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Vorwort

Die Digitaltechnik ist ein integraler Bestandteil unseres tdglichen Lebens geworden.
Vielfach begegnet sie uns in Form von Desktop-PCs, Laptops, Tablets, Fernsehgeriten
oder Smartphones. Wenn wir ein solches Gerit nutzen, ist klar: Wir verwenden ein digi-
tales System. Dariiber hinaus ist die Digitaltechnik aber auch in Bereiche eingezogen,
bei der sie nicht sofort offensichtlich ist. In einem modernen Auto arbeiten beispiels-
weise zahlreiche digitale Komponenten. Sie steuern den Motor, helfen beim Einparken
und unterstiitzen beim Fahren durch Fahrspurassistenten, ABS und ESP. Diese Form der
digitalen Systeme werden hdufig, weil sie in einem groferen System integriert sind, als
,eingebettete Systeme** bezeichnet. Man findet sie in vielen Bereichen des Alltags, wie
zum Beispiel in Hausgeriten, Uhren, Heizungssteuerungen oder in Fotoapparaten. Auch
in industriellen Anwendungen geht nichts ohne die Digitaltechnik. So wire beispiels-
weise die Vernetzung industriell genutzter Maschinen, die vierte industrielle Revolution,
ohne entsprechende digitale Komponenten undenkbar.

Was ist Digitaltechnik? Welche Prinzipien liegen ihr zugrunde? Wie werden digitale
Systeme realisiert?—Diese und andere Fragen werden in diesem Lehrbuch beantwortet.

Das Buch beschreibt die wichtigen Themenfelder der Digitaltechnik und wendet sich
vorrangig an Studierende der Studienginge Elektrotechnik, Informatik, Mechatronik
sowie verwandter Studiengédnge. Es wird der Bogen von den Grundlagen der Digital-
technik tiber Schaltungsstrukturen und Schaltungstechnik bis hin zu den Komponenten
digitaler Systeme, wie programmierbare Logikbausteine, Speicher, AD/DA-Umsetzer
und Mikrocontroller gespannt. Zahlreiche Beispiele erleichtern das Verstidndnis fiir den
Aufbau und die Funktion moderner digitaler Systeme.

Mit dieser 7. Auflage und dem auf vier Autoren gewachsenen Team wurde das Lehr-
buch grundlegend {iberarbeitet und modernisiert. Hierbei waren uns die folgenden
Aspekte wichtig:

e Ein besonderes Merkmal dieses Lehrbuches ist die Breite der behandelten Themen
von Grundlagen tiber Komponenten bis zu digitalen Systemen.

e Der Entwurf mit einer Hardwarebeschreibungssprache ist Standard in der Industrie.
Auf die verstdndliche, schrittweise Erlduterung von VHDL wird daher besonderer
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VI Vorwort

Wert gelegt. Nach einer Einfithrung in VHDL wird bei vielen Themen Bezug auf
VHDL-Konstrukte genommen. In einem Vertiefungskapitel werden weiterfiihrende
Sprachkonstrukte erldutert.

e Ein neues Einleitungskapitel gibt eine Ubersicht iiber die Digitaltechnik, um die Ein-
ordnung von Grundlagenwissen zu ermdéglichen.

e Inhalte, die keine Praxisrelevanz mehr haben, wurden weggelassen, zum Beispiel
asynchrone Zihler oder obsolete RAM-Bausteine.

e Im Gegenzug werden praxisrelevante Inhalte ausfiihrlicher behandelt, darunter:
— Zeitverhalten, Pipelining
— Schaltungssimulation und -verifikation
— Verlustleistung
— Moderne Speichertechnologien

Die ersten sechs Kapitel legen die wesentlichen Grundlagen zum Verstidndnis digitaler
Komponenten. Kap. 1 bietet eine Einfiihrung in die Thematik und stellt wichtige Grund-
prinzipien im Uberblick dar.

Kap. 2 widmet sich der digitalen Darstellung von Informationen, wobei der Schwer-
punkt auf der Darstellung von Zahlen liegt. Kap. 3 fiihrt in die Hardwarebeschreibungs-
sprache VHDL ein, die weltweit fiir den Entwurf digitaler Schaltungen verwendet wird.
Digitale Systeme lassen sich als Kombination von kombinatorischen und sequenziellen
Schaltungen auffassen. Beide Konzepte werden in den Kapiteln 4 und 5 vorgestellt, wih-
rend sich Kap. 6 den aus diesen Konzepten abgeleiteten Schaltungsstrukturen widmet. In
diesen Kapiteln wird kontinuierlich die Implementierung in der Sprache VHDL themati-
siert und vertieft.

In den Kapiteln 7 bis 14 werden vertiefende Themen aufgegriffen: Kap. 7 stellt unter-
schiedliche Konzepte zur Realisierung digitaler Systeme im Uberblick vor. In Kap. 8
werden erweiterte Aspekte der Schaltungsbeschreibung in VHDL, wie zum Beispiel
Testbenches fiir die Verifikation aufgegriffen. Die praktische Umsetzung von VHDL-
Beschreibungen erfolgt heute hdufig mithilfe von programmierbaren Logikbausteinen
(FPGAs), welche in Kap. 9 vertieft vorgestellt werden. Das Verstidndnis der techno-
logischen Grundlagen moderner Digitalschaltungen wird durch eine Einfiihrung in die
Halbleitertechnologie in Kap. 10 ermoglicht. Eine zentrale Systemkomponente ist der
Speicher. Dieser kann mithilfe unterschiedlicher Technologien realisiert werden, die in
Kap. 11 vorgestellt werden. Fiir Ein-/Ausgabe analoger Groflen werden Analog-Digital-
und Digital-Analog-Umsetzer benotigt, deren Aufbau und Funktionsweise in Kap. 12
ndher erldutert werden. Kap. 13 und 14 widmen sich digitalen Rechnersystemen. In
Kap. 13 wird der Aufbau und die Funktionsweise von Rechnern vorgestellt. Kap. 14
greift diese Aspekte auf und vertieft sie anhand eines konkreten Beispiels, einem Mik-
rocontroller der AVR-Familie. In Kap. 11 bis 14 werden ebenfalls Bussysteme zur Kom-
munikation innerhalb eines digitalen Systems vorgestellt.
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Vorwort Vi

Am Ende aller Kapitel befinden sich Ubungsaufgaben, die wichtige Aspekte aufgrei-
fen und zur selbststindigen Lernkontrolle herangezogen werden konnen. Die Losungen
der Aufgaben sind am Ende des Buches zu finden.

Erginzendes  Material  steht im  Internet unter  www.springer.com/de/
book/9783662497302 oder www.hs-osnabrueck.de/buch-digitaltechnik zur Verfiigung.

Fiir die Riickmeldungen zu den Lehrinhalten bedanken wir uns bei den Studierenden
der Hochschule Osnabriick und der Hochschule Bonn-Rhein-Sieg. Besonderer Dank
geht an alle Kolleginnen und Kollegen, die uns seit der ersten Auflage durch ihre Hilfe
und Riickmeldungen begleitet haben. In der aktuellen Auflage war dies insbesondere
Dipl.-Ing. Andrea Schwandt. Nicht zuletzt mochten wir uns bei allen an dieser Ausgabe
beteiligten Mitarbeiterinnen und Mitarbeitern des Springer-Verlages bedanken. Ohne
ihre professionelle Arbeit wire das vorliegende Buch nicht realisierbar gewesen.

Das Lehrbuch soll natiirlich Leserinnen und Leser gleichermaBen ansprechen und wir
haben uns bemiiht, dass alle Formulierungen auch so verstanden werden.

im Oktober 2016 Winfried Gehrke
Marco Winzker

Klaus Urbanski

Roland Woitowitz
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Vorwort zur ersten Auflage

Die Digitaltechnik hat seit der Einfiihrung der ersten digitalen integrierten Halbleiter-
schaltungen im Jahre 1958 einen vehementen Aufschwung genommen. Mafigeblich
daran beteiligt war der technologische Fortschritt in der Mikroelektronik. Mittlerweile
lassen sich integrierte Schaltungen mit mehr als 100 Mio. aktiven Elementen realisieren.

Anfinglich konzentrierte sich diese Technik einerseits auf niedrigintegrierte logische
Grundschaltungen und andererseits auf hochintegrierte kundenspezifische Schaltungen
(Full Custom ICs), aber bereits 1971 kamen die Mikroprozessoren als neuartige pro-
grammierbare Universalschaltungen hinzu.

Seit einigen Jahren erweitert sich das Anwendungsspektrum zunehmend in Richtung
der sog. Semi Custom ICs. Hierbei handelt es sich um hochintegrierte Standardschaltun-
gen, bei denen wesentliche Designschritte mittels Computerunterstiitzung vom Anwen-
der selbst tibernommen werden.

Das Buch widmet sich all diesen Grundlagen der Digitaltechnik unter besonderer
Beriicksichtigung der zurzeit giiltigen Normen fiir Schaltsymbole und Formelzeichen.

Der Darstellung grundlegender Logikbausteine, wie NAND, NOR, Flipflops und Zih-
ler sowie programmierbarer Bausteine, wie PAL, PLA, LCA schlieft sich eine Einfiih-
rung in die Mikroprozessor- und Mikrocontroller-Technik an.

Einen besonderen Schwerpunkt bildet der systematische Entwurf von Schaltnet-
zen und Schaltwerken unter Einsatz programmierbarer Bausteine. Zahlreiche Beispiele
hierzu erleichtern das Verstidndnis fiir Aufbau und Funktion dieser modernen digitalen
Systeme.

Zu allen Kapiteln werden Ubungsaufgaben mit ausfiihrlichen Musterlésungen ange-
boten. Daher eignet sich dieses Buch besonders zum Selbststudium. Es wendet sich
damit sowohl an Hochschulstudenten der Elektrotechnik oder Informationstechnik im
Hauptstudium, als auch an den in der Berufspraxis stehenden Ingenieur, der seinen Wis-
sensstand auf diesem Gebiet aktualisieren will.



X Vorwort zur ersten Auflage

Besonderer Dank gebiihrt Herrn Dr.-Ing. H. Kopp, der dieses Buch durch wertvolle
Anregungen und vielfiltige Unterstiitzung bereichert hat. Auch den Studenten der Fach-
hochschule Osnabriick gilt unser Dank fiir ihre Mitarbeit und mannigfache Hilfestellung.

Bedanken mochten wir uns ebenfalls beim Verlag fiir die gute Zusammenarbeit.

Osnabriick, Deutschland, Dezember 1992 Klaus Urbanski
Roland Woitowitz
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Einflihrung

Digitaltechnik steckt heutzutage in vielen technischen Geriten. Wenn Sie dieses Buch
lesen, haben Sie vermutlich den Tag iiber schon etliche digitale Schaltungen benutzt. Der
Rauchmelder im Schlafzimmer, der nachts auf Sie aufpasst, hat einen kleinen digitalen
Mikrocontroller, genau wie der Radiowecker, der Sie geweckt hat. Mit dem Smartphone
voller Digitaltechnik haben Sie vermutlich Thre Emails und sozialen Netzwerke nach
Neuigkeiten abgefragt. Und egal ob Sie mit dem Auto oder der Stra3enbahn in die Hoch-
schule gefahren sind, wieder waren digitale Schaltungen fiir Sie titig. Nur falls Sie mit
dem Fahrrad unterwegs waren, verlief dieser Teil des Tages ohne Digitaltechnik — es sei
denn, Sie haben einen Fahrradtacho.

Digitale Schaltungen iibernehmen in vielen technischen Geréten Aufgaben zur Steu-
erung und Regelung. Das heif}t, sie fragen Informationen ab und treffen anhand von
Regeln Entscheidungen. Dieses Grundprinzip wird beispielsweise beim Antiblockiersys-
tem (ABS) im Auto deutlich. Die Digitalschaltung bekommt die Informationen, ob die
Bremse betitigt ist und die Réder blockieren. Wenn dies der Fall ist, wird die Bremskraft
leicht reduziert, damit die Rader wieder Haftung zur Stra3e bekommen und man bessere
Bremswirkung sowie Mandovrierbarkeit erhélt.

Der besondere Vorteil von digitalen Schaltungen liegt darin, dass Berechnungen und
Entscheidungen sowie das Speichern und Ubertragen von Informationen sehr einfach
moglich sind. Prinzipiell konnte ein Antiblockiersystem auch mit einer Analogschaltung
und eventuell sogar mechanisch oder hydraulisch aufgebaut werden. Aber ein digitales
System kann die Informationen wesentlich priziser verarbeiten, also beispielsweise die
Geschwindigkeit vor dem Bremsen, die Stellung des Lenkrads und die Drehgeschwin-
digkeit aller Rdder auswerten und alle Bremsen individuell ansteuern.

© Springer-Verlag GmbH Deutschland 2016 1
W. Gehrke et al., Digitaltechnik, Springer-Lehrbuch,
DOI 10.1007/978-3-662-49731-9_1



2 1 Einfihrung

1.1 Arbeitsweise digitaler Schaltungen

Ein wichtiges Kennzeichen der Digitaltechnik ist die Darstellung von Informationen mit
den Werten O und 1. Dieses Prinzip wird als Zweiwertigkeit bezeichnet. Daten mit zwei
moglichen Werten werden Bindrdaten genannt. Wenn eine Information mehr als zwei
Werte haben kann, wird sie mit mehreren Stellen dargestellt. Am bekanntesten ist sicher
das Byte, ein Datenwort mit acht Bit, also acht Stellen mit dem Wert O oder 1.

1.1.1 Darstellung von Informationen

Binirdaten werden meistens mit Spannungspegeln dargestellt, beispielsweise die 0 mit
0V und die 1 mit 3,3 V. Dabei sind auch geringe Abweichungen der Spannung erlaubt,
das heifit auch eine Spannung von beispielsweise 0,2 V wird noch als 0 akzeptiert. Dies
ist eine wichtige Eigenschaft der Digitaltechnik, denn dadurch ist sie gegeniiber kleinen
Storungen und Rauschen unempfindlich. Erst bei groflen Storungen kann der Wert einer
Information nicht mehr korrekt erkannt werden.

Fiir die Darstellung von Bindrdaten mit Spannungspegeln gibt es mehrere Standards.
Beispielsweise wird im Standard LVTTL der Spannungsbereich von 0 bis 0,8 V als logi-
sche 0 und von 2,0 bis 3,3V als logische 1 interpretiert. Der Bereich zwischen 0,8 und
2,0V ist der Ubergangsbereich und diese Spannungen diirfen nur kurz beim Wechsel
zwischen O und 1 auftreten. Die Bezeichnung LVTTL bedeutet iibrigens Low-Voltage-
Transistor-Transistor-Logik und hat gewissermaf3en ,historischen* Ursprung. Sie ist eine
spannungsreduzierte Version (Low-Voltage) eines anderen Standards (TTL).

Es gibt, neben LVTTL, eine Vielzahl weiterer Standards fiir Spannungspegel. Frii-
her wurden oft hohere Spannungen, z. B. 5V, verwendet, sodass auch hohere Pegel
gebriduchlich waren. Innerhalb von integrierten Schaltungen, z. B. der CPU in Threm
Computer, werden heutzutage geringere Spannungen im Bereich von 1 V benutzt.

Die Werte 0 und 1 konnen je nach Anwendung auch durch andere physikalische Gro-
Ben dargestellt werden, beispielsweise Lichtimpulse in einer Glasfaserleitung oder durch
elektrische Ladung auf einem Kondensator.

1.1.2 Logik-Pegel und Logik-Zustand

Die Begriffe Logik-Pegel und Logik-Zustand unterscheiden Spannungswerte und Infor-
mation einer bindren Variablen. Der Logik-Pegel wird durch L (Low) und H (High) und
der Logik-Zustand durch die Ziffern O und 1 bezeichnet. Fiir die Beschreibung des phy-
sikalischen Verhaltens einer digitalen Schaltung dienen somit die Logik-Pegel, wihrend
das logische Verhalten durch Logik-Zustinde gekennzeichnet wird.

Die Zuordnung von L und H zu 0 und 1 erfolgt fast immer in positiver Logik, das
heiflit der Pegel L entspricht einer logischen 0 und Pegel H entspricht einer logischen 1.
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Prinzipiell ist auch eine umgekehrte Zuordnung moglich, die als negative Logik bezeich-
net wird. Diese Zuordnung wird in der Praxis jedoch kaum verwendet.

1.1.3 Verarbeitung von Informationen

Digitalschaltung kénnen die logischen Werte 0 und 1 fiir Berechnungen und Entschei-
dungen verwenden. Das Ergebnis einer Berechnung ist dabei wieder der Wert O oder 1.
Die Grundelemente zur Berechnung werden als Logikgatter bezeichnet. Die wichtigsten
Logikgatter sind:

o Inverter: Der Inverter ergibt am Ausgang das ,,Gegenteil“ des Eingangs. Das heif3t
eine 0 wird zur 1, eine 1 zur O.

o UND-Gatter: Das UND-Gatter hat zwei oder mehr Eingédnge. Es ergibt am Ausgang
eine 1, wenn alle Eingiinge 1 sind. Mit anderen Worten: Der eine und der andere Ein-
gang miissen 1 sein.

o ODER-Gatter: Das ODER-Gatter hat ebenfalls zwei oder mehr Eingénge. Es ergibt
1, wenn mindestens ein Eingang 1 ist. Auch der Fall, dass mehrere Einginge 1 sind ist
erlaubt. Mit anderen Worten: Der eine oder der andere oder beide Eingénge miissen 1
sein.

e XOR-Gatter: Das XOR-Gatter ist in der Grundform fiir zwei Eingéinge definiert. Die
Bezeichnung bedeutet ausschlieBendes Oder (engl. exclusiv-or). Es ist eine Abwand-
lung des ODER-Gatters, die jedoch keine 1 ausgibt, wenn beide Einginge 1 sind. Mit
anderen Worten: Fiir eine 1 am Ausgang miissen der eine oder der andere Eingang
aber nicht beide Eingiinge 1 sein.

Fiir die Logikgatter gibt es Schaltsymbole, die in Abb. 1.1 dargestellt sind. Die Eingiinge
sind immer auf der linken Seite, der Ausgang ist rechts. Das Dreieck im Symbol des
Inverters steht fiir eine Weiterleitung oder Verstirkung, der Kreis gibt die Invertierung,
also Umkehrung des Wertes an. Das Zeichen & steht fiir ,und‘. Im ODER-Gatter meint

Abb. 1.1 Symbole fiir Inverter UND-Gatter
Logikgatter
& |
ODER-Gatter XOR-Gatter

>1 | =1 |
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die Bezeichnung ,>1°, dass mindestens eine 1 am Eingang anliegen muss, damit der
Ausgang 1 wird. Entsprechend bedeutet ,=1° bei XOR, dass von zwei Eingiingen exakt
eine 1 vorhanden sein muss.

Mit diesen Grundelementen konnen Informationen miteinander verkniipft werden.
Auflerdem miissen in einer Digitalschaltung auch Informationen gespeichert werden und
das Grundelement hierfiir ist das D-Flip-Flop (D-FF). Dabei steht D fiir Daten und Flip-
Flop symbolisiert das Hin- und Herschalten zwischen O und 1.

Das D-Flip-Flop arbeitet mit einem Takt, (engl. Clock), also einem periodischen Sig-
nal, welches die Arbeitsgeschwindigkeit einer Digitalschaltung vorgibt. Der Takt ist
Thnen moglicherweise von Threm PC bekannt. Eine moderne CPU arbeitet mit einem
Takt von 2 bis 3 GHz, das heif3t 2 bis 3 Milliarden mal pro Sekunde wechselt das Takt-
signal von O auf 1. Schaltungen, die eine nicht ganz so hohe Rechengeschwindigkeit
wie eine CPU haben, verwenden einen Takt mit geringerer Frequenz, beispielsweise
100 MHz.

Das Schaltsymbol des D-Flip-Flop (D-FF) ist in Abb. 1.2 dargestellt. Das Taktsignal
ist am Eingang C1 (wie Clock) angeschlossen. Bei jeder Taktflanke, also einem Wechsel
des Takts von O auf 1 wird der Wert am Dateneingang 1D gespeichert und unmittelbar
darauf am Datenausgang ausgegeben. Diese Information wird fiir den Rest der Taktperi-
ode gespeichert.

Logikgatter und D-FF werden aus Transistoren aufgebaut. Fiir ein Logikgatter sind
rund 10, fiir ein D-FF rund 20 Transistoren erforderlich. In einer Digitalschaltung finden
sich natiirlich viele dieser Grundelemente.

1.1.4 Beispiel: Einfacher Grafikcontroller

Damit Sie sich die Arbeitsweise einer Digitalschaltung vorstellen konnen, soll eine
Schaltung als Beispiel vorgestellt werden. Es handelt sich um einen Controller fiir ein
einfaches Grafikmodul. Moderne PC-Grafikkarten sind sehr leistungsfahig und konnen
realistische Bilder in hoher Geschwindigkeit erzeugen. Allerdings wiirde die Beschrei-
bung eines solchen Grafikcontrollers wahrscheinlich das ganze Buch fiillen. Die hier
vorgestellte Schaltung ist deutlich einfacher zu verstehen und findet sich in Geréten mit
geringen Grafikanforderungen. Sie entspricht auch in etwa den PC-Grafikkarten der
1980er Jahre.

Der Grafikcontroller setzt den Bildschirm aus einzelnen Zeichen zusammen. Fiir die-
ses Beispiel gehen wir davon aus, dass der Bildschirm 800 Bildpunkte breit und 600
Bildpunkte hoch ist. Jedes Zeichen soll 10 Bildpunkte breit und 15 Bildpunkte hoch sein.

Abb. 1.2 Schaltsymbol des )
D-Flip-Flop (D-FF) Dateneingang —{ 1D — Datenausgang

Takt —>C1
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Damit passen 40 Zeilen mit je 80 Zeichen auf den Bildschirm. Ein Bild wird 60-mal je
Sekunde also mit einer Frequenz von 60 Hz dargestellt.

Fiir die Zeichen gibt es einen festen Zeichensatz mit 128 Zeichen, darunter Buchsta-
ben in Klein- und Grofschreibung, Ziffern, Sonderzeichen und Symbole. Abb. 1.3 zeigt
beispielhaft den Buchstaben A und die Ziffer 1 als 10 mal 15 Grafik.

Ein Prozessor teilt dem Grafikcontroller fiir jede Position mit, welches Zeichen darge-
stellt werden soll. Aulerdem kann das Zeichen normal und invers dargestellt werden, das
heiflt bei invers ist der Hintergrund schwarz und das Zeichen weif}. Mit sieben Stellen
wird eines der 128 Zeichen ausgewihlt. Die achte Stelle gibt normale oder inverse Dar-
stellung an. Damit ist fiir jedes Zeichen auf dem Bildschirm ein Byte, also ein Datenwort
mit acht Stellen erforderlich.

Die Digitalschaltung des Grafikcontrollers benotigt einen Speicher fiir den aktuellen
Bildschirminhalt, einen Speicher fiir die Grafiken der 128 Zeichen sowie zwei Zihler
fiir die Zeile und Spalte, welche gerade dargestellt wird. Diese Schaltungsstruktur zeigt
Abb. 1.4.

Der aktuelle Bildschirminhalt wird in einem Speicher abgelegt. Eine CPU schreibt fiir
jede der 40 mal 80 Positionen ein Byte und bestimmt damit das darzustellende Zeichen.

Abb. 1.3 Buchstabe A und
Ziffer 1 als 10 mal 15 Grafik

von Prozessor an Display

Daten RAM Daten : ROM -1 _\>

128 Zeichen, [

Addr. 40x80 Byt Addr.
|:r(> X vie Q:r 10x15 Pixel
1

Takt | Zahler
—>
Spalte
Zahler
Zeile

Abb. 1.4 Schaltungsstruktur eines einfachen Grafikcontrollers
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Dieser Speicher mit der Kurzbezeichnung RAM (Random Access Memory) braucht also
3200 Speicherstellen zu jeweils einem Byte. Ein Festwertspeicher, Kurzbezeichnung
ROM (Read-Only-Memory), enthilt die 128 Zeichen zu je 10 mal 15 Bildpunkten, also
19.200 Speicherstellen zu jeweils einem Bit.

Der Grafikcontroller gibt das Bild zeilenweise aus. Die aktuell dargestellte Position
wird durch zwei Zihler bestimmt, wobei ein erster Zihler die Spalte zdhlt. Wenn der
Zidhler an der letzten Spalte angekommen ist, wird der zweite Zghler aktiviert und so
die nichste Zeile aufgerufen. Aus den Zihlerwerten von Spalte und Zeile wird bestimmt,
welches Zeichen gerade dargestellt wird.

Die Zihlerwerte rufen zunichst das aktuelle Zeichen aus dem RAM auf. Dort steht
zum Beispiel, dass der Buchstabe A angezeigt werden soll. Jetzt muss noch beachtet
werden, welcher Bildpunkt des aktuellen Zeichens angezeigt wird, denn jedes Zeichen
besteht ja aus 10 mal 15 Bildpunkten. Diese Information wird im ROM verarbeitet. Das
ROM bekommt vom RAM das aktuelle Zeichen und von den Zihlern die Information
tiber die Position innerhalb des Zeichens. Fiir die linke obere Ecke des Buchstabens A
wird dann zum Beispiel die Information ,,weiller Bildpunkt* ausgegeben (sieche Abb. 1.3).

Fiir die Auswahl des Zeichens sind sieben Stellen eines Byte vorgesehen. Die achte
Stelle kann durch ein XOR-Gatter den Helligkeitswert umdrehen, sodass eine inverse
Darstellung entsteht.

Die Geschwindigkeit des Takts muss zu der Anzahl der Bildpunkte und der Bilder pro
Sekunde passen. Aus 800 mal 600 Bildpunkten und 60 Bilder pro Sekunde berechnet
sich theoretisch eine Frequenz von 28,8 MHz. In der Realitit sind allerdings in horizon-
taler und vertikaler Richtung noch Abstinde zwischen den aktiven Bildbereichen erfor-
derlich, sogenannte Austastliicken. Daher wird bei der genannten Auflésung ein Takt von
40 MHz verwendet.

1.1.5 Beispiel: Zahler im Grafikcontroller

In einen Teil des Grafikcontrollers soll noch etwas detaillierter geschaut werden. Damit
ein Zeichen auf dem Bildschirm dargestellt wird, muss die aktuelle Spalte an den ROM-
Speicher gegeben werden. Hierzu wird ein Zihler eingesetzt, der nacheinander die Zah-
len von 0 bis 9 ausgibt und danach wieder ab der 0 weiterzihlt. Diese Schaltung ist ein
Teil des Blocks ,,Zidhler Spalte* in Abb. 1.4.

Die Schaltung fiir so einen Zihler ist in Abb. 1.5 dargestellt. Der Zihlerstand wird als
Dualzahl dargestellt, das heifit, eine Ziffer Z besteht aus vier Stellen z(3:0), wobei jede
Stelle 0 oder 1 sein kann. Der Wert 0000 entspricht dem Zahlerstand Null, 0001 ent-
spricht Eins und so weiter. Die ausfiihrliche Darstellung von Dualzahlen folgt spiter in
Kapitel 2.

In der Schaltung von Abb. 1.5 wird der aktuelle Stand des Zihlers in vier Flip-Flops
fiir die vier Stellen der Zahl Z gespeichert. Aus dem aktuellen Wert wird mit einigen Gat-
tern der neue Zihlerstand berechnet. Der Takt sorgt fiir die Dateniibernahme, das heif3t
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Abb. 1.5 Zihler im 12(0)
Grafikcontroller ’—[>C 1D

—>C1

z(1)

z(3:0)
=11111D >
| & > C1 2(2)
o
z(3)
>C1

Takt

bei Aktivierung iibernehmen die vier Flip-Flops den neuen Zihlerstand und schalten so
eine Zahl weiter.

Die Flip-Flops dienen also zur Speicherung von Informationen, hier dem aktuellen
Zihlerstand. Die Gatter filhren Rechnungen durch, ermitteln hier also den néchsten Wert
des Zihlers. Wie eine solche Schaltung entworfen wird, erfahren Sie in den folgenden
Kapiteln.

1.2  Technische Realisierung digitaler Schaltungen

Eine Digitalschaltung kann auf verschiedene Art und Weise implementiert, also aufge-
baut werden. Der Oberbegriff fiir eine Schaltungsimplementierung ist Integrierte Schal-
tung, englisch Integrated Circuit (IC). Der Begriff bezieht sich darauf, dass mehrere
Transistoren auf dem gleichen Bauelement zusammengefasst, also integriert sind. Auf
den ersten integrierten Schaltungen begann dies mit bis zu 50 Transistoren, heute konnen
es liber eine Milliarde Transistoren sein.

Weitere Bezeichnungen sind Chip und Microchip. Diese Begriffe beziehen sich auf
das kleine Siliziumplattchen innerhalb eines ICs. In der Praxis werden diese Begriffe
gleichbedeutend fiir IC verwendet.

Die wichtigsten Arten von ICs werden im Folgenden kurz vorgestellt.

1.2.1 Logikbausteine

Logikgatter und Flip-Flops sind als einzelne Bauelemente verfiigbar. Eine Digitalschal-
tung kann aus diesen einzelnen Logikbausteinen aufgebaut werden. Es wird eine Vielzahl
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verschiedener Bausteine angeboten, die in Tabellenbiichern und Datenblittern von den
Herstellern beschrieben werden.

Ein Beispiel fiir einen Logikbaustein ist der IC 7408 mit vier Und-Gattern. Er ist in
Abb. 1.6, dargestellt. Die jeweils zwei Eingédnge und ein Ausgang der Und-Gatter sind
auf Anschlussbeinchen, sogenannten Pins, aus dem Gehéuse herausgefiihrt und kénnen
mit anderen Bauelementen verbunden werden. Am Logikbaustein sind auflerdem Versor-
gungsspannung (VDD) und Masse (GND) vorhanden, so dass der Baustein 14 Pins hat.

Sehr kleine Schaltungen, wie etwa der Zihler aus Abb. 1.5 kdnnen prinzipiell mit ein-
zelnen Logikbausteinen realisiert werden. Fiir groflere Digitalschaltungen wiren jedoch
viel zu viele Bausteine notig. In der Praxis werden Logikbausteine eingesetzt, wenn
kleine Schaltungen mit wenigen Gattern bendtigt werden.

1.2.2 Kundenspezifische Integrierte Schaltung

Eine groBe Digitalschaltung kann aufgebaut werden, indem Logikgatter und Flip-Flop
nach Bedarf verschaltet werden und dann eine Integrierte Schaltung nach diesem Bau-
plan hergestellt wird. So eine Schaltung wird als Kundenspezifische Integrierte Schaltung
oder ASIC (Application Specific Integrated Circuit) bezeichnet.

Der Entwurf eines ASIC erfordert jedoch hohe Entwicklungskosten und eine rela-
tiv lange Entwicklungszeit. Die Entwicklung einer solchen Schaltung lohnt sich darum
meist erst ab einer Stiickzahl von 10 000, besser 100 000 ICs. Ein ASIC kann entweder
nur in eigenen Produkten eingesetzt werden oder auch anderen Firmen zum Kauf ange-
boten werden.

1.2.3 Standardbauelemente

Fiir viele Aufgabenstellungen existieren fertige Digitalschaltungen, welche direkt ein-
gesetzt werden konnen. Diese ICs werden als ASSP bezeichnet (Application Specific

1A [1]O 14] vDD 1A & Ty
1B [2] 13] 4B 1B

1Y [3] 2] 4A gg & oy
2A [4] 7408 [11] 4y

2B [5 o] 3B gg & 3y
2y [6] o] 3, z 4Y
GND [7] 8] 3y 4B

Abb. 1.6 IC 7408 mit vier Und-Gattern
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Standard Product). Bekannte Beispiele hierfiir sind Prozessoren und Speicherbausteine
fiir Computer. Abb. 1.7 zeigt den Minicomputer Raspberry Pi 3, der auf der linken Seite
einen IC mit Prozessor und Grafikcontroller enthilt. Auf der rechten Seite ist ein etwas
kleinerer IC, der fiir die Netzwerk- und USB-Verbindung sorgt.

Aber auch fiir viele andere Anwendungen sind ASSPs verfiigbar. Wenn fiir eine Pro-
blemstellung ein ASSP verfiigbar ist, kann damit meistens schnell und mit vertretbaren
Kosten eine Schaltung aufgebaut werden.

1.2.4 Programmierbare Schaltung

Einen Mittelweg zwischen Standardbauelementen und ASIC bieten programmierbare
Schaltungen, sogenannte FPGAs (Field Programmable Gate Arrays). Ein FPGA ist,
genau wie ein ASSP, als IC direkt verfiigbar. Anders als ein ASSP hat ein FPGA aber
keine festgelegte Funktion, sondern wird vom Entwicklerteam programmiert.

Abb. 1.8 zeigt den prinzipiellen Aufbau eines FPGAs. Der Baustein enthélt verschie-
dene Logikblocke, die als Logikgatter und Flip-Flop programmiert werden konnen.
Durch programmierbare Verbindungsleitungen und Ein-/Ausgéinge konnen Schaltungen
erstellt werden. Im Bild wird durch die fett gedruckten Elemente eine einfache Digital-
schaltung implementiert.

Mode |
ln”,ﬂ,, ’J’ M’ Vi 2

N
""!hrr; bi g
l ar

Abb. 1.7 Minicomputer Raspberry Pi
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Abb. 1.8 Programmierbare Schaltung (FPGA)

Ein FPGA kann zehntausende Logikgatter und Flip-Flops enthalten. Im Vergleich zu
ASICs sind Entwicklungskosten und Entwicklungszeit fiir eine FPGA-Schaltung gerin-
ger, sodass ein Produkt eher am Markt sein kann. Allerdings sind die Stiickkosten und
die Verlustleistung etwas hoher.

Als Beispiel nehmen wir an, eine Firma mochte einen Monitor fiir medizinische
Anwendungen entwickeln. Fiir die Darstellung von Rontgenbildern ist eine sehr hohe
Abstufung von Grauwerten erforderlich.

e ASSPs zur Ansteuerung von Monitoren sind verfiigbar. Sie sind jedoch nur fiir Com-
puter-Anwendungen mit normaler Farbabstufung ausgelegt.

e Die Firma konnte ein eigenes ASIC als Grafikcontroller entwerfen. Der Markt fiir die
geplanten Monitore ist jedoch nicht besonders grofl und die Firma erwartet Verkaufs-
zahlen von einigen hundert Monitoren pro Jahr. Fiir diese geringe Stiickzahl lohnt
sich der Entwurf eines ASIC nicht.

e Ein FPGA ist die bevorzugte Losung zur Implementierung der Monitoransteuerung.
Die Digitalschaltung kann mit der benédtigten Farbabstufung aufgebaut werden. Da
FPGAs als Komponente verfiigbar sind, ist keine aufwendige Fertigung erforderlich.

1.2.5 Mikrocontroller

Zur Implementierung einer Digitalschaltung kann auch ein Mikrocontroller eingesetzt
werden. Dabei handelt es sich um einen kleinen Computer, der komplett auf einem ein-
zigen IC aufgebaut ist. Platzbedarf und Kosten sind viel geringer als bei einem PC; dafiir
ist allerdings auch die Rechenleistung beschrinkt.



1.3 Digitale und analoge Informationen 11

Ein Mikrocontroller kann genau wie ein FPGA fiir eine Anwendung programmiert
werden. Anders als bei einem FPGA werden durch die Programmierung aber keine
Logikgatter und Flip-Flops verschaltet. Die Funktion wird beim Mikrocontroller schritt-
weise als Computerprogramm ausgefiihrt. Leistungsfihigkeit und Flexibilitit sind
dadurch geringer als beim FPGA, aber fiir viele Anwendungen ausreichend.

1.3 Digitale und analoge Informationen
1.3.1 Darstellung von Informationen

Die Begriffe digital und analog beschreiben die Darstellung von Signalen. Die Aufgabe
von analogen und digitalen Schaltungen ist oft die Verarbeitung von physikalischen Gro-
Ben, wie Audiosignale, Bildsignale oder Sensorinformationen. Eine analoge Darstellung
iibersetzt eine physikalische Grofe in eine andere, zweite physikalische Grofe. Diese
zweite physikalische Grofle ist in der Elektronik normalerweise eine elektrische Span-
nung. Wenn beispielsweise ein Temperatursensor die Wassertemperatur misst, kann die
Temperatur von 0° bis 100° C durch eine analoge Spannung von 0 bis 1 V dargestellt
werden. Theoretisch kann ein analoges Signal beliebig viele Werte einnehmen.

Bei einem digitalen Signal ist die Anzahl der moglichen Werte festgelegt. Dies ist
der wesentliche Unterschied zu einem analogen Signal. Wenn eine Wassertemperatur
verarbeitet werden soll, kann beispielsweise festgelegt werden, dass eine Abstufung in
1°-Schritten sinnvoll ist. Das digitale Signal kann dann nur 101 verschiedene Werte ein-
nehmen, also die Werte 0°, 1°, 2°, bis 100°. Diese Abzdhlbarkeit der moglichen Werte
steckt auch hinter der Bezeichnung digital, denn das Wort digit hat eigentlich die Bedeu-
tung ,,Finger* und meint damit das Abzéhlen (per Finger).

Beispielsweise kann Musik auf analoger Schallplatte oder digitaler CD gespeichert
werden. Bei der Schallplatte werden die Schallwellen in kleine Auslenkungen einer
Rille iibersetzt. Die Auslenkung représentiert somit das Musiksignal. Bei der CD wird
das Musiksignal digital gespeichert. Pro Sekunde werden 44.100 Signalwerte als Zahl
gespeichert. Mit 16 Bit pro Zahl sind 65.536 verschiedene Signalwerte moglich.

1.3.2 Vor- und Nachteile der Darstellungen

Analoge Signalverarbeitung hat den Vorteil, dass ein Signal theoretisch beliebig genau
dargestellt werden kann. Digitale Signale haben eine begrenzte Genauigkeit, diese kann
aber so gewihlt werden, dass die Abstufungen ausreichend fein sind.

Die 65.536 moglichen Signalwerte der CD konnen storungsfrei ausgelesen und wie-
dergegeben werden. Die Schallplatte hat theoretisch eine unbegrenzte Auflosung. Diese
wird durch die kleinen Abmessungen der Schallplattenrille sowie durch Staub und
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Abnutzung allerdings in der Realitét eher schlechter als bei der CD sein. Natiirlich diir-
fen Fans der Schallplatte trotzdem ihrem Medium treu bleiben.

Die Verarbeitung analoger Signale war in der Vergangenheit oft einfacher als bei digi-
talen Schaltungen. Durch die Leistungsfiahigkeit moderner Digitalschaltungen haben sich
die Verhiltnisse umgedreht. Heutzutage ist die Verarbeitung digitaler Signale fast immer
einfacher. Hinzu kommt die problemlose Speicherung und Ubertragung digitaler Infor-
mationen, die Vorteile gegeniiber der analogen Darstellung bietet.

Als Beispiel nehmen wir an, dass ein aktuelles Bild von einer Sportveranstaltung fiir
einen Zeitungsartikel bendtigt wird. Ein analoges Foto auf Filmmaterial wurde friiher
zunichst chemisch entwickelt, das passende Bild wurde ausgewihlt und personlich oder
per Kurier in die Redaktion gebracht. Heute kann auf einer Digitalkamera sofort das pas-
sende Bild ausgewihlt und per Mobiltelefon als Email in die Redaktion geschickt wer-
den. Innerhalb von Minuten ist eine Veroffentlichung auf der Homepage moglich.

Digitale Systeme haben in vielen Anwendungen die analogen Techniken abgeldst:

e Audiosignale werden nicht mehr analog auf Schallplatte und Musikkassette, sondern
digital auf CD und als MP3 gespeichert.

e Videosignale werden nicht mehr analog auf VHS-Band, sondern digital als MPEG auf
Festplatten, DVD und Blu-Ray gespeichert.

e Das analoge Telefon wurde zunichst durch digitales ISDN und mittlerweile durch
Voice-over-IP ersetzt.

e Fotos werden kaum noch auf chemischem Filmmaterial, sondern meist als digitale
JPEG-Datei gemacht.

Allerdings sind noch nicht alle Anwendungen digital. Fiir Radio gibt es zwar digitale
Ubertragung, das analoge UKW-Radio wird aber weiter verwendet. Griinde fiir die Bei-
behaltung von UKW-Radio sind die ausreichende Qualitit, der einfache Aufbau analoger
Radios sowie die Vielzahl von vorhandenen Geriten.

1.3.3 Wert- und zeitdiskret

Die digitale Darstellung von Signalen wird durch die Fachbegriffe wertdiskret und
zeitdiskret beschrieben. Das Wort diskret bedeutet dabei voneinander abgetrennt,
einzelstehend.

Mit wertdiskret ist gemeint, dass fiir die Signalwerte nur bestimmte, einzelne Werte
moglich sind. Das Gegenteil ist wertkontinuierlich, das heif3it es gibt keine Liicken zwi-
schen den moglichen Werten.

Mit zeitdiskret ist gemeint, dass die Signalwerte nur zu bestimmten Zeiten vorhanden
sind. Das Gegenteil ist zeitkontinuierlich, das heiflit zu jeder Zeit ist das Signal definiert.
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Abb. 1.9 Verlauf eines f(t)

analogen und digitalen Signals
analog

Betrachten wir wieder CD und Schallplatte:

e Ein Musiksignal auf einer CD ist wertdiskret, denn es sind fest definierte 65.536 ver-
schiedene Werte moglich. Und es ist zeitdiskret, denn pro Sekunde sind genau 44.100
Signalwerte definiert. Die Werte zwischen diesen Zeitpunkten sind nicht abgespei-
chert. Fiir die Wiedergabe kann man diese Zwischenwerte problemlos interpolieren,
aber sie sind nicht auf der CD enthalten.

o FEin Musiksignal auf Schallplatte ist wertkontinuierlich, denn die Schallplattenrille ist
stufenlos verschoben. Und es ist zeitkontinuierlich, denn die Rille hat keine Liicke.
Fiir jede Position, also fiir jeden Zeitpunkt ist eine Verschiebung der Rille vorhanden.

Abb. 1.9 zeigt ein analoges und ein digitales Signal im Zeitverlauf. Das analoge Signal
ist durchgéngig iiber der horizontalen Zeitachse und der vertikalen Werteachse. Das digi-
tale Signal ist nur zu bestimmen Zeiten definiert und kann nur bestimmte Werte einneh-
men. Die Schrittweite im digitalen Signal ist zur Verdeutlichung sehr groff gewihlt. In
der Realitét sind die Abstinde so klein, dass ein digitales Signal keine erkennbaren Stu-
fen zeigt.

Digitale Signale sind also wertdiskret und zeitdiskret, analoge Signale sind wertkon-
tinuierlich und zeitkontinuierlich. Es gibt Spezialfille von wertdiskret und zeitkonti-
nuierlich oder zeitdiskret und wertkontinuierlich. Diese werden jedoch nicht gesondert
betrachtet, sondern sind meist analog. Ein solcher Spezialfall sind Kinofilme auf Film-
rolle. Pro Sekunde sind typischerweise 24 Einzelbilder vorhanden (zeitdiskret), die Farb-
informationen der einzelnen Bilder sind stufenlos (wertkontinuierlich).

1.4  Ubungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Priifen Sie sich mit den Fragen am Kapi-
telende. Die Antworten finden Sie am Ende des Buches.
Bei allen Auswahlfragen ist immer genau eine Antwort korrekt.

Aufgabe 1.1
Was gilt IMMER fiir Binédrdaten?
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a) Binirdaten stellen einen Zahlenwert dar
b) Binidrdaten arbeiten mit O und 3,3V
c) Es gibt zwei Zustdnde

Aufgabe 1.2
Was gilt IMMER fiir einen Inverter?

a) Ein Inverter hat eine Verzégerungszeit von 1 ns
b) Eine 0 am Eingang wird zu einer 1 am Ausgang
¢) Wenn am Eingang 3,3 V anliegt, ergibt der Ausgang O V

Aufgabe 1.3
Was gilt fiir ein UND-Gatter?

a) Nur wenn genau ein Eingang 1 ist, ist der Ausgang 1
b) Wenn mindestens ein Eingang 1 ist, ist der Ausgang 1
¢) Nur wenn alle Eingénge 1 sind, ist der Ausgang 1

Aufgabe 1.4
Was gilt fiir ein ODER-Gatter?

a) Nur wenn alle Eingiéinge 1 sind, ist der Ausgang 1
b) Wenn mindestens ein Eingang 1 ist, ist der Ausgang 1
¢) Nur wenn genau ein Eingang 1 ist, ist der Ausgang 1

Aufgabe 1.5
Was gilt fiir ein XOR-Gatter (mit zwei Eingéngen)?

a) Wenn mindestens ein Eingang 1 ist, ist der Ausgang 1
b) Nur wenn alle Eingénge 1 sind, ist der Ausgang 1
¢) Nur wenn genau ein Eingang 1 ist, ist der Ausgang 1

Aufgabe 1.6
Was gilt fiir ein UND-Gatter?

a) Nur wenn alle Eingéinge O sind, ist der Ausgang 0
b) Wenn mindestens ein Eingang O ist, ist der Ausgang 0
¢) Nur wenn genau ein Eingang O ist, ist der Ausgang 0
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Aufgabe 1.7
Was gilt fiir ein ODER-Gatter?

a) Wenn mindestens ein Eingang 0 ist, ist der Ausgang 0
b) Nur wenn alle Eingénge O sind, ist der Ausgang 0
¢) Nur wenn genau ein Eingang O ist, ist der Ausgang 0

Aufgabe 1.8
Was gilt fiir ein XOR-Gatter (mit zwei Eingéingen)?

a) Wenn mindestens ein Eingang 0 ist, ist der Ausgang immer 1
b) Nur wenn alle Eingénge O sind, ist der Ausgang 1
¢) Nur wenn genau ein Eingang 0 ist, ist der Ausgang 1

Aufgabe 1.9
Was gilt fiir ein D-Flip-Flop (D-FF)?

a) Wenn Daten und Takt den gleichen Wert haben, wechselt der Ausgang

b) Wenn Daten und Takt einen ungleichen Wert haben, wechselt der Ausgang
¢) Daten werden bei einer Taktflanke gespeichert

d) Daten werden bei Takt gleich 1 gespeichert

e) Daten werden bei Takt gleich 0 gespeichert

Aufgabe 1.10
Welche Eigenschaften hat ein digitales Signal?

a) wertdiskret und zeitkontinuierlich

b) wertdiskret und zeitdiskret

¢) wertkontinuierlich und zeitkontinuierlich
d) zeitdiskret und wertkontinuierlich



Digitale Codierung von Informationen

Genau wie wir Menschen verarbeiten auch digitale Systeme Informationen, die sie aus
ihrer Umgebung erhalten.

Lesen Sie zum Beispiel den Wetterbericht in der Tageszeitung und erhalten die Infor-
mation, dass mit Regen zu rechnen ist, nehmen Sie einen Schirm mit, wenn Sie das Haus
verlassen. Wird dagegen wolkenloses Sommerwetter angekiindigt, ist die Mitnahme
einer Sonnenbrille vermutlich die bessere Entscheidung.

Um als Mensch eine Information aufnehmen und verarbeiten zu konnen, muss sie in
einer fiir uns zuginglichen Form vorliegen. Der Wetterbericht in der Zeitung besteht aus
einzelnen Zeichen, die wir zu Wortern und Sitzen zusammenfiigen. Die in den Sétzen
enthaltene, man kann auch sagen ,,codierte”, Information extrahieren wir und reagieren
entsprechend. Allerdings hitten wir grole Schwierigkeiten den Wetterbericht zu verste-
hen, wenn er in einer uns unbekannten Sprache verfasst wire. Da wir die Regeln nicht
kennen, die beschreiben wie die Information durch die Aneinanderreihung der Buchsta-
ben codiert ist, konnten wir mit dem scheinbaren Buchstabensalat nichts anfangen.

Wie lassen sich diese Uberlegungen auf ein digitales System iibertragen? Zunichst
ist es selbstverstandlich wichtig, dass die zu verarbeitenden Informationen in digitaler
Form, also als Bits, vorliegen. Dariiber hinaus miissen aber auch Regeln vereinbart sein,
die die Bedeutung der Bits beschreiben. Andernfalls kann ein digitales System die in
den Bits enthaltene Information nicht extrahieren — es kann mit dem ,,Bitsalat™ nichts
anfangen.

In diesem Kapitel werden einige Regeln zur digitalen Codierung von Informationen
vorgestellt, die die Grundlage fiir die Realisierung vieler digitaler Schaltungen darstel-
len. Da in vielen praktischen Anwendungsfillen Zahlenwerte verarbeitet werden, liegt
der Schwerpunkt dieses Kapitels auf der bindren Codierung von Zahlen. In diesem Kapi-
tel werden dariiber hinaus einige gebriuchliche Codes vorgestellt, die sich zur Codierung
sowohl numerischer als auch nicht-numerischer Informationen eignen.

© Springer-Verlag GmbH Deutschland 2016 17
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2.1 Grundlagen

Fiir die bindre Codierung einer Information werden Codeworter definiert, die aus Bits
zusammengesetzt sind. Je mehr Bits zur Anwendung kommen, desto mehr Codewor-
ter konnen definiert werden: Wird ein Bit verwendet, ergeben sich die zwei moglichen
Codierungen ,,0“ und ,,1*. Mit 2 Bits ergeben sich bereits 4 Moglichkeiten, ,,00%, ,,01%,
»10“ und ,,11%. Allgemein gilt, dass die maximale Anzahl der Codeworter eine Zweier-
potenz ist. Mit n Bits lassen sich 2" unterschiedliche bindre Codierungen darstellen. Aus-
gewihlte Zweierpotenzen sind in Tab. 2.1 dargestellt.

Fiir Zehnerpotenzen sind Vorsiitze klar definiert. Zum Beispiel steht k (Kilo) fiir 103, M
(Mega) fiir 10° oder G (Giga) fiir 10°. Als die Vorsitze fiir Zweierpotenzen eingefiihrt wur-
den, orientierte man sich an den bekannten Vorsitzen fiir Zehnerpotenzen. Da 2! ~ 103
ist, setzte man den Zehnerpotenzvorsatz Kilo auch fiir die Zweierpotenz ein. Zur Unter-
scheidung wurde teilweise der Zweierpotenzvorsatz K anstelle von k verwendet. Weiterhin
sind dann die Abkiirzungen M fiir 22° ~ 10°, G fiir 23 ~ 10° und T fiir 2*° ~ 10'? ein-
gefiihrt worden. Hier war jedoch eine Unterscheidung mittels Grof3- und Kleinschreibung
nicht mehr moglich und es gibt das Problem einer moglichen Zweideutigkeit. Gibt zum
Beispiel ein Hersteller die Kapazitiit einer Festplatte mit 5,0 TByte an, so meint er in der
Regel 5 - 10! Byte und nicht 5 - 24 Byte. Die Differenz betriigt immerhin fast 10 %.

Weitere Probleme entstehen bei der Kennzeichnung von Ubertragungsgeschwindig-
keiten. In Dateniibertragungsnetzen sind die Bezeichnungen kbit/s, Mbit/s und Gbit/s
tiblich. Hier sind die tiblichen Abkiirzungen fiir Zehnerpotenzen gemeint. Um die Zwei-
deutigkeit der Vorsitze zu vermeiden hat das internationale Normierungsgremium IEC

Tab. 2.1 Ausgewihlte Zweierpotenzen

n 1 /2 |3 |4 5 6 7 8 9 16 20 30
2" 12 |4 8 |16 |32 |64 128 |256 512 |65.536 |1.048.576 |1.073.741.824

Tab. 2.2 Binire Vorsitze fiir Zweierpotenzen

Zweierpotenz | Abkiirzung Abgeleitet von | z. B. Speicherkapa- | z. B. Speicherkapa-
(gesprochen) zitdt in bit zitdt in Byte

210 Ki (Kibi) Kilobinir Kibit KiB (= 8 Kibit)
220 Mi (Mebi) Megabinir Mibit MiB (= 8 Mibit)
230 Gi (Gibi) Gigabinir Gibit GiB (= 8 Gibit)
240 Ti (Tebi) Terabindr Tibit TiB (= 8 Tibit)

250 Pi (Pebi) Petabinir Pibit PiB (= 8 Pibit)

200 Ei (Exbi) Exabindr Eibit EiB (= 8 Eibit)

270 Zi (Zebi) Zettabinér Zibit ZiB (= 8 Zibit)

280 Yi (Yobi) Yottabinér Yibit YiB (= 8 Yibit)
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(International Electrotechnical Commission) in der Norm IEC 60027 neue Vorsitze fiir
bindre Vielfache festgelegt. In Tab. 2.2 sind diese Vorsitze zusammengefasst.

Die IEC-Norm hat sich bisher nur zum Teil in der Praxis verbreitet. In vielen Fal-
len werden die Vorsitze fiir Zehnerpotenzen verwendet, obwohl eigentlich Vorsitze fiir
Zweierpotenzen gemeint sind.

2.2 Vorzeichenlose Zahlen

In diesem Abschnitt werden Zahlendarstellungen und grundlegende arithmetische Ope-
rationen fiir vorzeichenlose duale Ganzzahlen erldutert. Der betrachtete Zahlenraum
umfasst also die natiirlichen Zahlen inklusive der Null.

2.2.1 Stellenwertsysteme

Wenn Sie die Ziffernfolge ,,123* sehen, werden Sie diese vermutlich sofort mit dem Zah-
lenwert Einhundertdreiundzwanzig verbinden. Wir haben in unseren ersten Schuljah-
ren gelernt, dass Zahlen durch einzelne Zeichen dargestellt werden, die hintereinander
geschrieben einen Zahlenwert repriasentieren. Die am weitesten rechts stehende Ziffer
ist die Einerstelle. Diese wird gefolgt von der Zehnerstelle und der Hunderterstelle. Sol-
len grofere Zahlenwerte dargestellt werden, werden einfach weitere Stellen hinzuge-
fiigt. Diese Vereinbarung legen wir im Alltag bei der ,,Decodierung® einer Ziffernfolge
zugrunde.

Man kann die im Alltag verwendete Vereinbarung auch mathematisch als Formel dar-
stellen. Der Zahlenwert Z , einer Folge von N Ziffern, die aus den Ziffern z,_, bis z,
besteht, ergibt sich aus der Formel:

N—1 _
Zip = Ezz' - 10°
=0

Als Ziffernzeichen werden die zehn Symbole 0,1, ... 8,9 verwendet, denen jeweils ein
Zahlenwert im Bereich von Null bis Neun zugeordnet ist.

Diese Form der Zahlendarstellung nennt man Stellenwertsystem. Jeder Stelle einer
Ziffernfolge ist ein Stellengewicht zugeordnet. Im Dezimalsystem ist dies eine Zehnerpo-
tenz. Die Summe der einzelnen Produkte aus Stellenwert und Stellengewicht ergibt den
dargestellten Zahlenwert.

Dass wir im Alltag zehn unterschiedliche Symbole zur Darstellung der Ziffern ver-
wenden, ist eine willkiirliche Festlegung. Man kann zum Beispiel auch die Vereinbarung
treffen, ein Siebener-System zu verwenden. Dann wiirden die Symbole 7, 8 und 9 nicht
bendtigt und es gilte die Rechenregel:
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N-1 _
Zr=> 7T
i=0

Da sich somit eine FEinerstelle, eine Siebenerstelle und eine Neunundvierzigerstelle

ergibt, wiirde die Ziffernfolge ,,123* dem Zahlenwert Sechsundsechzig entsprechen.
Diese Uberlegungen lassen sich auf beliebige Anzahlen von Ziffernsymbolen erweitern.

Werden B Ziffernsymbole verwendet, ergibt sich der codierte Zahlenwert aus der Formel:

N-1
Zp = ZZi -B'
i=0

Der Wert B wird als Basis des jeweiligen Zahlensystems bezeichnet und man spricht von
einer Zahlendarstellung ,,zur Basis B oder von einem B-adischen Zahlensystem. Um
die verwendete Basis explizit deutlich zu machen, kann sie als Index an die Ziffernfolge
angefiigt werden. Zum Beispiel gilt:

6610 = 1028 = 1237 = 10024 = 21103

In vielen Fillen wird jedoch auf den Index verzichtet, da aus dem Zusammenhang
bereits deutlich wird, welche Basis verwendet wird.

Einer der Vorteile der hier vorgestellten Stellenwertsysteme gegeniiber anderen Zah-
lensystemen ist die einfache Moglichkeit alle vier Grundrechenarten mit iibersichtlichen
Regeln umzusetzen.

Eine Zahlendarstellung, die nicht auf Stellenwertigkeiten basiert, ist beispielsweise
das Romische Zahlensystem. Eine Addition lésst sich in diesem System durch ,,Zusam-
menziehen™ der beiden Operanden relativ einfach realisieren. Eine Multiplikation ist
dagegen deutlich aufwendiger als im dezimalen Stellenwertsystem.

2.2.2 Darstellung vorzeichenloser Zahlen in der Digitaltechnik

Zur Implementierung digitaler Systeme werden nur zwei Zustinde verwendet. Daher ist
es konsequent, genau zwei Ziffernsymbole zu verwenden. Es wird also die Basis 2 fiir
die Darstellung von Zahlen gewihlt. Eine Zahl wird in diesem Dualsystem durch eine
Folge von Nullen und Einsen dargestellt und ergibt sich entsprechend der Uberlegungen
des vorangegangenen Abschnitts zu:

N—-1 ‘
Zy=> 72
i=0

Selbst bei relativ kleinen Zahlen ergibt sich hierbei schnell eine grofie Stellenzahl. So
kann der dezimale Wert 98, im Dezimalsystem mit zwei Ziffern dargestellt werden. Im
Dualsystem werden dagegen mindestens 7 Stellen bendtigt: 98, = 1100010,.
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Um die Darstellung dualer Zahlen iibersichtlicher zu gestalten, konnen mehrere Bits
einer Dualzahl zusammengefasst werden. So konnen zum Beispiel 3 Bits zu einer neuen
Ziffer kombiniert werden. Der Wert dieser neuen Ziffer kann 8 verschiedene Werte
annehmen. Man erhilt ein Zahlensystem zur Basis 8, das Oktalsystem.

In der Praxis wird sehr hiufig eine Gruppierung von jeweils vier Bits vorgenommen.
Dieses ist insbesondere dann sinnvoll, wenn die Zahlenwerte mit Vielfachen von vier
Bits codiert werden, was bei allen heute iiblichen Rechnersystemen der Fall ist. Da sich
bei einer Kombination von vier Bits zu einer neuen Ziffer 16 mogliche Werte ergeben,
reichen die Ziffernsymbole des Dezimalsystems nicht mehr aus. Es werden neben den
Symbolen 0 bis 9 noch sechs weitere Symbole fiir die Werte 10 bis 15 benétigt. Hierfiir
werden die ersten Buchstaben des Alphabets verwendet. Auf diese Weise erhilt man das
sogenannte Hexadezimalsystem, ein Stellenwertsystem zur Basis 16.

Die verschiedenen Darstellungen von Zahlenwerten in unterschiedlichen Zahlensyste-
men fasst Tab. 2.3 fiir die Zahlen von 0 bis 18, , zusammen. Bei der Verwendung des Oktal-
oder des Hexadezimalsystems arbeitet die zugrundeliegende digitale Hardware weiterhin
mit einzelnen Bits, also im Dualzahlensystem. Die Kombination von Bits zu einer Oktal-
oder Hexadezimalziffer dient lediglich der kompakteren Darstellung der Zahlenwerte.

Tab. 2.3 Darstellung Dezimal Dual Oktal Hexadezimal
der Zahlen 0 bis 18 im B=10 B=2 B=38 B=16
Headerimalayaem 0 o To 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10
17 10001 21 11
18 10010 22 12
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2.2.3 Umwandlung zwischen Zahlensystemen

Fiir die Umrechnung eines Zahlenwertes aus einem System zur Basis B, in ein System
zur Basis B, kann direkt unter Verwendung der bereits vorgestellten Summenformel
erfolgen:

N—-1
Z=Y z B
i=0

Hierbei muss die Berechnung zur Basis B, erfolgen. Das Rechnen in einem anderem als
dem dezimalen Zahlensystem ist jedoch gewohnungsbediirftig, sodass es sich empfiehlt
zunichst eine Umwandlung der Zahl in das Dezimalsystem vorzunehmen. In einem
zweiten Schritt erfolgt dann die Umwandlung des Dezimalwertes in das gewiinschte
Zahlensystem zur Basis B,.

Die Umrechnung aus dem Dezimalsystem in ein anderes Zahlensystem kann mithilfe
der Divisionsmethode erfolgen, die im Folgenden vorgestellt wird.

Die Divisionsmethode basiert auf einem iterativen Vorgehen, bei dem zunichst die
Ausgangszahl ganzzahlig durch die Basis B, des Zielsystems dividiert wird. Der Rest der
Division ergibt eine Stelle der zu berechnenden Zahl. Anschliefend wird der Quotient
der Division wiederum durch B, dividiert. Dieses Vorgehen wird so lange wiederholt,
bis der berechnete Quotient Null ist. Die gesuchte Zahlendarstellung ergibt sich aus den
berechneten Resten, wobei der zuerst berechnete Rest die Einerstelle reprisentiert.

Die Umwandlung einer Zahl zur Basis B, in eine Zahl zur Basis B, kann wie folgt als
iteratives Vorgehen formuliert werden:

. Umwandlung der Ausgangzahl in das Dezimalsystem (Summenformel anwenden).

. Ganzzahl-Division durch B,.

. Rest der Division ergibt eine Stelle der gesuchten Zahl.

. Falls Quotient ungleich Null: Zuriick zu Schritt 2. Der Dividend der erneuten Division
ist der zuvor berechnete Quotient.

A W N =

2.2.4 Beispiele zur Umwandlung zwischen Zahlensystemen

Beispiel 1
Die Zahl 110010, soll in eine Dezimalzahl umgewandelt werden. Hier kann die Sum-
menformel direkt angewendet werden:

N-—-1
Z=> 52 =12"+1.2"4+1.22=2+16+32=50
i=0

Die gesuchte Dezimalzahl ist 50.
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Beispiel 2

Die Zahl 89, soll in eine binire Zahl umgewandelt werden. Mit der Divisionsmethode
ergibt sich die in Tab. 2.4 dargestellte Rechnung und damit die gesuchte binédre Repri-
sentation 1011001,.

Beispiel 3

Die Zahl 83ED, soll in eine Dualzahl iiberfiihrt werden. Die Umrechnung zwischen
dem Dualzahlensystem und dem Hexadezimalsystem kann sehr einfach erfolgen, da
4 Bit einer Dualzahl exakt einer Stelle der Hexadezimalzahl entsprechen. Man benotigt
lediglich die Zuordnung einer hexadezimalen Ziffer zu ihrem dualen Aquivalent (vgl.
Tab. 2.3) und kann die Umwandlung direkt durch Ablesen aus der Tabelle durchfiihren.
Die einzelnen Hexadezimalstellen werden sukzessive durch ihre bindren Entsprechungen
ersetzt und es ergibt sich:

83EDj¢ = 10000011 11101101,

Beispiel 4

Die Dualzahl 1011111011101111, soll in eine Hexadezimal gewandelt werden. Nach der
Gruppierung der Dualzahl in Gruppen zu jeweils 4 Bit ergibt sich das Ergebnis wiede-
rum durch Ablesen aus Tab. 2.3:

1011111011101111, =BEEFj4

Beispiel 5
Die Zahl 14505, soll in eine Oktalzahl umgewandelt werden. In diesem Fall bietet sich
ein Vorgehen in zwei Schritten an.

Zunichst wird die gegebene Zahl mithilfe der Summenformel in eine Dezimalzahl
umgewandelt und es ergibt sich

145056 = 234510

Anschlieend erfolgt die Umwandlung in das Zielsystem mithilfe der Divisionsmethode
(vgl. Tab. 2.5) Die gesuchte Oktalzahl lautet 4451.

Zab].)le Ulm‘l’;’fggl}mg. Iteration Dividend Divisor Quotient | Rest
ijalziil]ma za in eine ) 29 ) m 1

2 44 2 22 0

3 22 2 11 0

4 11 2 5 1

5 5 2 2 1

6 2 2 1 0

7 1 2 0 1
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Tab. 2.5 Umwandlung der Tteration Dividend Divisor Quotient Rest
Dezimalzahl 2345 in eine
Oktalzahl 1 2345 8 293 1

2 293 8 36 5

3 36 8 4

4 4 8 4

2.2.5 Wertebereiche und Wortbreite

Fiir alle Zahlendarstellungen gilt, dass mit einer konkreten Anzahl an Stellen nur eine
begrenzte Anzahl von Zahlenwerten dargestellt werden kann. Besitzt eine Dezimalzahl
beispielsweise drei Stellen, kann diese nur die Werte von 0 bis 999 annehmen. Mit einer
7-stelligen Dualzahl kann nur der Zahlenbereich von 0 bis 1111111, = 127, dargestellt
werden.

Werden zwei Dualzahlen addiert, kann es (je nach Zahlenwerten) passieren, dass fiir
die Summe mehr Bits als fiir die beiden Operanden benotigt werden. So kann beispiels-
weise die Summe der Zahlen 1101, (13,) und 0101, (5,,) nicht mit 4 Bit dargestellt
werden. Fiir das Ergebnis 18, werden 5 Bit bendtigt (18,, = 10010,).

Generell gilt, dass bei der Addition von n bindren Zahlen log,(n) zusitzliche Bits fiir
das Ergebnis benotigt werden. Addiert man beispielsweise 8 Zahlen mit der Wortbreite
6 Bit, muss fiir das Ergebnis eine Wortbreite von 6 + log,(8) = 9 Bit vorgesehen werden.

Vermutlich finden Sie diese Erkenntnis nicht sonderlich bemerkenswert, da wir aus
dem tédglichen Leben daran gewohnt sind, dass das Ergebnis einer Rechnung mehr Stel-
len als die Operanden benoétigt. Zur Veranschaulichung dieses Sachverhalts wird bereits
in den ersten Jahren der Schulausbildung der Zahlenstrahl eingefiihrt. Mit ihm lassen
sich unter anderem auch die Addition und Subtraktion iibersichtlich grafisch darstellen.
Durchlduft man den Zahlenstrahl von Null in Richtung positiver Zahlen, wird mit jedem
Schritt eine 1 addiert (Additionsrichtung). Durchlaufen des Zahlenstrahls in entgegen-
gesetzter Richtung entspricht der Subtraktion (Subtraktionsrichtung). Je weiter man sich
auf dem Zahlenstrahl vom Wert Null entfernt, desto groler werden die Zahlen. An der
Grenze zu einer Zehnerpotenz (zum Beispiel 99) wird die Anzahl der Stellen zur Darstel-
lung der Zahlen erhoht (statt zwei Stellen fiir 99 werden drei Stellen fiir die Darstellung
des Wertes 100 verwendet).

Fiir ein digitales System ist dieses Prinzip jedoch schwer umsetzbar. Ist ein System
einmal realisiert, steht nur eine feste Anzahl von Stellen in der Hardware zur Verfiigung.
Das Prinzip ,,ich nehme mir so viele Stellen wie ich brauche®™ funktioniert in digitalen
Systemen daher nicht. Hieraus ergeben sich einige Konsequenzen fiir die arithmeti-
schen Komponenten eines digitalen Systems, die im folgenden Abschnitt niher erldutert
werden.
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2.2.6 Zahlendarstellung mit begrenzter Wortbreite

Stellen Sie sich vor, Sie sollen ein digitales System realisieren, dass intensiv von der
Addition Gebrauch macht. Fiir die Implementierung der Addierer des Systems konnten
Sie sich entscheiden, dass immer die benotigte Anzahl von Ergebnisbits zur Verfiigung
stehen soll, das Ergebnis also ein Bit mehr als die Operanden umfasst. Allerdings ist zu
beachten, dass die Wortbreite der Ergebnisse mit zunehmender Anzahl durchgefiihrter
Additionen kontinuierlich wéchst. Besitzen die Eingangswerte des Systems zum Beispiel
eine Wortbreite von 8 bit, wiirde das Ergebnis einer ersten Addition eine Wortbreite 9 bit
bendtigen. Werden die so berechneten Zwischenergebnisse mit einer weiteren Addition
weiterverarbeitet, sind bereits 10 bit fiir diese Ergebnisse erforderlich.

Selbstverstindlich kann man ein digitales System realisieren, das beispielsweise vier
8-Bit-Zahlen addieren kann und ein Ergebnis mit der Wortbreite 10 bit liefert. Aber stel-
len Sie sich vor, Sie sollen eine arithmetische Komponente fiir ein Rechnersystem ent-
werfen. Sie wissen nicht welches Programm spiter auf dem Rechner laufen wird und
welche Wortbreiten fiir Operanden und Ergebnisse sinnvoll sind. Dariiber hinaus besit-
zen die Speicherstellen eines Rechners, in denen auch Zwischenergebnisse abgelegt
werden, feste Wortbreiten (meist Vielfache eines Bytes). Daher verwenden die arithme-
tischen Einheiten eines Rechners meist identische Operanden- und Ergebniswortbrei-
ten. Ergibt sich bei einer Berechnung ein Ergebnis, das eine groiere Wortbreite als die
implementierte Ergebniswortbreite bendtigt, werden die fiihrenden Bits des Ergebnisses
einfach weggelassen. Die Ausgabe der arithmetischen Einheit wire in diesem Fall also
nicht korrekt. Nehmen wir an, dass mithilfe eines Addierers die Zahlen 1011, =11,
und 1001, =9, addiert werden. Es steht ein Addierer mit einer Wortbreite von 4 bit zur
Verfiigung. Der Addierer kann also Operanden und Ergebnisse im Bereich von O bis 15
verarbeiten bzw. ausgeben. Das korrekte Ergebnis der Summe aus 11 und 9 ist jedoch 20
und iiberschreitet damit den moglichen Zahlenbereich der Ergebnisse des 4-Bit-Addie-
rers. Statt des korrekten Ergebnisses 10100, wird der Addierer fiihrende 1 verwerfen und
0100, = 4,, ausgegeben.

Was bedeutet die begrenzte Wortbreite fiir die grafische Darstellung von Zah-
len? Am Beispiel eines 4-Bit-Addierers lidsst sich dies anschaulich erldutern: Startet
man bei 0 und addiert sukzessive eine 1, durchlduft das Ergebnis die Zahlen von 0 bis
15,,= 1111,. Bei der Addition von 15,, und 1 erreicht man wieder den Ausgangspunkt:
Das vom Addierer ausgegebene Ergebnis ist 0000,, da die Zahl 16,, = 10000, nicht mit
4 Bit dargestellt werden kann.

Die grafische Darstellung dieses Verhaltens kann also kein Zahlenstrahl sein. Viel-
mehr ergibt sich ein Zahlenkreis, der bei Addition im Uhrzeigersinn durchlaufen wird.
Entsprechend wird der Kreis bei der Subtraktion entgegen dem Uhrzeigersinn durchlau-
fen (Abb. 2.1).
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Abb. 2.1 Zahlenkreis fiir 0000
positive Zahlen mit einer i 0001
Wortbreite von 4 bit 1110

0010

14
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richtung richtung

0011
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2.2.7 Bindre vorzeichenlose Addition

Die Regeln zur Addition und Subtraktion im Dualsystem sind mit denen des Dezimal-
systems vergleichbar. Beide Operationen werden stellenweise, beginnend mit der nie-
derwertigsten Stelle (die Stelle mit dem niedrigsten Stellengewicht), durchgefiihrt. Bei
dieser Operation kann wie im Dezimalsystem ein Uberlauf auftreten, welcher entspre-
chend zu beriicksichtigen ist. Der wesentliche Unterschied zwischen dem Dezimal- und
dem Dualsystem ist, dass der 10er-Ubergang des Dezimalsystems einem 2er-Ubergang
im Dualsystem entspricht. Fiir die Addition zweier Dualzahlen bedeutet dies, dass ein
Ubertrag in der niichsthoheren Stelle zu beriicksichtigen ist, wenn die Summe der Zif-
fern den Wert 1 iiberschreitet. Es ergeben sich 8 mogliche Fille fiir die einstellige binire
Addition, welche in Tab. 2.6 zusammengefasst sind.

Zur Verdeutlichung ein Beispiel: Die beiden bindren Zahlen 0011 und 1001 sollen
addiert werden. Die Addition der beiden niederwertigsten Stellen ergibt den Wert 2. Die-
ses Ergebnis wird durch eine 1 in der nichsthoheren Stelle (Ubertrag) und eine 0 in der
aktuellen Stelle dargestellt (vgl. Abb. 2.2). Unter Beriicksichtigung des Ubertrags und
der zwei Operandenbits der nichsthcheren Stelle ergibt sich wiederum ein Ubertrag 1
und ein Ergebnisbit mit dem Wert 0. Dieses Verfahren wird fiir alle Operandenbits durch-
gefiihrt und man erhilt ein Ergebnis mit der Wortbreite 4 bit.

Uberlaufsdetektion bei der vorzeichenlosen Addition
Variante 1: Betrachtung des hochstwertigen Ubertragsbits

Ist das hochstwertige Ubertragsbit bei der Addition zweier vorzeichenloser Zahlen 0,
ist das Ergebnis korrekt. Andernfalls ist bei der Addition ein Uberlauf aufgetreten und
das ausgegebene Ergebnis nicht korrekt.
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Tab. 2.6 Ubersicht iiber

ar - . Eingabewerte Ausgabewerte
die e}r}stelhge bindire 1. Summand | 2. Summand | Ubertragsbit | Summenbit | Ubertragsbit
Addition
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
Abb. 2.2 Beispiel fiir die 0011
binidre Addition 3 + 1001
Ubertrag: 0011

1100

Variante 2: Betrachtung der hochstwertigen Bits der Operanden und des
Ergebnisses

Sind beide hochstwertigen Bits der Operanden identisch, tritt bei der Addition ein
Uberlauf auf, wenn diese Bits gleich 1 sind. Sind die beiden hochstwertigen Bits der
Operanden unterschiedlich, ist ein Uberlauf aufgetreten, wenn das hochstwertige Ergeb-
nisbit gleich 0 ist. In allen anderen Fillen ist kein Uberlauf aufgetreten.

2.2.8 Binare vorzeichenlose Subtraktion

Bei der bindren Subtraktion kénnen dhnliche Rechenregeln angewandt werden wie sie
aus dem Dezimalsystem bekannt sind. Sukzessive werden die einzelnen Bits des Minu-
enden und Subtrahenden beginnend mit dem niederwertigsten Bit betrachtet. Es wird die
Differenz aus dem Minuendenbit und dem Subtrahendenbit bestimmt. Sofern ein Uber-
trag zu berticksichtigen ist, wird dieser mit negativem Vorzeichen einbezogen. Es erge-
ben sich wie bei der Addition 8 mogliche Fille (Tab. 2.7)

Soll beispielsweise die bindre Zahl 0111 von der Zahl 1100 subtrahiert werden, ergibt
sich die in Abb. 2.3 dargestellte Rechnung. Die Subtraktion der beiden niederwertigsten
Stellen ergibt den Wert —1. Dieses Ergebnis wird durch einen (negativ bewerteten) Uber-
trag mit dem Wert —1 in der nédchsthoheren Stelle und einem Ergebnisbit mit dem Wert
1 in der aktuellen Stelle dargestellt. Unter Beriicksichtigung des Ubertrags und der zwei
Operandenbits der nichsthoheren Stelle ergibt sich ein Ubertrag —1 und ein Ergebnisbit
mit dem Wert 0. Dieses Verfahren wird fiir alle Bits der Operanden durchgefiihrt und so
die Differenz mit der Wortbreite 4 bit bestimmt.
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Tab. 2.7 Ubersicht iiber die Eingabewerte Ausgabewerte
einstellige bindre Subtraktion Minuend | Subtrahend |Ubertrag | Differenz | Ubertrag

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1
Abb. 2.3 Beispiel fiir die 1100
bindre Subtraktion } - 0111

Ubertrag: 0111

0101

Wie bei der Addition kann im Anschluss an die Berechnung iiberpriift werden, ob das
ausgegebene Ergebnis korrekt ist. Bei der Subtraktion vorzeichenloser Zahlen entsteht
ein Unterlauf, wenn der Minuend kleiner als der Subtrahend ist. In diesem Fall ist das
wahre Ergebnis negativ und lasst sich nicht als vorzeichenlose Zahl darstellen. Fiir die
Detektion eines Unterlaufs konnen wieder zwei alternative Moglichkeiten eingesetzt
werden:

Unterlaufsdetektion bei der vorzeichenlosen Subtraktion
Variante 1: Betrachtung des hochstwertigen Ubertragsbits

Ist das hochstwertige Ubertragsbit bei der Subtraktion zweier natiirlicher Zahlen 0,
ist das Ergebnis korrekt. Andernfalls ist ein Unterlauf aufgetreten und das ausgegebene
Ergebnis nicht korrekt.

Moglichkeit 2: Betrachtung der hochstwertigen Bits der Operanden und des
Ergebnisses

Sind beide hochstwertigen Bits der Operanden identisch, tritt bei der Addition ein
Unterlauf auf, wenn das hochstwertige Ergebnisbit gleich 1 ist. Ebenfalls tritt ein Unter-
lauf auf, wenn das hochstwertige Bit des Minuenden O und das des Subtrahenden 1 ist.
In allen anderen Fillen tritt kein Unterlauf auf und das Ergebnis ist korrekt.
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2.2.9 Bindre vorzeichenlose Multiplikation und Division

Fiir die Addition und Subtraktion im Bindrsystem gelten vergleichbare Regeln wie im
Dezimalsystem. Es ist lediglich zu beachten, dass der 10er-Ubergang des Dezimalsystems
einem 2er-Ubergang im Binirsystem entspricht. Unter Beachtung dieser Besonderheit las-
sen sich auch Vorgehensweisen zur Durchfiihrung der binidren Multiplikation oder Divi-
sion formulieren, die weitgehend den bekannten Regeln des Dezimalsystems entsprechen.

Fiir die Durchfithrung der Multiplikation wird der Multiplikator sukzessive mit den
einzelnen Stellen des Multiplikanden multipliziert. Da die Ziffern des Multiplikanden
nur die Werte 0 oder 1 annehmen konnen, ist das Ergebnis dieser stellenweisen Multipli-
kation also entweder Null oder identisch mit dem Multiplikator.

Schreibt man die einzelnen Produkte entsprechend dem Stellengewicht des verwen-
deten Multiplikandenbits untereinander und summiert anschlieBend die gebildeten Pro-
dukte erhilt man als Ergebnis das Produkt der beiden Operanden.

In vielen Fillen mochte man mogliche Uberldufe bei der Multiplikation vermeiden
und wihlt fiir die Produktwortbreite einen Wert, der sich aus der Summe der Wortbreiten
des Multiplikanden und des Multiplikators ergibt.

Die binédre Multiplikation ist fiir die Zahlen 0101 und 1011 in Abb. 2.4 dargestellt.

Ebenso kann die Division der Grundschulmathematik auf die bindre Division iibertra-
gen werden. Hierbei wird der Divisor testweise von einem Teil des Dividenden subtra-
hiert. Tritt bei der Subtraktion kein Uberlauf auf, ergibt sich ein Quotientenbit mit dem
Wert 1 und das Ergebnis der Subtraktion wird fiir weitere Berechnungen weiterverwendet.
Ist dagegen ein Uberlauf aufgetreten, ist das berechnete Quotientenbit O und das Ergebnis
der Subtraktion wird verworfen. Es wird mit dem Minuenden weiter gerechnet. Vor der
nachfolgenden Subtraktion zur Bestimmung eines weiteren Quotientenbits wird ein wei-
teres Bit des Dividenden an die berechnete Differenz (kein Uberlauf) bzw. den Minuen-
den (bei aufgetretenem Uberlauf) angefiigt. Auf diese Weise wird sukzessive der gesamte
Dividend durchlaufen. Das Ergebnis der letzten Subtraktion ergibt den Rest der Division.
Es ist zu beachten, dass die fiihrenden Nullen des Divisors nicht beriicksichtigt werden.

Die Vorgehensweise fiir eine bindre Addition wird in fiir einen Dividenden mit dem
Wert 01010101 und einem Divisor mit dem 1011 verdeutlicht (Abb. 2.5).

Abb. 2.4 Beispiel fiir die 0101 * 1011
bindre Multiplikation

0101
0101
0000
0101

+ + + o+

0001000

00110111
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01010101 1011 = 00111
1011 Unterlauf, Quotientenbit = 0
1010 Minuendenbits verwenden
1011 Unterlauf, Quotientenbit = 0
10101 Minuendenbits verwenden
1011 kein Unterlauf, Quotientenbit = 1
10100 Differenz verwenden (10101-1011=1010)
1011 kein Unterlauf, Quotientenbit = 1
10011 Differenz verwenden (10100-1011=1001)
- 1011 kein Unterlauf, Quotientenbit = 1
1000 Differenz ergibt den Rest der Division (10011-1011=1000)

Abb. 2.5 Beispiel fiir die binire Division

Die vorgestellten Rechenvorschriften konnen als Basis fiir die Implementierung digitaler
Arithmetikschaltungen verwendet werden. In der Praxis kommen teilweise auch modifizierte
Verfahren zum Einsatz, die Vorteile im Hinblick auf die Rechenzeit oder den Schaltungsauf-
wand bieten. Die Schaltungsstruktur eines Addierers wird in Kapitel 6 vorgestellt.

2.3 Vorzeichenbehaftete Zahlen

In vielen Fillen ist die ausschlieliche Verwendung vorzeichenloser Zahlen nicht ausreichend
und es miissen sowohl positive als auch negative Zahlen verwendet werden. Hieraus ergibt
sich zwangsldufig die Frage nach einer geeigneten Codierung vorzeichenbehafteter Zahlen.

Eine naheliegende Idee wire es, die Zahlendarstellung des tédglichen Lebens auch
auf Dualzahlen anzuwenden. Ublicherweise kennzeichnen wir Zahlenwerte mit einem
vorangestellten Vorzeichen, einem Plus- oder Minuszeichen. Der Zahlenwert nach dem
Vorzeichen entspricht dem Betrag der Zahl. Diese Form der Zahlendarstellung wird als
Vorzeichen-Betrag-Darstellung bezeichnet. Die am weitesten verbreitete Darstellungs-
form vorzeichenbehafteter Zahlen ist die sogenannte Zweierkomplement-Darstellung, die
in Abschn. 2.3.2 vorgestellt wird.

2.3.1 Vorzeichen-Betrag-Darstellung

In der iiblichen Dezimaldarstellung werden vorzeichenbehaftete Zahlenwerte als eine
Kombination von Vorzeichen und Betrag dargestellt. Es handelt sich um die Vorzeichen-
Betrag-Darstellung. Dieses Prinzip ldsst sich auch auf Dualzahlen iibertragen. Es bietet
sich an, das Vorzeichen durch ein einzelnes Bit zu codieren. Ublicherweise verwendet
man eine fithrende 0 um einen positiven Zahlenwert darzustellen und eine fiihrende 1 fiir
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negative Zahlen. Die restlichen Bits entsprechen dem Betrag der dargestellten Zahl, wel-
cher als vorzeichenlose Dualzahl codiert ist.
Genauso wie fiir vorzeichenlose Zahlen kann als grafische Darstellung ein Zahlen-
kreis verwendet werden. Abb. 2.6 zeigt den Zahlenkreis fiir eine Wortbreite von 4 bit.
Betrachtet man den Zahlenkreis in Abb. 2.6 genauer, fallen mehrere Besonderheiten
auf:

1. Es existieren zwei Reprisentationen der Null, ,,4-0“ und ,,—0*.

2. Es gibt zwei Stellen, an denen Uberliufe bzw. Unterliufe auftreten konnen, ndmlich
zwischen —7 und 40 sowie zwischen +7 und —0

3. Die Additionsrichtung im Bereich positiver Zahlen entspricht der Subtraktionsrich-
tung im Bereich negativer Zahlen.

Alle drei Beobachtungen sind Nachteile, die das Rechnen in dieser Zahlendarstellung
erschweren bzw. die Implementierung arithmetischer Schaltungen aufwendiger machen.

Um beispielsweise eine Addition durchzufiihren, konnen verschiedene Vorgehenswei-
sen definiert werden. Am einfachsten ist es, wenn das Vorzeichen der Operanden fiir die
eigentliche arithmetische Operation unberiicksichtigt bleibt und eine Operation wie fiir
vorzeichenlose Zahlen durchgefiihrt wird. Um dabei das korrekte Ergebnis zu erhalten,
ist eine Fallunterscheidung auf Basis der Vorzeichen der Operanden erforderlich. Je nach
vorliegendem Fall, wird gegebenenfalls eine Vertauschung der Operanden vorgenom-
men, statt einer Addition eine Subtraktion durchgefiihrt oder das Vorzeichen des Ergeb-
nisses invertiert (Tab. 2.8).

Aquivalent zur Addition konnen auch fiir andere Grundoperationen Rechenregeln
formuliert werden, wobei eine geeignete Fallunterscheidung vorzusehen ist. Dies stellt

Abb. 2.6 Zahlenkreis fiir 1111 0000 0001

vorzeichenbehaftete Zahlen in
Vorzeichen-Betrag-Darstellung 1110 0010

-6 +2
1101 0011
5 ﬂ:{ditions— Addition\
: ) +3
richtung richtung
im Bereich im Bereich
1100 -4 [0:-7] [+0;+7] +4 0100

-3

1011 0101
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Tab. 2.8 Fallunterscheidung fiir die Addition in Vorzeichen-Betrag-Darstellung

Vorzeichenbit der Erforderliche Schritte
Operanden
1. Summand | 2. Summand | Operanden Ausgefiihrte Vorzeichen des
vertauschen Operation Ergebnisses
invertieren
0 nein Addition nein
1 nein Subtraktion nein
1 0 ja Subtraktion nein
1 1 nein Addition ja

einen wesentlichen Nachteil fiir den Einsatz der Vorzeichen-Betrag-Darstellung in digita-
len Systemen dar, da die Fallunterscheidungen in Hardware implementiert werden miiss-
ten, wodurch sich der schaltungstechnische Aufwand erhoht.

2.3.2 Zweierkomplement-Darstellung

Aus den Uberlegungen des vorangegangenen Abschnitts lassen sich Forderungen formu-
lieren, die fiir eine Darstellung vorzeichenbehafteter Zahlen gelten sollten. So ist es wiin-
schenswert, dass

1. nur eine Codierung dem Zahlenwert Null entspricht,
2. die Additionsrichtung fiir den gesamten Zahlenbereich identisch ist,
3. nur an einer Position im Zahlenkreis ein Uberlauf bzw. Unterlauf auftritt.

Eine Zahlendarstellung die diese Forderungen erfiillt, ist die sogenannte Zweierkomple-
ment-Darstellung. Die Codierung der Zahlen im Zweierkomplement ergibt sich aus den
ersten beiden Forderungen: Zwischen den Zahlenwerten —1 und +1 darf nur eine Codie-
rung existieren, die den Wert O reprdsentiert. Setzt man voraus, dass die positiven Zah-
len wie bei der Vorzeichen-Betrag-Darstellung durch eine fiihrende O zu identifizieren
sind und legt zugrunde, dass die selbstverstindliche Gleichung 1—-2 = —1 gelten soll,
lasst sich die Codierung der Zahl —1 wie folgt anhand des Zahlenkreises bestimmen:
Als Startpunkt wihlt man auf dem Zahlenkreis die Codierung ,,0001%, was der Zahl +1
entspricht. Liuft man auf dem Zahlenkreis einen Schritt in Subtraktionsrichtung, muss
sich die Codierung der Zahl O ergeben. Diese entspricht bei einer Wortbreite von 4 bit
der Codierung 0000 und entspricht somit der Darstellung der Null fiir vorzeichenlose
Zahlen. Ein weiterer Schritt in Subtraktionsrichtung muss zwangsldufig zur Codierung
der Zahl —1 fiihren. Fiir eine Wortbreite von 4 bit ergibt sich fiir —1 also die Codierung
1111. Die Codierungen aller weiteren negativen Zahlen konnen durch weitere Schritte in
Subtraktionsrichtung gefunden werden.
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Fiir die Zweierkomplement-Darstellung gilt, dass alle Codierungen mit einer fiih-
renden 1 als negative Zahlen zu interpretieren sind. Dies hat den Vorteil, dass sich der
Wert einer Zweierkomplement-Zahl durch eine einfache Summenformel angeben lésst.
Als einziger Unterschied zu der Formel fiir vorzeichenlose Zahlen ist bei Zweierkomple-
ment-Zahlen beim hochstwertigen Bit ein negatives Stellengewicht zu beriicksichtigen:

N-2
Z=—zv-1 2V 4 ZZ[ 2
i=0

So ergibt sich fiir eine Wortbreite von 4 bit die Zahl —8 als kleinste darstellbare negative
Zahl, welche durch die Bitfolge 1000 codiert wird. Der Zahlenkreis fiir Zweierkomple-
ment-Zahlen mit einer Wortbreite von 4 bit ist in Abb. 2.7 dargestellt.

2.3.2.1 Negieren einer Zweierkomplement-Zahl

Mochte man eine vorzeichenbehaftete Zahl in Zweierkomplement-Darstellung negieren,
kann man die vorgestellte Summenformel verwenden um den Wert der Ausgangszahl zu
bestimmen. Anschlieend wird das Vorzeichen der Zahl invertiert und wiederum mithilfe
der Summenformeln die Codierung der gesuchten Zahl bestimmt. Dieses Vorgehen ist
jedoch relativ umsténdlich und fehlertriachtig.

Aufgrund der Eigenschaften der Zweierkomplement-Zahlen lisst sich gliicklicher-
weise ein einfacheres zweischrittiges Verfahren definieren: Zunéchst werden alle Stellen
der Ausgangszahl invertiert. AnschlieBend wird dieses Zwischenergebnis inkrementiert
(= eine 1 addiert). Das Ergebnis stellt die entsprechende negierte Zahl dar.

Hierzu ein Beispiel: Die 6 bit breite Zweierkomplement-Zahl ,,011101° soll negiert
werden.

Abb. 2.7 Zahlenkreis fiir 0000
1111 0001

vorzeichenbehaftete Zahlen in

Zweierkomplement-Darstellung 1110 0010

+2

-3
Subtraktions-  Additions\ 3
richtung richtung

+4

1101 0011

0100

+5

1011 0101
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NEG(011101) = 011101 4+ 1 = 100010 4+ 1 = 100011

Mithilfe der Summenformel fiir Zweierkomplement-Zahlen kann das Ergebnis tiberpriift
werden:

011101, =16+8+4+4+1=29
100011, = =32 +2+1 =-29

2.3.2.2 Vorzeichenerweiterung

In einigen praktischen Anwendungsfillen ist es erforderlich die Wortbreite einer Zahl zu
vergroflern und zum Beispiel aus einer 8 bit breiten Zahl eine Zahl mit der Wortbreite 16 bit
zu generieren. Fiir vorzeichenlose Zahlen ist es lediglich erforderlich die Zahl mit fiihrenden
Nullen aufzufiillen. Im Fall der Zweierkomplement-Darstellung werden die zusétzlichen
Stellen dagegen mit dem hochstwertigen Bit (Vorzeichenbit) der Ausgangszahl aufgefiillt.

2.3.3 Addition und Subtraktion in Zweierkomplement-Darstellung

Fiir die Bestimmung der Ergebnisbits einer Addition oder Subtraktion von Zahlen in
Zweierkomplement-Darstellung gilt das gleiche Vorgehen wie fiir vorzeichenlose Zah-
len. Dies bedeutet unter anderem, dass eine Additions- bzw. Subtraktionsschaltung fiir
vorzeichenlose Zahlen unveridndert auch fiir Zweierkomplement-Zahlen eingesetzt wer-
den kann. Dieses ist insbesondere dann vorteilhaft, wenn in einem digitalen System
sowohl vorzeichenlose als auch vorzeichenbehaftete Zahlen verarbeitet werden, wie dies
zum Beispiel in digitalen Rechnern der Fall ist.

Fiir die Bestimmung von Uberldufen und Unterliufen bei der Zweierkomplement-
Addition bzw. -Subtraktion gelten andere Regeln als bei vorzeichenlosen Zahlen. Eine
Uberschreitung des darstellbaren Zahlenbereichs kann ebenfalls durch die Betrachtung
der hochstwertigen Bits der Operanden und des Ergebnisses detektiert werden. Fiir die
Addition gilt beispielsweise, dass nur dann ein Uberlauf oder Unterlauf auftreten kann,
wenn beide Summanden das gleiche Vorzeichen besitzen. Besitzen beispielsweise beide
Operanden ein positives Vorzeichen (représentiert durch eine fithrende Null), so muss
auch die Summe ein positives Vorzeichen besitzen. Besitzt das Ergebnis dagegen eine
fiihrende Eins und reprisentiert somit einen negativen Zahlenwert, ist dieses offenbar
falsche Ergebnis auf einen Uberlauf zuriickzufiihren. Entsprechendes gilt fiir den Fall der
Addition zweier negativer Zahlen. Die Uberlegungen fiir die Addition lassen sich ent-
sprechend fiir die Subtraktion anstellen. Hierbei gilt, dass eine Bereichsiiberschreitung
nur dann auftritt, wenn die beiden Operanden unterschiedliche Vorzeichen besitzen.

Uber-/Unterlaufsdetektion bei der vorzeichenbehafteten Addition
Sind beide hochstwertigen Bits der Operanden identisch und ist das hochstwer-
tige Ergebnisbit ungleich der hochstwertigen Operandenbits, ist ein Uberlauf bzw.



2.3 Vorzeichenbehaftete Zahlen 35

Unterlauf aufgetreten. In allen anderen Fillen ist keine Uberschreitung des darstellba-
ren Zahlenbereichs aufgetreten und das Ergebnis ist korrekt codiert.

Uber-/Unterlaufsdetektion bei der vorzeichenbehafteten Subtraktion

Sind beide hochstwertigen Bits der Operanden unterschiedlich und ist das hochstwertige
Ergebnisbit ungleich dem hochstwertigen Operandenbit des Minuenden, ist ein Uberlauf
bzw. Unterlauf aufgetreten. In allen anderen Fillen ist keine Uberschreitung des darstell-
baren Zahlenbereichs aufgetreten und das Ergebnis ist korrekt codiert.

2.3.4 Multiplikation und Division in Zweierkomplement-
Darstellung

Fiir die Multiplikation und die Division von Zweierkomplement-Zahlen bietet sich als
einfachste Vorgehensweise ein dreischrittiges Verfahren an. Hierbei werden zunichst die
Betrige der Operanden berechnet und anschlieend die eigentliche Operation mit vor-
zeichenlosen Zahlen durchgefiihrt. Im letzten Schritt wird gegebenenfalls das Ergebnis
durch Negierung korrigiert, falls die Operanden unterschiedliche Vorzeichen besitzen.
Diese Korrektur muss fiir das Produkt bei der Multiplikation oder dem Quotienten bei
der Division ausgefiihrt werden. Fiir die Korrektur des Restes einer binidren Zweierkom-
plement-Division wird lediglich das Vorzeichen des Dividenden berticksichtigt: Ist der
Dividend negativ, ist eine Korrektur des Restes durch Negierung vorzunehmen.

Alternativ zu der oben beschriebenen Vorgehensweise kann beispielsweise fiir Mul-
tiplikation eine Vorgehensweise gewihlt werden, die beriicksichtigt, dass das hochst-
wertige Bit der Operanden negativ zu gewichten ist. Unter Beriicksichtigung dieser
Eigenschaft der Zweierkomplement-Zahlen kann die Multiplikation 4quivalent zur
Multiplikation vorzeichenloser Zahlen ausgefiihrt werden. Hierbei ergeben sich in den
Teilprodukten einzelne negativ zu bewertende Einsen, die bei der Summation der Teil-
produkte negativ zu beriicksichtigen sind. Das nachfolgende Beispiel verdeutlicht die
Vorgehensweise, wobei negativ zu beriicksichtigende Bits kursiv dargestellt sind.

Sollen zum Beispiel die beiden vorzeichenbehafteten Zahlen 1101 und 1001 multipli-
ziert werden, ergébe sich das in Abb. 2.8 dargestellte Vorgehen.

Abb. 2.8 Beispiel fiir 1101 * 1001
die Zweierkomplement-
Multiplikation + 1101
+ 0000
+ 0000
+ 1101
0111000

00010101
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2.3.5 Bias-Darstellung

Eine weitere Moglichkeit vorzeichenbehaftete Zahlen darzustellen, ist die sogenannte
Bias-Darstellung (bzw. Excess-Darstellung). Der Begriff ,,Bias* stammt aus dem Eng-
lischen und bedeutet in etwa ,,Vorbeaufschlagung* oder ,,Vorspannung®. Bei dieser Dar-
stellung kann der Zahlenwert mithilfe der Summenformel fiir vorzeichenlose Zahlen
bestimmt werden, wobei nach der Summenbildung eine Konstante B subtrahiert wird.
Durch die Subtraktion der Konstanten konnen auch negative Zahlenwerte dargestellt
werden. Der Wert der Konstanten kann im Prinzip beliebig gewihlt werden. Da man in
der Regel einen symmetrischen Zahlenbereich anstrebt (Absolutwert der kleinsten nega-
tiven Zahl entspricht etwa dem Wert der groBten positiven Zahl), wird B im Allgemeinen
entsprechend der Wortbreite N der Zahlendarstellung gewihlt:

2y N—1

B="—1=2
2

-1

Betrachten wir die Bitfolge 100101, welche eine Zahl in Bias-Darstellung reprisentiert.
Welcher Zahlenwert wird durch die Bitfolge dargestellt?
Mit N = 6 ergibt sich

N-1
Z=Y 52 -p=(2+224+2") - (2 -1) =6
=0

2.3.6 Darstellbare Zahlenbereiche

Hiufig ergibt sich beim Entwurf eines digitalen Systems die Frage, welche Wortbreite
fiir die Darstellung von Zahlenwerten verwendet werden muss. Um Aufwand zu spa-
ren mochte man natiirlich so wenige Bits wie moglich verwenden. Andererseits muss
die Wortbreite aber ausreichend sein, um den gewiinschten Zahlenbereich abzudecken.
Tab. 2.9 fast den darstellbaren Zahlenbereich fiir Zahlen mit einer Wortbreite von N bit
zusammen:

Tab. 2.9 ]?ars.tellbare.r ~ Zahlendarstellung Kleinster Wert | GroBter Wert

Zahlenbereich in Abhanggkelt Vorzeichenlos 0 N _ 1

der verwendeten Wortbreite

N bit Vorzeichen-Betrag — 2N 4 N1
Zweierkomplement — 2Nl 2N=T

Bias (B=2""1—-1) AR 2N-1
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2.4 Reelle Zahlen

In den vorangegangenen Abschnitten wurde die bindre Darstellung ganzer Zahlen
betrachtet. Viele Problemstellungen der Digitaltechnik lassen sich mit ausreichen-
der Genauigkeit mithilfe ganzer Zahlen losen. Es gibt aber auch Anwendungen, die
den Einsatz reeller Zahlen erfordern. Im Folgenden wird daher eine Ubersicht iiber die
Moglichkeiten zur bindren Darstellung reeller Zahlen gegeben, wobei die Varianten Fest-
komma-Darstellung und Gleitkomma-Darstellung unterschieden werden.

2.4.1 Festkomma-Darstellung

Fiir die Darstellung von ganzen Zahlen wurde die Vereinbarung getroffen, dass das nie-
derwertigste Bit die Einerstelle darstellt, also mit 2° gewichtet wird. Diese Vereinbarung
ist zwar fiir ganze Zahlen sinnvoll, aber letztlich willkiirlich. Genauso gut kann als Stel-
lengewicht des niederwertigsten Bits einer bindren Zahl auch eine Zweierpotenz mit
negativem Exponenten gewihlt werden. Um den Wert einer solchen Zahl zu bestimmen,
muss die Summenformel fiir ganze Zahlen geringfiigig modifiziert werden und lautet nun

M-1
Z = ZZ,‘-Zi

i=—L
fiir vorzeichenlose Zahlen bzw.
M-2 .
Z = —7ZM_1 M-l + Z zi -2
i=—L

fiir vorzeichenbehaftete Zahlen.
Die benotigte Wortbreite N einer derartigen Zahl ergibt sich aus der Summe der
Anzahl der Vorkommastellen M und der Nachkommastellen L:

N=M+L

Vereinbart man beispielsweise, dass zwei Nachkommastellen (L = 2) verwendet werden.
Welchem Zahlenwert wiirde dann die bindre Ziffernfolge ,, 10111 als vorzeichenlose
Zahl entsprechen? Welcher Zahlenwert ergibt sich als vorzeichenbehaftete Zahl?

Mithilfe der obigen Summenformeln ist die Losung leicht zu bestimmen. Werden die
Bits als vorzeichenlose Zahl interpretiert ergibt sich

Zyorzeichenlos = 22 + 20 + 27! + 272 = 5,75

Wenn die Bits eine vorzeichenbehaftete Zahl in Festkommadarstellung reprisentieren
ergibt sich der dargestellte Zahlenwert zu
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Zzweierkomplement = —2? + 20 +27 1+ 272 = —-2,25

Fiir die arithmetischen Grundoperationen ergeben sich keine bzw. lediglich geringe
Anderungen. Besitzen beide Operanden die gleiche Anzahl an Nachkommastellen L,
kann die Addition und Subtraktion genauso wie fiir ganze Zahlen durchgefiihrt werden.
Das Ergebnis besitzt ebenfalls L Nachkommastellen. Bei der Multiplikation besitzt das
Ergebnis dagegen 2 - L Nachkommastellen. Um bei der Division die gewiinschte Genau-
igkeit des Quotienten zu erhalten, konnen die Nachkommastellen des Dividenden vor
Ausfithrung der Division mit Nullen erweitert werden.

Miissen dagegen Zahlen mit unterschiedlichen Wortbreiten verarbeitet werden, sind
beispielsweise bei der Addition und Subtraktion Korrekturschritte erforderlich um die
Stellengewichte der einzelnen Bits anzupassen.

Nehmen wir an, die Zahl 01001 mit zwei Nachkommastellen und die Zahl 10110 mit
drei Nachkommastellen sollen addiert werden. Das niederwertigste Bit der ersten Zahl
besitzt das Gewicht 272 und das der zweiten Zahl 273. Diese beiden Bits diirfen also
nicht einfach addiert werden, da die bekannten Regeln zur binidren Addition darauf basie-
ren, dass immer Bits mit gleichem Stellengewicht betrachtet werden. Also miissen die
Zahlen zunichst so erweitert werden, dass die Stellengewichte der einzelnen Bits iiber-
einstimmen: Die erste Zahl wird rechts um eine Stelle mit dem Wert O erweitert, wih-
rend bei der zweiten Zahl auf der linken Seite eine 0 angefiigt wird (in Abb. 2.9 kursiv
dargestellt). AnschlieBend kann die Addition wie gewohnt ausgefiihrt werden. Sofern
erforderlich, kann die Wortbreite des Ergebnisses durch Weglassen der niederwertigsten
Nachkommastelle anschlieBend wieder auf 5 reduziert werden.

2.4.2 Gleitkomma-Darstellung

Insbesondere in digitalen Rechnersystemen, hat sich die Gleitkomma-Darstellung, wie
sie in der internationalen Norm IEEE 754 definiert ist, durchgesetzt. Solche Rechner-
systeme sollen sowohl kleine als auch grofie Datenwerte verarbeiten konnen und genau
dies ermoglicht die Gleitkomma-Darstellung. Eine detaillierte Beschreibung dieser Zah-
lendarstellung wiirde den Rahmen dieses Buches sprengen. Daher wird im Folgenden
lediglich das Grundprinzip der Gleitkomma-Darstellung betrachtet.

Bei Verwendung dieser Gleitkomma-Darstellung wird der Zahlenwert durch eine
Mantisse M und einen Exponenten E dargestellt. Sowohl M als auch E werden hierbei
als ganze Zahlen codiert, wobei fiir M die Vorzeichen-Betrag-Darstellung und fiir £ die

Abb. 2.9 Beispiel fiir die 010010
Festkomma-Addition + 010110
101000
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Bias-Darstellung gewihlt wird. Zusitzlich wird ein Vorzeichenbit S angeben. Der Zah-
lenwert Z ., einer Gleitkommazahl kann wie folgt bestimmt werden:

Zek = (—1)5 - M -2

Die verwendeten Wortbreiten fiir die Mantisse und den Exponenten sind der Norm IEEE
754 festgelegt, die unterschiedliche Genauigkeiten spezifiziert. Fiir die einfache Genau-
igkeit (C-Datentyp float) werden insgesamt 32 Bit verwendet, die sich in 24 Bit fiir die
Mantisse inklusive Vorzeichenbit und 8 Bit fiir den Exponenten aufteilen. Fiir die soge-
nannte doppelte Genauigkeit (C-Datentyp double) werden die Mantisse mit 53 Bit und
der Exponent mit 11 Bit codiert.

2.4.3 Reelle Zahlen in digitalen Systemen

In der Praxis steht man hiufig vor der Problemstellung einen Algorithmus entwerfen zu
miissen, welcher im Anschluss in einem digitalen System in Software oder Hardware
implementiert werden soll. Fiir die Entwicklung eines Algorithmus mag es bequem
erscheinen, wenn man sich iiber die Wortbreiten der verwendeten Zahlen moglichst
wenig Gedanken machen muss. Also ist es naheliegend alle Berechnungen mit einer
moglichst flexiblen Zahlendarstellung, wie zum Beispiel einer Gleitkomma-Darstellung
mit doppelter Genauigkeit, durchzufiihren. Soll der Algorithmus spiter in Form einer
digitalen Hardware realisiert werden, wird man allerdings auf Probleme stoflen, da die
Hardware-Umsetzung von Berechnungen in Gleitkomma-Darstellung relativ aufwen-
dig ist. Kann dieser Aufwand, zum Beispiel aus Kostengriinden, nicht betrieben wer-
den, miissen die algorithmischen Vorgaben in Gleitkomma-Darstellung in eine weniger
komplexe ganzzahlige Darstellung umgewandelt werden. Hierbei werden moglicher-
weise wichtige Eigenschaften des entwickelten Algorithmus verindert, sodass nicht ohne
Weiteres gewihrleistet werden kann, dass das finale Produkt den urspriinglich ins Auge
gefassten Qualitdtsvorgaben entspricht.

In der Praxis werden daher friihzeitig die erforderlichen Wortbreiten ermittelt. Auf
den Einsatz einer Gleitkomma-Darstellung wird verzichtet. Dies gilt insbesondere dann,
wenn ein Algorithmus in digitale Hardware iiberfiihrt oder in Software auf einem preis-
giinstigen Rechnersystem, wie zum Beispiel einem einfachen Mikrocontroller, ausge-
fiihrt werden soll.

2.5 Codes

In diesem Abschnitt werden gebriduchliche Mdoglichkeiten vorgestellt, um Informati-
onen in digitaler Form darzustellen. Diese Informationen miissen nicht zwangsliufig
Zahlenwerte reprisentieren. Einer Bitfolge konnen auch beliebige andere Bedeutungen
zugeordnet werden. So kann man mit Codes zum Beispiel Farben oder auch die Fehler-
zustiande einer Maschine darstellen.
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2.5.1 BCD-Code

Der BCD-Code (Binary Coded Digit) dient der Codierung der zehn Dezimalziffern. Fiir
die Codierung jeder Ziffer werden 4 Bit verwendet, die auch als Tetraden bezeichnet
werden. Die verwendeten Bitfolgen entsprechen der dualen Darstellung der vorzeichen-
losen Zahlen 0 bis 9. Da bei der Verwendung von 4 Bits 16 verschiedene Bitkombinati-
onen moglich sind, jedoch nur 10 hiervon zur Codierung der Ziffern benétigt werden,
werden 6 Bitkombinationen nicht verwendet. Diese nicht verwendeten Kombinationen
werden als Pseudotetraden bezeichnet. In Tab. 2.10 ist die Codierung einer Dezimalzif-
fer in Form einer BCD-Tetrade dargestellt.

Der BCD-Code wird zum Teil in Digitaluhren und fiir digitale Displays (zum Bei-
spiel in Multimetern) eingesetzt. Der BCD-Code kann auch fiir die Implementierung von
Rechnersystemen eingesetzt werden. Hierbei kann es vorkommen, dass das Ergebnis
einer Addition zu einer Pseudotetrade fiihrt. Um ein Ergebnis, das eine Pseudotetrade
enthilt, wieder in eine giiltige BCD-Darstellung umzuwandeln, sind Korrekturschritte
erforderlich, die die Implementierung der BCD-Arithmetik komplizieren. Dariiber hin-
aus ist die BCD-Darstellung nicht speichereffizient, da mit einer Tetrade nur 10 statt der
sonst 16 moglichen Codierungen verwendet werden. So kénnen beispielsweise mit 8 Bit
nur die Zahlen von 0 bis 99 dargestellt werden, wihrend mit der Darstellung als vorzei-
chenlose Dualzahl der Bereich von 0 bis 255 abgedeckt ist.

Tab.2.10 Codierung einer a, a, a a, Codierte Dezimalziffer

Dezimalziffer auf Basis des

BCD-Codes 0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 Pseudotetraden
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1
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Abb. 2.10 Beispiel fiir die 0011 0111 (37)
BCD-Addition + 0101 0101 (55)

1000 1100 (Pseudo-Tetrade)
+ 0000 0110 (Korrekturschritt: +6)

1001 0010 (92)

Nehmen wir an, die beiden BCD-Zahlen 37 und 55 sollen addiert werden. Auch das
Ergebnis soll in BCD-Darstellung vorliegen. Die Addition kann ohne weitere Beachtung
der BCD-Codierung durchgefiihrt werden. Man erhilt dann das Ergebnis in der iiblichen
bindren Darstellung. In diesem Beispiel ergibt sich fiir die untere Halfte des Ergebnisses
die Pseudotetrade 1100.

Zur Korrektur des Ergebnisses kann zunichst die ndchsthohere BCD-Stelle um 1
erhoht werden, was der bindren Addition des Wertes 16 entspricht. Interpretiert man die
so erhaltenen Ergebnisbits als BCD-Zahl, wire das Ergebnis um 10 zu grof3. Dies kann
korrigiert werden, indem die untere BCD-Stelle um 10 verringert wird.

Das zweischrittige Vorgehen (16 addieren und anschliefend 10 subtrahieren) kann
natiirlich auch in einem Schritt durch die Addition des Wertes 6 realisiert werden.

Die Korrektur muss sukzessive, beginnend mit den niederwertigsten Bits, immer dann
durchgefiihrt werden, wenn der BCD-Stellen eine Pseudotetrade enthilt (Abb. 2.10).

2,5.2 Gray-Code

Stellen Sie sich vor, Sie sollen einen Temperaturwarner realisieren, der aus einem digi-
talen Thermometer und einer Einheit zur Temperaturiiberpriifung besteht. Sinkt die
Temperatur unter einen bestimmten Wert, soll ein Alarm ausgegeben werden. Die Tem-
peraturiiberpriifung fragt die aktuelle Temperatur, die vom Thermometer als Dualzahl
tibertragen wird, in regelméfBigen Abstinden ab und gibt gegebenenfalls einen Alarm
aus. Wiirden Sie das System so realisieren, konnten sporadische Fehlalarme auftreten.

Wie kann das sein? Nehmen wir vereinfachend an, dass das Thermometer die aktu-
elle Temperatur mit einer Wortbreite von 4 bit ausgibt und Temperaturen zwischen 0 und
15 °C messen kann. Steigt die Temperatur zum Beispiel von 7 °C auf 8 °C, wiirde das
Thermometer zunichst 0111 und anschlieBend 1000 ausgeben. Alle vier vom Thermo-
meter ausgegebenen Bits miissen sich in diesem Fall dndern. In einem realen System
werden die Bitwechsel auf Grund von zeitlichen Toleranzen bei der Messwertausgabe
aber nicht exakt gleichzeitig stattfinden. In Abb. 2.11 ist ein moglicher zeitlicher Verlauf
der Thermometerausgabe fiir den Wechsel von 7 °C auf 8 °C dargestellt, wobei zs, ts,,
ts, und zs, die einzelnen Bits des Temperatursignals und 7Sdual die duale Interpretation
der Bits représentiert.
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Es ist zu erkennen, dass zwischen den tatsdchlich giiltigen Zahlenwerten 7 und 8 auch
ungiiltige Werte, die nicht der wahren Temperatur entsprechen, an die Einheit zur Tem-
peraturiiberpriifung gesendet werden. Wird die Temperatur in einem Moment abgefragt,
in dem ein ungiiltiger Wert ausgegeben wird, kann dies zu einem Fehlalarm fiihren.

Moglicherweise werden Sie einwenden, dass diese ungiiltigen Werte nur fiir sehr
kurze Zeiten auftreten und in den meisten Fillen ein korrekter Wert ausgegeben wird.
Obwohl dies sicher richtig ist, verschlimmert diese Tatsache die Lage eher noch: Da das
System nur selten Fehlalarme ausgeben wiirde, gestaltet sich eine systematische Fehler-
suche extrem schwierig.

Das Kernproblem der oben beschriebenen Temperaturiiberwachung liegt darin, dass
bei einer Anderung der Temperatur mehrere Bits invertiert werden miissen. Wire es
da nicht eine einfache Losung des Problems, wenn bei einer Temperaturinderung nur
ein einzelnes Bit zu modifizieren wire? Genau dieser Ansatz wird vom Gray-Code, der
nach seinem Erfinder Frank Gray benannt ist, aufgegriffen. Der Gray-Code zeichnet sich
dadurch aus, dass sich zwei benachbarte Codierungen nur in einer Stelle unterscheiden.
Der Gray-Code fiir eine Wortbreite von 4 bit ist in Tab. 2.11 dargestellt.

Wird der Gray-Code fiir das Beispiel der Temperaturiiberwachung eingesetzt, kime
es zu keiner unbeabsichtigten Ausgabe ungiiltiger Werte und Fehlalarme wiirden vermie-
den. Der zeitliche Verlauf des Temperatursignals ist fiir den Wechsel von 7 °C nach 8 °C
in Abb. 2.12 dargestellt.

Der Gray-Code kann immer dann sinnvoll eingesetzt werden, wenn zwischen zwei
digitalen Komponenten Werte iibertragen werden sollen, deren Anderung stetig ist. So
wird der Gray-Code unter anderem auch fiir die Positions- oder Winkelbestimmung ein-
gesetzt. Ein weiteres Einsatzgebiet ist die Ubertragung von Speicherfiillstinden inner-
halb digitaler Systeme. Fiir die Implementierung arithmetischer Operationen ist der
Gray-Code dagegen nicht gut geeignet.

Abb. 2.11 Beispiel des tss /
zeitlichen Verlaufs der Ausgabe
eines digitalen Thermometers ts2 \

mit dualer Codierung ts \

tso \

TSe 7 Y81 )0) 5
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Tab. 2.11 Gray-Code fiir eine  Codierter Wert a a a a
Wortbreite von 4 bit 2 z ] 2
0 0 0 0 0
1 0 0 0 1
2 0 0 1 1
3 0 0 1 0
4 0 1 1 0
5 0 1 1 1
6 0 1 0 1
7 0 1 0 0
8 1 1 0 0
9 1 1 0 1
10 1 1 1 1
11 1 1 1 0
12 1 0 | 0
13 1 0 1 1
14 1 0 0 1
15 1 0 0 0
Abb. 2.12 Beispiel des tsg /
zeitlichen Verlaufs der Ausgabe
eines digitalen Thermometers =2
mit Gray-Codierung ts,
tso
TSaray 7 | 8
t —

2.5.3 1-aus-N-Code

Der I-aus-N-Code stellt eine weitere Alternative zur bindren Codierung von Informatio-
nen dar. Dieser Code zeichnet sich dadurch aus, dass in jedem Codewort mit der Wort-
breite N bit nur ein einzelnes Bit auf 1 gesetzt ist; alle anderen Bits besitzen den Wert 0.

Der 1-aus-N-Code ist ein sogenannter redundanter Code, da sich mit N Bits 2V unter-
schiedliche bindre Worter darstellen lassen, von denen jedoch nur N als giiltige Code-
worter genutzt werden. Der Code geht also verschwenderisch mit der Wortbreite um.
Dies wird durch den Vorteil aufgewogen, dass sich die Codeworter relativ leicht codieren
bzw. decodieren lassen.

Eine mogliche Codierung der Zahlenwerte 0 bis 5 mit einem 1-aus-6-Code ist exemp-
larisch in Tab. 2.12 dargestellt.
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Tab.2.12 Codierung der Codierter Wert as 2 2, X a .
Werte 0 bis 5 mithilfe eines 0 o . ()~ . ; ;
1-aus-6-Codes
1 0 0 0 0 1 0
2 0 0 0 1 0 0
3 0 0 1 0 0 0
4 0 1 0 0 0 0
5 1 0 0 0 0 0

2.5.4 ASCIll-Code

Mit dem ASCII-Code (American Standard Code for Information Interchange) werden
ausschlieBlich Zeichen, also Buchstaben, Ziffern und Sonderzeichen, codiert. Jedes Zei-
chen wird durch 7 Bit représentiert. Der ASCII-Code entspricht nahezu dem 7-Bit-Code
nach DIN 66003, welcher im Gegensatz zum ASCII-Code unter anderem auch deutsche
Umlaute abdeckt.

Die Zeichencodierung gemif3 dem ASCII-Code ist in Tab. 2.13 dargestellt. Die Bits
a,, a5 und ag dienen in dieser Tabelle der Auswahl der Spalten und die Bits a, a,, a, und
a, der Zeilenauswahl. Bei der Ubertragung wird fiir ein ASCII-Zeichen im Allgemeinen
ein Byte (8 bit) verwendet. In der Datentechnik wird hiufig auch das achte Bit zu einer
Erweiterung des Zeichenvorrats herangezogen. Dadurch kann die Anzahl der codierten
Zeichen verdoppelt werden.

Da der ASCII-Code nur einen sehr eingeschrinkten Zeichensatz von 128 bzw. 256
unterschiedlichen Zeichen bietet, wird in vielen Rechnersystemen auch der sogenannte
Unicode zur Codierung von Zeichen eingesetzt. Ziel des Unicodes ist es, alle existieren-
den Zeichen codieren zu konnen. Hierzu werden in Unicode Ebenen (planes) definiert,
die bis zu 65535 Zeichen enthalten konnen. Der Vorteil, alle gebrduchlichen Zeichen
codieren zu konnen, wird allerdings durch den Nachteil erkauft, dass pro Zeichen eine
deutlich hohere Anzahl an Bits vorgesehen werden muss. Daher wird in einfachen
Anwendungsfillen (zum Beispiel Status- und Fehlermeldungen eines digitalen Systems)
in der Regel auf den Einsatz von Unicode verzichtet und auf den weniger komplexen
ASCII-Code zuriickgegriffen.

2.,5.5 7-Segment-Code

Der 7-Segment-Code wird ausschlieflich zur Codierung von Zahlen verwendet, die
mithilfe einer einfachen Anzeige dargestellt werden sollen. Sehr weit verbreitet sind
7-Segment-Anzeigen in digitalen Weckern, in denen sie zur Anzeige der Uhrzeit die-
nen. Auch bei einfachen Taschenrechnern kommen Segment-Anzeigen zum Einsatz. Ein
Beispiel einer solchen Anzeige auf einer Platine fiir digitaltechnische Experimente ist in
Abb. 2.13 dargestellt.
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Tab. 2.13 Siebenstelliger
ASCII-Code
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Abb. 2.13 Vierstellige 7-Segment-Anzeige
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Die Darstellung der Ziffern wird hiufig durch Leuchtdioden realisiert, die in Form
einer eckigen 8 angeordnet sind. Durch Einschalten ausgewihlter Leuchtdioden kdnnen
nicht nur die Ziffern 0 bis 9, sondern auch die Hexadezimalziffern A bis F (zum Teil
als Kleinbuchstaben) angezeigt werden. Auf diese Weise kann pro Ziffer einer solchen
Anzeige der Wert von jeweils 4 Bits visualisiert werden.

Um Hexadezimalziffern mithilfe einer 7-Segment-Anzeige darstellen zu kdnnen, miis-
sen die 4 Bits einer Hexadezimalziffer in geeigneter Weise in 7 Bits zur Ansteuerung der
Leuchtdioden der Anzeige umgewandelt werden. In Tab. 2.14 ist eine hierfiir geeignete
Codierung dargestellt, wobei davon ausgegangen wird, dass eine 1 einer leuchtenden
LED entspricht. Tab. 2.14 zeigt die Zuordnung zwischen den Bits des Codewortes (a bis
g) und den LEDs der Anzeige (Abb. 2.14).

Tab. 2-1‘.4 Co.dierur}g e.iner Hex-Ziffer | Code fiir die Ansteuerung der Segmente

Hexademmalz%ffer fiir die a b c d o £ e

Ausgabe auf einer 7-Segment-

Anzeige 0 1 1 1 1 1 1 0
1 0 | 1 0 0 0 0
2 1 1 0 1 1 0 1
3 1 1 1 1 0 0 1
4 0 1 1 0 0 1 1
5 1 0 1 1 0 1 1
6 1 0 1 1 1 1 1
7 1 1 1 0 0 0 0
8 1 1 1 1 1 1 1
9 1 1 1 1 0 1 1
A 1 1 1 0 1 1 1
b 0 0 1 1 1 1 1
C 1 0 0 1 1 1 0
d 0 1 1 1 1 0 1
E 1 0 0 1 1 1 1
F 1 0 0 0 1 1 1

Abb. 2.14 Kennzeichnung I

der LEDs einer 7-Segment- f | | b

Anzeige mit den Buchstaben S

abisg e | | c

Q|
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2.6 Ubungsaufgaben

Priifen Sie sich selbst mithilfe der folgenden Aufgaben. Am Ende dieses Buches finden
Sie die Losungen.

Aufgabe 2.1
Stellen Sie die Dezimalzahl 57, in anderen Zahlensystemen dar:

a) bindr
b) oktal
¢) hexadezimal

Aufgabe 2.2
Welchen dezimalen Wert reprisentiert die Bitfolge ,,10010111%, wenn es sich

a) um eine vorzeichenlose Dualzahl handelt?
b) um eine Zweierkomplement-Zahl handelt?
¢) um eine BCD-codierte Zahl handelt?

Aufgabe 2.3
Wie viele Bits sind fiir die Darstellung des Wertes 3210 erforderlich, wenn als
Zahlendarstellung

a) die vorzeichenlose Dualzahlen-Darstellung gewihlt wird?
b) die binidre Vorzeichen-Betrag-Darstellung gewihlt wird?
c¢) die Zweierkomplement-Darstellung gewahlt wird?

Aufgabe 2.4
Welcher Zahlenbereich kann mit 8 Bits dargestellt werden, wenn die folgenden Darstel-
lungen gewihlt werden?

a) vorzeichenlos
b) Vorzeichen-Betrag
¢) Zweierkomplement

Aufgabe 2.5

Die nachfolgenden 6-Bit-Zahlen sollen addiert werden. Bestimmen Sie jeweils das (6 bit
breite) Ergebnis fiir den Fall, dass es sich um vorzeichenlose Dualzahlen handelt und
ermitteln Sie, ob bei der Addition ein Uberlauf auftritt.

a) 110011 + 001010
b) 100010 + 101001
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c) 010111 + 101101

d) Wie wiirden sich die Ergebnisse dndern, wenn die Operanden und das Ergebnis die
Zweierkomplement-Darstellung verwenden?

e) Was wiirde sich im Hinblick auf Bereichsiiberschreitungen (Uberlauf) #ndern, wenn
die Operanden und das Ergebnis die Zweierkomplement-Darstellung verwenden?

Aufgabe 2.6
Nachfolgend sind 8-Bit-Zahlen in Hexadezimal-Darstellung angegeben. Diese Zahlen
sollen addiert werden. Bestimmen Sie jeweils das Ergebnis in Hexadezimal-Darstel-
lung und ermitteln Sie, ob Bereichsiiberschreitungen auftreten. Die Zahlenwerte sollen
sowohl als vorzeichenlose Dualzahlen als auch als Zweierkomplement-Zahlen interpre-
tiert werden.

Hinweis: Sie konnen die Zahlen zunidchst in eine bindre Darstellung tiberfiihren,
eine bindre Addition durchfiihren und anschlieend das binédre Ergebnis in einer hexa-
dezimale Darstellung iiberfiihren. Einfacher ist es, wenn Sie die Subtraktion direkt in
der Hexadezimal-Darstellung durchfiihren. Wenden Sie hierzu die Rechenregeln aus der
Grundschule an und beachten Sie, dass der 10er-Ubergang des Dezimalsystems einem
16er-Ubergang im Hexadezimalsystem entspricht. Beide Wege fiihren zum Ziel.

a) 27+ 33
b) 9A + 89
¢) DE + CD

Aufgabe 2.7
Nachfolgend sind 8-Bit-Zahlen in Hexadezimal-Darstellung angegeben. Diese Zahlen
sollen subtrahiert werden. Bestimmen Sie jeweils das (8 bit breite) Ergebnis in Hexa-
dezimal-Darstellung und ermitteln Sie, ob Bereichsiiberschreitungen auftreten. Die
Zahlenwerte sollen sowohl als vorzeichenlose Dualzahlen als auch als Zweierkomple-
ment-Zahlen interpretiert werden.

Hinweis: Wie bei der Addition ist auch hier ist die Berechnung im Hexadezimalsys-
tem einfacher.

a) A9 —42
b) 83 — 37

¢) 5C - BF
Aufgabe 2.8

Welche besondere Eigenschaft besitzt der Gray-Code?
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Aufgabe 2.9
Welche der folgenden Bitfolgen sind Pseudotetraden des BCD-Codes? (mehrere Antwor-
ten konnen richtig sein)

a) 1000
b) 1011
¢) 1100
d) 1001

Aufgabe 2.10
Es wird ein 1-aus-8 Code betrachtet.

a) Welche Wortbreite besitzt ein Codewort?
b) Wie viele unterschiedliche Codeworter lassen sich darstellen?

Aufgabe 2.11

Achtung, Transferleistung erforderlich: Man kann theoretisch auch fiir das Dezimal-
system eine Komplementdarstellung wihlen, also eine Zahlendarstellung im ,,Zehner-
komplement“. Wie wiirden in dieser Zahlendarstellung die folgenden Werte dargestellt
werden, wenn 3 Dezimalstellen zur Verfiigung stehen?

a) 0
b) —1
c) —2

d) —10



Einflihrung in VHDL

In Kapitel 1 wurden bereits die wichtigsten Grundelemente digitaler Systeme vorgestellt.
Eine digitale Hardware verarbeitet Informationen, indem die Eingangssignale zum Bei-
spiel mithilfe von logischen Grundelementen, den Gattern, verkniipft werden. Wie kann
man nun festlegen wie die Gatter verschaltet werden sollen, um die Ausgangssignale
einer Schaltung zu berechnen?

Moglicherweise kennen Sie Schaltpline fiir elektrische Gerdte. Durch grafische
Symbole werden die Komponenten des Gerites beschrieben und die elektrischen Ver-
bindungen werden durch Striche dargestellt. Eine naheliegende Mdglichkeit wire es,
diese grafische Darstellung auch zur Spezifikation einer digitalen Schaltung zu verwen-
den. Die elektrisch zu verbindenden Komponenten kénnten dann zum Beispiel logische
Grundelemente sein. Man kann hierbei auch eine hierarchische Darstellung wihlen,
indem einzelne Elemente zu Blocken zusammenfasst werden, die dann in anderen Teilen
des Schaltplans als Module eingesetzt werden. Diese Form der Schaltungsbeschreibung
wurde tatsdchlich in den Anfingen der Digitaltechnik eingesetzt. Allerdings durchlief die
Digitaltechnik von Beginn an eine rasante Entwicklung. Bis heute verdoppelt sich etwa
alle zwei Jahre die Anzahl der Schaltfunktionen, die sich in einer einzelnen elektroni-
schen Komponente (einem ,,Chip*) integrieren lisst. Dies bedeutet unter anderem, dass
die Komplexitit digitaler Systeme kontinuierlich zunimmt. Mit den Fortschritten der
Digitaltechnik wurden die Schaltpline zunehmend komplexer und man suchte etwa ab
Mitte der 1980er-Jahre nach Alternativen zur Schaltplaneingabe.

Als Losung wurden die sogenannten Hardwarebeschreibungssprachen (engl. Hard-
ware Description Language, HDL) erfunden. Diese Sprachen ermoglichen es, die Funk-
tion einer digitalen Schaltung, dhnlich wie ein Programm fiir einen Rechner, in textueller
Form zu beschreiben. Im Gegensatz zu den iiblichen Software-Programmiersprachen wie
C/C++ oder Java, besitzen Hardwarebeschreibungssprachen Sprachelemente, die beson-
ders fiir die Beschreibung digitaler Hardware geeignet sind. In der Praxis werden zwei
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Beschreibungssprachen eingesetzt: Verilog und VHDL (Very High Speed Integrated Cir-
cuits Hardware Description Language). VHDL bietet gegeniiber Verilog einen grofleren
Funktionsumfang und wird daher meist als bevorzugte Sprache zur Beschreibung digita-
ler Systeme eingesetzt.

In diesem Kapitel werden die Grundlagen der Sprache VHDL vorgestellt. Nachdem
Sie dieses Kapitel gelesen haben, kennen Sie die wichtigsten Sprachelemente und sind in
der Lage eigene digitale Schaltungen in VHDL zu beschreiben. Praktische Hinweise fiir
die Durchfiihrung eigener VHDL-Experimente finden Sie auch auf der im Vorwort ange-
gebenen Internetseite zum Buch.

3.1 Designmethodik im Uberblick

Der Ausgangspunkt einer HDL-basierten Beschreibung sind eine oder mehrere VHDL-
Dateien, welche die Funktion der spiteren digitalen Hardware festlegen. Wie bei der
Erstellung von Software handelt es sich um Textdateien, die eine fiir den Menschen les-
bare Beschreibung der gewiinschten Module enthalten.

Nicht jeder syntaktisch richtige VHDL-Code kann auch in Hardware iiberfiihrt wer-
den. VHDL bietet zum Beispiel Sprachkonstrukte um Dateien einzulesen oder Texte
auszugeben. Diese Sprachelemente kdnnen nicht in Hardwaremodule iibersetzt werden.
Der Compiler, welcher aus den VHDL-Beschreibungen Hardware erzeugt, wiirde ent-
sprechende Warn- bzw. Fehlermeldungen ausgeben. Da der Ubersetzungsprozess in der
Regel als Synthese bezeichnet wird, spricht man auch von ,,synthesefihigem* oder ,,syn-
thetisierbarem‘ VHDL-Code.

Die nicht-synthetisierbaren Sprachelemente werden vielfach in sogenannten 7estben-
ches eingesetzt. Als eine Testbench wird VHDL-Code bezeichnet, der zur Uberpriifung
der Funktion des synthetisierten Codes geschrieben wurde.

Die VHDL-Dateien werden mithilfe eines sogenannten Simulators auf einem PC aus-
gefiihrt. Der Simulator ermoglicht es, den zeitlichen Verlauf aller Signale zu visualisie-
ren oder in Dateien auf dem PC abzulegen.

Fiir die Simulation werden die zu testenden VHDL-Module als Komponenten in
den Testbench-Code eingefiigt. Der Code der Testbench legt wechselnde Eingangssig-
nale (im Fachjargon ,,Stimuli*) an die Eingédnge der zu priifende Komponente an. Das
Konzept einer VHDL-Testbench, in die eine zu priifende VHDL-Komponente eingesetzt
wird, ist in Abb. 3.1 dargestellt.

Der zeitliche Verlauf von Eingangs- und Ausgangssignalen als auch von internen
Signalen einer VHDL-Beschreibung kann wéhrend der Simulation mithilfe sogenann-
ter Waveform-Viewer visualisiert werden. Die grafische Darstellung der Signalverldufe
gibt haufig wichtige Hinweise zur Lokalisierung eines Fehlers und ist ein nicht wegzu-
denkendes Handwerkszeug der VHDL-Entwicklung. Ein Beispiel fiir die Ausgabe eines
Waveform Viewers ist in Abb. 3.2 dargestellt. In diesem Beispiel wird das Ergebnis der
UND-Verkniipfung von a und b dem Signal ¢ zugewiesen.



3.1 Designmethodik im Uberblick 53

»Testbench*
(VHDL)
Testsignal Auswertung
Generator ,Priifling“ und

Ergebnisanzeige

(VHDL) Reaktion

Stimuli

Abb. 3.1 Verifikation einer Komponente mithilfe einer VHDL-Testbench
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Abb. 3.2 Waveform Viewer

In Abb. 3.3 ist der Ablauf eines VHDL-basierten Entwurfsprozesses dargestellt: Der
Ausgangspunkt sind VHDL-Dateien, welche die gewiinschte Funktion der digitalen
Hardware beschreiben. Dariiber hinaus werden Testbench-Dateien erstellt. Mithilfe der
Simulation der VHDL-Hardware-Module in Kombination mit den Testbench-Dateien
wird die korrekte Funktion der Hardware-Beschreibung iiberpriift und gegebenenfalls
entdecktes Fehlverhalten korrigiert. AnschlieBend kann die Synthese, also die Uberfiih-
rung der VHDL-Hardware-Beschreibungen in digitale Hardware, erfolgen. Auch nach
diesem Schritt konnen Anderungen am VHDL-Code erforderlich werden um beispiels-
weise den bendtigten Realisierungsaufwand zu reduzieren oder das zeitliche Verhalten
des Systems zu verbessern. Der Entwurfsprozess ist also ein iterativer Prozess, bei dem
(insbesondere bei komplexen Systemen) die Schritte Simulation und Synthese mehrfach
durchlaufen werden.
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Abb. 3.3 VHDL-basierter Entwurfsprozess

3.2 Grundstruktur eines VHDL-Moduls

Ein VHDL-Modul reprisentiert meistens einen Teil eines groferen Systems und wird in
Form einer Textdatei beschrieben. In diesem Abschnitt werden einige grundlegende Kon-
zepte und Sprachelemente vorgestellt, die bei einem VHDL-basierten Hardwareentwurf
verwendet werden.
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3.2.1 Bibliotheken

VHDL-Beschreibungen miissen vor ihrer Verwendung (in einer Simulation oder fiir die
Synthese) zunichst kompiliert werden. Die durch den Ubersetzungsvorgang erzeugte
bindre Beschreibung wird in einer sogenannten Bibliothek abgelegt und kann anschlie-
Bend mit anderen kompilierten VHDL-Beschreibungen zu einer Simulationsdatei bzw.
der zu realisierenden Hardware zusammengefiigt werden.

Es ist freigestellt, ob man fiir jedes VHDL-Modul eine eigene Bibliothek anlegt oder
ob mehrere VHDL-Dateien in einer gemeinsamen Bibliothek abgelegt werden. Insbeson-
dere fiir kleinere Systeme ist es hdufig vollig ausreichend, eine gemeinsame Bibliothek
fiir alle libersetzten VHDL-Dateien zu wihlen.

Ein Aufruf eines VHDL Compilers zum Ubersetzen der VHDL-Datei my_module.vhd
kann wie folgt aussehen:

vcom -work my_work_lib my module.vhd

In diesem Beispiel wird der VHDL-Compiler vcom aufgerufen. Mithilfe des
Schalters -work wird der Name der zu verwendenden Bibliothek angegeben — in die-
sem Beispiel my_work_lib.

Drei Bibliotheken sind besonders wichtig: work, std und ieee.

Der Bibliotheksname work ist ein Synonym fiir die jeweils aktuelle Arbeitsbiblio-
thek, in der die Ergebnisse des Ubersetzungsvorgangs abgelegt werden. Es ist zum Bei-
spiel moglich, alle VHDL-Elemente in einer Bibliothek my_work_lib abzulegen und die
bereits libersetzten Elemente wahlweise iiber den Namen work oder my_work_lib zu
referenzieren. Da work ein vordefinierter symbolischer Name fiir die aktuelle Arbeitsbi-
bliothek ist, sollte work nicht als Bibliotheksname verwendet werden. Andernfalls hitte
die Referenzierung der Bibliothek work zwei mogliche Bedeutungen: Es kann sich um
die aktuelle Arbeitsbibliothek (welche einen beliebigen Namen besitzen kann) oder um
die Bibliothek mit dem Namen work handeln.

In der Bibliothek std sind einige grundlegende Sprachkonstrukte und Datentypen defi-
niert. Dariiber hinaus enthilt die Bibliothek std auch Funktionen zur Ein- und Ausgabe.

Die Bibliothek ieee enthilt wichtige und hiufig verwendete Datentypen sowie viele
hilfreiche Funktionen. Die wichtigsten Elemente dieser Bibliothek werden im Verlauf
dieses Kapitels vorgestellt und in Kapitel 8 weiter vertieft.

Sollen Bibliotheken, die nicht bereits im VHDL-Standard vordefiniert sind (dies ist
fiir die Bibliotheken work und std der Fall), miissen sie vor ihrer Verwendung mithilfe
einer Library-Anweisung bekanntgemacht werden. AnschlieBend wird mithilfe einer
Use-Anweisung ausgewdhlt, welche Teile der Bibliothek in dem nachfolgenden VHDL-
Code verwendet werden sollen. Hinter dem Schliisselwort use folgt zunichst die Angabe
der gewtlinschten Bibliothek und dann, durch Punkte abgetrennt, das zu verwendenden
Paket der Bibliothek sowie die Elemente aus dem jeweiligen Paket. Meist ist eine expli-
zite Auswahl einzelner Elemente nicht erforderlich: Man wihlt mit dem Schliisselwort
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all einfach alle vorhandenen Elemente aus. Im nachfolgenden VHDL-Code stehen dann
alle Elemente des jeweiligen Bibliothekspakets zur Verfiigung.
Die folgenden Beispiele verdeutlichen die Syntax zur Verwendung von Bibliotheken:

-- Die Bibliotheken std und work benétigen keine Library-Anweilsung

-- mithilfe einer Use-Anwelsung werden die Teile der Bibliothek bekannt
-- gemacht, die in der nachfolgenden VHDL-Beschreibung verwendet

-- werden

-- Verwendung von Ein-/Ausgabe-Funktionen aus der Bibliothek std

use std.textio.all;

-- Verwendung von Funktionen eines eigenen Paketes, welches bereits
-- 1in der aktuellen Arbeitsbibliothek abgelegt (libersetzt) worden ist
use work.my_package.all;

-- Verwendung von Datentypen, Funktionen etc.

-- wie sie im IEEE-Standard 1164 festgelegt worden sind

library ieee;

use ieee.std_logic_1164.all;

3.2.2 Entity und Architecture

VHDL-Beschreibungen entsprechen einzelnen Hardware-Komponenten. Damit eine sol-
che Komponente vollstindig beschrieben ist, miissen vor allem zwei Teile der Beschrei-
bung erstellt werden:

1. Die dufleren Anschliisse der Komponente: Welche Signale werden in das Modul hin-
eingefiihrt und welche kommen heraus? Welche Wortbreite haben die Signale?

2. Die Funktion des Moduls: Nach welcher digitalen Rechenvorschrift werden die Aus-
gangssignale aus den Eingangssignalen berechnet?

Die Beschreibung der ,.Sicht von auflen” wird als Entity und das ,Innenleben* als
Architecture bezeichnet. Diese beiden Teile eines VHDL-Moduls werden hiufig in
einer gemeinsamen Textdatei abgelegt. Die Beschreibung einer Entity beginnt mit dem
VHDL-Schliisselwort entity. Der Name des Moduls wird durch die Schliisselworter entity
und is eingerahmt. Das Ende der Entity-Beschreibung wird durch end gekennzeich-
net. Zwischen dem Beginn und dem Ende der Entity werden die von auflen sichtbaren
Eigenschaften des Moduls definiert. Anschliisse fiir Eingangs- und Ausgangssignale, im
englischen Sprachgebrauch als Ports bezeichnet, werden in Form einer Liste angegeben,
welche mit dem Schliisselwort port eingeleitet wird. Der eigentliche Inhalt der Portliste
wird in Klammern angegeben, wobei die einzelnen Listenelemente durch ein Semikolon
voneinander getrennt werden. Fiir jeden Port wird ein Name angegeben und festgelegt,
ob es sich um einen Eingang oder einen Ausgang handelt (Schliisselworter in und out).
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Dariiber hinaus muss fiir die Anschliisse ein Datentyp angegeben werden. In der Pra-
xis hat sich fiir die Beschreibungen einzelner Bits der Datentyp std_logic (gesprochen:
,standard logic*) durchgesetzt, welcher durch die Norm IEEE 1164 definiert ist. Um
diesen Datentyp verwenden zu konnen, muss das Paket std_logic_1164 aus der IEEE-
Bibliothek hinzugefiigt werden.

Betrachten wir das Beispiel eines UND-Gatters mit zwei Eingingen. Die Entity kann
in VHDL wie folgt realisiert werden:

library ieee;
use ieee.std_logic_1164.all;
entity and_2 is
port (a : in std_logic;
b : in std_logic;
g : out std_logic);
end;

Grof3- und Kleinschreibung wird in VHDL nicht unterschieden und daher kann fiir
alle Sprachelemente sowohl Grof- als auch Kleinschrift verwendet werden. Selbst
Mischformen sind erlaubt und syntaktisch korrekt. So kann das Schliisselwort entity
auch Entity oder eNTiTy geschrieben werden.

Die Architecture-Beschreibung startet mit dem Schliisselwort architecture, gefolgt
von einem Namen der Architecture. Welcher Entity die Architecture zuzuordnen ist, wird
direkt danach mit of festgelegt. Zwischen den Schliisselwortern begin und end wird der
VHDL-Code eingefiigt, der die Funktion des Moduls beschreibt. Die Architecture eines
UND-Gatters ist recht iibersichtlich. Die Zuweisung der UND-Verkniipfung der beiden
Einginge an den Ausgangsport benétigt nur eine Codezeile.

architecture behave of and_2 is
begin

g <= a and b;
end;

3.2.3 Bezeichner

Namen von VHDL-Elementen wie zum Beispiel Entity-, Architecture-, oder Signalna-
men usw. beginnen immer mit einem Buchstaben. AnschlieBend sind sowohl Buchstaben
als auch Zahlen oder der Unterstrich ,,_* erlaubt. Die Verwendung von Schliisselwortern
ist nicht erlaubt. In Tab. 3.1 sind die VHDL-Schliisselworter zusammengefasst.

Es ist nicht unbedingt notwendig die Bedeutung aller Schliisselworter zu verstehen.
Einige der reservierten Worter werden selbst von Experten nur selten verwendet.
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Tab. 3.1 Ubersicht iiber reser-

abs downto library postponed | srl
vierte Worter der Hardwarebe-
schreibungssprache VHDL access else linkage | procedure | subtype
after elsif literal process then
alias end loop pure to
all entity map range transport
and exit mod record type
architecture | file nand register unaffected
array for new reject units
assert function | next rem until
attribute generate | nor report use
begin generic not return variable
block group null rol wait
body guarded | of ror when
buffer if on select while
bus impure open severity with
case in or signal Xnor
component inertial others shared Xor
configuration |inout out sla
constant is package | sll
disconnect label port sra

Fiir die Erstellung von VHDL-Code ist ein kontextsensitiver Editor empfehlenswert,
der Schliisselworter automatisch farblich hervorhebt. Damit kann zum Beispiel erkannt
werden, ob versehentlich ein Schliisselwort als Bezeichnung eines VHDL-Elements ver-
wendet wird.

3.3  Grundlegende Datentypen

Genauso wie Programmiersprachen zur Entwicklung von Software, stellt VHDL ver-
schiedene Datentypen zur Verfiigung. In diesem Abschnitt werden die wichtigsten
Datentypen vorgestellt.

3.3.1 Integer

Mithilfe des Datentyps integer konnen ganze Zahlen im Bereich von —23! bis 42311
dargestellt werden, also der Zahlenbereich, welcher mit einer 32 bit breiten Zweierkom-
plementzahl dargestellt werden kann.
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Das Syntheseprogramm, das die VHDL-Beschreibung in Hardware {tiberfiihrt, wird
fiir Integer-Werte zunéchst eine Wortbreite von 32 Bit annehmen — unabhéngig davon,
ob diese Wortbreite fiir die zu verarbeitenden Daten wirklich benétigt wird. Es besteht
daher die Gefahr, dass das Syntheseprogramm nicht erkennt, dass die in VHDL beschrie-
bene Aufgabe auch mit einer geringeren Wortbreite 16sbar ist und letztlich eine Schal-
tung fiir 32 Bit realisiert, obwohl auch eine weniger komplexe Schaltung ausreichen
wiirde. Um diese Gefahr zu vermeiden kénnen die im Folgenden vorgestellten Datenty-
pen std_logic_vector, signed und unsigned eingesetzt werden. Sie zeichnen sich dadurch
aus, dass man die zu verwendende Wortbreite explizit angibt.

3.3.2 Std_logic

Der Datentyp std_logic wurde bereits weiter vorne in diesem Kapitel zur Beschreibung
einzelner Bits eingefiihrt. Dieser Datentyp reprisentiert ein einzelnes Bit, das die Werte
0 oder 1 annehmen kann. Der Datentyp std_logic bietet dariiber hinaus noch weiterge-
hende Moglichkeiten.

So wird zur Beschreibung des Einschaltzustands eines Signals, welcher zufillig O
oder 1 sein kann, ein weiterer Wert bendtigt. Der Datentyp std_logic bietet hierfiir den
Wert Undefined an, welcher mit dem Buchstaben U abgekiirzt wird.

Neben 0, 1, und U bietet der Datentyp noch sechs weitere Werte. Eine Ubersicht iiber
die neunwertige Logik des Datentyps std_logic ist in Tab. 3.2 dargestellt.

Nicht alle neun moglichen Werte sind gleichermallen praxisrelevant. Einige konnen
zum Beispiel verwendet werden, wenn Ausginge mehrerer Gatter auf eine gemeinsame
Leitung gefiihrt werden. Hierzu zéhlen die Werte Z, L, H und W. Die Moglichkeit, meh-
rere Gatterausgénge an eine gemeinsame physikalische Leitung anzuschlie3en, ist jedoch
ein Sonderfall.

Es verbleiben neben der O und der 1 also noch die Werte U, X und — (Don’t-Care).
Obwohl Sie diese Werte in einer realen Schaltung nicht beobachten werden, da die

Tab. 3.2 Werte des Datentyps  wert Bedeutung
std_logic -
0 Logische 0
1 Logische 1
U Undefiniert
X Unbekannt

- ,Don’t-Care® (fiir Eingéinge: Wert ist beliebig)

Hochohmig

»Schwache* logische 0

Schwache* logische 1

LGS

.Schwach* unbekannt
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Leitungen entweder den Wert O oder den Wert 1 besitzen, sind die zusitzlichen Signal-
zustdnde hilfreich. Die Werte U und X werden Ihnen bei der Simulation eines VHDL-
Modells begegnen. Der Wert U deutet darauf hin, dass sich in der simulierten Schaltung
Signale befinden, die noch nicht auf einen definierten Wert initialisiert worden sind. Ins-
besondere zu Beginn einer Simulation werden Sie viele Signale mit dem Wert U beob-
achten konnen. Aufgrund von VHDL-Zuweisungen werden diese Signale meist relativ
schnell einen definierten Wert (meist O oder 1) erhalten. Ist ein Signal mit dem Wert U
langer zu beobachten, sollte der Grund fiir dieses Verhalten analysiert werden. Es kann
sein, dass die fehlende Zuweisung eines Wertes an dieses Signal einen Fehler darstellt,
der zu einem Fehlverhalten der Hardware fiihren kann.

Der Wert X tritt auf, wenn unbeabsichtigt zwei Ausgidnge mit unterschiedlichen logi-
schen Werten auf das gleiche Signal gefiihrt werden. Dariiber hinaus kann der Wert X
in der Simulation entstehen, wenn undefinierte oder unbekannte Signale in logischen
Verkniipfungen verwendet werden. Werden in einer Simulation Signale mit dem Wert
X beobachtet, muss die Ursache fiir dieses Verhalten untersucht werden. In den meis-
ten Fillen liegt ein Fehler im VHDL-Code vor, welcher vor dem Umsetzen der VHDL-
Beschreibung in Hardware behoben werden muss.

Mithilfe des Wertes Don’t-Care kann in einer VHDL-Beschreibung zum Ausdruck
gebracht werden, dass der Wert eines bestimmten Signals unerheblich fiir die Funktion
der Schaltung ist und somit dieses Signal fiir die Berechnung der Ausgangswerte nicht
beachtet werden muss. Meist kann diese Information bei der Optimierung der synthe-
tisierten Hardware verwendet werden, sodass eine schnellere oder weniger aufwendige
Hardware erzeugt werden kann.

3.3.3 Std_logic_vector

Viele digitale Systeme lassen sich einfacher und iibersichtlicher in VHDL beschreiben,
wenn man die Moglichkeit nutzt, einzelne Bits zu gruppieren. Hierzu kann der Datentyp
std_logic_vector (beziehungsweise std_ulogic_vector) verwendet werden.

Die Indexgrenzen des Vektors werden in Klammern angegeben. Meist wird hierbei
eine absteigende Indizierung verwendet, zum Beispiel (7 downto 0).

Nehmen wir an, Sie mochten eine Schaltung realisieren, die vier UND-Gatter mit
jeweils zwei Eingéngen enthalten soll. Selbstverstdndlich kann man diese Schaltung mit-
hilfe von 8 Eingingen und 4 Ausgidngen vom Datentyp std_logic realisieren. Allerdings
wiirde in diesem Fall die Entity-Beschreibung des Moduls 12 Ports enthalten und in der
Architecture miissten vier Signalzuweisungen, fiir jeden der vier Ausginge der Schal-
tung, vorgenommen werden.

Die Problemstellung lisst sich bei Verwendung des Datentyps std_logic_vector deut-
lich tibersichtlicher 16sen:
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library ieee;
use ieee.std_logic_1164.all;

entity and_2x4 is
port (a : in std_logic_vector (3 downto 0);
b : in std_logic_vector (3 downto 0);
g : out std_logic_vector (3 downto 0));
end;

architecture behave of and_2x4 is
begin

g <= a and b;
end;

VHDL unterstiitzt Operatoren, die auf Vektoren angewendet werden. In der Codezeile
q <= a and b wird dies ausgenutzt. Diese Zeile fiihrt eine bitweise UND-Verkniipfung
der einzelnen Komponenten der Vektoren a und b aus und weist das Ergebnis den jewei-
ligen Bits des Ausgangs g zu. Es wire auch moglich, diese Zuweisungen explizit auszu-
fiihren, indem auf die einzelnen Elemente der Vektoren zugegriffen wird:

architecture behave 2 of and _2x4 is

begin
g(0) <= a(0) and b(0);
g(l) <= a(l) and b(1l);
g(2) <= a(2) and b(2);
g(3) <= a(3) and b(3);
end;

Diese Schreibweise wiirde zum gleichen Ergebnis fiihren wie die UND-Verkniipfung
auf Basis von Vektoren. Es ist eine Frage des ,,Coding-Styles* welche der beiden Varian-
ten bevorzugt wird. Im Allgemeinen sollte jedoch aus Griinden der Ubersichtlichkeit die
vektorielle Schreibweise vorrangig verwendet werden.

Im Zusammenhang mit Vektoren wird haufig die Frage gestellt, ob es moglich ist, die
Elemente eines Vektors zu vertauschen indem ein Vektor mit absteigender Indizierung
(zum Beispiel 7 downto 0) einem Vektor mit aufsteigender Indizierung (zum Beispiel 0
to 7) zugewiesen wird. Obwohl die Elementanzahl in den Vektoren iibereinstimmt, ist
eine solche Zuweisung nicht zuldssig. Die beiden Vektoren besitzen unterschiedliche
Datentypen und diirfen daher nicht direkt einander zugewiesen werden.

3.3.4 Signed und Unsigned

Der Datentyp std_logic_vector ist eine Zusammenfassung einzelner Bits zu einem Vek-
tor. Welche Information durch den Bitvektor dargestellt wird, ist durch den Datentyp
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nicht eindeutig definiert. Es konnten vollig unabhingige Bits sein, die aus Griinden der
Ubersichtlichkeit gruppiert wurden. Genauso gut konnte die Zusammenfassung der Bits
einen Zahlenwert darstellen. Im letzteren Fall wire es wiinschenswert, dass fiir die Vek-
toren nicht nur logische Funktionen, sondern auch arithmetische Operationen wie Addi-
tion oder Subtraktion definiert wiren.

VHDL verwendet im Hinblick auf den Datentyp std_logic_vector eine strikte Philo-
sophie: Der Datentyp std_logic_vector beschreibt die Zusammenfassung einzelner Bits.
Dass diese Bits gemeinsam betrachtet einen Zahlenwert darstellen konnten, wird von
VHDL ausgeschlossen und es werden im Sprachstandard keine arithmetischen Operatio-
nen dafiir zur Verfiigung gestellt.

Soll in VHDL die Kombination einzelner Bits als eine Zahl interpretiert werden,
werden die Datentypen signed und unsigned verwendet. Ahnlich wie beim Datentyp
std_logic_vector konnen mit signed und unsigned beliebig grofle Vektoren gebildet wer-
den. Die Bits werden als eine Zweierkomplementzahl beziehungsweise als vorzeichen-
lose Dualzahl interpretiert werden.

Diese Datentypen sind ebenfalls vom IEEE standardisiert worden und stehen im Paket
numeric_std der IEEE-Bibliothek zur Verfiigung. Fiir diese Datentypen sind arithmeti-
sche Operationen wie die Addition definiert und eine Addiererschaltung fiir vorzeichen-
lose Zahlen mit der Wortbreite 4 bit kann wie folgt implementiert werden:

library ieee;
use ieee.numeric_std.all;

entity addu_4 is
port (a : in unsigned (3 downto 0);
b : in wunsigned (3 downto 0);
g : out unsigned (3 downto 0));
end;

architecture behave of addu_4 is
begin

g <= a + b;
end;

3.3.5 Konstanten

Mochte man einem Signal eine Konstante zuweisen, muss hierbei auf den Daten-
typ geachtet werden. Bei Signalen vom Datentyp integer erfolgt die Zuweisung — wie
in einer Software-Programmiersprache — in Form einer dezimalen Zahl. Mdéchte man
dagegen den Zahlenwert in hexadezimaler, binédrer oder einer anderen nicht-dezimalen
Schreibweise angeben, muss vor der Zahl der Radix der Zahlendarstellung angegeben
werden. Die nachfolgende Zahl wird durch Doppelkreuze (#) eingerahmt. So wiirde die
Hexadezimalzahl BEEF im VHDL-Code als /16#BEEF# angegeben werden.



3.3 Grundlegende Datentypen 63

Konstanten vom Datentyp std_logic_vector oder signed bzw. unsigned werden in
Anfiihrungszeichen in bindrer Form angeben. Mit einem vorangestellten x lassen sich die
Werte auch in hexadezimaler Schreibweise angeben, wobei jede Hexadezimalstelle exakt
4 bit représentiert.

Die Zuweisung eines std_logic-Wertes erfolgt in einfachen (halben) Anfiihrungszeichen.

Die folgenden Beispiele verdeutlichen die Moglichkeiten zur Angabe von Konstanten.

-- Exemplarische Konstantenzuweisungen

i <= 1234; -- integer, dezimal

i <= 16#ABC#; -- integer, hexadezimal

i <= 8#175#%; -- integer, oktal

i <= 2#01010111#; -- integer, dual

sv8 <= "01000111"; -- std _logic_vector

sv8 <= "Q0UUX011l1l"; -- std _logic_vector

sv8 <= xX"EF"; -- std_logic_vector, hexadezimal
s <= '1'; -- std_logic

b <= true; -- boolean

Sehr niitzlich ist die Zuweisung mithilfe der Others-Funktion. Diese ermdglicht es
einzelnen Elementen eines Vektors Werte zuzuweisen und den restlichen Elementen
(others) einen anderen Wert. Die Syntax wird durch die folgenden Beispiele verdeutlicht:

-- Diese Zeilen kénnen..
svl <= "01000001";
sv2 <= "00111101";
sv3 <= "00000000";
-- .. mit Hilfe von "others" auch so formuliert werden:

svl <= (0,6=>'1', others=>'0");
sv2 <= (7,6,1 =>'0', others=>'1");
sv3 <= (others=>'0");

3.3.6 Umwandlung zwischen Datentypen

Fiir die Umwandlung zwischen den Datentypen integer, signed/unsigned und std_logic_
vector stehen verschiedene Funktionen zur Verfiigung. So lésst sich beispielsweise ein
Unsigned- bzw. Signed-Wert mit der Funktion fo_integer() in einen Integer-Wert umwan-
deln. Fiir die umgekehrte Typumwandlung steht die Funktion to_unsigned() beziehungs-
weise fo_signed() zur Verfligung. Fiir eine Umwandlung vom Datentyp unsigned bzw.
signed in den Datentyp std_logic_vector kann die Funktion std_logic_vector() verwendet
werden. Eine Umwandlung in die Datentypen signed und unsigned kann entsprechend
mit den Funktionen signed() und unsigned() erfolgen.

In Abb. 3.4 sind die Funktionen zur Umwandlung zwischen den Datentypen std_
logic_vector; signed/unsigned und integer grafisch dargestellt.
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std_logic_vector (x) to_unsigned (x,N)

unsigned (x) to_integer (x)

std logic vector

signed (x) to_integer (x)

std_logic_vector (x) to_signed (x,N)

x: umzuwandelnder Wert
N: Wortbreite

Abb. 3.4 Umwandlung zwischen wichtigen VHDL-Datentypen

Eine Umwandlung vom Datentyp integer in den Datentyp std_logic_vector kann nicht
direkt erfolgen, sondern erfordert immer einen Zwischenschritt iiber den Datentypen sig-
ned bzw. unsigned.

Einige Beispiele fiir die Umwandlung der VHDL-Datentypen sind im Folgenden
dargestellt.

-- Exemplarische Typumwandlungen

i <= to_integer (s8) ; -- signed -> integer

u8 <= to_unsigned (i, 8); -- integer -> unsigned

s8 <= to_signed(-123,8); -- Ganzzahlige Konstante: Datentyp Integer
slv8 <= std_logic_vector (u8); -- unsigned -> std_logic_vector

i <= to_integer (unsigned(slv8)) ; -- std_logic_vector -> integer
slv8 <= std_logic_vector (to_signed(i,8)); -- integer -> std_logic_vector

3.3.7 Datentyp Bit

In VHDL existiert auch der Datentyp bit. Objekte dieses Typs konnen die Werte 0 bzw.
1 annehmen, was auf den ersten Blick ausreichend erscheinen mag. In der Praxis besteht
jedoch hiufig der Wunsch einem Signal noch weitere Zustidnde, auBer O oder 1, zuwei-
sen zu konnen. Ein typisches Beispiel hierfiir ist der Zustand eines Signals nach dem
Einschalten eines Systems. Ist es O oder ist es 1? Moglicherweise ,,fallt™ das Signal auf
einen zufilligen Initialwert, es ist also nach dem Einschalten manchmal 0 und manch-
mal 1. Der Einschaltzustand des Signals ist also weder eindeutig 0 noch eindeutig 1,
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sondern undefiniert. Die Modellierung des undefinierten Einschaltzustands ist mithilfe
des Datentyps std_logic moglich, mit dem Datentyp bit dagegen nicht. Daher wird in
der Praxis der Typ std_logic bevorzugt eingesetzt und hat die Verwendung des Typs bit
verdringt.

3.4 Operatoren

Die UND-Verkniipfung wurde bereits in den vorangegangenen Abschnitten einge-
fiihrt. In diesem Abschnitt werden nun weitere wichtige Operatoren vorgestellt, die zur
Beschreibung der Funktion einer Schaltung eingesetzt werden konnen. Nicht alle Opera-
toren lassen sich mit allen Datentypen verwenden. So ist es zum Beispiel nicht moglich
zwei Werte vom Datentyp std_logic_vector zu addieren.

In den Tab. 3.3, 3.4 und 3.5 folgenden Tabellen sind wichtige VHDL-Operatoren
zusammengestellt. Die Datentypen integer, signed und unsigned werden hierbei unter
dem Begriff ,,numerisch* zusammengefasst.

Die folgenden Beispiele sollen den Einsatz der Operatoren in VHDL verdeutlichen:

-- Beispiele flir die Verwendung von VHDL-Operatoren

a <= b or c; -- Bitweilises ODER
sigl <= not sig2; -- Bitweise Invertierung
u8_1 <= u8_2 + "00000011"; -- Addition
u8 <= to_unsigned(2**7,8); -- Potenzierung
if s8 = to_signed(3,8) then -- Vergleich

slv5_1 = slv5_2 mand slv5_3; -- NAND (Nicht-UND)
end if;

Bei den arithmetischen Operatoren ist zu beachten, dass die Wortbreite des Ergeb-
nisses mit der Wortbreite der Operanden identisch sein muss. Sie mogen vielleicht
spontan einwenden wollen, dass dies zu Problemen fiihren kann: Wenn beispielsweise
zwei 8 Bit breite vorzeichenlose Zahlen (Wertebereich: 0 ... 255) addiert werden

Tab. 3.3 Logische VHDL-Operatoren

Schreibweise | Bedeutung Datentypen Synthetisierbar?
and UND-Verkniipfung std_logic, std_logic_vector, |Ja

or ODER-Verkniipfung signed, unsigned

nand Nicht-UND-Verkniipfung

nor Nicht-ODER-Verkniipfung

Xor Exklusiv-ODER-Verkniipfung

not Invertierung
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Tab. 3.4 Arithmetische VHDL-Operatoren

Schreibweise | Bedeutung Datentypen Synthetisierbar?

+ Addition Numerisch Ja

- Subtraktion

* Multiplikation

/ Division Abhingig vom verwendeten
mod Quotient der Ganzzahldivision Synthese-Programm

rem Rest der Ganzzahldivision

ok Potenzierung Integer Falls Konstanten

abs Absolutwert Numerisch Ja

Tab.3.5 VHDL-Operatoren Schreibweise | Bedeutung Datentypen | Synthetisierbar?
fr Vergleiche - Gleich Beliebig | Ja

/= Ungleich

> GroBer Numerisch

< Kleiner

>= Grofer-gleich

<= Kleiner-gleich

sollen, wiirde das Ergebnis in einem Bereich von 0 bis 510 liegen konnen. Es wiren
also zur Darstellung des Ergebnisses 9 Bit erforderlich. Dieser Einwand ist vollig kor-
rekt und in VHDL wiirde das 8 Bit breite Ergebnis der Addition tatsichlich nur die
untersten Bits des ,,wahren* Ergebnisses enthalten. Wiirden beispielsweise die Zahlen
65 und 250 addiert (65 + 250 = 315 = 100111011,), wiirde dem Ergebnissignal der
bindre Wert 00111011 zugewiesen — die fithrende 1 ginge verloren. Soll bei der Addi-
tion das korrekte 9 Bit breite Ergebnis berechnet werden, muss die Addition mit 9 Bit
breiten Operanden ausgefiihrt werden. Dies ldsst sich erreichen, indem die Wortbreite
der Operanden um 1 bit vergroBert wird. Eine mogliche Realisierung in VHDL zeigt
der nachfolgende Code:

-- Addition mit vorheriger Erweilterung der Operanden
sum <= '0' & opl + '0' & op2; -- fiir Datentyp unsigned
sum <= opl(7) & opl + op2(7) & op2; -- filr Datentyp signed

Dieser VHDL-Code verwendet den Operator & mit dem zwei Vektoren zu einem
neuen Vektor mit groerer Wortbreite ,,zusammengefiigt werden konnen. Der Operator
lasst sich mit allen vektoriellen Datentypen, also signed, unsigned und std_logic_vector
verwenden. Die folgenden Beispiele verdeutlichen die Funktionsweise des Operators:
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-- Exemplarische Anwendungen des "Zusammenfiigeoperators"

sv6 <= "010" & '1l' & "100" & '0'; -- Ergebnis: "01011000"
svl0 <= "00" & sv8; -- Vorzeichenlose Erweiterung 8 bit -> 10 bit
s9 <= s8(7) & s8; -- Vorzeichenerweilterung eines signed-Wertes

-- "Rotieren" eines 6 bit breiten Wertes um zweli Stellen nach rechts
-- Beispiel: Aus "011001" wird "010110"
sv6 <= sv6 (1l downto 0) & sv6 (5 downto 2);

3.5 Signale

Die Ausgangswerte komplexerer Schaltungen lassen sich normalerweise nicht durch
eine ausschlieBliche Verkniipfung der Eingangssignale beschreiben. Haufig mochte man
zunichst Zwischenergebnisse berechnen, deren anschlieende Verkniipfung weitere Zwi-
schenergebnisse oder die Werte der Ausgangssignale ergeben. Diese Zwischenergebnisse
sind letztlich nichts anderes als digitale Signale, die nur innerhalb des Moduls verwendet
werden und nicht von auflen sichtbar sind. Fiir die Definition solcher Signale steht in
VHDL das Schliisselwort signal zur Verfiigung.

3.5.1 Definition und Verwendung von Signalen

Nehmen wir an, die in Abb. 3.5 dargestellte Schaltung soll in VHDL beschrieben werden.

Die Eingédnge a und b werden durch ein UND-Gatter zum Signal z verkniipft, welches
nur innerhalb des Moduls sichtbar ist. Mithilfe der ODER-Verkniipfung von z und dem
Eingangssignal ¢ wird das Ausgangssignal g berechnet. Die Signale a, b und ¢ sind Ports
der Entity dieses Moduls. Das Signal z muss dagegen in der Architecture des Moduls
definiert werden. VHDL stellt hierfiir das Schliisselwort signal zur Verfiigung. Hinter
dem Schliisselwort signal werden der gewiinschte Signalname sowie der Datentyp des
Signals angegeben. Signale werden im sogenannten Deklarationsteil der Architecture
definiert, welcher sich vor dem begin der Architecture befindet.

Abb. 3.5 Beispiel einer a—| z
logischen Funktion b &

N
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Die VHDL Beschreibung des Moduls wiirde also wie folgt realisiert werden:

library ieee;
use ieee.std_logic_1164.all;

entity and_or is
port (a : in std_logic;
b : in std_logic;
c : in std_logic;
g : out std_logic);
end;

architecture behave of and_or is
-- Hier ist der Deklarationsteil der Architecture
-- Signale werden hier definiert
-- und kénnen nach "begin" verwendet werden
signal z : std_logic;

begin
z <= a and Db;
g <= Z or cC;

end;

3.5.2 Signalzuweisungen

In dem obigen Beispiel ist die Reihenfolge der Zuweisungen an das Signal z bzw. den Port

q unerheblich. Anders als in einer Programmiersprache fiir die Softwareentwicklung wird

der Code innerhalb einer Architecture nicht sequenziell, Zeile fiir Zeile, ausgefiihrt, sondern

alle Zuweisungen sind zeitgleich aktiv. Der Fachbegriff hierfiir ist nebenldufige Zuweisung.
Es wire also ebenso korrekt, den Code wie folgt umzustellen:

architecture behave 2 of and or is

signal z : std_logic;

begin
g <= z or c; -- zuerst die Zuweisung an q
z <= a and b; -- dann erst an z

end;

Hat man bereits Erfahrungen mit Programmiersprachen fiir die Softwareentwicklung
gesammelt, mag dieses Verhalten zunichst ungewohnlich erscheinen. Aber eine genau-
ere Betrachtung zeigt, dass sich die Zuweisungen genauso verhalten miissen: Ein Gat-
ter in einer digitalen Schaltung reagiert immer auf die Signale an den Gattereingéngen,
unabhingig davon, ob andere Gatter in der Schaltung existieren oder ob andere Gatter
ebenfalls Anderungen ihrer Eingangssignale beobachten. Somit sind die beiden Gatter
der Beispielschaltung also immer und unabhingig voneinander aktiv. Das UND-Gatter
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wird immer dann einen neuen Wert ausgeben, wenn sich einer der beiden Eingénge a
oder b geindert hat, wihrend eine Anderung von z oder ¢ zu einer Neuberechnung des
Ausgangs ¢ fiihrt. Um dieses Verhalten beschreiben zu konnen, miissen auch die VHDL-
Zuweisungen kontinuierlich und unabhingig voneinander aktiv sein. Wiirde dagegen
eine Zuweisung von der Ausfithrung einer vorangegangenen Zuweisung abhingen,
ergibe sich eine Abhingigkeit, die nicht dem Verhalten der Hardware entspriche.

Selbstverstindlich hitte diese recht einfache Schaltung iibrigens auch mithilfe einer
einzelnen Zuweisung in der Form

g <= (a and b) or c;

realisiert werden konnen, wobei dann auf die Definition des Signals Z verzichtet wer-
den kann.

In welchem Umfang Signale eingesetzt werden ist auch eine Frage der Ubersichtlichkeit
des Codes. Werden mehr als zwei oder drei Operatoren in einer Zuweisung verwendet, emp-
fiehlt sich in der Regel der Einsatz von Signalen, um die Lesbarkeit des Codes zu verbessern.

3.6 Prozesse

In den vorangegangenen Beispielen wurden Signalen oder Ports Werte zugewiesen.
Hierzu wurden einfache Zuweisungen verwendet. Mithilfe der vorgestellten Opera-
toren kann man unter Verwendung dieser einfachen Zuweisungen theoretisch belie-
big komplexe Schaltungen in VHDL realisieren. Dieses Vorgehen kann allerdings ein
recht miihseliges und fehlerbehaftetes Abenteuer werden: Die logische Funktion, die es
zu realisieren gilt, miisste zunidchst manuell so umgewandelt werden, dass sie mithilfe
der vorgestellten Operatoren darstellbar ist. Erst danach kann die Eingabe des VHDL-
Codes erfolgen. Selbst wenn die Umwandlung der Funktion fehlerfrei gelingt, wire der
anschlieBend formulierte VHDL-Code in vielen Fillen schlecht lesbar. Spitere Anderun-
gen der Funktion wiren damit schwierig.

Geht es also vielleicht auch etwas eleganter und iibersichtlicher? Kann man vielleicht
auch in VHDL die aus Programmiersprachen bekannten Konstrukte wie Schleifen oder
Verzweigungen zur Beschreibung einer digitalen Funktion verwenden? Alle Signal- oder
Portzuweisungen werden zeitgleich (parallel, nebenldufig) ausgefiihrt. Mit zunehmender
Komplexitit eines VHDL-Moduls kann dies die Verstindlichkeit des Codes weiter ver-
ringern. Wire es daher nicht angenehmer, wenn VHDL-Code sequenziell (wie ein Pro-
gramm einer Software-Programmiersprache) ausgefiihrt wiirde?

Fiir die Losung der skizzierten Problematik existiert in VHDL das Sprachkonstrukt
eines Prozesses. Prozesse sind eines der wichtigsten Elemente zur Beschreibung von
Hardware in VHDL. Ein VHDL-Prozess kann als Erweiterung der Zuweisungen aufge-
fasst werden. Genauso wie eine nebenldufige Zuweisung beschreibt ein VHDL-Prozess
das Verhalten einer Teilschaltung des Systems und wird innerhalb einer Architecture
eingesetzt.
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Prozesse zeichnen sich unter anderem durch die folgenden Eigenschaften aus:

e Ein Prozess wird nebenldufig zu anderen Prozessen oder Signalzuweisungen ausgefiihrt.

e VHDL-Code innerhalb eines Prozesses wird sequenziell ausgefiihrt.

e Innerhalb eines Prozesses konnen Konstrukte wie sie aus Software-Programmierspra-
chen bekannt sind, zum Beispiel If-Else-Anweisungen oder Variablen, zur Beschrei-
bung der Funktion des Prozesses eingesetzt werden.

e Genauso wie nebenldufige Signalzuweisungen reprisentiert ein Prozess ein Stiick
Hardware, welches einen Teil der digitalen Gesamtfunktion des Systems zur Verfii-
gung stellt.

Im Folgenden werden einige wichtige Aspekte von Prozessen niher beleuchtet und
vertieft.

3.6.1 Syntaktischer Aufbau von Prozessen

Prozesse werden mithilfe des Schliisselwortes process eingeleitet. Wie bei einer VHDL-
Architecture beginnt die eigentliche Beschreibung des Verhaltens nach dem Schliissel-
wort begin. Zwischen process und begin befindet sich der Deklarationsteil, welcher zum
Beispiel zur Definition von Variablen verwendet werden kann.

Im Gegensatz zu nebenldufigen Signalzuweisungen werden Prozesse nicht automa-
tisch ausgefiihrt, wenn sich eines der verkniipften Signale dndert. Die im Rahmen die-
ses Kapitels betrachteten Prozesse besitzen eine sogenannte Sensitivititsliste, welche die
Signale enthilt, deren Anderung zu einer Ausfiihrung des Prozesses fiihren soll. Die Sig-
nale werden in Klammern nach dem Schliisselwort process angeben.

Im Folgenden wird die Struktur von Prozessen anhand des Beispiels aus Abb. 3.5
erldutert.

architecture and_or_proc of and_or is

begin
my_process: process (a,b,c)
begin
g <= (a and b) or c;

end process;
end;

Es soll eine Schaltung beschrieben werden, welche die Signale bzw. Einginge a, b
und ¢ verkniipft und das Ergebnis g zuweist. Da g von a, b und ¢ abhingt, muss eine
Neuberechnung von g immer dann erfolgen, wenn sich eines der Eingangssignale dndert.
Daher werden die drei Signale in die Sensitivititsliste aufgenommen. Zwischen begin
und end wird die Prozessbeschreibung eingefiigt, die in diesem einfachen Beispiel nur
eine einzelne Zuweisung umfasst.
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Es wire vollig berechtigt, wenn Sie jetzt Zweifel an der Sinnhaftigkeit von Prozessen
bekdmen: Im Prinzip beschreibt der Prozess keine andere Funktion als die, die man bereits
mit einer einfachen Signalzuweisung realisieren kann. Eine nebenldufige Signalzuweisung
wire fiir dieses Beispiel tatsdchlich kiirzer und iibersichtlicher als die Verwendung eines
Prozesses. Aber Prozesse konnen mehr! Einige Aspekte werden bereits in diesem Kapitel
vorgestellt. Andere Aspekte werden Sie beim Lesen der weiteren Kapitel dieses Buches
entdecken und sukzessive die Behauptung nachvollziechen konnen, dass ohne Prozesse
eine sinnvolle und tibersichtliche Beschreibung digitaler Systeme nicht mdglich ist.

Moglicherweise werden Sie bei der Lektiire dieses Buches auch entdecken, dass
nebenldufige Signalzuweisungen und Prozesse zwei unterschiedliche Herangehenswei-
sen reprisentieren: Beschreibt man ein digitales Hardware-Modul ausschlieflich mit
Signalzuweisungen, bendtigt man eine gute Vorstellung dariiber, wie die Schaltung aus
digitalen Grundelementen (UND-, ODER-Gatter, usw.) aufgebaut sein soll. Bei Verwen-
dung von Prozessen steht eher die digitale Funktion im Vordergrund. Wie diese Funktion
spiter durch das Syntheseprogramm mithilfe der verfiigbaren Grundelemente realisiert
wird, ist von nachrangiger Bedeutung. Daher lassen sich mithilfe von VHDL-Prozessen
auch komplexe digitale Funktionen elegant und tibersichtlich realisieren.

Der Beispielcode zeigt auch, dass Prozessen Namen erhalten konnen, wenn dies sinn-
voll erscheint. Der Prozessname ist optional und wird vor dem Schliisselwort process
eingefiigt. Der dem Namen folgende Doppelpunkt ist obligatorisch.

3.6.2 Ausfiihrung von Prozessen

Prozesse besitzen eine gewisse Ahnlichkeit mit Funktionen hoherer Programmierspra-
chen. Allerdings existiert zwischen den Funktionen einer Programmiersprache und den
VHDL-Prozessen ein entscheidender Unterschied. Eine Software-Funktion wird vom
Programmierer durch einen entsprechenden Aufruf im Code aktiviert und einmalig
ausgefiihrt. Dieses Prinzip kann fiir Prozesse nicht gelten: Ein Prozess beschreibt eine
digitale Hardware-Komponente, die kontinuierlich aktiv ist. Eigentlich miisste also ein
Prozess eine Endlosschleife enthalten, die immer wieder den Kern des Prozesses aus-
fiihrt. Genauso arbeitet ein VHDL-Prozess tatsidchlich. Die Endlosschleife ist jedoch im
VHDL-Code nicht in Form einer Schleifenanweisung sichtbar, da mit der Verwendung
eines VHDL-Prozesses bereits implizit festgelegt ist, dass der Code des Prozesses konti-
nuierlich ausgefiihrt wird.

Endlosschleifen in einer Software fiihren hiufig dazu, dass ein Programm nicht
mehr reagiert. In VHDL sind dagegen Endlosschleifen bewusst gewollt? Genauso ist es
tatsédchlich.

Ein Software-Programm wird sequenziell, also Befehl fiir Befehl, von einem Rech-
ner ausgefiihrt. Sie haben aber nur einen Rechner zur Ausfiihrung der Software zur Ver-
fligung und wenn dieser mit der Verarbeitung einer Endlosschleife beschiftigt ist, kann
er keine anderen Aufgaben ausfiihren. Wenn Sie dagegen aus einer VHDL-Beschreibung
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Hardware generiert haben, existieren sozusagen viele kleine ,,Rechner* gleichzeitig.
Diese fiihren kontinuierlich, also im Prinzip in einer Endlosschleife, immer das gleiche
,Programm* aus, welches zuvor durch Prozesse beschrieben wurde.

Aber wie kann dann eine Simulation mehrerer VHDL-Prozesse auf einem nicht-paral-
lelen, sequenziell arbeitenden Rechner ausgefiihrt werden? Ein PC wire ja schon mit der
Ausfiithrung eines einzelnen VHDL-Prozesses komplett ausgelastet.

Um diese Problematik zu 18sen, ist in VHDL die bereits erwidhnte Sensitivititsliste
eingefiihrt worden. In dieser Liste werden alle Signale eingetragen, die innerhalb des
jeweiligen Prozesses gelesen werden. Der Prozess wird genau einmal durchlaufen, wenn
sich eines der Signale der Sensitivititsliste indert. Andert sich keines der Signale, ruht
die Ausfiihrung des jeweiligen Prozesses. Auf diese Weise wird in der Simulation einer
VHDL-Beschreibung zu einem beliebigen Zeitpunkt immer maximal ein Prozess aktiv
sein. Die Aktivierung eines Prozesses fiihrt zu Signaldnderungen, die dann wiederum
die Ausfiihrung weiterer Prozesse zur Folge haben. Auf diese Weise kann sukzessive das
gesamte Verhalten der parallelen Hardware auf einem sequenziell arbeitenden PC nach-
gebildet werden.

Wird beim Anlegen der Sensitivitétsliste ein Signal iibersehen, ist dies fiir die Hard-
waregenerierung mittels Synthese relativ unbedeutend. Die meisten Syntheseprogramme
wiirden zwar Warnungen ausgeben, aber dennoch eine funktionstiichtige Hardware
erzeugen.

Fiir die Simulation ist die korrekte Angabe der Sensitivititsliste dagegen sehr wichtig:
Wiirde bei dem in Abschn. 3.6.1 gezeigten Beispiel das Signal b nicht in der Sensitivi-
titsliste aufgefiihrt sein, wiirde der Prozess bei Anderungen von b nicht aktiviert werden.
Somit wiirde trotz einer Anderung von b das Ausgangssignal g seinen Wert behalten und
die Simulation der Schaltung ein anderes Ergebnis liefern als die zugehorige Hardware.
Eine umfassende Uberpriifung der VHDL-Beschreibung mithilfe einer Simulation wire
also nicht moglich.

3.6.3 Variablen

Als Alternative zu Signalen konnen in Prozessen auch Variablen eingesetzt werden.
VHDL-Variablen sind mit statischen Variablen vergleichbar, wie sie zum Beispiel in der
Programmiersprache C zur Verfiigung stehen: Sie sind nur in dem Prozess sichtbar, in
dem sie definiert wurden und behalten den zugewiesenen Wert auch dann, wenn der Pro-
zess unterbrochen wird.

Die Definition einer Variablen geschieht im Deklarationsteil des Prozesses (vor begin)
und werden mit dem Schliisselwort variable eingeleitet. Fiir Zuweisungen an Variablen
wird := verwendet, wihrend bei Signalen die bereits erwihnte Zeichenkombination <=
zum Einsatz kommt.

Ein einfaches Beispiel verdeutlicht die Verwendung von Variablen in
VHDL-Prozessen:



3.6 Prozesse 73

proc_with_variable : process (a,b)
variable my_var : std_logic;

begin
my_var := a and b; -- Variablenzuwelsung
g <= my_var; -- Signalzuwelsung

end process;

Aufgrund der sequenziellen Ausfiihrung eines Prozesses sind die im Beispielcode
gezeigten Zuweisungen nicht vertauschbar.

Im Prinzip wird eine Zuweisung an eine Variable zunidchst komplett durchgefiihrt,
bevor die nédchste Zeile des Prozesses abgearbeitet wird. Dies ist genau das Verhalten,
das auch fiir Variablen in Programmiersprachen wie C/C++ oder Java gilt.

Zuweisungen an Signale blockieren den Prozessablauf dagegen nicht. Der Prozess
lauft also weiter, ohne dass die Zuweisung eine Wirkung auf den Wert des Signals hat.
Das Signal behilt bis zu einer Prozessunterbrechung bzw. dem Prozessende seinen alten
Wert. Erst bei einer Beendigung oder Unterbrechung des Prozesses werden die zuvor
ausgefiihrten Signalzuweisungen wirksam und die Signale erhalten neue Werte.

Wiirde also die Zuweisung an g vor der Zuweisung an my_var stehen, wiirde der
VHDL-Code im Gegensatz zum obigen Beispiel kein einfaches UND-Gatter mehr
beschreiben.

Da insbesondere das oben erwihnte Verhalten von Signalzuweisungen innerhalb von
Prozessen fiir viele VHDL-Einsteiger etwas gewohnungsbediirftig ist, wird dieses Ver-
halten im nachfolgenden Abschnitt ausfiihrlicher erldutert.

3.6.4 Signalzuweisungen in Prozessen

Fiir die Zuweisungen von Signalen innerhalb von VHDL-Prozessen gelten zwei wichtige
Regeln:

1. Die an ein Signal zugewiesenen Werte werden erst nach einer Unterbrechung des Pro-
zesses sichtbar.

2. Wird ein Signal mehrfach in einem Prozess zugewiesen, zeigt nur die zuletzt ausge-
fiihrte Zuweisung Wirkung. Alle vorangegangenen Zuweisungen werden verworfen.

Da Signale allen Prozessen einer VHDL-Architecture zur Verfiigung stehen, muss sicher-
gestellt werden, dass die Anderung eines Signals in allen Prozessen gleichzeitig sichtbar
wird. Dieser Forderung wird durch die erste Regel Rechnung getragen.

Wird eine VHDL-Beschreibung simuliert, werden alle Zuweisungen an Signale
zunichst ,,gesammelt”. Die eigentliche Zuweisung an das Signal und die damit verbun-
dene Sichtbarmachung eines Signalwechsels geschieht erst mit der Unterbrechung des
Prozesses oder mit der Beendigung des Prozessdurchlaufs. Dies bedeutet auch, dass
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ein Lesezugriff auf ein Signal vor einer Prozessunterbrechung den ,,alten” Wert liefern
wird — unabhingig davon, ob der Prozess das Signal zuvor beschrieben hat oder nicht.

Nicht wenige, die VHDL lernen, haben zuvor eine Programmiersprache erlernt. In
diesen Sprachen gilt die Regel, dass eine Zuweisung sofort Wirkung zeigt. Wird einer
Variablen ein neuer Wert zugewiesen, kann bereits mit dem néchsten Befehl auf den
neuen Wert zugegriffen werden. Auch hier gilt: VHDL hat zwar viele Ahnlichkeiten
mit klassischen Programmiersprachen, aber VHDL ist nicht fiir die Entwicklung eines
sequenziellen Rechnerprogramms, sondern fiir die Beschreibung von parallel arbeiten-
den Hardwarekomponenten gedacht.

Die zweite Regel ergibt sich als Konsequenz aus der ersten. Es ist erlaubt einem Sig-
nal in einem Prozess mehrfach einen Wert zuzuweisen. Wenn die Signalzuweisungen
aber zunichst gesammelt werden und erst bei einer Prozessunterbrechung wirklich aus-
gefiihrt werden, kann hierbei nur der zuletzt zugewiesene Wert Beriicksichtigung finden.

Thnen wird der nachfolgende VHDL-Code vorgelegt. Es handelt sich um ein Modul
mit den Eingingen a und b sowie dem Ausgang g.

signal s : std_logic;

-- Hier ggf. weiliterer Code
process (a,b,s)
begin

s <= a and b;

s <= a or b;
s <= a;

q <= s;

s

<= a xor b;
end process;

Welche Hardware wird durch diesen Code beschrieben? Ein UND-Gatter oder ein
ODER-Gatter? Oder ist es nur ein einfacher Draht; wird also ¢ immer direkt der Wert
von a zugewiesen? Oder handelt es sich um ein Exklusiv-ODER-Gatter?

Analysiert man dieses Beispiel Schritt fiir Schritt, kann man sich der, in diesem Bei-
spiel recht verklausulierten, Funktion des Codes nihern.

Offensichtlich ist, dass die ersten beiden Zuweisungen an das Signal s keine Wirkung
haben, da sie durch spitere Zuweisungen iiberschrieben werden. Diese kann man also
aus dem Code streichen und der Prozess kann auch wie folgt formuliert werden.

process (a,b,s)

begin
s <= a;
q <= s;

s <= a xXor b;
end process;
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Werfen wir in dem verbleibenden Code einen Blick auf die Zuweisung an den Aus-
gang q. g wird der Wert von s zugewiesen. Aber was liefert der Lesezugriff auf s zuriick?
Vielleicht sind Sie geneigt ad hoc ,,a“ zu sagen, da vor der Zuweisung an ¢ dem Signal
s der Wert von a zugewiesen wird. Dies wire die korrekte Antwort, wenn es sich bei s
um eine VHDL-Variable handeln wiirde. Da s jedoch ein Signal ist, muss der Code noch
etwas genauer analysiert werden.

Bei der Ausfiihrung des Prozesses wird die Zuweisung des Wertes von a an das Sig-
nal s noch nicht sofort ausgefiihrt. Die Zuweisung an g wiirde also den Wert des Sig-
nals s sehen, der bei einem vorangegangenen Aufruf des Prozesses zugewiesen wurde.
Da das Signal s in dem Prozess zweimal geschrieben wird und nur die letzte Sig-
nalzuweisung zur Ausfiihrung kommt, wird s also die Exklusiv-ODER-Verkniip-
fung der Eingidnge a und b zugewiesen. Also beschreibt der Prozess letztlich eine
Exklusiv-ODER-Verkniipfung.

Die Reihenfolge der Zuweisungen an s und ¢ ist, wie bei nebenlidufigen Signalzuwei-
sungen irrelevant. Der Prozess kann daher auch wie folgt formuliert werden.

process (a,b,s)
begin
S <= a xor b;
q <= s;
end process;

Diese Variante ist deutlich besser lesbar, da sie auch bei einer sequenziellen Interpre-
tation des Codes auf das korrekte Verstindnis der beschriebenen Funktionalitit fiihrt.

Sofern das Signal s nicht in anderen Prozessen der Architecture verwendet wird, kann
der Code auf die Zuweisung g <= a xor b reduziert werden.

Ein nicht seltener Fehler, der bei Signalzuweisungen in Prozessen auftritt, ist die
Zuweisung eines Signals aus unterschiedlichen Prozessen heraus. Dies wiirde bedeuten,
dass zwei Prozesse gleichzeitig den Wert des Signals festlegen kdnnten. Abgesehen von
wenigen Spezialfillen, ist dies in der Regel nicht gewollt und wiirde auch beim Syn-
thesevorgang zu Fehlermeldungen fiihren. Daher miissen bei der Erstellung von VHDL-
Prozessen die beiden folgenden Regeln beachtet werden:

1. Signale diirfen in beliebig vielen Prozessen gelesen werden.
2. Signale diirfen nur in einem Prozess geschrieben werden.

3.6.5 Wichtige Sprachkonstrukte in VHDL-Prozessen

VHDL-Prozesse bieten vielfiltige Sprachkonstrukte zur Beschreibung einer Hardware-
Komponente. In diesem Abschnitt werden die gebrduchlichsten und wichtigsten Ele-
mente zur Beschreibung von Prozessen vorgestellt.
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3.6.5.1 If-Anweisung

Die If-Anweisung ermdglicht die bedingte Ausfithrung von Code innerhalb eines
VHDL-Prozesses. Zwischen den Schliisselwortern if und then wird eine Bedingung, bei-
spielsweise ein Vergleich zweier Signale, eingefiigt. AnschlieBend folgt der Code, der
ausgefiihrt werden soll, wenn die Bedingung wahr ist. Abgeschlossen wird die Anwei-
sung mit end if;

Optional kénnen zusitzlich mit elsif weitere Bedingungen eingefiigt werden, die dann
tiberpriift werden, wenn die voranstehenden Bedingungen unwahr waren.

Mit dem Schliisselwort else wird der Code eingeleitet, der ausgefiihrt werden soll,
wenn alle Bedingungen der If-Anweisung unwahr waren. Auch dies ist eine Option, die
bei Bedarf weggelassen werden kann.

Bei der Verwendung von elsif ist die Schreibweise als ein einzelnes Wort zu beachten.
Viele VHDL-Anfinger, insbesondere wenn sie bereits Programmierkenntnisse besitzen,
neigen dazu, statt elsif die Formulierung else if zu wihlen. Die beiden Varianten sind
nicht dquivalent. Mit else if wird in dem Else-Zweig der Anweisung eine neue If-Anwei-
sung gedffnet, die ihrerseits durch end if geschlossen werden muss.

Der folgende Pseudocode zeigt den prinzipiellen Aufbau der If-Anweisung, wobei
optionale Elemente in geschweiften Klammern dargestellt sind.

if <Bedingung> then
<Anweisungen>

{elsif <Bedingung> then
<Anweilsungen>}

{else
<Anweilsungen>}

end if;
Ein Beispiel fiir die Anwendung der If-Anweisung zeigt der folgende Code.

if a = b then
g <= a and c;

v o= '1l';
elsif a = ¢ and b = '1l' then
q <= d;
v o= '1l';
else
g <= '0";
v o:= '0"'
end if;

3.6.5.2 Case-Anweisung
Wie die If-Anweisung ermoglicht auch die Case-Anweisung die bedingte Ausfiih-
rung von Codeteilen. Nach dem Schliisselwort case wird ein auszuwertender Ausdruck
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angegeben. Mit dem Schliisselwort when wird angegeben, welcher Code fiir ein kon-
kretes Ergebnis des Ausdrucks ausgefiihrt werden soll. Durch die Verwendung von ,,|
konnen mehrere Werte angegeben werden, die zur Ausfiihrung des nachfolgenden Codes
fiihren sollen. Ist keiner der angegebenen Werte identisch mit dem Ergebnis des Aus-
drucks, konnen Default-Anweisungen spezifiziert werden, die in diesem Fall ausgefiihrt
werden sollen. Hierzu wird statt eines Wertes das Schliisselwort others angegeben.

Der folgende Pseudocode zeigt den Aufbau der Case-When-Anweisung.

case <Ausdruck> is

when <Wert> => <Anweisungen>

{when <Wert> =>

{when <Wert> =>
{when others =>

<Anweilsungen>}

<Anweilsungen>}

<Anweilsungen>}

end case;

Ein Anwendungsbeispiel der Case-When-Anweisung wird durch den folgenden Code
dargestellt.

case a_vec is -- a_vec ist vom Typ std _logic_vector (2 downto 0)
000" =>
g <= a and c;

when

r <= a;
when "001"|"010" =>
a <= b;
r <= a and c;
when "111" =>
q<="1l";
r <= d;
when others =>
q<="'0";
r <= '0";

end case;

Mit einer Case-Anweisung kann ein einzelner Ausdruck mit verschiedenen moglichen
(konstanten) Werten verglichen werden. In vielen Fillen kann mit der Case-Anweisung
ein sehr kompakter und tibersichtlicher Code erzielt werden. Sind die Vergleichswerte
nicht konstant oder sind Vergleiche mit unterschiedlichen Ausdriicken gewiinscht, kann
die If-Anweisung verwendet werden.

3.6.5.3 For-Schleife
VHDL unterstiitzt auch Schleifen. Zuerst wird hier die For-Schleife vorgestellt.
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Nach dem Schliisselwort for wird ein Bezeichner fiir die Schleifenvariable eingefiigt.
Der Schleifenbereich folgt nach dem Schliisselwort in. Der Bereich kann aufsteigend (zum
Beispiel ,, I to 8*) oder absteigend (zum Beispiel ,, 15 downto 0) durchlaufen werden.

Nach der Angabe des Schleifenbereichs folgt das Schliisselwort loop, welches von
den Anweisungen des Schleifenkerns gefolgt wird. Die Schleife wird mit end loop
abgeschlossen.

Schleifen diirfen optional mit einem Namen (Label) versehen werden.

{loop_label:} for <Bezeichner> in <Bereich> loop
<Anweisungen>

end loop {loop_label};

Ein Beispiel fiir die Verwendung einer For-Schleife zeigt das nachfolgende Codefrag-
ment, das den Vektor x ,spiegelt” und das Ergebnis dem Vektor y zuweist. y(0) erhilt
den Wert von x(9), y(I1) den Wert von x(8) usw.

my_loop: for i in 0 to 9 loop
v(9-1i) := x(i); -- x und y sind Vektoren
end loop my_loop;

Die For-Schleifen sind abweisende Schleifen. Beispielsweise wiirde der Kern der
nachfolgenden Schleife nie ausgefiihrt werden, da es sich um eine abwirtszihlende
Schleife handelt, deren untere Grenze grofer ist als die obere.

another_loop: for i in 0 downto 5 loop
v(i) := x(i); -- was auch immer hier steht - es wird nicht ausgefiihrt!
end loop;

Schleifen sind synthesefidhig, wenn die Schleifengrenzen statisch sind, sich die
Schleifengrenzen also nicht erst zur Laufzeit des VHDL-Codes ergeben.

Dartiber hinaus ist zu beachten, dass Schleifen von Syntheseprogrammen ,,ausge-
rollt* werden. Man kann sich dies so vorstellen, dass die Schleife aufgelost wird und der
Schleifenkern wiederholt in den Code eingefiigt wird. Fiir jedes Durchlaufen des Schlei-
fenkerns wird also eine eigene Hardwarekomponente generiert.

3.6.5.4 While-Schleife
Neben For-Schleifen kénnen in VHDL auch While-Schleifen eingesetzt werden. Hierbei
wird zunéchst die nach dem Schliisselwort while angegebene Bedingung gepriift. Ergibt
diese den Wert true, wird der Schleifenkern ausgefiihrt und anschlieBend die Bedingung
erneut gepriift. Auch die While-Schleifen sind also abweisende Schleifen.

Die Struktur einer while-Schleife zeigt der folgende Pseudocode.



3.7 Hierarchie 79

{loop_label:} while <Bedingung> loop
<Anwelsungen>
end loop {loop_label};

Ein Beispiel fiir die Verwendung einer While-Schleife zeigt das nachfolgende
Codefragment.

i := 0;

while i < 8 loop
a(i) := b(i) xor c(7-1);
i =1 4+ 1;

end loop;

3.7 Hierarchie

Werden komplexere Schaltungen entworfen, ist es sinnvoll, die gesamte Schaltung
in kleinere Module aufzuspalten, die zunéchst separat in VHDL beschrieben werden.
In einer weiteren VHDL-Beschreibung konnen diese Module dann zur gewiinschten
Gesamtschaltung kombiniert werden. Um dieses Vorgehen zu unterstiitzen, bietet VHDL
die Moglichkeit Module innerhalb von Modulen ,,aufzurufen®. In der Praxis spricht man
hierbei nicht von ,,aufrufen, sondern von ,,instanziieren‘. Ein instanziiertes Modul wird
auch als ,,Instanz* dieses Moduls bezeichnet.

Es ist auch moglich eine neu geschaffene Komponente, welche Instanzen enthilt, wie-
derum in einem anderen Modul zu instanziieren und so eine hierarchische Beschreibung
einer Schaltung in mehreren Stufen/Ebenen zu realisieren.

Im Folgenden wird die Vorgehensweise zur Instanziierung von Modulen in VHDL
anhand des Beispiels einer Komponente beschrieben, die drei 8-Bit-Operanden addiert.

Nehmen wir an, dass bereits das folgende Entity-Architecture-Paar zur Beschreibung
eines 8-Bit-Addierers fiir zwei Operanden in VHDL beschrieben wurde.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity add_2 is
port (opl : in std_logic_vector (7 downto 0);
op2 : in std_logic_vector (7 downto 0);
sum : out std_logic_vector (7 downto 0));
end;
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architecture struct of add_2 is
begin
process (opl,op2)
begin
sum <= std_logic_vector (unsigned(opl) + unsigned(op2));
end process;
end;

Um diese Beschreibung des Addierers in einer anderen VHDL-Architecture zu instan-
ziieren, wird die Entity angegeben, die fiir diese Instanziierung verwendet werden soll.
Dariiber hinaus muss die Bibliothek angegeben werden, in der das Modul abgelegt wurde.

Die Instanziierung eines Moduls beginnt mit einem eindeutigen Namen fiir diese Instanz.
Nach einem Doppelpunkt folgen das Schliisselwort entity, die Bibliothek (im nachfolgen-
den Beispiel die Arbeitsbibliothek work) und der Name des zu instanziierenden Moduls.
Abschlieend wird die Zuordnung der Anschliisse der Instanz zu den Ein- und Ausgéingen
oder den Signalen der instanziierenden Architecture angegeben. Die Zuordnung wird mit
den Schliisselwortern port map eingeleitet.

Auf Basis des Addierers fiir zwei Operanden kann ein Addierer fiir 3 Operanden
realisiert werden. Das Blockschaltbild dieses 3-Operanden-Addierers ist in Abb. 3.6
dargestellt.

Dieser Addierer lisst sich in VHDL wie folgt beschreiben:

library ieee;
use ieee.std_logic_1164.all;

entity add_3 is

port (a : in std_logic_vector (7 downto 0);
b : in std_logic_vector (7 downto O0);

Abb. 3.6 Blockschaltbild a b c
eines Addierers fiir 3 | |

Operanden ¢ ¢
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c : in std_logic_vector (7 downto 0);
g : out std_logic_vector (7 downto 0));
end;

architecture struct of add_3 is
signal tmp : std_logic_vector (7 downto 0);

begin
al: entity work.add_2 port map (opl => a, op2 => b, sum => tmp);
a2: entity work.add_2 port map (opl => tmp, op2 => c, sum => q);

end;

Das Beispiel zeigt die Zuordnung der Anschliisse der add_2-Module zu den Ein- und
Ausgingen des Moduls add_3, wobei eine namensbasierte Zuordnung (engl. named
association) mithilfe des Zuordnungsoperators => verwendet wird. Eher selten findet
man positionsbasierte Zuordnung (engl. positional association), bei der lediglich die
Ports und Signale der instanziierenden Architecture angegeben werden. Das erste ange-
gebene Signal wird dann an den ersten Port der instanziierten Architecture angeschlos-
sen. Das zweite Signal an den zweiten Port, usw.

3.8 Ubungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Priifen Sie sich mit den folgenden Aufga-
ben. Die Antworten finden Sie am Ende des Buches.
Sofern nicht anders vermerkt, ist nur eine Antwort richtig.

Aufgabe 3.1
Welche der folgenden Aussagen zum VHDL-basierten Entwurfsprozess ist richtig?

a) Eine Testbench ist eine VHDL-Datei, die nur in der Simulation zum Einsatz kommt.

b) Wurde mithilfe von Simulationen die korrekte Funktionsweise einer VHDL-Beschrei-
bung nachgewiesen, miissen im weiteren Verlauf des Entwurfsprozesses keine Ande-
rungen an dem VHDL-Code vorgenommen werden.

c) Ein digitales System muss immer in einer einzelnen VHDL-Datei beschrieben
werden.

d) Eine syntaktisch korrekt beschriebenes Entity-/Architecture-Paar ist sowohl simulier-
bar als auch synthetisierbar.

Aufgabe 3.2
Welche Aussagen zu VHDL-Bibliotheken sind richtig? (Mehrere Antworten sind richtig)

a) Das Ergebnis der Ubersetzung einer VHDL-Datei wird immer in einer Bibliothek
abgelegt.
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b) Zur Verwendung der Inhalte einer Bibliothek muss diese mithilfe einer Library-
Anweisung bekannt gemacht werden (Ausnahmen work, std).

¢) Die Bibliothek work enthélt wichtige vordefinierte Datentypen.

d) Bei der Verwendung des Datentyps std_logic muss die Bibilothek ieee bekannt
gemacht werden.

e) Die Datentypen signed, unsigned und integer sind vordefinierte Datentypen, die auch
ohne Angabe einer Bibliothek verwendet werden konnen.

Aufgabe 3.3
Welche Aussagen sind richtig? (Mehrere Antworten sind richtig)

a) In VHDL wird GroB3- und Kleinschreibung nicht unterschieden: MY_SIG und my_sig
bezeichnen das gleiche Signal.

b) Anhand der Entity einer VHDL-Beschreibung kénnen die Ein- und Ausgéinge eines
Moduls identifiziert werden.

¢) Signale vom Datentyp std_logic kénnen nur die Werte ,0°, ,1° und ,U* annehmen.

d) Im Deklarationsteil einer Architecture (= vor begin) konnen sowohl Signale als auch
Variablen definiert werden.

e) Numerische Konstanten konnen nicht in hexadezimaler Darstellung angegeben
werden.

Aufgabe 3.4
Welche Aussagen zu VHDL-Prozessen sind richtig? (Mehrere Antworten sind richtig)

a) Der Code innerhalb eines Prozesses wird sequenziell ausgefiihrt.

b) Alle Signale auf die innerhalb eines Prozesses schreibend zugegriffen wird, miissen in
der Sensitivititsliste erscheinen.

c) Innerhalb eines Prozesses ist nur die zuletzt ausgefiihrte Zuweisung an ein Signal rele-
vant. Alle vorangegangenen Zuweisungen an das gleiche Signal haben keine Wirkung.

d) Fiir die Zuweisung eines Wertes an eine Variable wird die Zeichenkombination ,,<="
verwendet.

Aufgabe 3.5
Der nachfolgend dargestellte VHDL-Code ist syntaktisch nicht korrekt. Korrigieren Sie
die Fehler.

library ieee.std_logic_1164.all;

entity my module is
port (a : in std_logic_vector;
b : in integer;

c : in std_logic;
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g : out std_logic_vector;)
end;

architecture of my_module is
begin
signal tmp : unsigned (7 downto 0);
process (a,b, tmp)
variable vi : unsigned (7 downto 0);
begin
tmp <= to_unsigned(A);
vi <= to_unsigned (B, 8);

if c == 1
g <= vi - tmp;
else

g <= vi + tmp;
end;
end process;
end;

Aufgabe 3.6
Erstellen Sie ein VHDL-Modul (Entity und Architecture), das die im Folgenden
beschriebene Funktion realisiert:

e Das Modul besitzt die Eingéinge a (Wortbreite 8 bit), b (8 Bit) und ¢ (2 Bit) und den
Ausgang ¢ (8 Bit)

e Der Ausgang ¢ wird in Abhingigkeit vom Eingang ¢ aus den Werten der Einginge a
und b berechnet. Es soll gelten:
c=00: g=a
c=0l: g=a&b
c=10: g=aVb
c=11: g=a® b (& bezeichnet eine Exklusiv-ODER-Verkniipfung)

e Verwenden Sie fiir die Fallunterscheidung (Werte von c) eine If-Anweisung

Aufgabe 3.7
Ersetzen Sie die If-Anweisung aus Aufgabe 3.6 durch eine Case-Anweisung. Welche
Codeiédnderungen sind erforderlich?

Aufgabe 3.8
Auf Basis des Moduls aus Aufgabe 3.6 soll ein Modul entworfen werden, das fiir eine
Wortbreite von 16 Bit ausgelegt ist (Ports a,b und ¢g) aber ansonsten die identische Funk-
tion ausfiihrt.

Schreiben Sie ein geeignetes Entity/Architecture-Paar in VHDL. Instanziieren Sie das
Modul aus Aufgabe 3.6.



Kombinatorische Schaltungen

Digitalschaltungen, deren Ausgéinge nur von den aktuellen Eingangswerten abhingen,
nennt man kombinatorische Schaltungen. Eine solche Schaltung arbeitet nur mit Logik-
gattern und enthilt weder Riickkopplungen noch Flip-Flops. Die Eingangswerte werden
durch die Schaltung kombiniert (daher der Name) und ein Ergebnis berechnet. Da keine
Flip-Flops verwendet werden, konnen keine Informationen gespeichert werden.

Kombinatorische Schaltungen sind normalerweise Teil einer grofleren Schaltung. Sie
werden zusammen mit Flip-Flops eingesetzt, wobei der kombinatorische Teil die Berech-
nungen vornimmt und die Flip-Flops die Ergebnisse speichern. Die gesamte Schaltung
mit den Flip-Flops ist dann eine sequenzielle Schaltung, also eine Schaltung deren Ergeb-
nis von der zeitlichen Abfolge (der Sequenz) ihrer Eingénge abhingt. In diesem Kapitel
werden zunichst die Funktion und der Entwurf kombinatorischer Schaltungen erldutert.
Flip-Flops und sequenzielle Schaltungen werden im néchsten Kapitel vorgestellt.

Als Beispiel fiir eine kombinatorische Schaltung ist in Abb. 4.1 eine einfache Alarm-
anlage dargestellt. Dabei sollen eine Tiir (7) und zwei Fenster (F1, F2) iiberwacht wer-
den. Mit einem Schalter (S) wird die Alarmanlage ein- oder ausgeschaltet. Diese vier
Eingangssignale sollen bindre Werte also 0 oder 1 sein. Die 1 bedeutet dabei jeweils
,aktiv®, das heifit Tiir oder Fenster ist offen, beziehungsweise Anlage ist eingeschaltet.

Die kombinatorische Schaltung wertet die vier Eingangssignale aus und berechnet, ob
ein Alarm ausgelost werden soll oder nicht. Dafiir gibt es einen Ausgang A, der mit einer
1 einen Alarmfall anzeigt. Andernfalls ist der Ausgang 0. Am Ausgang A ist eine Alarm-
hupe angebracht.

Wie man systematisch die kombinatorische Schaltung entwirft, wird spéter in diesem
Kapitel erldutert. Fiir dieses einfache Beispiel kann man die Schaltung direkt aus der
Aufgabenstellung ableiten. Der Alarm soll iiberwachen, ob Tiir oder Fenster offen sind
und dabei melden, wenn einer oder mehrere der Kontakte auf 1 sind. Dies entspricht der
ODER-Verkniipfung der drei Signale 7, FI, F2. Dieses Zwischenergebnis fiihrt zu einem
Alarm, wenn die Anlage eingeschaltet ist, also muss das Ergebnis der ODER-Verkniipfung
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Abb. 4.1 Kombinatorische A O]

Schaltung als einfache S A
Alarmanlage s T F1 F2 T ’:.
e @H 1"

noch mit dem Schalter S UND-verkniipft werden. Nur wenn der Schalter auf 1 ist, wird
der Alarm A ausgelost. Die kombinatorische Schaltung ist ebenfalls in Abb. 4.1 dargestellt.

4.1 Schaltalgebra

Die Rechenregeln der Digitaltechnik werden als Schaltalgebra bezeichnet. Der Begriff
Algebra ist aus der Schulmathematik bekannt und beschreibt dort die Rechenregeln fiir
Zahlen. Die Zahlen in der elementaren Algebra, also der Schulmathematik, konnen dabei
unendlich viele Werte einnehmen, also eins, zwei, drei, siebenundvierzig, fiinftausend
und so weiter.

Die Schaltalgebra ist eine besondere Form der Algebra, bei der Variablen nur zwei
mogliche Werte haben, ndmlich O und 1. Das heif3it fiir alle Eingangswerte und das
Ergebnis einer Rechenoperation sind nur diese beiden Werte moglich. Manchmal werden
fiir die Werte auch die Begriffe Falsch (entspricht 0) und Wahr (entspricht 1) verwendet.

Funktionen, bei denen Eingangs- und Ausgangswerte nur die Werte O und 1 anneh-
men konnen, bezeichnet man als bindre Schaltfunktionen, boolesche Schaltfunktionen
oder einfach Schaltfunktionen. Die Bezeichnung boolesch weist darauf hin, dass die
Funktion nach der Booleschen Algebra berechnet wird, die nach dem englischen Mathe-
matiker George Boole benannt ist.

Die Schaltalgebra ist also die mathematische Beschreibung der Funktionen in der
Digitaltechnik. Die Schaltung selber wird dann als kombinatorische Schaltung bezeich-
net. Darin fiihren Schaltglieder eine logische Verkniipfung von Eingangswerten zu einem
Ausgangswert durch. Die Schaltglieder bezeichnet man auch als Gatter.

Physikalische Eigenschaften wie Spannungspegel oder Umschaltzeiten werden in der
Schaltalgebra nicht beriicksichtigt. Ob ein digitales Signal den Wert 0 V oder 0,1 V hat
ist unbedeutend. Beide Spannungspegel werden durch den Wert O dargestellt. Somit ist
die Schaltalgebra eine Abstrahierung zur vereinfachten Schaltungsbeschreibung.

4.1.1 Schaltfunktion und Schaltzeichen

Bei der Beschreibung von Schaltfunktionen werden die Eingangsvariablen meist mit den
Buchstaben A, B, C, ... und die Ausgangsvariable mit dem Buchstaben Y bezeichnet. Y
ist damit eine Funktion von A, B, C, ... und kann durch ein Schaltzeichen dargestellt
werden (Abb. 4.2).
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Abb. 4.2 Schaltfunktion und A — ¢
Schaltzeichen Y =1(A,B,C) B — v
C pu—

4.1.2 Funktionstabelle

Da jede Eingangsvariable nur zwei mogliche Werte haben kann, ist es moglich, sdmtli-
che Kombinationen der Eingangswerte aufzuzihlen und als Funktionstabelle anzugeben.
Bei n Eingiingen sind 2" Kombinationen mdglich. Fiir die Funktionstabelle wird auch
der Begriff Wahrheitstabelle benutzt; er bezieht sich auf die Bezeichnungen Falsch und
Wahr.

Somit gibt es bei zwei Eingangsvariablen A und B vier verschiedene Kombinationen
der Eingangswerte, ndmlich 00, 01, 10, 11. Drei Eingangsvariablen ergeben acht, vier
Eingangsvariablen 16 Kombinationen.

Fiir die elementare Algebra wire eine Funktionstabelle nicht méglich, da unendlich
viele Eingangswerte moglich sind. Die Tabelle wiirde also unendlich grof3 werden. Trotz-
dem gibt es auch dort ein Beispiel fiir eine Funktionstabelle, ndmlich das ,,Kleine Ein-
maleins®. Fiir das Produkt zweier Zahlen von 1 bis 10 gibt es 100 Moglichkeiten und die
100 Ergebnisse werden in der Grundschule auswendig gelernt.

Funktionstabellen dienen zum Beschreiben vorhandener Schaltungen oder zur Spe-
zifikation einer Schaltung, die entworfen werden soll. Beim Schaltungsentwurf, der
Schaltungssynthese wird die Aufgabe meist als Text beschrieben und daraus die Funkti-
onstabelle erstellt.

Als Beispiel soll eine Schaltung spezifiziert werden, welche die Mehrheit aus drei
Eingangswerten bildet. Die Eingénge A, B, C sind digitale Werte und konnen die Werte 0
und 1 annehmen. Wenn zwei oder drei Eingiinge 1 sind, soll auch der Ausgang Y 1 sein.
Ansonsten ist der Ausgang 0.

Eine solche Mehrheitsschaltung oder Majoritditsschaltung kann als Sicherheits-
schaltung fiir redundante Systeme dienen. Eine Fabrikhalle hat drei Rauchmelder und
nur wenn zwei Rauchmelder auslosen, wird ein Alarm gemeldet und die Fabrikation
gestoppt. Ein Fehler in einem Rauchmelder kann also keinen Alarm ausldsen.

Die Funktionstabelle der Majorititsschaltung ist in Abb. 4.3 angegeben. Fiir drei Vari-
ablen gibt es 23, also 8 Kombinationen und die Tabelle gibt an, welche der Kombinatio-
nen eine 1 am Ausgang ergeben sollen.

4.1.3 Funktionstabelle mit Don't-Care

Als Besonderheit kann es bei Funktionstabellen vorkommen, dass fiir eine oder meh-
rere Eingangskombinationen keine Ausgabe spezifiziert werden muss. Dies ist dann der
Fall, wenn bestimmte Eingangskombinationen laut Aufgabenstellung nicht vorkommen
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Abb. 4.3 Funktionstabelle der A B C Y
Majorititsschaltung 000 ]| 0
00 1 0
010 0
011 1
100 0
1 0 1 1
110 1
111 1
Abb. 4.4 Primzahlerkennung A(3:0) Y Zahlenwert
fiir Zahlen 0 bis 9 als 0000 0 0
Funktionstabelle mit Don’t-Care 0001 0 1
0010 1 2
0011 1 3
0100 0 4
0101 1 5
0110 0 6
o111 1 7
1000 0 8
1001 0 9
1010 -
1011 -
1100 -
1101 -
1110 -
1111 -

konnen. Oder das Ergebnis bestimmter Eingangskombinationen wird in der spiteren Ver-
arbeitung nicht verwendet.

Der nicht definierte Ausgang wird als Don’t-Care bezeichnet und in der Funktionsta-
belle mit einem Strich ,- gekennzeichnet. Beim Schaltungsentwurf konnen die Don’t-
Care-Eintrdge benutzt werden, um eine moglichst kleine und damit kostengiinstige
Schaltung zu entwerfen.

Eine Schaltung soll fiir die Zahlen O bis 9 ausgeben, ob es sich um eine Primzahl
handelt. Die Zahlen sind als vierstellige Dualzahl A(3:0) angegeben. Von den 16 Kombi-
nationen der vier Stellen werden 6 Kombinationen nicht benutzt. Die Ausgabe fiir diese
Kombinationen ist beliebig, also Don’t-Care. Abb. 4.4 zeigt die Funktionstabelle.

4.2  Funktionen der Schaltalgebra

Die Grundfunktionen der Schaltalgebra sind UND-Verkniipfung, ODER-Verkniipfung und
Negation. Alle anderen Schaltfunktionen lassen sich aus Kombinationen dieser Grund-
funktionen darstellen. Zusammengesetzte Funktionen sind NAND-Verkniipfung, NOR-
Verkniipfung, XOR-Verkniipfung (Antivalenz) und XNOR-Verkniipfung (Aquivalenz).
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4.2.1 UND-Verkniipfung

Die UND-Verkniipfung wurde in Kapitel 1 schon kurz vorgestellt. Der Ausgang Y ist 1,
wenn alle Eingangsvariablen 1 sind. Ansonsten ist der Ausgang 0. Das Funktionszeichen
ist nicht eindeutig definiert. Meist wird ,&* (Kaufmanns-Und) verwendet. Daneben sind
,A° (umgekehrtes v), der Multiplikationspunkt ,-* sowie das direkte Aneinanderfiigen der
Operatoren moglich. In der Ubersicht aller Funktionen in Tab. 4.1 finden sich fiir alle
Funktionen die verschiedenen Schreibweisen.

Das Verhalten der UND-Verkniipfung ist in der Funktionstabelle in Abb. 4.5 darge-
stellt. Alle vier Kombinationsmoglichkeiten fiir die beiden Eingiinge sind aufgezéhlt; nur
wenn A und B gleich 1 sind, ist auch Y gleich 1. Abb. 4.5 zeigt auch das Schaltzeichen
der UND-Verkniipfung.

Eine UND-Verkniipfung ist auch fiir mehr als zwei Eingangsvariablen moglich.
Abb. 4.6 zeigt Funktionstabelle und Schaltzeichen bei drei Eingangsvariablen. Genauso
sind Funktionen mit vier, fiinf oder mehr Eingangsvariablen moglich und werden auch in
der Praxis verwendet.

Tab. 4.1 Funktionen fiir zwei Eingangsvariablen

Ausgabe fiir AB = Logische Funktion Bezeichnung

11 01 10 00

0 0 0 0 Y=0 Konstante 0

0 0 0 1 Y=AVB NOR

0 0 1 0 |Y=A&B Inhibition

0 0 1 1 Y =8B ‘ Oder: Y = —B Negation (B)

0 1 0 0 Y=A&B Inhibition

0 1 0 |1 |y=4 Oder:Y = -4 Negation (A)

0 1 1 0 Y=A®B XOR, Antivalenz

0 1 1 1 Y=A&B NAND

1 0 0 0 Y=A&B |OderrY=AAB=A-B=AB |[UND

1 0 0 1 Y=A®B (Sclten:Y =A< B) XNOR,
Aquivalenz

1 0 1 0 Y=A Identitit (A)

1 1 1 Y=AVvB |(Selten:Y =B — A) Implikation

1 1 0 0 Y =8B Identitit (B)

1 1 0 1 Y=AvB |(Selten:Y =A — B) Implikation

1 1 1 0 Y=AVB (Selten: Y = A+ B) ODER

1 1 1 1 Yy=1 Konstante 1
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Abb. 4.5 Funktionstabelle
und Schaltzeichen der UND-

Verkniipfung g : & —v
Abb. 4.6 Funktionstabelle ABC | Y
und Schaltzeichen einer 000 | 0
UND-Verkniipfung mit drei 001 0
Eingangsvariablen 010 0 A — &
011 0 B — — Y
100 0 C —
101 0
110 0
111 1

4.2.2 ODER-Verkniipfung

Auch die ODER-Verkniipfung wurde in Kapitel 1 kurz vorgestellt. Der Ausgang Y ist 1,
wenn ein oder mehrere Eingangsvariablen 1 sind. Nur wenn alle Eingangsvariablen 0
sind ist auch der Ausgang 0. Die Funktionstabelle und das Schaltzeichen sind in Abb. 4.7
dargestellt. Auch die ODER-Funktion kann mehr als zwei Einginge verkniipfen. Als
Symbol in der Schaltfunktion wird ,>1° verwendet. In Formeln wird ,v* (mathemati-
sches Symbol) oder ,v‘ (Buchstabe) benutzt, auch das Plus-Zeichen ,+‘ wird manchmal
verwendet.

4.2.3 Negation, Inverter

Die Negation gibt das ,,Gegenteil*“ des Eingangswerts aus, also bei einer 0 eine 1 und
bei einer 1 eine 0 (Abb. 4.8). In Formeln wird die Negation durch einen Strich tiber der
Variablen oder Voranstellen des Zeichens ,—=* dargestellt. Auch ganze Ausdriicke kon-
nen durch einen Strich oberhalb negiert werden. Ein Beispiels dafiir ist das XNOR in
Tab. 4.1.

Das Schaltungselement wird Inverter genannt. In Schaltzeichen wird die Negation
durch einen Kreis dargestellt. Als Schaltzeichen fiir den Inverter werden drei verschie-
dene Varianten verwendet (Abb. 4.8). Das untere Schaltsymbol mit dem Dreieck ist am
prignantesten und wird in der Praxis meist benutzt.

Das Sonderzeichen ,—‘ ist etwas umstdndlich zu erzeugen, darum wird auch der
Schrigstrich ,/* als Préfix oder die Raute ,#° als Suffix zum Kennzeichen einer Negation
verwendet. Die Invertierung des Wertes A schreibt sich dann also /A oder A#.
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Abb. 4.7 Funktionstabelle
und Schaltzeichen der ODER-

Verkniipfung g L
Abb. 4.8 Funktionstabelle der
N . . . A— 1 o-v
egation und drei Variationen
des Schaltzeichens fiir einen A Y
Inverter 0 1
A — Oo—Y
1 0
A —><} Y

4.2.4 NAND-Verkniipfung

Durch Kombination einer UND-Verkniipfung und einer Negation am Ausgang ergibt
sich die NAND-Verkniipfung. Der Name leitet sich aus dem englischen ,,not and* ab. Das
Schaltbild entspricht der UND-Verkniipfung mit einem Kreis am Ausgang fiir die Nega-
tion. Die Funktion ist fiir zwei oder mehr Eingangsvariablen definiert und Abb. 4.9 zeigt
Funktionstabelle und Schaltzeichen fiir vier Variablen.

Formeln verwenden das UND-Symbol ,&° und negieren den ganzen Ausdruck durch
einen Strich oberhalb (siehe Tab. 4.1). Dies gilt auch fiir NOR und XNOR.

Abb. 4.9 Funktionstabelle
und Schaltzeichen der NAND-
Verkniipfung

OO w>»
|

S, A D D 000000 0O
= 2 v 0000 22220000 |m
- 2 00 2200220022000
- 0~ 0_,r0~~r0~~0—~~0-~0-=0|0

O_l_\_\_\A_\_l_\_\_\A_\_\_\_\‘_<
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4.2.,5 NOR-Verkniipfung

Durch Kombination einer ODER-Verkniipfung und einer Negation am Ausgang ergibt
sich die NOR-Verkniipfung. Der Name leitet sich aus dem englischen ,,not or*“ ab. Das
Schaltbild entspricht der ODER-Verkniipfung mit einem Kreis am Ausgang fiir die Nega-
tion (Abb. 4.10). Auch diese Funktion ist fiir zwei oder mehr Eingangsvariablen definiert.

4.2.6 XOR-Verkniipfung

Die XOR-Verkniipfung ist in der Grundform zunéchst fiir zwei Eingangsvariablen definiert
und ergibt eine 1 wenn genau eine Variable 1 ist, aber nicht beide gemeinsam. Dies kann
man als ,,ausschliefendes oder®, englisch ,,exclusive or* bezeichnen, daher XOR. Manch-
mal wird die Funktion auch als Antivalenz bezeichnet. Dies meint, dass beide Eingénge
unterschiedlichen Wert haben miissen, damit der Ausgang 1 wird. Eine XOR-Verkniipfung
mit mehr als zwei Eingéngen ist 1, wenn die Anzahl der 1-Werte am Eingang ungerade ist.

In Formeln wird das XOR durch das Symbol ,&¢ dargestellt. In Schaltzeichen wird
die Bezeichnung ,=1° verwendet (Abb. 4.11).

4.2.7 XNOR-Verkniipfung

Die XOR-Verkniipfung mit negiertem Ausgang wird als XNOR-Verkniipfung bezeich-
net (,,exclusive not or*). Funktion und Schaltzeichen sind in Abb. 4.12 dargestellt.

Abb. 4.10 Funktionstabelle A B Y
und Schaltzeichen der NOR- 00 1 ]
Verkniipfung 0 1 0 g | =t p-vY
10 0
11 0
Abb. 4.11 Funktionstabelle A B Y
und Schaltzeichen der XOR- 00 0
Verkniipfung 01 1 A=t Y
B pu—
10 1
11 0
Abb. 4.12 Funktionstabelle A B Y
und Schaltzeichen der XNOR- 00 1
Verkniipfung 0 1 0 Al=1pbv
B pu—
10 0
11 1
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Manchmal wird die Funktion auch als Aquivalenz bezeichnet. Dies meint, dass in der
Grundform mit zwei Eingéingen beide Eingénge den gleichen Wert haben miissen, damit
der Ausgang 1 wird. Bei mehr als zwei Eingéingen ist die XNOR-Verkniipfung 1, wenn
die Anzahl der 1-Werte am Eingang gerade ist.

4.2.8 Weitere Verkniipfungen

Neben den genannten Verkniipfungen sind weitere Funktionen mdoglich. Bei nur einem
Eingang gibt es noch die Identitdt, bei der der Ausgang gleich dem Eingang ist.

Alle moglichen Verkniipfungen mit zwei Eingéngen sind in Tab. 4.1 aufgefiihrt. Eine
Funktionstabelle fiir zwei Eingédnge hat vier Eintrdge und fiir jeden Eintrag sind zwei
Werte 0 und 1 moglich. Also sind 2* = 16 Funktionen theoretisch denkbar. Einige die-
ser Funktionen sind trivial, beispielsweise Ausgang ist immer O oder Ausgang ist iden-
tisch Eingang A. Einige Funktionen sind die oben genannten Verkniipfungen, also UND,
ODER, XOR und so weiter.

Daneben gibt es noch Implikation und Inhibition als weitere Verkniipfungen. Die
Funktionen selbst werden verwendet, aber die Begriffe sind in der Praxis nicht iiblich.
Stattdessen wird die Funktion iiber eine Grundfunktion beschrieben, also beispielsweise
,Aund nicht B“ fiir Eintrag drei der Tabelle.

4.2.9 Logikstufen

Alle Verkniipfungen konnen auch in einer mehrstufigen Funktion verwendet werden,
bei der das Ergebnis einer Verkniipfung die Eingabe einer weiteren Verkniipfung ist. Die
Anzahl der aufeinander folgenden Verkniipfungen wird als Stufigkeit bezeichnet. Der
Begriff bezieht sich sowohl auf die Logik als auch auf deren Umsetzung als Schaltung.

¢ Einstufige Logik: Eine Logik und digitale Schaltung wird als einstufig bezeichnet,
wenn zwischen Eingang und Ausgang nur eine Verkniipfung vorhanden ist.

o Zweistufige Logik: Fine Logik und digitale Schaltung wird als zweistufig bezeich-
net, wenn zwischen Eingang und Ausgang zwei Verkniipfungen in Kette geschaltet
sind.

o n-stufige Logik: Eine Logik und digitale Schaltung wird als n-stufig bezeichnet,
wenn zwischen Eingang und Ausgang n Verkniipfungen in Kette geschaltet sind.

Bei der Anzahl der Stufen wird eine Negation am Eingang oder Ausgang nicht als sepa-
rate Stufe gezihlt.
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Abb. 4.13 US-amerikanische Inverter AND-Gate
Logiksymbole [ ﬂ
OR-Gate XOR-Gate

> >

Beispiele fiir Logikfunktionen mit verschiedenen Stufen:

¢ Einstufige Logik: Y = A Vv B
o Zweistufige Logik: Y = (A&B) v (C&D)
e 4-stufige Logik: Y = A& (BV (C& (D V E)))

Bedeutung hat die Stufenzahl insbesondere fiir eine Schaltungsrealisierung. Jede Ver-
kniipfung entspricht einem Logikgatter in der Schaltung. Dabei addieren sich die Verzo-
gerungszeiten sdmtlicher Stufen. Deshalb sollte fiir zeitkritische Entwiirfe die Anzahl der
Stufen so klein wie moglich sein.

4.2,10 US-amerikanische Logiksymbole

In englischsprachiger Literatur und in Datenblittern finden Sie auch Logiksymbole in
US-amerikanischer Darstellungsweise. Diese sind in Abb. 4.13 dargestellt. Durch einen
Kreis am Ausgang werden die Varianten mit invertiertem Ausgang gekennzeichnet, also
aus AND wird NAND, aus XOR wird XNOR.

Man kann sich die Symbole merken, indem man bei der geraden linken Kante des
AND an die vertikalen Striche des A und bei der gebogenen linken Kante des OR an die
Rundungen des O denkt.

4.3  Rechenregeln der Schaltalgebra
4.3.1 Vorrangregeln

Genau wie in der elementaren Algebra hat auch die Schaltalgebra Vorrangregeln. In der
elementaren Algebra gilt ,,Punktrechnung vor Strichrechnung®, also hat die Multiplika-
tion Vorrang vor der Addition.

In der Schaltalgebra hat das Negationszeichen den grofiten Vorrang und es kann fiir
eine einzelne Variable oder fiir einen gesamten Ausdruck stehen. An néchster Stelle sind
nach DIN die Verkniipfungszeichen fiir UND, ODER, NAND und NOR gleichrangig.
Danach folgen im Vorrang die Symbole fiir Implikation, Aquivalenz und Antivalenz, die
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untereinander wiederum gleichrangig sind. Da die Verkniipfungszeichen fiir UND sowie
ODER die gleiche Prioritdt haben, miissen innerhalb einer Gleichung mit UND- und
ODER-Verkniipfungen also die einzelnen Terme in Klammern gesetzt werden.

Allerdings wird der Vorrang in der Praxis anders gehandhabt. Den stidrksten Vorrang
hat weiterhin das Negationszeichen. Dann gilt allerdings ,,UND vor ODER®, das heif3t
die UND-Verkniipfung hat Vorrang vor der ODER-Verkniipfung. Dies spart oftmals
Schreibarbeit und Klammern. Alle anderen Verkniipfungen werden iiblicherweise per
Klammer geordnet, um Missverstdndnisse zu vermeiden.

Auch in diesem Buch wird die Praxisregel ,,UND vor ODER* benutzt. Abb. 4.14
zeigt die verschiedenen Schreibweisen. Alle drei Ausdriicke sind gleichwertig.

4.3.2 Rechenregeln

Rechenregeln zum Umformen von Funktionen gelten in der Schaltalgebra dhnlich wie
in der elementaren Algebra. Die Rechenregeln gelten fiir UND- sowie ODER-Verkniip-
fungen. Fiir alle Rechenregeln wird auf mathematische Beweise verzichtet. Die meisten
Regeln konnen verifiziert werden, indem alle moglichen Werte eingesetzt werden.

4.3.2.1 Vereinfachungsregeln fiir eine Variable

Es gibt eine Reihe von Vereinfachungsregeln, die gelten, wenn nur eine Variable und
eventuell eine Konstante vorhanden ist.

Eine Variable ODER die Konstante 0 ergibt die Variable:

Av0O=A
Eine Variable ODER die Konstante 1 ergibt 1:
Avi1=1
Eine Variable UND die Konstante 0 ergibt O:
A&0=0
Eine Variable UND die Konstante 1 ergibt die Variable:
A&l =A
Eine Variable ODER sich selbst ergibt die Variable:

AVA=A

Abb. 4.14 Vorrangregeln der Y =(A&B) v (C&D) korrekt nach DIN
Schaltalgebra =A&BVC&D ,UND vor ODER"
=ABvCD verkirzt ohne ,&'
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Eine Variable UND sich selbst ergibt die Variable:
A&A=A

Eine Variable ODER ihre Negation ergibt 1:
AVA=1

Eine Variable UND ihre Negation ergibt die 0:
A&A=0

Eine Variable doppelt negiert ergibt wieder die Variable:

A=A

Einige dieser Rechenregeln haben Ahnlichkeit zur elementaren Algebra, also der
Schulmathematik.

e FEine Zahl plus Null ergibt wieder die Zahl.
e FEine Zahl mal Null ergibt Null.
e FEine Zahl mal Eins ergibt wieder die Zahl.

Fiir andere Rechenregeln gibt es jedoch keine Entsprechung.

e Eine Zahl mal oder plus sich selbst ergibt keine Konstante.

4.3.2.2 Kommutativgesetz
Das Kommutativgesetz, oder Vertauschungsgesetz, besagt, dass die Reihenfolge der Ope-
randen vertauscht werden darf. Es gilt also:

A&B=B&A

AVB=BVA

4.3.2.3 Assoziativgesetz
Das Assoziativgesetz, oder Verbindungsgesetz, besagt, dass Rechenoperationen mit dem
gleichen Operator in beliebiger Reihenfolge durchgefiihrt werden diirfen. Es gilt also:

A&B&C=A&B)&C=A&B&C)=(A&C)&B

AVBVC=AVB)VC=AvBVv(C)=AVv(C) VB

4.3.2.4 Distributivgesetz

Das Distributivgesetz, oder Verteilungsgesetz, besagt, dass ein Operand vor einer Klam-
mer auf Operatoren in einer Klammer verteilt werden darf. Dies wird in der elementaren
Algebra als Ausmultiplizieren und Ausklammern bezeichnet. Es gilt also:
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A&BVC)=(A&B)V((A&C)

AVB&C)=AVB &AVC)

4.3.2.5 De Morgansche Gesetze
Die de Morganschen Gesetze sind zwei Regeln, die besagen:

e FEine NAND-Verkniipfung kann ersetzt werden durch eine ODER-Verkniipfung mit
negierten Operatoren.

e FEine NOR-Verkniipfung kann ersetzt werden durch eine UND-Verkniipfung mit
negierten Operatoren.

A&B&C& ... & X=AVBvVCV...vX
AVBVCV.. VX=A&B&C& ... &X

Anschaulich gesagt, kann also die Negation des gesamten Ausdrucks ersetzt werden
durch Negation der einzelnen Operanden und Tauschen von UND nach ODER bezie-
hungsweise ODER nach UND. Diese Gesetze gelten fiir beliebig viele Operatoren.

Zu den de Morganschen Gesetzen gibt es kein Aquivalent in der elementaren Algebra,
sodass diese Regeln eventuell etwas iiberraschend aussehen.

4.3.2.6 Shannonsches Gesetz

Das Shannonsche Gesetz ist eine Erweiterung der de Morganschen Gesetze. Es besagt,
dass in einer Funktion, die aus UND- sowie ODER-Verkniipfungen besteht, alle Varia-
blen negiert und die Operatoren UND sowie ODER vertauscht werden koénnen. Die so
entstehende Funktion ergibt dann die Negation der urspriinglichen Funktion. Als Formel
schreibt sich dies:

FAB, ... X; & V) =f(A,B,....X; v, &)

Das Shannonsche Gesetz erscheint zunéchst sehr theoretisch, hat aber praktische Bedeu-
tung. Mit ihm konnen logische Ausdriicke umgeformt werden, damit sie besser als
Schaltung umgesetzt werden konnen. In der CMOS-Technologie sind beispielsweise
NAND- und NOR-Verkniipfungen einfacher als UND-, ODER-Verkniipfungen. Mit dem
Shannonschen Gesetz kann dann umgeformt werden:

AV(B&C)=A&(BVC)=A&(B&C)

Die Funktion kann somit durch zwei NAND-Schaltungen mit jeweils zwei Operatoren
implementiert werden.
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4.4  Schaltungsentwurf durch Minimieren

Beim Schaltungsentwurf wird fiir eine bestimmte Aufgabenstellung eine Schaltung ent-
worfen. Aus der Spezifikation wird die logische Funktion erstellt. Diese logische Funk-
tion entspricht einer Schaltung aus Gattern, welche die Funktion ausfiihrt.

In diesem Abschnitt wird die prinzipielle Vorgehensweise erldutert. Fiir den prakti-
schen Entwurf ist das grafische Verfahren mit Karnaugh-Diagramm gut geeignet, wel-
ches im nichsten Abschnitt beschrieben wird. Des Weiteren kann die Minimierung
rechnergestiitzt erfolgen. Dabei konnen, je nach Algorithmus, auch mehrstufige Logik-
funktionen entstehen. Mit dem hier vorgestellten Verfahren wird stets eine zweistufige
Logik erzeugt.

4.4.1 Minterme

Fiir den Schaltungsentwurf werden sogenannte Minterme verwendet. Ein Minterm ist
eine UND-Verkniipfung, die jede Variable genau einmal benutzt. Die Variable kann dabei
nicht-negiert oder negiert verwendet werden. Bei n Eingangsvariablen existieren 2" ver-
schiedene Minterme. Bei drei Variablen A, B, C wiren also acht verschiedene Minterme
moglich. Alle drei Variablen werden nicht-negiert oder negiert verwendet, beispielsweise:

A&B&C; A&B&C; A&B&C

Das Besondere am Minterm ist, dass er bei genau einer Kombination der Eingangsvaria-
blen den Ausgangswert 1 ergibt und sonst O ist. Dies ergibt sich dadurch, dass die UND-
Bedingung ja nur bei einer Kombination erfiillt ist. Abb. 4.15 zeigt fiir drei Minterme
die Funktionstabelle. Wenn die nicht-negierten Eingénge gleich 1 und die negierten Ein-
ginge gleich O sind, ist der Ausgang gleich 1.

4.4.2 Schaltungsentwurf mit Mintermen

Mit den Mintermen kann direkt eine kombinatorische Schaltung entworfen werden.
Dazu werden die Minterme ausgewihlt, welche eine 1 ausgeben sollen. Die Minterme

Abb. 4.15 Funktionstabelle
fiir drei Minterme

A&B&C | A& A&B&C
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werden dann ODER-verkniipft, damit die 1-Werte der Minterme auch in der Gesamt-
schaltung eine 1 ausgeben. Diese Beschreibung wird als disjunktive Normalform (DNF)
bezeichnet. Disjunktion ist dabei eine andere Bezeichnung fiir die ODER-Funktion.

Betrachten wir als Beispiel die Majorititsschaltung dessen Funktionstabelle in
Abb. 4.3 dargestellt ist. Die Schaltung soll fiir vier Eingangskombinationen eine 1 aus-
geben. Die Minterme fiir diese vier Kombinationen werden ausgewihlt und ODER-
verkniipft. Dies ergibt die Funktion:

Y= (A&B&C)V (A&B&C)V (A&B&C) Vv (A&B&C)

4.4.3 Minimierung von Mintermen

Die disjunktive Normalform, also die ODER-Verkniipfung der Minterme ist eine logi-
sche Gleichung, welche die geforderte Funktion ausfiihrt. Allerdings kann die Nor-
malform meist noch vereinfacht werden. Diese Vereinfachung wird als Minimierung
bezeichnet. Dabei werden Terme anhand der Rechenregeln der Schaltalgebra zusammen-
gefasst. Wenn ein Term nicht mehr weiter zusammengefasst werden kann, wird er als
Primterm bezeichnet.

Bei der Majorititsschaltung konnen unter anderem die Terme (A& B & C) sowie
(A & B & C) zusammengefasst werden. In beiden Termen miissen B und C den Wert 1
haben. A soll im ersten Term 0, im zweiten Term 1 sein. Das heif3t, beide mogliche Werte
fiir A sind erlaubt und daher braucht A nicht beachtet zu werden. Die Terme konnen des-
halb zum Primterm (B & C) zusammengefasst werden.

Diese anschauliche Erkldrung ldsst sich auch iiber die Rechenregeln herleiten:

o Assoziativgesetz: (A& B& C) V (A&B&C) = (A& (B& C)) V (A& (B& ()
o Distributivgesetz: (A& (B& C)) V (A& (B&C)) = (AVA) & (B&C)

e Vereinfachungsregel: (A v A) = 1

e Vereinfachungsregel: 1 & (B& C) = (B& C)

Auf die gleiche Weise konnen die Terme (A & B & C) sowie (A & B & C) mit dem Term
(A & B & C) zusammengefasst werden. Dabei fillt die Variable B beziehungsweise C
weg. Die minimierte Majorititsfunktion lautet:

Y=B&C)VA&C)V (A&B)

Diese Minimierung ist allerdings rechnerisch sehr aufwendig. Man muss genau auf-
passen, welche Terme miteinander kombiniert werden konnen. Fiir die Ermittlung der
Primterme ist das grafische Verfahren nach Karnaugh wesentlich einfacher, welches in
Abschn. 4.6 erldutert wird.
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4.4.4 Maxterme

Fiir den Schaltungsentwurf konnen auch sogenannte Maxterme verwendet werden. Ein
Maxterm ist eine ODER-Verkniipfung, die jede Variable genau einmal verwendet. Wie
bei Mintermen kann jede Variable wiederum nicht-negiert oder negiert sein. Fiir den
Maxterm gilt dann, dass er bei genau einer Kombination der Eingangsvariablen den Aus-
gangswert O ergibt und sonst 1 ist. Maxterme sind:

AVBVC:AVBVC:AVBvVC

Abb. 4.16 zeigt fiir drei Maxterme die Funktionstabelle. Nur wenn die nicht-negierten
Eingiinge gleich 0 sowie die negierten Eingiinge gleich 1 sind, ist der Ausgang gleich 0.

Maxterme sind also das Gegenstiick zu Mintermen. Eine Funktion benutzt die UND-,
die andere die ODER-Verkniipfung. Bei einer Funktion gibt es eine einzige 1, bei der
anderen eine einzige 0.

4.4.5 Schaltungsentwurf mit Maxtermen

Auch aus den Maxtermen kann direkt eine kombinatorische Schaltung entworfen wer-
den. Dazu werden die Maxterme ausgewihlt, welche eine 0 ausgeben und dann UND-
verkniipft, damit diese Nullen in Kombinationen der Gesamtschaltung eine 0 ergeben.
Diese Beschreibung wird als konjunktive Normalform (KNF) bezeichnet. Konjunktion ist
dabei eine andere Bezeichnung fiir die UND-Funktion.

Die Majorititsschaltung gibt fiir vier Eingangskombinationen eine 0 aus. Die Max-
terme fiir diese vier Kombinationen werden ausgewihlt und UND-verkniipft. Dies ergibt
die Funktion:

Y=AVBVCO)&(AVBVC)&(AVBVC)&(AVBVC)
4.4.6 Minimierung von Maxtermen

Auch die konjunktive Normalform, also die UND-Verkniipfung von Maxtermen kann
meist noch vereinfacht werden.

Abb. 4.16 Funktionstabelle
fiir drei Maxterme

AvBVC Av AvBvC
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Fiir die Majorititsschaltung kann der Maxterm (A V B Vv C) jeweils mit den drei ande-
ren Termen zusammengefasst werden. Die einzelnen Rechenschritte sollen hier jedoch
nicht einzeln aufgefiihrt werden. Die minimierte Majoritdtsfunktion lautet:

Y=BVCO)&MAVC)&AVB)

4,5 Schaltungsminimierung mit Karnaugh-Diagramm

Im vorherigen Abschnitt wurde gezeigt, dass disjunktive und konjunktive Normalformen
durch Minimierung vereinfacht werden konnen. Ein Karnaugh-Diagramm (Aussprache
,Karnoh®) fiihrt diese Vereinfachung grafisch durch. Durch die Darstellung kann direkt
erkannt werden, welche Terme miteinander verbunden werden konnen. Eine Minimie-
rung mit Karnaugh-Diagramm ist sehr gut fiir Funktionen mit zwei bis vier Variablen
geeignet. Fiir fiinf oder sechs Variablen ist das Verfahren ebenfalls moglich, erfordert
dann aber etwas Ubung und gutes riumliches Vorstellungsvermogen.

Das Verfahren kann sowohl fiir die disjunktive als auch fiir die konjunktive Normal-
form durchgefiihrt werden. Hier soll hauptséchlich die disjunktive Normalform vorgestellt
werden. Das Verfahren ist auch unter dem Namen Venn-Diagramm, Karnaugh-Veitch-
Diagramm (Aussprache ,,Karnoh-Fietsch*) oder KV-Diagramm bekannt.

Das Karnaugh-Diagramm ist insbesondere wichtig, da es die Zusammenhinge von
Schaltalgebra, logischen Verkniipfungen und Schaltungsimplementierung verdeutlicht.
In der Praxis erfolgt die Schaltungsminimierung heutzutage meist durch Computerpro-
gramme zur Schaltungssynthese.

4.5.1 Grundsatzliche Vorgehensweise

Das Karnaugh-Diagramm ist im Prinzip eine andere Anordnung der Wahrheitstabelle.
Die Eingangsvariablen werden am horizontalen und vertikalen Rand eines schachbrettar-
tig unterteilten Rechtecks angeordnet. Fiir n Eingangsvariablen erhilt man somit 2" Fel-
der. Dabei sind sie so angeordnet, dass jedes Feld einem Minterm entspricht und sich
zwei horizontal oder vertikal benachbarte Felder nur in einer Eingangsvariablen unter-
scheiden. In die Felder werden die Werte O und 1 der Ausgangsvariablen eingetragen.
Benachbarte 1-Felder werden dann wie im Abschn. 4.5.4 zusammengefasst:

(A&B)Vv (A&B) =A& (BVB) =A

Im Karnaugh-Diagramm sind auch Felder am rechten und linken bzw. oberen und unte-
ren Rand benachbart, denn auch sie unterscheiden sich nur in einer Variablen. Es miis-
sen moglichst viele benachbarte 1-Felder zu einem Block zusammengefasst werden. Die
logische Gleichung wird dann minimal, wenn die Blocke moglichst viele Felder enthal-
ten und die Anzahl der Blocke minimal ist.

Die Vorgehensweise zum Aufstellen der disjunktiven Minimalform lautet:
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1. Ausgehend von der Wahrheitstabelle wird die benotigte Anzahl der Eingangsvariablen
ermittelt und das entsprechende Karnaugh-Diagramm aufgestellt. Die logischen Vari-
ablen werden am Rand des KV-Diagramms angeordnet.

2. Anhand der Wahrheitstabelle werden die Werte der Ausgangsvariablen O oder 1 in die
entsprechenden Felder des Karnaugh-Diagramms eingetragen.

3. Benachbarte 1-Felder werden zu einem Block zusammengefasst.

4. Zwei Blocke, die sich nur in einer Variablen unterscheiden, sind ebenfalls benach-
bart; sie diirfen zu einem grofleren Block zusammengefasst werden. Ein Block enthilt
immer 2" Felder. Eine Zusammenfassung von zum Beispiel drei oder fiinf Feldern ist
nicht erlaubt.

5. Ein 1-Feld darf in mehreren Blocken integriert sein.

. Jeder Block reprisentiert einen UND-Term (UND-Verkniipfung der Eingangsvariablen).

7. Aus den moglichen Termen (den Blocken im Diagramm) werden die erforderlichen
Terme so gewihlt, dass alle 1-Felder beriicksichtigt sind.

8. Die logische Gleichung ergibt sich aus der ODER-Verkniipfung der ausgewihlten
UND-Terme.

9. Die logische Gleichung wird nur dann minimal, falls die Blocke so groff wie moglich
sind und die Anzahl der ausgewihlten Blocke minimal ist.

N

4.5.2 Karnaugh-Diagramm fiir zwei Variablen

Bei zwei Variablen hat die Funktionstabelle vier Eintrige. Im Karnaugh-Diagramm in
Abb. 4.17 werden diese Eintrdge in vier Feldern dargestellt. Jeder Eintrag entspricht
einem Feld und die horizontale Richtung unterscheidet zwischen verschiedenen Wer-
ten der Variable B, die vertikale Richtung unterscheidet zwischen verschiedenen Werten
der Variable A. Die Buchstaben p bis s zeigen die Korrespondenz zwischen Tabelle und
Diagramm.

Um eine Funktion zu minimieren, werden die Ausgabewerte der Funktionstabelle
in das Diagramm eingetragen. Die beispielhaft gewihlte Funktionstabelle in Abb. 4.18
hat einen Eintrag mit Funktionswert O und drei Eintridge mit Funktionswert 1 und diese
Werte finden sich im Karnaugh-Diagramm wieder. Jede 1 entspricht einem Minterm, das
heif3t, die Funktion konnte durch drei Minterme dargestellt werden.

Im Diagramm kann man jetzt erkennen, welche 1-Eintrdge, also welche Min-
term nebeneinander liegen. Diese benachbarten Minterme konnen zu einem Term

Abb.4.17 Zuordnung im
Karnaugh-Diagramm
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Abb. 4.18 Eintrige im
Karnaugh-Diagramm

Abb. 4.19 Zusammenfassung
von 1-Eintrigen

zusammengefasst werden. In Abb. 4.18 sind dies die beiden Einsen in der linken Spalte
und die beiden Terme in der unteren Zeile. Eine 1, also ein Minterm darf dabei mehrfach
fiir die Minimierung verwendet werden.

Abb. 4.19 zeigt die zusammengefassten Eintrdge. Fiir die linke Spalte ist die Variable
B gleich 0. Die Variable A kann 0 oder 1 sein, denn das abgerundete Rechteck der ver-
bundenen Eintrédge liegt iiber der oberen und unteren Zeile. Damit entspricht dieser Term
der Funktion B = 0 gleichbedeutend mit B. Der andere verbundene Eintrag liuft iiber
die untere Zeile, also A gleich 1. B kann 0 oder 1 sein, denn das Rechteck liegt {iber den
Spalten fiir beide Werte von B. Der Term ist also A = 1 gleichbedeutend mit A. Die mini-
mierte Funktion ergibt sich aus der ODER-Verkniipfung der Terme, also:

Y=AVB

4.5.3 Karnaugh-Diagramm fiir drei Variablen

Fiir drei Variablen wird das Diagramm auf acht Felder erweitert (Abb. 4.20). An der
langen Kante werden dafiir zwei Variablen angeordnet. Die Reihenfolge der beiden
Variablen ist so zu wihlen, dass sich benachbarte Felder weiterhin in nur einer Varia-
ble unterscheiden. Diese Reihenfolge entspricht dadurch dem Gray-Code. Beachten Sie,
dass linker und rechter Rand benachbart sind.

Das Diagramm enthélt somit zwei Terme, die sich aus jeweils zwei Mintermen, also
zwei 1-Stellen zusammensetzen. Die minimierte Funktion ergibt sich zu:

Y=A&B)V (B&C)

Auch Gruppen von vier Funktionswerten kénnen zu einer Vierergruppe zusammenge-
fasst werden. Dies entspricht einer Zusammenfassung von zwei Zweiergruppen, die sich
auch nur in einer Variablen unterscheiden. Wenn sich somit weniger Terme und grofere
Terme ergeben, spart dies Schaltungsaufwand. Die Vierergruppen konnen quadratisch
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Abb. 4.20 Karnaugh- ABC| Y

Diagramm mit drei Variablen 88? 1 B,C= 00 01 11 10
0100 of[1[1)o]o
011 0 A=
100]| 0 1 /(/) 10
101 1
1100 A=0,B=0  B=0,C=T
111 0

oder liber eine ganze Zeile gehen. Abb. 4.21 zeigt ein Karnaugh-Diagramm mit zwei
Vierergruppen. Die resultierende Funktion ist:

Y=AvC

Die linke Spalte des Karnaugh-Diagramms enthilt die Terme fiir B,C = 00 und die
rechte Spalte die Terme fiir B,C = 10. Daher unterscheiden sich diese Terme auch
nur in einer Variable (Variable B) und sind benachbart. Zweier- und Vierergruppen
konnen daher iiber den Rand hinaus verbunden sein. Abb. 4.22 zeigt dies fiir zwei
Karnaugh-Diagramme.

4.5.4 Karnaugh-Diagramm fiir vier Variablen

Fiir vier Eingangsvariablen wird das Diagramm auf 16 Felder erweitert, so dass auch die
vertikale Achse zwei Variablen enthilt, wiederum mit der Reihenfolge in Gray-Codie-
rung. Abb. 4.23 zeigt die Anordnung und zwei Gruppen.

Abb. 4.21 Karnaugh- BC= 00 01 11 10

. P ——C=1
Diagramm mit Vierergruppen ol o {1 1 T 0

A= ‘
1 [1 1 1 J 1 } Act
Abb. 4.22 Linker und rechter B,C= 00 01 11 10
R?nd sind im Karnaugh- o | 1 ] 0 0 [ 1
Diagramm benachbart A=
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Abb. 4.23 Karnaugh- C,D=
Diagramm mit vier Variablen A,B= 00 01 11

00|10 o1
o
0

A=0, D=0
o1 1) 070

0

1110

1
10| 0 ‘1‘ 0|0
A=1, C=0, D=1

In den 16 Feldern konnen Gruppen mit zwei, vier oder acht 1-Feldern gebildet wer-
den. Die Gruppengrofle muss aber eine Zweierpotenz sein, das heifit eine Gruppe aus
sechs Feldern ist nicht moglich. Dies ergibt sich daraus, dass bei einer Zusammenfas-
sung eine Variable aus dem Term entfillt und dadurch die Gruppe jeweils doppelt so
grof} wird. Fiir ein Karnaugh-Diagramm mit vier Variablen gibt es also folgende mogli-
che Gruppen:

Einzelnes 1-Feld mit allen vier Variablen

e Zweiergruppe mit drei Variablen

e Vierergruppe mit zwei Variablen

Achtergruppe mit einer Variablen (siche Abb. 4.24)

Theoretisch kann es dann auch eine 16er-Gruppe ohne Variable geben, das heifit die
Funktion ist immer 1.

Wie schon beim Karnaugh-Diagramm fiir drei Variablen sind hier wieder die Rén-
der benachbart. Dies gilt natiirlich auch fiir Vierergruppen und zwar auch in der Kom-
bination von oberer, unterer und linker, rechter Rand. Mit anderen Worten, auch die vier
Ecken konnen zu einer Vierergruppe zusammengefasst werden (Abb. 4.25). Dazu miis-
sen aber alle vier Eckfelder eine 1 eingetragen haben. Eine diagonale Zweiergruppe, also
Feld links-unten und Feld rechts-oben wére nicht moglich, da ja auch ansonsten keine
diagonalen Felder erlaubt sind.

Abb. 4.24 Karnaugh- C,D=
Diagramm mit Achtergruppen AB= 00 01 11 10:

00 | 1 1 1 1

o1 | o o |1 |14

11 0 0 1 1

10 | 1 1 1 1

 B=0
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Abb. 4.25 Die vier Ecken C,D=
konnen eine Vierergruppe A.B= 00: 01 11 :10

bilden 00| 1|o0|ol1
0

01|10 |0|O

1110 |0 | 0| 0 |[B=0,D=0

10| 1) 0o |1

4.5.5 Auswahl der erforderlichen Terme

Nachdem die 1-Felder zu moglichst groen Gruppen, den Primtermen, zusammengefasst
sind, muss im néchsten Schritt iiberpriift werden, welche Terme erforderlich sind. Dabei
sind manchmal alle Primterme erforderlich und manchmal werden Primterme nicht beno-
tigt, sind also redundant. Die Bedingung fiir die Auswahl der Primterme ist, dass alle 1-Fel-
der in mindestens einem Primterm enthalten sein miissen. Je weniger Primterme benotigt
werden und je groBer die Terme sind, umso giinstiger ist die entstehende Schaltung.

Als Beispiel wird eine Funktion mit sieben 1-Feldern betrachtet, die in Abb. 4.26 im
Karnaugh-Diagramm eingetragen sind. Es lassen sich vier Primterme bilden, und zwar
eine Vierergruppe und drei Zweiergruppen. Da alle 1-Felder in einem der Primterme ent-
halten sein miissen, ist Term 1 erforderlich, denn nur er enthilt die 1-Felder in der linken
Spalte. Auch Term 2 und Term 4 sind erforderlich, denn nur sie enthalten die 1-Felder in
der dritten Spalte (fiir C,D = 11). Term 3 hingegen ist nicht erforderlich, denn sein obe-
res 1-Feld ist bereits in Term 1, das untere 1-Feld in Term 4 enthalten.

4.5.6 Ermittlung der minimierten Funktion

Wenn die erforderlichen Primterme bekannt sind, miissen die logischen Funktionen fiir diese
Terme bestimmt werden. Die Terme sind dabei eine UND-Verkniipfung von nicht-negierten
und negierten Eingangsvariablen. Welche Eingangsvariablen im Term enthalten sind, ergibt
sich durch die Position des Primterms im Karnaugh-Diagramm. Drei Félle sind moglich:

Abb. 4.26 Auswahl der C,D=
] Term 1
Primterme A= Q0 01 11 10
00 | 1 1 1l 0f—Term2
N
o1 1 |1 | 0 [0 Term3
11| o |(1]1)fo| Tem4

100 | 0|00
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e Der Primterm iiberdeckt nur Zeilen oder Spalten, fiir die eine Eingangsvariable 1 ist.
Dann wird die Variable nicht-negiert in der UND-Verkniipfung verwendet.

e Der Primterm iiberdeckt nur Zeilen oder Spalten, fiir die eine Eingangsvariable 0 ist.
Dann wird die Variable negiert in der UND-Verkniipfung verwendet.

e Der Primterm iiberdeckt Zeilen oder Spalten, fiir die eine Eingangsvariable sowohl 1
als auch 0 sind. Dann wird die Variable nicht in der UND-Verkniipfung verwendet.

Die Formel fiir die minimierte Funktion ergibt sich dann als ODER-Verkniipfung aller
UND-Terme.

Als Beispiel wird die Funktion fiir Term 1 in Abb. 4.26 ermittelt. Fiir die vier Ein-
gangsvariablen gilt:

e Der Term iiberdeckt nur Zeilen in denen die Variable A gleich O ist. A wird negiert
verwendet.

e In den oberen beiden Zeilen ist die Variable B sowohl O als auch 1. B wird nicht
verwendet.

e In den tiberdeckten linken Spalten ist C beides mal 0. C wird negiert verwendet.

e In den beiden linken Spalten ist D sowohl O als auch 1. D wird nicht verwendet.

e Die Funktion fiir Term 1 ist also: A & C

Fiir Term 2 gilt, dass die Variablen A und B gleich O sind und daher negiert verwendet
werden. D ist gleich 1 und wird nicht-negiert verwendet. C kann 0 und 1 sein und darum
in der Funktion nicht enthalten. Der Primterm lautet also: A & B & D

Fiir Term 4 sind die Variablen A, B und D gleich 1 und daher nicht-negiert. C ist wie
bei Term 2 nicht enthalten und daher lautet der Primterm: A & B & D

Somit ergibt sich die minimierte Funktion fiir Abb. 4.26 als ODER-Verkniipfung von
Term 1, 2 und 4:

VA&B&DVA&B&D

QO

Y=A&
4.5.7 Karnaugh-Diagramm mit Don’t-Care

Wenn fiir bestimmte Kombinationen von Eingangswerten keine Ausgabe spezifiziert ist,
kann diese Freiheit benutzt werden, um die minimierte Funktion mdoglichst einfach zu
erstellen. Ein Beispiel fiir Funktionen mit Don’t-Care wurde am Anfang des Kapitels in
Abschn. 4.2.4 erldutert.

Die Behandlung von Don’t-Care-Eintridgen bei der Minimierung nach Karnaugh ist
relativ einfach. Zunichst werden die Don’t-Cares als Strich ,-* in das Karnaugh-Dia-
gramm eingetragen. Bei der Ermittlung der Primterme werden die Don’t-Cares einbe-
zogen, um moglichst grole Primterme zu bilden. Bei der Auswahl der erforderlichen
Primterme werden die Don’t-Cares dann nicht beriicksichtigt, denn sie miissen nicht in
einem Primterm enthalten sein.
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Anschaulich gesprochen werden die Don’t-Cares zur Bildung der Primterme wie
1-Werte, bei der Auswahl der erforderlichen Primterme wie 0-Werte behandelt. Primterme
die nur aus Don’t-Cares bestehen, werden nicht eingetragen. In der resultierenden mini-
mierten Funktion ergeben sich dann fiir manche Don’t-Cares eine 1, fiir andere eine O.

Als Beispiel fiir die Behandlung von Don’t-Cares soll die in Abschn. 4.2.3 beschrie-
bene Primzahlerkennung fiir die Zahlen O bis 9 minimiert werden. Die Funktionstabelle
findet sich in Abb. 4.4 und hat sechs Don’t-Cares. Der Eingang ist die vierstellige Dualzahl
A(3:0), so dass die Eingangsvariablen hier nicht A bis D heilen. Abb. 4.27 zeigt auf der
linken Seite die Zuordnung zwischen Feldern im Karnaugh-Diagramm und Dezimalzahlen.

Im Karnaugh-Diagramm in Abb. 4.27 (rechts) konnen drei Vierergruppen als Primterme
gebildet werden. In der dritten Zeile wire eine weitere Vierergruppe nur aus Don’t-Cares
moglich, die aber nicht eingetragen wird, da sie ohne 1-Felder nicht erforderlich sein kann.

Term 1 ist erforderlich, da nur er das 1-Feld rechts oben abdeckt. Term 2 ist erforder-
lich, da nur er das 1-Feld fiir ,0101° abdeckt. Mit diesen beiden Termen sind sdmtliche
1-Felder abgedeckt, sodass Term 3 nicht erforderlich ist.

Zur Bestimmung der Terme werden wieder die Eingangsvariablen betrachtet. Fiir Term
1 ist A(2) stets O und A(!) stets 1, also werden sie negiert beziehungsweise nicht-negiert
berticksichtigt. Die Variablen A(3) und A(0) treten sowohl als 0 und 1 auf, entfallen also.
Term 1 lautet somit A(2) & A(1). Term 2 berechnet sich als A(2) & A(0). Die minimierte
Funktion fiir die Primzahlerkennung ist die ODER-Verkniipfung der Terme und lautet:

Y =AQ2) &A1) v AQ2) &A(0)

Durch die gewihlten Terme werden vier der sechs Don’t-Care-Felder umfasst. Fiir diese
Felder ergibt sich also eine 1 als Ausgabe, fiir die anderen beiden Don’t-Care-Felder eine
0. Da laut Aufgabenstellung diese Eingangskombinationen nicht auftreten, konnten sie
frei belegt werden.

Term 1

A(1:0)= A(1:0)= /

00 j
A3:2)= 01 11 10 AB:2)= 00 01 /1; 10‘

00 0 1 3 o 00| O 0 1 1
01 . 5 . 6 o1 | 0 ‘ 1 1 0

1 12| 13| 15| 14 1 ) ‘ ) )

00 gl o 1] 10 10]0 /0

Term 2 Term 3

Abb. 4.27 Karnaugh-Diagramm fiir Primzahlerkennung mit Don’t-Cares
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Vielleicht fragen Sie sich beim Betrachten von Abb. 4.27, ob die Terme nicht auch
kleiner gewihlt werden konnten. Term 1 beispielsweise konnte auch als Zweiergruppe
mit den beiden 1-Feldern aus der ersten Zeile eingetragen werden. Ein solcher Term
wiirde tatsidchlich eine korrekte logische Funktion ergeben. Er wire aber aufwendiger als
die Vierergruppe. Term 1 als Zweiergruppe entspricht A(3) & A(2) & A(1), withrend die
Vierergruppe durch den einfacheren Term A(2) & A(1) umgesetzt wird.

4.5.8 Karnaugh-Diagramm fiir mehr als vier Variablen

Auch Funktionen mit fiinf oder sechs Variablen konnen prinzipiell mit dem Karnaugh-
Diagramm minimiert werden. Allerdings sind dafiir mehr als zwei Dimensionen erfor-
derlich und man muss sich die Felder rdumlich hintereinander oder iibereinander
vorstellen. Abb. 4.28 zeigt eine Darstellung mit 32 Feldern fiir fiinf Variable, bei der die
beiden Hilften gedanklich an der mittleren, dickeren Linie geknickt werden. Felder aus
rechter und linker Hilfte liegen dadurch iibereinander. Eine mogliche Vierergruppe ist
zur Verdeutlichung eingetragen. Fiir sechs Variable miisste man in einem 64er-Feld auch
eine obere und untere Hilfte iibereinander legen.

Diese Darstellung ist allerdings uniibersichtlich und daher fehleranfillig. Ein rechner-
gestiitztes Verfahren wire daher sinnvoll.

4.5.9 Karnaugh-Diagramm der konjunktiven Normalform

Bisher wurde stets die disjunktive Normalform beschrieben, aber in dhnlicher Weise kann
auch die konjunktive Normalform aufgestellt werden. Entsprechend der Symmetrie der
Schaltalgebra (sieche de Morgansche Gesetze in Abschn. 4.3.2.5) ist die Vorgehensweise
praktisch spiegelbildlich. Es werden also anstatt der 1-Felder die 0-Felder verbunden, gege-
benenfalls mithilfe der Don’t-Care-Felder. Dann werden die ODER-Terme UND-verkniipft.

Als Beispiel soll die Primzahlerkennung auch in der konjunktiven Normalform mini-
miert werden. In Abb. 4.29 werden aus den O-Feldern mithilfe der Don’t-Cares eine
Achtergruppe und drei Vierergruppen gebildet. Term 1 und 3 sind erforderlich, da es

Abb. 4.28 Karnaugh-

C,D,E=
Diagramm fiir fiinf Variablen AB= 000 001 011 010 110 111 101 100

00

01 m m

10
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A(1:0)=
A@:2)= 0 01 11 10
00 |/0 OJT — Term 1

-
01 (|0 1 1 [0+ Term2
- Term 3

100 o] - -LTerm4

Abb. 4.29 Primzahlerkennung in der konjunktiven Normalform

jeweils ein 0-Feld gibt, welches nur in ihnen enthalten ist. Damit sind alle 0-Felder abge-
deckt, so dass Term 2 und 4 redundant sind.
Die minimierte Funktion ergibt sich zu:

Y = (AQ2) v A(1) & (A(2) v A(0))

Fiir die Primzahlerkennung sind die minimierten Funktionen der disjunktiven und kon-
junktiven Normalform praktisch gleich aufwendig, denn beide Funktionen nutzen drei
Verkniipfungen mit jeweils zwei Eingingen. Je nach Funktionstabelle kann eine der
Varianten aber auch giinstiger als die andere sein. Es gibt Entwurfsprogramme die beide
Varianten ausprobieren und die giinstigere verwenden.

4,6 VHDL fiir kombinatorische Schaltungen
4.6.1 Beschreibung logischer Verkniipfungen

Im Kapitel 3 haben Sie die Schaltungsbeschreibung mit VHDL kennengelernt. Die logi-
schen VHDL-Operatoren konnen verwendet werden, um eine Funktion zu beschreiben.
Die gerade in Abschn. 4.5.9 berechnete Logikfunktion wiirde dann wie folgt lauten:

y <= (a(2) or a(l)) and ((not a(2)) or a(0));

Die Reihenfolge der Operationen wird durch Klammern vorgegeben. Dies empfiehlt
sich, um zweifelsfrei zu definieren, wie die Funktion gemeint und interpretiert werden
soll. Es ist besser einige Sekunden fiir eine weitere Klammer zu investieren, als mehrere
Stunden oder lidnger nach einem Fehler im Code zu suchen.

Die direkte Beschreibung der Logikfunktion ist moglich und wird auch von Program-
men verstanden. Viel sinnvoller ist es jedoch, die Funktion zu beschreiben und die Gene-
rierung der Logikfunktion dem Programm zu iiberlassen.
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4.6.2 Beschreibung der Funktion

Bei der Funktionsbeschreibung in VHDL wird die Spezifikation durch If- und Case-
Anweisungen sowie Zuweisungen beschrieben. Die Funktion soll ja die Primzahl aus
dem 4-Bit-Wert A erkennen. Eine VHDL-Beschreibung wiirde darum A zunéchst in
einen Unsigned umwandeln und dann eine Case-Anweisung aufrufen.

signal a_u : unsigned (3 downto 0);

a_u <= unsigned(a) ;

process (a_u)

begin

case a_u is
when 0 => y <= '0';
when 1 => vy <= '0';
when 2 => vy <= '1"';
when 3 => vy <= '1"';
when 4 => y <= '0';
when 5 => vy <= '1"';
when 6 => vy <= '0';
when 7 => vy <= '1"';
when 8 => y <= '0';
when 9 => vy <= '0';
when others => y <= '0';

end case;
end process;

Diese Beschreibung benétigt zwar etwas mehr Text, dafiir spart man sich die manu-
elle Schaltungsminimierung fiir die Logikfunktion. Auflerdem ist beim Betrachten des
Codes schneller deutlich, welche Funktion ausgefiihrt wird.

Man kann die Beschreibung auch noch vereinfachen, indem nur die Primzahlen in
der Case-Anweisung genannt werden. Alle anderen Werte sind durch den Others-Fall
beriicksichtigt. Die Case-Anweisung wiirde dann lauten:

case a_u is

when 2 => vy <= '1"';
when 3 => vy <= '1"';
when 5 => vy <= '1"';
when 7 => vy <= '1"';

when others => y <= '0';
end case;

Im Unterschied zu der Funktionstabelle in Abb. 4.4 werden bei beiden VHDL-
Beschreibungen die Don’t-Care-Fille nicht berticksichtigt, sondern die Ausgabe fiir
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Werte grofier 10 zu 0 gesetzt. Prinzipiell konnte fiir ein Don’t-Care der Wert ,-° zugewie-
sen werden. Dies wird in der Praxis jedoch selten gemacht, da die Einsparungen meist
relativ gering sind.

4.7 Ubungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Priifen Sie sich mit den Aufgaben und
Fragen am Kapitelende. Die Losungen und Antworten finden Sie am Ende des Buches.
Bei den Auswabhlfragen ist immer genau eine Antwort korrekt.

Aufgabe 4.1
Was ist ein Minterm?

a) Eine Logikfunktion die nur fiir eine Eingangskombination 1 ist

b) Eine Logikfunktion die mit geringst moglicher Geschwindigkeit arbeitet
c¢) Eine Logikfunktion die nur fiir eine Eingangskombination 0 ist

d) Eine Logikfunktion die nur aus einem Inverter besteht

e) Eine Logikfunktion die nur aus einem XOR-Gatter besteht

Aufgabe 4.2
Was ist ein Maxterm?

a) Eine Logikfunktion die nur fiir eine Eingangskombination 0 ist
b) Eine Logikfunktion die nur fiir eine Eingangskombination 1 ist
¢) Eine Logikfunktion die nur aus einem XOR-Gatter besteht

d) Eine Logikfunktion die nur aus einem Inverter besteht

e) Eine Logikfunktion die mit konstanter Geschwindigkeit arbeitet

Aufgabe 4.3

Fiir eine Stereoanlage soll die eingestellte Lautstidrke auf einer vertikalen Skala mit sie-
ben LEDs (LI bis L7) dargestellt werden. Die Lautstédrke ist als 3-Bit-Dualzahl D2, DI,
DO verfiigbar.

Je hoher die eingestellte Lautstirke, umso mehr LEDs sollen durch Ausgabe einer 1
leuchten. Bei Lautstirke 0 (D2, DI, DO = 000) sind alle LEDs aus, bei 1 (001) leuchtet
nur L1, und so weiter. Abb. 4.30 zeigt den Wert 4 (100) bei dem L/ bis L4 leuchten.

Stellen Sie die Funktionstabelle der Schaltung auf.

Aufgabe 4.4
Fiir einen Spielautomaten soll die Eingabe eines Joysticks akustisch ausgegeben werden.
Der Joystick hat vier Schalter O (oben), U (unten), L (links), R (rechts). In der Mittelstellung
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Abb. 4.30 Lautstirkeanzeige L7

einer Stereoanlage
L6
L5
L4 — =
L3 ==
L2 —| [~
L ==

geben alle Schalter 0 aus, bei Auslenkung sind die entsprechenden Schalter 1. Der Joystick
kann schrig gehalten werden, sodass ein horizontaler und ein vertikaler Schalter gleichzeitig
gedriickt sein konnen. Die beiden horizontalen bzw. vertikalen Schalter O und U bzw. L und
R konnen nicht gleichzeitig gedriickt sein.

Wenn der Joystick aus der Mittelstellung heraus, horizontal oder vertikal gedriickt
wird, soll durch Setzen des Ausgangs T/ =1 ein bestimmter Ton ausgegeben werden.
Wenn der Joystick schrig gehalten wird und zwei Schalter driickt, soll durch Setzen des
Ausgangs 72 = 1 ein anderer Ton ausgegeben werden. 7/ ist dann O.

Stellen Sie die Funktionstabelle der Schaltung zur Erzeugung der Tonansteuerung 7'/
und 72 aus den Schaltern O, U, R, L des Joysticks auf. Fiir Eingangskombinationen, die
nicht auftreten konnen, soll fiir die Ausgidnge ein Don’t-Care (,-‘) eingetragen werden.

Aufgabe 4.5
Eine kombinatorische Schaltung hat vier Eingénge A(3:0), die unten als Dezimalzahl A
angegeben ist. Es gibt einen Ausgang Y der folgende Werte hat:

e |beiA=25,7,10,11, 14, 15
e () sonst

Hinweis: Die Zuordnung von Dezimalzahl zu Feldern im Karnaugh-Diagramm ergibt
sich aus der Zahlendarstellung, ist aber auch in Abb. 4.27 (links) angegeben.

a) Stellen Sie das Karnaugh-Diagramm auf.
b) Ermitteln Sie die Produktterme. Welche Produktterme sind erforderlich?
¢) Geben Sie die Funktion fiir die Ausgangsvariable an.

Aufgabe 4.6
Eine kombinatorische Schaltung hat vier Einginge A(3:0), die unten als Dezimalzahl A
angegeben ist. Es gibt einen Ausgang Y der folgende Werte hat:

e 1beiA=0,1,2,3,4,7,8,9,10,11, 15
e () sonst
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a) Stellen Sie das Karnaugh-Diagramm auf.
b) Ermitteln Sie die Produktterme. Welche Produktterme sind erforderlich?
c) Geben Sie die Funktion fiir die Ausgangsvariable an.

Aufgabe 4.7
Eine kombinatorische Schaltung hat vier Eingénge A(3:0), die unten als Dezimalzahl A
angegeben ist. Es gibt einen Ausgang Y der folgende Werte hat:

e |beiA=1,3,8 11,13, 14
e ObeiA=0,2,4,5,6
e Don’t-Care sonst

a) Stellen Sie das Karnaugh-Diagramm auf.

b) Ermitteln Sie die Produktterme mit Nutzung der undefinierten Ausginge. Welche Pro-
duktterme sind erforderlich?

c) Geben Sie die Funktion fiir die Ausgangsvariable an.

Aufgabe 4.8
Eine kombinatorische Schaltung hat vier Eingénge A(3:0), die unten als Dezimalzahl A
angegeben ist. Es gibt einen Ausgang Y der folgende Werte hat:

e lbeiAd=0,5,14,15
e ObeiA=1,2,3,6,7,8,12,13
e Don’t-Care sonst

a) Stellen Sie das Karnaugh-Diagramm auf.

b) Ermitteln Sie die Produktterme mit Nutzung der undefinierten Ausginge. Welche Pro-
duktterme sind erforderlich?

¢) Geben Sie die Funktion fiir die Ausgangsvariable an.



Sequenzielle Schaltungen

Wihrend kombinatorische Schaltungen nur die aktuellen Werte der Eingangssignale
verwenden, konnen sich sequenzielle Schaltungen Informationen merken. Die Aus-
gangswerte einer sequenziellen Schaltung kénnen damit von den aktuellen und den vor-
angegangenen Werten der Eingangssignale abhidngen. Dieses Gedichtnis wird durch
Flip-Flops als Speicherelemente erreicht.

Beispielsweise kann der Kanal eines Fernsehers durch Zifferntasten sowie durch ,+°
und ,—‘-Taste ausgewéhlt werden. Durch Driicken der Taste ,4° wird der Kanal Vier aus-
gewihlt. Der Fernseher hat hierfiir eine sequenzielle Schaltung, die sich den aktuellen
Kanal merkt, auch wenn keine Taste mehr gedriickt ist. Durch Driicken von ,+* wechselt
der Fernseher auf Kanal Fiinf. Wird ,—* gedriickt, geht der Fernseher wieder auf Kanal
Vier. Der Kanal kann also auf verschiedene Arten angewéihlt werden. Wie die Kanalaus-
wabhl erfolgte, ist nicht wichtig. Wenn der Kanal Vier gewihlt ist, braucht sich die sequen-
zielle Schaltung nicht zu merken, ob dies durch die Taste ,4° oder ,—* oder ,+° geschah.

Sequenzielle Schaltungen werden in der Digitaltechnik sehr oft eingesetzt und dabei
meist durch einen Takt angesteuert. Dieser Takt erreicht fiir eine Hochleistungs-CPU
Frequenzen von iiber 3 GHz, wihrend fiir viele Anwendungen eine Geschwindigkeit im
Bereich 10 bis 100 MHz ausreicht. Sequenzielle Schaltungen werden beispielsweise als
Flankendetektor, als Zihler oder als Steuerung eingesetzt.

e Ein Flankendetektor erkennt die Anderung eines Eingangswertes und gibt einmalig
ein Signal weiter. Wenn beim Fernseher die ,+‘-Taste gedriickt wird, soll nur ein
Kanal weitergeschaltet werden, selbst wenn die Taste etwas ldnger gedriickt wird.

e Ein Zihler ist beispielsweise in einer CPU enthalten und zéhlt pro Takt jeweils einen
Wert weiter, um den nichsten Befehl auszufiihren. Bei einer Verzweigung kann der
Zihler auch auf einen bestimmten Wert gesetzt werden.

In diesem und dem néchsten Kapitel werden einige Schaltungen ausfiihrlich erldutert.
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5.1 Speicherelemente
5.1.1 RS-Flip-Flop

Die Grundform eines Speicherelements ist das RS-Flip-Flop (RS-FF), auch als Latch
bezeichnet. Es arbeitet ohne Takt und hat die beiden Eingénge R und S sowie den Aus-
gang Q. Das Schaltsymbol ist in Abb. 5.1 dargestellt.

5.1.1.1 Funktion
Die beiden Eingénge haben die Bedeutung Reset (R) und Set (S), also riicksetzen und
setzen. Entsprechend dieser Namen ist auch die Funktion des RS-Flip-Flops.

e Mit R auf 1 wird der Ausgang Q auf 0 gesetzt (riicksetzen), S ist dabei 0.

e Mit S auf 1 wird der Ausgang Q auf 1 gesetzt (setzen), R ist dabei O.

e Sind beide Eingénge 0, bleibt der Wert von Q unverédndert (speichern).

e Beide Eingédnge diirfen nicht gleichzeitig auf 1 sein. Man kann nicht gleichzeitig set-
zen und riicksetzen.

Der Zeitverlauf in Abb. 5.2 verdeutlicht die Funktion. In der Digitaltechnik wird der
Zeitverlauf iiblicherweise etwas vereinfacht dargestellt, da vor allem der logische
Zusammenhang gezeigt werden soll. Auf der horizontalen Achse ist die Zeit aufgetra-
gen. Die vertikale Achse zeigt die Pegel fiir die Eingangs- und Ausgangssignale. Die
Zeitachse hat keinen Maf3stab, da keine konkreten Zeiten sondern die Abldufe wichtig
sind. Ebenso hat die vertikale Achse keinen Mafistab, sondern gibt nur die Pegel L und H
fiir die Werte 0 und 1 an. Die Signaliibergéinge werden leicht schrig dargestellt, um den
Ubergang von 0 nach 1 oder umgekehrt anzudeuten. Die Zeitverzogerung, die in jeder
Schaltung enthalten ist, wird dadurch angedeutet, dass die Signaliibergénge von Eingang
und Ausgang leicht versetzt sind.

Fiir das RS-FF sind in Abb. 5.2 die Eingédnge R und S sowie der im Flip-Flop gespei-
cherte Ausgangswert Q dargestellt. Die eingezeichneten Zeitpunkte haben folgende
Bedeutung:

1. Der Eingang R ist 1, das RS-FF wird riickgesetzt und Q ist 0.

2. Beide Einginge sind 0 und das RS-FF speichert den vorherigen Wert O fiir Q.

3. S wird 1 und setzt das RS-FF. Der Ausgang Q wird 1 und speichert diesen Wert auch
wenn S wieder auf O geht.

4. Mit Aktivierung von R wird das RS-FF wieder auf O gesetzt.

Abb. 5.1 Schaltsymbol eines

S — — Q
RS-Flip-Flops (RS-FF) S

R —R
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Abb. 5.2 Zeitverlauf der ®) @ g @
Ansteuerung eines RS-Flip- R™ ) g«/—\ - :og!sctr: g)
Flops < < |ogisc!

b s ™/ /)

e e

Beachten Sie: Wenn R und S 0 sind, kann der Ausgang sowohl O als auch 1 sein. Der
Ausgangswert hingt also davon ab, ob zuletzt R oder S auf 1 war. Dies ist der wesentli-
che Unterschied zu einer kombinatorischen Schaltung, die bei gleichen Eingangswerten
immer den gleichen Ausgangswert ergeben, unabhingig von vorherigen Werten.

5.1.1.2 Aufbau

Die Speicherung im RS-FF erfolgt durch eine Riickkopplung des Ausgangs Q. Es werden
zwei NOR-Gatter bendtigt, die wie in Abb. 5.3 verschaltet sind. Der Ausgang des zwei-
ten NOR-Gatters wird an einen Eingang des ersten Gatters zuriickgefiihrt und speichert
so den Wert des Ausgangs Q. Da nur zwei Gatter bendtigt werden, ist der Schaltungsauf-
wand fiir das RS-FF relativ klein.

Die NOR-Gatter des RS-FF konnen im Schaltplan auch nebeneinander geschoben
werden, so dass sich die in Abb. 5.4 gezeigte Anordnung ergibt. Wihrend ein NOR-Gat-
ter den Ausgang Q erzeugt, hat das andere NOR-Gatter den invertierten Speicherwert als
Ausgang.

5.1.1.3 Herleitung des Aufbaus

Der Aufbau des RS-Flip-Flops konnte auch mit den bereits bekannten Methoden aus
dem vorherigen Kapitel hergeleitet werden. Abb. 5.5 zeigt, dass die Riickfithrung zur
Speicherung des Flip-Flop-Wertes als separate Leitung angesehen werden kann. Der

Abb. 5.3 Aufbau eines R A b
RS-Flip-Flops S ) —Q
21 o
Abb. 5.4 Alternative R— .1 a
Darstellung des RS-Flip-Flop- -
Aufbaus
>1 Q

g — | Q
Abb. 5.5 Entwurf des kombinatorische
RS-Flip-Flops —R | | _— Schaltung

—>s Q™ >
I—_> Q
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Rest des Flip-Flops ist dann eine normale kombinatorische Schaltung. Sie hat die Ein-
gidnge R und S sowie den alten Wert von Q, der hier als Q" bezeichnet wird. Mit die-
sen drei Werten berechnet die kombinatorische Schaltung dann den neuen Wert von Q,
bezeichnet als 0"*!. Die Bezeichner n und n+1 stellen Zeitschritte dar; n ist der aktuelle,
n+1 der nédchste Wert.

Fiir die kombinatorische Schaltung aus Abb. 5.5 kann eine Funktionstabelle erstellt
und mit dem Verfahren nach Karnaugh minimiert werden. Abb. 5.6 zeigt die Funktions-
tabelle und das Karnaugh-Diagramm dieser kombinatorischen Schaltung. Zur Minimie-
rung konnen die disjunktive und die konjunktive Normalform verglichen werden, also
Einsen oder Nullen zusammengefasst werden. Die konjunktive Normalform mit dem in
Abb. 5.6 dargestellten Termen ergibt die Funktion

Qn-l-l :R&(Qn \/S)

Mit dem De Morganschen Gesetz wird die UND-Verkniipfung durch eine NOR-Ver-
kniipfung mit negierten Operatoren ersetzt. Aus dem ODER in der Klammer wird dann
ein NOR und die Negierung von R entfillt. Somit ergibt sich die in Abb. 5.3 gezeigte
Struktur mit zwei NOR-Gattern.

Q"' =R&(Q"VS)=RV(Q"VYS)
5.1.1.4 Verwendung
In der Praxis wird das RS-Flip-Flop in der einfachen Grundform nur selten verwendet,
da es kein Taktsignal benutzt. Es ist jedoch als Teilschaltung in getakteten Flip-Flops
enthalten und dadurch eine wichtige Grundlage fiir die Datenspeicherung in sequenziel-
len Schaltungen.

5.1.2 Taktsteuerung von Flip-Flops

5.1.2.1 Takt

Fast alle in der Realitét eingesetzten Schaltungen benutzen einen 7akt zur Ansteuerung
der Speicherelemente. Der Takt ist ein periodisches Signal, welches in gleichméBigem
Rhythmus zwischen 0 und 1 wechselt. Ein 0-1-Zyklus wird als Taktzyklus, Taktschritt
oder Taktperiode bezeichnet.

Abb. 5.6 Minimierung nach RS Q| Q™

Karnaugh fiir den Entwurf des 0001 O )

RS—FFg 00 1 1 } speichern
010 1 R,S= 00 01 11 10

setzen j [

?(1)(1) (1) } ricksetzen i o S S
1010 !} il1]1]-]o]
jl 1 (1) ) } verboten
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Der besondere Vorteil der Taktsteuerung ist die Synchronisierung der Speicherele-
mente. Durch den Takt schalten alle Flip-Flops gemeinsam und fiihren einen Rechen-
schritt aus. Mit dem néchsten Taktzyklus wird der nidchste Rechenschritt ausgefiihrt.

Kennzeichnend fiir einen Takt sind die Periodendauer Tper und die Taktfrequenz f, die
der Kehrwert der Periodendauer ist:

f =T

Taktfrequenzen fiir digitale Schaltungen sind typischerweise im Bereich zwischen
10 MHz fiir eine einfache Schaltung bis zu tiber 3 GHz fiir aktuelle CPUs in Computern.
Die Periodendauer ergibt sich nach der genannten Formel.

Zur Verdeutlichung zwei Zahlenbeispiele:

e Fiir die Taktfrequenz 10 MHz betriigt die Periodendauer

Tper = l/f = I/IOMHZ = 1/10 . 106HZ = 1/107HZ = 10_75 = 100 10_9S = 100ns

o Fiir die Taktfrequenz 3 GHz betrigt die Periodendauer

Toer = /3G, = 0,333 ns

Je hoher die Taktfrequenz ist, umso leistungsfihiger ist eine Schaltung. Allerdings stei-
gen auch der Schaltungsaufwand, die Storanfilligkeit und die benotigte Leistung. Darum
haben netzbetriebene stationdre Computer normalerweise hohere Taktraten als batterie-
betriebene Laptops und Smartphones.

Eine weitere KenngroBe des Takts ist das Tastverhdltnis D (englisch Duty Cycle), also
die Dauer der 1-Phase bezogen auf die Periodendauer:

p="y/r
Der Duty Cycle sollte moglichst etwa 50 %, also 0- und 1-Phase etwa gleich lang sein.
Dies ist insbesondere fiir hohe Taktfrequenzen wichtig, damit das Taktsignal ausreichend
Zeit hat, auch wirklich die Low- und High-Pegel zu erreichen.

Abb. 5.7 zeigt den Taktverlauf eines Taktsignals mit Periodendauer und Zeiten fiir die
Taktphasen. Die englische Bezeichnung fiir Takt ist Clock; das Signal wird daher oft als
CLK oder C abgekiirzt.

Abb. 5.7 Zeitverlauf eines —\—/—\_
Taktsignals CLK_|
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5.1.2.2 Taktpegelsteuerung

Als einfache Taktsteuerung kann der Taktpegel, also der Wert 0 oder 1, benutzt werden.
Ein taktpegelgesteuertes Flip-Flop ist nur aktiv, wenn der Takt auf 1 ist. Die Grundform
des RS-Flip-Flop kann mit wenig Aufwand um eine Taktpegelsteuerung erweitert wer-
den. Wie in Abb. 5.8 gezeigt, werden dazu die Eingénge mit jeweils einem UND-Gatter
erweitert. Nur wenn der Takt auf 1 ist, werden die beiden Steuereingéinge R und S durch
die UND-Funktion an R* und S* weitergegeben. Ist der Takt auf O sind auch R* und S*
auf 0 und das RS-FF behilt seinen Wert.

Der Zeitablauf in Abb. 5.9 verdeutlicht das Verhalten. Nur wenn der Takt CLK auf 1
ist, werden die Steuereingiinge R und S ausgewertet. Dies sind die mit v gekennzeichne-
ten Impulse. Wenn der Takt auf O ist, fiihren an den mit X gekennzeichneten Zeiten die
Eingangssignale zu keiner Anderung am Ausgang.

Die Taktpegelsteuerung hat jedoch einen groflen Nachteil. Eigentlich sollte die Verar-
beitung so ablaufen, dass pro Taktzyklus die Informationen genau ein Flip-Flop weiter-
gegeben werden. Allerdings dauert die 1-Phase eine gewisse Zeit und die Flip-Flops sind
wihrend dieser 1-Phase aktiviert. Es wird also vorkommen, dass Informationen durch
mehrere Flip-Flops ,,rutschen®.

Um dies zu vermeiden, werden bei taktpegelgesteuerten Flip-Flops zwei Takte ver-
wendet, die sich nicht tiberlappen. Dies ist in Abb. 5.10 dargestellt. Oben im Bild ist zu
sehen, wie aufeinander folgende Flip-Flops abwechselnd an eines der Taktsignale ange-
schlossen werden. Unten ist der Zeitverlauf der beiden Takte skizziert. Immer abwech-
selnd, mit einer Pause dazwischen, ist ein Takt aktiv. Damit werden die Daten immer
genau einen Schritt, also ein Flip-Flop weitergereicht.

Das Prinzip des Zweiphasentakts dhnelt einer Kanalschleuse, bei der ein Schiff durch
zwei Tore fahren muss. Erst fiahrt das Schiff durch ein Tor und das Tor wird geschlossen.

R—] & R
>1 Q
& 1 Q
S — S
Abb. 5.8 Taktpegelgesteuertes RS-Flip-Flop
Abb.5.9 Zeitverlauf beim t—

taktpegelgesteuerten RS-Flip- CLK_/_\_/_\_/_\_/_\_/_\_
Fl x
o R\ v
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Abb.5.10 Schaltungsprinzip Flip-Flops

und Zeitdiagramm eines

Zweiphasentakts
CLK_A ? 3 . &
CLK_B

wr U T
CLK_B /_\ /_\ [\

Nach dem Andern des Wasserstands wird das andere Tor gedffnet und das Schiff fihrt
weiter zur nidchsten Schleuse. Es sind jedoch nie beide Tore gleichzeitig offen.

Ein solcher Zweiphasentakt mit taktpegelgesteuerten Flip-Flops wurde friiher in vielen
Schaltungen eingesetzt. Allerdings sind zwei Taktleitungen erforderlich, was einen hoheren
Aufwand bedeutet. Auch kann die Taktperiode nicht so gut ausgenutzt werden, sodass Zeit
verloren geht. Darum werden heute kaum noch taktpegelgesteuerte Flip-Flops verwendet.

5.1.2.3 Taktflankensteuerung

Heutzutage wird praktisch immer eine Taktflankensteuerung verwendet. Nur bei einer
Taktflanke ist das Flip-Flop aktiv, das heifit der Zeitpunkt des Schaltens ist sehr genau
vorgegeben. Dies hat den Vorteil, dass alle Flip-Flops einer Schaltung wirklich gleichzei-
tig arbeiten konnen. Somit wird eine Verarbeitung immer genau einen Schritt von Flip-
Flop zu Flip-Flop weitergefiihrt.

Fiir die Taktflankensteuerung kann entweder die steigende Taktflanke, also der Uber-
gang von 0 nach 1, oder die fallende Taktflanke, also der Ubergang von 1 nach 0, benutzt
werden. Meist wird die steigende Taktflanke verwendet, da dies anschaulicher ist. Alle
Flip-Flops einer Schaltung sind dann nur beim Ubergang des Takts von 0 nach 1 aktiv.
Genauso gut konnten auch Flip-Flops eingesetzt werden, die bei der fallenden Taktflanke
aktiv sind. Dann sollten alle Flip-Flops der Schaltung so aufgebaut sein. Im Schalt-
symbol wird die Taktflankensteuerung durch ein Dreieck am Takteingang dargestellt.
Abb. 5.11 zeigt die Steuerung durch die Taktflanke und das Schaltsymbol.

Es gibt keine Flip-Flops, die bei beiden Flanken aktiv sind. Eine Mischung von Flip-
Flops mit steigender und fallender Taktflanke wird nur bei Spezialschaltungen benotigt;
ein Beispiel findet sich in einem spéteren Kapitel bei der Ansteuerung von Speichern.

ﬁ Flip-Flop aktiv

clk_4 \ 44// | ok

t —

Abb.5.11 Taktflankensteuerung und Schaltsymbol
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Bei der Taktflankensteuerung erfolgt iiblicherweise keine Ansteuerung mit R und S wie
beim RS-Flip-Flop. Stattdessen gibt es einen Dateneingang D, dessen Wert direkt gespei-
chert wird. Dieses taktflankengesteuerte D-Flip-Flop wird im nédchsten Abschnitt erldutert.

5.1.3 D-Flip-Flop

Das taktflankengesteuerte D-Flip-Flop, oder kurz D-Flip-Flop (D-FF) ist das heutzutage
am héufigsten verwendete Flip-Flop. Wenn in der Praxis von einem Flip-Flop gespro-
chen wird, ist so gut wie immer das taktflankengesteuerte D-Flip-Flop gemeint. Zwei
oder mehr D-FFs, die von einem gemeinsamen Takt angesteuert werden, bezeichnet man
auch als Register.

5.1.3.1 Funktion
Beim D-Flip-Flop wird der Eingang D bei einer steigenden Flanke des Takts {ibernom-
men und am Ausgang Q ausgegeben. Das Schaltungssymbol in Abb. 5.12 zeigt auf der
linken Seite den Dateneingang D und den Takteingang C mit dem Dreieck zur Kenn-
zeichnung der Taktflankensteuerung. An der rechten Seite ist der Datenausgang Q. Wenn
das D-FF auf die negative Taktflanke reagiert, wird dies durch einen Inverterkreis am
Takteingang dargestellt. Im Symbol kennzeichnet die Ziffer 1 die Abhédngigkeit der Sig-
nale voneinander. Der Dateneingang /D wird abhéngig vom Taktsignal C/ ausgewertet.
Das Verhalten des D-Flip-Flops wird durch die Funktionstabelle in Abb. 5.13
beschrieben. Die Form der Tabelle ist dhnlich zu den Funktionstabellen der kombinatori-
schen Schaltungen. Das Zeitverhalten wird durch das Taktflankensymbol und Indizes an
den Werten beschrieben. 0" meint dabei wieder den jetzigen Wert des Ausgangs Q und
Q! ist der zeitlich darauffolgende Wert. Die Indizes bezeichnen also aufeinanderfol-
gende Taktperioden oder Zeitschritte n und n+1.

Abb. 5.12 Taktsymbol des positive negative
D-FFs Taktflanke Taktflanke
D—1D — Q D —1D — Q
Cc —>C1 C —o>C1
Abb. 5.13 Funktionstabelle positive negative
des D-FFs Taktflanke Taktflanke
D C | Qn+1 D C | Qn+1
o fF 1] o 0o 1| o
1 f 1 13 1
X o | Q" X o | Q"
X 1] Q" X 1 Q"
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Die Zeilen der linken Funktionstabelle (positive Taktflanke) haben die Bedeutung:

1. Bei D gleich 0 und positiver Taktflanke an C wird der Ausgang Q zu 0.

2. Bei D gleich I und positiver Taktflanke an C wird der Ausgang Q zu 1.

3. Wenn der Takt konstant auf 0 ist, behilt Q seinen Wert. Der Wert von D ist irrelevant
(,X*). Das neue Q"*! ist also gleich dem alten Q".

4. Wenn der Takt konstant auf 1 ist, behilt Q seinen Wert. Q"+ ist gleich Q.

Die rechte Funktionstabelle zeigt das entsprechende Verhalten fiir die negative Taktflanke.
Das Zeitverhalten des D-FFs zeigt Abb. 5.14. Bei jeder steigenden Taktflanke wird
der Eingang von D iibernommen und am Ausgang Q ausgegeben. Anderungen von D
zwischen den steigenden Taktflanken haben keine Auswirkungen.
Die eingezeichneten Zeitpunkte haben folgende Bedeutung:

1. Der Eingang D wird 1.

2. Bei der néchsten steigenden Taktflanke speichert das D-Flip-Flop den Eingangswert
und gibt ihn am Ausgang aus. Q wird 1.

3. Der Eingang D wird 0.

4. Bei der ndchsten steigenden Taktflanke speichert das D-Flip-Flop wieder den Ein-
gangswert. Q wird 0.

5. D wird 1 und vor der nédchsten steigenden Taktflanke wieder 0. Der gespeicherte Wert
im Flip-Flop und der Ausgang Q dndern sich nicht.

6. D wird wieder kurz 1, dann 0. Da in dieser Zeit eine steigende Taktflanke auftritt,
wird der Ausgang fiir einen Takt gleich 1.

Das Zeitverhalten und auch alle weiteren Erkldrungen sind im Folgenden nur fiir Flip-
Flops mit positiver Taktflanke dargestellt. Flip-Flops mit negativer Taktflanke verhalten
sich entsprechend.

5.1.3.2 Reales Zeitverhalten

Wie erldutert, iibernimmt das D-Flip-Flop den Eingangswert bei der positiven Takt-
flanke. Natiirlich braucht die Schaltung eine kurze Zeit, um den Wert zu libernehmen.
Der Eingangswert darf sich darum zum Zeitpunkt der Taktflanke nicht dndern, sondern
muss kurz vor und kurz nach der Taktflanke stabil sein. Abb. 5.15 zeigt einen zulédssigen
und unzuléssigen Zeitverlauf.

Abb. 5.14 Zeitverhalten eines C |

D-Flip-Flops D @ ® 3 \ /’\@ /’\@

a -
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. Der Dateneingang D wechselt vor der Taktflanke.

. Kurz vor und nach der Taktflanke ist D stabil und wird korrekt {ibernommen (v").

. Nach der Taktflanke kann D wieder wechseln.

. Wihrend der nédchsten Taktflanke ist D nicht stabil und wird nicht korrekt tibernom-
men (%). Der Ausgang des Flip-Flops ist undefiniert. Er kann 0, 1 oder sogar einen
unzulédssigen Zwischenzustand haben.

5. Bei der ndchsten Taktflanke ist D stabil. Dennoch kann das Flip-Flop einige Zeit

bendtigen, um sich zu ,,fangen®. Dies wird als Metastabilitdiit bezeichnet. Im Bild ist

angenommen, dass der Ausgang bei dieser Taktflanke wieder normal den Eingangs-
wert iibernimmt.

B W N =

Die bendtigten Zeiten vor und nach der Taktflanke werden als Setup- und Hold-Zeit
bezeichnet. Das Eingangssignal D muss vor der Taktflanke fiir die Setup-Zeit Lsetup und
nach der Taktflanke fiir die Hold-Zeit 7, , stabil sein.

Abb. 5.16 zeigt die Zeiten und verwendet die in der Digitaltechnik iibliche Darstel-
lung. Der horizontale Strich in der Mitte zwischen O und 1 gibt an, dass der Wert belie-
big wechseln darf. Zwei parallele Striche bei 0 und 1 geben einen konstanten Wert O oder
1 an.

Die bendtigten Zeiten von f etp und ¢, , hiingen von der verwendeten Technologie
ab und sind in Datenblittern angegeben. Bei modernen integrierten Schaltungen sind die
Zeiten im Bereich von 0,1 ns oder kleiner. Die Hold-Zeit wird oft zu Null angestrebt,
damit sich der Eingangswert direkt nach der Taktflanke dndern darf.

5.1.3.3 Aufbau

Fiir den Aufbau eines D-Flip-Flops gibt es mehrere Moglichkeiten, die sich in GroBe,
Zeitverhalten und Stromverbrauch unterscheiden. Abb. 5.17 zeigt eine Moglichkeit zum
Aufbau eines D-Flip-Flops. Auf der rechten Seite ist ein RS-Flip-Flop zur Datenspei-
cherung (vgl. Abb. 5.3). Auf der linken Seite ist eine Vorstufe, in der sich ebenfalls die
Struktur zweier RS-FFs findet. Diese Vorstufe erkennt die steigende Taktflanke und steu-
ert dann das RS-FF auf der rechten Seite an.

Abb. 5.15 Datenspeicherung
bei Taktflanken

Abb.5.16 Setup- und Hold- tsetup thold
Zeiten beim D-FF I

C Wert kann zwischen
D X ,0'und ,1" wechseln
Q -__—Wert konstant

,0' oder ,1'
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Abb. 5.17 Moglichkeit zum — &

Aufbau eines D-Flip-Flops
& Q
oLk }{
& &

(nach Datenblatt TI SN7474)

Ql

Eine weitere Schaltung zur Implementierung eines Flip-Flops wird spiter im Kapitel
Halbleitertechnik vorgestellt (Kapitel 10).

5.1.4 Erweiterung des D-Flip-Flops

Die Grundfunktion des D-Flip-Flops kann durch weitere Steuereinginge erweitert
werden.

5.1.4.1 Asynchroner Reset und Set

Der Dateneingang des D-FF wird nur bei der Taktflanke ausgewertet. Manchmal ist es
jedoch erforderlich, dass der Wert eines D-FFs sofort gedndert wird. Hierzu dient ein
asynchroner Reset oder Set. Der Begriff asynchron meint dabei ,,nicht synchron®, also
»nicht mit dem Takt gekoppelt®. Normalerweise hat ein D-FF entweder Reset oder Set,
je nachdem welchen Wert das D-FF bei Aktivierung einnehmen soll.

e FEin asynchroner Reset setzt das D-FF sofort auf 0.
e FEin asynchroner Set setzt das D-FF sofort auf 1.

Mit ,,sofort” ist hierbei gemeint, dass nicht auf die nédchste Taktflanke gewartet wer-
den muss. Natiirlich hat das Flip-Flop eine kurze Verzdgerungszeit, in der die Gatter
umschalten.

Reset und Set sind normale Eingénge des Flip-Flops und werden an der linken Kante
des Schaltsymbols eingezeichnet (Abb. 5.18). Negative Polaritit wird wieder durch den
Inverterkreis symbolisiert. Abb. 5.18 zeigt beispielhaft den Set mit negativer Polaritit.
Genauso wire ein Reset mit negativer Polaritit moglich.

Das Zeitverhalten eines D-Flip-Flops mit asynchronen Reset zeigt Abb. 5.19. Bei den
steigenden Taktflanken sind Hilfslinien eingezeichnet, um die Taktzyklen zu verdeutlichen.

1. Mit der steigenden Taktflanke wird der Wert 1 des Eingangs D gespeichert.
2. Durch eine 1 am Reset wird das D-FF sofort auf 0 gesetzt, also ohne auf eine Takt-
flanke zu warten.
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Abb. 5.1§ Schaltsymbole von /S -as o bp—ip a
D-FFs mit asynchronem Set
(hier mit negativer Polaritit) D—1D C—>Ct
und Reset C —>C1 R—R
Abb.. 5.19 ZeiFverhalten eines ch M mnmnnmnrnhnmnr
D-Flip-Flops mit asynchronem

D I o \
Reset 9 |la

R \ \

e /
Q \ [ t—

3. Reset wird wieder 0, also inaktiv. Dies hat aber noch keine Auswirkung auf den
gespeicherten Wert.

4. Erst mit der nichsten steigenden Taktflanke wird der Wert von D wieder ausgewertet
und der Ausgang Q wird 1.

Beachten Sie insbesondere, dass nach dem Ende des Resets, zum Zeitpunkt ® das Flip-
Flop noch auf 0 bleibt. Der Eingang D ist synchron, wird also erst bei der nédchsten stei-
genden Taktflanke wieder ausgewertet.

Praktische Verwendung finden asynchroner Reset und Set insbesondere bei der Initia-
lisierung. Beim Einschalten einer Digitalschaltung haben die Flip-Flops einen unbekann-
ten Speicherzustand und konnen durch Reset und Set auf den gewiinschten Startwert
gesetzt werden.

Auch fiir die Erkennung kurzer Impulse kénnen asynchroner Reset und Set verwen-
det werden. Ein Eingangssignal ist eventuell sehr kurz und schon vor der nédchsten Takt-
flanke beendet. Ein solcher Impuls wiirde von einer synchronen Schaltung, die nur bei
den Taktflanken arbeitet, nicht erkannt. Zur Erkennung solcher Impulse wird ein Flip-
Flop durch den Dateneingang stindig auf O gesetzt und der Impuls wird am asynchronen
Set angeschlossen. Wenn das Flip-Flop auf 1 ist, lag ein Impuls am Set-Eingang vor.

5.1.4.2 Synchroner Reset und Set

Alternativ kann Reset und Set auch ganz normal mit der Taktflanke ausgewertet wer-
den, also synchron. Wie in Abb. 5.20 gezeigt, hat der Steuereingang dann die Ziffer 1, als
Kennzeichnung der Abhingigkeit vom Takt.

Der synchrone Set ist prinzipiell ein weiterer Dateneingang, das heifit, der Ausgang
des Flip-Flops wird 1, wenn wihrend der Taktflanke D oder S auf 1 sind. Deswegen
konnte die Schaltung auch durch ein normales D-FF und ein ODER-Gatter implemen-
tiert werden (Abb. 5.20, rechts). Entwurf und Darstellung als synchroner Set sind jedoch
tibersichtlicher und der Set kann direkt in die Flip-Flop-Schaltung integriert werden.
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Abb.5.20 Symbol und s-1s ka s

>1 I
Schaltung eines D-FFs mit D —l1D _ b 1D Q
synchronem Set c —boct Cc—C1

In dhnlicher Weise gibt es D-FFs mit synchronem Reset. Auch synchroner Reset und
Set werden fiir die Initialisierung von Digitalschaltungen verwendet.

5.1.4.3 Enable
Ein weiterer Steuereingang der fiir D-FFs verwendet wird, ist der Enable-Eingang (EN).
Bei einer Taktflanke wird der D-Eingang nur iibernommen, wenn Enable gleich 1 ist.
Ansonsten wird der Ausgang Q" beibehalten. Abb. 5.21 zeigt Symbol und Zeitverhalten,
wobei die Ziffern wieder die Abhingigkeit anzeigen. Das Enable EN/ gibt die Giiltigkeit
von Takt /C2 an, welcher dann den Dateneingang 2D iibernimmt.

Im Zeitverhalten sind folgende Fille gekennzeichnet:

1. EN ist 0 und das Flip-Flop behilt seinen Wert.
2. ENist 1 und bei jeder steigenden Taktflanke wird der Wert von D tibernommen.
3. EN ist 0 und das Flip-Flop behilt seinen Wert.

Ein Enable-Steuereingang wird in der Praxis eingesetzt, wenn eine Teilschaltung nur zu
bestimmten Zeiten oder bei bestimmten Bedingungen aktiv ist.

5.1.4.4 Kompakte Darstellung von D-Flip-Flops

Fiir die Darstellung von D-Flip-Flops in einer grofleren Schaltung wird in der Praxis
hiufig eine kompakte Form gewihlt und die Ziffern der Eingangsabhingigkeit weggelas-
sen (Abb. 5.22, links).

Abb. 5.21 Symbol und

Zeitverhalten eines D-FF mit EN — EN1 L Q c ‘—I_—l_—l_ —l_
Enable D ——/_ _\——/_ —/_
D—32D EN o |/ T® o
c—>1c2 —
Q t—
Abb. 5.22 Kompakte /S
Darstellung eines D-FF in D—HD —Q D—p S _a D—D —Q
der Grundform sowie mit c—>C
asynchronem Set und Reset c—C C—pC

)
—3
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Asynchroner Set und Reset konnen dann an der unteren oder oberen Kante des Sym-
bols eingezeichnet sein, um darzustellen, dass sie unabhingig vom Takteingang sind. Der
Set liegt in dieser Darstellung an der oberen Kante, denn er zieht den Wert ,,nach oben®,
zur 1. Reset wird entsprechend an der unteren Kante dargestellt, denn er zieht den Wert
»hach unten®, zur 0. Abb. 5.22 zeigt auch diese Darstellung, wobei das Set wieder bei-
spielhaft negative Polaritit hat (vgl. Abb. 5.18).

5.1.5 Weitere Flip-Flops

Es gibt neben D-Flip-Flops und ihren Erweiterungen auch andere taktflankengesteuerte
Flip-Flops. Diese werden allerdings in der Praxis nur selten eingesetzt und darum hier
nur kurz erwihnt.

5.1.5.1 JK-Flip-Flop
Das JK-Flip-Flop (JK-FF) hat einen Takteingang und die beiden Steuereingédnge J und
K. Diese haben folgende Bedeutung:

e Beide Einginge auf 0: Flip-Flop behilt seinen Wert.

e Jauf 1 (und K auf 0): Flip-Flop geht auf 1

e Kauf 1 (und J auf 0): Flip-Flop geht auf 0

e Beide Eingiinge auf 1: Flip-Flop invertiert seinen Wert, geht also von 0 auf 1 oder von
1 auf 0.

Dieses Verhalten dhnelt dem RS-FF, mit J als Set und K als Reset. Die Bedeutung kann
man sich merken als J wie Jump (auf 1) und K wie Kill (auf 0). Die beim RS-FF verbo-
tene Kombination, dass beide Steuereingidnge auf 1 sind, ist hier erlaubt und dreht den
gespeicherten Wert um.

Auch dieses Flip-Flop kann durch asynchronen Reset oder Set erweitert werden.

JK-Flip-Flops wurden friiher eingesetzt, als Digitalschaltungen noch durch einzelne
diskrete Bausteine aufgebaut wurden. Durch geschickte Ansteuerung von J und K konn-
ten Logikgatter eingespart werden. Heutzutage werden praktisch keine diskreten Flip-
Flops und darum auch keine JK-FFs mehr verwendet.

5.1.5.2 Toggle-Flip-Flop
Das Toggle-Flip-Flop (T-FF) hat, neben dem Takt, nur einen Steuereingang 7. Wenn T
gleich 1 ist, invertiert das Flip-Flop seinen Wert, es ,,toggled”. Bei T gleich O bleibt der
gespeicherte Wert unverindert.

Auch das T-FF kann durch asynchronen Reset oder Set erweitert werden. Wie beim
JK-FF wurde das T-FF eingesetzt, um durch geschickte Ansteuerung Logikgatter einzu-
sparen. Es wird heutzutage praktisch nicht mehr verwendet.
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5.1.6 Kippstufen

Flip-Flops werden auch als bistabile Kippstufen bezeichnet. Bistabil meint, dass beide
Kippwerte®, also 0 und 1 stabil sind. Diese Bezeichnung legt nahe, dass es auch andere
Kippstufen gibt.

5.1.6.1 Monostabile Kippstufe

Eine monostabile Kippstufe, auch als Monoflop bezeichnet, hat nur einen stabilen
Zustand; der instabile Zustand geht nach einer Verzogerungszeit in den stabilen Zustand
tiber. Das Monoflop reagiert auf eine positive Taktflanke am Eingang mit einem 1-Impuls
am Ausgang. Aus dieser instabilen Lage kippt es nach einer einstellbaren Zeit T, zuriick
in den stabilen Zustand mit einer 0 am Ausgang. Erst wenn der Ausgang wieder in seinen
urspriinglichen Logik-Zustand zuriickgekippt ist, kann ein neuer Eingangsimpuls mit sei-
ner Flanke wirksam werden.

Als Variante sind nachtriggerbare Monoflops méglich. Falls die Impulsdauer 7', noch
nicht abgelaufen ist, verlingert eine Taktflanke des Eingangssignals den Impuls bis wie-
derum die Zeit T, nach der Flanke abgelaufen ist.

Dieses Verhalten entspricht der Treppenhausbeleuchtung in einem Mehrfamilien-
haus. Nach Schalterdruck ist das Licht fiir zwei Minuten an (instabiler Zustand) und geht
danach wieder aus (stabiler Zustand). Bei einer nachtriggerbaren Treppenhausbeleuch-
tung verldngert ein weiterer Schalterdruck die Beleuchtungsdauer.

Monostabile Kippstufen sind als diskrete Bauelemente verfiigbar. Die Verzogerungs-
zeit kann tiber ein RC-Glied eingestellt werden. Eingesetzt werden diese Bauelemente,
um das Zeitverhalten von Signalen zu kontrollieren. Beispielsweise kann so sicherge-
stellt werden, dass ein Reset eine bestimmte Mindestdauer hat.

5.1.6.2 Astabile Kippstufe

Eine astabile Kippstufe hat keinen stabilen Zustand, sondern wechselt periodisch zwi-
schen den beiden Zustinden, also O und 1. Sie wird auch als Oszillator bezeichnet und
als Taktgenerator eingesetzt.

Es gibt verschiedene Schaltungen, die als astabile Kippstufe eingesetzt werden konnen.
Einfache Schaltungen nutzen RC-Glieder, um zwischen den Zustinden umzuschalten.
Hierbei ist die Frequenz meist nicht sehr stabil, aber fiir einfache Anwendungen kann dies
ausreichend sein.

Fiir hohe Anspriiche in Hinblick auf Frequenzstabilitidt werden quarzgesteuerte Oszil-
latoren eingesetzt. Fiir den Einsatz in der Digitaltechnik stehen integrierte Schaltkreise zur
Verfiigung, die iiber einen Schwingquarz auf eine bestimmte Frequenz eingestellt werden.

5.2 Endliche Automaten

Eine sequenzielle Schaltung, die aus Speicherelementen und Logikgattern besteht, wird
als Automat, oder genauer als endlicher Automat bezeichnet.
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5.2.1 Automatentheorie

Ein Automat ist dadurch gekennzeichnet, dass sein Verhalten durch aktuelle Eingangs-
variablen und interne Zustandsvariablen bestimmt ist. Die Zustandswerte, oder auch
Zustinde, beschreiben die ,,Vorgeschichte® des Automaten. Daraus ergibt sich auch die
englische Bezeichnung Finite State Machine (FSM), also frei iibersetzt Automat mit end-
licher Anzahl an Zustinden.

Vielleicht fragen Sie sich jetzt, ob es {iberhaupt Automaten mit unendlicher Anzahl an
Zustdanden gibt. Als reale Implementierung ist ein unendlich grofer Speicher natiirlich
nicht moglich, aber in der Theorie ist dies denkbar. In der theoretischen Informatik wird
die Turingmaschine verwendet, die einen unendlich grofen Speicher hat und somit ein
unendlicher Automat ist. Mit dem Gedankenmodell der Turingmaschine wird die Bere-
chenbarkeit von mathematischen Problemen analysiert.

5.2.1.1 Mealy-Automat
Eine Grundform der endlichen Automaten ist der Mealy-Automat. Er wird durch drei
Gruppen an Variablen und zwei Funktionen definiert.

Die drei Gruppen an Variablen sind:

o Eingangsvariablen, also Eingangswerte, die in die Schaltung hineingehen. Sie wer-
den als X(0), X(1), X(2), ... sowie gemeinsam als Gruppe X bezeichnet.

e Ausgangsvariablen, also Ausgangswerte, die aus der Schaltung herausgehen. Sie
werden als Y(0), Y(1), Y(2), ... sowie gemeinsam Y bezeichnet.

e Zustandsvariablen, also interne Werte der Schaltung, die den Zustand speichern. Sie
werden als Z(0), Z(1), Z(2), ... sowie gemeinsam Z bezeichnet.

Die zwei Funktionen beschreiben die Zusammenhénge zwischen den Variablen:

e Die Zustandsiibergangsfunktion benutzt die Eingangsvariablen X und die aktuellen
Zustandsvariablen Z", also Z vom aktuellen Zeitschritt n. Hiermit berechnet sie die
neuen Zustandsvariablen Z**! fiir den niichsten Zeitschritt n+1. Als Funktion ausge-
driickt lautet dies: Z"+'=f(X,Z")

o Die Ausgangsfunktion benutzt ebenfalls die Eingangsvariablen X und die aktuellen
Zustandsvariablen Z", um die Ausgangsvariablen Y zu berechnen. Die Funktion lautet:
Y=g(X,Z")

Diese Struktur ist in Abb. 5.23 dargestellt. Eingangsvariable X und aktuelle Zustands-
variablen Z" gehen in die Zustandsiibergangsfunktion. Dieser Block ist eine kombina-
torische Schaltung aus UND-Gattern, ODER-Gattern und so weiter. Sie berechnet den
nichsten Zustand Z"*!. Die Speicherglieder sind D-Flip-Flops, die zurzeit noch den
aktuellen Zustand Z" speichern und bei der Taktflanke den neuen Zustand iibernehmen.
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Abb. 5.23 Struktur des
Mealy-Automaten X L ; \_V
Zustands- | z"1| Speicher- |y
7" ' | lbergangs- ) Glieder ) Azjsr?'ﬁ%%s —)
funktion (FIip-FIops)—‘ n
] T
Takt |

Die Ausgangsfunktion ist ebenfalls eine kombinatorische Schaltung und berechnet aus X
und Z" die Ausgangsvariablen Y.

Spéter in diesem Kapitel sind Beispiele fiir Automaten angegeben, um Struktur und
Funktion des Mealy-Automaten zu verdeutlichen. Zunichst soll jedoch der andere
bedeutende Automatentyp vorgestellt werden.

5.2.1.2 Moore-Automat
Der Moore-Automat dhnelt dem Mealy-Automat, hat jedoch einen wesentlichen Unter-
schied. Die Ausgangsfunktion hingt nur von den aktuellen Zustandsvariablen Z" ab und
nicht von den Eingangsvariablen X. Die Funktion fiir die Ausgangsvariablen Y lautet
also: Y=g(Z")

Die Informationen der Eingangsvariablen beeinflussen also zunzchst den Zustand und
der Zustand bestimmt dann den Ausgang. Die Struktur ist in Abb. 5.24 zu sehen.

Verglichen mit dem Mealy-Automaten ist der Moore-Automat also etwas einfacher in
der Struktur. Grundsitzlich konnen fiir praktische Problemstellungen stets beide Auto-
maten verwendet werden. Fiir manche Problemstellungen ist ein Mealy-Automat besser
geeignet, fiir andere ein Moore-Automat.

An den Beispielen, die spiter in diesem Kapitel folgen, werden die Unterschiede
sowie Vor- und Nachteile deutlich.

5.2.1.3 Medwedew-Automat
Der Medwedew-Automat ist ein Spezialfall des Moore-Automaten. Bei ihm sind die Aus-
gangsvariablen Y gleich den Zustandsvariablen Z". Die Ausgangsfunktion ist also trivial
und gibt die Zustandsvariablen direkt weiter. In der Funktionsschreibweise lautet dies:
Y=z"

Auf den Medwedew-Automat wird spéter in Abschn. 5.2.7 kurz eingegangen.

Abb. 5.24 Struktur des X
Zustands- | z"+1| Speicher- |y
Moore-Automaten I%: {ibergangs- : Glieder \ A;Jusr?k?ir;%s ::>
r funktion (Flip-Flops) | | [zn
T

Takt |
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5.2.2 Beispiel fiir einen Automaten

5.2.2.1 Schaltungsanalyse

Um die Funktionsweise eines Automaten zu verstehen, wird in diesem Abschnitt ein vor-
handener Automat analysiert. Im darauffolgenden Abschnitt lernen Sie dann, wie Auto-
maten entworfen werden.

Startpunkt der Analyse ist das Schaltbild des Automaten in Abb. 5.25. Vergleichen
Sie ihn auch mit den Grundstrukturen von Mealy- und Moore-Automat in Abb. 5.23 und
Abb. 5.24.

Im Schaltbild sind die drei Blocke des Automaten hervorgehoben:

e Die Zustandsiibergangsfunktion besteht aus fiinf Logikgattern.
o Als Speicherglieder werden zwei D-Flip-Flops verwendet.
o Die Ausgangsfunktion besteht aus einem Logikgatter.

Die drei Variablengruppen des Automaten sind:

e Es gibt eine Eingangsvariable X
e Es gibt eine Ausgangsvariable Y
e Es gibt zwei Zustandsvariable Z(0), Z(1)

Auflerdem ist das Taktsignal CLK vorhanden.

Eine Betrachtung der Struktur zeigt, dass es sich um einen Moore-Automaten handelt,
denn der Ausgang Y hingt nur von den Zustandsvariablen und nicht auch noch von der
Eingangsvariablen ab.

Zur weiteren Analyse werden die Funktionstabellen der beiden kombinatori-
schen Schaltungen fiir Zustandsiibergangsfunktion und Ausgangsfunktion aufge-
stellt. Die Zustandsiibergangsfunktion hat drei Einginge, also miissen fiir 23 =8

Zustandsiibergangs- Speicher- Ausgangs-

funktion glieder funktion
— 1

CLK

Abb. 5.25 Schaltbild eines Automaten
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Eingangskombinationen die Funktionswerte ermittelt werden. Die Ausgangsfunktion
hat zwei Eingiinge, also 2> = 4 Eingangskombinationen. Die Funktionstabellen werden
direkt berechnet, indem alle Kombinationen in die Grafik oder die logische Funktion ein-
gesetzt werden. Wenn Sie mochten, konnen Sie dies als Ubung selbst berechnen, ansons-
ten finden Sie das Ergebnis in Abb. 5.26.

Beachten Sie die Unterscheidung fiir die Zustandsvariable Z(0), Z(1). Die aktuellen
Werte Z%(0), Z*(1) sind Eingéinge fiir beide Funktionstabellen. Die Werte Z*+1(0), Z"*1(1)
fiir den néchsten Zeitschritt sind die Ausgabe der Zustandsiibergangsfunktion.

5.2.2.2 Zustande und Zustandsfolgetabelle

Da der Automat zwei Zustandsvariable hat, konnen vier verschiedene Zustinde gespei-
chert werden. Zur besseren Anschaulichkeit werden diese Zustinde durch Buchstaben A,
B, C, D gekennzeichnet. Als allgemeine Bezeichnung fiir Zustinde wird der Buchstabe
s (engl. State) verwendet. Die Zuordnung zwischen Zustandsvariablen und Zustinden
zeigt Abb. 5.27.

Jetzt konnen Zustandsiibergangsfunktion und Ausgangsfunktion mit der Codierung
der Zustinde kombiniert werden. In Tabelle Abb. 5.26 werden also Z(0) und Z(1) durch
die Zustandsnamen A, B, C, D aus Abb. 5.27 ersetzt. Das Ergebnis wird als Zustands-
folgetabelle (Abb. 5.28) bezeichnet. Die acht Zeilen der Zustandsiibergangsfunktion
(Abb. 5.26) sind umsortiert, so dass die Zustdnde in vier Zeilen und die Eingangsvariable
in zwei Spalten angeordnet sind.

In der Zustandsfolgetabelle Abb. 5.28 steht links der aktuelle Zustand s". Auf der
rechten Seite ist fiir die beiden Moglichkeiten der Eingangsvariablen der jeweilige Fol-
gezustand s"+! angegeben. Ganz rechts findet sich die Ausgangsvariable Y. Wie oben
gesagt, ergibt sich Abb. 5.28 direkt aus den Funktionstabellen und der Zustandscodie-
rung. Zum Nachvollziehen kénnen Sie als Ubung die Zustandsfolgetabelle selbst noch
einmal erstellen.

Abb. 5.26 Funktionstabelle.‘,n X 1) 20)| Z*'(1) z™0) 24) Z”(O)‘ Y
fiir Zustandsiibergangsfunktion
(links) und Ausgangsfunktion 8 8 (1) 8 8 8 (1) 8
(rechts) 0o 1 o0 0 0 10 0
0 1 1 0 0 1 1 1
1 0 0 0 1
1 0 1 1 0
1 1 0 1 1
1 1 1 1 1
Abb. 5.27 Codierung der Codierung K Zustand
Zustinde Z(1) z(0)

a4 00
—_-—O =0
ooOw>
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Abb. 5.28 Zustandsfolgetabelle n gt
X=0 X=1

2]

ooOw>
>>>2>
ooOow
—oo0o0o |<

Die Ubergiinge zwischen den Zustinden lassen sich auch grafisch darstellen. Hierzu
dient das Zustandsfolgediagramm in Abb. 5.29. Die Zustinde sind als Kreise angegeben
und enthalten auch die Ausgabewerte der jeweiligen Zustinde. Die Uberginge zwischen
den Zustinden sind Pfeile. Bei jeder steigenden Taktflanke geht der Automat einen Uber-
gang, also einen Pfeil weiter. Am Pfeil steht jeweils die Bedingung, bei der der Ubergang
erfolgt, also X = 0 oder X = 1.

Da es fiir X zwei Moglichkeiten gibt, gibt es fiir jeden Zustand zwei mogliche Fol-
gezustidnde. Dabei ist es auch moglich, dass ein Zustand sein eigener Folgezustand ist.
Jeder Zustand ist Startpunkt fiir genau zwei Pfeile. Fiir die Endpunkte der Pfeile gibt es
keine Beschrinkung. Manche Zustidnde kénnen nur von einem Pfeil, also einem Uber-
gang erreicht werden. Andere Zustidnde konnen das Ziel von mehreren Zustandstibergén-
gen sein.

5.2.2.3 Funktion
Durch das Zustandsfolgediagramm oder vielleicht bereits durch die Zustandsfolgetabelle
wird die Funktion des Automaten deutlich. Der Automat erkennt Folgen von 1 am Ein-
gang X. Wenn der Eingang das dritte Mal 1 ist, wird auch der Ausgang 1 und bleibt 1 so
lange weiter eine 1 am Eingang anliegt. Wenn eine 0 am Eingang anliegt, geht der Aus-
gang auf 0 und es miissen wieder drei Werte mit 1 anliegen, damit der Ausgang 1 wird.
Wenn nach zweimal 1 bereits eine 0 am Eingang X anliegt, beginnt das Zidhlen wieder
von neuem; es muss wieder dreimal eine 1 auftreten.

Dieses Verhalten wird durch die Zustinde wie folgt umgesetzt. Vergleichen Sie zur
Beschreibung die Zustandsfolgetabelle (Abb. 5.28) und das Zustandsfolgediagramm
(Abb. 5.29).

e Bei einer 0 am Eingang geht der Automat in den Zustand A. Dieser Zustand hat also
die Bedeutung: ,,Der letzte Eingangswert war 0.

e Bei der ersten 1 geht der Automat in den Zustand B. Dieser Zustand hat die Bedeu-
tung: ,,Es gab bisher eine 1.

Abb.5.29 Zustandsfolgediagramm
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e Wenn im Zustand B eine 0 anliegt, muss wieder von vorne gestartet werden und der
Automat geht nach A. Eine 1 im Zustand B wire jedoch die zweite 1 und der Automat
geht in den Zustand C mit der Bedeutung: ,,Es gab bisher zweimal eine 1.

e FEine weitere 1 wire die dritte 1 und dies soll der Automat ja erkennen. Dann geht der
Automat in den Zustand D und gibt am Ausgang eine 1 aus.

e Bei jeder weiteren 1 bleibt der Automat in D und gibt weiter 1 aus. Der Zustand D hat
also die Bedeutung: ,,Drei oder mehr Eingangswerte nacheinander waren 1.

Wie Sie aus der Beschreibung erkennen, hat also jeder Zustand eine bestimmte
Bedeutung.

Zustand: Der Zustand speichert Informationen aus der Vergangenheit, die fiir die Funktion
erforderlich sind.

Abb. 5.30 zeigt das Zeitverhalten des Automaten beispielhaft fiir einen Zeitverlauf am
Eingang X. Das Eingangssignal wird jeweils bei der steigenden Taktflanke ausgewer-
tet und daraus ergeben sich der Zustand und das Ausgabesignal Y fiir den jeweiligen
Taktzyklus.

In praktischen Anwendungen arbeiten fast alle Schaltungen mit einem Taktsignal.
Deshalb verwenden auch alle Automaten, die in diesem Buch beschrieben sind, einen
Takt und die Informationen am Eingang eines Automaten werden immer nur bei der stei-
genden Taktflanke ausgewertet. Die Beschreibung ,,Der Eingang X war dreimal 1.“ meint
daher eigentlich ,,.Der Eingang X war bei drei steigenden Taktflanke auf 1.

5.2.3 Entwurf von Automaten

Normalerweise ist in der Praxis der Ablauf umgekehrt zu dem zuvor erlduterten Beispiel.
Bei einer Entwicklung ist meist eine Aufgabe gegeben und hierzu soll eine Schaltung
entworfen werden. Der Ablauf beim Entwurf umfasst die folgenden Schritte:

. Spezifikation des Verhaltens

. Aufstellen der Zustandsfolgetabelle
. Minimierung der Zustinde

. Codierung der Zustinde

. Aufstellen der Ansteuerungstabelle
. Logikminimierung

AN N B W N =

Abb.5.30 Zeitdiagramm fiir CLK L Lo

den analysierten Automaten X / \ / \
Zustand |A|A|B|C|A|A|B|C|D|D|A
Y
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5.2.3.1 Spezifikation des Verhaltens
Das gewiinschte Verhalten eines Automaten ist meist in Textform gegeben. Ein einfacher
Automat kann in einem Absatz beschrieben werden. Fiir eine komplexe Schaltung, z. B.
einen Mikroprozessor, kann die Spezifikation aber auch mehrere 100 Seiten Umfang haben.
Gerade bei grofleren Spezifikationen konnen Unklarheiten auftreten, zum Beispiel weil
nicht alle moglichen Fille des Eingangsverhaltens spezifiziert sind. Diese Unklarheiten
miissen dann wihrend des Entwurfs durch Riickfragen bei den Verantwortlichen fiir die
Spezifikation geklirt werden.

In diesem Unterkapitel soll eine Schaltung mit folgender Spezifikation entworfen
werden:

Zum Entprellen eines Tasters soll ein Automat entwickelt werden. Der Automat soll am
Ausgang Y den entprellten Wert des Eingangs X angeben. Wenn am Eingang drei Takte lang
der gleiche Wert O oder 1 anliegt, soll der Ausgang Y diesen Wert annehmen. Ansonsten soll
der letzte Eingangswert, der mindestens drei Takte anlag ausgegeben werden.

Beim Einschalten soll der Wert 0 ausgegeben werden.

Ein Zeitdiagramm kann die Spezifikation ergiinzen. Zeitdiagramme sind dabei aber nur
Beispiel und dienen der Illustration einer Spezifikation. Sie sind kein Ersatz fiir eine Spe-
zifikation, denn die Angabe aller moglichen Abfolgen von Eingangskombinationen und
Zustianden ist in einem Zeitdiagramm meist gar nicht moglich. Das Zeitdiagramm des
Entprell-Automaten in Abb. 5.31 zeigt die Reaktion auf eine exemplarische Eingabe.

5.2.3.2 Aufstellen der Zustandsfolgetabelle

Das Aufstellen der Zustandsfolgetabelle ist der eigentliche kreative Schritt bei der Ent-
wicklung eines Automaten. Am {ibersichtlichsten und einfachsten ist die grafische Dar-
stellung als Zustandsfolgediagramm und spitere Abschrift als Tabelle.

Als Erstes muss entschieden werden, ob eine Implementierung als Mealy- oder
Moore-Automat erfolgen soll. Bei Ubungsaufgaben ist normalerweise der Typ vorgege-
ben. Hier soll ein Moore-Automat erstellt werden. Wenn Sie mehrere Automaten entwor-
fen haben, konnen Sie selbst beurteilen, welcher Automatentyp giinstiger ist.

Das Zustandsfolgediagramm wird schrittweise erstellt und dieser Entwurf soll hier
auch in einzelnen Schritten erklidrt werden, damit Sie die Vorgehensweise nachvollziehen
konnen.

Schritt 1

Um einen Anfang fiir das Diagramm zu haben, wird mit einem ersten Zustand begonnen.
In diesem Beispiel wird der Fall betrachtet, dass die Eingabe immer 0 ist. In diesem Fall
ist auch die Ausgabe 0 und der Automat bleibt immer im gleichen Zustand.

Abb.5.31 Zeitdiagramm fiir CLKI L Lo L L L
Entprell-Automat X / \ /

Y [ L
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Abb. 5.32 zeigt den ersten Zustand. Um die Bedeutung anzudeuten, hat er den Namen
»stabil 0%, Zunidchst wird ja nur der Fall betrachtet, dass der Eingang stets O ist, so dass
auch nur ein Ubergangspfeil eingetragen wird. Er fiihrt wieder auf den Zustand ,stabil
0. Die Ausgabe des Zustands ist 0.

Dieser Zustand ist auch der Startzustand, denn laut Spezifikation soll beim Ein-
schalten der Wert O ausgegeben werden. Dies wird durch einen Pfeil mit ,,Reset”
gekennzeichnet.

Schritt 2
Der Automat wird jetzt schrittweise erweitert. Als nichster Schritt wird angenommen,
dass der Fingang auf 1 wechselt und dann auf diesem Wert bleibt. Der Automat muss
mitzdhlen, wie oft der Eingang 1 ist. Dieses Mitzéhlen erfolgt durch die unterschied-
lichen Zustinde, denn bei jedem Takt geht der Automat ja einen Ubergang, also einen
Pfeil weiter.

Die ersten beiden Male darf er laut Spezifikation noch nicht reagieren. Erst beim drit-
ten Mal wird der Wechsel auf 1 akzeptiert und auch die Ausgabe geht auf 1.

Dieses Verhalten wird, wie in Abb. 5.33 zu sehen, durch drei neue Zustinde erreicht:

e Bei der ersten 1 merkt sich ein Zustand, dass einmal eine 1 aufgetreten ist. Dieser
Zustand wird als ,,1-mal 1 bezeichnet. Er hat noch die Ausgabe Y=0, da erst nach
drei Takten ein Wechsel akzeptiert werden soll.

e Mit der zweiten 1 wird der Zustand ,,2-mal 1° erreicht.

stabil
Y=0

Abb. 5.33 Zustandsfolgediagramm des Entprell-Automaten — Schritt 2
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e Mit der dritten 1 akzeptiert der Automat, dass der neue Wert lange genug aufgetreten
ist und jetzt stabil anliegt. Der neue Zustand ,,stabil 1“ hat die Ausgabe 1.

Wenn der Eingang danach weiterhin 1 ist, bleibt der Automat im Zustand ,,stabil 1.

Schritt 3

Als weiterer Schritt kann der Weg von der Ausgabe 1 zuriick zu 0 eingetragen werden.
Es wird angenommen, dass der Eingang jetzt wieder auf 0 wechselt und dort bleibt. Das
Verhalten des Automaten ist dhnlich wie in Schritt 2, so dass jetzt zwei neue Zustdnde
»1-mal 0* und ,,2-mal 0 eingetragen werden (Abb. 5.34). Danach wechselt der Automat
wieder in den zuerst eingetragenen Zustand ,,stabil 0%, ganz links.

Schritt 4
Als letzter Schritt wird iiberpriift, ob alle Uberginge fiir die Zustinde eingetragen sind.
Bei n Eingangsvariablen hat jeder Zustand 2" Moglichkeiten fiir Folgezustidnde. Es miis-
sen also prinzipiell 2" Pfeile vorhanden sein, wobei auch mehrere Pfeile auf den gleichen
Folgezustand fiihren kénnen.

Der hier betrachtete Automat hat eine Eingangsvariable X, mit zwei moglichen Wer-
ten 0 und 1. Darum muss jeder Zustand zwei Ubergiinge, also zwei Pfeile haben. Hierzu
miissen noch einige Pfeile eingetragen werden.

e Wenn bei ,,1-mal 1 der Eingang X auf O ist, wird das Zéhlen der 1-Werte abgebro-
chen und der Automat geht wieder auf den Zustand ,,stabil 0%.

e Auch bei ,,2-mal 17 ist fiir X gleich 0 die erforderliche Anzahl von drei 1-Werten nicht
erreicht. Der Automat geht auf “stabil 0.

e Bei,,1-mal 0“ fehlt der Ubergang fiir X gleich 1. In diesem Fall geht der Automat auf
,,Stabil 1.

e Bei ,2-mal 0“ st fiir X gleich 1 der Folgezustand ebenfalls ,,stabil 1.

Abb. 5.35 zeigt den kompletten Automaten. Alle Zustidnde haben zwei Folgezustinde,
so dass keine Uberginge fehlen.

Die Aufteilung in vier Schritte ergibt sich hier durch die Uberlegungen zu den Teil-
funktionen des Automaten. Bei anderen Aufgabenstellungen konnen mehr oder weniger
Schritte sinnvoll sein.

Abb. 5.34 Zustandsfolgediagramm des Entprell-Automaten — Schritt 3
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Abb. 5.35 Zustandsfolgediagramm des Entprell-Automaten — Schritt 4

Aufstellen der Zustandsfolgetabelle

Aus dem Zustandsfolgediagramm kann jetzt als textuelle Form die Zustandsfolgetabelle
erstellt werden. Dazu wird fiir jeden Zustand eine Zeile und fiir jede mogliche Eingangs-
kombination eine Spalte angelegt. In diese Felder wird fiir jede Kombination aus Ein-
gangswerten und Zustand der Folgezustand eingetragen.

Auflerdem erhalten die Ausgangswerte eine Spalte.

Die Zustandsfolgetabelle des Automaten in Abb. 5.36 benétigt also sechs Zeilen fiir
die sechs Zustinde. In zwei Spalten werden die Folgezustinde fiir X = 0 und X = 1 ein-
getragen; eine dritte Spalte gibt den Wert des Ausgangs Y an. In die Felder werden die
Informationen des Zustandsfolgediagramms (Abb. 5.35) eingetragen. Der Startzustand
wird mit einem Stern gekennzeichnet. Das Aufstellen der Tabelle ist eher formell, die
kreative Arbeit wurde bei der Erstellung des Diagramms geleistet. Natiirlich sollte noch
einmal die Plausibilitdt des Automaten iiberpriift werden, also ob fiir jeden moglichen
Fall auch ein Folgezustand definiert wurde.

5.2.3.3 Minimierung der Zustdande

In diesem Schritt wird gepriift, ob die Anzahl der Zustinde reduziert werden kann, oder
ob die Anzahl bereits minimal ist. Eine Vereinfachung ist moglich, wenn dquivalente
(also gleichbedeutende) Zustinde zusammengefasst werden konnen. Zwei Zustinde sind
dquivalent, wenn fiir alle Eingangskombinationen die Folgezustinde gleich oder dquiva-
lent sind und auBerdem die Ausgangswerte gleich sind.

s" Sn+1 Y
X=0 X=1
stabil 0* stabil 0 1-mal 1 0
1-mal 1 stabil 0 2-mal 1 0
2-mal 1 stabil 0 stabil 1 0
stabil 1 1-mal 0 stabil 1 1
1-mal 0 2-mal 0 stabil 1 1
2-mal 0 stabil 0 stabil 1 1
* = Reset

Abb. 5.36 Zustandsfolgetabelle des Entprell-Automaten
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Der Entprell-Automat ist minimal, benotigt also mindestens sechs Zustinde, denn:

e Die drei linken und die drei rechten Zustinde in Abb. 5.35 haben unterschiedliche
Ausgaben.

e Die Folgezustinde sind nicht gleich. Fiir die drei linken Zustinde fiihrt X = 0 zwar
immer nach ,,stabil 0“. Fiir X = 1 sind jedoch unterschiedliche Folgezustinde vorhan-
den. Ahnliches gilt fiir die drei rechten Zustinde.

Es gibt Algorithmen, mit denen dquivalente Zustinde gefunden und der Automat mini-
miert werden konnen. In der Praxis werden diese Algorithmen aus zwei Griinden jedoch
selten verwendet. Zum einen konnen durch Betrachten eines Automaten recht gut dqui-
valente Zustinde identifiziert werden. Zum anderen wird akzeptiert, wenn ein oder zwei
Zustinde zu viel vorhanden sind, solange die Struktur des Automaten verstiandlich bleibt.

Beispiel fiir die Minimierung von Zustéinden

Unnotige Zustinde entstehen, wenn im Zustandsfolgediagramm ein neuer Zustand
erstellt wurde, obwohl ein bereits vorhandener Zustand genutzt werden konnte. Schauen
Sie sich dazu noch einmal Schritt 3 der Erstellung des Zustandsfolgediagramms in
ADD. 5.34 an. Hier fehlt noch der Fall, dass bei ,,1-mal 1%, ,2-mal 1 eine O auftritt, ein
Wechsel also nur einen oder zwei Takte lang ist. Ahnliches gilt fiir ,,1-mal 0%, ,,2-mal 0.

Man konnte jetzt fiir diese fehlenden Uberginge zwei neue Zustinde erstellen, und
zwar ,,bleib 0 und ,,bleib 1*. Dies wire nicht nétig, denn die Ubergénge konnten nach
»stabil 0 und ,,stabil 1 gehen. Aber eventuell wird dies bei der Erstellung des Automa-
ten nicht erkannt.

Von den Zustédnden ,.bleib 0* und ,,bleib 1 gehen die Ubergéinge auf sich selbst sowie
auf ,,1-mal 1* beziehungsweise ,,1-mal 0*. Es entsteht das Diagramm in Abb. 5.37. Die-
ses Zustandsfolgediagramm ist ein korrekter Automat, entsprechend der Spezifikation,
aber er ist nicht minimal, denn er verwendet acht statt der erforderlichen sechs Zustéinde.

Zur Minimierung des Automaten in Abb. 5.37 kénnen ,,bleib 0* und ,,stabil 0* zusam-
mengefasst werden. Sie sind dquivalent, denn:

Abb. 5.37 Nicht minimales Zustandsfolgediagramm des Entprell-Automaten
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e Beide Zustinde haben die gleichen Folgezustinde, ndmlich sich selbst fiir X = 0 und
,»1-mal 1“ fiir X = 1.
e Beide Zustinde geben Y = 0 aus.

Gleiches gilt fiir ,,bleib 1 und ,,stabil 1.

Damit ergibt sich wieder der minimale Automat aus Abb. 5.35. Beide Automaten, also
Abb. 5.37 und 5.35 sind dquivalent, denn sie ergeben fiir gleiche Eingaben auch die glei-
che Ausgabe. Von auflen, also ohne Sichtbarkeit des aktuellen Zustands, sind die Auto-
maten nicht zu unterscheiden.

5.2.3.4 Codierung der Zustande

Als néchster Entwurfsschritt wird fiir die Zustdnde des Automaten eine Zustandsco-
dierung bestimmt. Es muss also festgelegt werden, welche 0-1-Kombinationen fiir die
Zustande gelten. Die Codewortldnge n muss so gewihlt werden, dass alle m Zustinde
dargestellt werden konnen. Mathematisch ausgedriickt muss also gelten:

2" >m

Aufgelost nach der Codewortldnge n ergibt sich folgende Formel, bei der /d den Zweier-
logarithmus bezeichnet:

n>Ildm

Das Beispiel dieses Kapitels hat m = 6 Zustinde, also ist n > Id 6 = 2,58 als Codewort-
lange notig. Da nur ganzzahlige Werte moglich sind, muss n mindestens 3 sein. Mit der
Zweierpotenz kann man dhnlich rechnen. Fiir n = 3 gilt 23 = 8 > 6. Die Gegenprobe fiir
n =2 zeigt, dass die kleinere Codewortlinge von zwei nicht moglich ist: 2> = 4 < 6. Da
die Zweierpotenzen fiir kleine Zahlen recht einfach zu merken sind, ist diese Rechen-
weise meist einfacher als der Logarithmus.

Tipp zur Berechnung: Taschenrechner haben normalerweise keine Taste fiir den Zweierlog-
arithmus. Der Wert kann berechnet werden, als Zehnerlogarithmus einer Zahl geteilt durch
Zehnerlogarithmus von zwei:

ldm =log m/ log 2

Fiir m = 6 lautet die Rechnung:

Id6 = log 6/log 2 = 0,778/0,301 = 2,58

Ziel der Zustandscodierung ist ein moglichst geringer Aufwand, eine moglichst hohe Takt-
geschwindigkeit oder eine Kombination aus diesen beiden Anforderungen. Fiir die Codie-
rung gibt es prinzipiell sehr viele Moglichkeiten, sodass diese nicht alle ausprobiert werden
konnen. Es gibt darum verschiedene Strategien, die im Abschn. 5.2.4 noch erldutert werden.

In der Praxis wird oft eine einfache Zuordnung gewihlt und das soll auch fiir das hier
betrachtete Beispiel so erfolgen. Als Codierung werden die Zustdnde entsprechend der
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Abb. 5.38 Codierung des g Z(2:0)
Entprell-Automaten mit
minimaler Codewortlidnge stabil 0 000
1-mal 1 001
2-mal 1 010
stabil 1 011
1-mal 0 100
2-mal 0 101
sn Zn Zn+1 \%
X=0 X=1
stabil 0* 000* 000 001 0
1-mal 1 001 000 010 0
2-mal 1 010 000 011 0
stabil 1 011 100 011 1
1-mal 0 100 101 011 1
2-mal 0 101 000 011 1
- 110 --- ---
- 111 --- --- -

Abb. 5.39 Ansteuerungstabelle des Entprell-Automaten

Dualzahlen durchnummeriert. Der Automat hat 6 Zustéinde, die entsprechend der Tabelle
in Abb. 5.38 mit dem Codewort Z(2:0) codiert werden. Da die Anzahl der Zustéinde keine
Zweierpotenz ist, sind einige Codeworter unbenutzt, hier sind das die Codierungen 110
und 111.

5.2.3.5 Aufstellen der Ansteuerungstabelle

Mit der gewdhlten Codierung kann jetzt die Funktionstabelle fiir die kombinatorischen
Schaltungen im Automat erstellt werden. In der Zustandsfolgetabelle werden also die
Namen der Zustinde durch die Codierung ersetzt. Diese neue Tabelle wird als Ansteue-
rungstabelle bezeichnet.

Abb. 5.39 zeigt die Ansteuerungstabelle fiir die Codierung aus Abb. 5.38. Eine Beson-
derheit sind die beiden unbenutzten Codierungen fiir die keine Folgezustinde und Aus-
gabewerte definiert sind. Fiir sie werden Don’t-Care-Werte eingetragen.

Fiir sicherheitskritische Schaltungen kann fiir die unbenutzten Codierungen auch ein
bestimmter Folgezustand gewihlt werden. Falls die Schaltung durch eine Storung, bei-
spielsweise einen Spannungseinbruch, in einen undefinierten Zustand gerit, wird somit
im Folgeschritt wieder ein giiltiger Zustand erreicht.

5.2.3.6 Logikminimierung

Aus der Ansteuerungstabelle konnen jetzt die Logikfunktionen durch Minimierung,
also mit Karnaugh-Diagramm ermittelt werden. Dies sind insgesamt vier Karnaugh-
Diagramme fiir Ausgangswert Y und die drei neuen Zustandsvariable Z"+1(2:0). Die
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Diagramme haben vier Eingangswerte, namlich Eingangsvariable X und drei Zustands-
variable Z(2:0). Da bei dem Moore-Automaten die Ausgabe unabhingig vom Eingang
ist, hat das Karnaugh-Diagramm fiir ¥ nur drei Eingangswerte Z"(2:0).

Auf die Darstellung der Karnaugh-Diagramme wird hier verzichtet. Die minimierten
Funktionen sind:

7)) =X &ZM(1) & Z"(0) v X & Z"(2) & Z"(0)

2N () =X &Z"2) VX & Z"(1) v X & Z"(0)

Z"N0) =X &Z"Q) v X &Z"(1) vV X & Z"(0) v Z"(2) & Z(0)

Y =7"2)vZ"(1)&Z"(0)

Mit diesen Funktionen ergibt sich fiir den Automaten das Schaltbild aus Abb. 5.40. Es
enthilt drei Flip-Flops fiir die Zustandsvariablen sowie ein Dutzend Logik-Gatter fiir
Zustandsiibergangsfunktion und Ausgangsfunktion. Der Startzustand ,,stabil 0* hat die
Codierung 000. Darum wird der Reset so geschaltet, dass alle Flip-Flops auf 0 gesetzt
werden.

X &
— .4 21 | et g n
(0) b 7"(0)
—o &
—CR
1]
-1
& 21 | 2™ (1) 5 Z2"(1) & |
& _I— 1P CR y
+—  >1
J &
|_ 1 Zn+1(2) b Zn(2)
Tl Lo,
— 1

CLK
RESET

Abb. 5.40 Schaltbild des Entprell-Automaten
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Damit ist der Automat komplett entworfen. In der Praxis wiirde nun die Dokumen-
tation folgen, die ein Nachvollziehen des Schaltungsentwurfs ermdoglicht. AuBerdem
werden durch eine Dokumentation spitere Modifikationen vereinfacht, die sich eventuell
durch eine gednderte Spezifikation ergeben.

5.2.4 Codierung von Zustinden

Fiir die Codierung der Zustinde gibt es verschiedene Strategien. Wichtiges Unterschei-
dungsmerkmal ist die Codewortldnge.

5.2.4.1 Codierung mit minimaler Codewortlange
Die Codierung mit minimaler Codewortlinge wurde im vorstehenden Beispiel bereits
verwendet. Bei der Zuordnung von Zustinden und Codewortern gibt es mehrere Mog-
lichkeiten. Theoretisch konnte man hier verschiedene Codierungen ausprobieren, um zu
versuchen, moglichst einfache kombinatorische Schaltungen zu erhalten.

In der Praxis wird meist eine einfache Zuordnung gewihlt, beispielsweise das oben
verwendete Durchnummerieren der Zustidnde entsprechend der Dualzahlen. Der Auf-
wand zum kompletten Ausprobieren verschiedener Moglichkeiten ist meist zu hoch.

5.2.4.2 Codierung mit redundanter Codewortldange

Eine andere Strategie zur Codierung benutzt mehr Stellen des Codewortes als eigentlich
erforderlich wiren. Die Codewortlinge ist also redundant und erfordert mehr Flip-Flops
als bei minimaler Codewortldnge. Dies erscheint zundchst nicht sinnvoll, allerdings
werden oft die kombinatorischen Schaltungen fiir Zustandsiibergangsfunktion und Aus-
gangsfunktion einfacher und schneller.

Hiufig verwendete Codes sind die One-Hot-Codierung sowie die Zero-One-Hot-
Codierung. Die One-Hot-Codierung ist ein 1-aus-n-Code, das heif3t von den n Stellen
des Codeworts ist genau eine Stelle 1 (also ,,Hot*), die anderen sind 0. Die Anzahl der
moglichen Codeworter ist genauso grofl wie die Codewortldnge.

Die Zero-One-Hot-Codierung ist eine Variante, bei der zusitzlich das Codewort mit
nur 0-Stellen erlaubt ist. Bei n Stellen sind also n+1 Codewdrter moglich.

Der Entprell-Automaten aus Abschn. 5.2.3 hat 6 Zustinde, so dass eine One-Hot-
Codierung die Codewortldnge 6 hat. Die Zero-One-Hot-Codierung ergibt die Codewort-
lange 5. Eine Zuordnung von Codierung und Zustinden ist in Abb. 5.41 angegeben.

Zum Vergleich der Codierungen soll der Entprell-Automat auch mit der One-Hot-
Codierung implementiert werden. Genau wie im vorherigen Abschnitt wird in die
Zustandsfolgetabelle die Codierung eingesetzt, so dass sich die Ansteuerungstabelle in
Abb. 5.42 ergibt. Durch die Codewortlinge 6 sind 2°=64 Codierungen méglich, von
denen 6 benutzt sind. Die 58 unbenutzten Codierungen haben Don’t-Care als Folgezu-
stand und Ausgabe und konnen somit zur Optimierung benutzt werden.
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Abb.5.41 Codierung des ,»,One-Hot“ ,»Zero-One-Hot*
Entprell-Automaten mit n
S Z (5:0 Z (4:0
redundanter Codewortlidnge (5:0) (40)
stabil 0 000001 00000
1-mal 1 000010 00001
2-mal 1 000100 00010
stabil 1 001000 00100
1-mal 0 010000 01000
2-mal 0 100000 10000
s" Z"(5:0) Z"'(5:0) Y
X=0 X=1
stabil 0 000001* 000001 000010 0
1-mal1 000010 000001 000100 0
2-mal1 000100 000001 001000 0
stabil 1 001000 010000 001000 1
1-mal0 010000 100000 001000 1
2-mal0 100000 000001 001000 1
sonst | ------ aeo--- -
* = Reset

Abb. 5.42 Ansteuerungstabelle des Entprell-Automaten fiir One-Hot-Codierung

Aus der Ansteuerungstabelle werden wiederum die Logikfunktionen durch Mini-
mierung erstellt. Fiir den Folgezustand sind sieben Eingangswerte zu beachten, nimlich
sechs aktuelle Zustandsvariable sowie der Eingangswert X. Fiir den Ausgang sind es die
sechs aktuellen Zustandsvariablen. Dies ist fiir ein Karnaugh-Diagramm zu uniibersicht-
lich, sodass eine rechnergestiitzte Minimierung durchgefiihrt wird. Das Ergebnis lautet:

7z =X &Z'(4)

7z 4) =X &Z"(3)

Z"™3) = x&Z"(1) & Z"(0)
7z =x&Z"(1)

Z"(1) = X & Z"(0)
Z"™0) = X & Z"(4) & Z"(3)

Y = Z7(2) & Z"(1) &Z"(0)

Zwei Dinge fallen bei den Gleichungen auf:

e Die Zustandsvariable Z"(5) wird nicht verwendet. Es sind also nur fiinf Stellen des
Codeworts und damit auch nur fiinf Flip-Flops nétig. Damit wird die Codierung zu
einer Zero-One-Hot-Codierung, allerdings mit anderer Zuordnung als in Abb. 5.41.
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e Die Logik-Funktionen sind deutlich einfacher als bei der Variante mit minimaler
Codewortlidnge. Es wird jeweils nur ein UND-Gatter mit zwei oder drei Eingéingen
benotigt. Die Informationen miissen nur durch eine Stufe an Logikgattern, wodurch

die Schaltung prinzipiell schneller ist.

Die Schaltung des Automaten mit One-Hot-Codierung ist in Abb. 5.43 dargestellt. Fiir
den Startzustand (vgl. Abb. 5.42) muss Z"(0) auf 1, die anderen Zustandsvariablen auf 0

gesetzt werden.

Auch im optischen Vergleich zu Abb. 5.40 wird sichtbar, dass die One-Hot-Codierung
einen Nachteil durch zusitzliche Flip-Flops und Vorteile durch weniger Logikgatter und

nur eine Logikstufe hat.

Zn+1 (0)

X—e———dg
9
—a

Py Zn+1(1)

Z'(0)

Py Zn+1 (2)

2'(1)

& Zn+1 (3)

Z'(2)

Py Zn+1(4)

Z'(3)

Z'(4)

CLK

RESET

Abb. 5.43 Schaltbild des Entprell-Automaten mit One-Hot-Codierung

5 Sequenzielle Schaltungen
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5.2.4.3 Optimierte Codierung

Um verschiedene Codierungen zu vergleichen, wird eine weitere Variante vorgestellt. Es
handelt sich um eine Codierung bei der die Code-Zuordnung optimiert wird. Dazu wird
die Zustandsfolgetabelle (vgl. Abb. 5.36) genauer betrachtet. Wie in Abb. 5.44 verdeut-
licht, fallen zwei Dinge auf:

1. Drei der Zustidnde kénnen nur bei X=0 als Folgezustand auftreten, die drei anderen
Zustinde nur bei X=1.
2. Fiir drei Zustinde ist die Ausgabe Y= 0, fiir die drei anderen Zustinde ist Y= 1.

Diese beiden Eigenschaften konnen ausgenutzt werden, um die Codierung moglichst
einfach zu wihlen.

1. Eine Zustandsvariable Z(0) wird entsprechend des Folgezustands gewéhlt. Das heif3t,
die Zustinde, die Folgezustand bei X=0 sind, werden auch mit Z(0)=0 codiert. Die
anderen Zustdnde, die Folgezustand bei X=1 sind, werden mit Z(0)=1 codiert.

2. Eine Zustandsvariable Z(1) wird entsprechend des Ausgabewertes gewihlt. Das heif3t,
die Zustdnde mit Ausgangswert Y=0, werden mit Z(/)=0 codiert, die Zustinde mit
Y=1, haben Z(1)=1 als Code.

Weitere Zustandsvariable werden ohne besondere Zuordnung gewihlt. Dabei muss
beachtet werden, dass alle Zustidnde unterschiedliche Codierungen bekommen. Fiir die 6
Zustinde des Entprell-Automaten ist eine dritte Zustandsvariable Z(2) erforderlich. Die
Codierung hat hier minimale Codewortldnge; dies ist jedoch keine zwingende Bedin-
gung fiir eine optimierte Codierung.

Der gewihlte Code ist in Abb. 5.45 dargestellt. Die Codierungen 100 und 011 werden
nicht verwendet.

Die Ansteuerungstabelle und die Logikfunktionen werden hier nicht gezeigt, sondern
direkt das Schaltbild des Automaten mit optimierter Codierung in Abb. 5.46. Die beiden
Optimierungen sind direkt im Schaltbild zu erkennen. Da Z(0) entsprechend des Folge-
zustands gewdhlt ist, wird direkt der Eingang X ohne weitere Verarbeitung gespeichert.
Und da Y(7) entsprechend des Ausgangs ist, kann diese Zustandsvariable direkt als Aus-
gang Y verwendet werden.

Abb. 5.44 Analyse der s"
Zustandsfolgetabelle zur
Optimierung stabil 0* | ('stabil 0\ (1-mal 1

1-mal 1 stabil 0 2-mal 1
2-mal 1 stabil 0 stabil 1
stabil 1 1-mal 0 stabil 1
1-mal 0 stabil 1
2-mal 0 i stabil 1
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Abb. 5.45 Codierung des sn Z(2:0)
Entprell-Automaten mit Zustande. die bei
optimierter Codierung stabil 0 000 X= 1‘fo|g;an
1-mal 1 00| ’
2-mal 1 101
jt_i?gll) (1) 1 (1) Zustande mit
2-mal 0 1l1[o  AusgabeY=1
n+1 n
X Z"(0) D Z'(0)
_>CR
1]
& >1 n+1 n
Z"'(1) D Z'(1) Y
& »——>CR
) S
sant
—(
>1 Zn+1(2) b Zn(2)
&
b——>CR
) S
CLK
RESET

Abb. 5.46 Schaltbild des Entprell-Automaten mit optimierter Codierung

Auch fiir andere Automaten konnen oft optimierte Codierungen entsprechend der
Ausgabe oder der Folgezustinde gefunden werden.

5.2.4.4 Vergleich der Codierungen
Um die Codierung der Zustinde und die Struktur des Automaten besser zu verstehen,
sollen hier noch einmal die drei Varianten verglichen werden:

e Codierung mit minimaler Codewortlinge und einfacher Durchnummerierung der
Zustiande, Abb. 5.40

e Codierung mit redundanter Codewortlinge und One-Hot-Codierung, Abb. 5.43

e Codierung mit optimierter Zustandscodierung durch Analyse der Zustandsfolgeta-
belle, Abb. 5.46
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Zunichst ist wichtig zu sagen, dass alle Automaten dquivalent sind. Das heifit, sie erge-
ben bei gleicher Eingabe auch die gleiche Ausgabe. Damit sind sie in ihrem logischen
Verhalten von auflen nicht zu unterscheiden.

Ob allgemein eine Codierung mit minimaler oder redundanter Codewortlidnge die
geeignete Schaltung ergibt, hingt von der Struktur des Automaten, den Anforderungen
und der Technologie der Schaltungsimplementierung ab. Es handelt sich um Strategien,
die bei der Schaltungsoptimierung probiert werden konnen.

In der Praxis muss der Aufwand fiir eine Optimierung und der erzielte Nutzen beachtet
werden. Die Arbeitszeit, die fiir eine optimale Zustandscodierung erforderlich ist, lohnt sich
meist nicht, denn in einer sehr grolen Schaltung werden nur einige Logikgatter gespart.

Der Schaltungsentwurf erfolgt heutzutage mit Computer-Unterstiitzung. In Abschn. 5.3
wird erldutert, wie die Zustandsfolgetabelle in VHDL umgesetzt werden kann. Die Codie-
rung der Zustdnde und Berechnung der Logikfunktionen erfolgt durch den Computer, der
eine Codierung mit minimaler oder redundanter Wortlange wihlt oder beide Moglichkeiten
ausprobiert. Die Optimierung der Zustandscodierung erfolgt also durch den Rechner. Sie
sollten die Riickmeldungen des Computers verstehen (z. B. ,,Choosing One-Hot-Coding*).

5.2.5 Entwurf von Mealy-Automaten

Der Entwurf eines Mealy-Automaten gleicht in weiten Teilen dem eines Moore-Automaten.

5.2.5.1 Unterschied zum Moore-Automaten
Der wesentliche Unterschied beim Mealy-Automaten ist, dass die Ausgabe nicht von
den Zustinden sondern den Zustandsiibergéngen abhingt. Das bedeutet, im Zustandsfol-
gediagramm wird die Ausgabe nicht in die Zustandskreise, sondern an den Pfeilen der
Zustandsiibergidnge eingetragen (Abb. 5.47).

Dieser Unterschied kommt daher, dass beim Mealy-Automat die Ausgabe ja auch
von den aktuellen Eingangswerten und nicht nur vom Zustand abhéngt. Auch in der

Abb. 5.47 Vergleich der
Zustandsfolgediagramme fiir
Moore- und Mealy-Automat
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Abb. 5.48 Vergleich der Moore Mealy
Zustandsfolgetabellen fiir SN $h+ v sh sy
Moore- Mealy-A
oore- und Mealy-Automat X<0 XeT %20 X
SO S1 S2 0 S0 | 81,1 82,0

S1| 83 S4 1 S1] 83,0 S4,1

Zustandsfolgetabelle ist dann die Ausgabe abhingig von Zustand und Eingang und wird
nicht einmal pro Zustand, sondern fiir jede Eingangsspalte angegeben (Abb. 5.48).

Diese Unterschiede erscheinen zunidchst etwas formell. Sie eroffnen jedoch weitere
Moglichkeiten fiir den Entwurf eines Automaten. Um dies zu verdeutlichen, wird im fol-
genden Beispiel ein Mealy-Automat entworfen.

5.2.5.2 Beispiel fiir einen Mealy-Automaten
Am Anfang des Entwurfs steht wieder eine Spezifikation des Verhaltens. Als Beispiel
soll ein Mealy-Automat mit folgender Spezifikation entworfen werden:

Ein Automat soll die Anzahl von Takten mit dem Wert 1 halbieren. Wenn am Eingang X der
Wert 1 anliegt, soll fiir jeden zweiten Wert eine 1, ansonsten eine 0 am Ausgang Y ausgege-
ben werden. Die Zidhlung soll durch Eingangswerte 0 nicht beeinflusst werden. Bei einer 0
am Eingang soll 0 ausgegeben werden.

Beim Einschalten soll fiir die erste 1 der Wert 0 ausgegeben werden.

Auch hier wird die Spezifikation durch ein Zeitdiagramm ergénzt (Abb. 5.49). Der Wert
von X wird immer bei der steigenden Taktflanke ausgewertet. Der erste Impuls mit 1
wird unterdriickt, der zweite Impuls fiihrt zur Ausgabe 1. Wenn X dauerhaft auf 1 ist,
fiihrt dies zu einer 0-1-Folge an Y.

5.2.5.3 Aufstellen der Zustandsfolgetabelle

Um den Automat zu entwerfen, wird zunéchst iiberlegt, welche Informationen sich der
Automat merken muss. Der Automat gibt nur jede zweite 1 am Eingang weiter und
unterdriickt die jeweils andere 1. Er muss sich also merken, ob die nichste 1 weitergege-
ben oder unterdriickt wird. Mit dieser Grundidee an Zustinden wird der Automat wieder
grafisch, durch das Aufstellen des Zustandsfolgediagramms entworfen.

Schritt 1
Es wird mit zwei Zustinden entsprechend obiger Uberlegung gestartet (Abb. 5.50). Sie
erhalten den Namen ,,next-0* und ,,next-1* mit der Bedeutung:

Abb.5.49 Zeitdiagramm fiir
Halbieren der 1-Werte

nnnn
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Abb. 5.50 Zustandsfolgediagramm zum Halbieren der 1-Werte — Schritt 1

e next-0: Die nédchste 1 am Eingang wird unterdriickt. Dies ist laut Spezifikation der
Startzustand.

e next-1: Die vorherige 1 wurde unterdriickt, also wird die ndchste 1 des Eingangs an
den Ausgang weitergegeben.

Wie in Abb. 5.50 zu sehen, ist fiir die Zustinde keine Ausgabe definiert, da ein Mealy-
Automat entworfen wird.

Schritt 2
Fiir die beiden Zustinde wird nun tiberlegt, was laut Spezifikation im Falle der Eingaben
X=0 und X=1 passieren muss.

e Fiir X=0 wird eine 0 ausgegeben. Das Zihlen der 1-Werte wird nicht beeinflusst,
darum dndert der Automat seinen Zustand nicht.
e Fiir X=1 sind zwei Fille moglich:
— Im Zustand next-O0 wird die 1 unterdriickt, also eine 0 ausgegeben. Der Automat
merkt sich, dass die nédchste 1 weitergegeben wird, wechselt also nach next-1.
— Im Zustand next-1 wird die 1 weitergegeben, also eine 1 ausgegeben. Der Automat
merkt sich, dass die ndchste 1 wieder unterdriickt wird, wechselt also nach next-0.
Damit sind fiir alle Zustinde beide mogliche Folgezustinde definiert und das
Zustandsfolgediagramm in Abb. 5.51 ist komplett. Es werden zwei Zustinde benétigt,
die sich nicht zusammenfassen lassen.
Der Unterschied zum Moore-Automaten zeigt sich in der Definition der Ausgangs-
werte. Beim Mealy-Automat in Abb. 5.51 sind die Ausgénge fiir die Zustandsiibergéinge,

Abb. 5.51 Zustandsfolgediagramm zum Halbieren der 1-Werte — Schritt 2
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also fiir die Pfeile definiert. Beim Moore-Automat in Abb. 5.35 sind die Ausgénge fiir die
Zustinde, also die Kreise definiert.

Zustandsfolgetabelle

Die Zustandsfolgetabelle (Abb. 5.52) kann direkt aus dem Diagramm erstellt wer-
den. Wie erldutert ist die Ausgabe abhéingig von Zustand und Eingang. Darum wird sie
zusammen mit dem Folgezustand fiir jede Eingangsspalte in der Form s"*!,Y angegeben.

5.2.5.4 Implementierung des Mealy-Automaten
Nichster Schritt zur Implementierung ist die Codierung der Zustinde. Bei nur zwei
Zustinden ist ein Codewort mit nur einer Stelle erforderlich. Die Wahl der Codierung
lasst nicht viele Optionen zu und wird so gewdhlt, dass next-0 mit Z=0 und next-1 mit
Z=1 codiert wird.

Nach Aufstellen der Ansteuerungstabelle kann der Automat mit einem Flip-Flop fiir
den Zustandsspeicher, einem EXOR- sowie einem UND-Gatter implementiert werden
(Abb. 5.53).

5.2.5.5 Vereinfachte Darstellung des Zustandsfolgediagramms

Die Darstellung des Zustandsfolgediagramms muss natiirlich nicht exakt den Beispielen
in Abb. 5.35 oder 5.51 entsprechen. Wenn mehrere Eingabe- oder Ausgabewerte vor-
handen sind oder die Zustandsbezeichnungen zu lang werden, kann ein Diagramm auch
uniibersichtlich werden. Ziel sollte eine kompakte grafische Darstellung sein.

Sn sn+1‘Y
X=0 X=1
next-0 * next-0, 0 next-1, 0
next-1 next-1, 0 next-0, 1
* = Reset

Abb. 5.52 Zustandsfolgetabelle zum Halbieren der 1-Werte

Zustandsiibergangsfunktion Speicherglied Ausgangsfunktion
B T r——
X } ‘L ‘ 1 ‘ & _}—Y
‘ -1 Zn+1 ‘ b Zn ‘ |‘ ‘
B |
‘ ‘ ‘ | CR ‘ ‘ ‘
=
CLK
RESET

Abb. 5.53 Schaltbild des Mealy-Automaten zum Halbieren der 1-Werte
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Einige Moglichkeiten zur vereinfachten Darstellung sind in Abb. 5.54 dargestellt:

1. Ein- und Ausgénge miissen nicht mit X, Y bezeichnet werden, sondern konnen natiir-
lich Abkiirzungen entsprechend der Spezifikation haben, beispielsweise im Bild A/,
A2, P T

2. Eingangs- und Ausgangswerte miissen nicht stets neu benannt werden, sondern kon-
nen in einer festen Reihenfolge angegeben werden. Eine empfohlene Reihenfolge ist:
Eingangswerte, Schrigstrich, Ausgangswerte

3. Wenn fiir mehrere Eingangskombinationen derselbe Folgezustand eingenommen wer-
den soll, kann dies an einen gemeinsamen Ubergangspfeil angetragen werden

4. Zustinde konnen einfach durchnummeriert werden (S0, S/, ...) und die Bedeutung
wird als Liste dokumentiert.

Eine andere Vereinfachung ist fiir die Zustandsiibergdnge moglich. Es kommt vor, dass
fiir einen Zustandsiibergang nur ein Teil der Eingangsvariablen beachtet werden muss.
Dies kann man darstellen, indem man die erforderliche Eingabe benennt (Abb. 5.55,
links) oder die nicht erforderliche Eingabe mit ,X*, fiir ,,Eingang beliebig®” bezeichnet
(Abb. 5.55, rechts).

Wichtig ist, dass samtliche 2" Eingangskombinationen bei n Eingangswerten bertick-
sichtigt sind. AuBerdem darf ein Diagramm auch nicht kryptisch kurz werden. In der
Praxis muss man nach zwei Wochen, zwei Monaten oder zwei Jahren das Diagramm
immer noch lesen und verstehen konnen.

5.2.6 Vergleich von Mealy- und Moore-Automat

Anhand der vorgestellten Beispiele konnen die Charakteristika von Mealy- und Moore-
Automat jetzt verglichen werden. Der Mealy-Automat hat mehr Moglichkeiten, denn
eine Ausgabe ist fiir jeden Ubergangspfeil und nicht nur fiir die Zustandskreise definiert.

Abb. 5.54 Vereinfachte Ein- /Ausgénge
Darstellung eines A1LA2/PT
Zustandsfolgediagramms Zustande:
S0 - Start
St-..
Abb. 5.55 Zwei Varianten Eingange: A, B

zur Zusammenfassung von

A=0 B=0 0X X0
Zustandsiibergiingen
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Dies macht ihn jedoch im Entwurf auch etwas komplexer. Der Moore-Automat hat hin-
gegen den Vorteil, dass weniger Fille fiir die Ausgabe definiert werden miissen, was ihn
tibersichtlicher macht.

Moore-Automat

Wegen der besseren Ubersichtlichkeit wird in der Praxis meist der Moore-Automat ver-
wendet. Die Zustinde des Moore-Automaten entsprechen oft einer bestimmten Ausgabe-
situation, sodass die Funktion des Automaten einfacher nachvollzogen werden kann.

Die Ubersichtlichkeit eines Schaltungsentwurfs erhoht seine Wartbarkeit. Damit ist
nicht die Reparatur einer defekten Schaltung gemeint, sondern die Mdoglichkeit, einen
Entwurf spdter einmal zu dndern und anzupassen. Je iibersichtlicher ein Schaltungsent-
wurf ist, umso hoher ist die Wartbarkeit.

Mealy-Automat
Ein wesentlicher Vorteil des Mealy-Automaten ist dessen Geschwindigkeit. Der Moore-
Automat geht fiir eine Anderung der Ausgabe in einen neuen Zustand, was stets einen
Taktzyklus dauert. Fiir viele Anwendungen stellt diese Verzogerung kein Problem dar.
Manchmal muss eine Schaltung jedoch sehr schnell reagieren, ohne auf ein Taktsignal
zu warten. Dies kann zum Beispiel bei Bussystemen wie dem PCI-Bus im PC der Fall
sein. Fiir solche Fille kann der Mealy-Automat noch im gleichen Taktzyklus eine Ant-
wort geben. Dies ist auch im Zeitablauf von Abb. 5.49 ersichtlich. Die 1-Impulse werden
im gleichen Taktzyklus weitergegeben. Es tritt nur eine kleine Verzogerung durch das
UND-Gatter der Ausgangsfunktion auf.

Verwendung beim Automatenentwurf

Es wird empfohlen, im Normalfall einen Automaten als Moore-Automaten zu entwerfen.
Nur wenn der Automat noch im gleichen Taktzyklus eine Antwort ausgeben muss, emp-
fiehlt sich der Einsatz eines Mealy-Automaten.

5.2.7 Registerausgabe

5.2.7.1 Taktkonzept
Mit der bisher gezeigten Struktur erfolgt fiir die Automaten die Ausgabe der Signalwerte
Y aus einer kombinatorischen Verkniipfung. In der Praxis ist es vorteilhaft, wenn Teil-
schaltungen klare Schnittstellen zu den folgenden Teilschaltungen haben. Deshalb wird
oft ein Taktkonzept verwendet, bei dem die Ausginge von Teilschaltungen immer aus
einem Flip-Flop stammen miissen. Man spricht auch von einer Registerausgabe.

Fiir den Mealy-Automaten ist eine Registerausgabe normalerweise nicht erwiinscht,
denn der Vorteil bei diesem Automaten ist ja gerade die Reaktion der Schaltung ohne
Warten auf das nédchste Taktsignal.
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5.2.7.2 Moore-Automat mit Registerausgabe

Fiir den Moore-Automaten kann eine Registerausgabe durch eine Veridnderung des
Blockschaltbilds erreicht werden. Dies ist in Abb. 5.56 dargestellt ist. Die Ande-
rung funktioniert so, dass die Ausgangsfunktion nicht mit der gespeicherten aktuellen
Zustandsvariable Z" rechnet, sondern mit der neuen Zustandsvariable Z*t!. Dadurch
liegt das Ergebnis Y* der Ausgangsfunktion bereits frither vor. Damit das gleiche Zeit-
verhalten wie im urspriinglichen Blockschaltbild entsteht, werden die Variablen Y* in
einer Registerstufe gespeichert und ergeben den Ausgang Y. Die Ausgangsfunktion wird
also vor die Flip-Flops geschoben und die Ausgabe zum Ausgleich durch Flip-Flops
gespeichert.

Beide Strukturen des Moore-Automaten sind dquivalent, haben also die gleiche logi-
sche Funktion. Allerdings ist das Zeitverhalten anders. Durch das Verschieben der Aus-
gabefunktion gibt der Automat die Werte fiir ¥ direkt aus Flip-Flops aus, was fiir das
Taktkonzept gewiinscht ist. Die nachfolgende Schaltung hat die komplette Zeit des Takt-
zyklus fiir ihre Berechnungen.

Eine ausfiihrliche Erlduterung von Taktkonzept und Laufzeiten befindet sich in
Kapitel 6.

5.2.7.3 Beispiel fiir Moore-Automat mit Registerausgabe

Der im Abschn. 5.2.3 entworfene Moore-Automat zum Entprellen eines Signals wurde
auf Registerausgabe umgestellt. Als Ausgangsbasis wurde das Schaltbild in Abb. 5.40
verwendet. Fiir die Registerausgabe wird die Ausgangsfunktion vor die Speicherglieder

X
|:: Zustands- | z™" | Speicher- . %
. : Ausgangs-
z" ubergapgs- C_alleder funktion )
’_‘/ funktion (Flip-Flops) —‘ 7N
Takt |
Y* Y
Ausgangs- A :V'\
funktion Y| Speicher-
X Glieder
|::n “Zbustands- A (Flip-Flops)
Z Gbergangs-
’_‘/ funktion zn+1 ' _‘ Zn
Takt |

Abb. 5.56 Struktur des Moore-Automaten mit Registerausgabe
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gezogen und der Wert Y* in einem Speicherglied gespeichert. Die veridnderte Schaltung
ist in Abb. 5.57 dargestellt. Die Grofle der Schaltung dndert sich nicht. Lediglich fiir den
Ausgangswert Y wird ein weiteres Flip-Flop bendtigt, aber genau dieses Flip-Flop ist ja
erwiinscht.

5.2.7.4 Medwedew-Automat

Der Medwedew-Automat ist ein Spezialfall des Moore-Automaten, bei dem die Aus-
gangsvariablen Y gleich den Zustandsvariablen Z" sind. Darum sind fiir den Medwedew-
Automat keine weiteren Ausgangs-Flip-Flops erforderlich, weil die Ausgangsvariablen ja
bereits aus einem Flip-Flop kommen. Diese Struktur zeigt Abb. 5.58.

Fiir bestimmte Anwendungen ldsst sich beim Entwurf eines Moore-Automaten ein-
planen, dass die Zustandsvariablen auch als Ausgangsvariablen verwendet werden. Ein
Beispiel hierfiir ist die optimierte Codierung des Entprell-Automaten (Abschn. 5.2.4.3),
bei dem eine Zustandsvariable gleich dem Ausgang gewihlt wurde. Auch ein Zghler ist
ein Medwedew-Automat. Er gibt nacheinander Zahlenwerte aus, wie 0, 1, 2, 3, ... Diese
Zahl wird als Zustand gespeichert und ist die Ausgabe.

In der Praxis wird in vielen Fillen der Aufwand fiir zusitzliche Ausgangs-Flip-Flops
akzeptiert. Der Arbeitsaufwand fiir eine spezielle Codierung wird hingegen vermieden.

Zustandsﬁb(ﬂ'fgar@jfunﬁkticﬂ - Jusgaﬂ;}s@ktiﬁn o Siei(ﬁ:rgkdeL
X —[Ec & >1 Zn+1(o)‘ ‘ ‘ ‘ ‘
Y* Y
I e e
y Py 12
( |7 rPCa |
| & | | |
T e P
i & >1 z”+1(1)} ‘ ‘ ‘ .= CR ‘
o
1 g | 1z
\
I & | | | Tt Cr
‘O I_ ‘ ‘ ‘ — | ‘
| 2@y i e ||
|
e B | | e, |
e R A S (I S i B
CLK
RESET

Abb. 5.57 Entprell-Automat mit Registerausgabe
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Abb. 5.58 Struktur des X ; . n
- N+ -
Medwedew-Automaten Zustands- | z™1 | Speicher- | 7=y
Zz" |Ubergangs- J| Glieder
funktion (Flip-Flops)

4

1

Takt |

5.2.8 Asynchrone Automaten

Eine weitere Form von Automaten sind asynchrone Automaten. Sie werden in der Praxis
sehr selten entworfen und daher wird hier nur kurz ihre prinzipielle Struktur erldutert.

5.2.8.1 Struktur

Bei asynchronen Automaten sind keine Flip-Flops zur Datenspeicherung vorhanden. Die
Zustandsinformation wird stattdessen direkt vom Ausgang der Zustandsiibergangsfunk-
tion zurtick nach dessen Eingang gegeben. Die Speicherung der Information findet in der
Verzogerung der Logikgatter und der Verbindungsleitungen statt.

Abb. 5.59 zeigt diese Struktur. Die kombinatorische Schaltung besteht aus den Logik-
gattern fiir Zustandsiibergangsfunktion und Ausgabefunktion. Der als Verzégerung ange-
gebene Block ist kein reales Bauelement, sondern symbolisiert das Zeitverhalten der
Logikgatter.

Asynchrone Automaten haben in der Theorie einige Vorteile gegeniiber synchronen
Automaten, also Automaten mit Flip-Flops:

e Hohere Geschwindigkeit, denn der Takt muss nicht auf die langsamste Verzégerung
der kombinatorischen Schaltung warten.

e Niedrigerer und gleichméBigerer Stromverbrauch, denn bei synchronen Schaltungen
sind bei den Taktflanken Hunderttausende von FFs gleichzeitig aktiv.

e Geringere Storausstrahlung, denn es gibt keinen Takt.

In der Praxis gibt es jedoch auch schwerwiegende Nachteile, die gleich in Abschn. 5.2.8.3
folgen.

Abb. 5.59 Struktur eines
asynchronen Automaten |:V

Kombinatorische ﬂ

Schaltung
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Abb. 5.60 Strukturelemente Kombinatorische Schaltung

des asynchronen Automaten R ;i 17 1

beim RS-Flip-Flop s —H L T Q
|+ _ |

Riickfiihrung des Zustands ohne Flip-Flop

5.2.8.2 Beispiel eines asynchronen Automaten

Das in Abschn. 5.1.1 beschriebene RS-Flip-Flop ist ein Beispiel fiir einen asynchronen
Automaten. Abb. 5.60 zeigt erneut den Aufbau des RS-FFs (wie in Abb. 5.3) mit den
Strukturelementen des asynchronen Automaten. Die Riickfithrung des Zustands Q erfolgt
ohne Verzogerung oder Flip-Flop.

5.2.8.3 Einsatz
Der praktische Einsatz von asynchronen Automaten ist nicht einfach, denn beim Entwurf
sind wesentlich mehr Bedingungen zu beachten als bei synchronen Automaten.

e Ein asynchroner Automat ist nur stabil, wenn die Anderung einer Zustandsvariablen
nicht erneut zu immer weiteren Anderungen von Zustandsvariablen fiihrt. Ansonsten
kann der Automat zwischen verschiedenen Zustinden schwingen.

e Die kombinatorische Schaltung darf keine kurzzeitigen Zwischenwerte ausgeben.
Ansonsten kann der Automat in einen falschen Zustand iibergehen.

Aufgrund dieser Bedingungen sind asynchrone Automaten wesentlich schwieriger zu
entwerfen, denn Fehler beim Einhalten der Bedingungen lassen sich nur schwer entde-
cken. Das Risiko beim Entwurf eines asynchronen Automaten ist relativ hoch.

In der Praxis werden darum asynchrone Automaten so gut wie nicht entworfen. In der
Regel werden lediglich bewihrte und besonders gepriifte Grundschaltungen eingesetzt,
wie zum Beispiel das RS-Flip-Flop.

5.3  Entwurf sequenzieller Schaltungen mit VHDL
5.3.1 Grundform des getakteten Prozesses

Der Entwurf sequenzieller Schaltungen erfolgt in VHDL mit einer besonderen Form
des bereits beschriebenen Prozesses. Der Prozess benotigt keine Sensitivity-Liste und
beginnt mit einem Wait-Statement fiir die steigende Taktflanke. Dieses Wait-Statement
hat die Schreibweise wait until rising_edge(clk); und sagt aus, dass die nachfolgenden
Anweisungen nur bei einer steigenden Taktflanke ausgefiihrt werden sollen. Nach dem
Wait-Statement steht der VHDL-Code, der bei der steigenden Taktflanke ausgefiihrt wer-
den soll.
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signal a, b : std_logic;

process
begin
wait until rising edge(clk);
b <= a;
end process;

Im VHDL-Code sind nur die Definition von a und b sowie der Prozess gezeigt. Entity
und Architecture-Definition werden zur besseren Ubersicht zuniichst weggelassen. Ein
vollstindiges Beispiel folgt spiter. Das Taktsignal cl/k ist ein normales Signal in VHDL;
oft ist es direkt ein Eingangssignal der Schaltung.

Das Beispiel beschreibt ein einfaches D-Flip-Flop. Mit der steigenden Taktflanke wird
der Wert des Signals @ im Signal b gespeichert. Diese Beschreibung entspricht einem
D-Flip-Flop entsprechend Abb. 5.61.

Die Schreibweise rising_edge() ist fiir die Beschreibung sequenzieller Schaltungen
sehr wichtig. Syntheseprogramme erkennen diese Funktion und generieren eine Schal-
tung mit D-Flip-Flops. Es gibt aulerdem die Variante falling_edge(). Hiermit wird eine
Funktion beschrieben, die bei einer fallenden Taktflanke aktiv ist. Entsprechend werden
D-Flip-Flops generiert, die mit der fallenden Taktflanke aktiv sind.

5.3.2 Erweiterte Funktion des getakteten Prozesses

Die Grundform des Prozesses erscheint zunichst relativ aufwendig, denn fiir ein ein-
zelnes Flip-Flop werden vier Zeilen VHDL-Code benoétigt. Die Stirke von VHDL liegt
darin, dass nach dem Wait-Statement weitere Funktionen beschrieben werden konnen.
Es sind If-Abfragen, Case-Bedingungen und logische Verkniipfungen, auch ineinander
geschachtelt, moglich. Die Optimierung der Schaltung wird von einem Synthese-Pro-
gramm {libernommen.

Als immer noch kleines Beispiel wird eine Uberlauferkennung betrachtet. count ist
eine Zahl mit dem Wertebereich von 0 bis 15 und in VHDL als unsigned-Signal mit 4 bit
Wortbreite definiert. Eine Schaltung soll iiberpriifen, ob der Zahlenwert grofer als zehn
ist und das Ergebnis in einem Flip-Flop speichern. Dies konnte zum Beispiel anzeigen,
dass ein Speicher iiberlduft.

Abb.5.61 Schaltung des in a b
VHDL beschriebenen D-Flip- D
Flops clk NG
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signal count : unsigned(3 downto 0);
signal overflow : std_logic;

process
begin
wait until rising edge(clk);
if count > 10 then

overflow <= '1"';
else

overflow <= '0';
end if;

end process;

Nach dem Wait-Statement wird eine If-Abfrage mit der Konstanten zehn geschrieben.
Ein Syntheseprogramm wiirde hieraus die Schaltung in Abb. 5.62 synthetisieren. Der
Vorteil von VHDL ist, dass man sich iiber die Logikfunktion keine Gedanken machen
muss. Auch Anderungen sind einfach. Wenn der Uberlauf nicht bei Werten groBer zehn,
sondern bei elf oder zwolf erfolgen soll, wird einfach die Zahl im VHDL-Code gedndert
und das Synthese-Programm berechnet die neue Schaltung.

5.3.3 Steuerleitungen fiir Flip-Flops

Durch VHDL-Beschreibungen konnen auch die am Anfang dieses Kapitels in
Abschn. 5.1.4 beschriebenen Erweiterungen des D-Flip-Flops realisiert werden, also
Reset, Set und Enable. Die Reset- und Set-Eingidnge konnen entweder als synchrone
oder als asynchrone Einginge implementiert werden. Fiir die VHDL-Beschreibung wird
ein synchrones Riicksetzen der Schaltung empfohlen. Zum einen wird dies in der Praxis
meist verwendet, zum andern ist die VHDL-Beschreibung etwas einfacher.

5.3.3.1 Synchroner Reset und Set
Der synchrone Reset und Set wird durch eine If-Abfrage des Steuersignals beschrieben.
Diese If-Abfrage folgt direkt nach der Wait-Anweisung und beschreibt erst das Verhalten
bei der Initialisierung und dann in der Else-Verzweigung die reguléire Verarbeitung.

Der folgende VHDL-Code erzeugt zwei D-Flip-Flops, f mit synchronem Reset und g
mit synchronem Set. Beim Steuersignal wird iiblicherweise der Name reset verwendet,

Abb.5.62 Schaltung der value(3) &
fl
in VHDL beschriebenen value(2) 21 iqp  poverow
Uberlauferkennung value(3) — & e
value(1) —
value(0) —

clk
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egal auf welche Polaritit initialisiert wird. Fiir die Else-Verzweigung werden als Beispiel
einfache kombinatorische Verkniipfungen aufgerufen.

process
begin
wait until rising edge(clk);
if reset = '1l' then
f <= '0";
g <= "1";
else

f <= a or b;
g <= b and c and d;
end if;
end process;

Im Else-Zweig konnen, wie im Beispiel gezeigt, Berechnungen und Verkniipfungen
programmiert werden. Fiir den Reset-Fall sind jedoch nur feste Werte, also 0 oder 1
moglich. Der Grund hierfiir ist, dass die VHDL-Beschreibung in eine digitale Schaltung
umgewandelt werden soll. Dabei wird der Reset-Wert fiir die Auswahl des Flip-Flops
verwendet. Deswegen muss ein fester Wert vorhanden sein, anhand dessen entweder ein
Flip-Flop mit Reset oder Set verwendet wird.

o Steht im Reset-Zweig die Anweisung f <= ‘0’; wird ein Flip-Flop mit Reset erzeugt.

e Steht im Reset-Zweig die Anweisung f <= ‘I’; wird ein Flip-Flop mit Set erzeugt.

e Steht im Reset-Zweig die Anweisung f <= a; oder f <= b or c; kann nicht entschie-
den werden, ob ein Flip-Flop mit Set oder Reset erzeugt wird. Stattdessen wird ein
Flip-Flop ohne Riicksetzfunktion erzeugt und die Funktion wird durch Logikgatter
umgesetzt. Dies ist normalerweise nicht erwiinscht, wenn der VHDL-Code eine Initi-
alisierung beschreibt.

5.3.3.2 Asynchroner Reset und Set
Sequenzielle Schaltungen mit asynchronem Reset und Set werden durch einen VHDL-
Programmierstil ohne Wait-Statement beschrieben. Stattdessen wird der Prozess mit
einer Sensitivity-Liste fiir Takt und Steuersignal aufgerufen. Die Beschreibung der
sequenziellen Schaltung erfolgt durch eine If-Elsif-Abfrage. Das Reset-Verhalten wird
im If-Zweig, der Takt im Elsif-Zweig beschrieben. Die Syntax fiir Reset und Set ist
gleich; die Unterscheidung erfolgt durch Zuweisung einer O oder 1.

Die Reihenfolge von If- und Elsif-Zweig entspricht der Prioritét, denn das asynchrone
Riicksetzen erfolgt ja unabhingig vom Takt. Die Takt-Abfrage folgt mit elsif, denn sie
wird nur ausgefiihrt, wenn kein Reset anliegt.
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process (clk, reset)

begin
if reset = '1' then
f <= "'0";
g <="1";

elsif rising edge(clk) then
f <= a or b;
g <= b and ¢ and 4d;
end if;
end process;

Die Syntax von if reset = ‘I° then und elsif rising_edge(clk) then muss unbedingt
eingehalten werden. Nur so kann das Syntheseprogramm erkennen, dass es ein D-Flip-
Flop mit Reset oder Set einbauen soll. Zwischen end if; und end process; darf kein ande-
rer VHDL-Code eingeschoben werden. Natiirlich kann auch ein Flip-Flop mit fallender
Taktflanke erzeugt werden, indem die Abfrage auf falling_edge(clk) erfolgt.

Wie zuvor sind fiir den Reset-Fall nur feste Werte, also 0 oder 1 moglich. Bei der
Anweisung f <= ‘0’; wird ein Flip-Flop mit Reset erzeugt, bei f <= ‘I’; ein Flip-Flop
mit Set. Falls keine Konstante fiir den Reset-Fall angegeben ist, wiirde das Synthesepro-
gramm einen Fehler ausgeben. Der Grund hierfiir ist, dass es fiir diese Beschreibung kein
passendes Schaltungselement gibt. Angenommen im Reset-Fall stinde die Anweisung f
<= a,. Bei a=0 soll ein asynchroner Reset erfolgen, bei a=1 ein asynchroner Set. Das
Syntheseprogramm muss aber entweder ein Flip-Flop mit Set oder mit Reset einbauen.
Da dies nicht moglich ist, erfolgt die Fehlermeldung.

5.3.3.3 Enable

Auch eine Enable-Funktionalitit wird durch eine If-Abfrage beschrieben. Die Enable-
Abfrage enthilt keine Else-Beschreibung. Wenn enable aktiviert ist, wird der neue Wert
iibernommen, ansonsten findet keine Anderung statt. Der folgende VHDL-Code erzeugt
zwei D-Flip-Flops mit Enable.

process
begin
wait until rising edge(clk) ;
if enable = '1' then
f <= a or b;
g <= b and c and d;
end if;
end process;

Enable und Reset/Set konnen auch miteinander kombiniert werden. Dabei wird zuerst
die If-Anweisung fiir die Riicksetzfunktion geschrieben, denn die Initialisierung hat nor-
malerweise eine hohere Prioritét als der Enable-Eingang.
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5.3.4 Entwurf von Automaten

Mit einem Prozess kann auch ein kompletter Automat beschrieben werden. Zuvor miis-
sen das Zustandsfolgediagramm und die Zustandsfolgetabelle erstellt werden (vgl.
Abschn. 5.2.3). Die weiteren Schritte, also Codierung der Zustéinde und Generierung der
Logik wird dann durch VHDL-Beschreibung und Logiksynthese iibernommen.

5.3.4.1 Elemente der VHDL-Beschreibung
Im VHDL-Code wird die Funktion des Automaten nach der Wait-Anweisung beschrie-
ben (vgl. Abschn. 5.3.2). Aulerdem erfolgt ein Reset des Automaten.

Eine Besonderheit ist die Beschreibung des Zustands. Es ist empfehlenswert, fiir die
Speicherung des Zustands einen neuen, individuellen Datentyp zu definieren. Dies hat
zwei Vorteile:

e Der VHDL-Code wird lesbarer.
e Das Syntheseprogramm weifl durch diese Beschreibung, dass ein Automat syntheti-
siert werden soll und kann die Schaltung optimieren.

Die Definition des Datentyps erfolgt in der Architecture mit dem Befehl:
type <type_name> is (value_0, value_1, ..);

Dieser Befehl definiert nur, dass es einen neuen Datentyp gibt. Zusétzlich muss noch
ein Signal mit diesem Datentyp erzeugt werden. Dies erfolgt mit dem Befehl:

signal <signal_name> : <type_name>;

In diesem Abschnitt soll der Entprell-Automat aus Abschn. 5.2.3 als Beispiel verwen-
det werden. Der Automat hat sechs Zustinde, die erst als Datentyp definiert und dann
als Signal verwendet werden. Die Zustandsnamen des Beispiels miissen leicht angepasst
werden, da VHDL-Signale nicht mit Ziffern beginnen und keine Leerzeichen enthalten
diirfen. Das Zustandsfolgediagramm Abb. 5.35 ist mit den angepassten Zustandsnamen
in Abb. 5.63 noch einmal dargestellt.

Damit lautet die Signaldefinition in VHDL.:

X=0 X=0

b s
X=1

stabil_0

Y=0

Abb. 5.63 Zustandsfolgediagramm des Entprell-Automaten fiir die VHDL-Beschreibung
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type state_type is (stabil_0, einmal_1, zweimal_1,
stabil_1, einmal_ 0, zweimal 0);

signal state :  state_type;

Die Funktion des Automaten wird dann in einem synchronen Prozess umgesetzt.
Zunichst wird mit einem Reset der Startzustand programmiert und auch die Ausgabe Y
des Automaten auf einen Startwert gesetzt. Laut Zustandsfolgediagramm Abb. 5.63 ist
stabil_0 mit Y=0 der Startzustand. Dies schreibt sich in VHDL.:

process
begin
wait until rising_edge(clk) ;
if reset = '1l' then
state <= stabil_O0;
Yy <= '0";
else

Als nichstes folgt die Beschreibung der einzelnen Zustinde. Hierfiir wird ein Case-
Statement mit dem Zustandssignal als Operator verwendet. Die Zustinde sind die When-
Bedingungen. Innerhalb der When-Bedingungen wird dann Folgezustand und Ausgabe
fir den Folgezustand beschrieben. Die Abhéngigkeit von den Eingangswerten wird
durch ein If-Statement oder ein Case-Statement beschrieben.

Der folgende VHDL-Code gilt wieder fiir den Entprell-Automaten. Er beschreibt das
Case-Statement abhiingig von Zustandssignal state und den ersten Fall fiir den Zustand
stabil_0. Der Folgezustand ist abhidngig vom Eingang x, und wird als If-Statement
beschrieben. Die Beschreibung fiir die weiteren Zustédnde erfolgt in der gleichen Weise
und wird hier zunichst tibersprungen. Der komplette VHDL-Code steht im folgenden
Unterabschnitt.

Beachten Sie, dass mit den Folgezustidnden jeweils die neuen Ausgabewerte beschrie-
ben werden. Im folgenden VHDL-Code gibt es den Folgezustand stabil_0, der die Aus-
gabe Y gleich O hat, sowie den Folgezustand einmal_I, der ebenfalls die Ausgabe Y
gleich 0 hat. Durch diese Schreibweise wird ein Moore-Automat mit Registerausgabe
erzeugt, wie in Abschn. 5.2.7 beschrieben.

case state is
when stabil_0 =>

if x='0' then
state <= stabil_0;
y <= '0";

else
state <= einmal_1;
y <= '0";
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end if;
when einmal 1 =>

end case;

Die Beschreibung der einzelnen Zustinde kann direkt aus dem Zustandsfolgedia-
gramm (Abb. 5.63) und der Zustandsfolgetabelle iibertragen werden.

Damit ist die komplette Funktion des Automaten beschrieben. Der komplette VHDL-
Code mit Aufruf der IEEE-Bibliothek, Entity und Architecture ist im folgenden Unter-
kapitel angegeben. Die If-Statements fiir die Folgezustinde werden in drei Zeilen
formatiert, um den Automaten kompakter und damit iibersichtlicher zu beschreiben. Die
Formatierung hat keine Auswirkung auf die Bedeutung des VHDL-Codes und sollte gut
lesbar gestaltet werden.

5.3.4.2 Kompletter VHDL-Code des Automaten

library iecee;
use ieee.std_logic_1164.all;

entity entprell is

port (clk :in  std_logic;
reset :imn  std_logic;
x :in  std_logic;
v :out std_logic);

end;

architecture behave of entprell is

type state_type is (stabil_0, einmal_1, zweimal 1,
stabil 1, einmal 0, zweimal 0);

signal state : state_type;

begin

process
begin
wait until rising_edge(clk) ;
if reset = '1l' then
state <= stabil_0;
y <= '0"';
else
case state is
when stabil 0 =>
if x='0' then state <= stabil_0; y <= '0';
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else state <= einmal_ 1; vy <= '0"';
end if;
when einmal_1 =>

if x='0' then state <= stabil_0; y <= '0"';
else state <= zweimal_ 1; vy <= '0"';
end if;

when zweimal 1 =>

if x='0' then state <= stabil_0; y <= '0"';
else state <= stabil 1; vy <= '1"';
end if;

when stabil 1 =>

if x='1' then state <= stabil_1; y <= '1"';
else state <= einmal 0; vy <= '1"';
end if;

when einmal 0 =>

if x='1' then state <= stabil_1; y <= '1"';
else state <= zweimal 0; vy <= '1"';
end if;

when zweimal 0 =>

if x='1' then state <= stabil_1; y <= '1"';
else state <= stabil 0; y <= '0"';
end if;
end case; -- state
end if; -- reset

end process;
end;

5.3.5 Programmierstile fiir VHDL-Code

Wie in jeder Programmiersprache sind auch fiir VHDL verschiedene Programmierstile
moglich. Wir haben einen Programmierstil gewihlt, der gut lesbar und wenig fehleran-
fdllig ist. In der Praxis werden Sie sicherlich auch VHDL-Code in anderer Schreibweise
begegnen. Fiir den Einstieg in VHDL empfehlen wir, zunichst bei einer Schreibweise zu
bleiben.

Der VHDL-Code wird durch ein Syntheseprogramm in eine Schaltung umgewandelt.
Heutige Syntheseprogramme sind so intelligent, dass sie fiir die meisten Programmier-
stile eine kompakte und schnelle Schaltung erzeugen.

In der Praxis gibt es innerhalb groBerer Entwicklerteams oft eigene Richtlinien fiir
Programmierstile, damit von verschiedenen Personen geschriebener Code nicht zu inho-
mogen wird.
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5.4 Ubungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Priifen Sie sich mit den Aufgaben und
Fragen am Kapitelende. Die Losungen und Antworten finden Sie am Ende des Buches.
Bei den Auswahlfragen ist immer genau eine Antwort korrekt.

Bitte versuchen Sie unbedingt, die Aufgaben zu den Automaten zuerst selber zu 16sen.
Nur durch Ubung lernen Sie den Entwurf von Automaten. Die Losungen sind bewusst
sehr knapp gehalten und werden am besten verstanden, wenn Sie vorher selbst eine
Losung ermittelt haben.

Aufgabe 5.1
Was gilt fiir ein RS-Flip-Flop (RS-FF)?

a) Daten werden unabhiingig von einem Takt gespeichert
b) Daten werden bei Takt gleich 1 gespeichert

c¢) Daten werden bei Takt gleich 0 gespeichert

d) Daten werden bei einer Taktflanke gespeichert

Aufgabe 5.2
Welche Ansteuerung fiir Flip-Flops ist heutzutage iiblich?

a) Taktflanke
b) Unabhingig vom Takt
c) Taktpegel

Aufgabe 5.3
Wie reagiert ein D-Flip-Flop (D-FF) auf einen asynchronen Reset?

a) Ausgang geht bei der nidchsten Taktflanke auf O
b) Ausgang geht sofort auf 1
¢) Ausgang geht bei der nichsten Taktflanke auf 1
d) Ausgang geht sofort auf 0

Aufgabe 5.4
Wie reagiert ein D-Flip-Flop (D-FF) auf einen synchronen Set?

a) Ausgang geht bei der ndchsten Taktflanke auf O
b) Ausgang geht sofort auf 1
c) Ausgang geht bei der ndchsten Taktflanke auf 1
d) Ausgang geht sofort auf 0
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Aufgabe 5.5
Ein Automat, bei dem der Ausgang nur vom Zustand und NICHT von den momentanen
Eingangswerten abhingt, bezeichnet man als, ...

a) Endlicher Automat
b) Mealy-Automat

¢) Moore-Automat

d) Turing-Automat

e) Medwedew-Automat

Aufgabe 5.6
Ein Automat, bei dem der Ausgang vom Zustand UND von den momentanen Eingangs-
werten abhingt, bezeichnet man als, ...

a) Endlicher Automat
b) Moore-Automat

¢) Medwedew-Automat
d) Turing-Automat

e) Mealy-Automat

Aufgabe 5.7
Betrachten Sie die Taktsignale in Abb. 5.64. Wie grof3 ist fiir die Diagramme a) bis c)
jeweils:

e Periodendauer
e Taktfrequenz
e Duty Cycle der 1-Phase

Abb.5.64 Taktsignale a) CLK | || L] LI

b) Ok || L L L
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Aufgabe 5.8
Ein Automat mit 11 Zustinden soll mit minimaler Codewortldnge codiert werden. Wie
viele Stellen muss das Codewort haben?

Aufgabe 5.9
Ein Automat mit 9 Zustinden soll mit einer One-Hot-Codierung codiert werden. Wie
viele Stellen muss das Codewort haben?

Aufgabe 5.10
Wie viele Zustinde konnen bei minimaler Codewortldnge mit 5 Stellen codiert werden?

Aufgabe 5.11
Wie viele Zustinde konnen mit einer One-Hot-Codierung mit 8 Stellen codiert werden?

Aufgabe 5.12
Die Jalousie an einem Fenster soll durch einen einzelnen Taster angesteuert werden. Um
nur einen Taster zu verwenden, dndert sich die Bewegungsrichtung der Jalousie bei jeder
neuen Betitigung des Tasters. Solange wie der Taster gedriickt gehalten wird, bewegt
sich die Jalousie nach oben oder nach unten. Beim Loslassen stoppt die Jalousie, kann
also auch halb oder zweidrittel geschlossen werden.

Beispiel:

e Der Taster wird gedriickt und festgehalten: Die Jalousie bewegt sich nach unten.
e Der Taster wird losgelassen: Die Jalousie stoppt.
o Der Taster wird gedriickt und festgehalten: Die Jalousie bewegt sich nach oben.
e Der Taster wird losgelassen: Die Jalousie stoppt.
e Der Taster wird gedriickt und festgehalten: Die Jalousie bewegt sich nach unten.

Nach dem Start soll sich die Jalousie bei Tastendruck zuerst nach unten bewegen. Das
Ende der Bewegung, also ganz offen oder ganz geschlossen, wird nicht tiberpriift, da der
Motor dann selbststindig stoppt.

Die Jalousie soll durch einen Moore-Automaten angesteuert werden. Der Taster liegt
am Eingang T und ist 1, wenn er gedriickt wird. Der Motor wird durch zwei Ausginge
M(1:0) angesteuert. Die Bedeutung ist:

M=00 — Motor ausgeschaltet
e M=01 — Motor fihrt herunter
e M=10 — Motor fihrt herauf

e M=11 —nicht zuldssig
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a) Stellen Sie das Zustandsfolgediagramm auf. Verwenden Sie so wenige Zustinde wie
moglich.
b) Erstellen Sie die Zustandsfolgetabelle.

Aufgabe 5.13

Mit einem Automaten sollen Parkmiinzen zum Preis von 50 Cent verkauft werden. Ein
elektromechanisches System erkennt Miinzen im Wert von 10, 20 und 50 Cent und mel-
det eine eingeworfene Miinze auf zwei Leitungen M(1:0). Wird keine Miinze einge-
worfen, ist M=00. Erkannte Miinzen werden mit einem Signal der Linge eines Taktes
angezeigt. Die Miinzen werden wie folgt codiert:

e M=01-10 Cent
e M=10-20 Cent
e M=11-50 Cent

Werden insgesamt mehr als 50 Cent eingeworfen, wird das iibrige Geld einbehalten.
Beispiele fiir erlaubte Kombinationen sind also:

e 20 Cent, 20 Cent, 10 Cent

e 50 Cent

e 20 Cent, 20 Cent, 20 Cent (10 Cent verfallen)

e 20 Cent, 50 Cent (ungeschickte Reihenfolge, 20 Cent verfallen)

Entwerfen Sie einen Moore-Automaten, der die Leitungen M(1:0) auswertet und
nach Einwurf eines Betrags von mindestens 50 Cent einen Ausgang P fiir einen Takt auf
1 schaltet, um eine Parkmiinze auszugeben. Danach kann erneut Geld fiir die néchste
Parkmiinze eingeworfen werden. Aufgrund der mechanischen Auswertung vergehen zwi-
schen zwei Miinzeinwiirfen mehrere Takte.

a) Stellen Sie das Zustandsfolgediagramm auf. Verwenden Sie so wenige Zustinde wie
moglich.
b) Erstellen Sie die Zustandsfolgetabelle.

Aufgabe 5.14
Der Automat zum Halbieren der Takte mit dem Wert 1 aus Abschn. 5.2.5 soll als Moore-
Automat entworfen werden.

Wenn am Eingang X der Wert 1 anliegt, soll fiir jeden zweiten Wert eine 1, ansonsten
eine 0 am Ausgang Y ausgegeben werden. Die Zihlung soll durch Eingangswerte O nicht
beeinflusst werden. Bei einer 0 am Eingang soll 0 ausgegeben werden. Beim Einschalten
soll fiir die erste 1 der Wert 0 ausgegeben werden. Der Zeitablauf entspricht Abb. 5.49,
allerdings ist die Ausgabe bis zur nidchsten Taktflanke verzogert (da Moore-Automat).
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a) Stellen Sie das Zustandsfolgediagramm auf. Verwenden Sie so wenige Zustinde wie
moglich.
b) Erstellen Sie die Zustandsfolgetabelle.

Aufgabe 5.15

Auf einer Datenleitung D werden Datenworte der Linge 4 iibertragen. Die Datenworte
bestehen aus drei Stellen Nutzinformation und einer vierten Stelle zur Fehlererkennung,
der Parity-Stelle. Diese vierte Parity-Stelle ist so gewdhlt, dass die Anzahl der 1-Stellen
im Datenwort immer ungerade ist. Ein Fehler bei der Ubertragung kann erkannt werden,
wenn beim Empfinger die Anzahl der 1-Stellen, also die Paritit, gerade ist.

Entwerfen Sie einen Mealy-Automaten, der die Datenleitung D iiberwacht und ein
falsches Datenwort erkennt. Wenn ein falsches Datenwort mit gerader Anzahl der 1-Stel-
len auftritt, soll der Ausgang E (Error) fiir einen Takt auf 1 sein. Innerhalb eines Daten-
wortes und wenn kein Fehler auftritt, ist £ auf 0.

Abb. 5.65 ist ein Beispiel fiir einen Zeitablauf. Die Klammern kennzeichnen die
Datenworte.

e Das erste Datenwort hat zwei 1-Stellen, also fehlerhaft, da Paritit gerade.
e Das zweite Datenwort hat drei 1-Stellen, also korrekt, da Paritit ungerade.
e Das dritte Datenwort hat vier 1-Stellen, also fehlerhaft, da Paritiit gerade.

a) Stellen Sie das Zustandsfolgediagramm auf. Verwenden Sie so wenige Zustinde wie
moglich.
b) Erstellen Sie die Zustandsfolgetabelle.

Hinweise:

e Der Automat muss mitzéhlen, wie viele Stellen und welche Werte empfangen wurden.

e Es miissen nicht alle verschiedenen Kombinationen unterschieden werden. Es sind
weniger als zehn Zustédnde notig.

o Achten Sie darauf, dass nach der vierten Stelle sofort das neue Datenwort beginnt.
Der Automat darf keine Pause einlegen.

cek L L L L L Lo
p/ T\ /] ] (-

T 1 )0 )
) ™ )

E [T\

Abb. 5.65 Zeitdiagramm fiir die Fehlererkennung mit Parity-Stelle
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In den Kapiteln 4 und 5 wurde gezeigt, wie aus einer Aufgabenstellung eine kombinato-
rische oder sequenzielle Schaltung entwickelt werden kann. Dieser allgemeine Entwurfs-
weg ist prinzipiell fiir jede Spezifikation moglich. Fiir bestimmte Aufgabenstellungen
kann es aber auch einfacher gehen. Es gibt einige Grundstrukturen, die héufig in digita-
len Schaltungen vorkommen und solche Strukturen werden in diesem Kapitel vorgestellt.
Die Strukturen konnen durch eine Beschreibung in VHDL erzeugt werden.

6.1 Grundstrukturen digitaler Schaltungen

Wenn Sie die hier gezeigten Grundstrukturen kennen, konnen Sie oft eine digitale
Schaltung direkt aus diesen Strukturen zusammenstellen. Sie sparen sich damit mogli-
cherweise den allgemeinen Entwurfsweg iiber Funktionstabelle oder Zustandsfolgedia-
gramm. In Abschn. 6.5.2 wird hierzu ein ausfiihrliches Beispiel gezeigt.

6.1.1 Top-down Entwurf

Grofere Digitalschaltungen werden Top-down entworfen, also ,,von oben nach unten®.
Damit ist gemeint, dass eine Schaltung schrittweise in immer kleinere Teile aufgeteilt
wird. Das Gesamtsystem besteht also aus Teilschaltungen, die auch als Untermodul
bezeichnet werden. Die Untermodule konnen wiederum aus weiteren Untermodulen
zusammengesetzt sein. Auf dem untersten Schritt der Aufteilung befinden sich Grund-
elemente. Dies konnen Schaltungsstrukturen dieses Kapitels sein, aber auch Automaten
(Kapitel 4) oder einzelne Gatter und Flip-Flops.
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Beispielsweise ldsst sich ein Mikrocontroller (siche Kap. 13 und 14) in die folgenden
Teilschaltungen aufteilen:

e Der Mikrocontroller besteht aus den Untermodulen CPU, Speicher, Eingabe, Ausgabe,
Bussystem, ...

e Die CPU besteht aus den Untermodulen Rechenwerk, Steuerwerk, Register, Speicher-
interface, ...

e Das Steuerwerk besteht aus Programmzéhler, Befehlsdecoder, ...

e Der Programmzihler wird durch die Grundstruktur Zdhler implementiert.

Der Vorteil dieser Vorgehensweise ist, dass die Untermodule einzeln entworfen werden
konnen. Dies ist tibersichtlich und erlaubt auch eine Aufteilung auf mehrere Personen
oder, bei groferen Projekten, sogar auf mehrere Standorte eines Unternehmens.

Die einzelnen Teilschaltungen werden dann Schritt fiir Schritt zur Gesamtschaltung
zusammengesetzt. Dieses Zusammenfiigen wird als Botfom-up bezeichnet.

6.1.2 Darstellung von Schaltungsstrukturen

In den bisherigen Kapiteln wurden bereits grafische Symbole (Schaltzeichen) fiir die
Darstellung von Schaltungselementen verwendet. Gemeint sind die rechteckigen Késten,
bei denen sich die Eingéinge auf der linken Seite und die Ausgédnge auf der rechten Seite
befinden. An der oberen und unteren Kante kdnnen sich Steuersignale befinden.

Auch fiir Schaltungsstrukturen werden solche Schaltzeichen verwendet. Es gibt eine
standardisierte Darstellung, die in Abb. 6.1 zu sehen ist. Die Eingénge sind links, die Aus-
ginge rechts angeordnet. Der obere Block erhilt Steuersignale, welche die Datensignale
beeinflussen. Der untere Block umfasst die Datensignale. Dabei trennt ein horizontaler
Strich unabhingige Datensignale voneinander. Abkiirzungen und Symbole bei ,,** und ,,***
geben die Funktion an.

Die Verwendung dieser Darstellung ist in der Praxis allerdings sehr uneinheitlich.
Englischsprachige Quellen verwenden die Symbole kaum und darum findet sich auch in
Deutschland oft eine einfachere Darstellung. Meist wird ein einfaches Rechteck verwen-
det und die Funktion durch eine Beschriftung verdeutlicht.

Abb. 6.1 Standardisierte
Darstellung eines
Schaltungselements



http://dx.doi.org/10.1007/978-3-662-49731-9_13
http://dx.doi.org/10.1007/978-3-662-49731-9_14

6.2 Kombinatorische Grundstrukturen 175

6.2 Kombinatorische Grundstrukturen

6.2.1 Multiplexer

Eine wichtige Grundstruktur fiir kombinatorische Schaltungen ist der Multiplexer, kurz
,»Mux“. Abhidngig von Steuersignalen wird einer von mehreren Eingédngen ausgewihlt
und auf den Ausgang gegeben. Je nach Anzahl der Auswahlmoglichkeiten sind ein oder
mehrere Steuerleitungen erforderlich.

e [-aus-2-Multiplexer: Fiir zwei Dateneinginge ist eine Steuerleitung erforderlich

o [-aus-4-Multiplexer: Fiir vier Dateneinginge sind zwei Steuerleitungen notig, denn
die zwei Steuerleitungen konnen vier Moglichkeiten anzeigen

e l-aus-8-Multiplexer: Fiir acht Dateneinginge sind drei Steuerleitungen notig

Auch Multiplexer fiir mehr Eingidnge sind moglich. Mit n Steuerleitungen kann aus 2"
Eingingen ausgewihlt werden.

Das Schaltsymbol fiir einen 1-aus-4-Multiplexer ist in Abb. 6.2 dargestellt. Links
befindet sich das Symbol in der standardisierten Darstellung mit dem Steuerblock und
den zwei Steuerleitungen A(/:0). Entsprechend der Werte an A wird einer der vier Daten-
einginge D(3:0) ausgewihlt und an den Ausgang Y gegeben. In der Mitte ist ein verein-
fachtes Symbol dargestellt, welches in der Praxis hdufig verwendet wird.

Ebenfalls in Abb. 6.2 gezeigt ist die Funktionstabelle fiir den 1-aus-4-Multiplexer. Die
Leitung A gibt als Binérzahl an, welcher Eingangswert auf Y geschaltet wird. Es wird
als ein Datenwert ausgewihlt und die Schaltung wird darum auch als Datenselektor
bezeichnet.

VDHL-Beschreibung
Ein Multiplexer kann durch das bereits bekannte Case-Statement erzeugt werden. Als
Bedingung wird das Steuersignal a verwendet. Im Code sind die Signale definiert als:

e a:std_logic_vector(l downto 0);
e d: std_logic_vector(3 downto 0);
e y:std_logic;

Abb. 6.2 Symbole und A(O) o MU)Z A(o)
Funktionstabelle fiir 1-aus-4- A(1) —1 tes A(1)
Multiplexer D(0) e D(0)

D(1) — Ly DM

D(2) — 2 Y D) Y

D(3) —s D(3)
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case a is

when "00" => y <= d4(0);
when "01" = y <= d(1);
when "10" => vy <= d(2);
when others => y <= d(3);

end case;

Die Case-Anweisung kann nur innerhalb eines Prozesses aufgerufen werden. Die
VHDL-Befehle fiir den Prozess werden hier und in den folgenden Beispielen zur besse-
ren Ubersichtlichkeit weggelassen. Der Others-Fall ist erforderlich, um alle moglichen
Werte des Datentyps std_logic zu erfassen, also zum Beispiel auch ,X* oder ,U".

6.2.2 Demultiplexer

Die entgegengesetzte Schaltung ist der Demultiplexer, kurz ,,Demux®. Abhidngig von
Steuersignalen A wird ein Eingangssignal D auf einen von mehreren moglichen Aus-
gingen Y gelegt. Die anderen Ausgédnge sind 0. Genau wie beim Multiplexer gibt es
Varianten mit verschiedener Anzahl an Wahlmoglichkeiten, also 1-auf-2, 1-auf-4, 1-auf-
8-Demultiplexer oder auch grofere Schaltungen. Abb. 6.3 zeigt das Symbol und die
Funktionstabelle fiir einen 1-auf-4-Demultiplexer.

Die Begriffe Multiplexer und Demultiplexer stammen von einer moglichen Anwen-
dung, bei der sich mehrere Signalwege eine gemeinsame Leitung teilen. Dies ist in
Abb. 6.4 dargestellt. Die Schaltungsstrukturen werden jedoch auch fiir andere Anwen-
dungen eingesetzt.

Eine andere Bezeichnung fiir den Demultiplexer ist Adressdecoder. Dabei wihlt eine
Binédrzahl mit n Stellen eine von 2" Ausgangsleitungen und eine weitere Steuerleitung G
aktiviert den Ausgang. Die Funktionstabelle fiir § Ausgangsleitungen ist in Abb. 6.5 darge-
stellt. Eine beispielhafte Anwendung ist, dass eine Adresse einen von 8 Speicherbausteinen

Abb. 6.3 Symbol und A(0) A(:0) | Y(3:0)
Funktionstabelle fiir 1-auf-4- A1)
: 00| 000D
Demultiplexer ¥(O) 0 1 0 0DO
D Yg; 10|[0DO0 O
Y(3) 11 D O0OOO
Abb. 6.4 Multiplexer und A(1:0) A(1:0)
Demultiplexer D(0) Y(0)
D(1) Y(1)
D(2) Y(2)
D(3) Y(3)
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Abb. 6.5 Funktionstabelle G A(2:0)|Y(7) Y(6) Y(5) Y(4) Y(3) Y(2 Y1) Y(0

eines Adressdecoders fiir 8 0 XXX| 0 0 0 0 0 0 0 0
1 001| 0 0 0 0 0 0 1 0
1 010| 0 0 0 0 0 1 0 0
10110 0 0 0 1 0 0 0
1100| 0 0 0 1 0 0 0 0
1 101]| 0 0 1 0 0 0 0 0
1110| 0 1 0 0 0 0 0 0
1 111 1 0 0 0 0 0 0 0

auswihlt. Die Schaltung entspricht exakt einem 1-auf-8-Demultiplexer des Datensignals G.
Je nach Anwendungsgebiet ist die Bezeichnung als Adressdecoder jedoch verstdndlicher.

VHDL-Beschreibung
Auch der Demultiplexer kann durch ein Case-Statement erzeugt werden. Zunédchst
werden alle Ausgangssignale y auf 0 gesetzt. Der Eingang d wird dann einer der vier
Ausgangsleitungen zugewiesen und damit fiir diesen Ausgang die Zuweisung der Null
wieder tiberschrieben. Da die zwei Zuweisungen nacheinander innerhalb eines Prozesses
ausgefiihrt werden, hat die erste Zuweisung fiir die Hardware-Synthese keine Wirkung.
Am ausgewihlten Ausgang wird also nicht kurzzeitig eine O (erste Zuweisung) und
danach auf der Wert von d (zweite Zuweisung) zu beobachten sein.
Die Signale sind definiert als:

e a:std_logic_vector(l downto 0);
e d: std_logic;
e vy :std_logic_vector(3 downto 0);

y <= "0000";

case a is
when "00" => y(0) <= d;
when "01" => y(1l) <= d;
when "10" => y(2) <= d;
when others => y(3) <= d;

end case;

6.2.3 Addierer

Arithmetische Berechnungen sind eine wichtige Grundfunktion von digitalen Schaltun-
gen. Eine Grundschaltung fiir die Addition zweier Zahlen wird als Addierer bezeichnet.
In diesem Abschnitt werden Addierer fiir Bindrzahlen beschrieben. Die Addition von
Zweierkomplementzahlen erfolgt mit der gleichen Struktur; lediglich das Vorzeichen
muss beriicksichtigt werden.
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Zwei Zahlen der Wortbreite n ergeben eine Summe der Wortbreite n + 1, denn der
Wertebereich der Summe kann ja groBer als die Summanden sein. Fiir die Beispiele in
diesem Abschnitt wird n = § gewihlt, wenn nichts anderes angegeben ist.

Fiir diesen Fall der Wortbreite n = § haben die Summanden einen Wertebereich von
[0,255]. Die Summe kann den Wertebereich von [0,510] haben und benétigt eine Wort-
breite von n = 9.

Ein Addierer hat somit 2-n Eingangsleitungen fiir die beiden Summanden A und B,
sowie n + 1 Ausgangsleitungen fiir die Summe S. Ein Entwurf der Schaltung mit dem
Karnaugh-Diagramm ist nicht mdglich, da das Diagramm bei 2-n Eingangsleitungen 227
Wertekombinationen hiitte. Bei n = 8 wiiren diese 2!° = 65.536 Eintriige, also viel zu
viel fiir eine grafische Optimierung

Ripple-Carry-Addierer

Fiir den Entwurf eines Addierers analysiert man die arithmetische Rechenoperation und
setzt diese in eine Schaltung um. Zur Veranschaulichung ist in Abb. 6.6 die Addition
zweier Zahlen dargestellt. Die Berechnung findet nacheinander fiir die einzelnen Binér-
stellen der Summanden A und B statt. Die beiden Werte werden mit dem Ubertrag aus
der vorherigen Stelle addiert und ergeben eine Summenstelle sowie einen Ubertrag in die
nichste Stelle. Der Ubertrag zur ersten Stelle ist 0; der Ubertrag der letzten Stelle ergibt
die zusitzliche Summenstelle.

Diese Berechnung kann direkt in eine Schaltung umgesetzt werden. Die Berechnung
fiir jede Stelle wird in einem Untermodul mit der Bezeichnung Volladdierer (VA) durch-
gefiihrt. Dieses Untermodul wird gleich noch beschrieben.

Fiir eine Addition von n Stellen werden n Volladdierer eingesetzt. Jeder Volladdierer
erhilt die beiden Stellen der Summanden sowie den Ubertrag aus der vorherigen Stelle.
Als Ausgabe des Volladdierers gibt es die Summe der aktuellen Stelle sowie den Ubertrag
fiir die nichste Stelle. Der erste Volladdierer hat am Eingang des Ubertrags den Wert 0,
denn die erste Stelle hat noch keinen Ubertrag. Der Ausgang des Ubertrags vom letzten
Volladdierer ergibt die zusitzliche Summenstelle. Diese Struktur ist fiir » = 8 in Abb. 6.7
dargestellt. Der Ubertrag (engl. Carry) liuft durch alle Stellen und darum wird diese
Schaltungsstruktur als Ripple-Carry-Addierer (engl. Ripple-Carry-Adder) bezeichnet.

Es gibt noch weitere Addiererstrukturen, die fiir groBe Wortbreiten schneller arbeiten.
Der Ripple-Carry-Addierer ist jedoch die wichtigste und am héufigsten vorkommende
Addiererstruktur.

Volladdierer
Der Volladdierer hat drei Eingangssignale und zwei Ausgangssignale. Einginge sind
A, B und CI, also die beiden Binirstellen der Summanden sowie der Ubertrag aus der

Abb. 6.6 Addition zweier
Binirzahlen der Wortbreite
8 bit

Ubertrag

+
w| W>
Ol = =
- |0 O
oo =
Y SN
oOle—aa
—aloa o
olcroo
—“lco -



6.2 Kombinatorische Grundstrukturen 179
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Abb. 6.7 Ripple-Carry-Addierer fiir Bindrzahlen mit 8 Stellen

vorherigen Binirstelle mit der Bezeichnung CI fiir Carry-In. Ausginge sind S und CO,
also die Binirstelle der Summe sowie der Ubertrag fiir die nichste Binirstelle mit der
Bezeichnung CO fiir Carry-Out.

Die Schaltung muss die drei Eingangswerte A, B, CI summieren, was einen Wert von
0 bis 3 ergeben kann. Wenn diese Summe 2 oder 3 ist, erfolgt ein Ubertrag in die niichste
Stelle. Der Ausgang S wird 1, falls die Summe 1 oder 3 ist. Diese Funktion und das Symbol
fiir einen Volladdierer ist in Abb. 6.8 gezeigt. Die Schaltung besteht aus wenigen Gattern.

Eine vereinfachte Form des Volladdierers ist der Halbaddierer (HA). Dieses Modul
hat keinen Carry-Eingang und kann fiir die unterste Stelle des Ripple-Carry-Addierers
verwendet werden.

VHDL-Beschreibung

Der Addierer kann direkt durch das Plus-Zeichen erzeugt werden. Die Signale kon-
nen als Vektor vom Typ signed/unsigned oder als integer definiert werden. Wie in
Abschn. 3.5. erldutert, muss fiir signed und unsigned die Erweiterung der Wortbreite
beachtet werden. Fiir Operanden A und B mit 8 bit Wortbreite lautet die Beschreibung:

s <= '0' &a+ '0' & b; - fiir Datentyp unsigned
s <= a(7) & a + b(7) & b; -- fir Datentyp signed

Die Grundstruktur des Addierers wird auch fiir die Subtraktion eingesetzt. Prinzi-
piell wird statt des Volladdierers ein dhnlich definierter Vollsubtrahierer verwendet. In
der Praxis wird jedoch oft einfach der Subtrahend invertiert und eine Addition durch-
gefiihrt. Damit ist kein weiteres Grundelement erforderlich. Es wird also S =A + (—B)

Abb. 6.8 Symbol und A B Cl [CO S
Funktionstabelle fiir einen A B ClI 00O 0 0
Volladdierer g (1) (1) 8 ]I
01 1 10

100 0 1

cCO S 1 0 1 10

110 10

11 1 11



http://dx.doi.org/10.1007/978-3-662-49731-9_3

180 6 Schaltungsstrukturen

gerechnet. Damit die Invertierung dem Zweierkomplement entspricht, muss die O fiir den
ersten Ubertrag ebenfalls invertiert werden.

In VHDL wird die Subtraktion einfach durch das Minus-Zeichen aufgerufen. Fiir den
Datentyp signed lautet die Beschreibung:

s <= a(7) & a - b(7) & b;

6.3 Sequenzielle Grundstrukturen
6.3.1 Zahler

Zdihler sind wichtige Grundschaltungen, um Abldufe in digitalen Schaltungen zu steuern.
Dabei wird als Grundoperation eine Binédrzahl mit jedem Takt um eins erhoht. Auch ein
Riickwirtszédhlen ist moglich, aber nicht so anschaulich. Gezéhlt wird stets ab dem Wert
Null, also nicht ab Eins.

Die meisten Zihler beginnen nach Erreichen des letzten Ausgabewertes automatisch
wieder beim ersten Ausgabewert, also der Null. Man bezeichnet dies als Modulo-m Zih-
ler, wobei m die Anzahl der Zustidnde ist.

Beispielsweise zéhlt ein Modulo-5 Aufwartszéhler O, 1, 2,3,4,0, 1,2, 3,4,0, 1, ...

Besonders einfach sind Modulo-2" Zihler. Sie durchlaufen alle n-stelligen Binérzah-
len. Um alle 10-stelligen Biniirzahlen zu durchlaufen wird ein Modulo-2!° Zihler einge-
setzt. Er lauft von 0 bis 1023 und startet danach wieder bei 0.

Diese Grundfunktion kann verdndert und durch verschiedene Steuersignale erweitert
werden.

e Enable: Der Zihler geht nur zum nachfolgenden Wert, wenn ein Steuereingang ena-
ble =1 ist.

e Clear: Der Zihler springt wieder auf den Startzustand. Dies entspricht einem Reset.

e Load: Der Zihler 14dt auf einen Wert von einem Eingang.

e Up/Down: Die Zihlrichtung kann gewdhlt werden, das heiflt der Zihler zéhlt auf
Waunsch in die negative Richtung.

e Kein automatischer Neustart, das heiB3t der Zihler hilt beim Erreichen des Maximal-
werts an und startet erst nach Clear erneut.

Ein ausfiihrliches Beispiel fiir die Verwendung von Zihlern folgt in Abschn. 6.5.2.

Implementierung

Ein Zihler wird mit der gleichen Struktur wie ein Moore-Automat implementiert. Der
aktuelle Zihlerstand ist in Flip-Flops gespeichert und aus diesem Wert sowie den Steuer-
signalen berechnet eine kombinatorische Schaltung den nichsten Zihlerstand (Abb. 6.9).
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Im einfachsten Fall besteht die kombinatorische Schaltung aus einem Addierer, der zum
aktuellen Zihlerstand den Wert Eins addiert. Je nach bendtigten Steuersignalen sind wei-
tere Gatter erforderlich.

VHDL-Beschreibung
Ein Zihler wird durch die Addition einer Zihlvariablen in einem getakteten Prozess
erzeugt. Besonders einfach ist der Modulo-2" Zihler, wenn die Z#hlvariable als unsig-
ned definiert ist. Bei Erreichen des Maximalwerts ist die Addition so definiert, dass sie
danach wieder den Wert Null ergibt.

Fiir einen Modulo-2'° Zihler wird die Zihlvariable count definiert als:

e count : unsigned(9 downto 0);

process

begin

wait until rising_edge(clk);
count <= count + 1;

end process;

Zihler mit Steuersignalen lassen sich durch Erweiterung des Codes mit If-Bedin-
gungen umsetzen. Der folgende Code beschreibt einen Modulo-100 Zihler, der nur bei
enable = 1 zdhlt. Der Steuereingang clear setzt den Zihler auf O und zwar unabhingig
von enable (siehe auch Abb. 6.9). Er entspricht einem synchronen Riicksetzen.

Die Steuereinginge sind als std_logic und die Zihlvariable als unsigned definiert:

e clear: std_logic;
e cnable: std_logic
e count : unsigned(6 downto 0);

Abb. 6.9 Implementierung Zustandsibergangsfunktion  Speicherglieder
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process
begin
wait until rising_edge(clk);
if clear = '1l' then
count <= (others => '0"');
elsif enable = 'l' then
if count = 99 then
count <= (others => '0"');
else
count <= count + 1;
end if;
end if;

end process;

6.3.2 Schieberegister

Mehrere hintereinander geschaltete D-Flip-Flops werden als Schieberegister bezeich-
net. In einem Schieberegister werden die gespeicherten Werte mit jedem Takt einen Wert
weiter geschoben (Abb. 6.10).

Durch Steuersignale, beispielsweise ein Enable, kann die Grundstruktur erweitert
werden. Ein Schieberegister wird verwendet, wenn Daten vor oder innerhalb einer Ver-
arbeitung um wenige Takte verzogert werden sollen. Bei grofleren Verzogerungen (ab ca.
16 Takte) sind jedoch Speicher meist effizienter.

Eine wichtige Anwendung von Schieberegistern ist die Verarbeitung serieller
Daten und die Umwandlung zwischen seriellen und parallelen Daten. In Abb. 6.11 ist
ein Schieberegister zur Wandlung paralleler Daten zur seriellen Dateniibertragung

Abb. 6.10 Schieberegister D(0)

ax = [ 5

D(1) | D)

paralleler
Dateneingang
' D(0) D(1) D(7) | _
serieller
Datenausgang
D D — eoe D T

= B =

Abb. 6.11 Schieberegister zur Parallel-Seriell-Wandlung
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dargestellt. Der Dateneingang D hat 8 Leitungen, die zu Beginn der Ubertragung mit
Multiplexern in ein Schieberegister geladen werden. Dann wird 8 Takte lang das Daten-
wort auf die serielle Leitung T ausgegeben. Nach diesen 8 Takten kann das néchste
Datenwort iibertragen werden.

VDHL-Beschreibung

Fiir die VHDL-Beschreibung eines Schieberegisters wird die Zusammenfassung von
Vektoren mit dem Concatenation-Operator & verwendet. Achtung: Verwechseln Sie die-
sen Operator nicht mit der UND-Verkniipfung.

Fiir ein einfaches Schieberegister dhnlich wie in Abb. 6.10 wird ein std_logic_vector
definiert. Hier soll als Wortbreite 8 bit verwendet werden und ein Steuereingang enable
beachtet werden. Der oberste Wert des Schieberegisters, das MSB (Most Significant Bit),
wird nicht mehr gespeichert. Die tibrigen Werte riicken eine Stelle auf und werden mit dem
neuen Eingangswert data ergéinzt. Dies wird programmiert, indem der Wert des Schiebe-
registers ohne MSB (also d(6:0)) mittels Concatenation um das Signal data erginzt wird.

Die Signale sind definiert als:

e d: std_logic_vector(7 downto 0);
e data: std_logic;
e enable : std_logic;

process
begin
wait until rising_edge(clk);
if enable = 'l' then
d <= d(6 downto 0) & data;
end if;

end process;

6.3.3 Riickgekoppeltes Schieberegister

Bei einem riickgekoppelten Schieberegister werden einige Stellen XOR-verkniipft und wie-
der in das Schieberegister gegeben. Die englische Bezeichnung hierfiir ist Linear Feedback
Shift Register oder LFSR. Abb. 6.12 zeigt ein LFSR mit 4 Stellen. Die Daten an Position 3
und 4 werden XOR-verkniipft und wieder an Position 0 in das Schieberegister gegeben.

Bei geeigneter Wahl der Riickkopplung werden bei einem n-Bit-Schieberegister 2"—1
verschiedene Zustinde durchlaufen. Von den 2" moglichen Kombinationen treten also
sdmtliche Werte auf, ausgenommen alle Stellen auf 0. Die Werte treten dabei nicht in der
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Abb. 6.12 Riickgekoppeltes
Schieberegister mit 4 Stellen

DATA

—>C >C C >C
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arithmetischen Reihenfolge auf und konnen darum auch als Pseudo-Zufallszahlen genutzt
werden. Die Initialisierung muss vermeiden, dass alle Werte auf O sind (nicht in Abb. 6.12
dargestellt).

Die Abgriffe der Riickkopplung sind fiir verschiedene Langen des Schieberegisters in
Tabellen angegeben. Eingesetzt werden LFSR beispielsweise als Zahlengeneratoren in
der Kommunikationstechnik.

6.4  Zeitverhalten
6.4.1 Verzogerungszeit realer Schaltungen

Logikgatter benotigen eine kurze Laufzeit bis der Ausgang auf eine Anderung der Ein-
gangsvariablen reagiert. Diese Laufzeit ist abhdngig von der Technologie. Fiir ein ein-
zelnes Gatter in einem Gehéduse kann die Laufzeit tiber 10 ns betragen. Als Teil eines
modernen hochintegrierten ASICs sind Laufzeiten unter 0,1 ns moglich.

Realistische Werte fiir die Verzogerungszeit eines Gatters innerhalb integrierter Schal-
tungen betragen etwa 0,1 bis 1,0 ns, wihrend die Verzogerungszeit diskreter Gatter bei
etwa | ns bis 10 ns liegt (vgl. Kap. 7). Dabei ist die Verzogerungszeit auch abhingig
von der Funktion des Logikgatters. Ein Inverter ist meist schneller als ein ODER-Gatter
mit 8 Eingidngen. Auch gleichartige Gatter konnen eine unterschiedliche Laufzeit haben,
abhingig beispielsweise davon, ob ihr Ausgang 1 oder 10 weitere Gatter ansteuert.

6.4.2 Transiente Signalzustande

Beim Wechsel einer oder mehrerer Eingangsvariablen treten aufgrund der Verzogerungszei-
ten oft kurze Zwischenzustinde auf. Diese werden als Spike, Glitch oder Hazard bezeichnet.

Zum besseren Verstindnis wird die Schaltung in Abb. 6.13 betrachtet. Bei ihr wech-
selt der mittlere Eingang von 1 auf 0. Fiir beide Eingangswerte ist der Ausgang Y auf 1.
Durch Verzogerungszeiten der Gatter kann jedoch ein kurzzeitiger Spike am Ausgang Y
auftreten. Dieser entsteht durch den folgenden Ablauf:
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Abb. 6.13 Spike beim Wechsel eines Eingangssignals

e Der mittlere Eingang wechselt von 1 auf 0.

e Das obere UND-Gatter wechselt dadurch von 1 auf 0.

e An beiden Eingéngen des ODER-Gatters liegt O an und der Ausgang ist kurzzeitig 0.

e Das untere UND-Gatter ist durch den vorgeschalteten Inverter etwas langsamer als
das obere UND-Gatter und wechselt spéter von 0 auf 1.

e Der untere Eingang des ODER-Gatters wird 1 und der Ausgang wird wieder 1.

6.4.3 Signaliibergange in komplexen Schaltungen

Bei komplexen Schaltungen kénnen auch mehrere Ubergiinge auftreten, bis der endgiil-
tige Ausgangswert erreicht ist. Dies lésst sich beim Ripple-Carry-Addierer aus Abb. 6.7
gut nachvollziehen. Eine Summenstelle hingt von den Eingangswerten der aktuellen
Stelle sowie von allen tieferen Stellen ab. Summenstelle S(6) beispielsweise hingt von
A(6) und B(6) sowie dem Ubertrag aus allen vorherigen Stellen also A(5) bis A(0) und
B(5) bis B(0) ab. Wenn zwei neue Zahlen fiir die Berechnung am Addierer anliegen, liegt
an Stelle 6 die Information von A(6) und B(6) sofort an. Die Informationen aus den vor-
herigen Stellen miissen jedoch erst durch mehrere Volladdierer weitergegeben werden
und treffen spiter an der Stelle 6 ein.

Als ein Beispiel werden die Signalwechsel des Ripple-Carry-Addierers simuliert. An
den Eingéingen A und B liegen zunidchst die Werte 85, und 170, also bindr 01010101,
und 10101010, an. Dann wechseln die Werte auf 171, und 85,0, binir 10101011, und
01010101,. Als Verzogerungszeit fiir einen Volladdierer wird 0,3 ns angenommen.
AuBerdem wird angenommen, dass der Eingang B eine etwas lingere Anschlussleitung
und dadurch eine zusétzliche Laufzeit von 0,1 ns hat.

Das Ergebnis der Simulation ist in Abb. 6.14 zu sehen. Die Summe wechselt von
255]0 auf 256]0, binédr von 011111111, auf 100000000,. Durch die schrittweise Ver-
arbeitung des Ubertrags wechseln die hoheren Summenausgidnge S mehrfach den
Wert.

10°
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Abb. 6.14 Simulation eines Ripple-Carry-Addierers (VHDL-Simulator Modelsim)

6.5 Taktkonzept in realen Schaltungen
6.5.1 Register-Transfer-Level (RTL)

Der mehrfache Wechsel von Signalzustidnden lisst sich in Digitalschaltungen kaum ver-
meiden. Er stellt aber auch kein Problem dar, denn fast alle Schaltungen werden durch
einen Takt gesteuert. Das allgemeine Taktkonzept ist in Abb. 6.15 dargestellt. Die Ein-
gangssignale einer Schaltung werden zunichst in Flip-Flops gespeichert. Die Flip-Flop-
Ausginge werden dann in einer kombinatorischen Schaltung verarbeitet. Dabei konnen
mehrfache Signalwechsel auftreten. Wenn alle Wechsel der kombinatorischen Schaltung
erfolgt sind, werden die Informationen in einer zweiten Flip-Flop-Stufe gespeichert. Von
dort werden die Daten in der nachfolgenden Taktperiode an die nidchste kombinatorische
Schaltung gegeben, nach der sich erneut eine Flip-Flop-Stufe befindet.

Die Flip-Flop-Stufen werden auch als Register bezeichnet und als kompakte Darstel-
lung das in Abb. 6.15 gezeigte Schaltsymbol verwendet. Das Taktkonzept bezeichnet
man als Register-Transfer und diese Schaltungsstruktur ermoglicht ein sicheres Arbeiten

D /v D
—C o — ° —C
. < < .
: 32 32 :
51 22 s o
—> C £ 'S — £ E —> C
E® E®
e Lo
D D —
CLK
P C ] C Register
CLK

Abb. 6.15 Taktkonzept Register-Transfer
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der Schaltung, da die Register jeweils abwarten, bis alle Signaliiberginge in der kombi-
natorischen Schaltung erfolgt sind.

Ein wesentlicher Vorteil dieses Schaltungskonzepts ist auch die Ubersichtlichkeit
beim Schaltungsentwurf. Beim Entwurf kann man sich gut vorstellen, welche Informati-
onen jeweils in einer Registerstufe vorhanden sind. Daraus kann man dann beschreiben,
was im nédchsten Schritt mit diesen Informationen passieren soll. Die Entwurfsmethodik
ist weit verbreitet und wird als Register-Transfer-Level (RTL) bezeichnet.

6.5.2 Beispiel fiir Entwurf mit Register-Transfer-Level: Ampelsteuerung

Der Entwurf im Register-Transfer-Level, kurz RTL-Design, wird mit einem ausfiihrlichen
Beispiel verdeutlicht. Dabei werden auch die Grundstrukturen aus Abschn. 6.3 verwendet.

Aufgabenstellung

Eine Fulgiingerampel soll durch eine Digitalschaltung angesteuert werden. Die Strafie
hat eine Ampel mit drei Lichtzeichen Rot, Gelb, Griin und der FuBgidngeriiberweg
eine Ampel mit zwei Lichtzeichen Rot, Griin (Abb. 6.16). Um die Schaltung einfach
zu halten, sollen keine Tasten ausgewertet werden, sondern stets folgender Ablauf
stattfinden:

e 10 s griin fiir die Stralle

e [ s gelb fiir die Stralle

e 1 srot fiir die Strafle

e 5 s griin fiir die FuBBginger

e 2 s ot fiir die FuBBginger

e [ srotund gelb fiir die Stralle
e Zyklus beginnt erneut

Fiir eine echte Fullgidngerampel wire diese Steuerung sicher zu einfach, deswegen
nehmen wir an, die Schaltung sei fiir eine Modelleisenbahn.
Die Digitalschaltung verwendet einen Takt mit der Frequenz 50 MHz.

g

Abb. 6.16 Einfache
FuBigingerampel
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Struktur

Der Entwurfsablauf beim RTL-Design ist so, dass die Aufgabe zunichst in einzelne Teil-
schritte unterteilt wird. Diese Teilschritte werden dann zwischen den Registern berech-
net. Fiir die Ampelsteuerung sind drei Teilschritte sinnvoll.

1. Aus dem Takt (50 MHz) wird ein Sekundensignal erzeugt.

2. Mit dem Sekundensignal werden die 20 Schritte des Ampelablaufs gezihlt.

3. Mit der Information, welcher Schritt des Ampelablaufs vorliegt, werden die Lichtsig-
nale ausgegeben.

VHDL-Beschreibung

Die Schaltung konnte prinzipiell mit einem Moore-Automaten umgesetzt werden. Es
ist jedoch deutlich einfacher und iibersichtlicher, wenn die Grundstrukturen Zihler und
Multiplexer verwendet werden. Im Folgenden ist der komplette VHDL-Code inklusive
Bibliotheksaufruf und Entity angegeben.

Das Eingangssignal clock_50 ist der Takt von 50 MHz. Die Ausgangssignale sind
strasse mit drei Werten fiir rotes, gelbes, griines Licht (gezdhlt von MSB nach LSB)
sowie fussweg mit zwei Werten fiir rotes und griines Licht (MSB und LSB). Beim Wert
001 fiir strasse ist also der drittgenannte Wert, das griine Licht aktiv. Beim Wert ,,10%
fiir fussweg ist der erstgenannte Wert aktiv, also das rote Licht.

Die drei Schritte des Register-Transfer-Levels sind durch die Kommentarzeilen
gekennzeichnet.

1. Der erste RTL-Schritt ist ein Zahler, der mit count_a 50 Mio. Werte zihlt und dann
enable fiir einen Takt auf 1 setzt. Die benotigte Wortbreite des Zihlers berechnet sich
aus dem Zweierlogarithmus von 50.000.000 und ergibt aufgerundet 26 bit.

1d50 000 000 = log 50000000/ log2 = 7,699/0,301 = 25,58

2. Der zweite RTL-Schritt ist ebenfalls ein Zahler, der durch enable einmal pro Sekunde
aktiviert wird. Er zéhlt mit count_b die 20 Schritte des Ampelzyklus. Die benétigte
Wortbreite betréigt 5 bit.

3. Der dritte RTL-Schritt ist eine Fallunterscheidung, codiert als If-Anweisung, die aus
dem Wert von count_b die Ansteuerung der Ampellichter ermittelt.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity ampel is
port (clock_50 : in std_logic;
strasse : out std_logic_vector (2 downto 0); -- rot, gelb, griin
fussweg : out std_logic_vector(l downto 0));-- rot, griin

end;
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architecture behave of ampel is

signal enable : std_logic;
signal count_a : unsigned(25 downto 0);
signal count_b : unsigned(4 downto 0);

begin
process
begin

wait until rising_edge(clock_50);

-- Zdhler fir 1 Impuls je Sekunde
if count_a >= 49999999 then

count_a <= (others => '0');
enable <= '1';
else

count_a <= count_a + 1;
enable <= '0';
end if;

-- Zdhler fir 20 Schritte der Ampel
if enable = 'l' then

if count_b >= 19 then

count_b <= (others => '0');
else
count_b <= count_b + 1;

end if;

end if;

-- Abfrage filir Lichter der Ampel
if count_b < 10 then
-- 10 Sekunden griin flir Straffe, rot flr Fussweg
strasse <= "001"; fussweg <= "10";
elsif count_b < 11 then
-- 1 Sekunde gelb flir Strafle
strasse <= "010"; fussweg <= "10";
elsif count_b < 12 then
-- 1 Sekunde rot filr Strafde
strasse <= "100"; fussweg <= "10";
elsif count_b < 17 then
-- 5 Sekunden griin flir FufSweg
strasse <= "100"; fussweg <= "01";
elsif count_b < 19 then
-- 2 Sekunden rot flr Fullweg
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strasse <= "100"; fussweg <= "10";
else

-- 1 Sekunde rot/gelb flir Strafle

strasse <= "110"; fussweg <= "10";
end if;

end process;
end;

6.5.3 Kritischer Pfad

Die Speicherung in einer Flip-Flop-Stufe darf erst erfolgen, wenn alle Wechsel der kom-
binatorischen Schaltung abgelaufen sind. Hierfiir muss die maximale Verzdgerungs-
zeit der kombinatorischen Schaltung berechnet werden. Der langsamste Weg durch die
Schaltung wird als kritischer Pfad bezeichnet. Ein Pfad beginnt bei einem Flip-Flop-
Ausgang und endet bei einem Flip-Flop-Eingang.

Als Beispiel ist in Abb. 6.17 der kritische Pfad eines Ripple-Carry-Addierers darge-
stellt (vergleiche Abb. 6.7). Die Summanden A und B sowie die Summe S werden ent-
sprechend der RTL-Methodik in Flip-Flop-Stufen gespeichert. Der kritische Pfad beginnt
bei der untersten Stelle eines Summanden und endet bei der hochsten Stelle des Ergeb-
nisses. Dazwischen miissen die acht Volladdierer des Ripple-Carry-Addierers durchlau-
fen werden.

Fiir die Verzogerungszeit des kritischen Pfads werden die Verzogerungszeiten aller
Gatter sowie die Signallaufzeiten der Leitungen addiert. Aulerdem hat auch der Ausgang
des Flip-Flops am Start des Pfads eine Verzogerungszeit. Beim Flip-Flop am Ende des
Pfads muss die Setup-Zeit eingehalten werden, also die Zeit vor der steigenden Takt-
flanke, in der das Eingangssignal stabil sein muss (siehe Kapitel 5).

Als ein Beispiel wird der kritische Pfad des Ripple-Carry-Addierers berechnet. Dazu
werden folgende Verzogerungszeiten angenommen.

e Verzdgerungszeit eines Volladdierers: 0,3 ns
e Setup-Zeit eines Flip-Flops: 0,2 ns

Abb. 6.17 Kiritischer Pfad eines Ripple-Carry-Addierers
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e Verzogerungszeit von Takt nach Flip-Flop-Ausgang: 0,2 ns
e Laufzeit einer Leitung: 0,1 ns

Fiir einen 8-Bit-Addierer besteht der kritische Pfad dann aus:

Flip-Flop-Ausgang: 0,2 ns

8 Volladdierer: 8-0,3 ns = 2.4 ns

9 Verbindungsleitungen: 9-0,1 ns = 0,9 ns
Flip-Flop Setup-Zeit: 0,2 ns

Dies ergibt in Summe 3,7 ns.

Fiir einen 32-Bit-Addierer miissen 32 Volladdierer und 33 Verbindungsleitungen
beriicksichtigt werden. Der kritische Pfad betrigt dann 13,3 ns.

In der Praxis wird der kritische Pfad durch Entwurfsprogramme ermittelt, indem
samtliche Pfade der Schaltung berechnet werden. In Abb. 6.17 konnte auch der andere
Eingang des ersten Volladdierers sowie der andere Ausgang des letzten Volladdierers
Anfang und Ende des kritischen Pfads sein. Dies hidngt von den Verbindungsleitungen
und dem inneren Aufbau der Volladdierer ab.

6.5.4 Pipelining

Maogliche Taktfrequenz
Aus dem kritischen Pfad kann als Kehrwert die mogliche Taktfrequenz berechnet
werden.

e Der 8-Bit-Ripple-Carry-Addierer hat im kritischen Pfad eine Verzdgerungszeit von
3,7 ns. Die maximal mogliche Taktfrequenz betrdgt darum 1/(3,7 ns) = 270 MHz.

e Fiir den 32-Bit-Ripple-Carry-Addierer mit der Verzogerungszeit von 13,3 ns betrigt
die maximal mogliche Taktfrequenz 75 MHz.

Oft ist jedoch die Vorgehensweise anders herum, das heil3t fiir eine Problemstellung
ist die erforderliche Taktgeschwindigkeit vorgegeben. Sie ergibt sich entweder direkt aus
der Aufgabe oder aus der Leistungsfahigkeit von Konkurrenzprodukten. Der kritische
Pfad muss dann diese Vorgabe erfiillen.

Dies wird durch die beiden folgenden Zahlenbeispiele verdeutlicht:

e Eine digitale Schaltung soll Radarsignale analysieren, die mit 100 Mio. Werten pro
Sekunde auftreten. Die Schaltung muss daher eine Taktfrequenz von 100 MHz errei-
chen. Der kritische Pfad darf 10 ns betragen.

e Ein Mikrocontroller soll entworfen werden. Die vorhandenen Produkte arbeiten mit
bis zu 200 MHz. Fiir das neue Produkt wird daher eine Taktfrequenz von 250 MHz
spezifiziert. Der kritische Pfad darf 4 ns betragen.
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Taktfrequenz und Kkritischer Pfad
Die Analyse des kritischen Pfads und der Vergleich mit der geforderten Taktfrequenz zei-
gen, ob die Geschwindigkeitsanforderungen an die Schaltung eingehalten werden. Wenn
die Geschwindigkeit ausreicht, ist normalerweise keine weitere Optimierung erforder-
lich. Falls der kritische Pfad jedoch ldnger als die verfiigbare Zeit ist, muss die Schaltung
optimiert werden.

Zur Verkiirzung des kritischen Pfads kann iiberlegt werden, ob die Verarbeitung einfa-
cher aufgebaut oder in mehr Teilschritte aufgeteilt werden kann.

Beispielsweise wird in der Ampelsteuerung aus Abschn. 6.5.2 ein Zihler bis 50 Mio.
eingesetzt. Falls dieser Zihler nicht mit der geforderten Taktfrequenz arbeitet, konnte er
in zwei nacheinander geschaltete Zihler bis 10.000 und 5.000 aufgeteilt werden.

Einfiigen von Flip-Flop-Stufen

Wenn eine Schaltung nicht umstrukturiert werden kann oder soll, 1dsst sich durch das
Einfiigen von Flip-Flop-Stufen die Verarbeitungsgeschwindigkeit erhhen. Dies wird als
Pipelining bezeichnet und in digitalen Schaltungen sehr hidufig eingesetzt.

Abb. 6.18 zeigt das Einfiigen einer Pipeline-Stufe. Die kombinatorische Logik wird
durch einen Schnitt aufgeteilt und in sdmtliche Verbindungsleitungen werden Flip-
Flops eingefiigt. Wichtig ist, dass tatsdchlich alle Signale gleich verzogert werden, da
die Informationen sonst zeitlich gegeneinander verschoben wiren. In Abb. 6.18 wird die

CLK

CLK —T—

Abb. 6.18 Einfiigen einer Pipeline-Stufe
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Pipeline-Stufe bereits nach zwei Gattern eingefiigt. Je nach Geschwindigkeitsanforde-
rungen kann aber auch erst nach 10 oder 20 Gattern eine Pipeline-Stufe erforderlich sein.
Pipelining verkiirzt nicht die Gesamtlaufzeit durch die Kombinatorik, sondern die Lauf-
zeit zwischen Flip-Flop-Stufen. Ein kritischer Pfad von beispielsweise 10 ns wird durch
Pipelining in zwei Teile zu 5 ns aufgeteilt und die Schaltung kann dadurch mit 200 MHz
statt mit 100 MHz betrieben werden. Allerdings dauert die Berechnung dann zwei Takt-
zyklen. Die gesamte Verzogerung einer Berechnung wird als Latenzzeit bezeichnet.

Der Vorteil des Pipelinings ist, dass wihrend einer Berechnung in der zweiten Pipe-
line-Stufe, bereits die nichsten Werte in die erste Pipeline-Stufe gegeben werden kon-
nen. Die Anzahl an Rechenzyklen wird als Durchsatz bezeichnet. Die Schaltung mit
100 MHz Takt hat einen Durchsatz von 100 Mio. Datenwerten, wihrend bei 200 MHz
der Durchsatz 200 Mio. Datenwerte betrégt. Pipelining bewirkt also eine Steigerung der
Verarbeitungsleistung.

6.5.5 Taktiibergdnge

Taktbereiche

Bisher wurde iiberall in einer Schaltung der gleiche Takt verwendet. Dies ist auch mog-
lichst anzustreben. Allerdings ldsst sich nicht immer vermeiden, dass mehrere Takte ver-
wendet werden. Ein Beispiel dafiir ist ein PC:

e Die CPU arbeitet mit einem Takt zwischen 3 und 4 GHz.

e Der DRAM-Speicher arbeitet mit einem Takt im Bereich von 1 GHz.
e Die Grafikkarte arbeitet mit einem Takt zwischen 500 und 1000 MHz.
o Peripheriebausteine fiir LAN und USB nutzen eigene Taktsignale.

Die Taktbereiche werden auch als Clock-Domain bezeichnet. Beim Ubergang zwischen
Clock-Domains kann eine fehlerhafte Dateniibernahme auftreten, die durch spezielle
Schaltungsstrukturen verhindert werden muss.

Fehler bei Taktiibergingen
Ein Fehler bei Taktiibergiingen tritt auf, wenn eine Information an mehreren Stellen
einen Taktiibergang hat. Zur Verdeutlichung des Problems ist in Abb. 6.19 eine Schaltung
zur Flankenerkennung dargestellt. Das Signal A kommt aus einem anderen Taktbereich
und die Schaltung soll erkennen, wenn es einen Ubergang von 0 nach 1. Dies soll ange-
zeigt werden, indem der Ausgang Q fiir einen Takt auf 1 gesetzt wird.

Die Funktionsweise der Flankenerkennung ist:

e Der Eingang A wird in einem Flip-Flop gespeichert. B ist somit der Wert des Ein-
gangs A aus dem vorherigen Takt.
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e Es wird tiberpriift, ob A im letzten Takt 0 war und jetzt 1 ist. Dies erfolgt durch ein
UND-Gatter, welches nur 1 ist, wenn A auf 1 und B auf 0 ist (invertierter Eingang des
Gatters).

e Das Ergebnis des UND-Gatters, Signal C wird in einem Flip-Flop gespeichert.

e Der Ausgang des Flip-Flops ist die gewiinschte Flankenerkennung.

Die Schaltung ist relativ tibersichtlich und das Zeitdiagramm zeigt, wie der Ablauf zu
dem geplanten Verhalten fiihrt. Ein Fehler tritt jedoch auf, wenn das Signal A sich nicht
zu dem angenommenen Zeitpunkt dndert. Dies ist moglich, da A ja aus einer anderen
Clock-Domain stammt.

Das fehlerhafte Verhalten ist in Abb. 6.20 dargestellt.

e Der Eingang A #dndert sich kurz vor der Taktflanke.

e Das Flip-Flop fiir den Wert B iibernimmt den neuen Wert noch.

e Das UND-Gatter hat eine kurze Verzogerung, sodass der Wert C nicht mehr vom Flip-
Flop iibernommen wird.

e Nach der Taktflanke hat das Flip-Flop fiir B schon den neuen Wert iibernommen.
Darum liegt an beiden Eingédngen des UND-Gatters der Wert 1 an und es wird keine
Flanke erkannt.

Ausloser des Fehlers ist die unbekannte Zeitbeziehung zwischen A und den Takt CLK.
Da das Signal A aus einem anderen Taktbereich kommt, wechselt es manchmal in aus-
reichendem Abstand und manchmal fast gleichzeitig zum Taktsignal CLK. Schwierig fiir

Abb. 6.19 Schaltung zur geplanter Ablauf

A
Flankenerkennung ax LA A AF
CLK A [
Q B
- c M
Q
Abb. 6.20 Fehlerhafter Ablauf im Fehlerfall

Ablauf bei Flankenerkennung

o L[ LI L1l
A /
B l Verzbégerung
C durch UND-Gatter
Q /I~ 7N
N__F

Flanke nicht erkannt
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die Fehlersuche ist, dass der Fehler nicht immer auftritt. Es ist gut moglich, dass 95 %
der Taktflanken erkannt werden und nur fiir 5 % der Ubergiinge ein Fehler auftritt.

Korrekte Taktiibernahme

Die Vermeidung des Fehlers erfolgt dadurch, dass ein Taktiibergang nur an einer Stelle in der
Schaltung erfolgen darf. Es muss also verhindert werden, dass das Signal A aus einem frem-
den Taktbereich die Eingangswerte fiir beide (!) Flip-Flops beeinflusst. Dies kann man in
einer Schaltung erreichen, indem der Eingang A zunichst mit einem Flip-Flop in die Clock-
Domain iibernommen wird. In Abb. 6.21 wird A zunichst als A_SYNC in den Taktbereich
von CLK iibernommen. Damit ist die Zeitbeziehung von A zum Takt sichergestellt und es
kann kein fehlerhafter Ablauf auftreten. Signal B wurde zur besseren Lesbarkeit umbenannt.

VHDL-Beschreibung
In der Praxis wird die Schaltung aus Abb. 6.21 natiirlich in VHDL entworfen. Das UND-
Gatter ergibt sich aus der If-Anweisung.

process
begin
wait until rising_edge(clk);
a_sync <= a;
a_sync_old <= a_sync;
if (a_sync_o0ld='0') and (a_sync='1') then

g <= '1l";
else

q<="'0";
end if;

end process;

6.5.6 Metastabilitat von Flip-Flops

Ein weiteres Problem bei der Taktiibernahme ist die Einhaltung der Setup- und Hold-
Zeiten (siehe Kapitel 5). Damit ein Flip-Flop Daten korrekt {ibernimmt, muss der Ein-
gang kurz vor (Setup) bis kurz nach (Hold) der Taktflanke unveridndert sein. Wenn sich
Daten unabhéngig vom Takt dndern, wird diese Bedingung nicht immer eingehalten.

Abb. 6.21 Flankenerkennung A_SYNC A_SYNC_OLD
mit sicherer Dateniibernahme A
. . -—D
beim Taktiibergang
l_ C
CLK
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Abb. 6.22 Flankenerkennung Alp D D
mit Synchronisation gegen
Metastabilitiit e e ¢
CLK
& D &
C

Zunichst kann nicht vorhergesagt werden, ob noch der alte oder schon der neue Sig-
nalwert vom Flip-Flop nach A_SYNC (Abb. 6.21) iibernommen wird. Diese Unsicherheit
wire kein Problem, da die Empfangsschaltung ohnehin nicht wei, wann die Eingangs-
daten iibergeben werden und einen Zeitversatz beriicksichtigen muss. Allerdings kann
der Fall eintreten, dass ein Flip-Flop in der Mitte zwischen 0 und 1 ,,hdngt”. Dieser Zwi-
schenzustand wird als Metastabilitit bezeichnet. Er tritt sehr selten auf, kann jedoch
einen Fehler in der Verarbeitung verursachen.

Als Schutz gegen Metastabilitidt wird empfohlen, ein Signal beim Ubergang in einen
anderen Taktbereich mit zwei hintereinandergeschalteten Flip-Flops zu iibernehmen
(Abb. 6.22). Erst danach darf das Signal im Taktbereich verwendet werden. Ein metastabi-
les Signal des ersten Flip-Flops wiirde vom zweiten Flip-Flop nicht iibernommen werden.

Allerdings erhoht sich durch das zweite Flip-Flop die Latenzzeit, also die Reaktions-
zeit auf den Eingang. Eine Synchronisation gegen Metastabilitit wird darum nicht in
allen Anwendungen eingesetzt.

6.5.7 Taktiibergang mehrerer Signale

Schwieriger ist der Fall, wenn mehrere Signale gleichzeitig iibernommen werden miis-

sen. Wenn sich Daten unabhingig vom Empfangstakt @ndern, ist nicht sicher, ob alle

zusammengehorigen Informationen mit der gleichen Taktflanke gespeichert werden. Bei

einem 8-Bit-Wert konnte es beispielsweise passieren, dass Bit 0 noch rechtzeitig von

einer Taktflanke tibernommen wird, Bit 1 jedoch erst von der nichsten Taktflanke. Dies

ist ein Problem, da die Informationen eines Datenworts so auseinandergezogen werden.
Zur Vermeidung dieses Fehlers gibt es mehrere Moglichkeiten:

e Warten auf langsamste Information: Die empfangende Schaltung kann ein oder zwei
Takte warten, bis alle Stellen einer Information anliegen und erst dann die Daten aus-
werten. Dies ist relativ einfach, aber nur moglich, wenn sich die Daten deutlich lang-
samer als der Takt dndern.
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e Vermeidung mehrerer Signalwechsel: Wenn Daten eine feste Reihenfolge haben, bei-
spielsweise bei einem Zihler, kann die Codierung so erfolgen, dass sich immer nur ein
Wert im Datenwort dndert. Ein moglicher Code hierfiir ist der Gray-Code (siehe Kapitel 2)

e Dual-Port-Speicher: Eine universelle Losung ist ein Dual-Port-Speicher. In ihm kann
mit einem Takt geschrieben und mit einem anderen gelesen werden. Die interne Steu-
erung sorgt fiir eine sichere Trennung der Taktbereiche. Fiir die Verwaltung des Spei-
chers (z. B. Fiillstand) werden dann hiufig Zahler auf Basis des Gray-Codes eingesetzt.

6.6 Spezielle Ein-/Ausgangsstrukturen

Fiir Ein- und Ausginge von digitalen Schaltungen gibt es spezielle Schaltungsstrukturen.

6.6.1 Schmitt-Trigger-Eingang

Digitale Signale werden ja durch Spannungspegel dargestellt. Dabei gibt es einen
Bereich fiir den Low-Pegel und einen Bereich fiir den High-Pegel. Dazwischen ist ein
Ubergangsbereich, in dem das Signal undefiniert ist (vgl. Kapitel 1).

Der Ubergangsbereich wird innerhalb digitaler Schaltungen normalerweise schnell durch-
laufen. Am Eingang einer Schaltung kann es jedoch vorkommen, dass der Ubergangsbereich
langsamer durchlaufen wird und durch Rauschen gestort ist. Eine Digitalschaltung konnte
dadurch mehrfach einen Pegelwechsel erkennen, was normalerweise nicht gewiinscht ist.

Dieses Problem wird durch einen Schmitt-Trigger behoben. Ein Schmitt-Trigger hat
eine Hysterese und behélt einen Ausgangswert so lange, bis sich der Eingangswert deut-
lich dndert. Bei einem Eingangssignal im Ubergangsbereich wird der vorhandene Aus-
gangswert beibehalten.

Das Symbol eines Schmitt-Triggers enthélt zur Kennzeichnung eine Hysteresekurve
(Abb. 6.23). In Abb. 6.23 ist das Zeitverhalten eines Schmitt-Triggers dargestellt.

e FEingang A hat zunichst Low-Pegel (L) und der Ausgang Y ist somit logisch 0.

Abb. 6.23 Symbol und H Ubergangsbereich
Zeitverhalten eines Schmitt- A v A
Triggers L

Yo [

Zeit—>
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e Der Eingang A geht dann in den Ubergangsbereich, in dem eine normale Digitalschal-
tung ein undefiniertes Verhalten zeigen wiirde. Der Ausgang Y des Schmitt-Triggers
bleibt jedoch auf logisch 0.

e Wenn A sich im Spannungsbereich des High-Pegels (H) befindet, wechselt auch Y auf
logisch 1.

e A geht wieder in den Ubergangsbereich, doch Y bleibt noch logisch 1.

e Erst wenn A wieder im Low-Pegel ist, wechselt auch Y auf logisch 0.

6.6.2 Tri-State-Ausgang

Digitale Ausginge diirfen im allgemeinen Fall nicht miteinander verbunden werden.
Wenn eine Leitung 0 und eine andere 1 ausgibt, flieft ein Kurzschlussstrom und der
Logik-Pegel ist nicht eindeutig. Fiir den Einsatz in Bus-Systemen gibt es jedoch eine
besondere Ausgangsstufe, die man parallel schalten kann.

Der Tri-State-Ausgang (auch 3-State oder Three-State) hat drei Moglichkeiten fiir den
Ausgabewert. Neben 0 und 1 kann der Ausgang abgeschaltet werden; er ist dann passiv
und gibt keinen Wert aus. Dies wird als hochohmig mit der Abkiirzung ,Z* bezeichnet. In
Schaltsymbolen wird ein Tri-State-Ausgang durch ein auf der Spitze stehendes Dreieck
dargestellt (Abb. 6.24).

Der Ausgangstreiber hat dazu einen Steuereingang EN (Enable), der mit 1 die Daten-
ausgabe aktiviert. Bei EN auf 0 ist der Ausgang hochohmig (Abb. 6.25).

Ein typisches Einsatzgebiet von Tri-State-Leitungen sind Bus-Systeme, zum Beispiel
der PCI-Bus im PC. Hier sind CPU, Grafikkarte und weitere Peripheriekarten eingesteckt.
Nur einer dieser Busteilnehmer gibt Daten aus, die anderen Anschliisse sind hochohmig.
Durch die Steuerung muss sichergestellt werden, dass stets nur ein Ausgang aktiv ist.

Auch die Verbindung zwischen CPU und DRAM nutzt Tri-State-Leitungen. Wenn die
CPU Daten schreibt, ist der DRAM-Anschluss hochohmig. Wenn die CPU Daten liest,
ist der CPU-Anschluss hochohmig.

Abb. 6.24 Symbol fiir Tri- Tri-State Open-Kollektor

State- und Open-Kollektor- ] ]

Ausgang -1 v ] o

Abb. 6.25 Tri-State-Treiber EN EN AJY

und Funktionstabelle A v 0o -1|Z
1 010
1 111
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6.6.3 Open-Kollektor-Ausgang

Eine andere Methode zur Zusammenschaltung mehrerer Digitalausgiinge ist der Open-
Kollektor-Ausgang. Normalerweise hat ein Digitalausgang zwei Transistoren. Entweder
zieht der eine Transistor den Ausgang zum Low-Pegel oder der andere Transistor zieht
den Ausgang zum High-Pegel. Beim Open-Kollektor-Ausgang ist nur der Transistor
zum Low-Pegel vorhanden. Der Kollektor dieser Schaltung bildet den Ausgang und liegt
offen, daher der Name. Da statt Bipolar-Transistoren heute meist Feldeffekt-Transistoren
verwendet werden, wird auch der Name Open-Drain-Ausgang verwendet.

Der Open-Kollektor-Ausgang wird an einen externen Lastwiderstand R, angeschlos-
sen, der die Ausgangsleitung nach Versorgungsspannung U, und damit nach High-Pegel
zieht. Wenn der Ausgang aktiv ist, schaltet er den Transistor leitend und zieht die Aus-
gangsleitung Y nach Low-Pegel. Der Vorteil dieses Schaltungsprinzips besteht darin,
dass mehrere Open-Kollektor-Ausginge parallel geschaltet werden konnen und jeder den
Ausgang auf Low-Pegel ziehen kann (Abb. 6.26).

Wenn ein oder mehrere Bauelemente die Ausgangsleitung auf Low-Pegel ziehen, ergibt
sich eine logische 0. Nur wenn alle Bauelemente den Ausgang auf High-Pegel lassen,
ergibt sich eine logische 1. Dies entspricht einer UND-Funktion. Die Zusammenschaltung
wird auch als Wired-AND bezeichnet, also als ,,UND-Gatter durch Verdrahtung*.

In Schaltsymbolen wird ein Open-Kollektor-Ausgang durch eine Raute mit Balken
dargestellt (Abb. 6.24).

Der Open-Kollektor-Ausgang wird eingesetzt, wenn mehrere Signale miteinander
logisch verkniipft werden sollen. Es ist, anders als bei Tri-State-Ausgidngen, keine zen-
trale Steuerung erforderlich. Allerdings ist auch nicht ohne weiteres ersichtlich, welcher
Baustein das Signal auf 0 gezogen hat.

Als Beispiel nehmen wir an, dass mehrere Peripheriebausteine an eine CPU angeschlos-
sen sind und einen Interrupt auslosen konnen. Durch ein Wired-AND konnen die Bausteine
ihre Interrupt-Leitungen kombinieren und gemeinsam an die CPU geben, so dass nur ein
einziger Interrupt-Eingang erforderlich ist. Wenn ein Interrupt auftritt, fragt die CPU ab,
welcher Peripheriebaustein Ausloser des Interrupts war und bearbeitet die Anfrage.

Abb. 6.26 Verdrahtung Us
mehrerer Open-Kollektor- R
Ausgiinge L

Bauelement A Bauelement B Bauelement C
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6.7 Ubungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Priifen Sie sich mit den Aufgaben und
Fragen am Kapitelende. Die Losungen und Antworten finden Sie am Ende des Buches.
Bei den Auswahlfragen ist immer genau eine Antwort korrekt.

Aufgabe 6.1
Wie bezeichnet man eine Digitalschaltung, bei der Steuereingénge einen von mehreren
Dateneingingen auswihlen?

a) Multiplexer

b) Demultiplexer
¢) Addierer

d) Schieberegister
e) Datenregister

Aufgabe 6.2
Die Grundstruktur einer Additionsschaltung mit der Kaskadierung von Volladdierern
nennt man, ...

a) Halbaddierer

b) Carry-Overflow-Addierer
c¢) Carry-Pulse-Addierer

d) Carry-Overtake-Addierer
e) Ripple-Carry-Addierer

Aufgabe 6.3
Welche Aussage trifft fiir Tri-State-Ausgidnge zu?

a) Mehrere Ausgiinge werden UND-verkniipft

b) Rauschen am Eingang wird durch eine Hysterese entstort

¢) Der High-Pegel kann konfiguriert werden

d) Eine Signalleitung kann als Eingang oder Ausgang geschaltet werden
e) Ein High-Pegel wechselt nach kurzer Zeit automatisch zum Low-Pegel

Aufgabe 6.4
Was wird als Spike (auch Glitch oder Hazard) bezeichnet?

a) Fehler durch Weltraumstrahlung
b) Invertierung eines Taktsignals
¢) Kurze Zwischenzustinde an Schaltungsausgidngen



6.7 Ubungsaufgaben 201

d) Hochstfrequenz eines Taktsignals
e) Verzogerungszeit bei Flip-Flops

Aufgabe 6.5
Wie bezeichnet man den langsamsten Weg durch eine kombinatorische Schaltung?

a) Periodendauer
b) Hold-Zeit

¢) Zyklus

d) Setup-Zeit

e) Kritischer Pfad

Aufgabe 6.6
Wie viele Signalleitungen (Ein-/Ausginge, keine Versorgungsspannung/Masse) hat ein
1-aus-4 Multiplexer/Datenselektor?

a) 9
b) 5
c) 7
d) 4
e) 6

Aufgabe 6.7
Wie viele Signalleitungen (Ein-/Ausginge, keine Versorgungsspannung/Masse) hat ein
1-auf-8 Demultiplexer?

a) 8
b) 10
c) 11
d) 12
e)9

Aufgabe 6.8
Ein Modulo-2710 Zihler hat einen Takt von 50 MHz. Wie viele Zidhlzyklen schafft der
Zihler pro Sekunde (gerundet)?

a) 5.000.000
b) 50.000

¢) 50.000.000
d) 2.000

e) 100.000.000
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Aufgabe 6.9
Ein Modulo-278 Zihler hat einen Takt von 500 kHz. Wie viele Zihlzyklen schafft der
Zihler pro Sekunde (gerundet)?

a) 100.000
b) 2.000
¢) 5.000
d) 1.000
e) 500.000

Aufgabe 6.10
Die mogliche Taktfrequenz fiir den Addierer in Abb. 6.17 soll erhoht werden. Fiigen Sie
eine Pipeline-Stufe ein. Beachten Sie, dass alle Signale gleich verzogert werden, damit
Informationen der Datenworte weiterhin zueinander passen.

Berechnen Sie kritischen Pfad und mogliche Taktfrequenz mit den Annahmen aus
Abschn. 6.5.3.



Realisierung digitaler Systeme

Bei der Realisierung eines Systems miissen neben der digitalen Funktion weitere
Aspekte berticksichtigt werden, die sowohl technischen als auch nicht-technischen Cha-
rakter besitzen. Einige Beispiele fiir diese Aspekte sind:

e Rechenleistung

e Verlustleistung

e Formfaktor, maximaler Platzbedarf

e Benotigte Logikpegel fiir Ein- und Ausgabe
e Entwurfskosten, Produktionskosten

o Entwicklungszeit, Time-to-Market

e Vorkenntnisse und Erfahrungen

Fiir die Realisierung eines digitalen Systems gibt es unterschiedliche Alternativen, die
sich im Hinblick auf die genannten Eigenschaften unterscheiden. Es ist beispielsweise
denkbar, ausschlieflich Standard-Bausteine einzusetzen, deren Funktion vom Hersteller
fest vorgegeben ist. Ebenso ist es moglich, selbst als Halbleiter-Hersteller zu agieren und
eigene Chips produzieren zu lassen. Es konnen auch Programmierbare Logikbausteine
eingesetzt werden, deren Hardware-Funktion flexibel festgelegt werden kann. Statt eine
Funktion in Form von Gattern zu realisieren, ist auch ein softwareorientierter Ansatz
moglich, bei dem beispielsweise Mikrocontroller eingesetzt werden. Diese Bausteine
sind deutlich kompakter als ein PC und sind teilweise fiir weniger als 1 EUR erhaltlich.
In diesem Kapitel werden die verschiedenen Varianten niher beleuchtet.
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7.1 Standardisierte Logikbausteine

Unter Standardlogik-Bausteinen werden Komponenten verstanden, die kéuflich zu
erwerben sind und eine einfache digitale Hardware-Funktion zur Verfiigung stellen, wel-
che durch den Anwender nicht modifiziert werden kann.

Standardlogik-Bausteine sind in Bausteinfamilien bzw. -serien zusammengefasst. Die
wichtigsten Familien sind die sogenannte 4000er-Serie sowie die 7400er-Serie (bzw.
kurz 74er-Serie). Die Bezeichnung dieser Familien geht auf die Kennzeichnung der
zugehorigen Schaltkreise zuriick. So beginnt die Bezeichnung eines Bausteins der 74er-
Serie immer mit der Zahl 74. Diese wird meist von mehreren Buchstaben gefolgt, die
die Implementierungstechnologie und damit auch einige Eigenschaften (zum Beispiel
Logikpegel) des Bausteins beschreiben. Eine abschlieBende Zahl kennzeichnet die logi-
sche Funktion. So besitzen ein 74HC374 und ein 74LVC374 zwar die gleiche logische
Funktion (acht D-Flip-Flops), aber ein unterschiedliches Zeitverhalten und unterschiedli-
che elektrische Eigenschaften.

Als ein Vertreter der 74er-Familie ist in Abb. 7.1 der Baustein 74HC04 abgebildet,
welcher sechs Inverter enthilt. Die Buchstaben SN stehen fiir den Hersteller und das N
am Ende der Bausteinkennzeichnung gibt die Gehiuseform an.

In den 1970er Jahren wurden die Standardlogik-Bausteine noch zur Realisierung von
Computern eingesetzt. Die hiermit verbundenen Nachteile liegen auf der Hand: Groe
Bauform, hohe Kosten, grofle Verlustleistung. Die damaligen Computer waren so grof3
wie Kleiderschrinke, hatten eine Stromaufnahme, die mit mehreren hundert heutiger
PCs vergleichbar ist und boten fiir 6-stellige Dollar-Betrige eine Rechenleistung, fiir die
heute vermutlich niemand auch nur einen Euro bezahlen wiirde.

Abb. 7.1 Baustein 74HC04:
Sechs Inverter in einem
gemeinsamen Gehiuse
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Obwohl die Standardlogik-Komponenten heute keine Bedeutung fiir die Realisierung
ganzer Systeme mehr haben, haben sie dennoch ihre Daseinsberechtigung. Sie werden
zum Beispiel dann eingesetzt, wenn einfache logische Funktionen mithilfe von ein paar
wenigen Gattern realisiert werden sollen. Ebenso konnen einige dieser Bausteine auch
als Leitungstreiber oder zur Pegelanpassung zwischen Komponenten mit unterschiedli-
chen Versorgungsspannungen eingesetzt werden.

Zur Verdeutlichung, welche logischen Funktionen in der 74er-Serie zur Verfiigung
stehen, sind einige ausgewihlte Funktionen in Tab. 7.1 zusammengestellt. Eine umfas-
sende Dokumentation der verfiigbaren digitalen Funktionen kann von den Herstellern
(Texas Instruments, NXP, STM, u.v.a.) bezogen werden.

Die ersten Standard-Logikbausteine der 74er-Serie wurden mithilfe von Bipolar-
Transistoren realisiert. Inzwischen hat auch in diesem Bereich die CMOS-Technolo-
gie (vgl. Kapitel 10) die reine bipolare Implementierung verdridngt. Einige Familien
werden auch mit einer Kombination von bipolaren und MOS-Transitoren realisiert.
Die Eingédnge sowie die logische Funktion werden dann mithilfe der CMOS-Technik

Tab. 7.1 Ausgewihlte Logikfunktionen der 74er-Serie

Baustein Funktion

(letzte Ziffern)

00 4 NAND2

02 4 NOR2

04 6 Inverter

07 6 Treiber/Buffer (mit OC-Ausgang)

08 4 AND2

10 3 NAND3

25 2 NOR4

46 BCD nach Siebensegment Decoder

74 2 D-Flip-Flops mit Set- und Reset-Eingiingen

138 3:8 Demultiplexer/Decoder

148 8:3 Priorititsencoder

165 8 Bit Parallel-In/Serial-Out Schieberegister

190 4 Bit Aufwirts-/Abwirtszihler

244 8 Bit Leitungstreiber mit Tristate-Ausgéngen

245 8 Bit Bidirektionaler Bustreiber mit Tristate-Ausgidngen
373 8 pegelgesteuerte D-Flip-Flops mit Tristate-Ausgédngen
374 8 flankengesteuerte D-Flip-Flops mit Tristate-Ausgidngen
573 8 pegelgesteuerte D-Flip-Flops mit Tristate-Ausgéngen
574 8 flankengesteuerte D-Flip-Flops mit Tristate-Ausgidngen
595 8 Bit Serial-in/Parallel-out Schieberegister mit Tristate-Ausgéingen
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implementiert, wihrend fiir die Ausgangstreiber Bipolar-Transistoren eingesetzt wer-
den. So wird gegeniiber einer reinen CMOS-Implementierung eine hohere Treiberleis-
tung und eine geringere Abhingigkeit von der Lastkapazitit erreicht. Eine Ubersicht
tiber verschiedene Familien der 74er-Serie folgt in Abschn. 7.1.5.

Nicht alle Grundfunktionen der 74er-Serie werden in allen Familien angeboten. Im
Einzelfall muss gepriift werden, ob eine gewiinschte Funktion zur Verfiigung steht.

Als eine Ergidnzung zu der weitverbreiteten 74er-Serie bietet beispielsweise die Firma
NXP konfigurierbare Logikgatter in platzsparenden Gehdusen an. Damit kann ein ein-
zelnes NAND- oder NOR-Gatter mit zwei Eingingen realisiert werden, wihrend ein
typischer Baustein der 74er-Serie vier dieser Gatter enthilt. Die konfigurierbaren Logik-
gatter sind in den Familien LVC, AUP (Advanced Ultra-Low-Power) und AXP (Advan-
ced Extremely Low-Power) verfiigbar. Die Logikfunktion der Gatter ist durch die duflere
Beschaltung wihlbar.

7.1.1 Charakteristische Eigenschaften digitaler Schaltkreise

Bevor ein Baustein fiir den Entwurf eines digitalen Systems ausgewéhlt wird, miissen
dessen Merkmale bekannt sein. In den Datenblittern integrierter Schaltungen wird meist
eine Reihe von Kenndaten angegeben, die die Eigenschaften des Bausteins beschreiben.
Neben dem erlaubten Versorgungsspannungsbereich sind unter anderem die Pegel sowie
die zuldssigen Strome an Ein- und Ausgédngen von Bedeutung (vgl. Abb. 7.2).

Fiir diese Parameter definieren die Datenblitter die zuldssigen Wertbereiche. Einige
der wichtigsten Parameter sind in Tab. 7.2 zusammengefasst. Die Formelzeichen entspre-
chen denen, die in englischsprachigen Datenblittern verwendet werden. Daher wird hier
der Buchstabe V als Formelzeichen fiir die elektrische Spannung verwendet.

7.1.2 Lastfaktoren

Die Treiberstirke einer Ausgangsleitung muss fiir die angeschlossene Belastung durch
die nachfolgenden Bausteine ausreichen. Die Belastung, die ein Ausgang durch einen

VDD
I lo
—> Digitale -«
Schaltung
v, e
GND

Abb. 7.2 Anschlussbezeichnung digitaler Schaltungen
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Tab. 7.2 Wichtige Parameter zur Charakterisierung digitaler Schaltkreise

Formelzeichen | Bedeutung Bemerkungen

GND Masse Alternative Bezeichnung: V¢

VDD Versorgungsspannung Alternative Bezeichnung: V.

v, Eingangsspannung

I, Eingangsstrom

V, Ausgangsspannung

1, Ausgangsstrom

Vi Hmin Minimale Eingangsspannung, die als Abhingig von Versorgungsspannung

High-Pegel erkannt wird

V) Lmax Maximale Eingangsspannung, die als
Low-Pegel erkannt wird

Iy Eingangsstrom bei High-Pegel Bei CMOS-Schaltkreisen meist

I, Eingangsstrom bei Low-Pegel vernachlassigbar

Vo, Bmin Garantierte minimale Ausgangsspannung | Abhingig von Versorgungsspannung
bei High-Pegel und Ausgangsstrom

Vo, Lmax Garantierte maximale Ausgangsspannung
bei Low-Pegel

1y timaxe Lo,max | Maximal zuldssiger Ausgangsstrom bei

High- bzw. Low-Pegel

Eingang innerhalb der gleichen Schaltkreisfamilie erfihrt, wird durch den sogenann-
ten Lastfaktor beschrieben. Hierzu wird der Eingangsstrom eines typischen Gatters der
Bausteinfamilie (Einheitsgatter) definiert. Es ergeben sich fiir Low- und High-Pegel die
beiden charakteristischen Grof3en 7 LHN und / LN die den Strom angeben, welcher in den
Eingang des Einheitsgatters hineinflief3t.

Auf Basis der Eigenschaften eines Einheitsgatters lassen sich die beiden charakteristi-
schen Groflen Fan-in und Fan-out definieren.

Fan-in (Eingangslastfaktor)
Der Fan-in eines Eingangs gibt an, um welchen Faktor die Stromaufnahme groBer ist als
beim Einheitsgatter derselben Schaltkreisfamilie.

I I
Frg=-—"—F =——"F =max|[F/u,F]

Iy I
Innerhalb einer Schaltkreisfamilie gilt ein Eingang als einfache Last, wenn er den glei-
chen Strom aufnimmt wie das Einheitsgatter (F, = 1).

Fan-out (Ausgangslastfaktor)
Der Fan-out gibt an, mit wie vielen Eingingen eines Einheitsgatters derselben Schalt-
kreisfamilie der entsprechende Ausgang belastet werden darf.
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IO Hmax IO Lmax .
Fon = ———Fo1 = ———Fo =min[Fou,FoL|
I uN Orn

7.1.3 Storspannungsabstand

Als Storspannungsabstand bezeichnet man die Spannung, um die ein Digitalausgang
variieren darf, ohne dass ein angeschlossener Eingang derselben Logikfamilie in einen
verbotenen Pegelbereich gelangt. Der Storspannungsabstand wird fiir High- und Low-
Pegel getrennt angegeben (Abb. 7.3).

S = Uo,Hmin — U Hmin

St = Uop,Lmax — Ul Lmax

7.1.4 Schaltzeiten

Beim Einsatz eines digitalen Bausteins ist unter anderem die Verzdgerungszeit, die teil-
weise auch als Schaltzeit bezeichnet wird, von grofer Bedeutung. Um die Verzogerungs-
zeiten zu bestimmen, wird iiblicherweise eine Rechteckspannung an den Eingang des
Bausteins angelegt und der zeitliche Verlauf der Ausgangspannung gemessen. Das Aus-
gangssignal ist nicht rechteckformig und der Wechsel des logischen Signals am Ausgang
nimmt eine gewisse Zeit in Anspruch. Die Zeit setzt sich zusammen aus einer Verzogerung
im Inneren des Logikbausteins sowie der Zeit fiir die Umladung der Last am Ausgang.

Wird die Zeit gemessen, die der Ausgang benétigt, um von 10 % auf 90 % des Aus-
gangspegels anzusteigen bzw. von 90 % auf 10 % abzufallen, erhilt man die Anstiegszeit
(rise time, t,) bzw. Abfallzeit (fall time, t). Hiufig werden diese Zeiten auch zusammen-
fassend als transition time (1,) angegeben.

Mochte man die Verzogerungszeit eines Bausteins angeben, so wird hierfiir als Referenz-
punkt genau die Mitte zwischen Minimal- und Maximalpegel gewihlt. Die Zeit, die zwi-
schen dem Erreichen des 50 %-Eingangspegels vergeht, bis der Ausgang seinerseits 50 %

A Ausgang Eingang
H-
Pegel H-
Vo,Hmin : Pegel
S
H Vi, Hmin
VI,Lmax
VO,Lmax— St : L-
L-
Pegel Pegel

Abb. 7.3 Storspannungsabstand
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Abb. 7.4 Verzogerungszeiten

einer digitalen Schaltung am vi
Beispiel eines Inverters 50%

\ 4

toHL toLH
> 4
A
Vo

90%
50%
- 10%

B ] P ~

iF ir t

des Pegels erreicht hat, ergibt also die Verzogerungszeit (propagation delay, t,). Diese kann
auch fiir steigende und fallende Flanken getrennt angegeben werden kann (2, ,, tp,,)-
In Abb. 7.4 sind die Schaltzeiten fiir das Beispiel eines Inverters dargestellt.

7.1.5 Logikfamilien

In Tab. 7.3 sind einige ausgewihlte Familien der 74er-Serie mit Versorgungsspannungs-
bereich und Schaltzeiten eines 74xx00 (vier NAND2-Gatter) zusammengefasst. Die

Tab. 7.3 Ubersicht iiber einige Familien der 74er-Serie: Versorgungsspannungsbereich und typi-
sche Schaltzeiten fiir einen 74xx00-Baustein

Abkiirzung | Bezeichnung Vee V) [ £, (ns) | 2, (ns) | Bemerkungen

(Keine) Standard TTL (veraltet) 45~55 |7 9 Ve =35,0V; C = 15pF

LS Low-Power Schottky 45~55 |7 10 Vee= 5,0V; C, = I5pF
(veraltet)

HC High-Speed CMOS 20~6,0 |6 7 Ve =35,0V; C = 15pF

HCT HC, TTL-compatible 45~55 |7 8 Vee = 5,0V; C, = I5pF

AHC Advanced High-Speed CMOS (12,0 ~5,5 |3 4,5 Vee =35,0V; C = 15pF

LVC Low Voltage CMOS 1,65~3,6 2 3,0 VCC =3,3V; C_ = 50pF

ALVC Adv. Low Voltage CMOS 1,65 ~3,6 |2 2,1 Ve =3,3V; C, = 50pF

ABT Adv. BICMOS, 45~55 |25 2,3 Ve = 3,3V; C = 50pF
TTL-compatible

AUC Adv. Ultra Low Voltage 0,8~27 |1 1,5 Vee = 1,8V; C = 30pF
CMOS
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Schaltzeiten gelten fiir die angegebenen Randbedingungen, insbesondere Versorgungs-
spannung und Lastkapazitit (C,). Darliber hinaus konnen die Schaltzeiten auch auf
Grund von Streuungen bei der Fertigung der Bausteine variieren. In den meisten Daten-
blittern wird daher neben den typischen Zeiten auch ein Maximalwert angegeben.

7.2  Komponenten fiir digitale Systeme

Fiir die Implementierung einer digitalen Schaltung kommen verschiedene Strategien in
Betracht, die in diesem Abschnitt vorgestellt werden. Reale digitale Systeme verwenden
hiufig eine Kombination dieser Strategien.

7.2.1 ASICs

Maochte man ein digitales System realisieren, kann man einen speziellen Halbleiterbau-
stein fertigen lassen, der die gewiinschte Funktion ausfiihrt. In diesem Fall spricht man
von sogenannten ASICs (Application Specific Integrated Circuit). Beim Entwurf eines
ASICs wird auch ein digitales System aus logischen Grundelementen erstellt. Statt
jedoch die Grundfunktionen auf einer Platine (wie zum Beispiel bei Verwendung von
Bausteinen der 74er-Serie) vorzunehmen, erfolgt die Platzierung und Verdrahtung der
Gatter beim ASIC-Entwurf auf einer wenige Quadratmillimeter grofen Siliziumfldche.
Diese Realisierung ist viel kompakter als bei Verwendung standardisierter Logikbau-
steine. Darum ist ein ASIC hiufig schneller und besitzt eine geringere Verlustleistung.
Da die Anzahl und die Position der Gatter wihrend des Entwurfs frei gewihlt werden
konnen, kann der Baustein fiir den jeweiligen Anwendungsfall optimiert werden.

Fiir den Entwurf eines ASICs wird der sogenannte Standardzellentwurf eingesetzt.
Bei dieser Entwurfsmethodik stehen die logischen Grundelemente als Bibliothek in elek-
tronischer Form zur Verfiigung. Aus dieser Bibliothek konnen Bauelemente ausgewihlt,
auf dem Chip platziert und anschlieBend verdrahtet werden.

Die Auswahl und das Verbinden der einzelnen Gatter zu einem komplexen System
erfolgt mithilfe einer Hardwarebeschreibungssprache wie VHDL. Mit einem Synthese-
programm wird die VHDL-Beschreibung in eine sogenannte Gatternetzliste iberfiihrt.
Diese Netzliste gibt an, welche Logikelemente verwendet werden und wie diese verdrah-
tet sind. Die Synthese hat also die Aufgabe die VHDL-Beschreibung zu analysieren und
eine moglichst optimale Implementierung auf Basis der Grundelemente der Bibliothek
zu finden. Optimal heif3t in diesem Fall, dass die spezifizierten maximalen Verzogerungs-
zeiten eingehalten werden und eine moglichst kleine Chipfliche benotigt wird. Dariiber
hinaus konnen auch Aspekte wie die Verlustleistung Beriicksichtigung finden. Dieser
Entwurfsschritt wird hdufig auch als Frontend-Design bezeichnet.

Nachdem das Frontend-Design abgeschlossen ist, erfolgt das Backend-Design.
In diesem Schritt werden mit speziellen Layoutprogrammen die Platzierung und die
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Verdrahtung der Elemente aus der Gatternetzliste vorgenommen. Hierfiir ist in der Bib-
liothek fiir jedes Element der Netzliste eine Implementierung aus einzelnen Transistoren
hinterlegt.

Auf den ersten Blick klingt der Ansatz des ASIC-Entwurfs vielleicht als ideale
Losung zur Realisierung digitaler Systeme. Aufgrund der Optimierung konnen die
Schaltkreise mit einer relativ kleinen Siliziumfliche und damit kostengiinstig produ-
ziert werden. Allerdings sind die Produktionskosten nicht der einzige Kostenfaktor eines
ASIC-Entwurfs, denn es fallen in einem deutlichen Umfang einmalige Kosten (engl.
non-recurring engineering costs bzw. NRE) an. Diese Kosten entstehen zum einen
durch den hohen Arbeitsaufwand im Frontend- und Backend-Design. Zum anderen ist
die Erstellung von Belichtungsmasken, die zur Produktion des Schaltkreises in der Halb-
leiterfabrik bendtigt werden, ein weiterer wichtiger Kostenfaktor. Aufgrund der kleinen
Strukturen heutiger Produktionsprozesse werden extrem priazise Masken benotigt, sodass
die Vorbereitung der Produktion eines ASICs mehrere Millionen Euro kosten kann.
Beriicksichtigt man diese Kosten, wird deutlich, dass vor der Produktion eines ASICs
eine intensive Uberpriifung des Designs erforderlich ist, damit die Wahrscheinlichkeit
eines Designfehlers verringert wird.

Nehmen wir als Beispiel an, dass die NRE-Kosten eines ASIC-Projekts etwa
15 Mio EUR betragen. Wenn der Baustein in einer Stiickzahl von 100.000 produ-
ziert werden soll, ergibt sich umgerechnet auf einen einzelnen Baustein ein Anteil von
150 EUR. Diese Kosten sind fiir viele Anwendungsgebiete unattraktiv, sodass nur bei
sehr hohen Stiickzahlen eine ASIC-Entwicklung wirtschaftlich sinnvoll ist.

7.2.2 ASSPs

Eine Alternative zur Entwicklung eines eigenen Bausteins kdnnen sogenannte Applica-
tion Specific Standard Products (ASSPs) sein. Ein ASSP hat den gleichen Aufbau wie ein
ASIC, wird allerdings nicht selbst entworfen, sondern ist ein frei am Markt erhiltlicher
Schaltkreis. Er kann fiir eine sehr spezielle Funktion (zum Beispiel WLAN, Steuerung
von Motoren) optimiert sein oder aber auch als System-on-Chip (SoC) mehrere Funktio-
nen integrieren und so die kostengiinstige Implementierung eines Gesamtsystems ermog-
lichen. Ein Beispiel fiir ein System-on-Chip sind die ASSPs, die in heutigen Fernsehern
verbaut werden: Fast die gesamte Funktionalitit vom Empfang des Fernsehsignals liber
Satellit, Kabel oder WLAN bis hin zur Anzeige auf einem Display ist in einem hochinte-
grierten Baustein vereinigt.

7.2.3 FPGAs und CPLDs

Die Produktion eines ASICs ist ein sehr attraktiver Weg zur Realisierung eines digitalen
Systems — wenn sie nicht mit erheblichen Grundkosten verbunden wire. Wire es also
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vielleicht ein moglicher Ausweg, wenn man Bausteine hitte, deren Hardware zwar fest
ist, aber deren digitale Funktion erst vom Anwender festgelegt wiirde? Diese Bausteine
kann man (aufgrund der festen Hardware) in groflen Stiickzahlen giinstig herstellen und
dennoch kann der Anwender die digitale Funktion, wie bei einem ASIC, nach seinen
Bediirfnissen festlegen.

Diese Uberlegungen wurden bereits sehr friih angestellt und die Idee, Schaltkreise
zu realisieren, deren logische Funktion in VHDL , programmiert” werden kann, wurde
schon in den 1970er Jahren aufgegriffen und ist bis heute immer weiter verfeinert
worden.

Die Besonderheit dieser Bausteine ist, dass ihre logische Funktion noch im Feld (zum
Beispiel nach dem Einsetzen in eine Platine) konfiguriert werden kann. Daher werden sie
als Field Programmable Gate Arrays (FPGAs) bezeichnet. Neben FPGAs werden auch
Complex Programmable Logic Devices (CPLDs) beziehungsweise Simple Programma-
ble Logic Devices (SPLDs) angeboten. CPLDs eignen sich besonders fiir programmier-
bare logische Funktionen mit einer relativ geringen Komplexitit, wahrend mit FPGAs
ganze Rechnersysteme realisiert werden konnen. Die gesamte Gruppe dieser Bausteine
wird auch unter dem Begriff Programmierbare Logik zusammengefasst.

Sind also FPGAs die ideale Losung zur Realisierung einer digitalen Funktion? In
vielen Fillen kann man diese Frage tatsdchlich bejahen: Mit heutigen FPGAs konnen
sehr komplexe Systeme zu einem relativ giinstigen Preis realisiert werden. Insbeson-
dere bei kleinen bis mittleren Stiickzahlen konnen FPGAs ihre Kostenvorteile gegeniiber
ASICs ausspielen. Daher werden programmierbare Logikbausteine in vielen Bereichen
eingesetzt.

7.2.4 Mikrocontroller

Kann man eine digitale Funktion statt mit Gattern auf einer Platine oder in Form eines
ASICs auf einem Stiick Silizium vielleicht auch in Software realisieren? SchlieBlich ist
doch das Grundprinzip eines jeden Rechnerprogramms das Einlesen von Eingabewer-
ten, die Verarbeitung der Werte und die anschlieende Ausgabe von Ergebnissen. Und
letztlich macht ein logisches Gatter oder auch ein komplexes System nichts anderes: Es
betrachtet sozusagen die Eingiinge und bestimmt nach einer festgelegten Rechenvor-
schrift die Ausgangssignale. Also miisste es moglich sein, eine beliebige digitale Funk-
tion auch mithilfe eines Rechners zu realisieren.

Sie mogen vielleicht einwenden, dass es wenig sinnvoll ist, wenn man beispielsweise
die Funktion eines einfachen UND-Gatters durch ein Programm auf einem PC ersetzt.
Sicher, die Kosten der PC-basierten Losung wiren viel zu hoch und auch die Bauform
und die bendtigte leistungsfihige Spannungsversorgung wiren nachteilig. Ein Rechner-
system auf Basis eines PCs ist also aus verschiedensten Griinden fiir viele Anwendungs-
gebiete nicht gut geeignet.
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Aber es existieren Alternativen zu einem Standard-PC: Bereits in den 1970er Jahren
erkannten die Halbleiterhersteller den Bedarf an kostengiinstigen, stromsparenden Rech-
nersystemen, die sich auf einem Stiick Silizium unterbringen lieBen. Diese Bausteine
sind nicht als PC-Ersatz gedacht, sondern werden hiufig dort eingesetzt, wo sich Steu-
erungs- und Regelungsaufgaben elegant in Software realisieren lassen und nur moderate
Rechenleistungen benotigt werden. Aufgrund dieses Anwendungsbereiches biirgerte sich
schnell die Bezeichnung Mikrocontroller fiir diese Art von Bausteinen ein.

Mikrocontroller enthalten in einem einzelnen Gehiduse alles, was einen Rechner
ausmacht: Einen Mikroprozessor zur Abarbeitung eines Programms, Speicher fiir Pro-
gramme und Daten und Ein-/Ausgabe-Schnittstellen fiir die Kommunikation mit der
AuBlenwelt.

Obwohl das Grundkonzept eines PCs und eines Mikrocontrollers dhnlich ist, unter-
scheiden sie sich doch erheblich: Wihrend PCs fiir interaktives Arbeiten ausgelegt sind
und vorrangig eine hohe Rechenleistung bieten sollen, stehen bei Mikrocontrollern vor
allem der Preis und eine kompakte Bauform im Vordergrund. Mikrocontroller besitzen
daher eine (im Vergleich zu einem aktuellen PC) geringe Rechenleistung und einen deut-
lich kleineren Speicher. Trotz dieser Einschrinkungen werden jedes Jahr mehrere Milli-
arden Mikrocontroller verbaut (Abb. 7.5).

Wenn Sie einen Gang durch Thren Haushalt machen, werden Sie vermutlich viele
Gerite entdecken, die einen Mikrocontroller enthalten. Betrachten wir als ein Beispiel
eine Waschmaschine: Die Aufgaben an die Steuerung sind vielfiltig. Es wird eine Benut-
zerschnittstelle in Form von Tastern, Drehschaltern und Displays benétigt. Die Drehrich-
tung und Geschwindigkeit des Trommelmotors miissen geregelt werden. Und nicht zuletzt
miissen Wasserzu- und -ablauf sowie die Heizung korrekt angesteuert werden. Besitzt
man einen Rechnerbaustein mit digitalen Ein- und Ausgéngen kann die Steuerung auf ele-
gante Weise in Software implementiert werden. Die Rechenleistung heutiger Mikrocont-
roller reicht fiir die Regelungsalgorithmen einer typischen Waschmaschine vollig aus.

Das Einsatzgebiet der Mikrocontroller ist natiirlich nicht auf den Haushalt beschrénkt.
Uberall wo Steuerungen und Regelungen benétigt werden, werden Mikrocontroller

Abb. 7.5 Beispiel eines
Mikrocontrollers: Von auflen
ist nicht zu erkennen, dass
es sich um einen kompletten
Rechner handelt
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eingesetzt. Haufig sind diese Rechnersysteme nicht sofort erkennbar, weshalb sie auch
als eingebettete Systeme (Embedded System) bezeichnet werden.

7.2.5 Vergleich der Alternativen

Die moglichen Alternativen fiir die Implementierung einer digitalen Schaltung unter-
scheiden sich in Flexibilitit, Entwicklungszeit, Entwicklungskosten und Stiickkosten.
Tab. 7.4 gibt einen groben Vergleich der Alternativen ASIC, ASSP, Mikrocontroller (uC)
und FPGA. Die Symbole zur Bewertung bedeuten sehr gut (+ +), gut (+), mittel (O),
schlecht (-), sehr schlecht (- —).

Die Wahl einer Alternative ist abhidngig von den Randbedingungen des Entwicklungs-
projektes, also unter anderem Komplexitét der Schaltung, Zeitdruck, Kostendruck, Kon-
kurrenzsituation. Die Entscheidung fiir ein Implementierungskonzept ist daher in der
Praxis das Ergebnis einer ausfiihrlichen Analyse und wird zwischen Entwicklungsteam,
Produktmarketing und Unternehmensleitung abgestimmt.

7.2.6 Kombination von Komponenten

In komplexeren digitalen Systemen wird die Systemfunktion hdufig auf verschiedene
Bausteine verteilt. Die zentrale Komponente ist dann hédufig ein programmierbarer Bau-
stein, der einen Mikroprozessor enthilt und mit Programmiersprachen wie C/C++
programmiert werden kann. Der Mikroprozessor kann durch programmierbare Logik-
bausteine, wie FPGAs oder CPLDs erginzt werden. Auf diese Weise konnen einige
Systemfunktionen in der programmierbaren Logik implementiert werden, wodurch der
zentrale Mikroprozessor entlastet wird.

Wenn das System einen Speicherbedarf von einigen Megabyte oder mehr besitzt, wer-
den zusitzlich spezielle Speicherbausteine bendtigt, die als eigenstindige Komponenten
auf der Systemplatine untergebracht werden.

Tab. 7.4 Alternativen zur ASIC | ASSP | uC |FPGA

gfﬁ;‘f:;ﬁ;:frung digitaler Hohe Flexibilitit + | -+ |+
Geringe Entwicklungszeit —-— + ++ O
Geringe Entwicklungskosten -— + ++| O
Geringe Stiickkosten ++ + ++| O
Rechenleistung ++ | ++ O +
Verlustleistung +4+ | ++ O O
Geringe Stiickzahlen moglich -— ++ | ++ | ++
Hohe Stiickzahlen moglich ++ | ++ | ++ +
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Ein-/Ausgabe-Komponenten, die nicht bereits durch den Mikroprozessor zur Verfii-
gung gestellt werden, konnen entweder in der programmierbaren Logik oder als zusitz-
liche Systemkomponenten, zum Beispiel in Form eines ASSPs, integriert werden.
Insbesondere Spezialfunktionen wie WLAN, USB oder Ethernet konnen durch derartige
zusitzliche Bausteine realisiert werden.

Fiir einfache Anwendungen ist eine Systemrealisierung auf Basis mehrerer Ein-
zelkomponenten hdufig nicht sinnvoll, da sie zu kostenintensiv sind oder die Verlust-
leistung zu grof3 wire. Fiir diese Anwendungsfille bietet die Halbleiterindustrie die in
Abschn. 7.2.4 vorgestellten Mikrocontroller an, die sich insbesondere fiir eine kosten-
glinstige Realisierung von Systemen mit relativ geringen Anforderungen an die Rechen-
leistung realisieren lassen.

Die unterschiedlichen Komponenten digitaler Systeme werden in verschiedenen
Kapiteln genauer vorgestellt: Kapitel 9 vertieft Aspekte der programmierbaren Logik-
bausteine. Kapitel 10 beschreibt die Grundlagen der Halbleitertechnik. In Kapitel 11
werden Speicherbausteine vorgestellt. Die Kapitel 12 vorgestellten Analog-Digital- und
Digital-Analog-Umsetzer werden immer dann benétigt, wenn die Ein-/Ausgabe in ana-
loger Form erfolgen soll. Kapitel 13 und Kapitel 14 gehen auf die Realisierung soft-
wareprogrammierbarer Bausteine ein, wobei der Schwerpunkt auf Mikrocontrollern
liegt.

7.3  VHDL-basierter Systementwurf

Fiir den Entwurf digitaler Systeme wird Software eingesetzt, die den Entwicklungspro-
zess auf dem Weg von der Idee zum fertigen System unterstiitzt. Der rechnergestiitzte
Schaltungsentwurf wird als Electronic Design Automation (EDA) und die Programme fiir
die Schaltungsentwicklung als EDA-Programme oder EDA-Tools bezeichnet. Mithilfe
dieser Programme kann VHDL-Code eingegeben, simuliert und in Hardware iiberfiihrt
werden. Das Ergebnis des Entwurfsprozesses ist eine bindre Datei, die mithilfe eines
Programmiergerites auf ein FPGA iibertragen bzw. zur Fertigung eines ASICs an die
Halbleiterfabrik iibergeben wird.

Im Folgenden wird der VHDL-basierte Systementwurf niher beschrieben. Aufgrund
der groflen Bedeutung von programmierbaren Logikbausteinen, erfolgt die Beschreibung
fiir ein FPGA-Design.

7.3.1 Designflow

Der Entwurf eines Systems auf Basis eines FPGAs beinhaltet immer zwei Aspekte: Zum
einen muss die gewiinschte Funktion in VHDL beschrieben und mithilfe der Entwurfs-
software in eine Programmierdatei fiir das FPGA iibersetzt werden. Daneben ist es von
wesentlicher Bedeutung, dass die einzelnen Entwurfsschritte durch Verifikation begleitet
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werden. Besondere Bedeutung kommt hierbei der frithzeitigen Simulation des eingege-
benen VHDL-Codes zu.

Eine schematische Ubersicht iiber den FPGA-Entwurf zeigt Abb. 7.6. Die einzelnen
Schritte werden in den folgenden Abschnitten nédher erldutert.

Der Ablauf eines VHDL-basierten Entwurfs besitzt teilweise Ahnlichkeiten zur Ent-
wicklung von Software. Die gewiinschte Funktion wird in Form einer Textdatei beschrie-
ben. Diese Datei wird dann durch einen Compiler bzw. ein Synthesetool optimiert und
in ein ausfiihrbares Programm bzw. eine Programmierdatei fiir das FPGA iibersetzt. Es
ist jedoch zu beachten, dass ein FPGA ein paralleles System ist, auf dem eine Vielzahl
von Funktionen gleichzeitig ablaufen. Aulerdem ist das Zeitverhalten von wesentlicher
Bedeutung. Ist die Verzogerungszeit der Kombinatorik zwischen zwei Flip-Flops zu
grof}, wird das System fehlerhaft arbeiten. Daher ist der VHDL-basierte Entwurfsablauf,
trotz der Ahnlichkeiten zur Softwareentwicklung, als Hardwareentwurf anzusehen.

7.3.2 VHDL-Eingabe

Die Hardwarebeschreibungssprache VHDL wurde in vorangegangenen Kapiteln bereits
vorgestellt. Sie kennen bereits die Syntax der Sprache und wissen auch, wie Sie bei-
spielsweise endliche Automaten in VHDL beschreiben konnen. Fiir die Entwicklung
eines FPGA-Designs muss beriicksichtigt werden, dass der VHDL-Code in der Regel ein
synchrones System beschreibt, das aus Flip-Flops und kombinatorischer Logik besteht.

Abb.7.6 FPGA-Designflow Designeingabe Verifikation
mit VHDL
Designeingabe Testbench
(VHDL) (VHDL)
v vy
Synthese Simulation
Platzierung

L]

» | Analyse des
Verdrahtung | Zeitverhaltens
FPGA- Inbetriebnahme
Programmierung und Test des
bzw. Systems
ASIC-Produktion 4
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In Kapitel 6 wurde bereits erldutert, dass die meisten digitalen Schaltungen eine
Kombination von Registern und Kombinatorik zwischen den Registerstufen darstellen
(Register-Transfer-Level-Design oder kurz RTL-Design). Die Grundstruktur der entspre-
chenden Hardware ist in Abb. 7.7 dargestellt.

Mit der Eingabe des VHDL-Codes werden die Registerstufen und die logische Funk-
tion zwischen zwei Registerstufen festgelegt. Dabei muss auch das Zeitverhalten der
spateren Hardware beriicksichtigt werden. Fiir einfache Designs kann dies haufig als
unkritisch angesehen werden. Fiir Entwiirfe mit hohen Anforderungen an die Rechen-
leistung (und damit hiufig einer hohen Taktfrequenz) nimmt die Bedeutung des Zeit-
verhaltens zu. Den groften Einfluss auf das Zeitverhalten hat der VHDL-Code. Alle
nachfolgenden Schritte im Designflow konnen eventuelle Probleme im Zeitverhalten der
Schaltung nur in einem begrenzten Umfang korrigieren.

7.3.3 Simulation

Die Simulation des VHDL-Codes ist einer der wichtigsten Schritte, um die Korrektheit
der beschriebenen digitalen Funktion friihzeitig sicherzustellen. Prinzipiell bieten VHDL
Simulatoren die Moglichkeit, durch Kommandos Signale auf definierte Werte zu set-
zen. Die verwendeten Kommandos sind nicht standardisiert und variieren mit den ein-
gesetzten Simulatoren. Beispielsweise wird bei Verwendung des Simulators XSIM der
Firma Xilinx ein Signal mit dem Namen my_sig mit dem Kommando add_force my_sig
I auf den Wert 1 gesetzt werden. Um die Reaktion der VHDL-Beschreibung sichtbar
zu machen, muss anschliefend mithilfe des Run-Kommandos (zum Beispiel run 10 ns)
etwas Simulationszeit vergehen. Der zeitliche Verlauf sowohl von Eingangs- und Aus-
gangssignalen als auch von internen Signalen einer VHDL-Beschreibung wird wih-
rend der Simulation mithilfe sogenannter Waveform-Viewer grafisch dargestellt (vgl.
Kapitel 3).

Das Anlegen unterschiedlicher Eingangswerte durch Simulator-Kommandos und die
Uberpriifung der Schaltungsreaktion anhand der grafischen Ausgabe wird in der Pra-
xis allerdings kaum verwendet. Wird der VHDL-Code des Systems erweitert, muss die

Eingédnge
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Abb. 7.7 Struktur eines RTL-Designs
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Simulation wiederholt werden. Die Eingabe-Kommandos miissen wiederholt werden,
was zeitaufwendig und fehlertrichtig ist. In der Praxis wird daher meist eine Methode
gewdhlt, bei der der zu priifende VHDL-Entwurf in eine Testbench eingebunden wird.
Auch die Testbench wird in VHDL programmiert.

Fiir kleinere Entwiirfe benotigt man haufig nur einfache Testbenches, die Eingangs-
daten (Stimuli) tiir den zu testenden VHDL-Code erzeugen. Die Korrektheit des Ent-
wurfs wird durch die manuelle Inspektion der Signalverldufe tiberpriift. Diese interaktive
Simulation ist jedoch mit dem Nachteil verbunden, dass die Uberpriifung manuell erfolgt
und daher auch Fehler iibersehen werden kénnen.

Die bessere Variante ist eine selbstiiberpriifende (self-checking) Testbench, bei der die
Ausgaben des getesteten Codes mit erwarteten Ergebnissen verglichen werden. Hierzu
miissen die erwarteten Werte zum Beispiel als Textdatei zur Verfiigung stehen.

Die Stimuli werden von der Testbench aus einer Datei eingelesen und an das zu iiber-
priifende Design angelegt. Die erwarteten Ausgabewerte des Systems werden durch ein
sogenanntes Known-Good-Device, zum Beispiel eine Beschreibung als C-Programm,
erzeugt. Die erwartete Ausgabe wird ebenfalls von der Testbench eingelesen und mit
den Ausgabewerten des Designs verglichen. Eventuell auftretende Differenzen werden
wihrend der Simulation in einer Protokolldatei aufgezeichnet und kénnen anschlieSend
zur Fehlersuche verwendet werden. Das Prinzip der self-checking Testbench verdeutlicht
Abb. 7.8.

Eine self-checking Testbench bietet unter anderem den Vorteil, dass Simulationen
automatisiert gestartet werden konnen und so selbst aufwendige Tests ohne interaktiven
Eingriff moglich sind. Dies ist insbesondere fiir komplexe Systeme vorteilhaft, deren
Simulationszeit mehrere Stunden betrigt.
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Abb. 7.8 Struktur einer selbstcheckenden Testbench
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7.3.4 Synthese

Die Synthese umfasst das Einlesen und Analysieren des VHDL-Codes mit einer
anschlieBenden Umsetzung der beschriebenen Funktion auf die verfiigbaren digitalen
Grundelemente. Das Ergebnis der Synthese ist eine sogenannte Netzliste, die Informatio-
nen iiber die bendtigten Grundelemente und die Verbindungen zwischen den Elementen
enthilt.

Die genaue Platzierung der Elemente sowie deren exakte Verdrahtung bleiben bei
diesem Schritt unberiicksichtigt. Um die Verzégerungen durch die spitere Verdrahtung
bereits bei der Synthese beriicksichtigen zu konnen, werden statistische Modelle (Wire-
load Models) eingesetzt.

Die Synthese analysiert die VHDL-Beschreibung auch im Hinblick auf konstante Sig-
nale. Wird der Wert eines Signals als konstant erkannt, kann dieses zur Optimierung aus-
genutzt werden, da die Logik, die an diesem Signal angeschlossen ist, vereinfacht oder
im besten Fall komplett entfernt werden kann. Dieser Optimierungsschritt wird als Cons-
tant Propagation bezeichnet.

Ein Beispiel fiir die Optimierung von Konstanten zeigt das nachfolgende Codefrag-
ment. Fiir den Vergleich von count und buf size realisiert die Synthese eine optimierte
Hardware, die den Vergleich eines 4-Bit-Wertes mit der Konstanten 10 durchfiihrt. Wire
buf_size dagegen ein Signal, das verschiedene Werte annehmen kann, miisste ein Verglei-
cher (also letztlich eine Subtraktion) von der Synthese implementiert werden.

architecture behave of my_module is

constant buf_size : integer := 10;
signal count : signed (3 downto 0);
begin

process begin
wait until rising_edge (clk);

if count > buf_size then -- Hier nutzt die Synthese aus, dass
-- buf_size eine Konstante 1st
end if;
end process;
end;

Code ohne eine digitale Funktion wird von der Synthese erkannt und ignoriert. Im
nachfolgend dargestellten Codeausschnitt wird dem Signal ¢ auf eine etwas umstind-
liche Weise der Wert Null zugewiesen. Dieses wiirde das Syntheseprogramm erkennen
und das Design entsprechend optimieren. Nachdem von der Synthese g als konstant
erkannt wurde, kann diese Information auch fiir weitere Optimierungsschritte auf Basis
der Constant Propagation verwendet werden.
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process (a,b,c)
variable vl : std_logic;
variable v2 : std_logic;

begin
vl := a and b;
v2 := (not a) and (not c);

g <= vl and v2 and c;
end process;

7.3.5 Platzierung und Verdrahtung

Nach dem Syntheseschritt erfolgt die Platzierung (Placement bzw. Place) und Verdrah-
tung (Routing bzw. Route) der identifizierten Grundelemente. Das Programm wihlt fiir
jedes Grundelement der Netzliste ein physikalisch vorhandenes Element des FPGA-
Chips aus. Nach diesem Platzierungs-Schritt sind die Positionen aller Netzlistenelemente
festgelegt. Nun werden die Ein- und Ausginge der Elemente verbunden. Dazu muss das
Routing-Programm die durch das Syntheseergebnis vorgeschriebenen Verbindungen
herstellen.

Nachdem die Verdrahtung abgeschlossen ist, kann eine genauere Abschitzung des
Zeitverhaltens erfolgen, da nun die exakten Verbindungsleitungen bekannt sind.

7.3.6 Timinganalyse

Bereits bei der Synthese sowie wihrend Platzierung und Verdrahtung wird das Zeitver-
halten der Schaltung iiberwacht und gegebenenfalls optimiert. Nach Abschluss der Ver-
drahtung steht das genaue Zeitverhalten der Schaltung fest und wird abschlieend einer
Timinganalyse unterzogen.

Das wichtigste Ergebnis der Timinganalyse ist die Information ob die Timing-
Anforderungen eingehalten werden und wie groB3 der Worst Negative Slack (WNS) ist.
Dieser Wert gibt die ,Luft” im kritischen Pfad des Designs an. Wenn beispielsweise
ein WNS von 1 ns ausgegeben wird, bedeutet dies, dass alle Signale auch 1 ns spéter an
den Eingingen der Flip-Flops erscheinen konnten, ohne dass es zu einer Verletzung der
Setup-Zeit kidme. Ist der WNS-Wert dagegen negativ, liegt ein Timingproblem vor. Die
Kombinatorik der Schaltung ist zu langsam. Wenn man die Taktfrequenz nicht reduzie-
ren kann, sind hiufig Anderungen im VHDL-Code erforderlich (zum Beispiel der Ein-
satz von Pipelining, vgl. Kapitel 6).

Als Zusammenfassung wird auch der Total Negative Slack (TNS) angeben. Hierbei
handelt es sich um die Summe aller Pfade, deren Zeitverhalten die Setup-Zeit der Flip-
Flops verletzt. Pfade, deren Zeitverhalten nicht verletzt ist, werden bei der TNS-Analyse
nicht beriicksichtigt. Somit ist der TNS-Wert entweder negativ oder Null (falls keine
Setup-Time-Verletzungen vorliegen).
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In Analogie zur Analyse der Setup-Zeit wird auch eine Hold-Time-Analyse durchge-
fiihrt und der WHS- bzw. THS-Wert (Worst Hold Slack bzw. Total Hold Slack) ausgeben.

Diese Form der Analyse wird als statische Timinganalyse bezeichnet. Der Begriff
»statisch® meint, dass das Zeitverhalten ohne die genaue Kenntnis des dynamischen Ver-
haltens der Signale, also ohne das Anlegen von Eingangsstimuli, durchgefiihrt wird.

Normalerweise ist diese Form der Analyse ausreichend. Allerdings ist zu beachten,
dass die statische Timinganalyse pessimistisch ist. Sie tiberpriift alle Pfade eines Designs
auf mogliche Verletzungen des Zeitverhaltens. Manchmal werden jedoch einige Pfade
des Designs im praktischen Betrieb gar nicht verwendet. In diesem Fall kann eine dyna-
mische Timinganalyse in Betracht gezogen werden. Dariiber hinaus kann es in besonde-
ren Fillen, zum Beispiel wenn das Design kritische Taktiibergiinge enthilt, sinnvoll sein,
eine dynamische Timinganalyse durchzufiihren.

Fiir eine dynamische Timinganalyse wird das Design inklusive einer Modellierung
der Verzogerungen der Grundelemente in einer Simulation berpriift. Hierzu miissen
geeignete Fingangsstimuli definiert werden, die alle relevanten Pfade testen. AuBBerdem
ist zu bedenken, dass die Komplexitit der Simulation aufgrund der Modellierung des
Zeitverhaltens deutlich hoher ist als fiir die Simulation des VHDL-Quellcodes und daher
eine groflere Rechenzeit fiir die Simulation benétigt wird.

7.3.7 Inbetriebnahme

Nachdem ein Entwurf durch Simulation verifiziert wurde, kann er, wenn er als ASIC rea-
lisiert werden soll, in einer Halbleiterfabrik produziert werden. Soll das System auf Basis
eines CPLDs oder eines FPGAs realisiert werden, erfolgt nach der Simulation die Pro-
grammierung des Bausteins mithilfe eines entsprechenden Programmiergerites. Ein Bei-
spiel einer Experimentierplatine mit angeschlossenem Programmiergerit ist in Abb. 7.9
dargestellt.

Trotz sorgfiltiger Simulation kann es in der Praxis Fille geben, die eine Fehlersuche
im laufenden Betrieb erfordern. Dies kommt vor, wenn in der Anwendung Fille auftre-
ten, die in der Simulation nicht beachtet wurden oder aus Zeitgriinden nicht simuliert
werden konnten. Auch bei der Ansteuerung von externen Bauelementen, beispielsweise
einem Speicher, kann es passieren, dass sich der reale Baustein etwas anders verhilt, als
dies in der Simulation vorhergesehen wurde.

Zur Fehlersuche, insbesondere bei komplexen FPGAs, ist es hdufig nicht ausreichend,
wenn nur die duleren Anschliisse des Systems zuginglich sind und der zeitliche Verlauf
von internen Signalen nicht sichtbar ist. Um die Fehlersuche im Betrieb zu erleichtern,
konnen dem Entwurf spezielle Module hinzugefiigt werden, die in der Lage sind, den
zeitlichen Verlauf interner Signale aufzuzeichnen und iiber eine Debug-Schnittstelle aus-
zugeben. Auf diese Weise konnen die Zustinde der internen Signale dhnlich wie in einer
VHDL-Simulation visualisiert werden.
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Abb. 7.9 FPGA-Experimentierplatine mit Programmiergerit

Der Vorteil dieses Vorgehens ist es, dass auch FPGA-interne Signale im laufenden
Betrieb analysiert werden konnen. Auf der anderen Seite bendtigt dieses Vorgehen aber
mehr Ressourcen des FPGAs. So wird zum Beispiel fiir die Speicherung des zeitlichen
Verlaufs der beobachteten Signale interner Speicher benotigt. Um den Hardwareaufwand
fiir die Verifikation im Betrieb klein zu halten, wird daher meist nur ein relativ kurzes
Zeitfenster aufgezeichnet. Dariiber hinaus werden nur wenige besonders wichtige Sig-
nale fiir die Beobachtung im laufenden Betrieb ausgewihlt. Da die Beobachtbarkeit der
Signale gegeniiber einer Simulation deutlich eingeschrinkt ist, stellt dieses Vorgehen kei-
nen Ersatz, sondern eine Ergiinzung zur Simulation dar.

7.3.8 Derdigitale Entwurf als iterativer Prozess

Die in diesem Kapitel beschriebenen Entwurfsschritte miissen bei komplexeren Designs
unter Umstédnden mehrfach durchlaufen werden. Zeigt der erste Syntheselauf, dass das
angestrebte Zeitverhalten nicht eingehalten werden kann oder das geplante Ressourcen-
budget iiberschritten wird, kann bei kleinen Zielabweichungen versucht werden, durch
geeignete Einstellungen der Entwurfsprogramme ein besseres Ergebnis zu erzielen. Bei
groBeren Abweichungen bleibt meist nur der Schritt zuriick zum VHDL-Code, um zum
Beispiel den zeitlich kritischen Pfad im Design zu optimieren. Bei sehr anspruchsvol-
len Designs konnen diese Anderungen nun wiederum Probleme an anderen Stellen des
Codes nach sich ziehen, sodass der Designflow vom Schreiben des VHDL-Codes bis zur
Platzierung und Verdrahtung mehrfach durchlaufen werden muss.
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Fiir erste Schritte im FPGA-Design wird meist kein iteratives Vorgehen benétigt: Sind
die Anforderungen an die Taktfrequenz moderat gewihlt und die Anforderungen an den
maximalen Ressourcenbedarf einer Schaltung von untergeordneter Bedeutung, wird man
hiufig bereits mit dem ersten Syntheseversuch ein zufriedenstellendes Ergebnis erzielen.

7.4  Ubungsaufgaben

Priifen Sie sich selbst mit den Fragen am Kapitelende. Die Losungen und Antworten fin-
den Sie am Ende des Buches.
Sofern nicht anders vermerkt, ist nur eine Antwort richtig.

Aufgabe 7.1
Welche Aussage ist im Hinblick auf einen Vergleich der Bausteine 74HCO0 und
74AHCO0 korrekt?

a) Beide Bausteine besitzen den gleichen Versorgungsspannungsbereich.
b) Die logischen Funktionen der Bausteine sind identisch.

¢) Die logische Funktion der Bausteine ist vom Hersteller abhingig.

d) Der minimale High-Pegel an den Eingéngen der Bausteine ist identisch.

Aufgabe 7.2
Was beschreibt der Begriff Fan-out?

a) Die Anzahl der Ausginge eines Schaltkreises.

b) Die Anzahl der Leitungen die an einen Ausgang angeschlossen werden diirfen.
¢) Ein Mab fiir die Last, die die Ausgéinge des Bausteins treiben konnen.

d) Ein Mab fiir die Last, die ein Eingang des Bausteins darstellt.

Aufgabe 7.3
Was gilt fiir die unterschiedlichen Bausteine einer Familie (zum Beispiel ,,HC*) der
74er-Serie?

a) Alle Bausteine besitzen die gleiche Verzogerungszeit.

b) Eingiinge der Bausteine miissen immer mit Ausgingen der gleichen Familie verbun-
den werden.

c) Fiir alle Bausteine wird vom Hersteller eine maximale Schaltzeit unabhingig von der
Ausgangsbelastung garantiert.

d) Alle Bausteine besitzen den gleichen Versorgungsspannungsbereich.

Aufgabe 7.4
Welche Aussage trifft auf ASICs zu? (Mehrere Antworten sind richtig)
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a) Fir den Entwurf eines ASICs werden meist Bibliotheken mit Standardzellen
verwendet.

b) Ein ASIC-Entwurf ist sowohl fiir kleine als auch fiir groe Stiickzahlen sinnvoll.

¢) Ein ASIC-Entwurf ist mit relativ hohen Fixkosten verbunden.

d) Die digitale Funktion eines ASICs kann nicht mithilfe von VHDL beschrieben werden.

Aufgabe 7.5
Welche Aussagen treffen fiir den Vergleich eines Mikrocontrollers mit einem PC zu?
(Mehrere Antworten sind richtig)

a) Mikrocontroller besitzen im Gegensatz zu einem PC keine Ein-/
Ausgabe-Schnittstellen.

b) Mikrocontroller sind kostengiinstiger als PCs.

c) Typische Mikrocontroller besitzen eine geringere Rechenleistung als PCs.

d) Typische Mikrocontroller besitzen eine geringere Speicherkapazitit als PCs.

Aufgabe 7.6
Was meint der Begriff ,,Programmierbare Logik*?

a) Die Bausteine konnen Programme ausfiihren, die in Sprachen wie C oder Java
geschrieben sind.

b) ASICs, die einen softwareprogrammierbaren Mikroprozessor beinhalten.

c) Die logische Funktion der Hardware des Bausteins kann durch den Anwender pro-
grammiert werden.

d) Logische Funktionen, die mithilfe eines Programms auf einem PC simuliert werden.

Aufgabe 7.7
Welches ist typische Reihenfolge der Entwurfsschritte?

a) Synthese, Platzierung, Verdrahtung
b) Platzierung, Verdrahtung, Synthese
c¢) Platzierung, Synthese, Verdrahtung
d) Synthese, Verdrahtung, Platzierung

Aufgabe 7.8
Welche Kombinationen von Worst Negative Slack (WNS) und Total Negative Slack
(TNS) konnen in der Praxis auftreten? (Mehrere Antworten sind richtig)

a) WNS: -3 ns; TNS: -4 ns
b) WNS: -3 ns; TNS: 0 ns

¢) WNS: +3 ns; TNS: 4+5 ns
d) WNS: 0 ns; TNS: O ns
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In Kapitel 3 wurden die wichtigsten Sprachelemente von VHDL vorgestellt und Sie
sind damit bereits in der Lage, digitale Schaltungen in VHDL zu entwerfen. In diesem
Kapitel werden vertiefende Aspekte der Hardwarebeschreibung mit VHDL dargestellt.
Einige dieser Sprachelemente er6ffnen neue Moglichkeiten zur Beschreibung von Hard-
warekomponenten. Andere konnen helfen, den Code besser zu strukturieren und lesbarer
zu gestalten. Dariiber hinaus werden in diesem Kapitel VHDL-Konstrukte vorgestellt,
die zur Uberpriifung der von Ihnen erstellten Hardwarebeschreibungen eingesetzt wer-
den konnen. Nach dem Studium dieses Kapitels haben Sie die wichtigsten Aspekte der
Sprache VHDL kennengelernt und konnen auch komplexere Schaltungen in VHDL
realisieren.

8.1 Weitere Datentypen

Einige wichtige Datentypen sind bereits aus Kapitel 3 bekannt. In diesem Abschnitt
werden weitere niitzliche Datentypen behandelt.

8.1.1 Natural und Real

Der Datentyp natural dient zur Darstellung natiirlicher Zahlen im Bereich von 0
bis 42311, also dem Bereich der positiven Zahlen, der sich auch mit dem Datentyp
integer darstellen ldsst. Ergiinzend zu den ganzzahligen Datentypen, bietet VHDL auch
die Verwendung von Gleitkommazahlen an, die mit dem Datentyp real definiert werden
konnen.

Im Gegensatz zum Datentyp real sind die Ganzzahl-Datentypen synthetisier-
bar. VHDL-Beschreibungen auf Basis dieser Datentypen kénnen also in eine digitale
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Hardware tiberfiihrt werden, wihrend die Verwendung von Gleitkommadatentypen auf
Testbenches beschrinkt ist.

8.1.2 Boolean

Wie viele Programmiersprachen unterstiitzt VHDL den Datentyp boolean. Diesem
Datentyp konnen nur die Werte frue oder false zugewiesen werden. Ein Objekt dieses
Datentyps entspricht in Hardware einem einzelnen Bit. Die Bezeichnung der Werte
erfolgt jedoch nicht mit O oder 1. Dies wire dagegen syntaktisch inkorrekt (da es sich bei
0 und 1 um Werte vom Typ integer handelt) und wiirde zu Fehlermeldungen fiihren.

Ein hdufiger Anwendungsfall fiir diesen Datentyp ist die Abfrage von Bedingungen.
Werden beispielsweise zwei Werte verglichen, so ist das Ergebnis dieses Vergleichs vom
Datentyp boolean. Selbstverstiandlich konnen auch Objekte, zum Beispiel Signale, mit
diesem Datentyp angelegt werden, die dann in einer Abfrage ausgewertet werden.

8.1.3 Time

VHDL unterstiitzt die Verwendung von physikalischen Datentypen. Die Werte dieses
Datentyps setzen sich aus einem Zahlenwert und einer Einheit zusammen. Der wich-
tigste physikalische Datentyp ist time. Dieser Datentyp erlaubt die Angabe von Zeiten
mit den Einheiten Femtosekunde (fs), Picosekunde (ps), Nanosekunde (ns), Mikrose-
kunde (ms), Millisekunde (msec), Sekunde (sec), Minute (min) oder Stunde (hr).

Der Datentyp time ist nicht synthesefdhig, da Zeitangaben im Zuge der Synthese
ignoriert werden. Fiir Testbenches ist der Datentyp jedoch sehr hilfreich um das zeitli-
che Verhalten von Signalen nachzubilden. Ein Beispiel fiir die Verwendung des Daten-
typs time ist im nachfolgenden Codeausschnitt dargestellt. Das Signal clk wird durch
eine Not-Anweisung invertiert. Durch Angabe einer zeitlichen Verzogerung mithilfe des
Schliisselworts after ergibt sich ein Signal, welches alle 5 Nanosekunden invertiert wird.
Auf diese Weise wird also ein digitales Taktsignal modelliert, welches eine Perioden-
dauer von 10 ns besitzt. Die Definition des Signals clk beinhaltet die initiale Zuweisung
des Wertes 0. Auf diese Weise wird sichergestellt, dass c/k zu Beginn der Simulation
einen definierten Wert erhilt.

signal clk : std_logic := '0';
clk <= not clk after 5 ns;
Auch die Definition eigener physikalischer Datentypen ist in VHDL méglich. Aller-

dings wird hiervon selten Gebrauch gemacht, sodass dieser Aspekt hier nicht weiter ver-
tieft wird.
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8.1.4 Std_ulogic, Std_ulogic_vector

Neben den Datentyp std_logic und std_logic_vector wird im IEEE-Paket auch der
Datentyp std_ulogic und std_ulogic_vector definiert. Es handelt sich dabei um eine
Alternative zu den Datentypen std_logic und std_logic_vector. Diese bereits vorgestell-
ten Datentypen haben eine sogenannte Auflosungsfunktion (engl. resolution function).
Die Auflésungsfunktion ist immer dann relevant, wenn einem Signal gleichzeitig zwei
Werte zugewiesen werden. Mithilfe der beim Datentyp std_logic definierten Auflo-
sungsfunktion wird fiir diese Fille der sich ergebende Wert des Signals bestimmt. Wird
einem Signal beispielsweise gleichzeitig der Wert 0 und der Wert 1 zugewiesen, wire das
Ergebnis bei Verwendung von std_logic der Wert X (unknown).

In den Datentypen std_ulogic und std_ulogic_vector steht das ,,u* fiir unresolved und
driickt aus, dass fiir diesen Datentyp keine Auflosungsfunktion existiert. Werden einem
Signal gleichzeitig zwei Werte zugewiesen, wiirden die Entwurfswerkzeuge bereits
beim Ubersetzungsvorgang der VHDL-Beschreibung einen Fehler ausgeben. Es ist eine
individuelle Entscheidung, ob diese Eigenschaft als ein Vorteil angesehen wird. In der
Praxis werden die meisten VHDL-Beschreibungen auf Basis des Datentyps std_logic
geschrieben. Daher wird in diesem Buch auf die Verwendung des Datentyps std_ulogic
verzichtet.

8.1.5 Benutzerdefinierte Datentypen

Mithilfe des Schliisselwortes Type konnen in VHDL auch benutzerdefinierte Datentypen,
zum Beispiel fiir die Codierung der Zustinde eines endlichen Automaten (vgl. Kapitel 5)
angelegt werden.

Die Definition des benutzerdefinierten Typs Farbe kann zum Beispiel wie folgt for-
muliert werden:

type farbe is (rot,gruen,blau,lila);

8.1.6 Zeichen und Zeichenketten

Fiir einzelne Zeichen bietet der VHDL-Standard den Datentyp character an. Dieser
Datentyp ist ein Aufzidhlungstyp, der insgesamt 256 Werte umfasst, wobei die ersten 128
Werte dem 7-Bit-ASCII-Code (vgl. Kapitel 2) entsprechen und die letzten 128 Werte
Umlaute und Sonderzeichen enthalten. Da die Definition des Datentyps im Paket std
erfolgt, kann der Datentyp ohne Use-Anweisung in allen VHDL-Beschreibungen einge-
setzt werden. Die Typdefinition zeigt der folgende Codeausschnitt:
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type character is (

NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, SO, ST,

DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, FSP, GSP, RSP, USP,
- A L

PO, ), R, R, e,
"o, '1v, '2v, '3v, r4v, 'S5, 6, 70,
T8, 19N, it i, <, =, s, vy
‘@', 'a', 'B', 'C', 'D', 'E', 'F', 'G',
‘W', ', 'g', 'k', 'L', 'M', 'N', 'O',
'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',
D A A A AT
e, 'a', 'b', 'ct', 'd', 'e', 'f', 'g',
'h', ‘i, '3', 'k', '1l', 'm', 'n', ‘o',
'p', 'qgq', 'r', 's', 't*, 'u', 'v', 'w',
'x', 'y', 'z', '{', '|', '}', '~', DEL,

-- weitere 128 Werte

)i

Ahnlich wie fiir den Datentyp std_logic existiert ein zugehdriger vektorieller Daten-
typ mit dem Namen string, in dem Zeichenketten abgelegt werden konnen. Der folgende
Code zeigt einige Beispiele zur Verwendung der Datentypen.

signal i : integer;
signal my_char : character;

signal my_string : string(l to 10) := "Hallo Welt";

my_string(7 to 10) <= "VHDL"; -- my_string enthdlt danach "Hallo VHDL"
my_string(6) <= '_"'; -- my_string enthdlt danach "Hallo_Welt"
my_char <= my_string (1) ; -- my_char enthdlt danach 'H'

8.1.7 Subtypes

Man kann von deklarierten Typen weitere Typen (subtype) ableiten. Ein Subtype ist ein
Datentyp mit eingeschrianktem Wertebereich im Vergleich zum Basistyp. Die Syntax zur
Definition eines Subtypes lautet:

subtype <subtype_name> is <subtype_indication>;

Die subtype_indication enthilt den Namen des Basisdatentyps und optional eine Ein-
schrinkung, welcher Bereich des Basisdatentyps dem neu definierten Subtype zur Verfii-
gung stehen soll.
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-- Subtype Beispiele:

subtype dezimal_ziffer is integer range 0 to 9; -- Bereichseinschrédnkung
subtype byte is std_logic_vector (7 downto 0); -- Indexeinschrédnkung
subtype ganze_zahl is integer; -- ganze_zahl = anderer Name filir Integer

-- Beispiele fiir vordefinierte Subtypes:

subtype natural is integer range 0 to integer'high;

subtype positive is integer range 1 to integer'high;

subtype std_logic is resolved std_ulogic;

subtype X01 is resolved std_ulogic range 'X' to 'l'; -- ('X','0','1l")

Die Angabe resolved bedeutet, dass fiir den hier definierten Datentyp eine Auflo-
sungsfunktion definiert ist.

Bei der Definition der Subtypes natural und positive wird das Attribut high verwen-
det. Mithilfe dieses Attributs wird der grofite Zahlenwert des Typs integer ausgewdhlt.
Der Ausdruck integer’ high ist also gleichbedeutend mit +2147483647.

8.1.8 Arrays

Wie alle Programmiersprachen unterstiitzt auch VHDL Arrays, also Felder von beliebi-
gen Datentypen. Die Definition eines Arrays ist in VHDL etwas umstidndlicher gelost als
in den meisten Programmiersprachen, da man zunéchst das gewiinschte Array als neuen
Datentyp definieren muss. Erst anschliefend darf dieser neue Datentyp fiir die Definition
von Signalen oder Variablen verwendet werden. Die Typdefinition eines Arraydatentyps
sieht wie folgt aus:

type <type_name> is array (range) of <element_data_type>;
Nehmen wir an, Sie mochten ein Array aus 10 Integer-Werten anlegen. Dann sehen

die Typdefinition und die Definition eines entsprechenden Array-Signals zum Beispiel so
aus:

type my_int_array_type is array (1 to 10) of integer; -- neuer Typ
signal my_ints : my_int_array_type; -- Signal auf Basis des neuen Typen

Ein Zugriff auf das Array erfolgt dann genauso wie beim Zugriff auf einzelne Ele-
mente eines Signals vom Typ std_logic_vector (denn der Datentyp std_logic_vector ist
auch ein Array-Datentyp):

my_ints(6) <= 24;

Selbstverstidndlich kann man auch mehrdimensionale Arrays anlegen, wenn man die
Typdefinitionen verschachtelt:
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type my_int_array_type_1D is array (1 to 20) of integer;
type my_int_array_type_2D is array (1 to 10) of my_int_array_type_1D;
signal my 2D_ints : my_int_array_type_2D;

my_2D_ints(7) (5) <= 12; -- zweidimensionaler Arrayzugriff

Arrays werden hdufig benotigt, um Speicher zu modellieren. Sie wollen zum Beispiel
einen Speicher der Grofe 1 kByte modellieren. Dies erreichen Sie mit folgendem Code:

type my_mem_type is array (0 to 1023) of std_logic_vector (7 downto 0);
signal mem : my_mem_type;

8.1.9 Records

VHDL unterstiitzt Records, also das Zusammenfassen mehrerer Werte in einem neuen
Datentyp. Dies ist mit Structs vergleichbar, die Sie vielleicht aus einer Programmierspra-
che bereits kennen. Die allgemeine Form einer Record-Definition sieht wie folgt aus:

type <record_type_name> is

element_name : element_typ;

{element_name : element_typ;} -- Ggf. beliebig viele weitere Elemente
end record [record_type_name]; -- record_type_name 1st optional

Die Definition und Verwendung von Records wird durch die nachfolgenden Beispiele
verdeutlicht:

type bus_mosi is
addr : std_logic_vector (31 downto 0);
data : std_logic_vector (31 downto 0);
rd : std_logic;
wr : std_logic;

end record;

type bus_miso is
data : std_logic_vector (31 downto 0);
ready : std_logic;

end record;

Wenn Sie Records angelegt haben, diirfen Sie den Datentyp wie jeden anderen Daten-
typ verwenden. Sehr praktisch kann es sein, Records fiir die Ports eines Moduls einzu-
setzen: Wenn viele Signale gemeinsam zu verdrahten sind (zum Beispiel Bussignale, die
von einem Master an mehrere Slaves anzuschlieBen sind), konnen Records die Lesbar-
keit des Codes verbessern.
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Der Zugriff auf die Elemente eines Records erfolgt iiber selected names, den
,,Punkt-Operator:

signal bus_out : bus_mosi;
signal bus_in : bus_miso;
. —— welterer VHDL-Code

bus_out.addr <= x"1234_5678"; -- Zugriff auf die Elemente des Records
bus_out.rd <= '1"';
bus_out.wr <= '0";

data_in <= bus_in.data;

8.2  Sprachelemente zur Code-Strukturierung

VHDL unterstiitzt den Entwicklungsprozess mit einigen niitzlichen Sprachelementen
bei der Strukturierung des Codes. Einige der Konstrukte sind in dhnlicher Form auch in
Software-Programmiersprachen vorhanden.

8.2.1 Function

Eine VHDL-Funktion (Schliisselwort: function) dient dazu, aus einem oder mehreren
Ubergabeparametern einen Riickgabewert zu berechnen. Wichtige Eigenschaften von
Funktionen sind:

e Funktionen haben immer exakt einen Riickgabewert. Die Riickgabe erfolgt mithilfe
des Schliisselwortes return.

e Die Parameter diirfen innerhalb der Funktion nur gelesen werden. Schreibzugriffe
sind nicht erlaubt.

e Innerhalb von Funktionen konnen lokale Variablen oder Konstanten definiert werden.
Die Variablen werden mit jedem Funktionsaufruf neu initialisiert. Mit anderen Wor-
ten: Wird einer Variablen ein Wert zugewiesen, steht dieser beim nichsten Aufruf der
Funktion nicht mehr zur Verfiigung.

e Funktionen diirfen keine Wait-Anweisungen enthalten.

e Funktionen diirfen keine Signalzuweisungen enthalten.

e Funktionen diirfen sowohl Funktionen als auch Prozeduren (s.u.) aufrufen. Auch
rekursive Aufrufe (eine Funktion ruft sich selbst auf) sind erlaubt.

Die syntaktische Struktur einer VHDL-Funktion stellt der nachfolgende Code dar.
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function <Funktionsname> ({<Parameterliste>}) return <Typ_Rickgabe-
wert> is
<Deklarationen>
begin
<Anweilsungen>
end function;

Funktionen diirfen im Deklarationsteil einer Architecture (also vor dem begin) oder in
Paketen definiert werden.

Als ein Beispiel ist im Folgenden eine VHDL-Funktion zur Umwandlung vom Gray-
Code in eine Dualzahl dargestellt.

Die Funktionsdefinition verwendet den Datentyp std_logic_vector ohne die Léinge des
Vektors zu spezifizieren. Auf diese Weise konnen durch die Funktion Vektoren mit einer
beliebigen Linge verarbeitet werden. Allerdings wird fiir die Implementierung der Funk-
tion die Linge des jeweils bei Aufruf der Funktion iibergebenen Vektors bendtigt. Diese
lasst sich sehr elegant mithilfe des length-Attributs des Vektors bestimmen. Die Schreib-
weise gray_val’length liefert die Linge (Anzahl der Elemente) des Vektors gray_val und
wird zu Beginn der Funktion genutzt.

-- Definition der Funktion Gray2Bin

function Gray2Bin (gray_val : std_logic_vector) return std_logic_vector
is

constant vlen : integer := gray_val'length;

variable temp : std_logic_vector(vlen-1 downto 0);
begin

temp := gray_val;

if vlen > 1 then
for i in vlen-2 downto 0 loop
temp (i) := gray val(i) xor temp (i+1);
end loop;
end if;
return temp(vlen-1 downto 0);
end function;

-- Beispiel filr den Aufruf der Funktion Gray2Bin

bin <= Gray2Bin(gray) ;

8.2.2 Procedure

VHDL-Prozeduren konnen ebenso wie Funktionen im Deklarationsteil einer Architec-
ture oder in Paketen definiert werden.
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Im Gegensatz zu Funktionen konnen Prozeduren mehrere Riickgabewerte besitzen.
Die Riickgabe der Ergebnisse einer Prozedur erfolgt durch Modifikation der Werte der
iibergebenen Parameter und es ist daher erlaubt, auf die libergebenen Parameter schrei-
bend zuzugreifen. Um festzulegen, ob ein Parameter nur gelesen, nur beschrieben oder
sowohl gelesen als auch beschrieben werden darf, wird mit den Parametern eines der
Schliisselworter in, out oder inout angegeben.

Als Parameter konnen Variablen, Signale oder Konstanten verwendet werden. Bei der
Definition einer Prozedur muss festgelegt werden, welcher der drei Parameterklassen
von der Prozedur erwartet wird.

Ein weiterer Unterschied zu Funktionen ist, dass innerhalb einer Prozedur Zuweisun-
gen an Signale erlaubt sind, wenn die Prozedur innerhalb eines Prozesses definiert wird.

Dariiber hinaus diirfen Wait-Anweisungen in Prozeduren verwendet werden. Aller-
dings sind diese Prozeduren dann nicht mehr synthetisierbar und der Einsatz solcher Pro-
zeduren bleibt auf Testbenches beschriinkt.

Der grundlegende Aufbau einer VHDL-Prozedur ist einer Funktion recht dhnlich:

procedure <Prozedurname> (<Parameterliste>) is
<Deklarationen>

begin
<Anwelsungen>

end procedure;

Ein Beispiel fiir eine VHDL-Prozedur zeigt der nachfolgende Code, der eine Sortie-
rung von drei Signalen implementiert.

-- Prozedur sort_u3
-- Sortiert 3 Werte vom Datentyp unsigned

procedure sort_u3 (signal vall : in unsigned;
signal val2 : in wunsigned;
signal val3 : in wunsigned;
signal min : out unsigned;
signal med : out unsigned;
signal max : out unsigned) is

variable min_v : unsigned(min'length-1 downto

variable med_v : unsigned(med'length-1 downto

variable max_v : unsigned(max'length-1 downto

o O o o

(
(
(
(

variable tmp_v : unsigned(min'length-1 downto

begin
max_v := vall;
med_v := val2;

min_ v := val3;
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if min_v >=

tmp_v
med_v
min_v

end if;

if med_v >=

tmp_v

max_v

med_v
end if;

if min_v >=

tmp_v
med_v
min_ v

end if;

med_v then -- min/med tauschen?
med_v;
min_v;

tmp_v;

max_v then -- max/med tauschen?
max_v;
med_v;
tmp_v;

med_v then -- und noch einmal ggf. min/med tauschen
med_v;
min_v;

tmp_v;

min <= min_v;

med <= med_v;

max <= max_vV;

end procedure;

-- Beispiel filir den Aufruf der Procedure

sort_u3 (sig_1l,sig 2,sig 3,sig_min,sig_med, sig_max) ;

-- alle sechs Signale miissen vom Typ unsigned sein

-- und die gleiche Wortbreite besitzen

8.2.3 Entity-Deklaration mit Generics

Stellen Sie sich vor, Sie mochten eine logische Funktion in VHDL realisieren, die
Signale vom Typ std_logic_vector verkniipft. Da es sich um eine grundlegende Funktion
handelt, die Sie hédufig bendtigen, muss Sie fiir Vektoren mit unterschiedlicher Wortbreite
zur Verfiigung stehen.

Natiirlich kann man fiir jede bendtigte Wortbreite ein eigenes Entity-Architecture-
Paar realisieren. Allerdings kann dies sehr aufwendig werden, wenn viele unterschiedli-
che Wortbreiten benotigt werden. Es wire eleganter, wenn man der Instanz des Moduls
~rgendwie” die benotigte Wortbreite als Parameter mitteilen konnte. Wenn dieser Para-
meter in der Entity und der Architecture des instanziierten Moduls entsprechend bertick-
sichtigt werden wiirde, kann die Erstellung eines einzelnen Entity-Architecture-Paares
ausreichend sein.
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Um einem Modul wihrend der Instanziierung Parameterwerte iibergeben zu kon-
nen, muss die Entity des Moduls neben einer Port-Liste eine auch eine Parameter-Liste
(Schliisselwort Generic) enthalten.

Diese Parameter (Generics) konnen dann in symbolischer Form bei der Beschreibung
des Moduls verwendet werden. Erst mit der Instanziierung des Moduls werden die (fiir
diese Instanz) zu verwendenden Werte der Parameter festgelegt.

In der Praxis werden Generics hiufig mit dem Datentyp integer oder natural definiert.
Aber auch alle anderen VHDL-Datentypen sind zuldssig und konnen fiir bei der Defini-
tion eines Generics eingesetzt werden.

Ein Beispiel soll die Vorgehensweise verdeutlichen: Angenommen Sie mochten ein
Modul erstellen, das ein Signal um eine bestimmte Anzahl von Taktzyklen verzdgern soll.
Dieses Modul soll moglichst flexibel sein und fiir beliebige Wortbreiten oder Verzdgerun-
gen einsetzbar sein. Das Modul kann mithilfe von Generics wie folgt realisiert werden:

library ieee;
use ieee.std_logic_1164.all;

entity delay unit is

generic (D : nmatural := 3; -- Anzahl der Verzdgerungszyklen (D>0 !)
N : mnatural := 8); -- Breite der verzdgerten Werte (N>0 !)
port (clk : in std_logic;
d_in : in std_logic_vector (N-1 downto 0);
d_out : out std_logic_vector (N-1 downto 0));
end;

architecture behave of delay_unit is
-- Hier legen wir ein Array mit D Eintrdgen an

-- Jeder Eintrag nimmt N Bits auf

-- Durch die Synthese wird eine Kette von D Registern (also D-FFs)
-- mit der Wortbreite N implementiert
type d_arr_type is array (0 to D-1) of std_logic_vector (N-1 downto

signal d_array : d_arr_type;
begin
process begin
wait until rising_ edge(clk);

for i in 0 to (D-2) loop -- Werte in der FF-Kette verschieben
d_array (i) <= d_array(i+1);

end loop;

d_array(D-1) <= d_in; -- Eingangswert an oberster Position

-- der FF-Kette abspeichern
end process;
d_out <= d_array(0); -- dltesten Wert ausgeben
end;
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Bei der Instanziierung des Moduls erfolgt nun neben der Portzuordnung (port map)
auch die Zuordnung der verwendeten Generics (generic map). Ist bei der Deklaration des
Parameters in der Entity ein Default-Wert angegeben worden, kann die Parameterzuord-
nung auch entfallen. In diesem Fall wird fiir diese Instanz der angegebene Default-Wert
verwendet.

Die Werte, die den Generics bei der Instanziierung zugeordnet werden, miissen zur
Ubersetzungszeit des bekannt VHDL-Codes berechenbar sein. Werte, die sich erst wih-
rend der Simulation ergeben, sind nicht erlaubt. So ist es beispielsweise nicht moglich,
einem Generic ein Signal zuzuweisen.

Der folgende Code zeigt die Instanziierung des oben beschriebenen Moduls.

-- Verwendung der Default-Werte fiir die Parameter D und N,
-- also D=3 und N=8
u0 : delay_unit port map (clk => clk, d_in => x_sv8, d_out => g _sv8);

-- Uberschreiben der Default-Werte: D=5, N=32
-- Die Ein- und Ausgdnge dieser Instanz haben die Wortbreite 4
ul : delay_unit

generic map (D=> 5, N => 32)

port map (clk => clk, d_in => x_sv32, d_out => g _sv32);

8.2.4 Generate-Anweisung

In manchen Fillen lassen sich Parameter sehr elegant in einer Generate-Anweisung
verwenden. Die Generate-Anweisung existiert in den beiden Varianten if-generate und
for-generate und dient der bedingten beziehungsweise wiederholten Ausfithrung neben-
laufiger Anweisungen wie Signalzuweisungen, Prozesse oder Instanziierungen.

Die allgemeine Schreibweise der beiden Generate-Anweisungen lautet

<Name>: if <Bedingung> generate
<Nebenldufige Anweisungen>
end generate;

<Name>: for <Laufindex> in <Bereich> generate
<Nebenldufige Anweisungen>
end generate;

Mithilfe der If-Generate-Anweisung konnen nebenldufige Anweisungen mit einer
Bedingung versehen werden. Nur wenn die Bedingung erfiillt ist, ist dieser Code aktiv.
Auf diese Weise konnen zum Beispiel Instanziierungen oder Prozesse in Abhingigkeit
von Generics aktiviert werden.
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Betrachten wir hierzu das Beispiel des Moduls delay_unit aus dem vorangegangenen
Abschnitt. Das Modul kann nur eingesetzt werden, wenn die Verzogerung mindestens einen
Taktzyklus betrigt, also D > 1 gilt. Wiirde D zu 0 gewihlt werden, wiirde die Zuweisung

d_array(D-1) <= d_in;

auf d_array(—1) zugreifen. Dieser Feldindex existiert jedoch nicht, da der kleinste
mogliche Index O ist. Eine Fehlermeldung wére die Folge.

Mochte man auch die Auswahl D = 0 (also keine Verzogerung des Signals) ermog-
lichen, kann dies mithilfe der If-Generate-Anweisung realisiert werden. Da bei der If-
Generate-Anweisung kein else unterstiitzt wird, werden zwei If-Generate-Anweisungen
bendtigt. Der VHDL-Code kann wie folgt aussehen:

entity my_module is
generic (delay_ count : matural := 1);
port (clk : in std_logic;
-- weltere Ports
)
end;

architecture behave of my _module is
signal g sv32, x_sv32 : std_logic_vector (31 downto 0);

begin

-- Prozesse und nebenldufige Zuweilisungen dieses Moduls

GEN_DO: if delay_count = 0 generate -- Ein Label muss sein
-- delay_count = 0, also direkte Zuweilsung

g _sv32 <= x_sv32;
end generate;

GEN_D1: if delay_count > 0 generate
-- delay_count > 0, also das Modul einbauen
-- filir die Wortbreite N wird der Defaultwert (32)
-- aus der Entity-Definition der Delay Unit genutzt
ul : delay_unit
generic map (D => delay_count)
port map (clk => clk, d_in => x_sv32, d_out => g sv32);
end generate;

end;

Die For-Generate-Anweisung wird fiir eine wiederholte Ausfiihrung nebenldufiger
Zuweisungen oder Modul-Instanziierungen eingesetzt. Der Einsatz dieser Anweisung wird
im Folgenden anhand eines sehr einfachen Beispiels verdeutlicht. Nehmen wir an, Sie
haben ein AND2-Modul, also ein UND-Gatter mit zwei Eingéingen realisiert und moch-
ten dieses fiir die VHDL-Beschreibung eines UND-Gatters mit N Eingiingen verwenden.
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Eine mogliche Losung mithilfe der For-Generate-Anweisung kann dann wie folgt formu-
liert werden:

architecture for_gen_arch of and n is
begin
AND2GEN: for i in 0 to N-1 generate
ui : and_2 port map (a => a(i), b => b(i), g => q(i));
end generate;
end;

Beide Formen der Generate-Anweisung sollten nicht mit &dhnlichen Sprachkon-
strukten fiir Prozesse verwechselt werden. Die If- und For-Anweisungen in Prozessen
beinhalten sequenziell ausgefiihrten Code, der Teil eines Prozesses ist. Die Generate-
Anweisung bezieht sich dagegen immer auf nebenldufigen Code, beispielsweise Signal-
zuweisungen, Prozesse oder Instanziierungen.

Insbesondere miissen die Bereichsgrenzen der For-Generate-Anweisung beziehungs-
weise die Bedingung der If-Generate-Anweisung zum Zeitpunkt der Ubersetzung des
Moduls berechenbar sein. Der Grund hierfiir ist, dass aus dem VHDL-Code Hardware
generiert wird und daher bekannt sein muss, wie viele und welche Schaltungselemente
erzeugt werden sollen. Es wire beispielsweise nicht moglich, in einer If-Generate-Bedin-
gung den Wert eines Signals abzufragen. Da sich der Wert des Signals erst wihrend der
Simulation oder wihrend des Betriebs der Hardware ergibt, ist die Bedingung zum Uber-
setzungszeitpunkt des Moduls nicht auflésbar und wiirde Fehlermeldungen bei der Uber-
setzung des VHDL-Codes zur Folge haben.

8.2.5 Attribute

Mit Attributen lassen sich Eigenschaften von Objekten und Typen abfragen. VHDL-
Beschreibungen konnen hiermit teilweise kiirzer oder eleganter realisiert werden. Der
Wert eines Attributs kann in einem VHDL-Modell weiter verwendet werden. Attribute
lassen sich auf viele Datentypen anwenden, beispielsweise ldsst sich die Anzahl der Ele-
mente in einem Vektor bestimmen. Die generelle Syntax fiir Verwendung von Attributen
lautet:

<typ_name>'<attribut_bezeichner>

Die Werte der Attribute unterscheiden sich von den Datenobjektwerten. VHDL unter-
scheidet vordefinierte und benutzerdefinierte Attribute. Die wichtigsten vordefinierte
Attribute sind: ’left, *right, high, ’low, ’length, ’pos, *val und ’range.

Der folgende Code zeigt einige Beispiele zur Verwendung von Attributen:
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process
type farben_typ is (rot, gruen, blau, gelb, lila);
variable farbe : farben_typ;

variable 1 : integer;
variable c : character := 'A';
variable slv : std_logic_vector (7 downto 0);
begin
farbe := farben_typ'left; -- liefert: rot
farbe := farben_typ'right; -- liefert: lila
i := slv'low; -- liefert: 0 (kleinster Indexwert)
i := slv'high; -- liefert: 7 (héchster Indexwert)
i := slv'length; -- liefert: 8 (Ldnge des Vektors)
i := character'pos(c); -- liefert: 65 (= ASCII-Wert von 'A')
c := character'val (65) ; -- liefert: 'A' (= Zeichen an Position 65)
wait;

end process;

In manchen VHDL-Beschreibungen findet sich das Attribut *event in Verbindung mit
Signalen. Falls innerhalb eines VHDL-Modells eine Flanke des Signals clk eine Aktion
bewirken soll, so ldsst sich diese Flanke auch durch die Bedingung if clk’event and
clk = ‘I’ then abfragen.

Die folgenden Schreibweisen beschreiben beispielsweise ein D-Flip-Flop:

-- D-FF mit der IEEE-Funktion rising_edge ()
process begin

wait until rising_edge(clk);

g <= d;
end process;

-- D-FFs mit Abfrage des Attributs 'event

-- Diese Schreibweise ist nicht empfehlenswert

process begin
-—- Prozess unterbrechen bis ein Ereignis (Zuweisung eines neuen
-- Wertes) auf dem Signal clk stattgefunden hat UND das Signal
-- den Wert 1 angenommen hat
wait until clk'event and clk='1"';
g <= d;

end process;

In manchen VHDL-Beschreibungen ist die Schreibweise clk’event and clk = ‘1’zu
finden. Allerdings deckt diese Schreibweise alle Signalwechsel ab, bei denen das abge-
fragte Signal clk von einem Wert ungleich ‘7’ auf ‘7’ wechselt und sollte daher nicht
verwendet werden.
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So wiirde beispielsweise ein Wechsel von ‘H’ zu ‘I’ in der Simulation als steigende
Flanke interpretiert. Dies ist jedoch inkorrekt, da ‘H’ eine ,,schwache Eins* und ‘/’ eine
»starke 1% darstellt. Der Wechsel von ‘H’ zu ‘I’ stellt also keine steigende Flanke dar.
Demgegeniiber wiirde beispielsweise ein Wechsel von ‘0’ zu ‘H’ welcher eine steigende
Flanke darstellt, nicht als solche erkannt werden.

Die falsch interpretierten Signalwechsel wirken sich nur in der Simulation aus. Die syn-
thetisierte Hardware, die ja nur Nullen und Einsen kennt, wiirde sich dagegen korrekt —
und damit anders als die Simulation — verhalten.

Fiir die Erkennung einer Taktflanke wird darum die Verwendung der Funktion rising_
edge() (beziehungsweise falling_edge() fiir fallende Signalflanken) empfohlen, die expli-
ziter und damit besser lesbar ist.

8.2.6 Instanziierung mit der Component-Anweisung

In Kapitel 3 wurde die Instanziierung von Modulen durch Angabe der Bibliothek und der
Entity bereits vorgestellt. Im Folgenden wird eine alternative Vorgehensweise zur Ins-
tanziierung von Modulen beschrieben, die ebenfalls sehr hiufig angewendet wird. Daher
wird Thnen diese Variante dann begegnen, wenn Sie beispielsweise VHDL-Code aus
Internet-Quellen verwenden mdchten.

Angenommen Sie haben ein Modul beschrieben und mochten dieses in einem ande-
ren Modul verwenden. Als Beispiel verwenden wir ein einfaches UND-Modul mit zwei
Eingédngen. Die Entity des Grundmoduls kann wie folgt aussehen:

entity and_2 is

port (a : in std_logic;
b : in std_logic;
g : out std_logic);

end;

In der alternativen Beschreibung ohne Angabe der VHDL-Bibliothek wird eine Com-
ponent-Anweisung verwendet. Diese Anweisung macht das zu instanziierende Modul in
der Architecture bekannt und anschliefend kann das Modul beliebig oft in der VHDL-
Architecture verwendet werden.

Die Component-Anweisung beschreibt im Wesentlichen die Anschliisse des zu instan-
ziierenden Moduls und ist der Entity-Deklaration des Moduls sehr dhnlich: Im Gegen-
satz zur Entity-Deklaration wird statt des Schliisselwortes entity das Schliisselwort
component verwendet.

Die Component-Anweisung des UND-Gatters wiirde wie folgt aussehen:

component and_2 is
port (a : in std_logic;
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b : in std_logic; -- Sieht fast wie die Entity aus..
g : out std_logic ) -- Aber: Nach der Klammer kein Semikolon
end component;

Die Instanziierung des damit bekannt gemachten Moduls beginnt (wie bei der bereits
bekannten Entity-Instanziierung) mit einem eindeutigen Namen fiir diese Instanz. Nach
einem Doppelpunkt wird die Komponente (in diesem Beispiel and_2) angeben. Darauf folgt
die Zuordnung der Anschliisse, die mit den Schliisselwortern port map eingeleitet wird.

Fiir das Beispiel eines Vierfach-UND-Moduls, welches UND-Gatter instanziiert, kon-
nen Entity und Architecture wie folgt beschrieben werden:

library ieee;
use ieee.std_logic_1164.all;

entity and_4x2 is
port (a : in std _logic_vector (3 downto 0);
b : in std_logic_vector (3 downto 0);
g : out std_logic_vector (3 downto 0));
end;

architecture behave of and_4x2 is

component and_2 is
port (a : in std_logic;
b : in std_logic;
g : out std_logic);
end component;

begin
u0 : and_2 port map (a => a(0), b => b(0), g => q(0));
ul : and_2 port map (a => a(l), b => b(l), g => q(l));
u2 : and_2 port map (a => a(2), b => b(2), g => q(2));
u3 : and_2 port map (a => a(3), b => b(3), g => q(3));

end;
Die in Kapitel 3 eingefiihrte Entity-Instanziierung und Instanziierung mit der Component-

Anweisung sind gleichwertig und letztlich eine Frage des bevorzugten ,,Coding-Styles®.
Dennoch sollte man die Varianten kennen, da beide in der Praxis verwendet werden.

8.2.7 Pakete

Einige hiufig verwendete Bibliotheken und die darin enthaltenen Pakete (Packages) wur-
den in den vorangegangenen Abschnitten bereits verwendet. Pakete sind immer dann
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sinnvoll, wenn grundlegende Funktionen oder Datentypen in mehreren VHDL-Dateien
verwendet werden sollen.

In einem Paket konnen unterschiedliche VHDL-Elemente abgelegt sein. Dies sind in
der Praxis neben selbst definierten Datentypen, Funktionen oder Prozeduren hiufig auch
Component-Anweisungen. Wird beispielsweise ein Paket, das Component-Anweisungen
enthilt, in einer VHDL Beschreibung durch geeignete Library- und Use-Anweisungen
bekannt gemacht, konnen die hierin enthaltenen Component-Anweisungen im nachfol-
genden Code entfallen. Der Code wird dadurch kiirzer und iibersichtlicher.

Pakete werden in einen Header- und einen Body-Teil aufgespalten. Der Header ent-
hilt die ,,von auflen* sichtbaren Deklarationen, zum Beispiel welche Aufrufparameter
eine Prozedur besitzt. Der Package-Body legt die Implementierung der im Header dekla-
rierten Elemente fest.

Der Package-Header wird mit dem Schliisselwort package eingeleitet, wihrend ein
Package-Body durch package body gekennzeichnet wird:

package <Paketname> is
<Typdefinitionen>
<Definition oder Deklaration von Konstanten>
<Signaldefinitionen>
<Deklaration von Funktionen und Prozeduren>
<Component-Anweisungen>

end package;

package body <Paketname> is
<Definition von Konstanten, falls im Header nur deklariert>
<Definitionen von Funktionen und Prozeduren>

end package body;

Als ein Beispiel fiir die Anwendung von Paketen zeigt der nachfolgende Code ein
Paket, das Funktionen zur Umwandlung des Gray-Codes in Dualzahlen und umgekehrt
enthilt.

library ieee;
use ieee.std_logic_1164.all;

package gray_pkg is

-- Funktionsdeklarationen --
function gray2bin (gray_val : std_logic_vector)
return std_logic_vector;
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function bin2gray (bin_val : std_logic_vector)
return std_logic_vector;

end package;

package body gray pkg is
-- Implementierung: Gray2Bin --
function gray2bin (gray_val : std_logic_vector)
return std_logic_vector is
constant vlen : integer := gray_val' 'length;
variable temp : std_logic_vector (vlen-1 downto 0);
begin
temp := gray_val;
if vlen > 1 then
for i in vlen-2 downto 0 loop
temp (i) := gray_val(i) xor temp (i+1);
end loop;
end if;
return temp(vlen-1 downto 0);

end function;

-- Implementierung: Bin2Gray --
function bin2gray (bin_val : std_logic_vector)
return std_logic_vector is
constant vlen : integer := bin_val'length;
begin
return ('0' & bin_val(vlen-1 downto 1)) xor bin val;

end function;

end package body;

8.2.8 Einbindung von Spezialkomponenten

Fir FPGAs und ASICs sind Spezialkomponenten wie Multiplizierer, Speicher oder
Elemente zur Taktaufbereitung verfiigbar. Doch wie konnen diese Elemente in einem
VHDL-basierten Design eingesetzt werden? Hierzu werden zwei Ansitze unterschie-
den: Die Instanziierung und die Inferenz (engl. instantiation beziehungsweise inference).
Beide Ansitze werden im Folgenden niher erldutert.
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Instanziierung beim FPGA-Entwurf

Bei der Instanziierung wird ein bestimmtes Modul, zum Beispiel ein Multiplizierer,
explizit als eine Komponente aufgerufen. Damit wird dem Synthesetool vorgeschrieben
dieses konkret benannte Modul zu verwenden.

Fiir die Instanziierung stellen die FPGA-Hersteller spezielle VHDL-Bibliotheken
zur Verfiigung, in denen alle Grundelemente hinterlegt sind. Man kann also auf die ver-
fligbaren Hardwarekomponenten explizit zugreifen. Theoretisch konnten auch einzelne
Logikzellen ausgewdhlt und durch den Designer verdrahtet werden. Da man hiermit aber
die Intelligenz der Synthesetools nicht nutzen wiirde, wird von dieser Moglichkeit in der
Praxis kein Gebrauch gemacht. Die Instanziierung wird im Allgemeinen nur dort einge-
setzt, wo dies unumginglich ist, weil die gewiinschten Elemente nicht automatisch durch
die Synthese ausgewihlt werden konnen. Ein Beispiel hierfiir sind PLLs zur Taktaufbe-
reitung. Fiir diese Elemente existiert keine Entsprechung in VHDL und daher miissen sie
per Instanziierung ausgewihlt werden.

Die Parameter der jeweiligen Instanz werden im VHDL-Code durch Ubergabe von
Generics festgelegt. Da dies in einigen Fillen etwas umstindlich ist, werden grafische
Blockgeneratoren angeboten. Mithilfe der Generatoren ist es moglich, die Eigenschaf-
ten des zu instanziierenden Blocks interaktiv iiber eine grafische Oberfliche festzulegen.
Als Ergebnis liefern die Generatoren einen Block, der in einer VHDL-Beschreibung als
Komponente instanziiert werden kann.

Inferenz beim FPGA-Entwurf

In einigen Fillen kann man auch auf die ,Intelligenz*“ des Synthesetools setzen: Fiir
bestimmte VHDL-Konstrukte erkennt die Synthese automatisch, dass hier ein Hard-
makro (zum Beispiel ein Multiplizierer-Modul oder ein FPGA-interner Speicher) in
Betracht kommt. Da sich die Verwendung der Makros aus dem VHDL-Code ergibt, wird
dieses Vorgehen als Inferenz bezeichnet.

Die Syntheseprogramme unterstiitzen meist die Inferenz von Speichern, Multipli-
zieren und einfachen arithmetischen Komponenten wie zum Beispiel die in der Sig-
nalverarbeitung haufig vorkommende Kombination eines Multiplizierers mit einem
nachfolgenden Addierer. Fiir die Inferenz eines Multiplizierers geniigt es beispielsweise,
die entsprechende Operation im VHDL-Code zu verwenden.

Die Instanziierung und Inferenz wird im Folgenden anhand des Beispiels eines
FPGA-internen Speichers fiir einen FPGA-Baustein der Xilinx Serie 7 niher beleuchtet.

8.2.8.1 Beispiel: Instanziierung eines Speichers

Der nachfolgend dargestellte VHDL-Code zeigt die Instanziierung eines Speichers. Es
wird das Modul BRAM_SDP_MACRO, welches in der von der Firma Xilinx zur Verfii-
gung gestellten Bibliothek unisim vorliegt, aufgerufen und mit den Signalen des Designs
verbunden. Uber Generics lassen sich verschiedene Parameter, wie die Wortbreite oder
die GroBe des Speichers, auswéhlen.
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library unisim;

use unisim.vcomponents.all;
library unimacro;

use unimacro.vcomponents.all;

my_ram_instance : bram_sdp_macro
generic map (

bram_size => "18Kb", -- Auswahl Speichergroesse: "18Kb", "36Kb"
device => "7SERIES", -- Zielbaustein-Serie

write_width => 8§, -- Wortbhreite Schreibport

read_width => 8, -- Wortbreite Leseport

do_reg => 0, -- Zusaetzliches Register am Daten-Ausgang?
init_file => "NONE", -- evtl. Datei mit Initialwerten
sim_collision_check => "NONE", -- Simulation: Schreib/Leseoperation

-- auf gleiche Adresse checken?

srval => x"000000000000000000", -- Ausgabe nach Reset
write_mode => "WRITE_FIRST" -- Auswahl Kollisionsbehandlung
)
port map (
rst => rst, -- Reseteingang
rdclk => rdclk, -- Taktsignal Leseport
rdaddr => rdaddr, -- Leseadresse
rden => rden, -- Enable: Lesen
regce => '1°', -- Enable filir Ausgangsregister
do => do, -- Lesedaten
wrclk => wrclk, -- Taktsignal Schreibport
wraddr => wraddr, -- Schreibadresse
wren => wren, -- Enable-Signal fiir Schreiboperation
we => we, -- Byte-welises Enable-Signal
di => di -- Schreibdaten

Ein Nachteil der Instanziierung ist, dass man unter anderem die GroéBe der Speicher-
module auf dem FPGA kennen muss. Wird ein Speicher benétigt, der grofler als ein
einzelner Speicherblock ist, muss die entsprechende Anzahl an Speichermodulen ins-
tanziiert werden. Dariiber hinaus ldsst sich VHDL-Code, der die Instanziierung von Ele-
menten verwendet, nicht unbedingt auf andere FPGAs iibertragen. So konnten sich zum
Beispiel die Eigenschaften der Speichermodule einer nachfolgenden FPGA-Generation
dandern. Der VHDL-Code wire damit nicht mehr zu dem neuen FPGA kompatibel und
miisste entsprechend angepasst werden.

8.2.8.2 Beispiel: Instanziierung eines Speichers mit Blockgenerator
Alternativ stellen die FPGA-Hersteller Modul-Generatoren zur Verfiigung um Speicher-
Module iiber eine grafische Oberfliche zu konfigurieren. Der Blockgenerator erstellt
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dann eine Komponente, die im VHDL-Code eingebunden werden kann. Der Vorteil
dabei ist, dass der Blockgenerator auch groflere Speicher aus mehreren Speicherblécken
zusammenstellen kann. Falls zusitzliche kombinatorische Logik erforderlich ist, wird
auch diese erzeugt.

Im unten stehenden Beispiel wird ein FIFO-Speicher aufgerufen, der Datenworte
um eine feste Anzahl an Takten verzdgert. FIFO steht dabei fiir First-In-First-Out. Der
Blockgenerator erzeugt die VHDL-Dateien des Moduls fifo_memory. Neben Speicher-
Modulen kénnen Generatoren auch andere Funktionen erzeugen, beispielsweise Divisi-
onsschaltungen oder Filter.

my_fifo_instance : fifo_memory
port map (

clk => clk,

d_in => d_in,

d_out => d_out);

Wie bei der Instanziierung von Modulen aus der FPGA-Bibliothek kann ein Untermo-
dul nicht unbedingt auf andere FPGAs iibertragen werden.

Dieser Nachteil ldsst sich durch die Inferenz von Speichern umgehen. Hierzu muss
der VHDL-Code so geschrieben werden, dass er den Eigenschaften des Speichers
entspricht.

8.2.8.3 Beispiel: Inferenz eines Speichers

Der nachfolgende Code zeigt die Realisierung eines Speichers. Die Wortbreite und die
GroBe des Speichers kann iiber Generics ausgewihlt werden. Da der Lesezugriff syn-
chron implementiert ist, wihlen die Syntheseprogramme die auf dem FPGA-Baustein
verfiigbaren RAM-Speicherelemente (sogenanntes Block-RAM) aus.

library ieee;
use ieee.std_logic_1164.all;
use ileee.numeric_std.all;

entity dmem_sp is

generic (
DW : integer := 16; -- Data Width
AW : integer := 10); -- Address width
port (
clk : in std_logic; -- Clock
en : in std_logic; -- Enable
we : in std_logic; -- Write enable
a : in std_logic_vector (AW-1 downto 0); -- Address

a : in std_logic_vector (DW-1 downto 0); -- Data 1in
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el : out std_logic_vector (DW-1 downto 0)); -- Data out
end;

architecture rtl of dmem_sp is
type tmem is array (0 to 2**AW-1) of std_logic_vector (DW-1 downto 0);
signal mem : tmem;
begin
process begin
wait until rising_edge(clk);
g <= mem(to_integer (unsigned(a))) ;

if en = '1l' then
if we = '1l' then
mem (to_integer (unsigned(a))) <= d;
end if;
end if;

end process;
end;

Da keine Aussagen iiber die FPGA-Technologie im Code vorgenommen werden,
ist die Speicherinferenz auch auf andere FPGAs iibertragbar. Dariiber hinaus kann die
Speichergroflie und Wortbreite flexibel iiber die Generics angegeben werden, ohne eine
genauere Kenntnis der zugrunde liegenden FPGA-Technologie zu haben.

Mochte man dagegen statt der Block-RAM-Module lieber Flip-Flops als Spei-
cher verwenden, ist nur eine kleine Anderung des Codes erforderlich. Zieht man die
Zuweisung an den Datenausgang g vor den Prozess, wird ein asynchroner Lesezugriff
beschrieben. Mit einer derartigen VHDL-Beschreibung werden dann Flip-Flops als Spei-
cherelemente (sogenanntes Distributed Memory) ausgewihlt. Dies kann zum Beispiel
vorteilhaft sein, wenn nur ein sehr kleiner Speicher benédtigt wird: Block-RAMs stehen
meist nur in Vielfachen von 1 oder 2 kByte zur Verfiigung. Benétigt man zum Beispiel
nur 256 Bit Speicherplatz und sind die Block-RAM-Ressourcen knapp, ist der Einsatz
von Distributed Memory erwigenswert.

Die entsprechenden Anderungen fiir die Verwendung von Distributed Memory sind
im folgenden Code-Ausschnitt dargestellt.

begin
g <= mem(to_integer (unsigned(a))); -- Asynchroner Lese-Zugriff
process begin
wait until rising_edge(clk);
if en = '1l' then

In der Regel sollte die Inferenz bevorzugt werden, da diese tibersichtlicher ist
und sich der Code leichter auf andere FPGAs iibertragen lidsst. Fiir einige Module,
beispielsweise PLLs, hat man nicht die Wahl zwischen Instanziierung und Inferenz.
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Diese Spezialmodule miissen entweder durch eine VHDL-Instanziierung oder durch
einen Blockgenerator im System eingebaut werden. Die ndheren Einzelheiten iiber die
zu verwendenden Bibliothek oder den Aufruf des entsprechenden Moduls in VHDL ist
bei Bedarf in der Dokumentation der Anbieter der Synthesetools zu finden.

8.2.8.4 Beispiel: Inferenz eines Dual-Port-Speichers

FPGAs stellen meist auch sogenannte Dual-Port-Speicher zur Verfiigung. Hierbei han-
delt es sich um Speicher, die zwei getrennte Anschliisse fiir Lese- und Schreibzugriffe
besitzen. Es kann also gleichzeitig von zwei unterschiedlichen Modulen auf die Ele-
mente des Speichers zugegriffen werden.

Dual-Port-Speicher erlauben es, beide Module mit unterschiedlichen Taktfrequen-
zen zu betrieben. In diesem Fall muss die Inferenz des Dual-Port-Speichers mithilfe
zweier getrennter VHDL-Prozesse (ein Prozess fiir jeden der beiden Schreib-Lese-Ports)
beschrieben werden.

Da beide Prozesse auch einen Schreibzugriff auf die Speicherelemente unterstiitzen
miissen, ergibt sich hier eine Besonderheit: Das Speicher-Array kann nicht durch eine
Variable innerhalb einer der beiden Prozesse realisiert werden, da dann der andere Pro-
zess keinen Zugriff auf die Variable hitte. Aber auch die Realisierung mithilfe eines
VHDL-Signals ist nicht moglich: Beide Prozesse wiirden schreibend auf das Array-Sig-
nal zugreifen, was wihrend der Synthese zu Fehlermeldungen fiihren wiirde.

Um diese Problematik zu 16sen, konnen Variablen eingesetzt werden, die (wie Sig-
nale) im Deklarationsteil der Architecture definiert werden und in allen Prozessen der
Architecture sichtbar sind. Diese Art der Variablen wird in VHDL als Shared Variables
bezeichnet. Die Beschreibung eines synchronen Dual-Port-Speichers kann wie folgt rea-
lisiert werden:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity bmem_dp is

generic (
DW : integer := 16; -- Data Width
AW : integer := 10); -- Address Width
port (
-- Port 1
clkl : in std_logic; -- Clock
wel : in std_logic; -- Write enable
al : in std_logic_vector (AW-1 downto 0); -- Address
dil : in std_logic_vector (DW-1 downto 0); -- Data in

al : out std_logic_vector (DW-1 downto 0); -- Data out
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-- Port 2
clk2 : in std_logic; -- Clock
we2 : in std_logic; -- Write enable
a2 : in std_logic_vector (AW-1 downto 0); -- Address
d2 : in std_logic_vector (DW-1 downto 0); -- Data in
a2 : out std_logic_vector (DW-1 downto 0) -- Data out
)

end;

architecture rtl of bmem dp is

type tmem is array(0 to 2**AW-1) of std_logic_vector (DW-1 downto O0);

-- Hier wird die "shared variable" definiert

shared variable mem : tmem := ((others=> (others=>'0"')));

signal gl_sig : std_logic_vector (DW-1 downto 0) := (others=>'0");

signal g2_sig : std_logic_vector (DW-1 downto 0) := (others=>'0");
begin

gl <= gl_sig;
g2 <= g2_sig;

-- Port 1
process begin
wait until rising_edge(clkl);

if (wel = '1') then
mem (to_integer (unsigned(al))) := di;
end if;

gl_sig <= mem(to_integer (unsigned(al)));
end process;

-- Port 2
process begin
wait until rising_edge(clk2);

if (we2 = '1') then
mem(to_integer (unsigned(a2))) := d2;
end if;

g2_sig <= mem(to_integer (unsigned(a2)));
end process;
end;

Natiirlich kann dieser Code auch eingesetzt werden, wenn die beiden Module, die auf
den Speicher zugreifen, identische Taktsignale verwenden. In diesem Fall wird an die

Taktanschliisse clkl und clk2 einfach das gleiche Taktsignal angelegt.

Achtung: Lassen Sie sich nicht dazu verleiten, Shared Variables als Ersatz fiir VHDL-
Signale einzusetzen. Shared Variables konnen zwar von typischen Synthesetools — mit
entsprechenden Warnmeldungen — in Hardware iibersetzt werden, aber das Verhalten von
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Schreibzugriffen aus zwei Prozessen heraus ist fiir Shared Variables nicht eindeutig defi-
niert. Im obigen Fall der Beschreibung eines Speichermoduls ist dies akzeptabel und wird
vom Synthesetool korrekt in einen entsprechenden Dual-Port-Speicher iiberfiihrt. In den
meisten anderen Fillen kann die Verwendung von Shared Variables zu Unterschieden
zwischen Simulation und synthetisierter Hardware fiihren.

8.3  Sprachelemente zur Verifikation

Wie bereits in Kapitel 7 beschrieben, ist die Simulation mit einer Testbench ein wesentli-
cher Schritt zur Verifikation von VHDL-Code. VHDL bietet dabei die Moglichkeit wéh-
rend der Simulation auf Dateien zuzugreifen. Dieses kann zum Beispiel sinnvoll sein, um
Ausgabewerte oder Statusmeldungen wihrend der Simulation in einer Datei abzulegen,
die anschlieBend auch ohne erneuten Simulationsaufruf zur Verfiigung stehen.

Grundsitzlich ist die bindre Ein-/Ausgabe und die Ein-/Ausgabe von Textdateien zu
unterscheiden. Binidre Dateien enthalten die gespeicherten Werte in bindrer Form wih-
rend die gespeicherten Werte in Textdateien im ASCII-Code vorliegen und mithilfe eines
Editors betrachtet und modifiziert werden kénnen.

8.3.1 Binare Ein-/Ausgabe

Um auf eine Datei zugreifen zu konnen, muss in VHDL zunichst ein Dateidatentyp ange-
legt werden. Dies erfolgt mithilfe der Definition eines benutzerdefinierten Datentyps.
Anschliefend wird mithilfe dieses Datentyps ein sogenannter Dateideskriptor angelegt,
welcher fiir alle weiteren Zugriffe auf die verwendet wird. Das nachfolgende Beispiel
zeigt die erforderlichen Definitionen fiir eine Datei, die mit dem Datentyp integer arbeitet.

type my_file_type is file of integer;
file my_ file : my file_type;

Das eigentliche Offnen der Datei erfolgt anschlieBend mithilfe der Prozedur file_
open(). Diese Prozedur erwartet vier Parameter. Der erste Parameter ist vom Datentyp
FILE_OPEN_STATUS. Thm wird der Status nach dem Offnen der Datei zugewiesen. War
das Offnen der Datei erfolgreich, erhilt der Parameter den Wert OPEN_OK. Fiir even-
tuelle Fehlerfille stehen die Werte STATUS_ERROR, NAME_ERROR, MODE_ERROR
zur Verfiigung. Der zweite Parameter ist vom Datentyp FILE. Hier wird der zuvor defi-
nierte Dateidatentyp tibergeben. Der Dateiname wird als dritter Parameter angeben. Ob
die Datei zum Lesen oder Schreiben geoffnet wird, legt der vierte Parameter fest: Mit
READ_MODE wird eine Datei zum Lesen gedffnet, wihrend WRITE_MODE eine zu
schreibende Datei 6ffnet. Sollen Daten an den Inhalt einer bestehenden Datei angehédngt
werden, wird als vierter Parameter APPEND_MODE verwendet.
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Ein mogliches Beispiel fiir das Offnen einer Datei zeigt der nachfolgende
Codeausschnitt:

file_open(my_file_status, my_file, "my_values.dat", WRITE_MODE) ;

Fiir die Ein-/Ausgabe stellt VHDL die Prozeduren read() und write() zur Verfiigung.
Als Parameter werden der Dateideskriptor und eine Variable iibergeben, die den auszuge-
benden Wert enthilt (write) oder welcher der eingelesene Wert zugewiesen wird (read).

Ein Beispiel wie in einem Prozess eine bindre Datei gedffnet und der Schreibzugriff
realisiert wird, zeigt der nachfolgende Code:

process
type my_file type is file of integer;
file my file : my file_type;

variable cnt : integer:= 64;
variable my_ file_status : FILE_OPEN_STATUS;
begin

-- Datei 6ffnen

file open(my_file_status, my_file, "my values.dat", WRITE_MODE) ;

if my file status = OPEN_OK then -- Datei erfolgreich gedffnet?
for i in 1 to 10 loop

write(my_file, cnt); -- Werte in die Datei schreiben
cnt 1= cnt+1;
end loop;
file_close(my_file); -- Datei schliefBen
end if;
wait; -- Diesen Prozess mit einfacher Wait-Anweisung beenden

end process;

8.3.2 Ein-/Ausgabe mit Textdateien

Wihrend fiir die bindre Ein-/Ausgabe keine besonderen Pakete bendtigt werden, muss
fiir den Zugriff auf Textdateien das standardisierte Paket fextio, welches ein Teil der
Standardbibliothek std ist, mithilfe einer Use-Anweisung bekannt gemacht werden.
Dieses Paket umfasst die textuelle Ein-/Ausgabe fiir die im VHDL-Standard definierten
Datentypen. Sollen Daten vom Typ std_logic eingelesen oder ausgegeben werden, steht
das zusitzliche Paket std_logic_textio aus der Bibliothek ieee zur Verfiigung.

Die textuelle Ein-/Ausgabe erfolgt zeilenbasiert. So wird bei der Ausgabe zunichst
eine Textzeile (vom Datentyp line) mit der Write-Prozedur beschrieben. Ist eine Text-
zeile erstellt, kann diese mit der Prozedur writeline() ausgeben werden. Entsprechendes
gilt fiir die Eingabe: Zunichst wird eine Zeile mit der Prozedur readline() eingelesen und
anschliefend mithilfe der Read-Prozedur auf den Inhalt der Zeile zugegriffen.
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Eine Besonderheit ist zu beachten, wenn Zeichenketten (strings) ausgegeben werden
sollen. Die folgenden Zeilen wiirden zu einer Fehlermeldung fiihren:

write (my_line, "Hallo"); -- Fehler! Ist dies wirklich eine Zeichenkette?
write (my_line, "10010"); -- Auch falsch! String oder std_logic_vector?

-- oder etwas anderes ?7??

Bei der ersten Zeile ist es fiir einen Menschen sofort offensichtlich, dass es sich um
eine Zeichenkette vom Datentyp string handelt. Bei der zweiten Zeile ist dies weniger
offensichtlich. SchlieBllich konnte es sich beispielsweise auch um einen Wert vom Typ
std_logic_vector handeln. Damit nun die korrekte Implementierung der Write-Prozedur
aufgerufen werden kann, muss der Datentyp in diesem Fall explizit angeben werden.
Dies gilt auch fiir die eigentlich fiir einen Menschen offensichtlichen Fille. Die explizite
Kennzeichnung des Datentyps erfolgt iiber einen sogenannten Type-Qualifier; dessen all-
gemeine Form wie folgt aussieht:

<Datentyp>"' (<Wert>)

Fiir die obigen Beispiele wiirde der korrekte Code also wie folgt lauten:

write (my_line, string' ("Hallo")); -- Ok! Mit expliziter Typangabe ..
write (my_line, string' ("10010")); -— .. kann die richtige write-Funktion

-- identifiziert werden
Ein Beispiel zur Verwendung der Textausgabe zeigt der nachfolgende Prozess.

process
-- Flr die Angabe des Dateityps kann der im textio-Paket definierte
-- Datentyp text verwendet werden
file my txt_file : text;

variable cnt : integer:= 64;
variable cnt_slv : std_logic_vector (7 downto 0);

variable 1 : line;
variable my_file_status : FILE_OPEN_STATUS;
begin

-- Datei 6ffnen
file open(my_file_status, my_txt_file, "my values.txt", WRITE_MODE) ;

if my file status = OPEN_OK then -- Datei erfolgreich gedffnet?
for i in 1 to 5 loop
write(l, cnt); -- Integer in die Datei schreiben

write(l,string' (" "));
cnt_slv := std_logic_vector(to_unsigned(cnt,8));
write(l,cnt_slv); -- Wert als std _logic _vector schreiben
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writeline (my_txt_file,1);

cnt := cnt+1;
end loop;
file_close(my_txt_file); -- Datei schlieflen
end if;
wait; -- Prozess beenden

end process;

Die Simulation initialisiert die Variable cnf mit dem Wert 64. In einer Schleife wird
cnt als Integer und std_logic_vector fiinfmal ausgegeben und dabei jeweils um 1 erhoht.
Nach Durchfiihrung der Simulation wiirde die Datei my_values.txt den folgenden Inhalt
besitzen:

64 01000000
65 01000001
66 01000010
67 01000011
68 01000100

Beim Einlesen von Dateien kommen den Funktionen endfile() und endline() eine
wichtige Bedeutung zu. Thnen wird als Parameter ein Dateideskriptor oder eine Zeile
tibergeben. Wenn der Riickgabewert (Typ: boolean) der Funktion den Wert true besitzt,
wurde das Ende der Datei beziehungsweise der Zeile erreicht.

Mithilfe der vorgestellten Ein-/Ausgabekonzepte konnen auch Ein- und Ausgaben
auf der Simulatorkonsole erfolgen. Hierfiir sind die Symbole INPUT und OUTPUT
vordefiniert:

write(l,string' ("Hallo Konsole!"));
writeline (OUTPUT, 1) ;

8.3.3 Wait-Anweisungen in Testbenches

In den vorangegangenen Kapiteln wurde die Wait-Anweisung bereits eingefiihrt. Die
Wait-Anweisung wurde verwendet, um sequenzielle Schaltungen vom einfachen D-Flip-
Flop bis hin zu komplexeren endlichen Automaten zu beschreiben. Zur Erinnerung ist
hier noch einmal die VHDL-Beschreibung eines Prozesses angegeben, der die Funktion
eines D-Flip-Flops realisiert:

process begin
wait until rising edge(clk);
g <= d;

end process;
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In diesem Beispiel wird die Ausfiihrung unterbrochen bis eine bestimmte Bedingung,
hier das Auftreten einer steigenden Flanke des Taktsignals clk, wahr ist. Fiir synthetisier-
baren VHDL-Code ist diese Form der Wait-Anweisung ist die am hidufigsten verwendete
Variante. Es gibt jedoch noch weitere Varianten der Wait-Anweisung, die insbesondere
fiir die Erstellung von Testbenches niitzlich sind. Die vier Varianten der Wait-Anweisung
sind in Tab. 8.1 zusammengefasst.

Es ist zu beachten, dass Wait-Anweisungen und Sensitivititslisten einander ausschlie-
Ben. Besitzt ein Prozess eine Sensitivititsliste, darf er keine Wait-Anweisung enthalten.
Wird dagegen eine Wait-Anweisung verwendet, darf der Prozess keine Sensitivititsliste
besitzen. Dariiber hinaus darf synthetisierbarer Code nur eine einzelne Wait-until-Anwei-
sung pro Prozess enthalten. Testbench-Prozesse, die dagegen nur fiir die Simulation
verwendet werden, diirfen beliebig viele Wait-Anweisungen enthalten. Mithilfe der Wait-
Anweisung kann eine Testbench auf recht einfache Weise erstellt werden. Der nachfol-
gende Abschnitt zeigt hierzu ein Beispiel.

8.3.4 Testbench mit interaktiver Uberpriifung

Eine Testbench besitzt keine Eingangs- oder Ausgangssignale. Daher kann die Entity
sehr einfach realisiert werden. Sie besteht im Allgemeinen aus zwei Zeilen:

entity tb is
end;

Im Deklarationsteil der Architecture werden die Signale definiert, die an die Ein- und
Ausginge des zu iiberpriifenden Moduls angeschlossen werden. Im Anweisungsteil der
Architecture wird der Priifling instanziiert und es werden mithilfe eines Prozesses unter-
schiedliche Testvektoren an die zu testende Komponente angelegt.

Die Architecture einer Testbench fiir einen Encoder, welcher einen 4-Bit-Bindrwert in
ein 7-Bit-Codewort fiir eine Sieben-Segment-Anzeige umsetzt, kann wie folgt realisiert
werden:

Tab. 8.1 Formen der Wait-Anweisung

Struktur Beispiel Erlduterung

wait; wait; ,,Fiir immer warten*: Der Prozess wird unterbro-
chen und nie fortgesetzt

wait for <Zeitangabe>; | wait for 10 ns; Prozessunterbrechung fiir einen bestimmten
Zeitraum
wait on <Signalliste>; wait on A, B; Prozessunterbrechung bis ein Wechsel eines Sig-

nals der Signalliste detektiert wird

wait until <Bedingung>; | wait until A = B; | Unterbrechung des Prozesses bis die angegebene
Bedingung wahr ist
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architecture tb_arch of tb is
signal bin_val : std_logic_vector (3 downto 0);
signal sev_seg_code : std_logic_vector (6 downto 0);

begin
dut : entity work.bin2sevenseg -- DUT: Device Under Test
port map (
bin => bin_val,
sevenseg => sev_seg_code) ;
process begin -- Prozess zum Anlegen der Stimuli
bin_val <= "0000";
wait for 10 ns; -- Kurze Wartezeit

bin_val <= "0001";
wait for 10 ns;
bin_val <= "0010";
wait for 10 ns;
-- Hier ggf. weitere Stimuli
wait; -- Test durchlaufen. Der Prozess kann beendet werden.
end process;
end;

Da die Testbench keine Uberpriifung der Ausgabewerte des Priiflings vornimmt, muss
die Korrektheit durch eine manuelle Uberpriifung der erzeugten Waveform erfolgen.
Dieses Vorgehen besitzt den Vorteil, dass der Testbench-Code auf die Erzeugung von Sti-
muli beschrinkt bleibt und daher relativ einfach zu realisieren ist. Ein Nachteil ist, dass
bei der Uberpriifung ein mogliches Fehlverhalten des zu testenden Moduls iibersehen
werden konnte.

8.3.5 Testbench mit Assert-Anweisungen

Sind die erwarteten Ausgabewerte des Priiflings bekannt, kann die Verifikation im Rah-
men auch durch die Testbench selbst erfolgen. Hierzu kann die Assert-Anweisung ein-
gesetzt werden. Diese Anweisung {iberpriift wihrend der Simulation eine angegebene
Bedingung. Ist diese nicht erfiillt, wird eine Meldung ausgegeben. Der Schweregrad der
Verletzung der angegebenen Bedingung kann explizit angegeben werden. Zur Auswahl
stehen hierbei note, warning, error und failure. Welcher Schweregrad zu einem Abbruch
der Simulation fiihrt, kann mithilfe der Aufrufparameter des Simulators ausgewihlt wer-
den. Erfolgt keine Auswahl, fiihren in der Regel die Schweregrade error und failure zu
einem Abbruch der Simulation.
Die folgenden Beispiele zeigen den typischen Aufbau von Assert-Anweisungen:
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-- Signal a wird gegen einen erwarteten Wert a_exp getestet
assert a /= a_exp report "Fehler in der Simulation" severity error;

-- Eine Warnung ausgeben falls der Wert von 1 10 iliberschreitet
assert 1 <= 10 report "i ist groesser als 10" severity warning;

-- Eine Simulation mit Hilfe der Assert-Anwelsung beenden
assert false report "Simulation wird beendet" severity failure;

Die Verwendung der Assert-Anweisung fiir die Verifikation eines UND-Gatters zeigt
der folgende Code. Die erwarteten Ausgabewerte werden in der Variablen g_expected
abgelegt und mit den Ausgabewerten des Priiflings verglichen. Die Variable g_expected
beschreibt, dass die erwartete Ausgabe fiir die Eingangswerte 00, 01 und 10 jeweils O ist.
Nur fiir die Eingabe 11 wird am Ausgang des UND-Gatters eine 1 erwartet. Tritt ein Feh-
ler auf, wird mithilfe einer Assert-Anweisung eine entsprechende Meldung ausgegeben.

process

variable i_sv : std_logic_vector (1 downto O0);

variable g expected : std_logic_vector (3 downto 0) := "1000";
begin

for i in 0 to 3 loop

i_sv := std_logic_vector(to_unsigned(i,2));

a <= 1i_sv(0);

b <= i_sv(l);

wait for 10 ns;

assert g = g _expected(i) report "Fehler!" severity error;
end loop;
wait;

end process;

Die Anwendung der Assert-Anweisung ist nicht auf Testbench-Code beschrinkt.
Auch in synthetisierbaren VHDL-Beschreibungen konnen Assert-Anweisungen einge-
setzt werden, um beispielsweise das Einhalten eines erwarteten Wertebereichs zu iiber-
priifen. Bei der Synthese der VHDL-Beschreibung wird aus den Assert-Anweisungen
keine Hardware generiert. Sie werden vom Syntheseprogramm ignoriert.

8.3.6 Testbench mit Dateiein-/-ausgabe
Hiaufig entsteht bei dem Entwurf eines digitalen Systems der Wunsch Stimuli oder
erwartete Ausgabewerte aus Dateien einzulesen oder Ausgaben der Simulation in einer

Datei abzulegen. Dieses Vorgehen hat verschiedene Vorteile:

e Die Stimuliwerte sind tiibersichtlich in einer Datei zusammengefasst und konnen
leicht gedndert werden.
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e Stimuli- und Erwartungswerte konnen rechnergestiitzt erstellt werden. Dies ist insbe-
sondere dann interessant, wenn ein funktionales Modell des zu entwerfenden Systems
in einer Hochsprache (meist C/C++) erstellt wurde.

e Simulationen benotigen keine interaktiven Eingriffe.

e Die Simulationsergebnisse konnen rechnergestiitzt ausgewertet werden.

e Stimuli und Resultate einer Simulation liegen in einfach lesbarer Form vor und kon-
nen zu Dokumentationszwecken aufbewahrt werden.

Diesen Vorteilen steht gegeniiber, dass der Aufwand zum Erstellen einer Testbench
grofer ist als bei den zuvor skizzierten Ansitzen. In vielen Fillen kann der zusétzliche
Aufwand gering gehalten werden, wenn eine bereits zuvor eingerichtete Testbench wie-
derverwendet werden kann und nur leicht abgewandelt werden muss.

Der nachfolgende Code stellt eine komplette Testbench mit Dateiein-/-ausgabe fiir ein
einfaches logisches Gatter dar. Der Code lisst sich auch auf komplexere Problemstellun-
gen erweitern.

use std.textio.all; -- bei Benutzung der Standard-Bibliothek
-- 1ist keine Library-Anweisung erforderlich
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.std_logic_textio.all;

entity tb is
end;

architecture tb_arch of tb is
signal bin_val : std_logic_vector (3 downto 0);
signal sev_seg_code : std_logic_vector (6 downto 0);

begin
dut : entity work.bin2sevenseg -- DUT: Device Under Test
port map (
bin => bin_val,
sevenseg => sev_seg_code) ;
process -- Prozess zum Anlegen von Stimuli und zum Ueberprufen
-- der Ausgabewerte des ,device under test (DUT)"
file stimuli_file : text; -- Filedeskriptoren anlegen
file resultat_file : text;
variable stim file status : FILE_OPEN_STATUS; -- Filestatus
variable res_file status : FILE_OPEN_STATUS;
variable 1 : line; -- Variable vom Typ line fuer

Text-I0
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variable stim : std_logic_vector (3 downto 0);
variable exp : std_logic_vector (6 downto 0);
variable wailt_time : time;
variable errors_detected : natural := 0;

begin

-- Dateien &6ffnen
file open(stim file_status, stimuli_file, "stimuli.txt", READ_MODE) ;
file open(res_file_status, resultat_file, "result.txt", WRITE_MODE) ;

-- Dateien erfolgreich gedffnet?
if stim file status = OPEN_OK and res_file_status = OPEN_OK then

while not endfile(stimuli_file) loop -- Dateiende?
readline (stimuli_file,l); -- Eine Zeile lesen
read (l,stim); -- Stimuli lesen

bin_val <= stim;

read (l,wait_time); -- Wartezeit lesen

wait for wait_time; -- Warten

read (l,exp); -- Erwarteten Ausgabewert lesen
write (1,stim); -- Stimuli und Ausgabewerte
write (1,string' (" ")); -- in Resultat-Datei schreiben

(
write (1,sev_seg_code);
(

write (1,string' (" "));
assert sev_seg_code = exp

report "Simulation error detected" severity warning;
if sev_seg_code = exp then -- in Resultat-Datei schreiben

write (1,string' ("Ok"));
else
write (1,string' ("Error -- Expected: "));
write (1,exp);
errors_detected := errors_detected + 1; -- Fehlerzaehler+1
end if;
writeline (resultat_file,1);
end loop;
-- Am Ende der Simulation den Fehlerzaehler ausgeben
write (1,string'("-------- "))
writeline (resultat_file, 1) ;
write (1,string' ("Total Error Count: "));
write (1,errors_detected) ;
writeline (resultat_file,1);
write (1,string'("-------- "))
writeline (resultat_file,1);
file close(stimuli_file); -- Dateien schliessen
file close(resultat_file);

end if;
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-- Simulation mit Assert-Anwelisung beenden

assert false report "Simulation finished." severity failure;
end process;
end;

Die Stimulidatei stimuli.txt besitzt ein recht {ibersichtliches zeilenorientiertes Format.
In einer Zeile stehen zunichst die Stimuliwerte. Daran schlie3t sich die Angabe der Zeit
an, die zwischen Anlegen der Stimuliwerte und Auswertung der Ausgangswerte verge-
hen soll. Am Ende der Zeile ist der erwartete Ausgabewert des Priiflings angegeben.

0000 10 ns 0111111
0001 10 ns 0000110
0010 10 ns 1011011
0011 10 ns 1001111
0100 10 ns 1100110
0101 10 ns 1101101
0110 10 ns 1111101
0111 10 ns 0000111
1000 10 ns 1111111
1001 10 ns 1101111
1010 10 ns 1110111
1011 10 ns 1111100
1100 10 ns 0111001
1101 10 ns 1011110
1110 10 ns 1111001
1111 10 ns 1110001

Die durch die Simulation erzeugte Ergebnisdatei sieht beispielsweise wie folgt aus:

0000 0111111 ok
0001 0000110 Ok
0010 1011011 Ok
0011 1001111 Ok
0100 1100110 Ok
0101 1101101 Ok
0110 1111101 Ok
0111 0000101 Error -- Expected: 0000111
1000 1111111 ok
1001 1101111 Ok
1010 1110111 ok
1011 1111100 Ok
1100 0111001 Ok
1101 1011110 Ok
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1110 0000001 Error -- Expected: 1111001
1111 1110001 Ok

Total Error Count: 2

8.4 Ubungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Priifen Sie sich selbst mit den folgenden
Aufgaben. Am Ende des Buches finden Sie die Losungen.
Sofern nicht anders vermerkt, ist nur eine Antwort richtig.

Aufgabe 8.1
Ein Taktsignal soll mithilfe des VHDL-Signals clk modelliert werden. Die Frequenz des
Taktsignals betrdgt 100 MHz. Welche der folgenden Codezeilen ist korrekt?

a) clk <= not clk;

b) clk <= not clk after 5 ns
¢) clk <= clk after 10 ns

d) clk <= not clk after 10 ns

Aufgabe 8.2
Welche Aussagen iiber die Datentypen std_logic und std_ulogic sind korrekt? (Mehrere
Antworten sind richtig)

a) Der Datentyp std_logic besitzt eine ,,Auflosungsfunktion (resolution function), der
Datentyp std_ulogic dagegen nicht.

b) Ein Signal vom Datentyp std_ulogic wird zu Beginn einer Simulation immer auf ‘U’
(undefined) gesetzt. Ein Signal vom Datentyp std_logic erhilt zu Beginn der Simula-
tion immer den Wert ‘0.

c) Die beiden Datentypen sind Teil des VHDL-Standards. Daher konnen sie auch ohne
die Verwendung von Library- und Use-Anweisungen in VHDL-Beschreibungen ein-
gesetzt werden.

d) Erfolgen Zuweisungen an ein Signal vom Datentyp std_logic aus zwei Prozessen her-
aus, fiihrt dies in der Simulation nicht zu einer Fehlermeldung.

Aufgabe 8.3
Welche Aussage iiber die Generics sind korrekt?

a) Bei der Instanziierung eines Moduls konnen auch Signale an die Generics ,,ange-
schlossen‘ werden.
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b) Die Werte, die an die Generics iibergeben werden, miissen zur Ubersetzungszeit bere-
chenbar (zum Beispiel Konstanten) sein.

¢) Generics sind immer vom Datentyp integer.

d) Wird ein Generic verwendet, muss bei der Instanziierung des entsprechenden Moduls
dem Generic immer ein Wert zugewiesen werden.

Aufgabe 8.4
Wie kann ein Prozess mithilfe der Wait-Anweisung (fiir immer) beendet werden?

a) wait forever;
b) wait;

¢) wait until ();
d) wait on;

Aufgabe 8.5
Was gilt fiir Prozesse in Testbenches?

a) Eine Testbench darf nur einen einzelnen Prozess beinhalten.

b) Testbench-Prozesse diirfen mehrere Wait-Anweisungen beinhalten.

c) Testbench-Prozesse diirfen eine Sensitivititsliste besitzen und gleichzeitig eine Wait-
Anweisung beinhalten.

d) Testbench-Prozesse diirfen nur synthetisierbaren Code beinhalten.

Aufgabe 8.6
Gegeben ist der nachfolgende VHDL-Prozess.

process
file my_ file : text;
variable my_ f_status : FILE_OPEN_STATUS;
variable 1 : line;
variable slv : std_logic_vector (3 downto 0);
begin
file _open(my_ f_ status, my_file, "test.txt", WRITE_MODE) ;
if my f_status = OPEN_OK then
for i in 1 to 5 loop
write (1,1);
write (1,string' (" "));
slv := std_logic_vector (to_unsigned(i,4));
write (1,slv);
writeline (my_file,1);
end loop;
end if;
wait;

end process;
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Welche Ausgabe erwarten Sie in der Datei fest.txt?
a.

U W N

001
010
011
100
101

g W N

0001
0010
0011
0100
0101

Uk W N

0001

0010

0011

0100

0101



Programmierbare Logik

In Kapitel 7 wurden programmierbare Logikbausteine bereits kurz vorgestellt. Diese
Bausteine zeichnen sich dadurch aus, dass ihre logische Funktion durch den Anwender
festgelegt werden kann. Viele programmierbare Logikbausteine lassen sich mehrfach pro-
grammieren, so dass sich eventuelle Designfehler innerhalb kurzer Zeit durch eine Neu-
programmierung beheben lassen. Ebenso konnen beispielsweise auch Anderungen der
Spezifikation des Zielsystems selbst in spdten Phasen des Entwicklungsprozesses eingear-
beitet werden. Auf Grund dieser Vorteile haben sich programmierbare Logikbausteine in
vielen Bereichen durchgesetzt. Mit einigen dieser Bausteine lassen sich nur wenige Gatter
ersetzen, andere ermdoglichen dagegen die Realisierung von komplexen digitalen Systemen.

Zur Beschreibung der gewiinschten logischen Funktion wird meist VHDL verwendet.
Der VHDL-Code wird von Software-Tools, die teilweise kostenlos von den Baustein-
Herstellern zur Verfiigung gestellt werden, interpretiert und fiir den Zielbaustein opti-
miert. Das Ergebnis ist eine bindre Datei, die auf die programmierbare Logikkomponente
geladen wird. Erst durch diesen Programmiervorgang erhilt der Baustein seine finale
digitale Funktion.

Die Preise der Bausteine unterscheiden sich erheblich: Wihrend einfache Bausteine
fiir wenige Cent erworben werden konnen, miissen fiir komplexere Bausteine zwei- oder
dreistellige Eurobetrige aufgebracht werden. Auch fiir extrem komplexe Spezialanwen-
dungen stehen Bausteine zur Verfiigung. Da diese Bausteine jedoch eine relativ grofe
Siliziumfliche benétigen und sie nur in relativ kleinen Stiickzahlen verkauft werden,
erreichen die Preise dieser Komponenten vier- oder sogar fiinfstellige Eurobetrige.

Auch wenn der Begriff Programmierbarkeit eine Nihe zu Software-Programmen
nahelegt, handelt es sich dennoch um unterschiedliche Konzepte. Ein Software-Pro-
gramm wird auf einen Computer geladen und dann sequenziell vom Prozessor des Rech-
ners ausgefiihrt. Im Fall programmierbarer Logik wird zwar auch die Information itiber
die auszufiihrende Funktion auf den Baustein geladen, die Ausfiihrung dieser Funktion
geschieht jedoch direkt in Hardware und nicht durch eine sequenzielle Interpretation
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der Befehle eines Computerprogramms. Um den Unterschied der Konzepte deutlich
zu machen, werden programmierbare Logikbausteine auch als konfigurierbare Logik
bezeichnet.

Im Rahmen der folgenden Abschnitte werden zundchst die technischen Grundkon-
zepte programmierbarer Logikbausteine erldutert. Diese werden anschliefend aufgegrif-
fen und es werden unterschiedliche Typen programmierbarer Logikbausteine vorgestellt.

9.1 Grundkonzepte programmierbarer Logik

Fiir die Realisierung eines Bausteins, dessen Funktion erst durch den Anwender festge-
legt wird, konnen zwei grundlegende Konzepte verfolgt werden, die im Folgenden niher
erldutert werden.

9.1.1 Zweistufige Logik

Eine beliebige kombinatorische Funktion l&sst sich mithilfe des KV-Diagramms — oder bei
komplexeren Funktionen mithilfe eines geeigneten Computerprogramms — in eine zwei-
stufige Darstellung iiberfiihren. Wird beispielsweise eine disjunktive Darstellung der Funk-
tion angestrebt, besteht die erste Logikstufe aus UND-Verkniipfungen wihrend in einer
zweiten Stufe ODER-Verkniipfungen verwendet werden. Um einen Baustein zu realisie-
ren, dessen logische Funktion vom Anwender in disjunktiver Form programmiert werden
kann, muss dieser Baustein also eine zweistufige UND-/ODER-Struktur enthalten. Durch
die Auswahl, ob ein Eingangssignal in der UND-Stufe beriicksichtigt wird, konnen die
Produktterme der gewtiinschten Funktion in der UND-Stufe realisiert werden. Die Produkt-
terme werden mit der ODER-Stufe zum Ausgangssignal der Funktion zusammengefasst.

Um die Auswahl der zu beriicksichtigenden Eingangssignale und Produktterme zu
ermoglichen, werden neben UND- und ODER-Gattern elektrische Schalter benétigt, die
die Eingangssignale beziehungsweise Produktterme mit den Eingédngen der Gatter ver-
binden. Soll ein Gattereingang unberiicksichtigt bleiben, wird der Schalter so program-
miert, dass eine logische 1 (bei UND-Gattern) beziehungsweise eine logische 0 (bei
ODER-Gattern) zugefiihrt wird.

Die Grundstruktur eines solchen programmierbaren Logikbausteins ist in Abb. 9.1
dargestellt. Der Baustein besitzt die drei Eingiinge X1, X2 und X3. Die an diesen Ein-
gingen anliegenden Signale konnen den UND-Gattern negiert oder nicht-negiert zuge-
fiihrt werden. In dem dargestellten Beispiel konnen mithilfe der beiden UND-Gatter
insgesamt zwei Produktterme gebildet werden. Wird nur ein Term benétigt, kann einer
der Einginge des nicht benétigten UND-Gatters auf Null gesetzt werden. Auf diese
Weise wird sichergestellt, dass der Ausgang des UND-Gatters, unabhingig von den Wer-
ten der anderen Einginge, den Wert O besitzt und somit in der nachfolgenden ODER-
Stufe nicht beriicksichtigt wird.
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Abb. 9.1 Struktur X1 X2 X3
eines zweistufigen
programmierbaren
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Mit der in Abb. 9.1 gezeigten Beispielprogrammierung werden die Terme P/ und P2
durch die folgenden logischen Gleichung beschrieben:

Pl=X1&X2&X3

beziehungsweise

P2 =X2&X3

Damit ergibt sich der Ausgangswert fiir ¥ zu

Y=PlVvP2=(X1&X2&X3)V (X2&X3)

Mithilfe der dargestellten Schaltung lassen sich beliebige kombinatorische Funktionen
realisieren, wenn diese maximal drei Eingangsvariablen besitzen und sie sich mithilfe
von maximal zwei Termen beschreiben lassen.

Um auch komplexere logische Funktionen realisieren zu koénnen, kann die Grund-
schaltung mit mehr UND-Gattern ausgestattet werden. Sollen dariiber hinaus auch
mehrere Ausgangssignale gleichzeitig berechnet werden, werden weitere ODER-Gat-
ter hinzugefiigt. Es ist nachvollziehbar, dass eine vollstindige grafische Darstellung
eines solchen Bausteins schnell uniibersichtlich werden kann. Daher wird hiufig eine
kompaktere Darstellung gewdhlt, bei der die Eingidnge der UND-Gatter in einem ein-
zelnen Strich zusammengefasst werden. Hierbei entfillt auch die explizite Darstellung
der Schalter. Diese werden durch Punkte ersetzt. Ein gesetzter Punkt deutet an, dass
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der zugehorige Schalter so programmiert ist und damit eine Verbindung zwischen dem
jeweiligen Eingangssignal und der UND-Stufe hergestellt ist. Fehlt der Punkt dagegen,
liegt an dem zugehorigen Eingang des UND-Gatters eine | an.

Fiir das obige Beispiel ist die kompakte Darstellung in Abb. 9.2 abgebildet.

Das in diesem Abschnitt vorgestellte Grundprinzip wird bei sogenannten Programma-
ble Logic Devices (PLDs) verwendet, die in den Abschn. 9.2 und 9.3 niher vorgestellt
werden. Ist neben dem UND-Array auch das ODER-Feld programmierbar, wird meist
der Begriff Programmable Logic Arrays (PLA) verwendet.

Der Vorteil des programmierbaren ODER-Feldes eines PLAs ist es, dass die Pro-
duktterme allen ODER-Verkniipfungen zugefiihrt werden. Wird ein Produktterm fiir
die Berechnung von mehr als einem Ausgang benétigt, muss der Term daher nur einmal
durch die entsprechende UND-Verkniipfung gebildet werden. Dieser Vorteil der PLA-
Struktur muss mit der Programmierbarkeit des ODER-Feldes erkauft werden, was letzt-
lich zu einem hoheren Flichenbedarf des Bausteins und damit zu hoheren Kosten fiihrt.

Ein Beispiel soll die mehrfache Verwendung eines Produktterms verdeutlichen: Es
werden die Funktionen

YI=PIVP2=(X1&X2&X3)V (X2&X3)

Abb. 9.2 Beispiel X1 X2 X3
eines programmierbaren
Logikbausteins in kompakter 1 1 1] "o
grafischer Darstellung
g L2 =1
—Y
g L2
Abb. 9.3 Programmierbarer X1 X2 X3
Logikbaustein mit mehrfach
verwendetem Produktterm 1 1 1
g 2
g 2
g 2
>1 >1

Y1 Y2
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und

Y2=PlVP3=(XI&X2&X3) Vv (X1 &X2)

mithilfe eines PLAs realisiert.
Die Programmierung des PLAs kann dann wie in Abb. 9.3 dargestellt realisiert
werden.

9.1.2 Tabellenbasierte Logikimplementierung

Eine logische Funktion kann auch durch eine Tabelle definiert werden, welche die mog-
lichen Eingangswerte mit den zugehdrigen Ausgangswerten auflistet. Diese tabellarische
Darstellungsform kann fiir eine direkte Implementierung in Hardware verwendet wer-
den. Als Grundelemente werden in diesem Fall statt Gatter sogenannte Lookup-Tabellen
(engl. look-up table, LUT) verwendet. Eine Lookup-Tabelle ist ein kleiner Speicher in
dem fiir alle Eingangskombinationen die jeweiligen Ausgangswerte abgelegt sind.

Besitzt die LUT beispielsweise vier Eingidnge, miissen fiir die Implementierung der
Tabelle 16 Speicherstellen bereitgestellt werden. Die Auswahl, welche der gespeicherten
Werte am Ausgang erscheint, erfolgt durch Anlegen eines 4 bit breiten Wertes an die Ein-
ginge der LUT.

Mochte man eine LUT aus digitalen Grundelementen aufbauen, kann dies beispiels-
weise mithilfe von D-Flip-Flops und einem Multiplexer erfolgen. Ein Beispiel fiir eine
Realisierung einer solchen LUT ist in Abb. 9.4 dargestellt. Dabei wird auf eine genauere
Darstellung der Logik zum Schreiben der gespeicherten Werte aus Griinden der Uber-
sichtlichkeit verzichtet.

Abb. 9.4 Implementierung | ||
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Auch mithilfe einer LUT-basierten Implementierung lassen sich also beliebige logi-
sche Funktionen realisieren, sofern die Anzahl der LUT-Eingiinge ausreichend grof3
gewdhlt ist.

In Abb. 9.5 ist die Realisierung eines UND- und eines ODER-Gatters auf Basis der
LUT mit zwei Eingingen dargestellt. Fiir alle moglichen Kombinationen der Einginge
10 und 11 werden die entsprechenden Ausgangswerte in den Flip-Flops abgespeichert
(0,0,0,1 fiir ein UND-Gatter und 0,1,1,1 fiir ein ODER-Gatter). Der Multiplexer wihlt
anhand der Eingangswerte 10 und /1 einen der vier Flip-Flop-Ausginge aus. In dem Bei-
spiel in Abb. 9.5 liegen am Eingang der LUT die Werte 1 und O an. Hiermit wird das
zweite Flip-Flop ausgewdhlt, in dem im Fall einer UND-Verkniipfung eine 0 beziehungs-
weise im Fall eines ODER-Gatters eine 1 abgelegt ist.

Besitzt die zu realisierende Funktion mehr Eingédnge als die verwendeten LUTs,
miissen mehrere LUTs durch Parallelschaltung und Kaskadierung kombiniert werden.
Welche LUTs wie kombiniert werden miissen, hiingt von der zu implementierenden logi-
schen Funktion ab.

Ein programmierbarer Logikbaustein auf Basis von LUTs muss also neben den pro-
grammierbaren LUTSs auch konfigurierbare Verbindungen zwischen den einzelnen LUTs
zur Verfiigung stellen. So konnen dann auch komplexe Funktionen, bei denen mehrere
LUTs kombiniert werden miissen, mithilfe des Bausteins realisiert werden.

0 0
—b Q — Q
—>C —4>C
1
_ L —-bp a
_>C —>C
I — 1
0 0 1
_>C —>C
1 1
D Q 7 Q
_I>c —>C
1 1
0 0
UND ODER

Abb. 9.5 LUT-basierte Realisierung eines UND- und eines ODER-Gatters
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Das in diesem Abschnitt skizzierte Prinzip der LUT-basierten Implementierung in
Kombination mit einem programmierbaren Verdrahtungskonzept setzen die Field Pro-
grammable Gate Arrays (FPGA) ein. Reale FPGAs realisieren die Speicherelemente der
LUTs zur Reduktion der bendtigten Chipflache auf Basis von speziellen Speichertechno-
logien (zum Beispiel SRAM). Eine detailliertere Diskussion der FPGA-Technologie ist
in Abschn. 9.4 zu finden.

9.2 Simple Programmable Logic Device (SPLD)

Die ersten programmierbaren Bausteine wurden bereits 1971 von der Firma Monoli-
thic Memories Inc. entwickelt und unter dem Namen PAL (Programmable Array Logic)
vermarktet. Heute werden diese Bausteine und ihre Nachfolger hdufig auch als Simple
Programmable Logic Device (SPLD) bezeichnet. Mit diesen Bausteinen lassen sich
kombinatorische Schaltungen in disjunktiver Form realisieren.

Die Eingangssignale werden hierzu in einer Eingangsstufe verstirkt und in negierter
und nicht-negierter Form fiir die weitere Verarbeitung zur Verfiigung gestellt. Die auf-
bereiteten Eingangsgrofien werden einem UND-Array zugefiihrt, welches die bendtigten
Produktterme berechnet. Eine feste Verdrahtung der UND-Ausginge mit den ODER-
Eingédngen sorgt fiir die gewiinschte disjunktive Verkniipfung der Produktterme. Die
Grundstruktur eines PALs entspricht also den in Abschn. 9.1.1 dargestelltem Ansatz
einer zweistufigen disjunktiven Logikimplementierung, bei der die Programmierbarkeit
durch konfigurierbare Verbindungen im UND-Array erreicht wird, wihrend das ODER-
Feld festverdrahtet ist.

Dariiber hinaus bieten die Bausteine die Moglichkeit, einige der Ausginge wahlweise
auch als Fingang zu nutzen. So kénnen auch komplexere Funktionen, die eine hohere
Anzahl an Eingangssignalen benotigen, mithilfe des Bausteins realisiert werden. Die
Ausgidnge werden hierzu mit Tri-State-Treibern versehen, deren Ausgiinge durch eine
entsprechende Programmierung des Bausteins in einen hochohmigen Zustand versetzt
werden konnen. An diesen Anschliissen konnen dann Eingangssignale angelegt werden,
deren Werte ebenfalls im UND-Feld verarbeitet werden kénnen.

Die Grundstruktur eines PAL-Bausteins mit Eingéngen (), Ausgédngen (O) und Ein-/
Ausgiéngen (I/0) ist in Abb. 9.6 dargestellt.

Da mithilfe derartiger Bausteine auch endliche Automaten realisiert werden sollen, ist
es sinnvoll, die hierfiir notwendigen Register auf dem Chip vorzusehen. Daher wurden
neben PALs mit der in Abb. 9.6 gezeigten Struktur auch Bausteine entwickelt, die bereits
D-Flip-Flops enthalten. Die Grundstruktur eines solchen Bausteins zeigt Abb. 9.7.

Eine besondere Eigenschaft von PALs ist es, dass eine einmal programmierte Funk-
tion nicht modifiziert werden kann. Dieser Nachteil wurde mithilfe der sogenannten
GALs (Generic Array Logic) vermieden. Das Grundprinzip dieser Bausteine ist aller-
dings sehr dhnlich. Teilweise konnen GALs auch als Ersatz fiir PALs eingesetzt werden.
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Abb. 9.6
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Die Bedeutung von PALs und GALs ist in den letzten Jahren zuriickgegangen und sie
werden in Neuentwicklungen meist nicht mehr eingesetzt. Obwohl die Bausteine noch
angeboten werden, haben einige Hersteller die Bausteinfamilien bereits abgekiindigt.
Statt der PALs werden heute meist die im nachfolgenden Abschnitt vorgestellten CPLDs
verwendet (Tab. 9.1).

Tab. 9.1 Beispiele einiger PAL-Bausteine

Bezeichnung | Anzahl Eingiinge | Anzahl Ein-/Ausgénge Anzahl Minterme je Ausgang
Ohne Register | Mit Registern

PAL16LS8 10 8 0 7

PAL16R4 8 4 4 7

PAL16R8 0 8 7

PAL20RS 12 0 8 8
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9.3 Complex Programmable Logic Device (CPLD)

Eine Weiterentwicklung des PLA-Konzeptes stellen die sogenannten Complex Pro-
grammable Logic Devices (CPLDs) dar. Viele dieser Bausteine bedienen sich dem
PLA-Konzept und kombinieren mehrere PLA-Blocke mit einer programmierbaren Ver-
bindungsmatrix, die es ermoglicht, die Ausginge eines PLA-Blocks mit den Eingiingen
eines anderen Blocks zu verbinden. Auf diese Weise ist die Implementierung der logi-
schen Funktion nicht allein auf die disjunktive Form beschrinkt. Es konnen auch meh-
rere disjunktive Stufen kaskadiert werden. Dies kann insbesondere bei komplexeren
Funktionen zu einer giinstigeren Realisierung fiihren.

Die Grundstruktur eines CPLDs ist in Abb. 9.8 dargestellt. Neben den programmierba-
ren UND/ODER-Strukturen (PLA) besitzen CPLDs sogenannte Makrozellen (Macro Cell,
MC). Die Makrozellen konnen als eine Erweiterung der Registerstufen einfacher PLA-
Bausteine aufgefasst werden. Der schematische Aufbau der Makrozelle eines CPLDs der
Coolrunner-II-Serie (Fa. Xilinx) ist in Abb. 9.9 dargestellt. Der Kern der Makrozelle ist
ein D-Flip-Flop, dessen D-Eingang mit der PLA-Struktur verbunden ist. Mithilfe eines
Exklusiv-Oder-Gatters kann entschieden werden, ob der durch die UND/ODER-Struktur
berechnete Term nicht-invertiert oder invertiert an das D-Flip-Flop weitergereicht wird.
Die Riickfiihrung des Terms in die Verbindungsmatrix kann sowohl asynchron (Abgriff
vor dem Flip-Flop) oder synchron (Abgriff hinter dem Flip-Flop) erfolgen. Ebenso kann
fiir die Ausgabe eines Wertes ausgewihlt werden, ob diese asynchron oder synchron erfol-
gen soll. Das Flip-Flop der dargestellten Makrozelle besitzt Enable-, Set- und Reset-Ein-
ginge, die ebenfalls mithilfe der PLA-Struktur angesteuert werden.

In der Praxis stellt sich die Frage, welcher CPLD-Baustein zur Losung eines konkret
vorliegenden Problems geeignet ist. Neben der bendtigten Anzahl an Ein- und Ausgéngen
spielt hierbei auch die Frage, wie viele Gatter durch ein bestimmtes CPLD ersetzt werden
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Abb. 9.8 Struktur eines CPLDs auf PLA-Basis
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Abb. 9.9 Schematischer Aufbau einer Makrozelle

konnen, eine wichtige Rolle. Die Antwort auf diese Fragestellung ldsst sich hiufig nicht
alleine durch den Blick auf die Architektur eines CPLDs beantworten. Passt die zu imple-
mentierende Funktion nur schlecht zu der im CPLD-Baustein vorgegebenen Struktur,
wird die Realisierung ineffizient sein, so dass viele Teile der verfiigbaren CPLD-Res-
sourcen nicht genutzt werden konnen. Daneben hat auch die Effizienz der Synthesepro-
gramme, die zum Umsetzen der in VHDL beschriebenen Funktion verwendet werden,
einen nicht unerheblichen Einfluss auf das Ergebnis. In der Praxis wird man daher, sofern
nicht auf Erfahrungswerte aus dhnlich gelagerten Fillen zuriickgegriffen werden kann,
vor der finalen Auswahl eines CPLD Bausteins mehrere Syntheseldufe ausfiithren, um so
den Ressourcenverbrauch fiir unterschiedliche Bausteine abschitzen zu kénnen.

Tab. 9.2 fasst exemplarisch einige wichtige Parameter der CPLD-Familie CoolRun-
ner-II der Firma Xilinx zusammen.

CPLDs werden von mehreren Herstellern angeboten. Die wichtigsten sind Xilinx,
Altera, Lattice, MicroSemi und Atmel. Einige Anbieter, wie die Firmen Altera oder Lat-
tice, setzen als Alternative zu dem hier vorgestellten PLA-basierten Konzept eine LUT-
basierte Realisierung ein, die bis vor einigen Jahren hauptsidchlich im Bereich der im
nachfolgenden Abschnitt beschriebenen FPGAs zu finden war.

Tab. 9.2 Parameter der CPLD-Familie CoolRunner-II (Xilinx)

Baustein
XC2C32A | XC2C64A | XC2C128 | XC2C256 | XC2C384 | XC2C512
Makrozellen 32 64 128 256 384 512
Max. I/Os 33 64 100 184 240 270
Max. Taktfrequenz 323 263 244 256 217 179
Ftom MHZ)
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Tab. 9.3 Parameter der CPLD-Familie MAX V (Altera)

Baustein

SM40Z | SM80Z | 5SM160Z | 5M240Z | SM570Z | 5SM1270Z | 5SM2210Z
Logic Elements 40 80 160 240 570 1270 2210
Aquiv. Makrozellen 32 64 128 192 440 980 1700
Max. I/Os 54 79 79 114 159 271 271
Verzdgerungszeit, 7,5 7,5 7,5 7,5 9,0 6,2 7,0
pin-to-pin (ns)

Um einen Vergleich mit PLA-basierten CPLDs zu unterstiitzen geben die Hersteller
zum Teil an, wie vielen Makrozellen ein CPLD entspricht. Als ein Beispiel hierfiir sind
in Tab. 9.3 einige Parameter der MAX V Serie der Firma Altera angegeben. Das Kernele-
ment dieser CPLDs ist ein Logic Element (LE). Ein Logic Element enthilt eine LUT mit
4 Eingéngen, ein Flip-Flop sowie Logik zum Setzen oder Riicksetzen des Flip-Flops.

9.4 Field Programmable Gate Arrays

Der Begriff Gate Array bezeichnete urspriinglich Bausteine, die aus einem groflen Feld
vorgegebener Logikgatter bestand. Die Verdrahtung der Gatter, und damit die zu reali-
sierende logische Funktion, konnte vom Kunden festgelegt werden. Die Verdrahtung
der Gatter wurde dann im Auftrag des Kunden in einer Halbleiterfabrik realisiert. Auch
die Funktion der heute iiblichen Form der Gate-Arrays, die Field Programmable Gate
Arrays, kann durch den Anwender festgelegt werden. Da die Programmierung elektrisch
erfolgt, sind keine zeitaufwendigen Produktionsschritte in einer Halbleiterfabrik erfor-
derlich: Mithilfe eines Programmiergerites kann die gewiinschte logische Funktion in
wenigen Sekunden auf ein FPGA geladen werden. Da FPGAs zu attraktiven Preisen
angeboten werden, haben Sie sich in vielen Bereichen durchgesetzt. Im Folgenden wer-
den die Grundkonzepte dieser Bausteine niher vorgestellt.

9.4.1 Allgemeiner Aufbau eines FPGAs

Wie bei anderen programmierbaren Logikbausteinen ldsst sich die digitale Funktion
eines FPGAs im Feld programmieren. Ein wesentliches Merkmal von FPGAs ist es, dass
sich deutlich komplexere Funktionen realisieren lassen, als dies mit PALs oder CPLDs
moglich wire. Auch im Hinblick auf die technische Realisierung der ,,Programmierbar-
keit* unterscheiden sich FPGAs von vielen CPLDs. Wihrend einfache Logikbausteine
(hierzu zdhlen wir auch CPLDs) im Kern eine zweistufige UND/ODER-Struktur einset-
zen, basieren FPGAs auf einer tabellenbasierten Implementierung.



274 9 Programmierbare Logik

Die Grundidee eines FPGAs ist relativ einfach: Man realisiert einen Baustein, der
viele kleine Logikblocke enthilt, in denen sich programmierbare Lookup-Tabellen
(LUTs) befinden. Jede LUT besitzt beispielsweise vier Einginge und einen Ausgang.
Die spitere Programmierung der LUTs legt fest, nach welcher logischen Funktion der
Ausgangswert aus den Eingidngen berechnet werden soll. Da fiir die Implementierung
eines digitalen Systems auch Flip-Flops benétigt werden, enthalten die Logikblocke
auch Flip-Flops. Meist sind die gleiche Anzahl an LUTs und Flip-Flops vorhanden, da
dies dem Bedarf in praktischen Schaltungen entspricht. Dabei wird jeder LUT ein FF
zugeordnet, so dass der Ausgangswert einer LUT auch innerhalb eines Logikblocks
gespeichert werden kann.

Fiir die Verbindungen zwischen den Logikblocken wird ein Verbindungsnetzwerk ein-
gesetzt. Die Programmierbarkeit des Verbindungsnetzwerkes wird durch programmier-
bare Schalter erreicht (Switch Matrix). Die Funktionsweise des Verbindungsnetzwerkes
kann man mit Gleisen einer Eisenbahn vergleichen: Sollen Daten von einem Logikblock
an einen bestimmten anderen Logikblock gesendet werden, werden die ,,Weichen* inner-
halb des Netzwerkes so programmiert, dass eine elektrische Verbindung zwischen den
beiden Logikblocken hergestellt wird. Im Gegensatz zu einer Eisenbahnverbindung wer-
den die Weichen nicht dynamisch im Betrieb umgeschaltet, sondern sie werden nach
dem Einschalten einmalig fiir die gewiinschte logische Funktion konfiguriert.

Durch die Programmierbarkeit der Logik-Blocke und des Verbindungsnetzwerkes,
konnen komplexe logische Funktionen durch die Kombination mehrerer LUTs umge-
setzt werden. Die maximale Komplexitidt der Gesamtfunktion ist natiirlich durch die
Anzahl der verfiigbaren Logikblocke begrenzt.

Dariiber hinaus ist es natiirlich auch denkbar, dass das Verdrahtungsnetzwerk der limi-
tierende Faktor einer FPGA-basierten Systemimplementierung ist, wenn eine sehr auf-
wendige Signalverdrahtung benétigt wird. In diesem Fall konnen nicht alle vorhandenen
LUTs genutzt werden.

Neben den Logikblocken und dem Verbindungsnetzwerk enthalten FPGAs auch
Ein-/Ausgabeblocke (10-Blocks oder kurz I0Bs). Mithilfe dieser Blocke kann unter ande-
rem eine Anpassung von Logikpegeln erfolgen. Arbeitet ein FPGA beispielsweise mit
einer internen Versorgungsspannung von 1,8 V, konnen die Pegel der internen Signale mit-
hilfe der IOBs so angepasst werden, dass sie auch Bausteinen mit einer Versorgungsspan-
nungsspannung von 3,3 V zugefiihrt werden kénnen. Daneben stehen in den IOBs auch
Funktionen zur Verfiigung, die fiir eine besonders schnelle Ein-/Ausgabe hilfreich sein
konnen. Ein Beispiel hierfiir sind IOB-interne Parallel-Seriell-Wandler, die auf Schiebe-
registern basieren (Serializer). Ausgabedaten werden von den Logikblocken parallel (zum
Beispiel 4 oder 8 bit) an die IOBs herangefiihrt. Innerhalb des IOBs werden die Daten
»serialisiert”, das heiflt Bit fiir Bit am duBeren Anschluss des FPGAs ausgegeben. Auf
diese Weise kann eine hohe Datenrate am Ausgang des FPGAs realisiert werden, obwohl
die Implementierung der logischen Funktion innerhalb des FPGAs vergleichsweise lang-
sam ist. Fiir die Eingabe konnen De-Serializer eingesetzt werden, welche die Daten seriell
einlesen und fiir die FPGA-interne Logik in paralleler Form zur Verfiigung stellen.
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Die Grundstruktur eines FPGAs, das aus Logik-Blocken, IO-Blocken und einem Ver-
bindungsnetzwerk besteht, ist in Abb. 9.10 dargestellt.

Der Aufbau eines einfachen Logikblocks ist in Abb. 9.11 dargestellt. Die meisten
Einginge und Ausginge sind mit dem Verbindungsnetzwerk verbunden. Dariiber hinaus
existieren die Anschliisse CIN und COUT, die mit dem Block Carry/Control-Logic ver-
bunden sind. Mithilfe dieser Anschliisse und der zugehorigen Logik wird ein besonders
schneller Durchlauf der Ubertragsbits eines Addierers ermoglicht. Mithilfe dieser beson-
deren Carry-Logik kann die Verzogerungszeit der Addition deutlich reduziert werden.



276 9 Programmierbare Logik

9.4.2 Taktverteilung im FPGA

In digitalen Systemen werden die Datenausgabe und die Dateniibernahme der Flip-Flops
mithilfe von Taktsignalen gesteuert. Im Idealfall ,,sehen* alle Flip-Flops eines Systems
zum gleichen Zeitpunkt die steigende Flanke eines Taktsignals. In der Praxis ldsst sich
dieser Idealfall nicht realisieren, da Taktsignale, wie alle anderen Signale, iiber Leitun-
gen des Chips an die Flip-Flops herangefiihrt werden miissen. Reale Leitungen besitzen
eine Verzogerungszeit, so dass Flip-Flops, die nah an einer Taktquelle platziert sind, eine
steigende Flanke etwas eher sehen als ein Flip-Flop, das am Ende einer Taktleitung liegt.

Dass dies ein potentielles Problem fiir die Realisierung eines Systems darstellen kann,
macht folgendes Beispiel deutlich: Nehmen wir vereinfachend an, dass die verwendeten
D-Flip-Flops eine Setup-Zeit und ein Clock-to-Q-Delay (also die Zeit, die benotigt wird, um
nach der steigenden Taktflanke den im Flip-Flop gespeicherten Wert am Ausgang zur Ver-
fiigung zu stellen) von jeweils 1 ns besitzen. Nehmen wir weiterhin an, die Logik und die
Verdrahtung zwischen zwei derartigen Flip-Flops habe eine Verzogerungszeit von 3 ns. Mit
diesen Werten wiirde sich eine minimale Taktperiode von I ns + 1 ns 4+ 3 ns = 5 ns ergeben.
Dieses System kann also bei idealer Taktverteilung mit maximal 200 MHz betrieben werden.

Erhilt das zweite Flip-Flop die steigende Flanke friiher als das erste Flip-Flop, ver-
grofert sich die maximale Periodendauer entsprechend, da das empfangende (zweite)
Flip-Flop bereits friiher stabile Daten am Eingang erwartet. Nehmen wir an, die zeitliche
Verschiebung des Taktsignals (im Fachjargon auch Clock Skew genannt) betrage 2 ns.
Dann wiirde sich die minimale Taktperiode um diese 2 ns auf 7 ns erhthen und damit die
maximale Taktfrequenz des Systems auf etwa 140 MHz absinken.

Was kann man also tun? Nun, die Signalverzégerungen beruhen auf physikalischen
Gesetzen und konnen daher nicht eliminiert oder umgangen werden. Aber ein ers-
ter Schritt zur Problemlosung ist es, die Verzogerungen des Taktsignals innerhalb des
Chips zu kennen. Auf Basis dieser Kenntnis kann fiir jedes Flip-Flop, dessen Ausgang
mit einem anderen Flip-Flop verbunden ist, die Verzogerung des Taktsignals abgeschitzt
und bei der Logik-Synthese entsprechend beriicksichtigt werden. Aber natiirlich 16st
dies noch nicht das eigentliche Problem, dass grofie Verzogerungen des Taktsignals zu
einer signifikanten Reduktion der Systemfrequenz und damit der Rechenleistung fiihren
konnen. Um dieses zu Problem zu reduzieren, setzen FPGAs spezielle Verbindungsnetz-
werke zur Verteilung der Taktsignale ein. Ein Beispiel fiir den Aufbau eines Taktnetz-
werks mit zentralen Taktreibern ist in Abb. 9.12 dargestellt.

Die Taktsignale werden baumartig im System verteilt. Auf diese Weise wird erreicht,
dass der Clock-Skew in einem akzeptablen Rahmen gehalten werden kann und es kann
davon ausgegangen werden, dass Flip-Flops, die sich in ortlicher Nidhe befinden, in etwa
das gleiche zeitliche Verhalten des Taktes sehen. Werden zwei Flip-Flops, die weit vonei-
nander entfernt liegen, miteinander verbunden, kann hierbei natiirlich weiterhin ein sig-
nifikanter Clock-Skew auftreten. So sehen zum Beispiel Flip-Flops, die in der Nihe der
Takttreiber liegen, die steigende Flanke deutlich eher als Flips-Flops, die in den Ecken
des FPGAs platziert sind.
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Abb. 9.12 Taktnetzwerk mit
zentralen Takttreibern

Takt-Treiber

Mit Fortschreiten der Halbleitertechnologie wird dieses Problem verschirft: Einer-
seits steigen die erzielbaren Taktfrequenzen kontinuierlich an, wodurch die Verzégerun-
gen durch das Taktverteilungsnetzwerk immer deutlicher spiirbar werden. Andererseits
werden die geometrischen Abmessungen der Leitungen kleiner, was zu einem hoheren
Widerstand und damit zu langsameren Pegelwechseln fiihrt. Um den Nachteil der zentra-
len Taktpufferung zu reduzieren, werden in modernen FPGAs Taktreiber eingesetzt, die
tiber den Chip verteilt sind. Auf diese Weise wird die Leitungslinge zwischen Takttreiber
und Takteingang der Flip-Flops reduziert und damit der Clock-Skew deutlich reduziert.

Aus diesen Erlduterungen zum Aufbau des Taktnetzwerkes ergibt sich auch, dass man
niemals ein Taktsignal aus einer logischen Funktion heraus generieren sollte, da die-
ses Taktsignal nicht iiber das Taktnetzwerk gefiihrt werden kann und somit signifikante
Clock-Skew-Probleme die Folge sein konnen. Da das Taktsignal iiber Gatter gefiihrt
wird, wird dies in der Praxis auch als Gated Clock bezeichnet. Insbesondere Anfingern
im FPGA-Design unterlduft nicht selten der Fehler, dass versehentlich Gated Clocks in
einem VHDL-Entwurf realisiert werden, indem zum Beispiel ein Ausgangssignal eines
Moduls einfach mit dem Takteingang eines anderen Moduls verbunden wird. Syntak-
tisch ist dies vollig korrekt und auch in der Simulation der Schaltung wird man hiufig
keine unerwarteten Ergebnisse sehen. Um das Risiko zu minimieren, dass versehent-
lich Gated Clocks in einem VHDL-Entwurf eingebaut werden, sollten die Takteinginge
aller VHDL-Module mit einem (wenn im System nur ein Takt verwendet wird: mit dem
gleichen) Taktsignal verbunden werden. Jegliche logische Verkniipfungen (und seien sie
noch so simpel) eines Taktsignals mit anderen Signalen sollten vermieden werden.

9.4.3 Typische Spezialkomponenten

Um die Implementierung von logischen Funktionen besser zu unterstiitzen, enthalten
heutige FPGAs vielfach Spezialkomponenten, die zusitzlich zu den Logikblocken fiir
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die Implementierung eines Systems verwendet werden konnen. In diesem Abschnitt wer-
den die wichtigsten dieser Elemente kurz vorgestellt.

Mit Spezialkomponenten wird das Ziel verfolgt, eine bestimmte hdufig genutzte
Funktion moglichst effizient zur Verfiigung zu stellen. Die Instanziierung dieser Module
wird héufig von den Designtools unterstiitzt.

9.4.3.1 Speicherelememente

In vielen Fillen ist fiir die Realisierung eines Systems auch die Speicherung von Daten
erforderlich. Wird eine sehr groBe Speicherkapazitit bendtigt, ist in der Regel ein exter-
ner Speicher auflerhalb des FPGAs unvermeidbar. Ist der benétigte Speicherbedarf
jedoch kleiner, ist eine Speicherung der Daten innerhalb des FPGAs wiinschenswert, da
so schneller und flexibler auf die Daten zugegriffen werden kann.

Da eine LUT letztlich auch ein kleiner Speicher ist, liegt die Idee nahe, die verfiig-
baren LUTSs zu einem Speicher mit der benédtigten Kapazitit zu verbinden. Dieses Prin-
zip wird von FPGAs unterstiitzt und man spricht in diesem Fall von verteiltem Speicher
(Distributed Memory). Der Nachteil dieses Ansatzes ist, dass die wertvollen Ressourcen
der Logikblocke fiir die Speicherung von Daten eingesetzt werden und nicht mehr fiir die
Implementierung von logischen Funktionen zur Verfiigung stehen.

Daher bieten heutige FPGAs auch Speicher in Form von sogenanntem Block-RAM an.
Hierbei handelt es sich um mehrere kleine Speicher (meist in der Gro3e weniger kByte),
die auf dem FPGA-Chip verteilt sind. Der Vorteil von Block-RAM ist, dass die erziel-
bare Speicherdichte, also Bits pro Siliziumfliche, um ein Vielfaches grofBer ist als bei
der Verwendung von Distributed Memory. Daher bietet sich die Verwendung von Block-
RAM immer dann an, wenn ein grolerer Speicher bendtigt wird beziehungsweise die
Ressourcen zur Implementierung von Logik knapp sind.

Um den Speicher fiir verschiedene Anwendungen moglichst gut nutzen zu konnen,
ist die Wortbreite der Block-RAMs konfigurierbar. Beispielsweise besitzen die Block-
RAMs der Cyclone-V-FPGAs (Fa. Altera) eine Groe von 9 kbit. Der Speicher kann mit
Wortbreiten zu 1, 2, 4, 8, 9, 16, 18, 32 oder 36 genutzt werden, wobei die maximale
Anzahl der Worte immer eine Zweierpotenz ist. Da die Gesamtkapazitit festliegt, nimmt
die maximale Anzahl der Speicherworte mit der Wortbreite ab. So kann ein einzelner
dieser Speicher zum Beispiel 8192 Worte mit einer Breite von 1 bit aufnehmen oder
aber auch fiir die Speicherung von 512 16-Bit-Worten genutzt werden. Wortbreiten von
9, 18 und 36 bit werden unterstiitzt, da diese in der Kommunikationstechnik verwendet
werden.

FPGA-internes Block-RAM wird meist als Dual-Port-Speicher implementiert, der
zweil Schreib-/Leseanforderungen gleichzeitig bearbeiten kann. Diese Eigenschaft ist
zum Beispiel dann vorteilhaft, wenn ein Modul Daten generiert, die vor der Verarbeitung
durch ein zweites Modul zwischengespeichert werden miissen. Beide Module konnen
dann unabhiingig voneinander auf den Speicher zugreifen. Eine Arbitrierungslogik, die
festlegt welches der beiden Module auf den Speicher zugreifen darf, kann dann entfallen.
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9.4.3.2 Arithmetische Module

Eine hiufig benotigte arithmetische Operation ist die Multiplikation. Daher beinhalten
die meisten aktuellen FPGAs spezielle Multiplizierer-Module, die gegeniiber einer LUT-
basierten Implementierung der Multiplikation den Vorteil einer geringeren Verzogerungs-
zeit bieten. Dariiber hinaus kann durch die Verwendung der Hardware-Multiplizierer die
Anzahl der benétigten Logikblocke reduziert werden.

In modernen FPGAs wird das Konzept zur Unterstiitzung arithmetischer Funktio-
nen hdufig erweitert und es stehen nicht nur Multiplizierer zur Verfiigung. Der FPGA-
Hersteller Xilinx bietet beispielsweise sogenannte ,,DSP-Slices* an. Hierbei handelt es
sich um Module, die neben einem Multiplizierer auch einen Addierer und einen Akku-
mulator enthalten. Mithilfe dieser Module sollen insbesondere Anwendungen der digi-
talen Signalverarbeitung (Digital Signal Processing, DSP) unterstiitzt werden.

Die meisten angebotenen arithmetischen Module sind fiir die Verarbeitung von gan-
zen Zahlen ausgelegt. Einige FPGA-Serien, wie zum Beispiel Stratix-10 der Firma
Altera, stellen auch Spezialhardware zur Verarbeitung von Gleitkommazahlen bereit.

9.4.3.3 Takterzeugung

FPGAs enthalten meist auch Komponenten zur Erzeugung von intern verwendeten Takt-
signalen. Diese Komponenten beinhalten meist eine Phasenregelschleife (engl. Phase-
Locked Loop, PLL), die es ermoglicht, aus einem Eingangstaktsignal Ausgangssignale
zu erzeugen, deren Frequenz und Phasenlage aus dem Eingangssignal abgeleitet wird.
Teilweise kommen auch DLLs (Delay-Locked Loop) zum Einsatz.

Die Quelle des Fingangstaktes einer PLL kann entweder ein von auflen zugefiihrtes
Signal oder ein bereits im FPGA (zum Beispiel durch eine weitere vorgeschaltete PLL)
vorhandenes Taktsignal sein.

Die PLLs der meisten FPGAs erlauben die gleichzeitige Erzeugung mehrerer Takt-
signale aus einem einzelnen Eingangstakt, wobei die Frequenzen der erzeugten Signale
sowohl kleiner als auch grofBer als die Frequenz des Eingangstaktes sein konnen. Neben
der einfachen Erzeugung unterschiedlicher Systemtaktsignale kénnen die PLLs auch zur
Synchronisierung des externen Taktsignals mit den intern verwendeten Takten verwendet
werden. Dies ist insbesondere dann hilfreich, wenn die Eingangsdaten des FPGAs syn-
chron zur Verfiigung gestellt werden.

Das Blockschaltbild einer PLL zeigt Abb. 9.13. Die Phasenlage eines von auflen zuge-
fiihrten Taktes wird mit einem Referenztakt verglichen. Mithilfe einer Regelung wird ein
analoges Signal erzeugt, welches einem spannungsgesteuerten Oszillator (Voltage-Cont-
rolled-Oscillator, VCO) zugefiihrt wird. Durch Teilung des Oszillatortaktes werden die
Ausgangssignale der PLL sowie der zum Phasenvergleich zuriickgefiihrte Referenztakt
erzeugt.

9.4.3.4 Spezialisierte Peripheriemodule
Viele FPGAs bieten spezielle Peripheriemodule an, die Schnittstellen mit besonders kri-
tischen Zeitanforderungen besitzen. Ein typisches Beispiel fiir derartige Module sind
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Abb. 9.13 Aufbau einer PLL

Speicher-Controller. In ilteren FPGA-Generationen musste die Speicheranbindung
noch mithilfe der Standard-FPGA-Ressourcen (Logikblocke, I0-Blocke) erfolgen. Dass
hierbei wertvolle Ressourcen fiir eine standardisierte und hiufig benédtigte Funktion
eingesetzt werden miissen, ist eher ein untergeordnetes Problem. Viel schwerwiegen-
der ist hiufig das Problem, dass die maximalen Taktfrequenzen, und damit die erziel-
bare Speicherbandbreite, bei einer Implementierung mit den tiblichen FPGA-Ressourcen
begrenzt sind. Um die hohen Datenraten wie sie von modernen Speicherbausteinen ange-
boten werden, auch fiir ein FPGA-basiertes Design nutzbar zu machen, werden spezi-
alisierte Speichercontroller benotigt. Diese Komponenten sind fiir die Anbindung von
externem Speicher optimiert und unterstiitzen Datenraten von mehreren GByte/s, die
sich mithilfe von Logikblocken nicht realisieren lieBen. In einem beschrinkten Umfang
konnen diese Module konfiguriert werden. So sind zum Beispiel die Auswahl des Spei-
chertyps oder auch einige Eigenschaften der FPGA-internen Schnittstelle wihlbar.

Ein anderes Beispiel fiir ein spezielles Peripheriemodul ist eine PCI Express (PCle)
Schnittstelle. Der PCIe-Bus hat sich als wichtiger Standard fiir die Verbindung von Kom-
ponenten etabliert. Da die Implementierung einer PCle-Schnittstelle besondere Anforde-
rungen (insbesondere im Hinblick auf das Zeitverhalten) stellt, ist eine Implementierung
mit Standard-FPGA-Ressourcen schwierig und aufwendig. Dieser Nachteil wird durch
die Bereitstellung von PCle-Hard-Macros vermieden und die entsprechende Funktion
kann so effizienter und mit geringerem Aufwand implementiert werden.

9.4.3.5 Prozessor-Subsysteme
Hiufig besteht der Wunsch, Teile eines Systems ,,in Hardware* auf einem FPGA, andere
Teile dagegen ,,in Software* auf einem Mikroprozessor zu implementieren.

Natiirlich kann ein Mikroprozessor auch mithilfe von Logikblocken implementiert
werden. Die FPGA-Hersteller bieten hierzu entsprechende Prozessordesigns (zum Bei-
spiel NIOS der Firma Altera oder Microblaze der Firma Xilinx) mit den zugehorigen
Werkzeugen zur Softwareentwicklung an. Da diese Prozessoren mithilfe der flexibel ein-
setzbaren programmierbaren Logikkomponenten implementiert werden, werden sie auch
als Soft-Prozessoren bezeichnet. Allerdings gilt auch fiir diese Losungen, dass ihre Effi-
zienz eher als moderat anzusehen ist.
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Wire es da nicht logisch, in einem FPGA neben den spezialisierten Hard-Makros
auch Prozessoren — oder am besten gleich ganze Prozessorsysteme — anzubieten?

Genau dieser Ansatz wird von einigen Herstellern verfolgt. So bieten zum Beispiel
die Firmen Xilinx und Altera Chips an, die neben einem FPGA-Teil auch Multikern-
Rechner-Systeme beinhalten. Die maximalen Taktfrequenzen, und damit die erzielbare
Rechenleistung dieser Systeme erreichen ein Vielfaches von dem der Soft-Prozessoren.
Da diese Chips nicht mehr als reine FPGAs anzusehen sind, werden sie von den Her-
stellern unter dem Begriff System-on-Chip (SoC) vermarktet. Dieser Begriff soll deutlich
machen, dass es sich um komplette Systeme handelt, deren Funktion sich als Kombina-
tion von Software (auf dem CPU-Subsystem) und Hardware (auf dem FPGA-Teil) fest-
legen lésst.

9.5 FPGA-Familien

Der FPGA-Markt ist auf den ersten Blick relativ uniibersichtlich. Es gibt unterschied-
liche Anbieter, wobei die Firmen Xilinx und Altera (inzwischen von der Firma Intel
tibernommen) zusammen ca. 90 % des Marktes bedienen. Die Hersteller bringen
schritthaltend mit der Weiterentwicklung der Halbleitertechnik etwa alle 2 Jahre eine
neue Bausteingeneration heraus. Innerhalb dieser Generationen werden wiederum
unterschiedliche Familien angeboten, die FPGAs mit dhnlichen Grundeigenschaften
beinhalten, sich aber im Hinblick auf die Komplexitit (Anzahl der Logikblocke und
Hard-Makros, GroBe des internen Speichers usw.) unterscheiden.

Die Bausteine einer Generation werden hdufig in einer besonders preisgiinstigen
,,Low-Cost“-Familie und einer besonders leistungsstarken ,,High-Performance*-Familie
angeboten. Daneben werden teilweise auch ,,Mid-Range*-Familien angeboten, die einen
Mittelweg zwischen den beiden anderen Familien bieten (vgl. Tab. 9.4).

Durch die Fortschritte der Halbleitertechnologie steigt die Leistungsfahigkeit von
Generation zu Generation an. So bieten aktuelle Low-Cost-Familien teilweise Eigen-
schaften an, die den High-Performance-Familien zuriickliegender Generationen ent-
sprechen. Tab. 9.5 fasst den Zeitpunkt der Einfiihrung und die jeweils verwendete

Tab.9.4 Auswahl einiger FPGA-Familien und ihre Marktpositionierung

Altera | Familie Stratix Arria Cyclone
Altera | Positionierung | ,,High density, high ,.Balance of ,.Low system cost plus
performance* cost, power and performance*

performance*

Xilinx | Familie Virtex Kintex Artix

Xilinx | Positionierung | ,,System performance* | ,,Price Performance »System performance
with low power* per Watt for cost sen-

sitive applications™
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Tab.9.5 Zeitpunkt der Markteinfiihrung und verwendete Halbleitertechnik der Stratix-Familie
(Fa. Altera)

Generation/Name Stratix | Stratix II | Stratix III | Stratix IV | Stratix V| Stratix
10

Jahr der Einfiihrung 2002 2004 2006 2008 2010 2013

Halbleitertechnologie(nm) | 130 90 65 40 28 14

Halbleitertechnologie fiir das Beispiel der High-Performance-Familie Stratix der Firma
Altera zusammen. Die jeweils verwendeten Produktionstechnologien entsprechen in
etwa denen, die auch bei der Produktion von anspruchsvollen Spitzenprodukten wie PC-
Prozessoren, zum Einsatz kommen. Genauso wie bei PC-Prozessoren wird also auch bei
der Produktion von FPGAs angestrebt, die neueste verfiigbare Produktionstechnologie
einzusetzen.

9.5.1 Vergleich ausgewdhlter FPGA-Familien

Innerhalb der Stratix-Familie werden unterschiedliche Bausteine angeboten. Eine Uber-
sicht iiber die Eigenschaften dieser FPGAs ist in Tab. 9.6 zusammengefasst. Die Abkiir-
zung ALM (Adaptive Logic Module) ist eine Hersteller-spezifische Abkiirzung. Die
wesentlichen Elemente eines ALM sind eine LUT mit 7 Eingéingen, Logik fiir schnelle
Addition und 4 Register.

Zum Vergleich zu der High-Performance-Familie Stratix 10 fasst Tab. 9.7 einige der
Eigenschaften von Vertretern der Familie Cyclone V zusammen.

Die interne Speicherkapazitit ldsst sich relativ leicht, auch iiber FPGA-Generationen
hinweg, vergleichen. Ein Vergleich der Logikelemente ist dagegen schwieriger, da der
Aufbau der programmierbaren Grundelemente von Generation zu Generation wechseln
kann. Ein einfacher Vergleich der Anzahl der ALMs ist nicht unbedingt zielfiihrend, weil
sich ALMs unterschiedlicher Generationen in ihrem Aufbau unterscheiden konnen. Fiir
einen groben Vergleich unterschiedlicher Bausteine gibt die Firma Altera daher das Maf3

Tab.9.6 Ubersicht iiber einige Eigenschaften von ausgewihlten FPGAs der Stratix-10-Familie

Bezeichnung GX500 | GX1100 GX2500 GX5500
Anzahl ALMs 164.160 | 370.080 821.150 1.867.680
Anzahl Flip-Flops 656.640 |1.480.320 |3.284.600 |7.470.720
Speicher (Mbit) 46 92 208 166
Arithmetik-Module fiir Signalverarbeitung 1.152 2.250 5.011 1.980
Multiplizierer (18 x 19 bit) 2.304 5.040 10.022 3.960
PCle-Makros 1 2 6 3
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Tab. 9.7 Ubersicht iiber einige Eigenschaften von ausgewiihlten FPGAs der Cyclone-V-Familie

Bezeichnung 5CGXC3 |5CGXC5 | 5CGXC7 |5CGXC9
Anzahl ALMs 13.460 29.080 56.480 113.560
Anzahl Flip-Flops 53.840 116.320 225920 | 454.240
Speicher (Mbit) 1,6 4,8 7,6 13,8
Arithmetik-Module fiir Signalverarbeitung 57 150 156 342
Multiplizierer (18 x 18 bit) 114 300 312 684
PCle-Makros 1 2 2 2

Logic Elements (LE) an, das die verfiigbaren ALMs in fiktive Grundelemente umrechnet.
Einige der angebotenen FPGAs der Firma Altera sind auch als ,,SoC-Varianten* verfiig-
bar, die zusitzlich zum FPGA-Teil ein Multikern-CPU-Subsystem beinhalten.

Der Hersteller Xilinx verwendet zur Angabe der FPGA-Komplexitit die Begriffe
Slice beziehungsweise Complex Logic Block (CLB). Ein CLB der ,,Ultrascale*“-FPGAs
enthilt beispielsweise 8 LUTs mit jeweils 6 Eingéngen, Addiererlogik und 16 Flip-
Flops. Einige Parameter von Bausteinen der Kintex- beziehungsweise Virtex-Ultrascale-
Familie sind in Tab. 9.8 zusammengefasst.

Fiir besonders kostensensitive Systeme bietet Xilinx die Artix-7-Serie an. Diese ist
dhnlich positioniert wie die Cyclone-Serie von Altera. Ebenso wie Altera bietet auch die
Firma Xilinx Bausteine an, die CPU-Subsysteme enthalten. So enthélt beispielsweise die
Zynq-7000-Serie ein Subsystem, das auf einem Zweikern-System basiert, wihrend mit
der Zyng-Ultrascale 4 -Serie ein Prozessorsystem zum Einsatz kommt, das insgesamt
6 Prozessoren zur Verfiigung stellt. Die CPUs dieser Serie werden durch Hard-Makros
unterstiitzt, die fiir Beschleunigung von 3D-Grafik- oder Videofunktionen ausgelegt sind,
so dass die anderen Ressourcen (FPGA-Teil oder Prozessoren) entlastet werden.

Obwohl in diesem Abschnitt bereits viele Zahlen prisentiert werden, welche
die Eigenschaften kommerziell angebotener FPGA-Familien beschreiben, ist diese

Tab.9.8 Ubersicht iiber einige Eigenschaften von ausgewihlten FPGAs der Kintex- und der
Virtex-Ultrascale-Familie

Kintex Virtex
Bezeichnung KU035 |KU060 | KU115 XCVU065 | XCVUI125 | XCVU440
Anzahl CLBs 25391 |41.460 | 82.920 44.760 89.520 316.620
Anzahl Flip-Flops 406.256 | 663.360 | 1.326.720 | 716.160 1.432.320 |5.065.920
Block-RAM (Mbit) 19,0 38,0 75,9 443 88,6 88,6
Arithmetik-Module 1.700 2.760 5.520 600 1.200 2.880
fiir Signalverarbeitung
(DSP-Slices)
PCle-Makros 2 3 6 2 4 6
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Darstellung nur ein kleines Schlaglicht auf das umfangreiche Angebot der FPGA-Her-
steller. Betrachtet man alleine die Anzahl der zur Verfiigung gestellten Flip-Flops, so
liegt beispielsweise zwischen dem kleinsten Baustein der Cyclone-V-Serie und dem
groften Baustein der Stratix-10-Serie ein Faktor von etwa 140. Fiir den internen Spei-
cher (Block-RAM) betrégt das Verhiltnis etwa 100. Vergleichbare Faktoren ergeben sich
auch fiir die Bausteine des Herstellers Xilinx.

Um die absoluten Zahlen einordnen zu konnen, kann folgendes Beispiel eines Sys-
tems zur Verarbeitung von Videosignalen dienen. Das System besitzt eine Kame-
raschnittstelle mit Anbindung zum externen Speicher, Module zur Verarbeitung der
Bilder (zweidimensionale Filter) in Echtzeit sowie eine Ausgabeeinheit mit Speicher-
anbindung, die zur Anzeige der verarbeiteten Kamerabilder auf einem Monitor dient.
Wird fiir die Implementierung dieses nicht ganz trivialen Systems ein Zyng-7000-SoC
der Firma Xilinx eingesetzt, werden etwa jeweils 3000 LUTs und Flip-Flops benétigt.
Selbst bei dem kleinsten in der Zynq-7000-Serie verfiigbaren Baustein ist damit weniger
als 20 % der FPGA-Ressourcen belegt.

Dieses Beispiel macht deutlich, dass viele der heutigen FPGAs nicht fiir den Ersatz
von wenigen Gattern gedacht sind. Im Gegenteil: Sie ermoglichen die Realisierung
hochkomplexer Systeme, fiir deren Realisierung noch vor wenigen Jahren ASICs erfor-
derlich gewesen wiren. Daher haben FPGAs den Einsatz von ASICs in vielen Bereichen
ersetzt. Die seit einigen Jahren verfiigbare Kombination von der ,,hardwareprogrammier-
baren* Logik mit leistungsfahigen ,,softwareprogrammierbaren‘ Prozessor-Subsystemen
erdffnet weitere Moglichkeiten fiir den Einsatz der FPGA-Technologie.

Die bisher betrachteten FPGAs zielen auf die Realisierung von wesentlichen Teilen
eines Systems innerhalb der programmierbaren Logik. Ein anderer Ansatz wird mit den
besonders kleinen, kostenglinstigen und energieeffizienten FPGAs der Hersteller Lattice
und Quicklogic verfolgt. So bietet beispielsweise Lattice die Serie Ice40 in den Varianten
Ultra und UltraLite an. Diese Bausteine besitzen eine relativ geringe Anzahl von Logik-
blocken und bieten nur wenig Speicherkapazitit. Der entscheidende Vorteil dieser Bau-
steine ist die geringe statische Stromaufnahme, die im Bereich von 30 bis 70 pA liegt.
Daher werden diese Bausteine bevorzugt in mobilen Geriten eingesetzt. Die FPGAs
werden zum Teil als sogenannte Glue Logic verwendet, also zur Realisierung logischer
Funktionen mit denen die Hauptkomponenten des Systems untereinander verbunden
werden. Daneben kann mithilfe dieser FPGAs auch der Hauptprozessor des Systems,
zum Beispiel bei Ein-/Ausgabe-Operationen, entlastet werden. Der Hauptprozessor kann
so bereits in einen Stromsparmodus wechseln wihrend das FPGA noch mit der Ein-/
Ausgabe beschiftigt ist. Insgesamt wird so die Verlustleistung reduziert, da der relativ
energiehungrige Hauptprozessor linger im Stromsparmodus verweilen kann.

Als ein exemplarischer Vertreter von besonders energieeffizienten FPGAs sind
in Tab.9.9 die wesentlichen Kennwerte der Ice40-Serie des Herstellers Lattice
zusammengefasst.
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Tab. 9.9 Eigenschaften von Low-Power FPGAs am Beispiel der Ice40-Serie

UltraLite Ultra
Bezeichnung UL640 UL1K LP1K LP2K LP4K
Anzahl Logikblocke 640 1248 1100 2048 3520
Block-RAM (kbit) 56 56 64 80 80
Multiplizierer - - 2 4 4
PLLs 1 1 1
Stat. Stromaufnahme (pLA) 35 35 71 71 71

9.6 Hinweise zum Selbststudium

In vielen Fillen werden die Programme zum Entwurf von FPGA-Systemen in kostenlo-
sen Varianten angeboten und konnen von Internetseiten der Hersteller heruntergeladen
werden. Fiir die Bedienung der Software bieten die Hersteller Online-Tutorials, Trai-
ningsvideos und eine umfangreiche Dokumentation an, die es ermdglichen, erste eigen-
standige Schritte im Bereich des VHDL-Entwurfs fiir programmierbare Logikbausteine
durchzufiihren.

Da der Entwurf einer FPGA-Platine eine herausfordernde Aufgabe ist, bieten sich fiir
eigene Experimente fertige Boards an, die teilweise auch zu vergiinstigten Preisen fiir
Studierende und andere nicht-kommerzielle Nutzer angeboten werden. Fiir erste eigene
Schritte bieten sich giinstige Boards an, die bereits fiir deutlich unter 100 € zum Kauf
angeboten werden.

Fiir die beiden Marktfiihrer Xilinx und Altera bieten die Firmen Digilent (www.digi-
lentinc.com) beziehungsweise Terasic (www.terasic.com) giinstige Einsteigerboards an.
Da diese Boards auch ein integriertes Programmiergerit besitzen, lassen sie sich ohne
weitere Kosten fiir eigene Experimente verwenden.

Sehr interessant sind die Boards, die mit FPGAs ausgestattet sind, die auch ein CPU-
Subsystem als Hardmacro beinhalten. Als ein Beispiel fiir ein solches Board ist das mit
Xilinx-Baustein Zynq ausgestattete ZyBo-Board der Firma Digilent in Abb. 9.14 darge-
stellt. In der Mitte des Boards ist der FPGA-Baustein zu sehen. Darunter ist einer der
beiden SDRAM-Speicher untergebracht. Dieses Board verfiigt iiber viele Anschlussmog-
lichkeiten wie VGA, HDMI, Ethernet, USB, Audio, sowie Buchsen fiir die Anbindung
eigener Hardware.

Mithilfe dieser Boards lassen sich auch erste Schritte im Bereich des FPGA-Enwurfs
durchfiihren ohne das CPU-System zu nutzen. Spiter kann dann die Verwendung
des CPU-Subsystems einbezogen werden. So konnen interessante Experimente bis
hin zur Einbindung von eigener Hardware unter dem Betriebssystem Linux durchge-
fiihrt werden. Obwohl diese Boards mit einem Preis ab ca. 100 € etwas teurer sind als
die einfachsten FPGA-Experimentierboards, kann sich die Anschaffung auf Grund der
erweiterten Moglichkeiten lohnen.


http://www.digilentinc.com
http://www.digilentinc.com
http://www.terasic.com
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Abb. 9.14 Beispiel eines erschwinglichen FPGA-Boards fiir eigene Experimente: Das ZyBo-
Board der Firma Digilent Inc.

9.7 Ubungsaufgaben

Hier finden Sie Aufgaben, die einige Aspekte dieses Kapitels aufgreifen. Die Losungen
finden Sie am Ende des Buches.
Sofern nicht anders vermerkt, ist nur eine Antwort richtig.

Aufgabe 9.1
Welche Vorteile besitzen programmierbare Logikbausteine gegeniiber logischen Stan-
dard-Komponenten beziehungsweise ASICs? (Mehrere Antworten sind richtig)

a) Die digitale Funktion programmierbarer Logikbausteine kann durch den Anwender
festgelegt werden.

b) Designfehler lassen sich schneller korrigieren als dies bei dem Einsatz von ASICs
moglich wire.

¢) Mithilfe Programmierbarer Logikbausteine konnen logische Funktionen kompakter
realisiert werden als dies mit ASICs moglich wire.

d) Mithilfe Programmierbarer Logikbausteine konnen logische Funktionen kompakter
realisiert werden als dies mit Standardkomponenten (zum Beispiel 74er-Logikserie)
moglich wire.

Aufgabe 9.2
Wodurch zeichnen sich PAL-Bausteine aus?

a) Sie ermdglichen die Realisierung beliebig komplexer Funktionen.
b) Sie bieten eine hohere Komplexitit als FPGAs.
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¢) Sie besitzen intern eine UND/ODER-Struktur.
d) Sie enthalten grundsitzlich keine Flip-Flops. Daher kann mit den Bausteinen immer
nur eine Kombinatorik realisiert werden.

Aufgabe 9.3
Wodurch zeichnen sich CPLDs aus?

a) CPLDs sollten aus Kostengriinden nur fiir Systeme eingesetzt werden, die in sehr
hohen Stiickzahlen gefertigt werden.

b) Im Vergleich zu PALs bieten CPLDs eine deutlich geringere Komplexitét.

c¢) Sie enthalten grundsitzlich keine Flip-Flops. Daher kann mit den Bausteinen immer
nur eine Kombinatorik realisiert werden.

d) Die Funktion der Schaltung kann mithilfe von VHDL beschrieben werden.

Aufgabe 9.4
Wodurch zeichnen sich FPGAs aus?

a) Typische FPGAs realisieren logische Funktionen auf Basis einer zweistufigen UND/
ODER-Struktur.

b) Sie konnen nicht zur Realisierung von endlichen Automaten verwendet werden.

c) FPGAs realisieren logische Funktionen mithilfe von Lookup-Tabellen.

d) Alle FPGAs besitzen einen Mikroprozessor in Form eines Hardmacros.

Aufgabe 9.5
Wie viele unterschiedliche logische Funktionen konnen mit einer LUT mit 5 Eingéingen
realisiert werden?

a) 5

b) 25
c) 32
d) 64

Aufgabe 9.6
Welche der folgenden Komponenten sind in typischen FPGAs enthalten? (Mehrere Ant-
worten sind richtig)

a) Spezialmodule fiir ausgewihlte arithmetische Operationen, zum Beispiel Multiplizierer
b) Speicher

¢) Spezialmodule zur Beschleunigung von 3D-Grafik-Anwendungen

d) Module zur Takterzeugung
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Digitale Schaltungen werden als Integrierte Schaltung aufgebaut. Der Begriff Integrierte
Schaltungen beschreibt, dass sich auf einem Stiick Halbleiter nicht nur ein einzelner,
sondern viele Transistoren befinden. Eine komplette Schaltung ist also auf dem Halb-
leiterkristall integriert. Urspriinglich umfasste eine Integrierte Schaltung einige tausend
Transistoren; mittlerweile konnen iiber eine Milliarde Transistoren auf einer Fliche von
etwa einem Quadratzentimeter zusammengefasst werden.

Fiir Integrierte Schaltungen sind verschiedene Begriffe gebrauchlich. Sie werden auch
als Mikrochip, Chip, IC oder ASIC bezeichnet. IC steht fiir ,,Integrated Circuit“, ASIC fiir
»Application Specific Integrated Circuit* also Anwendungsspezifische Integrierte Schaltung.

Die wesentlichen Vorteile Integrierter Schaltungen sind insbesondere geringe
Baugrofie, geringe Kosten, hohe Geschwindigkeit und geringe Parameterabweichungen.

e Durch Verwendung integrierter Schaltungen kann die Baugrofle eines Gerites sehr
gering sein. Statt mehrerer Bauelemente, die einzeln in Chipgehédusen verpackt sind,
ist nur ein einzelnes Chipgehéuse erforderlich.

e Durch die Zusammenfassung mehrerer Bauelemente konnen fast immer die Kosten
fiir ein elektronisches Gerit reduziert werden. Die wichtigsten Kostenvorteile sind
dabei die geringere Anzahl an bendtigten Bauelementen, kleinere und damit giinsti-
gere Platinen und Geritegehduse, sowie kostengiinstigere Fertigung durch Verwen-
dung von weniger Komponenten.

e In einer Schaltung mit geringerer Baugrofle sind die Verbindungsleitungen zwischen
den Transistoren wesentlich kiirzer. Dadurch kann die Rechengeschwindigkeit der
Schaltung erhoht werden, da wesentlich kleinere Kapazititen umgeladen werden.

e Wenn sich die einzelnen Transistoren einer Schaltung auf demselben Halbleiterkris-
tall befinden, haben die Transistoren nur sehr geringe Produktionsschwankungen
zueinander.

© Springer-Verlag GmbH Deutschland 2016 289
W. Gehrke et al., Digitaltechnik, Springer-Lehrbuch,
DOI 10.1007/978-3-662-49731-9_10



290 10 Halbleitertechnik

10.1 CMOS-Technologie

Die fiir einen IC gewéhlte Schaltungstechnik wird als Chip-Technologie bezeichnet. Die
zurzeit mit Abstand grofite Marktbedeutung hat die CMOS-Technologie, die in diesem
Kapitel erldutert wird.

Die CMOS-Technologie verwendet Silizium als Halbleitermaterial und das Hauptan-
wendungsgebiet sind digitale Schaltungen. Sie erlaubt eine sehr hohe Integrationsdichte.
Das heifit, dass auf einem Chip sehr viele Transistoren untergebracht werden konnen.
Auf Basis der CMOS-Technologie werden Computer-Prozessoren, Grafikkarten-ICs,
Speicherbausteine, MP3-Decoder und viele andere ICs gefertigt.

Der Name CMOS steht fiir Complementary Metal-Oxid-Semiconductor und
beschreibt das Grundprinzip. Complementary, also komplementdr, meint zwei sich
ergidnzende Schaltungsteile, die zusammen einen digitalen Ausgangswert ergeben und
Metal-Oxid-Semiconductor bezeichnet in diesem Zusammenhang einen bestimmten Typ
von Feldeffekttransistoren.

Der Vorteil der CMOS-Technologie ist ihre relativ geringe Verlustleistung. Dies spart
zum einen Energie, insbesondere bei mobilen Geriten wie Laptop oder Mobiltelefon.
Ebenso wichtig ist aber zum anderen, dass die Schaltungen sich nicht zu stark erwédrmen,
denn die Verlustleistung muss vom Halbleiter auf das Chipgehiuse und von dort auf die
Umgebung abgefiihrt werden.

Aktuelle Computer und ihre Grafikkarten werden durch groffe und manchmal stérend
laute Liifter gekiihlt. Die Aussage, CMOS-Schaltungen hitten eine geringe Verlustleis-
tung, mag darum zunichst nicht offensichtlich sein. Allerdings enthélt eine integrierte
Schaltung etliche Millionen Transistoren, die mit hoher Geschwindigkeit Berechnungen
durchfiihren. Nur durch die geringe Verlustleistung von CMOS-Schaltungen ist es iiber-
haupt moglich, eine so hohe Integrationsdichte zu erreichen und die Verlustleistung in
einem handhabbaren Rahmen zu halten.

10.1.1 Prinzipieller Aufbau

Der Aufbau und die Funktionsweise einer CMOS-Schaltung werden am Beispiel eines
NAND-Gatters mit zwei Eingédngen deutlich. Abb. 10.1 zeigt links den prinzipiellen Auf-
bau eines NAND-Gatters. Die zwei Eingénge A und B sind an insgesamt vier Schalter
angeschlossen. Abhingig von dem Wert der Steuerleitung sind die Schalter ge6ffnet oder
geschlossen. Dadurch verbinden sie den Ausgang Y entweder mit 0 oder 1.

Natiirlich sind in Integrierten Schaltungen keine mechanischen Schalter, sondern
Transistoren eingebaut. Es werden zwei Transistorarten verwendet. Der p-Kanal-Tran-
sistor leitet bei einer O (niedrige Spannung) am Eingang und sperrt bei einer 1 (hohe
Spannung). Der n-Kanal-Transistor leitet dagegen bei einer 1 am Eingang und sperrt
bei einer 0. Abb. 10.1 zeigt auf der rechten Seite das Schaltbild des NAND-Gatters. Die
Masse wird als Ground (GND) bezeichnet. VDD ist die Versorgungsspannung (mit V fiir
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Schaltertyp: A =VDD Kanal
Offner -o| p-rana
Transistoren
Y Y
A-—H
Schaltertyp: B _| n-Kanal
SchlieBer Transistoren
,0'=GND

Abb. 10.1 Grundprinzip und reales Schaltbild eines NAND-Gatters

,»Voltage* und D fiir den Drain-Anschluss des Transistors). Typische Werte fiir die Ver-
sorgungsspannung sind zwischen 1,0 und 5,0 V.

Zur Erlduterung der Funktion zeigt Abb. 10.2 die moglichen Ansteuerungen der Ein-
ginge. Die dick dargestellten Leitungen kennzeichnen welche Verbindungen leitend
sind. Da beide Einginge jeweils zwei Werte einnehmen konnen, existieren insgesamt
vier Moglichkeiten der Ansteuerung.

e Im Fall a) sind beide Einginge gleich 0. Dadurch leiten beide p-Kanal-Transistoren
und der Ausgang wird niederohmig mit der Versorgungsspannung verbunden. Aufler-
dem sperren die n-Kanal-Transistoren, so dass kein Kurzschluss von der Versorgungs-
spannung zur Masse entsteht.

e In den Fillen b) und c) ist ein Eingang 0, der andere 1 und einer der p-Kanal-
Transistoren ist leitend, der andere sperrt. Durch die Parallelschaltung der p-Kanal-
Transistoren ist auch hier eine Verbindung des Ausgangs zur Versorgungsspannung

Abb. 10.2 Vier . VDD VDD
Moglichkeiten der Ansteuerung
eines NAND-Gatters '°| '°|
A hh
0 = 0 H
o s 3 s
GND GND

[¢)] vDD VDD

LT
i

0
GND GND
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vorhanden; der Ausgang ist 1. Von den n-Kanal-Transistoren ist einer durch eine 1
am Eingang leitend. In der Reihenschaltung fliet jedoch kein Strom nach Masse.

e Im Fall d) sind beide Eingénge 1. Jetzt sind beide n-Kanal-Transistoren leitend und
der Ausgang ist mit Masse verbunden, gibt also eine 0 aus. Die beiden p-Kanal-Tran-
sistoren sperren, so dass der Ausgang nicht mit Versorgungsspannung verbunden ist.

Die vier Eingangskombinationen ergeben somit die NAND-Funktion. In den vier mogli-
chen Fillen zeigt sich die wichtige Eigenschaft der Schaltung, dass von den beiden Netz-
werken aus p-Kanal und n-Kanal-Transistoren jeweils eins leitend, das andere gesperrt
ist. Die Netzwerke verhalten sich also genau entgegengesetzt, was durch das ,C‘ in
CMOS, also den Begriff komplementdr, ausgedriickt wird.

10.1.2 Feldeffekttransistoren

Feldeffekttransistoren werden sowohl nach n-Kanal und p-Kanal als auch nach selbst-
sperrend und selbstleitend unterschieden. Da in der CMOS-Technologie nur selbstsper-
rende Transistoren eingesetzt werden, sind nur diese im Folgenden erldutert. Sie werden
auch als Anreicherungstyp oder Enhancement-Typ bezeichnet. Selbstleitende Transisto-
ren (Verarmungstyp, Depletion-Typ) werden in der CMOS-Technologie nicht verwendet.

Das Grundmaterial, genannt Substrat, ist monokristallines Silizium, bei dem also die
Silizium-Atome ein gleichméBiges Gitter bilden. Dieses Material wird dotiert, das heif3t,
es werden kleine Mengen weiterer chemischer Elemente hinzugefiigt. Je nach chemi-
schem Element handelt es sich um eine n-Dotierung mit zusitzlichen Elektronen oder
um eine p-Dotierung mit sogenannten Lochern, also Freistellen, so dass sich Elektronen
bewegen kdnnen.

n-Kanal-Transistor

Der Aufbau eines Feldeffekttransistors ist in Abb. 10.3 als Schnittansicht von schrig
oben dargestellt. Das Substrat ist leicht p-dotiert und in dieses Grundmaterial wer-
den die beiden Anschliisse Source und Drain durch n-Dotierung erzeugt. Zwischen den
Anschliissen liegt iiber einer Isolationsschicht der Gate-Anschluss. Die Isolationsschicht
besteht meist aus Siliziumdioxid SiO, und der Gate-Anschluss aus polykristallinem Sili-
zium, der durch eine hohe Dotierung gut leitet. L und W bezeichnen die Linge und Weite
des Transistors. Sie sind wichtige Kenngrofen, denn aus ihnen ergeben sich die Grofle
und die Leitfdhigkeit des Transistors.

Die Funktion des Feldeffekttransistors ist in Abb. 10.4 dargestellt. Zur einfacheren
Darstellung ist die Seitenansicht gewihlt. Im spannungslosen Zustand ist die Verbindung
zwischen Source und Drain nicht leitend.

Bei Anlegen einer positiven Spannung an das Gate werden die p-Ladungstriger im
Substrat, also die Locher, verdringt, denn gleichnamige Ladungen stoBen sich ab.
Gleichzeitig werden n-Ladungstriger, also Elektronen, angezogen, denn ungleichnamige
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Abb. 10.3 Aufbau eines Gate-Weite W Gate Gate-Oxid
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Abb. 10.4 Funktion des UsUr .
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Ladungen ziehen sich an. Ab einer gewissen Spannung sind so viele Locher verdriangt
und Elektronen angezogen, dass sich ein Uberhang von n-Ladungstriigern zwischen
Source und Drain bildet. Dieser Bereich wird als Kanal bezeichnet. Mit dem Kanal
bildet sich ein Gebiet, das zwischen Source und Drain durchgingig eine n-Dotierung
besitzt, so dass der Transistor leitet.

Da die Leitfahigkeit durch einen n-Kanal entsteht, wird dieser Aufbau als n-Kanal-
Transistor bezeichnet. Die Spannung, ab der ein Kanal entsteht, ist die Schwellenspan-
nung U, (T fiir ,,Threshold”, Schwelle). Der genaue Wert der Schwellenspannung ist
unter anderem von der Dotierung abhéngig.

p-Kanal-Transistor

Der Aufbau eines p-Kanal-Transistors ist im Prinzip der gleiche, allerdings sind die
Dotierungen vertauscht (Abb. 10.5). Das Substrat ist n-dotiert und die Bereiche fiir
Source und Drain haben eine p-Dotierung. Durch eine negative Spannung am Gate wer-
den Elektronen abgestolen und Locher angezogen, so dass sich ab der Schwellenspan-
nung ein p-Kanal bildet, der die p-Bereiche Source und Drain verbindet.

Die negative Gate-Spannung bedeutet dabei nicht, dass auf einem CMOS-Chip nega-
tive Spannungen verwendet werden. Die Gate-Spannung muss negativ gegeniiber dem
Bezugspotential des Substrats werden. Dies wird dadurch erreicht, dass beim p-Kanal-
Transistor das Substrat an Versorgungsspannung gelegt wird. Eine Gate-Spannung von
0 Volt ist damit negativ gegeniiber Substrat.

Ein Unterschied zum n-Kanal-Transistor besteht in den elektrischen Eigenschaften.
Die Beweglichkeit der Locher ist etwas geringer als die Beweglichkeit der Elektronen.



294 10 Halbleitertechnik

Abb. 10.5 Funktion des U<U+t )
p-Kanal-Feldeffekttransistors Source Gate | Drain
[ Poly-Silizium |
P / \ \ P
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Deswegen ist der Widerstand eines p-Kanal-Transistors etwa 2- bis 3-mal so hoch wie
bei einem p-Kanal-Transistor gleicher Grofle. Als Ausgleich wird normalerweise ein
p-Kanal-Transistor mit doppelter oder dreifacher Gate-Weite W (siehe Abb. 10.3) ver-
wendet, wodurch beide Transistoren etwa gleichen elektrischen Widerstand haben.

10.1.3 Layout

Uber den Transistoren befinden sich Verbindungsleitungen aus Metall. Fiir die vielen
Verbindungen auf einem Chip sind mehrere Lagen an Verbindungsleitungen vorhanden.
Moderne ICs haben etwa fiinf bis zehn Lagen, wovon die unteren Lagen fiir lokale Ver-
bindungen, die oberen Lagen fiir lingere Verbindungen und die Spannungsversorgung
verwendet werden. Zwischen den Verbindungsleitungen sowie zu den Transistoren sind
Isolierschichten, die an vertikalen Verbindungsstellen durch Kontaktlocher, sogenannte
Vias unterbrochen sind. Abb. 10.6 zeigt die Transistorstruktur (gates) und die Verbin-
dungslagen (M1 bis M4) im Elektronenmikroskop und gibt einen Eindruck von der rea-
len Geometrie.

Der physikalische Aufbau einer CMOS-Schaltung wird als Layout bezeichnet. Das
Layout beschreibt die Position der Transistoren sowie der Verbindungsleitungen. In
Abb. 10.7 ist zunichst das Layout eines einzelnen Transistors gezeigt. Links sieht man
die Seitenansicht, wie im vorherigen Abschnitt erldutert. Dabei sind Source und Drain
durch Metalllage und Kontaktloch angeschlossen. Rechts ist die Draufsicht gezeigt, die
fiir das Layout verwendet wird. Dabei wird in der Darstellung nicht zwischen Source
und Drain unterschieden.

Das Layout eines kompletten Gatters ist in Abb. 10.8 dargestellt. Es handelt sich um
das oben beschriebene NAND-Gatter. Zur Orientierung ist das Schaltbild noch einmal
angegeben. Im Layout sind oben und unten Metallleitungen fiir die Anschliisse von Ver-
sorgungsspannung (VDD) und Masse (GND) vorhanden.

Die beiden n-Kanal-Transistoren befinden sich im unteren Bereich des Layouts und
sind in Reihe geschaltet. Zwischen den Transistoren ist keine zusitzliche Verbindung
notig. Das Drain-Gebiet des einen Transistors ist direkt das Source-Gebiet des anderen
Transistors. Ein Anschluss dieser Reihenschaltung ist an GND, der andere am Ausgang
Y. Die Gate-Anschliisse sind mit den Eingiingen des NAND-Gatters, A und B verbunden.
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Abb. 10.6 Transistor im Elektronenmikroskop. (Foto: Chipworks)
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Abb. 10.8 Layout eines NAND-Gatters
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Im oberen Bereich des Layouts sind die beiden p-Kanal-Transistoren. Sie sind parallel
geschaltet und verbinden jeweils VDD mit dem Ausgang Y. Auch sie werden durch die
Einginge A und B angesteuert. Wie oben erldutert, bendtigen die p-Kanal-Transistoren
ein anderes Substrat und dies wird durch die sogenannte n-Wanne bereitgestellt. Die
n-Wanne ist ein Bereich, in dem das eigentlich p-dotierte Grundmaterial durch Dotierung
in einen n-Bereich umgewandelt wird. Durch das Kontaktloch ganz oben an der VDD-
Leitung wird die n-Wanne mit dem Pegel der Versorgungsspannung verbunden.

Im Layout sind auch Linge und Weite des Gates dargestellt. Die Gate-Léinge wird so
kurz wie moglich gewdhlt, damit der Widerstand durch den Transistor nicht unnétig grof3
wird. Die Weite wird so gewihlt, dass n-Kanal und p-Kanal-Netzwerke den gleichen Wider-
stand und damit symmetrisches Verhalten haben. Beim NAND-Gatter sind zwei n-Kanal-
Transistoren in Reihe, was den doppelten Widerstand ergibt. Die p-Kanal-Transistoren
haben aufgrund der geringeren Beweglichkeit der Locher ebenfalls etwa doppelten Wider-
stand. Somit sind die Widerstiinde beider Transistornetzwerke etwa gleich groB.

10.2 Grundschaltungen in CMOS-Technik

In diesem Abschnitt wird fiir einige Grundschaltungen der Aufbau in CMOS-Technik
erldutert. Das Ziel ist dabei, dass Sie sich vorstellen konnen, wie Digitalschaltungen aus
Transistoren aufgebaut werden.

10.2.1 Inverter

Der Inverter ist noch einfacher aufgebaut als das NAND-Gatter und besteht aus nur zwei
Transistoren. Ein Transistor verbindet den Ausgang mit VDD, ein anderer mit GND.
Schaltbild und Layout sind in Abb. 10.9 dargestellt. Die Gate-Weite des p-Kanal-Tran-
sistors (oben) ist doppelt so grofl wie beim n-Kanal-Transistor, um die geringere Beweg-
lichkeit der Locher auszugleichen.

10.2.2 Logikgatter

Andere Grundgatter konnen in dhnlicher Weise wie das NAND-Gatter mit n- und
p-Kanal-Transistoren aufgebaut werden. Ein Netzwerk von n-Kanal-Transistoren verbin-
det den Ausgang mit Masse, ein zweites Netzwerk von p-Kanal-Transistoren verbindet
den Ausgang mit der Versorgungsspannung. Dabei ist wichtig, dass die Netzwerke zuein-
ander komplementir sind, also stets genau eins der Netzwerke leitet.

Das Beispiel in Abb. 10.10 hat die Funktion Y = (AV B) & C. Man erkennt, dass die
Netzwerke auch in ihrer Topologie komplementir sind. Im p-Kanal-Netzwerk sind die
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Abb. 10.9 Schaltbild und Schaltplan Layout
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Transistoren fiir A und B in Reihe und C ist parallel dazu. Im n-Kanal-Netzwerk sind A
und B parallel geschaltet und C liegt in Reihe dazu.

Nach dem gezeigten Grundprinzip lassen sich viele weitere Logikgatter entwerfen.
Ein Kennzeichen von CMOS-Logikgattern ist, dass Funktionen mit einer Invertierung
einfacher zu implementieren sind. Dies bedeutet, dass beispielsweise die NAND-Funk-
tionen einfacher als eine UND-Funktion aufgebaut sein kann, denn die NAND-Funktion
nutzt die Eigenschaft, dass eine O die Transistoren nach VDD offnet.

Fiir ein Gatter ohne Invertierung wird ein Inverter angefiigt. Ein UND-Gatter besteht
beispielsweise aus dem NAND-Gatter (Abb. 10.1), ergidnzt um den Inverter aus Abb. 10.9.
Die Schaltung benétigt 6 Transistoren, vier fiir das NAND, zwei fiir den Inverter. Im Lay-
out werden die beiden Schaltungsteile kombiniert, um wenig Fliche zu belegen.

10.2.3 Transmission-Gate

In den bisher gezeigten Grundgattern verbinden die Transistoren den Ausgang mit
VDD oder GND. Es ist jedoch auch mdglich, Signaleingénge durch die Transistoren zu
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leiten oder zu sperren. Die entsprechende Schaltungsstruktur wird als Transmission-Gate
bezeichnet und ist in Abb. 10.11, links dargestellt. Ein n-Kanal und ein p-Kanal-Transistor
sind parallel geschaltet und geben abhingig vom Steuersignal EN den Eingang auf den
Ausgang weiter. Da die Transistoren bei unterschiedlichem Pegel der Steuersignale leiten,
ist das Signal EN in positiver und negativer Polaritit erforderlich.

Der Vorteil dieser Schaltungsstruktur ist der geringe Schaltungsaufwand. Manche
Funktionen lassen sich mit deutlich weniger Transistoren umsetzen, als bei der Struk-
tur mit komplementéiren Transistornetzwerken notig wire. Der Nachteil der Struktur ist,
dass ein Transmission-Gate keine Treiberfahigkeit besitzt. Dies ist jedoch meist kein
Problem, denn der Treiber des Eingangssignals kann iiblicherweise ein oder sogar meh-
rere Transmission-Gates treiben. Falls die Treiberfdhigkeit nach dem Transmission-Gate
zu gering ist, kann ein Inverter als Treiber eingefiigt werden.

Vielleicht haben Sie beim Blick auf Abb. 10.11 iiberlegt, ob nicht ein Transistor als
Transmission-Gate ausreichen wiirde. Dies ist ungiinstig, denn der n-Kanal-Transistor
schaltet eine 0 mit vollem Pegel, reduziert aber eine 1 um die Schwellenspannung. Umge-
kehrt schaltet der p-Kanal-Transistor die 1 mit vollem und die O mit reduziertem Pegel.
Erst die Kombination beider Transistoren gibt ein gutes Schaltverhalten.

Ein Logikgatter, welches die Transmission-Gate-Struktur verwendet, ist in
Abb. 10.11, rechts zu sehen. Es handelt sich um einen 1-aus-2-Multiplexer mit Steu-
ereingang S und Dateneingingen A und B. Die Dateneinginge sind jeweils durch ein
Transmission-Gate mit dem Ausgang Y verbunden. Da die Ansteuerung fiir die Transmis-
sion-Gates unterschiedliche Polaritit hat, ist genau ein Gate gedffnet, das andere sperrt.
Die Schaltung benétigt nur sechs Transistoren, zwei fiir den Inverter und vier in den
Transmission-Gates, und ist damit sehr kompakt.

10.2.4 Flip-Flop

Neben kombinatorischen Elementen enthilt eine Digitalschaltung natiirlich auch Flip-
Flops zur Speicherung von Informationen. Heutzutage werden praktisch immer taktflan-
kengesteuerte D-Flip-Flops verwendet. Es gibt verschiedene Schaltungstechniken, um
ein solches Flip-Flop zu realisieren. Die Varianten unterscheiden sich in Siliziumfldche,
Schaltgeschwindigkeit und Stromverbrauch.

Als eine Flip-Flop-Schaltung ist in Abb. 10.12 exemplarisch das Transmission Gate
Pulsed Latch, kurz TGPL, dargestellt. Zum Verstidndnis der Schaltung ist ein kleines

Abb. 10.11 Transmission- Transmission-Gate S > Multiplexer
Gate und Anwendung in einem = A

. EN
Multiplexer b

:
gy
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Abb. 10.12 Schaltbild des VDD
Transmission Gate Pulsed
Latch. (Quelle: M. Alioto,
IEEE Transactions on VLSI
Systems, 2011)

Zeitdiagramm angegeben sowie einige interne Signalknoten mit Bezeichnung markiert.
Dateneingang D, Takteingang CK sowie Datenausgang Q sind fett dargestellt.
Funktionsweise des Transmission Gate Pulsed Latch (TGPL):

1. Das TGPL enthélt auf der linken Seite eine Taktaufbereitung. Der Takteingang CK
wird durch drei Inverter verzogert und in der Polaritit gedreht (Signal /CK, siehe
Zeitdiagramm). Durch ein NAND-Gatter werden dann CK und /CK verkniipft und das
Pulssignal P entsteht. P ist meist 1 und wird nur bei einer steigenden Taktflanke kurz
0. Damit steuert dieses Pulssignal die Dateniibernahme an der Taktflanke.

2. Der Dateneingang D lduft zunéchst durch einen Inverter, der als Treiber dient. /D wird
gespeichert, indem das Pulssignal P beim Pegel O ein Transmission-Gate 6ffnet. Das
gespeicherte Datensignal liegt dann am internen Knoten /Q an. Durch den Eingangs-
inverter hat es die umgekehrte Polaritit. Kurz nach der Taktflanke wechselt P wieder
auf den Wert 1 und schliet das Transmission-Gate.

3. Jetzt wird zur Datenspeicherung der interne Knoten /Q durch den Inverter und die
vier Transistoren auf der rechten Seite der Schaltung wieder nach /Q gegeben. Dieser
Schaltungsteil ist eine Riickkopplung, die den Wert an /Q speichert. Nur wenn P auf
0 ist, also bei einer steigenden Taktflanke, unterbricht die Riickkopplung, damit ein
neuer Eingangswert D gespeichert werden kann.

4. Durch den Inverter rechts unten wird der interne Knoten /Q auf den Datenausgang Q
gegeben. Die Invertierung am Eingang wird wieder durch den Ausgangsinverter auf-
gehoben, so dass der richtige Signalwert ausgegeben wird.

Fiir die sichere Funktion muss das Zeitverhalten der Schaltung genau abgestimmt wer-
den. Die Laufzeit der drei Inverter bei ® muss ein Pulssignal P erzeugen, welches den
Eingang D sicher iibernimmt. Andererseits sollte das Pulssignal auch nicht zu lange
0 sein, denn wihrend dieser Zeit darf sich D nicht dndern. Die Dauer des Pulssignals
bestimmt also Setup- und Hold-Zeit.

Auflerdem muss die Verzogerungszeit von Transmission-Gate bei @, sowie Riick-
kopplung bei ® zueinander passen, damit die Schaltungsteile sicher zusammenarbeiten.

Dieses Zeitverhalten muss bei allen Variationen der Arbeitsbedingungen sicher funk-
tionieren. Als Variationen der Arbeitsbedingungen sind drei Einflussgroflen zu beachten,
die unter der Abkiirzung PVT zusammengefasst sind:
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e Process (P): Die elektrischen Eigenschaften der Transistoren unterliegen den Tole-
ranzen des verwendeten Halbleiterprozesses und konnen schwanken. Beispiel: Die
Dotierung von Source und Drain kann gegeniiber dem ,,Normalfall* abweichen.

e Voltage (V): Die Versorgungsspannung kann, eventuell auch nur kurzzeitig, schwan-
ken. Beispiel: Statt ideal 1,2 V kann die Spannung 1,15 oder 1,25 V betragen.

e Temperature (T): Die Temperatur kann schwanken. Beispiel: Der Chip kann bei
Temperaturen im Bereich von —20°C bis 80°C arbeiten.

Bei der Entwicklung eines Flip-Flops wird die Schaltung darum unter verschiedenen
Arbeitsbedingungen simuliert und es werden Testschaltungen hergestellt. Dabei kann
auch tiberpriift werden, ob eventuell eine andere Flip-Flop-Schaltung fiir den jeweiligen
Halbleiterprozess besser geeignet ist. Das oben beschriebene TGPL ist nur eine mogliche
Schaltungsvariante.

10.3 Verlustleistung

Neben der Anzahl an Transistoren, welche die Grofle einer Schaltung ausmacht, ist
der Energieverbrauch einer Schaltung eine wichtige Kenngrofie. Die CMOS-Technik
ist prinzipiell sehr energieeffizient. Sie hat gegeniiber anderen Halbleitertechniken den
groflen Vorteil, dass durch ein Gatter kein Ruhestrom flie3t, denn entweder sperren die
p-Kanal-Transistoren oder die n-Kanal-Transistoren. Vorgidngertechnologien hingegen
hatten einen stindigen Ruhestrom und wurden wegen dieser stindigen Verlustleistung
durch CMOS abgelost.

Durch immer leistungsfihigere Schaltungen ist allerdings auch die Verlustleistung
von CMOS-Schaltungen in den letzten Jahren immer weiter gestiegen. Deutlich sichtbar
ist dies bei High-End-Grafikkarten fiir PC-Spiele. Sie haben hohe Rechenleistung fiir die
Berechnung der Grafik, aber auch grofle Kiihlkorper und Liifter zur Kiihlung.

Es gibt verschiedene Griinde aus denen eine geringe Verlustleistung Integrierter
Schaltungen sinnvoll ist.

e Hohere Leistungsaufnahme erhoht die Kosten fiir Chipgehiduse und Kiihlkorper.
Gegebenenfalls sind Liifter erforderlich.

e Die Betriebskosten fiir Spannungsversorgung und Kiihlung steigen. Dies ist insbeson-
dere in Rechenzentren ein hoher Kostenanteil.

e Mobile Gerite wie Laptop, Tablet oder Smartphone sollen mit einer Akkuladung
moglichst lange Betriebszeiten haben.

e Es werden autarke Sensoren eingesetzt, die mit einer Batterie mehrere Jahre betrieben
werden sollen.

Die Verlustleistung entsteht durch einen statischen und einen dynamischen Anteil.
Diese beiden Aspekte der Verlustleistung werden in den folgenden Abschnitten niher
vorgestellt.



10.3 Verlustleistung 301

10.3.1 Statische Verlustleistung

CMOS-Schaltungen haben zwar keinen Ruhestrom, der durch einen gedffneten Transis-
tor flieBt. Dennoch flieBen winzige sogenannte Leckstrome, da der Transistor natiirlich
keine galvanische Trennung des Stromflusses vornimmt. Diese Leckstrome addieren
sich tiber die Milliarden Transistoren eines Chips und verursachen eine statische
Verlustleistung.

Leckstrome entstehen an verschiedenen Stellen des Transistoraufbaus. Insgesamt gibt
es vier Anteile, die in Abb. 10.13 dargestellt sind (vergleiche Abb. 10.4 und 10.5). Der
Anschluss B ist dargestellt, da auch iiber das Substrat (Bulk) Leckstrome flieBen konnen.

e Subthreshold Leakage I, entsteht, da der Kanal nicht vollstdndig ausgeschaltet
werden kann.

e Gate Leakage Ig&lle
diinnes Gate-Oxyd.

® Reverse Bias Junction Leakage I ist der Sperrstrom des pn-Ubergangs zum Substrat.

e Gate Induced Drain Leakage Igi g ist der Leckstrom vom Drain-Anschluss, verursacht

durch die Feldstédrke der Drain-Spannung.

ergibt sich auf Grund von Ladungstrageriibertragung durch sehr

Der Hauptanteil der statischen Verlustleistung entsteht durch die Subthreshold Leakage
I v Einen geringeren Anteil tragen Gate Leakage I sate
Leakage I, bei. Die Gate Induced Drain Leakage I, aidl ist normalerweise vernachlidssig-
bar. Allgemein fiihrt eine erhohte Temperatur zu steigenden Leckstromen.

Die Subthreshold Leakage ist exponentiell von der Schwellenspannung abhingig. Je
hoher die Schwellenspannung, umso geringer sind die Leckstrome. Andererseits redu-
ziert eine hohere Schwellenspannung auch die Verarbeitungsgeschwindigkeit, so dass ein

Kompromiss gefunden werden muss.

und Reverse Bias Junction

10.3.2 Dynamische Verlustleistung

Die dynamische Verlustleistung entsteht bei Aktivitiat der Schaltung. Zum Verstdndnis
wird die Inverter-Schaltung aus Abschn. 10.2.1 erneut betrachtet. Abb. 10.14 zeigt den
Inverter sowie Spannungen und Strome bei Schaltungsaktivitit. Zusétzlich zu den bei-
den Transistoren ist ein Kondensator mit der Kapazitit C, abgebildet. Dieser stellt die

Abb. 10.13 Leckstrome bei B G b
einem CMOS-Transistor | 1 Lgate |
VA 2 e

subth Igidl

Le | B (Bulk)
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Abb. 10.14 CMOS-Inverter mit Zeitverlauf von Spannungen und Strémen

ie(t) A

Lastkapazitit dar, welche vom Inverter geschaltet wird. Die Lastkapazitit setzt sich
zusammen aus den Gate-Kapazititen der nachfolgenden Gatter sowie der Leitungskapa-
zitdt auf den Verbindungen dorthin. Der Zeitverlauf zeigt den prinzipiellen Verlauf der
Spannungen am Eingang und Ausgang des Inverters sowie der Strome im p-Kanal-Tran-
sistor i p( t), im n-Kanal-Transistor 7,(1), sowie zum Kondensator i (1).

Im Diagramm wechselt die Eingangsspannung zum Zeitpunkt ® von logisch 1 auf 0.
Mit kurzer Zeitverzogerung wechselt darauf der Ausgang von 0 nach 1. Dabei wird der
Kondensator iiber den p-Kanal-Transistor geladen, sichtbar an den Stromen ip und i
AuBerdem flieBit ein kleinerer Querstrom iiber ip und i, wenn beim Umschalten des Ein-
gangs beide Transistoren fiir kurze Zeit teilweise leiten.

Zum Zeitpunkt @ wechselt der Eingang wieder von 0 auf 1 und der Ausgang kurz
darauf von 1 nach 0. Jetzt wird der Kondensator iiber den n-Kanal-Transistor entladen,
sichtbar an den Stromen i, und einem negativen Wert fiir i . Wieder sind beim Umschal-
ten kurzfristig beide Transistoren teilweise leitend, so dass erneut ein Querstrom {iber ip
und 7, flieBt.

Die Verlustleistung des Inverters berechnet sich iiber das Integral des Stroms i(1), mul-
tipliziert mit der Versorgungsspannung V.. Dabei hat das Umladen der Kapazitit den
groBten Anteil. Einflussgroen sind zum einen der Wert der Lastkapazitit C; sowie die
Hohe der Versorgungsspannung V). Zum anderen muss beriicksichtigt werden, wie oft
die Kapazitit umgeladen wird. Dies wird durch die Taktfrequenz f der Schaltung angege-
ben, sowie die Schaltaktivitit o als Wahrscheinlichkeit einer 0-1-Flanke pro Taktzyklus.

Diese EinflussgroBen multiplizieren sich zur Verlustleistung P fiir das Umladen der
Lastkapazitit. Dabei hat die Versorgungsspannung einen quadratischen Einfluss:

Pciw =of VIZ)DCL

Die EinflussgréBen sind, ausgenommen die Schaltaktivitit, bereits bekannt. Die Schalt-
aktivitdt driickt aus, wie hdufig eine Leitung auf 1 wechselt und kann Werte zwischen 1
und 0 einnehmen.

e Das Taktsignal hat jeden Takt eine steigende Flanke und daher ist o = 1
e Die unterste Stelle eines Zihlers hat von Takt zu Takt abwechselnd die Werte 0 und 1.
Es gibt also jeden zweiten Takt eine steigende Flanke: o = 0,5
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e Die oberste Stelle eines 8-Bit-Zihlers hat nur eine steigende Flanke beim Uber-
gang von 127 nach 128. Der nidchste Wechsel tritt erst 256 Takte spiter auf:
o= 1/256 ~ 0,004

e Die Reset-Leitung einer CPU wird im normalen Betrieb nicht angesteuert, daher ist
o=0

e Audio und Video-Signale haben, je nach Typ des Signals, einen Wert von o & 0,3 bis
0,1

Fiir eine gesamte Integrierte Schaltung miissen die Anteile der einzelnen Schaltungskno-
ten addiert werden.

Pc = Z oif V[ZJD CrL,i
i=alle Knoten
Die Verlustleistung durch den Querstrom ist in dieser Gleichung noch nicht beriick-
sichtigt. Allerdings ist der Anteil deutlich kleiner als P und ebenfalls proportional zur
Schalthédufigkeit. Darum wird in der Praxis meist nur die Verlustleistung durch Umladen
der Lastkapazititen betrachtet. Der Einfluss des Querstroms kann beispielsweise bertick-
sichtigt werden, indem die Lastkapazititen C, etwas hoher angesetzt werden.

10.3.3 Entwurf energieeffizienter Schaltungen

Um Schaltungen mit geringer Verlustleistung zu entwerfen, werden moglichst alle Ein-
flussgrofen optimiert. Ein Faktor ist die Versorgungsspannung, die friither bei 5 Volt lag
und heute bis auf Werte von etwa 1 Volt reduziert wurde. Dies ist ohnehin erforderlich,
damit die Feldstdrken in den kleiner werdenden Transistoren nicht zu stark ansteigen.
Durch die geringere Versorgungsspannung reduzieren sich statische und dynamische
Verlustleistung.

Die statische Verlustleistung kann durch Wahl der Parameter des Halbleiterprozesses,
also Transistorgeometrie und Dotierungsstirken reduziert werden. Weil dadurch auch die
Geschwindigkeit einer Schaltung sinkt, kann ein Hersteller einen Halbleiterprozess in
verschiedenen Varianten anbieten. Beispielsweise kann eine Version angeboten werden,
die im Hinblick auf die Schaltgeschwindigkeit optimiert ist. Weitere Varianten des Halb-
leiterprozesses konnten eine Low-Power-Version oder eine ,,balancierte Version®, die
einen Kompromiss aus Rechenleistung und Stromverbrauch darstellt, sein.

Die dynamische Verlustleistung kann reduziert werden, indem eine geringere Kapa-
zitdt C, umgeladen wird. Dies kann durch einen Prozess mit geringeren physikalischen
Abmessungen erfolgen. Aber auch eine geringere Anzahl an Schaltungselementen redu-
ziert die Anzahl an Schaltungsknoten und damit die Lastkapazitit. Eine Moglichkeit ist
beispielsweise, wenn eine Rechenoperation nur eine Genauigkeit von 16 bit anstatt 32 bit
erfordert.

Als weitere Einflussgrofle kann eine geringere Haufigkeit der Signalwechsel die
dynamische Verlustleistung reduzieren. Eine Moglichkeit hierfiir ist das Abschalten
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ganzer Schaltungsteile, wenn sie nicht benotigt werden. Dies erfolgt beispielsweise in
einer CPU mit mehreren Prozessoren. Bei geringer Rechenlast werden einzelne Prozes-
soren komplett ausgeschaltet und damit die dynamische Verlustleistung reduziert. Wenn
ein Prozessor oder nicht bendtigte Schnittstellenkomponenten voriibergehend von der
Versorgungsspannung abgetrennt werden, reduziert sich zusitzlich auch die statische
Verlustleistung.

10.4 Integrierte Schaltungen

Eine komplette Integrierte Schaltung setzt sich aus vielen einzelnen Gattern und Flip-
Flops zusammen.

10.4.1 Logiksynthese und Layout

Standardzellbibliothek

Die in Abschn. 10.2 beschriebenen Grundschaltungen werden vom Hersteller eines
Halbleiterprozesses in einer Bibliothek zur Verfiigung gestellt. Diese Grundschaltungen
werden als Standardzellen bezeichnet. Eine Standardzellbibliothek umfasst beispiels-
weise 100 bis 200 Zellen, darunter:

e Inverter und Treiber, also nacheinander geschaltete Inverter, fiir gréfere Lastkapazititen

o Logikgatter, also UND-, ODER-, NAND-, NOR-, XOR-Gatter mit unterschiedlicher
Anzahl an Eingingen

e Komplexgatter, fiir kombinierte Logikfunktionen, beispielsweise die Funktion
Y = (A Vv B) & C aus Abb. 10.10 oder der Multiplexer aus Abb. 10.11

e Arithmetische Schaltungen, beispielsweise Volladdierer

e Flip-Flops in verschiedener Konfiguration, beispielsweise mit Set oder Reset

AuBerdem konnen fiir manche Zellen Varianten mit verschiedener Treiberstirke vor-
handen sein. Ein Flip-Flop, das nur ein weiteres Gatter ansteuert, benotigt einfache Trei-
berstirke. Falls mehrere Gatter angesteuert werden, konnte die vierfache Treiberstirke
sinnvoll sein.

Logiksynthese

Die Auswahl der passenden Standardzelle erfolgt normalerweise durch ein EDA-Pro-
gramm. Dazu schreiben Sie VHDL-Code und das Programm sucht dann die passende
Standardzelle fiir die beschriebene Funktion. Anhand der Verbindungen zu weiteren
Standardzellen, entscheidet das Programm auch, welche Treiberstirke eingesetzt werden
soll. Dieser Schritt wird als Logiksynthese bezeichnet.
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Beispielsweise wurde im Kapitel 6 eine Flankenerkennung beschrieben, bei der fol-
gender VHDL-Code verwendet wurde:

if (a_sync_o0ld='0') and (a_sync='1l') then
g <= '1l"'; else
g <= '0"; end if;

Die Logiksynthese interpretiert diesen Code und erkennt, dass eine Logikfunktion
A & B erforderlich ist. A ist dabei das VHDL-Signal a_sync_old, B ist a_sync. Fiir die
Umsetzung in Standardzellen hat die Logiksynthese mehrere Moglichkeiten:

e Inverter fiir A gefolgt von einem UND-Gatter.

e Da Grundgatter in CMOS-Technologie stets eine Invertierung beinhalten, wire ein
NAND- oder NOR-Gatter vorteilhaft. Die Logikfunktion kann mit den Gesetzen von
De Morgan umgewandelt werden in A & B = (A \ B). Damit ergibt sich ein Inverter
fiir B gefolgt von einem NOR-Gatter.

e Eventuell steht in der Standardzellbibliothek ein passendes Komplexgatter mit der
Funktion A & B zur Verfiigung.

Dieser Entwurfsschritt ist dhnlich zur in Kapitel 7 beschriebenen Synthese von
FPGA-Schaltungen. Allerdings muss die Logiksynthese unter vielen Standardzellen
wihlen, wihrend der FPGA-Synthese iiblicherweise nur Look-Up-Tables und Flip-Flops
zur Verfiigung stehen.

Layout

Die Logiksynthese erzeugt eine Netzliste mit bendtigten Standardzellen und ihren Ver-
bindungsleitungen. Im néchsten Schritt werden die Position der Standardzellen und die
Lage der Verbindungsleitungen ermittelt. Die physikalische Anordnung wird als Lay-
out, die beiden Einzelschritte als Placement und Routing bezeichnet. Auch diese Schritte
werden von einem EDA-Programm durchgefiihrt und sind dhnlich zur Platzierung und
Verdrahtung des FPGA-Entwurfs.

Miteinander verbundene Standardzellen werden vom EDA-Programm méglichst nah
aneinander platziert. Dazu probiert ein intelligenter Algorithmus verschiedene Anord-
nungen aus. Abb. 10.15 zeigt das Layout einer automatisch erzeugten Teilschaltung.

Aus den Teilschaltungen wird schlieBlich die gesamte integrierte Schaltung zusam-
mengestellt. Abb. 10.16 zeigt als Beispiel das Chip-Foto eines System-on-Chip (SoC)
fiir ein Smartphone. Es handelt sich um die zentrale Steuereinheit des Gerits mit zwei
CPU-Kernen und der Grafikerzeugung (GPU) sowie lokalem Speicher (L1, L2, SRAM).
Ebenso sind verschiedene Schnittstellen fiir externen Speicher (DRAM), Kamera, USB
und das Display (LCD) vorhanden. Fiir die Taktaufbereitung dienen PLLs (Phase-
Locked Loop). Der Chip enthilt iiber 1 Mrd. Transistoren auf rund 1 Quadratzentimeter
Flache.


http://dx.doi.org/10.1007/978-3-662-49731-9_6
http://dx.doi.org/10.1007/978-3-662-49731-9_7
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Abb. 10.16 Chip-Foto eines System-on-Chip fiir ein Smartphone. (Foto: Chipworks)
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10.4.2 Herstellung

Als Grundmaterial fiir die Herstellung von CMOS-Schaltungen wird monokristalli-
nes Silizium verwendet. Die Herstellung erfolgt auf diinnen Siliziumscheiben, genannt
Wafer. Ein Wafer ist etwa 1 mm dick und hat einen Durchmesser zwischen 15 und 30 cm
(Abb. 10.17). Auf diesem Substrat werden durch aufwendige chemische und physikali-
sche Prozesse die Strukturen fiir die Schaltung aufgebracht. Aus einem kompletten Wafer
konnen mehrere hundert einzelne Chips gefertigt werden.

Die Anzahl an Chips je Wafer ergibt sich direkt aus der Fliche. Als Zahlenbeispiel
betrachten wir einen Wafer mit 30 cm Durchmesser, auf dem sich Chips mit der Fliche
von 2 cm? befinden. Die Kreisfliche ist 7’72, also 3,14:(15 cm)> = 707 cm?. Da jeder
Chip 2 cm? benétigt, ergibt der Wafer theoretisch 353 Chips. An den Kanten, zum Sigen
der Chips und fiir kleine Testflachen geht jedoch Flidche verloren. Praktisch konnen aus
dem Wafer darum etwa 250 bis 300 Chips hergestellt werden.

Auf dem Wafer werden die Strukturen der Transistoren und Metallleitungen in meh-
reren Arbeitsschritten nacheinander gefertigt. Abb. 10.18 zeigt den Arbeitsschritt der
Erzeugung von Source und Drain eines Transistors (vergleiche Abb. 10.4). Das Subst-
rat ist p-dotiert und fiir Source und Drain sollen zwei n-dotierte Bereiche entstehen. Das
Bild zeigt einen kleinen Ausschnitt des Wafers in Seitenansicht.

Zunichst wird die Oberfliche mit Fotolack versehen, mit einer Belichtungsmaske
abgedeckt und belichtet. Dieser Verarbeitungsschritt wird als Lithographie (auch Belich-
tungstechnik) bezeichnet. Die nicht belichteten Stellen konnen entfernt werden und las-
sen das darunter liegende Substrat frei (Abb. 10.18, links). Dann wird der Halbleiter in
eine Atmosphére mit dem Dotierungsgas gebracht und erhitzt. Fiir eine n-Dotierung kann
die Dotierung zum Beispiel Arsen sein. Die Dotierungsatome dringen in das Substrat ein
und bilden Source und Drain (Abb. 10.18, rechts).

Auf diese Art werden Schritt fiir Schritt die einzelnen Ebenen einer Schaltung
erzeugt. Die komplette Bearbeitung eines Wafers benotigt mehrere hundert Verarbei-
tungsschritte. Dazu gehort immer wieder das Auftragen von Fotolack, Belichten mit
einer Fotomaske, Freidtzen unbelichteter Regionen, Dotieren nichtabgedeckter Bereiche
und Entfernen des Fotolacks. Fiir die einzelnen Schaltungsebenen werden rund 20 bis 30
verschiedene Belichtungsmasken benotigt.

Aufgrund der sehr feinen Strukturen wiirde ein Staubkorn oder ein Haar auf dem
Wafer die Fertigung storen und der Chip wire an der Stelle des Staubkorns unbrauchbar.
Darum findet die Fertigung in einem Reinraum statt. Dort trigt man spezielle Schutz-
kleidung und einen Mundschutz und es werden moglichst Industrieroboter eingesetzt.
Dennoch bleibt trotz aller Sorgfalt eine geringe Staubkonzentration, so dass sich Ferti-
gungsfehler nicht komplett vermeiden lassen.

Darum miissen simtliche ICs nach der Fertigung einzeln getestet werden. Ublicher-
weise erfolgt dieser Fertigungstest zweimal, einmal noch auf dem Wafer, ein anderes Mal
nach dem Verpacken. Durch den ersten Test werden Kosten beim Verpacken in die Gehéduse
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Abb. 10.17 Silizium-Wafer. (Foto: imec)

Abb. 10.18 Substrat vor Dotierung
und wihrend der Dotierung

o = Photolack
von Source und Drain eines ololac
CMOS-Transistors o o Substrat

gespart, denn defekte Chips werden nicht weiter verarbeitet. Durch den zweiten Test wird
iberpriift, ob das Zersdgen des Wafers und das Verpacken zu Fehlern gefiihrt haben.

Der Anteil der korrekt gefertigten ICs wird als Ausbeute (engl. Yield) bezeichnet.
Genaue Ausbeutewerte werden von den Halbleiterfirmen als Betriebsgeheimnis gehii-
tet. Werte fiir eine eingefahrene Fertigung konnen bei 80 bis 90 % liegen. Fiir eine neue
Halbleitertechnologie kann die Ausbeute jedoch auch bei nur 10 % oder noch darunter
liegen. Dennoch kann solch eine Fertigung wirtschaftlich sein, wenn die Produkte auf-
grund der Leistungsfihigkeit der neuen Technologie einen entsprechend hohen Preis
erzielen.

10.4.3 Packaging

Nach Erstellen der Schaltungsstrukturen wird schlieBlich der Wafer in einzelne Chips
zersdgt und in Gehduse verpackt. Diese unverpackten Chips werden auch als Die
bezeichnet; der Plural ist Dies oder Dice. Mit diinnen Golddrihtchen werden Die und
Gehiduse miteinander verbunden. Die Dridhtchen werden als Bond-Draht bezeichnet,
der Fertigungsschritt als Bonding. Abb. 10.19 zeigt, wie in einem gedffneten Gehduse
die Bond-Drihte eine Verbindung zum Die herstellen. Fiir die Bond-Drihte wird Gold
als Material verwendet, weil es ein sehr guter elektrischer Leiter ist und sich fiir diese
Anwendung gut verarbeiten ldsst.



104 Integrierte Schaltungen 309

copyright: imec

Abb. 10.19 Gebffneter Chip mit Bond-Drihten zwischen Die und Gehduse. (Foto: imec,
bearbeitet)

Die Anschlussflaichen im Inneren des Gehiuses sind mit den Pins au3en am Gehiuse
verbunden. Mit den Pins erfolgt dann die elektrische Verbindung zur Platine.

10.4.4 Gehduse

Es sind verschiedene Gehduseformen gebriduchlich. Hauptkriterium fiir die Auswahl des
Gehduses durch den Hersteller ist die Anzahl der Anschliisse. Weitere Kriterien sind auf-
tretende Verlustleistung, Platzbedarf und Gehiusekosten. Um die Ausrichtung der ICs zu
bestimmen, sind an den Gehiusen Orientierungsmarken angebracht, meist ein eingeprag-
ter Punkt oder eine Kerbe im Gehiduse. Zusitzlich kann sich in einer Ecke ein fehlender
oder zusitzlicher Pin befinden.

Abb. 10.20 zeigt beispielhaft einige Gehduseformen. Von links nach rechts sind
abgebildet:

e DIL-Gehéuse (Dual In-Line): Geeignet fiir kleine Anzahl an Pins. Die ,,Beinchen*
des Gehiuses sind fiir eine Durchsteckmontage gedacht, werden also durch Locher in
der Platine gefiihrt.

o PLCC-Gehéuse (Plastic Leaded Chip Carrier): Fiir mittlere Anzahl an Pins geeignet.
Die Pins erlauben die Oberflichenmontage und das Einstecken in Sockel.
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Abb. 10.20 Verschiedene Gehiuse fiir Integrierte Schaltungen

o QFP-Gehiuse (Quad Flat Pack): Ebenfalls fiir mittlere Anzahl an Pins und die Ober-
flichenmontage geeignet. Im Vergleich zu PLCC etwas kleinere Pins.

e BGA-Gehiuse (Ball Grid Array): Bis zu grofler Anzahl an Pins verfiigbar. Die
Anschliisse fiir die Oberflichenmontage befinden sich als Lotkugeln unterhalb des
Bausteins.

10.5 Miniaturisierung der Halbleitertechnik

Die erste Integrierte Schaltung wurde 1958 von Jack Kilby entwickelt, der dafiir den
Nobelpreis fiir Physik erhielt. Seitdem hat sich die Halbleitertechnik kontinuierlich wei-
terentwickelt. Ein wesentlicher Fortschritt ist, dass es durch geschickte Fertigungstech-
nik gelungen ist, die GroBe eines Transistors immer weiter zu reduzieren.

Als Angabe wie klein die Strukturen einer Halbleitertechnologie sind, wird die soge-
nannte Strukturgrofie als Groflenangabe verwendet. Friither entsprach die Strukturgrofe
der Gate-Linge L des Transistors (vergleiche Abb. 10.3). Durch verschiedene Moglich-
keiten fiir die Gestaltung der Transistorgeometrie hat die Strukturgrofie heute jedoch
keinen direkten Bezug zu einer bestimmten Geometrie. Eine kleinere Strukturgrofe
kennzeichnet einen moderneren Prozess, der mehr Transistoren enthalten kann. Durch
die kleineren Abmessungen arbeitet er schneller und mit weniger Verlustleistung. Die
StrukturgroBe betrigt aktuell 10 Nanometer (Stand 2016). Diese Angabe finden Sie oft in
Zeitschriftenartikeln, beispielsweise als ,,neue CPU in 10 nm Technologie®. Ein mensch-
liches Haar hat tibrigens einen Durchmesser von rund 80 pm, ist also 8000mal so dick.

10.5.1 Moore’sches Gesetz

Durch die Miniaturisierung passen immer mehr Transistoren auf einen einzelnen Chip.
Diese Entwicklung wird als Moore’sche Gesetz bezeichnet.

Das Moore’sche Gesetz besagt: Die Anzahl der Transistoren pro Integrierter Schaltung ver-
doppelt sich alle zwei Jahre.

Abb. 10.21 zeigt den Anstieg der Integration. Die vertikale Achse hat eine logarithmi-
sche Skala, das heiflt, ein Teilstrich der Skala entspricht einem Multiplikationsfaktor
von 10 gegeniiber dem vorherigen Teilstrich. Die Punkte stellen Einfiihrungsjahr und
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Transistoranzahl fiir einige Computer-Prozessoren dar, angefangen beim Intel 4004, dem
ersten in Serie produzierten Mikroprozessor.

Gordon Moore, ein Mitbegriinder der Firma Intel, hat die nach ihm benannte Aus-
sage, die natiirlich kein Naturgesetz, sondern eine Prognose ist, bereits 1965, also am
Anfang der ,,Geschichte® integrierter Schaltkreise formuliert. Urspriinglich wurde sogar
eine jdhrliche Verdopplung prognostiziert, 1975 dann auf den Zeitraum von zwei Jah-
ren zuriickgenommen. Das ,,Moore’s Law* ist oft zitiertes Synonym fiir das stiirmische
Wachstum der Halbleiterindustrie. Ein Ende dieser Entwicklung wurde zwar oft voraus-
gesagt, scheint aber fiir die ndchsten Jahre noch nicht in Sicht.

10.5.2 FinFET-Transistoren

Bei der Miniaturisierung von Halbleitern gibt es eine natiirliche Grenze: Die Grofe der
Atome. Der Atomdurchmesser eines Siliziumatoms betrigt etwa 0,25 nm, so dass die
Gate-Linge heute bereits unter hundert Atomen liegt. Als Folge miissen fiir die Schalt-
eigenschaften der Transistoren quantenphysikalische Einfliisse einzelner Atome beachtet
werden. Durch die kleinen Abmessungen verschlechtern sich die elektrischen Eigen-
schaften der Transistoren.

Darum werden neue Transistorgeometrien entwickelt, die fiir sehr kleine Strukturen
besser geeignet sind, als die in Abschn. 10.1.2 beschriebenen, sogenannten Planar-Tran-
sistoren. Eine erfolgreich eingesetzte Struktur sind FinFET-Transistoren. Dabei liegt das
Gate nicht oberhalb des Kanals, sondern um einen Steg herum, der wie eine Finne oder

Drain
Source
Gate /_/7‘ Gate-Oxid
Gate Gate-Oxid Ya \
Sot;rce 7 A/ Drain
/
] /A
- N
Oxid
Planar-Transistor EinFET-Transistor

Abb. 10.22 Dreidimensionaler Aufbau eines FinFET-Transistors
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Riickenflosse aussieht. Aus dieser Finne und der Abkiirzung FET fiir Feldeffekttransistor
ergibt sich der Name FinFET. Der physikalische Aufbau eines FinFET-Transistors ist in
Abb. 10.22 dargestellt. Das Gate umschlieB3t den Kanal von drei Seiten und hat daher auf
kleinem Raum eine hohe Schaltwirkung. Auch Abb. 10.6 zeigt FinFET-Transistoren.

10.5.3 Weitere Technologieentwicklung

In den néchsten Jahren werden Fortschritte in der Fertigungstechnik fiir eine weitere Mini-
aturisierung sorgen. Techniken in der Erprobung sind unter anderem dreidimensionaler
Aufbau von Schaltungen und Verbindungen mit Kohlenstoffnanorohren (CNT, englisch
Carbon Nanotubes). Das Grundprinzip digitaler Schaltungen, also das Schalten von Nullen
und Einsen bleibt auch fiir die vorgeschlagenen neuen Fertigungstechniken erhalten.

Das Problem fiir eine neue Fertigungstechnik ist oft die Zuverlissigkeit in der indus-
triellen Fertigung. Wenn im Labor ein Aufbau funktioniert, ist dies nur der erste Schritt.
Eine neue Technik muss auch in der Massenfertigung zu vertretbaren Kosten eine hohe
Fertigungsausbeute ergeben.

10.6 Ubungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Priifen Sie sich mit den Aufgaben und
Fragen am Kapitelende. Die Losungen und Antworten finden Sie am Ende des Buches.
Bei den Auswahlfragen ist immer genau eine Antwort korrekt.

Aufgabe 10.1
Was fiir Schaltelemente werden fiir CMOS-Schaltungen benutzt?

a) Feldeffekttransistoren

b) Mechanische Schalter

c) Feldeffekt- und Bipolartransistoren
d) Bipolartransistoren

Aufgabe 10.2
Ein CMOS-Inverter besteht aus zwei Transistoren. Wie hei3t der mit Versorgungsspan-
nung (VDD) verbundene Transistor?

a) Depletion-Transistor
b) p-Kanal Transistor
¢) n-Kanal Transistor
d) Verarmungstransistor
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Aufgabe 10.3
Ein CMOS-Inverter besteht aus zwei Transistoren. Wie heift der mit Masse (GND) ver-
bundene Transistor?

a) n-Kanal Transistor
b) Depletion-Transistor
¢) p-Kanal Transistor
d) Verarmungstransistor

Aufgabe 10.4
Wenn bei CMOS das Substrat p-dotiert ist, muss der p-Kanal-Transistor in einem spezi-
ellen, umdotierten Gebiet liegen. Wie wird dieses Gebiet bezeichnet?

a) Sillicon Region
b) Silicon Valley

¢) n-Wanne

d) Raumladungszone
e) Verarmungszone

Aufgabe 10.5
Was bedeutet der Begriff Complementary (komplementir) bei CMOS-Gattern?

a) Es ist stets entweder n-Kanal- oder p-Kanal-Netzwerk leitend

b) p-Kanal-Transistoren haben eine grof3ere Kanalweite

¢) CMOS-Gatter beinhalten normalerweise eine Invertierung

d) p-Kanal- und n-Kanal-Transistoren haben entgegengesetztes Verhalten

Aufgabe 10.6
Warum hat im CMOS-Inverter der p-Kanal-Transistor eine 2—3fache Kanalweite?

a) Locher haben eine hthere Beweglichkeit als Elektronen

b) Locher haben eine geringere Beweglichkeit als Elektronen

¢) Die Schaltzeiten 0 nach 1 sowie 1 nach 0 sollen unterschiedlich sein
d) Die Reihenschaltung mehrerer Transistoren wird ausgeglichen

e) Die Parallelschaltung mehrerer Transistoren wird ausgeglichen

Aufgabe 10.7
Welchen Aufbau hat ein Transmission-Gate?

a) Zwei unterschiedliche Inverter sind parallel geschaltet
b) Es werden nur p-Kanal-Transistoren verwendet



314 10 Halbleitertechnik

¢) Zwei Inverter sind in Reihe geschaltet
d) n-Kanal und p-Kanal-Transistor sind parallel geschaltet
e) Es werden nur n-Kanal-Transistoren verwendet

Aufgabe 10.8
Was besagt das Moore’sche Gesetz?

a) Die Fliche von Integrierten Schaltungen verdoppelt sich alle zwei Jahre

b) Der Stromverbrauch Integrierter Schaltungen ist proportional zur Anzahl an
Transistoren

c¢) Die Flidche von Integrierten Schaltungen halbiert sich alle zwei Jahre

d) Die Anzahl der Transistoren pro Integrierter Schaltung verdoppelt sich alle zwei Jahre

e) Der Stromverbrauch Integrierter Schaltungen ist proportional zur Fliche

Aufgabe 10.9
‘Was kennzeichnet einen FinFET-Transistor?

a) Die Dotierung wird besonders schwach gewihlt
b) Der Kanal ist oberhalb des Gatters

¢) Die Dotierung wird besonders stark gewihlt

d) Es handelt sich um einen Bipolartransistor

e) Das Gate liegt um den Kanal herum

Aufgabe 10.10
Welche Funktion hat die Schaltung in Abb. 10.23?

Hinweis: Bei einer 0 am Eingang leiten die p-Kanal-Transistoren (oberes Netzwerk),
bei einer 1 am Eingang leiten die n-Kanal-Transistoren (unteres Netzwerk). Stellen Sie
eine Funktionstabelle fiir die vier moglichen Eingangskombinationen auf und ermitteln
Sie, welcher Spannungswert am Ausgang anliegt. Aus der Funktionstabelle konnen Sie
die Logikfunktion erkennen.

Abb. 10.23 Schaltung fiir VDD
Aufgabe 10.10
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Die Speicherung von Informationen ist eine wichtige Funktion innerhalb von Digital-
schaltungen. Fiir kleine Speichergroffen werden Flip-Flops eingesetzt, die bereits aus
vorherigen Kapiteln bekannt sind. Fiir mittlere und groere Datenmengen sind spezielle
Speicherstrukturen effizienter, die in diesem Kapitel vorgestellt werden. Fiir mittlere
Datengrofen werden die Speicher auf einem Chip integriert. Fiir sehr grole Datenmen-
gen sind spezielle Speicherbausteine verfiigbar.

Es gibt verschiedene Technologien fiir den Aufbau von Speichern, die sich in ihren
Eigenschaften deutlich unterscheiden und daher jeweils eigene Anwendungsbereiche
haben. Die wichtigste Unterscheidung bei den Speichertechnologien ist die Speicherfi-
higkeit ohne Betriebsspannung.

o Fliichtige Speicher benétigen eine Versorgungsspannung zum Erhalt der Informatio-
nen. Zu diesen Speichern gehéren SRAM und DRAM. Auch Flip-Flops benotigen die
Versorgungsspannung zur Informationsspeicherung.

o Nichtfliichtige Speicher behalten ihren Inhalt auch ohne Versorgungsspannung. Zu
diesen Speichern gehdren EEPROM, FRAM, MRAM, PCRAM und RRAM.

Die englischen Begriffe sind Volatile Memory und Non-Volatile Memory.
Im Folgenden werden zunichst die verschiedenen Technologien zur Speicherung
erldutert und danach aktuelle Speicherbausteine betrachtet.
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11.1  Ubersicht
11.1.1 Begriffe und Abkiirzungen

Fiir die verschiedenen Speichertypen und Speicherorganisationen werden eine Reihe von
Begriffen und Abkiirzungen verwendet. Fiir Ihren Uberblick kldren wir fiir zunichst die
wichtigsten Bezeichnungen.

e SRAM steht fiir Static Random Access Memory, also ein statischer Speicher mit
wahlfreiem Zugriff.

o DRAM steht fiir Dynamic Random Access Memory, also ein dynamischer Speicher
mit wahlfreiem Zugriff.

Der Unterschied zwischen statisch und dynamisch bedeutet, dass ein SRAM seine Daten
unbegrenzt hilt, solange die Versorgungsspannung anliegt. Das DRAM hingegen wiirde
Daten nach einiger Zeit verlieren und darum muss die gespeicherte Information in regel-
maBigen Abstinden aufgefrischt werden. Der Fachbegriff fiir diesen Vorgang ist Refresh.

e ROM ist ein Read-Only-Memory, also ein Speicher, der nur gelesen werden kann. Er
enthilt feste Werte, die nicht verindert werden konnen.

e EEPROM st ein nicht-fliichtiger Speicher, der mehrfach neu beschrieben wer-
den kann. Die Abkiirzung steht fiir Electrically Erasable Programmable Read-Only
Memory.

e FRAM, MRAM, PCRAM und RRAM sind innovative nichtfliichtige Speicher. Die
Abkiirzungen stehen fiir Ferroelectric RAM, Magnetoresistive RAM, Phase-Change
RAM und Resistive RAM.

e NVRAM steht fiir Non-Volatile RAM und ist der Oberbegriff fiir nichtfliichtige
Speicher.

In dem Begriff EEPROM ist eine lingere Geschichte der Speichertechniken verborgen.

e ROM ist der Ausgangspunkt. Sie werden mit festem Speicherinhalt hergestellt, der
vor der Fertigung festgelegt wurde.

e PROM steht fiir Programmable ROM, also programmierbares ROM. Damit werden
Speicherbausteine bezeichnet, bei denen der Speicherinhalt programmiert werden
kann. Zunichst war aber nur ein einziger Programmiervorgang moglich.

e EPROM steht fiir Erasable PROM, also l6schbares PROM. Der Loschvorgang
erfolgte durch Belichtung mit UV-Licht. Das EPROM wurde aus der Platine entnom-
men und fiir circa 15 min in ein spezielles Belichtungsgerit gelegt. Danach konnte es
neu programmiert werden.

o EEPROM steht fiir Electrically Erasable PROM, also ein PROM, welches elektrisch
16schbar ist und nicht mehr belichtet werden muss.
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e Flash-EEPROM bezeichnet eine hdufig genutzte Variante des EEPROMs. Dabei
konnen Speicherzellen nicht einzeln gedndert werden, sondern beim Andern des Spei-
cherinhalts werden ganze Speicherblocke zuriickgesetzt (,,geflasht*).

Auch der Begriff RAM, also Random Access Memory, hat historischen Hintergrund.
Heutige Speicher haben fast immer einen wahlfreien Zugriff auf die gespeicherten
Informationen. Frither wurden auch FIFO-Speicher verwendet, die Daten in der glei-
chen Reihenfolge ausgeben, mit der sie geschrieben werden. Der Begriff FIFO steht fiir
First-In-First-Out und diese Speicher schieben intern die Daten wie in einem FlieSband
schrittweise weiter.

Auch heute werden noch FIFOs verwendet, beispielsweise in Computer-Netzwerken,
wenn Datenpakete empfangen und in der gleichen Reihenfolge weitergegeben werden.
In diesen FIFOs ist jedoch mittlerweile ein SRAM-Speicher enthalten, welcher in fester
Reihenfolge angesteuert wird.

11.1.2 Grundstruktur

Die prinzipielle Grundstruktur ist fiir alle Speichertechnologien dhnlich und in Abb. 11.1
dargestellt. Die Speicherzellen sind in einer Matrixform in Zeilen und Spalten angeord-
net. Auf die einzelnen Speicherzellen wird iiber eine Adresse zugegriffen. Anhand eines
Teils der Speicheradresse wird eine Zeile ausgewihlt. Der Rest der Speicheradresse
wihlt eine Spalte aus. Steuerleitungen geben an, ob Daten gelesen oder geschrieben wer-
den sollen.

Die Daten werden iiber Lese- und Schreibverstirker aus der Speicherzelle gelesen
beziehungsweise in die Zelle geschrieben. Uber den Lese-/Schreibverstirker erfolgt
der Datenaustausch mit der weiteren Schaltung. Normalerweise enthilt ein Speicher

Abb. 11.1 Grundstruktur
eines Halbleiterspeichers
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Datenworte mit mehreren Bits, das heifit unter einer Adresse sind 8 Bit, 16 Bit oder
32 Bit gespeichert. Die einzelnen Speichertechnologien unterscheiden sich durch die Art
der verwendeten Speicherzellen in der Matrix.

Durch die Matrixanordnung ergibt sich eine Zweiteilung der Adresse, welche die
interne Ansteuerung des Speichers erleichtert. Anstelle eines grof3en Adressdecoders sind
zwei kleine Decoder notig. Die Aufteilung wird meist so gewihlt, dass die Speichermat-
rix quadratisch ist oder ein Verhiltnis von 2-zu-1 oder 4-zu-1 hat.

Als Beispiel wird ein Speicher fiir 22° Datenworte zu 16 Bit betrachtet. Dies sind
exakt 1.048.576 Datenworte, also rund eine Million. Dafiir sind etwa 16 Mio. Speicher-
zellen erforderlich, die bei einer quadratischen Aufteilung eine Speichermatrix aus 4096
Zeilen und 4096 Spalten bilden. Jeweils 16 Zellen einer Zeile bilden ein Datenwort und
haben die gleiche Adresse. Es miissen also 4096 Zeilen und 4096/16 = 256 Spalten
angesteuert werden.

Aus der Speichergrofe ergibt sich die bendtigte Wortbreite fiir die Adresse. Mit n
Adressleitungen konnen 2" Adressen angesteuert werden.

Der Speicher mit 2%° Datenworten bendtigt somit 20 Adressleitungen. In der inter-
nen Struktur werden 12 Adressleitungen verwendet, um die Zeilenadresse zu bestimmen.
Dies berechnet sich aus den 4096 Adressen, die dem Wert 22 entsprechen. Die restlichen
8 Adressleitungen bestimmen die Spaltenadresse, denn 256 ist 28.

11.1.3 Physikalisches Interface

Die Geschwindigkeit eines Datenzugriffs ist natiirlich wichtig fiir die Leistungsfihigkeit
eines Speichers. Dabei unterscheidet man zwischen Latenzzeit und Datentransferrate.
Die Latenzzeit ist die Reaktionszeit auf einen Datenzugriff und héngt von der Organisa-
tion des Speichers ab. Die Datentransferrate ist die Geschwindigkeit mit der Daten zwi-
schen Speicher und System iibertragen werden.

Die hochste Datentransferrate ist moglich, wenn der Speicher sich auf demselben
Chip wie das restliche System befindet. Dies wird als interner Speicher oder Embedded
Memory bezeichnet. Fiir separate Speicherbausteine, also externen Speicher, ist die Ver-
bindung, das physikalische Interface zwischen Speicher und System, entscheidend fiir
die Datentransferrate.

Zur Beschleunigung des Datentransfers werden verschiedene Schaltungstechniken
eingesetzt.

Reduzierter Spannungshub mit Referenzspannung

Die Leitungen zwischen System und Speicher haben Kapazititen, die bei Signalwech-
seln umgeladen werden miissen. Um dies zu beschleunigen, wird der Spannungshub auf
den Leitungen reduziert. Allerdings sinkt dadurch auch der Storabstand, denn der Uber-
gangsbereich zwischen Low- und High-Pegel wird sehr klein. Als Ausgleich wird eine
Referenzspannung eingefiihrt. Wenn der Signalpegel hoher als die Referenzspannung ist,
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wird bei positiver Logik eine 1 erkannt. Spannungen unterhalb des Referenzpegels wer-
den als eine logische O interpretiert. Storungen wirken sich auf Signale und Referenz-
spannung gleichermalen aus, so dass die Information nicht verféalscht wird.

Terminierung von Leitungen

Auf elektrischen Leitungen konnen Reflektionen von Signalwechseln auftreten. Wenn
diese die eigentlichen Signale tiberlagern, sind Fehler in der Dateniibertragung moglich.
Fiir die Signalleitungen zu externen Speichern gibt es daher Layout-Regeln, damit die
Leitungen einen passenden Wellenwiderstand haben. Aulerdem konnen auf der Platine
oder direkt auf den Chips Abschlusswiderstinde fiir eine Terminierung der Leitungen
sorgen.

Double-Data-Rate

Schnelle Speicher verwenden ein synchrones Interface, bei denen die Abfolge der Daten
durch einen Takt angezeigt wird. Allerdings kann die hohe Frequenz des Taktsignals pro-
blematisch sein. Grund ist, dass der Takt schnellere Signalwechsel als die Datenleitun-
gen hat. Der Takt wechselt in jedem Zyklus von 0 nach 1 und wieder von 1 nach 0. Ein
Datensignal hat jedoch pro Taktzyklus maximal einen Signalwechsel und damit die halbe
Frequenz.

Zur Verringerung der Frequenz fiir das Taktsignal wird eine Dateniibertragung mit
Double-Data-Rate, abgekiirzt DDR, verwendet. Dabei signalisieren steigende und fal-
lende Taktflanken die iibertragenen Daten. Pro Taktzyklus werden also zwei Datenworte
tibertragen, was zu der Bezeichnung ,,doppelte Datenrate* fiihrt.

11.2 Speichertechnologien
11.2.1 SRAM

Im SRAM erfolgt die Datenspeicherung durch Riickkopplung zweier Inverter. Abb. 11.2
zeigt einen Ausschnitt aus der Speichermatrix. Die Inverter sind wechselseitig mit ihren
Ein- und Ausgédngen verbunden, so dass eine gespeicherte O oder 1 doppelt invertiert und
verstiarkt wird. Damit bleibt die Information erhalten. Beim Abschalten der Versorgungs-
spannung entfillt die Riickkopplung, die Daten gehen verloren, der Speicher ist fliichtig.

Angesteuert werden die SRAM-Zellen iiber eine Zeilenadresse sowie Datenleitungen.
Fiir jede Spalte sind zwei Datenleitungen vorhanden, die Daten und invertierte Daten
verbinden.

e Zum Lesen von Daten wird eine Zeile ausgewéhlt und die Zeilenadresse auf 1 gesetzt.
Dadurch werden alle Speicherzellen einer Zeile mit den Datenleitungen verbunden.
Der Leseverstiarker wihlt dann die richtigen Spalten aus und gibt die Daten an den
Ausgang.
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Abb. 11.2 Speicherzellen eines SRAMs

e Zum Schreiben von Daten wird ebenfalls eine Zeile durch Zeilenadresse auf 1 ausge-
wihlt. Wiederum werden die Speicherzellen mit den Datenleitungen verbunden. Dort
wo Daten geschrieben werden, miissen die Datenleitungen die neuen Werte enthalten.
Auflerdem muss der Schreibverstirker so stark sein, dass er die Riickkopplung der
Speicherzelle iiberschreibt.

Die Speicherzelle selbst ist in Abb. 11.3 dargestellt. Die Inverter haben jeweils zwei
Transistoren, die Schalter sind durch jeweils einen einzelnen Transistor aufgebaut.
Anders als beim Transmission-Gate (vgl. Kapitel 10) wird nur ein n-Kanal-Transistor
verwendet, um Transistoren zu sparen. Insgesamt benotigt die SRAM-Zelle 6 Transisto-
ren. Sie wird daher auch als 67-Zelle bezeichnet.

Wir betrachten wieder den Speicher mit 22° Datenworten zu 16 Bit. Horizontal
verlaufen 4096 Zeilenadressen und vertikal fiir jede Zelle zwei Datenleitungen also

Abb. 11.3 Transistoraufbau p Datenleitungen
einer SRAM-Speicherzelle (direkt und invertiert)
VDD
Adress- GND
leitung ° °
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insgesamt 8192. Fiir die rund 16 Mio. Speicherzellen werden 6 - 16 Mio., also 96 Mio.
Transistoren benotigt. Bei der Adressierung eines 16-Bit-Wortes werden 32 nebeneinan-
derliegende Datenleitungen angesprochen, je Bit zwei Leitungen.

11.2.2 DRAM

Ein DRAM verwendet eine andere Art der Speicherung. Eine Information wird als
Ladung auf einem kleinen Kondensator gespeichert. Ein Transistor dient als Schalter zur
Datenleitung. Die Adressleitung 6ffnet den Transistor, so dass die Ladung gespeichert
oder abgefragt werden kann (Abb. 11.4).

Der wesentliche Vorteil der DRAM-Speicherung ist der geringere Platzbedarf gegen-
tiber einem SRAM. Zunichst werden weniger Komponenten benotigt, und zwar nur ein
Transistor und ein Kondensator, verglichen mit den sechs Transistoren des SRAMs. Ein
weiterer Platzvorteil entsteht dadurch, dass keine p-Kanal-Transistoren verwendet wer-
den und darum keine n-Wanne mit einem Mindestabstand zu den n-Kanal-Transistoren
erforderlich ist. Der Masseanschluss des Kondensators verbindet zum Substrat. Darum
wird keine Masseleitung benétigt und auch Versorgungsspannung sowie eine zweite
Datenleitung sind nicht erforderlich, was weiterhin Platz einspart. Die Speicherkapazitit
eines DRAMS ist dadurch wesentlich hoher als bei einem SRAM.

Das Speicherprinzip des DRAMs hat jedoch auch Nachteile, insbesondere die Not-
wendigkeit einer speziellen Halbleitertechnologie sowie die begrenzte Datenerhaltung.

Spezielle Halbleitertechnologie
Wichtig fiir die Informationsspeicherung ist ein Kondensator mit ausreichender Kapazi-
tit. Dieser ist in einem Standard-CMOS-Prozess nicht vorhanden, so dass eine spezielle
Halbleitertechnologie erforderlich ist. Ein SRAM-Speicher hingegen lisst sich auf einem
Standard-CMOS-Prozess fertigen.

Es gibt verschiedene Moglichkeiten, einen Kondensator aufzubauen. Zwei Grundprin-
zipien sind Capacitor over Bitline (COB) und Trench-Transistoren.

e Bei Capacitor over Bitline befindet sich der Kondensator oberhalb der Datenleitung
(Bitline) und wird beim Aufbau der verschiedenen Schichten eines Chips erzeugt.

e Als Trench-Kondensator wird in das Substrat ein Graben (engl. Trench) oder Loch
gedtzt und mit leitfihigem Material aufgefiillt. Grundprinzip und Chipfoto einer

Abb. 11.4 Speicherzelle Datenleitung
eines DRAMs

Adressleitung
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DRAM-Zelle mit Trench-Kondensator sind in Abb. 11.5 dargestellt. WL (Write Line)
bezeichnet die Adressleitung.

Begrenzte Datenerhaltung
Die Ladung des Kondensators wird nicht, wie beim SRAM, durch eine Riickkopplung

automatisch erhalten. Dies muss fiir die Speicherung und fiir den Lesevorgang bertick-
sichtigt werden.

Bei der Speicherung wird der Kondensator durch Leckstrome langsam entladen. Die
Daten werden also nur fiir einen kurzen Zeitraum gespeichert und miissen durch einen
Refresh periodisch erneuert werden. Die garantierte Speicherzeit zwischen zwei Refresh-
vorgingen ist abhidngig von der Halbleitertechnologie und liegt in der Groflenordnung
von 100 ms.

Beim Lesevorgang wird der Transistor am Kondensator gedffnet und die Ladung iiber
die Datenleitung gelesen. Dies erfordert einen sehr empfindlichen Leseverstirker, der
erkennen muss, ob ein kleiner Kondensator am Ende einer langen Datenleitung geladen
oder nicht geladen war. Aulerdem wird durch das Lesen des Kondensators die Informa-
tion geloscht. Nach dem Lesen einer Zelle muss also immer die Information wieder in
die Kondensatoren zuriickgeschrieben werden.

Dies hort sich zunichst nach einem sehr hohen Aufwand an. Gemildert wird der Auf-
wand dadurch, dass beim Lesen eine ganze Zeile in den Leseverstirker geladen wird.
Weitere Datenzugriffe in die gleiche DRAM-Zeile konnen darum sehr schnell erfolgen,
da die Daten bereits im Leseverstirker vorhanden sind.

Als Zahlenbeispiel nehmen wir wieder den oben betrachteten Speicher mit 22° Daten-
worten zu 16 Bit. Wenn er als DRAM implementiert ist, wird zunichst eine der 4096
Zeilenadressen angesprochen und in den Leseverstirker geladen. Dort stehen dann 256
Worte zu 16 Bit fiir den schnellen Datenzugriff bereit.

Trench -
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WL :
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Abb. 11.5 DRAM-Speicherzelle mit Trench-Kondensator als physikalischer Aufbau und im
Elektronenmikroskop. (Foto: Chipworks)
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Aufgrund des geringeren Platzbedarfs fiir die Speicherzellen wird fiir die Speicherung
grofler Datenmengen oft ein DRAM eingesetzt. Beispielsweise wird der Hauptspeicher
eines PCs durch DRAM-Speicher implementiert.

11.2.3 ROM

Wenn in einem System unverinderliche Werte gespeichert werden sollen, wird ein Read-
Only-Memory (ROM) eingesetzt. An den Kreuzungspunkten von Adress- und Datenlei-
tungen befinden sich Kontaktmdglichkeiten, die verbunden oder nicht verbunden sind
und damit eine 0 oder 1 darstellen. Um einen Kurzschluss iiber andere Speicherstellen zu
vermeiden, befindet sich an der Kontaktstelle eine Diode.

Abb. 11.6 zeigt den Aufbau eines ROMs mit verbundenen und unverbundenen Kon-
taktstellen. Zum Lesen einer Information wird eine Adressleitung auf High-Pegel gelegt
und vom Leseverstérker iiberpriift, ob auf der Datenleitung ein Strom fliet. Die unbe-
nutzten Adressleitungen liegen auf Low-Pegel und sind durch die Dioden abgetrennt.

11.2.4 OTP-Speicher

Eine besondere Art eines nichtfliichtigen Speichers stellt der Einmalprogrammierbare
Speicher dar. Er wird als OTP, also One-Time-Programmable bezeichnet. Ein OTP-Spei-
cher kann nach der Programmierung nicht mehr verdndert werden und gegebenenfalls
muss ein kompletter Baustein ausgetauscht und weggeworfen werden. In der Anfangs-
zeit der Mikroelektronik war eine Programmierung nicht anders moglich. Heute ist diese
Einschrinkung fiir viele Anwendungen nicht mehr akzeptabel.

Fiir programmierbare Schaltungen (FPGAs) wird eine Einmalprogrammierung jedoch
weiterhin eingesetzt. Sie hat den Vorteil, dass sie Sicherheit gegen unbeabsichtigte Ande-
rung oder Manipulation einer Schaltung bietet. Ein Anwendungsbeispiel sind FPGAs fiir
Satelliten und Raumfahrt, bei denen die Programmierung durch kosmische Strahlung
nicht gestort werden darf. Bei der Entwicklung werden eventuell einige wenige Bau-
steine mit Testversionen programmiert und ausgetauscht. Danach kann eine Kleinserie
mit dem gewiinschten Speicherinhalt programmiert und in Gerite eingebaut werden.

Abb. 11.6 Struktur eines Zeilen
ROMs adresse /@/
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Implementiert werden Einmalprogrammierbare Speicher durch Sicherungen und
Antisicherungen. Eine Sicherung brennt bei zu hohem Strom durch, wihrend eine
Anti-Sicherung (Anti-Fuse) bei Anlegen einer Programmierspannung eine elektrische
Verbindung herstellt. In der Praxis sind heutzutage Anti-Fuses gebriduchlich, da diese
zuverldssiger programmiert werden konnen.

Das Grundprinzip eines PROM zeigt Abb. 11.7. An jeder Verbindung von Adress-
leitung und Datenleitung ist eine Sicherung oder Anti-Fuse in Reihe zu einer Diode
geschaltet. Bei der Programmierung wird festgelegt, welche Verbindungen bendtigt
werden.

11.2.5 EEPROM

Fiir viele Anwendungen sollen Daten nichtfliichtig gespeichert, aber auch leicht verin-
derbar sein. Das hierfiir am weitesten verbreitete Halbleiterelement ist das EEPROM.
Hierbei erfolgt die Datenspeicherung durch spezielle Transistoren mit einem zusétzli-
chen isolierten Gate (engl. Floating-Gate). Wie Abb. 11.8 zeigt, liegt das Floating-Gate
zwischen dem regulédren Steuer-Gate und dem Kanal. Auf dem Floating-Gate kann durch
Tunneleffekte und sogenanntes Hot-Electron-Injection eine Ladung gespeichert und wie-
der geloscht werden. Das Floating-Gate ist jedoch elektrisch isoliert und speichert die
Ladung daher sehr lange. Die garantierte Speicherzeit betrégt je nach Baustein bis zu 20
Jahre.

Zum Lesen der Daten muss die Ladung nicht abgerufen werden. Der Transistor wird
tiber das Steuer-Gate angesprochen. Falls keine Ladung auf dem Floating-Gate vorhan-
den ist, leitet der Transistor wie in der normalen CMOS-Technik. Falls eine Ladung

Abb. 11.7 Struktur eines
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gespeichert ist, verschiebt sich die Schwellenspannung und der Transistor bleibt auch bei
Ansteuerung durch das Steuer-Gate nichtleitend. So ist eine Unterscheidung des Spei-
cherinhalts moglich.

Héufig wird die als Flash-EEPROM bezeichnete Schaltungsform eingesetzt. Hierbei
hat der Schreibvorgang die Besonderheit, dass fiir eine einzelne Zelle nur die Anderung
von einer 1 in eine 0 moglich ist. Falls eine O in eine 1 gedndert werden soll, muss ein
ganzer Block komplett auf 1 gesetzt werden und erneut die benétigten 0-Werte geschrie-
ben werden. Typische Blockgrofen sind zwischen 8 kByte und 256 kByte. Dieses
Loschen ganzer Speicherblocke hat zu dem Namen Flash gefiihrt. Ein Vorteil der Flash-
Technik ist der geringere Schaltungsaufwand, u.a. weil beim Loschen nicht jede Zelle
einzeln angesprochen werden muss.

Die Anzahl der moglichen Loschzyklen ist begrenzt und betrdgt beispielsweise
100.000 Zyklen. Bei der Ansteuerung des Flash-EEPROMs wird meist versucht, die BIo-
cke moglichst gleich hdufig zu benutzen, um die Lebensdauer des Bausteins zu verlidn-
gern. Diese Strategie bezeichnet man als Wear Leveling, also frei iibersetzt ,,Ausgleichen
der Abnutzung*.

Es gibt zwei Strukturen fiir die Anordnung von Floating-Gate Transistoren zu einem
Speicher, und zwar die NOR- und die NAND-Struktur, dargestellt in Abb. 11.9. Beiden
Technologien gemeinsam ist, dass wieder eine Zeile durch einen Zeilendecoder ausge-
wihlt wird.

e In der NOR-Struktur schalten die Speichertransistoren die Datenleitung parallel nach
Masse. Die nicht aktiven Transistoren sind nicht leitend und stellen somit keine Ver-
bindung nach Masse dar. Zum Lesen wird ein Transistor iiber die Adressleitung ange-
sprochen. Abhéngig von seinem Speicherzustand kann er darauthin leitend werden
und die Datenleitung nach Masse ziehen. Dies wird vom Leseverstirker erkannt.

e In der NAND-Struktur sind die Speichertransistoren in der Datenleitung in Reihe
angeordnet. Die nicht aktiven Transistoren sind leitend geschaltet. Der Transistor, der

Abb. 11.9 Interne EEPROM- _ NOR NAND
Speicherzellenstruktur in Zeilenadressen
NOR- und NAND-Technik .
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gelesen werden soll, wird tiber die Adressleitung angesprochen und schaltet die Rei-
henschaltung leitend oder nicht leitend. Auch dies wird vom Leseverstirker erkannt.

Beide Strukturen werden in der Praxis eingesetzt.

e Der Vorteil der NOR-Struktur ist ein geringer Widerstand auf der Datenleitung, wel-
cher eine gute Lesbarkeit der Daten ermdglicht. Der Nachteil ist ein hoherer Fliachen-
bedarf, da jeder Transistor einen Kontakt zu Masse benétigt.

e Der Vorteil der NAND-Struktur ist ein geringerer Flichenbedarf, da die Speichertran-
sistoren direkt aneinander geschaltet werden. Dadurch ist die Speicherkapazitit hoher.
Der Nachteil ist, dass die nicht aktiven Transistoren auch im leitenden Zustand noch
einen gewissen Widerstand haben, der sich in der Reihenschaltung addiert. Dadurch
ist das Auslesen schwieriger und es konnen Lesefehler auftreten.

Fiir die meisten Anwendungen wird heutzutage die NAND-Struktur verwendet, da die
Speicherdichte deutlich hoher ist. Beim Lesen konnen jedoch einzelne Datenworte
fehlerhaft sein, sogenanntes Bit-Flipping. Darum wird die Information mit einem feh-
lerkorrigierenden Code gespeichert, englisch Error Correcting Code (ECC). Durch
Zusatzinformationen kann ein Controller einzelne Fehler erkennen und direkt korrigie-
ren. Wenn zu viele Fehler in einem Speicherblock auftreten, konnen diese jedoch nicht
mehr korrigiert werden. Ein problematischer Speicherblock muss rechtzeitig erkannt und
als unbrauchbar markiert werden. Ein NAND-Speicher kann einige solcher Bad Blocks
haben, wodurch sich seine Speicherkapazitit leicht reduziert.

Eine Erhohung der Speicherdichte ist moglich, indem verschiedene Ladungsmengen
auf das Floating-Gate gespeichert werden. Je nach Ladung verschiebt sich die Schwel-
lenspannung des Speichertransistors und kann durch den Leseverstirker unterschieden
werden. Aktuell werden zwei bis vier Bit auf einem Transistor gespeichert, was die
Unterscheidung von bis zu 16 verschiedenen elektrischen Ladungen erfordert. Diese
Technik wird nur fiir NAND-Speicher eingesetzt und allgemein als Multi-Level-Cell
(MLC) bezeichnet; bei Speicherung von 3 oder 4 Bit auch als Triple- oder Quad-Level-
Cell (TLC, QLC). Die mit diesen Techniken verbundene hohere Fehlerwahrscheinlichkeit
erfordert einen Controller mit leistungsfahiger Fehlerkorrektur.

11.2.6 Innovative Speichertechniken

In den letzten Jahren ist der Markt fiir nicht-fliichtige Halbleiterspeicher (NVRAM)
kontinuierlich gewachsen. Grund dafiir ist, dass diese Speicher in immer mehr Geriten
eingesetzt werden und dabei auch die Speichergrofien steigen. NVRAMs finden sich in
USB-Speicher-Sticks, Digitalkameras, Mobiltelefonen, Tablets, Solid-State-Festplatten
und weiteren Elektronikgeriten.

Darum werden weitere Speichertechniken entwickelt, die hohere Speicherkapazititen,
geringere Kosten oder einfachere Ansteuerung verglichen mit EEPROMs ermdglichen.
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Einige dieser Techniken sind bereits im praktischen Einsatz, allerdings sind ihre Markt-
anteile noch recht klein. Es ist gegenwiirtig nicht absehbar, welche der neuen Techniken
zu einer Konkurrenz von EEPROMs werden oder diese sogar ersetzen konnen. Das Prin-
zip einiger innovativer Speichertechniken wird in diesem Unterkapitel vorgestellt.

Fiir die Speicherung wird ein Material gesucht, welches

e zwei verschiedene Zustinde hat, die sich in ihren elektrischen Eigenschaften
unterscheiden,

e cinen einfachen Wechsel zwischen diesen Zustinden ermoglicht,

e beide Zustinde stabil liber Jahre hinweg behilt,

e sehr oft zwischen diesen Zustidnden wechseln kann, also mindestens hunderttausend,
moglichst eine Milliarde Mal,

o platzsparend und kostengiinstig zu einem CMOS-Prozess ergidnzt werden kann.

Die vorgeschlagenen Speichertechniken nutzen jeweils andere Materialien zur Daten-
speicherung. Die folgende Ubersicht nennt aktuell verwendete Materialien fiir die
Speichertechniken.

FRAM

FRAM, also Ferroelectric RAM, verwendet einen Kondensator mit einem ferroelek-
trischen Dielektrikum. Dieses Material hat eine Kristallstruktur, welche zwei stabile
Zustinde mit unterschiedlichem elektrischen Feld aufweist. Fiir das Material Blei-Zir-
konat-Titanat (PZT) ist die Struktur in Abb. 11.10 dargestellt. In der Mitte der Kristall-
struktur aus Blei (Pb) und Sauerstoff (O) ist ein Atom aus Zirconium oder Titan, welches
sich in der unteren oder oberen Position der kubischen Struktur befinden kann. Durch
ein elektrisches Feld ldsst sich dieses zentrale Atom verschieben und so eine Information
speichern.

MRAM
MRAM, also Magnetoresistive RAM, speichert Informationen in einer ferromag-
netischen Schicht. Diese befindet sich getrennt durch ein diinnes Dielektrikum aus

Positive Polarisation Negative Polarisation
Logischer Zustand:,0' Logischer Zustand:,1'
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Abb. 11.10 Kiristallstruktur eines FRAM-Speichermaterials
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Aluminiumdioxid (Al,O,) gegeniiber einer weiteren magnetischen Schicht (siehe
Abb. 11.11). Die obere Magnetschicht ist magnetisch weich und kann in ihrer magne-
tischen Orientierung gedreht werden. Die untere Magnetschicht ist magnetisch hart und
hat eine feste Orientierung. Der Strom durch das Dielektrikum ist durch einen Tunnelef-
fekt abhingig davon, ob die magnetische Orientierung parallel oder antiparallel ist.

PCRAM

PCRAM, also Phase-Change-RAM, Phasenwechselspeicher, nutzt ein Material, welches
eine kristalline oder amorphe Struktur einnehmen kann. Je nach Struktur ist der elektri-
sche Widerstand unterschiedlich und zeigt so eine O oder 1 an. Der Wechsel zwischen
den Strukturen erfolgt tiber Aufheizen durch elektrischen Strom. Je nach Geschwindig-
keit der Abkiihlung wird das Material kristallin oder amorph (Abb. 11.12).

RRAM

RRAM, auch ReRAM, fiir Resitive RAM, verindert dhnlich wie PCRAM den Wider-
stand eines Speichermaterials. Dabei befindet sich ein Metalloxid zwischen zwei Elek-
troden. Durch einen Strom kann der Widerstand des Metalloxids zwischen hohem und
niedrigem Widerstand wechseln. Dafiir ist allerdings keine Erwidrmung und Abkiihlung
des Materials notig, so dass ein Speichervorgang prinzipiell einfacher erfolgen kann. Ein
Ausschnitt aus der Speichermatrix ist in Abb. 11.13 dargestellt.

Strom

ferromagnetisch weich
Tunnelbarriere (Al, O,)

ferromagnetisch hart

Parallele Magnetisierung Antiparallele Magnetisierung
Logischer Zustand: ,0' Logischer Zustand: ,1'

Abb. 11.11 Aufbau eines MRAM-Speicherelements

Abb. 11.12 Speicherprinzip Elektrode

eines Phase-Change-RAM

Halbleiter- — |
legierung
Kristalline Struktur Amorphe Struktur

Logischer Zustand: ,0' Logischer Zustand: ,1'
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Elektroden
Metalloxid

Horizontalleitung

Vertikalleitung

Abb. 11.13 Dreidimensionale Struktur eines RRAMSs

Ansteuerung innovativer NVRAMs

Die Ansteuerung erfolgt fiir alle Speichertechnologien wieder in Matrixstruktur mit
Adress- und Datenleitungen. Die Einbindung des Speichermaterials ist abhiingig davon,
welche elektrische Eigenschaft sich fiir die Datenspeicherung dndert. Teilweise wird ein
Transistor benotigt, der die Speicherzelle freischaltet.

Eine besonders kompakte Anordnung ist fiir bestimmte RRAMs moglich. Durch hori-
zontale und vertikale Leitungen kann eine einzelne Speicherzelle direkt angesprochen
werden (Abb. 11.13). Durch eine Diode in der Speicherzelle, wie beim ROM, haben
andere Zellen keinen Einfluss auf die Leseelektronik. Mehrere Lagen an Zellen sollen
gestapelt werden, um die Speicherkapazitit zu erhohen. Dabei kann eine Leitung gemein-
sam fiir zwei Ebenen an Speicherzellen genutzt werden (Vertikalleitung in Abb. 11.13).

11.3 Eingebetteter Speicher

Als eingebetteter Speicher, engl. Embedded Memory, werden Speicherblocke bezeichnet,
die sich gemeinsam mit einer groferen Schaltung auf einem Chip befinden.

11.3.1 SRAM

In fast jedem groBeren digitalen Chip befinden sich SRAM-Speicherblocke. Ein SRAM
ist mit der normalen CMOS-Fertigungstechnik herzustellen und erfordert daher keinen
zusitzlichen Fertigungsaufwand. Eingesetzt werden SRAM-Speicherblocke beispiels-
weise als interner Speicher einer CPU, fiir die Zwischenspeicherung von Audio- und
Videodaten oder bei der Zwischenspeicherung von Netzwerkdaten.
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Die Ansteuerung eines SRAMs erfolgt durch Adresse, Datenleitungen und Steuer-
leitungen. Oft sind Flip-Flops an Eingéngen und Ausgingen integriert, so dass auch ein
Takteingang vorhanden ist.

e Die Adressleitungen entsprechen der Anzahl an Speicherworten. Ein Speicher mit 2"
Adressen benotigt n Adressleitungen, die parallel anliegen. So hat ein Speicher mit
1024 Speicherworten einen Adressbus mit 10 Leitungen, denn 2'°=1024.

e Die Datenleitungen entsprechen der Wortbreite der Speicherworte. Ein Speicher fiir
16-Bit-Worte hat Datenleitungen mit 16 Stellen. Dateneingang und Datenausgang sind
getrennte Leitungen. Bidirektionale Leitungen sind bei Embedded Memory nicht notig,
da die Anzahl der Verbindungsleitungen innerhalb eines Chips kaum begrenzt ist.

o Als Steuerleitung ist eine Schreibsteuerung erforderlich, die angibt, ob die Daten am Ein-
gang in den Speicher geschrieben werden sollen. Optional ist ein Enable-Signal moglich,
mit dem das SRAM zur Verringerung der Verlustleistung inaktiv geschaltet werden kann.

Ein Speicher fiir 1024 Worte der Wortbreite 16 bit hat damit die in Abb. 11.14 dargestell-
ten Eingangs- und Ausgangssignale. Anstelle eines besonderen Symbols wird ein Block
mit der Angabe der Speichergro3e verwendet.

Embedded-SRAM werden in der Schaltungsentwicklung als Bibliothekselement
bereitgestellt, dhnlich wie die Logikgatter oder Flip-Flops. Je nach Technologie sind
bestimmte Speichergroflen vorgegeben oder konnen, in gewissen Grenzen, frei mit
einem Generator erzeugt werden.

Ein Embedded-SRAM kann auch mehr als ein Speicher-Interface haben. Hiufig wer-
den Dual-Port-Speicher eingesetzt, die zwei unabhingige Zugriffe unterstiitzen. Beide
Anschliisse konnen verschiedene Takteingénge besitzen und somit auch Daten aus einem
Taktbereich in einen anderen Taktbereich iiberfiihren. Durch die Adressierung muss
sichergestellt werden, dass keine Konflikte durch gleichzeitigen Schreibzugriff auf die
gleiche Speicherstelle auftreten.

Die Anschliisse haben jeweils eigene Adresseingédnge. Als Datenleitungen sind entwe-
der fiir beide Anschliisse Dateneingang und -ausgang vorhanden oder ein Anschluss ist
ein Eingang, der andere Anschluss ein Ausgang. Auch mehr als zwei Anschliisse sind
prinzipiell fiir ein Embedded-SRAM moglich, werden aber selten verwendet.

Als Anwendungsbeispiel soll ein Audiosignal mit einem Halleffekt digital verfremdet
werden. Dazu wird das Signal verzogert und mit reduziertem Pegel zum Eingangssignal
addiert. Fiir die Verzogerung kann ein SRAM eingesetzt werden, in das permanent die aktu-
ellen Signalwerte gespeichert und von anderer Adresse frithere Signalwerte gelesen werden.

Abb. 11.14 Eingangs- und ADDR(9:0)— sSRAM
Ausgangssignale eines DIN“S\:/?:%_ 1024x16 | DOUT(15:0)
Embedded-SRAM CLK—
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11.3.2 DRAM

Ein DRAM bietet eine deutlich hohere Speicherkapazitit als SRAM, erfordert jedoch
einen speziellen CMOS-Prozess. Embedded-DRAM wird in der Praxis eingesetzt, wenn
grofle Datenmengen gespeichert werden sollen. Durch eine Kombination von Speicher
und Signalverarbeitung sind sehr kompakte Systeme moglich.

Embedded-DRAM lohnt sich meist nur in Einzelfillen. Sehr grofle Datenmengen
tibersteigen die Speicherkapazitit und erfordern mehrere externe Speicherchips. Bei
kleineren bis mittleren Datenmengen wird Embedded-SRAM verwendet. Dies erfordert
zwar mehr Chipfliche, ist aber kostengiinstiger, da kein spezieller CMOS-Prozess ver-
wendet werden muss.

Ein Beispiel ist der Grafik-Prozessor SM768 von Silicon Motions mit 256 MByte
Embedded-DRAM. Er erzeugt eine Grafik fiir einen Monitor und kann direkt an ein LCD-
Panel angeschlossen werden. Der Baustein wird iiber USB 3.0 angesteuert, ohne dass eine
Grafikkarte notig ist. Auch komprimierte Videodaten konnen decodiert werden. Dadurch
dass sich Speicher und Signalverarbeitung auf einem einzigen Baustein befinden, ermog-
licht dieser einzelne Chip den kostengiinstigen Aufbau eines intelligenten Monitors.

11.3.3 ROM

Festwertspeicher konnen, genau wie SRAMs, mit der normalen CMOS-Fertigungstech-
nik hergestellt werden. Damit eignen sie sich, wenn in einer Schaltung vorab festgelegte
Informationen abgespeichert werden sollen. Eingesetzt werden ROMs beispielsweise fiir
den Boot-Code einer CPU, also die fest vorgegebenen Anweisungen beim Starten eines
Rechnersystems.

Ein weiteres Einsatzgebiet fiir ROMs ist die Verwendung als Tabelle fiir arithmeti-
sche Operationen. Als Beispiel hierfiir nehmen wir an, dass in einer Digitalschaltung die
Wurzel von einer Dualzahl mit der Wortbreite 10 bit benotigt wird. Der Ausgabewert
soll auf ganze Zahlen gerundet werden. Die Ergebnisse dieser Rechenoperation konnen

Abb. 11.15 Symbol und ROM

Ausschnitt der Wertetabelle ADDR(9:0) — 1024x6 [— DOUT(5:0)

fiir ein ROM zur Wurzel-

Berechnung ADDR | Zahlen- | Wurzel | wurzel | DouT

(in hex) wert gerundet | (in hex)

000 0 0 0 00
001 1 1 1 01
002 2 1,41 1 01
003 3 1,73 2 02
123 | 201 | 1706 | 17 1
3FF 1023 31,98 32 20
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vorab berechnet und in einem ROM gespeichert werden. Die Eingangswerte betragen
0 bis 1023, die Wurzel hiervon ist 0 bis 31,98, gerundet O bis 32. Fiir den Ausgabewert
sind also 6 Bit erforderlich. Das ROM umfasst 1024 Worte mit jeweils 6 bit Wortbreite.
Der Eingangswert wird als Adresse an das ROM angelegt. Am Ausgang wird das Ergeb-
nis der Wurzelberechnung anzeigt. Die Schnittstelle des ROMs und ein Ausschnitt der
Wertetabelle sind in Abb. 11.15 gezeigt.

11.3.4 NVRAM

Ein nichtfliichtiger Speicher (NVRAM) erfordert, genau wie ein DRAM, einen speziel-
len CMOS-Prozess. Anders als beim DRAM gibt es jedoch keine Alternative, wenn in
einem Chip Daten auch ohne Versorgungsspannung gespeichert werden sollen. In diesem
Fall muss ein CMOS-Prozess mit Erweiterung fiir NVRAM eingesetzt werden.

Ein hiufig eingesetztes Anwendungsbeispiel sind Mikrocontroller. Auf einem einzigen
Chip sind eine CPU, Peripherie und der Programmspeicher integriert. Damit der Mikro-
controller durch die Anwender programmiert werden kann, ist der Programmspeicher als
NVRAM implementiert. Wahrend der Programmentwicklung kann der Programmspeicher
immer wieder umprogrammiert werden. Ebenfalls gibt es FPGAs, die programmierbare
Logik und die Speicherung der Konfiguration in einem NVRAM kombinieren.

Alternativ kann das System auch auf zwei Chips aufgeteilt werden. Ein Chip in Stan-
dard-CMOS enthilt den Mikrocontroller oder das FPGA und ein zweiter Speicher-Chip
enthilt den Programmspeicher oder die Konfiguration.

Ein Anwendungsbeispiel ist der ATmega328-Controller der Firma Atmel, welcher auf
der populdren Mikrocontroller-Platine Arduino Uno verwendet wird. Der ATmega328
enthilt zwei Blocke NVRAM.

e Ein Programmspeicher von 32 kByte.
e FEin Datenspeicher von 1 kByte, der vom Programm gelesen und beschrieben werden
kann.

11.4 Diskrete Speicherbausteine

Wenn in einem digitalen System groere Datenmengen gespeichert werden miissen, wer-
den hierzu hdufig diskrete Speicherbausteine eingesetzt. Das System besteht dann aus
mehreren Chips, also zum einen aus Signalverarbeitungschips, gefertigt in einem Stan-
dard-CMOS-Prozess, zum anderen aus einem oder mehreren Speicher-Chips, gefertigt in
speziellen CMOS-Varianten.
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11.4.1 Praktischer Einsatz

Ein Beispiel hierfiir ist ein PC. Er enthilt auf dem Motherboard unter anderem die Chips fiir
CPU und Chipset, gefertigt in Standard-CMOS. Als Hauptspeicher wird DRAM eingesetzt,
der sich auf steckbaren Speichermodulen befindet. Jedes Speichermodul enthilt mehrere,
beispielsweise acht, DRAM-Chips. Der Boot-Code fiir das PC-System, bekannt als BIOS
(Basic Input Output System), sowie Grundeinstellungen befinden sich in einem NVRAM.

11.4.1.1 Systemaufbau
Eine Aufteilung des Systems unter Nutzung diskreter Speicherbausteine hat mehrere
Vorteile.

e Die Kapazitit externer Speicherbausteine ist hoher, als bei gemeinsamer Nutzung der
Chipflache fiir Speicher und Signalverarbeitung.

e Hohere Flexibilitidt des Systems, weil je nach Bedarf mehr oder weniger externer
Speicher angebunden werden kann.

— Im oben genannten PC-System konnen DRAM-Riegel, je nach Bedarf eingesetzt
werden.

— Einige Smartphones werden mit unterschiedlicher Speicherkapazitit verkauft. Auf
den Geriten sind dann unterschiedliche NVRAMs verbaut.

e Externe Speicherbausteine sind gut verfiigbar. Sie konnen, auch in kleinen Stiickzah-
len, kurz nach Markteinfithrung bei Distributoren gekauft werden. Dies ist nicht der
Fall bei Chips mit Embedded-DRAM, die nur von wenigen Chipherstellern angeboten
werden und hiufig GroBkunden vorbehalten sind. Auch fiir Embedded-NVRAM ist
die Anzahl an Chipherstellern geringer als fiir Standard-CMOS-Speichertechnologien.

e Neue Speichertechnologien werden zunéchst fiir den Massenmarkt der diskreten
Speicherbausteine angeboten. Meist sind sie nur mit einer signifikanten Verzégerung
von einem Jahr oder mehr als Embedded-Speicher verfiigbar.

e Die Kosten fiir einen Chip mit Standard-CMOS-Technologie sind geringer als fiir
einen Chip, der einen speziellen Herstellungsprozess mit Embedded-Speicher-Unter-
stiitzung benotigt. Die Einsparung ist in der Regel so hoch, dass sie auch die Kosten
fiir die diskreten Bauelemente deckt.

Der Einsatz von diskreten Speicherbausteinen kann jedoch auch Nachteile haben.

e Je mehr Bauelemente ein System hat, umso grofler ist der Platzbedarf. Dies ist insbe-
sondere fiir mobile Gerite ungiinstig.

e FEin Speicherzugriff auf externe Bauelemente hat eine geringere Bandbreite, da die
Anzahl der Leitungen begrenzt und die Geschwindigkeit externer Signalleitungen
geringer ist. Aulerdem ist die Verlustleistung hoher, da groBere Leitungskapazititen
umgeladen werden miissen.
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e Es muss sichergestellt werden, dass die verwendeten Speicherbausteine fiir die Pro-
duktlebensdauer verfiigbar sind. Im PC-Bereich werden Bauteile oft nach wenigen
Jahren durch leistungsfiahigere Neuentwicklungen ersetzt. Fiir einen PKW miissen
hingegen jahrzehntelang Ersatzteile verfiigbar sein.

11.4.1.2 Aktuelle Speicherbausteine

Fiir fliichtige Datenspeicherung werden in der Praxis am hiufigsten DRAM-Speicher-
bausteine eingesetzt. Der Grund dafiir ist die hohere Speicherdichte eines DRAM, also
Bits pro Siliziumflache, verglichen mit einem SRAM. An diesen Marktverhiltnissen
wird sich auch in Zukunft wenig dndern.

Fiir nicht-fliichtige Datenspeicherung werden hauptsidchlich EEPROMs in der Aus-
flihrung als NAND-Flash eingesetzt. Die NOR-Flash-Technologie hat den Nachteil
der geringeren Speicherkapazitit und darum nur einen kleinen Marktanteil. Innovative
Speichertechnologien sind noch nicht so weit entwickelt, dass sie den Marktanteil von
NAND-Flash-EEPROMs erreichen. Dies kann sich jedoch in den néchsten Jahren dndern.

Im Folgenden sind exemplarisch vier Speicherbausteine beschrieben, die in der Pra-
xis weite Verbreitung haben oder exemplarisch fiir dhnliche Bausteine sind. Dazu wur-
den ein SRAM, ein DRAM, ein EEPROM und ein innovatives NVRAM ausgewéhlt. Sie
werden in kompatibler Form von mehreren Herstellern angeboten und bieten dadurch
hohere Sicherheit der Verfligbarkeit.

Die Entwicklung neuer Speicherbauelemente baut iiblicherweise auf den Vorgingern
auf. Das heif}t, die Eigenschaften, die in den folgenden Abschnitten beschrieben sind,
finden sich in dhnlicher Weise in den Vorgidngern und sind Grundlage fiir die Spezifika-
tion der nichsten Speichertechnologie.

11.4.2 QDR-II-SRAM

11.4.2.1 Ubersicht

QDR bezeichnet eine Familie von Dual-Port-SRAMs, die also zwei Anschliisse haben.
Ein Anschluss ist ein Schreib-Interface, der andere ein Lese-Interface. Beide Anschliisse
tibertragen Daten bei steigender und fallender Taktflanke (Double-Data-Rate), so dass als
Bezeichnung Quad-Data-Rate (ODR) gewihlt wurde. Es gibt verschiedene Geschwin-
digkeitsstufen der QDR-Familie. Hier soll QDR-II betrachtet werden, mit ,II* im Sinne
der romischen Zahl Zwei.

Das Einsatzgebiet dieser Speicherbausteine sind insbesondere Anwendungen, die eine
sehr hohe Datenrate benotigen und bei denen Lese- und Schreiboperationen etwa gleich
hiaufig vorkommen. Ein Anwendungsbeispiel sind Netzwerkanwendungen, bei denen
Datenpakete zwischengespeichert werden miissen.

Die SRAMs werden mit unterschiedlichen Speichergroffen im Bereich von 18 bis
144 Mbit und Datenwortbreiten von 9, 18 und 36 bit angeboten. Ein typischer Baustein



11.4 Diskrete Speicherbausteine 335

ist der CY7C1514KV18 von Cypress, mit einer Speicherkapazitit von 72 Mbit und
36 bit Datenwortbreite. Die Taktgeschwindigkeit darf 350 MHz betragen. Vergleichbare
Bausteine werden unter anderem von IDT und Renesas angeboten. Der Speicher arbei-
tet mit Vielfachen von 9 bit, nicht 8 bit, da in der Telekommunikation hiufig zusétzliche
Bits zur Fehlererkennung verwendet werden.

Der Speicherbaustein hat folgende Anschliisse:

e A, 20 Bit, Adresse, gemeinsame fiir Schreib- und Lese-Interface

e D, 36 Bit, Dateneingang

e (), 36 Bit, Datenausgang

o /WPS, Write-Port-Select aktiviert einen Schreibzugriff

e /RPS, Read-Port-Select aktiviert einen Lesezugriff

e Kund /K, Takt fiir Schreib-Interface in positiver und negativer Polaritit
e (Cund /C, Takt fiir Lese-Interface in positiver und negativer Polaritit

e CQ und/CQ, Ausgabe des Takts C fiir Anpassung an Laufzeiten

e VREF Referenzspannung fiir Datenleitungen

e weitere Pins fiir Steuerfunktionen, Stromversorgung und Fertigungstest

Insgesamt hat das Chipgehduse 165 Pins. Der Schrigstrich (/) kennzeichnet Low-aktive
Signale.

Auffillig ist die hohe Anzahl an Taktanschliissen. Die Takte fiir Lese-Interface und
Schreib-Interface sind in beiden Polarititen vorhanden. Auflerdem wird der Lesetakt in
beiden Polarititen wieder aus dem Speicherbaustein ausgegeben. Die Takte sind nicht
unabhingig voneinander, sondern es handelt sich um den gleichen Takt mit unter-
schiedlichen Verzogerungen. Dieser Aufwand ist notig, da bei den verwendeten hohen
Taktfrequenzen die Laufzeit der Signale auf der Platine beachtet werden muss. In der
Konfiguration mit 36 bit Wortbreite sind 333 MHz moglich, die einer Periodendauer von
3 ns entsprechen. Aufgrund der Anwendung der Double-Data-Rate-Technik hat jedes
Datenwort nur eine Dauer von 1,5 ns.

11.4.2.2 Logisches Interface

Die Adressierung des SRAMs erfolgt stets abwechselnd fiir Lese- und Schreib-Interface.
Abb. 11.16 gibt ein Beispiel fiir den Zeitablauf. Im oberen Bereich sind sechs Eingiinge
des SRAMs, im unteren Bereich drei Ausgidnge dargestellt. Fiir das Taktinterface sind
verschiedene Konfigurationen moglich. K als primérer Takt ist stets erforderlich, die Ver-
wendung von C und CQ ist optional. In diesem Beispiel wird kein separater Lesetakt C,
aber die Taktausgabe CQ verwendet.

Der Zeitablauf zeigt drei Lesezugriffe auf die Adressen a0 bis a2, sowie vier Schreib-
zugriffe auf die Adressen a4 bis a7. Die Zugriffe erfolgen immer als Burst (Sequenz)
von zwei Datenworten, das heif3t, pro Adresse werden immer zwei 36-Bit-Worte ange-
sprochen. Damit sind fiir die Speicherkapazitidt von 72 Mbit 20 Adressleitungen notig.
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Zunichst wird die Leseoperation betrachtet. Die Adresse bei der steigenden Taktflanke
von K ist immer die Leseadresse. Zum Zeitpunkt ® wird die Adresse a0 angegeben und
durch /RPS auf 0 (Low-aktiv) ein Lesevorgang angezeigt. Der Zugriff auf das SRAM
benotigt etwas Zeit, deswegen werden die Daten nach einer Latenzzeit von (hier) zwei
Takten ausgegeben. Zum Zeitpunkt @ wird das erste Datenwort mit der Bezeichnung q00
ausgegeben; einen halben Takt spiter bei @ folgt das zweite Datenwort des Burst qO1.
Durch /RPS auf 0 folgen noch zwei weitere Datenzugriffe auf die Adressen al und a2,
die Daten folgen unmittelbar auf den ersten Burst. Danach wird /RPS zu 1 und es folgen
keine weiteren Leseoperationen.

Das Lese-Interface gibt auch CQ und /CQ als Hilfssignale fiir die Dateniibernahme
aus. CQ und /CQ haben ihre Taktflanken an der gleichen Position wie der Datenausgang.
Das System, welches die Daten empfingt, kann hieraus den Takt fiir die Dateniiber-
nahme erzeugen.

Die Schreiboperation beginnt auch bei der steigenden Taktflanke von K, verwendet
aber die Adresse einen halben Taktzyklus spiter an der steigenden Taktflanke von /K.
Die erste Schreiboperation beginnt also zum Zeitpunkt © mit dem ersten Datenwort
d40 und dem Steuersignal /WPS. Dann folgt zum Zeitpunkt @ die Adresse a4, und das
Datenwort d41. Auf eine Adresse werden mit den Datenworten d40 und d41 also ins-
gesamt 72 Bit geschrieben. Im Diagramm werden vier Bursts von jeweils zwei Daten-
worten geschrieben. Danach wird /WPS zu 1 und das Schreib-Interface ist inaktiv.

Ubrigens miissen mit einem Schreibzugriff nicht immer 72 Bit geschrieben werden.
Uber das Steuersignal Write-Byte-Select (in Abb. 11.16 nicht dargestellt) konnen Teile
des Datenwortes ausgewihlt werden.

11.4.2.3 Physikalisches Interface

Zusitzlich zur logischen Ansteuerung sind Zeitanforderungen und Spannungspegel zu
beachten. Bei den Zeitanforderungen sind dies Setup- und Hold-Zeiten der Eingangssig-
nale, sowie Vorgaben zum Duty Cycle der Takte und deren Zeitversatz.
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Wird das oben genannte SRAM mit 333 MHz Takt betrieben, betrdgt die Zykluszeit
3 ns und fiir Daten und Adresse steht die halbe Zykluszeit von 1,5 ns zur Verfiigung. Die
Zeitvorgaben sind in diesem Fall:

e Setup- und Hold-Zeit jeweils 0,3 ns

e Duty Cycle des Takts zwischen 40 % und 60 %

o Abstand der steigenden Flanken von K und /K mindestens 1,35 ns, also 45 % der hal-
ben Zykluszeit.

e [Initialisierungszeit, also Zeit zwischen Anlegen der Spannungsversorgung und erstem
Datenzugriff, 1 ms

Als Spannungspegel sind drei verschiedene Versorgungsspannungen definiert, und zwar

e Core-Spannung von 1,8 V fiir die komplette interne Logik
e [/O-Spannung von 1,5 V fiir die Ein- und Ausgangspins
e Referenzspannung von 0,75 V fiir die Erkennung der Datenpegel

Die Logikpegel der Signaleingénge sind in Relation zur Referenzspannung definiert. Der
Low-Pegel muss 0,1 V kleiner, der High-Pegel 0,1 V groBer als die Referenzspannung
sein. Damit reicht also ein Spannungshub von 0,2 V aus.

Dariiber hinaus gibt es weitere Vorgaben, unter anderem die maximal erlaubten Span-
nungen, die Stromaufnahme und weiteren Zeitanforderungen. Diese sind in den Daten-
blittern der QDR-II-SRAMs angegeben.

11.4.3 DDR3-SDRAM

11.4.3.1 Ubersicht

DRAM-Speicherbausteine haben eine deutlich hohere Speicherkapazitit als SRAMs
und sind damit kostengiinstiger. Allerdings ist die mogliche Datenrate geringer und die
Ansteuerung deutlich komplexer, da nach jedem Lesevorgang die Information in den
Speicherzellen wiederhergestellt werden muss (vgl. Abschn. 11.2.2). Aullerdem ist ein
regelmiBiger Refresh erforderlich.

DDR3-SDRAM ist eine moderne Familie von DRAM-Speichern mit einer Kapazitit
von bis zu 4 Gbit, also rund 30mal so viel wie ein QDR-II-SRAM. Das ,S‘ in SDRAM
steht fiir synchron und gibt an, dass der Baustein mit einem Takt arbeitet. In diesem
Abschnitt wird exemplarisch der Baustein MT41J512M8 von Micron Technology
betrachtet, ein 4 Gbit DDR3-DRAM mit einer Datenwortbreite von 8 bit. Vergleichbare
Bausteine werden unter anderem von Samsung und Hynix angeboten. Verwendet wird
der Baustein beispielsweise in DRAM-Modulen fiir PCs.
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Der Baustein wird mit verschiedenen Geschwindigkeiten angeboten. Die Taktfre-
quenz darf knapp iiber 1 GHz betragen. Es gibt nur ein Speicherinterface mit bidirektio-
nalen Datenleitungen. Die wesentlichen Anschliisse sind:

e A 16 Bit, Adresse

e BA, 3 Bit, Bankadresse, wihlt eine von acht internen Speicherbianken aus
e DQ, 8 Bit, Datenbus, bidirektional als Dateneingang und Datenausgang
e DQS und /DQS, Referenzsignal fiir das Ausgangstiming

e /RAS, /CAS, /WE, Steuersignale fiir Lese- und Schreiboperationen

e (CKund/CK, Takt in positiver und negativer Polaritit

e VREF_DQ, Referenzspannung fiir Datenleitungen

e VREF_CA, Referenzspannung fiir Steuerleitungen

o weitere Pins fiir Steuerfunktionen, Stromversorgung und Fertigungstest

Das Gehiduse hat 78 Anschliisse, also weniger als die Hilfte, verglichen mit dem
QDR-II-SRAM.

11.4.3.2 Logisches Interface

Das DRAM muss beim Start zunichst initialisiert werden. Fiir die Ansteuerung muss
dann beim Lesen, Schreiben und Refresh der innere Aufbau beachtet werden. Das
Arbeitsprinzip wird am besten deutlich, wenn der Lesevorgang betrachtet wird.

Beim Lesen wird eine komplette Zeile in den Schreib/Lese-Verstirker geladen. Dabei
wird die Ladung in den Speicherzellen geloscht und muss wieder ,,zuriickgeschrieben®
werden. Dieses Lesen und Zuriickschreiben benotigt mehrere Taktzyklen. Wéhrend die-
ser Zeit ist das DRAM blockiert. Darum sind in einem DRAM-Chip acht unabhingige
Speicherbéinke verfiigbar. Wihrend eine Bank noch durch Zuriickschreiben von Daten
belegt ist, kann bereits auf eine andere Bank zugegriffen werden.

Der Lesezugriff auf den Speicher erfolgt in drei Schritten.

e Activate: Hierdurch wird eine Zeile in den Leseverstirker geladen.

e Read: Aus der Zeile werden Datenworte gelesen. Mehrere Leseoperationen fiir die
aktivierte Zeile sind moglich und jede Leseoperation liest einen Burst von vier oder
acht Worten.

e Precharge: Der Zugriff auf die Zeile wird beendet und die Daten wieder in die Spei-
cherzellen zuriickgeschrieben.

Die Schritte werden durch die Steuersignale /RAS, /CAS und /WE aufgerufen. Zwischen
den Schritten gibt es Wartezeiten von mehreren Takten, die eingehalten werden miissen.
Nach Activate konnen ebenfalls Schreiboperationen in die Zeile erfolgen, auch abwech-
selnd mit Leseoperationen.

Abb. 11.17 zeigt den Zeitablauf fiir zwei Leseoperationen auf zwei verschiedene
Bénke. Als Burst sind 8 Worte gewihlt. Die invertierten Signale /CK und /DQS sind zur
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Abb. 11.17 Zeitablauf zweier Leseoperationen eines DDR3-SDRAMs

besseren Ubersicht weggelassen. Die Steuersignale /RAS, /CAS, /WE sind zum Kom-
mandowort ,cmd* (Command) zusammengefasst. Die eingezeichneten Zeitpunkte haben
folgende Bedeutung:

1. Aktivierung der Zeile rO (r wie Row) in der Bank 0 mit dem Kommando ,act® (Acti-
vate). Bevor die Zeile verwendet werden kann, muss mehrere Takte gewartet werden.

2. Aktivierung der Zeile r1 in der Bank 1.

3. Lesezugriff auf Spalte cO (c wie Column) in der Bank 0. Nach Ausfiihren der Lese-
operation soll die Zeile durch Precharge zuriickgeschrieben werden. Als Kommando
wird darum ,rdp‘ (Read with Precharge) aufgerufen.

4. Lesezugriff auf Spalte c1 in der Bank 1, ebenfalls mit Precharge.

5. Nach einer Latenzzeit werden die Daten des Lesezugriffs ® ausgegeben. Entspre-
chend der Burst-Linge werden acht Daten von O bis 7 ausgegeben. Als Hilfssignale
fiir die Dateniibernahme wird DQS ausgegeben. Die Taktflanken sind an der gleichen
Position wie der Datenausgang und das System, welches die Daten empfingt, kann
hieraus den Ubernahmetakt erzeugen.

6. Direkt nach dem ersten Datenburst werden die Daten des Lesezugriffs @ ausgegeben.
Dies sind die Daten 8 bis f.

Die Bezeichnung nop (No Operation) gibt an, dass kein Kommando iibertragen wird.
Bitte beachten Sie, dass in Abb. 11.17 die Abstinde zwischen den Kommandos etwas
verkiirzt dargestellt sind. Die internen Vorgénge bendétigen bestimmte Zeiten, die einer
Anzahl an Taktzyklen entsprechen. Deswegen werden mit steigender Taktfrequenz mehr
Taktzyklen fiir bestimmte Abldufe benotigt.

Die maximale Taktfrequenz und die Wartezeiten werden als Kennziffern des DRAMs
angegeben und sind Thnen vielleicht schon begegnet, wenn Sie Speicherriegel fiir den PC
gekauft oder die Werte im BIOS eingeben haben. Die Bezeichnung DDR3-1866 CL13
13-13-32 bedeutet beispielsweise:

e DDR3-1866: DDR3-SDRAM mit 1866 Mio. Transfers je Sekunde, also einer maxi-
malen Taktfrequenz von 933 MHz.
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e CLI13 ist die Anzahl der Taktzyklen zwischen Read und Ausgabe der Daten. CL steht
fiir Column Access Latency oder CAS Latency.

¢ Die folgenden drei Zahlen bezeichnen weitere Zeiten
— 13 Taktzyklen zwischen dem Activate-Befehl einer Zeile und erstem Read-Zugriff
— 13 Taktzyklen fiir den Precharge-Vorgang
— 32 Taktzyklen zwischen zwei Activate-Befehlen auf dieselbe Bank

Der Zugriff auf ein DRAM erfordert also das Beachten der internen Speicherorganisa-
tion. Eine hohe Datenrate kann erreicht werden, wenn mehrere Daten aus der gleichen
Zeile gelesen werden (nur ein Activate-Befehl notig) und die Zugriffe ansonsten auf ver-
schiedene Speicherbédnke verteilt werden (Wartezeit zwischen Activate-Befehlen auf die-
selbe Bank).

Diese Zugriffsmuster werden beispielsweise von den CPUs in einem PC beriicksich-
tigt. Der Speichercontroller einer CPU liest groere Datenblocke aus dem DRAM und
speichert sie auf einem internen SRAM, dem sogenannten Cache. Die Daten sind so im
DRAM abgelegt, dass ein Zugriff moglichst effizient erfolgen kann.

11.4.3.3 Physikalisches Interface

Das physikalische Interface des DDR3-SDRAMs nutzt dhnliche Prinzipien wie das
QDR-II-SRAM. Da noch hohere Frequenzen auftreten konnen, sind die Anforderungen
entsprechend hoher.

Fiir ein DDR3-1866-SDRAM betrigt die Taktfrequenz 933 MHz Takt und somit ist
die Zykluszeit 1,07 ns. Der Duty Cycle des Takts muss zwischen 47 % und 53 % liegen.
Anstelle fester Setup- und Hold-Zeit fiir die Signaleingéinge werden Grenzen fiir den
Zeitverlauf der Spannung definiert. Darin ist auch festgelegt, wie stark ein Uberschwin-
gen der Signale erfolgen darf. Die Adress- und Steuerleitungen werden nur einmal pro
Taktzyklus ausgewertet, wiahrend Datenleitungen zweimal pro Taktzyklus giiltig sind.
Daher wird zwischen diesen Signalen unterschieden.

Die Spannungsversorgung fiir Core und I/O betrigt 1,5V, die Referenzspannung zur
Erkennung der Datenpegel ist 0,75 V.

Spezifische Angaben zum physikalischen und logischen Interface finden Sie im
Datenblatt eines DDR3-SDRAMSs, beispielsweise dem MT41J512M8 von Micron.

11.4.4 EEPROM

11.4.4.1 Ubersicht

Im Bereich der EEPROMs gibt es eine grofle Vielfalt an unterschiedlichen diskreten
Speicherbausteinen. Es gibt kleine, mittlere und grofe Speichergrofien, sowie langsamen
und schnellen Speicherzugriff.



11.4 Diskrete Speicherbausteine 341

e Kleine Speichergrofien im Bereich von einigen kByte, werden beispielsweise verwen-
det, um Geriteeinstellungen zu speichern, wie Netzwerkname, WLAN-Passwort und
IP-Adresse eines Netzwerkgeriits.

e Mittlere Speichergréfen, im Bereich von MByte, werden beispielsweise zum Spei-
chern von Messdaten oder von Programmcode fiir gréere Prozessoren verwendet.

e GroBle Speichergrofien, im Bereich von GByte, werden als Massenspeicher verwen-
det, beispielsweise im Smartphone oder als Solid-State-Disk (SSD).

Bei kleineren Speichergrofien kann teilweise jedes Datenwort einzeln geloscht werden.
Mittlere und grofle Speichergroflen werden als Flash-EEPROM implementiert.

Der Speicherzugriff kann seriell iiber eine Datenleitung oder parallel iiber mehrere
Leitungen erfolgen.

e Der serielle Zugriff ist langsamer, aber ausreichend, wenn nur wenige Daten bendtigt
werden oder wenn die Daten einmalig gelesen und dann auf dem System zwischenge-
speichert werden.

e Der parallele Zugriff ist schneller und fiir gréere Datenmengen sinnvoll.

Aus den unterschiedlichen Anforderungen ergibt sich eine Vielfalt an diskreten
EEPROM Speicherbausteinen. SRAM und DRAM Bausteine werden nur eingesetzt,
wenn die Speicherkapazitit auf einem Chip nicht ausreicht. Ein EEPROM Baustein ist
jedoch bereits erforderlich, wenn nur wenige Byte nichtfliichtig gespeichert werden sol-
len, da ein Chip in Standard-CMOS-Technologie dies nicht bietet.

11.4.4.2 8 Gbit Flash-Memory
Als ein Beispiel fiir ein EEPROM mit groBer Speicherkapazitit wird der Baustein
TH58NVG3SOHTAOO von Toshiba mit einer Speichergrofle von 8 Gbit, also 1 GByte
betrachtet. Es handelt sich dabei um ein NAND-Flash-EEPROM. Andere Anbieter von
NAND-Flash-EEPROMs sind beispielsweise Cypress, Micron, Samsung und Winbond.

Der Baustein ist in 4096 Blocken organisiert und jeder Block hat 64 ,,Speicherseiten*
mit jeweils 4352 Bytes. Dieser Inhalt einer Seite umfasst 4096 Bytes Nutzdaten sowie
256 Bytes fiir Speicherverwaltung und die bei der NAND-Struktur notige Fehlerkor-
rektur. Ein Flash-Loschvorgang bezieht sich immer auf einen Block von 64 Seiten, also
256 kByte.

Der Baustein ist darauf ausgelegt mit einem fehlerkorrigierenden Controller zusam-
menzuarbeiten. Das Speicherinterface arbeitet ohne Takt und hat die folgenden
Anschliisse:

e JO, 8 Bit, I/O-Port

e (CLE, Command Latch Enable, Ubernahmesignal fiir Befehle
o ALE, Address Latch Enable, Ubernahmesignal fiir Adresse

e /CE, Chip Enable
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e /WE, Write Enable

e /RE, Read Enable

e RY/BY, Ready/Busy, zeigt an, ob der Baustein noch einen Befehl ausfiihrt
e /WP, Write Protect, fiir einen Schreibschutz

e Pins fiir Stromversorgung

Das Gehiduse hat 48 Anschliisse, von denen jedoch ein grofierer Teil nicht verwendet
wird. RY/BY ist ein gleichzeitig High-aktives Ready- und Low-aktives Busy-Signal.

11.4.4.3 Logisches Interface
Der 8-Bit-Port /O wird gemeinsam fiir Kommandos, Adressen und Daten verwendet.
Kommandos werden durch bestimmte 8-Bit-Werte {ibermittelt. CLE und ALE zeigen an,
um welche Information es sich jeweils handelt.

Die drei Grundoperationen des Bausteins sind Loschen eines Blocks, Schreiben von
Daten und Lesen von Daten.

Loschen eines Blocks
Abb. 11.18 zeigt den Zeitablauf beim Loschen eines EEPROM-Blocks.

1. Der Loschvorgang wird durch ein spezielles Kommando gestartet. Dazu liegt der Wert
60,, auf den acht Datenleitungen und CLE zeigt an, dass es sich bei dieser Informa-
tion um ein Kommando handelt. Die Dateniibernahme erfolgt durch die steigende
Flanke an /WE.

2. Die Adresse des zu l6schenden Blocks wird auf der Datenleitung iibertragen. Da die
Datenleitung kleiner als die Adresswortbreite ist, wird die Adresse in drei Teile A-0,
A-1, A-2 aufgeteilt.

3. Das Kommando DO, 16st den Loschvorgang aus. Durch RY/BY wird angezeigt, dass
der Baustein beschiftigt ist. Das Loschen eines Blocks benétigt etwa 2,5 bis 5 ms.

4. Nach Ende des Loschvorgangs muss iiberpriift werden, ob das Loschen erfolgreich
war. Dazu wird das Kommando 70, angegeben.

5. Der Baustein antwortet mit einem Statuswort (sts). Fiir diese Leseoperation wird /RE
angesteuert.

Abb. 11.18 Zeitablauf beim CLE_[ )\ e
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Bei einem NAND-EEPROM kann es vorkommen, dass Speicherblocke fehlerhaft sind
oder im Gebrauch fehlerhaft werden. Dies wiirde durch das Statuswort angezeigt und
der Controller verwendet einen solchen Block dann nicht mehr. Fiir den hier betrachte-
ten Baustein werden 60.000 Loschzyklen angegeben, wobei mit zunehmender Anzahl an
Loschzyklen einige Blocke unbrauchbar werden konnen. Laut Datenblatt bleiben iiber
die spezifizierte Lebensdauer mindestens 4016 der 4096 Blocke funktionsfihig.

Schreiben von Daten

Das Schreiben von Daten erfolgt vorzugsweise fiir einzelne Seiten mit 4096 plus
256 Bytes. Der Zeitablauf ist in Abb. 11.19 dargestellt. Die Steuersignale werden dhnlich
wie beim Loschen angesteuert und fiir bekannte Schritte nicht einzeln erldutert.

1. Das Kommando 80 gibt an, dass ein Schreibvorgang ausgefiihrt werden soll.

2. Die Adresse von Block und Seite wird in fiinf Teilen von A-0 bis A-4 iibertragen.

3. Jetzt werden nacheinander die Daten jeweils mit der steigenden Flanke von /WE
tibertragen. Bis zu 4352 Byte sind moglich, das heilit D-x wire dann D-4351. CLE
und ALE auf 0 zeigen an, dass es sich weder um ein Kommando (CLE) noch um
Adressen (ALE) handelt.

4. Das Kommando 10, startet den Schreibvorgang. Die Daten sind bisher in einem internen
Zwischenspeicher und werden jetzt in die Speichermatrix geschrieben. Das EEPROM
tiberpriift den Schreibvorgang und versucht eventuell mehrfach zu schreiben. Durch RY/
BY wird die Aktivitit angezeigt. Die Programmierung einer Seite dauert 300 bis 700 ps.

5. Nach Ende des Schreibvorgangs muss mit dem Kommando 70, iiberpriift werden, ob
das Schreiben erfolgreich war.

6. Der Baustein antwortet mit einem Statuswort (sts).

Fiir die Verwendung des EEPROMs ist die interne Organisation zu beachten. Der Con-
troller schreibt Daten auf freie Seiten des Speichers. Nicht mehr benotigte Seiten werden
nicht sofort geloscht, sondern zunichst als ungiiltig gekennzeichnet. Erst wenn alle Sei-
ten eines Blocks ungiiltig sind, wird ein ganzer Block geloscht. Hierfiir kann es eventuell
notig sein, noch giiltige Seiten in andere Blocke zu kopieren.

Damit der Controller Schreibzugriffe und das Loschen von Blocken optimieren kann,
wird empfohlen, den Speicher nicht komplett zu fiillen.

Abb. 11.19 Zeitablauf beim CLE_/\ [ \'“ [\
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Lesen von Daten

Das Lesen von Daten erfolgt dhnlich wie das Schreiben von Daten. Zunichst wird ein
Lesekommando gegeben, dann die Leseadresse in fiinf Teilen und ein weiteres Kom-
mando. Daraufthin 14dt der Baustein die Daten aus der Speichermatrix in den Lesever-
starker und gibt nacheinander die Daten ab der angeforderten Adresse aus. Das Lesen der
Daten aus der Speichermatrix benétigt 25 ps.

11.4.4.4 Physikalisches Interface

Die Datenrate bei Schreib- und Lese-Zugriffen ist deutlich geringer als bei SRAM und
DRAM, denn das EEPROM ist als Massenspeicher und nicht als schneller Arbeitsspei-
cher vorgesehen.

Die mogliche Datenrate beim Schreiben und Lesen von Daten betriagt 40 MHz. Hinzu
kommen die oben genannten Zeiten fiir den Zugriff auf die Speichermatrix.

Die Spannungsversorgung des Bausteins betrdgt 3,3 V. Die Daten werden durch
Spannungspegel dargestellt. Der Low-Pegel wird bis 0,66 V erkannt, der High-Pegel ab
2,64V, dazwischen befindet sich der Ubergangsbereich, in dem keine eindeutige Zuord-
nung der Spannung zu einem logischen Wert moglich ist.

Spezifische Angaben zum physikalischen und logischen Interface finden Sie im
Datenblatt.

11.4.5 FRAM mit seriellem Interface

11.4.5.1 Ubersicht
Als ein Beispiel fiir ein NVRAM mit einer innovativen Speichertechnik wird der
Baustein MB85RS64V von Fujitsu betrachtet. Es handelt sich um ein Ferroelektri-
sches RAM mit 8192 Worten zu 8 bit und seriellem Interface. Jede Zelle kann einzeln
beschrieben werden. Mit der Speicherkapazitit von 8 kByte handelt es sich um eine
kleine SpeichergroBe. Dafiir ist der Baustein allerdings auch sehr kompakt und hat ein
Gehduse mit nur 8 Pins. Bausteine mit dhnlichem Interface und Speichergrofie sind auch
als EEPROM von verschiedenen Herstellern verfiigbar.

Als besonderer Vorteil sind fiir das FRAM 10'? mogliche Zugriffe pro Zelle spezifi-
ziert. Fiir EEPROMs werden iiblicherweise 10° bis 10° Schreibvorgiinge angegeben.

Die Anschliisse des Bausteins sind:

e SCK, Serial Clock, Takt fiir den seriellen Zugriff
e S, Serial Data Input, serieller Dateneingang

e SO, Serial, Data Output, serieller Datenausgang
e /CS, Chip Select, zum Aktivieren des Bausteins
o /WP, Write Protect, Schreibschutz

e /HOLD, pausiert einen Zugriff

e Versorgungsspannung und Masse
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Abb. 11.20 Serielles /CS\ [
Schreiben in ein FRAM mit SCK UL
SPI-Protokoll S AWARRESATNNORBEH 0
SO- : : :
Kommando Adresse Daten

11.4.5.2 Logisches Interface

Die Kommunikation mit dem Baustein erfolgt tiber das Serial Peripheral Interface (SPI).
Bei diesem Protokoll sind getrennte Leitungen fiir Dateneingang und -ausgang vorhan-
den, das heifit die Datenleitung wird nicht bidirektional betrieben. Ein Zugriff auf den
Baustein erfolgt iber Kommandos. Bei Schreib- und Leseoperationen folgt nach dem
Kommando eine Adresse und bei einem Schreibzugriff die Daten. Bei einem Lesezugriff
antwortet der Baustein nach der Adressiibertragung mit den angeforderten Daten.

Abb. 11.20 zeigt den Zeitablauf eines Schreibvorgangs. /CS aktiviert zunichst den
Baustein. Dann werden insgesamt 32 Bits durch die steigende Flanke von SCK iibertra-
gen, die Most Significant Bits (MSB) jeweils zuerst. Die ersten 8 Bit sind das Schreib-
kommando 02,,. Dann folgt die Adresse mit 16 Bit. Da fiir 8 kByte nur 13 Bit ben6tigt
werden, sind die obersten drei Adressbits unbelegt. SchlieBlich werden die Daten iiber-
tragen und durch /CS die Ubertragung beendet.

Es ist auch moglich, mehrere Bytes an Daten zu iibertragen, die dann in aufeinander
folgende Adressen geschrieben werden (nicht in Abb. 11.20 dargestellt). Damit ist keine
wiederholte Ubertragung von Kommando und Adresse notig.

11.4.5.3 Physikalisches Interface

Die maximale Taktfrequenz fiir SCK betrigt 20 MHz. Wartezeiten fiir die Programmierung
sind nicht erforderlich. Die Spannungsversorgung des Bausteins betrdgt 3,3 bis 5 V. Bei
3,3 Spannungsversorgung wird der Low-Pegel bis 0,66 V, der High-Pegel ab 2,64 V erkannt.

11.5 Speichersysteme

Ein Speichersystem ist die Kombination aus mehreren Speichern. Dabei sind verschie-
dene Konfigurationen moglich. Mehrere gleiche Speicher konnen kombiniert werden,
um die Speicherkapazitit zu erhohen. Verschiedene Speicher kénnen kombiniert wer-
den, wenn unterschiedliche Eigenschaften benotigt werden. Dies kann SRAM- und
DRAM-Speicher oder fliichtiger und nicht-fliichtiger Speicher sein. Aulerdem konnen
die Speicher sowohl Embedded Speicher auf der Integrierten Schaltung als auch diskrete
Speicherbausteine auflerhalb sein.
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11.5.1 Adressdecodierung

Oft ist es gewiinscht, dass die Speicher gemeinsam von einer zentralen Steuerlogik, zum
Beispiel der CPU eines Rechnersystems, angesprochen werden sollen. Die Unterschei-
dung der Speicher erfolgt dann anhand der Speicheradresse. Der Adressraum enthilt
Adressbereiche fiir die unterschiedlichen Speicher. Je nach Grole von Adressraum und
Speicherkomponenten konnen Adressbereiche auch unbelegt sein.

Der prinzipielle Aufbau eines Speichersystems ist in Abb. 11.21 dargestellt. Die zen-
trale Steuerlogik gibt eine Adresse sowie Steuersignale an das Speichersystem. Je nach
Speichermodul konnen unterschiedliche Steuersignale sinnvoll und erforderlich sein.
Hier sind dargestellt:

e (S fiir Chip Select: Ein Zugriff findet statt
e WR fiir Write: Ein Schreibzugriff findet statt
e RD fiir Read: Ein Lesezugriff findet statt

Ein Adressdecoder ermittelt dann aus der Adresse, welches Speichermodul adressiert ist
und gibt an dieses Modul ein individuelles Chip-Select-Signal weiter. Uber den Daten-
bus gibt die Steuerlogik entweder Daten an das Speichermodul oder es werden Daten
empfangen.

Aus der Organisation des Adressraums ergibt sich die Adressierung. Zur Verdeutli-
chung wird das Speichersystem eines fiktiven Rechnersystems in Abb. 11.22 dargestellt.
Die Adresse hat eine Wortbreite von 16 bit und kann damit 64 kByte adressieren. Spei-
cherzugriffe erfolgen jeweils auf ein Byte. Es sind drei Speicher vorhanden, und zwar ein
ROM von 4 kByte fiir den Boot-Code, ein SRAM von 8 kByte als Datenspeicher und ein
EEPROM von 32 kByte fiir den Programmcode. Der Adressraum ist links in Abb. 11.22
angegeben. Das Prifix ,,0x* kennzeichnet hexadezimale Zahlen. Die Adressbelegung ist
wie folgt:

Abb. 11.21 Aufbau eines Datenbus . Adressbus
Speichersystems aus mehreren A -

. Speicher 2
Speichermodulen WR RD  CS

: , ? |
Speicher 1 <,‘: .
—T1VIwrR __RD__GCs y Adress

| % ] % —V/ dlecodsir

<‘;— Speicher 0
—TVIwR _RD cs

. N

WR RD o5
Zentrale Steuerlogik
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Abb. 11.22 Adressraum Ot Adressbus
und -decoder fiir ein X CEPROM A(15:0)
Speichersystem mit drei = s A(14:0
Speichermodulen Q A(15)
o
] A(15),
w
SRAM ' Afzo) [A(4)
Cs A(13) &
0x8000 f 9
Ox5fff FOM <:E ﬁ{ :;
SRAM ATTO) [arad &
0x4000 Cfs A(T2) —‘
0xOfff
ROM | 440000 Zentrale Steuerlogik

e 0x8000 — Oxfftf: EEPROM
e 0x6000 — Ox7fff: unbelegt
e 0x4000 — Ox5fff: SRAM

e 0x1000 — Ox3fff: unbelegt
e 0x0000 — 0xOfff: ROM

Die Steuerlogik kann also beispielsweise durch Angabe von Adresse 0x0123 auf das
ROM sowie durch Adresse 0x4567 auf das SRAM zugreifen.

Auf der rechten Seite von Abb. 11.22 ist die Logik des Adressdecoders abgebildet.
Die 16 Adressleitungen werden teils fiir die Selektion des Speichermoduls verwendet,
teils gehen sie in das Speichermodul. Ein Chip-Select-Signal der Steuerlogik wird hier
nicht verwendet; die Speicher werden iiber Read und Write angesteuert.

Die Logik des Adressdecoders und die Wortbreite der Adressen ergeben sich aus
Speichergrofie und Position im Adressraum.

e Das EEPROM bendétigt fiir 32 kByte Speichergrofle eine Adresse der Wortbreite

15 bit. Das oberste Bit der Adresse selektiert den Speicher, wenn die Adresse grofler
als 0x8000 ist. Als Chip-Select-Signal des EEPROMs kann direkt Adressleitung 15
verwendet werden.

Das SRAM benotigt fiir 8 kByte Speichergrofe eine Adresse der Wortbreite 13 bit.
Die vorderen drei Bit der Adresse selektieren den Speicher fiir Adressen zwischen
0x4000 und Ox5fff. In diesem Adressbereich sind A(15) bis A(13) gleich 010,. Das
Chip-Select-Signal wird durch ein UND-Gatter mit drei Eingédngen, zwei davon
negiert, erzeugt.

Das ROM benétigt fiir 4 kByte Speichergrofie eine Adresse der Wortbreite 12 bit. Die
vorderen vier Bit der Adresse selektieren den Speicher fiir Adressen zwischen 0x0000
und Ox1fff. In diesem Adressbereich sind A(15) bis A(12) gleich 0. Das Chip-Select-
Signal wird durch ein UND-Gatter mit vier negierten Eingiingen erzeugt.
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11.5.2 Multiplexing des Datenbusses

Jetzt betrachten wir den Datenbus auf der linken Seite von Abb. 11.21. Daten konnen
von der Steuerlogik zu einem Speicher oder vom Speicher zur Steuerlogik iibertragen
werden. Fiir die Implementierung gibt es zwei Moglichkeiten. Entweder sind getrennte
Datenleitungen fiir Schreib- und Leseoperationen vorhanden, die dann durch Multiplexer
ausgewdhlt werden. Oder es wird eine gemeinsame Datenleitung verwendet, auf die alle
Busteilnehmer mit Tri-State-Ausgéngen schreiben.

Innerhalb Integrierter Schaltungen werden stets getrennte Datenleitungen fiir Schreib-
und Leseoperationen verwendet. Tri-State-Leitungen sind innerhalb eines ICs zwar tech-
nisch moglich, aber fiir Fertigung und Herstellungstest sehr problematisch. Auch fiir die
Ansteuerung diskreter Speicherbausteine konnen getrennte Datenleitungen verwendet
werden. Beispiele dafiir sind das QDR-II-SRAM und das FRAM aus Abschn. 11.4.

Der Schaltungsaufbau bei getrennten Datenleitungen ist in Abb. 11.23 dargestellt,
wiederum fiir das Speichersystem mit EEPROM, SRAM und ROM. Alle drei Speicher-
module haben einen Datenausgang, aber nur das SRAM hat einen Dateneingang. Hier
wird angenommen, dass die Programmierung des EEPROMs iiber ein eigenes Program-
mier-Interface erfolgt (nicht dargestellt); die Steuerlogik schreibt nicht in das EEPROM.
Die Richtung von Schreiben und Lesen bezieht sich jeweils auf die Sicht der Steuerlo-
gik. Der Schreibbus fiihrt direkt vom Datenausgang (D_OUT) der Steuerlogik an den
Dateneingang (D_IN) des Speichermoduls. Auch mehrere Speichermodule konnen an
den Schreibbus angeschlossen werden, da nur die Steuerlogik Daten schreiben kann.

Der Lesebus hat mehrere Quellen, und zwar die Datenausgiinge aller Speichermo-
dule. Darum ist ein Multiplexing erforderlich, damit nur die Daten des adressierten

Datenbusse D(7:0)
jeweils 8 Bit ! |D_OUT EEPROM

Lesebus,

o CS_EEPROM
Lesebus, SRAM
SRAM T

CS_SRAM
Lesebus,— | | ||
ROM
Schreibbus
>1 [ >1

D_OuT D_IN RD
Zentrale Steuerlogik

Abb. 11.23 Datenbusse des Speichersystems mit drei Speichermodulen
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Speichermoduls an die Steuerlogik gegeben werden (siche Abb. 11.23). Zunidchst wird
fiir jedes Speichermodul die RD-Leitung mit der CS-Leitung UND-verkniipft. Das ver-
kniipfte Signal ist 1, wenn ein Lesezugriff auf das entsprechende Modul erfolgt. Zum
Multiplexing wird der Datenausgang des Speichermoduls durch UND-Gatter weiterge-
geben. Falls das Modul nicht aktiv ist, bleibt der Ausgang dieser UND-Gatter auf 0. Da
immer nur ein Speichermodul adressiert sein kann, ist auch nur ein Lesebus aktiviert und
die anderen Lesebusse sind 0. Fiir den Dateneingang der Steuerlogik werden die einzel-
nen Lesebusse ODER-verkniipft.

Ein Datenbus mit Tri-State-Leitungen kann fiir die Ansteuerung diskreter Bauele-
mente verwendet werden. Dies hat den Vorteil, dass die Datenleitungen gemeinsam
zum Lesen und Schreiben verwendet werden, denn die Anzahl der Anschliisse eines
ICs ist begrenzt. Beispiele dafiir sind das DDR3-SDRAM und das Flash-EEPROM aus
Abschn. 11.4. Beim Flash-EEPROM wurde der Datenbus auch fiir Kommandoworte und
Adresse genutzt, um noch mehr Pins zu sparen.

Abb. 11.24 zeigt ein Speichersystem mit Tri-State-Leitungen. Die Blocke fiir Spei-
cher und Steuerlogik stellen jetzt jeweils eigene diskrete Bauelemente dar und sind zur
Verdeutlichung mit dickeren Linien gezeichnet. Sowohl die Speicher als auch die Steuer-
logik miissen fiir den Betrieb an einem Tri-State-Bus vorgesehen sein und entsprechende
Treiber an den Anschliissen besitzen. Im Chip der Steuerlogik wird der Tri-State-Treiber
durch das Write-Signal angesteuert, bei den Speichern durch UND-Verkniipfung aus
Read und jeweiligem Chip-Select-Signal.

Datenbus i D_IN(7:0) RAM 1
auf Platine -
(8 Bit) : ;:IE D_OUT(7:0)
CS
cs
i D_IN(7:0
Diskrete ] (7:0) RAM_O
Bauelemente <'"_D oUT(70)
CS
& RD

Zentrale Steuerlogik

WR D_IN(7:0)
D_OUT(7:0)

Abb. 11.24 Speichersystem mit diskreten Bauelementen und Tri-State-Leitungen
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Die Datenleitungen werden in den Bauelementen gleichzeitig als Ausgang und Daten-
eingang fiir die interne Logik genutzt. Eine Steuerlogik (hier nicht dargestellt) entschei-
det, ob der Dateneingang verwendet wird.

11.5.3 Ansteuerung diskreter Speicherbausteine

Die vier in Abschn. 11.4 vorgestellten diskreten Speicherbausteine haben Schnittstellen,
die unterschiedlich komplexe Ansteuerungen bendtigen:

e Das serielle NVRAM kann relativ einfach angesprochen werden.

e Das NAND-EEPROM hat ein recht einfaches Interface, erfordert jedoch Fehlerkor-
rektur und Beachtung defekter Blocke.

e Das SRAM hat ein einfaches logisches Interface, erfordert jedoch bei hoheren Takt-
frequenzen eine spezielle Taktbehandlung sowie eine physikalische Ansteuerung mit
Logikpegeln bezogen auf eine Referenzspannung.

e Das DRAM erfordert ein komplexes Protokoll fiir die Ansteuerung, Beach-
tung der Bankstruktur sowie Taktbehandlung und physikalische Ansteuerung mit
Referenzspannung.

Fiir die Ansteuerung diskreter Speicherbausteine sind verschiedene Funktionselemente
vorhanden, die fiir den Aufbau eines Systems genutzt werden kdnnen.

Logisches Interface

Fiir die logische Ansteuerung werden Controller angeboten, welche die Ansteuerung der
Bausteine ausfiihren. Diese Controller sind teilweise als VHDL-Code oder Gatter-Netz-
liste verfiigbar und konnen in eigene Schaltungsentwiirfe iibernommen werden. Solche
Schaltungsbeschreibungen werden als Intellectual Property (IP) bezeichnet und miissen
tiblicherweise als Lizenz gekauft werden. Fiir programmierbare Bausteine (FPGAs) wer-
den von den Herstellern IP-Blocke angeboten. Diese sind fiir Kidufer der FPGAs oft ohne
weitere Kosten verfiigbar.

Physikalisches Interface

Die physikalische Ansteuerung von SRAMs und DRAMs erfolgt iiber Pins mit speziellen
Logikpegeln. Fiir Tri-State-Busse sind ebenfalls entsprechende Pins erforderlich. Die Her-
steller von ICs und FPGAs bieten diese Ein- und Ausgangstreiber als Bibliothekselement an.

11.6 Ubungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Priifen Sie sich mit den Aufgaben und
Fragen am Kapitelende. Die Losungen und Antworten finden Sie am Ende des Buches.
Bei den Auswahlfragen ist immer genau eine Antwort korrekt.



11.6 Ubungsaufgaben 351

Aufgabe 11.1
Welche der folgenden Technologien ist ein ,fliichtiger Speicher‘?

a) FRAM
b) EPROM
¢) Flash

d) SRAM
e) EEPROM

Aufgabe 11.2
Wie viele Transistoren hat eine normale SRAM-Zelle?

a) 9
b) 2
o)1
d)5
e) 6

Aufgabe 11.3
Wie viele Transistoren hat eine normale DRAM-Zelle?

a) 6
b) 5
c) 2
d) 1
e)9

Aufgabe 11.4
Wozu wird beim DRAM ein ,Refresh* benotigt?

a) Zugriff auf verschiedene Speicherblocke

b) Zugriff auf Zeilen und Spalten der Speichermatrix
¢) Auswahl eines Speicherblocks

d) Aufladen von Kondensatoren

e) Loschen von Datenbereichen

Aufgabe 11.5
Was passiert beim ,Flash® eines Flash-Speichers?

a) Zugriff auf Zeilen und Spalten der Speichermatrix
b) Auswahl eines Speicherblocks
¢) Loschen von Datenbereichen
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d) Zugriff auf verschiedene Speicherblocke
e) Aufladen von Kondensatoren

Aufgabe 11.6
Wie erfolgt die Datenspeicherung in EEPROMs?

a) Kondensator

b) Magnetfeld

¢) Riickkopplung von Invertern
d) Transistor mit ,Floating-Gate*
e) Brennen von Sicherungen

Aufgabe 11.7

a) Wie viele Adressleitungen braucht ein SRAM mit 16K Datenworten?
b) Wie viele Adressleitungen braucht ein SRAM mit 256K Datenworten?

Aufgabe 11.8

a) Ein SRAM hat 16 Adressleitungen und 8 Datenleitungen. Wie hoch ist die

Speicherkapazitit?

b) Ein SRAM hat 20 Adressleitungen und 16 Datenleitungen. Wie hoch ist die

Speicherkapazitit?

Aufgabe 11.9

Abb. 11.25 zeigt ein einfaches Speichermodul mit 6 Adressleitungen und 1 bit Wortbreite.
Damit soll ein Primzahl-Detektor realisiert werden. Programmieren Sie die Speicherelemente
mit O oder 1, so dass der Speicher eine 1 ausgibt, wenn eine Primzahl am Eingang anliegt.

Abb. 11.25 Einfaches
Speichermodul fiir Primzahl-
Detektor

ADDR(2:0)

3}
Zeilendecoder
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I

Leseverstarker

o7 =T OT ~T OT ~T ©
o Q| =| =| ©| ©o| —
ol O o] ©of ~| ~| «~

Spaltendecoder

ADDR(5:3) 4}
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Umsetzer

Analog-Digital-Umsetzer (ADU), engl. Analog-Digital-Converter (ADC), sind Bindeglieder
zwischen analogen Signalquellen wie Messwandler fiir Druck, Temperatur, Weg, Beschleu-
nigung, Mikrofonen und digital arbeitenden Systemen. Sie wandeln einen analogen
Spannungswert in eine digitale Darstellung. Digital-Analog-Umsetzer (DAU) engl. Digital-
Analog-Converter (DAC), wandeln dann einen digitalen Wert wieder in die analoge Welt.

Technische Herausforderungen beim Einsatz von ADUs und DAUs liegen in den
Anforderungen an Genauigkeit und Geschwindigkeit der Umsetzung. Wirtschaftliche
Herausforderungen liegen in den Kosten der Umsetzer, denn ein Gesamtsystem kann aus
Analog-Digital-Umsetzer, digitaler Verarbeitung und Digital-Analog-Umsetzer bestehen.
Im Vergleich mit einem rein analogen System miissen die Kosten vergleichbar sein oder
die digitale Verarbeitung muss eine bessere Qualitit der Verarbeitung ermoglichen.

Generelle Vorteile der digitalen gegeniiber der analogen Technik bestehen unter ande-
rem durch:

e Geringere Storanfilligkeit digitaler Signale, bzw. Fehlerkorrektur nach Stérungen

¢ FEinsatzmoglichkeit besonders hoch integrierter Digitalbausteine wie FPGAs, Mikro-
prozessoren, Signalprozessoren, Speicher usw.

e Moglichkeit zur Datenkomprimierung und Verschliisselung von Daten

12.1 Grundprinzip von Analog-Digital-Umsetzern

Analog-Digital-Umsetzer sind Systeme, die einer analog vorliegenden elektrischen Mess-
grofe (z.B. einer Spannung U) eine digitale Reprisentationsgrofie (z. B. eine bindre
Zahl) zuordnen. Bei analogen Systemen liegt demgegeniiber die Reprisentationsgrofie,
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beispielsweise der Zeigerausschlag eines Messgerites, in analoger Form vor. Analoge
GroBen sind zeit- und wertkontinuierlich wie Abb. 12.1 zeigt.

Ein ADU ordnet der analogen Eingangsgrofe eine zeit- und wertdiskrete Reprisen-
tationsgrofe zu, beispielsweise Bindrzahlen, wie Abb. 12.2 zeigt. Ein ADU bildet dem-
zufolge ein Signalintervall (Quantisierungsintervall Q) auf einen diskreten Wert ab.
Dadurch werden systematische Fehler, die Quantisierungsfehler, verursacht.

Beim Vorliegen zeit- und wertkontinuierlicher, also analoger Signale bewirkt der
ADU eine Diskretisierung in zweifacher Hinsicht:

e Diskretisierung in eine endliche Anzahl zugelassener Amplitudenwerte, auch Quanti-
sierung genannt.

e Diskretisierung im Zeitbereich, denn ein Amplitudenwert gilt fiir eine bestimmte
Mindestzeit. Diesen Vorgang nennt man Abtastung.

Weiterhin liefert der ADU die digitale Information in einem bestimmten Code, bei-
spielsweise dem Dual-Code. Dieser Vorgang heil3t Codierung. Die erforderlichen Ver-
arbeitungsschritte beim Ubergang vom analogen zum digitalen Signal sind in Abb. 12.3
veranschaulicht.

Wesentliche Anwendungsgebiete fiir ADUs und DAUS sind:

e Digitalmessinstrumente: Analoge Messgrolen wie Strom, Spannung, Widerstand, Fre-
quenz, Temperatur, Gewicht usw. werden mit endlicher Auflosung als Ziffern angezeigt.

Abb. 12.1 Prinzipielle Wertkontinuierliche 4
Wirkungsweise eines Analog- ReprasentationsgroBe,
Messgerites z.B. Zeigerausschlag

Wertkontinuierliche'
MessgréBe,
z.B. Spannung U

Abb. 12.2 Prinzipielle Wertdiskrete {11 4

Wirkungsweise eines Analog- ReprasentationsgréBe, 110
Digital-Umsetzers z.B. Zahl 101 —
100 —
011 —
010 —
001 —

000 >
Wertkontinuierliche

Messgrofe,
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Abb. 12.3 Verarbeitungsschritte beim Ubergang von analogen zu digitalen Signalen

e Nachrichtentechnische Einrichtungen: Sprach- und Videosignale, die zunéchst in analoger
Form vorliegen, werden digitalisiert und digital iibertragen oder gespeichert. Beispiele:
Telefonie per Voice-over-IP, Videocodierung fiir Digitalfernsehen oder Blu-Ray Disc.

e Digitale Signalverarbeitung: Sprach-, Bild- und Videosignale werden durch digitale
Verarbeitung verindert. Beispiel: Bildverbesserung in Digitalkameras.

e Digitale Regelungssysteme und Prozesssteuerung: Ein Digitalregler kann einen oder
mehrere Regelkreise betreiben. Beispiele: Werkzeugmaschinen, Lebensmittelproduk-
tion, allgemeine Prozessabliufe, Uberwachung von Verbundsystemen zur elektrischen
Energieversorgung.

12.1.1 Systeme zur Umsetzung analoger in digitale Signale
Die Analog-Digital-Umsetzung umfasst prinzipiell die folgenden vier Schritte:

1. Bandbegrenzung durch Tiefpassfilter

2. Abtastung im Abtasthalteglied (AHG, engl. Sample & Hold)
3. Quantisierung

4. Codierung
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Ein System zur Digitalisierung analoger Signale lésst sich somit durch das Blockschalt-
bild in Abb. 12.4 beschreiben. Integrierte Schaltungen zur AD-Umsetzung vereinen die
Funktionen meist auf einem Baustein. Es ist jedoch auch mdoglich, die Umsetzfunktion
auf mehrere Bauelemente aufzuteilen.

Der Eingangstiefpass mit der Grenzfrequenz fg ist fiir den Fall erforderlich, dass das
Analogsignal nicht hinreichend bandbegrenzt ist. Seine Dimensionierung wird durch das
Abtasttheorem bestimmt (Abschn. 12.1.2). Als nichster Block ist ein Abtasthalteglied
(AHG) vorgesehen. Dieses hilt wihrend der Umsetzungsdauer des ADU das umzuset-
zende Analogsignal konstant (Abschn. 12.1.3). Das AHG speist direkt den eigentlichen
Umsetzer, der aus Quantisierer und Codierer besteht. Verschiedene Architekturen werden
in Abschn. 12.2 vorgestellt. Eine Ablaufsteuerung koordiniert die Aufgaben der einzel-
nen Blocke.

12.1.2 Abtasttheorem

Das Abtasttheorem von Shannon gibt an, in welchen zeitlichen Abstinden dem vorlie-
genden Analogsignal mindestens Proben (Abtastwerte) entnommen werden miissen,
damit nach einer spiteren DA-Umsetzung das Ursprungssignal (bis auf die Quantisie-
rungsfehler) fehlerfrei rekonstruiert werden kann.

Das Abtasttheorem lautet: Eine auf fg bandbegrenzte Signalfunktion s(z) wird vollstindig
bestimmt durch zeitdiskrete und dquidistante Abtastwerte s,(z) im zeitlichen Abstand von

T =T < 1/(2f;)

Das bedeutet, die in einem Signalgemisch auftretende hochstfrequente spektrale
Komponente muss wenigstens zweimal pro Periode Tg abgetastet werden. Dieses ldsst
sich sowohl im Zgit- als auch im Spektralbereich begriinden. Die Formel fiir 7, wird
auch mit dem Formelzeichen kleiner-gleich angegeben, aber das Gleichheitszeichen
hat nur theoretische und keine praktische Bedeutung. Wird das Abtasttheorem verletzt,
entstehen Signalfehler, die in der Regel nicht zu eliminieren sind.

Als Beispiel soll ein Audiosignal betrachtet werden. Das menschliche Gehor kann Fre-
quenzen bis zu 20 kHz wahrnehmen. Die Abtastrate muss darum grofler als 40 kHz sein.
Fiir die Speicherung auf einer Audio-CD wird eine Abtastrate von 44,1 kHz verwendet.

Tiefpass Abtast- Quanti-
—> fp —»  halte- > . —» Codierer —»
Analog- 9 glied sierer Digital-

signal ? ? ? signal

| Ablaufsteuerung |

Abb. 12.4 Gesamtsystem zur Digitalisierung analoger Signale
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12.1.3 Abtasthalteglied (AHG)

Das Abtasthalteglied soll dem vorliegenden Signal in Abstinden, die durch das Abtast-
theorem festgelegt sind, Signalproben entnehmen und diese wihrend der Umsetzdauer
t, des ADUs konstant halten (speichern), wie Abb. 12.5 zeigt. Die Haltedauer 7, muss
groBer als die Umsetzdauer 7, des ADUs gewihlt werden, so dass gilt:

tw <ty =T = Tapt

Ist allerdings die Umsetzdauer ¢, sehr viel kleiner als T',,, kann theoretisch auf eine Abtast-
haltung verzichtet werden. Diese Forderung ldsst sich in der Praxis allerdings selten
sinnvoll erfiillen, da der ADU dadurch sehr teuer werden wiirde. Die Zusammenhinge
sollen an einem Beispiel konkretisiert werden.

Wird kein AHG benutzt, kann sich wihrend der Umsetzdauer t, des ADU das
Eingangssignal s(#) um ds dndern, was zu einem falschen Umsetzungsergebnis fiihrt.
Soll die maximale Genauigkeit eines ADU von 1/2 LSB (Least Significant Bit) erhalten
bleiben, muss im Sinne einer Worst-Case-Betrachtung gefordert werden, dass an der
Stelle der groBtmoglichen Signalsteigung die Signaldnderung kleiner als 1/2 LSB
bleibt. Beispielsweise fiihrt diese Forderung bei einem vollaussteuernden Sinussignal
s(t) =A - sin(a)g - t) zu folgendem Ergebnis:

ds _4A _g
dr max B ©e = oma

Das ist die maximale Steigung des Signals mit der Amplitude A = m - Q/2, wobei Q die
Quantisierungsintervallbreite und m die Quantisierungsstufenzahl im Aussteuerbereich
sind. Weiter gelte fg =1/(2- T, ) als Grenzfall fiir die Abtastung. Dann folgt:

m.Q.Z.n.fg_m.Q.jT
2 B 2'Tabt

Smax =

Mit der oben formulierten Bedingung S - ¢ < Q/2 folgt durch Gleichsetzen

max u —

m-Q-m (0]
Smax =—F72=
2 - Tapt 2.1
und nach 7, umgestellt:
s(t) Sa(t) —» tw
- AHG P>
.t 4 t

T T 1T T 1 T 1>T nT T
0 2 4 6 8 0 2 4 6 8

Abb. 12.5 Prinzipielle Wirkungsweise eines Abtasthaltegliedes
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Tt
m- 71

fu =

Dieses ist die erforderliche Umsetzdauer eines ADUs, welche bei der Abtastung ein
AHG entbehrlich macht. Diese Forderung ist sehr weitreichend, da in der Regel m sehr
viel groBer als 1 ist.

Als Beispiel wird eine Abtastperiodendauer von 125 ps fiir die digitale Sprachsignal-
verarbeitung mit Telefonqualitiit betrachtet. Es wird ein linearer ADU mit n = 12 bit ver-
wendet, sodass m = 2" — 1 = 4095 ist. Dann gilt fiir die Umsetzdauer:

125us

ty < —— =9,72
“= 20057 s

Dieses ldsst sich nicht sinnvoll realisieren, da ADUs mit diesen Leistungsmerkmalen
zwar technisch moglich, jedoch fiir diese Anwendung zu aufwendig sind. Wird dagegen
ein AHG eingesetzt, darf die Umsetzdauer 7, des ADU néherungsweise T, also im vor-
liegenden Beispiel 125 ps betragen. Darin liegen Sinn und Vorteil eines AHG.

Die Arbeitsweise eines AHG zeigt das prinzipielle Schaltbild in Abb. 12.6. Wird der
Schalter S in die obere Stellung gebracht, 1ddt sich der Haltekondensator C,, auf die
Signalspannung auf. Dieses entspricht der Abtastphase. Nach Bewegen des Schalters S
in die Mittelstellung beginnt die Haltephase, wihrend der das Signal in C,, gespeichert
bleibt. Die Spannung U, ist durch einen hochohmigen Leseverstérker als s () verfiigbar.
R, ist der Eingangswiderstand des AHG, R, der Innenwiderstand der Signalquelle.

In modernen Pipeline-ADUs in CMOS-Technologie werden die AHGs mit geschalte-
ten Kondensatoren (Switched Capacity Circuits) realisiert, wie in Abb. 12.7 dargestellt ist.

Abb. 12.6 Prinzipieller Aufbau eines AHGs und sein Anschluss an die Signalquelle s(t)

Abb. 12.7 Prinzipschaltbild
eines Abtasthalteglieds mit
geschaltetem Kondensator in
CMOS-Technik, wie es z. B.
in Pipeline-ADUs verwendet
wird
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In der Abtastphase sind die Schalter S, und S; geschlossen, und S, ist offen. Da
der Summationspunkt des Operationsverstirkers auf Bezugspotenzial liegt, wird der
Kondensator C,, mit der Eingangsspannung U, geladen.

Fiir die Haltephase werden die Schalter S, und S, gedffnet und S, geschlossen und
damit die Haltekapazitit in den Gegenkopplungskreis des Operationsverstirkers gelegt.
Da die Ladung von C}, nicht tiber den Summationspunkt abfliefen kann, bleibt sie erhal-
ten, und die Ausgangsspannung U, nimmt den Wert U, an.

12.1.4 Erreichbare Genauigkeit fiir ADUs abhdngig von der
Codewortldange

Durch die Codewortldnge n ist die Anzahl der moglichen Codeworter gegeben. Hieraus
lassen sich die Quantisierung der Messwerte und die erreichbare Genauigkeit berechnen.
Zur besseren Anschaulichkeit wird im Folgenden angenommen, dass der Messbereich
bei 0 V beginnt.

Ein Wert fiir die mogliche Genauigkeit eines ADUs ist die Quantisierungsintervall-
breite Q. Sie berechnet sich aus der Codewortldnge n und dem Aussteuerbereich U .
Fiir einen n-Bit-ADU ergibt sich Q als:

Umax
2)1

0=
Der hochste codierbare Spannungswert betrigt dann:
Unax = (2n - 1) 0
Dieser Wert ergibt sich daraus, dass von den 2" moglichen Codewoértern der erste Wert
fiir die Spannung 0 V benoétigt wird und die folgenden 2" — 1 Codeworter jeweils um
den Wert Q groBer sind.

Als einfaches Beispiel betrachten wir einen Aussteuerbereich U von 1V und eine
Wortbreite von n =3 bit. Dann betriigt Q = 1 V/2° = 1V/8 = 125 mV. Die Zahl der
Quantisierungsintervalle betrigt 8, sodass der hochste codierbare Spannungswert 7 Inter-
valle hoher als 0 V ist:

U*

max

=7-125mV = 0,875V

Die Quantisierungskennlinie dieses ADUs ist in Abb. 12.8 dargestellt. Es existieren 8
darstellbare Spannungswerte und 7 Intervalle zwischen diesen Werten. Jedem Codewort
entspricht ein Représentationswert, beispielsweise fiir den Code 011 der Wert 0,375 V.
Die Eingangswerte des zugehdrigen Quantisierungsintervalls werden diesem Wert zuge-
wiesen. Fiir den Code 011 sind beispielsweise die Ubergangswerte 0,3125 und 0,4375 V.
Der hochste darstellbare Digitalwert ist 0,875 V und um ein Quantisierungsintervall klei-
ner als die maximale Eingangsspannung U

max’
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Abb. 12.8 Quantisierungskennlinie eines 3-Bit-ADUs mit U, =1V

Die beiden Punkte in den Ecken des Diagramms legen die ideale Quantisierungsge-
rade fest. Diese verlduft durch die Mittelpunkte aller Quantisierungsintervalle einer idea-
len Quantisierungskennlinie. Bei einer realen Quantisierungskennlinie ergibt sich fiir die
Mittelpunkte aller Quantisierungsintervalle jedoch im allgemeine keine Gerade. Darin
dullern sich unterschiedliche Fehler realer Umsetzer, wie sie in Abschn. 12.4 im Einzel-
nen erldutert werden.

Als Beispiel fiir reale GroBenordnungen wird ein Aussteuerbereich U, . von 10V und
eine Wortbreite von n = 12 bit betrachtet. Dann betriigt Q = 10 V/2/? = 1 V/4096 = 2,44
mV. Der hochste codierbare Spannungswert betrdgt U* = 4095 - (10 V/4096) = 9,976 V.

Bei einer idealen Quantisierungsgerade sind alle Quantisierungsintervalle Q gleich
grof} und man spricht von linearer Quantisierung. Dann ist der maximale Quantisierungs-
fehler F,,  die Hilfte des Quantisierungsintervalls:

g _ Umax
2 7 ontl

Faps =

Der relative Fehler F | héingt von der aktuellen Aussteuerung ab, er nimmt bei Vollaus-
steuerung sein Minimum an:

F _ Fmax ~ Fmax _ 1
T Utex  Umax 2071

max

Fiir einen 3-Bit-ADU betrégt der Fehler F, | beispielsweise 1/16 = 6,25 %.

Wird bei einer Digitalisierung eine bestimmte relative Genauigkeit F,, verlangt, so
kann daraus die erforderliche Wortbreite fiir den ADU berechnet werden. Sie ergibt sich
aus dem nichstgroferen ganzzahligen Wert und dem Zweierlogarithmus der benédtigten
Genauigkeit nach der Formel:

n*>n=—1—1IdFy
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Tab.12.1 Reprisentations- Codewort-Nummer | Reprisentationswert | Codierung
werte und Codeworte fiir einen inVv
12-Bit-ADU 0 0 0000 0000 0000
1 0,0024414 0000 0000 0001
2 0,0048828 0000 0000 0010
1024 2,5000000 0100 0000 0000
2048 5,0000000 1000 0000 0000
4095 9,9975586 11111111 1111

Soll beispielsweise eine relative Genauigkeit bei Vollaussteuerung von 1 % erreicht wer-
den, berechnet sich der Zweierlogarithmus von 0,01 zu /d 0,01 = — 6,64. Daraus ergibt
sich n = 5,64, sodass fiir den ADU mindestens n* = 6 bit nétig sind.

12.1.5 Codierung der ADU-Werte

Fiir das eben genannte Beispiel eines 12-Bit-ADU mit Aussteuerbereich U, von 10V
ist die Codetabelle in Tab. 12.1 auszugsweise dargestellt. Die Codeworte werden als
Dualzahl dargestellt.

Falls mit dem ADU auch negative Spannungen gemessen werden, ist eine Darstellung
als Dualzahl mit Offset oder als Zweierkomplement moglich. Bei der Offsetdarstellung
beginnt der Code bei der geringsten Spannung mit dem Codewort Null und steigt bis
zum hochsten codierbaren Spannungswert an. Bei der Zweierkomplementdarstellung
werden negative Spannungswerte durch eine negative Zahl angegeben. Manche Bau-
steine bieten auch die Datenausgabe im Gray-Code. Die Codierung eines ADUs ist im
Datenblatt definiert und kann teilweise durch Konfigurationssignale ausgewéhlt werden.

12.2 Verfahren zur Analog-Digital-Umsetzung

Fiir die eigentliche AD-Umsetzung sind verschiedene Verfahren moglich, die sich in
Aufwand und Geschwindigkeit deutlich unterscheiden. Fiir die folgenden Erlduterungen
werden meistens die Représentationswerte der einzelnen Quantisierungsschritte verwen-
det, da dies anschaulicher ist (siche Abb. 12.8). In realen Schaltungen erfolgen Verglei-
che hingegen mit den Ubergangswerten.
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12.2.1 Parallelverfahren

Umsetzer nach diesem Verfahren heiflen Parallel-, Direkt- oder Flash-Umsetzer. Das
Messverfahren dhnelt der Lingenmessung mit einem Zollstock. An die unbekannte
Grofe wird der Zollstock angelegt, der in m Teile des Quantisierungsintervalls, soge-
nannte Normale, eingeteilt ist. Der néchstliegende ganzzahlige Wert ist die gesuchte
Linge.

Fiir die elektronische Realisierung dieses Verfahrens ist Folgendes wichtig:

e Esist nur ein Messschritt notig, das Verfahren arbeitet schnell.
e Es sind m Normale nétig, also groler Aufwand an Prizisionsbauelementen.

Elektrisch kann dieses Normalenlineal durch eine Spannungsteilerkette mit m gleichgro-
Ben Prizisionswiderstinden realisiert werden. Jeder Widerstand ergibt eine darstellbare
Stufe. Zusitzlich ist noch der Wert Null vorhanden, so dass m + 1 Werte moglich sind.
Das Blockschaltbild des entsprechenden Parallelumsetzers ist in Abb. 12.9 dargestellt. Es
gil: R, =R, =... =R . R, wird entsprechend dem Verhiltnis von U__ zu U_ gewiihlt.

Mittels m Komparatoren wird die unbekannte Spannung U, mit den einzelnen Abgrif-
fen des Normalen-Spannungsteilers verglichen. Alle Komparatoren, deren Spannungen
an den Teilereingéingen grofer als U sind, liefern am Ausgang eine logische 1, alle ande-
ren eine logische 0. Diese Werte werden mit einem Abtastimpuls in ein Register iiber-
nommen und in der Decodierlogik in die entsprechende Anzahl von n = Id(m + 1) bits
umgesetzt. Das Register realisiert eine digitale Abtasthaltung, sodass dieser Umsetzer
ohne ein zusitzliches AHG betrieben werden kann.

Uref
Rret Komparatoren
Digital-
~ ausgang
Rm1 _8) 7 n-1
s |
3 =
F‘mz[j g o
Analog-  Verstarker : : : . o
eingang . . . .
C 4
Ux | ' D, I
R =
>C
lzbtastimpuls

Abb. 12.9 Blockschaltbild eines ADUs nach dem Flash-Verfahren
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Der hohe Aufwand zeigt sich in der groBen erforderlichen Anzahl von Prizisions-
widerstinden und Komparatoren. Daher wird dieses Verfahren normalerweise nur bis
Auflésungen von 12 bit eingesetzt. Technische Probleme bei hoher Auflosung liegen
aulerdem im Eingangsverstirker, der m Komparatoreingiinge treiben muss und in den
Komparatoren selbst, die eine kleine Hysterese und hohe Gleichtaktunterdriickungen
aufweisen miissen. Ein weiterer Nachteil ist die vergleichsweise hohe Verlustleistung
dieses Umsetzertyps.

Die Geschwindigkeit des Umsetzers wird durch den langsamsten Komparator
bestimmt, der erst eingeschwungen sein muss, bevor der Abtastimpuls eintrifft. Anwen-
dungsschwerpunkte fiir Umsetzer dieses Typs liegen bei der digitalen Signalverarbei-
tung, insbesondere der Bildverarbeitung mit Datenraten von mehr als 80 Mbit/s und bei
Transientenrekordern.

Eventuell ist Thnen aufgefallen, dass beim Flash-ADU die Quantisierungsschritte
immer bis zum néchsten Reprisentationswert reichen. Bei der Auflosung aus Abb. 12.8
wiirde die Codierung ,,000“ also dem Wertebereich von 0V bis 0,125V entsprechen.
Dies liegt daran, dass alle Widerstinde des Spannungsteilers gleich grof3 gewihlt sind
und die Komparatoren die Eingangsspannung mit den Reprisentationswerten verglei-
chen. Bezogen auf die Dezimalzahl wird durch diese Vereinfachung der Nachkommaan-
teil abgeschnitten und es findet nicht die eigentlich erforderliche Rundung statt.

In der Praxis wird diese Verschiebung durch Halbierung des Werts fiir R, und entspre-
chender Erhthung von R oder durch einen Offset im Eingangsverstidrker geldst. Um
die Beschreibung der Schaltungsstrukturen in diesem Kapitel iibersichtlich zu halten,
sollen solche Rundungsfragen nicht beachtet werden.

12.2.2 Wageverfahren

Beim Wéigeverfahren wird pro Messschritt ein Bit des Digitalwortes erzeugt. Der Name
dieses Verfahrens stammt von dem bei einer Balkenwaage iiblichen Messvorgang: Das
Wigegut unbekannten Gewichts wird in eine Waagschale gelegt. In die andere kommt
zunichst das grofite verfiigbare Gewicht. Ist dieses zu schwer, wird es wieder entfernt
und eine Null notiert. Ist es nicht zu schwer, bleibt es liegen und es wird eine Eins
notiert. AnschlieBend werden nacheinander alle verfiigbaren kleineren Gewichte in glei-
cher Weise benutzt. Das unbekannte Gewicht entspricht der Summe aller mit Eins mar-
kierten Gewichte.

Das Wigeverfahren benutzt mehrere Normale g; mit dualer Abstufung ihres Wertes.
Die Auflosung entspricht einer Quantisierungsstufe Q, also dem LSB des fertigen Code-
wortes. Die erste Normale g, hat den Wert O, die folgenden Normale sind ¢, =2 - Q,
q,=4-Qbisq, ,=2""1.0.

Da die Anwendung jedes Normals g, ein Bit liefert, sind fiir einen n-Bit-ADU also n
Normale notig. Das groBte umfasst den halben Messbereich, also U /2 und die Summe
aller Normale ergibt den insgesamt darstellbaren Messbereich U, — Q.
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Eine Messung der Eingangsgrofie x beginnt mit dem Vergleich mit dem gréften Nor-
malg, .

e Giltx>g, ,wirdb, ,=1undgq, , bleibtangelegt.
e Giltdagegenx <gq, ,, wirdb, ,=0undgq, , wird entfernt.

Damit ist das MSB (Most Significant Bit) des Digitalwertes b gebildet. Im nichsten
Schritt wird der verbleibende Rest der Messgroe mit dem nichstkleineren Normal
verglichen.

e Giltx—b, ,-q, ;2¢q,_, wirdb, _,=1undgq, ,Dbleibtangelegt.
e Giltdagegenx—b, ,-q, ,<gq,_, wirdb, _,=0undg, _,wird entfernt.

Dieser Vorgang wird mit den restlichen Normalen bis zum kleinsten Normal g, der
GroBle Q fortgesetzt. Die Zahl Z der Messschritte entspricht der Normalenzahl N und
damit der Bitanzahl, also gilt Z=N = n.

Das Messergebnis lautet x =b, 2"~/ +b ,2""2 4.4 b, 22+ b, -2+ b,

Als Beispiel wird ein Wigecodierer mit m =255 Quantisierungsintervallen
betrachtet. Er hat eine Auflosung von Q = 1/256 und damit sind Z=N =28 und
n=Id(m + 1) = 8 bit. Daher sind N = 8 Normale und Z = 8 Messschritte erforderlich.
Das groBte Normal hat den Wert g, , = 2"~ 1.0 = 128-Q und das kleinste den Wert
qy= 0.

Die Umsetzzeit im Wégecodierer ist grofler als beim Direktumsetzer, da mehr Schritte
erforderlich sind. Dafiir werden weniger Normale benotigt, d. h. der Aufwand an Prizisi-
onsbauteilen ist prinzipiell geringer.

Bei der technischen Realisierung des Wigeverfahrens unterscheidet man zwischen
Umsetzern mit schrittweiser Anndherung (Sukzessive Approximation, Successive Appro-
ximation) und Kaskadenumsetzer (Pipeline-A/D-Umsetzer). In der Praxis wird von die-
sen beiden Varianten meist das Verfahren mit schrittweiser Annidherung verwendet und
darum wird dieses hier anhand des Riickkopplungscodierers erldutert. Das Blockschalt-
bild in Abb. 12.10 zeigt den Aufbau mit der Riickkopplung als wesentliches Merkmal.

U, U, Komparator
o—— AHG + )
Analog- B Logik [«o Takt
eingang l
A : SAR Tn-1 Digital-
Urefl D —, ausgang

Abb. 12.10 Blockschaltbild des Riickkopplungscodierers mit schrittweiser Anniherung (Sukzessive
Approximation)
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Als Riickkopplung wird mit einem Digital-Analog-Umsetzer (DAU) eine Referenz-
spannung U, . erzeugt. Diese wird entsprechend der Summe der aktivierten Normale
schrittweise variiert. Im ersten Schritt ist das MSB gesetzt und U = U, /2. Der Kom-
parator vergleicht die Referenzspannung mit der Eingangsspannung und ermittelt das
MSB des Digitalausgangs, der im Successive Approximation Register (SAR) gespeichert
wird. Der DAU erzeugt dann den néchsten analogen Vergleichswert, der wieder mit dem
Eingangssignal verglichen wird um das nédchste Ausgangsbit zu ermitteln.

Als Beispiel soll das Verfahren fiir einen ADU mit n =3 bitund U, =1V durch-
gespielt werden. Das Quantisierungsintervall Q ist damit 0,125 V. Als Eingangsspannung
wird U = 0,8 V angenommen.

e Im Abtasthalteglied AHG wird die Eingangsspannung gehalten, damit wéhrend der
schrittweisen Umsetzung stets der gleiche Analogwert U*  anliegt.

e Der erste Vergleich erfolgt mit dem Wert U, = 22.0=4-0,125V = 0,5 V. Der Ein-
gangswert von 0,8 V ist groBer als die Referenzspannung, also ist das MSB b, gleich 1.

e Der zweite Vergleich addiert zu der bisher ermittelten Spannung von 0,5V die
ndchste Normale, mit halber Gro3e der vorherigen Normale. Es ergibt sich also der
Wert U =b,-2?-0+2"-0=05V+2-0,125V =0,75V. Der Eingangswert
von 0,8 V ist wieder groBer als die Referenzspannung, also ist das néchste Bit b,
gleich 1.

e Der dritte Vergleich addiert wieder zu der bisher ermittelten Spannung von 0,75V die
nichste Normale, mit halber GroB3e der vorherigen Normale. Es ergibt sich der Wert
Uys=b,-22-0+b,-21-0+2°-0=0,75V + 0,125V = 0,875 V. Der Eingangs-
wert von 0,8 V ist kleiner als die Referenzspannung, also ist Bit b, gleich 0.

e Damit ergibt sich nach drei Schritten der digitale Ausgangswert 110, der einer Span-
nung von 6 - Q = 0,75 V entspricht.

Das Ergebnis ist innerhalb der erreichbaren Genauigkeit fiir die gewihlte Codewortlénge.

12.2.3 Zahlverfahren

Beim Zihlverfahren handelt es sich um ein rein seriell arbeitendes Verfahren. Es exis-
tiert nur ein Normal der Linge Q und wihrend der Messung wird gezihlt, wie oft dieses
Normal an den unbekannten Wert x angelegt werden muss, um diesen zu erreichen. Das
Zihlergebnis entspricht dann dem gesuchten Digitalwert von x.

Die Zahl der erforderlichen Vergleichsschritte Z hiangt von der Messgrofie ab und
betriagt maximal Z=m = 2" — 1, denn falls beim (2" — 1)ten Messschritt immer noch
giltx > (2" — 1) - O, dann muss x im letzten Quantisierungsintervall liegen.

Der Vorteil dieses Umsetzertyps ist, dass nur ein Normal, also ein geringer Aufwand
an Prizisionsbauelementen, bendtigt wird. Da die Anzahl der Messschritte jedoch von
allen Umsetzverfahren am grof3ten ist, arbeitet es auch am langsamsten.
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Das Zihlverfahren kann elektronisch durch eine Abwandlung des soeben vorgestell-
ten Riickkopplungsumsetzers realisiert werden. Dazu wird das SAR durch einen Zihler
ersetzt und damit U, pro Messschritt nur um eine Quantisierungsstufe Q erhoht.

Vergleicht man die drei bisher dargestellten Umsetzverfahren miteinander, so zeigt
sich, dass Aufwand (bzw. Kosten) und Umsetzungsdauer bis zu einem gewissen Grade
untereinander austauschbar sind. Dieses ist in Abb. 12.11 anschaulich dargestellt. Hdu-
fig besteht bei der Anwendung von ADUs jedoch der Wunsch, die Auswahl hinsichtlich
Geschwindigkeit und Kosten priziser an das vorliegende Digitalisierungsproblem anzu-
passen, als es die drei bisher genannten Verfahren zulassen. Dafiir stehen zwei weitere
Verfahren zur Verfiigung: Das erweiterte Parallel- und das erweiterte Zahlverfahren.
Beide werden in den nichsten Abschnitten vorgestellt.

12.2.4 Erweitertes Parallelverfahren

Das Parallelverfahren ist zwar sehr schnell, hat aber den Nachteil, dass der Auf-
wand an Prézisionsbauteilen exponentiell mit der Auflosung steigt; denn es werden
N=m=2"—1 Normale fiir einen n-Bit-Umsetzer benétigt. Abhilfe schafft hier das
erweiterte Parallelverfahren, dessen Funktion zwischen Parallel- und Wigeverfahren
liegt.

Im folgenden Abschnitt wird zunichst das allgemeine Prinzip des erweiterten Par-
allelverfahrens dargelegt und anschlieend eine moderne Realisierung dieses Prinzips
anhand des Pipeline-A/D-Umsetzers erliutert.

12.2.4.1 Allgemeines Prinzip des erweiterten Parallelverfahrens
Man erhoht, ausgehend von einem Parallelverfahren, die Anzahl der Messschritte von
Z =1 auf Z > 1, beispielsweise auf Z = 2, bildet im ersten Schritt (m’+ 1) Grobstufen
und unterteilt die Grobstufe, in der der unbekannte Wert x liegt, in (m” + 1) Feinstufen.
Die Gesamtauflosung betrigt dann m+ 1= (m'+1)-(m” + 1), und die Zahl der
Normale verringert sich auf N = m' + m".

Das soll am Beispiel verdeutlicht werden. Fiir einen 8-Bit-ADU gilt
m=2%— 1 =255. Dann muss z. B. fiir Z =2 Messschritte gelten: m + 1 = (m’ + 1) -
(m"” + 1) = 256. Hierfiir gibt es die in Tab. 12.2 dargestellten Moglichkeiten.

Aufwand  Wandlungsdauer

------ Parallelverfahren
...... Wageverfahren
...... Zahlverfahren

Abb. 12.11 Vergleich der drei klassischen AD-Umsetzverfahren hinsichtlich Hardwareaufwand
und Geschwindigkeit



12.2  Verfahren zur Analog-Digital-Umsetzung 367

Tab.12.2 Mdglichkeiten Grobstufen | Feinstufen |N=m’4+m” | Bemerkungen
fiir die Realisierung eines .
ADUs nach dem erweiterten ! 236 295 Direktverfahren
Parallelverfahren, mit n = 8 bit 2 128 128
und Z = 2 Schritten 4 64 66
8 32 38
16 16 30 Minimale
Normalenzahl
32 8 38 ADb hier Wiederholung

Allgemein gilt, dass die minimale Normalenzahl, also der kleinste Hardwareaufwand,
im Fall (m’ 4+ 1) = (m” + 1) erreicht wird.

Geht man allgemein auf Z > 2 Messschritte iiber, muss gelten (m’ + 1) - (m” + 1) -
(m” +1)--- - (m? + 1) =m + 1 = 2" und die Normalenzahl betrigt:

Die Zahl der nétigen Normale wird wiederum minimal, wenn fiir alle m? = m’ = konstant
gilt. Dann betrégt die Anzahl an Quantisierungsstufen pro Messschritt:

(m’+1)=(m”+1)=(m(z)+1)=«z/m——|-1=\z/2—”

und die erforderliche Normalenzahl betrigt N = Z - m'.
Als einfaches Beispiel soll ein 8-Bit-ADU in Z = 4 Schritten mit minimaler Norma-
lenzahl aufgeteilt werden. Die minimale Normalenzahl ergibt sich fiir

(m +1) = (m"+1) = (m" +1) = (m" +1) = V28 = V256 = 4

Dies bedeutet pro Umsetzerstufe werden 2 Bit generiert. Die Zahl der Normale betrigt
N=Z-m'=4-3=12.

Falls die Einzelquantisierungsstufenzahl keine Potenz von 2 ergibt, ist eine andere
Aufteilung notig. Soll beispielsweise der 8-Bit-ADU in Z = 3 Schritte aufgeteilt wer-
den, ergibt sich fiir die Anzahl an Quantisierungsstufen der Wert v/256 = 6,35 also keine
Zweierpotenz. Die drei Stufen miissen dann so gewihlt werden, dass sie einer Zweierpo-
tenz entsprechen und sich insgesamt die bendtigten 256 Quantisierungsstufen ergeben.
Dies erfolgt, durch zwei Stufen mit 8 und einer Stufe mit 4 Einzelquantisierungsstufen,
die insgesamt 8 - 8 - 4 = 256 Stufen ergeben. In Bit gerechnet ergeben die Einzelstufen
zweimal 3 und einmal 2 Bit, insgesamt also 8 Bit. Die minimale Normalenzahl ist 17.
Die Umsetzerstruktur ist in Abb. 12.12 gezeigt.
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.U
Analog o | g6 1 | Stufe 2 —{Stufe 3
eingang

Digitalausgang b, bs bs by bs by b1 bo

Abb. 12.12 Struktur eines dreischrittigen 8-Bit-ADU nach dem erweiterten Parallelverfahren mit
minimaler Normalenzahl

Umsetzer nach dem erweiterten Direktverfahren mit der Schrittzahl Z =2 sind als
Half-Flash-Umsetzer auf dem Markt vertreten. Das vereinfachte Blockschaltbild des
Half-Flash-Umsetzers AD 7821 (Analog Devices) mit 8 Bit ist in Abb. 12.13 dargestellt.
Ein 4-Bit-Direktumsetzer erzeugt im ersten Schritt die vier hochstwertigen Bits (MSB).
Deren Analogiquivalent wird anschlieend von der analogen Eingangsspannung subtra-
hiert. Aus der verbleibenden Differenz werden dann mit einem zweiten 4-Bit-Direktum-
setzer die vier niederwertigsten Bits ermittelt (LSB).

12.2.4.2 Pipeline-Analog-Digital-Umsetzer

Bei einem Pipeline-ADU erfolgt die Umsetzung ebenfalls in mehreren Schritten. Anders
als beim allgemeinen Verfahren werden die Werte in jeder Stufe mit einem AHG gehal-
ten und nach der Differenzbildung verstirkt. Durch das Halten der Zwischenwerte ist
eine Verarbeitung im Pipeline-Verfahren moglich, denn wihrend die zweite Stufe die
nachfolgenden Bits ermittelt, kann die erste Stufe bereits den niichsten Abtastwert bear-
beiten. Die Verstirkung ermdoglicht der nachfolgenden Stufe mit hoheren Signalpegeln
zu arbeiten.

Abb. 12.14 zeigt das Prinzip eines Pipeline-Analog-Digital-Umsetzers mit vier Stu-
fen eines 3-Bit-Umsetzers, angelehnt an den Baustein AD9200 von Analog Devices.
Vom analogen Eingangssignal werden in der ersten Stufe die drei hochstwertigen Bits
in einem Flash-AD-Umsetzer (ADU) ermittelt und das digitale Teilergebnis mit einem
DA-Umsetzer (DAU) wieder in einen analogen Wert umgesetzt. Der Eingangswert wird
im ersten Abtast-Halte-Glied (AHG) gespeichert und von ihm wird jetzt der Ausgang des
DAUSs abgezogen. Da im ersten Schritt drei Bit des Ergebnisses ermittelt wurden, kann
die Differenz um den Faktor 23 = 8 verstiirkt werden. Dadurch hat die Differenz wieder

Abb. 12.13 Vereinfachtes Ux 4-Bit- 2 s
. . MSB
El(iEszlch;llltBlld eines 8-Bit- Analog- Flash < Digital-
alf-Flash-Umsetzers eingang . ausgang
— | A | € 8 r<—n-
88
D g = 0
<
4-Bit- ;
Flash  LSB
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Analog- Verstarker Verstarker Verstarker
eingang + + + 3-Bit-
AHG |—» AHG |—» AHG [—» ADU
Uy — — —
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Abb. 12.14 Blockschaltbild eines Pipeline-Analog-Digital-Umsetzers

den gleichen Pegel wie das Eingangssignal und die zweite Stufe kann genauso wie die
erste Stufe dimensioniert werden. Dies ist fiir den Schaltungsentwurf und die Genauig-
keit der AD- und DA-Umsetzung vorteilhaft. Nach der zweiten Stufe werden in der drit-
ten und vierten Stufe die weiteren Bits ermittelt.

Fiir den praktischen Entwurf ist es vorteilhaft, wenn sich die Bereiche der einzelnen
Stufen etwas iiberlappen. Pro Stufe wird darum nicht der volle 3-Bit-Messbereich von 0
bis 7 genutzt, sondern nur etwa der Wertebereich von 0 bis 5. Diese 6 Werte entsprechen
rund 2,5 bit Auflosung und somit erfolgt dann die Verstarkung zwischen den Stufen auch
mit dem Faktor 6. Eine Korrekturlogik setzt aus den vier Teilergebnissen den Messwert
mit der Genauigkeit von 10 bit zusammen. In dieser Korrekturlogik kann sichergestellt
werden, dass sich der gesamte ADU iiber den Messbereich moglichst linear verhlt. Ins-
besondere wird vermieden, dass Missing Codes auftreten, das heillit beim Ubergang ZWi-
schen Messbereichen wird kein Codewort iibergangen.

12.2.5 Erweitertes Zdahlverfahren

Das erweiterte Zidhlverfahren liegt in seiner Funktion zwischen dem Zihl- und dem
Wigeverfahren. Das Zihlverfahren hat zwar den Vorteil minimalen Aufwands an Prizi-
sionsbauelementen, dafiir ist aber die Schrittzahl und damit die Umsetzdauer die hochste
der drei klassischen Umsetzverfahren. Beispielsweise sind fiir einen 8-Bit-Umsetzer 255
Schritte erforderlich.

Eine Reduzierung der Umsetzdauer ldsst sich prinzipiell durch eine Aufteilung in eine
Grobmessung und eine Feinmessung erreichen. In der Grobmessung konnte ein Normal
der GroBe 2 - Q verwendet werden, was bei 8 Bit 127 Schritte erfordert. In der Feinmes-
sung wird dann in einem einzelnen Schritt ein Normal der Groflie Q verwendet. Somit
wird die Anzahl der erforderlichen Schritte etwa halbiert. Auch eine weitere Aufteilung
mit Zwischenmessungen ist denkbar.

Eine praktische Bedeutung bei der Realisierung von ADUs hat das erweiterte Zihl-
verfahren bislang nicht.
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12.2.6 Single- und Dual-Slope-Verfahren

Bisher wurden ausschlieBlich Umsetzverfahren betrachtet, bei denen die elektrische
Spannung direkt gemessen wurde. Bei indirekten Verfahren wird dagegen die Messgrofie
zundchst in eine Hilfsgrofe tiberfiihrt, welche genauer, schneller oder mit kleinerem Auf-
wand messbar ist. Die wichtigsten Hilfsgrofen sind eine messgroflenproportionale Fre-
quenz sowie eine messgroenproportionale Zeit.

Die Messung mithilfe einer variablen Zeit erfolgt durch Zdhlung mit einem Taktsig-
nal. Das Grundprinzip dieses Verfahren wird als Single-Slope-Verfahren bezeichnet. Die
Funktion wird an einem Blockschaltbild beschrieben (Abb. 12.15). Ein Sidgezahngene-
rator erzeugt eine linear ansteigende Spannung U,, die zum Beginn einem Messzyklus
gestartet wird. Wenn diese die Spannung Null erreicht, wechselt der logische Pegel am
unteren Komparator auf High und der Zéhler startet. Erreicht U, die unbekannte Mess-
spannung U, wechselt der logische Pegel am oberen Komparator auf Low und der Zih-
ler stoppt. Der so ermittelte Zdhlerstand ergibt den digitalen Messwert. Es handelt sich
also um ein Zihlverfahren, wobei die Spannungsénderung dU, / dt wihrend einer Takt-
periode einem Quantisierungsintervall entspricht.

Dieses einfache Verfahren wird in der Praxis jedoch nicht eingesetzt, denn der Sige-
zahngenerator hat durch alterungs- oder temperaturbedingte Anderungen seiner Bauele-
mente nur eine begrenzte Genauigkeit.

Praktisch eingesetzt wird das Doppelflanken- oder Dual-Slope-Verfahren. Hierbei
wird, anders als beim Single-Slope-Verfahren, die MessgroBe U, und nicht eine Refe-
renzspannung iiber eine feste Zeit 7, integriert. Abb. 12.16 und 12.17 zeigen Prinzip-
schaltbild und Zeitverlauf bei einer Messung. Wihrend der festen Messdauer ¢, wird
in einem Integrator die unbekannte Spannung U bis zur Endspannung U, aufintegriert.
Anschlielend schaltet der Zahler fiir £, um und die Spannung U, wird iiber eine nega-
tive Referenzspannung -U,; wieder bis auf die Spannung O integriert. Die Zeit ¢,, die
hierfiir erforderlich ist, wird gemessen und ergibt den digitalen Messwert fiir die Span-
nung U..

Der Vorteil dieser Messung liegt darin, dass die Bauteile R und C fiir beide Integ-
rationszyklen verwendet werden. Dadurch ist die Messung unabhingig von Parame-
terschwankungen bei diesen Bauteilen. Es ist lediglich eine stabile Referenzspannung
erforderlich, die durch Band-Gap-Dioden mit hoher Genauigkeit zur Verfiigung steht.

Abb. 12.15 Blockschaltbild U Komparatoren .

R K Analog- X Dlgltal-
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Abb. 12.16 Prinzipschaltbild eines AD-Umsetzers nach dem Dual-Slope-Verfahren
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Abb. 12.17 Spannungsverldufe im Dual-Slope-Umsetzer wihrend des Messzyklus

Die Messdauer 7, kann zu einem Vielfachen der Periodendauer der 50 Hz Netzspan-
nung, also zu n - 20 ms gewihlt werden. In diesem Fall haben Storungen durch die Netz-
spannung keinen Einfluss auf das Messergebnis.

Die Vorteile dieses Messverfahrens sind also:

e gute Storspannungsunterdriickung, da integrierendes Verfahren

e unabhiingig von alterungs- und temperaturbedingten Anderungen der Bauelemente
und des Taktoszillators

e Die Langzeitprizision wird nur durch U, bestimmt, die sehr préizise erzeugt werden kann

o erzielbare Genauigkeit: ca. 0,001 %, d. h. 15-16 bit bzw. 5 Dezimalstellen

Nachteil:

e Das Verfahren arbeitet relativ langsam

Die haufigste Anwendung findet dieser Umsetzertyp in Digitalvoltmetern.

12.2.7 Sigma-Delta-Umsetzer

Ein Sigma-Delta-Umsetzer (X A-Umsetzer) kombiniert die Riickfiihrung eines 1-Bit-
DA-Umsetzers mit einem Integrator und einer Uberabtastung. Das Blockschalt-
bild Abb. 12.18 zeigt den Aufbau. Der Eingangswert U, wird mit der Riickfithrung
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Abb. 12.18 Blockschaltbild eines Sigma-Delta-Umsetzers

kombiniert und in einem Integrator weiterverarbeitet. Dieser Integrator ist dhnlich wie
beim Dual-Slope-Verfahren aufgebaut. Ein Komparator ermittelt, ob das Integral posi-
tiv oder negativ ist und arbeitet daher als 1-Bit-ADU. Der ADU-Ausgang Plus ist eine
bindre Information und geht an ein D-Flip-Flop, wo der Wert mit hoher Taktfrequenz
abgetastet wird. Als Riickfithrung geht der abgetastete Vergleichswert P auf einen 1-Bit-
DA-Umsetzer, dessen Ausgang vom Eingangswert abgezogen wird.

Der Digitalausgang berechnet sich durch einen digitalen Filter aus der Folge von Ver-
gleichswerten P. Der Name Sigma-Delta bildet sich aus den Funktionselementen Integra-
tion (Sigma) und der Differenzbildung mit der Riickkopplung (Delta).

Zum Verstindnis des Funktionsprinzips wird der Zeitablauf bei einer Umsetzung in
Tab. 12.3 Schritt fiir Schritt erldutert. Als Messbereich wird ££1 V angenommen und auch
der Ausgang des DAU betréigt +1V oder — 1 V. Als Spannung am Analogeingang U
soll 0,6 V gemessen werden. Fiir den Zeitschritt 1 wird zum besseren Verstindnis die
Riickfiihrung weggelassen, daher ist Udig =0V (in der Tabelle mit 0* markiert). Eben-
falls wird angenommen, dass der Integrator mit der Spannung U, = 0V startet.

In den Zeitschritten erfolgen dann die folgenden Berechnungen:

1. U, plus Uy o ergeben 0,6 V, die im Integrator verarbeitet werden. Dieser Wert ist posi-
tiv, daher ist Plus gleich 1.

2. Die Riickfithrung nimmt den vorherigen Wert von Plus und ergibt darum Udig =1V
Dieser Wert wird von U abgezogen, sodass U ;= — 0,4 V ist. Addiert zum vorherigen
Wert des Integrators bleibt U, = 0,2 V. Dieser Wert ist positiv, daher ist Plus gleich 1.

3. Die Riickfiihrung ergibt erneut U, dig = 1'V, sodass wiederum U= — 0,4V ist. Der
Wert des Integrators wird U, = — 0,2 V. Dieser Wert ist negativ, daher ist Plus gleich 0.

4. Wegen des negativen Werts im Integrator ergibt die Riickfiihrung nun U dig =" 1V.
Daher ist U it = 1,6 V und der Wert des Integrators wird U, = 1,4 V. Dieser Wert ist
positiv, daher wird Plus wieder gleich 1.

5. Die Riickfiihrung ergibt wieder U, = 1V, darum wird U = — 0,4 V. Der Wert des
Integrators wird U, = 1 V. Dieser Wert ist positiv, daher ist Plus gleich 1.

6. Der weitere Zeitablauf kann aus der Tabelle abgelesen werden.

Beim Zeitablauf in Tab. 12.3 besteht die Pulsfolge am digitalen Filter aus vier Einsen
und einer Null. Die Pulsfolge wird Tiefpass-gefiltert und ergibt einen 1-Anteil von 80 %.
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Tab. 12.3 Zeitablauf einer AD-Umsetzung mit Sigma-Delta-Umsetzer

Zeit- 1 2 3/ 4 5 6 7 8 9 10 11 12 13| 14 15
schritt
U [in | 0,6 0,6/ 0606 06/ 06 06 0606 06/ 06 06| 0606 0,6
V]
Udig[in o*| +1] +1] -1 +1 +1) +1] +1] -1 +1 +1) +1] +1] -1 +1
V]
Uy; |06 |—04]-04|16 |—04|-04 —04 —04 1,6 |04 —04 —04 —04 1,6 —04
[in V]
U, [in| 06 | 02/-02 14 | 1,0/ 06 02/ -02 14 | 1,0/ 06| 02 -02 14 | 10
V]

Plus 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1
[binér]

Dieser Wert bezieht sich auf den Messbereich von 1V und entspricht U = —1V +
08-2V=—1V+16V=06V.

Die Tabelle zeigt die Umsetzung eines konstanten Eingangswertes. Wenn sich
U, @ndert, wird sich auch die Pulsfolge nach mehreren Schritten an den gednderten
Eingangswert anpassen.

Der Sigma-Delta-Umsetzer versucht also mit Pulsen von +1V und — 1V die
Eingangsspannung nachzubilden. Dies sind recht grobe Schritte; im Gegenzug dafiir
wird die Frequenz der Schritte sehr hoch gewihlt. Der Unterschied zwischen hochster
Frequenz des Eingangssignals und Abtastrate wird als Oversampling Ratio OSR
bezeichnet und hierfiir sind Faktoren von 100 und hoher méglich. Diese Arbeitsfrequenz
passt sehr gut zu modernen CMOS-Prozessen, die hohe Taktfrequenzen erméglichen.

Das Messprinzip des Sigma-Delta-Umsetzers unterscheidet sich damit mafgebend
von dem der bisher dargestellten Umsetzer. Letztere liefern bei einer Abtastrate, die
moglichst nahe der unteren durch das Abtasttheorem erlaubten Grenze liegt, jeweils ein
vollstindiges Codewort. Der Sigma-Delta-Umsetzer liefert dagegen eine 1-Bit-Folge
mit sehr viel hoherer Frequenz. Dieses Verfahren nennt man daher auch Oversampling-
Technik. Der Sigma-Delta-Umsetzer hat gegeniiber anderen Umsetzern eine Reihe von
Vorteilen:

1. Er kann nahezu voéllig aus digitalen Komponenten aufgebaut werden. Die Anforde-
rungen an die 1-Bit-Umsetzung sind nicht sehr hoch.

2. Er wirkt fiir das Eingangssignal wie ein Tiefpass, fiir das Quantisierungsfehlersignal
jedoch wie ein Hochpass. Das Spektrum des Quantisierungsfehlersignals wird daher
schwerpunkthaft in die Nihe der sehr hohen Abtastfrequenz verschoben. Der digital
arbeitende Tiefpass eliminiert erhebliche Teile davon und kann so dimensioniert
werden, dass er 50 Hz-Storungen unterdriickt.

3. Dem Umsetzerprinzip ist eine monotone Quantisierungskennlinie inhérent.
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4. Wegen der sehr hohen Abtastfrequenz kommt der Sigma-Delta-Umsetzer generell
ohne Abtast-Halteglied aus.
5. Derzeit liefert dieses Verfahren die hochsten verfiigbaren Auflosungen.

Den Vorteilen stehen auch einige Nachteile gegentiber:

1. Wegen des mittelwertbildenden digitalen Filters gibt es eine groBe Latenzzeit
zwischen dem ersten Abtastwert und dem ersten Codewort. Daher eignet sich dieser
Umsetzer nicht zum Multiplexbetrieb fiir mehrere Signalquellen.

2. Gegeniiber Flash-Umsetzern arbeitet das Sigma-Delta-Verfahren langsam.

Sigma-Delta-Umsetzer nach dem Oversampling-Prinzip haben sich inzwischen mit
Auflésungen von 16 bit in der hochwertigen Tonsignalverarbeitung etabliert. Weiterhin
wird dieses Verfahren in der Telemetrie und zur prizisen Uberwachung langsam
veridnderlicher Signale, beispielsweise bei Dehnungsmessstreifen eingesetzt.

12.3 Verfahren zur Digital-Analog-Umsetzung

Digital-Analog-Umsetzer (DAU) dienen der Riickgewinnung des Analogsignals aus
codierten digitalen Werten. Dabei verursacht die Zeitdiskretisierung prinzipiell keine
Fehler, wenn das Abtasttheorem eingehalten wird. Die Wertdiskretisierung fiihrt zu
Quantisierungsfehlern, die systematischer Natur sind und nicht mehr eliminiert werden
konnen. Durch Wahl einer hohen Auflosung kénnen die Quantisierungsfehler jedoch sehr
klein gehalten werden.

Bei der Umsetzung liefert der DAU Impulse endlicher Breite 7 und mit der Hohe, die
durch die Digitalwerte vorgegeben ist (Abb. 12.19). Dieses Signal ist also noch zeitdis-
kret. Durch anschlieende Filterung in einem Tiefpass (Interpolator-Tiefpass) wird die-
ses Signal wieder zu einer stetigen Analogfunktion interpoliert.

Theoretisch sollte die Impulsbreite 1 moglichst klein sein, um keine zusitzlichen Fre-
quenzen fiir das Ausgangssignal zu erzeugen. In der Realitit wird jedoch aus zwei Griin-
den eine groBere Impulsbreite gewihlt, die meist der Periodendauer der Abtastung 7,
entspricht.

e Durch die groflere Breite des Signals ist eine hohere Signalleistung vorhanden.
e Esist keine Abschaltung des Signals zwischen den Ausgabewerten erforderlich.

Das resultierende Rechtecksignal ergibt eine merkliche Verzerrung des Ausgangssignals,
denn das Spektrum des digitalen Signals wird mit dem Spektrum einer Rechteckfunktion
der Breite 7, multipliziert. Diese Verzerrung kann jedoch durch ein nachfolgendes
analoges Filter wieder eliminiert werden. Die Struktur eines DAUs entspricht damit

Abb. 12.20.
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12.3.1 Direktverfahren

Im Direktverfahren werden die moglichen Ausgangsspannungen des n-Bit-Umsetzers in
einem Spannungsteiler aus 2" gleichen Widerstinden gebildet. Durch einen Multiplexer
wird eine Spannung ausgewihlt und an den Ausgang gegeben (Abb. 12.21). Die Schalter des
Multiplexers sind natiirlich keine mechanischen Schalter, sondern werden durch Transisto-
ren implementiert. Die Widerstandsreihe fiihrt auch zu der englischen Bezeichnung ,,String
Architecture®. Das Verfahren dhnelt dem Parallelverfahren zur AD-Umsetzung aus Abb. 12.9.

Der Vorteil dieses Verfahrens ist eine relativ gleichmiflige Schrittweite der
Umsetzungskennlinie, denn die Toleranzen der Widerstinde entsprechen der Schrittweite
zweier Ausgabewerte. Dadurch konnen insbesondere keine Monotoniefehler (siehe
Abschn. 12.4.1.6) auftreten.

Der Nachteil des Verfahrens ist der hohe Aufwand an Widerstinden und Schaltern,
insbesondere bei hoheren Wortbreiten. Es gibt jedoch erweiterte Strukturen, bei denen
nicht alle 2" Ausgangsspannungen direkt erzeugt werden, sondern eine Interpolation
zwischen Abgriffen der Widerstandsreihe erfolgt.

12.3.2 Summation gewichteter Strome

Das Verfahren der Summation gewichteter Strome basiert auf dem Prinzip, dass fiir
jedes auf 1 gesetzte Bit des Dualwortes ein dem Bitgewicht entsprechender Strom
erzeugt wird. Dann werden alle Strome riickwirkungsfrei summiert, beispielsweise
durch einen Operationsverstirker (OP). Fiir einen DAU mit n bit ergibt sich daraus die
in Abb. 12.22 gezeigte Schaltung. Das digitale Codewort steuert die Schalter b, bis
b, _ ,. Die Ausgangsspannung des OPs betrégt dann:

Abb. 12.19 Das u(t)
Ausgangssignal eines DAU

besteht prinzipiell aus

Impulsen endlicher Breite

Abb. 12.20 Prinzipschaltbild
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Upa = —Rp(bg -ig+ by -i1+by-ip+...+by_1-in_1)

Fiir die Strome gilt

i = Uref _ Uref'zk
T Rl R

Damit berechnet sich die Ausgangsspannung U, des Umsetzers zu

U Rr n—1 L
DA = _Uref? Zbk -2

k=0
Es ist ersichtlich, dass die Ausgangsspannung U, eine Form hat, die dem vorgegebenen
dualen Wert bis auf eine multiplikative Konstante entspricht. Die elektronischen Schalter
konnen in Bipolar- oder CMOS-Technik realisiert werden.

Ein wesentlicher Nachteil der Schaltungsstruktur ist, dass sich die Widerstandswerte
fiir einen n-Bit-Umsetzer um den Faktor 2"~ ! unterscheiden. Dieses ist in monolithi-
scher Technik schwer zu realisieren, da der herstellbare Wertebereich technologisch
begrenzt ist. Aulerdem sind die Anforderungen an die Prizision der kleineren Wider-
stande sehr hoch. Der kleinste Widerstand R hat den hochsten Strombeitrag und sein
Stromfehler sollte kleiner als 1/2 Stelle des Ergebnisses sein. Das bedeutet, der Fehler
darf nur so groB wie die Hilfte des Strombeitrags des groBten Widerstands R/2" ~ ! sein.
Darum muss die Genauigkeit besser als 2 ~” sein. Bei einem 12-Bit-Umsetzer bendtigt
der kleinste Widerstand also die Genauigkeit von 2 =12 =2,44 . 10 ~* und dieser Wert
ist praktisch nicht zu erreichen.

R Analogschalter
—»——— — = AL
Digital- Rm-1 "
Verstéarker
eingang x [P————= N
n-1 & | Analog-
: o Rin-2 ausgang
e}
e
—
0 a

Abb. 12.21 DA-Umsetzung im Direktverfahren
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Abb. 12.22 Prinzipschaltbild Rr
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Aus diesen Griinden werden integrierte DAUs nicht nach dem oben dargestellten
Prinzip realisiert, sondern durch fortgesetzte Spannungsteilung in einem
Kettenleiternetzwerk. Dieses Verfahren wird im néchsten Kapitel beschrieben.

Eingesetzt wird die Umsetzung mit Summation gewichteter Strome bei Anwendungen
mit geringer Wortbreite. Ein Beispiel ist die Codierung von Tasten fiir Mikrocontroller.
Wenn ein Mikrocontroller durch mehrere Taster bedient werden soll, wire prinzipiell fiir
jeden Taster eine Eingangsleitung erforderlich. Stattdessen konnen vier bis sechs Taster
tiber ein Widerstandsnetzwerk wie in Abb. 12.22 an einen einzigen Analogeingang des
Mikrocontrollers gegeben werden, so dass Eingangsleitungen gespart werden. Der Ope-
rationsverstirker ist dabei nicht erforderlich.

12.3.3 R-2R-Leiternetzwerk

Die Arbeitsweise dieses DA-Umsetzertyps basiert prinzipiell auf dem gleichen Ver-
fahren wie der zuvor dargestellte, denn es werden Strome addiert, die dem Wert der
einzelnen Dualstellen des vorgegebenen Digitalwortes entsprechen. Allerdings wer-
den hier die Strome mit stufenweise gleichgroen Widerstinden anhand fortgesetz-
ter Spannungsteilung in einem Leiternetzwerk erzeugt. Grundelement ist dabei ein
nt-Glied, das als belasteter Spannungsteiler mit folgenden Eigenschaften betrieben
wird:

e Belastet man den Spannungsteiler mit einem Abschlusswiderstand Z, so soll sein
Eingangswiderstand ebenfalls Z sein. Das ermdglicht eine einfache Kettenschaltung
der einzelnen Spannungsteiler.

e Der Teilerfaktor in jeder abgeschlossenen Teilerstufe soll entsprechend der dualen
Abstufung 2 sein.

Diese Forderungen lassen sich mit symmetrischen Vierpolen erreichen, die mit ihrem
Wellenwiderstand abgeschlossen sind. Eine Rechnung liefert das in Abb. 12.23
dargestellte  verldngerbare Kettenleiternetzwerk. Wegen der charakteristischen
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Widerstandswerte wird diese Schaltung auch als R-2R-Leiternetzwerk bezeichnet. Der
Wert fiir den Widerstand R kann frei gewéhlt werden.

Fiir die Verwendung als ADU wird an die Klemmen A und B eine Referenzspannung
U,.; angeschlossen. Der Spannungsteilerkette werden iiber Stromschalter die Einzel-
strome gemil dem vorliegenden Bindrwort entnommen und am Summationspunkt eines
OP riickwirkungsfrei addiert (Abb. 12.24).

Fiir die eingetragenen Spannungen gilt:

U3 = Uref
Uy =Uz/2
Uy =U/2
Up = U1/2
Damit ergeben sich die Strome zu:
_ E _ Uref
ST 2R 2R
I _E_Uref/z_lj
2T2RT 2R T 2
I _ﬂ_ Uref/4_1_3
"“2RT 2R T 4
Up Uwt/8 I
Iy = = =

T2R 2R 8
Die Stromschalter werden in Bipolar- oder CMOS-Technik realisiert. Es tritt lediglich
das gut realisierbare Widerstandsverhiltnis 2:1 auf. Ein typischer Wert fiir R ist 500 2.
Nach diesem Prinzip arbeiten die meisten kduflichen DAUSs in monolithischer und hybri-

der Technik. AuBerdem ist in ADUs mit sukzessiver Approximation im Gegenkopplungs-
pfad ein DAU dieses Typs enthalten.

R R R R
A Abschluss
2R 2R 2R 2R R
B o

Abb. 12.23 R-2R-Leiternetzwerk fiir einen Digital-Analog-Umsetzer
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Abb. 12.24 Prinzipschaltbild eines 4-Bit-DAUs mit R-2R-Leiternetzwerk

12.3.4 Pulsweitenmodulation

Die Pulsweitenmodulation (PWM) erzeugt eine analoge Ausgangsgrofie durch schnellen
Wechsel zwischen zwei Spannungswerten. Das Verhiltnis zwischen den Zeiten fiir die
Ausgangspegel bestimmt die analoge Ausgangsgrofle. Abb. 12.25 zeigt den Zeitablauf
fiir zwei Ausgabewerte. Das Ausgangssignal wechselt periodisch zwischen High-Pegel
U,, und Low-Pegel U,. Die Dauer des High-Pegels 7, dividiert durch die Periodendauer
T, wird als Tastverhiltnis bezeichnet.

Aus der Pulsfolge kann durch einen Tiefpass eine Mittelwertbildung erfolgen, um
eine analoge Ausgangsspannung zu erzeugen; im einfachsten Fall reicht ein Kondensa-
tor. Die analoge Ausgangsspannung berechnet sich zu

1
Upa = UL + "

Tror (Un —Ur)
Als Beispiel wird fiir den Zeitverlauf in Abb. 12.25 ein High-Pegel von 3,3V und ein
Low-Pegel von 0V angenommen. Dann ergibt sich fiir das Tastverhiltnis von 70 % die
Ausgangsspannung 2,31 V und fiir 20 % die Spannung 0,66 V.

Es gibt jedoch auch Anwendungen, bei denen keine analoge Ausgangsspannung beno-
tigt wird, sondern stattdessen der angesteuerte Aktor oder der nachfolgende Sensor einen
Mittelwert bildet.

e Ein Gleichstrommotor kann durch eine PWM angesteuert werden und ergibt verschie-
dene Drehgeschwindigkeiten. Die Masse der Achse und die Motorlast sorgen fiir die
Mittelwertbildung.

e Wird eine Leuchtdiode mit einer PWM angesteuert, erscheint sie verschieden hell.
Die LED ist abwechselnd leuchtend und nicht-leuchtend und das menschliche Auge
sorgt fiir die Mittelwertbildung.
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Abb. 12.25 Zcitablauf fiir AU Tastverhaltnis 70%
eine Pulsweitenmodulation Un ~
(PWM) fiir die Ausgabewerte
20 und 70 % U >t
0 thzo Tper
u(t) Tastverhéltnis 20%
UHﬁ —‘ _‘ —
U T > t
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12.4 Eigenschaften realer AD- und DA-Umsetzer

Reale Umsetzerbausteine sind mit Fehlern behaftet. Sie sind bauelemente-, schaltungs-
oder prinzipbedingt und konnen sowohl im ADU als auch im DAU auftreten. Sie lassen
sich in statische und dynamische Fehler unterteilen.

Die zunichst betrachteten statischen Fehler treten in ADUs und bis auf den Quan-
tisierungsfehler auch in DAUs auf. Die in den folgenden Kapiteln hierzu dargestellten
Diagramme beziehen sich auf ADUs. Durch Spiegelung an der Einheitsgeraden erhélt
man daraus die entsprechenden Darstellungen fiir DAUs. Bei dynamischen Fehlern muss
zwischen ADUs und DAUSs unterschieden werden.

12.4.1 Statische Fehler

Als statische Fehler werden solche Fehler bezeichnet, die nach dem Abklingen aller Ein-
schwingvorginge iibrig bleiben.

12.4.1.1 Quantisierungsfehler
Die Beschriankung auf eine endliche Anzahl darstellbarer Amplitudenstufen bei der AD-
Umsetzung verursacht systematische Fehler, deren Amplitude im Allgemeinen 40,5 - Q
erreichen kann. Nach der DA-Umsetzung ergibt sich dadurch ein Fehlersignal, der
Quantisierungsfehler, der rauschsignalidhnlichen Charakter hat und den Signal-Rausch-
Abstand begrenzt. Der Quantisierungsfehler ist auch interpretierbar als Auswirkung der
nichtlinearen Stufenkennlinie eines Quantisierers auf das Signal. Da in praktischen Fil-
len die Stufen der Quantisiererkennlinie sehr klein sind, kann man auch von einer mikro-
skopischen Nichtlinearitit sprechen.

Setzt man eine lineare Quantisierung, ein in jedem Quantisierungsintervall gleich ver-
teiltes Signal und einen mitten im Quantisierungsintervall Q liegenden Représentations-
wert voraus, betrdgt die Quantisierungsgerduschleistung (Noise) N:

N =0%/12
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Als Zahlenbeispiel wird ein vollaussteuerndes Sinussignal bei einem Umsetzer mit
m - Q ~ 2" Quantisierungsintervallen angenommen, wobei n die Codewortbreite ist. Hier
betrigt die Signalleistung S:

S—<m'Q>2_22"-Q2
“\2.v2) 8

Dann betriigt der maximal erreichbare Signal-Rausch-Abstand (Signal to Noise Ratio)
fiir das mit » bit digitalisierte Sinussignal

S
SNR = 10-log - = (1,76 +6,02 - n)dB

Unter den oben getroffenen Voraussetzungen ist daher mit einem 12-Bit-Umsetzer ein
max. Rauschabstand von SNR = 74 dB erreichbar. Dieser Wert entspricht einer guten
Signalqualitit, somit kann der Quantisierungsfehler bei der Digitalisierung mit einem
ertriglichen technischen Aufwand relativ klein gehalten werden.

Fiir die nédchsten Betrachtungen wird die Stufenkennlinie mittels einer Geraden
durch die Quantisierungsintervallmitten ersetzt (Umsetzerkennlinie). Der ideale lineare
AD-Umsetzer hat dann eine Umsetzerkennlinie, wie sie in Abb. 12.26 dargestellt ist.
Verwendet man fiir Ein- und Ausgangsgrofen gleiche MaBstibe, verlduft die ideale
Kennlinie unter 45°. Weicht ein Umsetzer von dieser Kennlinie ab, ist er fehlerhaft.

12.4.1.2 Offsetfehler
Anschaulich gesehen liegt ein Offsetfehler (Zero Error) vor, wenn die Umsetzer-
kennlinie gegeniiber der idealen Kennlinie parallelverschoben ist (Abb. 12.27, links).
Ursache hierfiir ist beispielsweise ein Offsetfehler des Eingangsverstirkers. Konkret
entspricht dieser Fehler der Lageabweichung des ersten Ubergangswerts oberhalb
von Null von der Ideallage bei 0,5 - Q (siehe auch Abb. 12.8). Der Offsetfehler verur-
sacht einen konstanten absoluten Fehler im gesamten Aussteuerbereich und ist auf null
abgleichbar.

Die Angabe des Offsetfehlers im Datenblatt erfolgt tiblicherweise in Bruchteilen des
Aussteuerbereichs. Der Offsetfehler hat dariiber hinaus einen Temperatur-Koeffizienten,
der nur mit groem Aufwand kompensiert werden kann.

12.4.1.3 Verstarkungsfehler
Anschaulich gesehen liegt ein Verstdirkungsfehler (Gain Error) vor, wenn die Kennlini-
ensteigung von der idealen Steigung 1 abweicht (Abb. 12.27, rechts). Er verursacht einen
konstanten relativen Fehler im Aussteuerbereich und ist auf null abgleichbar.

Die exakte Definition des Verstirkungsfehlers ist die Abweichung der real vorliegen-
den Spannungsdifferenz zwischen dem ersten Ubergangswert bei 0,5 - Q und dem letzten
bei U — 1,5 Q vom idealen Wert (siche Abb. 12.8).
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Die Angabe des Verstirkungsfehlers im Datenblatt erfolgt entweder absolut in LSB
oder relativ in % des Aussteuerbereichs. Der Verstiarkungsfehler hat einen Temperatur-
Koeffizienten, der nur mit grofem Aufwand kompensiert werden kann.

12.4.1.4 Nichtlinearitdt
Die Nichtlinearitdit (Nonlinearity) eines Umsetzers, auch Integrale Nichtlinearitit (INL)
genannt, entspricht der maximalen Kennlinienabweichung von der Geraden durch die
Endpunkte des Diagramms.

Nach Abgleich der Offset- und Verstiarkungsfehler entspricht sie der maximalen
Abweichung von der idealen Kennlinie (Abb. 12.28). Gelegentlich wird allerdings in
Datenblittern die Nichtlinearitit auch als maximale Abweichung von der bestmoglichen
Geraden interpretiert. Dann ist ein Offsetfehler einzustellen, damit die Nichtlinearitit
den Herstellerangaben entspricht.

Der Grund fiir Nichtlinearititen sind ungleich groffe Quantisierungsintervalle. Die
Nichtlinearitdt kann durch mehrere benachbarte Quantisierungsintervalle verursacht wer-
den, welche Abweichungen in gleicher Richtung haben. Die Angabe der Nichtlinearitit
erfolgt tiblicherweise in Bruchteilen des LSB.
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Abb. 12.27 Kennlinien mit Offsetfehler und Verstirkungsfehler
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12.4.1.5 Differenzielle Nichtlinearitat

Als differenzielle Nichtlinearitit (Differential Nonlinearity) bezeichnet man die
Abweichung der Breite eines Quantisierungsintervalls vom Idealwert Q. Dabei
bezieht man sich auf dasjenige Quantisierungsintervall mit der grofiten Abweichung
(Abb. 12.29).

Die Angabe im Datenblatt erfolgt iiblicherweise in Bruchteilen eines LSB. Ist die dif-
ferenzielle Nichtlinearitdt im Datenblatt beispielsweise mit £0,5 LSB angegeben, miis-
sen alle Quantisierungsintervalle im Bereich 1 LSB =+ 0,5 LSB liegen. Eine Sonderform
der differenziellen Nichtlinearitit liegt vor, wenn einzelne Codeworte fehlen (Missing
Code). In diesem Falle betrigt sie 1 LSB.

12.4.1.6 Monotoniefehler

Ein Umsetzer hilt die Monotonitit (Monotonicity) ein, wenn die Umsetzerkennlinie fiir
steigende Eingangswerte stufenweise monoton ansteigt. Hinreichende Bedingung fiir
Monotonitit ist, dass die Nichtlinearitit kleiner als 2 LSB bleibt. Eine Kennlinie, die
diese Bedingung nicht einhilt, ist in Abb. 12.30 gezeigt.

12.4.1.7 Betriebsspannungsabhangigkeit der Umsetzerparameter

Die Ausgangsgrofien von Umsetzern sind auch von der Betriebsspannung abhingig.
In den Datenblittern wird diese Eigenschaft als Power Supply Sensitivity (bzw. Power
Supply Rejection) bezeichnet. Die Angabe erfolgt als ,prozentuale Anderung der
AusgangsgroBen dividiert durch ,,prozentuale Anderung der Betriebsspannung®. In
der Regel bezieht sie sich auf Tracking-Netzteile, bei denen die beiden Spannungen
unterschiedlicher Polaritdt sich nur symmetrisch dndern konnen. Eine Verwendung
getrennter Netzteile fiir positive und negative Betriebsspannung wirkt sich in dieser
Beziehung nachteilig aus.
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12.4.2 Dynamische Fehler

Dynamische Fehler an Umsetzern treten auf, wenn diese unter nichtstatischen Bedingun-
gen, insbesondere in der Néhe ihrer maximalen Geschwindigkeit, betrieben werden. Sie
lassen sich aus den statischen Fehlerkenndaten in der Regel nicht gewinnen.

Dabei muss stets das gesamte System betrachtet werden, das heift auch das Abtast-
halteglied bei ADUs sowie Analogverstiarker am Eingang von ADUs und am Ausgang
von DAUs tragen zur Systemcharakteristik bei. Sie konnen die dynamischen Umsetzerei-
genschaften wegen ihrer Einschwingcharakteristik deutlich einschrénken.

Die wichtigsten heute weiterhin iiblichen Kenndaten zur Beschreibung des dynami-
schen Verhaltens von ADUs sind der Signal-Rausch-Abstand, die Effektive Auflosung,
die Harmonischen Verzerrungen und das Histogramm. Sie werden in den folgenden
Kapiteln dargestellt. IThre Messung erfolgt auf digitaler Ebene mit schnellen Rechnern
und, bis auf das Histogramm, anhand der Fast-Fourier-Transformation (FFT). Daher
werden fiir die Charakterisierung keine Prizisions-DAUs benotigt. Eine fiir DAUs wich-
tige dynamische Kenngrofie ist die Glitch-Flache.
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Abb. 12.30 Umsetzerkennlinie mit Monotoniefehler
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12.4.2.1 Einschwingzeit

Die Einschwingzeit (Acquisition Time) eines DAUs ist die Zeit, die nétig ist, damit sich
die Spannung bzw. der Strom bei einem Sprung iiber den gesamten Aussteuerbereich in
einen Toleranzschlauch zuriickzieht, der die Breite eines LSB hat und symmetrisch zum
stationdren Endwert liegt (Abb. 12.31). Die Einschwingzeit setzt sich aus Verzogerungs-,
Anstiegs- und Uberschwingzeit zusammen. Erst nach Verstreichen der Einschwingzeit
entsprechen die Messwerte der geforderten Genauigkeit. Die Uberschwingzeit wird auch
als Settling Time bezeichnet.

12.4.2.2 Signal-Rausch-Abstand und Effektive Auflosung

Das Verhiltnis der Leistung S eines den ADU vollkommen aussteuernden Sinussignals
zur Quantisierungsgerduschleistung N entspricht dem Signal-Rausch-Abstand SNR (Sig-
nal to Noise Ratio):

S
SNR = 10log—dB
N

Fiir eine praxisgerechte Grofle miissen neben den Quantisierungsfehlern alle weiteren
Fehler D (Distortion) bei der Umsetzung beriicksichtigt werden. D ist die Leistung der
weiteren Verzerrungen, die durch nichtideales Verhalten der Bauelemente entstehen. Die
daraus resultierende KenngroB3e wird als SINAD (SIgnal to Noise And Distortion ratio)
bezeichnet und wird durch Messungen ermittelt:

SINAD = 10log dB

S
N+D
Der Signal-Rausch-Abstand eines idealen ADUs beriicksichtigt nur die Quantisierungs-
fehler und errechnet sich zu (siche Abschn. 12.4.1):

SNR = (1,76 + 6,02 - n)dB

Fiir einen idealen ADU mit einer Auflosung von n = 12 bit ergibt sich daraus ein Wert
von SNR = 74 dB.

Reale Umsetzer liefern kleinere Werte, die dariiber hinaus mit steigender
Signalfrequenz abnehmen. Die Darstellung des iiber die FFT gemessenen SINAD iiber

Endwert + %2 LSB
s(t) #zzzzoozzopfonczzooo “ZIIZZZSS” Stationarer Endwert

" ) S Endwert - ¥ LSB
Verzbge- Uberschwing-
rungszeit L | zeit
Anstiegs- /7
zeit >t

Einschwingzeit

Abb. 12.31 Definition der Einschwingzeit (Acquisition Time) eines DAU oder Abtast-Haltegliedes
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der Signalfrequenz wird daher zur Beurteilung der dynamischen Qualitit eines ADUs
herangezogen.

Benutzt man die gemessenen SINAD-Werte, setzt sie in die obige Beziehung ein und
stellt diese nach n um, gewinnt man als dquivalentes Qualitdtskriterium die effektive
Auflosung n’ (Effective Number Of Bits, ENOB) gemih:

. SINAD — 1,76dB
n ——m—mm
6,02dB

Ein realer ADU mit der Auflosung von n bit entspricht also in seinem dynamischen
Verhalten einem fiktiven idealen ADU mit der Auflosung von n’ bit, wobei n’ kleiner
als n ist. Der Wert von n’ ist abhingig von der Frequenz des gemessenen Signals und
nimmt fiir hohere Frequenzen ab. Ein typischer Verlauf der effektiven Auflosung ist in
Abb. 12.32 dargestellt.

12.4.2.3 Harmonische Verzerrungen

Zur Bestimmung der Harmonischen Verzerrungen THD (Total Harmonic Distortion)
werden beziiglich der Anzahl verwendeter Oberwellen unterschiedliche Definitionen
benutzt. Sie reichen von 2 bis zur Gesamtzahl aller messbaren Oberwellen. Die Firma
Analog Devices benutzt zum Beispiel 5 Oberwellen. Damit ergibt sich die Total Harmo-
nic Distortion zu:

W+@+@+%+@w

THD = 10 - log Ug

Dabei entspricht U, dem Effektivwert der Grundwelle und U, ist der Effektivwert der
i-ten Oberwelle.

12.4.2.4 Histogramm

Das Histogramm gestattet Aussagen dariiber, wie sich bei einem ADU unter dynamischer
Belastung Integrale und Differenzielle Nichtlinearititen verhalten. Dazu wird der ADU
mit einem vollaussteuernden Eingangssignal konstanter Verteilungsdichte gespeist und in
einem Digitalrechner die Haufigkeitsverteilung der einzelnen Codeworte durch Zihlung
ermittelt. Wird ein anderes Testsignal (z. B. Sinus) verwendet, kann die Abweichung von
einer konstanten Verteilungsdichte rechnerisch kompensiert werden.

Abb. 12.32 Prinzipieller nA Idealer ADU

Verlauf der effektiven = 0f—"""" """
Auflosung n’ in bit iiber der
Frequenz fiir einen realen
n-Bit-ADU
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Die grafische Darstellung der relativen Haufigkeiten H iiber den Codeworten ist das
Histogramm (diskrete Verteilungsdichte). Ein Prinzipbeispiel zeigt Abb. 12.33.

Fiir einen in dieser Hinsicht idealen ADU gilt H = konstant. Nichtideale Umsetzer
weichen hiervon ab. Zeigt das Histogramm etwa benachbarte Spitzen oder Einbriiche,
sind das Hinweise auf Differenzielle Nichtlinearititen. Fehlt eine Linie vollig, ist das
zugehorige Codewort nicht ansprechbar (Missing Code).

12.4.2.5 Glitch-Flache
Die dynamischen Eigenschaften speziell von DAUs koénnen durch die Einschwingzeit
nicht hinreichend beschrieben werden. Abhingig von Toleranzen der elektronischen
Stromschalter konnen ndmlich am Ausgang kurzzeitig sehr hohe Stoérimpulse, soge-
nannte Glitches, auftreten.

Als Beispiel wird betrachtet, dass sich der Eingangscode eines 8-Bit-DAU von
0111 1111 auf 1000 0000 #ndert. Alle elektronischen Stromschalter am Leiternetzwerk
werden in diesem Falle umgeschaltet. In der Realitit geschieht dieses jedoch nicht
exakt gleichzeitig. Es wird angenommen, dass der Schalter fiir das MSB schneller
als die anderen schaltet. Dann wird kurzzeitig der Zwischencode 1111 1111
angenommen. Dieses fiihrt am Ausgang zu einem Stérimpuls, dessen Hohe dem halben
Aussteuerbereich nahekommt, obwohl der Wert sich eigentlich nur um 1 LSB dndern
soll.

Im Datenblatt wird diese GroBe durch das Integral iiber die Glitch-Funktion, also die
Glitch-Fldche, zum Beispiel in der Einheit nVs bei spezifiziertem Messmodus angege-
ben. Dieser Wert sollte moglichst klein sein.

Einige Hersteller sehen einstellbare Korrekturschaltungen zur Minimierung der
Glitch-Flidche vor. Glitches konnen auch vermieden werden, indem der Ausgang des
DAUs nach Abklingen der Einschwingvorgidnge durch Track-and-Hold-Glieder abge-
tastet und bis zur nichsten Umsetzung konstant gehalten wird. Teilweise sind derar-
tige Deglitch-Einrichtungen bereits in den DAUs enthalten. Allerdings vergrofert sich
dadurch die Gesamteinschwingzeit des Umsetzers.

Abb. 12.33 Prinzipielle HA ideal
Darstellung eines Histogramms ~——|([IKIIN1 7
H fiir einen ADU mit
4096 darstellbaren Stufen,
entsprechend 12 Bit
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12.5 Ansteuerung von diskreten AD- und DA-Umsetzern

Analog-Digital- und Digital-Analog-Umsetzer konnen als Teil eines grofleren ASICs
implementiert werden. Ein ASIC mit analogen und digitalen Schaltungsteilen wird als
Mixed-Signal-ASIC bezeichnet. Beispiele hierfiir sind:

e Ein Controller fiir einen LCD-Monitor nimmt Videosignale aus der analogen VGA-
Schnittstelle entgegen. Sie werden dann digital verarbeitet, also, wenn erforderlich,
auf Bildschirmgrofie skaliert, mit On-Screen-Display iiberlagert und dann an das
eigentliche Display weitergegeben.

e Ein ASIC fiir einen USB-Musik-Player liest digitale Daten aus einem NVRAM und
decodiert sie aus dem komprimierten Format. Die digitalen Signale werden dann auf
dem ASIC in analoge Signale umgesetzt und ausgegeben.

e Mikrocontroller enthalten oft Analog-Digital-Umsetzer, um analoge Informationen
direkt verarbeiten zu konnen.

Oftmals werden allerdings auch rein digitale ASICs verwendet und eine AD- und DA-
Umsetzung in diskreten Bausteinen implementiert. Die Aufteilung eines Systems in
Digital-ASIC und diskrete Umsetzer hat insbesondere folgende Vorteile:

e Es ist eine Vielzahl von diskreten ADUs und DAUs verfiigbar, die eine Wahl beziig-
lich Geschwindigkeit, Genauigkeit und Preis ermoglichen.

e Die digitale Verarbeitung in einem Mixed-Signal-ASIC kann den analogen Schal-
tungsteil storen und die Qualitit der Umsetzung einschrinken.

¢ Ein Mixed-Signal-ASIC ist aufwendiger als ein Digital-ASIC und daher teurer.

e Der Zugang zu Mixed-Signal-Fertigungstechnik ist schlechter verfiigbar. Aulerdem
miissen im Entwicklerteam ausreichende Kompetenzen fiir analoge Schaltungstechnik
vorhanden werden.

e Bei FPGAs gibt es kaum Bausteine mit AD- oder DA-Umsetzen.

In diesem Abschnitt wird erldutert, wie diskrete AD- und DA-Umsetzer angesteuert wer-
den. Dabei werden serielle und parallele Ansteuerung verwendet.

12.5.1 Serielle Ansteuerung

Die serielle Ansteuerung diskreter Umsetzer hat den Vorteil, dass nur wenige Leitun-
gen benotigt werden. Die Taktgeschwindigkeit normaler Signalleitungen liegt meist im
Bereich von 10 bis 100 MHz. Fiir einen Datenwert sind, je nach Protokoll und Auflo-
sung, 10 bis 20 Bit erforderlich. Eine serielle Ansteuerung ist also fiir Abtastraten im
Bereich von kHz bis wenige MHz geeignet.
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Als Beispiel fiir Umsetzer mit serieller Ansteuerung werden die Bausteine MCP3201
und MCP4921 von der Firma Microchip betrachtet. Sie verwenden das Serial Peripheral
Interface (SPI), welches auch in Kapitel 11 fiir ein FRAM mit seriellem Interface
verwendet wurde.

12.5.1.1 AD-Umsetzer MCP3201

Der Baustein MCP3201 ist ein Analog-Digital-Umsetzer mit 12 bit Auflosung und einer
Abtastrate von 100 kHz bei 5 V Betriebsspannung und 50 kHz bei 2,7 V Betriebsspan-
nung. Die Umsetzung erfolgt mit dem Wigeverfahren und sukzessiver Approximation
(SAR). Der Baustein benétigt lediglich acht Pins und ist damit sehr kompakt. Seine
Anschliisse sind:

e [N+ und IN-, analoge Eingédnge

e DOUT, Datenausgang

e (LK, Takteingang

e /CS, Chip-Select und Shutdown

e VREF Referenzspannung

e VDD und VSS, Versorgungsspannung und Masse

Anmerkung: Im Datenblatt werden fiir Datenausgang und Takt die Bezeichnungen
DOUT und CLK verwendet. Um die Beschreibung allgemein zu halten, werden hier die
SPI-Bezeichnungen SDO und SCK verwendet.

Der Baustein ermittelt die Differenz zwischen den beiden analogen Einginge IN+
und /N—. Dabei gibt es jedoch die Einschrinkung, dass /N— nur um +100 mV vom
Massepegel abweichen darf, sodass kein vollstindiger differenzieller Eingang vorhanden
ist. Die getrennten Spannungsversorgungen VDD und VREF ermoglichen die Verwen-
dung einer besonders stabilisierten Referenzspannung.

Die Ansteuerung und Dateniibertragung ist in Abb. 12.34 dargestellt. Eine
AD-Umsetzung wird durch Wechsel des Eingangs /CS von 1 auf O gestartet. Von
der nichsten fallenden Flanke an SCK wird fiir eineinhalb Taktzyklen der analoge
Eingangswert im Abtast-Halte-Glied (AHG) erfasst. Die Taktfrequenz an SCK darf
1,6 MHz betragen, so dass eine Sample-Zeit Lample YOI €twa 1 us moglich ist. Mit den
nichsten Takten an SCK erfolgt dann die Umsetzung in sukzessiver Approximation und
es werden nacheinander eine 0 sowie die Stellen des ermittelten Wertes ausgegeben. In
der sukzessiven Approximation wird zuerst das hochstwertige Bit (MSB) ermittelt und
darum wird dieses Bit auch zuerst ausgegeben. Nach zwolf Takten ist die Umsetzung
beendet (z,) und es ist noch ein weiterer Takt fiir die Ausgabe des LSB erforderlich
(1) Weitere Takte sind erlaubt; eine neue AD-Umsetzung wird jedoch erst durch eine
fallende Flanke an /CS gestartet.

Die Ansteuerung kann direkt durch die SPI-Schnittstelle eines Mikrocontrollers
erfolgen. Dazu werden Steuerbefehle gegeben, die zwei Byte einlesen. Die
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Abb. 12.34 Ansteuerung und /CS™\ [
Dateniibertragung des ADUs SCK MU nnrrnr—
MCP3201 von Microchip SDO o) 76 5 e 32 ) o}—
tsample tu tdata
Abtastung AD-Umsetzung ~ Abschluss der
Datenausgabe

SPI-Schnittstelle erzeugt damit 16 Flanken an SCK und liest 16 Bit Daten. Aus diesen
16 Bit werden die giiltigen 12 Bit der AD-Umsetzung extrahiert.

12.5.1.2 DA-Umsetzer MCP4921

Der Baustein MCP4921 ist ein Digital-Analog-Umsetzer mit 12 bit Auflésung und exter-
ner Referenzspannung. Er arbeitet im Direktverfahren. Es gibt verwandte Produkte mit
10 und 8 bit Auflésung, mit zusétzlicher interner Referenzspannung sowie mit zwei Aus-
gingen. Genau wie der zuvor betrachtete MCP3201 hat auch der MCP4921 acht Pins
und ist sehr kompakt. Seine Anschliisse sind:

e VOUT, analoger Ausgang

e SDI, Dateneingang

e SCK, Takteingang

e /CS, Chip-Select

e /LDAC, Ubernahmesignal fiir Daten (Latch DAC, Verwendung optional)
e VREF Referenzspannung

e VDD und VSS, Versorgungsspannung und Masse

Anmerkung: Hier werden im Datenblatt schon die SPI-Bezeichnungen verwendet.

Die Ansteuerung des Bausteins zeigt Abb. 12.35. Mit /CS auf 0 wird der Datentransfer
begonnen. Dann werden fiir einen analogen Ausgabewert 16 Bit im SPI-Protokoll
iibertragen. Das erste Ubertragungsbit ist 0, danach kommen drei Steuerbits (werden im
nichsten Absatz erldutert) und darauf die 12 Bits, welche als Analogwert ausgegeben
werden sollen. Nach der Ubertragung wird durch Setzen von /LDAC auf 0O der
Analogwert am Ausgang VOUT aktualisiert. Durch diese Steuerleitung kdnnen mehrere
DAUs zeitgleich ihre Ausgabe &dndern. Falls keine Synchronisation durch /LDAC
benotigt wird, kann dieser Wert konstant auf 0 gelegt werden und der Ausgang wird nach
der Datentiibertragung automatisch aktualisiert.

Bei der Ubertragung werden drei Steuerbits angegeben, die folgende Bedeutung
haben. In Abb. 12.35 werden zur besseren Ubersichtlichkeit die ersten Buchstaben B, G,
S angegeben.

e BUF: Die Referenzspannung kann gepuffert werden, was zu hoherer Eingangsimpe-
danz bei leichten Einschrinkungen in der Umsetzungsqualitit fiihrt.
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Abb. 12.35 Ansteuerung /CS™\ /
des DAUs MCP4921 von SCK ]
Microchip SDI_[BfG)S)fifioe) 87 65 e E 2 o——m
Konfiguration Datenbits
/LDAC \_f
VOUT —

e /GA (Gain): Es ist ein Ausgabeverstirker vorhanden, fiir den der Faktor 1 oder 2
gewihlt werden kann.

e /SHDN (Shutdown): Der Analogausgang kann zur Verringerung der Verlustleistung
abgeschaltet werden.

12.5.2 Parallele Ansteuerung

Fiir hohere Datenraten ist eine Dateniibertragung iiber SPI nicht mehr moglich. Eine
Geschwindigkeitssteigerung kann iiber parallele Datenleitungen erfolgen.

12.5.2.1 AD-Umsetzer AD9200 mit einfachem Parallelausgang

Der Baustein AD9200 ist ein Pipeline-Analog-Digital-Umsetzer von Analog Devices mit
10 bit Auflésung und einer Abtastrate von 20 MHz. Es sind zwei Gehéduse mit 28 und 48
Pins verfiigbar. Die digitale Schnittstelle besteht aus den Anschliissen:

e D9 bis DO, Datenausgang mit 10 bit Wortbreite

e OTR, Out-of-Range Indicator

e STRBY, Standby, setzt den AD-Umsetzer in den Ruhezustand

e THREE-STATE, schaltet die Ausgangsleitungen ab

e (LK, als Takt fiir die interne Operation des Umsetzers sowie fiir den Datenausgang

Dieses Dateninterface ist sehr einfach. Bei jedem Takt wird ein Datenwort mit 10 Bit
ausgegeben. Der Out-of-Range Indicator gibt an, wenn die Eingangswerte auf3erhalb des
Messbereichs liegen. Der Datenausgang wird dann auf den kleinsten oder grofiten Wert
limitiert. In Verbindung mit dem MSB des Datenausgangs kann unterschieden werden,
ob ein Uberlauf oder ein Unterlauf auftritt.

12.5.2.2 AD-Umsetzer AD9467 mit differenziellem Parallelausgang

Bei hoheren Taktgeschwindigkeiten wird ab etwa 100 MHz die Dateniibertragung
auf einer Platine storanfillig. Fiir bessere Ubertragungseigenschaften werden dann
differenzielle Leitungen eingesetzt. Dies bedeutet, ein Ausgang verwendet nicht mehr
eine einzelne Leitung, sondern zwei Leitungen, die entgegengesetzte Spannungspegel
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einnehmen. Diese werden durch ,+‘ und ,—° gekennzeichnet, das heilit beispielsweise
der Takt CLK wird auf den Leitungen CLK+ und CLK— iibertragen.

Durch die differenzielle Ubertragung kann der Spannungshub zwischen Low- und
High-Pegel deutlich verringert werden, denn Stoérungen betreffen immer beide Leitun-
gen. Aufgrund des geringeren Spannungshubs sind dann auch hohere Taktfrequenzen
moglich. Die differenzielle Ubertragung wird als LVDS (Low Voltage Differential Signa-
ling) bezeichnet.

Der Baustein AD9467 ist ein Pipeline-Analog-Digital-Umsetzer von Analog Devices
mit 16 bit Auflésung und einer Abtastrate bis zu 250 MHz. Das Gehéuse hat 72 Pins und
die digitale Schnittstelle besteht aus einem parallelen LVDS-Datenausgang und einem
seriellen Steuereingang.

Der parallele LVDS-Datenausgang arbeitet mit Double-Data-Rate (DDR), einer
Technik, die bereits in Kapitel 11 in Zusammenhang mit DDR-SDRAMs vorgestellt
wurde. Das heilit, es werden pro Taktzyklus nacheinander zwei Bit auf einer Daten-
leitung ausgegeben. Diese Datenleitung ist dann in zwei Polarititen vorhanden, also
als ,4+‘ und ,—*. Die Datenleitungen fiir beispielsweise die Bits 15 und 14 werden als
D15+/D14+ und D15—/D14— bezeichnet. Der Datenausgang hat insgesamt die folgen-
den Anschliisse:

e DI54/DI144 und D15—/DI4— bis DI4/D0+ und DI—/D0—, Datenausgang mit 8
bit LVDS-Werten auf 16 Leitungen

e OTR+ und OTR—, Out-of-Range Indicator (2 Leitungen)

e CLK+ und CLK—, Takteingang (2 Leitungen)

e DCO+ und DCO—, Taktausgang (2 Leitungen)

Der Zeitablauf von Datenerfassung und -ausgabe ist in Abb. 12.36 dargestellt. Die stei-
gende Flanke am Takteingang CLK+ bestimmt die Abtastzeitpunkte des analogen Ein-
gangssignals. Der Datenausgang hat ein eigenes Taktsignal DCO, mit dem die Datenbits
von der nachfolgenden Schaltung iibernommen werden miissen.

Die Umsetzung des analogen Eingangswerts benotigt aufgrund des Pipeline-Verfah-
rens 16 Takte, sodass der Ausgangswert erst nach dieser Latenzzeit ausgegeben wird.
Wihrend der Umsetzung werden weitere Daten erfasst und jeweils nach der Latenzzeit
von 16 Takten ausgegeben. Die Latenzzeit entspricht der Wortbreite des ADUs von 16 bit.

Der vergroBerte Ausschnitt in Abb. 12.36 zeigt den Zeitablauf bei der Datenausgabe.
Mit der steigenden Flanke von DCO+ wird Bit 15 fiir den Abtastwert N-16 ausgege-
ben (Bezeichnung: D15N ~19). Mit der fallenden Flanke an DCO+ folgt einen halben
Takt spéter Bit 14 fiir diesen Abtastwert. Im darauffolgenden Takt folgen die Daten fiir
Abtastwert N-15. Parallel liegen auf den anderen 7 LVDS-Leitungen die weiteren Bits des
Datenworts an.

Auflerdem enthilt der Baustein AD9467 einen seriellen Steuereingang mit SPI-
Protokoll (vergleiche Abb. 12.34). Hieriiber konnen Konfigurationsregister geschrieben
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Abtastzeitpunkt Nt N+2  N+3 N+4
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Abb. 12.36 Datenerfassung und LVDS-Datenausgang des ADUs AD9467

und gelesen werden. Diese Konfiguration betrifft analoges und digitales Verhalten,
beispielsweise:

e Justierung des Spannungsmessbereichs
e Wahl des Datenformats zwischen dual, 2er-Komplement und Gray-Code
e Ausgabe vordefinierter Daten zu Testzwecken

12.5.3 Serielle Hochgeschwindigkeitsschnittstelle JESD204B

Die im vorherigen Abschnitt vorgestellte parallele Schnittstelle benotigt 20 Leitungen,
die auf einer Platine paarweise parallel gefiihrt miissen und zudem die gleichen Linge
haben sollen. Eine Alternative zu dieser aufwendigen Verbindung ist die serielle Hoch-
geschwindigkeitsschnittstelle JESD204B, welche von der Standardisierungsorganisation
JEDEC (Joint Electron Device Engineering Council) definiert wird.

Ein wesentliches Problem bei hohen Ubertragungsgeschwindigkeiten auf der Platine
ist nicht unbedingt die Geschwindigkeit des Datensignals sondern die Synchronisierung
von Daten und Takt. Aus diesem Grund wird beim, im vorherigen Abschnitt beschrie-
benen, parallelen Interface des AD9467 der Takt zusammen mit den Daten ausgegeben,
damit diese moglichst die gleiche Laufzeit haben. Noch hohere Taktraten sind moglich,
wenn der Empfanger den Takt aus den empfangenen Daten rekonstruieren kann. Dieses
Prinzip wird fiir die JESD204B-Ubertragung genutzt.
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Fiir die Taktrekonstruktion muss sichergestellt sein, dass die Daten geniigend Takt-
flanken besitzen. Wird beispielsweise der Wert 0 mit 0000 0000 codiert und mehrfach
nacheinander ausgegeben, kann der Empfangsbaustein hieraus keinen Takt erkennen. Als
Losung dieses Problems wird ein spezieller Code mit redundanter Wortldnge verwen-
det. Dazu werden die 8 Bit eines Byte mit 10 Stellen codiert. Von den 1024 moglichen
Codewortern werden nur solche verwendet, bei denen mindestens alle 5 Takte eine Sig-
nalflanke auftritt. Damit ist sichergestellt, dass der Takt aus den Daten zuriickgewonnen
werden kann. Der entsprechende Code wird als 8b/10b-Code bezeichnet und auch fiir
andere Anwendungen in der Kommunikationstechnik verwendet.

Der Baustein ADC32J45 von Texas Instruments ist ein ADU mit JESD204B-
Schnittstelle. Er hat zwei Analogeingédnge und setzt diese mit einer Abtastrate von
160 MHz und 14 bit Genauigkeit um. Fiir die Konfiguration des Bausteins ist zusétzlich
ein SPI-Port vorhanden.

Abb. 12.37 zeigt die wichtigsten Signale des JESD204B-Datenausgangs in
vereinfachter Darstellung. Der Baustein erhdlt vom Signalverarbeitungs-ASIC den Takt
CLK und das Steuersignal SYNC, beide als differentielles LVDS-Signal. Vom ADU
gehen zwei LVDS-Signale DA und DB mit den Daten der beiden Analogeingédnge an
das Signalverarbeitungs-ASIC. Die Datentibertragung erfolgt im 8b/10b-Format mit
10-facher Geschwindigkeit des Taktsignals. Bei positivem und bei negativem Pegel von
CLK wird jeweils ein Byte und somit pro Taktzyklus die 14 Bit des Messwertes und
2 ungenutzte Bits libertragen.

Mit dem Steuersignal SYNC wird am Beginn einer Ubertragung der Empfangstakt
im Signalverarbeitungs-ASIC synchronisiert. Ist SYNC+ gleich 0 sendet der ADU ein
festes Steuerwort. Sobald dieses Steuerwort mehrfach korrekt erkannt wurde, ist die
Taktsynchronisierung erfolgt und SYNC+ wird auf 1 gesetzt. Danach sendet der ADU
noch Steuerworte zur sogenannten Framesynchronisierung und dann folgen die Daten
der AD-Umsetzung.

Fir die Synchronisierung und Decodierung des 8b/10b-Codes ist im
Signalverarbeitungs-ASIC ein entsprechendes Schaltungsmodul erforderlich. Fiir FPGAs

CLK+
P e 0 0 e
S5 syncs X S
I 2 SYNC--
92 DA+
&2 D I - OO -
£° oo - IO IO

Taktsynchronisation | Framesynchronisation | Dateniibertragung

Abb. 12.37 Vercinfachter Zeitablauf am Datenausgang des ADUs ADC32J45 mit
JESD204B-Schnittstelle
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werden von den Herstellern JESD204B-Interfaces angeboten, welche die Verwendung
dieser Schnittstelle vereinfachen.

12.6 Ubungsaufgaben

Haben Sie den Inhalt des Kapitels verstanden? Priifen Sie sich mit den Aufgaben und
Fragen am Kapitelende. Die Losungen und Antworten finden Sie am Ende des Buches.

Aufgabe 12.1
Ordnen Sie den AD-Umsetzern jeweils die passende Kurzbeschreibung zu.

a) Dual-Slope-Verfahren
b) Parallelverfahren

¢) Sigma-Delta-Umsetzer
d) Wigeverfahren

1. Gleichzeitiger Vergleich mit 2" — 1 Komparatoren

2. Integration von Referenzspannung und Messspannung

3. Hohe Uberabtastung des Eingangswertes und 1-Bit-Umsetzung
4. Schrittweise Bestimmung der einzelnen Bits

Aufgabe 12.2
Ordnen Sie den DA-Umsetzern jeweils die passende Kurzbeschreibung zu.

a) Pulsweitenmodulation

b) Summation gewichteter Strome
¢) Direktverfahren

d) R-2R-Leiternetzwerk

1. Verwendung von 2" gleichen Widerstdnden

2. Verwendung von einer Widerstandskette mit Widerstidnden gleicher Gro3enordnung
3. Verwendung von Widerstinden mit den Werten R, R/2, R/4, R/8, R/16, R/32, ...

4. Mittelwertbildung aus zwei Spannungswerten

Aufgabe 12.3
Ein ADU hat einen Aussteuerbereich U von 3 V und eine Wortbreite von n = 10 bit.

a) Wie grof3 ist die Quantisierungsintervallbreite Q7

b) Wie grof} ist der hochste codierbare Spannungswert?

¢) Welche Codierung ergibt sich fiir die Spannung 1,2 V?

d) Am Ausgang wird der Code 00 0100 1011 ausgegeben. In welchem Bereich ist der
Spannungswert?
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Aufgabe 12.4
Ein ADU im Wigeverfahren hat einen Aussteuerbereich U = von 2V und eine Wort-
breite von n = 8 bit.

a) Wie grof} ist die Quantisierungsintervallbreite Q7
b) Am Eingang liegt die Spannung 0,7 V an. Geben Sie die Schritte der AD-Umsetzung
an. Welche Codierung ergibt sich fiir die Spannung?

Aufgabe 12.5
Ein Sigma-Delta-Umsetzer hat einen Messbereich von 1V und der Analogeingang U
betriagt — 0,2 V.

a) Geben Sie den Zeitverlauf einer AD-Umsetzung an. Nehmen Sie an, dass im ersten
Zeitschritt die Riickfiihrung U, .= 0V ist und dass der Integrator mit der Spannung
U, = 0V startet (Tab. 12.4).

b) Interpretieren Sie die Ausgabewerte.

Aufgabe 12.6
Ein PWM-Ausgang hat den in Abb. 12.38 dargestellten Zeitverlauf. Welche Ausgangs-
spannung wird durch das Signal erzeugt?

Tab.12.4 Zeitablauf fiir Ubungsaufgabe zum Sigma-Delta-Umsetzer

Zeit- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
schritt

U -0,2|-02|-02|-02|-02/-02-0,2|-0,2|-0,2| -0,2|-0,2|-0,2| -0,2| -0,2| -0,2

X

[in V]
Udig
[in V]
Ugigr
[in V]
Uinl

[in V]
Plus
[binér]

Abb. 12.38 Zcitablauf der AU®)
Pulsweitenmodulation (PWM) 3V ”
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Mikroprozessoren und Mikrocontroller sind komplexe, hochintegrierte digitale Schalt-
kreise, auf deren Basis leistungsfihige Rechnersysteme realisiert werden.

Einer der wichtigsten Meilensteine auf dem Weg zu modernen Rechnersystemen war
die kommerzielle Realisierung des ersten integrierten Mikroprozessors. Zu Anfang der
1970er Jahre gelang dies der Firma Intel. Im Jahr 1977 schloss sich die Einfiihrung von
Mikrocontrollern an, die ein gesamtes Rechnersystem mit Prozessor, Speicher und wei-
teren Komponenten auf einem einzelnen Chip integrieren. In den folgenden Jahren setzte
eine stiirmische Entwicklung im Bereich der Mikroprozessortechnik ein, die insbeson-
dere durch die fortschreitende Integrationsdichte digitaler Schaltkreise unterstiitzt wurde.
Heute sind Rechnersysteme, die auf Mikroprozessoren oder Mikrocontrollern basieren,
integraler Bestandteil des tdglichen Lebens geworden. Sie werden als PCs realisiert und
unterstiitzen den Anwender zum Beispiel bei der Biiroarbeit oder dem Recherchieren im
Internet. Auch in Mobiltelefonen, Digitalkameras, Geriten der Unterhaltungselektronik
oder in Hausgeriten, Kraftfahrzeugen und industriellen Anlagen arbeitet eine Vielzahl
von digitalen Rechnersystemen.

Im Rahmen dieses Kapitels werden die wesentlichen Grundlagen der Mikroprozessor-
technik beschrieben. Sie bilden die Basis fiir das Verstindnis von konkreten Rechnern,
wie zum Beispiel der in Kapitel 14 vorgestellten Mikrocontroller.

13.1 Grundstruktur eines Mikrorechnersystems

Mikrorechner sind digitale Systeme, deren Aufgabe es ist, Daten zu verarbeiten. Diese
Aufgabe zerfillt in drei grundlegende Schritte, die von einem Mikrorechnersystem aus-
gefiihrt werden miissen: Dateneingabe, Datenverarbeitung und Datenausgabe. Die Steu-
erung dieser Schritte wird durch ein Programm festgelegt, welches die Reihenfolge der
benotigten Verarbeitungsschritte festlegt.
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In der Regel miissen mehrere eingelesene Daten miteinander verkniipft werden, um
einen Ausgabewert zu berechnen. Hieraus ergibt sich zwangsldufig, dass die Moglichkeit
bestehen muss, Eingabewerte oder auch Zwischenergebnisse speichern zu konnen, die
sich wihrend der Verarbeitung ergeben.

Aus diesen grundlegenden Betrachtungen konnen die wesentlichen Komponenten
eines Mikrorechnersystems abgeleitet werden: Es werden Eingabe- und Ausgabekom-
ponenten, Speicher und mindestens eine Verarbeitungseinheit benotigt. Ein Rechnersys-
tem auf Basis dieser Komponenten wurde in den 1940er Jahren von John von Neumann
beschrieben und ist als sogenannte Von-Neumann-Architektur bekannt geworden.

Auch heutige Rechnersysteme, vom PC bis hin zu Mikrorechnersystemen, welche
zum Beispiel die Steuerung Threr Waschmaschine iibernehmen, konnen als eine spezielle
Implementierung der Von-Neumann-Architektur aufgefasst werden (Abb. 13.1).

Eine Von-Neumann-Architektur besteht aus drei wesentlichen Komponenten: Die
Ein-/Ausgabe-Einheit dient dem Datenaustausch mit externen Komponenten wie Tasta-
turen, Anzeigen oder auch Sensoren und Aktuatoren.

Die zentrale Verarbeitungseinheit (engl. Central Processing Unit, CPU) dient der
eigentlichen Verarbeitung der Daten. Sie besteht aus einem Steuerwerk, einem Rechen-
werk und Registern. Die zentrale Aufgabe des Steuerwerks ist die Interpretation der
Befehle des auszufiihrenden Programms und die zugehdrige Ablaufsteuerung innerhalb
der CPU, wihrend das Rechenwerk (engl. Arithmetic Logical Unit, ALU) logische und
arithmetische Operationen ausfiihrt. Die Operanden und Ergebnisse der Operationen
werden in den CPU-internen Registern, die auch als Arbeitsregister bezeichnet werden,
abgelegt.

Die dritte Komponente einer Von-Neumann-Architektur ist der Speicher, in welchem
sowohl die Befehle des Programms als auch Daten abgelegt werden.

Fiir die Verbindung der einzelnen Komponenten eines Rechnersystems werden in der
Regel sogenannte Busse eingesetzt. Busse konnen als die logische Zusammenfassung
einzelner Signalleitungen verstanden werden, wobei diese Leitungen zusammengeho-
rende Informationen iibertragen. Die in einem Mikrorechnersystem verwendeten Busse
konnen grob in drei verschiedene Typen eingeteilt werden:

Der Adressbus dient zur Auswahl einer Komponente mit der die CPU Daten
austauschen mdochte. Dies kann zum Beispiel eine Speicherstelle innerhalb des Speichers

Abb. 13.1 Blockschaltbild fcpu T a
eines Rechners auf Basis der !
Von-Neumann-Architektur i

Register
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Speicher (—) Ein-/Ausgabe
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sein. Da die einzelnen Speicherstellen unterschiedliche Adressen besitzen, kann anhand
der Adresse das angesprochene Speicherelement ausgewihlt werden.

Die Daten selbst werden iiber den Datenbus iibertragen. Die Daten konnen hierbei
sowohl von der CPU an die Speicher- und Ein-/Ausgabe-Komponenten als auch von die-
sen Komponenten an die CPU gesendet werden.

Neben den Leitungen fiir den Datentransfer und den Adressleitungen wird ein Steu-
erbus benétigt. Der Steuerbus iibermittelt alle Informationen, die neben Daten und
Adressen an die einzelnen Komponenten des Systems iibertragen werden miissen. Ein
Beispiel fiir eine solche Information ist, ob von der ausgewihlten Adresse Daten gele-
sen werden sollen, oder ob die Daten, die von der CPU auf den Datenbus gelegt worden
sind, geschrieben werden sollen. Weiterhin kann der Steuerbus beispielsweise zur Uber-
tragung eines Taktsignals zur Systemsynchronisation oder zur Ubermittlung von Fehler-
codes verwendet werden.

Ein exemplarisches Blockschaltbild eines einfachen Mikrorechnersystems mit einem
unidirektionalen Adressbus und einem bidirektionalen Datenbus ist in Abb. 13.2 darge-
stellt. Dieses System besitzt zwei verschiedene Speicher. Ein Flashspeicher dient der
Aufnahme von Daten, die auch nach dem Abschalten der Versorgungsspannung erhal-
ten bleiben sollen. Wird in diesem Speicher das Programm abgelegt, steht es direkt
nach dem Einschalten zur Verfiigung und kann sofort ausgefiihrt werden. Dariiber hin-
aus konnen im Flashspeicher Konstanten abgelegt werden, die fiir die Ausfiihrung des
Programms bendtigt werden. Da sich die Variablen eines Programms wihrend der Pro-
grammlaufzeit hiufig dndern, ist es nicht sinnvoll, Variablen ebenfalls in einem Flash-
speicher abzulegen, da das hiufige Beschreiben des Flashspeichers eine frithe Alterung
des Speichers nach sich ziehen wiirde. Daher ist in dem Beispielsystem ein RAM-Spei-
cher vorgesehen, der zur Speicherung von Variablen verwendet wird.

Neben den Speichern besitzt das System Eingabe- und Ausgabekomponenten. Die CPU
kann mit den Komponenten des Systems kommunizieren, indem die entsprechende Adresse

CPU
N\ v Steuerbus
| | Datenbus
@ Adressbus
i Flash RAM i Ausgabe Eingabe
| |
| speioher 1 L I} 11

Abb. 13.2 Blockschaltbild eines einfachen Mikrorechnersystems
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der jeweils ausgewéhlten Komponente auf den Adressbus gelegt wird. Da die Adressen von
dem Programm, welches von der CPU ausgefiihrt wird, berechnet werden miissen, ist es
fiir die Programmierung des Systems von wesentlicher Bedeutung, die Adressen zu kennen,
unter denen die Systemkomponenten angesprochen werden. Diese Adressen werden hiufig
in grafischer Form als eine sogenannte Address Map zur Verfiigung gestellt.

Eine mogliche Address Map fiir das gezeigte Beispielsystem ist in Abb. 13.3 links
dargestellt. Die Auswahl zwischen Speicher und Ein-/Ausgabeeinheiten wird in diesem
Fall nur durch die auf dem Adressbus anliegende Adresse durchgefiihrt. Adressen im
Bereich von 0x0000 bis OxSFFF adressieren die Speicherelemente des Systems, wihrend
mit Adressen im Bereich 0xC000 bis OXFFFF auf Eingabe- und Ausgabekomponenten
zugegriffen werden kann. Man spricht in diesem Fall auch davon, dass sich der Speicher
und die Ein-/Ausgabeeinheiten ,.einen gemeinsamen Adressraum teilen“. Der Fachbe-
griff fiir diesen Ansatz lautet Memory-Mapped-1/0.

Als Alternative konnen auch getrennte Adressraume fiir Speicher und Ein-/Ausgabe-
komponenten verwendet werden. In diesem Fall spricht man von Port Mapped I/0. Eine
mogliche Adressierung der Systemkomponenten des Beispielsystems ist in Abb. 13.3
rechts angegeben. Die Adressierung der Systemkomponenten erfolgt nun mithilfe der
Adresse und der zusitzlichen Information, ob ein Speicherzugriff oder ein Zugriff auf
die Ein-/Ausgabe erfolgen soll. Letztere wird den Komponenten mithilfe des Steuerbus-
ses zur Verfiigung gestellt.

Beide Ansitze werden fiir Rechnersysteme in der Praxis verwendet. Ein gemeinsa-
mer Adressraum vereinfacht die Programmierung, was dem Programmierer oder rech-
nergestiitzten Werkzeugen wie Compilern zugute kommt. Auf der anderen Seite kann bei
Verwendung von zwei getrennten Adressraumen unter Umstdnden eine Beschleunigung
des Zugriffs auf Ein-/Ausgabekomponenten erfolgen, was sich positiv auf die Rechenzeit
eines Programms auswirken kann.

a) Memory-Mapped I/O b) Port-Mapped I/0
Ausgabe
0xE000
Eingabe
0xC000
0x6000 ~ -
SRAM SRAM Ausgabe
0x4000 0x4000 |~ o
Flash Flash '
Eingabe
0x0000 0x0000

Abb. 13.3 Mogliche Address Maps fiir das Beispielsystem
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13.2 Befehlsabarbeitung in einem Mikroprozessor

Die Befehle eines Programms werden in bindrer Form im Programmspeicher abgelegt.
Jeder Befehl enthilt Informationen iiber die auszufiihrende Operation, die bendtigten
Operanden und wo Ergebnisse des Befehls abgespeichert werden sollen. Fiir die Abar-
beitung eines Befehls ist es erforderlich, die binér codierten Befehle zunichst in der CPU
zu decodieren. Im Anschluss hieran werden die bendtigten Operanden dem Rechenwerk
der CPU zugefiihrt. Das Rechenwerk fiihrt dann die im Befehl codierte arithmetische
oder logische Operation aus und speichert das Ergebnis ab. Somit sind fiinf Schritte fiir
die Ausfiihrung eines Befehls erforderlich:

1. Befehl aus dem Programmspeicher holen und in die CPU iibertragen

2. Befehl decodieren, die Operanden bestimmen und die auszufiihrende Operation aus
dem Befehlswort extrahieren

3. Werte der Operanden bestimmen, zum Beispiel Werte aus dem Datenspeicher in die
CPU iibertragen

4. Operation mithilfe des Rechenwerks ausfiihren

5. Ergebnis der Operation abspeichern

Die Steuerung des Ablaufes dieser Schritte wird vom Steuerwerk der CPU iibernommen.
Grundsitzlich kann das Steuerwerk als ein endlicher Automat aufgefasst werden, der die
benotigten Arbeitsschritte zur Ausfiihrung eines Befehls sequenziell durchlduft. In der
Praxis wird das Steuerwerk eines Mikroprozessors hiufig nicht als ein einzelner Mealy-
oder Moore-Automat realisiert, sondern besteht aus einer hierarchischen Anordnung
mehrerer Automaten. Mikroprozessoren sind im Allgemeinen synchrone Systeme, deren
interne Abldufe durch ein zentrales Taktsignal synchronisiert werden. Im einfachsten Fall
werden die einzelnen Schritte der Befehlsabarbeitung in jeweils einem Taktzyklus ausge-
fiihrt. Somit wiirde die Abarbeitung eines einzelnen Befehls gemil3 den oben dargestell-
ten Schritten jeweils 5 Taktzyklen benttigen.

Bei realen Mikroprozessoren kann die Anzahl der bendtigten Taktzyklen zur Aus-
fiihrung sowohl von Prozessor zu Prozessor als auch fiir die einzelnen Befehle eines
Prozessors unterschiedlich sein. Ein Grund fiir dieses Verhalten ist in den technologi-
schen Randbedingungen zu suchen, die fiir die Herstellung eines Prozessors gelten. So
kann beispielsweise ein Zugriff auf den Programmspeicher im Vergleich zu den ande-
ren Verarbeitungsschritten deutlich mehr Zeit in Anspruch nehmen. In diesem Fall wire
es denkbar, dass der erste Schritt, also der Zugriff auf den Programmspeicher, in einem
Taktzyklus ausgefiihrt wird, wihrend die weiteren Schritte zusammengefasst in einem
weiteren Taktzyklus durchgefiihrt werden. In diesem Fall wiirde die Abarbeitung eines
Befehls also lediglich zwei Taktzyklen bendtigen.

Dariiber hinaus ist es denkbar, dass einzelne Befehle komplexere Verarbeitungs-
schritte benotigen als andere Befehle des gleichen Prozessors. Es kann sein, dass fiir
die Ubertragung der Operanden einzelner Befehle eine aufwendige Berechnung der
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Speicheradresse erforderlich ist, fiir die mehrere Taktzyklen benétigt werden. Andere
Befehle kommen dagegen mit weniger komplexen Berechnungen aus und werden in kiir-
zerer Zeit ausgefiihrt.

13.3 Typische Befehlsklassen

Bei dem Entwurf eines Mikroprozessors kommt der Frage, welche Befehle zur Ver-
fligung gestellt werden sollen, eine zentrale Bedeutung zu. Hierbei existieren viele
Freiheitsgrade. So gibt es nicht einen ultimativen Satz von Befehlen, der von allen Pro-
zessoren gleichermallen unterstiitzt wird. Vielmehr besitzt jeder Prozessor einen eige-
nen Befehlssatz, der mit Riicksicht auf unterschiedliche Kriterien wie CPU-Kosten,
Speicherbedarf fiir Programme, Rechenleistung etc. entworfen worden ist. Auch wenn
der Befehlssatz eines Prozessors also nicht allgemeingiiltig angegeben werden kann, so
lassen sich dennoch Gemeinsamkeiten der Befehlssétze erkennen.

Fiir einen typischen Prozessor konnen die Befehle in Befehlsklassen zusammengefasst
werden, die im Folgenden kurz vorgestellt werden.

13.3.1 Aufbau eines Befehlswortes

Ein Programm besteht aus einzelnen Befehlsworten, die nacheinander ausgefiihrt wer-
den. Mit jedem Befehlswort wird dem Prozessor mitgeteilt, welcher Teilschritt als nédchs-
tes auszufiihren ist. Dies kann zum Beispiel eine arithmetische Operation oder auch
der Sprung an eine andere Stelle im Programm sein. Das Befehlswort besteht aus einer
definierten Anzahl von Nullen und Einsen, die vom Steuerwerk des Prozessors interpre-
tiert werden. Sowohl die Wortbreite der einzelnen Befehle als auch die Bedeutung der in
einem Befehlswort vorhandenen Bits konnen bei der Definition eines Instruktionssatzes
frei gewihlt werden.

Um die Decodierung eines Befehls durch das Steuerwerk zu vereinfachen, benut-
zen viele Prozessoren Befehlsworte, deren Bits zu Feldern zusammengefasst sind.
Eines dieser Felder gibt dann zum Beispiel die auszufiihrende Operation (zum Beispiel
»Addition* oder ,,Sprung*) an. Die weiteren Bits stellen ergiinzende Informationen zur
Verfiigung. So muss beispielsweise bei einem arithmetischen Befehl angegeben wer-
den, aus welchen Arbeitsregistern die Operanden geholt werden sollen und in welchem
Arbeitsregister das Ergebnis abgelegt werden muss.

Betrachten wir zur Verdeutlichung einen Prozessor, dessen Befehle 32 Bit umfassen,
und schauen uns eine mogliche Codierung eines Additions- und eines Sprungbefehls
an: Um eine ausreichend groBe Anzahl an unterschiedlichen Befehlen zu ermdglichen
wird die auszufiihrende Operation mit 6 Bit codiert. Um beispielsweise 32 verschiedene
Arbeitsregister auswihlen zu konnen, werden pro Register 5 Bit benétigt. Fiir eine Addi-
tion miissen drei Arbeitsregister ausgewdhlt werden (zwei fiir die Summanden und eines
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fiir die Aufnahme des Ergebnisses). Damit werden fiir diesen Befehl 21 Bit belegt. Die
verbleibenden 11 Bit kdnnen einen beliebigen Wert besitzen.

Mochte man dagegen eine Addition mit einem Registerwert und einer Konstanten
durchfiihren, wird diese Konstante hédufig mit im Befehlswort abgelegt. Da hierbei ein
Register weniger ausgewihlt werden muss (ein Summand ist ja die Konstante), werden
also fiir die Operation und die Registerauswahl 16 Bit benotigt und es verbleiben 16 Bit
fiir die Konstante, die gegebenenfalls mithilfe einer Vorzeichenerweiterung (vgl. Kapitel 2)
auch auf eine groflere Wortbreite erweitert werden kann.

Bei einem Sprungbefehl ist es ausreichend die Operation Sprung mit 6 Bit zu kenn-
zeichnen. Die verbleibenden 26 Bit geben dann das Sprungziel (die Adresse des nichsten
Befehls) an.

In Abb. 13.4 ist ein moglicher Aufbau des Befehlswortes fiir die drei hier diskutierten
Beispiele dargestellt.

13.3.2 Arithmetische und logische Befehle

Die Aufgabe eines Mikroprozessors besteht darin, Daten mithilfe von mathematischen
Operationen zu verkniipfen. Fiir die meisten der hierzu benétigten Grundoperationen
wird ein entsprechender Befehl zur Verfiigung gestellt. Ein typischer Prozessor besitzt
arithmetische Befehle, die zum Beispiel die Negierung eines Operanden und die

Abb. 13.4 Beispiele fiir Addition von zwei Arbeitsregistern
den Aufbau eines 32-Bit-
Befehlswortes £l 26 21 16 i 0

Op Re Rot Ro2 ungenutzt

Addition eines Arbeitsregisters mit einer Konstanten

31 26 21 16 0
Op Re Rot 16-Bit-Konstante

Sprung

31 26 0
Op 26-Bit-Sprungziel

Op: Operation
Re: Ergebnisregister
Ro: Operandenregister
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Addition oder Subtraktion zweier Operanden unterstiitzen. Dariiber hinaus werden
logische Befehle unterstiitzt, welche die bitweise UND-, ODER, und Exklusiv-ODER-
Verkniipfung oder das bitweise Rechts- oder Links-Schieben durchfiihren.

Der Implementierungsaufwand eines Rechenwerkes fiir diese Operationen ist relativ
gering. Daher werden diese Operationen von allen Prozessoren unterstiitzt. Ein Befehl
zur Multiplikation oder Division erfordert dagegen einen hoheren Aufwand fiir die Rea-
lisierung des Rechenwerks und ist daher nicht in allen CPUs enthalten. Fehlt die Hard-
wareunterstiitzung fiir eine arithmetische Operation, miissen diese Funktionen durch
eine Folge von mehreren Befehlen, im Fall der Multiplikation beispielsweise durch
Additions- und Schiebeoperationen, implementiert werden.

Ein weiterer wichtiger Faktor im Hinblick auf den Implementierungsaufwand des
Rechenwerks ist die Wortbreite der Operationen. Einfache Prozessoren besitzen héu-
fig Rechenwerke mit einer Wortbreite von 8 bit. Viele Prozessoren mit einer mittleren
Rechenleistung verwenden in der Regel Rechenwerke mit einer Wortbreite von 32 bit.
Hochleistungsprozessoren, wie sie zum Beispiel in PCs eingesetzt werden, besitzen
dagegen Rechenwerke, welche die Verarbeitung von Operanden mit einer Wortbreite von
128 bit und mehr ermoglichen.

Werden in einem Programm héufig Gleitkommavariablen verwendet, ist es wiin-
schenswert, dass die zugehorigen arithmetischen Grundoperationen mithilfe eines ein-
zelnen Befehls ausgefiihrt werden kdnnen. Hierzu wird innerhalb des Rechenwerkes eine
Einheit zur Ausfiithrung von Operationen mit ganzzahligen Operanden (Integer-Unit) und
eine Einheit zur Ausfiihrung von Gleitkommaoperationen (Floating-Point-Unit) imple-
mentiert. Der hiermit verbundene Realisierungsaufwand ist bei vielen Prozessoren des
unteren bis mittleren Kostenbereichs hédufig nicht kommerziell sinnvoll. Aus diesem
Grund werden Gleitkommaeinheiten in Mikroprozessoren dieses Segmentes in der Regel
nicht eingesetzt. In diesem Fall miissen Gleitkommaoperationen durch eine Folge von
Ganzzahloperationen realisiert werden, wodurch die Rechenzeit des Programms ansteigt.

13.3.3 Transferbefehle

Sollen zwei Daten, die im Speicher des Systems abgelegt sind, zum Beispiel durch Addi-
tion miteinander verkniipft werden, ist dies bei typischen Mikroprozessoren nicht mit-
hilfe eines einzelnen Befehls durchfiihrbar. Vielmehr muss zunéchst ein Operand aus
dem Speicher des Systems in einen Zwischenspeicher innerhalb der CPU kopiert wer-
den. Im Anschluss daran kann mithilfe eines weiteren Befehls die eigentliche Addition
der Daten erfolgen.

Daneben ist es hiufig auch erforderlich, Daten zum Beispiel aus einer Eingabeein-
heit in den Speicher des Systems zu kopieren, ohne die Daten hierbei zu modifizieren.
Fiir beide Fille stellen Prozessoren Datentransferbefehle zur Verfiigung, mit denen Daten
zwischen Speicher und CPU oder Eingabe- oder Ausgabeeinheiten und CPU ausge-
tauscht werden konnen. Die unterschiedlichen Befehle zum Kopieren von Daten konnen
unter dem Begriff Transferbefehle zusammengefasst werden.
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13.3.4 Befehle zur Programmablaufsteuerung

Ist ein arithmetischer Befehl oder ein Transferbefehl von der CPU ausgefiihrt worden,
wird die Programmausfiihrung mit dem néchsten im Programmspeicher abgelegten
Befehl fortgesetzt. Die Moglichkeiten zum Erstellen von Programmen sind jedoch allein
mit Transferbefehlen oder arithmetischen Befehlen sehr eingeschréinkt. Selbst einfache
Programme benétigen die Moglichkeit, Befehle wiederholt auszufiihren (Schleifen) oder
einzelne Programmteile unter bestimmten Bedingungen zu iiberspringen (bedingte Ver-
zweigungen). Um diese Programmkonstrukte zu unterstiitzen, stellen Mikroprozessoren
Befehle zur Steuerung des Programmablaufs zur Verfiigung. Die zu dieser Gruppe zéh-
lenden Befehle umfassen:

Unbedingte Sprungbefehle

Nach Ausfiihrung eines unbedingten Sprungbefehls wird die Ausfiihrung des Programms
an einer durch den Befehl spezifizierten Adresse im Programmspeicher fortgesetzt und
es wird an eine andere Position im Programmspeicher ,,gesprungen®.

Bedingte Sprungbefehle

Bedingte Sprungbefehle fiihren, den Sprung nur aus, wenn eine im Befehl angegebene
Bedingung erfiillt ist. Ist die Bedingung dagegen nicht erfiillt, wird das Programm mit
dem nachfolgenden Befehl fortgesetzt.

Als Bedingungen konnen Informationen herangezogen werden, die sich aus der Aus-
fiihrung vorangegangener Befehle ergeben. So kann zum Beispiel eine Programmver-
zweigung erfolgen, falls das Ergebnis der vorangegangenen Operation Null ist. Ebenso
kann eine Verzweigung ausgefiihrt werden, falls das Ergebnis des zuvor ausgefiihrten
Befehls negativ ist oder ein arithmetischer Uberlauf aufgetreten ist.

Unterprogrammaufrufe

Nach dem Ende eines Unterprogramms muss zur aufrufenden Position im Programm
zuriickgekehrt werden. Die CPU muss beim Aufruf eines Unterprogramms also die aktu-
elle Befehlsadresse zwischenspeichern.

Ein Befehl zum Aufruf eines Unterprogramms besitzt daher die Funktionalitét eines
unbedingten Sprungs. Zusitzlich wird bei der Ausfiihrung des Befehls die aktuelle Pro-
grammspeicheradresse gesichert. Auch fiir das Beenden eines Unterprogramms wird ein
besonderer Befehl verwendet. Dieser Befehl sorgt dafiir, dass das Programm an der beim
Aufruf des Unterprogramms gespeicherten Programmspeicherposition fortgesetzt wird.

13.3.5 Spezialbefehle

Viele Mikroprozessoren stellen Befehle zur Verfiigung, die nicht einer der zuvor dis-
kutierten Befehlsklassen zugeordnet werden konnen. Ein Befehl dieser Klasse ist der
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NOP-Befehl (engl. no operation), der lediglich einen Befehlszyklus ausfiihrt, hierbei
jedoch weder Daten transportiert noch Daten in irgendeiner Weise verdndert. Dieser auf
den ersten Blick wenig sinnvoll erscheinende Befehl kann zum Beispiel fiir die Reali-
sierung einfacher Warteschleifen eingesetzt werden. Weiterhin besitzen viele Mikropro-
zessoren spezielle Befehle, die auf den jeweiligen Prozessor zugeschnitten sind und sich
nicht in allen typischen Prozessoren wiederfinden lassen.

13.4 Adressierung von Daten und Befehlen

Fiir die Ausfiihrung einer Operation mithilfe des Rechenwerks miissen zunichst die
benotigten Operanden bestimmt werden. Dies bedeutet, dass der auszufiihrende Befehl
Informationen dariiber enthalten muss, ob ein Operand zum Beispiel im Datenspeicher
des Systems zu finden ist und mit welcher Berechnungsvorschrift die Speicheradresse
des Operanden aus den im Befehl enthaltenen Informationen bestimmt werden soll. Die
von einem Mikroprozessor fiir die Adressierung zur Verfiigung gestellten Berechnungs-
vorschriften werden in der Regel als Adressierungsarten bezeichnet. In diesem Abschnitt
werden typische Adressierungsarten vorgestellt. Zur Vereinfachung bezieht sich die
Darstellung auf den Zugriff der Operanden eines Befehls. Die hier vorgestellten Adres-
sierungsarten konnen, mit Ausnahme der unmittelbaren Adressierung, ebenso fiir die
Adressierung beim Abspeichern des Ergebnisses eines Befehls verwendet werden.

13.4.1 Unmittelbare Adressierung

Die einfachste Adressierungsart ist die unmittelbare Adressierung. In diesem Fall wird
der Wert des zu verarbeitenden Operanden direkt als Teil des Befehls angegeben. Da
der Wert des Operanden somit Teil des ausgefiihrten Programms ist und sich wihrend
der Programmlaufzeit nicht dndert, wird diese Adressierungsart hiufig fiir Konstanten
verwendet.

Abb. 13.5 verdeutlicht die unmittelbare Adressierung, bei dem sich der Operand
direkt aus einem Teil des Befehlswortes ergibt. Das aus dem Programmspeicher gele-
sene Befehlswort ist hierbei abstrakt dargestellt. Insbesondere wurde auf die genauere
Darstellung der fiir die Adressierung irrelevanten Teile des Befehlswortes, wie zum Bei-
spiel die auszufiihrende Operation, verzichtet. Diese Teile des Befehlswortes sind dunk-
ler dargestellt.

Abb. 13.5 Unmittelbare Befehlswort

Adressierung / Z Operand |—» zHuertr:’henwerk
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13.4.2 Absolute Adressierung

Im Fall der absoluten Adressierung ist ebenfalls eine Konstante im Befehlswort abgelegt.
Diese wird jedoch anders als im Fall der unmittelbaren Adressierung nicht als Operand
sondern als Adresse interpretiert.

Dementsprechend wird diese Konstante auf dem Adressbus ausgegeben. Der adres-
sierte Wert wird aus dem Datenspeicher beziehungsweise einer Ein-/Ausgabekompo-
nente ausgelesen und dem Rechenwerk als Operand zugefiihrt (Abb. 13.6).

13.4.3 Indirekte Adressierung

Die indirekte Adressierung kann als eine Erweiterung der absoluten Adressierung aufge-
fasst werden. Die im Befehlswort codierte Konstante wird ebenfalls als Registerauswahl
interpretiert. Der in dem ausgewdhlten Register liegende Wert wird als Adresse verwen-
det wird.

In Abb. 13.7 ist das Grundprinzip der indirekten Adressierung dargestellt.

Die indirekte Adressierung kann auch mit einer Modifikation des verwendeten
Registers kombiniert werden. Dies ist sinnvoll, wenn ein Prozessor auf mehrere aufei-
nanderfolgende Adressen zugreifen soll. In der Regel ist die Adressmodifikation auf das
Inkrementieren (Erhohung des Wertes um 1) und Dekrementieren (Verringern um 1)
beschriankt. Da die Modifikation des Adressspeichers automatisch mit der Ausfiihrung
des zugehorigen Befehls stattfindet, spricht man auch von indirekter Adressierung mit
Auto-Inkrement beziehungsweise Auto-Dekrement.

Bei der Ausfiihrung eines Befehls, der die indirekte Adressierung mit Auto-Inkrement
beziehungsweise -Dekrement verwendet, wird einerseits der Datenspeicher adressiert
und andererseits ein Registerwert modifiziert. Die Reihenfolge dieser beiden Schritte

Abb. 13.6 Absolute (direkte) Datenspeicher
Adressierung Befehlswort

m Iz?uerghenwerk

Register Datenspeicher
Befehlswort /

Register zum
Adresse
auswahl Operand Rechenwerk

Abb. 13.7 Indirekte Adressierung
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ist theoretisch beliebig wihlbar. So konnte bei Verwendung eines Befehls mit Auto-
Inkrement zunidchst das Register inkrementiert werden. Der so erhaltene Wert konnte
anschlielend zur Adressierung des Operanden verwendet werden. Ebenso ist es denkbar,
dass der aus dem Register ausgelesene Wert direkt zur Adressierung verwendet und erst
anschlieend inkrementiert wird. Der erste Fall wird als Pre-Inkrement, der zweite Fall
als Post-Inkrement bezeichnet. Analog kann die indirekte Adressierung ebenso sowohl
mit Pre-Dekrement als auch Post-Dekrement implementiert werden. Abb. 13.8 und 13.9
stellen die indirekte Adressierung mit Post-Inkrement und Pre-Dekrement schematisch
dar.

Als eine weitere Variante der indirekten Adressierung setzen Mikroprozessoren viel-
fach die indirekte Adressierung mit Verschiebung ein. Bei Verwendung dieser Adressie-
rungsart ergibt sich die Adresse des Operanden aus der Summe des aus dem Registerwert
und eines Offsetwertes der als Konstante im Befehlswort abgelegt ist. Der so berechnete
Wert wird lediglich zur Adressierung verwendet. Eine Verdnderung des Adressspeichers,
wie sie bei der indirekten Adressierung mit Auto-Inkrement beziehungsweise Auto-
Dekrement erfolgt, findet hierbei nicht statt.

Dariiber hinaus kann der Offset, der bei der indirekten Adressierung verwendet
wird, auch in einem zur Laufzeit des Programms verdnderbaren Indexspeicher abgelegt
werden. In diesem Fall enthilt das Befehlswort neben der Registerauswahl auch eine
Adresse des Indexspeichers. Beide Speicher werden bei der Ausfiihrung des Befehls aus-
gelesen. Die Summe der beiden ausgelesenen Werte ergibt die Adresse des Operanden,
der dem Rechenwerk zugefiihrt wird. Diese Adressierungsart wird auch als indirekt indi-
zierte Adressierung oder kurz indizierte Adressierung bezeichnet (Abb. 13.10).

Register Datenspeicher

Befehlswort

Register
%
zum

Operand |»

Rechenwerk
Abb. 13.8 Indirekte Adressierung mit Post-Inkrement
Register Datenspeicher
Befehlswort
Register
_ Operand > Rechenwerk

Abb. 13.9 Indirekte Adressierung mit Pre-Dekrement
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Register Datenspeicher

Befehlswort

w7 Register
M Offset auswahl

zum
Rechenwerk

Adresse

Operand

Abb. 13.10 Indirekte Adressierung mit Verschiebung

13.4.4 Indirekte Adressierung mit dem Stackpointer

Eine der wichtigsten Anwendungen der indirekten Adressierung ist die Realisierung
eines Stapelspeichers (engl. Stack). Bei Verwendung eines Stapelspeichers ist die Adres-
sierung der Daten eingeschrinkt. Es gibt zu einem Zeitpunkt immer nur eine Position
innerhalb des Speichers, die gelesen oder beschrieben werden kann. Diese Eigenschaft
ist vergleichbar mit einem Papierstapel, auf dem nur ein neues Blatt oben auf dem Sta-
pel abgelegt werden kann oder nur das oberste Blatt entfernt werden kann. Durch diese
Analogie wird eine weitere wichtige Eigenschaft des Stapelspeichers deutlich: Bei einem
Lesezugriff wird der jeweils zuletzt geschriebene Wert vom Stapelspeicher gelesen,
genauso wie das zuletzt abgelegte Blatt als erstes von einem Papierstapel entfernt wer-
den wiirde.

Diese Eigenschaft des Stapelspeichers lésst sich besonders gut fiir Unterprogramm-
aufrufe nutzen, bei denen die aktuelle Befehlsadresse zwischengespeichert werden muss.
Wird bei dem Aufruf eines Unterprogramms die aktuelle Befehlsadresse auf einem Sta-
pelspeicher abgelegt, sind auch Unterprogrammaufrufe innerhalb eines Unterprogramms
einfach realisierbar. Beim Verlassen des zuletzt aufgerufenen Unterprogramms wird die
zuletzt abgespeicherte Programmspeicheradresse vom Stapelspeicher entfernt, und die
Programmausfiihrung wird mit dem aufrufenden Unterprogramm fortgesetzt. Die Ver-
schachtelungstiefe von Unterprogrammen ist somit lediglich durch die maximale Grof3e
des Stapelspeichers begrenzt.

Die Funktion eines Stacks lisst sich auf verschiedene Weisen realisieren. Fiir einen
typischen Prozessor wird meist eine Variante bevorzugt, bei der die auf dem Stack abge-
speicherten Werte im Datenspeicher abgelegt werden. Dariiber hinaus wird die aktuelle
Schreib-/Leseposition in einem besonderen Register der CPU, dem Stapelzeiger (engl.
Stackpointer), abgelegt.

Ublicherweise verweist der Stackpointer auf die Speicherstelle, die beim nichsten
Schreibzugriff tiberschrieben wird. Ein Schreibzugriff fiihrt dariiber hinaus zum Dekre-
mentieren des Stackpointers. Wiederholte Schreibzugriffe wiirden also zum Beschreiben
des Datenspeichers an niedrigeren Adressen fiihren. Dieses Verhalten wird hiufig auch
mit der Aussage ,,der Stack wichst nach unten* umschrieben. Fiir die Implementierung
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eines Stapelspeichers mithilfe eines Stapelzeigers kann die indirekte Adressierung mit
Auto-Inkrement beziehungsweise Auto-Dekrement eingesetzt werden. Ein Schreibzu-
griff erfolgt dann mithilfe einer indirekten Adressierung mit Post-Dekrement, wihrend
ein Lesezugriff die indirekte Adressierung mit Pre-Inkrement verwendet.

13.4.5 Befehlsadressierung

Fiir die Adressierung der abzuarbeitenden Befehle verwendet ein Mikroprozessor ein
besonderes Register, den sogenannten Programmzihler (Program Counter, PC). Der PC
wird vom Steuerwerk der CPU normalerweise mit der Abarbeitung eines Befehls inkre-
mentiert, sodass automatisch der jeweils nachfolgende Befehl im Programmspeicher
adressiert wird. Wird dagegen ein Sprungbefehl ausgefiihrt, muss die Adressierung des
Programmspeichers entsprechend modifiziert werden. Hierzu werden von den meisten
Mikroprozessoren eine absolute Adressierung, eine relative Adressierung und eine indi-
rekte Adressierung zur Verfiigung gestellt. Zur Unterscheidung zwischen Datenadressie-
rung und Befehlsadressierung werden diese Adressierungsarten auch als PC-absolute,
PC-relative oder PC-indirekte Adressierung bezeichnet.

Im Fall der absoluten Adressierung wird der Programmzéhler mit einer im Sprungbe-
fehl angegebenen Konstanten geladen. Die Programmausfiihrung wird somit an der Posi-
tion fortgesetzt, die durch die Konstante festgelegt ist.

Die relative Adressierung verwendet ebenfalls eine im Befehlswort abgelegte Kons-
tante. Die Summe aus dieser Konstanten und dem aktuellen PC ergibt den neuen Pro-
grammzihler. Wihrend die absolute Adressierung also einen Befehl ausfiihrt, der sich
mit ,,springe zu Programmspeicheradresse XYZ* umschreiben ldsst, fiihrt die PC-rela-
tive Adressierung einen Befehl aus, der mit ,,springe um XYZ Programmspeicheradres-
sen‘“ beschrieben werden kann.

Im Fall der PC-indirekten Adressierung wird der neue Wert des PCs, dhnlich der
indirekten Datenadressierung, aus einem Adressspeicher ausgelesen und in den Pro-
grammzihler iibertragen. Die auszulesende Position des Adressspeichers wird hierbei als
Konstante im Befehlswort angegeben.

13.5 MaBnahmen zur Steigerung der Rechenleistung

Die Aufgabe eines Mikroprozessors ist es, eine moglichst hohe Rechenleistung unter
gegebenen Randbedingungen (Kosten, Verlustleistung, usw.) zur Verfiigung zu stellen.
In den folgenden Abschnitten werden technische Moglichkeiten aufgezeigt, die zu einer
Steigerung der Rechenleistung von Mikroprozessoren eingesetzt werden konnen.
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13.5.1 Erhohung der Taktfrequenz

Da Mikroprozessoren als synchrone Systeme realisiert werden, ist es ein naheliegender
Ansatz, die Taktfrequenz des Systems zu erhohen. Mit der Erhchung der Taktfrequenz
lasst sich eine annidhernd proportionale Steigerung der Rechenleistung erzielen.

Es muss jedoch beriicksichtigt werden, dass die Moglichkeit zur Erhohung der Takt-
frequenz fiir einen Mikroprozessor begrenzt ist. Wird die Dauer eines Taktzyklus iiber
eine kritische Grenze hinaus verringert, konnen Fehlfunktionen auftreten. Diese kriti-
sche Grenze ergibt sich aus dem kritischen Pfad, also der maximal auftretenden Signal-
laufzeit zwischen zwei Flip-Flops des Systems. Eine Moglichkeit, diese Signallaufzeit
zu verringern, stellt das sogenannte Pipelining dar, welches in Abschn. 13.5.3 fiir Mik-
roprozessoren erlautert wird. Dariiber hinaus ist zu beachten, dass bei Verwendung von
CMOS-Technologien, wie sie heute fiir die Realisierung von Mikroprozessoren verwen-
det werden, die dynamische Verlustleistung proportional zur Taktfrequenz ansteigt. Die-
ser Effekt kann ebenfalls zu einer Limitierung der maximal verwendbaren Taktfrequenz
fiihren.

13.5.2 Parallelitat

Eine Erhohung der Rechenleistung kann auch erzielt werden, indem mehrere Opera-
tionen gleichzeitig ausgefiihrt werden. Dies kann sowohl durch parallele Einheiten im
Rechenwerk als auch durch die Verwendung mehrerer Mikroprozessoren ermdoglicht
werden.

Im Idealfall steigt die verfiigbare Rechenleistung proportional zu der im Rechenwerk
implementierten Parallelitdt. In der Praxis wird dieser theoretische Anstieg meist nicht
erreicht. Programme bilden in der Regel sequenzielle Verarbeitungsschritte ab. Inwieweit
diese Verarbeitungsschritte, entgegen der vom Programmierer vorgegebenen sequenzi-
ellen Abarbeitungsreihenfolge, auch zeitgleich ausgefiihrt werden konnen, ist sehr stark
vom Programm abhéngig. Im ungiinstigsten Fall muss fiir jede Operation die jeweils vor-
angegangene Operation abgearbeitet werden, da zum Beispiel das Ergebnis der ersten
Operation als Operand fiir den nachfolgenden Befehl benotigt wird. In diesem Fall kann
die Parallelitdt des Rechenwerks nicht ausgenutzt werden und es wire keine Erhohung
der Rechenleistung erreichbar.

Geht man davon aus, dass ein Programm aus ideal parallelisierbaren (die bendtigte
Rechenzeit verhilt sich anndhernd umgekehrt proportional zur eingesetzten Parallelitit)
und nicht-parallelisierbaren Anteilen besteht, kann der Rechenleistungsgewinn durch die
folgenden Formel angeben werden:

G+
(s +p/N)

mit: G — Rechenleistungsgewinn (engl. Speedup)
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p — Durch Parallelverarbeitung beschleunigter Programmanteil

s —Anteil des Programms mit konstanter Rechenzeit

N — Parallelitit des Systems, zum Beispiel Anzahl paralleler Operationen

Die Grundlagen zu dieser Betrachtung wurden erstmals von Gene M. Amdahl formu-
liert und sind als Amdahl’s Law in die Geschichte der Computerwissenschaft eingegan-
gen. Auch wenn diese Betrachtung starke Vereinfachungen vornimmt, macht sie dennoch
deutlich, dass bereits ein geringer Anteil an nicht-parallelisierbaren Programmteilen zu
einer signifikanten Begrenzung des realisierbaren Rechenleistungsgewinns fiihren kann.

Dariiber hinaus erfordert der sinnvolle Einsatz paralleler Einheiten, dass diese mit den
jeweils zu verarbeitenden Daten versorgt werden. Hierzu wird hiufig ein hoher schal-
tungstechnischer Aufwand benétigt, der zusétzlich zu dem Aufwand der benétigten par-
allelen Einheiten erforderlich wird.

Dartiber hinaus miissen in den Befehlsworten des Prozessors entweder mehrere Ope-
rationen codiert werden oder es miissen mehrere Befehle gleichzeitig verarbeitet wer-
den konnen, was zu einer weiteren Erhohung des Realisierungsaufwands fiihrt. Diese
Ansitze werden als Very-Long-Instruction-Word-Architekturen (VLIW) beziehungsweise
superskalare Architekturen bezeichnet

Parallele Rechenwerke werden im Bereich der PC-Prozessoren eingesetzt, mit sepa-
raten Rechenwerken fiir Integer- und Floating-Point-Operationen. Bei PC-Prozessoren
haben sich Multi-Core-Systeme durchgesetzt, bei denen mehrere Prozessoren in einem
Gehduse integriert werden. Diese Form der Rechenleistungserhohung wurde notwendig,
da sich die zuvor verfolgte Strategie einer mit jeder Prozessorgeneration steigenden Takt-
frequenz aus technologischen Griinden nicht mehr durchhalten lief3.

13.5.3 Pipelining

Eine weitere Moglichkeit zur Erhohung der Rechenleistung ist der Einsatz von Pipe-
lining, welches im deutschen Sprachraum auch hiufig mit FlieBbandverarbeitung tiber-
setzt wird.

Das Grundprinzip der FlieBfbandverarbeitung in der industriellen Produktion ist,
dass an verschiedenen Stationen spezialisierte Teilaufgaben durchgefiihrt werden. Nach
Durchlaufen aller Stationen ist das Endprodukt fertiggestellt. Da hierbei immer mehrere
Stationen gleichzeitig aktiv sind, kann die Fliebandverarbeitung auch als eine beson-
dere Form der Parallelverarbeitung aufgefasst werden. Der Unterschied zu der im vor-
angegangenen Abschnitt beschriebenen Form der Parallelverarbeitung ist jedoch, dass
im Fall des Pipelinings jede Station nur einen ausgewéhlten Teil der gesamten Verarbei-
tungsaufgabe ausfiihrt und das so erhaltene Arbeitsergebnis an die nachfolgende Station
weiterreicht. Dieses Grundprinzip wird in Mikroprozessoren bei Befehlsabarbeitung
eingesetzt.

In Abschn. 13.2 wurden die einzelnen Schritte zur Verarbeitung eines Befehls exem-
plarisch vorgestellt. Hierbei wurde die Verarbeitung eines Befehls durch die Ausfiihrung
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von 5 Teilschritten vorgenommen. Ohne Einsatz von Pipelining wiirden alle Teilschritte
eines Befehls durchlaufen bevor die Ausfiihrung des nachfolgenden Befehls begonnen
wird. Nimmt man vereinfachend an, dass alle Teilschritte eine identische Verarbeitungs-
zeit T bendtigen, wiirde die Bearbeitung eines Befehls also 57’ erfordern.

Wird dagegen jeder Teilschritt durch eine eigenstindige Einheit ausgefiihrt, kann jede
dieser Einheiten nach Bearbeitung eines Teilschritts sofort mit der Ausfiihrung des nach-
folgenden Befehls beginnen. Im Idealfall besitzen alle Verarbeitungsschritte identische
Verzogerungszeiten. Dann kann bereits nach der Zeit T, die Verarbeitung eines neuen
Befehls mit dem ersten Teilschritt beginnen kann, wihrend fiir den vorangegangenen
Befehl zeitgleich der zweite Teilschritt ausgefiihrt wird.

In Abb. 13.11 ist der zeitliche Verlauf der Verarbeitung von Befehlen ohne und mit
Einsatz von Pipelining dargestellt. Zum Zeitpunkt # = 0 beginnt in beiden Fillen die
Ausfithrung des ersten Befehls. Wird Pipelining verwendet, kann bereits zum Zeitpunkt
t =T mit der Ausfiihrung eines weiteren Befehls begonnen werden. Zum Zeitpunkt
t = 5Ty ist fiir beide Fille die erste Instruktion komplett abgearbeitet. Bei Verwen-
dung von Pipelining ist zu diesem Zeitpunkt bereits die Verarbeitung von vier weiteren
Befehlen begonnen worden, wihrend ohne Einsatz von Pipelining erst die Ausfiihrung
des zweiten Befehls begonnen wird. Betrachtet man einen lingeren Zeitraum, ldsst sich
beobachten, dass bei Verwendung von Pipelining 5-mal mehr Instruktionen pro Zeitein-
heit verarbeitet werden. Die Rechenleistung wird also um den Faktor 5 gesteigert.

ohne Pipelining

Berehi 1| F | D | R| E| W

Befehl 2 FlolrlE]|wW
Befehl 3 Flolr|E]|w]|
Befehl1| F| D | R| E | W
Befehl 2 FID|R|E}|W mit Pipelining
Befehl 3 FID|R|E|W
Befehl 4 FIDIR|E|W
Befehl 5 FIDIR|E|W
Befehl 6 FIDIRIEW
tV
0 Ts 5Ts
F  Fetch - Befehlausdem Programmspeicher holen
D Decode — Befehldekodieren
R Read - Operandenlesen
E Execute — Operationausfiihren
W Write — Ergebnisabspeichern

Abb. 13.11 Zeitlicher Verlauf der Befehlsverarbeitung mit und ohne Pipelining
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Der schaltungstechnische Aufwand zur Realisierung einer einfachen Befehlspipeline
ist moderat. Im einfachsten Fall ist es ausreichend die einzelnen Stufen der Befehlsaus-
fiihrung durch Flip-Flops (sog. Pipeline-Register) zu entkoppeln. Auf diese Weise kann
in jedem Taktzyklus die Ausfiihrung eines neuen Befehls gestartet werden.

Auf den ersten Blick mag der Einsatz von Pipelining als ein sehr effizientes Mittel
zur Steigerung der Rechenleistung erscheinen. In der Tat setzen die meisten der heute
verfiigbaren Prozessoren Pipelining ein. Dennoch wird in der Praxis meist nicht ein
zu der Anzahl der Pipelinestufen proportionaler Rechenleistungsgewinn erzielt. Der
ausschlaggebende Grund fiir diesen Effekt ist das Bestehen von Abhingigkeiten
zwischen den Befehlen, die zeitgleich verarbeitet werden. Exemplarisch soll dies im
Folgenden anhand der Datenabhingigkeit zweier Instruktionen verdeutlicht werden:
Wird ein Befehl ausgefiihrt, der als Operanden das Ergebnis des vorangegangenen
Befehls benotigt, fiihrt dies zu einem Konflikt. Erst wenn die vorangegangene
Instruktion die W-Stufe durchlaufen hat, kann das Ergebnis von der R-Stufe als
Operand fiir einen nachfolgenden Befehl gelesen werden. Betrachtet man zwei
aufeinanderfolgende Befehle, wird deutlich, dass der zweite Befehl die R-Stufe bereits
durchlaufen hat, wenn sich der erste Befehl in der W-Stufe befindet (vgl. Abb. 13.12).
Ohne weitere Maflnahmen zu ergreifen, wiirde der zweite Befehl somit einen veralteten,
falschen Wert als Operanden einlesen.

Die einfachste Moglichkeit diesen Konflikt aufzuldsen, besteht darin, die Ausfiihrung
des zweiten Befehls zu verzogern. So wird sichergestellt, dass der zweite Befehl die
R-Stufe erst durchlduft nachdem der erste Befehl in der W-Stufe verarbeitet wurde
(vgl. Abb. 13.13). Diese Verzogerung der Befehlsausfiihrung fiihrt jedoch zu einer
Verringerung der pro Zeiteinheit verarbeiteten Befehle, was somit zu einer Verringerung
der Rechenleistung fiihrt. Moderne Prozessoren setzen daher verschiedene komplexe
MaBnahmen zur Verringerung des negativen Einflusses der Abhidngigkeit zwischen

gereni 1| F | D[R] E| W

4

Befehl 2 |F|D RlElwl

Ergebnis des Befehls 1
steht in Register zur Verfligung

Ergebnis des Befehls 1
wird von Befehl 2 bendtigt

v

Abb. 13.12 Beispiel eines Konfliktes bei der Befehlsabarbeitung
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Ergebnis des Befehls1
stehtin Register zur Verfligung

Befehl 2 |F|D| R|E|W|

Ergebnis des Befehls1
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Abb. 13.13 Auflosung eines Pipelinekonfliktes durch Verzogerung der Befehlsabarbeitung

aufeinanderfolgenden Befehlen ein. Dennoch kann auch durch diese Mafinahmen keine
vollige Elimination der Rechenleistungsverringerung erzielt werden, sodass auch in
diesen Fillen die real erzielbare Rechenleistung unterhalb des theoretisch ermittelten
Wertes ohne Beriicksichtigung von Befehlsabhingigkeiten bleibt.

13.5.4 Befehlssatzerweiterungen

Fiir die Frage, ob eine bestimmte Aufgabenstellung von einem bestimmten Mikropro-
zessor bearbeitet werden kann, ist die Wahl des Befehlssatzes dieses Prozessors rela-
tiv unbedeutend. Stellt sich jedoch die Frage nach der Rechenleistung des Prozessors,
kommt der Wahl des Befehlssatzes dagegen eine zentrale Bedeutung zu. Bereits in
Abschn. 13.3.2 wurde am Beispiel der Multiplikation verdeutlicht, dass die Verwen-
dung eines Multiplikationsbefehls die Rechenleistung eines Prozessors erhohen kann.
Entsprechendes gilt fiir den Einsatz einer Floating-Point-Unit zur Beschleunigung von
Gleitkommaoperationen. Durch den Einsatz einer Gleitkommaeinheit konnen Fliefkom-
maberechnungen um ein bis zwei Gréenordnungen schneller durchgefiihrt werden.

Das Prinzip, den Befehlssatz auf das Anwendungsgebiet zu optimieren,
muss nicht auf grundlegende Operationen wie Multiplikation, Division oder
Gleitkommaoperationen beschriankt werden. Viele Mikroprozessoren stellen sogenannte
Befehlssatzerweiterungen zur Verfiigung. So wurde beispielsweise Mitte der 1990er
Jahre die MMX-Befehlssatzerweiterung von der Firma Intel fiir PC-Prozessoren
eingefiihrt. Eines der Ziele war es, durch diese Erweiterung eine fliissige Wiedergabe von
Videosequenzen zu erreichen. In den darauffolgenden Jahren wurden die Erweiterungen
des Befehlssatzes unter dem Namen SSE (Streaming SIMD Extensions) fortgefiihrt.
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Andere Prozessorhersteller haben ebenso verschiedenste Befehlssatzerweiterungen
entwickelt und mit unterschiedlichen Bezeichnungen auf dem Markt etabliert.

Spezielle Befehle zur Unterstiitzung typischer Operationsfolgen lassen sich nicht nur
in PC-Prozessoren finden. Selbst Mikroprozessoren der unteren Preisklasse setzen das
Prinzip der Befehlssatzerweiterung ein. Die im nachfolgenden Kapitel vorgestellte AVR-
CPU besitzt beispielsweise besondere Befehle zum Setzen oder Loschen einzelner Bits.

13.6 Grundlegende Mikroprozessorarchitekturen

Fiir den Entwurf und die Auswahl eines Mikroprozessors stellen sich viele Fragen, die
die Architektur des Prozessors beeinflussen. Einige dieser Fragestellungen sind:

e Welche Wortbreite wird fiir die Daten- und Adressbusse verwendet?

e Welche Wortbreite besitzt das Rechenwerk, und ist eine Floating-Point-Unit zur
Beschleunigung von Gleitkommaoperationen vorhanden?

e Welche Befehle werden unterstiitzt?

e Wie werden die Befehle binér codiert und welche Wortbreite wird fiir die Codierung
der Befehle verwendet?

e In welchem Umfang sind innerhalb der CPU Speicherelemente, zum Beispiel zum
Abspeichern von Zwischenergebnissen vorhanden?

e In welchen Teilschritten werden die Befehle abgearbeitet?

e In welchem Umfang wird Pipelining fiir die Befehlsausfiihrung eingesetzt?

e Wie werden Parameter wie Rechenleistung, Kosten und Verlustleistung ausbalanciert?

e Welche Halbleitertechnologie wird fiir die Realisierung verwendet?

Anhand dieser Auswahl von Fragestellungen wird deutlich, dass fiir den Entwurf eines
Mikroprozessors eine Vielzahl von Freiheitsgraden existiert, die zu unterschiedlichen
architektonischen Varianten fiihrt. Trotz dieser Detailvielfalt konnen Mikroprozessoren
in zwei grundlegende Architekturklassen eingeteilt werden, deren Eigenschaften in den
folgenden Abschnitten niher beleuchtet werden.

13.6.1 CISC

Die Abkiirzung CISC steht fiir Complex Instruction Set Computer und bezeichnet Pro-
zessoren, bei denen angestrebt wird, Befehle mit einer moglichst groen Funktionalitéit
zur Verfligung zu stellen.

CISC-Prozessoren zeichnen sich durch einen groflen Befehlsumfang und eine
grofle Anzahl unterschiedlicher Adressierungsarten aus. Die Wortbreite der einzelnen
Befehle eines CISC-Prozessors variiert, sodass fiir die Ausfithrung der Befehle eine
unterschiedliche Anzahl von Programmspeicherzugriffen erforderlich ist. Diese
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Eigenschaft, sowie die unterschiedliche Komplexitit der Befehle, fithren dazu, dass die
Abarbeitung eines Befehls in der Regel mehrere Taktzyklen erfordert. Die Anzahl der
benotigten Taktzyklen variiert bei typischen CISC-Prozessoren zudem in Abhidngigkeit
vom Befehl. Typische Beispiele fiir CISC-Architekturen sind die Prozessorfamilien 808x
und 80x86 der Firma Intel oder die Prozessoren der 680x0-Serie der Firma Motorola.

CISC-Prozessoren wurden bis in die 1990er Jahre erfolgreich vermarktet. Durch die
Fortschritte der Halbleitertechnologie wurden hohere Integrationsdichten und kiirzere
Verzogerungszeiten der verwendeten Logik- und Speicherelemente ermdglicht. Insbe-
sondere durch die sinkende Zugriffszeit der Speicher war es nicht mehr nétig mit einem
Befehl moglichst viele Funktionen auszufiihren. Dies brachte einen der Hauptgriinde fiir
die Verwendung von CISC-Prozessoren ins Wanken und fiihrte dazu, dass die Bedeutung
der CISC-Prozessoren abnahm.

13.6.2 RISC

Im Lauf der 1980er Jahre wurden zahlreiche Studien zu Architekturen von Mikroprozes-
soren durchgefiihrt, die unter anderem zeigten, dass viele der komplexen Befehle eines
CISC-Prozessors nur zu einem geringen Anteil in praktischen Programmen verwendet
wurden. Die meisten Programme nutzen nur einen kleinen Anteil des Befehlssatzes, vor-
rangig die einfach strukturierten Befehle des Prozessors. Diese Beobachtung fiihrte zu
einem Architekturansatz, der als RISC (Reduced Instruction Set Computer) bezeichnet
wird. Typische RISC-Prozessoren zeichnen sich durch die folgenden Eigenschaften aus:

Limitierter Befehlssatz

Es werden nur die am hiufigsten benétigten Grundbefehle implementiert, wobei auf
komplexe Adressierungsarten verzichtet wird. Dies ist sowohl fiir den Aufwand als auch
im Hinblick auf die Taktfrequenz von Vorteil.

Instruktionspipelining

Durch die Reduktion des Befehlssatzes wird gleichzeitig der Einsatz von Instruktions-
pipelining vereinfacht. Hierbei wird angestrebt, in jedem Taktzyklus des Prozessors die
Bearbeitung eines neuen Befehls zu beginnen.

Load/Store-Architektur

Zum Austausch von Daten mit dem Speicher oder Ein-/Ausgabekomponenten wer-
den Befehle eingesetzt, die nur einen Transport der Daten zwischen Speicher und den
Arbeitsregistern der CPU durchfiihren (load, store). Auf die Moglichkeit, innerhalb eines
Befehls sowohl den Datentransport als auch eine arithmetisch-logische Operation auszu-
fiihren, wird im Gegensatz zu typischen CISC-Prozessoren, verzichtet.
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Relativ hohe Registeranzahl

RISC-Prozessoren besitzen meist deutlich mehr Register als CISC-Prozessoren. Die
wihrend der Abarbeitung eines Programms anfallenden Zwischenergebnisse konnen so
innerhalb des Prozessors abgelegt werden. Die Anzahl fiir zusétzliche Befehle zum Able-
gen der Zwischenergebnisse im Datenspeicher kann auf diese Weise reduziert werden.

Universell verwendbare Register

Die CPU-internen Register konnen sowohl fiir die Verarbeitung von Daten als auch zur
Berechnung von Adressen verwendet werden. Eine Unterscheidung zwischen Daten- und
Adressregistern, wie sie teilweise bei CISC-Prozessoren verwendet wurde, findet nicht
statt.

Einfache Befehlscodierung

Um die Decodierung eines Befehls zu vereinfachen und damit zu beschleunigen, wird
eine einheitliche Codierung der Befehle angestrebt. Hierbei wird das Befehlswort in der
Regel in einzelne Felder unterteilt, in denen unabhingig vom Befehl, immer die gleiche
Information (zum Beispiel die auszufiihrende Operation oder die fiir die Operation zu
verwendenden Register) gespeichert ist.

13.6.3 RISC und Harvard-Architektur

Wie im vorigen Abschnitt beschrieben, ist eine wesentliche Eigenschaft von RISC-Pro-
zessoren die Verwendung von Instruktionspipelining zur Verarbeitung von Befehlen.
Der Einsatz von Instruktionspipelining ermoglicht eine Erhohung des Befehlsdurchsat-
zes (Anzahl der verarbeiteten Befehle pro Taktzyklus), da in jedem Taktzyklus mehrere
unterschiedliche Befehle in den einzelnen Stufen der Pipeline verarbeitet werden. Wird
ein RISC-Prozessor auf Basis einer Von-Neumann-Architektur implementiert, ergibt
sich ein Engpass, durch die Verwendung eines gemeinsamen Speichers fiir Befehle und
Daten.

Dieser Engpass entsteht, da bei Verwendung von Instruktionspipelining in jedem
Taktzyklus die Ausfithrung eines neuen Befehls gestartet werden kann. Dabei wird mit
jedem Taktzyklus ein Zugriff auf den Speicher ausgefiihrt. Werden Befehle ausgefiihrt,
die einen Zugriff auf den Datenspeicher ausfiihren, fiihrt dies zu einem Konflikt:
Innerhalb eines Taktzyklus miisste sowohl der Zugriff auf die Befehle des Programms
als auch der Zugriff auf die im gemeinsamen Programm- und Datenspeicher abgelegten
Daten erfolgen. Der gemeinsame Speicher fiir Daten und Befehle einer Von-Neumann-
Architektur ermoglicht jedoch nur einen Zugriff, entweder auf Daten oder auf Befehle.
Somit miissen die Zugriffe auf Daten und Befehle in unterschiedlichen Taktzyklen
erfolgen. Es kann also nicht mehr in jedem Taktzyklus ein Zugriff auf die Befehle des
Programms erfolgen und der Befehlsdurchsatz sowie die erzielbare Rechenleistung
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werden reduziert. Der beschriebene Engpass der Von-Neumann-Architektur wird auch
als ,, Von-Neumann-Bottleneck “ bezeichnet.

Es ist moglich, einen RISC-Prozessor auf Basis einer Von-Neumann-Architektur
zu realisieren, sofern die beschriebene Reduktion der Rechenleistung fiir das
Anwendungsgebiet des Prozessors tolerierbar ist. Ist es dagegen das Ziel, einen
moglichst hohen Befehlsdurchsatz zu erzielen, ist es sinnvoll, den Speicherkonflikt
durch Realisierung getrennter Speicher fiir Befehle und Daten aufzulosen. Dieser
architektonische Ansatz wird als Harvard-Architektur bezeichnet. Die Struktur eines
Mikrorechnersystems auf Basis einer Harvard-Architektur ist in Abb. 13.14 dargestellt.
Der Programmspeicher der in Abb. 13.14 Architektur kann beispielsweise als
nichtfliichtiger Flashspeicher realisiert werden. Der Datenspeicher wird dagegen meist
auf Basis eines fliichtigen SRAMs realisiert.

In der Regel bendtigen Programme Konstanten, die beim Start des Programms
definierte Werte enthalten. Einerseits handelt es sich bei diesen Konstanten um Daten,
die somit im fliichtigen Datenspeicher abgelegt werden miissen, der jedoch nach dem
Einschalten der Versorgungsspannung keine definierten Werte enthélt. Daher werden die
Konstanten zusammen mit dem Programm im Flashspeicher abgelegt und stehen sofort
nach dem FEinschalten des Systems zur Verfligung. Zu Beginn des Programms werden
die Konstanten aus dem Flashspeicher in den Datenspeicher kopiert. Fiir diesen initialen
Kopiervorgang muss der Programmspeicher jedoch wie ein Datenspeicher betrieben
werden. Da dies nicht dem reinen Grundkonzept einer Harvard-Architektur entspricht,
werden Architekturen mit getrennten Daten- und Programmspeichern, die einen

Programm-Speicher
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Zugriff auf den Programmspeicher
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Abb. 13.14 Struktur eines Mikrorechners auf Basis einer Harvard-Architektur

Daten-Speicher
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datenorientierten Zugriff auf den Programmspeicher erlauben, auch als modifizierte
Harvard-Architektur bezeichnet.

Die Idee, Daten und Befehle in getrennten Speichern abzulegen, um eine mdoglichst
hohe Rechenleistung zu erzielen, mag einfach erscheinen. Allerdings wurde dieser
Ansatz von ersten integrierten Mikrorechnersystemen nicht verwendet. Bei typischen
CISC-Prozessoren, wie sie insbesondere in den 1970er bis 1990er Jahren realisiert wur-
den, tritt kein Zugriffskonflikt auf, da ein Befehl immer komplett abgearbeitet wird,
bevor die Verarbeitung des nachfolgenden Befehls gestartet wird. Dariiber hinaus ist die
Realisierung getrennter Speicher aufwendiger und kann die Kosten des Systems erhohen.
Erst bei Einsatz von Instruktionspipelining, welches zuerst in Spezialprozessoren fiir die
digitale Signalverarbeitung (Digitale Signalprozessoren, DSP) eingesetzt wurde, wurden
getrennte Speicher fiir Daten und Befehle fiir die Realisierung von Mikrorechnersyste-
men eingesetzt. Spater wurden die zunidchst CISC-basierten Standardprozessoren mehr
und mehr durch RISC-Prozessoren ersetzt. Als Folge des hierbei verwendeten Instruk-
tionspipelinings bekam die Harvard-Architektur eine immer grofere Bedeutung fiir die
Realisierung integrierter Mikroprozessoren und Mikrorechnersysteme.

13.7 Mikrocontroller

Mikrocontroller sind integrierte Mikrorechnersysteme, die neben einer CPU auch Spei-
cher, Ein-/Ausgabeeinheiten sowie weitere fiir den Betrieb des Systems notwendige
Komponenten, beispielsweise die Takterzeugung, enthalten. Durch die Integration des
Systems auf einem Mikrochip kann die Verwendung von externen Komponenten auf ein
Minimum reduziert werden. Auf diese Weise lassen sich kostengiinstige Mikrorechner
realisieren.

Beim Entwurf und Einsatz von Mikrocontrollern stehen iiblicherweise die Kosten
des Controllers und die Verlustleistung im Vordergrund. Daher besitzen Mikrocontrol-
ler eine deutlich geringere Rechenleistung als sie zum Beispiel von Prozessoren fiir den
PC-Markt zur Verfiigung gestellt werden. Auch wenn dies auf den ersten Blick als ein
Nachteil erscheinen mag, darf nicht vergessen werden, dass Mikrocontroller hiufig fiir
Anwendungen mit relativ geringen Rechenleistungen eingesetzt werden.

Sehr deutlich wird der Vorteil von Mikrocontrollern, wenn die Kosten eines Control-
lers mit dem eines PC-basierten Systems verglichen werden. Ein PC-basiertes System
mit CPU, Speicher und Hauptplatine kostet mehrere hundert Euro, wihrend Mikrocon-
troller fiir wenige Euro, teilweise sogar fiir Preise unterhalb eines Euros, erhiltlich sind.

Mikrocontroller werden in vielen eingebetteten Systemen des Alltags eingesetzt. Sie
iibernehmen die Steuerung von Haushaltsgeriten, Fernsehgeriten, Kraftfahrzeugen, von
industriellen Anlagen oder auch Medizingeriten.

Viele Halbleiterhersteller bieten Mikrocontroller mit unterschiedlichen Eigenschaf-
ten an. Anbieter von Mikrocontrollern sind (in alphabetischer Reihenfolge) die Firmen
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Atmel, Fujitsu, Infineon, Microchip, NEC, NXP, Renesas, Texas Instruments und ST
Microelectronics.

Einige der wichtigsten Unterscheidungskriterien, die bei der Auswahl eines Control-
lers zu beachten sind, werden im Folgenden vorgestellt:

Wortbreite des Rechenwerks

Typische Mikrocontroller des unteren Preissegmentes setzen Rechenwerke mit einer
Wortbreite von 8 bit ein. Controller fiir hohere Rechenleistungen verwenden Rechen-
werke mit einer Breite von 32 bit. Dariiber hinaus werden auch 16-Bit-Mikrocontroller
angeboten.

Verwendete CPU

Die Wahl des Prozessors stellt einen entscheidenden Faktor fiir die Leistungsfihigkeit
des Systems dar. Dariiber hinaus kann es von praktischer Bedeutung sein, dass die Con-
troller fiir unterschiedliche Produkte eines Unternehmens die gleiche CPU verwenden.
Auf diese Weise kann das einmal erworbene Know-how sowie Entwurfssoftware auch
fiir Folgeprodukte effizient eingesetzt werden.

Taktfrequenz
Mikrocontroller arbeiten mit relativ geringen Taktfrequenzen, die sich im Bereich von
einigen MHz bis hin zu einigen hundert MHz bewegen.

GroBe des eingebetteten Speichers

Haufig wird der Programmspeicher als Flashspeicher und der Datenspeicher als SRAM
zusammen mit der CPU integriert. Hierbei variiert die Grofle dieser Speicher zwischen
wenigen kByte bis zu mehreren hundert kByte.

Eingebettete Schnittstellen

Wihrend alle Mikrocontroller Moglichkeiten zur einfachen programmgesteuerten digita-
len Ein-/Ausgabe besitzen, werden dariiber hinaus weitere sehr unterschiedliche Schnitt-
stellen in Hardware zur Verfiigung gestellt.

Der grundsitzliche Aufbau eines Mikrocontrollers ist in Abb. 13.15 dargestellt. Die
Komponenten eines Mikrocontrollers umfassen einen Mikroprozessor (CPU), Speicher
fiir Programme und Daten und Ein-/Ausgabeeinheiten.

Die Ein- und Ausgabe von digitalen Daten wird bei allen Mikrocontrollern mithilfe
sogenannter Ports unterstiitzt. Ports sind digitale bidirektionale Anschliisse des Control-
lers, die sowohl als Eingidnge als auch als Ausginge genutzt werden konnen. Die Aus-
wahl, ob ein bestimmter Anschluss als Eingang oder Ausgang genutzt wird, erfolgt iiber
das Programm, welches von der CPU ausgefiihrt wird. Dariiber hinaus erfolgt auch die
Ein-/Ausgabe durch die Software, sodass Ports sehr universell einsetzbar sind.
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Abb. 13.15 Architektur eines Mikrocontrollers

CPU Ports

In vielen Abwendungsfillen muss ein Mikrocontroller iiber standardisierte digitale
Schnittstellen mit anderen Komponenten eines Systems oder externen Geriten
kommunizieren. Grundsitzlich kann diese Kommunikation mithilfe von Ports realisiert
werden, indem das jeweilige Schnittstellenprotokoll in Software implementiert wird.
Durch diesen Ansatz wird jedoch ein bestimmter Anteil der CPU-Rechenleistung
fiir die SW-basierte Implementierung des Schnittstellenprotokolls benoétigt, sodass
die zur Verfiigung stehende Rechenleistung fiir die eigentliche Applikation reduziert
wird. Um diesen Nachteil zu vermeiden, bieten Mikrocontroller verschiedene digitale
Schnittstellen (zum Beispiel USB oder Ethernet) als integrierte Hardwaremodule an.
Diese Schnittstellen implementieren das Protokoll zur Dateniibertragung in HW und
entlasten so die CPU des Controllers, die lediglich die zu sendende Daten bereitstellen
beziehungsweise empfangene Daten von der Schnittstelle abholen muss.

Dariiber hinaus enthalten viele Mikrocontroller Schnittstellen, die der Erweiterung
des auf dem Controller integrierten Speichers dienen und mit externen SRAM- oder
SDRAM-Speicherbausteinen kommunizieren konnen. Neben der digitalen Ein-/Ausgabe
ermoglichen viele Mikrocontroller das Einlesen oder Ausgeben analoger Werte durch
integrierte A/D- beziehungsweise D/A-Umsetzer.

Eine weitere typische Mikrocontrollerkomponente sind die sogenannten Timer, die im
deutschen Sprachgebrauch zum Teil auch als Zeitgeber bezeichnet werden. Im Grunde
handelt es sich bei Timern um integrierte Zihler, die entweder mit einem internen
Takt des Controllers oder mit einem von auflen zugefiihrten Takt betrieben werden
konnen. In Abhidngigkeit vom Zidhlerstand konnen verschiedene, programmierbare
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Ereignisse ausgelost werden. Zum Beispiel kann bei Erreichen eines vorprogrammierten
Zihlerstands der Ausgabewert einer der Controlleranschliisse invertiert werden, wodurch
sich ein Rechtecksignal erzeugen ldsst. In der Regel ldsst sich das erzeugte Signal
in Frequenz und Tastverhiltnis mit geringem Softwareaufwand modifizieren. Timer
werden fiir praktische Anwendungen hiufig eingesetzt. Sie erlauben unter anderem
den regelmifBigen Aufruf von Unterprogrammen sowie die zeitliche Vermessung von
Signalen.

Mikrocontroller verfiigen dariiber hinaus iiber eine integrierte Hardwareeinheit zur
Takterzeugung, die das Taktsignal fiir den Betrieb des Controllers generiert. Die Aus-
wahl der erzeugten Taktfrequenz erfolgt mithilfe weniger externer Komponenten, zum
Beispiel mithilfe eines externen Quarzes oder eines RC-Gliedes. Die meisten Mikro-
controller besitzen daneben die Moglichkeit, den Systemtakt durch einen integrierten
Oszillator zu erzeugen. In diesem Fall kann auf externe Komponenten vollig verzichtet
werden.

Wird fiir eine Anwendung eine moglichst exakte Taktfrequenz bendtigt, empfiehlt
sich die Verwendung eines externen Quarzes. Die internen Oszillatoren konnen in der
Regel eine Frequenzabweichung von einigen Prozent aufweisen und sind auch im Hin-
blick auf die Temperaturstabilitit einem quarzbasierten Oszillator unterlegen.

Mikrocontroller sind also integrierte Schaltkreise, die alle notwendigen Komponen-
ten eines Rechners beinhalten. Auf Basis von Mikrocontrollern lassen sich sehr einfach
kostengiinstige programmierbare Systeme realisieren, deren Einsatzgebiet nahezu unbe-
grenzt ist.

13.8 Ubungsaufgaben

In den folgenden Aufgaben werden einige Themen dieses Kapitels aufgegriffen. Die
Losungen der Aufgaben finden Sie am Ende des Buches.
Sofern nicht anders vermerkt, ist nur eine Antwort richtig.

Aufgabe 13.1
Welche Aussagen zu Adressrdumen sind korrekt? (Mehrere Antworten sind richtig)

a) Bei Memory-Mapped-Adressierung besitzen Speicher und Ein-/Ausgabe unterschied-
liche Adressrdume.

b) Bei Port-Mapped-Adressierung besitzen Speicher und Ein-/Ausgabe gemeinsame
Adressriume.

¢) Bei Memory-Mapped-Adressierung besitzen Speicher und Ein-/Ausgabe gemeinsame
Adressrdume.

d) Bei Port-Mapped-Adressierung besitzen Speicher und Ein-/Ausgabe unterschiedliche
Adressraume.
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Aufgabe 13.2
Wie wird die Adressierungsart bezeichnet, bei der die Speicheradresse direkt aus dem
Befehlswort iibernommen wird?

a) Unmittelbare Adressierung

b) Absolute Adressierung

c¢) Indirekte Adressierung

d) Indirekte Adressierung mit Verschiebung

Aufgabe 13.3
Welche Adressierungsarten verwenden einen ,,Adressspeicher (zum Beispiel CPU-
Register)? (Mehrere Antworten sind richtig)

a) Unmittelbare Adressierung

b) Absolute Adressierung

c¢) Indirekte Adressierung

d) Indirekte Adressierung mit Verschiebung

Aufgabe 13.4
Mit welchen MaBlnahmen kann die Rechenleistung eines Mikroprozessors gesteigert
werden? (Mehrere Antworten sind richtig)

a) Erhohung der Taktfrequenz
b) Spezialbefehle

c¢) Instruktions-Pipelining

d) VLIW

Aufgabe 13.5
Was ist der wesentliche Unterschied zwischen einer Von-Neumann- und einer
Harvard-Architektur?

a) Die Harvard-Architektur kann nur fiir CISC-Prozessoren eingesetzt werden.

b) Die Von-Neumann-Architektur verwendet Flash als Instruktionsspeicher, die typische
Harvard-Architektur dagegen SRAM

c) Die Harvard-Architektur besitzt getrennte Speicher fiir Instruktionen und Daten.

d) Die Harvard-Architektur unterstiitzt weniger Befehle als die Von-Neumann-Architektur.
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Mikrocontroller sind kleine Rechnersysteme, die in einem Baustein alles beinhalten, was
zur Realisierung eines Computers benotigt wird: Sie enthalten eine CPU, Speicher und
auch Ein-/Ausgabeeinheiten. Die Vorteile eines Mikrocontrollers sind die kompakte Bau-
form und der giinstige Preis. Mikrocontroller werden in unterschiedlichsten, meist kos-
tensensitiven, Anwendungen eingesetzt. Ein typisches Einsatzgebiet sind Steuerungs- und
Regelungsanwendungen. In Threr Waschmaschine sorgt beispielsweise ein Mikrocontrol-
ler dafiir, dass Sie ein Waschprogramm auswihlen konnen. Er regelt die Wassertempera-
tur und steuert unter anderem die Elektronik fiir den Trommelmotor und die Pumpen an.
Die Hersteller von Mikrocontrollern bieten eine relativ grole Produktpalette an. Meis-
tens werden die Produkte eines Herstellers in Familien unterteilt. Die Produkte einer sol-
chen Familie besitzen in der Regel die gleiche CPU, unterscheiden sich aber im Hinblick
auf die Speicherkapazitit oder die integrierten Ein-/Ausgabekomponenten. Aufgrund dieser
Produktvielfalt kann der Anwender den Controller auswihlen, der im Hinblick auf die tech-
nischen Eigenschaften und die Kosten optimal fiir das geplante Einsatzgebiet geeignet ist.
Dieses Kapitel bietet einen Einstieg in die Technik der Mikrocontroller. Der Mikro-
controller ATmega32 aus der AVR-Familie des Herstellers Atmel wird exemplarisch
vorgestellt. Die hier vorgestellten Grundprinzipien lassen sich auf zahlreiche andere
Mikrocontrollern iibertragen und sind nicht auf die AVR-Familie beschrinkt.

14.1 Die Mikrocontroller-Familie AVR

Die AVR-Mikrocontroller sind relativ einfach strukturiert und eignen sich gut fiir erste
Lernschritte im Bereich der Mikrorechnertechnik. Viele der AVR-Mikrocontroller wer-
den in DIP-Gehédusen (Dual-Inline-Package) angeboten, die sich gut fiir vertiefende
Experimente auf einem Steckbrett eignen.
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Alle Controller der AVR-Familie basieren auf einem RISC-Mikroprozessor, der eine
zweistufige Befehlspipeline besitzt. Das Rechenwerk der CPU hat eine Wortbreite von
8 bit. Die Firma Atmel unterteilt die Mikrocontroller der AVR-Familie in mehrere Grup-
pen, von denen drei im Folgenden kurz vorgestellt werden.

tinyAVR

Die tinyAVR-Mikrocontroller zeichnen sich durch eine kleine Gehiduseform mit weni-
gen Anschliissen aus. Viele der im DIP-Gehéduse angebotenen Controller besitzen 8 oder
14 Anschliisse, wovon jeweils 2 fiir die Spannungsversorgung verwendet werden. Die
Controller konnen mit einer Spannung zwischen 1,8 und 5,5 V betrieben werden. Der
Programmspeicher ist, wie bei allen Controllern der AVR-Familie, als Flashspeicher
ausgefiihrt. Die Grofie dieses Speichers liegt fiir tinyAVR-Controller meist zwischen 1
und 8 kByte. Zur Speicherung von Daten stehen ein SRAM und ein EEPROM zur Ver-
fligung, deren Grofle 64 bis 512 Byte betriigt. Alle Controller besitzen mindestens einen
Timer und mindestens eine Schnittstelle zur seriellen digitalen Dateniibertragung. Fiir
das Einlesen analoger Werte stehen teilweise AD-Umsetzer zur Verfiigung.

megaAVR

Die Mikrocontroller der megaAVR-Serie sind umfangreicher ausgestattet als die
tinyAVR-Controller. Sie besitzen einen groferen Flash-Programmspeicher, dessen
Grofe zwischen 8 und 256 kByte liegt. Zur Speicherung von Daten stehen SRAM- oder
EEPROM-Speicher mit einer Gréf3e von bis zu 4 kByte zur Verfiigung. Dariiber hinaus
besitzen die Controller der megaAVR-Serie mindestens zwei Timer und verfiigen iiber
eine groflere Anzahl digitaler Schnittstellen als die tinyAVR-Controller.

Die in den megaAVR-Controllern verwendete CPU besitzt einen Hardware-Multipli-
zierer, der eine schnelle Multiplikation von 8 bit breiten Operanden ermdglicht.

Als ein Beispiel fiir die Controller der megaAVR-Serie ist die Pinbelegung des Mikro-
controllers ATmega32 in Abb. 14.1 dargestellt. Dieser Controller besitzt einen Flash-Pro-
grammspeicher der GrofBe 32 kByte, 2 kByte SRAM und 1 kByte EEPROM-Speicher,
sowie diverse eingebettete Peripheriekomponenten.

Der ATmega32 besitzt 32 Portanschliisse (PAO-PA7, PBO-PB7, PCO-PC7 und PDO-
PD7), deren Funktion durch das ausgefiihrte Programm festgelegt wird. Die weite-
ren Anschliisse dienen der Stromversorgung (VCC, AVCC und GND) oder kdnnen zur
Erzeugung des Systemtaktes (XTALI, XTAL2) oder zum Riicksetzen des Controllers in
den Einschaltzustand (/Reset) verwendet werden. Die in Klammern angegebenen Pinbe-
zeichnungen beziehen sich auf die sogenannten alternativen Portfunktionen. Per Soft-
ware kann ausgewdhlt werden, ob die Anschliisse direkt tiber die Software gesteuert
werden sollen (Funktion als Ein-/Ausgabe-Ports) oder ob sie als Anschliisse fiir einge-
bettete Peripheriekomponenten eingesetzt werden.

Aufgrund seines relativ grolen Programmspeichers und einer groen Anzahl per Soft-
ware steuerbarer Anschliisse eignet sich der ATmega32 gut fiir die Durchfiihrung prakti-
scher Experimente.
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Abb. 14.1 Pinbelegung des
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AVR XMEGA

Einer der vielen Unterschiede der AVR-XMEGA-Serie zu den zuvor vorgestellten AVR-
Serien ist der Einsatz eines DMA-Controllers (Direct Memory Access) in Kombination
mit dem sogenannten Event-System. Diese Module ermoglichen unter anderem einen
Datenaustausch zwischen den Komponenten des Systems, ohne die CPU mit dem eigent-
lichen Datentransfer zu belasten. Die Controller der XMEGA-Serie besitzen einen bis zu
384 kByte groflen Flash-Programmspeicher und einen bis zu 32 kByte grofen SRAM-
Speicher, welcher bei einigen XMEGA-Controllern durch externen Speicher erweitert
werden kann.

14.2 Programmierung von Mikrocontrollern

Die Programmierung von Mikrocontrollern kann in Assembler oder in einer Hoch-
sprache erfolgen. Bei der Programmierung in Assembler besteht das Programm aus
Befehlen, die genau wie im Programm angegeben, von der CPU ausgefiihrt werden.
Diese Art der Programmierung hat verschiedene Vorteile: So kann zum Beispiel die
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Ausfithrungszeit des Programms bereits wihrend der Entwicklung exakt bestimmt wer-
den. Dariiber hinaus konnen Assemblerprogramme im Hinblick auf die Ausfiihrungszeit
und die Programmgrofe (Flash-Speicherbedarf) optimiert werden.

Um Assembler-Programme schreiben zu konnen, ist eine genaue Kenntnis des
Befehlssatzes der eingesetzten CPU erforderlich. Diese Notwendigkeit wird bei Ein-
satz einer Hochsprache vermieden, da der Compiler das Umsetzen des Quellcodes in die
Befehle der CPU iibernimmt. Der Einsatz einer Hochsprache vereinfacht daher die Pro-
grammierung und Programme konnen in kiirzerer Zeit realisiert werden als bei einer Pro-
grammierung in Assembler. Die Optimierung der CPU-Befehle wird dann vom Compiler
tibernommen. Obwohl heutige Compiler eine gute Codeoptimierung durchfiihren, ist bei
der Verwendung einer Hochsprache nicht gewéhrleistet, dass das Ergebnis das Optimum
im Hinblick auf Rechenzeit und Speicherbedarf darstellt. Dennoch wird der Praxis die
Programmierung in C/C++ in vielen Fillen der Programmierung in Assembler vorgezo-
gen, da die Produktivitit bei der Programmentwicklung im Vordergrund steht.

Im Rahmen dieses Kapitels wird am Beispiel des AVR-Mikrocontrollers ATmega32
auf die Programmierung sowohl in Assembler als auch in C eingegangen. Die Beschif-
tigung mit der Programmierung in Assembler ermdglicht unter anderem ein tieferes Ver-
standnis der Funktionsweise eines Mikroprozessors.

Grundsitzlich besitzen Mikrocontrollerprogramme die gleichen Elemente wie die Pro-
gramme, die Sie vielleicht bereits auf einem PC entwickelt haben. Es gibt Funktionen, Ver-
zweigungen, Schleifen usw. Einer der grofiten Unterschiede zwischen einem typischen
PC-Programm und einem Mikrocontrollerprogramm ist, dass das Hauptprogramm des Cont-
rollers eine Endlosschleife enthilt. Dass dies so sein muss, wird plausibel, wenn ein typisches
Anwendungsgebiet eines Mikrocontrollers anschaut: Die Steuerung einer Waschmaschine.

Stellen Sie sich vor, Sie schalten IThre Waschmaschine ein. Das Programm des Mikro-
controllers in der Steuereinheit wird gestartet und fragt die Bedienknopfe ab. Das Pro-
gramm ist aber wahrscheinlich schneller als Sie. Noch bevor Sie einen Taster des
Bedienfeldes driicken konnen, stellt das Programm fest, dass offensichtlich nichts zu tun
ist (es wurde ja kein Taster gedriickt) und wird beendet. Thre Waschmaschine wire mit
einer solchen Steuerung nicht gut bedienbar.

Statt das Programm nach der ersten Abfrage des Bedienfeldes zu beenden, miissen
die Taster und Schalter kontinuierlich abgefragt werden. Mit der Auswahl eines Wasch-
programms wird der Mikrocontroller der Steuereinheit in ein entsprechendes Unterpro-
gramm verzweigen, welches die Sensorik (Wasserstand, Wassertemperatur, usw.) abfragt
und die Aktorik (Pumpe, Heizung, usw.) ansteuert. Nach dem Beenden des Unterpro-
gramms wird wieder zur Abfrage des Bedienfeldes zuriickgekehrt. Das Mikrocontroller-
Programm wird also bis zum Abschalten der Waschmaschine laufen und muss damit eine
Endlosschleife enthalten.

Die typische Grundstruktur eines Mikrocontrollerprogramms besteht aus zwei Tei-
len: Zu Beginn des Programms wird die Initialisierung des Systems ausgefiihrt und die
Peripheriekomponenten initialisiert. Ist die Initialisierung abgeschlossen, werden die
Eingangswerte des Controllers in einer Endlosschleife iiberpriift und gegebenenfalls
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neue Ausgangswerte berechnet, die anschliefend iiber die Ausgabeeinheiten ausge-
geben werden. Dieser Grundstruktur folgen sowohl Assemblerprogramme als auch
Hochsprachenprogramme.

14.2.1 Programmierung in Assembler

Im Gegensatz zu einem Hochsprachenprogramm darf in jeder Zeile eines Assemblerpro-
gramms maximal ein CPU-Befehl stehen.

CPU-Befehle bestehen aus einer Bitkombination, die im Programmspeicher des
Rechners abgelegt werden. Da jedoch niemand ein Programm schreiben mochte, das
aus einer Textdatei mit Nullen und Einsen besteht, werden CPU-Befehle in einer fiir den
Menschen lesbaren Form angegeben. Hierzu werden die Befehle als Mnemonics (Kiirzel,
die meist aus 1 bis 4 Buchstaben bestehen) angegeben. Nach dem Befehlskiirzel werden
zu verarbeitenden Operanden angeben.

Fiir die AVR-CPU kann man den Befehl zur Addition der Werte in den Arbeitsregis-
tern r5 und 7 in bindrer Form so schreiben:

0000110001010111
Deutlich besser lesbar ist diese Variante:
add r5, r7

Hier wird der Befehl als Mnemonic angegeben und sowohl die ausgefiihrte Operation
als auch die verwendeten Operanden sind leicht erkennbar.

Neben den Mnemonics werden Thnen in Assemblerprogrammen auch Label (Mar-
ken) begegnen. Mithilfe von Labeln wird eine Codezeile mit einem Symbol versehen,
das im Programm eingesetzt werden kann. Im Verlauf dieses Kapitels werden Sie einige
Beispiele fiir die Verwendung von Labels kennenlernen. Daher wird hier zunéchst ledig-
lich der Sprung in ein Unterprogramm als ein Beispiel fiir die Verwendung eines Labels
dargestellt:

; Hier wird das Unterprogramm durch ein Label markiert

my add_up:
add r5, r7 ; Dieses einfache Unterprogramm fiihrt eine Addition aus
ret ; Der "Return"-Befehl

; bewirkt die Rilckkehr in das Hauptprogramm
; Das Hauptprogramm. In diesem Beispiel wird es auch markiert
main:
- ; Hier stehen weitere Befehle
call my_add up ; Mit diesem Befehl wird das UP aufgerufen ..
; und anschlieBBend der hier stehende Code ausgefiihrt
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Das Programm, welches die Umsetzung des Assemblercodes in die fiir den Rechner
lesbare Form (also Nullen und Einsen) iibersetzt, wird als Assembler bezeichnet. Eine
Codeoptimierung, wie sie Hochsprachencompiler durchfiihren, findet bei der Uberset-
zung nicht statt.

14.2.2 Programmierungin C

Ein wesentlicher Aspekt der Mikrocontrollerprogrammierung ist der Zugriff auf die
eingebettete Peripherie. Um beispielsweise einen digitalen Wert an einem Mikrocont-
rolleranschluss ausgeben zu konnen, muss die CPU den Ausgabewert in Registern der
Peripheriekomponenten ablegen. Zwei wichtige Aspekte, die fiir die Mikrocontroller-
Programmierung in C wichtig sind, werden in diesem Abschnitt vorgestellt.

14.2.2.1 Zugriff auf Peripheriekomponenten
Viele Mikrocontroller verwenden Memory-Mapped-1/O (vgl. Kapitel 13) um Zugriffe auf
die Komponenten, zum Beispiel Ein-/Ausgabe-Einheiten, zu ermoglichen. Auf die Periphe-
rie kann dann genauso wie auf den Datenspeicher zugegriffen werden. Auf welche Kompo-
nente zugegriffen wird, ergibt sich aus der verwendeten Adresse. Wihrend es fiir ,,normale*
Variablen vollig egal ist, an welcher Stelle sie im Speicher abgelegt werden, ist es fiir einen
Peripheriezugriff essenziell, genau die richtige Adresse anzusprechen. Man muss also, im
Gegensatz zu typischen PC-Programmen, dem Compiler vorschreiben, auf welche Adresse
er zugreifen soll. Dies ldsst sich relativ einfach mithilfe von Zeigern realisieren.

Nehmen wir an, Sie mochten auf eine Peripheriekomponente zugreifen, die unter der
Adresse 234 erreichbar. Ein entsprechender Programmausschnitt, welcher der Periphe-
riekomponente den Wert 7 iibergibt, kann dann wie folgt aussehen.

// Zeiger definieren und initialisieren
// AnschlieBend verweist der Zeiger auf die gewilinschte Adresse
volatile char *periph_ptr = (char *) 234;

// Der Peripheriekomponente einen Wert ilibergeben

// Hierzu wird an die Adresse, auf die der Zeiger verweist,
// der gewiinschte Wert abgelegt

*periph_ptr = 7;

In dem Programm wird ein Zeiger angelegt und mit der gewiinschten Adresse initiali-
siert. Der Zugriff auf die Peripheriekomponente erfolgt dann durch die Dereferenzierung
des Zeigers im unteren Teil des Beispielcodes. Mithilfe des Schliisselwortes volatile wird
der Compiler angewiesen, bei Verwendung des Zeigers keine Optimierung anzuwenden.

Warum dies wichtig ist, kann anhand eines einfachen Beispiels erldutert werden. Neh-
men wir an, Ihr Mikrocontroller besitzt eine Peripheriekomponente, mit welcher der Aus-
gangswert eines Portanschlusses festgelegt werden kann. Schreibt man in ein Register der
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Komponente den Wert 1, wird eine 1 am Ausgang ausgegeben; wird eine 0 geschrieben
erscheint am Ausgang der Wert 0. Mithilfe dieser Komponente mochten Sie nun einen
kurzen Impuls ausgeben. Ein entsprechender Programmausschnitt wiirde so aussehen:

*output_ptr = 0; // Wir gehen ganz sicher: Erst mal eine 0 ausgeben
*output_ptr = 1; // Eine 1 erscheint am Ausgang

*output_ptr = 0; // Aber nicht lange: Wir setzen den Ausgang wieder
auf 0

Aus Sicht des Compilers gibt es nur Speicherstellen. Der Compiler kennt keine Peri-
pherie. Was wiirde also ein optimierender Compiler mit diesem Codeausschnitt tun?

Nun, der Compiler wiirde annehmen, dass die ersten beiden Zeilen iiberfliissig sind,
da am Ende in der (vermeintlichen) Speicherstelle, auf die der Zeiger output_ptr ver-
weist, eine Null stehen wird. Die ersten beiden Zeilen miissten aus Sicht des Compilers
also nicht ausgefiihrt werden. Daher wird der Compiler diese Zeilen ignorieren und so
die Rechenzeit des Programms reduzieren.

Fiir einen Datenspeicher wire dieses Verhalten des Compilers korrekt und wiin-
schenswert. Fiir den Zugriff auf eine Peripheriekomponente muss die Optimierung
dagegen unterbunden werden, da andernfalls kein 1-Impuls am Ausgang des Controllers
erscheint. Daher werden Zeiger auf Peripheriekomponenten stets mit dem C-Schliissel-
wort volatile definiert.

In der Praxis muss man die Zeiger nicht selbst definieren. Die Hersteller von Mik-
rocontrollern stellen in der Regel Header-Dateien bereit, in denen die entsprechenden
Definitionen bereits enthalten sind. Bei dem in diesem Kapitel vorgestellten AVR-Mikro-
controller ist dies die Datei io.h.

14.2.2.2 Setzen und Loschen von Bits

Hiufig sind in einem Register einer Peripheriekomponente mehrere unterschiedliche
Informationen zusammengefasst. Die einzelnen Bits des Registers besitzen also eine
unterschiedliche Wirkung. In vielen Fillen mochte man daher nur einzelne Bits eines
Registers modifizieren.

Nehmen wir zum Beispiel an, dass iiber den oben verwendeten Zeiger output_ptr der
Ausgangswert von 8 Mikrocontrolleranschliissen festgelegt werden kann. Jedem Bit des
Peripherieregisters, auf das output_ptr verweist, ist genau ein Portausgang des Control-
lers zugeordnet.

Nehmen wir an, Sie mochten am Anschluss 3 eine 1 ausgeben. Hierzu muss also das
Bit 3 des Registers gesetzt werden. Nehmen wir dariiber hinaus an, dass die anderen
Ausgabewerte unveridndert bleiben sollen. Es darf also nur das Bit 3 des Registers modi-
fiziert werden.

Dies lésst sich durch eine bitweise ODER-Verkniipfung, in C/C++ der Operator |,
des Registerwertes mit dem Wert 8 (Bit 3 ist gesetzt, alle anderen Bits sind Null) errei-
chen. In C kann dies so erfolgen:
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// Beispiel flir das Setzen eines Bits

char tmp;

tmp = *output_ptr; // aktuellen Registerwert holen

tmp = tmp | 8; // Bit 3 setzen -- Achtung! Dies ist ein bitweises
ODER

// Nicht mit dem logischen ODER verwechseln: ||
*output_ptr = tmp; // und wieder in das Register schreiben

In C/C++ kann man dies auch in einer Zeile schreiben:
*output_ptr |= 8; // Bit 3 setzen - die kurze Variante

Um das beeinflusste Bit noch deutlicher im Code sichtbar zu machen wird hiufig eine
andere Variante fiir die Angabe der verwendeten Konstante gewéhlt:

*output_ptr |= 1<<3; // Hier sieht man besser welches Bit gesetzt wird

Die Schreibweise I<<3 mag auf den ersten Blick ungewdhnlich aussehen. Vielleicht
wirkt es umstéindlich, eine 1 um 3 Stellen nach links zu schieben, um so die Konstante 8 zu
erhalten. Dennoch wird diese Schreibweise bevorzugt bei der Mikrocontrollerprogrammie-
rung eingesetzt, da das modifizierte Bit explizit angegeben wird. Der Code ist besser lesbar.

Um einzelne Bits zu 16schen wird die bitweise UND-Verkniipfung (Operator &)
verwendet. Die UND-Verkniipfung mit einer Konstanten, die nur an einer Bitposi-
tion eine Null enthélt uns ansonsten Einsen, 16scht genau ein Bit und ldsst die anderen
unangetastet.

Mochte man das Bit 3 16schen, bendtigt man den invertierten Wert von 1<<3. In C
wird die bitweise Invertierung durch den Operator ~ realisiert. Der Code fiir das Loschen
des Bits 3 sieht also so aus:

*output_ptr &= ~(1<<3); // Die Klammern sind wichtig, da sonst zuerst
// die Invertierung und dann das Schieben
// ausgefiihrt wird - und das wédre falsch

Im Fall des AVR sind in der Headerdatei io.h viele Konstanten definiert, welche die
Bitposition einzelner Peripherieregister enthalten. Im Datenblatt des Controllers findet
man beispielsweise ein Register mit der Abkiirzung TCCR1B. Unter anderem enthélt
dieses Register ein Bit, das mit der Bezeichnung WGM 12 abgekiirzt wird (was diese Bit
bewirkt, wird spéter vorgestellt). Nach Einbinden der Headerdatei io.h kann dieses Bit
mit der folgenden Zeile gesetzt werden:

TCCR1B |= 1<<WGM12; // Setzen des Bits WGM12 im Register TCCRI1B
// so man muss nicht die genaue Position
// dieses Bits im Kopf haben



14.3 Die AVR-CPU 433

Es konnen auch mehrere Bits mit einer einzelnen Zuweisung gesetzt werden. Mit
der nachfolgenden Codezeile werden beispielsweise die Bits TWINT, TWSTA und
TWEN im Register TWCR gesetzt. Alle anderen Bits des Registers bleiben unverindert.

TWCR |= (1<<TWINT) | (1<<TWSTA) | (1<<TWEN) ;

14.3 Die AVR-CPU

Der Mikroprozessor der AVR-Controller ist eine RISC-CPU, die auf einer Harvard-
Architektur basiert. Der Prozessor beinhaltet 32 Arbeitsregister mit einer Wortbreite von
8 bit, die sowohl fiir arithmetisch-logische Operationen als auch fiir Adressberechnungen
eingesetzt werden konnen. Diese Register werden als r0,r1,..., r30, r31 bezeichnet. Da
die CPU auf einer Load/Store-Architektur basiert, konnen arithmetisch-logische Opera-
tionen nur mit Daten ausgefiihrt werden, die sich in den Arbeitsregistern befinden. Fiir
das Laden der Register beziehungsweise das Abspeichern von Registerwerten stehen ent-
sprechende Transferbefehle zur Verfiigung.

Neben den Arbeitsregistern enthilt der Mikroprozessor der AVR-Controller die fol-
genden Register:

Programmzihler (Program Counter, PC)

Der Programmzihler enthilt die Adresse des als nichsten auszufiihrenden Befehls und
besitzt eine Wortbreite, die es ermoglicht, den gesamten Programmspeicher des jeweili-
gen Controllers zu adressieren.

Statusregister

Das Statusregister besitzt eine Wortbreite von 8 bit. Jedes dieser Bits wird auch als Flag
bezeichnet. Die Flags enthalten unter anderem Informationen iiber die ausgefiihrten Ope-
rationen (zum Beispiel Auftreten arithmetischer Uberliufe).

Stackpointer
Der Stackpointer (Stapelzeiger) ist ein Register, welches die aktuelle SRAM-Adresse des
Stapels enthilt.

Befehlsregister
Das Befehlsregister dient der Zwischenspeicherung des aus dem Programmspeicher aus-
gelesenen Befehls. Das Befehlsregister ist bei der Programmierung nicht sichtbar und
der Inhalt kann nicht durch Befehle modifiziert werden.

Der Mikroprozessor enthélt dariiber hinaus ein Steuerwerk, welches die Decodierung
der Befehle vornimmt und CPU-interne Steuersignale zur Verarbeitung eines Befehls
generiert. Das Rechenwerk des AVR-Prozessors enthilt eine 8-Bit-ALU, welche die in
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den Befehlen codierten arithmetischen und logischen Operationen ausfiihrt. Die prinzipi-
elle Struktur des AVR-Mikroprozessors ist in Abb. 14.2 dargestellt.

Die Befehle der CPU werden in 16 bit breiten Worten des Programmspeichers
abgelegt. Der Mikroprozessor der AVR-Controller arbeitet die Befehle mithilfe einer
zweistufigen Befehlspipeline ab. In der ersten Pipelinestufe wird ein Befehl aus dem Pro-
grammspeicher ausgelesen. In der zweiten Stufe wird der Befehl ausfiihrt.

Die Mehrheit der arithmetischen Befehle benétigt fiir die Ausfithrung der zweiten
Pipelinestufe lediglich einen Taktzyklus. Da der nachfolgende Befehl bereits wihrend
der Ausfiihrung des aktuellen Befehls eingelesen wird, kann ein Befehlsdurchsatz von
bis zu einem Befehl pro Taktzyklus erreicht werden.

Die meisten Load- und Storebefehle sowie die Sprungbefehle benétigen fiir die Ver-
arbeitung mehrere Taktzyklen. Hierbei wird die Befehlspipeline des AVR angehalten,
sodass der Befehlsdurchsatz bei Verwendung dieser Befehle absinkt.

Bei der Ausfiihrung eines Befehls wird in vielen Fillen der Inhalt des Statusregisters
beriicksichtigt. Aus diesem Grund wird im Folgenden zundchst das Statusregister der
CPU betrachtet. Im Anschluss daran werden die Befehle der AVR-CPU vorgestellt.

Das Statusregister (vgl. Tab. 14.1) besitzt eine Wortbreite von 8 bit und beinhaltet die
nachfolgend erlduterten Flags.

I-Flag
Mithilfe des Interrupt-Flags konnen Interrupts freigegeben (I = 1) oder gesperrt werden
I=0).

Interne AVR CPU

Steuersignale

e

Statusregister

(SREG) Rechenwerk
Befehlsdecoder (ALU)

& Steuerung

i L

Arbeitsregister Stackpointer

Programmzahler (10 .. r31) (SP)

Befehlsregister

(PC)

32 x 8 bit
Befehle Adressen Adressen & Daten

(vom Programmspeicher) (zum Programmspeicher) (zum/vom Datenspeicher)

Abb. 14.2 Struktur der AVR-CPU
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Tab. 14.1 Statusregister der AVR-CPU

Bit 7 Bit 6 Bit5 Bit 4 Bit3 Bit 2 Bit 1 Bit 0

I T H S v N zZ C

Interrupt- | Bit-Transfer- | Half- Sign-Flag | Overflow- | Negative- |Zero-Flag | Carry-

Flag Flag Carry-Flag Flag Flag Flag
T-Flag

Das T-Flag kann als Bitspeicher aufgefasst werden. Es kann durch Befehle geloscht und
gesetzt werden. Dariiber hinaus kann es fiir die Ausfithrung von bedingten Spriingen
abgefragt werden.

Im Gegensatz zum I-Flag und T-Flag beziehen sich alle weiteren Flags auf arithmeti-
sche Operationen.

Z-Flag
Ist das Ergebnis einer Operation Null, wird dies durch ein gesetztes Zero-Flag (Z = 1)
signalisiert.

N-Flag
Das Negative-Flag ist die Kopie des hochstwertigen Bits des Ergebnisses, da dieses Bit
bei Zahlen in Zweierkomplementdarstellung das Vorzeichen reprisentiert.

C-Flag

Mithilfe des Carry-Flags wird gekennzeichnet (C = 1), ob bei einer vorzeichenlosen
Operation ein Uberlauf, also ein Verlassen des darstellbaren Zahlenbereichs aufgetreten
ist. Dariiber hinaus wird das C-Flag bei Schiebe- oder Rotationsbefehlen eingesetzt.

V-Flag
Das Overflow-Flag signalisiert mit V = 1 einen Uberlauf bei vorzeichenbehafteten Ope-
rationen wie der Addition oder der Subtraktion.

S-Flag

Ein Uberlauf bei einer Zweierkomplementoperation fiihrt dazu, dass das hochstwertige
Ergebnisbit nicht das korrekte Vorzeichen enthilt (vgl. Kapitel 2). Somit kann durch das
N-Flag in diesem Fall nicht das Vorzeichen des Ergebnisses bestimmt werden. Aus die-
sem Grund bietet die AVR-CPU ein weiteres Flag an: Mithilfe des Sign-Flags wird das
wahre Vorzeichen, auch bei einem aufgetretenen Zweierkomplementiiberlauf, angege-
ben. Das S-Flag ergibt sich aus der Exklusiv-Oder-Verkniipfung des N- und des V-Flags.
Durch diese Verkniipfung enthilt das S-Flag im Fall eines Uberlaufs (V = 1) das inver-
tierte N-Flag, wihrend es eine Kopie des N-Flags enthilt, wenn kein Uberlauf aufgetre-
ten ist.
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H-Flag
Das Half-Carry-Flag wird gesetzt (H = 1), wenn bei einer vorzeichenlosen Ope-
ration ein Uberlauf aus dem niederwertigen in das hoherwertige Halbbyte auftritt.
Das H-Flag ist zum Beispiel fiir Rechenoperationen mit Zahlen in BCD-Darstellung
sinnvoll.

14.4 Der AVR-Befehlssatz

Dieser Abschnitt gibt eine Ubersicht iiber den Befehlssatz der AVR-CPU. Mithilfe von
arithmetischen und logischen Befehlen werden Arbeitsregister der CPU modifiziert.
Transferbefehle werden genutzt um Daten aus den Registern in die Peripheriekomponen-
ten oder den Speicher zu iibertragen, beziechungsweise um Daten aus den Systemkom-
ponenten in die Arbeitsregister zu transferieren. Eine weitere Gruppe sind die Befehle,
die zur Steuerung des Programmablaufs genutzt werden. Mithilfe dieser Befehle konnen
Spriinge, Verzweigungen und Schleifen realisiert werden.

14.4.1 Arithmetische und logische Befehle

Als Operanden fiir die arithmetischen und logischen Befehle konnen die Arbeitsregis-
ter verwendet werden. Die AVR-CPU verwendet ein sogenanntes Zwei-Adress-Format.
Das bedeutet, dass maximal zwei Operanden durch einen Befehl adressiert werden. Das
Ergebnis der ausgefiihrten Operation wird hierbei in einem der beiden Operandenregister
abgelegt und der darin gespeicherte Wert wird iiberschrieben. Exemplarisch kann dies
anhand des Additionsbefehls verdeutlich werden. Der Befehl add r7,r12 fiihrt eine Addi-
tion der Inhalte der Register 7 und r/2 aus. Die Summe der beiden Operanden wird
anschlielend im erstgenannten Register 7 abgelegt.

Dariiber hinaus kann fiir einige Befehle auch die unmittelbare (engl. immediate)
Adressierung verwendet werden. In diesem Fall ist der zweite Operand eine 8 bit breite
Konstante, welche im Befehlswort abgelegt wird. Soll beispielsweise die Konstante 17
vom Inhalt des Registers 23 subtrahiert werden, kann dies mithilfe des Befehls subi
r23,17 erfolgen. Der Buchstabe i ist hierbei das Kiirzel fiir immediate.

Fiir alle Befehle, die eine unmittelbare Adressierung verwenden, gilt die Einschrén-
kung, dass sie nur mit der oberen Hilfte des Arbeitsregistersatzes, also mit 7/6 bis r31,
verwendet werden konnen. Der Grund hierfiir ist die Beschrinkung der Befehlswort-
breite auf 16 bit. Da die Konstante bereits 8 Bit belegt und fiir die Codierung der aus-
zufiihrenden Operation weitere 4 Bit benotigt werden, verbleiben lediglich 4 Bit zur
Codierung des Arbeitsregisters, womit nicht alle 32 Register adressiert werden konnen.

Bei vielen Mikrocontrollern der AVR-Serie werden auch einige Befehle mit Operan-
den der Wortbreite 16 bit unterstiitzt. Da die Arbeitsregister der AVR-CPU eine Wort-
breite von 8 bit besitzen, werden die Operanden aus zwei aufeinanderfolgenden Registern



14.4 Der AVR-Befehlssatz 437

(Registerpaare) gebildet. Das Register mit dem niedrigeren Index enthilt hierbei die unte-
ren 8 Bit, das Register mit dem hoheren Index die oberen 8 Bit des Operanden.

In Tab. 14.2 sind die wichtigsten arithmetischen und logischen Befehle der AVR-CPU
zusammengefasst.

Die Flags des Statusregisters konnen auch direkt durch Befehle gesetzt oder geloscht
werden (Tab. 14.3).

14.4.2 Transferbefehle

Die bisher vorgestellten arithmetischen und logischen Befehle dienen der Verarbeitung
von Daten, die in den Arbeitsregistern der CPU abgelegt sind. Fiir einen Datenaustausch
zwischen den Arbeitsregistern und anderen Komponenten des Systems werden weitere
Befehle, die sogenannten Transferbefehle, benotigt. Es existieren Befehle zum Kopieren
von Daten zwischen Arbeitsregistern und zum Datenaustausch zwischen CPU und Peri-
pheriekomponenten und dem Speicher.

Fiir den Datenaustausch mit Peripheriekomponenten (zum Beispiel Speicher oder
Schnittstellen) werden Load- und Storebefehle bereitgestellt. Fiir die Adressierung bietet
die AVR-CPU die Adressierungsarten direkt, indirekt, indirekt mit Post-Inkrement, indi-
rekt mit Pre-Inkrement und indirekt mit Verschiebung an (vgl. Kapitel 13).

Im Fall der indirekten Adressierung wird eine 16-Bit-Adresse aus Registerpaaren
geholt. Als mogliche Registerpaare stehen die Paare r26:727, r28:¥29 und r30:r31 zur
Verfiigung. Auf diese Weise kann ein Adressraum mit einer Adresswortbreite von 16 bit
angesprochen werden. Zur Vereinfachung konnen diese Registerpaare auch mit neuen
Symbolen (X, Y und Z) angesprochen werden. Die Register X, Y und Z stellen keine
zusitzlichen Register dar, sondern sind lediglich andere Bezeichnungen fiir Register-
paare, die bereits im Arbeitsregistersatz enthalten sind. Fiir die Zuordnung der Register-
bezeichnungen gilt Tab. 14.4.

Wihrend alle Komponenten des Mikrocontrollers memory-mapped adressiert werden
konnen, ist fiir einige hiufig verwendete Komponenten auch ein Zugriff iiber eine io-
mapped-basierte Adressierung mithilfe der Befehle in und out moglich. Diese Befehle
benotigen weniger Programmspeicherplatz und werden schneller ausgefiihrt als die ent-
sprechenden memory-mapped arbeitenden Load-/Storebefehle.

In Tab. 14.5 sind die wichtigsten Transferbefehle der AVR-CPU zusammenge-
stellt. Grundsitzlich werden durch die Transferbefehle keine Flags des Statusregisters
beeinflusst.

14.4.3 Befehle zur Programmablaufsteuerung

Zur Steuerung des Programmablaufs besitzen die Mikrocontroller der AVR-Familie
verschiedene Sprungbefehle, mit denen unbedingte oder bedingte Spriinge ausgefiihrt
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Tab. 14.2 Arithmetische und logische Befehle der AVR-CPU
ADD Rd,Rr Add

Die Summe von Rd und Rr wird Rd zugewiesen

Flags: HSVZNC Taktzyklen: 1 Befehlsworte: 1
ADC Rd,Rr Add with Carry

Die Summe von Rd, Rr und dem Carry-Flag wird Rd zugewiesen

Flags: HSVZNC Taktzyklen: 1 Befehlsworte: 1
ADIW Rd,K Add Immediate to Word

Die Summe des Registerpaares Rd+1:Rd und der Konstanten K wird Rd+1:Rd
zugewiesen'. (0< K < 63)

Flags: SVZNC Taktzyklen: 2 Befehlsworte: 1
AND Rd,Rr And

Das Ergebnis der bitweisen Und-Verknlpfung von Rd und Rr wird Rd zugewiesen
Flags: SVNZ2 Taktzyklen: 1 Befehlsworte: 1
ANDI Rd,K And Immediate

Das Ergebnis der bitweisen Und-Verknipfung von Rd und der Konstanten K wird
Rd zugewiesen. Der Befehl kann nur fiir die Register R16 bis R31 durchgefiihrt

werden.
Flags: SVNZ2 Taktzyklen: 1 Befehlsworte: 1
ASR Rd Arithmetic Shift Right

Rd wird um 1 bit nach rechts geschoben, wobei das héchstwertige Bit seinen Wert
beibehélt. Das niederwertigste Bit in das Carry-Flag tbertragen.

Flags: SVNz3 Taktzyklen: 1 Befehlsworte: 1
CLR Rd Clear Register

Rd wird auf 0 gesetzt

Flags: SVNZ4 Taktzyklen: 1 Befehlsworte: 1
DEC Rd Decrement

Rd wird um 1 erniedrigt

Flags: SVNZ Taktzyklen: 1 Befehlsworte: 1
CBR Rd,K Clear Bit(s) in Register

Das Ergebnis der bitweisen Und-Verknlipfung von Rd und der invertierten
Konstante K wird Rd zugewiesen. Der Befehl kann nur fiir die Register R16 bis R31
durchgefiihrt werden.

Flags: SVNZz2 Taktzyklen: 1 Befehlsworte: 1
COM Rd One’s Complement

Rd wird invertiert

Flags: SVNZ5 Taktzyklen: 1 Befehlsworte: 1
CP Rd,Rr Compare

Die Flags werden wie bei der Verwendung des Subtraktionsbefehls SUB gesetzt.
Rd wird jedoch nicht iiberschrieben

Flags: HSVZNC Taktzyklen: 1 Befehlsworte: 1

(Fortsetzung)
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Tab 14.2 (Fortsetzung)

CPC Rd,Rr Compare with Carry
Die Flags werden wie bei der Verwendung des Subtraktionsbefehls SBC gesetzt.
Rd wird jedoch nicht tiberschrieben
Flags: HSVZNC Taktzyklen: 1 Befehlsworte: 1
CPI Rd,K Compare Immediate
Die Flags werden wie bei der Verwendung des Subtraktionsbefehls SUBI gesetzt.
Rd wird jedoch nicht Uberschrieben. Der Befehl kann nur fiir die Register R16 bis
R31 durchgefiihrt werden.
Flags: HSVZNC Taktzyklen: 1 Befehlsworte: 1
EOR Rd,Rr Exclusive Or
Das Ergebnis der bitweisen Exklusiv-Oder-Verknipfung von Rd und Rr wird Rd
zugewiesen
Flags: SVNZ2 Taktzyklen: 1 Befehlsworte: 1
INC Rd Increment
Rd wird um 1 erhoht
Flags: SVNZ Taktzyklen: 1 Befehlsworte: 1
LSL Rd Logical Shift Left
Das hdchstwertigste Bit von Rd in das Carry-Flag tbertragen. AnschlieBend wird
Rd um 1 bit nach links geschoben, wobei das niederwertigste Bit auf 0 gesetzt wird.
Flags: HSVNZC3 Taktzyklen: 1 Befehlsworte: 1
LSR Rd Logical Shift Right
Das niederwertigste Bit von Rd in das Carry-Flag Gibertragen. Anschliefend wird Rd
um 1 bit nach rechts geschoben, wobei das hichstwertigste Bit auf 0 gesetzt wird.
Flags: SVNZC3 Taktzyklen: 1 Befehlsworte: 1
MUL Rd,Rr Multiply Unsigned
Das Produkt aus Rd und Rr wird im Registerpaar R1:R0 abgelegt. Beide
Operanden werden als vorzeichenlose Zahlen behandelt. Rd wird nicht
Uberschrieben.
Flags: ZC8 Taktzyklen: 2 Befehlsworte: 1
MULS Rd,Rr Multiply Signed
Das Produkt aus Rd und Rr wird im Registerpaar R1:R0 abgelegt. Beide
Operanden werden als Zweierkomplement-Zahlen behandelt. Rd wird nicht
liberschrieben.
Flags: ZC8 Taktzyklen: 2 Befehlsworte: 1
MULSU Rd,Rr | Multiply Unsigned/Signed
Das Produkt aus Rd und Rr wird im Registerpaar R1:R0 abgelegt. Rd wird als
vorzeichenlos, Rr als Zweierkomplement-Zahl behandelt. Rd wird nicht
Uberschrieben.
Flags: ZC8 Taktzyklen: 2 Befehlsworte: 1

(Fortsetzung)
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Tab 14.2 (Fortsetzung)

NEG Rd Two’s Complement

Rd wird negiert. Die ausgefiihrte Operation entspricht ,0 - Rd".

Flags: HSVNzC Taktzyklen: 2 Befehlsworte: 1
NOP No Operation

Dieser Befehl fiihrt keine Operation aus und es werden somit keine Register
modifiziert. Der Befehl kann u.a. fiir Verzogerungsschleifen verwendet werden.

Flags: keine Taktzyklen: 1 Befehlsworte: 1

OR Rd,Rr Or
Das Ergebnis der bitweisen Oder-Verknlpfung von Rd und Rr wird Rd zugewiesen.
Flags: SVNZ2 Taktzyklen: 1 Befehlsworte: 1

ORI Rd,K Or Immediate

Das Ergebnis der bitweisen Oder-Verknipfung von Rd und der Konstanten K wird
Rd zugewiesen. Der Befehl kann nur fiir die Register R16 bis R31 durchgefiihrt
werden.

Flags: SVNZ2 Taktzyklen: 1 Befehlsworte: 1
ROL Rd Rotate Left

Das hdchstwertigste Bit von Rd in das Carry-Flag Ubertragen. AnschlieBend wird
Rd um 1 bit nach links geschoben, wobei das niederwertigste Bit auf den Wert des
Carry-Flags vor Ausfiihrung des Befehls gesetzt wird.

Flags: HSVNZC3 Taktzyklen: 1 Befehlsworte: 1
ROR Rd Rotate Right

Das niederwertigste Bit von Rd in das Carry-Flag Ubertragen. Anschlieend wird Rd
um 1 bit nach rechts geschoben, wobei das hochstwertigste Bit auf den Wert des
Carry-Flags vor Ausfiihrung des Befehls gesetzt wird.

Flags: SVNzC3 Taktzyklen: 1 Befehlsworte: 1
SBR Rd,K Set Bit(s) in Register

Das Ergebnis der bitweisen Oder-Verknlpfung von Rd und der invertierten
Konstante K wird Rd zugewiesen und ist somit identisch mit dem Befehl ORI. Der
Befehl kann nur fir die Register R16 bis R31 durchgefiihrt werden.

Flags: SVNZ2 Taktzyklen: 1 Befehlsworte: 1
SBC Rd,Rr Subtract with Carry

Die Differenz von Rd und (Rr+Carry-Flag) wird Rd zugewiesen.

Flags: HSVZNC Taktzyklen: 1 Befehlsworte: 1
SBCI Rd,K Subtract with Carry Immediate

Die Differenz von Rd und (K+Carry-Flag) wird Rd zugewiesen. Der Befehl kann nur
fir die Register R16 bis R31 durchgefiihrt werden.

Flags: HSVZNC Taktzyklen: 1 Befehlsworte: 1
SBIW Rd,K Subtract Immediate from Word

Die Different des Registerpaares Rd+1:Rd und der Konstanten K wird Rd+1:Rd
zugewiesen'. (0< K < 63)

Flags: SVZNC Taktzyklen: 2 Befehlsworte: 1

(Fortsetzung)
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Tab 14.2 (Fortsetzung)

TST Rd Test Register (for Zero or Minus)
Die bitweise Und-Verknlpfung von Rd mit sich selbst wird ausgefiihrt, wobei Rd
nicht modifiziert wird.
Flags: SVNz2 Taktzyklen: 1 Befehlsworte: 1
Anmerkungen:

1 Das Register Rd+1 enthalt die oberen 8 bit und Rd die unteren 8 bit des verarbeiteten 16-bit-Wertes. Der Befehl

kann nur firr die Registerpaare R25:R24, R27:R26, R29:R28 und R31:R30 durchgefiihrt werden.

2V =0, unabhdngig von den Operanden

3V=NeC
4§=0,N=0,V=0,2=1

5V =0, C = 1 unabhéngig vom Operanden

6 C = Bit 15 des Produktes

Tab. 14.3 Statusregister der Flag

AVR-CPU

Tab. 14.4 Alternative

Bezeichnungen fiir Register

der AVR-CPU

Befehl zum Setzen Befehl zum Loschen
C SEC CLC
N SEN CLN
zZ SEZ CLZ
\Y% SEV CLV
S SES CLS
H SEH CLH
T SET CLT
1 SEI CLI
Registerpaar Synonyme Bezeichnung
127:126 X
129:128 Y
r31:r30 z

werden konnen. Wihrend die bedingten Sprungbefehle nur eine relative Adressierung
zur Bestimmung des Sprungziels unterstiitzen, stehen die unbedingten sowohl mit relati-
ver als auch mit absoluter und indirekter Adressierung zur Verfiigung.

Der Aufruf von Unterprogrammen wird beim AVR durch die CALL-Befehle unter-
stiitzt. Diese Befehle entsprechen einem unbedingten Sprung, wobei zusitzlich die Riick-
sprungadresse, an der das Programm nach Beenden des Unterprogramms fortgesetzt
werden soll, auf dem Stack abgelegt wird. Fiir das Beenden eines Unterprogramms wird
der Befehl RET verwendet. Dieser 1ddt die auf dem Stack abgelegte Riicksprungadresse
in den Program Counter und setzt somit das aufrufende Programm an der Stelle fort, die

dem Einsprung in das Unterprogramm folgt.
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Tab. 14.5 Transferbefehle der AVR-CPU
LDI Rd,K Load Immediate

Das Register Rd wird mit der Konstanten K geladen. Der Befehl kann nur fiir die
Register R16 bis R31 durchgefiihrt werden.

Taktzyklen: 1 Befehlsworte: 1
LDS Rd,K Load Direct (from data space)

Die 16-bit-Konstante K wird zur absoluten Adressierung verwendet. Der so
adressierte Wert wird in das Register Rd tbertragen.

Taktzyklen: 2 Befehlsworte: 2

LD Rd,P Load Indirect

Das Registerpaar P wird fiir die indirekte Adressierung verwendet. Der so
adressierte Wert wird in das Register Rd tbertragen.
Fir das Symbol P ist entweder X, Y oder Z einzusetzen.

Taktzyklen: 2 Befehlsworte: 1
LD Rd,P+ Load Indirect with Post-Increment

Das Registerpaar P wird fiir die indirekte Adressierung verwendet. Der so
adressierte Wert wird in das Register Rd (ibertragen. AnschlieRend wird P
inkrementiert.

Fiir das Symbol P ist entweder X, Y oder Z einzusetzen.

Taktzyklen: 2 Befehlsworte: 1
LD Rd,-P Load Indirect with Pre-Decrement

P wird dekrementiert. Anschliefend wird das Registerpaar P fir die indirekte
Adressierung verwendet. Der so adressierte Wert wird in das Register Rd
Ubertragen.

Fir das Symbol P ist entweder X, Y oder Z einzusetzen.

Taktzyklen: 2 Befehlsworte: 1
LDD Rd,P+q Load Indirect with Displacement

Das Registerpaar P und die Konstante q werden addiert und die Summe wird fiir die
indirekte Adressierung verwendet. Der so adressierte Wert wird in das Register Rd
Ubertragen.

Fir das Symbol P ist entweder Y oder Z einzusetzen. Fiir q gilt: 0< g < 63

Taktzyklen: 2 Befehlsworte: 2

LPM Rd
Load from Program Memory
LPM Rd,Z

Das Register Z wird fir die indirekte Adressierung des Programmspeichers
verwendet. Der so adressierte Wert wird in das Register Rd Ubertragen.
Taktzyklen: 3 Befehlsworte: 1

LPM Rd,Z+ Load from Program Memory with Post-Increment

Das Register Z wird fir die indirekte Adressierung des Programmspeichers
verwendet. Der adressierte Wert wird in das Register Rd ibertragen und Z wird
inkrementiert.

Taktzyklen: 3 Befehlsworte: 1
LD Rd,P+ Load Indirect with Post-Increment

Das Registerpaar P wird fiir die indirekte Adressierung verwendet. Der so
adressierte Wert wird in das Register Rd (ibertragen. AnschlieRend wird P
inkrementiert.

Fir das Symbol P ist entweder X, Y oder Z einzusetzen.

Taktzyklen: 2 Befehlsworte: 1

(Fortsetzung)
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Tab 14.5 (Fortsetzung)

STS K,Rr Store Direct (to data space)
Die 16-bit-Konstante K wird zur absoluten Adressierung verwendet. In die
adressierte Speicherstelle wird der Wert des Registers Rr iibertragen.
Taktzyklen: 2 Befehlsworte: 1
ST P,Rr Store Indirect
Das Registerpaar P wird fiir die indirekte Adressierung verwendet. In die adressierte
Speicherstelle wird der Wert des Registers Rr iibertragen.
Fir das Symbol P ist entweder X, Y oder Z einzusetzen.
Takizyklen: 2 Befehlsworte: 1
ST P+,Rr Store Indirect with Post-Increment
Das Registerpaar P wird fiir die indirekte Adressierung verwendet. In die adressierte
Speicherstelle wird der Wert des Registers Rr Ubertragen. AnschlieRend wird P
inkrementiert.
Fiir das Symbol P ist entweder X, Y oder Z einzusetzen.
Taktzyklen: 2 Befehlsworte: 1
ST -P,Rr Store Indirect with Pre-Increment
P wird dekrementiert. Anschliefend wird das Registerpaar P fiir die indirekte
Adressierung verwendet. In die adressierte Speicherstelle wird der Wert des
Registers Rr iibertragen. Fir das Symbol P ist entweder X, Y oder Z einzusetzen.
Taktzyklen: 2 Befehlsworte: 1
ST P+q,Rr Store Indirect with Pre-Increment
Das Registerpaar P und die Konstante q werden addiert und die Summe wird fiir die
indirekte Adressierung verwendet. In die adressierte Speicherstelle wird der Wert
des Registers Rr Ubertragen.
Fiir das Symbol P ist entweder Y oder Z einzusetzen.
Taktzyklen: 2 Befehlsworte: 1
IN Rd,K Input (from I/O space)
Die Konstante K wird zur Adressierung des I/O-Adressraums verwendet. Der
adressierte Wert wird in das Register Rd iibertragen.
Takizyklen: 1 Befehlsworte: 1
OUT K,Rr Output (to 1/0 space)
Die Konstante K wird zur Adressierung des 1/0-Adressraums verwendet. In die
adressierte Speicherstelle wird der Wert des Registers Rr iibertragen.
Takizyklen: 1 Befehlsworte: 1
MOV Rd,Rr Move Register
Das Register Rr wird in das Register Rd tibertragen.
Takizyklen: 1 Befehlsworte: 1
MOVW Rd,Rr  Move Register Pair
Das Registerpaar Rr+1:Rr wird in das Registerpaar Rd+1:Rd Ubertragen.
Taktzyklen: 1 Befehlsworte: 1
PUSH Rr Push Register on Stack
Das Register Rr wird auf dem Stack abgelegt. AnschlieBend wird der Stapelzeiger
(Stack Pointer, SP) dekrementiert.
Taktzyklen: 2 Befehlsworte: 1
POP Rd Pop Register from Stack
Der Stapelzeiger (Stack Pointer, SP) wird inkrementiert. AnschlieRend wird Rd mit
dem durch SP adressierten Wert geladen.
Taktzyklen: 2 Befehlsworte: 1
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In Tab. 14.6 sind die wichtigsten Sprungbefehle der AVR-CPU zusammengestellt.

Neben den oben genannten Sprungbefehlen besitzt die AVR-CPU Befehle, mit denen
ein einzelner nachfolgender Befehl iibersprungen werden kann. Diese sogenannten Skip-
befehle sind in Tab. 14.7 zusammengefasst.

Fiir die Ausfithrung von bedingten Spriingen kénnen die Befehle BRBC und BRBS
verwendet werden. Hierbei ist die Angabe des abzufragenden Flags des Statusregisters
erforderlich. Da dies das Programm uniibersichtlicher machen kann, stehen fiir jedes Bit
des Statusregisters spezielle Sprungbefehle zur Verfiigung. Diese Befehle stellen keine
zusitzlichen Befehle dar, sondern sind lediglich synonyme Bezeichnungen fiir die ent-
sprechenden Varianten des BRBC- beziehungsweise BRBS-Befehls. Tab. 14.8 fasst die
Synonyme fiir bedingte relative Sprungbefehle zusammen.

14.5 Verwendung der AVR-Befehle

In diesem Abschnitt wird die Verwendung des Befehlssatzes anhand einiger Beispiele
verdeutlicht. Hierzu werden Programmfragmente vorgestellt, die auch in grofleren AVR-
Programmen eingesetzt werden konnen.

14.5.1 Arithmetische und logische Grundfunktionen

Die Mikroprozessoren der AVR-Familie unterstiitzen Befehle zur Verarbeitung von Byte-
operanden. Sollen Operanden mit einer groleren Wortbreite verarbeitet werden, miissen
hierzu mehrere aufeinander folgende Befehle verwendet werden. Im Folgenden wird dies
fiir einige arithmetische und logische Grundfunktionen vorgestellt.

14.5.1.1 Setzen und Loschen einzelner Bits

Zum Setzen oder Loschen einzelner oder auch mehrerer Bits stehen die Befehle sbr und
cbr zur Verfiigung. Alternativ konnen hierfiir auch die logischen Befehle and, andi bezie-
hungsweise or oder ori eingesetzt werden. Sowohl fiir die Befehle sbr und cbr als auch
fiir alle Befehle mit unmittelbarer Adressierung wie andi oder ori diirfen nur die Register
rl16 bis r31 verwendet werden.

; Setzen des Bits 4 im Register r20

sbr r20,16

ori r20,0x10 ; Alternative mit identischer Funktion
; LOschen des Bits 2 im Register r23

cbr r23,4

andi r23,0xFB ; Alternative mit identischer Funktion
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Tab. 14.6 Sprungbefehle der AVR-CPU

BRBC k,s Branch if Bit in Status Register Cleared
Dieser Befehl fiihrt einen relativen bedingten Sprung aus. Ist das Bit s im
Statusregister geloscht, wird das Programm an der um k Programmspeicherworte
verschobenen Position fortgesetzt. Andemfalls wird das Programm mit dem nach-
folgenden Befehl fortgesetzt. Wird der Sprung ausgefiihrt, bendtigt der Befehl zur
Ausfiihrung 2 Taktzyklen, andernfalls 1 Taktzyklus.
Firkbzw.sgilt:-64 <k <63und0<s <7
Taktzyklen: 1/2 Befehlsworte: 1
BRBS k,s Branch if Bit in Status Register Set
Dieser Befehl fiihrt einen relativen bedingten Sprung aus. Ist das Bit s im Status-
register gesetzt, wird das Programm an der um k Programmspeicherworte verscho-
benen Position fortgesetzt. Andernfalls wird das Programm mit dem nachfolgenden
Befehl fortgesetzt. Wird der Sprung ausgefiihrt, benétigt der Befehl zur Ausfiihrung
2 Taktzyklen, andernfalls 1 Taktzyklus.
Fiirk bzw. s gilt: -64 <k <63und0 <s <7
Taktzyklen: 1/2 Befehlsworte: 1
CALL k Call to a Subroutine
Aufruf eines Unterprogramms an der Programmspeicheradresse k. Die Riick-
sprungadresse wird auf dem Stack abgelegt.
Taktzyklen': 4 Befehlsworte: 2
ICALL Indirect Call to a Subroutine
Aufruf eines Unterprogramms an der Programmspeicheradresse, die durch das Z-
Register indirekt adressiert wird.
Taktzyklen': 3 Befehlsworte: 1
IJMP Indirect Jump
Sprung zu der Programmspeicheradresse, die durch das Z-Register adressiert wird.
Taktzyklen: 2 Befehlsworte: 1
JMP k Jump
Sprung zu der Programmspeicheradresse k.
Taktzyklen: 3 Befehlsworte: 2
RCALL k Relative Call to a Subroutine
Aufruf eines Unterprogramms mit relativer Adressierung. Das Programm wird an der
Position PC+k+1 fortgesetzt. Die Riicksprungadresse wird auf dem Stack abgelegt.
Fir k gilt: -64 < k < 63
Taktzyklen': 3 Befehlsworte: 1
RET Return from Subroutine
Riicksprung aus einem Unterprogramm. Die Riicksprungadresse wird vom Stack
gelesen.
Taktzyklen': 4 Befehlsworte: 1
RETI Return from Interrupt
Riicksprung aus einer Interrupt-Service-Routine mit gleichzeitigem Setzen des I-
Flags. Die Ruicksprungadresse wird vom Stack gelesen.
Flags: | Taktzyklen': 2 Befehlsworte: 1
RJMP k Relative Jump
Das Programm wird an der Position PC+k+1 fortgesetzt. Fir k gilt: -64 < k < 63
Taktzyklen: 2 Befehlsworte: 1
Anmerkungen:

1 Bei AVR-Controllern mit einer Programmspeichergrofe von mehr als 128kB dauert die Ausfiihrung des Befehls

einen Taktzyklus langer
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Tab. 14.7 Uberblick iiber die Skipbefehle

CPSE Rd,Rr Compare and Skip if Equal

Sind die Werte der beiden Register Rd und Rr identisch, wird der nachfolgende
Befehl nicht ausgefiihrt.

Taktzyklen: 1/2/3 Befehlsworte: 1
SBRC Rr,b Skip if Bit in Register Cleared
Ist das Bit b im Register Rr geléscht, wird der nachfolgende Befehl nicht ausgefiihrt.
Taktzyklen: 1/2/3 Befehlsworte: 2
SBRS Rr,b Skip if Bit in Register Set
Ist das Bit b im Register Rr gesetzt, wird der nachfolgende Befehl nicht ausgefiihrt.
Taktzyklen: 1/2/3 Befehlsworte: 1
SBIC K,b Skip if Bit in /O Register Cleared

Ist das Bit b im der Adresse K im I/O-Adressraum gel6scht, wird der nachfolgende
Befehl nicht ausgefiihrt.

Taktzyklen: 1/2/3 Befehlsworte: 1
SBIS K,b Skip if Bit in I/O Register Set

Ist das Bit b im der Adresse K im 1/0-Adressraum gesetzt, wird der nachfolgende
Befehl nicht ausgefiihrt.

Flags: | Taktzyklen: 1/2/3 Befehlsworte: 1

Tab. 14.8 Uberblick iiber bedingte relative Sprungbefehle

Flag Bedingter Sprungbefehl
C 0 BRCC, BRSH Branch if Carry Cleared, Branch if Same or Higher
1 BRCS, BRLO Branch if Carry Set, Branch if Lower
N 0 BRPL Branch if Plus
1 BRMI Branch if Minus
Z 0 BRNE Branch if Not Equal
1 BREQ Branch if Equal
\Y% 0 BRVC Branch if Overflow Cleared
1 BRVS Branch if Overflow Set
S 0 BRGE Branch if Greater or Equal (signed)
1 BRLT Branch if Less Than (signed)
H 0 BRHC Branch if Half-Carry Cleared
1 BRHS Branch if Half-Carry Set
T 0 BRTC Branch if T-Flag Cleared
1 BRTS Branch if T-Flag Set
1 0 BRID Branch if Interrupt Disabled
1 BRIE Branch if Interrupt Enabled
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14.5.1.2 Addition und Subtraktion

Im folgenden Programmfragment wird davon ausgegangen, dass die zu addierenden
16 bit breiten Operanden in den Registerpaaren r25:r24 und r27:r26 stehen. Die Summe
wird im Registerpaar r25:724 abgelegt.

; Addition zweier 16-Bit-Operanden
add r24,r26 ; untere 8 Bit der Operanden addieren
adc r25,r27 ; obere 8 Bit der Operanden addieren

Mithilfe des ersten Befehls werden die beiden unteren Bytes der Operanden addiert.
Der Ubertrag dieser Operation wird im Carry-Flag des Statusregisters gespeichert. Mit dem
zweiten Befehl werden die beiden oberen Bytes der Operanden addiert, wobei das im Carry-
Flag gespeicherte Ubertragsbit durch den Befehl adc (add with carry) beriicksichtigt wird.

Liegen die Operanden nicht in Registern sondern im Speicher, miissen die Operan-
den zunichst durch geeignete Load-Befehle in die CPU {ibertragen werden. Dies kann
mit absoluter oder indirekter Adressierung geschehen. Das folgende Beispiel benutzt
die absolute Adressierung fiir den ersten Operanden, wéhrend der zweite Operand mit
indirekter Adressierung unter Verwendung des Y-Registers (Registerpaar r29:728) in den
Prozessor iibertragen wird.

; Addition zweier 16-Bit-Operanden im Speicher

1ds r24,0x100 ; untere 8 Bit des 1. Operanden holen

1ds r25,0x101 ; obere 8 Bit des 1. Operanden holen

1di r28,0x02 ; Adresse des 2. Operanden in das ..

1di r29,0x01 ; .. Y-Register lbertragen

1d r24,Y+ ; unteres Byte des 2. Operanden holen (Adresse: 0x102)
1d r25,Y ; oberes Byte des 2. Operanden holen (Adresse: 0x103)
add r24,r26 ; Addition durchfiihren

adc r25,r27

sts 0x100,r24 ; unteres Byte des Ergebnisses speichern

sts 0x101,r25 ; oberes Byte des Ergebnisses speichern

Analog zur Addition kann die Subtraktion ausgefiihrt werden:

; Subtraktion zweier 16-Bit-Operanden
sub r24,r26 ; untere Bytes der Operanden subtrahieren
sbc r25,r27 ; obere Bytes der Operanden subtrahieren

Wie im Fall der Addition wird in diesem Beispiel ein moglicher Ubertrag, der sich
bei der Subtraktion der unteren Operandenbytes ergibt, durch den Befehl sbc (subtract
with carry) beriicksichtigt. Im Fall der Subtraktion ist dieser Ubertrag negativ zu gewich-
ten. Daher wird mithilfe des sbc-Befehls von der Differenz der Operanden 725 und 727
zusitzlich der Wert des Carry-Flags subtrahiert.
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14.5.1.3 Arithmetische und logische Schiebeoperationen
Fiir logische oder arithmetische Schiebeoperationen stehen die Befehle Isr Isl, ror, rol
und asr zur Verfiigung, die einen Wert um ein Bit nach rechts beziehungsweise links ver-
schieben. Das jeweils ,herausgeschobene Bit, beim Rechtsschieben beispielsweise das
unterste Bit des Operanden, wird im Carry-Flag abgelegt. Die Rotationsbefehle ror und
rol ibertragen den Wert des Carry-Flags in das frei gewordenen Bit des Arbeitsregisters.
In Abb. 14.3 ist die Funktionsweise der Schiebe- und Rotationsbefehle veranschaulicht.
Die Schiebebefehle arbeiten mit 8-Bit-Operanden. Durch mehrfache Anwendung von
Schiebebefehlen konnen auch breitere Operanden verarbeitet werden. Exemplarisch wird
dies anhand eines 16-Bit-Wertes gezeigt, welcher in zwei Arbeitsregistern abgelegt ist.

; Schieben nach links

1sl r24 ; unteres Byte schieben
rol r25 ; oberes Byte schieben
; Schieben nach rechts (logisch bzw. vorzeichenlos)
lsr r25 ; oberes Byte schieben
ror r24 ; unteres Byte schieben

Logisches Schieben

LSR LSL
C-Flag Operand C- Flag Operand
|0|1|1|0|0|O|1 [0 [o[1]1]o]o]o]1]0]
AAATRRANY [/
X
(oJo[t[1]ofofo]1] I1I1|0I0I0|1|0I0I
Ergebnis Ergebnis

Arithmetisches Schieben

ASR
C-Flag Operand

(1]  [of1]]o]oJof1]o

(oJo[t[1]o[ofo]1]
Ergebnis

Ein ASL-Befehl existiert nicht

Rotieren
ROR ROL
C-Flag Operand C-Flag Operand
Noh 1JoJofo]1]0 [o]1]1]oJoJo[1]0]
[1]o[1]1]ofofo]1] @/HI1I0I0I0I1I0I1I
Ergebnis Ergebnis ?

Abb. 14.3 Schiebe- und Rotationsbefehle
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Die gezeigten Befehle konnen auch als arithmetische Schiebeoperation, also eine
Multiplikation mit 2 beziehungsweise eine Division durch 2 aufgefasst werden, sofern
der Operand als vorzeichenlose Zahl aufgefasst wird. Bei der Schiebeoperation nach
links tritt hierbei ein Uberlauf auf, wenn das hochstwertige Bit des Operanden gesetzt
ist. Soll dieser Fall abgefangen werden, kann nach dem Schieben der Wert des Carry-
Flags abgefragt werden. Ist dieses gesetzt, ist ein Uberlauf aufgetreten. Im Fall des
Rechtsschiebens tritt dagegen nie ein Uberlauf auf.

Stellt der Operand dagegen eine Zweierkomplementzahl dar, kann ein Uberlauf im
Fall des Linksschiebens durch ein gesetztes V-Flag detektiert werden.

Fiir das arithmetische Rechtsschieben von vorzeichenbehafteten Zahlen muss der
Befehl asr verwendet werden. Dieser sorgt im Gegensatz zu den anderen Schiebebefeh-
len dafiir, dass das hochstwertige Bit des Operanden in das Ergebnis kopiert wird.

; Arithmetisches Schieben nach rechts (vorzeichenbehaftet)
asr r25 ; oberes Byte schieben
ror r24 ; unteres Byte schieben

14.5.1.4 Multiplikation

Viele der AVR-CPUs unterstiitzen die Multiplikation zweier 8-Bit-Werte. Das Ergebnis
der Multiplikationsbefehle ist ein 16-Bit-Wert, der im Registerpaar r/.:r0 abgelegt wird.
Sollen 16-Bit-Operanden multipliziert werden, miissen insgesamt vier Multiplikations-
befehle verwendet werden. Die hierbei entstehenden Teilergebnisse werden anschlie-
Bend entsprechend ihrem Gewicht addiert. Diese Vorgehensweise wird in Abb. 14.4
verdeutlicht.

Eine entsprechende Umsetzung des Prinzips ist im folgenden Programmfragment dar-
gestellt. Die 16-Bit-Operanden stehen in den Registerpaaren r25:724 und r27:r26. Das
32 bit breite Ergebnis wird in den Registern r/6 bis r/9 abgelegt, wobei r/6 die unters-
ten 8 Bit und r/9 die obersten 8 Bit des Produktes enthélt. Die Register /7 und ri8
enthalten die Produktbits 15 bis 8 beziehungsweise 23 bis16. Die Beriicksichtigung des
Gewichts der Teiloperanden erfolgt durch die Auswahl der Produktregister.

Abb. 14.4 Prinzip der 16x16- Op2_h op2._| | * [ op1h opi_| |
Multiplikation mithilfe von — —
8x8-Multiplikationsbefehlen
opt I*op2| |
+ Op1_h* Op2_l
Op1_I*Op2_h

+ | opthop2h |

| Produkt P
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; Vorzeichenlose 16x16 Multiplikation

clr rl8 ; Produktbits (23:16) auf 0 setzen

clr rl9 ; Produktbits (31:24) auf 0 setzen

mul r24,r26 ; opl_1 * op2 1 (1. Teilergebnis mit Gewicht 16:0)
mov rl6,r0 ; Ergebnis in die Produktbits (7:0)

mov rl7,rl ; .. und (15:8) kopieren

mul r25,r26 ; opl_h * op2 1 (2. Teilergebnis mit Gewicht 24:8)
add rl7,r0 ; Ergebnis zu den Produktbits (15:8)

adc rl8,rl ; .. und (23:16) addieren

mul r24,r27 ; opl_1 * op2 h (3. Teilergebnis, mit Gewicht 24:8)
add rl7,r0 ; Ergebnis zu den Produktbits (15:8)

adc rl8,rl ; .. und (23:16) addieren

mul r24,r27 ; opl_h * op2 h (4. Teilergebnis mit Gewicht 31:16)
add rl8,r0 ; Ergebnis zu den Produktbits (23:16)

adc rl9,rl ; .. und (31:24) addieren

14.5.1.5 Division
Die Division wird von der AVR-CPU nicht durch einen entsprechenden Befehl unter-
stiitzt. Stattdessen kann diese Operation mithilfe eines Algorithmus durchgefiihrt
werden, der, wie die schriftliche Division, auf einer sukzessiven Berechnung der Quo-
tientenbits basiert. Abb. 14.5 veranschaulicht das Vorgehen bei einer vorzeichenlosen
Division fiir 8-Bit-Operanden.

Ein entsprechendes AVR-Programm kann wie folgt realisiert werden:

Abb. 14.5 Flussdiagramm fiir
die 8-Bit-Division

Bitzahler = 8
Rest & Quotient I6schen

»
L

Quotient schieben

Rest &
Dividend schieben

est < Divisor?2

Rest = Rest - Divisor
Quotient = Quotient | 1

& |

Bitzahler = Bitzéhler -1

Bitzahler = 0?
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; Vorzeichenlose 8-Bit-Division
; rlé=Bitzdhler, r24=Dividend, r25=Divisor
; r26=Rest, r27=Quotient

1di rle6,8 ; Bitzdhler = 8
clr r26 ; Rest 16schen
clr r27 ; Quotient léschen
div_loop:
1sl r27 ; Quotient schieben
1sl r24 ; oberstes Dividendenbit in C-Flag
rol r26 ; Dividendenbit in Rest verschieben
cp r26,r25 ; Rest mit Divisor vergleichen
brcs dec_cnt ; falls Rest kleiner: springen
sub r26,r25 ; Divisor von Rest subtrahieren
ori r27,1 ; Quotientenbit setzen
dec_cnt:
dec rlé6 ; Bitzdhler dekrementieren
brne div_loop ; falls noch nicht 0: ndchste Iteration

14.5.2 Befehle fiir den Zugriff auf Speicher und
Peripheriekomponenten

In diesem Abschnitt werden die Befehle zum Transfer von Daten zwischen der CPU
und dem Speicher beziehungsweise den eingebetteten Peripherieckomponenten néher
erldutert. Da die AVR-CPU eine Load-Store-Architektur besitzt, miissen alle Daten, die
durch ein Programm verarbeitet werden sollen, zunéchst durch einen Ladebefehl (load)
in ein Arbeitsregister der CPU iibertragen werden. AnschlieBend konnen die Daten mit
arithmetischen oder logischen Befehlen verarbeitet werden. Die Ergebnisse dieser Ope-
rationen konnen fiir weitere arithmetisch-logische Befehle im Register verbleiben oder
werden mithilfe eines Speicherbefehls (store) in den Speicher oder die Peripheriekompo-
nenten iibertragen

Fiir die Adressierung des SRAMs im Controller stehen mehrere Load- und Storebe-
fehle zur Verfiigung, welche sich durch die verwendete Adressierungsart unterscheiden.
Diese Befehle sind in Tab. 14.9 zusammengefasst.

Tab. 14.9 Adressierung des SRAMs iiber Lade- und Speicherbefehle

Addressierungsart Load-Befehl Storebefehl
Absolut Ids sts

Indirekt 1d st

Indirekt mit Pre-Drekrement oder Post-Inkrement 1d st

Indirekt mit Verschiebung 1dd std
Absolut 1ds sts
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Als Zielarbeitsregister der Load-Befehle beziechungsweise Quellarbeitsregister fiir die
Store-Befehle konnen alle 32 Arbeitsregister der CPU verwendet werden. Fiir die Adres-
sierung des Speichers im Fall der indirekten Adressierung konnen nur die Register X, Y
und Z verwendet werden. Der Offset bei indirekter Adressierung mit Verschiebung darf
nur positiv sein und den Wert 63 nicht iiberschreiten. Dariiber hinaus wird diese Adres-
sierungsart nur fiir die Register Y und Z unterstiitzt.

Im Folgenden sind Codebeispiele zur Verwendung der Load- und Storebefehle ange-
geben. Alle Beispiele fiihren die gleiche Operation aus: Das Kopieren des Wertes in der
SRAM-Speicherstelle 228 in die SRAM-Speicherstelle 254.

; Speicherstelle kopieren mit absoluter Adressierung

1lds r7,228 ; Wert aus SRAM laden

sts 254,r7 ; Wert in SRAM speichern

; Speicherstelle kopieren mit indirekter Adressierung
1di r30,228 ; Low-Byte des Z-Registers laden
1di r31,0 ; High-Byte des Z-Registers laden
1di r26,255 ; Low-Byte des X-Registers laden
1di r27,0 ; High-Byte des X-Registers laden
14 r3,7 ; Wert indirekt aus SRAM laden

st -X,r3 ; mit Pre-Dekrement speichern

; Kopieren mit indirekter Adressierung mit Verschiebung

14di r28,220 ; Low-Byte des Y-Registers laden
1di r29,0 ; High-Byte des Y-Registers laden
ldd r5,Y+8 ; Wert aus SRAM laden

std Y+34,r5 ; Wert in SRAM speichern

Fiir einen Zugriff auf den Programmspeicher wird der Befehl Ipm (load from pro-
gram memory) zur Verfiigung gestellt. Dieser Befehl ermoglicht es auf im Programm-
speicher abgelegte Konstanten zuzugreifen. Hierbei wird nur die indirekte Adressierung
oder die indirekte Adressierung mit Post-Inkrement unterstiitzt. Wird bei Verwendung
des Ipm-Befehls kein Operand angeben, erfolgt die Berechnung der Programmspei-
cheradresse mithilfe des Registerpaares Z und der gelesene Wert wird im Register r0
abgespeichert.

; Beispiele filir die Verwendung des Befehls lpm

lpm ; r0 mit Wert aus Programmspeicher laden
lpm r0,Z ; identisch zu voriger Zeile

lpm r8,7 ; hier wird r8 Uberschrieben

lpm rl7,Z+ ; rl7 laden, anschliefend Z inkrementieren

Der Zugriff auf die Peripheriekomponenten kann sowohl memory-mapped (mithilfe
der zuvor beschriebenen Load-/Storebefehle) als auch port-mapped erfolgen. Fiir einen
port-mapped-basierten Zugriff stellt die AVR-CPU die Befehle in und out zur Verfiigung.
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Die Befehle in und out unterstiitzen nur eine absolute Adressierung. Soll beispiels-
weise ein Wert auf den digitalen Ausgingen (PORTA) eines ATmega32 ausgegeben wer-
den, kann dies mithilfe des Befehls

out 27,xr7 ; r7 auf den PORTA-Anschllissen ausgeben

geschehen. Die Adressen der einzelnen Peripheriekomponenten konnen in den Daten-
blattern der AVR-Controller nachgeschlagen werden. Allerdings wird der Programmcode
durch eine Angabe der Adresse als Zahlenwert wie im obigen Beispiel recht uniiber-
sichtlich. Die Firma Atmel stellt daher sowohl fiir Assembler- als auch fiir C-Programme
Include-Dateien zur Verfiigung, in denen symbolische Konstanten fiir den Zugriff auf die
Peripheriekomponenten definiert sind. Hiermit kann das obige Beispiel auch wie folgt
formuliert werden.

.include "m32def.inc" ; Include Datei einbinden
out PORTA, r7 ; r7 auf den PORTA-Anschliissen ausgeben

Mithilfe der Befehle in und out kann auch auf CPU-interne Register wie das Status-
register oder den Stackpointer zugegriffen werden, wie die folgenden Codebeispiele
zeigen:

in rl4d, SREG ; Statusregister nach rl4 kopieren
in r30, SPL ; niederwertiges Byte des SP nach r30
in r31,SPH ; hoherwertiges Byte des SP nach r31

14.5.3 Programmverzweigungen

Im Rahmen dieses Abschnitts wird anhand von einfachen Beispielen verdeutlicht, wie
die Sprungbefehle der AVR-CPU eingesetzt werden konnen. Hierzu wird zunéchst auf
Programmverzweigungen eingegangen. Anschlieend werden der Aufruf von Unterpro-
grammen und Moglichkeiten der Ubergabe von Parametern an Unterprogramme vorge-
stellt. Eine Einfiihrung in die Verarbeitung von Interrupts schliet den Abschnitt ab.

14.5.3.1 Bedingte Verzweigungen und Programmschleifen
Soll eine bedingte Verzweigung oder eine Programmschleife realisiert werden, kon-
nen hierzu die bedingten Sprungbefehle oder auch die Skip-Befehle verwendet wer-
den. Exemplarisch kann die Verwendung der AVR-Sprungbefehle anhand zweier
einfacher Beispiele verdeutlich werden, die in Abb. 14.6 als Flussdiagramme darge-
stellt sind.

Die bedingte Ausfiihrung eines Befehls (Abb. 14.6a) ldsst sich mithilfe eines Ver-
gleichs und eines bedingten Sprungbefehls realisieren.
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nein

27 =127 + 1

r28 =r28 - 10 r28 =r28 - 10

Abb. 14.6 Beispiele fiir Programmverzeigungen

; Verzweigung mit bed. Sprung (if)

cp r24,r25 ; R24 und R25 vergleichen (Flags wie SUB)
brne weiter ; falls ungleich: springen

subi 128,10 ; Subtraktion ausfilihren

weiter:

Ebenso konnte die gleiche Funktionalitdt erreicht werden, wenn das Programmfrag-
ment mit Skip-Befehlen realisiert wiirde. Der Skip-Befehl tiberpriift eine Bedingung
(zum Beispiel, ob zwei Register identische Werte besitzen) und iiberspringt nachfolgen-
den Befehl falls die Bedingung erfiillt ist. Im obigen Beispiel bietet sich die Verwendung
des Befehls cpse (compare and skip if equal) an:

; Verzweigung mit Skip-Befehl
cpse 1r24,r25 ; Vergleich -- Nachf. Befehl evtl. iiberspringen
subi r28,10 ; wird nicht ausgefiihrt falls r24=r25

Bei diesem Beispiel besitzt der Skip-Befehl gegeniiber dem Branch-Befehl Vorteile,
da Programmcode eingespart und gleichzeitig die Ausfiihrungszeit des Programmab-
schnitts um einen Taktzyklus reduziert wird.

Ein Programmfragment, welches das Beispiel aus Abb. 14.6b umsetzt, konnte wie
folgt formuliert werden:

; Verzweigung mit bed. Sprung (if-else)

cp r24,r25 ; R24 und R25 vergleichen (Flags wie SUB)
brne do_inc ; falls ungleich: springen
subi r28,10 ; Subtraktion ausfiihren
rjmp weilter ; alternativen Code Uberspringen
do_inc:
inc r27 ; R27 inkrementieren

weiter:
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Der Einsatz von Skip-Befehlen ist in diesem Beispiel nicht vorteilhafter. Auf ein ent-
sprechendes Beispiel wird daher verzichtet.

14.5.3.2 Unterprogrammaufrufe

Unterprogramme werden mithilfe der Befehle call, rcall oder icall aufgerufen. Wih-
rend der Befehl call die Adresse des Unterprogramms absolut angibt, verwendet der
Befehl rcall eine relative Adressierung. Da der Befehl rcall einen geringeren Programm-
speicherbedarf besitzt und schneller ausgefiihrt wird, ist dieser Befehl in der Regel zu
bevorzugen. Hierbei ist jedoch zu beriicksichtigen, dass die Differenz der Einsprungad-
resse des Unterprogramms und des rcall-Befehls auf den Wertebereich von —2048 bis
42047 begrenzt ist. Ist die Differenz grofler, muss auf den call-Befehl zuriickgegriffen
werden. Der Befehl icall ermoglicht die Angabe der Unterprogrammadresse mithilfe des
Z-Registers und verwendet somit eine indirekte Adressierung.

Die CPU legt mit dem Unterprogrammaufruf die Riicksprungadresse merken. Dies
ist die Programmspeicheradresse, bei der das Programm nach Beenden des Unterpro-
gramms fortgesetzt werden soll. Fiir die Speicherung der Riicksprungadresse wird der
Stack verwendet. Da Programmspeicheradressen im Fall des AVR eine Wortbreite von
16 bit besitzen, werden hierdurch zwei Speicherplitze des Stacks belegt.

Ein Unterprogramm wird mit dem Befehl rer beendet. Dieser Befehl 1ddt die auf dem
Stack abgelegte Programmspeicheradresse des aufrufenden Programms in den Program
Counter (PC). Der Program Counter adressiert somit anschliefend die Befehle des aufru-
fenden Programms, welches nach Ausfiihrung des ret-Befehls fortgesetzt wird.

Werden in einem Unterprogramm Zwischenergebnisse erzeugt, konnen diese tempo-
rir in Arbeitsregistern abgelegt werden. Da die Werte dieser Register durch das Unter-
programm verdndert werden, ist es sinnvoll, die betroffenen Arbeitsregister zu Beginn
des Unterprogramms auf dem Stack zu sichern. Hierzu wird der Befehl push verwendet.
Vor Verlassen des Unterprogramms werden die urspriinglichen Werte der Arbeitsregister
mithilfe des pop-Befehls vom Stack in die Register zuriickgeladen. Nach Verlassen des
Unterprogramms besitzen somit alle Arbeitsregister den Wert, den sie beim Aufruf des
Unterprogramms besallen.

Die Arbeitsregister konnen auch zur Ubergabe von Parametern oder Riickgabe-
werten verwendet werden. Ein Beispiel hierfiir zeigt das nachfolgende Programm,
welches aus einem Hauptprogramm haupt _prg und einem Unterprogramm up_add
besteht.

; Beispiel flir Unterprogrammaufrufe mit
; registerbasierter Parameterilibergabe

haupt_prg:

1di r24,42 ; 1. Beispielwert laden
1di r25,37 ; 2. Beispielwert laden
rcall up_add ; Unterprogramm aufrufen

; weltere Befehle zur Verarbeltung des
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= ; Ergebnisses (steht in rl6)
up_add:

push r24 ; r24 auf dem Stack sichern
add r24,r25 ; Parameter addieren

mov rl6,r24 ; Ergebnis nach rlé schreiben
pop r24 ; r24 wieder herstellen

ret ; Unterprogramm verlassen

Als Alternative zur registerbasierten Parameteriibergabe kommt auch die Uber-
gabe von Parametern mithilfe des Stacks infrage. Dieses Vorgehen ist insbesondere
dann sinnvoll, wenn eine grole Anzahl von Parametern an ein Unterprogramm iiber-
geben werden soll. Im folgenden Beispiel wird die Parameteriibergabe exemplarisch
verdeutlicht.

Das Unterprogramm sichert zunichst die verwendeten Registerwerte auf dem Stack,
und es wird der aktuelle Wert des Stackpointers in das Z-Register geladen. Anschlielend
erfolgt die indirekte Adressierung der Daten mithilfe einer indirekten Adressierung mit
Verschiebung. Nach der Verarbeitung der Daten, in diesem Beispiel die Addition der
tibergebenen Parameter, wird das Ergebnis auf dem Stack gesichert, wobei der erste
Ubergabeparameter iiberschrieben wird. Nach dem Wiederherstellen der gesicherten
Registerwerte wird das Unterprogramm verlassen.

Das Hauptprogramm stellt den urspriinglichen Wert des Stackpointers nach Riickkehr
aus dem Unterprogramm wieder her, indem die zuvor mit push-Befehlen auf dem Stack
abgelegten Werte mit zwei pop-Befehlen vom Stack entfernt werden. Da der erste Uber-
gabeparameter mit dem Ergebnis des Unterprogramms iiberschrieben wurde, befindet
sich nach Ausfiihrung beider pop-Befehle das Ergebnis des Unterprogramms im Arbeits-
register r24.

Wird eine Parameteriibergabe mithilfe des Stacks durchgefiihrt, ist es sinnvoll, die
Belegung des Stacks tabellarisch festzuhalten. Hierzu wird in einer zweispaltigen Tabelle
in der linken Spalte die Adresse der Speicherstelle (relativ zum aktuellen Stackpointer)
und in der rechten Spalte der Wert der Speicherstelle eingetragen.

Fiir die Realisierung des Codes wird angenommen, dass das Hauptprogramm zwei
Parameter auf dem Stack ablegt und anschlieend in das Unterprogramm verzweigt. Zu
Beginn des Unterprogramms werden die Register 730, r31, r24 und r25 auf dem Stack
gesichert. Die anschlieBende Belegung des Stacks ist in Tab. 14.10 dargestellt. Anhand
der Tabelle kann nachvollzogen werden, dass die Parameter an den Adressen Stackpoin-
ter+7 und Stackpointer+8 zu finden sind, woraus sich direkt der benétigte Offset fiir die
Verschiebung zur Adressierung der Ubergabeparameter ergibt.

Auf Basis der dokumentierten Stackbelegung kann das Programm realisiert werden.
Im Folgenden ist der Code fiir das Hauptprogramm haupt_prg und das Unterprogramm
up_add dargestellt.
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Tab. 14.10 Belegung Adresse Wert
dBisis?)tiae(I:];rsof;rra(rllilrsn SP+38 1. Parameter (42)
SP+7 2. Parameter (37)
SP+6 Riicksprungadresse
SP+5 Riicksprungadresse
SP+4 30
SP+3 r31
SP+2 24
SP+1 25
SP , unbelegt*

; Beispiel fur Unterprogrammaufrufe mit
; stackbasierter Parameteribergabe

haupt_prg:
1di r24,42 ; 1. Beispielwert laden
push r24 ; 1. wWert auf dem Stack ablegen
1di r24,37 ; 2. Beispielwert laden
push r24 ; 2. Wert auf dem Stack ablegen
rcall up_add ; Unterprogramm aufrufen
pop r24 ; Stackpointer durch pop-Befehle
pop r24 ; wieder herstellen
; Das Ergebnis steht nun in r24
- ; weltere Befehle zur Verarbeitung des Ergebnisses
up_add:
push 130 ; r30, r31 (= Z-Register)
push r31 ; auf dem Stack sichern
push r24 ; tempordr verwendete Register sichern
push r25
in r30, SPL ; untere 8 Bit des Stackpointers nach r30
in r31, SPL ; obere 8 Bit des Stackpointers nach r31
1ldd r24,7Z+8 ; 1. Wert vom Stack nach r24 kopieren
1ldd r25, 7247 ; 2. Wert vom Stack nach r25 kopieren
add r24,r25 ; Parameter addieren
std Z+8,r24 ; Ergebnis anstelle des 1. Wertes auf dem Stack ablegen
pop r25 ; gesicherte Register wieder herstellen
pop r24 ; Aufgrund der Struktur des Stapelspeichers
pop r31 ; geschieht dies in umgekehrter Reihenfolge
pop r30 ; (Beispiel: Das zuerst gesicherte Register wird

; zuletzt vom Stack geholt)
ret ; Unterprogramm verlassen
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14.6 Grundlagen der Interruptverarbeitung

Eine wichtige Aufgabe eines Mikrorechnersystems ist es, auf Ereignisse reagieren zu
konnen. Derartige Ereignisse konnen zum Beispiel Eingaben des Benutzers oder auch
das Bereitstellen von Daten eines Sensors sein. Ebenso konnten eingebettete Periphe-
riekomponenten wie Timer oder Kommunikationsschnittstellen Ereignisse auslosen, auf
die das Programm reagieren muss. Eine besondere Eigenschaft dieser Ereignisse ist, dass
sie asynchron zum laufenden Programm auftreten. Dies heif3it, dass man bei der Erstel-
lung eines Programms nicht weif3, welcher Teil des Programms gerade abgearbeitet wird,
wenn das Ereignis auftritt.

Es existieren zwei grundlegende Alternativen, um auf diese Ereignisse zu reagie-
ren. Diese Alternativen werden im Folgenden mit dem englischen Fachbegriff Polling
(deutsch: Abfragen) und als Interruptverarbeitung oder kurz Interrupts bezeichnet.

Eine Analogie aus dem tiglichen Leben kann helfen, die Grundprinzipien die-
ser beiden Strategien zu verdeutlichen: Sie haben Giste eingeladen, wissen aber nicht
genau, wann die Giste erscheinen werden. Zur Bewirtung Threr Géste miissen Sie noch
Getrinke kalt stellen.

Eine denkbare Strategie wire es, auf dem Flur der Wohnung im Kreis zu laufen. Jedes
Mal bei Erreichen der Wohnungstiir wird diese gedffnet, um nachzuschauen, ob die
Giste schon eingetroffen sind. Um die Wartezeit sinnvoller zu nutzen, konnte auch ein
Weg durch die Kiiche gewihlt werden, um mit jedem Durchlauf eine Getrinkeflasche in
den Kiihlschrank zu stellen. Diese Vorgehensweise entspricht in etwa dem Prinzip des
Pollings: Die Abfrage des Ereignisses (,,Géste sind da*) wird wiederholt (in einer Warte-
schleife) ausgefiihrt ohne zu wissen, ob das Ereignis wirklich eingetreten ist. Zusitzlich
zur Abfrage des Ereignisses kann in der Warteschleife ein Teil der sonst noch anstehen-
den Aufgaben (,,Getrdnke kalt stellen*) abgearbeitet werden.

In der Realitdt wiirden die meisten Menschen vermutlich eine andere Strategie wih-
len, da sie eine Tiirklingel besitzen: Sie arbeiten die Aufgabe ,,Getrinke kalt stellen* ab
und unterbrechen diese Arbeit sobald die Klingel ldutet. Die Géste werden hereingelas-
sen und die unterbrochene Arbeit wird wieder aufgenommen. Diese Strategie entspricht
der Interruptverarbeitung: Das Ereignis (,,Géste sind da®) wird durch eine besondere
Hardware (,,Klingel) signalisiert. Solange das Ereignis nicht eintritt, werden andere
Aufgaben abgearbeitet.

Obwohl die oben dargestellte Analogie nicht iiberstrapaziert werden sollte, kann sie
einige Konsequenzen der unterschiedlichen Strategien zur Verarbeitung von Ereignissen
verdeutlichen:

e Fiir die interruptbasierte Verarbeitung wird zusitzliche Hardware bendtigt, die zur
Unterbrechung einer von der CPU abgearbeiteten Aufgabe fiihrt.

e Potenziell konnte Polling zu kiirzeren Reaktionszeiten fiihren. (,,Offnen der Tiir genau
in dem Moment, in dem die Giste die Tiir erreichen®).
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e Treten Ereignisse nur kurzzeitig auf, besteht insbesondere bei Polling die Gefahr, dass
diese Ereignisse verpasst werden (,,die Giste gehen wieder, weil der Gastgeber gerade
zu lange in der Kiiche beschiftigt ist*)

In den folgenden Abschnitten werden weitere Aspekte der Interruptverarbeitung durch
ein Mikrorechnersystem diskutiert.

14.6.1 Interruptfreigabe

In typischen Mikrorechnersystemen konnen prinzipiell mehrere Ereignisse auftreten, auf
die ein Programm reagieren konnte. Nicht alle dieser moglichen Ereignisse sind fiir eine
konkrete Anwendung relevant. Daher ist es sinnvoll, dass nur die relevanten Ereignisse
zu einer Unterbrechung des Programms fiihren.

Die Moglichkeit, dass man festlegt welche Ereignisse zu Programmunterbrechungen
fiihren, wird als Interruptfreigabe bezeichnet.

Die Interruptfreigabe erfolgt hdufig hierarchisch. Hierbei kann eine globale und eine
lokale Interruptfreigabe unterschieden werden. Die globale Interruptfreigabe dient dazu,
Programmunterbrechungen grundsitzlich zuzulassen. Zusitzlich ist es fiir jedes Ereignis
moglich, das Auslosen eines Interrupts zu erlauben oder zu sperren. Erst wenn die globale
Interruptfreigabe und die lokale Freigabe mindestens eines Ereignisses erfolgt sind, kon-
nen Unterbrechungen auftreten. Damit ein Ereignis (beispielsweise eine Flanke an einem
Interrupteingang) zu einer Programmunterbrechung fiihrt, muss also sowohl die lokale
Freigabe des jeweiligen Ereignisses als auch die globale Interruptfreigabe erfolgt sein.

Die globale Freigabe von Interrupts im Fall der AVR-CPU erfolgt durch das Setzen
des Interrupt-Flags (I-Flag) im Statusregister der CPU. Hierfiir kann fiir Assemblerpro-
gramme der Befehl sei beziehungsweise fiir C-Programme die Funktion sei() verwendet
werden. Das Loschen des Flags, und damit das globale Sperren aller Interrupts, erfolgt
mit dem Befehl c/i oder der C-Funktion cli().

Die lokale Interruptfreigabe erfolgt durch eine entsprechende Programmierung der
einzelnen eingebetteten Peripheriekomponenten, die in den nachfolgenden Abschnit-
ten niher vorgestellt werden. Exemplarisch fiir die lokale Interruptfreigabe werden hier
externe Interrupts behandelt.

Die Controller der AVR-Familie besitzen die Moglichkeit einer Programmunterbre-
chung, wenn ein dulleres Signal einen bestimmten Wert annimmt. Hierzu besitzt bei-
spielsweise der Controller ATmega32 drei Anschliisse, die mit /NTO, INTI und INT2
gekennzeichnet sind. Fiir die lokale Freigabe der zugehorigen Interrupts besitzt der
ATmega32 das Global Interrupt Control Register (GICR), welches die in Tab. 14.11 dar-
gestellte Belegung hat.

Durch Setzen des Bits 7 dieses Registers erfolgt beispielsweise die lokale Freigabe
des Interrupts, der dem Controlleranschluss INT! zugeordnet ist. Entsprechendes gilt fiir
die Bits 6 und 5, mit denen die Interrupts der Anschliisse INTO bzw. INT2 freigeschaltet
werden konnen.
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Tab. 14.11 Belegung des GICR
GICR-Registers Bit 7 6 5 4 13 |2 |1 0
Name |INT1 |INTO |INT2 |- |- |- |IVSEL IVCE

Fiir die Auswahl, welches konkrete Ereignis (Low-Pegel, High-Pegel, steigende oder
fallende Flanke des an dem Anschluss zugefiihrten Signals) zu einer Programmunterbre-
chung fiihrt, existieren weitere Register, wie das Microcontroller Unit Control Register
(MCUCR) und das Microcontroller Unit Control and Status Register (MCUCSR).

14.6.2 Interrupt-Service-Routinen

Nachdem ein freigegebenes Ereignis zur Auslosung einer Unterbrechung gefiihrt hat,
muss der Programmteil aufgerufen werden, der zur Verarbeitung dieses Interrupts vorge-
sehen ist. Dieser Programmteil wird als Interrupt-Service-Routine (ISR) bezeichnet.

Die Unterbrechung des laufenden Programms und das Verzweigen in die ISR erfolgen
durch die Hardware des Mikrorechners. Daher muss der CPU vor dem Auslosen eines
Interrupts bekannt sein, an welcher Position im Programmspeicher die zugehorige ISR
zu finden ist. Hierzu wird ein Zeiger auf die entsprechende Programmspeicher-Position
benotigt. Dieser Zeiger, welcher auch als Interrupt-Vektor bezeichnet wird, kann bereits
mit dem Entwurf des Prozessors festgelegt werden. In diesem Fall liegt die Position der
ISR fest und kann nicht nachtriglich modifiziert werden. Alternativ finden auch pro-
grammierbare Interrupt-Vektoren Anwendung. In diesem Fall kann durch eine entspre-
chende Programmierung die Einsprungadresse der ISR durch das Programm bestimmt
werden.

Im Fall der AVR-CPU wird der erste Weg beschritten, wobei die Interrupt-Service-
Routinen in den ersten Speicherstellen des Programmspeichers abgelegt werden. Fiir
jede ISR sind im unteren Teil des Programmspeichers zwei Programmspeicherworte
reserviert. Dieser Speicherplatz reicht natiirlich nicht fiir die Aufnahme einer kompletten
ISR aus. Allerdings ist der reservierte Bereich ausreichend, um einen Sprungbefehl (zum
Beispiel mithilfe des jmp-Befehls) aufzunehmen, mit welcher der Code der eigentlichen
ISR aufgerufen wird.

In den Datenblittern der AVR-Controller ist die Zuordnung von Ereignissen und
Interrupt-Vektoren zu finden. Exemplarisch fasst Tab. 14.12 die Interrupt-Vektoren des
ATmega32 zusammen.

Bei einem Ereignis an INTI springt ein Interrupt beispielsweise an Adresse
4 und dort wird ein Sprung in die ISR hinterlegt. Da die Sprungbefehle immer
16 Bit des Programmspeichers belegen, beginnen alle Interruptvektoren an geraden
Programmspeicheradressen.

Die folgenden Beispielprogramme verdeutlichen die Verwendung von Interrupt-
Service-Routinen in Assembler beziehungsweise C. Um die Programme moglichst
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Tab. 14.12 Zuordnung von Ereignissen und Interruptvektoren
Interrupt- Interruptquelle
vektor (hex.) | Kurzbezeichnung | Erliuterungen Gruppe
00 RESET Reset des Systems (nicht sperrbar) Reset
02 INTO Ereignis an Anschluss INTO Externe
04 INT1 Ereignis an Anschluss INT1 Interruptquellen
06 INT2 Ereignis an Anschluss INT2
08 TIMER2_COMP | Timer2-Vergleichs-Interrupt Timer
0A TIMER2_OVF Timer2-Uberlauf-Interrupt
0C TIMER1_CAPT | Timer1-Capture-Interrupt (ICU)
OE TIMER1_COMPA | Timer1-Vergleichs-Interrupt A
10 TIMER1_COMPB | Timer1-Vergleichs-Interrupt B
12 TIMER1_OVF Timer1-Uberlauf-Interrupt
14 TIMERO_COMP | TimerO-Vergleichs-Interrupt
16 TIMERO_OVF Timer0-Uberlauf-Interrupt
18 SPI_STC SPI: Ubertragung abgeschlossen Eingebettete
1A USART_RXC | USART: Datenempfang Schnittstellen
abgeschlossen
1C USART_UDRE USART: Sendedatenspeicher leer
1E USART_TXC USART: Senden eines Datums
abgeschlossen
20 ADC Umsetzung des Analogwertes fertig
22 EE_RDY EEPROM-Bereit-Interrupt EEPROM
24 ANA_COMP Analog-Komparator Eingebettete
26 TWI 2C/TWI-Interrupt Schnittstellen
28 SPM_RDY Programmspeicher-Interrupt Programmspeicher

ibersichtlich zu halten, beschrinkt sich die Aufgabe der ISR auf das Zihlen der steigen-
den Flanken am Controller-Anschluss INT].
In diesem Programm werden einige Assembler-Direktiven verwendet, die an dem

vorangestellten Punkt zu erkennen sind. Assembler-Direktiven sind Anweisungen, die
wihrend der Ubersetzung des Programms ausgewertet werden. Sie werden nicht in aus-
fiihrbare Befehle umgesetzt und belegen daher auch keinen Platz im Programmspeicher.
Die Direktive .org bewirkt, dass nachfolgende Befehle an einer definierten Position im
Programmspeicher abgelegt werden. Im obigen Beispiel wird sie verwendet, um den
nachfolgenden Befehl (jmp isr_intl) an die Adresse des Interruptvektors (0x04) abzule-
gen. Nach Einsatz der Direktive .dseg beziehen sich alle Befehle auf das SRAM. Die im
Beispielprogramm angegebene Folge aus den Direktiven .dseg, .org und .db dienen dazu,
im SRAM ein Byte an der Adresse 0x200 zu reservieren. Mithilfe des Labels icnt kann
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auf dieses Byte dhnlich wie auf eine Variable in einem Hochsprachenprogramm zugegrif-
fen werden.

; Beispiel filir Unterprogrammaufrufe mit Interrupt-Service-Routinen
; Beispiel filir die Interruptverarbeitung in Assembler
; Zdhlen der steigenden Flanken am Anschluss INTI1

.include "m32def.inc" ; Controllerspezifische Definitionen einbinden
jmp main ; nach Reset: Sprung ins Hauptprogramm

.org 0x04 ; Assemblierung bei INT-Vektor fortsetzen

jmp isr_intl ; Sprung in eigentliche ISR flir INTI1

; hier méglicherweise weitere ISRs
; oder Unterprogramme

isr intl:

push r24 ; Register auf Stack retten
1lds r24,icnt ; aktuellen Zdhlerwert holen
inc r24 ; Z&dhler inkrementieren

sts icnt,r24 ; 1n SRAM abspeichern

reti ; ISR verlassen

main:

; Initialisierung

clr r24 ; r24 auf null setzen

sts icnt, r24 ; Z&dhlvariable 1l&schen

1lds r1l6,MCUCR

ori rl6, (1<<ISC10) ; INT1 so programmieren, dass eine Unter-
ori rl6, (1<<ISC1l1l) ; brechung mit einer steig. Flanke auftritt

sts MCUCR, rl6
1lds rlée, GIFR

ori rlé, (1<< INT1) ; lokale Interruptfreigabe fiir INTI1
sts MCUCR, rlé6
seil ; globale Interruptfreigabe

; Endlosschleife des Hauptprogramms

main_lp:

1lds r24,icnt ; aktuellen Zdhler nach r24

call ausgabe ; Wert ausgeben -- Das Unterprogramm
; ,ausgabe" ist hier nicht angegeben

rjmp main_lp ; Endlosschleife des Hauptprogramms

.dseg ; Assemblierung auf SRAM umschalten

(,Datensegment")

.org 0x200 ; SRAM-Adresse auswdhlen

icnt:

.db O ; 1 Byte reservieren

Ein dquivalentes Programm kann auch in der Sprache C formuliert werden. Hierzu
werden sowohl die controller-spezifischen Definitionen aus der Include-Datei io.h als
auch die speziellen Definitionen fiir Interruptverarbeitung (interrupt.h) eingebunden.
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In der Include-Datei interrupt.h sind unter anderem auch Makros definiert, die zu
einer einfachen Definition von ISRs verwendet werden konnen. Hierzu wird das Makro
ISR() aufgerufen. Als Parameter wird der zugehorige Interruptvektor verwendet, der
durch die Kurzbezeichnung des Vektors mit nachgestelltem ,,_vect” gekennzeichnet
wird.

// Programmbeispiel zur Verwendung von ISRs in C

#include <avr/io.h> // Controller-spezifische Definitionen
#include <avr/interrupt.h> // Header-Datei flr Interrupts
volatile unsigned char icnt;

// Hauptprogramm

void main()

{

// Initialisierung

icnt = 0;

// Interrupt bei steigender Flanke an INTI1

MCUCR |= (1<<ISC1ll)| (1<<ISC10);

GICR |= 1<<INT1; // Lokale Interruptfreigabe
sei(); // Globale Interruptfreigabe
while (1) { // Endlosschleife

Ausgabe (icnt) ;

}
// INT1 ISR
ISR (INT1_vect)

{
icnt+4+; // Diese ISR inkrementiert icnt

Insbesondere bei Verwendung der Hochsprache C wird deutlich, dass Interrupt-
Service-Routinen grundsétzlich keine Argumente und auch keine Riickgabewerte besit-
zen. Diese Eigenschaft ergibt sich aus der Tatsache, dass man nicht wissen kann, welcher
Programmteil gerade ausgefiihrt wird, wenn eine ISR aufgerufen wird. Somit kdnnen
auch keine Parameter in Arbeitsregistern oder auf dem Stack abgelegt werden, die dann
von einer ISR verarbeitet werden konnten. Die einzige Moglichkeit eine Kommunika-
tion zwischen Hauptprogramm und ISR zu realisieren, ist die Verwendung gemeinsamer
Speicherplitze, zum Beispiel im SRAM.

14.7 Eingebettete Peripheriekomponenten

Mikrocontroller sind universell einsetzbare digitale Systeme, die auf einem Chip integ-
riert sind. Neben einer CPU enthalten Sie eine Vielzahl von verschiedenen Peripherie-
komponenten fiir sehr unterschiedliche Aufgaben. Die Hersteller von Mikrocontrollern
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bieten meist eine groe Anzahl von unterschiedlichen Mikrocontrollern an, die sich auch
im Hinblick auf die in dem System eingebetteten Komponenten unterscheiden.

Im Folgenden werden am Beispiel der Mikrocontroller der AVR-Familie typische
Peripheriekomponenten und ihre Programmierung vorgestellt. Hierbei wird der AVR-
Mikrocontroller ATmega32 zugrunde gelegt. Anhand dieses Beispielcontrollers wird die
Funktionsweise ausgewihlter Peripherieckomponenten diskutiert. Auf diese Weise wer-
den konkrete Kenntnisse der AVR-Mikrocontrollerserie vermittelt, die es ermoglichen,
einfache AVR-basierte Systeme zu realisieren. Aulerdem werden Sie in die Lage ver-
setzt, die anhand der AVR-Serie vermittelten Grundprinzipien auf andere eingebettete
digitale Systeme zu iibertragen.

14.7.1 Ports

Jeder Mikrocontroller besitzt sogenannte Ports. Ports sind Anschliisse des Mikrocontrol-
lers, die durch eine entsprechende Programmierung als digitale Eingénge oder Ausginge
verwendet werden konnen.

Hiaufig werden die einzelnen Anschliisse zu Gruppen zusammengefasst und erhal-
ten einen logischen Namen, der sowohl im Datenblatt referenziert als auch im Rahmen
der Softwareentwicklung in den Programmen verwendet wird. So besitzt der ATmega32
beispielsweise vier Ports, die mit PORTA, PORTB, PORTC und PORTD bezeichnet
werden. Jedem dieser Ports sind acht Anschliisse des Controllers zugeordnet. Die Port-
anschliisse des Controllers werden durch eine entsprechende Nummerierung unterschie-
den. So werden beispielsweise die acht Anschliisse des Ports PORTA als PAO bis PA7
bezeichnet. Fiir die anderen Ports gelten entsprechende Zuordnungen.

Um eine hohe Flexibilitit beim Einsatz der Ports zu erzielen, ist es moglich, jeden
einzelnen Anschluss eines Ports, unabhingig von den anderen Anschliissen dieses Ports,
als Ausgang oder Eingang zu programmieren.

Ist ein Portanschluss als Ausgang konfiguriert, wird durch das laufende Programm
festgelegt, ob an diesem Anschluss eine logische 0 oder 1 ausgegeben wird. Entspre-
chend kann mithilfe eines als Eingang programmierten Ports ein digitaler Wert eingele-
sen und durch die Software des Controllers ausgewertet werden.

Ports stellen somit die universellste Peripheriekomponente dar, da sie fiir die Ver-
bindung eines Mikrocontrollers mit beliebigen anderen digitalen Bausteinen eingesetzt
werden konnen. Aus diesem Grund wird statt des Begriffs Port hdufig auch der Begriff
General Purpose Input/Output (GPIO) verwendet.

Die Grenzen der Einsetzbarkeit von Ports wird im Wesentlichen durch die Leis-
tungsfihigkeit der CPU des Controllers bestimmt: Je hidufiger ein Portbit pro Zeiteinheit
umprogrammiert werden muss, desto hoher ist die hierfiir benotigte Rechenleistung. Im
ungiinstigsten Fall tibersteigt die zur Bedienung der Ports benotigte Rechenleistung die
durch die CPU zur Verfiigung gestellte Rechenleistung, sodass eine konkrete Aufgabe,
wie die Kommunikation mit einem anderen Baustein, nicht realisiert werden kann. Es
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muss daher im Einzelfall gepriift werden, ob eine angestrebte digitale Ein-/Ausgabefunk-
tion durch eine entsprechende Portprogrammierung erfolgen kann, oder ob der Einsatz
eines Controllers sinnvoll ist, der die gewiinschte Funktion durch spezialisierte Hard-
ware-Komponenten zur Verfiigung stellt.

Zur Programmierung von Peripheriekomponenten werden sogenannte I/O-Register
verwendet. Entsprechend der Grundfunktion eines Ports miissen mindestens zwei 1/O-
Register vorhanden sein: Ein Register zur Auswahl, ob ein Anschluss als Eingang oder
als Ausgang betrieben werden soll und ein weiteres Register, welches zum Einlesen oder
Ausgeben der eigentlichen Daten dient.

Entsprechend ihrer Funktion findet man in nahezu allen Mikrocontrollern zur Pro-
grammierung von Ports sogenannte Datenrichtungsregister und Datenregister. Mithilfe
des Datenrichtungsregisters wird die Datenrichtung, also ob ein Portbit als Eingang oder
als Ausgang arbeitet, programmiert. Die Datenregister dienen der eigentlichen Ein-/Aus-
gabe digitaler Werte. Dariiber hinaus kdnnen einem Port weitere I/0O-Register zugeordnet
sein, mit denen spezielle Portfunktionen aktiviert werden konnen.

Die im Rahmen dieses Kapitels betrachtete AVR-Familie ordnet jedem Port drei I/O-
Register zu:

Datenrichtungsregister (Data Direction Register, DDR)

Wird ein Bit im Datenrichtungsregister auf O gesetzt, arbeitet der zugehorige Anschluss
als Eingang. Ist das dem Anschluss zugehorige Bit dagegen auf 1 gesetzt, wird der ent-
sprechende Anschluss als digitaler Ausgang betrieben.

Dateneingangsregister (Port Input Register, PIN)
Mithilfe dieses Registers konnen die an einem Port anliegenden digitalen Eingangswerte
eingelesen werden.

Datenausgaberegister (Port Output Register, PORT)

Ist ein Portanschluss als Ausgang programmiert, kann mithilfe des PORT-Registers der
ausgegebene logische Wert festgelegt werden. Ist ein Portanschluss als Ausgang pro-
grammiert, wird durch Setzen des zugehorigen Bits des PORT-Registers eine 1 oder
durch Loschen des Bits eine logische 0 ausgegeben.

Wird ein Portanschluss als Eingang verwendet, kann mithilfe des PORT-Registers ein
sogenannter Pull-up-Widerstand durch Setzen des Portbits aktiviert werden. Der Port-
eingang wird dann iiber einen Widerstand (im Bereich mehrerer Kiloohm) mit der Ver-
sorgungsspannung verbunden. Auf diese Weise liegt an dem Eingang eine ,,schwache
Eins* an, die durch die duflere Beschaltung mit einer ,,starken Null“, also einer relativ
niederohmigen Verbindung zu Masse, iiberschrieben werden kann.

Ist das zugehorige Bit im PORT-Register geloscht, arbeitet der Eingang in einem
hochohmigen Modus (s. Tab. 14.13).

Die Portprogrammierung kann anhand eines einfachen Schaltungsbeispiels ver-
deutlicht werden: An einen ATmega32-Controller ist ein Taster und eine LED mit
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Vorwiderstand anschlossen. Der Taster ist mit dem Portanschluss PA2 und die LED mit
dem Anschluss PA6 verbunden. Ein entsprechender Schaltplan ist in Abb. 14.7 darge-
stellt. Die Aufgabe des Controllers besteht darin, die LED einzuschalten, wenn der Taster
gedriickt wird.

Tab. 14.13 Funktionen der Bit im IO-Register Funktion des Portanschlusses
qutanschh'isse bei AVR- DDR PORT
Mikrocontrollern - -
0 0 Eingang, hochohmig
0 1 Eingang, Pull-up-Widerstand aktiviert
1 0 Ausgang, Ausgabe einer 0
1 1 Ausgang, Ausgabe einer 1

T
Taster
1 40
— O(XCK/TO)u (ADCO) PAO —— '
2 39
—=21pB1 (T1) (ADCH) PA1 [
3 38 L
——1 PB2 (INT2/AINO) (ADC2) PA2 ——
— %! B3 (OCO/AINT) (ADC3) PA3 [o—
—21pBa (s8) (ADC4) PA4 [20—
6
—25!pB5 (MOSI) (ADCS) PAS 22— ’9
7 34
— PB6 (MISO) (ADC6) PAG ,l> 1
—81pB7 (SCK) (ADC7) PA7 [So— Ry LED
— 1 /RESET Ql AREF [22—
10 52} 31
+5V O——— vce g GND .L
ﬁi GND GE) Avee Bo— O 4sv
2l yrAL2 — (TOsC2)PC7 (22—
13 <C 28
— B xTALT (TOSC1) PC6 |—
14 27
—141Ppo (RXD) (TDI) PC5 21—
—1%1pp1 (TXD) (TDO) PC4 22—
—" pp2 (INTO) (TMS) PC3 22—
17
—7 1 Pp3 (INTH) (TCK) PC2 22—
18 23
—81pp4 (0C1B) (SDA) PC1 |22
—191pp5 (0C1A) (scL) pco 22—
—2%4 pps (1CP1) (0c2) PD7 [ —

Abb. 14.7 Einfache Mikrocontrolleranwendung mit LED und Taster
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Aufgrund der Beschaltung muss der Anschluss PA/ als Eingang und der Anschluss
PA6 als Ausgang betrieben werden. Uber die Verwendung der anderen Anschliisse des
Ports PORTA wurde keine Aussage getroffen.

#define _ AVR_ATmegal32__ // Auswahl des Controllers
#include <avr/io.h> // Definitionen etc. filr den Controller einbinden
void main()
{

// Initialisierung

DDRA |= 0x40; // Bit 6 im Datenrichtungsregister A setzen

DDRA &= O0xFD; // Bit 1 im Datenrichtungsregister A l&schen

PORTA |= 0x02; // Bit 1 im PORTA-Register setzen und so den

// internen Pull-Up-Widerstand aktivieren

// Endlosschleife

while (1) {
if (PINA & 0x02) // PA2 = 1 => Taster nicht gedriickt
PORTA &= OxBF; // PORTA(6) 16schen (LED aus)
else // PA2 = 0 => Taster gedrickt
PORTA |= 0x40; // PORTA(6) setzen (LED an)

Neben der Portprogrammierung verdeutlicht dieses einfache Beispielprogramm einige
weitere wichtige Aspekte der Programmierung von Mikrocontrollern der AVR-Serie. Im
Folgenden werden die einzelnen Zeilen des Programms niher erldutert:

#define _ AVR_ATmega32__ // Auswahl des Controllers

Mithilfe dieser Zeile wird der Controller ausgewihlt, fiir den das Programm geschrie-
ben wird. Bei Verwendung einer Entwicklungsumgebung wie Armel Studio geschieht
diese Auswahl in der Regel iiber die Einstellungen des in der Entwicklungsumgebung
angelegten Projektes. In diesem Fall kann die explizite Auswahl des Controllers im Pro-
gramm entfallen.

#include <avr/io.h> // Definitionen etc. filir den Controller einbinden

Diese Zeile inkludiert eine Header-Datei, welche unter anderem die Definitionen der
im Controller vorhandenen I/O-Register enthilt. AnschlieBend kann auf die Register des
Controllers wie auf Variablen eines C-Programms zugegriffen werden, was die Program-
mierung und die Lesbarkeit des Programms wesentlich vereinfacht.

void main ()
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Diese Zeile leitet das Hauptprogramm ein und entspricht der iiblichen Programmie-
rung in der Programmiersprache C. Anders als bei manchen Programmen, die fiir einen
PC entwickelt werden, besitzt das Hauptprogramm keine Argumente und keine Riick-
gabewerte. Da das Hauptprogramm bei einfachen Controllern hidufig direkt nach dem
Einschalten des Systems, ohne Zuhilfenahme eines Betriebssystems gestartet wird, exis-
tiert kein aufrufendes Programm (zum Beispiel das Betriebssystem), welches Argumente
tibergeben konnte oder Riickgabewerte erwartet.

Manchmal wird dennoch fiir das Hauptprogramm eines AVRs ein Riickgabewert
angegeben. Der Grund hierfiir ist in dem verwendeten Compiler zu suchen, welcher eine
Warnmeldung ausgibt, falls das Hauptprogramm keinen Riickgabewert besitzt. Diese
Warnmeldung kann durch die Definition eines Riickgabewertes vermieden werden.

// Initialisierung

DDRA |: 0x40; // Bit 6 im Datenrichtungsregister A setzen
DDRA &= O0xFD; // Bit 1 im Datenrichtungsregister A 1l&schen
PORTA |: 0x02; // Bit 1 im PORTA-Register setzen und so den

// internen Pull-Up-Widerstand aktivieren

Die korrekte Programmierung des Datenrichtungsregisters des verwendeten Ports
geschieht mithilfe dieser Zeilen. In der ersten Zeile wird der aktuelle Wert des Datenrich-
tungsregisters gelesen und mithilfe einer bitweisen ODER-Verkniipfung mit der hexade-
zimalen Konstanten 0x40 (bindr: 0100 0000) verkniipft. Das Ergebnis der Verkniipfung
wird im Datenrichtungsregister des Ports A, DDRA, abgelegt. Durch diese Form der Pro-
grammierung des Datenrichtungsregisters wird sichergestellt, dass das Bit 6 des Daten-
richtungsregisters DDRA, welches die Datenrichtung des Portanschlusses PA6 festlegt,
auf 1 gesetzt wird. Alle anderen Bits des Datenrichtungsregisters behalten ihren Wert.
Analog wird in der zweiten Zeile das Loschen des Bits 1 im Datenrichtungsregister
durch die Verwendung einer bitweisen UND-Verkniipfung durchgefiihrt.

Da bei geoffnetem Taster kein eindeutiger logischer Pegel an dem Anschluss PA/
anliegt, wird mithilfe der dritten Zeile der interne Pull-Up-Widerstand dieses Portan-
schlusses aktiviert. Bei gedffnetem Taster wiirde an dem Portanschluss iiber den Pull-
Up-Widerstand eine logische 1 anliegen, wihrend bei gedriicktem Taster eine logische 0
anliegt.

while (1)

Mit dem Setzen der fiir die Anwendung relevanten Bits der Register DDRA und
PORTA ist die Initialisierung fiir dieses einfache Programmbeispiel abgeschlossen und
es folgt der Code fiir den normalen Betrieb des Controllers. Dieser wird in den meis-
ten Fillen in eine Endlosschleife eingebettet, da das Programm kontinuierlich auf Einga-
ben reagieren soll. Wiirde man auf die Endlosschleife verzichten, wiirde das Programm
bereits nach wenigen Taktzyklen beendet sein. In diesem Fall wird in eine vom Compiler
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erzeugte leere Endlosschleife verzweigt. Die gewlinschte Reaktion des Controllers auf
den Tastendruck wiirde also nur einmalig, kurz nach dem Einschalten des Controllers
erfolgen.

if (PINA & 0x02) // PA2 = 1 => Taster nicht gedriickt

Mithilfe dieser Zeile wird der Anschluss PA2 des Controllers abgefragt. Der Lesezu-
griff auf PINA liefert den momentanen Wert aller Portanschliisse des Ports PA zuriick.
Von diesen 8 Bit ist jedoch nur eines fiir die Ausfithrung der gewiinschten Funktion rele-
vant. Daher werden die nicht relevanten Bits durch die UND-Verkniipfung mit der Kon-
stanten 0x02 (bindr: 0000 0010) ausgeblendet, und es ergeben sich zwei mogliche Werte
fiir den Ausdruck PINA&Ox02: Liegt an dem Anschluss PA2 eine logische 1 an (Taster
offen), ergibt der Ausdruck den Wert 2. Ist der Taster gedriickt und liegt eine logische O
am Anschluss PA2 an, ergibt der Ausdruck den Wert 0. Da in der Programmiersprache
C alle Ausdriicke, die einen Wert ungleich Null ergeben, als wahr interpretiert werden,
kann der Ausdruck PINA&Ox02 zur Auswahl herangezogen werden. Ist der Taster nicht
gedriickt (Ausdruck ungleich Null), wiirde der If-Zweig ausgefiihrt werden. Im anderen
Fall der Else-Zweig.

PORTA &= OxBF; // PORTA(6) 16schen (LED aus)
PORTA |= 0x40; // PORTA(6) setzen (LED an)

Diese beiden Zeilen setzen beziehungsweise loschen das Bit 6 des I/O-Registers
PORTA. Ist das Bit geloscht, liegt an dem Portanschluss eine niedrige Spannung (nahe
0V) an und iiber die LED fillt keine Spannung ab; die LED leuchtet nicht. Ist das Bit
dagegen gesetzt, wird am Anschluss eine hohe Spannung (nahe der Versorgungsspan-
nung des Controllers) ausgegeben und die LED leuchtet.

Die Programmierung der Ports kann ebenso in Assembler erfolgen. Ein Programm,
welches die oben beschriebene Funktion ausfiihrt, konnte wie folgt realisiert werden:

.include "m32def.inc"

in r24,DDRA ; Aktuellen Wert des DDRA-Registers holen
ori r24,0x40 ; relevante Bits setzen

andi r24,2 ; bzw. 1d6schen

out DDRA, r24 ; Ergebnis abspeichern

in r24, PORTA ; PORTA holen

ori r24,0x2 ; Pull-Up flr Eingang PAl aktivieren
out PORTA, r24 ; PORTA setzen

main_loop:

in rl6, PINA ; Eingabewert holen

andi rl6,0x02 ; Bit 1 maskieren

breq 1led_on ; falls Ergebnis = 0, springen

in r24, PORTA



470 14  Mikrocontroller

andi r24, 0xBF

out PORTA, r24 ; LED aus
rjmp main_loop

led_on:

in r24, PORTA

ori r24,0x40

out PORTA, r24 ; LED an

rjmp main_loop

Den Portanschliissen eines Mikrocontrollers konnen neben der softwaregesteuer-
ten Ein-/Ausgabe digitaler Daten auch andere Funktionen zugeordnet werden. Die ent-
sprechenden alternativen Portfunktionen (engl. alternate port functions) werden in den
Anschlussdiagrammen des Controllers hiufig in Klammern angegeben. So konnen die
Anschliisse PAO bis PA7 eines ATmega32 beispielsweise als analoge Eingéinge verwen-
det werden. Andere Anschliisse wie PDO, PDI oder PCO, PCI konnen dagegen mit ein-
gebetteten Peripheriekomponenten zur seriellen Dateniibertragung verbunden werden.
Ist eine alternative Portfunktion aktiviert worden, ist die urspriingliche Portfunktion
in der Regel nicht mehr zuginglich, da die Peripherieckomponente die Steuerung der
Anschliisse iibernimmt. Durch die Mehrfachbelegung der Anschliisse eines Mikrocont-
rollers wird erreicht, dass die Anzahl der Anschliisse gering gehalten wird. Der Control-
ler kann somit in kleinere Gehduse mit relativ wenigen Anschliissen eingebaut werden,
was neben der kleineren Bauform auch zu einer Verringerung der Herstellungskosten
beitrdgt. In den folgenden Abschnitten werden einige der wichtigsten Peripheriekom-
ponenten anhand des Beispiels eines ATmega32 beschrieben. Die zugehorigen alternati-
ven Portfunktionen werden in Zusammenhang mit der jeweiligen Peripheriekomponente
beschrieben.

14.7.2 Timer

Timer sind ebenso wie die zuvor beschriebenen Ports Standardkomponenten eines Mik-
rocontrollers. Sie konnen fiir sehr unterschiedliche Aufgaben eingesetzt werden. Hierzu
zdhlen unter anderem die Erzeugung von Signalen, die zeitliche Vermessung von Signa-
len (zum Beispiel Frequenzzihler) oder auch die regelmiflige Unterbrechung des CPU-
Programms durch Interrupts.

Die Kernkomponente eines Timers ist ein digitaler Zihler, der hiufig eine Wortbreite
von 8, 16 oder 32 bit besitzt. Der Zidhler wird entweder mit einem aus dem Systemtakt
abgeleiteten Takt oder mit einem von auflen angelegten Taktsignal betrieben (Abb. 14.8).
Der aktuelle Zéhlerstand wird durch eine nachgeschaltete Einheit ausgewertet, welche in
Abhingigkeit vom Zihlerstand ein Timer-Ereignis auslosen kann. Auf Basis des Timer-
Ereignisses konnen weitere Aktionen abgeleitet werden. Dies kann zum Beispiel das
Invertieren eines Mikrocontroller-Anschlusses oder die Unterbrechung des laufenden
Programms durch einen Interrupt sein.
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Abb. 14.8 Prinzipieller Aufbau eines einfachen Timers

Auf den ersten Blick mag die Kernfunktion eines Timers simpel erscheinen, sodass
die Schlussfolgerung naheliegen konnte, dass die Funktion eines Timers auch mit-
hilfe der CPU durch ein entsprechendes Programm nachgebildet werden kann. Diese
Schlussfolgerung wiirde jedoch vernachléssigen, dass die CPU die wertvollste und uni-
versell einsetzbarste Komponente ist. Es ist daher nicht sinnvoll, diese Komponente
fiir eine so einfache Aufgabe wie das Zihlen von Impulsen einzusetzen, da die hierfiir
benotigte Rechenleistung nicht mehr fiir andere Aufgaben genutzt werden kann. Neben
der Entlastung der CPU bietet die Auslagerung hédufig genutzter Funktionen in eine
eigenstindige Hardwarekomponente einen weiteren entscheidenden Vorteil: Wird eine
Funktion in Form einer spezialisierten Hardware implementiert, kann die Implementie-
rung so erfolgen, dass die Ausfiihrung dieser Funktion in wenigen Taktzyklen (hdufig
in einem einzelnen Taktzyklus) erfolgt. Eine entsprechende Realisierung als CPU-Pro-
gramm benotigt dagegen in der Regel eine deutlich hohere Ausfiihrungszeit, was sich
insbesondere dann negativ auswirken wiirde, wenn auf duflere Ereignisse, wie zum
Beispiel der Wechsel des Wertes eines Eingangssignals reagiert werden muss. Diese
Tatsache wird in den folgenden Abschnitten am Beispiel der Funktion eines Timers
verdeutlicht.

Die im Rahmen dieses Kapitels betrachteten Timer des Mikrocontrollers ATmega32
konnen in verschiedenen Modi betrieben werden. Die Modi werden als der ,,Normale
Modus (normal mode)“, der ,,CTC-Modus* sowie als ,,PWM-Modi‘ bezeichnet. In den
folgenden Abschnitten werden diese Modi néher beschrieben.

14.7.2.1 Normal Mode

Der als Normal Mode bezeichnete Modus eines AVR-Timers stellt den einfachsten
Betriebsmodus dar. In diesem Modus zihlt der Zihler des Timers nur aufwirts. Bei
Erreichen des Zihler-Endwertes (zum Beispiel 255 bei einem 8-Bit-Timer) wird der
Zihlerstand auf 0 gesetzt und erneut aufwirts gezihlt. Das Erreichen des Endwertes
stellt ein Ereignis dar, welches zum Beispiel zur Invertierung eines Ausgangssignals ver-
wendet werden kann. Das zugehorige zeitliche Verhalten des Zihlerstandes und des Aus-
gangssignals ist in Abb. 14.9 dargestellt.
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Abb. 14.9 Verlauf des Zihlerstandes und eines Ausgangssignals im Normal Mode

Wird der Timer mit der Taktfrequenz des Controllers fsyS betrieben, ergibt sich die
Rate der Uberlaufereignisse R, beziehungsweise die Frequenz des erzeugten Signals f
zu:

ut

Ro z@

beziehungsweise

_ Rov _ fsys
Jour = S T 256

Die Uberlaufrate R, hingt in diesem Fall nur von der Systemtaktfrequenz ab. Fiir eine
grobe Einstellung der Uberlaufrate wird bei Timern in der Regel ein Vorteiler eingesetzt.
Im Fall des ATmega32 kann der Vorteiler des Timers auf fiinf verschiedene Werte zwi-
schen 1 (keine Vorteilung) und 1024 (der Zihler des Timers wird mit 1/1024 der Sys-
temfrequenz betrieben) eingestellt werden. Fiir die Einstellung des Vorteilers werden
I/O-Register (Timer/Counter Control Register, TCCR) zur Verfiigung gestellt. Wird fiir
den Vorteiler der Wert Nyor verwendet, gilt fiir die Uberlaufrate

fsys

R =
Y= Nver - 256

Durch die Verwendung des Vorteilers lisst sich somit eine grobe Einstellung der Uber-
laufrate und damit der Frequenz der Timerereignisse vornehmen.

14.7.2.2 CTC Modus

Eine feinere Einstellung des zeitlichen Verlaufs der Timerereignisse ldsst sich erzielen,
wenn der Zihlerstand, dem ein Ereignis zugeordnet ist, frei programmiert werden kann.
Hierzu besitzt ein Timer ein Register, dessen Inhalt kontinuierlich mit dem aktuellen
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Zihlerstand verglichen wird. Im Fall der AVR-Timer wird dieses Register als OCR (Out-
put Compare Register) bezeichnet. Erreicht der Zihlerstand des Timers den im OCR-
Register programmierten Wert, kann dies als ein Timerereignis gewertet werden, welches
analog zum Timer-Uberlauf im Nomal Mode behandelt wird. Dieser Betriebsmodus wird
als Clear Timer on Compare match (CTC) bezeichnet. Der Verlauf des Zihlerstandes im
CTC-Modus ist in Abb. 14.10 dargestellt.

Mithilfe des CTC-Modus wird eine relativ feine Einstellung der Rate der Timerereig-
nisse beziehungsweise der Frequenz des Ausgangssignals ermoglicht. Es gilt:

fsys

Repe = —— I
“TC = Nvor - (OCR + 1)

14.7.2.3 PWM-Modi

Bei den beiden zuvor vorgestellten Timermodi ldsst sich die Frequenz eines erzeugten
Signals einstellen, das Tastverhiltnis ist dagegen mit 0,5 festgelegt und kann in diesen
Modi nicht gedndert werden. Die Erzeugung eines Signals mit programmierbarem Tast-
verhiltnis ldsst sich mithilfe der sogenannten PWM-Modi realisieren. Der Name PWM-
Modi ergibt sich aus der typischen Anwendung dieser Modi, nimlich die Erzeugung
eines pulsweiten-modulierten Signals (PWM-Signal).

Bei Verwendung der PWM Modi zihlt der Timer immer bis zum Erreichen des End-
wertes. Es kann allerdings sowohl das Erreichen des Endwertes als auch das Durchlaufen
des Vergleichswertes als interrupt-auslosendes Timerereignis genutzt werden.

Grundsitzlich werden zwei PWM-Modi unterschieden. Im ersten Fall des Fast-
PWM-Modus, der auch als Single-Slope-PWM bezeichnet wird, zidhlt der Zihler des
Timers nur aufwirts. Nach dem Erreichen des Endwertes beginnt der Zihler von 0 an
zu zdhlen. Dabei findet die Invertierung des Ausgangssignals sowohl bei Erreichen des

Zéahlerstand

EnAwert -~ - - - - oo ee e e

Vergleichswert |
(OCR-Register)

0 b >
I
Ausgangssignal
1
0 -
t

Abb. 14.10 Verlauf des Zihlerstandes und eines Ausgangssignals im CTC Mode
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Vergleichswertes als auch bei Erreichen des Endwertes statt. Abb. 14.11 zeigt das Zeit-
verhalten des Timers im Fast-PWM-Modus.

Die Frequenz des erzeugten PWM-Signals ist abhiingig von dem gewihlten Timer-
endwert TOP und der Eingangsfrequenz des Zihlers, welche sich aus der Eingangsfre-
quenz f; und dem gewihlten Vorteilerwert N, . ergibt. Das erzeugte Signal besitzt die
Frequenz f.p,,, mit einem Tastverhiltnis V..,

frpwm = S
Nvor - (TOP + 1)
o OCR
FPWM = o

Im zweiten Fall des Phase-Correct-PWM-Modus, der auch als Dual-Slope-PWM-Modus
bezeichnet wird, zahlt der Timer zunéchst aufwérts und nach Erreichen des Endwertes abwirts.
Nach Erreichen des Wertes O zihlt der Zihler wiederum aufwirts. Dabei findet ein Wechsel der
Polaritiit des Ausgangssignals nur dann statt, wenn der Vergleichswert erreicht wird.

Hieraus ergeben sich die folgenden Gleichungen fiir die Frequenz beziehungsweise
das Tastverhiltnis des erzeugten Signals:

Jin
2- NVor . (TOP + 1)

fecpwm =

OCR

V = V = —
PCPWM FPWM TOP

Das zugehorige Zeitverhalten ist in Abb. 14.12 dargestellt.
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Abb. 14.11 Verlauf des Zihlerstandes und eines Ausgangssignals im Fast-PWM-Mode
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Abb. 14.12 Signalerzeugung im Phase-Correct-PWM-Mode (Dual-Slope-PWM-Mode)

14.7.2.4 Die Timer des ATmega32
Der Mikrocontroller ATmega32 besitzt drei Timer, welche als Timer 0, Timer 1 und
Timer 2 bezeichnet werden.

Timer O ist ein 8-Bit-Timer. Er besitzt einen Vergleichswert (I/O-Register: OCR0) und
kann mit dem internen Systemtakt oder mit einem externen Takt (Anschluss: 70) betrie-
ben werden.

Der Timer 1 ist ein 16-Bit-Timer, der ebenso mit dem internen Systemtakt oder einem
externen Takt (Anschluss: 77) betrieben werden kann. Er besitzt zwei Vergleichswerte
(OCRIA, OCRIB) und kann gleichzeitig zwei verschiedene Signale an den Controlleran-
schliissen OC/A und OC1B ausgeben.

Timer 1 besitzt dariiber hinaus eine sogenannte Input-Capture-Unit (ICU). Die Auf-
gabe der ICU ist es, den aktuellen Zihlerwert bei Auftreten eines zuvor programmier-
ten Ereignisses in ein spezielles Register (I/O-Register ICRI) zu iibertragen. Dieser Wert
bleibt bis zum néchsten Auftreten des Ereignisses im ICP-Register gespeichert und kann
von der CPU ausgelesen werden. Die ICU kann unter anderem zum zeitlichen Vermes-
sen von digitalen Signalen verwendet werden. Wird beispielsweise als ICU-Ereignis das
Auftreten einer steigenden Flanke des Eingangssignals am Anschluss ICP1 ausgewihlt,
ist es moglich, die Periodendauer des Eingangssignals durch zeitliches Vermessen zweier
Taktflanken zu bestimmen. Hierzu muss lediglich der Wert des ICR1-Registers bei Auf-
treten der zweiten Taktflanke von dem ICRI1-Wert bei Auftreten der ersten Taktflanke
subtrahiert werden. Die Periodendauer T, des Signals ergibt sich dann zu:

T — (ICRF1anke2 — ICRFlanke2) - Nvor
m —
fin
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Der Timer 2 des ATmega32 ist ebenso wie der Timer O mit einem 8-Bit-Zihler ausgestat-
tet, und es kann ein Vergleichswert (OCR2) programmiert werden. Die Besonderheit des
Timers 2 ist der zugeordnete eingebettete Quarzoszillator, welcher unabhingig von den
anderen Komponenten des Controllers betrieben werden kann. Der Timer 2 kann mithilfe
dieses Oszillators mit einem Taktsignal versorgt werden, selbst wenn der Controller sich in
einem Stromsparmodus befindet und wesentliche Systemkomponenten abgeschaltet sind.

Zur Programmierung der Timer des ATmega32 stehen mehrere Register zur Verfii-
gung, deren Funktion in den folgenden Abschnitten beschrieben wird.

14.7.2.5 Register des Timers 0

Der aktuelle Zihlerstand des Timers 0 kann durch einen Zugriff auf das Register TCNTO
gelesen oder auch geschrieben werden. Uber das Register OCRO wird auf den Ver-
gleichswert des Timers 0 zugegriffen.

Die Auswahl des Betriebsmodus des Timers 0 erfolgt iiber ein Steuerregister (Timer/
Counter Control Register, TCCR0). Neben dem Betriebsmodus werden mithilfe die-
ses Registers auch der Wert des Vorteilers und die Quelle des Timertaktes festgelegt
(Tab. 14.14).

Das Bit FOCO dient dem softwarebasierten Auslosen eines Compare-Match-Ereig-
nisses (Zidhlerstand = Vergleichswert) unabhingig vom aktuellen Wert des OCRO-
Registers oder des Zihlerstandes. Die Bedeutung der anderen Bits dieses Registers ist in
Tab. 14.15 und 14.16 zusammengefasst.

Tab. 14.14 Belegung des Registers TCCRO

TCCRO

Bit 7 6 5 4 3 2 1 0
Name |FOCO |WGMO00O |COMO1 COMO0O |WGMOl |CS02 | CSO01 |CS00

Tab. 14.15 Bedeutung der Bits CS00, CSO1 und CS02
CS02 CS01 CS00 Bedeutung

Keine Taktauswahl, Timer ist abgeschaltet

Systemtakt mit Vorteiler = 1

Systemtakt mit Vorteiler = 8

Systemtakt mit Vorteiler = 64

Systemtakt mit Vorteiler = 256

Systemtakt mit Vorteiler = 1024

— == o |0 OO

Externer Takt an Anschluss TO, aktive Flanke = fallende Flanke

—_ O | O | == |0 O
— | o= O |= O = O

—_
—_

Externer Takt an Anschluss T0, aktive Flanke = steigende
Flanke
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Tab. 14.16 Bedeutung der Bits WGMO00, WGMO01, COMO00 und COMO1

WGMO00 | COMO1 | COMO00 | WGMO1 | Bedeutung

0 0 0 0 Normal Mode, Signalerzeugung aus

0 0 0 1 CTC-Modus, Signalerzeugung aus

0 0 1 0 Normal Mode, Invertierung des OCO-Ausgangs bei
Erreichen des Vergleichswertes

0 0 1 1 CTC-Modus, Invertierung des OCO-Ausgangs bei Errei-
chen des Vergleichswertes

0 1 0 0 Normal Mode, Loschen des OCO-Ausgangs bei Errei-
chen des Vergleichswertes

0 1 0 1 CTC-Modus, Loschen des OCO-Ausgangs bei Errei-
chen des Vergleichswertes

0 1 1 0 Normal Mode, Setzen des OC0O-Ausgangs bei Erreichen
des Vergleichswertes

0 1 1 1 CTC-Modus, Setzen des OCO-Ausgangs bei Erreichen
des Vergleichswertes

1 0 0 0 Phase-Correct-PWM-Modus, Signalerzeugung aus

1 0 0 1 Fast-PWM-Modus, Signalerzeugung aus

1 0 1 0 Reserviert (ungiiltige Konfiguration)

1 0 1 1 Reserviert (ungiiltige Konfiguration)

1 1 0 0 Phase-Correct-PWM-Modus, Loschen des OCO-Aus-
gangs bei Erreichen des Vergleichswertes wihrend des
Aufwirtszihlens, Setzen wihrend des Abwirtszihlens

1 1 0 1 Fast-PWM-Modus, Loschen des OCO-Ausgangs bei
Erreichen des Vergleichswertes wihrend des Aufwiirts-
zihlens, Setzen nach Zihleriiberlauf

1 1 1 0 Phase-Correct-PWM-Modus, Setzen des OCO-
Ausgangs bei Erreichen des Vergleichswertes wih-
rend des Aufwirtszihlens, Loschen wihrend des
Abwirtszédhlens

1 1 1 1 Fast-PWM-Modus, Setzen des OCO-Ausgangs bei

Erreichen des Vergleichswertes wihrend des Aufwirts-
zédhlens, Loschen nach Zihleriiberlauf

14.7.2.6 Register des Timers 1
Da der Timer 1 auf einem Zihler mit einer Wortbreite von 16 bit basiert, sind Register,
die sich auf den Zihlerstand beziehen in Form von zwei 8 bit breiten Registern imple-
mentiert. So kann beispielsweise der Zihlerstand des Timers iiber die Register TCNTIL
(niederwertiges Byte) und TCNTIH (hoherwertiges Byte) geschrieben und gelesen wer-
den. Analog kann auf die Vergleichswerte mithilfe der Register OCRIAL und OCRIAH
sowie OCR2AL und OCR2AH zugegriffen werden. Entsprechendes gilt fiir den ICR-Wert
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der Input-Capture-Unit, auf welchen iiber die Register /CRL und /CRH zugegriffen wer-
den kann.

Zur Steuerung werden fiir den Timer 1 zwei Register zur Verfiigung gestellt, TCCRIA
und TCCRIB (Tab. 14.17).

Die Bedeutung der Bits CS12, CS11, CS10 und FOCIA, FOCIB besitzen eine zu den
entsprechenden Bits des Timers 0 analoge Funktion (vgl. Tab. 14.18).

Die Bits /CNCI und ICES] sind der Input-Capture-Unit zugeordnet. Wird /CNC1
gesetzt, wird damit ein Rauschfilter in der ICU aktiviert, welches kurzzeitige Signal-
wechsel am /CPI-Anschluss ausfiltert. Mit dem Bit ICES] kann die aktive Flanke des
ICPI-Signals festgelegt werden: Ist ICES] gesetzt, reagiert die ICU auf eine steigende
Flanke; ist ICES] geloscht, reagiert die ICU auf eine fallende Flanke.

Tab. 14.17 Belegung der Register TCCR1A und TCCR1B

TCCRIA

Bit 7 6 5 4 3 2 1 0
Name |COMIAl |COMIAO | COMIB1 |COMIB0O FOCIA |FOCIB |WGMI1l | WGMI10

TCCR1B
Bit 7 6 5 4 3 2 1 0
Name |ICNC1 ICES1 WGM13 | WGM12 | CS12 CS11 CS10

Tab. 14.18 Bedeutung der Bits COM1A1, COM1B1, COM1AO und COM1B0O

COMI1A1 |COMIAO | Bedeutung
COMIB1 |COMI1BO

0 0 Signalerzeugung aus
0 1 Normal, CTC: Invertieren des OC-Ausgangs bei Erreichen des
Vergleichswertes

PWM-Modi: Signalerzeugung aus.
Ausnahme WGM1 = 1001,1110 oder 1111: Invertieren des OC1A-
Ausgangs bei Erreichen des Vergleichswertes

1 0 Normal, CTC: Loschen des OC-Ausgangs bei Erreichen des
Vergleichswertes

Fast PWM: Loschen des OC-Ausgangs bei Erreichen des Vergleichswer-
tes wihrend, Setzen nach Erreichen von TOP

PC-PWM: Loschen des OC-Ausgangs bei Erreichen des Vergleichswer-
tes wihrend des Aufwirtszihlens, Setzen wihrend des Abwirtszihlens

1 1 Normal, CTC: Setzen des OC-Ausgangs bei Erreichen des
Vergleichswertes

Fast PWM: Setzen des OC-Ausgangs bei Erreichen des Vergleichswer-
tes wihrend, Loschen nach Erreichen von TOP

PC-PWM: Setzen des OC-Ausgangs bei Erreichen des Vergleichswertes
wihrend des Aufwirtszihlens, Loschen wihrend des Abwirtszihlens
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Mithilfe der Bits WGM 13 bis WGM10 wird der Betriebsmodus des Timers festgelegt.
Die 16 moglichen Modi des Timers 1 sind in Tab. 14.19 zusammengefasst.

14.7.2.7 Register des Timers 2

Die Register des Timers 2 entsprechen den Registern des Timers 0. Zur Unterscheidung
der Timer werden die Register des Timers 2 mit der Ziffer 2 (statt 0) gekennzeichnet,
also TCNT?2 statt TCNTO, OCR2 statt OCRO, usw. Entsprechendes gilt fiir die einzelnen
Bits der Timer-Register (zum Beispiel WGM21 statt WGMOI). Eine Ausnahme bilden
die Bits CS22 bis CS20 zur Steuerung des Vorteilers (s. Tab. 14.20).

Als Taktquelle kann neben dem Systemtakt auch ein separater Quarzoszillator ver-
wendet werden, welcher mit einem externen Quarz (typischerweise mit einem 32-kHz-
Uhrenquarz) betrieben wird. Zur Steuerung dieser Funktion besitzt der Timer 2 ein
weiteres Register, welches als Asynchronous Status Register (ASSR) bezeichnet wird
(Tab. 14.21).

Ist das Bit AS2 gesetzt, wird der Timer 2 iiber den separaten Quarzoszillator mit
einem Taktsignal versorgt. Ist das Bit dagegen geloscht, wird dem Timer der Systemtakt
zugefiihrt. Die drei anderen Bits des ASSR-Registers dienen der Synchronisation zwi-
schen der CPU und dem Timer: Wird beispielsweise ein Schreibzugriff auf das OCR2-
Register ausgefiihrt, wird das Bit OCR2UB (OCR2 Update Busy) gesetzt. Erst wenn

Tab. 14.19 Bedeutung der Bits WGM13, WGM12, WGM11 und WGM10

WGM13 | GM12 |WGMI11 'WGMIO0 |Bedeutung

0 0 0 0 Normal Mode, TOP = OxFFFF

0 0 0 1 Phase-Correct-PWM-Modus, TOP = 0xO0FF

0 0 1 0 Phase-Correct-PWM-Modus, TOP = 0x01FF

0 0 1 | Phase-Correct-PWM-Modus, TOP = 0x03FF

0 1 0 0 CTC-Modus, TOP = OCRIA

0 1 0 1 Fast-PWM-Modus, TOP = 0xO0FF

0 1 1 0 Fast-PWM-Modus, TOP = 0x01FF

0 1 1 1 Fast-PWM-Modus, TOP = 0x03FF

1 0 0 0 Phase-and-Frequency-Correct-PWM, TOP = ICR1

1 0 0 1 Phase-and-Frequency-Correct-PWM, TOP =
OCRI1A

1 0 1 0 Phase-Correct-PWM-Modus, TOP = ICR1

1 0 1 1 Phase-Correct-PWM-Modus, TOP = OCR1A

1 1 0 0 CTC-Modus, TOP = ICR1

1 1 0 1 Reserviert

1 1 1 0 Fast-PWM-Modus, TOP = ICR1

1 1 1 | Fast-PWM-Modus, TOP = OCRI1A
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Tab.14.20 Bedeutung der CS22 CS21 CS20 Bedeutung
Bits CS00, CSO1 und CS02 0 0 0 Timer ist
abgeschaltet
0 0 1 Vorteiler = 1
0 1 0 Vorteiler = 8
0 1 1 Vorteiler = 32
1 0 0 Vorteiler = 64
1 0 1 Vorteiler = 128
1 1 0 Vorteiler = 256
1 1 1 Vorteiler = 1024
Tab. 14.21 Belegung des ASSR
Registers ASSR Bit 776 15 14 3 ) 1 0
Name |- - |- |- | AS2 | TCN2UB |OCR2UB TCR2UB

der geschriebene Wert vom Timer iibernommen wurde, wird das Bit von der Timer-HW
zuriickgesetzt. Entsprechendes gilt fiir die Register TCNT2 und TCCR2, denen die Bits
TCN2UB und TCR2UB zugeordnet sind.

14.7.2.8 Timer als Interruptquellen

Die Timer des ATmega32 konnen auch als Interruptquellen genutzt werden. Es konnen
mithilfe aller Timer Interrupts ausgeldst werden, wenn ein Timer-Uberlauf aufgetreten
ist oder der Zihlwert des Timers den Vergleichswert erreicht hat. Zusétzlich kann fiir den
Timer 1 das Auftreten eines ,,Input-Capture-Ereignisses* als Interruptquelle genutzt wer-
den. Die Freigabe der jeweiligen Interrupts geschieht durch Setzen des zugehorigen Bits
im Timer/Counter-Interrupt-Mask-Register (TIMSK).

Dariiber hinaus ermdglichen die Timer das Abfragen des jeweiligen Interrupt-Status
durch das Timer/Counter-Interrupt-Flag-Register (TIFR). Mithilfe dieses Registers ist es
zum Beispiel moglich, das Auftreten einer der oben genannten Interruptbedingungen durch
die CPU anzufragen, ohne eine interruptbasierte Verarbeitung zu nutzen (Tab. 14.22).

Die Bits OCIEx und OCFXx sind den Vergleichsereignissen (Zihlerstand = Vergleichs-
wert) und die Bits TOIEx und TOVx den Uberlaufereignissen zugeordnet, wihrend die
Bits TICIEI und ICFI der Input Capture Unit des Timers 1 zugeordnet sind.

Die Anwendungsmoglichkeiten der Timer-Interrupts sind sehr vielféltig. Ein sehr ein-
faches Beispiel ist die zyklische Erzeugung von Interrupts zur Unterbrechung des Haupt-
programms, um regelmiBig anfallende Aufgaben abzuarbeiten. Dariiber hinaus sind
regelméBige Timer-Interrupts eine wesentliche Grundlage vieler Betriebssysteme.

Eine wichtige Bedeutung kommt der Timer-Interrupt-Programmierung auch bei
der Erzeugung von Ausgangssignalen zu. Hiufig ist es erforderlich, die Parameter des
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Tab. 14.22 Belegung der Register TIMSK und TIFR

TIMSK
Bit 7 6 5 4 3 2 1 0
Name |OCIE2 |TOIE2 |TICIEl |OCIEIA |OCIE1IB |TOIE1 |OCIEO | TOIEO

TIFR
Bit 7 6 5 4 3 2 1 0
Name |OCF2 TOV2 ICF1 OCF1A OCF1B TOV1l |OCFO | TOVO

mithilfe des Timers erzeugten Signals dynamisch zu modifizieren. Der Timer muss also
im laufenden Betrieb umkonfiguriert werden. Hierbei muss beachtet werden, dass der
Zihlerstand des Timers nicht unbedingt mit der Ausfiihrung des Programms synchroni-
siert ist. Um diese Synchronisation zu unterstiitzen, sind die OCR-Register der Timer mit
»Schattenregistern® ausgestattet. Wird in einem solchen Schattenregister ein Wert abge-
legt, wirkt sich der neue Wert nicht sofort in der Timer-Hardware aus. Vielmehr wird der
im Schattenregister gespeicherte Wert erst bei Erreichen eines definierten Zéhlerstands
(zum Beispiel Timerendwert) in das eigentliche Timer-Register iibernommen. Fiir die
dynamische Timer-Programmierung ist es sehr bequem den Interrupt freizugeben, der
dem o.g. Zihlerstand zugeordnet ist. Die Konfiguration des Timers erfolgt dann jeweils
in der entsprechenden ISR. Auf diese Weise wird der Timer nur zu definierten Zeiten neu
konfiguriert und das Verhalten des Ausgangssignals ist nicht von den Laufzeiten der ein-
zelnen Programmteile der Software abhingig.

Als ein einfaches Beispiel fiir die Interrupt-Programmierung wird im Folgenden ein
C-Programm vorgestellt, mit dem eine Uhr realisiert werden kann.

Die Uhrzeit wird in den globalen Variablen Sekunden, Minuten und Stunden abgelegt,
die von einer Timer-ISR beschrieben werden. Im Hauptprogramm wird der Timer 1 so
konfiguriert, dass alle 8000 Systemtaktzyklen ein Interrupt ausgelost wird (Vorteiler = 8§,
OCR-Register = 999). Betrigt die Systemtaktfrequenz beispielsweise 16 MHz, werden
also 2000 Interrupts pro Sekunde auftreten.

In der Timer-ISR werden die aufgetretenen Timerinterrupts gezahlt. Ist eine Sekunde
vergangen, wird die Variable Sekunden inkrementiert. Ist diese anschlieend gleich 60,
wird sie auf Null gesetzt und die Variable Minuten inkrementiert. Der Wert der Variablen
Minuten wird anschliefend tiberpriift und gegebenenfalls auf Null gesetzt und die Varia-
ble Stunden inkrementiert.

Da die Anzahl der pro Sekunde auftretenden Interrupts von der Systemtaktfrequenz
abhingt, muss diese bekannt sein. Fiir AVR-Programme gilt die Vereinbarung, dass die
Systemtaktfrequenz im Pridprozessorsymbol F_CPU abgelegt wird. In der ISR wird
iiberpriift, ob der Interruptzihler den Wert F_CPU/8000 erreicht hat, also eine Sekunde
vergangen ist.

Im Folgenden ist das Programm fiir die Realisierung einer Uhr dargestellt.
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#include <avr/io.h>
#include <avr/interrupt.h> // Header-Datei flr Interrupts
// Symbol fiir Systemtaktfrequenz setzen. Dies kann auch in der
// Entwicklungsumgebung erfolgen
#define F_CPU 16000000 // Beispiel: 16 MHz
volatile unsigned char Sekunden;
volatile unsigned char Minuten;
volatile unsigned char Stunden;
// Unterprogramm zur Ausgabe der Uhrzeit
void Zeitausgabe (unsigned char Stunden, unsigned char Minuten,
unsigned char Sekunden) {
// zum Beispiel Ausgabe auf einem Sieben-Segment-Display
}
// Hauptprogramm
void main() {
// Timer 1 initialisieren
// nicht gesetzte Bits sind nach dem Reset des Controllers 0

TCCR1B |= 1<<WGM12; // CTC-Modus

TCCR1B |= 1<<CSl1; // Vorteiler = 8

OCR1A = 999; // alle 1000 Taktzyklen ein Interr.
TIMSK |= 1<<OCIElA; // Freigabe Vergleichsinterrupt
sei(); // Globale Interruptfreigabe

// Normaler Betrieb: hier erfolgt die Ausgabe der Uhrzeit
// das Z&hlen der Sekunden erfolgt in der ISR
while (1) {

Zeitausgabe (Stunden, Minuten, Sekunden) ;

// Timer 1 ISR
ISR (TIMER1_COMPA_vect) {
static unsigned long IntCount = 0;
IntCount++;
if (IntCount == F_CPU/8000) { // 1 Sekunde vergangen °?
IntCount = 0; // Zdhler zurlicksetzen
Sekunden++; // Uhrzeit setzen..
if (Sekunden==60) {
Sekunden = 0;

Minuten+-+;

if (Minuten==60) {
Minuten = 0;
Stunden—++;

if (Stunden==24) Stunden = 0;
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14.7.2.9 Watchdog-Timer

Grundsatzlich kann selbst bei sorgfiltigster Entwicklung von Softwarekomponen-
ten nicht sichergestellt werden, dass ein Programm komplett fehlerfrei ist und in allen
Betriebszustinden des Systems reibungslos funktioniert. Unentdeckte Softwarefehler
konnen je nach Anwendung fatale Folgen fiir ein System oder fiir die Umgebung des
Systems, incl. der Benutzer haben. Um einen Systemabsturz, der zum Beispiel aufgrund
eines Softwarefehlers aufgetreten ist, abfangen zu konnen, besitzen Mikrocontroller
einen sogenannten Watchdog-Timer.

Die Arbeitsweise des Watchdogs dhnelt dem Prinzip des sogenannten ,,Totmann-
Knopfes®, wie er in Schienenfahrzeugen eingesetzt wird: Der Fahrzeugfiihrer muss in
regelméBigen Abstinden den Knopf bedienen. Unterlésst er dies, wird automatisch ein
Nothalt des Systems ausgefiihrt.

Der Watchdog-Timer basiert auf einem Abwirtszidhler. Erreicht der Zihler den Zih-
lerstand 0, wird durch den Timer ein Zuriicksetzen des Controllers ausgelost. Um die-
ses Zuriicksetzen zu vermeiden, muss der Zihler des Watchdog-Timers per Software
regelméBig auf einen von Null verschiedenen Wert gesetzt werden. Arbeitet das System
einwandfrei, wird der Zihler des Watchdogs nie den Wert O erreichen und somit kein
Zuriicksetzen des Systems auslosen.

Das Taktsignal fiir die Watchdog-Timer ATmega-Serie wird mithilfe eines eingebet-
teten Oszillators realisiert, sodass fiir die Takterzeugung keine externen Komponenten
benotigt werden. Durch den Einsatz eines Vorteilers konnen dem Zahler des Watchdogs
verschiedene Taktfrequenzen zugefiihrt werden, wodurch die Zeit bis zum Erreichen des
Zihlerstandes 0 tiber das CPU-Programm festgelegt werden kann.

Das softwarebasierte Setzen des Watchdog-Zihlers eines ATmega32 erfolgt in Assem-
bler mit dem Spezialbefehl wdr (Watchdog Reset) beziehungsweise in C durch den Auf-
ruf der Funktion wdt_reset(). Zur Programmierung des Watchdogs steht das Watchdog
Timer Control Register (WDTCR) zur Verfiigung (Tab. 14.23).

Das Bit WDE dient zum Aktivieren (WDE = 1) oder Deaktivieren (WDE = 0) des
Watchdog-Timers. Soll der Watchdog deaktiviert werden, miissen zunéchst die Bits
WDTOE und WDE gesetzt und anschlieBend das Bit WDE innerhalb von 4 Taktzyklen
geloscht werden. Auf diese Weise soll ein unbeabsichtigtes Deaktivieren des Watchdogs
ausgeschlossen werden.

Die Bits WDP2 bis WDPO werden zur Programmierung des Vorteilers verwendet. Die
Zeit, die zwischen dem Ausfiihren des wdr-Befehls und dem Erreichen des Ziahlwertes O
vergeht, ergibt sich gemal} Tab. 14.24.

Tab. 14.23 Belegung des WDTCR
Registers WDTCR Bit 776 5[4 3 ) | 0

Name - |- |- |WDTOE WDE |WDP2 |'WDP1 | WDPO
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Tab. 14.24 Bedeutung der Bits WDP2, WDP1 und WDPO

WDP2 WDP1 WDPO Zeit bis zum Erreichen des Zihlerstands 0
(circa)

0 0 17 ms

0 1 33 ms

0 1 0 65 ms

0 1 1 130 ms

1 0 0 260 ms

1 0 1 520 ms

1 1 0 1,0s

1 1 1 2,1s

Der Grund fiir das Zuriicksetzen des Controllers kann mithilfe des ,,Microcontroller Unit
Control and Status* Registers (MCUCSR) von der CPU abgefragt werden (Tab. 14.25).

Je nach Grund des Resets wird eines der fiinf niederwertigen Bits des MCUCSR-
Registers gesetzt. Die Bedeutung dieser Bits ist in Tab. 14.26 zusammengefasst.

14.7.3 Schnittstellen fiir die serielle Dateniibertragung

Fast alle Mikrocontroller stellen eingebettete Peripherieckomponenten zur Verfiigung, die
eine bitserielle Dateniibertragung unterstiitzen. Der wesentliche Vorteil einer bitseriellen
Ubertragung im Gegensatz zu einer bitparallelen Ubertragung ist die Reduktion des Ver-
drahtungsaufwands zwischen Sender und Empfinger. Die Reduktion dieses Aufwands

Tab. 14.25 Belegung des Registers MCUCSR

MCUCSR
Bit 7 6 5 4 3 2 1 0
Name JTD 1SC2 - JTRF WDRF BORF EXTRF |PORF

Tab. 14.26 Bedeutung der Bits im MCUCSR-Register

JTRF Reset durch das JTAG-Programmier- und Debug-Interface
WDRF Watchdog-Reset
BORF Brownout-Detection-Reset

(Versorgungsspannung unterschreitet programmierten Wert)
EXTRF Externer Reset-Anschluss wurde aktiviert
PORF Versorgungsspannung wurde eingeschaltet

(,,Power-On-Reset*)
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kann insbesondere bei einfachen, kostensensitiven Systemen einen wichtigen Aspekt
darstellen.

In den folgenden Abschnitten wird die Diskussion auf die in Mikrocontrollern hiufig
anzutreffenden seriellen Schnittstellen beschrinkt. Zunichst wird jeweils das verwendete
Ubertragungsprotokoll vorgestellt und im Anschluss daran wird die spezifische Imple-
mentierung der Schnittstellen am Beispiel des ATmega32 niher erldutert.

14.7.3.1 U(S)ART

Die Abkiirzung UART steht fiir Universal Asynchronous Receiver/Transmitter, also ein
universell einsetzbarer Sender und Empfinger fiir asynchrone Dateniibertragungen. Der
Begriff ,,asynchron® bedeutet hier, dass bei dieser Dateniibertragung kein Taktsignal
zwischen Sender und Empfinger ausgetauscht wird. Der Empfianger muss allein aus der
Kenntnis des Datensignals die {ibertragenen Datenbits extrahieren. Eine Erweiterung des
UARTS stellt der USART dar. Der zusitzliche Buchstabe ,,S* soll andeuten, dass diese
Komponente auch eine synchrone Dateniibertragung unterstiitzen kann. In diesem Fall
wird vom Sender ein Taktsignal erzeugt, das zusammen mit dem Datensignal iibertragen
wird.

Bereits um 1960 wurde ein geeignetes Protokoll zur asynchronen seriellen Dateniiber-
tragung zwischen Rechnern entwickelt und standardisiert. Die bekannteste Implementie-
rung dieser Anwendung stellt die serielle Schnittstelle eines PCs dar, die hdufig auch als
RS232-Schnittstelle, V.24-Schnittstelle, COM-Port oder einfach als serielle Schnittstelle
bezeichnet wird. Diese Schnittstelle diente viele Jahre als Kommunikationsschnittstelle
zwischen Rechnern oder zwischen Rechnern und Modems, welche eine Datenferniiber-
tragung tiber Telefonleitungen ermoglicht.

Die Bedeutung der RS232-Schnittstelle fiir PCs hat in den letzten 30 Jahren kontinu-
ierlich abgenommen. Rechner werden heute meist iiber Ethernet-Leitungen oder WLAN
vernetzt, die deutlich hohere Ubertragungsraten ermoglichen. Im Bereich der Datenfern-
iibertragung werden Technologien wie DSL eingesetzt, wobei die Verbindung zu einem
DSL-Modem iiber USB oder Ethernet realisiert wird. Daher werden von heutigen PCs
in der Regel keine RS232-Schnittstellen mehr zur Verfiigung gestellt. Zur Nutzung die-
ser Schnittstelle miissen hiufig entweder entsprechende Erweiterungskarten oder USB-
Gerite angeschafft werden, die tiber einen USB-Anschluss des Rechners die gewiinschte
RS232-Schnittstelle zur Verfiigung stellen.

Eine groBere Bedeutung besitzt die RS232-Schnittstelle im Bereich der Mikrorech-
nersysteme. Hier steht hdufig nicht die erzielbare Datenrate im Vordergrund, sondern
zunichst die einfache Implementierbarkeit der Kommunikation zweier Komponenten.
Eine héufige Anwendung ist die Verbindung eines Mikrorechnersystems mit einem PC,
um Statusmeldungen an den PC zu senden oder auch um Programme und Daten an den
Mikrorechner zu senden.

Entsprechend der urspriinglichen Anwendung im Bereich der Datenferniibertragung
werden sogenannte Datenendeinrichtungen (Data Terminal Equipment, DTE) und Daten-
tibertragungseinrichtungen (Data Communication Equipment, DCE) unterschieden. Ein
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PC arbeitet in der Regel als DTE, wihrend die angeschlossenen Gerite meist als DCE
betrieben werden. Diese Unterscheidung ist insbesondere fiir die Steckerbelegung der
Geriite von Bedeutung. Fiir die serielle Ubertragung mithilfe des RS232-Standards wer-
den heute fast ausschlieBlich 9-polige Sub-D-Steckverbindungen verwendet, deren Bele-
gung in Tab. 14.27 zusammengefasst ist.

In vielen Anwendungsfillen wird nur ein Teil der dargestellten Signale verwendet. Im
einfachsten Fall ist es moglich eine bidirektionale Verbindung zwischen zwei Stationen
(zum Beispiel PC und Mikrocontroller) mithilfe der Anschliisse RXD, TXD und GND
zu realisieren.

Die RS232-Schnittstelle arbeitet mit negativer Logik. Eine logische Null wird durch
einen Spannungspegel im Bereich von +3 bis 415V, eine logische Eins durch einen
Pegel zwischen —3 und —15 V dargestellt. Ein direkter Anschluss der Signale der seriel-
len Schnittstelle eines PCs an einen Mikrocontroller sollte niemals erfolgen, da der Con-
troller hierbei zerstort werden wiirde. Es ist also ein Umsetzen der Pegel der seriellen
Schnittstelle erforderlich. Hierfiir stehen verschiedene integrierte Bausteine zur Verfii-
gung, die auch eine Umwandlung zwischen negativer und positiver Logik durchfiihren.
Ein Beispiel ist der von verschiedenen Herstellern angebotene Baustein MAX232.

14.7.3.2 Dateniibertragung mit dem UART-Protokoll

Der Empfinger erhilt nur das vom Sender generierte Datensignal. Um allein aus der
Kenntnis des Datensignals die iibertragenen Daten zu extrahieren konnen, muss der
Empfinger den Beginn einer Dateniibertragung erkennen koénnen. Der Beginn einer
Dateniibertragung wird durch ein sogenanntes Startbit gekennzeichnet, welches den vor-
definierten Wert O besitzt. AnschlieBend erfolgt die Ubertragung einer zwischen Sender
und Empfinger vereinbarten Anzahl von Datenbits. Hierbei gilt die Vereinbarung, dass
zuerst das niederwertigste Bit (Least Significant Bit, LSB) iibertragen wird. In der Regel
wird eine Ubertragung von 8 Datenbits ausgewihlt.

Tab. 14.27 Belegung der 9-poligen Sub-D-Steckverbindungen

Nr. | Kiirzel | Name Bedeutung Datenrichtung
1 DCD | Data Carrier Detect | DCE erhilt einlaufende Daten DCE — DTE
2 RXD | Receive Data Empfangsdaten (des DTE, z. B. PC) DCE — DTE
3 TXD | Transmit Data Sendedaten (des DTE, z. B. PC) DTE — DCE
4 DTR | Data Terminal Ready |Einsatzbereitschaft des DTE DTE — DCE
5 GND | Ground Signalmasse

6 DSR | Data Set Ready Einsatzbereitschaft des DCE DCE — DTE
7 RTS Ready To Send DTE (z. B. PC) mochte Daten iibertragen | DTE — DCE
8 CTS Clear To Send DCE kann Daten entgegennehmen DCE — DTE
9 RI Ring Indicator Modem erkennt Anruf DCE — DTE
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Im Anschluss an die Dateniibertragung erfolgt die Ubertragung von ein bis zwei
Stoppbits, welche den Wert 1 besitzen. Bis zum Beginn der nichsten Dateniibertragung
verbleibt das Sendesignal auf dem Wert 1.

Um die Dateniibertragung gegeniiber kurzzeitigen Storungen abzusichern, kann zwi-
schen den Daten und dem Stoppbit ein Parititsbit (parity bit) eingefiigt werden. Verwen-
det der Sender die Ubertragung eines Paritiitsbits, muss dies dem Empfinger bekannt
sein. Ebenso miissen Sender und Empfinger die gleiche Rechenvorschrift zur Berech-
nung des Parititsbits verwenden.

Der Empfinger berechnet aus den empfangenen Daten das erwartete Parititsbit und
vergleicht dieses mit dem vom Sender empfangenen Paritétsbit. Sind die Werte beider Bits
identisch, wird davon ausgegangen, dass eine fehlerfreie Ubertragung stattgefunden hat.

Fiir die Berechnung des Paritdtsbits werden zwei Vorschriften verwendet, die als
wungerade Paritit™ (odd parity) beziehungsweise ,,gerade Paritit™ (even parity) bezeich-
net werden. In beiden Fillen erfolgt die Berechnung des Parititsbits p derart, dass eine
Exklusiv-Oder-Verkniipfung der Datenbits d; und eines Modusbits m (m = 0 fiir even
parity, m = 1 fiir odd parity) durchgefiihrt wird:

p=dy—1Ddp2®- - ®d DdpDm

Aufgrund dieser Vorschrift zur Berechnung des Parititsbits lassen sich vom Empfianger nur
Ubertragungsfehler erkennen, bei denen nur ein Fehler oder eine ungerade Anzahl fehler-
hafter Bits auftritt. Ist die Anzahl der durch Ubertragungsfehler modifizierten Bits dagegen
gerade, wiirde der Empfianger die Daten als korrekt iibertragen ansehen. Dariiber hinaus
ermoglicht dieser sehr einfache Fehlerschutz keine empfingerseitige Fehlerkorrektur, da
der Empfinger nicht bestimmen kann, welches Datenbit fehlerhaft tibertragen wurde.

In der Praxis wird die Ubertragung eines Paritiitsbits hiufig nicht genutzt, wenn von
einem relativ sicheren Ubertragungskanal ausgegangen werden kann. Dies ist meist bei
einer Verbindung zwischen einem PC und einem Mikrocontroller der Fall, wenn die
Datenleitungen nicht linger als wenige Meter sind und die Umgebung keine starken
elektromagnetischen Storquellen besitzt.

Abb. 14.13 zeigt exemplarisch den zeitlichen Verlauf der Ubertragung eines Bytes mit
den Einstellungen: 8 Datenbits, 1 Stoppbit, gerade Paritit.

Neben der Anzahl der Daten- und Stoppbits sowie der verwendeten Parititsberech-
nung (odd, even, keine), muss dem Empfinger die Dauer der Ubertragung eines ein-
zelnen Bits (Bitdauer) bekannt sein. Da die Bitdauer direkt die Ubertragungsrate
beeinflusst, wird von Bitrate oder von Baudrate gesprochen.

Theoretisch konnen beliebige Baudraten verwendet werden. In der Praxis werden
jedoch meist standardisierte Baudraten verwendet. Typische Baudraten sind in Tab. 14.28
zusammengefasst.

14.7.3.3 Handshake zwischen Sender und Empfanger
In vielen Anwendungsfillen kann davon ausgegangen werden, dass der Empfinger die
vom Sender empfangenen Daten stets verarbeiten kann. Dies ist zum Beispiel der Fall,
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Abb. 14.13 Zeitdiagramm fiir die Ubertragung eines Bytes
T?b. 14.28 In der Praxis Baudrate (in bit/s) Bitdauer (us)
hiufig verwendete Baudraten 2400 416.67
9600 104,17
19.200 52,08
38.400 26,04
57.600 17,36
115.200 8,68

wenn ein Mikrocontroller Daten an einen PC sendet, um diese mithilfe eines Terminal-
programms auf dem Monitor anzuzeigen. Aufgrund der hohen Rechenleistung eines PCs
und der vergleichsweise geringen Datenrate der seriellen Schnittstelle, wird der PC in
der Regel alle vom Controller gesendeten Daten korrekt verarbeiten konnen.

Genauso sind auch Anwendungsfille denkbar, in denen der Empfinger die gesende-
ten Daten nicht sofort verarbeiten kann. Wiirde der Sender diese Situation ignorieren und
weiter Daten senden, wire ein Verlust von Daten die Folge. Um diesen Datenverlust zu
vermeiden, muss die Moglichkeit bestehen, dem Sender mitzuteilen, dass der Empfinger
kurzzeitig nicht in der Lage ist, weitere Daten zu empfangen. Die hierfiir notwendige
Kommunikation zwischen Empfinger und Sender wird als Handshake bezeichnet.

Eine Moglichkeit zur Implementierung stellt das sogenannte Software-Handshake dar.
In diesem Fall wird die Handshake-Information iiber die Datenleitungen RXD und TXD
ausgetauscht. Ist ein Gerit nicht bereit Daten zu empfangen, sendet es an die Gegenstelle
den Wert 19 (0x13). Der Sender wird daraufhin das Senden weiterer Daten einstellen.
Sobald der Empfinger wieder bereit ist, sendet er den Wert 17 (0x11) und die Daten-
iibertragung wird fortgesetzt. Da die beiden Zahlenwerte im ASCII-Code als XOFF
beziehungsweise XON bezeichnet werden, wird diese Art des Handshakes oft auch als
XON/XOFF-Handshake bezeichnet.

Ein Nachteil des Software-Handshakes ist es, dass zwei Zahlenwerten eine besondere
Bedeutung zugeordnet wird, sodass diese Werte nicht mehr fiir die Dateniibertragung zur
Verfligung stehen.
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Dieser Nachteil kann durch das sogenannte Hardware-Handshake vermieden werden.
Hierfiir konnen die beiden Signale RTS und CTS herangezogen werden. Ein DTE (zum
Beispiel ein PC) teilt einem DCE mit, dass es Daten senden mochte indem es die Lei-
tung RTS aktiviert (RTS = 0). Das DCE setzt darauthin das Signal CTS auf 0 sobald es
fiir den Datenempfang bereit ist. Fiir das DTE wird bei Verwendung dieses Handshakes
angenommen, dass es jederzeit alle vom DCE gesendeten Daten korrekt verarbeiten
kann. Gegebenenfalls kann jedoch vom DTE das DTR-Signal deaktiviert werden um so
ein Senden von Daten zu unterbrechen.

In vielen Anwendungen wird der RTS-Anschluss als RTR-Signal (Ready To Receive)
verwendet. In diesem Fall zeigt eine logische 0 auf der RTS-Leitung an, dass das DTE
Daten empfangen kann. Das DCE signalisiert die Empfangsbereitschaft dagegen durch
das Aktivieren der CTS-Leitung (CTS = 0).

Dartiber hinaus konnen auch die Signale DSR und DTR zur Realisierung eines Hard-
ware-Handshakes verwendet werden, welche in dhnlicher Weise wie die Signale RTR
und CTS angesteuert werden konnen.

Obwohl in vielen Mikrocontrollern eingebettete Peripherieckomponenten zur Daten-
tibertragung mithilfe des RS232-Protokolls zur Verfiigung stehen, werden von diesen
Komponenten hiufig nur die Signale RXD und TXD bedient. Soll die Kommunikation
mithilfe eines Hardware-Handshakes erfolgen, ist hierfiir die softwarebasierte Ansteue-
rung von zusitzlichen Portanschliissen erforderlich. Das Hardware-Handshake wird in
diesem Fall also durch das Programm in Software implementiert.

14.7.3.4 Der USART im AVR

Viele Mikrocontroller der AVR-Serie besitzen eine eingebettete Schnittstelle zur Rea-
lisierung einer asynchronen seriellen Kommunikation. Im Fall des ATmega32 wird
diese Peripheriekomponente als USART (Universal Synchronous Asynchronous
Receiver/Transmitter) bezeichnet. Diese Komponente unterstiitzt serielle Ubertragun-
gen mit 5 bis 9 Datenbits und 1 oder 2 Stoppbits. Neben der Analyse des Parititsbits
existieren weitere Moglichkeiten zur Erkennung von Ubertragungsfehlern, die in diesem
Abschnitt beschrieben werden. Wie die Bezeichnung USART andeutet, kann diese Kom-
ponente sowohl in einem asynchronen als auch in einem synchronen Modus betrieben
werden. Im Folgenden wird nur auf den asynchronen Betriebsmodus niher eingegangen.

Der USART des ATmega32 stellt die beiden Signale TXD (Datenausgang) und RXD
(Dateneingang) zur Verfiigung. Diese Signale werden an den Anschliissen PD0O und PD]
als alternative Portfunktionen herausgefiihrt. Wird der USART durch das auf dem Cont-
roller laufende Programm aktiviert, stehen die Portanschliisse PDO und PDI nicht mehr
als frei programmierbare Portanschliisse zur Verfligung.

Fiir die Konfiguration des USARTs werden drei USART-Control-and-Status-Register
(UCSRA, UCSRB, UCSRC) sowie zwei Bitratenregister (UBBRL, UBBRH) bereitgestellt
(s. Tab. 14.29).

Mit Setzen der Bits TXEN (Transmitter Enable) beziehungsweise RXEN (Receiver
Enable) wird der Sender beziehungsweise Empfinger der seriellen Schnittstelle des
ATmega32 aktiviert.



490 14  Mikrocontroller

Tab. 14.29 USART-Control- und Statusregister: UCSRA, UCSRB, UCSRC

UCSRA

Bit 7 6 5 4 3 2 1 0
Name RXC TXC UDRE | FE DOR PE U2X MPCM
UCSRB

Bit 7 6 5 4 3 2 1 0

Name RXCIE |TXCIE |UDRIE |RXEN |TXEN |UCSZ2 'RXBS8 TXBS8

UCSRC
Bit 7 6 5 4 3 2 1 0
Name URSEL |UMSEL |UPM1 UPMO | USBS UCSZ1 | UCSZ0 | UCPOL

Die Baudrate hingt von der Systemtaktfrequenz und dem Wert im UBRR-Register ab.
Mithilfe der folgenden Formel kann ein geeigneter Wert fiir die Programmierung der Regis-
ter UBRRH (hoherwertiges Byte) und UBRRL (niederwertiges Byte) bestimmt werden.

fsys + 8 - Baudrate

UBRR =
16 - Baudrate

Die Auswahl der Anzahl der Datenbits innerhalb eines Frames (zwischen Start- und
Stoppbit) wird durch UCSZ festgelegt (s. Tab. 14.30).

Die zu sendenden (oder empfangenen) Daten werden im Register UDR (USART Data
Register) abgelegt. Ein Schreibzugriff auf dieses Register iibermittelt neue zu sendende
Daten an die Schnittstelle, wihrend die CPU mithilfe eines Lesezugriffs auf empfangene
Daten zugreifen kann.

Bei der Verwendung von 9 Datenbits wird das hochstwertige Datenbit durch
die Bits TXBS8 beziehungsweise RXBS reprisentiert. In allen anderen Féllen haben
diese Bits keine Bedeutung. Die weiteren Bits der UCSR-Register sind in Tab. 14.31
zusammengefasst.

Fiir die hdufig verwendete Konfiguration ,,8 Datenbits, keine Paritit, 1 Stoppbit, asyn-
chroner Modus* ergeben sich fiir die Programmierung der UCSR-Register die Werte
UCSRB = 0x18 und UCSRC = 0x86. Die Bits des Registers UCSRA konnen auf den

Tab. 14.30 Auswahl der uCsz2 UCSZ1 UCSZ0 Datenbits
Datenbits pro Frame mithilfe 0 0 0 5

der UCSZ-Bits

- o o | o
—_ == O
—_ = O =

6
7
8
9
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Tab. 14.31 Bedeutung der Bits der UCSR-Register

Bit Name Bedeutung

RXC Receive Complete 1: Daten eines Frames empfangen

TXC Transmit Complete 1: Daten eines Frames versendet

UDRE | Data Register Empty 1: Daten-Register (UDR) ist leer

FE Frame Error 1: Ein empfangenes Stoppbit hatte den Wert 0
DOR Data Overrun 1: Daten im UDR-Register wurden nicht

rechtzeitig gelesen worden und wurden von
neuen empfangenen Daten {iberschrieben

PE Parity Error 1: Paritdtsfehler erkannt

U2X Double Speed 1: Verdopplung der
Ubertragungsgeschwindigkeit

MPCM | Multiprocessor Communication Mode | 1: Multiprocessor Modus aktiviert

RXCIE | Receive Complete Lokale Interruptfreigabe
Interrupt Enable
TXCIE | Transmit Complete Lokale Interruptfreigabe
Interrupt Enable
UDRIE | Data Register Empty Lokale Interruptfreigabe
Interrupt Enable
URSEL | Register Select 0: Zugriff auf UBRRH; 1: Zugriff auf UCSRC
UMSEL | Mode Select 0: asynchroner Modus, 1: synchroner Modus
UPM1/0 | Parity Mode 00: keine Paritit; 10: Gerade Paritiit; 11:
Ungerade Paritit
USBS Stop Bit Select 0: 1 Stoppbit; 1: 2 Stoppbits
UCPOL | Clock Polarity Polaritit des Taktsignals im synchronen
Modus

Werten belassen werden, die sie nach dem Resetvorgang des Controllers erhalten haben
(UCSRA = 0).

Funktionen zur Initialisierung des USARTs und zum Polling-basierten Empfang
beziehungsweise Senden von Daten konnen in der Programmiersprache C wie folgt rea-
lisiert werden:

// Initialisierung des USARTs:
void USART_init (unsigned int baudrate)
{

unsigned int bdr = ((F_CPU+8*baudrate) /baudrate/16)-1;
UBRRH = (bdr>>8)&0x7F;

UBRRL = bdr&O0xFF;

UCSRB = (1<<RXEN) | (1<<TXEN) ; // Empfdnger und Sender akt.
UCSRC = (1<<URSEL) | (3<<UCSZ0); // 8 daten, 1 stopp
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// Daten mit USART empfangen:
unsigned char UART rx(void)
{
while (! (UCSRA & (1<<RXC))); // auf Daten warten
return UDR; // empf. Zeichen zurilickgeben

// Daten mit USART senden:
void UART_ tx (unsigned char data)
{

while (! (UCSRA & (1<<UDRE))); // warten auf Ende des Sendens
UDR=data; // neues Zeichen ausgeben

}

14.7.4 SPI

Die Abkiirzung SPI steht fiir Serial Peripheral Interface. Es handelt sich um eine syn-
chrone Schnittstelle, die zur Dateniibertragung unidirektionale Signalleitungen ver-
wendet und zur Verbindung integrierter Bausteine verwendet wird. Zusétzlich zu den
Datenleitungen wird ein Taktsignal iibertragen, welches zur Synchronisation eingesetzt
wird.

14.7.4.1 Dateniibertragung mit dem SPI-Protokoll
Das Protokoll arbeitet nach dem Master-Slave-Prinzip. Ein SPI-Master initiiert die
Dateniibertragung und ist insbesondere fiir die Erzeugung des Taktsignals verantwort-
lich. SPI-Slaves empfangen das Taktsignal die vom Master iibermittelten Daten. Gleich-
zeitig werden Daten vom Slave an den Master {ibertragen.

Fiir die Bezeichnung der Anschliisse eines SPI-Interfaces sind keine allgemeingiilti-
gen Namen spezifiziert. Die in der Praxis hiufig verwendeten Anschlussbezeichnungen
sind in Tab. 14.32 zusammengefasst.

Sowohl der Master als auch der Slave enthalten Schieberegister, in die die Daten bitse-
riell eingeschrieben werden. Die Ubernahme eines Bits in diese Schieberegister erfolgt
mit der aktiven Taktflanke des Taktsignals SCK.

Hiufig konnen auf der Seite des SPI-Masters die wesentlichen Ubertragungspara-
meter konfiguriert werden. Hierzu zihlen die Auswahl der aktiven Taktflanke (fallende
oder steigende Flanke), die Wortlinge der Ubertragung und die Auswahl, ob zuerst das
hochstwertigste Bit (MSB first) oder das niederwertigste Bit (LSB first) {ibertragen wer-
den sollen.

Die Auswahl, welcher Slave an der Kommunikation teilnehmen soll, erfolgt durch
den Slave-Select-Anschluss (/SS) des Slaves. Wird dieser auf 0 gelegt, nimmt der Slave
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Tab. 14.32 Anschlussbezeichnungen eines SPI-Interfaces

Signalbezeichnungen Bedeutung

Datenrichtung

MOSI, SDI, SIMO

Daten (Master Out, Slave In)

Master — Slave

MISO, SDO, SOMI

Daten (Master In, Slave Out)

Slave — Master

SCK, SCLK

Takt (Serial Clock)

Master — Slave

/SS, ISSEL, /CS, /ISTE

Slaveauswabhl (Slave Select)

Master — Slave

mit der nidchsten aktiven Flanke des SCK-Signals an der Kommunikation der Bausteine
teil. Andernfalls ignoriert der Slave die SPI-Ubertragung.
Die Grundstruktur der Verbindung zwischen einem Master und einem Slave zeigt

Abb. 14.14.

Ein Zeitdiagramm fiir die Signale SCK, MOSI und MISO ist in Abb. 14.15 dargestellt.
In diesem Beispiel gilt fiir die SPI-Ubertragung: Ruhezustand des Taktes ist O und die
Dateniibernahme findet mit der ersten Taktflanke nach Verlassen des Ruhezustands statt.

Sollen mehrere Slaves mit einem SPI-Master verbunden werden, konnen zwei Grund-
strukturen verwendet werden, die im Folgenden als SPI-Kaskadierung oder als SPI-

Sternverbindung bezeichnet werden.

Abb. 14.14 Struktur der SPI-Verbindung zwischen einem Master und einem Slave

Abb. 14.15 SPI-Signalverlauf

SCK

MISO

MOSI

| | |
Master Slave
‘ | Mmiso |
\ \ \ J
\ \—» Schieberegister [~ MOsI p—p Schieberegister
AN
I | I
‘ A . SCK * A
T L]
! Takterzeugung : !
I | I
\ | /ss |
| Slaveauswahl ‘ =‘

alaln
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Im Fall der SPI-Kaskadierung wird ausgenutzt, dass die Daten, die iiber den MOSI-
Anschluss in einen Slave eingeschrieben werden, nach mehreren Taktzyklen unverdndert
am MISO-Ausgang des Slaves erscheinen. Wird dieser MISO-Ausgang mit dem MOSI-
Eingang eines nachfolgenden Slaves verbunden, kénnen somit ,,durch den ersten Slave
hindurch* Daten zu dem nachfolgenden Slave iibertragen werden. Wihrend der Uber-
tragung von Daten mithilfe des SPI-Protokolls miissen alle /SS-Eingénge auf dem Wert
0 gehalten werden. Hierfiir kann eine gemeinsame /SS-Leitung fiir alle kaskadierten
SPI-Slaves verwendet werden. Die entsprechende Verbindungsstruktur ist in Abb. 14.16
exemplarisch fiir die Verbindung von einem Master und drei Slaves skizziert.

Die Alternative zur Kaskadierung stellt die SPI-Sternverbindung dar. Hierbei werden
die MISO-Ausginge der Slaves miteinander verbunden und an den MISO-Eingang des
Masters angeschlossen. MOSI-Eingénge der Slaves werden mit dem MOSI-Ausgang des
Masters verbunden. Um zu vermeiden, dass die Verbindung der MISO-Ausginge der Sla-
ves zu einem Kurzschluss fiihren kann, muss jeder der Slaves einzeln selektiert werden
konnen. Wird vom Master nur einer der Slaves selektiert (/SS = 0), nimmt nur dieser an
der Dateniibertragung teil, wihrend die Ausgédnge der nicht selektierten Slaves hochoh-
mig sind. Die SPI-Sternverbindung ist in Abb. 14.17 fiir einen Master und drei Slaves
skizziert.

Der Vorteil der SPI-Kaskadierung ist der geringere Verdrahtungsaufwand. Bereits mit
4 Signalleitungen konnen beliebig viele Slaves an einen Master angeschlossen werden.
Die Kaskadierung besitzt jedoch den Nachteil, dass die Daten durch alle Slaves hindurch
gereicht werden miissen. Soll zum Beispiel der Slave 1 in Abb. 14.16 vom Master aus-
gelesen werden, so miissen die Daten des Slaves 1 zunichst durch die Slaves 2 und 3
geschoben werden, wodurch der Datentransfer mehr Zeit in Anspruch nimmt. Dariiber
hinaus ist zu beachten, dass die Slaves Daten unverindert durchreichen miissen. Diese
Funktion wird von vielen Slaves nicht unterstiitzt und es muss die Sternverdrahtung
gewihlt werden. In diesem Fall ist jeder Slave direkt mit dem Master verbunden und
die Zeit zur Ubertragung zwischen dem Master und einem beliebigen Slave ist fiir alle

Abb.14.16 SPI- mos!
Kaskadierung mit einem sck | SPI
Master und drei Slaves /ss : Slave
MISO 1
MOSI Mosl
SPI ScK sck | SPI
Master |55 55, Slave
_ miso mISO 2
MOSI
sck | SPI
ss | Slave
MISO 3
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Abb. 14.17 SPI- mosl
Sternverbindung mit einem sck : SPI
Master und drei Slaves ss | Slave
MISO - 1
MOSI
scK Mos!
SPI /381 SCK_ SPI
Master |55 55, Slzve
/883 MISO
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< mMos!_ |
ScK : SPI
ss | Slave
MISO i 3

Slaves identisch. Diesem Vorteil steht der Nachteil gegeniiber, dass fiir jeden Slave eine
eigene /SS-Leitung erforderlich ist.

14.7.4.2 SPl-Interface der AVR-Mikrocontroller

Die Mikrocontroller der AVR-Familie stellen ein SPI-Interface als eingebettete Periphe-
riekomponente zur Verfiigung. Im Folgenden werden die Register der SPI-Schnittstelle
eines ATmega32 beschrieben. Der ATmega32 stellt die SPI-spezifischen Anschliisse als
alternative Portfunktionen an den Anschliissen PB4 (/SS), PB5 (MOSI), PB6 (MISO) und
PB7 (SCK) zur Verfiigung. Die Schnittstelle kann sowohl im Master- als auch im Slave-
Modus betrieben werden.

Fiir die Programmierung der SPI-Schnittstelle stehen ein Steuerregister (SPI Control
Register, SPCR), ein Statusregister (SPI Status Register, SPSR) und ein Datenregister
(SPI Data Register, SPDR) zur Verfiigung.

Die Belegung des Steuerregisters SPCR ist in Tab. 14.33 dargestellt. Das Register
dient der Konfiguration der SPI-Schnittstelle. Die Bedeutung der einzelnen Bits dieses
Registers ist in Tab. 14.34 zusammengefasst.

Die im Master-Modus erzeugte Frequenz des SPI-Taktsignals wird aus den Bits
SPRI, SPRO und SPI2X (Bit 0 im Register SPSR) gemél Tab. 14.35 aus dem Systemtakt
abgeleitet.

Tab. 14.33 Belegung des Registers SPCR
SPCR
Bit 7 6 5 4 3 2 1 0
Name SPIE SPE DORD |MSTR |CPOL |CPHA |SPRI SPRO
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Tab. 14.34 Bedeutung der SPCR-Steuerregisterbits

Bit Name Bedeutung

SPIE | SPI Interrupt Enable | 1: Lokale Interruptfreigabe
Ein Interrupt wird jeweils nach der Ubertragung eines Bytes
ausgelost.

SPE SPI Enable 0: normale Portfunktion (SPI deaktiviert)/1: SPI-Schnittstelle
aktiviert

DORD | Data Ordering 0: MSB first/1: LSB first

MSTR | Master Mode 0: Betrieb als SPI-Slave/1: Betrieb als SPI-Master

CPOL | Clock Polarity Ruhezustand des Taktes
(= Polaritit des Taktsignals, wenn keine Ubertragung stattfindet)

CPHA | Clock Phase Mit diesem Bit wird festgelegt, welche Taktflanke verwendet

wird:

0: Die erste Flanke nach Verlassen des Ruhezustands des Taktes
ist die aktive Taktflanke

1: Die zweite Flanke nach Verlassen des Ruhezustands des Taktes
ist die aktive Taktflanke

Tab. 14.35 Festlegung der

SPI-Taktfrequenz mit den Bits

SPR1, SPRO und SPI2X

SPR1 SPRO SPI2X SPI-Taktfrequenz
0 1 foys!2

0 0 0 Sy !4

0 1 1 fiys! 8

0 1 0 Siys /16

1 0 1 fiys 132

1 0 0 Siys ! 64

1 1 1 Siys 1 128

1 1 0 Jiys 1256

Das Statusregister SPSR enthilt neben dem Bit SPI2X, welches die Takterzeugung
beeinflusst, zwei Statusbits. Das Bit SPIF wird von der Schnittstellen-Hardware auf 1
gesetzt sobald ein Byte iibertragen wurde (Tab. 14.36).

Wird die SPI-Schnittstelle im Interruptbetrieb eingesetzt (SPIE = 1), wird das SPIF-
Bit durch die Hardware mit Aufruf der zugehorigen ISR geloscht. Im Polling-Betrieb
muss zum Loschen des Bits zunédchst das Register SPSR und anschlieend das Datenre-
gister SPDR gelesen werden.

Zum Lesen empfangener Daten beziehungsweise Schreiben zu sendender Daten steht
das Register SPDR zur Verfiigung. Vor dem Beginn einer Dateniibertragung wird das zu
sendende Byte in diesem Register abgelegt. Durch einen Lesezugriff auf dieses Regis-
ter kann die CPU nach Beendigung einer Ubertragung die empfangenen Daten auslesen.
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Tab. 14.36 Belegung des Registers SPSR

SPSR
Bit 7 6 5 4 3 2 1 0
Name SPIF WCOL | - - - - - SPI2X

Wihrend eine Dateniibertragung aktiv ist, darf das Datenregister nicht geschrieben wer-
den. Ein versehentliches Uberschreiben des Datenregisters signalisiert die SPI-Schnitt-
stelle durch Setzen des WCOL-Bits im Statusregister.

Bei vielen AVR-Controllern wird die SPI-Schnittstelle nicht nur zur Kommunikation
mit anderen Bausteinen eingesetzt. Sie dient dariiber hinaus als In-System-Program-
ming-Schnittstelle (ISP). Mithilfe der ISP-Funktion kann ein AVR-Controller, welcher in
einem System eingesetzt ist, programmiert werden, ohne den Controller aus der Umge-
bung entfernen zu miissen. Diese Moglichkeit ist insbesondere fiir die Entwicklungs-
phase eines Systems bequem und zeitsparend.

Im Folgenden sind exemplarisch zwei Funktionen zur Initialisierung des SPI-Inter-
faces und zum Polling-basierten Empfangen und Senden von Daten angeben:

// Initialisierung des SPI-Interfaces

void SPI_init (void)

{
DDRB |= (1<<PB4) | (1<<PB5) | (1<<PB7) ; // SS,MOSI,SCK -> Ausgang
SPCR |= (1<<SPE) | (1<<MSTR) | (1<<SPRO); // Schnittstelle konfigurieren

// SPI-Dateniibertragung
unsigned char SPI_io(unsigned char snd_data)
{

SPDR = snd_data; // Daten senden
while (! (SPSR & (1<<SPIF))); // Ubertragung abwarten
return SPDR; // empf. Daten zurilickgeben

14.7.5 TWI/I’C

In den frithen 1980er Jahren fiihrte die Firma Philips den Inter-Integrated-Circuit-Bus
(IPC) ein. Mit diesem Bus ist es moglich, mehrere integrierte Bausteine (Mikrocontroller,
A/D-Umsetzer, D/A-Umsetzer, Speicher usw.) auf einer Leiterplatte mit nur zwei Signal-
leitungen zu verbinden. Aufgrund der Anzahl der Signalleitungen bezeichnen einige Her-
steller diese Schnittstelle auch als TWI (Two-Wire-Interface). Die Abkiirzungen I?C und
TWI konnen als synonyme Bezeichnungen identischer Schnittstellen aufgefasst werden.
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Die I2C-Schnittstelle dient der synchronen seriellen Ubertragung von Daten. Mithilfe
des Signals SCL (Serial Clock) wird ein Taktsignal an alle angeschlossenen Bausteine
tibertragen. Der Datenaustausch findet iiber die Leitung SDA (Serial Data) statt.

Die I?C-Anschliisse eines integrierten Bausteins sind als Open-Collector- beziehungs-
weise Open-Drain-Ausginge realisiert. Die SDA- und SCL-Anschliisse der einzelnen
Komponenten sind miteinander verbunden und werden tiber einen Pull-Up-Widerstand
mit der Versorgungsspannung verbunden. Ein Baustein kann die I>C-Leitungen aktiv auf
einen Low-Pegel (logische 0) ziehen, er ist jedoch nicht in der Lage einen High-Pegel
(logische 1) aktiv auszugeben. Ein High-Pegel auf einer der Signalleitungen wird erzielt,
wenn alle Bausteine ihre Anschliisse hochohmig schalten. Durch den Pull-Up-Wider-
stand (einige Kiloohm) wird dann eine logische 1 auf der Signalleitung erscheinen.

Abb. 14.18 zeigt den prinzipiellen Aufbau eines Systems mit mehreren integrierten
Bausteinen, welche iiber eine I2C-Schnittstelle miteinander kommunizieren kdnnen.

Im Ruhezustand befinden sich alle I*C-Anschliisse der Bausteine in einem hochohmi-
gen Zustand, sodass beide Busleitungen iiber die Pull-up-Widerstinde einen High-Pegel
fiihren. Soll ein Datenaustausch zwischen zwei Komponenten stattfinden, muss einer der
Bausteine das benétigte Taktsignal erzeugen und die Dateniibertragung initiieren. Die-
ser Baustein iibernimmt damit die Funktion eines I?’C-Masters. Alle anderen Bausteine
arbeiten dagegen als I?°C-Slave.

14.7.5.1 Das I>C-Protokoll
Die Ubertragung von Daten mithilfe des I2C-Protokolls erfolgt in zeitlich aufeinanderfol-
genden Schritten.

Im ersten Schritt tibermittelt der Master eine sogenannte Startbedingung. Anschlie-
end wird eine 7 bit breite Bausteinadresse vom Master an die Slaves {ibermittelt. Ist die
Bausteinadresse eines Slaves mit der iibermittelten Adresse identisch, wird dieser Slave
an der Kommunikation mit dem Master teilnehmen. Alle anderen, nicht ausgewihlte
Slaves, belassen ihre I?C-Anschliisse in einem hochohmigen Zustand. In der Regel wird
die T>C-Adresse eines Bausteins durch den Hersteller festgelegt. Hiufig ist es moglich,
einzelne Bits dieser Adresse durch die duflere Beschaltung (oder im Fall eines Mikro-
controllers durch das Programm der CPU) festzulegen. Auf diese Weise kann erreicht
werden, dass mehrere identische Komponenten im gleichen Bussystem kollisionsfrei
betrieben werden konnen. Nach der Ubertragung der Bausteinadresse folgt ein einzelnes
Bit, welches angibt, ob der Master Daten vom Slave lesen mochte oder ob Daten vom
Master an den Slave iibertragen werden sollen (0: Schreibzugriff, 1: Lesezugriff).

Abb. 14.18 Aufbau eines
I’C-Systems mit mehreren IC1 IC2 ICn
integrierten Bausteinen { { { { ........ { {

SDA
SCL
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Nach der Ubertragung der Adresse und der Schreib-/Leseinformation versetzt der
Master seinen SDA-Anschluss in einen hochohmigen Zustand. Wurde ein Slave-Bau-
stein durch die iibertragene Adresse angesprochen, zieht dieser die SDA-Leitung fiir
einen Taktzyklus auf Low. Auf diese Weise wird dem Master signalisiert, dass ein 1>C-
Slave mit der {ibertragenen Adresse im System existiert und dieser an der nachfolgenden
Dateniibertragung teilnimmt. Diese Bestitigung wird als Acknowledge bezeichnet.

Im nichsten Schritt erfolgt die eigentliche Dateniibertragung. Fiir einen Schreibzu-
griff sendet der Master 8 Datenbits an den Slave, welcher den Empfang anschlieend
bestitigt. Bei einem Lesezugriff sendet dagegen der Slave Daten an den Master und der
Master bestitigt den Empfang.

Nach der Ubertragung eines Bytes konnen entweder weitere Bytes iibertragen werden
oder die Ubertragung wird beendet. Zum Beenden einer Ubertragung kann der Master
entweder eine neue Startbedingung senden und so einen neuen Datentransfer einleiten
oder der Master sendet eine sogenannte Stoppbedingung, welche das Ende der Ubertra-
gung signalisiert (s. Abb. 14.19).

Bei der Ubertragung gemi dem I>C-Protokoll gilt die Vereinbarung, dass sich der
Wert der SDA-Leitung nur dndern darf, wenn die SCL-Leitung den Wert 0 besitzt. Diese
Vereinbarung ist in Abb. 14.20 visualisiert.

Die oben genannte Vereinbarung gilt nur fiir die Adress- und Dateniibertragung. Zur
Signalisierung der Start- oder Stoppbedingung wird sie dagegen nicht eingehalten. Bei
der Ubertragung einer Startbedingung wird die SDA-Leitung vom Master auf Low gezo-
gen wihrend sich die SCL-Leitung noch im Ruhezustand (High) befindet. Entsprechend
wird zur Ubertragung einer Stoppbedingung zunichst die Taktleitung SCL von 0 auf 1
gesetzt. Mit einem anschlieBenden Wechsel der SDA-Leitung von O auf 1 wird wieder
der Ruhezustand (SDA = 1, SCL = 1) erreicht. Der zeitliche Signalverlauf fiir Start- und
Stoppbedingungen ist in Abb. 14.21 dargestellt.

= x x x| g

S| Adresse [([Z|9o| Daten |9 ------ ]

&1 Adresse % g Daten g Daten 218
>

Abb. 14.19 Zeitlicher Verlauf einer I2C-Ubertragung

Abb. 14.20 Synchronisierung
beim I>C-Protokoll

SDA darf modifiziert

SDA stabil
werden

SCL

SDA >< ><
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Abb. 14.21 Start- und
Stoppbedingung des I2C-
Protokolls

Startbedingung
Stoppbedingung

T Y
on /T

-

Die bitserielle Ubertragung der Adressen oder Daten beginnt jeweils mit dem hochst-
wertigen Bit (Most Significant Bit first, MSB first). Der zeitliche Verlauf einer Uber-
tragung ist exemplarisch in Abb. 14.22 dargestellt. Der Master adressiert hierbei einen
Baustein mit der Adresse 0x35 und empfiangt vom Baustein den Wert OxAS.

14.7.5.2 12C-Interface der AVR-Mikrocontroller

Viele Mikrocontroller der AVR-Serie besitzen eine Hardware-Komponente, welche
die Dateniibertragung nach dem I?C-Protokoll unterstiitzt. Im Folgenden wird auf die

12c-Ubertragung Teil |

Start
Lesen
Bestatigung
vom Slave

Bausteinadresse (Master->Slave): 0x35

i ipipipipl

SDA

-
.

12c-Ubertragung Teil Il

(Fortsetzung des oberen Diagramms)

Bestatigung
vom Master
Stop

Daten (Slave->Master): 0xA5

SCL

SDA ‘ i

-
=

Abb. 14.22 Beispiel einer I>C-Ubertragung
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Schnittstelle eines ATmega32-Controllers eingegangen. Der Hersteller Atmel bezeichnet
die I>C-Schnittstelle als Two-Wire-Interface, TWI.

Die I’C-Schnittstelle kann sowohl im Master- als auch im Slave-Betrieb arbeiten. Die
Bausteinadresse fiir den Slavemodus kann durch eine entsprechende Programmierung
durch den Controller frei festgelegt werden. Der AVR unterstiitzt SCL-Taktfrequenzen
von bis zu 400 kHz, was dem sogenannten ,,Fast-Mode* entspricht. Da viele I>’C-Bau-
steine nur den Standard-Mode mit einer Taktfrequenz von 100 kHz unterstiitzen, muss
vor der Inbetriebnahme eines I?C-Systems iiberpriift werden, ob die gewihlte Taktfre-
quenz von allen Bausteinen des Systems unterstiitzt wird.

Die Programmierung des I?C-Interfaces eines AVR ist sehr iibersichtlich, da diese
Hardwarekomponente lediglich 5 Register besitzt, die im Folgenden niher vorgestellt
werden.

Das TWI Control Register (TWCR) dient zur Steuerung der 1?C-Hardwarekompo-
nente. Mithilfe dieses Registers kann die Komponente ein- oder ausgeschaltet oder die
lokale Interruptfreigabe sowie einige Ubertragungsparameter konfiguriert werden. Das
TWI Status Register (TWSR) enthilt 5 Bits, die als Statusinformation vom Programm
ausgewertet werden konnen. Auf dieses Weise ist es moglich, Ubertragungsfehler (zum
Beispiel ,,Slave hat auf die Ubertragung einer Adresse nicht mit einer Bestiitigung geant-
wortet™) im Programm zu erkennen. Das TWSR-Register enthélt dariiber hinaus zwei
Bits (TWPS1 und TWPS0), die zusammen mit dem Register TWBR (TWI Bitrate Regis-
ter) die verwendete Taktfrequenz im Masterbetrieb festlegen. Hierbei wird I>C-Frequenz
aus der Systemtaktfrequenz f; v gemif der nachfolgenden Formel abgeleitet:

fsys
16 + 2 - TWBR - 4TWPS

Mithilfe des TWI Slave Address Registers (TWAR) wird die vom Controller verwendete
Bausteinadresse im Slave-Modus festgelegt. Die Ubermittlung von Daten erfolgt mit
dem TWI Data Register (TWDR).

Die Belegung der Register TWCR und TWSR ist im Folgenden angegeben. Die ande-
ren Register der I?C-Schnittstelle enthalten 8-Bit-Werte (Tab. 14.37, 14.38 und 14.39).

Mithilfe der TWS-Statusbits kann die CPU den aktuellen Zustand des I>C-Inter-
faces bestimmen. Hierbei wird der jeweilige Betriebsmodus (Master oder Slave) unter-
schieden. Dariiber hinaus wird unterschieden, ob der AVR Daten empfingt (Receiver)
beziehungsweise Daten sendet (Transmitter). Somit ergeben sich vier grundlegende

fscL =

Tab. 14.37 Belegung des Registers TWCR

TWCR
Bit 7 6 5 4 3 2 1 0

Name TWINT | TWEA | TWSTA TWSTO TWWC |TWEN TWIE
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Tab. 14.38 Bedeutung der einzelnen Bits des TWCR-Registers

Bit Name Bedeutung

TWINT | TWI Interrupt Flag 1: Die I*C-Komponente hat die zuvor programmierte
Aufgabe abgearbeitet und kann von der CPU mit neuen
Aufgaben belegt werden. Ein Loschen dieses Bits (durch
Schreiben einer 1) startet die nachfolgende Aufgabe

TWEA | TWI Enable Acknowledge | 1: Die Komponente generiert ein Bestitigungssignal,
wenn Daten empfangen wurden oder falls (Slavemodus)
die eigene Bausteinadresse empfangen wurde

TWSTA | TWI Start Condition 1: Startbedingung generieren

TWSTO | TWI Stop Condition 1: Stoppbedingung generieren (Mastermodus), Riickset-
zen des Interfaces (zur Fehlerbehandlung im Slavemodus)

TWWC | TWI Write Collision 1: Das Datenregister (TWDR) wurde beschrieben bevor
eine zuvor gestartete Ubertragung abgeschlossen wurde

TWEN | TWI Enable 1: Die I’C-Komponente ist aktiviert

TWIE | TWI Interrupt Enable Lokale Interruptfreigabe

Tab. 14.39 Belegung des Registers TWSR

TWSR
Bit 7 6 5 4 3 2 1 0
Name TWS7 TWS6 TWS5 TWS4 TWS3 - TWPS1 | TWPSO

Betriebsmodi, fiir die eine Statusabfrage erfolgen kann: Master-Receiver-Modus, Mas-
ter-Transmitter-Modus, Slave-Receiver-Modus und Slave-Transmitter-Modus.

In Tab. 14.40 sind die moglichen Statusinformationen fiir den Masterbetrieb zusam-
mengefasst. Die in der Tabelle angegeben Konstanten konnen bei der Softwareent-
wicklung in der Programmiersprache C nach dem Inkludieren der Header-Datei twi.h
verwendet werden.

Im Folgenden werden exemplarisch zwei Beispielfunktionen angegeben, welche das
Polling-basierte Senden und Empfangen eines Bytes ermdglichen. Zur Fehlerbehandlung
wird die Funktion TW_ERR() verwendet, die im nachfolgenden Code nicht angegeben ist
und fiir ein lauffihiges Programm erstellt werden miisste.

// Senden eines Bytes
#include <util/twi.h> // I2C-Header-Datei
void TWI_ERR ()
{
// Hier Code zur Fehlerbehandlung
}
void TWI_sendbyte (unsigned char twi_addr, unsigned char twi_data)
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Tab. 14.40 Statusinformationen fiir den Masterbetrieb

Statusbits im Register | Konstante in Modus | Bedeutung
TWSR C-Bibliothek
0x08 TW_START Alle -START* iibertragen
0x10 TW_REP_START Alle .Repeated START* iibertragen
(Startbed. ohne vorherige
Stoppbed.)
0x18 TW_MT_SLA_ACK Master Adresse + ,,Write* iibertragen,
Transmit. | Bestitigung (ACK) empfangen
0x20 TW_MT_SLA_NACK | Master Adresse + ,,Write* iibertragen,
Transmit. | Keine Bestitigung (NACK)
empfangen
0x28 TW_MT_DATA_ACK |Master | Daten iibertragen, Bestitigung
Transmit. | (ACK) empfangen
0x30 TW_MT_DATA_NACK | Master Daten iibertragen, keine Bestéiti-
Transmit. | gung (NACK) empfangen
0x38 TW_MR_ARB_LOST | Master Ein anderer Master hat die
Receiver | Kontrolle
der I’C-Leitungen iibernommen
0x40 TW_MR_SLA_ACK Master Adresse + ,,Read” iibertragen,
Receiver | Bestitigung (ACK) empfangen
0x48 TW_MR_SLA_NACK | Master Adresse + ,,Read* tibertragen,
Receiver | keine Bestitigung (NACK)
empfangen
0x50 TW_MR_DATA_ACK | Master |Daten empfangen, Bestitigung
Receiver | (ACK) gesendet
0x58 TW_MR_DATA_NACK | Master | Daten empfangen, keine Bestiti-
Receiver | gung NACK gesendet
{
// --- Startbedingung ---
TWCR = (1<<TWINT) | (L<<TWSTA) | (1<<TWEN) ; // Sende START
while (! (TWCR & (1<<TWINT))) ; // gesendet?
if (TWSR != TW_START) TWI_ERR() ; // Status priifen
// --- Adresse ---
TWDR = (twi_data << 1) | TW_WRITE; // Adresse nach TWDR
TWCR = (1<<TWINT) | (1<<TWEN) ; // Ubertragung starten
while (! (TWCR & (1<<TWINT))); // Adr. gesendet?
if (TWSR != TW_MT_SLA_ACK) TWI_ERR() ; // Status prilifen
// --- Daten ---
TWDR = twi_data; // Daten nach TWDR
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TWCR = (1<<TWINT) | (1<<TWEN) ; // Ubertragung starten
while (! (TWCR & (1<<TWINT))) ; // Daten gesendet?

if (TWSR != TW_MT_DATA_ACK) TWI_ERR() ; // Status priifen

// --- Stoppbedingung ---

TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO) ; // STOP senden

}

// Empfangen eines Bytes

#include <util/twi.h> // I2C-Header-Datei
unsigned char TWI_recbyte (unsigned char twi_addr)

{

unsigned char twi_data;

// --- Startbedingung ---

TWCR = (1<<TWINT) | (L<<TWSTA) | (1<<TWEN) ; // Sende START

while (! (TWCR & (1<<TWINT))) ; // gesendet?

if (TWSR != TW_START) TWI_ERR() ; // Status priifen

// --- Adresse ---

TWDR = (twi_addr << 1) | TW_READ; // Adresse nach TWDR

TWCR = (1<<TWINT) | (1<<TWEN) ; // Ubertragung starten

while (! (TWCR & (1<<TWINT))) ; // Adr. gesendet?

if (TWSR != TW_MR_SLA_ACK) TWI_ERR() ; // Status prilifen

// --- Daten ---

TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWEA);

while (! (TWCR & (1<<TWINT))) ; // Daten empf. ?
twi_data = TWDR; // Daten sichern

// --- Stoppbedingung ---

TWCR = (l<<TWINT)|(1<<TWEN)| (1<<TWSTO) ; // STOP senden

return twi_data;

14.7.6 Analoge Peripheriekomponenten

Neben digitalen Ein-/Ausgabekomponenten stellen Mikrocontroller vielfach auch
analoge Komponenten zur Verfiigung. Der im Rahmen dieses Kapitels exemplarisch
betrachtete Mikrocontroller ATmega32 verfiigt tiber einen A/D-Umsetzer und einen Ana-
log-Komparator. Im Folgenden werden diese Komponenten niher vorgestellt.
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14.7.6.1 Analog/Digital-Umsetzer
Der A/D-Umsetzer arbeitet nach dem Verfahren der sukzessiven Approximation und
stellt eine Auflosung von 10 bit zur Verfiigung. Die Umsetzung erfolgt nach dem Ver-
fahren der sukzessiven Approximation und benétigt, je nach Betriebsmodus, eine Zeit
von 13 bis 260 ps. Als analoge Einginge konnen im Fall des ATmega32 die Anschliisse
PAO (ADCO) bis PA7 (ADC7) verwendet werden. Insgesamt stehen somit 8 analoge
Anschliisse zur Verfiigung. Durch eine entsprechende Konfiguration des integrierten
Analog-Multiplexers ist es moglich, jeweils einen dieser Anschliisse mit dem Eingang
des A/D-Umsetzers zu verbinden und eine Messung der anliegenden Eingangsspan-
nung durchzufiihren. Dariiber hinaus wird eine differenzielle Messung unterstiitzt, die
es ermoglicht, die Spannungsdifferenz zweier analoger Anschliisse zu messen. Die fiir
den A/D-Umsetzer benétigte Referenzspannung kann entweder intern erzeugt oder iiber
den Anschluss AREF beziehungsweise AVCC zugefiihrt werden. Die Struktur des A/D-
Umsetzers ist in Abb. 14.23 gezeigt.

Mithilfe eines Eingangsmultiplexers werden die Anschliisse des Controllers aus-
gewihlt, die dem A/D-Umsetzer zugefiihrt werden sollen. Neben den Anschliissen
ADCO bis ADC7 kann auch eine interne Referenzspannung oder eine Masseverbindung

Register: ADCSRA, ADMUX

b

Interrupt
Faes Steuerung
vV vy
ADCO [X——
ADC1 [X}——
I _ > Register:
. M ADCL,
i U L, Sample | _f AD- | A0CH
= MUX -
. X & Hold Umsetzer
ADC7 [X——>|
A
|_> Referenz-
Unni Spannung
VREF g|—> M Urer
Avee K——» U
‘ X
MUX[4:0]
Register: ADMUX Interne L REFS[1:0]
Referenz- Register: ADMUX
spannung
(typ. 2,56 V)

Abb. 14.23 Struktur des A/D-Umsetzers
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ausgewihlt werden. Bei Auswahl einer differenziellen Messung kann die Differenz-
spannung mithilfe eines Verstédrkers mit den Werten 1, 10 und 200 multipliziert werden.
Die ausgewihlte Spannung wird zunichst iiber ein Sample-and-Hold-Glied gefiihrt und
anschliefend dem A/D-Umsetzer zugefiihrt.

Nach der Durchfiihrung der Wandlung kann der digitalisierte Wert aus den 1/O-
Registern ADCL und ADCH ausgelesen werden. Fiir diesen Wert gelten die folgenden
Formeln:

Normale Messung (single-ended):

Ui, - 1024
Uref

ADC =

Differenzielle Messung:

(Upos — Uneg) - V - 512
Uref

ADC =

mit: V — Verstarkungsfaktor

Fiir die Programmierung des A/D-Umsetzers werden drei Register verwendet: Das
ADC Multiplexer Selection Register (ADMUX), das ADC Control and Status Register A
(ADCSRA) sowie einige Bits des Special Function 10 Registers (SFIOR). Die Belegung
der genannten Register ist im Folgenden angegeben (Tab. 14.41)

Mithilfe der Bits REFS1 und REFSO wird die Referenzspannung fiir den A/D-Umset-
zer ausgewihlt MUX4 bis MUXO steuern die Analogmultiplexer, und mithilfe des Bits
ADLAR kann das Ausgabeformat in den Registern ADCL und ADCH ausgewiahlt wer-
den. Tab. 14.42, 14.43 und 14.44 fassen die Bedeutung der Bits des ADMUX-Registers

zusaminen.

Tab. 14.41 Belegung des Registers ADMUX

ADMUX

Bit 7 6 5 4 3 2 1 0
Name REFS1 |REFSO |ADLAR [MUX4 |MUX3 MUX2 'MUX1 |MUXO0

Tab. 14.42 Auswahl der Referenzspannung mit den Bits REFS1 und REFSO

REFS1 REFSO Referenzspannung Uref

0 0 Anschluss AREF

0 1 Anschluss AVCC

1 0 reserviert

1 1 Interne 2.56 V Referenzspannung (Kapazitit an AREF empfohlen)
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Tab. 14.43 Bedeutung der Bits des ADMUX-Registers
ADCH (ADLAR = 0)
Bit 7 6 5 4 3 2 1 0
Name - - - - - - ADC9 ADCS
ADCL (ADLAR = 0)
Bit 7 6 5 4 3 2 1 0
Name ADC7 |ADC6 | ADC5 |ADC4 |ADC3 |ADC2 |ADCI ADCO
ADCH (ADLAR = 1)
Bit 7 6 5 4 3 2 1 0
Name ADC9 |ADC8 | ADC7 | ADC6 | ADCS |ADC4 |ADC3 |ADC2
ADCL (ADLAR = 1)
Bit 7 6 5 4 3 2 1 0
Name ADCl1 ADCO | - - - - - -

Tab. 14.44 Auswahl der Eingangsmultiplexer in Abhédngigkeit von MUXO0 bis MUX4

MUX3 | MUX2 MUXI1 | MUXO | Analogeingang (MUX4 = 0) | Analogeingang (MUX4 = 1)
0 0 0 0 ADCO ADCO0-ADCI1

0 0 0 1 ADCI ADCI1-ADCI

0 0 1 0 ADC2 ADC2-ADCI1

0 0 1 1 ADC3 ADC3-ADCI

0 1 0 0 ADC4 ADC4-ADCl1

0 1 0 1 ADCS5 ADC5-ADCI

0 1 1 0 ADC6 ADC6-ADCI

0 1 1 1 ADC7 ADC7-ADCI

1 0 0 0 (ADCO0O-ADCO0)*10 ADCO0-ADC2

1 0 0 1 (ADCI1-ADCO0)*10 ADCI1-ADC2

1 0 1 0 (ADCO0-ADC0)*200 ADC2-ADC2

1 0 1 1 (ADCI1-ADC0)*200 ADC3-ADC2

1 1 0 0 (ADC2-ADC2)*10 ADC4-ADC2

1 1 0 1 (ADC3-ADC2)*10 ADCS5-ADC2

1 1 1 0 (ADC2-ADC2)*200 Interne Spannung (1,22V)
1 1 1 1 (ADC3-ADC2)*200 Masse (0V)

Mit dem Register ADSCRA werden die Grundeinstellungen zum Betrieb des A/D-
Umsetzers vorgenommen (Tab. 14.45 und 14.46).
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Tab. 14.45 Belegung des Registers ADSCRA

ADSCRA
Bit 7 6 5 4 3 2 1 0
Name ADEN | ADSC | ADATE | ADIF ADIE ADPS2 | ADPS1 | ADPSO

Tab. 14.46 Bedeutung der Bits des Registers ADSCRA

Bit Name Bedeutung

ADEN | ADC Enable Ein-/Ausschalten des A/D-Umsetzers (0: aus, 1: ein)

ADSC | ADC Start Conversion 1: Start einer A/D-Umsetzung
Dieses Bit muss auch im ,,Free-Running-Mode* (auto-
matisch wiederholte Messungen) zum Start der ersten
Wandlung gesetzt werden.

ADATE | ADC Auto Trigger Enable | O: Start der A/D-Umsetzungen durch SW
1: Kontinuierliche A/D-Umsetzung

ADIF | ADC Interrupt Flag 1: A/D-Umsetzung abgeschlossen
(Loschen des Bits durch Schreiben einer 1)

ADIE | ADC Interrupt Enable 1: Lokale Interruptfreigabe. Auslosen einer Unterbrechung
nach Abschlieflen der A/D-Umsetzung

ADPS | ADC Prescaler Selection | Auswahl des Taktes des A/D-Umsetzers

Tab. 14.47 Einstellung der ADC-Taktfrequenz durch Teilung der Systemfrequenz

ADPS2 ADPS1 ADPSO ADC-Taktfrequenz
0 0 0 Jiys 2
0 0 1 Joys 12
0 1 0 Sy !4
0 1 1 Siys! 8
1 0 0 Jiys ! 16
1 0 1 fiys 132
1 1 0 Siys ! 64
1 1 1 Joys 1 128
Tab. 14.48 Belegung des Registers TWSR
SFIOR
Bit 7 6 5 4 3 2 1 0
Name ADTS2 | ADTS1 |ADTSO |- ACME | PUD PSR2 PSR10
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Tab. 14.49 Auswahl der Triggerquelle zum Start der A/D-Umsetzung

ADTS2 | ADTS1 | ADTSO | Trigger-Quelle zum Start einer A/D-Umsetzung

0 0 0 ,,Free Running Mode*: A/D-Umsetzung wird automatisch nach dem
Beenden der vorangegangenen Umsetzung gestartet

0 0 1 Analog-Komparator

0 1 0 Externer Interrupt (Anschluss INTO)

0 1 1 Timer(: Zihler des Timers = Vergleichswert (Compare Match)

1 0 0 Timer0O: Zahleriiberlauf (Timer Overflow)

1 0 1 Timerl: Zihler des Timers = Vergleichswert B (Compare Match B)

1 1 0 Timerl: Zihleriiberlauf (Timer Overflow)

1 1 1 Timer1: Ereignis der Input-Capture-Unit (Capture Event)

Die Taktfrequenz, mit welcher der A/D-Umsetzer betrieben wird, beeinflusst sowohl
die Dauer der Umsetzung als auch die Genauigkeit des Ergebnisses. Fiir eine Genauig-
keit von 10 Bit empfiehlt der Hersteller die Auswahl einer Frequenz zwischen 50 und
200 kHz. Ist eine geringere Genauigkeit ausreichend, kann der A/D-Umsetzer auch mit
Frequenzen oberhalb von 200 kHz betrieben werden, um hohere Abtastraten zu erzielen.
Eine Umsetzung dauert, je nach Betriebsmodus, zwischen 14,5 und 16,5 Taktzyklen. Die
Auswahl der Taktfrequenz durch die CPU erfolgt durch Programmierung der ADPS-Bits
im ADSCRA-Register. Die Taktfrequenz wird durch Teilung der Systemfrequenz f; 45 ent-
sprechend Tab. 14.47 erzeugt.

Neben dem softwarebasierten Start einer A/D-Umsetzung, kann eine Umsetzung auch
durch controllerinterne Ereignisse ausgelost werden. Zur Auswahl dieser Ereignisse
miissen die ADTS-Bits (ADTS: ADC Trigger Selection) im Register SFIOR programmiert
werden (Tab. 14.48).

Die Auswahl der moglichen Ereignisse zum Start einer Wandlung fasst Tab. 14.49
zusammen.

Eine einfache Beispielfunktion zur Verwendung des A/D-Umsetzers ist nachfolgend
angegeben. Sie initialisiert den Umsetzer und startet eine Umsetzung, auf deren Ende
Polling-basiert gewartet wird. Das Ergebnis wird als 16-Bit-Wert an das Hauptprogramm
zuriickgegeben.

#include <avr/io.h>
#include <util/delay.h>
unsigned int GET_ ADCI1 ()
{
unsigned int adc;
// Auswahl: Referenzspannung & Analogeingang ADCI1
ADMUX = (1<<REFS0) | (1<<MUXO);
// A/D-Umsetzer einschalten und Vorteiler wdhlen
ADCSRA = (1<<ADEN) | (1<<ADPS2) | (1<<ADPS1) | (1<<ADPSO);
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// Start der Umsetzung per Software

ADCSRA |= (1<<ADSC);
// Auf Ende der Umsetzung warten
while (ADCSRA & (1<<ADSC)) _delay_us(1l);

// Ergebnis lesen
adc = ADCL;
adc |= (ADCH<<8);
return adc;

14.7.6.2 Analog-Komparator

Mithilfe des Analog-Komparators konnen zwei analoge Spannungen miteinander ver-
glichen werden. Das Ergebnis dieses Vergleichs wird vom Komparator als bindrer Wert
ausgegeben. Der Ausgangswert des Komparators kann durch die CPU iiber die Abfrage
eines I/O-Registers eingelesen werden. Dariiber hinaus ist es moglich, bei Anderungen
des Ausgangswertes einen Interrupt auszulosen. Weiterhin kann der Ausgang des Ana-
log-Komparators direkt in der Hardware des Mikrocontrollers (zum Beispiel im Timer
1 als Capture-Impuls fiir die Input-Capture-Unit) verwendet werden. Die Struktur des
Komparators zeigt Abb. 14.24.

Die Funktion des Komparators wird im Wesentlichen durch das ACSR-Register fest-
gelegt (Tab. 14.50).

Wie Tab. 14.51 zu entnehmen ist, erfolgt die Signalauswahl fiir den positiven Kompa-
ratoreingang durch das Bit ACBG. Der Multiplexer fiir den negativen Komparatoreingang
wird iiber die Bits ACME (SFIOR-Register) und ADEN (ADCSRA-Register) gesteuert.
Gilt ACME = 1 und ADEN = 0 (A/D-Umsetzer abgeschaltet), wird dem negativen Kom-
paratoreingang das Ausgangssignal des Eingangsmultiplexers des A/D-Umsetzer zuge-
flihrt. In allen anderen Fillen wird das Signal am Anschluss AINI ausgewihlt.

Abb. 14.24 Struktur des Interne
Referenz-
Analog-Komparators spannung
MUX
AINO [X— Aco
(Analog
Comparator
AINT F— Output,
MUX ey
vom A/D-
Umsetzer
Tab. 14.50 Belegung des Registers ACSR
ACSR
Bit 7 6 5 4 3 2 1 0

Name ACD ACBG |ACO ACI ACIE ACIC ACIS1 | ACISO
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Tab. 14.51 Signalauswahl am Komparatoreingang

Bit Name Bedeutung

ACD | Analog Comparator Disable Ein-/Ausschalten des Komparators (0: ein, 1: aus)

ACBG | Analog Comparator Bandgap Select | Auswahl des Signals am positiven
Komparator-Eingang

0: Anschluss AINO

1: Intern erzeugte Referenzspannung (typ. 1,23 V)

ACO | Analog Comparator Output Aktueller Status des Komparatorausgangs
(zur Abfrage durch die CPU)
ACI Analog Comparator 1: Ereignis (entspr. der ACIS-Bits) ist aufgetreten
Interrupt Flag und es wird ein Interrupt ausgelost, sofern der AC-
Interrupt freigegeben ist
ACIE | Analog Comparator 1: Lokale Interruptfreigabe
Interrupt Enable
ACIC | Analog Comparator 1: Ereignis des Analog-Komparators 16st Capture-
Input Capture Enable Event in Timer1 aus.
ACIS | Analog Comparator 00: Interrupt bei Wechsel des Ausgangs ACO
Interrupt Mode Select 01: reserviert
10: Interrupt bei fallender Flanke des Ausgangs
ACO
11: Interrupt bei steigender Flanke des Ausgangs
ACO

14.7.7 Interrupt-basierte Kommunikation mit
Peripheriekomponenten

Die Kommunikation zwischen CPU und eingebetteten Peripheriekomponenten kann
Polling-basiert erfolgen. Beispiele hierzu wurden in den vorangegangenen Abschnitten
fiir einzelne Peripherickomponenten eines AVR-Mikrocontrollers dargestellt. Polling
stellt die einfachste Moglichkeit dar, mit einer eingebetteten Komponente zu kommuni-
zieren und besitzt den Vorteil, dass der Programmcode meist relativ gut nachvollziehbar
ist, da er streng sequenziell ausgefiihrt wird. Mit Polling ist jedoch der Nachteil verbun-
den, dass ein signifikanter Anteil der verfiigbaren Rechenleistung fiir Warteschleifen zur
Abfrage von Peripherieckomponenten aufgebracht werden muss. Dariiber hinaus muss bei
Verwendung von Polling sichergestellt sein, dass die Komponenten ausreichend hiufig
abgefragt werden, da andernfalls Ereignisse (zum Beispiel der Empfang von Daten) ver-
passt werden konnten. Fiir sehr einfache Anwendungen kann Polling durchaus ein sinn-
voller Ansatz zur Realisierung einer Anwendung auf einem Mikrocontroller sein. Fiir
komplexere Anwendungen ist er meist nicht zu empfehlen, da entweder die rechtzeitige
Abfrage aller Peripheriekomponenten nicht gewihrleistet werden kann oder auch der
Verbrauch der Rechenleistung fiir Warteschleifen zur Abfrage der Peripheriekomponen-
ten nicht toleriert werden kann.
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Als Alternative zu Polling kann eine interruptbasierte Kommunikation mit Periphe-
rieckomponenten eingesetzt werden. Das Hauptprogramm wird in diesem Fall zunéchst
die Initialisierung des Systems vornehmen, die bendtigten Interrupts lokal freigeben und
abschlielend eine globale Interruptfreigabe durch Setzen des I-Flags im Statusregister
der CPU vornehmen. AnschlieBend wird das Hauptprogramm in eine Endlosschleife
springen, die in einfachen Anwendungsfillen leer ist. Ein Beispiel fiir die Verwendung
von Interrupts wird anhand des folgenden Beispiels verdeutlicht:

Mithilfe eines Mikrocontrollers soll eine einfache Temperaturiiberwachung realisiert
werden. Ein hypothetischer Sensor liefert die Temperatur als 8-Bit-Wert an den Mikro-
controller. Der Sensor misst kontinuierlich die Temperatur. Uber die steigende Flanke
eines Synchronisationssignals wird vom Sensor angezeigt, dass ein neuer Messwert aus-
gegeben wurde. Ubersteigt die gemessene Temperatur einen vorprogrammierten Wert,
soll der Mikrocontroller ein Alarmsignal (Alarm = 1) ausgeben. Eine Hardwarerealisie-
rung auf Basis eines ATmega32 ist in Abb. 14.25 skizziert.

Ein entsprechendes Programm fiir den Mikrocontroller kann wie folgt aussehen:

// Einfache Temperaturiiberwachung
#include <avr/io.h>
#include <avr/interrupt.h>
#define ALARM_SCHWELLE 100
void InitSystem() {

// Portrichtungen einstellen

DDRA = O0;

DDRB |= (1<<PBO);

DDRD &= ~(1<<PD2);

// Interrupt konfigurieren und lokal freigeben
MCUCR |= (1<<ISCO1) | (1<<ISC00);

GICR |= (1<<INTO);

// Globale Interrupt-Freigabe
sei();

Mikrocontroller

A
PA[7:0]

N
Sensor

PD2 (INTO) |

PBO——— Alarm

Abb. 14.25 Anwendungsbeispiel ,,Temperaturiiberwachung*
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// Interrupt-Service-Routine
ISR (INTO_vect) {
// PBO = 1 falls Alarmschwelle iberschritten
if (PINA > ALARM SCHWELLE) PORTB |= (1<<PBO);
}
void main () {
InitSystem() ;
while (1) {
// Sofern keine anderen regelmdfBigen Aufgaben zu
// erledigen sind, eine leere Endlosschleife..

14.7.7.1 Interruptverarbeitung und atomare Operationen

Nun soll das System zur Temperaturiiberwachung zunichst so erweitert werden, dass
der Benutzer iiber eine entsprechende Schnittstelle den Schwellwert zur Auslésung
eines Alarms einstellen kann. Zur Bedienung der Schnittstelle wird dem Programm die
Funktion UIF() hinzugefiigt. Diese Funktion konnte zum Beispiel mithilfe einer Tastatur
und eines Displays mit dem Benutzer kommunizieren und den jeweils aktuell gewéhl-
ten Schwellwert als Riickgabewert liefern. Die Implementierung dieser Funktion ist hier
irrelevant und wird nicht niher betrachtet. Da die Benutzereingabe durch die Bedienung
der Tastatur jedoch einige Zeit bendtigt, muss beriicksichtigt werden, dass die Ausfiih-
rungszeit der Funktion nicht exakt bestimmbar ist und mehrere 100 ms oder auch meh-
rere Sekunden betragen kann. Ein erweitertes Programm, welches einen einstellbaren
Alarmwert unterstiitzt, kann wie folgt realisiert werden.

// Temperaturiberwachung mit einstellbarem Alarmwert
#include <avr/io.h>
#include <avr/interrupt.h>

volatile unsigned char Schwelle;
void InitSystem() {

// Programmcode wie oben angegeben

unsigned char UIF() {
// User-Interface, die genaue Implementierung ist irrelevant

ISR(INTO_vect) {
// PBO = 1 falls Alarmschwelle tiliberschritten
if (PINA > Schwelle) PORTB |= (1<<PBO);
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void main () {
InitSystem() ;
while (1) {

Schwelle = UIF();

Nun soll das Programm ein weiteres Mal erweitert werden. Es wird ein neuer Sen-
sor verwendet, der einen 16 bit breiten Temperaturwert liefert. Der vom Sensor gelieferte
Wert wird mithilfe der Ports PORTA und PORTC vom Mikrocontroller eingelesen. Der
Code wird wie folgt modifiziert:

// Temperaturiiberwachung mit einstellbarem 16-Bit-Alarmwert

// >>> Fehlerhafte Implementierung !!! <<<

// Modifikationen zum vorangegangenen Programm sind fett gedruckt
#include <avr/io.h>

#include <avr/interrupt.h>

volatile unsigned short Schwelle;

void InitSystem(void) { .. }

unsigned short UIF (void) { .. }
ISR (INTO_vect) {

unsigned short Messwert;
Messwert = PINA;

Messwert = (Messwert<<8) | PINC;

if (Messwert > Schwelle) PORTB |= (1<<PBO);
}
void main () {

InitSystem() ;

while (1) {
Schwelle = UIF();

Auf den ersten Blick mdgen die Modifikationen des Programms plausibel und sinn-
voll erscheinen: Ein lauffihiges und bewidhrtes Programm wurde durch die Modifikation
der Wortbreite der verwendeten Variablen modifiziert. Allerdings wiirden bei Einsatz die-
ses Programms sporadische Fehlfunktionen auftreten. Um die Ursache dieser sporadi-
schen Fehler zu verstehen, muss die Codezeile

Schwelle = UIF();
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niher betrachtet werden.
Der Aufruf des Unterprogramms und die Zuweisung an die globale Variable Schwelle
wiirde vom Compiler in den folgenden Assemblercode umgesetzt werden:

call 0x92; Aufruf von UIF, Rickgabewert in r24 und r25
sts 0x61, r25; Zuweisung des hbherwertigen Bytes
sts 0x60, r24; zZuweisung des niederwertigen Bytes

Mit der Analyse des Assemblercodes wird das auftretende Problem deutlich: Der
Compiler bendtigt fiir die Zuweisung des Riickgabewertes an die 16-Bit-Variable
Schwelle zwei Befehle. Sollte nun zufillig ein Sensor-Interrupt auftreten, wihrend der
erste Befehl der Zuweisung ausgefiihrt wird, wiirde die Interrupt-Service-Routine einen
nicht vollstindig erneuerten Wert in den Speicherstellen (hier: 0x60 und 0x61) der Varia-
blen Schwelle vorfinden. Die erste Zuweisung wiirde dem Sprung in die ISR ausgefiihrt,
wihrend die zweite Zuweisung erst nach Verlassen der ISR aufgerufen wird.

In vielen Fillen wird sich dieser Programmfehler nicht bemerkbar machen, da mehrere
Bedingungen zum Auftreten einer Fehlfunktion gelten miissen: Der Interrupt muss genau
zum oben beschriebenen Zeitpunkt auftreten und das hoherwertige Byte des Schwellwertes
muss sich gegeniiber dem vorangegangenen Wert geédndert haben. Dariiber hinaus miisste der
vom Temperatursensor gelieferte Wert dazu fiihren, dass aufgrund des falsch iibergebenen
Schwellwertes ein Alarm filschlich ausgeldst wird. Anhand dieser Uberlegung ist zu erken-
nen, dass der Fehler vermutlich nur sehr selten auftreten wird. Genau hierin liegt jedoch die
Schwierigkeit, den Fehler durch praktische Tests des Systems zu detektieren. Wahrend der
Entwicklungsphase tritt der Fehler aufgrund der geringen Auftrittswahrscheinlichkeit eventu-
ell nicht zutage, hat jedoch im Betrieb des Systems moglicherweise fatale Folgen.

Anhand dieses einfachen Beispiels wird deutlich, dass man sich mit der CPU des ver-
wendeten Systems auskennen sollte. In diesem Beispiel muss bei der Programmierung
klar sein, dass eine 16-Bit-Zuweisung nicht durch einen einzelnen Befehl ausgefiihrt wer-
den kann, da die CPU zwei aufeinanderfolgende 8-Bit-Zuweisungen verwenden muss.

Operationen, die nicht durch Interrupts (oder auch andere hier nicht niher betrach-
tete Mechanismen) unterbrochen werden konnen, werden auch als aromare Operationen
bezeichnet. Der Begriff ,,atomar* ist hierbei aus dem griechischen Wort dtomo (= unteil-
bar) abgeleitet.

Die in dem Beispiel gezeigte Zuweisung eines 16-Bit-Wertes stellt somit keine ato-
mare Operation dar, da sie durch einen Interrupt unterbrochen werden kann.

Zur Losung dieser Problematik konnen die fiir die Zuweisung relevanten Interrupts
kurzzeitig gesperrt werden. Eine mogliche Implementierung des Hauptprogramms
konnte wie folgt aussehen.

// Unglinstige Implementierung des Hauptprogramms
void main () {
InitSystem() ;
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while (1) {
GICR &= ~(1<<INTO); // Interruptereignis INT0 sperren
Schwelle = UIF();
GICR |= (1<<INTO); // Interruptereignis INTO freigeben

Dieser Ansatz ist ,interruptfest®. Es konnen also keine sporadischen Fehler auf-
grund einer unvollstindigen Zuweisung auftreten. Allerdings tritt hierbei eine weitere
Problematik auf: Die Ausfiihrung der Schleifenanweisung (while(1)) und das Sperren
beziehungsweise das Freigeben des INTO-Interrupts konnen von der CPU in wenigen
Taktzyklen abgearbeitet werden. Fiir den Aufruf der Benutzerschnittstelle wird dagegen
signifikant mehr Rechenzeit benotigt. Die Konsequenz ist, dass die Interrupts die iiber-
wiegende Zeit gesperrt sind. Daher ist die Wahrscheinlichkeit hoch, dass die ISR nicht
aufgerufen wird und damit einige vom Temperatursensor gelieferten Werte nicht verar-
beitet werden. Daher sollte bei der Programmentwicklung darauf geachtet werden, dass
Interrupts nur so kurz wie moglich gesperrt werden.

Eine entsprechende Modifikation des Hauptprogramms konnte wie folgt aussehen.

// Sinnvollere Implementierung des Hauptprogramms
void main ()
{
unsigned short Schwelle_lokal;
InitSystem() ;
while (1) {
Schwelle_lokal = UIF();

GICR &= ~(1l<<INTO); // INTO sperren
Schwelle = Schwelle_lokal;
GICR |= (1<<INTO); // INTO freigeben

Zusammenfassend lisst sich festhalten, dass die folgenden Uberlegungen und Regeln
bei der Verwendung von Interrupts beachtet werden sollten.

o Interrupts sollten, wenn iiberhaupt, so kurz wie moglich vom Hauptprogramm
gesperrt werden.

e Da nach dem Aufruf einer ISR keine weiteren Interrupts zugelassen sind, sollte eine
ISR eine moglichst kleine Rechenzeit benotigen.

e Fiir die Kommunikation zwischen dem Hauptprogramm und einer ISR sollte gepriift
werden, ob die implementierte Kommunikation atomar ist. Gegebenenfalls sollte
die Implementierung des Programms angepasst werden, um sporadische Fehler zu
vermeiden.
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14.7.7.2 FIFO-basierte Kommunikation mit Peripheriekomponenten

In vielen Fillen ist es wiinschenswert, die Kommunikation mit einer Peripheriekompo-
nente nicht byteweise auszufiihren, sondern zunéchst eine Zwischenspeicherung vorzu-
nehmen. Da die Reihenfolge der Daten durch den Speicher nicht verindert werden soll,
bietet sich die Implementierung eines First-In-First-Out-Speichers (FIFO) an. Eine mog-
liche FIFO-Realisierung ist im Folgenden dargestellt.

Die im Folgenden dargestellte Implementierung eines FIFOs verwendet zur Speiche-
rung der Daten einen Bereich im SRAM des Controllers. Der Speicherbereich wird mit-
hilfe der C-Bibliotheksfunktion malloc() reserviert. Zur Adressierung der Daten werden
zwei Zeiger verwendet. Ein Schreibzeiger (wp) dient zur Adressierung der Daten, die in
den FIFO-Speicher geschrieben werden. Ein Lesezeiger (rp) adressiert die Daten, die bei
einem Lesezugriff auf das FIFO ausgeben werden. Die zur Verwaltung des FIFOs beno-
tigten Daten (Schreibzeiger, Lesezeiger, Grofle des FIFOs sowie ein Zeiger auf den im
SRAM allokierten Speicherbereich) werden in einer Datenstruktur abgelegt.

Der allokierte Speicherbereich mit der Grofle N Bytes wird als Ringspeicher genutzt.
Fiir die Adressierung des Speichers bieten sich verschiedene Varianten an.

Bei der im Folgenden verwendeten Variante durchlaufen der Lese- und der Schreib-
zeiger einen Wertebereich von 0 bis 2N—1. Das FIFO ist leer, wenn die Werte des
Schreib- und des Lesezeigers identisch sind. Dagegen ist das FIFO voll, wenn die Diffe-
renz zwischen Schreib- und Lesezeiger genau N betrigt. Ein gesondertes Mitfiihren der
,» Voll/Leer“-Information oder des FIFO-Fiillstandes ist bei dieser Variante nicht erfor-
derlich. Werden die Zeiger als Bytevariablen ausgelegt, kann die atomare Ausfiihrung
des Codes sichergestellt werden, ohne dass Interrupts kurzzeitig gesperrt werden miiss-
ten. Der Nachteil dieses Ansatzes ist jedoch, dass die beiden Zeiger nur dann direkt zur
Adressierung des Speichers verwendet werden, wenn ihre Werte kleiner als N—1 sind.
Andernfalls muss vor der Adressierung vom Wert des Zeigers N subtrahiert werden.

Abb. 14.26 zeigt verschiedene Beispiele fiir mogliche Zustidnde der gewihlten FIFO-
Implementierung. Es ist jeweils der Fiillstand (= Anzahl giiltiger Werte im FIFO) sowie
der Wert des Schreibzeigers und des Lesezeigers angegeben.

Die FIFO-Implementierung stellt verschiedene C-Funktionen zur Verfiigung. Die Funk-
tion FIFO_Init() allokiert Speicher fiir den Pufferspeicher zur Aufnahme der zu speichern-
den Daten und die Parameter des FIFOs (Schreibzeiger, Lesezeiger, FIFO-Grofe und
einen Zeiger auf den Pufferspeicher). Der Riickgabewert dieser Funktion ist ein Zeiger auf
die angelegte Datenstruktur zur Verwaltung des FIFOs, die fiir die folgenden Funktionen
als Parameter verwendet wird. Da die Allokation des Speichers dynamisch erfolgt, kann
es vorkommen, dass der benotigte Speicherbereich zur Laufzeit des Programms nicht zur
Verfligung steht. In diesem Fall ist der Riickgabewert der Funktion NULL.

Mithilfe der Funktionen FIFO_Read() beziehungsweise FIFO_Write() konnen Daten
aus dem FIFO-Speicher gelesen beziehungsweise in das FIFO geschrieben werden. Diese
Funktionen sind nicht blockierend (,,non-blocking*). Dies bedeutet, dass beispielsweise
der Aufruf der Funktion FIFO_Write() auch bei einem vollen FIFO nicht wartet, bis ein
Eintrag im FIFO frei wird. In diesem Fall wird die Funktion mit dem Riickgabewert O
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Fullstand = 0 Fallstand = 1 Fuallstand = 2 Fillstand = 1
Initialzustand
—> l-— —>| —>|
-— —>
l— |<—
rp=0 wp=0 rp=0 wp=1 rp=0 wp=2 rp=1 wp=2
Flllstand = 0 Fillstand = 3 Fullstand = 4 Fullstand = 0
(leer) (voll) (leer)
le—
—> l-— —> —> l— — |<t—
rp=2 wp=2 rp=2 wp=5 rp=2 wp=6 rp=6 wp=6

Abb. 14.26 Beispiele fiir Zustinde der FIFO-Implementierung am Beispiel eines FIFOs mit 4
Eintrigen

verlassen, um dem aufrufenden Programmteil anzuzeigen, dass der Schreibvorgang nicht
erfolgreich ausgefiihrt wurde. Das aufrufende Programm kann mithilfe dieser Information
entscheiden, ob die Fortsetzung des Programms sinnvoll ist oder gegebenenfalls in einer
Warteschleife auf das Freiwerden eines Eintrages im FIFO warten und den Schreibvor-
gang erneut anstoien. Entsprechendes gilt fiir die Funktion FIFO_Read(). Die Funktion
FIFO_Free() gibt den mit FIFO_Init() belegten Speicherbereich wieder frei.

Der folgende Code zeigt eine mogliche FIFO-Implementierung in der Programmier-
sprache C.

// EE R I R I I R I I R I R I I I I R R S R R R I S I I

// File: fifo.h

// EE R I R I I R I I R I I I R R R S R R R I S
#ifndef _ FIFO_H_

#define _ FIFO_H_

#include <stdlib.h>

// FIFO Struktur zur Aufnahme der FIFO-Parameter

typedef volatile struct {

unsigned char size; // FIFO Grdéle
unsigned char rp; // Lesezeliger
unsigned char wp; // Schreibzeiger

unsigned char *buffer; // Zeiger auf Pufferspeicher
} TS _Fifo;
// FIFO Initialisierung (Speicher wird mittels malloc allokiert)
extern TS_Fifo* FIFO_Init (unsigned char log2size);
// FIFO Speicher freigeben
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extern void FIFO_Free(TS_Fifo *fifo);
// Wert aus FIFO lesen
extern unsigned char FIFO_Read(TS_Fifo *fifo, unsigned char* value);
// Wert in FIFO schreiben
extern unsigned char FIFO _Write(TS_Fifo *fifo, unsigned char value);
#endif
// EE R I R R I R I I R R R R S I
// File: fifo.c
// PR R R R I R I I R R I I
#include "fifo.h"
TS_Fifo* FIFO_Init (unsigned char size)
{

TS _Fifo *fifo;

if (size>127) return NULL;

fifo = malloc (sizeof (TS_Fifo));

if (fifo==NULL) return NULL;

fifo->buffer = malloc(size);

if (fifo->buffer==NULL) {

free((void*)fifo);

return NULL;

fifo->size = size;

fifo->rp = 0;

fifo->wp = 0;
return (fifo);

void FIFO_Free(TS_Fifo *fifo)
{
free((void*) fifo->buffer);
free((void~*)fifo);
}
unsigned char FIFO_Read(TS_Fifo *fifo, unsigned char *value)
{
unsigned char wp_tmp;
unsigned char rp_tmp;
unsigned char rp_adr;
wp_tmp = fifo->wp;
rp_tmp = fifo->rp;

rp_adr = (rp_tmp>=fifo->size)? rp_tmp-fifo->size:rp_tmp;
if (wp_tmp==rp_tmp) { // FIFO leer ?

return 0;
} else {

*value = fifo->buffer[rp_adr]; // Wert holen

rp_tmp++; // Lesezeiger erhdéhen
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// Bei Uberlauf rp auf 0 setzen

if (rp_tmp==2*fifo->size) rp_tmp = 0;
fifo->rp = rp_tmp; // atomare Zuwelsung
return 1;

}
unsigned char FIFO Write(TS_Fifo *fifo, unsigned char value)
{
unsigned char wp_tmp;
unsigned char rp_tmp;
unsigned char wp_adr;
unsigned char rp_adr;
wp_tmp = fifo->wp;
rp_tmp = fifo->rp;
wp_adr = (wp_tmp>=fifo->size)?wp_tmp-fifo->size:wp_tmp;
rp_adr = (rp_tmp>=fifo->size)?rp_tmp-fifo->size:rp_tmp;
if (wp_adr==rp_adr && wp_tmp!=rp_tmp) {
// FIFO ist voll
return 0;
} else {
// Wert in FIFO eintragen
fifo->buffer[wp_adr] = value; // Wert schreiben
wp_tmp++; // Schreibzeiger erhdéhen
// Bei Uberlauf wp auf 0 setzen
if (wp_tmp==2*fifo->size) wp_tmp = 0;
fifo->wp = wp_tmp; // atomare Zuwelsung
return 1;

Die FIFO-Funktionen konnen fiir die Kommunikation mit Peripherieckomponenten
verwendet werden. Der nachfolgende Code verwendet FIFO-Speicher fiir die Kommuni-
kation iiber den USART. Es werden zwei FIFOs angelegt. Ein FIFO nimmt die empfange-
nen Daten in einer Interrupt-Service-Routine auf und legt diese in einem Empfangs-FIFO
(rx_fifo) ab. Die empfangenen Daten werden mithilfe der Funktion UART_GetFifo() an
das Hauptprogramm iibergeben. Fiir das Senden von Daten wird ein weiteres FIFO (#x_
fifo) verwendet. Das Hauptprogramm legt Daten durch Aufruf der Funktion UART _Put-
Fifo() in diesem Sende-FIFO ab. Mithilfe einer ISR werden die Daten aus diesem FIFO
ausgelesen und an die eingebettete serielle Schnittstelle des Mikrocontrollers iibergeben.

// R RS SRR RS SR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE S
// File: uart_fifo.h

// R RS S SRR S SR EEEEEEEEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEE SR
#ifndef UART_H

#define UART_H
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#include <avr/io.h>

#include <avr/interrupt.h>

#include "fifo.h"

// Interruptbasierter Transfer mit FIFOs

extern unsigned char UART InitFIFOTransfer (unsigned long baudrate,
unsigned char rx_size, unsigned char tx_size);

// Zeichen aus RX FIFO abholen

// Riickgabewert ist 0 falls kein Zeichen verfiigbar, sonst 1

extern unsigned char UART_GetFifo (unsigned char *data) ;

// Zeichen in TX FIFO schreiben

// Riickgabewert ist 0 falls Schreibpuffer voll, sonst 1

extern unsigned char UART_PutFifo (unsigned char data);

#endif

// IR RS SRS RS EEEEEEE SRR R R R SRR EEE R R R EEEEEEEEE SRR EEEEEEEE SRR R R RS

// File: uart_fifo.c

// IR RS SR SRS SR EEE S SRR R EEEEEEEE R R R EEEEEEEEE SRR EEEEEEEE R SRR R R RS

#include "uart_fifo.h"

static volatile TS Fifo *rx_fifo;

static volatile TS Fifo *tx fifo;

// Initialisierung des UARTs und der FIFOs

unsigned char UART InitFIFOTransfer (unsigned long baudrate,
unsigned char rx_size, unsigned char tx_size)

unsigned long bdrate;

// Uebertragungsrate setzen

bdrate = (F_CPU+baudrate*8)/ (baudrate*16)-1;

UBRRH = (bdrate>>8)&0xFF;

UBRRL = bdrate&0xFF;

/ /Uebertragungsformat: 8 data bits, no parity, 1 stop bit
UCSRC = (1<<URSEL) | (1<<UCSZ1) | (1<<UCSZ0) ;

// FIFOs initialisieren

rx_fifo = FIFO_Init(rx_size);
if (rx_fifo == NULL) return O0;
tx_fifo = FIFO _Init(tx_size);
if (tx_fifo == NULL) return 0;
// UART einschalten

UCSRB = (1<<RXEN) | (1<<TXEN) ;

// Lokale Interruptfreigabe
UCSRB |= (1<<RXCIE) | (1<<TXCIE);
return 1;

// Wert in Sende-FIFO schreiben (Aufruf durch Hauptprogramm)
unsigned char UART_ PutFifo(unsigned char data)
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unsigned char tmp_data;

unsigned char num;

// Wert in FIFO eintragen

num = FIFO_Write(tx_fifo,data);

// Falls Sendepuffer leer, Wert ausgeben

if (UCSRA & (1<<UDRE)) {
UCSRB &= ~ (1<<TXCIE) ;
FIFO_Read(tx_fifo, &tmp_data) ;
UDR = tmp_data;
UCSRB |= (1<<TXCIE);

}

return num;

// Wert aus Empfangs-FIFO lesen (Aufruf durch Hauptprogramm)
unsigned char UART GetFifo (unsigned char *data)

{
return (FIFO_Read(rx_fifo,data));

// Interrupt-Service-Routinen fiir Senden und Empfangen
ISR (USART_TXC_vect)
{

unsigned char data;

// Falls FIFO Daten enthdlt, diese libertragen

if (FIFO_Read(tx_fifo,&data)) UDR = data;

ISR (USART_RXC_vect)

{
// Empfangenen Wert in Empfangs-FIFO schreiben
FIFO_Write(rx_fifo,UDR) ;

Ein einfaches Anwendungsbeispiel fiir die oben dargestellten Funktionen stellt das
nachfolgende Hauptprogramm dar. Das Programm liest empfangene Daten ein und gibt
diese iiber den USART unverindert wieder aus.

// EE R I R I I I R I I I S I I I R R R R R S I

// File: UartFifoDemo.c
// R RS S SRR S SR EEEEEEEEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEE SRR
#include "uart_fifo.h"
int main ()
{
unsigned char data;
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if (UART_InitFIFOTransfer(9600,16,16)) {
sei();
while (1) {
if (UART_GetFifo(&data)) UART_PutFifo(data);

14.8 Hinweise zum praktischen Selbststudium

In den vorangegangenen Abschnitten wurden die Grundlagen der Mikrorechnertechnik
am Beispiel der AVR-Mikrocontroller-Familie behandelt. Die AVR-Controller zeichnen
sich durch eine relativ einfache Struktur aus und sind fiir einen Einstieg in die Mikro-
rechnertechnik gut geeignet. Um das Verstindnis der vorgestellten Themen zu vertiefen,
ist es sehr empfehlenswert, eigene praktische Experimente mit Mikrocontrollern durch-
zufiihren. Dieser Abschnitt soll einer ersten Orientierung dienen und so den Einstieg in
das praktische Selbststudium erleichtern.

14.8.1 Hardwareauswahl

Fiir die AVR-Mikrocontroller werden von verschiedenen Herstellern zahlreiche Boards
als Fertiggerite oder als Bausatz angeboten. Neben dem Controller selbst stehen auf die-
sen Boards hiufig auch weitere Bauteile wie LEDs, Taster, Lautsprecher oder Summer,
LCD-Displays usw. zur Verfiigung. In vielen Fillen steht auch eine Schnittstelle zur Ver-
bindung mit einem PC zur Verfiigung, mit welcher die entwickelten Programme in den
Flashspeicher des Controllers iibertragen werden konnen. Ein wesentliches Kriterium
fiir die Auswahl eines Boards sollte neben dem Preis die Moglichkeiten zur Erweiterung
durch eigene Schaltungsteile sein.

Eine Alternative zu bereits vorgefertigten Boards stellt die Anschaffung eines Steck-
brettes dar. Viele Controller der AVR-Familie sind auch in Dual-Inline-Gehéusen (DIL)
verfiigbar. Mithilfe dieser Controller ist die Realisierung einfacher Systeme auf einem
Steckbrett moglich.

14.8.2 Entwicklungsumgebungen

Fiir die AVR-Mikrocontroller steht die Entwicklungsumgebung Atmel Studio zur Verfii-
gung, die kostenlos von der Homepage der Firma Atmel (www.atmel.com) heruntergeladen
werden kann. Atmel Studio ist eine unter Windows-PCs lauffihige Entwicklungsumge-
bung, die neben der Erstellung von Programmen auch die Programmierung und das Debug-
gen der Controller unterstiitzt. Dariiber hinaus besteht iiber einen integrierten Simulator die
Moglichkeit, Programme auch ohne Anschaffung von Hardware zu testen.


http://www.atmel.com
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14.8.3 Programmierung und Debugging von AVR-Mikrocontrollern

Die Ubertragung von Programmen in den Flashspeicher eines AVR-Mikrocontrollers
kann tiber die SPI-Schnittstelle des Controllers erfolgen. Ebenso konnen iiber diesen
Weg auch Daten im eingebetteten EEPROM abgelegt werden. Fiir die Programmierung
muss der Controller nicht aus der Zielapplikation entfernt werden. Daher wird dieser
Vorgang als In-System-Programming (ISP) bezeichnet. Da das Protokoll zur Program-
mierung des Controllers offengelegt ist, sind verschiedene Programmiergerite erhéltlich,
die eine Programmierung von AVR-Controllern unterstiitzen. Ein wesentlicher Nachteil
des ISP-Verfahrens ist es, dass es nur zur Programmierung, nicht jedoch zum Debugging
des Controllers verwendet werden kann.

Im Gegensatz zu ISP existieren fiir die AVR-Controller verschiedene Ansdtze um
ein Programm auch innerhalb des Systems zu debuggen. Hierbei konnen zum Beispiel
Breakpoints gesetzt oder Variablenwerte ausgelesen werden, auch wenn sich der Mikro-
controller im Zielsystem befindet. Dieser als On-Chip-Debugging (OCD) oder In-Circuit-
Emulation (ICE) bezeichnete Ansatz vereinfacht die Fehlersuche erheblich. Daher ist es
auch fiir Einsteiger sinnvoll ein Programmiergerit anzuschaffen, welches das Debuggen
im Zielsystem unterstiitzt. Hierbei ist jedoch darauf zu achten, dass nicht alle AVR-Con-
troller den gleichen Ansatz verfolgen. Viele Controller der ATtiny-Serie unterstiitzen ein
Verfahren, das von der Firma Atmel als Debug-Wire bezeichnet wird. Bei diesem Verfah-
ren muss (abgesehen von der Versorgungsspannung des Mikrocontrollers) lediglich die
Resetleitung des Controllers mit dem Programmiergerit verbunden werden, was insbe-
sondere fiir Controller mit einer geringen Anzahl von Anschliissen von Vorteil ist. Viele
Controller der ATmega-Serie unterstiitzen dagegen ein Debuggen mittels eines JTAG-
Interfaces. In diesem Fall miissen neben dem Reset-Anschluss auch die Anschliisse TDO,
TDI, TMS und TCK mit dem Programmieradapter verbunden werden. Diese Anschliisse
stehen dann nicht mehr uneingeschrinkt als Portanschliisse fiir die Zielapplikation zur
Verfiigung. Dariiber hinaus kommt insbesondere bei den Mikrocontrollern der Xmega-
Serie eine als ,,Program and Debug Interface* (PDI) Schnittstelle zum Einsatz.

14.8.3.1 Programmiergerate

Im Internet wird eine Vielzahl unterschiedlicher Programmiergerite von diversen Her-
stellern angeboten. Sowohl die Preise wie auch die Funktionalitét dieser Gerite differie-
ren stark. Die giinstigsten Gerite werden bereits ab ca. 15 EUR angeboten.

In der Regel ist es empfehlenswert, auf Originalgerite der Firma Atmel zuriickzugrei-
fen. Auf diese Weise kann ausgeschlossen werden, dass Inkompatibilititen des Program-
mieradapters zu Fehlern fiihren. Ein interessantes Gerit stellt der AVR-Dragon dar. Es
unterstiitzt verschiedene Programmierprotokolle, unter anderem ISP und JTAG. Die Kos-
ten fiir dieses Geriit liegen bei etwa 70 EUR.

14.8.3.2 Fuse-Bits
Bei der Durchfiihrung eigener Experimente wird man recht schnell auf die sogenann-
ten ,,Fuse-Bits* stofen. Fuse-Bits sind einzelne Bits, in der die Konfiguration des
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Mikrocontrollers abgespeichert wird. Bei der Programmierung der Fuse-Bits ist besondere
Vorsicht geboten. Wird durch eine falsche Programmierung des Fuse-Bits sowohl das ISP-
als auch das JTAG-Interface gesperrt, ist eine weitere Programmierung des Controllers
nicht mehr iiber diese Schnittstellen moglich. Um eine falsche Programmierung der Fuse-
Bits zu korrigieren, muss der Controller in einem speziellen Programmiermodus betrieben
werden, der nur von wenigen Geriten (zum Beispiel AVR-Dragon) unterstiitzt wird.

Im Folgenden werden die Fuse-Bits am Beispiel des ATmega32 kurz erldutert:

OCDEN
Ist dieses Bit aktiviert, wird die oben beschriebene Moglichkeit des Debuggens im Ziel-
system unterstiitzt.

JTAGEN
Mithilfe dieses Bits wird das JTAG-Interface zum Debuggen (OCDEN aktiviert) und/
oder Programmieren des Controllers aktiviert.

SPIEN
Ist SPIEN aktiviert, kann die Programmierung des Controllers iiber die SPI-Schnittstelle
mittels ISP erfolgen.

CKOPT

Dieses Bit findet Verwendung, wenn der Takt mithilfe eines Keramikresonators erzeugt
wird und eine hohe Taktfrequenz benétigt wird. Im Normalfall sollte dieses Bit nicht
aktiviert werden.

EESAVE
Bei Aktivierung eines sogenannten Chip-Erase-Cycles (Loschen des gesamten Chips)
wird das EEPROM nicht geloscht, wenn das Bit EESAVE aktiviert ist.

BOOTSZ, BOOTRST

Diese Bits ermoglichen es, den Einsprungpunkt nach einem Reset von der Programm-
speicheradresse 0 an eine hohe Speicheradresse zu setzen. Mithilfe des so eingesprunge-
nen Programms kann dann untere Bereich des Programmspeichers mit dem eigentlichen
Applikationscode programmiert. Programme, die nach dem Reset den eigentlichen Pro-
grammcode laden, werden als Bootloader bezeichnet.

BODLEVEL, BODEN

Die AVR-Controller erlauben es, die Betriebsspannung kontinuierlich zu iiberwachen.
Unterschreitet die Betriebsspannung einen vorprogrammierten Wert (Auswahlmoglich-
keiten im Fall des ATmega32: 2,7V oder 4,0 V), wird ein Reset ausgelost. Diese auch als
Brown-Out-Detection bezeichnete Moglichkeit kann unter anderem dazu genutzt wer-
den, ein System bei einem Ausfall der Spannungsversorgung geordnet herunterzufahren.
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SUT_CKSEL

Diese unter dem Namen SUT_CKSEL zusammengefassten Fuse-Bits dienen zur Aus-
wahl der Takterzeugung fiir den Controller. Die gebrduchlichsten Fille sind entweder die
Verwendung des intern erzeugten Taktes oder die Aktivierung des eingebetteten Quar-
zoszillators, welcher an den Anschliissen XTAL1 und XTAL2 einen externen Quarz
benotigt. Dartiber hinaus kann der Takt mithilfe eines externen RC-Gliedes, einem Kera-
mikresonator oder von einer externen Quelle zugefiihrt werden.

Im Auslieferungszustand sind die Fuse-Bits der AVR-Controller mit sinnvollen Wer-
ten vorbelegt, sodass eine Neuprogrammierung in der Regel entfallen kann. Eine Aus-
nahme stellt die Programmierung der Taktauswahl dar. Im Auslieferungszustand ist fiir
die Takterzeugung der eingebettete RC-Oszillator als Taktquelle ausgewihlt. Viele Schal-
tungen verwenden jedoch einen externen Quarz zur Erzeugung des Taktsignals, sodass
die SUT_CKSEL-Bits zunichst entsprechend programmiert werden miissen.

14.9 Ubungsaufgaben

Die folgenden Ubungsaufgaben greifen einige Themen dieses Kapitels auf. Die Losun-
gen finden Sie am Ende des Buches.
Sofern nicht anders vermerkt, ist nur eine Antwort richtig.

Aufgabe 14.1
Welche der folgenden Aussagen ist richtig? (Mehrere Antworten sind richtig)

a) Typische Mikrocontroller besitzen immer eine CPU.

b) Typische Mikrocontroller besitzen immer interne Speicherkomponenten.
c¢) Typische Mikrocontroller besitzen immer Ports.

d) Typische Mikrocontroller besitzen immer A/D-Umsetzer.

Aufgabe 14.2
Welche Aussagen sind richtig? (Mehrere Antworten sind richtig)

a) Die SPI-Schnittstelle wird zur asynchronen bitseriellen Dateniibertragung verwendet.

b) Bei Verwendung einer I12C-Schnittstelle erfolgt nach der Ubertragung einer Startbe-
dingung immer die Ubertragung einer Bausteinadresse.

¢) Das SPI-Protokoll verwendet getrennte Leitungen zur Ubertragung von Daten vom
Slave zum Master beziehungsweise vom Master zum Slave.

d) Das I>C-Protokoll verwendet getrennte Leitungen zur Ubertragung von Daten vom
Slave zum Master beziehungsweise vom Master zum Slave.

Aufgabe 14.3
Welche Aussage iiber Unterprogramme ist richtig?
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a) Beim Ausfiihren eines Unterprogramms wird dessen Code auf dem Stack abgelegt
und anschlieend ausgefiihrt.

b) Im aufrufenden Programmteil muss die Riicksprungadresse iiber geeignete Assem-
blerbefehle ermittelt und vor einem Unterprogrammaufruf auf dem Stack abgelegt
werden.

c¢) Der aufrufende Programmteil kann einem Unterprogramm die Parameter iiber den
Stack tibergeben.

d) Der Code eines Unterprogramms muss im Programmspeicher immer vor dem Code
des aufrufenden Programmteils abgelegt sein.

Aufgabe 14.4
Welche Aussage ist richtig?

a) Wird ein Wert auf dem Stack des AVR abgelegt, wird der Stackpointer dekrementiert.

b) Der Stackpointer des AVR kann nicht durch die Befehle eines Programms modifiziert
werden.

¢) Mithilfe des Befehls pop werden Daten auf dem Stack abgelegt.

d) Der Stackpointer der AVR-CPU zeigt immer auf den Wert, welcher als letztes auf
dem Stack abgelegt wurde.

Aufgabe 14.5
Welche Aussage ist richtig?

a) Der AVR enthilt nur Speicher, welche die gespeicherten Werte auch ohne Anliegen
einer Versorgungsspannung halten konnen.

b) Der Programmspeicher des AVR kann nicht zur Speicherung von Daten verwendet
werden, da kein Befehl existiert, mit dem der Programmspeicher gelesen werden kann.

¢) Variablen eines C-Programms werden nicht im SRAM des AVR abgelegt.

d) Die Befehle eines AVR-Programms konnen nicht im EEPROM-Speicher abgelegt
werden.

Aufgabe 14.6
Welche Aussagen sind richtig? (Mehrere Antworten sind richtig)

a) Ein typischer Timer kann so programmiert werden, dass beim Uberlauf des timerin-
ternen Zihlers ein Interrupt ausgelost wird.

b) Soll eine moglichst exakte Interruptrate (Interrupts pro Zeiteinheit) erzielt werden,
sollte ein Timer bevorzugt im ,,CTC-Modus* und nicht ,,Normal-Mode* betrieben
werden.

¢) Eine Vorteiler-Einheit (Prescaler) ermoglicht es die Zihlfrequenz eines Timers zu
erhohen.

d) Timer enthalten immer eine Input-Capture-Unit.
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Aufgabe 14.7

Der Anschluss PA2 eines ATmega3?2 ist liber einen Taster mit Masse (GND) verbunden.
Am Anschluss PC6 ist eine LED angeschlossen. Die LED leuchtet, wenn an PC6 ein
High-Pegel ausgegeben wird.

a) Erstellen Sie ein Programm in der Programmiersprache C, das die LED leuchten lésst,
wenn der Taster geschlossen ist. Ist der Taster gedffnet, soll die LED nicht leuchten.
b) Realisieren Sie das Programm in Assembler.

Aufgabe 14.8

Mithilfe eines UARTS sollen Daten an einen PC tibertragen werden. Fiir die Verbindung
gilt: 8 Nutzdatenbits, keine Paritdt, 1 Stoppbit. Als Baudrate wird der Wert 9600 bps
gewdhlt.

a) Skizzieren Sie den zeitlichen Verlauf des Signals am TXD-Anschluss des Controllers.
Verwenden Sie fiir die Nutzdaten den Wert 0x35 (bindr: 0011 0101).

b) Wie hoch ist die maximal erzielbare Netto-Datenrate (Daten-Bytes pro Sekunde)?

¢) Nun wird auch ein Pariitsbit iibertragen. Bei der Ubertragung des Wertes 0x35 (biniir:
0011 0101) sendet der Controller ein Parititsbit mit dem Wert ,,1“. Welche Paritit
wurde gewihlt?

Aufgabe 14.9
Der nachfolgende Code zeigt Ausschnitte eines AVR-Programms.

char v8, *p8 // 8-Bit-Variable bzw. Zeliger auf einen 8-Bit-Wert

short vl16,*pl6 // l6-Bit-Variable bzw. Zeiger auf einen 16-Bit-Wert
long v32,*p32 // 32-Bit-Variable bzw. Zeiger auf einen 32-Bit-Wert
// hier weiterer Programmcode

v8 = 12; // Zuweisung 1
p8 = &v8; // Zuweisung 2
vle = 1234; // Zuweisung 3
ple = &vl6; // Zuweisung 4
v32 = 12345678; // Zuweisung 5
p32 = &v32; // Zuweisung 6

// hier weiterer Programmcode

a) Welche der Zuweisungen konnen mit einem AVR atomar ausgefiihrt werden?
b) Statt eines AVR wird ein 32-Bit-Mikrocontroller eingesetzt. Welche Zuweisungen
sind nun atomar ausfiihrbar?
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In diesem Abschnitt finden Sie die Losungen zu den Ubungsaufgaben der vorangegangenen

Kapitel.

Kapitel 1
Aufgabe 1.1 ¢
Aufgabe 1.2 b
Aufgabe 1.3 ¢
Aufgabe 1.4 b
Aufgabe 1.5 c
Aufgabe 1.6 b
Aufgabe 1.7 b
Aufgabe 1.8 ¢
Aufgabe 1.9 ¢
Aufgabe 1.10 b

Kapitel 2
Aufgabe 2.1
a) 111001,
b) 71

©) 39,

Aufgabe 2.2
a) 151

b) —105

c) 97
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Aufgabe 2.3
a) 6 bit
b) 7 bit
c) 7 bit

Aufgabe 2.4
a) [0,255]

b) [—127,127]
c) [—128,127]

Aufgabe 2.5

a) 111101, kein Uberlauf

b) 001011, Uberlauf

¢) 000100, Uberlauf

d) Die Ergebnisse wiren identisch

e) kein Uberlauf bei a und c, Uberlauf bei b

Aufgabe 2.6

a) 5A, Vorzeichenlos: kein Uberlauf, 2er-Komplement: kein Uberlauf
b) 23, Vorzeichenlos: Uberlauf, 2er-Komplement: Uberlauf

¢) AB, Vorzeichenlos: Uberlauf, 2er-Komplement: kein Uberlauf

Aufgabe 2.7

a) 67, Vorzeichenlos: kein Uberlauf, 2er-Komplement: Uberlauf
b) 4C, Vorzeichenlos: kein Uberlauf, 2er-Komplement: Uberlauf
¢) 9D, Vorzeichenlos: Uberlauf, 2er-Komplement: Uberlauf

Aufgabe 2.8
Wird ein Gray-codierter Wert inkrementiert, dndert sich das Codewort in genau einer Stelle.

Aufgabe 2.9
b. und c. sind Pseudotetraden

Aufgabe 2.10
a) Es werden 8 bit benotigt.
b) Es konnen 8 unterschiedliche Werte dargestellt werden.

Aufgabe 2.11

Ubertriigt man die Zweierkomplement-Darstellung auf das Dezimalsystem, entspriche die
Codierung 999 dem Zahlenwert —1, da dies der Wert wire, den man bei Durchlaufen des
Zahlenkreises in negativer Richtung erhalten wiirde. Aus dieser Uberlegung ergibt sich:

a) 000
b) 999
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c) 998
d) 990

Kapitel 3
Aufgabe 3.1 a
Aufgabe 3.2 a, b, d
Aufgabe 3.3 a, b
Aufgabe 3.4 a, ¢
Aufgabe 3.5

library ieee;

use ieee.std_logic_1164.all;
use ileee.numeric_std.all;
entity my_module is

port (a : in std_logic_vector (7 downto 0);

in integer;

Q

in std_logic;
g : out std_logic_vector (7 downto 0)

end;

architecture behave of my _module is
signal tmp : unsigned (7 downto 0);
begin
process
variable vi : unsigned (7 downto 0);
begin
tmp <= unsigned(A) ;

vi := to_unsigned(B, 8);
if (¢ = '1') then

g <= std_logic_vector(vi - tmp);
else

g <= std_logic_vector(vi + tmp);
end if;
end process;

end;
Aufgabe 3.6

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

)
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entity my_module is
port (a : in std_logic_vector (7 downto

1 downto

( 0)
b : in std_logic_vector (7 downto 0);
c : in std_logic_vector ( 0)

( 0)

g : out std_logic_vector (7 downto

end;

architecture behave of my_module is

begin
process (a,b,c)
begin
if c="00" then <= a;

elsif c="01" then
elsif c="10" then
elsif c="11" then

-- std_logic! => ¢ kann mehr als 4 Werte annehmen

g
g <= a and b;
g <= a or b;
g <= a xor b;

-- dies wird iliber das nachfolgende else abgefangen
else g <= (others=>'X'");
end if;
end process;
end;

Aufgabe 3.7

process (a,b,c)

begin
case c is
when "00" => g <= a;
when "01" => g <= a and b;
when "10" => g <= a or b;
when "11" => g <= a xor b;
-- std_logic! => ¢ kann mehr als 4 Werte annehmen

-- also bendtigen wir auch den "others"-Fall
when others => g <= (others=>'X");
end case;
end process;

Aufgabe 3.8

library ieee;
use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity my_module_16 is

port (a : in std_logic_vector (15 downto 0);
b : in std_logic_vector (15 downto 0);
c : in std_logic_vector (1 downto 0);
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g : out std_logic_vector (15 downto 0) );
end;

architecture behave of my_module_16 is

begin
my_module_instl : entity work.my module
port map (

a => a(7 downto 0),

b => b(7 downto 0),

c => ¢,

g => g(7 downto 0) );
my_module_inst2 : entity work.my_module
port map (

a => a(l5 downto 8),

b => b(15 downto 8),

c => ¢,

g => g(15 downto 8) );

end;

Kapitel 4
Aufgabe 4.1 a
Aufgabe 4.2 a
Aufgabe 4.3

Die Funktionstabelle hat bei drei Eingangsvariablen acht mogliche Kombinationen.
Schrittweise muss jeweils eine weitere LED eingeschaltet werden.

D2 D1 DO L7 L6 L5 L4 L3 L2 L1
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1 1
0 1 1 0 0 0 0 1 1 1
1 0 0 0 0 0 1 1 1 1
1 0 1 0 0 1 1 1 1 1
1 1 0 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

Funktionstabelle ,,Lautstirke-LEDs*

Aufgabe 4.4

Die Funktionstabelle hat einen Eintrag ohne Tonausgabe (Mittelstellung), vier Eintrige
mit Ausgabe Ton T1 (Auslenkung in vier Richtungen) und vier Eintrige mit Ausgabe
Ton T2 (schrige Auslenkung in vier Ecken). Dies sind neun mdgliche Kombinationen.
Insgesamt sind fiir vier Eingéinge 16 Kombinationen moglich, sodass fiir die iibrigen sie-
ben Kombinationen ein Don’t-Care eingetragen wird.
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O (oben) U (unten) L (links) R (rechts) T1 (Ton 1) T2 (Ton 2)
0 0 0 0 0 0
0 0 0 1 1 0
0 0 1 0 1 0
0 0 1 1 - -
0 1 0 0 1 0
0 1 0 1 0 1
0 1 1 0 0 1
0 1 1 1 - -
1 0 0 0 1 0
1 0 0 1 0 1
1 0 1 0 0 1
1 0 1 1 - -
1 1 0 0 - -
1 1 0 1 - -
1 1 1 0 - -
1 1 1 1 - -

Funktionstabelle ,,Spielautomat*

Aufgabe 4.5
Produktterme 1 und 3 aus Abb. 15.1 sind erforderlich. Die Funktion fiir die Ausgangsva-
riable lautet:

Y =AQ3) &AQ) &A0) vV AB) & A(1)

Aufgabe 4.6
Alle Produktterme aus Abb. 15.2 sind erforderlich. Die Funktion fiir die Ausgangsvaria-
ble lautet:

Y =402) VAQR) &A1) &A0) v A(1) &A(0)

Aufgabe 4.7
Produktterme 1 und 3 aus Abb. 15.3 sind erforderlich. Die Funktion fiir die Ausgangsva-
riable lautet:

Y =AQ2) &A0) vVAQR)

Aufgabe 4.8
Alle Produktterme aus Abb. 15.4 sind erforderlich. Die Funktion fiir die Ausgangsvaria-
ble lautet:

Y =A03) &A1) &AQ0) VAB) &A(2) &A1) VAQB) &A(1)
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Abb. 15.1 Karnaugh-
Diagramm zu Aufgabe 4.5

Abb. 15.2 Karnaugh-
Diagramm zu Aufgabe 4.6

Abb. 15.3 Karnaugh-
Diagramm zu Aufgabe 4.7

Abb. 15.4 Karnaugh-
Diagramm zu Aufgabe 4.8

Kapitel 5
Aufgabe 5.1 a
Aufgabe 5.2 a
Aufgabe 5.3 d
Aufgabe 5.4 c
Aufgabe 5.5 ¢
Aufgabe 5.6 ¢
Aufgabe 5.7

A(1:0)=
A@3:2)= 00 01 11 10
00(0|0|0[0 | Termi
010 [1 m}/ Term 2
110 |o|[1] 1) Terms
10lofol1]1
A(1:0)=
; 111 1
A@B2)= 20 01 1110
o0 (1] 1 |1 11 term «
01 \LL__L,L, Term 2
1110 ]0 |1 L# Term 3
10 ( 101 [ 1)

A(1:0)=
00 .01 11.10
A3:2)=29 ‘
00 o[ 1| 1)[ o] Tem1
ot{o|o]|-|of Tem2
11 -1 -1 Term 3
10| 1 HEOE
A(1:0)=
A@B:2)=20 01 11 10 1o/ 4

——— Term 2

25
-

Term 3

o
=
'
—_
o
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a) Periodendauer 7' = 100 ns, Taktfrequenz f = 10 MHz, Duty-Cycle D = 80 %
b) Periodendauer T = 1 ms, Taktfrequenz f = 1 kHz, Duty-Cycle D = 70 %
¢) Periodendauer 7 = 0,5 ms = 500 ps, Taktfrequenz f = 2 kHz, Duty-Cycle D = 40 %

Aufgabe 5.8
Das Codewort muss 4 Stellen fiir 11 Zustinde besitzen. Die Berechnung kann tiber den
Zweierlogarithmus von 11 erfolgen, der aufgerundet 4 ergibt.

1d11 =log 11/1og2 = 1,041/0,301 = 3,46

Als alternativer Rechenweg konnen die Zweierpotenzen betrachtet werden. Mit 3
Stellen sind 23, also 8 Kombinationen moglich. Dies reicht nicht aus. 4 Stellen sind aus-
reichend, denn Sie ergeben 24 also 16 Kombinationen.

Aufgabe 5.9
Das Codewort muss 9 Stellen besitzen, denn die One-Hot-Codierung benétigt fiir jeden
der 9 Zustinde eine Stelle.

Aufgabe 5.10
Mit 5 Stellen sind 2, also 32 unterschiedliche Codierungen moglich.

Aufgabe 5.11
Es konnen 8 Zustidnde codiert werden, also genau so viele wie Stellen in der One-Hot-
Codierung vorhanden sind.

Aufgabe 5.12
Der Automat bendétigt vier Zustinde mit den folgenden Bedeutungen:

S0: Motor steht. Beim ndchsten Tastendruck fihrt die Jalousie herunter (Startzustand).
S1: Taste ist gedriickt, der Motor fihrt herunter.

S2: Motor steht. Beim néchsten Tastendruck fihrt die Jalousie herauf.

S3: Taste ist gedriickt, der Motor fahrt herauf.

Zustandsfolgediagramm und Zustandsfolgetabelle sind in Abb. 15.5 und 15.6 dargestellt.

Abb. 15.5 Zustandsfolgediagramm des Automaten ,,Jalousie®



15 Lésungen der Ubungsaufgaben

537

Abb. 15.6 Zustandsfolgetabelle des Automaten ,,Jalousie®

Aufgabe 5.13
Der Automat speichert in den Zustinden den bisher eingeworfenen Geldbetrag. Der
Zustand mit der Bedeutung ,,50 Cent* gibt an, dass die benotigte Summe erreicht ist und
der Automat mit dem Ausgang P = 1 die Parkmiinze ausgibt. Danach muss wieder neues
Geld eingeworfen werden, das heiflt, der Automat geht nach Ausgabe der Parkmiinze

wieder zu ,,0 Cent®.

n n+1

S s M
T=0 T=1

SO~ S0 Si 00

S S2 Si 01

S2 S2 S8 00

S3 SO S8 10

* = Reset

C_0: 0 Cent eingeworfen (Startzustand)

C_10: 10 Cent eingeworfen
C_20: 20 Cent eingeworfen
C_30: 30 Cent eingeworfen
C_40: 40 Cent eingeworfen

C_50: 50 Cent oder mehr eingeworfen, Parkmiinze wird ausgegeben

Der Startzustand war nicht ausdriicklich in der Aufgabenstellung angegeben, sondern
ergibt sich durch Uberlegung.
Zustandsfolgediagramm und Zustandsfolgetabelle sind in Abb. 15.7 und 15.8 darge-
stellt. Die beiden Eingédnge werden in der kompakten Form ,,M(1:0)* angegeben. Da der
Eingang zwei Signale mit vier Kombinationsmoglichkeiten hat, sind fiir jeden Zustand
vier Folgezustinde moglich. In manchen Fillen sind einige dieser Folgezustinde gleich.

Abb. 15.7 Zustandsfolgediagramm des Automaten ,,Parkmiinze*
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Sn Sn+1 P
M=_00 01 10 11

C_0~ C_0 Cc_10 C_20 C_50 0
C_10 C_10 C20 C330 C_50 0
C_20 C20 C3 C.40 C.50 0
C_30 C3 C40 C50 C_50 0
C_40 C_40 C50 C50 C_50 0
C_50 C_0 C_0 C_0 C_0 1

Abb. 15.8 Zustandsfolgetabelle des Automaten ,,Parkmiinze*

Ubrigens werden im Zustand C_50 die Eingiinge nicht ausgewertet. Der Automat geht
nach einem Takt mit P = 1 wieder in den Startzustand. Dies ist moglich, da in der Aufga-
benstellung spezifiziert ist, dass zwischen zwei Miinzeinwiirfen mehrere Takte vergehen.

Aufgabe 5.14

Der Automat muss sich weiterhin merken, ob die nichste 1 unterdriickt oder ausgegeben
wird. Auflerdem ist ein Zustand erforderlich, der nach der jeweils zweiten 1 die Ausgabe
fiir einen Takt auf 1 setzt. Nach dieser Ausgabe wird die nichste 1 unterdriickt.

e SO: Nichste 1 unterdriicken, Ausgabe 0. (Startzustand)
e S1: Nichste 1 weitergeben, Ausgabe 0.

e S2: Gerade wurde die zweite 1 erkannt, 1 ausgeben, nichste 1 unterdriicken.

Zustandsfolgediagramm und Zustandsfolgetabelle sind in Abb. 15.9 und 15.10 dargestellt.

Abb. 15.9 Zustandsfolgediagramm des Automaten ,,Halbieren®

Sn Sn+1 Y
‘ X=0 X=1
S0~ SO0 St 0
S1 S1 82 0
S2 SO St 1
* = Reset

Abb. 15.10 Zustandsfolgetabelle des Automaten ,,Halbieren*
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Aufgabe 5.15
Im Startzustand ist noch keine Stelle des Datenworts empfangen.

Wenn die erste Stelle empfangen wird, sind zwei Zustinde erforderlich, die sich mer-
ken, erste Stelle empfangen und Wert O oder 1.

Wenn die zweite Stelle empfangen wird, konnen vier Fille auftreten, und zwar: 00,
01, 10 und 11. Jetzt ist wichtig zu erkennen, dass der Automat nicht unterscheiden muss,
ob 01 oder 10 empfangen wurde. Beide Fille kénnen den gleichen Zustand nutzen, denn
der Automat muss sich nur merken, dass eine 1-Stelle auftrat. Wenn man weiteriiberlegt,
kann man erkennen, dass auch eine Unterscheidung von 00 und 11 nicht notig ist. Darum
sind fiir die vier Fille nur zwei Zustinde erforderlich, und zwar: ,,2 Stellen empfangen,
ungerade® und ,,2 Stellen empfangen, gerade*.

Das gleiche gilt nach drei Stellen, wo wieder zwei Zustédnde benotigt werden.

Beim Empfang der vierten Stelle wird eventuell das Fehlersignal E = 1 ausgegeben
und der Automat geht direkt wieder in den Startzustand. Es ist also kein Zustand ,,4 Stel-
len empfangen* notig.

Insgesamt bendtigt der Automat somit 7 Zustéinde:

ST: Start, keine Stelle des Datenworts empfangen

e 1_G: Eine Stelle empfangen, Paritit gerade. (Dies entspricht einer empfangenen 0.
Die Bezeichnung wurde gewihlt, da dies zu den folgenden Zustinden passt.)

e 1_U: Eine Stelle empfangen, Paritit ungerade.

e 2_G: Eine Stelle empfangen, Paritit gerade.

e 2_U: Eine Stelle empfangen, Paritéit ungerade.

e 3_G: Eine Stelle empfangen, Paritét gerade.

e 3_U: Eine Stelle empfangen, Paritéit ungerade.

Zustandsfolgediagramm und Zustandsfolgetabelle sind in Abb. 15.11 und 15.12 darge-
stellt. Nach jeweils vier Takten ist die Bearbeitung eines Datenworts abgeschlossen und
der Automat ist im Startzustand fiir das nichste Datenwort.

Ein- /Ausgéange
D/E

Abb. 15.11 Zustandsfolgediagramm des Automaten ,,Parity*
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Sn Sr\+1 E
D= 0 1
ST* 1_G,0 1_U,0
1.G 2_G,0 2_U,0
1_U 2_U,0 2_G,0
2. G 3_G,0 3_U,0
2. U 3_U,0 3_G,0
3. G STA ST,0
3. U ST,0 ST,
* = Reset

Abb. 15.12 Zustandsfolgetabelle des Automaten ,,Parity*

Kapitel 6

Aufgabe 6.1 a

Aufgabe 6.2 ¢

Aufgabe 6.3 d

Aufgabe 6.4 ¢

Aufgabe 6.5 ¢

Aufgabe 6.6 c (4 Dateneingénge, 1 Datenausgang, 2 Steuerleitungen)
Aufgabe 6.7 d (1 Dateneingang, 8 Datenausginge, 3 Steuerleitungen)

Aufgabe 6.8

Ein Modulo-2710 Zihler durchliuft 2'9= 1024 Werte, gerundet 1000 Werte. Bei
50 Mio. Werten pro Sekunde schafft der Zihler etwa 50.000 Zyklen pro Sekunde (Ant-
wort b).

Aufgabe 6.9
Ein Modulo-278 Zihler durchliuft 28 = 256 Werte, gerundet 250 Werte. Bei 500.000
Werten pro Sekunde schafft der Zihler etwa 2000 Zyklen pro Sekunde (Antwort b).

Aufgabe 6.10

Die Pipeline-Stufe sollte in der Mitte des kritischen Pfads eingefiigt werden. Diese
Position liegt in der Verbindungsleitung fiir den Ubertrag nach vier Volladdierern. Die
folgenden vier Volladdierer berechnen die zweite Hilfte der Addition im nichsten Takt-
zyklus. Damit die Informationen der Datenworte weiterhin zueinander passen, werden
das Ergebnis der ersten vier Volladdierer sowie die Eingangswerte der ndchsten vier Voll-
addierer jeweils um einen Takt verzogert. Die Addiererschaltung mit Pipelining zeigt
Abb. 15.13.

Der kritische Pfad durchliuft 4 Addierer und besteht insgesamt aus:

e Flip-Flop Takt nach Ausgang: 0,2 ns

e 4 Volladdierer: 4 - 0,3 ns = 1,2 ns

e 5 Verbindungsleitungen: 5 - 0,1 ns = 0,5 ns
e Flip-Flop Setup-Zeit: 0,2 ns
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CLK | | | | | | | |
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Abb. 15.13 Ripple-Carry-Adder mit Pipeline-Stufe

Dies ergibt in Summe 2,1 ns. Die mogliche Taktfrequenz betrigt damit rund 475 MHz.

Eventuell erscheint der Aufwand fiir das Pipelining in Abb. 15.13 recht hoch. Die
urspriingliche Schaltung hatte 8 Volladdierer und 25 Flip-Flop und erlaubt eine Taktfre-
quenz von 270 MHz. Fiir das Pipelining werden 13 zusétzliche Flip-Flops benétigt. Voll-
addierer und Flip-Flop sind ungefihr gleich grof3, so dass der Mehraufwand 13 von 33
Elementen, also rund 40 % betrigt.

Im Gegenzug kann die Taktfrequenz, und damit die Rechenleistung, um 75 % gestei-
gert werden. Die theoretische Verdopplung der Taktfrequenz wird nicht erreicht, da das
Pipeline-Flip-Flop eine Setup-Zeit sowie Verzogerungszeiten von Takt nach Ausgang
und der Verbindungsleitung benétigt.

Kapitel 7
Aufgabe 7.1 b
Aufgabe 7.2 ¢
Aufgabe 7.3 d
Aufgabe 7.4 a, ¢
Aufgabe 7.5b, ¢, d
Aufgabe 7.6 c
Aufgabe 7.7 a
Aufgabe 7.8 a, d

Kapitel 8
Aufgabe 8.1 b
Aufgabe 8.2 a,d
Aufgabe 8.3 b
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Aufgabe 8.4 b
Aufgabe 8.5 b
Aufgabe 8.6 ¢

Kapitel 9

Aufgabe 9.1 a,b, d
Aufgabe 9.2 ¢
Aufgabe 9.3 d
Aufgabe 9.4 ¢
Aufgabe 9.5 ¢
Aufgabe 9.6 a, b, d

Kapitel 10
Aufgabe 10.1 a
Aufgabe 10.2 b
Aufgabe 10.3 a
Aufgabe 10.4 c
Aufgabe 10.5 a
Aufgabe 10.6 b
Aufgabe 10.7 d
Aufgabe 10.8 d
Aufgabe 10.9 ¢
Aufgabe 10.10
Nur wenn A und B beide 0 sind, ist die Reihenschaltung der beiden p-Kanal-Tran-
sistoren (oben) leitend und verbindet den Ausgang Y mit VDD. Wenn ein oder beide
Eingédnge 1 sind, verbindet die Parallelschaltung der n-Kanal-Transistoren (unten) den
Ausgang Y mit GND.
Verhalten der Transistorschaltung

A B Y
0 0 1
0 1 0
1 0 0
1 1 0

Verhalten der Transistorschaltung
Dieses Verhalten entspricht der NOR-Funktion.

Kapitel 11
Aufgabe 11.1d
Aufgabe 11.2 ¢
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Aufgabe 11.3 d
Aufgabe 11.4 d
Aufgabe 11.5 ¢
Aufgabe 11.6 d
Aufgabe 11.7

a) Die Berechnung erfolgt am einfachsten iiber Zweierpotenzen. Mit 10 Adressleitun-
gen lassen sich 2'0=1024 also 1 K Adressen ansprechen. Fiir den zusitzlichen
Faktor 16 sind 4 Adressleitungen erforderlich, denn 2* = 16. In der Summe werden
10 4+ 4 = 14 Adressleitungen benotigt.

b) Zunichst werden wieder 10 Adressleitungen fiir 1 K Adressen benétigt. Fiir den
zusitzlichen Faktor 256 sind 8 Adressleitungen erforderlich, denn 28 = 256. In der
Summe werden 10 + 8 = 18 Adressleitungen benétigt.

Aufgabe 11.8

a) Mit 16 Adressleitungen lassen sich 2'® = 65.536 Datenworten ansprechen. Jedes
Datenwort hat 8 bit, somit betrdgt die Speicherkapazitit 65.536 - 8 = 524.288 bit.

In der Praxis wird oft der Faktor 1024 zu 1 K gerechnet. 16 Adressleitungen teilen
sich dann auf in 6 Adressleitungen fiir den Faktor 2° = 64 und 2'° = 1K, also 64 K
Datenworte. Mit 8 bit je Datenwort ergibt sich 512 kbit Speicherkapazitit.

b) 20 Adressleitungen entsprechen zweimal 10 Adressleitungen fiir 1 K Adressen, mitei-
nander multipliziert 1 M Adressen. Mit 16 bit je Datenwort betrigt die Speicherkapa-
zitdt 16 Mbit.

Der exakte Wert betriigt 220 - 16 = 16.777.216 bit.

Aufgabe 11.9
Bei einer Dualzahl am Eingang des Speichermoduls entspricht die Reihenfolge der Spei-
cherzellen zeilenweise ansteigenden Zahlen. Die erste Zeile entspricht also den Zahlen 0
bis 7, die zweite Zeile den Zahlen 8 bis 15, bis zur letzten Zeile mit den Zahlen 56 bis 63.
Primzahlen im moglichen Wertebereich 0 bis 63 sind die Zahlen: 2, 3, 5,7, 11, 13, 17,
19, 23,29, 31, 37,41, 43,47, 53, 59, 61.
Fiir die Primzahlen wird in die Speicherzelle eine 1 gespeichert, ansonsten eine 0.
Das Ergebnis zeigt Abb. 15.14.

Kapitel 12

Aufgabe 12.1 A-2 B-1 C-3 D4
Aufgabe 12.2 A-4 B-3 C-1 D-2
Aufgabe 12.3

a) Quantisierungsintervallbreite

0 = Upax /2" = 3V/1024 = 2,93mV
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ADDR(2:0)

==

Zeilendecoder

OA 1_A OA 1_A OA 1_A OA 1_A

ol Of m| —| O] O ~|

o O] o O v~ «~| + ~—
Spaltendecoder

ADDR(5:0)
|

| ADDR(5:3) ﬁ
/

/

Abb. 15.14 Speichermodul als Primzahl-Detektor

b) Hochster codierbarer Spannungswert

Ul = (2" —1) - 0 =3V - (1023/1024) = 2,997V

max

c¢) Die Eingangsspannung 1,2 V dividiert durch die Quantisierungsintervallbreite ergibt

1,2V
3V/1024

Der gerundete Wert 410 entspricht der Codierung ,,01 1001 1010*.

=409,6
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d) Die Codierung ,00 0100 1011“ entspricht dem Wert 75 und ergibt den
Reprisentationswert

75-0=75-3V/1024 = 0,2197V

Die Eingangsspannung liegt im Bereich der Quantisierungsintervallbreite um den
Reprisentationswert

74,5-0 =02183V < U, <0,2212V =75,5-Q

Aufgabe 12.4
a) Quantisierungsintervallbreite

0 = Upar/2" = 2V /256 = 7,8125mV

b) Schrittweiser Vergleich mit jeweils halber Spannung, beginnend bei 2"~! - 0 = 1V

e 0,7V >1V? Nicht erfiillt, also b, = 0

e 0,7V >0,5V? Erfiillt, also b, = 1 und Reduktion der Spannung um 0,5 V auf 0,2 V

e 0,2V > 0,25 V? Nicht erfiillt, also b5 =0

e 0,2V > 0,125 V? Erfiillt, also b =1 und Reduktion der Spannung um 0,125 V auf
0,075V

e 0,075V >0,0625V? Erfiillt, also b,=1 und Reduktion der Spannung um
0,0625 V auf 0,0125 V

e 0,0125V > 0,03125 V? Nicht erfiillt, also b, = 0

e 0,0125V > 0,015625 V? Nicht erfiillt, also b, = 0

e (0,0125V > 0,0078125 V? Erfiillt, also bo = 1 (letzter Schritt)

Als Digitalwert ergibt sich somit 0101 1001, also der Dezimalwert 89. Dies entspricht
dem Reprisentationswert

89 -0 =189-2V/256=0,6953V

Die Differenz zur Eingangsspannung von 0,7 V betrigt 4,7 mV und ist kleiner als die
Quantisierungsintervallbreite.

Anmerkung: Der Quantisierungsfehler ist grofer als /2. Dies liegt daran, dass das
hier verwendete Berechnungsverfahren, wie im Text beschrieben, keine Rundung ent-
hilt, sondern Nachkommastellen abschneidet. Der rechnerische Ausgangswert wére
0,7 V/(2 V/256) = 89,6, Wenn Sie Q/2 zum Eingangswert 0,7 V addieren, erhalten Sie
mit dem Verfahren den korrekt gerundeten Digitalwert. Rechnen Sie erneut!

Aufgabe 12.5
Der Zeitablauf ist in der Tabelle dargestellt.
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Zeit- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
schritt

U fin | —02—02 02 |-02 -02|-02 —02|-02 -02 —02 —02 —02 -02 —02 -02
V]
Ugelin| 00 =1 1| =1 1| =1 =1 1| =1 1 =1 =1 1] =1 1
V]

Uy lin| =02] 08|-12 08 —-1,2| 08| 08 |—-12] 08 —1,2 08| 08 |-12| 08 |—12
V]

U, [in |02} 06 -06 02 —-1/-02| 06|-06| 02 -1 -02| 06/-06 02| —1
Plus 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0
[bindr]

Sigma-Delta-Umsetzer mit Messbereich von &1 V und Analogeingang U = —0,2 V.

Die Pulsfolge enthilt zu 40 % den Wert 1. Dieser Anteil bezieht sich auf den Messbe-
reich von =1 V und entspricht

U=—-1V+04-2V=-1V+08V=-02V

Aufgabe 12.6

Im Zeitverlauf ist die Dauer des High-Pegels 8 ms bei einer Periodendauer von 10 ms.
Dies entspricht einem Tastverhéltnis von 80 %. Der High-Pegel ist 3V und der Low-
Pegel 0V, so dass sich fiir die Ausgangsspannung ergibt

8 ms

UDA=0V+10 3V=2,4V

ms

Kapitel 13

Aufgabe 13.1c, d
Aufgabe 13.2 b
Aufgabe 13.3 ¢, d
Aufgabe 134 a, b, c,d
Aufgabe 13.5 c

Kapitel 14

Aufgabe 14.1 a, b, c (A/D-Umsetzer sind weit verbreitet, aber nicht immer vorhanden)
Aufgabe 14.2 b, ¢

Aufgabe 14.3 ¢

Aufgabe 14.4 a

Aufgabe 14.5d

Aufgabe 14.6 a, b

Aufgabe 14.7
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a)

#include <avr/io.h>

int main(void)

{

b)

// internen Pull-Up Widerstand flir Tasteranschluss aktivieren
PORTA |= 1<<2;

// LED-Anschluss als Ausgang konfigurieren

DDRC |= 1<<6;

while (1) {
// Nachfolgende Bedingung liefert "true"
// falls Taster nicht gedrlckt
if (PINA & (1<<2))
DDRC &= ~(1<<6); // LED aus
else
DDRC |= 1<<6; // LED an

.include "m32def.inc"

; Interner Pull-Up flir Taster aktivieren

in rl6, PORTA ; PORTA nach rlé
ori rl6, (1<<2) ; Bit 2 setzen
out PORTA, rl6 ; rlé6 wieder nach PORTA schreiben

; LED-Anschluss auf Ausgabe

in rl6, DDRC ; DDRC nach rlé6
ori rl6, (l<<6) ; Bit 6 setzen
out DDRC, rl6 ; und wieder in das Datenrichtungsregister schreiben

; Hier ist die Endlosschleife, in der
; der Taster abgefragt und die LED ein- oder ausgeschaltet wird

my loop:
in rl6, PINA ; Wert von PINA holen
andi rl6, (1<<6) ; nur Bit 6 ist von Interesse
breq led_on ; falls 0, springen
in rl6, PORTC ; sonst Bit 6
andi rl6,~(1l<<6) ; 1in PORTC l&schen
out PORTC, rl6é ; und so LED ausschalten

jmp my_ loop ; fertig. Taster wieder abfragen
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led_on:
in rl6, PORTC ; PORTC holen
ori rlé6, (l<<6); Bit 6 setzen
out PORTC, rl6 ; und wieder nach PORTC schreiben => LED an
jmp my_ loop ; fertig. Taster wieder abfragen

Anmerkung: Der Code ldsst sich auch kiirzer schreiben, wenn die Befehle sbi und cbi
verwendet werden.

Aufgabe 14.8

a) (Abb. 15.15).

b) 1 Frame besteht aus 10 Bit. Mit jedem Frame wird 1 Byte iibertragen. Die Brutto-
Datenrate betrdgt 9600 bps. Also konnen 960 Bytes/s iibertragen werden, wenn die
Frames ohne Pause zwischen den Frames iibertragen werden.

c) Die Anzahl der iibertragenen Einsen (inklusive Paritdtsbit) ist ungerade. Es wurde
also ungerade Paritit gewihlt.

Aufgabe 14.9

Der AVR besitzt eine 8-Bit-CPU. Die Befehle verarbeiten also maximal 8 Bit. Werden
Operanden mit einer groleren Wortbreite verarbeitet, sind hierfiir mehrere Befehle not-
wendig. Zwischen der Ausfiihrung zweier Befehle kann ein Interrupt ausgeldst werden.
Also sind nur die Zuweisungen atomar, die mit einem einzelnen Befehl durchgefiihrt
werden konnen.

Im Fall des AVR ist dies die Zuweisung an eine 8-Bit-Variable. Die Zuweisung an
einen Zeiger ist nicht atomar, da der Zeiger eine grolere Wortbreite als 8 bit besitzt und
daher fiir die Zuweisung mehrere Befehle erforderlich sind. Im Fall einer 32-Bit-CPU
sind alle Zuweisungen atomar (wenn vorausgesetzt wird, dass Zeiger eine maximale
Wortbreite von 32 bit besitzen).

Fiir die Aufgabe ergibt sich also:

a) Nur Zuweisung 1 ist atomar.
b) Alle Zuweisungen sind atomar.

Bit 7

Bit 5

Bit 6

,Ruhe*
Start
Bit 0
Bit 1
Bit 2
Bit 3
Bit 4

Stopp
,Ruhe“

Abb. 15.15 Zeitverlauf des TXD-Signals bei Ubertragung des Wertes 0 x 35
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Interrupt, 462
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Ports, 469
setzen und Loschen von Bits, 444
stackbasierte Parameteriibergabe, 456
Assembler-Direktiven, 461
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Asynchroner Reset, 125
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BGA-Gehiuse (Ball Grid Array), 310
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Bibliothek, 55
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std, 55

work, 55
Binirdaten, 2
Binire Schaltfunktion, 86
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Bistabile Kippstufe, 129
Bit-Flipping, 326
Blockgenerator, 245
Block-RAM, 246, 278, 284
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Boolean, 226
Boolesche Schaltfunktion, 86
Boot-Code, 331
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Burst, 335
Bus

Adressbus, 398

Datenbus, 399

Steuerbus, 399

C
Capture-Unit, 475
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C-Beispiel
analoge Eingabe, 509
Bits setzen und Loschen, 431
FIFO, 518
12C, 502
interrupt, 463
Ports, 467
SPI, 497
Temperaturiiberwachung, 512

UART, 491
Uhr, 481
Zugriff auf Peripherie, 430
Central Processing Unit (CPU), 398, 421
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Chip, 7
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Demultiplexer, 176
D-Flip-Flop, 4, 122, 239, 276
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Aufbau in CMOS-Technologie, 298
Verwendung im FPGA, 271
VHDL-Beschreibung, 158
Die, 308
Differenzielle Nichtlinearitit, 383
Digital-Analog-Umsetzer, 353
Digitale Signaldarstellung, 11
DIL-Gehéuse (Dual In-Line), 309
Direct Memory Access (DMA), 427
Direktverfahren (DAU), 375
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Dual In-Line, 309
Dual-Port-Speicher, 248, 278, 330
Dual-Slope-Verfahren, 370
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316, 321

diskreter Baustein, 337

Dynamische Verlustleistung, 301

E

Einheitsgatter, 207

Einschwingzeit, 385
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Electrically Erasable Programmable Read-Only

Memory (EEPROM), 316, 324

diskreter Baustein, 340

Electronic Design Automation (EDA), 215

Embedded Memory, 318, 329

Enable, 127
VHDL-Beschreibung, 162

Endlicher Automat, 129

Energieeffizienz, 303

Entity, 56

Entwurf von Automaten, 135

Entwurfsprozesses, 53

Error Correcting Code (ECC), 326

F

Falling_edge(), 159, 240

Fan-in, 207

Fan-out, 207

Feldeffekttransistoren, 292

Ferroelectric RAM (FRAM), 316, 327

Fertigungstest, 307
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Flash-EEPROM, 317, 325
Flash-Umsetzer, 362
Floating-Gate, 324
Floating-Point-Unit, 404
Fliichtige Speicher, 315
For-generate-Anweisung, 236
For-Schleife, 77
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Funktionstabelle, 87
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Gehiuse, 309
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Generic, 235
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Gleitkomma-Darstellung, 37
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Halbaddierer, 179
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Histogramm, 386
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differenzielle, 383
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Non-Volatile RAM (NVRAM), 316, 326
diskreter Baustein, 344
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ODER-Verkniipfung, 90
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On-Chip-Debugging, 524
One-Hot-Codierung, 144
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Operation, atomare, 515
Optimierte Codierung, 147
Others, 63, 77

OTP-Speicher, 323
Oversampling-Technik, 373

P
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Paket, 241

Parallel-Seriell-Wandlung, 182

Parallelverfahren, 362
erweitertes, 366

Paritit, 487
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Phase-Change RAM (PCRAM), 316, 328

Phase-Locked Loop (PLL), 279

Pipeline-ADU, 364, 368

Pipelining, 192, 411, 412, 418

P-Kanal-Transistor, 293

Placement, 220

Platzierung, 220

PLCC-Gehiuse, 309

Polling, 458, 511

Port, 56, 421, 464

Port Mapped 1/0, 400

Portfunktionen, alternative, 426, 470
Positive Logik, 2

Primterm, 99

Procedure, 232

Process, Voltage, Temperature (PVT), 299
Program Counter, 410, 433
Programmable Array Logic (PAL), 269
Programmable Logic Arrays (PLA), 266
Programmable Logic Device (PLD), 266
Prozess, 69

Pseudo-Tetrade, 40

Pull-Up-Widerstand, 498
Pulsweitenmodulation (PWM), 379

Q

QFP-Gehéuse, 310
Quad-Data-Rate (QDR), 334
Quad-Flat-Pack-Gehiuse, 310
Quad-Level-Cell (QLC), 326
Quantisierung, 354
Quantisierungsfehler, 380
Quantisierungsintervall, 354, 359
Querstrom, 302

R
R-2R-Leiternetzwerk, 377
Read(), 251
Readline(), 251
Read-Only-Memory (ROM), 316, 323
Real data, 225
Rechenregeln der Schaltalgebra, 95
Record, 230
Reduced Instruction Set Computer (RISC), 417
Redundante Codewortldnge, 144
Reduzierter Spannungshub, 318
Refresh, 322
Register, 122, 186
Registerausgabe, 154
VHDL-Beschreibung, 164
Registerpaar, 437
Register-Transfer-Level (RTL), 186, 217
Reset
asynchroner, 125, 161
synchroner, 126
Resistive RAM (R RAM), 316, 328
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Ripple-Carry-Addierer, 178
Rising_edge(), 158, 240
Route, 220
RS-Flip-Flop, 116

asynchroner Automat, 158
Riickgekoppeltes Schieberegister, 183
Riickkopplung, 117

S
Schaltaktivitit, 302
Schaltalgebra, 86
Schaltfunktion, 86
binire, 86
boolesche, 86
Schaltglied, 86
Schaltsymbole, 3
Schaltung, sequenzielle, 115
Schaltungsentwurf durch Minimieren, 98
Schaltzeichen, 86, 174
Schaltzeit, 208
Schiebeoperationen, 448
Schieberegister, 182
riickgekoppeltes, 183
Schmitt-Trigger, 197
Sequenzielle Schaltung, 115
Serial Peripheral Interface (SPI), 345, 389, 492
Serializer, 274
Seriell-Parallel-Wandlung, 182
Setup-Zeit, 124, 276
Shannonsches Gesetz, 97
Shared Variable, 248
Sieben-Segment-Anzeige, 254
Sigma-Delta-Umsetzer, 371
Signal, 67
Signal-Rausch-Abstand, 385
Slgnal to Noise And Distortion ratio
(SINAD), 385
Signal to Noise Ratio(SNR)
Signal-Rausch-Abstand, 385
Signed Data, 62
Silizium, 290
Simple Programmable Logic Device (SPLD),
212,269
Simulation, 52
Single-Slope-Verfahren, 370

Skipbefehl, 444
Soft-Prozessor, 280
Speicher, 315
Speichersystem, 345
Spezifikation, 136
Spike, 184
Sprungbefehl
bedingter, 405
unbedingter, 405
Stack, 409, 456
Stackpointer, 433, 456
Standardlogik-Bausteine, 204
Standardzellen, 304
Stapelspeicher, 409, 456
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Startbedingung, 498
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Static Random Access Memory
(SRAM), 316, 319
diskreter Baustein, 334
Statische Verlustleistung, 301
Statusregister, 433, 444
Std_logic, 57, 59, 227
Std_logic_textio, 251
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Std_ulogic, 227
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Steuerbus, 399
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Stimuli, 52, 218, 259
Stoppbedingung, 499
Stoppbit, 487
Storspannungsabstand, 208
String, 228, 252
StrukturgroBe, 310
Stufigkeit, 93
Substrat, 292
Subtypes, 228
Sukzessive Approximation, 364
Summation gewichteter Strome, 375
Superskalare Architektur, 412
Switch Matrix, 274
Synchroner Reset, 126
VHDL-Beschreibung, 160
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System-on-Chip (SoC), 211, 281, 305
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Takt, 4, 118
Taktbereich, 193
Taktflankensteuerung, 121
Taktfrequenz, 191
Taktkonzept, 186
Taktpegelsteuerung, 120
Taktiibergang, 193
Tastverhiltnis, 119
Testbench, 52, 218, 250, 254
Textausgabe, 252
Textio, 251
Time, 226
Timer, 470

CTC Mode, 472

Normal Mode, 471

PWM Mode, 473
To_integer, 63
To_signed, 63
To_unsigned, 63
Toggle-Flip-Flop, 128
Top-down Entwurf, 173
Total Negative Slack (TNS), 220
Total Hold Slack (THS), 221
Transiente Signalzustéinde, 184
Transmission-Gate, 298
Triple-Level-Cell(TLC), 326
Tri-State-Ausgang, 198

Verwendung fiir Datenbus, 349
Turingmaschine, 130
Two-Wire-Interface (TWI), 497
Type, 227
Type-Qualifier, 252
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UART-Protokoll, 486
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Ubertrag, 178
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Universal Asynchronous Receiver/Transmitter
(UART), 485
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Untermodul, 173

Unterprogrammaufruf, 455

US-amerikanische Logiksymbole, 94
Use-Anweisung, 55
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Venn-Diagramm, 101
Verdrahtung, 220
Vereinfachungsregeln der Schaltalgebra, 95
Vergleich Mealy-Automat/Moore-Automat,
153
Verlustleistung, 300
statische, 301
Verstirkungsfehler, 381
Very-Long-Instruction-Word (VLIW), 412
Verzogerungszeit, 184, 209
VHDL-Beispiel
Attribute, 238
Component-Anweisung, 240
Dateizugriff, 251, 252
Fuligidngerampel, 187
Generate-Anweisung, 237
Generics, 235
Inferenz eines Speichers, 246
Paket, 242
Sequenzielle Schaltung, 159
Testbench, 254, 257
Volatile, 430
Volatile Memory, 315
Volladdierer, 178
Vollsubtrahierer, 179
Voltage-Controlled-Oscillator (VCO), 279
Von-Neumann-Architektur, 398, 419
Vorrangregeln der Schaltalgebra, 94
Vorzeichen-Betrag-Darstellung, 30
Vorzeichenerweiterung, 34

w

Wafer, 307
Wigeverfahren, 363
Wahrheitstabelle, 87
Wait-Anweisung, 254
Wartbarkeit, 154
Watchdog-Timer, 483
Waveform, 255
Waveform-Viewer, 52
Wear Leveling, 325
Wertdiskrete Signaldarstellung, 13
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Wertkontinuierliche Signaldarstellung, 13
While-Schleife, 78

Wireload Model, 219

Worst Hold Slack (WHS), 221

Worst Negative Slack (WNS), 220
Write(), 251

Writeline(), 251

X
XOR-Gatter (exclusive or), 3
XOR-Verkniipfung (exclusive or), 92

Y
Yield, 308

V/

Zahlenkreis, 25

Zihler, 180

Zihlverfahren, 365

Zeichenketten, 228, 252
Zeitdiskrete Signaldarstellung, 13
Zeitkontinuierliche Signaldarstellung, 13
Zero-One-Hot-Codierung, 144
Zustand, 130, 135
Zustandscodierung, 141
Zustandsfolgediagramm, 134
Zustandsfolgetabelle, 133
Zustandsiibergangsfunktion, 130
Zustandsvariable, 130

Zuweisung, nebenldufige, 68
Zweierkomplement-Darstellung, 32
Zweistufige Logik, 93
Zweiwertigkeit, 2
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