
The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 3

1

Appendix 3: Test Scripting Language

Mistakes are the portals of discovery. – James Joyce (1882-1941)

Testing is a critically important element of systems development, and one that typically gets

insufficient attention in computer science education. In Nand to Tetris we take testing very

seriously. We believe that before one sets out to develop a new hardware or software module

P, one should first develop a module T designed to test it. Further, T should be part of P’s

development’s contract. Therefore, for every chip or software system specified in the book,

we supply official test programs, written by us. Although you are welcome to test your work

in any way you see fit, the contract is such that ultimately, your implementation must pass our

tests.

 In order to streamline the definition and execution of the numerous tests scattered all

over the book projects, we designed a uniform test scripting language. This language works

almost the same across all the relevant tools supplied in Nand to Tetris: the hardware

simulator, used for simulating and testing chips written in HDL, the CPU emulator, used for

simulating and testing machine language programs, and the VM emulator, used for simulating

and testing programs written in the VM language, which are typically compiled Jack

programs.

 Every one of these simulators features a GUI that enables testing the loaded chip or

program interactively, or batch-style, using a test script. A test script is a series of commands

that load a hardware or software module into the relevant simulator, and subject the module to

a series of preplanned testing scenarios. In addition, the test scripts feature commands for

printing the test results and comparing them to desired results, as defined in supplied compare

files. In sum, a test script enables a systematic, replicable, and documented testing of the

underlying code – an invaluable requirement in any hardware or software development

project.

 In Nand to Tetris, we don’t expect learners to write test scripts. All the test scripts

necessary to test all the hardware and software modules mentioned in the book are supplied

with the project materials. Thus, the purpose of this appendix is not to teach how to write test

scripts, but rather to help understand the syntax and logic of the supplied test scripts. Of

course, you are welcome to customize the supplied scripts and create new ones, as you please.

This appendix has four parts, as follows:

• General guidelines

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 3

2

• Testing chips on the hardware simulator

• Testing machine language programs on the CPU emulator

• Testing VM programs in the VM emulator

A3.0 General guidelines

The following usage guidelines are applicable to all the software tools and test scripts.

File format and usage: The act of testing a hardware or software module involves four types

of files. Although not required, we recommend that all four files will have the same prefix

(file name):

Xxx.yyy: Where Xxx is the name of the tested module and yyy is either hdl, hack, asm, or

vm, standing respectively for a chip definition written in HDL, a program written in the

Hack machine language, a program written in the Hack assembly language, or a

program written in the VM virtual machine language;

Xxx.tst: A test script that walks the simulator through a series of steps, designed to test

the code stored in Xxx;

Xxx.out: An optional output file to which the script commands can write current values of

selected variables, obtained during the simulation;

Xxx.cmp: An optional compare file containing the desired values of selected variables, i.e.

the values that the simulation should generate, if the module behaves normally.

All these files should be kept in the same directory, which can be conveniently named Xxx. In

all simulators, the “current directory” refers to the directory from which the last file has been

opened in the simulator environment.

White space: Space characters, newline characters, and comments in test scripts (Xxx.tst

files) are ignored. Test scripts are not case sensitive, except for file and directory names. The

following comment formats can appear in test scripts:

// Comment to end of line

/* Comment until closing */

/** API documentation comment */

Usage: In all the projects that appear in the book, the script file Xxx.tst and the compare file

Xxx.cmp are supplied by us. These files are designed to test Xxx, whose development is the

essence of the project. In some cases, we also supply a skeletal version of Xxx, e.g. an HDL

interface with a missing implementation. All the files in all the projects are plain text files that

should be viewed and edited using plain text editors.

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 3

3

 Typically, one starts a simulation session by loading the supplied Xxx.tst script file

into the relevant simulator. The first command in the script typically loads the code stored in

the tested module Xxx. Next, optionally, come commands that initialize an output file and

specify a compare file. The remaining commands in the script run the actual tests.

Simulation controls: Each one of the supplied simulators features a set of menus and icons

for controlling the simulation.

File menu: Allows loading into the simulator either a relevant program (.hdl file, .hack file,

.asm file, .vm file, or a directory name), or a test script (.tst file). If the user does not

load a test script, the simulator loads a default test script (described below).

Play icon: Instructs the simulator to execute the next simulation step, as specified in the

currently loaded test script.

Pause icon: Instructs the simulator to pause the execution of currently loaded test script.

Useful for inspecting various elements of the simulated environment.

Fast-forward icon: Instructs the simulator to execute all the commands in the currently loaded

test script.

Stop icon: Instructs the simulator to stop the execution of the currently loaded test script.

Rewind icon: Instructs the simulator to reset the execution of the currently loaded test script,

i.e. be ready to start executing the test script from its first command onward.

Note that the simulator's icons listed above don't "run the code". Rather, they run the test

script, which runs the code.

A3.1 Testing chips on the hardware simulator

The supplied hardware simulator is designed for testing and simulating chip definitions

written in the Hardware Description Language (HDL) described in appendix 2. Chapter 1

provides essential background on chip development and testing, and thus it is recommended

to read it first.

Example: Figure A2.1 in appendix 2 presents an Eq3 chip, designed to check if three 1-bit

inputs are equal. Figure A3.1 presents Eq3.tst, a script designed to test the chip, and Eq3.cmp,

a compare file containing the expected output of this test.

 A test script normally starts with some set-up commands, followed by a series of

simulation steps, each ending with a semicolon. A simulation step typically instructs the

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 3

4

simulator to bind the chip’s input pins to some test values, evaluate the chip logic, and write

selected variable values into a designated output file.

Figure A3.1: Test script and compare file (example).

The Eq3 chip has three 1-bit inputs, thus an exhaustive test would require 8 testing scenarios.

The size of an exhaustive test grows exponentially with the input size. Therefore, most test

scripts test only a subset of representative input values, as shown in the figure.

Data types and variables: Test scripts support two data types: integers and strings. Integer

constants can be expressed in decimal (%D prefix) format, which is the default, binary (%B

prefix), or hexadecimal (%X prefix). These values are always translated into their equivalent

two's complement binary values. For example, consider the following commands:

set a1 %B1111111111111111

set a2 %XFFFF

set a3 %D-1

set a4 -1

All four variables are set to the same value: 1111111111111111 in binary, which happens to be

the binary, two's complement representation of -1 in decimal.

 String values are specified using a %S prefix, and must be enclosed by double quotes.

Strings are used strictly for printing purposes, and cannot be assigned to variables.

 The hardware simulator's 2-phase clock (used only in testing sequential chips) emits a

series of values denoted 0, 0+, 1, 1+, 2, 2+, 3, 3+, and so on. The progression of these clock

cycles (also called time units) can be controlled by two script commands named tick and

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 3

5

tock. A tick moves the clock value from t to t+, and a tock from t+ to t+1, bringing upon

the next time unit. The current time unit is stored in a system variable named time, which is

read-only.

 Script commands can access three types of variables: pins, variables of built-in chips,

and the system variable time.

Pins: Input, output, and internal pins of the simulated chip. For example, the command

"set in 0" sets the value of the pin whose name is in to 0.

Variables of built-in chips: Exposed by the chip’s external implementation. Built-in chips

are described in section A2.3.

time: The number of time-units that elapsed since the simulation started (a read-only

variable).

Script commands: A script is a sequence of commands. Each command is terminated by a

comma, a semicolon, or an exclamation mark. These terminators have the following

semantics:

Comma (,): Terminates a script command.

Semicolon (;): Terminates a script command and a simulation step. A simulation step

consists of one or more script commands. When the user instructs the simulator to

"single-step" using the simulator’s menu or "play" icon, the simulator executes the

script from the current command until a semicolon is reached, at which point the

simulation is paused.

Exclamation mark (!): Terminates a script command and stops the script execution. The

user can later resume the script execution from that point onward. Typically used

for debugging purposes.

It is convenient to organize the script commands in two conceptual sections: "Set up

commands", used for loading files and initializing settings, and "simulation commands", used

for walking the simulator through the actual tests.

Set up commands

load Xxx.hdl: Loads the HDL program stored in Xxx.hdl into the simulator. The file name

must include the .hdl extension and must not include a path specification. The simulator will

try to load the file from the current directory, and, failing that, from the tools/builtInChips

directory.

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 3

6

output-file Xxx.out: Instructs the simulator to write the results of the output commands in

the named file, which must include an .out extension. The output file will be created in the

current directory.

output-list v1, v2, ...: Specifies what to write to the output file, whenever the output

command appears in the script (until the next output-list command, if any). Each value in

the list is a variable name followed by a formatting specification. The command also produces

a single header line, consisting of the variable names, which is written to the output file. Each

item v in the output-list has the syntax "varName format padL.len.padR". (without any

spaces). This directive instructs the simulator to write padL space characters, then the current

value of the variable varName, using the specified format and len columns, then padR spaces,

and finally the divider symbol '|'. The format can be either %B (binary), %X (hexa), %D

(decimal) or %S (string). The default format specification is %B1.1.1.

 For example, the CPU.hdl chip of the Hack platform has an input pin named reset, an

output pin named pc (among others), and a chip-part named DRegister (among others). If we

want to track the values of these entities during the simulation, we can use something like the

following command:

Output-list time%S1.5.1 // The system variable time
 reset%B2.1.2 // One of the chip's input pins
 pc%D2.3.1 // One of the chip's output pins
 DRegister[]%X3.4.4 // The internal state of this chip-part

(State variables of built-in chips are explained below). This output-list command may end

up producing the following output, after two subsequent output commands:

| time |reset| pc |DRegister[]|

| 20+ | 0 | 21 | FFFF |

| 21 | 0 | 22 | FFFF |

compare-to Xxx.cmp: Specifies that the output line generated by each subsequent output

command should be compared to its corresponding line in the specified compare file (which

must include the .cmp extension). If any two lines are not the same, the simulator displays an

error message and halts the script execution. The compare file is assumed to be present in the

current directory.

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 3

7

Simulation commands

set varName value: Assigns the value to the variable. The variable is either a pin, or an

internal variable of the simulated chip or one of its chip-parts. The bit-widths of the value and

the variable must be compatible.

eval: Instructs the simulator to apply the chip logic to the current values of the input pins and

compute the resulting output values.

output: Causes the simulator to go through the following logic:

1. Get the current values of all the variables listed in the last output-list command;

2. Create an output line using the format specified in the last output-list command;

3. Write the output line to the output file;

4. (If a compare file has been previously declared using a compare-to command): If the

output line differs from the compare file's current line, display an error message and

stop the script’s execution;

5. Advance the line cursors of the output file and the compare file.

tick: Ends the first phase of the current time unit (clock cycle).

tock: Ends the second phase of the current time unit and embarks on the first phase of the

next time unit.

repeat n {commands}: Instructs the simulator to repeat the commands enclosed in the curly

brackets, n times. If n is omitted, the simulator repeats the commands until the simulation has

been stopped for some reason (for example, when the user clicks the stop icon).

while booleanCondition {commands}: Instructs the simulator to repeat the commands

enclosed in the curly brackets, as long as the booleanCondition is true. The condition is of the

form x op y where x and y are either constants or variable names and op is =, >, <, >=, <=, or <>.

If x and y are strings, op can be either = or <>.

echo text: Displays the text in the simulator status line. The text must be enclosed in double-

quotes.

clear-echo: Clears the simulator's status line.

breakpoint varName value: Starts comparing the current value of the specified variable to the

specified value, following the execution of each subsequent script command. If the variable

contains the specified value, the execution halts and a message is displayed. Otherwise, the

execution continues normally. Useful for debugging purposes.

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 3

8

clear-breakpoints: Clears all the previously defined breakpoints.

builtInChipName method argument(s): Executes the specified method of the specified built-in

chip-part, using the supplied arguments. The designer of a built-in chip can provide methods

that allow the user (or a test script) to manipulate the simulated chip. See figure A3.2.

Variables of built-in chips: Chips can be implemented either by HDL programs, or by

externally supplied, executable modules. In the latter case the chip is said to be built-in. Built-

in chips can facilitate access to the chip’s state using the syntax chipName[varName], where

varName is an implementation-specific variable that should be documented in the chip API.

See figure A3.2 for examples.

Figure A3.2: Variables and methods of key built-in chips in Nand to Tetris.

For example, consider the script command "set RAM16K[1017] 15". If RAM16K is the currently

simulated chip, or a chip-part of the currently simulated chip, this command sets its memory

location number 1017 to the two’s complement binary value of 15. And, since the built-in

RAM16K chip happens to have GUI side effects, the new value will also be reflected in the

chip’s visual image.

 If a built-in chip maintains a single-valued internal state, the current value of the state

can be accessed through the notation chipName[]. If the internal state is a vector, the notation

chipName[i] is used. For example, when simulating the built-in Register chip, one can write

script commands like "set Register[] 135". This command sets the internal state of the chip

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 3

9

to the two’s complement binary value of 135; in the next time unit, the Register chip will

commit to this value, and its output pin will start emitting it.

Methods of built-in chips: Built-in chips can also expose methods that can be used by

scripting commands. For example, in the Hack computer, programs reside in an instruction

memory unit implemented by the built-in chip ROM32K. Before running a machine language

program on the Hack computer, the program must be loaded into this chip. In order to

facilitate this service, the built-in implementation of ROM32K features a load method that

enables loading a text file that, hopefully, contains machine language instructions. This

method can be accessed using a script command like "ROM32K load Myprog.hack".

Ending example: We end this section with a relatively complex test script, designed to test

the topmost Computer chip of the Hack computer.

 One way to test the Computer chip is to load a machine language program into it and

monitor selected values as the computer executes the program, one instruction at a time. For

example, we wrote a machine language program that computes the maximum of RAM[0] and

RAM[1], and writes the result in RAM[2]. The program is stored in a file named Max.hack.

 Note that at the very low level in which we are operating, if such a program does not

run properly it may be either because the program is buggy, or because the hardware is buggy

(or, perhaps, the test script is buggy, or the hardware simulator is buggy). For simplicity, let

us assume that everything is error-free, except for, possibly, the simulated Computer chip.

 To test the Computer chip using the Max.hack program, we wrote a test script called

ComputerMax.tst. This script loads Computer.hdl into the hardware simulator, and then loads

the Max.hack program into its ROM32K chip-part. A reasonable way to check if the chip works

properly is as follows: put some values in RAM[0] and RAM[1], reset the computer, run the

clock enough cycles, and inspect RAM[2]. This, in a nutshell, is what the script in figure A3.3

is designed to do.

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 3

10

Figure A3.3: Testing the topmost Computer chip.

How can we tell that 14 clock cycles are sufficient for executing this program? This can be

found by trial and error, starting with a large value and watching the computer’s outputs

stabilizing after a while, or by analyzing the run-time behavior of the loaded program.

Default test script: Each Nand to Tetris simulator features a default test script. If the user

does not load a test script into the simulator, the default test script is used. The default test

script of the hardware simulator is defined as follows:

// Default test script of the hardware simulator:
repeat {
 tick,
 tock;
}

A3.2 Testing machine language programs on the CPU emulator

Unlike the hardware simulator, which is a general-purpose program designed to support the

construction if any hardware platform, the supplied CPU emulator is a single-purpose tool,

designed to simulate the execution of machine language programs on the Hack computer. The

programs can be written either in the symbolic, or in the binary, Hack machine language

described in chapter 4.

 As usual, the simulation involves four files: the tested program (Xxx.asm or

Xxx.hack), a test script (Xxx.tst), an optional output file (Xxx.out) and an optional compare

file (Xxx.cmp). All these files reside in the same directory, normally named Xxx.

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 3

11

Example: Consider the multiplication program Mult.hack, designed to effect

RAM[2]=RAM[0]*RAM[1]. Suppose we want to test this program in the CPU emulator. A

reasonable way to do it is to put some values in RAM[0] and RAM[1], run the program, and

inspect RAM[2]. This logic is carried out by the test script shown in figure A3.4.

Figure A3.4: Testing a machine language program on the CPU emulator.

Variables: Scripting commands running on the CPU emulator can access the following

elements of the Hack computer:

A: Current value of the address register (unsigned 15-bit);

D: Current value of the data register (16-bit);

PC: Current value of the Program Counter (unsigned 15-bit);

RAM[i]: Current value of RAM location i (16-bit);
time: Number of time units (also called clock cycles, or ticktocks) that elapsed

since the simulation started (a read-only system variable).

Commands: The CPU emulator supports all the commands described in section A3.1, except

for the following changes:

load progName: Where progName is either Xxx.asm or Xxx.hack. This command loads a

machine language program (to be tested) into the simulated instruction memory. If the

program is written in assembly, the simulator translates it into binary, on the fly, as part of

executing the "load programName" command.

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 3

12

eval: Not applicable in the CPU emulator.

builtInChipName method argument(s): Not applicable in the CPU emulator.

tickTock: This command is used instead of tick and tock. Each ticktock advances the clock

one time unit (cycle).

Default test script

// Default test script of the CPU emulator:
repeat {
 ticktock;
}

A3.2 Testing VM programs on the VM emulator

The supplied VM emulator is a Java implementation of the Virtual Machine specified in

chapters 7-8. It can be used for simulating the execution of VM programs, visualizing their

operations, and displaying the states of the effected virtual memory segments.

 A VM program consists of one or more .vm files. Thus, the simulation of a VM

program involves the tested program (a single Xxx.vm file, or an Xxx directory containing one

or more .vm files), and, optionally, a test script (Xxx.tst), a compare file (Xxx.cmp), and an

output file (Xxx.out). All these files reside in the same directory, normally named Xxx.

Virtual memory segments: The VM commands push and pop are designed to manipulate

virtual memory segments (argument, local, etc.). These segments must be allocated to the

host RAM – a task that the VM emulator normally carries out as a side effect of simulating

the execution of the VM commands call, function and return.

Start up code: When the VM translator translates a VM program, it generates machine

language code that sets the stack pointer to 256 and then calls the Sys.init function, which

then calls Main.main. In a similar fashion, when the VM emulator is instructed to execute a

VM program (collection of one or more VM functions), it is programmed to start running the

function Sys.init. If such a function is not found in the loaded VM code, the emulator is

programmed to start executing the first command in the loaded VM code.

The latter convention was added to the VM emulator in order to support unit-testing of the

VM translator, which spans two book chapters and projects. In project 7, we build a basic VM

translator that handles only push, pop, and arithmetic commands, without handling function

calling commands. If we want to execute such programs, we must somehow anchor the

virtual memory segments in the host RAM – at least those segments mentioned in the

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 3

13

simulated VM code. Conveniently, this initialization can be accomplished by script

commands that manipulate the pointers controlling the base RAM addresses of the virtual

segments. Using these script commands, we can anchor the virtual segments anywhere we

want in the host RAM.

Example: The FibonacciSeries.vm file contains a series of VM commands that compute the

first n elements of the Fibonacci series. The code is designed to operate on two arguments: n,

and the starting memory address in which the computed elements should be stored. The test

script listed in figure A3.5 tests this program using the arguments 6 and 4000.

Figure A3.5: Testing a VM program on the VM emulator.

Variables: Scripting commands running on the VM emulator can access the following

elements of the virtual machine:

Contents of VM segments:

local[i]: Value of the i-th element of the local segment;

argument[i]: Value of the i-th element of the argument segment;

this[i]: Value of the i-th element of the this segment;

that[i]: Value of the i-th element of the that segment;

temp[i]: Value of the i-th element of the temp segment.

Pointers of VM segments:

local: Base address of the local segment in the RAM;

argument: Base address of the argument segment in the RAM;

this: Base address of the this segment in the RAM;

The Elements of Computing Systems (2nd ed.), Nisan and Schocken, MIT Press, Appendix 3

14

that: Base address of the that segment in the RAM.

Implementation-specific variables:

RAM[i]: Value of the i-th location of the host RAM;

SP: Value of the stack pointer;

currentFunction: Name of the currently executing function (read-only).
line: Contains a string of the form:

currentFunctionName.lineIndexInFunction (read-only).

For example, when execution reaches the third line of the function

Sys.init, the line variable contains the value Sys.init.3. Can be used

for setting breakpoints in selected locations in the loaded VM program.

B.4.3 Commands

The VM emulator supports all the commands described in Section A3.1, except for the

following changes:

load source: Where the optional source parameter is either Xxx.vm, a file containing VM

code, or Xxx, the name of a directory containing one or more .vm files (in which case all of

them are loaded, one after the other). If the .vm files are located in the current directory, the

source argument can be omitted.

tick / tock: Not applicable.

vmstep: Simulates the execution of a single VM command, and advances to the next

command in the code.

Default Script:

// Default script of the VM emulator:
repeat {
 vmStep;
}

