Y = Ā ∨ B (Selten: Y = A → B) Implikation

1 1 1 0 Y = A ∨ B (Selten: Y = A+ B) ODER

1 1 1 1 Y = 1 Konstante 1

http://dx.doi.org/10.1007/978-3-662-49731-9_1

90 4  Kombinatorische Schaltungen

4.2.2	� ODER-Verknüpfung

Auch die ODER-Verknüpfung wurde in Kapitel 1 kurz vorgestellt. Der Ausgang Y ist 1,
wenn ein oder mehrere Eingangsvariablen 1 sind. Nur wenn alle Eingangsvariablen 0
sind ist auch der Ausgang 0. Die Funktionstabelle und das Schaltzeichen sind in Abb. 4.7
dargestellt. Auch die ODER-Funktion kann mehr als zwei Eingänge verknüpfen. Als
Symbol in der Schaltfunktion wird ‚≥1‘ verwendet. In Formeln wird ‚∨‘ (mathemati-
sches Symbol) oder ‚v‘ (Buchstabe) benutzt, auch das Plus-Zeichen ‚+‘ wird manchmal
verwendet.

4.2.3	� Negation, Inverter

Die Negation gibt das „Gegenteil“ des Eingangswerts aus, also bei einer 0 eine 1 und
bei einer 1 eine 0 (Abb. 4.8). In Formeln wird die Negation durch einen Strich über der
Variablen oder Voranstellen des Zeichens ‚¬‘ dargestellt. Auch ganze Ausdrücke kön-
nen durch einen Strich oberhalb negiert werden. Ein Beispiels dafür ist das XNOR in
Tab. 4.1.

Das Schaltungselement wird Inverter genannt. In Schaltzeichen wird die Negation
durch einen Kreis dargestellt. Als Schaltzeichen für den Inverter werden drei verschie-
dene Varianten verwendet (Abb. 4.8). Das untere Schaltsymbol mit dem Dreieck ist am
prägnantesten und wird in der Praxis meist benutzt.

Das Sonderzeichen ‚¬‘ ist etwas umständlich zu erzeugen, darum wird auch der
Schrägstrich ‚/‘ als Präfix oder die Raute ‚#‘ als Suffix zum Kennzeichen einer Negation
verwendet. Die Invertierung des Wertes A schreibt sich dann also /A oder A#.

Abb. 4.5   Funktionstabelle
und Schaltzeichen der UND-
Verknüpfung

0
&A

B
Y

0
0 1
1 0
1 1

A B Y
0
0
0
1

Abb. 4.6   Funktionstabelle
und Schaltzeichen einer
UND-Verknüpfung mit drei
Eingangsvariablen

0

&A
B Y

0
0 1
1 0
1 1

A B Y

0
0
0
1

0 0
0 1
1 0
1 1

0
0
0
0
1
1
1
1

0
0
0
0

C

C

http://dx.doi.org/10.1007/978-3-662-49731-9_1

91

4.2.4	� NAND-Verknüpfung

Durch Kombination einer UND-Verknüpfung und einer Negation am Ausgang ergibt
sich die NAND-Verknüpfung. Der Name leitet sich aus dem englischen „not and“ ab. Das
Schaltbild entspricht der UND-Verknüpfung mit einem Kreis am Ausgang für die Nega-
tion. Die Funktion ist für zwei oder mehr Eingangsvariablen definiert und Abb. 4.9 zeigt
Funktionstabelle und Schaltzeichen für vier Variablen.

Formeln verwenden das UND-Symbol ‚&‘ und negieren den ganzen Ausdruck durch
einen Strich oberhalb (siehe Tab. 4.1). Dies gilt auch für NOR und XNOR.

Abb. 4.7   Funktionstabelle
und Schaltzeichen der ODER-
Verknüpfung

0
A
B

Y
0

0 1
1 0
1 1

A B Y
0
1
1
1

1

Abb. 4.8   Funktionstabelle der
Negation und drei Variationen
des Schaltzeichens für einen
Inverter 0

A Y

1

A Y
1
0

A Y

1A Y

4.2  Funktionen der Schaltalgebra

Abb. 4.9   Funktionstabelle
und Schaltzeichen der NAND-
Verknüpfung

0

&

A

B
Y

1

0

1

0

1

0

1

A B Y

1

0

1

1

C D

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0 1

1

1

1

1

1

1

1

1

1

1

1

C

D

92 4  Kombinatorische Schaltungen

4.2.5	� NOR-Verknüpfung

Durch Kombination einer ODER-Verknüpfung und einer Negation am Ausgang ergibt
sich die NOR-Verknüpfung. Der Name leitet sich aus dem englischen „not or“ ab. Das
Schaltbild entspricht der ODER-Verknüpfung mit einem Kreis am Ausgang für die Nega-
tion (Abb. 4.10). Auch diese Funktion ist für zwei oder mehr Eingangsvariablen definiert.

4.2.6	� XOR-Verknüpfung

Die XOR-Verknüpfung ist in der Grundform zunächst für zwei Eingangsvariablen definiert
und ergibt eine 1 wenn genau eine Variable 1 ist, aber nicht beide gemeinsam. Dies kann
man als „ausschließendes oder“, englisch „exclusive or“ bezeichnen, daher XOR. Manch-
mal wird die Funktion auch als Antivalenz bezeichnet. Dies meint, dass beide Eingänge
unterschiedlichen Wert haben müssen, damit der Ausgang 1 wird. Eine XOR-Verknüpfung
mit mehr als zwei Eingängen ist 1, wenn die Anzahl der 1-Werte am Eingang ungerade ist.

In Formeln wird das XOR durch das Symbol ‚⊕‘ dargestellt. In Schaltzeichen wird
die Bezeichnung ‚=1‘ verwendet (Abb. 4.11).

4.2.7	� XNOR-Verknüpfung

Die XOR-Verknüpfung mit negiertem Ausgang wird als XNOR-Verknüpfung bezeich-
net („exclusive not or“). Funktion und Schaltzeichen sind in Abb. 4.12 dargestellt.

Abb. 4.10   Funktionstabelle
und Schaltzeichen der NOR-
Verknüpfung

0
A
B

Y
0

0 1
1 0
1 1

A B Y

0
1

0
0

1

Abb. 4.11   Funktionstabelle
und Schaltzeichen der XOR-
Verknüpfung

0
A
B

Y
0

0 1
1 0
1 1

A B Y
0
1
1

=1

0

Abb. 4.12   Funktionstabelle
und Schaltzeichen der XNOR-
Verknüpfung

0
A
B

Y
0

0 1
1 0
1 1

A B Y

0
1

1

=1

0

93

Manchmal wird die Funktion auch als Äquivalenz bezeichnet. Dies meint, dass in der
Grundform mit zwei Eingängen beide Eingänge den gleichen Wert haben müssen, damit
der Ausgang 1 wird. Bei mehr als zwei Eingängen ist die XNOR-Verknüpfung 1, wenn
die Anzahl der 1-Werte am Eingang gerade ist.

4.2.8	� Weitere Verknüpfungen

Neben den genannten Verknüpfungen sind weitere Funktionen möglich. Bei nur einem
Eingang gibt es noch die Identität, bei der der Ausgang gleich dem Eingang ist.

Alle möglichen Verknüpfungen mit zwei Eingängen sind in Tab. 4.1 aufgeführt. Eine
Funktionstabelle für zwei Eingänge hat vier Einträge und für jeden Eintrag sind zwei
Werte 0 und 1 möglich. Also sind 24 = 16 Funktionen theoretisch denkbar. Einige die-
ser Funktionen sind trivial, beispielsweise Ausgang ist immer 0 oder Ausgang ist iden-
tisch Eingang A. Einige Funktionen sind die oben genannten Verknüpfungen, also UND,
ODER, XOR und so weiter.

Daneben gibt es noch Implikation und Inhibition als weitere Verknüpfungen. Die
Funktionen selbst werden verwendet, aber die Begriffe sind in der Praxis nicht üblich.
Stattdessen wird die Funktion über eine Grundfunktion beschrieben, also beispielsweise
„A und nicht B“ für Eintrag drei der Tabelle.

4.2.9	� Logikstufen

Alle Verknüpfungen können auch in einer mehrstufigen Funktion verwendet werden,
bei der das Ergebnis einer Verknüpfung die Eingabe einer weiteren Verknüpfung ist. Die
Anzahl der aufeinander folgenden Verknüpfungen wird als Stufigkeit bezeichnet. Der
Begriff bezieht sich sowohl auf die Logik als auch auf deren Umsetzung als Schaltung.

•	 Einstufige Logik: Eine Logik und digitale Schaltung wird als einstufig bezeichnet,
wenn zwischen Eingang und Ausgang nur eine Verknüpfung vorhanden ist.

•	 Zweistufige Logik: Eine Logik und digitale Schaltung wird als zweistufig bezeich-
net, wenn zwischen Eingang und Ausgang zwei Verknüpfungen in Kette geschaltet
sind.

•	 n-stufige Logik: Eine Logik und digitale Schaltung wird als n-stufig bezeichnet,
wenn zwischen Eingang und Ausgang n Verknüpfungen in Kette geschaltet sind.

Bei der Anzahl der Stufen wird eine Negation am Eingang oder Ausgang nicht als sepa-
rate Stufe gezählt.

4.2  Funktionen der Schaltalgebra

94 4  Kombinatorische Schaltungen

Beispiele für Logikfunktionen mit verschiedenen Stufen:

•	 Einstufige Logik: Y = A ∨ B̄

•	 Zweistufige Logik: Y =
(

Ā&B
)

∨
(

C& D̄
)

•	 4-stufige Logik: Y = A&
(

B̄ ∨ (C& (D̄ ∨ E
)

))

Bedeutung hat die Stufenzahl insbesondere für eine Schaltungsrealisierung. Jede Ver-
knüpfung entspricht einem Logikgatter in der Schaltung. Dabei addieren sich die Verzö-
gerungszeiten sämtlicher Stufen. Deshalb sollte für zeitkritische Entwürfe die Anzahl der
Stufen so klein wie möglich sein.

4.2.10	� US-amerikanische Logiksymbole

In englischsprachiger Literatur und in Datenblättern finden Sie auch Logiksymbole in
US-amerikanischer Darstellungsweise. Diese sind in Abb. 4.13 dargestellt. Durch einen
Kreis am Ausgang werden die Varianten mit invertiertem Ausgang gekennzeichnet, also
aus AND wird NAND, aus XOR wird XNOR.

Man kann sich die Symbole merken, indem man bei der geraden linken Kante des
AND an die vertikalen Striche des A und bei der gebogenen linken Kante des OR an die
Rundungen des O denkt.

4.3	� Rechenregeln der Schaltalgebra

4.3.1	� Vorrangregeln

Genau wie in der elementaren Algebra hat auch die Schaltalgebra Vorrangregeln. In der
elementaren Algebra gilt „Punktrechnung vor Strichrechnung“, also hat die Multiplika-
tion Vorrang vor der Addition.

In der Schaltalgebra hat das Negationszeichen den größten Vorrang und es kann für
eine einzelne Variable oder für einen gesamten Ausdruck stehen. An nächster Stelle sind
nach DIN die Verknüpfungszeichen für UND, ODER, NAND und NOR gleichrangig.
Danach folgen im Vorrang die Symbole für Implikation, Äquivalenz und Antivalenz, die

Abb. 4.13   US-amerikanische
Logiksymbole

Inverter AND-Gate

OR-Gate XOR-Gate

95

untereinander wiederum gleichrangig sind. Da die Verknüpfungszeichen für UND sowie
ODER die gleiche Priorität haben, müssen innerhalb einer Gleichung mit UND- und
ODER-Verknüpfungen also die einzelnen Terme in Klammern gesetzt werden.

Allerdings wird der Vorrang in der Praxis anders gehandhabt. Den stärksten Vorrang
hat weiterhin das Negationszeichen. Dann gilt allerdings „UND vor ODER“, das heißt
die UND-Verknüpfung hat Vorrang vor der ODER-Verknüpfung. Dies spart oftmals
Schreibarbeit und Klammern. Alle anderen Verknüpfungen werden üblicherweise per
Klammer geordnet, um Missverständnisse zu vermeiden.

Auch in diesem Buch wird die Praxisregel „UND vor ODER“ benutzt. Abb. 4.14
zeigt die verschiedenen Schreibweisen. Alle drei Ausdrücke sind gleichwertig.

4.3.2	� Rechenregeln

Rechenregeln zum Umformen von Funktionen gelten in der Schaltalgebra ähnlich wie
in der elementaren Algebra. Die Rechenregeln gelten für UND- sowie ODER-Verknüp-
fungen. Für alle Rechenregeln wird auf mathematische Beweise verzichtet. Die meisten
Regeln können verifiziert werden, indem alle möglichen Werte eingesetzt werden.

4.3.2.1 � Vereinfachungsregeln für eine Variable
Es gibt eine Reihe von Vereinfachungsregeln, die gelten, wenn nur eine Variable und
eventuell eine Konstante vorhanden ist.
Eine Variable ODER die Konstante 0 ergibt die Variable:

Eine Variable ODER die Konstante 1 ergibt 1:

Eine Variable UND die Konstante 0 ergibt 0:

Eine Variable UND die Konstante 1 ergibt die Variable:

Eine Variable ODER sich selbst ergibt die Variable:

A ∨ 0 = A

A ∨ 1 = 1

A&0 = 0

A&1 = A

A ∨ A = A

Abb. 4.14   Vorrangregeln der
Schaltalgebra

Y korrekt nach DIN= (A & B) v (C & D)

= A & B v C & D

= A B v C D

„UND vor ODER“

verkürzt ohne ‚&‘

4.3  Rechenregeln der Schaltalgebra

96 4  Kombinatorische Schaltungen

Eine Variable UND sich selbst ergibt die Variable:

Eine Variable ODER ihre Negation ergibt 1:

Eine Variable UND ihre Negation ergibt die 0:

Eine Variable doppelt negiert ergibt wieder die Variable:

Einige dieser Rechenregeln haben Ähnlichkeit zur elementaren Algebra, also der
Schulmathematik.

•	 Eine Zahl plus Null ergibt wieder die Zahl.
•	 Eine Zahl mal Null ergibt Null.
•	 Eine Zahl mal Eins ergibt wieder die Zahl.

Für andere Rechenregeln gibt es jedoch keine Entsprechung.

•	 Eine Zahl mal oder plus sich selbst ergibt keine Konstante.

4.3.2.2 � Kommutativgesetz
Das Kommutativgesetz, oder Vertauschungsgesetz, besagt, dass die Reihenfolge der Ope-
randen vertauscht werden darf. Es gilt also:

4.3.2.3 � Assoziativgesetz
Das Assoziativgesetz, oder Verbindungsgesetz, besagt, dass Rechenoperationen mit dem
gleichen Operator in beliebiger Reihenfolge durchgeführt werden dürfen. Es gilt also:

4.3.2.4 � Distributivgesetz
Das Distributivgesetz, oder Verteilungsgesetz, besagt, dass ein Operand vor einer Klam-
mer auf Operatoren in einer Klammer verteilt werden darf. Dies wird in der elementaren
Algebra als Ausmultiplizieren und Ausklammern bezeichnet. Es gilt also:

A&A = A

A ∨ Ā = 1

A& Ā = 0

A = A

A&B = B&A

A ∨ B = B ∨ A

A&B&C = (A&B)&C = A& (B&C) = (A&C)&B

A ∨ B ∨ C = (A ∨ B) ∨ C = A ∨ (B ∨ C) = (A ∨ C) ∨ B

97

A ∨ (B&C) = (A ∨ B)& (A ∨ C)

4.3.2.5 � De Morgansche Gesetze
Die de Morganschen Gesetze sind zwei Regeln, die besagen:

•	 Eine NAND-Verknüpfung kann ersetzt werden durch eine ODER-Verknüpfung mit
negierten Operatoren.

•	 Eine NOR-Verknüpfung kann ersetzt werden durch eine UND-Verknüpfung mit
negierten Operatoren.

Anschaulich gesagt, kann also die Negation des gesamten Ausdrucks ersetzt werden
durch Negation der einzelnen Operanden und Tauschen von UND nach ODER bezie-
hungsweise ODER nach UND. Diese Gesetze gelten für beliebig viele Operatoren.

Zu den de Morganschen Gesetzen gibt es kein Äquivalent in der elementaren Algebra,
sodass diese Regeln eventuell etwas überraschend aussehen.

4.3.2.6 � Shannonsches Gesetz
Das Shannonsche Gesetz ist eine Erweiterung der de Morganschen Gesetze. Es besagt,
dass in einer Funktion, die aus UND- sowie ODER-Verknüpfungen besteht, alle Varia-
blen negiert und die Operatoren UND sowie ODER vertauscht werden können. Die so
entstehende Funktion ergibt dann die Negation der ursprünglichen Funktion. Als Formel
schreibt sich dies:

Das Shannonsche Gesetz erscheint zunächst sehr theoretisch, hat aber praktische Bedeu-
tung. Mit ihm können logische Ausdrücke umgeformt werden, damit sie besser als
Schaltung umgesetzt werden können. In der CMOS-Technologie sind beispielsweise
NAND- und NOR-Verknüpfungen einfacher als UND-, ODER-Verknüpfungen. Mit dem
Shannonschen Gesetz kann dann umgeformt werden:

Die Funktion kann somit durch zwei NAND-Schaltungen mit jeweils zwei Operatoren
implementiert werden.

A& (B ∨ C) = (A&B) ∨ (A&C)

A&B&C& . . . &X = Ā ∨ B̄ ∨ C̄ ∨ . . . ∨ X̄

A ∨ B ∨ C ∨ . . . ∨ X = Ā& B̄& C̄& . . . & X̄

f (A,B, . . . ,X; &, ∨) = f
(

Ā, B̄, . . . , X̄; ∨, &
)

Ā ∨ (B&C) = A&
(

B̄ ∨ C̄
)

= A& (B&C)

4.3  Rechenregeln der Schaltalgebra

98 4  Kombinatorische Schaltungen

4.4	� Schaltungsentwurf durch Minimieren

Beim Schaltungsentwurf wird für eine bestimmte Aufgabenstellung eine Schaltung ent-
worfen. Aus der Spezifikation wird die logische Funktion erstellt. Diese logische Funk-
tion entspricht einer Schaltung aus Gattern, welche die Funktion ausführt.

In diesem Abschnitt wird die prinzipielle Vorgehensweise erläutert. Für den prakti-
schen Entwurf ist das grafische Verfahren mit Karnaugh-Diagramm gut geeignet, wel-
ches im nächsten Abschnitt beschrieben wird. Des Weiteren kann die Minimierung
rechnergestützt erfolgen. Dabei können, je nach Algorithmus, auch mehrstufige Logik-
funktionen entstehen. Mit dem hier vorgestellten Verfahren wird stets eine zweistufige
Logik erzeugt.

4.4.1	� Minterme

Für den Schaltungsentwurf werden sogenannte Minterme verwendet. Ein Minterm ist
eine UND-Verknüpfung, die jede Variable genau einmal benutzt. Die Variable kann dabei
nicht-negiert oder negiert verwendet werden. Bei n Eingangsvariablen existieren 2n ver-
schiedene Minterme. Bei drei Variablen A, B, C wären also acht verschiedene Minterme
möglich. Alle drei Variablen werden nicht-negiert oder negiert verwendet, beispielsweise:

Das Besondere am Minterm ist, dass er bei genau einer Kombination der Eingangsvaria-
blen den Ausgangswert 1 ergibt und sonst 0 ist. Dies ergibt sich dadurch, dass die UND-
Bedingung ja nur bei einer Kombination erfüllt ist. Abb. 4.15 zeigt für drei Minterme
die Funktionstabelle. Wenn die nicht-negierten Eingänge gleich 1 und die negierten Ein-
gänge gleich 0 sind, ist der Ausgang gleich 1.

4.4.2	� Schaltungsentwurf mit Mintermen

Mit den Mintermen kann direkt eine kombinatorische Schaltung entworfen werden.
Dazu werden die Minterme ausgewählt, welche eine 1 ausgeben sollen. Die Minterme

A&B&C ; A& B̄&C ; Ā& B̄& C̄

Abb. 4.15   Funktionstabelle
für drei Minterme

0 0
0 1
1 0
1 1

A B

0
0
0
1

0 0
0 1
1 0
1 1

0
0
0
0
1
1
1
1

0
0
0
0

C A&B&C A&B&C A&B&C

0
1
0
0

0
0
0
0

0
0
0
0

1
0
0
0

99

werden dann ODER-verknüpft, damit die 1-Werte der Minterme auch in der Gesamt-
schaltung eine 1 ausgeben. Diese Beschreibung wird als disjunktive Normalform (DNF)
bezeichnet. Disjunktion ist dabei eine andere Bezeichnung für die ODER-Funktion.

Betrachten wir als Beispiel die Majoritätsschaltung dessen Funktionstabelle in
Abb. 4.3 dargestellt ist. Die Schaltung soll für vier Eingangskombinationen eine 1 aus-
geben. Die Minterme für diese vier Kombinationen werden ausgewählt und ODER-
verknüpft. Dies ergibt die Funktion:

4.4.3	� Minimierung von Mintermen

Die disjunktive Normalform, also die ODER-Verknüpfung der Minterme ist eine logi-
sche Gleichung, welche die geforderte Funktion ausführt. Allerdings kann die Nor-
malform meist noch vereinfacht werden. Diese Vereinfachung wird als Minimierung
bezeichnet. Dabei werden Terme anhand der Rechenregeln der Schaltalgebra zusammen-
gefasst. Wenn ein Term nicht mehr weiter zusammengefasst werden kann, wird er als
Primterm bezeichnet.

Bei der Majoritätsschaltung können unter anderem die Terme
(

Ā&B&C
)

 sowie
(A&B&C) zusammengefasst werden. In beiden Termen müssen B und C den Wert 1
haben. A soll im ersten Term 0, im zweiten Term 1 sein. Das heißt, beide mögliche Werte
für A sind erlaubt und daher braucht A nicht beachtet zu werden. Die Terme können des-
halb zum Primterm (B&C) zusammengefasst werden.

Diese anschauliche Erklärung lässt sich auch über die Rechenregeln herleiten:

•	 Assoziativgesetz:
(

Ā&B&C
)

∨ (A&B&C) =
(

Ā& (B&C)
)

∨ (A& (B&C))

•	 Distributivgesetz:
(

Ā& (B&C)
)

∨ (A& (B&C)) =
(

Ā ∨ A
)

& (B&C)

•	 Vereinfachungsregel:
(

Ā ∨ A
)

= 1

•	 Vereinfachungsregel: 1& (B&C) = (B&C)

Auf die gleiche Weise können die Terme
(

A& B̄&C
)

 sowie
(

A&B& C̄
)

 mit dem Term
(A&B&C) zusammengefasst werden. Dabei fällt die Variable B̄ beziehungsweise C̄
weg. Die minimierte Majoritätsfunktion lautet:

Diese Minimierung ist allerdings rechnerisch sehr aufwendig. Man muss genau auf-
passen, welche Terme miteinander kombiniert werden können. Für die Ermittlung der
Primterme ist das grafische Verfahren nach Karnaugh wesentlich einfacher, welches in
Abschn. 4.6 erläutert wird.

Y =
(

Ā&B&C
)

∨
(

A& B̄&C
)

∨
(

A&B& C̄
)

∨ (A&B&C)

Y = (B&C) ∨ (A&C) ∨ (A&B)

4.4  Schaltungsentwurf durch Minimieren

100 4  Kombinatorische Schaltungen

4.4.4	� Maxterme

Für den Schaltungsentwurf können auch sogenannte Maxterme verwendet werden. Ein
Maxterm ist eine ODER-Verknüpfung, die jede Variable genau einmal verwendet. Wie
bei Mintermen kann jede Variable wiederum nicht-negiert oder negiert sein. Für den
Maxterm gilt dann, dass er bei genau einer Kombination der Eingangsvariablen den Aus-
gangswert 0 ergibt und sonst 1 ist. Maxterme sind:

Abb. 4.16 zeigt für drei Maxterme die Funktionstabelle. Nur wenn die nicht-negierten
Eingänge gleich 0 sowie die negierten Eingänge gleich 1 sind, ist der Ausgang gleich 0.

Maxterme sind also das Gegenstück zu Mintermen. Eine Funktion benutzt die UND-,
die andere die ODER-Verknüpfung. Bei einer Funktion gibt es eine einzige 1, bei der
anderen eine einzige 0.

4.4.5	� Schaltungsentwurf mit Maxtermen

Auch aus den Maxtermen kann direkt eine kombinatorische Schaltung entworfen wer-
den. Dazu werden die Maxterme ausgewählt, welche eine 0 ausgeben und dann UND-
verknüpft, damit diese Nullen in Kombinationen der Gesamtschaltung eine 0 ergeben.
Diese Beschreibung wird als konjunktive Normalform (KNF) bezeichnet. Konjunktion ist
dabei eine andere Bezeichnung für die UND-Funktion.

Die Majoritätsschaltung gibt für vier Eingangskombinationen eine 0 aus. Die Max-
terme für diese vier Kombinationen werden ausgewählt und UND-verknüpft. Dies ergibt
die Funktion:

4.4.6	� Minimierung von Maxtermen

Auch die konjunktive Normalform, also die UND-Verknüpfung von Maxtermen kann
meist noch vereinfacht werden.

A ∨ B ∨ C; A ∨ B̄ ∨ C; Ā ∨ B̄ ∨ C̄

Y = (A ∨ B ∨ C)&
(

Ā ∨ B ∨ C
)

&
(

A ∨ B̄ ∨ C
)

&
(

A ∨ B ∨ C̄
)

Abb. 4.16   Funktionstabelle
für drei Maxterme

0 0
0 1
1 0
1 1

A B

1
1
1
1

0 0
0 1
1 0
1 1

0
0
0
0
1
1
1
1

0
1
1
1

C AvBvC AvBvC AvBvC

1
1
1
1

1
1
0
1

1
1
1
0

1
1
1
1

101

Für die Majoritätsschaltung kann der Maxterm (A ∨ B ∨ C) jeweils mit den drei ande-
ren Termen zusammengefasst werden. Die einzelnen Rechenschritte sollen hier jedoch
nicht einzeln aufgeführt werden. Die minimierte Majoritätsfunktion lautet:

4.5	� Schaltungsminimierung mit Karnaugh-Diagramm

Im vorherigen Abschnitt wurde gezeigt, dass disjunktive und konjunktive Normalformen
durch Minimierung vereinfacht werden können. Ein Karnaugh-Diagramm (Aussprache
„Karnoh“) führt diese Vereinfachung grafisch durch. Durch die Darstellung kann direkt
erkannt werden, welche Terme miteinander verbunden werden können. Eine Minimie-
rung mit Karnaugh-Diagramm ist sehr gut für Funktionen mit zwei bis vier Variablen
geeignet. Für fünf oder sechs Variablen ist das Verfahren ebenfalls möglich, erfordert
dann aber etwas Übung und gutes räumliches Vorstellungsvermögen.

Das Verfahren kann sowohl für die disjunktive als auch für die konjunktive Normal-
form durchgeführt werden. Hier soll hauptsächlich die disjunktive Normalform vorgestellt
werden. Das Verfahren ist auch unter dem Namen Venn-Diagramm, Karnaugh-Veitch-
Diagramm (Aussprache „Karnoh-Fietsch“) oder KV-Diagramm bekannt.

Das Karnaugh-Diagramm ist insbesondere wichtig, da es die Zusammenhänge von
Schaltalgebra, logischen Verknüpfungen und Schaltungsimplementierung verdeutlicht.
In der Praxis erfolgt die Schaltungsminimierung heutzutage meist durch Computerpro-
gramme zur Schaltungssynthese.

4.5.1	� Grundsätzliche Vorgehensweise

Das Karnaugh-Diagramm ist im Prinzip eine andere Anordnung der Wahrheitstabelle.
Die Eingangsvariablen werden am horizontalen und vertikalen Rand eines schachbrettar-
tig unterteilten Rechtecks angeordnet. Für n Eingangsvariablen erhält man somit 2n Fel-
der. Dabei sind sie so angeordnet, dass jedes Feld einem Minterm entspricht und sich
zwei horizontal oder vertikal benachbarte Felder nur in einer Eingangsvariablen unter-
scheiden. In die Felder werden die Werte 0 und 1 der Ausgangsvariablen eingetragen.
Benachbarte 1-Felder werden dann wie im Abschn. 4.5.4 zusammengefasst:

Im Karnaugh-Diagramm sind auch Felder am rechten und linken bzw. oberen und unte-
ren Rand benachbart, denn auch sie unterscheiden sich nur in einer Variablen. Es müs-
sen möglichst viele benachbarte 1-Felder zu einem Block zusammengefasst werden. Die
logische Gleichung wird dann minimal, wenn die Blöcke möglichst viele Felder enthal-
ten und die Anzahl der Blöcke minimal ist.

Die Vorgehensweise zum Aufstellen der disjunktiven Minimalform lautet:

Y = (B ∨ C)& (A ∨ C)& (A ∨ B)

(A&B) ∨
(

A& B̄
)

= A&
(

B ∨ B̄
)

= A

4.5  Schaltungsminimierung mit Karnaugh-Diagramm

102 4  Kombinatorische Schaltungen

1.	 Ausgehend von der Wahrheitstabelle wird die benötigte Anzahl der Eingangsvariablen
ermittelt und das entsprechende Karnaugh-Diagramm aufgestellt. Die logischen Vari-
ablen werden am Rand des KV-Diagramms angeordnet.

2.	 Anhand der Wahrheitstabelle werden die Werte der Ausgangsvariablen 0 oder 1 in die
entsprechenden Felder des Karnaugh-Diagramms eingetragen.

3.	 Benachbarte 1-Felder werden zu einem Block zusammengefasst.
4.	 Zwei Blöcke, die sich nur in einer Variablen unterscheiden, sind ebenfalls benach-

bart; sie dürfen zu einem größeren Block zusammengefasst werden. Ein Block enthält
immer 2n Felder. Eine Zusammenfassung von zum Beispiel drei oder fünf Feldern ist
nicht erlaubt.

5.	 Ein 1-Feld darf in mehreren Blöcken integriert sein.
6.	 Jeder Block repräsentiert einen UND-Term (UND-Verknüpfung der Eingangsvariablen).
7.	 Aus den möglichen Termen (den Blöcken im Diagramm) werden die erforderlichen

Terme so gewählt, dass alle 1-Felder berücksichtigt sind.
8.	 Die logische Gleichung ergibt sich aus der ODER-Verknüpfung der ausgewählten

UND-Terme.
9.	 Die logische Gleichung wird nur dann minimal, falls die Blöcke so groß wie möglich

sind und die Anzahl der ausgewählten Blöcke minimal ist.

4.5.2	� Karnaugh-Diagramm für zwei Variablen

Bei zwei Variablen hat die Funktionstabelle vier Einträge. Im Karnaugh-Diagramm in
Abb. 4.17 werden diese Einträge in vier Feldern dargestellt. Jeder Eintrag entspricht
einem Feld und die horizontale Richtung unterscheidet zwischen verschiedenen Wer-
ten der Variable B, die vertikale Richtung unterscheidet zwischen verschiedenen Werten
der Variable A. Die Buchstaben p bis s zeigen die Korrespondenz zwischen Tabelle und
Diagramm.

Um eine Funktion zu minimieren, werden die Ausgabewerte der Funktionstabelle
in das Diagramm eingetragen. Die beispielhaft gewählte Funktionstabelle in Abb. 4.18
hat einen Eintrag mit Funktionswert 0 und drei Einträge mit Funktionswert 1 und diese
Werte finden sich im Karnaugh-Diagramm wieder. Jede 1 entspricht einem Minterm, das
heißt, die Funktion könnte durch drei Minterme dargestellt werden.

Im Diagramm kann man jetzt erkennen, welche 1-Einträge, also welche Min-
term nebeneinander liegen. Diese benachbarten Minterme können zu einem Term

Abb. 4.17   Zuordnung im
Karnaugh-Diagramm

0 0
0 1
1 0
1 1

A B Y
p
q
r
s

p

r

q

s

B=
0 1

0

1

A=

103

zusammengefasst werden. In Abb. 4.18 sind dies die beiden Einsen in der linken Spalte
und die beiden Terme in der unteren Zeile. Eine 1, also ein Minterm darf dabei mehrfach
für die Minimierung verwendet werden.

Abb. 4.19 zeigt die zusammengefassten Einträge. Für die linke Spalte ist die Variable
B gleich 0. Die Variable A kann 0 oder 1 sein, denn das abgerundete Rechteck der ver-
bundenen Einträge liegt über der oberen und unteren Zeile. Damit entspricht dieser Term
der Funktion B = 0 gleichbedeutend mit B̄. Der andere verbundene Eintrag läuft über
die untere Zeile, also A gleich 1. B kann 0 oder 1 sein, denn das Rechteck liegt über den
Spalten für beide Werte von B. Der Term ist also A = 1 gleichbedeutend mit A. Die mini-
mierte Funktion ergibt sich aus der ODER-Verknüpfung der Terme, also:

4.5.3	� Karnaugh-Diagramm für drei Variablen

Für drei Variablen wird das Diagramm auf acht Felder erweitert (Abb. 4.20). An der
langen Kante werden dafür zwei Variablen angeordnet. Die Reihenfolge der beiden
Variablen ist so zu wählen, dass sich benachbarte Felder weiterhin in nur einer Varia-
ble unterscheiden. Diese Reihenfolge entspricht dadurch dem Gray-Code. Beachten Sie,
dass linker und rechter Rand benachbart sind.

Das Diagramm enthält somit zwei Terme, die sich aus jeweils zwei Mintermen, also
zwei 1-Stellen zusammensetzen. Die minimierte Funktion ergibt sich zu:

Auch Gruppen von vier Funktionswerten können zu einer Vierergruppe zusammenge-
fasst werden. Dies entspricht einer Zusammenfassung von zwei Zweiergruppen, die sich
auch nur in einer Variablen unterscheiden. Wenn sich somit weniger Terme und größere
Terme ergeben, spart dies Schaltungsaufwand. Die Vierergruppen können quadratisch

Y = A ∨ B̄

Y = (Ā& B̄) ∨ (B̄&C)

Abb. 4.18   Einträge im
Karnaugh-Diagramm

0 0
0 1
1 0
1 1

A B Y
1
0
1
1

1

1

0

1

B=
0 1

0

1

A=

Abb. 4.19   Zusammenfassung
von 1-Einträgen

0 0
0 1
1 0
1 1

A B Y
1
0
1
1

1

1

0

1

B=
0 1

0

1

A=

B=0

A=1

4.5  Schaltungsminimierung mit Karnaugh-Diagramm

104 4  Kombinatorische Schaltungen

oder über eine ganze Zeile gehen. Abb. 4.21 zeigt ein Karnaugh-Diagramm mit zwei
Vierergruppen. Die resultierende Funktion ist:

Die linke Spalte des Karnaugh-Diagramms enthält die Terme für B,C = 00 und die
rechte Spalte die Terme für B,C = 10. Daher unterscheiden sich diese Terme auch
nur in einer Variable (Variable B) und sind benachbart. Zweier- und Vierergruppen
können daher über den Rand hinaus verbunden sein. Abb. 4.22 zeigt dies für zwei
Karnaugh-Diagramme.

4.5.4	� Karnaugh-Diagramm für vier Variablen

Für vier Eingangsvariablen wird das Diagramm auf 16 Felder erweitert, so dass auch die
vertikale Achse zwei Variablen enthält, wiederum mit der Reihenfolge in Gray-Codie-
rung. Abb. 4.23 zeigt die Anordnung und zwei Gruppen.

Y = A ∨ C

Abb. 4.20   Karnaugh-
Diagramm mit drei Variablen 0 0

0 1
1 0
1 1

A B Y
1
1
0
0

0 0
0 1
1 0
1 1

C

0
1
0
0

0
0
1
1

0
0

1
1

B,C= 00 01

0

1
A=

11 10

B=0, C=1A=0, B=0

011

0010

0

Abb. 4.21   Karnaugh-
Diagramm mit Vierergruppen

00 01

0

1
A=

11 10
C=1

A=1

B,C=

0110

1111

Abb. 4.22   Linker und rechter
Rand sind im Karnaugh-
Diagramm benachbart

0

1
A=

C=0

B,C=

1001

1001

00 01

0

1
A =

11 10

00 01 11 10

A=0,
C=0

B ,C =

1001

0000

105

In den 16 Feldern können Gruppen mit zwei, vier oder acht 1-Feldern gebildet wer-
den. Die Gruppengröße muss aber eine Zweierpotenz sein, das heißt eine Gruppe aus
sechs Feldern ist nicht möglich. Dies ergibt sich daraus, dass bei einer Zusammenfas-
sung eine Variable aus dem Term entfällt und dadurch die Gruppe jeweils doppelt so
groß wird. Für ein Karnaugh-Diagramm mit vier Variablen gibt es also folgende mögli-
che Gruppen:

•	 Einzelnes 1-Feld mit allen vier Variablen
•	 Zweiergruppe mit drei Variablen
•	 Vierergruppe mit zwei Variablen
•	 Achtergruppe mit einer Variablen (siehe Abb. 4.24)

Theoretisch kann es dann auch eine 16er-Gruppe ohne Variable geben, das heißt die
Funktion ist immer 1.

Wie schon beim Karnaugh-Diagramm für drei Variablen sind hier wieder die Rän-
der benachbart. Dies gilt natürlich auch für Vierergruppen und zwar auch in der Kom-
bination von oberer, unterer und linker, rechter Rand. Mit anderen Worten, auch die vier
Ecken können zu einer Vierergruppe zusammengefasst werden (Abb. 4.25). Dazu müs-
sen aber alle vier Eckfelder eine 1 eingetragen haben. Eine diagonale Zweiergruppe, also
Feld links-unten und Feld rechts-oben wäre nicht möglich, da ja auch ansonsten keine
diagonalen Felder erlaubt sind.

Abb. 4.23   Karnaugh-
Diagramm mit vier Variablen 00 01A,B= 11 10

A=1, C=0, D=1

A=0, D=0
00

01

11

10

C,D=

1001

1001

0010

0010

4.5  Schaltungsminimierung mit Karnaugh-Diagramm

Abb. 4.24   Karnaugh-
Diagramm mit Achtergruppen 00 01

A,B=
11 10

00

01

11

10

C,D=

C=1

B=0

1111

1100

1100

1111

106 4  Kombinatorische Schaltungen

4.5.5	� Auswahl der erforderlichen Terme

Nachdem die 1-Felder zu möglichst großen Gruppen, den Primtermen, zusammengefasst
sind, muss im nächsten Schritt überprüft werden, welche Terme erforderlich sind. Dabei
sind manchmal alle Primterme erforderlich und manchmal werden Primterme nicht benö-
tigt, sind also redundant. Die Bedingung für die Auswahl der Primterme ist, dass alle 1-Fel-
der in mindestens einem Primterm enthalten sein müssen. Je weniger Primterme benötigt
werden und je größer die Terme sind, umso günstiger ist die entstehende Schaltung.

Als Beispiel wird eine Funktion mit sieben 1-Feldern betrachtet, die in Abb. 4.26 im
Karnaugh-Diagramm eingetragen sind. Es lassen sich vier Primterme bilden, und zwar
eine Vierergruppe und drei Zweiergruppen. Da alle 1-Felder in einem der Primterme ent-
halten sein müssen, ist Term 1 erforderlich, denn nur er enthält die 1-Felder in der linken
Spalte. Auch Term 2 und Term 4 sind erforderlich, denn nur sie enthalten die 1-Felder in
der dritten Spalte (für C,D = 11). Term 3 hingegen ist nicht erforderlich, denn sein obe-
res 1-Feld ist bereits in Term 1, das untere 1-Feld in Term 4 enthalten.

4.5.6	� Ermittlung der minimierten Funktion

Wenn die erforderlichen Primterme bekannt sind, müssen die logischen Funktionen für diese
Terme bestimmt werden. Die Terme sind dabei eine UND-Verknüpfung von nicht-negierten
und negierten Eingangsvariablen. Welche Eingangsvariablen im Term enthalten sind, ergibt
sich durch die Position des Primterms im Karnaugh-Diagramm. Drei Fälle sind möglich:

Abb. 4.25   Die vier Ecken
können eine Vierergruppe
bilden

00 01A,B= 11 10

00

01

11

10

C,D=

B=0, D=0

1001

0000

0000

1001

Abb. 4.26   Auswahl der
Primterme 00 01A,B= 11 10

00

01

11

10

C,D=

Term 2

Term 3

Term 4

0111

0011

0110

0000

Term 1

107

•	 Der Primterm überdeckt nur Zeilen oder Spalten, für die eine Eingangsvariable 1 ist.
Dann wird die Variable nicht-negiert in der UND-Verknüpfung verwendet.

•	 Der Primterm überdeckt nur Zeilen oder Spalten, für die eine Eingangsvariable 0 ist.
Dann wird die Variable negiert in der UND-Verknüpfung verwendet.

•	 Der Primterm überdeckt Zeilen oder Spalten, für die eine Eingangsvariable sowohl 1
als auch 0 sind. Dann wird die Variable nicht in der UND-Verknüpfung verwendet.

Die Formel für die minimierte Funktion ergibt sich dann als ODER-Verknüpfung aller
UND-Terme.

Als Beispiel wird die Funktion für Term 1 in Abb. 4.26 ermittelt. Für die vier Ein-
gangsvariablen gilt:

•	 Der Term überdeckt nur Zeilen in denen die Variable A gleich 0 ist. A wird negiert
verwendet.

•	 In den oberen beiden Zeilen ist die Variable B sowohl 0 als auch 1. B wird nicht
verwendet.

•	 In den überdeckten linken Spalten ist C beides mal 0. C wird negiert verwendet.
•	 In den beiden linken Spalten ist D sowohl 0 als auch 1. D wird nicht verwendet.
•	 Die Funktion für Term 1 ist also: Ā& C̄

Für Term 2 gilt, dass die Variablen A und B gleich 0 sind und daher negiert verwendet
werden. D ist gleich 1 und wird nicht-negiert verwendet. C kann 0 und 1 sein und darum
in der Funktion nicht enthalten. Der Primterm lautet also: Ā& B̄&D

Für Term 4 sind die Variablen A, B und D gleich 1 und daher nicht-negiert. C ist wie
bei Term 2 nicht enthalten und daher lautet der Primterm: A&B&D

Somit ergibt sich die minimierte Funktion für Abb. 4.26 als ODER-Verknüpfung von
Term 1, 2 und 4:

4.5.7	� Karnaugh-Diagramm mit Don’t-Care

Wenn für bestimmte Kombinationen von Eingangswerten keine Ausgabe spezifiziert ist,
kann diese Freiheit benutzt werden, um die minimierte Funktion möglichst einfach zu
erstellen. Ein Beispiel für Funktionen mit Don’t-Care wurde am Anfang des Kapitels in
Abschn. 4.2.4 erläutert.

Die Behandlung von Don’t-Care-Einträgen bei der Minimierung nach Karnaugh ist
relativ einfach. Zunächst werden die Don’t-Cares als Strich ‚-‘ in das Karnaugh-Dia-
gramm eingetragen. Bei der Ermittlung der Primterme werden die Don’t-Cares einbe-
zogen, um möglichst große Primterme zu bilden. Bei der Auswahl der erforderlichen
Primterme werden die Don’t-Cares dann nicht berücksichtigt, denn sie müssen nicht in
einem Primterm enthalten sein.

Y = Ā& C̄ ∨ Ā& B̄&D ∨ A&B&D

4.5  Schaltungsminimierung mit Karnaugh-Diagramm

108 4  Kombinatorische Schaltungen

Anschaulich gesprochen werden die Don’t-Cares zur Bildung der Primterme wie
1-Werte, bei der Auswahl der erforderlichen Primterme wie 0-Werte behandelt. Primterme
die nur aus Don’t-Cares bestehen, werden nicht eingetragen. In der resultierenden mini-
mierten Funktion ergeben sich dann für manche Don’t-Cares eine 1, für andere eine 0.

Als Beispiel für die Behandlung von Don’t-Cares soll die in Abschn. 4.2.3 beschrie-
bene Primzahlerkennung für die Zahlen 0 bis 9 minimiert werden. Die Funktionstabelle
findet sich in Abb. 4.4 und hat sechs Don’t-Cares. Der Eingang ist die vierstellige Dualzahl
A(3:0), so dass die Eingangsvariablen hier nicht A bis D heißen. Abb. 4.27 zeigt auf der
linken Seite die Zuordnung zwischen Feldern im Karnaugh-Diagramm und Dezimalzahlen.

Im Karnaugh-Diagramm in Abb. 4.27 (rechts) können drei Vierergruppen als Primterme
gebildet werden. In der dritten Zeile wäre eine weitere Vierergruppe nur aus Don’t-Cares
möglich, die aber nicht eingetragen wird, da sie ohne 1-Felder nicht erforderlich sein kann.

Term 1 ist erforderlich, da nur er das 1-Feld rechts oben abdeckt. Term 2 ist erforder-
lich, da nur er das 1-Feld für ‚0101‘ abdeckt. Mit diesen beiden Termen sind sämtliche
1-Felder abgedeckt, sodass Term 3 nicht erforderlich ist.

Zur Bestimmung der Terme werden wieder die Eingangsvariablen betrachtet. Für Term
1 ist A(2) stets 0 und A(1) stets 1, also werden sie negiert beziehungsweise nicht-negiert
berücksichtigt. Die Variablen A(3) und A(0) treten sowohl als 0 und 1 auf, entfallen also.
Term 1 lautet somit A(2)&A(1). Term 2 berechnet sich als A(2)&A(0). Die minimierte
Funktion für die Primzahlerkennung ist die ODER-Verknüpfung der Terme und lautet:

Durch die gewählten Terme werden vier der sechs Don’t-Care-Felder umfasst. Für diese
Felder ergibt sich also eine 1 als Ausgabe, für die anderen beiden Don’t-Care-Felder eine
0. Da laut Aufgabenstellung diese Eingangskombinationen nicht auftreten, konnten sie
frei belegt werden.

Y = A(2)&A(1) ∨ A(2)&A(0)

Term 1

Term 3Term 2

A(3:2)=

A(1:0)=

1100

0110

--00

A(3:2)=
00

00

01

01

11

11

10

10

00

00

01

01

11

11

10

10

A(1:0)=

2310

6754

14151312

101198

Abb. 4.27   Karnaugh-Diagramm für Primzahlerkennung mit Don’t-Cares

109

Vielleicht fragen Sie sich beim Betrachten von Abb. 4.27, ob die Terme nicht auch
kleiner gewählt werden könnten. Term 1 beispielsweise könnte auch als Zweiergruppe
mit den beiden 1-Feldern aus der ersten Zeile eingetragen werden. Ein solcher Term
würde tatsächlich eine korrekte logische Funktion ergeben. Er wäre aber aufwendiger als
die Vierergruppe. Term 1 als Zweiergruppe entspricht A(3)&A(2)&A(1), während die
Vierergruppe durch den einfacheren Term A(2)&A(1) umgesetzt wird.

4.5.8	� Karnaugh-Diagramm für mehr als vier Variablen

Auch Funktionen mit fünf oder sechs Variablen können prinzipiell mit dem Karnaugh-
Diagramm minimiert werden. Allerdings sind dafür mehr als zwei Dimensionen erfor-
derlich und man muss sich die Felder räumlich hintereinander oder übereinander
vorstellen. Abb. 4.28 zeigt eine Darstellung mit 32 Feldern für fünf Variable, bei der die
beiden Hälften gedanklich an der mittleren, dickeren Linie geknickt werden. Felder aus
rechter und linker Hälfte liegen dadurch übereinander. Eine mögliche Vierergruppe ist
zur Verdeutlichung eingetragen. Für sechs Variable müsste man in einem 64er-Feld auch
eine obere und untere Hälfte übereinander legen.

Diese Darstellung ist allerdings unübersichtlich und daher fehleranfällig. Ein rechner-
gestütztes Verfahren wäre daher sinnvoll.

4.5.9	� Karnaugh-Diagramm der konjunktiven Normalform

Bisher wurde stets die disjunktive Normalform beschrieben, aber in ähnlicher Weise kann
auch die konjunktive Normalform aufgestellt werden. Entsprechend der Symmetrie der
Schaltalgebra (siehe de Morgansche Gesetze in Abschn. 4.3.2.5) ist die Vorgehensweise
praktisch spiegelbildlich. Es werden also anstatt der 1-Felder die 0-Felder verbunden, gege-
benenfalls mithilfe der Don’t-Care-Felder. Dann werden die ODER-Terme UND-verknüpft.

Als Beispiel soll die Primzahlerkennung auch in der konjunktiven Normalform mini-
miert werden. In Abb. 4.29 werden aus den 0-Feldern mithilfe der Don’t-Cares eine
Achtergruppe und drei Vierergruppen gebildet. Term 1 und 3 sind erforderlich, da es

4.5  Schaltungsminimierung mit Karnaugh-Diagramm

Abb. 4.28   Karnaugh-
Diagramm für fünf Variablen 000 001A,B= 011 010

00

01

11

10

C,D,E=
110 111 101 100

110 4  Kombinatorische Schaltungen

jeweils ein 0-Feld gibt, welches nur in ihnen enthalten ist. Damit sind alle 0-Felder abge-
deckt, so dass Term 2 und 4 redundant sind.

Die minimierte Funktion ergibt sich zu:

Für die Primzahlerkennung sind die minimierten Funktionen der disjunktiven und kon-
junktiven Normalform praktisch gleich aufwendig, denn beide Funktionen nutzen drei
Verknüpfungen mit jeweils zwei Eingängen. Je nach Funktionstabelle kann eine der
Varianten aber auch günstiger als die andere sein. Es gibt Entwurfsprogramme die beide
Varianten ausprobieren und die günstigere verwenden.

4.6	� VHDL für kombinatorische Schaltungen

4.6.1	� Beschreibung logischer Verknüpfungen

Im Kapitel 3 haben Sie die Schaltungsbeschreibung mit VHDL kennengelernt. Die logi-
schen VHDL-Operatoren können verwendet werden, um eine Funktion zu beschreiben.
Die gerade in Abschn. 4.5.9 berechnete Logikfunktion würde dann wie folgt lauten:

y <= (a(2) or a(1)) and ((not a(2)) or a(0));

Die Reihenfolge der Operationen wird durch Klammern vorgegeben. Dies empfiehlt
sich, um zweifelsfrei zu definieren, wie die Funktion gemeint und interpretiert werden
soll. Es ist besser einige Sekunden für eine weitere Klammer zu investieren, als mehrere
Stunden oder länger nach einem Fehler im Code zu suchen.

Die direkte Beschreibung der Logikfunktion ist möglich und wird auch von Program-
men verstanden. Viel sinnvoller ist es jedoch, die Funktion zu beschreiben und die Gene-
rierung der Logikfunktion dem Programm zu überlassen.

Y = (A(2) ∨ A(1))&
(

A(2) ∨ A(0)
)

00 01A(3:2)= 11 10

00

01

11

10

A(1:0)=

Term 1

Term 2

Term 3

1100

0110

--00 Term 4

Abb. 4.29   Primzahlerkennung in der konjunktiven Normalform

http://dx.doi.org/10.1007/978-3-662-49731-9_3

111

4.6.2	� Beschreibung der Funktion

Bei der Funktionsbeschreibung in VHDL wird die Spezifikation durch If- und Case-
Anweisungen sowie Zuweisungen beschrieben. Die Funktion soll ja die Primzahl aus
dem 4-Bit-Wert A erkennen. Eine VHDL-Beschreibung würde darum A zunächst in
einen Unsigned umwandeln und dann eine Case-Anweisung aufrufen.

signal a_u : unsigned (3 downto 0);

…

a_u     <= unsigned(a);
process (a_u)

   begin

   case a_u is

      when  0 => y <= '0';
      when  1 => y <= '0';
      when  2 => y <= '1';
      when  3 => y <= '1';
      when  4 => y <= '0';
      when  5 => y <= '1';
      when  6 => y <= '0';
      when  7 => y <= '1';
      when  8 => y <= '0';
      when  9 => y <= '0';
      when others => y <= '0';
   end case;

end process;

Diese Beschreibung benötigt zwar etwas mehr Text, dafür spart man sich die manu-
elle Schaltungsminimierung für die Logikfunktion. Außerdem ist beim Betrachten des
Codes schneller deutlich, welche Funktion ausgeführt wird.

Man kann die Beschreibung auch noch vereinfachen, indem nur die Primzahlen in
der Case-Anweisung genannt werden. Alle anderen Werte sind durch den Others-Fall
berücksichtigt. Die Case-Anweisung würde dann lauten:

   case a_u is

      when  2 => y <= '1';
      when  3 => y <= '1';
      when  5 => y <= '1';
      when  7 => y <= '1';
      when others => y <= '0';
   end case;

Im Unterschied zu der Funktionstabelle in Abb. 4.4 werden bei beiden VHDL-
Beschreibungen die Don’t-Care-Fälle nicht berücksichtigt, sondern die Ausgabe für

4.6  VHDL für kombinatorische Schaltungen

112 4  Kombinatorische Schaltungen

Werte größer 10 zu 0 gesetzt. Prinzipiell könnte für ein Don’t-Care der Wert ‚-‘ zugewie-
sen werden. Dies wird in der Praxis jedoch selten gemacht, da die Einsparungen meist
relativ gering sind.

4.7	� Übungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Prüfen Sie sich mit den Aufgaben und
Fragen am Kapitelende. Die Lösungen und Antworten finden Sie am Ende des Buches.

Bei den Auswahlfragen ist immer genau eine Antwort korrekt.

Aufgabe 4.1
Was ist ein Minterm?

a)	 Eine Logikfunktion die nur für eine Eingangskombination 1 ist
b)	Eine Logikfunktion die mit geringst möglicher Geschwindigkeit arbeitet
c)	 Eine Logikfunktion die nur für eine Eingangskombination 0 ist
d)	Eine Logikfunktion die nur aus einem Inverter besteht
e)	 Eine Logikfunktion die nur aus einem XOR-Gatter besteht

Aufgabe 4.2
Was ist ein Maxterm?

a)	 Eine Logikfunktion die nur für eine Eingangskombination 0 ist
b)	Eine Logikfunktion die nur für eine Eingangskombination 1 ist
c)	 Eine Logikfunktion die nur aus einem XOR-Gatter besteht
d)	Eine Logikfunktion die nur aus einem Inverter besteht
e)	 Eine Logikfunktion die mit konstanter Geschwindigkeit arbeitet

Aufgabe 4.3
Für eine Stereoanlage soll die eingestellte Lautstärke auf einer vertikalen Skala mit sie-
ben LEDs (L1 bis L7) dargestellt werden. Die Lautstärke ist als 3-Bit-Dualzahl D2, D1,
D0 verfügbar.

Je höher die eingestellte Lautstärke, umso mehr LEDs sollen durch Ausgabe einer 1
leuchten. Bei Lautstärke 0 (D2, D1, D0 = 000) sind alle LEDs aus, bei 1 (001) leuchtet
nur L1, und so weiter. Abb. 4.30 zeigt den Wert 4 (100) bei dem L1 bis L4 leuchten.

Stellen Sie die Funktionstabelle der Schaltung auf.

Aufgabe 4.4
Für einen Spielautomaten soll die Eingabe eines Joysticks akustisch ausgegeben werden.
Der Joystick hat vier Schalter O (oben), U (unten), L (links), R (rechts). In der Mittelstellung

113

geben alle Schalter 0 aus, bei Auslenkung sind die entsprechenden Schalter 1. Der Joystick
kann schräg gehalten werden, sodass ein horizontaler und ein vertikaler Schalter gleichzeitig
gedrückt sein können. Die beiden horizontalen bzw. vertikalen Schalter O und U bzw. L und
R können nicht gleichzeitig gedrückt sein.

Wenn der Joystick aus der Mittelstellung heraus, horizontal oder vertikal gedrückt
wird, soll durch Setzen des Ausgangs T1 = 1 ein bestimmter Ton ausgegeben werden.
Wenn der Joystick schräg gehalten wird und zwei Schalter drückt, soll durch Setzen des
Ausgangs T2 = 1 ein anderer Ton ausgegeben werden. T1 ist dann 0.

Stellen Sie die Funktionstabelle der Schaltung zur Erzeugung der Tonansteuerung T1
und T2 aus den Schaltern O, U, R, L des Joysticks auf. Für Eingangskombinationen, die
nicht auftreten können, soll für die Ausgänge ein Don’t-Care (‚-‘) eingetragen werden.

Aufgabe 4.5
Eine kombinatorische Schaltung hat vier Eingänge A(3:0), die unten als Dezimalzahl A
angegeben ist. Es gibt einen Ausgang Y der folgende Werte hat:

•	 1 bei A = 5, 7, 10, 11, 14, 15
•	 0 sonst

Hinweis: Die Zuordnung von Dezimalzahl zu Feldern im Karnaugh-Diagramm ergibt
sich aus der Zahlendarstellung, ist aber auch in Abb. 4.27 (links) angegeben.

a)	 Stellen Sie das Karnaugh-Diagramm auf.
b)	Ermitteln Sie die Produktterme. Welche Produktterme sind erforderlich?
c)	 Geben Sie die Funktion für die Ausgangsvariable an.

Aufgabe 4.6
Eine kombinatorische Schaltung hat vier Eingänge A(3:0), die unten als Dezimalzahl A
angegeben ist. Es gibt einen Ausgang Y der folgende Werte hat:

•	 1 bei A = 0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 15
•	 0 sonst

4.7  Übungsaufgaben

Abb. 4.30   Lautstärkeanzeige
einer Stereoanlage

L1
L2
L3
L4
L5
L6
L7

114 4  Kombinatorische Schaltungen

a)	 Stellen Sie das Karnaugh-Diagramm auf.
b)	Ermitteln Sie die Produktterme. Welche Produktterme sind erforderlich?
c)	 Geben Sie die Funktion für die Ausgangsvariable an.

Aufgabe 4.7
Eine kombinatorische Schaltung hat vier Eingänge A(3:0), die unten als Dezimalzahl A
angegeben ist. Es gibt einen Ausgang Y der folgende Werte hat:

•	 1 bei A = 1, 3, 8, 11, 13, 14
•	 0 bei A = 0, 2, 4, 5, 6
•	 Don’t-Care sonst

a)	 Stellen Sie das Karnaugh-Diagramm auf.
b)	Ermitteln Sie die Produktterme mit Nutzung der undefinierten Ausgänge. Welche Pro-

duktterme sind erforderlich?
c)	 Geben Sie die Funktion für die Ausgangsvariable an.

Aufgabe 4.8
Eine kombinatorische Schaltung hat vier Eingänge A(3:0), die unten als Dezimalzahl A
angegeben ist. Es gibt einen Ausgang Y der folgende Werte hat:

•	 1 bei A = 0, 5, 14, 15
•	 0 bei A = 1, 2, 3, 6, 7, 8, 12, 13
•	 Don’t-Care sonst

a)	 Stellen Sie das Karnaugh-Diagramm auf.
b)	Ermitteln Sie die Produktterme mit Nutzung der undefinierten Ausgänge. Welche Pro-

duktterme sind erforderlich?
c)	 Geben Sie die Funktion für die Ausgangsvariable an.

115© Springer-Verlag GmbH Deutschland 2016
W. Gehrke et al., Digitaltechnik, Springer-Lehrbuch,
DOI 10.1007/978-3-662-49731-9_5

Während kombinatorische Schaltungen nur die aktuellen Werte der Eingangssignale
verwenden, können sich sequenzielle Schaltungen Informationen merken. Die Aus-
gangswerte einer sequenziellen Schaltung können damit von den aktuellen und den vor-
angegangenen Werten der Eingangssignale abhängen. Dieses Gedächtnis wird durch
Flip-Flops als Speicherelemente erreicht.

Beispielsweise kann der Kanal eines Fernsehers durch Zifferntasten sowie durch ‚+‘
und ‚−‘-Taste ausgewählt werden. Durch Drücken der Taste ‚4‘ wird der Kanal Vier aus-
gewählt. Der Fernseher hat hierfür eine sequenzielle Schaltung, die sich den aktuellen
Kanal merkt, auch wenn keine Taste mehr gedrückt ist. Durch Drücken von ‚+‘ wechselt
der Fernseher auf Kanal Fünf. Wird ‚−‘ gedrückt, geht der Fernseher wieder auf Kanal
Vier. Der Kanal kann also auf verschiedene Arten angewählt werden. Wie die Kanalaus-
wahl erfolgte, ist nicht wichtig. Wenn der Kanal Vier gewählt ist, braucht sich die sequen-
zielle Schaltung nicht zu merken, ob dies durch die Taste ‚4‘ oder ‚−‘ oder ‚+‘ geschah.

Sequenzielle Schaltungen werden in der Digitaltechnik sehr oft eingesetzt und dabei
meist durch einen Takt angesteuert. Dieser Takt erreicht für eine Hochleistungs-CPU
Frequenzen von über 3 GHz, während für viele Anwendungen eine Geschwindigkeit im
Bereich 10 bis 100 MHz ausreicht. Sequenzielle Schaltungen werden beispielsweise als
Flankendetektor, als Zähler oder als Steuerung eingesetzt.

•	 Ein Flankendetektor erkennt die Änderung eines Eingangswertes und gibt einmalig
ein Signal weiter. Wenn beim Fernseher die ‚+‘-Taste gedrückt wird, soll nur ein
Kanal weitergeschaltet werden, selbst wenn die Taste etwas länger gedrückt wird.

•	 Ein Zähler ist beispielsweise in einer CPU enthalten und zählt pro Takt jeweils einen
Wert weiter, um den nächsten Befehl auszuführen. Bei einer Verzweigung kann der
Zähler auch auf einen bestimmten Wert gesetzt werden.

In diesem und dem nächsten Kapitel werden einige Schaltungen ausführlich erläutert.

Sequenzielle Schaltungen 5

116 5  Sequenzielle Schaltungen

5.1	� Speicherelemente

5.1.1	� RS-Flip-Flop

Die Grundform eines Speicherelements ist das RS-Flip-Flop (RS-FF), auch als Latch
bezeichnet. Es arbeitet ohne Takt und hat die beiden Eingänge R und S sowie den Aus-
gang Q. Das Schaltsymbol ist in Abb. 5.1 dargestellt.

5.1.1.1 � Funktion
Die beiden Eingänge haben die Bedeutung Reset (R) und Set (S), also rücksetzen und
setzen. Entsprechend dieser Namen ist auch die Funktion des RS-Flip-Flops.

•	 Mit R auf 1 wird der Ausgang Q auf 0 gesetzt (rücksetzen), S ist dabei 0.
•	 Mit S auf 1 wird der Ausgang Q auf 1 gesetzt (setzen), R ist dabei 0.
•	 Sind beide Eingänge 0, bleibt der Wert von Q unverändert (speichern).
•	 Beide Eingänge dürfen nicht gleichzeitig auf 1 sein. Man kann nicht gleichzeitig set-

zen und rücksetzen.

Der Zeitverlauf in Abb. 5.2 verdeutlicht die Funktion. In der Digitaltechnik wird der
Zeitverlauf üblicherweise etwas vereinfacht dargestellt, da vor allem der logische
Zusammenhang gezeigt werden soll. Auf der horizontalen Achse ist die Zeit aufgetra-
gen. Die vertikale Achse zeigt die Pegel für die Eingangs- und Ausgangssignale. Die
Zeitachse hat keinen Maßstab, da keine konkreten Zeiten sondern die Abläufe wichtig
sind. Ebenso hat die vertikale Achse keinen Maßstab, sondern gibt nur die Pegel L und H
für die Werte 0 und 1 an. Die Signalübergänge werden leicht schräg dargestellt, um den
Übergang von 0 nach 1 oder umgekehrt anzudeuten. Die Zeitverzögerung, die in jeder
Schaltung enthalten ist, wird dadurch angedeutet, dass die Signalübergänge von Eingang
und Ausgang leicht versetzt sind.

Für das RS-FF sind in Abb. 5.2 die Eingänge R und S sowie der im Flip-Flop gespei-
cherte Ausgangswert Q dargestellt. Die eingezeichneten Zeitpunkte haben folgende
Bedeutung:

1.	 Der Eingang R ist 1, das RS-FF wird rückgesetzt und Q ist 0.
2.	 Beide Eingänge sind 0 und das RS-FF speichert den vorherigen Wert 0 für Q.
3.	 S wird 1 und setzt das RS-FF. Der Ausgang Q wird 1 und speichert diesen Wert auch

wenn S wieder auf 0 geht.
4.	 Mit Aktivierung von R wird das RS-FF wieder auf 0 gesetzt.

Abb. 5.1   Schaltsymbol eines
RS-Flip-Flops (RS-FF)

S

R

QS

R

1175.1  Speicherelemente

Beachten Sie: Wenn R und S 0 sind, kann der Ausgang sowohl 0 als auch 1 sein. Der
Ausgangswert hängt also davon ab, ob zuletzt R oder S auf 1 war. Dies ist der wesentli-
che Unterschied zu einer kombinatorischen Schaltung, die bei gleichen Eingangswerten
immer den gleichen Ausgangswert ergeben, unabhängig von vorherigen Werten.

5.1.1.2 � Aufbau
Die Speicherung im RS-FF erfolgt durch eine Rückkopplung des Ausgangs Q. Es werden
zwei NOR-Gatter benötigt, die wie in Abb. 5.3 verschaltet sind. Der Ausgang des zwei-
ten NOR-Gatters wird an einen Eingang des ersten Gatters zurückgeführt und speichert
so den Wert des Ausgangs Q. Da nur zwei Gatter benötigt werden, ist der Schaltungsauf-
wand für das RS-FF relativ klein.

Die NOR-Gatter des RS-FF können im Schaltplan auch nebeneinander geschoben
werden, so dass sich die in Abb. 5.4 gezeigte Anordnung ergibt. Während ein NOR-Gat-
ter den Ausgang Q erzeugt, hat das andere NOR-Gatter den invertierten Speicherwert als
Ausgang.

5.1.1.3 � Herleitung des Aufbaus
Der Aufbau des RS-Flip-Flops könnte auch mit den bereits bekannten Methoden aus
dem vorherigen Kapitel hergeleitet werden. Abb. 5.5 zeigt, dass die Rückführung zur
Speicherung des Flip-Flop-Wertes als separate Leitung angesehen werden kann. Der

Abb. 5.2   Zeitverlauf der
Ansteuerung eines RS-Flip-
Flops

S

Q

R

t

logisch 0
logisch 1

Abb. 5.3   Aufbau eines
RS-Flip-Flops

R

S
Q

1
1

Abb. 5.4   Alternative
Darstellung des RS-Flip-Flop-
Aufbaus

R

S

Q

Q

1

1

Abb. 5.5   Entwurf des
RS-Flip-Flops R

S
Qn

Qn+1

kombinatorische
Schaltung

118 5  Sequenzielle Schaltungen

Rest des Flip-Flops ist dann eine normale kombinatorische Schaltung. Sie hat die Ein-
gänge R und S sowie den alten Wert von Q, der hier als Qn bezeichnet wird. Mit die-
sen drei Werten berechnet die kombinatorische Schaltung dann den neuen Wert von Q,
bezeichnet als Qn+1. Die Bezeichner n und n+1 stellen Zeitschritte dar; n ist der aktuelle,
n+1 der nächste Wert.

Für die kombinatorische Schaltung aus Abb. 5.5 kann eine Funktionstabelle erstellt
und mit dem Verfahren nach Karnaugh minimiert werden. Abb. 5.6 zeigt die Funktions-
tabelle und das Karnaugh-Diagramm dieser kombinatorischen Schaltung. Zur Minimie-
rung können die disjunktive und die konjunktive Normalform verglichen werden, also
Einsen oder Nullen zusammengefasst werden. Die konjunktive Normalform mit dem in
Abb. 5.6 dargestellten Termen ergibt die Funktion

Mit dem De Morganschen Gesetz wird die UND-Verknüpfung durch eine NOR-Ver-
knüpfung mit negierten Operatoren ersetzt. Aus dem ODER in der Klammer wird dann
ein NOR und die Negierung von R entfällt. Somit ergibt sich die in Abb. 5.3 gezeigte
Struktur mit zwei NOR-Gattern.

5.1.1.4 � Verwendung
In der Praxis wird das RS-Flip-Flop in der einfachen Grundform nur selten verwendet,
da es kein Taktsignal benutzt. Es ist jedoch als Teilschaltung in getakteten Flip-Flops
enthalten und dadurch eine wichtige Grundlage für die Datenspeicherung in sequenziel-
len Schaltungen.

5.1.2	� Taktsteuerung von Flip-Flops

5.1.2.1 � Takt
Fast alle in der Realität eingesetzten Schaltungen benutzen einen Takt zur Ansteuerung
der Speicherelemente. Der Takt ist ein periodisches Signal, welches in gleichmäßigem
Rhythmus zwischen 0 und 1 wechselt. Ein 0-1-Zyklus wird als Taktzyklus, Taktschritt
oder Taktperiode bezeichnet.

Q
n+1

= R̄& (Qn
∨ S)

Q
n+1

= R̄& (Qn
∨ S) = R ∨ (Qn ∨ S)

Abb. 5.6   Minimierung nach
Karnaugh für den Entwurf des
RS-FF

R

1
1
1
1

0
1
1

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

0
0
0
0 1

0
0
-
-

S Qn Qn+1

speichern

setzen

rücksetzen

verboten

}

}

}

}

R,S= 00 01

0

1
Qn=

11 10

-10

0-11

0

1195.1  Speicherelemente

Der besondere Vorteil der Taktsteuerung ist die Synchronisierung der Speicherele-
mente. Durch den Takt schalten alle Flip-Flops gemeinsam und führen einen Rechen-
schritt aus. Mit dem nächsten Taktzyklus wird der nächste Rechenschritt ausgeführt.

Kennzeichnend für einen Takt sind die Periodendauer Tper und die Taktfrequenz f, die
der Kehrwert der Periodendauer ist:

Taktfrequenzen für digitale Schaltungen sind typischerweise im Bereich zwischen
10 MHz für eine einfache Schaltung bis zu über 3 GHz für aktuelle CPUs in Computern.
Die Periodendauer ergibt sich nach der genannten Formel.

Zur Verdeutlichung zwei Zahlenbeispiele:

•	 Für die Taktfrequenz 10 MHz beträgt die Periodendauer	

•	 Für die Taktfrequenz 3 GHz beträgt die Periodendauer	

Je höher die Taktfrequenz ist, umso leistungsfähiger ist eine Schaltung. Allerdings stei-
gen auch der Schaltungsaufwand, die Störanfälligkeit und die benötigte Leistung. Darum
haben netzbetriebene stationäre Computer normalerweise höhere Taktraten als batterie-
betriebene Laptops und Smartphones.

Eine weitere Kenngröße des Takts ist das Tastverhältnis D (englisch Duty Cycle), also
die Dauer der 1-Phase bezogen auf die Periodendauer:

Der Duty Cycle sollte möglichst etwa 50 %, also 0- und 1-Phase etwa gleich lang sein.
Dies ist insbesondere für hohe Taktfrequenzen wichtig, damit das Taktsignal ausreichend
Zeit hat, auch wirklich die Low- und High-Pegel zu erreichen.

Abb. 5.7 zeigt den Taktverlauf eines Taktsignals mit Periodendauer und Zeiten für die
Taktphasen. Die englische Bezeichnung für Takt ist Clock; das Signal wird daher oft als
CLK oder C abgekürzt.

f = 1
/

Tper

Tper =
1
/

f =
1
/

10MHz =
1
/

10 · 106Hz =
1
/

107Hz = 10−7
s = 100 ·10−9

s = 100 ns

Tper =
1
/

3GHz = 0, 333 ns

D = T1
/

Tper

Abb. 5.7   Zeitverlauf eines
Taktsignals CLK

tT1 T0

Tper

120 5  Sequenzielle Schaltungen

5.1.2.2 � Taktpegelsteuerung
Als einfache Taktsteuerung kann der Taktpegel, also der Wert 0 oder 1, benutzt werden.
Ein taktpegelgesteuertes Flip-Flop ist nur aktiv, wenn der Takt auf 1 ist. Die Grundform
des RS-Flip-Flop kann mit wenig Aufwand um eine Taktpegelsteuerung erweitert wer-
den. Wie in Abb. 5.8 gezeigt, werden dazu die Eingänge mit jeweils einem UND-Gatter
erweitert. Nur wenn der Takt auf 1 ist, werden die beiden Steuereingänge R und S durch
die UND-Funktion an R* und S* weitergegeben. Ist der Takt auf 0 sind auch R* und S*
auf 0 und das RS-FF behält seinen Wert.

Der Zeitablauf in Abb. 5.9 verdeutlicht das Verhalten. Nur wenn der Takt CLK auf 1
ist, werden die Steuereingänge R und S ausgewertet. Dies sind die mit  gekennzeichne-
ten Impulse. Wenn der Takt auf 0 ist, führen an den mit  gekennzeichneten Zeiten die
Eingangssignale zu keiner Änderung am Ausgang.

Die Taktpegelsteuerung hat jedoch einen großen Nachteil. Eigentlich sollte die Verar-
beitung so ablaufen, dass pro Taktzyklus die Informationen genau ein Flip-Flop weiter-
gegeben werden. Allerdings dauert die 1-Phase eine gewisse Zeit und die Flip-Flops sind
während dieser 1-Phase aktiviert. Es wird also vorkommen, dass Informationen durch
mehrere Flip-Flops „rutschen“.

Um dies zu vermeiden, werden bei taktpegelgesteuerten Flip-Flops zwei Takte ver-
wendet, die sich nicht überlappen. Dies ist in Abb. 5.10 dargestellt. Oben im Bild ist zu
sehen, wie aufeinander folgende Flip-Flops abwechselnd an eines der Taktsignale ange-
schlossen werden. Unten ist der Zeitverlauf der beiden Takte skizziert. Immer abwech-
selnd, mit einer Pause dazwischen, ist ein Takt aktiv. Damit werden die Daten immer
genau einen Schritt, also ein Flip-Flop weitergereicht.

Das Prinzip des Zweiphasentakts ähnelt einer Kanalschleuse, bei der ein Schiff durch
zwei Tore fahren muss. Erst fährt das Schiff durch ein Tor und das Tor wird geschlossen.

R

S

Q

Q

&

&

CLK

R*

S*

1

1

Abb. 5.8   Taktpegelgesteuertes RS-Flip-Flop

Abb. 5.9   Zeitverlauf beim
taktpegelgesteuerten RS-Flip-
Flop

CLK

R

S

Q

t

1215.1  Speicherelemente

Nach dem Ändern des Wasserstands wird das andere Tor geöffnet und das Schiff fährt
weiter zur nächsten Schleuse. Es sind jedoch nie beide Tore gleichzeitig offen.

Ein solcher Zweiphasentakt mit taktpegelgesteuerten Flip-Flops wurde früher in vielen
Schaltungen eingesetzt. Allerdings sind zwei Taktleitungen erforderlich, was einen höheren
Aufwand bedeutet. Auch kann die Taktperiode nicht so gut ausgenutzt werden, sodass Zeit
verloren geht. Darum werden heute kaum noch taktpegelgesteuerte Flip-Flops verwendet.

5.1.2.3 � Taktflankensteuerung
Heutzutage wird praktisch immer eine Taktflankensteuerung verwendet. Nur bei einer
Taktflanke ist das Flip-Flop aktiv, das heißt der Zeitpunkt des Schaltens ist sehr genau
vorgegeben. Dies hat den Vorteil, dass alle Flip-Flops einer Schaltung wirklich gleichzei-
tig arbeiten können. Somit wird eine Verarbeitung immer genau einen Schritt von Flip-
Flop zu Flip-Flop weitergeführt.

Für die Taktflankensteuerung kann entweder die steigende Taktflanke, also der Über-
gang von 0 nach 1, oder die fallende Taktflanke, also der Übergang von 1 nach 0, benutzt
werden. Meist wird die steigende Taktflanke verwendet, da dies anschaulicher ist. Alle
Flip-Flops einer Schaltung sind dann nur beim Übergang des Takts von 0 nach 1 aktiv.
Genauso gut könnten auch Flip-Flops eingesetzt werden, die bei der fallenden Taktflanke
aktiv sind. Dann sollten alle Flip-Flops der Schaltung so aufgebaut sein. Im Schalt-
symbol wird die Taktflankensteuerung durch ein Dreieck am Takteingang dargestellt.
Abb. 5.11 zeigt die Steuerung durch die Taktflanke und das Schaltsymbol.

Es gibt keine Flip-Flops, die bei beiden Flanken aktiv sind. Eine Mischung von Flip-
Flops mit steigender und fallender Taktflanke wird nur bei Spezialschaltungen benötigt;
ein Beispiel findet sich in einem späteren Kapitel bei der Ansteuerung von Speichern.

Abb. 5.10   Schaltungsprinzip
und Zeitdiagramm eines
Zweiphasentakts

CLK_B

CLK_A

CLK_B

CLK_A

Flip-Flops

t

CLK

t

CLK

Flip-Flop aktiv

Abb. 5.11   Taktflankensteuerung und Schaltsymbol

122 5  Sequenzielle Schaltungen

Bei der Taktflankensteuerung erfolgt üblicherweise keine Ansteuerung mit R und S wie
beim RS-Flip-Flop. Stattdessen gibt es einen Dateneingang D, dessen Wert direkt gespei-
chert wird. Dieses taktflankengesteuerte D-Flip-Flop wird im nächsten Abschnitt erläutert.

5.1.3	� D-Flip-Flop

Das taktflankengesteuerte D-Flip-Flop, oder kurz D-Flip-Flop (D-FF) ist das heutzutage
am häufigsten verwendete Flip-Flop. Wenn in der Praxis von einem Flip-Flop gespro-
chen wird, ist so gut wie immer das taktflankengesteuerte D-Flip-Flop gemeint. Zwei
oder mehr D-FFs, die von einem gemeinsamen Takt angesteuert werden, bezeichnet man
auch als Register.

5.1.3.1 � Funktion
Beim D-Flip-Flop wird der Eingang D bei einer steigenden Flanke des Takts übernom-
men und am Ausgang Q ausgegeben. Das Schaltungssymbol in Abb. 5.12 zeigt auf der
linken Seite den Dateneingang D und den Takteingang C mit dem Dreieck zur Kenn-
zeichnung der Taktflankensteuerung. An der rechten Seite ist der Datenausgang Q. Wenn
das D-FF auf die negative Taktflanke reagiert, wird dies durch einen Inverterkreis am
Takteingang dargestellt. Im Symbol kennzeichnet die Ziffer 1 die Abhängigkeit der Sig-
nale voneinander. Der Dateneingang 1D wird abhängig vom Taktsignal C1 ausgewertet.

Das Verhalten des D-Flip-Flops wird durch die Funktionstabelle in Abb. 5.13
beschrieben. Die Form der Tabelle ist ähnlich zu den Funktionstabellen der kombinatori-
schen Schaltungen. Das Zeitverhalten wird durch das Taktflankensymbol und Indizes an
den Werten beschrieben. Qn meint dabei wieder den jetzigen Wert des Ausgangs Q und
Qn+1 ist der zeitlich darauffolgende Wert. Die Indizes bezeichnen also aufeinanderfol-
gende Taktperioden oder Zeitschritte n und n+1.

Abb. 5.12   Taktsymbol des
D-FFs

1D

C1

positive
Taktflanke

1D

C1

negative
Taktflanke

D

C

Q D

C

Q

Abb. 5.13   Funktionstabelle
des D-FFs

positive
Taktflanke

negative
Taktflanke

C

Qn

Qn+1

0

1

X 0

X 1

1

D

0

Qn

C

Qn

Qn+1

0

1

X 0

X 1

1

D

0

Qn

1235.1  Speicherelemente

Die Zeilen der linken Funktionstabelle (positive Taktflanke) haben die Bedeutung:

1.	 Bei D gleich 0 und positiver Taktflanke an C wird der Ausgang Q zu 0.
2.	 Bei D gleich 1 und positiver Taktflanke an C wird der Ausgang Q zu 1.
3.	 Wenn der Takt konstant auf 0 ist, behält Q seinen Wert. Der Wert von D ist irrelevant

(‚X‘). Das neue Qn+1 ist also gleich dem alten Qn.
4.	 Wenn der Takt konstant auf 1 ist, behält Q seinen Wert. Qn+1 ist gleich Qn.

Die rechte Funktionstabelle zeigt das entsprechende Verhalten für die negative Taktflanke.
Das Zeitverhalten des D-FFs zeigt Abb. 5.14. Bei jeder steigenden Taktflanke wird

der Eingang von D übernommen und am Ausgang Q ausgegeben. Änderungen von D
zwischen den steigenden Taktflanken haben keine Auswirkungen.

Die eingezeichneten Zeitpunkte haben folgende Bedeutung:

1.	 Der Eingang D wird 1.
2.	 Bei der nächsten steigenden Taktflanke speichert das D-Flip-Flop den Eingangswert

und gibt ihn am Ausgang aus. Q wird 1.
3.	 Der Eingang D wird 0.
4.	 Bei der nächsten steigenden Taktflanke speichert das D-Flip-Flop wieder den Ein-

gangswert. Q wird 0.
5.	 D wird 1 und vor der nächsten steigenden Taktflanke wieder 0. Der gespeicherte Wert

im Flip-Flop und der Ausgang Q ändern sich nicht.
6.	 D wird wieder kurz 1, dann 0. Da in dieser Zeit eine steigende Taktflanke auftritt,

wird der Ausgang für einen Takt gleich 1.

Das Zeitverhalten und auch alle weiteren Erklärungen sind im Folgenden nur für Flip-
Flops mit positiver Taktflanke dargestellt. Flip-Flops mit negativer Taktflanke verhalten
sich entsprechend.

5.1.3.2 � Reales Zeitverhalten
Wie erläutert, übernimmt das D-Flip-Flop den Eingangswert bei der positiven Takt-
flanke. Natürlich braucht die Schaltung eine kurze Zeit, um den Wert zu übernehmen.
Der Eingangswert darf sich darum zum Zeitpunkt der Taktflanke nicht ändern, sondern
muss kurz vor und kurz nach der Taktflanke stabil sein. Abb. 5.15 zeigt einen zulässigen
und unzulässigen Zeitverlauf.

Abb. 5.14   Zeitverhalten eines
D-Flip-Flops D

Q

C

t

124 5  Sequenzielle Schaltungen

1.	 Der Dateneingang D wechselt vor der Taktflanke.
2.	 Kurz vor und nach der Taktflanke ist D stabil und wird korrekt übernommen ().
3.	 Nach der Taktflanke kann D wieder wechseln.
4.	 Während der nächsten Taktflanke ist D nicht stabil und wird nicht korrekt übernom-

men (). Der Ausgang des Flip-Flops ist undefiniert. Er kann 0, 1 oder sogar einen
unzulässigen Zwischenzustand haben.

5.	 Bei der nächsten Taktflanke ist D stabil. Dennoch kann das Flip-Flop einige Zeit
benötigen, um sich zu „fangen“. Dies wird als Metastabilität bezeichnet. Im Bild ist
angenommen, dass der Ausgang bei dieser Taktflanke wieder normal den Eingangs-
wert übernimmt.

Die benötigten Zeiten vor und nach der Taktflanke werden als Setup- und Hold-Zeit
bezeichnet. Das Eingangssignal D muss vor der Taktflanke für die Setup-Zeit tsetup und
nach der Taktflanke für die Hold-Zeit thold stabil sein.

Abb. 5.16 zeigt die Zeiten und verwendet die in der Digitaltechnik übliche Darstel-
lung. Der horizontale Strich in der Mitte zwischen 0 und 1 gibt an, dass der Wert belie-
big wechseln darf. Zwei parallele Striche bei 0 und 1 geben einen konstanten Wert 0 oder
1 an.

Die benötigten Zeiten von tsetup und thold hängen von der verwendeten Technologie
ab und sind in Datenblättern angegeben. Bei modernen integrierten Schaltungen sind die
Zeiten im Bereich von 0,1 ns oder kleiner. Die Hold-Zeit wird oft zu Null angestrebt,
damit sich der Eingangswert direkt nach der Taktflanke ändern darf.

5.1.3.3 � Aufbau
Für den Aufbau eines D-Flip-Flops gibt es mehrere Möglichkeiten, die sich in Größe,
Zeitverhalten und Stromverbrauch unterscheiden. Abb. 5.17 zeigt eine Möglichkeit zum
Aufbau eines D-Flip-Flops. Auf der rechten Seite ist ein RS-Flip-Flop zur Datenspei-
cherung (vgl. Abb. 5.3). Auf der linken Seite ist eine Vorstufe, in der sich ebenfalls die
Struktur zweier RS-FFs findet. Diese Vorstufe erkennt die steigende Taktflanke und steu-
ert dann das RS-FF auf der rechten Seite an.

Abb. 5.15   Datenspeicherung
bei Taktflanken

D

C

Q ???

Abb. 5.16   Setup- und Hold-
Zeiten beim D-FF

Q

D

C

tsetup thold

Wert kann zwischen
‚0' und ‚1' wechseln

Wert konstant
‚0' oder ‚1'

1255.1  Speicherelemente

Eine weitere Schaltung zur Implementierung eines Flip-Flops wird später im Kapitel
Halbleitertechnik vorgestellt (Kapitel 10).

5.1.4	� Erweiterung des D-Flip-Flops

Die Grundfunktion des D-Flip-Flops kann durch weitere Steuereingänge erweitert
werden.

5.1.4.1 � Asynchroner Reset und Set
Der Dateneingang des D-FF wird nur bei der Taktflanke ausgewertet. Manchmal ist es
jedoch erforderlich, dass der Wert eines D-FFs sofort geändert wird. Hierzu dient ein
asynchroner Reset oder Set. Der Begriff asynchron meint dabei „nicht synchron“, also
„nicht mit dem Takt gekoppelt“. Normalerweise hat ein D-FF entweder Reset oder Set,
je nachdem welchen Wert das D-FF bei Aktivierung einnehmen soll.

•	 Ein asynchroner Reset setzt das D-FF sofort auf 0.
•	 Ein asynchroner Set setzt das D-FF sofort auf 1.

Mit „sofort“ ist hierbei gemeint, dass nicht auf die nächste Taktflanke gewartet wer-
den muss. Natürlich hat das Flip-Flop eine kurze Verzögerungszeit, in der die Gatter
umschalten.

Reset und Set sind normale Eingänge des Flip-Flops und werden an der linken Kante
des Schaltsymbols eingezeichnet (Abb. 5.18). Negative Polarität wird wieder durch den
Inverterkreis symbolisiert. Abb. 5.18 zeigt beispielhaft den Set mit negativer Polarität.
Genauso wäre ein Reset mit negativer Polarität möglich.

Das Zeitverhalten eines D-Flip-Flops mit asynchronen Reset zeigt Abb. 5.19. Bei den
steigenden Taktflanken sind Hilfslinien eingezeichnet, um die Taktzyklen zu verdeutlichen.

1.	 Mit der steigenden Taktflanke wird der Wert 1 des Eingangs D gespeichert.
2.	 Durch eine 1 am Reset wird das D-FF sofort auf 0 gesetzt, also ohne auf eine Takt-

flanke zu warten.

Abb. 5.17   Möglichkeit zum
Aufbau eines D-Flip-Flops
(nach Datenblatt TI SN7474)

D

Q

Q

&

&

CLK

&

&

&

&

http://dx.doi.org/10.1007/978-3-662-49731-9_10

126 5  Sequenzielle Schaltungen

3.	 Reset wird wieder 0, also inaktiv. Dies hat aber noch keine Auswirkung auf den
gespeicherten Wert.

4.	 Erst mit der nächsten steigenden Taktflanke wird der Wert von D wieder ausgewertet
und der Ausgang Q wird 1.

Beachten Sie insbesondere, dass nach dem Ende des Resets, zum Zeitpunkt ③ das Flip-
Flop noch auf 0 bleibt. Der Eingang D ist synchron, wird also erst bei der nächsten stei-
genden Taktflanke wieder ausgewertet.

Praktische Verwendung finden asynchroner Reset und Set insbesondere bei der Initia-
lisierung. Beim Einschalten einer Digitalschaltung haben die Flip-Flops einen unbekann-
ten Speicherzustand und können durch Reset und Set auf den gewünschten Startwert
gesetzt werden.

Auch für die Erkennung kurzer Impulse können asynchroner Reset und Set verwen-
det werden. Ein Eingangssignal ist eventuell sehr kurz und schon vor der nächsten Takt-
flanke beendet. Ein solcher Impuls würde von einer synchronen Schaltung, die nur bei
den Taktflanken arbeitet, nicht erkannt. Zur Erkennung solcher Impulse wird ein Flip-
Flop durch den Dateneingang ständig auf 0 gesetzt und der Impuls wird am asynchronen
Set angeschlossen. Wenn das Flip-Flop auf 1 ist, lag ein Impuls am Set-Eingang vor.

5.1.4.2 � Synchroner Reset und Set
Alternativ kann Reset und Set auch ganz normal mit der Taktflanke ausgewertet wer-
den, also synchron. Wie in Abb. 5.20 gezeigt, hat der Steuereingang dann die Ziffer 1, als
Kennzeichnung der Abhängigkeit vom Takt.

Der synchrone Set ist prinzipiell ein weiterer Dateneingang, das heißt, der Ausgang
des Flip-Flops wird 1, wenn während der Taktflanke D oder S auf 1 sind. Deswegen
könnte die Schaltung auch durch ein normales D-FF und ein ODER-Gatter implemen-
tiert werden (Abb. 5.20, rechts). Entwurf und Darstellung als synchroner Set sind jedoch
übersichtlicher und der Set kann direkt in die Flip-Flop-Schaltung integriert werden.

Abb. 5.18   Schaltsymbole von
D-FFs mit asynchronem Set
(hier mit negativer Polarität)
und Reset

1D

C1 R

C1D

C

Q

R

C

QS 1D/S D

Abb. 5.19   Zeitverhalten eines
D-Flip-Flops mit asynchronem
Reset

D

Q

C

t

R

1275.1  Speicherelemente

In ähnlicher Weise gibt es D-FFs mit synchronem Reset. Auch synchroner Reset und
Set werden für die Initialisierung von Digitalschaltungen verwendet.

5.1.4.3 � Enable
Ein weiterer Steuereingang der für D-FFs verwendet wird, ist der Enable-Eingang (EN).
Bei einer Taktflanke wird der D-Eingang nur übernommen, wenn Enable gleich 1 ist.
Ansonsten wird der Ausgang Qn beibehalten. Abb. 5.21 zeigt Symbol und Zeitverhalten,
wobei die Ziffern wieder die Abhängigkeit anzeigen. Das Enable EN1 gibt die Gültigkeit
von Takt 1C2 an, welcher dann den Dateneingang 2D übernimmt.

Im Zeitverhalten sind folgende Fälle gekennzeichnet:

1.	 EN ist 0 und das Flip-Flop behält seinen Wert.
2.	 EN ist 1 und bei jeder steigenden Taktflanke wird der Wert von D übernommen.
3.	 EN ist 0 und das Flip-Flop behält seinen Wert.

Ein Enable-Steuereingang wird in der Praxis eingesetzt, wenn eine Teilschaltung nur zu
bestimmten Zeiten oder bei bestimmten Bedingungen aktiv ist.

5.1.4.4 � Kompakte Darstellung von D-Flip-Flops
Für die Darstellung von D-Flip-Flops in einer größeren Schaltung wird in der Praxis
häufig eine kompakte Form gewählt und die Ziffern der Eingangsabhängigkeit weggelas-
sen (Abb. 5.22, links).

Abb. 5.20   Symbol und
Schaltung eines D-FFs mit
synchronem Set

1S

C1
1D

1D

C1

S

=D
S

C

Q
D Q

C

1

Abb. 5.21   Symbol und
Zeitverhalten eines D-FF mit
Enable D

Q

C

t

EN2D

1C2

EN1EN

D

C

Q

Abb. 5.22   Kompakte
Darstellung eines D-FF in
der Grundform sowie mit
asynchronem Set und Reset

D

C
R

D

C

SD

C

D

C

Q

R

D

C

Q

/S

D

C

Q

128 5  Sequenzielle Schaltungen

Asynchroner Set und Reset können dann an der unteren oder oberen Kante des Sym-
bols eingezeichnet sein, um darzustellen, dass sie unabhängig vom Takteingang sind. Der
Set liegt in dieser Darstellung an der oberen Kante, denn er zieht den Wert „nach oben“,
zur 1. Reset wird entsprechend an der unteren Kante dargestellt, denn er zieht den Wert
„nach unten“, zur 0. Abb. 5.22 zeigt auch diese Darstellung, wobei das Set wieder bei-
spielhaft negative Polarität hat (vgl. Abb. 5.18).

5.1.5	� Weitere Flip-Flops

Es gibt neben D-Flip-Flops und ihren Erweiterungen auch andere taktflankengesteuerte
Flip-Flops. Diese werden allerdings in der Praxis nur selten eingesetzt und darum hier
nur kurz erwähnt.

5.1.5.1 � JK-Flip-Flop
Das JK-Flip-Flop (JK-FF) hat einen Takteingang und die beiden Steuereingänge J und
K. Diese haben folgende Bedeutung:

•	 Beide Eingänge auf 0: Flip-Flop behält seinen Wert.
•	 J auf 1 (und K auf 0): Flip-Flop geht auf 1
•	 K auf 1 (und J auf 0): Flip-Flop geht auf 0
•	 Beide Eingänge auf 1: Flip-Flop invertiert seinen Wert, geht also von 0 auf 1 oder von

1 auf 0.

Dieses Verhalten ähnelt dem RS-FF, mit J als Set und K als Reset. Die Bedeutung kann
man sich merken als J wie Jump (auf 1) und K wie Kill (auf 0). Die beim RS-FF verbo-
tene Kombination, dass beide Steuereingänge auf 1 sind, ist hier erlaubt und dreht den
gespeicherten Wert um.

Auch dieses Flip-Flop kann durch asynchronen Reset oder Set erweitert werden.
JK-Flip-Flops wurden früher eingesetzt, als Digitalschaltungen noch durch einzelne

diskrete Bausteine aufgebaut wurden. Durch geschickte Ansteuerung von J und K konn-
ten Logikgatter eingespart werden. Heutzutage werden praktisch keine diskreten Flip-
Flops und darum auch keine JK-FFs mehr verwendet.

5.1.5.2 � Toggle-Flip-Flop
Das Toggle-Flip-Flop (T-FF) hat, neben dem Takt, nur einen Steuereingang T. Wenn T
gleich 1 ist, invertiert das Flip-Flop seinen Wert, es „toggled“. Bei T gleich 0 bleibt der
gespeicherte Wert unverändert.

Auch das T-FF kann durch asynchronen Reset oder Set erweitert werden. Wie beim
JK-FF wurde das T-FF eingesetzt, um durch geschickte Ansteuerung Logikgatter einzu-
sparen. Es wird heutzutage praktisch nicht mehr verwendet.

129

5.1.6	� Kippstufen

Flip-Flops werden auch als bistabile Kippstufen bezeichnet. Bistabil meint, dass beide
„Kippwerte“, also 0 und 1 stabil sind. Diese Bezeichnung legt nahe, dass es auch andere
Kippstufen gibt.

5.1.6.1 � Monostabile Kippstufe
Eine monostabile Kippstufe, auch als Monoflop bezeichnet, hat nur einen stabilen
Zustand; der instabile Zustand geht nach einer Verzögerungszeit in den stabilen Zustand
über. Das Monoflop reagiert auf eine positive Taktflanke am Eingang mit einem 1-Impuls
am Ausgang. Aus dieser instabilen Lage kippt es nach einer einstellbaren Zeit TD zurück
in den stabilen Zustand mit einer 0 am Ausgang. Erst wenn der Ausgang wieder in seinen
ursprünglichen Logik-Zustand zurückgekippt ist, kann ein neuer Eingangsimpuls mit sei-
ner Flanke wirksam werden.

Als Variante sind nachtriggerbare Monoflops möglich. Falls die Impulsdauer TD noch
nicht abgelaufen ist, verlängert eine Taktflanke des Eingangssignals den Impuls bis wie-
derum die Zeit TD nach der Flanke abgelaufen ist.

Dieses Verhalten entspricht der Treppenhausbeleuchtung in einem Mehrfamilien-
haus. Nach Schalterdruck ist das Licht für zwei Minuten an (instabiler Zustand) und geht
danach wieder aus (stabiler Zustand). Bei einer nachtriggerbaren Treppenhausbeleuch-
tung verlängert ein weiterer Schalterdruck die Beleuchtungsdauer.

Monostabile Kippstufen sind als diskrete Bauelemente verfügbar. Die Verzögerungs-
zeit kann über ein RC-Glied eingestellt werden. Eingesetzt werden diese Bauelemente,
um das Zeitverhalten von Signalen zu kontrollieren. Beispielsweise kann so sicherge-
stellt werden, dass ein Reset eine bestimmte Mindestdauer hat.

5.1.6.2 � Astabile Kippstufe
Eine astabile Kippstufe hat keinen stabilen Zustand, sondern wechselt periodisch zwi-
schen den beiden Zuständen, also 0 und 1. Sie wird auch als Oszillator bezeichnet und
als Taktgenerator eingesetzt.

Es gibt verschiedene Schaltungen, die als astabile Kippstufe eingesetzt werden können.
Einfache Schaltungen nutzen RC-Glieder, um zwischen den Zuständen umzuschalten.
Hierbei ist die Frequenz meist nicht sehr stabil, aber für einfache Anwendungen kann dies
ausreichend sein.

Für hohe Ansprüche in Hinblick auf Frequenzstabilität werden quarzgesteuerte Oszil-
latoren eingesetzt. Für den Einsatz in der Digitaltechnik stehen integrierte Schaltkreise zur
Verfügung, die über einen Schwingquarz auf eine bestimmte Frequenz eingestellt werden.

5.2	� Endliche Automaten

Eine sequenzielle Schaltung, die aus Speicherelementen und Logikgattern besteht, wird
als Automat, oder genauer als endlicher Automat bezeichnet.

5.2  Endliche Automaten

130 5  Sequenzielle Schaltungen

5.2.1	� Automatentheorie

Ein Automat ist dadurch gekennzeichnet, dass sein Verhalten durch aktuelle Eingangs-
variablen und interne Zustandsvariablen bestimmt ist. Die Zustandswerte, oder auch
Zustände, beschreiben die „Vorgeschichte“ des Automaten. Daraus ergibt sich auch die
englische Bezeichnung Finite State Machine (FSM), also frei übersetzt Automat mit end-
licher Anzahl an Zuständen.

Vielleicht fragen Sie sich jetzt, ob es überhaupt Automaten mit unendlicher Anzahl an
Zuständen gibt. Als reale Implementierung ist ein unendlich großer Speicher natürlich
nicht möglich, aber in der Theorie ist dies denkbar. In der theoretischen Informatik wird
die Turingmaschine verwendet, die einen unendlich großen Speicher hat und somit ein
unendlicher Automat ist. Mit dem Gedankenmodell der Turingmaschine wird die Bere-
chenbarkeit von mathematischen Problemen analysiert.

5.2.1.1 � Mealy-Automat
Eine Grundform der endlichen Automaten ist der Mealy-Automat. Er wird durch drei
Gruppen an Variablen und zwei Funktionen definiert.

Die drei Gruppen an Variablen sind:

•	 Eingangsvariablen, also Eingangswerte, die in die Schaltung hineingehen. Sie wer-
den als X(0), X(1), X(2), … sowie gemeinsam als Gruppe X bezeichnet.

•	 Ausgangsvariablen, also Ausgangswerte, die aus der Schaltung herausgehen. Sie
werden als Y(0), Y(1), Y(2), … sowie gemeinsam Y bezeichnet.

•	 Zustandsvariablen, also interne Werte der Schaltung, die den Zustand speichern. Sie
werden als Z(0), Z(1), Z(2), … sowie gemeinsam Z bezeichnet.

Die zwei Funktionen beschreiben die Zusammenhänge zwischen den Variablen:

•	 Die Zustandsübergangsfunktion benutzt die Eingangsvariablen X und die aktuellen
Zustandsvariablen Zn, also Z vom aktuellen Zeitschritt n. Hiermit berechnet sie die
neuen Zustandsvariablen Zn+1 für den nächsten Zeitschritt n+1. Als Funktion ausge-
drückt lautet dies: Zn+1=f(X,Zn)

•	 Die Ausgangsfunktion benutzt ebenfalls die Eingangsvariablen X und die aktuellen
Zustandsvariablen Zn, um die Ausgangsvariablen Y zu berechnen. Die Funktion lautet:
Y=g(X,Zn)

Diese Struktur ist in Abb. 5.23 dargestellt. Eingangsvariable X und aktuelle Zustands-
variablen Zn gehen in die Zustandsübergangsfunktion. Dieser Block ist eine kombina-
torische Schaltung aus UND-Gattern, ODER-Gattern und so weiter. Sie berechnet den
nächsten Zustand Zn+1. Die Speicherglieder sind D-Flip-Flops, die zurzeit noch den
aktuellen Zustand Zn speichern und bei der Taktflanke den neuen Zustand übernehmen.

131

Die Ausgangsfunktion ist ebenfalls eine kombinatorische Schaltung und berechnet aus X
und Zn die Ausgangsvariablen Y.

Später in diesem Kapitel sind Beispiele für Automaten angegeben, um Struktur und
Funktion des Mealy-Automaten zu verdeutlichen. Zunächst soll jedoch der andere
bedeutende Automatentyp vorgestellt werden.

5.2.1.2 � Moore-Automat
Der Moore-Automat ähnelt dem Mealy-Automat, hat jedoch einen wesentlichen Unter-
schied. Die Ausgangsfunktion hängt nur von den aktuellen Zustandsvariablen Zn ab und
nicht von den Eingangsvariablen X. Die Funktion für die Ausgangsvariablen Y lautet
also: Y=g(Zn)

Die Informationen der Eingangsvariablen beeinflussen also zunächst den Zustand und
der Zustand bestimmt dann den Ausgang. Die Struktur ist in Abb. 5.24 zu sehen.

Verglichen mit dem Mealy-Automaten ist der Moore-Automat also etwas einfacher in
der Struktur. Grundsätzlich können für praktische Problemstellungen stets beide Auto-
maten verwendet werden. Für manche Problemstellungen ist ein Mealy-Automat besser
geeignet, für andere ein Moore-Automat.

An den Beispielen, die später in diesem Kapitel folgen, werden die Unterschiede
sowie Vor- und Nachteile deutlich.

5.2.1.3 � Medwedew-Automat
Der Medwedew-Automat ist ein Spezialfall des Moore-Automaten. Bei ihm sind die Aus-
gangsvariablen Y gleich den Zustandsvariablen Zn. Die Ausgangsfunktion ist also trivial
und gibt die Zustandsvariablen direkt weiter. In der Funktionsschreibweise lautet dies:
Y=Zn

Auf den Medwedew-Automat wird später in Abschn. 5.2.7 kurz eingegangen.

Abb. 5.23   Struktur des
Mealy-Automaten

Ausgangs-
funktion

Zn

Zn+1 Y
X

Zn

Takt

Zustands-
übergangs-
funktion

Speicher-
Glieder

(Flip-Flops)

Abb. 5.24   Struktur des
Moore-Automaten Ausgangs-

funktion
Y

X

Zn

Zn+1

Zn

Takt

Zustands-
übergangs-
funktion

Speicher-
Glieder

(Flip-Flops)

5.2  Endliche Automaten

132 5  Sequenzielle Schaltungen

5.2.2	� Beispiel für einen Automaten

5.2.2.1 � Schaltungsanalyse
Um die Funktionsweise eines Automaten zu verstehen, wird in diesem Abschnitt ein vor-
handener Automat analysiert. Im darauffolgenden Abschnitt lernen Sie dann, wie Auto-
maten entworfen werden.

Startpunkt der Analyse ist das Schaltbild des Automaten in Abb. 5.25. Vergleichen
Sie ihn auch mit den Grundstrukturen von Mealy- und Moore-Automat in Abb. 5.23 und
Abb. 5.24.

Im Schaltbild sind die drei Blöcke des Automaten hervorgehoben:

•	 Die Zustandsübergangsfunktion besteht aus fünf Logikgattern.
•	 Als Speicherglieder werden zwei D-Flip-Flops verwendet.
•	 Die Ausgangsfunktion besteht aus einem Logikgatter.

Die drei Variablengruppen des Automaten sind:

•	 Es gibt eine Eingangsvariable X
•	 Es gibt eine Ausgangsvariable Y
•	 Es gibt zwei Zustandsvariable Z(0), Z(1)

Außerdem ist das Taktsignal CLK vorhanden.
Eine Betrachtung der Struktur zeigt, dass es sich um einen Moore-Automaten handelt,

denn der Ausgang Y hängt nur von den Zustandsvariablen und nicht auch noch von der
Eingangsvariablen ab.

Zur weiteren Analyse werden die Funktionstabellen der beiden kombinatori-
schen Schaltungen für Zustandsübergangsfunktion und Ausgangsfunktion aufge-
stellt. Die Zustandsübergangsfunktion hat drei Eingänge, also müssen für 23 = 8

D

C

X
&

D

C

&

& Y

Ausgangs-
funktion

Speicher-
glieder

CLK

Zn+1(0)

Zn+1(1)

&

Zn(0)

Zn(1)

Zustandsübergangs-
funktion

1

1

Abb. 5.25   Schaltbild eines Automaten

133

Eingangskombinationen die Funktionswerte ermittelt werden. Die Ausgangsfunktion
hat zwei Eingänge, also 22 = 4 Eingangskombinationen. Die Funktionstabellen werden
direkt berechnet, indem alle Kombinationen in die Grafik oder die logische Funktion ein-
gesetzt werden. Wenn Sie möchten, können Sie dies als Übung selbst berechnen, ansons-
ten finden Sie das Ergebnis in Abb. 5.26.

Beachten Sie die Unterscheidung für die Zustandsvariable Z(0), Z(1). Die aktuellen
Werte Zn(0), Zn(1) sind Eingänge für beide Funktionstabellen. Die Werte Zn+1(0), Zn+1(1)
für den nächsten Zeitschritt sind die Ausgabe der Zustandsübergangsfunktion.

5.2.2.2 � Zustände und Zustandsfolgetabelle
Da der Automat zwei Zustandsvariable hat, können vier verschiedene Zustände gespei-
chert werden. Zur besseren Anschaulichkeit werden diese Zustände durch Buchstaben A,
B, C, D gekennzeichnet. Als allgemeine Bezeichnung für Zustände wird der Buchstabe
s (engl. State) verwendet. Die Zuordnung zwischen Zustandsvariablen und Zuständen
zeigt Abb. 5.27.

Jetzt können Zustandsübergangsfunktion und Ausgangsfunktion mit der Codierung
der Zustände kombiniert werden. In Tabelle Abb. 5.26 werden also Z(0) und Z(1) durch
die Zustandsnamen A, B, C, D aus Abb. 5.27 ersetzt. Das Ergebnis wird als Zustands-
folgetabelle (Abb. 5.28) bezeichnet. Die acht Zeilen der Zustandsübergangsfunktion
(Abb. 5.26) sind umsortiert, so dass die Zustände in vier Zeilen und die Eingangsvariable
in zwei Spalten angeordnet sind.

In der Zustandsfolgetabelle Abb. 5.28 steht links der aktuelle Zustand sn. Auf der
rechten Seite ist für die beiden Möglichkeiten der Eingangsvariablen der jeweilige Fol-
gezustand sn+1 angegeben. Ganz rechts findet sich die Ausgangsvariable Y. Wie oben
gesagt, ergibt sich Abb. 5.28 direkt aus den Funktionstabellen und der Zustandscodie-
rung. Zum Nachvollziehen können Sie als Übung die Zustandsfolgetabelle selbst noch
einmal erstellen.

Abb. 5.26   Funktionstabellen
für Zustandsübergangsfunktion
(links) und Ausgangsfunktion
(rechts)

0

1

X

0
0
0
0 1

0 1
0

1
0

0

1
1

0 1
0

1
01

1

1
1

0 0
0 0
0 0
0 0

1
1

0 1

1
0

11

Zn(0)Zn(1) (0)Zn+1 Zn+1(1)

0

1
1

0 1
0

1
0

0
0
0
1

Zn(0)Zn(1) Y

Abb. 5.27   Codierung der
Zustände Z(0)Z(1)

0

1
1

0 1
0

1
0

Codierung Zustand
s

A
B
C
D

5.2  Endliche Automaten

134 5  Sequenzielle Schaltungen

Die Übergänge zwischen den Zuständen lassen sich auch grafisch darstellen. Hierzu
dient das Zustandsfolgediagramm in Abb. 5.29. Die Zustände sind als Kreise angegeben
und enthalten auch die Ausgabewerte der jeweiligen Zustände. Die Übergänge zwischen
den Zuständen sind Pfeile. Bei jeder steigenden Taktflanke geht der Automat einen Über-
gang, also einen Pfeil weiter. Am Pfeil steht jeweils die Bedingung, bei der der Übergang
erfolgt, also X = 0 oder X = 1.

Da es für X zwei Möglichkeiten gibt, gibt es für jeden Zustand zwei mögliche Fol-
gezustände. Dabei ist es auch möglich, dass ein Zustand sein eigener Folgezustand ist.
Jeder Zustand ist Startpunkt für genau zwei Pfeile. Für die Endpunkte der Pfeile gibt es
keine Beschränkung. Manche Zustände können nur von einem Pfeil, also einem Über-
gang erreicht werden. Andere Zustände können das Ziel von mehreren Zustandsübergän-
gen sein.

5.2.2.3 � Funktion
Durch das Zustandsfolgediagramm oder vielleicht bereits durch die Zustandsfolgetabelle
wird die Funktion des Automaten deutlich. Der Automat erkennt Folgen von 1 am Ein-
gang X. Wenn der Eingang das dritte Mal 1 ist, wird auch der Ausgang 1 und bleibt 1 so
lange weiter eine 1 am Eingang anliegt. Wenn eine 0 am Eingang anliegt, geht der Aus-
gang auf 0 und es müssen wieder drei Werte mit 1 anliegen, damit der Ausgang 1 wird.
Wenn nach zweimal 1 bereits eine 0 am Eingang X anliegt, beginnt das Zählen wieder
von neuem; es muss wieder dreimal eine 1 auftreten.

Dieses Verhalten wird durch die Zustände wie folgt umgesetzt. Vergleichen Sie zur
Beschreibung die Zustandsfolgetabelle (Abb. 5.28) und das Zustandsfolgediagramm
(Abb. 5.29).

•	 Bei einer 0 am Eingang geht der Automat in den Zustand A. Dieser Zustand hat also
die Bedeutung: „Der letzte Eingangswert war 0.“

•	 Bei der ersten 1 geht der Automat in den Zustand B. Dieser Zustand hat die Bedeu-
tung: „Es gab bisher eine 1.“

sn

X=0

A

sn+1

X=1

BA
B
C
D

A
A
A

C
D
D

Y

0
0
0
1

Abb. 5.28   Zustandsfolgetabelle

X=1

A
Y=0

B
Y=0

C
Y=0

D
Y=1

X=1 X=1 X=1

X=0 X=0 X=0

X=0

Abb. 5.29   Zustandsfolgediagramm

135

•	 Wenn im Zustand B eine 0 anliegt, muss wieder von vorne gestartet werden und der
Automat geht nach A. Eine 1 im Zustand B wäre jedoch die zweite 1 und der Automat
geht in den Zustand C mit der Bedeutung: „Es gab bisher zweimal eine 1.“

•	 Eine weitere 1 wäre die dritte 1 und dies soll der Automat ja erkennen. Dann geht der
Automat in den Zustand D und gibt am Ausgang eine 1 aus.

•	 Bei jeder weiteren 1 bleibt der Automat in D und gibt weiter 1 aus. Der Zustand D hat
also die Bedeutung: „Drei oder mehr Eingangswerte nacheinander waren 1.“

Wie Sie aus der Beschreibung erkennen, hat also jeder Zustand eine bestimmte
Bedeutung.

Zustand: Der Zustand speichert Informationen aus der Vergangenheit, die für die Funktion
erforderlich sind.

Abb. 5.30 zeigt das Zeitverhalten des Automaten beispielhaft für einen Zeitverlauf am
Eingang X. Das Eingangssignal wird jeweils bei der steigenden Taktflanke ausgewer-
tet und daraus ergeben sich der Zustand und das Ausgabesignal Y für den jeweiligen
Taktzyklus.

In praktischen Anwendungen arbeiten fast alle Schaltungen mit einem Taktsignal.
Deshalb verwenden auch alle Automaten, die in diesem Buch beschrieben sind, einen
Takt und die Informationen am Eingang eines Automaten werden immer nur bei der stei-
genden Taktflanke ausgewertet. Die Beschreibung „Der Eingang X war dreimal 1.“ meint
daher eigentlich „Der Eingang X war bei drei steigenden Taktflanke auf 1.“

5.2.3	� Entwurf von Automaten

Normalerweise ist in der Praxis der Ablauf umgekehrt zu dem zuvor erläuterten Beispiel.
Bei einer Entwicklung ist meist eine Aufgabe gegeben und hierzu soll eine Schaltung
entworfen werden. Der Ablauf beim Entwurf umfasst die folgenden Schritte:

1.	 Spezifikation des Verhaltens
2.	 Aufstellen der Zustandsfolgetabelle
3.	 Minimierung der Zustände
4.	 Codierung der Zustände
5.	 Aufstellen der Ansteuerungstabelle
6.	 Logikminimierung

Abb. 5.30   Zeitdiagramm für
den analysierten Automaten

CLK
X

Y
Zustand A A B C A B CA D D A

5.2  Endliche Automaten

136 5  Sequenzielle Schaltungen

5.2.3.1 � Spezifikation des Verhaltens
Das gewünschte Verhalten eines Automaten ist meist in Textform gegeben. Ein einfacher
Automat kann in einem Absatz beschrieben werden. Für eine komplexe Schaltung, z. B.
einen Mikroprozessor, kann die Spezifikation aber auch mehrere 100 Seiten Umfang haben.
Gerade bei größeren Spezifikationen können Unklarheiten auftreten, zum Beispiel weil
nicht alle möglichen Fälle des Eingangsverhaltens spezifiziert sind. Diese Unklarheiten
müssen dann während des Entwurfs durch Rückfragen bei den Verantwortlichen für die
Spezifikation geklärt werden.

In diesem Unterkapitel soll eine Schaltung mit folgender Spezifikation entworfen
werden:

Zum Entprellen eines Tasters soll ein Automat entwickelt werden. Der Automat soll am
Ausgang Y den entprellten Wert des Eingangs X angeben. Wenn am Eingang drei Takte lang
der gleiche Wert 0 oder 1 anliegt, soll der Ausgang Y diesen Wert annehmen. Ansonsten soll
der letzte Eingangswert, der mindestens drei Takte anlag ausgegeben werden.
Beim Einschalten soll der Wert 0 ausgegeben werden.

Ein Zeitdiagramm kann die Spezifikation ergänzen. Zeitdiagramme sind dabei aber nur
Beispiel und dienen der Illustration einer Spezifikation. Sie sind kein Ersatz für eine Spe-
zifikation, denn die Angabe aller möglichen Abfolgen von Eingangskombinationen und
Zuständen ist in einem Zeitdiagramm meist gar nicht möglich. Das Zeitdiagramm des
Entprell-Automaten in Abb. 5.31 zeigt die Reaktion auf eine exemplarische Eingabe.

5.2.3.2 � Aufstellen der Zustandsfolgetabelle
Das Aufstellen der Zustandsfolgetabelle ist der eigentliche kreative Schritt bei der Ent-
wicklung eines Automaten. Am übersichtlichsten und einfachsten ist die grafische Dar-
stellung als Zustandsfolgediagramm und spätere Abschrift als Tabelle.

Als Erstes muss entschieden werden, ob eine Implementierung als Mealy- oder
Moore-Automat erfolgen soll. Bei Übungsaufgaben ist normalerweise der Typ vorgege-
ben. Hier soll ein Moore-Automat erstellt werden. Wenn Sie mehrere Automaten entwor-
fen haben, können Sie selbst beurteilen, welcher Automatentyp günstiger ist.

Das Zustandsfolgediagramm wird schrittweise erstellt und dieser Entwurf soll hier
auch in einzelnen Schritten erklärt werden, damit Sie die Vorgehensweise nachvollziehen
können.

Schritt 1
Um einen Anfang für das Diagramm zu haben, wird mit einem ersten Zustand begonnen.
In diesem Beispiel wird der Fall betrachtet, dass die Eingabe immer 0 ist. In diesem Fall
ist auch die Ausgabe 0 und der Automat bleibt immer im gleichen Zustand.

Abb. 5.31   Zeitdiagramm für
Entprell-Automat

CLK
X
Y

137

Abb. 5.32 zeigt den ersten Zustand. Um die Bedeutung anzudeuten, hat er den Namen
„stabil 0“. Zunächst wird ja nur der Fall betrachtet, dass der Eingang stets 0 ist, so dass
auch nur ein Übergangspfeil eingetragen wird. Er führt wieder auf den Zustand „stabil
0“. Die Ausgabe des Zustands ist 0.

Dieser Zustand ist auch der Startzustand, denn laut Spezifikation soll beim Ein-
schalten der Wert 0 ausgegeben werden. Dies wird durch einen Pfeil mit „Reset“
gekennzeichnet.

Schritt 2
Der Automat wird jetzt schrittweise erweitert. Als nächster Schritt wird angenommen,
dass der Eingang auf 1 wechselt und dann auf diesem Wert bleibt. Der Automat muss
mitzählen, wie oft der Eingang 1 ist. Dieses Mitzählen erfolgt durch die unterschied-
lichen Zustände, denn bei jedem Takt geht der Automat ja einen Übergang, also einen
Pfeil weiter.

Die ersten beiden Male darf er laut Spezifikation noch nicht reagieren. Erst beim drit-
ten Mal wird der Wechsel auf 1 akzeptiert und auch die Ausgabe geht auf 1.

Dieses Verhalten wird, wie in Abb. 5.33 zu sehen, durch drei neue Zustände erreicht:

•	 Bei der ersten 1 merkt sich ein Zustand, dass einmal eine 1 aufgetreten ist. Dieser
Zustand wird als „1-mal 1“ bezeichnet. Er hat noch die Ausgabe Y=0, da erst nach
drei Takten ein Wechsel akzeptiert werden soll.

•	 Mit der zweiten 1 wird der Zustand „2-mal 1“ erreicht.

stabil 0

Y=0

X=0

R
eset

Abb. 5.32   Zustandsfolgediagramm des Entprell-Automaten – Schritt 1

stabil 0
Y=0

1-mal 1
Y=0

2-mal 1
Y=0

stabil 1
Y=1

X=1 X=1 X=1

X=1X=0

R
eset

Abb. 5.33   Zustandsfolgediagramm des Entprell-Automaten – Schritt 2

5.2  Endliche Automaten

138 5  Sequenzielle Schaltungen

•	 Mit der dritten 1 akzeptiert der Automat, dass der neue Wert lange genug aufgetreten
ist und jetzt stabil anliegt. Der neue Zustand „stabil 1“ hat die Ausgabe 1.

Wenn der Eingang danach weiterhin 1 ist, bleibt der Automat im Zustand „stabil 1“.

Schritt 3
Als weiterer Schritt kann der Weg von der Ausgabe 1 zurück zu 0 eingetragen werden.
Es wird angenommen, dass der Eingang jetzt wieder auf 0 wechselt und dort bleibt. Das
Verhalten des Automaten ist ähnlich wie in Schritt 2, so dass jetzt zwei neue Zustände
„1-mal 0“ und „2-mal 0“ eingetragen werden (Abb. 5.34). Danach wechselt der Automat
wieder in den zuerst eingetragenen Zustand „stabil 0“, ganz links.

Schritt 4
Als letzter Schritt wird überprüft, ob alle Übergänge für die Zustände eingetragen sind.
Bei n Eingangsvariablen hat jeder Zustand 2n Möglichkeiten für Folgezustände. Es müs-
sen also prinzipiell 2n Pfeile vorhanden sein, wobei auch mehrere Pfeile auf den gleichen
Folgezustand führen können.

Der hier betrachtete Automat hat eine Eingangsvariable X, mit zwei möglichen Wer-
ten 0 und 1. Darum muss jeder Zustand zwei Übergänge, also zwei Pfeile haben. Hierzu
müssen noch einige Pfeile eingetragen werden.

•	 Wenn bei „1-mal 1“ der Eingang X auf 0 ist, wird das Zählen der 1-Werte abgebro-
chen und der Automat geht wieder auf den Zustand „stabil 0“.

•	 Auch bei „2-mal 1” ist für X gleich 0 die erforderliche Anzahl von drei 1-Werten nicht
erreicht. Der Automat geht auf “stabil 0”.

•	 Bei „1-mal 0“ fehlt der Übergang für X gleich 1. In diesem Fall geht der Automat auf
„stabil 1“.

•	 Bei „2-mal 0“ ist für X gleich 1 der Folgezustand ebenfalls „stabil 1“.

Abb. 5.35 zeigt den kompletten Automaten. Alle Zustände haben zwei Folgezustände,
so dass keine Übergänge fehlen.

Die Aufteilung in vier Schritte ergibt sich hier durch die Überlegungen zu den Teil-
funktionen des Automaten. Bei anderen Aufgabenstellungen können mehr oder weniger
Schritte sinnvoll sein.

stabil 0
Y=0

1-mal 1
Y=0

2-mal 1
Y=0

stabil 1
Y=1

X=1 1-mal 0
Y=1

X=1 X=1 X=0 X=0

X=1 X=0X=0

R
eset

2-mal 0
Y=1

Abb. 5.34   Zustandsfolgediagramm des Entprell-Automaten – Schritt 3

139

Aufstellen der Zustandsfolgetabelle
Aus dem Zustandsfolgediagramm kann jetzt als textuelle Form die Zustandsfolgetabelle
erstellt werden. Dazu wird für jeden Zustand eine Zeile und für jede mögliche Eingangs-
kombination eine Spalte angelegt. In diese Felder wird für jede Kombination aus Ein-
gangswerten und Zustand der Folgezustand eingetragen.

Außerdem erhalten die Ausgangswerte eine Spalte.
Die Zustandsfolgetabelle des Automaten in Abb. 5.36 benötigt also sechs Zeilen für

die sechs Zustände. In zwei Spalten werden die Folgezustände für X = 0 und X = 1 ein-
getragen; eine dritte Spalte gibt den Wert des Ausgangs Y an. In die Felder werden die
Informationen des Zustandsfolgediagramms (Abb. 5.35) eingetragen. Der Startzustand
wird mit einem Stern gekennzeichnet. Das Aufstellen der Tabelle ist eher formell, die
kreative Arbeit wurde bei der Erstellung des Diagramms geleistet. Natürlich sollte noch
einmal die Plausibilität des Automaten überprüft werden, also ob für jeden möglichen
Fall auch ein Folgezustand definiert wurde.

5.2.3.3 � Minimierung der Zustände
In diesem Schritt wird geprüft, ob die Anzahl der Zustände reduziert werden kann, oder
ob die Anzahl bereits minimal ist. Eine Vereinfachung ist möglich, wenn äquivalente
(also gleichbedeutende) Zustände zusammengefasst werden können. Zwei Zustände sind
äquivalent, wenn für alle Eingangskombinationen die Folgezustände gleich oder äquiva-
lent sind und außerdem die Ausgangswerte gleich sind.

stabil 0
Y=0

1-mal 1
Y=0

2-mal 1
Y=0

stabil 1
Y=1

X=1 1-mal 0
Y=1

2-mal 0
Y=1

X=0

X=1 X=1 X=0 X=0

X=1 X=0

X=1 X=1X=0 X=0

R
eset

Abb. 5.35   Zustandsfolgediagramm des Entprell-Automaten – Schritt 4

sn

X = 0

sn+1

X = 1

stabil 0stabil 0*

stabil 1

stabil 1
stabil 1

stabil 1

stabil 0

stabil 0
stabil 01-mal 1

2-mal 1

1-mal 0
2-mal 0

1-mal 0
2-mal 0

1-mal 1
2-mal 1

Y

0
0
0
1
1
1

stabil 1

* = Reset

Abb. 5.36   Zustandsfolgetabelle des Entprell-Automaten

5.2  Endliche Automaten

140 5  Sequenzielle Schaltungen

Der Entprell-Automat ist minimal, benötigt also mindestens sechs Zustände, denn:

•	 Die drei linken und die drei rechten Zustände in Abb. 5.35 haben unterschiedliche
Ausgaben.

•	 Die Folgezustände sind nicht gleich. Für die drei linken Zustände führt X = 0 zwar
immer nach „stabil 0“. Für X = 1 sind jedoch unterschiedliche Folgezustände vorhan-
den. Ähnliches gilt für die drei rechten Zustände.

Es gibt Algorithmen, mit denen äquivalente Zustände gefunden und der Automat mini-
miert werden können. In der Praxis werden diese Algorithmen aus zwei Gründen jedoch
selten verwendet. Zum einen können durch Betrachten eines Automaten recht gut äqui-
valente Zustände identifiziert werden. Zum anderen wird akzeptiert, wenn ein oder zwei
Zustände zu viel vorhanden sind, solange die Struktur des Automaten verständlich bleibt.

Beispiel für die Minimierung von Zuständen
Unnötige Zustände entstehen, wenn im Zustandsfolgediagramm ein neuer Zustand
erstellt wurde, obwohl ein bereits vorhandener Zustand genutzt werden könnte. Schauen
Sie sich dazu noch einmal Schritt 3 der Erstellung des Zustandsfolgediagramms in
Abb. 5.34 an. Hier fehlt noch der Fall, dass bei „1-mal 1“, „2-mal 1“ eine 0 auftritt, ein
Wechsel also nur einen oder zwei Takte lang ist. Ähnliches gilt für „1-mal 0“, „2-mal 0“.

Man könnte jetzt für diese fehlenden Übergänge zwei neue Zustände erstellen, und
zwar „bleib 0“ und „bleib 1“. Dies wäre nicht nötig, denn die Übergänge könnten nach
„stabil 0“ und „stabil 1“ gehen. Aber eventuell wird dies bei der Erstellung des Automa-
ten nicht erkannt.

Von den Zuständen „bleib 0“ und „bleib 1“ gehen die Übergänge auf sich selbst sowie
auf „1-mal 1“ beziehungsweise „1-mal 0“. Es entsteht das Diagramm in Abb. 5.37. Die-
ses Zustandsfolgediagramm ist ein korrekter Automat, entsprechend der Spezifikation,
aber er ist nicht minimal, denn er verwendet acht statt der erforderlichen sechs Zustände.

Zur Minimierung des Automaten in Abb. 5.37 können „bleib 0“ und „stabil 0“ zusam-
mengefasst werden. Sie sind äquivalent, denn:

stabil 0
Y=0

1-mal 1
Y=0

2-mal 1
Y=0

stabil 1
Y=1

X=1 1-mal 0
Y=1

X=1 X=1 X=0 X=0

X=1 X=0

X=0 X=0

bleib 0
Y=0

bleib 1
Y=1

X=1
X=0

X=1

X=1 X=1

X=0

X=0

R
eset

2-mal 0
Y=1

Abb. 5.37   Nicht minimales Zustandsfolgediagramm des Entprell-Automaten

141

•	 Beide Zustände haben die gleichen Folgezustände, nämlich sich selbst für X = 0 und
„1-mal 1“ für X = 1.

•	 Beide Zustände geben Y = 0 aus.

Gleiches gilt für „bleib 1“ und „stabil 1“.
Damit ergibt sich wieder der minimale Automat aus Abb. 5.35. Beide Automaten, also

Abb. 5.37 und 5.35 sind äquivalent, denn sie ergeben für gleiche Eingaben auch die glei-
che Ausgabe. Von außen, also ohne Sichtbarkeit des aktuellen Zustands, sind die Auto-
maten nicht zu unterscheiden.

5.2.3.4 � Codierung der Zustände
Als nächster Entwurfsschritt wird für die Zustände des Automaten eine Zustandsco-
dierung bestimmt. Es muss also festgelegt werden, welche 0-1-Kombinationen für die
Zustände gelten. Die Codewortlänge n muss so gewählt werden, dass alle m Zustände
dargestellt werden können. Mathematisch ausgedrückt muss also gelten:

Aufgelöst nach der Codewortlänge n ergibt sich folgende Formel, bei der ld den Zweier-
logarithmus bezeichnet:

Das Beispiel dieses Kapitels hat m = 6 Zustände, also ist n ≥ ld 6 = 2,58 als Codewort-
länge nötig. Da nur ganzzahlige Werte möglich sind, muss n mindestens 3 sein. Mit der
Zweierpotenz kann man ähnlich rechnen. Für n = 3 gilt 23 = 8 ≥ 6. Die Gegenprobe für
n = 2 zeigt, dass die kleinere Codewortlänge von zwei nicht möglich ist: 22 = 4 < 6. Da
die Zweierpotenzen für kleine Zahlen recht einfach zu merken sind, ist diese Rechen-
weise meist einfacher als der Logarithmus.

Tipp zur Berechnung: Taschenrechner haben normalerweise keine Taste für den Zweierlog-
arithmus. Der Wert kann berechnet werden, als Zehnerlogarithmus einer Zahl geteilt durch
Zehnerlogarithmus von zwei:

Für m = 6 lautet die Rechnung:

Ziel der Zustandscodierung ist ein möglichst geringer Aufwand, eine möglichst hohe Takt-
geschwindigkeit oder eine Kombination aus diesen beiden Anforderungen. Für die Codie-
rung gibt es prinzipiell sehr viele Möglichkeiten, sodass diese nicht alle ausprobiert werden
können. Es gibt darum verschiedene Strategien, die im Abschn. 5.2.4 noch erläutert werden.

In der Praxis wird oft eine einfache Zuordnung gewählt und das soll auch für das hier
betrachtete Beispiel so erfolgen. Als Codierung werden die Zustände entsprechend der

2n ≥ m

n ≥ ld m

ld m = log m / log 2

ld 6 = log 6/ log 2 = 0, 778/0, 301 = 2, 58

5.2  Endliche Automaten

142 5  Sequenzielle Schaltungen

Dualzahlen durchnummeriert. Der Automat hat 6 Zustände, die entsprechend der Tabelle
in Abb. 5.38 mit dem Codewort Z(2:0) codiert werden. Da die Anzahl der Zustände keine
Zweierpotenz ist, sind einige Codewörter unbenutzt, hier sind das die Codierungen 110
und 111.

5.2.3.5 � Aufstellen der Ansteuerungstabelle
Mit der gewählten Codierung kann jetzt die Funktionstabelle für die kombinatorischen
Schaltungen im Automat erstellt werden. In der Zustandsfolgetabelle werden also die
Namen der Zustände durch die Codierung ersetzt. Diese neue Tabelle wird als Ansteue-
rungstabelle bezeichnet.

Abb. 5.39 zeigt die Ansteuerungstabelle für die Codierung aus Abb. 5.38. Eine Beson-
derheit sind die beiden unbenutzten Codierungen für die keine Folgezustände und Aus-
gabewerte definiert sind. Für sie werden Don’t-Care-Werte eingetragen.

Für sicherheitskritische Schaltungen kann für die unbenutzten Codierungen auch ein
bestimmter Folgezustand gewählt werden. Falls die Schaltung durch eine Störung, bei-
spielsweise einen Spannungseinbruch, in einen undefinierten Zustand gerät, wird somit
im Folgeschritt wieder ein gültiger Zustand erreicht.

5.2.3.6 � Logikminimierung
Aus der Ansteuerungstabelle können jetzt die Logikfunktionen durch Minimierung,
also mit Karnaugh-Diagramm ermittelt werden. Dies sind insgesamt vier Karnaugh-
Diagramme für Ausgangswert Y und die drei neuen Zustandsvariable Zn+1(2:0). Die

Abb. 5.38   Codierung des
Entprell-Automaten mit
minimaler Codewortlänge

sn Z(2:0)

000
001
010
011
100
101

stabil 0
1-mal 1
2-mal 1

1-mal 0
2-mal 0

stabil 1

Zn

X = 0

Zn+1

X = 1

110
111-

sn

-

Y

- - - - - -
- - -- - -

0
0
1
1
1
-

0

-

stabil 0*
1-mal 1
2-mal 1

1-mal 0
2-mal 0

stabil 1

000*
001

001

010
010

011 011
011
011

011

100
000

000
000
000

100

101
101

Abb. 5.39   Ansteuerungstabelle des Entprell-Automaten

143

Diagramme haben vier Eingangswerte, nämlich Eingangsvariable X und drei Zustands-
variable Zn(2:0). Da bei dem Moore-Automaten die Ausgabe unabhängig vom Eingang
ist, hat das Karnaugh-Diagramm für Y nur drei Eingangswerte Zn(2:0).

Auf die Darstellung der Karnaugh-Diagramme wird hier verzichtet. Die minimierten
Funktionen sind:

Mit diesen Funktionen ergibt sich für den Automaten das Schaltbild aus Abb. 5.40. Es
enthält drei Flip-Flops für die Zustandsvariablen sowie ein Dutzend Logik-Gatter für
Zustandsübergangsfunktion und Ausgangsfunktion. Der Startzustand „stabil 0“ hat die
Codierung 000. Darum wird der Reset so geschaltet, dass alle Flip-Flops auf 0 gesetzt
werden.

Z
n+1(2) = X̄ & Z

n(1)& Z
n(0) ∨ X̄ & Z

n(2)& Zn(0)

Z
n+1(1) = X & Z

n(2) ∨ X & Z
n(1) ∨ X & Z

n(0)

Z
n+1(0) = X & Z

n(2) ∨ X & Z
n(1) ∨ X & Zn(0) ∨ Z

n(2)& Zn(0)

Y = Z
n(2) ∨ Z

n(1)& Z
n(0)

D

C

X

D

C

Y

CLK

D

C

Zn+1(1)

Zn+1(0) Zn(0)

Zn(1)

Zn+1(2) Zn(2)

&

Zustandsübergangsfunktion Speicherglieder

&

Ausgangsfunktion

RESET

R

R

R

&

&

&

&

&

&

1

1

1

1

Abb. 5.40   Schaltbild des Entprell-Automaten

5.2  Endliche Automaten

144 5  Sequenzielle Schaltungen

Damit ist der Automat komplett entworfen. In der Praxis würde nun die Dokumen-
tation folgen, die ein Nachvollziehen des Schaltungsentwurfs ermöglicht. Außerdem
werden durch eine Dokumentation spätere Modifikationen vereinfacht, die sich eventuell
durch eine geänderte Spezifikation ergeben.

5.2.4	� Codierung von Zuständen

Für die Codierung der Zustände gibt es verschiedene Strategien. Wichtiges Unterschei-
dungsmerkmal ist die Codewortlänge.

5.2.4.1 � Codierung mit minimaler Codewortlänge
Die Codierung mit minimaler Codewortlänge wurde im vorstehenden Beispiel bereits
verwendet. Bei der Zuordnung von Zuständen und Codewörtern gibt es mehrere Mög-
lichkeiten. Theoretisch könnte man hier verschiedene Codierungen ausprobieren, um zu
versuchen, möglichst einfache kombinatorische Schaltungen zu erhalten.

In der Praxis wird meist eine einfache Zuordnung gewählt, beispielsweise das oben
verwendete Durchnummerieren der Zustände entsprechend der Dualzahlen. Der Auf-
wand zum kompletten Ausprobieren verschiedener Möglichkeiten ist meist zu hoch.

5.2.4.2 � Codierung mit redundanter Codewortlänge
Eine andere Strategie zur Codierung benutzt mehr Stellen des Codewortes als eigentlich
erforderlich wären. Die Codewortlänge ist also redundant und erfordert mehr Flip-Flops
als bei minimaler Codewortlänge. Dies erscheint zunächst nicht sinnvoll, allerdings
werden oft die kombinatorischen Schaltungen für Zustandsübergangsfunktion und Aus-
gangsfunktion einfacher und schneller.

Häufig verwendete Codes sind die One-Hot-Codierung sowie die Zero-One-Hot-
Codierung. Die One-Hot-Codierung ist ein 1-aus-n-Code, das heißt von den n Stellen
des Codeworts ist genau eine Stelle 1 (also „Hot“), die anderen sind 0. Die Anzahl der
möglichen Codewörter ist genauso groß wie die Codewortlänge.

Die Zero-One-Hot-Codierung ist eine Variante, bei der zusätzlich das Codewort mit
nur 0-Stellen erlaubt ist. Bei n Stellen sind also n+1 Codewörter möglich.

Der Entprell-Automaten aus Abschn. 5.2.3 hat 6 Zustände, so dass eine One-Hot-
Codierung die Codewortlänge 6 hat. Die Zero-One-Hot-Codierung ergibt die Codewort-
länge 5. Eine Zuordnung von Codierung und Zuständen ist in Abb. 5.41 angegeben.

Zum Vergleich der Codierungen soll der Entprell-Automat auch mit der One-Hot-
Codierung implementiert werden. Genau wie im vorherigen Abschnitt wird in die
Zustandsfolgetabelle die Codierung eingesetzt, so dass sich die Ansteuerungstabelle in
Abb. 5.42 ergibt. Durch die Codewortlänge 6 sind 26=64 Codierungen möglich, von
denen 6 benutzt sind. Die 58 unbenutzten Codierungen haben Don’t-Care als Folgezu-
stand und Ausgabe und können somit zur Optimierung benutzt werden.

145

Aus der Ansteuerungstabelle werden wiederum die Logikfunktionen durch Mini-
mierung erstellt. Für den Folgezustand sind sieben Eingangswerte zu beachten, nämlich
sechs aktuelle Zustandsvariable sowie der Eingangswert X. Für den Ausgang sind es die
sechs aktuellen Zustandsvariablen. Dies ist für ein Karnaugh-Diagramm zu unübersicht-
lich, sodass eine rechnergestützte Minimierung durchgeführt wird. Das Ergebnis lautet:

Zwei Dinge fallen bei den Gleichungen auf:

•	 Die Zustandsvariable Zn(5) wird nicht verwendet. Es sind also nur fünf Stellen des
Codeworts und damit auch nur fünf Flip-Flops nötig. Damit wird die Codierung zu
einer Zero-One-Hot-Codierung, allerdings mit anderer Zuordnung als in Abb. 5.41.

Z
n+1(5) = X̄ & Z

n(4)

Z
n+1(4) = X̄ & Z

n(3)

Z
n+1(3) = X & Zn(1)& Zn(0)

Z
n+1(2) = X & Z

n(1)

Z
n+1(1) = X & Z

n(0)

Z
n+1(0) = X̄ & Zn(4)& Zn(3)

Y = Zn(2)& Zn(1)&Zn(0)

Abb. 5.41   Codierung des
Entprell-Automaten mit
redundanter Codewortlänge

sn Z (5:0)

„One-Hot“

000001

„Zero-One-Hot“

000010
000100
001000
010000
100000

00000
00001
00010
00100
01000
10000

Z (4:0)

stabil 0
1-mal 1
2-mal 1

1-mal 0
2-mal 0

stabil 1

stabil 0
1-mal 1
2-mal 1

1-mal 0
2-mal 0

stabil 1

Zn(5:0)
X=0

Zn+1(5:0)
X=1

sn

000001
000010
000100
001000
010000
100000

000001
000001
000001

000001

010000
100000

001000
001000
001000
001000

000010
000100

sonst - - - - - - - - - - - -

Y

0
0
1
1
1
-

0*

* = Reset

*

Abb. 5.42   Ansteuerungstabelle des Entprell-Automaten für One-Hot-Codierung

5.2  Endliche Automaten

146 5  Sequenzielle Schaltungen

•	 Die Logik-Funktionen sind deutlich einfacher als bei der Variante mit minimaler
Codewortlänge. Es wird jeweils nur ein UND-Gatter mit zwei oder drei Eingängen
benötigt. Die Informationen müssen nur durch eine Stufe an Logikgattern, wodurch
die Schaltung prinzipiell schneller ist.

Die Schaltung des Automaten mit One-Hot-Codierung ist in Abb. 5.43 dargestellt. Für
den Startzustand (vgl. Abb. 5.42) muss Zn(0) auf 1, die anderen Zustandsvariablen auf 0
gesetzt werden.

Auch im optischen Vergleich zu Abb. 5.40 wird sichtbar, dass die One-Hot-Codierung
einen Nachteil durch zusätzliche Flip-Flops und Vorteile durch weniger Logikgatter und
nur eine Logikstufe hat.

D

C

X

D

C

&

Y

CLK

D

C

D

C

D

C

&

&

&

&

RESET

S

R

R

R

R

&

Zn(3)

Zn(4)

Zn+1(0)

Zn(2)

Zn+1(3)

Zn+1(4)

Zn+1(1)

Zn+1(2)

Zn(1)

Zn(0)

Abb. 5.43   Schaltbild des Entprell-Automaten mit One-Hot-Codierung

147

5.2.4.3 � Optimierte Codierung
Um verschiedene Codierungen zu vergleichen, wird eine weitere Variante vorgestellt. Es
handelt sich um eine Codierung bei der die Code-Zuordnung optimiert wird. Dazu wird
die Zustandsfolgetabelle (vgl. Abb. 5.36) genauer betrachtet. Wie in Abb. 5.44 verdeut-
licht, fallen zwei Dinge auf:

1.	 Drei der Zustände können nur bei X=0 als Folgezustand auftreten, die drei anderen
Zustände nur bei X=1.

2.	 Für drei Zustände ist die Ausgabe Y= 0, für die drei anderen Zustände ist Y= 1.

Diese beiden Eigenschaften können ausgenutzt werden, um die Codierung möglichst
einfach zu wählen.

1.	 Eine Zustandsvariable Z(0) wird entsprechend des Folgezustands gewählt. Das heißt,
die Zustände, die Folgezustand bei X=0 sind, werden auch mit Z(0)=0 codiert. Die
anderen Zustände, die Folgezustand bei X=1 sind, werden mit Z(0)=1 codiert.

2.	 Eine Zustandsvariable Z(1) wird entsprechend des Ausgabewertes gewählt. Das heißt,
die Zustände mit Ausgangswert Y=0, werden mit Z(1)=0 codiert, die Zustände mit
Y=1, haben Z(1)=1 als Code.

Weitere Zustandsvariable werden ohne besondere Zuordnung gewählt. Dabei muss
beachtet werden, dass alle Zustände unterschiedliche Codierungen bekommen. Für die 6
Zustände des Entprell-Automaten ist eine dritte Zustandsvariable Z(2) erforderlich. Die
Codierung hat hier minimale Codewortlänge; dies ist jedoch keine zwingende Bedin-
gung für eine optimierte Codierung.

Der gewählte Code ist in Abb. 5.45 dargestellt. Die Codierungen 100 und 011 werden
nicht verwendet.

Die Ansteuerungstabelle und die Logikfunktionen werden hier nicht gezeigt, sondern
direkt das Schaltbild des Automaten mit optimierter Codierung in Abb. 5.46. Die beiden
Optimierungen sind direkt im Schaltbild zu erkennen. Da Z(0) entsprechend des Folge-
zustands gewählt ist, wird direkt der Eingang X ohne weitere Verarbeitung gespeichert.
Und da Y(1) entsprechend des Ausgangs ist, kann diese Zustandsvariable direkt als Aus-
gang Y verwendet werden.

Abb. 5.44   Analyse der
Zustandsfolgetabelle zur
Optimierung

sn

X=0

sn+1

X=1

stabil 0
1-mal 1
2-mal 1

stabil 1
1-mal 0
2-mal 0

Y

0
0
0
1
1
1

stabil 0
stabil 0
stabil 0

stabil 0

1-mal 0
2-mal 0 stabil 1

stabil 1
stabil 1

stabil 1

1-mal 1
2-mal 1

*

* = Reset

5.2  Endliche Automaten

148 5  Sequenzielle Schaltungen

Auch für andere Automaten können oft optimierte Codierungen entsprechend der
Ausgabe oder der Folgezustände gefunden werden.

5.2.4.4 � Vergleich der Codierungen
Um die Codierung der Zustände und die Struktur des Automaten besser zu verstehen,
sollen hier noch einmal die drei Varianten verglichen werden:

•	 Codierung mit minimaler Codewortlänge und einfacher Durchnummerierung der
Zustände, Abb. 5.40

•	 Codierung mit redundanter Codewortlänge und One-Hot-Codierung, Abb. 5.43
•	 Codierung mit optimierter Zustandscodierung durch Analyse der Zustandsfolgeta-

belle, Abb. 5.46

D

C

X

Zn(1)

D

C

Zn(2)

Y

CLK

D

C

Zn+1(0) Zn(0)

Zn+1(1)

Zn+1(2)

RESET

R

R

R

&

&

&

&

1

1

Abb. 5.46   Schaltbild des Entprell-Automaten mit optimierter Codierung

Abb. 5.45   Codierung des
Entprell-Automaten mit
optimierter Codierung

Z (2 :0)

0 0 0
0 0 1
1 0 1
1 1 1
0 1 0
1 1 0

Zustände, die bei
X=‚1‘ folgen

Zustände mit
Ausgabe Y=‚1'

sn

stabil 0
1-mal 1
2-mal 1

1-mal 0
2-mal 0

stabil 1

149

Zunächst ist wichtig zu sagen, dass alle Automaten äquivalent sind. Das heißt, sie erge-
ben bei gleicher Eingabe auch die gleiche Ausgabe. Damit sind sie in ihrem logischen
Verhalten von außen nicht zu unterscheiden.

Ob allgemein eine Codierung mit minimaler oder redundanter Codewortlänge die
geeignete Schaltung ergibt, hängt von der Struktur des Automaten, den Anforderungen
und der Technologie der Schaltungsimplementierung ab. Es handelt sich um Strategien,
die bei der Schaltungsoptimierung probiert werden können.

In der Praxis muss der Aufwand für eine Optimierung und der erzielte Nutzen beachtet
werden. Die Arbeitszeit, die für eine optimale Zustandscodierung erforderlich ist, lohnt sich
meist nicht, denn in einer sehr großen Schaltung werden nur einige Logikgatter gespart.

Der Schaltungsentwurf erfolgt heutzutage mit Computer-Unterstützung. In Abschn. 5.3
wird erläutert, wie die Zustandsfolgetabelle in VHDL umgesetzt werden kann. Die Codie-
rung der Zustände und Berechnung der Logikfunktionen erfolgt durch den Computer, der
eine Codierung mit minimaler oder redundanter Wortlänge wählt oder beide Möglichkeiten
ausprobiert. Die Optimierung der Zustandscodierung erfolgt also durch den Rechner. Sie
sollten die Rückmeldungen des Computers verstehen (z. B. „Choosing One-Hot-Coding“).

5.2.5	� Entwurf von Mealy-Automaten

Der Entwurf eines Mealy-Automaten gleicht in weiten Teilen dem eines Moore-Automaten.

5.2.5.1 � Unterschied zum Moore-Automaten
Der wesentliche Unterschied beim Mealy-Automaten ist, dass die Ausgabe nicht von
den Zuständen sondern den Zustandsübergängen abhängt. Das bedeutet, im Zustandsfol-
gediagramm wird die Ausgabe nicht in die Zustandskreise, sondern an den Pfeilen der
Zustandsübergänge eingetragen (Abb. 5.47).

Dieser Unterschied kommt daher, dass beim Mealy-Automat die Ausgabe ja auch
von den aktuellen Eingangswerten und nicht nur vom Zustand abhängt. Auch in der

Abb. 5.47   Vergleich der
Zustandsfolgediagramme für
Moore- und Mealy-Automat

X=0 X=1

S1
Y=1

S2
Y=0

S0
Y=0

X=0,
Y=1

X=1,
Y=0

S1 S2

S0

Moore Mealy

5.2  Endliche Automaten

150 5  Sequenzielle Schaltungen

Zustandsfolgetabelle ist dann die Ausgabe abhängig von Zustand und Eingang und wird
nicht einmal pro Zustand, sondern für jede Eingangsspalte angegeben (Abb. 5.48).

Diese Unterschiede erscheinen zunächst etwas formell. Sie eröffnen jedoch weitere
Möglichkeiten für den Entwurf eines Automaten. Um dies zu verdeutlichen, wird im fol-
genden Beispiel ein Mealy-Automat entworfen.

5.2.5.2 � Beispiel für einen Mealy-Automaten
Am Anfang des Entwurfs steht wieder eine Spezifikation des Verhaltens. Als Beispiel
soll ein Mealy-Automat mit folgender Spezifikation entworfen werden:

Ein Automat soll die Anzahl von Takten mit dem Wert 1 halbieren. Wenn am Eingang X der
Wert 1 anliegt, soll für jeden zweiten Wert eine 1, ansonsten eine 0 am Ausgang Y ausgege-
ben werden. Die Zählung soll durch Eingangswerte 0 nicht beeinflusst werden. Bei einer 0
am Eingang soll 0 ausgegeben werden.
Beim Einschalten soll für die erste 1 der Wert 0 ausgegeben werden.

Auch hier wird die Spezifikation durch ein Zeitdiagramm ergänzt (Abb. 5.49). Der Wert
von X wird immer bei der steigenden Taktflanke ausgewertet. Der erste Impuls mit 1
wird unterdrückt, der zweite Impuls führt zur Ausgabe 1. Wenn X dauerhaft auf 1 ist,
führt dies zu einer 0-1-Folge an Y.

5.2.5.3 � Aufstellen der Zustandsfolgetabelle
Um den Automat zu entwerfen, wird zunächst überlegt, welche Informationen sich der
Automat merken muss. Der Automat gibt nur jede zweite 1 am Eingang weiter und
unterdrückt die jeweils andere 1. Er muss sich also merken, ob die nächste 1 weitergege-
ben oder unterdrückt wird. Mit dieser Grundidee an Zuständen wird der Automat wieder
grafisch, durch das Aufstellen des Zustandsfolgediagramms entworfen.

Schritt 1
Es wird mit zwei Zuständen entsprechend obiger Überlegung gestartet (Abb. 5.50). Sie
erhalten den Namen „next-0“ und „next-1“ mit der Bedeutung:

Abb. 5.48   Vergleich der
Zustandsfolgetabellen für
Moore- und Mealy-Automat

Moore Mealy

sn

X=0

sn+1

X=1

S0

Y

0S1 S2
S1 1S3 S4
...

sn

X=0

sn+1,Y

X=1

S0 S1,1 S2,0
S1 S3,0 S4,1
...

Abb. 5.49   Zeitdiagramm für
Halbieren der 1-Werte

CLK
X
Y

151

•	 next-0: Die nächste 1 am Eingang wird unterdrückt. Dies ist laut Spezifikation der
Startzustand.

•	 next-1: Die vorherige 1 wurde unterdrückt, also wird die nächste 1 des Eingangs an
den Ausgang weitergegeben.

Wie in Abb. 5.50 zu sehen, ist für die Zustände keine Ausgabe definiert, da ein Mealy-
Automat entworfen wird.

Schritt 2
Für die beiden Zustände wird nun überlegt, was laut Spezifikation im Falle der Eingaben
X=0 und X=1 passieren muss.

•	 Für X=0 wird eine 0 ausgegeben. Das Zählen der 1-Werte wird nicht beeinflusst,
darum ändert der Automat seinen Zustand nicht.

•	 Für X=1 sind zwei Fälle möglich:
–	 Im Zustand next-0 wird die 1 unterdrückt, also eine 0 ausgegeben. Der Automat

merkt sich, dass die nächste 1 weitergegeben wird, wechselt also nach next-1.
–	 Im Zustand next-1 wird die 1 weitergegeben, also eine 1 ausgegeben. Der Automat

merkt sich, dass die nächste 1 wieder unterdrückt wird, wechselt also nach next-0.
Damit sind für alle Zustände beide mögliche Folgezustände definiert und das

Zustandsfolgediagramm in Abb. 5.51 ist komplett. Es werden zwei Zustände benötigt,
die sich nicht zusammenfassen lassen.

Der Unterschied zum Moore-Automaten zeigt sich in der Definition der Ausgangs-
werte. Beim Mealy-Automat in Abb. 5.51 sind die Ausgänge für die Zustandsübergänge,

Reset

next-0 next-1

Abb. 5.50   Zustandsfolgediagramm zum Halbieren der 1-Werte – Schritt 1

Reset

next-0

X=0, Y=0

next-1

X=0, Y=0
X=1, Y=0

X=1, Y=1

Abb. 5.51   Zustandsfolgediagramm zum Halbieren der 1-Werte – Schritt 2

5.2  Endliche Automaten

152 5  Sequenzielle Schaltungen

also für die Pfeile definiert. Beim Moore-Automat in Abb. 5.35 sind die Ausgänge für die
Zustände, also die Kreise definiert.

Zustandsfolgetabelle
Die Zustandsfolgetabelle (Abb. 5.52) kann direkt aus dem Diagramm erstellt wer-
den. Wie erläutert ist die Ausgabe abhängig von Zustand und Eingang. Darum wird sie
zusammen mit dem Folgezustand für jede Eingangsspalte in der Form sn+1,Y angegeben.

5.2.5.4 � Implementierung des Mealy-Automaten
Nächster Schritt zur Implementierung ist die Codierung der Zustände. Bei nur zwei
Zuständen ist ein Codewort mit nur einer Stelle erforderlich. Die Wahl der Codierung
lässt nicht viele Optionen zu und wird so gewählt, dass next-0 mit Z=0 und next-1 mit
Z=1 codiert wird.

Nach Aufstellen der Ansteuerungstabelle kann der Automat mit einem Flip-Flop für
den Zustandsspeicher, einem EXOR- sowie einem UND-Gatter implementiert werden
(Abb. 5.53).

5.2.5.5 � Vereinfachte Darstellung des Zustandsfolgediagramms
Die Darstellung des Zustandsfolgediagramms muss natürlich nicht exakt den Beispielen
in Abb. 5.35 oder 5.51 entsprechen. Wenn mehrere Eingabe- oder Ausgabewerte vor-
handen sind oder die Zustandsbezeichnungen zu lang werden, kann ein Diagramm auch
unübersichtlich werden. Ziel sollte eine kompakte grafische Darstellung sein.

sn

X=0

sn+1,Y

X=1

next-0
next-1

*

* = Reset

next-0, 0
next-1, 0

next-1, 0
next-0, 1

Abb. 5.52   Zustandsfolgetabelle zum Halbieren der 1-Werte

X

D

C

Zn
=1

Y

CLK

Zn+1

Zustandsübergangsfunktion Speicherglied Ausgangsfunktion

RESET

R

&

Abb. 5.53   Schaltbild des Mealy-Automaten zum Halbieren der 1-Werte

153

Einige Möglichkeiten zur vereinfachten Darstellung sind in Abb. 5.54 dargestellt:

1.	 Ein- und Ausgänge müssen nicht mit X, Y bezeichnet werden, sondern können natür-
lich Abkürzungen entsprechend der Spezifikation haben, beispielsweise im Bild A1,
A2, P, T.

2.	 Eingangs- und Ausgangswerte müssen nicht stets neu benannt werden, sondern kön-
nen in einer festen Reihenfolge angegeben werden. Eine empfohlene Reihenfolge ist:
Eingangswerte, Schrägstrich, Ausgangswerte

3.	 Wenn für mehrere Eingangskombinationen derselbe Folgezustand eingenommen wer-
den soll, kann dies an einen gemeinsamen Übergangspfeil angetragen werden

4.	 Zustände können einfach durchnummeriert werden (S0, S1, …) und die Bedeutung
wird als Liste dokumentiert.

Eine andere Vereinfachung ist für die Zustandsübergänge möglich. Es kommt vor, dass
für einen Zustandsübergang nur ein Teil der Eingangsvariablen beachtet werden muss.
Dies kann man darstellen, indem man die erforderliche Eingabe benennt (Abb. 5.55,
links) oder die nicht erforderliche Eingabe mit ‚X‘, für „Eingang beliebig“ bezeichnet
(Abb. 5.55, rechts).

Wichtig ist, dass sämtliche 2n Eingangskombinationen bei n Eingangswerten berück-
sichtigt sind. Außerdem darf ein Diagramm auch nicht kryptisch kurz werden. In der
Praxis muss man nach zwei Wochen, zwei Monaten oder zwei Jahren das Diagramm
immer noch lesen und verstehen können.

5.2.6	� Vergleich von Mealy- und Moore-Automat

Anhand der vorgestellten Beispiele können die Charakteristika von Mealy- und Moore-
Automat jetzt verglichen werden. Der Mealy-Automat hat mehr Möglichkeiten, denn
eine Ausgabe ist für jeden Übergangspfeil und nicht nur für die Zustandskreise definiert.

Abb. 5.54   Vereinfachte
Darstellung eines
Zustandsfolgediagramms S0

00 / 01 01 / 00Ein- /Ausgänge
A1,A2 / P,T

Zustände:
S0 - Start
S1 - ...

10 / 00
11 / 11

Abb. 5.55   Zwei Varianten
zur Zusammenfassung von
Zustandsübergängen

S0

A=0

S1

B=0
A=1

B=1
S0

0X

S1

X0

Eingänge: A, B

X1

1X

5.2  Endliche Automaten

154 5  Sequenzielle Schaltungen

Dies macht ihn jedoch im Entwurf auch etwas komplexer. Der Moore-Automat hat hin-
gegen den Vorteil, dass weniger Fälle für die Ausgabe definiert werden müssen, was ihn
übersichtlicher macht.

Moore-Automat
Wegen der besseren Übersichtlichkeit wird in der Praxis meist der Moore-Automat ver-
wendet. Die Zustände des Moore-Automaten entsprechen oft einer bestimmten Ausgabe-
situation, sodass die Funktion des Automaten einfacher nachvollzogen werden kann.

Die Übersichtlichkeit eines Schaltungsentwurfs erhöht seine Wartbarkeit. Damit ist
nicht die Reparatur einer defekten Schaltung gemeint, sondern die Möglichkeit, einen
Entwurf später einmal zu ändern und anzupassen. Je übersichtlicher ein Schaltungsent-
wurf ist, umso höher ist die Wartbarkeit.

Mealy-Automat
Ein wesentlicher Vorteil des Mealy-Automaten ist dessen Geschwindigkeit. Der Moore-
Automat geht für eine Änderung der Ausgabe in einen neuen Zustand, was stets einen
Taktzyklus dauert. Für viele Anwendungen stellt diese Verzögerung kein Problem dar.

Manchmal muss eine Schaltung jedoch sehr schnell reagieren, ohne auf ein Taktsignal
zu warten. Dies kann zum Beispiel bei Bussystemen wie dem PCI-Bus im PC der Fall
sein. Für solche Fälle kann der Mealy-Automat noch im gleichen Taktzyklus eine Ant-
wort geben. Dies ist auch im Zeitablauf von Abb. 5.49 ersichtlich. Die 1-Impulse werden
im gleichen Taktzyklus weitergegeben. Es tritt nur eine kleine Verzögerung durch das
UND-Gatter der Ausgangsfunktion auf.

Verwendung beim Automatenentwurf
Es wird empfohlen, im Normalfall einen Automaten als Moore-Automaten zu entwerfen.
Nur wenn der Automat noch im gleichen Taktzyklus eine Antwort ausgeben muss, emp-
fiehlt sich der Einsatz eines Mealy-Automaten.

5.2.7	� Registerausgabe

5.2.7.1 � Taktkonzept
Mit der bisher gezeigten Struktur erfolgt für die Automaten die Ausgabe der Signalwerte
Y aus einer kombinatorischen Verknüpfung. In der Praxis ist es vorteilhaft, wenn Teil-
schaltungen klare Schnittstellen zu den folgenden Teilschaltungen haben. Deshalb wird
oft ein Taktkonzept verwendet, bei dem die Ausgänge von Teilschaltungen immer aus
einem Flip-Flop stammen müssen. Man spricht auch von einer Registerausgabe.

Für den Mealy-Automaten ist eine Registerausgabe normalerweise nicht erwünscht,
denn der Vorteil bei diesem Automaten ist ja gerade die Reaktion der Schaltung ohne
Warten auf das nächste Taktsignal.

155

5.2.7.2 � Moore-Automat mit Registerausgabe
Für den Moore-Automaten kann eine Registerausgabe durch eine Veränderung des
Blockschaltbilds erreicht werden. Dies ist in Abb. 5.56 dargestellt ist. Die Ände-
rung funktioniert so, dass die Ausgangsfunktion nicht mit der gespeicherten aktuellen
Zustandsvariable Zn rechnet, sondern mit der neuen Zustandsvariable Zn+1. Dadurch
liegt das Ergebnis Y* der Ausgangsfunktion bereits früher vor. Damit das gleiche Zeit-
verhalten wie im ursprünglichen Blockschaltbild entsteht, werden die Variablen Y* in
einer Registerstufe gespeichert und ergeben den Ausgang Y. Die Ausgangsfunktion wird
also vor die Flip-Flops geschoben und die Ausgabe zum Ausgleich durch Flip-Flops
gespeichert.

Beide Strukturen des Moore-Automaten sind äquivalent, haben also die gleiche logi-
sche Funktion. Allerdings ist das Zeitverhalten anders. Durch das Verschieben der Aus-
gabefunktion gibt der Automat die Werte für Y direkt aus Flip-Flops aus, was für das
Taktkonzept gewünscht ist. Die nachfolgende Schaltung hat die komplette Zeit des Takt-
zyklus für ihre Berechnungen.

Eine ausführliche Erläuterung von Taktkonzept und Laufzeiten befindet sich in
Kapitel 6.

5.2.7.3 � Beispiel für Moore-Automat mit Registerausgabe
Der im Abschn. 5.2.3 entworfene Moore-Automat zum Entprellen eines Signals wurde
auf Registerausgabe umgestellt. Als Ausgangsbasis wurde das Schaltbild in Abb. 5.40
verwendet. Für die Registerausgabe wird die Ausgangsfunktion vor die Speicherglieder

Ausgangs-
funktion

Y
X

Takt

Zustands-
übergangs-
funktion

Speicher-
Glieder

(Flip-Flops)

Ausgangs-
funktion

Y

X

Takt

Zustands-
übergangs-
funktion

Speicher-
Glieder

(Flip-Flops)

Y *

Zn+1

Zn+1

Zn
Zn

Zn

Zn

Abb. 5.56   Struktur des Moore-Automaten mit Registerausgabe

5.2  Endliche Automaten

http://dx.doi.org/10.1007/978-3-662-49731-9_6

156 5  Sequenzielle Schaltungen

gezogen und der Wert Y* in einem Speicherglied gespeichert. Die veränderte Schaltung
ist in Abb. 5.57 dargestellt. Die Größe der Schaltung ändert sich nicht. Lediglich für den
Ausgangswert Y wird ein weiteres Flip-Flop benötigt, aber genau dieses Flip-Flop ist ja
erwünscht.

5.2.7.4 � Medwedew-Automat
Der Medwedew-Automat ist ein Spezialfall des Moore-Automaten, bei dem die Aus-
gangsvariablen Y gleich den Zustandsvariablen Zn sind. Darum sind für den Medwedew-
Automat keine weiteren Ausgangs-Flip-Flops erforderlich, weil die Ausgangsvariablen ja
bereits aus einem Flip-Flop kommen. Diese Struktur zeigt Abb. 5.58.

Für bestimmte Anwendungen lässt sich beim Entwurf eines Moore-Automaten ein-
planen, dass die Zustandsvariablen auch als Ausgangsvariablen verwendet werden. Ein
Beispiel hierfür ist die optimierte Codierung des Entprell-Automaten (Abschn. 5.2.4.3),
bei dem eine Zustandsvariable gleich dem Ausgang gewählt wurde. Auch ein Zähler ist
ein Medwedew-Automat. Er gibt nacheinander Zahlenwerte aus, wie 0, 1, 2, 3, … Diese
Zahl wird als Zustand gespeichert und ist die Ausgabe.

In der Praxis wird in vielen Fällen der Aufwand für zusätzliche Ausgangs-Flip-Flops
akzeptiert. Der Arbeitsaufwand für eine spezielle Codierung wird hingegen vermieden.

X

Y

CLK

&

Zustandsübergangsfunktion Speicherglieder

&

Ausgangsfunktion

RESET

&

&

&

&

&

&
D

CR

D

CR

D

C
R

D

CR

Y*

Zn+1(1)

Zn+1(0)

Zn+1(2)

1

1

1

1

Zn(0)

Zn(1)

Zn(2)

Abb. 5.57   Entprell-Automat mit Registerausgabe

157

5.2.8	� Asynchrone Automaten

Eine weitere Form von Automaten sind asynchrone Automaten. Sie werden in der Praxis
sehr selten entworfen und daher wird hier nur kurz ihre prinzipielle Struktur erläutert.

5.2.8.1 � Struktur
Bei asynchronen Automaten sind keine Flip-Flops zur Datenspeicherung vorhanden. Die
Zustandsinformation wird stattdessen direkt vom Ausgang der Zustandsübergangsfunk-
tion zurück nach dessen Eingang gegeben. Die Speicherung der Information findet in der
Verzögerung der Logikgatter und der Verbindungsleitungen statt.

Abb. 5.59 zeigt diese Struktur. Die kombinatorische Schaltung besteht aus den Logik-
gattern für Zustandsübergangsfunktion und Ausgabefunktion. Der als Verzögerung ange-
gebene Block ist kein reales Bauelement, sondern symbolisiert das Zeitverhalten der
Logikgatter.

Asynchrone Automaten haben in der Theorie einige Vorteile gegenüber synchronen
Automaten, also Automaten mit Flip-Flops:

•	 Höhere Geschwindigkeit, denn der Takt muss nicht auf die langsamste Verzögerung
der kombinatorischen Schaltung warten.

•	 Niedrigerer und gleichmäßigerer Stromverbrauch, denn bei synchronen Schaltungen
sind bei den Taktflanken Hunderttausende von FFs gleichzeitig aktiv.

•	 Geringere Störausstrahlung, denn es gibt keinen Takt.

In der Praxis gibt es jedoch auch schwerwiegende Nachteile, die gleich in Abschn. 5.2.8.3
folgen.

Abb. 5.58   Struktur des
Medwedew-Automaten Zn=YZn+1

X

Zn

Takt

Zustands-
übergangs-
funktion

Speicher-
Glieder

(Flip-Flops)

Abb. 5.59   Struktur eines
asynchronen Automaten Kombinatorische

Schaltung Zn+1

YX

Zn

Verzögerung

5.2  Endliche Automaten

158 5  Sequenzielle Schaltungen

5.2.8.2 � Beispiel eines asynchronen Automaten
Das in Abschn. 5.1.1 beschriebene RS-Flip-Flop ist ein Beispiel für einen asynchronen
Automaten. Abb. 5.60 zeigt erneut den Aufbau des RS-FFs (wie in Abb. 5.3) mit den
Strukturelementen des asynchronen Automaten. Die Rückführung des Zustands Q erfolgt
ohne Verzögerung oder Flip-Flop.

5.2.8.3 � Einsatz
Der praktische Einsatz von asynchronen Automaten ist nicht einfach, denn beim Entwurf
sind wesentlich mehr Bedingungen zu beachten als bei synchronen Automaten.

•	 Ein asynchroner Automat ist nur stabil, wenn die Änderung einer Zustandsvariablen
nicht erneut zu immer weiteren Änderungen von Zustandsvariablen führt. Ansonsten
kann der Automat zwischen verschiedenen Zuständen schwingen.

•	 Die kombinatorische Schaltung darf keine kurzzeitigen Zwischenwerte ausgeben.
Ansonsten kann der Automat in einen falschen Zustand übergehen.

Aufgrund dieser Bedingungen sind asynchrone Automaten wesentlich schwieriger zu
entwerfen, denn Fehler beim Einhalten der Bedingungen lassen sich nur schwer entde-
cken. Das Risiko beim Entwurf eines asynchronen Automaten ist relativ hoch.

In der Praxis werden darum asynchrone Automaten so gut wie nicht entworfen. In der
Regel werden lediglich bewährte und besonders geprüfte Grundschaltungen eingesetzt,
wie zum Beispiel das RS-Flip-Flop.

5.3	� Entwurf sequenzieller Schaltungen mit VHDL

5.3.1	� Grundform des getakteten Prozesses

Der Entwurf sequenzieller Schaltungen erfolgt in VHDL mit einer besonderen Form
des bereits beschriebenen Prozesses. Der Prozess benötigt keine Sensitivity-Liste und
beginnt mit einem Wait-Statement für die steigende Taktflanke. Dieses Wait-Statement
hat die Schreibweise wait until rising_edge(clk); und sagt aus, dass die nachfolgenden
Anweisungen nur bei einer steigenden Taktflanke ausgeführt werden sollen. Nach dem
Wait-Statement steht der VHDL-Code, der bei der steigenden Taktflanke ausgeführt wer-
den soll.

Abb. 5.60   Strukturelemente
des asynchronen Automaten
beim RS-Flip-Flop

R
S

Q

Kombinatorische Schaltung

Rückführung des Zustands ohne Flip-Flop

1
1

159

signal a, b : std_logic;

…

process

begin

   wait until rising_edge(clk);

   b <= a;

end process;

Im VHDL-Code sind nur die Definition von a und b sowie der Prozess gezeigt. Entity
und Architecture-Definition werden zur besseren Übersicht zunächst weggelassen. Ein
vollständiges Beispiel folgt später. Das Taktsignal clk ist ein normales Signal in VHDL;
oft ist es direkt ein Eingangssignal der Schaltung.

Das Beispiel beschreibt ein einfaches D-Flip-Flop. Mit der steigenden Taktflanke wird
der Wert des Signals a im Signal b gespeichert. Diese Beschreibung entspricht einem
D-Flip-Flop entsprechend Abb. 5.61.

Die Schreibweise rising_edge() ist für die Beschreibung sequenzieller Schaltungen
sehr wichtig. Syntheseprogramme erkennen diese Funktion und generieren eine Schal-
tung mit D-Flip-Flops. Es gibt außerdem die Variante falling_edge(). Hiermit wird eine
Funktion beschrieben, die bei einer fallenden Taktflanke aktiv ist. Entsprechend werden
D-Flip-Flops generiert, die mit der fallenden Taktflanke aktiv sind.

5.3.2	� Erweiterte Funktion des getakteten Prozesses

Die Grundform des Prozesses erscheint zunächst relativ aufwendig, denn für ein ein-
zelnes Flip-Flop werden vier Zeilen VHDL-Code benötigt. Die Stärke von VHDL liegt
darin, dass nach dem Wait-Statement weitere Funktionen beschrieben werden können.
Es sind If-Abfragen, Case-Bedingungen und logische Verknüpfungen, auch ineinander
geschachtelt, möglich. Die Optimierung der Schaltung wird von einem Synthese-Pro-
gramm übernommen.

Als immer noch kleines Beispiel wird eine Überlauferkennung betrachtet. count ist
eine Zahl mit dem Wertebereich von 0 bis 15 und in VHDL als unsigned-Signal mit 4 bit
Wortbreite definiert. Eine Schaltung soll überprüfen, ob der Zahlenwert größer als zehn
ist und das Ergebnis in einem Flip-Flop speichern. Dies könnte zum Beispiel anzeigen,
dass ein Speicher überläuft.

Abb. 5.61   Schaltung des in
VHDL beschriebenen D-Flip-
Flops

b

clk

a
D

C

5.3  Entwurf sequenzieller Schaltungen mit VHDL

160 5  Sequenzielle Schaltungen

signal count : unsigned(3 downto 0);

signal overflow : std_logic;

…

process

begin

   wait until rising_edge(clk);

   if count > 10 then

        overflow <= '1';
   else

        overflow <= '0';
   end if;

end process;

Nach dem Wait-Statement wird eine If-Abfrage mit der Konstanten zehn geschrieben.
Ein Syntheseprogramm würde hieraus die Schaltung in Abb. 5.62 synthetisieren. Der
Vorteil von VHDL ist, dass man sich über die Logikfunktion keine Gedanken machen
muss. Auch Änderungen sind einfach. Wenn der Überlauf nicht bei Werten größer zehn,
sondern bei elf oder zwölf erfolgen soll, wird einfach die Zahl im VHDL-Code geändert
und das Synthese-Programm berechnet die neue Schaltung.

5.3.3	� Steuerleitungen für Flip-Flops

Durch VHDL-Beschreibungen können auch die am Anfang dieses Kapitels in
Abschn. 5.1.4 beschriebenen Erweiterungen des D-Flip-Flops realisiert werden, also
Reset, Set und Enable. Die Reset- und Set-Eingänge können entweder als synchrone
oder als asynchrone Eingänge implementiert werden. Für die VHDL-Beschreibung wird
ein synchrones Rücksetzen der Schaltung empfohlen. Zum einen wird dies in der Praxis
meist verwendet, zum andern ist die VHDL-Beschreibung etwas einfacher.

5.3.3.1 � Synchroner Reset und Set
Der synchrone Reset und Set wird durch eine If-Abfrage des Steuersignals beschrieben.
Diese If-Abfrage folgt direkt nach der Wait-Anweisung und beschreibt erst das Verhalten
bei der Initialisierung und dann in der Else-Verzweigung die reguläre Verarbeitung.

Der folgende VHDL-Code erzeugt zwei D-Flip-Flops, f mit synchronem Reset und g
mit synchronem Set. Beim Steuersignal wird üblicherweise der Name reset verwendet,

Abb. 5.62   Schaltung der
in VHDL beschriebenen
Überlauferkennung

clk

D

C&

value(3) &
value(2)

value(3)
value(1)
value(0)

overflow1

161

egal auf welche Polarität initialisiert wird. Für die Else-Verzweigung werden als Beispiel
einfache kombinatorische Verknüpfungen aufgerufen.

process

begin

   wait until rising_edge(clk);

   if reset = '1' then
      f <= '0';
      g <= '1';
   else

      f <= a or b;
      g <= b and c and d;
   end if;

end process;

Im Else-Zweig können, wie im Beispiel gezeigt, Berechnungen und Verknüpfungen
programmiert werden. Für den Reset-Fall sind jedoch nur feste Werte, also 0 oder 1
möglich. Der Grund hierfür ist, dass die VHDL-Beschreibung in eine digitale Schaltung
umgewandelt werden soll. Dabei wird der Reset-Wert für die Auswahl des Flip-Flops
verwendet. Deswegen muss ein fester Wert vorhanden sein, anhand dessen entweder ein
Flip-Flop mit Reset oder Set verwendet wird.

•	 Steht im Reset-Zweig die Anweisung f <= ‘0’; wird ein Flip-Flop mit Reset erzeugt.
•	 Steht im Reset-Zweig die Anweisung f <= ‘1’; wird ein Flip-Flop mit Set erzeugt.
•	 Steht im Reset-Zweig die Anweisung f <= a; oder f <= b or c; kann nicht entschie-

den werden, ob ein Flip-Flop mit Set oder Reset erzeugt wird. Stattdessen wird ein
Flip-Flop ohne Rücksetzfunktion erzeugt und die Funktion wird durch Logikgatter
umgesetzt. Dies ist normalerweise nicht erwünscht, wenn der VHDL-Code eine Initi-
alisierung beschreibt.

5.3.3.2 � Asynchroner Reset und Set
Sequenzielle Schaltungen mit asynchronem Reset und Set werden durch einen VHDL-
Programmierstil ohne Wait-Statement beschrieben. Stattdessen wird der Prozess mit
einer Sensitivity-Liste für Takt und Steuersignal aufgerufen. Die Beschreibung der
sequenziellen Schaltung erfolgt durch eine If-Elsif-Abfrage. Das Reset-Verhalten wird
im If-Zweig, der Takt im Elsif-Zweig beschrieben. Die Syntax für Reset und Set ist
gleich; die Unterscheidung erfolgt durch Zuweisung einer 0 oder 1.

Die Reihenfolge von If- und Elsif-Zweig entspricht der Priorität, denn das asynchrone
Rücksetzen erfolgt ja unabhängig vom Takt. Die Takt-Abfrage folgt mit elsif, denn sie
wird nur ausgeführt, wenn kein Reset anliegt.

5.3  Entwurf sequenzieller Schaltungen mit VHDL

162 5  Sequenzielle Schaltungen

process(clk, reset)

begin

   if reset = '1' then
      f <= '0';
      g <= '1';
   elsif rising_edge(clk) then

      f <= a or b;
      g <= b and c and d;
   end if;

end process;

Die Syntax von if reset = ‘1‘ then und elsif rising_edge(clk) then muss unbedingt
eingehalten werden. Nur so kann das Syntheseprogramm erkennen, dass es ein D-Flip-
Flop mit Reset oder Set einbauen soll. Zwischen end if; und end process; darf kein ande-
rer VHDL-Code eingeschoben werden. Natürlich kann auch ein Flip-Flop mit fallender
Taktflanke erzeugt werden, indem die Abfrage auf falling_edge(clk) erfolgt.

Wie zuvor sind für den Reset-Fall nur feste Werte, also 0 oder 1 möglich. Bei der
Anweisung f <= ‘0’; wird ein Flip-Flop mit Reset erzeugt, bei f <= ‘1’; ein Flip-Flop
mit Set. Falls keine Konstante für den Reset-Fall angegeben ist, würde das Synthesepro-
gramm einen Fehler ausgeben. Der Grund hierfür ist, dass es für diese Beschreibung kein
passendes Schaltungselement gibt. Angenommen im Reset-Fall stände die Anweisung f
<= a;. Bei a=0 soll ein asynchroner Reset erfolgen, bei a=1 ein asynchroner Set. Das
Syntheseprogramm muss aber entweder ein Flip-Flop mit Set oder mit Reset einbauen.
Da dies nicht möglich ist, erfolgt die Fehlermeldung.

5.3.3.3 � Enable
Auch eine Enable-Funktionalität wird durch eine If-Abfrage beschrieben. Die Enable-
Abfrage enthält keine Else-Beschreibung. Wenn enable aktiviert ist, wird der neue Wert
übernommen, ansonsten findet keine Änderung statt. Der folgende VHDL-Code erzeugt
zwei D-Flip-Flops mit Enable.

process

begin

   wait until rising_edge(clk);

   if enable = '1' then
      f <= a or b;
      g <= b and c and d;
   end if;

end process;

Enable und Reset/Set können auch miteinander kombiniert werden. Dabei wird zuerst
die If-Anweisung für die Rücksetzfunktion geschrieben, denn die Initialisierung hat nor-
malerweise eine höhere Priorität als der Enable-Eingang.

163

5.3.4	� Entwurf von Automaten

Mit einem Prozess kann auch ein kompletter Automat beschrieben werden. Zuvor müs-
sen das Zustandsfolgediagramm und die Zustandsfolgetabelle erstellt werden (vgl.
Abschn. 5.2.3). Die weiteren Schritte, also Codierung der Zustände und Generierung der
Logik wird dann durch VHDL-Beschreibung und Logiksynthese übernommen.

5.3.4.1 � Elemente der VHDL-Beschreibung
Im VHDL-Code wird die Funktion des Automaten nach der Wait-Anweisung beschrie-
ben (vgl. Abschn. 5.3.2). Außerdem erfolgt ein Reset des Automaten.

Eine Besonderheit ist die Beschreibung des Zustands. Es ist empfehlenswert, für die
Speicherung des Zustands einen neuen, individuellen Datentyp zu definieren. Dies hat
zwei Vorteile:

•	 Der VHDL-Code wird lesbarer.
•	 Das Syntheseprogramm weiß durch diese Beschreibung, dass ein Automat syntheti-

siert werden soll und kann die Schaltung optimieren.

Die Definition des Datentyps erfolgt in der Architecture mit dem Befehl:

type   <type_name> is (value_0, value_1, …);

Dieser Befehl definiert nur, dass es einen neuen Datentyp gibt. Zusätzlich muss noch
ein Signal mit diesem Datentyp erzeugt werden. Dies erfolgt mit dem Befehl:

signal   <signal_name> : <type_name>;

In diesem Abschnitt soll der Entprell-Automat aus Abschn. 5.2.3 als Beispiel verwen-
det werden. Der Automat hat sechs Zustände, die erst als Datentyp definiert und dann
als Signal verwendet werden. Die Zustandsnamen des Beispiels müssen leicht angepasst
werden, da VHDL-Signale nicht mit Ziffern beginnen und keine Leerzeichen enthalten
dürfen. Das Zustandsfolgediagramm Abb. 5.35 ist mit den angepassten Zustandsnamen
in Abb. 5.63 noch einmal dargestellt.

Damit lautet die Signaldefinition in VHDL:

stabil_0 stabil_1
X=1

X=0

X=1 X=1 X=0 X=0

X=1 X=0

X=1 X=1X=0 X=0

R
eset

einmal_0einmal_1 zweimal_1 zweimal_0
Y=0 Y=1Y=0 Y=1Y=0 Y=1

Abb. 5.63   Zustandsfolgediagramm des Entprell-Automaten für die VHDL-Beschreibung

5.3  Entwurf sequenzieller Schaltungen mit VHDL

164 5  Sequenzielle Schaltungen

type   state_type is (stabil_0, einmal_1, zweimal_1,

                      stabil_1, einmal_0, zweimal_0);

signal state        :  state_type;

Die Funktion des Automaten wird dann in einem synchronen Prozess umgesetzt.
Zunächst wird mit einem Reset der Startzustand programmiert und auch die Ausgabe Y
des Automaten auf einen Startwert gesetzt. Laut Zustandsfolgediagramm Abb. 5.63 ist
stabil_0 mit Y=0 der Startzustand. Dies schreibt sich in VHDL:

process

begin

   wait until rising_edge(clk);

   if reset = '1' then
      state <= stabil_0;
      y     <= '0';
   else

      …

Als nächstes folgt die Beschreibung der einzelnen Zustände. Hierfür wird ein Case-
Statement mit dem Zustandssignal als Operator verwendet. Die Zustände sind die When-
Bedingungen. Innerhalb der When-Bedingungen wird dann Folgezustand und Ausgabe
für den Folgezustand beschrieben. Die Abhängigkeit von den Eingangswerten wird
durch ein If-Statement oder ein Case-Statement beschrieben.

Der folgende VHDL-Code gilt wieder für den Entprell-Automaten. Er beschreibt das
Case-Statement abhängig von Zustandssignal state und den ersten Fall für den Zustand
stabil_0. Der Folgezustand ist abhängig vom Eingang x, und wird als If-Statement
beschrieben. Die Beschreibung für die weiteren Zustände erfolgt in der gleichen Weise
und wird hier zunächst übersprungen. Der komplette VHDL-Code steht im folgenden
Unterabschnitt.

Beachten Sie, dass mit den Folgezuständen jeweils die neuen Ausgabewerte beschrie-
ben werden. Im folgenden VHDL-Code gibt es den Folgezustand stabil_0, der die Aus-
gabe Y gleich 0 hat, sowie den Folgezustand einmal_1, der ebenfalls die Ausgabe Y
gleich 0 hat. Durch diese Schreibweise wird ein Moore-Automat mit Registerausgabe
erzeugt, wie in Abschn. 5.2.7 beschrieben.

case state is

   when stabil_0 =>
      if x='0' then
         state <= stabil_0;
         y <= '0';
      else

         state <= einmal_1;
         y <= '0';

165

      end if;

   when einmal_1 =>
      …

end case;

Die Beschreibung der einzelnen Zustände kann direkt aus dem Zustandsfolgedia-
gramm (Abb. 5.63) und der Zustandsfolgetabelle übertragen werden.

Damit ist die komplette Funktion des Automaten beschrieben. Der komplette VHDL-
Code mit Aufruf der IEEE-Bibliothek, Entity und Architecture ist im folgenden Unter-
kapitel angegeben. Die If-Statements für die Folgezustände werden in drei Zeilen
formatiert, um den Automaten kompakter und damit übersichtlicher zu beschreiben. Die
Formatierung hat keine Auswirkung auf die Bedeutung des VHDL-Codes und sollte gut
lesbar gestaltet werden.

5.3.4.2 � Kompletter VHDL-Code des Automaten

library ieee;

use ieee.std_logic_1164.all;

entity entprell is

   port (clk   :in  std_logic;

         reset :in  std_logic;

         x     :in  std_logic;

         y     :out std_logic);

end;

architecture behave of entprell is

   type   state_type is (stabil_0, einmal_1, zweimal_1,

                         stabil_1, einmal_0, zweimal_0);

   signal state       :  state_type;

begin

process

begin

wait until rising_edge(clk);

   if reset = '1' then
      state <= stabil_0;
      y     <= '0';
   else

      case state is

         when stabil_0 =>        
            if x='0' then   state <= stabil_0;     y <= '0';

5.3  Entwurf sequenzieller Schaltungen mit VHDL

166 5  Sequenzielle Schaltungen

            else            state <= einmal_1;    y <= '0';
            end if;

         when einmal_1 =>           
            if x='0' then   state <= stabil_0;    y <= '0';
            else            state <= zweimal_1;   y <= '0';
            end if;

         when zweimal_1 =>         
            if x='0' then   state <= stabil_0;    y <= '0';
            else            state <= stabil_1;    y <= '1';
            end if;

         when stabil_1 =>        
            if x='1' then   state <= stabil_1;    y <= '1';
            else            state <= einmal_0;    y <= '1';
            end if;

         when einmal_0 =>           
            if x='1' then   state <= stabil_1;    y <= '1';
            else            state <= zweimal_0;   y <= '1';
            end if;

         when zweimal_0 =>         
            if x='1' then   state <= stabil_1;    y <= '1';
            else            state <= stabil_0;    y <= '0';
            end if;

      end case; -- state

   end if; -- reset

end process;

end;

5.3.5	� Programmierstile für VHDL-Code

Wie in jeder Programmiersprache sind auch für VHDL verschiedene Programmierstile
möglich. Wir haben einen Programmierstil gewählt, der gut lesbar und wenig fehleran-
fällig ist. In der Praxis werden Sie sicherlich auch VHDL-Code in anderer Schreibweise
begegnen. Für den Einstieg in VHDL empfehlen wir, zunächst bei einer Schreibweise zu
bleiben.

Der VHDL-Code wird durch ein Syntheseprogramm in eine Schaltung umgewandelt.
Heutige Syntheseprogramme sind so intelligent, dass sie für die meisten Programmier-
stile eine kompakte und schnelle Schaltung erzeugen.

In der Praxis gibt es innerhalb größerer Entwicklerteams oft eigene Richtlinien für
Programmierstile, damit von verschiedenen Personen geschriebener Code nicht zu inho-
mogen wird.

167

5.4	� Übungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Prüfen Sie sich mit den Aufgaben und
Fragen am Kapitelende. Die Lösungen und Antworten finden Sie am Ende des Buches.
Bei den Auswahlfragen ist immer genau eine Antwort korrekt.

Bitte versuchen Sie unbedingt, die Aufgaben zu den Automaten zuerst selber zu lösen.
Nur durch Übung lernen Sie den Entwurf von Automaten. Die Lösungen sind bewusst
sehr knapp gehalten und werden am besten verstanden, wenn Sie vorher selbst eine
Lösung ermittelt haben.

Aufgabe 5.1
Was gilt für ein RS-Flip-Flop (RS-FF)?

a)	 Daten werden unabhängig von einem Takt gespeichert
b)	Daten werden bei Takt gleich 1 gespeichert
c)	 Daten werden bei Takt gleich 0 gespeichert
d)	Daten werden bei einer Taktflanke gespeichert

Aufgabe 5.2
Welche Ansteuerung für Flip-Flops ist heutzutage üblich?

a)	 Taktflanke
b)	Unabhängig vom Takt
c)	 Taktpegel

Aufgabe 5.3
Wie reagiert ein D-Flip-Flop (D-FF) auf einen asynchronen Reset?

a)	 Ausgang geht bei der nächsten Taktflanke auf 0
b)	Ausgang geht sofort auf 1
c)	 Ausgang geht bei der nächsten Taktflanke auf 1
d)	Ausgang geht sofort auf 0

Aufgabe 5.4
Wie reagiert ein D-Flip-Flop (D-FF) auf einen synchronen Set?

a)	 Ausgang geht bei der nächsten Taktflanke auf 0
b)	Ausgang geht sofort auf 1
c)	 Ausgang geht bei der nächsten Taktflanke auf 1
d)	Ausgang geht sofort auf 0

5.4  Übungsaufgaben

168 5  Sequenzielle Schaltungen

Aufgabe 5.5
Ein Automat, bei dem der Ausgang nur vom Zustand und NICHT von den momentanen
Eingangswerten abhängt, bezeichnet man als, …

a)	 Endlicher Automat
b)	Mealy-Automat
c)	 Moore-Automat
d)	Turing-Automat
e)	 Medwedew-Automat

Aufgabe 5.6
Ein Automat, bei dem der Ausgang vom Zustand UND von den momentanen Eingangs-
werten abhängt, bezeichnet man als, …

a)	 Endlicher Automat
b)	Moore-Automat
c)	 Medwedew-Automat
d)	Turing-Automat
e)	 Mealy-Automat

Aufgabe 5.7
Betrachten Sie die Taktsignale in Abb. 5.64. Wie groß ist für die Diagramme a) bis c)
jeweils:

•	 Periodendauer
•	 Taktfrequenz
•	 Duty Cycle der 1-Phase

Abb. 5.64   Taktsignale

0 ns 100 ns 200 ns 300 ns

t

0 ms 1 ms 2 ms 3 ms

0 ms 1 ms 2 ms 3 ms

t

CLK

CLK

CLK

t

a)

b)

c)

169

Aufgabe 5.8
Ein Automat mit 11 Zuständen soll mit minimaler Codewortlänge codiert werden. Wie
viele Stellen muss das Codewort haben?

Aufgabe 5.9
Ein Automat mit 9 Zuständen soll mit einer One-Hot-Codierung codiert werden. Wie
viele Stellen muss das Codewort haben?

Aufgabe 5.10
Wie viele Zustände können bei minimaler Codewortlänge mit 5 Stellen codiert werden?

Aufgabe 5.11
Wie viele Zustände können mit einer One-Hot-Codierung mit 8 Stellen codiert werden?

Aufgabe 5.12
Die Jalousie an einem Fenster soll durch einen einzelnen Taster angesteuert werden. Um
nur einen Taster zu verwenden, ändert sich die Bewegungsrichtung der Jalousie bei jeder
neuen Betätigung des Tasters. Solange wie der Taster gedrückt gehalten wird, bewegt
sich die Jalousie nach oben oder nach unten. Beim Loslassen stoppt die Jalousie, kann
also auch halb oder zweidrittel geschlossen werden.

Beispiel:

•	 Der Taster wird gedrückt und festgehalten: Die Jalousie bewegt sich nach unten.
•	 Der Taster wird losgelassen: Die Jalousie stoppt.
•	 Der Taster wird gedrückt und festgehalten: Die Jalousie bewegt sich nach oben.
•	 Der Taster wird losgelassen: Die Jalousie stoppt.
•	 Der Taster wird gedrückt und festgehalten: Die Jalousie bewegt sich nach unten.

Nach dem Start soll sich die Jalousie bei Tastendruck zuerst nach unten bewegen. Das
Ende der Bewegung, also ganz offen oder ganz geschlossen, wird nicht überprüft, da der
Motor dann selbstständig stoppt.

Die Jalousie soll durch einen Moore-Automaten angesteuert werden. Der Taster liegt
am Eingang T und ist 1, wenn er gedrückt wird. Der Motor wird durch zwei Ausgänge
M(1:0) angesteuert. Die Bedeutung ist:

•	 M=00 – Motor ausgeschaltet
•	 M=01 – Motor fährt herunter
•	 M=10 – Motor fährt herauf
•	 M=11 – nicht zulässig

5.4  Übungsaufgaben

170 5  Sequenzielle Schaltungen

a)	 Stellen Sie das Zustandsfolgediagramm auf. Verwenden Sie so wenige Zustände wie
möglich.

b)	Erstellen Sie die Zustandsfolgetabelle.

Aufgabe 5.13
Mit einem Automaten sollen Parkmünzen zum Preis von 50 Cent verkauft werden. Ein
elektromechanisches System erkennt Münzen im Wert von 10, 20 und 50 Cent und mel-
det eine eingeworfene Münze auf zwei Leitungen M(1:0). Wird keine Münze einge-
worfen, ist M=00. Erkannte Münzen werden mit einem Signal der Länge eines Taktes
angezeigt. Die Münzen werden wie folgt codiert:

•	 M=01 – 10 Cent
•	 M=10 – 20 Cent
•	 M=11 – 50 Cent

Werden insgesamt mehr als 50 Cent eingeworfen, wird das übrige Geld einbehalten.
Beispiele für erlaubte Kombinationen sind also:

•	 20 Cent, 20 Cent, 10 Cent
•	 50 Cent
•	 20 Cent, 20 Cent, 20 Cent (10 Cent verfallen)
•	 20 Cent, 50 Cent (ungeschickte Reihenfolge, 20 Cent verfallen)

Entwerfen Sie einen Moore-Automaten, der die Leitungen M(1:0) auswertet und
nach Einwurf eines Betrags von mindestens 50 Cent einen Ausgang P für einen Takt auf
1 schaltet, um eine Parkmünze auszugeben. Danach kann erneut Geld für die nächste
Parkmünze eingeworfen werden. Aufgrund der mechanischen Auswertung vergehen zwi-
schen zwei Münzeinwürfen mehrere Takte.

a)	 Stellen Sie das Zustandsfolgediagramm auf. Verwenden Sie so wenige Zustände wie
möglich.

b)	Erstellen Sie die Zustandsfolgetabelle.

Aufgabe 5.14
Der Automat zum Halbieren der Takte mit dem Wert 1 aus Abschn. 5.2.5 soll als Moore-
Automat entworfen werden.

Wenn am Eingang X der Wert 1 anliegt, soll für jeden zweiten Wert eine 1, ansonsten
eine 0 am Ausgang Y ausgegeben werden. Die Zählung soll durch Eingangswerte 0 nicht
beeinflusst werden. Bei einer 0 am Eingang soll 0 ausgegeben werden. Beim Einschalten
soll für die erste 1 der Wert 0 ausgegeben werden. Der Zeitablauf entspricht Abb. 5.49,
allerdings ist die Ausgabe bis zur nächsten Taktflanke verzögert (da Moore-Automat).

171

a)	 Stellen Sie das Zustandsfolgediagramm auf. Verwenden Sie so wenige Zustände wie
möglich.

b)	Erstellen Sie die Zustandsfolgetabelle.

Aufgabe 5.15
Auf einer Datenleitung D werden Datenworte der Länge 4 übertragen. Die Datenworte
bestehen aus drei Stellen Nutzinformation und einer vierten Stelle zur Fehlererkennung,
der Parity-Stelle. Diese vierte Parity-Stelle ist so gewählt, dass die Anzahl der 1-Stellen
im Datenwort immer ungerade ist. Ein Fehler bei der Übertragung kann erkannt werden,
wenn beim Empfänger die Anzahl der 1-Stellen, also die Parität, gerade ist.

Entwerfen Sie einen Mealy-Automaten, der die Datenleitung D überwacht und ein
falsches Datenwort erkennt. Wenn ein falsches Datenwort mit gerader Anzahl der 1-Stel-
len auftritt, soll der Ausgang E (Error) für einen Takt auf 1 sein. Innerhalb eines Daten-
wortes und wenn kein Fehler auftritt, ist E auf 0.

Abb. 5.65 ist ein Beispiel für einen Zeitablauf. Die Klammern kennzeichnen die
Datenworte.

•	 Das erste Datenwort hat zwei 1-Stellen, also fehlerhaft, da Parität gerade.
•	 Das zweite Datenwort hat drei 1-Stellen, also korrekt, da Parität ungerade.
•	 Das dritte Datenwort hat vier 1-Stellen, also fehlerhaft, da Parität gerade.

a)	 Stellen Sie das Zustandsfolgediagramm auf. Verwenden Sie so wenige Zustände wie
möglich.

b)	Erstellen Sie die Zustandsfolgetabelle.

Hinweise:

•	 Der Automat muss mitzählen, wie viele Stellen und welche Werte empfangen wurden.
•	 Es müssen nicht alle verschiedenen Kombinationen unterschieden werden. Es sind

weniger als zehn Zustände nötig.
•	 Achten Sie darauf, dass nach der vierten Stelle sofort das neue Datenwort beginnt.

Der Automat darf keine Pause einlegen.

Abb. 5.65   Zeitdiagramm für die Fehlererkennung mit Parity-Stelle

5.4  Übungsaufgaben

173© Springer-Verlag GmbH Deutschland 2016
W. Gehrke et al., Digitaltechnik, Springer-Lehrbuch,
DOI 10.1007/978-3-662-49731-9_6

In den Kapiteln 4 und 5 wurde gezeigt, wie aus einer Aufgabenstellung eine kombinato-
rische oder sequenzielle Schaltung entwickelt werden kann. Dieser allgemeine Entwurfs-
weg ist prinzipiell für jede Spezifikation möglich. Für bestimmte Aufgabenstellungen
kann es aber auch einfacher gehen. Es gibt einige Grundstrukturen, die häufig in digita-
len Schaltungen vorkommen und solche Strukturen werden in diesem Kapitel vorgestellt.
Die Strukturen können durch eine Beschreibung in VHDL erzeugt werden.

6.1	� Grundstrukturen digitaler Schaltungen

Wenn Sie die hier gezeigten Grundstrukturen kennen, können Sie oft eine digitale
Schaltung direkt aus diesen Strukturen zusammenstellen. Sie sparen sich damit mögli-
cherweise den allgemeinen Entwurfsweg über Funktionstabelle oder Zustandsfolgedia-
gramm. In Abschn. 6.5.2 wird hierzu ein ausführliches Beispiel gezeigt.

6.1.1	� Top-down Entwurf

Größere Digitalschaltungen werden Top-down entworfen, also „von oben nach unten“.
Damit ist gemeint, dass eine Schaltung schrittweise in immer kleinere Teile aufgeteilt
wird. Das Gesamtsystem besteht also aus Teilschaltungen, die auch als Untermodul
bezeichnet werden. Die Untermodule können wiederum aus weiteren Untermodulen
zusammengesetzt sein. Auf dem untersten Schritt der Aufteilung befinden sich Grund
elemente. Dies können Schaltungsstrukturen dieses Kapitels sein, aber auch Automaten
(Kapitel 4) oder einzelne Gatter und Flip-Flops.

Schaltungsstrukturen 6

http://dx.doi.org/10.1007/978-3-662-49731-9_4
http://dx.doi.org/10.1007/978-3-662-49731-9_5
http://dx.doi.org/10.1007/978-3-662-49731-9_4

174 6  Schaltungsstrukturen

Beispielsweise lässt sich ein Mikrocontroller (siehe Kap. 13 und 14) in die folgenden
Teilschaltungen aufteilen:

•	 Der Mikrocontroller besteht aus den Untermodulen CPU, Speicher, Eingabe, Ausgabe,
Bussystem, …

•	 Die CPU besteht aus den Untermodulen Rechenwerk, Steuerwerk, Register, Speicher-
interface, …

•	 Das Steuerwerk besteht aus Programmzähler, Befehlsdecoder, …
•	 Der Programmzähler wird durch die Grundstruktur Zähler implementiert.

Der Vorteil dieser Vorgehensweise ist, dass die Untermodule einzeln entworfen werden
können. Dies ist übersichtlich und erlaubt auch eine Aufteilung auf mehrere Personen
oder, bei größeren Projekten, sogar auf mehrere Standorte eines Unternehmens.

Die einzelnen Teilschaltungen werden dann Schritt für Schritt zur Gesamtschaltung
zusammengesetzt. Dieses Zusammenfügen wird als Bottom-up bezeichnet.

6.1.2	� Darstellung von Schaltungsstrukturen

In den bisherigen Kapiteln wurden bereits grafische Symbole (Schaltzeichen) für die
Darstellung von Schaltungselementen verwendet. Gemeint sind die rechteckigen Kästen,
bei denen sich die Eingänge auf der linken Seite und die Ausgänge auf der rechten Seite
befinden. An der oberen und unteren Kante können sich Steuersignale befinden.

Auch für Schaltungsstrukturen werden solche Schaltzeichen verwendet. Es gibt eine
standardisierte Darstellung, die in Abb. 6.1 zu sehen ist. Die Eingänge sind links, die Aus-
gänge rechts angeordnet. Der obere Block erhält Steuersignale, welche die Datensignale
beeinflussen. Der untere Block umfasst die Datensignale. Dabei trennt ein horizontaler
Strich unabhängige Datensignale voneinander. Abkürzungen und Symbole bei „*“ und „**“
geben die Funktion an.

Die Verwendung dieser Darstellung ist in der Praxis allerdings sehr uneinheitlich.
Englischsprachige Quellen verwenden die Symbole kaum und darum findet sich auch in
Deutschland oft eine einfachere Darstellung. Meist wird ein einfaches Rechteck verwen-
det und die Funktion durch eine Beschriftung verdeutlicht.

Abb. 6.1   Standardisierte
Darstellung eines
Schaltungselements D(0) *

A
B

**

D(1)
D(2)

Y(0)
Y(1)
Y(2)

http://dx.doi.org/10.1007/978-3-662-49731-9_13
http://dx.doi.org/10.1007/978-3-662-49731-9_14

175

6.2	� Kombinatorische Grundstrukturen

6.2.1	� Multiplexer

Eine wichtige Grundstruktur für kombinatorische Schaltungen ist der Multiplexer, kurz
„Mux“. Abhängig von Steuersignalen wird einer von mehreren Eingängen ausgewählt
und auf den Ausgang gegeben. Je nach Anzahl der Auswahlmöglichkeiten sind ein oder
mehrere Steuerleitungen erforderlich.

•	 1-aus-2-Multiplexer: Für zwei Dateneingänge ist eine Steuerleitung erforderlich
•	 1-aus-4-Multiplexer: Für vier Dateneingänge sind zwei Steuerleitungen nötig, denn

die zwei Steuerleitungen können vier Möglichkeiten anzeigen
•	 1-aus-8-Multiplexer: Für acht Dateneingänge sind drei Steuerleitungen nötig

Auch Multiplexer für mehr Eingänge sind möglich. Mit n Steuerleitungen kann aus 2n
Eingängen ausgewählt werden.

Das Schaltsymbol für einen 1-aus-4-Multiplexer ist in Abb. 6.2 dargestellt. Links
befindet sich das Symbol in der standardisierten Darstellung mit dem Steuerblock und
den zwei Steuerleitungen A(1:0). Entsprechend der Werte an A wird einer der vier Daten-
eingänge D(3:0) ausgewählt und an den Ausgang Y gegeben. In der Mitte ist ein verein-
fachtes Symbol dargestellt, welches in der Praxis häufig verwendet wird.

Ebenfalls in Abb. 6.2 gezeigt ist die Funktionstabelle für den 1-aus-4-Multiplexer. Die
Leitung A gibt als Binärzahl an, welcher Eingangswert auf Y geschaltet wird. Es wird
als ein Datenwert ausgewählt und die Schaltung wird darum auch als Datenselektor
bezeichnet.

VDHL-Beschreibung
Ein Multiplexer kann durch das bereits bekannte Case-Statement erzeugt werden. Als
Bedingung wird das Steuersignal a verwendet. Im Code sind die Signale definiert als:

•	 a : std_logic_vector(1 downto 0);
•	 d : std_logic_vector(3 downto 0);
•	 y : std_logic;

Abb. 6.2   Symbole und
Funktionstabelle für 1-aus-4-
Multiplexer D(0)

MUX

D(1)
D(2)

A(0)
A(1)

0

1

2

D(3)

3

Y

0

1
} G

0

3

Y

A(1:0) Y

0 0
0 1
1 0
1 1

D(0)
D(1)
D(2)
D(3)

D(0)
D(1)
D(2)

A(0)
A(1)

D(3)

6.2  Kombinatorische Grundstrukturen

176 6  Schaltungsstrukturen

case a is

   when "00"   => y <= d(0);
   when "01"   => y <= d(1);
   when "10"   => y <= d(2);
   when others => y <= d(3);
end case;

Die Case-Anweisung kann nur innerhalb eines Prozesses aufgerufen werden. Die
VHDL-Befehle für den Prozess werden hier und in den folgenden Beispielen zur besse-
ren Übersichtlichkeit weggelassen. Der Others-Fall ist erforderlich, um alle möglichen
Werte des Datentyps std_logic zu erfassen, also zum Beispiel auch ‚X‘ oder ‚U‘.

6.2.2	� Demultiplexer

Die entgegengesetzte Schaltung ist der Demultiplexer, kurz „Demux“. Abhängig von
Steuersignalen A wird ein Eingangssignal D auf einen von mehreren möglichen Aus-
gängen Y gelegt. Die anderen Ausgänge sind 0. Genau wie beim Multiplexer gibt es
Varianten mit verschiedener Anzahl an Wahlmöglichkeiten, also 1-auf-2, 1-auf-4, 1-auf-
8-Demultiplexer oder auch größere Schaltungen. Abb. 6.3 zeigt das Symbol und die
Funktionstabelle für einen 1-auf-4-Demultiplexer.

Die Begriffe Multiplexer und Demultiplexer stammen von einer möglichen Anwen-
dung, bei der sich mehrere Signalwege eine gemeinsame Leitung teilen. Dies ist in
Abb. 6.4 dargestellt. Die Schaltungsstrukturen werden jedoch auch für andere Anwen-
dungen eingesetzt.

Eine andere Bezeichnung für den Demultiplexer ist Adressdecoder. Dabei wählt eine
Binärzahl mit n Stellen eine von 2n Ausgangsleitungen und eine weitere Steuerleitung G
aktiviert den Ausgang. Die Funktionstabelle für 8 Ausgangsleitungen ist in Abb. 6.5 darge-
stellt. Eine beispielhafte Anwendung ist, dass eine Adresse einen von 8 Speicherbausteinen

Abb. 6.3   Symbol und
Funktionstabelle für 1-auf-4-
Demultiplexer

A(1:0)

0 0
0 1
1 0
1 1

Y(0)
Y(1)
Y(2)
Y(3)

D

A(0)
A(1)

D000
D 000

D 0 00
D 00 0

Y(3:0)

Abb. 6.4   Multiplexer und
Demultiplexer

D(0)
D(1)
D(2)

A(1:0)

D(3)

A(1:0)

Y(0)
Y(1)
Y(2)
Y(3)

177

auswählt. Die Schaltung entspricht exakt einem 1-auf-8-Demultiplexer des Datensignals G.
Je nach Anwendungsgebiet ist die Bezeichnung als Adressdecoder jedoch verständlicher.

VHDL-Beschreibung
Auch der Demultiplexer kann durch ein Case-Statement erzeugt werden. Zunächst
werden alle Ausgangssignale y auf 0 gesetzt. Der Eingang d wird dann einer der vier
Ausgangsleitungen zugewiesen und damit für diesen Ausgang die Zuweisung der Null
wieder überschrieben. Da die zwei Zuweisungen nacheinander innerhalb eines Prozesses
ausgeführt werden, hat die erste Zuweisung für die Hardware-Synthese keine Wirkung.

Am ausgewählten Ausgang wird also nicht kurzzeitig eine 0 (erste Zuweisung) und
danach auf der Wert von d (zweite Zuweisung) zu beobachten sein.

Die Signale sind definiert als:

•	 a : std_logic_vector(1 downto 0);
•	 d : std_logic;
•	 y : std_logic_vector(3 downto 0);

y <= "0000";
case a is

   when "00"   => y(0) <= d;
   when "01"   => y(1) <= d;
   when "10"   => y(2) <= d;
   when others => y(3) <= d;
end case;

6.2.3	� Addierer

Arithmetische Berechnungen sind eine wichtige Grundfunktion von digitalen Schaltun-
gen. Eine Grundschaltung für die Addition zweier Zahlen wird als Addierer bezeichnet.
In diesem Abschnitt werden Addierer für Binärzahlen beschrieben. Die Addition von
Zweierkomplementzahlen erfolgt mit der gleichen Struktur; lediglich das Vorzeichen
muss berücksichtigt werden.

Abb. 6.5   Funktionstabelle
eines Adressdecoders für 8
Leitungen

A(2:0)

0 0
0 1
1 0
1 1

0 0 0 0
00 0 0

000 0
00 00

G

1 0
1 0
1 0
1 0

0 0
0 1
1 0
1 1

1 1
1 1
1 1
1 1

X0 X X 0 0 0 0
00 0 1

100 0
01 00

0 0 0 0
00 0 1

100 0
01 00

1 0 0 0
00 0 0

000 0
00 00

00 01 00 00

Y(7) Y(6) Y(5) Y(4) Y(3) Y(2) Y(1) Y(0)

6.2  Kombinatorische Grundstrukturen

178 6  Schaltungsstrukturen

Zwei Zahlen der Wortbreite n ergeben eine Summe der Wortbreite n + 1, denn der
Wertebereich der Summe kann ja größer als die Summanden sein. Für die Beispiele in
diesem Abschnitt wird n = 8 gewählt, wenn nichts anderes angegeben ist.

Für diesen Fall der Wortbreite n = 8 haben die Summanden einen Wertebereich von
[0,255]. Die Summe kann den Wertebereich von [0,510] haben und benötigt eine Wort-
breite von n = 9.

Ein Addierer hat somit 2⋅n Eingangsleitungen für die beiden Summanden A und B,
sowie n + 1 Ausgangsleitungen für die Summe S. Ein Entwurf der Schaltung mit dem
Karnaugh-Diagramm ist nicht möglich, da das Diagramm bei 2⋅n Eingangsleitungen 22⋅n
Wertekombinationen hätte. Bei n = 8 wären diese 216 = 65.536 Einträge, also viel zu
viel für eine grafische Optimierung

Ripple-Carry-Addierer
Für den Entwurf eines Addierers analysiert man die arithmetische Rechenoperation und
setzt diese in eine Schaltung um. Zur Veranschaulichung ist in Abb. 6.6 die Addition
zweier Zahlen dargestellt. Die Berechnung findet nacheinander für die einzelnen Binär-
stellen der Summanden A und B statt. Die beiden Werte werden mit dem Übertrag aus
der vorherigen Stelle addiert und ergeben eine Summenstelle sowie einen Übertrag in die
nächste Stelle. Der Übertrag zur ersten Stelle ist 0; der Übertrag der letzten Stelle ergibt
die zusätzliche Summenstelle.

Diese Berechnung kann direkt in eine Schaltung umgesetzt werden. Die Berechnung
für jede Stelle wird in einem Untermodul mit der Bezeichnung Volladdierer (VA) durch-
geführt. Dieses Untermodul wird gleich noch beschrieben.

Für eine Addition von n Stellen werden n Volladdierer eingesetzt. Jeder Volladdierer
erhält die beiden Stellen der Summanden sowie den Übertrag aus der vorherigen Stelle.
Als Ausgabe des Volladdierers gibt es die Summe der aktuellen Stelle sowie den Übertrag
für die nächste Stelle. Der erste Volladdierer hat am Eingang des Übertrags den Wert 0,
denn die erste Stelle hat noch keinen Übertrag. Der Ausgang des Übertrags vom letzten
Volladdierer ergibt die zusätzliche Summenstelle. Diese Struktur ist für n = 8 in Abb. 6.7
dargestellt. Der Übertrag (engl. Carry) läuft durch alle Stellen und darum wird diese
Schaltungsstruktur als Ripple-Carry-Addierer (engl. Ripple-Carry-Adder) bezeichnet.

Es gibt noch weitere Addiererstrukturen, die für große Wortbreiten schneller arbeiten.
Der Ripple-Carry-Addierer ist jedoch die wichtigste und am häufigsten vorkommende
Addiererstruktur.

Volladdierer
Der Volladdierer hat drei Eingangssignale und zwei Ausgangssignale. Eingänge sind
A, B und CI, also die beiden Binärstellen der Summanden sowie der Übertrag aus der

Abb. 6.6   Addition zweier
Binärzahlen der Wortbreite
8 bit

B

S

1A 0 1 1 1 0 0 1
1 0 0 1

1
1 0 0

0 1 0 1 0 1 0 11

+
111

1
Übertrag000 00

179

vorherigen Binärstelle mit der Bezeichnung CI für Carry-In. Ausgänge sind S und CO,
also die Binärstelle der Summe sowie der Übertrag für die nächste Binärstelle mit der
Bezeichnung CO für Carry-Out.

Die Schaltung muss die drei Eingangswerte A, B, CI summieren, was einen Wert von
0 bis 3 ergeben kann. Wenn diese Summe 2 oder 3 ist, erfolgt ein Übertrag in die nächste
Stelle. Der Ausgang S wird 1, falls die Summe 1 oder 3 ist. Diese Funktion und das Symbol
für einen Volladdierer ist in Abb. 6.8 gezeigt. Die Schaltung besteht aus wenigen Gattern.

Eine vereinfachte Form des Volladdierers ist der Halbaddierer (HA). Dieses Modul
hat keinen Carry-Eingang und kann für die unterste Stelle des Ripple-Carry-Addierers
verwendet werden.

VHDL-Beschreibung
Der Addierer kann direkt durch das Plus-Zeichen erzeugt werden. Die Signale kön-
nen als Vektor vom Typ signed/unsigned oder als integer definiert werden. Wie in
Abschn. 3.5. erläutert, muss für signed und unsigned die Erweiterung der Wortbreite
beachtet werden. Für Operanden A und B mit 8 bit Wortbreite lautet die Beschreibung:

s <=  '0' & a +  '0' & b;  ‐‐ fùr Datentyp unsigned
s <= a(7) & a + b(7) & b;  ‐‐ fùr Datentyp signed

Die Grundstruktur des Addierers wird auch für die Subtraktion eingesetzt. Prinzi-
piell wird statt des Volladdierers ein ähnlich definierter Vollsubtrahierer verwendet. In
der Praxis wird jedoch oft einfach der Subtrahend invertiert und eine Addition durch-
geführt. Damit ist kein weiteres Grundelement erforderlich. Es wird also S = A + (−B)

VA
B
7

A
7

S
7

VA

B
6

A
6

S
6

VA

B
5

A
5

S
5

VA

B
4

A
4

S
4

VA

B
3

A
3

S
3

VA

B
2

A
2

S
2

VA

B
1

A
1

S
1

VA

B
0

A
0

S
0

‚0'
S
8

Summanden A, B Summe S Übertrag

Abb. 6.7   Ripple-Carry-Addierer für Binärzahlen mit 8 Stellen

Abb. 6.8   Symbol und
Funktionstabelle für einen
Volladdierer

B CI CO

0 0
0 1
1 0
1 1

0
0
0
1

A

0
0

1
1

S

0
1
1
0

0 0
0 1
1 0
1 1

0
0

1
1

0
1
1
1

1
0
0
1

A

CO

VA

B

S

CI

6.2  Kombinatorische Grundstrukturen

http://dx.doi.org/10.1007/978-3-662-49731-9_3

180 6  Schaltungsstrukturen

gerechnet. Damit die Invertierung dem Zweierkomplement entspricht, muss die 0 für den
ersten Übertrag ebenfalls invertiert werden.

In VHDL wird die Subtraktion einfach durch das Minus-Zeichen aufgerufen. Für den
Datentyp signed lautet die Beschreibung:

s <= a(7) & a - b(7) & b;

6.3	� Sequenzielle Grundstrukturen

6.3.1	� Zähler

Zähler sind wichtige Grundschaltungen, um Abläufe in digitalen Schaltungen zu steuern.
Dabei wird als Grundoperation eine Binärzahl mit jedem Takt um eins erhöht. Auch ein
Rückwärtszählen ist möglich, aber nicht so anschaulich. Gezählt wird stets ab dem Wert
Null, also nicht ab Eins.

Die meisten Zähler beginnen nach Erreichen des letzten Ausgabewertes automatisch
wieder beim ersten Ausgabewert, also der Null. Man bezeichnet dies als Modulo-m Zäh-
ler, wobei m die Anzahl der Zustände ist.

Beispielsweise zählt ein Modulo-5 Aufwärtszähler 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, …
Besonders einfach sind Modulo-2n Zähler. Sie durchlaufen alle n-stelligen Binärzah-

len. Um alle 10-stelligen Binärzahlen zu durchlaufen wird ein Modulo-210 Zähler einge-
setzt. Er läuft von 0 bis 1023 und startet danach wieder bei 0.

Diese Grundfunktion kann verändert und durch verschiedene Steuersignale erweitert
werden.

•	 Enable: Der Zähler geht nur zum nachfolgenden Wert, wenn ein Steuereingang ena-
ble = 1 ist.

•	 Clear: Der Zähler springt wieder auf den Startzustand. Dies entspricht einem Reset.
•	 Load: Der Zähler lädt auf einen Wert von einem Eingang.
•	 Up/Down: Die Zählrichtung kann gewählt werden, das heißt der Zähler zählt auf

Wunsch in die negative Richtung.
•	 Kein automatischer Neustart, das heißt der Zähler hält beim Erreichen des Maximal-

werts an und startet erst nach Clear erneut.

Ein ausführliches Beispiel für die Verwendung von Zählern folgt in Abschn. 6.5.2.

Implementierung
Ein Zähler wird mit der gleichen Struktur wie ein Moore-Automat implementiert. Der
aktuelle Zählerstand ist in Flip-Flops gespeichert und aus diesem Wert sowie den Steuer-
signalen berechnet eine kombinatorische Schaltung den nächsten Zählerstand (Abb. 6.9).

181

Im einfachsten Fall besteht die kombinatorische Schaltung aus einem Addierer, der zum
aktuellen Zählerstand den Wert Eins addiert. Je nach benötigten Steuersignalen sind wei-
tere Gatter erforderlich.

VHDL-Beschreibung
Ein Zähler wird durch die Addition einer Zählvariablen in einem getakteten Prozess
erzeugt. Besonders einfach ist der Modulo-2n Zähler, wenn die Zählvariable als unsig-
ned definiert ist. Bei Erreichen des Maximalwerts ist die Addition so definiert, dass sie
danach wieder den Wert Null ergibt.

Für einen Modulo-210 Zähler wird die Zählvariable count definiert als:

•	 count : unsigned(9 downto 0);

process

begin

wait until rising_edge(clk);

   count <= count + 1;
end process;

Zähler mit Steuersignalen lassen sich durch Erweiterung des Codes mit If-Bedin-
gungen umsetzen. Der folgende Code beschreibt einen Modulo-100 Zähler, der nur bei
enable = 1 zählt. Der Steuereingang clear setzt den Zähler auf 0 und zwar unabhängig
von enable (siehe auch Abb. 6.9). Er entspricht einem synchronen Rücksetzen.

Die Steuereingänge sind als std_logic und die Zählvariable als unsigned definiert:

•	 clear: std_logic;
•	 enable: std_logic
•	 count : unsigned(6 downto 0);

Abb. 6.9   Implementierung
eines Zählers

D

C

clear

Z(1)

D

C

Z(n-1)

Z

Zustandsübergangsfunktion Speicherglieder

CLK

D

C

Z(0)

ko
m
bi
na

to
ris

ch
e

S
ch

al
tu
ng

enable

S
te
u
er
si
g
n
al
e

n

6.3  Sequenzielle Grundstrukturen

182 6  Schaltungsstrukturen

process

begin

wait until rising_edge(clk);

   if clear = '1' then
      count <= (others => '0');
   elsif enable = '1' then  
        if count = 99 then
           count <= (others => '0');
        else

            count <= count + 1;
        end if;

   end if;

end process;

6.3.2	� Schieberegister

Mehrere hintereinander geschaltete D-Flip-Flops werden als Schieberegister bezeich-
net. In einem Schieberegister werden die gespeicherten Werte mit jedem Takt einen Wert
weiter geschoben (Abb. 6.10).

Durch Steuersignale, beispielsweise ein Enable, kann die Grundstruktur erweitert
werden. Ein Schieberegister wird verwendet, wenn Daten vor oder innerhalb einer Ver-
arbeitung um wenige Takte verzögert werden sollen. Bei größeren Verzögerungen (ab ca.
16 Takte) sind jedoch Speicher meist effizienter.

Eine wichtige Anwendung von Schieberegistern ist die Verarbeitung serieller
Daten und die Umwandlung zwischen seriellen und parallelen Daten. In Abb. 6.11 ist
ein Schieberegister zur Wandlung paralleler Daten zur seriellen Datenübertragung

Abb. 6.10   Schieberegister D(n)

CLK

D

C

D(0)
D

C

D

C

D(1)

CLK

D

C

D(0)

D

C

D

C

D(1)

M
U
X

D(7)

M
U
X

paralleler
Dateneingang

serieller
Datenausgang

T

Abb. 6.11   Schieberegister zur Parallel-Seriell-Wandlung

183

dargestellt. Der Dateneingang D hat 8 Leitungen, die zu Beginn der Übertragung mit
Multiplexern in ein Schieberegister geladen werden. Dann wird 8 Takte lang das Daten-
wort auf die serielle Leitung T ausgegeben. Nach diesen 8 Takten kann das nächste
Datenwort übertragen werden.

VDHL-Beschreibung
Für die VHDL-Beschreibung eines Schieberegisters wird die Zusammenfassung von
Vektoren mit dem Concatenation-Operator & verwendet. Achtung: Verwechseln Sie die-
sen Operator nicht mit der UND-Verknüpfung.

Für ein einfaches Schieberegister ähnlich wie in Abb. 6.10 wird ein std_logic_vector
definiert. Hier soll als Wortbreite 8 bit verwendet werden und ein Steuereingang enable
beachtet werden. Der oberste Wert des Schieberegisters, das MSB (Most Significant Bit),
wird nicht mehr gespeichert. Die übrigen Werte rücken eine Stelle auf und werden mit dem
neuen Eingangswert data ergänzt. Dies wird programmiert, indem der Wert des Schiebe-
registers ohne MSB (also d(6:0)) mittels Concatenation um das Signal data ergänzt wird.

Die Signale sind definiert als:

•	 d : std_logic_vector(7 downto 0);
•	 data: std_logic;
•	 enable : std_logic;

process

begin

wait until rising_edge(clk);

   if enable = '1' then
      d <= d(6 downto 0) & data;
  end if;

end process;

6.3.3	� Rückgekoppeltes Schieberegister

Bei einem rückgekoppelten Schieberegister werden einige Stellen XOR-verknüpft und wie-
der in das Schieberegister gegeben. Die englische Bezeichnung hierfür ist Linear Feedback
Shift Register oder LFSR. Abb. 6.12 zeigt ein LFSR mit 4 Stellen. Die Daten an Position 3
und 4 werden XOR-verknüpft und wieder an Position 0 in das Schieberegister gegeben.

Bei geeigneter Wahl der Rückkopplung werden bei einem n-Bit-Schieberegister 2n−1
verschiedene Zustände durchlaufen. Von den 2n möglichen Kombinationen treten also
sämtliche Werte auf, ausgenommen alle Stellen auf 0. Die Werte treten dabei nicht in der

6.3  Sequenzielle Grundstrukturen

184 6  Schaltungsstrukturen

arithmetischen Reihenfolge auf und können darum auch als Pseudo-Zufallszahlen genutzt
werden. Die Initialisierung muss vermeiden, dass alle Werte auf 0 sind (nicht in Abb. 6.12
dargestellt).

Die Abgriffe der Rückkopplung sind für verschiedene Längen des Schieberegisters in
Tabellen angegeben. Eingesetzt werden LFSR beispielsweise als Zahlengeneratoren in
der Kommunikationstechnik.

6.4	� Zeitverhalten

6.4.1	� Verzögerungszeit realer Schaltungen

Logikgatter benötigen eine kurze Laufzeit bis der Ausgang auf eine Änderung der Ein-
gangsvariablen reagiert. Diese Laufzeit ist abhängig von der Technologie. Für ein ein-
zelnes Gatter in einem Gehäuse kann die Laufzeit über 10 ns betragen. Als Teil eines
modernen hochintegrierten ASICs sind Laufzeiten unter 0,1 ns möglich.

Realistische Werte für die Verzögerungszeit eines Gatters innerhalb integrierter Schal-
tungen betragen etwa 0,1 bis 1,0 ns, während die Verzögerungszeit diskreter Gatter bei
etwa 1 ns bis 10 ns liegt (vgl. Kap. 7). Dabei ist die Verzögerungszeit auch abhängig
von der Funktion des Logikgatters. Ein Inverter ist meist schneller als ein ODER-Gatter
mit 8 Eingängen. Auch gleichartige Gatter können eine unterschiedliche Laufzeit haben,
abhängig beispielsweise davon, ob ihr Ausgang 1 oder 10 weitere Gatter ansteuert.

6.4.2	� Transiente Signalzustände

Beim Wechsel einer oder mehrerer Eingangsvariablen treten aufgrund der Verzögerungszei-
ten oft kurze Zwischenzustände auf. Diese werden als Spike, Glitch oder Hazard bezeichnet.

Zum besseren Verständnis wird die Schaltung in Abb. 6.13 betrachtet. Bei ihr wech-
selt der mittlere Eingang von 1 auf 0. Für beide Eingangswerte ist der Ausgang Y auf 1.
Durch Verzögerungszeiten der Gatter kann jedoch ein kurzzeitiger Spike am Ausgang Y
auftreten. Dieser entsteht durch den folgenden Ablauf:

Abb. 6.12   Rückgekoppeltes
Schieberegister mit 4 Stellen

CLK

D

C

D

C

D

C

=1

D

C

DATA

http://dx.doi.org/10.1007/978-3-662-49731-9_7

185

•	 Der mittlere Eingang wechselt von 1 auf 0.
•	 Das obere UND-Gatter wechselt dadurch von 1 auf 0.
•	 An beiden Eingängen des ODER-Gatters liegt 0 an und der Ausgang ist kurzzeitig 0.
•	 Das untere UND-Gatter ist durch den vorgeschalteten Inverter etwas langsamer als

das obere UND-Gatter und wechselt später von 0 auf 1.
•	 Der untere Eingang des ODER-Gatters wird 1 und der Ausgang wird wieder 1.

6.4.3	� Signalübergänge in komplexen Schaltungen

Bei komplexen Schaltungen können auch mehrere Übergänge auftreten, bis der endgül-
tige Ausgangswert erreicht ist. Dies lässt sich beim Ripple-Carry-Addierer aus Abb. 6.7
gut nachvollziehen. Eine Summenstelle hängt von den Eingangswerten der aktuellen
Stelle sowie von allen tieferen Stellen ab. Summenstelle S(6) beispielsweise hängt von
A(6) und B(6) sowie dem Übertrag aus allen vorherigen Stellen also A(5) bis A(0) und
B(5) bis B(0) ab. Wenn zwei neue Zahlen für die Berechnung am Addierer anliegen, liegt
an Stelle 6 die Information von A(6) und B(6) sofort an. Die Informationen aus den vor-
herigen Stellen müssen jedoch erst durch mehrere Volladdierer weitergegeben werden
und treffen später an der Stelle 6 ein.

Als ein Beispiel werden die Signalwechsel des Ripple-Carry-Addierers simuliert. An
den Eingängen A und B liegen zunächst die Werte 8510 und 17010, also binär 010101012
und 101010102 an. Dann wechseln die Werte auf 17110 und 8510, binär 101010112 und
010101012. Als Verzögerungszeit für einen Volladdierer wird 0,3 ns angenommen.
Außerdem wird angenommen, dass der Eingang B eine etwas längere Anschlussleitung
und dadurch eine zusätzliche Laufzeit von 0,1 ns hat.

Das Ergebnis der Simulation ist in Abb. 6.14 zu sehen. Die Summe wechselt von
25510 auf 25610, binär von 0111111112 auf 1000000002. Durch die schrittweise Ver-
arbeitung des Übertrags wechseln die höheren Summenausgänge S mehrfach den
Wert.

1

&

1
&

1
1 0

1 0

0 1

Y Y , ideal

Y, real

1
0
1
0

Abb. 6.13   Spike beim Wechsel eines Eingangssignals

6.4  Zeitverhalten

186 6  Schaltungsstrukturen

6.5	� Taktkonzept in realen Schaltungen

6.5.1	� Register-Transfer-Level (RTL)

Der mehrfache Wechsel von Signalzuständen lässt sich in Digitalschaltungen kaum ver-
meiden. Er stellt aber auch kein Problem dar, denn fast alle Schaltungen werden durch
einen Takt gesteuert. Das allgemeine Taktkonzept ist in Abb. 6.15 dargestellt. Die Ein-
gangssignale einer Schaltung werden zunächst in Flip-Flops gespeichert. Die Flip-Flop-
Ausgänge werden dann in einer kombinatorischen Schaltung verarbeitet. Dabei können
mehrfache Signalwechsel auftreten. Wenn alle Wechsel der kombinatorischen Schaltung
erfolgt sind, werden die Informationen in einer zweiten Flip-Flop-Stufe gespeichert. Von
dort werden die Daten in der nachfolgenden Taktperiode an die nächste kombinatorische
Schaltung gegeben, nach der sich erneut eine Flip-Flop-Stufe befindet.

Die Flip-Flop-Stufen werden auch als Register bezeichnet und als kompakte Darstel-
lung das in Abb. 6.15 gezeigte Schaltsymbol verwendet. Das Taktkonzept bezeichnet
man als Register-Transfer und diese Schaltungsstruktur ermöglicht ein sicheres Arbeiten

CLK

D

C

D

C

D

C

D

C

D

C

D

C

D

C

D

C

D

C

ko
m
bi
na

to
ris

ch
e

S
ch

al
tu
ng

ko
m
bi
na

to
ris

ch
e

S
ch

al
tu
ng

Register
CLK

Abb. 6.15   Taktkonzept Register-Transfer

Abb. 6.14   Simulation eines Ripple-Carry-Addierers (VHDL-Simulator Modelsim)

187

der Schaltung, da die Register jeweils abwarten, bis alle Signalübergänge in der kombi-
natorischen Schaltung erfolgt sind.

Ein wesentlicher Vorteil dieses Schaltungskonzepts ist auch die Übersichtlichkeit
beim Schaltungsentwurf. Beim Entwurf kann man sich gut vorstellen, welche Informati-
onen jeweils in einer Registerstufe vorhanden sind. Daraus kann man dann beschreiben,
was im nächsten Schritt mit diesen Informationen passieren soll. Die Entwurfsmethodik
ist weit verbreitet und wird als Register-Transfer-Level (RTL) bezeichnet.

6.5.2	 Beispiel für Entwurf mit Register-Transfer-Level: Ampelsteuerung

Der Entwurf im Register-Transfer-Level, kurz RTL-Design, wird mit einem ausführlichen
Beispiel verdeutlicht. Dabei werden auch die Grundstrukturen aus Abschn. 6.3 verwendet.

Aufgabenstellung
Eine Fußgängerampel soll durch eine Digitalschaltung angesteuert werden. Die Straße
hat eine Ampel mit drei Lichtzeichen Rot, Gelb, Grün und der Fußgängerüberweg
eine Ampel mit zwei Lichtzeichen Rot, Grün (Abb. 6.16). Um die Schaltung einfach
zu halten, sollen keine Tasten ausgewertet werden, sondern stets folgender Ablauf
stattfinden:

•	 10 s grün für die Straße
•	 1 s gelb für die Straße
•	 1 s rot für die Straße
•	 5 s grün für die Fußgänger
•	 2 s rot für die Fußgänger
•	 1 s rot und gelb für die Straße
•	 Zyklus beginnt erneut

Für eine echte Fußgängerampel wäre diese Steuerung sicher zu einfach, deswegen
nehmen wir an, die Schaltung sei für eine Modelleisenbahn.

Die Digitalschaltung verwendet einen Takt mit der Frequenz 50 MHz.

Abb. 6.16   Einfache
Fußgängerampel

6.5  Taktkonzept in realen Schaltungen

188 6  Schaltungsstrukturen

Struktur
Der Entwurfsablauf beim RTL-Design ist so, dass die Aufgabe zunächst in einzelne Teil-
schritte unterteilt wird. Diese Teilschritte werden dann zwischen den Registern berech-
net. Für die Ampelsteuerung sind drei Teilschritte sinnvoll.

1.	 Aus dem Takt (50 MHz) wird ein Sekundensignal erzeugt.
2.	 Mit dem Sekundensignal werden die 20 Schritte des Ampelablaufs gezählt.
3.	 Mit der Information, welcher Schritt des Ampelablaufs vorliegt, werden die Lichtsig-

nale ausgegeben.

VHDL-Beschreibung
Die Schaltung könnte prinzipiell mit einem Moore-Automaten umgesetzt werden. Es
ist jedoch deutlich einfacher und übersichtlicher, wenn die Grundstrukturen Zähler und
Multiplexer verwendet werden. Im Folgenden ist der komplette VHDL-Code inklusive
Bibliotheksaufruf und Entity angegeben.

Das Eingangssignal clock_50 ist der Takt von 50 MHz. Die Ausgangssignale sind
strasse mit drei Werten für rotes, gelbes, grünes Licht (gezählt von MSB nach LSB)
sowie fussweg mit zwei Werten für rotes und grünes Licht (MSB und LSB). Beim Wert
„001“ für strasse ist also der drittgenannte Wert, das grüne Licht aktiv. Beim Wert „10“
für fussweg ist der erstgenannte Wert aktiv, also das rote Licht.

Die drei Schritte des Register-Transfer-Levels sind durch die Kommentarzeilen
gekennzeichnet.

1.	 Der erste RTL-Schritt ist ein Zähler, der mit count_a 50 Mio. Werte zählt und dann
enable für einen Takt auf 1 setzt. Die benötigte Wortbreite des Zählers berechnet sich
aus dem Zweierlogarithmus von 50.000.000 und ergibt aufgerundet 26 bit.

ld50 000 000 = log 50 000 000/ log 2 = 7, 699/0, 301 = 25, 58

2.	 Der zweite RTL-Schritt ist ebenfalls ein Zähler, der durch enable einmal pro Sekunde
aktiviert wird. Er zählt mit count_b die 20 Schritte des Ampelzyklus. Die benötigte
Wortbreite beträgt 5 bit.

3.	 Der dritte RTL-Schritt ist eine Fallunterscheidung, codiert als If-Anweisung, die aus
dem Wert von count_b die Ansteuerung der Ampellichter ermittelt.

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity ampel is

   port (clock_50 : in  std_logic;

         strasse  : out std_logic_vector(2 downto 0); -- rot, gelb, grùn

         fussweg  : out std_logic_vector(1 downto 0));-- rot, grùn

end;

189

architecture behave of ampel is

signal  enable  : std_logic;

signal  count_a : unsigned(25 downto 0);

signal  count_b : unsigned(4 downto 0);

begin

process

begin

wait until rising_edge(clock_50);

   -- Zàhler fùr 1 Impuls je Sekunde

   if count_a >= 49999999 then
      count_a <= (others => '0');
      enable  <= '1';
   else

      count_a <= count_a + 1;
      enable  <= '0';
   end if;

   -- Zàhler fùr 20 Schritte der Ampel

   if enable = '1' then
        if count_b >= 19 then
           count_b <= (others => '0');
        else

            count_b <= count_b + 1;
        end if;

   end if;

   -- Abfrage fùr Lichter der Ampel

   if      count_b < 10 then

        -- 10 Sekunden grùn fùr Straße, rot fùr Fussweg

        strasse <= "001"; fussweg <= "10";
   elsif  count_b < 11 then

        -- 1 Sekunde gelb fùr Straße

        strasse <= "010"; fussweg <= "10";
   elsif  count_b < 12 then

        -- 1 Sekunde rot fùr Straße

        strasse <= "100"; fussweg <= "10";
   elsif  count_b < 17 then

        -- 5 Sekunden grùn fùr Fußweg

        strasse <= "100"; fussweg <= "01";
   elsif  count_b < 19 then

        -- 2 Sekunden rot fùr Fußweg

6.5  Taktkonzept in realen Schaltungen

190 6  Schaltungsstrukturen

        strasse <= "100"; fussweg <= "10";
   else

        -- 1 Sekunde rot/gelb fùr Straße

        strasse <= "110"; fussweg <= "10";
   end if;

end process;

end;

6.5.3	� Kritischer Pfad

Die Speicherung in einer Flip-Flop-Stufe darf erst erfolgen, wenn alle Wechsel der kom-
binatorischen Schaltung abgelaufen sind. Hierfür muss die maximale Verzögerungs-
zeit der kombinatorischen Schaltung berechnet werden. Der langsamste Weg durch die
Schaltung wird als kritischer Pfad bezeichnet. Ein Pfad beginnt bei einem Flip-Flop-
Ausgang und endet bei einem Flip-Flop-Eingang.

Als Beispiel ist in Abb. 6.17 der kritische Pfad eines Ripple-Carry-Addierers darge-
stellt (vergleiche Abb. 6.7). Die Summanden A und B sowie die Summe S werden ent-
sprechend der RTL-Methodik in Flip-Flop-Stufen gespeichert. Der kritische Pfad beginnt
bei der untersten Stelle eines Summanden und endet bei der höchsten Stelle des Ergeb-
nisses. Dazwischen müssen die acht Volladdierer des Ripple-Carry-Addierers durchlau-
fen werden.

Für die Verzögerungszeit des kritischen Pfads werden die Verzögerungszeiten aller
Gatter sowie die Signallaufzeiten der Leitungen addiert. Außerdem hat auch der Ausgang
des Flip-Flops am Start des Pfads eine Verzögerungszeit. Beim Flip-Flop am Ende des
Pfads muss die Setup-Zeit eingehalten werden, also die Zeit vor der steigenden Takt-
flanke, in der das Eingangssignal stabil sein muss (siehe Kapitel 5).

Als ein Beispiel wird der kritische Pfad des Ripple-Carry-Addierers berechnet. Dazu
werden folgende Verzögerungszeiten angenommen.

•	 Verzögerungszeit eines Volladdierers: 0,3 ns
•	 Setup-Zeit eines Flip-Flops: 0,2 ns

VA VA VA VA VA VA VA VA
‚0'

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

CLK

CLK

Abb. 6.17   Kritischer Pfad eines Ripple-Carry-Addierers

http://dx.doi.org/10.1007/978-3-662-49731-9_5

191

•	 Verzögerungszeit von Takt nach Flip-Flop-Ausgang: 0,2 ns
•	 Laufzeit einer Leitung: 0,1 ns

Für einen 8-Bit-Addierer besteht der kritische Pfad dann aus:

•	 Flip-Flop-Ausgang: 0,2 ns
•	 8 Volladdierer: 8⋅0,3 ns = 2,4 ns
•	 9 Verbindungsleitungen: 9⋅0,1 ns = 0,9 ns
•	 Flip-Flop Setup-Zeit: 0,2 ns

Dies ergibt in Summe 3,7 ns.
Für einen 32-Bit-Addierer müssen 32 Volladdierer und 33 Verbindungsleitungen

berücksichtigt werden. Der kritische Pfad beträgt dann 13,3 ns.
In der Praxis wird der kritische Pfad durch Entwurfsprogramme ermittelt, indem

sämtliche Pfade der Schaltung berechnet werden. In Abb. 6.17 könnte auch der andere
Eingang des ersten Volladdierers sowie der andere Ausgang des letzten Volladdierers
Anfang und Ende des kritischen Pfads sein. Dies hängt von den Verbindungsleitungen
und dem inneren Aufbau der Volladdierer ab.

6.5.4	� Pipelining

Mögliche Taktfrequenz
Aus dem kritischen Pfad kann als Kehrwert die mögliche Taktfrequenz berechnet
werden.

•	 Der 8-Bit-Ripple-Carry-Addierer hat im kritischen Pfad eine Verzögerungszeit von
3,7 ns. Die maximal mögliche Taktfrequenz beträgt darum 1/(3,7 ns) = 270 MHz.

•	 Für den 32-Bit-Ripple-Carry-Addierer mit der Verzögerungszeit von 13,3 ns beträgt
die maximal mögliche Taktfrequenz 75 MHz.

Oft ist jedoch die Vorgehensweise anders herum, das heißt für eine Problemstellung
ist die erforderliche Taktgeschwindigkeit vorgegeben. Sie ergibt sich entweder direkt aus
der Aufgabe oder aus der Leistungsfähigkeit von Konkurrenzprodukten. Der kritische
Pfad muss dann diese Vorgabe erfüllen.

Dies wird durch die beiden folgenden Zahlenbeispiele verdeutlicht:

•	 Eine digitale Schaltung soll Radarsignale analysieren, die mit 100 Mio. Werten pro
Sekunde auftreten. Die Schaltung muss daher eine Taktfrequenz von 100 MHz errei-
chen. Der kritische Pfad darf 10 ns betragen.

•	 Ein Mikrocontroller soll entworfen werden. Die vorhandenen Produkte arbeiten mit
bis zu 200 MHz. Für das neue Produkt wird daher eine Taktfrequenz von 250 MHz
spezifiziert. Der kritische Pfad darf 4 ns betragen.

6.5  Taktkonzept in realen Schaltungen

192 6  Schaltungsstrukturen

Taktfrequenz und kritischer Pfad
Die Analyse des kritischen Pfads und der Vergleich mit der geforderten Taktfrequenz zei-
gen, ob die Geschwindigkeitsanforderungen an die Schaltung eingehalten werden. Wenn
die Geschwindigkeit ausreicht, ist normalerweise keine weitere Optimierung erforder-
lich. Falls der kritische Pfad jedoch länger als die verfügbare Zeit ist, muss die Schaltung
optimiert werden.

Zur Verkürzung des kritischen Pfads kann überlegt werden, ob die Verarbeitung einfa-
cher aufgebaut oder in mehr Teilschritte aufgeteilt werden kann.

Beispielsweise wird in der Ampelsteuerung aus Abschn. 6.5.2 ein Zähler bis 50 Mio.
eingesetzt. Falls dieser Zähler nicht mit der geforderten Taktfrequenz arbeitet, könnte er
in zwei nacheinander geschaltete Zähler bis 10.000 und 5.000 aufgeteilt werden.

Einfügen von Flip-Flop-Stufen
Wenn eine Schaltung nicht umstrukturiert werden kann oder soll, lässt sich durch das
Einfügen von Flip-Flop-Stufen die Verarbeitungsgeschwindigkeit erhöhen. Dies wird als
Pipelining bezeichnet und in digitalen Schaltungen sehr häufig eingesetzt.

Abb. 6.18 zeigt das Einfügen einer Pipeline-Stufe. Die kombinatorische Logik wird
durch einen Schnitt aufgeteilt und in sämtliche Verbindungsleitungen werden Flip-
Flops eingefügt. Wichtig ist, dass tatsächlich alle Signale gleich verzögert werden, da
die Informationen sonst zeitlich gegeneinander verschoben wären. In Abb. 6.18 wird die

CLK

1

&

&

& 1

1

&

&

& 1

CLK

1

&

&

& 1

1

&

&

& 1

Abb. 6.18   Einfügen einer Pipeline-Stufe

193

Pipeline-Stufe bereits nach zwei Gattern eingefügt. Je nach Geschwindigkeitsanforde-
rungen kann aber auch erst nach 10 oder 20 Gattern eine Pipeline-Stufe erforderlich sein.
Pipelining verkürzt nicht die Gesamtlaufzeit durch die Kombinatorik, sondern die Lauf-
zeit zwischen Flip-Flop-Stufen. Ein kritischer Pfad von beispielsweise 10 ns wird durch
Pipelining in zwei Teile zu 5 ns aufgeteilt und die Schaltung kann dadurch mit 200 MHz
statt mit 100 MHz betrieben werden. Allerdings dauert die Berechnung dann zwei Takt-
zyklen. Die gesamte Verzögerung einer Berechnung wird als Latenzzeit bezeichnet.

Der Vorteil des Pipelinings ist, dass während einer Berechnung in der zweiten Pipe-
line-Stufe, bereits die nächsten Werte in die erste Pipeline-Stufe gegeben werden kön-
nen. Die Anzahl an Rechenzyklen wird als Durchsatz bezeichnet. Die Schaltung mit
100 MHz Takt hat einen Durchsatz von 100 Mio. Datenwerten, während bei 200 MHz
der Durchsatz 200 Mio. Datenwerte beträgt. Pipelining bewirkt also eine Steigerung der
Verarbeitungsleistung.

6.5.5	� Taktübergänge

Taktbereiche
Bisher wurde überall in einer Schaltung der gleiche Takt verwendet. Dies ist auch mög-
lichst anzustreben. Allerdings lässt sich nicht immer vermeiden, dass mehrere Takte ver-
wendet werden. Ein Beispiel dafür ist ein PC:

•	 Die CPU arbeitet mit einem Takt zwischen 3 und 4 GHz.
•	 Der DRAM-Speicher arbeitet mit einem Takt im Bereich von 1 GHz.
•	 Die Grafikkarte arbeitet mit einem Takt zwischen 500 und 1000 MHz.
•	 Peripheriebausteine für LAN und USB nutzen eigene Taktsignale.

Die Taktbereiche werden auch als Clock-Domain bezeichnet. Beim Übergang zwischen
Clock-Domains kann eine fehlerhafte Datenübernahme auftreten, die durch spezielle
Schaltungsstrukturen verhindert werden muss.

Fehler bei Taktübergängen
Ein Fehler bei Taktübergängen tritt auf, wenn eine Information an mehreren Stellen
einen Taktübergang hat. Zur Verdeutlichung des Problems ist in Abb. 6.19 eine Schaltung
zur Flankenerkennung dargestellt. Das Signal A kommt aus einem anderen Taktbereich
und die Schaltung soll erkennen, wenn es einen Übergang von 0 nach 1. Dies soll ange-
zeigt werden, indem der Ausgang Q für einen Takt auf 1 gesetzt wird.

Die Funktionsweise der Flankenerkennung ist:

•	 Der Eingang A wird in einem Flip-Flop gespeichert. B ist somit der Wert des Ein-
gangs A aus dem vorherigen Takt.

6.5  Taktkonzept in realen Schaltungen

194 6  Schaltungsstrukturen

•	 Es wird überprüft, ob A im letzten Takt 0 war und jetzt 1 ist. Dies erfolgt durch ein
UND-Gatter, welches nur 1 ist, wenn A auf 1 und B auf 0 ist (invertierter Eingang des
Gatters).

•	 Das Ergebnis des UND-Gatters, Signal C wird in einem Flip-Flop gespeichert.
•	 Der Ausgang des Flip-Flops ist die gewünschte Flankenerkennung.

Die Schaltung ist relativ übersichtlich und das Zeitdiagramm zeigt, wie der Ablauf zu
dem geplanten Verhalten führt. Ein Fehler tritt jedoch auf, wenn das Signal A sich nicht
zu dem angenommenen Zeitpunkt ändert. Dies ist möglich, da A ja aus einer anderen
Clock-Domain stammt.

Das fehlerhafte Verhalten ist in Abb. 6.20 dargestellt.

•	 Der Eingang A ändert sich kurz vor der Taktflanke.
•	 Das Flip-Flop für den Wert B übernimmt den neuen Wert noch.
•	 Das UND-Gatter hat eine kurze Verzögerung, sodass der Wert C nicht mehr vom Flip-

Flop übernommen wird.
•	 Nach der Taktflanke hat das Flip-Flop für B schon den neuen Wert übernommen.

Darum liegt an beiden Eingängen des UND-Gatters der Wert 1 an und es wird keine
Flanke erkannt.

Auslöser des Fehlers ist die unbekannte Zeitbeziehung zwischen A und den Takt CLK.
Da das Signal A aus einem anderen Taktbereich kommt, wechselt es manchmal in aus-
reichendem Abstand und manchmal fast gleichzeitig zum Taktsignal CLK. Schwierig für

Abb. 6.20   Fehlerhafter
Ablauf bei Flankenerkennung

Ablauf im Fehlerfall

CLK

Q

A

B

C

Verzögerung
 durch UND-Gatter

Flanke nicht erkannt

Abb. 6.19   Schaltung zur
Flankenerkennung CLK

Q

A

B

C

geplanter Ablauf

D

C

CLK

D

C

B

&

A

Q

C

195

die Fehlersuche ist, dass der Fehler nicht immer auftritt. Es ist gut möglich, dass 95 %
der Taktflanken erkannt werden und nur für 5 % der Übergänge ein Fehler auftritt.

Korrekte Taktübernahme
Die Vermeidung des Fehlers erfolgt dadurch, dass ein Taktübergang nur an einer Stelle in der
Schaltung erfolgen darf. Es muss also verhindert werden, dass das Signal A aus einem frem-
den Taktbereich die Eingangswerte für beide (!) Flip-Flops beeinflusst. Dies kann man in
einer Schaltung erreichen, indem der Eingang A zunächst mit einem Flip-Flop in die Clock-
Domain übernommen wird. In Abb. 6.21 wird A zunächst als A_SYNC in den Taktbereich
von CLK übernommen. Damit ist die Zeitbeziehung von A zum Takt sichergestellt und es
kann kein fehlerhafter Ablauf auftreten. Signal B wurde zur besseren Lesbarkeit umbenannt.

VHDL-Beschreibung
In der Praxis wird die Schaltung aus Abb. 6.21 natürlich in VHDL entworfen. Das UND-
Gatter ergibt sich aus der If-Anweisung.

process

begin

wait until rising_edge(clk);

   a_sync      <= a;
   a_sync_old <= a_sync;
   if (a_sync_old='0') and (a_sync='1') then
        q <= '1';
   else

        q <= '0';
   end if;

end process;

6.5.6	� Metastabilität von Flip-Flops

Ein weiteres Problem bei der Taktübernahme ist die Einhaltung der Setup- und Hold-
Zeiten (siehe Kapitel 5). Damit ein Flip-Flop Daten korrekt übernimmt, muss der Ein-
gang kurz vor (Setup) bis kurz nach (Hold) der Taktflanke unverändert sein. Wenn sich
Daten unabhängig vom Takt ändern, wird diese Bedingung nicht immer eingehalten.

Abb. 6.21   Flankenerkennung
mit sicherer Datenübernahme
beim Taktübergang

D

C

CLK

D

C

A

&

A_SYNC

Q

D

C

A_SYNC_OLD

6.5  Taktkonzept in realen Schaltungen

http://dx.doi.org/10.1007/978-3-662-49731-9_5

196 6  Schaltungsstrukturen

Zunächst kann nicht vorhergesagt werden, ob noch der alte oder schon der neue Sig-
nalwert vom Flip-Flop nach A_SYNC (Abb. 6.21) übernommen wird. Diese Unsicherheit
wäre kein Problem, da die Empfangsschaltung ohnehin nicht weiß, wann die Eingangs-
daten übergeben werden und einen Zeitversatz berücksichtigen muss. Allerdings kann
der Fall eintreten, dass ein Flip-Flop in der Mitte zwischen 0 und 1 „hängt“. Dieser Zwi-
schenzustand wird als Metastabilität bezeichnet. Er tritt sehr selten auf, kann jedoch
einen Fehler in der Verarbeitung verursachen.

Als Schutz gegen Metastabilität wird empfohlen, ein Signal beim Übergang in einen
anderen Taktbereich mit zwei hintereinandergeschalteten Flip-Flops zu übernehmen
(Abb. 6.22). Erst danach darf das Signal im Taktbereich verwendet werden. Ein metastabi-
les Signal des ersten Flip-Flops würde vom zweiten Flip-Flop nicht übernommen werden.

Allerdings erhöht sich durch das zweite Flip-Flop die Latenzzeit, also die Reaktions-
zeit auf den Eingang. Eine Synchronisation gegen Metastabilität wird darum nicht in
allen Anwendungen eingesetzt.

6.5.7	� Taktübergang mehrerer Signale

Schwieriger ist der Fall, wenn mehrere Signale gleichzeitig übernommen werden müs-
sen. Wenn sich Daten unabhängig vom Empfangstakt ändern, ist nicht sicher, ob alle
zusammengehörigen Informationen mit der gleichen Taktflanke gespeichert werden. Bei
einem 8-Bit-Wert könnte es beispielsweise passieren, dass Bit 0 noch rechtzeitig von
einer Taktflanke übernommen wird, Bit 1 jedoch erst von der nächsten Taktflanke. Dies
ist ein Problem, da die Informationen eines Datenworts so auseinandergezogen werden.

Zur Vermeidung dieses Fehlers gibt es mehrere Möglichkeiten:

•	 Warten auf langsamste Information: Die empfangende Schaltung kann ein oder zwei
Takte warten, bis alle Stellen einer Information anliegen und erst dann die Daten aus-
werten. Dies ist relativ einfach, aber nur möglich, wenn sich die Daten deutlich lang-
samer als der Takt ändern.

Abb. 6.22   Flankenerkennung
mit Synchronisation gegen
Metastabilität

CLK

D

C

A D

C

D

C

D

C

& Q

197

•	 Vermeidung mehrerer Signalwechsel: Wenn Daten eine feste Reihenfolge haben, bei-
spielsweise bei einem Zähler, kann die Codierung so erfolgen, dass sich immer nur ein
Wert im Datenwort ändert. Ein möglicher Code hierfür ist der Gray-Code (siehe Kapitel 2)

•	 Dual-Port-Speicher: Eine universelle Lösung ist ein Dual-Port-Speicher. In ihm kann
mit einem Takt geschrieben und mit einem anderen gelesen werden. Die interne Steu-
erung sorgt für eine sichere Trennung der Taktbereiche. Für die Verwaltung des Spei-
chers (z. B. Füllstand) werden dann häufig Zähler auf Basis des Gray-Codes eingesetzt.

6.6	� Spezielle Ein-/Ausgangsstrukturen

Für Ein- und Ausgänge von digitalen Schaltungen gibt es spezielle Schaltungsstrukturen.

6.6.1	� Schmitt-Trigger-Eingang

Digitale Signale werden ja durch Spannungspegel dargestellt. Dabei gibt es einen
Bereich für den Low-Pegel und einen Bereich für den High-Pegel. Dazwischen ist ein
Übergangsbereich, in dem das Signal undefiniert ist (vgl. Kapitel 1).

Der Übergangsbereich wird innerhalb digitaler Schaltungen normalerweise schnell durch-
laufen. Am Eingang einer Schaltung kann es jedoch vorkommen, dass der Übergangsbereich
langsamer durchlaufen wird und durch Rauschen gestört ist. Eine Digitalschaltung könnte
dadurch mehrfach einen Pegelwechsel erkennen, was normalerweise nicht gewünscht ist.

Dieses Problem wird durch einen Schmitt-Trigger behoben. Ein Schmitt-Trigger hat
eine Hysterese und behält einen Ausgangswert so lange, bis sich der Eingangswert deut-
lich ändert. Bei einem Eingangssignal im Übergangsbereich wird der vorhandene Aus-
gangswert beibehalten.

Das Symbol eines Schmitt-Triggers enthält zur Kennzeichnung eine Hysteresekurve
(Abb. 6.23). In Abb. 6.23 ist das Zeitverhalten eines Schmitt-Triggers dargestellt.

•	 Eingang A hat zunächst Low-Pegel (L) und der Ausgang Y ist somit logisch 0.

Abb. 6.23   Symbol und
Zeitverhalten eines Schmitt-
Triggers

A Y

Übergangsbereich

Zeit

L

H

Y 0
1

A

6.6  Spezielle Ein-/Ausgangsstrukturen

http://dx.doi.org/10.1007/978-3-662-49731-9_2
http://dx.doi.org/10.1007/978-3-662-49731-9_1

198 6  Schaltungsstrukturen

•	 Der Eingang A geht dann in den Übergangsbereich, in dem eine normale Digitalschal-
tung ein undefiniertes Verhalten zeigen würde. Der Ausgang Y des Schmitt-Triggers
bleibt jedoch auf logisch 0.

•	 Wenn A sich im Spannungsbereich des High-Pegels (H) befindet, wechselt auch Y auf
logisch 1.

•	 A geht wieder in den Übergangsbereich, doch Y bleibt noch logisch 1.
•	 Erst wenn A wieder im Low-Pegel ist, wechselt auch Y auf logisch 0.

6.6.2	� Tri-State-Ausgang

Digitale Ausgänge dürfen im allgemeinen Fall nicht miteinander verbunden werden.
Wenn eine Leitung 0 und eine andere 1 ausgibt, fließt ein Kurzschlussstrom und der
Logik-Pegel ist nicht eindeutig. Für den Einsatz in Bus-Systemen gibt es jedoch eine
besondere Ausgangsstufe, die man parallel schalten kann.

Der Tri-State-Ausgang (auch 3-State oder Three-State) hat drei Möglichkeiten für den
Ausgabewert. Neben 0 und 1 kann der Ausgang abgeschaltet werden; er ist dann passiv
und gibt keinen Wert aus. Dies wird als hochohmig mit der Abkürzung ‚Z‘ bezeichnet. In
Schaltsymbolen wird ein Tri-State-Ausgang durch ein auf der Spitze stehendes Dreieck
dargestellt (Abb. 6.24).

Der Ausgangstreiber hat dazu einen Steuereingang EN (Enable), der mit 1 die Daten-
ausgabe aktiviert. Bei EN auf 0 ist der Ausgang hochohmig (Abb. 6.25).

Ein typisches Einsatzgebiet von Tri-State-Leitungen sind Bus-Systeme, zum Beispiel
der PCI-Bus im PC. Hier sind CPU, Grafikkarte und weitere Peripheriekarten eingesteckt.
Nur einer dieser Busteilnehmer gibt Daten aus, die anderen Anschlüsse sind hochohmig.
Durch die Steuerung muss sichergestellt werden, dass stets nur ein Ausgang aktiv ist.

Auch die Verbindung zwischen CPU und DRAM nutzt Tri-State-Leitungen. Wenn die
CPU Daten schreibt, ist der DRAM-Anschluss hochohmig. Wenn die CPU Daten liest,
ist der CPU-Anschluss hochohmig.

Abb. 6.25   Tri-State-Treiber
und Funktionstabelle A Y

EN EN A Y
-
0
1

0
1
1

Z
0
1

Abb. 6.24   Symbol für Tri-
State- und Open-Kollektor-
Ausgang

Tri-State Open-Kollektor

199

6.6.3	� Open-Kollektor-Ausgang

Eine andere Methode zur Zusammenschaltung mehrerer Digitalausgänge ist der Open-
Kollektor-Ausgang. Normalerweise hat ein Digitalausgang zwei Transistoren. Entweder
zieht der eine Transistor den Ausgang zum Low-Pegel oder der andere Transistor zieht
den Ausgang zum High-Pegel. Beim Open-Kollektor-Ausgang ist nur der Transistor
zum Low-Pegel vorhanden. Der Kollektor dieser Schaltung bildet den Ausgang und liegt
offen, daher der Name. Da statt Bipolar-Transistoren heute meist Feldeffekt-Transistoren
verwendet werden, wird auch der Name Open-Drain-Ausgang verwendet.

Der Open-Kollektor-Ausgang wird an einen externen Lastwiderstand RL angeschlos-
sen, der die Ausgangsleitung nach Versorgungsspannung US, und damit nach High-Pegel
zieht. Wenn der Ausgang aktiv ist, schaltet er den Transistor leitend und zieht die Aus-
gangsleitung Y nach Low-Pegel. Der Vorteil dieses Schaltungsprinzips besteht darin,
dass mehrere Open-Kollektor-Ausgänge parallel geschaltet werden können und jeder den
Ausgang auf Low-Pegel ziehen kann (Abb. 6.26).

Wenn ein oder mehrere Bauelemente die Ausgangsleitung auf Low-Pegel ziehen, ergibt
sich eine logische 0. Nur wenn alle Bauelemente den Ausgang auf High-Pegel lassen,
ergibt sich eine logische 1. Dies entspricht einer UND-Funktion. Die Zusammenschaltung
wird auch als Wired-AND bezeichnet, also als „UND-Gatter durch Verdrahtung“.

In Schaltsymbolen wird ein Open-Kollektor-Ausgang durch eine Raute mit Balken
dargestellt (Abb. 6.24).

Der Open-Kollektor-Ausgang wird eingesetzt, wenn mehrere Signale miteinander
logisch verknüpft werden sollen. Es ist, anders als bei Tri-State-Ausgängen, keine zen-
trale Steuerung erforderlich. Allerdings ist auch nicht ohne weiteres ersichtlich, welcher
Baustein das Signal auf 0 gezogen hat.

Als Beispiel nehmen wir an, dass mehrere Peripheriebausteine an eine CPU angeschlos-
sen sind und einen Interrupt auslösen können. Durch ein Wired-AND können die Bausteine
ihre Interrupt-Leitungen kombinieren und gemeinsam an die CPU geben, so dass nur ein
einziger Interrupt-Eingang erforderlich ist. Wenn ein Interrupt auftritt, fragt die CPU ab,
welcher Peripheriebaustein Auslöser des Interrupts war und bearbeitet die Anfrage.

Abb. 6.26   Verdrahtung
mehrerer Open-Kollektor-
Ausgänge

US

RL

Bauelement B Bauelement CBauelement A

Y

6.6  Spezielle Ein-/Ausgangsstrukturen

200 6  Schaltungsstrukturen

6.7	� Übungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Prüfen Sie sich mit den Aufgaben und
Fragen am Kapitelende. Die Lösungen und Antworten finden Sie am Ende des Buches.

Bei den Auswahlfragen ist immer genau eine Antwort korrekt.

Aufgabe 6.1
Wie bezeichnet man eine Digitalschaltung, bei der Steuereingänge einen von mehreren
Dateneingängen auswählen?

a)	 Multiplexer
b)	Demultiplexer
c)	 Addierer
d)	Schieberegister
e)	 Datenregister

Aufgabe 6.2
Die Grundstruktur einer Additionsschaltung mit der Kaskadierung von Volladdierern
nennt man, …

a)	 Halbaddierer
b)	Carry-Overflow-Addierer
c)	 Carry-Pulse-Addierer
d)	Carry-Overtake-Addierer
e)	 Ripple-Carry-Addierer

Aufgabe 6.3
Welche Aussage trifft für Tri-State-Ausgänge zu?

a)	 Mehrere Ausgänge werden UND-verknüpft
b)	Rauschen am Eingang wird durch eine Hysterese entstört
c)	 Der High-Pegel kann konfiguriert werden
d)	Eine Signalleitung kann als Eingang oder Ausgang geschaltet werden
e)	 Ein High-Pegel wechselt nach kurzer Zeit automatisch zum Low-Pegel

Aufgabe 6.4
Was wird als Spike (auch Glitch oder Hazard) bezeichnet?

a)	 Fehler durch Weltraumstrahlung
b)	 Invertierung eines Taktsignals
c)	 Kurze Zwischenzustände an Schaltungsausgängen

201

d)	Höchstfrequenz eines Taktsignals
e)	 Verzögerungszeit bei Flip-Flops

Aufgabe 6.5
Wie bezeichnet man den langsamsten Weg durch eine kombinatorische Schaltung?

a)	 Periodendauer
b)	Hold-Zeit
c)	 Zyklus
d)	Setup-Zeit
e)	 Kritischer Pfad

Aufgabe 6.6
Wie viele Signalleitungen (Ein-/Ausgänge, keine Versorgungsspannung/Masse) hat ein
1-aus-4 Multiplexer/Datenselektor?

a)	 9
b)	5
c)	 7
d)	4
e)	 6

Aufgabe 6.7
Wie viele Signalleitungen (Ein-/Ausgänge, keine Versorgungsspannung/Masse) hat ein
1-auf-8 Demultiplexer?

a)	 8
b)	10
c)	 11
d)	12
e)	 9

Aufgabe 6.8
Ein Modulo-2^10 Zähler hat einen Takt von 50 MHz. Wie viele Zählzyklen schafft der
Zähler pro Sekunde (gerundet)?

a)	 5.000.000
b)	50.000
c)	 50.000.000
d)	2.000
e)	 100.000.000

6.7  Übungsaufgaben

202 6  Schaltungsstrukturen

Aufgabe 6.9
Ein Modulo-2^8 Zähler hat einen Takt von 500 kHz. Wie viele Zählzyklen schafft der
Zähler pro Sekunde (gerundet)?

a)	 100.000
b)	2.000
c)	 5.000
d)	1.000
e)	 500.000

Aufgabe 6.10
Die mögliche Taktfrequenz für den Addierer in Abb. 6.17 soll erhöht werden. Fügen Sie
eine Pipeline-Stufe ein. Beachten Sie, dass alle Signale gleich verzögert werden, damit
Informationen der Datenworte weiterhin zueinander passen.

Berechnen Sie kritischen Pfad und mögliche Taktfrequenz mit den Annahmen aus
Abschn. 6.5.3.

203© Springer-Verlag GmbH Deutschland 2016
W. Gehrke et al., Digitaltechnik, Springer-Lehrbuch,
DOI 10.1007/978-3-662-49731-9_7

Bei der Realisierung eines Systems müssen neben der digitalen Funktion weitere
Aspekte berücksichtigt werden, die sowohl technischen als auch nicht-technischen Cha-
rakter besitzen. Einige Beispiele für diese Aspekte sind:

•	 Rechenleistung
•	 Verlustleistung
•	 Formfaktor, maximaler Platzbedarf
•	 Benötigte Logikpegel für Ein- und Ausgabe
•	 Entwurfskosten, Produktionskosten
•	 Entwicklungszeit, Time-to-Market
•	 Vorkenntnisse und Erfahrungen

Für die Realisierung eines digitalen Systems gibt es unterschiedliche Alternativen, die
sich im Hinblick auf die genannten Eigenschaften unterscheiden. Es ist beispielsweise
denkbar, ausschließlich Standard-Bausteine einzusetzen, deren Funktion vom Hersteller
fest vorgegeben ist. Ebenso ist es möglich, selbst als Halbleiter-Hersteller zu agieren und
eigene Chips produzieren zu lassen. Es können auch Programmierbare Logikbausteine
eingesetzt werden, deren Hardware-Funktion flexibel festgelegt werden kann. Statt eine
Funktion in Form von Gattern zu realisieren, ist auch ein softwareorientierter Ansatz
möglich, bei dem beispielsweise Mikrocontroller eingesetzt werden. Diese Bausteine
sind deutlich kompakter als ein PC und sind teilweise für weniger als 1 EUR erhältlich.
In diesem Kapitel werden die verschiedenen Varianten näher beleuchtet.

Realisierung digitaler Systeme 7

204 7  Realisierung digitaler Systeme

7.1	� Standardisierte Logikbausteine

Unter Standardlogik-Bausteinen werden Komponenten verstanden, die käuflich zu
erwerben sind und eine einfache digitale Hardware-Funktion zur Verfügung stellen, wel-
che durch den Anwender nicht modifiziert werden kann.

Standardlogik-Bausteine sind in Bausteinfamilien bzw. -serien zusammengefasst. Die
wichtigsten Familien sind die sogenannte 4000er-Serie sowie die 7400er-Serie (bzw.
kurz 74er-Serie). Die Bezeichnung dieser Familien geht auf die Kennzeichnung der
zugehörigen Schaltkreise zurück. So beginnt die Bezeichnung eines Bausteins der 74er-
Serie immer mit der Zahl 74. Diese wird meist von mehreren Buchstaben gefolgt, die
die Implementierungstechnologie und damit auch einige Eigenschaften (zum Beispiel
Logikpegel) des Bausteins beschreiben. Eine abschließende Zahl kennzeichnet die logi-
sche Funktion. So besitzen ein 74HC374 und ein 74LVC374 zwar die gleiche logische
Funktion (acht D-Flip-Flops), aber ein unterschiedliches Zeitverhalten und unterschiedli-
che elektrische Eigenschaften.

Als ein Vertreter der 74er-Familie ist in Abb. 7.1 der Baustein 74HC04 abgebildet,
welcher sechs Inverter enthält. Die Buchstaben SN stehen für den Hersteller und das N
am Ende der Bausteinkennzeichnung gibt die Gehäuseform an.

In den 1970er Jahren wurden die Standardlogik-Bausteine noch zur Realisierung von
Computern eingesetzt. Die hiermit verbundenen Nachteile liegen auf der Hand: Große
Bauform, hohe Kosten, große Verlustleistung. Die damaligen Computer waren so groß
wie Kleiderschränke, hatten eine Stromaufnahme, die mit mehreren hundert heutiger
PCs vergleichbar ist und boten für 6-stellige Dollar-Beträge eine Rechenleistung, für die
heute vermutlich niemand auch nur einen Euro bezahlen würde.

Abb. 7.1   Baustein 74HC04:
Sechs Inverter in einem
gemeinsamen Gehäuse

205

Obwohl die Standardlogik-Komponenten heute keine Bedeutung für die Realisierung
ganzer Systeme mehr haben, haben sie dennoch ihre Daseinsberechtigung. Sie werden
zum Beispiel dann eingesetzt, wenn einfache logische Funktionen mithilfe von ein paar
wenigen Gattern realisiert werden sollen. Ebenso können einige dieser Bausteine auch
als Leitungstreiber oder zur Pegelanpassung zwischen Komponenten mit unterschiedli-
chen Versorgungsspannungen eingesetzt werden.

Zur Verdeutlichung, welche logischen Funktionen in der 74er-Serie zur Verfügung
stehen, sind einige ausgewählte Funktionen in Tab. 7.1 zusammengestellt. Eine umfas-
sende Dokumentation der verfügbaren digitalen Funktionen kann von den Herstellern
(Texas Instruments, NXP, STM, u.v.a.) bezogen werden.

Die ersten Standard-Logikbausteine der 74er-Serie wurden mithilfe von Bipolar-
Transistoren realisiert. Inzwischen hat auch in diesem Bereich die CMOS-Technolo-
gie (vgl. Kapitel 10) die reine bipolare Implementierung verdrängt. Einige Familien
werden auch mit einer Kombination von bipolaren und MOS-Transitoren realisiert.
Die Eingänge sowie die logische Funktion werden dann mithilfe der CMOS-Technik

Tab. 7.1   Ausgewählte Logikfunktionen der 74er-Serie

Baustein
(letzte Ziffern)

Funktion

00 4 NAND2

02 4 NOR2

04 6 Inverter

07 6 Treiber/Buffer (mit OC-Ausgang)

08 4 AND2

10 3 NAND3

25 2 NOR4

46 BCD nach Siebensegment Decoder

74 2 D-Flip-Flops mit Set- und Reset-Eingängen

138 3:8 Demultiplexer/Decoder

148 8:3 Prioritätsencoder

165 8 Bit Parallel-In/Serial-Out Schieberegister

190 4 Bit Aufwärts-/Abwärtszähler

244 8 Bit Leitungstreiber mit Tristate-Ausgängen

245 8 Bit Bidirektionaler Bustreiber mit Tristate-Ausgängen

373 8 pegelgesteuerte D-Flip-Flops mit Tristate-Ausgängen

374 8 flankengesteuerte D-Flip-Flops mit Tristate-Ausgängen

573 8 pegelgesteuerte D-Flip-Flops mit Tristate-Ausgängen

574 8 flankengesteuerte D-Flip-Flops mit Tristate-Ausgängen

595 8 Bit Serial-in/Parallel-out Schieberegister mit Tristate-Ausgängen

7.1  Standardisierte Logikbausteine

http://dx.doi.org/10.1007/978-3-662-49731-9_10

206 7  Realisierung digitaler Systeme

implementiert, während für die Ausgangstreiber Bipolar-Transistoren eingesetzt wer-
den. So wird gegenüber einer reinen CMOS-Implementierung eine höhere Treiberleis-
tung und eine geringere Abhängigkeit von der Lastkapazität erreicht. Eine Übersicht
über verschiedene Familien der 74er-Serie folgt in Abschn. 7.1.5.

Nicht alle Grundfunktionen der 74er-Serie werden in allen Familien angeboten. Im
Einzelfall muss geprüft werden, ob eine gewünschte Funktion zur Verfügung steht.

Als eine Ergänzung zu der weitverbreiteten 74er-Serie bietet beispielsweise die Firma
NXP konfigurierbare Logikgatter in platzsparenden Gehäusen an. Damit kann ein ein-
zelnes NAND- oder NOR-Gatter mit zwei Eingängen realisiert werden, während ein
typischer Baustein der 74er-Serie vier dieser Gatter enthält. Die konfigurierbaren Logik-
gatter sind in den Familien LVC, AUP (Advanced Ultra-Low-Power) und AXP (Advan-
ced Extremely Low-Power) verfügbar. Die Logikfunktion der Gatter ist durch die äußere
Beschaltung wählbar.

7.1.1	� Charakteristische Eigenschaften digitaler Schaltkreise

Bevor ein Baustein für den Entwurf eines digitalen Systems ausgewählt wird, müssen
dessen Merkmale bekannt sein. In den Datenblättern integrierter Schaltungen wird meist
eine Reihe von Kenndaten angegeben, die die Eigenschaften des Bausteins beschreiben.
Neben dem erlaubten Versorgungsspannungsbereich sind unter anderem die Pegel sowie
die zulässigen Ströme an Ein- und Ausgängen von Bedeutung (vgl. Abb. 7.2).

Für diese Parameter definieren die Datenblätter die zulässigen Wertbereiche. Einige
der wichtigsten Parameter sind in Tab. 7.2 zusammengefasst. Die Formelzeichen entspre-
chen denen, die in englischsprachigen Datenblättern verwendet werden. Daher wird hier
der Buchstabe V als Formelzeichen für die elektrische Spannung verwendet.

7.1.2	� Lastfaktoren

Die Treiberstärke einer Ausgangsleitung muss für die angeschlossene Belastung durch
die nachfolgenden Bausteine ausreichen. Die Belastung, die ein Ausgang durch einen

Digitale
Schaltung

VI

II IO

VO

GND

VDD

Abb. 7.2   Anschlussbezeichnung digitaler Schaltungen

207

Eingang innerhalb der gleichen Schaltkreisfamilie erfährt, wird durch den sogenann-
ten Lastfaktor beschrieben. Hierzu wird der Eingangsstrom eines typischen Gatters der
Bausteinfamilie (Einheitsgatter) definiert. Es ergeben sich für Low- und High-Pegel die
beiden charakteristischen Größen II,HN und II,LN, die den Strom angeben, welcher in den
Eingang des Einheitsgatters hineinfließt.

Auf Basis der Eigenschaften eines Einheitsgatters lassen sich die beiden charakteristi-
schen Größen Fan-in und Fan-out definieren.

Fan-in (Eingangslastfaktor)
Der Fan-in eines Eingangs gibt an, um welchen Faktor die Stromaufnahme größer ist als
beim Einheitsgatter derselben Schaltkreisfamilie.

Innerhalb einer Schaltkreisfamilie gilt ein Eingang als einfache Last, wenn er den glei-
chen Strom aufnimmt wie das Einheitsgatter (FI = 1).

Fan-out (Ausgangslastfaktor)
Der Fan-out gibt an, mit wie vielen Eingängen eines Einheitsgatters derselben Schalt-
kreisfamilie der entsprechende Ausgang belastet werden darf.

FI ,H =
II ,H

II ,HN

FI ,L =
II ,L

II ,LN

FI = max
[

FI ,H ,FI ,L

]

Tab. 7.2   Wichtige Parameter zur Charakterisierung digitaler Schaltkreise

Formelzeichen Bedeutung Bemerkungen

GND Masse Alternative Bezeichnung: VSS

VDD Versorgungsspannung Alternative Bezeichnung: VCC

VI Eingangsspannung

II Eingangsstrom

VO Ausgangsspannung

IO Ausgangsstrom

VI,Hmin Minimale Eingangsspannung, die als
High-Pegel erkannt wird

Abhängig von Versorgungsspannung

VI,Lmax Maximale Eingangsspannung, die als
Low-Pegel erkannt wird

II,H Eingangsstrom bei High-Pegel Bei CMOS-Schaltkreisen meist
vernachlässigbarII,L Eingangsstrom bei Low-Pegel

VO,Hmin Garantierte minimale Ausgangsspannung
bei High-Pegel

Abhängig von Versorgungsspannung
und Ausgangsstrom

VO,Lmax Garantierte maximale Ausgangsspannung
bei Low-Pegel

IO,Hmax, IO,Lmax Maximal zulässiger Ausgangsstrom bei
High- bzw. Low-Pegel

7.1  Standardisierte Logikbausteine

208 7  Realisierung digitaler Systeme

FO,H =
IO,Hmax

II ,HN

FO,L =
IO,Lmax

OI ,LN

FO = min
[

FO,H ,FO,L

]

7.1.3	� Störspannungsabstand

Als Störspannungsabstand bezeichnet man die Spannung, um die ein Digitalausgang
variieren darf, ohne dass ein angeschlossener Eingang derselben Logikfamilie in einen
verbotenen Pegelbereich gelangt. Der Störspannungsabstand wird für High- und Low-
Pegel getrennt angegeben (Abb. 7.3).

7.1.4	� Schaltzeiten

Beim Einsatz eines digitalen Bausteins ist unter anderem die Verzögerungszeit, die teil-
weise auch als Schaltzeit bezeichnet wird, von großer Bedeutung. Um die Verzögerungs-
zeiten zu bestimmen, wird üblicherweise eine Rechteckspannung an den Eingang des
Bausteins angelegt und der zeitliche Verlauf der Ausgangspannung gemessen. Das Aus-
gangssignal ist nicht rechteckförmig und der Wechsel des logischen Signals am Ausgang
nimmt eine gewisse Zeit in Anspruch. Die Zeit setzt sich zusammen aus einer Verzögerung
im Inneren des Logikbausteins sowie der Zeit für die Umladung der Last am Ausgang.

Wird die Zeit gemessen, die der Ausgang benötigt, um von 10 % auf 90 % des Aus-
gangspegels anzusteigen bzw. von 90 % auf 10 % abzufallen, erhält man die Anstiegszeit
(rise time, tR) bzw. Abfallzeit (fall time, tF). Häufig werden diese Zeiten auch zusammen-
fassend als transition time (tT) angegeben.

Möchte man die Verzögerungszeit eines Bausteins angeben, so wird hierfür als Referenz-
punkt genau die Mitte zwischen Minimal- und Maximalpegel gewählt. Die Zeit, die zwi-
schen dem Erreichen des 50 %-Eingangspegels vergeht, bis der Ausgang seinerseits 50 %

SH = UO,Hmin − UI ,Hmin

SL = UO,Lmax − UI ,Lmax

Ausgang Eingang

VO,Hmin

VO,Lmax

VI,Hmin

VI,Lmax

SH

SL

H-
Pegel

L-
Pegel

H-
Pegel

L-
Pegel

Abb. 7.3   Störspannungsabstand

209

des Pegels erreicht hat, ergibt also die Verzögerungszeit (propagation delay, tP). Diese kann
auch für steigende und fallende Flanken getrennt angegeben werden kann (tPLH, tPHL).

In Abb. 7.4 sind die Schaltzeiten für das Beispiel eines Inverters dargestellt.

7.1.5	� Logikfamilien

In Tab. 7.3 sind einige ausgewählte Familien der 74er-Serie mit Versorgungsspannungs-
bereich und Schaltzeiten eines 74xx00 (vier NAND2-Gatter) zusammengefasst. Die

Abb. 7.4   Verzögerungszeiten
einer digitalen Schaltung am
Beispiel eines Inverters

VO

tF

90%

t

VI

t

tR

tpHL tpLH

50%

10%

50%

Tab. 7.3   Übersicht über einige Familien der 74er-Serie: Versorgungsspannungsbereich und typi-
sche Schaltzeiten für einen 74xx00-Baustein

Abkürzung Bezeichnung VCC (V) tT (ns) tP (ns) Bemerkungen

(Keine) Standard TTL (veraltet) 4,5 ~ 5,5 7 9 VCC = 5,0V; CL = 15pF

LS Low-Power Schottky
(veraltet)

4,5 ~ 5,5 7 10 VCC = 5,0V; CL = 15pF

HC High-Speed CMOS 2,0 ~ 6,0 6 7 VCC = 5,0V; CL = 15pF

HCT HC, TTL-compatible 4,5 ~ 5,5 7 8 VCC = 5,0V; CL = 15pF

AHC Advanced High-Speed CMOS 2,0 ~ 5,5 3 4,5 VCC = 5,0V; CL = 15pF

LVC Low Voltage CMOS 1,65 ~ 3,6 2 3,0 VCC = 3,3V; CL = 50pF

ALVC Adv. Low Voltage CMOS 1,65 ~ 3,6 2 2,1 VCC = 3,3V; CL = 50pF

ABT Adv. BiCMOS,
TTL-compatible

4,5 ~ 5,5 2,5 2,3 VCC = 3,3V; CL = 50pF

AUC Adv. Ultra Low Voltage
CMOS

0,8 ~ 2,7 1 1,5 VCC = 1,8V; CL = 30pF

7.1  Standardisierte Logikbausteine

210 7  Realisierung digitaler Systeme

Schaltzeiten gelten für die angegebenen Randbedingungen, insbesondere Versorgungs-
spannung und Lastkapazität (CL). Darüber hinaus können die Schaltzeiten auch auf
Grund von Streuungen bei der Fertigung der Bausteine variieren. In den meisten Daten-
blättern wird daher neben den typischen Zeiten auch ein Maximalwert angegeben.

7.2	� Komponenten für digitale Systeme

Für die Implementierung einer digitalen Schaltung kommen verschiedene Strategien in
Betracht, die in diesem Abschnitt vorgestellt werden. Reale digitale Systeme verwenden
häufig eine Kombination dieser Strategien.

7.2.1	� ASICs

Möchte man ein digitales System realisieren, kann man einen speziellen Halbleiterbau-
stein fertigen lassen, der die gewünschte Funktion ausführt. In diesem Fall spricht man
von sogenannten ASICs (Application Specific Integrated Circuit). Beim Entwurf eines
ASICs wird auch ein digitales System aus logischen Grundelementen erstellt. Statt
jedoch die Grundfunktionen auf einer Platine (wie zum Beispiel bei Verwendung von
Bausteinen der 74er-Serie) vorzunehmen, erfolgt die Platzierung und Verdrahtung der
Gatter beim ASIC-Entwurf auf einer wenige Quadratmillimeter großen Siliziumfläche.
Diese Realisierung ist viel kompakter als bei Verwendung standardisierter Logikbau-
steine. Darum ist ein ASIC häufig schneller und besitzt eine geringere Verlustleistung.
Da die Anzahl und die Position der Gatter während des Entwurfs frei gewählt werden
können, kann der Baustein für den jeweiligen Anwendungsfall optimiert werden.

Für den Entwurf eines ASICs wird der sogenannte Standardzellentwurf eingesetzt.
Bei dieser Entwurfsmethodik stehen die logischen Grundelemente als Bibliothek in elek-
tronischer Form zur Verfügung. Aus dieser Bibliothek können Bauelemente ausgewählt,
auf dem Chip platziert und anschließend verdrahtet werden.

Die Auswahl und das Verbinden der einzelnen Gatter zu einem komplexen System
erfolgt mithilfe einer Hardwarebeschreibungssprache wie VHDL. Mit einem Synthese-
programm wird die VHDL-Beschreibung in eine sogenannte Gatternetzliste überführt.
Diese Netzliste gibt an, welche Logikelemente verwendet werden und wie diese verdrah-
tet sind. Die Synthese hat also die Aufgabe die VHDL-Beschreibung zu analysieren und
eine möglichst optimale Implementierung auf Basis der Grundelemente der Bibliothek
zu finden. Optimal heißt in diesem Fall, dass die spezifizierten maximalen Verzögerungs-
zeiten eingehalten werden und eine möglichst kleine Chipfläche benötigt wird. Darüber
hinaus können auch Aspekte wie die Verlustleistung Berücksichtigung finden. Dieser
Entwurfsschritt wird häufig auch als Frontend-Design bezeichnet.

Nachdem das Frontend-Design abgeschlossen ist, erfolgt das Backend-Design.
In diesem Schritt werden mit speziellen Layoutprogrammen die Platzierung und die

211

Verdrahtung der Elemente aus der Gatternetzliste vorgenommen. Hierfür ist in der Bib-
liothek für jedes Element der Netzliste eine Implementierung aus einzelnen Transistoren
hinterlegt.

Auf den ersten Blick klingt der Ansatz des ASIC-Entwurfs vielleicht als ideale
Lösung zur Realisierung digitaler Systeme. Aufgrund der Optimierung können die
Schaltkreise mit einer relativ kleinen Siliziumfläche und damit kostengünstig produ-
ziert werden. Allerdings sind die Produktionskosten nicht der einzige Kostenfaktor eines
ASIC-Entwurfs, denn es fallen in einem deutlichen Umfang einmalige Kosten (engl.
non-recurring engineering costs bzw. NRE) an. Diese Kosten entstehen zum einen
durch den hohen Arbeitsaufwand im Frontend- und Backend-Design. Zum anderen ist
die Erstellung von Belichtungsmasken, die zur Produktion des Schaltkreises in der Halb-
leiterfabrik benötigt werden, ein weiterer wichtiger Kostenfaktor. Aufgrund der kleinen
Strukturen heutiger Produktionsprozesse werden extrem präzise Masken benötigt, sodass
die Vorbereitung der Produktion eines ASICs mehrere Millionen Euro kosten kann.
Berücksichtigt man diese Kosten, wird deutlich, dass vor der Produktion eines ASICs
eine intensive Überprüfung des Designs erforderlich ist, damit die Wahrscheinlichkeit
eines Designfehlers verringert wird.

Nehmen wir als Beispiel an, dass die NRE-Kosten eines ASIC-Projekts etwa
15 Mio EUR betragen. Wenn der Baustein in einer Stückzahl von 100.000 produ-
ziert werden soll, ergibt sich umgerechnet auf einen einzelnen Baustein ein Anteil von
150 EUR. Diese Kosten sind für viele Anwendungsgebiete unattraktiv, sodass nur bei
sehr hohen Stückzahlen eine ASIC-Entwicklung wirtschaftlich sinnvoll ist.

7.2.2	� ASSPs

Eine Alternative zur Entwicklung eines eigenen Bausteins können sogenannte Applica-
tion Specific Standard Products (ASSPs) sein. Ein ASSP hat den gleichen Aufbau wie ein
ASIC, wird allerdings nicht selbst entworfen, sondern ist ein frei am Markt erhältlicher
Schaltkreis. Er kann für eine sehr spezielle Funktion (zum Beispiel WLAN, Steuerung
von Motoren) optimiert sein oder aber auch als System-on-Chip (SoC) mehrere Funktio-
nen integrieren und so die kostengünstige Implementierung eines Gesamtsystems ermög-
lichen. Ein Beispiel für ein System-on-Chip sind die ASSPs, die in heutigen Fernsehern
verbaut werden: Fast die gesamte Funktionalität vom Empfang des Fernsehsignals über
Satellit, Kabel oder WLAN bis hin zur Anzeige auf einem Display ist in einem hochinte-
grierten Baustein vereinigt.

7.2.3	� FPGAs und CPLDs

Die Produktion eines ASICs ist ein sehr attraktiver Weg zur Realisierung eines digitalen
Systems – wenn sie nicht mit erheblichen Grundkosten verbunden wäre. Wäre es also

7.2  Komponenten für digitale Systeme

212 7  Realisierung digitaler Systeme

vielleicht ein möglicher Ausweg, wenn man Bausteine hätte, deren Hardware zwar fest
ist, aber deren digitale Funktion erst vom Anwender festgelegt würde? Diese Bausteine
kann man (aufgrund der festen Hardware) in großen Stückzahlen günstig herstellen und
dennoch kann der Anwender die digitale Funktion, wie bei einem ASIC, nach seinen
Bedürfnissen festlegen.

Diese Überlegungen wurden bereits sehr früh angestellt und die Idee, Schaltkreise
zu realisieren, deren logische Funktion in VHDL „programmiert“ werden kann, wurde
schon in den 1970er Jahren aufgegriffen und ist bis heute immer weiter verfeinert
worden.

Die Besonderheit dieser Bausteine ist, dass ihre logische Funktion noch im Feld (zum
Beispiel nach dem Einsetzen in eine Platine) konfiguriert werden kann. Daher werden sie
als Field Programmable Gate Arrays (FPGAs) bezeichnet. Neben FPGAs werden auch
Complex Programmable Logic Devices (CPLDs) beziehungsweise Simple Programma-
ble Logic Devices (SPLDs) angeboten. CPLDs eignen sich besonders für programmier-
bare logische Funktionen mit einer relativ geringen Komplexität, während mit FPGAs
ganze Rechnersysteme realisiert werden können. Die gesamte Gruppe dieser Bausteine
wird auch unter dem Begriff Programmierbare Logik zusammengefasst.

Sind also FPGAs die ideale Lösung zur Realisierung einer digitalen Funktion? In
vielen Fällen kann man diese Frage tatsächlich bejahen: Mit heutigen FPGAs können
sehr komplexe Systeme zu einem relativ günstigen Preis realisiert werden. Insbeson-
dere bei kleinen bis mittleren Stückzahlen können FPGAs ihre Kostenvorteile gegenüber
ASICs ausspielen. Daher werden programmierbare Logikbausteine in vielen Bereichen
eingesetzt.

7.2.4	� Mikrocontroller

Kann man eine digitale Funktion statt mit Gattern auf einer Platine oder in Form eines
ASICs auf einem Stück Silizium vielleicht auch in Software realisieren? Schließlich ist
doch das Grundprinzip eines jeden Rechnerprogramms das Einlesen von Eingabewer-
ten, die Verarbeitung der Werte und die anschließende Ausgabe von Ergebnissen. Und
letztlich macht ein logisches Gatter oder auch ein komplexes System nichts anderes: Es
betrachtet sozusagen die Eingänge und bestimmt nach einer festgelegten Rechenvor-
schrift die Ausgangssignale. Also müsste es möglich sein, eine beliebige digitale Funk-
tion auch mithilfe eines Rechners zu realisieren.

Sie mögen vielleicht einwenden, dass es wenig sinnvoll ist, wenn man beispielsweise
die Funktion eines einfachen UND-Gatters durch ein Programm auf einem PC ersetzt.
Sicher, die Kosten der PC-basierten Lösung wären viel zu hoch und auch die Bauform
und die benötigte leistungsfähige Spannungsversorgung wären nachteilig. Ein Rechner-
system auf Basis eines PCs ist also aus verschiedensten Gründen für viele Anwendungs-
gebiete nicht gut geeignet.

213

Aber es existieren Alternativen zu einem Standard-PC: Bereits in den 1970er Jahren
erkannten die Halbleiterhersteller den Bedarf an kostengünstigen, stromsparenden Rech-
nersystemen, die sich auf einem Stück Silizium unterbringen ließen. Diese Bausteine
sind nicht als PC-Ersatz gedacht, sondern werden häufig dort eingesetzt, wo sich Steu-
erungs- und Regelungsaufgaben elegant in Software realisieren lassen und nur moderate
Rechenleistungen benötigt werden. Aufgrund dieses Anwendungsbereiches bürgerte sich
schnell die Bezeichnung Mikrocontroller für diese Art von Bausteinen ein.

Mikrocontroller enthalten in einem einzelnen Gehäuse alles, was einen Rechner
ausmacht: Einen Mikroprozessor zur Abarbeitung eines Programms, Speicher für Pro-
gramme und Daten und Ein-/Ausgabe-Schnittstellen für die Kommunikation mit der
Außenwelt.

Obwohl das Grundkonzept eines PCs und eines Mikrocontrollers ähnlich ist, unter-
scheiden sie sich doch erheblich: Während PCs für interaktives Arbeiten ausgelegt sind
und vorrangig eine hohe Rechenleistung bieten sollen, stehen bei Mikrocontrollern vor
allem der Preis und eine kompakte Bauform im Vordergrund. Mikrocontroller besitzen
daher eine (im Vergleich zu einem aktuellen PC) geringe Rechenleistung und einen deut-
lich kleineren Speicher. Trotz dieser Einschränkungen werden jedes Jahr mehrere Milli-
arden Mikrocontroller verbaut (Abb. 7.5).

Wenn Sie einen Gang durch Ihren Haushalt machen, werden Sie vermutlich viele
Geräte entdecken, die einen Mikrocontroller enthalten. Betrachten wir als ein Beispiel
eine Waschmaschine: Die Aufgaben an die Steuerung sind vielfältig. Es wird eine Benut-
zerschnittstelle in Form von Tastern, Drehschaltern und Displays benötigt. Die Drehrich-
tung und Geschwindigkeit des Trommelmotors müssen geregelt werden. Und nicht zuletzt
müssen Wasserzu- und -ablauf sowie die Heizung korrekt angesteuert werden. Besitzt
man einen Rechnerbaustein mit digitalen Ein- und Ausgängen kann die Steuerung auf ele-
gante Weise in Software implementiert werden. Die Rechenleistung heutiger Mikrocont-
roller reicht für die Regelungsalgorithmen einer typischen Waschmaschine völlig aus.

Das Einsatzgebiet der Mikrocontroller ist natürlich nicht auf den Haushalt beschränkt.
Überall wo Steuerungen und Regelungen benötigt werden, werden Mikrocontroller

Abb. 7.5   Beispiel eines
Mikrocontrollers: Von außen
ist nicht zu erkennen, dass
es sich um einen kompletten
Rechner handelt

7.2  Komponenten für digitale Systeme

214 7  Realisierung digitaler Systeme

eingesetzt. Häufig sind diese Rechnersysteme nicht sofort erkennbar, weshalb sie auch
als eingebettete Systeme (Embedded System) bezeichnet werden.

7.2.5	� Vergleich der Alternativen

Die möglichen Alternativen für die Implementierung einer digitalen Schaltung unter-
scheiden sich in Flexibilität, Entwicklungszeit, Entwicklungskosten und Stückkosten.
Tab. 7.4 gibt einen groben Vergleich der Alternativen ASIC, ASSP, Mikrocontroller (µC)
und FPGA. Die Symbole zur Bewertung bedeuten sehr gut (+ +), gut (+), mittel (○),
schlecht (–), sehr schlecht (– –).

Die Wahl einer Alternative ist abhängig von den Randbedingungen des Entwicklungs-
projektes, also unter anderem Komplexität der Schaltung, Zeitdruck, Kostendruck, Kon-
kurrenzsituation. Die Entscheidung für ein Implementierungskonzept ist daher in der
Praxis das Ergebnis einer ausführlichen Analyse und wird zwischen Entwicklungsteam,
Produktmarketing und Unternehmensleitung abgestimmt.

7.2.6	� Kombination von Komponenten

In komplexeren digitalen Systemen wird die Systemfunktion häufig auf verschiedene
Bausteine verteilt. Die zentrale Komponente ist dann häufig ein programmierbarer Bau-
stein, der einen Mikroprozessor enthält und mit Programmiersprachen wie C/C++
programmiert werden kann. Der Mikroprozessor kann durch programmierbare Logik-
bausteine, wie FPGAs oder CPLDs ergänzt werden. Auf diese Weise können einige
Systemfunktionen in der programmierbaren Logik implementiert werden, wodurch der
zentrale Mikroprozessor entlastet wird.

Wenn das System einen Speicherbedarf von einigen Megabyte oder mehr besitzt, wer-
den zusätzlich spezielle Speicherbausteine benötigt, die als eigenständige Komponenten
auf der Systemplatine untergebracht werden.

Tab. 7.4   Alternativen zur
Implementierung digitaler
Schaltungen

ASIC ASSP µC FPGA

Hohe Flexibilität + - + + +
Geringe Entwicklungszeit – – + + + ○
Geringe Entwicklungskosten – – + + + ○
Geringe Stückkosten + + + + + ○
Rechenleistung + + + + ○ +
Verlustleistung + + + + ○ ○
Geringe Stückzahlen möglich – – + + + + + +
Hohe Stückzahlen möglich + + + + + + +

215

Ein-/Ausgabe-Komponenten, die nicht bereits durch den Mikroprozessor zur Verfü-
gung gestellt werden, können entweder in der programmierbaren Logik oder als zusätz-
liche Systemkomponenten, zum Beispiel in Form eines ASSPs, integriert werden.
Insbesondere Spezialfunktionen wie WLAN, USB oder Ethernet können durch derartige
zusätzliche Bausteine realisiert werden.

Für einfache Anwendungen ist eine Systemrealisierung auf Basis mehrerer Ein-
zelkomponenten häufig nicht sinnvoll, da sie zu kostenintensiv sind oder die Verlust-
leistung zu groß wäre. Für diese Anwendungsfälle bietet die Halbleiterindustrie die in
Abschn. 7.2.4 vorgestellten Mikrocontroller an, die sich insbesondere für eine kosten-
günstige Realisierung von Systemen mit relativ geringen Anforderungen an die Rechen-
leistung realisieren lassen.

Die unterschiedlichen Komponenten digitaler Systeme werden in verschiedenen
Kapiteln genauer vorgestellt: Kapitel 9 vertieft Aspekte der programmierbaren Logik-
bausteine. Kapitel 10 beschreibt die Grundlagen der Halbleitertechnik. In Kapitel 11
werden Speicherbausteine vorgestellt. Die Kapitel 12 vorgestellten Analog-Digital- und
Digital-Analog-Umsetzer werden immer dann benötigt, wenn die Ein-/Ausgabe in ana-
loger Form erfolgen soll. Kapitel 13 und Kapitel 14 gehen auf die Realisierung soft-
wareprogrammierbarer Bausteine ein, wobei der Schwerpunkt auf Mikrocontrollern
liegt.

7.3	� VHDL-basierter Systementwurf

Für den Entwurf digitaler Systeme wird Software eingesetzt, die den Entwicklungspro-
zess auf dem Weg von der Idee zum fertigen System unterstützt. Der rechnergestützte
Schaltungsentwurf wird als Electronic Design Automation (EDA) und die Programme für
die Schaltungsentwicklung als EDA-Programme oder EDA-Tools bezeichnet. Mithilfe
dieser Programme kann VHDL-Code eingegeben, simuliert und in Hardware überführt
werden. Das Ergebnis des Entwurfsprozesses ist eine binäre Datei, die mithilfe eines
Programmiergerätes auf ein FPGA übertragen bzw. zur Fertigung eines ASICs an die
Halbleiterfabrik übergeben wird.

Im Folgenden wird der VHDL-basierte Systementwurf näher beschrieben. Aufgrund
der großen Bedeutung von programmierbaren Logikbausteinen, erfolgt die Beschreibung
für ein FPGA-Design.

7.3.1	� Designflow

Der Entwurf eines Systems auf Basis eines FPGAs beinhaltet immer zwei Aspekte: Zum
einen muss die gewünschte Funktion in VHDL beschrieben und mithilfe der Entwurfs-
software in eine Programmierdatei für das FPGA übersetzt werden. Daneben ist es von
wesentlicher Bedeutung, dass die einzelnen Entwurfsschritte durch Verifikation begleitet

7.3  VHDL-basierter Systementwurf

http://dx.doi.org/10.1007/978-3-662-49731-9_9
http://dx.doi.org/10.1007/978-3-662-49731-9_10
http://dx.doi.org/10.1007/978-3-662-49731-9_11
http://dx.doi.org/10.1007/978-3-662-49731-9_12
http://dx.doi.org/10.1007/978-3-662-49731-9_13
http://dx.doi.org/10.1007/978-3-662-49731-9_14

216 7  Realisierung digitaler Systeme

werden. Besondere Bedeutung kommt hierbei der frühzeitigen Simulation des eingege-
benen VHDL-Codes zu.

Eine schematische Übersicht über den FPGA-Entwurf zeigt Abb. 7.6. Die einzelnen
Schritte werden in den folgenden Abschnitten näher erläutert.

Der Ablauf eines VHDL-basierten Entwurfs besitzt teilweise Ähnlichkeiten zur Ent-
wicklung von Software. Die gewünschte Funktion wird in Form einer Textdatei beschrie-
ben. Diese Datei wird dann durch einen Compiler bzw. ein Synthesetool optimiert und
in ein ausführbares Programm bzw. eine Programmierdatei für das FPGA übersetzt. Es
ist jedoch zu beachten, dass ein FPGA ein paralleles System ist, auf dem eine Vielzahl
von Funktionen gleichzeitig ablaufen. Außerdem ist das Zeitverhalten von wesentlicher
Bedeutung. Ist die Verzögerungszeit der Kombinatorik zwischen zwei Flip-Flops zu
groß, wird das System fehlerhaft arbeiten. Daher ist der VHDL-basierte Entwurfsablauf,
trotz der Ähnlichkeiten zur Softwareentwicklung, als Hardwareentwurf anzusehen.

7.3.2	� VHDL-Eingabe

Die Hardwarebeschreibungssprache VHDL wurde in vorangegangenen Kapiteln bereits
vorgestellt. Sie kennen bereits die Syntax der Sprache und wissen auch, wie Sie bei-
spielsweise endliche Automaten in VHDL beschreiben können. Für die Entwicklung
eines FPGA-Designs muss berücksichtigt werden, dass der VHDL-Code in der Regel ein
synchrones System beschreibt, das aus Flip-Flops und kombinatorischer Logik besteht.

Abb. 7.6   FPGA-Designflow
mit VHDL

Designeingabe
(VHDL)

Verifikation

Testbench
(VHDL)

SimulationSynthese

Platzierung

Verdrahtung

FPGA-
Programmierung

bzw.
ASIC-Produktion

Analyse des
Zeitverhaltens

Inbetriebnahme
und Test des

Systems

Designeingabe

217

In Kapitel 6 wurde bereits erläutert, dass die meisten digitalen Schaltungen eine
Kombination von Registern und Kombinatorik zwischen den Registerstufen darstellen
(Register-Transfer-Level-Design oder kurz RTL-Design). Die Grundstruktur der entspre-
chenden Hardware ist in Abb. 7.7 dargestellt.

Mit der Eingabe des VHDL-Codes werden die Registerstufen und die logische Funk-
tion zwischen zwei Registerstufen festgelegt. Dabei muss auch das Zeitverhalten der
späteren Hardware berücksichtigt werden. Für einfache Designs kann dies häufig als
unkritisch angesehen werden. Für Entwürfe mit hohen Anforderungen an die Rechen-
leistung (und damit häufig einer hohen Taktfrequenz) nimmt die Bedeutung des Zeit-
verhaltens zu. Den größten Einfluss auf das Zeitverhalten hat der VHDL-Code. Alle
nachfolgenden Schritte im Designflow können eventuelle Probleme im Zeitverhalten der
Schaltung nur in einem begrenzten Umfang korrigieren.

7.3.3	� Simulation

Die Simulation des VHDL-Codes ist einer der wichtigsten Schritte, um die Korrektheit
der beschriebenen digitalen Funktion frühzeitig sicherzustellen. Prinzipiell bieten VHDL
Simulatoren die Möglichkeit, durch Kommandos Signale auf definierte Werte zu set-
zen. Die verwendeten Kommandos sind nicht standardisiert und variieren mit den ein-
gesetzten Simulatoren. Beispielsweise wird bei Verwendung des Simulators XSIM der
Firma Xilinx ein Signal mit dem Namen my_sig mit dem Kommando add_force my_sig
1 auf den Wert 1 gesetzt werden. Um die Reaktion der VHDL-Beschreibung sichtbar
zu machen, muss anschließend mithilfe des Run-Kommandos (zum Beispiel run 10 ns)
etwas Simulationszeit vergehen. Der zeitliche Verlauf sowohl von Eingangs- und Aus-
gangssignalen als auch von internen Signalen einer VHDL-Beschreibung wird wäh-
rend der Simulation mithilfe sogenannter Waveform-Viewer grafisch dargestellt (vgl.
Kapitel 3).

Das Anlegen unterschiedlicher Eingangswerte durch Simulator-Kommandos und die
Überprüfung der Schaltungsreaktion anhand der grafischen Ausgabe wird in der Pra-
xis allerdings kaum verwendet. Wird der VHDL-Code des Systems erweitert, muss die

R
eg

is
te
r

Kombinatorik

R
eg

is
te
r

KombinatorikKombinatorik

Takt

Eingänge Ausgänge

Abb. 7.7   Struktur eines RTL-Designs

7.3  VHDL-basierter Systementwurf

http://dx.doi.org/10.1007/978-3-662-49731-9_6
http://dx.doi.org/10.1007/978-3-662-49731-9_3

218 7  Realisierung digitaler Systeme

Simulation wiederholt werden. Die Eingabe-Kommandos müssen wiederholt werden,
was zeitaufwendig und fehlerträchtig ist. In der Praxis wird daher meist eine Methode
gewählt, bei der der zu prüfende VHDL-Entwurf in eine Testbench eingebunden wird.
Auch die Testbench wird in VHDL programmiert.

Für kleinere Entwürfe benötigt man häufig nur einfache Testbenches, die Eingangs-
daten (Stimuli) für den zu testenden VHDL-Code erzeugen. Die Korrektheit des Ent-
wurfs wird durch die manuelle Inspektion der Signalverläufe überprüft. Diese interaktive
Simulation ist jedoch mit dem Nachteil verbunden, dass die Überprüfung manuell erfolgt
und daher auch Fehler übersehen werden können.

Die bessere Variante ist eine selbstüberprüfende (self-checking) Testbench, bei der die
Ausgaben des getesteten Codes mit erwarteten Ergebnissen verglichen werden. Hierzu
müssen die erwarteten Werte zum Beispiel als Textdatei zur Verfügung stehen.

Die Stimuli werden von der Testbench aus einer Datei eingelesen und an das zu über-
prüfende Design angelegt. Die erwarteten Ausgabewerte des Systems werden durch ein
sogenanntes Known-Good-Device, zum Beispiel eine Beschreibung als C-Programm,
erzeugt. Die erwartete Ausgabe wird ebenfalls von der Testbench eingelesen und mit
den Ausgabewerten des Designs verglichen. Eventuell auftretende Differenzen werden
während der Simulation in einer Protokolldatei aufgezeichnet und können anschließend
zur Fehlersuche verwendet werden. Das Prinzip der self-checking Testbench verdeutlicht
Abb. 7.8.

Eine self-checking Testbench bietet unter anderem den Vorteil, dass Simulationen
automatisiert gestartet werden können und so selbst aufwendige Tests ohne interaktiven
Eingriff möglich sind. Dies ist insbesondere für komplexe Systeme vorteilhaft, deren
Simulationszeit mehrere Stunden beträgt.

Testbench
(VHDL)

Stimuli-Datei Referenz-Datei

=?

Vergleich

Protokoll-Datei

C-Programm

Design
(VHDL)

Abb. 7.8   Struktur einer selbstcheckenden Testbench

219

7.3.4	� Synthese

Die Synthese umfasst das Einlesen und Analysieren des VHDL-Codes mit einer
anschließenden Umsetzung der beschriebenen Funktion auf die verfügbaren digitalen
Grundelemente. Das Ergebnis der Synthese ist eine sogenannte Netzliste, die Informatio-
nen über die benötigten Grundelemente und die Verbindungen zwischen den Elementen
enthält.

Die genaue Platzierung der Elemente sowie deren exakte Verdrahtung bleiben bei
diesem Schritt unberücksichtigt. Um die Verzögerungen durch die spätere Verdrahtung
bereits bei der Synthese berücksichtigen zu können, werden statistische Modelle (Wire-
load Models) eingesetzt.

Die Synthese analysiert die VHDL-Beschreibung auch im Hinblick auf konstante Sig-
nale. Wird der Wert eines Signals als konstant erkannt, kann dieses zur Optimierung aus-
genutzt werden, da die Logik, die an diesem Signal angeschlossen ist, vereinfacht oder
im besten Fall komplett entfernt werden kann. Dieser Optimierungsschritt wird als Cons-
tant Propagation bezeichnet.

Ein Beispiel für die Optimierung von Konstanten zeigt das nachfolgende Codefrag-
ment. Für den Vergleich von count und buf_size realisiert die Synthese eine optimierte
Hardware, die den Vergleich eines 4-Bit-Wertes mit der Konstanten 10 durchführt. Wäre
buf_size dagegen ein Signal, das verschiedene Werte annehmen kann, müsste ein Verglei-
cher (also letztlich eine Subtraktion) von der Synthese implementiert werden.

architecture behave of my_module is

   constant buf_size : integer := 10;
   signal   count    : signed (3 downto 0);

begin

   process begin

        wait until rising_edge (clk);

        …

        if count > buf_size then -- Hier nutzt die Synthese aus, dass

              …                  -- buf_size eine Konstante ist

        end if;

   end process;

end;

Code ohne eine digitale Funktion wird von der Synthese erkannt und ignoriert. Im
nachfolgend dargestellten Codeausschnitt wird dem Signal q auf eine etwas umständ-
liche Weise der Wert Null zugewiesen. Dieses würde das Syntheseprogramm erkennen
und das Design entsprechend optimieren. Nachdem von der Synthese q als konstant
erkannt wurde, kann diese Information auch für weitere Optimierungsschritte auf Basis
der Constant Propagation verwendet werden.

7.3  VHDL-basierter Systementwurf

220 7  Realisierung digitaler Systeme

process (a,b,c)

   variable v1 : std_logic;

   variable v2 : std_logic;

begin

 v1 := a and b;
   v2 := (not a) and (not c);
   q <= v1 and v2 and c;
end process;

7.3.5	� Platzierung und Verdrahtung

Nach dem Syntheseschritt erfolgt die Platzierung (Placement bzw. Place) und Verdrah-
tung (Routing bzw. Route) der identifizierten Grundelemente. Das Programm wählt für
jedes Grundelement der Netzliste ein physikalisch vorhandenes Element des FPGA-
Chips aus. Nach diesem Platzierungs-Schritt sind die Positionen aller Netzlistenelemente
festgelegt. Nun werden die Ein- und Ausgänge der Elemente verbunden. Dazu muss das
Routing-Programm die durch das Syntheseergebnis vorgeschriebenen Verbindungen
herstellen.

Nachdem die Verdrahtung abgeschlossen ist, kann eine genauere Abschätzung des
Zeitverhaltens erfolgen, da nun die exakten Verbindungsleitungen bekannt sind.

7.3.6	� Timinganalyse

Bereits bei der Synthese sowie während Platzierung und Verdrahtung wird das Zeitver-
halten der Schaltung überwacht und gegebenenfalls optimiert. Nach Abschluss der Ver-
drahtung steht das genaue Zeitverhalten der Schaltung fest und wird abschließend einer
Timinganalyse unterzogen.

Das wichtigste Ergebnis der Timinganalyse ist die Information ob die Timing-
Anforderungen eingehalten werden und wie groß der Worst Negative Slack (WNS) ist.
Dieser Wert gibt die „Luft“ im kritischen Pfad des Designs an. Wenn beispielsweise
ein WNS von 1 ns ausgegeben wird, bedeutet dies, dass alle Signale auch 1 ns später an
den Eingängen der Flip-Flops erscheinen könnten, ohne dass es zu einer Verletzung der
Setup-Zeit käme. Ist der WNS-Wert dagegen negativ, liegt ein Timingproblem vor. Die
Kombinatorik der Schaltung ist zu langsam. Wenn man die Taktfrequenz nicht reduzie-
ren kann, sind häufig Änderungen im VHDL-Code erforderlich (zum Beispiel der Ein-
satz von Pipelining, vgl. Kapitel 6).

Als Zusammenfassung wird auch der Total Negative Slack (TNS) angeben. Hierbei
handelt es sich um die Summe aller Pfade, deren Zeitverhalten die Setup-Zeit der Flip-
Flops verletzt. Pfade, deren Zeitverhalten nicht verletzt ist, werden bei der TNS-Analyse
nicht berücksichtigt. Somit ist der TNS-Wert entweder negativ oder Null (falls keine
Setup-Time-Verletzungen vorliegen).

http://dx.doi.org/10.1007/978-3-662-49731-9_6

221

In Analogie zur Analyse der Setup-Zeit wird auch eine Hold-Time-Analyse durchge-
führt und der WHS- bzw. THS-Wert (Worst Hold Slack bzw. Total Hold Slack) ausgeben.

Diese Form der Analyse wird als statische Timinganalyse bezeichnet. Der Begriff
„statisch“ meint, dass das Zeitverhalten ohne die genaue Kenntnis des dynamischen Ver-
haltens der Signale, also ohne das Anlegen von Eingangsstimuli, durchgeführt wird.

Normalerweise ist diese Form der Analyse ausreichend. Allerdings ist zu beachten,
dass die statische Timinganalyse pessimistisch ist. Sie überprüft alle Pfade eines Designs
auf mögliche Verletzungen des Zeitverhaltens. Manchmal werden jedoch einige Pfade
des Designs im praktischen Betrieb gar nicht verwendet. In diesem Fall kann eine dyna-
mische Timinganalyse in Betracht gezogen werden. Darüber hinaus kann es in besonde-
ren Fällen, zum Beispiel wenn das Design kritische Taktübergänge enthält, sinnvoll sein,
eine dynamische Timinganalyse durchzuführen.

Für eine dynamische Timinganalyse wird das Design inklusive einer Modellierung
der Verzögerungen der Grundelemente in einer Simulation überprüft. Hierzu müssen
geeignete Eingangsstimuli definiert werden, die alle relevanten Pfade testen. Außerdem
ist zu bedenken, dass die Komplexität der Simulation aufgrund der Modellierung des
Zeitverhaltens deutlich höher ist als für die Simulation des VHDL-Quellcodes und daher
eine größere Rechenzeit für die Simulation benötigt wird.

7.3.7	� Inbetriebnahme

Nachdem ein Entwurf durch Simulation verifiziert wurde, kann er, wenn er als ASIC rea-
lisiert werden soll, in einer Halbleiterfabrik produziert werden. Soll das System auf Basis
eines CPLDs oder eines FPGAs realisiert werden, erfolgt nach der Simulation die Pro-
grammierung des Bausteins mithilfe eines entsprechenden Programmiergerätes. Ein Bei-
spiel einer Experimentierplatine mit angeschlossenem Programmiergerät ist in Abb. 7.9
dargestellt.

Trotz sorgfältiger Simulation kann es in der Praxis Fälle geben, die eine Fehlersuche
im laufenden Betrieb erfordern. Dies kommt vor, wenn in der Anwendung Fälle auftre-
ten, die in der Simulation nicht beachtet wurden oder aus Zeitgründen nicht simuliert
werden konnten. Auch bei der Ansteuerung von externen Bauelementen, beispielsweise
einem Speicher, kann es passieren, dass sich der reale Baustein etwas anders verhält, als
dies in der Simulation vorhergesehen wurde.

Zur Fehlersuche, insbesondere bei komplexen FPGAs, ist es häufig nicht ausreichend,
wenn nur die äußeren Anschlüsse des Systems zugänglich sind und der zeitliche Verlauf
von internen Signalen nicht sichtbar ist. Um die Fehlersuche im Betrieb zu erleichtern,
können dem Entwurf spezielle Module hinzugefügt werden, die in der Lage sind, den
zeitlichen Verlauf interner Signale aufzuzeichnen und über eine Debug-Schnittstelle aus-
zugeben. Auf diese Weise können die Zustände der internen Signale ähnlich wie in einer
VHDL-Simulation visualisiert werden.

7.3  VHDL-basierter Systementwurf

222 7  Realisierung digitaler Systeme

Der Vorteil dieses Vorgehens ist es, dass auch FPGA-interne Signale im laufenden
Betrieb analysiert werden können. Auf der anderen Seite benötigt dieses Vorgehen aber
mehr Ressourcen des FPGAs. So wird zum Beispiel für die Speicherung des zeitlichen
Verlaufs der beobachteten Signale interner Speicher benötigt. Um den Hardwareaufwand
für die Verifikation im Betrieb klein zu halten, wird daher meist nur ein relativ kurzes
Zeitfenster aufgezeichnet. Darüber hinaus werden nur wenige besonders wichtige Sig-
nale für die Beobachtung im laufenden Betrieb ausgewählt. Da die Beobachtbarkeit der
Signale gegenüber einer Simulation deutlich eingeschränkt ist, stellt dieses Vorgehen kei-
nen Ersatz, sondern eine Ergänzung zur Simulation dar.

7.3.8	� Der digitale Entwurf als iterativer Prozess

Die in diesem Kapitel beschriebenen Entwurfsschritte müssen bei komplexeren Designs
unter Umständen mehrfach durchlaufen werden. Zeigt der erste Syntheselauf, dass das
angestrebte Zeitverhalten nicht eingehalten werden kann oder das geplante Ressourcen-
budget überschritten wird, kann bei kleinen Zielabweichungen versucht werden, durch
geeignete Einstellungen der Entwurfsprogramme ein besseres Ergebnis zu erzielen. Bei
größeren Abweichungen bleibt meist nur der Schritt zurück zum VHDL-Code, um zum
Beispiel den zeitlich kritischen Pfad im Design zu optimieren. Bei sehr anspruchsvol-
len Designs können diese Änderungen nun wiederum Probleme an anderen Stellen des
Codes nach sich ziehen, sodass der Designflow vom Schreiben des VHDL-Codes bis zur
Platzierung und Verdrahtung mehrfach durchlaufen werden muss.

Abb. 7.9   FPGA-Experimentierplatine mit Programmiergerät

223

Für erste Schritte im FPGA-Design wird meist kein iteratives Vorgehen benötigt: Sind
die Anforderungen an die Taktfrequenz moderat gewählt und die Anforderungen an den
maximalen Ressourcenbedarf einer Schaltung von untergeordneter Bedeutung, wird man
häufig bereits mit dem ersten Syntheseversuch ein zufriedenstellendes Ergebnis erzielen.

7.4	� Übungsaufgaben

Prüfen Sie sich selbst mit den Fragen am Kapitelende. Die Lösungen und Antworten fin-
den Sie am Ende des Buches.

Sofern nicht anders vermerkt, ist nur eine Antwort richtig.

Aufgabe 7.1
Welche Aussage ist im Hinblick auf einen Vergleich der Bausteine 74HC00 und
74AHC00 korrekt?

a)	 Beide Bausteine besitzen den gleichen Versorgungsspannungsbereich.
b)	Die logischen Funktionen der Bausteine sind identisch.
c)	 Die logische Funktion der Bausteine ist vom Hersteller abhängig.
d)	Der minimale High-Pegel an den Eingängen der Bausteine ist identisch.

Aufgabe 7.2
Was beschreibt der Begriff Fan-out?

a)	 Die Anzahl der Ausgänge eines Schaltkreises.
b)	Die Anzahl der Leitungen die an einen Ausgang angeschlossen werden dürfen.
c)	 Ein Maß für die Last, die die Ausgänge des Bausteins treiben können.
d)	Ein Maß für die Last, die ein Eingang des Bausteins darstellt.

Aufgabe 7.3
Was gilt für die unterschiedlichen Bausteine einer Familie (zum Beispiel „HC“) der
74er-Serie?

a)	 Alle Bausteine besitzen die gleiche Verzögerungszeit.
b)	Eingänge der Bausteine müssen immer mit Ausgängen der gleichen Familie verbun-

den werden.
c)	 Für alle Bausteine wird vom Hersteller eine maximale Schaltzeit unabhängig von der

Ausgangsbelastung garantiert.
d)	Alle Bausteine besitzen den gleichen Versorgungsspannungsbereich.

Aufgabe 7.4
Welche Aussage trifft auf ASICs zu? (Mehrere Antworten sind richtig)

7.4  Übungsaufgaben

224 7  Realisierung digitaler Systeme

a)	 Für den Entwurf eines ASICs werden meist Bibliotheken mit Standardzellen
verwendet.

b)	Ein ASIC-Entwurf ist sowohl für kleine als auch für große Stückzahlen sinnvoll.
c)	 Ein ASIC-Entwurf ist mit relativ hohen Fixkosten verbunden.
d)	Die digitale Funktion eines ASICs kann nicht mithilfe von VHDL beschrieben werden.

Aufgabe 7.5
Welche Aussagen treffen für den Vergleich eines Mikrocontrollers mit einem PC zu?
(Mehrere Antworten sind richtig)

a)	 Mikrocontroller besitzen im Gegensatz zu einem PC keine Ein-/
Ausgabe-Schnittstellen.

b)	Mikrocontroller sind kostengünstiger als PCs.
c)	 Typische Mikrocontroller besitzen eine geringere Rechenleistung als PCs.
d)	Typische Mikrocontroller besitzen eine geringere Speicherkapazität als PCs.

Aufgabe 7.6
Was meint der Begriff „Programmierbare Logik“?

a)	 Die Bausteine können Programme ausführen, die in Sprachen wie C oder Java
geschrieben sind.

b)	ASICs, die einen softwareprogrammierbaren Mikroprozessor beinhalten.
c)	 Die logische Funktion der Hardware des Bausteins kann durch den Anwender pro-

grammiert werden.
d)	Logische Funktionen, die mithilfe eines Programms auf einem PC simuliert werden.

Aufgabe 7.7
Welches ist typische Reihenfolge der Entwurfsschritte?

a)	 Synthese, Platzierung, Verdrahtung
b)	Platzierung, Verdrahtung, Synthese
c)	 Platzierung, Synthese, Verdrahtung
d)	Synthese, Verdrahtung, Platzierung

Aufgabe 7.8
Welche Kombinationen von Worst Negative Slack (WNS) und Total Negative Slack
(TNS) können in der Praxis auftreten? (Mehrere Antworten sind richtig)

a)	 WNS: -3 ns; TNS: -4 ns
b)	WNS: -3 ns; TNS: 0 ns
c)	 WNS: +3 ns; TNS: +5 ns
d)	WNS: 0 ns; TNS: 0 ns

225© Springer-Verlag GmbH Deutschland 2016
W. Gehrke et al., Digitaltechnik, Springer-Lehrbuch,
DOI 10.1007/978-3-662-49731-9_8

In Kapitel 3 wurden die wichtigsten Sprachelemente von VHDL vorgestellt und Sie
sind damit bereits in der Lage, digitale Schaltungen in VHDL zu entwerfen. In diesem
Kapitel werden vertiefende Aspekte der Hardwarebeschreibung mit VHDL dargestellt.
Einige dieser Sprachelemente eröffnen neue Möglichkeiten zur Beschreibung von Hard-
warekomponenten. Andere können helfen, den Code besser zu strukturieren und lesbarer
zu gestalten. Darüber hinaus werden in diesem Kapitel VHDL-Konstrukte vorgestellt,
die zur Überprüfung der von Ihnen erstellten Hardwarebeschreibungen eingesetzt wer-
den können. Nach dem Studium dieses Kapitels haben Sie die wichtigsten Aspekte der
Sprache VHDL kennengelernt und können auch komplexere Schaltungen in VHDL
realisieren.

8.1	� Weitere Datentypen

Einige wichtige Datentypen sind bereits aus Kapitel 3 bekannt. In diesem Abschnitt
werden weitere nützliche Datentypen behandelt.

8.1.1	� Natural und Real

Der Datentyp natural dient zur Darstellung natürlicher Zahlen im Bereich von 0
bis +231−1, also dem Bereich der positiven Zahlen, der sich auch mit dem Datentyp
integer darstellen lässt. Ergänzend zu den ganzzahligen Datentypen, bietet VHDL auch
die Verwendung von Gleitkommazahlen an, die mit dem Datentyp real definiert werden
können.

Im Gegensatz zum Datentyp real sind die Ganzzahl-Datentypen synthetisier-
bar. VHDL-Beschreibungen auf Basis dieser Datentypen können also in eine digitale

VHDL-Vertiefung 8

http://dx.doi.org/10.1007/978-3-662-49731-9_3
http://dx.doi.org/10.1007/978-3-662-49731-9_3

226 8  VHDL-Vertiefung

Hardware überführt werden, während die Verwendung von Gleitkommadatentypen auf
Testbenches beschränkt ist.

8.1.2	� Boolean

Wie viele Programmiersprachen unterstützt VHDL den Datentyp boolean. Diesem
Datentyp können nur die Werte true oder false zugewiesen werden. Ein Objekt dieses
Datentyps entspricht in Hardware einem einzelnen Bit. Die Bezeichnung der Werte
erfolgt jedoch nicht mit 0 oder 1. Dies wäre dagegen syntaktisch inkorrekt (da es sich bei
0 und 1 um Werte vom Typ integer handelt) und würde zu Fehlermeldungen führen.

Ein häufiger Anwendungsfall für diesen Datentyp ist die Abfrage von Bedingungen.
Werden beispielsweise zwei Werte verglichen, so ist das Ergebnis dieses Vergleichs vom
Datentyp boolean. Selbstverständlich können auch Objekte, zum Beispiel Signale, mit
diesem Datentyp angelegt werden, die dann in einer Abfrage ausgewertet werden.

8.1.3	� Time

VHDL unterstützt die Verwendung von physikalischen Datentypen. Die Werte dieses
Datentyps setzen sich aus einem Zahlenwert und einer Einheit zusammen. Der wich-
tigste physikalische Datentyp ist time. Dieser Datentyp erlaubt die Angabe von Zeiten
mit den Einheiten Femtosekunde (fs), Picosekunde (ps), Nanosekunde (ns), Mikrose-
kunde (ms), Millisekunde (msec), Sekunde (sec), Minute (min) oder Stunde (hr).

Der Datentyp time ist nicht synthesefähig, da Zeitangaben im Zuge der Synthese
ignoriert werden. Für Testbenches ist der Datentyp jedoch sehr hilfreich um das zeitli-
che Verhalten von Signalen nachzubilden. Ein Beispiel für die Verwendung des Daten-
typs time ist im nachfolgenden Codeausschnitt dargestellt. Das Signal clk wird durch
eine Not-Anweisung invertiert. Durch Angabe einer zeitlichen Verzögerung mithilfe des
Schlüsselworts after ergibt sich ein Signal, welches alle 5 Nanosekunden invertiert wird.
Auf diese Weise wird also ein digitales Taktsignal modelliert, welches eine Perioden-
dauer von 10 ns besitzt. Die Definition des Signals clk beinhaltet die initiale Zuweisung
des Wertes 0. Auf diese Weise wird sichergestellt, dass clk zu Beginn der Simulation
einen definierten Wert erhält.

signal clk : std_logic := '0';
…

clk <= not clk after 5 ns;

Auch die Definition eigener physikalischer Datentypen ist in VHDL möglich. Aller-
dings wird hiervon selten Gebrauch gemacht, sodass dieser Aspekt hier nicht weiter ver-
tieft wird.

227

8.1.4	� Std_ulogic, Std_ulogic_vector

Neben den Datentyp std_logic und std_logic_vector wird im IEEE-Paket auch der
Datentyp std_ulogic und std_ulogic_vector definiert. Es handelt sich dabei um eine
Alternative zu den Datentypen std_logic und std_logic_vector. Diese bereits vorgestell-
ten Datentypen haben eine sogenannte Auflösungsfunktion (engl. resolution function).
Die Auflösungsfunktion ist immer dann relevant, wenn einem Signal gleichzeitig zwei
Werte zugewiesen werden. Mithilfe der beim Datentyp std_logic definierten Auflö-
sungsfunktion wird für diese Fälle der sich ergebende Wert des Signals bestimmt. Wird
einem Signal beispielsweise gleichzeitig der Wert 0 und der Wert 1 zugewiesen, wäre das
Ergebnis bei Verwendung von std_logic der Wert X (unknown).

In den Datentypen std_ulogic und std_ulogic_vector steht das „u“ für unresolved und
drückt aus, dass für diesen Datentyp keine Auflösungsfunktion existiert. Werden einem
Signal gleichzeitig zwei Werte zugewiesen, würden die Entwurfswerkzeuge bereits
beim Übersetzungsvorgang der VHDL-Beschreibung einen Fehler ausgeben. Es ist eine
individuelle Entscheidung, ob diese Eigenschaft als ein Vorteil angesehen wird. In der
Praxis werden die meisten VHDL-Beschreibungen auf Basis des Datentyps std_logic
geschrieben. Daher wird in diesem Buch auf die Verwendung des Datentyps std_ulogic
verzichtet.

8.1.5	� Benutzerdefinierte Datentypen

Mithilfe des Schlüsselwortes Type können in VHDL auch benutzerdefinierte Datentypen,
zum Beispiel für die Codierung der Zustände eines endlichen Automaten (vgl. Kapitel 5)
angelegt werden.

Die Definition des benutzerdefinierten Typs Farbe kann zum Beispiel wie folgt for-
muliert werden:

type farbe is (rot,gruen,blau,lila);

8.1.6	� Zeichen und Zeichenketten

Für einzelne Zeichen bietet der VHDL-Standard den Datentyp character an. Dieser
Datentyp ist ein Aufzählungstyp, der insgesamt 256 Werte umfasst, wobei die ersten 128
Werte dem 7-Bit-ASCII-Code (vgl. Kapitel 2) entsprechen und die letzten 128 Werte
Umlaute und Sonderzeichen enthalten. Da die Definition des Datentyps im Paket std
erfolgt, kann der Datentyp ohne Use-Anweisung in allen VHDL-Beschreibungen einge-
setzt werden. Die Typdefinition zeigt der folgende Codeausschnitt:

8.1  Weitere Datentypen

http://dx.doi.org/10.1007/978-3-662-49731-9_5
http://dx.doi.org/10.1007/978-3-662-49731-9_2

228 8  VHDL-Vertiefung

type character is (

NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,

BS, HT, LF, VT, FF, CR, SO, SI,

DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,

CAN, EM, SUB, ESC, FSP, GSP, RSP, USP,

' ', '!', '"', '#', '$', '%', '&', ''',

'(', ')', '*', '+', ',', '-', '.', '/',
'0', '1', '2', '3', '4', '5', '6', '7',

'8', '9', ':', ';', '<', '=', '>', '?',
'@', 'A', 'B', 'C', 'D', 'E', 'F', 'G',

'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O',

'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',

'X', 'Y', 'Z', '[', '\', ']', '^', '_',

'`', 'a', 'b', 'c', 'd', 'e', 'f', 'g',

'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o',

'p', 'q', 'r', 's', 't', 'u', 'v', 'w',

'x', 'y', 'z', '{', '|', '}', '~', DEL,

-- weitere 128 Werte

);

Ähnlich wie für den Datentyp std_logic existiert ein zugehöriger vektorieller Daten-
typ mit dem Namen string, in dem Zeichenketten abgelegt werden können. Der folgende
Code zeigt einige Beispiele zur Verwendung der Datentypen.

signal i : integer;

signal my_char : character;

signal my_string : string(1 to 10) := "Hallo Welt";
my_string(7 to 10) <= "VHDL";   -- my_string enthàlt danach "Hallo VHDL"
my_string(6) <= '_';            -- my_string enthàlt danach "Hallo_Welt"
my_char <= my_string(1);        -- my_char enthàlt danach 'H'

8.1.7	� Subtypes

Man kann von deklarierten Typen weitere Typen (subtype) ableiten. Ein Subtype ist ein
Datentyp mit eingeschränktem Wertebereich im Vergleich zum Basistyp. Die Syntax zur
Definition eines Subtypes lautet:

subtype <subtype_name> is <subtype_indication>;

Die subtype_indication enthält den Namen des Basisdatentyps und optional eine Ein-
schränkung, welcher Bereich des Basisdatentyps dem neu definierten Subtype zur Verfü-
gung stehen soll.

229

-- Subtype Beispiele:

subtype dezimal_ziffer is integer range 0 to 9; -- Bereichseinschrànkung

subtype byte is std_logic_vector (7 downto 0); -- Indexeinschrànkung

subtype ganze_zahl is integer; -- ganze_zahl = anderer Name fùr Integer

-- Beispiele fùr vordefinierte Subtypes:

subtype natural is integer range 0 to integer'high;

subtype positive is integer range 1 to integer'high;

subtype std_logic is resolved std_ulogic;

subtype X01 is resolved std_ulogic range 'X' to '1'; -- ('X','0','1')

Die Angabe resolved bedeutet, dass für den hier definierten Datentyp eine Auflö-
sungsfunktion definiert ist.

Bei der Definition der Subtypes natural und positive wird das Attribut high verwen-
det. Mithilfe dieses Attributs wird der größte Zahlenwert des Typs integer ausgewählt.
Der Ausdruck integerʼhigh ist also gleichbedeutend mit +2147483647.

8.1.8	� Arrays

Wie alle Programmiersprachen unterstützt auch VHDL Arrays, also Felder von beliebi-
gen Datentypen. Die Definition eines Arrays ist in VHDL etwas umständlicher gelöst als
in den meisten Programmiersprachen, da man zunächst das gewünschte Array als neuen
Datentyp definieren muss. Erst anschließend darf dieser neue Datentyp für die Definition
von Signalen oder Variablen verwendet werden. Die Typdefinition eines Arraydatentyps
sieht wie folgt aus:

type <type_name> is array (range) of <element_data_type>;

Nehmen wir an, Sie möchten ein Array aus 10 Integer-Werten anlegen. Dann sehen
die Typdefinition und die Definition eines entsprechenden Array-Signals zum Beispiel so
aus:

type my_int_array_type is array (1 to 10) of integer; -- neuer Typ

signal my_ints : my_int_array_type; -- Signal auf Basis des neuen Typen

Ein Zugriff auf das Array erfolgt dann genauso wie beim Zugriff auf einzelne Ele-
mente eines Signals vom Typ std_logic_vector (denn der Datentyp std_logic_vector ist
auch ein Array-Datentyp):

my_ints(6) <= 24;

Selbstverständlich kann man auch mehrdimensionale Arrays anlegen, wenn man die
Typdefinitionen verschachtelt:

8.1  Weitere Datentypen

230 8  VHDL-Vertiefung

type my_int_array_type_1D is array (1 to 20) of integer;

type my_int_array_type_2D is array (1 to 10) of my_int_array_type_1D;

signal my_2D_ints : my_int_array_type_2D;

…

my_2D_ints(7)(5) <= 12; -- zweidimensionaler Arrayzugriff

Arrays werden häufig benötigt, um Speicher zu modellieren. Sie wollen zum Beispiel
einen Speicher der Größe 1 kByte modellieren. Dies erreichen Sie mit folgendem Code:

type my_mem_type is array (0 to 1023) of std_logic_vector (7 downto 0);

signal mem : my_mem_type;

8.1.9	� Records

VHDL unterstützt Records, also das Zusammenfassen mehrerer Werte in einem neuen
Datentyp. Dies ist mit Structs vergleichbar, die Sie vielleicht aus einer Programmierspra-
che bereits kennen. Die allgemeine Form einer Record-Definition sieht wie folgt aus:

type <record_type_name> is

   element_name : element_typ;

   {element_name : element_typ;} -- Ggf. beliebig viele weitere Elemente

end record [record_type_name];      -- record_type_name ist optional

Die Definition und Verwendung von Records wird durch die nachfolgenden Beispiele
verdeutlicht:

type bus_mosi is

   addr : std_logic_vector(31 downto 0);

   data : std_logic_vector(31 downto 0);

   rd   : std_logic;

   wr   : std_logic;

end record;

type bus_miso is

   data  : std_logic_vector(31 downto 0);

   ready : std_logic;

end record;

Wenn Sie Records angelegt haben, dürfen Sie den Datentyp wie jeden anderen Daten-
typ verwenden. Sehr praktisch kann es sein, Records für die Ports eines Moduls einzu-
setzen: Wenn viele Signale gemeinsam zu verdrahten sind (zum Beispiel Bussignale, die
von einem Master an mehrere Slaves anzuschließen sind), können Records die Lesbar-
keit des Codes verbessern.

231

Der Zugriff auf die Elemente eines Records erfolgt über selected names, den
„Punkt-Operator“:

signal bus_out : bus_mosi;

signal bus_in : bus_miso;

… -- weiterer VHDL-Code

bus_out.addr <= x"1234_5678"; -- Zugriff auf die Elemente des Records
bus_out.rd   <= '1';
bus_out.wr   <= '0';
…

data_in <= bus_in.data;

8.2	� Sprachelemente zur Code-Strukturierung

VHDL unterstützt den Entwicklungsprozess mit einigen nützlichen Sprachelementen
bei der Strukturierung des Codes. Einige der Konstrukte sind in ähnlicher Form auch in
Software-Programmiersprachen vorhanden.

8.2.1	� Function

Eine VHDL-Funktion (Schlüsselwort: function) dient dazu, aus einem oder mehreren
Übergabeparametern einen Rückgabewert zu berechnen. Wichtige Eigenschaften von
Funktionen sind:

•	 Funktionen haben immer exakt einen Rückgabewert. Die Rückgabe erfolgt mithilfe
des Schlüsselwortes return.

•	 Die Parameter dürfen innerhalb der Funktion nur gelesen werden. Schreibzugriffe
sind nicht erlaubt.

•	 Innerhalb von Funktionen können lokale Variablen oder Konstanten definiert werden.
Die Variablen werden mit jedem Funktionsaufruf neu initialisiert. Mit anderen Wor-
ten: Wird einer Variablen ein Wert zugewiesen, steht dieser beim nächsten Aufruf der
Funktion nicht mehr zur Verfügung.

•	 Funktionen dürfen keine Wait-Anweisungen enthalten.
•	 Funktionen dürfen keine Signalzuweisungen enthalten.
•	 Funktionen dürfen sowohl Funktionen als auch Prozeduren (s. u.) aufrufen. Auch

rekursive Aufrufe (eine Funktion ruft sich selbst auf) sind erlaubt.

Die syntaktische Struktur einer VHDL-Funktion stellt der nachfolgende Code dar.

8.2  Sprachelemente zur Code-Strukturierung

232 8  VHDL-Vertiefung

function <Funktionsname> ({<Parameterliste>}) return <Typ_Rùckgabe-

wert> is

   <Deklarationen>

begin

   <Anweisungen>

end function;

Funktionen dürfen im Deklarationsteil einer Architecture (also vor dem begin) oder in
Paketen definiert werden.

Als ein Beispiel ist im Folgenden eine VHDL-Funktion zur Umwandlung vom Gray-
Code in eine Dualzahl dargestellt.

Die Funktionsdefinition verwendet den Datentyp std_logic_vector ohne die Länge des
Vektors zu spezifizieren. Auf diese Weise können durch die Funktion Vektoren mit einer
beliebigen Länge verarbeitet werden. Allerdings wird für die Implementierung der Funk-
tion die Länge des jeweils bei Aufruf der Funktion übergebenen Vektors benötigt. Diese
lässt sich sehr elegant mithilfe des length-Attributs des Vektors bestimmen. Die Schreib-
weise gray_val’length liefert die Länge (Anzahl der Elemente) des Vektors gray_val und
wird zu Beginn der Funktion genutzt.

-- Definition der Funktion Gray2Bin

function Gray2Bin (gray_val : std_logic_vector) return std_logic_vector

is

   constant vlen  : integer := gray_val'length;

   variable temp : std_logic_vector(vlen-1 downto 0);

begin

   temp := gray_val;
   if vlen > 1 then

        for i in vlen-2 downto 0 loop

            temp(i) := gray_val(i) xor temp(i+1);
        end loop;

   end if;

   return temp(vlen-1 downto 0);

end function;

-- Beispiel fùr den Aufruf der Funktion Gray2Bin

     …

     bin <= Gray2Bin(gray);
     …

8.2.2	� Procedure

VHDL-Prozeduren können ebenso wie Funktionen im Deklarationsteil einer Architec-
ture oder in Paketen definiert werden.

233

Im Gegensatz zu Funktionen können Prozeduren mehrere Rückgabewerte besitzen.
Die Rückgabe der Ergebnisse einer Prozedur erfolgt durch Modifikation der Werte der
übergebenen Parameter und es ist daher erlaubt, auf die übergebenen Parameter schrei-
bend zuzugreifen. Um festzulegen, ob ein Parameter nur gelesen, nur beschrieben oder
sowohl gelesen als auch beschrieben werden darf, wird mit den Parametern eines der
Schlüsselwörter in, out oder inout angegeben.

Als Parameter können Variablen, Signale oder Konstanten verwendet werden. Bei der
Definition einer Prozedur muss festgelegt werden, welcher der drei Parameterklassen
von der Prozedur erwartet wird.

Ein weiterer Unterschied zu Funktionen ist, dass innerhalb einer Prozedur Zuweisun-
gen an Signale erlaubt sind, wenn die Prozedur innerhalb eines Prozesses definiert wird.

Darüber hinaus dürfen Wait-Anweisungen in Prozeduren verwendet werden. Aller-
dings sind diese Prozeduren dann nicht mehr synthetisierbar und der Einsatz solcher Pro-
zeduren bleibt auf Testbenches beschränkt.

Der grundlegende Aufbau einer VHDL-Prozedur ist einer Funktion recht ähnlich:

procedure <Prozedurname> (<Parameterliste>) is

   <Deklarationen>

begin

   <Anweisungen>

end procedure;

Ein Beispiel für eine VHDL-Prozedur zeigt der nachfolgende Code, der eine Sortie-
rung von drei Signalen implementiert.

-- Prozedur sort_u3

-- Sortiert 3 Werte vom Datentyp unsigned

procedure sort_u3 (signal val1 : in  unsigned;

                   signal val2 : in  unsigned;

                   signal val3 : in  unsigned;

                   signal min  : out unsigned;

                   signal med  : out unsigned;

                   signal max  : out unsigned) is

   variable min_v : unsigned(min'length-1 downto 0);

   variable med_v : unsigned(med'length-1 downto 0);

   variable max_v : unsigned(max'length-1 downto 0);

   variable tmp_v : unsigned(min'length-1 downto 0);

begin

   max_v := val1;
   med_v := val2;
   min_v := val3;

8.2  Sprachelemente zur Code-Strukturierung

234 8  VHDL-Vertiefung

   if min_v >= med_v then -- min/med tauschen?
      tmp_v := med_v;
      med_v := min_v;
      min_v := tmp_v;
   end if;

   if med_v >= max_v then -- max/med tauschen?
      tmp_v := max_v;
      max_v := med_v;
      med_v := tmp_v;
   end if;

   if min_v >= med_v then -- und noch einmal ggf. min/med tauschen
      tmp_v := med_v;
      med_v := min_v;
      min_v := tmp_v;
   end if;

   min <= min_v;
   med <= med_v;
   max <= max_v;
end procedure;

-- Beispiel fùr den Aufruf der Procedure

…

sort_u3 (sig_1,sig_2,sig_3,sig_min,sig_med,sig_max);

-- alle sechs Signale mùssen vom Typ unsigned sein

-- und die gleiche Wortbreite besitzen

…

8.2.3	� Entity-Deklaration mit Generics

Stellen Sie sich vor, Sie möchten eine logische Funktion in VHDL realisieren, die
Signale vom Typ std_logic_vector verknüpft. Da es sich um eine grundlegende Funktion
handelt, die Sie häufig benötigen, muss Sie für Vektoren mit unterschiedlicher Wortbreite
zur Verfügung stehen.

Natürlich kann man für jede benötigte Wortbreite ein eigenes Entity-Architecture-
Paar realisieren. Allerdings kann dies sehr aufwendig werden, wenn viele unterschiedli-
che Wortbreiten benötigt werden. Es wäre eleganter, wenn man der Instanz des Moduls
„irgendwie“ die benötigte Wortbreite als Parameter mitteilen könnte. Wenn dieser Para-
meter in der Entity und der Architecture des instanziierten Moduls entsprechend berück-
sichtigt werden würde, kann die Erstellung eines einzelnen Entity-Architecture-Paares
ausreichend sein.

235

Um einem Modul während der Instanziierung Parameterwerte übergeben zu kön-
nen, muss die Entity des Moduls neben einer Port-Liste eine auch eine Parameter-Liste
(Schlüsselwort Generic) enthalten.

Diese Parameter (Generics) können dann in symbolischer Form bei der Beschreibung
des Moduls verwendet werden. Erst mit der Instanziierung des Moduls werden die (für
diese Instanz) zu verwendenden Werte der Parameter festgelegt.

In der Praxis werden Generics häufig mit dem Datentyp integer oder natural definiert.
Aber auch alle anderen VHDL-Datentypen sind zulässig und können für bei der Defini-
tion eines Generics eingesetzt werden.

Ein Beispiel soll die Vorgehensweise verdeutlichen: Angenommen Sie möchten ein
Modul erstellen, das ein Signal um eine bestimmte Anzahl von Taktzyklen verzögern soll.
Dieses Modul soll möglichst flexibel sein und für beliebige Wortbreiten oder Verzögerun-
gen einsetzbar sein. Das Modul kann mithilfe von Generics wie folgt realisiert werden:

library ieee;

use ieee.std_logic_1164.all;

entity delay_unit is

   generic (D   : natural := 3;  -- Anzahl der Verzògerungszyklen (D>0 !)
            N   : natural := 8); -- Breite der verzògerten Werte (N>0 !)
   port (clk    : in  std_logic;

         d_in   : in  std_logic_vector(N-1 downto 0);

         d_out  : out std_logic_vector(N-1 downto 0));

end;

architecture behave of delay_unit is

     -- Hier legen wir ein Array mit D Eintràgen an

     -- Jeder Eintrag nimmt N Bits auf

     --

     -- Durch die Synthese wird eine Kette von D Registern (also D-FFs)

     -- mit der Wortbreite N implementiert

   type d_arr_type is array (0 to D-1) of std_logic_vector(N-1 downto

0);

   signal d_array : d_arr_type;

begin

   process begin

      wait until rising_edge(clk);

      for i in 0 to (D-2) loop -- Werte in der FF-Kette verschieben

           d_array(i) <= d_array(i+1);
      end loop;

      d_array(D-1) <= d_in; -- Eingangswert an oberster Position
      -- der FF-Kette abspeichern

   end process;

   d_out <= d_array(0); -- àltesten Wert ausgeben
end;

8.2  Sprachelemente zur Code-Strukturierung

236 8  VHDL-Vertiefung

Bei der Instanziierung des Moduls erfolgt nun neben der Portzuordnung (port map)
auch die Zuordnung der verwendeten Generics (generic map). Ist bei der Deklaration des
Parameters in der Entity ein Default-Wert angegeben worden, kann die Parameterzuord-
nung auch entfallen. In diesem Fall wird für diese Instanz der angegebene Default-Wert
verwendet.

Die Werte, die den Generics bei der Instanziierung zugeordnet werden, müssen zur
Übersetzungszeit des bekannt VHDL-Codes berechenbar sein. Werte, die sich erst wäh-
rend der Simulation ergeben, sind nicht erlaubt. So ist es beispielsweise nicht möglich,
einem Generic ein Signal zuzuweisen.

Der folgende Code zeigt die Instanziierung des oben beschriebenen Moduls.

…

-- Verwendung der Default-Werte fùr die Parameter D und N,

-- also D=3 und N=8
u0 : delay_unit port map (clk => clk, d_in => x_sv8, d_out => q_sv8);

-- Ùberschreiben der Default-Werte: D=5, N=32
-- Die Ein- und Ausgànge dieser Instanz haben die Wortbreite 4

u1 : delay_unit

   generic map (D=> 5, N => 32)
   port map (clk => clk, d_in => x_sv32, d_out => q_sv32);
…

8.2.4	� Generate-Anweisung

In manchen Fällen lassen sich Parameter sehr elegant in einer Generate-Anweisung
verwenden. Die Generate-Anweisung existiert in den beiden Varianten if-generate und
for-generate und dient der bedingten beziehungsweise wiederholten Ausführung neben-
läufiger Anweisungen wie Signalzuweisungen, Prozesse oder Instanziierungen.

Die allgemeine Schreibweise der beiden Generate-Anweisungen lautet

<Name>: if <Bedingung> generate

   <Nebenlàufige Anweisungen>

end generate;

<Name>: for <Laufindex> in <Bereich> generate

   <Nebenlàufige Anweisungen>

end generate;

Mithilfe der If-Generate-Anweisung können nebenläufige Anweisungen mit einer
Bedingung versehen werden. Nur wenn die Bedingung erfüllt ist, ist dieser Code aktiv.
Auf diese Weise können zum Beispiel Instanziierungen oder Prozesse in Abhängigkeit
von Generics aktiviert werden.

237

Betrachten wir hierzu das Beispiel des Moduls delay_unit aus dem vorangegangenen
Abschnitt. Das Modul kann nur eingesetzt werden, wenn die Verzögerung mindestens einen
Taktzyklus beträgt, also D > 1 gilt. Würde D zu 0 gewählt werden, würde die Zuweisung

d_array(D-1) <= d_in;

auf d_array(−1) zugreifen. Dieser Feldindex existiert jedoch nicht, da der kleinste
mögliche Index 0 ist. Eine Fehlermeldung wäre die Folge.

Möchte man auch die Auswahl D = 0 (also keine Verzögerung des Signals) ermög-
lichen, kann dies mithilfe der If-Generate-Anweisung realisiert werden. Da bei der If-
Generate-Anweisung kein else unterstützt wird, werden zwei If-Generate-Anweisungen
benötigt. Der VHDL-Code kann wie folgt aussehen:

entity my_module is

   generic (delay_count : natural := 1);
   port (clk : in std_logic;

          -- weitere Ports

         );

end;

architecture behave of my_module is

   signal q_sv32, x_sv32 : std_logic_vector (31 downto 0);

begin

-- Prozesse und nebenlàufige Zuweisungen dieses Moduls

GEN_D0: if delay_count = 0 generate -- Ein Label muss sein
        -- delay_count = 0, also direkte Zuweisung
        q_sv32 <= x_sv32;
   end generate;

GEN_D1: if delay_count > 0 generate

   -- delay_count > 0, also das Modul einbauen

   -- fùr die Wortbreite N wird der Defaultwert (32)

   -- aus der Entity-Definition der Delay_Unit genutzt

   u1 : delay_unit

         generic map (D => delay_count)
         port map (clk => clk, d_in => x_sv32, d_out => q_sv32);
   end generate;

end;

Die For-Generate-Anweisung wird für eine wiederholte Ausführung nebenläufiger
Zuweisungen oder Modul-Instanziierungen eingesetzt. Der Einsatz dieser Anweisung wird
im Folgenden anhand eines sehr einfachen Beispiels verdeutlicht. Nehmen wir an, Sie
haben ein AND2-Modul, also ein UND-Gatter mit zwei Eingängen realisiert und möch-
ten dieses für die VHDL-Beschreibung eines UND-Gatters mit N Eingängen verwenden.

8.2  Sprachelemente zur Code-Strukturierung

238 8  VHDL-Vertiefung

Eine mögliche Lösung mithilfe der For-Generate-Anweisung kann dann wie folgt formu-
liert werden:

architecture for_gen_arch of and_n is

begin

   AND2GEN: for i in 0 to N-1 generate

        ui : and_2 port map (a => a(i), b => b(i), q => q(i));
   end generate;

end;

Beide Formen der Generate-Anweisung sollten nicht mit ähnlichen Sprachkon-
strukten für Prozesse verwechselt werden. Die If- und For-Anweisungen in Prozessen
beinhalten sequenziell ausgeführten Code, der Teil eines Prozesses ist. Die Generate-
Anweisung bezieht sich dagegen immer auf nebenläufigen Code, beispielsweise Signal-
zuweisungen, Prozesse oder Instanziierungen.

Insbesondere müssen die Bereichsgrenzen der For-Generate-Anweisung beziehungs-
weise die Bedingung der If-Generate-Anweisung zum Zeitpunkt der Übersetzung des
Moduls berechenbar sein. Der Grund hierfür ist, dass aus dem VHDL-Code Hardware
generiert wird und daher bekannt sein muss, wie viele und welche Schaltungselemente
erzeugt werden sollen. Es wäre beispielsweise nicht möglich, in einer If-Generate-Bedin-
gung den Wert eines Signals abzufragen. Da sich der Wert des Signals erst während der
Simulation oder während des Betriebs der Hardware ergibt, ist die Bedingung zum Über-
setzungszeitpunkt des Moduls nicht auflösbar und würde Fehlermeldungen bei der Über-
setzung des VHDL-Codes zur Folge haben.

8.2.5	� Attribute

Mit Attributen lassen sich Eigenschaften von Objekten und Typen abfragen. VHDL-
Beschreibungen können hiermit teilweise kürzer oder eleganter realisiert werden. Der
Wert eines Attributs kann in einem VHDL-Modell weiter verwendet werden. Attribute
lassen sich auf viele Datentypen anwenden, beispielsweise lässt sich die Anzahl der Ele-
mente in einem Vektor bestimmen. Die generelle Syntax für Verwendung von Attributen
lautet:

<typ_name>'<attribut_bezeichner>

Die Werte der Attribute unterscheiden sich von den Datenobjektwerten. VHDL unter-
scheidet vordefinierte und benutzerdefinierte Attribute. Die wichtigsten vordefinierte
Attribute sind: ʼleft, ʼright, ʼhigh, ʼlow, ʼlength, ʼpos, ʼval und ʼrange.

Der folgende Code zeigt einige Beispiele zur Verwendung von Attributen:

239

process

   type farben_typ is (rot, gruen, blau, gelb, lila);

   variable farbe : farben_typ;

   variable i     : integer;

   variable c     : character := 'A';
   variable slv   : std_logic_vector (7 downto 0);

begin

   farbe := farben_typ'left;   -- liefert: rot
   farbe := farben_typ'right;  -- liefert: lila
   i := slv'low;               -- liefert: 0 (kleinster Indexwert)
   i := slv'high;              -- liefert: 7 (hòchster Indexwert)
   i := slv'length;            -- liefert: 8 (Lànge des Vektors)
   i := character'pos(c);      -- liefert: 65 (= ASCII-Wert von 'A')
   c := character'val(65);         -- liefert: 'A'(= Zeichen an Position 65)
   wait;

end process;

In manchen VHDL-Beschreibungen findet sich das Attribut ʼevent in Verbindung mit
Signalen. Falls innerhalb eines VHDL-Modells eine Flanke des Signals clk eine Aktion
bewirken soll, so lässt sich diese Flanke auch durch die Bedingung if clkʼevent and
clk = ‘1’ then abfragen.

Die folgenden Schreibweisen beschreiben beispielsweise ein D-Flip-Flop:

-- D-FF mit der IEEE-Funktion rising_edge()

process begin

   wait until rising_edge(clk);

   q <= d;
end process;

-- D-FFs mit Abfrage des Attributs 'event

-- Diese Schreibweise ist nicht empfehlenswert

process begin

   -- Prozess unterbrechen bis ein Ereignis (Zuweisung eines neuen

   -- Wertes) auf dem Signal clk stattgefunden hat UND das Signal

   -- den Wert 1 angenommen hat

   wait until clk'event and clk='1';
   q <= d;
end process;

In manchen VHDL-Beschreibungen ist die Schreibweise clkʼevent and clk = ‘1’zu
finden. Allerdings deckt diese Schreibweise alle Signalwechsel ab, bei denen das abge-
fragte Signal clk von einem Wert ungleich ‘1’ auf ‘1’ wechselt und sollte daher nicht
verwendet werden.

8.2  Sprachelemente zur Code-Strukturierung

240 8  VHDL-Vertiefung

So würde beispielsweise ein Wechsel von ‘H’ zu ‘1’ in der Simulation als steigende
Flanke interpretiert. Dies ist jedoch inkorrekt, da ‘H’ eine „schwache Eins“ und ‘1’ eine
„starke 1“ darstellt. Der Wechsel von ‘H’ zu ‘1’ stellt also keine steigende Flanke dar.
Demgegenüber würde beispielsweise ein Wechsel von ‘0’ zu ‘H’ welcher eine steigende
Flanke darstellt, nicht als solche erkannt werden.

Die falsch interpretierten Signalwechsel wirken sich nur in der Simulation aus. Die syn-
thetisierte Hardware, die ja nur Nullen und Einsen kennt, würde sich dagegen korrekt –
und damit anders als die Simulation – verhalten.

Für die Erkennung einer Taktflanke wird darum die Verwendung der Funktion rising_
edge() (beziehungsweise falling_edge() für fallende Signalflanken) empfohlen, die expli-
ziter und damit besser lesbar ist.

8.2.6	� Instanziierung mit der Component-Anweisung

In Kapitel 3 wurde die Instanziierung von Modulen durch Angabe der Bibliothek und der
Entity bereits vorgestellt. Im Folgenden wird eine alternative Vorgehensweise zur Ins-
tanziierung von Modulen beschrieben, die ebenfalls sehr häufig angewendet wird. Daher
wird Ihnen diese Variante dann begegnen, wenn Sie beispielsweise VHDL-Code aus
Internet-Quellen verwenden möchten.

Angenommen Sie haben ein Modul beschrieben und möchten dieses in einem ande-
ren Modul verwenden. Als Beispiel verwenden wir ein einfaches UND-Modul mit zwei
Eingängen. Die Entity des Grundmoduls kann wie folgt aussehen:

entity and_2 is

port (a : in  std_logic;

      b : in  std_logic;

      q : out std_logic);

end;

In der alternativen Beschreibung ohne Angabe der VHDL-Bibliothek wird eine Com-
ponent-Anweisung verwendet. Diese Anweisung macht das zu instanziierende Modul in
der Architecture bekannt und anschließend kann das Modul beliebig oft in der VHDL-
Architecture verwendet werden.

Die Component-Anweisung beschreibt im Wesentlichen die Anschlüsse des zu instan-
ziierenden Moduls und ist der Entity-Deklaration des Moduls sehr ähnlich: Im Gegen-
satz zur Entity-Deklaration wird statt des Schlüsselwortes entity das Schlüsselwort
component verwendet.

Die Component-Anweisung des UND-Gatters würde wie folgt aussehen:

component and_2 is

port (a : in  std_logic;

http://dx.doi.org/10.1007/978-3-662-49731-9_3

241

      b : in  std_logic;   -- Sieht fast wie die Entity aus…

      q : out std_logic  ) -- Aber: Nach der Klammer kein Semikolon

end component;

Die Instanziierung des damit bekannt gemachten Moduls beginnt (wie bei der bereits
bekannten Entity-Instanziierung) mit einem eindeutigen Namen für diese Instanz. Nach
einem Doppelpunkt wird die Komponente (in diesem Beispiel and_2) angeben. Darauf folgt
die Zuordnung der Anschlüsse, die mit den Schlüsselwörtern port map eingeleitet wird.

Für das Beispiel eines Vierfach-UND-Moduls, welches UND-Gatter instanziiert, kön-
nen Entity und Architecture wie folgt beschrieben werden:

library ieee;

use ieee.std_logic_1164.all;

entity and_4x2 is

   port (a : in  std_logic_vector (3 downto 0);

         b : in  std_logic_vector (3 downto 0);

         q : out std_logic_vector (3 downto 0));

end;

architecture behave of and_4x2 is

   component and_2 is

        port (a : in  std_logic;

              b : in  std_logic;

              q : out std_logic);

   end component;

begin

     u0 : and_2 port map (a => a(0), b => b(0), q => q(0));
     u1 : and_2 port map (a => a(1), b => b(1), q => q(1));
     u2 : and_2 port map (a => a(2), b => b(2), q => q(2));
     u3 : and_2 port map (a => a(3), b => b(3), q => q(3));
end;

Die in Kapitel 3 eingeführte Entity-Instanziierung und Instanziierung mit der Component-
Anweisung sind gleichwertig und letztlich eine Frage des bevorzugten „Coding-Styles“.
Dennoch sollte man die Varianten kennen, da beide in der Praxis verwendet werden.

8.2.7	� Pakete

Einige häufig verwendete Bibliotheken und die darin enthaltenen Pakete (Packages) wur-
den in den vorangegangenen Abschnitten bereits verwendet. Pakete sind immer dann

8.2  Sprachelemente zur Code-Strukturierung

http://dx.doi.org/10.1007/978-3-662-49731-9_3

242 8  VHDL-Vertiefung

sinnvoll, wenn grundlegende Funktionen oder Datentypen in mehreren VHDL-Dateien
verwendet werden sollen.

In einem Paket können unterschiedliche VHDL-Elemente abgelegt sein. Dies sind in
der Praxis neben selbst definierten Datentypen, Funktionen oder Prozeduren häufig auch
Component-Anweisungen. Wird beispielsweise ein Paket, das Component-Anweisungen
enthält, in einer VHDL Beschreibung durch geeignete Library- und Use-Anweisungen
bekannt gemacht, können die hierin enthaltenen Component-Anweisungen im nachfol-
genden Code entfallen. Der Code wird dadurch kürzer und übersichtlicher.

Pakete werden in einen Header- und einen Body-Teil aufgespalten. Der Header ent-
hält die „von außen“ sichtbaren Deklarationen, zum Beispiel welche Aufrufparameter
eine Prozedur besitzt. Der Package-Body legt die Implementierung der im Header dekla-
rierten Elemente fest.

Der Package-Header wird mit dem Schlüsselwort package eingeleitet, während ein
Package-Body durch package body gekennzeichnet wird:

package <Paketname> is

   <Typdefinitionen>

   <Definition oder Deklaration von Konstanten>

   <Signaldefinitionen>

   <Deklaration von Funktionen und Prozeduren>

   <Component-Anweisungen>

end package;

package body <Paketname> is

   <Definition von Konstanten, falls im Header nur deklariert>

   <Definitionen von Funktionen und Prozeduren>

end package body;

Als ein Beispiel für die Anwendung von Paketen zeigt der nachfolgende Code ein
Paket, das Funktionen zur Umwandlung des Gray-Codes in Dualzahlen und umgekehrt
enthält.

library ieee;

use ieee.std_logic_1164.all;

-- Package Header

package gray_pkg is

   -- Funktionsdeklarationen --

   function gray2bin (gray_val : std_logic_vector)

        return std_logic_vector;

243

   function bin2gray (bin_val : std_logic_vector)

        return std_logic_vector;

end package;

-- Package Body

package body gray_pkg is

   -- Implementierung: Gray2Bin --

   function gray2bin (gray_val : std_logic_vector)

        return std_logic_vector is

        constant vlen : integer := gray_val''length;
        variable temp : std_logic_vector(vlen-1 downto 0);

   begin

        temp := gray_val;
        if vlen > 1 then

            for i in vlen-2 downto 0 loop

                 temp(i) := gray_val(i) xor temp(i+1);
            end loop;

        end if;

        return temp(vlen-1 downto 0);

   end function;

   -- Implementierung: Bin2Gray --

   function bin2gray (bin_val : std_logic_vector)

        return std_logic_vector is

        constant vlen : integer := bin_val'length;
   begin

        return ('0' & bin_val(vlen-1 downto 1)) xor bin_val;

   end function;

end package body;

8.2.8	� Einbindung von Spezialkomponenten

Für FPGAs und ASICs sind Spezialkomponenten wie Multiplizierer, Speicher oder
Elemente zur Taktaufbereitung verfügbar. Doch wie können diese Elemente in einem
VHDL-basierten Design eingesetzt werden? Hierzu werden zwei Ansätze unterschie-
den: Die Instanziierung und die Inferenz (engl. instantiation beziehungsweise inference).
Beide Ansätze werden im Folgenden näher erläutert.

8.2  Sprachelemente zur Code-Strukturierung

244 8  VHDL-Vertiefung

Instanziierung beim FPGA-Entwurf
Bei der Instanziierung wird ein bestimmtes Modul, zum Beispiel ein Multiplizierer,
explizit als eine Komponente aufgerufen. Damit wird dem Synthesetool vorgeschrieben
dieses konkret benannte Modul zu verwenden.

Für die Instanziierung stellen die FPGA-Hersteller spezielle VHDL-Bibliotheken
zur Verfügung, in denen alle Grundelemente hinterlegt sind. Man kann also auf die ver-
fügbaren Hardwarekomponenten explizit zugreifen. Theoretisch könnten auch einzelne
Logikzellen ausgewählt und durch den Designer verdrahtet werden. Da man hiermit aber
die Intelligenz der Synthesetools nicht nutzen würde, wird von dieser Möglichkeit in der
Praxis kein Gebrauch gemacht. Die Instanziierung wird im Allgemeinen nur dort einge-
setzt, wo dies unumgänglich ist, weil die gewünschten Elemente nicht automatisch durch
die Synthese ausgewählt werden können. Ein Beispiel hierfür sind PLLs zur Taktaufbe-
reitung. Für diese Elemente existiert keine Entsprechung in VHDL und daher müssen sie
per Instanziierung ausgewählt werden.

Die Parameter der jeweiligen Instanz werden im VHDL-Code durch Übergabe von
Generics festgelegt. Da dies in einigen Fällen etwas umständlich ist, werden grafische
Blockgeneratoren angeboten. Mithilfe der Generatoren ist es möglich, die Eigenschaf-
ten des zu instanziierenden Blocks interaktiv über eine grafische Oberfläche festzulegen.
Als Ergebnis liefern die Generatoren einen Block, der in einer VHDL-Beschreibung als
Komponente instanziiert werden kann.

Inferenz beim FPGA-Entwurf
In einigen Fällen kann man auch auf die „Intelligenz“ des Synthesetools setzen: Für
bestimmte VHDL-Konstrukte erkennt die Synthese automatisch, dass hier ein Hard-
makro (zum Beispiel ein Multiplizierer-Modul oder ein FPGA-interner Speicher) in
Betracht kommt. Da sich die Verwendung der Makros aus dem VHDL-Code ergibt, wird
dieses Vorgehen als Inferenz bezeichnet.

Die Syntheseprogramme unterstützen meist die Inferenz von Speichern, Multipli-
zieren und einfachen arithmetischen Komponenten wie zum Beispiel die in der Sig-
nalverarbeitung häufig vorkommende Kombination eines Multiplizierers mit einem
nachfolgenden Addierer. Für die Inferenz eines Multiplizierers genügt es beispielsweise,
die entsprechende Operation im VHDL-Code zu verwenden.

Die Instanziierung und Inferenz wird im Folgenden anhand des Beispiels eines
FPGA-internen Speichers für einen FPGA-Baustein der Xilinx Serie 7 näher beleuchtet.

8.2.8.1 � Beispiel: Instanziierung eines Speichers
Der nachfolgend dargestellte VHDL-Code zeigt die Instanziierung eines Speichers. Es
wird das Modul BRAM_SDP_MACRO, welches in der von der Firma Xilinx zur Verfü-
gung gestellten Bibliothek unisim vorliegt, aufgerufen und mit den Signalen des Designs
verbunden. Über Generics lassen sich verschiedene Parameter, wie die Wortbreite oder
die Größe des Speichers, auswählen.

245

library unisim;

use unisim.vcomponents.all;

library unimacro;

use unimacro.vcomponents.all;

…

my_ram_instance : bram_sdp_macro

generic map (

   bram_size      => "18Kb",      -- Auswahl Speichergroesse: "18Kb", "36Kb"
   device      => "7SERIES", -- Zielbaustein-Serie
   write_width => 8,         -- Wortbreite Schreibport
   read_width  => 8,         -- Wortbreite Leseport
   do_reg       => 0,          -- Zusaetzliches Register am Daten-Ausgang?
   init_file   => "NONE",    -- evtl. Datei mit Initialwerten
   sim_collision_check => "NONE", -- Simulation: Schreib/Leseoperation
                                  -- auf gleiche Adresse checken?

   srval       => x"000000000000000000", -- Ausgabe nach Reset
   write_mode  => "WRITE_FIRST"   -- Auswahl Kollisionsbehandlung
   )

port map (

   rst    => rst,    -- Reseteingang
   rdclk  => rdclk,  -- Taktsignal Leseport
   rdaddr => rdaddr, -- Leseadresse
   rden   => rden,   -- Enable: Lesen
   regce  => '1',    -- Enable fùr Ausgangsregister
   do     => do,     -- Lesedaten
   wrclk  => wrclk,  -- Taktsignal Schreibport
   wraddr => wraddr, -- Schreibadresse
   wren   => wren,   -- Enable-Signal fùr Schreiboperation
   we     => we,     -- Byte-weises Enable-Signal
   di     => di      -- Schreibdaten
);

Ein Nachteil der Instanziierung ist, dass man unter anderem die Größe der Speicher-
module auf dem FPGA kennen muss. Wird ein Speicher benötigt, der größer als ein
einzelner Speicherblock ist, muss die entsprechende Anzahl an Speichermodulen ins-
tanziiert werden. Darüber hinaus lässt sich VHDL-Code, der die Instanziierung von Ele-
menten verwendet, nicht unbedingt auf andere FPGAs übertragen. So könnten sich zum
Beispiel die Eigenschaften der Speichermodule einer nachfolgenden FPGA-Generation
ändern. Der VHDL-Code wäre damit nicht mehr zu dem neuen FPGA kompatibel und
müsste entsprechend angepasst werden.

8.2.8.2 � Beispiel: Instanziierung eines Speichers mit Blockgenerator
Alternativ stellen die FPGA-Hersteller Modul-Generatoren zur Verfügung um Speicher-
Module über eine grafische Oberfläche zu konfigurieren. Der Blockgenerator erstellt

8.2  Sprachelemente zur Code-Strukturierung

246 8  VHDL-Vertiefung

dann eine Komponente, die im VHDL-Code eingebunden werden kann. Der Vorteil
dabei ist, dass der Blockgenerator auch größere Speicher aus mehreren Speicherblöcken
zusammenstellen kann. Falls zusätzliche kombinatorische Logik erforderlich ist, wird
auch diese erzeugt.

Im unten stehenden Beispiel wird ein FIFO-Speicher aufgerufen, der Datenworte
um eine feste Anzahl an Takten verzögert. FIFO steht dabei für First-In-First-Out. Der
Blockgenerator erzeugt die VHDL-Dateien des Moduls fifo_memory. Neben Speicher-
Modulen können Generatoren auch andere Funktionen erzeugen, beispielsweise Divisi-
onsschaltungen oder Filter.

my_fifo_instance : fifo_memory

port map (

   clk   => clk,
   d_in  => d_in,
   d_out => d_out);

Wie bei der Instanziierung von Modulen aus der FPGA-Bibliothek kann ein Untermo-
dul nicht unbedingt auf andere FPGAs übertragen werden.

Dieser Nachteil lässt sich durch die Inferenz von Speichern umgehen. Hierzu muss
der VHDL-Code so geschrieben werden, dass er den Eigenschaften des Speichers
entspricht.

8.2.8.3 � Beispiel: Inferenz eines Speichers
Der nachfolgende Code zeigt die Realisierung eines Speichers. Die Wortbreite und die
Größe des Speichers kann über Generics ausgewählt werden. Da der Lesezugriff syn-
chron implementiert ist, wählen die Syntheseprogramme die auf dem FPGA-Baustein
verfügbaren RAM-Speicherelemente (sogenanntes Block-RAM) aus.

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity dmem_sp is

   generic (

        DW   : integer := 16;     -- Data Width
        AW   : integer := 10);    -- Address Width

     port (

         clk : in  std_logic;     -- Clock

         en  : in  std_logic;     -- Enable

         we  : in  std_logic;     -- Write enable

         a   : in  std_logic_vector(AW-1 downto 0);   -- Address

         d   : in  std_logic_vector(DW-1 downto 0);   -- Data in

247

         q   : out std_logic_vector(DW-1 downto 0)); -- Data out

end;

architecture rtl of dmem_sp is

   type tmem is array(0 to 2**AW-1) of std_logic_vector(DW-1 downto 0);

   signal mem : tmem;

begin

   process begin

        wait until rising_edge(clk);

        q <= mem(to_integer(unsigned(a)));
        if en = '1' then
            if we = '1' then
                 mem(to_integer(unsigned(a))) <= d;
            end if;

        end if;

   end process;

end;

Da keine Aussagen über die FPGA-Technologie im Code vorgenommen werden,
ist die Speicherinferenz auch auf andere FPGAs übertragbar. Darüber hinaus kann die
Speichergröße und Wortbreite flexibel über die Generics angegeben werden, ohne eine
genauere Kenntnis der zugrunde liegenden FPGA-Technologie zu haben.

Möchte man dagegen statt der Block-RAM-Module lieber Flip-Flops als Spei-
cher verwenden, ist nur eine kleine Änderung des Codes erforderlich. Zieht man die
Zuweisung an den Datenausgang q vor den Prozess, wird ein asynchroner Lesezugriff
beschrieben. Mit einer derartigen VHDL-Beschreibung werden dann Flip-Flops als Spei-
cherelemente (sogenanntes Distributed Memory) ausgewählt. Dies kann zum Beispiel
vorteilhaft sein, wenn nur ein sehr kleiner Speicher benötigt wird: Block-RAMs stehen
meist nur in Vielfachen von 1 oder 2 kByte zur Verfügung. Benötigt man zum Beispiel
nur 256 Bit Speicherplatz und sind die Block-RAM-Ressourcen knapp, ist der Einsatz
von Distributed Memory erwägenswert.

Die entsprechenden Änderungen für die Verwendung von Distributed Memory sind
im folgenden Code-Ausschnitt dargestellt.

begin

   q <= mem(to_integer(unsigned(a))); -- Asynchroner Lese-Zugriff
   process begin

        wait until rising_edge(clk);

        if en = '1' then
        …

In der Regel sollte die Inferenz bevorzugt werden, da diese übersichtlicher ist
und sich der Code leichter auf andere FPGAs übertragen lässt. Für einige Module,
beispielsweise PLLs, hat man nicht die Wahl zwischen Instanziierung und Inferenz.

8.2  Sprachelemente zur Code-Strukturierung

248 8  VHDL-Vertiefung

Diese Spezialmodule müssen entweder durch eine VHDL-Instanziierung oder durch
einen Blockgenerator im System eingebaut werden. Die näheren Einzelheiten über die
zu verwendenden Bibliothek oder den Aufruf des entsprechenden Moduls in VHDL ist
bei Bedarf in der Dokumentation der Anbieter der Synthesetools zu finden.

8.2.8.4 � Beispiel: Inferenz eines Dual-Port-Speichers
FPGAs stellen meist auch sogenannte Dual-Port-Speicher zur Verfügung. Hierbei han-
delt es sich um Speicher, die zwei getrennte Anschlüsse für Lese- und Schreibzugriffe
besitzen. Es kann also gleichzeitig von zwei unterschiedlichen Modulen auf die Ele-
mente des Speichers zugegriffen werden.

Dual-Port-Speicher erlauben es, beide Module mit unterschiedlichen Taktfrequen-
zen zu betrieben. In diesem Fall muss die Inferenz des Dual-Port-Speichers mithilfe
zweier getrennter VHDL-Prozesse (ein Prozess für jeden der beiden Schreib-Lese-Ports)
beschrieben werden.

Da beide Prozesse auch einen Schreibzugriff auf die Speicherelemente unterstützen
müssen, ergibt sich hier eine Besonderheit: Das Speicher-Array kann nicht durch eine
Variable innerhalb einer der beiden Prozesse realisiert werden, da dann der andere Pro-
zess keinen Zugriff auf die Variable hätte. Aber auch die Realisierung mithilfe eines
VHDL-Signals ist nicht möglich: Beide Prozesse würden schreibend auf das Array-Sig-
nal zugreifen, was während der Synthese zu Fehlermeldungen führen würde.

Um diese Problematik zu lösen, können Variablen eingesetzt werden, die (wie Sig-
nale) im Deklarationsteil der Architecture definiert werden und in allen Prozessen der
Architecture sichtbar sind. Diese Art der Variablen wird in VHDL als Shared Variables
bezeichnet. Die Beschreibung eines synchronen Dual-Port-Speichers kann wie folgt rea-
lisiert werden:

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity bmem_dp is

   generic (

        DW  : integer := 16;   -- Data Width
        AW  : integer := 10); -- Address Width

   port (

        -- Port 1

        clk1 : in  std_logic;  -- Clock

        we1  : in  std_logic;  -- Write enable

        a1   : in  std_logic_vector(AW-1 downto 0); -- Address

        d1   : in  std_logic_vector(DW-1 downto 0); -- Data in

        q1   : out std_logic_vector(DW-1 downto 0); -- Data out

249

        -- Port 2

        clk2 : in  std_logic; -- Clock

        we2  : in  std_logic; -- Write enable

        a2   : in  std_logic_vector(AW-1 downto 0); -- Address

        d2   : in  std_logic_vector(DW-1 downto 0); -- Data in

        q2   : out std_logic_vector(DW-1 downto 0)  -- Data out

        );

end;

architecture rtl of bmem_dp is

   type tmem is array(0 to 2**AW-1) of std_logic_vector(DW-1 downto 0);

   -- Hier wird die "shared variable" definiert

   shared variable mem : tmem := ((others=> (others=>'0')));
   signal q1_sig : std_logic_vector(DW-1 downto 0) := (others=>'0');
   signal q2_sig : std_logic_vector(DW-1 downto 0) := (others=>'0');

begin

   q1 <= q1_sig;
   q2 <= q2_sig;

   -- Port 1

   process begin

        wait until rising_edge(clk1);

        if (we1 = '1') then
            mem(to_integer(unsigned(a1))) := d1;
        end if;

        q1_sig <= mem(to_integer(unsigned(a1)));
   end process;

   -- Port 2

   process begin

        wait until rising_edge(clk2);

        if (we2 = '1') then
            mem(to_integer(unsigned(a2))) := d2;
        end if;

        q2_sig <= mem(to_integer(unsigned(a2)));
   end process;

end;

Natürlich kann dieser Code auch eingesetzt werden, wenn die beiden Module, die auf
den Speicher zugreifen, identische Taktsignale verwenden. In diesem Fall wird an die
Taktanschlüsse clk1 und clk2 einfach das gleiche Taktsignal angelegt.

Achtung: Lassen Sie sich nicht dazu verleiten, Shared Variables als Ersatz für VHDL-
Signale einzusetzen. Shared Variables können zwar von typischen Synthesetools – mit
entsprechenden Warnmeldungen – in Hardware übersetzt werden, aber das Verhalten von

8.2  Sprachelemente zur Code-Strukturierung

250 8  VHDL-Vertiefung

Schreibzugriffen aus zwei Prozessen heraus ist für Shared Variables nicht eindeutig defi-
niert. Im obigen Fall der Beschreibung eines Speichermoduls ist dies akzeptabel und wird
vom Synthesetool korrekt in einen entsprechenden Dual-Port-Speicher überführt. In den
meisten anderen Fällen kann die Verwendung von Shared Variables zu Unterschieden
zwischen Simulation und synthetisierter Hardware führen.

8.3	� Sprachelemente zur Verifikation

Wie bereits in Kapitel 7 beschrieben, ist die Simulation mit einer Testbench ein wesentli-
cher Schritt zur Verifikation von VHDL-Code. VHDL bietet dabei die Möglichkeit wäh-
rend der Simulation auf Dateien zuzugreifen. Dieses kann zum Beispiel sinnvoll sein, um
Ausgabewerte oder Statusmeldungen während der Simulation in einer Datei abzulegen,
die anschließend auch ohne erneuten Simulationsaufruf zur Verfügung stehen.

Grundsätzlich ist die binäre Ein-/Ausgabe und die Ein-/Ausgabe von Textdateien zu
unterscheiden. Binäre Dateien enthalten die gespeicherten Werte in binärer Form wäh-
rend die gespeicherten Werte in Textdateien im ASCII-Code vorliegen und mithilfe eines
Editors betrachtet und modifiziert werden können.

8.3.1	� Binäre Ein-/Ausgabe

Um auf eine Datei zugreifen zu können, muss in VHDL zunächst ein Dateidatentyp ange-
legt werden. Dies erfolgt mithilfe der Definition eines benutzerdefinierten Datentyps.
Anschließend wird mithilfe dieses Datentyps ein sogenannter Dateideskriptor angelegt,
welcher für alle weiteren Zugriffe auf die verwendet wird. Das nachfolgende Beispiel
zeigt die erforderlichen Definitionen für eine Datei, die mit dem Datentyp integer arbeitet.

type my_file_type is file of integer;

file my_file : my_file_type;

Das eigentliche Öffnen der Datei erfolgt anschließend mithilfe der Prozedur file_
open(). Diese Prozedur erwartet vier Parameter. Der erste Parameter ist vom Datentyp
FILE_OPEN_STATUS. Ihm wird der Status nach dem Öffnen der Datei zugewiesen. War
das Öffnen der Datei erfolgreich, erhält der Parameter den Wert OPEN_OK. Für even-
tuelle Fehlerfälle stehen die Werte STATUS_ERROR, NAME_ERROR, MODE_ERROR
zur Verfügung. Der zweite Parameter ist vom Datentyp FILE. Hier wird der zuvor defi-
nierte Dateidatentyp übergeben. Der Dateiname wird als dritter Parameter angeben. Ob
die Datei zum Lesen oder Schreiben geöffnet wird, legt der vierte Parameter fest: Mit
READ_MODE wird eine Datei zum Lesen geöffnet, während WRITE_MODE eine zu
schreibende Datei öffnet. Sollen Daten an den Inhalt einer bestehenden Datei angehängt
werden, wird als vierter Parameter APPEND_MODE verwendet.

http://dx.doi.org/10.1007/978-3-662-49731-9_7

251

Ein mögliches Beispiel für das Öffnen einer Datei zeigt der nachfolgende
Codeausschnitt:

file_open(my_file_status, my_file, "my_values.dat", WRITE_MODE);

Für die Ein-/Ausgabe stellt VHDL die Prozeduren read() und write() zur Verfügung.
Als Parameter werden der Dateideskriptor und eine Variable übergeben, die den auszuge-
benden Wert enthält (write) oder welcher der eingelesene Wert zugewiesen wird (read).

Ein Beispiel wie in einem Prozess eine binäre Datei geöffnet und der Schreibzugriff
realisiert wird, zeigt der nachfolgende Code:

process

   type my_file_type is file of integer;

   file my_file : my_file_type;

   variable cnt : integer:= 64;
   variable my_file_status : FILE_OPEN_STATUS;

begin

   -- Datei òffnen

   file_open(my_file_status, my_file, "my_values.dat", WRITE_MODE);

   if my_file_status = OPEN_OK then -- Datei erfolgreich geòffnet?
        for i in 1 to 10 loop

            write(my_file, cnt); -- Werte in die Datei schreiben

            cnt := cnt+1;
        end loop;

        file_close(my_file); -- Datei schließen

   end if;

   wait; -- Diesen Prozess mit einfacher Wait-Anweisung beenden

end process;

8.3.2	� Ein-/Ausgabe mit Textdateien

Während für die binäre Ein-/Ausgabe keine besonderen Pakete benötigt werden, muss
für den Zugriff auf Textdateien das standardisierte Paket textio, welches ein Teil der
Standardbibliothek std ist, mithilfe einer Use-Anweisung bekannt gemacht werden.
Dieses Paket umfasst die textuelle Ein-/Ausgabe für die im VHDL-Standard definierten
Datentypen. Sollen Daten vom Typ std_logic eingelesen oder ausgegeben werden, steht
das zusätzliche Paket std_logic_textio aus der Bibliothek ieee zur Verfügung.

Die textuelle Ein-/Ausgabe erfolgt zeilenbasiert. So wird bei der Ausgabe zunächst
eine Textzeile (vom Datentyp line) mit der Write-Prozedur beschrieben. Ist eine Text-
zeile erstellt, kann diese mit der Prozedur writeline() ausgeben werden. Entsprechendes
gilt für die Eingabe: Zunächst wird eine Zeile mit der Prozedur readline() eingelesen und
anschließend mithilfe der Read-Prozedur auf den Inhalt der Zeile zugegriffen.

8.3  Sprachelemente zur Verifikation

252 8  VHDL-Vertiefung

Eine Besonderheit ist zu beachten, wenn Zeichenketten (strings) ausgegeben werden
sollen. Die folgenden Zeilen würden zu einer Fehlermeldung führen:

write (my_line, "Hallo"); -- Fehler! Ist dies wirklich eine Zeichenkette?

write (my_line, "10010"); -- Auch falsch! String oder std_logic_vector?

                         -- oder etwas anderes ???

Bei der ersten Zeile ist es für einen Menschen sofort offensichtlich, dass es sich um
eine Zeichenkette vom Datentyp string handelt. Bei der zweiten Zeile ist dies weniger
offensichtlich. Schließlich könnte es sich beispielsweise auch um einen Wert vom Typ
std_logic_vector handeln. Damit nun die korrekte Implementierung der Write-Prozedur
aufgerufen werden kann, muss der Datentyp in diesem Fall explizit angeben werden.
Dies gilt auch für die eigentlich für einen Menschen offensichtlichen Fälle. Die explizite
Kennzeichnung des Datentyps erfolgt über einen sogenannten Type-Qualifier, dessen all-
gemeine Form wie folgt aussieht:

   <Datentyp>'(<Wert>)

Für die obigen Beispiele würde der korrekte Code also wie folgt lauten:

write (my_line, string'("Hallo")); -- Ok! Mit expliziter Typangabe …

write (my_line, string'("10010")); -- … kann die richtige write-Funktion

                                   -- identifiziert werden

Ein Beispiel zur Verwendung der Textausgabe zeigt der nachfolgende Prozess.

process

   -- Fùr die Angabe des Dateityps kann der im textio-Paket definierte

   -- Datentyp text verwendet werden

   file my_txt_file : text;

   variable cnt     : integer:= 64;
   variable cnt_slv : std_logic_vector (7 downto 0);

   variable l       : line;

   variable my_file_status : FILE_OPEN_STATUS;

begin

   -- Datei òffnen

   file_open(my_file_status, my_txt_file, "my_values.txt", WRITE_MODE);

   if my_file_status = OPEN_OK then -- Datei erfolgreich geòffnet?
        for i in 1 to 5 loop

            write(l, cnt); -- Integer in die Datei schreiben

            write(l,string'(" "));

            cnt_slv := std_logic_vector(to_unsigned(cnt,8));
            write(l,cnt_slv); -- Wert als std_logic_vector schreiben

253

            writeline(my_txt_file,l);

            cnt := cnt+1;
        end loop;

        file_close(my_txt_file); -- Datei schließen

   end if;

   wait; -- Prozess beenden

end process;

Die Simulation initialisiert die Variable cnt mit dem Wert 64. In einer Schleife wird
cnt als Integer und std_logic_vector fünfmal ausgegeben und dabei jeweils um 1 erhöht.
Nach Durchführung der Simulation würde die Datei my_values.txt den folgenden Inhalt
besitzen:

64 01000000

65 01000001

66 01000010

67 01000011

68 01000100

Beim Einlesen von Dateien kommen den Funktionen endfile() und endline() eine
wichtige Bedeutung zu. Ihnen wird als Parameter ein Dateideskriptor oder eine Zeile
übergeben. Wenn der Rückgabewert (Typ: boolean) der Funktion den Wert true besitzt,
wurde das Ende der Datei beziehungsweise der Zeile erreicht.

Mithilfe der vorgestellten Ein-/Ausgabekonzepte können auch Ein- und Ausgaben
auf der Simulatorkonsole erfolgen. Hierfür sind die Symbole INPUT und OUTPUT
vordefiniert:

write(l,string'("Hallo Konsole!"));

writeline(OUTPUT,l);

8.3.3	� Wait-Anweisungen in Testbenches

In den vorangegangenen Kapiteln wurde die Wait-Anweisung bereits eingeführt. Die
Wait-Anweisung wurde verwendet, um sequenzielle Schaltungen vom einfachen D-Flip-
Flop bis hin zu komplexeren endlichen Automaten zu beschreiben. Zur Erinnerung ist
hier noch einmal die VHDL-Beschreibung eines Prozesses angegeben, der die Funktion
eines D-Flip-Flops realisiert:

process begin

   wait until rising_edge(clk);

   q <= d;
end process;

8.3  Sprachelemente zur Verifikation

254 8  VHDL-Vertiefung

In diesem Beispiel wird die Ausführung unterbrochen bis eine bestimmte Bedingung,
hier das Auftreten einer steigenden Flanke des Taktsignals clk, wahr ist. Für synthetisier-
baren VHDL-Code ist diese Form der Wait-Anweisung ist die am häufigsten verwendete
Variante. Es gibt jedoch noch weitere Varianten der Wait-Anweisung, die insbesondere
für die Erstellung von Testbenches nützlich sind. Die vier Varianten der Wait-Anweisung
sind in Tab. 8.1 zusammengefasst.

Es ist zu beachten, dass Wait-Anweisungen und Sensitivitätslisten einander ausschlie-
ßen. Besitzt ein Prozess eine Sensitivitätsliste, darf er keine Wait-Anweisung enthalten.
Wird dagegen eine Wait-Anweisung verwendet, darf der Prozess keine Sensitivitätsliste
besitzen. Darüber hinaus darf synthetisierbarer Code nur eine einzelne Wait-until-Anwei-
sung pro Prozess enthalten. Testbench-Prozesse, die dagegen nur für die Simulation
verwendet werden, dürfen beliebig viele Wait-Anweisungen enthalten. Mithilfe der Wait-
Anweisung kann eine Testbench auf recht einfache Weise erstellt werden. Der nachfol-
gende Abschnitt zeigt hierzu ein Beispiel.

8.3.4	� Testbench mit interaktiver Überprüfung

Eine Testbench besitzt keine Eingangs- oder Ausgangssignale. Daher kann die Entity
sehr einfach realisiert werden. Sie besteht im Allgemeinen aus zwei Zeilen:

entity tb is

end;

Im Deklarationsteil der Architecture werden die Signale definiert, die an die Ein- und
Ausgänge des zu überprüfenden Moduls angeschlossen werden. Im Anweisungsteil der
Architecture wird der Prüfling instanziiert und es werden mithilfe eines Prozesses unter-
schiedliche Testvektoren an die zu testende Komponente angelegt.

Die Architecture einer Testbench für einen Encoder, welcher einen 4-Bit-Binärwert in
ein 7-Bit-Codewort für eine Sieben-Segment-Anzeige umsetzt, kann wie folgt realisiert
werden:

Tab. 8.1   Formen der Wait-Anweisung

Struktur Beispiel Erläuterung

wait; wait; „Für immer warten“: Der Prozess wird unterbro-
chen und nie fortgesetzt

wait for <Zeitangabe>; wait for 10 ns; Prozessunterbrechung für einen bestimmten
Zeitraum

wait on <Signalliste>; wait on A, B; Prozessunterbrechung bis ein Wechsel eines Sig-
nals der Signalliste detektiert wird

wait until <Bedingung>; wait until A = B; Unterbrechung des Prozesses bis die angegebene
Bedingung wahr ist

255

architecture tb_arch of tb is

   signal bin_val : std_logic_vector(3 downto 0);

   signal sev_seg_code : std_logic_vector(6 downto 0);

begin

   dut : entity work.bin2sevenseg -- DUT: Device Under Test

   port map (

        bin      => bin_val,
        sevenseg => sev_seg_code);

   process begin -- Prozess zum Anlegen der Stimuli

        bin_val <= "0000";
        wait for 10 ns; -- Kurze Wartezeit

        bin_val <= "0001";
        wait for 10 ns;

        bin_val <= "0010";
        wait for 10 ns;

        -- Hier ggf. weitere Stimuli

        wait; -- Test durchlaufen. Der Prozess kann beendet werden.

   end process;

end;

Da die Testbench keine Überprüfung der Ausgabewerte des Prüflings vornimmt, muss
die Korrektheit durch eine manuelle Überprüfung der erzeugten Waveform erfolgen.
Dieses Vorgehen besitzt den Vorteil, dass der Testbench-Code auf die Erzeugung von Sti-
muli beschränkt bleibt und daher relativ einfach zu realisieren ist. Ein Nachteil ist, dass
bei der Überprüfung ein mögliches Fehlverhalten des zu testenden Moduls übersehen
werden könnte.

8.3.5	� Testbench mit Assert-Anweisungen

Sind die erwarteten Ausgabewerte des Prüflings bekannt, kann die Verifikation im Rah-
men auch durch die Testbench selbst erfolgen. Hierzu kann die Assert-Anweisung ein-
gesetzt werden. Diese Anweisung überprüft während der Simulation eine angegebene
Bedingung. Ist diese nicht erfüllt, wird eine Meldung ausgegeben. Der Schweregrad der
Verletzung der angegebenen Bedingung kann explizit angegeben werden. Zur Auswahl
stehen hierbei note, warning, error und failure. Welcher Schweregrad zu einem Abbruch
der Simulation führt, kann mithilfe der Aufrufparameter des Simulators ausgewählt wer-
den. Erfolgt keine Auswahl, führen in der Regel die Schweregrade error und failure zu
einem Abbruch der Simulation.

Die folgenden Beispiele zeigen den typischen Aufbau von Assert-Anweisungen:

8.3  Sprachelemente zur Verifikation

256 8  VHDL-Vertiefung

-- Signal a wird gegen einen erwarteten Wert a_exp getestet

assert a /= a_exp report "Fehler in der Simulation" severity error;

-- Eine Warnung ausgeben falls der Wert von i 10 ùberschreitet

assert i <= 10 report "i ist groesser als 10" severity warning;

-- Eine Simulation mit Hilfe der Assert-Anweisung beenden

assert false report "Simulation wird beendet" severity failure;

Die Verwendung der Assert-Anweisung für die Verifikation eines UND-Gatters zeigt
der folgende Code. Die erwarteten Ausgabewerte werden in der Variablen q_expected
abgelegt und mit den Ausgabewerten des Prüflings verglichen. Die Variable q_expected
beschreibt, dass die erwartete Ausgabe für die Eingangswerte 00, 01 und 10 jeweils 0 ist.
Nur für die Eingabe 11 wird am Ausgang des UND-Gatters eine 1 erwartet. Tritt ein Feh-
ler auf, wird mithilfe einer Assert-Anweisung eine entsprechende Meldung ausgegeben.

process

   variable i_sv       : std_logic_vector (1 downto 0);

   variable q_expected : std_logic_vector (3 downto 0) := "1000";
begin

   for i in 0 to 3 loop

        i_sv := std_logic_vector(to_unsigned(i,2));
        a <= i_sv(0);
        b <= i_sv(1);
        wait for 10 ns;

        assert q = q_expected(i) report "Fehler!" severity error;
   end loop;

   wait;

end process;

Die Anwendung der Assert-Anweisung ist nicht auf Testbench-Code beschränkt.
Auch in synthetisierbaren VHDL-Beschreibungen können Assert-Anweisungen einge-
setzt werden, um beispielsweise das Einhalten eines erwarteten Wertebereichs zu über-
prüfen. Bei der Synthese der VHDL-Beschreibung wird aus den Assert-Anweisungen
keine Hardware generiert. Sie werden vom Syntheseprogramm ignoriert.

8.3.6	� Testbench mit Dateiein-/-ausgabe

Häufig entsteht bei dem Entwurf eines digitalen Systems der Wunsch Stimuli oder
erwartete Ausgabewerte aus Dateien einzulesen oder Ausgaben der Simulation in einer
Datei abzulegen. Dieses Vorgehen hat verschiedene Vorteile:

•	 Die Stimuliwerte sind übersichtlich in einer Datei zusammengefasst und können
leicht geändert werden.

257

•	 Stimuli- und Erwartungswerte können rechnergestützt erstellt werden. Dies ist insbe-
sondere dann interessant, wenn ein funktionales Modell des zu entwerfenden Systems
in einer Hochsprache (meist C/C++) erstellt wurde.

•	 Simulationen benötigen keine interaktiven Eingriffe.
•	 Die Simulationsergebnisse können rechnergestützt ausgewertet werden.
•	 Stimuli und Resultate einer Simulation liegen in einfach lesbarer Form vor und kön-

nen zu Dokumentationszwecken aufbewahrt werden.

Diesen Vorteilen steht gegenüber, dass der Aufwand zum Erstellen einer Testbench
größer ist als bei den zuvor skizzierten Ansätzen. In vielen Fällen kann der zusätzliche
Aufwand gering gehalten werden, wenn eine bereits zuvor eingerichtete Testbench wie-
derverwendet werden kann und nur leicht abgewandelt werden muss.

Der nachfolgende Code stellt eine komplette Testbench mit Dateiein-/-ausgabe für ein
einfaches logisches Gatter dar. Der Code lässt sich auch auf komplexere Problemstellun-
gen erweitern.

use std.textio.all; -- bei Benutzung der Standard-Bibliothek

                    -- ist keine Library-Anweisung erforderlich

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use ieee.std_logic_textio.all;

entity tb is

end;

architecture tb_arch of tb is

   signal bin_val : std_logic_vector(3 downto 0);

   signal sev_seg_code : std_logic_vector(6 downto 0);

begin

   dut : entity work.bin2sevenseg -- DUT: Device Under Test

        port map (

            bin      => bin_val,
            sevenseg => sev_seg_code);

process -- Prozess zum Anlegen von Stimuli und zum Ueberprufen

        -- der Ausgabewerte des „device under test (DUT)"

   file stimuli_file         : text; -- Filedeskriptoren anlegen

   file resultat_file        : text;

   variable stim_file_status : FILE_OPEN_STATUS; -- Filestatus

   variable res_file_status  : FILE_OPEN_STATUS;

   variable l                : line; -- Variable vom Typ line fuer

Text-IO

8.3  Sprachelemente zur Verifikation

258 8  VHDL-Vertiefung

   variable stim             : std_logic_vector(3 downto 0);

   variable exp              : std_logic_vector(6 downto 0);

   variable wait_time        : time;

   variable errors_detected  : natural := 0;
begin

   -- Dateien òffnen

   file_open(stim_file_status, stimuli_file, "stimuli.txt", READ_MODE);

   file_open(res_file_status, resultat_file, "result.txt", WRITE_MODE);

   -- Dateien erfolgreich geòffnet?

   if stim_file_status = OPEN_OK and res_file_status = OPEN_OK then

        while not endfile(stimuli_file) loop -- Dateiende?

            readline(stimuli_file,l); -- Eine Zeile lesen

            read(l,stim); -- Stimuli lesen

            bin_val <= stim;
            read(l,wait_time); -- Wartezeit lesen

            wait for wait_time; -- Warten

            read(l,exp); -- Erwarteten Ausgabewert lesen

            write (l,stim); -- Stimuli und Ausgabewerte

            write (l,string'(" ")); -- in Resultat-Datei schreiben

            write (l,sev_seg_code);

            write (l,string'(" "));

            assert sev_seg_code = exp
                    report "Simulation error detected" severity warning;

            if sev_seg_code = exp then -- in Resultat-Datei schreiben
                 write (l,string'("Ok"));

            else

                 write (l,string'("Error -- Expected: "));

                 write (l,exp);

                   errors_detected := errors_detected + 1; -- Fehlerzaehler+1
            end if;

            writeline(resultat_file,l);

        end loop;

        -- Am Ende der Simulation den Fehlerzaehler ausgeben

        write (l,string'("--------"));

        writeline(resultat_file,l);

        write (l,string'("Total Error Count: "));

        write (l,errors_detected);

        writeline(resultat_file,l);

        write (l,string'("--------"));

        writeline(resultat_file,l);

        file_close(stimuli_file); -- Dateien schliessen

        file_close(resultat_file);

   end if;

259

   -- Simulation mit Assert-Anweisung beenden

   assert false report "Simulation finished." severity failure;

end process;

end;

Die Stimulidatei stimuli.txt besitzt ein recht übersichtliches zeilenorientiertes Format.
In einer Zeile stehen zunächst die Stimuliwerte. Daran schließt sich die Angabe der Zeit
an, die zwischen Anlegen der Stimuliwerte und Auswertung der Ausgangswerte verge-
hen soll. Am Ende der Zeile ist der erwartete Ausgabewert des Prüflings angegeben.

0000 10 ns 0111111

0001 10 ns 0000110

0010 10 ns 1011011

0011 10 ns 1001111

0100 10 ns 1100110

0101 10 ns 1101101

0110 10 ns 1111101

0111 10 ns 0000111

1000 10 ns 1111111

1001 10 ns 1101111

1010 10 ns 1110111

1011 10 ns 1111100

1100 10 ns 0111001

1101 10 ns 1011110

1110 10 ns 1111001

1111 10 ns 1110001

Die durch die Simulation erzeugte Ergebnisdatei sieht beispielsweise wie folgt aus:

0000 0111111 Ok

0001 0000110 Ok

0010 1011011 Ok

0011 1001111 Ok

0100 1100110 Ok

0101 1101101 Ok

0110 1111101 Ok

0111 0000101 Error -- Expected: 0000111

1000 1111111 Ok

1001 1101111 Ok

1010 1110111 Ok

1011 1111100 Ok

1100 0111001 Ok

1101 1011110 Ok

8.3  Sprachelemente zur Verifikation

260 8  VHDL-Vertiefung

1110 0000001 Error -- Expected: 1111001

1111 1110001 Ok

Total Error Count: 2

8.4	� Übungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Prüfen Sie sich selbst mit den folgenden
Aufgaben. Am Ende des Buches finden Sie die Lösungen.

Sofern nicht anders vermerkt, ist nur eine Antwort richtig.

Aufgabe 8.1
Ein Taktsignal soll mithilfe des VHDL-Signals clk modelliert werden. Die Frequenz des
Taktsignals beträgt 100 MHz. Welche der folgenden Codezeilen ist korrekt?

a)	 clk <= not clk;
b)	 clk <= not clk after 5 ns
c)	 clk <= clk after 10 ns
d)	 clk <= not clk after 10 ns

Aufgabe 8.2
Welche Aussagen über die Datentypen std_logic und std_ulogic sind korrekt? (Mehrere
Antworten sind richtig)

a)	 Der Datentyp std_logic besitzt eine „Auflösungsfunktion“ (resolution function), der
Datentyp std_ulogic dagegen nicht.

b)	Ein Signal vom Datentyp std_ulogic wird zu Beginn einer Simulation immer auf ‘Uʼ
(undefined) gesetzt. Ein Signal vom Datentyp std_logic erhält zu Beginn der Simula-
tion immer den Wert ‘0ʼ.

c)	 Die beiden Datentypen sind Teil des VHDL-Standards. Daher können sie auch ohne
die Verwendung von Library- und Use-Anweisungen in VHDL-Beschreibungen ein-
gesetzt werden.

d)	Erfolgen Zuweisungen an ein Signal vom Datentyp std_logic aus zwei Prozessen her-
aus, führt dies in der Simulation nicht zu einer Fehlermeldung.

Aufgabe 8.3
Welche Aussage über die Generics sind korrekt?

a)	 Bei der Instanziierung eines Moduls können auch Signale an die Generics „ange-
schlossen“ werden.

261

b)	Die Werte, die an die Generics übergeben werden, müssen zur Übersetzungszeit bere-
chenbar (zum Beispiel Konstanten) sein.

c)	 Generics sind immer vom Datentyp integer.
d)	Wird ein Generic verwendet, muss bei der Instanziierung des entsprechenden Moduls

dem Generic immer ein Wert zugewiesen werden.

Aufgabe 8.4
Wie kann ein Prozess mithilfe der Wait-Anweisung (für immer) beendet werden?

a)	 wait forever;
b)	wait;
c)	 wait until ();
d)	wait on;

Aufgabe 8.5
Was gilt für Prozesse in Testbenches?

a)	 Eine Testbench darf nur einen einzelnen Prozess beinhalten.
b)	Testbench-Prozesse dürfen mehrere Wait-Anweisungen beinhalten.
c)	 Testbench-Prozesse dürfen eine Sensitivitätsliste besitzen und gleichzeitig eine Wait-

Anweisung beinhalten.
d)	Testbench-Prozesse dürfen nur synthetisierbaren Code beinhalten.

Aufgabe 8.6
Gegeben ist der nachfolgende VHDL-Prozess.

process

   file my_file : text;

   variable my_f_status : FILE_OPEN_STATUS;

   variable l : line;

   variable slv : std_logic_vector (3 downto 0);

begin

   file_open(my_f_status, my_file, "test.txt", WRITE_MODE);

   if my_f_status = OPEN_OK then
        for i in 1 to 5 loop

            write (l,i);

            write (l,string'(" "));

            slv := std_logic_vector(to_unsigned(i,4));
            write (l,slv);

            writeline(my_file,l);

        end loop;

   end if;

   wait;

end process;

8.4  Übungsaufgaben

262 8  VHDL-Vertiefung

Welche Ausgabe erwarten Sie in der Datei test.txt?
a.

1

2

3

4

5

b.

1 001

2 010

3 011

4 100

5 101

c.

1 0001

2 0010

3 0011

4 0100

5 0101

d.

1

0001

2

0010

3

0011

4

0100

5

0101

263© Springer-Verlag GmbH Deutschland 2016
W. Gehrke et al., Digitaltechnik, Springer-Lehrbuch,
DOI 10.1007/978-3-662-49731-9_9

In Kapitel 7 wurden programmierbare Logikbausteine bereits kurz vorgestellt. Diese
Bausteine zeichnen sich dadurch aus, dass ihre logische Funktion durch den Anwender
festgelegt werden kann. Viele programmierbare Logikbausteine lassen sich mehrfach pro-
grammieren, so dass sich eventuelle Designfehler innerhalb kurzer Zeit durch eine Neu-
programmierung beheben lassen. Ebenso können beispielsweise auch Änderungen der
Spezifikation des Zielsystems selbst in späten Phasen des Entwicklungsprozesses eingear-
beitet werden. Auf Grund dieser Vorteile haben sich programmierbare Logikbausteine in
vielen Bereichen durchgesetzt. Mit einigen dieser Bausteine lassen sich nur wenige Gatter
ersetzen, andere ermöglichen dagegen die Realisierung von komplexen digitalen Systemen.

Zur Beschreibung der gewünschten logischen Funktion wird meist VHDL verwendet.
Der VHDL-Code wird von Software-Tools, die teilweise kostenlos von den Baustein-
Herstellern zur Verfügung gestellt werden, interpretiert und für den Zielbaustein opti-
miert. Das Ergebnis ist eine binäre Datei, die auf die programmierbare Logikkomponente
geladen wird. Erst durch diesen Programmiervorgang erhält der Baustein seine finale
digitale Funktion.

Die Preise der Bausteine unterscheiden sich erheblich: Während einfache Bausteine
für wenige Cent erworben werden können, müssen für komplexere Bausteine zwei- oder
dreistellige Eurobeträge aufgebracht werden. Auch für extrem komplexe Spezialanwen-
dungen stehen Bausteine zur Verfügung. Da diese Bausteine jedoch eine relativ große
Siliziumfläche benötigen und sie nur in relativ kleinen Stückzahlen verkauft werden,
erreichen die Preise dieser Komponenten vier- oder sogar fünfstellige Eurobeträge.

Auch wenn der Begriff Programmierbarkeit eine Nähe zu Software-Programmen
nahelegt, handelt es sich dennoch um unterschiedliche Konzepte. Ein Software-Pro-
gramm wird auf einen Computer geladen und dann sequenziell vom Prozessor des Rech-
ners ausgeführt. Im Fall programmierbarer Logik wird zwar auch die Information über
die auszuführende Funktion auf den Baustein geladen, die Ausführung dieser Funktion
geschieht jedoch direkt in Hardware und nicht durch eine sequenzielle Interpretation

Programmierbare Logik 9

http://dx.doi.org/10.1007/978-3-662-49731-9_7

264 9  Programmierbare Logik

der Befehle eines Computerprogramms. Um den Unterschied der Konzepte deutlich
zu machen, werden programmierbare Logikbausteine auch als konfigurierbare Logik
bezeichnet.

Im Rahmen der folgenden Abschnitte werden zunächst die technischen Grundkon-
zepte programmierbarer Logikbausteine erläutert. Diese werden anschließend aufgegrif-
fen und es werden unterschiedliche Typen programmierbarer Logikbausteine vorgestellt.

9.1	� Grundkonzepte programmierbarer Logik

Für die Realisierung eines Bausteins, dessen Funktion erst durch den Anwender festge-
legt wird, können zwei grundlegende Konzepte verfolgt werden, die im Folgenden näher
erläutert werden.

9.1.1	� Zweistufige Logik

Eine beliebige kombinatorische Funktion lässt sich mithilfe des KV-Diagramms – oder bei
komplexeren Funktionen mithilfe eines geeigneten Computerprogramms – in eine zwei-
stufige Darstellung überführen. Wird beispielsweise eine disjunktive Darstellung der Funk-
tion angestrebt, besteht die erste Logikstufe aus UND-Verknüpfungen während in einer
zweiten Stufe ODER-Verknüpfungen verwendet werden. Um einen Baustein zu realisie-
ren, dessen logische Funktion vom Anwender in disjunktiver Form programmiert werden
kann, muss dieser Baustein also eine zweistufige UND-/ODER-Struktur enthalten. Durch
die Auswahl, ob ein Eingangssignal in der UND-Stufe berücksichtigt wird, können die
Produktterme der gewünschten Funktion in der UND-Stufe realisiert werden. Die Produkt-
terme werden mit der ODER-Stufe zum Ausgangssignal der Funktion zusammengefasst.

Um die Auswahl der zu berücksichtigenden Eingangssignale und Produktterme zu
ermöglichen, werden neben UND- und ODER-Gattern elektrische Schalter benötigt, die
die Eingangssignale beziehungsweise Produktterme mit den Eingängen der Gatter ver-
binden. Soll ein Gattereingang unberücksichtigt bleiben, wird der Schalter so program-
miert, dass eine logische 1 (bei UND-Gattern) beziehungsweise eine logische 0 (bei
ODER-Gattern) zugeführt wird.

Die Grundstruktur eines solchen programmierbaren Logikbausteins ist in Abb. 9.1
dargestellt. Der Baustein besitzt die drei Eingänge X1, X2 und X3. Die an diesen Ein-
gängen anliegenden Signale können den UND-Gattern negiert oder nicht-negiert zuge-
führt werden. In dem dargestellten Beispiel können mithilfe der beiden UND-Gatter
insgesamt zwei Produktterme gebildet werden. Wird nur ein Term benötigt, kann einer
der Eingänge des nicht benötigten UND-Gatters auf Null gesetzt werden. Auf diese
Weise wird sichergestellt, dass der Ausgang des UND-Gatters, unabhängig von den Wer-
ten der anderen Eingänge, den Wert 0 besitzt und somit in der nachfolgenden ODER-
Stufe nicht berücksichtigt wird.

265

Mit der in Abb. 9.1 gezeigten Beispielprogrammierung werden die Terme P1 und P2
durch die folgenden logischen Gleichung beschrieben:

beziehungsweise

Damit ergibt sich der Ausgangswert für Y zu

Mithilfe der dargestellten Schaltung lassen sich beliebige kombinatorische Funktionen
realisieren, wenn diese maximal drei Eingangsvariablen besitzen und sie sich mithilfe
von maximal zwei Termen beschreiben lassen.

Um auch komplexere logische Funktionen realisieren zu können, kann die Grund-
schaltung mit mehr UND-Gattern ausgestattet werden. Sollen darüber hinaus auch
mehrere Ausgangssignale gleichzeitig berechnet werden, werden weitere ODER-Gat-
ter hinzugefügt. Es ist nachvollziehbar, dass eine vollständige grafische Darstellung
eines solchen Bausteins schnell unübersichtlich werden kann. Daher wird häufig eine
kompaktere Darstellung gewählt, bei der die Eingänge der UND-Gatter in einem ein-
zelnen Strich zusammengefasst werden. Hierbei entfällt auch die explizite Darstellung
der Schalter. Diese werden durch Punkte ersetzt. Ein gesetzter Punkt deutet an, dass

P1 = X1&X2&X3

P2 = X2&X3

Y = P1 ∨ P2 = (X1&X2&X3) ∨ (X2&X3)

Abb. 9.1   Struktur
eines zweistufigen
programmierbaren
Logikbausteins mit 3
Eingängen und einem Ausgang

111

X1 X2 X3

"1"

&

&

1

"0"

"0"

Y

P1

P2

9.1  Grundkonzepte programmierbarer Logik

266 9  Programmierbare Logik

der zugehörige Schalter so programmiert ist und damit eine Verbindung zwischen dem
jeweiligen Eingangssignal und der UND-Stufe hergestellt ist. Fehlt der Punkt dagegen,
liegt an dem zugehörigen Eingang des UND-Gatters eine 1 an.

Für das obige Beispiel ist die kompakte Darstellung in Abb. 9.2 abgebildet.
Das in diesem Abschnitt vorgestellte Grundprinzip wird bei sogenannten Programma-

ble Logic Devices (PLDs) verwendet, die in den Abschn. 9.2 und 9.3 näher vorgestellt
werden. Ist neben dem UND-Array auch das ODER-Feld programmierbar, wird meist
der Begriff Programmable Logic Arrays (PLA) verwendet.

Der Vorteil des programmierbaren ODER-Feldes eines PLAs ist es, dass die Pro-
duktterme allen ODER-Verknüpfungen zugeführt werden. Wird ein Produktterm für
die Berechnung von mehr als einem Ausgang benötigt, muss der Term daher nur einmal
durch die entsprechende UND-Verknüpfung gebildet werden. Dieser Vorteil der PLA-
Struktur muss mit der Programmierbarkeit des ODER-Feldes erkauft werden, was letzt-
lich zu einem höheren Flächenbedarf des Bausteins und damit zu höheren Kosten führt.

Ein Beispiel soll die mehrfache Verwendung eines Produktterms verdeutlichen: Es
werden die Funktionen

Y1 = P1 ∨ P2 = (X1&X2&X3) ∨ (X2&X3)

Abb. 9.2   Beispiel
eines programmierbaren
Logikbausteins in kompakter
grafischer Darstellung

1

X1

& 1

"0"

Y

P1

&
P2

1

X2

1

X3

Abb. 9.3   Programmierbarer
Logikbaustein mit mehrfach
verwendetem Produktterm 1

X1

&

1

Y1

P1

&
P2

1

X2

1

X3

Y2

&
P3

1

267

und

mithilfe eines PLAs realisiert.
Die Programmierung des PLAs kann dann wie in Abb. 9.3 dargestellt realisiert

werden.

9.1.2	� Tabellenbasierte Logikimplementierung

Eine logische Funktion kann auch durch eine Tabelle definiert werden, welche die mög-
lichen Eingangswerte mit den zugehörigen Ausgangswerten auflistet. Diese tabellarische
Darstellungsform kann für eine direkte Implementierung in Hardware verwendet wer-
den. Als Grundelemente werden in diesem Fall statt Gatter sogenannte Lookup-Tabellen
(engl. look-up table, LUT) verwendet. Eine Lookup-Tabelle ist ein kleiner Speicher in
dem für alle Eingangskombinationen die jeweiligen Ausgangswerte abgelegt sind.

Besitzt die LUT beispielsweise vier Eingänge, müssen für die Implementierung der
Tabelle 16 Speicherstellen bereitgestellt werden. Die Auswahl, welche der gespeicherten
Werte am Ausgang erscheint, erfolgt durch Anlegen eines 4 bit breiten Wertes an die Ein-
gänge der LUT.

Möchte man eine LUT aus digitalen Grundelementen aufbauen, kann dies beispiels-
weise mithilfe von D-Flip-Flops und einem Multiplexer erfolgen. Ein Beispiel für eine
Realisierung einer solchen LUT ist in Abb. 9.4 dargestellt. Dabei wird auf eine genauere
Darstellung der Logik zum Schreiben der gespeicherten Werte aus Gründen der Über-
sichtlichkeit verzichtet.

Y2 = P1 ∨ P3 = (X1&X2&X3) ∨ (X1&X2)

Abb. 9.4   Implementierung
einer Lookup-Tabelle mit
D-Flip-Flops

D Q

C

D Q

C

D Q

C

D Q

C

4:1
MUX

Lo
gi

k
zu

r
B

es
ch

re
ib

en
 d

er
 D

F
F

s

Q

I1
I2

9.1  Grundkonzepte programmierbarer Logik

268 9  Programmierbare Logik

Auch mithilfe einer LUT-basierten Implementierung lassen sich also beliebige logi-
sche Funktionen realisieren, sofern die Anzahl der LUT-Eingänge ausreichend groß
gewählt ist.

In Abb. 9.5 ist die Realisierung eines UND- und eines ODER-Gatters auf Basis der
LUT mit zwei Eingängen dargestellt. Für alle möglichen Kombinationen der Eingänge
I0 und I1 werden die entsprechenden Ausgangswerte in den Flip-Flops abgespeichert
(0,0,0,1 für ein UND-Gatter und 0,1,1,1 für ein ODER-Gatter). Der Multiplexer wählt
anhand der Eingangswerte I0 und I1 einen der vier Flip-Flop-Ausgänge aus. In dem Bei-
spiel in Abb. 9.5 liegen am Eingang der LUT die Werte 1 und 0 an. Hiermit wird das
zweite Flip-Flop ausgewählt, in dem im Fall einer UND-Verknüpfung eine 0 beziehungs-
weise im Fall eines ODER-Gatters eine 1 abgelegt ist.

Besitzt die zu realisierende Funktion mehr Eingänge als die verwendeten LUTs,
müssen mehrere LUTs durch Parallelschaltung und Kaskadierung kombiniert werden.
Welche LUTs wie kombiniert werden müssen, hängt von der zu implementierenden logi-
schen Funktion ab.

Ein programmierbarer Logikbaustein auf Basis von LUTs muss also neben den pro-
grammierbaren LUTs auch konfigurierbare Verbindungen zwischen den einzelnen LUTs
zur Verfügung stellen. So können dann auch komplexe Funktionen, bei denen mehrere
LUTs kombiniert werden müssen, mithilfe des Bausteins realisiert werden.

D Q

C

D Q

C

D Q

C

D Q

C

0

0

0

1

1
0

0

D Q

C

D Q

C

D Q

C

D Q

C

0

1

1

1

1
0

1

UND ODER

Abb. 9.5   LUT-basierte Realisierung eines UND- und eines ODER-Gatters

269

Das in diesem Abschnitt skizzierte Prinzip der LUT-basierten Implementierung in
Kombination mit einem programmierbaren Verdrahtungskonzept setzen die Field Pro-
grammable Gate Arrays (FPGA) ein. Reale FPGAs realisieren die Speicherelemente der
LUTs zur Reduktion der benötigten Chipfläche auf Basis von speziellen Speichertechno-
logien (zum Beispiel SRAM). Eine detailliertere Diskussion der FPGA-Technologie ist
in Abschn. 9.4 zu finden.

9.2	� Simple Programmable Logic Device (SPLD)

Die ersten programmierbaren Bausteine wurden bereits 1971 von der Firma Monoli-
thic Memories Inc. entwickelt und unter dem Namen PAL (Programmable Array Logic)
vermarktet. Heute werden diese Bausteine und ihre Nachfolger häufig auch als Simple
Programmable Logic Device (SPLD) bezeichnet. Mit diesen Bausteinen lassen sich
kombinatorische Schaltungen in disjunktiver Form realisieren.

Die Eingangssignale werden hierzu in einer Eingangsstufe verstärkt und in negierter
und nicht-negierter Form für die weitere Verarbeitung zur Verfügung gestellt. Die auf-
bereiteten Eingangsgrößen werden einem UND-Array zugeführt, welches die benötigten
Produktterme berechnet. Eine feste Verdrahtung der UND-Ausgänge mit den ODER-
Eingängen sorgt für die gewünschte disjunktive Verknüpfung der Produktterme. Die
Grundstruktur eines PALs entspricht also den in Abschn. 9.1.1 dargestelltem Ansatz
einer zweistufigen disjunktiven Logikimplementierung, bei der die Programmierbarkeit
durch konfigurierbare Verbindungen im UND-Array erreicht wird, während das ODER-
Feld festverdrahtet ist.

Darüber hinaus bieten die Bausteine die Möglichkeit, einige der Ausgänge wahlweise
auch als Eingang zu nutzen. So können auch komplexere Funktionen, die eine höhere
Anzahl an Eingangssignalen benötigen, mithilfe des Bausteins realisiert werden. Die
Ausgänge werden hierzu mit Tri-State-Treibern versehen, deren Ausgänge durch eine
entsprechende Programmierung des Bausteins in einen hochohmigen Zustand versetzt
werden können. An diesen Anschlüssen können dann Eingangssignale angelegt werden,
deren Werte ebenfalls im UND-Feld verarbeitet werden können.

Die Grundstruktur eines PAL-Bausteins mit Eingängen (I), Ausgängen (O) und Ein-/
Ausgängen (I/O) ist in Abb. 9.6 dargestellt.

Da mithilfe derartiger Bausteine auch endliche Automaten realisiert werden sollen, ist
es sinnvoll, die hierfür notwendigen Register auf dem Chip vorzusehen. Daher wurden
neben PALs mit der in Abb. 9.6 gezeigten Struktur auch Bausteine entwickelt, die bereits
D-Flip-Flops enthalten. Die Grundstruktur eines solchen Bausteins zeigt Abb. 9.7.

Eine besondere Eigenschaft von PALs ist es, dass eine einmal programmierte Funk-
tion nicht modifiziert werden kann. Dieser Nachteil wurde mithilfe der sogenannten
GALs (Generic Array Logic) vermieden. Das Grundprinzip dieser Bausteine ist aller-
dings sehr ähnlich. Teilweise können GALs auch als Ersatz für PALs eingesetzt werden.

9.2  Simple Programmable Logic Device (SPLD)

270 9  Programmierbare Logik

Die Bedeutung von PALs und GALs ist in den letzten Jahren zurückgegangen und sie
werden in Neuentwicklungen meist nicht mehr eingesetzt. Obwohl die Bausteine noch
angeboten werden, haben einige Hersteller die Bausteinfamilien bereits abgekündigt.
Statt der PALs werden heute meist die im nachfolgenden Abschnitt vorgestellten CPLDs
verwendet (Tab. 9.1).

Abb. 9.6   Struktur eines PAL-
Bausteins I1

UND/ODER-

Feld

Ik

EN
I/O1

EN
I/Om

EN
O1

EN
On

Abb. 9.7   Grundstruktur
eines programmierbaren
Logikbausteins mit UND/
ODER-Struktur und Registern

I1

UND/ODER-
Feld

Ik

EN
I/O11D

C1

Q

EN
I/Om1D

C1

Q

Clk

Tab. 9.1   Beispiele einiger PAL-Bausteine

Bezeichnung Anzahl Eingänge Anzahl Ein-/Ausgänge Anzahl Minterme je Ausgang
Ohne Register Mit Registern

PAL16L8 10 8 0 7

PAL16R4 8 4 4 7

PAL16R8 8 0 8 7

PAL20R8 12 0 8 8

271

9.3	� Complex Programmable Logic Device (CPLD)

Eine Weiterentwicklung des PLA-Konzeptes stellen die sogenannten Complex Pro-
grammable Logic Devices (CPLDs) dar. Viele dieser Bausteine bedienen sich dem
PLA-Konzept und kombinieren mehrere PLA-Blöcke mit einer programmierbaren Ver-
bindungsmatrix, die es ermöglicht, die Ausgänge eines PLA-Blocks mit den Eingängen
eines anderen Blocks zu verbinden. Auf diese Weise ist die Implementierung der logi-
schen Funktion nicht allein auf die disjunktive Form beschränkt. Es können auch meh-
rere disjunktive Stufen kaskadiert werden. Dies kann insbesondere bei komplexeren
Funktionen zu einer günstigeren Realisierung führen.

Die Grundstruktur eines CPLDs ist in Abb. 9.8 dargestellt. Neben den programmierba-
ren UND/ODER-Strukturen (PLA) besitzen CPLDs sogenannte Makrozellen (Macro Cell,
MC). Die Makrozellen können als eine Erweiterung der Registerstufen einfacher PLA-
Bausteine aufgefasst werden. Der schematische Aufbau der Makrozelle eines CPLDs der
Coolrunner-II-Serie (Fa. Xilinx) ist in Abb. 9.9 dargestellt. Der Kern der Makrozelle ist
ein D-Flip-Flop, dessen D-Eingang mit der PLA-Struktur verbunden ist. Mithilfe eines
Exklusiv-Oder-Gatters kann entschieden werden, ob der durch die UND/ODER-Struktur
berechnete Term nicht-invertiert oder invertiert an das D-Flip-Flop weitergereicht wird.
Die Rückführung des Terms in die Verbindungsmatrix kann sowohl asynchron (Abgriff
vor dem Flip-Flop) oder synchron (Abgriff hinter dem Flip-Flop) erfolgen. Ebenso kann
für die Ausgabe eines Wertes ausgewählt werden, ob diese asynchron oder synchron erfol-
gen soll. Das Flip-Flop der dargestellten Makrozelle besitzt Enable-, Set- und Reset-Ein-
gänge, die ebenfalls mithilfe der PLA-Struktur angesteuert werden.

In der Praxis stellt sich die Frage, welcher CPLD-Baustein zur Lösung eines konkret
vorliegenden Problems geeignet ist. Neben der benötigten Anzahl an Ein- und Ausgängen
spielt hierbei auch die Frage, wie viele Gatter durch ein bestimmtes CPLD ersetzt werden

PLA

MC
MC

MC

I/O

PLA

MC
MC

MC

I/O

PLA

MC
MC

MC

I/O

PLA

MC
MC

MC

I/O

P
ro
gr
am

m
ie
rb
ar
e

V
er
bi
nd

un
gs

m
at
rix

Clk

Clk

Abb. 9.8   Struktur eines CPLDs auf PLA-Basis

9.3  Complex Programmable Logic Device (CPLD)

272 9  Programmierbare Logik

können, eine wichtige Rolle. Die Antwort auf diese Fragestellung lässt sich häufig nicht
alleine durch den Blick auf die Architektur eines CPLDs beantworten. Passt die zu imple-
mentierende Funktion nur schlecht zu der im CPLD-Baustein vorgegebenen Struktur,
wird die Realisierung ineffizient sein, so dass viele Teile der verfügbaren CPLD-Res-
sourcen nicht genutzt werden können. Daneben hat auch die Effizienz der Synthesepro-
gramme, die zum Umsetzen der in VHDL beschriebenen Funktion verwendet werden,
einen nicht unerheblichen Einfluss auf das Ergebnis. In der Praxis wird man daher, sofern
nicht auf Erfahrungswerte aus ähnlich gelagerten Fällen zurückgegriffen werden kann,
vor der finalen Auswahl eines CPLD Bausteins mehrere Syntheseläufe ausführen, um so
den Ressourcenverbrauch für unterschiedliche Bausteine abschätzen zu können.

Tab. 9.2 fasst exemplarisch einige wichtige Parameter der CPLD-Familie CoolRun-
ner-II der Firma Xilinx zusammen.

CPLDs werden von mehreren Herstellern angeboten. Die wichtigsten sind Xilinx,
Altera, Lattice, MicroSemi und Atmel. Einige Anbieter, wie die Firmen Altera oder Lat-
tice, setzen als Alternative zu dem hier vorgestellten PLA-basierten Konzept eine LUT-
basierte Realisierung ein, die bis vor einigen Jahren hauptsächlich im Bereich der im
nachfolgenden Abschnitt beschriebenen FPGAs zu finden war.

P
ro
gr
am

m
ie
rb
ar
es

U
N
D
-F
el
d

Weitere Signale, z.B. zum
asynchronen Setzen oder

Rücksetzen des D-Flip-Flops

=1
1

Programmierbares
ODER-Feld

D Q

C

EN

R
S

MUX

zum
I/O-Block

zur
Verbindungsmatrix

Abb. 9.9   Schematischer Aufbau einer Makrozelle

Tab. 9.2   Parameter der CPLD-Familie CoolRunner-II (Xilinx)

Baustein
XC2C32A XC2C64A XC2C128 XC2C256 XC2C384 XC2C512

Makrozellen 32 64 128 256 384 512

Max. I/Os 33 64 100 184 240 270

Max. Taktfrequenz
Fsystem (MHz)

323 263 244 256 217 179

273

Um einen Vergleich mit PLA-basierten CPLDs zu unterstützen geben die Hersteller
zum Teil an, wie vielen Makrozellen ein CPLD entspricht. Als ein Beispiel hierfür sind
in Tab. 9.3 einige Parameter der MAX V Serie der Firma Altera angegeben. Das Kernele-
ment dieser CPLDs ist ein Logic Element (LE). Ein Logic Element enthält eine LUT mit
4 Eingängen, ein Flip-Flop sowie Logik zum Setzen oder Rücksetzen des Flip-Flops.

9.4	� Field Programmable Gate Arrays

Der Begriff Gate Array bezeichnete ursprünglich Bausteine, die aus einem großen Feld
vorgegebener Logikgatter bestand. Die Verdrahtung der Gatter, und damit die zu reali-
sierende logische Funktion, konnte vom Kunden festgelegt werden. Die Verdrahtung
der Gatter wurde dann im Auftrag des Kunden in einer Halbleiterfabrik realisiert. Auch
die Funktion der heute üblichen Form der Gate-Arrays, die Field Programmable Gate
Arrays, kann durch den Anwender festgelegt werden. Da die Programmierung elektrisch
erfolgt, sind keine zeitaufwendigen Produktionsschritte in einer Halbleiterfabrik erfor-
derlich: Mithilfe eines Programmiergerätes kann die gewünschte logische Funktion in
wenigen Sekunden auf ein FPGA geladen werden. Da FPGAs zu attraktiven Preisen
angeboten werden, haben Sie sich in vielen Bereichen durchgesetzt. Im Folgenden wer-
den die Grundkonzepte dieser Bausteine näher vorgestellt.

9.4.1	� Allgemeiner Aufbau eines FPGAs

Wie bei anderen programmierbaren Logikbausteinen lässt sich die digitale Funktion
eines FPGAs im Feld programmieren. Ein wesentliches Merkmal von FPGAs ist es, dass
sich deutlich komplexere Funktionen realisieren lassen, als dies mit PALs oder CPLDs
möglich wäre. Auch im Hinblick auf die technische Realisierung der „Programmierbar-
keit“ unterscheiden sich FPGAs von vielen CPLDs. Während einfache Logikbausteine
(hierzu zählen wir auch CPLDs) im Kern eine zweistufige UND/ODER-Struktur einset-
zen, basieren FPGAs auf einer tabellenbasierten Implementierung.

Tab. 9.3   Parameter der CPLD-Familie MAX V (Altera)

Baustein
5M40Z 5M80Z 5M160Z 5M240Z 5M570Z 5M1270Z 5M2210Z

Logic Elements 40 80 160 240 570 1270 2210

Äquiv. Makrozellen 32 64 128 192 440 980 1700

Max. I/Os 54 79 79 114 159 271 271

Verzögerungszeit,
pin-to-pin (ns)

7,5 7,5 7,5 7,5 9,0 6,2 7,0

9.4  Field Programmable Gate Arrays

274 9  Programmierbare Logik

Die Grundidee eines FPGAs ist relativ einfach: Man realisiert einen Baustein, der
viele kleine Logikblöcke enthält, in denen sich programmierbare Lookup-Tabellen
(LUTs) befinden. Jede LUT besitzt beispielsweise vier Eingänge und einen Ausgang.
Die spätere Programmierung der LUTs legt fest, nach welcher logischen Funktion der
Ausgangswert aus den Eingängen berechnet werden soll. Da für die Implementierung
eines digitalen Systems auch Flip-Flops benötigt werden, enthalten die Logikblöcke
auch Flip-Flops. Meist sind die gleiche Anzahl an LUTs und Flip-Flops vorhanden, da
dies dem Bedarf in praktischen Schaltungen entspricht. Dabei wird jeder LUT ein FF
zugeordnet, so dass der Ausgangswert einer LUT auch innerhalb eines Logikblocks
gespeichert werden kann.

Für die Verbindungen zwischen den Logikblöcken wird ein Verbindungsnetzwerk ein-
gesetzt. Die Programmierbarkeit des Verbindungsnetzwerkes wird durch programmier-
bare Schalter erreicht (Switch Matrix). Die Funktionsweise des Verbindungsnetzwerkes
kann man mit Gleisen einer Eisenbahn vergleichen: Sollen Daten von einem Logikblock
an einen bestimmten anderen Logikblock gesendet werden, werden die „Weichen“ inner-
halb des Netzwerkes so programmiert, dass eine elektrische Verbindung zwischen den
beiden Logikblöcken hergestellt wird. Im Gegensatz zu einer Eisenbahnverbindung wer-
den die Weichen nicht dynamisch im Betrieb umgeschaltet, sondern sie werden nach
dem Einschalten einmalig für die gewünschte logische Funktion konfiguriert.

Durch die Programmierbarkeit der Logik-Blöcke und des Verbindungsnetzwerkes,
können komplexe logische Funktionen durch die Kombination mehrerer LUTs umge-
setzt werden. Die maximale Komplexität der Gesamtfunktion ist natürlich durch die
Anzahl der verfügbaren Logikblöcke begrenzt.

Darüber hinaus ist es natürlich auch denkbar, dass das Verdrahtungsnetzwerk der limi-
tierende Faktor einer FPGA-basierten Systemimplementierung ist, wenn eine sehr auf-
wendige Signalverdrahtung benötigt wird. In diesem Fall können nicht alle vorhandenen
LUTs genutzt werden.

Neben den Logikblöcken und dem Verbindungsnetzwerk enthalten FPGAs auch
Ein-/Ausgabeblöcke (IO-Blocks oder kurz IOBs). Mithilfe dieser Blöcke kann unter ande-
rem eine Anpassung von Logikpegeln erfolgen. Arbeitet ein FPGA beispielsweise mit
einer internen Versorgungsspannung von 1,8 V, können die Pegel der internen Signale mit-
hilfe der IOBs so angepasst werden, dass sie auch Bausteinen mit einer Versorgungsspan-
nungsspannung von 3,3 V zugeführt werden können. Daneben stehen in den IOBs auch
Funktionen zur Verfügung, die für eine besonders schnelle Ein-/Ausgabe hilfreich sein
können. Ein Beispiel hierfür sind IOB-interne Parallel-Seriell-Wandler, die auf Schiebe-
registern basieren (Serializer). Ausgabedaten werden von den Logikblöcken parallel (zum
Beispiel 4 oder 8 bit) an die IOBs herangeführt. Innerhalb des IOBs werden die Daten
„serialisiert“, das heißt Bit für Bit am äußeren Anschluss des FPGAs ausgegeben. Auf
diese Weise kann eine hohe Datenrate am Ausgang des FPGAs realisiert werden, obwohl
die Implementierung der logischen Funktion innerhalb des FPGAs vergleichsweise lang-
sam ist. Für die Eingabe können De-Serializer eingesetzt werden, welche die Daten seriell
einlesen und für die FPGA-interne Logik in paralleler Form zur Verfügung stellen.

275

Die Grundstruktur eines FPGAs, das aus Logik-Blöcken, IO-Blöcken und einem Ver-
bindungsnetzwerk besteht, ist in Abb. 9.10 dargestellt.

Der Aufbau eines einfachen Logikblocks ist in Abb. 9.11 dargestellt. Die meisten
Eingänge und Ausgänge sind mit dem Verbindungsnetzwerk verbunden. Darüber hinaus
existieren die Anschlüsse CIN und COUT, die mit dem Block Carry/Control-Logic ver-
bunden sind. Mithilfe dieser Anschlüsse und der zugehörigen Logik wird ein besonders
schneller Durchlauf der Übertragsbits eines Addierers ermöglicht. Mithilfe dieser beson-
deren Carry-Logik kann die Verzögerungszeit der Addition deutlich reduziert werden.

Abb. 9.10   Prinzipieller
Aufbau eines FPGAs

LB

LB

LB

LB

LB

LB

LB LBLB

IOB IOB IOB IOB

IOB

IOB IOB IOB IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IO-Blöcke Logikblöcke
Verbindungs-

netzwerk

Abb. 9.11   Aufbau eines
Logikblocks

1D

C1

Q

EN,R,S

Carry/
Control
Logic

LUT

vo
m

 V
er

bi
nd

un
gs

ne
tz

w
er

k

zu
m

 V
er

bi
nd

un
gs

ne
tz

w
er

k

CIN

COUT

9.4  Field Programmable Gate Arrays

276 9  Programmierbare Logik

9.4.2	� Taktverteilung im FPGA

In digitalen Systemen werden die Datenausgabe und die Datenübernahme der Flip-Flops
mithilfe von Taktsignalen gesteuert. Im Idealfall „sehen“ alle Flip-Flops eines Systems
zum gleichen Zeitpunkt die steigende Flanke eines Taktsignals. In der Praxis lässt sich
dieser Idealfall nicht realisieren, da Taktsignale, wie alle anderen Signale, über Leitun-
gen des Chips an die Flip-Flops herangeführt werden müssen. Reale Leitungen besitzen
eine Verzögerungszeit, so dass Flip-Flops, die nah an einer Taktquelle platziert sind, eine
steigende Flanke etwas eher sehen als ein Flip-Flop, das am Ende einer Taktleitung liegt.

Dass dies ein potentielles Problem für die Realisierung eines Systems darstellen kann,
macht folgendes Beispiel deutlich: Nehmen wir vereinfachend an, dass die verwendeten
D-Flip-Flops eine Setup-Zeit und ein Clock-to-Q-Delay (also die Zeit, die benötigt wird, um
nach der steigenden Taktflanke den im Flip-Flop gespeicherten Wert am Ausgang zur Ver-
fügung zu stellen) von jeweils 1 ns besitzen. Nehmen wir weiterhin an, die Logik und die
Verdrahtung zwischen zwei derartigen Flip-Flops habe eine Verzögerungszeit von 3 ns. Mit
diesen Werten würde sich eine minimale Taktperiode von 1 ns + 1 ns + 3 ns = 5 ns ergeben.
Dieses System kann also bei idealer Taktverteilung mit maximal 200 MHz betrieben werden.

Erhält das zweite Flip-Flop die steigende Flanke früher als das erste Flip-Flop, ver-
größert sich die maximale Periodendauer entsprechend, da das empfangende (zweite)
Flip-Flop bereits früher stabile Daten am Eingang erwartet. Nehmen wir an, die zeitliche
Verschiebung des Taktsignals (im Fachjargon auch Clock Skew genannt) betrage 2 ns.
Dann würde sich die minimale Taktperiode um diese 2 ns auf 7 ns erhöhen und damit die
maximale Taktfrequenz des Systems auf etwa 140 MHz absinken.

Was kann man also tun? Nun, die Signalverzögerungen beruhen auf physikalischen
Gesetzen und können daher nicht eliminiert oder umgangen werden. Aber ein ers-
ter Schritt zur Problemlösung ist es, die Verzögerungen des Taktsignals innerhalb des
Chips zu kennen. Auf Basis dieser Kenntnis kann für jedes Flip-Flop, dessen Ausgang
mit einem anderen Flip-Flop verbunden ist, die Verzögerung des Taktsignals abgeschätzt
und bei der Logik-Synthese entsprechend berücksichtigt werden. Aber natürlich löst
dies noch nicht das eigentliche Problem, dass große Verzögerungen des Taktsignals zu
einer signifikanten Reduktion der Systemfrequenz und damit der Rechenleistung führen
können. Um dieses zu Problem zu reduzieren, setzen FPGAs spezielle Verbindungsnetz-
werke zur Verteilung der Taktsignale ein. Ein Beispiel für den Aufbau eines Taktnetz-
werks mit zentralen Taktreibern ist in Abb. 9.12 dargestellt.

Die Taktsignale werden baumartig im System verteilt. Auf diese Weise wird erreicht,
dass der Clock-Skew in einem akzeptablen Rahmen gehalten werden kann und es kann
davon ausgegangen werden, dass Flip-Flops, die sich in örtlicher Nähe befinden, in etwa
das gleiche zeitliche Verhalten des Taktes sehen. Werden zwei Flip-Flops, die weit vonei-
nander entfernt liegen, miteinander verbunden, kann hierbei natürlich weiterhin ein sig-
nifikanter Clock-Skew auftreten. So sehen zum Beispiel Flip-Flops, die in der Nähe der
Takttreiber liegen, die steigende Flanke deutlich eher als Flips-Flops, die in den Ecken
des FPGAs platziert sind.

277

Mit Fortschreiten der Halbleitertechnologie wird dieses Problem verschärft: Einer-
seits steigen die erzielbaren Taktfrequenzen kontinuierlich an, wodurch die Verzögerun-
gen durch das Taktverteilungsnetzwerk immer deutlicher spürbar werden. Andererseits
werden die geometrischen Abmessungen der Leitungen kleiner, was zu einem höheren
Widerstand und damit zu langsameren Pegelwechseln führt. Um den Nachteil der zentra-
len Taktpufferung zu reduzieren, werden in modernen FPGAs Taktreiber eingesetzt, die
über den Chip verteilt sind. Auf diese Weise wird die Leitungslänge zwischen Takttreiber
und Takteingang der Flip-Flops reduziert und damit der Clock-Skew deutlich reduziert.

Aus diesen Erläuterungen zum Aufbau des Taktnetzwerkes ergibt sich auch, dass man
niemals ein Taktsignal aus einer logischen Funktion heraus generieren sollte, da die-
ses Taktsignal nicht über das Taktnetzwerk geführt werden kann und somit signifikante
Clock-Skew-Probleme die Folge sein können. Da das Taktsignal über Gatter geführt
wird, wird dies in der Praxis auch als Gated Clock bezeichnet. Insbesondere Anfängern
im FPGA-Design unterläuft nicht selten der Fehler, dass versehentlich Gated Clocks in
einem VHDL-Entwurf realisiert werden, indem zum Beispiel ein Ausgangssignal eines
Moduls einfach mit dem Takteingang eines anderen Moduls verbunden wird. Syntak-
tisch ist dies völlig korrekt und auch in der Simulation der Schaltung wird man häufig
keine unerwarteten Ergebnisse sehen. Um das Risiko zu minimieren, dass versehent-
lich Gated Clocks in einem VHDL-Entwurf eingebaut werden, sollten die Takteingänge
aller VHDL-Module mit einem (wenn im System nur ein Takt verwendet wird: mit dem
gleichen) Taktsignal verbunden werden. Jegliche logische Verknüpfungen (und seien sie
noch so simpel) eines Taktsignals mit anderen Signalen sollten vermieden werden.

9.4.3	� Typische Spezialkomponenten

Um die Implementierung von logischen Funktionen besser zu unterstützen, enthalten
heutige FPGAs vielfach Spezialkomponenten, die zusätzlich zu den Logikblöcken für

Abb. 9.12   Taktnetzwerk mit
zentralen Takttreibern

Takt-Treiber

9.4  Field Programmable Gate Arrays

278 9  Programmierbare Logik

die Implementierung eines Systems verwendet werden können. In diesem Abschnitt wer-
den die wichtigsten dieser Elemente kurz vorgestellt.

Mit Spezialkomponenten wird das Ziel verfolgt, eine bestimmte häufig genutzte
Funktion möglichst effizient zur Verfügung zu stellen. Die Instanziierung dieser Module
wird häufig von den Designtools unterstützt.

9.4.3.1 � Speicherelememente
In vielen Fällen ist für die Realisierung eines Systems auch die Speicherung von Daten
erforderlich. Wird eine sehr große Speicherkapazität benötigt, ist in der Regel ein exter-
ner Speicher außerhalb des FPGAs unvermeidbar. Ist der benötigte Speicherbedarf
jedoch kleiner, ist eine Speicherung der Daten innerhalb des FPGAs wünschenswert, da
so schneller und flexibler auf die Daten zugegriffen werden kann.

Da eine LUT letztlich auch ein kleiner Speicher ist, liegt die Idee nahe, die verfüg-
baren LUTs zu einem Speicher mit der benötigten Kapazität zu verbinden. Dieses Prin-
zip wird von FPGAs unterstützt und man spricht in diesem Fall von verteiltem Speicher
(Distributed Memory). Der Nachteil dieses Ansatzes ist, dass die wertvollen Ressourcen
der Logikblöcke für die Speicherung von Daten eingesetzt werden und nicht mehr für die
Implementierung von logischen Funktionen zur Verfügung stehen.

Daher bieten heutige FPGAs auch Speicher in Form von sogenanntem Block-RAM an.
Hierbei handelt es sich um mehrere kleine Speicher (meist in der Größe weniger kByte),
die auf dem FPGA-Chip verteilt sind. Der Vorteil von Block-RAM ist, dass die erziel-
bare Speicherdichte, also Bits pro Siliziumfläche, um ein Vielfaches größer ist als bei
der Verwendung von Distributed Memory. Daher bietet sich die Verwendung von Block-
RAM immer dann an, wenn ein größerer Speicher benötigt wird beziehungsweise die
Ressourcen zur Implementierung von Logik knapp sind.

Um den Speicher für verschiedene Anwendungen möglichst gut nutzen zu können,
ist die Wortbreite der Block-RAMs konfigurierbar. Beispielsweise besitzen die Block-
RAMs der Cyclone-V-FPGAs (Fa. Altera) eine Größe von 9 kbit. Der Speicher kann mit
Wortbreiten zu 1, 2, 4, 8, 9, 16, 18, 32 oder 36 genutzt werden, wobei die maximale
Anzahl der Worte immer eine Zweierpotenz ist. Da die Gesamtkapazität festliegt, nimmt
die maximale Anzahl der Speicherworte mit der Wortbreite ab. So kann ein einzelner
dieser Speicher zum Beispiel 8192 Worte mit einer Breite von 1 bit aufnehmen oder
aber auch für die Speicherung von 512 16-Bit-Worten genutzt werden. Wortbreiten von
9, 18 und 36 bit werden unterstützt, da diese in der Kommunikationstechnik verwendet
werden.

FPGA-internes Block-RAM wird meist als Dual-Port-Speicher implementiert, der
zwei Schreib-/Leseanforderungen gleichzeitig bearbeiten kann. Diese Eigenschaft ist
zum Beispiel dann vorteilhaft, wenn ein Modul Daten generiert, die vor der Verarbeitung
durch ein zweites Modul zwischengespeichert werden müssen. Beide Module können
dann unabhängig voneinander auf den Speicher zugreifen. Eine Arbitrierungslogik, die
festlegt welches der beiden Module auf den Speicher zugreifen darf, kann dann entfallen.

279

9.4.3.2 � Arithmetische Module
Eine häufig benötigte arithmetische Operation ist die Multiplikation. Daher beinhalten
die meisten aktuellen FPGAs spezielle Multiplizierer-Module, die gegenüber einer LUT-
basierten Implementierung der Multiplikation den Vorteil einer geringeren Verzögerungs-
zeit bieten. Darüber hinaus kann durch die Verwendung der Hardware-Multiplizierer die
Anzahl der benötigten Logikblöcke reduziert werden.

In modernen FPGAs wird das Konzept zur Unterstützung arithmetischer Funktio-
nen häufig erweitert und es stehen nicht nur Multiplizierer zur Verfügung. Der FPGA-
Hersteller Xilinx bietet beispielsweise sogenannte „DSP-Slices“ an. Hierbei handelt es
sich um Module, die neben einem Multiplizierer auch einen Addierer und einen Akku-
mulator enthalten. Mithilfe dieser Module sollen insbesondere Anwendungen der digi-
talen Signalverarbeitung (Digital Signal Processing, DSP) unterstützt werden.

Die meisten angebotenen arithmetischen Module sind für die Verarbeitung von gan-
zen Zahlen ausgelegt. Einige FPGA-Serien, wie zum Beispiel Stratix-10 der Firma
Altera, stellen auch Spezialhardware zur Verarbeitung von Gleitkommazahlen bereit.

9.4.3.3 � Takterzeugung
FPGAs enthalten meist auch Komponenten zur Erzeugung von intern verwendeten Takt-
signalen. Diese Komponenten beinhalten meist eine Phasenregelschleife (engl. Phase-
Locked Loop, PLL), die es ermöglicht, aus einem Eingangstaktsignal Ausgangssignale
zu erzeugen, deren Frequenz und Phasenlage aus dem Eingangssignal abgeleitet wird.
Teilweise kommen auch DLLs (Delay-Locked Loop) zum Einsatz.

Die Quelle des Eingangstaktes einer PLL kann entweder ein von außen zugeführtes
Signal oder ein bereits im FPGA (zum Beispiel durch eine weitere vorgeschaltete PLL)
vorhandenes Taktsignal sein.

Die PLLs der meisten FPGAs erlauben die gleichzeitige Erzeugung mehrerer Takt-
signale aus einem einzelnen Eingangstakt, wobei die Frequenzen der erzeugten Signale
sowohl kleiner als auch größer als die Frequenz des Eingangstaktes sein können. Neben
der einfachen Erzeugung unterschiedlicher Systemtaktsignale können die PLLs auch zur
Synchronisierung des externen Taktsignals mit den intern verwendeten Takten verwendet
werden. Dies ist insbesondere dann hilfreich, wenn die Eingangsdaten des FPGAs syn-
chron zur Verfügung gestellt werden.

Das Blockschaltbild einer PLL zeigt Abb. 9.13. Die Phasenlage eines von außen zuge-
führten Taktes wird mit einem Referenztakt verglichen. Mithilfe einer Regelung wird ein
analoges Signal erzeugt, welches einem spannungsgesteuerten Oszillator (Voltage-Cont-
rolled-Oscillator, VCO) zugeführt wird. Durch Teilung des Oszillatortaktes werden die
Ausgangssignale der PLL sowie der zum Phasenvergleich zurückgeführte Referenztakt
erzeugt.

9.4.3.4 � Spezialisierte Peripheriemodule
Viele FPGAs bieten spezielle Peripheriemodule an, die Schnittstellen mit besonders kri-
tischen Zeitanforderungen besitzen. Ein typisches Beispiel für derartige Module sind

9.4  Field Programmable Gate Arrays

280 9  Programmierbare Logik

Speicher-Controller. In älteren FPGA-Generationen musste die Speicheranbindung
noch mithilfe der Standard-FPGA-Ressourcen (Logikblöcke, IO-Blöcke) erfolgen. Dass
hierbei wertvolle Ressourcen für eine standardisierte und häufig benötigte Funktion
eingesetzt werden müssen, ist eher ein untergeordnetes Problem. Viel schwerwiegen-
der ist häufig das Problem, dass die maximalen Taktfrequenzen, und damit die erziel-
bare Speicherbandbreite, bei einer Implementierung mit den üblichen FPGA-Ressourcen
begrenzt sind. Um die hohen Datenraten wie sie von modernen Speicherbausteinen ange-
boten werden, auch für ein FPGA-basiertes Design nutzbar zu machen, werden spezi-
alisierte Speichercontroller benötigt. Diese Komponenten sind für die Anbindung von
externem Speicher optimiert und unterstützen Datenraten von mehreren GByte/s, die
sich mithilfe von Logikblöcken nicht realisieren ließen. In einem beschränkten Umfang
können diese Module konfiguriert werden. So sind zum Beispiel die Auswahl des Spei-
chertyps oder auch einige Eigenschaften der FPGA-internen Schnittstelle wählbar.

Ein anderes Beispiel für ein spezielles Peripheriemodul ist eine PCI Express (PCIe)
Schnittstelle. Der PCIe-Bus hat sich als wichtiger Standard für die Verbindung von Kom-
ponenten etabliert. Da die Implementierung einer PCIe-Schnittstelle besondere Anforde-
rungen (insbesondere im Hinblick auf das Zeitverhalten) stellt, ist eine Implementierung
mit Standard-FPGA-Ressourcen schwierig und aufwendig. Dieser Nachteil wird durch
die Bereitstellung von PCIe-Hard-Macros vermieden und die entsprechende Funktion
kann so effizienter und mit geringerem Aufwand implementiert werden.

9.4.3.5 � Prozessor-Subsysteme
Häufig besteht der Wunsch, Teile eines Systems „in Hardware“ auf einem FPGA, andere
Teile dagegen „in Software“ auf einem Mikroprozessor zu implementieren.

Natürlich kann ein Mikroprozessor auch mithilfe von Logikblöcken implementiert
werden. Die FPGA-Hersteller bieten hierzu entsprechende Prozessordesigns (zum Bei-
spiel NIOS der Firma Altera oder Microblaze der Firma Xilinx) mit den zugehörigen
Werkzeugen zur Softwareentwicklung an. Da diese Prozessoren mithilfe der flexibel ein-
setzbaren programmierbaren Logikkomponenten implementiert werden, werden sie auch
als Soft-Prozessoren bezeichnet. Allerdings gilt auch für diese Lösungen, dass ihre Effi-
zienz eher als moderat anzusehen ist.

Taktteiler

Phasen-
vergleicher

Regelung

Spannungs-
gesteuerter
Oszillator
(VCO) Taktteiler

E
in
ga

ng
st
ak

t

A
us

ga
ng

st
ak

te

Abb. 9.13   Aufbau einer PLL

281

Wäre es da nicht logisch, in einem FPGA neben den spezialisierten Hard-Makros
auch Prozessoren – oder am besten gleich ganze Prozessorsysteme – anzubieten?

Genau dieser Ansatz wird von einigen Herstellern verfolgt. So bieten zum Beispiel
die Firmen Xilinx und Altera Chips an, die neben einem FPGA-Teil auch Multikern-
Rechner-Systeme beinhalten. Die maximalen Taktfrequenzen, und damit die erzielbare
Rechenleistung dieser Systeme erreichen ein Vielfaches von dem der Soft-Prozessoren.
Da diese Chips nicht mehr als reine FPGAs anzusehen sind, werden sie von den Her-
stellern unter dem Begriff System-on-Chip (SoC) vermarktet. Dieser Begriff soll deutlich
machen, dass es sich um komplette Systeme handelt, deren Funktion sich als Kombina-
tion von Software (auf dem CPU-Subsystem) und Hardware (auf dem FPGA-Teil) fest-
legen lässt.

9.5	� FPGA-Familien

Der FPGA-Markt ist auf den ersten Blick relativ unübersichtlich. Es gibt unterschied-
liche Anbieter, wobei die Firmen Xilinx und Altera (inzwischen von der Firma Intel
übernommen) zusammen ca. 90 % des Marktes bedienen. Die Hersteller bringen
schritthaltend mit der Weiterentwicklung der Halbleitertechnik etwa alle 2 Jahre eine
neue Bausteingeneration heraus. Innerhalb dieser Generationen werden wiederum
unterschiedliche Familien angeboten, die FPGAs mit ähnlichen Grundeigenschaften
beinhalten, sich aber im Hinblick auf die Komplexität (Anzahl der Logikblöcke und
Hard-Makros, Größe des internen Speichers usw.) unterscheiden.

Die Bausteine einer Generation werden häufig in einer besonders preisgünstigen
„Low-Cost“-Familie und einer besonders leistungsstarken „High-Performance“-Familie
angeboten. Daneben werden teilweise auch „Mid-Range“-Familien angeboten, die einen
Mittelweg zwischen den beiden anderen Familien bieten (vgl. Tab. 9.4).

Durch die Fortschritte der Halbleitertechnologie steigt die Leistungsfähigkeit von
Generation zu Generation an. So bieten aktuelle Low-Cost-Familien teilweise Eigen-
schaften an, die den High-Performance-Familien zurückliegender Generationen ent-
sprechen. Tab. 9.5 fasst den Zeitpunkt der Einführung und die jeweils verwendete

Tab. 9.4   Auswahl einiger FPGA-Familien und ihre Marktpositionierung

Altera Familie Stratix Arria Cyclone

Altera Positionierung „High density, high
performance“

„Balance of
cost, power and
performance“

„Low system cost plus
performance“

Xilinx Familie Virtex Kintex Artix

Xilinx Positionierung „System performance“ „Price Performance
with low power“

„System performance
per Watt for cost sen-
sitive applications“

9.5  FPGA-Familien

282 9  Programmierbare Logik

Halbleitertechnologie für das Beispiel der High-Performance-Familie Stratix der Firma
Altera zusammen. Die jeweils verwendeten Produktionstechnologien entsprechen in
etwa denen, die auch bei der Produktion von anspruchsvollen Spitzenprodukten wie PC-
Prozessoren, zum Einsatz kommen. Genauso wie bei PC-Prozessoren wird also auch bei
der Produktion von FPGAs angestrebt, die neueste verfügbare Produktionstechnologie
einzusetzen.

9.5.1	� Vergleich ausgewählter FPGA-Familien

Innerhalb der Stratix-Familie werden unterschiedliche Bausteine angeboten. Eine Über-
sicht über die Eigenschaften dieser FPGAs ist in Tab. 9.6 zusammengefasst. Die Abkür-
zung ALM (Adaptive Logic Module) ist eine Hersteller-spezifische Abkürzung. Die
wesentlichen Elemente eines ALM sind eine LUT mit 7 Eingängen, Logik für schnelle
Addition und 4 Register.

Zum Vergleich zu der High-Performance-Familie Stratix 10 fasst Tab. 9.7 einige der
Eigenschaften von Vertretern der Familie Cyclone V zusammen.

Die interne Speicherkapazität lässt sich relativ leicht, auch über FPGA-Generationen
hinweg, vergleichen. Ein Vergleich der Logikelemente ist dagegen schwieriger, da der
Aufbau der programmierbaren Grundelemente von Generation zu Generation wechseln
kann. Ein einfacher Vergleich der Anzahl der ALMs ist nicht unbedingt zielführend, weil
sich ALMs unterschiedlicher Generationen in ihrem Aufbau unterscheiden können. Für
einen groben Vergleich unterschiedlicher Bausteine gibt die Firma Altera daher das Maß

Tab. 9.5   Zeitpunkt der Markteinführung und verwendete Halbleitertechnik der Stratix-Familie
(Fa. Altera)

Generation/Name Stratix Stratix II Stratix III Stratix IV Stratix V Stratix
10

Jahr der Einführung 2002 2004 2006 2008 2010 2013

Halbleitertechnologie(nm) 130 90 65 40 28 14

Tab. 9.6   Übersicht über einige Eigenschaften von ausgewählten FPGAs der Stratix-10-Familie

Bezeichnung GX500 GX1100 GX2500 GX5500

Anzahl ALMs 164.160 370.080 821.150 1.867.680

Anzahl Flip-Flops 656.640 1.480.320 3.284.600 7.470.720

Speicher (Mbit) 46 92 208 166

Arithmetik-Module für Signalverarbeitung 1.152 2.250 5.011 1.980

Multiplizierer (18 × 19 bit) 2.304 5.040 10.022 3.960

PCIe-Makros 1 2 6 3

283

Logic Elements (LE) an, das die verfügbaren ALMs in fiktive Grundelemente umrechnet.
Einige der angebotenen FPGAs der Firma Altera sind auch als „SoC-Varianten“ verfüg-
bar, die zusätzlich zum FPGA-Teil ein Multikern-CPU-Subsystem beinhalten.

Der Hersteller Xilinx verwendet zur Angabe der FPGA-Komplexität die Begriffe
Slice beziehungsweise Complex Logic Block (CLB). Ein CLB der „Ultrascale“-FPGAs
enthält beispielsweise 8 LUTs mit jeweils 6 Eingängen, Addiererlogik und 16 Flip-
Flops. Einige Parameter von Bausteinen der Kintex- beziehungsweise Virtex-Ultrascale-
Familie sind in Tab. 9.8 zusammengefasst.

Für besonders kostensensitive Systeme bietet Xilinx die Artix-7-Serie an. Diese ist
ähnlich positioniert wie die Cyclone-Serie von Altera. Ebenso wie Altera bietet auch die
Firma Xilinx Bausteine an, die CPU-Subsysteme enthalten. So enthält beispielsweise die
Zynq-7000-Serie ein Subsystem, das auf einem Zweikern-System basiert, während mit
der Zynq-Ultrascale + -Serie ein Prozessorsystem zum Einsatz kommt, das insgesamt
6 Prozessoren zur Verfügung stellt. Die CPUs dieser Serie werden durch Hard-Makros
unterstützt, die für Beschleunigung von 3D-Grafik- oder Videofunktionen ausgelegt sind,
so dass die anderen Ressourcen (FPGA-Teil oder Prozessoren) entlastet werden.

Obwohl in diesem Abschnitt bereits viele Zahlen präsentiert werden, welche
die Eigenschaften kommerziell angebotener FPGA-Familien beschreiben, ist diese

Tab. 9.7   Übersicht über einige Eigenschaften von ausgewählten FPGAs der Cyclone-V-Familie

Bezeichnung 5CGXC3 5CGXC5 5CGXC7 5CGXC9

Anzahl ALMs 13.460 29.080 56.480 113.560

Anzahl Flip-Flops 53.840 116.320 225.920 454.240

Speicher (Mbit) 1,6 4,8 7,6 13,8

Arithmetik-Module für Signalverarbeitung 57 150 156 342

Multiplizierer (18 × 18 bit) 114 300 312 684

PCIe-Makros 1 2 2 2

Tab. 9.8   Übersicht über einige Eigenschaften von ausgewählten FPGAs der Kintex- und der
Virtex-Ultrascale-Familie

Kintex Virtex

Bezeichnung KU035 KU060 KU115 XCVU065 XCVU125 XCVU440

Anzahl CLBs 25.391 41.460 82.920 44.760 89.520 316.620

Anzahl Flip-Flops 406.256 663.360 1.326.720 716.160 1.432.320 5.065.920

Block-RAM (Mbit) 19,0 38,0 75,9 44,3 88,6 88,6

Arithmetik-Module
für Signalverarbeitung
(DSP-Slices)

1.700 2.760 5.520 600 1.200 2.880

PCIe-Makros 2 3 6 2 4 6

9.5  FPGA-Familien

284 9  Programmierbare Logik

Darstellung nur ein kleines Schlaglicht auf das umfangreiche Angebot der FPGA-Her-
steller. Betrachtet man alleine die Anzahl der zur Verfügung gestellten Flip-Flops, so
liegt beispielsweise zwischen dem kleinsten Baustein der Cyclone-V-Serie und dem
größten Baustein der Stratix-10-Serie ein Faktor von etwa 140. Für den internen Spei-
cher (Block-RAM) beträgt das Verhältnis etwa 100. Vergleichbare Faktoren ergeben sich
auch für die Bausteine des Herstellers Xilinx.

Um die absoluten Zahlen einordnen zu können, kann folgendes Beispiel eines Sys-
tems zur Verarbeitung von Videosignalen dienen. Das System besitzt eine Kame-
raschnittstelle mit Anbindung zum externen Speicher, Module zur Verarbeitung der
Bilder (zweidimensionale Filter) in Echtzeit sowie eine Ausgabeeinheit mit Speicher-
anbindung, die zur Anzeige der verarbeiteten Kamerabilder auf einem Monitor dient.
Wird für die Implementierung dieses nicht ganz trivialen Systems ein Zynq-7000-SoC
der Firma Xilinx eingesetzt, werden etwa jeweils 3000 LUTs und Flip-Flops benötigt.
Selbst bei dem kleinsten in der Zynq-7000-Serie verfügbaren Baustein ist damit weniger
als 20 % der FPGA-Ressourcen belegt.

Dieses Beispiel macht deutlich, dass viele der heutigen FPGAs nicht für den Ersatz
von wenigen Gattern gedacht sind. Im Gegenteil: Sie ermöglichen die Realisierung
hochkomplexer Systeme, für deren Realisierung noch vor wenigen Jahren ASICs erfor-
derlich gewesen wären. Daher haben FPGAs den Einsatz von ASICs in vielen Bereichen
ersetzt. Die seit einigen Jahren verfügbare Kombination von der „hardwareprogrammier-
baren“ Logik mit leistungsfähigen „softwareprogrammierbaren“ Prozessor-Subsystemen
eröffnet weitere Möglichkeiten für den Einsatz der FPGA-Technologie.

Die bisher betrachteten FPGAs zielen auf die Realisierung von wesentlichen Teilen
eines Systems innerhalb der programmierbaren Logik. Ein anderer Ansatz wird mit den
besonders kleinen, kostengünstigen und energieeffizienten FPGAs der Hersteller Lattice
und Quicklogic verfolgt. So bietet beispielsweise Lattice die Serie Ice40 in den Varianten
Ultra und UltraLite an. Diese Bausteine besitzen eine relativ geringe Anzahl von Logik-
blöcken und bieten nur wenig Speicherkapazität. Der entscheidende Vorteil dieser Bau-
steine ist die geringe statische Stromaufnahme, die im Bereich von 30 bis 70 μA liegt.
Daher werden diese Bausteine bevorzugt in mobilen Geräten eingesetzt. Die FPGAs
werden zum Teil als sogenannte Glue Logic verwendet, also zur Realisierung logischer
Funktionen mit denen die Hauptkomponenten des Systems untereinander verbunden
werden. Daneben kann mithilfe dieser FPGAs auch der Hauptprozessor des Systems,
zum Beispiel bei Ein-/Ausgabe-Operationen, entlastet werden. Der Hauptprozessor kann
so bereits in einen Stromsparmodus wechseln während das FPGA noch mit der Ein-/
Ausgabe beschäftigt ist. Insgesamt wird so die Verlustleistung reduziert, da der relativ
energiehungrige Hauptprozessor länger im Stromsparmodus verweilen kann.

Als ein exemplarischer Vertreter von besonders energieeffizienten FPGAs sind
in Tab. 9.9 die wesentlichen Kennwerte der Ice40-Serie des Herstellers Lattice
zusammengefasst.

285

9.6	� Hinweise zum Selbststudium

In vielen Fällen werden die Programme zum Entwurf von FPGA-Systemen in kostenlo-
sen Varianten angeboten und können von Internetseiten der Hersteller heruntergeladen
werden. Für die Bedienung der Software bieten die Hersteller Online-Tutorials, Trai-
ningsvideos und eine umfangreiche Dokumentation an, die es ermöglichen, erste eigen-
ständige Schritte im Bereich des VHDL-Entwurfs für programmierbare Logikbausteine
durchzuführen.

Da der Entwurf einer FPGA-Platine eine herausfordernde Aufgabe ist, bieten sich für
eigene Experimente fertige Boards an, die teilweise auch zu vergünstigten Preisen für
Studierende und andere nicht-kommerzielle Nutzer angeboten werden. Für erste eigene
Schritte bieten sich günstige Boards an, die bereits für deutlich unter 100 € zum Kauf
angeboten werden.

Für die beiden Marktführer Xilinx und Altera bieten die Firmen Digilent (www.digi-
lentinc.com) beziehungsweise Terasic (www.terasic.com) günstige Einsteigerboards an.
Da diese Boards auch ein integriertes Programmiergerät besitzen, lassen sie sich ohne
weitere Kosten für eigene Experimente verwenden.

Sehr interessant sind die Boards, die mit FPGAs ausgestattet sind, die auch ein CPU-
Subsystem als Hardmacro beinhalten. Als ein Beispiel für ein solches Board ist das mit
Xilinx-Baustein Zynq ausgestattete ZyBo-Board der Firma Digilent in Abb. 9.14 darge-
stellt. In der Mitte des Boards ist der FPGA-Baustein zu sehen. Darunter ist einer der
beiden SDRAM-Speicher untergebracht. Dieses Board verfügt über viele Anschlussmög-
lichkeiten wie VGA, HDMI, Ethernet, USB, Audio, sowie Buchsen für die Anbindung
eigener Hardware.

Mithilfe dieser Boards lassen sich auch erste Schritte im Bereich des FPGA-Enwurfs
durchführen ohne das CPU-System zu nutzen. Später kann dann die Verwendung
des CPU-Subsystems einbezogen werden. So können interessante Experimente bis
hin zur Einbindung von eigener Hardware unter dem Betriebssystem Linux durchge-
führt werden. Obwohl diese Boards mit einem Preis ab ca. 100 € etwas teurer sind als
die einfachsten FPGA-Experimentierboards, kann sich die Anschaffung auf Grund der
erweiterten Möglichkeiten lohnen.

Tab. 9.9   Eigenschaften von Low-Power FPGAs am Beispiel der Ice40-Serie

UltraLite Ultra

Bezeichnung UL640 UL1K LP1K LP2K LP4K

Anzahl Logikblöcke 640 1248 1100 2048 3520

Block-RAM (kbit) 56 56 64 80 80

Multiplizierer – – 2 4 4

PLLs 1 1 1 1 1

Stat. Stromaufnahme (μA) 35 35 71 71 71

9.6  Hinweise zum Selbststudium

http://www.digilentinc.com
http://www.digilentinc.com
http://www.terasic.com

286 9  Programmierbare Logik

9.7	� Übungsaufgaben

Hier finden Sie Aufgaben, die einige Aspekte dieses Kapitels aufgreifen. Die Lösungen
finden Sie am Ende des Buches.

Sofern nicht anders vermerkt, ist nur eine Antwort richtig.

Aufgabe 9.1
Welche Vorteile besitzen programmierbare Logikbausteine gegenüber logischen Stan-
dard-Komponenten beziehungsweise ASICs? (Mehrere Antworten sind richtig)

a)	 Die digitale Funktion programmierbarer Logikbausteine kann durch den Anwender
festgelegt werden.

b)	Designfehler lassen sich schneller korrigieren als dies bei dem Einsatz von ASICs
möglich wäre.

c)	 Mithilfe Programmierbarer Logikbausteine können logische Funktionen kompakter
realisiert werden als dies mit ASICs möglich wäre.

d)	Mithilfe Programmierbarer Logikbausteine können logische Funktionen kompakter
realisiert werden als dies mit Standardkomponenten (zum Beispiel 74er-Logikserie)
möglich wäre.

Aufgabe 9.2
Wodurch zeichnen sich PAL-Bausteine aus?

a)	 Sie ermöglichen die Realisierung beliebig komplexer Funktionen.
b)	Sie bieten eine höhere Komplexität als FPGAs.

Abb. 9.14   Beispiel eines erschwinglichen FPGA-Boards für eigene Experimente: Das ZyBo-
Board der Firma Digilent Inc.

287

c)	 Sie besitzen intern eine UND/ODER-Struktur.
d)	Sie enthalten grundsätzlich keine Flip-Flops. Daher kann mit den Bausteinen immer

nur eine Kombinatorik realisiert werden.

Aufgabe 9.3
Wodurch zeichnen sich CPLDs aus?

a)	 CPLDs sollten aus Kostengründen nur für Systeme eingesetzt werden, die in sehr
hohen Stückzahlen gefertigt werden.

b)	 Im Vergleich zu PALs bieten CPLDs eine deutlich geringere Komplexität.
c)	 Sie enthalten grundsätzlich keine Flip-Flops. Daher kann mit den Bausteinen immer

nur eine Kombinatorik realisiert werden.
d)	Die Funktion der Schaltung kann mithilfe von VHDL beschrieben werden.

Aufgabe 9.4
Wodurch zeichnen sich FPGAs aus?

a)	 Typische FPGAs realisieren logische Funktionen auf Basis einer zweistufigen UND/
ODER-Struktur.

b)	Sie können nicht zur Realisierung von endlichen Automaten verwendet werden.
c)	 FPGAs realisieren logische Funktionen mithilfe von Lookup-Tabellen.
d)	Alle FPGAs besitzen einen Mikroprozessor in Form eines Hardmacros.

Aufgabe 9.5
Wie viele unterschiedliche logische Funktionen können mit einer LUT mit 5 Eingängen
realisiert werden?

a)	 5
b)	25
c)	 32
d)	64

Aufgabe 9.6
Welche der folgenden Komponenten sind in typischen FPGAs enthalten? (Mehrere Ant-
worten sind richtig)

a)	 Spezialmodule für ausgewählte arithmetische Operationen, zum Beispiel Multiplizierer
b)	Speicher
c)	 Spezialmodule zur Beschleunigung von 3D-Grafik-Anwendungen
d)	Module zur Takterzeugung

9.7  Übungsaufgaben

289© Springer-Verlag GmbH Deutschland 2016
W. Gehrke et al., Digitaltechnik, Springer-Lehrbuch,
DOI 10.1007/978-3-662-49731-9_10

Digitale Schaltungen werden als Integrierte Schaltung aufgebaut. Der Begriff Integrierte
Schaltungen beschreibt, dass sich auf einem Stück Halbleiter nicht nur ein einzelner,
sondern viele Transistoren befinden. Eine komplette Schaltung ist also auf dem Halb-
leiterkristall integriert. Ursprünglich umfasste eine Integrierte Schaltung einige tausend
Transistoren; mittlerweile können über eine Milliarde Transistoren auf einer Fläche von
etwa einem Quadratzentimeter zusammengefasst werden.

Für Integrierte Schaltungen sind verschiedene Begriffe gebräuchlich. Sie werden auch
als Mikrochip, Chip, IC oder ASIC bezeichnet. IC steht für „Integrated Circuit“, ASIC für
„Application Specific Integrated Circuit“ also Anwendungsspezifische Integrierte Schaltung.

Die wesentlichen Vorteile Integrierter Schaltungen sind insbesondere geringe
Baugröße, geringe Kosten, hohe Geschwindigkeit und geringe Parameterabweichungen.

•	 Durch Verwendung integrierter Schaltungen kann die Baugröße eines Gerätes sehr
gering sein. Statt mehrerer Bauelemente, die einzeln in Chipgehäusen verpackt sind,
ist nur ein einzelnes Chipgehäuse erforderlich.

•	 Durch die Zusammenfassung mehrerer Bauelemente können fast immer die Kosten
für ein elektronisches Gerät reduziert werden. Die wichtigsten Kostenvorteile sind
dabei die geringere Anzahl an benötigten Bauelementen, kleinere und damit günsti-
gere Platinen und Gerätegehäuse, sowie kostengünstigere Fertigung durch Verwen-
dung von weniger Komponenten.

•	 In einer Schaltung mit geringerer Baugröße sind die Verbindungsleitungen zwischen
den Transistoren wesentlich kürzer. Dadurch kann die Rechengeschwindigkeit der
Schaltung erhöht werden, da wesentlich kleinere Kapazitäten umgeladen werden.

•	 Wenn sich die einzelnen Transistoren einer Schaltung auf demselben Halbleiterkris-
tall befinden, haben die Transistoren nur sehr geringe Produktionsschwankungen
zueinander.

Halbleitertechnik 10

290 10  Halbleitertechnik

10.1	� CMOS-Technologie

Die für einen IC gewählte Schaltungstechnik wird als Chip-Technologie bezeichnet. Die
zurzeit mit Abstand größte Marktbedeutung hat die CMOS-Technologie, die in diesem
Kapitel erläutert wird.

Die CMOS-Technologie verwendet Silizium als Halbleitermaterial und das Hauptan-
wendungsgebiet sind digitale Schaltungen. Sie erlaubt eine sehr hohe Integrationsdichte.
Das heißt, dass auf einem Chip sehr viele Transistoren untergebracht werden können.
Auf Basis der CMOS-Technologie werden Computer-Prozessoren, Grafikkarten-ICs,
Speicherbausteine, MP3-Decoder und viele andere ICs gefertigt.

Der Name CMOS steht für Complementary Metal-Oxid-Semiconductor und
beschreibt das Grundprinzip. Complementary, also komplementär, meint zwei sich
ergänzende Schaltungsteile, die zusammen einen digitalen Ausgangswert ergeben und
Metal-Oxid-Semiconductor bezeichnet in diesem Zusammenhang einen bestimmten Typ
von Feldeffekttransistoren.

Der Vorteil der CMOS-Technologie ist ihre relativ geringe Verlustleistung. Dies spart
zum einen Energie, insbesondere bei mobilen Geräten wie Laptop oder Mobiltelefon.
Ebenso wichtig ist aber zum anderen, dass die Schaltungen sich nicht zu stark erwärmen,
denn die Verlustleistung muss vom Halbleiter auf das Chipgehäuse und von dort auf die
Umgebung abgeführt werden.

Aktuelle Computer und ihre Grafikkarten werden durch große und manchmal störend
laute Lüfter gekühlt. Die Aussage, CMOS-Schaltungen hätten eine geringe Verlustleis-
tung, mag darum zunächst nicht offensichtlich sein. Allerdings enthält eine integrierte
Schaltung etliche Millionen Transistoren, die mit hoher Geschwindigkeit Berechnungen
durchführen. Nur durch die geringe Verlustleistung von CMOS-Schaltungen ist es über-
haupt möglich, eine so hohe Integrationsdichte zu erreichen und die Verlustleistung in
einem handhabbaren Rahmen zu halten.

10.1.1	� Prinzipieller Aufbau

Der Aufbau und die Funktionsweise einer CMOS-Schaltung werden am Beispiel eines
NAND-Gatters mit zwei Eingängen deutlich. Abb. 10.1 zeigt links den prinzipiellen Auf-
bau eines NAND-Gatters. Die zwei Eingänge A und B sind an insgesamt vier Schalter
angeschlossen. Abhängig von dem Wert der Steuerleitung sind die Schalter geöffnet oder
geschlossen. Dadurch verbinden sie den Ausgang Y entweder mit 0 oder 1.

Natürlich sind in Integrierten Schaltungen keine mechanischen Schalter, sondern
Transistoren eingebaut. Es werden zwei Transistorarten verwendet. Der p-Kanal-Tran-
sistor leitet bei einer 0 (niedrige Spannung) am Eingang und sperrt bei einer 1 (hohe
Spannung). Der n-Kanal-Transistor leitet dagegen bei einer 1 am Eingang und sperrt
bei einer 0. Abb. 10.1 zeigt auf der rechten Seite das Schaltbild des NAND-Gatters. Die
Masse wird als Ground (GND) bezeichnet. VDD ist die Versorgungsspannung (mit V für

291

„Voltage“ und D für den Drain-Anschluss des Transistors). Typische Werte für die Ver-
sorgungsspannung sind zwischen 1,0 und 5,0 V.

Zur Erläuterung der Funktion zeigt Abb. 10.2 die möglichen Ansteuerungen der Ein-
gänge. Die dick dargestellten Leitungen kennzeichnen welche Verbindungen leitend
sind. Da beide Eingänge jeweils zwei Werte einnehmen können, existieren insgesamt
vier Möglichkeiten der Ansteuerung.

•	 Im Fall a) sind beide Eingänge gleich 0. Dadurch leiten beide p-Kanal-Transistoren
und der Ausgang wird niederohmig mit der Versorgungsspannung verbunden. Außer-
dem sperren die n-Kanal-Transistoren, so dass kein Kurzschluss von der Versorgungs-
spannung zur Masse entsteht.

•	 In den Fällen b) und c) ist ein Eingang 0, der andere 1 und einer der p-Kanal-
Transistoren ist leitend, der andere sperrt. Durch die Parallelschaltung der p-Kanal-
Transistoren ist auch hier eine Verbindung des Ausgangs zur Versorgungsspannung

‚1'

B

Y

‚0'

A

Schaltertyp:
Öffner

Schaltertyp:
Schließer

‚0' = GND

‚1' = VDD

B

Y
A

p-Kanal
Transistoren

n-Kanal
Transistoren

Abb. 10.1   Grundprinzip und reales Schaltbild eines NAND-Gatters

Abb. 10.2   Vier
Möglichkeiten der Ansteuerung
eines NAND-Gatters

VDD

‚0'

‚1'

GND

‚1'

VDD

‚1'

‚0'

GND

‚1'

VDD

‚0'

‚1'

GND

‚0'

VDD

‚1'

‚1'

GND

‚0'

b)a)

d)c)

10.1  CMOS-Technologie

292 10  Halbleitertechnik

vorhanden; der Ausgang ist 1. Von den n-Kanal-Transistoren ist einer durch eine 1
am Eingang leitend. In der Reihenschaltung fließt jedoch kein Strom nach Masse.

•	 Im Fall d) sind beide Eingänge 1. Jetzt sind beide n-Kanal-Transistoren leitend und
der Ausgang ist mit Masse verbunden, gibt also eine 0 aus. Die beiden p-Kanal-Tran-
sistoren sperren, so dass der Ausgang nicht mit Versorgungsspannung verbunden ist.

Die vier Eingangskombinationen ergeben somit die NAND-Funktion. In den vier mögli-
chen Fällen zeigt sich die wichtige Eigenschaft der Schaltung, dass von den beiden Netz-
werken aus p-Kanal und n-Kanal-Transistoren jeweils eins leitend, das andere gesperrt
ist. Die Netzwerke verhalten sich also genau entgegengesetzt, was durch das ‚C‘ in
CMOS, also den Begriff komplementär, ausgedrückt wird.

10.1.2	� Feldeffekttransistoren

Feldeffekttransistoren werden sowohl nach n-Kanal und p-Kanal als auch nach selbst-
sperrend und selbstleitend unterschieden. Da in der CMOS-Technologie nur selbstsper-
rende Transistoren eingesetzt werden, sind nur diese im Folgenden erläutert. Sie werden
auch als Anreicherungstyp oder Enhancement-Typ bezeichnet. Selbstleitende Transisto-
ren (Verarmungstyp, Depletion-Typ) werden in der CMOS-Technologie nicht verwendet.

Das Grundmaterial, genannt Substrat, ist monokristallines Silizium, bei dem also die
Silizium-Atome ein gleichmäßiges Gitter bilden. Dieses Material wird dotiert, das heißt,
es werden kleine Mengen weiterer chemischer Elemente hinzugefügt. Je nach chemi-
schem Element handelt es sich um eine n-Dotierung mit zusätzlichen Elektronen oder
um eine p-Dotierung mit sogenannten Löchern, also Freistellen, so dass sich Elektronen
bewegen können.

n-Kanal-Transistor
Der Aufbau eines Feldeffekttransistors ist in Abb. 10.3 als Schnittansicht von schräg
oben dargestellt. Das Substrat ist leicht p-dotiert und in dieses Grundmaterial wer-
den die beiden Anschlüsse Source und Drain durch n-Dotierung erzeugt. Zwischen den
Anschlüssen liegt über einer Isolationsschicht der Gate-Anschluss. Die Isolationsschicht
besteht meist aus Siliziumdioxid SiO2 und der Gate-Anschluss aus polykristallinem Sili-
zium, der durch eine hohe Dotierung gut leitet. L und W bezeichnen die Länge und Weite
des Transistors. Sie sind wichtige Kenngrößen, denn aus ihnen ergeben sich die Größe
und die Leitfähigkeit des Transistors.

Die Funktion des Feldeffekttransistors ist in Abb. 10.4 dargestellt. Zur einfacheren
Darstellung ist die Seitenansicht gewählt. Im spannungslosen Zustand ist die Verbindung
zwischen Source und Drain nicht leitend.

Bei Anlegen einer positiven Spannung an das Gate werden die p-Ladungsträger im
Substrat, also die Löcher, verdrängt, denn gleichnamige Ladungen stoßen sich ab.
Gleichzeitig werden n-Ladungsträger, also Elektronen, angezogen, denn ungleichnamige

293

Ladungen ziehen sich an. Ab einer gewissen Spannung sind so viele Löcher verdrängt
und Elektronen angezogen, dass sich ein Überhang von n-Ladungsträgern zwischen
Source und Drain bildet. Dieser Bereich wird als Kanal bezeichnet. Mit dem Kanal
bildet sich ein Gebiet, das zwischen Source und Drain durchgängig eine n-Dotierung
besitzt, so dass der Transistor leitet.

Da die Leitfähigkeit durch einen n-Kanal entsteht, wird dieser Aufbau als n-Kanal-
Transistor bezeichnet. Die Spannung, ab der ein Kanal entsteht, ist die Schwellenspan-
nung UT (T für „Threshold“, Schwelle). Der genaue Wert der Schwellenspannung ist
unter anderem von der Dotierung abhängig.

p-Kanal-Transistor
Der Aufbau eines p-Kanal-Transistors ist im Prinzip der gleiche, allerdings sind die
Dotierungen vertauscht (Abb. 10.5). Das Substrat ist n-dotiert und die Bereiche für
Source und Drain haben eine p-Dotierung. Durch eine negative Spannung am Gate wer-
den Elektronen abgestoßen und Löcher angezogen, so dass sich ab der Schwellenspan-
nung ein p-Kanal bildet, der die p-Bereiche Source und Drain verbindet.

Die negative Gate-Spannung bedeutet dabei nicht, dass auf einem CMOS-Chip nega-
tive Spannungen verwendet werden. Die Gate-Spannung muss negativ gegenüber dem
Bezugspotential des Substrats werden. Dies wird dadurch erreicht, dass beim p-Kanal-
Transistor das Substrat an Versorgungsspannung gelegt wird. Eine Gate-Spannung von
0 Volt ist damit negativ gegenüber Substrat.

Ein Unterschied zum n-Kanal-Transistor besteht in den elektrischen Eigenschaften.
Die Beweglichkeit der Löcher ist etwas geringer als die Beweglichkeit der Elektronen.

Abb. 10.3   Aufbau eines
n-Kanal-Feldeffekttransistors

nn

p-dotiertes Silizium

Source Drain

Gate Gate-Oxid

Poly-Silizium

Gate-Länge L

Gate-Weite W

Substrat

Abb. 10.4   Funktion des
n-Kanal-Feldeffekttransistors

Poly-Silizium

nn

p-Silizium

Source DrainGate

Kanal

U>UT

10.1  CMOS-Technologie

294 10  Halbleitertechnik

Deswegen ist der Widerstand eines p-Kanal-Transistors etwa 2- bis 3-mal so hoch wie
bei einem p-Kanal-Transistor gleicher Größe. Als Ausgleich wird normalerweise ein
p-Kanal-Transistor mit doppelter oder dreifacher Gate-Weite W (siehe Abb. 10.3) ver-
wendet, wodurch beide Transistoren etwa gleichen elektrischen Widerstand haben.

10.1.3	� Layout

Über den Transistoren befinden sich Verbindungsleitungen aus Metall. Für die vielen
Verbindungen auf einem Chip sind mehrere Lagen an Verbindungsleitungen vorhanden.
Moderne ICs haben etwa fünf bis zehn Lagen, wovon die unteren Lagen für lokale Ver-
bindungen, die oberen Lagen für längere Verbindungen und die Spannungsversorgung
verwendet werden. Zwischen den Verbindungsleitungen sowie zu den Transistoren sind
Isolierschichten, die an vertikalen Verbindungsstellen durch Kontaktlöcher, sogenannte
Vias unterbrochen sind. Abb. 10.6 zeigt die Transistorstruktur (gates) und die Verbin-
dungslagen (M1 bis M4) im Elektronenmikroskop und gibt einen Eindruck von der rea-
len Geometrie.

Der physikalische Aufbau einer CMOS-Schaltung wird als Layout bezeichnet. Das
Layout beschreibt die Position der Transistoren sowie der Verbindungsleitungen. In
Abb. 10.7 ist zunächst das Layout eines einzelnen Transistors gezeigt. Links sieht man
die Seitenansicht, wie im vorherigen Abschnitt erläutert. Dabei sind Source und Drain
durch Metalllage und Kontaktloch angeschlossen. Rechts ist die Draufsicht gezeigt, die
für das Layout verwendet wird. Dabei wird in der Darstellung nicht zwischen Source
und Drain unterschieden.

Das Layout eines kompletten Gatters ist in Abb. 10.8 dargestellt. Es handelt sich um
das oben beschriebene NAND-Gatter. Zur Orientierung ist das Schaltbild noch einmal
angegeben. Im Layout sind oben und unten Metallleitungen für die Anschlüsse von Ver-
sorgungsspannung (VDD) und Masse (GND) vorhanden.

Die beiden n-Kanal-Transistoren befinden sich im unteren Bereich des Layouts und
sind in Reihe geschaltet. Zwischen den Transistoren ist keine zusätzliche Verbindung
nötig. Das Drain-Gebiet des einen Transistors ist direkt das Source-Gebiet des anderen
Transistors. Ein Anschluss dieser Reihenschaltung ist an GND, der andere am Ausgang
Y. Die Gate-Anschlüsse sind mit den Eingängen des NAND-Gatters, A und B verbunden.

Abb. 10.5   Funktion des
p-Kanal-Feldeffekttransistors

Poly-Silizium

pp

n-Silizium

Source DrainGate

Kanal

U<UT

295

Abb. 10.6   Transistor im Elektronenmikroskop. (Foto: Chipworks)

Abb. 10.7   Layout eines
Transistors

p

n n

Gate
Drain

Source

Querschnitt Draufsicht

Kontaktloch

Metall

Y

VDD

GND

B

Schaltplan Layout

VDD

B
Y

GND

A

Metall

Via (Kontaktloch)

Poly-Silizium

Aktiv (Source / Drain)

n-Wanne

Legende

A

Abb. 10.8   Layout eines NAND-Gatters

10.1  CMOS-Technologie

296 10  Halbleitertechnik

Im oberen Bereich des Layouts sind die beiden p-Kanal-Transistoren. Sie sind parallel
geschaltet und verbinden jeweils VDD mit dem Ausgang Y. Auch sie werden durch die
Eingänge A und B angesteuert. Wie oben erläutert, benötigen die p-Kanal-Transistoren
ein anderes Substrat und dies wird durch die sogenannte n-Wanne bereitgestellt. Die
n-Wanne ist ein Bereich, in dem das eigentlich p-dotierte Grundmaterial durch Dotierung
in einen n-Bereich umgewandelt wird. Durch das Kontaktloch ganz oben an der VDD-
Leitung wird die n-Wanne mit dem Pegel der Versorgungsspannung verbunden.

Im Layout sind auch Länge und Weite des Gates dargestellt. Die Gate-Länge wird so
kurz wie möglich gewählt, damit der Widerstand durch den Transistor nicht unnötig groß
wird. Die Weite wird so gewählt, dass n-Kanal und p-Kanal-Netzwerke den gleichen Wider-
stand und damit symmetrisches Verhalten haben. Beim NAND-Gatter sind zwei n-Kanal-
Transistoren in Reihe, was den doppelten Widerstand ergibt. Die p-Kanal-Transistoren
haben aufgrund der geringeren Beweglichkeit der Löcher ebenfalls etwa doppelten Wider-
stand. Somit sind die Widerstände beider Transistornetzwerke etwa gleich groß.

10.2	� Grundschaltungen in CMOS-Technik

In diesem Abschnitt wird für einige Grundschaltungen der Aufbau in CMOS-Technik
erläutert. Das Ziel ist dabei, dass Sie sich vorstellen können, wie Digitalschaltungen aus
Transistoren aufgebaut werden.

10.2.1	� Inverter

Der Inverter ist noch einfacher aufgebaut als das NAND-Gatter und besteht aus nur zwei
Transistoren. Ein Transistor verbindet den Ausgang mit VDD, ein anderer mit GND.
Schaltbild und Layout sind in Abb. 10.9 dargestellt. Die Gate-Weite des p-Kanal-Tran-
sistors (oben) ist doppelt so groß wie beim n-Kanal-Transistor, um die geringere Beweg-
lichkeit der Löcher auszugleichen.

10.2.2	� Logikgatter

Andere Grundgatter können in ähnlicher Weise wie das NAND-Gatter mit n- und
p-Kanal-Transistoren aufgebaut werden. Ein Netzwerk von n-Kanal-Transistoren verbin-
det den Ausgang mit Masse, ein zweites Netzwerk von p-Kanal-Transistoren verbindet
den Ausgang mit der Versorgungsspannung. Dabei ist wichtig, dass die Netzwerke zuein-
ander komplementär sind, also stets genau eins der Netzwerke leitet.

Das Beispiel in Abb. 10.10 hat die Funktion Y = (A ∨ B)&C. Man erkennt, dass die
Netzwerke auch in ihrer Topologie komplementär sind. Im p-Kanal-Netzwerk sind die

297

Transistoren für A und B in Reihe und C ist parallel dazu. Im n-Kanal-Netzwerk sind A
und B parallel geschaltet und C liegt in Reihe dazu.

Nach dem gezeigten Grundprinzip lassen sich viele weitere Logikgatter entwerfen.
Ein Kennzeichen von CMOS-Logikgattern ist, dass Funktionen mit einer Invertierung
einfacher zu implementieren sind. Dies bedeutet, dass beispielsweise die NAND-Funk-
tionen einfacher als eine UND-Funktion aufgebaut sein kann, denn die NAND-Funktion
nutzt die Eigenschaft, dass eine 0 die Transistoren nach VDD öffnet.

Für ein Gatter ohne Invertierung wird ein Inverter angefügt. Ein UND-Gatter besteht
beispielsweise aus dem NAND-Gatter (Abb. 10.1), ergänzt um den Inverter aus Abb. 10.9.
Die Schaltung benötigt 6 Transistoren, vier für das NAND, zwei für den Inverter. Im Lay-
out werden die beiden Schaltungsteile kombiniert, um wenig Fläche zu belegen.

10.2.3	� Transmission-Gate

In den bisher gezeigten Grundgattern verbinden die Transistoren den Ausgang mit
VDD oder GND. Es ist jedoch auch möglich, Signaleingänge durch die Transistoren zu

Abb. 10.9   Schaltbild und
Layout eines Inverters

Y

VDD

GND

Schaltplan Layout

A

VDD

Y

GND

A

Metall

Via (Kontaktloch)

Poly-Silizium

Aktiv (Source / Drain)

n-Wanne

Legende

Abb. 10.10   Komplexgatter in
CMOS-Technik

A

Y

GND

B

C

VDD

10.2  Grundschaltungen in CMOS-Technik

298 10  Halbleitertechnik

leiten oder zu sperren. Die entsprechende Schaltungsstruktur wird als Transmission-Gate
bezeichnet und ist in Abb. 10.11, links dargestellt. Ein n-Kanal und ein p-Kanal-Transistor
sind parallel geschaltet und geben abhängig vom Steuersignal EN den Eingang auf den
Ausgang weiter. Da die Transistoren bei unterschiedlichem Pegel der Steuersignale leiten,
ist das Signal EN in positiver und negativer Polarität erforderlich.

Der Vorteil dieser Schaltungsstruktur ist der geringe Schaltungsaufwand. Manche
Funktionen lassen sich mit deutlich weniger Transistoren umsetzen, als bei der Struk-
tur mit komplementären Transistornetzwerken nötig wäre. Der Nachteil der Struktur ist,
dass ein Transmission-Gate keine Treiberfähigkeit besitzt. Dies ist jedoch meist kein
Problem, denn der Treiber des Eingangssignals kann üblicherweise ein oder sogar meh-
rere Transmission-Gates treiben. Falls die Treiberfähigkeit nach dem Transmission-Gate
zu gering ist, kann ein Inverter als Treiber eingefügt werden.

Vielleicht haben Sie beim Blick auf Abb. 10.11 überlegt, ob nicht ein Transistor als
Transmission-Gate ausreichen würde. Dies ist ungünstig, denn der n-Kanal-Transistor
schaltet eine 0 mit vollem Pegel, reduziert aber eine 1 um die Schwellenspannung. Umge-
kehrt schaltet der p-Kanal-Transistor die 1 mit vollem und die 0 mit reduziertem Pegel.
Erst die Kombination beider Transistoren gibt ein gutes Schaltverhalten.

Ein Logikgatter, welches die Transmission-Gate-Struktur verwendet, ist in
Abb. 10.11, rechts zu sehen. Es handelt sich um einen 1-aus-2-Multiplexer mit Steu-
ereingang S und Dateneingängen A und B. Die Dateneingänge sind jeweils durch ein
Transmission-Gate mit dem Ausgang Y verbunden. Da die Ansteuerung für die Transmis-
sion-Gates unterschiedliche Polarität hat, ist genau ein Gate geöffnet, das andere sperrt.
Die Schaltung benötigt nur sechs Transistoren, zwei für den Inverter und vier in den
Transmission-Gates, und ist damit sehr kompakt.

10.2.4	� Flip-Flop

Neben kombinatorischen Elementen enthält eine Digitalschaltung natürlich auch Flip-
Flops zur Speicherung von Informationen. Heutzutage werden praktisch immer taktflan-
kengesteuerte D-Flip-Flops verwendet. Es gibt verschiedene Schaltungstechniken, um
ein solches Flip-Flop zu realisieren. Die Varianten unterscheiden sich in Siliziumfläche,
Schaltgeschwindigkeit und Stromverbrauch.

Als eine Flip-Flop-Schaltung ist in Abb. 10.12 exemplarisch das Transmission Gate
Pulsed Latch, kurz TGPL, dargestellt. Zum Verständnis der Schaltung ist ein kleines

Abb. 10.11   Transmission-
Gate und Anwendung in einem
Multiplexer

A Y

EN

EN A

Y

B

STransmission-Gate Multiplexer

299

Zeitdiagramm angegeben sowie einige interne Signalknoten mit Bezeichnung markiert.
Dateneingang D, Takteingang CK sowie Datenausgang Q sind fett dargestellt.

Funktionsweise des Transmission Gate Pulsed Latch (TGPL):

1.	 Das TGPL enthält auf der linken Seite eine Taktaufbereitung. Der Takteingang CK
wird durch drei Inverter verzögert und in der Polarität gedreht (Signal /CK, siehe
Zeitdiagramm). Durch ein NAND-Gatter werden dann CK und /CK verknüpft und das
Pulssignal P entsteht. P ist meist 1 und wird nur bei einer steigenden Taktflanke kurz
0. Damit steuert dieses Pulssignal die Datenübernahme an der Taktflanke.

2.	 Der Dateneingang D läuft zunächst durch einen Inverter, der als Treiber dient. /D wird
gespeichert, indem das Pulssignal P beim Pegel 0 ein Transmission-Gate öffnet. Das
gespeicherte Datensignal liegt dann am internen Knoten /Q an. Durch den Eingangs-
inverter hat es die umgekehrte Polarität. Kurz nach der Taktflanke wechselt P wieder
auf den Wert 1 und schließt das Transmission-Gate.

3.	 Jetzt wird zur Datenspeicherung der interne Knoten /Q durch den Inverter und die
vier Transistoren auf der rechten Seite der Schaltung wieder nach /Q gegeben. Dieser
Schaltungsteil ist eine Rückkopplung, die den Wert an /Q speichert. Nur wenn P auf
0 ist, also bei einer steigenden Taktflanke, unterbricht die Rückkopplung, damit ein
neuer Eingangswert D gespeichert werden kann.

4.	 Durch den Inverter rechts unten wird der interne Knoten /Q auf den Datenausgang Q
gegeben. Die Invertierung am Eingang wird wieder durch den Ausgangsinverter auf-
gehoben, so dass der richtige Signalwert ausgegeben wird.

Für die sichere Funktion muss das Zeitverhalten der Schaltung genau abgestimmt wer-
den. Die Laufzeit der drei Inverter bei ① muss ein Pulssignal P erzeugen, welches den
Eingang D sicher übernimmt. Andererseits sollte das Pulssignal auch nicht zu lange
0 sein, denn während dieser Zeit darf sich D nicht ändern. Die Dauer des Pulssignals
bestimmt also Setup- und Hold-Zeit.

Außerdem muss die Verzögerungszeit von Transmission-Gate bei ②, sowie Rück-
kopplung bei ③ zueinander passen, damit die Schaltungsteile sicher zusammenarbeiten.

Dieses Zeitverhalten muss bei allen Variationen der Arbeitsbedingungen sicher funk-
tionieren. Als Variationen der Arbeitsbedingungen sind drei Einflussgrößen zu beachten,
die unter der Abkürzung PVT zusammengefasst sind:

Abb. 10.12   Schaltbild des
Transmission Gate Pulsed
Latch. (Quelle: M. Alioto,
IEEE Transactions on VLSI
Systems, 2011)

CK

Q

VDD

& D

GND

/CK

P

/Q

P

CK

/CK

/D

10.2  Grundschaltungen in CMOS-Technik

300 10  Halbleitertechnik

•	 Process (P): Die elektrischen Eigenschaften der Transistoren unterliegen den Tole-
ranzen des verwendeten Halbleiterprozesses und können schwanken. Beispiel: Die
Dotierung von Source und Drain kann gegenüber dem „Normalfall“ abweichen.

•	 Voltage (V): Die Versorgungsspannung kann, eventuell auch nur kurzzeitig, schwan-
ken. Beispiel: Statt ideal 1,2 V kann die Spannung 1,15 oder 1,25 V betragen.

•	 Temperature (T): Die Temperatur kann schwanken. Beispiel: Der Chip kann bei
Temperaturen im Bereich von −20°C bis 80°C arbeiten.

Bei der Entwicklung eines Flip-Flops wird die Schaltung darum unter verschiedenen
Arbeitsbedingungen simuliert und es werden Testschaltungen hergestellt. Dabei kann
auch überprüft werden, ob eventuell eine andere Flip-Flop-Schaltung für den jeweiligen
Halbleiterprozess besser geeignet ist. Das oben beschriebene TGPL ist nur eine mögliche
Schaltungsvariante.

10.3	� Verlustleistung

Neben der Anzahl an Transistoren, welche die Größe einer Schaltung ausmacht, ist
der Energieverbrauch einer Schaltung eine wichtige Kenngröße. Die CMOS-Technik
ist prinzipiell sehr energieeffizient. Sie hat gegenüber anderen Halbleitertechniken den
großen Vorteil, dass durch ein Gatter kein Ruhestrom fließt, denn entweder sperren die
p-Kanal-Transistoren oder die n-Kanal-Transistoren. Vorgängertechnologien hingegen
hatten einen ständigen Ruhestrom und wurden wegen dieser ständigen Verlustleistung
durch CMOS abgelöst.

Durch immer leistungsfähigere Schaltungen ist allerdings auch die Verlustleistung
von CMOS-Schaltungen in den letzten Jahren immer weiter gestiegen. Deutlich sichtbar
ist dies bei High-End-Grafikkarten für PC-Spiele. Sie haben hohe Rechenleistung für die
Berechnung der Grafik, aber auch große Kühlkörper und Lüfter zur Kühlung.

Es gibt verschiedene Gründe aus denen eine geringe Verlustleistung Integrierter
Schaltungen sinnvoll ist.

•	 Höhere Leistungsaufnahme erhöht die Kosten für Chipgehäuse und Kühlkörper.
Gegebenenfalls sind Lüfter erforderlich.

•	 Die Betriebskosten für Spannungsversorgung und Kühlung steigen. Dies ist insbeson-
dere in Rechenzentren ein hoher Kostenanteil.

•	 Mobile Geräte wie Laptop, Tablet oder Smartphone sollen mit einer Akkuladung
möglichst lange Betriebszeiten haben.

•	 Es werden autarke Sensoren eingesetzt, die mit einer Batterie mehrere Jahre betrieben
werden sollen.

Die Verlustleistung entsteht durch einen statischen und einen dynamischen Anteil.
Diese beiden Aspekte der Verlustleistung werden in den folgenden Abschnitten näher
vorgestellt.

301

10.3.1	� Statische Verlustleistung

CMOS-Schaltungen haben zwar keinen Ruhestrom, der durch einen geöffneten Transis-
tor fließt. Dennoch fließen winzige sogenannte Leckströme, da der Transistor natürlich
keine galvanische Trennung des Stromflusses vornimmt. Diese Leckströme addieren
sich über die Milliarden Transistoren eines Chips und verursachen eine statische
Verlustleistung.

Leckströme entstehen an verschiedenen Stellen des Transistoraufbaus. Insgesamt gibt
es vier Anteile, die in Abb. 10.13 dargestellt sind (vergleiche Abb. 10.4 und 10.5). Der
Anschluss B ist dargestellt, da auch über das Substrat (Bulk) Leckströme fließen können.

•	 Subthreshold Leakage Isubth entsteht, da der Kanal nicht vollständig ausgeschaltet
werden kann.

•	 Gate Leakage Igate ergibt sich auf Grund von Ladungsträgerübertragung durch sehr
dünnes Gate-Oxyd.

•	 Reverse Bias Junction Leakage Irev ist der Sperrstrom des pn-Übergangs zum Substrat.
•	 Gate Induced Drain Leakage Igidl ist der Leckstrom vom Drain-Anschluss, verursacht

durch die Feldstärke der Drain-Spannung.

Der Hauptanteil der statischen Verlustleistung entsteht durch die Subthreshold Leakage
Isubth. Einen geringeren Anteil tragen Gate Leakage Igate und Reverse Bias Junction
Leakage Irev bei. Die Gate Induced Drain Leakage Igidl ist normalerweise vernachlässig-
bar. Allgemein führt eine erhöhte Temperatur zu steigenden Leckströmen.

Die Subthreshold Leakage ist exponentiell von der Schwellenspannung abhängig. Je
höher die Schwellenspannung, umso geringer sind die Leckströme. Andererseits redu-
ziert eine höhere Schwellenspannung auch die Verarbeitungsgeschwindigkeit, so dass ein
Kompromiss gefunden werden muss.

10.3.2	� Dynamische Verlustleistung

Die dynamische Verlustleistung entsteht bei Aktivität der Schaltung. Zum Verständnis
wird die Inverter-Schaltung aus Abschn. 10.2.1 erneut betrachtet. Abb. 10.14 zeigt den
Inverter sowie Spannungen und Ströme bei Schaltungsaktivität. Zusätzlich zu den bei-
den Transistoren ist ein Kondensator mit der Kapazität CL abgebildet. Dieser stellt die

Abb. 10.13   Leckströme bei
einem CMOS-Transistor S

Igate

Isubth
Irev

Igidl

D
G

B (Bulk)

10.3  Verlustleistung

302 10  Halbleitertechnik

Lastkapazität dar, welche vom Inverter geschaltet wird. Die Lastkapazität setzt sich
zusammen aus den Gate-Kapazitäten der nachfolgenden Gatter sowie der Leitungskapa-
zität auf den Verbindungen dorthin. Der Zeitverlauf zeigt den prinzipiellen Verlauf der
Spannungen am Eingang und Ausgang des Inverters sowie der Ströme im p-Kanal-Tran-
sistor ip(t), im n-Kanal-Transistor in(t), sowie zum Kondensator ic(t).

Im Diagramm wechselt die Eingangsspannung zum Zeitpunkt ① von logisch 1 auf 0.
Mit kurzer Zeitverzögerung wechselt darauf der Ausgang von 0 nach 1. Dabei wird der
Kondensator über den p-Kanal-Transistor geladen, sichtbar an den Strömen ip und ic.
Außerdem fließt ein kleinerer Querstrom über ip und in, wenn beim Umschalten des Ein-
gangs beide Transistoren für kurze Zeit teilweise leiten.

Zum Zeitpunkt ② wechselt der Eingang wieder von 0 auf 1 und der Ausgang kurz
darauf von 1 nach 0. Jetzt wird der Kondensator über den n-Kanal-Transistor entladen,
sichtbar an den Strömen in und einem negativen Wert für ic. Wieder sind beim Umschal-
ten kurzfristig beide Transistoren teilweise leitend, so dass erneut ein Querstrom über ip
und in fließt.

Die Verlustleistung des Inverters berechnet sich über das Integral des Stroms ip(t), mul-
tipliziert mit der Versorgungsspannung VDD. Dabei hat das Umladen der Kapazität den
größten Anteil. Einflussgrößen sind zum einen der Wert der Lastkapazität CL sowie die
Höhe der Versorgungsspannung VDD. Zum anderen muss berücksichtigt werden, wie oft
die Kapazität umgeladen wird. Dies wird durch die Taktfrequenz f der Schaltung angege-
ben, sowie die Schaltaktivität σ als Wahrscheinlichkeit einer 0-1-Flanke pro Taktzyklus.

Diese Einflussgrößen multiplizieren sich zur Verlustleistung PC für das Umladen der
Lastkapazität. Dabei hat die Versorgungsspannung einen quadratischen Einfluss:

Die Einflussgrößen sind, ausgenommen die Schaltaktivität, bereits bekannt. Die Schalt-
aktivität drückt aus, wie häufig eine Leitung auf 1 wechselt und kann Werte zwischen 1
und 0 einnehmen.

•	 Das Taktsignal hat jeden Takt eine steigende Flanke und daher ist σ = 1
•	 Die unterste Stelle eines Zählers hat von Takt zu Takt abwechselnd die Werte 0 und 1.

Es gibt also jeden zweiten Takt eine steigende Flanke: σ = 0,5

PC,inv = σ f V2

DDCL

VDD

GND

CL

ip(t)

in(t)

ic(t)

uout(t)

uin(t)

uin(t)

uout(t)

ip(t)

ic(t)

in(t)

t

Abb. 10.14   CMOS-Inverter mit Zeitverlauf von Spannungen und Strömen

303

•	 Die oberste Stelle eines 8-Bit-Zählers hat nur eine steigende Flanke beim Über-
gang von 127 nach 128. Der nächste Wechsel tritt erst 256 Takte später auf:
σ = 1/256 ≈ 0,004

•	 Die Reset-Leitung einer CPU wird im normalen Betrieb nicht angesteuert, daher ist
σ = 0

•	 Audio und Video-Signale haben, je nach Typ des Signals, einen Wert von σ ≈ 0,3 bis
0,1

Für eine gesamte Integrierte Schaltung müssen die Anteile der einzelnen Schaltungskno-
ten addiert werden.

Die Verlustleistung durch den Querstrom ist in dieser Gleichung noch nicht berück-
sichtigt. Allerdings ist der Anteil deutlich kleiner als PC und ebenfalls proportional zur
Schalthäufigkeit. Darum wird in der Praxis meist nur die Verlustleistung durch Umladen
der Lastkapazitäten betrachtet. Der Einfluss des Querstroms kann beispielsweise berück-
sichtigt werden, indem die Lastkapazitäten CL etwas höher angesetzt werden.

10.3.3	� Entwurf energieeffizienter Schaltungen

Um Schaltungen mit geringer Verlustleistung zu entwerfen, werden möglichst alle Ein-
flussgrößen optimiert. Ein Faktor ist die Versorgungsspannung, die früher bei 5 Volt lag
und heute bis auf Werte von etwa 1 Volt reduziert wurde. Dies ist ohnehin erforderlich,
damit die Feldstärken in den kleiner werdenden Transistoren nicht zu stark ansteigen.
Durch die geringere Versorgungsspannung reduzieren sich statische und dynamische
Verlustleistung.

Die statische Verlustleistung kann durch Wahl der Parameter des Halbleiterprozesses,
also Transistorgeometrie und Dotierungsstärken reduziert werden. Weil dadurch auch die
Geschwindigkeit einer Schaltung sinkt, kann ein Hersteller einen Halbleiterprozess in
verschiedenen Varianten anbieten. Beispielsweise kann eine Version angeboten werden,
die im Hinblick auf die Schaltgeschwindigkeit optimiert ist. Weitere Varianten des Halb-
leiterprozesses könnten eine Low-Power-Version oder eine „balancierte Version“, die
einen Kompromiss aus Rechenleistung und Stromverbrauch darstellt, sein.

Die dynamische Verlustleistung kann reduziert werden, indem eine geringere Kapa-
zität CL umgeladen wird. Dies kann durch einen Prozess mit geringeren physikalischen
Abmessungen erfolgen. Aber auch eine geringere Anzahl an Schaltungselementen redu-
ziert die Anzahl an Schaltungsknoten und damit die Lastkapazität. Eine Möglichkeit ist
beispielsweise, wenn eine Rechenoperation nur eine Genauigkeit von 16 bit anstatt 32 bit
erfordert.

Als weitere Einflussgröße kann eine geringere Häufigkeit der Signalwechsel die
dynamische Verlustleistung reduzieren. Eine Möglichkeit hierfür ist das Abschalten

PC =

∑

i= alle Knoten

σi f V
2

DD CL,i

10.3  Verlustleistung

304 10  Halbleitertechnik

ganzer Schaltungsteile, wenn sie nicht benötigt werden. Dies erfolgt beispielsweise in
einer CPU mit mehreren Prozessoren. Bei geringer Rechenlast werden einzelne Prozes-
soren komplett ausgeschaltet und damit die dynamische Verlustleistung reduziert. Wenn
ein Prozessor oder nicht benötigte Schnittstellenkomponenten vorübergehend von der
Versorgungsspannung abgetrennt werden, reduziert sich zusätzlich auch die statische
Verlustleistung.

10.4	� Integrierte Schaltungen

Eine komplette Integrierte Schaltung setzt sich aus vielen einzelnen Gattern und Flip-
Flops zusammen.

10.4.1	� Logiksynthese und Layout

Standardzellbibliothek
Die in Abschn. 10.2 beschriebenen Grundschaltungen werden vom Hersteller eines
Halbleiterprozesses in einer Bibliothek zur Verfügung gestellt. Diese Grundschaltungen
werden als Standardzellen bezeichnet. Eine Standardzellbibliothek umfasst beispiels-
weise 100 bis 200 Zellen, darunter:

•	 Inverter und Treiber, also nacheinander geschaltete Inverter, für größere Lastkapazitäten
•	 Logikgatter, also UND-, ODER-, NAND-, NOR-, XOR-Gatter mit unterschiedlicher

Anzahl an Eingängen
•	 Komplexgatter, für kombinierte Logikfunktionen, beispielsweise die Funktion

Y = (A ∨ B)&C aus Abb. 10.10 oder der Multiplexer aus Abb. 10.11
•	 Arithmetische Schaltungen, beispielsweise Volladdierer
•	 Flip-Flops in verschiedener Konfiguration, beispielsweise mit Set oder Reset

Außerdem können für manche Zellen Varianten mit verschiedener Treiberstärke vor-
handen sein. Ein Flip-Flop, das nur ein weiteres Gatter ansteuert, benötigt einfache Trei-
berstärke. Falls mehrere Gatter angesteuert werden, könnte die vierfache Treiberstärke
sinnvoll sein.

Logiksynthese
Die Auswahl der passenden Standardzelle erfolgt normalerweise durch ein EDA-Pro-
gramm. Dazu schreiben Sie VHDL-Code und das Programm sucht dann die passende
Standardzelle für die beschriebene Funktion. Anhand der Verbindungen zu weiteren
Standardzellen, entscheidet das Programm auch, welche Treiberstärke eingesetzt werden
soll. Dieser Schritt wird als Logiksynthese bezeichnet.

305

Beispielsweise wurde im Kapitel 6 eine Flankenerkennung beschrieben, bei der fol-
gender VHDL-Code verwendet wurde:

if (a_sync_old='0') and (a_sync='1') then
   q <= '1';     else
   q <= '0';     end if;

Die Logiksynthese interpretiert diesen Code und erkennt, dass eine Logikfunktion
Ā&B erforderlich ist. A ist dabei das VHDL-Signal a_sync_old, B ist a_sync. Für die
Umsetzung in Standardzellen hat die Logiksynthese mehrere Möglichkeiten:

•	 Inverter für A gefolgt von einem UND-Gatter.
•	 Da Grundgatter in CMOS-Technologie stets eine Invertierung beinhalten, wäre ein

NAND- oder NOR-Gatter vorteilhaft. Die Logikfunktion kann mit den Gesetzen von
De Morgan umgewandelt werden in Ā&B =

(

A ∨ B̄
)

. Damit ergibt sich ein Inverter
für B gefolgt von einem NOR-Gatter.

•	 Eventuell steht in der Standardzellbibliothek ein passendes Komplexgatter mit der
Funktion Ā&B zur Verfügung.

Dieser Entwurfsschritt ist ähnlich zur in Kapitel 7 beschriebenen Synthese von
FPGA-Schaltungen. Allerdings muss die Logiksynthese unter vielen Standardzellen
wählen, während der FPGA-Synthese üblicherweise nur Look-Up-Tables und Flip-Flops
zur Verfügung stehen.

Layout
Die Logiksynthese erzeugt eine Netzliste mit benötigten Standardzellen und ihren Ver-
bindungsleitungen. Im nächsten Schritt werden die Position der Standardzellen und die
Lage der Verbindungsleitungen ermittelt. Die physikalische Anordnung wird als Lay-
out, die beiden Einzelschritte als Placement und Routing bezeichnet. Auch diese Schritte
werden von einem EDA-Programm durchgeführt und sind ähnlich zur Platzierung und
Verdrahtung des FPGA-Entwurfs.

Miteinander verbundene Standardzellen werden vom EDA-Programm möglichst nah
aneinander platziert. Dazu probiert ein intelligenter Algorithmus verschiedene Anord-
nungen aus. Abb. 10.15 zeigt das Layout einer automatisch erzeugten Teilschaltung.

Aus den Teilschaltungen wird schließlich die gesamte integrierte Schaltung zusam-
mengestellt. Abb. 10.16 zeigt als Beispiel das Chip-Foto eines System-on-Chip (SoC)
für ein Smartphone. Es handelt sich um die zentrale Steuereinheit des Geräts mit zwei
CPU-Kernen und der Grafikerzeugung (GPU) sowie lokalem Speicher (L1, L2, SRAM).
Ebenso sind verschiedene Schnittstellen für externen Speicher (DRAM), Kamera, USB
und das Display (LCD) vorhanden. Für die Taktaufbereitung dienen PLLs (Phase-
Locked Loop). Der Chip enthält über 1 Mrd. Transistoren auf rund 1 Quadratzentimeter
Fläche.

10.4  Integrierte Schaltungen

http://dx.doi.org/10.1007/978-3-662-49731-9_6
http://dx.doi.org/10.1007/978-3-662-49731-9_7

306 10  Halbleitertechnik

Abb. 10.15   Teil eines Chip-Layouts. (Quelle: Infineon)

Abb. 10.16   Chip-Foto eines System-on-Chip für ein Smartphone. (Foto: Chipworks)

307

10.4.2	� Herstellung

Als Grundmaterial für die Herstellung von CMOS-Schaltungen wird monokristalli-
nes Silizium verwendet. Die Herstellung erfolgt auf dünnen Siliziumscheiben, genannt
Wafer. Ein Wafer ist etwa 1 mm dick und hat einen Durchmesser zwischen 15 und 30 cm
(Abb. 10.17). Auf diesem Substrat werden durch aufwendige chemische und physikali-
sche Prozesse die Strukturen für die Schaltung aufgebracht. Aus einem kompletten Wafer
können mehrere hundert einzelne Chips gefertigt werden.

Die Anzahl an Chips je Wafer ergibt sich direkt aus der Fläche. Als Zahlenbeispiel
betrachten wir einen Wafer mit 30 cm Durchmesser, auf dem sich Chips mit der Fläche
von 2 cm2 befinden. Die Kreisfläche ist π˙r2, also 3,14‧(15 cm)2 = 707 cm2. Da jeder
Chip 2 cm2 benötigt, ergibt der Wafer theoretisch 353 Chips. An den Kanten, zum Sägen
der Chips und für kleine Testflächen geht jedoch Fläche verloren. Praktisch können aus
dem Wafer darum etwa 250 bis 300 Chips hergestellt werden.

Auf dem Wafer werden die Strukturen der Transistoren und Metallleitungen in meh-
reren Arbeitsschritten nacheinander gefertigt. Abb. 10.18 zeigt den Arbeitsschritt der
Erzeugung von Source und Drain eines Transistors (vergleiche Abb. 10.4). Das Subst-
rat ist p-dotiert und für Source und Drain sollen zwei n-dotierte Bereiche entstehen. Das
Bild zeigt einen kleinen Ausschnitt des Wafers in Seitenansicht.

Zunächst wird die Oberfläche mit Fotolack versehen, mit einer Belichtungsmaske
abgedeckt und belichtet. Dieser Verarbeitungsschritt wird als Lithographie (auch Belich-
tungstechnik) bezeichnet. Die nicht belichteten Stellen können entfernt werden und las-
sen das darunter liegende Substrat frei (Abb. 10.18, links). Dann wird der Halbleiter in
eine Atmosphäre mit dem Dotierungsgas gebracht und erhitzt. Für eine n-Dotierung kann
die Dotierung zum Beispiel Arsen sein. Die Dotierungsatome dringen in das Substrat ein
und bilden Source und Drain (Abb. 10.18, rechts).

Auf diese Art werden Schritt für Schritt die einzelnen Ebenen einer Schaltung
erzeugt. Die komplette Bearbeitung eines Wafers benötigt mehrere hundert Verarbei-
tungsschritte. Dazu gehört immer wieder das Auftragen von Fotolack, Belichten mit
einer Fotomaske, Freiätzen unbelichteter Regionen, Dotieren nichtabgedeckter Bereiche
und Entfernen des Fotolacks. Für die einzelnen Schaltungsebenen werden rund 20 bis 30
verschiedene Belichtungsmasken benötigt.

Aufgrund der sehr feinen Strukturen würde ein Staubkorn oder ein Haar auf dem
Wafer die Fertigung stören und der Chip wäre an der Stelle des Staubkorns unbrauchbar.
Darum findet die Fertigung in einem Reinraum statt. Dort trägt man spezielle Schutz-
kleidung und einen Mundschutz und es werden möglichst Industrieroboter eingesetzt.
Dennoch bleibt trotz aller Sorgfalt eine geringe Staubkonzentration, so dass sich Ferti-
gungsfehler nicht komplett vermeiden lassen.

Darum müssen sämtliche ICs nach der Fertigung einzeln getestet werden. Üblicher-
weise erfolgt dieser Fertigungstest zweimal, einmal noch auf dem Wafer, ein anderes Mal
nach dem Verpacken. Durch den ersten Test werden Kosten beim Verpacken in die Gehäuse

10.4  Integrierte Schaltungen

308 10  Halbleitertechnik

gespart, denn defekte Chips werden nicht weiter verarbeitet. Durch den zweiten Test wird
überprüft, ob das Zersägen des Wafers und das Verpacken zu Fehlern geführt haben.

Der Anteil der korrekt gefertigten ICs wird als Ausbeute (engl. Yield) bezeichnet.
Genaue Ausbeutewerte werden von den Halbleiterfirmen als Betriebsgeheimnis gehü-
tet. Werte für eine eingefahrene Fertigung können bei 80 bis 90 % liegen. Für eine neue
Halbleitertechnologie kann die Ausbeute jedoch auch bei nur 10 % oder noch darunter
liegen. Dennoch kann solch eine Fertigung wirtschaftlich sein, wenn die Produkte auf-
grund der Leistungsfähigkeit der neuen Technologie einen entsprechend hohen Preis
erzielen.

10.4.3	� Packaging

Nach Erstellen der Schaltungsstrukturen wird schließlich der Wafer in einzelne Chips
zersägt und in Gehäuse verpackt. Diese unverpackten Chips werden auch als Die
bezeichnet; der Plural ist Dies oder Dice. Mit dünnen Golddrähtchen werden Die und
Gehäuse miteinander verbunden. Die Drähtchen werden als Bond-Draht bezeichnet,
der Fertigungsschritt als Bonding. Abb. 10.19 zeigt, wie in einem geöffneten Gehäuse
die Bond-Drähte eine Verbindung zum Die herstellen. Für die Bond-Drähte wird Gold
als Material verwendet, weil es ein sehr guter elektrischer Leiter ist und sich für diese
Anwendung gut verarbeiten lässt.

Abb. 10.17   Silizium-Wafer. (Foto: imec)

Abb. 10.18   Substrat vor
und während der Dotierung
von Source und Drain eines
CMOS-Transistors

p

n n
Substrat

Photolack

Dotierung

p

309

Die Anschlussflächen im Inneren des Gehäuses sind mit den Pins außen am Gehäuse
verbunden. Mit den Pins erfolgt dann die elektrische Verbindung zur Platine.

10.4.4	� Gehäuse

Es sind verschiedene Gehäuseformen gebräuchlich. Hauptkriterium für die Auswahl des
Gehäuses durch den Hersteller ist die Anzahl der Anschlüsse. Weitere Kriterien sind auf-
tretende Verlustleistung, Platzbedarf und Gehäusekosten. Um die Ausrichtung der ICs zu
bestimmen, sind an den Gehäusen Orientierungsmarken angebracht, meist ein eingepräg-
ter Punkt oder eine Kerbe im Gehäuse. Zusätzlich kann sich in einer Ecke ein fehlender
oder zusätzlicher Pin befinden.

Abb. 10.20 zeigt beispielhaft einige Gehäuseformen. Von links nach rechts sind
abgebildet:

•	 DIL-Gehäuse (Dual In-Line): Geeignet für kleine Anzahl an Pins. Die „Beinchen“
des Gehäuses sind für eine Durchsteckmontage gedacht, werden also durch Löcher in
der Platine geführt.

•	 PLCC-Gehäuse (Plastic Leaded Chip Carrier): Für mittlere Anzahl an Pins geeignet.
Die Pins erlauben die Oberflächenmontage und das Einstecken in Sockel.

Abb. 10.19   Geöffneter Chip mit Bond-Drähten zwischen Die und Gehäuse. (Foto: imec,
bearbeitet)

10.4  Integrierte Schaltungen

310 10  Halbleitertechnik

•	 QFP-Gehäuse (Quad Flat Pack): Ebenfalls für mittlere Anzahl an Pins und die Ober-
flächenmontage geeignet. Im Vergleich zu PLCC etwas kleinere Pins.

•	 BGA-Gehäuse (Ball Grid Array): Bis zu großer Anzahl an Pins verfügbar. Die
Anschlüsse für die Oberflächenmontage befinden sich als Lötkugeln unterhalb des
Bausteins.

10.5	� Miniaturisierung der Halbleitertechnik

Die erste Integrierte Schaltung wurde 1958 von Jack Kilby entwickelt, der dafür den
Nobelpreis für Physik erhielt. Seitdem hat sich die Halbleitertechnik kontinuierlich wei-
terentwickelt. Ein wesentlicher Fortschritt ist, dass es durch geschickte Fertigungstech-
nik gelungen ist, die Größe eines Transistors immer weiter zu reduzieren.

Als Angabe wie klein die Strukturen einer Halbleitertechnologie sind, wird die soge-
nannte Strukturgröße als Größenangabe verwendet. Früher entsprach die Strukturgröße
der Gate-Länge L des Transistors (vergleiche Abb. 10.3). Durch verschiedene Möglich-
keiten für die Gestaltung der Transistorgeometrie hat die Strukturgröße heute jedoch
keinen direkten Bezug zu einer bestimmten Geometrie. Eine kleinere Strukturgröße
kennzeichnet einen moderneren Prozess, der mehr Transistoren enthalten kann. Durch
die kleineren Abmessungen arbeitet er schneller und mit weniger Verlustleistung. Die
Strukturgröße beträgt aktuell 10 Nanometer (Stand 2016). Diese Angabe finden Sie oft in
Zeitschriftenartikeln, beispielsweise als „neue CPU in 10 nm Technologie“. Ein mensch-
liches Haar hat übrigens einen Durchmesser von rund 80 µm, ist also 8000mal so dick.

10.5.1	� Moore’sches Gesetz

Durch die Miniaturisierung passen immer mehr Transistoren auf einen einzelnen Chip.
Diese Entwicklung wird als Mooreʼsche Gesetz bezeichnet.

Das Mooreʼsche Gesetz besagt: Die Anzahl der Transistoren pro Integrierter Schaltung ver-
doppelt sich alle zwei Jahre.

Abb. 10.21 zeigt den Anstieg der Integration. Die vertikale Achse hat eine logarithmi-
sche Skala, das heißt, ein Teilstrich der Skala entspricht einem Multiplikationsfaktor
von 10 gegenüber dem vorherigen Teilstrich. Die Punkte stellen Einführungsjahr und

Abb. 10.20   Verschiedene Gehäuse für Integrierte Schaltungen

311

Transistoranzahl für einige Computer-Prozessoren dar, angefangen beim Intel 4004, dem
ersten in Serie produzierten Mikroprozessor.

Gordon Moore, ein Mitbegründer der Firma Intel, hat die nach ihm benannte Aus-
sage, die natürlich kein Naturgesetz, sondern eine Prognose ist, bereits 1965, also am
Anfang der „Geschichte“ integrierter Schaltkreise formuliert. Ursprünglich wurde sogar
eine jährliche Verdopplung prognostiziert, 1975 dann auf den Zeitraum von zwei Jah-
ren zurückgenommen. Das „Mooreʼs Law“ ist oft zitiertes Synonym für das stürmische
Wachstum der Halbleiterindustrie. Ein Ende dieser Entwicklung wurde zwar oft voraus-
gesagt, scheint aber für die nächsten Jahre noch nicht in Sicht.

10.5.2	� FinFET-Transistoren

Bei der Miniaturisierung von Halbleitern gibt es eine natürliche Grenze: Die Größe der
Atome. Der Atomdurchmesser eines Siliziumatoms beträgt etwa 0,25 nm, so dass die
Gate-Länge heute bereits unter hundert Atomen liegt. Als Folge müssen für die Schalt-
eigenschaften der Transistoren quantenphysikalische Einflüsse einzelner Atome beachtet
werden. Durch die kleinen Abmessungen verschlechtern sich die elektrischen Eigen-
schaften der Transistoren.

Darum werden neue Transistorgeometrien entwickelt, die für sehr kleine Strukturen
besser geeignet sind, als die in Abschn. 10.1.2 beschriebenen, sogenannten Planar-Tran-
sistoren. Eine erfolgreich eingesetzte Struktur sind FinFET-Transistoren. Dabei liegt das
Gate nicht oberhalb des Kanals, sondern um einen Steg herum, der wie eine Finne oder

Abb. 10.21   Das Mooreʼsche
Gesetz beschreibt die stetige
Zunahme an Transistoren je
integrierter Schaltung

Jahr1000

10.000

100.000

1 Mio.

10 Mio.

100 Mio.

1 Mrd.

1970 1980 1990 2000 2010

Transistoren
je Chip

4004

8086

80286 Pentium

Athlon 64

2020

i7-3960X

10 Mrd.

100 Mrd.

10.5  Miniaturisierung der Halbleitertechnik

Source Drain

Gate Gate-Oxid
Gate-OxidGate Source Drain

Oxid

Planar-Transistor FinFET-Transistor

Abb. 10.22   Dreidimensionaler Aufbau eines FinFET-Transistors

312 10  Halbleitertechnik

Rückenflosse aussieht. Aus dieser Finne und der Abkürzung FET für Feldeffekttransistor
ergibt sich der Name FinFET. Der physikalische Aufbau eines FinFET-Transistors ist in
Abb. 10.22 dargestellt. Das Gate umschließt den Kanal von drei Seiten und hat daher auf
kleinem Raum eine hohe Schaltwirkung. Auch Abb. 10.6 zeigt FinFET-Transistoren.

10.5.3	� Weitere Technologieentwicklung

In den nächsten Jahren werden Fortschritte in der Fertigungstechnik für eine weitere Mini-
aturisierung sorgen. Techniken in der Erprobung sind unter anderem dreidimensionaler
Aufbau von Schaltungen und Verbindungen mit Kohlenstoffnanoröhren (CNT, englisch
Carbon Nanotubes). Das Grundprinzip digitaler Schaltungen, also das Schalten von Nullen
und Einsen bleibt auch für die vorgeschlagenen neuen Fertigungstechniken erhalten.

Das Problem für eine neue Fertigungstechnik ist oft die Zuverlässigkeit in der indus-
triellen Fertigung. Wenn im Labor ein Aufbau funktioniert, ist dies nur der erste Schritt.
Eine neue Technik muss auch in der Massenfertigung zu vertretbaren Kosten eine hohe
Fertigungsausbeute ergeben.

10.6	� Übungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Prüfen Sie sich mit den Aufgaben und
Fragen am Kapitelende. Die Lösungen und Antworten finden Sie am Ende des Buches.

Bei den Auswahlfragen ist immer genau eine Antwort korrekt.

Aufgabe 10.1
Was für Schaltelemente werden für CMOS-Schaltungen benutzt?

a)	 Feldeffekttransistoren
b)	Mechanische Schalter
c)	 Feldeffekt- und Bipolartransistoren
d)	Bipolartransistoren

Aufgabe 10.2
Ein CMOS-Inverter besteht aus zwei Transistoren. Wie heißt der mit Versorgungsspan-
nung (VDD) verbundene Transistor?

a)	 Depletion-Transistor
b)	p-Kanal Transistor
c)	 n-Kanal Transistor
d)	Verarmungstransistor

313

Aufgabe 10.3
Ein CMOS-Inverter besteht aus zwei Transistoren. Wie heißt der mit Masse (GND) ver-
bundene Transistor?

a)	 n-Kanal Transistor
b)	Depletion-Transistor
c)	 p-Kanal Transistor
d)	Verarmungstransistor

Aufgabe 10.4
Wenn bei CMOS das Substrat p-dotiert ist, muss der p-Kanal-Transistor in einem spezi-
ellen, umdotierten Gebiet liegen. Wie wird dieses Gebiet bezeichnet?

a)	 Sillicon Region
b)	Silicon Valley
c)	 n-Wanne
d)	Raumladungszone
e)	 Verarmungszone

Aufgabe 10.5
Was bedeutet der Begriff Complementary (komplementär) bei CMOS-Gattern?

a)	 Es ist stets entweder n-Kanal- oder p-Kanal-Netzwerk leitend
b)	p-Kanal-Transistoren haben eine größere Kanalweite
c)	 CMOS-Gatter beinhalten normalerweise eine Invertierung
d)	p-Kanal- und n-Kanal-Transistoren haben entgegengesetztes Verhalten

Aufgabe 10.6
Warum hat im CMOS-Inverter der p-Kanal-Transistor eine 2–3fache Kanalweite?

a)	 Löcher haben eine höhere Beweglichkeit als Elektronen
b)	Löcher haben eine geringere Beweglichkeit als Elektronen
c)	 Die Schaltzeiten 0 nach 1 sowie 1 nach 0 sollen unterschiedlich sein
d)	Die Reihenschaltung mehrerer Transistoren wird ausgeglichen
e)	 Die Parallelschaltung mehrerer Transistoren wird ausgeglichen

Aufgabe 10.7
Welchen Aufbau hat ein Transmission-Gate?

a)	 Zwei unterschiedliche Inverter sind parallel geschaltet
b)	Es werden nur p-Kanal-Transistoren verwendet

10.6  Übungsaufgaben

314 10  Halbleitertechnik

c)	 Zwei Inverter sind in Reihe geschaltet
d)	n-Kanal und p-Kanal-Transistor sind parallel geschaltet
e)	 Es werden nur n-Kanal-Transistoren verwendet

Aufgabe 10.8
Was besagt das Moore’sche Gesetz?

a)	 Die Fläche von Integrierten Schaltungen verdoppelt sich alle zwei Jahre
b)	Der Stromverbrauch Integrierter Schaltungen ist proportional zur Anzahl an

Transistoren
c)	 Die Fläche von Integrierten Schaltungen halbiert sich alle zwei Jahre
d)	Die Anzahl der Transistoren pro Integrierter Schaltung verdoppelt sich alle zwei Jahre
e)	 Der Stromverbrauch Integrierter Schaltungen ist proportional zur Fläche

Aufgabe 10.9
Was kennzeichnet einen FinFET-Transistor?

a)	 Die Dotierung wird besonders schwach gewählt
b)	Der Kanal ist oberhalb des Gatters
c)	 Die Dotierung wird besonders stark gewählt
d)	Es handelt sich um einen Bipolartransistor
e)	 Das Gate liegt um den Kanal herum

Aufgabe 10.10
Welche Funktion hat die Schaltung in Abb. 10.23?

Hinweis: Bei einer 0 am Eingang leiten die p-Kanal-Transistoren (oberes Netzwerk),
bei einer 1 am Eingang leiten die n-Kanal-Transistoren (unteres Netzwerk). Stellen Sie
eine Funktionstabelle für die vier möglichen Eingangskombinationen auf und ermitteln
Sie, welcher Spannungswert am Ausgang anliegt. Aus der Funktionstabelle können Sie
die Logikfunktion erkennen.

Abb. 10.23   Schaltung für
Aufgabe 10.10

VDD

B

Y

A

GND

315© Springer-Verlag GmbH Deutschland 2016
W. Gehrke et al., Digitaltechnik, Springer-Lehrbuch,
DOI 10.1007/978-3-662-49731-9_11

Die Speicherung von Informationen ist eine wichtige Funktion innerhalb von Digital-
schaltungen. Für kleine Speichergrößen werden Flip-Flops eingesetzt, die bereits aus
vorherigen Kapiteln bekannt sind. Für mittlere und größere Datenmengen sind spezielle
Speicherstrukturen effizienter, die in diesem Kapitel vorgestellt werden. Für mittlere
Datengrößen werden die Speicher auf einem Chip integriert. Für sehr große Datenmen-
gen sind spezielle Speicherbausteine verfügbar.

Es gibt verschiedene Technologien für den Aufbau von Speichern, die sich in ihren
Eigenschaften deutlich unterscheiden und daher jeweils eigene Anwendungsbereiche
haben. Die wichtigste Unterscheidung bei den Speichertechnologien ist die Speicherfä-
higkeit ohne Betriebsspannung.

•	 Flüchtige Speicher benötigen eine Versorgungsspannung zum Erhalt der Informatio-
nen. Zu diesen Speichern gehören SRAM und DRAM. Auch Flip-Flops benötigen die
Versorgungsspannung zur Informationsspeicherung.

•	 Nichtflüchtige Speicher behalten ihren Inhalt auch ohne Versorgungsspannung. Zu
diesen Speichern gehören EEPROM, FRAM, MRAM, PCRAM und RRAM.

Die englischen Begriffe sind Volatile Memory und Non-Volatile Memory.
Im Folgenden werden zunächst die verschiedenen Technologien zur Speicherung

erläutert und danach aktuelle Speicherbausteine betrachtet.

Speicher 11

316 11  Speicher

11.1	� Übersicht

11.1.1	� Begriffe und Abkürzungen

Für die verschiedenen Speichertypen und Speicherorganisationen werden eine Reihe von
Begriffen und Abkürzungen verwendet. Für Ihren Überblick klären wir für zunächst die
wichtigsten Bezeichnungen.

•	 SRAM steht für Static Random Access Memory, also ein statischer Speicher mit
wahlfreiem Zugriff.

•	 DRAM steht für Dynamic Random Access Memory, also ein dynamischer Speicher
mit wahlfreiem Zugriff.

Der Unterschied zwischen statisch und dynamisch bedeutet, dass ein SRAM seine Daten
unbegrenzt hält, solange die Versorgungsspannung anliegt. Das DRAM hingegen würde
Daten nach einiger Zeit verlieren und darum muss die gespeicherte Information in regel-
mäßigen Abständen aufgefrischt werden. Der Fachbegriff für diesen Vorgang ist Refresh.

•	 ROM ist ein Read-Only-Memory, also ein Speicher, der nur gelesen werden kann. Er
enthält feste Werte, die nicht verändert werden können.

•	 EEPROM ist ein nicht-flüchtiger Speicher, der mehrfach neu beschrieben wer-
den kann. Die Abkürzung steht für Electrically Erasable Programmable Read-Only
Memory.

•	 FRAM, MRAM, PCRAM und RRAM sind innovative nichtflüchtige Speicher. Die
Abkürzungen stehen für Ferroelectric RAM, Magnetoresistive RAM, Phase-Change
RAM und Resistive RAM.

•	 NVRAM steht für Non-Volatile RAM und ist der Oberbegriff für nichtflüchtige
Speicher.

In dem Begriff EEPROM ist eine längere Geschichte der Speichertechniken verborgen.

•	 ROM ist der Ausgangspunkt. Sie werden mit festem Speicherinhalt hergestellt, der
vor der Fertigung festgelegt wurde.

•	 PROM steht für Programmable ROM, also programmierbares ROM. Damit werden
Speicherbausteine bezeichnet, bei denen der Speicherinhalt programmiert werden
kann. Zunächst war aber nur ein einziger Programmiervorgang möglich.

•	 EPROM steht für Erasable PROM, also löschbares PROM. Der Löschvorgang
erfolgte durch Belichtung mit UV-Licht. Das EPROM wurde aus der Platine entnom-
men und für circa 15 min in ein spezielles Belichtungsgerät gelegt. Danach konnte es
neu programmiert werden.

•	 EEPROM steht für Electrically Erasable PROM, also ein PROM, welches elektrisch
löschbar ist und nicht mehr belichtet werden muss.

317

•	 Flash-EEPROM bezeichnet eine häufig genutzte Variante des EEPROMs. Dabei
können Speicherzellen nicht einzeln geändert werden, sondern beim Ändern des Spei-
cherinhalts werden ganze Speicherblöcke zurückgesetzt („geflasht“).

Auch der Begriff RAM, also Random Access Memory, hat historischen Hintergrund.
Heutige Speicher haben fast immer einen wahlfreien Zugriff auf die gespeicherten
Informationen. Früher wurden auch FIFO-Speicher verwendet, die Daten in der glei-
chen Reihenfolge ausgeben, mit der sie geschrieben werden. Der Begriff FIFO steht für
First-In-First-Out und diese Speicher schieben intern die Daten wie in einem Fließband
schrittweise weiter.

Auch heute werden noch FIFOs verwendet, beispielsweise in Computer-Netzwerken,
wenn Datenpakete empfangen und in der gleichen Reihenfolge weitergegeben werden.
In diesen FIFOs ist jedoch mittlerweile ein SRAM-Speicher enthalten, welcher in fester
Reihenfolge angesteuert wird.

11.1.2	� Grundstruktur

Die prinzipielle Grundstruktur ist für alle Speichertechnologien ähnlich und in Abb. 11.1
dargestellt. Die Speicherzellen sind in einer Matrixform in Zeilen und Spalten angeord-
net. Auf die einzelnen Speicherzellen wird über eine Adresse zugegriffen. Anhand eines
Teils der Speicheradresse wird eine Zeile ausgewählt. Der Rest der Speicheradresse
wählt eine Spalte aus. Steuerleitungen geben an, ob Daten gelesen oder geschrieben wer-
den sollen.

Die Daten werden über Lese- und Schreibverstärker aus der Speicherzelle gelesen
beziehungsweise in die Zelle geschrieben. Über den Lese-/Schreibverstärker erfolgt
der Datenaustausch mit der weiteren Schaltung. Normalerweise enthält ein Speicher

Abb. 11.1   Grundstruktur
eines Halbleiterspeichers

Z
ei

le
nd

ec
od

er

Spaltendecoder

Lese-/ Schreib-
verstärker

Speichermatrix

Daten

Adresse

Speicher-
zellen

Steuer-
leitungen

11.1  Übersicht

318 11  Speicher

Datenworte mit mehreren Bits, das heißt unter einer Adresse sind 8 Bit, 16 Bit oder
32 Bit gespeichert. Die einzelnen Speichertechnologien unterscheiden sich durch die Art
der verwendeten Speicherzellen in der Matrix.

Durch die Matrixanordnung ergibt sich eine Zweiteilung der Adresse, welche die
interne Ansteuerung des Speichers erleichtert. Anstelle eines großen Adressdecoders sind
zwei kleine Decoder nötig. Die Aufteilung wird meist so gewählt, dass die Speichermat-
rix quadratisch ist oder ein Verhältnis von 2-zu-1 oder 4-zu-1 hat.

Als Beispiel wird ein Speicher für 220 Datenworte zu 16 Bit betrachtet. Dies sind
exakt 1.048.576 Datenworte, also rund eine Million. Dafür sind etwa 16 Mio. Speicher-
zellen erforderlich, die bei einer quadratischen Aufteilung eine Speichermatrix aus 4096
Zeilen und 4096 Spalten bilden. Jeweils 16 Zellen einer Zeile bilden ein Datenwort und
haben die gleiche Adresse. Es müssen also 4096 Zeilen und 4096/16 = 256 Spalten
angesteuert werden.

Aus der Speichergröße ergibt sich die benötigte Wortbreite für die Adresse. Mit n
Adressleitungen können 2n Adressen angesteuert werden.

Der Speicher mit 220 Datenworten benötigt somit 20 Adressleitungen. In der inter-
nen Struktur werden 12 Adressleitungen verwendet, um die Zeilenadresse zu bestimmen.
Dies berechnet sich aus den 4096 Adressen, die dem Wert 212 entsprechen. Die restlichen
8 Adressleitungen bestimmen die Spaltenadresse, denn 256 ist 28.

11.1.3	� Physikalisches Interface

Die Geschwindigkeit eines Datenzugriffs ist natürlich wichtig für die Leistungsfähigkeit
eines Speichers. Dabei unterscheidet man zwischen Latenzzeit und Datentransferrate.
Die Latenzzeit ist die Reaktionszeit auf einen Datenzugriff und hängt von der Organisa-
tion des Speichers ab. Die Datentransferrate ist die Geschwindigkeit mit der Daten zwi-
schen Speicher und System übertragen werden.

Die höchste Datentransferrate ist möglich, wenn der Speicher sich auf demselben
Chip wie das restliche System befindet. Dies wird als interner Speicher oder Embedded
Memory bezeichnet. Für separate Speicherbausteine, also externen Speicher, ist die Ver-
bindung, das physikalische Interface zwischen Speicher und System, entscheidend für
die Datentransferrate.

Zur Beschleunigung des Datentransfers werden verschiedene Schaltungstechniken
eingesetzt.

Reduzierter Spannungshub mit Referenzspannung
Die Leitungen zwischen System und Speicher haben Kapazitäten, die bei Signalwech-
seln umgeladen werden müssen. Um dies zu beschleunigen, wird der Spannungshub auf
den Leitungen reduziert. Allerdings sinkt dadurch auch der Störabstand, denn der Über-
gangsbereich zwischen Low- und High-Pegel wird sehr klein. Als Ausgleich wird eine
Referenzspannung eingeführt. Wenn der Signalpegel höher als die Referenzspannung ist,

319

wird bei positiver Logik eine 1 erkannt. Spannungen unterhalb des Referenzpegels wer-
den als eine logische 0 interpretiert. Störungen wirken sich auf Signale und Referenz-
spannung gleichermaßen aus, so dass die Information nicht verfälscht wird.

Terminierung von Leitungen
Auf elektrischen Leitungen können Reflektionen von Signalwechseln auftreten. Wenn
diese die eigentlichen Signale überlagern, sind Fehler in der Datenübertragung möglich.
Für die Signalleitungen zu externen Speichern gibt es daher Layout-Regeln, damit die
Leitungen einen passenden Wellenwiderstand haben. Außerdem können auf der Platine
oder direkt auf den Chips Abschlusswiderstände für eine Terminierung der Leitungen
sorgen.

Double-Data-Rate
Schnelle Speicher verwenden ein synchrones Interface, bei denen die Abfolge der Daten
durch einen Takt angezeigt wird. Allerdings kann die hohe Frequenz des Taktsignals pro-
blematisch sein. Grund ist, dass der Takt schnellere Signalwechsel als die Datenleitun-
gen hat. Der Takt wechselt in jedem Zyklus von 0 nach 1 und wieder von 1 nach 0. Ein
Datensignal hat jedoch pro Taktzyklus maximal einen Signalwechsel und damit die halbe
Frequenz.

Zur Verringerung der Frequenz für das Taktsignal wird eine Datenübertragung mit
Double-Data-Rate, abgekürzt DDR, verwendet. Dabei signalisieren steigende und fal-
lende Taktflanken die übertragenen Daten. Pro Taktzyklus werden also zwei Datenworte
übertragen, was zu der Bezeichnung „doppelte Datenrate“ führt.

11.2	� Speichertechnologien

11.2.1	� SRAM

Im SRAM erfolgt die Datenspeicherung durch Rückkopplung zweier Inverter. Abb. 11.2
zeigt einen Ausschnitt aus der Speichermatrix. Die Inverter sind wechselseitig mit ihren
Ein- und Ausgängen verbunden, so dass eine gespeicherte 0 oder 1 doppelt invertiert und
verstärkt wird. Damit bleibt die Information erhalten. Beim Abschalten der Versorgungs-
spannung entfällt die Rückkopplung, die Daten gehen verloren, der Speicher ist flüchtig.

Angesteuert werden die SRAM-Zellen über eine Zeilenadresse sowie Datenleitungen.
Für jede Spalte sind zwei Datenleitungen vorhanden, die Daten und invertierte Daten
verbinden.

•	 Zum Lesen von Daten wird eine Zeile ausgewählt und die Zeilenadresse auf 1 gesetzt.
Dadurch werden alle Speicherzellen einer Zeile mit den Datenleitungen verbunden.
Der Leseverstärker wählt dann die richtigen Spalten aus und gibt die Daten an den
Ausgang.

11.2  Speichertechnologien

320 11  Speicher

•	 Zum Schreiben von Daten wird ebenfalls eine Zeile durch Zeilenadresse auf 1 ausge-
wählt. Wiederum werden die Speicherzellen mit den Datenleitungen verbunden. Dort
wo Daten geschrieben werden, müssen die Datenleitungen die neuen Werte enthalten.
Außerdem muss der Schreibverstärker so stark sein, dass er die Rückkopplung der
Speicherzelle überschreibt.

Die Speicherzelle selbst ist in Abb. 11.3 dargestellt. Die Inverter haben jeweils zwei
Transistoren, die Schalter sind durch jeweils einen einzelnen Transistor aufgebaut.
Anders als beim Transmission-Gate (vgl. Kapitel 10) wird nur ein n-Kanal-Transistor
verwendet, um Transistoren zu sparen. Insgesamt benötigt die SRAM-Zelle 6 Transisto-
ren. Sie wird daher auch als 6T-Zelle bezeichnet.

Wir betrachten wieder den Speicher mit 220 Datenworten zu 16 Bit. Horizontal
verlaufen 4096 Zeilenadressen und vertikal für jede Zelle zwei Datenleitungen also

Zeilen-
adresse n

Datenleitungen
(direkt und invertiert)

D D

Zeilen-
adresse n+1

Zeilen-
adresse n+2

Spalte m D DSpalte m+1

Abb. 11.2   Speicherzellen eines SRAMs

Abb. 11.3   Transistoraufbau
einer SRAM-Speicherzelle

VDD

GNDAdress-
leitung

Datenleitungen
(direkt und invertiert)

D D

http://dx.doi.org/10.1007/978-3-662-49731-9_10

321

insgesamt 8192. Für die rund 16 Mio. Speicherzellen werden 6 ‧ 16 Mio., also 96 Mio.
Transistoren benötigt. Bei der Adressierung eines 16-Bit-Wortes werden 32 nebeneinan-
derliegende Datenleitungen angesprochen, je Bit zwei Leitungen.

11.2.2	� DRAM

Ein DRAM verwendet eine andere Art der Speicherung. Eine Information wird als
Ladung auf einem kleinen Kondensator gespeichert. Ein Transistor dient als Schalter zur
Datenleitung. Die Adressleitung öffnet den Transistor, so dass die Ladung gespeichert
oder abgefragt werden kann (Abb. 11.4).

Der wesentliche Vorteil der DRAM-Speicherung ist der geringere Platzbedarf gegen-
über einem SRAM. Zunächst werden weniger Komponenten benötigt, und zwar nur ein
Transistor und ein Kondensator, verglichen mit den sechs Transistoren des SRAMs. Ein
weiterer Platzvorteil entsteht dadurch, dass keine p-Kanal-Transistoren verwendet wer-
den und darum keine n-Wanne mit einem Mindestabstand zu den n-Kanal-Transistoren
erforderlich ist. Der Masseanschluss des Kondensators verbindet zum Substrat. Darum
wird keine Masseleitung benötigt und auch Versorgungsspannung sowie eine zweite
Datenleitung sind nicht erforderlich, was weiterhin Platz einspart. Die Speicherkapazität
eines DRAMS ist dadurch wesentlich höher als bei einem SRAM.

Das Speicherprinzip des DRAMs hat jedoch auch Nachteile, insbesondere die Not-
wendigkeit einer speziellen Halbleitertechnologie sowie die begrenzte Datenerhaltung.

Spezielle Halbleitertechnologie
Wichtig für die Informationsspeicherung ist ein Kondensator mit ausreichender Kapazi-
tät. Dieser ist in einem Standard-CMOS-Prozess nicht vorhanden, so dass eine spezielle
Halbleitertechnologie erforderlich ist. Ein SRAM-Speicher hingegen lässt sich auf einem
Standard-CMOS-Prozess fertigen.

Es gibt verschiedene Möglichkeiten, einen Kondensator aufzubauen. Zwei Grundprin-
zipien sind Capacitor over Bitline (COB) und Trench-Transistoren.

•	 Bei Capacitor over Bitline befindet sich der Kondensator oberhalb der Datenleitung
(Bitline) und wird beim Aufbau der verschiedenen Schichten eines Chips erzeugt.

•	 Als Trench-Kondensator wird in das Substrat ein Graben (engl. Trench) oder Loch
geätzt und mit leitfähigem Material aufgefüllt. Grundprinzip und Chipfoto einer

Abb. 11.4   Speicherzelle
eines DRAMs

GND

Adressleitung

Datenleitung

C

11.2  Speichertechnologien

322 11  Speicher

DRAM-Zelle mit Trench-Kondensator sind in Abb. 11.5 dargestellt. WL (Write Line)
bezeichnet die Adressleitung.

Begrenzte Datenerhaltung
Die Ladung des Kondensators wird nicht, wie beim SRAM, durch eine Rückkopplung
automatisch erhalten. Dies muss für die Speicherung und für den Lesevorgang berück-
sichtigt werden.

Bei der Speicherung wird der Kondensator durch Leckströme langsam entladen. Die
Daten werden also nur für einen kurzen Zeitraum gespeichert und müssen durch einen
Refresh periodisch erneuert werden. Die garantierte Speicherzeit zwischen zwei Refresh
vorgängen ist abhängig von der Halbleitertechnologie und liegt in der Größenordnung
von 100 ms.

Beim Lesevorgang wird der Transistor am Kondensator geöffnet und die Ladung über
die Datenleitung gelesen. Dies erfordert einen sehr empfindlichen Leseverstärker, der
erkennen muss, ob ein kleiner Kondensator am Ende einer langen Datenleitung geladen
oder nicht geladen war. Außerdem wird durch das Lesen des Kondensators die Informa-
tion gelöscht. Nach dem Lesen einer Zelle muss also immer die Information wieder in
die Kondensatoren zurückgeschrieben werden.

Dies hört sich zunächst nach einem sehr hohen Aufwand an. Gemildert wird der Auf-
wand dadurch, dass beim Lesen eine ganze Zeile in den Leseverstärker geladen wird.
Weitere Datenzugriffe in die gleiche DRAM-Zeile können darum sehr schnell erfolgen,
da die Daten bereits im Leseverstärker vorhanden sind.

Als Zahlenbeispiel nehmen wir wieder den oben betrachteten Speicher mit 220 Daten-
worten zu 16 Bit. Wenn er als DRAM implementiert ist, wird zunächst eine der 4096
Zeilenadressen angesprochen und in den Leseverstärker geladen. Dort stehen dann 256
Worte zu 16 Bit für den schnellen Datenzugriff bereit.

Isolation

Poly-
silizium

Substrat

Trench -
Kondensator

Source Drain
Gate

Transistor

Abb. 11.5   DRAM-Speicherzelle mit Trench-Kondensator als physikalischer Aufbau und im
Elektronenmikroskop. (Foto: Chipworks)

323

Aufgrund des geringeren Platzbedarfs für die Speicherzellen wird für die Speicherung
großer Datenmengen oft ein DRAM eingesetzt. Beispielsweise wird der Hauptspeicher
eines PCs durch DRAM-Speicher implementiert.

11.2.3	� ROM

Wenn in einem System unveränderliche Werte gespeichert werden sollen, wird ein Read-
Only-Memory (ROM) eingesetzt. An den Kreuzungspunkten von Adress- und Datenlei-
tungen befinden sich Kontaktmöglichkeiten, die verbunden oder nicht verbunden sind
und damit eine 0 oder 1 darstellen. Um einen Kurzschluss über andere Speicherstellen zu
vermeiden, befindet sich an der Kontaktstelle eine Diode.

Abb. 11.6 zeigt den Aufbau eines ROMs mit verbundenen und unverbundenen Kon-
taktstellen. Zum Lesen einer Information wird eine Adressleitung auf High-Pegel gelegt
und vom Leseverstärker überprüft, ob auf der Datenleitung ein Strom fließt. Die unbe-
nutzten Adressleitungen liegen auf Low-Pegel und sind durch die Dioden abgetrennt.

11.2.4	� OTP-Speicher

Eine besondere Art eines nichtflüchtigen Speichers stellt der Einmalprogrammierbare
Speicher dar. Er wird als OTP, also One-Time-Programmable bezeichnet. Ein OTP-Spei-
cher kann nach der Programmierung nicht mehr verändert werden und gegebenenfalls
muss ein kompletter Baustein ausgetauscht und weggeworfen werden. In der Anfangs-
zeit der Mikroelektronik war eine Programmierung nicht anders möglich. Heute ist diese
Einschränkung für viele Anwendungen nicht mehr akzeptabel.

Für programmierbare Schaltungen (FPGAs) wird eine Einmalprogrammierung jedoch
weiterhin eingesetzt. Sie hat den Vorteil, dass sie Sicherheit gegen unbeabsichtigte Ände-
rung oder Manipulation einer Schaltung bietet. Ein Anwendungsbeispiel sind FPGAs für
Satelliten und Raumfahrt, bei denen die Programmierung durch kosmische Strahlung
nicht gestört werden darf. Bei der Entwicklung werden eventuell einige wenige Bau-
steine mit Testversionen programmiert und ausgetauscht. Danach kann eine Kleinserie
mit dem gewünschten Speicherinhalt programmiert und in Geräte eingebaut werden.

Abb. 11.6   Struktur eines
ROMs

Datenleitung

Zeilen-
adresse

0

1

2

0 1 2

...

...

...

...

...

...

11.2  Speichertechnologien

324 11  Speicher

Implementiert werden Einmalprogrammierbare Speicher durch Sicherungen und
Antisicherungen. Eine Sicherung brennt bei zu hohem Strom durch, während eine
Anti-Sicherung (Anti-Fuse) bei Anlegen einer Programmierspannung eine elektrische
Verbindung herstellt. In der Praxis sind heutzutage Anti-Fuses gebräuchlich, da diese
zuverlässiger programmiert werden können.

Das Grundprinzip eines PROM zeigt Abb. 11.7. An jeder Verbindung von Adress-
leitung und Datenleitung ist eine Sicherung oder Anti-Fuse in Reihe zu einer Diode
geschaltet. Bei der Programmierung wird festgelegt, welche Verbindungen benötigt
werden.

11.2.5	� EEPROM

Für viele Anwendungen sollen Daten nichtflüchtig gespeichert, aber auch leicht verän-
derbar sein. Das hierfür am weitesten verbreitete Halbleiterelement ist das EEPROM.
Hierbei erfolgt die Datenspeicherung durch spezielle Transistoren mit einem zusätzli-
chen isolierten Gate (engl. Floating-Gate). Wie Abb. 11.8 zeigt, liegt das Floating-Gate
zwischen dem regulären Steuer-Gate und dem Kanal. Auf dem Floating-Gate kann durch
Tunneleffekte und sogenanntes Hot-Electron-Injection eine Ladung gespeichert und wie-
der gelöscht werden. Das Floating-Gate ist jedoch elektrisch isoliert und speichert die
Ladung daher sehr lange. Die garantierte Speicherzeit beträgt je nach Baustein bis zu 20
Jahre.

Zum Lesen der Daten muss die Ladung nicht abgerufen werden. Der Transistor wird
über das Steuer-Gate angesprochen. Falls keine Ladung auf dem Floating-Gate vorhan-
den ist, leitet der Transistor wie in der normalen CMOS-Technik. Falls eine Ladung

Abb. 11.7   Struktur eines
OTP-Speichers

...

...

...

...

programmierbare
Verbindung

Abb. 11.8   Floating-Gate
Transistor für EEPROMs

nn

p-Silizium

Source DrainSteuer-Gate

Floating GateIsolator

325

gespeichert ist, verschiebt sich die Schwellenspannung und der Transistor bleibt auch bei
Ansteuerung durch das Steuer-Gate nichtleitend. So ist eine Unterscheidung des Spei-
cherinhalts möglich.

Häufig wird die als Flash-EEPROM bezeichnete Schaltungsform eingesetzt. Hierbei
hat der Schreibvorgang die Besonderheit, dass für eine einzelne Zelle nur die Änderung
von einer 1 in eine 0 möglich ist. Falls eine 0 in eine 1 geändert werden soll, muss ein
ganzer Block komplett auf 1 gesetzt werden und erneut die benötigten 0-Werte geschrie-
ben werden. Typische Blockgrößen sind zwischen 8 kByte und 256 kByte. Dieses
Löschen ganzer Speicherblöcke hat zu dem Namen Flash geführt. Ein Vorteil der Flash-
Technik ist der geringere Schaltungsaufwand, u.a. weil beim Löschen nicht jede Zelle
einzeln angesprochen werden muss.

Die Anzahl der möglichen Löschzyklen ist begrenzt und beträgt beispielsweise
100.000 Zyklen. Bei der Ansteuerung des Flash-EEPROMs wird meist versucht, die Blö-
cke möglichst gleich häufig zu benutzen, um die Lebensdauer des Bausteins zu verlän-
gern. Diese Strategie bezeichnet man als Wear Leveling, also frei übersetzt „Ausgleichen
der Abnutzung“.

Es gibt zwei Strukturen für die Anordnung von Floating-Gate Transistoren zu einem
Speicher, und zwar die NOR- und die NAND-Struktur, dargestellt in Abb. 11.9. Beiden
Technologien gemeinsam ist, dass wieder eine Zeile durch einen Zeilendecoder ausge-
wählt wird.

•	 In der NOR-Struktur schalten die Speichertransistoren die Datenleitung parallel nach
Masse. Die nicht aktiven Transistoren sind nicht leitend und stellen somit keine Ver-
bindung nach Masse dar. Zum Lesen wird ein Transistor über die Adressleitung ange-
sprochen. Abhängig von seinem Speicherzustand kann er daraufhin leitend werden
und die Datenleitung nach Masse ziehen. Dies wird vom Leseverstärker erkannt.

•	 In der NAND-Struktur sind die Speichertransistoren in der Datenleitung in Reihe
angeordnet. Die nicht aktiven Transistoren sind leitend geschaltet. Der Transistor, der

Abb. 11.9   Interne EEPROM-
Speicherzellenstruktur in
NOR- und NAND-Technik

Z
ei
le
nd

ec
od

er

Datenleitung

...

Zeilenadressen

...

Datenleitung

...

NOR NAND

11.2  Speichertechnologien

326 11  Speicher

gelesen werden soll, wird über die Adressleitung angesprochen und schaltet die Rei-
henschaltung leitend oder nicht leitend. Auch dies wird vom Leseverstärker erkannt.

Beide Strukturen werden in der Praxis eingesetzt.

•	 Der Vorteil der NOR-Struktur ist ein geringer Widerstand auf der Datenleitung, wel-
cher eine gute Lesbarkeit der Daten ermöglicht. Der Nachteil ist ein höherer Flächen-
bedarf, da jeder Transistor einen Kontakt zu Masse benötigt.

•	 Der Vorteil der NAND-Struktur ist ein geringerer Flächenbedarf, da die Speichertran-
sistoren direkt aneinander geschaltet werden. Dadurch ist die Speicherkapazität höher.
Der Nachteil ist, dass die nicht aktiven Transistoren auch im leitenden Zustand noch
einen gewissen Widerstand haben, der sich in der Reihenschaltung addiert. Dadurch
ist das Auslesen schwieriger und es können Lesefehler auftreten.

Für die meisten Anwendungen wird heutzutage die NAND-Struktur verwendet, da die
Speicherdichte deutlich höher ist. Beim Lesen können jedoch einzelne Datenworte
fehlerhaft sein, sogenanntes Bit-Flipping. Darum wird die Information mit einem feh-
lerkorrigierenden Code gespeichert, englisch Error Correcting Code (ECC). Durch
Zusatzinformationen kann ein Controller einzelne Fehler erkennen und direkt korrigie-
ren. Wenn zu viele Fehler in einem Speicherblock auftreten, können diese jedoch nicht
mehr korrigiert werden. Ein problematischer Speicherblock muss rechtzeitig erkannt und
als unbrauchbar markiert werden. Ein NAND-Speicher kann einige solcher Bad Blocks
haben, wodurch sich seine Speicherkapazität leicht reduziert.

Eine Erhöhung der Speicherdichte ist möglich, indem verschiedene Ladungsmengen
auf das Floating-Gate gespeichert werden. Je nach Ladung verschiebt sich die Schwel-
lenspannung des Speichertransistors und kann durch den Leseverstärker unterschieden
werden. Aktuell werden zwei bis vier Bit auf einem Transistor gespeichert, was die
Unterscheidung von bis zu 16 verschiedenen elektrischen Ladungen erfordert. Diese
Technik wird nur für NAND-Speicher eingesetzt und allgemein als Multi-Level-Cell
(MLC) bezeichnet; bei Speicherung von 3 oder 4 Bit auch als Triple- oder Quad-Level-
Cell (TLC, QLC). Die mit diesen Techniken verbundene höhere Fehlerwahrscheinlichkeit
erfordert einen Controller mit leistungsfähiger Fehlerkorrektur.

11.2.6	� Innovative Speichertechniken

In den letzten Jahren ist der Markt für nicht-flüchtige Halbleiterspeicher (NVRAM)
kontinuierlich gewachsen. Grund dafür ist, dass diese Speicher in immer mehr Geräten
eingesetzt werden und dabei auch die Speichergrößen steigen. NVRAMs finden sich in
USB-Speicher-Sticks, Digitalkameras, Mobiltelefonen, Tablets, Solid-State-Festplatten
und weiteren Elektronikgeräten.

Darum werden weitere Speichertechniken entwickelt, die höhere Speicherkapazitäten,
geringere Kosten oder einfachere Ansteuerung verglichen mit EEPROMs ermöglichen.

327

Einige dieser Techniken sind bereits im praktischen Einsatz, allerdings sind ihre Markt-
anteile noch recht klein. Es ist gegenwärtig nicht absehbar, welche der neuen Techniken
zu einer Konkurrenz von EEPROMs werden oder diese sogar ersetzen können. Das Prin-
zip einiger innovativer Speichertechniken wird in diesem Unterkapitel vorgestellt.

Für die Speicherung wird ein Material gesucht, welches

•	 zwei verschiedene Zustände hat, die sich in ihren elektrischen Eigenschaften
unterscheiden,

•	 einen einfachen Wechsel zwischen diesen Zuständen ermöglicht,
•	 beide Zustände stabil über Jahre hinweg behält,
•	 sehr oft zwischen diesen Zuständen wechseln kann, also mindestens hunderttausend,

möglichst eine Milliarde Mal,
•	 platzsparend und kostengünstig zu einem CMOS-Prozess ergänzt werden kann.

Die vorgeschlagenen Speichertechniken nutzen jeweils andere Materialien zur Daten-
speicherung. Die folgende Übersicht nennt aktuell verwendete Materialien für die
Speichertechniken.

FRAM
FRAM, also Ferroelectric RAM, verwendet einen Kondensator mit einem ferroelek-
trischen Dielektrikum. Dieses Material hat eine Kristallstruktur, welche zwei stabile
Zustände mit unterschiedlichem elektrischen Feld aufweist. Für das Material Blei-Zir-
konat-Titanat (PZT) ist die Struktur in Abb. 11.10 dargestellt. In der Mitte der Kristall-
struktur aus Blei (Pb) und Sauerstoff (O) ist ein Atom aus Zirconium oder Titan, welches
sich in der unteren oder oberen Position der kubischen Struktur befinden kann. Durch
ein elektrisches Feld lässt sich dieses zentrale Atom verschieben und so eine Information
speichern.

MRAM
MRAM, also Magnetoresistive RAM, speichert Informationen in einer ferromag-
netischen Schicht. Diese befindet sich getrennt durch ein dünnes Dielektrikum aus

Ti/ZrE E

Positive Polarisation
Logischer Zustand: ‚0'

O

Pb

Negative Polarisation
Logischer Zustand: ‚1'

Abb. 11.10   Kristallstruktur eines FRAM-Speichermaterials

11.2  Speichertechnologien

328 11  Speicher

Aluminiumdioxid (Al2O3) gegenüber einer weiteren magnetischen Schicht (siehe
Abb. 11.11). Die obere Magnetschicht ist magnetisch weich und kann in ihrer magne-
tischen Orientierung gedreht werden. Die untere Magnetschicht ist magnetisch hart und
hat eine feste Orientierung. Der Strom durch das Dielektrikum ist durch einen Tunnelef-
fekt abhängig davon, ob die magnetische Orientierung parallel oder antiparallel ist.

PCRAM
PCRAM, also Phase-Change-RAM, Phasenwechselspeicher, nutzt ein Material, welches
eine kristalline oder amorphe Struktur einnehmen kann. Je nach Struktur ist der elektri-
sche Widerstand unterschiedlich und zeigt so eine 0 oder 1 an. Der Wechsel zwischen
den Strukturen erfolgt über Aufheizen durch elektrischen Strom. Je nach Geschwindig-
keit der Abkühlung wird das Material kristallin oder amorph (Abb. 11.12).

RRAM
RRAM, auch ReRAM, für Resitive RAM, verändert ähnlich wie PCRAM den Wider-
stand eines Speichermaterials. Dabei befindet sich ein Metalloxid zwischen zwei Elek-
troden. Durch einen Strom kann der Widerstand des Metalloxids zwischen hohem und
niedrigem Widerstand wechseln. Dafür ist allerdings keine Erwärmung und Abkühlung
des Materials nötig, so dass ein Speichervorgang prinzipiell einfacher erfolgen kann. Ein
Ausschnitt aus der Speichermatrix ist in Abb. 11.13 dargestellt.

ferromagnetisch weich

ferromagnetisch hart

Tunnelbarriere (Al2 O3)

Strom

Parallele Magnetisierung
Logischer Zustand: ‚0'

Antiparallele Magnetisierung
Logischer Zustand: ‚1'

Abb. 11.11   Aufbau eines MRAM-Speicherelements

Abb. 11.12   Speicherprinzip
eines Phase-Change-RAM

Kristalline Struktur
Logischer Zustand: ‚0'

Amorphe Struktur
Logischer Zustand: ‚1'

Elektrode

Halbleiter-
legierung

329

Ansteuerung innovativer NVRAMs
Die Ansteuerung erfolgt für alle Speichertechnologien wieder in Matrixstruktur mit
Adress- und Datenleitungen. Die Einbindung des Speichermaterials ist abhängig davon,
welche elektrische Eigenschaft sich für die Datenspeicherung ändert. Teilweise wird ein
Transistor benötigt, der die Speicherzelle freischaltet.

Eine besonders kompakte Anordnung ist für bestimmte RRAMs möglich. Durch hori-
zontale und vertikale Leitungen kann eine einzelne Speicherzelle direkt angesprochen
werden (Abb. 11.13). Durch eine Diode in der Speicherzelle, wie beim ROM, haben
andere Zellen keinen Einfluss auf die Leseelektronik. Mehrere Lagen an Zellen sollen
gestapelt werden, um die Speicherkapazität zu erhöhen. Dabei kann eine Leitung gemein-
sam für zwei Ebenen an Speicherzellen genutzt werden (Vertikalleitung in Abb. 11.13).

11.3	� Eingebetteter Speicher

Als eingebetteter Speicher, engl. Embedded Memory, werden Speicherblöcke bezeichnet,
die sich gemeinsam mit einer größeren Schaltung auf einem Chip befinden.

11.3.1	� SRAM

In fast jedem größeren digitalen Chip befinden sich SRAM-Speicherblöcke. Ein SRAM
ist mit der normalen CMOS-Fertigungstechnik herzustellen und erfordert daher keinen
zusätzlichen Fertigungsaufwand. Eingesetzt werden SRAM-Speicherblöcke beispiels-
weise als interner Speicher einer CPU, für die Zwischenspeicherung von Audio- und
Videodaten oder bei der Zwischenspeicherung von Netzwerkdaten.

Elektroden

Metalloxid

Horizontalleitung

Vertikalleitung

Abb. 11.13   Dreidimensionale Struktur eines RRAMs

11.3  Eingebetteter Speicher

330 11  Speicher

Die Ansteuerung eines SRAMs erfolgt durch Adresse, Datenleitungen und Steuer-
leitungen. Oft sind Flip-Flops an Eingängen und Ausgängen integriert, so dass auch ein
Takteingang vorhanden ist.

•	 Die Adressleitungen entsprechen der Anzahl an Speicherworten. Ein Speicher mit 2n
Adressen benötigt n Adressleitungen, die parallel anliegen. So hat ein Speicher mit
1024 Speicherworten einen Adressbus mit 10 Leitungen, denn 210=1024.

•	 Die Datenleitungen entsprechen der Wortbreite der Speicherworte. Ein Speicher für
16-Bit-Worte hat Datenleitungen mit 16 Stellen. Dateneingang und Datenausgang sind
getrennte Leitungen. Bidirektionale Leitungen sind bei Embedded Memory nicht nötig,
da die Anzahl der Verbindungsleitungen innerhalb eines Chips kaum begrenzt ist.

•	 Als Steuerleitung ist eine Schreibsteuerung erforderlich, die angibt, ob die Daten am Ein-
gang in den Speicher geschrieben werden sollen. Optional ist ein Enable-Signal möglich,
mit dem das SRAM zur Verringerung der Verlustleistung inaktiv geschaltet werden kann.

Ein Speicher für 1024 Worte der Wortbreite 16 bit hat damit die in Abb. 11.14 dargestell-
ten Eingangs- und Ausgangssignale. Anstelle eines besonderen Symbols wird ein Block
mit der Angabe der Speichergröße verwendet.

Embedded-SRAM werden in der Schaltungsentwicklung als Bibliothekselement
bereitgestellt, ähnlich wie die Logikgatter oder Flip-Flops. Je nach Technologie sind
bestimmte Speichergrößen vorgegeben oder können, in gewissen Grenzen, frei mit
einem Generator erzeugt werden.

Ein Embedded-SRAM kann auch mehr als ein Speicher-Interface haben. Häufig wer-
den Dual-Port-Speicher eingesetzt, die zwei unabhängige Zugriffe unterstützen. Beide
Anschlüsse können verschiedene Takteingänge besitzen und somit auch Daten aus einem
Taktbereich in einen anderen Taktbereich überführen. Durch die Adressierung muss
sichergestellt werden, dass keine Konflikte durch gleichzeitigen Schreibzugriff auf die
gleiche Speicherstelle auftreten.

Die Anschlüsse haben jeweils eigene Adresseingänge. Als Datenleitungen sind entwe-
der für beide Anschlüsse Dateneingang und -ausgang vorhanden oder ein Anschluss ist
ein Eingang, der andere Anschluss ein Ausgang. Auch mehr als zwei Anschlüsse sind
prinzipiell für ein Embedded-SRAM möglich, werden aber selten verwendet.

Als Anwendungsbeispiel soll ein Audiosignal mit einem Halleffekt digital verfremdet
werden. Dazu wird das Signal verzögert und mit reduziertem Pegel zum Eingangssignal
addiert. Für die Verzögerung kann ein SRAM eingesetzt werden, in das permanent die aktu-
ellen Signalwerte gespeichert und von anderer Adresse frühere Signalwerte gelesen werden.

Abb. 11.14   Eingangs- und
Ausgangssignale eines
Embedded-SRAM

SRAM
1024x16

ADDR(9:0)
DIN(15:0) DOUT(15:0)WR

CLK

331

11.3.2	� DRAM

Ein DRAM bietet eine deutlich höhere Speicherkapazität als SRAM, erfordert jedoch
einen speziellen CMOS-Prozess. Embedded-DRAM wird in der Praxis eingesetzt, wenn
große Datenmengen gespeichert werden sollen. Durch eine Kombination von Speicher
und Signalverarbeitung sind sehr kompakte Systeme möglich.

Embedded-DRAM lohnt sich meist nur in Einzelfällen. Sehr große Datenmengen
übersteigen die Speicherkapazität und erfordern mehrere externe Speicherchips. Bei
kleineren bis mittleren Datenmengen wird Embedded-SRAM verwendet. Dies erfordert
zwar mehr Chipfläche, ist aber kostengünstiger, da kein spezieller CMOS-Prozess ver-
wendet werden muss.

Ein Beispiel ist der Grafik-Prozessor SM768 von Silicon Motions mit 256 MByte
Embedded-DRAM. Er erzeugt eine Grafik für einen Monitor und kann direkt an ein LCD-
Panel angeschlossen werden. Der Baustein wird über USB 3.0 angesteuert, ohne dass eine
Grafikkarte nötig ist. Auch komprimierte Videodaten können decodiert werden. Dadurch
dass sich Speicher und Signalverarbeitung auf einem einzigen Baustein befinden, ermög-
licht dieser einzelne Chip den kostengünstigen Aufbau eines intelligenten Monitors.

11.3.3	� ROM

Festwertspeicher können, genau wie SRAMs, mit der normalen CMOS-Fertigungstech-
nik hergestellt werden. Damit eignen sie sich, wenn in einer Schaltung vorab festgelegte
Informationen abgespeichert werden sollen. Eingesetzt werden ROMs beispielsweise für
den Boot-Code einer CPU, also die fest vorgegebenen Anweisungen beim Starten eines
Rechnersystems.

Ein weiteres Einsatzgebiet für ROMs ist die Verwendung als Tabelle für arithmeti-
sche Operationen. Als Beispiel hierfür nehmen wir an, dass in einer Digitalschaltung die
Wurzel von einer Dualzahl mit der Wortbreite 10 bit benötigt wird. Der Ausgabewert
soll auf ganze Zahlen gerundet werden. Die Ergebnisse dieser Rechenoperation können

Abb. 11.15   Symbol und
Ausschnitt der Wertetabelle
für ein ROM zur Wurzel-
Berechnung

ROM
1024x6ADDR(9:0) DOUT(5:0)

ADDR
(in hex)

WurzelZahlen-
wert

Wurzel
gerundet

DOUT
(in hex)

000 0 0 0 00
001 1 1 1 01
002 2 1,41 1 01
003 3 1,73 2 02

123 291 17,06 17 11

3FF 1023 31,98 32 20

...

...

11.3  Eingebetteter Speicher

332 11  Speicher

vorab berechnet und in einem ROM gespeichert werden. Die Eingangswerte betragen
0 bis 1023, die Wurzel hiervon ist 0 bis 31,98, gerundet 0 bis 32. Für den Ausgabewert
sind also 6 Bit erforderlich. Das ROM umfasst 1024 Worte mit jeweils 6 bit Wortbreite.
Der Eingangswert wird als Adresse an das ROM angelegt. Am Ausgang wird das Ergeb-
nis der Wurzelberechnung anzeigt. Die Schnittstelle des ROMs und ein Ausschnitt der
Wertetabelle sind in Abb. 11.15 gezeigt.

11.3.4	� NVRAM

Ein nichtflüchtiger Speicher (NVRAM) erfordert, genau wie ein DRAM, einen speziel-
len CMOS-Prozess. Anders als beim DRAM gibt es jedoch keine Alternative, wenn in
einem Chip Daten auch ohne Versorgungsspannung gespeichert werden sollen. In diesem
Fall muss ein CMOS-Prozess mit Erweiterung für NVRAM eingesetzt werden.

Ein häufig eingesetztes Anwendungsbeispiel sind Mikrocontroller. Auf einem einzigen
Chip sind eine CPU, Peripherie und der Programmspeicher integriert. Damit der Mikro-
controller durch die Anwender programmiert werden kann, ist der Programmspeicher als
NVRAM implementiert. Während der Programmentwicklung kann der Programmspeicher
immer wieder umprogrammiert werden. Ebenfalls gibt es FPGAs, die programmierbare
Logik und die Speicherung der Konfiguration in einem NVRAM kombinieren.

Alternativ kann das System auch auf zwei Chips aufgeteilt werden. Ein Chip in Stan-
dard-CMOS enthält den Mikrocontroller oder das FPGA und ein zweiter Speicher-Chip
enthält den Programmspeicher oder die Konfiguration.

Ein Anwendungsbeispiel ist der ATmega328-Controller der Firma Atmel, welcher auf
der populären Mikrocontroller-Platine Arduino Uno verwendet wird. Der ATmega328
enthält zwei Blöcke NVRAM.

•	 Ein Programmspeicher von 32 kByte.
•	 Ein Datenspeicher von 1 kByte, der vom Programm gelesen und beschrieben werden

kann.

11.4	� Diskrete Speicherbausteine

Wenn in einem digitalen System größere Datenmengen gespeichert werden müssen, wer-
den hierzu häufig diskrete Speicherbausteine eingesetzt. Das System besteht dann aus
mehreren Chips, also zum einen aus Signalverarbeitungschips, gefertigt in einem Stan-
dard-CMOS-Prozess, zum anderen aus einem oder mehreren Speicher-Chips, gefertigt in
speziellen CMOS-Varianten.

333

11.4.1	� Praktischer Einsatz

Ein Beispiel hierfür ist ein PC. Er enthält auf dem Motherboard unter anderem die Chips für
CPU und Chipset, gefertigt in Standard-CMOS. Als Hauptspeicher wird DRAM eingesetzt,
der sich auf steckbaren Speichermodulen befindet. Jedes Speichermodul enthält mehrere,
beispielsweise acht, DRAM-Chips. Der Boot-Code für das PC-System, bekannt als BIOS
(Basic Input Output System), sowie Grundeinstellungen befinden sich in einem NVRAM.

11.4.1.1 � Systemaufbau
Eine Aufteilung des Systems unter Nutzung diskreter Speicherbausteine hat mehrere
Vorteile.

•	 Die Kapazität externer Speicherbausteine ist höher, als bei gemeinsamer Nutzung der
Chipfläche für Speicher und Signalverarbeitung.

•	 Höhere Flexibilität des Systems, weil je nach Bedarf mehr oder weniger externer
Speicher angebunden werden kann.
–	 Im oben genannten PC-System können DRAM-Riegel, je nach Bedarf eingesetzt

werden.
–	 Einige Smartphones werden mit unterschiedlicher Speicherkapazität verkauft. Auf

den Geräten sind dann unterschiedliche NVRAMs verbaut.
•	 Externe Speicherbausteine sind gut verfügbar. Sie können, auch in kleinen Stückzah-

len, kurz nach Markteinführung bei Distributoren gekauft werden. Dies ist nicht der
Fall bei Chips mit Embedded-DRAM, die nur von wenigen Chipherstellern angeboten
werden und häufig Großkunden vorbehalten sind. Auch für Embedded-NVRAM ist
die Anzahl an Chipherstellern geringer als für Standard-CMOS-Speichertechnologien.

•	 Neue Speichertechnologien werden zunächst für den Massenmarkt der diskreten
Speicherbausteine angeboten. Meist sind sie nur mit einer signifikanten Verzögerung
von einem Jahr oder mehr als Embedded-Speicher verfügbar.

•	 Die Kosten für einen Chip mit Standard-CMOS-Technologie sind geringer als für
einen Chip, der einen speziellen Herstellungsprozess mit Embedded-Speicher-Unter-
stützung benötigt. Die Einsparung ist in der Regel so hoch, dass sie auch die Kosten
für die diskreten Bauelemente deckt.

Der Einsatz von diskreten Speicherbausteinen kann jedoch auch Nachteile haben.

•	 Je mehr Bauelemente ein System hat, umso größer ist der Platzbedarf. Dies ist insbe-
sondere für mobile Geräte ungünstig.

•	 Ein Speicherzugriff auf externe Bauelemente hat eine geringere Bandbreite, da die
Anzahl der Leitungen begrenzt und die Geschwindigkeit externer Signalleitungen
geringer ist. Außerdem ist die Verlustleistung höher, da größere Leitungskapazitäten
umgeladen werden müssen.

11.4  Diskrete Speicherbausteine

334 11  Speicher

•	 Es muss sichergestellt werden, dass die verwendeten Speicherbausteine für die Pro-
duktlebensdauer verfügbar sind. Im PC-Bereich werden Bauteile oft nach wenigen
Jahren durch leistungsfähigere Neuentwicklungen ersetzt. Für einen PKW müssen
hingegen jahrzehntelang Ersatzteile verfügbar sein.

11.4.1.2 � Aktuelle Speicherbausteine
Für flüchtige Datenspeicherung werden in der Praxis am häufigsten DRAM-Speicher-
bausteine eingesetzt. Der Grund dafür ist die höhere Speicherdichte eines DRAM, also
Bits pro Siliziumfläche, verglichen mit einem SRAM. An diesen Marktverhältnissen
wird sich auch in Zukunft wenig ändern.

Für nicht-flüchtige Datenspeicherung werden hauptsächlich EEPROMs in der Aus-
führung als NAND-Flash eingesetzt. Die NOR-Flash-Technologie hat den Nachteil
der geringeren Speicherkapazität und darum nur einen kleinen Marktanteil. Innovative
Speichertechnologien sind noch nicht so weit entwickelt, dass sie den Marktanteil von
NAND-Flash-EEPROMs erreichen. Dies kann sich jedoch in den nächsten Jahren ändern.

Im Folgenden sind exemplarisch vier Speicherbausteine beschrieben, die in der Pra-
xis weite Verbreitung haben oder exemplarisch für ähnliche Bausteine sind. Dazu wur-
den ein SRAM, ein DRAM, ein EEPROM und ein innovatives NVRAM ausgewählt. Sie
werden in kompatibler Form von mehreren Herstellern angeboten und bieten dadurch
höhere Sicherheit der Verfügbarkeit.

Die Entwicklung neuer Speicherbauelemente baut üblicherweise auf den Vorgängern
auf. Das heißt, die Eigenschaften, die in den folgenden Abschnitten beschrieben sind,
finden sich in ähnlicher Weise in den Vorgängern und sind Grundlage für die Spezifika-
tion der nächsten Speichertechnologie.

11.4.2	� QDR-II-SRAM

11.4.2.1 � Übersicht
QDR bezeichnet eine Familie von Dual-Port-SRAMs, die also zwei Anschlüsse haben.
Ein Anschluss ist ein Schreib-Interface, der andere ein Lese-Interface. Beide Anschlüsse
übertragen Daten bei steigender und fallender Taktflanke (Double-Data-Rate), so dass als
Bezeichnung Quad-Data-Rate (QDR) gewählt wurde. Es gibt verschiedene Geschwin-
digkeitsstufen der QDR-Familie. Hier soll QDR-II betrachtet werden, mit ‚II‘ im Sinne
der römischen Zahl Zwei.

Das Einsatzgebiet dieser Speicherbausteine sind insbesondere Anwendungen, die eine
sehr hohe Datenrate benötigen und bei denen Lese- und Schreiboperationen etwa gleich
häufig vorkommen. Ein Anwendungsbeispiel sind Netzwerkanwendungen, bei denen
Datenpakete zwischengespeichert werden müssen.

Die SRAMs werden mit unterschiedlichen Speichergrößen im Bereich von 18 bis
144 Mbit und Datenwortbreiten von 9, 18 und 36 bit angeboten. Ein typischer Baustein

335

ist der CY7C1514KV18 von Cypress, mit einer Speicherkapazität von 72 Mbit und
36 bit Datenwortbreite. Die Taktgeschwindigkeit darf 350 MHz betragen. Vergleichbare
Bausteine werden unter anderem von IDT und Renesas angeboten. Der Speicher arbei-
tet mit Vielfachen von 9 bit, nicht 8 bit, da in der Telekommunikation häufig zusätzliche
Bits zur Fehlererkennung verwendet werden.

Der Speicherbaustein hat folgende Anschlüsse:

•	 A, 20 Bit, Adresse, gemeinsame für Schreib- und Lese-Interface
•	 D, 36 Bit, Dateneingang
•	 Q, 36 Bit, Datenausgang
•	 /WPS, Write-Port-Select aktiviert einen Schreibzugriff
•	 /RPS, Read-Port-Select aktiviert einen Lesezugriff
•	 K und /K, Takt für Schreib-Interface in positiver und negativer Polarität
•	 C und /C, Takt für Lese-Interface in positiver und negativer Polarität
•	 CQ und /CQ, Ausgabe des Takts C für Anpassung an Laufzeiten
•	 VREF, Referenzspannung für Datenleitungen
•	 weitere Pins für Steuerfunktionen, Stromversorgung und Fertigungstest

Insgesamt hat das Chipgehäuse 165 Pins. Der Schrägstrich (/) kennzeichnet Low-aktive
Signale.

Auffällig ist die hohe Anzahl an Taktanschlüssen. Die Takte für Lese-Interface und
Schreib-Interface sind in beiden Polaritäten vorhanden. Außerdem wird der Lesetakt in
beiden Polaritäten wieder aus dem Speicherbaustein ausgegeben. Die Takte sind nicht
unabhängig voneinander, sondern es handelt sich um den gleichen Takt mit unter-
schiedlichen Verzögerungen. Dieser Aufwand ist nötig, da bei den verwendeten hohen
Taktfrequenzen die Laufzeit der Signale auf der Platine beachtet werden muss. In der
Konfiguration mit 36 bit Wortbreite sind 333 MHz möglich, die einer Periodendauer von
3 ns entsprechen. Aufgrund der Anwendung der Double-Data-Rate-Technik hat jedes
Datenwort nur eine Dauer von 1,5 ns.

11.4.2.2 � Logisches Interface
Die Adressierung des SRAMs erfolgt stets abwechselnd für Lese- und Schreib-Interface.
Abb. 11.16 gibt ein Beispiel für den Zeitablauf. Im oberen Bereich sind sechs Eingänge
des SRAMs, im unteren Bereich drei Ausgänge dargestellt. Für das Taktinterface sind
verschiedene Konfigurationen möglich. K als primärer Takt ist stets erforderlich, die Ver-
wendung von C und CQ ist optional. In diesem Beispiel wird kein separater Lesetakt C,
aber die Taktausgabe CQ verwendet.

Der Zeitablauf zeigt drei Lesezugriffe auf die Adressen a0 bis a2, sowie vier Schreib-
zugriffe auf die Adressen a4 bis a7. Die Zugriffe erfolgen immer als Burst (Sequenz)
von zwei Datenworten, das heißt, pro Adresse werden immer zwei 36-Bit-Worte ange-
sprochen. Damit sind für die Speicherkapazität von 72 Mbit 20 Adressleitungen nötig.

11.4  Diskrete Speicherbausteine

336 11  Speicher

Zunächst wird die Leseoperation betrachtet. Die Adresse bei der steigenden Taktflanke
von K ist immer die Leseadresse. Zum Zeitpunkt ① wird die Adresse a0 angegeben und
durch /RPS auf 0 (Low-aktiv) ein Lesevorgang angezeigt. Der Zugriff auf das SRAM
benötigt etwas Zeit, deswegen werden die Daten nach einer Latenzzeit von (hier) zwei
Takten ausgegeben. Zum Zeitpunkt ③ wird das erste Datenwort mit der Bezeichnung q00
ausgegeben; einen halben Takt später bei ④ folgt das zweite Datenwort des Burst q01.
Durch /RPS auf 0 folgen noch zwei weitere Datenzugriffe auf die Adressen a1 und a2,
die Daten folgen unmittelbar auf den ersten Burst. Danach wird /RPS zu 1 und es folgen
keine weiteren Leseoperationen.

Das Lese-Interface gibt auch CQ und /CQ als Hilfssignale für die Datenübernahme
aus. CQ und /CQ haben ihre Taktflanken an der gleichen Position wie der Datenausgang.
Das System, welches die Daten empfängt, kann hieraus den Takt für die Datenüber-
nahme erzeugen.

Die Schreiboperation beginnt auch bei der steigenden Taktflanke von K, verwendet
aber die Adresse einen halben Taktzyklus später an der steigenden Taktflanke von /K.
Die erste Schreiboperation beginnt also zum Zeitpunkt ① mit dem ersten Datenwort
d40 und dem Steuersignal /WPS. Dann folgt zum Zeitpunkt ② die Adresse a4, und das
Datenwort d41. Auf eine Adresse werden mit den Datenworten d40 und d41 also ins-
gesamt 72 Bit geschrieben. Im Diagramm werden vier Bursts von jeweils zwei Daten-
worten geschrieben. Danach wird /WPS zu 1 und das Schreib-Interface ist inaktiv.

Übrigens müssen mit einem Schreibzugriff nicht immer 72 Bit geschrieben werden.
Über das Steuersignal Write-Byte-Select (in Abb. 11.16 nicht dargestellt) können Teile
des Datenwortes ausgewählt werden.

11.4.2.3 � Physikalisches Interface
Zusätzlich zur logischen Ansteuerung sind Zeitanforderungen und Spannungspegel zu
beachten. Bei den Zeitanforderungen sind dies Setup- und Hold-Zeiten der Eingangssig-
nale, sowie Vorgaben zum Duty Cycle der Takte und deren Zeitversatz.

Abb. 11.16   Zeitablauf der
Ansteuerung eines QDR-II-
SRAMs

a0 a4 a6a5 a2a1 a7

q10q00 q01 q11 q21q20

/WPS

/RPS

/K

K

A

D

Q

CQ

/CQ

d40 d41 d61d51 d60d50 d71d70

337

Wird das oben genannte SRAM mit 333 MHz Takt betrieben, beträgt die Zykluszeit
3 ns und für Daten und Adresse steht die halbe Zykluszeit von 1,5 ns zur Verfügung. Die
Zeitvorgaben sind in diesem Fall:

•	 Setup- und Hold-Zeit jeweils 0,3 ns
•	 Duty Cycle des Takts zwischen 40 % und 60 %
•	 Abstand der steigenden Flanken von K und /K mindestens 1,35 ns, also 45 % der hal-

ben Zykluszeit.
•	 Initialisierungszeit, also Zeit zwischen Anlegen der Spannungsversorgung und erstem

Datenzugriff, 1 ms

Als Spannungspegel sind drei verschiedene Versorgungsspannungen definiert, und zwar

•	 Core-Spannung von 1,8 V für die komplette interne Logik
•	 I/O-Spannung von 1,5 V für die Ein- und Ausgangspins
•	 Referenzspannung von 0,75 V für die Erkennung der Datenpegel

Die Logikpegel der Signaleingänge sind in Relation zur Referenzspannung definiert. Der
Low-Pegel muss 0,1 V kleiner, der High-Pegel 0,1 V größer als die Referenzspannung
sein. Damit reicht also ein Spannungshub von 0,2 V aus.

Darüber hinaus gibt es weitere Vorgaben, unter anderem die maximal erlaubten Span-
nungen, die Stromaufnahme und weiteren Zeitanforderungen. Diese sind in den Daten-
blättern der QDR-II-SRAMs angegeben.

11.4.3	� DDR3-SDRAM

11.4.3.1 � Übersicht
DRAM-Speicherbausteine haben eine deutlich höhere Speicherkapazität als SRAMs
und sind damit kostengünstiger. Allerdings ist die mögliche Datenrate geringer und die
Ansteuerung deutlich komplexer, da nach jedem Lesevorgang die Information in den
Speicherzellen wiederhergestellt werden muss (vgl. Abschn. 11.2.2). Außerdem ist ein
regelmäßiger Refresh erforderlich.

DDR3-SDRAM ist eine moderne Familie von DRAM-Speichern mit einer Kapazität
von bis zu 4 Gbit, also rund 30mal so viel wie ein QDR-II-SRAM. Das ‚S‘ in SDRAM
steht für synchron und gibt an, dass der Baustein mit einem Takt arbeitet. In diesem
Abschnitt wird exemplarisch der Baustein MT41J512M8 von Micron Technology
betrachtet, ein 4 Gbit DDR3-DRAM mit einer Datenwortbreite von 8 bit. Vergleichbare
Bausteine werden unter anderem von Samsung und Hynix angeboten. Verwendet wird
der Baustein beispielsweise in DRAM-Modulen für PCs.

11.4  Diskrete Speicherbausteine

338 11  Speicher

Der Baustein wird mit verschiedenen Geschwindigkeiten angeboten. Die Taktfre-
quenz darf knapp über 1 GHz betragen. Es gibt nur ein Speicherinterface mit bidirektio-
nalen Datenleitungen. Die wesentlichen Anschlüsse sind:

•	 A, 16 Bit, Adresse
•	 BA, 3 Bit, Bankadresse, wählt eine von acht internen Speicherbänken aus
•	 DQ, 8 Bit, Datenbus, bidirektional als Dateneingang und Datenausgang
•	 DQS und /DQS, Referenzsignal für das Ausgangstiming
•	 /RAS, /CAS, /WE, Steuersignale für Lese- und Schreiboperationen
•	 CK und /CK, Takt in positiver und negativer Polarität
•	 VREF_DQ, Referenzspannung für Datenleitungen
•	 VREF_CA, Referenzspannung für Steuerleitungen
•	 weitere Pins für Steuerfunktionen, Stromversorgung und Fertigungstest

Das Gehäuse hat 78 Anschlüsse, also weniger als die Hälfte, verglichen mit dem
QDR-II-SRAM.

11.4.3.2 � Logisches Interface
Das DRAM muss beim Start zunächst initialisiert werden. Für die Ansteuerung muss
dann beim Lesen, Schreiben und Refresh der innere Aufbau beachtet werden. Das
Arbeitsprinzip wird am besten deutlich, wenn der Lesevorgang betrachtet wird.

Beim Lesen wird eine komplette Zeile in den Schreib/Lese-Verstärker geladen. Dabei
wird die Ladung in den Speicherzellen gelöscht und muss wieder „zurückgeschrieben“
werden. Dieses Lesen und Zurückschreiben benötigt mehrere Taktzyklen. Während die-
ser Zeit ist das DRAM blockiert. Darum sind in einem DRAM-Chip acht unabhängige
Speicherbänke verfügbar. Während eine Bank noch durch Zurückschreiben von Daten
belegt ist, kann bereits auf eine andere Bank zugegriffen werden.

Der Lesezugriff auf den Speicher erfolgt in drei Schritten.

•	 Activate: Hierdurch wird eine Zeile in den Leseverstärker geladen.
•	 Read: Aus der Zeile werden Datenworte gelesen. Mehrere Leseoperationen für die

aktivierte Zeile sind möglich und jede Leseoperation liest einen Burst von vier oder
acht Worten.

•	 Precharge: Der Zugriff auf die Zeile wird beendet und die Daten wieder in die Spei-
cherzellen zurückgeschrieben.

Die Schritte werden durch die Steuersignale /RAS, /CAS und /WE aufgerufen. Zwischen
den Schritten gibt es Wartezeiten von mehreren Takten, die eingehalten werden müssen.
Nach Activate können ebenfalls Schreiboperationen in die Zeile erfolgen, auch abwech-
selnd mit Leseoperationen.

Abb. 11.17 zeigt den Zeitablauf für zwei Leseoperationen auf zwei verschiedene
Bänke. Als Burst sind 8 Worte gewählt. Die invertierten Signale /CK und /DQS sind zur

339

besseren Übersicht weggelassen. Die Steuersignale /RAS, /CAS, /WE sind zum Kom-
mandowort ‚cmd‘ (Command) zusammengefasst. Die eingezeichneten Zeitpunkte haben
folgende Bedeutung:

1.	 Aktivierung der Zeile r0 (r wie Row) in der Bank 0 mit dem Kommando ‚act‘ (Acti-
vate). Bevor die Zeile verwendet werden kann, muss mehrere Takte gewartet werden.

2.	 Aktivierung der Zeile r1 in der Bank 1.
3.	 Lesezugriff auf Spalte c0 (c wie Column) in der Bank 0. Nach Ausführen der Lese-

operation soll die Zeile durch Precharge zurückgeschrieben werden. Als Kommando
wird darum ‚rdp‘ (Read with Precharge) aufgerufen.

4.	 Lesezugriff auf Spalte c1 in der Bank 1, ebenfalls mit Precharge.
5.	 Nach einer Latenzzeit werden die Daten des Lesezugriffs ③ ausgegeben. Entspre-

chend der Burst-Länge werden acht Daten von 0 bis 7 ausgegeben. Als Hilfssignale
für die Datenübernahme wird DQS ausgegeben. Die Taktflanken sind an der gleichen
Position wie der Datenausgang und das System, welches die Daten empfängt, kann
hieraus den Übernahmetakt erzeugen.

6.	 Direkt nach dem ersten Datenburst werden die Daten des Lesezugriffs ④ ausgegeben.
Dies sind die Daten 8 bis f.

Die Bezeichnung nop (No Operation) gibt an, dass kein Kommando übertragen wird.
Bitte beachten Sie, dass in Abb. 11.17 die Abstände zwischen den Kommandos etwas
verkürzt dargestellt sind. Die internen Vorgänge benötigen bestimmte Zeiten, die einer
Anzahl an Taktzyklen entsprechen. Deswegen werden mit steigender Taktfrequenz mehr
Taktzyklen für bestimmte Abläufe benötigt.

Die maximale Taktfrequenz und die Wartezeiten werden als Kennziffern des DRAMs
angegeben und sind Ihnen vielleicht schon begegnet, wenn Sie Speicherriegel für den PC
gekauft oder die Werte im BIOS eingeben haben. Die Bezeichnung DDR3-1866 CL13
13-13-32 bedeutet beispielsweise:

•	 DDR3-1866: DDR3-SDRAM mit 1866 Mio. Transfers je Sekunde, also einer maxi-
malen Taktfrequenz von 933 MHz.

A r0 - c0- r1- c1- - - -- - - - -

DQ 764 5310 2 fec db98 a

DQS

CK

cmd act nop rdpnop actnop rdpnop nop nop nopnop nop nop nop nop

BA 0 - 0- 1- 1- - - -- - - - -

Abb. 11.17   Zeitablauf zweier Leseoperationen eines DDR3-SDRAMs

11.4  Diskrete Speicherbausteine

340 11  Speicher

•	 CL13 ist die Anzahl der Taktzyklen zwischen Read und Ausgabe der Daten. CL steht
für Column Access Latency oder CAS Latency.

•	 Die folgenden drei Zahlen bezeichnen weitere Zeiten
–	 13 Taktzyklen zwischen dem Activate-Befehl einer Zeile und erstem Read-Zugriff
–	 13 Taktzyklen für den Precharge-Vorgang
–	 32 Taktzyklen zwischen zwei Activate-Befehlen auf dieselbe Bank

Der Zugriff auf ein DRAM erfordert also das Beachten der internen Speicherorganisa-
tion. Eine hohe Datenrate kann erreicht werden, wenn mehrere Daten aus der gleichen
Zeile gelesen werden (nur ein Activate-Befehl nötig) und die Zugriffe ansonsten auf ver-
schiedene Speicherbänke verteilt werden (Wartezeit zwischen Activate-Befehlen auf die-
selbe Bank).

Diese Zugriffsmuster werden beispielsweise von den CPUs in einem PC berücksich-
tigt. Der Speichercontroller einer CPU liest größere Datenblöcke aus dem DRAM und
speichert sie auf einem internen SRAM, dem sogenannten Cache. Die Daten sind so im
DRAM abgelegt, dass ein Zugriff möglichst effizient erfolgen kann.

11.4.3.3 � Physikalisches Interface
Das physikalische Interface des DDR3-SDRAMs nutzt ähnliche Prinzipien wie das
QDR-II-SRAM. Da noch höhere Frequenzen auftreten können, sind die Anforderungen
entsprechend höher.

Für ein DDR3-1866-SDRAM beträgt die Taktfrequenz 933 MHz Takt und somit ist
die Zykluszeit 1,07 ns. Der Duty Cycle des Takts muss zwischen 47 % und 53 % liegen.
Anstelle fester Setup- und Hold-Zeit für die Signaleingänge werden Grenzen für den
Zeitverlauf der Spannung definiert. Darin ist auch festgelegt, wie stark ein Überschwin-
gen der Signale erfolgen darf. Die Adress- und Steuerleitungen werden nur einmal pro
Taktzyklus ausgewertet, während Datenleitungen zweimal pro Taktzyklus gültig sind.
Daher wird zwischen diesen Signalen unterschieden.

Die Spannungsversorgung für Core und I/O beträgt 1,5 V, die Referenzspannung zur
Erkennung der Datenpegel ist 0,75 V.

Spezifische Angaben zum physikalischen und logischen Interface finden Sie im
Datenblatt eines DDR3-SDRAMs, beispielsweise dem MT41J512M8 von Micron.

11.4.4	� EEPROM

11.4.4.1 � Übersicht
Im Bereich der EEPROMs gibt es eine große Vielfalt an unterschiedlichen diskreten
Speicherbausteinen. Es gibt kleine, mittlere und große Speichergrößen, sowie langsamen
und schnellen Speicherzugriff.

341

•	 Kleine Speichergrößen im Bereich von einigen kByte, werden beispielsweise verwen-
det, um Geräteeinstellungen zu speichern, wie Netzwerkname, WLAN-Passwort und
IP-Adresse eines Netzwerkgeräts.

•	 Mittlere Speichergrößen, im Bereich von MByte, werden beispielsweise zum Spei-
chern von Messdaten oder von Programmcode für größere Prozessoren verwendet.

•	 Große Speichergrößen, im Bereich von GByte, werden als Massenspeicher verwen-
det, beispielsweise im Smartphone oder als Solid-State-Disk (SSD).

Bei kleineren Speichergrößen kann teilweise jedes Datenwort einzeln gelöscht werden.
Mittlere und große Speichergrößen werden als Flash-EEPROM implementiert.

Der Speicherzugriff kann seriell über eine Datenleitung oder parallel über mehrere
Leitungen erfolgen.

•	 Der serielle Zugriff ist langsamer, aber ausreichend, wenn nur wenige Daten benötigt
werden oder wenn die Daten einmalig gelesen und dann auf dem System zwischenge-
speichert werden.

•	 Der parallele Zugriff ist schneller und für größere Datenmengen sinnvoll.

Aus den unterschiedlichen Anforderungen ergibt sich eine Vielfalt an diskreten
EEPROM Speicherbausteinen. SRAM und DRAM Bausteine werden nur eingesetzt,
wenn die Speicherkapazität auf einem Chip nicht ausreicht. Ein EEPROM Baustein ist
jedoch bereits erforderlich, wenn nur wenige Byte nichtflüchtig gespeichert werden sol-
len, da ein Chip in Standard-CMOS-Technologie dies nicht bietet.

11.4.4.2 � 8 Gbit Flash-Memory
Als ein Beispiel für ein EEPROM mit großer Speicherkapazität wird der Baustein
TH58NVG3S0HTA00 von Toshiba mit einer Speichergröße von 8 Gbit, also 1 GByte
betrachtet. Es handelt sich dabei um ein NAND-Flash-EEPROM. Andere Anbieter von
NAND-Flash-EEPROMs sind beispielsweise Cypress, Micron, Samsung und Winbond.

Der Baustein ist in 4096 Blöcken organisiert und jeder Block hat 64 „Speicherseiten“
mit jeweils 4352 Bytes. Dieser Inhalt einer Seite umfasst 4096 Bytes Nutzdaten sowie
256 Bytes für Speicherverwaltung und die bei der NAND-Struktur nötige Fehlerkor-
rektur. Ein Flash-Löschvorgang bezieht sich immer auf einen Block von 64 Seiten, also
256 kByte.

Der Baustein ist darauf ausgelegt mit einem fehlerkorrigierenden Controller zusam-
menzuarbeiten. Das Speicherinterface arbeitet ohne Takt und hat die folgenden
Anschlüsse:

•	 IO, 8 Bit, I/O-Port
•	 CLE, Command Latch Enable, Übernahmesignal für Befehle
•	 ALE, Address Latch Enable, Übernahmesignal für Adresse
•	 /CE, Chip Enable

11.4  Diskrete Speicherbausteine

342 11  Speicher

•	 /WE, Write Enable
•	 /RE, Read Enable
•	 RY/BY, Ready/Busy, zeigt an, ob der Baustein noch einen Befehl ausführt
•	 /WP, Write Protect, für einen Schreibschutz
•	 Pins für Stromversorgung

Das Gehäuse hat 48 Anschlüsse, von denen jedoch ein größerer Teil nicht verwendet
wird. RY/BY ist ein gleichzeitig High-aktives Ready- und Low-aktives Busy-Signal.

11.4.4.3 � Logisches Interface
Der 8-Bit-Port IO wird gemeinsam für Kommandos, Adressen und Daten verwendet.
Kommandos werden durch bestimmte 8-Bit-Werte übermittelt. CLE und ALE zeigen an,
um welche Information es sich jeweils handelt.

Die drei Grundoperationen des Bausteins sind Löschen eines Blocks, Schreiben von
Daten und Lesen von Daten.

Löschen eines Blocks
Abb. 11.18 zeigt den Zeitablauf beim Löschen eines EEPROM-Blocks.

1.	 Der Löschvorgang wird durch ein spezielles Kommando gestartet. Dazu liegt der Wert
6016 auf den acht Datenleitungen und CLE zeigt an, dass es sich bei dieser Informa-
tion um ein Kommando handelt. Die Datenübernahme erfolgt durch die steigende
Flanke an /WE.

2.	 Die Adresse des zu löschenden Blocks wird auf der Datenleitung übertragen. Da die
Datenleitung kleiner als die Adresswortbreite ist, wird die Adresse in drei Teile A-0,
A-1, A-2 aufgeteilt.

3.	 Das Kommando D016 löst den Löschvorgang aus. Durch RY/BY wird angezeigt, dass
der Baustein beschäftigt ist. Das Löschen eines Blocks benötigt etwa 2,5 bis 5 ms.

4.	 Nach Ende des Löschvorgangs muss überprüft werden, ob das Löschen erfolgreich
war. Dazu wird das Kommando 7016 angegeben.

5.	 Der Baustein antwortet mit einem Statuswort (sts). Für diese Leseoperation wird /RE
angesteuert.

Abb. 11.18   Zeitablauf beim
Löschen eines EEPROM-
Blocks

/CE

RY/BY

CLE

IO 6016 A-0 A-2A-1

/WE

ALE

/RE
sts

...

...

...

...

...

...

...
D016 7016

343

Bei einem NAND-EEPROM kann es vorkommen, dass Speicherblöcke fehlerhaft sind
oder im Gebrauch fehlerhaft werden. Dies würde durch das Statuswort angezeigt und
der Controller verwendet einen solchen Block dann nicht mehr. Für den hier betrachte-
ten Baustein werden 60.000 Löschzyklen angegeben, wobei mit zunehmender Anzahl an
Löschzyklen einige Blöcke unbrauchbar werden können. Laut Datenblatt bleiben über
die spezifizierte Lebensdauer mindestens 4016 der 4096 Blöcke funktionsfähig.

Schreiben von Daten
Das Schreiben von Daten erfolgt vorzugsweise für einzelne Seiten mit 4096 plus
256 Bytes. Der Zeitablauf ist in Abb. 11.19 dargestellt. Die Steuersignale werden ähnlich
wie beim Löschen angesteuert und für bekannte Schritte nicht einzeln erläutert.

1.	 Das Kommando 8016 gibt an, dass ein Schreibvorgang ausgeführt werden soll.
2.	 Die Adresse von Block und Seite wird in fünf Teilen von A-0 bis A-4 übertragen.
3.	 Jetzt werden nacheinander die Daten jeweils mit der steigenden Flanke von /WE

übertragen. Bis zu 4352 Byte sind möglich, das heißt D-x wäre dann D-4351. CLE
und ALE auf 0 zeigen an, dass es sich weder um ein Kommando (CLE) noch um
Adressen (ALE) handelt.

4.	 Das Kommando 1016 startet den Schreibvorgang. Die Daten sind bisher in einem internen
Zwischenspeicher und werden jetzt in die Speichermatrix geschrieben. Das EEPROM
überprüft den Schreibvorgang und versucht eventuell mehrfach zu schreiben. Durch RY/
BY wird die Aktivität angezeigt. Die Programmierung einer Seite dauert 300 bis 700 µs.

5.	 Nach Ende des Schreibvorgangs muss mit dem Kommando 7016 überprüft werden, ob
das Schreiben erfolgreich war.

6.	 Der Baustein antwortet mit einem Statuswort (sts).

Für die Verwendung des EEPROMs ist die interne Organisation zu beachten. Der Con
troller schreibt Daten auf freie Seiten des Speichers. Nicht mehr benötigte Seiten werden
nicht sofort gelöscht, sondern zunächst als ungültig gekennzeichnet. Erst wenn alle Sei-
ten eines Blocks ungültig sind, wird ein ganzer Block gelöscht. Hierfür kann es eventuell
nötig sein, noch gültige Seiten in andere Blöcke zu kopieren.

Damit der Controller Schreibzugriffe und das Löschen von Blöcken optimieren kann,
wird empfohlen, den Speicher nicht komplett zu füllen.

Abb. 11.19   Zeitablauf beim
Schreiben in ein EEPROM /CE

RY/BY

CLE

IO A-0 A-4

/WE
ALE
/RE

stsD-x

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...
8016 D016 70161016

11.4  Diskrete Speicherbausteine

344 11  Speicher

Lesen von Daten
Das Lesen von Daten erfolgt ähnlich wie das Schreiben von Daten. Zunächst wird ein
Lesekommando gegeben, dann die Leseadresse in fünf Teilen und ein weiteres Kom-
mando. Daraufhin lädt der Baustein die Daten aus der Speichermatrix in den Lesever-
stärker und gibt nacheinander die Daten ab der angeforderten Adresse aus. Das Lesen der
Daten aus der Speichermatrix benötigt 25 µs.

11.4.4.4 � Physikalisches Interface
Die Datenrate bei Schreib- und Lese-Zugriffen ist deutlich geringer als bei SRAM und
DRAM, denn das EEPROM ist als Massenspeicher und nicht als schneller Arbeitsspei-
cher vorgesehen.

Die mögliche Datenrate beim Schreiben und Lesen von Daten beträgt 40 MHz. Hinzu
kommen die oben genannten Zeiten für den Zugriff auf die Speichermatrix.

Die Spannungsversorgung des Bausteins beträgt 3,3 V. Die Daten werden durch
Spannungspegel dargestellt. Der Low-Pegel wird bis 0,66 V erkannt, der High-Pegel ab
2,64 V, dazwischen befindet sich der Übergangsbereich, in dem keine eindeutige Zuord-
nung der Spannung zu einem logischen Wert möglich ist.

Spezifische Angaben zum physikalischen und logischen Interface finden Sie im
Datenblatt.

11.4.5	� FRAM mit seriellem Interface

11.4.5.1 � Übersicht
Als ein Beispiel für ein NVRAM mit einer innovativen Speichertechnik wird der
Baustein MB85RS64V von Fujitsu betrachtet. Es handelt sich um ein Ferroelektri-
sches RAM mit 8192 Worten zu 8 bit und seriellem Interface. Jede Zelle kann einzeln
beschrieben werden. Mit der Speicherkapazität von 8 kByte handelt es sich um eine
kleine Speichergröße. Dafür ist der Baustein allerdings auch sehr kompakt und hat ein
Gehäuse mit nur 8 Pins. Bausteine mit ähnlichem Interface und Speichergröße sind auch
als EEPROM von verschiedenen Herstellern verfügbar.

Als besonderer Vorteil sind für das FRAM 1012 mögliche Zugriffe pro Zelle spezifi-
ziert. Für EEPROMs werden üblicherweise 105 bis 106 Schreibvorgänge angegeben.

Die Anschlüsse des Bausteins sind:

•	 SCK, Serial Clock, Takt für den seriellen Zugriff
•	 SI, Serial Data Input, serieller Dateneingang
•	 SO, Serial, Data Output, serieller Datenausgang
•	 /CS, Chip Select, zum Aktivieren des Bausteins
•	 /WP, Write Protect, Schreibschutz
•	 /HOLD, pausiert einen Zugriff
•	 Versorgungsspannung und Masse

345

11.4.5.2 � Logisches Interface
Die Kommunikation mit dem Baustein erfolgt über das Serial Peripheral Interface (SPI).
Bei diesem Protokoll sind getrennte Leitungen für Dateneingang und -ausgang vorhan-
den, das heißt die Datenleitung wird nicht bidirektional betrieben. Ein Zugriff auf den
Baustein erfolgt über Kommandos. Bei Schreib- und Leseoperationen folgt nach dem
Kommando eine Adresse und bei einem Schreibzugriff die Daten. Bei einem Lesezugriff
antwortet der Baustein nach der Adressübertragung mit den angeforderten Daten.

Abb. 11.20 zeigt den Zeitablauf eines Schreibvorgangs. /CS aktiviert zunächst den
Baustein. Dann werden insgesamt 32 Bits durch die steigende Flanke von SCK übertra-
gen, die Most Significant Bits (MSB) jeweils zuerst. Die ersten 8 Bit sind das Schreib-
kommando 0216. Dann folgt die Adresse mit 16 Bit. Da für 8 kByte nur 13 Bit benötigt
werden, sind die obersten drei Adressbits unbelegt. Schließlich werden die Daten über-
tragen und durch /CS die Übertragung beendet.

Es ist auch möglich, mehrere Bytes an Daten zu übertragen, die dann in aufeinander
folgende Adressen geschrieben werden (nicht in Abb. 11.20 dargestellt). Damit ist keine
wiederholte Übertragung von Kommando und Adresse nötig.

11.4.5.3 � Physikalisches Interface
Die maximale Taktfrequenz für SCK beträgt 20 MHz. Wartezeiten für die Programmierung
sind nicht erforderlich. Die Spannungsversorgung des Bausteins beträgt 3,3 bis 5 V. Bei
3,3 Spannungsversorgung wird der Low-Pegel bis 0,66 V, der High-Pegel ab 2,64 V erkannt.

11.5	� Speichersysteme

Ein Speichersystem ist die Kombination aus mehreren Speichern. Dabei sind verschie-
dene Konfigurationen möglich. Mehrere gleiche Speicher können kombiniert werden,
um die Speicherkapazität zu erhöhen. Verschiedene Speicher können kombiniert wer-
den, wenn unterschiedliche Eigenschaften benötigt werden. Dies kann SRAM- und
DRAM-Speicher oder flüchtiger und nicht-flüchtiger Speicher sein. Außerdem können
die Speicher sowohl Embedded Speicher auf der Integrierten Schaltung als auch diskrete
Speicherbausteine außerhalb sein.

Abb. 11.20   Serielles
Schreiben in ein FRAM mit
SPI-Protokoll x x x 21 2 1 0 7 6 2 1 0

/CS

SO

SI

SCK

Kommando Adresse Daten

.. ..

11.5  Speichersysteme

346 11  Speicher

11.5.1	� Adressdecodierung

Oft ist es gewünscht, dass die Speicher gemeinsam von einer zentralen Steuerlogik, zum
Beispiel der CPU eines Rechnersystems, angesprochen werden sollen. Die Unterschei-
dung der Speicher erfolgt dann anhand der Speicheradresse. Der Adressraum enthält
Adressbereiche für die unterschiedlichen Speicher. Je nach Größe von Adressraum und
Speicherkomponenten können Adressbereiche auch unbelegt sein.

Der prinzipielle Aufbau eines Speichersystems ist in Abb. 11.21 dargestellt. Die zen-
trale Steuerlogik gibt eine Adresse sowie Steuersignale an das Speichersystem. Je nach
Speichermodul können unterschiedliche Steuersignale sinnvoll und erforderlich sein.
Hier sind dargestellt:

•	 CS für Chip Select: Ein Zugriff findet statt
•	 WR für Write: Ein Schreibzugriff findet statt
•	 RD für Read: Ein Lesezugriff findet statt

Ein Adressdecoder ermittelt dann aus der Adresse, welches Speichermodul adressiert ist
und gibt an dieses Modul ein individuelles Chip-Select-Signal weiter. Über den Daten-
bus gibt die Steuerlogik entweder Daten an das Speichermodul oder es werden Daten
empfangen.

Aus der Organisation des Adressraums ergibt sich die Adressierung. Zur Verdeutli-
chung wird das Speichersystem eines fiktiven Rechnersystems in Abb. 11.22 dargestellt.
Die Adresse hat eine Wortbreite von 16 bit und kann damit 64 kByte adressieren. Spei-
cherzugriffe erfolgen jeweils auf ein Byte. Es sind drei Speicher vorhanden, und zwar ein
ROM von 4 kByte für den Boot-Code, ein SRAM von 8 kByte als Datenspeicher und ein
EEPROM von 32 kByte für den Programmcode. Der Adressraum ist links in Abb. 11.22
angegeben. Das Präfix „0x“ kennzeichnet hexadezimale Zahlen. Die Adressbelegung ist
wie folgt:

Abb. 11.21   Aufbau eines
Speichersystems aus mehreren
Speichermodulen

Speicher 2

Adressbus

WR RD CS

Speicher 1
WR RD CS

Speicher 0
WR RD CS

Zentrale Steuerlogik

Adress-
decoder

WR RD

Datenbus

CS

347

•	 0x8000 – 0xffff: EEPROM
•	 0x6000 – 0x7fff: unbelegt
•	 0x4000 – 0x5fff: SRAM
•	 0x1000 – 0x3fff: unbelegt
•	 0x0000 – 0x0fff: ROM

Die Steuerlogik kann also beispielsweise durch Angabe von Adresse 0x0123 auf das
ROM sowie durch Adresse 0x4567 auf das SRAM zugreifen.

Auf der rechten Seite von Abb. 11.22 ist die Logik des Adressdecoders abgebildet.
Die 16 Adressleitungen werden teils für die Selektion des Speichermoduls verwendet,
teils gehen sie in das Speichermodul. Ein Chip-Select-Signal der Steuerlogik wird hier
nicht verwendet; die Speicher werden über Read und Write angesteuert.

Die Logik des Adressdecoders und die Wortbreite der Adressen ergeben sich aus
Speichergröße und Position im Adressraum.

•	 Das EEPROM benötigt für 32 kByte Speichergröße eine Adresse der Wortbreite
15 bit. Das oberste Bit der Adresse selektiert den Speicher, wenn die Adresse größer
als 0x8000 ist. Als Chip-Select-Signal des EEPROMs kann direkt Adressleitung 15
verwendet werden.

•	 Das SRAM benötigt für 8 kByte Speichergröße eine Adresse der Wortbreite 13 bit.
Die vorderen drei Bit der Adresse selektieren den Speicher für Adressen zwischen
0x4000 und 0x5fff. In diesem Adressbereich sind A(15) bis A(13) gleich 0102. Das
Chip-Select-Signal wird durch ein UND-Gatter mit drei Eingängen, zwei davon
negiert, erzeugt.

•	 Das ROM benötigt für 4 kByte Speichergröße eine Adresse der Wortbreite 12 bit. Die
vorderen vier Bit der Adresse selektieren den Speicher für Adressen zwischen 0x0000
und 0x1fff. In diesem Adressbereich sind A(15) bis A(12) gleich 0. Das Chip-Select-
Signal wird durch ein UND-Gatter mit vier negierten Eingängen erzeugt.

Abb. 11.22   Adressraum
und -decoder für ein
Speichersystem mit drei
Speichermodulen

EEPROM

Adressbus

CS

SRAM
CS

ROM
CS

Zentrale Steuerlogik

&A(11:0)

A(12:0)

A(14:0)

A(15)
A(14)
A(13)
A(12)

&

A(15)

A(15)
A(14)
A(13)

0xffff

0x0000

0x8000

0x5fff

0x0fff

0x4000

ROM

SRAM

E
E

P
R

O
M

A(15:0)

11.5  Speichersysteme

348 11  Speicher

11.5.2	� Multiplexing des Datenbusses

Jetzt betrachten wir den Datenbus auf der linken Seite von Abb. 11.21. Daten können
von der Steuerlogik zu einem Speicher oder vom Speicher zur Steuerlogik übertragen
werden. Für die Implementierung gibt es zwei Möglichkeiten. Entweder sind getrennte
Datenleitungen für Schreib- und Leseoperationen vorhanden, die dann durch Multiplexer
ausgewählt werden. Oder es wird eine gemeinsame Datenleitung verwendet, auf die alle
Busteilnehmer mit Tri-State-Ausgängen schreiben.

Innerhalb Integrierter Schaltungen werden stets getrennte Datenleitungen für Schreib-
und Leseoperationen verwendet. Tri-State-Leitungen sind innerhalb eines ICs zwar tech-
nisch möglich, aber für Fertigung und Herstellungstest sehr problematisch. Auch für die
Ansteuerung diskreter Speicherbausteine können getrennte Datenleitungen verwendet
werden. Beispiele dafür sind das QDR-II-SRAM und das FRAM aus Abschn. 11.4.

Der Schaltungsaufbau bei getrennten Datenleitungen ist in Abb. 11.23 dargestellt,
wiederum für das Speichersystem mit EEPROM, SRAM und ROM. Alle drei Speicher-
module haben einen Datenausgang, aber nur das SRAM hat einen Dateneingang. Hier
wird angenommen, dass die Programmierung des EEPROMs über ein eigenes Program-
mier-Interface erfolgt (nicht dargestellt); die Steuerlogik schreibt nicht in das EEPROM.
Die Richtung von Schreiben und Lesen bezieht sich jeweils auf die Sicht der Steuerlo-
gik. Der Schreibbus führt direkt vom Datenausgang (D_OUT) der Steuerlogik an den
Dateneingang (D_IN) des Speichermoduls. Auch mehrere Speichermodule können an
den Schreibbus angeschlossen werden, da nur die Steuerlogik Daten schreiben kann.

Der Lesebus hat mehrere Quellen, und zwar die Datenausgänge aller Speichermo-
dule. Darum ist ein Multiplexing erforderlich, damit nur die Daten des adressierten

EEPROM

Datenbusse
jeweils 8 Bit

SRAM

ROM

Zentrale Steuerlogik

D_IN

D_OUT

CS_EEPROM

D_OUT
&

&

&

...

D(7:0)

CS_SRAM

D_OUT
&

&

&

...

CS_ROM

&

&

&

...

11 ...

...

...

D_OUT D_IN RD

...
...

...

...

...

...

...

...

Schreibbus

Lesebus,
EEPROM

Lesebus,
ROM

Lesebus,
SRAM

Abb. 11.23   Datenbusse des Speichersystems mit drei Speichermodulen

349

Speichermoduls an die Steuerlogik gegeben werden (siehe Abb. 11.23). Zunächst wird
für jedes Speichermodul die RD-Leitung mit der CS-Leitung UND-verknüpft. Das ver-
knüpfte Signal ist 1, wenn ein Lesezugriff auf das entsprechende Modul erfolgt. Zum
Multiplexing wird der Datenausgang des Speichermoduls durch UND-Gatter weiterge-
geben. Falls das Modul nicht aktiv ist, bleibt der Ausgang dieser UND-Gatter auf 0. Da
immer nur ein Speichermodul adressiert sein kann, ist auch nur ein Lesebus aktiviert und
die anderen Lesebusse sind 0. Für den Dateneingang der Steuerlogik werden die einzel-
nen Lesebusse ODER-verknüpft.

Ein Datenbus mit Tri-State-Leitungen kann für die Ansteuerung diskreter Bauele-
mente verwendet werden. Dies hat den Vorteil, dass die Datenleitungen gemeinsam
zum Lesen und Schreiben verwendet werden, denn die Anzahl der Anschlüsse eines
ICs ist begrenzt. Beispiele dafür sind das DDR3-SDRAM und das Flash-EEPROM aus
Abschn. 11.4. Beim Flash-EEPROM wurde der Datenbus auch für Kommandoworte und
Adresse genutzt, um noch mehr Pins zu sparen.

Abb. 11.24 zeigt ein Speichersystem mit Tri-State-Leitungen. Die Blöcke für Spei-
cher und Steuerlogik stellen jetzt jeweils eigene diskrete Bauelemente dar und sind zur
Verdeutlichung mit dickeren Linien gezeichnet. Sowohl die Speicher als auch die Steuer-
logik müssen für den Betrieb an einem Tri-State-Bus vorgesehen sein und entsprechende
Treiber an den Anschlüssen besitzen. Im Chip der Steuerlogik wird der Tri-State-Treiber
durch das Write-Signal angesteuert, bei den Speichern durch UND-Verknüpfung aus
Read und jeweiligem Chip-Select-Signal.

RAM_1

Zentrale Steuerlogik

CS

D_OUT(7:0)

&

...

Datenbus
auf Platine

(8 Bit)

RD

...

D_IN(7:0)...

D_OUT(7:0)
WR

...

D_IN(7:0)

...

RAM_0

CS

D_OUT(7:0)

&

...

RD

...

D_IN(7:0)

...

...

...

Diskrete
Bauelemente

Abb. 11.24   Speichersystem mit diskreten Bauelementen und Tri-State-Leitungen

11.5  Speichersysteme

350 11  Speicher

Die Datenleitungen werden in den Bauelementen gleichzeitig als Ausgang und Daten-
eingang für die interne Logik genutzt. Eine Steuerlogik (hier nicht dargestellt) entschei-
det, ob der Dateneingang verwendet wird.

11.5.3	� Ansteuerung diskreter Speicherbausteine

Die vier in Abschn. 11.4 vorgestellten diskreten Speicherbausteine haben Schnittstellen,
die unterschiedlich komplexe Ansteuerungen benötigen:

•	 Das serielle NVRAM kann relativ einfach angesprochen werden.
•	 Das NAND-EEPROM hat ein recht einfaches Interface, erfordert jedoch Fehlerkor-

rektur und Beachtung defekter Blöcke.
•	 Das SRAM hat ein einfaches logisches Interface, erfordert jedoch bei höheren Takt-

frequenzen eine spezielle Taktbehandlung sowie eine physikalische Ansteuerung mit
Logikpegeln bezogen auf eine Referenzspannung.

•	 Das DRAM erfordert ein komplexes Protokoll für die Ansteuerung, Beach-
tung der Bankstruktur sowie Taktbehandlung und physikalische Ansteuerung mit
Referenzspannung.

Für die Ansteuerung diskreter Speicherbausteine sind verschiedene Funktionselemente
vorhanden, die für den Aufbau eines Systems genutzt werden können.

Logisches Interface
Für die logische Ansteuerung werden Controller angeboten, welche die Ansteuerung der
Bausteine ausführen. Diese Controller sind teilweise als VHDL-Code oder Gatter-Netz-
liste verfügbar und können in eigene Schaltungsentwürfe übernommen werden. Solche
Schaltungsbeschreibungen werden als Intellectual Property (IP) bezeichnet und müssen
üblicherweise als Lizenz gekauft werden. Für programmierbare Bausteine (FPGAs) wer-
den von den Herstellern IP-Blöcke angeboten. Diese sind für Käufer der FPGAs oft ohne
weitere Kosten verfügbar.

Physikalisches Interface
Die physikalische Ansteuerung von SRAMs und DRAMs erfolgt über Pins mit speziellen
Logikpegeln. Für Tri-State-Busse sind ebenfalls entsprechende Pins erforderlich. Die Her-
steller von ICs und FPGAs bieten diese Ein- und Ausgangstreiber als Bibliothekselement an.

11.6	� Übungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Prüfen Sie sich mit den Aufgaben und
Fragen am Kapitelende. Die Lösungen und Antworten finden Sie am Ende des Buches.

Bei den Auswahlfragen ist immer genau eine Antwort korrekt.

351

Aufgabe 11.1
Welche der folgenden Technologien ist ein ‚flüchtiger Speicher‘?

a)	 FRAM
b)	EPROM
c)	 Flash
d)	SRAM
e)	 EEPROM

Aufgabe 11.2
Wie viele Transistoren hat eine normale SRAM-Zelle?

a)	 9
b)	2
c)	 1
d)	5
e)	 6

Aufgabe 11.3
Wie viele Transistoren hat eine normale DRAM-Zelle?

a)	 6
b)	5
c)	 2
d)	1
e)	 9

Aufgabe 11.4
Wozu wird beim DRAM ein ‚Refresh‘ benötigt?

a)	 Zugriff auf verschiedene Speicherblöcke
b)	Zugriff auf Zeilen und Spalten der Speichermatrix
c)	 Auswahl eines Speicherblocks
d)	Aufladen von Kondensatoren
e)	 Löschen von Datenbereichen

Aufgabe 11.5
Was passiert beim ‚Flash‘ eines Flash-Speichers?

a)	 Zugriff auf Zeilen und Spalten der Speichermatrix
b)	Auswahl eines Speicherblocks
c)	 Löschen von Datenbereichen

11.6  Übungsaufgaben

352 11  Speicher

d)	Zugriff auf verschiedene Speicherblöcke
e)	 Aufladen von Kondensatoren

Aufgabe 11.6
Wie erfolgt die Datenspeicherung in EEPROMs?

a)	 Kondensator
b)	Magnetfeld
c)	 Rückkopplung von Invertern
d)	Transistor mit ‚Floating-Gate‘
e)	 Brennen von Sicherungen

Aufgabe 11.7
a)	 Wie viele Adressleitungen braucht ein SRAM mit 16K Datenworten?
b)	Wie viele Adressleitungen braucht ein SRAM mit 256K Datenworten?

Aufgabe 11.8
a)	 Ein SRAM hat 16 Adressleitungen und 8 Datenleitungen. Wie hoch ist die

Speicherkapazität?
b)	Ein SRAM hat 20 Adressleitungen und 16 Datenleitungen. Wie hoch ist die

Speicherkapazität?

Aufgabe 11.9
Abb. 11.25 zeigt ein einfaches Speichermodul mit 6 Adressleitungen und 1 bit Wortbreite.
Damit soll ein Primzahl-Detektor realisiert werden. Programmieren Sie die Speicherelemente
mit 0 oder 1, so dass der Speicher eine 1 ausgibt, wenn eine Primzahl am Eingang anliegt.

Abb. 11.25   Einfaches
Speichermodul für Primzahl-
Detektor

Z
ei
le
nd

ec
od

er

Spaltendecoder

Leseverstärker

D
A
T
A

A
D
D
R
(5
:0
)

ADDR(5:3)

ADDR(2:0)

00
0

00
1

11
1

01
0

01
1

10
1

11
0

10
0

000

001

111

010

011

101

110

100

353© Springer-Verlag GmbH Deutschland 2016
W. Gehrke et al., Digitaltechnik, Springer-Lehrbuch,
DOI 10.1007/978-3-662-49731-9_12

Analog-Digital-Umsetzer (ADU), engl. Analog-Digital-Converter (ADC), sind Bindeglieder
zwischen analogen Signalquellen wie Messwandler für Druck, Temperatur, Weg, Beschleu-
nigung, Mikrofonen und digital arbeitenden Systemen. Sie wandeln einen analogen
Spannungswert in eine digitale Darstellung. Digital-Analog-Umsetzer (DAU) engl. Digital-
Analog-Converter (DAC), wandeln dann einen digitalen Wert wieder in die analoge Welt.

Technische Herausforderungen beim Einsatz von ADUs und DAUs liegen in den
Anforderungen an Genauigkeit und Geschwindigkeit der Umsetzung. Wirtschaftliche
Herausforderungen liegen in den Kosten der Umsetzer, denn ein Gesamtsystem kann aus
Analog-Digital-Umsetzer, digitaler Verarbeitung und Digital-Analog-Umsetzer bestehen.
Im Vergleich mit einem rein analogen System müssen die Kosten vergleichbar sein oder
die digitale Verarbeitung muss eine bessere Qualität der Verarbeitung ermöglichen.

Generelle Vorteile der digitalen gegenüber der analogen Technik bestehen unter ande-
rem durch:

•	 Geringere Störanfälligkeit digitaler Signale, bzw. Fehlerkorrektur nach Störungen
•	 Einsatzmöglichkeit besonders hoch integrierter Digitalbausteine wie FPGAs, Mikro-

prozessoren, Signalprozessoren, Speicher usw.
•	 Möglichkeit zur Datenkomprimierung und Verschlüsselung von Daten

12.1	� Grundprinzip von Analog-Digital-Umsetzern

Analog-Digital-Umsetzer sind Systeme, die einer analog vorliegenden elektrischen Mess-
größe (z. B. einer Spannung U) eine digitale Repräsentationsgröße (z. B. eine binäre
Zahl) zuordnen. Bei analogen Systemen liegt demgegenüber die Repräsentationsgröße,

Analog-Digital- und Digital-Analog-
Umsetzer 12

354 12  Analog-Digital- und Digital-Analog-Umsetzer

beispielsweise der Zeigerausschlag eines Messgerätes, in analoger Form vor. Analoge
Größen sind zeit- und wertkontinuierlich wie Abb. 12.1 zeigt.

Ein ADU ordnet der analogen Eingangsgröße eine zeit- und wertdiskrete Repräsen-
tationsgröße zu, beispielsweise Binärzahlen, wie Abb. 12.2 zeigt. Ein ADU bildet dem-
zufolge ein Signalintervall (Quantisierungsintervall Q) auf einen diskreten Wert ab.
Dadurch werden systematische Fehler, die Quantisierungsfehler, verursacht.

Beim Vorliegen zeit- und wertkontinuierlicher, also analoger Signale bewirkt der
ADU eine Diskretisierung in zweifacher Hinsicht:

•	 Diskretisierung in eine endliche Anzahl zugelassener Amplitudenwerte, auch Quanti-
sierung genannt.

•	 Diskretisierung im Zeitbereich, denn ein Amplitudenwert gilt für eine bestimmte
Mindestzeit. Diesen Vorgang nennt man Abtastung.

Weiterhin liefert der ADU die digitale Information in einem bestimmten Code, bei-
spielsweise dem Dual-Code. Dieser Vorgang heißt Codierung. Die erforderlichen Ver-
arbeitungsschritte beim Übergang vom analogen zum digitalen Signal sind in Abb. 12.3
veranschaulicht.

Wesentliche Anwendungsgebiete für ADUs und DAUs sind:

•	 Digitalmessinstrumente: Analoge Messgrößen wie Strom, Spannung, Widerstand, Fre-
quenz, Temperatur, Gewicht usw. werden mit endlicher Auflösung als Ziffern angezeigt.

Abb. 12.1   Prinzipielle
Wirkungsweise eines Analog-
Messgerätes

Wertkontinuierliche
Repräsentationsgröße,

z.B. Zeigerausschlag

Wertkontinuierliche
Messgröße,

z.B. Spannung U

Abb. 12.2   Prinzipielle
Wirkungsweise eines Analog-
Digital-Umsetzers

Wertdiskrete
Repräsentationsgröße,

z.B. Zahl

Wertkontinuierliche
Messgröße,

z.B. Spannung U

010
011

000
001

110
111

100
101

35512.1  Grundprinzip von Analog-Digital-Umsetzern

•	 Nachrichtentechnische Einrichtungen: Sprach- und Videosignale, die zunächst in analoger
Form vorliegen, werden digitalisiert und digital übertragen oder gespeichert. Beispiele:
Telefonie per Voice-over-IP, Videocodierung für Digitalfernsehen oder Blu-Ray Disc.

•	 Digitale Signalverarbeitung: Sprach-, Bild- und Videosignale werden durch digitale
Verarbeitung verändert. Beispiel: Bildverbesserung in Digitalkameras.

•	 Digitale Regelungssysteme und Prozesssteuerung: Ein Digitalregler kann einen oder
mehrere Regelkreise betreiben. Beispiele: Werkzeugmaschinen, Lebensmittelproduk-
tion, allgemeine Prozessabläufe, Überwachung von Verbundsystemen zur elektrischen
Energieversorgung.

12.1.1	� Systeme zur Umsetzung analoger in digitale Signale

Die Analog-Digital-Umsetzung umfasst prinzipiell die folgenden vier Schritte:

1.	 Bandbegrenzung durch Tiefpassfilter
2.	 Abtastung im Abtasthalteglied (AHG, engl. Sample & Hold)
3.	 Quantisierung
4.	 Codierung

Abgetastetes Signal
wertkontinuierlich

und zeitdiskret

010
011

000
001

110
111

100
101

t
T

sa(t)

Analoges Signal
wert- und zeit-
kontinuierlich

t
T

s(t)

Abgetastetes und
quantisiertes Signal
wert- und zeitdiskret

t
T

sq(t)

0

1
Digitalsignal

zweiwertig und
zeitdiskret

t
T

sd(t)
101 111 110... ...

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

Abb. 12.3   Verarbeitungsschritte beim Übergang von analogen zu digitalen Signalen

356 12  Analog-Digital- und Digital-Analog-Umsetzer

Ein System zur Digitalisierung analoger Signale lässt sich somit durch das Blockschalt-
bild in Abb. 12.4 beschreiben. Integrierte Schaltungen zur AD-Umsetzung vereinen die
Funktionen meist auf einem Baustein. Es ist jedoch auch möglich, die Umsetzfunktion
auf mehrere Bauelemente aufzuteilen.

Der Eingangstiefpass mit der Grenzfrequenz fg ist für den Fall erforderlich, dass das
Analogsignal nicht hinreichend bandbegrenzt ist. Seine Dimensionierung wird durch das
Abtasttheorem bestimmt (Abschn. 12.1.2). Als nächster Block ist ein Abtasthalteglied
(AHG) vorgesehen. Dieses hält während der Umsetzungsdauer des ADU das umzuset-
zende Analogsignal konstant (Abschn. 12.1.3). Das AHG speist direkt den eigentlichen
Umsetzer, der aus Quantisierer und Codierer besteht. Verschiedene Architekturen werden
in Abschn. 12.2 vorgestellt. Eine Ablaufsteuerung koordiniert die Aufgaben der einzel-
nen Blöcke.

12.1.2	� Abtasttheorem

Das Abtasttheorem von Shannon gibt an, in welchen zeitlichen Abständen dem vorlie-
genden Analogsignal mindestens Proben (Abtastwerte) entnommen werden müssen,
damit nach einer späteren DA-Umsetzung das Ursprungssignal (bis auf die Quantisie-
rungsfehler) fehlerfrei rekonstruiert werden kann.

Das Abtasttheorem lautet: Eine auf fg bandbegrenzte Signalfunktion s(t) wird vollständig
bestimmt durch zeitdiskrete und äquidistante Abtastwerte sa(t) im zeitlichen Abstand von
T = Tabt < 1/

(

2fg
)

Das bedeutet, die in einem Signalgemisch auftretende höchstfrequente spektrale
Komponente muss wenigstens zweimal pro Periode Tg abgetastet werden. Dieses lässt
sich sowohl im Zeit- als auch im Spektralbereich begründen. Die Formel für Tabt wird
auch mit dem Formelzeichen kleiner-gleich angegeben, aber das Gleichheitszeichen
hat nur theoretische und keine praktische Bedeutung. Wird das Abtasttheorem verletzt,
entstehen Signalfehler, die in der Regel nicht zu eliminieren sind.

Als Beispiel soll ein Audiosignal betrachtet werden. Das menschliche Gehör kann Fre-
quenzen bis zu 20 kHz wahrnehmen. Die Abtastrate muss darum größer als 40 kHz sein.
Für die Speicherung auf einer Audio-CD wird eine Abtastrate von 44,1 kHz verwendet.

Analog-
signal

Tiefpass
fg

Abtast-
halte-
glied

Quanti-
sierer

Codierer
Digital-
signal

Ablaufsteuerung

Abb. 12.4   Gesamtsystem zur Digitalisierung analoger Signale

35712.1  Grundprinzip von Analog-Digital-Umsetzern

12.1.3	� Abtasthalteglied (AHG)

Das Abtasthalteglied soll dem vorliegenden Signal in Abständen, die durch das Abtast-
theorem festgelegt sind, Signalproben entnehmen und diese während der Umsetzdauer
tu des ADUs konstant halten (speichern), wie Abb. 12.5 zeigt. Die Haltedauer tH muss
größer als die Umsetzdauer tu des ADUs gewählt werden, so dass gilt:

Ist allerdings die Umsetzdauer tu sehr viel kleiner als Tabt kann theoretisch auf eine Abtast
haltung verzichtet werden. Diese Forderung lässt sich in der Praxis allerdings selten
sinnvoll erfüllen, da der ADU dadurch sehr teuer werden würde. Die Zusammenhänge
sollen an einem Beispiel konkretisiert werden.

Wird kein AHG benutzt, kann sich während der Umsetzdauer tu des ADU das
Eingangssignal s(t) um ds ändern, was zu einem falschen Umsetzungsergebnis führt.
Soll die maximale Genauigkeit eines ADU von 1/2 LSB (Least Significant Bit) erhalten
bleiben, muss im Sinne einer Worst-Case-Betrachtung gefordert werden, dass an der
Stelle der größtmöglichen Signalsteigung die Signaländerung kleiner als 1/2 LSB
bleibt. Beispielsweise führt diese Forderung bei einem vollaussteuernden Sinussignal
s(t) = A · sin(ωg · t) zu folgendem Ergebnis:

Das ist die maximale Steigung des Signals mit der Amplitude A = m · Q/2, wobei Q die
Quantisierungsintervallbreite und m die Quantisierungsstufenzahl im Aussteuerbereich
sind. Weiter gelte fg = 1/(2 · Tabt) als Grenzfall für die Abtastung. Dann folgt:

Mit der oben formulierten Bedingung Smax · tu ≤ Q/2 folgt durch Gleichsetzen

und nach tu umgestellt:

tu ≤ tH ≤ T = Tabt

(

ds

dt

)

max

= A · ωg = Smax

Smax =
m · Q · 2 · π · fg

2
=

m · Q · π

2 · Tabt

Smax =
m · Q · π

2 · Tabt
≤

Q

2 · tu

sa(t)

t
T

s(t)

AHG

nT

tH

t
T

0 2 4 6 8 0 2 4 6 8

Abb. 12.5   Prinzipielle Wirkungsweise eines Abtasthaltegliedes

358 12  Analog-Digital- und Digital-Analog-Umsetzer

Dieses ist die erforderliche Umsetzdauer eines ADUs, welche bei der Abtastung ein
AHG entbehrlich macht. Diese Forderung ist sehr weitreichend, da in der Regel m sehr
viel größer als 1 ist.

Als Beispiel wird eine Abtastperiodendauer von 125 µs für die digitale Sprachsignal-
verarbeitung mit Telefonqualität betrachtet. Es wird ein linearer ADU mit n = 12 bit ver-
wendet, sodass m = 2n − 1 = 4095 ist. Dann gilt für die Umsetzdauer:

Dieses lässt sich nicht sinnvoll realisieren, da ADUs mit diesen Leistungsmerkmalen
zwar technisch möglich, jedoch für diese Anwendung zu aufwendig sind. Wird dagegen
ein AHG eingesetzt, darf die Umsetzdauer tu des ADU näherungsweise Tabt, also im vor-
liegenden Beispiel 125 µs betragen. Darin liegen Sinn und Vorteil eines AHG.

Die Arbeitsweise eines AHG zeigt das prinzipielle Schaltbild in Abb. 12.6. Wird der
Schalter S in die obere Stellung gebracht, lädt sich der Haltekondensator CH auf die
Signalspannung auf. Dieses entspricht der Abtastphase. Nach Bewegen des Schalters S
in die Mittelstellung beginnt die Haltephase, während der das Signal in CH gespeichert
bleibt. Die Spannung UH ist durch einen hochohmigen Leseverstärker als sa(t) verfügbar.
RS ist der Eingangswiderstand des AHG, Ri der Innenwiderstand der Signalquelle.

In modernen Pipeline-ADUs in CMOS-Technologie werden die AHGs mit geschalte-
ten Kondensatoren (Switched Capacity Circuits) realisiert, wie in Abb. 12.7 dargestellt ist.

tu ≤
Tabt

m · π

tu ≤
125µs

4095 · π
= 9, 72ns

sa(t)

S

CH

Ri RS

s(t)

UH

Abb. 12.6   Prinzipieller Aufbau eines AHGs und sein Anschluss an die Signalquelle s(t)

Abb. 12.7   Prinzipschaltbild
eines Abtasthalteglieds mit
geschaltetem Kondensator in
CMOS-Technik, wie es z. B.
in Pipeline-ADUs verwendet
wird

CHUi Ua

S1 S3

S2

35912.1  Grundprinzip von Analog-Digital-Umsetzern

In der Abtastphase sind die Schalter S1 und S3 geschlossen, und S2 ist offen. Da
der Summationspunkt des Operationsverstärkers auf Bezugspotenzial liegt, wird der
Kondensator CH mit der Eingangsspannung Ui geladen.

Für die Haltephase werden die Schalter S1 und S3 geöffnet und S2 geschlossen und
damit die Haltekapazität in den Gegenkopplungskreis des Operationsverstärkers gelegt.
Da die Ladung von CH nicht über den Summationspunkt abfließen kann, bleibt sie erhal-
ten, und die Ausgangsspannung Ua nimmt den Wert Ui an.

12.1.4	� Erreichbare Genauigkeit für ADUs abhängig von der
Codewortlänge

Durch die Codewortlänge n ist die Anzahl der möglichen Codewörter gegeben. Hieraus
lassen sich die Quantisierung der Messwerte und die erreichbare Genauigkeit berechnen.
Zur besseren Anschaulichkeit wird im Folgenden angenommen, dass der Messbereich
bei 0 V beginnt.

Ein Wert für die mögliche Genauigkeit eines ADUs ist die Quantisierungsintervall-
breite Q. Sie berechnet sich aus der Codewortlänge n und dem Aussteuerbereich Umax.
Für einen n-Bit-ADU ergibt sich Q als:

Der höchste codierbare Spannungswert beträgt dann:

Dieser Wert ergibt sich daraus, dass von den 2n möglichen Codewörtern der erste Wert
für die Spannung 0 V benötigt wird und die folgenden 2n − 1 Codewörter jeweils um
den Wert Q größer sind.

Als einfaches Beispiel betrachten wir einen Aussteuerbereich Umax von 1 V und eine
Wortbreite von n = 3 bit. Dann beträgt Q = 1 V/23 = 1 V/8 = 125 mV. Die Zahl der
Quantisierungsintervalle beträgt 8, sodass der höchste codierbare Spannungswert 7 Inter-
valle höher als 0 V ist:

Die Quantisierungskennlinie dieses ADUs ist in Abb. 12.8 dargestellt. Es existieren 8
darstellbare Spannungswerte und 7 Intervalle zwischen diesen Werten. Jedem Codewort
entspricht ein Repräsentationswert, beispielsweise für den Code 011 der Wert 0,375 V.
Die Eingangswerte des zugehörigen Quantisierungsintervalls werden diesem Wert zuge-
wiesen. Für den Code 011 sind beispielsweise die Übergangswerte 0,3125 und 0,4375 V.
Der höchste darstellbare Digitalwert ist 0,875 V und um ein Quantisierungsintervall klei-
ner als die maximale Eingangsspannung Umax.

Q =
Umax

2n

U∗

max =
(

2
n
− 1

)

· Q

U∗

max = 7 · 125mV = 0, 875V

360 12  Analog-Digital- und Digital-Analog-Umsetzer

Die beiden Punkte in den Ecken des Diagramms legen die ideale Quantisierungsge-
rade fest. Diese verläuft durch die Mittelpunkte aller Quantisierungsintervalle einer idea-
len Quantisierungskennlinie. Bei einer realen Quantisierungskennlinie ergibt sich für die
Mittelpunkte aller Quantisierungsintervalle jedoch im allgemeine keine Gerade. Darin
äußern sich unterschiedliche Fehler realer Umsetzer, wie sie in Abschn. 12.4 im Einzel-
nen erläutert werden.

Als Beispiel für reale Größenordnungen wird ein Aussteuerbereich Umax von 10 V und
eine Wortbreite von n = 12 bit betrachtet. Dann beträgt Q = 10 V/212 = 1 V/4096 = 2,44 
mV. Der höchste codierbare Spannungswert beträgt U*max = 4095 · (10 V/4096) = 9,976 V.

Bei einer idealen Quantisierungsgerade sind alle Quantisierungsintervalle Q gleich
groß und man spricht von linearer Quantisierung. Dann ist der maximale Quantisierungs-
fehler Fabs die Hälfte des Quantisierungsintervalls:

Der relative Fehler Frel hängt von der aktuellen Aussteuerung ab, er nimmt bei Vollaus-
steuerung sein Minimum an:

Für einen 3-Bit-ADU beträgt der Fehler Frel beispielsweise 1/16 = 6,25 %.
Wird bei einer Digitalisierung eine bestimmte relative Genauigkeit Frel verlangt, so

kann daraus die erforderliche Wortbreite für den ADU berechnet werden. Sie ergibt sich
aus dem nächstgrößeren ganzzahligen Wert und dem Zweierlogarithmus der benötigten
Genauigkeit nach der Formel:

Fabs =
Q

2
=

Umax

2n+1

Frel =
Fmax

U∗
max

≈
Fmax

Umax

=
1

2n+1

n∗ ≥ n = −1− ld Frel

Digitalsignal

Analogsignal (in V)

010
011

000
001

110
111

100
101

0,
00

0
0,

06
25

0,
12

5
0,

18
75

0,
25

0
0,

31
25

0,
37

5
0,

43
75

0,
50

0
0,

56
25

0,
62

5
0,

68
75

0,
75

0
0,

81
25

0,
87

5Repräsentationswerte

Übergangswerte

Umax = 1,000

Ideale
Quantisierungsgerade

Quantisierungs-
intervall Q

U*
max

Abb. 12.8   Quantisierungskennlinie eines 3-Bit-ADUs mit Umax = 1 V

36112.2  Verfahren zur Analog-Digital-Umsetzung

Soll beispielsweise eine relative Genauigkeit bei Vollaussteuerung von 1 % erreicht wer-
den, berechnet sich der Zweierlogarithmus von 0,01 zu ld 0,01 = − 6,64. Daraus ergibt
sich n = 5,64, sodass für den ADU mindestens n* = 6 bit nötig sind.

12.1.5	� Codierung der ADU-Werte

Für das eben genannte Beispiel eines 12-Bit-ADU mit Aussteuerbereich Umax von 10 V
ist die Codetabelle in Tab. 12.1 auszugsweise dargestellt. Die Codeworte werden als
Dualzahl dargestellt.

Falls mit dem ADU auch negative Spannungen gemessen werden, ist eine Darstellung
als Dualzahl mit Offset oder als Zweierkomplement möglich. Bei der Offsetdarstellung
beginnt der Code bei der geringsten Spannung mit dem Codewort Null und steigt bis
zum höchsten codierbaren Spannungswert an. Bei der Zweierkomplementdarstellung
werden negative Spannungswerte durch eine negative Zahl angegeben. Manche Bau-
steine bieten auch die Datenausgabe im Gray-Code. Die Codierung eines ADUs ist im
Datenblatt definiert und kann teilweise durch Konfigurationssignale ausgewählt werden.

12.2	� Verfahren zur Analog-Digital-Umsetzung

Für die eigentliche AD-Umsetzung sind verschiedene Verfahren möglich, die sich in
Aufwand und Geschwindigkeit deutlich unterscheiden. Für die folgenden Erläuterungen
werden meistens die Repräsentationswerte der einzelnen Quantisierungsschritte verwen-
det, da dies anschaulicher ist (siehe Abb. 12.8). In realen Schaltungen erfolgen Verglei-
che hingegen mit den Übergangswerten.

Tab. 12.1   Repräsentations-
werte und Codeworte für einen
12-Bit-ADU

Codewort-Nummer Repräsentationswert
in V

Codierung

0 0 0000 0000 0000

1 0,0024414 0000 0000 0001

2 0,0048828 0000 0000 0010

… … …

1024 2,5000000 0100 0000 0000

… … …

2048 5,0000000 1000 0000 0000

… … …

4095 9,9975586 1111 1111 1111

362 12  Analog-Digital- und Digital-Analog-Umsetzer

12.2.1	� Parallelverfahren

Umsetzer nach diesem Verfahren heißen Parallel-, Direkt- oder Flash-Umsetzer. Das
Messverfahren ähnelt der Längenmessung mit einem Zollstock. An die unbekannte
Größe wird der Zollstock angelegt, der in m Teile des Quantisierungsintervalls, soge-
nannte Normale, eingeteilt ist. Der nächstliegende ganzzahlige Wert ist die gesuchte
Länge.

Für die elektronische Realisierung dieses Verfahrens ist Folgendes wichtig:

•	 Es ist nur ein Messschritt nötig, das Verfahren arbeitet schnell.
•	 Es sind m Normale nötig, also großer Aufwand an Präzisionsbauelementen.

Elektrisch kann dieses Normalenlineal durch eine Spannungsteilerkette mit m gleichgro-
ßen Präzisionswiderständen realisiert werden. Jeder Widerstand ergibt eine darstellbare
Stufe. Zusätzlich ist noch der Wert Null vorhanden, so dass m + 1 Werte möglich sind.
Das Blockschaltbild des entsprechenden Parallelumsetzers ist in Abb. 12.9 dargestellt. Es
gilt: R1 = R2 = … = Rm. Rref wird entsprechend dem Verhältnis von Umax zu Uref gewählt.

Mittels m Komparatoren wird die unbekannte Spannung Ux mit den einzelnen Abgrif-
fen des Normalen-Spannungsteilers verglichen. Alle Komparatoren, deren Spannungen
an den Teilereingängen größer als Ux sind, liefern am Ausgang eine logische 1, alle ande-
ren eine logische 0. Diese Werte werden mit einem Abtastimpuls in ein Register über-
nommen und in der Decodierlogik in die entsprechende Anzahl von n = ld(m + 1) bits
umgesetzt. Das Register realisiert eine digitale Abtasthaltung, sodass dieser Umsetzer
ohne ein zusätzliches AHG betrieben werden kann.

Rm-2

Ux

Rm-1

Rm

Komparatoren

Uref

R1

Abtastimpuls

C

D1

Dm

D
ek

od
ie
rlo

gi
k

Analog-
eingang

Digital-
ausgang

0

n-1

Verstärker

Rref

Abb. 12.9   Blockschaltbild eines ADUs nach dem Flash-Verfahren

36312.2  Verfahren zur Analog-Digital-Umsetzung

Der hohe Aufwand zeigt sich in der großen erforderlichen Anzahl von Präzisions-
widerständen und Komparatoren. Daher wird dieses Verfahren normalerweise nur bis
Auflösungen von 12 bit eingesetzt. Technische Probleme bei hoher Auflösung liegen
außerdem im Eingangsverstärker, der m Komparatoreingänge treiben muss und in den
Komparatoren selbst, die eine kleine Hysterese und hohe Gleichtaktunterdrückungen
aufweisen müssen. Ein weiterer Nachteil ist die vergleichsweise hohe Verlustleistung
dieses Umsetzertyps.

Die Geschwindigkeit des Umsetzers wird durch den langsamsten Komparator
bestimmt, der erst eingeschwungen sein muss, bevor der Abtastimpuls eintrifft. Anwen-
dungsschwerpunkte für Umsetzer dieses Typs liegen bei der digitalen Signalverarbei-
tung, insbesondere der Bildverarbeitung mit Datenraten von mehr als 80 Mbit/s und bei
Transientenrekordern.

Eventuell ist Ihnen aufgefallen, dass beim Flash-ADU die Quantisierungsschritte
immer bis zum nächsten Repräsentationswert reichen. Bei der Auflösung aus Abb. 12.8
würde die Codierung „000“ also dem Wertebereich von 0 V bis 0,125 V entsprechen.
Dies liegt daran, dass alle Widerstände des Spannungsteilers gleich groß gewählt sind
und die Komparatoren die Eingangsspannung mit den Repräsentationswerten verglei-
chen. Bezogen auf die Dezimalzahl wird durch diese Vereinfachung der Nachkommaan-
teil abgeschnitten und es findet nicht die eigentlich erforderliche Rundung statt.

In der Praxis wird diese Verschiebung durch Halbierung des Werts für R1 und entspre-
chender Erhöhung von Rref oder durch einen Offset im Eingangsverstärker gelöst. Um
die Beschreibung der Schaltungsstrukturen in diesem Kapitel übersichtlich zu halten,
sollen solche Rundungsfragen nicht beachtet werden.

12.2.2	� Wägeverfahren

Beim Wägeverfahren wird pro Messschritt ein Bit des Digitalwortes erzeugt. Der Name
dieses Verfahrens stammt von dem bei einer Balkenwaage üblichen Messvorgang: Das
Wägegut unbekannten Gewichts wird in eine Waagschale gelegt. In die andere kommt
zunächst das größte verfügbare Gewicht. Ist dieses zu schwer, wird es wieder entfernt
und eine Null notiert. Ist es nicht zu schwer, bleibt es liegen und es wird eine Eins
notiert. Anschließend werden nacheinander alle verfügbaren kleineren Gewichte in glei-
cher Weise benutzt. Das unbekannte Gewicht entspricht der Summe aller mit Eins mar-
kierten Gewichte.

Das Wägeverfahren benutzt mehrere Normale qi mit dualer Abstufung ihres Wertes.
Die Auflösung entspricht einer Quantisierungsstufe Q, also dem LSB des fertigen Code-
wortes. Die erste Normale q0 hat den Wert Q, die folgenden Normale sind q1 = 2 · Q,
q1 = 4 · Q bis qn − 1 = 2n − 1 · Q.

Da die Anwendung jedes Normals qi ein Bit liefert, sind für einen n-Bit-ADU also n
Normale nötig. Das größte umfasst den halben Messbereich, also Umax/2 und die Summe
aller Normale ergibt den insgesamt darstellbaren Messbereich Umax − Q.

364 12  Analog-Digital- und Digital-Analog-Umsetzer

Eine Messung der Eingangsgröße x beginnt mit dem Vergleich mit dem größten Nor-
mal qn − 1.

•	 Gilt x ≥ qn − 1, wird bn − 1 = 1 und qn − 1 bleibt angelegt.
•	 Gilt dagegen x < qn − 1, wird bn − 1 = 0 und qn − 1 wird entfernt.

Damit ist das MSB (Most Significant Bit) des Digitalwertes b gebildet. Im nächsten
Schritt wird der verbleibende Rest der Messgröße mit dem nächstkleineren Normal
verglichen.

•	 Gilt x − bn – 1 · qn – 1 ≥ qn − 2, wird bn − 2 = 1 und qn − 2 bleibt angelegt.
•	 Gilt dagegen x − bn – 1 · qn – 1 < qn − 2, wird bn − 2 = 0 und qn − 2 wird entfernt.

Dieser Vorgang wird mit den restlichen Normalen bis zum kleinsten Normal q0 der
Größe Q fortgesetzt. Die Zahl Z der Messschritte entspricht der Normalenzahl N und
damit der Bitanzahl, also gilt Z = N = n.

Das Messergebnis lautet x = bn – 1 ·2n − 1 + bn – 2 ·2n − 2 +···+ b2·22 + b1 ·2 + b0.
Als Beispiel wird ein Wägecodierer mit m = 255 Quantisierungsintervallen

betrachtet. Er hat eine Auflösung von Q = 1/256 und damit sind Z = N = 8 und
n = ld(m + 1) = 8 bit. Daher sind N = 8 Normale und Z = 8 Messschritte erforderlich.
Das größte Normal hat den Wert qn − 1 = 2(n − 1)·Q = 128·Q und das kleinste den Wert
q0 = Q.

Die Umsetzzeit im Wägecodierer ist größer als beim Direktumsetzer, da mehr Schritte
erforderlich sind. Dafür werden weniger Normale benötigt, d. h. der Aufwand an Präzisi-
onsbauteilen ist prinzipiell geringer.

Bei der technischen Realisierung des Wägeverfahrens unterscheidet man zwischen
Umsetzern mit schrittweiser Annäherung (Sukzessive Approximation, Successive Appro-
ximation) und Kaskadenumsetzer (Pipeline-A/D-Umsetzer). In der Praxis wird von die-
sen beiden Varianten meist das Verfahren mit schrittweiser Annäherung verwendet und
darum wird dieses hier anhand des Rückkopplungscodierers erläutert. Das Blockschalt-
bild in Abb. 12.10 zeigt den Aufbau mit der Rückkopplung als wesentliches Merkmal.

Ux
AHG

Analog-
eingang

Digital-
ausgang

0

n-1

Komparator

Logik

SAR

Takt

A
D

U*x

Uref

Abb. 12.10   Blockschaltbild des Rückkopplungscodierers mit schrittweiser Annäherung (Sukzessive
Approximation)

36512.2  Verfahren zur Analog-Digital-Umsetzung

Als Rückkopplung wird mit einem Digital-Analog-Umsetzer (DAU) eine Referenz-
spannung Uref erzeugt. Diese wird entsprechend der Summe der aktivierten Normale
schrittweise variiert. Im ersten Schritt ist das MSB gesetzt und Uref = Umax/2. Der Kom-
parator vergleicht die Referenzspannung mit der Eingangsspannung und ermittelt das
MSB des Digitalausgangs, der im Successive Approximation Register (SAR) gespeichert
wird. Der DAU erzeugt dann den nächsten analogen Vergleichswert, der wieder mit dem
Eingangssignal verglichen wird um das nächste Ausgangsbit zu ermitteln.

Als Beispiel soll das Verfahren für einen ADU mit n = 3 bit und Umax  = 1 V durch-
gespielt werden. Das Quantisierungsintervall Q ist damit 0,125 V. Als Eingangsspannung
wird Ux = 0,8 V angenommen.

•	 Im Abtasthalteglied AHG wird die Eingangsspannung gehalten, damit während der
schrittweisen Umsetzung stets der gleiche Analogwert U*x anliegt.

•	 Der erste Vergleich erfolgt mit dem Wert Uref = 22 · Q = 4 · 0,125 V = 0,5 V. Der Ein-
gangswert von 0,8 V ist größer als die Referenzspannung, also ist das MSB b2 gleich 1.

•	 Der zweite Vergleich addiert zu der bisher ermittelten Spannung von 0,5 V die
nächste Normale, mit halber Größe der vorherigen Normale. Es ergibt sich also der
Wert Uref = b2 · 22 · Q + 21 · Q = 0,5 V + 2 · 0,125 V = 0,75 V. Der Eingangswert
von 0,8 V ist wieder größer als die Referenzspannung, also ist das nächste Bit b1
gleich 1.

•	 Der dritte Vergleich addiert wieder zu der bisher ermittelten Spannung von 0,75 V die
nächste Normale, mit halber Größe der vorherigen Normale. Es ergibt sich der Wert
Uref = b2 · 22 · Q + b1 · 21 · Q + 20 · Q = 0,75 V + 0,125 V = 0,875 V. Der Eingangs-
wert von 0,8 V ist kleiner als die Referenzspannung, also ist Bit b0 gleich 0.

•	 Damit ergibt sich nach drei Schritten der digitale Ausgangswert 110, der einer Span-
nung von 6 · Q = 0,75 V entspricht.

Das Ergebnis ist innerhalb der erreichbaren Genauigkeit für die gewählte Codewortlänge.

12.2.3	� Zählverfahren

Beim Zählverfahren handelt es sich um ein rein seriell arbeitendes Verfahren. Es exis-
tiert nur ein Normal der Länge Q und während der Messung wird gezählt, wie oft dieses
Normal an den unbekannten Wert x angelegt werden muss, um diesen zu erreichen. Das
Zählergebnis entspricht dann dem gesuchten Digitalwert von x.

Die Zahl der erforderlichen Vergleichsschritte Z hängt von der Messgröße ab und
beträgt maximal Z = m = 2n − 1, denn falls beim (2n − 1)ten Messschritt immer noch
gilt x > (2n − 1) · Q, dann muss x im letzten Quantisierungsintervall liegen.

Der Vorteil dieses Umsetzertyps ist, dass nur ein Normal, also ein geringer Aufwand
an Präzisionsbauelementen, benötigt wird. Da die Anzahl der Messschritte jedoch von
allen Umsetzverfahren am größten ist, arbeitet es auch am langsamsten.

366 12  Analog-Digital- und Digital-Analog-Umsetzer

Das Zählverfahren kann elektronisch durch eine Abwandlung des soeben vorgestell-
ten Rückkopplungsumsetzers realisiert werden. Dazu wird das SAR durch einen Zähler
ersetzt und damit Uref pro Messschritt nur um eine Quantisierungsstufe Q erhöht.

Vergleicht man die drei bisher dargestellten Umsetzverfahren miteinander, so zeigt
sich, dass Aufwand (bzw. Kosten) und Umsetzungsdauer bis zu einem gewissen Grade
untereinander austauschbar sind. Dieses ist in Abb. 12.11 anschaulich dargestellt. Häu-
fig besteht bei der Anwendung von ADUs jedoch der Wunsch, die Auswahl hinsichtlich
Geschwindigkeit und Kosten präziser an das vorliegende Digitalisierungsproblem anzu-
passen, als es die drei bisher genannten Verfahren zulassen. Dafür stehen zwei weitere
Verfahren zur Verfügung: Das erweiterte Parallel- und das erweiterte Zählverfahren.
Beide werden in den nächsten Abschnitten vorgestellt.

12.2.4	� Erweitertes Parallelverfahren

Das Parallelverfahren ist zwar sehr schnell, hat aber den Nachteil, dass der Auf-
wand an Präzisionsbauteilen exponentiell mit der Auflösung steigt; denn es werden
N = m = 2n − 1 Normale für einen n-Bit-Umsetzer benötigt. Abhilfe schafft hier das
erweiterte Parallelverfahren, dessen Funktion zwischen Parallel- und Wägeverfahren
liegt.

Im folgenden Abschnitt wird zunächst das allgemeine Prinzip des erweiterten Par-
allelverfahrens dargelegt und anschließend eine moderne Realisierung dieses Prinzips
anhand des Pipeline-A/D-Umsetzers erläutert.

12.2.4.1 � Allgemeines Prinzip des erweiterten Parallelverfahrens
Man erhöht, ausgehend von einem Parallelverfahren, die Anzahl der Messschritte von
Z = 1 auf Z > 1, beispielsweise auf Z = 2, bildet im ersten Schritt (m′+ 1) Grobstufen
und unterteilt die Grobstufe, in der der unbekannte Wert x liegt, in (m″ + 1) Feinstufen.
Die Gesamtauflösung beträgt dann m + 1 = (m′ + 1) · (m″ + 1), und die Zahl der
Normale verringert sich auf N = m′ + m″.

Das soll am Beispiel verdeutlicht werden. Für einen 8-Bit-ADU gilt
m = 28 − 1 = 255. Dann muss z. B. für Z = 2 Messschritte gelten: m + 1 = (m′ + 1) · 
(m″ + 1) = 256. Hierfür gibt es die in Tab. 12.2 dargestellten Möglichkeiten.

Aufwand Wandlungsdauer

Parallelverfahren
Wägeverfahren
Zählverfahren

Abb. 12.11   Vergleich der drei klassischen AD-Umsetzverfahren hinsichtlich Hardwareaufwand
und Geschwindigkeit

36712.2  Verfahren zur Analog-Digital-Umsetzung

Allgemein gilt, dass die minimale Normalenzahl, also der kleinste Hardwareaufwand,
im Fall (m′ + 1) = (m″ + 1) erreicht wird.

Geht man allgemein auf Z > 2 Messschritte über, muss gelten (m′ + 1) · (m″ + 1) · 
(m‴ + 1)··· · (m(Z) + 1) = m + 1 = 2n und die Normalenzahl beträgt:

Die Zahl der nötigen Normale wird wiederum minimal, wenn für alle m(i) = m′ = konstant
gilt. Dann beträgt die Anzahl an Quantisierungsstufen pro Messschritt:

und die erforderliche Normalenzahl beträgt N = Z · m′.
Als einfaches Beispiel soll ein 8-Bit-ADU in Z = 4 Schritten mit minimaler Norma-

lenzahl aufgeteilt werden. Die minimale Normalenzahl ergibt sich für

Dies bedeutet pro Umsetzerstufe werden 2 Bit generiert. Die Zahl der Normale beträgt
N = Z · m′ = 4 · 3 = 12.

Falls die Einzelquantisierungsstufenzahl keine Potenz von 2 ergibt, ist eine andere
Aufteilung nötig. Soll beispielsweise der 8-Bit-ADU in Z = 3 Schritte aufgeteilt wer-
den, ergibt sich für die Anzahl an Quantisierungsstufen der Wert 3

√

256 = 6,35 also keine
Zweierpotenz. Die drei Stufen müssen dann so gewählt werden, dass sie einer Zweierpo-
tenz entsprechen und sich insgesamt die benötigten 256 Quantisierungsstufen ergeben.
Dies erfolgt, durch zwei Stufen mit 8 und einer Stufe mit 4 Einzelquantisierungsstufen,
die insgesamt 8 · 8 · 4 = 256 Stufen ergeben. In Bit gerechnet ergeben die Einzelstufen
zweimal 3 und einmal 2 Bit, insgesamt also 8 Bit. Die minimale Normalenzahl ist 17.
Die Umsetzerstruktur ist in Abb. 12.12 gezeigt.

N =

Z
∑

i=1

m(i)

(

m′
+ 1

)

=
(

m′′
+ 1

)

=

(

m(Z)
+ 1

)

=
Z
√

m + 1 =
Z
√

2n

(

m′
+ 1

)

=
(

m′′
+ 1

)

=
(

m′′′
+ 1

)

=
(

m′′′′
+ 1

)

=
4
√

28 =
4
√

256 = 4

Tab. 12.2   Möglichkeiten
für die Realisierung eines
ADUs nach dem erweiterten
Parallelverfahren, mit n = 8 bit
und Z = 2 Schritten

Grobstufen Feinstufen N=m′+m″ Bemerkungen

1 256 255 Direktverfahren

2 128 128

4 64 66

8 32 38

16 16 30 Minimale
Normalenzahl

32 8 38 Ab hier Wiederholung

368 12  Analog-Digital- und Digital-Analog-Umsetzer

Umsetzer nach dem erweiterten Direktverfahren mit der Schrittzahl Z = 2 sind als
Half-Flash-Umsetzer auf dem Markt vertreten. Das vereinfachte Blockschaltbild des
Half-Flash-Umsetzers AD 7821 (Analog Devices) mit 8 Bit ist in Abb. 12.13 dargestellt.
Ein 4-Bit-Direktumsetzer erzeugt im ersten Schritt die vier höchstwertigen Bits (MSB).
Deren Analogäquivalent wird anschließend von der analogen Eingangsspannung subtra-
hiert. Aus der verbleibenden Differenz werden dann mit einem zweiten 4-Bit-Direktum-
setzer die vier niederwertigsten Bits ermittelt (LSB).

12.2.4.2 � Pipeline-Analog-Digital-Umsetzer
Bei einem Pipeline-ADU erfolgt die Umsetzung ebenfalls in mehreren Schritten. Anders
als beim allgemeinen Verfahren werden die Werte in jeder Stufe mit einem AHG gehal-
ten und nach der Differenzbildung verstärkt. Durch das Halten der Zwischenwerte ist
eine Verarbeitung im Pipeline-Verfahren möglich, denn während die zweite Stufe die
nachfolgenden Bits ermittelt, kann die erste Stufe bereits den nächsten Abtastwert bear-
beiten. Die Verstärkung ermöglicht der nachfolgenden Stufe mit höheren Signalpegeln
zu arbeiten.

Abb. 12.14 zeigt das Prinzip eines Pipeline-Analog-Digital-Umsetzers mit vier Stu-
fen eines 3-Bit-Umsetzers, angelehnt an den Baustein AD9200 von Analog Devices.
Vom analogen Eingangssignal werden in der ersten Stufe die drei höchstwertigen Bits
in einem Flash-AD-Umsetzer (ADU) ermittelt und das digitale Teilergebnis mit einem
DA-Umsetzer (DAU) wieder in einen analogen Wert umgesetzt. Der Eingangswert wird
im ersten Abtast-Halte-Glied (AHG) gespeichert und von ihm wird jetzt der Ausgang des
DAUs abgezogen. Da im ersten Schritt drei Bit des Ergebnisses ermittelt wurden, kann
die Differenz um den Faktor 23 = 8 verstärkt werden. Dadurch hat die Differenz wieder

Ux
Stufe 1

Analog-
eingang

Digitalausgang b7

Stufe 2 Stufe 3

b6 b5 b4 b3 b2 b1 b0

Abb. 12.12   Struktur eines dreischrittigen 8-Bit-ADU nach dem erweiterten Parallelverfahren mit
minimaler Normalenzahl

Abb. 12.13   Vereinfachtes
Blockschaltbild eines 8-Bit-
Half-Flash-Umsetzers

Ux

Analog-
eingang

Digital-
ausgang

0

n-1A
D

4-Bit-
Flash

4-Bit-
Flash

A
us

ga
ng

s-
tr
ei
be

r

MSB

LSB

36912.2  Verfahren zur Analog-Digital-Umsetzung

den gleichen Pegel wie das Eingangssignal und die zweite Stufe kann genauso wie die
erste Stufe dimensioniert werden. Dies ist für den Schaltungsentwurf und die Genauig-
keit der AD- und DA-Umsetzung vorteilhaft. Nach der zweiten Stufe werden in der drit-
ten und vierten Stufe die weiteren Bits ermittelt.

Für den praktischen Entwurf ist es vorteilhaft, wenn sich die Bereiche der einzelnen
Stufen etwas überlappen. Pro Stufe wird darum nicht der volle 3-Bit-Messbereich von 0
bis 7 genutzt, sondern nur etwa der Wertebereich von 0 bis 5. Diese 6 Werte entsprechen
rund 2,5 bit Auflösung und somit erfolgt dann die Verstärkung zwischen den Stufen auch
mit dem Faktor 6. Eine Korrekturlogik setzt aus den vier Teilergebnissen den Messwert
mit der Genauigkeit von 10 bit zusammen. In dieser Korrekturlogik kann sichergestellt
werden, dass sich der gesamte ADU über den Messbereich möglichst linear verhält. Ins-
besondere wird vermieden, dass Missing Codes auftreten, das heißt beim Übergang zwi-
schen Messbereichen wird kein Codewort übergangen.

12.2.5	� Erweitertes Zählverfahren

Das erweiterte Zählverfahren liegt in seiner Funktion zwischen dem Zähl- und dem
Wägeverfahren. Das Zählverfahren hat zwar den Vorteil minimalen Aufwands an Präzi-
sionsbauelementen, dafür ist aber die Schrittzahl und damit die Umsetzdauer die höchste
der drei klassischen Umsetzverfahren. Beispielsweise sind für einen 8-Bit-Umsetzer 255
Schritte erforderlich.

Eine Reduzierung der Umsetzdauer lässt sich prinzipiell durch eine Aufteilung in eine
Grobmessung und eine Feinmessung erreichen. In der Grobmessung könnte ein Normal
der Größe 2 · Q verwendet werden, was bei 8 Bit 127 Schritte erfordert. In der Feinmes-
sung wird dann in einem einzelnen Schritt ein Normal der Größe Q verwendet. Somit
wird die Anzahl der erforderlichen Schritte etwa halbiert. Auch eine weitere Aufteilung
mit Zwischenmessungen ist denkbar.

Eine praktische Bedeutung bei der Realisierung von ADUs hat das erweiterte Zähl-
verfahren bislang nicht.

Ux

Analog-
eingang

Digital-
ausgang

3-Bit-
ADU

Steuerung und Korrekturlogik

3

AHG

3-Bit-
DAU

Verstärker

3-Bit-
ADU

3

AHG

3-Bit-
DAU

Verstärker

3-Bit-
ADU

3

AHG

3-Bit-
DAU

Verstärker
3-Bit-
ADU

3

10

Abb. 12.14   Blockschaltbild eines Pipeline-Analog-Digital-Umsetzers

370 12  Analog-Digital- und Digital-Analog-Umsetzer

12.2.6	� Single- und Dual-Slope-Verfahren

Bisher wurden ausschließlich Umsetzverfahren betrachtet, bei denen die elektrische
Spannung direkt gemessen wurde. Bei indirekten Verfahren wird dagegen die Messgröße
zunächst in eine Hilfsgröße überführt, welche genauer, schneller oder mit kleinerem Auf-
wand messbar ist. Die wichtigsten Hilfsgrößen sind eine messgrößenproportionale Fre-
quenz sowie eine messgrößenproportionale Zeit.

Die Messung mithilfe einer variablen Zeit erfolgt durch Zählung mit einem Taktsig-
nal. Das Grundprinzip dieses Verfahren wird als Single-Slope-Verfahren bezeichnet. Die
Funktion wird an einem Blockschaltbild beschrieben (Abb. 12.15). Ein Sägezahngene-
rator erzeugt eine linear ansteigende Spannung Uk, die zum Beginn einem Messzyklus
gestartet wird. Wenn diese die Spannung Null erreicht, wechselt der logische Pegel am
unteren Komparator auf High und der Zähler startet. Erreicht Uk die unbekannte Mess-
spannung Ux, wechselt der logische Pegel am oberen Komparator auf Low und der Zäh-
ler stoppt. Der so ermittelte Zählerstand ergibt den digitalen Messwert. Es handelt sich
also um ein Zählverfahren, wobei die Spannungsänderung dUk / dt während einer Takt-
periode einem Quantisierungsintervall entspricht.

Dieses einfache Verfahren wird in der Praxis jedoch nicht eingesetzt, denn der Säge-
zahngenerator hat durch alterungs- oder temperaturbedingte Änderungen seiner Bauele-
mente nur eine begrenzte Genauigkeit.

Praktisch eingesetzt wird das Doppelflanken- oder Dual-Slope-Verfahren. Hierbei
wird, anders als beim Single-Slope-Verfahren, die Messgröße Ux und nicht eine Refe-
renzspannung über eine feste Zeit t1 integriert. Abb. 12.16 und 12.17 zeigen Prinzip-
schaltbild und Zeitverlauf bei einer Messung. Während der festen Messdauer t1 wird
in einem Integrator die unbekannte Spannung Ux bis zur Endspannung Ua aufintegriert.
Anschließend schaltet der Zähler für t1 um und die Spannung Ua wird über eine nega-
tive Referenzspannung -Uref wieder bis auf die Spannung 0 integriert. Die Zeit t2, die
hierfür erforderlich ist, wird gemessen und ergibt den digitalen Messwert für die Span-
nung Ux.

Der Vorteil dieser Messung liegt darin, dass die Bauteile R und C für beide Integ-
rationszyklen verwendet werden. Dadurch ist die Messung unabhängig von Parame-
terschwankungen bei diesen Bauteilen. Es ist lediglich eine stabile Referenzspannung
erforderlich, die durch Band-Gap-Dioden mit hoher Genauigkeit zur Verfügung steht.

Abb. 12.15   Blockschaltbild
eines ADUs nach dem Single-
Slope-Verfahren

UxAnalog-
eingang

Digital-
ausgang

Zähler
t

Sägezahn-
generator

&

Takt
Uk

Komparatoren

37112.2  Verfahren zur Analog-Digital-Umsetzung

Die Messdauer t1 kann zu einem Vielfachen der Periodendauer der 50 Hz Netzspan-
nung, also zu n · 20 ms gewählt werden. In diesem Fall haben Störungen durch die Netz-
spannung keinen Einfluss auf das Messergebnis.

Die Vorteile dieses Messverfahrens sind also:

•	 gute Störspannungsunterdrückung, da integrierendes Verfahren
•	 unabhängig von alterungs- und temperaturbedingten Änderungen der Bauelemente

und des Taktoszillators
•	 Die Langzeitpräzision wird nur durch Uref bestimmt, die sehr präzise erzeugt werden kann
•	 erzielbare Genauigkeit: ca. 0,001 %, d. h. 15–16 bit bzw. 5 Dezimalstellen

Nachteil:

•	 Das Verfahren arbeitet relativ langsam

Die häufigste Anwendung findet dieser Umsetzertyp in Digitalvoltmetern.

12.2.7	� Sigma-Delta-Umsetzer

Ein Sigma-Delta-Umsetzer (ΣΔ-Umsetzer) kombiniert die Rückführung eines 1-Bit-
DA-Umsetzers mit einem Integrator und einer Überabtastung. Das Blockschalt-
bild Abb. 12.18 zeigt den Aufbau. Der Eingangswert Ux wird mit der Rückführung

Ux

Analog-
eingang

Digital-
ausgang

Zähler
t2

&

Takt

Komparator

Referenz-
spannung

-Uref

R C

Zähler
t1

Integrator

ua(t)

Abb. 12.16   Prinzipschaltbild eines AD-Umsetzers nach dem Dual-Slope-Verfahren

ua(t)

t1 t2 t‘2

Ua

U‘a

Ux

steigend

t

Abb. 12.17   Spannungsverläufe im Dual-Slope-Umsetzer während des Messzyklus

372 12  Analog-Digital- und Digital-Analog-Umsetzer

kombiniert und in einem Integrator weiterverarbeitet. Dieser Integrator ist ähnlich wie
beim Dual-Slope-Verfahren aufgebaut. Ein Komparator ermittelt, ob das Integral posi-
tiv oder negativ ist und arbeitet daher als 1-Bit-ADU. Der ADU-Ausgang Plus ist eine
binäre Information und geht an ein D-Flip-Flop, wo der Wert mit hoher Taktfrequenz
abgetastet wird. Als Rückführung geht der abgetastete Vergleichswert P auf einen 1-Bit-
DA-Umsetzer, dessen Ausgang vom Eingangswert abgezogen wird.

Der Digitalausgang berechnet sich durch einen digitalen Filter aus der Folge von Ver-
gleichswerten P. Der Name Sigma-Delta bildet sich aus den Funktionselementen Integra-
tion (Sigma) und der Differenzbildung mit der Rückkopplung (Delta).

Zum Verständnis des Funktionsprinzips wird der Zeitablauf bei einer Umsetzung in
Tab. 12.3 Schritt für Schritt erläutert. Als Messbereich wird ±1 V angenommen und auch
der Ausgang des DAU beträgt +1 V oder − 1 V. Als Spannung am Analogeingang Ux
soll 0,6 V gemessen werden. Für den Zeitschritt 1 wird zum besseren Verständnis die
Rückführung weggelassen, daher ist Udig = 0 V (in der Tabelle mit 0* markiert). Eben-
falls wird angenommen, dass der Integrator mit der Spannung Uint = 0 V startet.

In den Zeitschritten erfolgen dann die folgenden Berechnungen:

1.	 Ux plus Udig ergeben 0,6 V, die im Integrator verarbeitet werden. Dieser Wert ist posi-
tiv, daher ist Plus gleich 1.

2.	 Die Rückführung nimmt den vorherigen Wert von Plus und ergibt darum Udig = 1 V.
Dieser Wert wird von Ux abgezogen, sodass Udiff = − 0,4 V ist. Addiert zum vorherigen
Wert des Integrators bleibt Uint = 0,2 V. Dieser Wert ist positiv, daher ist Plus gleich 1.

3.	 Die Rückführung ergibt erneut Udig = 1 V, sodass wiederum Udiff = − 0,4 V ist. Der
Wert des Integrators wird Uint = − 0,2 V. Dieser Wert ist negativ, daher ist Plus gleich 0.

4.	 Wegen des negativen Werts im Integrator ergibt die Rückführung nun Udig = − 1 V.
Daher ist Udiff = 1,6 V und der Wert des Integrators wird Uint = 1,4 V. Dieser Wert ist
positiv, daher wird Plus wieder gleich 1.

5.	 Die Rückführung ergibt wieder Udig = 1 V, darum wird Udiff = − 0,4 V. Der Wert des
Integrators wird Uint = 1 V. Dieser Wert ist positiv, daher ist Plus gleich 1.

6.	 Der weitere Zeitablauf kann aus der Tabelle abgelesen werden.

Beim Zeitablauf in Tab. 12.3 besteht die Pulsfolge am digitalen Filter aus vier Einsen
und einer Null. Die Pulsfolge wird Tiefpass-gefiltert und ergibt einen 1-Anteil von 80 %.

Ux

Analog-
eingang

Digital-
ausgang

Digital-
filter

Takt

Komparator

1-Bit-
DAU

Integrator

D
C

Abtastung

Udig

Uint
P

Udiff
Plus

Abb. 12.18   Blockschaltbild eines Sigma-Delta-Umsetzers

37312.2  Verfahren zur Analog-Digital-Umsetzung

Dieser Wert bezieht sich auf den Messbereich von ±1 V und entspricht Ux = −1 V + 
0,8 · 2 V = − 1 V + 1,6 V = 0,6 V.

Die Tabelle zeigt die Umsetzung eines konstanten Eingangswertes. Wenn sich
Ux ändert, wird sich auch die Pulsfolge nach mehreren Schritten an den geänderten
Eingangswert anpassen.

Der Sigma-Delta-Umsetzer versucht also mit Pulsen von +1 V und − 1 V die
Eingangsspannung nachzubilden. Dies sind recht grobe Schritte; im Gegenzug dafür
wird die Frequenz der Schritte sehr hoch gewählt. Der Unterschied zwischen höchster
Frequenz des Eingangssignals und Abtastrate wird als Oversampling Ratio OSR
bezeichnet und hierfür sind Faktoren von 100 und höher möglich. Diese Arbeitsfrequenz
passt sehr gut zu modernen CMOS-Prozessen, die hohe Taktfrequenzen ermöglichen.

Das Messprinzip des Sigma-Delta-Umsetzers unterscheidet sich damit maßgebend
von dem der bisher dargestellten Umsetzer. Letztere liefern bei einer Abtastrate, die
möglichst nahe der unteren durch das Abtasttheorem erlaubten Grenze liegt, jeweils ein
vollständiges Codewort. Der Sigma-Delta-Umsetzer liefert dagegen eine 1-Bit-Folge
mit sehr viel höherer Frequenz. Dieses Verfahren nennt man daher auch Oversampling-
Technik. Der Sigma-Delta-Umsetzer hat gegenüber anderen Umsetzern eine Reihe von
Vorteilen:

1.	 Er kann nahezu völlig aus digitalen Komponenten aufgebaut werden. Die Anforde-
rungen an die 1-Bit-Umsetzung sind nicht sehr hoch.

2.	 Er wirkt für das Eingangssignal wie ein Tiefpass, für das Quantisierungsfehlersignal
jedoch wie ein Hochpass. Das Spektrum des Quantisierungsfehlersignals wird daher
schwerpunkthaft in die Nähe der sehr hohen Abtastfrequenz verschoben. Der digital
arbeitende Tiefpass eliminiert erhebliche Teile davon und kann so dimensioniert
werden, dass er 50 Hz-Störungen unterdrückt.

3.	 Dem Umsetzerprinzip ist eine monotone Quantisierungskennlinie inhärent.

Tab. 12.3   Zeitablauf einer AD-Umsetzung mit Sigma-Delta-Umsetzer

Zeit
schritt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ux [in
V]

0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6

Udig [in
V]

0* +1 +1 −1 +1 +1 +1 +1 −1 +1 +1 +1 +1 −1 +1

Udiff
[in V]

0,6 −0,4 −0,4 1,6 −0,4 −0,4 −0,4 −0,4 1,6 −0,4 −0,4 −0,4 −0,4 1,6 −0,4

Uint [in
V]

0,6 0,2 −0,2 1,4 1,0 0,6 0,2 −0,2 1,4 1,0 0,6 0,2 −0,2 1,4 1,0

Plus
[binär]

1 1 0 1 1 1 1 0 1 1 1 1 0 1 1

374 12  Analog-Digital- und Digital-Analog-Umsetzer

4.	 Wegen der sehr hohen Abtastfrequenz kommt der Sigma-Delta-Umsetzer generell
ohne Abtast-Halteglied aus.

5.	 Derzeit liefert dieses Verfahren die höchsten verfügbaren Auflösungen.

Den Vorteilen stehen auch einige Nachteile gegenüber:

1.	 Wegen des mittelwertbildenden digitalen Filters gibt es eine große Latenzzeit
zwischen dem ersten Abtastwert und dem ersten Codewort. Daher eignet sich dieser
Umsetzer nicht zum Multiplexbetrieb für mehrere Signalquellen.

2.	 Gegenüber Flash-Umsetzern arbeitet das Sigma-Delta-Verfahren langsam.

Sigma-Delta-Umsetzer nach dem Oversampling-Prinzip haben sich inzwischen mit
Auflösungen von 16 bit in der hochwertigen Tonsignalverarbeitung etabliert. Weiterhin
wird dieses Verfahren in der Telemetrie und zur präzisen Überwachung langsam
veränderlicher Signale, beispielsweise bei Dehnungsmessstreifen eingesetzt.

12.3	� Verfahren zur Digital-Analog-Umsetzung

Digital-Analog-Umsetzer (DAU) dienen der Rückgewinnung des Analogsignals aus
codierten digitalen Werten. Dabei verursacht die Zeitdiskretisierung prinzipiell keine
Fehler, wenn das Abtasttheorem eingehalten wird. Die Wertdiskretisierung führt zu
Quantisierungsfehlern, die systematischer Natur sind und nicht mehr eliminiert werden
können. Durch Wahl einer hohen Auflösung können die Quantisierungsfehler jedoch sehr
klein gehalten werden.

Bei der Umsetzung liefert der DAU Impulse endlicher Breite ts und mit der Höhe, die
durch die Digitalwerte vorgegeben ist (Abb. 12.19). Dieses Signal ist also noch zeitdis-
kret. Durch anschließende Filterung in einem Tiefpass (Interpolator-Tiefpass) wird die-
ses Signal wieder zu einer stetigen Analogfunktion interpoliert.

Theoretisch sollte die Impulsbreite ts möglichst klein sein, um keine zusätzlichen Fre-
quenzen für das Ausgangssignal zu erzeugen. In der Realität wird jedoch aus zwei Grün-
den eine größere Impulsbreite gewählt, die meist der Periodendauer der Abtastung Tabt
entspricht.

•	 Durch die größere Breite des Signals ist eine höhere Signalleistung vorhanden.
•	 Es ist keine Abschaltung des Signals zwischen den Ausgabewerten erforderlich.

Das resultierende Rechtecksignal ergibt eine merkliche Verzerrung des Ausgangssignals,
denn das Spektrum des digitalen Signals wird mit dem Spektrum einer Rechteckfunktion
der Breite Tabt multipliziert. Diese Verzerrung kann jedoch durch ein nachfolgendes
analoges Filter wieder eliminiert werden. Die Struktur eines DAUs entspricht damit
Abb. 12.20.

37512.3  Verfahren zur Digital-Analog-Umsetzung

12.3.1	� Direktverfahren

Im Direktverfahren werden die möglichen Ausgangsspannungen des n-Bit-Umsetzers in
einem Spannungsteiler aus 2n gleichen Widerständen gebildet. Durch einen Multiplexer
wird eine Spannung ausgewählt und an den Ausgang gegeben (Abb. 12.21). Die Schalter des
Multiplexers sind natürlich keine mechanischen Schalter, sondern werden durch Transisto-
ren implementiert. Die Widerstandsreihe führt auch zu der englischen Bezeichnung „String
Architecture“. Das Verfahren ähnelt dem Parallelverfahren zur AD-Umsetzung aus Abb. 12.9.

Der Vorteil dieses Verfahrens ist eine relativ gleichmäßige Schrittweite der
Umsetzungskennlinie, denn die Toleranzen der Widerstände entsprechen der Schrittweite
zweier Ausgabewerte. Dadurch können insbesondere keine Monotoniefehler (siehe
Abschn. 12.4.1.6) auftreten.

Der Nachteil des Verfahrens ist der hohe Aufwand an Widerständen und Schaltern,
insbesondere bei höheren Wortbreiten. Es gibt jedoch erweiterte Strukturen, bei denen
nicht alle 2n Ausgangsspannungen direkt erzeugt werden, sondern eine Interpolation
zwischen Abgriffen der Widerstandsreihe erfolgt.

12.3.2	� Summation gewichteter Ströme

Das Verfahren der Summation gewichteter Ströme basiert auf dem Prinzip, dass für
jedes auf 1 gesetzte Bit des Dualwortes ein dem Bitgewicht entsprechender Strom
erzeugt wird. Dann werden alle Ströme rückwirkungsfrei summiert, beispielsweise
durch einen Operationsverstärker (OP). Für einen DAU mit n bit ergibt sich daraus die
in Abb. 12.22 gezeigte Schaltung. Das digitale Codewort steuert die Schalter b0 bis
bn − 1. Die Ausgangsspannung des OPs beträgt dann:

Abb. 12.19   Das
Ausgangssignal eines DAU
besteht prinzipiell aus
Impulsen endlicher Breite

t

u(t)

0 ts Tabt

Abb. 12.20   Prinzipschaltbild
eines Umsetzers digitaler in
analoge Signale

Tiefpass
fg

Digital-
eingang

D
A

Analog-
ausgang

t
t t

0
1
1

0
...

0
1
0

1
...

1
0
1

0
...

376 12  Analog-Digital- und Digital-Analog-Umsetzer

Für die Ströme gilt

Damit berechnet sich die Ausgangsspannung UDA des Umsetzers zu

Es ist ersichtlich, dass die Ausgangsspannung UDA eine Form hat, die dem vorgegebenen
dualen Wert bis auf eine multiplikative Konstante entspricht. Die elektronischen Schalter
können in Bipolar- oder CMOS-Technik realisiert werden.

Ein wesentlicher Nachteil der Schaltungsstruktur ist, dass sich die Widerstandswerte
für einen n-Bit-Umsetzer um den Faktor 2n − 1 unterscheiden. Dieses ist in monolithi-
scher Technik schwer zu realisieren, da der herstellbare Wertebereich technologisch
begrenzt ist. Außerdem sind die Anforderungen an die Präzision der kleineren Wider-
stände sehr hoch. Der kleinste Widerstand R hat den höchsten Strombeitrag und sein
Stromfehler sollte kleiner als 1/2 Stelle des Ergebnisses sein. Das bedeutet, der Fehler
darf nur so groß wie die Hälfte des Strombeitrags des größten Widerstands R/2n − 1 sein.
Darum muss die Genauigkeit besser als 2 − n sein. Bei einem 12-Bit-Umsetzer benötigt
der kleinste Widerstand also die Genauigkeit von 2 − 12 = 2,44 · 10 − 4 und dieser Wert
ist praktisch nicht zu erreichen.

UDA = −RF(b0 · i0 + b1 · i1 + b2 · i2 + . . .+ bn−1 · in−1)

ik =
Uref

R
/

2k
=

Uref · 2
k

R

UDA = −Uref

RF

R

n−1
∑

k=0

bk · 2
k

Rm-2

Rm-1

Rm
Analogschalter

Uref

R1

D
ek

od
ie
rlo

gi
k

Digital-
eingang

0

n-1 Analog-
ausgang

Verstärker

Abb. 12.21   DA-Umsetzung im Direktverfahren

37712.3  Verfahren zur Digital-Analog-Umsetzung

Aus diesen Gründen werden integrierte DAUs nicht nach dem oben dargestellten
Prinzip realisiert, sondern durch fortgesetzte Spannungsteilung in einem
Kettenleiternetzwerk. Dieses Verfahren wird im nächsten Kapitel beschrieben.

Eingesetzt wird die Umsetzung mit Summation gewichteter Ströme bei Anwendungen
mit geringer Wortbreite. Ein Beispiel ist die Codierung von Tasten für Mikrocontroller.
Wenn ein Mikrocontroller durch mehrere Taster bedient werden soll, wäre prinzipiell für
jeden Taster eine Eingangsleitung erforderlich. Stattdessen können vier bis sechs Taster
über ein Widerstandsnetzwerk wie in Abb. 12.22 an einen einzigen Analogeingang des
Mikrocontrollers gegeben werden, so dass Eingangsleitungen gespart werden. Der Ope-
rationsverstärker ist dabei nicht erforderlich.

12.3.3	� R-2R-Leiternetzwerk

Die Arbeitsweise dieses DA-Umsetzertyps basiert prinzipiell auf dem gleichen Ver-
fahren wie der zuvor dargestellte, denn es werden Ströme addiert, die dem Wert der
einzelnen Dualstellen des vorgegebenen Digitalwortes entsprechen. Allerdings wer-
den hier die Ströme mit stufenweise gleichgroßen Widerständen anhand fortgesetz-
ter Spannungsteilung in einem Leiternetzwerk erzeugt. Grundelement ist dabei ein
π-Glied, das als belasteter Spannungsteiler mit folgenden Eigenschaften betrieben
wird:

•	 Belastet man den Spannungsteiler mit einem Abschlusswiderstand Z, so soll sein
Eingangswiderstand ebenfalls Z sein. Das ermöglicht eine einfache Kettenschaltung
der einzelnen Spannungsteiler.

•	 Der Teilerfaktor in jeder abgeschlossenen Teilerstufe soll entsprechend der dualen
Abstufung 2 sein.

Diese Forderungen lassen sich mit symmetrischen Vierpolen erreichen, die mit ihrem
Wellenwiderstand abgeschlossen sind. Eine Rechnung liefert das in Abb. 12.23
dargestellte verlängerbare Kettenleiternetzwerk. Wegen der charakteristischen

Abb. 12.22   Prinzipschaltbild
eines DAU nach dem
Summationsprinzip
gewichteter Ströme

UDA

in-1

bn-1

i2

b2

R

i1

b1

R

i0

b0

2
R
4

R
2n-1...

...

Uref

RF

0 1
Schalter-
stellung

378 12  Analog-Digital- und Digital-Analog-Umsetzer

Widerstandswerte wird diese Schaltung auch als R-2R-Leiternetzwerk bezeichnet. Der
Wert für den Widerstand R kann frei gewählt werden.

Für die Verwendung als ADU wird an die Klemmen A und B eine Referenzspannung
Uref angeschlossen. Der Spannungsteilerkette werden über Stromschalter die Einzel-
ströme gemäß dem vorliegenden Binärwort entnommen und am Summationspunkt eines
OP rückwirkungsfrei addiert (Abb. 12.24).

Für die eingetragenen Spannungen gilt:

Damit ergeben sich die Ströme zu:

Die Stromschalter werden in Bipolar- oder CMOS-Technik realisiert. Es tritt lediglich
das gut realisierbare Widerstandsverhältnis 2:1 auf. Ein typischer Wert für R ist 500 Ω.
Nach diesem Prinzip arbeiten die meisten käuflichen DAUs in monolithischer und hybri-
der Technik. Außerdem ist in ADUs mit sukzessiver Approximation im Gegenkopplungs-
pfad ein DAU dieses Typs enthalten.

U3 = Uref

U2 = U3/2

U1 = U2/2

U0 = U1/2

I3 =
U3

2R
=

Uref

2R

I2 =
U2

2R
=

Uref/2

2R
=

I3

2

I1 =
U1

2R
=

Uref/4

2R
=

I3

4

I0 =
U0

2R
=

Uref/8

2R
=

I3

8

R
A

B

2R

R

2R

R

2R

R

2R R

Abschluss

Abb. 12.23   R-2R-Leiternetzwerk für einen Digital-Analog-Umsetzer

37912.3  Verfahren zur Digital-Analog-Umsetzung

12.3.4	� Pulsweitenmodulation

Die Pulsweitenmodulation (PWM) erzeugt eine analoge Ausgangsgröße durch schnellen
Wechsel zwischen zwei Spannungswerten. Das Verhältnis zwischen den Zeiten für die
Ausgangspegel bestimmt die analoge Ausgangsgröße. Abb. 12.25 zeigt den Zeitablauf
für zwei Ausgabewerte. Das Ausgangssignal wechselt periodisch zwischen High-Pegel
UH und Low-Pegel UL. Die Dauer des High-Pegels tH dividiert durch die Periodendauer
TPer wird als Tastverhältnis bezeichnet.

Aus der Pulsfolge kann durch einen Tiefpass eine Mittelwertbildung erfolgen, um
eine analoge Ausgangsspannung zu erzeugen; im einfachsten Fall reicht ein Kondensa-
tor. Die analoge Ausgangsspannung berechnet sich zu

Als Beispiel wird für den Zeitverlauf in Abb. 12.25 ein High-Pegel von 3,3 V und ein
Low-Pegel von 0 V angenommen. Dann ergibt sich für das Tastverhältnis von 70 % die
Ausgangsspannung 2,31 V und für 20 % die Spannung 0,66 V.

Es gibt jedoch auch Anwendungen, bei denen keine analoge Ausgangsspannung benö-
tigt wird, sondern stattdessen der angesteuerte Aktor oder der nachfolgende Sensor einen
Mittelwert bildet.

•	 Ein Gleichstrommotor kann durch eine PWM angesteuert werden und ergibt verschie-
dene Drehgeschwindigkeiten. Die Masse der Achse und die Motorlast sorgen für die
Mittelwertbildung.

•	 Wird eine Leuchtdiode mit einer PWM angesteuert, erscheint sie verschieden hell.
Die LED ist abwechselnd leuchtend und nicht-leuchtend und das menschliche Auge
sorgt für die Mittelwertbildung.

UDA = UL +
tH

TPer
(UH − UL)

R

2R

R

2R

R

2R 2R 2R

Uref i2i3 i0i1

b2 b1 b0b3

UDA

RF

0 1 Schalter-
stellung

U2 U1 U0U3=Uref

Abb. 12.24   Prinzipschaltbild eines 4-Bit-DAUs mit R-2R-Leiternetzwerk

380 12  Analog-Digital- und Digital-Analog-Umsetzer

12.4	� Eigenschaften realer AD- und DA-Umsetzer

Reale Umsetzerbausteine sind mit Fehlern behaftet. Sie sind bauelemente-, schaltungs-
oder prinzipbedingt und können sowohl im ADU als auch im DAU auftreten. Sie lassen
sich in statische und dynamische Fehler unterteilen.

Die zunächst betrachteten statischen Fehler treten in ADUs und bis auf den Quan-
tisierungsfehler auch in DAUs auf. Die in den folgenden Kapiteln hierzu dargestellten
Diagramme beziehen sich auf ADUs. Durch Spiegelung an der Einheitsgeraden erhält
man daraus die entsprechenden Darstellungen für DAUs. Bei dynamischen Fehlern muss
zwischen ADUs und DAUs unterschieden werden.

12.4.1	� Statische Fehler

Als statische Fehler werden solche Fehler bezeichnet, die nach dem Abklingen aller Ein-
schwingvorgänge übrig bleiben.

12.4.1.1 � Quantisierungsfehler
Die Beschränkung auf eine endliche Anzahl darstellbarer Amplitudenstufen bei der AD-
Umsetzung verursacht systematische Fehler, deren Amplitude im Allgemeinen ±0,5 · Q
erreichen kann. Nach der DA-Umsetzung ergibt sich dadurch ein Fehlersignal, der
Quantisierungsfehler, der rauschsignalähnlichen Charakter hat und den Signal-Rausch-
Abstand begrenzt. Der Quantisierungsfehler ist auch interpretierbar als Auswirkung der
nichtlinearen Stufenkennlinie eines Quantisierers auf das Signal. Da in praktischen Fäl-
len die Stufen der Quantisiererkennlinie sehr klein sind, kann man auch von einer mikro-
skopischen Nichtlinearität sprechen.

Setzt man eine lineare Quantisierung, ein in jedem Quantisierungsintervall gleich ver-
teiltes Signal und einen mitten im Quantisierungsintervall Q liegenden Repräsentations-
wert voraus, beträgt die Quantisierungsgeräuschleistung (Noise) N:

N = Q2/12

Abb. 12.25   Zeitablauf für
eine Pulsweitenmodulation
(PWM) für die Ausgabewerte
20 und 70 % t

u(t)

0 tH,70 Tper

Tastverhältnis 70%

t

u(t)

0 tH,20 Tper

Tastverhältnis 20%
UH

UL

UH

UL

38112.4  Eigenschaften realer AD- und DA-Umsetzer

Als Zahlenbeispiel wird ein vollaussteuerndes Sinussignal bei einem Umsetzer mit
m · Q ≈ 2n Quantisierungsintervallen angenommen, wobei n die Codewortbreite ist. Hier
beträgt die Signalleistung S:

Dann beträgt der maximal erreichbare Signal-Rausch-Abstand (Signal to Noise Ratio)
für das mit n bit digitalisierte Sinussignal

Unter den oben getroffenen Voraussetzungen ist daher mit einem 12-Bit-Umsetzer ein
max. Rauschabstand von SNR = 74 dB erreichbar. Dieser Wert entspricht einer guten
Signalqualität, somit kann der Quantisierungsfehler bei der Digitalisierung mit einem
erträglichen technischen Aufwand relativ klein gehalten werden.

Für die nächsten Betrachtungen wird die Stufenkennlinie mittels einer Geraden
durch die Quantisierungsintervallmitten ersetzt (Umsetzerkennlinie). Der ideale lineare
AD-Umsetzer hat dann eine Umsetzerkennlinie, wie sie in Abb. 12.26 dargestellt ist.
Verwendet man für Ein- und Ausgangsgrößen gleiche Maßstäbe, verläuft die ideale
Kennlinie unter 45°.  Weicht ein Umsetzer von dieser Kennlinie ab, ist er fehlerhaft.

12.4.1.2 � Offsetfehler
Anschaulich gesehen liegt ein Offsetfehler (Zero Error) vor, wenn die Umsetzer-
kennlinie gegenüber der idealen Kennlinie parallelverschoben ist (Abb. 12.27, links).
Ursache hierfür ist beispielsweise ein Offsetfehler des Eingangsverstärkers. Konkret
entspricht dieser Fehler der Lageabweichung des ersten Übergangswerts oberhalb
von Null von der Ideallage bei 0,5 · Q (siehe auch Abb. 12.8). Der Offsetfehler verur-
sacht einen konstanten absoluten Fehler im gesamten Aussteuerbereich und ist auf null
abgleichbar.

Die Angabe des Offsetfehlers im Datenblatt erfolgt üblicherweise in Bruchteilen des
Aussteuerbereichs. Der Offsetfehler hat darüber hinaus einen Temperatur-Koeffizienten,
der nur mit großem Aufwand kompensiert werden kann.

12.4.1.3 � Verstärkungsfehler
Anschaulich gesehen liegt ein Verstärkungsfehler (Gain Error) vor, wenn die Kennlini-
ensteigung von der idealen Steigung 1 abweicht (Abb. 12.27, rechts). Er verursacht einen
konstanten relativen Fehler im Aussteuerbereich und ist auf null abgleichbar.

Die exakte Definition des Verstärkungsfehlers ist die Abweichung der real vorliegen-
den Spannungsdifferenz zwischen dem ersten Übergangswert bei 0,5 · Q und dem letzten
bei Umax − 1,5 · Q vom idealen Wert (siehe Abb. 12.8).

S =

(

m · Q

2 ·
√

2

)2

=
22n · Q2

8

SNR = 10 · log
S

N
= (1, 76+ 6, 02 · n)dB

382 12  Analog-Digital- und Digital-Analog-Umsetzer

Die Angabe des Verstärkungsfehlers im Datenblatt erfolgt entweder absolut in LSB
oder relativ in % des Aussteuerbereichs. Der Verstärkungsfehler hat einen Temperatur-
Koeffizienten, der nur mit großem Aufwand kompensiert werden kann.

12.4.1.4 � Nichtlinearität
Die Nichtlinearität (Nonlinearity) eines Umsetzers, auch Integrale Nichtlinearität (INL)
genannt, entspricht der maximalen Kennlinienabweichung von der Geraden durch die
Endpunkte des Diagramms.

Nach Abgleich der Offset- und Verstärkungsfehler entspricht sie der maximalen
Abweichung von der idealen Kennlinie (Abb. 12.28). Gelegentlich wird allerdings in
Datenblättern die Nichtlinearität auch als maximale Abweichung von der bestmöglichen
Geraden interpretiert. Dann ist ein Offsetfehler einzustellen, damit die Nichtlinearität
den Herstellerangaben entspricht.

Der Grund für Nichtlinearitäten sind ungleich große Quantisierungsintervalle. Die
Nichtlinearität kann durch mehrere benachbarte Quantisierungsintervalle verursacht wer-
den, welche Abweichungen in gleicher Richtung haben. Die Angabe der Nichtlinearität
erfolgt üblicherweise in Bruchteilen des LSB.

Abb. 12.26   Kennlinie eines
idealen AD-Umsetzers

D
ig

ita
ls

ig
na

l

0 U*max

Id
ea

ler
 W

an
dle

r

000...0

111...1

Analogsignal

D
ig

ita
ls

ig
na

l

0 U*max

Id
ea

ler
 W

an
dle

r

000...0

111...1

Analogsignal

D
ig

ita
ls

ig
na

l

0 U*max

Id
ea

ler
 W

an
dle

r

000...0

111...1

Analogsignal

W
an

dle
r m

it

Offs
et

fe
hle

r

W
andler m

it

Verst
ärku

ngsfe
hler

Abb. 12.27   Kennlinien mit Offsetfehler und Verstärkungsfehler

38312.4  Eigenschaften realer AD- und DA-Umsetzer

12.4.1.5 � Differenzielle Nichtlinearität
Als differenzielle Nichtlinearität (Differential Nonlinearity) bezeichnet man die
Abweichung der Breite eines Quantisierungsintervalls vom Idealwert Q. Dabei
bezieht man sich auf dasjenige Quantisierungsintervall mit der größten Abweichung
(Abb. 12.29).

Die Angabe im Datenblatt erfolgt üblicherweise in Bruchteilen eines LSB. Ist die dif-
ferenzielle Nichtlinearität im Datenblatt beispielsweise mit ±0,5 LSB angegeben, müs-
sen alle Quantisierungsintervalle im Bereich 1 LSB ± 0,5 LSB liegen. Eine Sonderform
der differenziellen Nichtlinearität liegt vor, wenn einzelne Codeworte fehlen (Missing
Code). In diesem Falle beträgt sie 1 LSB.

12.4.1.6 � Monotoniefehler
Ein Umsetzer hält die Monotonität (Monotonicity) ein, wenn die Umsetzerkennlinie für
steigende Eingangswerte stufenweise monoton ansteigt. Hinreichende Bedingung für
Monotonität ist, dass die Nichtlinearität kleiner als 2 LSB bleibt. Eine Kennlinie, die
diese Bedingung nicht einhält, ist in Abb. 12.30 gezeigt.

12.4.1.7 � Betriebsspannungsabhängigkeit der Umsetzerparameter
Die Ausgangsgrößen von Umsetzern sind auch von der Betriebsspannung abhängig.
In den Datenblättern wird diese Eigenschaft als Power Supply Sensitivity (bzw. Power
Supply Rejection) bezeichnet. Die Angabe erfolgt als „prozentuale Änderung der
Ausgangsgrößen“ dividiert durch „prozentuale Änderung der Betriebsspannung“. In
der Regel bezieht sie sich auf Tracking-Netzteile, bei denen die beiden Spannungen
unterschiedlicher Polarität sich nur symmetrisch ändern können. Eine Verwendung
getrennter Netzteile für positive und negative Betriebsspannung wirkt sich in dieser
Beziehung nachteilig aus.

Abb. 12.28   Integrale
Nichtlinearität

D
ig

ita
ls

ig
na

l

0 U*max

000...0

111...1

Analogsignal

Ideale Kennlinie

Realer
Wandler

Nichtlinearität

384 12  Analog-Digital- und Digital-Analog-Umsetzer

12.4.2	� Dynamische Fehler

Dynamische Fehler an Umsetzern treten auf, wenn diese unter nichtstatischen Bedingun-
gen, insbesondere in der Nähe ihrer maximalen Geschwindigkeit, betrieben werden. Sie
lassen sich aus den statischen Fehlerkenndaten in der Regel nicht gewinnen.

Dabei muss stets das gesamte System betrachtet werden, das heißt auch das Abtast-
halteglied bei ADUs sowie Analogverstärker am Eingang von ADUs und am Ausgang
von DAUs tragen zur Systemcharakteristik bei. Sie können die dynamischen Umsetzerei-
genschaften wegen ihrer Einschwingcharakteristik deutlich einschränken.

Die wichtigsten heute weiterhin üblichen Kenndaten zur Beschreibung des dynami-
schen Verhaltens von ADUs sind der Signal-Rausch-Abstand, die Effektive Auflösung,
die Harmonischen Verzerrungen und das Histogramm. Sie werden in den folgenden
Kapiteln dargestellt. Ihre Messung erfolgt auf digitaler Ebene mit schnellen Rechnern
und, bis auf das Histogramm, anhand der Fast-Fourier-Transformation (FFT). Daher
werden für die Charakterisierung keine Präzisions-DAUs benötigt. Eine für DAUs wich-
tige dynamische Kenngröße ist die Glitch-Fläche.

Abb. 12.29   Differenzielle
Nichtlinearität

D
ig
ita

ls
ig
na

l

0 U*max

000...0

111...1

Analogsignal

Quantisierungskennlinie:

Real

Ideal

Real

Ideal

D
ig

ita
ls

ig
na

l

0 U*max

000...0

111...1

Analogsignal

Nichtmonotone
Kennlinie

Nichtlinearität = 2 LSB

Missing
Code

Abb. 12.30   Umsetzerkennlinie mit Monotoniefehler

38512.4  Eigenschaften realer AD- und DA-Umsetzer

12.4.2.1 � Einschwingzeit
Die Einschwingzeit (Acquisition Time) eines DAUs ist die Zeit, die nötig ist, damit sich
die Spannung bzw. der Strom bei einem Sprung über den gesamten Aussteuerbereich in
einen Toleranzschlauch zurückzieht, der die Breite eines LSB hat und symmetrisch zum
stationären Endwert liegt (Abb. 12.31). Die Einschwingzeit setzt sich aus Verzögerungs-,
Anstiegs- und Überschwingzeit zusammen. Erst nach Verstreichen der Einschwingzeit
entsprechen die Messwerte der geforderten Genauigkeit. Die Überschwingzeit wird auch
als Settling Time bezeichnet.

12.4.2.2 � Signal-Rausch-Abstand und Effektive Auflösung
Das Verhältnis der Leistung S eines den ADU vollkommen aussteuernden Sinussignals
zur Quantisierungsgeräuschleistung N entspricht dem Signal-Rausch-Abstand SNR (Sig-
nal to Noise Ratio):

Für eine praxisgerechte Größe müssen neben den Quantisierungsfehlern alle weiteren
Fehler D (Distortion) bei der Umsetzung berücksichtigt werden. D ist die Leistung der
weiteren Verzerrungen, die durch nichtideales Verhalten der Bauelemente entstehen. Die
daraus resultierende Kenngröße wird als SINAD (SIgnal to Noise And Distortion ratio)
bezeichnet und wird durch Messungen ermittelt:

Der Signal-Rausch-Abstand eines idealen ADUs berücksichtigt nur die Quantisierungs-
fehler und errechnet sich zu (siehe Abschn. 12.4.1):

Für einen idealen ADU mit einer Auflösung von n = 12 bit ergibt sich daraus ein Wert
von SNR = 74 dB.

Reale Umsetzer liefern kleinere Werte, die darüber hinaus mit steigender
Signalfrequenz abnehmen. Die Darstellung des über die FFT gemessenen SINAD über

SNR = 10 log
S

N
dB

SINAD = 10 log
S

N + D
dB

SNR = (1, 76+ 6, 02 · n)dB

t

s(t) Stationärer Endwert
Endwert + ½ LSB

Endwert - ½ LSB

Einschwingzeit

Verzöge-
rungszeit

Anstiegs-
zeit

Überschwing-
zeit

Abb. 12.31   Definition der Einschwingzeit (Acquisition Time) eines DAU oder Abtast-Haltegliedes

386 12  Analog-Digital- und Digital-Analog-Umsetzer

der Signalfrequenz wird daher zur Beurteilung der dynamischen Qualität eines ADUs
herangezogen.

Benutzt man die gemessenen SINAD-Werte, setzt sie in die obige Beziehung ein und
stellt diese nach n um, gewinnt man als äquivalentes Qualitätskriterium die effektive
Auflösung n′ (Effective Number Of Bits, ENOB) gemäß:

Ein realer ADU mit der Auflösung von n bit entspricht also in seinem dynamischen
Verhalten einem fiktiven idealen ADU mit der Auflösung von n′ bit, wobei n’ kleiner
als n ist. Der Wert von n’ ist abhängig von der Frequenz des gemessenen Signals und
nimmt für höhere Frequenzen ab. Ein typischer Verlauf der effektiven Auflösung ist in
Abb. 12.32 dargestellt.

12.4.2.3 � Harmonische Verzerrungen
Zur Bestimmung der Harmonischen Verzerrungen THD (Total Harmonic Distortion)
werden bezüglich der Anzahl verwendeter Oberwellen unterschiedliche Definitionen
benutzt. Sie reichen von 2 bis zur Gesamtzahl aller messbaren Oberwellen. Die Firma
Analog Devices benutzt zum Beispiel 5 Oberwellen. Damit ergibt sich die Total Harmo-
nic Distortion zu:

Dabei entspricht U0 dem Effektivwert der Grundwelle und Ui ist der Effektivwert der
i-ten Oberwelle.

12.4.2.4 � Histogramm
Das Histogramm gestattet Aussagen darüber, wie sich bei einem ADU unter dynamischer
Belastung Integrale und Differenzielle Nichtlinearitäten verhalten. Dazu wird der ADU
mit einem vollaussteuernden Eingangssignal konstanter Verteilungsdichte gespeist und in
einem Digitalrechner die Häufigkeitsverteilung der einzelnen Codeworte durch Zählung
ermittelt. Wird ein anderes Testsignal (z. B. Sinus) verwendet, kann die Abweichung von
einer konstanten Verteilungsdichte rechnerisch kompensiert werden.

n′ =
SINAD− 1, 76dB

6, 02dB

THD = 10 · log
U2
1 + U2

2 + U2
3 + U2

4 + U2
5

U2
0

dB

Abb. 12.32   Prinzipieller
Verlauf der effektiven
Auflösung n′ in bit über der
Frequenz für einen realen
n-Bit-ADU

f

n

n‘=g(f)

Idealer ADU

Realer ADU

fabt/2

38712.4  Eigenschaften realer AD- und DA-Umsetzer

Die grafische Darstellung der relativen Häufigkeiten H über den Codeworten ist das
Histogramm (diskrete Verteilungsdichte). Ein Prinzipbeispiel zeigt Abb. 12.33.

Für einen in dieser Hinsicht idealen ADU gilt H = konstant. Nichtideale Umsetzer
weichen hiervon ab. Zeigt das Histogramm etwa benachbarte Spitzen oder Einbrüche,
sind das Hinweise auf Differenzielle Nichtlinearitäten. Fehlt eine Linie völlig, ist das
zugehörige Codewort nicht ansprechbar (Missing Code).

12.4.2.5 � Glitch-Fläche
Die dynamischen Eigenschaften speziell von DAUs können durch die Einschwingzeit
nicht hinreichend beschrieben werden. Abhängig von Toleranzen der elektronischen
Stromschalter können nämlich am Ausgang kurzzeitig sehr hohe Störimpulse, soge-
nannte Glitches, auftreten.

Als Beispiel wird betrachtet, dass sich der Eingangscode eines 8-Bit-DAU von
0111 1111 auf 1000 0000 ändert. Alle elektronischen Stromschalter am Leiternetzwerk
werden in diesem Falle umgeschaltet. In der Realität geschieht dieses jedoch nicht
exakt gleichzeitig. Es wird angenommen, dass der Schalter für das MSB schneller
als die anderen schaltet. Dann wird kurzzeitig der Zwischencode 1111 1111
angenommen. Dieses führt am Ausgang zu einem Störimpuls, dessen Höhe dem halben
Aussteuerbereich nahekommt, obwohl der Wert sich eigentlich nur um 1 LSB ändern
soll.

Im Datenblatt wird diese Größe durch das Integral über die Glitch-Funktion, also die
Glitch-Fläche, zum Beispiel in der Einheit nVs bei spezifiziertem Messmodus angege-
ben. Dieser Wert sollte möglichst klein sein.

Einige Hersteller sehen einstellbare Korrekturschaltungen zur Minimierung der
Glitch-Fläche vor. Glitches können auch vermieden werden, indem der Ausgang des
DAUs nach Abklingen der Einschwingvorgänge durch Track-and-Hold-Glieder abge-
tastet und bis zur nächsten Umsetzung konstant gehalten wird. Teilweise sind derar-
tige Deglitch-Einrichtungen bereits in den DAUs enthalten. Allerdings vergrößert sich
dadurch die Gesamteinschwingzeit des Umsetzers.

Abb. 12.33   Prinzipielle
Darstellung eines Histogramms
H für einen ADU mit
4096 darstellbaren Stufen,
entsprechend 12 Bit

Codewort

H ideal

40950

...

...

388 12  Analog-Digital- und Digital-Analog-Umsetzer

12.5	� Ansteuerung von diskreten AD- und DA-Umsetzern

Analog-Digital- und Digital-Analog-Umsetzer können als Teil eines größeren ASICs
implementiert werden. Ein ASIC mit analogen und digitalen Schaltungsteilen wird als
Mixed-Signal-ASIC bezeichnet. Beispiele hierfür sind:

•	 Ein Controller für einen LCD-Monitor nimmt Videosignale aus der analogen VGA-
Schnittstelle entgegen. Sie werden dann digital verarbeitet, also, wenn erforderlich,
auf Bildschirmgröße skaliert, mit On-Screen-Display überlagert und dann an das
eigentliche Display weitergegeben.

•	 Ein ASIC für einen USB-Musik-Player liest digitale Daten aus einem NVRAM und
decodiert sie aus dem komprimierten Format. Die digitalen Signale werden dann auf
dem ASIC in analoge Signale umgesetzt und ausgegeben.

•	 Mikrocontroller enthalten oft Analog-Digital-Umsetzer, um analoge Informationen
direkt verarbeiten zu können.

Oftmals werden allerdings auch rein digitale ASICs verwendet und eine AD- und DA-
Umsetzung in diskreten Bausteinen implementiert. Die Aufteilung eines Systems in
Digital-ASIC und diskrete Umsetzer hat insbesondere folgende Vorteile:

•	 Es ist eine Vielzahl von diskreten ADUs und DAUs verfügbar, die eine Wahl bezüg-
lich Geschwindigkeit, Genauigkeit und Preis ermöglichen.

•	 Die digitale Verarbeitung in einem Mixed-Signal-ASIC kann den analogen Schal-
tungsteil stören und die Qualität der Umsetzung einschränken.

•	 Ein Mixed-Signal-ASIC ist aufwendiger als ein Digital-ASIC und daher teurer.
•	 Der Zugang zu Mixed-Signal-Fertigungstechnik ist schlechter verfügbar. Außerdem

müssen im Entwicklerteam ausreichende Kompetenzen für analoge Schaltungstechnik
vorhanden werden.

•	 Bei FPGAs gibt es kaum Bausteine mit AD- oder DA-Umsetzen.

In diesem Abschnitt wird erläutert, wie diskrete AD- und DA-Umsetzer angesteuert wer-
den. Dabei werden serielle und parallele Ansteuerung verwendet.

12.5.1	� Serielle Ansteuerung

Die serielle Ansteuerung diskreter Umsetzer hat den Vorteil, dass nur wenige Leitun-
gen benötigt werden. Die Taktgeschwindigkeit normaler Signalleitungen liegt meist im
Bereich von 10 bis 100 MHz. Für einen Datenwert sind, je nach Protokoll und Auflö-
sung, 10 bis 20 Bit erforderlich. Eine serielle Ansteuerung ist also für Abtastraten im
Bereich von kHz bis wenige MHz geeignet.

38912.5  Ansteuerung von diskreten AD- und DA-Umsetzern

Als Beispiel für Umsetzer mit serieller Ansteuerung werden die Bausteine MCP3201
und MCP4921 von der Firma Microchip betrachtet. Sie verwenden das Serial Peripheral
Interface (SPI), welches auch in Kapitel 11 für ein FRAM mit seriellem Interface
verwendet wurde.

12.5.1.1 � AD-Umsetzer MCP3201
Der Baustein MCP3201 ist ein Analog-Digital-Umsetzer mit 12 bit Auflösung und einer
Abtastrate von 100 kHz bei 5 V Betriebsspannung und 50 kHz bei 2,7 V Betriebsspan-
nung. Die Umsetzung erfolgt mit dem Wägeverfahren und sukzessiver Approximation
(SAR). Der Baustein benötigt lediglich acht Pins und ist damit sehr kompakt. Seine
Anschlüsse sind:

•	 IN+ und IN-, analoge Eingänge
•	 DOUT, Datenausgang
•	 CLK, Takteingang
•	 /CS, Chip-Select und Shutdown
•	 VREF, Referenzspannung
•	 VDD und VSS, Versorgungsspannung und Masse

Anmerkung: Im Datenblatt werden für Datenausgang und Takt die Bezeichnungen
DOUT und CLK verwendet. Um die Beschreibung allgemein zu halten, werden hier die
SPI-Bezeichnungen SDO und SCK verwendet.

Der Baustein ermittelt die Differenz zwischen den beiden analogen Eingänge IN+
und IN−. Dabei gibt es jedoch die Einschränkung, dass IN− nur um ±100 mV vom
Massepegel abweichen darf, sodass kein vollständiger differenzieller Eingang vorhanden
ist. Die getrennten Spannungsversorgungen VDD und VREF ermöglichen die Verwen-
dung einer besonders stabilisierten Referenzspannung.

Die Ansteuerung und Datenübertragung ist in Abb. 12.34 dargestellt. Eine
AD-Umsetzung wird durch Wechsel des Eingangs /CS von 1 auf 0 gestartet. Von
der nächsten fallenden Flanke an SCK wird für eineinhalb Taktzyklen der analoge
Eingangswert im Abtast-Halte-Glied (AHG) erfasst. Die Taktfrequenz an SCK darf
1,6 MHz betragen, so dass eine Sample-Zeit tsample von etwa 1 µs möglich ist. Mit den
nächsten Takten an SCK erfolgt dann die Umsetzung in sukzessiver Approximation und
es werden nacheinander eine 0 sowie die Stellen des ermittelten Wertes ausgegeben. In
der sukzessiven Approximation wird zuerst das höchstwertige Bit (MSB) ermittelt und
darum wird dieses Bit auch zuerst ausgegeben. Nach zwölf Takten ist die Umsetzung
beendet (tu) und es ist noch ein weiterer Takt für die Ausgabe des LSB erforderlich
(tdata). Weitere Takte sind erlaubt; eine neue AD-Umsetzung wird jedoch erst durch eine
fallende Flanke an /CS gestartet.

Die Ansteuerung kann direkt durch die SPI-Schnittstelle eines Mikrocontrollers
erfolgen. Dazu werden Steuerbefehle gegeben, die zwei Byte einlesen. Die

http://dx.doi.org/10.1007/978-3-662-49731-9_11

390 12  Analog-Digital- und Digital-Analog-Umsetzer

SPI-Schnittstelle erzeugt damit 16 Flanken an SCK und liest 16 Bit Daten. Aus diesen
16 Bit werden die gültigen 12 Bit der AD-Umsetzung extrahiert.

12.5.1.2 � DA-Umsetzer MCP4921
Der Baustein MCP4921 ist ein Digital-Analog-Umsetzer mit 12 bit Auflösung und exter-
ner Referenzspannung. Er arbeitet im Direktverfahren. Es gibt verwandte Produkte mit
10 und 8 bit Auflösung, mit zusätzlicher interner Referenzspannung sowie mit zwei Aus-
gängen. Genau wie der zuvor betrachtete MCP3201 hat auch der MCP4921 acht Pins
und ist sehr kompakt. Seine Anschlüsse sind:

•	 VOUT, analoger Ausgang
•	 SDI, Dateneingang
•	 SCK, Takteingang
•	 /CS, Chip-Select
•	 /LDAC, Übernahmesignal für Daten (Latch DAC, Verwendung optional)
•	 VREF, Referenzspannung
•	 VDD und VSS, Versorgungsspannung und Masse

Anmerkung: Hier werden im Datenblatt schon die SPI-Bezeichnungen verwendet.
Die Ansteuerung des Bausteins zeigt Abb. 12.35. Mit /CS auf 0 wird der Datentransfer

begonnen. Dann werden für einen analogen Ausgabewert 16 Bit im SPI-Protokoll
übertragen. Das erste Übertragungsbit ist 0, danach kommen drei Steuerbits (werden im
nächsten Absatz erläutert) und darauf die 12 Bits, welche als Analogwert ausgegeben
werden sollen. Nach der Übertragung wird durch Setzen von /LDAC auf 0 der
Analogwert am Ausgang VOUT aktualisiert. Durch diese Steuerleitung können mehrere
DAUs zeitgleich ihre Ausgabe ändern. Falls keine Synchronisation durch /LDAC
benötigt wird, kann dieser Wert konstant auf 0 gelegt werden und der Ausgang wird nach
der Datenübertragung automatisch aktualisiert.

Bei der Übertragung werden drei Steuerbits angegeben, die folgende Bedeutung
haben. In Abb. 12.35 werden zur besseren Übersichtlichkeit die ersten Buchstaben B, G,
S angegeben.

•	 BUF: Die Referenzspannung kann gepuffert werden, was zu höherer Eingangsimpe-
danz bei leichten Einschränkungen in der Umsetzungsqualität führt.

Abb. 12.34   Ansteuerung und
Datenübertragung des ADUs
MCP3201 von Microchip 0123456891011

/CS

SDO

SCK

Abtastung AD-Umsetzung Abschluss der
Datenausgabe

7

tsample tu tdata

39112.5  Ansteuerung von diskreten AD- und DA-Umsetzern

•	 /GA (Gain): Es ist ein Ausgabeverstärker vorhanden, für den der Faktor 1 oder 2
gewählt werden kann.

•	 /SHDN (Shutdown): Der Analogausgang kann zur Verringerung der Verlustleistung
abgeschaltet werden.

12.5.2	� Parallele Ansteuerung

Für höhere Datenraten ist eine Datenübertragung über SPI nicht mehr möglich. Eine
Geschwindigkeitssteigerung kann über parallele Datenleitungen erfolgen.

12.5.2.1 � AD-Umsetzer AD9200 mit einfachem Parallelausgang
Der Baustein AD9200 ist ein Pipeline-Analog-Digital-Umsetzer von Analog Devices mit
10 bit Auflösung und einer Abtastrate von 20 MHz. Es sind zwei Gehäuse mit 28 und 48
Pins verfügbar. Die digitale Schnittstelle besteht aus den Anschlüssen:

•	 D9 bis D0, Datenausgang mit 10 bit Wortbreite
•	 OTR, Out-of-Range Indicator
•	 STBY, Standby, setzt den AD-Umsetzer in den Ruhezustand
•	 THREE-STATE, schaltet die Ausgangsleitungen ab
•	 CLK, als Takt für die interne Operation des Umsetzers sowie für den Datenausgang

Dieses Dateninterface ist sehr einfach. Bei jedem Takt wird ein Datenwort mit 10 Bit
ausgegeben. Der Out-of-Range Indicator gibt an, wenn die Eingangswerte außerhalb des
Messbereichs liegen. Der Datenausgang wird dann auf den kleinsten oder größten Wert
limitiert. In Verbindung mit dem MSB des Datenausgangs kann unterschieden werden,
ob ein Überlauf oder ein Unterlauf auftritt.

12.5.2.2 � AD-Umsetzer AD9467 mit differenziellem Parallelausgang
Bei höheren Taktgeschwindigkeiten wird ab etwa 100 MHz die Datenübertragung
auf einer Platine störanfällig. Für bessere Übertragungseigenschaften werden dann
differenzielle Leitungen eingesetzt. Dies bedeutet, ein Ausgang verwendet nicht mehr
eine einzelne Leitung, sondern zwei Leitungen, die entgegengesetzte Spannungspegel

Abb. 12.35   Ansteuerung
des DAUs MCP4921 von
Microchip 0123456891011

/CS

SDI

SCK

Konfiguration

7SGB

Datenbits

/LDAC

VOUT

392 12  Analog-Digital- und Digital-Analog-Umsetzer

einnehmen. Diese werden durch ‚+‘ und ‚−‘ gekennzeichnet, das heißt beispielsweise
der Takt CLK wird auf den Leitungen CLK+ und CLK− übertragen.

Durch die differenzielle Übertragung kann der Spannungshub zwischen Low- und
High-Pegel deutlich verringert werden, denn Störungen betreffen immer beide Leitun-
gen. Aufgrund des geringeren Spannungshubs sind dann auch höhere Taktfrequenzen
möglich. Die differenzielle Übertragung wird als LVDS (Low Voltage Differential Signa-
ling) bezeichnet.

Der Baustein AD9467 ist ein Pipeline-Analog-Digital-Umsetzer von Analog Devices
mit 16 bit Auflösung und einer Abtastrate bis zu 250 MHz. Das Gehäuse hat 72 Pins und
die digitale Schnittstelle besteht aus einem parallelen LVDS-Datenausgang und einem
seriellen Steuereingang.

Der parallele LVDS-Datenausgang arbeitet mit Double-Data-Rate (DDR), einer
Technik, die bereits in Kapitel 11 in Zusammenhang mit DDR-SDRAMs vorgestellt
wurde. Das heißt, es werden pro Taktzyklus nacheinander zwei Bit auf einer Daten-
leitung ausgegeben. Diese Datenleitung ist dann in zwei Polaritäten vorhanden, also
als ‚+‘ und ‚−‘. Die Datenleitungen für beispielsweise die Bits 15 und 14 werden als
D15+/D14+ und D15−/D14− bezeichnet. Der Datenausgang hat insgesamt die folgen-
den Anschlüsse:

•	 D15+/D14+ und D15−/D14− bis D1+/D0+ und D1−/D0−, Datenausgang mit 8
bit LVDS-Werten auf 16 Leitungen

•	 OTR+ und OTR−, Out-of-Range Indicator (2 Leitungen)
•	 CLK+ und CLK−, Takteingang (2 Leitungen)
•	 DCO+ und DCO−, Taktausgang (2 Leitungen)

Der Zeitablauf von Datenerfassung und -ausgabe ist in Abb. 12.36 dargestellt. Die stei-
gende Flanke am Takteingang CLK+ bestimmt die Abtastzeitpunkte des analogen Ein-
gangssignals. Der Datenausgang hat ein eigenes Taktsignal DCO, mit dem die Datenbits
von der nachfolgenden Schaltung übernommen werden müssen.

Die Umsetzung des analogen Eingangswerts benötigt aufgrund des Pipeline-Verfah-
rens 16 Takte, sodass der Ausgangswert erst nach dieser Latenzzeit ausgegeben wird.
Während der Umsetzung werden weitere Daten erfasst und jeweils nach der Latenzzeit
von 16 Takten ausgegeben. Die Latenzzeit entspricht der Wortbreite des ADUs von 16 bit.

Der vergrößerte Ausschnitt in Abb. 12.36 zeigt den Zeitablauf bei der Datenausgabe.
Mit der steigenden Flanke von DCO+ wird Bit 15 für den Abtastwert N-16 ausgege-
ben (Bezeichnung: D15N − 16). Mit der fallenden Flanke an DCO+ folgt einen halben
Takt später Bit 14 für diesen Abtastwert. Im darauffolgenden Takt folgen die Daten für
Abtastwert N-15. Parallel liegen auf den anderen 7 LVDS-Leitungen die weiteren Bits des
Datenworts an.

Außerdem enthält der Baustein AD9467 einen seriellen Steuereingang mit SPI-
Protokoll (vergleiche Abb. 12.34). Hierüber können Konfigurationsregister geschrieben

http://dx.doi.org/10.1007/978-3-662-49731-9_11

39312.5  Ansteuerung von diskreten AD- und DA-Umsetzern

und gelesen werden. Diese Konfiguration betrifft analoges und digitales Verhalten,
beispielsweise:

•	 Justierung des Spannungsmessbereichs
•	 Wahl des Datenformats zwischen dual, 2er-Komplement und Gray-Code
•	 Ausgabe vordefinierter Daten zu Testzwecken

12.5.3	� Serielle Hochgeschwindigkeitsschnittstelle JESD204B

Die im vorherigen Abschnitt vorgestellte parallele Schnittstelle benötigt 20 Leitungen,
die auf einer Platine paarweise parallel geführt müssen und zudem die gleichen Länge
haben sollen. Eine Alternative zu dieser aufwendigen Verbindung ist die serielle Hoch-
geschwindigkeitsschnittstelle JESD204B, welche von der Standardisierungsorganisation
JEDEC (Joint Electron Device Engineering Council) definiert wird.

Ein wesentliches Problem bei hohen Übertragungsgeschwindigkeiten auf der Platine
ist nicht unbedingt die Geschwindigkeit des Datensignals sondern die Synchronisierung
von Daten und Takt. Aus diesem Grund wird beim, im vorherigen Abschnitt beschrie-
benen, parallelen Interface des AD9467 der Takt zusammen mit den Daten ausgegeben,
damit diese möglichst die gleiche Laufzeit haben. Noch höhere Taktraten sind möglich,
wenn der Empfänger den Takt aus den empfangenen Daten rekonstruieren kann. Dieses
Prinzip wird für die JESD204B-Übertragung genutzt.

CLK+
CLK–

DCO+
DCO–

D15+/D14+
D15–/D14–

D1+/D0+
D1–/D0–

Analoge
Spannung

N-1 N
N+1

N+2 N+3 N+4

D15N-16 D14N-16 D15N-15 D14N-15

D1N-16 D1N-16 D0N-15 D0N-15

...

...

D14 D15 D14 D15 D14 D15 D14 D15 D14 D15 D14

D0 D1 D0 D1 D0 D1 D0 D1 D0 D1 D0

D15

D1

Abtastzeitpunkt

N-18 N-17 N-16 N-15 N-14 N-13

Abtastzeitpunkt des
Ausgabewerts

Datenbit 15 des
Abtastzeitpunkts N-16

Abb. 12.36   Datenerfassung und LVDS-Datenausgang des ADUs AD9467

394 12  Analog-Digital- und Digital-Analog-Umsetzer

Für die Taktrekonstruktion muss sichergestellt sein, dass die Daten genügend Takt-
flanken besitzen. Wird beispielsweise der Wert 0 mit 0000 0000 codiert und mehrfach
nacheinander ausgegeben, kann der Empfangsbaustein hieraus keinen Takt erkennen. Als
Lösung dieses Problems wird ein spezieller Code mit redundanter Wortlänge verwen-
det. Dazu werden die 8 Bit eines Byte mit 10 Stellen codiert. Von den 1024 möglichen
Codewörtern werden nur solche verwendet, bei denen mindestens alle 5 Takte eine Sig-
nalflanke auftritt. Damit ist sichergestellt, dass der Takt aus den Daten zurückgewonnen
werden kann. Der entsprechende Code wird als 8b/10b-Code bezeichnet und auch für
andere Anwendungen in der Kommunikationstechnik verwendet.

Der Baustein ADC32J45 von Texas Instruments ist ein ADU mit JESD204B-
Schnittstelle. Er hat zwei Analogeingänge und setzt diese mit einer Abtastrate von
160 MHz und 14 bit Genauigkeit um. Für die Konfiguration des Bausteins ist zusätzlich
ein SPI-Port vorhanden.

Abb. 12.37 zeigt die wichtigsten Signale des JESD204B-Datenausgangs in
vereinfachter Darstellung. Der Baustein erhält vom Signalverarbeitungs-ASIC den Takt
CLK und das Steuersignal SYNC, beide als differentielles LVDS-Signal. Vom ADU
gehen zwei LVDS-Signale DA und DB mit den Daten der beiden Analogeingänge an
das Signalverarbeitungs-ASIC. Die Datenübertragung erfolgt im 8b/10b-Format mit
10-facher Geschwindigkeit des Taktsignals. Bei positivem und bei negativem Pegel von
CLK wird jeweils ein Byte und somit pro Taktzyklus die 14 Bit des Messwertes und
2 ungenutzte Bits übertragen.

Mit dem Steuersignal SYNC wird am Beginn einer Übertragung der Empfangstakt
im Signalverarbeitungs-ASIC synchronisiert. Ist SYNC+ gleich 0 sendet der ADU ein
festes Steuerwort. Sobald dieses Steuerwort mehrfach korrekt erkannt wurde, ist die
Taktsynchronisierung erfolgt und SYNC+ wird auf 1 gesetzt. Danach sendet der ADU
noch Steuerworte zur sogenannten Framesynchronisierung und dann folgen die Daten
der AD-Umsetzung.

Für die Synchronisierung und Decodierung des 8b/10b-Codes ist im
Signalverarbeitungs-ASIC ein entsprechendes Schaltungsmodul erforderlich. Für FPGAs

CLK+

SYNC+

DA+
DA–

DB+
DB–

Taktsynchronisation

SYNC–

CLK–

Framesynchronisation Datenübertragung

E
in

gä
ng

e
de

s
A

D
-U

m
se

tz
er

s
A

us
gä

ng
e

...

...

...

...

...

...

...

...

Abb. 12.37   Vereinfachter Zeitablauf am Datenausgang des ADUs ADC32J45 mit
JESD204B-Schnittstelle

39512.6  Übungsaufgaben

werden von den Herstellern JESD204B-Interfaces angeboten, welche die Verwendung
dieser Schnittstelle vereinfachen.

12.6	� Übungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Prüfen Sie sich mit den Aufgaben und
Fragen am Kapitelende. Die Lösungen und Antworten finden Sie am Ende des Buches.

Aufgabe 12.1
Ordnen Sie den AD-Umsetzern jeweils die passende Kurzbeschreibung zu.

a)	 Dual-Slope-Verfahren
b)	Parallelverfahren
c)	 Sigma-Delta-Umsetzer
d)	Wägeverfahren

1.	 Gleichzeitiger Vergleich mit 2n − 1 Komparatoren
2.	 Integration von Referenzspannung und Messspannung
3.	 Hohe Überabtastung des Eingangswertes und 1-Bit-Umsetzung
4.	 Schrittweise Bestimmung der einzelnen Bits

Aufgabe 12.2
Ordnen Sie den DA-Umsetzern jeweils die passende Kurzbeschreibung zu.

a)	 Pulsweitenmodulation
b)	Summation gewichteter Ströme
c)	 Direktverfahren
d)	R-2R-Leiternetzwerk

1.	 Verwendung von 2n gleichen Widerständen
2.	 Verwendung von einer Widerstandskette mit Widerständen gleicher Größenordnung
3.	 Verwendung von Widerständen mit den Werten R, R/2, R/4, R/8, R/16, R/32, …
4.	 Mittelwertbildung aus zwei Spannungswerten

Aufgabe 12.3
Ein ADU hat einen Aussteuerbereich Umax von 3 V und eine Wortbreite von n = 10 bit.

a)	 Wie groß ist die Quantisierungsintervallbreite Q?
b)	Wie groß ist der höchste codierbare Spannungswert?
c)	 Welche Codierung ergibt sich für die Spannung 1,2 V?
d)	Am Ausgang wird der Code 00 0100 1011 ausgegeben. In welchem Bereich ist der

Spannungswert?

396 12  Analog-Digital- und Digital-Analog-Umsetzer

Aufgabe 12.4
Ein ADU im Wägeverfahren hat einen Aussteuerbereich Umax von 2 V und eine Wort-
breite von n = 8 bit.

a)	 Wie groß ist die Quantisierungsintervallbreite Q?
b)	Am Eingang liegt die Spannung 0,7 V an. Geben Sie die Schritte der AD-Umsetzung

an. Welche Codierung ergibt sich für die Spannung?

Aufgabe 12.5
Ein Sigma-Delta-Umsetzer hat einen Messbereich von ±1 V und der Analogeingang Ux
beträgt − 0,2 V.

a)	 Geben Sie den Zeitverlauf einer AD-Umsetzung an. Nehmen Sie an, dass im ersten
Zeitschritt die Rückführung Udig = 0 V ist und dass der Integrator mit der Spannung
Uint = 0 V startet (Tab. 12.4).

b)	 Interpretieren Sie die Ausgabewerte.

Aufgabe 12.6
Ein PWM-Ausgang hat den in Abb. 12.38 dargestellten Zeitverlauf. Welche Ausgangs-
spannung wird durch das Signal erzeugt?

Tab. 12.4   Zeitablauf für Übungsaufgabe zum Sigma-Delta-Umsetzer

Zeit
schritt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ux
[in V]

−0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2

Udig
[in V]

0

Udiff
[in V]

Uint
[in V]

Plus
[binär]

Abb. 12.38   Zeitablauf der
Pulsweitenmodulation (PWM)

t
[ms]

u(t)

0 8 10

3 V

0 V
18 20 28 30

397© Springer-Verlag GmbH Deutschland 2016
W. Gehrke et al., Digitaltechnik, Springer-Lehrbuch,
DOI 10.1007/978-3-662-49731-9_13

Mikroprozessoren und Mikrocontroller sind komplexe, hochintegrierte digitale Schalt-
kreise, auf deren Basis leistungsfähige Rechnersysteme realisiert werden.

Einer der wichtigsten Meilensteine auf dem Weg zu modernen Rechnersystemen war
die kommerzielle Realisierung des ersten integrierten Mikroprozessors. Zu Anfang der
1970er Jahre gelang dies der Firma Intel. Im Jahr 1977 schloss sich die Einführung von
Mikrocontrollern an, die ein gesamtes Rechnersystem mit Prozessor, Speicher und wei-
teren Komponenten auf einem einzelnen Chip integrieren. In den folgenden Jahren setzte
eine stürmische Entwicklung im Bereich der Mikroprozessortechnik ein, die insbeson-
dere durch die fortschreitende Integrationsdichte digitaler Schaltkreise unterstützt wurde.
Heute sind Rechnersysteme, die auf Mikroprozessoren oder Mikrocontrollern basieren,
integraler Bestandteil des täglichen Lebens geworden. Sie werden als PCs realisiert und
unterstützen den Anwender zum Beispiel bei der Büroarbeit oder dem Recherchieren im
Internet. Auch in Mobiltelefonen, Digitalkameras, Geräten der Unterhaltungselektronik
oder in Hausgeräten, Kraftfahrzeugen und industriellen Anlagen arbeitet eine Vielzahl
von digitalen Rechnersystemen.

Im Rahmen dieses Kapitels werden die wesentlichen Grundlagen der Mikroprozessor-
technik beschrieben. Sie bilden die Basis für das Verständnis von konkreten Rechnern,
wie zum Beispiel der in Kapitel 14 vorgestellten Mikrocontroller.

13.1	� Grundstruktur eines Mikrorechnersystems

Mikrorechner sind digitale Systeme, deren Aufgabe es ist, Daten zu verarbeiten. Diese
Aufgabe zerfällt in drei grundlegende Schritte, die von einem Mikrorechnersystem aus-
geführt werden müssen: Dateneingabe, Datenverarbeitung und Datenausgabe. Die Steu-
erung dieser Schritte wird durch ein Programm festgelegt, welches die Reihenfolge der
benötigten Verarbeitungsschritte festlegt.

Grundlagen der Mikroprozessortechnik 13

http://dx.doi.org/10.1007/978-3-662-49731-9_14

398 13  Grundlagen der Mikroprozessortechnik

In der Regel müssen mehrere eingelesene Daten miteinander verknüpft werden, um
einen Ausgabewert zu berechnen. Hieraus ergibt sich zwangsläufig, dass die Möglichkeit
bestehen muss, Eingabewerte oder auch Zwischenergebnisse speichern zu können, die
sich während der Verarbeitung ergeben.

Aus diesen grundlegenden Betrachtungen können die wesentlichen Komponenten
eines Mikrorechnersystems abgeleitet werden: Es werden Eingabe- und Ausgabekom-
ponenten, Speicher und mindestens eine Verarbeitungseinheit benötigt. Ein Rechnersys-
tem auf Basis dieser Komponenten wurde in den 1940er Jahren von John von Neumann
beschrieben und ist als sogenannte Von-Neumann-Architektur bekannt geworden.

Auch heutige Rechnersysteme, vom PC bis hin zu Mikrorechnersystemen, welche
zum Beispiel die Steuerung Ihrer Waschmaschine übernehmen, können als eine spezielle
Implementierung der Von-Neumann-Architektur aufgefasst werden (Abb. 13.1).

Eine Von-Neumann-Architektur besteht aus drei wesentlichen Komponenten: Die
Ein-/Ausgabe-Einheit dient dem Datenaustausch mit externen Komponenten wie Tasta-
turen, Anzeigen oder auch Sensoren und Aktuatoren.

Die zentrale Verarbeitungseinheit (engl. Central Processing Unit, CPU) dient der
eigentlichen Verarbeitung der Daten. Sie besteht aus einem Steuerwerk, einem Rechen-
werk und Registern. Die zentrale Aufgabe des Steuerwerks ist die Interpretation der
Befehle des auszuführenden Programms und die zugehörige Ablaufsteuerung innerhalb
der CPU, während das Rechenwerk (engl. Arithmetic Logical Unit, ALU) logische und
arithmetische Operationen ausführt. Die Operanden und Ergebnisse der Operationen
werden in den CPU-internen Registern, die auch als Arbeitsregister bezeichnet werden,
abgelegt.

Die dritte Komponente einer Von-Neumann-Architektur ist der Speicher, in welchem
sowohl die Befehle des Programms als auch Daten abgelegt werden.

Für die Verbindung der einzelnen Komponenten eines Rechnersystems werden in der
Regel sogenannte Busse eingesetzt. Busse können als die logische Zusammenfassung
einzelner Signalleitungen verstanden werden, wobei diese Leitungen zusammengehö-
rende Informationen übertragen. Die in einem Mikrorechnersystem verwendeten Busse
können grob in drei verschiedene Typen eingeteilt werden:

Der Adressbus dient zur Auswahl einer Komponente mit der die CPU Daten
austauschen möchte. Dies kann zum Beispiel eine Speicherstelle innerhalb des Speichers

Abb. 13.1   Blockschaltbild
eines Rechners auf Basis der
Von-Neumann-Architektur

Rechenwerk
(ALU)

Steuerwerk

Ein-/Ausgabe

CPU

Register

Speicher

399

sein. Da die einzelnen Speicherstellen unterschiedliche Adressen besitzen, kann anhand
der Adresse das angesprochene Speicherelement ausgewählt werden.

Die Daten selbst werden über den Datenbus übertragen. Die Daten können hierbei
sowohl von der CPU an die Speicher- und Ein-/Ausgabe-Komponenten als auch von die-
sen Komponenten an die CPU gesendet werden.

Neben den Leitungen für den Datentransfer und den Adressleitungen wird ein Steu-
erbus benötigt. Der Steuerbus übermittelt alle Informationen, die neben Daten und
Adressen an die einzelnen Komponenten des Systems übertragen werden müssen. Ein
Beispiel für eine solche Information ist, ob von der ausgewählten Adresse Daten gele-
sen werden sollen, oder ob die Daten, die von der CPU auf den Datenbus gelegt worden
sind, geschrieben werden sollen. Weiterhin kann der Steuerbus beispielsweise zur Über-
tragung eines Taktsignals zur Systemsynchronisation oder zur Übermittlung von Fehler-
codes verwendet werden.

Ein exemplarisches Blockschaltbild eines einfachen Mikrorechnersystems mit einem
unidirektionalen Adressbus und einem bidirektionalen Datenbus ist in Abb. 13.2 darge-
stellt. Dieses System besitzt zwei verschiedene Speicher. Ein Flashspeicher dient der
Aufnahme von Daten, die auch nach dem Abschalten der Versorgungsspannung erhal-
ten bleiben sollen. Wird in diesem Speicher das Programm abgelegt, steht es direkt
nach dem Einschalten zur Verfügung und kann sofort ausgeführt werden. Darüber hin-
aus können im Flashspeicher Konstanten abgelegt werden, die für die Ausführung des
Programms benötigt werden. Da sich die Variablen eines Programms während der Pro-
grammlaufzeit häufig ändern, ist es nicht sinnvoll, Variablen ebenfalls in einem Flash-
speicher abzulegen, da das häufige Beschreiben des Flashspeichers eine frühe Alterung
des Speichers nach sich ziehen würde. Daher ist in dem Beispielsystem ein RAM-Spei-
cher vorgesehen, der zur Speicherung von Variablen verwendet wird.

Neben den Speichern besitzt das System Eingabe- und Ausgabekomponenten. Die CPU
kann mit den Komponenten des Systems kommunizieren, indem die entsprechende Adresse

Abb. 13.2   Blockschaltbild eines einfachen Mikrorechnersystems

13.1  Grundstruktur eines Mikrorechnersystems

400 13  Grundlagen der Mikroprozessortechnik

der jeweils ausgewählten Komponente auf den Adressbus gelegt wird. Da die Adressen von
dem Programm, welches von der CPU ausgeführt wird, berechnet werden müssen, ist es
für die Programmierung des Systems von wesentlicher Bedeutung, die Adressen zu kennen,
unter denen die Systemkomponenten angesprochen werden. Diese Adressen werden häufig
in grafischer Form als eine sogenannte Address Map zur Verfügung gestellt.

Eine mögliche Address Map für das gezeigte Beispielsystem ist in Abb. 13.3 links
dargestellt. Die Auswahl zwischen Speicher und Ein-/Ausgabeeinheiten wird in diesem
Fall nur durch die auf dem Adressbus anliegende Adresse durchgeführt. Adressen im
Bereich von 0x0000 bis 0x5FFF adressieren die Speicherelemente des Systems, während
mit Adressen im Bereich 0xC000 bis 0xFFFF auf Eingabe- und Ausgabekomponenten
zugegriffen werden kann. Man spricht in diesem Fall auch davon, dass sich der Speicher
und die Ein-/Ausgabeeinheiten „einen gemeinsamen Adressraum teilen“. Der Fachbe-
griff für diesen Ansatz lautet Memory-Mapped-I/O.

Als Alternative können auch getrennte Adressräume für Speicher und Ein-/Ausgabe-
komponenten verwendet werden. In diesem Fall spricht man von Port Mapped I/O. Eine
mögliche Adressierung der Systemkomponenten des Beispielsystems ist in Abb. 13.3
rechts angegeben. Die Adressierung der Systemkomponenten erfolgt nun mithilfe der
Adresse und der zusätzlichen Information, ob ein Speicherzugriff oder ein Zugriff auf
die Ein-/Ausgabe erfolgen soll. Letztere wird den Komponenten mithilfe des Steuerbus-
ses zur Verfügung gestellt.

Beide Ansätze werden für Rechnersysteme in der Praxis verwendet. Ein gemeinsa-
mer Adressraum vereinfacht die Programmierung, was dem Programmierer oder rech-
nergestützten Werkzeugen wie Compilern zugute kommt. Auf der anderen Seite kann bei
Verwendung von zwei getrennten Adressräumen unter Umständen eine Beschleunigung
des Zugriffs auf Ein-/Ausgabekomponenten erfolgen, was sich positiv auf die Rechenzeit
eines Programms auswirken kann.

0x0000

0x4000

Flash

SRAM

Eingabe

Ausgabe

Flash

SRAM

0x0000

0x4000

0x6000

0xC000

0xE000

ungenutzt

Eingabe

Ausgabe

ungenutzt ungenutzt

b) Port-Mapped I/Oa) Memory-Mapped I/O

Abb. 13.3   Mögliche Address Maps für das Beispielsystem

401

13.2	� Befehlsabarbeitung in einem Mikroprozessor

Die Befehle eines Programms werden in binärer Form im Programmspeicher abgelegt.
Jeder Befehl enthält Informationen über die auszuführende Operation, die benötigten
Operanden und wo Ergebnisse des Befehls abgespeichert werden sollen. Für die Abar-
beitung eines Befehls ist es erforderlich, die binär codierten Befehle zunächst in der CPU
zu decodieren. Im Anschluss hieran werden die benötigten Operanden dem Rechenwerk
der CPU zugeführt. Das Rechenwerk führt dann die im Befehl codierte arithmetische
oder logische Operation aus und speichert das Ergebnis ab. Somit sind fünf Schritte für
die Ausführung eines Befehls erforderlich:

1.	 Befehl aus dem Programmspeicher holen und in die CPU übertragen
2.	 Befehl decodieren, die Operanden bestimmen und die auszuführende Operation aus

dem Befehlswort extrahieren
3.	 Werte der Operanden bestimmen, zum Beispiel Werte aus dem Datenspeicher in die

CPU übertragen
4.	 Operation mithilfe des Rechenwerks ausführen
5.	 Ergebnis der Operation abspeichern

Die Steuerung des Ablaufes dieser Schritte wird vom Steuerwerk der CPU übernommen.
Grundsätzlich kann das Steuerwerk als ein endlicher Automat aufgefasst werden, der die
benötigten Arbeitsschritte zur Ausführung eines Befehls sequenziell durchläuft. In der
Praxis wird das Steuerwerk eines Mikroprozessors häufig nicht als ein einzelner Mealy-
oder Moore-Automat realisiert, sondern besteht aus einer hierarchischen Anordnung
mehrerer Automaten. Mikroprozessoren sind im Allgemeinen synchrone Systeme, deren
interne Abläufe durch ein zentrales Taktsignal synchronisiert werden. Im einfachsten Fall
werden die einzelnen Schritte der Befehlsabarbeitung in jeweils einem Taktzyklus ausge-
führt. Somit würde die Abarbeitung eines einzelnen Befehls gemäß den oben dargestell-
ten Schritten jeweils 5 Taktzyklen benötigen.

Bei realen Mikroprozessoren kann die Anzahl der benötigten Taktzyklen zur Aus-
führung sowohl von Prozessor zu Prozessor als auch für die einzelnen Befehle eines
Prozessors unterschiedlich sein. Ein Grund für dieses Verhalten ist in den technologi-
schen Randbedingungen zu suchen, die für die Herstellung eines Prozessors gelten. So
kann beispielsweise ein Zugriff auf den Programmspeicher im Vergleich zu den ande-
ren Verarbeitungsschritten deutlich mehr Zeit in Anspruch nehmen. In diesem Fall wäre
es denkbar, dass der erste Schritt, also der Zugriff auf den Programmspeicher, in einem
Taktzyklus ausgeführt wird, während die weiteren Schritte zusammengefasst in einem
weiteren Taktzyklus durchgeführt werden. In diesem Fall würde die Abarbeitung eines
Befehls also lediglich zwei Taktzyklen benötigen.

Darüber hinaus ist es denkbar, dass einzelne Befehle komplexere Verarbeitungs-
schritte benötigen als andere Befehle des gleichen Prozessors. Es kann sein, dass für
die Übertragung der Operanden einzelner Befehle eine aufwendige Berechnung der

13.2  Befehlsabarbeitung in einem Mikroprozessor

402 13  Grundlagen der Mikroprozessortechnik

Speicheradresse erforderlich ist, für die mehrere Taktzyklen benötigt werden. Andere
Befehle kommen dagegen mit weniger komplexen Berechnungen aus und werden in kür-
zerer Zeit ausgeführt.

13.3	� Typische Befehlsklassen

Bei dem Entwurf eines Mikroprozessors kommt der Frage, welche Befehle zur Ver-
fügung gestellt werden sollen, eine zentrale Bedeutung zu. Hierbei existieren viele
Freiheitsgrade. So gibt es nicht einen ultimativen Satz von Befehlen, der von allen Pro-
zessoren gleichermaßen unterstützt wird. Vielmehr besitzt jeder Prozessor einen eige-
nen Befehlssatz, der mit Rücksicht auf unterschiedliche Kriterien wie CPU-Kosten,
Speicherbedarf für Programme, Rechenleistung etc. entworfen worden ist. Auch wenn
der Befehlssatz eines Prozessors also nicht allgemeingültig angegeben werden kann, so
lassen sich dennoch Gemeinsamkeiten der Befehlssätze erkennen.

Für einen typischen Prozessor können die Befehle in Befehlsklassen zusammengefasst
werden, die im Folgenden kurz vorgestellt werden.

13.3.1	� Aufbau eines Befehlswortes

Ein Programm besteht aus einzelnen Befehlsworten, die nacheinander ausgeführt wer-
den. Mit jedem Befehlswort wird dem Prozessor mitgeteilt, welcher Teilschritt als nächs-
tes auszuführen ist. Dies kann zum Beispiel eine arithmetische Operation oder auch
der Sprung an eine andere Stelle im Programm sein. Das Befehlswort besteht aus einer
definierten Anzahl von Nullen und Einsen, die vom Steuerwerk des Prozessors interpre-
tiert werden. Sowohl die Wortbreite der einzelnen Befehle als auch die Bedeutung der in
einem Befehlswort vorhandenen Bits können bei der Definition eines Instruktionssatzes
frei gewählt werden.

Um die Decodierung eines Befehls durch das Steuerwerk zu vereinfachen, benut-
zen viele Prozessoren Befehlsworte, deren Bits zu Feldern zusammengefasst sind.
Eines dieser Felder gibt dann zum Beispiel die auszuführende Operation (zum Beispiel
„Addition“ oder „Sprung“) an. Die weiteren Bits stellen ergänzende Informationen zur
Verfügung. So muss beispielsweise bei einem arithmetischen Befehl angegeben wer-
den, aus welchen Arbeitsregistern die Operanden geholt werden sollen und in welchem
Arbeitsregister das Ergebnis abgelegt werden muss.

Betrachten wir zur Verdeutlichung einen Prozessor, dessen Befehle 32 Bit umfassen,
und schauen uns eine mögliche Codierung eines Additions- und eines Sprungbefehls
an: Um eine ausreichend große Anzahl an unterschiedlichen Befehlen zu ermöglichen
wird die auszuführende Operation mit 6 Bit codiert. Um beispielsweise 32 verschiedene
Arbeitsregister auswählen zu können, werden pro Register 5 Bit benötigt. Für eine Addi-
tion müssen drei Arbeitsregister ausgewählt werden (zwei für die Summanden und eines

403

für die Aufnahme des Ergebnisses). Damit werden für diesen Befehl 21 Bit belegt. Die
verbleibenden 11 Bit können einen beliebigen Wert besitzen.

Möchte man dagegen eine Addition mit einem Registerwert und einer Konstanten
durchführen, wird diese Konstante häufig mit im Befehlswort abgelegt. Da hierbei ein
Register weniger ausgewählt werden muss (ein Summand ist ja die Konstante), werden
also für die Operation und die Registerauswahl 16 Bit benötigt und es verbleiben 16 Bit
für die Konstante, die gegebenenfalls mithilfe einer Vorzeichenerweiterung (vgl. Kapitel 2)
auch auf eine größere Wortbreite erweitert werden kann.

Bei einem Sprungbefehl ist es ausreichend die Operation Sprung mit 6 Bit zu kenn-
zeichnen. Die verbleibenden 26 Bit geben dann das Sprungziel (die Adresse des nächsten
Befehls) an.

In Abb. 13.4 ist ein möglicher Aufbau des Befehlswortes für die drei hier diskutierten
Beispiele dargestellt.

13.3.2	� Arithmetische und logische Befehle

Die Aufgabe eines Mikroprozessors besteht darin, Daten mithilfe von mathematischen
Operationen zu verknüpfen. Für die meisten der hierzu benötigten Grundoperationen
wird ein entsprechender Befehl zur Verfügung gestellt. Ein typischer Prozessor besitzt
arithmetische Befehle, die zum Beispiel die Negierung eines Operanden und die

Abb. 13.4   Beispiele für
den Aufbau eines 32-Bit-
Befehlswortes

Op

Addition von zwei Arbeitsregistern

Re Ro1 ungenutztRo2

01116212631

Op

Addition eines Arbeitsregisters mit einer Konstanten

Re Ro1 16-Bit-Konstante

016212631

Op

Sprung

26-Bit-Sprungziel

02631

Op: Operation

Re: Ergebnisregister

Ro: Operandenregister

13.3  Typische Befehlsklassen

http://dx.doi.org/10.1007/978-3-662-49731-9_2

404 13  Grundlagen der Mikroprozessortechnik

Addition oder Subtraktion zweier Operanden unterstützen. Darüber hinaus werden
logische Befehle unterstützt, welche die bitweise UND-, ODER, und Exklusiv-ODER-
Verknüpfung oder das bitweise Rechts- oder Links-Schieben durchführen.

Der Implementierungsaufwand eines Rechenwerkes für diese Operationen ist relativ
gering. Daher werden diese Operationen von allen Prozessoren unterstützt. Ein Befehl
zur Multiplikation oder Division erfordert dagegen einen höheren Aufwand für die Rea-
lisierung des Rechenwerks und ist daher nicht in allen CPUs enthalten. Fehlt die Hard-
wareunterstützung für eine arithmetische Operation, müssen diese Funktionen durch
eine Folge von mehreren Befehlen, im Fall der Multiplikation beispielsweise durch
Additions- und Schiebeoperationen, implementiert werden.

Ein weiterer wichtiger Faktor im Hinblick auf den Implementierungsaufwand des
Rechenwerks ist die Wortbreite der Operationen. Einfache Prozessoren besitzen häu-
fig Rechenwerke mit einer Wortbreite von 8 bit. Viele Prozessoren mit einer mittleren
Rechenleistung verwenden in der Regel Rechenwerke mit einer Wortbreite von 32 bit.
Hochleistungsprozessoren, wie sie zum Beispiel in PCs eingesetzt werden, besitzen
dagegen Rechenwerke, welche die Verarbeitung von Operanden mit einer Wortbreite von
128 bit und mehr ermöglichen.

Werden in einem Programm häufig Gleitkommavariablen verwendet, ist es wün-
schenswert, dass die zugehörigen arithmetischen Grundoperationen mithilfe eines ein-
zelnen Befehls ausgeführt werden können. Hierzu wird innerhalb des Rechenwerkes eine
Einheit zur Ausführung von Operationen mit ganzzahligen Operanden (Integer-Unit) und
eine Einheit zur Ausführung von Gleitkommaoperationen (Floating-Point-Unit) imple-
mentiert. Der hiermit verbundene Realisierungsaufwand ist bei vielen Prozessoren des
unteren bis mittleren Kostenbereichs häufig nicht kommerziell sinnvoll. Aus diesem
Grund werden Gleitkommaeinheiten in Mikroprozessoren dieses Segmentes in der Regel
nicht eingesetzt. In diesem Fall müssen Gleitkommaoperationen durch eine Folge von
Ganzzahloperationen realisiert werden, wodurch die Rechenzeit des Programms ansteigt.

13.3.3	� Transferbefehle

Sollen zwei Daten, die im Speicher des Systems abgelegt sind, zum Beispiel durch Addi-
tion miteinander verknüpft werden, ist dies bei typischen Mikroprozessoren nicht mit-
hilfe eines einzelnen Befehls durchführbar. Vielmehr muss zunächst ein Operand aus
dem Speicher des Systems in einen Zwischenspeicher innerhalb der CPU kopiert wer-
den. Im Anschluss daran kann mithilfe eines weiteren Befehls die eigentliche Addition
der Daten erfolgen.

Daneben ist es häufig auch erforderlich, Daten zum Beispiel aus einer Eingabeein-
heit in den Speicher des Systems zu kopieren, ohne die Daten hierbei zu modifizieren.
Für beide Fälle stellen Prozessoren Datentransferbefehle zur Verfügung, mit denen Daten
zwischen Speicher und CPU oder Eingabe- oder Ausgabeeinheiten und CPU ausge-
tauscht werden können. Die unterschiedlichen Befehle zum Kopieren von Daten können
unter dem Begriff Transferbefehle zusammengefasst werden.

405

13.3.4	� Befehle zur Programmablaufsteuerung

Ist ein arithmetischer Befehl oder ein Transferbefehl von der CPU ausgeführt worden,
wird die Programmausführung mit dem nächsten im Programmspeicher abgelegten
Befehl fortgesetzt. Die Möglichkeiten zum Erstellen von Programmen sind jedoch allein
mit Transferbefehlen oder arithmetischen Befehlen sehr eingeschränkt. Selbst einfache
Programme benötigen die Möglichkeit, Befehle wiederholt auszuführen (Schleifen) oder
einzelne Programmteile unter bestimmten Bedingungen zu überspringen (bedingte Ver-
zweigungen). Um diese Programmkonstrukte zu unterstützen, stellen Mikroprozessoren
Befehle zur Steuerung des Programmablaufs zur Verfügung. Die zu dieser Gruppe zäh-
lenden Befehle umfassen:

Unbedingte Sprungbefehle
Nach Ausführung eines unbedingten Sprungbefehls wird die Ausführung des Programms
an einer durch den Befehl spezifizierten Adresse im Programmspeicher fortgesetzt und
es wird an eine andere Position im Programmspeicher „gesprungen“.

Bedingte Sprungbefehle
Bedingte Sprungbefehle führen, den Sprung nur aus, wenn eine im Befehl angegebene
Bedingung erfüllt ist. Ist die Bedingung dagegen nicht erfüllt, wird das Programm mit
dem nachfolgenden Befehl fortgesetzt.

Als Bedingungen können Informationen herangezogen werden, die sich aus der Aus-
führung vorangegangener Befehle ergeben. So kann zum Beispiel eine Programmver-
zweigung erfolgen, falls das Ergebnis der vorangegangenen Operation Null ist. Ebenso
kann eine Verzweigung ausgeführt werden, falls das Ergebnis des zuvor ausgeführten
Befehls negativ ist oder ein arithmetischer Überlauf aufgetreten ist.

Unterprogrammaufrufe
Nach dem Ende eines Unterprogramms muss zur aufrufenden Position im Programm
zurückgekehrt werden. Die CPU muss beim Aufruf eines Unterprogramms also die aktu-
elle Befehlsadresse zwischenspeichern.

Ein Befehl zum Aufruf eines Unterprogramms besitzt daher die Funktionalität eines
unbedingten Sprungs. Zusätzlich wird bei der Ausführung des Befehls die aktuelle Pro-
grammspeicheradresse gesichert. Auch für das Beenden eines Unterprogramms wird ein
besonderer Befehl verwendet. Dieser Befehl sorgt dafür, dass das Programm an der beim
Aufruf des Unterprogramms gespeicherten Programmspeicherposition fortgesetzt wird.

13.3.5	� Spezialbefehle

Viele Mikroprozessoren stellen Befehle zur Verfügung, die nicht einer der zuvor dis-
kutierten Befehlsklassen zugeordnet werden können. Ein Befehl dieser Klasse ist der

13.3  Typische Befehlsklassen

406 13  Grundlagen der Mikroprozessortechnik

NOP-Befehl (engl. no operation), der lediglich einen Befehlszyklus ausführt, hierbei
jedoch weder Daten transportiert noch Daten in irgendeiner Weise verändert. Dieser auf
den ersten Blick wenig sinnvoll erscheinende Befehl kann zum Beispiel für die Reali-
sierung einfacher Warteschleifen eingesetzt werden. Weiterhin besitzen viele Mikropro-
zessoren spezielle Befehle, die auf den jeweiligen Prozessor zugeschnitten sind und sich
nicht in allen typischen Prozessoren wiederfinden lassen.

13.4	� Adressierung von Daten und Befehlen

Für die Ausführung einer Operation mithilfe des Rechenwerks müssen zunächst die
benötigten Operanden bestimmt werden. Dies bedeutet, dass der auszuführende Befehl
Informationen darüber enthalten muss, ob ein Operand zum Beispiel im Datenspeicher
des Systems zu finden ist und mit welcher Berechnungsvorschrift die Speicheradresse
des Operanden aus den im Befehl enthaltenen Informationen bestimmt werden soll. Die
von einem Mikroprozessor für die Adressierung zur Verfügung gestellten Berechnungs-
vorschriften werden in der Regel als Adressierungsarten bezeichnet. In diesem Abschnitt
werden typische Adressierungsarten vorgestellt. Zur Vereinfachung bezieht sich die
Darstellung auf den Zugriff der Operanden eines Befehls. Die hier vorgestellten Adres-
sierungsarten können, mit Ausnahme der unmittelbaren Adressierung, ebenso für die
Adressierung beim Abspeichern des Ergebnisses eines Befehls verwendet werden.

13.4.1	� Unmittelbare Adressierung

Die einfachste Adressierungsart ist die unmittelbare Adressierung. In diesem Fall wird
der Wert des zu verarbeitenden Operanden direkt als Teil des Befehls angegeben. Da
der Wert des Operanden somit Teil des ausgeführten Programms ist und sich während
der Programmlaufzeit nicht ändert, wird diese Adressierungsart häufig für Konstanten
verwendet.

Abb. 13.5 verdeutlicht die unmittelbare Adressierung, bei dem sich der Operand
direkt aus einem Teil des Befehlswortes ergibt. Das aus dem Programmspeicher gele-
sene Befehlswort ist hierbei abstrakt dargestellt. Insbesondere wurde auf die genauere
Darstellung der für die Adressierung irrelevanten Teile des Befehlswortes, wie zum Bei-
spiel die auszuführende Operation, verzichtet. Diese Teile des Befehlswortes sind dunk-
ler dargestellt.

Abb. 13.5   Unmittelbare
Adressierung

Befehlswort

Operand zum
Rechenwerk

407

13.4.2	� Absolute Adressierung

Im Fall der absoluten Adressierung ist ebenfalls eine Konstante im Befehlswort abgelegt.
Diese wird jedoch anders als im Fall der unmittelbaren Adressierung nicht als Operand
sondern als Adresse interpretiert.

Dementsprechend wird diese Konstante auf dem Adressbus ausgegeben. Der adres-
sierte Wert wird aus dem Datenspeicher beziehungsweise einer Ein-/Ausgabekompo-
nente ausgelesen und dem Rechenwerk als Operand zugeführt (Abb. 13.6).

13.4.3	� Indirekte Adressierung

Die indirekte Adressierung kann als eine Erweiterung der absoluten Adressierung aufge-
fasst werden. Die im Befehlswort codierte Konstante wird ebenfalls als Registerauswahl
interpretiert. Der in dem ausgewählten Register liegende Wert wird als Adresse verwen-
det wird.

In Abb. 13.7 ist das Grundprinzip der indirekten Adressierung dargestellt.
Die indirekte Adressierung kann auch mit einer Modifikation des verwendeten

Registers kombiniert werden. Dies ist sinnvoll, wenn ein Prozessor auf mehrere aufei-
nanderfolgende Adressen zugreifen soll. In der Regel ist die Adressmodifikation auf das
Inkrementieren (Erhöhung des Wertes um 1) und Dekrementieren (Verringern um 1)
beschränkt. Da die Modifikation des Adressspeichers automatisch mit der Ausführung
des zugehörigen Befehls stattfindet, spricht man auch von indirekter Adressierung mit
Auto-Inkrement beziehungsweise Auto-Dekrement.

Bei der Ausführung eines Befehls, der die indirekte Adressierung mit Auto-Inkrement
beziehungsweise -Dekrement verwendet, wird einerseits der Datenspeicher adressiert
und andererseits ein Registerwert modifiziert. Die Reihenfolge dieser beiden Schritte

Abb. 13.6   Absolute (direkte)
Adressierung

Adresse Operandauswahl Rechenwerk
zum

Befehlswort

Register

Register Datenspeicher

Abb. 13.7   Indirekte Adressierung

13.4  Adressierung von Daten und Befehlen

408 13  Grundlagen der Mikroprozessortechnik

ist theoretisch beliebig wählbar. So könnte bei Verwendung eines Befehls mit Auto-
Inkrement zunächst das Register inkrementiert werden. Der so erhaltene Wert könnte
anschließend zur Adressierung des Operanden verwendet werden. Ebenso ist es denkbar,
dass der aus dem Register ausgelesene Wert direkt zur Adressierung verwendet und erst
anschließend inkrementiert wird. Der erste Fall wird als Pre-Inkrement, der zweite Fall
als Post-Inkrement bezeichnet. Analog kann die indirekte Adressierung ebenso sowohl
mit Pre-Dekrement als auch Post-Dekrement implementiert werden. Abb. 13.8 und 13.9
stellen die indirekte Adressierung mit Post-Inkrement und Pre-Dekrement schematisch
dar.

Als eine weitere Variante der indirekten Adressierung setzen Mikroprozessoren viel-
fach die indirekte Adressierung mit Verschiebung ein. Bei Verwendung dieser Adressie-
rungsart ergibt sich die Adresse des Operanden aus der Summe des aus dem Registerwert
und eines Offsetwertes der als Konstante im Befehlswort abgelegt ist. Der so berechnete
Wert wird lediglich zur Adressierung verwendet. Eine Veränderung des Adressspeichers,
wie sie bei der indirekten Adressierung mit Auto-Inkrement beziehungsweise Auto-
Dekrement erfolgt, findet hierbei nicht statt.

Darüber hinaus kann der Offset, der bei der indirekten Adressierung verwendet
wird, auch in einem zur Laufzeit des Programms veränderbaren Indexspeicher abgelegt
werden. In diesem Fall enthält das Befehlswort neben der Registerauswahl auch eine
Adresse des Indexspeichers. Beide Speicher werden bei der Ausführung des Befehls aus-
gelesen. Die Summe der beiden ausgelesenen Werte ergibt die Adresse des Operanden,
der dem Rechenwerk zugeführt wird. Diese Adressierungsart wird auch als indirekt indi-
zierte Adressierung oder kurz indizierte Adressierung bezeichnet (Abb. 13.10).

Adresse

Operand

Befehlswort

Register
auswahl

zum
Rechenwerk

+1

Register Datenspeicher

Abb. 13.8   Indirekte Adressierung mit Post-Inkrement

Adresse

Operand

Befehlswort

Register
auswahl

zum
Rechenwerk

-1

Register Datenspeicher

Abb. 13.9   Indirekte Adressierung mit Pre-Dekrement

409

13.4.4	� Indirekte Adressierung mit dem Stackpointer

Eine der wichtigsten Anwendungen der indirekten Adressierung ist die Realisierung
eines Stapelspeichers (engl. Stack). Bei Verwendung eines Stapelspeichers ist die Adres-
sierung der Daten eingeschränkt. Es gibt zu einem Zeitpunkt immer nur eine Position
innerhalb des Speichers, die gelesen oder beschrieben werden kann. Diese Eigenschaft
ist vergleichbar mit einem Papierstapel, auf dem nur ein neues Blatt oben auf dem Sta-
pel abgelegt werden kann oder nur das oberste Blatt entfernt werden kann. Durch diese
Analogie wird eine weitere wichtige Eigenschaft des Stapelspeichers deutlich: Bei einem
Lesezugriff wird der jeweils zuletzt geschriebene Wert vom Stapelspeicher gelesen,
genauso wie das zuletzt abgelegte Blatt als erstes von einem Papierstapel entfernt wer-
den würde.

Diese Eigenschaft des Stapelspeichers lässt sich besonders gut für Unterprogramm-
aufrufe nutzen, bei denen die aktuelle Befehlsadresse zwischengespeichert werden muss.
Wird bei dem Aufruf eines Unterprogramms die aktuelle Befehlsadresse auf einem Sta-
pelspeicher abgelegt, sind auch Unterprogrammaufrufe innerhalb eines Unterprogramms
einfach realisierbar. Beim Verlassen des zuletzt aufgerufenen Unterprogramms wird die
zuletzt abgespeicherte Programmspeicheradresse vom Stapelspeicher entfernt, und die
Programmausführung wird mit dem aufrufenden Unterprogramm fortgesetzt. Die Ver-
schachtelungstiefe von Unterprogrammen ist somit lediglich durch die maximale Größe
des Stapelspeichers begrenzt.

Die Funktion eines Stacks lässt sich auf verschiedene Weisen realisieren. Für einen
typischen Prozessor wird meist eine Variante bevorzugt, bei der die auf dem Stack abge-
speicherten Werte im Datenspeicher abgelegt werden. Darüber hinaus wird die aktuelle
Schreib-/Leseposition in einem besonderen Register der CPU, dem Stapelzeiger (engl.
Stackpointer), abgelegt.

Üblicherweise verweist der Stackpointer auf die Speicherstelle, die beim nächsten
Schreibzugriff überschrieben wird. Ein Schreibzugriff führt darüber hinaus zum Dekre-
mentieren des Stackpointers. Wiederholte Schreibzugriffe würden also zum Beschreiben
des Datenspeichers an niedrigeren Adressen führen. Dieses Verhalten wird häufig auch
mit der Aussage „der Stack wächst nach unten“ umschrieben. Für die Implementierung

Offset Adresse Operand

Befehlswort

Register
auswahl

zum
Rechenwerk+

Register Datenspeicher

Abb. 13.10   Indirekte Adressierung mit Verschiebung

13.4  Adressierung von Daten und Befehlen

410 13  Grundlagen der Mikroprozessortechnik

eines Stapelspeichers mithilfe eines Stapelzeigers kann die indirekte Adressierung mit
Auto-Inkrement beziehungsweise Auto-Dekrement eingesetzt werden. Ein Schreibzu-
griff erfolgt dann mithilfe einer indirekten Adressierung mit Post-Dekrement, während
ein Lesezugriff die indirekte Adressierung mit Pre-Inkrement verwendet.

13.4.5	� Befehlsadressierung

Für die Adressierung der abzuarbeitenden Befehle verwendet ein Mikroprozessor ein
besonderes Register, den sogenannten Programmzähler (Program Counter, PC). Der PC
wird vom Steuerwerk der CPU normalerweise mit der Abarbeitung eines Befehls inkre-
mentiert, sodass automatisch der jeweils nachfolgende Befehl im Programmspeicher
adressiert wird. Wird dagegen ein Sprungbefehl ausgeführt, muss die Adressierung des
Programmspeichers entsprechend modifiziert werden. Hierzu werden von den meisten
Mikroprozessoren eine absolute Adressierung, eine relative Adressierung und eine indi-
rekte Adressierung zur Verfügung gestellt. Zur Unterscheidung zwischen Datenadressie-
rung und Befehlsadressierung werden diese Adressierungsarten auch als PC-absolute,
PC-relative oder PC-indirekte Adressierung bezeichnet.

Im Fall der absoluten Adressierung wird der Programmzähler mit einer im Sprungbe-
fehl angegebenen Konstanten geladen. Die Programmausführung wird somit an der Posi-
tion fortgesetzt, die durch die Konstante festgelegt ist.

Die relative Adressierung verwendet ebenfalls eine im Befehlswort abgelegte Kons-
tante. Die Summe aus dieser Konstanten und dem aktuellen PC ergibt den neuen Pro-
grammzähler. Während die absolute Adressierung also einen Befehl ausführt, der sich
mit „springe zu Programmspeicheradresse XYZ“ umschreiben lässt, führt die PC-rela-
tive Adressierung einen Befehl aus, der mit „springe um XYZ Programmspeicheradres-
sen“ beschrieben werden kann.

Im Fall der PC-indirekten Adressierung wird der neue Wert des PCs, ähnlich der
indirekten Datenadressierung, aus einem Adressspeicher ausgelesen und in den Pro-
grammzähler übertragen. Die auszulesende Position des Adressspeichers wird hierbei als
Konstante im Befehlswort angegeben.

13.5	� Maßnahmen zur Steigerung der Rechenleistung

Die Aufgabe eines Mikroprozessors ist es, eine möglichst hohe Rechenleistung unter
gegebenen Randbedingungen (Kosten, Verlustleistung, usw.) zur Verfügung zu stellen.
In den folgenden Abschnitten werden technische Möglichkeiten aufgezeigt, die zu einer
Steigerung der Rechenleistung von Mikroprozessoren eingesetzt werden können.

411

13.5.1	� Erhöhung der Taktfrequenz

Da Mikroprozessoren als synchrone Systeme realisiert werden, ist es ein naheliegender
Ansatz, die Taktfrequenz des Systems zu erhöhen. Mit der Erhöhung der Taktfrequenz
lässt sich eine annähernd proportionale Steigerung der Rechenleistung erzielen.

Es muss jedoch berücksichtigt werden, dass die Möglichkeit zur Erhöhung der Takt-
frequenz für einen Mikroprozessor begrenzt ist. Wird die Dauer eines Taktzyklus über
eine kritische Grenze hinaus verringert, können Fehlfunktionen auftreten. Diese kriti-
sche Grenze ergibt sich aus dem kritischen Pfad, also der maximal auftretenden Signal-
laufzeit zwischen zwei Flip-Flops des Systems. Eine Möglichkeit, diese Signallaufzeit
zu verringern, stellt das sogenannte Pipelining dar, welches in Abschn. 13.5.3 für Mik-
roprozessoren erläutert wird. Darüber hinaus ist zu beachten, dass bei Verwendung von
CMOS-Technologien, wie sie heute für die Realisierung von Mikroprozessoren verwen-
det werden, die dynamische Verlustleistung proportional zur Taktfrequenz ansteigt. Die-
ser Effekt kann ebenfalls zu einer Limitierung der maximal verwendbaren Taktfrequenz
führen.

13.5.2	� Parallelität

Eine Erhöhung der Rechenleistung kann auch erzielt werden, indem mehrere Opera-
tionen gleichzeitig ausgeführt werden. Dies kann sowohl durch parallele Einheiten im
Rechenwerk als auch durch die Verwendung mehrerer Mikroprozessoren ermöglicht
werden.

Im Idealfall steigt die verfügbare Rechenleistung proportional zu der im Rechenwerk
implementierten Parallelität. In der Praxis wird dieser theoretische Anstieg meist nicht
erreicht. Programme bilden in der Regel sequenzielle Verarbeitungsschritte ab. Inwieweit
diese Verarbeitungsschritte, entgegen der vom Programmierer vorgegebenen sequenzi-
ellen Abarbeitungsreihenfolge, auch zeitgleich ausgeführt werden können, ist sehr stark
vom Programm abhängig. Im ungünstigsten Fall muss für jede Operation die jeweils vor-
angegangene Operation abgearbeitet werden, da zum Beispiel das Ergebnis der ersten
Operation als Operand für den nachfolgenden Befehl benötigt wird. In diesem Fall kann
die Parallelität des Rechenwerks nicht ausgenutzt werden und es wäre keine Erhöhung
der Rechenleistung erreichbar.

Geht man davon aus, dass ein Programm aus ideal parallelisierbaren (die benötigte
Rechenzeit verhält sich annähernd umgekehrt proportional zur eingesetzten Parallelität)
und nicht-parallelisierbaren Anteilen besteht, kann der Rechenleistungsgewinn durch die
folgenden Formel angeben werden:

mit: G – Rechenleistungsgewinn (engl. Speedup)

G =

1

(s+ p/N)

13.5  Maßnahmen zur Steigerung der Rechenleistung

412 13  Grundlagen der Mikroprozessortechnik

p – Durch Parallelverarbeitung beschleunigter Programmanteil
s – Anteil des Programms mit konstanter Rechenzeit
N – Parallelität des Systems, zum Beispiel Anzahl paralleler Operationen
Die Grundlagen zu dieser Betrachtung wurden erstmals von Gene M. Amdahl formu-

liert und sind als Amdahl’s Law in die Geschichte der Computerwissenschaft eingegan-
gen. Auch wenn diese Betrachtung starke Vereinfachungen vornimmt, macht sie dennoch
deutlich, dass bereits ein geringer Anteil an nicht-parallelisierbaren Programmteilen zu
einer signifikanten Begrenzung des realisierbaren Rechenleistungsgewinns führen kann.

Darüber hinaus erfordert der sinnvolle Einsatz paralleler Einheiten, dass diese mit den
jeweils zu verarbeitenden Daten versorgt werden. Hierzu wird häufig ein hoher schal-
tungstechnischer Aufwand benötigt, der zusätzlich zu dem Aufwand der benötigten par-
allelen Einheiten erforderlich wird.

Darüber hinaus müssen in den Befehlsworten des Prozessors entweder mehrere Ope-
rationen codiert werden oder es müssen mehrere Befehle gleichzeitig verarbeitet wer-
den können, was zu einer weiteren Erhöhung des Realisierungsaufwands führt. Diese
Ansätze werden als Very-Long-Instruction-Word-Architekturen (VLIW) beziehungsweise
superskalare Architekturen bezeichnet

Parallele Rechenwerke werden im Bereich der PC-Prozessoren eingesetzt, mit sepa-
raten Rechenwerken für Integer- und Floating-Point-Operationen. Bei PC-Prozessoren
haben sich Multi-Core-Systeme durchgesetzt, bei denen mehrere Prozessoren in einem
Gehäuse integriert werden. Diese Form der Rechenleistungserhöhung wurde notwendig,
da sich die zuvor verfolgte Strategie einer mit jeder Prozessorgeneration steigenden Takt-
frequenz aus technologischen Gründen nicht mehr durchhalten ließ.

13.5.3	� Pipelining

Eine weitere Möglichkeit zur Erhöhung der Rechenleistung ist der Einsatz von Pipe-
lining, welches im deutschen Sprachraum auch häufig mit Fließbandverarbeitung über-
setzt wird.

Das Grundprinzip der Fließbandverarbeitung in der industriellen Produktion ist,
dass an verschiedenen Stationen spezialisierte Teilaufgaben durchgeführt werden. Nach
Durchlaufen aller Stationen ist das Endprodukt fertiggestellt. Da hierbei immer mehrere
Stationen gleichzeitig aktiv sind, kann die Fließbandverarbeitung auch als eine beson-
dere Form der Parallelverarbeitung aufgefasst werden. Der Unterschied zu der im vor-
angegangenen Abschnitt beschriebenen Form der Parallelverarbeitung ist jedoch, dass
im Fall des Pipelinings jede Station nur einen ausgewählten Teil der gesamten Verarbei-
tungsaufgabe ausführt und das so erhaltene Arbeitsergebnis an die nachfolgende Station
weiterreicht. Dieses Grundprinzip wird in Mikroprozessoren bei Befehlsabarbeitung
eingesetzt.

In Abschn. 13.2 wurden die einzelnen Schritte zur Verarbeitung eines Befehls exem-
plarisch vorgestellt. Hierbei wurde die Verarbeitung eines Befehls durch die Ausführung

413

von 5 Teilschritten vorgenommen. Ohne Einsatz von Pipelining würden alle Teilschritte
eines Befehls durchlaufen bevor die Ausführung des nachfolgenden Befehls begonnen
wird. Nimmt man vereinfachend an, dass alle Teilschritte eine identische Verarbeitungs-
zeit TS benötigen, würde die Bearbeitung eines Befehls also 5TS erfordern.

Wird dagegen jeder Teilschritt durch eine eigenständige Einheit ausgeführt, kann jede
dieser Einheiten nach Bearbeitung eines Teilschritts sofort mit der Ausführung des nach-
folgenden Befehls beginnen. Im Idealfall besitzen alle Verarbeitungsschritte identische
Verzögerungszeiten. Dann kann bereits nach der Zeit TS die Verarbeitung eines neuen
Befehls mit dem ersten Teilschritt beginnen kann, während für den vorangegangenen
Befehl zeitgleich der zweite Teilschritt ausgeführt wird.

In Abb. 13.11 ist der zeitliche Verlauf der Verarbeitung von Befehlen ohne und mit
Einsatz von Pipelining dargestellt. Zum Zeitpunkt t = 0 beginnt in beiden Fällen die
Ausführung des ersten Befehls. Wird Pipelining verwendet, kann bereits zum Zeitpunkt
t = TS mit der Ausführung eines weiteren Befehls begonnen werden. Zum Zeitpunkt
t = 5TS ist für beide Fälle die erste Instruktion komplett abgearbeitet. Bei Verwen-
dung von Pipelining ist zu diesem Zeitpunkt bereits die Verarbeitung von vier weiteren
Befehlen begonnen worden, während ohne Einsatz von Pipelining erst die Ausführung
des zweiten Befehls begonnen wird. Betrachtet man einen längeren Zeitraum, lässt sich
beobachten, dass bei Verwendung von Pipelining 5-mal mehr Instruktionen pro Zeitein-
heit verarbeitet werden. Die Rechenleistung wird also um den Faktor 5 gesteigert.

t

Befehl 1

Befehl 2

Befehl 3

Befehl 4

Befehl 5

Befehl 6

Befehl 1

Befehl 2

Befehl 3

ohne Pipelining

mit Pipelining

0 TS 5TS

F Fetch – Befehlausdem Programmspeicher holen
D Decode – Befehldekodieren
R Read – Operandenlesen
E Execute – Operationausführen
W Write – Ergebnisabspeichern

F D R E W

F D R E W

F D R E W

F D R E W

F D R E W

F D R E W

F D R E W

F D R E W

F D R E W

Abb. 13.11   Zeitlicher Verlauf der Befehlsverarbeitung mit und ohne Pipelining

13.5  Maßnahmen zur Steigerung der Rechenleistung

414 13  Grundlagen der Mikroprozessortechnik

Der schaltungstechnische Aufwand zur Realisierung einer einfachen Befehlspipeline
ist moderat. Im einfachsten Fall ist es ausreichend die einzelnen Stufen der Befehlsaus-
führung durch Flip-Flops (sog. Pipeline-Register) zu entkoppeln. Auf diese Weise kann
in jedem Taktzyklus die Ausführung eines neuen Befehls gestartet werden.

Auf den ersten Blick mag der Einsatz von Pipelining als ein sehr effizientes Mittel
zur Steigerung der Rechenleistung erscheinen. In der Tat setzen die meisten der heute
verfügbaren Prozessoren Pipelining ein. Dennoch wird in der Praxis meist nicht ein
zu der Anzahl der Pipelinestufen proportionaler Rechenleistungsgewinn erzielt. Der
ausschlaggebende Grund für diesen Effekt ist das Bestehen von Abhängigkeiten
zwischen den Befehlen, die zeitgleich verarbeitet werden. Exemplarisch soll dies im
Folgenden anhand der Datenabhängigkeit zweier Instruktionen verdeutlicht werden:
Wird ein Befehl ausgeführt, der als Operanden das Ergebnis des vorangegangenen
Befehls benötigt, führt dies zu einem Konflikt. Erst wenn die vorangegangene
Instruktion die W-Stufe durchlaufen hat, kann das Ergebnis von der R-Stufe als
Operand für einen nachfolgenden Befehl gelesen werden. Betrachtet man zwei
aufeinanderfolgende Befehle, wird deutlich, dass der zweite Befehl die R-Stufe bereits
durchlaufen hat, wenn sich der erste Befehl in der W-Stufe befindet (vgl. Abb. 13.12).
Ohne weitere Maßnahmen zu ergreifen, würde der zweite Befehl somit einen veralteten,
falschen Wert als Operanden einlesen.

Die einfachste Möglichkeit diesen Konflikt aufzulösen, besteht darin, die Ausführung
des zweiten Befehls zu verzögern. So wird sichergestellt, dass der zweite Befehl die
R-Stufe erst durchläuft nachdem der erste Befehl in der W-Stufe verarbeitet wurde
(vgl. Abb. 13.13). Diese Verzögerung der Befehlsausführung führt jedoch zu einer
Verringerung der pro Zeiteinheit verarbeiteten Befehle, was somit zu einer Verringerung
der Rechenleistung führt. Moderne Prozessoren setzen daher verschiedene komplexe
Maßnahmen zur Verringerung des negativen Einflusses der Abhängigkeit zwischen

t

Befehl 1

Befehl 2

F D R E W

F D R E W

Ergebnis des Befehls 1
steht in Register zur Verfügung

Ergebnis des Befehls 1
wird von Befehl 2 benötigt

Abb. 13.12   Beispiel eines Konfliktes bei der Befehlsabarbeitung

415

aufeinanderfolgenden Befehlen ein. Dennoch kann auch durch diese Maßnahmen keine
völlige Elimination der Rechenleistungsverringerung erzielt werden, sodass auch in
diesen Fällen die real erzielbare Rechenleistung unterhalb des theoretisch ermittelten
Wertes ohne Berücksichtigung von Befehlsabhängigkeiten bleibt.

13.5.4	� Befehlssatzerweiterungen

Für die Frage, ob eine bestimmte Aufgabenstellung von einem bestimmten Mikropro-
zessor bearbeitet werden kann, ist die Wahl des Befehlssatzes dieses Prozessors rela-
tiv unbedeutend. Stellt sich jedoch die Frage nach der Rechenleistung des Prozessors,
kommt der Wahl des Befehlssatzes dagegen eine zentrale Bedeutung zu. Bereits in
Abschn. 13.3.2 wurde am Beispiel der Multiplikation verdeutlicht, dass die Verwen-
dung eines Multiplikationsbefehls die Rechenleistung eines Prozessors erhöhen kann.
Entsprechendes gilt für den Einsatz einer Floating-Point-Unit zur Beschleunigung von
Gleitkommaoperationen. Durch den Einsatz einer Gleitkommaeinheit können Fließkom-
maberechnungen um ein bis zwei Größenordnungen schneller durchgeführt werden.

Das Prinzip, den Befehlssatz auf das Anwendungsgebiet zu optimieren,
muss nicht auf grundlegende Operationen wie Multiplikation, Division oder
Gleitkommaoperationen beschränkt werden. Viele Mikroprozessoren stellen sogenannte
Befehlssatzerweiterungen zur Verfügung. So wurde beispielsweise Mitte der 1990er
Jahre die MMX-Befehlssatzerweiterung von der Firma Intel für PC-Prozessoren
eingeführt. Eines der Ziele war es, durch diese Erweiterung eine flüssige Wiedergabe von
Videosequenzen zu erreichen. In den darauffolgenden Jahren wurden die Erweiterungen
des Befehlssatzes unter dem Namen SSE (Streaming SIMD Extensions) fortgeführt.

t

Befehl 1

Befehl 2

F D R E W

F D R E W

Ergebnis des Befehls1
stehtin Register zur Verfügung

Ergebnis des Befehls1
wird von Befehl 2 benötigt

Abb. 13.13   Auflösung eines Pipelinekonfliktes durch Verzögerung der Befehlsabarbeitung

13.5  Maßnahmen zur Steigerung der Rechenleistung

416 13  Grundlagen der Mikroprozessortechnik

Andere Prozessorhersteller haben ebenso verschiedenste Befehlssatzerweiterungen
entwickelt und mit unterschiedlichen Bezeichnungen auf dem Markt etabliert.

Spezielle Befehle zur Unterstützung typischer Operationsfolgen lassen sich nicht nur
in PC-Prozessoren finden. Selbst Mikroprozessoren der unteren Preisklasse setzen das
Prinzip der Befehlssatzerweiterung ein. Die im nachfolgenden Kapitel vorgestellte AVR-
CPU besitzt beispielsweise besondere Befehle zum Setzen oder Löschen einzelner Bits.

13.6	� Grundlegende Mikroprozessorarchitekturen

Für den Entwurf und die Auswahl eines Mikroprozessors stellen sich viele Fragen, die
die Architektur des Prozessors beeinflussen. Einige dieser Fragestellungen sind:

•	 Welche Wortbreite wird für die Daten- und Adressbusse verwendet?
•	 Welche Wortbreite besitzt das Rechenwerk, und ist eine Floating-Point-Unit zur

Beschleunigung von Gleitkommaoperationen vorhanden?
•	 Welche Befehle werden unterstützt?
•	 Wie werden die Befehle binär codiert und welche Wortbreite wird für die Codierung

der Befehle verwendet?
•	 In welchem Umfang sind innerhalb der CPU Speicherelemente, zum Beispiel zum

Abspeichern von Zwischenergebnissen vorhanden?
•	 In welchen Teilschritten werden die Befehle abgearbeitet?
•	 In welchem Umfang wird Pipelining für die Befehlsausführung eingesetzt?
•	 Wie werden Parameter wie Rechenleistung, Kosten und Verlustleistung ausbalanciert?
•	 Welche Halbleitertechnologie wird für die Realisierung verwendet?

Anhand dieser Auswahl von Fragestellungen wird deutlich, dass für den Entwurf eines
Mikroprozessors eine Vielzahl von Freiheitsgraden existiert, die zu unterschiedlichen
architektonischen Varianten führt. Trotz dieser Detailvielfalt können Mikroprozessoren
in zwei grundlegende Architekturklassen eingeteilt werden, deren Eigenschaften in den
folgenden Abschnitten näher beleuchtet werden.

13.6.1	� CISC

Die Abkürzung CISC steht für Complex Instruction Set Computer und bezeichnet Pro-
zessoren, bei denen angestrebt wird, Befehle mit einer möglichst großen Funktionalität
zur Verfügung zu stellen.

CISC-Prozessoren zeichnen sich durch einen großen Befehlsumfang und eine
große Anzahl unterschiedlicher Adressierungsarten aus. Die Wortbreite der einzelnen
Befehle eines CISC-Prozessors variiert, sodass für die Ausführung der Befehle eine
unterschiedliche Anzahl von Programmspeicherzugriffen erforderlich ist. Diese

417

Eigenschaft, sowie die unterschiedliche Komplexität der Befehle, führen dazu, dass die
Abarbeitung eines Befehls in der Regel mehrere Taktzyklen erfordert. Die Anzahl der
benötigten Taktzyklen variiert bei typischen CISC-Prozessoren zudem in Abhängigkeit
vom Befehl. Typische Beispiele für CISC-Architekturen sind die Prozessorfamilien 808x
und 80x86 der Firma Intel oder die Prozessoren der 680x0-Serie der Firma Motorola.

CISC-Prozessoren wurden bis in die 1990er Jahre erfolgreich vermarktet. Durch die
Fortschritte der Halbleitertechnologie wurden höhere Integrationsdichten und kürzere
Verzögerungszeiten der verwendeten Logik- und Speicherelemente ermöglicht. Insbe-
sondere durch die sinkende Zugriffszeit der Speicher war es nicht mehr nötig mit einem
Befehl möglichst viele Funktionen auszuführen. Dies brachte einen der Hauptgründe für
die Verwendung von CISC-Prozessoren ins Wanken und führte dazu, dass die Bedeutung
der CISC-Prozessoren abnahm.

13.6.2	� RISC

Im Lauf der 1980er Jahre wurden zahlreiche Studien zu Architekturen von Mikroprozes-
soren durchgeführt, die unter anderem zeigten, dass viele der komplexen Befehle eines
CISC-Prozessors nur zu einem geringen Anteil in praktischen Programmen verwendet
wurden. Die meisten Programme nutzen nur einen kleinen Anteil des Befehlssatzes, vor-
rangig die einfach strukturierten Befehle des Prozessors. Diese Beobachtung führte zu
einem Architekturansatz, der als RISC (Reduced Instruction Set Computer) bezeichnet
wird. Typische RISC-Prozessoren zeichnen sich durch die folgenden Eigenschaften aus:

Limitierter Befehlssatz
Es werden nur die am häufigsten benötigten Grundbefehle implementiert, wobei auf
komplexe Adressierungsarten verzichtet wird. Dies ist sowohl für den Aufwand als auch
im Hinblick auf die Taktfrequenz von Vorteil.

Instruktionspipelining
Durch die Reduktion des Befehlssatzes wird gleichzeitig der Einsatz von Instruktions-
pipelining vereinfacht. Hierbei wird angestrebt, in jedem Taktzyklus des Prozessors die
Bearbeitung eines neuen Befehls zu beginnen.

Load/Store-Architektur
Zum Austausch von Daten mit dem Speicher oder Ein-/Ausgabekomponenten wer-
den Befehle eingesetzt, die nur einen Transport der Daten zwischen Speicher und den
Arbeitsregistern der CPU durchführen (load, store). Auf die Möglichkeit, innerhalb eines
Befehls sowohl den Datentransport als auch eine arithmetisch-logische Operation auszu-
führen, wird im Gegensatz zu typischen CISC-Prozessoren, verzichtet.

13.6  Grundlegende Mikroprozessorarchitekturen

418 13  Grundlagen der Mikroprozessortechnik

Relativ hohe Registeranzahl
RISC-Prozessoren besitzen meist deutlich mehr Register als CISC-Prozessoren. Die
während der Abarbeitung eines Programms anfallenden Zwischenergebnisse können so
innerhalb des Prozessors abgelegt werden. Die Anzahl für zusätzliche Befehle zum Able-
gen der Zwischenergebnisse im Datenspeicher kann auf diese Weise reduziert werden.

Universell verwendbare Register
Die CPU-internen Register können sowohl für die Verarbeitung von Daten als auch zur
Berechnung von Adressen verwendet werden. Eine Unterscheidung zwischen Daten- und
Adressregistern, wie sie teilweise bei CISC-Prozessoren verwendet wurde, findet nicht
statt.

Einfache Befehlscodierung
Um die Decodierung eines Befehls zu vereinfachen und damit zu beschleunigen, wird
eine einheitliche Codierung der Befehle angestrebt. Hierbei wird das Befehlswort in der
Regel in einzelne Felder unterteilt, in denen unabhängig vom Befehl, immer die gleiche
Information (zum Beispiel die auszuführende Operation oder die für die Operation zu
verwendenden Register) gespeichert ist.

13.6.3	� RISC und Harvard-Architektur

Wie im vorigen Abschnitt beschrieben, ist eine wesentliche Eigenschaft von RISC-Pro-
zessoren die Verwendung von Instruktionspipelining zur Verarbeitung von Befehlen.
Der Einsatz von Instruktionspipelining ermöglicht eine Erhöhung des Befehlsdurchsat-
zes (Anzahl der verarbeiteten Befehle pro Taktzyklus), da in jedem Taktzyklus mehrere
unterschiedliche Befehle in den einzelnen Stufen der Pipeline verarbeitet werden. Wird
ein RISC-Prozessor auf Basis einer Von-Neumann-Architektur implementiert, ergibt
sich ein Engpass, durch die Verwendung eines gemeinsamen Speichers für Befehle und
Daten.

Dieser Engpass entsteht, da bei Verwendung von Instruktionspipelining in jedem
Taktzyklus die Ausführung eines neuen Befehls gestartet werden kann. Dabei wird mit
jedem Taktzyklus ein Zugriff auf den Speicher ausgeführt. Werden Befehle ausgeführt,
die einen Zugriff auf den Datenspeicher ausführen, führt dies zu einem Konflikt:
Innerhalb eines Taktzyklus müsste sowohl der Zugriff auf die Befehle des Programms
als auch der Zugriff auf die im gemeinsamen Programm- und Datenspeicher abgelegten
Daten erfolgen. Der gemeinsame Speicher für Daten und Befehle einer Von-Neumann-
Architektur ermöglicht jedoch nur einen Zugriff, entweder auf Daten oder auf Befehle.
Somit müssen die Zugriffe auf Daten und Befehle in unterschiedlichen Taktzyklen
erfolgen. Es kann also nicht mehr in jedem Taktzyklus ein Zugriff auf die Befehle des
Programms erfolgen und der Befehlsdurchsatz sowie die erzielbare Rechenleistung

419

werden reduziert. Der beschriebene Engpass der Von-Neumann-Architektur wird auch
als „Von-Neumann-Bottleneck“ bezeichnet.

Es ist möglich, einen RISC-Prozessor auf Basis einer Von-Neumann-Architektur
zu realisieren, sofern die beschriebene Reduktion der Rechenleistung für das
Anwendungsgebiet des Prozessors tolerierbar ist. Ist es dagegen das Ziel, einen
möglichst hohen Befehlsdurchsatz zu erzielen, ist es sinnvoll, den Speicherkonflikt
durch Realisierung getrennter Speicher für Befehle und Daten aufzulösen. Dieser
architektonische Ansatz wird als Harvard-Architektur bezeichnet. Die Struktur eines
Mikrorechnersystems auf Basis einer Harvard-Architektur ist in Abb. 13.14 dargestellt.
Der Programmspeicher der in Abb. 13.14 Architektur kann beispielsweise als
nichtflüchtiger Flashspeicher realisiert werden. Der Datenspeicher wird dagegen meist
auf Basis eines flüchtigen SRAMs realisiert.

In der Regel benötigen Programme Konstanten, die beim Start des Programms
definierte Werte enthalten. Einerseits handelt es sich bei diesen Konstanten um Daten,
die somit im flüchtigen Datenspeicher abgelegt werden müssen, der jedoch nach dem
Einschalten der Versorgungsspannung keine definierten Werte enthält. Daher werden die
Konstanten zusammen mit dem Programm im Flashspeicher abgelegt und stehen sofort
nach dem Einschalten des Systems zur Verfügung. Zu Beginn des Programms werden
die Konstanten aus dem Flashspeicher in den Datenspeicher kopiert. Für diesen initialen
Kopiervorgang muss der Programmspeicher jedoch wie ein Datenspeicher betrieben
werden. Da dies nicht dem reinen Grundkonzept einer Harvard-Architektur entspricht,
werden Architekturen mit getrennten Daten- und Programmspeichern, die einen

Steuerbus

Datenbus

Adressbus

Daten-Speicher

Eingabe

CPU

AusgabeEEPROM SRAM

Programm-Speicher

Flash

Steuer-, Adress- und Datenbus für den
Zugriff auf den Programmspeicher

Abb. 13.14   Struktur eines Mikrorechners auf Basis einer Harvard-Architektur

13.6  Grundlegende Mikroprozessorarchitekturen

420 13  Grundlagen der Mikroprozessortechnik

datenorientierten Zugriff auf den Programmspeicher erlauben, auch als modifizierte
Harvard-Architektur bezeichnet.

Die Idee, Daten und Befehle in getrennten Speichern abzulegen, um eine möglichst
hohe Rechenleistung zu erzielen, mag einfach erscheinen. Allerdings wurde dieser
Ansatz von ersten integrierten Mikrorechnersystemen nicht verwendet. Bei typischen
CISC-Prozessoren, wie sie insbesondere in den 1970er bis 1990er Jahren realisiert wur-
den, tritt kein Zugriffskonflikt auf, da ein Befehl immer komplett abgearbeitet wird,
bevor die Verarbeitung des nachfolgenden Befehls gestartet wird. Darüber hinaus ist die
Realisierung getrennter Speicher aufwendiger und kann die Kosten des Systems erhöhen.
Erst bei Einsatz von Instruktionspipelining, welches zuerst in Spezialprozessoren für die
digitale Signalverarbeitung (Digitale Signalprozessoren, DSP) eingesetzt wurde, wurden
getrennte Speicher für Daten und Befehle für die Realisierung von Mikrorechnersyste-
men eingesetzt. Später wurden die zunächst CISC-basierten Standardprozessoren mehr
und mehr durch RISC-Prozessoren ersetzt. Als Folge des hierbei verwendeten Instruk-
tionspipelinings bekam die Harvard-Architektur eine immer größere Bedeutung für die
Realisierung integrierter Mikroprozessoren und Mikrorechnersysteme.

13.7	� Mikrocontroller

Mikrocontroller sind integrierte Mikrorechnersysteme, die neben einer CPU auch Spei-
cher, Ein-/Ausgabeeinheiten sowie weitere für den Betrieb des Systems notwendige
Komponenten, beispielsweise die Takterzeugung, enthalten. Durch die Integration des
Systems auf einem Mikrochip kann die Verwendung von externen Komponenten auf ein
Minimum reduziert werden. Auf diese Weise lassen sich kostengünstige Mikrorechner
realisieren.

Beim Entwurf und Einsatz von Mikrocontrollern stehen üblicherweise die Kosten
des Controllers und die Verlustleistung im Vordergrund. Daher besitzen Mikrocontrol-
ler eine deutlich geringere Rechenleistung als sie zum Beispiel von Prozessoren für den
PC-Markt zur Verfügung gestellt werden. Auch wenn dies auf den ersten Blick als ein
Nachteil erscheinen mag, darf nicht vergessen werden, dass Mikrocontroller häufig für
Anwendungen mit relativ geringen Rechenleistungen eingesetzt werden.

Sehr deutlich wird der Vorteil von Mikrocontrollern, wenn die Kosten eines Control-
lers mit dem eines PC-basierten Systems verglichen werden. Ein PC-basiertes System
mit CPU, Speicher und Hauptplatine kostet mehrere hundert Euro, während Mikrocon-
troller für wenige Euro, teilweise sogar für Preise unterhalb eines Euros, erhältlich sind.

Mikrocontroller werden in vielen eingebetteten Systemen des Alltags eingesetzt. Sie
übernehmen die Steuerung von Haushaltsgeräten, Fernsehgeräten, Kraftfahrzeugen, von
industriellen Anlagen oder auch Medizingeräten.

Viele Halbleiterhersteller bieten Mikrocontroller mit unterschiedlichen Eigenschaf-
ten an. Anbieter von Mikrocontrollern sind (in alphabetischer Reihenfolge) die Firmen

421

Atmel, Fujitsu, Infineon, Microchip, NEC, NXP, Renesas, Texas Instruments und ST
Microelectronics.

Einige der wichtigsten Unterscheidungskriterien, die bei der Auswahl eines Control-
lers zu beachten sind, werden im Folgenden vorgestellt:

Wortbreite des Rechenwerks
Typische Mikrocontroller des unteren Preissegmentes setzen Rechenwerke mit einer
Wortbreite von 8 bit ein. Controller für höhere Rechenleistungen verwenden Rechen-
werke mit einer Breite von 32 bit. Darüber hinaus werden auch 16-Bit-Mikrocontroller
angeboten.

Verwendete CPU
Die Wahl des Prozessors stellt einen entscheidenden Faktor für die Leistungsfähigkeit
des Systems dar. Darüber hinaus kann es von praktischer Bedeutung sein, dass die Con-
troller für unterschiedliche Produkte eines Unternehmens die gleiche CPU verwenden.
Auf diese Weise kann das einmal erworbene Know-how sowie Entwurfssoftware auch
für Folgeprodukte effizient eingesetzt werden.

Taktfrequenz
Mikrocontroller arbeiten mit relativ geringen Taktfrequenzen, die sich im Bereich von
einigen MHz bis hin zu einigen hundert MHz bewegen.

Größe des eingebetteten Speichers
Häufig wird der Programmspeicher als Flashspeicher und der Datenspeicher als SRAM
zusammen mit der CPU integriert. Hierbei variiert die Größe dieser Speicher zwischen
wenigen kByte bis zu mehreren hundert kByte.

Eingebettete Schnittstellen
Während alle Mikrocontroller Möglichkeiten zur einfachen programmgesteuerten digita-
len Ein-/Ausgabe besitzen, werden darüber hinaus weitere sehr unterschiedliche Schnitt-
stellen in Hardware zur Verfügung gestellt.

Der grundsätzliche Aufbau eines Mikrocontrollers ist in Abb. 13.15 dargestellt. Die
Komponenten eines Mikrocontrollers umfassen einen Mikroprozessor (CPU), Speicher
für Programme und Daten und Ein-/Ausgabeeinheiten.

Die Ein- und Ausgabe von digitalen Daten wird bei allen Mikrocontrollern mithilfe
sogenannter Ports unterstützt. Ports sind digitale bidirektionale Anschlüsse des Control-
lers, die sowohl als Eingänge als auch als Ausgänge genutzt werden können. Die Aus-
wahl, ob ein bestimmter Anschluss als Eingang oder Ausgang genutzt wird, erfolgt über
das Programm, welches von der CPU ausgeführt wird. Darüber hinaus erfolgt auch die
Ein-/Ausgabe durch die Software, sodass Ports sehr universell einsetzbar sind.

13.7  Mikrocontroller

422 13  Grundlagen der Mikroprozessortechnik

In vielen Abwendungsfällen muss ein Mikrocontroller über standardisierte digitale
Schnittstellen mit anderen Komponenten eines Systems oder externen Geräten
kommunizieren. Grundsätzlich kann diese Kommunikation mithilfe von Ports realisiert
werden, indem das jeweilige Schnittstellenprotokoll in Software implementiert wird.
Durch diesen Ansatz wird jedoch ein bestimmter Anteil der CPU-Rechenleistung
für die SW-basierte Implementierung des Schnittstellenprotokolls benötigt, sodass
die zur Verfügung stehende Rechenleistung für die eigentliche Applikation reduziert
wird. Um diesen Nachteil zu vermeiden, bieten Mikrocontroller verschiedene digitale
Schnittstellen (zum Beispiel USB oder Ethernet) als integrierte Hardwaremodule an.
Diese Schnittstellen implementieren das Protokoll zur Datenübertragung in HW und
entlasten so die CPU des Controllers, die lediglich die zu sendende Daten bereitstellen
beziehungsweise empfangene Daten von der Schnittstelle abholen muss.

Darüber hinaus enthalten viele Mikrocontroller Schnittstellen, die der Erweiterung
des auf dem Controller integrierten Speichers dienen und mit externen SRAM- oder
SDRAM-Speicherbausteinen kommunizieren können. Neben der digitalen Ein-/Ausgabe
ermöglichen viele Mikrocontroller das Einlesen oder Ausgeben analoger Werte durch
integrierte A/D- beziehungsweise D/A-Umsetzer.

Eine weitere typische Mikrocontrollerkomponente sind die sogenannten Timer, die im
deutschen Sprachgebrauch zum Teil auch als Zeitgeber bezeichnet werden. Im Grunde
handelt es sich bei Timern um integrierte Zähler, die entweder mit einem internen
Takt des Controllers oder mit einem von außen zugeführten Takt betrieben werden
können. In Abhängigkeit vom Zählerstand können verschiedene, programmierbare

Takt-
erzeugung

Digitale
Schnittstellen

Programm-
speicher

Daten-
speicher

Timer

CPU
Analoge

Ein-/Ausgabe
Ports

Bussystem

Abb. 13.15   Architektur eines Mikrocontrollers

423

Ereignisse ausgelöst werden. Zum Beispiel kann bei Erreichen eines vorprogrammierten
Zählerstands der Ausgabewert einer der Controlleranschlüsse invertiert werden, wodurch
sich ein Rechtecksignal erzeugen lässt. In der Regel lässt sich das erzeugte Signal
in Frequenz und Tastverhältnis mit geringem Softwareaufwand modifizieren. Timer
werden für praktische Anwendungen häufig eingesetzt. Sie erlauben unter anderem
den regelmäßigen Aufruf von Unterprogrammen sowie die zeitliche Vermessung von
Signalen.

Mikrocontroller verfügen darüber hinaus über eine integrierte Hardwareeinheit zur
Takterzeugung, die das Taktsignal für den Betrieb des Controllers generiert. Die Aus-
wahl der erzeugten Taktfrequenz erfolgt mithilfe weniger externer Komponenten, zum
Beispiel mithilfe eines externen Quarzes oder eines RC-Gliedes. Die meisten Mikro-
controller besitzen daneben die Möglichkeit, den Systemtakt durch einen integrierten
Oszillator zu erzeugen. In diesem Fall kann auf externe Komponenten völlig verzichtet
werden.

Wird für eine Anwendung eine möglichst exakte Taktfrequenz benötigt, empfiehlt
sich die Verwendung eines externen Quarzes. Die internen Oszillatoren können in der
Regel eine Frequenzabweichung von einigen Prozent aufweisen und sind auch im Hin-
blick auf die Temperaturstabilität einem quarzbasierten Oszillator unterlegen.

Mikrocontroller sind also integrierte Schaltkreise, die alle notwendigen Komponen-
ten eines Rechners beinhalten. Auf Basis von Mikrocontrollern lassen sich sehr einfach
kostengünstige programmierbare Systeme realisieren, deren Einsatzgebiet nahezu unbe-
grenzt ist.

13.8	� Übungsaufgaben

In den folgenden Aufgaben werden einige Themen dieses Kapitels aufgegriffen. Die
Lösungen der Aufgaben finden Sie am Ende des Buches.

Sofern nicht anders vermerkt, ist nur eine Antwort richtig.

Aufgabe 13.1
Welche Aussagen zu Adressräumen sind korrekt? (Mehrere Antworten sind richtig)

a)	 Bei Memory-Mapped-Adressierung besitzen Speicher und Ein-/Ausgabe unterschied-
liche Adressräume.

b)	Bei Port-Mapped-Adressierung besitzen Speicher und Ein-/Ausgabe gemeinsame
Adressräume.

c)	 Bei Memory-Mapped-Adressierung besitzen Speicher und Ein-/Ausgabe gemeinsame
Adressräume.

d)	Bei Port-Mapped-Adressierung besitzen Speicher und Ein-/Ausgabe unterschiedliche
Adressräume.

13.8  Übungsaufgaben

424 13  Grundlagen der Mikroprozessortechnik

Aufgabe 13.2
Wie wird die Adressierungsart bezeichnet, bei der die Speicheradresse direkt aus dem
Befehlswort übernommen wird?

a)	 Unmittelbare Adressierung
b)	Absolute Adressierung
c)	 Indirekte Adressierung
d)	 Indirekte Adressierung mit Verschiebung

Aufgabe 13.3
Welche Adressierungsarten verwenden einen „Adressspeicher“ (zum Beispiel CPU-
Register)? (Mehrere Antworten sind richtig)

a)	 Unmittelbare Adressierung
b)	Absolute Adressierung
c)	 Indirekte Adressierung
d)	 Indirekte Adressierung mit Verschiebung

Aufgabe 13.4
Mit welchen Maßnahmen kann die Rechenleistung eines Mikroprozessors gesteigert
werden? (Mehrere Antworten sind richtig)

a)	 Erhöhung der Taktfrequenz
b)	Spezialbefehle
c)	 Instruktions-Pipelining
d)	VLIW

Aufgabe 13.5
Was ist der wesentliche Unterschied zwischen einer Von-Neumann- und einer
Harvard-Architektur?

a)	 Die Harvard-Architektur kann nur für CISC-Prozessoren eingesetzt werden.
b)	Die Von-Neumann-Architektur verwendet Flash als Instruktionsspeicher, die typische

Harvard-Architektur dagegen SRAM
c)	 Die Harvard-Architektur besitzt getrennte Speicher für Instruktionen und Daten.
d)	 Die Harvard-Architektur unterstützt weniger Befehle als die Von-Neumann-Architektur.

425© Springer-Verlag GmbH Deutschland 2016
W. Gehrke et al., Digitaltechnik, Springer-Lehrbuch,
DOI 10.1007/978-3-662-49731-9_14

Mikrocontroller sind kleine Rechnersysteme, die in einem Baustein alles beinhalten, was
zur Realisierung eines Computers benötigt wird: Sie enthalten eine CPU, Speicher und
auch Ein-/Ausgabeeinheiten. Die Vorteile eines Mikrocontrollers sind die kompakte Bau-
form und der günstige Preis. Mikrocontroller werden in unterschiedlichsten, meist kos-
tensensitiven, Anwendungen eingesetzt. Ein typisches Einsatzgebiet sind Steuerungs- und
Regelungsanwendungen. In Ihrer Waschmaschine sorgt beispielsweise ein Mikrocontrol-
ler dafür, dass Sie ein Waschprogramm auswählen können. Er regelt die Wassertempera-
tur und steuert unter anderem die Elektronik für den Trommelmotor und die Pumpen an.

Die Hersteller von Mikrocontrollern bieten eine relativ große Produktpalette an. Meis-
tens werden die Produkte eines Herstellers in Familien unterteilt. Die Produkte einer sol-
chen Familie besitzen in der Regel die gleiche CPU, unterscheiden sich aber im Hinblick
auf die Speicherkapazität oder die integrierten Ein-/Ausgabekomponenten. Aufgrund dieser
Produktvielfalt kann der Anwender den Controller auswählen, der im Hinblick auf die tech-
nischen Eigenschaften und die Kosten optimal für das geplante Einsatzgebiet geeignet ist.

Dieses Kapitel bietet einen Einstieg in die Technik der Mikrocontroller. Der Mikro-
controller ATmega32 aus der AVR-Familie des Herstellers Atmel wird exemplarisch
vorgestellt. Die hier vorgestellten Grundprinzipien lassen sich auf zahlreiche andere
Mikrocontrollern übertragen und sind nicht auf die AVR-Familie beschränkt.

14.1	� Die Mikrocontroller-Familie AVR

Die AVR-Mikrocontroller sind relativ einfach strukturiert und eignen sich gut für erste
Lernschritte im Bereich der Mikrorechnertechnik. Viele der AVR-Mikrocontroller wer-
den in DIP-Gehäusen (Dual-Inline-Package) angeboten, die sich gut für vertiefende
Experimente auf einem Steckbrett eignen.

Mikrocontroller 14

426 14  Mikrocontroller

Alle Controller der AVR-Familie basieren auf einem RISC-Mikroprozessor, der eine
zweistufige Befehlspipeline besitzt. Das Rechenwerk der CPU hat eine Wortbreite von
8 bit. Die Firma Atmel unterteilt die Mikrocontroller der AVR-Familie in mehrere Grup-
pen, von denen drei im Folgenden kurz vorgestellt werden.

tinyAVR
Die tinyAVR-Mikrocontroller zeichnen sich durch eine kleine Gehäuseform mit weni-
gen Anschlüssen aus. Viele der im DIP-Gehäuse angebotenen Controller besitzen 8 oder
14 Anschlüsse, wovon jeweils 2 für die Spannungsversorgung verwendet werden. Die
Controller können mit einer Spannung zwischen 1,8 und 5,5 V betrieben werden. Der
Programmspeicher ist, wie bei allen Controllern der AVR-Familie, als Flashspeicher
ausgeführt. Die Größe dieses Speichers liegt für tinyAVR-Controller meist zwischen 1
und 8 kByte. Zur Speicherung von Daten stehen ein SRAM und ein EEPROM zur Ver-
fügung, deren Größe 64 bis 512 Byte beträgt. Alle Controller besitzen mindestens einen
Timer und mindestens eine Schnittstelle zur seriellen digitalen Datenübertragung. Für
das Einlesen analoger Werte stehen teilweise AD-Umsetzer zur Verfügung.

megaAVR
Die Mikrocontroller der megaAVR-Serie sind umfangreicher ausgestattet als die
tinyAVR-Controller. Sie besitzen einen größeren Flash-Programmspeicher, dessen
Größe zwischen 8 und 256 kByte liegt. Zur Speicherung von Daten stehen SRAM- oder
EEPROM-Speicher mit einer Größe von bis zu 4 kByte zur Verfügung. Darüber hinaus
besitzen die Controller der megaAVR-Serie mindestens zwei Timer und verfügen über
eine größere Anzahl digitaler Schnittstellen als die tinyAVR-Controller.

Die in den megaAVR-Controllern verwendete CPU besitzt einen Hardware-Multipli-
zierer, der eine schnelle Multiplikation von 8 bit breiten Operanden ermöglicht.

Als ein Beispiel für die Controller der megaAVR-Serie ist die Pinbelegung des Mikro-
controllers ATmega32 in Abb. 14.1 dargestellt. Dieser Controller besitzt einen Flash-Pro-
grammspeicher der Größe 32 kByte, 2 kByte SRAM und 1 kByte EEPROM-Speicher,
sowie diverse eingebettete Peripheriekomponenten.

Der ATmega32 besitzt 32 Portanschlüsse (PA0-PA7, PB0-PB7, PC0-PC7 und PD0-
PD7), deren Funktion durch das ausgeführte Programm festgelegt wird. Die weite-
ren Anschlüsse dienen der Stromversorgung (VCC, AVCC und GND) oder können zur
Erzeugung des Systemtaktes (XTAL1, XTAL2) oder zum Rücksetzen des Controllers in
den Einschaltzustand (/Reset) verwendet werden. Die in Klammern angegebenen Pinbe-
zeichnungen beziehen sich auf die sogenannten alternativen Portfunktionen. Per Soft-
ware kann ausgewählt werden, ob die Anschlüsse direkt über die Software gesteuert
werden sollen (Funktion als Ein-/Ausgabe-Ports) oder ob sie als Anschlüsse für einge-
bettete Peripheriekomponenten eingesetzt werden.

Aufgrund seines relativ großen Programmspeichers und einer großen Anzahl per Soft-
ware steuerbarer Anschlüsse eignet sich der ATmega32 gut für die Durchführung prakti-
scher Experimente.

427

AVR XMEGA
Einer der vielen Unterschiede der AVR-XMEGA-Serie zu den zuvor vorgestellten AVR-
Serien ist der Einsatz eines DMA-Controllers (Direct Memory Access) in Kombination
mit dem sogenannten Event-System. Diese Module ermöglichen unter anderem einen
Datenaustausch zwischen den Komponenten des Systems, ohne die CPU mit dem eigent-
lichen Datentransfer zu belasten. Die Controller der XMEGA-Serie besitzen einen bis zu
384 kByte großen Flash-Programmspeicher und einen bis zu 32 kByte großen SRAM-
Speicher, welcher bei einigen XMEGA-Controllern durch externen Speicher erweitert
werden kann.

14.2	� Programmierung von Mikrocontrollern

Die Programmierung von Mikrocontrollern kann in Assembler oder in einer Hoch-
sprache erfolgen. Bei der Programmierung in Assembler besteht das Programm aus
Befehlen, die genau wie im Programm angegeben, von der CPU ausgeführt werden.
Diese Art der Programmierung hat verschiedene Vorteile: So kann zum Beispiel die

Abb. 14.1   Pinbelegung des
Mikrocontrollers ATmega32 im
40-poligen DIL-Gehäuse

39

38

37

36

35

34

33

32

31

30

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

29

40
PB0 (XCK/T0)

PB1 (T1)

PB2 (INT2/AIN0)

PB3 (OC0/AIN1)

PB4 (/SS)

PB5 (MOSI)

PB6 (MISO)

PB7 (SCK)

/RESET

VCC

GND

XTAL2

XTAL1

PD0 (RXD)

PD1 (TXD)

PD2 (INT0)

PD3 (INT1)

PD4 (OC1B)

PD5 (OC1A)

PD6 (ICP1)

(ADC0) PA0

(ADC1) PA1

(ADC2) PA2

(ADC3) PA3

(ADC4) PA4

(ADC5) PA5

(ADC6) PA6

(ADC7) PA7

AREF

GND

AVCC

(TOSC2) PC7

(TOSC1) PC6

(TDI) PC5

(TDO) PC4

(TMS) PC3

(TCK) PC2

(SDA) PC1

(SCL) PC0

(OC2) PD7

A
T

m
eg

a3
2

14.2  Programmierung von Mikrocontrollern

428 14  Mikrocontroller

Ausführungszeit des Programms bereits während der Entwicklung exakt bestimmt wer-
den. Darüber hinaus können Assemblerprogramme im Hinblick auf die Ausführungszeit
und die Programmgröße (Flash-Speicherbedarf) optimiert werden.

Um Assembler-Programme schreiben zu können, ist eine genaue Kenntnis des
Befehlssatzes der eingesetzten CPU erforderlich. Diese Notwendigkeit wird bei Ein-
satz einer Hochsprache vermieden, da der Compiler das Umsetzen des Quellcodes in die
Befehle der CPU übernimmt. Der Einsatz einer Hochsprache vereinfacht daher die Pro-
grammierung und Programme können in kürzerer Zeit realisiert werden als bei einer Pro-
grammierung in Assembler. Die Optimierung der CPU-Befehle wird dann vom Compiler
übernommen. Obwohl heutige Compiler eine gute Codeoptimierung durchführen, ist bei
der Verwendung einer Hochsprache nicht gewährleistet, dass das Ergebnis das Optimum
im Hinblick auf Rechenzeit und Speicherbedarf darstellt. Dennoch wird der Praxis die
Programmierung in C/C++ in vielen Fällen der Programmierung in Assembler vorgezo-
gen, da die Produktivität bei der Programmentwicklung im Vordergrund steht.

Im Rahmen dieses Kapitels wird am Beispiel des AVR-Mikrocontrollers ATmega32
auf die Programmierung sowohl in Assembler als auch in C eingegangen. Die Beschäf-
tigung mit der Programmierung in Assembler ermöglicht unter anderem ein tieferes Ver-
ständnis der Funktionsweise eines Mikroprozessors.

Grundsätzlich besitzen Mikrocontrollerprogramme die gleichen Elemente wie die Pro-
gramme, die Sie vielleicht bereits auf einem PC entwickelt haben. Es gibt Funktionen, Ver-
zweigungen, Schleifen usw. Einer der größten Unterschiede zwischen einem typischen
PC-Programm und einem Mikrocontrollerprogramm ist, dass das Hauptprogramm des Cont-
rollers eine Endlosschleife enthält. Dass dies so sein muss, wird plausibel, wenn ein typisches
Anwendungsgebiet eines Mikrocontrollers anschaut: Die Steuerung einer Waschmaschine.

Stellen Sie sich vor, Sie schalten Ihre Waschmaschine ein. Das Programm des Mikro
controllers in der Steuereinheit wird gestartet und fragt die Bedienknöpfe ab. Das Pro-
gramm ist aber wahrscheinlich schneller als Sie. Noch bevor Sie einen Taster des
Bedienfeldes drücken können, stellt das Programm fest, dass offensichtlich nichts zu tun
ist (es wurde ja kein Taster gedrückt) und wird beendet. Ihre Waschmaschine wäre mit
einer solchen Steuerung nicht gut bedienbar.

Statt das Programm nach der ersten Abfrage des Bedienfeldes zu beenden, müssen
die Taster und Schalter kontinuierlich abgefragt werden. Mit der Auswahl eines Wasch-
programms wird der Mikrocontroller der Steuereinheit in ein entsprechendes Unterpro-
gramm verzweigen, welches die Sensorik (Wasserstand, Wassertemperatur, usw.) abfragt
und die Aktorik (Pumpe, Heizung, usw.) ansteuert. Nach dem Beenden des Unterpro-
gramms wird wieder zur Abfrage des Bedienfeldes zurückgekehrt. Das Mikrocontroller-
Programm wird also bis zum Abschalten der Waschmaschine laufen und muss damit eine
Endlosschleife enthalten.

Die typische Grundstruktur eines Mikrocontrollerprogramms besteht aus zwei Tei-
len: Zu Beginn des Programms wird die Initialisierung des Systems ausgeführt und die
Peripheriekomponenten initialisiert. Ist die Initialisierung abgeschlossen, werden die
Eingangswerte des Controllers in einer Endlosschleife überprüft und gegebenenfalls

429

neue Ausgangswerte berechnet, die anschließend über die Ausgabeeinheiten ausge-
geben werden. Dieser Grundstruktur folgen sowohl Assemblerprogramme als auch
Hochsprachenprogramme.

14.2.1	� Programmierung in Assembler

Im Gegensatz zu einem Hochsprachenprogramm darf in jeder Zeile eines Assemblerpro-
gramms maximal ein CPU-Befehl stehen.

CPU-Befehle bestehen aus einer Bitkombination, die im Programmspeicher des
Rechners abgelegt werden. Da jedoch niemand ein Programm schreiben möchte, das
aus einer Textdatei mit Nullen und Einsen besteht, werden CPU-Befehle in einer für den
Menschen lesbaren Form angegeben. Hierzu werden die Befehle als Mnemonics (Kürzel,
die meist aus 1 bis 4 Buchstaben bestehen) angegeben. Nach dem Befehlskürzel werden
zu verarbeitenden Operanden angeben.

Für die AVR-CPU kann man den Befehl zur Addition der Werte in den Arbeitsregis-
tern r5 und r7 in binärer Form so schreiben:

   0000110001010111

Deutlich besser lesbar ist diese Variante:

   add r5, r7

Hier wird der Befehl als Mnemonic angegeben und sowohl die ausgeführte Operation
als auch die verwendeten Operanden sind leicht erkennbar.

Neben den Mnemonics werden Ihnen in Assemblerprogrammen auch Label (Mar-
ken) begegnen. Mithilfe von Labeln wird eine Codezeile mit einem Symbol versehen,
das im Programm eingesetzt werden kann. Im Verlauf dieses Kapitels werden Sie einige
Beispiele für die Verwendung von Labels kennenlernen. Daher wird hier zunächst ledig-
lich der Sprung in ein Unterprogramm als ein Beispiel für die Verwendung eines Labels
dargestellt:

; Hier wird das Unterprogramm durch ein Label markiert

my_add_up:   

   add r5, r7   ; Dieses einfache Unterprogramm fùhrt eine Addition aus

   ret          ; Der "Return"-Befehl

                ; bewirkt die Rùckkehr in das Hauptprogramm

; Das Hauptprogramm. In diesem Beispiel wird es auch markiert

main:

   …               ; Hier stehen weitere Befehle

   call my_add_up  ; Mit diesem Befehl wird das UP aufgerufen …

   …               ; und anschließend der hier stehende Code ausgefùhrt

14.2  Programmierung von Mikrocontrollern

430 14  Mikrocontroller

Das Programm, welches die Umsetzung des Assemblercodes in die für den Rechner
lesbare Form (also Nullen und Einsen) übersetzt, wird als Assembler bezeichnet. Eine
Codeoptimierung, wie sie Hochsprachencompiler durchführen, findet bei der Überset-
zung nicht statt.

14.2.2	� Programmierung in C

Ein wesentlicher Aspekt der Mikrocontrollerprogrammierung ist der Zugriff auf die
eingebettete Peripherie. Um beispielsweise einen digitalen Wert an einem Mikrocont-
rolleranschluss ausgeben zu können, muss die CPU den Ausgabewert in Registern der
Peripheriekomponenten ablegen. Zwei wichtige Aspekte, die für die Mikrocontroller-
Programmierung in C wichtig sind, werden in diesem Abschnitt vorgestellt.

14.2.2.1 � Zugriff auf Peripheriekomponenten
Viele Mikrocontroller verwenden Memory-Mapped-I/O (vgl. Kapitel 13) um Zugriffe auf
die Komponenten, zum Beispiel Ein-/Ausgabe-Einheiten, zu ermöglichen. Auf die Periphe-
rie kann dann genauso wie auf den Datenspeicher zugegriffen werden. Auf welche Kompo-
nente zugegriffen wird, ergibt sich aus der verwendeten Adresse. Während es für „normale“
Variablen völlig egal ist, an welcher Stelle sie im Speicher abgelegt werden, ist es für einen
Peripheriezugriff essenziell, genau die richtige Adresse anzusprechen. Man muss also, im
Gegensatz zu typischen PC-Programmen, dem Compiler vorschreiben, auf welche Adresse
er zugreifen soll. Dies lässt sich relativ einfach mithilfe von Zeigern realisieren.

Nehmen wir an, Sie möchten auf eine Peripheriekomponente zugreifen, die unter der
Adresse 234 erreichbar. Ein entsprechender Programmausschnitt, welcher der Periphe-
riekomponente den Wert 7 übergibt, kann dann wie folgt aussehen.

// Zeiger definieren und initialisieren

// Anschließend verweist der Zeiger auf die gewùnschte Adresse

volatile char *periph_ptr = (char *) 234;

// Der Peripheriekomponente einen Wert ùbergeben

// Hierzu wird an die Adresse, auf die der Zeiger verweist,

// der gewùnschte Wert abgelegt

*periph_ptr = 7;

In dem Programm wird ein Zeiger angelegt und mit der gewünschten Adresse initiali-
siert. Der Zugriff auf die Peripheriekomponente erfolgt dann durch die Dereferenzierung
des Zeigers im unteren Teil des Beispielcodes. Mithilfe des Schlüsselwortes volatile wird
der Compiler angewiesen, bei Verwendung des Zeigers keine Optimierung anzuwenden.

Warum dies wichtig ist, kann anhand eines einfachen Beispiels erläutert werden. Neh-
men wir an, Ihr Mikrocontroller besitzt eine Peripheriekomponente, mit welcher der Aus-
gangswert eines Portanschlusses festgelegt werden kann. Schreibt man in ein Register der

http://dx.doi.org/10.1007/978-3-662-49731-9_13

431

Komponente den Wert 1, wird eine 1 am Ausgang ausgegeben; wird eine 0 geschrieben
erscheint am Ausgang der Wert 0. Mithilfe dieser Komponente möchten Sie nun einen
kurzen Impuls ausgeben. Ein entsprechender Programmausschnitt würde so aussehen:

*output_ptr = 0; // Wir gehen ganz sicher: Erst mal eine 0 ausgeben
*output_ptr = 1; // Eine 1 erscheint am Ausgang
*output_ptr = 0; // Aber nicht lange: Wir setzen den Ausgang wieder
auf 0

Aus Sicht des Compilers gibt es nur Speicherstellen. Der Compiler kennt keine Peri-
pherie. Was würde also ein optimierender Compiler mit diesem Codeausschnitt tun?

Nun, der Compiler würde annehmen, dass die ersten beiden Zeilen überflüssig sind,
da am Ende in der (vermeintlichen) Speicherstelle, auf die der Zeiger output_ptr ver-
weist, eine Null stehen wird. Die ersten beiden Zeilen müssten aus Sicht des Compilers
also nicht ausgeführt werden. Daher wird der Compiler diese Zeilen ignorieren und so
die Rechenzeit des Programms reduzieren.

Für einen Datenspeicher wäre dieses Verhalten des Compilers korrekt und wün-
schenswert. Für den Zugriff auf eine Peripheriekomponente muss die Optimierung
dagegen unterbunden werden, da andernfalls kein 1-Impuls am Ausgang des Controllers
erscheint. Daher werden Zeiger auf Peripheriekomponenten stets mit dem C-Schlüssel-
wort volatile definiert.

In der Praxis muss man die Zeiger nicht selbst definieren. Die Hersteller von Mik-
rocontrollern stellen in der Regel Header-Dateien bereit, in denen die entsprechenden
Definitionen bereits enthalten sind. Bei dem in diesem Kapitel vorgestellten AVR-Mikro-
controller ist dies die Datei io.h.

14.2.2.2 � Setzen und Löschen von Bits
Häufig sind in einem Register einer Peripheriekomponente mehrere unterschiedliche
Informationen zusammengefasst. Die einzelnen Bits des Registers besitzen also eine
unterschiedliche Wirkung. In vielen Fällen möchte man daher nur einzelne Bits eines
Registers modifizieren.

Nehmen wir zum Beispiel an, dass über den oben verwendeten Zeiger output_ptr der
Ausgangswert von 8 Mikrocontrolleranschlüssen festgelegt werden kann. Jedem Bit des
Peripherieregisters, auf das output_ptr verweist, ist genau ein Portausgang des Control-
lers zugeordnet.

Nehmen wir an, Sie möchten am Anschluss 3 eine 1 ausgeben. Hierzu muss also das
Bit 3 des Registers gesetzt werden. Nehmen wir darüber hinaus an, dass die anderen
Ausgabewerte unverändert bleiben sollen. Es darf also nur das Bit 3 des Registers modi-
fiziert werden.

Dies lässt sich durch eine bitweise ODER-Verknüpfung, in C/C++ der Operator |,
des Registerwertes mit dem Wert 8 (Bit 3 ist gesetzt, alle anderen Bits sind Null) errei-
chen. In C kann dies so erfolgen:

14.2  Programmierung von Mikrocontrollern

432 14  Mikrocontroller

// Beispiel fùr das Setzen eines Bits

char tmp;

tmp = *output_ptr; // aktuellen Registerwert holen
tmp = tmp | 8; // Bit 3 setzen -- Achtung! Dies ist ein bitweises
ODER

// Nicht mit dem logischen ODER verwechseln: ||

*output_ptr = tmp; // und wieder in das Register schreiben

In C/C++ kann man dies auch in einer Zeile schreiben:

*output_ptr |= 8; // Bit 3 setzen - die kurze Variante

Um das beeinflusste Bit noch deutlicher im Code sichtbar zu machen wird häufig eine
andere Variante für die Angabe der verwendeten Konstante gewählt:

*output_ptr |= 1<<3; // Hier sieht man besser welches Bit gesetzt wird

Die Schreibweise 1<<3 mag auf den ersten Blick ungewöhnlich aussehen. Vielleicht
wirkt es umständlich, eine 1 um 3 Stellen nach links zu schieben, um so die Konstante 8 zu
erhalten. Dennoch wird diese Schreibweise bevorzugt bei der Mikrocontrollerprogrammie-
rung eingesetzt, da das modifizierte Bit explizit angegeben wird. Der Code ist besser lesbar.

Um einzelne Bits zu löschen wird die bitweise UND-Verknüpfung (Operator &)
verwendet. Die UND-Verknüpfung mit einer Konstanten, die nur an einer Bitposi-
tion eine Null enthält uns ansonsten Einsen, löscht genau ein Bit und lässt die anderen
unangetastet.

Möchte man das Bit 3 löschen, benötigt man den invertierten Wert von 1<<3. In C
wird die bitweise Invertierung durch den Operator ~ realisiert. Der Code für das Löschen
des Bits 3 sieht also so aus:

*output_ptr &= ~(1<<3); // Die Klammern sind wichtig, da sonst zuerst
                        // die Invertierung und dann das Schieben

                        // ausgefùhrt wird - und das wàre falsch

Im Fall des AVR sind in der Headerdatei io.h viele Konstanten definiert, welche die
Bitposition einzelner Peripherieregister enthalten. Im Datenblatt des Controllers findet
man beispielsweise ein Register mit der Abkürzung TCCR1B. Unter anderem enthält
dieses Register ein Bit, das mit der Bezeichnung WGM12 abgekürzt wird (was diese Bit
bewirkt, wird später vorgestellt). Nach Einbinden der Headerdatei io.h kann dieses Bit
mit der folgenden Zeile gesetzt werden:

TCCR1B |= 1<<WGM12; // Setzen des Bits WGM12 im Register TCCR1B
                    // so man muss nicht die genaue Position

                    // dieses Bits im Kopf haben

433

Es können auch mehrere Bits mit einer einzelnen Zuweisung gesetzt werden. Mit
der nachfolgenden Codezeile werden beispielsweise die Bits TWINT, TWSTA und
TWEN im Register TWCR gesetzt. Alle anderen Bits des Registers bleiben unverändert.

TWCR |= (1<<TWINT)|(1<<TWSTA)|(1<<TWEN);

14.3	� Die AVR-CPU

Der Mikroprozessor der AVR-Controller ist eine RISC-CPU, die auf einer Harvard-
Architektur basiert. Der Prozessor beinhaltet 32 Arbeitsregister mit einer Wortbreite von
8 bit, die sowohl für arithmetisch-logische Operationen als auch für Adressberechnungen
eingesetzt werden können. Diese Register werden als r0,r1,…, r30, r31 bezeichnet. Da
die CPU auf einer Load/Store-Architektur basiert, können arithmetisch-logische Opera-
tionen nur mit Daten ausgeführt werden, die sich in den Arbeitsregistern befinden. Für
das Laden der Register beziehungsweise das Abspeichern von Registerwerten stehen ent-
sprechende Transferbefehle zur Verfügung.

Neben den Arbeitsregistern enthält der Mikroprozessor der AVR-Controller die fol-
genden Register:

Programmzähler (Program Counter, PC)
Der Programmzähler enthält die Adresse des als nächsten auszuführenden Befehls und
besitzt eine Wortbreite, die es ermöglicht, den gesamten Programmspeicher des jeweili-
gen Controllers zu adressieren.

Statusregister
Das Statusregister besitzt eine Wortbreite von 8 bit. Jedes dieser Bits wird auch als Flag
bezeichnet. Die Flags enthalten unter anderem Informationen über die ausgeführten Ope-
rationen (zum Beispiel Auftreten arithmetischer Überläufe).

Stackpointer
Der Stackpointer (Stapelzeiger) ist ein Register, welches die aktuelle SRAM-Adresse des
Stapels enthält.

Befehlsregister
Das Befehlsregister dient der Zwischenspeicherung des aus dem Programmspeicher aus-
gelesenen Befehls. Das Befehlsregister ist bei der Programmierung nicht sichtbar und
der Inhalt kann nicht durch Befehle modifiziert werden.

Der Mikroprozessor enthält darüber hinaus ein Steuerwerk, welches die Decodierung
der Befehle vornimmt und CPU-interne Steuersignale zur Verarbeitung eines Befehls
generiert. Das Rechenwerk des AVR-Prozessors enthält eine 8-Bit-ALU, welche die in

14.3  Die AVR-CPU

434 14  Mikrocontroller

den Befehlen codierten arithmetischen und logischen Operationen ausführt. Die prinzipi-
elle Struktur des AVR-Mikroprozessors ist in Abb. 14.2 dargestellt.

Die Befehle der CPU werden in 16 bit breiten Worten des Programmspeichers
abgelegt. Der Mikroprozessor der AVR-Controller arbeitet die Befehle mithilfe einer
zweistufigen Befehlspipeline ab. In der ersten Pipelinestufe wird ein Befehl aus dem Pro-
grammspeicher ausgelesen. In der zweiten Stufe wird der Befehl ausführt.

Die Mehrheit der arithmetischen Befehle benötigt für die Ausführung der zweiten
Pipelinestufe lediglich einen Taktzyklus. Da der nachfolgende Befehl bereits während
der Ausführung des aktuellen Befehls eingelesen wird, kann ein Befehlsdurchsatz von
bis zu einem Befehl pro Taktzyklus erreicht werden.

Die meisten Load- und Storebefehle sowie die Sprungbefehle benötigen für die Ver-
arbeitung mehrere Taktzyklen. Hierbei wird die Befehlspipeline des AVR angehalten,
sodass der Befehlsdurchsatz bei Verwendung dieser Befehle absinkt.

Bei der Ausführung eines Befehls wird in vielen Fällen der Inhalt des Statusregisters
berücksichtigt. Aus diesem Grund wird im Folgenden zunächst das Statusregister der
CPU betrachtet. Im Anschluss daran werden die Befehle der AVR-CPU vorgestellt.

Das Statusregister (vgl. Tab. 14.1) besitzt eine Wortbreite von 8 bit und beinhaltet die
nachfolgend erläuterten Flags.

I-Flag
Mithilfe des Interrupt-Flags können Interrupts freigegeben (I = 1) oder gesperrt werden
(I = 0).

Interne
Steuersignale

Befehlsdecoder
& Steuerung

Statusregister
(SREG) Rechenwerk

(ALU)

Arbeitsregister
(r0 … r31)
32 x 8 bit

Befehlsregister
Programmzähler

(PC)

Stackpointer
(SP)

Befehle
(vom Programmspeicher)

Adressen
(zum Programmspeicher)

Adressen & Daten
(zum/vom Datenspeicher)

Abb. 14.2   Struktur der AVR-CPU

435

T-Flag
Das T-Flag kann als Bitspeicher aufgefasst werden. Es kann durch Befehle gelöscht und
gesetzt werden. Darüber hinaus kann es für die Ausführung von bedingten Sprüngen
abgefragt werden.

Im Gegensatz zum I-Flag und T-Flag beziehen sich alle weiteren Flags auf arithmeti-
sche Operationen.

Z-Flag
Ist das Ergebnis einer Operation Null, wird dies durch ein gesetztes Zero-Flag (Z = 1)
signalisiert.

N-Flag
Das Negative-Flag ist die Kopie des höchstwertigen Bits des Ergebnisses, da dieses Bit
bei Zahlen in Zweierkomplementdarstellung das Vorzeichen repräsentiert.

C-Flag
Mithilfe des Carry-Flags wird gekennzeichnet (C = 1), ob bei einer vorzeichenlosen
Operation ein Überlauf, also ein Verlassen des darstellbaren Zahlenbereichs aufgetreten
ist. Darüber hinaus wird das C-Flag bei Schiebe- oder Rotationsbefehlen eingesetzt.

V-Flag
Das Overflow-Flag signalisiert mit V = 1 einen Überlauf bei vorzeichenbehafteten Ope-
rationen wie der Addition oder der Subtraktion.

S-Flag
Ein Überlauf bei einer Zweierkomplementoperation führt dazu, dass das höchstwertige
Ergebnisbit nicht das korrekte Vorzeichen enthält (vgl. Kapitel 2). Somit kann durch das
N-Flag in diesem Fall nicht das Vorzeichen des Ergebnisses bestimmt werden. Aus die-
sem Grund bietet die AVR-CPU ein weiteres Flag an: Mithilfe des Sign-Flags wird das
wahre Vorzeichen, auch bei einem aufgetretenen Zweierkomplementüberlauf, angege-
ben. Das S-Flag ergibt sich aus der Exklusiv-Oder-Verknüpfung des N- und des V-Flags.
Durch diese Verknüpfung enthält das S-Flag im Fall eines Überlaufs (V = 1) das inver-
tierte N-Flag, während es eine Kopie des N-Flags enthält, wenn kein Überlauf aufgetre-
ten ist.

Tab. 14.1   Statusregister der AVR-CPU

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

I T H S V N Z C

Interrupt-
Flag

Bit-Transfer-
Flag

Half-
Carry-Flag

Sign-Flag Overflow-
Flag

Negative-
Flag

Zero-Flag Carry-
Flag

14.3  Die AVR-CPU

http://dx.doi.org/10.1007/978-3-662-49731-9_2

436 14  Mikrocontroller

H-Flag
Das Half-Carry-Flag wird gesetzt (H = 1), wenn bei einer vorzeichenlosen Ope-
ration ein Überlauf aus dem niederwertigen in das höherwertige Halbbyte auftritt.
Das H-Flag ist zum Beispiel für Rechenoperationen mit Zahlen in BCD-Darstellung
sinnvoll.

14.4	� Der AVR-Befehlssatz

Dieser Abschnitt gibt eine Übersicht über den Befehlssatz der AVR-CPU. Mithilfe von
arithmetischen und logischen Befehlen werden Arbeitsregister der CPU modifiziert.
Transferbefehle werden genutzt um Daten aus den Registern in die Peripheriekomponen-
ten oder den Speicher zu übertragen, beziehungsweise um Daten aus den Systemkom-
ponenten in die Arbeitsregister zu transferieren. Eine weitere Gruppe sind die Befehle,
die zur Steuerung des Programmablaufs genutzt werden. Mithilfe dieser Befehle können
Sprünge, Verzweigungen und Schleifen realisiert werden.

14.4.1	� Arithmetische und logische Befehle

Als Operanden für die arithmetischen und logischen Befehle können die Arbeitsregis-
ter verwendet werden. Die AVR-CPU verwendet ein sogenanntes Zwei-Adress-Format.
Das bedeutet, dass maximal zwei Operanden durch einen Befehl adressiert werden. Das
Ergebnis der ausgeführten Operation wird hierbei in einem der beiden Operandenregister
abgelegt und der darin gespeicherte Wert wird überschrieben. Exemplarisch kann dies
anhand des Additionsbefehls verdeutlich werden. Der Befehl add r7,r12 führt eine Addi-
tion der Inhalte der Register r7 und r12 aus. Die Summe der beiden Operanden wird
anschließend im erstgenannten Register r7 abgelegt.

Darüber hinaus kann für einige Befehle auch die unmittelbare (engl. immediate)
Adressierung verwendet werden. In diesem Fall ist der zweite Operand eine 8 bit breite
Konstante, welche im Befehlswort abgelegt wird. Soll beispielsweise die Konstante 17
vom Inhalt des Registers r23 subtrahiert werden, kann dies mithilfe des Befehls subi
r23,17 erfolgen. Der Buchstabe i ist hierbei das Kürzel für immediate.

Für alle Befehle, die eine unmittelbare Adressierung verwenden, gilt die Einschrän-
kung, dass sie nur mit der oberen Hälfte des Arbeitsregistersatzes, also mit r16 bis r31,
verwendet werden können. Der Grund hierfür ist die Beschränkung der Befehlswort-
breite auf 16 bit. Da die Konstante bereits 8 Bit belegt und für die Codierung der aus-
zuführenden Operation weitere 4 Bit benötigt werden, verbleiben lediglich 4 Bit zur
Codierung des Arbeitsregisters, womit nicht alle 32 Register adressiert werden können.

Bei vielen Mikrocontrollern der AVR-Serie werden auch einige Befehle mit Operan-
den der Wortbreite 16 bit unterstützt. Da die Arbeitsregister der AVR-CPU eine Wort-
breite von 8 bit besitzen, werden die Operanden aus zwei aufeinanderfolgenden Registern

437

(Registerpaare) gebildet. Das Register mit dem niedrigeren Index enthält hierbei die unte-
ren 8 Bit, das Register mit dem höheren Index die oberen 8 Bit des Operanden.

In Tab. 14.2 sind die wichtigsten arithmetischen und logischen Befehle der AVR-CPU
zusammengefasst.

Die Flags des Statusregisters können auch direkt durch Befehle gesetzt oder gelöscht
werden (Tab. 14.3).

14.4.2	� Transferbefehle

Die bisher vorgestellten arithmetischen und logischen Befehle dienen der Verarbeitung
von Daten, die in den Arbeitsregistern der CPU abgelegt sind. Für einen Datenaustausch
zwischen den Arbeitsregistern und anderen Komponenten des Systems werden weitere
Befehle, die sogenannten Transferbefehle, benötigt. Es existieren Befehle zum Kopieren
von Daten zwischen Arbeitsregistern und zum Datenaustausch zwischen CPU und Peri-
pheriekomponenten und dem Speicher.

Für den Datenaustausch mit Peripheriekomponenten (zum Beispiel Speicher oder
Schnittstellen) werden Load- und Storebefehle bereitgestellt. Für die Adressierung bietet
die AVR-CPU die Adressierungsarten direkt, indirekt, indirekt mit Post-Inkrement, indi-
rekt mit Pre-Inkrement und indirekt mit Verschiebung an (vgl. Kapitel 13).

Im Fall der indirekten Adressierung wird eine 16-Bit-Adresse aus Registerpaaren
geholt. Als mögliche Registerpaare stehen die Paare r26:r27, r28:r29 und r30:r31 zur
Verfügung. Auf diese Weise kann ein Adressraum mit einer Adresswortbreite von 16 bit
angesprochen werden. Zur Vereinfachung können diese Registerpaare auch mit neuen
Symbolen (X, Y und Z) angesprochen werden. Die Register X, Y und Z stellen keine
zusätzlichen Register dar, sondern sind lediglich andere Bezeichnungen für Register-
paare, die bereits im Arbeitsregistersatz enthalten sind. Für die Zuordnung der Register-
bezeichnungen gilt Tab. 14.4.

Während alle Komponenten des Mikrocontrollers memory-mapped adressiert werden
können, ist für einige häufig verwendete Komponenten auch ein Zugriff über eine io-
mapped-basierte Adressierung mithilfe der Befehle in und out möglich. Diese Befehle
benötigen weniger Programmspeicherplatz und werden schneller ausgeführt als die ent-
sprechenden memory-mapped arbeitenden Load-/Storebefehle.

In Tab. 14.5 sind die wichtigsten Transferbefehle der AVR-CPU zusammenge-
stellt. Grundsätzlich werden durch die Transferbefehle keine Flags des Statusregisters
beeinflusst.

14.4.3	� Befehle zur Programmablaufsteuerung

Zur Steuerung des Programmablaufs besitzen die Mikrocontroller der AVR-Familie
verschiedene Sprungbefehle, mit denen unbedingte oder bedingte Sprünge ausgeführt

14.4  Der AVR-Befehlssatz

http://dx.doi.org/10.1007/978-3-662-49731-9_13

438 14  Mikrocontroller

Tab. 14.2   Arithmetische und logische Befehle der AVR-CPU

(Fortsetzung)

439

Tab 14.2   (Fortsetzung)

(Fortsetzung)

14.4  Der AVR-Befehlssatz

440 14  Mikrocontroller

Tab 14.2   (Fortsetzung)

(Fortsetzung)

441

werden können. Während die bedingten Sprungbefehle nur eine relative Adressierung
zur Bestimmung des Sprungziels unterstützen, stehen die unbedingten sowohl mit relati-
ver als auch mit absoluter und indirekter Adressierung zur Verfügung.

Der Aufruf von Unterprogrammen wird beim AVR durch die CALL-Befehle unter-
stützt. Diese Befehle entsprechen einem unbedingten Sprung, wobei zusätzlich die Rück-
sprungadresse, an der das Programm nach Beenden des Unterprogramms fortgesetzt
werden soll, auf dem Stack abgelegt wird. Für das Beenden eines Unterprogramms wird
der Befehl RET verwendet. Dieser lädt die auf dem Stack abgelegte Rücksprungadresse
in den Program Counter und setzt somit das aufrufende Programm an der Stelle fort, die
dem Einsprung in das Unterprogramm folgt.

Tab 14.2   (Fortsetzung)

Tab. 14.3   Statusregister der
AVR-CPU

Flag Befehl zum Setzen Befehl zum Löschen

C SEC CLC

N SEN CLN

Z SEZ CLZ

V SEV CLV

S SES CLS

H SEH CLH

T SET CLT

I SEI CLI

Tab. 14.4   Alternative
Bezeichnungen für Register
der AVR-CPU

Registerpaar Synonyme Bezeichnung

r27:r26 X

r29:r28 Y

r31:r30 Z

14.4  Der AVR-Befehlssatz

442 14  Mikrocontroller

Tab. 14.5   Transferbefehle der AVR-CPU

(Fortsetzung)

443

Tab 14.5   (Fortsetzung)

14.4  Der AVR-Befehlssatz

444 14  Mikrocontroller

In Tab. 14.6 sind die wichtigsten Sprungbefehle der AVR-CPU zusammengestellt.
Neben den oben genannten Sprungbefehlen besitzt die AVR-CPU Befehle, mit denen

ein einzelner nachfolgender Befehl übersprungen werden kann. Diese sogenannten Skip-
befehle sind in Tab. 14.7 zusammengefasst.

Für die Ausführung von bedingten Sprüngen können die Befehle BRBC und BRBS
verwendet werden. Hierbei ist die Angabe des abzufragenden Flags des Statusregisters
erforderlich. Da dies das Programm unübersichtlicher machen kann, stehen für jedes Bit
des Statusregisters spezielle Sprungbefehle zur Verfügung. Diese Befehle stellen keine
zusätzlichen Befehle dar, sondern sind lediglich synonyme Bezeichnungen für die ent-
sprechenden Varianten des BRBC- beziehungsweise BRBS-Befehls. Tab. 14.8 fasst die
Synonyme für bedingte relative Sprungbefehle zusammen.

14.5	� Verwendung der AVR-Befehle

In diesem Abschnitt wird die Verwendung des Befehlssatzes anhand einiger Beispiele
verdeutlicht. Hierzu werden Programmfragmente vorgestellt, die auch in größeren AVR-
Programmen eingesetzt werden können.

14.5.1	� Arithmetische und logische Grundfunktionen

Die Mikroprozessoren der AVR-Familie unterstützen Befehle zur Verarbeitung von Byte-
operanden. Sollen Operanden mit einer größeren Wortbreite verarbeitet werden, müssen
hierzu mehrere aufeinander folgende Befehle verwendet werden. Im Folgenden wird dies
für einige arithmetische und logische Grundfunktionen vorgestellt.

14.5.1.1 � Setzen und Löschen einzelner Bits
Zum Setzen oder Löschen einzelner oder auch mehrerer Bits stehen die Befehle sbr und
cbr zur Verfügung. Alternativ können hierfür auch die logischen Befehle and, andi bezie-
hungsweise or oder ori eingesetzt werden. Sowohl für die Befehle sbr und cbr als auch
für alle Befehle mit unmittelbarer Adressierung wie andi oder ori dürfen nur die Register
r16 bis r31 verwendet werden.

; Setzen des Bits 4 im Register r20

sbr   r20,16

ori   r20,0x10   ; Alternative mit identischer Funktion

; Lòschen des Bits 2 im Register r23

cbr   r23,4

andi  r23,0xFB   ; Alternative mit identischer Funktion

445

Tab. 14.6   Sprungbefehle der AVR-CPU

14.5  Verwendung der AVR-Befehle

446 14  Mikrocontroller

Tab. 14.7   Überblick über die Skipbefehle

Tab. 14.8   Überblick über bedingte relative Sprungbefehle

Flag Bedingter Sprungbefehl

C 0 BRCC, BRSH Branch if Carry Cleared, Branch if Same or Higher

1 BRCS, BRLO Branch if Carry Set, Branch if Lower

N 0 BRPL Branch if Plus

1 BRMI Branch if Minus

Z 0 BRNE Branch if Not Equal

1 BREQ Branch if Equal

V 0 BRVC Branch if Overflow Cleared

1 BRVS Branch if Overflow Set

S 0 BRGE Branch if Greater or Equal (signed)

1 BRLT Branch if Less Than (signed)

H 0 BRHC Branch if Half-Carry Cleared

1 BRHS Branch if Half-Carry Set

T 0 BRTC Branch if T-Flag Cleared

1 BRTS Branch if T-Flag Set

I 0 BRID Branch if Interrupt Disabled

1 BRIE Branch if Interrupt Enabled

447

14.5.1.2 � Addition und Subtraktion
Im folgenden Programmfragment wird davon ausgegangen, dass die zu addierenden
16 bit breiten Operanden in den Registerpaaren r25:r24 und r27:r26 stehen. Die Summe
wird im Registerpaar r25:r24 abgelegt.

; Addition zweier 16-Bit-Operanden

add   r24,r26   ; untere 8 Bit der Operanden addieren

adc   r25,r27   ; obere 8 Bit der Operanden addieren

Mithilfe des ersten Befehls werden die beiden unteren Bytes der Operanden addiert.
Der Übertrag dieser Operation wird im Carry-Flag des Statusregisters gespeichert. Mit dem
zweiten Befehl werden die beiden oberen Bytes der Operanden addiert, wobei das im Carry-
Flag gespeicherte Übertragsbit durch den Befehl adc (add with carry) berücksichtigt wird.

Liegen die Operanden nicht in Registern sondern im Speicher, müssen die Operan-
den zunächst durch geeignete Load-Befehle in die CPU übertragen werden. Dies kann
mit absoluter oder indirekter Adressierung geschehen. Das folgende Beispiel benutzt
die absolute Adressierung für den ersten Operanden, während der zweite Operand mit
indirekter Adressierung unter Verwendung des Y-Registers (Registerpaar r29:r28) in den
Prozessor übertragen wird.

; Addition zweier 16-Bit-Operanden im Speicher

lds   r24,0x100   ; untere 8 Bit des 1. Operanden holen

lds   r25,0x101   ; obere 8 Bit des 1. Operanden holen

ldi   r28,0x02    ; Adresse des 2. Operanden in das …

ldi   r29,0x01    ; … Y-Register ùbertragen

ld    r24,Y+      ; unteres Byte des 2. Operanden holen (Adresse: 0x102)
ld    r25,Y       ; oberes Byte des 2. Operanden holen (Adresse: 0x103)

add   r24,r26     ; Addition durchfùhren

adc   r25,r27

sts   0x100,r24   ; unteres Byte des Ergebnisses speichern

sts   0x101,r25   ; oberes Byte des Ergebnisses speichern

Analog zur Addition kann die Subtraktion ausgeführt werden:

; Subtraktion zweier 16-Bit-Operanden

sub   r24,r26   ; untere Bytes der Operanden subtrahieren

sbc   r25,r27   ; obere Bytes der Operanden subtrahieren

Wie im Fall der Addition wird in diesem Beispiel ein möglicher Übertrag, der sich
bei der Subtraktion der unteren Operandenbytes ergibt, durch den Befehl sbc (subtract
with carry) berücksichtigt. Im Fall der Subtraktion ist dieser Übertrag negativ zu gewich-
ten. Daher wird mithilfe des sbc-Befehls von der Differenz der Operanden r25 und r27
zusätzlich der Wert des Carry-Flags subtrahiert.

14.5  Verwendung der AVR-Befehle

448 14  Mikrocontroller

14.5.1.3 � Arithmetische und logische Schiebeoperationen
Für logische oder arithmetische Schiebeoperationen stehen die Befehle lsr, lsl, ror, rol
und asr zur Verfügung, die einen Wert um ein Bit nach rechts beziehungsweise links ver-
schieben. Das jeweils „herausgeschobene“ Bit, beim Rechtsschieben beispielsweise das
unterste Bit des Operanden, wird im Carry-Flag abgelegt. Die Rotationsbefehle ror und
rol übertragen den Wert des Carry-Flags in das frei gewordenen Bit des Arbeitsregisters.
In Abb. 14.3 ist die Funktionsweise der Schiebe- und Rotationsbefehle veranschaulicht.

Die Schiebebefehle arbeiten mit 8-Bit-Operanden. Durch mehrfache Anwendung von
Schiebebefehlen können auch breitere Operanden verarbeitet werden. Exemplarisch wird
dies anhand eines 16-Bit-Wertes gezeigt, welcher in zwei Arbeitsregistern abgelegt ist.

; Schieben nach links

lsl   r24   ; unteres Byte schieben

rol   r25   ; oberes Byte schieben

; Schieben nach rechts (logisch bzw. vorzeichenlos)

lsr   r25   ; oberes Byte schieben

ror   r24   ; unteres Byte schieben

0

LSR

1 1 0 0 0 1 01

0 0 1 1 0 0 0 10

0

0

LSL

1 1 0 0 0 1 01

1 1 0 0 0 1 0 00

0

0

ROR

1 1 0 0 0 1 01

1 0 1 1 0 0 0 10

Operand

Ergebnis

C-Flag

Operand

Ergebnis

C-Flag

Operand

Ergebnis

C-Flag Operand

Ergebnis

C-Flag

Operand

Ergebnis

C-Flag
0

ROL

1 1 0 0 0 1 01

1 1 0 0 0 1 0 10

0

ASR

1 1 0 0 0 1 01

0 0 1 1 0 0 0 10

Ein ASL-Befehl existiert nicht

Logisches Schieben

Arithmetisches Schieben

Rotieren

Abb. 14.3   Schiebe- und Rotationsbefehle

449

Die gezeigten Befehle können auch als arithmetische Schiebeoperation, also eine
Multiplikation mit 2 beziehungsweise eine Division durch 2 aufgefasst werden, sofern
der Operand als vorzeichenlose Zahl aufgefasst wird. Bei der Schiebeoperation nach
links tritt hierbei ein Überlauf auf, wenn das höchstwertige Bit des Operanden gesetzt
ist. Soll dieser Fall abgefangen werden, kann nach dem Schieben der Wert des Carry-
Flags abgefragt werden. Ist dieses gesetzt, ist ein Überlauf aufgetreten. Im Fall des
Rechtsschiebens tritt dagegen nie ein Überlauf auf.

Stellt der Operand dagegen eine Zweierkomplementzahl dar, kann ein Überlauf im
Fall des Linksschiebens durch ein gesetztes V-Flag detektiert werden.

Für das arithmetische Rechtsschieben von vorzeichenbehafteten Zahlen muss der
Befehl asr verwendet werden. Dieser sorgt im Gegensatz zu den anderen Schiebebefeh-
len dafür, dass das höchstwertige Bit des Operanden in das Ergebnis kopiert wird.

; Arithmetisches Schieben nach rechts (vorzeichenbehaftet)

asr   r25   ; oberes Byte schieben

ror   r24   ; unteres Byte schieben

14.5.1.4 � Multiplikation
Viele der AVR-CPUs unterstützen die Multiplikation zweier 8-Bit-Werte. Das Ergebnis
der Multiplikationsbefehle ist ein 16-Bit-Wert, der im Registerpaar r1:r0 abgelegt wird.
Sollen 16-Bit-Operanden multipliziert werden, müssen insgesamt vier Multiplikations-
befehle verwendet werden. Die hierbei entstehenden Teilergebnisse werden anschlie-
ßend entsprechend ihrem Gewicht addiert. Diese Vorgehensweise wird in Abb. 14.4
verdeutlicht.

Eine entsprechende Umsetzung des Prinzips ist im folgenden Programmfragment dar-
gestellt. Die 16-Bit-Operanden stehen in den Registerpaaren r25:r24 und r27:r26. Das
32 bit breite Ergebnis wird in den Registern r16 bis r19 abgelegt, wobei r16 die unters-
ten 8 Bit und r19 die obersten 8 Bit des Produktes enthält. Die Register r17 und r18
enthalten die Produktbits 15 bis 8 beziehungsweise 23 bis16. Die Berücksichtigung des
Gewichts der Teiloperanden erfolgt durch die Auswahl der Produktregister.

Abb. 14.4   Prinzip der 16x16-
Multiplikation mithilfe von
8x8-Multiplikationsbefehlen

Op1_h Op1_l*

Op1_l* Op2_l

Op2_h Op2_l

Op1_h* Op2_l

Op1_l* Op2_h

Op1_h* Op2_h

+

+

+

Produkt P

14.5  Verwendung der AVR-Befehle

450 14  Mikrocontroller

; Vorzeichenlose 16x16 Multiplikation

clr   r18         ; Produktbits (23:16) auf 0 setzen

clr   r19         ; Produktbits (31:24) auf 0 setzen

mul   r24,r26     ; op1_l * op2_l (1. Teilergebnis mit Gewicht 16:0)

mov   r16,r0      ; Ergebnis in die Produktbits (7:0) …

mov   r17,r1      ; … und (15:8) kopieren

mul   r25,r26     ; op1_h * op2_l (2. Teilergebnis mit Gewicht 24:8)

add   r17,r0      ; Ergebnis zu den Produktbits (15:8) …

adc   r18,r1      ; … und (23:16) addieren

mul   r24,r27     ; op1_l * op2_h (3. Teilergebnis, mit Gewicht 24:8)

add   r17,r0      ; Ergebnis zu den Produktbits (15:8) …

adc   r18,r1      ; … und (23:16) addieren

mul   r24,r27     ; op1_h * op2_h (4. Teilergebnis mit Gewicht 31:16)

add   r18,r0      ; Ergebnis zu den Produktbits (23:16) …

adc   r19,r1      ; … und (31:24) addieren

14.5.1.5 � Division
Die Division wird von der AVR-CPU nicht durch einen entsprechenden Befehl unter-
stützt. Stattdessen kann diese Operation mithilfe eines Algorithmus durchgeführt
werden, der, wie die schriftliche Division, auf einer sukzessiven Berechnung der Quo-
tientenbits basiert. Abb. 14.5 veranschaulicht das Vorgehen bei einer vorzeichenlosen
Division für 8-Bit-Operanden.

Ein entsprechendes AVR-Programm kann wie folgt realisiert werden:

Abb. 14.5   Flussdiagramm für
die 8-Bit-Division

nein

ja

nein

Quotient schieben

Rest &
Dividend schieben

Rest < Divisor?

Bitzähler = 8
Rest & Quotient löschen

Bitzähler = Bitzähler -1

Bitzähler = 0?

Rest = Rest - Divisor
Quotient = Quotient | 1

451

; Vorzeichenlose 8-Bit-Division

; r16=Bitzàhler, r24=Dividend, r25=Divisor
; r26=Rest, r27=Quotient
ldi r16,8          ; Bitzàhler = 8
clr r26            ; Rest lòschen

clr r27            ; Quotient lòschen

div_loop:

   lsl r27         ; Quotient schieben

   lsl r24         ; oberstes Dividendenbit in C-Flag

   rol r26         ; Dividendenbit in Rest verschieben

   cp r26,r25      ; Rest mit Divisor vergleichen

   brcs dec_cnt    ; falls Rest kleiner: springen

   sub r26,r25     ; Divisor von Rest subtrahieren

   ori r27,1       ; Quotientenbit setzen

dec_cnt:

   dec r16         ; Bitzàhler dekrementieren

   brne div_loop   ; falls noch nicht 0: nàchste Iteration

14.5.2	� Befehle für den Zugriff auf Speicher und
Peripheriekomponenten

In diesem Abschnitt werden die Befehle zum Transfer von Daten zwischen der CPU
und dem Speicher beziehungsweise den eingebetteten Peripheriekomponenten näher
erläutert. Da die AVR-CPU eine Load-Store-Architektur besitzt, müssen alle Daten, die
durch ein Programm verarbeitet werden sollen, zunächst durch einen Ladebefehl (load)
in ein Arbeitsregister der CPU übertragen werden. Anschließend können die Daten mit
arithmetischen oder logischen Befehlen verarbeitet werden. Die Ergebnisse dieser Ope-
rationen können für weitere arithmetisch-logische Befehle im Register verbleiben oder
werden mithilfe eines Speicherbefehls (store) in den Speicher oder die Peripheriekompo-
nenten übertragen

Für die Adressierung des SRAMs im Controller stehen mehrere Load- und Storebe-
fehle zur Verfügung, welche sich durch die verwendete Adressierungsart unterscheiden.
Diese Befehle sind in Tab. 14.9 zusammengefasst.

Tab. 14.9   Adressierung des SRAMs über Lade- und Speicherbefehle

Addressierungsart Load-Befehl Storebefehl

Absolut lds sts

Indirekt ld st

Indirekt mit Pre-Drekrement oder Post-Inkrement ld st

Indirekt mit Verschiebung ldd std

Absolut lds sts

14.5  Verwendung der AVR-Befehle

452 14  Mikrocontroller

Als Zielarbeitsregister der Load-Befehle beziehungsweise Quellarbeitsregister für die
Store-Befehle können alle 32 Arbeitsregister der CPU verwendet werden. Für die Adres-
sierung des Speichers im Fall der indirekten Adressierung können nur die Register X, Y
und Z verwendet werden. Der Offset bei indirekter Adressierung mit Verschiebung darf
nur positiv sein und den Wert 63 nicht überschreiten. Darüber hinaus wird diese Adres-
sierungsart nur für die Register Y und Z unterstützt.

Im Folgenden sind Codebeispiele zur Verwendung der Load- und Storebefehle ange-
geben. Alle Beispiele führen die gleiche Operation aus: Das Kopieren des Wertes in der
SRAM-Speicherstelle 228 in die SRAM-Speicherstelle 254.

; Speicherstelle kopieren mit absoluter Adressierung

lds   r7,228      ; Wert aus SRAM laden

sts   254,r7      ; Wert in SRAM speichern

; Speicherstelle kopieren mit indirekter Adressierung

ldi   r30,228     ; Low-Byte des Z-Registers laden

ldi   r31,0       ; High-Byte des Z-Registers laden

ldi   r26,255     ; Low-Byte des X-Registers laden

ldi   r27,0       ; High-Byte des X-Registers laden

ld    r3,Z        ; Wert indirekt aus SRAM laden

st    -X,r3       ; mit Pre-Dekrement speichern

; Kopieren mit indirekter Adressierung mit Verschiebung

ldi   r28,220     ; Low-Byte des Y-Registers laden

ldi   r29,0       ; High-Byte des Y-Registers laden

ldd   r5,Y+8      ; Wert aus SRAM laden
std   Y+34,r5     ; Wert in SRAM speichern

Für einen Zugriff auf den Programmspeicher wird der Befehl lpm (load from pro-
gram memory) zur Verfügung gestellt. Dieser Befehl ermöglicht es auf im Programm-
speicher abgelegte Konstanten zuzugreifen. Hierbei wird nur die indirekte Adressierung
oder die indirekte Adressierung mit Post-Inkrement unterstützt. Wird bei Verwendung
des lpm-Befehls kein Operand angeben, erfolgt die Berechnung der Programmspei-
cheradresse mithilfe des Registerpaares Z und der gelesene Wert wird im Register r0
abgespeichert.

; Beispiele fùr die Verwendung des Befehls lpm

lpm               ; r0 mit Wert aus Programmspeicher laden

lpm   r0,Z        ; identisch zu voriger Zeile

lpm   r8,Z        ; hier wird r8 ùberschrieben

lpm   r17,Z+      ; r17 laden, anschließend Z inkrementieren

Der Zugriff auf die Peripheriekomponenten kann sowohl memory-mapped (mithilfe
der zuvor beschriebenen Load-/Storebefehle) als auch port-mapped erfolgen. Für einen
port-mapped-basierten Zugriff stellt die AVR-CPU die Befehle in und out zur Verfügung.

453

Die Befehle in und out unterstützen nur eine absolute Adressierung. Soll beispiels-
weise ein Wert auf den digitalen Ausgängen (PORTA) eines ATmega32 ausgegeben wer-
den, kann dies mithilfe des Befehls

out   27,r7        ; r7 auf den PORTA-Anschlùssen ausgeben

geschehen. Die Adressen der einzelnen Peripheriekomponenten können in den Daten-
blättern der AVR-Controller nachgeschlagen werden. Allerdings wird der Programmcode
durch eine Angabe der Adresse als Zahlenwert wie im obigen Beispiel recht unüber-
sichtlich. Die Firma Atmel stellt daher sowohl für Assembler- als auch für C-Programme
Include-Dateien zur Verfügung, in denen symbolische Konstanten für den Zugriff auf die
Peripheriekomponenten definiert sind. Hiermit kann das obige Beispiel auch wie folgt
formuliert werden.

.include "m32def.inc"   ; Include Datei einbinden

out   PORTA,r7          ; r7 auf den PORTA-Anschlùssen ausgeben

Mithilfe der Befehle in und out kann auch auf CPU-interne Register wie das Status-
register oder den Stackpointer zugegriffen werden, wie die folgenden Codebeispiele
zeigen:

in   r14,SREG      ; Statusregister nach r14 kopieren

in   r30,SPL       ; niederwertiges Byte des SP nach r30

in   r31,SPH       ; hòherwertiges Byte des SP nach r31

14.5.3	� Programmverzweigungen

Im Rahmen dieses Abschnitts wird anhand von einfachen Beispielen verdeutlicht, wie
die Sprungbefehle der AVR-CPU eingesetzt werden können. Hierzu wird zunächst auf
Programmverzweigungen eingegangen. Anschließend werden der Aufruf von Unterpro-
grammen und Möglichkeiten der Übergabe von Parametern an Unterprogramme vorge-
stellt. Eine Einführung in die Verarbeitung von Interrupts schließt den Abschnitt ab.

14.5.3.1 � Bedingte Verzweigungen und Programmschleifen
Soll eine bedingte Verzweigung oder eine Programmschleife realisiert werden, kön-
nen hierzu die bedingten Sprungbefehle oder auch die Skip-Befehle verwendet wer-
den. Exemplarisch kann die Verwendung der AVR-Sprungbefehle anhand zweier
einfacher Beispiele verdeutlich werden, die in Abb. 14.6 als Flussdiagramme darge-
stellt sind.

Die bedingte Ausführung eines Befehls (Abb. 14.6a) lässt sich mithilfe eines Ver-
gleichs und eines bedingten Sprungbefehls realisieren.

14.5  Verwendung der AVR-Befehle

454 14  Mikrocontroller

; Verzweigung mit bed. Sprung (if)

cp    r24,r25    ; R24 und R25 vergleichen (Flags wie SUB)

brne  weiter     ; falls ungleich: springen

subi  r28,10     ; Subtraktion ausfùhren

weiter:

Ebenso könnte die gleiche Funktionalität erreicht werden, wenn das Programmfrag-
ment mit Skip-Befehlen realisiert würde. Der Skip-Befehl überprüft eine Bedingung
(zum Beispiel, ob zwei Register identische Werte besitzen) und überspringt nachfolgen-
den Befehl falls die Bedingung erfüllt ist. Im obigen Beispiel bietet sich die Verwendung
des Befehls cpse (compare and skip if equal) an:

; Verzweigung mit Skip-Befehl

cpse  r24,r25     ; Vergleich -- Nachf. Befehl evtl. ùberspringen

subi r28,10       ; wird nicht ausgefùhrt falls r24=r25

Bei diesem Beispiel besitzt der Skip-Befehl gegenüber dem Branch-Befehl Vorteile,
da Programmcode eingespart und gleichzeitig die Ausführungszeit des Programmab-
schnitts um einen Taktzyklus reduziert wird.

Ein Programmfragment, welches das Beispiel aus Abb. 14.6b umsetzt, könnte wie
folgt formuliert werden:

; Verzweigung mit bed. Sprung (if-else)

cp     r24,r25   ; R24 und R25 vergleichen (Flags wie SUB)

brne  do_inc     ; falls ungleich: springen

subi  r28,10     ; Subtraktion ausfùhren

rjmp  weiter     ; alternativen Code ùberspringen

do_inc:

   inc   r27     ; R27 inkrementieren

weiter:

ja

nein

r24 = r25 ?

r28 = r28 - 10

a)

ja

nein r27 = r27 + 1

b)

r24 = r25 ?

r28 = r28 - 10

Abb. 14.6   Beispiele für Programmverzeigungen

455

Der Einsatz von Skip-Befehlen ist in diesem Beispiel nicht vorteilhafter. Auf ein ent-
sprechendes Beispiel wird daher verzichtet.

14.5.3.2 � Unterprogrammaufrufe
Unterprogramme werden mithilfe der Befehle call, rcall oder icall aufgerufen. Wäh-
rend der Befehl call die Adresse des Unterprogramms absolut angibt, verwendet der
Befehl rcall eine relative Adressierung. Da der Befehl rcall einen geringeren Programm-
speicherbedarf besitzt und schneller ausgeführt wird, ist dieser Befehl in der Regel zu
bevorzugen. Hierbei ist jedoch zu berücksichtigen, dass die Differenz der Einsprungad-
resse des Unterprogramms und des rcall-Befehls auf den Wertebereich von −2048 bis
+2047 begrenzt ist. Ist die Differenz größer, muss auf den call-Befehl zurückgegriffen
werden. Der Befehl icall ermöglicht die Angabe der Unterprogrammadresse mithilfe des
Z-Registers und verwendet somit eine indirekte Adressierung.

Die CPU legt mit dem Unterprogrammaufruf die Rücksprungadresse merken. Dies
ist die Programmspeicheradresse, bei der das Programm nach Beenden des Unterpro-
gramms fortgesetzt werden soll. Für die Speicherung der Rücksprungadresse wird der
Stack verwendet. Da Programmspeicheradressen im Fall des AVR eine Wortbreite von
16 bit besitzen, werden hierdurch zwei Speicherplätze des Stacks belegt.

Ein Unterprogramm wird mit dem Befehl ret beendet. Dieser Befehl lädt die auf dem
Stack abgelegte Programmspeicheradresse des aufrufenden Programms in den Program
Counter (PC). Der Program Counter adressiert somit anschließend die Befehle des aufru-
fenden Programms, welches nach Ausführung des ret-Befehls fortgesetzt wird.

Werden in einem Unterprogramm Zwischenergebnisse erzeugt, können diese tempo-
rär in Arbeitsregistern abgelegt werden. Da die Werte dieser Register durch das Unter-
programm verändert werden, ist es sinnvoll, die betroffenen Arbeitsregister zu Beginn
des Unterprogramms auf dem Stack zu sichern. Hierzu wird der Befehl push verwendet.
Vor Verlassen des Unterprogramms werden die ursprünglichen Werte der Arbeitsregister
mithilfe des pop-Befehls vom Stack in die Register zurückgeladen. Nach Verlassen des
Unterprogramms besitzen somit alle Arbeitsregister den Wert, den sie beim Aufruf des
Unterprogramms besaßen.

Die Arbeitsregister können auch zur Übergabe von Parametern oder Rückgabe-
werten verwendet werden. Ein Beispiel hierfür zeigt das nachfolgende Programm,
welches aus einem Hauptprogramm haupt_prg und einem Unterprogramm up_add
besteht.

; Beispiel fùr Unterprogrammaufrufe mit

; registerbasierter Parameterùbergabe

haupt_prg:

ldi   r24,42        ; 1. Beispielwert laden

ldi   r25,37        ; 2. Beispielwert laden

rcall up_add        ; Unterprogramm aufrufen

…                   ; weitere Befehle zur Verarbeitung des

14.5  Verwendung der AVR-Befehle

456 14  Mikrocontroller

…                   ; Ergebnisses (steht in r16)

up_add:

push  r24           ; r24 auf dem Stack sichern

add   r24,r25       ; Parameter addieren

mov   r16,r24       ; Ergebnis nach r16 schreiben

pop   r24           ; r24 wieder herstellen

ret                 ; Unterprogramm verlassen

Als Alternative zur registerbasierten Parameterübergabe kommt auch die Über-
gabe von Parametern mithilfe des Stacks infrage. Dieses Vorgehen ist insbesondere
dann sinnvoll, wenn eine große Anzahl von Parametern an ein Unterprogramm über-
geben werden soll. Im folgenden Beispiel wird die Parameterübergabe exemplarisch
verdeutlicht.

Das Unterprogramm sichert zunächst die verwendeten Registerwerte auf dem Stack,
und es wird der aktuelle Wert des Stackpointers in das Z-Register geladen. Anschließend
erfolgt die indirekte Adressierung der Daten mithilfe einer indirekten Adressierung mit
Verschiebung. Nach der Verarbeitung der Daten, in diesem Beispiel die Addition der
übergebenen Parameter, wird das Ergebnis auf dem Stack gesichert, wobei der erste
Übergabeparameter überschrieben wird. Nach dem Wiederherstellen der gesicherten
Registerwerte wird das Unterprogramm verlassen.

Das Hauptprogramm stellt den ursprünglichen Wert des Stackpointers nach Rückkehr
aus dem Unterprogramm wieder her, indem die zuvor mit push-Befehlen auf dem Stack
abgelegten Werte mit zwei pop-Befehlen vom Stack entfernt werden. Da der erste Über-
gabeparameter mit dem Ergebnis des Unterprogramms überschrieben wurde, befindet
sich nach Ausführung beider pop-Befehle das Ergebnis des Unterprogramms im Arbeits-
register r24.

Wird eine Parameterübergabe mithilfe des Stacks durchgeführt, ist es sinnvoll, die
Belegung des Stacks tabellarisch festzuhalten. Hierzu wird in einer zweispaltigen Tabelle
in der linken Spalte die Adresse der Speicherstelle (relativ zum aktuellen Stackpointer)
und in der rechten Spalte der Wert der Speicherstelle eingetragen.

Für die Realisierung des Codes wird angenommen, dass das Hauptprogramm zwei
Parameter auf dem Stack ablegt und anschließend in das Unterprogramm verzweigt. Zu
Beginn des Unterprogramms werden die Register r30, r31, r24 und r25 auf dem Stack
gesichert. Die anschließende Belegung des Stacks ist in Tab. 14.10 dargestellt. Anhand
der Tabelle kann nachvollzogen werden, dass die Parameter an den Adressen Stackpoin-
ter+7 und Stackpointer+8 zu finden sind, woraus sich direkt der benötigte Offset für die
Verschiebung zur Adressierung der Übergabeparameter ergibt.

Auf Basis der dokumentierten Stackbelegung kann das Programm realisiert werden.
Im Folgenden ist der Code für das Hauptprogramm haupt_prg und das Unterprogramm
up_add dargestellt.

457

; Beispiel fùr Unterprogrammaufrufe mit

; stackbasierter Parameterùbergabe

haupt_prg:

ldi   r24,42      ; 1. Beispielwert laden

push  r24         ; 1. Wert auf dem Stack ablegen

ldi   r24,37      ; 2. Beispielwert laden

push  r24         ; 2. Wert auf dem Stack ablegen

rcall up_add      ; Unterprogramm aufrufen

pop   r24         ; Stackpointer durch pop-Befehle

pop   r24         ; wieder herstellen

                  ; Das Ergebnis steht nun in r24

…                 ; weitere Befehle zur Verarbeitung des Ergebnisses

up_add:

push  r30         ; r30, r31 (= Z-Register)
push  r31         ; auf dem Stack sichern

push  r24         ; temporàr verwendete Register sichern

push  r25

in     r30,SPL    ; untere 8 Bit des Stackpointers nach r30

in     r31,SPL    ; obere 8 Bit des Stackpointers nach r31

ldd   r24,Z+8     ; 1. Wert vom Stack nach r24 kopieren
ldd   r25,Z+7     ; 2. Wert vom Stack nach r25 kopieren
add   r24,r25     ; Parameter addieren

std   Z+8,r24      ; Ergebnis anstelle des 1. Wertes auf dem Stack ablegen
pop   r25         ; gesicherte Register wieder herstellen

pop   r24         ; Aufgrund der Struktur des Stapelspeichers

pop   r31         ; geschieht dies in umgekehrter Reihenfolge

pop   r30         ; (Beispiel: Das zuerst gesicherte Register wird

                  ; zuletzt vom Stack geholt)

ret               ; Unterprogramm verlassen

Tab. 14.10   Belegung
des Stacks für das
Beispielprogramm

Adresse Wert

SP+8 1. Parameter (42)

SP+7 2. Parameter (37)

SP+6 Rücksprungadresse

SP+5 Rücksprungadresse

SP+4 r30

SP+3 r31

SP+2 r24

SP+1 r25

SP „unbelegt“

14.5  Verwendung der AVR-Befehle

458 14  Mikrocontroller

14.6	� Grundlagen der Interruptverarbeitung

Eine wichtige Aufgabe eines Mikrorechnersystems ist es, auf Ereignisse reagieren zu
können. Derartige Ereignisse können zum Beispiel Eingaben des Benutzers oder auch
das Bereitstellen von Daten eines Sensors sein. Ebenso könnten eingebettete Periphe-
riekomponenten wie Timer oder Kommunikationsschnittstellen Ereignisse auslösen, auf
die das Programm reagieren muss. Eine besondere Eigenschaft dieser Ereignisse ist, dass
sie asynchron zum laufenden Programm auftreten. Dies heißt, dass man bei der Erstel-
lung eines Programms nicht weiß, welcher Teil des Programms gerade abgearbeitet wird,
wenn das Ereignis auftritt.

Es existieren zwei grundlegende Alternativen, um auf diese Ereignisse zu reagie-
ren. Diese Alternativen werden im Folgenden mit dem englischen Fachbegriff Polling
(deutsch: Abfragen) und als Interruptverarbeitung oder kurz Interrupts bezeichnet.

Eine Analogie aus dem täglichen Leben kann helfen, die Grundprinzipien die-
ser beiden Strategien zu verdeutlichen: Sie haben Gäste eingeladen, wissen aber nicht
genau, wann die Gäste erscheinen werden. Zur Bewirtung Ihrer Gäste müssen Sie noch
Getränke kalt stellen.

Eine denkbare Strategie wäre es, auf dem Flur der Wohnung im Kreis zu laufen. Jedes
Mal bei Erreichen der Wohnungstür wird diese geöffnet, um nachzuschauen, ob die
Gäste schon eingetroffen sind. Um die Wartezeit sinnvoller zu nutzen, könnte auch ein
Weg durch die Küche gewählt werden, um mit jedem Durchlauf eine Getränkeflasche in
den Kühlschrank zu stellen. Diese Vorgehensweise entspricht in etwa dem Prinzip des
Pollings: Die Abfrage des Ereignisses („Gäste sind da“) wird wiederholt (in einer Warte-
schleife) ausgeführt ohne zu wissen, ob das Ereignis wirklich eingetreten ist. Zusätzlich
zur Abfrage des Ereignisses kann in der Warteschleife ein Teil der sonst noch anstehen-
den Aufgaben („Getränke kalt stellen“) abgearbeitet werden.

In der Realität würden die meisten Menschen vermutlich eine andere Strategie wäh-
len, da sie eine Türklingel besitzen: Sie arbeiten die Aufgabe „Getränke kalt stellen“ ab
und unterbrechen diese Arbeit sobald die Klingel läutet. Die Gäste werden hereingelas-
sen und die unterbrochene Arbeit wird wieder aufgenommen. Diese Strategie entspricht
der Interruptverarbeitung: Das Ereignis („Gäste sind da“) wird durch eine besondere
Hardware („Klingel“) signalisiert. Solange das Ereignis nicht eintritt, werden andere
Aufgaben abgearbeitet.

Obwohl die oben dargestellte Analogie nicht überstrapaziert werden sollte, kann sie
einige Konsequenzen der unterschiedlichen Strategien zur Verarbeitung von Ereignissen
verdeutlichen:

•	 Für die interruptbasierte Verarbeitung wird zusätzliche Hardware benötigt, die zur
Unterbrechung einer von der CPU abgearbeiteten Aufgabe führt.

•	 Potenziell könnte Polling zu kürzeren Reaktionszeiten führen. („Öffnen der Tür genau
in dem Moment, in dem die Gäste die Tür erreichen“).

459

•	 Treten Ereignisse nur kurzzeitig auf, besteht insbesondere bei Polling die Gefahr, dass
diese Ereignisse verpasst werden („die Gäste gehen wieder, weil der Gastgeber gerade
zu lange in der Küche beschäftigt ist“)

In den folgenden Abschnitten werden weitere Aspekte der Interruptverarbeitung durch
ein Mikrorechnersystem diskutiert.

14.6.1	� Interruptfreigabe

In typischen Mikrorechnersystemen können prinzipiell mehrere Ereignisse auftreten, auf
die ein Programm reagieren könnte. Nicht alle dieser möglichen Ereignisse sind für eine
konkrete Anwendung relevant. Daher ist es sinnvoll, dass nur die relevanten Ereignisse
zu einer Unterbrechung des Programms führen.

Die Möglichkeit, dass man festlegt welche Ereignisse zu Programmunterbrechungen
führen, wird als Interruptfreigabe bezeichnet.

Die Interruptfreigabe erfolgt häufig hierarchisch. Hierbei kann eine globale und eine
lokale Interruptfreigabe unterschieden werden. Die globale Interruptfreigabe dient dazu,
Programmunterbrechungen grundsätzlich zuzulassen. Zusätzlich ist es für jedes Ereignis
möglich, das Auslösen eines Interrupts zu erlauben oder zu sperren. Erst wenn die globale
Interruptfreigabe und die lokale Freigabe mindestens eines Ereignisses erfolgt sind, kön-
nen Unterbrechungen auftreten. Damit ein Ereignis (beispielsweise eine Flanke an einem
Interrupteingang) zu einer Programmunterbrechung führt, muss also sowohl die lokale
Freigabe des jeweiligen Ereignisses als auch die globale Interruptfreigabe erfolgt sein.

Die globale Freigabe von Interrupts im Fall der AVR-CPU erfolgt durch das Setzen
des Interrupt-Flags (I-Flag) im Statusregister der CPU. Hierfür kann für Assemblerpro-
gramme der Befehl sei beziehungsweise für C-Programme die Funktion sei() verwendet
werden. Das Löschen des Flags, und damit das globale Sperren aller Interrupts, erfolgt
mit dem Befehl cli oder der C-Funktion cli().

Die lokale Interruptfreigabe erfolgt durch eine entsprechende Programmierung der
einzelnen eingebetteten Peripheriekomponenten, die in den nachfolgenden Abschnit-
ten näher vorgestellt werden. Exemplarisch für die lokale Interruptfreigabe werden hier
externe Interrupts behandelt.

Die Controller der AVR-Familie besitzen die Möglichkeit einer Programmunterbre-
chung, wenn ein äußeres Signal einen bestimmten Wert annimmt. Hierzu besitzt bei-
spielsweise der Controller ATmega32 drei Anschlüsse, die mit INT0, INT1 und INT2
gekennzeichnet sind. Für die lokale Freigabe der zugehörigen Interrupts besitzt der
ATmega32 das Global Interrupt Control Register (GICR), welches die in Tab. 14.11 dar-
gestellte Belegung hat.

Durch Setzen des Bits 7 dieses Registers erfolgt beispielsweise die lokale Freigabe
des Interrupts, der dem Controlleranschluss INT1 zugeordnet ist. Entsprechendes gilt für
die Bits 6 und 5, mit denen die Interrupts der Anschlüsse INT0 bzw. INT2 freigeschaltet
werden können.

14.6  Grundlagen der Interruptverarbeitung

460 14  Mikrocontroller

Für die Auswahl, welches konkrete Ereignis (Low-Pegel, High-Pegel, steigende oder
fallende Flanke des an dem Anschluss zugeführten Signals) zu einer Programmunterbre-
chung führt, existieren weitere Register, wie das Microcontroller Unit Control Register
(MCUCR) und das Microcontroller Unit Control and Status Register (MCUCSR).

14.6.2	� Interrupt-Service-Routinen

Nachdem ein freigegebenes Ereignis zur Auslösung einer Unterbrechung geführt hat,
muss der Programmteil aufgerufen werden, der zur Verarbeitung dieses Interrupts vorge-
sehen ist. Dieser Programmteil wird als Interrupt-Service-Routine (ISR) bezeichnet.

Die Unterbrechung des laufenden Programms und das Verzweigen in die ISR erfolgen
durch die Hardware des Mikrorechners. Daher muss der CPU vor dem Auslösen eines
Interrupts bekannt sein, an welcher Position im Programmspeicher die zugehörige ISR
zu finden ist. Hierzu wird ein Zeiger auf die entsprechende Programmspeicher-Position
benötigt. Dieser Zeiger, welcher auch als Interrupt-Vektor bezeichnet wird, kann bereits
mit dem Entwurf des Prozessors festgelegt werden. In diesem Fall liegt die Position der
ISR fest und kann nicht nachträglich modifiziert werden. Alternativ finden auch pro-
grammierbare Interrupt-Vektoren Anwendung. In diesem Fall kann durch eine entspre-
chende Programmierung die Einsprungadresse der ISR durch das Programm bestimmt
werden.

Im Fall der AVR-CPU wird der erste Weg beschritten, wobei die Interrupt-Service-
Routinen in den ersten Speicherstellen des Programmspeichers abgelegt werden. Für
jede ISR sind im unteren Teil des Programmspeichers zwei Programmspeicherworte
reserviert. Dieser Speicherplatz reicht natürlich nicht für die Aufnahme einer kompletten
ISR aus. Allerdings ist der reservierte Bereich ausreichend, um einen Sprungbefehl (zum
Beispiel mithilfe des jmp-Befehls) aufzunehmen, mit welcher der Code der eigentlichen
ISR aufgerufen wird.

In den Datenblättern der AVR-Controller ist die Zuordnung von Ereignissen und
Interrupt-Vektoren zu finden. Exemplarisch fasst Tab. 14.12 die Interrupt-Vektoren des
ATmega32 zusammen.

Bei einem Ereignis an INT1 springt ein Interrupt beispielsweise an Adresse
4 und dort wird ein Sprung in die ISR hinterlegt. Da die Sprungbefehle immer
16 Bit des Programmspeichers belegen, beginnen alle Interruptvektoren an geraden
Programmspeicheradressen.

Die folgenden Beispielprogramme verdeutlichen die Verwendung von Interrupt-
Service-Routinen in Assembler beziehungsweise C. Um die Programme möglichst

Tab. 14.11   Belegung des
GICR-Registers

GICR

Bit 7 6 5 4 3 2 1 0

Name INT1 INT0 INT2 – – – IVSEL IVCE

461

übersichtlich zu halten, beschränkt sich die Aufgabe der ISR auf das Zählen der steigen-
den Flanken am Controller-Anschluss INT1.

In diesem Programm werden einige Assembler-Direktiven verwendet, die an dem
vorangestellten Punkt zu erkennen sind. Assembler-Direktiven sind Anweisungen, die
während der Übersetzung des Programms ausgewertet werden. Sie werden nicht in aus-
führbare Befehle umgesetzt und belegen daher auch keinen Platz im Programmspeicher.
Die Direktive .org bewirkt, dass nachfolgende Befehle an einer definierten Position im
Programmspeicher abgelegt werden. Im obigen Beispiel wird sie verwendet, um den
nachfolgenden Befehl (jmp isr_int1) an die Adresse des Interruptvektors (0x04) abzule-
gen. Nach Einsatz der Direktive .dseg beziehen sich alle Befehle auf das SRAM. Die im
Beispielprogramm angegebene Folge aus den Direktiven .dseg, .org und .db dienen dazu,
im SRAM ein Byte an der Adresse 0x200 zu reservieren. Mithilfe des Labels icnt kann

Tab. 14.12   Zuordnung von Ereignissen und Interruptvektoren

Interrupt-
vektor (hex.)

Interruptquelle
Kurzbezeichnung Erläuterungen Gruppe

00 RESET Reset des Systems (nicht sperrbar) Reset

02 INT0 Ereignis an Anschluss INT0 Externe
Interruptquellen04 INT1 Ereignis an Anschluss INT1

06 INT2 Ereignis an Anschluss INT2

08 TIMER2_COMP Timer2-Vergleichs-Interrupt Timer

0A TIMER2_OVF Timer2-Überlauf-Interrupt

0C TIMER1_CAPT Timer1-Capture-Interrupt (ICU)

0E TIMER1_COMPA Timer1-Vergleichs-Interrupt A

10 TIMER1_COMPB Timer1-Vergleichs-Interrupt B

12 TIMER1_OVF Timer1-Überlauf-Interrupt

14 TIMER0_COMP Timer0-Vergleichs-Interrupt

16 TIMER0_OVF Timer0-Überlauf-Interrupt

18 SPI_STC SPI: Übertragung abgeschlossen Eingebettete
Schnittstellen1A USART_RXC USART: Datenempfang

abgeschlossen

1C USART_UDRE USART: Sendedatenspeicher leer

1E USART_TXC USART: Senden eines Datums
abgeschlossen

20 ADC Umsetzung des Analogwertes fertig

22 EE_RDY EEPROM-Bereit-Interrupt EEPROM

24 ANA_COMP Analog-Komparator Eingebettete
Schnittstellen26 TWI I2C/TWI-Interrupt

28 SPM_RDY Programmspeicher-Interrupt Programmspeicher

14.6  Grundlagen der Interruptverarbeitung

462 14  Mikrocontroller

auf dieses Byte ähnlich wie auf eine Variable in einem Hochsprachenprogramm zugegrif-
fen werden.

; Beispiel fùr Unterprogrammaufrufe mit Interrupt-Service-Routinen

; Beispiel fùr die Interruptverarbeitung in Assembler

; Zàhlen der steigenden Flanken am Anschluss INT1

.include "m32def.inc" ; Controllerspezifische Definitionen einbinden

jmp   main            ; nach Reset: Sprung ins Hauptprogramm

.org  0x04            ; Assemblierung bei INT-Vektor fortsetzen

jmp   isr_int1        ; Sprung in eigentliche ISR fùr INT1

…                     ; hier mòglicherweise weitere ISRs

…                     ; oder Unterprogramme

isr_int1:

push  r24             ; Register auf Stack retten

lds   r24,icnt        ; aktuellen Zàhlerwert holen

inc   r24             ; Zàhler inkrementieren

sts   icnt,r24        ; in SRAM abspeichern

reti                  ; ISR verlassen

main:

; Initialisierung

clr   r24             ; r24 auf null setzen

sts   icnt,r24        ; Zàhlvariable lòschen

lds   r16,MCUCR

ori   r16,(1<<ISC10)  ; INT1 so programmieren, dass eine Unter-

ori   r16,(1<<ISC11)  ; brechung mit einer steig. Flanke auftritt

sts   MCUCR,r16

lds   r16, GIFR

ori   r16,(1<< INT1)  ; lokale Interruptfreigabe fùr INT1

sts   MCUCR,r16

sei                   ; globale Interruptfreigabe

; Endlosschleife des Hauptprogramms

main_lp:

lds  r24,icnt         ; aktuellen Zàhler nach r24

call  ausgabe         ; Wert ausgeben -- Das Unterprogramm

                      ; „ausgabe" ist hier nicht angegeben

rjmp  main_lp         ; Endlosschleife des Hauptprogramms

.dseg                 ; Assemblierung auf SRAM umschalten

(„Datensegment")

.org  0x200           ; SRAM-Adresse auswàhlen

icnt:

.db  0                ; 1 Byte reservieren

Ein äquivalentes Programm kann auch in der Sprache C formuliert werden. Hierzu
werden sowohl die controller-spezifischen Definitionen aus der Include-Datei io.h als
auch die speziellen Definitionen für Interruptverarbeitung (interrupt.h) eingebunden.

463

In der Include-Datei interrupt.h sind unter anderem auch Makros definiert, die zu
einer einfachen Definition von ISRs verwendet werden können. Hierzu wird das Makro
ISR() aufgerufen. Als Parameter wird der zugehörige Interruptvektor verwendet, der
durch die Kurzbezeichnung des Vektors mit nachgestelltem „_vect“ gekennzeichnet
wird.

// Programmbeispiel zur Verwendung von ISRs in C

#include <avr/io.h>          // Controller-spezifische Definitionen

#include <avr/interrupt.h>   // Header-Datei fùr Interrupts

volatile unsigned char icnt;

// Hauptprogramm

void main()

{

   // Initialisierung

   icnt = 0;
   // Interrupt bei steigender Flanke an INT1

   MCUCR |= (1<<ISC11)| (1<<ISC10);
   GICR |= 1<<INT1;     // Lokale Interruptfreigabe
   sei();               // Globale Interruptfreigabe

   while (1) {          // Endlosschleife

        Ausgabe(icnt);

   }

}

// INT1 ISR

ISR (INT1_vect)

{

   icnt++;             // Diese ISR inkrementiert icnt
}

Insbesondere bei Verwendung der Hochsprache C wird deutlich, dass Interrupt-
Service-Routinen grundsätzlich keine Argumente und auch keine Rückgabewerte besit-
zen. Diese Eigenschaft ergibt sich aus der Tatsache, dass man nicht wissen kann, welcher
Programmteil gerade ausgeführt wird, wenn eine ISR aufgerufen wird. Somit können
auch keine Parameter in Arbeitsregistern oder auf dem Stack abgelegt werden, die dann
von einer ISR verarbeitet werden könnten. Die einzige Möglichkeit eine Kommunika-
tion zwischen Hauptprogramm und ISR zu realisieren, ist die Verwendung gemeinsamer
Speicherplätze, zum Beispiel im SRAM.

14.7	� Eingebettete Peripheriekomponenten

Mikrocontroller sind universell einsetzbare digitale Systeme, die auf einem Chip integ-
riert sind. Neben einer CPU enthalten Sie eine Vielzahl von verschiedenen Peripherie-
komponenten für sehr unterschiedliche Aufgaben. Die Hersteller von Mikrocontrollern

14.7  Eingebettete Peripheriekomponenten

464 14  Mikrocontroller

bieten meist eine große Anzahl von unterschiedlichen Mikrocontrollern an, die sich auch
im Hinblick auf die in dem System eingebetteten Komponenten unterscheiden.

Im Folgenden werden am Beispiel der Mikrocontroller der AVR-Familie typische
Peripheriekomponenten und ihre Programmierung vorgestellt. Hierbei wird der AVR-
Mikrocontroller ATmega32 zugrunde gelegt. Anhand dieses Beispielcontrollers wird die
Funktionsweise ausgewählter Peripheriekomponenten diskutiert. Auf diese Weise wer-
den konkrete Kenntnisse der AVR-Mikrocontrollerserie vermittelt, die es ermöglichen,
einfache AVR-basierte Systeme zu realisieren. Außerdem werden Sie in die Lage ver-
setzt, die anhand der AVR-Serie vermittelten Grundprinzipien auf andere eingebettete
digitale Systeme zu übertragen.

14.7.1	� Ports

Jeder Mikrocontroller besitzt sogenannte Ports. Ports sind Anschlüsse des Mikrocontrol-
lers, die durch eine entsprechende Programmierung als digitale Eingänge oder Ausgänge
verwendet werden können.

Häufig werden die einzelnen Anschlüsse zu Gruppen zusammengefasst und erhal-
ten einen logischen Namen, der sowohl im Datenblatt referenziert als auch im Rahmen
der Softwareentwicklung in den Programmen verwendet wird. So besitzt der ATmega32
beispielsweise vier Ports, die mit PORTA, PORTB, PORTC und PORTD bezeichnet
werden. Jedem dieser Ports sind acht Anschlüsse des Controllers zugeordnet. Die Port-
anschlüsse des Controllers werden durch eine entsprechende Nummerierung unterschie-
den. So werden beispielsweise die acht Anschlüsse des Ports PORTA als PA0 bis PA7
bezeichnet. Für die anderen Ports gelten entsprechende Zuordnungen.

Um eine hohe Flexibilität beim Einsatz der Ports zu erzielen, ist es möglich, jeden
einzelnen Anschluss eines Ports, unabhängig von den anderen Anschlüssen dieses Ports,
als Ausgang oder Eingang zu programmieren.

Ist ein Portanschluss als Ausgang konfiguriert, wird durch das laufende Programm
festgelegt, ob an diesem Anschluss eine logische 0 oder 1 ausgegeben wird. Entspre-
chend kann mithilfe eines als Eingang programmierten Ports ein digitaler Wert eingele-
sen und durch die Software des Controllers ausgewertet werden.

Ports stellen somit die universellste Peripheriekomponente dar, da sie für die Ver-
bindung eines Mikrocontrollers mit beliebigen anderen digitalen Bausteinen eingesetzt
werden können. Aus diesem Grund wird statt des Begriffs Port häufig auch der Begriff
General Purpose Input/Output (GPIO) verwendet.

Die Grenzen der Einsetzbarkeit von Ports wird im Wesentlichen durch die Leis-
tungsfähigkeit der CPU des Controllers bestimmt: Je häufiger ein Portbit pro Zeiteinheit
umprogrammiert werden muss, desto höher ist die hierfür benötigte Rechenleistung. Im
ungünstigsten Fall übersteigt die zur Bedienung der Ports benötigte Rechenleistung die
durch die CPU zur Verfügung gestellte Rechenleistung, sodass eine konkrete Aufgabe,
wie die Kommunikation mit einem anderen Baustein, nicht realisiert werden kann. Es

465

muss daher im Einzelfall geprüft werden, ob eine angestrebte digitale Ein-/Ausgabefunk-
tion durch eine entsprechende Portprogrammierung erfolgen kann, oder ob der Einsatz
eines Controllers sinnvoll ist, der die gewünschte Funktion durch spezialisierte Hard-
ware-Komponenten zur Verfügung stellt.

Zur Programmierung von Peripheriekomponenten werden sogenannte I/O-Register
verwendet. Entsprechend der Grundfunktion eines Ports müssen mindestens zwei I/O-
Register vorhanden sein: Ein Register zur Auswahl, ob ein Anschluss als Eingang oder
als Ausgang betrieben werden soll und ein weiteres Register, welches zum Einlesen oder
Ausgeben der eigentlichen Daten dient.

Entsprechend ihrer Funktion findet man in nahezu allen Mikrocontrollern zur Pro-
grammierung von Ports sogenannte Datenrichtungsregister und Datenregister. Mithilfe
des Datenrichtungsregisters wird die Datenrichtung, also ob ein Portbit als Eingang oder
als Ausgang arbeitet, programmiert. Die Datenregister dienen der eigentlichen Ein-/Aus-
gabe digitaler Werte. Darüber hinaus können einem Port weitere I/O-Register zugeordnet
sein, mit denen spezielle Portfunktionen aktiviert werden können.

Die im Rahmen dieses Kapitels betrachtete AVR-Familie ordnet jedem Port drei I/O-
Register zu:

Datenrichtungsregister (Data Direction Register, DDR)
Wird ein Bit im Datenrichtungsregister auf 0 gesetzt, arbeitet der zugehörige Anschluss
als Eingang. Ist das dem Anschluss zugehörige Bit dagegen auf 1 gesetzt, wird der ent-
sprechende Anschluss als digitaler Ausgang betrieben.

Dateneingangsregister (Port Input Register, PIN)
Mithilfe dieses Registers können die an einem Port anliegenden digitalen Eingangswerte
eingelesen werden.

Datenausgaberegister (Port Output Register, PORT)
Ist ein Portanschluss als Ausgang programmiert, kann mithilfe des PORT-Registers der
ausgegebene logische Wert festgelegt werden. Ist ein Portanschluss als Ausgang pro-
grammiert, wird durch Setzen des zugehörigen Bits des PORT-Registers eine 1 oder
durch Löschen des Bits eine logische 0 ausgegeben.

Wird ein Portanschluss als Eingang verwendet, kann mithilfe des PORT-Registers ein
sogenannter Pull-up-Widerstand durch Setzen des Portbits aktiviert werden. Der Port-
eingang wird dann über einen Widerstand (im Bereich mehrerer Kiloohm) mit der Ver-
sorgungsspannung verbunden. Auf diese Weise liegt an dem Eingang eine „schwache
Eins“ an, die durch die äußere Beschaltung mit einer „starken Null“, also einer relativ
niederohmigen Verbindung zu Masse, überschrieben werden kann.

Ist das zugehörige Bit im PORT-Register gelöscht, arbeitet der Eingang in einem
hochohmigen Modus (s. Tab. 14.13).

Die Portprogrammierung kann anhand eines einfachen Schaltungsbeispiels ver-
deutlicht werden: An einen ATmega32-Controller ist ein Taster und eine LED mit

14.7  Eingebettete Peripheriekomponenten

466 14  Mikrocontroller

Vorwiderstand anschlossen. Der Taster ist mit dem Portanschluss PA2 und die LED mit
dem Anschluss PA6 verbunden. Ein entsprechender Schaltplan ist in Abb. 14.7 darge-
stellt. Die Aufgabe des Controllers besteht darin, die LED einzuschalten, wenn der Taster
gedrückt wird.

LED

39

38

37

36

35

34

33

32

31

30

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

29

40
PB0 (XCK/T0)

PB1 (T1)

PB2 (INT2/AIN0)

PB3 (OC0/AIN1)

PB4 (/SS)

PB5 (MOSI)

PB6 (MISO)

PB7 (SCK)

/RESET

VCC

GND

XTAL2

XTAL1

PD0 (RXD)

PD1 (TXD)

PD2 (INT0)

PD3 (INT1)

PD4 (OC1B)

PD5 (OC1A)

PD6 (ICP1)

(ADC0) PA0

(ADC1) PA1

(ADC2) PA2

(ADC3) PA3

(ADC4) PA4

(ADC5) PA5

(ADC6) PA6

(ADC7) PA7

AREF

GND

AVCC

(TOSC2) PC7

(TOSC1) PC6

(TDI) PC5

(TDO) PC4

(TMS) PC3

(TCK) PC2

(SDA) PC1

(SCL) PC0

(OC2) PD7

A
T

m
eg

a3
2

+5V

+5V

Taster

RV

Abb. 14.7   Einfache Mikrocontrolleranwendung mit LED und Taster

Tab. 14.13   Funktionen der
Portanschlüsse bei AVR-
Mikrocontrollern

Bit im IO-Register Funktion des Portanschlusses
DDR PORT

0 0 Eingang, hochohmig

0 1 Eingang, Pull-up-Widerstand aktiviert

1 0 Ausgang, Ausgabe einer 0

1 1 Ausgang, Ausgabe einer 1

467

Aufgrund der Beschaltung muss der Anschluss PA1 als Eingang und der Anschluss
PA6 als Ausgang betrieben werden. Über die Verwendung der anderen Anschlüsse des
Ports PORTA wurde keine Aussage getroffen.

#define __AVR_ATmega32__ // Auswahl des Controllers

#include <avr/io.h> // Definitionen etc. fùr den Controller einbinden

void main()

{

   // Initialisierung

   DDRA  |= 0x40; // Bit 6 im Datenrichtungsregister A setzen
   DDRA  &= 0xFD; // Bit 1 im Datenrichtungsregister A lòschen
   PORTA |= 0x02; // Bit 1 im PORTA-Register setzen und so den
                  // internen Pull-Up-Widerstand aktivieren

   // Endlosschleife

   while (1) {

        if (PINA & 0x02)     // PA2 = 1 => Taster nicht gedrùckt
            PORTA &= 0xBF;   // PORTA(6) lòschen (LED aus)
        else                 // PA2 = 0 => Taster gedrùckt
            PORTA |= 0x40;   // PORTA(6) setzen (LED an)
   }

}

Neben der Portprogrammierung verdeutlicht dieses einfache Beispielprogramm einige
weitere wichtige Aspekte der Programmierung von Mikrocontrollern der AVR-Serie. Im
Folgenden werden die einzelnen Zeilen des Programms näher erläutert:

#define __AVR_ATmega32__ // Auswahl des Controllers

Mithilfe dieser Zeile wird der Controller ausgewählt, für den das Programm geschrie-
ben wird. Bei Verwendung einer Entwicklungsumgebung wie Atmel Studio geschieht
diese Auswahl in der Regel über die Einstellungen des in der Entwicklungsumgebung
angelegten Projektes. In diesem Fall kann die explizite Auswahl des Controllers im Pro-
gramm entfallen.

#include <avr/io.h> // Definitionen etc. fùr den Controller einbinden

Diese Zeile inkludiert eine Header-Datei, welche unter anderem die Definitionen der
im Controller vorhandenen I/O-Register enthält. Anschließend kann auf die Register des
Controllers wie auf Variablen eines C-Programms zugegriffen werden, was die Program-
mierung und die Lesbarkeit des Programms wesentlich vereinfacht.

void main()

14.7  Eingebettete Peripheriekomponenten

468 14  Mikrocontroller

Diese Zeile leitet das Hauptprogramm ein und entspricht der üblichen Programmie-
rung in der Programmiersprache C. Anders als bei manchen Programmen, die für einen
PC entwickelt werden, besitzt das Hauptprogramm keine Argumente und keine Rück-
gabewerte. Da das Hauptprogramm bei einfachen Controllern häufig direkt nach dem
Einschalten des Systems, ohne Zuhilfenahme eines Betriebssystems gestartet wird, exis-
tiert kein aufrufendes Programm (zum Beispiel das Betriebssystem), welches Argumente
übergeben könnte oder Rückgabewerte erwartet.

Manchmal wird dennoch für das Hauptprogramm eines AVRs ein Rückgabewert
angegeben. Der Grund hierfür ist in dem verwendeten Compiler zu suchen, welcher eine
Warnmeldung ausgibt, falls das Hauptprogramm keinen Rückgabewert besitzt. Diese
Warnmeldung kann durch die Definition eines Rückgabewertes vermieden werden.

// Initialisierung

DDRA  |= 0x40; // Bit 6 im Datenrichtungsregister A setzen
DDRA  &= 0xFD; // Bit 1 im Datenrichtungsregister A lòschen
PORTA |= 0x02; // Bit 1 im PORTA-Register setzen und so den
               // internen Pull-Up-Widerstand aktivieren

Die korrekte Programmierung des Datenrichtungsregisters des verwendeten Ports
geschieht mithilfe dieser Zeilen. In der ersten Zeile wird der aktuelle Wert des Datenrich-
tungsregisters gelesen und mithilfe einer bitweisen ODER-Verknüpfung mit der hexade-
zimalen Konstanten 0x40 (binär: 0100 0000) verknüpft. Das Ergebnis der Verknüpfung
wird im Datenrichtungsregister des Ports A, DDRA, abgelegt. Durch diese Form der Pro-
grammierung des Datenrichtungsregisters wird sichergestellt, dass das Bit 6 des Daten-
richtungsregisters DDRA, welches die Datenrichtung des Portanschlusses PA6 festlegt,
auf 1 gesetzt wird. Alle anderen Bits des Datenrichtungsregisters behalten ihren Wert.
Analog wird in der zweiten Zeile das Löschen des Bits 1 im Datenrichtungsregister
durch die Verwendung einer bitweisen UND-Verknüpfung durchgeführt.

Da bei geöffnetem Taster kein eindeutiger logischer Pegel an dem Anschluss PA1
anliegt, wird mithilfe der dritten Zeile der interne Pull-Up-Widerstand dieses Portan-
schlusses aktiviert. Bei geöffnetem Taster würde an dem Portanschluss über den Pull-
Up-Widerstand eine logische 1 anliegen, während bei gedrücktem Taster eine logische 0
anliegt.

while (1)

Mit dem Setzen der für die Anwendung relevanten Bits der Register DDRA und
PORTA ist die Initialisierung für dieses einfache Programmbeispiel abgeschlossen und
es folgt der Code für den normalen Betrieb des Controllers. Dieser wird in den meis-
ten Fällen in eine Endlosschleife eingebettet, da das Programm kontinuierlich auf Einga-
ben reagieren soll. Würde man auf die Endlosschleife verzichten, würde das Programm
bereits nach wenigen Taktzyklen beendet sein. In diesem Fall wird in eine vom Compiler

469

erzeugte leere Endlosschleife verzweigt. Die gewünschte Reaktion des Controllers auf
den Tastendruck würde also nur einmalig, kurz nach dem Einschalten des Controllers
erfolgen.

if (PINA & 0x02)  // PA2 = 1 => Taster nicht gedrùckt

Mithilfe dieser Zeile wird der Anschluss PA2 des Controllers abgefragt. Der Lesezu-
griff auf PINA liefert den momentanen Wert aller Portanschlüsse des Ports PA zurück.
Von diesen 8 Bit ist jedoch nur eines für die Ausführung der gewünschten Funktion rele-
vant. Daher werden die nicht relevanten Bits durch die UND-Verknüpfung mit der Kon-
stanten 0x02 (binär: 0000 0010) ausgeblendet, und es ergeben sich zwei mögliche Werte
für den Ausdruck PINA&0x02: Liegt an dem Anschluss PA2 eine logische 1 an (Taster
offen), ergibt der Ausdruck den Wert 2. Ist der Taster gedrückt und liegt eine logische 0
am Anschluss PA2 an, ergibt der Ausdruck den Wert 0. Da in der Programmiersprache
C alle Ausdrücke, die einen Wert ungleich Null ergeben, als wahr interpretiert werden,
kann der Ausdruck PINA&0x02 zur Auswahl herangezogen werden. Ist der Taster nicht
gedrückt (Ausdruck ungleich Null), würde der If-Zweig ausgeführt werden. Im anderen
Fall der Else-Zweig.

PORTA &= 0xBF;     // PORTA(6) lòschen (LED aus)
PORTA |= 0x40;     // PORTA(6) setzen (LED an)

Diese beiden Zeilen setzen beziehungsweise löschen das Bit 6 des I/O-Registers
PORTA. Ist das Bit gelöscht, liegt an dem Portanschluss eine niedrige Spannung (nahe
0 V) an und über die LED fällt keine Spannung ab; die LED leuchtet nicht. Ist das Bit
dagegen gesetzt, wird am Anschluss eine hohe Spannung (nahe der Versorgungsspan-
nung des Controllers) ausgegeben und die LED leuchtet.

Die Programmierung der Ports kann ebenso in Assembler erfolgen. Ein Programm,
welches die oben beschriebene Funktion ausführt, könnte wie folgt realisiert werden:

.include "m32def.inc"

in    r24,DDRA    ; Aktuellen Wert des DDRA-Registers holen

ori   r24,0x40    ; relevante Bits setzen

andi  r24,2       ; bzw. lòschen

out   DDRA,r24    ; Ergebnis abspeichern

in    r24,PORTA   ; PORTA holen

ori   r24,0x2     ; Pull-Up fùr Eingang PA1 aktivieren

out   PORTA,r24   ; PORTA setzen

main_loop:

in    r16,PINA    ; Eingabewert holen

andi  r16,0x02    ; Bit 1 maskieren

breq  led_on      ; falls Ergebnis = 0, springen
in    r24,PORTA

14.7  Eingebettete Peripheriekomponenten

470 14  Mikrocontroller

andi  r24,0xBF

out   PORTA,r24   ; LED aus

rjmp  main_loop

led_on:

in    r24,PORTA

ori   r24,0x40

out   PORTA,r24   ; LED an

rjmp  main_loop

Den Portanschlüssen eines Mikrocontrollers können neben der softwaregesteuer-
ten Ein-/Ausgabe digitaler Daten auch andere Funktionen zugeordnet werden. Die ent-
sprechenden alternativen Portfunktionen (engl. alternate port functions) werden in den
Anschlussdiagrammen des Controllers häufig in Klammern angegeben. So können die
Anschlüsse PA0 bis PA7 eines ATmega32 beispielsweise als analoge Eingänge verwen-
det werden. Andere Anschlüsse wie PD0, PD1 oder PC0, PC1 können dagegen mit ein-
gebetteten Peripheriekomponenten zur seriellen Datenübertragung verbunden werden.
Ist eine alternative Portfunktion aktiviert worden, ist die ursprüngliche Portfunktion
in der Regel nicht mehr zugänglich, da die Peripheriekomponente die Steuerung der
Anschlüsse übernimmt. Durch die Mehrfachbelegung der Anschlüsse eines Mikrocont-
rollers wird erreicht, dass die Anzahl der Anschlüsse gering gehalten wird. Der Control-
ler kann somit in kleinere Gehäuse mit relativ wenigen Anschlüssen eingebaut werden,
was neben der kleineren Bauform auch zu einer Verringerung der Herstellungskosten
beiträgt. In den folgenden Abschnitten werden einige der wichtigsten Peripheriekom-
ponenten anhand des Beispiels eines ATmega32 beschrieben. Die zugehörigen alternati-
ven Portfunktionen werden in Zusammenhang mit der jeweiligen Peripheriekomponente
beschrieben.

14.7.2	� Timer

Timer sind ebenso wie die zuvor beschriebenen Ports Standardkomponenten eines Mik-
rocontrollers. Sie können für sehr unterschiedliche Aufgaben eingesetzt werden. Hierzu
zählen unter anderem die Erzeugung von Signalen, die zeitliche Vermessung von Signa-
len (zum Beispiel Frequenzzähler) oder auch die regelmäßige Unterbrechung des CPU-
Programms durch Interrupts.

Die Kernkomponente eines Timers ist ein digitaler Zähler, der häufig eine Wortbreite
von 8, 16 oder 32 bit besitzt. Der Zähler wird entweder mit einem aus dem Systemtakt
abgeleiteten Takt oder mit einem von außen angelegten Taktsignal betrieben (Abb. 14.8).
Der aktuelle Zählerstand wird durch eine nachgeschaltete Einheit ausgewertet, welche in
Abhängigkeit vom Zählerstand ein Timer-Ereignis auslösen kann. Auf Basis des Timer-
Ereignisses können weitere Aktionen abgeleitet werden. Dies kann zum Beispiel das
Invertieren eines Mikrocontroller-Anschlusses oder die Unterbrechung des laufenden
Programms durch einen Interrupt sein.

471

Auf den ersten Blick mag die Kernfunktion eines Timers simpel erscheinen, sodass
die Schlussfolgerung naheliegen könnte, dass die Funktion eines Timers auch mit-
hilfe der CPU durch ein entsprechendes Programm nachgebildet werden kann. Diese
Schlussfolgerung würde jedoch vernachlässigen, dass die CPU die wertvollste und uni-
versell einsetzbarste Komponente ist. Es ist daher nicht sinnvoll, diese Komponente
für eine so einfache Aufgabe wie das Zählen von Impulsen einzusetzen, da die hierfür
benötigte Rechenleistung nicht mehr für andere Aufgaben genutzt werden kann. Neben
der Entlastung der CPU bietet die Auslagerung häufig genutzter Funktionen in eine
eigenständige Hardwarekomponente einen weiteren entscheidenden Vorteil: Wird eine
Funktion in Form einer spezialisierten Hardware implementiert, kann die Implementie-
rung so erfolgen, dass die Ausführung dieser Funktion in wenigen Taktzyklen (häufig
in einem einzelnen Taktzyklus) erfolgt. Eine entsprechende Realisierung als CPU-Pro-
gramm benötigt dagegen in der Regel eine deutlich höhere Ausführungszeit, was sich
insbesondere dann negativ auswirken würde, wenn auf äußere Ereignisse, wie zum
Beispiel der Wechsel des Wertes eines Eingangssignals reagiert werden muss. Diese
Tatsache wird in den folgenden Abschnitten am Beispiel der Funktion eines Timers
verdeutlicht.

Die im Rahmen dieses Kapitels betrachteten Timer des Mikrocontrollers ATmega32
können in verschiedenen Modi betrieben werden. Die Modi werden als der „Normale
Modus (normal mode)“, der „CTC-Modus“ sowie als „PWM-Modi“ bezeichnet. In den
folgenden Abschnitten werden diese Modi näher beschrieben.

14.7.2.1 � Normal Mode
Der als Normal Mode bezeichnete Modus eines AVR-Timers stellt den einfachsten
Betriebsmodus dar. In diesem Modus zählt der Zähler des Timers nur aufwärts. Bei
Erreichen des Zähler-Endwertes (zum Beispiel 255 bei einem 8-Bit-Timer) wird der
Zählerstand auf 0 gesetzt und erneut aufwärts gezählt. Das Erreichen des Endwertes
stellt ein Ereignis dar, welches zum Beispiel zur Invertierung eines Ausgangssignals ver-
wendet werden kann. Das zugehörige zeitliche Verhalten des Zählerstandes und des Aus-
gangssignals ist in Abb. 14.9 dargestellt.

Vorteiler T
ak

ta
us

w
ah

l

Zähler
Zählerstand-
Überprüfung

Anschluss für
Zuführung eines
externen Taktes

Systemtakt

Timer-
Ereignis

Zähler
standTakt

Abb. 14.8   Prinzipieller Aufbau eines einfachen Timers

14.7  Eingebettete Peripheriekomponenten

472 14  Mikrocontroller

Wird der Timer mit der Taktfrequenz des Controllers fsys betrieben, ergibt sich die
Rate der Überlaufereignisse ROV beziehungsweise die Frequenz des erzeugten Signals fout
zu:

beziehungsweise

Die Überlaufrate ROV hängt in diesem Fall nur von der Systemtaktfrequenz ab. Für eine
grobe Einstellung der Überlaufrate wird bei Timern in der Regel ein Vorteiler eingesetzt.
Im Fall des ATmega32 kann der Vorteiler des Timers auf fünf verschiedene Werte zwi-
schen 1 (keine Vorteilung) und 1024 (der Zähler des Timers wird mit 1/1024 der Sys-
temfrequenz betrieben) eingestellt werden. Für die Einstellung des Vorteilers werden
I/O-Register (Timer/Counter Control Register, TCCR) zur Verfügung gestellt. Wird für
den Vorteiler der Wert NVor verwendet, gilt für die Überlaufrate

Durch die Verwendung des Vorteilers lässt sich somit eine grobe Einstellung der Über-
laufrate und damit der Frequenz der Timerereignisse vornehmen.

14.7.2.2 � CTC Modus
Eine feinere Einstellung des zeitlichen Verlaufs der Timerereignisse lässt sich erzielen,
wenn der Zählerstand, dem ein Ereignis zugeordnet ist, frei programmiert werden kann.
Hierzu besitzt ein Timer ein Register, dessen Inhalt kontinuierlich mit dem aktuellen

ROV =
fsys

256

fout =
ROV

2
=

fsys

256

ROV =
fsys

NVor · 256

Zählerstand

t

Endwert

0

t
0

1
Ausgangssignal

Abb. 14.9   Verlauf des Zählerstandes und eines Ausgangssignals im Normal Mode

473

Zählerstand verglichen wird. Im Fall der AVR-Timer wird dieses Register als OCR (Out-
put Compare Register) bezeichnet. Erreicht der Zählerstand des Timers den im OCR-
Register programmierten Wert, kann dies als ein Timerereignis gewertet werden, welches
analog zum Timer-Überlauf im Nomal Mode behandelt wird. Dieser Betriebsmodus wird
als Clear Timer on Compare match (CTC) bezeichnet. Der Verlauf des Zählerstandes im
CTC-Modus ist in Abb. 14.10 dargestellt.

Mithilfe des CTC-Modus wird eine relativ feine Einstellung der Rate der Timerereig-
nisse beziehungsweise der Frequenz des Ausgangssignals ermöglicht. Es gilt:

14.7.2.3 � PWM-Modi
Bei den beiden zuvor vorgestellten Timermodi lässt sich die Frequenz eines erzeugten
Signals einstellen, das Tastverhältnis ist dagegen mit 0,5 festgelegt und kann in diesen
Modi nicht geändert werden. Die Erzeugung eines Signals mit programmierbarem Tast-
verhältnis lässt sich mithilfe der sogenannten PWM-Modi realisieren. Der Name PWM-
Modi ergibt sich aus der typischen Anwendung dieser Modi, nämlich die Erzeugung
eines pulsweiten-modulierten Signals (PWM-Signal).

Bei Verwendung der PWM Modi zählt der Timer immer bis zum Erreichen des End-
wertes. Es kann allerdings sowohl das Erreichen des Endwertes als auch das Durchlaufen
des Vergleichswertes als interrupt-auslösendes Timerereignis genutzt werden.

Grundsätzlich werden zwei PWM-Modi unterschieden. Im ersten Fall des Fast-
PWM-Modus, der auch als Single-Slope-PWM bezeichnet wird, zählt der Zähler des
Timers nur aufwärts. Nach dem Erreichen des Endwertes beginnt der Zähler von 0 an
zu zählen. Dabei findet die Invertierung des Ausgangssignals sowohl bei Erreichen des

RCTC =
fsys

NVor · (OCR+ 1)

Zählerstand

t

Endwert

0

t
0

1
Ausgangssignal

Vergleichswert
(OCR-Register)

Abb. 14.10   Verlauf des Zählerstandes und eines Ausgangssignals im CTC Mode

14.7  Eingebettete Peripheriekomponenten

474 14  Mikrocontroller

Vergleichswertes als auch bei Erreichen des Endwertes statt. Abb. 14.11 zeigt das Zeit-
verhalten des Timers im Fast-PWM-Modus.

Die Frequenz des erzeugten PWM-Signals ist abhängig von dem gewählten Timer
endwert TOP und der Eingangsfrequenz des Zählers, welche sich aus der Eingangsfre-
quenz fin und dem gewählten Vorteilerwert NVor ergibt. Das erzeugte Signal besitzt die
Frequenz fFPWM mit einem Tastverhältnis VFPWM

Im zweiten Fall des Phase-Correct-PWM-Modus, der auch als Dual-Slope-PWM-Modus
bezeichnet wird, zählt der Timer zunächst aufwärts und nach Erreichen des Endwertes abwärts.
Nach Erreichen des Wertes 0 zählt der Zähler wiederum aufwärts. Dabei findet ein Wechsel der
Polarität des Ausgangssignals nur dann statt, wenn der Vergleichswert erreicht wird.

Hieraus ergeben sich die folgenden Gleichungen für die Frequenz beziehungsweise
das Tastverhältnis des erzeugten Signals:

Das zugehörige Zeitverhalten ist in Abb. 14.12 dargestellt.

fFPWM =
fin

NVor · (TOP + 1)

VFPWM =
OCR

TOP

fPCPWM =
fin

2 · NVor · (TOP + 1)

VPCPWM = VFPWM =
OCR

TOP

Zählerstand

t

Endwert

0

t
0

1
Ausgangssignal

Vergleichswert
(OCR-Register)

Abb. 14.11   Verlauf des Zählerstandes und eines Ausgangssignals im Fast-PWM-Mode

475

14.7.2.4 � Die Timer des ATmega32
Der Mikrocontroller ATmega32 besitzt drei Timer, welche als Timer 0, Timer 1 und
Timer 2 bezeichnet werden.

Timer 0 ist ein 8-Bit-Timer. Er besitzt einen Vergleichswert (I/O-Register: OCR0) und
kann mit dem internen Systemtakt oder mit einem externen Takt (Anschluss: T0) betrie-
ben werden.

Der Timer 1 ist ein 16-Bit-Timer, der ebenso mit dem internen Systemtakt oder einem
externen Takt (Anschluss: T1) betrieben werden kann. Er besitzt zwei Vergleichswerte
(OCR1A, OCR1B) und kann gleichzeitig zwei verschiedene Signale an den Controlleran-
schlüssen OC1A und OC1B ausgeben.

Timer 1 besitzt darüber hinaus eine sogenannte Input-Capture-Unit (ICU). Die Auf-
gabe der ICU ist es, den aktuellen Zählerwert bei Auftreten eines zuvor programmier-
ten Ereignisses in ein spezielles Register (I/O-Register ICR1) zu übertragen. Dieser Wert
bleibt bis zum nächsten Auftreten des Ereignisses im ICP-Register gespeichert und kann
von der CPU ausgelesen werden. Die ICU kann unter anderem zum zeitlichen Vermes-
sen von digitalen Signalen verwendet werden. Wird beispielsweise als ICU-Ereignis das
Auftreten einer steigenden Flanke des Eingangssignals am Anschluss ICP1 ausgewählt,
ist es möglich, die Periodendauer des Eingangssignals durch zeitliches Vermessen zweier
Taktflanken zu bestimmen. Hierzu muss lediglich der Wert des ICR1-Registers bei Auf-
treten der zweiten Taktflanke von dem ICR1-Wert bei Auftreten der ersten Taktflanke
subtrahiert werden. Die Periodendauer Tin des Signals ergibt sich dann zu:

Tin =
(ICRFlanke2 − ICRFlanke2) · NVor

fin

Zählerstand

t

Endwert

0

t
0

1
Ausgangssignal

Vergleichswert
(OCR-Register)

Abb. 14.12   Signalerzeugung im Phase-Correct-PWM-Mode (Dual-Slope-PWM-Mode)

14.7  Eingebettete Peripheriekomponenten

476 14  Mikrocontroller

Der Timer 2 des ATmega32 ist ebenso wie der Timer 0 mit einem 8-Bit-Zähler ausgestat-
tet, und es kann ein Vergleichswert (OCR2) programmiert werden. Die Besonderheit des
Timers 2 ist der zugeordnete eingebettete Quarzoszillator, welcher unabhängig von den
anderen Komponenten des Controllers betrieben werden kann. Der Timer 2 kann mithilfe
dieses Oszillators mit einem Taktsignal versorgt werden, selbst wenn der Controller sich in
einem Stromsparmodus befindet und wesentliche Systemkomponenten abgeschaltet sind.

Zur Programmierung der Timer des ATmega32 stehen mehrere Register zur Verfü-
gung, deren Funktion in den folgenden Abschnitten beschrieben wird.

14.7.2.5 � Register des Timers 0
Der aktuelle Zählerstand des Timers 0 kann durch einen Zugriff auf das Register TCNT0
gelesen oder auch geschrieben werden. Über das Register OCR0 wird auf den Ver-
gleichswert des Timers 0 zugegriffen.

Die Auswahl des Betriebsmodus des Timers 0 erfolgt über ein Steuerregister (Timer/
Counter Control Register, TCCR0). Neben dem Betriebsmodus werden mithilfe die-
ses Registers auch der Wert des Vorteilers und die Quelle des Timertaktes festgelegt
(Tab. 14.14).

Das Bit FOC0 dient dem softwarebasierten Auslösen eines Compare-Match-Ereig-
nisses (Zählerstand = Vergleichswert) unabhängig vom aktuellen Wert des OCR0-
Registers oder des Zählerstandes. Die Bedeutung der anderen Bits dieses Registers ist in
Tab. 14.15 und 14.16 zusammengefasst.

Tab. 14.14   Belegung des Registers TCCR0

TCCR0

Bit 7 6 5 4 3 2 1 0

Name FOC0 WGM00 COM01 COM00 WGM01 CS02 CS01 CS00

Tab. 14.15   Bedeutung der Bits CS00, CS01 und CS02

CS02 CS01 CS00 Bedeutung

0 0 0 Keine Taktauswahl, Timer ist abgeschaltet

0 0 1 Systemtakt mit Vorteiler = 1

0 1 0 Systemtakt mit Vorteiler = 8

0 1 1 Systemtakt mit Vorteiler = 64

1 0 0 Systemtakt mit Vorteiler = 256

1 0 1 Systemtakt mit Vorteiler = 1024

1 1 0 Externer Takt an Anschluss T0, aktive Flanke = fallende Flanke

1 1 1 Externer Takt an Anschluss T0, aktive Flanke = steigende
Flanke

477

14.7.2.6 � Register des Timers 1
Da der Timer 1 auf einem Zähler mit einer Wortbreite von 16 bit basiert, sind Register,
die sich auf den Zählerstand beziehen in Form von zwei 8 bit breiten Registern imple-
mentiert. So kann beispielsweise der Zählerstand des Timers über die Register TCNT1L
(niederwertiges Byte) und TCNT1H (höherwertiges Byte) geschrieben und gelesen wer-
den. Analog kann auf die Vergleichswerte mithilfe der Register OCR1AL und OCR1AH
sowie OCR2AL und OCR2AH zugegriffen werden. Entsprechendes gilt für den ICR-Wert

Tab. 14.16   Bedeutung der Bits WGM00, WGM01, COM00 und COM01

WGM00 COM01 COM00 WGM01 Bedeutung

0 0 0 0 Normal Mode, Signalerzeugung aus

0 0 0 1 CTC-Modus, Signalerzeugung aus

0 0 1 0 Normal Mode, Invertierung des OC0-Ausgangs bei
Erreichen des Vergleichswertes

0 0 1 1 CTC-Modus, Invertierung des OC0-Ausgangs bei Errei-
chen des Vergleichswertes

0 1 0 0 Normal Mode, Löschen des OC0-Ausgangs bei Errei-
chen des Vergleichswertes

0 1 0 1 CTC-Modus, Löschen des OC0-Ausgangs bei Errei-
chen des Vergleichswertes

0 1 1 0 Normal Mode, Setzen des OC0-Ausgangs bei Erreichen
des Vergleichswertes

0 1 1 1 CTC-Modus, Setzen des OC0-Ausgangs bei Erreichen
des Vergleichswertes

1 0 0 0 Phase-Correct-PWM-Modus, Signalerzeugung aus

1 0 0 1 Fast-PWM-Modus, Signalerzeugung aus

1 0 1 0 Reserviert (ungültige Konfiguration)

1 0 1 1 Reserviert (ungültige Konfiguration)

1 1 0 0 Phase-Correct-PWM-Modus, Löschen des OC0-Aus-
gangs bei Erreichen des Vergleichswertes während des
Aufwärtszählens, Setzen während des Abwärtszählens

1 1 0 1 Fast-PWM-Modus, Löschen des OC0-Ausgangs bei
Erreichen des Vergleichswertes während des Aufwärts-
zählens, Setzen nach Zählerüberlauf

1 1 1 0 Phase-Correct-PWM-Modus, Setzen des OC0-
Ausgangs bei Erreichen des Vergleichswertes wäh-
rend des Aufwärtszählens, Löschen während des
Abwärtszählens

1 1 1 1 Fast-PWM-Modus, Setzen des OC0-Ausgangs bei
Erreichen des Vergleichswertes während des Aufwärts-
zählens, Löschen nach Zählerüberlauf

14.7  Eingebettete Peripheriekomponenten

478 14  Mikrocontroller

der Input-Capture-Unit, auf welchen über die Register ICRL und ICRH zugegriffen wer-
den kann.

Zur Steuerung werden für den Timer 1 zwei Register zur Verfügung gestellt, TCCR1A
und TCCR1B (Tab. 14.17).

Die Bedeutung der Bits CS12, CS11, CS10 und FOC1A, FOC1B besitzen eine zu den
entsprechenden Bits des Timers 0 analoge Funktion (vgl. Tab. 14.18).

Die Bits ICNC1 und ICES1 sind der Input-Capture-Unit zugeordnet. Wird ICNC1
gesetzt, wird damit ein Rauschfilter in der ICU aktiviert, welches kurzzeitige Signal-
wechsel am ICP1-Anschluss ausfiltert. Mit dem Bit ICES1 kann die aktive Flanke des
ICP1-Signals festgelegt werden: Ist ICES1 gesetzt, reagiert die ICU auf eine steigende
Flanke; ist ICES1 gelöscht, reagiert die ICU auf eine fallende Flanke.

Tab. 14.17   Belegung der Register TCCR1A und TCCR1B

TCCR1A

Bit 7 6 5 4 3 2 1 0

Name COM1A1 COM1A0 COM1B1 COM1B0 FOC1A FOC1B WGM11 WGM10

TCCR1B

Bit 7 6 5 4 3 2 1 0

Name ICNC1 ICES1 - WGM13 WGM12 CS12 CS11 CS10

Tab. 14.18   Bedeutung der Bits COM1A1, COM1B1, COM1A0 und COM1B0

COM1A1
COM1B1

COM1A0
COM1B0

Bedeutung

0 0 Signalerzeugung aus

0 1 Normal, CTC: Invertieren des OC-Ausgangs bei Erreichen des
Vergleichswertes
PWM-Modi: Signalerzeugung aus.
Ausnahme WGM1 = 1001,1110 oder 1111: Invertieren des OC1A-
Ausgangs bei Erreichen des Vergleichswertes

1 0 Normal, CTC: Löschen des OC-Ausgangs bei Erreichen des
Vergleichswertes
Fast PWM: Löschen des OC-Ausgangs bei Erreichen des Vergleichswer-
tes während, Setzen nach Erreichen von TOP
PC-PWM: Löschen des OC-Ausgangs bei Erreichen des Vergleichswer-
tes während des Aufwärtszählens, Setzen während des Abwärtszählens

1 1 Normal, CTC: Setzen des OC-Ausgangs bei Erreichen des
Vergleichswertes
Fast PWM: Setzen des OC-Ausgangs bei Erreichen des Vergleichswer-
tes während, Löschen nach Erreichen von TOP
PC-PWM: Setzen des OC-Ausgangs bei Erreichen des Vergleichswertes
während des Aufwärtszählens, Löschen während des Abwärtszählens

479

Mithilfe der Bits WGM13 bis WGM10 wird der Betriebsmodus des Timers festgelegt.
Die 16 möglichen Modi des Timers 1 sind in Tab. 14.19 zusammengefasst.

14.7.2.7 � Register des Timers 2
Die Register des Timers 2 entsprechen den Registern des Timers 0. Zur Unterscheidung
der Timer werden die Register des Timers 2 mit der Ziffer 2 (statt 0) gekennzeichnet,
also TCNT2 statt TCNT0, OCR2 statt OCR0, usw. Entsprechendes gilt für die einzelnen
Bits der Timer-Register (zum Beispiel WGM21 statt WGM01). Eine Ausnahme bilden
die Bits CS22 bis CS20 zur Steuerung des Vorteilers (s. Tab. 14.20).

Als Taktquelle kann neben dem Systemtakt auch ein separater Quarzoszillator ver-
wendet werden, welcher mit einem externen Quarz (typischerweise mit einem 32-kHz-
Uhrenquarz) betrieben wird. Zur Steuerung dieser Funktion besitzt der Timer 2 ein
weiteres Register, welches als Asynchronous Status Register (ASSR) bezeichnet wird
(Tab. 14.21).

Ist das Bit AS2 gesetzt, wird der Timer 2 über den separaten Quarzoszillator mit
einem Taktsignal versorgt. Ist das Bit dagegen gelöscht, wird dem Timer der Systemtakt
zugeführt. Die drei anderen Bits des ASSR-Registers dienen der Synchronisation zwi-
schen der CPU und dem Timer: Wird beispielsweise ein Schreibzugriff auf das OCR2-
Register ausgeführt, wird das Bit OCR2UB (OCR2 Update Busy) gesetzt. Erst wenn

Tab. 14.19   Bedeutung der Bits WGM13, WGM12, WGM11 und WGM10

WGM13 GM12 WGM11 WGM10 Bedeutung

0 0 0 0 Normal Mode, TOP = 0xFFFF

0 0 0 1 Phase-Correct-PWM-Modus, TOP = 0x00FF

0 0 1 0 Phase-Correct-PWM-Modus, TOP = 0x01FF

0 0 1 1 Phase-Correct-PWM-Modus, TOP = 0x03FF

0 1 0 0 CTC-Modus, TOP = OCR1A

0 1 0 1 Fast-PWM-Modus, TOP = 0x00FF

0 1 1 0 Fast-PWM-Modus, TOP = 0x01FF

0 1 1 1 Fast-PWM-Modus, TOP = 0x03FF

1 0 0 0 Phase-and-Frequency-Correct-PWM, TOP = ICR1

1 0 0 1 Phase-and-Frequency-Correct-PWM, TOP =
OCR1A

1 0 1 0 Phase-Correct-PWM-Modus, TOP = ICR1

1 0 1 1 Phase-Correct-PWM-Modus, TOP = OCR1A

1 1 0 0 CTC-Modus, TOP = ICR1

1 1 0 1 Reserviert

1 1 1 0 Fast-PWM-Modus, TOP = ICR1

1 1 1 1 Fast-PWM-Modus, TOP = OCR1A

14.7  Eingebettete Peripheriekomponenten

480 14  Mikrocontroller

der geschriebene Wert vom Timer übernommen wurde, wird das Bit von der Timer-HW
zurückgesetzt. Entsprechendes gilt für die Register TCNT2 und TCCR2, denen die Bits
TCN2UB und TCR2UB zugeordnet sind.

14.7.2.8 � Timer als Interruptquellen
Die Timer des ATmega32 können auch als Interruptquellen genutzt werden. Es können
mithilfe aller Timer Interrupts ausgelöst werden, wenn ein Timer-Überlauf aufgetreten
ist oder der Zählwert des Timers den Vergleichswert erreicht hat. Zusätzlich kann für den
Timer 1 das Auftreten eines „Input-Capture-Ereignisses“ als Interruptquelle genutzt wer-
den. Die Freigabe der jeweiligen Interrupts geschieht durch Setzen des zugehörigen Bits
im Timer/Counter-Interrupt-Mask-Register (TIMSK).

Darüber hinaus ermöglichen die Timer das Abfragen des jeweiligen Interrupt-Status
durch das Timer/Counter-Interrupt-Flag-Register (TIFR). Mithilfe dieses Registers ist es
zum Beispiel möglich, das Auftreten einer der oben genannten Interruptbedingungen durch
die CPU anzufragen, ohne eine interruptbasierte Verarbeitung zu nutzen (Tab. 14.22).

Die Bits OCIEx und OCFx sind den Vergleichsereignissen (Zählerstand = Vergleichs-
wert) und die Bits TOIEx und TOVx den Überlaufereignissen zugeordnet, während die
Bits TICIE1 und ICF1 der Input Capture Unit des Timers 1 zugeordnet sind.

Die Anwendungsmöglichkeiten der Timer-Interrupts sind sehr vielfältig. Ein sehr ein-
faches Beispiel ist die zyklische Erzeugung von Interrupts zur Unterbrechung des Haupt-
programms, um regelmäßig anfallende Aufgaben abzuarbeiten. Darüber hinaus sind
regelmäßige Timer-Interrupts eine wesentliche Grundlage vieler Betriebssysteme.

Eine wichtige Bedeutung kommt der Timer-Interrupt-Programmierung auch bei
der Erzeugung von Ausgangssignalen zu. Häufig ist es erforderlich, die Parameter des

Tab. 14.20   Bedeutung der
Bits CS00, CS01 und CS02

CS22 CS21 CS20 Bedeutung

0 0 0 Timer ist
abgeschaltet

0 0 1 Vorteiler = 1

0 1 0 Vorteiler = 8

0 1 1 Vorteiler = 32

1 0 0 Vorteiler = 64

1 0 1 Vorteiler = 128

1 1 0 Vorteiler = 256

1 1 1 Vorteiler = 1024

Tab. 14.21   Belegung des
Registers ASSR

ASSR

Bit 7 6 5 4 3 2 1 0

Name – – – – AS2 TCN2UB OCR2UB TCR2UB

481

mithilfe des Timers erzeugten Signals dynamisch zu modifizieren. Der Timer muss also
im laufenden Betrieb umkonfiguriert werden. Hierbei muss beachtet werden, dass der
Zählerstand des Timers nicht unbedingt mit der Ausführung des Programms synchroni-
siert ist. Um diese Synchronisation zu unterstützen, sind die OCR-Register der Timer mit
„Schattenregistern“ ausgestattet. Wird in einem solchen Schattenregister ein Wert abge-
legt, wirkt sich der neue Wert nicht sofort in der Timer-Hardware aus. Vielmehr wird der
im Schattenregister gespeicherte Wert erst bei Erreichen eines definierten Zählerstands
(zum Beispiel Timerendwert) in das eigentliche Timer-Register übernommen. Für die
dynamische Timer-Programmierung ist es sehr bequem den Interrupt freizugeben, der
dem o.g. Zählerstand zugeordnet ist. Die Konfiguration des Timers erfolgt dann jeweils
in der entsprechenden ISR. Auf diese Weise wird der Timer nur zu definierten Zeiten neu
konfiguriert und das Verhalten des Ausgangssignals ist nicht von den Laufzeiten der ein-
zelnen Programmteile der Software abhängig.

Als ein einfaches Beispiel für die Interrupt-Programmierung wird im Folgenden ein
C-Programm vorgestellt, mit dem eine Uhr realisiert werden kann.

Die Uhrzeit wird in den globalen Variablen Sekunden, Minuten und Stunden abgelegt,
die von einer Timer-ISR beschrieben werden. Im Hauptprogramm wird der Timer 1 so
konfiguriert, dass alle 8000 Systemtaktzyklen ein Interrupt ausgelöst wird (Vorteiler = 8,
OCR-Register = 999). Beträgt die Systemtaktfrequenz beispielsweise 16 MHz, werden
also 2000 Interrupts pro Sekunde auftreten.

In der Timer-ISR werden die aufgetretenen Timerinterrupts gezählt. Ist eine Sekunde
vergangen, wird die Variable Sekunden inkrementiert. Ist diese anschließend gleich 60,
wird sie auf Null gesetzt und die Variable Minuten inkrementiert. Der Wert der Variablen
Minuten wird anschließend überprüft und gegebenenfalls auf Null gesetzt und die Varia-
ble Stunden inkrementiert.

Da die Anzahl der pro Sekunde auftretenden Interrupts von der Systemtaktfrequenz
abhängt, muss diese bekannt sein. Für AVR-Programme gilt die Vereinbarung, dass die
Systemtaktfrequenz im Präprozessorsymbol F_CPU abgelegt wird. In der ISR wird
überprüft, ob der Interruptzähler den Wert F_CPU/8000 erreicht hat, also eine Sekunde
vergangen ist.

Im Folgenden ist das Programm für die Realisierung einer Uhr dargestellt.

Tab. 14.22   Belegung der Register TIMSK und TIFR

TIMSK

Bit 7 6 5 4 3 2 1 0

Name OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 OCIE0 TOIE0

TIFR

Bit 7 6 5 4 3 2 1 0

Name OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 OCF0 TOV0

14.7  Eingebettete Peripheriekomponenten

482 14  Mikrocontroller

#include <avr/io.h>

#include <avr/interrupt.h>     // Header-Datei fùr Interrupts

// Symbol fùr Systemtaktfrequenz setzen. Dies kann auch in der

// Entwicklungsumgebung erfolgen

#define F_CPU 16000000          // Beispiel: 16 MHz

volatile unsigned char Sekunden;

volatile unsigned char Minuten;

volatile unsigned char Stunden;

// Unterprogramm zur Ausgabe der Uhrzeit

void Zeitausgabe(unsigned char Stunden, unsigned char Minuten,

                 unsigned char Sekunden) {

   // zum Beispiel Ausgabe auf einem Sieben-Segment-Display

}

// Hauptprogramm

void main() {

   // Timer 1 initialisieren

   // nicht gesetzte Bits sind nach dem Reset des Controllers 0

   TCCR1B |= 1<<WGM12;  // CTC-Modus
   TCCR1B |= 1<<CS11;   // Vorteiler = 8
   OCR1A = 999;         // alle 1000 Taktzyklen ein Interr.
   TIMSK  |= 1<<OCIE1A; // Freigabe Vergleichsinterrupt
   sei();               // Globale Interruptfreigabe

   // Normaler Betrieb: hier erfolgt die Ausgabe der Uhrzeit

   // das Zàhlen der Sekunden erfolgt in der ISR

   while (1) {

        Zeitausgabe(Stunden, Minuten, Sekunden);

   }

}

// Timer 1 ISR

ISR (TIMER1_COMPA_vect) {

   static unsigned long IntCount = 0;
   IntCount++;
   if (IntCount == F_CPU/8000) { // 1 Sekunde vergangen ?
      IntCount = 0;      // Zàhler zurùcksetzen
      Sekunden++;        // Uhrzeit setzen…
      if (Sekunden==60) {
         Sekunden = 0;
         Minuten++;
         if (Minuten==60) {
            Minuten = 0;
            Stunden++;
            if (Stunden==24) Stunden = 0;
         }

      }

   }

}

483

14.7.2.9 � Watchdog-Timer
Grundsätzlich kann selbst bei sorgfältigster Entwicklung von Softwarekomponen-
ten nicht sichergestellt werden, dass ein Programm komplett fehlerfrei ist und in allen
Betriebszuständen des Systems reibungslos funktioniert. Unentdeckte Softwarefehler
können je nach Anwendung fatale Folgen für ein System oder für die Umgebung des
Systems, incl. der Benutzer haben. Um einen Systemabsturz, der zum Beispiel aufgrund
eines Softwarefehlers aufgetreten ist, abfangen zu können, besitzen Mikrocontroller
einen sogenannten Watchdog-Timer.

Die Arbeitsweise des Watchdogs ähnelt dem Prinzip des sogenannten „Totmann-
Knopfes“, wie er in Schienenfahrzeugen eingesetzt wird: Der Fahrzeugführer muss in
regelmäßigen Abständen den Knopf bedienen. Unterlässt er dies, wird automatisch ein
Nothalt des Systems ausgeführt.

Der Watchdog-Timer basiert auf einem Abwärtszähler. Erreicht der Zähler den Zäh-
lerstand 0, wird durch den Timer ein Zurücksetzen des Controllers ausgelöst. Um die-
ses Zurücksetzen zu vermeiden, muss der Zähler des Watchdog-Timers per Software
regelmäßig auf einen von Null verschiedenen Wert gesetzt werden. Arbeitet das System
einwandfrei, wird der Zähler des Watchdogs nie den Wert 0 erreichen und somit kein
Zurücksetzen des Systems auslösen.

Das Taktsignal für die Watchdog-Timer ATmega-Serie wird mithilfe eines eingebet-
teten Oszillators realisiert, sodass für die Takterzeugung keine externen Komponenten
benötigt werden. Durch den Einsatz eines Vorteilers können dem Zähler des Watchdogs
verschiedene Taktfrequenzen zugeführt werden, wodurch die Zeit bis zum Erreichen des
Zählerstandes 0 über das CPU-Programm festgelegt werden kann.

Das softwarebasierte Setzen des Watchdog-Zählers eines ATmega32 erfolgt in Assem-
bler mit dem Spezialbefehl wdr (Watchdog Reset) beziehungsweise in C durch den Auf-
ruf der Funktion wdt_reset(). Zur Programmierung des Watchdogs steht das Watchdog
Timer Control Register (WDTCR) zur Verfügung (Tab. 14.23).

Das Bit WDE dient zum Aktivieren (WDE = 1) oder Deaktivieren (WDE = 0) des
Watchdog-Timers. Soll der Watchdog deaktiviert werden, müssen zunächst die Bits
WDTOE und WDE gesetzt und anschließend das Bit WDE innerhalb von 4 Taktzyklen
gelöscht werden. Auf diese Weise soll ein unbeabsichtigtes Deaktivieren des Watchdogs
ausgeschlossen werden.

Die Bits WDP2 bis WDP0 werden zur Programmierung des Vorteilers verwendet. Die
Zeit, die zwischen dem Ausführen des wdr-Befehls und dem Erreichen des Zählwertes 0
vergeht, ergibt sich gemäß Tab. 14.24.

Tab. 14.23   Belegung des
Registers WDTCR

WDTCR

Bit 7 6 5 4 3 2 1 0

Name - - - WDTOE WDE WDP2 WDP1 WDP0

14.7  Eingebettete Peripheriekomponenten

484 14  Mikrocontroller

Der Grund für das Zurücksetzen des Controllers kann mithilfe des „Microcontroller Unit
Control and Status“ Registers (MCUCSR) von der CPU abgefragt werden (Tab. 14.25).

Je nach Grund des Resets wird eines der fünf niederwertigen Bits des MCUCSR-
Registers gesetzt. Die Bedeutung dieser Bits ist in Tab. 14.26 zusammengefasst.

14.7.3	� Schnittstellen für die serielle Datenübertragung

Fast alle Mikrocontroller stellen eingebettete Peripheriekomponenten zur Verfügung, die
eine bitserielle Datenübertragung unterstützen. Der wesentliche Vorteil einer bitseriellen
Übertragung im Gegensatz zu einer bitparallelen Übertragung ist die Reduktion des Ver-
drahtungsaufwands zwischen Sender und Empfänger. Die Reduktion dieses Aufwands

Tab. 14.24   Bedeutung der Bits WDP2, WDP1 und WDP0

WDP2 WDP1 WDP0 Zeit bis zum Erreichen des Zählerstands 0
(circa)

0 0 0 17 ms

0 0 1 33 ms

0 1 0 65 ms

0 1 1 130 ms

1 0 0 260 ms

1 0 1 520 ms

1 1 0 1,0 s

1 1 1 2,1 s

Tab. 14.25   Belegung des Registers MCUCSR

MCUCSR

Bit 7 6 5 4 3 2 1 0

Name JTD ISC2 – JTRF WDRF BORF EXTRF PORF

Tab. 14.26   Bedeutung der Bits im MCUCSR-Register

JTRF Reset durch das JTAG-Programmier- und Debug-Interface

WDRF Watchdog-Reset

BORF Brownout-Detection-Reset
(Versorgungsspannung unterschreitet programmierten Wert)

EXTRF Externer Reset-Anschluss wurde aktiviert

PORF Versorgungsspannung wurde eingeschaltet
(„Power-On-Reset“)

485

kann insbesondere bei einfachen, kostensensitiven Systemen einen wichtigen Aspekt
darstellen.

In den folgenden Abschnitten wird die Diskussion auf die in Mikrocontrollern häufig
anzutreffenden seriellen Schnittstellen beschränkt. Zunächst wird jeweils das verwendete
Übertragungsprotokoll vorgestellt und im Anschluss daran wird die spezifische Imple-
mentierung der Schnittstellen am Beispiel des ATmega32 näher erläutert.

14.7.3.1 � U(S)ART
Die Abkürzung UART steht für Universal Asynchronous Receiver/Transmitter, also ein
universell einsetzbarer Sender und Empfänger für asynchrone Datenübertragungen. Der
Begriff „asynchron“ bedeutet hier, dass bei dieser Datenübertragung kein Taktsignal
zwischen Sender und Empfänger ausgetauscht wird. Der Empfänger muss allein aus der
Kenntnis des Datensignals die übertragenen Datenbits extrahieren. Eine Erweiterung des
UARTs stellt der USART dar. Der zusätzliche Buchstabe „S“ soll andeuten, dass diese
Komponente auch eine synchrone Datenübertragung unterstützen kann. In diesem Fall
wird vom Sender ein Taktsignal erzeugt, das zusammen mit dem Datensignal übertragen
wird.

Bereits um 1960 wurde ein geeignetes Protokoll zur asynchronen seriellen Datenüber-
tragung zwischen Rechnern entwickelt und standardisiert. Die bekannteste Implementie-
rung dieser Anwendung stellt die serielle Schnittstelle eines PCs dar, die häufig auch als
RS232-Schnittstelle, V.24-Schnittstelle, COM-Port oder einfach als serielle Schnittstelle
bezeichnet wird. Diese Schnittstelle diente viele Jahre als Kommunikationsschnittstelle
zwischen Rechnern oder zwischen Rechnern und Modems, welche eine Datenfernüber-
tragung über Telefonleitungen ermöglicht.

Die Bedeutung der RS232-Schnittstelle für PCs hat in den letzten 30 Jahren kontinu-
ierlich abgenommen. Rechner werden heute meist über Ethernet-Leitungen oder WLAN
vernetzt, die deutlich höhere Übertragungsraten ermöglichen. Im Bereich der Datenfern-
übertragung werden Technologien wie DSL eingesetzt, wobei die Verbindung zu einem
DSL-Modem über USB oder Ethernet realisiert wird. Daher werden von heutigen PCs
in der Regel keine RS232-Schnittstellen mehr zur Verfügung gestellt. Zur Nutzung die-
ser Schnittstelle müssen häufig entweder entsprechende Erweiterungskarten oder USB-
Geräte angeschafft werden, die über einen USB-Anschluss des Rechners die gewünschte
RS232-Schnittstelle zur Verfügung stellen.

Eine größere Bedeutung besitzt die RS232-Schnittstelle im Bereich der Mikrorech-
nersysteme. Hier steht häufig nicht die erzielbare Datenrate im Vordergrund, sondern
zunächst die einfache Implementierbarkeit der Kommunikation zweier Komponenten.
Eine häufige Anwendung ist die Verbindung eines Mikrorechnersystems mit einem PC,
um Statusmeldungen an den PC zu senden oder auch um Programme und Daten an den
Mikrorechner zu senden.

Entsprechend der ursprünglichen Anwendung im Bereich der Datenfernübertragung
werden sogenannte Datenendeinrichtungen (Data Terminal Equipment, DTE) und Daten-
übertragungseinrichtungen (Data Communication Equipment, DCE) unterschieden. Ein

14.7  Eingebettete Peripheriekomponenten

486 14  Mikrocontroller

PC arbeitet in der Regel als DTE, während die angeschlossenen Geräte meist als DCE
betrieben werden. Diese Unterscheidung ist insbesondere für die Steckerbelegung der
Geräte von Bedeutung. Für die serielle Übertragung mithilfe des RS232-Standards wer-
den heute fast ausschließlich 9-polige Sub-D-Steckverbindungen verwendet, deren Bele-
gung in Tab. 14.27 zusammengefasst ist.

In vielen Anwendungsfällen wird nur ein Teil der dargestellten Signale verwendet. Im
einfachsten Fall ist es möglich eine bidirektionale Verbindung zwischen zwei Stationen
(zum Beispiel PC und Mikrocontroller) mithilfe der Anschlüsse RXD, TXD und GND
zu realisieren.

Die RS232-Schnittstelle arbeitet mit negativer Logik. Eine logische Null wird durch
einen Spannungspegel im Bereich von +3 bis +15 V, eine logische Eins durch einen
Pegel zwischen −3 und −15 V dargestellt. Ein direkter Anschluss der Signale der seriel-
len Schnittstelle eines PCs an einen Mikrocontroller sollte niemals erfolgen, da der Con-
troller hierbei zerstört werden würde. Es ist also ein Umsetzen der Pegel der seriellen
Schnittstelle erforderlich. Hierfür stehen verschiedene integrierte Bausteine zur Verfü-
gung, die auch eine Umwandlung zwischen negativer und positiver Logik durchführen.
Ein Beispiel ist der von verschiedenen Herstellern angebotene Baustein MAX232.

14.7.3.2 � Datenübertragung mit dem UART-Protokoll
Der Empfänger erhält nur das vom Sender generierte Datensignal. Um allein aus der
Kenntnis des Datensignals die übertragenen Daten zu extrahieren können, muss der
Empfänger den Beginn einer Datenübertragung erkennen können. Der Beginn einer
Datenübertragung wird durch ein sogenanntes Startbit gekennzeichnet, welches den vor-
definierten Wert 0 besitzt. Anschließend erfolgt die Übertragung einer zwischen Sender
und Empfänger vereinbarten Anzahl von Datenbits. Hierbei gilt die Vereinbarung, dass
zuerst das niederwertigste Bit (Least Significant Bit, LSB) übertragen wird. In der Regel
wird eine Übertragung von 8 Datenbits ausgewählt.

Tab. 14.27   Belegung der 9-poligen Sub-D-Steckverbindungen

Nr. Kürzel Name Bedeutung Datenrichtung

1 DCD Data Carrier Detect DCE erhält einlaufende Daten DCE → DTE

2 RXD Receive Data Empfangsdaten (des DTE, z. B. PC) DCE → DTE

3 TXD Transmit Data Sendedaten (des DTE, z. B. PC) DTE → DCE

4 DTR Data Terminal Ready Einsatzbereitschaft des DTE DTE → DCE

5 GND Ground Signalmasse

6 DSR Data Set Ready Einsatzbereitschaft des DCE DCE → DTE

7 RTS Ready To Send DTE (z. B. PC) möchte Daten übertragen DTE → DCE

8 CTS Clear To Send DCE kann Daten entgegennehmen DCE → DTE

9 RI Ring Indicator Modem erkennt Anruf DCE → DTE

487

Im Anschluss an die Datenübertragung erfolgt die Übertragung von ein bis zwei
Stoppbits, welche den Wert 1 besitzen. Bis zum Beginn der nächsten Datenübertragung
verbleibt das Sendesignal auf dem Wert 1.

Um die Datenübertragung gegenüber kurzzeitigen Störungen abzusichern, kann zwi-
schen den Daten und dem Stoppbit ein Paritätsbit (parity bit) eingefügt werden. Verwen-
det der Sender die Übertragung eines Paritätsbits, muss dies dem Empfänger bekannt
sein. Ebenso müssen Sender und Empfänger die gleiche Rechenvorschrift zur Berech-
nung des Paritätsbits verwenden.

Der Empfänger berechnet aus den empfangenen Daten das erwartete Paritätsbit und
vergleicht dieses mit dem vom Sender empfangenen Paritätsbit. Sind die Werte beider Bits
identisch, wird davon ausgegangen, dass eine fehlerfreie Übertragung stattgefunden hat.

Für die Berechnung des Paritätsbits werden zwei Vorschriften verwendet, die als
„ungerade Parität“ (odd parity) beziehungsweise „gerade Parität“ (even parity) bezeich-
net werden. In beiden Fällen erfolgt die Berechnung des Paritätsbits p derart, dass eine
Exklusiv-Oder-Verknüpfung der Datenbits di und eines Modusbits m (m = 0 für even
parity, m = 1 für odd parity) durchgeführt wird:

Aufgrund dieser Vorschrift zur Berechnung des Paritätsbits lassen sich vom Empfänger nur
Übertragungsfehler erkennen, bei denen nur ein Fehler oder eine ungerade Anzahl fehler-
hafter Bits auftritt. Ist die Anzahl der durch Übertragungsfehler modifizierten Bits dagegen
gerade, würde der Empfänger die Daten als korrekt übertragen ansehen. Darüber hinaus
ermöglicht dieser sehr einfache Fehlerschutz keine empfängerseitige Fehlerkorrektur, da
der Empfänger nicht bestimmen kann, welches Datenbit fehlerhaft übertragen wurde.

In der Praxis wird die Übertragung eines Paritätsbits häufig nicht genutzt, wenn von
einem relativ sicheren Übertragungskanal ausgegangen werden kann. Dies ist meist bei
einer Verbindung zwischen einem PC und einem Mikrocontroller der Fall, wenn die
Datenleitungen nicht länger als wenige Meter sind und die Umgebung keine starken
elektromagnetischen Störquellen besitzt.

Abb. 14.13 zeigt exemplarisch den zeitlichen Verlauf der Übertragung eines Bytes mit
den Einstellungen: 8 Datenbits, 1 Stoppbit, gerade Parität.

Neben der Anzahl der Daten- und Stoppbits sowie der verwendeten Paritätsberech-
nung (odd, even, keine), muss dem Empfänger die Dauer der Übertragung eines ein-
zelnen Bits (Bitdauer) bekannt sein. Da die Bitdauer direkt die Übertragungsrate
beeinflusst, wird von Bitrate oder von Baudrate gesprochen.

Theoretisch können beliebige Baudraten verwendet werden. In der Praxis werden
jedoch meist standardisierte Baudraten verwendet. Typische Baudraten sind in Tab. 14.28
zusammengefasst.

14.7.3.3 � Handshake zwischen Sender und Empfänger
In vielen Anwendungsfällen kann davon ausgegangen werden, dass der Empfänger die
vom Sender empfangenen Daten stets verarbeiten kann. Dies ist zum Beispiel der Fall,

p = dn−1 ⊕ dn−2 ⊕ · · · ⊕ d1 ⊕ d0 ⊕ m

14.7  Eingebettete Peripheriekomponenten

488 14  Mikrocontroller

wenn ein Mikrocontroller Daten an einen PC sendet, um diese mithilfe eines Terminal-
programms auf dem Monitor anzuzeigen. Aufgrund der hohen Rechenleistung eines PCs
und der vergleichsweise geringen Datenrate der seriellen Schnittstelle, wird der PC in
der Regel alle vom Controller gesendeten Daten korrekt verarbeiten können.

Genauso sind auch Anwendungsfälle denkbar, in denen der Empfänger die gesende-
ten Daten nicht sofort verarbeiten kann. Würde der Sender diese Situation ignorieren und
weiter Daten senden, wäre ein Verlust von Daten die Folge. Um diesen Datenverlust zu
vermeiden, muss die Möglichkeit bestehen, dem Sender mitzuteilen, dass der Empfänger
kurzzeitig nicht in der Lage ist, weitere Daten zu empfangen. Die hierfür notwendige
Kommunikation zwischen Empfänger und Sender wird als Handshake bezeichnet.

Eine Möglichkeit zur Implementierung stellt das sogenannte Software-Handshake dar.
In diesem Fall wird die Handshake-Information über die Datenleitungen RXD und TXD
ausgetauscht. Ist ein Gerät nicht bereit Daten zu empfangen, sendet es an die Gegenstelle
den Wert 19 (0x13). Der Sender wird daraufhin das Senden weiterer Daten einstellen.
Sobald der Empfänger wieder bereit ist, sendet er den Wert 17 (0x11) und die Daten-
übertragung wird fortgesetzt. Da die beiden Zahlenwerte im ASCII-Code als XOFF
beziehungsweise XON bezeichnet werden, wird diese Art des Handshakes oft auch als
XON/XOFF-Handshake bezeichnet.

Ein Nachteil des Software-Handshakes ist es, dass zwei Zahlenwerten eine besondere
Bedeutung zugeordnet wird, sodass diese Werte nicht mehr für die Datenübertragung zur
Verfügung stehen.

t

1

0
S

ta
rt

B
it

0

B
it

1

B
it

2

B
it

3

B
it

4

B
it

5

B
it

6

B
it

7

P
ar

itä
t

S
to

pp

„R
uh

e“

„R
uh

e“

Bitdauer

Startbit für das
nächste Byte

„Frame“

Abb. 14.13   Zeitdiagramm für die Übertragung eines Bytes

Tab. 14.28   In der Praxis
häufig verwendete Baudraten

Baudrate (in bit/s) Bitdauer (µs)

2400 416,67

9600 104,17

19.200 52,08

38.400 26,04

57.600 17,36

115.200 8,68

489

Dieser Nachteil kann durch das sogenannte Hardware-Handshake vermieden werden.
Hierfür können die beiden Signale RTS und CTS herangezogen werden. Ein DTE (zum
Beispiel ein PC) teilt einem DCE mit, dass es Daten senden möchte indem es die Lei-
tung RTS aktiviert (RTS = 0). Das DCE setzt daraufhin das Signal CTS auf 0 sobald es
für den Datenempfang bereit ist. Für das DTE wird bei Verwendung dieses Handshakes
angenommen, dass es jederzeit alle vom DCE gesendeten Daten korrekt verarbeiten
kann. Gegebenenfalls kann jedoch vom DTE das DTR-Signal deaktiviert werden um so
ein Senden von Daten zu unterbrechen.

In vielen Anwendungen wird der RTS-Anschluss als RTR-Signal (Ready To Receive)
verwendet. In diesem Fall zeigt eine logische 0 auf der RTS-Leitung an, dass das DTE
Daten empfangen kann. Das DCE signalisiert die Empfangsbereitschaft dagegen durch
das Aktivieren der CTS-Leitung (CTS = 0).

Darüber hinaus können auch die Signale DSR und DTR zur Realisierung eines Hard-
ware-Handshakes verwendet werden, welche in ähnlicher Weise wie die Signale RTR
und CTS angesteuert werden können.

Obwohl in vielen Mikrocontrollern eingebettete Peripheriekomponenten zur Daten-
übertragung mithilfe des RS232-Protokolls zur Verfügung stehen, werden von diesen
Komponenten häufig nur die Signale RXD und TXD bedient. Soll die Kommunikation
mithilfe eines Hardware-Handshakes erfolgen, ist hierfür die softwarebasierte Ansteue-
rung von zusätzlichen Portanschlüssen erforderlich. Das Hardware-Handshake wird in
diesem Fall also durch das Programm in Software implementiert.

14.7.3.4 � Der USART im AVR
Viele Mikrocontroller der AVR-Serie besitzen eine eingebettete Schnittstelle zur Rea-
lisierung einer asynchronen seriellen Kommunikation. Im Fall des ATmega32 wird
diese Peripheriekomponente als USART (Universal Synchronous Asynchronous
Receiver/Transmitter) bezeichnet. Diese Komponente unterstützt serielle Übertragun-
gen mit 5 bis 9 Datenbits und 1 oder 2 Stoppbits. Neben der Analyse des Paritätsbits
existieren weitere Möglichkeiten zur Erkennung von Übertragungsfehlern, die in diesem
Abschnitt beschrieben werden. Wie die Bezeichnung USART andeutet, kann diese Kom-
ponente sowohl in einem asynchronen als auch in einem synchronen Modus betrieben
werden. Im Folgenden wird nur auf den asynchronen Betriebsmodus näher eingegangen.

Der USART des ATmega32 stellt die beiden Signale TXD (Datenausgang) und RXD
(Dateneingang) zur Verfügung. Diese Signale werden an den Anschlüssen PD0 und PD1
als alternative Portfunktionen herausgeführt. Wird der USART durch das auf dem Cont-
roller laufende Programm aktiviert, stehen die Portanschlüsse PD0 und PD1 nicht mehr
als frei programmierbare Portanschlüsse zur Verfügung.

Für die Konfiguration des USARTs werden drei USART-Control-and-Status-Register
(UCSRA, UCSRB, UCSRC) sowie zwei Bitratenregister (UBBRL, UBBRH) bereitgestellt
(s. Tab. 14.29).

Mit Setzen der Bits TXEN (Transmitter Enable) beziehungsweise RXEN (Receiver
Enable) wird der Sender beziehungsweise Empfänger der seriellen Schnittstelle des
ATmega32 aktiviert.

14.7  Eingebettete Peripheriekomponenten

490 14  Mikrocontroller

Die Baudrate hängt von der Systemtaktfrequenz und dem Wert im UBRR-Register ab.
Mithilfe der folgenden Formel kann ein geeigneter Wert für die Programmierung der Regis-
ter UBRRH (höherwertiges Byte) und UBRRL (niederwertiges Byte) bestimmt werden.

Die Auswahl der Anzahl der Datenbits innerhalb eines Frames (zwischen Start- und
Stoppbit) wird durch UCSZ festgelegt (s. Tab. 14.30).

Die zu sendenden (oder empfangenen) Daten werden im Register UDR (USART Data
Register) abgelegt. Ein Schreibzugriff auf dieses Register übermittelt neue zu sendende
Daten an die Schnittstelle, während die CPU mithilfe eines Lesezugriffs auf empfangene
Daten zugreifen kann.

Bei der Verwendung von 9 Datenbits wird das höchstwertige Datenbit durch
die Bits TXB8 beziehungsweise RXB8 repräsentiert. In allen anderen Fällen haben
diese Bits keine Bedeutung. Die weiteren Bits der UCSR-Register sind in Tab. 14.31
zusammengefasst.

Für die häufig verwendete Konfiguration „8 Datenbits, keine Parität, 1 Stoppbit, asyn-
chroner Modus“ ergeben sich für die Programmierung der UCSR-Register die Werte
UCSRB = 0x18 und UCSRC = 0x86. Die Bits des Registers UCSRA können auf den

UBRR =
fsys + 8 · Baudrate

16 · Baudrate
− 1

Tab. 14.29   USART-Control- und Statusregister: UCSRA, UCSRB, UCSRC

UCSRA

Bit 7 6 5 4 3 2 1 0

Name RXC TXC UDRE FE DOR PE U2X MPCM

UCSRB

Bit 7 6 5 4 3 2 1 0

Name RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8

UCSRC

Bit 7 6 5 4 3 2 1 0

Name URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL

Tab. 14.30   Auswahl der
Datenbits pro Frame mithilfe
der UCSZ-Bits

UCSZ2 UCSZ1 UCSZ0 Datenbits

0 0 0 5

0 0 1 6

0 1 0 7

0 1 1 8

1 1 1 9

491

Werten belassen werden, die sie nach dem Resetvorgang des Controllers erhalten haben
(UCSRA = 0).

Funktionen zur Initialisierung des USARTs und zum Polling-basierten Empfang
beziehungsweise Senden von Daten können in der Programmiersprache C wie folgt rea-
lisiert werden:

// Initialisierung des USARTs:

void USART_init (unsigned int baudrate)

{

   unsigned int bdr = ((F_CPU+8*baudrate)/baudrate/16)-1;
   UBRRH = (bdr>>8)&0x7F;
   UBRRL = bdr&0xFF;
   UCSRB = (1<<RXEN)|(1<<TXEN);   // Empfànger und Sender akt.
   UCSRC = (1<<URSEL)|(3<<UCSZ0); // 8 daten, 1 stopp

Tab. 14.31   Bedeutung der Bits der UCSR-Register

Bit Name Bedeutung

RXC Receive Complete 1: Daten eines Frames empfangen

TXC Transmit Complete 1: Daten eines Frames versendet

UDRE Data Register Empty 1: Daten-Register (UDR) ist leer

FE Frame Error 1: Ein empfangenes Stoppbit hatte den Wert 0

DOR Data Overrun 1: Daten im UDR-Register wurden nicht
rechtzeitig gelesen worden und wurden von
neuen empfangenen Daten überschrieben

PE Parity Error 1: Paritätsfehler erkannt

U2X Double Speed 1: Verdopplung der
Übertragungsgeschwindigkeit

MPCM Multiprocessor Communication Mode 1: Multiprocessor Modus aktiviert

RXCIE Receive Complete
Interrupt Enable

Lokale Interruptfreigabe

TXCIE Transmit Complete
Interrupt Enable

Lokale Interruptfreigabe

UDRIE Data Register Empty
Interrupt Enable

Lokale Interruptfreigabe

URSEL Register Select 0: Zugriff auf UBRRH; 1: Zugriff auf UCSRC

UMSEL Mode Select 0: asynchroner Modus, 1: synchroner Modus

UPM1/0 Parity Mode 00: keine Parität; 10: Gerade Parität; 11:
Ungerade Parität

USBS Stop Bit Select 0: 1 Stoppbit; 1: 2 Stoppbits

UCPOL Clock Polarity Polarität des Taktsignals im synchronen
Modus

14.7  Eingebettete Peripheriekomponenten

492 14  Mikrocontroller

}

// Daten mit USART empfangen:

unsigned char UART_rx(void)

{

   while (!(UCSRA & (1<<RXC)));   // auf Daten warten

   return UDR;                    // empf. Zeichen zurùckgeben

}

// Daten mit USART senden:

void UART_tx(unsigned char data)

{

   while(!(UCSRA & (1<<UDRE)));   // warten auf Ende des Sendens

   UDR=data;                     // neues Zeichen ausgeben
}

14.7.4	� SPI

Die Abkürzung SPI steht für Serial Peripheral Interface. Es handelt sich um eine syn-
chrone Schnittstelle, die zur Datenübertragung unidirektionale Signalleitungen ver-
wendet und zur Verbindung integrierter Bausteine verwendet wird. Zusätzlich zu den
Datenleitungen wird ein Taktsignal übertragen, welches zur Synchronisation eingesetzt
wird.

14.7.4.1 � Datenübertragung mit dem SPI-Protokoll
Das Protokoll arbeitet nach dem Master-Slave-Prinzip. Ein SPI-Master initiiert die
Datenübertragung und ist insbesondere für die Erzeugung des Taktsignals verantwort-
lich. SPI-Slaves empfangen das Taktsignal die vom Master übermittelten Daten. Gleich-
zeitig werden Daten vom Slave an den Master übertragen.

Für die Bezeichnung der Anschlüsse eines SPI-Interfaces sind keine allgemeingülti-
gen Namen spezifiziert. Die in der Praxis häufig verwendeten Anschlussbezeichnungen
sind in Tab. 14.32 zusammengefasst.

Sowohl der Master als auch der Slave enthalten Schieberegister, in die die Daten bitse
riell eingeschrieben werden. Die Übernahme eines Bits in diese Schieberegister erfolgt
mit der aktiven Taktflanke des Taktsignals SCK.

Häufig können auf der Seite des SPI-Masters die wesentlichen Übertragungspara-
meter konfiguriert werden. Hierzu zählen die Auswahl der aktiven Taktflanke (fallende
oder steigende Flanke), die Wortlänge der Übertragung und die Auswahl, ob zuerst das
höchstwertigste Bit (MSB first) oder das niederwertigste Bit (LSB first) übertragen wer-
den sollen.

Die Auswahl, welcher Slave an der Kommunikation teilnehmen soll, erfolgt durch
den Slave-Select-Anschluss (/SS) des Slaves. Wird dieser auf 0 gelegt, nimmt der Slave

493

mit der nächsten aktiven Flanke des SCK-Signals an der Kommunikation der Bausteine
teil. Andernfalls ignoriert der Slave die SPI-Übertragung.

Die Grundstruktur der Verbindung zwischen einem Master und einem Slave zeigt
Abb. 14.14.

Ein Zeitdiagramm für die Signale SCK, MOSI und MISO ist in Abb. 14.15 dargestellt.
In diesem Beispiel gilt für die SPI-Übertragung: Ruhezustand des Taktes ist 0 und die
Datenübernahme findet mit der ersten Taktflanke nach Verlassen des Ruhezustands statt.

Sollen mehrere Slaves mit einem SPI-Master verbunden werden, können zwei Grund-
strukturen verwendet werden, die im Folgenden als SPI-Kaskadierung oder als SPI-
Sternverbindung bezeichnet werden.

Tab. 14.32   Anschlussbezeichnungen eines SPI-Interfaces

Signalbezeichnungen Bedeutung Datenrichtung

MOSI, SDI, SIMO Daten (Master Out, Slave In) Master → Slave

MISO, SDO, SOMI Daten (Master In, Slave Out) Slave → Master

SCK, SCLK Takt (Serial Clock) Master → Slave

/SS, /SSEL, /CS, /STE Slaveauswahl (Slave Select) Master → Slave

Schieberegister

Master

Takterzeugung

Slaveauswahl

MOSI

SCK

MISO

/SS

Slave

Schieberegister

Abb. 14.14   Struktur der SPI-Verbindung zwischen einem Master und einem Slave

Abb. 14.15   SPI-Signalverlauf

SCK

MISO

MOSI

14.7  Eingebettete Peripheriekomponenten

494 14  Mikrocontroller

Im Fall der SPI-Kaskadierung wird ausgenutzt, dass die Daten, die über den MOSI-
Anschluss in einen Slave eingeschrieben werden, nach mehreren Taktzyklen unverändert
am MISO-Ausgang des Slaves erscheinen. Wird dieser MISO-Ausgang mit dem MOSI-
Eingang eines nachfolgenden Slaves verbunden, können somit „durch den ersten Slave
hindurch“ Daten zu dem nachfolgenden Slave übertragen werden. Während der Über-
tragung von Daten mithilfe des SPI-Protokolls müssen alle /SS-Eingänge auf dem Wert
0 gehalten werden. Hierfür kann eine gemeinsame /SS-Leitung für alle kaskadierten
SPI-Slaves verwendet werden. Die entsprechende Verbindungsstruktur ist in Abb. 14.16
exemplarisch für die Verbindung von einem Master und drei Slaves skizziert.

Die Alternative zur Kaskadierung stellt die SPI-Sternverbindung dar. Hierbei werden
die MISO-Ausgänge der Slaves miteinander verbunden und an den MISO-Eingang des
Masters angeschlossen. MOSI-Eingänge der Slaves werden mit dem MOSI-Ausgang des
Masters verbunden. Um zu vermeiden, dass die Verbindung der MISO-Ausgänge der Sla-
ves zu einem Kurzschluss führen kann, muss jeder der Slaves einzeln selektiert werden
können. Wird vom Master nur einer der Slaves selektiert (/SS = 0), nimmt nur dieser an
der Datenübertragung teil, während die Ausgänge der nicht selektierten Slaves hochoh-
mig sind. Die SPI-Sternverbindung ist in Abb. 14.17 für einen Master und drei Slaves
skizziert.

Der Vorteil der SPI-Kaskadierung ist der geringere Verdrahtungsaufwand. Bereits mit
4 Signalleitungen können beliebig viele Slaves an einen Master angeschlossen werden.
Die Kaskadierung besitzt jedoch den Nachteil, dass die Daten durch alle Slaves hindurch
gereicht werden müssen. Soll zum Beispiel der Slave 1 in Abb. 14.16 vom Master aus-
gelesen werden, so müssen die Daten des Slaves 1 zunächst durch die Slaves 2 und 3
geschoben werden, wodurch der Datentransfer mehr Zeit in Anspruch nimmt. Darüber
hinaus ist zu beachten, dass die Slaves Daten unverändert durchreichen müssen. Diese
Funktion wird von vielen Slaves nicht unterstützt und es muss die Sternverdrahtung
gewählt werden. In diesem Fall ist jeder Slave direkt mit dem Master verbunden und
die Zeit zur Übertragung zwischen dem Master und einem beliebigen Slave ist für alle

Abb. 14.16   SPI-
Kaskadierung mit einem
Master und drei Slaves

SPI
Master /SS

SCK

MOSI

MISO

SPI
Slave
1

/SS

SCK

MOSI

MISO

SPI
Slave
2

/SS

SCK

MOSI

MISO

SPI
Slave
3

/SS

SCK

MOSI

MISO

495

Slaves identisch. Diesem Vorteil steht der Nachteil gegenüber, dass für jeden Slave eine
eigene /SS-Leitung erforderlich ist.

14.7.4.2 � SPI-Interface der AVR-Mikrocontroller
Die Mikrocontroller der AVR-Familie stellen ein SPI-Interface als eingebettete Periphe-
riekomponente zur Verfügung. Im Folgenden werden die Register der SPI-Schnittstelle
eines ATmega32 beschrieben. Der ATmega32 stellt die SPI-spezifischen Anschlüsse als
alternative Portfunktionen an den Anschlüssen PB4 (/SS), PB5 (MOSI), PB6 (MISO) und
PB7 (SCK) zur Verfügung. Die Schnittstelle kann sowohl im Master- als auch im Slave-
Modus betrieben werden.

Für die Programmierung der SPI-Schnittstelle stehen ein Steuerregister (SPI Control
Register, SPCR), ein Statusregister (SPI Status Register, SPSR) und ein Datenregister
(SPI Data Register, SPDR) zur Verfügung.

Die Belegung des Steuerregisters SPCR ist in Tab. 14.33 dargestellt. Das Register
dient der Konfiguration der SPI-Schnittstelle. Die Bedeutung der einzelnen Bits dieses
Registers ist in Tab. 14.34 zusammengefasst.

Die im Master-Modus erzeugte Frequenz des SPI-Taktsignals wird aus den Bits
SPR1, SPR0 und SPI2X (Bit 0 im Register SPSR) gemäß Tab. 14.35 aus dem Systemtakt
abgeleitet.

Abb. 14.17   SPI-
Sternverbindung mit einem
Master und drei Slaves

SPI
Master

/SS1

SCK

MOSI

MISO

SPI
Slave
1

/SS

SCK

MOSI

MISO

SPI
Slave
2

/SS

SCK

MOSI

MISO

SPI
Slave
3

/SS

SCK

MOSI

MISO

/SS2

/SS3

Tab. 14.33   Belegung des Registers SPCR

SPCR

Bit 7 6 5 4 3 2 1 0

Name SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0

14.7  Eingebettete Peripheriekomponenten

496 14  Mikrocontroller

Das Statusregister SPSR enthält neben dem Bit SPI2X, welches die Takterzeugung
beeinflusst, zwei Statusbits. Das Bit SPIF wird von der Schnittstellen-Hardware auf 1
gesetzt sobald ein Byte übertragen wurde (Tab. 14.36).

Wird die SPI-Schnittstelle im Interruptbetrieb eingesetzt (SPIE = 1), wird das SPIF-
Bit durch die Hardware mit Aufruf der zugehörigen ISR gelöscht. Im Polling-Betrieb
muss zum Löschen des Bits zunächst das Register SPSR und anschließend das Datenre-
gister SPDR gelesen werden.

Zum Lesen empfangener Daten beziehungsweise Schreiben zu sendender Daten steht
das Register SPDR zur Verfügung. Vor dem Beginn einer Datenübertragung wird das zu
sendende Byte in diesem Register abgelegt. Durch einen Lesezugriff auf dieses Regis-
ter kann die CPU nach Beendigung einer Übertragung die empfangenen Daten auslesen.

Tab. 14.35   Festlegung der
SPI-Taktfrequenz mit den Bits
SPR1, SPR0 und SPI2X

SPR1 SPR0 SPI2X SPI-Taktfrequenz

0 0 1 fsys / 2

0 0 0 fsys / 4

0 1 1 fsys / 8

0 1 0 fsys / 16

1 0 1 fsys / 32

1 0 0 fsys / 64

1 1 1 fsys / 128

1 1 0 fsys / 256

Tab. 14.34   Bedeutung der SPCR-Steuerregisterbits

Bit Name Bedeutung

SPIE SPI Interrupt Enable 1: Lokale Interruptfreigabe
Ein Interrupt wird jeweils nach der Übertragung eines Bytes
ausgelöst.

SPE SPI Enable 0: normale Portfunktion (SPI deaktiviert)/1: SPI-Schnittstelle
aktiviert

DORD Data Ordering 0: MSB first/1: LSB first

MSTR Master Mode 0: Betrieb als SPI-Slave/1: Betrieb als SPI-Master

CPOL Clock Polarity Ruhezustand des Taktes
(= Polarität des Taktsignals, wenn keine Übertragung stattfindet)

CPHA Clock Phase Mit diesem Bit wird festgelegt, welche Taktflanke verwendet
wird:
0: Die erste Flanke nach Verlassen des Ruhezustands des Taktes
ist die aktive Taktflanke
1: Die zweite Flanke nach Verlassen des Ruhezustands des Taktes
ist die aktive Taktflanke

497

Während eine Datenübertragung aktiv ist, darf das Datenregister nicht geschrieben wer-
den. Ein versehentliches Überschreiben des Datenregisters signalisiert die SPI-Schnitt-
stelle durch Setzen des WCOL-Bits im Statusregister.

Bei vielen AVR-Controllern wird die SPI-Schnittstelle nicht nur zur Kommunikation
mit anderen Bausteinen eingesetzt. Sie dient darüber hinaus als In-System-Program-
ming-Schnittstelle (ISP). Mithilfe der ISP-Funktion kann ein AVR-Controller, welcher in
einem System eingesetzt ist, programmiert werden, ohne den Controller aus der Umge-
bung entfernen zu müssen. Diese Möglichkeit ist insbesondere für die Entwicklungs-
phase eines Systems bequem und zeitsparend.

Im Folgenden sind exemplarisch zwei Funktionen zur Initialisierung des SPI-Inter-
faces und zum Polling-basierten Empfangen und Senden von Daten angeben:

// Initialisierung des SPI-Interfaces

void SPI_init (void)

{

   DDRB |= (1<<PB4)|(1<<PB5)|(1<<PB7);   // SS,MOSI,SCK -> Ausgang
   SPCR |= (1<<SPE) |(1<<MSTR)|(1<<SPR0); // Schnittstelle konfigurieren
}

// SPI-Datenùbertragung

unsigned char SPI_io(unsigned char snd_data)

{

   SPDR = snd_data; 			 // Daten senden

   while (!(SPSR & (1<<SPIF))); 	 // Ùbertragung abwarten

   return SPDR; 		        // empf. Daten zurùckgeben

}

14.7.5	� TWI/I2C

In den frühen 1980er Jahren führte die Firma Philips den Inter-Integrated-Circuit-Bus
(I2C) ein. Mit diesem Bus ist es möglich, mehrere integrierte Bausteine (Mikrocontroller,
A/D-Umsetzer, D/A-Umsetzer, Speicher usw.) auf einer Leiterplatte mit nur zwei Signal-
leitungen zu verbinden. Aufgrund der Anzahl der Signalleitungen bezeichnen einige Her-
steller diese Schnittstelle auch als TWI (Two-Wire-Interface). Die Abkürzungen I2C und
TWI können als synonyme Bezeichnungen identischer Schnittstellen aufgefasst werden.

Tab. 14.36   Belegung des Registers SPSR

SPSR

Bit 7 6 5 4 3 2 1 0

Name SPIF WCOL – – – – – SPI2X

14.7  Eingebettete Peripheriekomponenten

498 14  Mikrocontroller

Die I2C-Schnittstelle dient der synchronen seriellen Übertragung von Daten. Mithilfe
des Signals SCL (Serial Clock) wird ein Taktsignal an alle angeschlossenen Bausteine
übertragen. Der Datenaustausch findet über die Leitung SDA (Serial Data) statt.

Die I2C-Anschlüsse eines integrierten Bausteins sind als Open-Collector- beziehungs-
weise Open-Drain-Ausgänge realisiert. Die SDA- und SCL-Anschlüsse der einzelnen
Komponenten sind miteinander verbunden und werden über einen Pull-Up-Widerstand
mit der Versorgungsspannung verbunden. Ein Baustein kann die I2C-Leitungen aktiv auf
einen Low-Pegel (logische 0) ziehen, er ist jedoch nicht in der Lage einen High-Pegel
(logische 1) aktiv auszugeben. Ein High-Pegel auf einer der Signalleitungen wird erzielt,
wenn alle Bausteine ihre Anschlüsse hochohmig schalten. Durch den Pull-Up-Wider-
stand (einige Kiloohm) wird dann eine logische 1 auf der Signalleitung erscheinen.

Abb. 14.18 zeigt den prinzipiellen Aufbau eines Systems mit mehreren integrierten
Bausteinen, welche über eine I2C-Schnittstelle miteinander kommunizieren können.

Im Ruhezustand befinden sich alle I2C-Anschlüsse der Bausteine in einem hochohmi-
gen Zustand, sodass beide Busleitungen über die Pull-up-Widerstände einen High-Pegel
führen. Soll ein Datenaustausch zwischen zwei Komponenten stattfinden, muss einer der
Bausteine das benötigte Taktsignal erzeugen und die Datenübertragung initiieren. Die-
ser Baustein übernimmt damit die Funktion eines I2C-Masters. Alle anderen Bausteine
arbeiten dagegen als I2C-Slave.

14.7.5.1 � Das I2C-Protokoll
Die Übertragung von Daten mithilfe des I2C-Protokolls erfolgt in zeitlich aufeinanderfol-
genden Schritten.

Im ersten Schritt übermittelt der Master eine sogenannte Startbedingung. Anschlie-
ßend wird eine 7 bit breite Bausteinadresse vom Master an die Slaves übermittelt. Ist die
Bausteinadresse eines Slaves mit der übermittelten Adresse identisch, wird dieser Slave
an der Kommunikation mit dem Master teilnehmen. Alle anderen, nicht ausgewählte
Slaves, belassen ihre I2C-Anschlüsse in einem hochohmigen Zustand. In der Regel wird
die I2C-Adresse eines Bausteins durch den Hersteller festgelegt. Häufig ist es möglich,
einzelne Bits dieser Adresse durch die äußere Beschaltung (oder im Fall eines Mikro-
controllers durch das Programm der CPU) festzulegen. Auf diese Weise kann erreicht
werden, dass mehrere identische Komponenten im gleichen Bussystem kollisionsfrei
betrieben werden können. Nach der Übertragung der Bausteinadresse folgt ein einzelnes
Bit, welches angibt, ob der Master Daten vom Slave lesen möchte oder ob Daten vom
Master an den Slave übertragen werden sollen (0: Schreibzugriff, 1: Lesezugriff).

Abb. 14.18   Aufbau eines
I2C-Systems mit mehreren
integrierten Bausteinen

IC1 IC2 ICn

SDA

SCL

499

Nach der Übertragung der Adresse und der Schreib-/Leseinformation versetzt der
Master seinen SDA-Anschluss in einen hochohmigen Zustand. Wurde ein Slave-Bau-
stein durch die übertragene Adresse angesprochen, zieht dieser die SDA-Leitung für
einen Taktzyklus auf Low. Auf diese Weise wird dem Master signalisiert, dass ein I2C-
Slave mit der übertragenen Adresse im System existiert und dieser an der nachfolgenden
Datenübertragung teilnimmt. Diese Bestätigung wird als Acknowledge bezeichnet.

Im nächsten Schritt erfolgt die eigentliche Datenübertragung. Für einen Schreibzu-
griff sendet der Master 8 Datenbits an den Slave, welcher den Empfang anschließend
bestätigt. Bei einem Lesezugriff sendet dagegen der Slave Daten an den Master und der
Master bestätigt den Empfang.

Nach der Übertragung eines Bytes können entweder weitere Bytes übertragen werden
oder die Übertragung wird beendet. Zum Beenden einer Übertragung kann der Master
entweder eine neue Startbedingung senden und so einen neuen Datentransfer einleiten
oder der Master sendet eine sogenannte Stoppbedingung, welche das Ende der Übertra-
gung signalisiert (s. Abb. 14.19).

Bei der Übertragung gemäß dem I2C-Protokoll gilt die Vereinbarung, dass sich der
Wert der SDA-Leitung nur ändern darf, wenn die SCL-Leitung den Wert 0 besitzt. Diese
Vereinbarung ist in Abb. 14.20 visualisiert.

Die oben genannte Vereinbarung gilt nur für die Adress- und Datenübertragung. Zur
Signalisierung der Start- oder Stoppbedingung wird sie dagegen nicht eingehalten. Bei
der Übertragung einer Startbedingung wird die SDA-Leitung vom Master auf Low gezo-
gen während sich die SCL-Leitung noch im Ruhezustand (High) befindet. Entsprechend
wird zur Übertragung einer Stoppbedingung zunächst die Taktleitung SCL von 0 auf 1
gesetzt. Mit einem anschließenden Wechsel der SDA-Leitung von 0 auf 1 wird wieder
der Ruhezustand (SDA = 1, SCL = 1) erreicht. Der zeitliche Signalverlauf für Start- und
Stoppbedingungen ist in Abb. 14.21 dargestellt.

Abb. 14.20   Synchronisierung
beim I2C-Protokoll

SCL

SDA

S
D

A
 s

ta
bi

l

S
D

A
 d

ar
f m

od
ifi

zi
er

t
w

er
de

n

t

S
ta
rt

Adresse Daten

S
to
p

R
/W

A
ck

A
ck Daten A
ck

Abb. 14.19   Zeitlicher Verlauf einer I2C-Übertragung

14.7  Eingebettete Peripheriekomponenten

500 14  Mikrocontroller

Die bitserielle Übertragung der Adressen oder Daten beginnt jeweils mit dem höchst-
wertigen Bit (Most Significant Bit first, MSB first). Der zeitliche Verlauf einer Über-
tragung ist exemplarisch in Abb. 14.22 dargestellt. Der Master adressiert hierbei einen
Baustein mit der Adresse 0x35 und empfängt vom Baustein den Wert 0xA5.

14.7.5.2 � I2C-Interface der AVR-Mikrocontroller
Viele Mikrocontroller der AVR-Serie besitzen eine Hardware-Komponente, welche
die Datenübertragung nach dem I2C-Protokoll unterstützt. Im Folgenden wird auf die

SCL

SDA

S
ta

rt

Bausteinadresse (Master->Slave): 0x35 Le
se

n

B
es

tä
tig

un
g

vo
m

 S
la

ve

SCL

SDA

Daten (Slave->Master): 0xA5 B
es

tä
tig

un
g

vo
m

 M
as

te
r

S
to

p

I2C-Übertragung Teil I

I2C-Übertragung Teil II
(Fortsetzung des oberen Diagramms)

Abb. 14.22   Beispiel einer I2C-Übertragung

Abb. 14.21   Start- und
Stoppbedingung des I2C-
Protokolls

SCL

SDA

S
ta
rt
be

di
ng

un
g

S
to
pp

be
di
ng

un
g

501

Schnittstelle eines ATmega32-Controllers eingegangen. Der Hersteller Atmel bezeichnet
die I2C-Schnittstelle als Two-Wire-Interface, TWI.

Die I2C-Schnittstelle kann sowohl im Master- als auch im Slave-Betrieb arbeiten. Die
Bausteinadresse für den Slavemodus kann durch eine entsprechende Programmierung
durch den Controller frei festgelegt werden. Der AVR unterstützt SCL-Taktfrequenzen
von bis zu 400 kHz, was dem sogenannten „Fast-Mode“ entspricht. Da viele I2C-Bau-
steine nur den Standard-Mode mit einer Taktfrequenz von 100 kHz unterstützen, muss
vor der Inbetriebnahme eines I2C-Systems überprüft werden, ob die gewählte Taktfre-
quenz von allen Bausteinen des Systems unterstützt wird.

Die Programmierung des I2C-Interfaces eines AVR ist sehr übersichtlich, da diese
Hardwarekomponente lediglich 5 Register besitzt, die im Folgenden näher vorgestellt
werden.

Das TWI Control Register (TWCR) dient zur Steuerung der I2C-Hardwarekompo-
nente. Mithilfe dieses Registers kann die Komponente ein- oder ausgeschaltet oder die
lokale Interruptfreigabe sowie einige Übertragungsparameter konfiguriert werden. Das
TWI Status Register (TWSR) enthält 5 Bits, die als Statusinformation vom Programm
ausgewertet werden können. Auf dieses Weise ist es möglich, Übertragungsfehler (zum
Beispiel „Slave hat auf die Übertragung einer Adresse nicht mit einer Bestätigung geant-
wortet“) im Programm zu erkennen. Das TWSR-Register enthält darüber hinaus zwei
Bits (TWPS1 und TWPS0), die zusammen mit dem Register TWBR (TWI Bitrate Regis-
ter) die verwendete Taktfrequenz im Masterbetrieb festlegen. Hierbei wird I2C-Frequenz
aus der Systemtaktfrequenz fsys gemäß der nachfolgenden Formel abgeleitet:

Mithilfe des TWI Slave Address Registers (TWAR) wird die vom Controller verwendete
Bausteinadresse im Slave-Modus festgelegt. Die Übermittlung von Daten erfolgt mit
dem TWI Data Register (TWDR).

Die Belegung der Register TWCR und TWSR ist im Folgenden angegeben. Die ande-
ren Register der I2C-Schnittstelle enthalten 8-Bit-Werte (Tab. 14.37, 14.38 und 14.39).

Mithilfe der TWS-Statusbits kann die CPU den aktuellen Zustand des I2C-Inter-
faces bestimmen. Hierbei wird der jeweilige Betriebsmodus (Master oder Slave) unter-
schieden. Darüber hinaus wird unterschieden, ob der AVR Daten empfängt (Receiver)
beziehungsweise Daten sendet (Transmitter). Somit ergeben sich vier grundlegende

fSCL =
fsys

16+ 2 · TWBR · 4TWPS

Tab. 14.37   Belegung des Registers TWCR

TWCR

Bit 7 6 5 4 3 2 1 0

Name TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE

14.7  Eingebettete Peripheriekomponenten

502 14  Mikrocontroller

Betriebsmodi, für die eine Statusabfrage erfolgen kann: Master-Receiver-Modus, Mas-
ter-Transmitter-Modus, Slave-Receiver-Modus und Slave-Transmitter-Modus.

In Tab. 14.40 sind die möglichen Statusinformationen für den Masterbetrieb zusam-
mengefasst. Die in der Tabelle angegeben Konstanten können bei der Softwareent-
wicklung in der Programmiersprache C nach dem Inkludieren der Header-Datei twi.h
verwendet werden.

Im Folgenden werden exemplarisch zwei Beispielfunktionen angegeben, welche das
Polling-basierte Senden und Empfangen eines Bytes ermöglichen. Zur Fehlerbehandlung
wird die Funktion TW_ERR() verwendet, die im nachfolgenden Code nicht angegeben ist
und für ein lauffähiges Programm erstellt werden müsste.

// Senden eines Bytes

#include <util/twi.h> // I2C-Header-Datei

void TWI_ERR ()

{

   // Hier Code zur Fehlerbehandlung

}

void TWI_sendbyte (unsigned char twi_addr, unsigned char twi_data)

Tab. 14.39   Belegung des Registers TWSR

TWSR

Bit 7 6 5 4 3 2 1 0

Name TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0

Tab. 14.38   Bedeutung der einzelnen Bits des TWCR-Registers

Bit Name Bedeutung

TWINT TWI Interrupt Flag 1: Die I2C-Komponente hat die zuvor programmierte
Aufgabe abgearbeitet und kann von der CPU mit neuen
Aufgaben belegt werden. Ein Löschen dieses Bits (durch
Schreiben einer 1) startet die nachfolgende Aufgabe

TWEA TWI Enable Acknowledge 1: Die Komponente generiert ein Bestätigungssignal,
wenn Daten empfangen wurden oder falls (Slavemodus)
die eigene Bausteinadresse empfangen wurde

TWSTA TWI Start Condition 1: Startbedingung generieren

TWSTO TWI Stop Condition 1: Stoppbedingung generieren (Mastermodus), Rückset-
zen des Interfaces (zur Fehlerbehandlung im Slavemodus)

TWWC TWI Write Collision 1: Das Datenregister (TWDR) wurde beschrieben bevor
eine zuvor gestartete Übertragung abgeschlossen wurde

TWEN TWI Enable 1: Die I2C-Komponente ist aktiviert

TWIE TWI Interrupt Enable Lokale Interruptfreigabe

503

{

   // --- Startbedingung ---

   TWCR = (1<<TWINT)|(1<<TWSTA)| (1<<TWEN);     // Sende START
   while (!(TWCR & (1<<TWINT)));                // gesendet?

   if (TWSR != TW_START) TWI_ERR();             // Status prùfen

   // --- Adresse ---

   TWDR = (twi_data << 1) | TW_WRITE;           // Adresse nach TWDR
   TWCR = (1<<TWINT) | (1<<TWEN);              // Ùbertragung starten
   while (!(TWCR & (1<<TWINT)));                // Adr. gesendet?

   if (TWSR != TW_MT_SLA_ACK) TWI_ERR();       // Status prùfen

   // --- Daten ---

   TWDR = twi_data;                            // Daten nach TWDR

Tab. 14.40   Statusinformationen für den Masterbetrieb

Statusbits im Register
TWSR

Konstante in
C-Bibliothek

Modus Bedeutung

0x08 TW_START Alle „START“ übertragen

0x10 TW_REP_START Alle „Repeated START“ übertragen
(Startbed. ohne vorherige
Stoppbed.)

0x18 TW_MT_SLA_ACK Master
Transmit.

Adresse + „Write“ übertragen,
Bestätigung (ACK) empfangen

0x20 TW_MT_SLA_NACK Master
Transmit.

Adresse + „Write“ übertragen,
Keine Bestätigung (NACK)
empfangen

0x28 TW_MT_DATA_ACK Master
Transmit.

Daten übertragen, Bestätigung
(ACK) empfangen

0x30 TW_MT_DATA_NACK Master
Transmit.

Daten übertragen, keine Bestäti-
gung (NACK) empfangen

0x38 TW_MR_ARB_LOST Master
Receiver

Ein anderer Master hat die
Kontrolle
der I2C-Leitungen übernommen

0x40 TW_MR_SLA_ACK Master
Receiver

Adresse + „Read“ übertragen,
Bestätigung (ACK) empfangen

0x48 TW_MR_SLA_NACK Master
Receiver

Adresse + „Read“ übertragen,
keine Bestätigung (NACK)
empfangen

0x50 TW_MR_DATA_ACK Master
Receiver

Daten empfangen, Bestätigung
(ACK) gesendet

0x58 TW_MR_DATA_NACK Master
Receiver

Daten empfangen, keine Bestäti-
gung NACK gesendet

14.7  Eingebettete Peripheriekomponenten

504 14  Mikrocontroller

   TWCR = (1<<TWINT) | (1<<TWEN);              // Ùbertragung starten
   while (!(TWCR & (1<<TWINT)));                // Daten gesendet?

   if (TWSR != TW_MT_DATA_ACK) TWI_ERR();       // Status prùfen

   // --- Stoppbedingung ---

   TWCR = (1<<TWINT)|(1<<TWEN)| (1<<TWSTO);     // STOP senden
}

// Empfangen eines Bytes

#include <util/twi.h>                           // I2C-Header-Datei

unsigned char TWI_recbyte (unsigned char twi_addr)

{

   unsigned char twi_data;

   // --- Startbedingung ---

   TWCR = (1<<TWINT)|(1<<TWSTA)| (1<<TWEN);     // Sende START
   while (!(TWCR & (1<<TWINT)));                // gesendet?

   if (TWSR != TW_START) TWI_ERR();             // Status prùfen

   // --- Adresse ---

   TWDR = (twi_addr << 1) | TW_READ;            // Adresse nach TWDR
   TWCR = (1<<TWINT) | (1<<TWEN);              // Ùbertragung starten
   while (!(TWCR & (1<<TWINT)));                // Adr. gesendet?

   if (TWSR != TW_MR_SLA_ACK) TWI_ERR();        // Status prùfen

   // --- Daten ---

   TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWEA);
   while (!(TWCR & (1<<TWINT)));                // Daten empf. ?

     twi_data = TWDR;                           // Daten sichern

   // --- Stoppbedingung ---

   TWCR = (1<<TWINT)|(1<<TWEN)| (1<<TWSTO);     // STOP senden
   return twi_data;

}

14.7.6	� Analoge Peripheriekomponenten

Neben digitalen Ein-/Ausgabekomponenten stellen Mikrocontroller vielfach auch
analoge Komponenten zur Verfügung. Der im Rahmen dieses Kapitels exemplarisch
betrachtete Mikrocontroller ATmega32 verfügt über einen A/D-Umsetzer und einen Ana-
log-Komparator. Im Folgenden werden diese Komponenten näher vorgestellt.

505

14.7.6.1 � Analog/Digital-Umsetzer
Der A/D-Umsetzer arbeitet nach dem Verfahren der sukzessiven Approximation und
stellt eine Auflösung von 10 bit zur Verfügung. Die Umsetzung erfolgt nach dem Ver-
fahren der sukzessiven Approximation und benötigt, je nach Betriebsmodus, eine Zeit
von 13 bis 260 µs. Als analoge Eingänge können im Fall des ATmega32 die Anschlüsse
PA0 (ADC0) bis PA7 (ADC7) verwendet werden. Insgesamt stehen somit 8 analoge
Anschlüsse zur Verfügung. Durch eine entsprechende Konfiguration des integrierten
Analog-Multiplexers ist es möglich, jeweils einen dieser Anschlüsse mit dem Eingang
des A/D-Umsetzers zu verbinden und eine Messung der anliegenden Eingangsspan-
nung durchzuführen. Darüber hinaus wird eine differenzielle Messung unterstützt, die
es ermöglicht, die Spannungsdifferenz zweier analoger Anschlüsse zu messen. Die für
den A/D-Umsetzer benötigte Referenzspannung kann entweder intern erzeugt oder über
den Anschluss AREF beziehungsweise AVCC zugeführt werden. Die Struktur des A/D-
Umsetzers ist in Abb. 14.23 gezeigt.

Mithilfe eines Eingangsmultiplexers werden die Anschlüsse des Controllers aus-
gewählt, die dem A/D-Umsetzer zugeführt werden sollen. Neben den Anschlüssen
ADC0 bis ADC7 kann auch eine interne Referenzspannung oder eine Masseverbindung

MUX

ADC0

Uint

ADC1

ADC6

ADC7
+

-

M
U
X

Sample
& Hold

A/D-
Umsetzer

VREF

AVCC

M
U
X

Interne
Referenz-
spannung

(typ. 2,56 V)

Referenz-
Spannung
Uref

Register:
ADCL,
ADCH

MUX[4:0]
Register: ADMUX

REFS[1:0]
Register: ADMUX

Steuerung

Register: ADCSRA, ADMUX

Interrupt
Flags

Abb. 14.23   Struktur des A/D-Umsetzers

14.7  Eingebettete Peripheriekomponenten

506 14  Mikrocontroller

ausgewählt werden. Bei Auswahl einer differenziellen Messung kann die Differenz-
spannung mithilfe eines Verstärkers mit den Werten 1, 10 und 200 multipliziert werden.
Die ausgewählte Spannung wird zunächst über ein Sample-and-Hold-Glied geführt und
anschließend dem A/D-Umsetzer zugeführt.

Nach der Durchführung der Wandlung kann der digitalisierte Wert aus den I/O-
Registern ADCL und ADCH ausgelesen werden. Für diesen Wert gelten die folgenden
Formeln:

Normale Messung (single-ended):

Differenzielle Messung:

mit: V – Verstärkungsfaktor
Für die Programmierung des A/D-Umsetzers werden drei Register verwendet: Das

ADC Multiplexer Selection Register (ADMUX), das ADC Control and Status Register A
(ADCSRA) sowie einige Bits des Special Function IO Registers (SFIOR). Die Belegung
der genannten Register ist im Folgenden angegeben (Tab. 14.41)

Mithilfe der Bits REFS1 und REFS0 wird die Referenzspannung für den A/D-Umset-
zer ausgewählt MUX4 bis MUX0 steuern die Analogmultiplexer, und mithilfe des Bits
ADLAR kann das Ausgabeformat in den Registern ADCL und ADCH ausgewählt wer-
den. Tab. 14.42, 14.43 und 14.44 fassen die Bedeutung der Bits des ADMUX-Registers
zusammen.

ADC =
Uin · 1024

Uref

ADC =
(Upos − Uneg) · V · 512

Uref

Tab. 14.41   Belegung des Registers ADMUX

ADMUX

Bit 7 6 5 4 3 2 1 0

Name REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0

Tab. 14.42   Auswahl der Referenzspannung mit den Bits REFS1 und REFS0

REFS1 REFS0 Referenzspannung Uref

0 0 Anschluss AREF

0 1 Anschluss AVCC

1 0 reserviert

1 1 Interne 2.56 V Referenzspannung (Kapazität an AREF empfohlen)

507

Mit dem Register ADSCRA werden die Grundeinstellungen zum Betrieb des A/D-
Umsetzers vorgenommen (Tab. 14.45 und 14.46).

Tab. 14.43   Bedeutung der Bits des ADMUX-Registers

ADCH (ADLAR = 0)

Bit 7 6 5 4 3 2 1 0

Name - - - - - - ADC9 ADC8

ADCL (ADLAR = 0)

Bit 7 6 5 4 3 2 1 0

Name ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0

ADCH (ADLAR = 1)

Bit 7 6 5 4 3 2 1 0

Name ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2

ADCL (ADLAR = 1)

Bit 7 6 5 4 3 2 1 0

Name ADC1 ADC0 - - - - - -

14.7  Eingebettete Peripheriekomponenten

Tab. 14.44   Auswahl der Eingangsmultiplexer in Abhängigkeit von MUX0 bis MUX4

MUX3 MUX2 MUX1 MUX0 Analogeingang (MUX4 = 0) Analogeingang (MUX4 = 1)

0 0 0 0 ADC0 ADC0-ADC1

0 0 0 1 ADC1 ADC1-ADC1

0 0 1 0 ADC2 ADC2-ADC1

0 0 1 1 ADC3 ADC3-ADC1

0 1 0 0 ADC4 ADC4-ADC1

0 1 0 1 ADC5 ADC5-ADC1

0 1 1 0 ADC6 ADC6-ADC1

0 1 1 1 ADC7 ADC7-ADC1

1 0 0 0 (ADC0-ADC0)*10 ADC0-ADC2

1 0 0 1 (ADC1-ADC0)*10 ADC1-ADC2

1 0 1 0 (ADC0-ADC0)*200 ADC2-ADC2

1 0 1 1 (ADC1-ADC0)*200 ADC3-ADC2

1 1 0 0 (ADC2-ADC2)*10 ADC4-ADC2

1 1 0 1 (ADC3-ADC2)*10 ADC5-ADC2

1 1 1 0 (ADC2-ADC2)*200 Interne Spannung (1,22V)

1 1 1 1 (ADC3-ADC2)*200 Masse (0V)

508 14  Mikrocontroller

Tab. 14.45   Belegung des Registers ADSCRA

ADSCRA

Bit 7 6 5 4 3 2 1 0

Name ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0

Tab. 14.46   Bedeutung der Bits des Registers ADSCRA

Bit Name Bedeutung

ADEN ADC Enable Ein-/Ausschalten des A/D-Umsetzers (0: aus, 1: ein)

ADSC ADC Start Conversion 1: Start einer A/D-Umsetzung
Dieses Bit muss auch im „Free-Running-Mode“ (auto-
matisch wiederholte Messungen) zum Start der ersten
Wandlung gesetzt werden.

ADATE ADC Auto Trigger Enable 0: Start der A/D-Umsetzungen durch SW
1: Kontinuierliche A/D-Umsetzung

ADIF ADC Interrupt Flag 1: A/D-Umsetzung abgeschlossen
(Löschen des Bits durch Schreiben einer 1)

ADIE ADC Interrupt Enable 1: Lokale Interruptfreigabe. Auslösen einer Unterbrechung
nach Abschließen der A/D-Umsetzung

ADPS ADC Prescaler Selection Auswahl des Taktes des A/D-Umsetzers

Tab. 14.48   Belegung des Registers TWSR

SFIOR

Bit 7 6 5 4 3 2 1 0

Name ADTS2 ADTS1 ADTS0 - ACME PUD PSR2 PSR10

Tab. 14.47   Einstellung der ADC-Taktfrequenz durch Teilung der Systemfrequenz

ADPS2 ADPS1 ADPS0 ADC-Taktfrequenz

0 0 0 fsys / 2

0 0 1 fsys / 2

0 1 0 fsys / 4

0 1 1 fsys / 8

1 0 0 fsys / 16

1 0 1 fsys / 32

1 1 0 fsys / 64

1 1 1 fsys / 128

509

Die Taktfrequenz, mit welcher der A/D-Umsetzer betrieben wird, beeinflusst sowohl
die Dauer der Umsetzung als auch die Genauigkeit des Ergebnisses. Für eine Genauig-
keit von 10 Bit empfiehlt der Hersteller die Auswahl einer Frequenz zwischen 50 und
200 kHz. Ist eine geringere Genauigkeit ausreichend, kann der A/D-Umsetzer auch mit
Frequenzen oberhalb von 200 kHz betrieben werden, um höhere Abtastraten zu erzielen.
Eine Umsetzung dauert, je nach Betriebsmodus, zwischen 14,5 und 16,5 Taktzyklen. Die
Auswahl der Taktfrequenz durch die CPU erfolgt durch Programmierung der ADPS-Bits
im ADSCRA-Register. Die Taktfrequenz wird durch Teilung der Systemfrequenz fsys ent-
sprechend Tab. 14.47 erzeugt.

Neben dem softwarebasierten Start einer A/D-Umsetzung, kann eine Umsetzung auch
durch controllerinterne Ereignisse ausgelöst werden. Zur Auswahl dieser Ereignisse
müssen die ADTS-Bits (ADTS: ADC Trigger Selection) im Register SFIOR programmiert
werden (Tab. 14.48).

Die Auswahl der möglichen Ereignisse zum Start einer Wandlung fasst Tab. 14.49
zusammen.

Eine einfache Beispielfunktion zur Verwendung des A/D-Umsetzers ist nachfolgend
angegeben. Sie initialisiert den Umsetzer und startet eine Umsetzung, auf deren Ende
Polling-basiert gewartet wird. Das Ergebnis wird als 16-Bit-Wert an das Hauptprogramm
zurückgegeben.

#include <avr/io.h>

#include <util/delay.h>

unsigned int GET_ADC1()

{

   unsigned int adc;

   // Auswahl: Referenzspannung & Analogeingang ADC1

   ADMUX = (1<<REFS0) | (1<<MUX0);
   // A/D-Umsetzer einschalten und Vorteiler wàhlen

   ADCSRA = (1<<ADEN) | (1<<ADPS2) | (1<<ADPS1) | (1<<ADPS0);

Tab. 14.49   Auswahl der Triggerquelle zum Start der A/D-Umsetzung

ADTS2 ADTS1 ADTS0 Trigger-Quelle zum Start einer A/D-Umsetzung

0 0 0 „Free Running Mode“: A/D-Umsetzung wird automatisch nach dem
Beenden der vorangegangenen Umsetzung gestartet

0 0 1 Analog-Komparator

0 1 0 Externer Interrupt (Anschluss INT0)

0 1 1 Timer0: Zähler des Timers = Vergleichswert (Compare Match)

1 0 0 Timer0: Zählerüberlauf (Timer Overflow)

1 0 1 Timer1: Zähler des Timers = Vergleichswert B (Compare Match B)

1 1 0 Timer1: Zählerüberlauf (Timer Overflow)

1 1 1 Timer1: Ereignis der Input-Capture-Unit (Capture Event)

14.7  Eingebettete Peripheriekomponenten

510 14  Mikrocontroller

   // Start der Umsetzung per Software            

   ADCSRA |= (1<<ADSC);
   // Auf Ende der Umsetzung warten

   while (ADCSRA & (1<<ADSC)) _delay_us(1);        

   // Ergebnis lesen

   adc = ADCL;
   adc |= (ADCH<<8);
   return adc;

}

14.7.6.2 � Analog-Komparator
Mithilfe des Analog-Komparators können zwei analoge Spannungen miteinander ver-
glichen werden. Das Ergebnis dieses Vergleichs wird vom Komparator als binärer Wert
ausgegeben. Der Ausgangswert des Komparators kann durch die CPU über die Abfrage
eines I/O-Registers eingelesen werden. Darüber hinaus ist es möglich, bei Änderungen
des Ausgangswertes einen Interrupt auszulösen. Weiterhin kann der Ausgang des Ana-
log-Komparators direkt in der Hardware des Mikrocontrollers (zum Beispiel im Timer
1 als Capture-Impuls für die Input-Capture-Unit) verwendet werden. Die Struktur des
Komparators zeigt Abb. 14.24.

Die Funktion des Komparators wird im Wesentlichen durch das ACSR-Register fest-
gelegt (Tab. 14.50).

Wie Tab. 14.51 zu entnehmen ist, erfolgt die Signalauswahl für den positiven Kompa-
ratoreingang durch das Bit ACBG. Der Multiplexer für den negativen Komparatoreingang
wird über die Bits ACME (SFIOR-Register) und ADEN (ADCSRA-Register) gesteuert.
Gilt ACME = 1 und ADEN = 0 (A/D-Umsetzer abgeschaltet), wird dem negativen Kom-
paratoreingang das Ausgangssignal des Eingangsmultiplexers des A/D-Umsetzer zuge-
führt. In allen anderen Fällen wird das Signal am Anschluss AIN1 ausgewählt.

Abb. 14.24   Struktur des
Analog-Komparators

MUX
AIN0

+

-

Interne
Referenz-
spannung

MUX
AIN1

vom A/D-
Umsetzer

ACO
(Analog

Comparator
Output)

Tab. 14.50   Belegung des Registers ACSR

ACSR

Bit 7 6 5 4 3 2 1 0

Name ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0

511

14.7.7	� Interrupt-basierte Kommunikation mit
Peripheriekomponenten

Die Kommunikation zwischen CPU und eingebetteten Peripheriekomponenten kann
Polling-basiert erfolgen. Beispiele hierzu wurden in den vorangegangenen Abschnitten
für einzelne Peripheriekomponenten eines AVR-Mikrocontrollers dargestellt. Polling
stellt die einfachste Möglichkeit dar, mit einer eingebetteten Komponente zu kommuni-
zieren und besitzt den Vorteil, dass der Programmcode meist relativ gut nachvollziehbar
ist, da er streng sequenziell ausgeführt wird. Mit Polling ist jedoch der Nachteil verbun-
den, dass ein signifikanter Anteil der verfügbaren Rechenleistung für Warteschleifen zur
Abfrage von Peripheriekomponenten aufgebracht werden muss. Darüber hinaus muss bei
Verwendung von Polling sichergestellt sein, dass die Komponenten ausreichend häufig
abgefragt werden, da andernfalls Ereignisse (zum Beispiel der Empfang von Daten) ver-
passt werden könnten. Für sehr einfache Anwendungen kann Polling durchaus ein sinn-
voller Ansatz zur Realisierung einer Anwendung auf einem Mikrocontroller sein. Für
komplexere Anwendungen ist er meist nicht zu empfehlen, da entweder die rechtzeitige
Abfrage aller Peripheriekomponenten nicht gewährleistet werden kann oder auch der
Verbrauch der Rechenleistung für Warteschleifen zur Abfrage der Peripheriekomponen-
ten nicht toleriert werden kann.

Tab. 14.51   Signalauswahl am Komparatoreingang

Bit Name Bedeutung

ACD Analog Comparator Disable Ein-/Ausschalten des Komparators (0: ein, 1: aus)

ACBG Analog Comparator Bandgap Select Auswahl des Signals am positiven
Komparator-Eingang
0: Anschluss AIN0
1: Intern erzeugte Referenzspannung (typ. 1,23 V)

ACO Analog Comparator Output Aktueller Status des Komparatorausgangs
(zur Abfrage durch die CPU)

ACI Analog Comparator
Interrupt Flag

1: Ereignis (entspr. der ACIS-Bits) ist aufgetreten
und es wird ein Interrupt ausgelöst, sofern der AC-
Interrupt freigegeben ist

ACIE Analog Comparator
Interrupt Enable

1: Lokale Interruptfreigabe

ACIC Analog Comparator
Input Capture Enable

1: Ereignis des Analog-Komparators löst Capture-
Event in Timer1 aus.

ACIS Analog Comparator
Interrupt Mode Select

00: Interrupt bei Wechsel des Ausgangs ACO
01: reserviert
10: Interrupt bei fallender Flanke des Ausgangs
ACO
11: Interrupt bei steigender Flanke des Ausgangs
ACO

14.7  Eingebettete Peripheriekomponenten

512 14  Mikrocontroller

Als Alternative zu Polling kann eine interruptbasierte Kommunikation mit Periphe-
riekomponenten eingesetzt werden. Das Hauptprogramm wird in diesem Fall zunächst
die Initialisierung des Systems vornehmen, die benötigten Interrupts lokal freigeben und
abschließend eine globale Interruptfreigabe durch Setzen des I-Flags im Statusregister
der CPU vornehmen. Anschließend wird das Hauptprogramm in eine Endlosschleife
springen, die in einfachen Anwendungsfällen leer ist. Ein Beispiel für die Verwendung
von Interrupts wird anhand des folgenden Beispiels verdeutlicht:

Mithilfe eines Mikrocontrollers soll eine einfache Temperaturüberwachung realisiert
werden. Ein hypothetischer Sensor liefert die Temperatur als 8-Bit-Wert an den Mikro-
controller. Der Sensor misst kontinuierlich die Temperatur. Über die steigende Flanke
eines Synchronisationssignals wird vom Sensor angezeigt, dass ein neuer Messwert aus-
gegeben wurde. Übersteigt die gemessene Temperatur einen vorprogrammierten Wert,
soll der Mikrocontroller ein Alarmsignal (Alarm = 1) ausgeben. Eine Hardwarerealisie-
rung auf Basis eines ATmega32 ist in Abb. 14.25 skizziert.

Ein entsprechendes Programm für den Mikrocontroller kann wie folgt aussehen:

// Einfache Temperaturùberwachung

#include <avr/io.h>

#include <avr/interrupt.h>

#define ALARM_SCHWELLE 100

void InitSystem() {

   // Portrichtungen einstellen

   DDRA = 0;        
   DDRB |= (1<<PB0);
   DDRD &= ~(1<<PD2);
   // Interrupt konfigurieren und lokal freigeben

   MCUCR |= (1<<ISC01)|(1<<ISC00);     
   GICR |= (1<<INT0);
   // Globale Interrupt-Freigabe

   sei();            

}

Sensor
PA[7:0]

PD2 (INT0)

PB0 Alarm

Mikrocontroller

Abb. 14.25   Anwendungsbeispiel „Temperaturüberwachung“

513

// Interrupt-Service-Routine

ISR(INT0_vect) {

   // PB0 = 1 falls Alarmschwelle ùberschritten
   if (PINA > ALARM_SCHWELLE) PORTB |= (1<<PB0);
}

void main () {

   InitSystem();

   while (1) {

        // Sofern keine anderen regelmàßigen Aufgaben zu

        // erledigen sind, eine leere Endlosschleife…

   }

}

14.7.7.1 � Interruptverarbeitung und atomare Operationen
Nun soll das System zur Temperaturüberwachung zunächst so erweitert werden, dass
der Benutzer über eine entsprechende Schnittstelle den Schwellwert zur Auslösung
eines Alarms einstellen kann. Zur Bedienung der Schnittstelle wird dem Programm die
Funktion UIF() hinzugefügt. Diese Funktion könnte zum Beispiel mithilfe einer Tastatur
und eines Displays mit dem Benutzer kommunizieren und den jeweils aktuell gewähl-
ten Schwellwert als Rückgabewert liefern. Die Implementierung dieser Funktion ist hier
irrelevant und wird nicht näher betrachtet. Da die Benutzereingabe durch die Bedienung
der Tastatur jedoch einige Zeit benötigt, muss berücksichtigt werden, dass die Ausfüh-
rungszeit der Funktion nicht exakt bestimmbar ist und mehrere 100 ms oder auch meh-
rere Sekunden betragen kann. Ein erweitertes Programm, welches einen einstellbaren
Alarmwert unterstützt, kann wie folgt realisiert werden.

// Temperaturùberwachung mit einstellbarem Alarmwert

#include <avr/io.h>

#include <avr/interrupt.h>

volatile unsigned char Schwelle;

void InitSystem() {

   // Programmcode wie oben angegeben

}

unsigned char UIF() {

   // User-Interface, die genaue Implementierung ist irrelevant

}

ISR(INT0_vect) {

   // PB0 = 1 falls Alarmschwelle ùberschritten
   if (PINA > Schwelle) PORTB |= (1<<PB0);
}

14.7  Eingebettete Peripheriekomponenten

514 14  Mikrocontroller

void main () {

   InitSystem();

   while (1) {

        Schwelle = UIF();
   }

}

Nun soll das Programm ein weiteres Mal erweitert werden. Es wird ein neuer Sen-
sor verwendet, der einen 16 bit breiten Temperaturwert liefert. Der vom Sensor gelieferte
Wert wird mithilfe der Ports PORTA und PORTC vom Mikrocontroller eingelesen. Der
Code wird wie folgt modifiziert:

// Temperaturùberwachung mit einstellbarem 16-Bit-Alarmwert

// >>> Fehlerhafte Implementierung !!! <<<

// Modifikationen zum vorangegangenen Programm sind fett gedruckt

#include <avr/io.h>

#include <avr/interrupt.h>

volatile unsigned short Schwelle;

void InitSystem(void) { … }

unsigned short UIF(void) { … }

ISR(INT0_vect) {

   unsigned short Messwert;

   Messwert = PINA;
   Messwert = (Messwert<<8) | PINC;
   if (Messwert > Schwelle) PORTB |= (1<<PB0);
}

void main () {

   InitSystem();

   while (1) {

        Schwelle = UIF();
   }

}

Auf den ersten Blick mögen die Modifikationen des Programms plausibel und sinn-
voll erscheinen: Ein lauffähiges und bewährtes Programm wurde durch die Modifikation
der Wortbreite der verwendeten Variablen modifiziert. Allerdings würden bei Einsatz die-
ses Programms sporadische Fehlfunktionen auftreten. Um die Ursache dieser sporadi-
schen Fehler zu verstehen, muss die Codezeile

Schwelle = UIF();

515

näher betrachtet werden.
Der Aufruf des Unterprogramms und die Zuweisung an die globale Variable Schwelle

würde vom Compiler in den folgenden Assemblercode umgesetzt werden:

call   0x92; Aufruf von UIF, Rùckgabewert in r24 und r25

sts   0x61, r25; Zuweisung des hòherwertigen Bytes

sts   0x60, r24; Zuweisung des niederwertigen Bytes

Mit der Analyse des Assemblercodes wird das auftretende Problem deutlich: Der
Compiler benötigt für die Zuweisung des Rückgabewertes an die 16-Bit-Variable
Schwelle zwei Befehle. Sollte nun zufällig ein Sensor-Interrupt auftreten, während der
erste Befehl der Zuweisung ausgeführt wird, würde die Interrupt-Service-Routine einen
nicht vollständig erneuerten Wert in den Speicherstellen (hier: 0x60 und 0x61) der Varia-
blen Schwelle vorfinden. Die erste Zuweisung würde dem Sprung in die ISR ausgeführt,
während die zweite Zuweisung erst nach Verlassen der ISR aufgerufen wird.

In vielen Fällen wird sich dieser Programmfehler nicht bemerkbar machen, da mehrere
Bedingungen zum Auftreten einer Fehlfunktion gelten müssen: Der Interrupt muss genau
zum oben beschriebenen Zeitpunkt auftreten und das höherwertige Byte des Schwellwertes
muss sich gegenüber dem vorangegangenen Wert geändert haben. Darüber hinaus müsste der
vom Temperatursensor gelieferte Wert dazu führen, dass aufgrund des falsch übergebenen
Schwellwertes ein Alarm fälschlich ausgelöst wird. Anhand dieser Überlegung ist zu erken-
nen, dass der Fehler vermutlich nur sehr selten auftreten wird. Genau hierin liegt jedoch die
Schwierigkeit, den Fehler durch praktische Tests des Systems zu detektieren. Während der
Entwicklungsphase tritt der Fehler aufgrund der geringen Auftrittswahrscheinlichkeit eventu-
ell nicht zutage, hat jedoch im Betrieb des Systems möglicherweise fatale Folgen.

Anhand dieses einfachen Beispiels wird deutlich, dass man sich mit der CPU des ver-
wendeten Systems auskennen sollte. In diesem Beispiel muss bei der Programmierung
klar sein, dass eine 16-Bit-Zuweisung nicht durch einen einzelnen Befehl ausgeführt wer-
den kann, da die CPU zwei aufeinanderfolgende 8-Bit-Zuweisungen verwenden muss.

Operationen, die nicht durch Interrupts (oder auch andere hier nicht näher betrach-
tete Mechanismen) unterbrochen werden können, werden auch als atomare Operationen
bezeichnet. Der Begriff „atomar“ ist hierbei aus dem griechischen Wort átomo (= unteil-
bar) abgeleitet.

Die in dem Beispiel gezeigte Zuweisung eines 16-Bit-Wertes stellt somit keine ato-
mare Operation dar, da sie durch einen Interrupt unterbrochen werden kann.

Zur Lösung dieser Problematik können die für die Zuweisung relevanten Interrupts
kurzzeitig gesperrt werden. Eine mögliche Implementierung des Hauptprogramms
könnte wie folgt aussehen.

// Ungùnstige Implementierung des Hauptprogramms

void main () {

   InitSystem();

14.7  Eingebettete Peripheriekomponenten

516 14  Mikrocontroller

   while (1) {

        GICR &= ~(1<<INT0); // Interruptereignis INT0 sperren
        Schwelle = UIF();
        GICR |= (1<<INT0); // Interruptereignis INT0 freigeben
   }

}

Dieser Ansatz ist „interruptfest“. Es können also keine sporadischen Fehler auf-
grund einer unvollständigen Zuweisung auftreten. Allerdings tritt hierbei eine weitere
Problematik auf: Die Ausführung der Schleifenanweisung (while(1)) und das Sperren
beziehungsweise das Freigeben des INT0-Interrupts können von der CPU in wenigen
Taktzyklen abgearbeitet werden. Für den Aufruf der Benutzerschnittstelle wird dagegen
signifikant mehr Rechenzeit benötigt. Die Konsequenz ist, dass die Interrupts die über-
wiegende Zeit gesperrt sind. Daher ist die Wahrscheinlichkeit hoch, dass die ISR nicht
aufgerufen wird und damit einige vom Temperatursensor gelieferten Werte nicht verar-
beitet werden. Daher sollte bei der Programmentwicklung darauf geachtet werden, dass
Interrupts nur so kurz wie möglich gesperrt werden.

Eine entsprechende Modifikation des Hauptprogramms könnte wie folgt aussehen.

// Sinnvollere Implementierung des Hauptprogramms

void main ()

{

   unsigned short Schwelle_lokal;

   InitSystem();

   while (1) {

        Schwelle_lokal = UIF();
        GICR &= ~(1<<INT0); // INT0 sperren
        Schwelle = Schwelle_lokal;
        GICR |= (1<<INT0); // INT0 freigeben
   }

}

Zusammenfassend lässt sich festhalten, dass die folgenden Überlegungen und Regeln
bei der Verwendung von Interrupts beachtet werden sollten.

•	 Interrupts sollten, wenn überhaupt, so kurz wie möglich vom Hauptprogramm
gesperrt werden.

•	 Da nach dem Aufruf einer ISR keine weiteren Interrupts zugelassen sind, sollte eine
ISR eine möglichst kleine Rechenzeit benötigen.

•	 Für die Kommunikation zwischen dem Hauptprogramm und einer ISR sollte geprüft
werden, ob die implementierte Kommunikation atomar ist. Gegebenenfalls sollte
die Implementierung des Programms angepasst werden, um sporadische Fehler zu
vermeiden.

517

14.7.7.2 � FIFO-basierte Kommunikation mit Peripheriekomponenten
In vielen Fällen ist es wünschenswert, die Kommunikation mit einer Peripheriekompo-
nente nicht byteweise auszuführen, sondern zunächst eine Zwischenspeicherung vorzu-
nehmen. Da die Reihenfolge der Daten durch den Speicher nicht verändert werden soll,
bietet sich die Implementierung eines First-In-First-Out-Speichers (FIFO) an. Eine mög-
liche FIFO-Realisierung ist im Folgenden dargestellt.

Die im Folgenden dargestellte Implementierung eines FIFOs verwendet zur Speiche-
rung der Daten einen Bereich im SRAM des Controllers. Der Speicherbereich wird mit-
hilfe der C-Bibliotheksfunktion malloc() reserviert. Zur Adressierung der Daten werden
zwei Zeiger verwendet. Ein Schreibzeiger (wp) dient zur Adressierung der Daten, die in
den FIFO-Speicher geschrieben werden. Ein Lesezeiger (rp) adressiert die Daten, die bei
einem Lesezugriff auf das FIFO ausgeben werden. Die zur Verwaltung des FIFOs benö-
tigten Daten (Schreibzeiger, Lesezeiger, Größe des FIFOs sowie ein Zeiger auf den im
SRAM allokierten Speicherbereich) werden in einer Datenstruktur abgelegt.

Der allokierte Speicherbereich mit der Größe N Bytes wird als Ringspeicher genutzt.
Für die Adressierung des Speichers bieten sich verschiedene Varianten an.

Bei der im Folgenden verwendeten Variante durchlaufen der Lese- und der Schreib-
zeiger einen Wertebereich von 0 bis 2N−1. Das FIFO ist leer, wenn die Werte des
Schreib- und des Lesezeigers identisch sind. Dagegen ist das FIFO voll, wenn die Diffe-
renz zwischen Schreib- und Lesezeiger genau N beträgt. Ein gesondertes Mitführen der
„Voll/Leer“-Information oder des FIFO-Füllstandes ist bei dieser Variante nicht erfor-
derlich. Werden die Zeiger als Bytevariablen ausgelegt, kann die atomare Ausführung
des Codes sichergestellt werden, ohne dass Interrupts kurzzeitig gesperrt werden müss-
ten. Der Nachteil dieses Ansatzes ist jedoch, dass die beiden Zeiger nur dann direkt zur
Adressierung des Speichers verwendet werden, wenn ihre Werte kleiner als N−1 sind.
Andernfalls muss vor der Adressierung vom Wert des Zeigers N subtrahiert werden.

Abb. 14.26 zeigt verschiedene Beispiele für mögliche Zustände der gewählten FIFO-
Implementierung. Es ist jeweils der Füllstand (= Anzahl gültiger Werte im FIFO) sowie
der Wert des Schreibzeigers und des Lesezeigers angegeben.

Die FIFO-Implementierung stellt verschiedene C-Funktionen zur Verfügung. Die Funk-
tion FIFO_Init() allokiert Speicher für den Pufferspeicher zur Aufnahme der zu speichern-
den Daten und die Parameter des FIFOs (Schreibzeiger, Lesezeiger, FIFO-Größe und
einen Zeiger auf den Pufferspeicher). Der Rückgabewert dieser Funktion ist ein Zeiger auf
die angelegte Datenstruktur zur Verwaltung des FIFOs, die für die folgenden Funktionen
als Parameter verwendet wird. Da die Allokation des Speichers dynamisch erfolgt, kann
es vorkommen, dass der benötigte Speicherbereich zur Laufzeit des Programms nicht zur
Verfügung steht. In diesem Fall ist der Rückgabewert der Funktion NULL.

Mithilfe der Funktionen FIFO_Read() beziehungsweise FIFO_Write() können Daten
aus dem FIFO-Speicher gelesen beziehungsweise in das FIFO geschrieben werden. Diese
Funktionen sind nicht blockierend („non-blocking“). Dies bedeutet, dass beispielsweise
der Aufruf der Funktion FIFO_Write() auch bei einem vollen FIFO nicht wartet, bis ein
Eintrag im FIFO frei wird. In diesem Fall wird die Funktion mit dem Rückgabewert 0

14.7  Eingebettete Peripheriekomponenten

518 14  Mikrocontroller

verlassen, um dem aufrufenden Programmteil anzuzeigen, dass der Schreibvorgang nicht
erfolgreich ausgeführt wurde. Das aufrufende Programm kann mithilfe dieser Information
entscheiden, ob die Fortsetzung des Programms sinnvoll ist oder gegebenenfalls in einer
Warteschleife auf das Freiwerden eines Eintrages im FIFO warten und den Schreibvor-
gang erneut anstoßen. Entsprechendes gilt für die Funktion FIFO_Read(). Die Funktion
FIFO_Free() gibt den mit FIFO_Init() belegten Speicherbereich wieder frei.

Der folgende Code zeigt eine mögliche FIFO-Implementierung in der Programmier-
sprache C.

// **

// File:   fifo.h

// **

#ifndef __FIFO_H__

#define __FIFO_H__

#include <stdlib.h>

// FIFO Struktur zur Aufnahme der FIFO-Parameter

typedef volatile struct {

   unsigned char size;    // FIFO Gròße

   unsigned char rp;      // Lesezeiger

   unsigned char wp;      // Schreibzeiger

   unsigned char *buffer; // Zeiger auf Pufferspeicher

} TS_Fifo;

// FIFO Initialisierung (Speicher wird mittels malloc allokiert)

extern TS_Fifo* FIFO_Init(unsigned char log2size);

// FIFO Speicher freigeben

Füllstand = 0
Initialzustand

Füllstand = 1 Füllstand = 2 Füllstand = 1

Füllstand = 0
(leer)

Füllstand = 3 Füllstand = 4
(voll)

Füllstand = 0
(leer)

Abb. 14.26   Beispiele für Zustände der FIFO-Implementierung am Beispiel eines FIFOs mit 4
Einträgen

519

extern void FIFO_Free(TS_Fifo *fifo);

// Wert aus FIFO lesen

extern unsigned char FIFO_Read(TS_Fifo *fifo, unsigned char* value);

// Wert in FIFO schreiben

extern unsigned char FIFO_Write(TS_Fifo *fifo, unsigned char value);

#endif

// **

// File:   fifo.c

// **

#include "fifo.h"

TS_Fifo* FIFO_Init(unsigned char size)

{

   TS_Fifo *fifo;

   if (size>127) return NULL;

   fifo = malloc(sizeof(TS_Fifo));
   if (fifo==NULL) return NULL;
   fifo->buffer = malloc(size);
   if (fifo->buffer==NULL) {
        free((void*)fifo);

        return NULL;

   }

   fifo->size = size;
   fifo->rp = 0;
   fifo->wp = 0;
   return (fifo);

}

void FIFO_Free(TS_Fifo *fifo)

{

   free((void*)fifo->buffer);

   free((void*)fifo);

}

unsigned char FIFO_Read(TS_Fifo *fifo, unsigned char *value)

{

   unsigned char wp_tmp;

   unsigned char rp_tmp;

   unsigned char rp_adr;

   wp_tmp = fifo->wp;
   rp_tmp = fifo->rp;
   rp_adr = (rp_tmp>=fifo->size)? rp_tmp-fifo->size:rp_tmp;
   if (wp_tmp==rp_tmp) {       // FIFO leer ?
        return 0;

   } else {

        *value = fifo->buffer[rp_adr]; // Wert holen
        rp_tmp++;               // Lesezeiger erhòhen

14.7  Eingebettete Peripheriekomponenten

520 14  Mikrocontroller

        // Bei Ùberlauf rp auf 0 setzen

        if (rp_tmp==2*fifo->size) rp_tmp = 0;
        fifo->rp = rp_tmp;       // atomare Zuweisung
        return 1;

   }

}

unsigned char FIFO_Write(TS_Fifo *fifo, unsigned char value)

{

   unsigned char wp_tmp;

   unsigned char rp_tmp;

   unsigned char wp_adr;

   unsigned char rp_adr;

   wp_tmp = fifo->wp;
   rp_tmp = fifo->rp;
   wp_adr = (wp_tmp>=fifo->size)?wp_tmp-fifo->size:wp_tmp;
   rp_adr = (rp_tmp>=fifo->size)?rp_tmp-fifo->size:rp_tmp;
   if (wp_adr==rp_adr && wp_tmp!=rp_tmp) {
        // FIFO ist voll

        return 0;

   } else {

        // Wert in FIFO eintragen

        fifo->buffer[wp_adr] = value; // Wert schreiben
        wp_tmp++;                    // Schreibzeiger erhòhen
        // Bei Ùberlauf wp auf 0 setzen

        if (wp_tmp==2*fifo->size) wp_tmp = 0;
        fifo->wp = wp_tmp;            // atomare Zuweisung            
        return 1;

   }

}

Die FIFO-Funktionen können für die Kommunikation mit Peripheriekomponenten
verwendet werden. Der nachfolgende Code verwendet FIFO-Speicher für die Kommuni-
kation über den USART. Es werden zwei FIFOs angelegt. Ein FIFO nimmt die empfange-
nen Daten in einer Interrupt-Service-Routine auf und legt diese in einem Empfangs-FIFO
(rx_fifo) ab. Die empfangenen Daten werden mithilfe der Funktion UART_GetFifo() an
das Hauptprogramm übergeben. Für das Senden von Daten wird ein weiteres FIFO (tx_
fifo) verwendet. Das Hauptprogramm legt Daten durch Aufruf der Funktion UART_Put-
Fifo() in diesem Sende-FIFO ab. Mithilfe einer ISR werden die Daten aus diesem FIFO
ausgelesen und an die eingebettete serielle Schnittstelle des Mikrocontrollers übergeben.

// **

// File:   uart_fifo.h

// **

#ifndef __UART_H__

#define __UART_H__

521

#include <avr/io.h>

#include <avr/interrupt.h>

#include "fifo.h"

// Interruptbasierter Transfer mit FIFOs

extern unsigned char UART_InitFIFOTransfer (unsigned long baudrate,

     unsigned char rx_size, unsigned char tx_size);

// Zeichen aus RX FIFO abholen

// Rùckgabewert ist 0 falls kein Zeichen verfùgbar, sonst 1

extern unsigned char UART_GetFifo(unsigned char *data);

// Zeichen in TX FIFO schreiben

// Rùckgabewert ist 0 falls Schreibpuffer voll, sonst 1

extern unsigned char UART_PutFifo(unsigned char data);

#endif

// **

// File:   uart_fifo.c

// **

#include "uart_fifo.h"

static volatile TS_Fifo *rx_fifo;

static volatile TS_Fifo *tx_fifo;

// Initialisierung des UARTs und der FIFOs

unsigned char UART_InitFIFOTransfer (unsigned long baudrate,

     unsigned char rx_size,     unsigned char tx_size)

{

   unsigned long bdrate;

   // Uebertragungsrate setzen

   bdrate = (F_CPU+baudrate*8)/(baudrate*16)-1;
   UBRRH = (bdrate>>8)&0xFF;
   UBRRL = bdrate&0xFF;
   //Uebertragungsformat: 8 data bits, no parity, 1 stop bit

   UCSRC = (1<<URSEL)|(1<<UCSZ1)|(1<<UCSZ0);   
   // FIFOs initialisieren

   rx_fifo = FIFO_Init(rx_size);
   if (rx_fifo == NULL) return 0;
   tx_fifo = FIFO_Init(tx_size);
   if (tx_fifo == NULL) return 0;
   // UART einschalten

   UCSRB = (1<<RXEN)|(1<<TXEN);
   // Lokale Interruptfreigabe

   UCSRB |= (1<<RXCIE)|(1<<TXCIE);
   return 1;

}

// Wert in Sende-FIFO schreiben (Aufruf durch Hauptprogramm)

unsigned char UART_PutFifo(unsigned char data)

14.7  Eingebettete Peripheriekomponenten

522 14  Mikrocontroller

{

   unsigned char tmp_data;

   unsigned char num;

   // Wert in FIFO eintragen

   num = FIFO_Write(tx_fifo,data);
   // Falls Sendepuffer leer, Wert ausgeben

   if (UCSRA & (1<<UDRE)) {

        UCSRB &= ~(1<<TXCIE);
        FIFO_Read(tx_fifo,&tmp_data);

        UDR = tmp_data;
        UCSRB |= (1<<TXCIE);
   }

   return num;

}

// Wert aus Empfangs-FIFO lesen (Aufruf durch Hauptprogramm)

unsigned char UART_GetFifo(unsigned char *data)

{

   return (FIFO_Read(rx_fifo,data));

}

// Interrupt-Service-Routinen fùr Senden und Empfangen

ISR (USART_TXC_vect)

{

   unsigned char data;

   // Falls FIFO Daten enthàlt, diese ùbertragen

   if (FIFO_Read(tx_fifo,&data)) UDR = data;
}

ISR (USART_RXC_vect)

{

   // Empfangenen Wert in Empfangs-FIFO schreiben

   FIFO_Write(rx_fifo,UDR);

}

Ein einfaches Anwendungsbeispiel für die oben dargestellten Funktionen stellt das
nachfolgende Hauptprogramm dar. Das Programm liest empfangene Daten ein und gibt
diese über den USART unverändert wieder aus.

// **

// File:   UartFifoDemo.c

// **

#include "uart_fifo.h"

int main ()

{

   unsigned char data;

523

   if (UART_InitFIFOTransfer(9600,16,16)) {

        sei();

        while (1) {

            if (UART_GetFifo(&data)) UART_PutFifo(data);

        }

   }

}

14.8	� Hinweise zum praktischen Selbststudium

In den vorangegangenen Abschnitten wurden die Grundlagen der Mikrorechnertechnik
am Beispiel der AVR-Mikrocontroller-Familie behandelt. Die AVR-Controller zeichnen
sich durch eine relativ einfache Struktur aus und sind für einen Einstieg in die Mikro-
rechnertechnik gut geeignet. Um das Verständnis der vorgestellten Themen zu vertiefen,
ist es sehr empfehlenswert, eigene praktische Experimente mit Mikrocontrollern durch-
zuführen. Dieser Abschnitt soll einer ersten Orientierung dienen und so den Einstieg in
das praktische Selbststudium erleichtern.

14.8.1	� Hardwareauswahl

Für die AVR-Mikrocontroller werden von verschiedenen Herstellern zahlreiche Boards
als Fertiggeräte oder als Bausatz angeboten. Neben dem Controller selbst stehen auf die-
sen Boards häufig auch weitere Bauteile wie LEDs, Taster, Lautsprecher oder Summer,
LCD-Displays usw. zur Verfügung. In vielen Fällen steht auch eine Schnittstelle zur Ver-
bindung mit einem PC zur Verfügung, mit welcher die entwickelten Programme in den
Flashspeicher des Controllers übertragen werden können. Ein wesentliches Kriterium
für die Auswahl eines Boards sollte neben dem Preis die Möglichkeiten zur Erweiterung
durch eigene Schaltungsteile sein.

Eine Alternative zu bereits vorgefertigten Boards stellt die Anschaffung eines Steck-
brettes dar. Viele Controller der AVR-Familie sind auch in Dual-Inline-Gehäusen (DIL)
verfügbar. Mithilfe dieser Controller ist die Realisierung einfacher Systeme auf einem
Steckbrett möglich.

14.8.2	� Entwicklungsumgebungen

Für die AVR-Mikrocontroller steht die Entwicklungsumgebung Atmel Studio zur Verfü-
gung, die kostenlos von der Homepage der Firma Atmel (www.atmel.com) heruntergeladen
werden kann. Atmel Studio ist eine unter Windows-PCs lauffähige Entwicklungsumge-
bung, die neben der Erstellung von Programmen auch die Programmierung und das Debug-
gen der Controller unterstützt. Darüber hinaus besteht über einen integrierten Simulator die
Möglichkeit, Programme auch ohne Anschaffung von Hardware zu testen.

14.8  Hinweise zum praktischen Selbststudium

http://www.atmel.com

524 14  Mikrocontroller

14.8.3	� Programmierung und Debugging von AVR-Mikrocontrollern

Die Übertragung von Programmen in den Flashspeicher eines AVR-Mikrocontrollers
kann über die SPI-Schnittstelle des Controllers erfolgen. Ebenso können über diesen
Weg auch Daten im eingebetteten EEPROM abgelegt werden. Für die Programmierung
muss der Controller nicht aus der Zielapplikation entfernt werden. Daher wird dieser
Vorgang als In-System-Programming (ISP) bezeichnet. Da das Protokoll zur Program-
mierung des Controllers offengelegt ist, sind verschiedene Programmiergeräte erhältlich,
die eine Programmierung von AVR-Controllern unterstützen. Ein wesentlicher Nachteil
des ISP-Verfahrens ist es, dass es nur zur Programmierung, nicht jedoch zum Debugging
des Controllers verwendet werden kann.

Im Gegensatz zu ISP existieren für die AVR-Controller verschiedene Ansätze um
ein Programm auch innerhalb des Systems zu debuggen. Hierbei können zum Beispiel
Breakpoints gesetzt oder Variablenwerte ausgelesen werden, auch wenn sich der Mikro-
controller im Zielsystem befindet. Dieser als On-Chip-Debugging (OCD) oder In-Circuit-
Emulation (ICE) bezeichnete Ansatz vereinfacht die Fehlersuche erheblich. Daher ist es
auch für Einsteiger sinnvoll ein Programmiergerät anzuschaffen, welches das Debuggen
im Zielsystem unterstützt. Hierbei ist jedoch darauf zu achten, dass nicht alle AVR-Con-
troller den gleichen Ansatz verfolgen. Viele Controller der ATtiny-Serie unterstützen ein
Verfahren, das von der Firma Atmel als Debug-Wire bezeichnet wird. Bei diesem Verfah-
ren muss (abgesehen von der Versorgungsspannung des Mikrocontrollers) lediglich die
Resetleitung des Controllers mit dem Programmiergerät verbunden werden, was insbe-
sondere für Controller mit einer geringen Anzahl von Anschlüssen von Vorteil ist. Viele
Controller der ATmega-Serie unterstützen dagegen ein Debuggen mittels eines JTAG-
Interfaces. In diesem Fall müssen neben dem Reset-Anschluss auch die Anschlüsse TDO,
TDI, TMS und TCK mit dem Programmieradapter verbunden werden. Diese Anschlüsse
stehen dann nicht mehr uneingeschränkt als Portanschlüsse für die Zielapplikation zur
Verfügung. Darüber hinaus kommt insbesondere bei den Mikrocontrollern der Xmega-
Serie eine als „Program and Debug Interface“ (PDI) Schnittstelle zum Einsatz.

14.8.3.1 � Programmiergeräte
Im Internet wird eine Vielzahl unterschiedlicher Programmiergeräte von diversen Her-
stellern angeboten. Sowohl die Preise wie auch die Funktionalität dieser Geräte differie-
ren stark. Die günstigsten Geräte werden bereits ab ca. 15 EUR angeboten.

In der Regel ist es empfehlenswert, auf Originalgeräte der Firma Atmel zurückzugrei-
fen. Auf diese Weise kann ausgeschlossen werden, dass Inkompatibilitäten des Program-
mieradapters zu Fehlern führen. Ein interessantes Gerät stellt der AVR-Dragon dar. Es
unterstützt verschiedene Programmierprotokolle, unter anderem ISP und JTAG. Die Kos-
ten für dieses Gerät liegen bei etwa 70 EUR.

14.8.3.2 � Fuse-Bits
Bei der Durchführung eigener Experimente wird man recht schnell auf die sogenann-
ten „Fuse-Bits“ stoßen. Fuse-Bits sind einzelne Bits, in der die Konfiguration des

525

Mikrocontrollers abgespeichert wird. Bei der Programmierung der Fuse-Bits ist besondere
Vorsicht geboten. Wird durch eine falsche Programmierung des Fuse-Bits sowohl das ISP-
als auch das JTAG-Interface gesperrt, ist eine weitere Programmierung des Controllers
nicht mehr über diese Schnittstellen möglich. Um eine falsche Programmierung der Fuse-
Bits zu korrigieren, muss der Controller in einem speziellen Programmiermodus betrieben
werden, der nur von wenigen Geräten (zum Beispiel AVR-Dragon) unterstützt wird.

Im Folgenden werden die Fuse-Bits am Beispiel des ATmega32 kurz erläutert:

OCDEN
Ist dieses Bit aktiviert, wird die oben beschriebene Möglichkeit des Debuggens im Ziel-
system unterstützt.

JTAGEN
Mithilfe dieses Bits wird das JTAG-Interface zum Debuggen (OCDEN aktiviert) und/
oder Programmieren des Controllers aktiviert.

SPIEN
Ist SPIEN aktiviert, kann die Programmierung des Controllers über die SPI-Schnittstelle
mittels ISP erfolgen.

CKOPT
Dieses Bit findet Verwendung, wenn der Takt mithilfe eines Keramikresonators erzeugt
wird und eine hohe Taktfrequenz benötigt wird. Im Normalfall sollte dieses Bit nicht
aktiviert werden.

EESAVE
Bei Aktivierung eines sogenannten Chip-Erase-Cycles (Löschen des gesamten Chips)
wird das EEPROM nicht gelöscht, wenn das Bit EESAVE aktiviert ist.

BOOTSZ, BOOTRST
Diese Bits ermöglichen es, den Einsprungpunkt nach einem Reset von der Programm-
speicheradresse 0 an eine hohe Speicheradresse zu setzen. Mithilfe des so eingesprunge-
nen Programms kann dann untere Bereich des Programmspeichers mit dem eigentlichen
Applikationscode programmiert. Programme, die nach dem Reset den eigentlichen Pro-
grammcode laden, werden als Bootloader bezeichnet.

BODLEVEL, BODEN
Die AVR-Controller erlauben es, die Betriebsspannung kontinuierlich zu überwachen.
Unterschreitet die Betriebsspannung einen vorprogrammierten Wert (Auswahlmöglich-
keiten im Fall des ATmega32: 2,7 V oder 4,0 V), wird ein Reset ausgelöst. Diese auch als
Brown-Out-Detection bezeichnete Möglichkeit kann unter anderem dazu genutzt wer-
den, ein System bei einem Ausfall der Spannungsversorgung geordnet herunterzufahren.

14.8  Hinweise zum praktischen Selbststudium

526 14  Mikrocontroller

SUT_CKSEL
Diese unter dem Namen SUT_CKSEL zusammengefassten Fuse-Bits dienen zur Aus-
wahl der Takterzeugung für den Controller. Die gebräuchlichsten Fälle sind entweder die
Verwendung des intern erzeugten Taktes oder die Aktivierung des eingebetteten Quar-
zoszillators, welcher an den Anschlüssen XTAL1 und XTAL2 einen externen Quarz
benötigt. Darüber hinaus kann der Takt mithilfe eines externen RC-Gliedes, einem Kera-
mikresonator oder von einer externen Quelle zugeführt werden.

Im Auslieferungszustand sind die Fuse-Bits der AVR-Controller mit sinnvollen Wer-
ten vorbelegt, sodass eine Neuprogrammierung in der Regel entfallen kann. Eine Aus-
nahme stellt die Programmierung der Taktauswahl dar. Im Auslieferungszustand ist für
die Takterzeugung der eingebettete RC-Oszillator als Taktquelle ausgewählt. Viele Schal-
tungen verwenden jedoch einen externen Quarz zur Erzeugung des Taktsignals, sodass
die SUT_CKSEL-Bits zunächst entsprechend programmiert werden müssen.

14.9	� Übungsaufgaben

Die folgenden Übungsaufgaben greifen einige Themen dieses Kapitels auf. Die Lösun-
gen finden Sie am Ende des Buches.

Sofern nicht anders vermerkt, ist nur eine Antwort richtig.

Aufgabe 14.1
Welche der folgenden Aussagen ist richtig? (Mehrere Antworten sind richtig)

a)	 Typische Mikrocontroller besitzen immer eine CPU.
b)	Typische Mikrocontroller besitzen immer interne Speicherkomponenten.
c)	 Typische Mikrocontroller besitzen immer Ports.
d)	Typische Mikrocontroller besitzen immer A/D-Umsetzer.

Aufgabe 14.2
Welche Aussagen sind richtig? (Mehrere Antworten sind richtig)

a)	 Die SPI-Schnittstelle wird zur asynchronen bitseriellen Datenübertragung verwendet.
b)	Bei Verwendung einer I2C-Schnittstelle erfolgt nach der Übertragung einer Startbe-

dingung immer die Übertragung einer Bausteinadresse.
c)	 Das SPI-Protokoll verwendet getrennte Leitungen zur Übertragung von Daten vom

Slave zum Master beziehungsweise vom Master zum Slave.
d)	Das I2C-Protokoll verwendet getrennte Leitungen zur Übertragung von Daten vom

Slave zum Master beziehungsweise vom Master zum Slave.

Aufgabe 14.3
Welche Aussage über Unterprogramme ist richtig?

527

a)	 Beim Ausführen eines Unterprogramms wird dessen Code auf dem Stack abgelegt
und anschließend ausgeführt.

b)	 Im aufrufenden Programmteil muss die Rücksprungadresse über geeignete Assem-
blerbefehle ermittelt und vor einem Unterprogrammaufruf auf dem Stack abgelegt
werden.

c)	 Der aufrufende Programmteil kann einem Unterprogramm die Parameter über den
Stack übergeben.

d)	Der Code eines Unterprogramms muss im Programmspeicher immer vor dem Code
des aufrufenden Programmteils abgelegt sein.

Aufgabe 14.4
Welche Aussage ist richtig?

a)	 Wird ein Wert auf dem Stack des AVR abgelegt, wird der Stackpointer dekrementiert.
b)	Der Stackpointer des AVR kann nicht durch die Befehle eines Programms modifiziert

werden.
c)	 Mithilfe des Befehls pop werden Daten auf dem Stack abgelegt.
d)	Der Stackpointer der AVR-CPU zeigt immer auf den Wert, welcher als letztes auf

dem Stack abgelegt wurde.

Aufgabe 14.5
Welche Aussage ist richtig?

a)	 Der AVR enthält nur Speicher, welche die gespeicherten Werte auch ohne Anliegen
einer Versorgungsspannung halten können.

b)	 Der Programmspeicher des AVR kann nicht zur Speicherung von Daten verwendet
werden, da kein Befehl existiert, mit dem der Programmspeicher gelesen werden kann.

c)	 Variablen eines C-Programms werden nicht im SRAM des AVR abgelegt.
d)	Die Befehle eines AVR-Programms können nicht im EEPROM-Speicher abgelegt

werden.

Aufgabe 14.6
Welche Aussagen sind richtig? (Mehrere Antworten sind richtig)

a)	 Ein typischer Timer kann so programmiert werden, dass beim Überlauf des timerin-
ternen Zählers ein Interrupt ausgelöst wird.

b)	Soll eine möglichst exakte Interruptrate (Interrupts pro Zeiteinheit) erzielt werden,
sollte ein Timer bevorzugt im „CTC-Modus“ und nicht „Normal-Mode“ betrieben
werden.

c)	 Eine Vorteiler-Einheit (Prescaler) ermöglicht es die Zählfrequenz eines Timers zu
erhöhen.

d)	Timer enthalten immer eine Input-Capture-Unit.

14.9  Übungsaufgaben

528 14  Mikrocontroller

Aufgabe 14.7
Der Anschluss PA2 eines ATmega32 ist über einen Taster mit Masse (GND) verbunden.
Am Anschluss PC6 ist eine LED angeschlossen. Die LED leuchtet, wenn an PC6 ein
High-Pegel ausgegeben wird.

a)	 Erstellen Sie ein Programm in der Programmiersprache C, das die LED leuchten lässt,
wenn der Taster geschlossen ist. Ist der Taster geöffnet, soll die LED nicht leuchten.

b)	Realisieren Sie das Programm in Assembler.

Aufgabe 14.8
Mithilfe eines UARTs sollen Daten an einen PC übertragen werden. Für die Verbindung
gilt: 8 Nutzdatenbits, keine Parität, 1 Stoppbit. Als Baudrate wird der Wert 9600 bps
gewählt.

a)	 Skizzieren Sie den zeitlichen Verlauf des Signals am TXD-Anschluss des Controllers.
Verwenden Sie für die Nutzdaten den Wert 0x35 (binär: 0011 0101).

b)	Wie hoch ist die maximal erzielbare Netto-Datenrate (Daten-Bytes pro Sekunde)?
c)	 Nun wird auch ein Pariätsbit übertragen. Bei der Übertragung des Wertes 0x35 (binär:

0011 0101) sendet der Controller ein Paritätsbit mit dem Wert „1“. Welche Parität
wurde gewählt?

Aufgabe 14.9
Der nachfolgende Code zeigt Ausschnitte eines AVR-Programms.

char  v8, *p8   // 8-Bit-Variable  bzw. Zeiger auf einen 8-Bit-Wert

short v16,*p16  // 16-Bit-Variable bzw. Zeiger auf einen 16-Bit-Wert

long  v32,*p32  // 32-Bit-Variable bzw. Zeiger auf einen 32-Bit-Wert

// hier weiterer Programmcode

v8  = 12;       // Zuweisung 1
p8  = &v8;      // Zuweisung 2
v16 = 1234;     // Zuweisung 3
p16 = &v16;     // Zuweisung 4
v32 = 12345678; // Zuweisung 5
p32 = &v32;     // Zuweisung 6
// hier weiterer Programmcode

a)	 Welche der Zuweisungen können mit einem AVR atomar ausgeführt werden?
b)	Statt eines AVR wird ein 32-Bit-Mikrocontroller eingesetzt. Welche Zuweisungen

sind nun atomar ausführbar?

529© Springer-Verlag GmbH Deutschland 2016
W. Gehrke et al., Digitaltechnik, Springer-Lehrbuch,
DOI 10.1007/978-3-662-49731-9_15

In diesem Abschnitt finden Sie die Lösungen zu den Übungsaufgaben der vorangegangenen
Kapitel.

Kapitel 1
Aufgabe 1.1 c
Aufgabe 1.2 b
Aufgabe 1.3 c
Aufgabe 1.4 b
Aufgabe 1.5 c
Aufgabe 1.6 b
Aufgabe 1.7 b
Aufgabe 1.8 c
Aufgabe 1.9 c
Aufgabe 1.10 b

Kapitel 2
Aufgabe 2.1
a)	 1110012
b)	718
c)	 3916

Aufgabe 2.2
a)	 151
b)	−105
c)	 97

Lösungen der Übungsaufgaben 15

530 15  Lösungen der Übungsaufgaben

Aufgabe 2.3
a)	 6 bit
b)	7 bit
c)	 7 bit

Aufgabe 2.4
a)	 [0,255]
b)	 [−127,127]
c)	 [−128,127]

Aufgabe 2.5
a)	 111101, kein Überlauf
b)	001011, Überlauf
c)	 000100, Überlauf
d)	Die Ergebnisse wären identisch
e)	 kein Überlauf bei a und c, Überlauf bei b

Aufgabe 2.6
a)	 5A, Vorzeichenlos: kein Überlauf, 2er-Komplement: kein Überlauf
b)	23, Vorzeichenlos: Überlauf, 2er-Komplement: Überlauf
c)	 AB, Vorzeichenlos: Überlauf, 2er-Komplement: kein Überlauf

Aufgabe 2.7
a)	 67, Vorzeichenlos: kein Überlauf, 2er-Komplement: Überlauf
b)	4C, Vorzeichenlos: kein Überlauf, 2er-Komplement: Überlauf
c)	 9D, Vorzeichenlos: Überlauf, 2er-Komplement: Überlauf

Aufgabe 2.8
Wird ein Gray-codierter Wert inkrementiert, ändert sich das Codewort in genau einer Stelle.

Aufgabe 2.9
b. und c. sind Pseudotetraden

Aufgabe 2.10
a)	 Es werden 8 bit benötigt.
b)	Es können 8 unterschiedliche Werte dargestellt werden.

Aufgabe 2.11
Überträgt man die Zweierkomplement-Darstellung auf das Dezimalsystem, entspräche die
Codierung 999 dem Zahlenwert −1, da dies der Wert wäre, den man bei Durchlaufen des
Zahlenkreises in negativer Richtung erhalten würde. Aus dieser Überlegung ergibt sich:

a)	 000
b)	999

53115  Lösungen der Übungsaufgaben

c)	 998
d)	990

Kapitel 3
Aufgabe 3.1 a
Aufgabe 3.2 a, b, d
Aufgabe 3.3 a, b
Aufgabe 3.4 a, c
Aufgabe 3.5

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity my_module is

   port (a : in  std_logic_vector (7 downto 0);

         b : in  integer;

         c : in  std_logic;

         q : out std_logic_vector (7 downto 0));

end;

architecture behave of my_module is

   signal tmp : unsigned (7 downto 0);

begin

   process

        variable vi : unsigned (7 downto 0);

   begin

        tmp <= unsigned(A);
        vi  := to_unsigned(B,8);
        if (c = '1') then
            q <= std_logic_vector(vi - tmp);
        else

            q <= std_logic_vector(vi + tmp);
        end if;

   end process;

end;

Aufgabe 3.6

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

532 15  Lösungen der Übungsaufgaben

entity my_module is

port (a : in  std_logic_vector (7 downto 0);

      b : in  std_logic_vector (7 downto 0);

      c : in  std_logic_vector (1 downto 0);

      q : out std_logic_vector (7 downto 0));

end;

architecture behave of my_module is

begin

   process (a,b,c)

   begin

        if    c="00" then q <= a;
        elsif c="01" then q <= a and b;
        elsif c="10" then q <= a or b;
        elsif c="11" then q <= a xor b;
        -- std_logic! => c kann mehr als 4 Werte annehmen
        -- dies wird ùber das nachfolgende else abgefangen

        else  q <= (others=>'X');
        end if;   

   end process;

end;

Aufgabe 3.7

   process (a,b,c)

   begin

        case c is

            when "00" =>  q <= a;
            when "01" =>  q <= a and b;
            when "10" =>  q <= a or b;
            when "11" =>  q <= a xor b;
            -- std_logic! => c kann mehr als 4 Werte annehmen
            -- also benòtigen wir auch den "others"-Fall

            when others => q <= (others=>'X');
        end case;

   end process;

Aufgabe 3.8

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity my_module_16 is

port (a : in  std_logic_vector (15 downto 0);

      b : in  std_logic_vector (15 downto 0);

      c : in  std_logic_vector (1 downto 0);

533

      q : out std_logic_vector (15 downto 0));

end;

architecture behave of my_module_16 is

begin

   my_module_inst1 : entity work.my_module

   port map (

         a => a(7 downto 0),
         b => b(7 downto 0),
         c => c,
         q => q(7 downto 0));
     my_module_inst2 : entity work.my_module

     port map (

         a => a(15 downto 8),
         b => b(15 downto 8),
         c => c,
         q => q(15 downto 8));
end;

Kapitel 4
Aufgabe 4.1 a
Aufgabe 4.2 a
Aufgabe 4.3
Die Funktionstabelle hat bei drei Eingangsvariablen acht mögliche Kombinationen.
Schrittweise muss jeweils eine weitere LED eingeschaltet werden.

D2 D1 D0 L7 L6 L5 L4 L3 L2 L1

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 1 1

0 1 1 0 0 0 0 1 1 1

1 0 0 0 0 0 1 1 1 1

1 0 1 0 0 1 1 1 1 1

1 1 0 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Funktionstabelle „Lautstärke-LEDs“

Aufgabe 4.4
Die Funktionstabelle hat einen Eintrag ohne Tonausgabe (Mittelstellung), vier Einträge
mit Ausgabe Ton T1 (Auslenkung in vier Richtungen) und vier Einträge mit Ausgabe
Ton T2 (schräge Auslenkung in vier Ecken). Dies sind neun mögliche Kombinationen.
Insgesamt sind für vier Eingänge 16 Kombinationen möglich, sodass für die übrigen sie-
ben Kombinationen ein Don’t-Care eingetragen wird.

15  Lösungen der Übungsaufgaben

534 15  Lösungen der Übungsaufgaben

O (oben) U (unten) L (links) R (rechts) T1 (Ton 1) T2 (Ton 2)

0 0 0 0 0 0

0 0 0 1 1 0

0 0 1 0 1 0

0 0 1 1 – –

0 1 0 0 1 0

0 1 0 1 0 1

0 1 1 0 0 1

0 1 1 1 – –

1 0 0 0 1 0

1 0 0 1 0 1

1 0 1 0 0 1

1 0 1 1 – –

1 1 0 0 – –

1 1 0 1 – –

1 1 1 0 – –

1 1 1 1 – –

Funktionstabelle „Spielautomat“

Aufgabe 4.5
Produktterme 1 und 3 aus Abb. 15.1 sind erforderlich. Die Funktion für die Ausgangsva-
riable lautet:

Aufgabe 4.6
Alle Produktterme aus Abb. 15.2 sind erforderlich. Die Funktion für die Ausgangsvaria-
ble lautet:

Aufgabe 4.7
Produktterme 1 und 3 aus Abb. 15.3 sind erforderlich. Die Funktion für die Ausgangsva-
riable lautet:

Aufgabe 4.8
Alle Produktterme aus Abb. 15.4 sind erforderlich. Die Funktion für die Ausgangsvaria-
ble lautet:

Y = A(3)&A(2)&A(0) ∨ A(3)&A(1)

Y = A(2) ∨ A(3)&A(1)&A(0) ∨ A(1)&A(0)

Y = A(2)&A(0) ∨ A(3)

Y = A(3)&A(1)&A(0) ∨ A(3)&A(2)&A(1) ∨ A(3)&A(1)

535

Kapitel 5
Aufgabe 5.1 a
Aufgabe 5.2 a
Aufgabe 5.3 d
Aufgabe 5.4 c
Aufgabe 5.5 c
Aufgabe 5.6 e
Aufgabe 5.7

Abb. 15.1   Karnaugh-
Diagramm zu Aufgabe 4.5 00 01A(3:2)= 11 10

00

01

11

10

A(1:0)=

Term 1

Term 2

Term 3

0000

0110

1100

1100

Abb. 15.2   Karnaugh-
Diagramm zu Aufgabe 4.6 00 01A(3:2)= 11 10

00

01

11

10

A(1:0)=

Term 1

Term 2

Term 3

1111

0101

0100

1111

Abb. 15.3   Karnaugh-
Diagramm zu Aufgabe 4.7 00 01A(3:2)= 11 10

00

01

11

10

A(1:0)=

Term 1

Term 2

Term 3

0110

0-00

1-1-

-1-1

Abb. 15.4   Karnaugh-
Diagramm zu Aufgabe 4.8 00 01A(3:2)= 11 10

00

01

11

10

A(1:0)=

Term 1

Term 2

Term 3

0001

001-

1100

---0

15  Lösungen der Übungsaufgaben

536 15  Lösungen der Übungsaufgaben

a)	 Periodendauer T = 100 ns, Taktfrequenz f = 10 MHz, Duty-Cycle D = 80 %
b)	Periodendauer T = 1 ms, Taktfrequenz f = 1 kHz, Duty-Cycle D = 70 %
c)	 Periodendauer T = 0,5 ms = 500 µs, Taktfrequenz f = 2 kHz, Duty-Cycle D = 40 %

Aufgabe 5.8
Das Codewort muss 4 Stellen für 11 Zustände besitzen. Die Berechnung kann über den
Zweierlogarithmus von 11 erfolgen, der aufgerundet 4 ergibt.

Als alternativer Rechenweg können die Zweierpotenzen betrachtet werden. Mit 3
Stellen sind 23, also 8 Kombinationen möglich. Dies reicht nicht aus. 4 Stellen sind aus-
reichend, denn Sie ergeben 24, also 16 Kombinationen.

Aufgabe 5.9
Das Codewort muss 9 Stellen besitzen, denn die One-Hot-Codierung benötigt für jeden
der 9 Zustände eine Stelle.

Aufgabe 5.10
Mit 5 Stellen sind 25, also 32 unterschiedliche Codierungen möglich.

Aufgabe 5.11
Es können 8 Zustände codiert werden, also genau so viele wie Stellen in der One-Hot-
Codierung vorhanden sind.

Aufgabe 5.12
Der Automat benötigt vier Zustände mit den folgenden Bedeutungen:

•	 S0: Motor steht. Beim nächsten Tastendruck fährt die Jalousie herunter (Startzustand).
•	 S1: Taste ist gedrückt, der Motor fährt herunter.
•	 S2: Motor steht. Beim nächsten Tastendruck fährt die Jalousie herauf.
•	 S3: Taste ist gedrückt, der Motor fährt herauf.

Zustandsfolgediagramm und Zustandsfolgetabelle sind in Abb. 15.5 und 15.6 dargestellt.

ld11 = log 11/ log 2 = 1,041/0,301 = 3,46

S0
M=00

S1
M=01

S2
M=00

S3
M=10

T=1

T=0

T=0 T=1

T=0

Reset

T=1 T=0 T=1

Abb. 15.5   Zustandsfolgediagramm des Automaten „Jalousie“

537

Aufgabe 5.13
Der Automat speichert in den Zuständen den bisher eingeworfenen Geldbetrag. Der
Zustand mit der Bedeutung „50 Cent“ gibt an, dass die benötigte Summe erreicht ist und
der Automat mit dem Ausgang P = 1 die Parkmünze ausgibt. Danach muss wieder neues
Geld eingeworfen werden, das heißt, der Automat geht nach Ausgabe der Parkmünze
wieder zu „0 Cent“.

•	 C_0: 0 Cent eingeworfen (Startzustand)
•	 C_10: 10 Cent eingeworfen
•	 C_20: 20 Cent eingeworfen
•	 C_30: 30 Cent eingeworfen
•	 C_40: 40 Cent eingeworfen
•	 C_50: 50 Cent oder mehr eingeworfen, Parkmünze wird ausgegeben

Der Startzustand war nicht ausdrücklich in der Aufgabenstellung angegeben, sondern
ergibt sich durch Überlegung.

Zustandsfolgediagramm und Zustandsfolgetabelle sind in Abb. 15.7 und 15.8 darge-
stellt. Die beiden Eingänge werden in der kompakten Form „M(1:0)“ angegeben. Da der
Eingang zwei Signale mit vier Kombinationsmöglichkeiten hat, sind für jeden Zustand
vier Folgezustände möglich. In manchen Fällen sind einige dieser Folgezustände gleich.

sn

T=0

sn+1

T=1

S0
S1
S2

M

00
01
00
10

S0
S2
S2
S0 S3

S3
S3

S1
S1

*

* = Reset

Abb. 15.6   Zustandsfolgetabelle des Automaten „Jalousie“

C_0
P=0

C_10
P=0

C_20
P=0

C_30
P=0

00

R
es

et

Eingänge:
M(1:0)

C_40
P=0

00 00 00 00

01 01 01 01

10 10 10

XX

C_50
P=1

01

11 11 11 11 11

10

10

Abb. 15.7   Zustandsfolgediagramm des Automaten „Parkmünze“

15  Lösungen der Übungsaufgaben

538 15  Lösungen der Übungsaufgaben

Übrigens werden im Zustand C_50 die Eingänge nicht ausgewertet. Der Automat geht
nach einem Takt mit P = 1 wieder in den Startzustand. Dies ist möglich, da in der Aufga-
benstellung spezifiziert ist, dass zwischen zwei Münzeinwürfen mehrere Takte vergehen.

Aufgabe 5.14
Der Automat muss sich weiterhin merken, ob die nächste 1 unterdrückt oder ausgegeben
wird. Außerdem ist ein Zustand erforderlich, der nach der jeweils zweiten 1 die Ausgabe
für einen Takt auf 1 setzt. Nach dieser Ausgabe wird die nächste 1 unterdrückt.

•	 S0: Nächste 1 unterdrücken, Ausgabe 0. (Startzustand)
•	 S1: Nächste 1 weitergeben, Ausgabe 0.
•	 S2: Gerade wurde die zweite 1 erkannt, 1 ausgeben, nächste 1 unterdrücken.

Zustandsfolgediagramm und Zustandsfolgetabelle sind in Abb. 15.9 und 15.10 dargestellt.

Reset S0
Y=0

X=0

S1
Y=0

X=0
X=1

X=1
S2
Y=1

X=1X=0

Abb. 15.9   Zustandsfolgediagramm des Automaten „Halbieren“

sn

X=0

sn+1

X=1

S0
S1
S2

Y

0
0
1

S0
S1
S0 S1

S1
S2

*

* = Reset

Abb. 15.10   Zustandsfolgetabelle des Automaten „Halbieren“

sn

00

sn+1

C_0
C_10
C_20

C_0

C_30

*

* = Reset

C_40

M=

C_10 C_20 C_50
C_10 C_20 C_30 C_50
C_20 C_30 C_40 C_50
C_30 C_40 C_50 C_50
C_40 C_50 C_50 C_50

01 10 11

P

C_50 C_0 C_0 C_0 C_0

0
0
0
0
0
1

Abb. 15.8   Zustandsfolgetabelle des Automaten „Parkmünze“

539

Aufgabe 5.15
Im Startzustand ist noch keine Stelle des Datenworts empfangen.

Wenn die erste Stelle empfangen wird, sind zwei Zustände erforderlich, die sich mer-
ken, erste Stelle empfangen und Wert 0 oder 1.

Wenn die zweite Stelle empfangen wird, können vier Fälle auftreten, und zwar: 00,
01, 10 und 11. Jetzt ist wichtig zu erkennen, dass der Automat nicht unterscheiden muss,
ob 01 oder 10 empfangen wurde. Beide Fälle können den gleichen Zustand nutzen, denn
der Automat muss sich nur merken, dass eine 1-Stelle auftrat. Wenn man weiterüberlegt,
kann man erkennen, dass auch eine Unterscheidung von 00 und 11 nicht nötig ist. Darum
sind für die vier Fälle nur zwei Zustände erforderlich, und zwar: „2 Stellen empfangen,
ungerade“ und „2 Stellen empfangen, gerade“.

Das gleiche gilt nach drei Stellen, wo wieder zwei Zustände benötigt werden.
Beim Empfang der vierten Stelle wird eventuell das Fehlersignal E = 1 ausgegeben

und der Automat geht direkt wieder in den Startzustand. Es ist also kein Zustand „4 Stel-
len empfangen“ nötig.

Insgesamt benötigt der Automat somit 7 Zustände:

•	 ST: Start, keine Stelle des Datenworts empfangen
•	 1_G: Eine Stelle empfangen, Parität gerade. (Dies entspricht einer empfangenen 0.

Die Bezeichnung wurde gewählt, da dies zu den folgenden Zuständen passt.)
•	 1_U: Eine Stelle empfangen, Parität ungerade.
•	 2_G: Eine Stelle empfangen, Parität gerade.
•	 2_U: Eine Stelle empfangen, Parität ungerade.
•	 3_G: Eine Stelle empfangen, Parität gerade.
•	 3_U: Eine Stelle empfangen, Parität ungerade.

Zustandsfolgediagramm und Zustandsfolgetabelle sind in Abb. 15.11 und 15.12 darge-
stellt. Nach jeweils vier Takten ist die Bearbeitung eines Datenworts abgeschlossen und
der Automat ist im Startzustand für das nächste Datenwort.

ST

1_G 2_G 3_G

R
es

et

Ein- /Ausgänge
D / E

0/0

1_U 2_U 3_U

1/0

0/0 0/0

0/00/0

1/0

1/0

1/0

1/1
0/0

1/0
0/1
1/0

Abb. 15.11   Zustandsfolgediagramm des Automaten „Parity“

15  Lösungen der Übungsaufgaben

540 15  Lösungen der Übungsaufgaben

Kapitel 6
Aufgabe 6.1 a
Aufgabe 6.2 e
Aufgabe 6.3 d
Aufgabe 6.4 c
Aufgabe 6.5 e
Aufgabe 6.6 c (4 Dateneingänge, 1 Datenausgang, 2 Steuerleitungen)
Aufgabe 6.7 d (1 Dateneingang, 8 Datenausgänge, 3 Steuerleitungen)

Aufgabe 6.8
Ein Modulo-2^10 Zähler durchläuft 210 = 1024 Werte, gerundet 1000 Werte. Bei
50 Mio. Werten pro Sekunde schafft der Zähler etwa 50.000 Zyklen pro Sekunde (Ant-
wort b).

Aufgabe 6.9
Ein Modulo-2^8 Zähler durchläuft 28 = 256 Werte, gerundet 250 Werte. Bei 500.000
Werten pro Sekunde schafft der Zähler etwa 2000 Zyklen pro Sekunde (Antwort b).

Aufgabe 6.10
Die Pipeline-Stufe sollte in der Mitte des kritischen Pfads eingefügt werden. Diese
Position liegt in der Verbindungsleitung für den Übertrag nach vier Volladdierern. Die
folgenden vier Volladdierer berechnen die zweite Hälfte der Addition im nächsten Takt-
zyklus. Damit die Informationen der Datenworte weiterhin zueinander passen, werden
das Ergebnis der ersten vier Volladdierer sowie die Eingangswerte der nächsten vier Voll-
addierer jeweils um einen Takt verzögert. Die Addiererschaltung mit Pipelining zeigt
Abb. 15.13.

Der kritische Pfad durchläuft 4 Addierer und besteht insgesamt aus:

•	 Flip-Flop Takt nach Ausgang: 0,2 ns
•	 4 Volladdierer: 4 · 0,3 ns = 1,2 ns
•	 5 Verbindungsleitungen: 5 · 0,1 ns = 0,5 ns
•	 Flip-Flop Setup-Zeit: 0,2 ns

sn

0

sn+1,E

ST
1_G
1_U

1_G,0

2_G

*

* = Reset

2_U

D=

1_U,0
2_G,0 2_U,0
2_U,0 2_G,0
3_G,0
3_U,0

1

3_G
3_U

ST,1
ST,0 ST,1

3_U,0
3_G,0
ST,0

Abb. 15.12   Zustandsfolgetabelle des Automaten „Parity“

541

Dies ergibt in Summe 2,1 ns. Die mögliche Taktfrequenz beträgt damit rund 475 MHz.
Eventuell erscheint der Aufwand für das Pipelining in Abb. 15.13 recht hoch. Die

ursprüngliche Schaltung hatte 8 Volladdierer und 25 Flip-Flop und erlaubt eine Taktfre-
quenz von 270 MHz. Für das Pipelining werden 13 zusätzliche Flip-Flops benötigt. Voll-
addierer und Flip-Flop sind ungefähr gleich groß, so dass der Mehraufwand 13 von 33
Elementen, also rund 40 % beträgt.

Im Gegenzug kann die Taktfrequenz, und damit die Rechenleistung, um 75 % gestei-
gert werden. Die theoretische Verdopplung der Taktfrequenz wird nicht erreicht, da das
Pipeline-Flip-Flop eine Setup-Zeit sowie Verzögerungszeiten von Takt nach Ausgang
und der Verbindungsleitung benötigt.

Kapitel 7
Aufgabe 7.1 b
Aufgabe 7.2 c
Aufgabe 7.3 d
Aufgabe 7.4 a, c
Aufgabe 7.5 b, c, d
Aufgabe 7.6 c
Aufgabe 7.7 a
Aufgabe 7.8 a, d

Kapitel 8
Aufgabe 8.1 b
Aufgabe 8.2 a, d
Aufgabe 8.3 b

VA VA VA VA

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

CLK

CLK

VA VA VA VA
‚0'

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

D
C

CLK

D
C

D
C

D
C

D
C

D
C

Abb. 15.13   Ripple-Carry-Adder mit Pipeline-Stufe

15  Lösungen der Übungsaufgaben

542 15  Lösungen der Übungsaufgaben

Aufgabe 8.4 b
Aufgabe 8.5 b
Aufgabe 8.6 c

Kapitel 9
Aufgabe 9.1 a, b, d
Aufgabe 9.2 c
Aufgabe 9.3 d
Aufgabe 9.4 c
Aufgabe 9.5 c
Aufgabe 9.6 a, b, d

Kapitel 10
Aufgabe 10.1 a
Aufgabe 10.2 b
Aufgabe 10.3 a
Aufgabe 10.4 c
Aufgabe 10.5 a
Aufgabe 10.6 b
Aufgabe 10.7 d
Aufgabe 10.8 d
Aufgabe 10.9 e
Aufgabe 10.10

Nur wenn A und B beide 0 sind, ist die Reihenschaltung der beiden p-Kanal-Tran-
sistoren (oben) leitend und verbindet den Ausgang Y mit VDD. Wenn ein oder beide
Eingänge 1 sind, verbindet die Parallelschaltung der n-Kanal-Transistoren (unten) den
Ausgang Y mit GND.
Verhalten der Transistorschaltung

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

Verhalten der Transistorschaltung

Dieses Verhalten entspricht der NOR-Funktion.

Kapitel 11 
Aufgabe 11.1 d
Aufgabe 11.2 e

543

Aufgabe 11.3 d
Aufgabe 11.4 d
Aufgabe 11.5 c
Aufgabe 11.6 d
Aufgabe 11.7

a)	 Die Berechnung erfolgt am einfachsten über Zweierpotenzen. Mit 10 Adressleitun-
gen lassen sich 210 = 1024 also 1 K Adressen ansprechen. Für den zusätzlichen
Faktor 16 sind 4 Adressleitungen erforderlich, denn 24 = 16. In der Summe werden
10 + 4 = 14 Adressleitungen benötigt.

b)	Zunächst werden wieder 10 Adressleitungen für 1 K Adressen benötigt. Für den
zusätzlichen Faktor 256 sind 8 Adressleitungen erforderlich, denn 28 = 256. In der
Summe werden 10 + 8 = 18 Adressleitungen benötigt.

Aufgabe 11.8
a)	 Mit 16 Adressleitungen lassen sich 216 = 65.536 Datenworten ansprechen. Jedes

Datenwort hat 8 bit, somit beträgt die Speicherkapazität 65.536 ∙ 8 = 524.288 bit.
In der Praxis wird oft der Faktor 1024 zu 1 K gerechnet. 16 Adressleitungen teilen
sich dann auf in 6 Adressleitungen für den Faktor 26 = 64 und 210 = 1 K, also 64 K
Datenworte. Mit 8 bit je Datenwort ergibt sich 512 kbit Speicherkapazität.

b)	20 Adressleitungen entsprechen zweimal 10 Adressleitungen für 1 K Adressen, mitei-
nander multipliziert 1 M Adressen. Mit 16 bit je Datenwort beträgt die Speicherkapa-
zität 16 Mbit.
Der exakte Wert beträgt 220 ∙ 16 = 16.777.216 bit.

Aufgabe 11.9
Bei einer Dualzahl am Eingang des Speichermoduls entspricht die Reihenfolge der Spei-
cherzellen zeilenweise ansteigenden Zahlen. Die erste Zeile entspricht also den Zahlen 0
bis 7, die zweite Zeile den Zahlen 8 bis 15, bis zur letzten Zeile mit den Zahlen 56 bis 63.

Primzahlen im möglichen Wertebereich 0 bis 63 sind die Zahlen: 2, 3, 5, 7, 11, 13, 17,
19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61.

Für die Primzahlen wird in die Speicherzelle eine 1 gespeichert, ansonsten eine 0.
Das Ergebnis zeigt Abb. 15.14.

Kapitel 12
Aufgabe 12.1 A-2 B-1 C-3 D-4
Aufgabe 12.2 A-4 B-3 C-1 D-2
Aufgabe 12.3

a)	 Quantisierungsintervallbreite

Q = Umax/2
n
= 3V/1024 = 2,93mV

15  Lösungen der Übungsaufgaben

544 15  Lösungen der Übungsaufgaben

b)	Höchster codierbarer Spannungswert

c)	 Die Eingangsspannung 1,2 V dividiert durch die Quantisierungsintervallbreite ergibt

Der gerundete Wert 410 entspricht der Codierung „01 1001 1010“.

U
∗

max =
(

2n − 1
)

· Q = 3V · (1023/1024) = 2,997V

1, 2V

3V/1024
= 409,6

Z
ei
le
nd

ec
od

er

Spaltendecoder

Leseverstärker

D
A
T
A

A
D
D
R
(5
:0
)

ADDR(5:3)

ADDR(2:0)

00
0

00
1

11
1

01
0

01
1

10
1

11
0

10
0

000

001

111

010

011

101

110

100

0

0

0

0

0

0

0

1

0

0

1

1

0

0

1

0

0

0

1

1

0

0

1

0

0

0

0

1

0

0

1

1

0

0

0

1

0

0

0

1

0

0

1

0

1

0

1

1

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

Abb. 15.14   Speichermodul als Primzahl-Detektor

545

d)	Die Codierung „00 0100 1011“ entspricht dem Wert 75 und ergibt den
Repräsentationswert

Die Eingangsspannung liegt im Bereich der Quantisierungsintervallbreite um den
Repräsentationswert

Aufgabe 12.4
a)	 Quantisierungsintervallbreite

b)	Schrittweiser Vergleich mit jeweils halber Spannung, beginnend bei 2n−1 ∙ Q = 1V

•	 0,7 V ≥ 1 V? Nicht erfüllt, also b7 = 0
•	 0,7 V ≥ 0,5 V? Erfüllt, also b6 = 1 und Reduktion der Spannung um 0,5 V auf 0,2 V
•	 0,2 V ≥ 0,25 V? Nicht erfüllt, also b5 = 0
•	 0,2 V ≥ 0,125 V? Erfüllt, also b4 = 1 und Reduktion der Spannung um 0,125 V auf

0,075 V
•	 0,075 V ≥ 0,0625 V? Erfüllt, also b3 = 1 und Reduktion der Spannung um

0,0625 V auf 0,0125 V
•	 0,0125 V ≥ 0,03125 V? Nicht erfüllt, also b2 = 0
•	 0,0125 V ≥ 0,015625 V? Nicht erfüllt, also b1 = 0
•	 0,0125 V ≥ 0,0078125 V? Erfüllt, also b0 = 1 (letzter Schritt)

Als Digitalwert ergibt sich somit 0101 1001, also der Dezimalwert 89. Dies entspricht
dem Repräsentationswert

Die Differenz zur Eingangsspannung von 0,7 V beträgt 4,7 mV und ist kleiner als die
Quantisierungsintervallbreite.

Anmerkung: Der Quantisierungsfehler ist größer als Q/2. Dies liegt daran, dass das
hier verwendete Berechnungsverfahren, wie im Text beschrieben, keine Rundung ent-
hält, sondern Nachkommastellen abschneidet. Der rechnerische Ausgangswert wäre
0,7 V/(2 V/256) = 89,6, Wenn Sie Q/2 zum Eingangswert 0,7 V addieren, erhalten Sie
mit dem Verfahren den korrekt gerundeten Digitalwert. Rechnen Sie erneut!

Aufgabe 12.5
Der Zeitablauf ist in der Tabelle dargestellt.

75 · Q = 75 · 3V/1024 = 0,2197V

74, 5 · Q = 0,2183V ≤ Ux ≤ 0,2212V = 75,5 · Q

Q = Umax/2
n
= 2V/256 = 7,8125mV

89 · Q = 89 · 2V/256 = 0,6953V

15  Lösungen der Übungsaufgaben

546 15  Lösungen der Übungsaufgaben

Zeit-
schritt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ux [in
V]

−0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2 −0,2

Udig [in
V]

0 −1 1 −1 1 −1 −1 1 −1 1 −1 −1 1 −1 1

Udiff [in
V]

−0,2 0,8 −1,2 0,8 −1,2 0,8 0,8 −1,2 0,8 −1,2 0,8 0,8 −1,2 0,8 −1,2

Uint [in
V]

−0,2 0,6 −0,6 0,2 −1 −0,2 0,6 −0,6 0,2 −1 −0,2 0,6 −0,6 0,2 −1

Plus
[binär]

0 1 0 1 0 0 1 0 1 0 0 1 0 1 0

Sigma-Delta-Umsetzer mit Messbereich von ±1 V und Analogeingang Ux = −0,2 V.

Die Pulsfolge enthält zu 40 % den Wert 1. Dieser Anteil bezieht sich auf den Messbe-
reich von ±1 V und entspricht

Aufgabe 12.6
Im Zeitverlauf ist die Dauer des High-Pegels 8 ms bei einer Periodendauer von 10 ms.
Dies entspricht einem Tastverhältnis von 80 %. Der High-Pegel ist 3 V und der Low-
Pegel 0 V, so dass sich für die Ausgangsspannung ergibt

Kapitel 13
Aufgabe 13.1 c, d
Aufgabe 13.2 b
Aufgabe 13.3 c, d
Aufgabe 13.4 a, b, c, d
Aufgabe 13.5 c

Kapitel 14
Aufgabe 14.1 a, b, c (A/D-Umsetzer sind weit verbreitet, aber nicht immer vorhanden)
Aufgabe 14.2 b, c
Aufgabe 14.3 c
Aufgabe 14.4 a
Aufgabe 14.5 d
Aufgabe 14.6 a, b
Aufgabe 14.7

Ux = −1V + 0,4 · 2V = - 1V + 0,8V = - 0,2V

UDA = 0V +
8ms

10ms
3V = 2,4V

547

a)

#include <avr/io.h>

int main(void)

{

   // internen Pull-Up Widerstand fùr Tasteranschluss aktivieren

   PORTA |= 1<<2;  
   // LED-Anschluss als Ausgang konfigurieren

   DDRC |= 1<<6;

   while (1){

            // Nachfolgende Bedingung liefert "true"

            // falls Taster nicht gedrùckt

        if (PINA & (1<<2))

            DDRC &= ~(1<<6); // LED aus
        else

            DDRC |= 1<<6;    // LED an
   }

}

b)

.include "m32def.inc"

   ; Interner Pull-Up fùr Taster aktivieren

   in   r16, PORTA  ; PORTA nach r16

   ori  r16, (1<<2) ; Bit 2 setzen

   out  PORTA, r16  ; r16 wieder nach PORTA schreiben

   ; LED-Anschluss auf Ausgabe

   in   r16, DDRC   ; DDRC nach r16

   ori  r16, (1<<6) ; Bit 6 setzen

   out  DDRC, r16   ; und wieder in das Datenrichtungsregister schreiben

   ; Hier ist die Endlosschleife, in der

   ; der Taster abgefragt und die LED ein- oder ausgeschaltet wird

my_loop:

   in   r16,PINA    ; Wert von PINA holen

   andi r16,(1<<6)  ; nur Bit 6 ist von Interesse

   breq led_on      ; falls 0, springen

   in   r16, PORTC  ; sonst Bit 6

   andi r16,~(1<<6) ; in PORTC lòschen

   out  PORTC, r16  ; und so LED ausschalten

   jmp  my_loop     ; fertig. Taster wieder abfragen

15  Lösungen der Übungsaufgaben

548 15  Lösungen der Übungsaufgaben

led_on:

   in   r16, PORTC  ; PORTC holen

   ori  r16, (1<<6); Bit 6 setzen

   out  PORTC, r16  ; und wieder nach PORTC schreiben => LED an
   jmp  my_loop      ; fertig. Taster wieder abfragen

Anmerkung: Der Code lässt sich auch kürzer schreiben, wenn die Befehle sbi und cbi
verwendet werden.

Aufgabe 14.8
a) (Abb. 15.15).
b)	1 Frame besteht aus 10 Bit. Mit jedem Frame wird 1 Byte übertragen. Die Brutto-

Datenrate beträgt 9600 bps. Also können 960 Bytes/s übertragen werden, wenn die
Frames ohne Pause zwischen den Frames übertragen werden.

c)	 Die Anzahl der übertragenen Einsen (inklusive Paritätsbit) ist ungerade. Es wurde
also ungerade Parität gewählt.

Aufgabe 14.9
Der AVR besitzt eine 8-Bit-CPU. Die Befehle verarbeiten also maximal 8 Bit. Werden
Operanden mit einer größeren Wortbreite verarbeitet, sind hierfür mehrere Befehle not-
wendig. Zwischen der Ausführung zweier Befehle kann ein Interrupt ausgelöst werden.
Also sind nur die Zuweisungen atomar, die mit einem einzelnen Befehl durchgeführt
werden können.

Im Fall des AVR ist dies die Zuweisung an eine 8-Bit-Variable. Die Zuweisung an
einen Zeiger ist nicht atomar, da der Zeiger eine größere Wortbreite als 8 bit besitzt und
daher für die Zuweisung mehrere Befehle erforderlich sind. Im Fall einer 32-Bit-CPU
sind alle Zuweisungen atomar (wenn vorausgesetzt wird, dass Zeiger eine maximale
Wortbreite von 32 bit besitzen).

Für die Aufgabe ergibt sich also:

a)	 Nur Zuweisung 1 ist atomar.
b)	Alle Zuweisungen sind atomar.

t

1

0

S
ta

rt

B
it

0

B
it

1

B
it

2

B
it

3

B
it

4

B
it

5

B
it

6

B
it

7

S
to

pp

„R
uh

e“

„R
uh

e“

Abb. 15.15   Zeitverlauf des TXD-Signals bei Übertragung des Wertes 0 × 35

549

Im Folgenden finden Sie Hinweise auf ergänzende und weiterführende Informationen,
die wir nach den Themen des Lehrbuchs gegliedert haben.

Digitale Informationsverarbeitung und Grundlagen digitaler
Schaltungen (Kapitel 1, 2, 4, 5, 6)

•	 C. Maxfield, „Bebop to the Boolean Boogie, An Unconventional Guide to Electro-
nics“, Newnes, 2008.

•	 M. Alioto, E. Consoli, G. Palumbo, „Analysis and Comparison in the Energy-Delay-
Area Domain of Nanometer CMOS Flip-Flops“, IEEE Trans. VLSI Systems, 2011.

•	 M. Aguirre-Hernandez, M. Linares-Aranda, „CMOS Full-Adders for Energy-Efficient
Arithmetic Applications“, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 2011.

Systementwurf mit VHDL (Kapitel 3, 8)

•	 P. Ashendon, „The Student's Guide to VHDL“, Morgan Kaufmann Publishers, 2008.
•	 B. Mealy, F. Tappero, „Free Range VHDL“, www.freerangefactory.org
•	 J. Bergeron, „Writing Testbenches: Functional Verification of HDL Models“, Springer

2003.
•	 J. Reichardt, B. Schwarz, „VHDL-Synthese“, De Gruyter Oldenbourg, 2015.
•	 A. Mäder, „VHDL kompakt“, Universität Hamburg, Fakultät für Mathematik, Infor-

matik und Naturwissenschaften, tams-www.informatik.uni-hamburg.de/vhdl/doc/ajm-
Material/vhdl.pdf

Literaturhinweise

© Springer-Verlag GmbH Deutschland 2016
W. Gehrke et al., Digitaltechnik, Springer-Lehrbuch,
DOI 10.1007/978-3-662-49731-9

http://www.freerangefactory.org
http://tams-www.informatik.uni-hamburg.de/vhdl/doc/ajmMaterial/vhdl.pdf
http://tams-www.informatik.uni-hamburg.de/vhdl/doc/ajmMaterial/vhdl.pdf

550 Literaturhinweise

Schaltungsrealisierung (Kapitel 7, 10)

•	 K.-H. Cordes, A. Waag, N. Heuck, „Integrierte Schaltungen“, Pearson, 2010.
•	 H. Göbel, „Einführung in die Halbleiter-Schaltungstechnik“, Springer-Vieweg, 2014.
•	 L. Chen et.al., „Low Power Design Methodologies for Digital Signal Processors“, in

N.N. Tan et.al. „Ultra-Low Power Integrated Circuit Design“, Springer 2014.
•	 I. Kuon, J. Rose, „Measuring the Gap Between FPGAs and ASICs“, IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, 2007.

FPGAs und Komponenten digitaler Systeme (Kapitel 9, 11, 12)

•	 M. Qazi, M. E. Sinangil, A. P. Chandrakasan, „Challenges and Directions for Low-
Voltage SRAM“, IEEE Design and Test of Computers, Jan/Feb 2011.

•	 J.M. de la Rosa, „Sigma-Delta Modulators: Tutorial Overview, Design Guide, and
State-of-the-Art Survey“, IEEE Transactions on Circuits and Systems I, 2011.

Mikrocontroller (Kapitel 13, 14)

•	 J. Hennessy, D. Patterson, „Rechnerorganisation und Rechnerentwurf: Die Hardware/
Software-Schnittstelle“, Oldenbourg, 2011.

•	 G. Schmitt, „Mikrocomputertechnik mit Controllern der Atmel AVR-RISC-Familie“,
Oldenbourg, 2010.

•	 J. Wiegelmann, „Softwareentwicklung in C für Mikroprozessoren und Mikrocontrol-
ler“, VDE Verlag, 2011.

Weblinks

Für Informationen zu einzelnen Komponenten empfehlen wir die Herstellerseiten. In der
nachfolgenden Übersicht sind einige Webseiten exemplarisch aufgeführt.
Standard-Logik:

•	 Texas Instruments: www.ti.com/lsds/ti/logic/home_overview.page
•	 NXP: www.nxp.com/products/logic

Programmierbare Logikbausteine (CPLDs, FPGAs):

•	 Xilinx: www.xilinx.com
•	 Altera: www.altera.com

http://www.ti.com/lsds/ti/logic/home_overview.page
http://www.nxp.com/products/logic
http://www.xilinx.com
http://www.altera.com

551Weblinks

•	 Lattice: www.latticesemi.com
•	 MicroSemi: www.microsemi.com

FPGA-Experimentierboards:

•	 Digilent: www.digilentinc.com
•	 Terasic: www.terasic.com

Speicher:

•	 Samsung: www.samsung.com/semiconductor/
•	 Hynix: www.skhynix.com
•	 Micron Technology: www.micron.com

AD/DA-Umsetzer:

•	 Microchip: www.microchip.com
•	 Analog Devices: www.analog.com

AVR-Mikrocontroller:

•	 allgemein: www.atmel.com/products/microcontrollers/avr/
•	 ATmega32: www.atmel.com/devices/ATMEGA32.aspx

Eine Übersicht über verschiedene Hersteller, sowie Information zu Preisen und Verfüg-
barkeit von Bauelementen bieten Distributoren bzw. Elektronikversandhändler, zum
Beispiel

•	 Digikey: www.digikey.de
•	 Mouser: www.mouser.de
•	 Reichelt-Elektronik: www.reichelt.de
•	 Watterott: www.watterott.com

Viele Informationen zu digitalen Systemen und ein sehr gutes deutschsprachiges Forum
finden Sie auf der Seite

•	 www.mikrocontroller.net

http://www.latticesemi.com
http://www.microsemi.com
http://www.digilentinc.com
http://www.terasic.com
http://www.samsung.com/semiconductor/
http://www.skhynix.com
http://www.micron.com
http://www.microchip.com
http://www.analog.com
http://www.atmel.com/products/microcontrollers/avr/
http://www.atmel.com/devices/ATMEGA32.aspx
http://www.digikey.de
http://www.mouser.de
http://www.reichelt.de
http://www.watterott.com
http://www.mikrocontroller.net

553

1–9
1-aus-N-Code, 43
6T-Zelle, 320
7-Segment-Code, 44
8b/10b-Code, 394

A
Abfallzeit, 208
Abtasthalteglied, 355
Abtasttheorem, 356
Abtastung, 354
Acknowledge, 499
Addierer, 177
Address Map, 400
Adressbus, 398
Adressdecoder, 176
Adresse, 317
Adressierung, 406, 452

absolute, 407, 410
indirekte, 407
indizierte, 408
PC-absolute, 410
PC-indirekte, 410
PC-relative, 410
relative, 410
unmittelbare, 406

Adressraum, 346
A/D-Umsetzer, 505
Amdahl‘s Law, 412
Analog-Digital-Umsetzer, 353
Analoge Signaldarstellung, 11
Analog-Komparator, 510
Analog-Multiplexer, 505
Ansteuerungstabelle, 142

Anstiegszeit, 208
Anti-Fuse, 324
Antivalenz, 92
Application Specific Integrated Circuit (ASIC),

8, 210
Application Specific Standard Product (ASSP),

9, 211
Approximation, sukzessive, 364
Äquivalente Automaten, 149
Äquivalente Zustände, 139
Äquivalenz, 93
Arbeitsregister, 402, 429, 456
Architecture, 56, 232, 254
Arithmetic Logical Unit (ALU), 398
Array, 229
ASCII-Code, 44
Assembler, 427, 430
Assembler-Beispiel

Addition, 447
Interrupt, 462
Multiplikation, 449
Ports, 469
setzen und Löschen von Bits, 444
stackbasierte Parameterübergabe, 456

Assembler-Direktiven, 461
Assert-Anweisung, 255
Assoziativgesetz, 96
Astabile Kippstufe, 129
Asynchroner Automat, 157
Asynchroner Reset, 125

VHDL-Beschreibung, 161
Atomare Operation, 515
Attribut, 238
Ausbeute, 308
Ausgangsfunktion, 130

Stichwortverzeichnis

© Springer-Verlag GmbH Deutschland 2016
W. Gehrke et al., Digitaltechnik, Springer-Lehrbuch,
DOI 10.1007/978-3-662-49731-9

554 Stichwortverzeichnis

Automat, 129
äquivalenter, 149
asynchroner, 157
VHDL-Beschreibung, 163

B
Bad Blocks, 326
Ball Grid Array, 310
Baudrate, 487
Befehlssatz, 402
BGA-Gehäuse (Ball Grid Array), 310
Bias-Darstellung, 36
Bibliothek, 55

ieee, 55
std, 55
work, 55

Binärdaten, 2
Binäre Schaltfunktion, 86
Binary Coded Digit, 40
Binary Coded Digit Code (BCD-Code), 40
Bistabile Kippstufe, 129
Bit-Flipping, 326
Blockgenerator, 245
Block-RAM, 246, 278, 284
Bonding, 308
Boolean, 226
Boolesche Schaltfunktion, 86
Boot-Code, 331
Bottom-Up Entwurf, 174
Burst, 335
Bus

Adressbus, 398
Datenbus, 399
Steuerbus, 399

C
Capture-Unit, 475
Carry-Logik, 275
C-Beispiel

analoge Eingabe, 509
Bits setzen und Löschen, 431
FIFO, 518
I2C, 502
interrupt, 463
Ports, 467
SPI, 497
Temperaturüberwachung, 512

UART, 491
Uhr, 481
Zugriff auf Peripherie, 430

Central Processing Unit (CPU), 398, 421
Character, 227
Chip, 7
Clock, 119
Clock-Domain, 193
Clock Skew, 276
CMOS-Technologie, 290
Codewortlänge, 144
Codierung

AD-Umsetzer, 354
optimierte, 147
von Zuständen, 144

Compact Disc (CD), 11, 356
Complex Instruction Set Computer (CISC), 416
Complex Programmable Logic Devices

(CPLD), 212, 271
Component-Anweisung, 240
Constant Propagation, 219

D
Datenbus, 399
Datenregister, 465
Datenrichtungsregister, 465
Datentransferrate, 318
Datenwort, 318
De Morgansche Gesetze, 97
Delay-Locked-Loop (DLL), 279
Demultiplexer, 176
D-Flip-Flop, 4, 122, 239, 276

Aufbau, 124
Aufbau in CMOS-Technologie, 298
Verwendung im FPGA, 271
VHDL-Beschreibung, 158

Die, 308
Differenzielle Nichtlinearität, 383
Digital-Analog-Umsetzer, 353
Digitale Signaldarstellung, 11
DIL-Gehäuse (Dual In-Line), 309
Direct Memory Access (DMA), 427
Direktverfahren (DAU), 375
Disjunktive Normalform, 99
Diskrete Signaldarstellung, 13
Diskrete Speicherbausteine, 332
Diskretisierung, 354
Distributed Memory, 247, 278

555Stichwortverzeichnis

Distributivgesetz, 96
Don’t-Care, 59, 87

im Karnaugh-Diagramm, 107
Dotierung, 292
Double-Data-Rate (DDR), 319, 392
Dual In-Line, 309
Dual-Port-Speicher, 248, 278, 330
Dual-Slope-Verfahren, 370
Durchsatz, 193
Duty Cycle, 119, 337, 340
Dynamic Random Access Memory (DRAM),

316, 321
diskreter Baustein, 337

Dynamische Verlustleistung, 301

E
Einheitsgatter, 207
Einschwingzeit, 385
Einstufige Logik, 93
Electrically Erasable Programmable Read-Only

Memory (EEPROM), 316, 324
diskreter Baustein, 340

Electronic Design Automation (EDA), 215
Embedded Memory, 318, 329
Enable, 127

VHDL-Beschreibung, 162
Endlicher Automat, 129
Energieeffizienz, 303
Entity, 56
Entwurf von Automaten, 135
Entwurfsprozesses, 53
Error Correcting Code (ECC), 326

F
Falling_edge(), 159, 240
Fan-in, 207
Fan-out, 207
Feldeffekttransistoren, 292
Ferroelectric RAM (FRAM), 316, 327
Fertigungstest, 307
Festkomma-Darstellung, 37
Field Programmable Gate Array (FPGA), 9,

212, 269, 273
FinFET-Transistoren, 311
Finite State Machine s. Automat
First-In-First-Out (FIFO), 246, 317, 517
Flags, 434

Flankenerkennung, 193
Flash-EEPROM, 317, 325
Flash-Umsetzer, 362
Floating-Gate, 324
Floating-Point-Unit, 404
Flüchtige Speicher, 315
For-generate-Anweisung, 236
For-Schleife, 77
Frequenz, 119
Function, 231
Funktionstabelle, 87
Fuse-Bit, 524

G
Gated Clock, 277
Gate-Länge, 296, 310
Gatter, 86
Gatternetzliste, 210
Gehäuse, 309
Generate-Anweisung, 236
Generic, 235
Generic Array Logic (GAL), 269
Gleitkomma-Darstellung, 37
Glitch, 184
Grafikcontroller, 4
Gray-Code, 42, 197, 242

H
Halbaddierer, 179
Handshake, 488
Harmonische Verzerrungen, 386
Harvard-Architektur, 419

modifizierte, 420
Hazard, 184
High-Logik-Pegel, 2
Histogramm, 386
Hold-Zeit, 124

I
I2C, 497
Identität, 93
If-Anweisung, 76
If-generate-Anweisung, 236
Implikation, 93
In-Circuit-Emulation (ICE), 524
Inferenz, 243

556 Stichwortverzeichnis

Inhibition, 93
Input-Capture-Unit, 475
Instanziierung, 79, 243
Instruktionssatz, 402
In-System-Programming (ISP), 524
Integer, 58
Integrated Circuit (IC), 7
Integrierte Schaltung, 7, 289
Inter-Integrated-Circuit-Bus, 497
Interrupt, 458, 480, 512
Interruptfreigabe, 459, 512
Interrupt-Vektor, 460
Inverter, 3, 90, 296
IO-Block (IOB), 274, 280

J
JESD204B, 393
JK-Flip-Flop, 128
JTAG, 524

K
Karnaugh-Diagramm, 98, 101
Karnaugh-Veitch-Diagramm, 101
Kippstufe

astabile, 129
bistabile, 129

Kohlenstoffnanoröhre, 312
Kombinatorische Schaltung, 85
Kommutativgesetz, 96
Komplexgatter, 304
Konjunktive Normalform, 100
Kritischer Pfad, 190
KV-Diagramm, 101

L
Label, 429
Lastkapazität, 210
Latch, 116
Latenzzeit, 193, 318
Layout, 294
Leckströme, 301
Library-Anweisung, 55
Linear Feedback Shift Register (LFSR), 183
Logic Element, 273, 283
Logik

einstufige, 93

negative, 3
n-stufige, 93
positive, 2
zweistufige, 93

Logikbaustein, 8
Logikgatter, 3
Logik-Pegel, 2
Logikstufen, 93
Logiksymbole, US-amerikanische, 94
Logik-Zustand, 2
Look-up table (LUT), 267, 273, 274
Look-up-Tabelle, 267, 273, 274
Low-Logik-Pegel, 2
Low Voltage Differential Signaling

(LVDS), 392

M
Magnetoresistive RAM (MRAM), 316, 327
Majoritätsschaltung, 87
Makrozelle, 271
Maxterm, 100
Mealy-Automat, 130, 149
Medwedew-Automat, 131, 156
Memory-Mapped-I/O, 400, 430
Metastabilität, 124, 196
Microchip, 7
Mikrocontroller, 11, 213, 420
Minimale Codewortlänge, 144
Minimierung

logischer Funktionen, 98
von Zuständen, 139

Minterm, 98
Mixed-Signal-ASIC, 388
Mnemonic, 429
Modulo-m-Zähler, 180
Monostabile Kippstufe, 129
Monotonität, 383
Moore-Automat, 131
Moore’sches Gesetz, 310
Multi-Level-Cell (MLC), 326
Multiplexer, 175

N
Nachtriggerbares Monoflop, 129
NAND-EEPROM, 325
NAND-Gatter, 290
NAND-Verknüpfung, 91

557Stichwortverzeichnis

Natural, 225
Negation, 90
Negative Logik, 3
Netzliste, 219
Nichtflüchtige Speicher, 315
Nichtlinearität, 382

differenzielle, 383
N-Kanal-Transistor, 292
Non-Volatile Memory, 315
Non-Volatile RAM (NVRAM), 316, 326

diskreter Baustein, 344
NOR-EEPROM, 325
NOR-Verknüpfung, 92
N-stufige Logik, 93

O
ODER-Gatter, 3
ODER-Verknüpfung, 90
Offsetfehler, 381
On-Chip-Debugging, 524
One-Hot-Codierung, 144
Open-Collector-Ausgang, 199, 498
Open-Drain-Ausgang, 199, 498
Operation, atomare, 515
Optimierte Codierung, 147
Others, 63, 77
OTP-Speicher, 323
Oversampling-Technik, 373

P
Package, 241
Paket, 241
Parallel-Seriell-Wandlung, 182
Parallelverfahren, 362

erweitertes, 366
Parität, 487
Periodendauer, 119
Pfad, kritischer, 190
Phase-Change RAM (PCRAM), 316, 328
Phase-Locked Loop (PLL), 279
Pipeline-ADU, 364, 368
Pipelining, 192, 411, 412, 418
P-Kanal-Transistor, 293
Placement, 220
Platzierung, 220
PLCC-Gehäuse, 309
Polling, 458, 511

Port, 56, 421, 464
Port Mapped I/O, 400
Portfunktionen, alternative, 426, 470
Positive Logik, 2
Primterm, 99
Procedure, 232
Process, Voltage, Temperature (PVT), 299
Program Counter, 410, 433
Programmable Array Logic (PAL), 269
Programmable Logic Arrays (PLA), 266
Programmable Logic Device (PLD), 266
Prozess, 69
Pseudo-Tetrade, 40
Pull-Up-Widerstand, 498
Pulsweitenmodulation (PWM), 379

Q
QFP-Gehäuse, 310
Quad-Data-Rate (QDR), 334
Quad-Flat-Pack-Gehäuse, 310
Quad-Level-Cell (QLC), 326
Quantisierung, 354
Quantisierungsfehler, 380
Quantisierungsintervall, 354, 359
Querstrom, 302

R
R-2R-Leiternetzwerk, 377
Read(), 251
Readline(), 251
Read-Only-Memory (ROM), 316, 323
Real data, 225
Rechenregeln der Schaltalgebra, 95
Record, 230
Reduced Instruction Set Computer (RISC), 417
Redundante Codewortlänge, 144
Reduzierter Spannungshub, 318
Refresh, 322
Register, 122, 186
Registerausgabe, 154

VHDL-Beschreibung, 164
Registerpaar, 437
Register-Transfer-Level (RTL), 186, 217
Reset

asynchroner, 125, 161
synchroner, 126

Resistive RAM (R RAM), 316, 328

558 Stichwortverzeichnis

Resolution Function, 227
Ripple-Carry-Addierer, 178
Rising_edge(), 158, 240
Route, 220
RS-Flip-Flop, 116

asynchroner Automat, 158
Rückgekoppeltes Schieberegister, 183
Rückkopplung, 117

S
Schaltaktivität, 302
Schaltalgebra, 86
Schaltfunktion, 86

binäre, 86
boolesche, 86

Schaltglied, 86
Schaltsymbole, 3
Schaltung, sequenzielle, 115
Schaltungsentwurf durch Minimieren, 98
Schaltzeichen, 86, 174
Schaltzeit, 208
Schiebeoperationen, 448
Schieberegister, 182

rückgekoppeltes, 183
Schmitt-Trigger, 197
Sequenzielle Schaltung, 115
Serial Peripheral Interface (SPI), 345, 389, 492
Serializer, 274
Seriell-Parallel-Wandlung, 182
Setup-Zeit, 124, 276
Shannonsches Gesetz, 97
Shared Variable, 248
Sieben-Segment-Anzeige, 254
Sigma-Delta-Umsetzer, 371
Signal, 67
Signal-Rausch-Abstand, 385
SIgnal to Noise And Distortion ratio

(SINAD), 385
Signal to Noise Ratio(SNR)

Signal-Rausch-Abstand, 385
Signed Data, 62
Silizium, 290
Simple Programmable Logic Device (SPLD),

212, 269
Simulation, 52
Single-Slope-Verfahren, 370

Skipbefehl, 444
Soft-Prozessor, 280
Speicher, 315
Speichersystem, 345
Spezifikation, 136
Spike, 184
Sprungbefehl

bedingter, 405
unbedingter, 405

Stack, 409, 456
Stackpointer, 433, 456
Standardlogik-Bausteine, 204
Standardzellen, 304
Stapelspeicher, 409, 456
Stapelzeiger, 433, 456
Startbedingung, 498
Startbit, 486
Static Random Access Memory

(SRAM), 316, 319
diskreter Baustein, 334

Statische Verlustleistung, 301
Statusregister, 433, 444
Std_logic, 57, 59, 227
Std_logic_textio, 251
Std_logic_vector, 60, 227, 229
Std_ulogic, 227
Std_ulogic_vector, 60
Stellengewicht, 19
Steuerbus, 399
Steuerwerk, 401
Stimuli, 52, 218, 259
Stoppbedingung, 499
Stoppbit, 487
Störspannungsabstand, 208
String, 228, 252
Strukturgröße, 310
Stufigkeit, 93
Substrat, 292
Subtypes, 228
Sukzessive Approximation, 364
Summation gewichteter Ströme, 375
Superskalare Architektur, 412
Switch Matrix, 274
Synchroner Reset, 126

VHDL-Beschreibung, 160
Synthese, 52
System-on-Chip (SoC), 211, 281, 305

559Stichwortverzeichnis

T
Takt, 4, 118
Taktbereich, 193
Taktflankensteuerung, 121
Taktfrequenz, 191
Taktkonzept, 186
Taktpegelsteuerung, 120
Taktübergang, 193
Tastverhältnis, 119
Testbench, 52, 218, 250, 254
Textausgabe, 252
Textio, 251
Time, 226
Timer, 470

CTC Mode, 472
Normal Mode, 471
PWM Mode, 473

To_integer, 63
To_signed, 63
To_unsigned, 63
Toggle-Flip-Flop, 128
Top-down Entwurf, 173
Total Negative Slack (TNS), 220
Total Hold Slack (THS), 221
Transiente Signalzustände, 184
Transmission-Gate, 298
Triple-Level-Cell(TLC), 326
Tri-State-Ausgang, 198

Verwendung für Datenbus, 349
Turingmaschine, 130
Two-Wire-Interface (TWI), 497
Type, 227
Type-Qualifier, 252

U
UART-Protokoll, 486
Überlauf, 26, 28, 34
Übertrag, 178
UND-Gatter, 3
UND-Verknüpfung, 89
Universal Asynchronous Receiver/Transmitter

(UART), 485
Universal Synchronous Asynchronous Recei-

ver/Transmitter (USART), 489
Unsigned Data, 62
Untermodul, 173
Unterprogrammaufruf, 455

US-amerikanische Logiksymbole, 94
Use-Anweisung, 55

V
Venn-Diagramm, 101
Verdrahtung, 220
Vereinfachungsregeln der Schaltalgebra, 95
Vergleich Mealy-Automat/Moore-Automat,

153
Verlustleistung, 300

statische, 301
Verstärkungsfehler, 381
Very-Long-Instruction-Word (VLIW), 412
Verzögerungszeit, 184, 209
VHDL-Beispiel

Attribute, 238
Component-Anweisung, 240
Dateizugriff, 251, 252
Fußgängerampel, 187
Generate-Anweisung, 237
Generics, 235
Inferenz eines Speichers, 246
Paket, 242
Sequenzielle Schaltung, 159
Testbench, 254, 257

Volatile, 430
Volatile Memory, 315
Volladdierer, 178
Vollsubtrahierer, 179
Voltage-Controlled-Oscillator (VCO), 279
Von-Neumann-Architektur, 398, 419
Vorrangregeln der Schaltalgebra, 94
Vorzeichen-Betrag-Darstellung, 30
Vorzeichenerweiterung, 34

W
Wafer, 307
Wägeverfahren, 363
Wahrheitstabelle, 87
Wait-Anweisung, 254
Wartbarkeit, 154
Watchdog-Timer, 483
Waveform, 255
Waveform-Viewer, 52
Wear Leveling, 325
Wertdiskrete Signaldarstellung, 13

560 Stichwortverzeichnis

Wertkontinuierliche Signaldarstellung, 13
While-Schleife, 78
Wireload Model, 219
Worst Hold Slack (WHS), 221
Worst Negative Slack (WNS), 220
Write(), 251
Writeline(), 251

X
XOR-Gatter (exclusive or), 3
XOR-Verknüpfung (exclusive or), 92

Y
Yield, 308

Z
Zahlenkreis, 25
Zähler, 180
Zählverfahren, 365
Zeichenketten, 228, 252
Zeitdiskrete Signaldarstellung, 13
Zeitkontinuierliche Signaldarstellung, 13
Zero-One-Hot-Codierung, 144
Zustand, 130, 135
Zustandscodierung, 141
Zustandsfolgediagramm, 134
Zustandsfolgetabelle, 133
Zustandsübergangsfunktion, 130
Zustandsvariable, 130
Zuweisung, nebenläufige, 68
Zweierkomplement-Darstellung, 32
Zweistufige Logik, 93
Zweiwertigkeit, 2

	Vorwort
	Vorwort zur ersten Auflage
	Inhaltsverzeichnis
	Abkürzungsverzeichnis
	1 Einführung
	1.1	Arbeitsweise digitaler Schaltungen
	1.1.1	Darstellung von Informationen
	1.1.2	Logik-Pegel und Logik-Zustand
	1.1.3	Verarbeitung von Informationen
	1.1.4	Beispiel: Einfacher Grafikcontroller
	1.1.5	Beispiel: Zähler im Grafikcontroller

	1.2	Technische Realisierung digitaler Schaltungen
	1.2.1	Logikbausteine
	1.2.2	Kundenspezifische Integrierte Schaltung
	1.2.3	Standardbauelemente
	1.2.4	Programmierbare Schaltung
	1.2.5	Mikrocontroller

	1.3	Digitale und analoge Informationen
	1.3.1	Darstellung von Informationen
	1.3.2	Vor- und Nachteile der Darstellungen
	1.3.3	Wert- und zeitdiskret

	1.4	Übungsaufgaben

	2 Digitale Codierung von Informationen
	2.1	Grundlagen
	2.2	Vorzeichenlose Zahlen
	2.2.1	Stellenwertsysteme
	2.2.2	Darstellung vorzeichenloser Zahlen in der Digitaltechnik
	2.2.3	Umwandlung zwischen Zahlensystemen
	2.2.4	Beispiele zur Umwandlung zwischen Zahlensystemen
	2.2.5	Wertebereiche und Wortbreite
	2.2.6	Zahlendarstellung mit begrenzter Wortbreite
	2.2.7	Binäre vorzeichenlose Addition
	2.2.8	Binäre vorzeichenlose Subtraktion
	2.2.9	Binäre vorzeichenlose Multiplikation und Division

	2.3	Vorzeichenbehaftete Zahlen
	2.3.1	Vorzeichen-Betrag-Darstellung
	2.3.2	Zweierkomplement-Darstellung
	2.3.2.1 Negieren einer Zweierkomplement-Zahl
	2.3.2.2 Vorzeichenerweiterung

	2.3.3	Addition und Subtraktion in Zweierkomplement-Darstellung
	2.3.4	Multiplikation und Division in Zweierkomplement-Darstellung
	2.3.5	Bias-Darstellung
	2.3.6	Darstellbare Zahlenbereiche

	2.4	Reelle Zahlen
	2.4.1	Festkomma-Darstellung
	2.4.2	Gleitkomma-Darstellung
	2.4.3	Reelle Zahlen in digitalen Systemen

	2.5	Codes
	2.5.1	BCD-Code
	2.5.2	Gray-Code
	2.5.3	1-aus-N-Code
	2.5.4	ASCII-Code
	2.5.5	7-Segment-Code

	2.6	Übungsaufgaben

	3 Einführung in VHDL
	3.1	Designmethodik im Überblick
	3.2	Grundstruktur eines VHDL-Moduls
	3.2.1	Bibliotheken
	3.2.2	Entity und Architecture
	3.2.3	Bezeichner

	3.3	Grundlegende Datentypen
	3.3.1	Integer
	3.3.2	Std_logic
	3.3.3	Std_logic_vector
	3.3.4	Signed und Unsigned
	3.3.5	Konstanten
	3.3.6	Umwandlung zwischen Datentypen
	3.3.7	Datentyp Bit

	3.4	Operatoren
	3.5	Signale
	3.5.1	Definition und Verwendung von Signalen
	3.5.2	Signalzuweisungen

	3.6	Prozesse
	3.6.1	Syntaktischer Aufbau von Prozessen
	3.6.2	Ausführung von Prozessen
	3.6.3	Variablen
	3.6.4	Signalzuweisungen in Prozessen
	3.6.5	Wichtige Sprachkonstrukte in VHDL-Prozessen
	3.6.5.1 If-Anweisung
	3.6.5.2 Case-Anweisung
	3.6.5.3 For-Schleife
	3.6.5.4 While-Schleife

	3.7	Hierarchie
	3.8	Übungsaufgaben

	4 Kombinatorische Schaltungen
	4.1	Schaltalgebra
	4.1.1	Schaltfunktion und Schaltzeichen
	4.1.2	Funktionstabelle
	4.1.3	Funktionstabelle mit Don’t-Care

	4.2	Funktionen der Schaltalgebra
	4.2.1	UND-Verknüpfung
	4.2.2	ODER-Verknüpfung
	4.2.3	Negation, Inverter
	4.2.4	NAND-Verknüpfung
	4.2.5	NOR-Verknüpfung
	4.2.6	XOR-Verknüpfung
	4.2.7	XNOR-Verknüpfung
	4.2.8	Weitere Verknüpfungen
	4.2.9	Logikstufen
	4.2.10	US-amerikanische Logiksymbole

	4.3	Rechenregeln der Schaltalgebra
	4.3.1	Vorrangregeln
	4.3.2	Rechenregeln
	4.3.2.1 Vereinfachungsregeln für eine Variable
	4.3.2.2 Kommutativgesetz
	4.3.2.3 Assoziativgesetz
	4.3.2.4 Distributivgesetz
	4.3.2.5 De Morgansche Gesetze
	4.3.2.6 Shannonsches Gesetz

	4.4	Schaltungsentwurf durch Minimieren
	4.4.1	Minterme
	4.4.2	Schaltungsentwurf mit Mintermen
	4.4.3	Minimierung von Mintermen
	4.4.4	Maxterme
	4.4.5	Schaltungsentwurf mit Maxtermen
	4.4.6	Minimierung von Maxtermen

	4.5	Schaltungsminimierung mit Karnaugh-Diagramm
	4.5.1	Grundsätzliche Vorgehensweise
	4.5.2	Karnaugh-Diagramm für zwei Variablen
	4.5.3	Karnaugh-Diagramm für drei Variablen
	4.5.4	Karnaugh-Diagramm für vier Variablen
	4.5.5	Auswahl der erforderlichen Terme
	4.5.6	Ermittlung der minimierten Funktion
	4.5.7	Karnaugh-Diagramm mit Don’t-Care
	4.5.8	Karnaugh-Diagramm für mehr als vier Variablen
	4.5.9	Karnaugh-Diagramm der konjunktiven Normalform

	4.6	VHDL für kombinatorische Schaltungen
	4.6.1	Beschreibung logischer Verknüpfungen
	4.6.2	Beschreibung der Funktion

	4.7	Übungsaufgaben

	5 Sequenzielle Schaltungen
	5.1	Speicherelemente
	5.1.1	RS-Flip-Flop
	5.1.1.1 Funktion
	5.1.1.2 Aufbau
	5.1.1.3 Herleitung des Aufbaus
	5.1.1.4 Verwendung

	5.1.2	Taktsteuerung von Flip-Flops
	5.1.2.1 Takt
	5.1.2.2 Taktpegelsteuerung
	5.1.2.3 Taktflankensteuerung

	5.1.3	D-Flip-Flop
	5.1.3.1 Funktion
	5.1.3.2 Reales Zeitverhalten
	5.1.3.3 Aufbau

	5.1.4	Erweiterung des D-Flip-Flops
	5.1.4.1 Asynchroner Reset und Set
	5.1.4.2 Synchroner Reset und Set
	5.1.4.3 Enable
	5.1.4.4 Kompakte Darstellung von D-Flip-Flops

	5.1.5	Weitere Flip-Flops
	5.1.5.1 JK-Flip-Flop
	5.1.5.2 Toggle-Flip-Flop

	5.1.6	Kippstufen
	5.1.6.1 Monostabile Kippstufe
	5.1.6.2 Astabile Kippstufe

	5.2	Endliche Automaten
	5.2.1	Automatentheorie
	5.2.1.1 Mealy-Automat
	5.2.1.2 Moore-Automat
	5.2.1.3 Medwedew-Automat

	5.2.2	Beispiel für einen Automaten
	5.2.2.1 Schaltungsanalyse
	5.2.2.2 Zustände und Zustandsfolgetabelle
	5.2.2.3 Funktion

	5.2.3	Entwurf von Automaten
	5.2.3.1 Spezifikation des Verhaltens
	5.2.3.2 Aufstellen der Zustandsfolgetabelle
	5.2.3.3 Minimierung der Zustände
	5.2.3.4 Codierung der Zustände
	5.2.3.5 Aufstellen der Ansteuerungstabelle
	5.2.3.6 Logikminimierung

	5.2.4	Codierung von Zuständen
	5.2.4.1 Codierung mit minimaler Codewortlänge
	5.2.4.2 Codierung mit redundanter Codewortlänge
	5.2.4.3 Optimierte Codierung
	5.2.4.4 Vergleich der Codierungen

	5.2.5	Entwurf von Mealy-Automaten
	5.2.5.1 Unterschied zum Moore-Automaten
	5.2.5.2 Beispiel für einen Mealy-Automaten
	5.2.5.3 Aufstellen der Zustandsfolgetabelle
	5.2.5.4 Implementierung des Mealy-Automaten
	5.2.5.5 Vereinfachte Darstellung des Zustandsfolgediagramms

	5.2.6	Vergleich von Mealy- und Moore-Automat
	5.2.7	Registerausgabe
	5.2.7.1 Taktkonzept
	5.2.7.2 Moore-Automat mit Registerausgabe
	5.2.7.3 Beispiel für Moore-Automat mit Registerausgabe
	5.2.7.4 Medwedew-Automat

	5.2.8	Asynchrone Automaten
	5.2.8.1 Struktur
	5.2.8.2 Beispiel eines asynchronen Automaten
	5.2.8.3 Einsatz

	5.3	Entwurf sequenzieller Schaltungen mit VHDL
	5.3.1	Grundform des getakteten Prozesses
	5.3.2	Erweiterte Funktion des getakteten Prozesses
	5.3.3	Steuerleitungen für Flip-Flops
	5.3.3.1 Synchroner Reset und Set
	5.3.3.2 Asynchroner Reset und Set
	5.3.3.3 Enable

	5.3.4	Entwurf von Automaten
	5.3.4.1 Elemente der VHDL-Beschreibung
	5.3.4.2 Kompletter VHDL-Code des Automaten

	5.3.5	Programmierstile für VHDL-Code

	5.4	Übungsaufgaben

	6 Schaltungsstrukturen
	6.1	Grundstrukturen digitaler Schaltungen
	6.1.1	Top-down Entwurf
	6.1.2	Darstellung von Schaltungsstrukturen

	6.2	Kombinatorische Grundstrukturen
	6.2.1	Multiplexer
	6.2.2	Demultiplexer
	6.2.3	Addierer

	6.3	Sequenzielle Grundstrukturen
	6.3.1	Zähler
	6.3.2	Schieberegister
	6.3.3	Rückgekoppeltes Schieberegister

	6.4	Zeitverhalten
	6.4.1	Verzögerungszeit realer Schaltungen
	6.4.2	Transiente Signalzustände
	6.4.3	Signalübergänge in komplexen Schaltungen

	6.5	Taktkonzept in realen Schaltungen
	6.5.1	Register-Transfer-Level (RTL)
	6.5.2	Beispiel für Entwurf mit Register-Transfer-Level: Ampelsteuerung
	6.5.3	Kritischer Pfad
	6.5.4	Pipelining
	6.5.5	Taktübergänge
	6.5.6	Metastabilität von Flip-Flops
	6.5.7	Taktübergang mehrerer Signale

	6.6	Spezielle Ein-Ausgangsstrukturen
	6.6.1	Schmitt-Trigger-Eingang
	6.6.2	Tri-State-Ausgang
	6.6.3	Open-Kollektor-Ausgang

	6.7	Übungsaufgaben

	7 Realisierung digitaler Systeme
	7.1	Standardisierte Logikbausteine
	7.1.1	Charakteristische Eigenschaften digitaler Schaltkreise
	7.1.2	Lastfaktoren
	7.1.3	Störspannungsabstand
	7.1.4	Schaltzeiten
	7.1.5	Logikfamilien

	7.2	Komponenten für digitale Systeme
	7.2.1	ASICs
	7.2.2	ASSPs
	7.2.3	FPGAs und CPLDs
	7.2.4	Mikrocontroller
	7.2.5	Vergleich der Alternativen
	7.2.6	Kombination von Komponenten

	7.3	VHDL-basierter Systementwurf
	7.3.1	Designflow
	7.3.2	VHDL-Eingabe
	7.3.3	Simulation
	7.3.4	Synthese
	7.3.5	Platzierung und Verdrahtung
	7.3.6	Timinganalyse
	7.3.7	Inbetriebnahme
	7.3.8	Der digitale Entwurf als iterativer Prozess

	7.4	Übungsaufgaben

	8 VHDL-Vertiefung
	8.1	Weitere Datentypen
	8.1.1	Natural und Real
	8.1.2	Boolean
	8.1.3	Time
	8.1.4	Std_ulogic, Std_ulogic_vector
	8.1.5	Benutzerdefinierte Datentypen
	8.1.6	Zeichen und Zeichenketten
	8.1.7	Subtypes
	8.1.8	Arrays
	8.1.9	Records

	8.2	Sprachelemente zur Code-Strukturierung
	8.2.1	Function
	8.2.2	Procedure
	8.2.3	Entity-Deklaration mit Generics
	8.2.4	Generate-Anweisung
	8.2.5	Attribute
	8.2.6	Instanziierung mit der Component-Anweisung
	8.2.7	Pakete
	8.2.8	Einbindung von Spezialkomponenten
	8.2.8.1 Beispiel: Instanziierung eines Speichers
	8.2.8.2 Beispiel: Instanziierung eines Speichers mit Blockgenerator
	8.2.8.3 Beispiel: Inferenz eines Speichers
	8.2.8.4 Beispiel: Inferenz eines Dual-Port-Speichers

	8.3	Sprachelemente zur Verifikation
	8.3.1	Binäre Ein-Ausgabe
	8.3.2	Ein-Ausgabe mit Textdateien
	8.3.3	Wait-Anweisungen in Testbenches
	8.3.4	Testbench mit interaktiver Überprüfung
	8.3.5	Testbench mit Assert-Anweisungen
	8.3.6	Testbench mit Dateiein--ausgabe

	8.4	Übungsaufgaben

	9 Programmierbare Logik
	9.1	Grundkonzepte programmierbarer Logik
	9.1.1	Zweistufige Logik
	9.1.2	Tabellenbasierte Logikimplementierung

	9.2	Simple Programmable Logic Device (SPLD)
	9.3	Complex Programmable Logic Device (CPLD)
	9.4	Field Programmable Gate Arrays
	9.4.1	Allgemeiner Aufbau eines FPGAs
	9.4.2	Taktverteilung im FPGA
	9.4.3	Typische Spezialkomponenten
	9.4.3.1 Speicherelememente
	9.4.3.2 Arithmetische Module
	9.4.3.3 Takterzeugung
	9.4.3.4 Spezialisierte Peripheriemodule
	9.4.3.5 Prozessor-Subsysteme

	9.5	FPGA-Familien
	9.5.1	Vergleich ausgewählter FPGA-Familien

	9.6	Hinweise zum Selbststudium
	9.7	Übungsaufgaben

	10 Halbleitertechnik
	10.1	CMOS-Technologie
	10.1.1	Prinzipieller Aufbau
	10.1.2	Feldeffekttransistoren
	10.1.3	Layout

	10.2	Grundschaltungen in CMOS-Technik
	10.2.1	Inverter
	10.2.2	Logikgatter
	10.2.3	Transmission-Gate
	10.2.4	Flip-Flop

	10.3	Verlustleistung
	10.3.1	Statische Verlustleistung
	10.3.2	Dynamische Verlustleistung
	10.3.3	Entwurf energieeffizienter Schaltungen

	10.4	Integrierte Schaltungen
	10.4.1	Logiksynthese und Layout
	10.4.2	Herstellung
	10.4.3	Packaging
	10.4.4	Gehäuse

	10.5	Miniaturisierung der Halbleitertechnik
	10.5.1	Moore’sches Gesetz
	10.5.2	FinFET-Transistoren
	10.5.3	Weitere Technologieentwicklung

	10.6	Übungsaufgaben

	11 Speicher
	11.1	Übersicht
	11.1.1	Begriffe und Abkürzungen
	11.1.2	Grundstruktur
	11.1.3	Physikalisches Interface

	11.2	Speichertechnologien
	11.2.1	SRAM
	11.2.2	DRAM
	11.2.3	ROM
	11.2.4	OTP-Speicher
	11.2.5	EEPROM
	11.2.6	Innovative Speichertechniken

	11.3	Eingebetteter Speicher
	11.3.1	SRAM
	11.3.2	DRAM
	11.3.3	ROM
	11.3.4	NVRAM

	11.4	Diskrete Speicherbausteine
	11.4.1	Praktischer Einsatz
	11.4.1.1 Systemaufbau
	11.4.1.2 Aktuelle Speicherbausteine

	11.4.2	QDR-II-SRAM
	11.4.2.1 Übersicht
	11.4.2.2 Logisches Interface
	11.4.2.3 Physikalisches Interface

	11.4.3	DDR3-SDRAM
	11.4.3.1 Übersicht
	11.4.3.2 Logisches Interface
	11.4.3.3 Physikalisches Interface

	11.4.4	EEPROM
	11.4.4.1 Übersicht
	11.4.4.2 8 Gbit Flash-Memory
	11.4.4.3 Logisches Interface
	11.4.4.4 Physikalisches Interface

	11.4.5	FRAM mit seriellem Interface
	11.4.5.1 Übersicht
	11.4.5.2 Logisches Interface
	11.4.5.3 Physikalisches Interface

	11.5	Speichersysteme
	11.5.1	Adressdecodierung
	11.5.2	Multiplexing des Datenbusses
	11.5.3	Ansteuerung diskreter Speicherbausteine

	11.6	Übungsaufgaben

	12 Analog-Digital- und Digital-Analog-Umsetzer
	12.1	Grundprinzip von Analog-Digital-Umsetzern
	12.1.1	Systeme zur Umsetzung analoger in digitale Signale
	12.1.2	Abtasttheorem
	12.1.3	Abtasthalteglied (AHG)
	12.1.4	Erreichbare Genauigkeit für ADUs abhängig von der Codewortlänge
	12.1.5	Codierung der ADU-Werte

	12.2	Verfahren zur Analog-Digital-Umsetzung
	12.2.1	Parallelverfahren
	12.2.2	Wägeverfahren
	12.2.3	Zählverfahren
	12.2.4	Erweitertes Parallelverfahren
	12.2.4.1 Allgemeines Prinzip des erweiterten Parallelverfahrens
	12.2.4.2 Pipeline-Analog-Digital-Umsetzer

	12.2.5	Erweitertes Zählverfahren
	12.2.6	Single- und Dual-Slope-Verfahren
	12.2.7	Sigma-Delta-Umsetzer

	12.3	Verfahren zur Digital-Analog-Umsetzung
	12.3.1	Direktverfahren
	12.3.2	Summation gewichteter Ströme
	12.3.3	R-2R-Leiternetzwerk
	12.3.4	Pulsweitenmodulation

	12.4	Eigenschaften realer AD- und DA-Umsetzer
	12.4.1	Statische Fehler
	12.4.1.1 Quantisierungsfehler
	12.4.1.2 Offsetfehler
	12.4.1.3 Verstärkungsfehler
	12.4.1.4 Nichtlinearität
	12.4.1.5 Differenzielle Nichtlinearität
	12.4.1.6 Monotoniefehler
	12.4.1.7 Betriebsspannungsabhängigkeit der Umsetzerparameter

	12.4.2	Dynamische Fehler
	12.4.2.1 Einschwingzeit
	12.4.2.2 Signal-Rausch-Abstand und Effektive Auflösung
	12.4.2.3 Harmonische Verzerrungen
	12.4.2.4 Histogramm
	12.4.2.5 Glitch-Fläche

	12.5	Ansteuerung von diskreten AD- und DA-Umsetzern
	12.5.1	Serielle Ansteuerung
	12.5.1.1 AD-Umsetzer MCP3201
	12.5.1.2 DA-Umsetzer MCP4921

	12.5.2	Parallele Ansteuerung
	12.5.2.1 AD-Umsetzer AD9200 mit einfachem Parallelausgang
	12.5.2.2 AD-Umsetzer AD9467 mit differenziellem Parallelausgang

	12.5.3	Serielle Hochgeschwindigkeitsschnittstelle JESD204B

	12.6	Übungsaufgaben

	13 Grundlagen der Mikroprozessortechnik
	13.1	Grundstruktur eines Mikrorechnersystems
	13.2	Befehlsabarbeitung in einem Mikroprozessor
	13.3	Typische Befehlsklassen
	13.3.1	Aufbau eines Befehlswortes
	13.3.2	Arithmetische und logische Befehle
	13.3.3	Transferbefehle
	13.3.4	Befehle zur Programmablaufsteuerung
	13.3.5	Spezialbefehle

	13.4	Adressierung von Daten und Befehlen
	13.4.1	Unmittelbare Adressierung
	13.4.2	Absolute Adressierung
	13.4.3	Indirekte Adressierung
	13.4.4	Indirekte Adressierung mit dem Stackpointer
	13.4.5	Befehlsadressierung

	13.5	Maßnahmen zur Steigerung der Rechenleistung
	13.5.1	Erhöhung der Taktfrequenz
	13.5.2	Parallelität
	13.5.3	Pipelining
	13.5.4	Befehlssatzerweiterungen

	13.6	Grundlegende Mikroprozessorarchitekturen
	13.6.1	CISC
	13.6.2	RISC
	13.6.3	RISC und Harvard-Architektur

	13.7	Mikrocontroller
	13.8	Übungsaufgaben

	14 Mikrocontroller
	14.1	Die Mikrocontroller-Familie AVR
	14.2	Programmierung von Mikrocontrollern
	14.2.1	Programmierung in Assembler
	14.2.2	Programmierung in C
	14.2.2.1 Zugriff auf Peripheriekomponenten
	14.2.2.2 Setzen und Löschen von Bits

	14.3	Die AVR-CPU
	14.4	Der AVR-Befehlssatz
	14.4.1	Arithmetische und logische Befehle
	14.4.2	Transferbefehle
	14.4.3	Befehle zur Programmablaufsteuerung

	14.5	Verwendung der AVR-Befehle
	14.5.1	Arithmetische und logische Grundfunktionen
	14.5.1.1 Setzen und Löschen einzelner Bits
	14.5.1.2 Addition und Subtraktion
	14.5.1.3 Arithmetische und logische Schiebeoperationen
	14.5.1.4 Multiplikation
	14.5.1.5 Division

	14.5.2	Befehle für den Zugriff auf Speicher und Peripheriekomponenten
	14.5.3	Programmverzweigungen
	14.5.3.1 Bedingte Verzweigungen und Programmschleifen
	14.5.3.2 Unterprogrammaufrufe

	14.6	Grundlagen der Interruptverarbeitung
	14.6.1	Interruptfreigabe
	14.6.2	Interrupt-Service-Routinen

	14.7	Eingebettete Peripheriekomponenten
	14.7.1	Ports
	14.7.2	Timer
	14.7.2.1 Normal Mode
	14.7.2.2 CTC Modus
	14.7.2.3 PWM-Modi
	14.7.2.4 Die Timer des ATmega32
	14.7.2.5 Register des Timers 0
	14.7.2.6 Register des Timers 1
	14.7.2.7 Register des Timers 2
	14.7.2.8 Timer als Interruptquellen
	14.7.2.9 Watchdog-Timer

	14.7.3	Schnittstellen für die serielle Datenübertragung
	14.7.3.1 U(S)ART
	14.7.3.2 Datenübertragung mit dem UART-Protokoll
	14.7.3.3 Handshake zwischen Sender und Empfänger
	14.7.3.4 Der USART im AVR

	14.7.4	SPI
	14.7.4.1 Datenübertragung mit dem SPI-Protokoll
	14.7.4.2 SPI-Interface der AVR-Mikrocontroller

	14.7.5	TWII2C
	14.7.5.1 Das I2C-Protokoll
	14.7.5.2 I2C-Interface der AVR-Mikrocontroller

	14.7.6	Analoge Peripheriekomponenten
	14.7.6.1 AnalogDigital-Umsetzer
	14.7.6.2 Analog-Komparator

	14.7.7	Interrupt-basierte Kommunikation mit Peripheriekomponenten
	14.7.7.1 Interruptverarbeitung und atomare Operationen
	14.7.7.2 FIFO-basierte Kommunikation mit Peripheriekomponenten

	14.8	Hinweise zum praktischen Selbststudium
	14.8.1	Hardwareauswahl
	14.8.2	Entwicklungsumgebungen
	14.8.3	Programmierung und Debugging von AVR-Mikrocontrollern
	14.8.3.1 Programmiergeräte
	14.8.3.2 Fuse-Bits

	14.9	Übungsaufgaben

	15 Lösungen der Übungsaufgaben
	Literaturhinweise
	Stichwortverzeichnis

