Files
nand2tetris/projects/05/CPU.hdl
2023-08-06 10:44:10 +02:00

88 lines
3.3 KiB
Plaintext

// This file is part of www.nand2tetris.org
// and the book "The Elements of Computing Systems"
// by Nisan and Schocken, MIT Press.
// File name: projects/05/CPU.hdl
/**
* The Hack CPU (Central Processing unit), consisting of an ALU,
* two registers named A and D, and a program counter named PC.
* The CPU is designed to fetch and execute instructions written in
* the Hack machine language. In particular, functions as follows:
* Executes the inputted instruction according to the Hack machine
* language specification. The D and A in the language specification
* refer to CPU-resident registers, while M refers to the external
* memory location addressed by A, i.e. to Memory[A]. The inM input
* holds the value of this location. If the current instruction needs
* to write a value to M, the value is placed in outM, the address
* of the target location is placed in the addressM output, and the
* writeM control bit is asserted. (When writeM==0, any value may
* appear in outM). The outM and writeM outputs are combinational:
* they are affected instantaneously by the execution of the current
* instruction. The addressM and pc outputs are clocked: although they
* are affected by the execution of the current instruction, they commit
* to their new values only in the next time step. If reset==1 then the
* CPU jumps to address 0 (i.e. pc is set to 0 in next time step) rather
* than to the address resulting from executing the current instruction.
*/
CHIP CPU {
IN inM[16], // M value input (M = contents of RAM[A])
instruction[16], // Instruction for execution
reset; // Signals whether to re-start the current
// program (reset==1) or continue executing
// the current program (reset==0).
OUT outM[16], // M value output
writeM, // Write to M?
addressM[15], // Address in data memory (of M)
pc[15]; // address of next instruction
PARTS:
// Put your code here:
//Controlbus
// A/C-Instruction and Controlbus
Not(in=instruction[15],out=on);
//d1
Or(a=on,b=instruction[5],out=loadA);
And(a=instruction[15],b=instruction[12],out=AoderMem);
//d2
And(a=instruction[15],b=instruction[4],out=loadD);
//d3 -- writeM
And(a=instruction[15],b=instruction[3],out=writeM);
//j3
And(a=instruction[15],b=instruction[0],out=j3);
//j2
And(a=instruction[15],b=instruction[1],out=j2);
//j1
And(a=instruction[15],b=instruction[2],out=j1);
Not(in=zr,out=notzr);
Not(in=ng,out=notng);
And(a=notzr,b=notng,out=notzrAndNoting);
And(a=notzrAndNoting,b=j3,out=jg3);
And(a=zr,b=j2,out=jg2);
And(a=ng,b=j1,out=jg1);
Or(a=jg3,b=jg2,out=jg23);
Or(a=jg23,b=jg1,out=loadPC);
// Hier addressM[15]-Ausgang der CPU
ARegister(in=mux1,load=loadA,out=outAReg,out[0..14]=addressM);
//M1
Mux16(a=outM2,b=instruction,sel=on,out=mux1);
//M2
Mux16(a=outAReg,b=inM,sel=AoderMem,out=AM);
DRegister(in=outM2,load=loadD,out=outD);
// Das out könnte nicht funktionieren, d.h. die Verteilung zum D-Register und zum Mux
ALU(x=outD,y=AM,zx=instruction[11],nx=instruction[10],zy=instruction[9],ny=instruction[8],f=instruction[7],no=instruction[6],zr=zr,ng=ng,out=outM,out=outM2);
//Counter
PC(in=outAReg,load=loadPC, inc=true,reset=reset,out[0..14]=pc);
}