From Nand to Tetris

Building a Modern Computer from First Principles

Chapter 5

Computer Architecture

These slides support chapter 5 of the book
The Elements of Computing Systems
(15t and 2 editions)

By Noam Nisan and Shimon Schocken
MIT Press

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 1

Nand to Tetris Roadmap (Part I: Hardware)

abstraction .

Writing low-level
machine programs
language

Developing

an assembler

Previous chapter:

* Low-level programming
* Assembly language

* Hack computer overview

oy

abstraction Building a
computer

—> -
computer abstraction

ALU, RAM |

o

N

hardware platform

Building
chips

+ abstraction Building

gates
elementary |———p O
logic gates

/

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 2

Nand to Tetris Roadmap (Part I: Hardware)

-

abstraction Writing low-level This chapter:
T progragms Integrate the chips built in chapters 1,2,3 into
language a computer architecture capable of executing
programs written in the machine language
Developing introduced in chapter 4
an assembler
v - A hardware platform\
abstraction | Buildinga
computer
computer » abstraction Building
@ chips

ALU, RAM

J

N

P abstraction Building

gates
elementary |———p O
logic gates

/

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 3

Nand to Tetris Roadmap (Part I: Hardware)

lload

in
— >
16

address
—z)
14

RAM

A

+*[PC]—4—5 ~/—>[Reglster]—+—> I_Df?GT

load

v

inc reset

v v

out

16

—> // Computes R1=1+2+3+...+R0

This chapter:

Integrate the chips built in chapters 1,2,3 into
a computer architecture capable of executing
programs written in the machine language
introduced in chapter 4

f Machine language program (example)

16 //i=1
@i
ou M=1
// sum = ©
16 @sum
M=0
y (LOOP)
16 // if (i >Re@) goto STOP
@i
D=M
@RO
load D=D-M
@STOP

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 4

Computer architecture

Memory

program

input

data

CPU

\ data register I

\ data register I

‘ data register |

‘addr‘ess r‘egister‘l

| PC |

ALU

output

Typical computer architecture:

e Stored program concept

* General-purpose

In this chapter we build the Hack computer — a variant of this architecture.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 5

Chapter 5: Computer Architecture

Basic architecture * Memory

Fetch-Execute cycle

The Hack CPU

Computer

Project 5: Chips

Input / output Project 5: Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 6

Chapter 5: Computer Architecture

- Basic architecture

* Fetch-Execute cycle
e The Hack CPU
* Input / output

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 7

Early computers (17t century)

4700, ‘Lr/,jﬂ., Lrumerti W&M

"rw;a/ qdernst. .

Blaise Pascal
1623-1662

Mockine dritimélizue PLIT.
'

Pascal’s Calculator

(Pascaline, 1652)
 Add

e Subtract

BB Bl el et Seulp- i Zom. 17
3

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 8

Early computers (17t century)

Gottfried Leibniz
1646-1716

Leibniz Calculator (1673)

 Add

* Subtract
* Multiply
* Divide.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 9

Early computers (17t century)

Gottfried Leibniz
1646-1716
Leibniz Calculator (1673)
e Add
Side benefits:
e Subtract :
Advances in
« Multiply gears / .
mechanical
e Divide. engineering

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 10

Early computers (19" century)

WS

mm\%%é

i R

Major innovation:

Punched cards = software

Jacquard Loom (1804) Analytic Engine (1837)

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 11

Early computers

Programmable!

19t century: Hardware / Software / General purpose

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 12

Modern computers (20t century)

7

B2

R
N
\
N
NN
)
) B
N
AW\
7
N
|
N
: ;
R N

¥

John Atanassof Howard Aiken Konrad Zuse

ENIAC: First digital, programmable,
stored program computer

University of Pennsylvania, 1946,

(Borrowed key ideas from other
early computers and innovators)

Tommy Flowers
Colossus: First digital, programmable,

computer, UK, 1945

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 13

Modern computers (20t century)

ENIAC Women

Kathleen McNulty, Jean Jennings, Frances Snyder, Pioneered reusable code,

Marlyn Wescoff, Frances Bilas, Ruth Lichterman subroutines, flowcharts,
and many other programming
innovations
Compilation
pioneers
(Mark I)

Grace Hopper Adele Koss

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 14

Modern computers (20t century)

Same hardware can run many different programs (software)

Back 1n the 1950’s, this was considered a radical i1dea:

“If it should turn out that the basic logic of a machine designed for the numerical solution
of differential equations coincides with the logic of a machine intended to make bills for
department stores, I would regard this as the most amazing coincidence I have ever
encountered” — Howard Aiken, 1956 (Mark 1 computer architect)

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 15

Basic architecture

Memory CPU

‘ register I

program |

register I

input —) s ALU —)

data

‘ register

Stored program concept:

Same machine can run different programs
“The stored program computer, as conceived by Alan Turing and delivered by
John von Neumann, broke the distinction between numbers that mean things and

numbers that do things. Our universe would never be the same”. (George Dyson)

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

output

Slide 16

Basic architecture

Memory

program

data

CPU

\ data register I

\ data register I

\ data register I

\addr‘ess r‘egisteri

| PC |

ALU

The computer is essentially a machine that manipulates registers under program
control: data registers, address registers, a program counter (PC), memory

registers (containing data and instructions).

How does information flow inside the computer?

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 17

Basic architecture

Memory

program

CPU

data register

data register

data register

address register

PC

instructions

addresses

data values

control bus

address bus

data bus

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 18

Basic architecture: Recap

Memory

program

data

CPU

’ data register |

’ data register |

’ data register I

’addr‘ess r‘egister]

| PC |

ALU

General purpose computer
A set of chips connected by buses

Stored program concept

Framework of most modern computers

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 19

Chapter 5: Computer Architecture

v Basic architecture

» Fetch-Execute cycle
e The Hack CPU

* Input / output

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 20

Computer architecture

Memory CPU
Basic loop:
’ data register | » Fetch
program o an 1nstrugt10n
(by supplying
. an address)
) ALU .
’ data register | Exe'cute)
the instruction
data \address register|

(And... figure out
| PC | the address of the

next instruction)

Program Counter:
LAlways emits the address

of the next instruction

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 21

Fetch an instruction

Memory

CPU

program

| data register

| data register

| data register

|addr‘ess register

| PC

Basic loop:

» Fetch

an instruction

(by supplying
an address)

ALU * Execute
the instruction

address

instruction address t

(And... figure out
the address of the
\/ next instruction)

Program Counter:

Always emits the address
of the next instruction

address bus

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 22

Fetch an instruction

Memory CPU
Basic loop:
. data register » Fetch
; an instruction
| data register /
(by supplying
: an address)
ALU .
| dataregister Exe‘CUfe -
the instruction
|address register

(And... figure out
| PC the address of the

next instruction)

instruction instruction

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 23

Execute the instruction

Memory CPU
Basic loop:
. data register » Fetch
an instruction
| data register ‘
(by supplying
: an address)
: ALU
| dataregister » Exe.Cllte ‘
the instruction
|address register
(And... figure out
| e the address of the
next instruction)

instruction instruction

The instruction bits specify:

* Which operation to execute
* Which address in memory the operation should act on

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 24

Fetch — execute 1ssues

Memory

Should the single Memory output be
interpreted as data, or as instruction?

program instruction

out

ALU

data
Possible solutions:

(for the instruc.
to operates on)
address I * Two-cycle machine

* One-cycle, two-memory machine

data
address

instruc.

dd) .
aceress Which of the two addresses to feed into

the Memory’s single address input?

address bus

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 25

Two-cycle machine

Memory

when
fetching

instruction Istruction
register

data

ALU

(for the instruc.

when
to operates on)

executing

fetch /
execute
bit

address * Fetch cycle: Loads an instruction into the

instruction register

» Execute cycle: Loads a data value from
memory, and executes the instruction

(when instruc.
fetching) address

data (when
address executing)

control bus

address bus

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 26

Single cycle, two-memory machine

Instruction Memory

instruc-
tion

CPU

data register I

| data register

| data register

<

address

address r‘egister‘l
\#

ALU

Data Memory

write
read

—

address

l

* Program and data are stored in two separate physical memories

* Both memories are accessed simultaneously, in the same cycle

(Sometimes called "Harvard architecture”)

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 27

Single cycle, two-memory machine

Instruction Memory CPU Data Memory
data register l
instruc- data register l i
tion .
ALU read
| data register !
< . address
address address r‘eglster" _}
w
Advantages Disadvantages

* Simpler architecture

* Faster processing

e Two memory chips

* Separate address spaces

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 28

Chapter 5: Computer Architecture

v’ Basic architecture
v’ Fetch-Execute cycle

m) The Hack CPU
* Input / output

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 29

Hack computer

Instruction Memory CPU Data Memory

mstruc-) | p register ' Hello,

tion world
A register I ALU

address PC '

/

* Single cycle computer

* Two separate memory units

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 30

Hack computer

Instruction Memory

D register

A register

i

ALU

Data Memory

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Hel lo ,
world

Slide 31

CPU abstraction

Executes instructions written in the Hack machine language

inM
1
instruction —~<— CPU
16 :
D register 15
reset ﬁ].;’ A register 15 '
Instruction examples: i
CPU Abstraction:
// D=RAM[5] +1
@5
D=M+1
//RAM[3] =D
@3
M=D

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

outM

writeM

addressM

pc

Slide 32

CPU abstraction

Hack instructions (formal specification)

Symbolic: @xxx (xxx is a decimal value ranging from 0 to 32767,
A instruction or a symbol bound to such a decimal value)

Binary: @ vvvvvvvvvvvvvvy (Vv ...v = 15-bit value of xxx)
Symbolic: dest = comp; jump (comp is mandatory.
C instruction ’ If dest is empty, the = is omitted;
If jump is empty, the ; is omitted)
Binary: 111laccccccdddjjj

comp ¢ ¢ eccce dest d d d Effect: store comp in:

) 1 01 0169 null [@ @ o | the value is not stored
1 1, % 2 LT3 M @ © 1 [RAM[A]

-1 1110160 D ® 1 o |Dregister (reg)

D @ 01 100 DM @ 1 1 |RAM[A]andDreg

A M [1 10 000 A 1 o o |Areg

D @ 01 101 AM 1 @ 1 |AregandRAM[A]

1A IM |1 106 0601 AD |1 1 o |[AregandDreg

-D @ 061 111 ADM | 1 1 1 | Areg, Dreg, and RAM[A]
-A M |1 10011 . P :

D+1 e 11 111 Jump _J _J J Efﬁ?Ct'

Al [M1 |1 10 111 AGLE | 6 6 6 LA jpmp

D-1 e 01 110 3GT | e o 1 [ifcomp>0jump

Al | M-1|1 10 0160 JEQ e 1 e [ifcomp=0jump

D/A | DM |@ @ 0 @ 1 @ JGE | e 1 1 |ifcomp=0 jump

D-A | D-M |@ 1 @ @0 11 T |1 e e |ifcomp<0jump

A-D |M-D|@ © 0 11 1 JNE [1 e 1 |ifcomp#0jump

D&A D&M | @ © © © 0 o JLE 1 1 o |ifcomp<0jump

DA |DM]e 1 e 1861 MP [1 1 1 | unconditional jump
d==@ Q==

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 33

CPU abstraction

from

memory

™M ﬁleg> W outM
+> writeM
instruction instruction ——/——>16 CPU 1
Dircgister ﬁ?’ addressM
reset ﬁlL» A register ﬁl?' pc

Instruction examples:

// D=RAM[5] +1
@5
D=M+1

//RAM[3] =D

@3
M=D

CPU Abstraction:

Executes instructions written in the Hack machine language

Note that the selected memory register m
can be input, or output, or both input and
output (example: M=M+1)

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 34

CPU abstraction

Holds the value of M, the

selected memory register

-
1

from

memory

from

instruction < instruction __7L—> CPU

16

memory

reset ﬁlL»

Instruction examples:

1
data < inM ﬁl%»

D register

Hold the value, write enable bit, and address
of M, the selected memory register

A register

R

o ————————

to
> data
memory

N
outM)

|

1

1
writeM |

|

|
addressM |
B —— a’
pc

to
instruction
memory

N
*»We mention these internal chip-parts (D and A) in the CPU

abstraction, since Hack instructions refer to them

CPU Abstraction:

// D=RAM[5] +1
@s Executes instructions written in the Hack machine language
D=M+1

Note that the selected memory register m
//RAM[3] =D) i
03 can be input, or output, or both input and
M<D output (example: M=M+1)

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 35

CPU abstraction

from (
data < M ——~—» _— 5
memory 16 16 '
) to
from (ﬁlL» writeM > data
instruction < instruction __é—» CPU memory
e . ——~— addressM
) D register 15
L to
reset ——~—»| | Aregister 15 pe instruction
. memory

CPU operation:

Instruction examples: .)
P 1. Executes the instruction:

é@/ D =RAM[5] +1 If it’s an A instruction (@xxx), sets the A register to xxx
5
DMl Else:
* If the instruction uses M as input, gets this value from inM
// RAM[3] =D * Computes the ALU function specified by the instruction
@3 * If the instruction writes to M, puts the ALU output in outM,
M=D puts the register’s address in addressM, and asserts the writeM bit
2. Figures out the address of the next instruction, and puts it in pc.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 36

CPU implementation

: ALU output O ALU output :
I I
: c C's I
I
I c l I
| : |
I l D register |
: ; I ' |
instruction | Mux16 Ared el ¢ : outM
: > ALU >0 s
I I
I I
, | ¢ Mux16 '
inM I I
1 i I
. : I :
In the diagram, “c* denotes “control bit”; Aregister T C's I writeM
The control bits come from the instruction; i o & ¢ : j
: : addressM
They tell the various chip-parts what to do. O- memory address output ; -
reset : :
) reset bit C I
I l l
|) | pcC
: » PC Program Counter output— >
I
| |

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 37

CPU implementation

Fr- - TS TS T s s s e i
: ALU output O ALU output :
| |
| c C's 1
| |
I c l I
| N |
I D register I
. : | i
instruction | Mux16 S ey : outM
. > ALU >0 -
| |
| |
: I ¢ Mux16 I
inM I I
I M input I
| | ;
| A register T C's | writeM
I output C C i -
: | , addressM
I O memory address output : -
reset : :
I reset bit Cc |
I l I
I [pc
: - PC Program Counter output—* >
|
I |

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 38

CPU implementation: Instruction handling

5 |
I I
: ALU output O ALU output :
I I
I . I
| C C's |
| c | |
! l . |
I D register I
instruction Mux16 Aregister —»0O— : outM
> > ALU >0—| -
(@5 0000000000000101 N I
I
| C L Mux16 :
inM : input T : writeM
I } >
I I
1 c C's 1
1 1

Handling A-instructions

Routes the instruction’s MSB (op-code) to the Mux16 control bit

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 39

CPU implementation: Instruction handling

e
|
: ALU output O ALU output
|
I 1
| C C's
| c |
|
1 l D register
instruction Mux16 Aregister —»0O—
> > ALU
@5 o =
| 0 Mux16
: : M input L
inM | T
|
1 c C's
1

Handling A-instructions

Routes the instruction’s MSB (op-code) to the Mux16 control bit

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 40

CPU implementation: Instruction handling

[
»

C's

il il il 1
| |
: ALU output O ALU output :
| |
| . |
1 C C's :
| c | |
I l . I
: D register I

instruction Mux16 Aregister —»0O— : outM

> > ALU ~0—| -
(@5 0000000000000101 N I
g |
0 Mux16 :

inM winput : writeM
|
|
1

4
O —p

Handling A-instructions

Routes the instruction’s MSB (op-code) to the Mux16 control bit

Result: A-register € instruction (value)

(Exactly what the @xxx instruction specifies: “set A to xxx™)

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 41

CPU implementation: Instruction handling

g
I
: ALU output (G2 ALU output
I
I .
1 C C's
I
| c |
I .
I l D register
instruction Mux16 Aregister —»0O—
> > ALU
1110011111010111 N
D=D+1; JMP € L Mux16
- | M input
inM | T
: c C's
1

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 42

CPU implementation: Instruction handling

C's

5 |
1 1
: ALU output O ALU output :
1 1
1 ' 1
| C C's |
| c | |
! l . |
I D register .
instruction Mux16 Aregister —»O— | outM
2 >ALU o) :
1110011111010111 N 1
1
D=D+1; JMP € Mux16 !
inM . winput : writeM
1
1
1

A —
O —p

Handling C-1nstructions

Each instruction field (opcode, comp bits, dest bits, and jump bits) is handled separately
Each group of bits is used to "tell” a CPU chip-part what to do

Taken together, the chip-parts end up executing the instruction.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 43

CPU implementation: Instruction handling

e
|
opcode : ALU output O ALU output
|
: C C's
|
1 o l
|
: l D register
instruction Mux16 Aregister —»0O—
i > ALU
1
D=D+1; JMP 1 L Mux16
) | M input
inM | T
|
; c C's
1

Handling C-instructions (the opcode bit):

Routes the instruction’s MSB to the Mux16

Result: Prepares the A register to get the ALU output.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 44

CPU implementation: Instruction handling

@)

outM

Y

writeM

[

|
|
: ALU output Q= ALU output
1
comp : c 011111
|
I C l
| .
I l D register
instruction Mux16 Aregister —»0O—
> > ALU
0011111 N
D=D+1; JMP € L Mux16
- | M input
inM | T
1 c
: 0)

Handling C-instructions (the computation bits)

* Routes the instruction’s c-bits to the ALU control bits

* Routes the instruction’s a-bit to the Mux16

Result: the ALU computes the specified function
which becomes the ALU output

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

»

Slide 45

CPU implementation: Instruction handling

e |
|
: ~——ALU output——— O - ALU output
|
comp | |
! V v C's
I
|
: — —»—»{ D register
instruction Mux16 Aregister —»0O—
i > ALU
D=D+1; JMP . Mux16
: M input X
inM ! T
I
: c C's
1
ALU output:

e Result of ALU calculation

* Fed simultaneously to p-register, A-register, data memory
* All enabled/disabled by control bits

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 46

CPU implementation: Instruction handling

5 |
| |
: ALU output Q= ALU output :
1 1
| ' |
dest ! 1 s !
| |
| 0 ! |
| |
I l D register I
instruction Mux16 Aregister —»O— | outM
> >ALU >0—| -

010 N !

Lo 1

D=D+1; JMP € L Mux16 !

o | Minput | writeM
I T) : >
| |
1 c C's 1
1]

Handling C-instructions (the destination bits)

Routes the instruction's d-bits to the control (load) bits of the
A-register, D-register, and to the writeM bit

Result: Only the enabled destinations get the ALU output

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 47

CPU implementation: Instruction handling

|
| |
: ALU output O ALU output :
| |
| 1 011111 :
| |
| 0 { |
1 ; 1
1 l D register I
instruction Mux16 Aregister —»O— | outM
a > ALU O—
1110011111010111 - I
|
D=D+1;IMP 1 Mux16 |
1 M input > ! ;
inM 1 [T 1 erteM
I) : >
| C's |
: 0 :

Handling C-instructions (recap)

J Executes dest = comp

‘ Figures out which instruction to execute next

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 48

CPU implementation: Control

Symbolic
syntax:

Binary
syntax:

Jump

jump

j1 j2 j3 condition

null
JGT
JEQ
JGE
JLT
JINE
JLE

JMP

0
0
0
0

no jump

if (ALU out > 0) jump
if (ALU out = 0) jump
if (ALU out > 0) jump
if (ALU out < 0) jump
if (ALU out # 0) jump
if (ALU out < 0) jump

Unconditional jump

Jump decision:

J (31, j2, 33, zr, ng) = 1 if condition is true,

0 otherwise

j1 jz2 j3

zr ng

if(out==0)zr=1,else zr =0

if (out<0) ng=1,elseng=0

J can be computed using gate logic,

And then help compute the address
of the next instruction

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 49

CPU implementation: Control

Program Counter output

\

r—===-=--=--=--=--=-"="-"="-"="-"="="-"="="-"="-"="="="="-="-="="=======-===== 1
: ALU output——————————— Q= ALU output :
| I
I C Cs I
| c ' |
I D register > I
instruction : Mux16 A register >0 : outM
) .
I > > ALU ~O0— >
I . I
| |
inM I c Mux16 I
i M input » |
| | &
| Aregister T zr ng I writeM
| output C C T >
: : addressM
. — memory address output - »
| |
reset I I
I reset bit & |
I l I
| | pcC
' :
| |
| I

address of next instruction

How to compute 1t?

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 50

CPU implementation: Control

I C |
o | :
instruction . |
L_—»| Aregister -O———> I
e I ALU :
jii | |
! |
: 16\\ :
reset : N oy !
: AN : l load zr ng i
| l "
| N . pc
I — PC 1 >
| 16 !
: |
PC (program counter) abstraction: gddress'of next
Instruction

Outputs the address of the next instruction:

* reset: PC <« 0

* NO jump: PC++

* Jump: if (condition) PC&A // A contains the address of the
// jump destination

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 51

CPU implementation: Control

I C |
i | } |
instruction . |
L—| Aregister -O———> !
i ALU !
33 | |
! |
: 16\ N\ :
reset : N oy !
: A ¢ l load zr ng !
| l "
| N . pc
I — PC 1 B
| 16> !
: |
PC (program counter) implementation: gddress'of next
Instruction

if (reset==1) PC ¢ @ // reset
else
if (J (jump bits, zr, ng) == 1) PC<A //jump

else PC++ // next instruction

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 52

CPU implementation

e e e e e e e e e i 1
I I
| ALU output Q= ALU output |
I I
1 c Cs |
| l I
I I
. |
instruction | S, I outM
! > ALU »0—i >
I I
|
M I c Mux16 :
1 M input > T I
I .
I Aregister C's I writeM
I output C C d >
|
I I addressM
I J)————————— memory address output I —
reset | |
] reset bit Cc |
I I
: Program Counter output—'— pC
L e = -

JExecutes the current instruction

{ Figures out which instruction to execute next.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 53

Chapter 5: Computer Architecture

v’ Basic architecture
v’ Fetch-Execute cycle
v The Hack CPU

- Input / output

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 54

Hack computer

Instruction Memory CPU Data Memory
instruc- A write
: D register
tion
. read Dat
program A register ALU | €¢—— ata
< address

address PC —)
screen memory map
keyboard mem. map

I/O devices

Screen (black and white)

» Keyboard (regular)

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Hello,
worlg

Slide 55

Screen

load

|

Screen

0]1111010100000000
1 | 0000000000000V refresh

in 31 000000000001
—<— 32 (0000101000000000
16 33 000000000000 out

63 | 00000V
address 16

< 38159 [1011010100000000
13 8160 | 9000000000V YLY

8191 | 90000000000V VO

The screen memory map is implemented
as an 8K memory chip named Screen

255

Physical screen

© 1 2 3 4 5 6 7 8 ... 511

/** Memory of 8K 16-bit registers
with a display-unit side effect. */

CHIP Screen {
IN address[13], in[16], load;
OUT out[16];
BUILTIN Screen;

CLOCKED in, load;

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 56

Hack computer

Instruction Memory CPU Data Memory
instruc- A write
: D register
tion
. read Dat
program A register ALU | €¢—— ata
< address

address PC —)
screen memory map
keyboard mem. map

I/O devices

e Screen (black and white)

Keyboard (regular)

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Hello,
worlg

Slide 57

Keyboard

PrtScn/
SysRq

Pause/
Break

|Esc| F1 “FZHFS F4 FSHFGHHHFBHFQ F10 Fi1 F12 |

=

Keyboard S P M = 3 5

Q [w] I+L Il l(- I)Eml\ End
TITES @

|An Koy | Menu | ctr |'-‘l‘-‘|

out

+—~“— 0000000001001011
16

refresh

code('k') =75

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 58

Keyboard

out Keyboard

+—+~— 0000000000000000
16

The keyboard memory map
1s implemented as a 16-bit

memory register named
Keyboard

=

FillrellrafFa||rs | el | es|]|rel Fro i1 || Fiz | |FSCV]l goru]PaUSE
SysRq Break

[EEEELELLLEE

Insert |(Home|| PgUp

==
Y I

Tab H_;'.

I \ End

CgtsLockA |S ‘D |F ‘G |H ‘J |K IL l: " [Enter

2]

Ctrl

8 i

mlu | Im Koy | Menu | ctr |°—‘l"*|

refresh

/** 16-bit register that outputs the character code of the
currently pressed keyboard key, or @ if no key is pressed */
CHIP Keyboard {
ouT
out[16];
BUILTIN Keyboard;

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 59

The Hack character set

key

code

key code key code key code key code
(space) | 32 0| 48 A [65 a| 97
{33 1|49 66 b |98
“134 C c |99
| 35 9|57
$ |36 Z|90 z | 122
% | 37 >
2 | 2 I [|91 {] 123
e | 39 < /| 92 | | 124
¢ | 40 = | 61 1|93 }| 125
1 > [62 Al 9g ~ 1 126
s ? | 63 | 95
+ | 43 Gl %6
, | 44
- | 45
46 (Subset of Unicode)
/| 47

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

newline
backspace
left arrow
up arrow
right arrow
down arrow
home

end

Page up
Page down
insert
delete

esc

fl

f12

128
129
130
131
132
133
134
135
136
137
138
139
140
141

152

Slide 60

Hack computer
Instruction Memory CPU Data Memory
nstruc-| | p, register yite
tion
d Hello,
wor
program A register ALU 4L i
dd
4address PC - ress’
SCreen memory map
keyboard mem. map
I/O devices
{ Screen (black and white) More I/O devices can be added, as needed
/ Keyboard (regular) Each requiring a memory map, and an interaction contract

Managed jointly by the hardware and the OS.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 61

Chapter 5: Computer Architecture

» Memory

* Computer
* Project 5: Chips

* Project 5: Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 62

Memory

r

Instruction Memory

instruc-
tion

address

CPU
. it
D register U <
. read
A register ALU | |4
addresf
PC >

(

Data Memory

Data

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Hel lo ,
world

Slide 63

Memory: Abstraction

lload

in

—

24576

Memory

out

Reading register i:

address <« |

Probe out

Setting register i to v:

in€vy
address <« |
load ¢« 1

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Memory: Implementation

lload

in

address 16383

— | 16384
15

24575

24576

Memory

RAM16K

Screen
(8K)

Keyboard

data

out

16:

screen
memory map

keyboard

memory map

Reading register i:

address <« |

Probe out

Setting register i to v:

in€vy
address <« |
load ¢« 1

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 65

Memory: Implementation

load .
l n built in project 3
Memory 6~
L RAM16K | OUE .
16
. address
in :
+} 14
16 RAM16K Hello,
out world
address 16383 ﬁr’
+} 16384 Screen out
15 Screen address T
(8K) 13° I -
24575 built-in chip
24576 Keyboard N
ou

) __S' Keyboard T

. | bt el
Memory architecture _— P

* An aggregate of three chip-parts: RAM16K, Screen, Keyboard
* Single address space, 0 to 24576
* Maps the address input onto the corresponding address input of the relevant chip-part.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 66

Instruction memory

-

Instruction Memory CPU
insttuc- .
o D register
->
A register ALU
<
addfess PC

Data Memory

write

read

T

address

l

Data

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 67

Instruction memory

Hack Program

ROM32K

0000000000001101
1110101001010101
0000000000000001
1110101001101011
0000001100110101
1110010111011111

1111001001100111

program

CPU Memory
instruc- - write
. D register

tion

. read

A register ALU | €¢— Data
<4 address

address PC b

Hardware implementation

Plug-and-play ROM chip,
named ROM32K

(pre-loaded with a program)

/** Read-Only memory (ROM),
acts as the Hack computer instruction memory. */

CHIP ROM32K {
IN address[15];
OUT out[16];
BUILTIN ROM32K;

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 68

Instruction memory

Hack Program ROM32K CPU Memory
000001101
1110101001010101
0000001
1110101001101011 , write
0000001100110101 Instruc- | p register
1110010111011111 tion
) read D
program A register ALU |¢— ata
1111001001100111 <4 address
address PC '

Hardware implementation

Plug-and-play ROM chip,
named ROM32K

(pre-loaded with a program)

Hardware simulation

* Programs are stored in text files;

* The simulator software features a
load-program service.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 69

Chapter 5: Computer Architecture

* Project 5: Chips

* Project 5: Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 70

Hack computer architecture

ROM32K CPU Memory
instruc- . write
tion D register
read Hello,
program A register ALU | 4¢—— Data worlq
< address
address PC —>

Remaining challenge

Integrate into a single computer chip

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 71

Computer abstraction

Assumption:

The computer
is loaded with

Computer abstraction:

a program if (reset == 1), executes the first

wiie i lis instruction in the stored program

Hack machine pros

language if (reset == @), executes the next
instruction in the stored program

resat To execute the stored program:

, , set reset < 1, then

like pushing

and releasing set reset < 0

a button

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 72

Computer implementation

ROM32K

.

inM writeM
outM

nstruction | ~p addressM
pc

7

Memory

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

reset

Hello,
worlg

Slide 73

Computer implementation

writeM

outM

ROM32K instruction | cPU

addressM

pc

7

Memory

reset

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Hello,
worlg

Slide 74

Computer implementation

inM \ writeM

outM
instruction
ROM32K ~ CPU | .4dressM Memory | | .
world
N pc

7

reset

“Make everything as simple as possible, but no simpler.”

— Albert Einstein

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 75

Chapter 5: Computer Architecture

v’ Memory
v’ Computer

» Project 5: Chips

* Project 5: Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 76

Hack computer

Hello,
worlg

Computer

reset

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 77

Hack computer

outM

inM \ writeM

| rROM32K instruction CPU

addressM

pc

Memory

reset

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 78

inM 716 > ﬁl?' outM
—4 writeM
instruction —~—~ CPU
/** Central Processing unit. ﬁf‘%—» addressM
Executes instructions written in Hack machine language.
—/4—> pC
CHIP CPU { reset —— S
o /
inM[16], // Value of M (RAM[A])

instruction[16], //Instruction to execute

reset; // Signals whether to execute the first instruction
// (reset==1) or next instruction (reset == 0)

ouT
outM[16] // Value to write to the selected RAM register
writeM, // Write to the RAM?
addressM[15], // Address of the selected RAM register
pc[15]; // Address of the next instruction

PARTS:

// Put you code here:

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 79

CPU implementation

-ALU output Q= ALU output
Cc C's
instruction outM
> ALU O
inM ¢ Mux16
M input
Aregister T C's writeM
output C C >
addressM
> memory address output >
reset
reset bit: C
PC
Program Counter output——+——%
Chip parts:
Built in MUX16 ARegister | Builtin project 3
project 1 and ALU DRegister ARegister and Dregister
project 2 And, Or, Not ... PC are built-in Register chips

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 80

CPU implementation

-ALU output Q= -ALU output
instruction outM
> ALU >0 >
1110011111010111
inM Mux16
M input
Aregister writeM
output @———>
addressM
J)———————— memory address output —
reset
reset bit: °
PC
Program Counter output——+——%
Implementation

* Use HDL to route instruction bits to chip-parts

» Use gate logic to compute the address of the next
instruction

Tips

* No need for “helper chips”

» Use logic gates and HDL for
implementing everything.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 81

Computer

—w ROM32K

inM

instruction

CPU

write
outM

addr

sM

pc

Memory

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

reset

Hellol
world

Slide 82

Memory

lload

Memory

in

0 RAM16K

address 16383

+} 16384
15

Screen

(8K memory map)
24575

24576 Keyboard

out

Memory.hdl

/** Complete address space of the computer’s data memory,
including RAM and memory mapped I/O.

Outputs the value of the memory location specified by address.

If (Load==1), the in value is loaded into the memory location
specified by address.

Address space rules:
Only the upper 16K+8K+1 words of the memory are used.

Access to address 0 to 16383 results in accessing the RAM;

Access to address 16384 to 24575 results in accessing
the Screen memory map;

Access to address 24576 results in accessing the Keyboard
memory map.
*/
CHIP Memory {

IN address[15], in[16], load;
OUT out[16];

PARTS:

// Put your code here.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 83

Memory implementation

lload /** Memory of 16K 16-bit registers */
CHIP RAM16K {
IN
address[14], in[16], load;
ouT
out[16];

built in project 3
Memory

in

16\ > RAM16K /** Memory of 8K 16-bit registers
with a display unit side effect. */

out
}

\ CHIP Screen {
16 IN

address 16383 address[13], in[16], load;
?} 16384 ouT

Screen
: t[16];
(8K memory map) out[16];

24575
24576 Keyboard

BUILTIN Screen;

} /** 16-bit register with a

keyboard input side effect */

. - CHIP Keyboard {
Implementation tip: ouT

Use logic gates for mapping the address out[16];
input on the corresponding address BUILTIN Keyboard;
input of the relevant chip-part.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 84

Instruction memory

inM \ writeM

outM

instruction
ROM32K CPU | .ddressM Memory

v | v

reset
ROM32K.hd1l
/** Read-Only memory (ROM),
acting as the Hack computer instruction memory. */
address out CHIP ROM32K {
——»| ROM32K ——
15 M3 16 IN address[15];
OUT out[16];

BUILTIN ROM32K;

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 85

Computer

outM

inM \ writeM

instruction
— ROM32K CPU addressM

Memory

v v |

reset

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 86

Computer implementation

inM \ writeM

' ' outM
. ROM32K instruction RN Memory

addressM

pc

reset
Computer.hdl

/** The Hack computer, including CPU, RAM and ROM, loaded with a program.
When (reset==1), the computer executes the first instruction in the program;
When (reset==0), the computer executes the next instruction in the program. */

CHIP Computer {

IN reset;

PARTS:
// Put your code here.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 87

Chapter 5: Computer Architecture

v’ Memory
v’ Computer

v’ Project 5: Chips
» Project 5: Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 88

Project 5

Build three chips:

* Memory.hdl chip-parts: RAM16K, Screen, Keyboard
* CPU.hdl chip-parts: ARgister, DRegister, PC, ALU, ...
* Computer.hdl chip-parts: CPU, Memory, ROM32K

(All the chip-parts should be built-in chips, except for Memory and cpu)

Tools

e Text editor

 Hardware simulator

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 89

Testing the computer chip

Testing logic:

* Load computer.hdl into the
hardware simulator

* Load a Hack program -

into the rRomM32k chip-part

* Run the clock enough cycles

ROM32K

inM

instruction

\ writeM

- CPU

~ outM

addressM

e

pc

o

to execute the program

Memory

Computer.hdl

reset

CHIP Computer {
IN reset;

PARTS:
// Put your code here.

/** The Hack computer, including CPU, RAM and ROM, loaded with a program.
* When (reset==1), the computer executes the first instruction in the program,;
* When (reset==0), the computer executes the next instruction in the program. */

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 90

Testing the computer chip

Testing logic:

* Load computer.hdl into the
hardware simulator

* Load a Hack program
into the RoM32k chip-part

* Run the clock enough cycles
to execute the program

Test programs

* Add.hack:
RAM[@] « 2 + 3

* Max.hack:
RAM[2] <—max(RAM[0], RAM[l])

* Rect.hack:
Draws a rectangle of RAM[@] rows
of 16 pixels each.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 91

Testing the computer chip

Testing logic:

Load computer.hdl into the
hardware simulator

Load a Hack program

ComputerMax.tst

load Computer.hdl,
output-file ComputerMax.out,
compare-to ComputerMax.cmp,

output-1list time reset ARegister[] DRegister[] PC[]
RAM16K[@] RAM16K[1] RAM16K[2];

// Loads a Hack program (that executes R2 = max(RO,R1))

into the RoM32k chip-part

* Run the clock enough cycles
to execute the program

Test programs

* Add.hack:
RAM[@] « 2 + 3

- Max.hack:
RAM[2] <« max(RAM[@], RAM[1])

* Rect.hack:
Draws a rectangle of RAM[@] rows
of 16 pixels each.

ROM32K load Max.hack,

// Test 1: computes max(3,5)
set RAM16K[O] 3,
set RAM16K[1] 5,
output;
repeat 14 {

tick, tock, output;
}

// Resets the PC
set reset 1,
tick, tock, output;

// Test 2: computes max(23456,12345)
set reset 0,
set RAM16K[©@] 23456,
set RAM16K[1] 12345,
output;
repeat 14 {
tick, tock, output;
}

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 92

Testing the computer chip

Testing logic:

* Load computer.hdl into the
hardware simulator

* Load a Hack program

into the RoM32k chip-part

Rect.hack output:
* Run the clock enough cycles

to execute the program I }
RO

Test programs

* Add.hack:
RAM[@] « 2 + 3

* Max.hack:
RAM[2] < max(RAM[@], RAM[1]) Test script

- Rect.hack: e ComputerRect.tst

Draws a rectangle of RAM[@] rows . _
of 16 pixels each. * Inspect it, and understand the testing logic.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 93

What’s next?

o

abstraction .
Writing low-level
machine programs
language
Developing This chapter
an assembler
/ v o hardware platform
abstraction Building a
computer
computer » abstraction Building
‘B chips o
ALU, RAM | ' abstraction Building
gates
elementary |———p 0
logic gates

-

/

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 94

What’s next?

o

abstraction .
Writing low-level
machine programs
language
Developing N
ext chapter
an assembler @ P
/ v o hardware platform
abstraction Building a
computer
computer » abstraction Building
chips -
ALU, RAM | - abstraction Building
elementary gates - a
logic gates

-

/

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 95

End note: Memory hierarchy

Memory

Separate chips,
bits travel long distances

CPU

—_
instructions, data
»
< : ALU
addresses, data
Challenges

e Slow access time

* Limited memory space

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

Slide 96

End note: Memory hierarchy

A
.

Mass
Storage

~

Memory CPU
Cache
S
c ALU
.
° -_r‘egister'
]
]
Challenges Typical solutions

e Slow access time

* Limited memory space

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken

* Cache memory

* External storage

Slide 97

End note: Memory hierarchy

Memory CPU
Cache
~
S
register'l
Mass - S register l
: AL
Storage < — : “— : | v
* register
]
~—~ : /
]

Memory hierarchy:

more storage space, slower access time

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 98

End note: Memory hierarchy

Memory CPU
Cache

A

N

Mass » } } ALU
Storage ¢ — : 4— :
* -_register
]
~ .
]

* Mass storage and cache memory are possible extensions

* The basic Hack computer is built without them.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 99

