
Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 1

Chapter 5

Computer Architecture

From Nand to Tetris
Building a Modern Computer from First Principles

These slides support chapter 5 of the book
The Elements of Computing Systems

(1st and 2nd editions)
By Noam Nisan and Shimon Schocken

MIT Press

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 2

Nand to Tetris Roadmap (Part I: Hardware)

abstraction

computer

abstraction

ALU, RAM

abstraction

elementary
logic gates

abstraction

Nand

Building
gates

machine
language

hardware platform

Building
chips

Building a
computer

Developing
an assembler

p2

p3 p1

p4 Writing low-level
programs

Previous chapter:
• Low-level programming
• Assembly language
• Hack computer overview

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 3

Nand to Tetris Roadmap (Part I: Hardware)

abstraction

computer

abstraction

ALU, RAM

abstraction

elementary
logic gates

abstraction

Nand

Building
gates

machine
language

hardware platform

Building
chips

Building a
computer

Developing
an assembler

p2

p3 p1

p4 Writing low-level
programs

p5

This chapter:
Integrate the chips built in chapters 1,2,3 into
a computer architecture capable of executing
programs written in the machine language
introduced in chapter 4

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 4

Machine language program (example)

// Computes R1 = 1 + 2 + 3 + ... + R0
// i = 1

@i
M=1
// sum = 0
@sum
M=0

(LOOP)
// if (i > R0) goto STOP
@i
D=M
@R0
D=D-M
@STOP
D;JGT
...Register

1616
PC

1616

RAM
16

16

14

ALU

x

f

16

y

16

ou
t
16

Nand to Tetris Roadmap (Part I: Hardware)

This chapter:
Integrate the chips built in chapters 1,2,3 into
a computer architecture capable of executing
programs written in the machine language
introduced in chapter 4

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 5

Computer architecture

program

Memory CPU

data
PC

�
�

�

data register

address register

ALU

data register

data register

input output

Typical computer architecture:
• Stored program concept
• General-purpose

In this chapter we build the Hack computer – a variant of this architecture.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 6

• Basic architecture

• Fetch-Execute cycle

• The Hack CPU

• Input / output

Chapter 5: Computer Architecture

• Memory

• Computer

• Project 5: Chips

• Project 5: Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 7

• Basic architecture

• Fetch-Execute cycle

• The Hack CPU

• Input / output

Chapter 5: Computer Architecture

• Memory

• Computer

• Project 5: Chips

• Project 5: Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 8

Early computers (17th century)

Blaise Pascal
1623-1662

Pascal’s Calculator
(Pascaline, 1652)

• Add

• Subtract

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 9

Early computers (17th century)

Gottfried Leibniz
1646-1716

Leibniz Calculator (1673)

• Add

• Subtract

• Multiply

• Divide.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 10

Early computers (17th century)

Gottfried Leibniz
1646-1716

Leibniz Calculator (1673)

• Add

• Subtract

• Multiply

• Divide.

Side benefits:
Advances in
gears /
mechanical
engineering

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 11

Early computers (19th century)

Jacquard Loom (1804) Analytic Engine (1837)

Major innovation:
Punched cards = software

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 12

Early computers

17th century: Hardware only / fixed / single purpose

Programmable!

19th century: Hardware / Software / General purpose

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 13

Modern computers (20th century)

John Von Neumann

John Atanassof Konrad ZuseHoward Aiken

John Mauchly Presper Eckert

Tommy Flowers
Colossus: First digital, programmable,

computer, UK, 1945

ENIAC: First digital, programmable,
stored program computer

University of Pennsylvania, 1946,
(Borrowed key ideas from other
early computers and innovators)

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 14

Modern computers (20th century)

Kathleen McNulty, Jean Jennings, Frances Snyder,
Marlyn Wescoff, Frances Bilas, Ruth Lichterman

Adele KossGrace Hopper

Compilation
pioneers

(Mark I)

ENIAC Women
Pioneered reusable code,
subroutines, flowcharts,

and many other programming
innovations

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 15

Modern computers (20th century)

Same hardware can run many different programs (software)

Back in the 1950’s, this was considered a radical idea:

“If it should turn out that the basic logic of a machine designed for the numerical solution
of differential equations coincides with the logic of a machine intended to make bills for
department stores, I would regard this as the most amazing coincidence I have ever
encountered” –– Howard Aiken, 1956 (Mark 1 computer architect)

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 16

Basic architecture

Memory CPU

register

�
�

� ALU

register

register

input output

program

data

Stored program concept:
Same machine can run different programs

“The stored program computer, as conceived by Alan Turing and delivered by
John von Neumann, broke the distinction between numbers that mean things and
numbers that do things. Our universe would never be the same”. (George Dyson)

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 17

Basic architecture

program

Memory CPU

data
PC

�
�

�

data register

address register

ALU

data register

data register

The computer is essentially a machine that manipulates registers under program
control: data registers, address registers, a program counter (PC), memory
registers (containing data and instructions).

How does information flow inside the computer?

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 18

Basic architecture

program

Memory CPU

data
PC

�
�

�

data register

address register

control bus

data register

data register

instructions

data values

ALU

address busaddresses

data bus

ALU

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 19

Basic architecture: Recap

program

Memory CPU

data
PC

�
�

�

data register

address register

ALU

data register

data register

• General purpose computer
• A set of chips connected by buses
• Stored program concept
• Framework of most modern computers

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 20

• Basic architecture

• Fetch-Execute cycle

• The Hack CPU

• Input / output

Chapter 5: Computer Architecture

• Memory

• Computer

• Project 5: Chips

• Project 5: Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 21

Computer architecture

program

Memory CPU

data
PC

�
�

�

data register

address register

data register

data register

Program Counter:
Always emits the address
of the next instruction

ALU

Basic loop:
• Fetch

an instruction
(by supplying
an address)

• Execute
the instruction

• (And… figure out
the address of the
next instruction)

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 22

Fetch an instruction

program

Memory CPU

data
PC

�
�

�

data register

address register

data register

data register

Program Counter:
Always emits the address
of the next instructioninstruction

address bus

addressaddress

ALU

Basic loop:
• Fetch

an instruction
(by supplying
an address)

• Execute
the instruction

• (And… figure out
the address of the
next instruction)

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 23

Fetch an instruction

program

Memory CPU

data
PC

�
�

�

data register

address register

control bus

data register

data register

ALU

instruction instruction

Basic loop:
• Fetch

an instruction
(by supplying
an address)

• Execute
the instruction

• (And… figure out
the address of the
next instruction)

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 24

Execute the instruction

program

Memory CPU

data
PC

�
�

�

data register

address register

control bus

data register

data register

ALU

instruction instruction

Basic loop:
• Fetch

an instruction
(by supplying
an address)

• Execute
the instruction

• (And… figure out
the address of the
next instruction)

The instruction bits specify:
• Which operation to execute
• Which address in memory the operation should act on

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 25

Fetch – execute issues

program

Memory

data

control bus

address bus

Which of the two addresses to feed into
the Memory’s single address input?

ALU
out

address

data

instruction

data
address

instruc.
address

Should the single Memory output be
interpreted as data, or as instruction?

Possible solutions:
• Two-cycle machine
• One-cycle, two-memory machine

(for the instruc.
to operates on)

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 26

Two-cycle machine

program

Memory

data

ALU

control bus

address bus

out

address

when
executing

fetch /
execute

bit
• Fetch cycle: Loads an instruction into the

instruction register
• Execute cycle: Loads a data value from

memory, and executes the instruction

when
fetching

data
address

instruc.
address

(when
executing)

(when
fetching)

data

instruction

(for the instruc.
to operates on)

Mux

instruction
register

DMux

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 27

Single cycle, two-memory machine

• Program and data are stored in two separate physical memories
• Both memories are accessed simultaneously, in the same cycle
• (Sometimes called ”Harvard architecture”)

program

Instruction Memory CPU

PC

�
�

�

data register

address register

ALU

data register

data register

Data Memory

data

address

instruc-
tion

write

read

address

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 28

Advantages
• Simpler architecture
• Faster processing

Disadvantages
• Two memory chips
• Separate address spaces

program

Instruction Memory CPU

PC

�
�

�

data register

address register

ALU

data register

data register

Data Memory

data

address

instruc-
tion

write

read

address

Single cycle, two-memory machine

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 29

• Basic architecture

• Fetch-Execute cycle

• The Hack CPU

• Input / output

Chapter 5: Computer Architecture

• Memory

• Computer

• Project 5: Chips

• Project 5: Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 30

Hack computer

program

Instruction Memory CPU

PC

ALUA register

D register

Data Memory

data

address

instruc-
tion

write

read

address

Hello,
world

• Single cycle computer

• Two separate memory units

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 31

Hack computer

program

Instruction Memory CPU

PC

ALUA register

D register

Data Memory

data

address

instruc-
tion

write

read

address

Hello,
world

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 32

CPU abstraction

D register

A register

// D = RAM[5] + 1
@5
D=M+1
…
// RAM[3] = D
@3
M=D
…

Instruction examples:
CPU Abstraction:

Executes instructions written in the Hack machine language

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 33

CPU abstraction
Hack instructions (formal specification)

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 34

CPU abstraction

D register

A register

CPU Abstraction:

Executes instructions written in the Hack machine language
// D = RAM[5] + 1
@5
D=M+1
…
// RAM[3] = D
@3
M=D
…

Instruction examples:

Note that the selected memory register M
can be input, or output, or both input and
output (example: M=M+1)

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 35

CPU abstraction

D register

A register

We mention these internal chip-parts (D and A) in the CPU
abstraction, since Hack instructions refer to them

// D = RAM[5] + 1
@5
D=M+1
…
// RAM[3] = D
@3
M=D
…

Instruction examples:

Holds the value of M, the
selected memory register

CPU Abstraction:

Executes instructions written in the Hack machine language

Note that the selected memory register M
can be input, or output, or both input and
output (example: M=M+1)

Hold the value, write enable bit, and address
of M, the selected memory register

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 36

CPU abstraction

D register

A register

// D = RAM[5] + 1
@5
D=M+1
…
// RAM[3] = D
@3
M=D
…

CPU operation:
1. Executes the instruction:

If it’s an A instruction (@xxx), sets the A register to xxx
Else:

• If the instruction uses M as input, gets this value from inM
• Computes the ALU function specified by the instruction
• If the instruction writes to M, puts the ALU output in outM,

puts the register’s address in addressM, and asserts the writeM bit

2. Figures out the address of the next instruction, and puts it in pc.

Instruction examples:

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 37

CPU implementation

pc

In the diagram, “c“ denotes “control bit”;
The control bits come from the instruction;
They tell the various chip-parts what to do.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 38

CPU implementation

pc

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 39

CPU implementation: Instruction handling

writeM

outM

Handling A-instructions

Routes the instruction’s MSB (op-code) to the Mux16 control bit

0000000000000101@5

inM

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 40

CPU implementation: Instruction handling

writeM

outM

Handling A-instructions

Routes the instruction’s MSB (op-code) to the Mux16 control bit

0000000000000101@5

inM

0

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 41

CPU implementation: Instruction handling

writeM

outM

Handling A-instructions

Routes the instruction’s MSB (op-code) to the Mux16 control bit

0000000000000101@5

inM

0

Result: A-register ß instruction (value)

(Exactly what the @xxx instruction specifies: “set A to xxx”)

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 42

CPU implementation: Instruction handling

writeM

outM

inM

1110011111010111

D=D+1;JMP

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 43

CPU implementation: Instruction handling

writeM

outM

inM

opcode bit
comp bits
dest bits
jump bits

1110011111010111

D=D+1;JMP

Handling C-instructions

Each instruction field (opcode, comp bits, dest bits, and jump bits) is handled separately

Each group of bits is used to ”tell” a CPU chip-part what to do

Taken together, the chip-parts end up executing the instruction.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 44

CPU implementation: Instruction handling

writeM

outM

inM

Handling C-instructions (the opcode bit):

Routes the instruction’s MSB to the Mux16

Result: Prepares the A register to get the ALU output.

1

opcode bit
comp bits
dest bits
jump bits

1110011111010111

D=D+1;JMP

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 45

CPU implementation: Instruction handling

writeM

1110011111010111

outM

011111

0

Result: the ALU computes the specified function
which becomes the ALU output

Handling C-instructions (the computation bits)
• Routes the instruction’s c-bits to the ALU control bits
• Routes the instruction’s a-bit to the Mux16

inM

opcode bit
comp bits
dest bits
jump bits

D=D+1;JMP

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 46

CPU implementation: Instruction handling

writeM

outM

ALU output:
• Result of ALU calculation
• Fed simultaneously to D-register, A-register, data memory
• All enabled/disabled by control bits

inM

opcode bit
comp bits
dest bits
jump bits

1110011111010111

D=D+1;JMP

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 47

CPU implementation: Instruction handling

writeM

1110011111010111

outM

0
1

0

Handling C-instructions (the destination bits)
Routes the instruction's d-bits to the control (load) bits of the
A-register, D-register, and to the writeM bit

Result: Only the enabled destinations get the ALU output

inM

opcode bit
comp bits
dest bits
jump bits

D=D+1;JMP

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 48

CPU implementation: Instruction handling

writeM

1110011111010111

outM

011111

0

1

• Executes dest = comp

• Figures out which instruction to execute next

Handling C-instructions (recap)

0
1

0
inM

opcode bit
comp bits
dest bits
jump bits

D=D+1;JMP

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 49

CPU implementation: Control

jump j1 j2 j3 condition

null 0 0 0 no jump
JGT 0 0 1 if (ALU out > 0) jump
JEQ 0 1 0 if (ALU out = 0) jump
JGE 0 1 1 if (ALU out ≥ 0) jump
JLT 1 0 0 if (ALU out < 0) jump
JNE 1 0 1 if (ALU out ≠ 0) jump
JLE 1 1 0 if (ALU out ≤ 0) jump
JMP 1 1 1 Unconditional jump

ALU

f

out

zr ng
if (out == 0) zr = 1, else zr = 0
if (out < 0) ng = 1, else ng = 0

Jump decision:
J (j1, j2, j3, zr, ng) = 1 if condition is true,

0 otherwise

J can be computed using gate logic,
And then help compute the address
of the next instruction

Symbolic
syntax:

1 1 1 a c c c c c c d d d j1 j2 j3
Binary
syntax:

dest = comp ; jump

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 50

CPU implementation: Control

pc

zr ng

address of next instruction

How to compute it?

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 51

CPU implementation: Control

load

16

1

16

111accccccdddjjj

...

address of next
instruction

pc

zr ng

PC (program counter) abstraction:

Outputs the address of the next instruction:
• reset: PC ß 0

• no jump: PC++

• jump: if (condition) PCßA // A contains the address of the
// jump destination

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 52

CPU implementation: Control

load

16

1

16

...

pc

load zr ng

PC (program counter) implementation:

if (reset==1) PC ß 0 // reset

else
if (J (jump bits, zr, ng) == 1) PCßA // jump

else PC++ // next instruction

111accccccdddjjj

address of next
instruction

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 53

CPU implementation

pc

• Executes the current instruction

• Figures out which instruction to execute next.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 54

• Basic architecture

• Fetch-Execute cycle

• The Hack CPU

• Input / output

Chapter 5: Computer Architecture

• Memory

• Computer

• Project 5: Chips

• Project 5: Guidelines

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 55

Hack computer

I/O devices

• Screen (black and white)

• Keyboard (regular)

program

Instruction Memory CPU

PC

ALUA register

D register

Data

Data Memory

address

instruc-
tion

write

read

address

keyboard mem. map

Hello,
world

screen memory map

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 56

Screen

load

Screen

The screen memory map is implemented
as an 8K memory chip named Screen

1111010100000000
0000000000000000

0000000000000001

0
1

. . .
31

0000101000000000
0000000000000000

0000000000000000

32
33
. . .
63
. . .

1011010100000000
0000000000000000

0000000000000000

8159
8160

. . .
8191

in

16

address

13

out

16

/** Memory of 8K 16-bit registers
with a display-unit side effect. */

CHIP Screen {
IN address[13], in[16], load;
OUT out[16];
BUILTIN Screen;
CLOCKED in, load;

}

Screen

...

0 1 2 3 4 5 6 7 8 ... 511

0
1

...

...

...

...255

Physical screen

refresh

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 57

Hack computer

I/O devices

• Screen (black and white)

• Keyboard (regular)

program

Instruction Memory CPU

PC

ALUA register

D register

Data

Data Memory

address

instruc-
tion

write

read

address

keyboard mem. map

Hello,
world

screen memory map

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 58

Keyboard

0000000000000000

Keyboard
k

code('k') = 75

0000000001001011
out

16

refresh

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 59

Keyboard

0000000000000000

Keyboard

refresh

out

16

/** 16-bit register that outputs the character code of the
currently pressed keyboard key, or 0 if no key is pressed */
CHIP Keyboard {

OUT
out[16];
BUILTIN Keyboard;

}

The keyboard memory map
is implemented as a 16-bit
memory register named
Keyboard

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 60

The Hack character set
key code

(space) 32

! 33

“ 34

35

$ 36

% 37

& 38

‘ 39

(40

) 41

* 42

+ 43

, 44

- 45

. 46

/ 47

key code

0 48

1 49

… …

9 57

: 58

; 59

< 60

= 61

> 62

? 63

@ 64

key code

A 65

B 66

C …

… …
Z 90

[91

/ 92

] 93

^ 94

_ 95

` 96

key code

a 97

b 98

c 99

… …
z 122

key code

newline 128

backspace 129

left arrow 130

up arrow 131

right arrow 132

down arrow 133

home 134

end 135

Page up 136

Page down 137

insert 138

delete 139

esc 140

f1 141

.
f12 152

{ 123

| 124

} 125

~ 126

(Subset of Unicode)

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 61

Hack computer

program

Instruction Memory CPU

PC

ALUA register

D register

Data Memory

address

instruc-
tion

write

read

address

Hello,
world

screen memory map

keyboard mem. map

I/O devices

• Screen (black and white)

• Keyboard (regular)

More I/O devices can be added, as needed
Each requiring a memory map, and an interaction contract
Managed jointly by the hardware and the OS.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 62

• Memory

• Computer

• Project 5: Chips

• Project 5: Guidelines

• Basic architecture

• Fetch-Execute cycle

• The Hack CPU

• Input / output

Chapter 5: Computer Architecture

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 63

Symbolic programming

• Control

• Variables

• Labels

Overview

• Intro

• Computer architecture

• The Hack CPU

• Input / output

• Memory

Memory

program

Instruction Memory CPU

PC

ALUA register

D register

Data

Data Memory

address

instruc-
tion

write

read

address

Hello,
world

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 64

Memory: Abstraction

Memory

in

16

1
0

24576

address

15

out

16

load

2
...

Reading register i:
address ß i
Probe out

Setting register i to v:
in ß v
address ß i
load ß 1

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 65

Memory: Implementation

Memory

in

16 RAM16K

16383

0

Keyboard24576
24575

16384
Screen

(8K)

address

15

out

16

load

screen
memory map

keyboard
memory map

data

Reading register i:
address ß i
Probe out

Setting register i to v:
in ß v
address ß i
load ß 1

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 66

Memory: Implementation

RAM16K

in

16

address

14

out

16

built in project 3

Memory architecture
• An aggregate of three chip-parts: RAM16K, Screen, Keyboard
• Single address space, 0 to 24576

• Maps the address input onto the corresponding address input of the relevant chip-part.

Keyboard
out

16

built-in chip

in

16

address

13

out

16
Screen

Hello,
world

built-in chip

Memory

in

16 RAM16K

16383

0

Keyboard24576
24575

16384
Screen

(8K)

address

15

out

16

load

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 67

Instruction memory

Symbolic programming

• Control

• Variables

• Labels

Overview

• Intro

• Computer architecture

• The Hack CPU

• Input / output

• Memory

program

Instruction Memory CPU

PC

ALUA register

D register

Data

Data Memory

address

instruc-
tion

write

read

address

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 68

Instruction memory

Symbolic programming

• Control

• Variables

• Labels

Overview

• Intro

• Computer architecture

• The Hack CPU

• Input / output

• Memory

program

ROM32K CPU

PC

ALUA register

D register

Data

Memory

address

instruc-
tion

write

read

address

0000000000001101
1110101001010101
0000000000000001
1110101001101011
0000001100110101
1110010111011111
.
.
.
1111001001100111

Hack Program

load

Hardware implementation
Plug-and-play ROM chip,
named ROM32K
(pre-loaded with a program)

/** Read-Only memory (ROM),
acts as the Hack computer instruction memory. */

CHIP ROM32K {
IN address[15];
OUT out[16];
BUILTIN ROM32K;

}

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 69

Instruction memory

Symbolic programming

• Control

• Variables

• Labels

Overview

• Intro

• Computer architecture

• The Hack CPU

• Input / output

• Memory

program

CPU

PC

ALUA register

D register

Data

address

instruc-
tion

write

read

address

0000000000001101
1110101001010101
0000000000000001
1110101001101011
0000001100110101
1110010111011111
.
.
.
1111001001100111

Hack Program

load

Hardware simulation
• Programs are stored in text files;
• The simulator software features a

load-program service.

ROM32K Memory

Hardware implementation
Plug-and-play ROM chip,
named ROM32K
(pre-loaded with a program)

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 70

• Memory

• Computer

• Project 5: Chips

• Project 5: Guidelines

Chapter 5: Computer Architecture

• Basic architecture

• Fetch-Execute cycle

• The Hack CPU

• Input / output

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 71

Symbolic programming

• Control

• Variables

• Labels

Overview

• Intro

• Computer architecture

• The Hack CPU

• Input / output

• Memory

Hack computer architecture

program

CPU

PC

ALUA register

D register

Data

address

instruc-
tion

write

read

address

Hello,
world

Remaining challenge
Integrate into a single Computer chip

ROM32K Memory

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 72

Computer abstraction

if (reset == 1), executes the first
instruction in the stored program

if (reset == 0), executes the next
instruction in the stored program

Assumption:

The computer
is loaded with
a program
written in the
Hack machine
language

reset

Computer abstraction:

like pushing
and releasing
a button

To execute the stored program:

set reset ← 1, then

set reset ← 0

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 73

Computer implementation

Hello,
world

reset

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 74

Computer implementation

Hello,
world

reset

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 75

Computer implementation

“Make everything as simple as possible, but no simpler.”
– Albert Einstein

Hello,
world

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 76

• Memory

• Computer

• Project 5: Chips

• Project 5: Guidelines

Chapter 5: Computer Architecture

• Basic architecture

• Fetch-Execute cycle

• The Hack CPU

• Input / output

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 77

Hack computer

Computer

Hello,
world

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 78

Hack computer

Hello,
world

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 79

CPU

/** Central Processing unit.
Executes instructions written in Hack machine language.

CHIP CPU {

IN
inM[16], // Value of M (RAM[A])
instruction[16], // Instruction to execute

reset; // Signals whether to execute the first instruction
// (reset==1) or next instruction (reset == 0)

OUT
outM[16] // Value to write to the selected RAM register
writeM, // Write to the RAM?

addressM[15], // Address of the selected RAM register

pc[15]; // Address of the next instruction

PARTS:
// Put you code here:

}

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 80

CPU implementation

Mux16

ALU

And, Or, Not ...

ARegister

DRegister

PC

Chip parts:

Built in
project 1 and
project 2

Built in project 3
ARegister and Dregister
are built-in Register chips

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 81

CPU implementation

Implementation
• Use HDL to route instruction bits to chip-parts
• Use gate logic to compute the address of the next

instruction

Tips
• No need for “helper chips”
• Use logic gates and HDL for

implementing everything.

1110011111010111

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 82

Computer

Hello,
world

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 83

Memory

in

16

address

15

out

16

load

Memory

/** Complete address space of the computer’s data memory,
including RAM and memory mapped I/O.

Outputs the value of the memory location specified by address.

If (load==1), the in value is loaded into the memory location
specified by address.

Address space rules:
Only the upper 16K+8K+1 words of the memory are used.

Access to address 0 to 16383 results in accessing the RAM;

Access to address 16384 to 24575 results in accessing
the Screen memory map;

Access to address 24576 results in accessing the Keyboard
memory map.

*/

CHIP Memory {

IN address[15], in[16], load;
OUT out[16];

PARTS:
// Put your code here.

}

Memory.hdl

RAM16K

16383

0

Keyboard24576
24575

16384
Screen

(8K memory map)

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 84

Memory

in

16

address

15

out

16

load

Memory implementation

RAM16K

16383

0

Keyboard24576
24575

16384
Screen

(8K memory map)

/** Memory of 16K 16-bit registers */
CHIP RAM16K {

IN
address[14], in[16], load;

OUT
out[16];

BUILTIN RAM16K;
CLOCKED in, load;

}

built in project 3

Implementation tip:
Use logic gates for mapping the address
input on the corresponding address
input of the relevant chip-part.

/** Memory of 8K 16-bit registers
with a display unit side effect. */

CHIP Screen {
IN

address[13], in[16], load;
OUT

out[16];

BUILTIN Screen;
CLOCKED in, load;

} /** 16-bit register with a
keyboard input side effect */

CHIP Keyboard {

OUT
out[16];
BUILTIN Keyboard;

}

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 85

Instruction memory

reset
ROM32K.hdl

/** Read-Only memory (ROM),
acting as the Hack computer instruction memory. */

CHIP ROM32K {

IN address[15];

OUT out[16];

BUILTIN ROM32K;

}

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 86

Computer

reset

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 87

Computer implementation

reset

/** The Hack computer, including CPU, RAM and ROM, loaded with a program.
When (reset==1), the computer executes the first instruction in the program;
When (reset==0), the computer executes the next instruction in the program. */

CHIP Computer {

IN reset;

PARTS:
// Put your code here.

}

Computer.hdl

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 88

Chapter 5: Computer Architecture

• Memory

• Computer

• Project 5: Chips

• Project 5: Guidelines

• Basic architecture

• Fetch-Execute cycle

• The Hack CPU

• Input / output

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 89

Project 5

Build three chips:

• Memory.hdl chip-parts: RAM16K, Screen, Keyboard

• CPU.hdl chip-parts: ARgister, DRegister, PC, ALU, ...

• Computer.hdl chip-parts: CPU, Memory, ROM32K

• (All the chip-parts should be built-in chips, except for Memory and CPU)

Tools

• Text editor

• Hardware simulator

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 90

Testing the Computer chip

reset

/** The Hack computer, including CPU, RAM and ROM, loaded with a program.
* When (reset==1), the computer executes the first instruction in the program;
* When (reset==0), the computer executes the next instruction in the program. */

CHIP Computer {

IN reset;

PARTS:
// Put your code here.

}

Computer.hdl

Testing logic:

• Load Computer.hdl into the
hardware simulator

• Load a Hack program
into the ROM32K chip-part

• Run the clock enough cycles
to execute the program

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 91

Testing the Computer chip

Testing logic:

• Load Computer.hdl into the
hardware simulator

• Load a Hack program
into the ROM32K chip-part

• Run the clock enough cycles
to execute the program

Test programs

• Add.hack:
RAM[0] ← 2 + 3

• Max.hack:
RAM[2] ← max(RAM[0], RAM[1])

• Rect.hack:
Draws a rectangle of RAM[0] rows
of 16 pixels each.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 92

Testing the Computer chip

load Computer.hdl,
output-file ComputerMax.out,
compare-to ComputerMax.cmp,
output-list time reset ARegister[] DRegister[] PC[]

RAM16K[0] RAM16K[1] RAM16K[2];

// Loads a Hack program (that executes R2 = max(R0,R1))
ROM32K load Max.hack,

// Test 1: computes max(3,5)
set RAM16K[0] 3,
set RAM16K[1] 5,
output;
repeat 14 {

tick, tock, output;
}

// Resets the PC
set reset 1,
tick, tock, output;

// Test 2: computes max(23456,12345)
set reset 0,
set RAM16K[0] 23456,
set RAM16K[1] 12345,
output;
repeat 14 {

tick, tock, output;
}

Testing logic:

• Load Computer.hdl into the
hardware simulator

• Load a Hack program
into the ROM32K chip-part

• Run the clock enough cycles
to execute the program

ComputerMax.tst

Test programs

• Add.hack:
RAM[0] ← 2 + 3

• Max.hack:
RAM[2] ← max(RAM[0], RAM[1])

• Rect.hack:
Draws a rectangle of RAM[0] rows
of 16 pixels each.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 93

Testing the Computer chip

Testing logic:

• Load Computer.hdl into the
hardware simulator

• Load a Hack program
into the ROM32K chip-part

• Run the clock enough cycles
to execute the program

Rect.hack output:

R0

Test script

• ComputerRect.tst

• Inspect it, and understand the testing logic.

Test programs

• Add.hack:
RAM[0] ← 2 + 3

• Max.hack:
RAM[2] ← max(RAM[0], RAM[1])

• Rect.hack:
Draws a rectangle of RAM[0] rows
of 16 pixels each.

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 94

What’s next?

abstraction

computer

abstraction

ALU, RAM

abstraction

elementary
logic gates

abstraction

Nand

Building
gates

machine
language

hardware platform

Building
chips

Building a
computer

Developing
an assembler

p2

p3 p1

p4 Writing low-level
programs

p5

This chapter

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 95

What’s next?

abstraction

computer

abstraction

ALU, RAM

abstraction

elementary
logic gates

abstraction

Nand

Building
gates

machine
language

hardware platform

Building
chips

Building a
computer

Developing
an assembler

p2

p3 p1

p4 Writing low-level
programs

p5

p6 Next chapter

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 96

End note: Memory hierarchy

Memory CPU

ALU

register

register

register

�
�
�

�
�
�

Challenges

• Slow access time

• Limited memory space

instructions, data

addresses, data

Separate chips,
bits travel long distances

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 97

End note: Memory hierarchy

Memory CPU

ALU

register

�
�
�

Mass
Storage

register

register

�
�
�

�
�
�

Cache

Challenges

• Slow access time

• Limited memory space

Typical solutions

• Cache memory

• External storage

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 98

End note: Memory hierarchy

Memory CPU

ALU

register

�
�
�

Mass
Storage

more storage space, slower access time

register

register

�
�
�

�
�
�

Cache

Memory hierarchy:

Nand to Tetris / www.nand2tetris.org / Chapter 5 / Copyright © Noam Nisan and Shimon Schocken Slide 99

End note: Memory hierarchy

Memory CPU

ALU

register

�
�
�

Mass
Storage

register

register

�
�
�

�
�
�

Cache

• Mass storage and cache memory are possible extensions
• The basic Hack computer is built without them.

