Project 6

Low-level programs written in symbolic machine language are called assembly programs.
Programmers rarely write programs directly in machine language. Rather, programmers who
develop high-performance programs (e.g. system software, mission-critical apps, and software for
embedded systems) often inspect the assembly code generated by compilers. They do so in order
to understand how their high-level code is actually deployed to the hardware, and how that code
can be optimized for gaining better performance. One of the players in this process is the program
that translates code written in a symbolic machine language into code written in binary machine
language. This program is called an assembler.

Objective

Develop an assembler that translates programs written in the Hack assembly language into Hack
binary code. This version of the assembler assumes that the source assembly code is valid. Error
checking, reporting and handling can be added to later versions of the assembler, but are not part
of this project.

Resources

The main tool needed for completing this project is the programming language in which you will
implement your assembler, following the specifications and APIs described in the relevant lecture
and book chapter 6. In addition, you will need the supplied assembler, for comparing the binary
code generated by your assembler to the code generated by the supplied assembler. And, if you
wish to execute the translated code and inspect its behavior, you can do so using the CPU
emulator.

Contract

When given to your assembler as a command-line argument, a Prog.asm file containing a valid
Hack assembly language program should be translated correctly into Hack binary code, and stored
in a file named Prog.hack, located in the same folder as the source file (if a file by this name exists,
it is overridden). The output produced by your assembler must be identical to the output produced
by the supplied assembler.

Development plan

We suggest building and testing the assembler in two stages. First, write a basic assembler that
translates programs that contain no symbolic references (i.e., neither variables nor labels). Then
extend your assembler with symbol handling capabilities.

Test programs

The first test program listed below has no symbolic references. The remaining test programs come
in two versions: Prog.asm and ProglL.asm, which are with and without symbolic references,
respectively.

Add.asm: Adds the constants 2 and 3, and puts the result in RO.

Max.asm: Computes max(R0, R1) and puts the result in R2.



Rect.asm: Draws a rectangle at the top left corner of the screen. The rectangle is 16 pixels wide,
and RO pixels high. Before running this program, put a non-negative value in RO.

Pong.asm: A classical single-player arcade game. A ball bounces repeatedly off the screen’s "walls."
The player attempts to hit the ball with a paddle, by pressing the left and right arrow keys. For
every successful hit, the player gains a point and the paddle shrinks a little, to make the game more
challenging. If the player misses the ball, the game is over. To quit the game, press ESC. Note: The
Pong program was developed using tools presented in Part Il of the course and the book. In
particular, the game software was written in the high-level Jack language, and translated into the
given Pong.asm file by the Jack compiler. Although the high-level Pong program is only about 300
lines of code, the executable Pong application is about 20,000 lines of binary code, most of which
being the Jack operating system. Before running the code, select ‘No animation’ from the
‘Animation’ menu (meaning, no code highlighting). You can control the code’s execution speed
using the speed slider. The game will start after a few seconds, during which the OS initializes.

Testing

Let Prog.asm be an assembly Hack program, e.g. one of the given test programs. There are
essentially two ways to test if your assembler translates Prog.asm correctly. First, you can load the
Prog.hack file generated by your assembler into the supplied CPU emulator, execute it, and check
that the program does what is described in its documentation.

The second testing technique is more direct: It compares the code generated by your assembler to
the code generated by the supplied assembler. To begin with, rename the file generated by your
assembler to Progl.hack. Next, load Prog.asm into the supplied assembler, and translate it. If your
assembler is working correctly, it follows that Progl.hack must be identical to the Prog.hack file
produced by the supplied assembler. This comparison can be done by loading Progl.asm as a
compare file. If needed, see the assembler tutorial.

Known bug: According to the Hack language C-instruction specification, two of the possible eight
destinations are DM=... and ADM-=... (these directives allow storing the ALU output in several
destinations, simultaneously). However, the supplied Hack assembler flags these symbolic
mnemonics as syntax errors, expecting instead MD=... and and AMD=.. This bug will be fixed in the
next version of the supplied Hack assembler. When developing your assembler, handle this issue by
accepting either DM or MD as standing for the destination d-bits 011, and either ADM or AMD as
standing for the d-bits 111.

References

Assembler Tutorial (click slideshow)

CPU Emulator demo (in case you want to execute the programs generated by your assembler)



https://docs.google.com/presentation/d/1C10JSIwKVlz5WyvHzUtZkjrZpZMqe8n1?rtpof=true&authuser=schocken%40gmail.com&usp=drive_fs
https://www.youtube.com/watch?v=8XieZhHNFVY&list=PLYM3zllSC3SVdjWQUfedxssewHRS7EHuA&index=8

