
Project 6

Low-level programs written in symbolic machine language are called assembly programs.

Programmers rarely write programs directly in machine language. Rather, programmers who

develop high-performance programs (e.g. system software, mission-critical apps, and software for

embedded systems) often inspect the assembly code generated by compilers. They do so in order

to understand how their high-level code is actually deployed to the hardware, and how that code

can be optimized for gaining better performance. One of the players in this process is the program

that translates code written in a symbolic machine language into code written in binary machine

language. This program is called an assembler.

​Objective
Develop an assembler that translates programs written in the Hack assembly language into Hack

binary code. This version of the assembler assumes that the source assembly code is valid. Error

checking, reporting and handling can be added to later versions of the assembler, but are not part

of this project.

Resources

The main tool needed for completing this project is the programming language in which you will

implement your assembler, following the specifications and APIs described in the relevant lecture

and book chapter 6. In addition, you will need the supplied assembler, for comparing the binary

code generated by your assembler to the code generated by the supplied assembler. And, if you

wish to execute the translated code and inspect its behavior, you can do so using the CPU

emulator.

Contract

When given to your assembler as a command-line argument, a Prog.asm file containing a valid

Hack assembly language program should be translated correctly into Hack binary code, and stored

in a file named Prog.hack, located in the same folder as the source file (if a file by this name exists,

it is overridden). The output produced by your assembler must be identical to the output produced

by the supplied assembler.

Development plan

We suggest building and testing the assembler in two stages. First, write a basic assembler that

translates programs that contain no symbolic references (i.e., neither variables nor labels). Then

extend your assembler with symbol handling capabilities.

Test programs

The first test program listed below has no symbolic references. The remaining test programs come

in two versions: Prog.asm and ProgL.asm, which are with and without symbolic references,

respectively.

Add.asm: Adds the constants 2 and 3, and puts the result in R0.

Max.asm: Computes max(R0, R1) and puts the result in R2.

www.nand2tetris.org / Copyright © Noam Nisan and Shimon Schocken



Rect.asm: Draws a rectangle at the top left corner of the screen. The rectangle is 16 pixels wide,

and R0 pixels high. Before running this program, put a non-negative value in R0.

Pong.asm: A classical single-player arcade game. A ball bounces repeatedly off the screen’s "walls."

The player attempts to hit the ball with a paddle, by pressing the left and right arrow keys. For

every successful hit, the player gains a point and the paddle shrinks a little, to make the game more

challenging. If the player misses the ball, the game is over. To quit the game, press ESC. Note: The

Pong program was developed using tools presented in Part II of the course and the book. In

particular, the game software was written in the high-level Jack language, and translated into the

given Pong.asm file by the Jack compiler. Although the high-level Pong program is only about 300

lines of code, the executable Pong application is about 20,000 lines of binary code, most of which

being the Jack operating system. Before running the code, select ‘No animation’ from the

‘Animation’ menu (meaning, no code highlighting). You can control the code’s execution speed

using the speed slider. The game will start after a few seconds, during which the OS initializes.

Testing

Let Prog.asm be an assembly Hack program, e.g. one of the given test programs. There are

essentially two ways to test if your assembler translates Prog.asm correctly. First, you can load the

Prog.hack file generated by your assembler into the supplied CPU emulator, execute it, and check

that the program does what is described in its documentation.

The second testing technique is more direct: It compares the code generated by your assembler to

the code generated by the supplied assembler. To begin with, rename the file generated by your

assembler to Prog1.hack. Next, load Prog.asm into the supplied assembler, and translate it. If your

assembler is working correctly, it follows that Prog1.hack must be identical to the Prog.hack file

produced by the supplied assembler. This comparison can be done by loading Prog1.asm as a

compare file. If needed, see the assembler tutorial.

Known bug: According to the Hack language C-instruction specification, two of the possible eight

destinations are DM=... and ADM=... (these directives allow storing the ALU output in several

destinations, simultaneously). However, the supplied Hack assembler flags these symbolic

mnemonics as syntax errors, expecting instead MD=... and and AMD=.. This bug will be fixed in the

next version of the supplied Hack assembler. When developing your assembler, handle this issue by

accepting either DM or MD as standing for the destination d-bits 011, and either ADM or AMD as

standing for the d-bits 111.

References

Assembler Tutorial (click slideshow)

CPU Emulator demo (in case you want to execute the programs generated by your assembler)

www.nand2tetris.org / Copyright © Noam Nisan and Shimon Schocken

https://docs.google.com/presentation/d/1C10JSIwKVlz5WyvHzUtZkjrZpZMqe8n1?rtpof=true&authuser=schocken%40gmail.com&usp=drive_fs
https://www.youtube.com/watch?v=8XieZhHNFVY&list=PLYM3zllSC3SVdjWQUfedxssewHRS7EHuA&index=8

