Kontrollbit-Designpunkte
Lassen Sie mich die Hauptpunkte des CPU-Designs analysieren

1.Wie wahlt der erste Mux den Eingang aus? Offensichtlich hofft man flr den
A-Befehl, den Befehl als Adresse in das A-Register einzulesen. Wenn der
Befehl ein C-Befehl ist, wird die ALU ausgewahlt aluoutput.

2.Der A-Befehl muss auf das A-Register zugreifen, und der C-Befehl beurteilt
anhand des 5. Bits des Befehls, ob auf das A-Register zugegriffen werden
soll.

3.Wird die Ausgabe des A-Registers in den Speicher

zurlickgeschrieben writeM? Der A-Befehl schreibt niemals zuriick, und der
C-Befehl beurteilt anhand des dritten Bits.

4.Der Sprungzugriff auf das D-Register D register, das M-

Register inMund den PC loadhat nichts mit dem A-Befehl zu tun. Wenn es
sich also um einen A-Befehl handelt, ist das Steuerbit @B&)®) falsch; die
Steuerinformationen bei @), der C-Befehl wird entsprechend beurteilt 4. Bit;
5.6 Steuerinformationen: Der C-Befehl beurteilt anhand des 12. Bits;

6.6 Fur Steuerinformationen beurteilt der C-Befehl anhand des 6. bis 11.
Bits;

7. ist die Symbolausgabebitsumme der ALU , ngund z rdie Untertabelle
gibt das negative Bit und das Nullbit an, und das positive Bit kann indirekt
berechnet werden.

8.Wenn das negative Bit, das Nullbit und das positive Bit jeweils jmpmit der
Phase des C-Befehls kombiniert werden und keines davon Null ist (es liegt
ein Sprung vor), wird das Sprungsteuerbit bei (8 erhalten true.

Al

1
i

g Ik

o

od

-

Wssaippe

N@IIM

WIno

Indino sauno) wesboid

indino ssaippe Aowaw —_—

sJ

indino Ny

indino Ny

®l
o] 11q 19531
1953l
)
2 _:ﬁ__m,_wo
izsibas v
®
indur w
Wul
4
O]
gTXNN uononnsul

uonerado NdD

19sal

WSSaippe
- 2 o indino

WNOWIM s2 sarsibas v
indur W
Wul
2
al O 3<A 4
TN) Oe sas1691 9TXNW uonaNNSuUI
s |

dwnljeuonipuodun [¢ 1 1| dwc
dunfgsinog|g 1 T| 37C
dunfg#3no |t @ T| 3NnC
dumfg>3noji|e o T| 11C
dunfgzynoyi|t T @| 39C
dunfg=3nojife T o d3c
dumlg<ynoift @ @| 19¢C
dumlfou|g @ @| TTNU

1waya |ec zf tf| dwnl

CPIP9 S92 92 €2 02128ET1TT1TI1

¥

S

- st 3

dun(¢ dwoo

= Jsap

‘XeJuAs Areurg

“XRJUAS d1[OqUIAS

uonedIyI0ads uononnsui-))

1q [0NU0D § XN 2 03 (2poo-do) S S, UONINIISUT Y} SANOY

Suononnsul-y suljpuey

" 59 2 i "
] 1

- t]

W3um | — | WuT
. GTXNW) :
I
1 9 S©
0_cA

Wino | - smmibaiy gTXnN UORONASY

" - sasifia g ﬂ :
[#) |
] 1
1 s 5 1
] 1
] 1
" inding Ty -() ndino N "
I]

" 59 e A. "
e ! = |
W=1um " indur w “ WUt
" 9TXNN I dWCT+a=0
I
I IITeTeTITITeeTIT
-—10 3<A
waino | sasibas y 9T uogINASY|
" sasibian g 1 "
| t 0 |
" TIITT0 T :
I]
" ncino Ty () anding Ny "
I 1

I==D e==p

dwnf [puorgpuooun | T T T [oW tetet o|wa| vie
dumlpSdwosji| @ 1 T | I eee @@ o|wa| v
dumlp#dworgr| T @ T | 3N T1T1 8@ @|aw| ov
dumlp-dwosyr| @ @ T | 170 TTe et @f|wal| va 9L5¥T OEX
dumlpZadworpn| Tt 1 @ | 390 @Te 8@ 8| Wwa| v PEEIT NIMDS
dumlp=cdworpi| e 1 @ bar @1T@ @1 T|IW -v M M”.._.P
dumfp<dwosyr| T @ @[1o *TT i e 0 g z oy
donfoule o o rom TTT @1 ©| teW| 1aw : m
- TTTTIT @ 140
wagg [1 1 dumf TTe et t|wW v- . e
d—t.x_uu- TUQBMY] T T 1 Wav ITTTT@ @ o m.n. mﬂm
Sugpmiuy|e 1 1 av Te@e @1 T| W vi z 74
[vlwwgpmeSuy| T @ T | W TetT T @ @ Qi 1 T
Suvie @ 1| V¥ eee e T T| W v 8 oy
nﬂ%uen?m”: T 1T @ Wl ee@eT T @ @ a anEs [oquiks
(Su)msiBug| @ T @ a eTeTTICT - .
Wi | T @ o| w TEEEX B T gyl pragrpey
pumsjousioneadp | @ @ @ | rrou aTeT@ T i
wmdwora301s Yy P P P Isap 222 02 22 dwo

Hippps3323opyT Ameug
(pomwwo 51 £ 2y “Aadwia sy dum/ 3] E—
Panwo s1 = g “Kiduid s1 2 uonsnasui
- .Mﬂ..ﬂuﬂ st H...ﬂw“ dum/ fdwoo = js3p oquks))

(xxxjoanEaug-¢1 = 4™ 44) sasaadaassanaaa g Amug

(anEA [BUIIIP © YINS 03 pUNOG [OUIAS B 10 UOHINISUI
“L9LTE 01 O wingy SurSues an[Ea [FUNIIP € ST XXX) xxx@ ooquis

uonesyoads a3enSue] yorl Ay

W33
—
v o
s)sut

H9 0o

oY)

w/vY

N ye
o]

A

197
g]
A.ﬁsga

u

Iyl,‘

Kza

Brsut

%
ﬁw—n._ (3

4420000

https://www.bencode.net/posts/2017-04-17-div-computer-architecture/

7 O

T 19S9Yy
shng ssaJppy uoldnlisuj v
o " mo I uig - O
T Jul peoj 1asal 91 sng uj ejeq

CIomiod D

sng ssalppy eleq
O =

ST
ajqeus am

)

|oJ3u0)

aposag

sng nsuj

SsCE——r
i 7
sng 1nQ ejeq nun
o S (AX)M 21807
9% nawYIY e
v
wke o 183sifay a w
91 peo| 9T
I
91

https://www.bencode.net/posts/2017-04-17-diy-computer-architecture/

Projekt 05: Computer

Nach einem Projekt, das scheinbar aus dem Nichts kam, klingt es beruhigend, dass wir wieder mit dem Bau der
Computerhardware beginnen. Zuerst missen wir uns fur die Architektur entscheiden. Es ist Gblich, einen Computer
auf der Von-Neumann-Architektur aufzubauen. Aber Canon Von Neumann speichert sowohl Anweisungen als auch
Daten in einer einzigen Speichereinheit, Gblicherweise RAM, sodass die CPU beides dndern kann. Dennoch wird ein
winziges ROM benétigt, um die CPU beim Bootvorgang zu unterstitzen. In unserer Anwendung werden wir jedoch
einfach zwei Einheiten ahnlicher Gro3e verwenden. Das bedeutet, dass unser Computer mit einem einzigen ROM nur
ein bestimmtes Programm ausfuhren kann. Dies wird als Harvard-Architektur bezeichnet, technisch gesehen eine
Teilmenge von Yon Neumann. Auch AVR-Mikrocontroller nutzen diese Architektur.

Das bedeutet also, dass sich im Computer drei Dinge befinden: CPU, ROM und RAM. Da wir in Projekt 03 RAM erstellt
haben und ROM integriert ist, bleibt nur noch die CPU ubrig.

Die CPU muss:
Lesen Sie die Anweisungen aus dem ROM
*Daten aus dem RAM lesen
*Berechnen Sie etwas
*Schreiben Sie Daten auf A, D und RAM
*Flhren Sie die Anweisungen einzeln aus

*Springen Sie zu einer anderen Anweisung, wenn der Programmierer dies verlangt

Als ich die Anforderungen las, wusste ich sofort, dass es eine Menge interner Kabel geben wird. Glicklicherweise
haben die Autoren ein Blockdiagramm bereitgestellt, das diesem ahnelt:

9% 1254 ||$594
d | \733

WM G— |
2l

W&

Huch! Was ist mit den Fragezeichen? Anscheinend handelt es sich um die eigene Version des Spoiler-Alarms der
Autoren. Ich musste selbst herausfinden, was sie sind, und das ist gut so. Ich mag Herausforderungen.

Stellen wir zunachst sicher, dass wir wissen, was jeder Pin/Chip tut.
*Die Anweisung im ROM kommt vom Pininstruction
*Daten vom RAM kommen vom PininM
*Sowohl RAM- als auch ROM-Adressen werden mit ausgewahltaddressM
*Die ALU nimmt zwei Register und gibt einen Ausgang aus
*Das A- und D-Register akzeptieren Eingaben von ALU
*Die ALU-Ausgabe geht auch Gber an den RAMoutM
*writeMweist den RAM an, Daten zu laden

*Der PC erhoht, setzt zurtick oder springt zur Anweisung

Was ist Uberhaupt eine Anweisung? Es handelt sich um einen 16-Bit-Wert, der beschreibt, was die CPU in diesem
Taktzyklus tun soll. Ein Assembler, den wir in Projekt 06 schreiben werden, Ubersetzt Assembler in Binarcode, aber in
diesem Projekt gehen wir davon aus, dass er aus dem Nichts kommt.

Was die 16 Bits darstellen, hangt von der Art der Anweisung ab, die Sie schreiben. Es wird durch das héchste Bit
angegeben, das als Opcode bezeichnet wird . In einem A-Befehl ist der Opcode 0, gefolgt von 15 Adressbits. Wenn
man bedenkt, dass unsere groliere Speichereinheit, ROM, 32768 Worter betragt, sind 15 sinnvoll. In diesem Fall
speichert die CPU den Wert im A-Register.

Der C-Befehl mit Opcode 1 ist komplizierter, lauft aber auf vier Gruppen von Steuerbits hinaus:
fixed ALU control jump instruction

\ / N\ / \ /

| 111 | a | cl..c6 | d1..d3 | j1..j3 |

+
+
)_
}.
+
).

/ 0\ / \
A/M destination
*aentscheidet, ob die ALU D und A oder D und M aufnimmt.
¢cl..cbentsprechen Steuerbits auf der ALU.
*d1..d3Weisen Sie die CPU an, die ALU-Ausgabe jeweils auf A, D und M zu speichern.

*j1l..j3Weisen Sie die CPU an, zu ROM[A] zu springen, wenn die ALU jeweils <0, =0 und >0 ausgibt.

In einer Ahnung scheinen wir die Antwort auf die meisten Fragezeichen zu haben.

2

D
iY\S‘.tr - _lrr A Resls.’ber
e Register v > outM
inM 1

v
PC .
— writeM

l
oddressM veset P\g

Das ist einfach, aber falsch. Schauen wir uns den mit dem A-Register loadbeschrifteten Pin genauer an d1. @1Was
passiert, wenn wir versuchen, Adresse 1 mithilfe einer A-Anweisung hineinzuladen ? Lass es uns zusammenbauen:

0000 0000 0000 0001

™\ /

| N~

opcode integer value 1

Der Multiplexer auf der linken Seite lasst den Befehl durch, da opcodeer 0 ist, aber denken Sie daran, dass HDL nicht
erkennt d1, sondern nur instruction[5]. Was passieren wird, ist, dass das A-Register das Laden verweigert,
weil instruction[5]es Null ist. Etwas Ahnliches wird auch mit d2and passieren d3, daher fiigen wir eine kleine

Logik hinzu:

¢l.ch

instr- —‘rf

uctions 7 OlL'tM

inM

PC opcode
:h " D> wrieM

l
oddressM veset P\g

Dadurch wird sichergestellt, dass A, D und M genau dann Daten laden, wenn wir sie ausdruicklich dazu
auffordern. Jetzt richten wir unsere Aufmerksamkeit auf die einzigen zwei Fragezeichen, die noch Ubrig
sind: zrund ngvon der ALU kommen und loadin den PC gehen.

Fallt Ihnen etwas auf? j1..j3fehlen, also sind es definitiv sie. Denken Sie daran, dass wir den PC auf seinen Eingang
setzen kénnen, wenn wir ihn loadauf hoch ziehen, und auf diese Weise zu ROM[A] springen kdnnen. Aber wie?

¢l.ch

instr- —‘rf
uckions

inM

opcode
B D—F>writeM

l
oddressM veset P\g

Es ist eigentlich ganz einfach! Anscheinend haben die Autoren bei der Angabe der ALU genau dartber nachgedacht.

¢l.ch

instr-—
uctions /OlL'tM
inM

. ng " zr

1

’ o]

j2

PC 3 opeod
;h T B> wite

l
oddressM veset P\g

(Die tatsachlichen Tore kénnen abweichen)

Und das war's, wir haben eine CPU gemacht! Wir sind ganz nah am Computer; Alles, was wir tun mussen, ist, alle
Drahte anzuschliel3en. Ich fuhle mich zu mide, um ein weiteres Diagramm zu skizzieren. Hier ist das HDL:

CHIP Computer {

IN reset;

PARTS:
ROM32K(address=pc, out=instruction);
CPU(
inM=inM, instruction=instruction, reset=reset,
writeM=writeM, outM=outM, addressM=addressM, pc=pc
);

Memory(in=outM, address=addressM, load=writeM, out=inM);

https://fkfd.me/projects/nand2?tetris 1/

https://zhangruochi.com/Computer-Architecture/2019/06/03/

https://zhangruochi.com/Computer-Architecture/2019/06/03/
https://fkfd.me/projects/nand2tetris_1/

	Kontrollbit-Designpunkte
	Projekt 05: Computer

