
Kontrollbit-Designpunkte

Lassen Sie mich die Hauptpunkte des CPU-Designs analysieren

1.Wie wählt der erste Mux den Eingang aus? Offensichtlich hofft man für den
A-Befehl, den Befehl als Adresse in das A-Register einzulesen. Wenn der
Befehl ein C-Befehl ist, wird die ALU ausgewählt aluoutput.
2.Der A-Befehl muss auf das A-Register zugreifen, und der C-Befehl beurteilt
anhand des 5. Bits des Befehls, ob auf das A-Register zugegriffen werden
soll.
3.Wird die Ausgabe des A-Registers in den Speicher
zurückgeschrieben writeM? Der A-Befehl schreibt niemals zurück, und der
C-Befehl beurteilt anhand des dritten Bits.
4.Der Sprungzugriff auf das D-Register D register, das M-
Register inMund den PC loadhat nichts mit dem A-Befehl zu tun. Wenn es
sich also um einen A-Befehl handelt, ist das Steuerbit falsch; die ④⑤⑧
Steuerinformationen bei , der C-Befehl wird entsprechend beurteilt 4. Bit;④
5. ⑤ Steuerinformationen: Der C-Befehl beurteilt anhand des 12. Bits;
6. ⑥ Für Steuerinformationen beurteilt der C-Befehl anhand des 6. bis 11.
Bits;
7. ⑦ ist die Symbolausgabebitsumme der ALU , ngund zrdie Untertabelle
gibt das negative Bit und das Nullbit an, und das positive Bit kann indirekt
berechnet werden.
8.Wenn das negative Bit, das Nullbit und das positive Bit jeweils jmpmit der
Phase des C-Befehls kombiniert werden und keines davon Null ist (es liegt
ein Sprung vor), wird das Sprungsteuerbit bei erhalten⑧ true.

https://www.bencode.net/posts/2017-04-17-diy-computer-architecture/

https://www.bencode.net/posts/2017-04-17-diy-computer-architecture/

Projekt 05: Computer
Nach einem Projekt, das scheinbar aus dem Nichts kam, klingt es beruhigend, dass wir wieder mit dem Bau der
Computerhardware beginnen. Zuerst müssen wir uns für die Architektur entscheiden. Es ist üblich, einen Computer
auf der Von-Neumann-Architektur aufzubauen. Aber Canon Von Neumann speichert sowohl Anweisungen als auch
Daten in einer einzigen Speichereinheit, üblicherweise RAM, sodass die CPU beides ändern kann. Dennoch wird ein
winziges ROM benötigt, um die CPU beim Bootvorgang zu unterstützen. In unserer Anwendung werden wir jedoch
einfach zwei Einheiten ähnlicher Größe verwenden. Das bedeutet, dass unser Computer mit einem einzigen ROM nur
ein bestimmtes Programm ausführen kann. Dies wird als Harvard-Architektur bezeichnet, technisch gesehen eine
Teilmenge von Von Neumann. Auch AVR-Mikrocontroller nutzen diese Architektur.

Das bedeutet also, dass sich im Computer drei Dinge befinden: CPU, ROM und RAM. Da wir in Projekt 03 RAM erstellt
haben und ROM integriert ist, bleibt nur noch die CPU übrig.

Die CPU muss:

•Lesen Sie die Anweisungen aus dem ROM

•Daten aus dem RAM lesen

•Berechnen Sie etwas

•Schreiben Sie Daten auf A, D und RAM

•Führen Sie die Anweisungen einzeln aus

•Springen Sie zu einer anderen Anweisung, wenn der Programmierer dies verlangt

Als ich die Anforderungen las, wusste ich sofort, dass es eine Menge interner Kabel geben wird. Glücklicherweise
haben die Autoren ein Blockdiagramm bereitgestellt, das diesem ähnelt:

Huch! Was ist mit den Fragezeichen? Anscheinend handelt es sich um die eigene Version des Spoiler-Alarms der
Autoren. Ich musste selbst herausfinden, was sie sind, und das ist gut so. Ich mag Herausforderungen.

Stellen wir zunächst sicher, dass wir wissen, was jeder Pin/Chip tut.

•Die Anweisung im ROM kommt vom Pininstruction

•Daten vom RAM kommen vom PininM

•Sowohl RAM- als auch ROM-Adressen werden mit ausgewähltaddressM

•Die ALU nimmt zwei Register und gibt einen Ausgang aus

•Das A- und D-Register akzeptieren Eingaben von ALU

•Die ALU-Ausgabe geht auch über an den RAMoutM

•writeMweist den RAM an, Daten zu laden

•Der PC erhöht, setzt zurück oder springt zur Anweisung

Was ist überhaupt eine Anweisung? Es handelt sich um einen 16-Bit-Wert, der beschreibt, was die CPU in diesem
Taktzyklus tun soll. Ein Assembler, den wir in Projekt 06 schreiben werden, übersetzt Assembler in Binärcode, aber in
diesem Projekt gehen wir davon aus, dass er aus dem Nichts kommt.

Was die 16 Bits darstellen, hängt von der Art der Anweisung ab, die Sie schreiben. Es wird durch das höchste Bit
angegeben, das als Opcode bezeichnet wird . In einem A-Befehl ist der Opcode 0, gefolgt von 15 Adressbits. Wenn
man bedenkt, dass unsere größere Speichereinheit, ROM, 32768 Wörter beträgt, sind 15 sinnvoll. In diesem Fall
speichert die CPU den Wert im A-Register.

Der C-Befehl mit Opcode 1 ist komplizierter, läuft aber auf vier Gruppen von Steuerbits hinaus:

 fixed ALU control jump instruction

\ / \ / \ /

+-----+---+--------+--------+--------+

| 111 | a | c1..c6 | d1..d3 | j1..j3 |

+-----+---+--------+--------+--------+

 / \ / \

 A/M destination

•aentscheidet, ob die ALU D und A oder D und M aufnimmt.

•c1..c6entsprechen Steuerbits auf der ALU.

•d1..d3Weisen Sie die CPU an, die ALU-Ausgabe jeweils auf A, D und M zu speichern.

•j1..j3Weisen Sie die CPU an, zu ROM[A] zu springen, wenn die ALU jeweils <0, =0 und >0 ausgibt.

In einer Ahnung scheinen wir die Antwort auf die meisten Fragezeichen zu haben.

Das ist einfach, aber falsch. Schauen wir uns den mit dem A-Register loadbeschrifteten Pin genauer an d1. @1Was
passiert, wenn wir versuchen, Adresse 1 mithilfe einer A-Anweisung hineinzuladen ? Lass es uns zusammenbauen:

0000 0000 0000 0001

^________________/

| ^

| |

opcode integer value 1

Der Multiplexer auf der linken Seite lässt den Befehl durch, da opcodeer 0 ist, aber denken Sie daran, dass HDL nicht
erkennt d1, sondern nur instruction[5]. Was passieren wird, ist, dass das A-Register das Laden verweigert,
weil instruction[5]es Null ist. Etwas Ähnliches wird auch mit d2and passieren d3, daher fügen wir eine kleine
Logik hinzu:

Dadurch wird sichergestellt, dass A, D und M genau dann Daten laden, wenn wir sie ausdrücklich dazu
auffordern. Jetzt richten wir unsere Aufmerksamkeit auf die einzigen zwei Fragezeichen, die noch übrig
sind: zrund ngvon der ALU kommen und loadin den PC gehen.

Fällt Ihnen etwas auf? j1..j3fehlen, also sind es definitiv sie. Denken Sie daran, dass wir den PC auf seinen Eingang
setzen können, wenn wir ihn loadauf hoch ziehen, und auf diese Weise zu ROM[A] springen können. Aber wie?

Es ist eigentlich ganz einfach! Anscheinend haben die Autoren bei der Angabe der ALU genau darüber nachgedacht.

(Die tatsächlichen Tore können abweichen)

Und das war's, wir haben eine CPU gemacht! Wir sind ganz nah am Computer; Alles, was wir tun müssen, ist, alle
Drähte anzuschließen. Ich fühle mich zu müde, um ein weiteres Diagramm zu skizzieren. Hier ist das HDL:

CHIP Computer {

 IN reset;

 PARTS:

 ROM32K(address=pc, out=instruction);

 CPU(

 inM=inM, instruction=instruction, reset=reset,

 writeM=writeM, outM=outM, addressM=addressM, pc=pc

);

 Memory(in=outM, address=addressM, load=writeM, out=inM);

}

https://fkfd.me/projects/nand2tetris_1/

https://zhangruochi.com/Computer-Architecture/2019/06/03/

https://zhangruochi.com/Computer-Architecture/2019/06/03/
https://fkfd.me/projects/nand2tetris_1/

	Kontrollbit-Designpunkte
	Projekt 05: Computer

