Project 5

In this project you will integrate the CPU and RAM devices built in projects 2 and 3 into a computer
system capable of executing programs written in the machine language introduced in project 4.

Objective

Build the following chips:
Memory
CPU
Computer

The building blocks that you can use are the chips listed in previous projects and the chips listed in
this project.

Contract: Build a hardware platform capable of executing programs written in the Hack machine
language. Demonstrate the platform’s operations by having your Computer chip execute correctly
the three test programs described below.

Test Programs

A natural way to test your topmost Computer chip implementation is to have it execute sample
programs written in the Hack machine language. In order to run such a test, one can write a test
script that loads the Computer chip into the hardware simulator, loads a program from a text file
into its ROM32K chip-part (the instruction memory), and then runs the clock enough cycles to
execute the program. We provide three such test programs, along with corresponding test scripts
and compare files:

Add: Adds the integers 2 and 3, and writes the result in RAMIO0].

<

ax: Computes the maximum of RAM[0] and RAM[1], and writes the result in RAM[2].

0

ect: Draws on the screen a rectangle of RAM[0] rows of 16 pixels each. The rectangle's top left

corner is located at the top left corner of the screen.

Before testing your Computer chip on any one of these programs, review the test script associated
with the program, and be sure to understand the instructions given to the hardware simulator. If
needed, consult the Test Description Language Guide (link below).

Chips
Implement the computer platform in the following order:

Memory: The three main chip-parts of this chip are RAM16K, Screen, and Keyboard. The Screen
and the Keyboard are available as builtin chips. Although the RAM16K chip was built in project 3,
we recommend using its builtin version.

CPU: The Central Processing Unit can be built from the ALU built in project 2, the Register and PC
chips built in project 3, and logic gates from project 1, as needed. We recommend using the builtin
versions of all these chips. In particular, instead of using Register chips, use the builtin registers



ARegister, DRegister, and PC. These chips have exactly the same functionality as the Register and
PC chips built in project 3, but they feature GUI side-effects that make the testing and simulation of
your work easier.

Instruction Memory: Use the built-in ROM32K chip.

Computer: Can be built from three chip-parts: CPU, Memory, and ROM32K. The first two chips are
built in this project. The latter chip is builtin.

References

Hardware Description Language

Test Description Language (to be used as needed, for understanding the supplied test scripts)

Hack Chip Set API

Screen chip demo

Kevboard chip demo

ROM32K chip demo

Implementation Tips

1. All the chips in this project (Memory, CPU, and Computer), are to be implemented in HDL and
tested in the supplied hardware simulator.

2. The three test programs with which you have to test your topmost Computer chip are Add.hack,
Max.hack, and Rect.hack. These programs are written in the binary Hack machine language. The
symbolic versions of these programs — in case you want to review their logic — are available in the
projects/06 folder.

3. Normally, when running a program on some computer, and not getting the desired results, we
conclude that the program is buggy. In this project, the supplied test programs are bug-free.
Therefore, if running a test program yields unexpected results, it means that the computer
platform on which the program runs (Computer.hdl and/or some of its chip-parts) is buggy. If that
is the case, debug your chips and keep testing.

4. In the course of implementing the CPU and other chips in this project, you may be tempted to
specify and build some internal ("helper") chips of your own. Be advised that there is no need to
do so; The Hack CPU can be implemented elegantly and efficiently using only the chip-parts
mentioned above, plus some elementary logic gates built in project 1 (of which we recommend
using their built-in versions).

5. How to make sure that you use only builtin chip-parts? Simple: Use only the .hdl files stored in

the projects/05 folder. Don’t add more .hdl files to this folder.

6. The projects/05 folder contains a set of files whose names include the label “external”. These
test files are no longer in use, and will be removed from future versions of the Nand to Tetris
software suite. Therefore, you should ignore them.


https://drive.google.com/file/d/1dPj4XNby9iuAs-47U9k3xtYy9hJ-ET0T/view
https://drive.google.com/file/d/1VZSQV-7NcmG0q6v46OUIypfiTrnoi1Ss/view
https://drive.google.com/file/d/1IsDnH0t7q_Im491LQ7_5_ajV0CokRbwR/view
https://www.youtube.com/watch?v=Z-Wl9MEeChk&list=PLYM3zllSC3SVdjWQUfedxssewHRS7EHuA&index=11
https://www.youtube.com/watch?v=XLH2wRjtiHA&list=PLYM3zllSC3SVdjWQUfedxssewHRS7EHuA&index=12
https://www.youtube.com/watch?v=7rXFuyiCHi8&list=PLYM3zllSC3SVdjWQUfedxssewHRS7EHuA&index=13

